
EK-KDJ1A-UG-001

KDJ11-A
CPU Module
User's Guide

~amaDmD

EK-KDJ1A-UG-001

KDJ11-A
CPU Module
User's Guide

Prepared by Educational Services
of

Digital Equipment Corporation

Preliminary Edition, January 1984
I st Edition, May 1984

© Digital Equipment Corporation 1984.
All Rights Reserved.

Printed in U.S.A.

The material in this manual is for informational purposes and is subject to change without notice. Digital
Equipment Corporation assumes no responsibility for any errors which may appear in this manual.

The manuscript for this book was created using a DIGITAL Word Processing System and, via a translation
program, was automatically typeset on DIGITAL's DECset Integrated Publishing System. Book production
was done by Educational Services Development and Publishing in Marlboro and Bedford, MA.

The following are trademarks of Digital Equipment Corporation.

~amaamD MASSBUS RSTS
DEC MicroPower/PASCAL RSX
DECmate MINC-II RT-II
DECnet OMNIBUS TOPS-IO
DECUS OS/8 TOPS-20
DECsystem-1O PDP UNIBUS
DECSYSTEM-20 PDT VAX
DECwriter P/OS VMS
DIBOL Professional VT
EduSystem QBus Work Processor
lAS Rainbow

CHAPTER 1

1.1
1.2
1.2.1
1.2.2
1.2.3
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.4
1.5
1.5.1
1.5.1.1
1.5.1.2
1.5.1.3
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6
1.5.6.1
1.5.6.2
1.5.7
1.5.7.1
1.5.7.2
1.5.7.3
1.5.7.4
1.5.7.5
1.5.7.6
1.5.7.7
1.5.8
1.5.8.1
1.5.8.2
1.5.8.3
1.5.9

CONTENTS

Page

ARCHITECTURE

DESCRIPTION ... I-I
GENERAL PURPOSE REGISTERS .. 1-2

Registers ... 1-2
Stack Pointer .. 1-3
Program Counter .. 1-3

SYSTEM CONTROL REGISTERS .. 1-3
Processor Status Word (Address: 17777 776) ... 1-3
CPU Error Register (Address: 17 777 766) ... 1-5
Program Interrupt Request Register (Address: 17 777 772) 1-6
Line Time Clock Register (Address: 17 777 546) .. 1-7
Maintenance Register (Address: 17 777 750) ... 1-7

INTERRUPTS ... 1-8
MEMORY MANAGEMENT .. 1-10

Memory Mapping ... 1-10
16-Bit Mapping .. I-II
18-Bit Mapping .. 1-11
22-Bit Mapping .. 1-12

Compatibility .. 1-12
Virtual Addressing ... 1-13
Interrupt Conditions Under Memory Management Control. 1-13
Construction of a Physical Address ... 1-14
Memory Management Registers .. 1-16

Page Address Registers ... 1-18
Page Descriptor Register ... 1-18

Fault Recovery Registers ... 1-18
Memory Management Register 0 (Address: 17 777 572) 1-20
Memory Management Register I (Address: 17 777 574) 1-21
Memory Management Register 2 (Address: 17 777 576) 1-21
Memory Management Register 3 (Address: 17 772 516) 1-21
Instruction Back-Up/Restart Recovery : 1-22
Clearing Status Registers Following Abort ... 1-22
Multiple Faults ... 1-22

Typical Usage Examples .. 1-22
Typical Memory Page ... 1-23
Nonconsecutive Memory Pages ... 1-25
Slack Memory Pages ... 1-26

Transparency .. 1-27

iii

1.6
1.6.1
1.6.1.1
1.6.1.2
1.6.2
1.6.2.1
1.6.2.2
1.6.2.3
1.7
1. 7.1
1.7.1.1
1.7.1.2
1.7.1.3
1.7.1.4
1.7.2
1.7:2.1
1.7.2.2
1.7.2.3
1.7.3
1.7.4
1.8

CHAPTER 2

2.1
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.9.1
2.9.2
2.9.3
2.10
2.11
2.12
2.13

CONTENTS (Coot)

Page

CACHE MEMORy ... 1-27
Parity .. 1-29

Parity Errors .. 1-29
Multiple Cache Parity Errors .. 1-30

Memory System Registers ... 1-30
Cache Control Register (Address: 17 777 746) 1-30
Hit/Miss Register (Address: 17 777 7 52) ... 1-32
Memory System Error Register (Address: 17 777 744) 1-32

FLOATING-POINT .. 1-33
Floating-Point Data Formats .. 1-33

Nonvavishing Floating-Point Numbers ... 1-33
Floating-Point Zero .. 1-33
The Undefined Variable .. 1-33
Floating-Point Data .. 1-34

Floating-Point Registers ... 1-35
Floating-Point Accumulator .. 1-35
Floating-Point Status Register (FPS) .. 1-35
Floating-Point Exception Registers (FEC, FEA) 1-38

Floating-Point Instruction Addressing .. 1-38
Accuracy .. 1-39

SOFTWARE SySTEMS ... 1-40

INSTALLATION

INTRODUCTION ... 2-1
CONFIGURATION .. 2-1

Power-Up Options .. 2-2
Power-Up Option 0 .. 2-2
Power-Up Option I .. 2-2
Power-Up Option 2 .. 2-2
Power-Up Option 3 .. 2-2

HALT Option ... 2-2
Boot Address .. 2-3
Wakeup Disable ... 2-3
BEVNT Recognition .. 2-3
Factory Configuration .. 2-3

DIAGNOSTIC LEDS .. 2-4
MAINTENANCE REGISTER (ADDRESS 17 777 750) 2-6
POWER-UP SEQUENCE .. 2-7
POWER-DOWN SEQUENCE ... 2-8
EXIT MICRO-ODT SEQUENCE .. 2-8
MODULE CONTACT FINGER IDENTIFICA TION ... 2-9
HARDWARE OPTiONS .. 2-10

LSI-II Options ... 2-10
Restricted LSI-II Options ... 2-12
Enclosures ... 2-14

SYSTEM DIFFERENCES .. 2-15
KDJII-A SYSTEM ... 2-16
MODULE INSTALLATION PROCEDURE .. 2-16
SPECIFICA TIONS .. 2-18

iv

CHAPTER 3

3.1
3.2
3.3
3.4

3.4.1
3.4.2
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.7

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.6
4.2.2.7
4.2.2.8
4.2.3
4.2.3.1
4.2.3.2
4.2.3.3
4.2.3.4
4.2.3.5
4.2.3.6
4.2.3.7
4.2.3.8
4.2.3.9

CONTENTS (Coot)

Page

CONSOLE ON-LINE DEBUGGING TECHNIQUE (ODT)

INTRODUCTION ... 3-1
TERMINAL INTERFACE .. 3-1
CONSOLE ODT ENTRY CONDITIONS .. 3-1
ODT OPERATION OF THE CONSOLE
SERIAL-LINE INTERFACE ... 3-2

Console ODT Input Sequence .. 3-3
Console ODT Output Sequence ... 3-3

CONSOLE ODT COMMAND SET .. 3-3
/(ASCII 057) - Slash .. 3-4
<CR> (ASCII 15) - Carriage Return .. 3-5
<LF> (ASCII 12) - Line Feed ... 3-5
$ (ASCII 044) or R (ASCII 122) - Internal Register Designator 3-6
S (ASCII 123) - Processor Status Word Designator 3-6
G (ASCII 107) - Go .. 3-6
P (ASCII 120) - Proceed .. 3-7
Control-Shift-S (ASCII 23) - Binary Dump ... 3-7
Reserved Command ... 3-7

KDl II-A ADDRESS SPECIFICATION ... 3-8
Processor I/O Addresses .. 3-8
Stack Pointer Selection .. 3-8
Entering of Octal Digits ... 3-8
ODT Timeout ... 3-9

INVALID CHARACTERS ... 3-9

FUNCTIONAL THEORY

INTRODUCTION ... 4-1
DCl 11 MICROPROCESSOR ... 4-3

Initialization (MINIT L) .. 4-3
Output Signals .. 4-3

Address Input/Output (AIO<03:00> H) .. 4-3
Bank Select, (BSI H, BSO H) ... 4-4
Address Latch Enable (ALE L) .. 4-5
Stretch Control (SCTL L) ... 4-5
Strobe (STRB L) ... 4-5
Buffer Control (BUFCTL L) ... 4-5
Predecodc Strobe (PRDC L) ... 4-5
Clock (CLK H) .. 4-5

Input Signals ... 4-5
MISS L .. 4-5
Data Valid (DV L) ... 4-5
Continue (CONT L) .. 4-5
DMA Request (DMR L) ... 4-5
IRQ <07:04> H .. 4-5
HALT H .. 4-5
EVNT H .. 4-6
PWR FAIL L .. 4-6
PARITY L ... 4-6

v

4.2.3.10
4.2.3.11
4.2.4
4.2.5
4.2.5.1
4.2.5.2
4.2.5.3
4.2.5.4
4.2.5.5
4.2.5.6
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.10.1
4.3.10.2
4.3.10.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.10
4.4.11
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

CONTENTS (Cont)

Page

ABORT L .. 4-6
FPA FPE L ... 4-6

MDAL <21 :00> .. 4-6
DCl11 Timing .. 4-6

NOP ... 4-6
Bus Read .. 4-7
Bus Write ... 4-8
General-Purpose Read ... 4-9
General-Purpose Write .. 4-10
lACK ... 4-10

STATE SEQUENCER .. 4-10
DCl11 ... 4-12
LSI-II Bus Signals ... 4-12
LSI-II Bus Receivers ... 4-12
LSI-II Bus Transmitters .. 4-12
Maintenance Register ... 4-12
DMA Register .. 4-12
Cache Data Path .. 4-12
Cache Memory ... 4-13
Floating-Point Accelerator ... 4-13
Bus Traffic ... 4-13

Address Busing ... 4-13
Read Data .. 4-13
Write Data ... 4-13

CACHE DATA PATH .. 4-17
DClll Input Signals .. 4-17
State Sequencer Inputs ... 4-17
System Memory Parity .. 4-19
Cache Memory Parity .. 4-19
Timeout .. 4-19
Cache Control Register .. 4-19
Memory System Error Register. .. 4-1 9
LTC Register .. 4-20
Flush Counter ... 4-20
Address Register .. 4-20
CDP Outputs .. 4-20

CACHE MEMORy ... 4-21
Cache Data ... 4-22
Data Parity Logic ... 4-22
Parity Data ... 4-23
TAG RAM ... 4-23
Hit/Miss Logic ... 4-23

BUS RECEIVERS ... 4-24
BUS TRANSMITTERS .. 4-25
OUTPUT CONTROL ... 4-26
INPUT CONTROL ... 4-26
DMA MONITOR REGISTER ... 4-27
INITIALIZATION/MAINTENANCE REGISTER .. 4-27
STATUS LEDs .. 4-29

vi

CHAPTER 5

5.1
5.2
5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.1.3
5.3.1.4
5.4
5.5
5.5.1
5.5.2
5.5.3
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.4.1
5.6.4.2
5.6.4.3
5.6.4.4
5.6.5
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6
5.7.7
5.7.8
5.7.8.1
5.7.8.2
5.7.8.3
5.7.8.4
5.8
5.8.1
5.8.2
5.8.3

CHAPTER 6

6.1
6.2
6.2.1
6.2.2

CONTENTS (Coot)

Page

EXTENDED LSI-ll BUS

INTRODUCTION ... 5-1
BUS SIGNAL NOMENCLATURE .. 5-3
DATA TRANSFER BUS CYCLES .. 5-3

Bus Cycle Protocol ... 5-4
Device Addressing .. 5-4
DATI .. 5-5
DA TO(B) ... 5-7
DA TIO(B) .. 5-10

DIRECT MEMORY ACCESS (DMA) .. 5-12
INTERRUPTS ... 5-15

Device Priority ... 5-\5
Interrupt Protocol ... 5-16
4-Level Interrupt Configurations , ... 5-19

CONTROL FUNCTIONS .. 5-20
Memory Refresh .. 5-20
Halt ... 5-20
Initialization .. 5-20
Power Status ... 5-20

BDCOK H ... 5-20
BPOK H ... 5-20
Power-Up ... 5-2\
Power-Down ... 5-22

BEVENT L .. 5-22
BUS ELECTRICAL CHARACTERISTICS .. 5-22

Signal-Level Specification .. 5-22
AC Bus Load Definition .. 5-22
DC Bus Load Definition .. 5-23
120 Ohm LSI-II Bus ... 5-23
Bus Drivers ... 5-23
Bus Receivers ... 5-24
KD1l1-A Bus Termination .. 5-24
Bus Interconnection Wiring ... 5-25

Backplane Wiring ... 5-25
Intrabackplane Bus Wiring .. 5-25
Power and Ground ... 5-25
Maintenance and Spare Pins ... 5-26

SYSTEM CONFIGURA TIONS ... 5-26
Rules for Configuring Single-Backplane Systems .. 5-27
Rules for Configuring Multiple-Backplane Systems .. 5-27
Power Supply Loading ... 5-29

ADDRESSING MODES AND BASE INSTRUCTION SET

INTRODUCTION ... 6-1
ADDRESSING MODES ... 6-1

Single-Operand Addressing .. 6-3
Double-Operand Addressing ... 6-3

vii

6.2.3
6.2.3.1
6.2.3.2
6.2.3.3
6.2.3.4
6.2.4
6.2.5
6.2.5.1
6.2.5.2
6.2.5.3
6.2.5.4

6.2.6

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.4.1
6.3.4.2
6.3.4.3
6.3.4.4
6.3.5
6.3.5.1
6.3.5.2
6.3.6
6.3.6.1
6.3.6.2
6.3.6.3
6.3.6.4
6.3.6.5
6.3.6.6
6.3.6.7
6.3.6.8
6.3.7
6.3.8

CHAPTER 7

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.4
7.5

CONTENTS (Cont)

Page

Direct Addressing ... 6-4
Register Mode .. 6-6
Autoincrement Mode [OPR (Rn)+] .. 6-7
Autodecrement Mode [OPR-(Rn)] .. 6-9
Index Mode [OPR X(Rn)] ... 6-11

Deferred (Indirect) Addressing ... 6-13
Use Of The PC as a General-Purpose Register .. 6-17

Immediate Mode [OPR #n,DD] .. 6-18
Absolute Addressing Mode [OPR @;,#A] ... 6-18
Relative Addressing Mode [OPR A or OPR X(PC)] 6-20
Relative-Deferred Addressing Mode
[OPR @;,A or OPR @;'X(PC)] ... 6-20

Use Of The Stack Pointer as a
General- Purpose Register ... 6-21

INSTRUCTION SET .. 6-21
Instruction Formats .. 6-22
Byte Instructions ... 6-26
List Of Instructions .. 6-27
Single-Operand Instructions ... 6-30

General ... 6-31
Shifts And Rotates .. 6-36
Multiple-Precision .. 6-42
PS Word Operators ... 6-45

Double-Operand Instructions .. 6-46
General ... 6-47
Logical .. 6-53

Program Control Instructions ... 6-56
Branches ... 6-56
Signed Conditional Branches ... 6-61
Unsigned Conditional Branches ... 6-63
Jump and Subroutine Instructions ... 6-65
Traps .. 6-69
Miscellaneous Program Control... .. 6-73
Reserved Instruction Traps .. 6-76
Trace Trap ... 6-76

Miscellaneous Instructions .. 6-77
Condition Code Operators .. 6-80

FLOA TING-POINT ARITHMETIC

INTRODUCTION ... 7-1
FLOATING-POINT DATA FORMATS ... 7-1

Nonvanishing Floating-Point Numbers .. 7-1
Floating-Point Zero .. 7-1
Undefined Variables ... 7-2
Floating-Point Data .. 7-2

FLOATING-POINT STATUS REGISTER (FPS) .. 7-3
FLOATING EXCEPTION CODE AND ADDRESS REGISTERS 7-6
FLOATING-POINT INSTRUCTION ADDRESSING .. 7-7

viii

7.6
7.7

CHAPTER 8

8.1
8.2
8.2.1

8.2.2

8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.6.1
8.3.6.2
8.3.7
8.3.7.1
8.3.7.2
8.3.8
8.3.8.1
8.3.8.2
8.3.9
8.3.9.1
8.3.9.2
8.3.9.3
8.3.10
8.3.11
8.3.11.1
8.3.11.2
8.3.12
8.4
8.5
8.6
8.7

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.3
9.4

CONTENTS (Cont)

Page

ACCURACY ... 7-7
FLOATING-POINT INSTRUCTIONS ... 7-8

PROGRAMMING TECHNIQUES

INTRODUCTION ... 8-1
POSITION-INDEPENDENT CODE ... 8-1

Use of Addressing Modes in the Construction of
Position-Independent Code ... 8-1
Comparison of Position-Dependent and
Position-Independent Code ... 8-3

STACKS ... 8-5
Pushing onto a Stack ... 8-6
Popping from a Stack .. 8-6
Deleting Items from a Stack .. 8-7
Stack Uses .. 8-7
Stack Use Examples ... 8-8
Subroutine Linkage .. 8-10

Return from a Subroutine ... 8-\ 0
Subroutine Advantages .. 8-10

Interrupts .. 8-11
Interrupt Service Routines ... 8-11
Nesting ... 8-11

Reentrancy ... 8-12
Reentrant Code .. 8-1 3
Writing Reentrant Code .. 8-14

Coroutines ... 8-14
Coroutine Calls .. 8-15
Coroutines Versus Subroutines .. 8-16
Using Coroutines .. 8-17

Recursion .. 8-19
Processor Traps .. 8-20

Trap Instructions .. 8-21
Use of Macro Calls .. 8-22

Conversion Routines ... 8-22
PROGRAMMING THE PROCESSOR STATUS WORD 8-26
PROGRAMMING PERIPHERALS .. 8-27
PDP-II PROGRAMMING EXAMPLES .. 8-27
LOOPING TECHNIQUES ... 8-34

BOOT ROMS AND DIAGNOSTICS

INTRODUCTION ... 9-1
MXVII-B2 ROM SET .. 9-1

Power-Up .. 9-1
Automatic Booting ... 9-2
Manual Booting .. 9-2
Error and Help Messages ... 9-3

DIAGNOSTICS ... 9-6
DIAGNOSTIC EXAMPLE ... 9-7

ix

CONTENTS (Coot)

Page

APPENDIX A INSTRUCTION TIMING

A.l GENERAL .. A-l
A.2 BASE INSTRUCTION SET TIMING ... A-I
A.3 FLOATING-POINT INSTRUCTION SET TIMING ... A-6

APPENDIX B PROGRAMMING DIFFERENCES

Figure No.

1-1
1-2
1-3
1-4
1-5
1-6
1-8
1-9
1-10
I-II
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23
1-24
1-25
1-26
1-27
1-28
1-29
1-30
1-31
2-1
2-2
2-3
2-4
2-5
2-6
4-1

FIGURES

Title Page

Programming Model ... 1-2
Processor Status Register ... 1-3
CPU Error Register .. 1-5
Program Interrupt Request Register (PIRQ) ... 1-6
Line Time Clock Register (BEVNT) ... 1-7
Maintenance Register ... 1-7
18-Bit Mapping ... 1-11
22-Bit Mapping ... 1-12
Virtual Address Mapping into Physical Address ... 1-13
Interpretation of a Virtual Address .. 1-14
Displacement Field of a Virtual Address ... 1-14
Construction of a Physical Address ... 1-15
Active Page Registers ... 1-16
Page Address Register (PAR) .. 1-18
Page Descriptor Register (PDR) .. 1-18
Memory Management Register 0 (MMRO) ... 1-20
Memory Management Register 1 (MMRl) ... 1-21
Memory Management Register 3 (MMR3) ... 1-21
Typical Memory Page .. 1-23
Nonconsecutive Memory Pages .. 1-25
Typical Stack Memory Page .. 1-26
Cache Physical Address ... 1-27
Cache Data Format .. 1-27
Cache Control Register (CCR) .. 1-30
Hit/Miss Register (HMR) .. 1-32
Memory System Error Register (MSER) .. 1-32
Single-Precision Format .. 1-34
Double-Precision Format .. 1-34
2's Complement Format ... 1-35
Floating-Point Status Register .. 1-36
KDJII-A Jumper Locations ... 2-4
Maintenance Register ... 2-6
KDJII-A Power-Up Sequence ... 2-7
KDJII-A Power-Down Sequence ... 2-8
Micro-ODT Exit Sequence ... 2-8
KDJII-A Module Contacts .. 2-9
Functional Block Diagram .. 4-2

x

Figure No.

4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8

FIGURES (Cont)

Title Page

DCJ II-A Microprocessor ... 4-3
NOP Transaction .. 4-6
Stretched NOP Transaction ... 4-7
Bus Read Transaction ... 4-7
Stretched Bus Read Transaction .. 4-8
Bus Write Transaction .. 4-9
General-Purpose Read Transaction .. 4-9
General-Purpose Write Transaction ... 4-10
Interrupt Acknowledge Transaction ... 4-11
State Sequencer .. 4-11
Address Traffic Pattern .. 4-14
Read Data Busing ... 4-15
Write Data Busing .. 4-16
Cache Control Logic ... 4-18
Cache Memory ... 4-21
Cache Memory Physical Address ... 4-22
Cache Data ... 4-22
Cache Data Parity Logic .. 4-23
Cache HIT/MISS Logic ... 4-24
KDJII-A Bus Receivers ... 4-24
KDJII-A Bus Transmitters .. 4-25
DCJII-A Output Control ... 4-26
DCJ ll-A Input Control. ... 4-26
DMA Monitor Register .. 4-27
Initialization/Maintenance Register Logic ... 4-28
Status LEDs Logic ... 4-29
DATI Bus Cycle ... 5-5
DATI Bus Cycle Timing .. 5-6
DA TO or DA TO(B) Bus Cycle .. 5-8
DA TO or DA TO(B) Bus Cycle Timing ... 5-9
DATIO or DATIO(B) Bus Cycle ... 5-10
DA TIO or DA TIO(B) Bus Cycle Timing .. 5-11
DMA Request/Grant Sequence ... 5-13
DMA Request/Grant Bus Cycle Timing ... 5-14
Interrupt Request/Acknowledge Sequence .. 5-16
Interrupt Protocol Timing .. 5-17
Position-Independent Configuration ... 5-19
Position-Dependent Configuration .. 5-19
Power-Up/Power-Down Timing ... 5-21
Bus Line Termination ... 5-24
Single-Backplane Configuration ... 5-27
Multiple-Backplane Configuration .. 5-28
Single-Operand Addressing ... 6-3
Double-Operand Addressing ... 6-3
Mode 0 Register ... 6-4
Mode 2 Autoincrement .. 6-5
Mode 4 Autodecrement. ... 6-5
Mode 6 Index ... 6-5
INC R3 Increment ... 6-6
ADD R2,R4 Add ... 6-7

xi

Figure No.

6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
7-1
7-2
7-3
7-4
7-5
8-1
8-2
8-3
8-4
8-5
8-6

FIGURES (Cont)

Title Page

COMB R4 Complement Byte .. 6-7
CLR (R5)+ Clear ... 6-8
CLRB (R5)+ Clear byte .. 6-8
ADD (R2)+,R4 Add .. 6-9
INC -(RO) Increment .. 6-9
INCB -(RO) Increment Byte ... 6-10
ADD -(R3),RO Add .. 6-10
CLR 200(R4) Clear .. 6-11
COMB 200(R 1) Complement Byte .. 6-12
ADD 30(R2),20(R5) Add .. 6-12
Mode 1 Register-Deferred .. 6-13
Mode 3 Autoincrement-Deferred ... 6-13
Mode 5 Autodecrement-Deferred .. 6-14
Mode 7 Index-Deferred .. 6-14
CLR @,R5 Clear ... 6-15
INC @(R2)+ Increment ... 6-15
COM @,-(RO) Complement ... 6- I 6
ADD @,1000(R2),R1 Add .. 6-16
ADD #IO,RO Add .. 6-18
CLR @, #1100 Clear .. 6-19
ADD @, #2000 Add ... 6- 19
INC A Increment ... 6-20
CLR @,A Clear ... 6-21
Single-Operand Group .. 6-22
Double-Operand Group 1 ... 6-22
Double-Operand Group 2 ... 6-22
Program Control Group Branch ... 6-23
Program Control Group JSR ... 6-23
Program Control Group RTS ... 6-23
Program Control Group Traps ... 6-23
Program Control Group Subtract .. 6-24
Mark ... 6-24
Call to Supervisor Mode ... 6-24
Set Priority Level ... 6-24
Operate Group .. 6-25
Condition Group ... 6-25
Move To And From Previous Instruction/Data Space Group 6-25
Byte Instructions ... 6-26
Single-Precision Format .. 7-2
Double-Precision Format .. 7-2
2's Complement Format ... 7-3
Floating-Point Status Register .. 7-3
Floating-Point Addressing Modes ... 7-9
Word and Byte Stacks .. 8-5
Push and Pop Operations ... 8-6
Byte Stack Used as a Character Buffer. .. 8-9
JSR Stack Condition Example ... 8-10
Nested Interrupt Service Routines and Subroutines .. 8-12
Reentrant Routines ... 8- 13

xii

Figure No.

8-7
8-8
8-9
8-10
8-11
8-12

Table No.

I-I
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
I-II
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
3-1
3-2
4-1
4-2
4-3
4-4
4-5

FIGURES (Cont)

Title Page

Sharing Control of a Routine ... 8-13
Coroutine Example ... 8-15
Coroutines Versus Subroutines ... 8-16
Coroutine Path .. 8-17
Coroutine Interaction .. 8-18
Recursive Routine Flow ... 8-19

TABLES

Title Page

General-Purpose Registers .. 1-2
Stack Pointer (PSW 15, 14 or 13, 12) .. 1-3
Processor Status Bit Description .. 1-4
CPU Error Register Bit Description .. 1-5
PlRQ Bit Descriptions .. 1-6
Line Time Clock (LTC) Register Bit Descriptions .. 1-7
Maintenance Register Bit Description .. 1-8
Asynchronous Interrupts ... 1-9
Synchronous Interrupts ... 1-10
KDJ II-A Compatibility ... 1-12
Memory Management Register Addresses ... 1-17
Page Descriptor Bit Description ... 1-19
MMRO Bit Descriptions ... 1-20
MMR3 Bit Description ... 1-22
Cache Response Matrix .. 1-28
Cache Parity Errors .. 1-29
Cache Control Register Description ... 1-31
Memory System Error Register ... 1-32
Floating-Point Status Bit Description ... 1-36
KDJ II-A Jumper Identification ... 2-1
Power-Up Options .. 2-2
Factory Configuration .. 2-3
LED Functions .. 2-5
Probable System Failure ... 2-5
Maintenance Register Bit Description .. 2-6
KDJII-A Module Signals ... 2-10
LSI-II Compatible Options .. 2-11
Restricted or Noncompatible LSI-II Options ... 2-12
Upgrade Choices ... 2-17
Console ODT Commands ... 3-3
Console ODT States and Valid Input Characters .. 3-9
AIO Coding .. 4-4
Bank Select Address Codes .. 4-4
General-Purpose Read Codes ... 4-9
General-Purpose Write Codes .. 4-10
Select Codes .. 4-13

xiii

Table No.

4-6
4-7
4-8
4-9
5-1
5-2
5-3
5-4
7-1
9-1
9-2
9-3
A-I
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-lO
A-II
A-12
B-1

TABLES (Cont)

Title Page

Output Select Codes ... 4-17
TAG Parity ... 4-1 7
Parity Error Action .. 4-19
Abort and Parity Response .. 4-20
Summary of Signal Line Functions .. 5-1
Data Transfer Bus Cycles ... 5-3
Data Transfer Bus Signals .. 5-4
Position-Independent, Multilevel Device Requirements ... 5-18
FPS Register Bits ... 7-4
MXVI1-B2 Boot Commands ... 9-2
MXVI1-B2 Error Messages ... 9-3
KDJ l1-A Diagnostics ... 9-7
Source Address Time: All Double Operand ... A-I
Destination Address Time: Read-Only Single Operand .. A-2
Destination Address Time: Read-Only Double Operand .. A-2
Destination Address Time: Write-Only ... A-2
Destination Address Erne: Read-Modify-Write ... A-3
Execution, Fetch Time .. A-3
Instruction Execution Times (In Microseconds) ... A-6
Floating Source Modes 1-7 ... A-7
Floating Destination Modes 1-7 .. A-7
Floating Read-Modify-Write Modes 1-7 .. A-8
Integer Source Modes 1-7 .. A-8
Integer Destination Modes 1-7 ... A-9
KDJII-A Programming Differences .. B-2

xiv

PREFACE

This user's guide is intended to support the users of the KDJ II-A CPU module by providing them with
architecture, programming, diagnostic and configuration information. The architecture is described in
Chapter I and is supported by the functional theory description in Chapter 4. The diagnostics and booting
procedures are described in Chapter 9, and Chapter 3 provides the techniques used for on-line debugging
(ODT). The configuration requirements for both the module and system applications are described in
Chapter 2. Chapter 5 provides the information on the LSI-II bus used in most system applications.

The KDJ II-A module uses the standard instruction set described in Chapter 6 and the floating-point
instruction set described in Chapter 7. Also described in Chapter 6 are the addressing modes which are
supported by the programming techniques described in Chapter 8. The detailed timing information is
provided in Appendix A and the differences between other LSI-II and PDP-II microprocessors are listed
in Appendix B.

xv

1.1 DESCRIPTION

CHAPTER 1
ARCHITECTURE

The KDJ II-A is a dual-height processor module for LSI-II type bus systems. It is designed for use in
high-speed, real-time applications and for multiuser, multitasking environments.

The KDJ I I-A module executes the complete PDP-II integer and FP-II floating-point instruction sets.
Full 22-bit memory management is provided for both instruction references and data references in three
protection modes - kernel, supervisor, and user. The KDJlI-A module is fully downward compatible with
older PDP-II models which have 18-bit memory management or no memory management.

The three protection modes provide the ability to implement layered software protection. Memory
management separately manages each mode, allowing each mode to access different sections of main
memory. Furthermore, each section can have different access protection rights. Each mode uses a separate
system stack pointer that offers an additional degree of isolation. The protection modes are organized so
that a higher protection mode can always enter a lower protection mode, while a lower protection mode
can never accidentally enter a higher protection mode. Kernel mode has full privileges and can execute all
instructions. Supervisor mode and user mode, the two lower privileged modes, cannot execute certain
instructions.

The module interfaces to the extended LSI-II bus and can address up to 4 megabytes of main memory.
Block mode DMA transfers, which are allowed on the extended bus, are supported by the KDJ II-A. The
22-bit extended LSI-II bus is fully downward compatible with the standard 18-bit LSI-II bus.

The KDJ I I-A module supports console emulation (micro octal debugging tool or ODT). This allows users
to interrogate and write main memory and CPU registers as if a console switch panel and display lights
were available.

The module contains an 8 Kbyte write-through direct map cache (set size one, block size one). The cache
is transparent to all programs and acts as a high-speed buffer between the processor and main memory.
The data stored in the cache represents the most active portion of the main memory being used. The
processor accesses main memory only when data is not available in the cache.

The user-visible registers are shown in Figure I-I and are classified as general purpose, system control,
memory system, floating point and memory management registers.

Self-diagnostic LEDs are provided on the KDJII-A module and indicate the status of the module and
system when the module is powered-up. The LEDs aid in troubleshooting module failures.

The KDJlI-A module can run RT-II VS.I, RSX-IIM, RSX-IIM PLUS, RSTS/E, UNIX, and micro
power PASCAL operating systems.

I-I

GENERAL PURPOSE

RO RO' KSP

Rl Rl' SSP

R2 R2' USP

R3 R3'

R4 R4' PC

R5 R5'

FLOATING POINT

""-F-PS---', I F EC II r--F-EA---'

ACCUMULATORS (64 BITI

SYSTEM CONTROL MEMORY SYSTEM

PSW LTC I CACHE CTRL I
PIRQ MAINT I MEM SYS ERR I

CPU ERROR HIT/MISS

MEMORY MANAGEMENT

I MMRO , I MMRl , I MMR2 I I MMR3 I

PAGE REGISTERS (32 BIT)

KERNEL (001 SUPERVISOR (011 USER (11)

w~w
8 I SPACE AND 8 D SPACE

MR-l1041

Figure I-I Programming Model

1.2 GENERAL PURPOSE REGISTERS
There are 16 general purpose registers (GPR), as listed in Table 1-1, but only 8 are visible to the user at
any given time. All these registers can be used as accumulators, deferred addresses, index references,
autoincrement, autodecrement, and stack pointers.

1.2.1 Registers
There are two groups of six registers designated RO-RS and RO'-RS'. The group currently being used is
selected by bit 11 in the processor status word (PSW). When bit 11 is set (I), the RO' -RS' group is
selected, and when bit II is cleared (0), the RO-RS group is selected.

Table 1-1 General-Purpose Registers

Register
Number Designation

o
I
2
3
4
S
6
7

1-2

RO
RI
R2
R3
R4
RS
KSP
PC

RO'
RI'
R2'
R3'
R4'
RS'
SSP
USP

1.2.2 Stack Pointer
Register six (R6) is designated as the system stack pointer. There are three stack pointers available, one for
each corresponding protection mode. However, only one is visible to the user at a given time. The
processor status bits 14 and 15 select the active stack pointer used for all instructions except MFPI,
MFPD, MTPI, and MTPD. When these instructions select R6 as the destination register, bits 12 and 13 of
the processor status word select the active stack pointer. In both cases, the 2-bit selection code is encoded
as described in Table 1-2 to select the active register.

1.2.3 Program Counter

Table 1-2 Stack Pointer (pSW 15, 14 or 13, 12)

Code

00
01
II
10

Selected R6

Kernel stack pointer (KSP)
Supervisor stack pointer (SSP)
User stack pointer (USP)
Illegal - User stack pointer selected

The program counter (PC) contains the 16-bit address of the next instruction stream word to be accessed.
It is designated as R 7 and controls the sequencing of instructions. The PC is directly addressable by single
and double-operand instructions and is a general purpose register, although it is normally not used as an
accumulator.

1.3 SYSTEM CONTROL REGISTERS
The processor status word (PSW), program interrupt request (PIRQ), CPU error register, line clock
register, and the maintenance register are designated as the system control registers. These registers are
used by the module to control system-oriented functions.

1.3.1 Processor Status Word (Address: 17 777 776)
The processor status word (PSW) provides the current and previous operational modes, the general
purpose register group being used, the current priority level, the condition code status, and the trace trap
bit used for program debugging. The PSW is initialized at power-up and is cleared with a console start.
The PSW register is defined in Figure 1-2 and is described in Table 1-3.

15 14 13 12 11 10 09 OB 07 06 05 04 03 02 01 00

~~ f
CURRENT PREVIOUS PRIORITY TRACE BIT
MODE MODE LEVEL

GENERAL PURPOSE SUSPENDED
REGISTER GROUP INFORMATION

Figure 1-2 Processor Status Register

1-3

f
CONDITION
CODES

MR-l1042

Bit

IS, 14

13, 12

II

10,09

08

07:0S

04

03

02

01

00

Name

Current mode

Previous mode

Register set

N/A

Suspended
information

Priority

Trap·

Negative

Zero

Overflow

Carry

Table 1-3 Processor Status Bit Description

Status

R/W

R/W

R/W

R

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Description

Indicates the current operating mode and is coded as follows.

Bits
15 14 Mode

0 0 Kernel
0 I Supervisor
I 0 Illegal
I I User

Indicates the previous operating mode and is coded the same as
bits IS, 14.

Selects the group of general purpose registers being used. When
the bit is set, the RO'-RS' group is selected and when cleared, the
RO-RS group is selected.

Not used.

Reserved.

Indicates the current priority level of the processor and is coded
as follows.

Bits
7 6 5 Priority Le~el

I I I 7
I 0 0 6
I 0 I S
I 0 0 4
0 I I 3
0 I 0 2
0 0 I I
0 0 0 0

The trap bit is inactive when it is cleared. When set, the proces
sor traps to location 14 at the end of the current instruction. It is
useful for debugging programs and setting breakpoints.

Condition code N is set when the previous operation result was
negative.

Condition code Z is set when the previous operation result is
zero.

Condition code V is set when the previous operation resulted in
an arithmetic overflow.

Condition code C is set when the previous operation caused a
carry out.

• The T-bit cannot be set by explicitly writing to the PSW. It can only be changed by the RTIjRTT instructions .

1-4

1.3.2 CPU Error Register (Address: 17 777 766)
The CPU error register identifies the source of any trap or abort condition that caused a trap through
location 4. Six separate error conditions are identified in Figure 1-3 and are described in Table 1-4. The
register is cleared by any write reference, power-up, or by console start. It is not changed by the RESET
instruction.

Bit

15:08

07

06

05

04

03

02

01,00

15 08 07 06 05 04 03 02 01 00

1010101010101 o 1 0 1 1 1 1 T 1 1 0 1 0 1

I LLEGAL HALT

ADDRESS ERROR

NON-EXISTENT MEMORY

I/O BUS TIMEOUT

YELLOW STACK VIOLATION

RED STACK VIOLATION
MR-9326

Figure 1-3 CPU Error Register

Name

Not used

Illegal HALT

Address error

Nonexistent
memory

I/O bus timeout

Ycllow stack
violation

Red stack
violation

Not used

Table 1-4 CPU Error Register Bit Description

Status

Read only

Read only

Read only

Read only

Read only

Read only

1-5

Function

Sct when execution of a HALT instruction is attempted in
user or supervisor mode.

Set when word access to an odd byte address or an instruc
tion fetch from an internal register is attempted.

Set when a reference to main memory times out

Set when a reference to the I/O page times out.

Set on a yellow zone stack overflow trap. (Kernel mode
stack reference less than 400 octal).

Set on a red stack trap - a kernel stack push abort during
an interrupt, abort, or trap sequence.

1.3.3 Program Interrupt Request Register (Address: 17 777 772)
The program interrupt request register (PIRQ) implements a software interrupt facility. A request is
initiated by setting one of the bits <15:09>, which corresponds to a program interrupt request for priority
levels 7-1. Bits <07:05> and <03:01> are set by hardware to the encoded value of the highest pending
request set. When the interrupt is acknowledged, the processor vectors to address 240 for a service routine.
It is the responsibility of the service routine to clear the interrupt request. The PIRQ register is defined in
Figure 1-4 and is described in Table 1-5. The PIRQ register is cleared at power-up, by a console start, or
by the RESET instruction.

Bit

15

14

13

12

II

10

09

07:05

03:01

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I PI R 71 PI R 61 PI R 51 PI R 41 PI R 31 PI R 21 PI R 1 I 0 I I 0 0 I
REQUEST LEVELS:]

PRIORITY ENCODED VALUE OF BITS 9-15 I I

Name

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level I

Encoded value

Encoded value

MR·9013

Figure 1-4 Program Interrupt Request Register (PIRQ)

Table 1-5 PIRQ Bit Descriptions

Status Function

Read/write Requests an interrupt priority of level 7

Read/write Requests an interrupt priority of level 6

Read/write Requests an interrupt priority of level 5

Read/write Requests an interrupt priority of level 4

Read/write Requests an interrupt priority of level 3

Read/write Requests an interrupt priority of level 2

Read/write Requests an interrupt priority of level I

Read only Bits <07:05> represent the encoded value of highest priori
ty level set in bits < 15:09>

Read only Bits <03:01> represent the encoded value of the highest
priority level set in bits < 15:09>. Same as bits <07:05>.

1-6

1.3.4 Line Time Clock Register (Address: 17 777 546)
The line time clock register (LTC) controls the recognition of the LSI-II bus BEVNTL signal. When bit
06 of the register is set (1), the BEVNTL signal can be recognized and will generate the highest possible
level 6 interrupt request through address location 100. The BEVNTL input is disabled when bit 06 of the
register is cleared (0). The BEVNTL input can be permanently disabled by installing the W9 jumper. The
register is defined in Figure 1-5 and is described by Table 1-6. The register is cleared at power-up, by a
console start, or by the RESET instruction.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I 0 I 0 I 0 0 I 0 I o I 0 I 0 I 0 I 0 I o I 0 I 0 I 0 I 0

f
BEVNTL ENABLE

MR·l,043

Figure 1-5 Line Time Clock Register (BEVNT)

Table 1-6 Line Time Clock (LTC) Register Bit Descriptions

Bit Name Status

15:07 Not used

06 BEVNT ENABLE Read/write

05:00 Not used

1.3.5 Maintenance Register (Address: 17777750)

Function

When this bit is set (I), the LSI-II BEVNT L signal can
be recognized (unless W9 is installed).

The maintenance register provides a way for software to determine the power-up options selected by the
user. It also indicates if a floating-point accelerator (FPA) is available. The register is defined in Figure 1-6
and is described by Table 1-7.

15 14 13

I :
f

BOOT
ADDRESS

12 11

o I
10 09 08 07 06 05

0 I 0 I 0 I o I 0

t
FPA
AVAILABLE

Figure 1-6 Maintenance Register

1-7

04 03 02 01 00

I 1 I
HJT ~;JER
OPTION OK

POWER UP (POK)
OPTION

MR·l1044

Table 1-7 Maintenance Register Bit Description

Bit Name Status Function

15:12 Boot address Read only These bits read the user's selected boot address. The
address is selected by jumpers, W I (bit 15), W2 (bit 14),
W 4 (bit 13) and W6 (bit 12). A "I" indicates the jumper is
inserted and a "0" indicates the jumper is removed.

11:09 Not used

08 FPA available Read only The bit is set (I) if a floating-point accelerator (FPA) is
installed on the module.

07:04 Module 10 The "000 I" code identifies this module as a KDJ II-A
microprocessor.

03 HALT option Read only The option determines how the HALT instruction is used
in the kernel mode. If W5 is removed, the bit is set (I) and
the processor will set up an emergency stack at location 4
and then trap through vector address 4. If W5 is installed,
the bit is cleared (0) and the processor will enter console
ODT mode.

02,01 Power-up Read only These bits read the power-up mode for the processor. Bit 2
is set (I) by removing jumper W3 and bit 0 I is set (I) by
removing jumper W7. The following power-up options are
available.

Bit 02 Bit 01 Option

0 0 PC at 24, PS at 26
0 I Micro-ODT, PS = 0
I 0 PC = 173000, PS = 340
I I User Bootstrap, PS = 340

00 BPOK H Read only The bit is set (I) when the LSI-II bus signal BPOK H is
asserted, indicating that the ac power is okay.

1.4 INTERRUPTS
The KDJ I I-A module uses a variety of trap, hardware, and software interrupts, described in Tables 1-8
and 1-9. Four interrupt request lines allow external hardware to interrupt the processor on four interrupt
levels using an externally supplied vector. Seven levels of software interrupt requests are supported
through use of the PIRQ register. Finally, a variety of internally vectored traps are provided to flag error
conditions.

1-8

Table 1-8 Asynchronous Interrupts

Internal
or Vector Priority

Interrupt External Address Level*

Red stack trap Internal 4 NM
(CPU error register, bit 02)

Address error Internal 4 NM
(CPU error register, bit 06)

Memory management violation Internal 250 NM
(MMRO, bits <13:15»

Timeout/nonexistent memory Internal 4 NM
(CPU error register, bits <04:05»

Parity error (PARITY, ABORT) External 114 NM

Trace (T-bit) Trap (PSW, bit 04) Internal 14 NM

Yellow stack trap Internal 4 NM
(CPU error register, bit 03)

Power fail (PWRF) External 24 NM

FP exception (FPE) External 244 NM

PIR 7 (PIRQ, bit 15) Internal 240 7

IRQ 7 External User-defined 7

PIR 6 (PIRQ, bit 14) Internal 240 7

BEVNT External 100 6

IRQ 6 External User-defined 6

PIR 5 (PIRQ, bit 13) Internal 240 5

IRQ 5 External User-defined 5

PIR 4 (PIRQ, bit 12) Internal 240 4

IRQ 4 External User-defined 4

PIR 3 (PIRQ, bit 11) Internal 240 3

PIR 2 (PIRQ, bit 10) Internal 240 2

PIR I (PIRQ, bit 09) Internal 240

Halt line (HAL T)t External None - places system
in console mode.

* NM = Non-maskable

t The halt line usually has the lowest priority, however, it has highest priority during vector reads. This allows the user to break
out of potential infinite loops. An infinite loop could oceur if a vector has not been properly mapped during memory
management operations.

1-9

Table 1-9 Synchronous Interrupts

Interrupt

FP instruction exception
TRAP (trap instruction)
EMT (emulator trap instruction)
lOT (I/O trap instruction)
BPT (breakpoint trap instruction)
CSM (call to supervisor mode instruction)
HALT instruction*
WAIT (wait-for-interrupt instruction)

Vector
Address

244
34
30
20
14
10
4

* Execution of the HALT instruction performs different operations, depending on jumper W5 and the protection mode. Jumper
W5 determines the operation of a HALT instruction in the kernel mode. If it is installed, the processor enters the ODT mode,
and, if it is removed, the processor sets up an emergency stack at location 4 and traps to location 4. The HALT instruction in
the supervisor or user mode is an illegal instruction and the processor traps to location 4. This condition also sets bit 07 of the
CPU error register.

1.5 MEMORY MANAGEMENT
KDJ II-A memory management provides the hardware for complete memory management and protec
tion. It is designed to be a memory management facility for accessing all of physical memory and for
multiuser, multiprogramming systems where memory protection and relocation facilities are necessary.

In multiprogramming environments, several user programs are resident in memory at any given time. The
tasks of the supervisory program include the following.

I. Control the execution of the various user programs

2. Manage the allocation of memory and peripheral device resources

3. Safeguard the integrity of the system as a whole by control of each user program

In a multiprogramming system, memory management provides the means for assigning memory pages to a
user program and preventing that user from making any unauthorized access to pages outside his assigned
area. Thus, a user can effectively be prevented from accidental or willful destruction of any other user
program or the system executive program.

The following are the basic characteristics of KDJ1I-A memory management.

• 16 user mode memory pages
• 16 supervisor mode memory pages
• 16 kernel mode memory pages
• 8 pages in each mode for instructions
• 8 pages in each mode for data
• Page lengths from 64 to 8192 bytes
• Each page provided with full protection and relocation
• Transparent operation
• 3 modes of memory access control
• Memory access to 4 megabytes.

1.5.1 Memory Mapping
The processor can perform I6-bit, I8-bit or 22-bit address mapping. The I/O page, which is the uppermost
4 K words of memory, always uses the physical addresss locations 17 760 000 to 17 777 777.

1-10

1.5.1.1 16-Bit Mapping - There is a direct mapping relocation from virtual to physical addresses. The
lowest 28 K virtual addresses are the same corresponding physical addresses. The I/O page physical
addresses are located in the upper 4 K block as shown in Figure 1-7.

1.5.1.2 18-Bit Mapping - Each of the three modes; kernel, supervisor, and user, are allocated 32 K
words that are mapped into 128 K words of physical address space. The lowest 124 K words of physical
memory or the I/O page can be referenced as shown in Figure 1-8.

177777

160000

VIRTUAL
(16 BITS)

000000

INCOMING
ADDRESS

177777

VIRTUAL
(16 BITS)

000000

INCOMING
ADDRESS

17777777

4K

17760000

00157777

28 K

00000000
- - - - - - '--______1

Figure 1-7 16-Bit Mapping

MEM
~--. MGMT -----<~

Figure 1-8 18-Bit Mapping

1-11

PHYSICAL ADDRESS
SPACE (22 BITS)

MR-'1045

17777777

4K

17760000

00757777

124 K

00000000

PHYSICAL ADDRESS
SPACE (22 BITS)

MR-ll046

1.5.1.3 22-Bit Mapping - This mode uses the full 22-bit addresses to access all of the physical memory.
The upper 4 K block is still the I/O page as shown in Figure 1-9.

1.5.2 Compatibility
The operation of 16-, 18-, and 22-bit mapping can be used to provide compatibility among other PDP-II
computers. This means that software written and developed for any PDP-II computer can be run on the
KDJ II-A without modification. Refer to Table 1-10.

Mapping

16-bit

I g-bit

22-bit

177777

VIRTUAL
(16 BITS)

000000

INCOMING
ADDRESS

MEM
~--. MGMT ---~

Figure 1-9 22-Bit Mapping

17777777

4K

177601000

17757777

2044K

00000000

PHYSICAL ADDRESS
SPACE (22 BITS)

MR-'1047

Table 1-10 KDJl1-A Compatibility

Memory
Management System

Off PDP-II/OS. 11/10. II/IS. 11/20. 11/03

On PDP-I 1/35. 11/40. 11/45. II/50. 11/23

On PDP-I 1/70. 11/44. 11/24. 11/23 plus

1-12

1.5.3 Virtual Addressing
When memory management is operating, the normal 16-bit address is no longer interpreted as a direct
physical address but as a virtual address containing information to be used in constructing a new 22-bit
physical address. The information contained in the virtual address is combined with relocation information
contained in the page address register to yield a 22-bit physical address as shown in Figure 1-10. Using
memory management, memory can be dynamically allocated in pages, each composed of from 1 to 128
integral blocks of 64 bytes.

The starting physical address for each page is an integral multiple of 64 bytes, and each page has a
maximum size of 8192 bytes. Pages may be located anywhere within the physical address space. The
determination of which set of 16 pages registers is used to form a physical address is made by the current
mode of operation (i.e., kernel, supervisor, or user mode), and if the reference is for instructions or data.

32 K

o

VIRTUAL
INSTRUCTION/DATA
ADDRESS SPACE

VI RTUAL ADDRESS
(16 BITS)

11

PAR 7

PAR 6

PAR 5

PAR 4

~ PAR 3

PAR 2

PAR 1

PAR 0
0

PAGE ADDRESS REGISTERS

PAR: PAGE ADDRESS REGISTER

PHYSICAL
ADDRESS SPACE

PAGE 5

PAGE 6

PAGE 7

PAGE 4

PHYSICAL ADDRESS

(22 BITS)

MR-1104B

Figure 1-10 Virtual Address Mapping into Physical Address

1.5.4 Interrupt Conditions Under Memory Management Control
Memory management relocates all addresses. When it is enabled, all traps, aborts, and interrupt vectors
are mapped using the kernel mode data space mapping registers. Therefore, when a vectored transfer
occurs, the new program counter (PC) and processor status word (PS) are obtained from two consecutive
words physically located at the trap vector and are mapped using kernel mode data space registers.

The stack used for the "push" of the current PC and PSW is specified by bits 14 and 15 of the new PSW.
The PSW mode bits also determine the new mapping register set. This allows the kernel mode program to
have complete control over servicing all traps, aborts or interrupts. The kernel program may assign the
service of some of these conditions to a supervisor or user mode program by simply setting the mode bits of
the new PSW in the vector to return control to the appropriate mode.

1-13

1.5.5 Construction of a Physical Address
All addresses with memory relocation enabled either reference information in instruction (I) space or data
(D) space. I space is used for all instruction fetches, index words, absolute addresses, and immediate
operands; D space is used for all other references. I space and D space each have eight page address
registers (PARs) in each mode of CPU operation (kernel, supervisor, and user). Memory management
register 3, can disable D space and map all references (instructions and data) through I space, or can
enable D space and map all references through both I and D space.

The basic information needed for the construction of a physical address comes from the virtual address,
which is illustrated in Figure 1-11, and the appropriate PAR set.

15 14 13 12 00

: APF : OF

~--~T----J"~----------------------~T~----------------------J

ACTIVE PAGE

FIELD

The virtual address consists of:

DISPLACEMENT FIELD

MR·l1049

Figure I-II Interpretation of a Virtual Address

1. The active page field. This 3-bit field determines which of 8 page address registers from the
PAR set (PARO-PAR7) will be used to form the physical address.

2. The displacement field. This 13-bit field contains an address relative to the beginning of a page.
The longest page length is 8 Kbytes (2 13 = 8 Kbytes). The DF is further subdivided into two
fields as shown in Figure 1-12.

The displacement field consists of:

I. The block number. This 7-bit field is interpreted as the block number within the current page.

2. The displacement in block. This 6-bit field contains the displacement within the block referred
to by the block number.

12 00

BN

~----------~y------------~'~'----------Vy----------J
BLOCK NUMBER DISPLACEMENT IN BLOCK

MR·l1050

Figure \-\2 Displacement Field of a Virtual Address

1-14

The remainder of the information needed to construct the physical address comes from the contents of the
PAR referenced by the page address field. This 16-bit register specifies the starting address of the memory
page. The PAF is actually a block number in the physical memory. For instance, PAF = 3 indicates a
starting address of 96 (3 X 32) words in physical memory.

The construction of the physical address is illustrated in Figure 1-13.

The logical sequence involved in constructing a physical address (PA) is as follows.

1. Select a set of page address registers. This depends on the space being referenced and the
protection mode being used.

2. The active page field of the virtual address selects one of eight page address registers
(PARO-PAR 7) from the appropriate set.

3. The page address field of the selected page address register contains the starting address of the
currently active page as a block number in physical memory.

4. The block number from the virtual address is added to the page address field to yield the
number of the block in physical memory. This is bits <21 :06> of the physical address being
constructed.

5. The displacement in block from the displacement field of the virtual address is joined to the
physical block number to yield a true 22-bit physical address.

15 00

VIRTUAL ADDRESS I : :
15 13

SELECT PAR I
12 00

OFFSET INTO : I PAGE (VA)

15 14 13 05 04 03 02 01 00

+ PAF :l{ :
21 00

PHYSICAL ADDRESS I s/ :
MR-ll0S1

Figure 1-13 Construction of a Physical Address

1-15

1.5.6 Memory Management Registers
Memory management implements 3 sets of 32 16-bit registers as shown in Figure 1-14. One set of registers
is used in kernel mode, another in supervisor mode, and the other in user mode. The protection mode in
use determines which set is to be used. Each set is subdivided into two groups of 16 registers. One group is
used for references to instruction (I) space, and one to data (D) space. The I space group is used for all
instruction fetches, index words, absolute addresses, and immediate operands. The D space group is used
for all other references, providing it has not been disabled by memory management register 3. Each group
is further subdivided into two parts of eight registers. One part is the page address register (PAR) whose
function was described previously. The other part is the page descriptor register (PDR). PARs and PDRs
are always selected in pairs by the top three bits of the virtual address. A PAR/PDR pair contains all the
information needed to describe and locate a currently active memory page.

The memory management registers are located in the uppermost 8 Kbytes of physical address space,
which is designated as the I/O page. The addresses allocated to the memory management registers are
listed in Table 1-11.

PROCESS STATUS WORD ?
15 14

KERNEL (00) SUPERVISOR (01) USER (11)

PAR PDR PAR PDR , PAR PDR

I SPACE

PAR PDR PAR PDR PAR PDR

D SPACE

MR·l1Q52

Figure 1-14 Active Page Registers

1-16

Table 1-11 Memory Management Register Addresses

Register

Memory management register O(MMRO)
Memory management register I (MMR I)
Memory management register 2(MMR2)
Memory management register 3(MMR3)

User 1 space descriptor register (UISDRO)

User 1 space descriptor register (UISDR7)

User D space descriptor register (UDSDRO)

User D space descriptor register (UDSDR 7)

User 1 space address register (UISARO)

User 1 space address register (UISAR7)

User D space address register (UDSARO)

User D space address register (UDSAR7)

Supervisor 1 space descriptor register (SISDRO)

Supervisor 1 space descriptor register (SISDR 7)

Address

17777572
17777574
17 777 576
17 772 516

17 777 600

17777 616

17 777 620

17 777 636

17 777 640

17 777 656

17 777 660

17 777 676

17 772 200

17772216

Supervisor D space descriptor register (SDSDRO) 17 772 220

Supervisor D space descriptor register (SDSDR 7) 17 772 236

1-17

Register Address

Supervisor 1 space address register (SISARO) 17 772 240

Supervisor 1 space address register (SISAR 7) 17 772 256

Supervisor D space address register (SDSARO) 17 772 260

Supervisor D space address register (SDSDR 7) 17 772 276

Kernel 1 space descriptor register (KISDRO) 17 772 300

Kernel I space descriptor register (KIDSR7) 17772 316

Kernel D space descriptor register (KDSDRO) 17 772 320

Kernel D space descriptor register (KDSDR7) 17 772 336

Kernel 1 space address register (KISARO) 17 772 340

Kernel I space address register (KISAR7) 17 772 356

Kernel D space address register (KDSARO) 17 772 360

Kernel D space address register (KDSAR7) 17 772 376

1.5.6.1 Page Address Registers - The page address register (PAR) contains the page address field
(PAF), a 16-bit field that specifies the starting address of the page as a block number in physical memory.

The page address register (see Figure 1-15) contains the page address field that may be alternatively
thought of as a relocation register containing a relocation constant, or as a base register containing a base
address. These registers are not changed by either console starts or the reset instruction. They are
undefined at power-up.

15 00

MR-,1053

Figure 1-15 Page Address Register (PAR)

1.5.6.2 Page Descriptor Register - The page descriptor register contains information relative to page
expansion, page length, and access control. The register is shown in Figure 1-16 and is described in Table
1-12.

15 14

f
BYPASS
CACHE

PAGE LENGTH FIELD (PLF)

f
PAGE LENGTH
FIELD

08 07 06 05 04 03 02 01 00

f
PAGE
WRITTEN

EXPAt:-r DIRECTI~~ I
ACCESS
CONTROL FIELD

MR·8920

Figure 1-16 Page Descriptor Register (PDR)

1.5.7 Fault Recovery Registers
Aborts generated by the memory management hardware are vectored through kernel virtual location 250.
Memory management . registers 0, 1, 2, and 3 are used to determine why the abort occurred and to allow
for program restarting.

NOTE
An abort to a location which is itself an invalid
address will cause another abort. Thus, the kernel
program must ensure that kernel virtual address 250
is mapped into a valid address; otherwise, a loop will
occur that will require console intervention.

1-18

Bit

15

14:08

Name

Bypass cache

Page length
field

07 Not used

06

05, 04

03

02, 01

Page written

Not used

Expansion
direction

Access control
field

00 Not used

Table 1-12 Page Descriptor Bit Description

Status

Read/write

Read/write

Read only

Read/write

Read/write

Function

This bit implements a conditional cache bypass mechanism. If the
PDR accessed during a relocation operation has this bit set, the
reference will go directly to main memory. Read or write hits will
result in invalidation of the accessed cache location.

This field specifies the block number which defines the page
boundary. The block number of the virtual address is compared
against the page length field to detect length errors. An error
occurs when expanding upwards if the block number is greater
than the page length field, and when expanding downwards if the
block number is less than the page length field.

The written into (W) bit indicates whether the page has been
written into since it was loaded in memory. When this bit is set, it
indicates a modified page. The W-bit is automatically cleared
when the PAR or PDR of that page is written.

This bit specifies in which direction the page expands. If ED = 0,
the page expands upward from block number 0 to include blocks
with higher addresses; if ED = I, the page expands downward
from block number 127 to include blocks with lower addresses.

This field contains the access code for this particular page. The
access code specifies the manner in which a page may be accessed
and whether or not a given access should result in an abort of the
current operation. Implemented codes are:

00 Nonresident - abort all accesses

o I Read only - abort on write

10 Not used - abort all accesses

II Read/write access

1-19

1.5.7.1 Memory Management Register 0 (Address: 17 777 572) - Memory management register 0
(MMRO) provides MMU control and records MMU status. The register contains abort and status flags as
shown in Figure 1-17 and described in Table 1-13.

Bit

15*

14*

13*

12:07

06,05

04

03:01

00

ABORT PAGE
'----- LENGTH ERROR

ABORT
'------- NON-RESIDENT

03

r
PAGE MODE PAGE NUMBER

PAGE ADDRESS
SPACE I/O ENABLE RELOCATION

MR-8926

Figure 1-17 Memory Management Register 0 (MMRO)

Name

Nonresident
abort

Page length
abort

Read only
abort

Not used

Processor
mode

Page space

Page number

Enable
relocation

Table 1-13 MMRO Bit Descriptions

Status

Read/write

Read/write

Read/write

Read only

Read only

Read only

Read/write

Function

Bit 15 is set by attempting to access a page with an access control
field key equal to 0 or 2. It is also set by attempting to use memory
relocation with a processor mode (PS< 15: 14» of 2.

Bit 14 is set by attempting to access a location in a page with a
block number (virtual address bits <12:06» that is outside the
area authorized by the page length field of the page descriptor
register for that page.

Bit 13 is set by attempting to write in a read-only page. Read-only
pages have access keys of I.

Bits <06:05> indicate the processor mode (kernel, supervisor,
user, illegal) associated with the page causing the abort (kernel =

00, supervisor = 0 I, user = II, illegal = 10). If the illegal mode is
specified, an abort is generated and bit 15 is set.

Bit 04 indicates the address space (lor D) associated with the page
causing the abort (0 = I space, 1 = D space).

Bits <03:01> contain the page number of the page causing the
abort.

Bit 00 enables relocation. When it is set to I, all addresses are
relocated. When bit 00 is set to 0, memory management is inoper
ative and addresses are not relocated.

* Bits <15:13> can be set by an explicit write; however such an action does not cause an abort. Whether set explicitly or by an
abort, setting any bit in bits <15:13> causes memory management to freeze the contents of MMRO <06:01>, MMR1, and
MMR2. The status registers remain frozen until MMRO <15: 13> is cleared by an explicit write.

1-20

1.5.7.2 Memory Management Register 1 (Address: 17 777 574) - Memory management register
(MMR I) records any autoincrement or autodecrement of a general purpose register, including explicit
references through the Pc. The increment or decrement amount by which the register was modified is
stored in 2's complement notation. The lower byte is used for all source operand instructions and the
destination operand may be stored in either byte, depending on the mode and instruction type. The register
is cleared at the beginning of each instruction fetch. The register is defined in Figure 1-18.

15

..
AMOUNT CHANGED
(2'S COMPLEMENT)

11 10

" ..
REGISTER
NUMBER

08 07

..
AMOUNT CHANGED
(2'S COMPLEMENT)

03

Figure 1-18 Memory Management Register 1 (MMR 1)

02

REGISTER
NUMBER

00

MR-8924

1.5.7.3 Memory Management Register 2 (Address: 17 777 576) - Memory management register 2
(MMR2) is loaded with the program counter of the current instruction and is frozen when any abort
condition is posted in MMRO.

1.5.7.4 Memory Management Register 3 (Address: 17 772 516) - Memory management register 3
(MMR3) enables the data space for the kernel, supervisor, and user operating modes. It also selects either
I8-bit or 22-bit mapping and enables the request for the supervisor macroinstruction (CSM). The register
is shown in Figure 1-19 and is defined in Table 1-14. MMR3 is cleared during power-up, by a console
start, or by a RESET instruction.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 00
101010101010101010101 1 J I MODE I
UNINTERPRETED t f ENABLE 22-BIT MAPPING

ENABLE CSM INSTRUCTION

KERNEL

SUPERVISOR

USER
MR-8925

Figure 1-19 Memory Management Register 3 (MMR3)

1-21

Table 1-14 MMR3 Bit Description

Bit Name Status Function

15:06 Not used

05 U ninterpreted Read/write This bit can be set or cleared under program control, but it is not
interpreted by the KDJ II-A.

04 Enable 22-bit Read/write This bit enables 22-bit memory addressing (the default is 18-bit
mapping addressing).

03 Enable CSM Read/write This bit enables recognition of the call supervisor mode instruction.
instruction

02 Kernel data Read/write This bit enables the data space mapping for the kernel operating mode.
space

01 Supervisor data Read/write This bit enables the data space mapping for the supervisor operating
space mode.

00 User data space Read/write This bit enables the data space mapping for the user operating mode.

1.5.7.5 Instruction Back-Up/Restart Recovery - The process of "backing up" and restarting a partially
completed instruction involves the following.

I. Performing the appropriate memory management tasks to alleviate the cause of the abort (e.g.,
loading a missing page).

2. Restoring the general purpose registers indicated in MMRI to their original contents at the start
of the instruction by subtracting the "modify value" specified inMMRl.

3. Restoring the PC to the "abort-time" PC by loading R 7 with the contents of MMR2, which
contains the value of the virtual PC at the time the "abort-generating" instruction was fetched.

Note that this back-up/restart procedure assumes that the general purpose register used in the program
segment will not be used by the abort recovery routine. This is automatically the case if the recovery
program uses a different general purpose register set.

1.5.7.6 Clearing Status Registers Following Abort - At the end of a fault service routine, bits <15:13>
of MMRO must be cleared (set to 0) to resume error checking. On the next memory reference following
the clearing of these bits, the various registers will resume monitoring the status of the addressing
operations. MMR2 will be loaded with the next instruction address, MMR 1 will store register change
information, and MMRO will log memory management status information.

1.5.7.7 Multiple Faults - Once an abort has occurred, any subsequent errors that occur while the
memory management registers are frozen will not change MMRO, MMRI or MMR2. The information
saved in MMRO through MMR2 will always refer to the first abort that it detected.

1.5.8 Typical Usage Examples
The memory management unit provides a general purpose memory management tool. It can be used in a
manner as simple or complex as desired. It can be anything from a simple memory expansion device to a
complete memory management facility.

1-22

The variety of possible and meaningful ways to use the facilities offered by the memory management unit
means that both single-user and multiprogramming systems have complete freedom to make whatever
memory management decisions best suit their individual needs. Although a knowledge of what most types
of computer systems seek to achieve may indicate that certain methods of using the memory management
unit will be more common than others, there is no limit to the ways to use these facilities.

In most typical applications, the control over the actual memory page assignments and their protection
resides in a supervisory type program which operates in kernel mode. This program sets access keys in such
a way as to protect itself from willful or accidental destruction by other supervisor or user mode programs.
The facilities are also provided such that the kernel mode program can dynamically assign memory pages
of varying sizes in response to system needs.

1.5.8.1 Typical Memory Page - When the memory management unit is enabled, the kernel mode
program, a supervisor mode program, and a user mode program each have eight active pages described by
the appropriate page address registers and page descriptor registers for data and eight pages for instruc
tions. Each segment is made up of from 1 to 128 blocks and is pointed to by the page address field of the
corresponding page address register as illustrated in Figure 1-20.

VA 157777 PA 331777

VA 144777 PA 316777
BLOCK 478 (3910)

BLOCK 1

BLOCK 0
PA 312000

VA 140000 { PAe 6 I
39

10 :~:
PDR6 ~47B~0~0111

PLF W ED ACF

MR-11054

Figure 1-20 Typical Memory Page

1-23

The memory segment illustrated in Figure 1-20 has the following attributes.

I. Page length: 40 blocks
2. Virtual address range: 140000-144777
3. Physical address range: 312000-316777
4. Nothing has been modified (i.e., written) in this page
5. Read-only protection
6. Upward expansion

These attributes were determined according to the following scheme.

I. Page address register (PAR6) and page descriptor register (PDR6) were selected by the active
page field (APF) of the virtual address. (Bits < 15: 13> of the VA = 68.)

2. The initial address of the page was determined from the page address field of PAR6 (312000 =
31208 blocks X408 (3210) words per block X 2 bytes per word).

NOTE
The PAR that contains the P AF constitutes what is
often referred to as a base register containing a base
address or a relocation register containing a reloca
tion constant.

3. The page length (478 + 1 = 4010 blocks) was determined from the page length field (PLF)
contained in page descriptor register PDR6. Any attempts to reference beyond these 4010
blocks in this page will cause a "page length error," which will result in an abort, vectored
through kernel virtual address 250.

4. The physical addresses were constructed according to the scheme illustrated in Figure 1-13.

5. The written (\\') bit indicates that no locations in this page have been modified (i.e., written). If
an attempt is made to modify any location in this particular page, an access control violation
abort will occur. If this page were involved in a disk swapping or memory overlay scheme, the
W-bit wou:d be used to determine whether it had been modified and, thus, required saving
before overlay.

6. This page is read-only protected; i.e., no locations in this page may be modified. The mode of
protection was specified by the access control field of PDR6.

7. The direction of expansion is upward (ED = 0). If more blocks are required in this segment,
they will be added by assigning blocks with higher relative addresses.

The attributes which describe this page can be determined under software control. The parameters
describing the page are loaded into the appropriate page address register (PAR) and page descriptor
register under program control. In a normal application, the particular page, which itself contains these
registers, would be assigned to the control of a kernel mode program.

1-24

1.S.8.2 Nonconsecutive Memory Pages - Higher virtual addresses do not necessarily map to higher
physical addresses. It is possible to set up the page address fields of the PARs so that higher virtual address
blocks may be located in lower physical address blocks as illustrated in Figure 1-21.

Although a single memory page must consist of a block of contiguous locations, consecutive virtual
memory pages do not have to be located in consecutive physical address locations. The assignment of
memory pages is not limited to consecutive nonoverlapping physical address locations.

PAR 7

PAR 1

PAR 0

PAF

PAF

PAF

VA 037777

VA 020000
"Y'

VA 017777

~

Figure 1-21 Nonconsecutive Memory Pages

1-25

PA 467777

, ,
:

PA460000

PA 560777

,
I
I

PA 541000

MA-11055

1.5.8.3 Stack Memory Pages - When constructing programs, it is often desirable to isolate all program
variables from pure code (i.e., program instructions) by placing them on a register indexed stack. These
variables can then be "pushed" or "popped" from the stack area as needed. (See Chapter 6.) Since stacks
expand by adding locations with lower addresses, when a memory page which contains "stacked" variables
needs more room, it must "expand down," i.e., add blocks with lower relative addresses to the current
page. This mode of expansion is specified by setting the expansion direction bit of the appropriate page
descriptor register to a 1. Figure 1-22 illustrates a typical stack memory page. This page will have the
following parameters.

PAR6: PAF = 3120
PDR6: PLF = 1758 or 125IO{l28IO-3)
ED = 1
W = 0 or 1
ACF = nnn (to be determined by programmer as necessary)

NOTE
The W -bit will be set by hardware.

In this case the stack begins 128 blocks above the relative origin of this memory page and extends
downward for a length of three blocks. A page length error abort will be generated by the hardware when
an attempt is made to reference any location below the assigned area, i.e., when the block number from
the virtual address is less than the page length field of the appropriate page descriptor register.

VA 157777

VA 157500

VA 140000

PAR 6

PDR 6

BLOCK 1778 (12710)

BLOCK 1768 (12610)

BLOCK 1758 (12510)

=='7:1

PA 331777

PA 331500

PA 312000

MR-'1056

Figure 1-22 Typical Stack Memory Page

1-26

1.5.9 Transparency
In a multiprogramming application, it is possible for memory pages to be allocated such that a program
appears to have a complete 64 Kbyte memory configuration. Using relocation, a kernel mode supervisory
type program can perform all memory management tasks entirely transparent to a supervisor or user mode
program. In effect, a system can use its resources to provide maximum throughput and response to a
number of users, each of whom seems to have a powerful system "all to himself."

1.6 CACHE MEMORY
The statistics from executing programs clearly indicate that at any given moment, a program spends most
of its time within a relatively small section of code. The KDJ ll-A cache memory exploits this phenome
non by using a small amount of high-speed memory to store the most recently accessed memory locations.
Cached code will execute much faster than noncached code because of the large difference between the
access times of the cache memory and the LSI-II bus main memory.

The following illustrates how the KDJ11-A cache is constructed. It is a direct map (set size one; block size
one), 8 Kbyte cache. Each physical address is logically subdivided into a 9-bit label, 12-bit index, and I-bit
byte select field as shown in Figure 1-23.

21 13 12 01 00

LABEL INDEX

Figure 1-23 Cache Physical Address

The index field is used to select the cache entry. The index is 12 bits long, selecting one of 4096 separate
cache entries. Each cache entry contains a 9-bit tag field (TAG), tag parity bit (P), tag valid bit (V), two
bytes of cache data (BO and Bl) and two corresponding byte parity bits (PO and PI). (See Figure 1-24.)

DB 00

P I v I TAG

15 08 07 00

P1 B1 I I PO BO

MR-ll 058

Figure 1-24 Cache Data Format

1-27

A physical address is considered cached when the tag field of the cache entry specified by the index field
equals the label field, the valid bit is set, and no parity errors are seen. When a cache read hit occurs, i.e.,
the address is cached during a read operation, Bl and BO are used as the source of the data. When a cache
read miss occurs, i.e., the address is not cached, main memory is accessed to obtain the data.

A physical address is stored in the cache whenever the cache is allocated. To allocate the cache, the tag
field of a cache entry specified by the index field is set equal to the label field, the V-bit is set, Bl and BO
are loaded with the fresh data, and the parity bits are correctly calculated. This guarantees that the next
access to this address will report a cache hit. It should be noted that allocating the cache typically destroys
a previously allocated valid cache entry. The cache is allocated whenever a read miss or word write miss
occurs.

Write cycles are separated into word write and byte write operations. Main memory is always updated
during writes. A cache hit will cause the proper byte(s) to be written in both the cache and in main
memory. This is called writing through the cache. A cache miss during a word write will allocate the
cache; however, since two bytes are allocated together, a byte write only updates main memory. The cache
response matrix is summarized in Table 1-15.

The I/O page (top 8 Kb) is never cached and therefore always reports misses. This is because the I/O page
contains dynamic status registers which, when read, must always convey the latest information.

When the system is powered up, the cache must be cleared and correct parity written into each entry. This
is called flushing the cache.

Operation

Read

Write word

Write byte

Read bypass

Write bypass

Read force
mIss

Write force
miss

Hit

Read memory
no cache change

DMA

Invalidate cache
update memory

Invalidate cache
update memory

Table 1-15 Cache Response Matrix

Miss

Read memory
no cache change

Update memory
no cache change

Update memory
no cache change

1-28

CPU
Hit

Read cached data

Write through
cache to memory

Write through
cache to memory

Read memory
invalidate cache

Write memory
invalidate cache

Read memory
no cache change

Write memory
no cache change

Miss

Read memory
allocate cache

Write memory
allocate cache

Write memory
no cache change

Read memory
no cache change

Write memory
no cache change

Read memory
no cache change

Write memory
no cache change

A potential stale data problem can occur when a DMA device writes to a cached location. The overwritten
cache entry must be invalidated. To avoid this problem, the cache system monitors each DMA transaction
to determine when the DMA transaction invalidates the cache. This also includes block mode DMA which
is possible on the 22-bit LSI-II bus.

For both diagnostic and availability reasons, it is important to be able to turn off the cache via software.
The cache is disabled by setting either of the force cache miss bits, 02 and 03, in the cache control register.
When disabled, all references are forced to miss the cache. That is, main memory is always accessed,
cache parity errors are ignored, and no cache allocation is performed. The cache is essentially removed
from the system. This is different than bypassing the cache. Bypass references access the main memory,
check cache parity, and invalidate the cache entry if previously allocated. Read references that bypass the
cache check for parity errors and will invalidate any address hits.

1.6.1 Parity
The KDJ II-A module has a main memory parity error detection mechanism. The BDAL< 16> and < 17>
data lines are sampled when BDIN L is negated and the microprocessor initiates a memory read. The
BDAL< 16> bit is the parity error signal and the BDAL< 17> bit is the parity abort error signal. When
both are asserted (I), an abort occurs through the vector at virtual address 114 in kernel D space.

The cache memory also has a parity error detection mechanism. A parity error in the cache is not
considered fatal because the main memory system has a backup copy of the data. The cache uses even
parity for the even data bytes stored in the cache memory and odd parity for the odd data bytes stored in
the cache memory. It also uses even parity for the tag field stored in the cache memory.

1.6.1.1 Parity Errors - A parity error indicates that a single bit error has occurred. Parity errors can
occur in either the main memory or the cache memory. A main memory parity error is always fatal since
the data stored in this memory is wrong and it cannot be restored. This type of parity error will always
cause an abort through virtual address 114 in the kernel D space. Cache parity errors are not considered to
be fatal since the data in the cache memory can be updated with the correct data from the main memory.
When they occur, the KDJ II-A module will either abort, interrupt, or continue without an abort or
interrupt. The action is determined by the state of bits 07 and 00 in the cache control register as defined in
Table 1-16.

CCR <07>

o
o
I

CCR <00>

o
I
X

Table 1-16 Cache Parity Errors

Action

Update cache, interrupt through 114
Update cache only
Update cache, abort through I 14 should only be used for diagnostics

1-29

1.6.1.2 Multiple Cache Parity Errors - If a cache parity error occurs while the error status from a
previous cache parity error is not cleared from the memory system error register, then no abort or
interrupt occurs. The main memory is accessed again to retrieve the correct data and the corrupted cache
entry data is updated with the correct data. This prevents a cache hardware failure from generating an
infinite series of interrupt or abort service loops.

1.6.2 Memory System Registers
The memory system registers consist of the cache control register, the memory system error register, and
the hit/miss register. These registers are used by modules to control the memory system and report any
errors tha t occur.

1.6.2.1 Cache Control Register (Address: 17777746) - The cache control register (CCR) controls the
operation of the cache memory. The cache bypass, abort, and force miss functions can be controlled by
software via this register. The cache control register is shown in Figure 1-25 and is described in Table 1-17.
The register is cleared by either power-up or a console start. It is unaffected by the RESET instruction.

15 14 13 12 11

WRITE WRONG _
TAG PARITY

UNCONDITIONAL
CACHE BYPASS

FLUSH CACHE-

PARITY ERROR A BORT

WRITE WRONG DA TA PARITY

UNINTERPRETED

FORCE CACHE MI SS

10 09 08 07 06 05 04 03 02 01 00

T

DIAGNOSTIC MODE ---------------------------'

DISABLE CACHE PARITY INTERRUPT ----------------------'

MA·l1059

Figure 1-25 Cache Control Register (CCR)

1-30

Bit

15:11

10

09

08

07

06

05:04

03:02

01

00

Name

Not used

Write wrong
tag parity

Bypass cache

Flush cache*

Enable parity
error abort

Write wrong
data parity

U ninterpreted

Force miss

Diagnostic mode

Disable cache
parity interrupt

Table 1-17 Cache Control Register Description

Status

Read/write

Read/write

Write only

Read/write

Read/write

Read/write

Read/write

Read/write

Function

When set (I), this bit causes the cache tags to be written with wrong parity
on all update cycles. This will cause a cache tag parity error to occur on the
next access to that location.

When set (I), this bit forces all CPU memory references to go directly to
main memory. Read hits will result in invalidation of accessed locations in
the cache.

When set (I), this bit causes the entire contents of the cache to be declared
invalid. Writing a 0 into this bit will have no effect.

This bit is used with bit 0 to define the action taken as a result of a parity
error. This bit is reserved for diagnostic purposes only.

When set (I), this bit causes high and low parity bytes to be written with
wrong parity on all update cycles. This will cause a cache parity error to
occur on the next access to that location.

These bits can be set or cleared under program control, but are not inter
preted by the KDJ II-A.

When either is set, they force all CPU memory references to go directly to
main memory. The cache tag and data stores are not changed. The parity is
not checked. When set (I) these bits remove the cache memory from the
system.

When set (I), all non-bypass and non-forced miss word writes will allocate
the cache, irrespective of nonexistent memory (NXM) errors. In addition,
NXM writes will not trap.

Bits <07:00> specify the action to take following a cache parity error. If
both bits are cleared (0) and a parity error occurs, an interrupt through
vector 114 is generated. If bit 07 is cleared and bit 00 is set, a cache parity
error neither aborts the reference nor generates an interrupt. In any case, all
cache parity errors force a memory reference and update the cache with the
fresh data.

* It takes approximately I millisecond to flush the cache. During this time DMA and interrupt requests are not serviced and no
data processing occurs.

1-31

1.6.2.2 Hit/Miss Register (Address: 17 777 752) - The hit/miss register (HMR) records the status of
the most recent cache accesses. The HMR is a shift register that records a hit as a 1 and a miss as a 0 for
the most recent memory reads. A hit represents data located in the cache memory and a miss means the
data is located in the main memory. Bit 00 represents the most recent memory access and is shifted to the
left on successive memory access. The HMR is a read-only register and is shown in Figure 1-26.

1.6.2.3 Memory System Error Register (Address: 17 777 744) - The memory system error register
(MSER) is a read-only register that is cleared by any write reference. The register monitors parity error
aborts and records the type of parity error. The register is shown in Figure 1-27 and is described in Table
1-18. The memory system register is cleared by any write reference, during power-up, and by a console
start. It is unaffected by the RESET instruction.

15 14 13

15 14 13

I I
t

PARITY
ERROR
ABORT

Bit Name

15 Parity error abort

14:08 Not used

07* Parity error high

06* Parity error low

05* Tag parity error

04:00 Not used

12 11 10 09 08 07 06 05 00

... 4f----F LOW

MR-B899

Figure 1-26 Hit/Miss Register (HMR)

12 11 10 09 08 07 06 05 04 03 02 01 00

N~T USE:D N:OT US~D
t

1
t

PARITY TAG
ERROR PARITY
HIGH ERROR

PARITY
ERROR
LOW

MR-11060

Figure 1-27 Memory System Error Register (MSER)

Table 1-18 Memory System Error Register

Status

Read only

Read only

Read only

Read only

Description

This bit is set (I) when cache or memory parity error aborts on instruc
tion. Parity aborts occur on all main memory parity errors and when bit
07 of the CCR is set. A cache parity error occurs on a non-prefetch bus
cycle.

This bit is set (I) when the parity error was caused by the high byte data.

This bit is set (I) when the parity error was caused by the low byte data.

This bit is set (I) when the parity error was caused by the tag field.

* Bits <07:05> are individually set when a cache parity error occurs and CCR bit 07 is set. All three bits are set when the CCR
bit 07 is cleared and a cache parity error occurs irrespective of where the error occurred.

1-32

1.7 FLOATING-POINT
The KDJ II-A uses the floating-point instruction set to perform all floating-point arithmetic operations and
converts data between integer and floating-point formats. It uses similar address modes and the same
memory management facilities of the processor. The floating-point instructions can reference the floating
point accumulators, the general registers, or any location in memory.

1.7.1 Floating-Point Data Formats
Mathematically, a floating-point number may be defined as having the form (2 ** K) * f, where K is an
integer and f is a fraction. For a nonvanishing number, K and f are uniquely determined by imposing the
condition 1/2 < f < l. The fractional part (f) of the number is then said to be normalized. For the
number 0, f must be assigned the value 0, and the value of K is indeterminate.

The floating-point data formats are derived from this mathematical representation for floating-point
numbers. Two types of floating-point data are provided. In single-precision, or floating mode, the data is
32 bits long. In double-precision, or double mode, the data is 64 bits long. Sign magnitude notation is used.

1.7.1.1 Nonvanishing Floating-Point Numbers - The fractional part (f) is assumed normalized, so that
its most significant bit must be 1. This 1 is the hidden bit. It is not stored explicitly in the data word, but
the processor restores it before carrying out arithmetic operations. The floating and double modes reserve
23 and 55 bits, respectively, for f. These bits, with the hidden bit, imply effective fractions of 24 bits and
56 bits.

Eight bits are reserved for storage of the exponent K in excess 128 (200s) notation (i.e., as K + 200s),
giving a biased exponent. Thus, exponents from -128 to + 127 could be represented by 0 to 377 s, or 0 to
25510. For reasons given below, a biased exponent of 0 (the true exponent of -200s), is reserved for
floating-point O. Therefore, exponents are restricted to the range -127 to + 127 inclusive (-177 s to + 177 s)
or, in excess 200s notation, 1 to 377s.

The remaining bit of the floating-point word is the sign bit. The number is negative if the sign bit is a I.

1. 7.1.2 Floating-Point Zero - Because of the hidden bit, the fractional part is not available to distinguish
between 0 and non vanishing numbers whose fractional part is exactly 1/2. Therefore, the floating-point
processor (FPP) reserves a biased exponent of ° for this purpose, and any floating-point number with a
biased exponent of 0 either traps or is treated as if it were an exact 0 in arithmetic operations. An exact or
"clean" 0 is represented by a word whose bits are all Os. A "dirty" 0 is a floating-point number with a
biased exponent of 0 and a nonzero fractional part. An arithmetic operation for which the resulting true
exponent exceeds 277s is regarded as producing a "floating overflow;" if the true exponent is less than
-177 s, the operation is regarded as producing a "floating underflow." A biased exponent of 0 can thus
arise from arithmetic operations as a special case of overflow (true exponent = -200s). (Recall that only
eight bits are reserved for the biased exponent.) The fractional part of results obtained from such overflow
and underflow is correct.

1.7.1.3 The Undefined Variable - An undefined variable is any bit pattern with a sign bit of I and a
biased exponent of O. The term undefined variable is used, for historical reasons, to indicate that these bit
patterns are not assigned a corresponding floating-point arithmetic value. Note that the undefined variable
is frequently referred to as -0 elsewhere in this chapter.

A design objective of the FPP was to ensure that the undefined variable would not be stored as the result
of any floating-point operation in a program run with the overflow and underflow interrupts disabled. This
is achieved by storing an exact 0 on overflow and underflow, if the corresponding interrupt is disabled.
This feature, together with an ability to detect reference to the undefined variable (implemented by the
F1UV bit discussed later), is intended to provide the user with a debugging aid: if -0 occurs, it did not
result from a previous floating-point arithmetic instruction.

1-33

1.7.1.4 Floating-Point Data - Floating-point data is stored in words of memory as illustrated in Figures
1-28 and 1-29.

The FPP provides for conversion of floating-point to integer format and vice-versa. The processor
recognizes single-precision integer (I) and double-precision integer long (L) numbers, which are stored in
standard 2's complement form. (See Figure 1-30.)

+2

F FORMAT, FLOATING POINT SINGLE PRECISION
15

FRACTION <15:0>

15 14 07

00

06 00

MEMORY+OLI __ S~I __ ~~ __ ~ __ ~ __ E_X~P __ ~ __ ~~ __ ~ __ ~ __ ~ __ ~ __ F_R~A~C_T_<2~2:_1_6>~ ____ ~~

Figure 1-28 Single-Precision Format

D FORMAT, FLOATING POINT DOUBLE PRECISION
15

MR·3604

00

+6 1~ __ ~ __ ~ __ ~ __ ~ ____ ~ __ ~ __ F_R~A_CT_I_0~N_<_1_5~:0~> __ ~ __ ~ ____ ~ __ ~ __ ~ __ ~ __ ~

15 00

+4 LI __ ~ ____ ~ __ ~ __ ~ __ ~ __ ~ ___ F_R~A_C_T_IO~N_<_3_1_:1~6_> __ ~ __ ~ __ ~ __ ~ ____ L-__ ~ __ ~

15 00

+2 LI __ ~ ____ L-__ ~ __ ~ __ ~ __ ~ ___ F_R~A_C_TI_O~N_<_4_7_:3~2_> __ ~ __ ~ __ ~ __ ~ ____ L-__ ~ __ ~

15 07 06 00

MEMORY +0 IL __ S~I ____ L-__ ~ __ ~ ___ EX~P __ ~ ____ L-__ ~ __ ~ __ ~ __ ~~_F_R~AC_T __ <~54_:4_8_>~ __ ~ __ ~
S = SIGN OF FRACTION

EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL
FOR NON·VANISHING NUMBERS.

FRACTION = 23 BITS IN F FORMAT, 55 BITS IN D FORMAT + ONE HIDDEN
BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT.

Figure 1-29 Double-Precision Format

1-34

MR·3605

I FORMAT, INTEGER SINGLE PRECISION

15 14 00

NUMBER <15:0>

L FORMAT, DOUBLE PRECISION INTEGER LONG
15 14 00

MEMORY +0 I S NUMBER <30:16>

15 00

+21 NUMBER <15:0>

WHERE S = SIGN OF NUMBER

NUMBER = 15 BITS IN I FORMAT, 31 BITS IN L FORMAT.
MR·3606

Figure 1-30 2'5 Complement Format

1. 7.2 Floating-Point Registers
The floating-point registers are defined as six accumulators, the floating-point status register, the floating
point exception address register, and the floating-point exception code register, as shown in Figure 1-1.

1. 7.2.1 Floating-Point Accumulator - Six 64-bit accumulators (ACO-AC5) are implemented for the
temporary storage and manipulation of 32-bit and 64-bit floating-point data types.

1.7.2.2 Floating-Point Status Register (FPS) - This register provides mode and interrupt control for the
floating-point unit and conditions resulting from the execution of the previous instruction,

For the purposes of discussion, a set bit = 1 and a reset bit = O. Three bits of the FPS register control the
modes of operation as follows,

• Single/Double: floating-point numbers can be either single- or double-precision.

• Short/Long: integer numbers can be 16 bits or 32 bits.

• Chop/Round: the result of a floating-point operation can be either chopped or rounded. The
term chop is used instead of truncate to avoid confusion with truncation of series used in
approximations for function subroutines.

The FPS register contains an error flag and four conditions codes (five bits): carry, overflow, zero, and
negative, which are equivalent to the CPU condition codes.

1-35

The floating-point operation recognizes six floating-point exceptions.

• Detection of the presence of the undefined variable in memory
• Floating overflow
• Floating underflow
• Failure of floating-to-integer conversion
• Attempt to divide by zero
• Illegal floating op code

For the first four of these exceptions, bits in the FPS register are available to enable or disable interrupt
individually. An interrupt on the occurrence of either of the last two exceptions can be disabled only by
setting a bit which disables interrupts of all six of the exceptions as a group.

Of the 13 FPS bits described above, the error flag and condition codes are set by the FPP as part of the
output of a floating-point instruction. Any of the mode and interrupt control bits may be set by the user;
the LDFS instruction is available for this purpose. The FPS register is shown it} Figure 1-31 and described
in Table 1-19.

Bit

15

14

13. 12

Name

Floating error (FER)

Interrupt disable
(FID)

Not used

~-----y------~"~----~----~

f f
INTERRUPTS MODES

Figure 1-31 Floating-Point Status Register

Table 1-19 Floating-Point Status Bit Description

Function

This bit is set by a floating-point instruction if:

• Division by zero occurs
• Illegal op code occurs

f
FLOATING
COND CODES

M R-9377

• Any of the remaining errors occur and the corresponding interrupt is enabled.

This action is independent of the FlD bit status.

Also note that the FPP never resets the FER bit. Once the FER bit is set by the FPP, it
can be cleared only by an LDFPS instruction (the RESET instruction does not clear the
FER bit). This means that the FER bit is up-to-date only if the most recent floating
point instruction produced a floating-point exception.

If this bit is set, all floating-point interrupts are disabled.

The FID bit is primarily a maintenance feature. It should normally be clear. In particu
lar, it must be clear if one wishes to assure that storage of -0 by a FPP is always
accompanied by an interrupt.

Throughout the rest of this chapter, it is assumed that the FlD bit is clear in all
discussions involving overflow, underflow, occurrence of -0, and integer conversion
errors.

1-36

Bit

II

10

09

08

07

06

05

Name

Interrupt on
undefined
variable (FIUY)

Interrupt on
underflow (FlU)

Interrupt on
overflow (FlY)

Interrupt on integer
conversion (FlC)

Floating double
precision mode (FD)

Floating long
integer mode (FL)

Floating chop
mode (FT)

04 Not used

03 Floating negative (FN)

02 Floating zero (FZ)

01 Floating overflow (FY)

00 Floating carry (FC)

Table 1-19 Floating-Point Status Bit Description (Cont)

Function

An interrupt occurs when this bit is set and a -0 is obtained from memory as an
operand of ADD, SUB, MUL, DIY, CMP, MOD, NEG, ABS, TST, or any LOAD
instruction. The interrupt occurs before execution. When FIUY is reset, -0 can be
loaded and used in any FPP operation. Note that the interrupt is not activated by the
presence of -0 in any AC operand of an arithmetic instruction; in particular, trap on -0
never occurs in mode O.

The FPP will not store a result of -0 without a simultaneous interrupt.

When this bit is set, floatil)g underflow will cause an interrupt. The fractional part of
the result of the operation causing the interrupt will be correct. The biased exponent will
be too large by 400 (octal) except for the special case of 0, which is correct. An
exception is discussed later in the detailed description of the LDEXP instruction.

If the FlU bit is reset and if underflow occurs, no interrupt occurs and the result is set to
exact O.

When this bit is set, floating overflow will cause an interrupt. The fractional part of the
result of the operation causing the overflow will be correct. The biased exponent will be
too small by 400 (octal).

If the FlY is reset and overflow occurs, there is no interrupt. The FPP returns to exact
O.

Special cases of overflow are dis- cussed in the detailed descriptions of the MOD and
LDEXP instructions.

When this bit is set and conversion to integer instruction fails, an interrupt will occur. If
the interrupt occurs, the destination is set to 0, and all other registers are left untouched.

If the FIC bit is reset, the result of the operation will be the same as detailed above, but
no interrupt will occur.

The conversion instruction fails if it generates an integer with more bits than can fit in
the short or long integer word specified by the FL bit (bit 06)

This bit determines the precision that is used for floating-point calculations. When set,
double-precision is assumed; when reset, single-precision is used.

This bit is used in conversion between integer and floating-point format. When set, the
integer format assumed is double-precision 2's complement (i.e., 32 bits). When reset,
the integer format is assumed to be single-precision 2's complement (i.e., 16 bits).

When this bit is set, the result of any arithmetic operation is chopped (or Iruncated).
When reset, the result is rounded.

This bit is set if the result of the last floating-point operation was negative; otherwise, it
is reset.

This bit is set if the result of the last floating-point operation was 0; otherwise, it is reset.

This bit is set if the last floating-point operation resulted in an exponent overflow;
otherwise, it is reset.

This bit is set if the last operation resulted in a carry of the most significant bit. This can
only occur in a floating or double-to-integer conversion.

1-37

1.7.2.3 Floating-Point Exception Registers (FEC, FEA) - One interrupt vector is assigned to take care
of all floating-point exceptions (location 244). The six possible errors are coded in the 4-bit floating
exception code (FEC) register as follows.

2 Floating op code error
4 Floating divide by zero error
6 Floating or double-to-integer conversion error
8 Floating overflow error

10 Floating underflow error
12 Floating undefined variable error

The address of the instruction producing the exception is stored in the floating exception address (FEA)
register.

The FEC and FEA registers are updated when one of the following occurs.

• Divide by zero
• Illegal op code
• Any of the other four exceptions with the corresponding interrupt enabled

If one of the four exceptions occurs with the corresponding interrupt disabled, the FEC and FEA are not
updated. Inhibition of interrupts by the FlD bit does not inhibit updating of the FEC and FEA, if an
exception occurs. The FEC and FEA are not updated if no exception occurs. This means that the store
status (STST) instruction will return current information only if the most recent floating-point instruction
produced an exception. Unlike the FPS register, no instructions are provided for storage into the FEC and
FEA registers.

1.7.3 Floating-Point Instruction Addressing
Floating-point instructions use the same type of addressing as the central processor instructions. A source
or destination operand is specified by designating one of eight addressing modes and one of eight central
processor general registers to be used in the specified mode. The modes of addressing are the same as those
of the central processor, except in mode O. In mode 0 the operand is located in the designated floating
point processor accumulator rather than in a central processor general register. The modes of addressing
are as follows.

o = FPP accumulator
I = Deferred
2 = Autoincrement
3 = Autoincrement-deferred
4 = Autodecrement
5 = Autodecrement-deferred
6 = Indexed
7 = Indexed-deferred

Autoincrement and autodecrement operate on increments and decrements of 48 for F format and 108 for
D format.

In mode 0, users can make use of all six FPP accumulators (ACO-AC5) as their source or destination.
Specifying FPP accumulators AC6 or AC7 will result in an illegal op code trap. In all other modes which
involve transfer of data to or from memory or the general registers, users are restricted to the first four
FPP accumulators (ACO-AC3). When reading or writing a floating-point number from or to memory, the
low memory word contains the most significant word of the floating-point number, and the high memory
word the least significant word.

1-38

1.7.4 Accuracy
General comments on the accuracy of the floating-point are presented here. The descriptions of the
individual instructions, including the accuracy at which they operate, are listed in Chapter 7. An instruc
tion or operation is regarded as "exact" if the result is identical to an infinite precision calculation
involving the same operands. The prior accuracy of the operands is thus ignored. All arithmetic instruc
tions treat an operand whose biased exponent is 0 as an exact 0 (unless FlUY is enabled and the operand is
-0, in which case an interrupt occurs). For all arithmetic operations, except DIY, a 0 operand implies that
the instruction is exact. The same statement holds for DIY if the 0 operand is the dividend. But if it is the
divisor, division is undefined and an interrupt occurs.

For nonvanishing floating-point operands, the fractional part is binary normalized. It contains 24 bits or 56
bits for floating mode and double mode, respectively. For ADD, SUB, MUL, and DIY, two guard bits are
necessary and sufficient for the general case to guarantee return of a chopped or rounded result identical to
the corresponding infinite precision operation chopped or rounded to the specified word length. Thus, with
two guard bits, a chopped result has an error bound of one least significant bit (LSB); a rounded result has
an error bound of 1/2 LSB. These error bounds are realized by the FPP for all instructions.

In the rest of this chapter, an arithmetic result is called exact if no nonvanishing bits would be lost by
chopping. The first bit lost in chopping is referred to as the "rounding" bit. The value of a rounded result is
related to the chopped result as follows.

I. If the rounding bit is 1, the rounded result is the chopped result incremented by an LSB.

2. If the rounding bit is 0, the rounded and chopped results are identical.

It follows that:

I. If the result is exact, rounded value = chopped value = exact value.

2. If the result is not exact, its magnitude is:

a. always decreased by chopping.
b. decreased by rounding if the rounding bit is o.
c. increased by rounding if the rounding bit is 1.

Occurrence of floating-point overflow and underflow is an error condition: the result of the calculation
cannot be correctly stored because the exponent is too large to fit into the eight bits reserved for it.
However, the internal hardware has produced the correct answer. For the case of underflow, replacement
of the correct answer by 0 is a reasonable resolution of the problem for many applications. This is done by
the FPP if the underflow interrupt is disabled. The error incurred by this action is an absolute rather than a
relative error; it is bounded (in absolute value) by 2 ** (-128). There is no such simple resolution for the
case of overflow. The action taken, if the overflow interrupt is disabled, is described under flY (bit 09) of
the status register.

1-39

The flY and flU bits (of the floating-point status word) provide users with an opportunity to implement
their own correction of an overflow or underflow condition. If such a condition occurs and the correspond
ing interrupt is enabled, the microcode stores the fractional part and the low eight bits of the biased
exponent. The interrupt will take place and users can identify the cause by examination of the floating
overflow (FY) bit of the floating exception (FEC) register. You can readily verify that (for the standard
arithmetic operations ADD, SUB, MUL, and DIY) the biased exponent returned by the instruction bears
the following relation to the correct exponent generated by the microcode.

1. On overflow, it is too small by 4008.

2. On underflow, if the biased exponent is 0, it is correct. If the biased exponent is not 0, it is too
large by 4008.

Thus, with the interrupt enabled, enough information is available to determine the correct answer. Users
may, for example, rescale their variables (via STEXP and LDEXP) to continue a calculation. Note that
the accuracy of the fractional part is unaffected by the occurrence of underflow or overflow.

1.8 SOFTWARE SYSTEMS
The KDJII-A module can run the RT-ll, RSX-ll Y5.1, RSX-ll PLUS, RSTS/E, UNIX, and micro
power PASCAL operating systems. These systems are described in the PDP-II Software Handbook (EB
18687-20/80).

1-40

2.1 INTRODUCTION

CHAPTER 2
INSTALLATION

This chapter discusses the considerations and requirements to configure and install a KDJ II-A module in
an LSI-II system. The module can be installed in systems using the extended LSI-II bus backplane as well
as existing systems that use one of the standard LSI-II backplanes. The items that must be considered
before installing the module are as follows.

I. Configuration of the user selectable features.

2. Selection of an LSI-II compatible backplane and mounting box.

3. Selection of LSI-II options compatible with the KDJ II-A.

4. Knowledge of system differences when replacing an LSI-II processor with the KDJ II-A
module.

2.2 CONFIGURA TION
The KDJ II-A has nine jumpers for the user selectable features. The locations of these jumpers are shown
in Figure 2-1 and their functions are described in Table 2-1. A jumper is installed by pushing an insulated
jumper wire (PIN 12-18783-00) onto the two wirewrap pins provided on the module.

Table 2-1 KDJII-A Jumper Identification

Jumper Function

W I Bootstrap address bit 15
W2 Bootstrap address bit 14
W3 Power-up option selection bit 02
W4 Bootstrap address bit 13
W5 HALT trap option bit 03
W6 Bootstrap address bit 12
W7 Power-up option selection bit 0 I
W8 Wakeup disable
W9 BEVNT recognition

\

2-1

2.2.1 Power-Up Options
There are four power-up options available for the user to select. These options are selected by jumpers W7
and W3. The bits are set (I) when the jumpers are removed. A power-up option is selected by configuring
W3 and W7, as described in Table 2-2. A description of each option is provided below.

Table 2-2 Power-Up Options

Option W3 W7 Power-Up Mode

0 Installed Installed PC at 24, PS = 26
I Installed Removed Micro-ODT, PS = 0
2 Removed Installed PC at 173000, PS = 340
3 Removed Removed Users bootstrap, PS at 340

2.2.1.1 Power-Up Option 0 - The processor reads physical memory locations 24 and 26 and loads the
data into the PC and PS, respectively. The processor either services pending interrupts or starts program
execution, beginning at the memory location pointed at by the Pc.

2.2.1.2 Power-Up Option 1 - The processor unconditionally enters micro-~OT with the PS cleared.
Pending service conditions are ignored.

2.2.1.3 Power-Up Option 2 - The processor sets the PC to 173000 and the PS to 340. The processor
then either services pending interrupts or starts program execution, beginning at the memory location
pointed at by the Pc. This option is used for the standard bootstrap.

2.2.1.4 Power-Up Option 3 - The processor reads the four bootstrap address jumpers and loads the
result into PC< 15: 12>. PC< 11 :00> are set to zero, and the PS is set to 340. The processor then either
services pending interrupts, or starts program execution, beginning at the memory location pointed at by
the Pc.

2.2.2 HALT Option
The HALT option determines the action taken after a HALT instruction is executed in the kernel mode.
At the end of a HALT instruction, the processor checks the BPOK bit 00 before checking the HALT
option bit 03. If BPOK is set, the processor will recognize the HALT option, which is controlled by the W5
jumper. When the jumper is removed, bit 03 is set (1) and the processor will trap to location 4 in the
kernel data space and set bit 07 of the CPU error register. When the jumper is installed, bit 03 reads as a
zero and the processor enters the micro-ODT mode. If BPOK bit 00 is not set when the processor checks,
the option is not recognized and the processor loops until BPOK is asserted and the power-up sequence is
initiated.

2-2

2.2.3 Boot Address
The boot address jumpers selects the starting address for the user's bootstrap program when power-up
option 3 is selected. The state of the highest four bits, <15:12>, is determined by jumpers WI, W2, W4,
and W6, respectively. A bit will be set (I) when the respective jumper for that bit is installed and the bit
will be read as a zero when the jumper is removed. During the power-up sequence, the processor reads the
address determined by bits < 15: 12> and forces the remaining bits to read as zeros. Therefore, the user's
bootstrap program can reside on any 2048 word boundary.

2.2.4 Wakeup Disable
The KDJ II-AA module has an onboard wakeup circuit to properly sequence the SDCOK signal. When
jumper W8 is removed, the wakeup circuit is enabled and the module will properly sequence the BDCOK
signal. The wakeup circuit will be disabled when W8 is installed and external logic must be used to
properly sequence the BDCOK signal.

2.2.5 BEVNT Recognition
The LSI-II bus signal BEVNT provides an external event interrupt request to the processor. This feature
is disabled when the W9 jumper is installed and disables the line time clock register. When the jumper is
removed, the BEVNT input is recognized and is under control of the line time clock register. Specifically,
the signal is recognized by the module when bit 06 of the line time clock register is set (I) and is disabled
when bit 06 is not set (0). The line time clock register address is 17 777 546 and is a read/write register.

2.2.6 Factory Configuration
The factory or shipped configuration is described in Table 2-3. The user should review these features and
change them accordingly to match the requirements of the system using the module.

Table 2-3 Factory Configuration

Jumper Status Function

WI Installed Bit 15 set (I)
W2 Installed Bit 14 set (I)
W3 Removed Selects power-up option 2
W4 Installed Bit 13 set (I)
W5 Removed HAL T instruction traps to location 4
W6 Installed Bi t I 2 set (1)
W7 Installed Selects power-up option 2
W8 Removed Wakeup circuit is enabled
W9 Removed BEVNT register is enabled

2-3

2.3 DIAGNOSTIC LEOS
The module has four LEOs that monitor the status of the module. The LEDs are designated as Dl through
04 and are located on the edge of the module, as shown in Figure 2-1. The D 1 LED is turned on only when
the module is operating in the micro-ODT mode. LEOS 02-D4 are used with the diagnostics and run
during the power-up sequence. These LEOs are turned on at the beginning of the sequence and are turned
off upon the successful pass of the diagnostic. Each LEO monitors a primary function of the module
operation, as described in Table 2-4. When troubleshooting the system, the LEDs indicate the most
probable failure, as described in Table 2-5.

LED On

01

02

03

04

Table 2-4 LED Functions

Test Conditions

Micro-OOT is entered.

Module could not do a write and read transaction to the CPU error register. Indicates the microcode is not
running.

Module attempted to read location 17 777 560 and timed out. Indicates SLU is not responding.

Module attempted to read location 0 and timed out or attempted to read location 17 777 700 and did not time
out. Indicates the memory system is not responding.

Table 2-5 Probable System Failure

LEDs
D1 D2 D3 D4 Probable Failure

X On On On CPU module
X Off On On LSI-II bus
X On Off On CPU module
X Off Off On LSI-II bus or memory
X On On Off CPU module
X Off On Off SLU module
X On Off Off CPU module
X Off Off Off Console terminal

2-4

E36
MICROPROCESSOR

c:::::J W9
WSc:::::J

c:::::J W7
W6c:::::J

c:::::J W5
W4c:::::J

c:::::J W3
W2 c:::::J

c:::::J W1

E34
CACHE
CONTROL

E13
STATE
SEQUENCER

Figure 2-1 KDJ II-A Jumper Locations

2-5

MR·l1061

2.4 MAINTENANCE REGISTER (ADDRESS 17 777 750)
The contents of the maintenance register is primarily determined by the user's selection of jumpers WI
through W7. In addition to these, the register bit 00 monitors the status of the LSI-II bus signal BPOK,
and bit 08 monitors the availability of a floating-point accelerator. The register is defined in Figure 2-2 and
its contents are described in Table 2-6. It is a read-only register.

Bit

15:12

11:09

08

07:04

03

02:01

01

15 14 13

f
BOOT
ADDRESS

Name

Boot address

Not used

FPA available

Module ID

HALT

Power-up

POK

12 11 10 09 08 07 06 05 04 03 02 01 00

a a a a a a I
t

HA!T ~~olER FPA
AVAILABLE OPTION OK

POWER UP (POK)
OPTION

MR-11044

Figure 2-2 Maintenance Register

Table 2-6 Maintenance Register Bit Description

Status

Read only

Read only

Read only

Read only

Read only

Read only

Read only

2-6

Function

These bits read the user's boot address selected by
jumpers WI, W2, W4, and W6. A I indicates the jump
er is installed and a 0 indicates the jumper is removed.

Read as zeros

A I indicates the presence of a floating-point accelerator
and a 0 indicates that an accelerator is not installed.

The 0001 code identifies to the microprocessor that this
is a KDJ II-A module.

This bit reads the status of the W5 jumper. A I indicates
the jumper is removed and a 0 indicates the jumper is
installed.

These bits read the user's power-up mode selected by
jumpers W3 and W7. A I indicates the jumper is
removed and a 0 indicates the jumper is installed.

Reads as a 1 when BPOK H is asserted and the power
supply is okay.

2.5 POWER-UP SEQUENCE
The power-up sequence for the module is shown in Figure 2-3.

POWER UP

EXPLICITLY SET
CCR<S> TO FLUSH
THE CACHE AND CLEAR
CCR<15:9,7:0>

EXPLICITLY READ
MEMORY LOCATION
177700

EXPLICITLY READ
MEMORY LOCATION
177560

PC<15: 12> = USE R BOOT
PC<11:0>= 0
PS = 340

BEGIN EXECUTING CODE

Figure 2-3 KDJ Il-A Power-Up Sequence

2-7

C

PC@24
PS@26

ENTER
MICRO·ODT
PS = 0

PC = 173000
PS = 340

BEGIN
EXECUTING
CODE

MR·l1062

2.6 POWER-DOWN SEQUENCE
The power-down sequence for the module is shown in Figure 2-4.

2.7 EXIT MICRO-ODT SEQUENCE
The micro-ODT mode is exited by the G command and the module sequence is shown in Figure 2-5.

CONTINUE EXECUTING CODE

SET CPU ERROR
REG<7>: TRAP
VECTOR 4

INITIATE POWER UP
SEQUENCE

SET CPU ERROR
REG<7>: TRAP
VECTOR 4

Figure 2-4 KDJ II-A Power-Down Sequence

2-8

EXPLICITLY SET
CCR<S> TO FLUSH
THE CACHE

CLEAR PS

BEGIN EXECUTING CODE

MR·'1064

Figure 2-5 Micro-ODT Exit Sequence

2.8 MODULE CONTACT FINGER IDENTIFICATION
The LSI-II type modules, including the KDJ II-A, all use the same contact (pin) identification system.
Figure 2-6 identifies the contacts used on a dual-height module. The LSI-II bus signals are carried on rows
A and B, each with 18 contacts on the component side and the solder side. The KDJ II-A signals are
identified along with the LSI-II bus signals in Table 2-7. The pins are identified as follows.

AE2 Module Side Identifier Side (solder side)

Pin Identifier (Pin E)

Row Identifier (Row A)

The positioning notch between the two rows of pins mates with a protrusion on the connector block for the
correct module positioning. A complete description of the backplane and bus operation is provided in
Chapter 5.

PIN

MA-7177

Figure 2-6 KDJ I I-A Module Contacts

2-9

Table 2-7 KDJI I-A Module Signals

Component Side Solder Side
Pin LSJ-I I Bus KDJII-A Pin LSJ-I I Bus KDJII-A

AAI BIRQ 5 L BIRQ 5 L AA2 +5 +5
ABI BIRQ 6 L BIRQ 6 L AB2 -12 Not used
ACI BDAL 16 L BDAL 16 L AC2 GND GND
ADI BDAL 17 L BDAL 17 L AD2 +12 Not used
AEI SSPARE I Not used AE2 BDOUT L BDOUT L
AFI SSPARE 2 SRUN L* AF2 BRPLY L BRPLY L
AHI SSPARE 3 Not used AH2 BDIN L BDIN L
AJI GND GND AJ2 BSYNC L BSYNC L
AKI MSPARE A Not used AK2 BWTBT L BWTBT L
ALI MSPARE A Not used AL2 B1RQ L BIRQ 4 L
AMI GND GND AM2 BIAKI L Not used
ANI BDMR L BDMR L AN2 BAlLO L BIAK L
API BHALT L BHALT L AP2 BBS 7 L BBS 7 L
ARI BREF L Not used AR2 BDMGI L Not used
ASI +12 B Not used AS2 BDMGO L BDMG L
ATI BND GND AT2 BINIT L BINIT L
AUI PSPARE I Not used AU2 BDAL 0 L BDAL 0 L
AVI +5 B +5 B AV2 BDAL I L BDAL I L

BAI BDCOK H BDCOK H BA2 +5 +5
BBI BPOK H BPOK H BB2 -12 Not used
BCI SSPARE 4 BDAL 18 L BC2 GND GND
BDI SSPARE 5 BDAL 19 L BD2 +12 Not used
BEl SSPARE 6 BDAL 20 L BE2 BDAL 2 L BDAL 2 L
BFI SSPARE 7 BDAL 21 L BF2 BDAL 3 L BDAL 3 L
BHI SSPARE 8 Not used BH2 BDAL 4 L BDAL 4 L
BJI GND GND BJ2 BDAL 5 L BDAL 5 L
BKI MSPARE B Not used BK2 BDAL 6 L BDAL 6 L
BLI MSPARE B Not used BL2 BDAL 7 L BDAL 7 L
BMI GND GND BM2 BDAL 8 L BDAL 8 L
BNI BSACK L BSACK L BN2 BDAL 9 L BDAL 9 L
BPI BIRQ 7 L BIRQ 7 L BP2 BDAL 10 L BDAL 10 L
BRI BEVNT L BEVENT L BR2 BDAL II L BDAL II L
BSI PSPARE 4 Not used BS2 BDAL 12 L BDAL 12 L
BTl GND GND BT2 BDAL 13 L BDAL 13 L
BUI PSPARE 2 Not used BU2 BDAL 14 L BDAL 14 L
BVI +5 +5 BV2 BDAL 15 L BDAL 15 L

* The SRUN L signal is primarily used to drive a panel run light indicator. It is used for BAII-N and later systems. It indicates
the processor is executing instructions.

2.9 HARDW ARE OPTIONS
The KDJ II-A module can be configured into an operating system using a variety of backplanes, power
supplies, enclosures, and LSI-II type modules.

2.9.1 LSI-ll Options
The LSI-II options that are compatible with the KDJ1I-A module are listed in Table 2-8. These options
meet the following requirements and may be used in any KDJ ll-A system configuration.

I. The backplanes, memory, and I/O devices must support 22-bit addressing.

2. These devices must use backplane pins BCl, BDl, BEl, BFl and DCl, 001, DEI, DFl, for the
BDAL bits <18:21> only.

2-10

Name

Backplanes

H9275
H9276
MicrojPDP-1 I

Memory

MCYII-D-D
MSYII-D-L
MSYII-P
MXYII-B
MRYII-D

Options

AAYII-C
ADYII-C
AXYII-C
DLYII
DLYII-E
DLYII-F

DLYII-J

DMYII-AC
DMYII-AF
DPYII
DRYII
DRYII-J
DUYII
DZYII
IBYII-A
KPYII-A

KWYII-C
LAYII
LPYII
RLYI2
RQDXI

RXYII
TSY05

Bus Cable Cards

M9404
M9404-YA

M9405
M9405-YA

Boot ROMs

MXYII-B2

Option

4 X 9
4 X 9
4 X 8

M8631
M8059
M8067
M7915
M8578

A600S
A8000
A0028
M7940
M8017
M8028

M8043

MS053-MA
MS064-MA
M8020
M7941
M8049
M7951
M7957
M7954
M8016

A4002
M7949
M8027
M8061
M8639

M7946
M7196

Table 2-8 LSI-II Compatible Options

Identification

LSI-I I jLSI -I I back plane
LSI-I I JCD backplane
LSI-II JCD and 4 X 5 LSI-II jLSI-1 I backplane

CMOS nonvolatile memory
MOS memory
MOS memory
Multifunction module
PROMjROM module

Dj A converter
AjD converter
Dj A and AjD combination converter
Asynchronous serial line interface
Asynchronous serial line interface
Asynchronous serial line interface

Four asynchronous serial line interfaces (CS Rev. E or later, ECO
M8043-MR002 installed)

Synchronous communications interface
Synchronous communications interface
Programmable synchronous EIA line
Parallel interface
Parallel interface
Programmable synchronous EIA Line
4-line asynchronous EIA multiple
IEEE instrument bus interface
Power-fail and LTC generator (KPYII-B and -C are not compatible)

Programmable real-time clock
LA 180 line printer interface
LA 180jLP05 printer interface
RLO I j2 controller
MSCP controller for RX50 floppy disk and RD51 Winchester

RXO I interface
Magnetic tape interface

Cable connector
Cable connector with 240 n terminators

Cable connector
Connector with 120 !l terminators

Boot ROMs

2-11

2.9.2 Restricted LSI-II Options
The LSI-II options that are not compatible or restricted for use with the KDJ II-A module are listed in
Table 2-9. Backplanes, memories, or I/O devices that are not capable of 22-bit addressing may generate or
decode erroneous addresses if they are used in systems that implement 22-bit addressing. Memory and
memory-addressing devices which implement only 16- or l8-bit addressing may be used in a 22-bit
backplane, but the size of the system memory must be restricted to the address range of these devices (32
KW for systems with a 16-bit device, and 128 KW for systems with an 18-bit device).

Any device that uses backplane pins BCI, BOl, BEl, BFl or OCI, DOl, DEI, OFI for purposes other
than BOAL <18:21> is electrically incompatible with the 22-bit bus and may not be used without
modification to the hardware.

Name

Backplanes

DDVII-B

H9270

H9273-A

H9281-A, -B, -C

VTI03 B.P.

Memories

MMVII-A

MRVII-AA

MRVII-BA

MRVII-C

MSVII-B

MSVII-C

NOTE
Eighteen-bit DMA devices can potentially work in
Q22 systems by buffering I/O in the IS-bit address
space.

Table 2-9 Restricted or Noncompatible LSI-ll Options

Option

6x9

4X4

4X9

2 X n

4x4

G653

M7942

M8021

M8048

M7944

M7955

2-12

Identification

Backplane
(18-bit addressing only)

Backplane
(l8-bit addressing only)

Backplane
(18-bit addressing only)

Dual-height backplane n = 4, 8, and 12
(l8-bit addressing only)

Backplane (54-14008)
(l8-bit addressing only)

Core memory
(l6-bit addressing only, Q-Bus required on C/D backplane
connectors)

ROM
(l6-bit addressing only)

UV PROM-RAM
(l6-bit addressing only)

PROM/ROM
(l8-bit addressing only)

MaS
(l6-bit addressing only)

MaS
(l8-addressing only)

Name

MSVII-D/E

MXVII-A

Options

AAVII

ADVII

BDVll

DLVII-J

DRVII-B

KPVII-B, -C

KUVII

KWVII-A

REVII

RKVII-D

RLVII

RXV21

TEVII

VSVII

Table 2-9 Restricted or Noncompatible LSI-II Options (Cont)

Option

M8044/M8045

M8047

A6001

AOI2

M8012

M8043

M7950

M8016-YB, -YC

M8018

M7952

M9400

M72609

M8013 + M8014

M8029

M9400-YB

M7064

2-13

Identification

MOS
(l8-bit addressing only)

Multifunction module
(l8-bit addressing only on memory, the memory can be
disabled)

D/ A converter
(Use of BC I for purposes other than BDAL 18)

A/D converter
(Use of BC I for purposes other than BDAL 18)

Bootstrap/terminator
(CS Revision D or later for use with KDFII-A, or KDFII-B,
EDD M80 12-ML0002. CS Revision E or later for use in 22-
bit systems, ECO M8012-ML005)

Serial line interface
(CS Revision E or later for use with KDFII-A, or KDFII-B,
ECO M8043-M8002)

DMA interface
(l8-bit DMA only)

Power-failjline-time clock terminator
(Termination for 18 bits only)

WCS
(For use with KDII-B and KDII-BA processors only)

Programmable real-time clock
(Use of BC I for purposes other than BDAL 18)

Terminator, DMA refresh, bootstrap
(Bootstrap for use with KDII-B and KLlI-HA processors
only. Termination for 18 bits only. DMA refresh may be
used in any system.)

RK05 controller interface
(l6-bit DMA only)

RLO I, 2 controller
(l8-bit DMA only, use of BC I and BLI for purposes other
than BDAL 18 AND BDAL 19, requires CD-interconnect
on backplane C/D connectors)

RX02 interface
(18-bit DMA only)

Terminator
(Termination for 18 bits only)

Graphics display
(l8-bit DMA only)

Name

Bus Cable Cards

M9400-YD

M9400-YE

M940l

Boot ROMs

MXVll-A2

2.9.3 Enclosures

Table 2-9 Restricted or Noncompatible LSI-ll Options (Cont)

Option Identification

Cable connector
(I8-bit bus only)

Cable connector with 240 Q terminators
(18-bit bus only)

Cable connector
(I8-bit bus only)

Boot ROMs

The KDJ II-A module may be installed in a variety of enclosures, including, but not limited to, the
following.

BAll-S Mounting Box - Contains the H9276 backplane and the H786I power supply. It supports 22-bit
addressing for up to nine quad- or dual-height modules. The H786I power supply provides 36 A at +5 V
and 5 A at + 12 V.

BAll-N Mounting Box - Contains the H9273 backplane and the H786 power supply. It supports I8-bit
addressing for up to nine quad- or dual-height modules. The H786 power supply provides 22 A at +5 V
and 11 A at + 12 V.

BAll-M Mounting Box - Contains H9270 backplane and the H780 power supply. It supports 18-bit
addressing for four slots, each of which may contain one quad- or two dual-height modules. The H780
power supply provides 18 A at +5 V and 3.5 A at +12 V.

Refer to the PDP-II/23B Mounting Box Technical Manual for a complete description of the BAll-S
mounting box and the Microcomputer Interfaces Handbook for a complete description of the BAII-N
and BA II-M mounting boxes.

2-14

2.10 SYSTEM DIFFERENCES
The KOJ II-A module does not have a bootstrap loader, serial line interface, I/O bus map, real-time clock,
or memory. A complete listing of the differences between the module and other LSI- I I type processor
modules are listed in Appendix B.

Several key system differences between the KOF II-A and KOJ I I -A modules are highlighted below.

I. The KOJ II-A contains an on-board line time clock register (LTC). No LSI-II bus cycle is
started when the LTC register is accessed at its bus address of 17 777 546. The access is
completely contained on board the KOlll-A and does not use the LSI-I I bus. Therefore, an
LSI-II bus option register addressable at 17 777 546 can never be accessed.

An example of a problem this causes with options can be found in the BOY II option (M80 12).
The BOY II contains an LTC register which disables recognition of the LSI-II bus signal
BEY NT by continually asserting BEYNT. Since only the negative edge of BEYNT triggers the
interrupt through location 100, recognition of BEYNT is disabled by this action. The LTC
register on the BOY II powers-up with BEYNT disable and will only release its grip when a
programmer writes to the register. When the BOY II is used with a KOJ II-A, the BOY 11 's
copy of the LTC can never be written and, therefore, unless the BOY 11 is configured with
switch B5 in the off position, all BEYNT interrupts are forever blocked. Switch B5 disconnects
the BEYNT signal from the BOYIl.

In general, no option should contain a register at address 17 777 546.

2. Bit II in the processor status (PS) word selects the alternate register set in the KOJ II-A. This
bit is not implemented in the KOFII-A. Interrupt vectors should not specify the alternate
register set.

3. Odd word addresses cause addressing error traps (through location 4) in the KOJI I-A. The
KOFII-A does not generate any error condition when word references are addressed with odd
addresses. Any existing code which generates odd word addresses will not work on the KOJ 11-
A. The existing BOY 11 has code that generates odd word addresses.

The BOY II generates the error in the ROM diagnostics. The BOY II can bypass the error code
if the diagnostics are eliminated (switches A I and A2 off).

4. BOAL <21: 13> are driven as "110000 Ill" during I/O references (BBS7 asserted). The
KOF II-A drives these bits differently: "000000 Ill" when memory management is turned off,
"0000 11111" when 18-bit memory management is selected, and "111111 III" when 22-bit
memory management is selected.

2-15

2.11 KDJll-A SYSTEM
A KOJ II-A module can be installed to upgrade an existing Digital system or a custom-built system using
LSI-II components. The existing system must be either a KDFII-A or KDFII-B processor. There are
three considerations that must be addressed to upgrade a system.

I. The boot mechanism
2. 18- or 22-bit addressing system
3. Single or multiple box system

If the system processor is not a KDFII-A or KOJlI-A, such as the 11/03 and 11/03L, it should not be
considered for upgrade.

In the following upgrade descriptions, the systems have been labeled as being field serviceable or not. A
system which is field serviceable has a bootstrap which meets Field Service requirements. However, there
is no guarantee that the overall system will be field serviceable.

NOTE
It is recommended that the ac and dc loading for the
final configuration be checked for conformance with
the Q-bus loading rules. It is also recommended to
check for overloading on the +5 V and + 12 V power
supplies.

For each system upgrade, Table 2-10 lists the parameters for both the old system and the upgraded
system.

2.12 MODULE INSTALLATION PROCEDURE
Certain guidelines should be followed when installing or replacing a KOJ II-A module.

1. Verify dc power before inserting the module in a backplane.

2. Ensure that no dc power is applied to the backplane when removing or inserting the module.

3. Verify the configuration of option jumpers.

4. Insert the K OJ I I-A module into the first slot or position in the backplane with the component
side facing up.

5. Ensure that either the module or the selected system components provide the power-up
protocol.

6. Use a single switch to apply all power to the system.

2-16

Table 2-10 Upgrade Choices

Current System

IS-Bit Systems
Component upgrades

KDFII-/\/MXVII-/\
I box
Multibox

KDFII-/\/BDVII
I box
Multibox

PDP-I 1/23S system upgrades
KDFII-B/\ (boot on CPU)
I slot required
I box
Multibox (3)

PDP-I 1/23/\ system upgrades
KDFII-/\
Same as eomponent upgrades

22-Bit Systems
Component upgrades

KDFI I-/\/MXVI 1-/\ (4)
I box
Multibox (10)

PDP-I 1/23 PLUS or MICRO/PDP-II (7,9)
KDFII-B/BE (boot on CPU)
I slot required

KDJll-A/MXVll-B
or MRVII-D w/B2
ROM Field
Serviceable

x
X

X
X(2)

X
X(2)

X

I box X
Multibox (3, 10)

NOTES:

KDJt I-A/MXVII-A
Not Field
Serviceable

x
X

XU;)
X(2)

X
X(2)

X

X(4)

I. Disable the Processor and Memory test and also the BEVNT register on the BDV II.

2. Use BCV I /\ and BDV I B expansion cables.

KDJtI-A
BDVll (I)
Not Field
Serviceable

X
X(6)

X
X(6)

X(5)

3. It is not currently possible to expand out of the PDP-II/23-S or MICRO/PDP-II box while maintaining FCC
compliance.

4. Memory must be disabled.

5. Must have BDV II ECO M80 12-ML005 installed.

6. Use BCV2B cable set between the first and second box and BCV 1/\ or BCV2B between second and third box. In a
3-box system, expansion cable set lengths must differ by 4 feet.

7. Neither the BDV I I nor the MXV I 1-/\ boot code support the RD51 (10 megabyte Winchester) or the RX50 5-1/4
inch diskettes.

tL Check ae loading, since termination was removed when the BDV I I was removed from the system.

9. The PDP-II /23 PLUS and MICRO/PDP-II system upgrades will require an extra backplane slot to accommodate
the additional boot module.

10. Not currently configurable with Digital equipment.

For further information regarding upgrade parts, contact your local Field Service Representative.

2-17

2.13 SPECIFICA nONS

Identification

Size

Dimensions

Power Consumption

AC Bus Loads

DC Bus Loads

Environmental

Storage

Operating

Instruction Timing

DMA Latency

M8192

Dual

13.2 cm X 22.8 cm (5.2 in X 8.9 in)

+5 V ±5% at 4.5 A (maximum)

3.4 unit loads

I unit load

-40°C to 65°C (-40°F to 150°F) 10% to 90% relative humidity,
non condensing

For ambient temperatures above 55°C, sufficient air flow must be
provided to limit the module temperature to less than 65°C. For
inlet temperatures below 55° C, air flow must be provided to limit
temperature rise across the module to 10° C.

Derate maximum temperature by 1°C (1.8°F) for each 305 m
(1000 ft) above 2440 m (8000 ft).

See Appendix A.

DMA latency is defined as the time between receiving a DMA
request (MDMRL) and granting the request (BDMGL). The
worst case DMA latency is 2.2 microseconds.

2-18

CHAPTER 3
CONSOLE ON-LINE DEBUGGING TECHNIQUE (ODT)

3.1 INTRODUCTION
A portion of the microcode in the KDJ ll-A module emulates the capability normally found on a
programmer's console. Since the KDJII-A does not have a programmer's console (one with lights and
switches) or a console switch register at bus address 17777570, the terminal at the standard bus address of
17777560 is used to perform console functions. Communication between the processor and the user is via
a stream of ASCII characters interpreted by the processor as console commands. The console terminal
addresses 17777560 through 17777566 are generated in microcode and cannot be changed.

This feature is called the microcode on-line debugging technique, or micro-ODT. The KDJII-A micro
OOT accepts 22-bit addresses, allowing it to access 4088 M bytes of memory, plus the 8 Kbyte I/O page.
Micro-OOT provides a more sophisticated range of debugging techniques, including access of memory
locations by virtual address.

The differences in use of console OOT in the KDJII-A as compared with that in the KOII-F (LSI-II) and
the KOII-HA (LSI-I 1/2) are listed in Appendix E.

3.2 TERMINAL INTERFACE
The KOJ II-A does not provide a serial line interface on the module. Therefore, the console must interface
with an LSI-II serial line interface module connected into the backplane. This allows the console to
communicate with the KOJ II-A via the LSI-II bus.

3.3 CONSOLE ODT ENTRY CONDITIONS
The OOT console mode can be entered by the following ways.

l. Execution of a HALT instruction in kernel mode, provided the HALT TRAP jumper (W5) is
installed.

2. Assertion of the BHALT signal on the bus. Note that the signal must be asserted long enough
that it is seen at the end of a macroinstruction by the service state in the processor. BHALT is
level-triggered, not edge-triggered. Typically, BHALT remains asserted until the processor
enters OOT.

3-1

3. If power-up mode option I has been selected, OOT is entered upon processor power-up.

NOTE
Unlike the KDll-F and KDll-HA, the KDJll-A
does not enter console ODT upon occurrence of a
double bus error (for example, when R6 points to
nonexistent memory during a bus timeout trap). The
KDJll-A creates a new stack at location 2 and
continues to trap to 4. If a bus timeout occurs while
getting an interrupt vector, the KDJll-A ignores it
and continues execution of the program, whereas in
such case the KDll-F and KDll-HA enter console
ODT. Refer to Appendix E for a listing of the dif
ferent ways certain processors interpret the same
console ODT commands.

OOT causes the following processor initialization upon entry.

1. Performs a OA TI from RBUF (input data buffer at 177775628) and then ignores the character
present in the buffer. This operation prevents the OOT from interpreting erroneous characters
or user program characters as a command.

2. Prints a carriage return <CR> and line feed <LF> on the console terminal.

3. Prints the contents of the PC (program counter R 7) in six digits.

4. Prints a <CR> and <LF>.

5. Prints the prompt character @'

6. Enters a wait loop for the console terminal input. The OONE flag (bit 07) in the RCSR at
17777 5608 is constantly being tested via a OA TI by the processor for a 1. If bit 07 is a 0, the
processor keeps testing.

3.4 ODT OPERATION OF THE CONSOLE SERIAL-LINE INTERFACE
The processor's microcode operates the serial-line interface in half-duplex mode by using program I/O
techniques rather than interrupts. This means that when the OOT microcode is busy printing characters
using the output side of the interface, the microcode is not monitoring the input side for incoming
characters. Any characters coming in while the OOT microcode is printing characters are lost. Overrun
errors detected by the universal asynchronous receiver/transmitter (UART) will be ignored because the
microcode does not check any error bits in the serial-line interface registers.

Therefore, the user should not "type ahead" to OOT because those characters will not be recognized.
More importantly, if another processor is at the end of the serial line, it must obey half-duplex operation.
In other words, no input characters should be sent from the console terminal until the processor's OOT
output has finished. This restriction does not pertain to echoed characters, however.

3-2

3.4.1 Console ODT Input Sequence
The input sequence for ODT follows. (Upon entry to ODT, the RBUF register at 17777562 is read, but
the character is ignored to prevent the character from being interpreted as a command by the console
ODT.)

l. Test RCSR bit 07 (DONE flag) of RCSR at 177775608 using a DATI bus cycle; if it is a 0,
continue testing.

2. If RCSR bit 07 is ai, read the low byte of RBUF at 177775628 using a DATI bus cycle.

3.4.2 Console ODT Output Sequence
The output sequence of ODT is as follows.

l. Test bit 07 (DONE flag) of the XCSR at 177775648 using a DATI bus cycle; if it is a 0,
continue testing.

2. If XCSR bit 07 is aI, write to the XBUF at 177775668 using a DA TO bus cycle. The desired
character is in the low byte. The data in the high byte is undefined and is ignored by the serial
line interface.

If the interrupt enable (bit 06) in the XCSR is ai, an interrupt will be created to the software when the
proceed (P) console ODT command is used. If a go (G) command is used, all interrupt enables in
peripherals are cleared and an interrupt will not occur.

3.5 CONSOLE ODT COMMAND SET
The ODT command set is listed in Table 3-1 and described in Paragraphs 3.5.1 through 3.5.9. The
commands are a subset of ODT-ll and use the same command characters. ODT has 10 internal states.
Each state recognizes certain characters as valid input and responds with a question mark (?) to all others.

Command

Slash

Carriage return

Line feed

I nternal register
designator

Processor status
word designator

Go

Proceed

Binary dump

(Reserved)

Table 3-1 Console ODT Commands

Symbol

/

<CR>

<LF>

$ or R

S

G

P

Control-shift-S

H

Function

Prints the contents of a specified location.

Closes an open location.

Closes an open location and then opens the next
contiguous location.

Opens a specific processor register.

Opens the PS; must follow an $ or R command.

Starts execution of a program.

Resumes execution of a program.

Manufacturing use only.

Reserved for DIGITAL use.

3-3

The parity bit (bit 07) on all input characters is ignored (i.e., not stripped) by console OOT and if the input
character is echoed, the state of the parity bit is copied to the output buffer (XBUF). Output characters
internally generated by OOT (e.g., <CR» have the parity bit equal to O. All commands are echoed except
for <LF>.

In order to describe the use of a command, other commands are mentioned before they have been defined.
For the novice user, these paragraphs should be scanned first for familiarization and then reread for detail.
The word location, as used in the following paragraphs, refers to a bus address, processor register, or
processor status word (PS).

The descriptions of the OOT commands include examples of the printouts that the processor will output to
the console terminal in response to the commands entered by the user. In the examples given, the processor
output is underlined.

3.5.1 / (ASCII 057) - Slash
This command is used to open a bus address, processor register, or processor status word and is normally
preceded by other characters that specify a location. In response to /, OOT will print the contents of the
location (six characters) and then a space (ASCII 40). After printing is complete, OOT will wait for either
new data for that location or a valid close command. The space character is issued so that the location's
contents and possible new contents entered by the user are legible on the terminal.

Example:

where:

@00001000/012525 <SPACE>

@ = OOT prompt character.

00001000

/

012525

<SPACE>

octal location in the Q-Bus address space desired by the user (leading
Os are not required).

command to open and print contents of location.

contents of octal location 1000.

space character generated by OOT.

The / command can be used without a location specifier to verify the data just entered into a previously
opened location. The / produces this result only if it is entered immediately after a prompt character. A /
issued immediately after the processor enters OOT mode will cause? <CR>, <LF> to be printed because
a location has not yet been opened.

Example:

where:

@1000/012525 <SPACE> 1234 <CR> <CR> <LF>
@/001234 <SPACE>

first line

second line

new data of 1234 entered into location 1000 and location closed
with <CR>.

a / was entered without a location specifier and the previous
location was opened to reveal that the new contents was correct
ly entered into memory.

3-4

3.5.2 <CR> (ASCII 15) - Carriage Return
This command is used to close an open location. If a location's contents are to be changed, the user should
precede the <CR> with the new data. If no change is desired, <CR> will close the location without
altering its contents.

Example: @RI/004321 <SPACE> <CR> <CR> <LF>
@

Processor register R 1 was opened and no change was desired, so the user issued <CR>. In response to the
<CR>, ODT printed <CR>,<LF>, and @'

Example: @RI/004321 <SPACE> 1234 <CR> <CR> <LF>
@

In this case, the user desired to change R I. The new data, 1234, was entered before the <CR>. ODT
deposited the new data into the open location and then printed <CR>,<LF>, and @. ODT echoes the
<CR> entered by the user before it prints <CR>, <LF>, and @.

3.5.3 <LF> (ASCII 12) - Line Feed
This command is used to close an open location and then open the next contiguous location. Bus addresses
and processor registers will be incremented by two and one, respectively. If the PS is open when an <LF>
is issued, it will be closed and <CR>, <LF>, @ will be printed; no new location will be opened. If the open
location's contents are to be changed, the new data should precede the <LF>. If no data is entered, the
location is closed without being altered.

Example: @R2/123456 <SPACE> <LF> <CR> <LF>
@R3/054321 <SPACE>

In this case, the user entered <LF> with no data preceding it. In response, ODT closed R2 and then
opened R3. When a user has the last register, R7, open, and issues <LF>, ODT will "roll over" to the first
register, RO. When the user has the last bus address of a 32 K word open segment and issues <LF>, ODT
will open the first location of that segment. If the user wishes to cross the 32 K word boundary, the user
must reenter the address for the desired 32 K word segment (i.e., ODT is modulo 32 K words).

Example:

Example:

@R7/000000 <SPACE> <LF> <CR> <LF>
@RO/123456 <SPACE>

or

@577776/000001 <SPACE> <LF> <CR> <LF>
@477776/125252 <SPACE>

Unlike other commands, ODT will not echo the <LF>. Instead, it will print <CR>, then <LF>, so that
teletype printers will operate properly. To make this easier to decode, ODT does not echo ASCII 0, 2, or
10, but responds to these three characters with? <CR>, <LF>, @'

3-5

3.5.4 $ (ASCII 044) or R (ASCII 122) - Internal Register Designator
Either character, $ or R, when followed by a register number (0 to 7) or PS designator (S), will open the
processor register specified. The $ character is recognized to be compatible with OOT -11. The R character
was introduced for its being a one key stroke representation of its function.

Examples: @$O /000123 <SPACE>

@R7/000I23 <SPACE> <LF>
@RO/05432I <SPACE>

If more than one character (digit or S) follows the R or $, OOT will use the last character as the register
designator. An exception: if the last three digits equal 077 or 477, OOT will open the PS rather than R7.

3.5.5 S (ASCII 123) - Processor Status Word Designator
This designator is for opening the processor status word and must be used after the user has entered an R
or $ register designator.

Example: @RS/I00377 <SPACE> 0 <CR> <CR> <LF>
@/OOOOIO <SPACE>

Note that the trace bit (bit 04) of the processor status word cannot be modified by the user. This is to
prevent the POP-II program debugging utilities (e.g., OOT-II), which use the T-bit for single-stepping,
from being accidentally harmed by the user. If the user issues an <LF> while the processor status word is
open, the word is closed and OOT will print a <CR>, <LF>, @. No new location is opened in this case.

3.5.6 G (ASCII 107) - Go
This command is used to start program execution at a location entered immediately before the G. This
function is equivalent to the LOAD ADDRESS and START switch sequence on other POP-II consoles.

Example: @200 G <NULL> <NULL>

The ODT sequence for a G, after echoing the command character, is as follows.

1. Print two nulls (ASCII 0) so the bus initialize that follows will not flush the G character from
the double buffered UART chip in the serial-line interface.

2. Load R 7 (PC) with the entered data. If no data is entered, 0 is used. (In the above example, R 7
will equal 200 and that is where program execution will begin.)

3. The floating-point status (FPS) register and the PS will be cleared to o.

4. The LSI-I I bus is initialized by the processor asserting BINIT L for 12.6 microseconds,
negating BI NIT L, and then waiting for 110 microseconds.

5. The service state is entered by the processor. Anything to be serviced is processed. If the
BHAL T L bus signal is asserted, the processor reenters the console ODT state. This feature is
used to initialize a system without starting a program (R 7 is altered). If the user wants to single
step a program, he/she issues a G and then successive P commands, all done with the BHALT L
bus signal asserted.

3-6

3.5.7 P (ASCII 120) - Proceed
This command is used to resume execution of a program and corresponds to the CONTINUE switch on
other PDP-II consoles. No machine state visible to the programmer is altered using this command.

Example: @P

Program execution resumes at the place pointed to by R7. After the P is echoed, the ODT state is left and
the processor immediately enters the state to fetch the next instruction. If a HALT request is asserted, it is
recognized at the end of the instruction (during the service state) and the processor will enter the ODT
state. Upon entry, the contents of the PC (R7) will be printed. In this fashion, a user can single-step
through a program and get a PC "trace" displayed on his/her terminal.

3.5.8 Control-Shift-S (ASCII 23) - Binary Dump
This command is used for manufacturing test purposes and is not a normal user command. It is intended to
display a portion of memory more efficiently than the / and <LF> commands do. The protocol is as
follows.

1. After a prompt character, ODT receives a control-shift-S command and echoes it.

2. The host system at the other end of the serial line must send two 8-bit bytes which ODT will
interpret as a starting address. These two bytes afeoot echoed. The first byte specifies starting
address <15:08> and the second byte specifies starting address <07:00>. Bus address bits
<21: 16> are always forced to 0; the DUMP command is restricted to the first 32 K words of
address space.

3. After the second address byte has been received, ODT outputs 108 bytes to the serial line,
starting at the address previously specified. When the output is finished, ODT will print <CR>,
<LF>, @.

If a user accidentally enters this command, it is recommended that, in order to exit from the
command, two @ characters (ASCII 100) be entered as a starting address. After the binary
dump, the user will get the prompt character @.

3.5.9 Reserved Command
An ASCII H (110) is reserved for future use by Digital. If it is accidentally typed, ODT will echo the H
and print a prompt character rather than a ?, which is the invalid character response. No other operation is
performed.

3-7

3.6 KDJll-A ADDRESS SPECIFICATION
The KOJ II-A micro-OOT accepts 22-bit addresses, allowing it to access 4088 M bytes of memory, plus
the 8 Kbyte I/O page. All I/O page addresses must be entered by users with a full 22 bits specified. For
example, if a user wishes to open the RCSR of the serial-line unit (SLU), he/she must enter 17777560, not
177560.

3.6.1 Processor I/O Addresses
Certain processor and MMU registers have I/O addresses assigned to them for programming purposes. If
referenced in OOT, the PS will respond to its bus address, 17777776. Processor registers RO through R 7
will not respond (i.e., timeout will occur) to bus addresses 17777700 through 17777707 if referenced in
OOT.

The MMU status registers and PAR/POR pairs can be accessed from OOT by entering their bus address.

Example: @17777572/000001 <SPACE>

In this case, memory management status register 0 is opened to show the memory management enable bit
set.

The FPII accumulators cannot be accessed from OOT. Only FPll instructions can access these registers.

3.6.2 Stack Pointer Selection
Accessing kernel and user stack pointer registers is accomplished in the following way. Whenever R6 is
referenced in OOT, it accesses the stack pointer specified by the PS current mode bits (PS< 15: 14». This
is done for convenience. If a program operating in kernel mode (PS<15:14> = 00) is halted, and R6 is
opened, the kernel stack pointer is accessed.

Similarly, if a program is operating in user mode (PS<15:14> = II), the R6 command accesses the user
stack pointer. If a different stack pointer is desired, PS< IS: 14> must be set by the user to the appropriate
value, and then the R6 command can be used. If an operating program has been halted, the original value
of PS<15:14> must be restored in order to continue execution.

Example: PS = 140000
@R6/123456 <SPACE>

The user mode stack pointer has been opened.

@RS/140000 <SPACE> 0 <CR> <CR> <LF>

@R6/123456 <SPACE> <CR> <CR> <LF>

@RSjOOOOOO <SPACE> 140000 <CR> <CR> <LF>

@P

In this case, the kernel mode stack pointer was desired. The PS was opened and PS< 15: 14> was set to 00
(kernel mode). Then R6 was examined and closed. The original value of PS<15:14> was restored, and
then the program was continued using the P command.

3.6.3 Entering of Octal Digits
In general, when the user is specifying an address or data, OOT will use the last eight digits if more than
eight have been entered. The user need not enter leading Os for either address or data; OOT forces Os as
the default. If an odd address is entered, the low-order bit is ignored, and a full 16-bit word is displayed.

3-8

3.6.4 ODT Timeout
If the user specifies a nonexistent address, OOT will respond to the bus timeout by printing ?, <CR>,
<LF>, @.

3.7 INVALID CHARACTERS
In general, any character that OOT does not recognize during a particular sequence is echoed (with the
exception of ASCII codes 0,2, 10, and 12 as noted earlier) and OOT will print ?, <CR>, <LF>, @. OOT
has 10 internal states, with each state having its own set of valid input characters. Some commands are
allowed only when in certain states or sequences; thus an attempt has been made to lower the probability
of a user's unconsciously destroying data by pressing the wrong key. Table 3-2 defines the OOT states and
valid input characters.

Table 3-2 Console ODT States and Valid Input Characters

State

2

3

4

5

6

7

8

9*

10

Example of
Terminal Output

@

R,S
G
p
Control-shift-S

@R or @$
S

@1000/123456
<CR>
<LF>

@RI/123456
<CR>
<LF>

@IOOO

/
G

@RI or @RS
S
/

@1000/123456 1000
<CR>
<LF>

@,RI / 123456 1000
<CR>
<LF>

@, Control-shift-S

*Indicates previous location was opened.

3-9

Valid Input

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

/

2 binary bytes

4.1 INTRODUCTION

CHAPTER 4
FUNCTIONAL THEORY

The KD] II-A is a dual-height microprocessor module on a multilayer printed circuit board for use in an
LSI-II type system. Figure 4-1 shows the interconnecting data paths between the major functional blocks
of the module which include the following.

• the DC] II microprocessor
• the cache data path and memory
• the state sequencer
• the input/output control circuits
• the bus interface input/output transceivers

The module uses a DC] II microprocessor CMOS chip to execute the PDP-II instruction set described in
Chapter 6, control the memory management, support the console micro-ODT and the other architectural
features described in Chapter 1. The DC] 11 initiates all the KD] II-A data transfers and operations. The
cache data path contains the line time clock register and the memory system error register (MSER). The
maintenance register is an on-board register that allows software to read the options selected by the user.
The KD] II-A provides an interface between the DCl 11 and the LSI-II bus via the A-bus and B-bus data
paths. The state sequencer is a 68-pin gate array that controls the module data transfers using the data
paths. These include the read and write transactions to the cache memory and the system memory by
sequencing the hand shake signals that control the LSI-II bus.

An on-board 8 Kbyte direct map cache memory is provided. The cache data path chip is a 68-pin gate
array that contains the control logic to support the cache memory. The cache memory is transparent to all
programs and is designed with high-speed RAM memory. The memory locations currently being accessed
from the system memory are automatically stored in the cache memory. The next time these locations are
accessed, the data is retrieved from the cache memory and eliminates the time-consuming LSI-II bus
transaction. Full parity protection is provided for the cache memory and much of the parity calculations
are done by the cache data path chip. The KDlII-A monitors DMA writes into the system memory to
ensure that the cache data does not become stale. Each DMA write address is checked to see if the address
is cached, and if it is, the cached data is invalidated.

There are four LEDs on the module that provide a visual indication and monitor the status of the module.
Three of the indicators are set during the power-up sequence to indicate when a hardware failure occurs.
The fourth indicator is set when the module is in the micro-ODT mode. There is also a 40-pin socket
provided on the module for a future floating-point accelerator option.

4-1

~ "- ~ A BUS

V-
B BUS

/ V- STATUS

DMA
~

V lEDS
RSYNC H REGISTER GP WRITE l

.)
DMA REG OE l

ALE H V OUTPUT
CONTROL

" "-
IlOE l

BUFCTl l B BUS') B BUS

vi

~""~ MISS l

~ ~ "- COMP l
CACHE

~ r---v A BUS / ~TAG Bu0

MEMORY
V INPUT

" RlE l
BUS

UPA H CONTROL
MDAl BUS) CACHE " V RECEIVERS

RlOE l BUF CTl l DATA PATH PARITY l V

MEVNT l OBUS OE l
BUS

SYSTEM INPUl: ABORT l DRCP H TRANSMITTERS
I-- r--

~
I

tv r GP WRITE l STRB l
MISS l

MDAl BUS
GP DATA OE l IINITIALIZE/

CACHE CONTROL

~
PARITY l

DCJll-AA PROCESSOR CONTROL ~El J MAINTENANCE ALE H MEVNT l MICROPROCESSOR -I REGISTER ALE H
RlOE l

DV l BUFCTl l BUS OE l
CO NT l STRB l L.,r----, lOAD DMA H

DMA REG OE l
DVl .1 1 FPA STATUS STATE GP DATA OE l

SEOUENCER SYSTEM
ABORT l .1 ~~~~ING 1 COMP l

INTERFACE ILOE l
FPA ACK l .' ACCELERATOR 1 ABORT l DV l

I (OPTIONAL) I CO NT l

A BUS I FPA ACK l
DRCP H

L ____ J

A BUS
~-- ---- -- -- ----

Figure 4-1 Functional Block Diagram

4.2 DCJ11 MICROPROCESSOR
The DCJ 11 is a microprocessor contained on a 60-pin VLSI chip. The input/output pins are shown in
Figure 4-2 and the signals are described below.

'" MAIO<O>H AIO<O>H

t MDALO.21) MAIO<l>H AIO<l>H

MAIO<2>H AIO<2>H
PARITY L

MAIO<3>H AIO<3>H
MISS L

MALE L ALE L

FPA FPE L
BUFFER/ ALE H

MINIT H
.~ MSCTL L DRIVERS

""'W"":~
SCTL H

RIRQ4 H MSTRB L
STRB L

RIRQ5 H
MABORT L STRB H

RIRQ6 H
MPRDC L ABORT L

.f"
RIRQ7 H

SRUN L
INIT L

UPA H r - --
DCJll·A ENB

~ PWR FAIL L MICRO PROCESSOR .,t= ENA

R HALT H
UPA H

EVNT L

FPA STL H_ DV L

'" DMR L
,~

RDMR H - MBS<O>H
CONT L MBS<l>H

RRPLY H]
""' CO NT L
r-

M BUF CTL L - J CLK H
XTAL1

~t -=c XTALO

Figure 4-2 DCJ JJ-A Microprocessor

4.2.1 Initialization (MINIT L)
The MINIT L input is asserted by the BOCOK bus signal which must be asserted for a minimum of 1.5
microsecond. BOCOK H is asserted by the KOJ II-A when jumper W8 is removed. If jumper W8 is
inserted, BDCOK H must be asserted externally in order to start the KDJ II-A. The DCJ 11 starts the
power-up sequence (described in Chapter 2) after MINIT L is asserted. MINIT L also clears the PWR
FAIL circuit, initializes the state sequencer, asserts the LSI-II bus initialization signal BINIT L, and turns
on the diagnostic LEDs.

4.2.2 Output Signals
The DCJ 11 output signals control the various module functions and are described below.

4.2.2.1 Address Input/Output (AIO<03:00> H) - These four signals classify the current transaction as a
bus read, bus word write, bus byte write, GP read, GP write, interrupt acknowledge, or NOP as shown in
Table 4-1.

4-3

Table 4-1 AIO Coding

AIO SIGNAL

3 2 0 Type of Transaction*

I I I I Non I/O (NOP)
I I I 0 General-purpose read
I I 0 I Interrupt acknowledge (read vector)
I I 0 0 Instruction stream request read
I 0 I I Read-modify-write, no bus lock
I 0 I 0 Read-modify-write, bus lock
I 0 0 I Data stream read
I 0 0 0 Instruction stream demand read
0 I 0 General-purpose word write
0 0 I Bus byte write
0 0 0 Bus word write

* The NOP, lACK, bus and general-purpose (GP) transactions are defined as follows.

I. A NOP transaction is an internal operation that does not require a bus transfer.

2. A bus transaction uses the DAL bus to access memory, I/O devices or explicit addressable registers.

3. A general-purpose transaction is used to access interface devices that are not directly addressable by the DAL bus.

4. Interrupt acknowledge (lACK) transactions are in response to the DC] II granting an interrupt request.

4.2.2.2 Bank Select, (BSI H, BSO H) - These signals are time multiplexed during the transaction.
During the first portion of a bus transaction, they are used to define the type of address on the MDAL bus.
The addresses identified by the BSO Hand BSI H signals are defined in Table 4-2.

The memory types are all addresses below 17 600 000. The system register types are bus addressable
registers in the address range of 17 777 740 to 17 777 75l. The internal register types are addressable
registers that reside within the DC] 11. The external I/O types are addresses greater than 17 577 777
which are neither internal registers nor system registers.

During the second half of the transaction, the BSI H signal indicates the cache bypass status and the BSO
signal indicates the cache force miss status as described below.

BS 1 H Asserted - Cache bypass
Negated - No cache bypass

BSO H Asserted - Cache force miss
Negated - No cache force miss

Table 4-2 Bank Select Address Codes

BSI BSO Address Type

0 0 Memory
0 I System register
1 0 External I/O
I 1 Internal register

4-4

4.2.2.3 Address Latch Enable (ALE L) - The ALE L output is asserted at the start of a transaction and
latches the physical address, the AIO code and the BS 1 H, BSO H code. The negation of ALE L latches
the cache hit/miss calculated data.

4.2.2.4 Stretch Control (SCTL L) - The SCTL L is asserted for the stretched portion of a transaction
and negated when the DClii receives CONT L input. When SCTL L is asserted, it generates the LSI-II
bus signal BSYNC L that is used for the LSI-II bus read and write transactions. It also activates the
ABORT L input/output signal.

4.2.2.5 Strobe (STRB L) - This signal is asserted at the end of the second DCli I clock period and is
negated at the end of the transaction. The address is latched into the cache data path and the LSI-II bus
drivers when STRB L is asserted. The negation of STRB L clears the parity error flip-flop that drives the
PARITY L input to the DClii.

4.2.2.6 Buffer Control (BUFCTL L) - The BUFCTL L is asserted to enable the input control logic for
the A-bus to drive the MDAL bus. It is negated to enable the output control logic for the MDAL bus to
drive the B-bus. The signal is asserted when the DCl II is reading data from the A-bus and negated when
the DCl II is writing address or data information onto the B-bus.

4.2.2.7 Predecode Strobe (PRDC L) - The signal is asserted for the first two DCl II clock periods of
any transaction that decodes a PDP-II instruction. It also drives the SRUN L output of the module.

4.2.2.8 Clock (CLK H) - The CLK H output initiates and continuously clocks the timeout logic circuits
used to detect nonexistent memory and the no BSACK L error condition.

4.2.3 Input Signals
The DCl II receives status and control information from a variety of input signals. These signals and their
associated functions are described below.

4.2.3.1 MISS L - The MISS L input reports the cache memory hit and miss status during bus read and
write transactions.

4.2.3.2 Data Valid (DV L) - The DV L input is generated by the state sequencer and is used to latch in
read data from the MDAL bus.

4.2.3.3 Continue (CONT L) - The CONT L input is generated by the state sequencer and the LSI-II
bus signal BRPL Y L to indicate that the current stretched transaction can end. It is only asserted when
both the state sequencer enables the continue output, and the bus signal BRPL Y L is negated on the LSI
II bus.

4.2.3.4 DMA Request (DMR L) - The DMR L input is used to stall the DCl 11 by stretching the next
transaction. It is asserted by the FPA STL L signal from the floating-point accelerator socket or by the
LSI-II bus signal BDMR L. The input is sampled at the beginning of the current transaction, and, when
present, it will stretch the next transaction until the DMA or FPA transfer is complete.

4.2.3.5 IRQ <07:04> H - These inputs are coded priority levels from external devices that drive the
LSI-II bus signals BIRQ<07:04> L. The IRQ<07:04> H inputs are interrupt requests to the DClli and
are coded to determine a priority level. The acknowledgement of these inputs is dependent on the current
priority level of the processor status word.

4.2.3.6 HALT H - The HALT H input is driven by the LSI-II bus signal BHAL T L and is the lowest
interrupt priority for an external device.

4-5

4.2.3.7 EVNT H - The EVNT H input is driven by the LSI-II bus signal BEVNT L and has a level-6
priority. This signal can be disabled by installing the W9 jumper or by software clearing bit 6 of the line
time clock (LTC) register.

4.2.3.8 PWR FAIL L - This input is asserted by the power fail flip-flop which is set by the negation of
the LSI-II bus signal BPOK H. The flip-flop is reset by either MINIT L or CLR PWR FAIL L signals.
This input is a nonmaskable interrupt to the DC] 11.

4.2.3.9 PARITY L - The PARITY L input is driven by the cache data path when a parity error is
detected. This input is a nonmaskable interrupt to the DC] II.

4.2.3.10 ABORT L - The ABORT L signal is an input/output line that can be driven by the DCJlI or
an external device such as the cache data path. The signal is used in conjunction with the PARITY L input
to determine when the DC] II aborts the current transaction.

4.2.3.11 FPA FPE L - The FPA FPE L input is driven by the floating-point ·accelerator socket and is a
nonmaskable interrupt request.

4.2.4 MDAL<21:00>
The MDAL<2I :00> bus is a time-multiplexed data/address bus. The basic bus consists of DAL bits
<15:00> and is bidirectional. DAL bits <21:16> are outputs only and used as the extended bus. The data
being transmitted or received is dependent on the type of transaction being performed by the DC] II.

4.2.5 DCJ 11 Timing
The DC] II controls the type of transaction being executed and indicates this to the module circuits by
coding the AIO<03:00> signals. There are six basic transactions performed and these are described as
follows.

4.2.5.1 NOP - This transaction performs a DCJll internal operation and does not require the use of the
MDAL bus. The normal transaction is shown in Figure 4-3. The stretched transaction (Figure 4-4) occurs
when DMR is asserted early in the transaction and remains stretched until the CONT input is asserted to
end the transaction.

ALE \\\\\ am
STRB [!JJ} \\\\\
.11.10 [fl/!!!j}] AIO CODE \\\\\\\\\\

DMR Ifilll REg~~T\\\\\ xxxxx XXXXX
MR-12074

Figure 4-3 NOP Transaction

4-6

ALE \\\\\ lim
r r
) j

STRB {;jj} \t~~ \ \
AIO 1/1§;17 AIO CODE \S\\\\\SS ~ ~ m~l

DMA

~ ~ DMR S\'®,REOUEST[(j!l 7

BUFCTL \SSS~ \ r Nil
J

SCTL \\\\\ (r (!I]J
) j
r (CONTINUE

CONT
) J \SS~

*
(//0

MR-12075

Figure 4-4 Stretched NOP Transaction

4.2.5.2 Bus Read - The bus read transaction uses the MDAL bus to read data from cache memory, main
memory, input/output devices or the addressable module registers. These transactions occur during
instruction stream reads, data stream reads and the read portion of read-modify-write. The transaction
reads complete words and if only a byte is required, the DCl 11 ignores the excess byte. A cache bus read
transaction (Figure 4-5) occurs when the physical address scores a hit in the cache memory. The DCl11
will abort the transaction if any memory management or address errors assert the ABORT L signal. When
this happens, all current information is ignored and the transaction is immediately aborted.

DAL «<««««««««((«< t »») CAC H E DATA m«««««««(««<
PHYSICAL ADDRESS

ALE \\\\\ 11m
DMR __ --"'IhIJ./'I// RE~~~ST \'\W~U..l" _____ .L.lXXXXt..1..1.l_j_.....4X»X:.lUU..l.--__

DMA REOUES;

BS \\\\\ I/O BANK SELECT CACHE STATUS !/ill

ABORT
))x« MMU ABORT STATUS »X«

BUFCTL \\\\\ !/ill
MR-12076

Figure 4-5 Bus Read Transaction

4-7

The non-cache or stretched bus read transaction (Figure 4-6) is used when the data must be accessed via
the LSI-II bus. This occurs when any of the following conditions exist.

I. Either BSI H or BSO H is set to one indicating an I/O address
2. Cache bypass is indicated
3. Cache force miss is indicated
4. DMR L is asserted
5. Cache MISS is reported

The BUFCTL Land SCTL L outputs are asserted during the stretched portion of the read transaction.
The data is read by the DCJ II when data valid (DV L) is asserted. When the transaction is stretched only
because the DMR input was asserted, then DV L is not asserted because it will overwrite the valid data
received from the cache. The transaction will remain stretched until the CO NT L input is asserted to end
the transaction.

DAl

PHYSICAL ADDRESS::;

(({m{{(({{((((((« m)}}D)>>}))}}})}))))}} lSI BUS DATA ««(
ALE \\\\\ tlTTmrr-?-----\\ \1----------

BS

MISS

BUFCTl

SCTl \\\\\ \~~ ____________ ~u.~m
CaNT

___________________ ---\\ I'l-j _--rrmCONTINUE

\\\\\ + Ih",,'II/r-----

DV ____________________________________ ~~I'l-j-~U.~/# \\\\\
MA-12077

Figure 4-6 Stretched Bus Read Transaction

4.2.5.3 Bus Write - The bus write transaction writes data to memory, I/O devices, or other addressable
registers via the DAL bus. The transaction can write either bytes or words as determined by the AIO code.
The DCJ 1 1 reports any memory management or address errors by enabling the ABORT L signal. This
causes the transaction to be terminated immediately and all data should be ignored.

The write transaction as shown in Figure 4-7 and all bus write transactions are stretched. The SCTL L
signal is asserted and the write data is on the bus during the stretched portion of the transaction. For byte
writes, an even address selects the low byte and an odd address selects the high byte. The data for the
remaining byte is not used.

4-8

DAL {{{{{({({({{{({({ l PHJ~J~m{ DATA OUT ~ ~~ _________ --'-')).I.I.}}~))
ALE

----------~~~m tmm~/----------~ffr---------------------

l »X{{ CACHE STATUS : ~f-------------
I/O BAN K SELECT I 'f

MMU ABORT STATUS \\\\\ f ~. ~M..;.M..;;.U..;.A.;.;.N;;".D ..;;",SY;,.;;S..;.TE;;.;,.M..;.A....;,;B;,.;;O..;";,RT_S;;,,.T..;.A..;.TU;,..,;S __

BS »X«
ABORT })X«

BUFCTL ----------------------------------~(~I--------------------
SFi'L

CONT

\\\\\ um ----111-1 ---CO-N-T-IN-U-E __ IUJ./

--------------------------~II~-~~~% t nffi
MR·12078

Figure 4-7 Bus Write Transaction

4.2.5.4 General-Purpose Read - The general-purpose read transaction accesses non-user-addressable
module hardware. The MDAL address used for general-purpose reads is in the form of 17 777 XXX,
where the "XXX" bits represent the general-purpose read code described in Table 4-3. The codes use
MDAL bits <07:00> to access the hardware.

All general-purpose read transactions (Figure 4-8) are stretched. The DCJ 11 reads the data when DV L is
asserted. The transaction is stretched until CONT L is asserted to end the transaction.

DAL

DV

Table 4-3 General-Purpose Read Codes

Code Function

000 Reads the maintenance register during power up
and determines the options selected by the user.

00 I Reserved

003 Reserved

~«(~mw«~«(~«~mw((~(_G_PC_O_DE~}»=})~»)~)}}=)}~)}}=»~»}=» ___ GP_D_AT_A __ ~H~ ______________ ~@~«
""~----------~~~~---------------------\\\\\ 1////

\~\\\.101..\ __ ----'-'IIJ..LJV7 \ S\\ \ ______ ---II \-~ ________________ ~mn.uJ

\\\\\ l/t/l
((CONTINUE

----------------------------~)~) ~~~~ t u.~W~------

__________________________________ ~~~~~u.w'ln \\\\\
MA-12079

Figure 4-8 General-Purpose Read Transaction

4-9

4.2.5.5 General-Purpose Write - The general-purpose write transaction accesses non-user-addressable
module hardware. The MDAL address used for general-purpose writes is in the form 17 777 XXX, where
the "XXX" bits represent the general-purpose write code described in Table 4-4. The codes use MDAL
bits <07:00> to access the hardware.

All general-purpose write transactions (Figure 4-9) are stretched. The DCll1 writes the data when SCTL
is asserted during the stretched portion of the transaction. The transaction is stretched until CONT L is
asserted to end the transaction.

Table 4-4 General-Purpose Write Codes

Code Function

003 Reserved
014 Asserts bus reset signal
034 Indicates exit from console (OOT) mode
040 Reserved for future use
100 Acknowledges EVENT interrupt
I 14 Negates bus reset signal
140 Acknowledges power fail
220 Microdiagnostic test I passed
224 Microdiagnostic test 2 passed
230 Microdiagnostic test 3 passed
234 Indicates entrance into console (OOT) mode

DAL ((((((((((((({(({((({ G P CODE }}}}}'flll1lIIIIIIIf((((GP DATA OUT ~ :.,.....-; -----_ })} }})

ALE \\\\\ um \\~---------------

BUFCTL --------------------------------------~\(~/----------------------

SCTL \ \\\"'-\ ---->,',\\-______ -'-'a~1O

CaNT
\ \ CONTINUE ----------------\ \---"'\\m'I\\\ t /rrnm/rr----

MR-12080

Figur~4-9 General-Purpose Write Transaction

4.2.5.6 lACK - The read interrupt vector transaction acknowledges an interrupt request received on one
of the IRQ<03:00> inputs by reading a device interrupt vector. All interrupt vector transactions (Figure
4-10) are stretched. The device interrupt vector is latched by the DCll1 when the DV L input is asserted.

4.3 ST A TE SEQUENCER
The state sequencer (Figure 4-11) controls the routing of address and data information on the KDlII-A
module and the LSI-II bus handshaking signals. The module data path buses consist of the A-bus, B-bus
and the MDAL bus. The MDAL bus is bidirectional; it interfaces with the A-bus by the input control logic
and the B-bus by the output control logic. These data paths allow the DCll1 to transmit addressing and
data information on the B-bus to the LSI-II bus, and receive read data on the A-bus from the LSI-II bus.
The A-bus and B-bus are also connected to the DMA register, which allows DMA addresses to connect to
the B-bus.

4-10

L }}}}}}}})}})}}}}}})}}»}}} DEVICE VECTOR ~ It-~ _______ ...I.l«.l.,U{{{

INTERRUPT LEVErrLrrr-______ -i\ 'r'j ___________ _

----~~~m um
DAL ((((«ffi((((((({((((

ALE

IlJu \\\\\ i I) ~ SYSTEM ABORT STATUS

\SSS~ [Ull ~S~ '\ mn
I

BUFCTL

\SS\\ \ \ [{fI}
I \

CONTINUE
I ~m + uf[J

SCTL

CO NT

DV
\ \ II(U \~t

MR-120S1

Figure 4-10 Interrupt Acknowledge Transaction

AIO<O>H
AIO<l>H
AIO<2>H DRCP H

AIO<3>H OBUS OE L

MBS<O>H TWTBT H

MBS<l>H TDIN H

ABORT L TDOUT H

ALE L TIAK H

SCTL H TDMG H

RX DOUT H TSYNC L
RDOUT H FPA OP L GP DATA OE L

FPA ROY H LOAD DMA LATCH H
FPA FPE L

DMA REG OE L
FDA STL L

ONT FRM RPLY H SEL<O>H
RRPLY H SAS H STATE SEL<l>H

FLOVFL H SEQUENCER LONGCYCLE H
AO H UPDATE L

CHECK H

TAG CS L
TDMG H DATA CS BO L

DATA CS B1 L
RDMR2 H
MINIT L

RAM WE L

DV L
CONT L

END DMA H
RLE L

UPA H RLOE L
FPA ACK L

CLK PO H ILOE L
CLK IN

TIME DELAY

MR-12091

Figure 4-11 State Sequencer

4-11

The steady or quiescent state of the sequencer sets up the module data paths for high-speed cache memory
read operation. When a transaction is stretched, the state sequencer leaves the steady state to control the
module functions and the LSI-II bus. This allows the module to perform memory read/write, interrupt
vector reads, board register read/write, floating-point accelerator memory I/O, general purpose I/O, or
DMA arbitration. A stretched transaction is initiated when SCTL L is asserted. This starts the state
sequencer's clock and, if necessary, generates the LSI-II bus signal BSYNC L. The CLK H output drives
the external delay line to generate two delayed clock inputs of 40 ns and 60 ns. These are used to
determine the cycle time of the sequencer and provide short periods of 80 ns or long periods of 120 ns. The
state sequencer decodes the AIO inputs to identify the type of transaction and the BSI H, BSO H inputs to
classify the address. The state sequencer provides control signals to the functional areas of the module to
support the transaction being performed.

4.3.t DCJtt
The state sequencer informs the DCl II when valid data is on the MDAL bus by asserting DV L. It also
asserts the CONT L input to the DCll1 when the transaction is completed. It receives the ABORT Land
ALE L inputs from the DCl II.

4.3.2 LSI-tt Bus Signals
The state sequencer provides the handshaking control signals when the module is transmitting or receiving
data via the LSI-II bus. These signals are TWTBT H, TDIN H, TDOUT H, TIAK H, TDMG Hand
TSYNC. The use of these signals and the LSI-II bus protocol are described in Chapter 5.

4.3.3 LSI-ll Bus Receivers
The LSI-II bus data is latched into the bus receivers when RLE L is asserted and this data is driven onto
the A-bus when RLOE L is asserted.

4.3.4 LSI-tt Bus Transmitters
The LSI-II bus data is latched into the bus transmitters from the B-bus when the DRCP H signal is
asserted and driven onto the LSI-II bus when the Q-BUS OE L signal is asserted.

4.3.5 Maintenance Register
The maintenance register data is placed on the A-bus when GP DATA OE L signal is asserted.

4.3.6 DMA Register
The DMA register receives an address from the LSI-II bus via the A-bus and latches it into the register
when LOAD DMA LATCH H is asserted. The address is driven onto the B-bus to check it against the
addresses in the cache memory when DMA REG OE L is asserted.

4.3.7 Cache Data Path
The cache data path provides the SAS H, FLOVFL Hand A<O> H inputs to the state sequencer and
receives the SEL <01 :00> H, LONGCYCLE H, UPDATE L and CHECK H from the state sequencer.
The special address status (SAS H) is asserted whenever the maintenance or LTC registers are addressed.
The A<OO> H input represents the status of address bit zero. The flush counter overflow status (FLOVFL
H) input is asserted when the cache memory is being flushed. The LONGCYCLE H output is asserted
each time a location is flushed and increments the address stored in the flush counter to the next location.
The SEL<O 1:00> H provide the select output code used to drive the contents of a register selected in the
cache data path onto the B-bus. The select codes are described in Table 4-5. The UPDATE Land
CHECK H signals are used by the cache data path to control the tag parity function.

4-12

SEL
I 0

o 0

o

o

Table 4-5 Select Codes

Selections

The cache data path DAL outputs are tristated.

The contents of the address register is driven on the DAL outputs.

The status of the memory system error register is driven on the DAL outputs, except when the LTC
register is specifically addressed.

The current address/or contents of the flush counter is driven on the DAL outputs.

4.3.8 Cache Memory
The cache memory asserts the COMP L input when an address scores a cache memory miss. The memory
read/write functions are controlled by the TAG CS L, DATA CS BI-BO L and the RAM WE L outputs.
The tag chip select (TAG CS L) signal is asserted to select the II-bit TAG memory. The high byte data
chip select (DATA CSB 1 H) and the low byte data chip select (DATA CSBO H) signals are asserted to
select words or bytes stored in the cache memory. The RAM write enable signal (RAMWE L) is asserted
to write data, or negated to read data into the selected memory.

4.3.9 Floating-Point Accelerator
The floating-point accelerator (FPA) socket provides the FPA RDY H, FPA STL L, FPA OP Land FPA
FPE L inputs and receives the FPA ACK Land DV L outputs. The FPA RDY H input is asserted when
the FPA is ready to proceed. The FPA STL L input is asserted when the FPA wishes to stall the DClII.
The FPA FPE L is asserted to exit the stall condition. The FPA OP L is asserted when the FPA is writing
data on the A-bus. The state sequencer enables the FPA option by asserting the FPA ACK L output. The
FPA latches data from the DCl II when the state sequencer asserts DV L.

4.3.10 Bus Traffic
The on-board buses transfer the addresses and the read/write data to and from the DClI 1. They also
provide communications between the on-board functions and the system I/O. An overview of the bus
traffic flow is described below.

4.3.10.1 Address Busing - The DClII uses the B-bus to address cache memory, main memory, and the
I/O devices. The address flow pattern is shown in Figure 4-12.

4.3.10.2 Read Data - The DClII uses the A-bus to read data from the FPA, cache memory, mainte
nance register, main memory, and the I/O devices. The read pattern is shown in Figure 4-13.

4.3.10.3 Write Data - The DClII uses the A-bus and B-bus to write data to the FPA, cache memory,
status LEDs, main memory, and the I/O devices. The write data pattern is shown· in Figure 4-14.

4-13

) ~ "\ A BUS B BUS STATUS
V

DMA - '"
.,) lEOS

RSYNC H REGISTER GP WRITE l
.)

DMA REG OE l
ALE H V OUTPUT

CONTROL ~~ - "-
ILOE L

BUFCTll B BUS) B BUS

t ..! .. ~
-V

~BUS V/
MISS l

~ ~ "\ COMP l
CACHE

k;-
A BUS

.,) ~TAGBU0
MEMORY

INPUT

MDALB~ !!bLL...,
BUS

UPA H CONTROL CACHE RECEIVERS
DATA PATH PARITY l RlOE l_ BUF CTll

MEVNT l OBUS OE L
BUS

"'"'
SYSTEM INPUT I-- - ,--. ABORT l DRCP H TRANSMITTERS

I -
"'"' r GP WRITE l STRB l

MISS l
MOAL BUS CACHE CONTROL

GP DATA OE l INITIALIZE/

~
PARITY l

DCJ11-AA PROCESSOR CONTROL l:J ALE H MAINTENANCE MEVNT l MICROPROCESSOR RlE l REGISTER ALE H
RlOE l

DV l BUFCTll
BUS OE l

CONT l STRB l ------.f - - - - , lOAD DMA H
DMA REG OE l

DVl .. ' 1 FPA STATUS STATE GP DATA OE l
SEOUENCER SYSTEM

ABORT l .' ~~~~-iING , COMP l
INTERFACE IlOE l

FPA ACK l .. I ACCELERATOR 1 ABORT l DV L
I (OPTIONAL) 1 CONT l

A BUS 1 FPA ACK l
DRCP H L ____ J

A BUS

MA-12154

Figure 4-\2 Address Traffic Pattern

~ '" '" A BUS B BUS STATUS

~
./ -V LEOS

DMA
RSYNC H REGISTER GP WRITE l

DMA REG DE l /
ALE H V OUTPUT

.j:>.
I

CONTROL
"- "'\ IlOE l

BUFCTl l B BUS) B BUS / ¢.,J) MISS l - -
~ ~

"- COMP l
CACHE

~
A BUS

vi ~TAG BUt)

MEMORY
INPUT -BUS CONTROL MDAlB~ RlE l

t
UPA H CACHE V RECEIVERS

RLOE l BUF CTl l , DATA PATH PARITY l

MEVNT l OBUS DE l
BUS

SYSTEM INPUT ABORT l DRCP H TRANSMITIERS
~ ,-- , - GP WRITE l STRB l

MISS l
MDAl BUS r CACHE CONTROL

GP DATA DE l _I INITIALIZE!

~
PARITY l

~El ~I MAINTENANCE
DCJll-AA PROCESSOR CONTROL

ALE H MEVNT l MICROPROCESSOR -I REGISTER ALE H
RlOE l

Vl

DV l BUFCTL l BUS DE l
CONT l STRB l L.,r----, LOAD DMA H

t
DMA REG DE l

DVl .1 1 FPA STATUS STATE GP DATA DE l

ABORT l 1 FLOATING 1 COMP l
SEQUENCER SYSTEM

INTERFACE .. POINT IlOE l
FPA ACK l .1 ACCELERATOR 1 ABORT l DV l - 1 (OPTIONAL! 1 CONT l

A BUS J 1
FPA ACK l
DRCP H

L ____ J - A BUS

Figure 4-13 Read Data Busing

'" ~ - ...
A BUS B BUS) STATUS ,/ -/ V LEDS

DMA
RSYNC H REGISTER " GP WRITE L

ALE H -V DMA REG OE L
OUTPUT

ILOE L CONTROL - ~ - ~ BUFCTL L B BUS) B BUS

t ~J;
,/

MISS L - -
~ ~ ~

COMP L
CACHE

K=-
A BUS ./ ~TAG BUs)

MEMORY
INPUT

"-
~

BUS
UPA H CONTROL

MDALB-V
CACHE 'I V RECEIVERS ,

~ BUF CTL L DATA PATH PARITY L

MEVNT L aBUS OE L
BUS

.J::>.
I

SYSTEM INPU1 ABORT L t DRCP H TRANSMITIERS
I-- - ~

r GP WRITE L STRB L
MISS L

MDAL BUS CACHE CONTROL
GP DATA OE L INITIALIZEI ~ PARITY L

DCJll-AA PROCESSOR CONTROL ~EL ALE H MAINTENANCE r---v MEVNT L MICROPROCESSOR
REGISTER ALE H

RLOE L

0\

DV L BUFCTL L BUS OE L
CO NT L STRB L W----, LOAD DMA H

DMA REG OE L
DVL .1 I FPA STATUS STATE GP DATA OE L , ABORT L .1 ~~~~:;:ING 1 COMP L

SEQUENCER SYSTEM
INTERFACE ILOE L

FPA ACK L .' ACCELERATOR' ABORT L DV L - I (OPTIONAL) I CONT L

A BUS , FPA ACK L
DRCP H

L ____ J - A BUS

Figure 4-14 Write Data Busing

4.4 CACHE DATA PATH
The cache data path is a multifunction gate array (Figure 4-15) that controls the 8 Kbyte direct map cache
memory. It generates B-bus bits <21: 13> as TAG data for the cache memory during cache write
transaction. Parity for the TAG data is generated, predicted, and checked by the gate array. The LTC,
memory system error, and address registers are contained within the array. It also contains the flush
address counter used to clear or flush the cache memory.

4.4.1 DCJ 11 Input Signals
The cache data path decodes the Ala input to identify the transaction and the BS<O 1 :00> H inputs to
identify the type of address. The SEL<OI :00> H inputs selects the contents of an internal register or
counter as described in Table 4-6.

The cache data path receives the ALE L, STRB Land SCTL L signals to synchronize and control the
cache operation. The assertion of ALE L latches the BS<01:00> H data and gates the GP WRITE L
output. The assertion of STRB L latches the address data into the address register. The negation of STRB
L clears the parity error latch and enables the GP WRITE L output. The assertion of SCTL L enables the
ABORT L output and latches the write data. The negation of SCTL L clears the flush counter and
disables the ABORT L output.

SEL
1 0

o 0
o I
I 0
I I

4.4.2 State Sequencer Inputs

Table 4-6 Output Select Codes

Selections

The DAL output are tristated
The contents of the address register
Either memory system error or BEVNT register
Flush counter

The cache data path receives CHECK H, UPDATE Land LONGCYCLE H signals to control the cache
memory. The CHECK H and UPDATE L inputs control the generation, checking and prediction of the
TAG parity as described in Table 4-7. The cache data path predicts the parity of address bits <21: 13> in
the same way it calculates the TAG parity bit. The predicted parity is driven as the PREDICT PAR H
output signal and compared with the stored TAG parity bit by the data parity logic to determine a hit or
miss. The TAG parity bit is calculated for bits <21: 13> and stored with the TAG data. The parity is
checked when the predicted parity and the stored parity bits are compared within the cache data path to
enable the PERR L output when an error is detected. The LONGCYCLE H input is asserted to increment
the address stored in the flush counter.

Update L

Negated
Negated
Asserted
Asserted

Table 4-7 TAG Parity

Check H

Negated
Asserted
Negated
Asserted

4-17

Function

Predict TAG parity
Check TAG parity
Generate TAG parity
Undefined

BS<O>H

BS<1>H -I ~ B BUS <21 :0>

AIO<3>H

AIO<2>H
TAG BUS <8:0>

AIO<1>H

TAG V 81T H
SEL <O>H

TAG PAR H
SEL <1>H

ALE L
FLOVF L

STRB L A<O>

SCTL H
WWRONG PAR H

CHECK H PREDICT PAR H

UPA H
UPDATE L CACHE DATA ABORT L

LONG CYCLE H
PATH ARRAY PERR L

A<16>H

~ MEMPERR H MEM PERR L
I

A<17>H - GP WRITE L
00

TDIN L TBS7 H

SAS H
BO PAR ERR H

B1 PAR ERR H

+5.0V I I "NHN"
UPA H

+5V
TDIN H

TIMEOUT H
TDOUT H

M EVNT L

TIMEOUT L
CLR EVNT L

TINIT L

MR-12092

Figure 4-15 Cache Control Logic

4.4.3 System Memory Parity
The system memory parity data is transmitted to the module via A-bus bits <17,16>. These inputs are
monitored and when asserted, a parity error is detected. The MEM PERR H input is asserted and enable
either on ABORT L or PERR L output.

4.4.4 Cache Memory Parity
The cache memory parity error inputs BO PAR ERR Hand BI PAR ERR H are asserted when a parity
error is detected in the cache data memory. The low byte is monitored by BO PAR ERR H and sets bit 06
of the MSER. The high byte is monitored by BI PAR ERR H and sets bit 07 of the MSER. Either input
can enable the PERR L or ABORT L output.

4.4.5 Timeout
The TIMEOUT H input is enabled when the LSI-II bus fails to assert the RRPL Y H input within 10
microseconds after the TDIN H or TDOUT H signal was asserted by the module. When TIMEOUT is
asserted, it causes the ABORT L output to be asserted and aborts the transaction.

4.4.6 Cache Control Register
The cache control register in the cache data path is shadow copied when the CCR register in the DCll1 is
written and its contents are used to control the cache memory system. The cache data path logic only
interprets bits 10, 08, 07, 06, 0 I, and 00. The write wrong parity logic is enabled by bit 10 being set (1)
and it inverts the current TAG parity bit. This will force a TAG parity error the next time that location is
accessed. When bit 08 is set (1), the FLOVFL H output is asserted to flush the cache and the flush counter
is enabled. The bit is reset when the flush counter overflows and SCTL L is negated. The parity error
abort, bit 07, is used with the disable cache parity interrupt, bit 00 to determine the action taken in
response to parity errors. The conditions for bits 07 and 00 are summarized in Table 4-8. The write wrong
data parity logic is enabled when bit 06 is set (1) and it inverts both of the data parity bits. This changes
the high byte even parity to odd and the low byte odd parity to even. This causes a data parity error the
next time that location is accessed. The cache diagnostic mode is enabled when bit 01 is set (1) and the
cache is allocated on all write transactions, regardless of ABORT L, except when bypassing or forcing a
cache miss.

Table 4-8 Parity Error Action

Bit 7

I
I
o
o

Bit 0

o
I
o
I

4.4.7 Memory System Error Register

Action

Abort through vector 114, update cache
Abort through vector I 14, update cache
Interrupt through vector I 14, update cache
Update cache only

The memory system error register is a read-only register that uses bits 15, 07, 06, and 05 to store parity
error data for the memory system. The register is cleared by any write into it. The parity abort, bit 15, is
set whenever a parity abort occurs. A parity abort is defined as any parity error or memory error occurring
during a demand read with the cache control register bit 07 set. When this occurs, bits 07, 06, and 05 are
individually set to identify the type of parity error. Bit 07 is set for a high byte data parity error, bit 06 is
set for a low byte parity error, and bit 05 is set for a tag parity error. However, if the cache control register
bit 07 is not set, then any type of parity error in the cache sets all three bits. The register is read when the
SEL <0 I, 00> bits are set to I and 0, respectively, and the LTC register address is not selected.

4-19

4.4.8 LTC Register
The LTC register is a read/write register that allows software to set bit 06 and enable the EVNT EN
output. The EVNT EN H signal allows the bus BEVNT L input to be routed to the microprocessor as an
external event interrupt. The BEVNT L input can be disabled by the user inserting the W9 jumper. When
enabled, the flip-flop is clocked by REVNT H and the output is gated with EVNT EN H to enable the
MEVNT L signal. The flip-flop is reset by either CLR EVNT L or TINIT L.

4.4.9 Flush Counter
The contents of the cache memory is flushed or cleared during power-up and whenever bit 08 of the cache
control register is set. This requires each address location in the cache to be addressed and cleared. The
process is initiated by the cache control chip asserting FLOVFL H to the state sequencer and zeroing the
flush counter. The contents of the flush counter is used to address the cache memory via the B-bus bits
<12:01>. Every time an address is cleared, the counter is incremented to the next address by the
LONGCYCLE H input from the state sequencer. Flushing the cache memory takes up to 1.3 microsec
onds and during this time, no DMA or processor activity is performed. The counter contains 12 bits and
when the cache memory is completely flushed, the counter overflows. This causes the cache control chip to
negate the FLOVFL H signal to the state sequencer, indicating the cache flush operation is complete.

4.4.10 Address Register
The address register latches the address received via the B-bus during the early portion of the transaction.
The A<OO> output is driven directly from address bit 00. During the later portion of the transaction, the
SEL <01, 00> H code enables the address to be driven via the B-bus to the main memory and the cache
memory. All 22 bits are used to address the main memory and bits <12:01> are used to address the cache
memory. Register bits <21: 13> are placed on the TAG bus as data for storage in the cache memory when
the UPDATE L input is asserted.

4.4.11 CDP Outputs
The cache data path transmits and receives address and data information via the B-bus <21 :00> and the
TAG bus <10:00> including the TAG V bit and TAG parity bit. The FLOVFL H output is asserted while
the cache memory is being flushed and negated when flushing cycle is completed. The A<OO> H output is
asserted whenever the B-bus bit 00 is set (I). The WR WRONG PAR H output is asserted whenever bit
06 of the CCR is set and writes the wrong parity into the cache memory. The PREDICT PAR H output is
the predicted TAG parity of B-bus bits <21: 13> and it is compared with the stored TAG parity to
determine the hit/miss results. The PERR L and ABORT L outputs are generated by the parity logic and
interpreted by the DClii as described in Table 4-9. The GP WRITE L output is asserted when the AIO
coded input specifies a G P write transaction. The output is used to externally latch the G P data. The TBS7
H output is asserted when the BS <01, 00> H code specifies an external I/O address during the early
portion of the transaction and during the later portion of the transaction, or if the transaction is bypassing
the cache or forcing a cache miss. The SAS H output is asserted whenever the maintenance register or the
LTC register is being addressed. The EVNT EN H output is described in Paragraph 4.4.8.

Abort

Negated
Negated
Asserted
Asserted

Table 4-9 Abort and Parity Response

Parity

Negated
Asserted
Asserted
Negated

4-20

DCJll Action

No interrupt or abort
Interrupt; vector to location I 14
Abort; vector to location I 14
Abort; vector to location 4

4.5 CACHE MEMORY
The cache memory (Figure 4-16) consist~ of RAM memory for data, TAG and parity, the data parity
logic, and the hit/miss logic. The cache memory is used to temporarily store data received from the system
memory that the processor is currently using. This allows the DC] II to quickly access on-board data
without performing external bus transactions. The physical address is divided into three sections as shown
in Figure 4-17. The byte bit is used to access either high or low bytes of data. Th(f index bits are used as the
address of the cache memory. The label bits are stored as TAG data for valid cache entries. Each cache
entry is organized as shown in Figure 4-18. The high and low bytes of data are stored as data. The low byte
parity (PO) is stored as even parity and the high byte parity (PI) is stored as odd parity. The label bits with
a tag valid bit (V) and the tag parity bit (P2), stored as even parity are stored as TAG data. The byte
parity is calculated by the data parity logic and the hit/miss logic interprets the physical address as a valid
cache address.

The cache memory is controlled by the state sequencer signals DATA CS BO, BIL, TAG CS L, UPDATE
L, and the write enable signal RAM WE L. The WR WRONG PAR H, PREDICT PAR H signals and
the TAG data are controlled by the cache data path chip. The physical addresses are received via the B
bus, the data is read/written via the A-bus and the TAG data is read/written via the TAG bus.

r

~ __________ ~~, CACHE I A~----------------~~~~--------------~J
B BUS<12'1 > _) DATA K :.... A BUS <15:0>

r--~';";""'-·--..v 4KX16 I 'I v
BO, B1 DATA CS L,.. ENM

RAM WE L '" WR

RAM WE L _ WREN A BUS<15:0>:::>

BO, B1 DATA CS L ENO BO, B1 DATA CS L - - --
'-______ , ... ' PARITY W WRONG PAR H

'\ B BUS<21:1 > __ / DATA UP DATE L

DATA
PARITY
LOGIC

BO, B1 PAR OK L

VrL-_4K_X_1_j-~BO:'~B~1~PA~R~OU:T~H~1-__ ~r.
BO, B1 PAR IN H _J

'-----------B-B-US-<-21-:1-3->-------~~
V

PREDICT PAR H

TAGVBITH

TAG PAR H

BO, B1 PAR ERR H

MISS L

HIT/MISS COMP L
LOGIC

TAG DATA
4KX12

TAG CS L - - -

~

r-, Ir--__ ~~T-A_G=-B:..;U~S=<=8=:0=>===~~.:,)',
.... ENM

RAM WE L '" WR -
MA 12093

Figure 4-16 Cache Memory

4-21

21 13 12 01 00

LABEL INDEX ~I
MR-l1057

Figure 4-17 Cache Memory Physical Address

08 00

TAG

15 08 07 00

1~-P-1~--------------B1------------~1 I~_PO~I _______________ BO ____________ ~
MR-11058

Figure 4-18 Cache Data

4.5.1 Cache Data
The cache data RAM is 8 Kbytes of read/write memory that is addressed by the index field, B-bus bits
<12:01>. These bits will always access the data stored in an address location, but the data is not validated
until the label field of the address is verified as the TAG data.

The read/write operations are controlled by the state sequencer. The low byte of cache data is read when
the DATA CS BO L input is asserted and is written when both the DATA CS BO L and RAM WE L
inputs are asserted. The high byte of cache data is read when the DATA CS Bl L input is asserted and is
written when both the DATA CS BI L and RAM WE L inputs are asserted. The data is routed via the A
bus to the DClII.

4.5.2 Data Parity Logic
The data parity logic generates parity bits for the high and low bytes of data. The same logic is used to
check the parity bits when data is read from the cache memory. The high byte stores odd parity and the
low byte stores even parity. The parity logic is shown in Figure 4-19.

The parity logic uses the selected byte data and the UPDATE L signal from the state sequencer to
generate data parity. The UPDATE L input enables the parity generator. The parity generator determines
the number of high inputs and generates a parity bit for the high and low bytes. The low byte stores the
status of the parity bit as BO PAR IN H, and the high byte stores the status of the parity bit as Bl PAR
IN H when the data is written into the cache memory. The cache data path can invalidate the data entry
by enabling the WR WRONG PAR H input. This signal uses the exclusive-OR gate to invert the
generated parity bit and store the error in the parity RAM.

The parity bit of the data is checked when the cache memory is accessed. The data is received by the
parity generator and the UPDATE L input is not asserted at this time. The parity data is accessed, the low
byte parity bit is received as BO PAR OUT H, and the high byte parity bit is received as Bl PAR OUT H.
The NAND gate is enabled and functions as an inverter for the BO, BI PAR OUT H signals. The DATA
CS BO, BI L inputs, check the even output for the low byte (BO) and the odd output for the high byte (Bl)
to set the PAR OK L outputs low.

4-22

A BUS <7:0>

BO PAR O::.UT:...:H~..r-""'"

UPDATE L

B1 PAR..,:O..,:U..:..T.;.;.H_L _--"

A BUS <15:8>

4.5.3 Parity Data

BO PAR OR L

EVEN~----~

BO PAR ERR H
ODD~-r--------------

LOW BYTE
PARITY
GENERATOR

ODD 1-------/

BO PAR IN H

B1 PAR OK L

B1 PAR ERR H
EVEN I-----,r--------------

HIGH BYTE
PARITY
GENERATOR

Figure 4-19 Cache Data Parity Logic

B1 PAR IN H

MR-l0264

The parity RAM has 8 Kbytes of read/write RAM memory that stores the high and low byte data parity
bit. The low byte parity bit is read when DATA CS BO L input is asserted and is written when both the
DA T A CS BO L and RAM WE L are asserted. The high byte parity bit is read when DATA CS BI L
input is asserted and is written when both the DATA CS BI L and RAM WE L are asserted. The data
parity bits are generated and used by the data parity logic.

4.5.4 TAG RAM
The TAG RAM is a 4 K X 12 read/write memory that stores 11 bits of data and one bit that is not used.
The data consists of the 9-bit label field (address bits <21: 13», the TAG valid bit (VBIT), and the TAG
parity bit (TAG PAR). The data is received from the cache data path. The data is read when TAG CS
input is asserted and is written when both TAG CS and RAM WE inputs are asserted. These signals are
controlled by the state sequencer.

4.5.5 Hit/Miss Logic
The hit/miss logic (Figure 4-20) compares the TAG stored data and bits <21:13> of the current address
on the B-bus for a match condition. The TAG valid bit is also checked. When a match occurs, the current
address is recognized as a valid cache entry and sets the comparator outputs low. If they do not match, the
comparator outputs are set high. The TAG PAR H bit is checked with the PREDICT PAR H bit by the
exclusive-OR gate and the output is low when a match occurs. The MISS Land COMP L gates are
identical and monitor the two comparator outputs, the two data PAR OK L bits, and the output of the
TAG PAR H gate. When all five inputs are low, the MISS L and CaMP L outputs are high to indicate a
hit. The MISS L signal goes to the DCJII and the CaMP L signal goes to the state sequencer to indicate
that the current address is stored in the cache memory. If MISS L and CaMP L outputs are low,
indicating one of the inputs is invalid, then the current address is not a valid cache entry and the data is
retrieved from the system memory.

4-23

TAG BUS <B:O>

B BUS <21 :13>

TAG VBIT H

UPA H

4.6 BUS RECEIVERS

COMPARATORS
AANO B

EN

A OUTPUT

B OUTPUT

BOPAROKL---r----~

B1PAROKL~~~--~

Figure 4-20 Cache HIT/MISS Logic

MISS L

COMP L

MA-l0265

The module receives addresses and data from the LSI-II bus via six 2908 bus transceivers as shown in
Figure 4-21. The state sequencer provides the control signals RLE Land RLOE L that transfer LSI-II
bus data to the module A-bus. The data is latched when RLE L is asserted. The output drivers are then
enabled by RLOE L and transmits the LSI bus data to the module A-bus.

The LSI-II bus control signals are transmitted to the module by the input transceivers. These signals are
used by the module to control the LSI-II bus interface.

RLE L

BUS
TRANSCEIVER

--"R;.::;LO,;:;;.;E:o.....::.tL ~ RXEN

BIRO<4:>t,

BIRO<5>L

BIRO<6>L

BIRO<7>L

BHALT L

BOCOK H

BPOK H BUS INPUT
BSACK L TRANSCEIVER

BEVNT L

BOMR L

BOOUT L

BSYNC L

BRPLY L

UP A H ,.. - - --

pEND

ABUS<21:0>

RIR04 H

RIR05 H

RIR06 H

RIR07 H

RHALT H

MINIT H

RPOK L

RSACK H

REVNT H

ROMR H

ROOUT H

RSYNC H

RRPLY H

MA-12094

Figure 4-21 KDJ 1 I-A Bus Receivers

4-24

4.7 BUS TRANSMITTERS
The module transmits addresses and data to the LSI-II bus via six 2908 bus transceivers as shown in
Figure 4-22. The address and data inputs are controlled by the LATCH H input. The address is clocked
into the transceiver when the STRB L input frQm the DClli is asserted. Write data is checked into the
transceiver when DRCP L (normally low) is pulsed from high to low. The DRCP L input is generated by
the state sequencer. The state sequencer enables the QBUS OE L input to transmit the data over the LSI-
11 bus. When TBS7 H (Bank Select) signal is asserted to indicate the reference is to the I/O page, bits
< 19: 16> are driven as zeros. This allows the KDJ II-A module to work in a 64 Kbyte system with the
older MSV 11-0 memories.

The LSI bus control signals are transmitted by the output transceivers. The state sequencer provides most
of the handshake protocol with the LSI bus. The WAKEUP H signal is enabled by removing the W9
jumper to generate the BDCOK H initialization pulse at power-up.

BUS
TRANSCEIVER I---~

B BUS <21 :0> BDAL <21:0>

TBS7 H BBS7 L

TWTBT H BWTBT L

Q BUS OE L
EN DRCP H

STRB L
)Q. _____:LA~TC=_H_H _ _+I TXCLK

TBS7 H ~~ ____ _

QBUSOEL~

BUS ENABLE
FOR BITS
16,17,18,19

+5V
TDOUT H

BUS OUTPUT BDOUT L

W8 TDIN H TRANSCEIVER BDIN L

TIAK H BIAK L
M17 M18 TDMG H BDMGO L

+5V
TINIT H BINIT L

D5 WAKE UP H BDCOK H

TSYNC L BSYNC L

ENO

MR-12095

Figure 4-22 KDJII-A Bus Transmitters

4-25

4.8 OUTPUT CONTROL
The output control logic (Figure 4-23) has 22 D-type latch circuits with output drivers that transfer the
address or data on the MDAL bus to the B-bus. The ILOE L signal from the state sequencer enables the
drivers to the B-bus. A decoder circuit uses the DCl 11 outputs, BUFCTL L and ALE L, to control the
latches. When BUFCTL L and ALE L are negated, the output latches are opened. When either ALE L or
BUFCTL L are asserted, the latches are closed.

MBUFCTl l
2A

2B

=
DECODER

ALE H
--~:JIEN

MDAl BUS <21:0>

Il LATCH l

22
TRANSPARENT
D TYPE
LATCHES

>----<lEN

IlOE l
OE

Figure 4-23 DCl ll-A Output Control

4.9 INPUT CONTROL

B BUS <21:0>

MA-10268

The input control logic (Figure 4-24) uses 16 D-type latch circuits to transfer data from the A-bus to the
MDAL bus. The latcbes are used as buffers (latches are always opened) and are enabled when the
BUFCTL L input is asserted.

'" 1'1.
A BUS <15:0>) MDAl BUS <15:0>

II" 16 II"
TRANSPARENT
D TYPE
LATCHES

UPA H .ro ---------- LATCH

BUFCTl l .ro
OE -

MA-l0269

Figure 4-24 DCl ll-A Input Control

4-26

4.10 DMA MONITOR REGISTER
The KDJ II-A does not perform direct DMA transfers, but it does monitor DMA transfers when the
system memory is being updated via block DMA. This ensures that the data stored in the cache memory is
not being changed in the system memory. During a DMA transfer, the initial address of the DMA
transaction is transferred over the A-bus. It is clocked into the DMA monitor register when RSYNC H is
asserted. For DMA, DA TO, DA TIO and DA TOB bus cycles, this register is used to address the cache
memory in order to determine if the referenced location is in the cache memory. If it is, the cache data is
invalidated. Successive block mode DMA write cycles (DA TO B) are also monitored. Address bits
<04:0 I > of the initial DMA address are clocked into the DMA monitor register when RSYNC H is
asserted. These bits are incremented to the next address when RDOUT H is negated. Therefore, an entire
16-word aligned block mode transfer can be monitored. The four-bit incrementor with bits 00 and 05 are
designed into the FPLA shown in Figure 4-25. The remaining 16 bits are controlled by the D-type flip
flops. The DMA REG OE L signal is controlled by the state sequencer and the INC/LOAD DMA ADR
H input is controlled by the DMA LSI-II bus signals BSYNC Land BDOUT L.

4.11 INITIALIZATION/MAINTENANCE REGISTER
The initialization/maintenance register allows the user to select the options available as described in
Chapter 2. This register (Figure 4-26) is read by the DCJ II during the power-up sequence and can be read
by software accessing location 17 777 750 to determine which options were selected. The register uses
jumpers WI to W7 to determine the input state. The W3, W5, and W7 jumpers read as "I" when the
jumper is removed; WI, W2, W4 and W6 jumpers read as "I" when the jumper is inserted. The UPA
input is pulled up to +5 Vdc representing a "1" for bit 04 and a "0" for bits <11:09>. The grounded
inputs represent a "0" for bits <07:05>. The FPA OP L input will be a "1" if a FPA is mounted on the
module and the PWR OK H input is a "I" when the LSI-II bus signal is asserted. The BDCOK H signal
indicates the ac power is set to its proper value.

" A BUS <21:1> A BUS <5:1> FPLA TYPE B BUS <5:1 > B BUS <21:1>

~
RSYNC H

RDOUT H INC/lOAD

J DMA ADR H ---------
E59 - ClK

r-<l ENO

16 D TYPE

~ FF
A BUS <21:6> B BUS <21:6>

-V

RSYNC H - ~ \... ,..
LOAD DMA F -/" LATCH H - -

RSYNC H ----------
ClK

DMA REG OE l
.{: ENO

MR-l0270

Figure 4-25 DMA Monitor Register

4-27

The low byte of the register is implemented by using eight D-type latches. The data is clocked by the
assertion of ALE L from the DC] I I. The high byte of the register is implemented by using eight buffer
drivers. The entire register is read onto the A-bus by GP DATA OE L input from the state sequencer.

RPOK l ,..,J PWR OK H

+5V A<O> H

~~ DTYPE A<1> H M2 W7 PUJ<O> H LATCH
~ - ~

+5V A<2> H

M4 ~~ A<3> H
W3 PUJ<1> H - ~

+5V A<4> H

M14 ~~ A<5> H
W5 HlT OPT H
-

-== UPA H A<6> H

A<7>H

-= -- - - ---
GP DATA OE l ." EN

ALE H
ClK

FPA OP l

UPA H A<8> H

DRIVER/
A<9> H BUFFER

A<10> H
+5V

M6 W6
-'"' ~~

A<11> H

BAJ<12> H
A<12> H

+5V

M8 W4 ~-;J
A<13> H

BAJ<13> H
A<14> H

+5V

M10 W2 ~~ BAJ<14> H

A<15> H

+5V

M13. W..2 ~~ BAJ<15> H

-'-

f-------
GP DATA OE l

.... EN

MR 12071

Figure 4·26 Initialization/Maintenance Register Logic

4-28

4.12 STATUS LEDs
The status LEOs logic (Figure 4-27) uses an addressable latch circuit for the LED display and a decoder
circuit to reset either EVENT or PWR FAIL. The DCJ1 I controls these functions by performing GP
writes on the B-bus.

The EVENT or PWR FAIL conditions are cleared by GP write codes 100 and 140. The decoder circuit
decodes B-bus bits 05 and 06 and is enabled by the GP WRITE L signal from the cache data path. When
both bits are set, the CLR PWR FAIL L output is enabled and when bit 06 is set and bit 05 negated, the
CLR EVENT L output is enabled.

The status LEOs are controlled by an addressable latch circuit. The circuit is reset by the MINIT L signal
generated at power-up. MINIT L latches all the outputs low, thereby turning on the three diagnostic LEOs
and turning off the ODT LED. It also enables the TINIT L output to initialize the module. During the
initialization period the DCl I I performs diagnostics, and upon the successful completion, it issues G P
write codes to turn off the LEOs. GP code 220 turns off the SLU LED, GP code 224 turns off the
MEMORY OK LED and GP code 230 turns off the SEQUENCING LED. After the initialization
period, the DCl I I enters its start up mode. If it enters ODT then GP write code 234 is issued and turns on
the ODT LED. The LED functions are described in Chapter 2.

B<6>H

B<5>H

DECODER

o

2 CLR EVNT L

3 CLR PWR FAIL L

GP WRITE L ---.---_UI EN

ADDRESSABLE 0
LATCH

1
B<2>H

2
B<3>H 2

3
B<4>H 4 D2

4

5

6
D4

7

B<7>H

EN

RESET

Figure 4-27 Status LEDs Logic

4-29

TINT H

TINT L +5V

CPU

D3 SLU

MEM

D1 ODT

MR-12D72

5.1 INTRODUCTION

CHAPTER 5
EXTENDED LSI-II BUS

The processor, memory and I/O devices communicate via signal lines that constitute the extended LSI-II
bus. The extended LSI-II bus contains 4 additional address lines (BDAL<21: 18» in addition to the 38
lines of the original LSI-II bus. The four additional address lines extend the 256 Kbyte physical address
space of the LSI-II bus to 4 megabytes. Addresses, 8-bit bytes or 16-bit data words, bus synchronization,
and control signals are sent along these 42 lines. Addresses may be either 16-, 18-, or 22-bits wide,
depending on the addressing capability of the processor installed in the system. The 16-bit data and the
first 16 address bits are time-multiplexed over the same 16 data/address lines. Two additional address bits
« 17: 16» and the memory parity bits are also time-multiplexed over two signal lines. The signal lines are
functionally divided as listed in Table 5-1. Refer to Chapter 2 for a list of the extended LSI-II bus signals.

The LSI-II bus lines may be considered transmission lines that are terminated in their characteristic
impedance (Zo) at both the near and far ends of the bus. The near end of the bus is defined as the first bus
interface slot in the backplane, the far end is the last bus interface slot.

Table 5-1 Summary of Signal Line Functions

Quantity Function Bus Signal Mnemonic

16 Data/address lines BDAL< 15:00>

2 Memory parity/address lines BDAL<17;16>

4 Address lines BDAL<21:18>

6 Address and data transfer BSYNC, BDIN, BDOUT,
control lines BWTBT, BBS7, BRPL Y

3 Direct memory access (DMA) BDMR, BDMG, BSACK
control lines

5 Interrupt control lines B1RQ4, BIRQ5, B1RQ6,
BIRQ7, B1AK

6 System control lines BPOK, BDCOK, BINIT,
BHAL T, BREF, BEVNT

5-1

Most LSI-II bus signals are bidirectional and use a terminating resistor network connected between +5 V
and ground to provide a negated (high) signal level. Devices may be connected to any point along the bus
to receive signals from the near or far end of the bus via high-impedance bus receivers, or to transmit
signals to the near or far end through gated open-collector bus drivers. A bus driver asserts a signal by
causing the line to go from a high level (approximately 3.4 V) to a low level (approximately 0.5 V).
Although bidirectional lines are electrically bidirectional, certain lines carry signals that are functionally
unidirectional. The functionally unidirectional lines carry signals that are required to travel in only one
direction. For example, when a device asserts a bus request signal (BIRQ), the signal always travels from
the requesting device to the processor and never in the reverse direction.

The interrupt acknowledge (BIAK) and direct memory access grant (BDMG) signals are physically
unidirectional signals that are wired to each LSI-II bus slot in a daisy-chain scheme. These signals are
generated by the processor in response to interrupt and direct memory access requests and are transmitted
to the bus via output signal pins. Each of the output signals (BIAKO or BDMGO) is received on a device
input pin (BIAKI or BDMGI) and conditionally retransmitted via a device output pin (BIAKO or
BDMGO). These signals are received from higher-priority devices and retransmitted to lower-priority
devices on the bus. DMA and I/O interrupt priorities are discussed in Pargaraphs 5.4 and 5.5.1.

Bus Master/Slave Relationship
Communication between devices on the bus is asynchronous. A master/slave relationship exists through
out each bus transaction. At any time, there is one device that has control of the bus. This controlling
device is termed the bus master. The master device controls the bus when communicating with another
device on the bus, termed the slave. The bus master (typically the KDJlI-A processor or a DMA device)
initiates a bus transaction. The slave device responds by acknowledging the transaction in progress and by
receiving data from, or transmitting data to, the bus master. The extended LSI-II bus control signals
transmitted or received by the bus master or bus slave device must complete the sequence according to the
protocol established for transferring address and data information. The processor controls bus arbitration
(i.e., it "decides" which device is to be bus master at any given time).

A typical example of a master/slave relationship has the processor, as master, fetching an instruction from
memory which is always a slave). Another example is a disk drive, as master, transferring data to memory,
again, as the slave. Any device except the processor can be master or slave depending on the circum
stances. Communication on the extended LSI-II bus is interlocked; therefore, for each control signal
issued by the master device, there must be a response from the slave in order to complete the transfer. It is
the master/slave signal protocol that makes the extended LSI-II bus asynchronous. The asynchronous
operation allows both fast and slow devices to use the bus and eliminates the need for synchronizing clock
pulses between the bus master and slave device.

Since bus cycle completion by the bus master requires response from the slave device, each bus master
must include a timeout error circuit that will abort the bus cycle if the slave device does not respond to the
bus transaction within 10 J-LS. The KDJ II-A has a bus timer that restarts the clock when no device
responds to BDIN L or BDOUT L within 10 J-LS. An immediate trap to location 48 occurs. The slowest
peripheral or memory device must respond in less than 10 J-LS to prevent a bus timeout error.

5-2

5.2 BUS SIGNAL NOMENCLATURE
Throughout the following protocol specifications, bus signals are referred to in several different ways.

I. In general discussions where timing, polarity, and physical location are unimportant, the base
signal name without any prefixes or suffixes is used. For example:

SYNC, WTBT, BS7, DAL<21:00> or the DAL lines

2. Most signals on the backplane etch are asserted low and referred to with a prefix character B,
and a suffix (space) L. For example:

BSYNC L, BWTBT L, BBS7 L, BDAL<21:00> L

BPOK Hand BDCOK H are asserted high.

3. Receivers and drivers are considered part of the bus. Signal inputs to drivers are referred to with
a prefix character T for transmit. For example:

TSYNC, TWTBT, TBS7, TDAL<21:00>

4. Signal outputs of receivers are referred to with the prefix character R for received. For
example:

RSYNC, RWTBT, RBS7, RDAL<21:00>

Whenever timing is important, the designations in items 3 and 4 above are used to reference timing to a
receiver output or driver input. For example, after receipt of the negation of RDIN, the slave negates its
TRPL Y (0 ns minimum, 8000 ns maximum). It must maintain data valid on its TDAL lines until 0 ns
(minimum) after the negation of RDIN, and must negate its TDAL lines 100 ns (maximum) after the
negation of its TRPL Y.

5.3 DATA TRANSFER BUS CYCLES
Data is transferred between a bus master and slave device to accomplish various functions. The data
transfer bus cycles and their functions are described in Table 5-2.

These bus cycles, executed by bus master devices, transfer 16-bit words or 8-bit bytes to or from slave
devices. The data to be written in the destination byte during byte output operations is valid on the
appropriate BDAL lines. For example, BDAL<15:08> contains the high byte, and BDAL<07:00> con
tains the low byte. Table 5-3 describes the bus signals used in a data transfer operation.

Bus Cycle
Mnemonic

DATI
DATa
DATOB
DATIO
DATIOS

Table 5-2 Data Transfer Bus Cycles

Description

Data word input
Data word output
Data byte output
Data word input/output
Data word input/byte output

5-3

Function (with respect
to the bus master)

Read
Write
Write byte
Read-modify-write
Read-modify-write byte

Mnemonic

BDAL<21:00> L

BSYNC L
BDiN L
BOOUT L
BRPLY L

BWTBT L
BBS7 L

Table 5-3 Data Transfer Bus Signals

Description

22 data/address lines

Synchronize
Data input strobe
Data output strobe
Reply

Write/byte control
Bank 7 select

Function

BDAL<21: 18> L are used for 22-bit extended
addressing; BDAL<17:16> L are used for 18-bit
extended addressing, memory parity error, and mem
ory parity error enable functions; BDAL<15:00> L
are used for 16-bit addressing, word and byte
transfers.

Strobe signals

Control signals

Data transfer bus cycles can be reduced to three basic types: DATI, DA TO(B) and DA TIO(B). These
transactions occur between the bus master and one slave device selected during the addressing portion of
the bus cycle.

5.3.1 Bus Cycle Protocol
Before initiating a bus cycle, the previous bus transaction must have been completed (BSYNC L negated)
and the device must become bus master. The bus cycle is divided into two parts: an addressing portion, and

• a data transfer portion. During the addressing portion, the bus master outputs the address for the desired
slave device (memory location or device register). The selected slave device responds by latching the
address bits and holding this condition for the duration of the bus cycle (until BSYNC L becomes
negated). During the data transfer portion of the bus cycle, the operations performed will vary slightly,
depending on the type of data transfer desired. Paragraphs 5.3.1.2 through 5.3.1.4 describe the data
transfer portion of the various bus cycles.

5.3.1.1 Device Addressing - The device addressing portion of a data transfer bus cycle comprises an
address setup/deskew time and an address hold/deskew time. During the address setup/deskew time, the
bus master does the following.

I. It asserts TDAL<21 :00> with the desired slave device address bits.

2. It asserts TBS7 if a device in the I/O page is being addressed.

3. It asserts TWTBT if the cycle is a DATO(B) bus cycle.

4. It asserts TSYNC 150 ns (minimum) after gating TDAL, TBS7, and TWTBT onto the bus.

During this time the address, RBS7, and RWTBT signals are asserted at the slave bus receiver for at least
75 ns before RSYNC becomes active. Devices in the I/O page ignore the 9 high-order address bits
RDAL<21 : 13> and, instead, decode RBS7 along with the 13 low-order address bits. An active R WTBT
signal indicates that a DA TO(B) operation follows, while an inactive R WTBT indicates a DATI or
DA TIO(B) operation.

The address hold/deskew time begins after RSYNC is asserted. The slave device uses the active RSYNC
to clock RDAL address bits, RBS7 and RWTBT, into its internal logic. RDAL<21:00>, RBS7, and
RWTBT will remain active for 25 ns (minimum) after the RSYNC becomes active. RSYNC remains
active for the duration of the bus cycle.

5-4

Memory and peripheral devices are addressed similarly, except for the way they respond to RBS7.
Addressed peripheral devices must not decode address bits on RDAL<17:13>. Addressed peripheral
devices may respond to a bus cycle only when RBS7 is asserted during the addressing portion of the cycle.
When asserted, RBS7 indicates that the device address resides in the I/O page (the upper 8 Kbyte address
space). Memory devices generally do not respond to addresses in the I/O page; however, some system
applications may permit memory to reside in the I/O page for use as DMA buffers, read-only memory
bootstraps, or diagnostics, etc.

5.3.1.2 DATI - The DATI bus cycle is a read operation that inputs data from the slave device to the bus
master. The operations performed by the bus master and slave device during a DATI are shown in Figure
5-1. The DATI bus cycle timing is shown in Figure 5-2. Data consists of 16-bit word transfers over the bus.
During the data transfer portion of the DATI bus cycle, the bus master asserts TDIN 100 ns (minimum)
after it asserts TSYNC. The slave device responds to RDIN active by asserting:

1. TRPLY after receiving RDIN and 125 ns (maximum) before TDAL bus driver data bits are
valid;

2. TDAL<17:00> L with the addressed data and error information.

BUS MASTER
(PROCESSOR OR DEVICE)

ADDRESS DEVICE MEMORY

• ASSERT BDAl <21 :00> l WITH
ADDRESS AND

SLAVE
(MEMORY OR DEVICE)

• ASSERT BBS7 IF THE ADDRESS
IS IN THE I/O PAGE

• ASSERT BSYNC L

REOUEST DATA
o REMOVE THE ADDRESS FROM

- -------
...-------

DECODE ADDRESS
o STORE"DEVICE SELECTED"

OPERATION

BDAl <21 :00> l AND NEGATE BBS7
l

o ASSERT BDIN l

TERMINATE INPUT TRANSFER
• ACCEPT DATA AND RESPOND

BY NEGATING BDIN l

TERMINATE BUS CYCLE
• NEGATE BSYNC l

--------- INPUT DATA
o PLACE DATA ON BDAl < 15:00> l

___ 0 ASSERT BRPlY l----

OPERATION COMPLETED
_ -- ------- 0 NEGATE BRPl Y l

Figure 5-1 DATI Bus Cycle

5-5

T/R DAL

T SYNC

T DIN

R RPLY

__ ---Jx

100 NS MINIMUM
811S MAXIMUM

-+j 150 NS

(4) X,-__ R_D_A_T_A __ ~X (4)

200NS -II ~--------------
MAXIMUM -.j

1+--------200 NS MIN IMUM--------.I

~
CLOCKDATA

200 NS MINIMUM

--4-------------
14--,1--300 NS MINIMUMI----+{

\.1 M IN_I_M_U_M ___ \;:100 NS MINIMUM

TBS7 ~ X
~--

(4)

TWTBT ~~ _____ -J~'-______________ 1_4_) __________________ __

R/T DAL _1_4_) _--,X R ADD R

R SYNC

R DIN

T RPLY

TIMING AT MASTER DEVICE

X (4)

1'--25 NS
~INIMUM

75 NS
MINIMUM

MINIMUM t ONS -

X T DATA

125 NS MAXIMUM

X (4)

1'- 100 NS MAXIMUM r- 0 NS MINIMUM

R BS7 (4) (4)

R WTBT _1_4) __ ~~'-____ ~;(~ ______________ 14_) _________________ __

TIMING AT SLAVE DEVICE

NOTES:
1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A "B" PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MR-6037

Figure 5-2 DATI Bus Cycle Timing

5-6

When the bus master receives RRPL Y, it does the following.

1. It waits at least 200 ns deskew time and then accepts input data at RDAL< 15 :00> bus
receivers. RDAL<17:16> are monitored for a possible parity error indication.

2. It negates TDIN 150 ns (minimum) after RRPL Y becomes active.

The slave device responds to RDIN negation by negating TRPLY and removing read data from TDAL
bus drivers. TRPL Y must be negated 100 ns (maximum) prior to removal of read data. The bus master
responds to the negated RRPL Y by negating TSYNC.

Conditions for the next TSYNC assertion are as follows.

1. TSYNC must remain negated for 200 ns (minimum).

2. TSYNC must not become asserted within 300 ns of the previous RRPL Y negation.

5.3.1.3 DATO(B) - DA TO(B) is a write operation. Data is transferred in 16-bit words (DA TO) or 8-bit
bytes (DA TOB) from the bus master to the slave device. The data transfer output can occur after the
addressing portion of a bus cycle when TWTBT has been asserted by the bus master, or immediately
following an input transfer part of a DA TIO(B) bus cycle. The operations performed by the bus master
and slave device during a DATO(B) bus cycle are shown in Figure 5-3. The DATO(B) bus cycle timing is
shown in Figure 5-4.

The data transfer portion of a DATO(B) bus cycle comprises a data setup/deskew time and a data
hold/deskew time. During the data setup/deskew time, the bus master outputs the data on
TDAL<15:00> 100 ns (minimum) after TSYNC is asserted. If it is a word transfer, the bus master
negates TWTBT while gating data onto the bus. If the transfer is a byte transfer, the bus master asserts
TWTBT while gating data onto the bus. During a byte transfer, the condition of BDAL 00 L during the
address cycle selects the high or low byte. If asserted, the high byte (BDAL<15:08> L) is selected;
otherwise, the low byte (BDAL<07:00> L) is selected. An asserted BDAL 16 L at data transfer time will
force a parity error to be written into memory if the memory is a parity-type memory. BDAL 17 L is not
used for write operations. The bus master asserts TDOUT L 100 ns (minimum) after the TDAL and
TWTBT bus driver inputs are stable. The slave device responds to RDOUT by accepting the input data
and asserting TRPLY (8 J,LS maximum to avoid bus timeout). This completes the data setup/deskew time.
During the data hold/deskew time the bus master negates TDOUT 150 ns (minimum) after the assertion
of RRPL Y. TDAL<21 :00> bus drivers remain stable for at least 100 ns after TDOUT negation. The bus
master then negates TDAL inputs.

During this time, the slave device senses RDOUT negation and negates TRPL Y. The bus master responds
by negating TSYNC. However, the processor will not negate TSYNC for at least 175 ns after negating
TDOUT. This completes the DA TO(B) bus cycle. Before the next cycle, TSYNC must remain unasserted
for at least 200 ns. Also, TSYNC may not assert until 300 ns (minimum) after RRPL Y negates.

5-7

BUS MASTER
(PROCESSOR OR DEVICE)

ADDRESS DEVICE/MEMORY

• ASSERT BDAL <21 :00> L WITH
ADDRESS AND

• ASSERT BBS7 L IF ADDRESS IS
IN THE 1(0 PAGE

• ASSERT BWTBT L (WRITE
CYCLE)

• ASSERT BSYNC L - - - - ---

SLAVE
(MEMORY OR DEVICE)

DECODE ADDRESS
____ • STORE "DEVICE SE LECTED"

____ OPERATION

OUTPUT DATA

• REMOVE THE ADDRESS FROM
BDAL <21 :00> L AND NEGATE BBS7 L

• NEGATE BWTBT L UNLESS DATOB
• PLACE DATA ON BDAL < 15:00> L
• ASSERT BDOUT L -------- -

TERMINATE OUTPUT TRANSFER ---

• NEGATE BDOUT L (AND BWTBT L
IF A DATOB BUS CYCLE)

• REMOVE DATA FROM BDAL<15:00> L ____ -- ---

-~

-
TAKE DATA
• RECEIVE DATA FROM BDAL

LINES
_. ASSERT BRPLY L

-----OPERATION COMPLETED
_. NEGATE BRPLY L ---

TERMINATE BUS CYCLE
• NEGATE BSYNC L

.....--

Figure 5-3 DATO or DATO(B) Bus Cycle

5-8

MA-6029

T DAL

T SYNC

T DOUT

R RPLY

T BS7

TWTBT

R DAL

R SYNC

R DOUT

T RPLY

R BS7

R WTBT

=J 1 0 NS MINIMUM

~~--T-A--D-D-R----~)(r----------T--DA--TA------------)K~----~~---------(4-)------------------

I ~150 NSytl I~ 100 NS MINIMUM ~100 NS
~INIMUM I,-____ ~~ ______________________ ~~----~M~IN~I~M~U~M

8 flS ,.,.j
MAXIMUM 1,-________________ -'

~...",t:.----"""'\
14-1'----300 NS MINIMUM

ASSERTION = BYTE

t100 NS MINIMUM ---.J 100 NS
MINIMUM

TIMING AT MASTER DEVICE

(4)

c

__ (_4_) ____ -'X R ADDR X ... ___________ R __ D_A_T_A __________ ...JX
~25 NS MINIMUM

(4)

(4)

100 NS MINIMUM---C:150 NS MINIMUM

(4)

(4)

TIMING AT SLAVE DEVICE

NOTES:
1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A "B" PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

Figure 5-4 DATO or DATO(B) Bus Cycle Timing

5-9

5.3.1.4 DA TIO(B) - The protocol for a DA TIO(B) bus cycle is identical to the addressing and data
transfer portions of the DATI and DA TO(B) bus cycles. After addressing the device, a DATI cycle is
performed as explained in Paragraph 5.3.1.2; however, TSYNC is not negated. TSYNC remains active
for an output word or byte transfer [DA TO(B)]. The bus master maintains at least 200 ns between
RRPL Y negation during the DATI cycle and TDOUT assertion. The cycle is terminated when the bus
master negates TSYNC, which follows the same protocol as described for DATO(B). The operations
performed by the bus master and slave device during a DA TIO or DA TIO(B) bus cycle are shown in
Figure 5-5. The DA TIO and DA TIO(B) bus cycle timing is shown in Figure 5-6.

BUS MASTER
(PROCESSOR OR DEVICE)

ADDRESS DEVICEIMEMORY
• ASSERT BDAl <21 :00> l WITH

ADDRESS
• ASSERT BBS7 l IF THE

ADDRESS IS IN THE 1/0 PAGE
• ASSERT BSYNC l

SLAVE
(MEMORY OR DEVICE)

--~ DECODE ADDRESS

REQUEST DATA
• REMOVE THE ADDRESS FROM

BDAl <21 :00> l
• ASSERT BDIN l

... ---------
• STORE "DEVICE SELECTED"

OPERATION

------~ INPUT DATA

TERMINATE INPUT TRANSFER
• ACCEPT DATA AND RESPOND BY

TERMINATING BDIN l

4----

--

• PLACE DATA ON BDAl < 15:00> l
• ASSERT BRPl Y l

----.

A-
OUTPUT DATA

• PLACE OUTPUT DATA ON BDAl < 15:00 > l
• (ASSERT BWTBT l I F AN OUTPUT

BYTE TRANSFER)
• ASSERT BDOUT l --

--...

TERMINATE OUTPUT TRANSFER ... -
• REMOVE DATA FROM BDAl LINES
• NEGATE BDOUT l

TERMINATE BUS CYCLE
• NEGATE BSYNC l

(AND BWTBT l IF IN
A DATIOB BUS CYCLE)

-~--

-.,.
-

COMPLETE INPUT TRANSFER
• REMOVE DATA
• NEGATE BRPlY l

TAKE DATA
• RECEIVE DATA FROM BDAl liNES
• ASSERT BRPl Y l

OPERATION COMPLETED

• NEGATEBRPlYl

Figure 5-5 DATIO or DA TIO(B) Bus Cycle

5-10

r- 0 NS MINIMUM

R/T DAL

TSYNC

T DOUT

T DIN

R RPLY

T BS7

100 NS MINIMUM

(4)

TIMING AT MASTER DEVICE

RT/DAL ~ (4) X TDATA X (4) x R DATA x (4)

~ 25 NS ~25 NS MINIMUM

R SYNC

R DOUT

R DIN

T RPLY

R BS7

R WTBT

.....
MINIMUM

.....
..... 1--:-.100 NS

MAXIMUM

25 NS MINIMUM_ Ir - 'OO"':r - -75 NS MINIMUM MINIMUM - 125 NS +- 150 NS !.
MAXIMUM j ~ MINIMUM

1--150 NS MINIMUM

\ '\"\
150NS _ (- 300NS __

) ~ MINIMUM MINIMUM

~ ~

:j ~ 75 NS MINIMUM ,"

I
_ 75 NS MINIMUM

~ i+- 25 NS MINIMUM - 1;25 NS MINIMUM

(4) (4) ASSERTION = BYTE (4) - - 25 NS MINIMUM
TIMING AT SLAVE DEVICE

NOTES:
1. TIMING SHOWN AT REQUESTING DEVICE

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
SIGNAL NAMES INCLUDE A "B" PREFIX.

4. DON'T CARE CONDITION.

Figure 5-6 DA TIO or DA TIO(B) Bus Cycle Timing

5-11

MR·60J6

5.4 DIRECT MEMORY ACCESS (DMA)
The direct memory access (DMA) capability allows direct data transfers between I/O devices and
memory. This is useful when using mass storage devices (e.g., disk drives) that move large blocks of data
to and from memory. A DMA device only needs to know the starting address in memory, the starting
address in mass storage, the length of the transfer, and whether the operation is read or write. When this
information is available, the DMA device can transfer data directly to or from memory. Since most DMA
devices must perform data transfers in rapid succession or lose data, DMA requests are assigned the
highest priority level.

DMA is accomplished after the processor (normally bus master) has passed bus mastership to the highest
priority DMA device that is requesting the bus. The processor arbitrates all requests and grants the bus to
the DMA device located electrically closest to the processor. A DMA device remains bus master until it
relinquishes its mastership. The following control signals are used during bus arbitration.

Signal Name

BDMGI L
BDMGO L
BDMR L
BSACK L

DMA Grant Input
DMA Grant Output
DMA Request Line
Bus Grant Acknowledge

A DMA transaction is divided into three phases: the bus mastership acquisition phase, the data transfer
phase, and the bus mastership relinquish phase. The operations performed by the processor and bus master
during the DMA request/grant sequence are shown in Figure 5-7. The DMA request/grant bus cycle
timing is shown in Figure 5-8.

During the bus mastership acquisition phase, a DMA device requests the bus by asserting TDMR. The
processor arbitrates the request and initiates the transfer of bus mastership by asserting TDMG. The
maximum time between BDMR L assertion by the DMA device and BDMGO L assertion by the processor
is DMA latency. This time is processor-dependent. The KDll1-A asserts TDMG 1.4 }LS (maximum) after
the assertion of RDMR.

BDMGO L/BDMGI L is one of two signals that are daisy-chained through each module in the backplane.
The signal is driven out of the processor on the BDMGO L pin, enters each module on the BDMGI L pin
and exits on the BDMGO L pin. This signal passes through the modules in descending order of priority
until it is stopped by the requesting device. The requesting device blocks the output of BDMGO Land
asserts TSACK. If no device responds to the DMA grant, the processor will clear the grant and rearbitrate
the bus.

NOTE
The KDJl1-A uses a "NO-SACK" timer, which
clears BDMGO L if BSACK L is not received from
the DMA device within 10 }LS.

During the data transfer phase, the DMA device continues asserting BSACK L. If multiple-data transfers
are performed during this phase, consideration must be given to the use of the bus for other system
functions, such as memory refresh (if required). The actual data transfer is performed in the same manner
as the data transfer portion of DATI, DATO(B) and DATIO(B) bus cycles described in Paragraphs 5.3.1.2
through 5.3.1.4.

The DMA device can assert TSYNC L for a data transfer 0 ns (minimum) after it receives RDMGI L,
250 ns (minimum) after RSYNC is negated, and 300 ns (minimum) after RRPL Y is negated.

During the bus mastership relinquish phase, the DMA device relinquishes the bus by negating TSACK.
This occurs after the last data transfer cycle (RRPL Y negated) is completed (or aborted). TSACK may be
negated up to 300 ns (maximum) before negating TSYNC.

5-12

KDJll-A PROCESSOR
(MEMORY IS SLAVE)

GRANT BUS CONTROL

• NEAR THE END OF THE
CURRENT BUS CYCLE
(BRPLY L IS NEGATED).
ASSERT BDMGO LAND
INHIBIT NEW PROCESSOR
GENERATED BYSNC L FOR
THE DURATION OF THE
DMA OPERATION.

TERMINATE GRANT
SEQUENCE

• NEGATE BDMGO LAND

-
-

--
WAIT FOR DMA OPERATION -
TO BE COMPLETED

RESUME PROCESSOR

OPERATION --
• ENABLE PROCESSOR

GENERATED BSYNC L
(PROCESSOR IS BUS
MASTER) OR ISSUE
ANOTHER GRANT IF BDMR
L IS ASSERTED.

-
- -

-

BUS MASTER
(CONTROLLER)

REQUEST BUS
_ -. ASSERT BDMR L

- --..

-

ACKNOWLEDGE BUS
MASTERSHIP
• RECEIVE BDMG

• WAIT FOR NEGATION OF
BSYNC LAND BRPLY L

.ASSERT BSACK L
• NEGATE BDMR L

EXECUTE A DMA DATA

TRANSFER
• ADDRESS MEMORY AND

TRANSFER UP TO 4 WORDS
OF DATA AS DESCRIBED
FOR DATI. OR DATO BUS
CYCLES

• RELEASE THE BUS BY
TERMINATING BSACK L
(NO SOONER THAN
NEGATION OF LAST BRPLY
L) AND BSYNC L.

WAIT 41'S OR UNTI L
ANOTHER FIFO TRANSFER
IS PENDING BEFORE
REQUESTING BUS AGAIN.

Figure 5-7 DMA Request/Grant Sequence

5-13

T DMR

R DMG

TSACK

RfT SYNC

RfT RPLY

T DAL
(ALSO BS7,
WTBT, REF)

DMA LATENCY

~~~~/TTT77/71 
/1//////1/11 

to NS MINIMUM 

250 NS MINIMu:1 

300 NS MINIMUM1 
o NS MINIMUM, 

SECOND 
REQUEST 

r- 0 NS MINIMUM f4-100 NS MAXIMUM 
j-- 0 NS MINIMUM I 

__________________________ --JJC ADDR )(r----------D-A-T-A--------~" 

NOTES: 
1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER INPUTS 

AND BUS RECEIVER OUTPUTS. 

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 
T = BUS DRIVER INPUT 
R = BUS RECEIVER OUTPUT 

3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT SIGNAL NAMES 
INCLUDE A "B" PREFIX. 

Figure 5-8 DMA Request/Grant Bus Cycle Timing 

5-14 

MR-3690 



5.5 INTERRUPTS 
The interrupt capability of the LSI-II bus allows any I/O device to suspend temporarily (interrupt) 
current program execution and divert processor operation for service of the requesting device. The 
processor inputs a vector from the device to start the service routine (handler). As with a device register 
address, the hardware fixes the device vector at locations within a designated range of addresses between 
000 and 7778. The vector indicates the first of a pair of addresses. The content of the first address is read 
by the processor; it is the starting address of the interrupt handler. The content of the second address is a 
new processor status word (PS). The PS bits <07:05> can be programmed to a priority level from 0 to 78. 
Only interrupts on a level higher than the number in the priority level field of the PS are serviced by the 
processor. If the interrupt priority level of the new PS is higher than that of the original PS, the new PS 
raises the interrupt priority level and thus prevents lower-level interrupts from breaking into the current 
interrupt service routine. Control is returned to the interrupted program when the interrupt service routine 
is completed. The original (interrupted) program's address (PC) and its associated PS are stored on a 
"stack." The original PC and PS are restored by a return from interrupt instruction (R TI or RTT) at the 
end of the service routine. The use of the stack and the LSI-II bus interrupt scheme can allow interrupts 
to occur within interrupts (nested interrupts) if the requesting interrupt has a higher priority level than the 
interrupt currently being serviced. 

Interrupts can be caused by LSI-II bus options and can also ongmate in the processor. Interrupts 
originating in the processor are called traps and are caused by programming errors, hardware errors, 
special instructions, and maintenance features. The following are the LSI-II bus signals used in interrupt 
transactions. 

Signal 

BIRQ4 L 
BIRQ5 L 
BIRQ6 L 
BIRQ7L 

BIAKI L 
BIAKO L 

BDAL< 15:00> L 

BDIN L 
BRPLY L 

5.5.1 Device Priority 

Name 

Interrupt request priority level 4 
Interrupt request priority level 5 
Interrupt request priority level 6 
Interrupt request priority level 7 

Interrupt acknowledge input 
Interrupt acknowledge output 

Data/address lines 

Data input strobe 
Reply 

The LSI-II bus supports the following two methods of determining device priority. 

I. Distributed arbitration - Priority levels are implemented on the hardware. When devices of 
equal priority level request an interrupt, priority is given to the device electrically closest to the 
processor. 

2. Position-defined arbitration - Priority is determined solely by electrical position on the bus. The 
device closest to the processor has the highest priority, while the device at the far end of the bus 
has the lowest priority. 

The KDJ II-A uses both methods - distributed arbitration, with four levels of priority, and poslt1on
defined arbitration within each level. Interrupts on these priority levels are enabled/disabled by bits in the 
processor status word (PS<07:05». Single-level interrupt (position-defined) devices that interrupt on 
BIRQ4 can also be used in KDJ II-A systems but must be placed in a bus slot following the last bus slot in 
which a position-independent device is installed. 

5-15 



5.5.2 Interrupt Protocol 
Interrupt protocol has three phases: the interrupt request phase, the interrupt acknowledge and priority 
arbitration phase, and the interrupt vector transfer phase. The operations performed by the processor and 
interrupting device are shown in Figure 5-9. Interrupt protocol timing is shown in Figure 5-10. 

PROCESSOR 

STROBE INTERRUPTS 
• ASSERT BDIN L 

I 
I 
+ 

GRANT REQUEST 

• PAUSE AND ASSERT BIAKO L 

RECEIVE VECTOR & TERMINATE 

REQUEST 

• INPUT VECTOR ADDRESS 
• NEGATE BDIN LAND BIAKO L 

PROCESS THE INTERRUPT 

• SAVE INTERRUPTED PROGRAM 
PC AND PS ON STACK 

• LOAD NEW PC AND PS FROM 
VECTOR ADDRESSED LOCATION 

• EXECUTE INTERRUPT SERVICE 
ROUTINE FOR THE DEVICE 

DEVICE 

--------
INITIATE REQUEST 

_ • ASSERT BIRQ L 

-

--

-------
RECEIVE BDIN L 

• STORE "INTERRUPT SENDING" 
IN DEVICE 

------... 
RECEIVE BIAKI L 

• RECEIVE BIAKI L AND INHIBIT 

BIAKO L 

• PLACE VECTOR ON BDAL < 15:00 > L 

• ASSERT BRPLY L 
_. NEGATE BIRQ L ...------

---------
...-------

COMPLETE VECTOR TRANSFER 

• REMOVE VECTOR FROM BDAL BUS 
__ • NEGATE BRPLY L 

MR·1182 

Figure 5-9 Interrupt Request/Acknowledge Sequence 

5-16 



TIRQ 

R DIN 

R IAKI 

T RPLY 

T DAL 

R SYNC 

R BS7 

INTERRUPT LATENCY 
-+I MINUS SERVICE TIME 

r---I ____ +__~ 

150NSMINIMUMi 

r---------~-+----------~ 

t-- j r-HlO NS "'''"OM 

______________________ (_4) __________________ --J)(~----~V-E-C-T-O-R----~)( (4) 

125 NS MAXIMUM--+/ 

(UNASSERTED) 

(UNASSERTED) 

NOTES: 
1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER INPUTS 

AND BUS RECEIVER OUTPUTS. 

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 
T = BUS DRIVER INPUT 
R = BUS RECEIVER OUTPUT 

3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT SIGNAL NAMES 
INCLUDE A "B" PREFIX. 

4. DON'T CARE CONDITION. 

Figure 5-10 Interrupt Protocol Timing 

MR·l1BJ 

The interrupt request phase begins when a device meets its specific conditions for interrupt requests (for 
example, when the device is "ready," "done," or when an error has occurred). The interrupt enable bit in a 
device status register must be set. The device then initiates the interrupt by asserting the interrupt request 
line(s). BIRQ4 L is the lowest hardware priority level and is asserted for all interrupt requests for 
compatibility with previous LSI-II processors. The level at which a device is configured must also be 
asserted. (A special case exists for level 7 devices that must also assert level 6.) The interrupt request line 
remains asserted until the request is acknowledged. 

Interrupt Level 

4 
5 
6 
7 

Lines Asserted by Device 

BIRQ4 L 
BIRQ4 L, BIRQ5 L 
BIRQ4 L, BIRQ6 L 
BTRQ4 L, BIRQ6 L, BIRQ7 L 

5-17 



During the interrupt acknowledge and priority arbitration phase, the KDJ ll-A will acknowledge inter
rupts under the following conditions. 

1. The device interrupt priority is higher than the current priority level stored in PS<07:05>. 

2. The processor has completed instruction execution and no additional bus cycles are pending. 

The processor acknowledges the interrupt request by asserting TDIN and, 225 ns (minimum) later, by 
asserting TIAKO. The device electrically closest to the processor receives the acknowledge on its RIAKI 
bus receiver. 

On the leading edge of RDIN, each bus option capable of requesting interrupts decides whether to accept 
or to pass on the RIAKI signal. A device that does not support position-independent, multilevel interrupts 
accepts RIAKI if it is requesting an interrupt when RDIN asserts. A device that does support position
independent, multilevel interrupts accepts RIAKI if it is requesting an interrupt and if there is no higher
priority request pending when RDIN asserts. This decision must be clocked into a flip-flop, which settles 
within 150 ns of TDIN. 

Devices that support position-independent, multilevel interrupts assert from one to three IRQ lines when 
requesting an interrupt. Table 5-4 presents the IRQ lines a device at each level must assert in order to 
request an interrupt and lists the lines it must monitor to determine whether a higher-priority device is 
requesting an interrupt. 

During the interrupt vector transfer phase, the responding interrupt device receives RIAKI and then 
asserts TRPL Y. The vector address must be stable at TDAL<08:02> 125 ns (maximum) after TRPL Y is 
asserted. The processor receives the assertion of RRPL Y, and 200 ns (minimum) later it inputs the vector 
address and negates both TDIN and TIAKI. The interrupting device negates TRPL Y after the negation of 
RIAKI and removes the vector address from TDAL<08:02> 100 ns (maximum) after TRPL Y negates. 
Since vector addresses are constrained to be between 000 and 7748, none of the remaining TDAL lines are 
used. 

Table 5-4 Position-Independent, Multilevel Device Requirements 

Interrupt 
Level 

4 
5 
6 
7 

IRQ Lines Asserted 

TIRQ4 
TIRQ4, TIRQ5 
TIRQ4, TIRQ6 
TIRQ4, TIRQ6, TIRQ7 

5-18 

IRQ Lines Monitored 

RIRQ5, RIRQ6 
RIRQ6 
RIRQ7 



5.5.3 4-Level Interrupt Configurations 
Users having high-speed peripherals and desiring better software performance can use the 4-level interrupt 
scheme. Both position-independent and position-dependent configurations can be used with the 4-level 
interrupt scheme. 

The position-independent configuration is shown in Figure 5-11. This configuration allows peripheral 
devices that use the 4-level interrupt scheme to be placed in the backplane in any order. These devices 
must send out interrupt requests and monitor higher-level request lines, as described in Paragraph 5.5.2. 
The level-4 request is always asserted by a requesting device, regardless of priority, to allow compatibility 
if an LSI-II or LSI-II 12 processor is in the same system. If two or more devices of equally high priority 
request an interrupt, the device physically closest to the processor will win arbitration. Devices that use the 
single-level interrupt scheme must be modified or placed at the end of the bus for arbitration to function 
properly. 

The position-dependent configuration is shown in Figure 5-12. This configuration is simpler to implement, 
with the following constraint, however. Peripheral devices must be ordered so that the highest-priority 
device is located closest to the processor with the remaining devices placed in the backplane in decreasing 
order of priority. With this configuration each device must only assert its own level and level 4 (for 
compatibility with an LSI-II or LSI-I 1/2). Monitoring higher-level request lines is unnecessary. Arbitra
tion is achieved through the physical positioning of each device on the bus. Single-level interrupt devices on 
level 4 should be positioned last on the bus. 

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL 4 
~ LEVEL 6 BIAK LEVEL 5 BIAK LEVEL 7 

KDJ11 DEVICE DEVICE DEVICE DEVICE 

1 BIRQ 4 (LEVEL 4 INTERRUPT REQUEST) ~ ~ ~ j 
BI RQ 5 (LEVEL 5 INTERRUPT REQUEST) 

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST) 

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST) 

MR-2888 

Figure 5-11 Position-Independent Configuration 

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL 7 BIAK LEVEL 6 BIAK LEVEL 5 BIAK LEVEL4 
KDJ11 DEVICE DEVICE DEVICE DEVICE 

f BI RQ 4 (LEVEL 4 INTE RRUPT REQUEST) ~ ~ ~ ! 
BIRQ 5 (LEVEL 5 INTERRUPT REQUEST) 

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST) 

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST) 

MR-2889 

Figure 5-12 Position-Dependent Configuration 

5-19 



5.6 CONTROL FUNCTIONS 
The following LSI-II bus signals provide system control functions. 

Signal Name 

Memory refresh 
Processor halt 
Initialize 
Power OK 
DC power OK 

BREF L 
BHALT L 
BINIT L 
BPOK H 
BDCOK H 
BEVENT L External event interrupt request 

5.6.1 Memory Refresh 
If BREF is asserted during the address portion of a bus data transfer cycle, it causes all dynamic MOS 
memories to be addressed simultaneously. The sequence of addresses required for refreshing the memories 
is determined by the specific requirements of each memory. The complete memory refresh cycle consists 
of a series of refresh bus transactions. (A new address is used for each transaction.) The entire cycle must 
be completed within 2 ms. Multiple-data transfers by DMA devices must be avoided since they could 
delay memory refresh cycles. The KDJ II-A does not perform memory refresh. 

5.6.2 Halt 
Assertion of BHAL T L stops program execution and forces the processor unconditionally into console 
ODT mode. The processor does not assert the BHAL T L bus line when it comes to a programmed HALT. 

5.6.3 Initialization 
Devices along the bus are initialized when BINIT L is asserted. The processor asserts the BINIT L signal 
under the following conditions. 

I. During a power-down sequence 

2. During a power-up sequence 

3. During the execution of a RESET instruction 

4. After detection of a G character in ODT mode (if the processor features an ODT mode and a G 
command within it), and before execution of the code starting at the address that preceded the 
G command 

5.6.4 Power Status 
Power status protocol is controlled by two signals, BDCOK Hand BPOK H. These signals are driven by an 
external device (usually the power supply) and are defined as follows. 

5.6.4.1 BOCOK H - The assertion of this line indicates that dc power has been stable for at least 3 ms. 
Once asserted this line remains asserted until the power fails. 

5.6.4.2 BPOK H - The assertion of this line indicates that there is at least an 8 ms reserve of dc power 
and that BDCOK H has been asserted for at least 70 ms. Once BPOK H has been asserted, it must remain 
asserted for at least 3 ms. 

The negation of this line indicates that power is failing and that only 4 ms of dc power reserve remains. 
The negation of this line during processor operation initiates a power-fail trap sequence. 

5-20 



5.6.4.3 Power-Up - Toe following events occur during a power-up sequence. 

I. Logic associated with the power supply negates BOCOK H during power-up and asserts 
BOCOK H 3 ms (minimum) after dc power is restored to voltages within specification. 

2. The processor asserts BINIT L after receiving nominal power and negates BINIT L 0 ns 
(minimum) after the assertion of BOCOK H. 

3. Logic associated with the power supply negates BPOK H during power-up and asserts BPOK H 
70 ms (minimum) after the assertion of BOCOK H. If power does not remain stable for 70 ms, 
BDCOK H will be negated; therefore, devices should suspend critical actions until BPOK H is 
asserted. 

4. BPOK H must remain asserted for a minumum of 3 ms. BOCOK H must remain asserted 4 ms 
(minimum) after the negation of BPOK H. 

The timing diagram for the power-up/power-down sequence is shown in Figure 5-13. 

BINIT L 

- . - I, 8-20/lS 1--0 NS MINIMUM 
---, 

1 3MS ~ 
l/lS /:= ~MINIMUM- 3MS 14- -

MAXIMUM MAXIMUM 

B POK H 

... 70 MS 
~ 

_ 4MS ._ 
MINIMUM MINIMUM 

BDCOK H 

] -3 MS MINIMUM - 5/lS Ii 
MINIMUM 

tU DC POWER 

I+-- POWER·UP NORMAL 
SEQUENCE POWER 

NOTE: 
ONCE A POWER·DOWN SEQUENCE IS STARTED, 
IT MUST BE COMPLETED BEFORE A POWER·UP 
SEQUENCE IS STARTED. 

POWER·DOWN 
SEQUENCE 

Figure 5-13 Power-UpjPower-Down Timing 

5-21 

1 
70 MS 

MINIMUM 

POWER·UP 
SEQUENCE 

Ji 
I+-

NORMAL_ 
POWER 

MR·6032 



5.6.4.4 Power-Down - The following events occur during a power-down sequence. 

1. If the ac voltage to a power supply drops below 75% of the nominal voltage for one full line 
cycle (15-24 ms), BPOK H is negated by the power supply. Once BPOK H is negated, the 
entire power-down sequence must be completed. 

A device that requested bus mastership before the power failure that has not become bus master 
should maintain the request until BINIT L is asserted or the request is acknowledged (in which 
case regular bus protocol is followed). 

2. Processor software should execute a RESET instruction 3 ms (minimum) after the negation of 
BPOK H. This asserts BINIT L for from 8 to 20 j.LS. Processor software executes a HALT 
instruction immediately following the RESET instruction. 

3. BDCOK H must be negated a minimum of 4 ms after the negation of BPOK H. This 4 ms 
allows mass storage and similar devices to protect themselves against erasures and erroneous 
writes during a power failure. 

4. The processor asserts BINIT L I j.LS (minimum) after the negation of BDCOK H. 

5. DC power must remain stable for a minimum of 5 j.LS after the negation of BDCOK H. 

6. BDCOK H must remain negated for a minimum of 3 ms. 

5.6.5 BEVENT L 
The BEVENT L signal is an external line clock interrupt request to the processor. When BEVENT L is 
asserted, the processor internally assigns location 1008 as the vector address for the BEVENT service 
routine. Because the vector is internally assigned, the processor does not execute the protocol for reading-in 
the interrupt vector address as is the case for other external interrupt requests. 

5.7 BUS ELECTRICAL CHARACTERISTICS 
This paragraph contains information about the electrical characteristics of the LSI-II bus. 

5.7.1 Signal-Level Specification 

Input Logic Levels 

TTL logical low: 
TTL logical high: 

Output Logic Levels 

TTL logical low: 
TTL logical high: 

5.7.2 AC Bus Load Definition 

0.8 Vdc (maximum) 
2.0 Vdc (minimum) 

0.4 Vdc (maximum) 
2.4 Vdc (minimum) 

AC bus loading is the amount of capacitance a module presents to a bus signal line. This capacitance is 
measured between each module signal line and ground. AC bus loading is expressed in ac unit loads where 
each unit load is defined as 9.35 pF. 

5-22 



5.7.3 DC Bus Load Definition 
DC bus loading is the amount of leakage current a module presents to a bus signal line. A dc unit load is 
defined as 105 IlA flowing into a module device when the signal line is in the unasserted (high) state. 

5.7.4 120 0 LSI-ll Bus 
The electrical conductors interconnecting the bus device slots are treated as transmission lines. A uniform 
transmission line, terminated in its characteristic impedance, will propagate an electrical signal without 
reflections. Insofar as bus drivers, receivers, and wiring connected to the bus have finite resistance and 
nonzero reactance, the transmission line impedance becomes nonuniform, and thus introduces distortions 
into pulses propagated along it. Passive components of the LSI-II bus (such as wiring, cabling, and etched 
signal conductors) are designed to have a nominal characteristic impedance of 120 o. 

The maximum length of the interconnecting cable in multiple-backplane systems (excluding wiring within 
the backplane) is limited to 4.88 m (16 ft). 

5.7.5 Bus Drivers 

NOTES 
1. The KDJ11-A processor (as well as all stan

dard DIGITAL-supplied LSI-ll interfaces) 
connects to the bus via special drivers and 
receivers, described in Paragraphs 5.7.5 and 
5.7.6. 

2. The KDJ11-A processor provides resistive (250 
0) pull-up (on all bused lines) to 3.4 Vdc for 
this wired-OR interconnecting scheme. 

Devices driving the 120 0 LSI-II bus must have open collector outputs and meet the specifications that 
follow. 

DC Specifications (These conditions must be met at worst-case supply voltage, temperature, and input 
signal levels.) 

Vee can vary from 4.75 V to 5.25 V. 

Output low voltage when sinking 70 rnA of current: 0.7 V (maximum). 

Output high leakage current when connected to 3.8 Vdc: 25 IlA (even if no power is applied to them, 
except for BDCOK Hand BPOK H). 

AC Specifications 

Bus driver output pin capacitance load: Not to exceed 10 pF. 

Propagation delay: Not to exceed 35 ns. 

Driver skew (difference in propagation time between slowest and fastest bus driver): Not to exceed 
25 ns. 

Rise/fall times: Transition time from 10% to 90% for positive transition, and from 90% to 10% for 
negative transition, must be no faster then 5 ns. 

5-23 



5.7.6 Bus Receivers 
Devices that receive signals from the 120 Q LSI-II bus must meet the following requirements. 

DC Specifications (These conditions must be met at worst-case supply voltage, temperature, and output 
signal conditions.) 

Vee can vary from 4.75 V to 5.25 V. 

Input low voltage: 1.3 V (maximum). 

Input high voltage: 1.7 V (minimum). 

Maximum input leakage current when connected to 3.8 Vdc: 80 J-LA with Vee between 0.0 V and 
5.25 V. 

AC Specifications 

Bus receiver input pin capacitance load: Not to exceed 10 pF. 

Propagation delay: Not to exceed 35 ns. 

Receiver skew (difference in propagation time between slowest and fastest receiver): Not to exceed 
25 ns. 

5.7.7 KDJll-A Bus Termination 
The 120 Q LSI-II bus must be terminated at each end by an appropriate resistive termination. A pair of 
resistors in series from +5.0 V to ground is used to establish a voltage for each bidirectional line when that 
line is not being driven (negated). The parallel impedance of this pair of resistors is 250 Q. The terminating 
resistors are shown in Figure 5-14. The KDJ II-A contains terminating resistor networks in I8-pin single
in-line packages to provide the 250 Q terminations for the data/address, synchronization, and control lines 
at the processor end of the bus. 

+5 V 

33011 

68011 

25011 
BUS LINE 
TERMINATION 

MA·6033 

Figure 5-14 Bus Line Termination 

Some system configurations do not require terminating resistors at the far end of the bus. If the system 
configuration does require such termination, it is typically provided by a M9404-Y A cable connector 
module. Rules for configuring single- and multiple-backplane systems are described in Paragraphs 5.8.1 
and 5.8.2. 

5-24 



5.7.8 Bus Interconnection Wiring 
This paragraph contains the electrical characteristics of the bus interface. The bus interface for the module 
connectors is provided by one, two, or three backplanes, depending on the system configuration. Since 
each backplane contains 9 slots, a system may have a maximum of 27 module interfaces to the bus. 

5.7.8.1 Backplane Wiring - The wiring that interconnects all device interface slots on the LSI-II bus 
must meet the following specifications. 

1. The conductors must be arranged so that each line exhibits a characteristic impedance of 120 Q 
(measured with respect to the bus common return). 

2. Crosstalk from a pulse-driven line to an undriven line to which a constant 5 V is applied must be 
less than 5% of the 5 V. Note that worst-case crosstalk is manifested by simultaneously driving 
all but one signal line and measuring the effect on the undriven line. 

3. DC resistance of a bus segment signal path, as measured between the near-end terminator and 
far-end terminator modules (including all intervening connectors, cables, backplane wiring, 
connector-module etch, etc.) must not exceed 2 Q. 

4. DC resistance of a bus segment common return path, as measured between the near-end 
terminator and far-end terminator modules (including all intervening connectors, cables, back
plane wiring, connector-module etch, etc.) must not exceed an equivalent of 2 Q per signal path. 
Thus, the composite signal return path dc resistance must not exceed 2 Q divided by 40 bus 
lines, or 50 mQ. Note that although this common return path is nominally at ground potential, 
the conductance must be part of the bus wiring; the specified low-impedance return path must 
be provided by the bus wiring as distinguished from common system or power ground path. 

5.7.8.2 Intrabackplane Bus Wiring - The wiring that interconnects the bus connector slots within one 
contiguous backplane is part of the overall bus transmission line. Due to implementation constraints, the 
nominal characteristic impedance of 120 Q may not be achievable. Distributed wiring capacitance in 
excess of the amount required to achieve the nominal 120 Q impedance may not exceed 60 pF per signal 
line per backplane. 

5.7.8.3 Power and Ground - Each bus interface slot has connector pins assigned for the following dc 
voltages. 

Voltage N umber of Pins 

+5 Vdc Three pins, 4.5 A (maximum) per bus device slot 

+12 Vdc Two pins, 3.0 A (maximum) per bus device slot) 

Ground Eight pins, shared by power return and signal return 

The maximum allowable current per pin is 1.5 A. The +5 Vdc must be regulated to ±5% and the 
maximum ripple should not exceed 100 mV peak-to-peak. The +12 Vdc must be regulated to ±3% and the 
maximum ripple should not exceed 200 mV peak-to-peak. 

NOTE 
Power is not bused between backplanes on any inter
connecting LSI-II bus cables. 

5-25 



5.7.8.4 Maintenance and Spare Pins 

Maintenance Pins - There are four M SPARE pins per bus device slot assigned to maintenance (AK I, 
ALl, BK I, BLl). The maintenance pins on the basic LSI-II system are not bused from module to module. 
Instead, at each bus device slot, the maintenance pins are shorted together as pairs. These pins must be 
shorted together for some modules to operate. This allows a module to use these pins during initial testing 
as two separate points. This feature is used by DIGITAL for manufacturing tests only. 

Spare Pins - Spare pins are allocated on the backplane as follows. 

S SPARES - These four pins, AE I, AH I, BH I, AF I (with the exception of AF I in slot 1), are 
reserved for the particular use of a module or set of modules. They may be used as test points or for 
intermodule connection. Appropriate wires must be added for intermodule communication since 
these pins are not connected in any way. The processor uses AFI in slot I as an output pin for the 
SRUN signal. S SPARE lines cannot be used as bus connections. 

P SPARES - These two pins, AUI and BUI are similar to the S SPARE pins except that they are 
located in a manner that causes dc voltages to appear on them if a module is inserted backwards. Use 
of these pins is not recommended. 

5.8 SYSTEM CONFIGURATIONS 
LSI-II bus systems can be divided into two types. The first type comprises those systems that use only one 
backplane, the second type comprising those systems that use multiple backplanes. Two sets of rules must 
be followed when configuring a system to accommodate the different electrical characteristics of the two 
types of systems. These rules are listed in Paragraphs 5.8.1 and 5.8.2. 

Three characteristics of each component in an LSI-II bus system must be known before configuring any 
system: 

1. Power consumption - The total amount of current drawn from the +5 Vdc and + 12 Vdc power 
supplies by all modules in the system. 

2. AC bus loading - The amount of capacitance a module presents to a bus signal line. AC loading 
is expressed in ac unit loads, where one ac unit load equals 9.35 pF of capacitance. 

3. DC bus loading - The amount of dc leakage current a module presents to a bus signal when the 
line is high (undriven). DC loading is expressed in terms of dc unit loads, where one dc unit load 
equals 105 pA (nominal). 

Power consumption, ac loading, and dc loading specifications for each module are included in the 
Microcomputer Interfaces Handbook. 

NOTE 
The ac and dc loads and the power consumption of 
the processor module, terminator module, and back
plane must be included in determining the total bus 
loading of a backplane. 

5-26 



5.8.1 Rules for Configuring Single-Backplane Systems 
The following rules apply only to single-backplane systems. Any extension of the bus off the backplane is 
considered a multiple-backplane system and must be configured accordingly. A single-backplane configur
ation diagram is shown in Figure 5-15. 

1. The bus can accommodate modules that have up to 20 ac loads (total) before an additional 
termination is required. The processor has on-board termination for one end of the bus. If more 
than 20 ac loads are included, the other end of the bus must be terminated with 120 Q. 

2. A terminated bus can accommodate modules comprising up to 35 ac loads (total). 

3. The bus can accommodate modules up to 20 dc loads (total). 

4. The bus signal lines on the backplane can be up to 35.6 cm (14 in) long. 

I BACKPLANE WIRE 
14----- 35.6CM (14IN) MAXIMUM 

PROCESSOR 

ONE 
UNIT 
LOAD 

3 
2 

( 
I I 

ONE 
UNIT 
LOAD 

y 

5 AC LOADS 
a DC LOADS 

I 
ONE 
UNIT 
LOAD 

I 

Figure 5-15 Single-Backplane Configuration 

5.8.2 Rules for Configuring Multiple-Backplane Systems 

OPTIONAL 

120n 

+ 
3.4 V 

-..,. 

TERM 

MR-6034 

Multiple-backplane systems can contain a maximum of three backplanes. A configuration diagram for a 
multiple-backplane system is shown in Figure 5-16. 

1. The signal lines on each backplane can be up to 25.4 cm (10 in) long. 

2. Each backplane can accommodate modules that have up to 20 ac loads (total). Unused ac loads 
from one backplane may not be added to another backplane if the second backplane loading 
will exceed 20 ac loads. It is desirable to load backplanes equally or with the highest ac loads in 
the first and second backplanes. 

3. DC loading of all modules in all backplanes cannot exceed 15 loads (total). 

4. The first backplane must have an impedance of 120 Q (obtained via the processor module). The 
second backplane is terminated by 120 Q resistor networks contained on the cable connector 
inserted in the third backplane. 

5-27 



250 n 

+ 
3.4 V \ 

-
-= 

I 
BACKPLANE WIRE 
35.6 CM (14 INI MAX 

( ( 

I J , 1 
ONE ONE 
UNIT UNIT 
LOAD LOAD 

20 AC LO A OS MAX 

, 

PROCESSOR 

1 
BACKPLAN 

foI .. t----- 25.4 CM (10 

I I 

I I J J 

I ONE 
UNIT 
LOAD 

E WIRE 
INI MAX 

I 
ONE 
UNIT 
LOAD 

CABLE , y,------' 

20 AC LOADS MAX 

-

-I 
I 
I 

CABLE 
ADDITIONAL 
CABLES AND 
BACKPLANE 

1 
BACKPLANE WIRE 1 

foI .. t----- 25 4 CM (10 INI MAX -------l_~ 

I I 
I ONE 

120n UNIT 
3.4 V LOAD 

I l 

I 
ONE 
UNIT 
LOAD 

CABLE/ 
TERM 

~---~yr-----' 

20 AC LOADS MAX 

NOTES: 
1. TWO CABLES (MAXI 4.88 M (16 FTI (MAXI 

TOTAL LENGTH. 

2.20 DC LOADS TOTAL (MAXI. 

Figure 5-16 Multiple-Backplane Configuration 

5-28 

CABLE -

MR 6035 



5. The cables connecting the backplanes must observe the following rules. 

a. The cable(s) connecting the first two backplanes must be 61 cm (2 ft) or greater in length. 

b. The cable(s) connecting the second backplane to the third backplane must be 22 cm (4 ft) 
longer or shorter than the cable(s) connecting the first and second backplanes. 

c. The combined length of both cables must not exceed 4.88 m (16 ft). 

d. The cables used must have a characteristic impedance of 120 Q. 

5.8.3 Power Supply Loading 
Total power requirements for each backplane can be determined by obtaining the total power require
ments for each module in the backplane. Obtain separate totals for +5 V and + 12 V power. Power 
requirements for each module are specified in the Microcomputer Interfaces Handbook. 

Do not attempt to distribute power via the LSI-II bus cables in multiple-backplane systems. Provide 
separate, appropriate power wiring from each power supply to each backplane. Each power supply should 
be capable of asserting BPOK Hand BDCOK H signals according to bus protocol. This is required if 
automatic power-fail/restart programs are implemented or if specific peripherals require an orderly power
down halt sequence. The proper use of the BPOK Hand BDCOK H signals is strongly recommended. 

5-29 





6.1 INTRODUCTION 

CHAPTER 6 
ADDRESSING MODES AND BASE INSTRUCTION SET 

The first part of this chapter is divided into six major sections as follows. 

• Single-Operand Addressing - One part of the instruction word specifies the registers; the other 
part provides information for locating the operand. 

• Double-Operand Addressing - One part of the instruction word specifies the registers; the 
remaining parts provide information for locating two operands. 

• Direct Addressing - The operand is the content of the selected register. 

• Deferred (Indirect) Addressing - The contents of the selected register is the address of the 
operand. 

• Use of the PC as a General-Purpose Register - The PC is different from other general-purpose 
registers in one important respect. Whenever the processor retrieves an instruction, it automati
cally advances the PC by 2. By combining this automatic advancement of the PC with four of 
the basic addressing modes, we produce the four special PC modes - immediate, absolute, 
relative, and relative-deferred. 

• Use of the Stack Pointer as a General-Purpose Register - General-purpose registers can be used 
for stack operations. 

The second part of this chapter describes each of the instructions in the KDJ ll-A instruction set. 

6.2 ADDRESSING MODES 
Data stored in memory must be accessed and manipulated. Data handling is specified by a KDJ ll-A 
instruction (MOY, ADD, etc.), which usually specifies the following. 

• The function to be performed (operation code) 

• The general-purpose register to be used when locating the source operand, and/or destination 
operand (where required) 

• The addressing mode, which specifies how the selected registers are to be used 

A large portion of the data handled by a computer is structured (in character strings, arrays, lists, etc.). 
The KDJ ll-A addressing modes provide for efficient and flexible handling of structured data. 

6-1 



A general-purpose register may be used with an instruction in any of the following ways. 

I. As an accumulator - The data to be manipulated resides in the register. 

2. As a pointer - The contents of the register is the address of an operand, rather than the operand 
itself. 

3. As a pointer that automatically steps through memory locations - Automatically stepping 
forward through consecutive locations is known as autoincrement addressing; automatically 
stepping backwards is known as autodecrement addressing. These modes are particularly useful 
for processing tabular or array data. 

4. As an index register - In this instance, the contents of the register and the word following the 
instruction are summed to produce the address of the operand. This allows easy access to 
variable entries in a list. 

An important KDJ ll-A feature, which should be considered with the addressing modes, is the register 
arrangement. 

• Two sets of six general-purpose registers (RO-R5 and RO' -R5') 

• A hardware stack pointer (SP) register (R6) for each processor mode (kernel, supervisor, user) 

• A program counter (PC) register (R 7) 

Registers RO-R5 and RO'-R5' are not dedicated to any specific function; their use is determined by the 
instruction that is decoded. 

• They can be used for operand storage. For example, the contents of two registers can be added 
and stored in another register. 

• They can contain the address of an operand or serve as pointers to the address of an operand. 

• They can be used for the autoincrement or autodecrement features. 

• They can be used as index registers for convenient data and program access. 

The KDJ ll-A also has instruction addressing mode combinations that facilitate temporary data storage 
structures. These can be used for convenient handling of data that must be accessed frequently. This is 
known as stack manipulation. The register that keeps track of stack manipulation is known as the stack 
pointer (SP). Any register can be used as a stack pointer under program control; however, certain 
instructions associated with subroutine linkage and interrupt service automatically use register R6 as a 
"hardware stack pointer." For this reason, R6 is frequently referred to as the SP. 

• The stack pointer (SP) keeps track of the latest entry on the stack. 

• The stack pointer moves down as items are added to the stack and moves up as items are 
removed. Therefore, the stack pointer always points to the top of the stack. 

• The hardware stack is used during trap or interrupt handling to store information, allowing an 
orderly return to the interrupted program. 

Register R 7 is used by the processor as its program counter (PC). It is recommended that R 7 not be used 
as a stack pointer or accumulator. Whenever an instruction is fetched from memory, the program counter 
is automatically incremented by two to point to the next instruction word. 

6-2 



6.2.1 Single-Operand Addressing 
The instruction format for all single-operand instructions (such as CLR, INC, TST) is shown in Figure 6-1. 

Bits <15:06> specify the operation code that defines the type of instruction to be executed. 

Bits <05:00> form a 6-bit field called the destination address field. The destination address field consists 
of two subfields: 

• Bits <05:03> specify the destination mode. Bit 03 IS set to indicate deferred (indirect) 
addressing. 

• Bits <02:00> specify which of the 8 general-purpose registers is to be referenced by this 
instruction word. 

15 06 05 04 03 02 00 

:MODE: Rn 

f f 
OP CODE DESTINATION ADDRESS 

MR-5458 

Figure 6-1 Single-Operand Addressing 

6.2.2 Double-Operand Addressing 
Operations that imply two operands (such as ADD, SUB, MOY, and CMP) are handled by instructions 
that specify two addresses. The first operand is called the source operand; the second is called the 
destination operand. Bit assignments in the source and destination address fields may specify different 
modes and different registers. The instruction format for the double operand instruction is shown in Figure 
6-2. 

The. source address field is used to select the source operand (the first operand). The destination is used 
similarly, and locates the second operand and the result. For example, the instruction ADD A, B adds the 
contents (source operand) of location A to the contents (destination operand) of location B. After 
execution, B will contain the result of the addition and the contents of A will be unchanged. 

15 12 11 10 09 08 06 05 04 03 02 00 

OP ~ODE Rn 

t f 
SOURCE ADDRESS DESTINATION ADDRESS 

MR-5459 

Figure 6-2 Double-Operand Addressing 

6-3 



Examples in this paragraph and the rest of the chapter use the following sample KOJ 11-A instructions. (A 
complete listing of the KOJ 11-A instructions appears in Paragraph 6.3.) 

Mnemonic 

CLR 

CLRB 

INC 

INCB 

COM 

COMB 

AOO 

Description 

Clear. (Zero the specified destination.) 

Clear byte. (Zero the byte in the specified 
destina tion.) 

Increment. (Add one to contents of the 
destination.) 

Increment byte. (Add one to the contents of 
the destination byte.) 

Complement. (Replace the contents of the 
destination by its logical complement; 
each 0 bit is set and each 1 bit is 
cleared.) 

Complement byte. (Replace the contents of 
the destination byte by its logical 
complement; each 0 bit is set and each 
I bit is cleared.) 

Add. (Add the source operand to the 
destination operand and store the result 
at the destination address.) 

*DD = destination field (six bits) 
SS = source field (six bits) 
o = contents of 

6.2.3 Direct Addressing 

Octal Code* 

005000 

105000 

005200 

105200 

005100 

105100 

06SS00 

The following summarizes the four basic modes used with direct addressing. 

Direct Modes (Figures 6-3 to 6-6) 

Mode Name 

o Register 

Assembler 
Syntax 

Rn 

Function 

Register contains operand. 

I INSTRUCTION H OPERAND 

MR·5460 

Figure 6-3 Mode 0 Register 

6-4 



Mode Name 

2 Autoincrement 

INSTRUCTION 

Mode Name 

4 Autodecrement 

INSTRUCTION 

Mode Name 

6 Index 

INSTRUCTION 

x 

Assembler 
Syntax 

(Rn)+ 

ADDRESS 

Function 

Register is used as a pointer to sequential data 
and then incremented. 

OPERAND 

+2 FOR WORD, 
+1 FOR BYTE 

MR-5461 

Figure 6-4 Mode 2 Autoincrement 

Assembler 
Syntax 

-(Rn) 

Function 

Register is decremented and then used as a 
pointer. 

-2 FOR WORD, OPERAND 
-1 FOR BYTE 

MR-S462 

Figure 6-5 Mode 4 Autodecrement 

Assembler 
Syntax 

X(Rn) 

ADDRESS 

Function 

Value X is added to (Rn) to produce address 
of operand. Neither X nor (Rn) is modified. 

OPERAND 

MR·5463 

Figure 6-6 Mode 6 Index 

6-5 



6.2.3.1 Register Mode - With register mode any of the general registers may be used as simple 
accumulators, with the operand contained in the selected register. Since they are hardware registers 
(within the processor), the general registers operate at high speeds and provide speed advantages when 
used for operating on frequently accessed variables. The assembler interprets and assembles instructions of 
the form OPR Rn as register mode operations. Rn represents a general register name or number and OPR 
is used to represent a general instruction mnemonic. Assembler syntax requires that a general register be 
defined as follows. 

RO = %0 (% sign indicates register definition) 
RI = %1 
R2 = %2, etc. 

Registers are typically referred to by name as RO, RI, R2, R3, R4, R5, R6, and R7. However, R6 and R7 
are also referred to as SP and PC, respectively. 

Register Mode Examples (Figures 6-7 to 6-9) 

1. Symbolic Octal Code Instruction Name 

INC R3 005203 Increment 

Operation: Add one to the contents of general-purpose register R3. 

15 06 05 04 03 02 

0 : 0 0 : 0 : 1 : 0 : 1 : 0 : 1 : 0 I 0 o ! 0 I 0 : 1 

f 
A 

f 
OP CODE (lNC(0052)) DESTINATION FIELD 

RO 

R1 

R2 

R3 

R4 

R5 

R6 (SP) 

R7 (PC) 

Figure 6-7 INC R3 Increment 

6-6 

00 

1 ~ I SELECT 
I REGISTER 

J 

I+-

I 
I 

I 
I 

J 

MR-S467 



2. Symbolic Octal Code Instruction Name 

ADD R2, R4 060204 Add 

Operation: Add the contents of R2 to the contents of R4. 

BEFORE AFTER 

R21 000002 R21 000002 

R41 000004 R41 000006 

MA-5468 

Figure 6-8 ADD R2,R4 Add 

3. Symbolic Octal Code Instruction Name 

COMB R4 105104 Complement byte 

Operation: 1 's complement bits <07:00> (byte) in R4. (When general registers are used, byte instructions 
operate only on bits <07:00>; i.e., byte 0 of the register.) 

BEFORE 

R4 I 022222 

AFTER 

R4 I 022155 

MR-5469 

Figure 6-9 COMB R4 Complement Byte 

6.2.3.2 Autoincrement Mode [OPR (Rn)+] - This mode (mode 2) provides for automatic stepping of a 
pointer through sequential elements of a table of operands. It assumes the contents of the selected general
purpose register to be the address of the operand. Contents of registers are stepped (by one for byte 
instructions, by two for word instructions, always by two for R6 and R 7) to address the next sequential 
location. The autoincrement mode is especially useful for array processing and stack processing. It will 
access an element of a table and then step the pointer to address the next operand in the table. Although 
most useful for table handling, this mode is completely general and may be used for a variety of purposes. 

6-7 



Autoincrement Mode Examples (Figures 6-10 to 6-12) 

I. Symbolic Octal Code Instruction Name 

CLR (R5)+ 005025 Clear 

Operation: Use contents of R5 as the address of the operand. Clear selected operand and then increment 
the contents of R5 by two. 

2. 

BEFORE 

ADDRESS SPACE 

20000 1 005025 

Symbolic 

CLRB (R5)+ 

REGISTER 

R5 

AFTER 

ADDRESS SPACE 

20000·1 005025 

30000 000000 

REGISTER 

R5 1 030002 

MR-5464 

Figure 6-10 CLR (R5)+ Clear 

Octal Code Instruction Name 

105025 Clear byte 

Operation: Use contents of R5 as the address of the operand. Clear selected byte operand and then 
increment the contents of R5 by one. 

BEFORE 

ADDRESS SPACE 

20000 I 105025 

30000 111 116 

30002 

REGISTER 

AFTER 

ADDRESS SPACE 

R51 030000 J 20000 I 105025 

I 

30000~ 
30002~ 

Figure 6-11 CLRB (R5)+ Clear Byte 

6-8 

R5 

REGISTER 

030001 

MA-5465 



3. Symbolic Octal Code Instruction Name 

ADD (R2)+,R4 062204 Add 

Operation: The contents of R2 are used as the address of the operand, which is added to the contents of 
R4. R2 is then incremented by two. 

BEFORE AfTER 

ADDRESS SPACE ADDRESS SPACES REGISTERS 

10000 I 062204 I R2 L..-_r---J 10000 I 062204 I R2 100004 

R4 I 010000 R4 I 020000 

1000021 010000 100002 I 010000 

MR-5470 

Figure 6-12 ADD (R2)+,R4 Add 

6.2.3.3 Autodecrement Mode [OPR-(Rn)] - This mode (mode 4) is useful for processing data in a list in 
reverse direction. The contents of the selected general-purpose register are decremented (by one for byte 
instructions, by two for word instructions) and then used as the address of the operand. The choice of 
postincrement, predecrement features for the KDJ ll-A were not arbitrary decisions, but were intended to 
facilitate hardware/software stack operations. 

Autodecrement Mode Examples (Figures 6-13 to 6-15) 

1. Symbolic Octal Code Instruction Name 

INC -(RO) 005240 Increment 

Operation: The contents of RO are decremented by two and used as the address of the operand. The 
operand is incremented by one. 

BEFORE AfTER 

ADDRESS SPACE REGISTERS ADDRESS SPACE 

1000 1 005240 RO I 017776 1000 1 005240 RO L..---,.--~ 

17774 1 000000 177741 000001 

MA-5466 

Figure 6-13 INC -(RO) Increment 

6-9 



2. Symbolic Octal Code Instruction Name 

INCB -(RO) 105240 Increment byte 

Operation: The contents of RO are decremented by one and then used as the address of the operand. The 
operand byte is increased by one. 

3. 

BEFORE 

ADDRESS SPACE 

1000 105240 

17774EB 

17776 CD 

REGISTER 

RO I 017776 

AFTER 

ADDRESS SPACE REGISTER 

1000 I 105240 RO I 017775 J 
I , 

17774 001 I 000 

17776 

MR-5471 

Figure 6-14 INCB -(RO) Increment Byte 

Symbolic Octal Code Instruction Name 

ADD -(R3),RO 064300 Add 

Operation: The contents of R3 are decremented by two and then used as a pointer to an operand (source), 
which is added to the contents of RO (destination operand). 

BEFORE 

ADDRESS SPACE 

10020 I 064300 I 

77774~ 
77776 c=J 

REGISTER 

RO I 000020 

R31 077776 

AFTER 

ADDRESS SPACE 

10020 I 064300 I 

.~ 77774 000050 

77776 

Figure 6-15 ADD -(R3 ),RO Add 

6-10 

REGISTER 

RO I 0000070 

R31 077774 

MR-5472 



6.2.3.4 Index Mode [OPR X(Rn)] - In this mode (mode 6) the contents of the selected general-purpose 
register, and an index word following the instruction word, are summed to form the address of the 
operand. The contents of the selected register may be used as a base for calculating a series of addresses, 
thus allowing random access to elements of data structures. The selected register can then be modified by 
program to access data in the table. Index addressing instructions are of the form OPR X(Rn), where X is 
the indexed word located in the memory location following the instruction word and Rn is the selected 
general-purpose register. 

Index Mode Examples (Figures 6-16 to 6-18) 

1. Symbolic 

CLR 200(R4) 

Octal Code 

005064 
000200 

Instruction Name 

Clear 

Operation: The address of the operand is determined by adding 200 to the contents of R4. The operand 
location is then cleared. 

BEFORE AFTER 
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

1020 005064 R4 001000 1020 005064 R4 I 001000 

1022 000200 1022 000200 

1024 1000 1024 
+200 

+ 
1200 

1200 

~ 
1200 

~ 1202 

MA-5473 

Figure 6-\6 CLR 200(R4) Clear 

6-11 



2. Symbolic 

COMB 200(R 1) 

Octal Code 

105161 
000200 

Instruction Name 

Complement byte 

Operation: The contents of a location, which are determined by adding 200 to the contents of R 1, are 1 's 
complemented (Le., logically complemented). 

3. 

BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

1020 105161 R1 I 017777 1020 105161 R1 I 017777 

1022 000200 1022 000200 

017777 
+200 

I O~, ! = I 
020177 

20176 20176 ffi 20200 20200 

MR-5474 

Figure 6-17 COMB 200(R I) Complement Byte 

Symbolic 

ADD 30(R2),20(R5) 

Octal Code 

066265 
000030 
000020 

Instruction Name 

Add 

Operation: The contents of a location, which are determined by adding 30 to the contents of R2, are added 
to the contents of a location that is determined by adding 20 to the contents of R5. The result is stored at 
the destination address, that is, 20(R5). 

BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

1020 066265 R2 I 001100 1020 066265 R2 I 001100 

1022 000030 1022 000030 

1024 000020 R5 002000 1024 000020 R5 002000 

1130 000001 1130 000001 

2020 000001 2020 000002 

1100 2000 
+30 +20 

1130 2020 
MR-5475 

Figure 6-18 ADD 30(R2),20(R5) Add 

6-12 



6.2.4 Deferred (Indirect) Addressing 
The four basic modes may also be used with deferred addressing. Whereas in register mode the operand is 
the contents of the selected register, in register-deferred mode the contents of the selected register is the 
address of the operand. 

In the three other deferred modes, the contents of the register select the address of the operand rather than 
the operand itself. These modes are therefore used when a table consists of addresses rather than operands. 
The assembler syntax for indicating deferred addressing is @ [or 0 when this is not ambiguous]. The 
following summarizes the deferred versions of the basic modes. 

Deferred Modes (Figures 6-19 to 6-22) 

Mode 

Mode 

3 

Name 

Register
deferred 

Assembler 
Syntax 

@Rn or (Rn) 

Function 

Register contains the address of the operand. 

I INSTRUCTION H ADDRESS H OPERAND 

Name 

Autoincrement
deferred 

INSTRUCTION 

MR-5476 

Figure 6-19 Mode 1 Register-Deferred 

Assembler 
Syntax 

@(Rn)+ 

ADDRESS 

Function 

Register is first used as a pointer to a word 
containing the address of the operand and then 
incremented (always by two, even for byte 
instructions ). 

ADDRESS OPERAND 

+2 

MR-5477 

Figure 6-20 Mode 3 Autoincrement-Deferred 

6-13 



Mode 

5 

Mode 

7 

Name 

Autodecrement
deferred 

INSTRUCTION 

Name 

Index-deferred 

INSTRUCTION 

x 

Assembler 
Syntax 

@-(Rn) 

-2 

Function 

Register is decremented (always by two, even 
for byte instructions) and then used as a point
er to a word containing the address of the 
operand. 

ADDRESS OPERAND 

MR·5478 

Figure 6-21 Mode 5 Autodecrement-Deferred 

Assembler 
Syntax 

@X(Rn) 

ADDRESS 

Function 

Value X (stored in a word following the 
instruction) and (Rn) are added; the sum is 
used as a pointer to a word containing the 
address of the operand. Neither X nor (Rn) is 
modified. 

ADDRESS OPERAND 

MR-S479 

Figure 6-22 Mode 7 Index-Deferred 

6-14 



The following examples illustrate the deferred modes. 

Register-Deferred Mode Example (Figure 6-23) 

Symbolic Octal Code Instruction Name 

CLR @R5 005015 Clear 

Operation: The contents of location specified in R5 are cleared. 

BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

1677 

~ 
R5 001700 1677 

~ 
R5 001700 

1700 1700 

MR·5480 

Figure 6-23 CLR @iR5 Clear 

Autoincrement-Deferred Mode Example (Mode 3) (Figure 6-24) 

Symbolic Octal Code Instruction Name 

INC @(R2)+ 005232 Increment 

Operation: The contents of R2 are used as the address of the address of the operand. The operand is 
increased by one; the contents of R2 are incremented by two. 

1010 

1012 

BEFORE 

ADDRESS SPACE 

~ 
R2 

1010 

1012 

AFTER 

ADDRESS SPACE 

~ 

Figure 6-24 INC @(R2)+ Increment 

6-15 

REGISTER 

R2 I 010302 

MA-S481 



Autodecrement-Deferred Mode Example (Mode 5) (Figure 6-25) 

Symbolic Octal Code 

COM @-(RO) 005150 

Operation: The contents of RO are decremented by two and then used as the address of the address of the 
operand. The operand is 1 's complemented (Le., logically complemented). 

BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE 

10100 B RO I 010776 10100 B RO 

10102 10102 

10774 t=j 10774 B 10776 10776 

MA-5482 

Figure 6-25 COM @;-(RO) Complement 

Index-Deferred Mode Example (Mode 7) (Figure 6-26) 

Symbolic Octal Code Instruction Name 

ADD @1000(R2),RI 067201 
001000 

Add 

Operation: 1000 and the contents of R2 are summed to produce the address of the address of the source 
operand, the contents of which are added to the contents of R 1; the result is stored in R 1. 

BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

1020 067201 R1 001234 1020 067201 R1 I 001236 

1022 001000 1022 001000 I R2 000100 R2 000100 

1024 1024 

1050 t=j 1050 B 
B 1100 1100 

1 
1000 
+100 
1100 

MA-5483 

Figure 6-26 ADD @IOOO(R2),Rl Add 

6-16 



6.2.5 Use of the PC as a General-Purpose Register 
Although register 7 is a general-purpose register, it doubles in function as the program counter for the 
KDJl1-A. Whenever the processor uses the program counter to acquire a word from memory, the 
program counter is automatically incremented by two to contain the address of the next word of the 
instruction being executed or the address of the next instruction to be executed. (When the program uses 
the PC to locate byte data, the PC is still incremented by two.) 

The PC responds to all the standard KDJlI-A addressing modes. However, with four of these modes the 
PC can provide advantages for handling position-independent code and unstructured data. When utilizing 
the PC, these modes are termed immediate, absolute (or immediate-deferred), relative, and relative
deferred. The modes are summarized below. 

Mode Name 

2 Immediate 

3 Absolute 

6 Relative 

7 Relative-
deferred 

Assembler 
Syntax 

#n 

@#A 

A 

@A 

Function 

Operand follows instruction. 

Absolute address of operand follows 
instruction. 

Relative address (index value) follows the 
instruction. 

Index value (stored in the word after the 
instruction) is the relative address for the 
address of the operand. 

When a standard program is available for different users, it is often helpful to be able to load it into 
different areas of memory and run it in those areas. The KDJl1-A can accomplish the relocation of a 
program very efficiently through the use of position-independent code (PIC), which is written by using the 
PC addressing modes. If an instruction and its operands are moved in such a way that the relative distance 
between them is not altered, 
the same offset relative to the PC can be used in all positions in memory. Thus, PIC usually references 
locations relative to the current location. 

The PC also greatly facilitates the handling of unstructured data. This is particularly true of the immediate 
and relative modes. 

6-17 



6.2.5.1 Immediate Mode [OPR #n,DD] - Immediate mode (mode 2) is equivalent in use to the autoincre
ment mode with the Pc. It provides time improvements for accessing constant operands by including the 
constant in the memory location immediately following the instruction word. 

Immediate Mode Example (Figure 6-27) 

Symbolic 

ADD #10,RO 

Octal Code 

062700 
000010 

Instruction Name 

Add 

Operation: The value 10 is located in the second word of the instruction and is added to the contents of RO. 
Just before this instruction is fetched and executed, the PC points to the first word of the instruction. The 
processor fetches the first word and increments the PC by two. The source operand mode is 27 (autoincre
ment the PC). Thus, the PC is used as a pointer to fetch the operand (the second word of the instruction) 
before it is incremented by two to point to the next instruction. 

BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

1020 062700 RO I 000030 

1022 000010 

/ 
PC 

1024 

1022 

1-_06_2_70_0--1' RO I 000020 

000010 "PC 

1020 

1024 

Figure 6-27 ADD # 10,RO Add 

6.2.5.2 Absolute Addressing Mode [OPR @#A]- This mode (mode 3) is the equivalent of immediate
deferred or autoincrement-deferred using the PC. The contents of the location following the instruction are 
taken as the address of the operand. Immediate data is interpreted as an absolute address (i.e., an address 
that remains constant no matter where in memory the assembled instruction is executed). 

6-18 



Absolute Mode Examples (Figures 6-28 and 6-29) 

1. Symbolic 

CLR @#1100 

Octal Code 

005037 
001100 

Operation: Clear the contents of location 1100. 

BEFORE 

ADDRESS SPACE 

20 005037 

22 001100 

1100 

1102 

PC 

Instruction Name 

Clear 

AFTER 

ADDRESS SPACE 

20 005037 

22 001100 

/ 
PC 

24 

1100 Ej 1102 

MR·5485 

Figure 6-28 CLR @, #1100 Clear 

2. Symbolic 

ADD @#2000,R3 

Octal Code 

063703 
002000 

Operation: Add contents of location 2000 to R3. 

BEFORE 

ADDRESS SPACE REGISTER 

R3 I 000500 

PC 

20 063703 

" 22 002000 

24 

I 

• 

Instruction Name 

Add 

AFTER 

ADDRESS SPACE REGISTER 

20 063703 R3 I 001000 

22 002000 

/ 
PC 

24 

MR·54B6 

Figure 6-29 ADD @, #2000 Add 

6-19 



6.2.5.3 Relative Addressing Mode [OPR A or OPR X(PC)] - This mode (mode 6) is assembled as index 
mode using R 7. The base of the address calculation, which is stored in the second or third word of the 
instruction, is not the address of the operand, but the number which, when added to the (PC), becomes the 
address of the operand. This mode is useful for writing position-independent code since the location 
referenced is always fixed relative to the PC. When instructions are to be relocated, the operand is moved 
by the same amount. The instruction OPR X(PC) is interpreted as "X is the location of A relative to the 
PC." 

Relative Addressing Mode Example (Figure 6-30) 

Symbolic 

INC A 

Octal Code 

005267 
000054 

Instruction Name 

Increment 

Operation: To increment location A, contents of memory location immediately following instruction word 
are added to (PC) to produce address A. Contents of A are increased by one. 

BEFORE 
ADDRESS SPACE 

1020 005267 

"-1022 000054 PC 

1024 

1026 

1100 000000 1024 

t +54 
L---------ll00 

1020 

1022 

1024 

1026 

1100 

AFTER 
ADDRESS SPACE 

0005267 

000054 -
000001 

PC 

MA-5487 

Figure 6-30 INC A Increment 

6.2.5.4 Relative-Deferred Addressing Mode [OPR @A or OPR @X(PC)] - This mode (mode 7) is 
similar to relative mode, except that the second word of the instruction, when added to the PC, contains 
the address of the address of the operand, rather than the address of the operand. The instruction OPR 
@X(PC) is interpreted as "X is the location containing the address of A, relative to the PC." 

Relative-Deferred Mode Example (Figure 6-31) 

Symbolic 

CLR@A 

Octal Code 

005077 
000020 

Instruction Name 

Clear 

Operation: Add second word of instruction to updated PC to produce address of address of operand. Clear 
operand. 

6-20 



BEFORE AFTER 
ADDRESS SPACE ADDRESS SPACE 

(PC = 1020) 1020 005077 

" 
1020 005077 

1022 000020 PC 1022 000020 PC 

(PC = 1022) 1024 1024 1024 / 
+20 

• 
1044 

"~ 1044 010100 

10100 I 100001 I 10100 000000 

MA·5488 

Figure 6-31 CLR @A Clear 

6.2.6 Use of the Stack Pointer as a General-Purpose Register 
The processor stack pointer (SP, register 6) is, in most cases, the general register used for the stack 
operations related to program nesting. Autodecrement with register 6 "pushes" data onto the stack, and 
autoincrement with register 6 "pops" data off the stack. Since the SP is used by the processor for interrupt 
handling, it has a special attribute: autoincrements and autodecrements are always done in steps of two. 
Byte operations using the SP in this way leave odd addresses unmodified. 

6.3 INSTRUCTION SET 
The rest of this chapter describes the KDJII-A instruction set. The explanation of each instruction 
includes the instruction's mnemonic, octal code, binary code, a diagram showing the format of the 
instruction, a symbolic notation describing its execution and effect on the condition codes, a description, 
special comments, and examples. Each explanation is headed by its mnemonic. When the word instruction 
has a byte equivalent, the byte mnemonic also appears. 

The diagram that accompanies each instruction shows the octal op code, binary op code, and bit assign
ments. [Note that in byte instructions, the most significant bit (bit 15) is always a one.] 

Symbols: 

o = contents of v = Boolean OR 

SS or src = source address Y = exclusive OR 

DD or dst = destination address -., = Boolean not 

loc = location REG or R = register 

<-- = becomes B = byte 

T = "is popped from stack" • = 0 for word, 1 for byte 

1 = "is pushed onto stack" , = concatenated 

/\ = Boolean AND 

6-21 



6.3.1 Instruction Formats 
The following formats include all instructions used in the KD111-A. Refer to individual instructions for 
more detailed information. 

1. Single-Operand Group: 
(Figure 6-32) 

15 

2. Double-Operand Group: 

a. Group 1: 
(Figure 6-33) 

CLR, CLRB, COM, COMB, INC, INCB, 
DEC, DECB, NEG, NEGB, ADC, ADCB, 
SBC, SBCB, TST, TSTB, ROR, RORB, 
ROL, ROLB, ASR, ASRB, ASL, ASLB, 
JMP, SWAB, MFPS, MTPS, SXT, 
TSTSET, WRTLCK, XOR 

06 05 

Figure 6-32 Single-Operand Group 

BIT, BITB, BIC, BICB, BIS, BISB, 
ADD, SUB, MaY, MOYB, CMP, CMPB 

00 

MA·5191 

15 12 11 06 05 00 

b. Group 2: 
(Figure 6-34) 

15 

~P COD~ 

s~ : 

Figure 6-33 Double-Operand Group I 

ASH, ASHC, DIY, MUL 

09 08 06 05 

Figure 6-34 Double-Operand Group 2 

6-22 

~D : 

MR·5192 

00 

+ : 
MR-11554 



3. Program Control Group: 

a. Branch (all branch instructions) (Figure 6-35) 

15 08 07 00 

MR-5193 

Figure 6-35 Program Control Group Branch 

b. Jump to Subroutine (JSR) (Figure 6-36) 

15 09 08 06 05 00 

: D~ : 

MR-5194 

Figure 6-36 Program Control Group JSR 

c. Subroutine Return (RTS) (Figure 6-37) 

03 02 00 

MA-5195 

Figure 6-37 Program Control Group RTS 

d. Traps (breakpoint, lOT, EMT, TRAP, BPT) (Figure 6-38) 

15 00 

MA-5196 

Figure 6-38 Program Control Group Traps 

6-23 



e. Subtract 1 and Branch (if = 0) (SOB) (Figure 6-39) 

09 08 06 05 00 

: N~ 
MR-5197 

Figure 6-39 Program Control Group Subtract 

f. Mark (Figure 6-40) 

15 06 05 00 

o o 6 4 + : 
MA-l1S48 

Figure 6-40 Mark 

g. Call to Supervisor Mode (CSM) (Figure 6-41) 

15 06 05 00 

o o 7 o DO 

MA-11549 

Figure 6-41 Call to Supervisor Mode 

h. Set Priority Level (SPL) (Figure 6-42) 

15 03 02 00 

o o 3 N 

MR-l1S50 

Figure 6-42 Set Priority Level 

6-24 



4. Operate Group: 
(Figure 6-43) 

15 

HALT, WAIT, RTI, RESET, RTT, NOP, MFPT 

00 

MR-5198 

Figure 6-43 Operate Gr~up 

5. Condition Code Operators (all condition code instructions) 
(Figure 6-44) 

6. 

15 

Move To/From 
Previous 
Instruction/Data 
Space Group: 
(Figure 6-45) 

15 

06 05 04 03 02 01 00 

Figure 6-44 Condition Group 

MTPD, MTPI, MFPD, MFPI 

06 05 

Figure 6-45 Move To And From 
Previous Instruction/Data Space Group 

6-25 

00 

MR-11551 



6.3.2 Byte Instructions 
The KOJ II-A includes a full complement of instructions that manipulate byte operands. Since all KOJII
A addressing is byte-oriented, byte manipulation addressing is straightforward. Byte instructions with 
autoincrement or autodecrement direct addressing cause the specified register to be modified by one to 
point to the next byte of data. Byte operations in register mode access the low-order byte of the specified 
register. These provisions enable the KOJII-A to perform as either a word or byte processor. The 
numbering scheme for word and byte addresses in memory is shown in Figure 6-46. 

HIGH BYTE 
ADDRESS 

002001 

002003 

BYTE 1 BYTE 0 

BYTE 3 BYTE 2 

WORD OR BYTE 
ADDRESS 

002000 

002002 

MR-5201 

Figure 6-46 Byte Instructions 

The most significant bit (bit 15) of the instruction word is set to indicate a byte instruction. 

Example: 

Symbolic 

CLR 
CLRB 

Octal Code 

005000 
105000 

6-26 

Instruction Name 

Clear word 
Clear byte 



6.3.3 List of Instructions 
The following is a list of the K01l1-A instruction set. 

SINGLE-OPERAND 

General 

Mnemonic Instruction Op Code 

CLR(B) Clear destination .05000 
COM(B) Complement destination .05100 
INC(B) Increment destination .05200 
OEC(B) Decrement destination .05300 
NEG(B) Negate destination .05400 
TST(B) Test destination .05700 
WRTLCK Read/lock destination, 

write/unlock RO into 
destination 007300 

TSTSET Test destination, set low bit 007200 

Shift and Rotate 

Mnemonic Instruction Op Code 

ASR(B) Arithmetic shift right .06200 
ASL(B) Arithmetic shift left .06300 
ROR(B) Rotate right .06000 
ROL(B) Rotate left .06100 
SWAB Swap bytes 000300 

MuItiple-Precision 

Mnemonic Instruction Op Code 

ADC(B) Add carry .05500 
SBC(B) Subtract carry .05600 
SXT Sign extend 006700 

PS VVord Operators 

Mnemonic Instruction Op Code 

MFPS Move byte from PS 106700 
MTPS Move byte to PS 1064SS 

6-27 



DOUBLE-OPERAND 

General 

Mnemonic Instruction Op Code 

MOV(B) Move source to destination .ISSDD 
CMP(B) Compare source to destination .2SSDD 
ADD Add source to destination 06SSDD 
SUB Subtract source from destination 16SSDD 
ASH Arithmetic shift 072RSS 
ASHC Arithmetic shift combined 073RSS 
MUL Multiply 070RSS 
DIV Divide 071RSS 

Logical 

Mnemonic Instruction Op Code 

BIT(B) Bit test .3SSDD 
BIC(B) Bit clear .4SSDD 
BIS(B) Bit set .5SSDD 
XOR Exclusive OR 074RDD 

PROGRAM CONTROL Op Code 
or 

Mnemonic Instruction Base Code 

Branch 

BR Branch (unconditional) 000400 
BNE Branch if not equal (to zero) 001000 
BEQ Branch if equal (to zero) 001400 
BPL Branch if plus 100000 
BMI Branch if minus 100400 
BVC Branch if overflow is clear 102000 
BVS Branch if overflow is set 102400 
BCC Branch if carry is clear 103000 
BCS Branch if carry is set 103400 

Signed Conditional Branch 

Op Code 
or 

Mnemonic Instruction Base Code 

BGE Branch if greater than or equal 002000 
(to zero) 

BLT Branch if less than (zero) 002400 
BGT Branch if greater than (zero) 003000 
BLE Branch if less than or equal 003400 

(to zero) 

6-28 



Unsigned Conditional Branch 

Mnemonic 

BHI 
BLOS 
BHIS 
BLO 

Instruction 

Branch if higher 
Branch if lower or same 
Branch if higher or same 
Branch if lower 

Jump and Subroutine 

Mnemonic Instruction 

Jump 
Jump to subroutine 
Return from subroutine 

JMP 
JSR 
RTS 
SOB Subtract one and branch (if =1= 0) 

Trap and Interrupt 

Mnemonic 

EMT 
TRAP 
BPT 
lOT 
RTI 
RTf 

Instruction 

Emulator trap 
Trap 
Breakpoint trap 
Input/output trap 
Return from interrupt 
Return from interrupt 

Miscellaneous Program Control 

Mnemonic 

CSM 
MARK 
SPL 

Instruction 

Call to supervisor mode 
Mark 
Set Priority Level 

6-29 

Op Code 
or 

Base Code 

101000 
101400 
103000 
103400 

Op Code 
or 

Base Code 

0001DD 
004RDD 
00020R 
077ROO 

Op Code 
or 

Base Code 

104000-104377 
104400-104777 
000003 
000004 
000002 
000006 

Op Code 
or 

Base Code 

0070DD 
0064NN 
00023N 



MISCELLANEOUS 

Mnemonic 

HALT 
WAIT 
RESET 
MFPT 
MTPD 
MTPI 
MFPD 
MFPI 

Instruction 

Halt 
Wait for interrupt 
Reset external bus 
Move _ processor type 
Move to previous data space 
Move to previous instruction space 
Move from previous data space 
Move from previous instruction space 

CONDITION CODE OPERATORS 

Mnemonic Instruction 

CLC Clear C 
CLY Clear Y 
CLZ Clear Z 
CLN Clear N 
CCC Clear all CC bits 
SEC Set C 
SEY Set Y 
SEZ Set Z 
SEN Set N 
SCC Set all CC bits 
NOP No operation 

6.3.4 Single-Operand Instructions 

Op Code 
or 

Base Code 

000000 
000001 
000005 
000007 
1066SS 
0066SS 
0065SS 
1065SS 

Op Code 
or 

Base Code 

000241 
000242 
000244 
000250 
000257 
000261 
000262 
000264 
000270 
000277 
000240 

The KDJ 11-A instructions that involve only one operand are described in the paragraphs that follow. 

6-30 



6.3.4.1 General -

CLR 
CLRB 

CLEAR DESTINATION 

15 

I 0/1 0 
: o : 

Operation: 

Condition Codes: 

Description: 

Example: 

o : < o : 

(dst) - 0 

N: cleared 
Z: set 
V: cleared 
C: cleared 

1 

06 05 00 

: o : 0 o I 
MR·11504 

Word: The contents of the specified destination are replaced with Os. 
Byte: Same. 

CLR Rl 

Before 

(R1) = 177777 

NZVC 
1 1 1 1 

6-31 

After 

(R 1) = 000000 

NZVC 
o 100 



COM 
COMB 

COMPLEMENT DST 

15 06 05 00 

011: 0 : 0 : 0 : 1 : 0 : 1 : 0 : 0 : 1 

Operation: 

Condition Codes: 

Descri ption: 

Example: 

INC 
INCB 

INCREMENT DST 

MR-11505 

(dst) +- -- (dst) 

N: set if most significant bit of result is set; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: cleared 
C: set 

Word: Replaces the contents of the destination address by their logical 
complement. (Each bit equal to 0 is set and each bit equal to 1 is cleared.) 

Byte: Same. 

COMRO 

Before After 

(RO) = 013333 (RO) = 164444 

NZVC NZVC 
o 1 1 0 100 1 

-052DD 

15 06 05 00 

Operation: 

Condition Codes: 

(dst) +- (dst) + 1 

N: set if result is < 0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: set if (dst) held 077777; cleared otherwise 
C: not affected 

6-32 

MR-11506 



Description: 

Example: 

DEC 
DECB 

Operation: 

DECREMENT oST 

Condition Codes: 

Description: 

Example: 

Word: Add 1 to the contents of the destination. 
Byte: Same. 

INC R2 

Before 

(R2) = 000333 

NZVC 
o 0 0 0 

(dst) +- (dst) - 1 

After 

(R2) = 000334 

NZVC 
o 0 0 0 

06 05 

N: set if result is < 0; cleared otherwise 
Z: set if result is 0; cleared otherwise 

: ~D : 

V: set if (dst) was 100000; cleared otherwise 
C: not affected 

Word: Subtract 1 from the contents of the destination. 
Byte: Same. 

DEC R5 

Before 

(R5) = 000001 

NZVC 
1 000 

6-33 

After 

(R5) = 000000 

NZVC 
o 1 0 0 

-05300 

00 

MR-11507 



NEG 
NEGB 

NEGATE OST -05400 

15 06 05 00 

0/1: 0 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : 0 

Operation: 

Condition Codes: 

Description: 

Example: 

(dst) <- - (dst) 

N: set if result is < 0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: set if result is 100000; cleared otherwise 
C: cleared if result is 0; set otherwise 

MR-11503 

Word: Replaces the contents of the destination address by its 2's comple
ment. Note that 100000 is replaced by itself. (In 2's complement notation the 
most negative number has no positive counterpart.) 

Byte: Same. 

NEGRO 

Before 

(RO) = 000010 

NZVC 
o 0 0 0 

6-34 

After 

(RO) = 177770 

NZVC 
100 1 



TST 
TSTB 

TEST DST -05700 

15 06 05 00 

0/1 : 0: 0: 0: 1 : 0: 1 : 1 : 1 : 1 I : ~D : 

Operation: 

Condition Codes: 

Description: 

Example: 

WRTLCK 

(dst) +- (dst) 

N: set if result is < 0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: cleared 
C: cleared 

MR-11501 

Word: Sets the condition codes Nand Z according to the contents of the 
destination address; the contents of dst remain unmodified. 

Byte: Same. 

TST Rl 

Before After 

(Rl) = 012340 (Rl) = 012340 

NZVC NZVC 
o 0 1 1 000 0 

READ/LOCK DESTINATION 
WRITE/UNLOCK RO INTO DESTINATION 007300 

00 15 

o 0 o 

Operation: 

Condition Codes: 

Description: 

o 

(dst) +- (RO) 

N: set if RO < 0 
Z: set if RO = 0 
V: cleared 
C: unchanged 

06 05 

o 
i 

DO 

MR-'1498 

Writes contents of RO into destination using bus lock. If mode is 0, traps to 
10. 

6-35 



TSTSET 

Operation: 

TEST DESTINATION AND SET LOW BIT 

15 

o 0 o o 

06 05 

o o 

(RO) - (dst), (dst) - (dst) V 000001 (octal) 

Condition Codes: N: set if RO < 0 
Z: set if RO = 0 
V: cleared 
C: gets contents of destination bit O. 

007200 

00 

MR-'1499 

Description: Reads/locks destination word and stores it in RO. Writes/unlocks (RO) V 
into destination. If mode is 0, traps to 10. 

6.3.4.2 Shifts and Rotates - Scaling data by factors of two is accomplished by the shift instructions: 

ASR - Arithmetic shift right 

ASL - Arithmetic shift left 

The sign bit (bit 15) of the operand is reproduced in shifts to the right. The low-order bit is filled with Os in 
shifts to the left. Bits shifted out of the C-bit, as shown in the following instructions, are lost. 

The rotate instructions operate on the destination word and the C-bit as though they formed a 17-bit 
"circular buffer." These instructions facilitate sequential bit testing and detailed bit manipulation. 

6-36 



ASR 
ASRB 

ARITHMETIC SHIFT RIGHT -062DD 

15 06 05 00 

all: a : a : a : 1 : 1 : a : a : 1 : a 

MR-11502 

Operation: (dst) +- (dst) shifted one place to the right 

Condition Codes: N: set if high-order bit of result is set (result < 0); cleared otherwise 

Description: 

Example: 

Z: set if result = 0; cleared otherwise 

V: loaded from exclusive OR of N-bit and C-bit (as set by the completion 
of the shift operation) 

C: loaded from low-order bit of destination 

Word: Shifts all bits of the destination right one place. Bit 15 is reproduced. 
The C-bit is loaded from bit 0 of the destination. ASR performs signed 
division of the destination by 2. 

Byte: Same. 

00 

I--[J-
BYTE: 

MR·5209 

6-37 



ASL 
ASLB 

ARITHMETIC SHIFT LEFT -06300 

15 06 05 00 

Operation: 

Condition Codes: 

Description: 

Example: 

WORD: 

15 

8-1 
BYTE: 

15 

8-1 

MR-11510 

(dst) +- (dst) shifted one place to the left 

N: set if high-order bit of result is set (result < 0); cleared otherwise 

Z: set if result = 0; cleared otherwise 

V: loaded with exclusive OR of N-bit and C-bit (as set by the completion of 
the shift operation) 

C: loaded with high-order bit of destination 

Word: Shifts all bits of the destination left one place. Bit 0 is loaded with a O. 
The C-bit of the status word is loaded from the most significant bit of the 
destination. ASL performs a signed multiplication of the destination by 2 
with overflow indication. 

Byte: Same. 

ODD ADDRESS 08 07 EVEN ADDRESS 00 

~°o-I 
MR-5211 

6-38 



ROR 
RORB 

Operation: 

ROTATE RIGHT 

15 

0/1 a 

Condition Codes: 

Description: 

Example: 

WORD: 

&1 15 

BYTE: 

• 15 

: 

06 05 

a a a a a a 

(dst) - (dst) rotate right one place 

: : ~O : 

06000 

00 

MR-11500 

N: set if high-order bit of result is set (result < 0); cleared otherwise 

Z: set if all bits of result = 0; cleared otherwise 

V: loaded with exclusive OR of N-bit and C-bit (as set by the completion of 
the rotate operation) 

C: loaded with low-order bit of destination 

Word: Rotates all bits of the destination right one place. Bit 0 is loaded into 
the C-bit and the previous contents of the C-bit are loaded into bit 15 of the 
destination. 

Byte: Same. 

00 

~ , ~ 
08 07 00 

O~D I ( EV:EN 

MR-5213 

6-39 



ROL 
ROLB 

ROTATE LEFT 

15 06 05 00 

Operation: 

Condition Codes: 

Description: 

Example: 

WORD: 

I 15 

&1 
BYTE: 

15 

~D 
MR-11509 

(dst) +- (dst) rotate left one place 

N: set if high-order bit of result word is set (result < 0); cleared otherwise 

Z: set if all bits of result word = 0; cleared otherwise 

V: loaded with exclusive OR of the N-bit and C-bit (as set by the comple
tion of the rotate operation) 

C: loaded with high-order bit of destination 

Word: Rotates all bits of the destination left one place. Bit 15 is loaded into 
the C-bit of the status word and the previous contents of the C-bit are loaded 
into bit 0 of the destination. 

Byte: Same. 

• DST 00 

.~ 
1 

.~ 1 
08 07 00 

O~D ] I EV:EN 

MR-5215 

6-40 



SWAB 

SWAP BYTES 

15 

o : o : o : 

Operation: 

Condition Codes: 

Description: 

Example: 

000300 

06 05 00 

o : o : o : o : o : 1 : 1 ~O : 
MR-1150S 

byte l/byte 0 ;- byte O/byte 1 

N: set if high-order bit of low-order byte (bit 7) of result is set; cleared 
otherwise 

Z: set if low-order byte of result = 0; cleared otherwise 

V: cleared 

C: cleared 

Exchanges high-order byte and low-order byte of the destination word. (The 
destination must be a word address.) 

SWAB Rl 

Before 

(Rl) = 077777 

NZVC 
1 1 1 1 

6-41 

After 

(Rl) = 177577 

NZVC 
o 0 0 0 



6.3.4.3 Multiple-Precision - It is sometimes necessary to do arithmetic operations on operands consid
ered as multiple words or bytes. The KDJII-A makes special provision for such operations with the 
instructions ADC (add carry) and SBC (subtract carry) and their byte equivalents. 

For example, two 16-bit words may be combined into a 32-bit double-precision word and added or 
subtracted as shown below. 

32-BIT WORD 

( 
..-.... 

I 
31 16 15 D 

OPERANDI A1 I I 

AD I 

(~-----------------------------~---------------------------~1 
31 16 ;.;:15~ _____________ ..;;,D 

OPERANDI~ _______ B_1 _______ ~1 ~I _______ B_D ______ ~I 

31 16 ;.;:15~ _____________ ~D 

RESULTIL--___ -----" L....--I ___ ----J, 
Example: 

The addition of -1 and -1 could be performed as follows. 

-1 = 37777777777 

(Rl) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777 

ADD Rl,R2 
ADC R3 
ADD R4,R3 

1. After (R 1) and (R2) are added, 1 is loaded into the C-bit. 
2. The ADC instruction adds the C-bit to (R3); (R3) = O. 
3. The (R3) and (R4) are added. 
4. The result is 37777777776, or -2. 

6-42 

MR-5217 



ADC 
ADCB 

ADD CARRY -05500 

15 06 05 00 

0/< a : a : a : 1 : a : 1 : 1 : a : 1 

Operation: 

Condition Codes: 

Description: 

Example: 

(dst) - (dst) + (C-bit) 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 

MR-1157S 

V: set if (dst) was 077777 and (C) was 1; cleared otherwise 
C: set if (dst) was 177777 and (C) was 1; cleared otherwise 

Word: Adds the contents of the C-bit to the destination. This permits the 
carry from the addition of the low-order words to be carried to the high-order 
result. 

Byte: Same. 

Double-precision addition may be done with the following instruction 
sequence. 

ADD 
ADC 
ADD 

AO,BO 
Bl 
Al,Bl 

6-43 

;add low-order parts 
;add carry into high-order 
;add high-order parts 



SBC 
SBCB 

SUBTRACT CAR RY -05600 

15 06 05 00 

Operation: 

Condition Codes: 

Description: 

Example: 

SXT 

SIGN EXTEND 

15 

Operation: 

Condition Codes: 

(dst) +- (dst) - (C) 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if (dst) was 100000; cleared otherwise 
C: set if (dst) was 0 and C was 1; cleared otherwise 

MA-11576 

Word: Subtracts the contents of the C-bit from the destination. This permits 
the carry from the subtraction of two low-order words to be subtracted from 
the high-order part of the result. 

Byte: Same. 

Double-precision subtraction is done by: 

SUB 
SBC 
SUB 

AO,BO 
Bl 
Al,Bl 

(dst) +- 0 if N-bit is clear 
(dst) +- 1 if N-bit is set 

N: not affected 
Z: set if N-bit is clear 
V: cleared 
C: not affected 

6-44 

06 05 

006700 

00 

MA·11574 



Description: 

Example: 

If the condition code bit N is set, a -1 is placed in the destination operand; if 
the N-bit is clear, a 0 is placed in the destination operand. This instruction is 
particularly useful in multiple-precision arithmetic because it permits the sign 
to be extended through multiple words. 

SXTA 

Before 

(A) = 012345 

NZVC 
1 000 

After 

(A) = 177777 

NZVC 
1 000 

6.3.4.4 PS Word Operators -

MFPS 

MOVE BYTE FROM PROCESSOR STATUS WORD 106700 

00 15 

I 1 : a : a : 

Operation: 

Condition Codes: 

Description: 

Example: 

08 07 

a : 1 : 1 : 0 : 1 I 1 : 1 

(dst) --- PS 
dst lower 8 bits 

N: set if PS <07> = 1; cleared otherwise 
Z: set if PS <07:00> = 0; cleared otherwise 
V: cleared 
C: not affected 

MR-t 1495 

The 8-bit contents of the PS are moved to the effective destination. If the 
destination is mode 0, PS bit 07 is sign-extended through the upper byte of 
the register. The destination operand address is treated as a byte address. 

MFPS RO 

Before 

RO [0] 
PS [000014] 

6-45 

After 

RO [000014] 
PS [000000] 



MTPS 

MOVE BYTE TO PROCESSOR STATUS WORD 1064SS 

Operation: 

Condition Codes: 

Description: 

Example: 

08 07 00 

: S~ 
MR·11496 

PS <-- (src) 

Set according to effective SRC operand bits <03:00> 

The eight bits of the effective operand replace the current contents of the 
lower byte of the PS. The source operand address is treated as a byte address. 
Note: The T-bit (PS bit 04) cannot be set with this instruction. The SRC 
operand remains unchanged. This instruction can be used to change the 
priority bits (PS bits <07 :05» in the PS only in kernel mode. If not in kernel 
mode, PS bits <07:05> cannot be changed. 

MTPS Rl 

Before 

(Rl) = 000777 
(PS) = XXXOOO 

NZVC 
o 0 0 0 

After 

(Rl) = 000777 
(PS) = XXX357 

NZVC 
1 1 1 1 

6.3.5 Double-Operand Instructions 
Double-operand instructions save instructions (and time) since they eliminate the need for "load" and 
"save" sequences such as those used in accumulator-oriented machines. 

6-46 



6.3.5.1 General-

MOV 
MOVB 

MOVE SOURCE TO DESTINATION .1SSDD 

15 12 11 06 05 00 

Operation: 

Condition Codes: 

Description: 

Example: 

S~ : 

(dst) +- (src) 

N: set if (src) < 0; cleared otherwise 
Z: set if (src) = 0; cleared otherwise 
V: cleared 
C: not affected 

MR-11497 

Word: Moves the source operand to the destination location. The previous 
contents of the destination are lost. Contents of the source address are not 
affected. 

Byte: Same as MOV. The MOYB to a register (unique among byte instruc
tions) extends the most significant bit of the low-order byte (sign extension). 
Otherwise, MOYB operates on bytes exactly as MOY operates on words. 

MOY XXX,Rl 

MOY #20,RO 

MOY @#20,-(R6) 

MOY (R6)+,@#177566 

MOY Rl,R3 

MOYB @#177562,@#177566 

6-47 

;loads register 1 with the con
tents of memory location; 
XXX represents a program
mer-defined mnemonic used 
to represent a memory 
location 

;loads the number 20 into reg
ister 0; # indicates that the 
value 20 is the operand 

;pushes the operand contained 
in location 20 onto the stack 

;pops the operand off a stack 
and moves it into memory 
location 177566 (terminal 
print buffer) 

;performs an inter-register 
transfer 

;moves a character from the 
terminal keyboard buffer to 
the terminal printer buffer 



CMP 
CMPB 

Operation: 

COMPARE SRC TO DST 

15 12 11 

(src) - (dst) 

06 05 00 

: ~D : 

MA-11562 

Condition Codes: N: set if result < 0; cleared otherwise 

Description: 

Z: set if result = 0; cleared otherwise 

V: set if there was arithmetic overflow; that is, operands were of opposite 
signs and the sign of the destination was the same as the sign of the 
result; cleared otherwise 

C: cleared if there was a carry from the result's most significant bit; set 
otherwise 

Compares the source and destination operands and sets the condition codes, 
which may then be used for arithmetic and logical conditional branches. Both 
operands are not affected. The only action is to set the condition codes. The 
compare is customarily followed by a conditional branch instruction. Note: 
Unlike the subtract instruction, the order of operation is (src) - (dst), not 
(dst) - (src). 

6-48 



ADD 

ADD SRC TO DST 

Operation: 

Condition Codes: 

Description: 

Example: 

06SSDD 

12 11 06 05 00 

o 
: S~ 

(dst) +- (src) + (dst) 

N: set if result < 0; cleared otherwise 

Z: set if result = 0; cleared otherwise 

V: set if there was arithmetic overflow as a result of the operation; that is, 
both operands were of the same sign and the result was of the opposite 
sign; cleared otherwise 

C: set if there was a carry from the result's most significant bit; cleared 
otherwise 

Adds the source operand to the destination operand and stores the result at 
the destination address. The original contents of the destination are lost. The 
contents of the source are not affected. Two's complement addition is per
formed. Note: There is no equivalent byte mode. 

Add to register: 

Add to memory: 

Add register to register: 

Add memory to memory: 

ADD 20,RO 

ADD Rl,XXX 

ADD Rl,R2 

ADD @# 1 77 50,XXX 

XXX is a programmer-defined mnemonic for a memory location. 

6-49 



SUB 

SUBTRACT SRC FROM DST 16SSDD 

Operation: 

Condition Codes: 

Description: 

Example: 

12 11 06 05 00 

~D : 

(dst) <--- (dst) - (src) 

N: set if result < 0; cleared otherwise 

Z: set if result = 0; cleared otherwise 

V: set if there was arithmetic overflow as a result of the operation; that is, if 
operands were of opposite signs and the sign of the source was the same 
as the sign of the result; cleared otherwise 

C: cleared if there was a carry from the result's most significant bit; set 
otherwise 

Subtracts the source operand from the destination operand and leaves the 
result at the destination address. The original contents of the destination are 
lost. The contents of the source are not affected. In double-precision arithme
tic the C-bit, when set, indicates a "borrow." Note: There is no equivalent 
byte mode. 

SUB R1,R2 

Before After 

(R 1) = 011111 (R 1) = 011111 
(R2) = 012345 (R2) = 001234 

NZVC NZVC 
1 1 1 1 o 0 0 0 

6-50 



ASH 

ARITHMETIC SHIFT 

15 

o 

Operation: 

Condition Codes: 

Description: 

ASHC 

09 08 

o o R 

06 05 

SS 

072RSS 

00 

MR11560 

R +- R shifted arithmetically NN places to the right or left where NN = 

(src) 

N: set if result < 0 
Z: set if result = 0 
V: set if sign of register changed during shift 
C: loaded from last bit shifted out of register 

The contents of the register are shifted right or left the number of times 
specified by the source operand. The shift count is taken as the low-order six 
bits of the source operand. This number ranges from -32 to +31. Negative is 
a right shift and positive is a left shift. 

ARITHMETIC SHIFT COMBINED .073RSS 

15 

Operation: 

Condition Codes: 

Description: 

09 08 06 05 00 

o R SS 

MR·11561 

R, R V 1 +- R, R V 1 
The double word is shifted NN places to the right or left where NN = (src) 

N: set if result < 0 
Z: set if result = 0 
V: set if sign bit changes during shift 
C: loaded with high-order bit when left shift; loaded with low-order bit 

when right shift (loaded with the last bit shifted out of the 32-bit 
operand) 

The contents of the register and the register ORed with 1 are treated as one 
32-bit word. R V 1 (bits <15:00» and R (bits <31: 16» are shifted right or 
left the number of times specified by the shift count. The shift count is taken 
as the low-order six bits of the source operand. This number ranges from -32 
to +31. Negative is a right shift and positive is a left shift. 

When the register chosen is an odd number, the register and the register 
ORed with 1 are the same. In this case, the right shift becomes a rotate. The 
16-bit word is rotated right the number of times specified by the shift count. 

6-51 



MUL 

Operation: 

MULTIPLY 

15 

o 

Condition Codes: 

Description: 

DIV 

Operation: 

DIVIDE 

15 

o 

Condition Codes: 

Description: 

09 08 

0 0 0 

R, R V 1 <- R X (src) 

N: set if product < 0 
Z: set if product = 0 

070RSS 

06 05 00 

R S:S 

MR-11572 

V: cleared C: set if the result is less than -2 * * 15 or greater than or equal 
to 2 **15 -1. 

The contents of the destination register and source taken as 2's complement 
integers are multiplied and stored in the destination register and the suc
ceeding register, if R is even. If R is odd, only the low-order product is stored. 
Assembler syntax is: MUL S,R. (Note that the actual destination is R, R V 
1, which reduces to just R when R is odd. 

071 RSS 

09 08 06 05 00 

0 0 R : S~ 
MR-11573 

R, R V 1 <- R, R V lj(src) 

N: set if quotient < 0 

Z: set if quotient = 0 

V: set if source = 0 or if the absolute value of the register is larger than the 
absolute value of the instruction in the source. (In this case the instruc
tion is aborted because the quotient would exceed 15 bits.) 

C: set if divide by zero is attempted. 

The 32-bit 2's complement integer in Rand R V 1 is divided by the source 
operand. The quotient is left in R; the remainder is of the same sign as the 
dividend. R must be even. 

6-52 



6.3.5.2 Logical - These instructions have the same format as those in the double-operand arithmetic 
group. They permit operations on data at the bit level. 

BIT 
BITB 

BIT TEST 

15 12 11 06 05 00 

Operation: 

Condition Codes: 

Description: 

Example: 

~S : ~D : 

MA-11565 

(src) 1\ (dst) 

N: set if high-order bit of result set; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

Performs logical AND comparison of the source and destination operands 
and modifies condition codes accordingly. Neither the source nor the destina
tion is affected. The BIT instruction may be used to test whether any of the 
corresponding bits set in the destination are also set in the source, or whether 
all corresponding bits set in the destination are clear in the source. 

BIT #30,R3 

R3 = 0 000 000 000 011 000 

Before 

NZVC 
1 1 1 1 

6-53 

;test bits three and four of R3 to see if 
both are off. 

After 

NZVC 
000 1 



BIC 
BICB 

BIT CLEAR 

15 12 11 06 05 00 

Operation: 

Condition Codes: 

Descri ption: 

Example: 

s~ : 

(dst) - -(src) 1\ (dst) 

N: set if high-order bit of result set; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

MR-11557 

Clears each bit in the destination that corresponds to a set bit in the source. 
The original contents of the destination are lost. The contents of the source 
are not affected. 

BIC R3,R4 

Before After 

(R3) = 001234 (R3) = 001234 
(R4) = 001111 (R4) = 000101 

NZVC 
1 1 1 1 

Before: 

After: 

NZVC 
000 1 

(R3) = 0 000 001 010 011 100 
(R4) = 0 000 001 001 001 001 

(R4) = 0 000 000 001 000 001 

6-54 



HIS 
HISH 

BIT SET 

15 12 11 06 05 00 

Operation: 

Condition Codes: 

Description: 

Example: 

S~ ~D : 

(dst) -- (src) V (dst) 

N: set if high-order bit of result set; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

MR-11558 

Performs an inclusive OR operation between the source and destination 
operands and leaves the result at the destination address; that is, correspond
ing bits set in the source are set in the destination. The contents of the 
destination are lost. 

BIS RO,R1 

Before After 

(RO) = 001234 (RO) = 001234 
(R 1) = 00 1111 (Rl) = 001335 

NZVC 
o 0 0 0 

Before: 

After: 

NZVC 
o 0 0 0 

(RO) = 0 000 001 010 011 100 
(Rl) = 0 000 001 001 001 001 

(Rl) = 0 000 001 011 011 101 

6-55 



XOR 

EXCLUSIVE OR 

15 

I 0 > > 
Operation: 

Condition Codes: 

Description: 

Example: 

09 08 06 05 

> > : 0 : 0 : R 

(dst) +- (reg) Y (dst) 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

074ROO 

00 

: 0:0 : 
MR-11559 

The exclusive OR of the register and destination operand is stored in the 
destination address. The contents of the register are not affected. The assem
bler format is XOR R,D. 

XOR RO,R2 

Before After 

(RO) = 001234 (RO) = 001234 
(R2) = 001111 (R2) = 000325 

NZVC 
1 1 1 1 

Before: 

After: 

NZVC 
000 1 

(RO) = 0 000 001 010 011 100 
(R2) = 0 000 001 001 001 001 

(R2) = 0 000 000 011 010 101 

6.3.6 Program Control Instructions 
The following paragraphs describe the KDJII-A instructions that affect program control. 

6.3.6.1 Branches - These instructions cause a branch to a location defined by the sum of the offset 
(multiplied by 2) and the current contents of the program counter if: 

1. The branch instruction is unconditional. 

2. It is conditional and the conditions are met after testing the condition codes (NZVC). 

The offset is the number of words from the current contents of the PC, forward or backward. Note that 
the current contents of the PC point to the word following the branch instruction. 

6-56 



Although the offset expresses a byte address, the PC is expressed in words. The offset is automatically 
multiplied by 2 and sign-extended to express words before it is added to the Pc. Bit 7 is the sign of the 
offset. If it is set, the offset is negative and the branch is done in the backward direction. If it is not set, the 
offset is positive and the branch is done in the forward direction. 

The 8-bit offset allows branching in the backward direction by 200 (octal) words (400 octal bytes) from 
the current PC, and in the forward direction by 177 (octal) words (376 octal bytes) from the current Pc. 

The KDJ 11-A assembler typically handles address arithmetic for the user and computes and assembles the 
proper offset field for branch instructions in the form: 

Bxx loc 

Bxx is the branch instruction and loc is the address to which the branch is to be made. The assembler gives 
an error indication in the instruction if the permissible branch range is exceeded. Branch instructions have 
no effect on condition codes. Conditional branch instructions where the branch condition is not met are 
treated as Naps. 

BR 

BRANCH (UNCONDITIONALI 000400 PLUS OFFSET 

Operation: 

Condition Codes: 

Description: 

Example: 

08 07 00 

o : 0 : 0 : 1 

MR-5231 

PC ;- PC + (2 X offset) 

Not affected 

Provides a way of transferring program control within a range of -128 to 
+ 127 words with a one word instruction. 

New PC address = updated PC + (2 X offset) 

Updated PC = address of branch instruction +2 

With the branch instruction at location 500, the following offsets apply. 

New PC Address Offset Code Offset (decimal) 

474 375 -3 
476 376 -2 
500 377 -1 
502 000 0 
504 001 +1 
506 002 +2 

6-57 



BNE 

BRANCH IF NOT EQUAL ITO ZERO) 001000 PLUS OFFSET 

Operation: 

Condition Codes: 

Description: 

Example: 

BEQ 

08 07 00 

MR-5232 

PC <- PC + (2 X offset) if Z = 0 

Not affected 

Tests the state of the Z-bit and causes a branch if the Z-bit is clear. BNE is 
the complementary operation of BEQ. It is used to test: (1) inequality follow
ing a CMP, (2) that some bits set in the destination were also in the source 
following a BIT operation, and (3) generally, that the result of the previous 
operation was not O. 

Branch to C if A *' B 

CMP A,B 
BNEC 

Branch to C if A + B *' 0 

ADD A,B 
BNEC 

;compare A and B 
;branch if they are not equal 

;add A to B 
;branch if the result is not 
equal to 0 

BRANCH IF EQUAL ITO ZERO) 001400 PLUS OFFSET 

15 

Operation: 

Condition Codes: 

Description: 

08 07 00 

MR-5233 

PC <- PC + (2 X offset) if Z = 1 

Not affected 

Tests the state of the Z-bit and causes a branch jf Z is set. It is used to test: 
(1) equality following a CMP operation, (2) that no bits set in the destination 
were also set in the source following a BIT operation, and (3) generally, that 
the result of the previous operation was o. 

6-58 



Example: 

BPL 

BRANCH I F PLUS 

15 

Branch to C if A = B (A - B = 0) 

CMPA,B 
BEQC 

Branch to C if A + B = 0 

ADD A,B 
BEQC 

OB 07 

;compare A and B 
;branch if they are equal 

;add A to B 
;branch if the result = 0 

100000 PLUS OFFSET 

00 

1 : a : a : a : a : a : a : a I 

Operation: 

Condition Codes: 

Description: 

BMI 

BRANCH IF MINUS 

Operation: 

Condition Codes: 

Description: 

PC - PC + (2 X offset) if N = 0 

Not affected 

Tests the state of the N-bit and causes a branch if N is clear (positive result). 
BPL is the complementary operation of BM!. 

100400 PLUS OFFSET 

OB 07 00 

MR-5235 

PC - PC + (2 X offset) if N = 1 

Not affected 

Tests the state of the N-bit and causes a branch if N is set. It is used to test 
the sign (most significant bit) of the result of the previous operation), branch
ing if negative. BMI is the complementary function of BPL. 

6-59 



Bve 

BRANCH IF OVERFLOW IS CLEAR 102000 PLUS OFFSET 

Operation: 

Condition Codes: 

Description: 

BVS 

OB 07 00 

o : 0 : 0 : 0 : 1 : 0 : 0 

MR-5236 

PC +- PC + (2 X offset) if V = 0 

Not affected 

Tests the state of the V-bit and causes a branch if the V-bit is clear. BVC is 
complementary operation to BVS. 

BRANCH IF OVERFLOW IS SET 102400 PLUS OFFSET 

15 

Operation: 

Condition Codes: 

Description: 

Bee 

OB 07 00 

MR-S237 

PC +- PC + (2 X offset) if V = 1 

Not affected 

Tests the state of the V-bit (overflow) and causes a branch if V is set. BVS is 
used to detect arithmetic overflow in the previous operation. 

BRANCH IF CARRY IS CLEAR 103000 PLUS OFFSET 

Operation: 

Condition Codes: 

Descri ption: 

00 

MR-5238 

PC +- PC + (2 X offset) if C = 0 

Not affected 

Tests the state of the C-bit and causes a branch if C is clear. BCC is the 
complementary operation of BCS. 

6-60 



BCS 

BRANCH IF CARRY IS SET 103400 PLUS OFFSET 

15 

Operation: 

Condition Codes: 

Description: 

00 

MA-5239 

PC - PC + (2 X offset) if C = 1 

Not affected 

Tests the state of the C-bit and causes a branch if C is set. It is used to test for 
a carry in the result of a previous operation. 

6.3.6.2 Signed Conditional Branches - Particular combinations of the condition code bits are tested with 
the signed conditional branches. These instructions are used to test the results of instructions in which the 
operands were considered as signed (2's complement) values. 

Note that the sense of signed comparisons differs from that of unsigned comparisons in that in signed, 16-
bit, 2's complement arithmetic the sequence of values is as follows. 

largest 
positive 

smallest 
negative 

077777 
077776 

000001 
000000 
177777 
177776 

100001 
100000 

Whereas, in unsigned, 16-bit arithmetic, the sequence is considered to be: 

highest 

lowest 

177777 

000002 
000001 
000000 

6-61 



BGE 

BRANCH IF GREATER THAN OR EQUAL 
(TO ZERO) 

002000 PLUS OFFSET 

15 

Operation: 

Condition Codes: 

Description: 

BLT 

08 07 00 

MA-5240 

PC +- PC + (2 X offset) if N Y V = 0 

Not affected 

Causes a branch if N and V are either both clear or both set. BGE is the 
complementary operation of BL T. Thus, BGE will always cause a branch 
when it follows an operation that caused addition of two positive numbers. 
BGE will also cause a branch on a 0 result. 

BRANCH IF LESS THAN (ZERO) 002400 PLUS OFFSET 

15 08 07 00 

o : 0 : 0 : 0 : 0 : 1 : 0 : 1 

Operation: 

Condition Codes: 

Description: 

MR·5241 

PC +- PC + (2 X offset) if N Y V = 1 

Not affected 

Causes a branch if the exclusive OR of the N- and V-bits is one. Thus, BLT 
will always branch following an operation that added two negative numbers, 
even if overflow occurred. In particular, BLT will always cause a branch if it 
follows a CMP instruction operating on a negative source and a positive 
destination (even if overflow occurred). Further, BLT will never cause a 
branch when it follows a CMP instruction operating on a positive source and 
negative destination. BLT will not cause a branch if the result of the previous 
operation was 0 (without overflow). 

6-62 



BGT 

BRANCH IF GREATER THAN IZEROI 003000 PLUS OFFSET 

15 

Operation: 

Condition Codes: 

Descri ption: 

BLE 

08 07 00 

PC <- PC + (2 X offset) if Z V (N V- V) = 0 

Not affected 

Operation of BGT is similar to BGE, except that BGT will not cause a branch 
on a 0 result. 

BRANCH IF LESS THAN OR EQUAL ITO ZEROI 003400 PLUS OFFSET 

15 

Operation: 

Condition Codes: 

Description: 

08 07 00 

MR-5243 

PC <- PC + (2 X offset) if Z V (N V- V) = 1 

Not affected 

Operation is similar to BLT, but in addition will cause a branch if the result 
of the previous operation was O. 

6.3.6.3 Unsigned Conditional Branches - The unsigned conditional branches provide a means for testing 
the result of comparison operations in which the operands are considered as unsigned values. 

BHI 

BRANCH I F HIGHER 

Operation: 

Condition Codes: 

Description: 

101000 PLUS OFFSET 

00 

MA-S244 

PC <- PC + (2 X offset) if C = 0 and Z = 0 

Not affected 

Causes a branch if the previous operation caused neither a carry nor a 0 
result. This will happen in comparison (eMP) operations as long as the source 
has a higher unsigned value than the destination. 

6-63 



BLOS 

BRANCHIFLOWERORSAME 101400 PLUS OFFSET 

00 

Operation: 

Condition Codes: 

Description: 

BHIS 

08 07 

MR-5245 

PC +- PC + (2 X offset) if C V Z = 1 

Not affected 

Causes a branch if the previous operation caused either a carry or a 0 result. 
BLOS is the complementary operation of BHI. The branch will occur in 
comparison operations as long as the source is equal to or has a lower 
unsigned value than the destination. 

BRANCH IF HIGHER OR SAME 103000 PLUS OFFSET 

Operation: 

Condition Codes: 

Description: 

BLO 

BRANCH IF LOWER 

Operation: 

Condition Codes: 

Description: 

08 07 00 

PC +- PC + (2 X offset) if C = 0 

Not affected 

BHIS is the same instruction as BCC. This mnemonic is included for conve
nience only. 

103400 PLUS OFFSET 

08 07 00 

MR-S247 

PC +- PC + (2 X offset) if C = 1 

Not affected 

BLO is the same instruction as BCS. This mnemonic is included for conve
nience only. 

6-64 



6.3.6.4 Jump and Subroutine Instructions - The subroutine call in the KDJ11-A provides for automatic 
nesting of subroutines, reentrancy, and multiple entry points. Subroutines may call other subroutines (or 
indeed themselves) to any level of nesting without making special provision for storage of return addresses 
at each level of subroutine call. The subroutine calling mechanism does not modify any fixed location in 
memory, and thus provides for reentrancy. This allows one copy of a subroutine to be shared among 
several interrupting processes. 

JMP 

JUMP 

Operation: 

Condition Codes: 

Description: 

Example: 

000100 

06 05 00 

~D : 

MR-11555 

PC <-- (dst) 

Not affected 

JMP provides more flexible program branching than the branch instructions 
do. Control may be transferred to any location in memory (no range limita
tion) and can be accomplished with the full flexibility of the addressing 
modes, with the exception of register mode O. Execution of a jump with mode 
o will cause an "illegal instruction" condition, and will cause the CPU to trap 
to vector address ten. (Program control cannot be transferred to a register.) 
Register-deferred mode is legal and will cause program control to be trans
ferred to the address held in the specified register. Note that instructions are 
word data and must therefore be fetched from an even-numbered address. 

Deferred-index mode JMP instructions permit transfer of control to the 
address contained in a selectable element of a table of dispatch vectors. 

First: 

JMP FIRST 

JMP @LIST 

List: 

FIRST 

JMP @(SP)+ 

6-65 

;transfers to FIRST 

;transfers to location 
pointed to at LIST 

;pointer to FIRST 

;transfer to location 
pointed to by the top of 
the stack, and remove the 
pointer from the stack 



JSR 

JUMP TO SUBROUTINE 004RDD 

Operation: 

Description: 

09 08 06 05 00 

~D : 

MR-'1556 

(tmp) <- (dst) (tmp is an internal processor register) 

1 (SP) <- reg (Push register contents onto processor stack) 

reg <- PC (PC holds location following JSR; this address now put in register) 

PC <- (dst) (PC now points to subroutine destination) 

In execution of the JSR, the old contents of the specified register (the linkage 
pointer) are automatically pushed onto the processor stack and new linkage 
information is placed in the register. Thus, subroutines nested within subrou
tines to any depth may all be called with the same linkage register. There is 
no need either to plan the maximum depth at which any particular subroutine 
will be called or to include instructions in each routine to save and restore the 
linkage pointer. Further, since all linkages are saved in a reentrant manner on 
the processor stack, execution of a subroutine may be interrupted. The same 
subroutine may be reentered and executed by an interrupt service routine. 
Execution of the initial subroutine can then be resumed when other requests 
are satisfied. This process (called nesting) can proceed to any level. 

A subroutine called with a JSR reg,dst instruction can access the arguments 
following the call with either autoincrement addressing, (reg) +, if arguments 
are accessed sequentially, or by indexed addressing, X(reg), if accessed in 
random order. These addressing modes may also be deferred, @(reg)+ and 
@X(reg), if the parameters are operand addresses rather than the operands 
themselves. 

JSR PC, dst is a special case of the KDJ ll-A subroutine call suitable for 
subroutine calls that transmit parameters through the general registers. The 
SP and the PC are the only registers that may be modified by this call. 

Another special case of the JSR instruction is JSR PC,@(SP) +, which 
exchanges the top element of the processor stack with the contents of the 
program counter. This instruction allows two routines to swap program con
trol and resume operation from where they left off when they are recalled. 
Such routines are called coroutines. 

Return from a subroutine is done by the R TS instruction. R TS reg loads the 
contents of reg into the PC and pops the top element of the processor stack 
into the specified register. 

6-66 



Example: 

R5 R6 R7 
SBCALL: JSR R5,SBR #1 n SBCALL 
SBCALL+4: ARG 1 

ARG 2 

SBCALL+2+2M: ARGM 
CONT: Next Instruction #1 n CONT 

SBR: MOV (R5)+,dst 1 SBCALL+4 n-2 SBR 
MOV (R5)+,dst 2 

MOV (R5)+,dst M SBCALL+2+2M 
Other Instructions CONT 

EXIT: RTS R5 CONT n-2 EXIT 

JSR R5, SBR 

BEFORE: (PCI R7 PC STACK 

(SPI R6 l n I DATAO 
J 

Re; I #1 I 

AFTER: R7 I SBR I 
DATA 0 

I n-2 I #1 I R6 

R5 PC+2 



RTS 

RETURN FROM SUBROUTINE 00020R 

15 

Operation: 

Description: 

Example: 

PC +-- (reg) 
(reg) +-- (SP) T 

03 02 00 

MR-11553 

Loads the contents of the register into PC and pops the top element of the 
processor stack into the specified register. 

Return from a nonreentrant subroutine is typically made through the same 
register that was used in its call. Thus, a subroutine called with a JSR PC, dst 
exits with a RTS PC and a subroutine called with a JSR R5, dst, may pick up 
parameters with addressing modes (R5) +, X(R5), or @X(R5) and finally 
exits, with an RTS R5. 

RTS R5 

RTS R5 STACK 

BEFORE: (PC) R7 I SBR I 
DATA 0 

(SP) RS I n l #1 J 

PC R5 L..I ___ ~ 

AFTER: PC 

RS I n+2 I DATA 0 I 

R5 I #1 I 
MR-5252 

6-68 



SOB 

SUBTRACT ONE AND BRANCH (IF" 0) 077RNN 

Operation: 

Condition Codes: 

Description: 

09 DB 06 05 00 

MA-11552 

(R) <- (R) - 1; if this result =1= 0, then PC <-PC - (2 X offset); if (R) = 0 
then PC <- PC 

Not affected 

The register is decremented. If the contents does not equal 0, twice the offset 
is subtracted from the PC (now pointing to the following word). The offset is 
interpreted as a 6-bit positive number. This instruction provides a fast, effi
cient method of loop control. The assembler syntax is SOB R,A where A is 
the address to which transfer is to be made if the decremented R is not equal 
to O. Note: the SOB instruction cannot be used to transfer control in the 
forward direction. 

6.3.6.5 Traps - Trap instructions provide for calls to emulators, I/O monitors, debugging packages, and 
user-defined interpreters. A trap is effectively an interrupt generated by software. When a trap occurs, the 
contents of the current program counter (PC) and processor status word (PS) are pushed onto the 
processor stack and replaced by the contents of a 2-word trap vector containing a new PC and new PS. 
The return sequence from a trap involves executing an RTI or RTT instruction, which restores the old PC 
and old PS by popping them from the stack. Trap instruction vectors are located at permanently assigned 
fixed addresses. 

6-69 



EMT 

Operation: 

EMULATOR TRAP 

15 

Condition Codes: 

Description: 

1 (SP) <- PS 
1 (SP) <- PC 
PC <- (30) 
PS <- (32) 

08 07 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

104000-1 04377 

00 

MA-5254 

All operation codes from 104000 to 104377 are EMT instructions and may 
be used to transmit information to the emulating routine (e.g., function to be 
performed). The trap vector for EMT is at address 30. The new PC is taken 
from the word at address 30; the new processor status (PS) is taken from the 
word at address 32. 

NOTE 
EMT is used frequently by DIGITAL system 
software and is therefore not recommended for gen
eral use. 

PS I PS 1 

BEFORE: 

AFTER: PS I (32) 

PC I (30) I DATA 1 

PS 1 

I n-4 I PC 1 
I SP 

MR-5255 

6-70 



TRAP 

TRAP 

15 

1 
: 

0 
: 

0 

Operation: 

Condition Codes: 

Description: 

BPT 

BREAKPOINT TRAP 

Operation: 

Condition Codes: 

Description: 

: 
0 : 1 

: o : 

1 (SP) <- PS 
1 (SP) <- PC 
PC <- (34) 
PS <- (36) 

08 07 

0 : 1 I 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

104400-104777 

00 

MR·5256 

Operation codes from 104400 to 104777 are TRAP instructions. TRAPs and 
EMTs are identical in operation, except that the trap vector for TRAP is at 
address 34. 

NOTE 
Since DIGITAL software makes frequent use of 
EMT, the TRAP instruction is recommended for 
general use. 

1 (SP) <- PS 
1 (SP) <- PC 
PC <- (14) 
PS <- (16) 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

000003 

MR-5257 

Performs a trap sequence with a trap vector address of 14. Used to call 
debugging aids. The user is cautioned against employing code 000003 in 
programs run under these debugging aids. (No information is transmitted in 
the low byte.) 

6-71 



lOT 

INPUT/OUTPUT TRAP 000004 

00 

o : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 o : 1 : 0 : 0 I 

Operation: 

Condition Codes: 

Description: 

RTf 

1 (SP) t- PS 
1 (SP) t- PC 
PC t- (20) 
PS t- (22) 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

MA-5258 

Performs a trap sequence with a trap vector address of 20. (No information is 
transmitted in the low byte.) 

RETURN FROM INTERRUPT 000002 

00 

Operation: 

Condition Codes: 

Description: 

PC t- (SP) T 
PS t- (SP) T 

N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

MR-5259 

Used to exit from an interrupt or TRAP service routine. The PC and PS are 
restored (popped) from the processor stack. If the RTI sets the T-bit in the 
PS, a trace trap will occur prior to executing the next instruction. When 
executed in supervisor mode, the current and previous mode bits in the 
restored PS cannot be kernel. When executed in user mode, the current and 
previous mode bits in the restored PS can only be user. RTI cannot clear PS 
bit 11 if it was already set. 

6-72 



RTT 

RETURN FROM TRAP 000006 

Operation: 

Condition Codes: 

Description: 

PC - (SP) T 
PS +- (SP) T 

N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

MR·5260 

Operation is the same as RTI except that it inhibits a trace trap, whereas RTI 
permits a trace trap. If the new PS has the T-bit set, a trap will occur after 
execution of the first instruction after R TT. When executed in supervisor 
mode, the current and previous mode bits in the restored PS cannot be 
kernel. When executed in user mode, the current and previous mode bits in 
the restored PS can only be user. R TT cannot clear PS bit 11 if it was already 
set. 

6.3.6.6 Miscellaneous Program Control -

MARK 

Operation: 

MARK 

15 

o 

Condition Codes: 

Description: 

o o o o 

SP - PC + 2 X NN 
PC-R5 
R5 - (SP)+ 

o 

NN = number of parameters 

N: unaffected 
Z: unaffected 
V: unaffected 
C: unaffected 

06 05 

o 
i 

NN 

0064NN 

00 

MR-11566 

Used as part of the standard subroutine return convention. MARK facilitates 
the stack clean-up procedures involved in subroutine exit. Assembler format 
is: MARK N. 

6-73 



Example: MOV R5,-(SP) 
MOV Pl,-(SP) 
MOV P2,-(SP) 

MOV PN,-(SP) 
MOV =MARKN,-(SP) 

MOV SP,R5 

JSR PC,SUB 

;place old R5 on stack 
;place N parameters on 
;the stack to be used 
;there by the subroutine 

;place the instruction 
;MARK N on the stack 
;set up address at MARK N 
;instruction 
;jump to subroutine 

At this point the stack is as follows 

OLD R5 

Pl 

PN 

MARK N 

OLD PC 

MR·11569 

The program is at the address SUB which is the beginning of the subroutine. 

SUB: 

RTS R5 

;execution of the 
;subroutine itself 

;the return begins: 
;this causes the contents 
;of R5 to be placed in the 
;PC which then results in 
;the execution of the 
;instruction MARK N. The 
;contents of the old PC 
;are placed in R5. 

MARK N causes: (1) the stack pointer to be adjusted to point to the old R5 
value; (2) the value now in R5 (the old PC) to be placed in the PC; and (3) 
the contents of the old R5 to be popped into R5, thus completing the return 
from the subroutine. 

NOTE 
If memory management is in use, the stack must be 
mapped through both I and D space to execute the 
MARK instruction. 

6-74 



SPL 

Operation: 

SET PRIORITY LEVEL 

15 

a a a 

Condition Codes: 

Description: 

CSM 

a a a a a 

PS bits <07:05> - priority 
(priority = N) 

N: unaffected 
Z: unaffected 
V: unaffected 
C: unaffected 

03 02 

a a N 

00023N 

00 

MR·11567 

In kernel mode, the least significant three bits of the instruction are loaded 
into the processor status word (PS) bits <07:05>, thus causing a changed 
priority. The old priority is lost. In user or supervisor modes, SPL executes as 
a NOP. 

Assembler syntax is: SPL N 

CALL TO SUPERVISOR MODE 

15 06 05 

0070DD 

00 

a a a 

Operation: 

Condition Codes: 

a a a a 

If MMR3 bit 3 = 1 and current 
mode = kernel then 
supervisor SP - current mode SP 
temp<15:04> - PS<15:04> 
temp<03:00> - 0 
PS<13:12> - PS<15:14> 
PS<15:14> - 01 
PS4- 0 
-(SP) - temp 
-(SP) - PC 
-(SP) - (dst) 
PC - (10) 
otherwise, traps to lOin kernel mode. 

N: unaffected 
Z: unaffected 
V: unaffected 
C: unaffected 

6-75 

~D : 

MA·1156B 



Description: CSM may be executed in user or supervisor mode, but is an illegal instruction 
in kernel mode. CSM copies the current stack pointer (SP) to the supervisor 
mode, switches to supervisor mode, stacks three words on the supervisor stack 
(the PS with the condition codes cleared, the PC, and the argument word 
addressed by the operand), and sets the PC to the contents of location 10 (in 
supervisor space). The called program in supervisor space may return to the 
calling program by popping the argument word from the stack and executing 
RTI. On return, the condition codes are determined by the PS word on the 
stack. Hence, the called program in supervisor space may control the condi
tion code values following return. 

6.3.6.7 Reserved Instruction Traps - These are caused by attempts to execute instruction codes reserved 
for future processor expansion (reserved instructions) or instructions with illegal addressing modes (illegal 
instructions). Order codes not corresponding to any of the instructions described are considered to be 
reserved instructions. JMP and JSR with register mode destinations are illegal instructions; they trap to 
virtual address 4 in kernel data space. Reserved instructions trap to vector address lOin kernel data space. 

6.3.6.8 Trace Trap - Trace trap is enabled by bit 4 of the PS and causes processor traps at the end of 
instruction execution. The instruction that is executed after the instruction that set the T-bit will proceed 
to completion and then trap through the trap vector at address 14. Note that the trace trap is a system 
debugging aid and is transparent to the general programmer. 

NOTE 
Bit 4 of the PS can only be set indirectly by execut
ing a RTI or RTT instruction with the desired PS on 
the stack. 

The following are special cases of the T-bit. 

NOTE 
The traced instruction is the instruction after the 
one that set the T -bit. 

1. An instruction that cleared the T-bit - Upon fetching the traced instruction, an internal flag, 
the trace flag, was set. The trap will still occur at the end of this instruction's execution. The 
status word on the stack, however, will have a clear T-bit. 

2. An instruction that set the T-bit - Since the T-bit was already set, setting it again has no effect. 
The trap will occur. 

3. An instruction that caused an instruction trap - The instruction trap is performed and the entire 
routine for the service trap is executed. If the service routine exits with an RTI, or in any other 
way restores the stacked status word, the T-bit is set again, the instruction following the traced 
instruction is executed, and, unless it is one of the special cases noted previously, a trace trap 
occurs. 

4. An instruction that caused a stack overflow - The instruction completes execution as usual. The 
stack overflow does not cause a trap. The trace trap vector is loaded into the PC and PS and the 
old PC and PS are pushed onto the stack. Stack overflow occurs again, and this time the trap is 
made. 

6-76 



5. An interrupt between setting of the T-bit and fetch of the traced instruction - The entire 
interrupt service routine is executed and then the T-bit is set again by the exiting RTI. The 
traced instruction is executed (if there have been no other interrupts) and, unless it is a special 
case noted above, causes a trace trap. 

6. Interrupt trap priorities - See Table 1-8. 

6.3.7 Miscellaneous Instructions 

HALT 

HALT 000000 

15 00 

o : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 

Operation: 

Condition Codes: 

Description: 

WAIT 

WAIT FOR INTERRUPT 

Condition Codes: 

Description: 

1 (SP) ~ PS 
1 (SP) ~ PC 
PC ~ restart address 
PS ~ 340 

Not affected 

MR-5261 

The effect of HALT depends upon the CPU operating mode and the halt 
option currently selected. See Chapter 8 for more details on halt options. In 
kernel mode, a halt option of 1 (external logic driving a 1 on DAL3 in 
response to a GP Read with a GP code of 000) causes a trap through location 
4 and sets bit 7 of the CPU error register when HALT is executed. If the halt 
option is 0 in kernel mode, execution of the HALT instruction causes the 
KDJII-A into console ODT. Execution of the HALT instruction in user or 
supervisor mode causes a trap through location 4 and sets bit 7 of the CPU 
error register. 

000001 

MR-5262 

Not affected 

In WAIT, as in all instructions, the PC points to the next instruction follow
ing the WAIT instruction. Thus, when an interrupt causes the PC and PS to 
be pushed onto the processor stack, the address of the next instruction 
following the WAIT is saved. The exit from the interrupt routine (i.e., 
execution of an RTI instruction) will cause resumption of the interrupted 
process at the instruction following the WAIT. If not in kernel mode, WAIT 
executes as a NOP. 

6-77 



RESET 

RESET EXTERNAL BUS 000005 

15 

o : o : o : 

Condition Codes: 

Description: 

MFPT 

00 

o : o : o : o : o : o : o : o : o : o : 1 : o : 1 I 
MA-5263 

Not affected 

The following sequence of events occurs: (1) a GP Write cycle is performed 
and a GP code of 014 is generated; (2) operation is delayed for 69 micro
cycles; (3) a GP Write is performed and a GP code of 214 is generated; (4) 
operation is delayed for 600 microcycles delay. If not in kernel mode, 
RESET operates as a NOP. 

MOVE FROM PROCESSOR TYPE WORD 000007 

00 15 

Operation: 

Condition Codes: 

Description: 

o : 0 : 0 : 0 : 0 : 0 

MR-7198 

RO +- 5 

Not affected 

The number 5 is placed in RO, indicating to the system software that the 
processor type is KD1l1-A. 

6-78 



MTPD/MTPI 

MOVE TO PREVIOUS OATA SPACE 
MOVE TO PREVIOUS INSTRUCTION SPACE _06600 

00 15 

0/1 0 o 

Operation: 

Condition Codes: 

Description: 

MFPD/MFPI 

o o 

(temp) +- (SP)+ 
(dst) +- (temp) 

N: set if the source < 0 
Z: set if the source = 0 
V: cleared 
Z: unaffected 

06 05 

o DO 

MA-11571 

The instruction pops a word off the current stack determined by PS bits 
<15:14> and stores that word into an address in the previous space (PS bits 
< 13: 12». The destination address is computed using the current registers 
and memory map. 

MOVE FROM PREVIOUS DATA SPACE 
MOVE FROM PREVIOUS INSTRUCTION SPACE -065SS 

15 

0/1 0 o 

Operation: 

Condition Codes: 

Description: 

o o 

(temp) +- (src) 
-(SP) +- (temp) 

N: set if the source < 0 
Z: set if the source = 0 
V: cleared 
Z: unaffected 

0 

06 05 00 

1 I SS 

MA-l1S70 

Pushes a word onto the current stack from an address in the previous space 
determined by PS<13:12>. The source address is computed using the current 
registers and memory map. When MFPI is executed and both previous mode 
and current mode are user, the instruction functions as though it were 
MFPD. 

6-79 



6.3.8 Condition Code Operators 
CLN SEN 
CLZ SEZ 
CLV SEV 
CLC SEC 
CCC sec 

15 

Description: 

05 04 03 02 01 00 

MR-5266 

Set and clear condition code bits. Selectable combinations of these bits may 
be cleared or set together. Condition code bits corresponding to bits in the 
condition code operator (bits <03:00» are modified according to the sense of 
bit 4, the set/clear bit of the operator; i.e., set the bit specified by bit 0, 1,2, 
or 3, if bit 4 = 1. Clear corresponding bits if bit 4 = o. 

Mnemonic Operation Op Code 

CLC Clear C 000241 
CLV Clear V 000242 
CLZ Clear Z 000244 
CLN Clear N 000250 
SEC Set C 000261 
SEV Set V 000262 
SEZ Set Z 000264 
SEN Set N 000270 
SCC Set all CCs 000277 
CCC Clear all CCs 000257 

Clear V and C 000243 
NOP No operation 000240 

Combinations of the above set or clear operations may be ORed together to 
form combined instructions. 

6-80 



7.1 INTRODUCTION 

CHAPTER 7 
FLOATING-POINT ARITHMETIC 

The KDJ ll-A executes 46 floating-point instructions. The floating-point instruction set is compatible with 
the FPll instruction set for PDP-II computers. Both single- and double-precision floating-point capabili
ties are available with other features, including floating-to-integer and integer-to-floating conversion. 

7.2 FLOATING-POINT DATA FORMATS 
Mathematically, a floating-point number may be defined as having the form (2 ** K) * f, where K is an 
integer and f is a fraction. For a nonvanishing number, K and f are uniquely determined by imposing the 
condition 1/2 < f < 1. The fractional part (f) of the number is then said to be normalized. For the number 
0, f is assigned the value 0, and the value of K is indeterminate. 

The floating-point data formats are derived from this mathematical representation for floating-point 
numbers. Two types of floating-point data are provided. In single-precision, or floating mode, the data is 
32 bits long. In double-precision, or double mode, the data is 64 bits long. Sign magnitude notation is used. 

7.2.1 Nonvanishing Floating-Point Numbers 
The fractional part (f) is assumed normalized, so that its most significant bit must be 1. This 1 is the 
hidden bit. It is not stored explicitly in the data word, but the microcode restores it before carrying out 
arithmetic operations. The floating and double modes reserve 23 and 55 bits, respectively, for f. These bits, 
with the hidden bit, imply effective word lengths of 24 bits and 56 bits. 

Eight bits are reserved for storage of the exponent K in excess 200 notation [i.e., as K + 200 (octal)], 
giving a biased exponent. Thus, exponents from -128 to + 127 could be represented by 0 to 377 (base 8), 
or 0 to 255 (base 10). For reasons given below, a biased exponent of 0 [the true exponent of -200 (octal)], 
is reserved for floating-point o. Therefore, exponents are restricted to the range -127 to + 127 inclusive 
(-177 to + 177 octal) or, in excess 200 notation, 1 to 377. 

The remaining bit of the floating-point word is the sign bit. The number is negative if the sign bit is a 1. 

7.2.2 Floating-Point Zero 
Because of the hidden bit, the fractional part is not available to distinguish between 0 and non vanishing 
numbers whose fractional part is exactly 1/2. Therefore, the KDJ11-A reserves a biased exponent of 0 for 
this purpose, and any floating-point number with a biased exponent of 0 either traps or is treated as if it 
were an exact 0 in arithmetic operations. An exact or "clean" 0 is represented by a word whose bits are all 
Os. A "dirty" 0 is a floating-point number with a biased exponent of 0 and a nonzero fractional part. An 
arithmetic operation for which the resulting true exponent exceeds 277 (octal) is regarded as producing a 
floating overflow; if the true exponent is less than -177 (octal), the operation is regarded as producing a 
floating underflow. A biased exponent of 0 can thus arise from arithmetic operations as a special case of 
overflow (true exponent = -200 octal). (Recall that only eight bits are reserved for the biased exponent.) 
The fractional part of results obtained from such overflow and underflow is correct. 

7-1 



7.2.3 Undefined Variables 
An undefined variable is any bit pattern with a sign bit of 1 and a biased exponent of O. The term 
undefined variable is used, for historical reasons, to indicate that these bit patterns are not assigned a 
corresponding floating-point arithmetic value. Note that the undefined variable is frequently referred to as 
-0 elsewhere in this chapter. 

A design objective was to ensure that the undefined variable would not be stored as the result of any 
floating-point operation in a program run with the overflow and underflow interrupts disabled. This is 
achieved by storing an exact 0 on overflow and underflow if the corresponding interrupt is disabled. This 
feature, together with an ability to detect reference to the undefined variable (implemented by the FIUV 
bit discussed later), is intended to provide the user with a debugging aid: if -0 occurs, it did not result from 
a previous floating-point arithmetic instruction. 

7.2.4 Floating-Point Data 
Floating-point data is stored in words of memory as illustrated in Figures 7-1 and 7-2. 

+2 

F FORMAT, FLOATING POINT SINGLE PRECISION 
15 

FRACTION <15:0> 

15 14 07 06 

00 

00 

MEMORY+OI~ __ S~[ __ ~ __ ~ __ ~ ___ E_X~P __ ~ __ ~ __ ~ __ ~~ __ ~ __ ~_F_RA~C_T_<_2~2_:1_6_>~ __ ~ __ ~ 

Figure 7-\ Single-Precision Format 

D FORMAT, FLOATING POINT DOUBLE PRECISION 
15 

MR·3604 

00 

+6 1~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~ __ FR~A_C_T_IO~N_< __ 15_:0~> __ ~ __ ~ __ ~ ____ ~ __ ~ __ ~~ 

15 00 

+4 LI __ ~ __ ~ ____ ~ __ ~ __ ~ __ ~ __ F~RA_C_T_IO_N~<_31_:~16_> __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ 

15 00 

+2 ~1 __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~ __ FR~A_C_T_IO_N~<4_7_:3~2_> __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ 

15 07 06 00 

MEMORY+O 1~ __ s~I __ ~ __ ~~ __ ~ __ EX~P __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~_F_R~A~C_T_<_5~4:_4_8>~ __ ~ __ ~ 
S = SIGN OF FRACTION 

EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL 
FOR NON·VANISHING NUMBERS. 

FRACTION = 23 BITS IN F FORMAT, 55 BITS IN D FORMAT + ONE HIDDEN 
BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT. 

Figure 7-2 Double-Precision Format 

7-2 

MR-3605 



The KDJ11-A provides for conversion of floating-point to integer format and vice-versa. The processor 
recognizes single-precision integer (I) and double-precision integer long (L) numbers, which are stored in 
standard 2's complement form. (See Figure 7-3.) 

I FORMAT, INTEGER SINGLE PRECISION 

15 14 00 

NUMBER <15:0> 

L FORMAT, DOUBLE PRECISION INTEGER LONG 
15 14 00 

MEMORY +0 I S NUMBER <30:16> 

15 00 

+21 NUMBER <15:0> 

WHERE S = SIGN OF NUMBER 

NUMBER = 15 BITS IN I FORMAT, 31 BITS IN L FORMAT. 
MR-3606 

Figure 7-3 2's Complement Format 

7.3 FLOATING-POINT STATUS REGISTER (FPS) 
This register provides mode and interrupt control for the currently executing floating-point instruction and 
also reflects conditions resulting from the execution of the previous instruction. (See Figure 7-4.) In this 
discussion a set bit = 1 and a reset bit = O. Three bits of the FPS register control the modes of operation as 
follows. 

1. Single/Double - Floating-point numbers can be either single- or double-precision. 

2. Long/Short - Integer numbers can be 16 bits or 32 bits. 

3. Chop/Round - The result of a floating-point operation can be either "chopped" or "rounded." 
The term "chop" is used instead of "truncate" to avoid confusion with truncation of series used 
in approximations for function subroutines. 

RESERVED RESERVED 
MR·3607 

Figure 7-4 Floating-Point Status Register 

7-3 



The FPS register contains an error flag and four condition codes (5 bits): carry, overflow, zero, and 
negative, which are analogous to the CPU condition codes. 

The KDJ II-A recognizes six floating-point exceptions: 

• Detection of the presence of the undefined variable in memory 
• Floating overflow 
• Floating underflow 
• Failure of floating-to-integer conversion 
• Attempt to divide by 0 
• Illegal floating op code 

For the first four of these exceptions, bits in the FPS register are available to individually enable and 
disable interrupts. An interrupt on the occurrence of either of the last two exceptions can be disabled only 
by setting a bit that disables interrupts on all six of the exceptions, as a group. 

Of the 13 FPS bits, 5 are set as part of the output of a floating-point instruction: the error flag and 
condition codes. Any of the mode and interrupt control bits may be set by the user; the LDFPS instruction 
is available for this purpose. These 13 bits are stored in the FPS register as shown in Figure 7-4. The FPS 
register bits are described in Table 7-l. 

Bit Name 

15 Floating Error (FER) 

14 Interrupt Disable (FID) 

Table 7-1 FPS Register Bits 

Description 

The FER bit is set by the KDJ II-A if: 

I. Division by zero occurs 

2. An illegal op code occurs 

3. Anyone of the remaining floating-point exceptions occurs and 
the corresponding interrupt is enabled 

Note that the above action is independent of whether the FID bit is set 
or clear. 

Note also that the KDJ II-A never resets the FER bit. Once the FER 
bit is set by the KDJ II-A, it can be cleared only by an LDFPS 
instruction (note the RESET instruction does not clear the FER bit). 
This means that the FER bit is up-to-date only if the most recent 
floating-point instruction produced a floating-point exception. 

If the FID bit is set, all floating-point interrupts are disabled. 

NOTES 

1. The FID bit is primarily a maintenance feature. It should nor
mally be clear. In particular, it must be clear is one wishes to 
assure that storage of -0 by the KDJII-A is always accompa
nied by an interrupt. 

2. Throughout the rest of the chapter, assume that the FID bit is 
clear in all discussions invohing overflow, underflow, occurrence 
of -0, and integer conversion errors. 

7-4 



Bit 

13 

12 

II 

10 

09 

08 

07 

06 

05 

04 

03 

Table 7-1 FPS Register Bits (Cont) 

Name 

Interrupt on Undefined 
Variable (FIUV) 

Interrupt on Underflow (FlU) 

Interrupt on Overflow (FIV) 

Interrupt on Integer 
Conversion Error (FlC) 

Floating Double-Precision Mode (FD) 

Floating Long-Integer Mode (FL) 

Floating Chop Mode (FT) 

Floating Negative (FN) 

Description 

Reserved for future DIGITAL use. 

Reserved for future DIGITAL use. 

An interrupt occurs if FIUV is set and a -0 is obtained from memory 
as an operand of ADD, SUB, MUL, DIV, CMP, MOD, NEG, ABS, 
TST, or any LOAD instruction. The interrupt occurs before execution 
on all instructions. When FIUV is reset, -0 can be loaded and used in 
any floating-point operation. Note that the interupt is not activated by 
the presence of -0 in an AC operand of an arithmetic instruction; in 
particular, trap on -0 never occurs in mode O. 

A result of -0 will not be stored without the simultaneous occurrence 
of an interrupt. 

When the FlU bit is set, floating underflow will cause an interrupt. The 
fractional part of the result of the operation causing the interrupt will 
be correct. The biased exponent will be too large by 400, except for the 
special case of 0, which is correct. An exception is discussed later in the 
detailed description of the LDEXP instruction. 

When the FlV bit is set, floating overflow will cause an interrupt. The 
fractional part of the result of the operation causing the overflow will 
be correct. The biased exponent will be too small by 400. 

If the FIV bit is reset and overflow occurs, there is no interrupt. The 
KDJ II-A returns exact O. 

Special cases of overflow are discussed in the detailed descriptions of 
the MOD and LDEXP instructions. 

When the FIC bit is set and a conversion to integer instruction fails, an 
interrupt will occur. If the interrupt occurs, the destination is set to 0, 
and all other registers are left untouched. 

If the FIC bit is reset, the result of the operation will be the same as 
detailed above, but no interrupt will occur. 

The conversion instruction fails if it generates an integer with more bits 
than can fit in the short or long integer word specified by the FL bit. 

The FD bit determines the precision that is used for floating-point 
calculations. When set, double-precision is assumed; when reset, single
precision is used. 

The FL bit is active in conversion between integer and floating-point 
formats. When set, the integer format assumed is double-precision 2's 
complement (i.e., 32 bits). When reset, the integer format is assumed 
to be single-precision 2's complement (i.e., 16 bits). 

When the FT bit is set, the result of any arithmetic operation is 
chopped (truncated). When reset, the result is rounded. 

Reserved for future DIGITAL use. 

FN is set if the result of the last floating-point operation was negative; 
otherwise it is reset. 

7-5 



Bit 

02 

01 

00 

Name 

Floating Zero (FZ) 

Floating Overflow (FY) 

Floating Carry (FC) 

Table 7-1 FPS Register Bits (Cont) 

Description 

FZ is set if the result of the last floating-point operation was 0; other
wise it is reset. 

FY is set if the last floating-point operation resulted in an exponent 
overflow; otherwise it is reset. 

FC is set if the last floating-point operation resulted in a carry of the 
most significant bit. This can only occur in floating double-to-integer 
conversions. 

7.4 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS 
One interrupt vector is assigned to take care of all floating-point exceptions (location 244). The six possible 
errors are coded in the 4-bit floating exception code (FEC) register as follows. 

2 Floating op code error 
4 Floating divide by zero error 
6 Floating-to-integer or double-to-integer conversion error 
8 Floating overflow error 

10 Floating underflow error 
12 Floating undefined variable error 

The address of the instruction producing the exception is stored in the floating exception address (FEA) 
register. 

The FEC and FEA registers are updated only when one of the following occurs. 

1. Division by zero 
2. Illegal op code 
3. Any of the other four exceptions with the corresponding interrupt enabled 

This implies that only when the FER bit is set, the FEC and FEA registers are updated. 

NOTES 

1. If one of the last four exceptions occurs with 
the corresponding interrupt disabled, the FEC 
and FEA are not updated. 

2. If an exception occurs, inhibition of interrupts 
by the FID bit does not inhibit updating of the 
FEC and FEA. 

3. The FEC and FEA are not updated if no excep
tion occurs. This means that the STST (store 
status) instruction will return current informa
tion only if the most recent floating-point 
instruction produced an exception. 

4. Unlike the FPS, no instructions are provided 
for storage into the FEC and FEA registers. 

7-6 



7.5 FLOATING-POINT INSTRUCTION ADDRESSING 
Floating-point instructions use the same type of addressing as the central processor instructions. A source 
or destination operand is specified by designating one of eight addressing modes and one of eight central 
processor general registers to be used in the specified mode. The modes of addressing are the same as those 
of the central processor, except in mode o. In mode 0 the operand is located in the designated floating
point processor accumulator rather than in a central processor general register. The modes of addressing 
are as follows. 

o = Floating-point accumulator 
1 = Deferred 
2 = Autoincrement 
3 = Autoincrement-deferred 
4 = Autodecrement 
5 = Autodecrement-deferred 
6 = Indexed 
7 = Indexed-deferred 

Autoincrement and autodecrement operate on increments and decrements of 4 for F format, and 10 
(octal) for D format. 

In mode 0 users can make use of all six floating-point accumulators (ACO-AC5) as their source or 
destination. Specifying floating-point accumulators AC6 or AC7 will result in an illegal op code trap. In all 
other modes, which involve transfer of data to or from memory or the general registers, users are restricted 
to the first four floating-point accumulators (ACO-AC3). When reading or writing a floating-point 
number from or to memory, the low memory word contains the most significant word of the floating-point 
number, and the high memory word the least significant word. 

7.6 ACCURACY 
General comments on the accuracy of the KDlll-A floating-point instructions are presented here. The 
descriptions of the individual instructions include the accuracy at which they operate. An instruction or 
operation is regarded as "exact" if the result is identical to an infinite precision calculation involving the 
same operands. The a priori accuracy of the operands is thus ignored. All arithmetic instructions treat an 
operand whose biased exponent is 0 as an exact 0 (unless FIUY is enabled and the operand is -0, in which 
case an interrupt occurs). For all arithmetic operations, except DIY, a 0 operand implies that the 
instruction is exact. The same statement holds for DIY if the 0 operand is the dividend. But if it is the 
divisor, division is undefined and an interrupt occurs. 

For non vanishing floating-point operands, the fractional part is binary normalized. It contains 24 bits or 56 
bits for floating mode and double mode, respectively. For ADD, SUB, MUL, and DIY, two guard bits are 
necessary and sufficient for the general case to guarantee return of a chopped or rounded result identical to 
the corresponding infinite precision operation chopped or rounded to the specified word length. Thus, with 
two guard bits, a chopped result has an error bound of one least significant bit (LSB); a rounded result has 
an error bound of 1/2 LSB. These error bounds are realized by the KDlll-A for all instructions. 

7-7 



In the rest of this chapter, an arithmetic result is called exact if no nonvanishing bits would be lost by 
chopping. The first bit lost in chopping is referred to as the "rounding" bit. The value of a rounded result is 
related to the chopped result as follows. 

1. If the rounding bit is 1, the rounded result is the chopped result incremented by an LSB. 

2. If the rounding bit is 0, the rounded and chopped results are identical. 

It follows that: 

1. If the result is exact: rounded value = chopped value = exact value. 

2. If the result is not exact, its magnitude is: 

• always decreased by chopping. 
• decreased by rounding if the rounding bit is O. 
• increased by rounding if the rounding bit is 1. 

Occurrence of floating-point overflow and underflow is an error condition: the result of the calculation 
cannot be correctly stored because the exponent is too large to fit into the eight bits reserved for it. 
However, the internal hardware has produced the correct answer. For the case of underflow, replacement 
of the correct answer by 0 is a reasonable resolution of the problem for many applications. This is done by 
the KDJ ll-A if the underflow interrupt is disabled. The error incurred by this action is an absolute rather 
than a relative error; it is bounded (in absolute value) by 2 ** -128. There is no such simple resolution for 
the case of overflow. The action taken, if the overflow interrupt is disabled, is described under FlV (bit 09) 
in Table 7-1. 

The FlV and flU bits (of the floating-point status word) provide users with an opportunity to implement 
their own correction of an overflow or underflow condition. If such a condition occurs and the correspond
ing interrupt is enabled, the microcode stores the fractional part and the low eight bits of the biased 
exponent. The interrupt will take place and users can identify the cause by examination of the floating 
overflow (FV) bit or the floating exception register (FEC). The reader can readily verify that (for the 
standard arithmetic operations ADD, SUB, MUL, and DIV) the biased exponent returned by the instruc
tion bears the following relation to the correct exponent. 

1. On overflow, it is too small by 400 (octal) 

2. On underflow, if the biased exponent is 0, it is correct. If the biased exponent is not 0, it is too 
large by 400 (octal). 

Thus, with the interrupt enable, enough information is available to determine the correct answer. Users 
may, for example, rescale their variables (via STEXP and LDEXP) to continue a calculation. Note that 
the accuracy of the fractional part is unaffected by the occurrence of underflow or overflow. 

7.7 FLOATING-POINT INSTRUCTIONS 
Each instruction that references a floating-point number can operate on either single- or double-precision 
numbers, depending on the state of the FD mode bit. Similarly, there is a mode bit FL that determines 
whether a 32-bit integer (FL = 1) or a 16-bit integer (FL = 0) is used in conversion between integer and 
floating-point representations. FSRC and FDST operands use floating-point addressing modes (see Figure 
7-5); SRC and DST operands use CPU addressing modes. 

7-8 



DOUBLE OPERAND ADDRESSING 

15 12 11 

OC FOC 

SINGLE OPERAND ADDRESSING 

15 12 11 

OC FOC 

OC = OPCODE = 17 
FOC = FLOATING OPCODE 
AC = FLOATING POINT ACCUMULATOR (ACO-AC31 
FSRC AND FDST USE FPP ADDRESSING MODES 
SRC AND DST USE CPU ADDRESSING MODES 

08 07 06 05 

AC FSRC,FDST,SRC,DST 

06 05 

FSRC, FDST,SRC, DST 

Figure 7-5 Floating-Point Addressing Modes 

Terms Used in Instruction Definitions 

OC op code = 1 7 

FOC floating op code 

AC contents of accumulator, as specified by AC field of instruction 

fsrc address of floating-point source operand 

fdst address of floating-point destination operand 

f fraction 

XL largest fraction that can be represented: 

1 - 2 * * (-24), FD = 0; single-precision 
1 - 2 ** (-56), FD = 1; double-precision 

XLL smallest number that is not identically zero = 

XUL 

JL 

2 ** (-128) 

largest number that can be represented = 

2**(127)*XL 

largest integer that can be represented: 

2 * * (15) - 1; FL = 0; short integer 
2 ** (31) - 1; FL = 1; long integer 

ABS (address) = absolute value of (address) 

EXP (address) = biased exponent of (address) 

7-9 

00 

00 

MR-3608 



.LT "less than" 

.LE. "less than or equal to" 

.GT. "greater than" 

.GE. "greater than or equal to" 

LSB least significant bit 

Boolean Symbols 

/\ AND 

V inclusive OR 

Y exclusive OR 

NOT 

ABSF/ABSD 

MAKE ABSOLUTE FLOATING/DOUBLE 

15 

Format: 

Operation: 

Condition Codes: 

Description: 

12 11 

o o o 

ABSF FDST 

If (FDST) < 0, (FDST) - - (FDST). 

If EXP(FDST) = 0, (FDST) - exact O. 

For all other cases, (FDST) - (FDST). 

FC - 0 
FV-O 
FZ - 1 if (FDST) = 0, else FZ - 0 
FN-O 

Set the contents of FDST to its absolute value. 

1706 FDST 

00 

MR-11467 

Interrupts: If FIUV is enabled, trap on -0 occurs before execution. Overflow and 
underflow cannot occur. 

Accuracy: These instructions are exact. 

7-10 



ADDF/ADDD 

ADD FLOATING/DOUBLE 172(AC)FSRC 

00 15 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

12 11 OB 07 06 05 

o o 

MA-11468 

ADDF FSRC,AC 

Let SUM = (AC) + (FSRC) 

If underflow occurs and FlU is not enabled, AC <- exact o. 

If overflow occurs and flY is not enabled, AC <- exact O. 

For all others cases, AC <- SUM. 

FC <- 0 
FY <- 1 if overflow occurs, else FY <- 0 
FZ <- 1 if (AC) = 0, else FZ <- 0 
FN <- I if (AC) < 0, else FN <- 0 

Add the contents of FSRC to the contents of AC. The addition is carried out 
in single- or double-precision and is rounded or chopped in accordance with 
the values of the FD and FT bits in the FPS register. The result is stored in 
AC except for: 

1. Overflow with interrupt disabled. 
2. Underflow with interrupt disabled. 

For these exceptional cases, an exact 0 is stored in AC. 

If FlUY is enabled, trap on -0 in FSRC occurs before execution. If overflow 
or underflow occurs, and if the corresponding interrupt is enabled, the trap 
occurs with the faulty result in AC. The fractional parts are correctly stored. 
The exponent part is too small by 400 for overflow. It is too large by 400 for 
underflow, except for the special case of 0, which is correct. 

Errors due to overflow and underflow are described above. If neither occurs, 
then: for oppositely signed operands with exponent difference of 0 or 1, the 
answer returned is exact if a loss of significance of one or more bits can 
occur. Note that these are the only cases for which loss of significance of 
more than one bit can occur. For all other cases the result is inexact with 
error bounds of: 

1. LSB in chopping mode with either single- or double-precision. 
2. 1/2 LSB in rounding mode with either single- or double-precision. 

The undefined variable -0 can occur only in conjunction with overflow or 
underflow. It will be stored in AC only if the corresponding interrupt is 
enabled. 

7-11 



CFCC 

COpy FLOATING CONDITION CODES 170000 

15 12 11 00 

Format: 

Operation: 

Description: 

CLRFjCLRD 

CFCC 

C-FC 
V-FV 
Z-FZ 
N-FN 

MR-11469 

Copy the floating-point condition codes into the CPU's condition codes. 

CLEAR FLOATING/DOUBLE 1704 FDST 

00 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

12 11 

CLRF FDST 

(FDST) - exact 0 

FC-O 
FV-O 
FZ - 1 
FN-O 

MR-11470 

Set FDST to O. Set FZ condition code and clear other condition code bits. 

No interrupts will occur. Overflow and underflow cannot occur. 

These instructions are exact. 

7-12 



CMPF/CMPD 

COMPARE FLOATING/DOUBLE 173(AC+4)FSRC 

00 15 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

12 11 

o 

CMPF FSRC,AC 

(FSRC) - (AC) 

FC +- 0 
FV +- 0 

08 07 06 05 

AC 

FZ +- 1 if (FSRC) = 0, else FZ +- 0 
FN +- 1 if (FSRC) < 0, else FN +- 0 

MR-11471 

Compare the contents of FSRC with the accumulator. Set the appropriate 
floating-point condition codes. FSRC and the accumulator are left unchanged 
except as noted below. 

If FIUV is enabled, trap on -0 occurs before execution. 

These instructions are exact. 

An operand that has a biased exponent of 0 is treated as if it were an exact O. 
In this case, where both operands are 0, the KDJII-A will store an exact 0 in 
AC. 

7-13 



DIVF/DIVD 

DIVIDE FLOATINGIDOUBLE 174(AC+4) FSRC 

15 

I 1 
: 

1 
: 

1 : 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

12 11 08 07 06 05 00 

1 1 

: o : 0 
: 

1 I ~C I F~RC 
MR-11472 

DIVF FSRC,AC 

If EXP(FSRC) = 0, (AC) - (AC) and the instruction is aborted. 

If EXP(AC) = 0, (AC) - exact O. 

For all other cases, let QUOT = (AC)/(FSRC). 

If underflow occurs and flU is not enabled, AC - exact O. 

If overflow occurs and FlV is not enabled, AC - exact O. 

For all others cases, AC - QUOT. 

FC-O 
FV - 1 if overflow occurs, else FV - 0 
FZ - 1 if (AC) = 0, else FZ - 0 
FN - 1 if (AC) < 0, else FN - 0 

If either operand has a biased exponent of 0, it is treated as an exact O. For 
FSRC this would imply division by 0; in this case the instruction is aborted, 
the FEC register is set to 4, and an interrupt occurs. Otherwise, the quotient 
is developed to single- or double-precision with two guard bits for correct 
rounding. The quotient is rounded or chopped in accordance with the values 
of the FD and FT bits in the FPS register. The result is stored in the AC 
except for: 

1. Overflow with interrupt disabled. 
2. Underflow with interrupt disabled. 

For these exceptional cases, an exact 0 is stored in AC. 

If FIUV is enabled, trap on -0 in FSRC occurs before execution. If (FSRC) 
= 0, interrupt traps on an attempt to divide by O. If overflow or underflow 
occurs, and if the corresponding interrupt is enabled, the trap occurs with the 
faulty result in AC. The fractional parts are correctly stored. The exponent 
part is too small by 400 for overflow. It is too large by 400 for underflow, 
except for the special- case of 0, which is correct. 

Errors due to overflow and underflow are described above. If none of these 
occurs, the error in the quotient will be bounded by 1 LSB in chopping mode 
and by 1/2 LSB in rounding mode. 

The undefined variable -0 can occur only in conjunction with overflow or 
underflow. It will be stored in AC only if the corresponding interrupt is 
enabled. 

7-14 



LDCDF ILDCFD 

LOAD AND CONVERT FROM DOUBLE-TO-FLOATING 
AND FROM FLOATING-TO-DOUBLE 177(AC+4)FSRC 

00 15 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

12 11 08 07 06 05 

~C 
MA-11473 

LDCDF FSRC,AC 

If EXP(FSRC) = 0, AC <- exact 0. 

If FD = 1, FT = 0, FlV = ° and rounding causes overflow, AC <- exact 0. 

In all other cases, AC <- Cxy(FSRC), where Cxy specifies conversion from 
floating mode x to floating mode y. 

x = D, y = F if FD = ° (single) LDCDF 
y = F, y = D if FD = 1 (double) LDCFD 

FC <- ° 
FV <- 1 if conversion produces overflow, else 

FV <- ° 
FZ <- 1 if (AC) = 0, else FZ <- ° 
FN <- 1 if (AC) < 0, else FN <- ° 
If the current mode is floating mode (FD = 0), the source is assumed to be a 
double-precision number and is converted to single-precision. If the floating 
chop bit (FT) is set, the number is chopped; otherwise, the number is 
rounded. 

If the current mode is double mode (FD = 1), the source is assumed to be a 
single-precision number and is loaded left-justified in AC. The lower half of 
AC is cleared. 

If FlUV is enabled, trap on -0 occurs before execution. Overflow cannot 
occur for LDCFD. 

A trap occurs if FlV is enabled, and if rounding with LDCDF causes over
flow. AC <- overflowed result. This result must be +0 or -0. Underflow 
cannot occur. 

LDCFD is an exact instruction. Except for overflow, described above, 
LDCDF incurs an error bounded by 1 LSB in chopping mode and by 1/2 
LSB in rounding mode. 

7-15 



LDCIF /LDCID/LDCLF /LDCLD 

Format: 

Operation: 

LOAD AND CONVERT INTEGER OR LONG INTEGER 
TO FLOATING OR DOUBLE·PRECISION 177(AC)SRC 

00 15 

I 1 : 1 : 1 : 
12 11 08 07 06 05 

1 I 1 
: 

1 : 1 : a ~C 
MR·11474 

LDCIF SRC,AC 

AC - Cjx(SRC), where Cjx specifies conversion from integer mode j to 
floating mode y. 

j = I if FL = 0, j = L if FL = 1 
x = F if FD = 0, x = D if FD = 1 

Condition Codes: FC-O 
FV - 0 

Description: 

Interrupts: 

Accuracy: 

FZ - 1 if (AC) = 0, else FZ - 0 
FN - 1 if (Ac) < 0, else FN - 0 

Conversion is performed on the contents of SRC from a 2's complement 
integer with precision j to a floating-point number of precision x. Note that j 
and x are determined by the state of the mode bits FL and FD. 

If a 32-bit integer is specified (L mode) and (SRC) has an addressing mode of 
o or immediate addressing mode is specified, the 16 bits of the source register 
are left-justified and the remaining 16 bits loaded with Os before conversion. 

In the case of LDCLF, the fractional part of the floating-point representation 
is chopped or rounded to 24 bits for FT = 1 or 0, respectively. 

None; SRC is not floating-point, so trap on -0 cannot occur. 

LDCIF, LDCID, and LDCLD are exact instructions. The error incurred by 
LDCLF is bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding 
mode. 

7-16 



LDEXP 

Format: 

Operation: 

LOAD EXPONENT 

15 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

12 11 08 07 06 05 

o I ~C I 

LDEXP SRC,AR 

176(AC+4)SRC 

00 

MR-11475 

NOTE: 177 and 200, appearing below, are octal numbers. 

If -200 < SRC < 200, EXP(AC) - SRC + 200 and the rest of AC is 
unchanged. 

If (SRC) > 177 and FlV is enabled, EXP(AC) - [(SRC) + 200]<07:00>. 

If (SRC) > 177 and FlV is disabled, AC - exact O. 

If (SRC) < -177 and flU is enabled, EXP(AC) - [(SRC) + 200]<07:00>. 

If (SRC) < -177 and flU is disabled, AC - exact O. 

FC-O 
FV - 1 if (SRC) > 177, else FV - 0 
FZ - 1 if (AC) = 0, else FZ - 0 
FN - 1 if (AC) < 0, else FN - 0 

Change AC so that its unbiased exponent = (SRC). That is, convert (SRC) 
from 2's complement to excess 200 notation and insert it into the EXP field 
of AC. This is a meaningful operation only if ABS(SRC) LE 177. 

If SRC > 177, the result is treated as overflow. If SRC < -177, the result is 
treated as underflow. 

No trap on -0 in AC occurs, even if FIUV is enabled. If SRC > 177 and FIV 
is enabled, trap on overflow will occur. If SRC < -177 and flU is enabled, 
trap on underflow will occur. 

Errors due to overflow and underflow are described above. If EXP(AC) = 0 
and (SRC) = -200, AC changes from a floating-point number treated as 0 
by all floating arithmetic operations to a non-O number. This happens because 
the insertion of the "hidden" bit in the microcode implementation of arithme
tic instructions is triggered by a non vanishing value of EXP. 

For all other cases, LDEXP implements exactly the transformation of a 
floating-point number (2 ** K) * f into (2 ** (SRC» * f where 1/2 .LE. 
ABS(f) .LT. 1. 

7-17 



LDF/LDD 

LOAD FLOATING/DOUBLE 172(AC+4) FSRC 

00 15 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

LDFPS 

12 11 

a 

LDF FSRC,AC 

AC <- (FSRC) 

FC <- 0 
FV <- 0 

08 07 06 05 

a 

FZ <- 1 if (AC) = 0, else FZ <- 0 
FN <- 1 if (AC) < 0, else FN <- 0 

Load single- or double-precision number into AC. 

MR-11476 

If FIUV is enabled, trap on -0 occurs before AC is loaded. Overflow and 
underflow cannot occur. 

These instructions are exact. 

These instructions permit use of -0 in a subsequent floating-point instruction 
if FIUV is not enabled and (FSRC) = -0. 

LOAD FLOATING-POINT PROGRAM STATUS 1701 SRC 

00 15 

Format: 

Operation: 

Description: 

Special Comment: 

12 11 06 05 

a a a a a 

MR·11477 

LDFPS SRC 

FPS <- (SRC) 

Load floating-point status register from SRC. 

Users are cautioned not to use bits 13, 12, and 04 for their own purposes, 
since these bits are not recoverable by the STFPS instruction. 

7-18 



MODF/MODD 

MULTIPLY AND SEPARATE INTEGER 
AND FRACTION FLOATINGIDOUBLE 171 (AC+4)FSRC 

00 15 

I 1 

Format: 

Description 
and Operation: 

: 1 : 1 : 
12 11 08 07 06 05 

1 0 : 0 
: 

1 : 1 ~C 
MR-11478 

MODF FSRC,AC 

This instruction generates the product of its two floating-point operands, 
separates the product into integer and fractional parts, and then stores one or 
both parts as floating-point numbers. 

Let PROD = (AC) * (FSRC) so that in 

Floating-point: ABS(PROD) = (2 ** K) * f, where 

1/2 .LE. f .LT. 1, and EXP(PROD) = (200 + K) 

Fixed-point binary: PROD = N + g, where 

N = INT(PROD) = integer part of PROD, and 

g = PROD - INT(PROD) = fractional part of PROD with 0 .LE. g 
.LT. 1. 

Both Nand g have the same sign as PROD. They are returned as follows: 

If AC is an even-numbered accumulator (0 or 2), N is stored in AC+ 1 
(I or 3), and g is stored in AC. 

If AC is an odd-numbered accumulator, N is not stored and g is stored 
in AC. 

The two statements above can be combined as follows: 

N is returned to AC V 1 and g is returned to AC. 

7-19 



Five special cases occur, as indicated in the following formal description with 
L = 24 for floating mode and L = 56 for double mode. 

1. If PROD overflows and FlV is enabled, AC V 1 <- N, chopped to L 
bits, AC <- exact O. 

Note that EXP(N) is too small by 400 and that -0 can be stored in AC 
V 1. 

If FlV is not enabled, AC V 1 <- exact 0, AC <- exact 0, and -0 will 
never be stored. 

2. If 2 ** L .LE. ABS(PROD) and no overflow, AC V 1 <- N, chopped to 
L bits, AC <- exact O. 

The sign and EXP of N are correct, but low-order bit information is lost. 

3. If 1 .LE. ABS(PROD) .LT. 2 ** L, AC V 1 <- N, AC <- g. 

The integer part N is exact. The fractional part g is normalized, and 
chopped or rounded in accordance with FT. Rounding may cause a 
return of + unity for the fractional part. For L = 24, the error in g is 
bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding mode. 
For L = 56, the error in g increases from the above limits as ABS(N) 
increases above 8 because only 59 bits of PROD are generated. 

If 2 ** P .LE. ABS(N) .LT. 2 ** (p + 1), with p> 2, the low order p - 2 
bits of g may be in error. 

4. If ABS(PROD) .LT. 1 and no underflow, AC V 1 <- exact 0 and AC <

g. 

There is no error in the integer part. The error in the fractional part is 
bounded by 1 LSB in chopping mode and 1/2 LSB in rounding mode. 
Rounding may cause a return of + unity for the fractional part. 

5. If PROD underflows and flU is enabled, AC V 1 <- exact 0 and AC <

g. 

Errors are as in case 4, except that EXP(AC) will be too large by 4008 
(if EXP = 0, it is correct). Interrupt will occur and -0 can be stored in 
AC. 

If flU is not enabled, AC V 1 <-- exact 0 and AC <- exact O. 

For this case the error in the fractional part is less than 2 ** (-128). 

7-20 



Condition Codes: 

Interrupts: 

Accuracy: 

Applications: 

FC,- 0 
FY .- 1 if PROD overflows, else FY .-0 
FZ .- 1 if (AC) = 0, else FZ <--0 
FN <-- 1 if (AC) < 0, else FN <-- 0 

If FIUY is enabled, trap on -0 in FSRC occurs before execution. Overflow 
and underflow are discussed above. 

Discussed above. 

1. Binary-to-decimal conversion of a proper fraction. The following 
algorithm, using MOD, will generate decimal digits D(l), D(2) ... from 
left to right. 

Initialize: 

While X =1= 0 do 

I.- 0; 
X .- number to be converted; 
ABS(X) < 1; 

Begin PROD <-- X * lO; 
1<--1+1; 
D(I) <-- INT(PROD); 
X <-- PROD - INT(PROD); 
End; 

This algorithm is exact. It is case 3 in the description because the 
number of nonvanishing bits in the fractional part of PROD never 
exceeds L, and hence neither chopping nor rounding can introduce error. 

2. To reduce the argument of a trigonometric function. 

ARG * 2/PI = N + g. The low two bits of N identify the quadrant, and 
g is the argument reduced to the first quadrant. The accuracy of N + g 
is limited to L bits because of the factor 2/PI. The accuracy of the 
reduced argument thus depends on the size of N. 

3. To evaluate the exponential function e ** x, obtain x * (log e base 2) = 

N + g, then e ** x = (2 ** N) * (e ** (g * In 2». 

The reduced argument is g * In2 < 1 and the factor 2 ** N is an exact 
power of 2, which may be scaled in at the end via STEXP, ADD N to 
EXP and LDEXP. The accuracy of N + g is limited to L bits because of 
the factor (log e base 2). The accuracy of the reduced argument thus 
depends on the size of N. 

7-21 



MULF/MULD 

MULTIPLY FLOATING/DOUBLE 171 (ACIFSRC 

00 15 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

12 11 08 07 06 05 

a a a AC FSRC 

MR-11479 

MULF FSRC,AC 

Let PROD = (AC) * (FSRC) 

If underflow occurs and flU is not enabled, AC - exact O. 

If overflow occurs and FlV is not enabled, AC - exact O. 

For all others cases, AC - PROD. 

FC-O 
FV - 1 if overflow occurs, else FV - 0 
FZ - 1 if (AC) = 0, else FZ - 0 
FN - 1 if (AC) < 0, else FN - 0 

If the biased exponent of either operand is 0, (AC) - exact O. For all other 
cases PROD is generated to 48 bits for floating mode and 59 bits for double 
mode. The product is rounded or chopped for FT = 0 or 1, respectively, and 
is stored in AC except for: 

1. Overflow with interrupt disabled 
2. Underflow with interrupt disabled 

For these exceptional cases, an exact 0 is stored in AC. 

If FIUV is enabled, trap on -0 in FSRC occurs before execution. If overflow 
or underflow occurs, and if the corresponding interrupt is enabled, the trap 
occurs with the faulty result in AC. The fractional parts are correctly stored. 
The exponent part is too small by 400 for overflow. It is too large by 400 for 
underflow, except for the special case of 0, which is correct. 

Errors due to overflow and underflow are described above. If neither occurs, 
the error incurred is bounded by 1 LSB in chopping mode and 1/2 LSB in 
rounding mode. 

The undefined variable -0 can occur only in conjunction with overflow or 
underflow. It will be stored in AC only if the corresponding interrupt is 
enabled. 

7-22 



NEGF/NEGD 

NEGATE FLOATING/DOUBLE 1707 FDST 

00 15 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

SETD 

12 11 06 05 

a a a 

NEGF FDST 

(FDST) <-- - (FDST) if (FDST) = 0, else (FDST) <-- exact 0 

FC <-- 0 
FV <-- 0 
FZ +-- 1 if (FDST) = 0, else FZ +-- ° 
FN +-- 1 if (FDST) < 0, else FN +-- 0 

Negate the single- or double-precision number; store result in same location 
(FDST). 

If FIUV is enabled, trap on -0 occurs before execution. Overflow and 
underflow cannot occur. 

These instructions are exact. 

SET FLOATING DOUBLE MODE 170011 

15 12 11 00 

a a a a a a a a 
I 

I a a 1 
I 

MA-11481 

Format: SETD 

Operation: FD <-- 1 

Description: Set the KDJII-A in double-precision mode. 

7-23 



SETF 

SET FLOATING MODE 

15 12 11 

o o o o o o o o 

Format: SETF 

Operation: FD +- 0 

Description: Set the KDJ ll-A in single-precision mode. 

SETI 

SET INTEGER MODE 

15 12 11 

: 
1 I 0 : 0 

: 
0 : 0 

: 
0 : 0 : 0 : 0 

Format: SET! 

Operation: FL +- 0 

Description: Set the KDJII-A for short-integer data. 

SETL 

SET LONG-INTEGER MODE 

15· 12 11 

I 1 ;, : 
1 

: 
1 I 0 : 

0 : 0 
: 0 : 0 : 0 : 0 : 0 

Format: SETL 

Operation: FL +- 1 

Description: Set the KDJ11-A for long-integer data. 

7-24 

o o 

0 : 0 : 1 

: 1 
: 0 : 1 

170001 

00 

MA-11482 

177002 

00 

: 0 I 
MA-l,483 

177012 

00 

: 0 I 
MA-11484 



STCFD/STCDF 

STORE AND CONVERT FROM FLOATING-TO-DOUBLE 
AND FROM DOUBLE-TO-FLOATING V6(AC}FDST 

00 15 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

12 11 08 07 06 05 

a 

MR-11485 

STCFD AC,FDST 

If (AC) = 0, (FDST) <- exact O. 

If FD = 1, FT = 0, FIV = 0 and rounding causes overflow, (FDST) <- exact 
O. 

In all other cases, (FDST) <- Cxy(AC), where Cxy specifies conversion from 
floating mode x to floating mode y. 

x = F, y = D if FD = 0 (single) STCFD 
x = D, y = F if FD = 1 (double) STCDF 

FC +- 0 
FV <- 1 if conversion produces overflow, else 
FV +- 0 
FZ +- 1 if (AC) = 0, else FZ +- 0 
FN +- 1 if (AC) < 0, else FN <- 0 

If the current mode is single-precision, the accumulator is stored left-justified 
in FDST and the lower half is cleared. 

If the current mode is double-precision, the contents of the accumulator are 
converted to single-precision, chopped or rounded depending on the state of 
FT, and stored in FDST. 

Trap on -0 will not occur even if FIUV is enabled because FSRC is an 
accumulator. Underflow cannot occur. Overflow cannot occur for STCFD. 

A trap occurs if FIV is enabled, and if rounding with STCDF causes over
flow. (FDST) <- overflowed result. This must be +0 or -0. 

STCFD is an exact instruction. Except for overflow, described above, 
STCDF incurs an error bounded by 1 LSB in chopping mode and by 1/2 LSB 
in rounding mode. 

7-25 



STCFI/STCFL/STCDI/STCDL 

STORE AND CONVERT FROM FLOATING OR DOUBLE 
TO INTEGER OR LONG INTEGER 175(AC+4) DST 

00 15 

I 1 : 1 : 1 
: 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

12 11 08 07 06 05 

1 I 1 a : 1 
: 

1 I ~c I 

STCFI AC,DST 

(DST) <- Cxj(AC) if -JL - 1 < Cxj(AC) < JL + 1, else (DST) <- 0, where 
Cjx specifies conversion from floating mode x to integer mode j. 

j = I if FL = 0, j = L if FL = 1 
x = F if FD = 0, x = 0 if FD = 1 

JL is the largest integer. 

2 ** 15 - 1 for FL = 0 
2 ** 32 - 1 for FL = 1 

C, FC <- 0 if -JL - 1 < Cxj(AC) < JL + 1, else 
C, FC <- 1 
V, FV <- 0 
Z, FZ <- 1 if (DST) = 0, else Z, FZ <- 0 
N, FN <- 1 if (DST) < 0, else N, FN <- 0 

Conversion is performed from a floating-point representation of the data in 
the accumulator to an integer representation. 

If the conversion is to a 32-bit word (L mode), and an addressing mode of 0 
or immediate addressing mode is specified, only the most significant 16 bits 
are stored in the destination register. 

If the operation is out of the integer range selected by FL, FC is set to 1 and 
the contents of the DST are set to o. 

Numbers to be converted are always chopped (rather than rounded) before 
they are converted. This is true even when the chop mode bit FT is cleared in 
the FPS register. 

These instructions do not interrupt if FIUV is enabled, because the -0, if 
present, is in AC, not in memory. If FlC is enabled, trap on conversion failure 
will occur. 

These instructions store the integer part of the floating-point operand, which 
may not be the integer most closely approximating the operand. They are 
exact if the integer part is within the range implied by FL. 

7-26 



STEXP 

Format: 

Operation: 

STORE EXPONENT 

15 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

STF/STD 

12 11 08 07 06 05 

o 

STEXP AC,DST 

(DST) <- EXP(AC) - 200 

C, FC <- 0 
V, FV <- 0 
Z, FZ <- 1 if (DST) = 0, else Z, FZ +-- 0 
N, FN +-- 1 if (DST) < 0, else N, FN +-- 0 

175(AC)DST 

00 

MA·11487 

Convert AC's exponent from excess 200 notation to 2's complement and 
store the result in DST. 

This instruction will not trap on -0. Overflow and underflow cannot occur. 

This instruction is exact. 

STORE FLOATING/DOU8LE 174(AC)FDST 

00 15 12 11 08 07 06 05 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

STF AC,FDST 

(FDST) <- AC 

FC +-- FC 
FY-FY 
FZ +-- FZ 
FN +-- FN 

Store single- or double-precision number from AC. 

MA·114S8 

These instructions do not interrupt if FIUY is enabled, because the -0, if 
present, is in AC, not in memory. Overflow and underflow cannot occur. 

7-27 



Accuracy: These instructions are exact. 

Special Comment: These instructions permit storage of a -0 in memory from AC. There are two 
conditions in which -0 can be stored in an AC of the KDJII-A. One occurs 
when underflow or overflow is present and the corresponding interrupt is 
enabled. A second occurs when an LDF or LDD instruction is executed and 
the FIUV bit is disabled. 

STFPS 

Format: 

Operation: 

Description: 

STORE FLOATING-POINT PROGRAM STATUS 

15 12 11 06 05 

STFPS DST 

(DST) - FPS 

Store the floating-point status register in DST. 

1702 DST 

00 

MA-11489 

Special Comment: Bits 13, 12, and 04 are loaded with O. All other bits are the corresponding bits 
in the FPS. 

STST 

Format: 

Operation: 

Descri ption: 

STORE FPP'S STATUS 

15 12 11 

o 

STST DST 

06 05 

o o o 

(DST) - FEC (DST + 2) - FEA 

DST 

1703 DST 

00 

MA-11490 

Store the FEC and FEA in DST and DST +2. Note the following. 

1. If the destination mode specifies a general register or immediate address
ing, only the FEC is saved. 

2. The information in these registers is current only if the most recently 
executed floating-point instruction caused a floating-point exception. 

7-28 



SUBF/SUBD 

SUBTRACT FLOATING/DOUBLE 173(ACIFSRC 

00 15 

Format: 

Operation: 

Condition Codes: 

Descri ption: 

Interrupts: 

Accuracy: 

Special Comment: 

12 11 

o 

SUBF FSRC,AC 

08 07 06 05 

o 
I 

AC 

Let DIFF = (AC) - (FSRC) 

MR-11491 

If underflow occurs and FlU is not enabled, AC - exact o. 

If overflow occurs and FlV is not enabled, AC - exact o. 

For all others cases, AC - DIFF. 

FC-O 
FV - 1 if overflow occurs, else FV - 0 
FZ - 1 if (AC) = 0, else FZ - 0 
FN - 1 if (AC) < 0, else FN - 0 

Subtract the contents of FSRC from the contents of AC. The subtraction is 
carried out in single- or double-precision and is rounded or chopped in accor
dance with the values of the FD and FT bits in the FPS register. The result is 
stored in AC except for: 

1. Overflow with interrupt disabled 
2. Underflow with interrupt disabled 

For these exceptional cases, an exact 0 is stored in AC. 

If FlUV is enabled, trap on -0 in FSRC occurs before execution. If overflow 
or underflow occurs, and if the corresponding interrupt is enabled, the trap 
occurs with the faulty result in AC. The fractional parts are correctly stored. 
The exponent part is too small by 400 for overflow. It is too large by 400 for 
underflow, except for the special case of 0, which is correct. 

Errors due to overflow and underflow are described above. If neither occurs: 
for like-signed operands with exponent difference of 0 or 1, the answer 
returned is exact if a loss of significance of one or more bits can occur. Note 
that these are the only cases for which loss of significance of more than one 
bit can occur. For all other cases the result is inexact with error bounds of: 

1. LSB in chopping mode with either single- or double-precision 
2. 1/2 LSB in rounding mode with either single- or double-precision 

The undefined variable -0 can occur only in conjunction with overflow or 
underflow. It will be stored in AC only if the corresponding interrupt is 
enabled. 

7-29 



TSTF/TSTD 

TEST FLOATING/DOUBLE 1705 FDST 

00 15 

Format: 

Operation: 

Condition Codes: 

Descri ption: 

Interrupts: 

Accuracy: 

12 11 

TSTF FDST 

(FDST) 

FC +- 0 
FV +- 0 
FZ +- 1 if (FDST) = 0, else FZ +- 0 
FN +- 1 if (FDST) < 0, else FN +- 0 

MR·11492 

Set the floating-point condition codes according to the contents of FDST. 

If FIUV is set, trap on -0 occurs before execution. Overflow and underflow 
cannot occur. 

These instructions are exact. 

7-30 



8.1 INTRODUCTION 

CHAPTER 8 
PROGRAMMING TECHNIQUES 

The KDJII-A offers a great deal of programming flexibility and power. Utilizing the combination of the 
instruction set, the addressing modes, and the programming techniques, it is possible to develop new 
software or to utilize old programs effectively. The programming techniques in this chapter show the 
capabilities of the KDJ II-A. The techniques discussed involve position-independent coding (PIC), stacks, 
subroutines, interrupts, reentrancy, coroutines, recursion, processor traps, programming peripherals, and 
conversion. 

8.2 POSITION-INDEPENDENT CODE 
The output of a MACRO-II assembly is a relocatable object module. The task builder or linker binds one 
or more modules together to create an executable task image. Once built, a task can only be loaded and 
executed at the virtual address specified at link time. This is so because the linker has had to modify some 
instructions to reflect the memory locations in which the program is to run. Such a body of code is 
considered position-dependent (i.e., dependent on the virtual addresses to which it was bound). 

The KDJ II-A processor offers addressing modes that make it possible to write instructions that do not 
depend on the virtual addresses to which they are bound. This type of code is termed position-independent 
and can be loaded and executed at any virtual address. Position-independent code can improve system 
efficiency, both in use of virtual address space and in conservation of physical memory. 

In multiprogramming systems like RSX-IIM, it is important that many tasks be able to share a single 
physical copy of common code (a library routine, for example). To make the optimum use of a task's 
virtual address space, shared code should be position-independent. Code that is not position-independent 
can also be shared, but it must appear in the same virtual locations in every task using it. This restricts the 
placement of such code by the task builder and can result in the loss of virtual addressing space. 

8.2.1 Use of Addressing Modes in the Construction of Position-Independent Code 
The construction of position-independent code is closely linked to the proper use of addressing modes. The 
remainder of this explanation assumes you are familiar with the addressing modes described in Chapter 6. 

The following addressing modes, which involve only register references, are position-independent. 

R 
(R) 
(R)+ 
@*R)+ 
-(R) 
@-(R) 

Register mode 
Register-deferred mode 
Autoincrement mode 
Autoincrement-deferred mode 
Autodecrement mode 
Autodecrement-deferred mode 

When employing these addressing modes, the user is guaranteed position independence, providing the 
contents of the registers have been supplied independently of a particular virtual memory location. 

8-1 



The following two relative addressing modes are position-independent when a relocatable address is 
referenced from a relocatable instruction. 

A 
@A 

Relative mode 
Relative-deferred mode 

Relative modes are not position-independent when an absolute address (that is, a nonrelocatable address) is 
referenced from a relocatable instruction. In such case, absolute addressing (i.e., @#A) may be employed 
to make the reference position-independent. 

Index modes can be either position-independent or position-dependent, according to their use in the 
program: 

X(R) 
@X(R) 

Index mode 
Index-deferred mode 

If the base, X, is an absolute value (e.g., a control block offset), the reference is position-independenL The 
following is an example. 

MOY 2(SP),RO ;POSITION-INDEPENDENT 

N=4 

MOY N(SP),RO ;POSITION-INDEPENDENT 

If, however, X is a relocatable address, the reference is position-dependent, as the following example 
shows. 

CLR ADDR(Rl) ;POSITION-DEPENDENT 

Immediate mode can be either position-independent or not, according to its use. Immediate mode refer
ences are formatted as follows. 

#N Immediate mode 

When an absolute expression defines the value of N, the code is position-independent. When a relocatable 
expression defines N, the code is position-dependent. That is, immediate mode references an! position
independent only when N is an absolute value. 

Absolute mode addressing is position-independent only in those cases where an -absolute virtual location is 
being referenced. Absolute mode addressing references are formatted as follows. 

@#A Absolute mode 

An example of a position-independent absolute reference is a reference to the processor status word (PS) 
from a relocatable instruction, as in this example. 

MOY @#PSW,RO ;RETRIEYE STATUS AND PLACE IN REGISTER 

8-2 



8.2.2 Comparison of Position-Dependent and Position-Independent Code 
The RSX-ll library routine, PWRUP, is a FORTRAN-callable subroutine for establishing or removing a 
user power failure asynchronous system trap (AST) entry point address. Imbedded within the routine is the 
actual AST entry point that saves all registers, effects a call to the user-specified entry point, restores all 
registers on return, and executes an AST exit directive. The following examples are excerpts from this 
routine. The first example has been modified to illustrate position-dependent references. The second 
example is the position-independent version. 

Position-Dependent Code 

PWRUP:: 

10$: 

20$: 

BA: 

CLR 
CALL 

WORD 

MOV 

MOV 

BNE 

CLR 
BR 

MOV 
MOV 

CALL 
.BYTE 

MOV 
MOV 
MOV 

-(SP) 
.X.PAA 

1.,$PSW 

$OTSV,R4 

(SP)+,R2 

10$ 

-(SP) 
20$ 

R2,F.PF(R4) 
#BA,-(SP) 

.X.EXT 
109.,2. 

RO,-(SP) 
Rl,-(SP) 
R2,-(SP) 

8-3 

;ASSUME SUCCESS 
;PUSH (SAVE) 
;ARGUMENT ADDRESSES 
;ONTO STACK 
;CLEAR PSW, AND 
;SET Rl=R2SP 
;GET OTS IMPURE 
;AREA POINTER 
;GET AST ENTRY 
;POINT ADDRESS 
;IF NONE SPECIFIED, 
;SPECIFY NO POWER 
;RECOVER Y AST SERVICE 

;SET AST ENTRY POINT 
;PUSH AST SERVICE 
;ADDRESS 

;ISSUE DIRECTIVE, EXIT. 

;PUSH (SA VEl RO 
;PUSH (SAVE) Rl 
;PUSH (SAVE) R2 



Position-Independent Code 

PWRUP:: 

10$: 

20$: 

BA: 

CLR 
CALL 

.WORD 

MOV 

MOV 

BNE 

CLR 
BR 

MOV 
MOV 
ADD 

CALL 
.BYTE 

MOV 
MOV 
MOV 

-(SP) 
.X.PAA 

1.,$PSW 

@#$OTSV,R4 

(SP)+,R2 

10$ 

-(SP) 
20$ 

R2,F.PF(R4) 
PC,-(SP) 
#BA-.,(SP) 

.X.EXT 
109.,2. 

RO,-(SP) 
Rl,-(SP) 
R2,-(SP) 

;ASSUME SUCCESS 
;PUSH ARGUMENT 
;ADDRESSES ONTO 
;STACK 
;CLEAR PSW, AND 
;SET Rl=R2-SP. 
;GET OTS IMPURE 
;AREA POINTER 
;GET AST ENTRY 
;POINT ADDRESS 
;IF NONE SPECIFIED, 
;SPECIFY NO POWER 
;RECOVER Y AST SERVICE 

, 
;SET AST ENTRY POINT 
;PUSH CURRENT LOCATION 
;COMPUTE ACTUAL LOCATION 
;OF AST 

;ISSUE DIRECTIVE, EXIT. 

;ACTUAL AST SERVICE ROUTINE: 

; 1) SA VE REGISTERS 
; 2) EFFECT A CALL TO SPECIFIED 

SUBROUTINE 
; 3) RESTORE REGISTERS 
; 4) ISSUE AST EXIT DIRECTIVE 

;PUSH (SA VE) RO 
;PUSH (SAVE) Rl 
;PUSH (SAVE) R2 

The position-dependent version of the subroutine contains a relative reference to an absolute symbol 
($OTSV) and a literal reference to a relocatable symbol (BA). Both references are bound by the task 
builder to fixed memory locations. Therefore, the routine will not execute properly as part of a resident 
library if its location in virtual memory is not the same as the location specified at link time. 

In the position-independent version, the reference to $OTSV has been changed to an absolute reference. In 
addition, the necessary code has been added to compute the virtual location of BA based upon the value of 
the program counter. In this case, the value is obtained by adding the value of the program counter to the 
fixed displacement between the current location and the specified symbol. Thus, execution of the modified 
routine is not affected by its location in the image's virtual address space. 

8-4 



8.3 STACKS 
The stack is part of the basic design architecture of the KDJ II-A. It is an area of memory set aside by the 
programmer or the operating system for temporary storage and linkage. It is handled on a LIFO (last
in/first-out) basis, where items are retrieved in the reverse of the order in which they were stored. A stack 
starts at the highest location reserved for it and expands linearly downward to lower addresses as items are 
added. 

It is not necessary to keep track of the actual locations into which data is being stacked. This is done 
automatically through a stack pointer. To keep track of the last item added to the stack, a general register 
is used to store the memory address of the last item in the stack. Any register except register 7 (the PC) 
may be used as a stack pointer under program control; however, instructions associated with subroutine 
linkage and interrupt service automatically use register 6 as a hardware stack pointer. For this reason, R6 
is frequently referred to as the system SP. Stacks may be maintained in either full-word or byte units. This 
is true for a stack pointed to by any register except R6, which must be organized in full-word units only. 
Byte stacks (see Figure 8-1) require instructions capable of operating on bytes rather than full words. 

WORD STACK 

007100 ITEM#l 
007076 ITEM # 2 
007074 ITEM # 3 
007072 ITEM #4 _SP 

007070 

007066 
007064 

BYTE STACK 

007100 ITEM# 1 
007077 ITEM # 2 
007076 ITEM #3 
007075 ITEM #4 -SP 

NOTE: 
BYTES ARE 
ARRANGED IN 
WORDS AS FOLLOWING: 

y 

WORD 

Figure 8-\ Word and Byte Stacks 

8-5 

007072 

007075 

MR-3662 



8.3.1 Pushing onto a Stack 
Items are added to a stack using the autodecrement addressing mode. Adding items to the stack is called 
pushing, and is accomplished by the following instructions. 

MOV Source,-(SP) 

MOVB Source,-(SP) 

Data is thus pushed onto the stack. 

8.3.2 Popping from a Stack 

;MOV contents of source word 
;onto the stack 

or 
;MOVB source byte onto 
;the stack 

Removing data from the stack is called popping. This operation is accomplished using the autoincrement 
mode. 

MOV (SP)+ ,Destination ;MOV destination word 
;off the stack 

or 
MOVB (SP)+ ,Destination ;MOVB destination byte 

;off the stack 

After an item has been popped, its stack location is considered free and available for other use. The stack 
pointer points to the last-used location, implying that the next lower location is free. Thus, a stack may 
represent a pool of sharable temporary storage locations. (See Figure 8-2.) 

HIGH MEMORY F===i-}S~ACK~~-SP ~ 
E3 AREA ~ t~_SP 

LOW MEMORY 
1 AN EMPTY STACK AREA 

.~~i~~~L~ 
4 ANOTHER PUSH 

§ E3 

EO 
El _SP 

7 POP 

2 PUSHING A DATUM 
ONTO THE STACK 

3 PUSHING ANOTHER 
DATUM ONTO THE 
STACKS 

El -SP El ~o ~E2~O 
t E3 _SP 

5 POP 6 PUSH 

MR-3663 

Figure 8-2 Push and Pop Operations 

8-6 



8.3.3 Deleting Items from a Stack 
The following techniques may be used to delete items from a stack. To delete one item use: 

INC SP or TSTB(SP)+ for a byte stack 

To delete two items use: 

ADD#2,SP or TST(SP)+ for word stack 

To delete 50 items from a word stack use: 

ADD#IOO.,SP 

8.3.4 Stack Uses 
A stack is used in the following ways. 

I. Often one of the general-purpose registers must be used in a subroutine or interrupt service 
routine and then returned to its original value. The stack can be used to store the contents of the 
registers involved. 

2. The stack is used in storing linkage information between a subroutine and its calling program. 
The JSR instruction, used in calling a subroutine, requires the specification of a linkage register 
along with the entry address of the subroutine. The content of this linkage register is stored on 
the stack, so as not to be lost, and the return address is moved from the PC to the linkage 
register. This provides a pointer back to the calling program so that successive arguments may 
be transmitted easily to the subroutine. 

3. If no arguments need be passed by stacking them after the JSR instruction, the PC may be used 
as the linkage register. In this case, the result of the JSR is to move the return address in the 
calling program from the PC onto the stack and replace it with the entry address of the called 
subroutine. 

4. In many cases, the operations performed by the subroutine can be applied directly to the data 
located on or pointed to by a stack without the need to move the data into the subroutine area. 

Example: 

MOV SP,RI 
JSR PC,SUBR 

ADD (RI)+,(Rl) 

;CALLING PROGRAM 
;RI IS USED AS THE STACK 
;POINTER HERE. 

;SUBROUTINE 
;ADD ITEM # 1 TO #2, PLACE 
;RESULT IN ITEM #2, 
;R 1 POINTS TO 
;ITEM #2 NOW 

Because the hardware already uses general-purpose register R6 to point to a stack for saving 
and restoring PC and processor status word (PS) information, it is convenient to use the same 
stack to save and restore immediate results and to transmit arguments to and from subroutines. 
Using R6 in this manner permits extreme flexibility in nesting subroutines and interrupt service 
routines. 

8-7 



Since arguments may be obtained from the stack by using some form of register-indexed 
addressing, it is sometimes useful to save a temporary copy of R6 in some other register which 
has been saved at the beginning of a subroutine. If R6 is saved in R5 at the beginning of the 
subroutine, R5 may be used to index the arguments. During this time, R6 is free to be 
incremented and decremented while being used as a stack pointer. If R6 had been used directly 
as the base for indexing and not "copied," it might be difficult to keep track of the position in 
the argument list, since the base of the stack would change with every autoincre
ment/decrement that occurred. 

However, if the contents of R6 (SP) are saved in R5 before any arguments are pushed onto the 
stack, the position relative to R5 would remain constant. 

Return from a subroutine also involves the stack, as the return instruction, RTS, must retrieve 
information stored there by the JSR. 

When a subroutine returns, it is necessary to "clean up" the stack by eliminating or skipping 
over the subroutine arguments. One way this can be done is by insisting that the subroutine keep 
the number of arguments as its first stack item. Returns from subroutines then involve calculat
ing the amount by which to reset the stack pointer, resetting the stack pointer, then storing the 
original contents of the register that were used as the copy of the stack pointer. 

5. Stack storage is used in trap and interrupt linkage. The program counter and the processor 
status word of the executing program are pushed on the stack. 

6. When the system stack is being used, nesting of subroutines, interrupts, and traps to any level 
can occur until the stack overflows its legal limits. 

7. The stack method is also available for temporary storage of any kind of data. It may be used as 
a LIFO list for storing inputs, intermediate results, etc. 

8.3.5 Stack Use Examples 
As an example of stack use, consider this situation. A subroutine (SUBR) wants to use registers 1 and 2, 
but these registers must be returned to the calling program with their contents unchanged. The subroutine 
could be written as follows. 

Not Using the Stack 

Assembler 
Address Octal Code Syntax Comments 

076322 010167 SUBR: MOV Rl,TEMPI ;save Rl 
076324 000074 * 
076326 010267 MOV R2,TEMP2 ;save R2 
076330 000072 * 

076410 016701 MOV TEMP1,Rl ;restore Rl 
076412 000006 * 
076414 0167902 MOV TEMP2,R2 ;restore R2 
076416 000004 * 
076420 000297 RTSPC 
076422 000000 TEMP1:0 
076424 000000 TEMP2:0 

*Index constants 

8-8 



Using the Stack 
R3 has been previously set to point to the end of an unused block of memory. 

Address 

010020 
010022 

010130 
010132 
010134 

Octal Code 

010143 SUBR: 
010243 

012302 
012301 
000207 

Note: In this case R3 was used as a stack pointer. 

Assembler 
Syntax 

MOV Rl,-(R3) 
MOV R2,-(R3) 

MOV (R3)+,R2 
MOV (R3)+,Rl 
RTSPC 

Comments 

;push Rl 
;push R2 

;pop R2 
;pop Rl 

The second routine uses four fewer words of instruction code and two words of temporary "stack" storage. 
Another routine could use the same stack space at some later point. Thus, the ability to share temporary 
storage in the form of a stack is a way to save on memory usage. 

As another example of stack use, consider the task of managing an input buffer from a terminal. As 
characters come in, the user may wish to delete characters from the line; this is accomplished very easily 
by maintaining a byte stack containing the input characters. Whenever a backspace is received, a 
character is popped off the stack and eliminated from consideration. In this example, popping characters 
to be eliminated can be done by using either the MOVB (MOVE BYTE) or INC (INCREMENT) 
instructions. 

Note that in this case the increment instruction (INC) is preferable to MOVB, since it accomplishes the 
task of eliminating the unwanted character from the stack by readjusting the stack pointer without the 
need for a destination location. Also, the stack pointer (SP) used in this example cannot be the system 
stack pointer because R6 may point only to word (even) locations. (See Figure 8-3.) 

001011 
001010 
001007 

001006 
001005 
001004 

001003 
001002 
001001 

c 
u 
S 

T 
0 
M 

E 
R 
Z 

c 
u 

INC R3 S 

T 
0 
M 

E 
R 4-R31 001002 

4-R31 001001 

MR-3664 

Figure 8-3 Byte Stack Used as a Character Buffer 

8-9 



8.3.6 Subroutine Linkage 
The contents of the linkage register are saved on the system stack when a JSR is executed. The effect is 
the same as if a MOY reg,-(R6) had been performed. Following the JSR instruction, the same register is 
loaded with the memory address (the contents of the current PC), and a jump is made to the entry location 
specified. 

Figure 8-4 shows the conditions before and after the subroutine instructions JSR RS, 1064 are executed. 

Because hardware already uses general-purpose register R6 to point to a stack for saving and restoring PC 
and PS (processor status word) information, it is convenient to use that stack to save and restore 
intermediate results and to transmit arguments to and from subroutines. Using R6 this way permits 
nesting subroutines and interrupt service routines. 

BEFORE 

(R5) = 000132 

(R6) = 001776 

(PC) = (R7) = 001 000 

002000 n n n n n n 
001776 t---m-m-m-m-m-m---i-.SP I 001776 

001774 
001772 1------1 

AFTER 

(R5) = 001004 

(R6) = 001774 

(PC) = (R7) = 001064 

002000 n n n n n n 

001776 mmmmmm 

001774 000132 -.SP I 001774 
001772 

1-----; 

MR·3665 

Figure 8-4 JSR Stack Condition Example 

8.3.6.1 Return from a Subroutine - An RTS instruction provides for a return from the subroutine to the 
calling program. The RTS instruction must specify the same register as the one the JSR instruction used in 
the subroutine call. When the RTS is executed, the register specified is moved to the PC, and the top of 
the stack is placed in the register specified. Thus, an R TS PC has the effect of returning to the address 
specified on the top of the stack. 

8.3.6.2 Subroutine Advantages - There are several advantages to the subroutine calling procedure 
affected by the JSR instruction. 

1. Arguments can be passed quickly between the calling program and the subroutine. 

2. If there are no arguments, or the arguments are in a general register or on the stack, the JSR 
PC,DST mode can be used so that none of the general-purpose registers are used for linkage. 

3. Many JSRs can be executed without the need to provide any saving procedure for the linkage 
information, since all linkage information is automatically pushed onto the stack in sequential 
order. Returns can be made by automatically popping this information from the stack in the 
order opposite to the JSRs. 

Such linkage address bookkeeping is called automatic nesting of subroutine calls. This feature enables 
construction of fast, efficient linkages in a simple, flexible manner. It also permits a routine to call itself. 

8-10 



8.3.7 Interrupts 
An interrupt is similar to a subroutine call, except that it is initiated by the hardware rather than by the 
software. An interrupt can occur after the execution of an instruction. 

Interrupt-driven techniques are used to reduce CPU waiting time. In direct program data transfer, the 
CPU loops to check the state of the DONE/READY flag (bit 7) in the peripheral interface. Using 
interrupts, the CPU can handle other functions until the peripheral initiates service by setting the DONE 
bit in its control/status register. The CPU completes the instruction being executed, then acknowledges 
the interrupt, and vectors to an interrupt service routine. The service routine will transfer the data and may 
perform calculations with it. After the interrupt service routine has been completed, the computer resumes 
the program that was interrupted by the peripheral's high-priority request. 

8.3.7.1 Interrupt Service Routines - With interrupt service routines, linkage information is passed so 
that a return to the main program can be made. More information is necessary for an interrupt sequence 
than for a subroutine call because of the random nature of interrupts. The complete machine state of the 
program immediately prior to the occurrence of the interrupt must be preserved in order to return to the 
program without any noticeable effects. This information is stored in the processor status word (PS). Upon 
interrupt, the contents of the program counter (PC) (address of next instruction) and the PS are automati
cally pushed onto the R6 system stack. The effect is the same as if: 

MaY PS,-(SP) 
MaY PC,-(SP) 

;Push PS 
;Push PC 

had been executed. The new contents of the PC and PS are loaded from two preassigned consecutive 
memory locations which are called vector addresses. 

The first word contains the interrupt service routine entry address (the address of the service routine 
program sequence). The second word contains the new PS that will determine the machine status, 
including the operational mode and register set to be used by the interrupt service routine. The contents of 
the vector address are set under program control. 

After the interrupt service routine has been completed, an RTI (return from interrupt) is performed. The 
top two words of the stack are automatically popped and placed in the PC and PS, respectively, thus 
resuming the interrupted program. Interrupt service programming is intimately involved with the concept 
of CPU and device priority levels. 

8.3.7.2 Nesting - Interrupts can be nested in much the same manner that subroutines are nested. It is 
possible to nest any arbitrary mixture of subroutines and interrupts without any confusion. When the 
respective RTI and RTS instructions are used, the proper returns are automatic. (See Figure 8-5.) 

8-11 



1. PROCESS 0 IS RUNNING; SP IS 
POINTING TO LOCATION PO. 

2. INTERRUPT STOPS PROCESS OWITH PO~ 
PC = PCO, AN 0 STATUS = PSO; STARTS PSO 

PROCESS 1. SP_ PCO 

o 

3. PROCESS 1 USES STACK FOR TEM· 
PORARY STORAGE (TEO, TEl). PO I---=PS"""O ---I 

PCO 
TEO 

SP_ TEl 

4. PROCESS 1 INTERRUPTED WITH PC PO 

= PCl AND STATUS = PS1; PROCESS 
2 IS STARTED. 

5. PROCESS 2 IS RUNNING AND DOES 
A JSR R7,A TO SUBROUTINE A WITH 
PC = PC2. 

SP_ 

o 

PO 

SP_ 

6. SUBROUTINE A IS RUNNING AND PO 

USES STACK FOR TEMPORARY 
STORAGE. 

SP_ 

PSO 
PCO 
TEO 
TEl 
PSl 
PCl 

PSO 
PCO 
TEO 
TEl 
PSl 
PCl 
PC2 

PSO 
PCO 
TEO 
TEl 
PSl 
PCl 
PC2 
TAl 
TA2 

7. SUBROUTINE A RELEASES THE 
TEMPORARY STORAGE HOLDING 
TAl AND TA2. 

8. SUBROUTINE A RETURNS CONTROL 
TO PROCESS 2 WITH AN RTS R7; PC 
IS RESET TO PC2. 

9. PROCESS 2 COMPLETES WITH AN 
RTl INSTRUCTIONS (DISMISSES 
INTERRUPT) PC IS RESET OT PC (1) 
AND STATUS IS RESET TO PS1; 
PROCESS 1 RESUMES' 

10. PROCESS 1 RELEASES THE TEMPO· 
RARY STORAGE HOLDING TEO AND 
TEl. 

11. PROCESS 1 COMPLETES ITS 
OPERATION WITH AN RT1,PC IS 
RESET TO PCO, AND STATUS IS 
RESET TO PSO. 

Figure 8-5 Nested Interrupt Service Routines and Subroutines 

8.3.8 Reentrancy 

PO 
PSO 
PCO 
TEO 
TEl 
PSl 
PCl 

SP_ PC2 

o 

PO 

PSO 
PCO 
TEO 
TEl 
PSl 
PCl 

o 

PO I-----;,:",-----'t 
PSO 
PCO 
TEO 

SP_I-----'-TE;:.;.l_--I 

PO~ PSO 

SP-: PCO 

MR-3668 

Other advantages of the KDJ Il-A stack organization occur in programming systems that handle several 
tasks. Multitask program environments range from simple single-user applications that manage a mixture 
of I/O interrupt service and background data processing (as in RT-II), to large, complex, multiprogram
ming systems that manage an intricate mixture of executive and multiuser programming situations (as in 
RSX-I1). In all these situations, using the stack as a programming technique provides flexibility and 
time/memory economy by allowing many tasks to use a single copy of the same routine with a simple 
straightforward way of keeping track of complex program linkages. 

The ability to share a single copy of a program among users or among tasks is called reentrancy. Reentrant 
program routines differ from ordinary subroutines in that it is not necessary for reentrant routines to finish 
processing a given task before they can be used by another task. Multiple tasks can exist at any time in 
varying stages of completion in the same routine. Thus, the situation as shown in Figure 8-6 may occur. 

8-12 



MEMORY MEMORY 

PROGRAM 1 PROGRAM 1 

PROGRAM 2 SUBROUTINE A 

PROGRAM 3 

PROGRAM 2 

PROGRAM 3 

KDJ11-A APPROACH CONVENTIONAL APPROACH 

PROGRAMS 1,2, AND 3 CAN SHARE A SEPRATE COPY OF SUBROUTINE A 
SUBROUTINE A. MUST BE PROVIDED FOR EACH PROGRAM. 

MR-3667 

Figure 8-6 Reentrant Routines 

8.3.8.1 Reentrant Code - Reentrant routines must be written in pure code (that is, any code that consists 
exclusively of instructions and constants). The value of using pure code whenever possible is that the 
resulting code has the following characteristics. 

I. It is generally considered easier to debug than standard code. 
2. It can be kept in read-only memory (is read-only protected). 

Using reentrant code, control of a routine can be shared as follows. (See Figure 8-7.) 

I. Task A requests processing by reentrant routine Q. 
2. Task A temporarily gives up control of reentrant routine Q before it completes processing. 
3. Task B starts processing the same copy of reentrant routine Q. 
4. Task B completes processing by reentrant routine Q. 
5. Task A regains use of reentrant routine Q and resumes where it stopped. 

REENTRANT 
ROUTINE Q 

MR-3668 

Figure 8-7 Sharing Control of a Routine 

8-13 



8.3.8.2 Writing Reentrant Code - In an operating system environment, when one task is executing and is 
interrupted to allow another task to run, a context switch occurs in which the processor status word and 
current contents of the general-purpose registers (GPRs) are saved and replaced by the appropriate values 
for the task being entered. Therefore, reentrant code should use the GPRs and the stack for any counters, 
pointers, or data that must be modified or manipulated in the routine. 

The context switch occurs whenever a new task is allowed to execute. It causes all of the GPRs, the PS, 
and often other task-related information to be saved in an impure area. It then reloads these registers and 
locations with the appropriate data for the task being entered. Notice that one consequence of this is that a 
new stack pointer value is loaded into R6, thereby causing a new area to be used as the stack when the 
second task is entered. 

The following should be observed when writing reentrant code. 

I. All data should be in or pointed to by one of the general-purpose registers. 

2. A stack can be used for temporary storage of data or pointers to impure areas within the task 
space. The pointer to such a stack would be stored in a GPR. 

3. Parameter addresses should be used by indexing and indirect reference rather than by putting 
them into instructions within the code. 

4. When temporary storage is accessed within the program, it should be by indexed addresses, 
which can be set by the calling task in order to handle any possible recursion. 

8.3.9 Coroutines 
In some programming situations it happens that several program segments or routines are highly interac
tive. Control is passed back and forth between the routines, each going through a period of suspension 
before being resumed. Since the routines maintain a symmetric relationship with each other, they are 
called coroutines. 

Coroutines are two program sections, either subordinate to the call of the other. The nature of the call is, 
"I have processed all I can for now, so you can execute until you are ready to stop, then I will continue." 
The coroutine call and return are identical, each being a jump to subroutine instruction with the destina
tion address being on top of the stack and the PC serving as the linkage register, as follows. 

JSR PC,@(R6)+ 

8-14 



8.3.9.1 Coroutine Calls - The coding of coroutine calls is made simple by the stack feature. Initially, the 
entry address of the coroutine is placed on the stack, and from that point the 

JSR PC,@*R6)+ 

instruction is used for both the call and the return statements. This JSR instruction results in an exchange 
of the contents of the PC and the top element of the stack; this permits the two routines to swap control 
and resume operation where each was terminated by the previous swap. An example is shown in Figure 8-
8. Notice that the coroutine linkage cleans up the stack with each control transfer. 

ROUTINE A 

MOV #LOC.-(SP) 

JSR PC,@(SP)+ 
(Pca) 

STACK 

LOC +-SP 

pca +-SP 

PCI SP 

ROUTINE B 

LOC: 

COMMENTS 

LOC IS PUSHED 
ONTO THE STACK 
TO PREPARE FOR 
THE COROUTINE 
CALL. 

WHEN THE CALL 
IS EXECUTED, 
THE PC FROM 
ROUTINE A IS 
PUSHED ON THE 
STACK AND EXE· 
CUTION CONTIN
UES AT LOC. 

JSR PC,@(SP)+ ROUTINE B CAN 
(PCI) RETURN CONTROL 

TO ROUTINE A 
BY ANOTHER 
COROUTINE CALL. 
pca IS POPPED 
FROM THE STACK 
AND EXECUTION 
RESUMES IN 
ROUTINE AJUST 
AFTER THE CALL 
TO ROUTINE B, 
I.E., AT pca. 
PCIISSAVED 
ON THE STACK 
FOR A LATER 
RETURN TO 
ROUTINE B. 

MR·3669 

Figure 8-8 Coroutine Example 

8-15 



8.3.9.2 Coroutines Versus Subroutines - Coroutines can be compared to subroutines in the following 
ways. 

I. A subroutine can be considered to be subordinate to the main or calling routine, but a coroutine 
is considered to be on the same level, as each coroutine calls the other when it has completed 
current processing. 

2. When called, a subroutine executes to the end of its code. When called again, the same code will 
execute before returning. A coroutine executes from the point after the last call of the other 
coroutine. Therefore, the same code will not be executed each time the coroutine is called. An 
example is shown in Figure 8-9. 

3. The call and return instructions for coroutines are the same: 

JSR PC,@(SP)+ 

This one instruction also cleans up the stack with each call. The last coroutine call will leave an 
address on the stack that must be popped if no further calls are to be made. Refer to Paragraph 
8.3.6.1 for information on the return from subroutine instruction. 

4. Each coroutine call returns to the coroutine code at the point after the last exit with no need for 
a specific entry point label, as would be required with subroutines. 

COROUTINES MAIN PROGRAMS SUBROUTINES 

RTS 

JSR Rn, LOC 

j 
MR·3670 

Figure 8-9 Coroutines Versus Subroutines 

8-16 



8.3.9.3 Using Coroutines - Coroutines should be used in the following situations. 

I. Whenever two tasks must be coordinated in their execution without obscuring the basic struc
ture of the program. For example, in decoding a line of assembly language code, the results at 
anyone position might indicate the next process to be entered. A detected label must be 
processed. If no label is present, the operator must be located, etc. 

2. To add clarity to the process being performed, to ease-in the debugging phase, etc. 

An assembler must perform a lexicographic scan of each assembly language statement during pass 1 of the 
assembly process. The various steps in such a scan should be separated from the main program flow to add 
to the program's clarity and to aid in debugging by isolating many details. Subroutines would not be 
satisfactory here, as too much information would have to be passed to the subroutine each time it was 
called. Such a subroutine would be too isolated. Coroutines could be effectively used here with one routine 
being the assembly pass 1 routine and the other extracting one item at a time from the current input line. 
Figure 8-10 illustrates this example. 

ROUTINE A ROUTINE B 

END 

MR-3671 

Figure 8- JO Coroutine Path 

8-17 



Coroutines can be utilized in I/O processing. The example above shows coroutines used in double-buffered 
I/O using lOX. The flow of events might be described as: 

then 

Write 01 
Read I I 
Process 12 

Write 02 
Read 12 
Process I I 

concurrently, 

concurrently, 

Figure 8-11 illustrates a coroutine swapping interaction. 

When routine 1 is operating; it executes: 

MOY #PC2,-(R6) 
JSR PC,@(R6)+ 

with the following results. 

I. PC2 is popped from the stack and the SP autoincremented. 

2. SP is autodecremented and the old PC (i.e., PCI) is pushed. 

3. Control is tranferred to the location PC2 (i.e., routine 2). 

When routine 2 is operating; it executes: 

JSR PC,@(R6)+ 

with the result that PC2 is exchanged for PCI on the stack and control is transferred back to routine l. 

ROUTINE #1 IS OPERATING, IT THEN 
EXECUTES: 

MOV #PC2,-( R6) 
JSR PC,@(R6)+ 

WITH THE FOLLOWING RESULTS: 

1. PC2 IS POPPED FROM THE STACK 
AND THE SP AUTOINCREMENTED. SP_ 

2. SP IS AUTODECREMENTED AND 
THE OLD PC (I.E., PC1) IS PUSHED. 

3. CONTROL IS TRANSFERRED TO THE 
LOCATION PC2 (I.E., ROUTINE #2). 

ROUTINE #2 IS OPERATING, IT THEN 
EXECUTES: 

JSR PC,@(R6)+ 
WITH THE RESULT THAT PC2 IS 
EXCHANGED FOR PC1 ON THE 
STACK AND CONTROL IS 
TRANSFERRED BACK TO ROUTINE #1. 

SP_ 

SP_ 

Figure 8-11 Coroutine Interaction 

8-18 

PC2 

~. 
PC2 PC2 

~ 
PC1 

MR-3672 



8.3.10 Recursion 
An interesting aspect of a stack facility, other than its providing for automatic handling of nested 
subroutines and interrupts, is that a program may call on itself as a subroutine just as it can call on any 
other routine. Each new call causes the return linkage to be placed on the stack, which, as it is a last
in/first-out queue, sets up a natural unraveling to each routine just after the point of departure. Typical 
flow for a recursive routine might resemble that shown in Figure 8-12. 

MR·3673 

Figure 8-12 Recursive Routine Flow 

The main program calls function 1, SUB 1, which calls function 2, SUB 2, which recurses once before 
returning. 

Example: 

DNCF: 

1$ 

, 
BEQ 1$ 
JSR R5,DNCF 

, 
RTS R5 

;TO EXIT RECURSIVE LOOP 
;RECURSE 

;RETURN TO 1 $ FOR 
;EACH CALL, THEN TO 
;MAIN PROGRAM 

The routine DNCF calls itself until the variable tested becomes equal to 0, then it exits to 1 $ where the 
RTS instruction is executed, returning to the 1$ once for each recursive call and a final time to return to 
the main program. 

In general, recursion techniques will lead to slower programs than the corresponding interactive tech
niques, but recursion will produce shorter programs, and thus save memory space. Both the brevity and 
clarity produced by recursion are important in assembly language programs. 

8-19 



Uses of Recursion - Recursion can be used in any routine in which the same process is required several 
times. For example, a function to be integrated may contain another function to be integrated, as in 
solving for XM, where 

SM = I + F(X) 

and 

F(X) = G(X) 

Another use for a recursive function could be in calculating a factorial function, because 

FACT(N) = FACT(N - 1) * N 

Recursion should terminate when N = 1. 

The macroprocessor within MACRO-II, for example, is itself recursive since it can process nested 
macrodefinitions and calls. For example, within a macrodefinition, other macros can be called. When a 
macro call is encountered within definition, the processor must work recursively; that is, it must process 
one macro before it is finished with another, then continue with the previous one. The stack is used for a 
separate storage area for the variables associated with each call to the procedure. 

As long as nested definitions of macros are available, it is possible for a macro to call itself. However, 
unless conditionals are used to terminate this expansion, an infinite loop could be generated. 

8.3.11 Processor Traps 
Certain errors and programming conditions cause the KDJ ll-A processor to enter the service state and 
trap to a fixed location. A trap is an interrupt generated by software. Pending conditions are arbitrated 
according to a priority. The following list describes the priority from highest to lowest. 

Condition 

Memory Management Violation* 
(MMUERR) 

Timeout Error* (BUSERR) 

Parity Error* (PAR ERR) 

Trace (T) Bit* 

Stack Overflow* (STKOVF) 

Power Fail* (PFAIL) 

Description 

A memory management violation causes an abort and 
traps to location 2508. 

No response from a bus device during a bus transaction 
causes an abort and traps to location 48. 

A parity error signal received by the processor during a 
bus transaction causes an abort and traps to location 1148. 

If PS bit 4 is set at the end of instruction execution, the 
processor traps to location 148. 

If the kernel stack pointer was pushed below 4008 during 
an instruction execution, the processor traps to location 48 
at the end of the instruction. 

If bus signal power OK (BPOKH) became negated during 
instruction execution, the processor traps to location 248 
at the end of the instruction. 

• Nonmaskable software cannot inhibit the condition. CTLERR, MMUERR, BUSERR, PARERR are mutually exclusive 
when the processor is executing a program. 

8-20 



Condition 

Interrupt Level 7 (BIRQ7) 
Interrupt Level 6 (BIRQ6) 
Interrupt Level 5 (BIRQ5) 
Interrupt Level 4 (BIRQ4) 

Halt Line 

Description 

If device interrupt requests are asserted and PS<07:05> 
are properly set, the processor at the end of the present 
instruction execution will initiate an interrupt vector 
sequenced on the bus. These inputs are maskable by 
PS<07:05>. 

PS<07:05> 

7 
6 
5 
4 
0-3 

Levels Inhibited 

All 
6, 5, 4 
5,4 
4 
None 

If the BHAL T L bus signal is asserted during the service 
state, the processor will enter ODT mode. 

8.3.11.1 Trap Instructions - Trap instructions provide for calls to emulators, I/O monitors, debugging 
packages, and user-defined interpreters. When a trap occurs, the contents of the current program counter 
(PC) and program status word (PS) are pushed onto the processor stack and replaced by the contents of a 
2-word trap vector containing a new PC and new PS. The return sequence from a trap involves executing 
an RTI or RTT instruction, which restores the old PC and old PS by popping them from the stack. Trap 
vectors are located at permanently assigned fixed addresses. 

The EMT (trap emulator) and TRAP instructions do not use the low-order byte of the word in their 
machine language representation. This allows user information to be transferred in the low-order byte. The 
new value of the PC loaded from the vector address of the TRAP or EMT instructions is typically the 
starting address of a routine to access and interpret this information. Such a routine is called a trap 
handler. 

A trap handler must accomplish several tasks. It must save and restore all necessary GPRs, interpret the 
low byte of the trap instruction and call the indicated routine, serve as an interface between the calling 
program and this routine by handling any data that needs to be passed between them, and, finally, cause 
the return to the main routine. 

A trap handler can be useful as a patching technique. Jumping out to a patch area is often difficult 
because a 2-word jump must be performed. However, the I-word TRAP instruction may be used to 
dispatch to patch areas. A sufficient number of slots for patching should first be reserved in the dispatch 
table of the trap handler. The jump can then be accomplished by placing the address of the patch area into 
the table and inserting the proper TRAP instruction where the patch is to be made. 

8-21 



8.3.11.2 Use of Macro Calls - The trap handler can be used in a program to dispatch execution to any 
one of several routines. Macros may be defined to cause the proper expansion of a call to one of these 
routines, as in the example below . 

. MACRO SUB2 ARG 
MOV ARG, RO 
TRAP +1 
.ENDM 

When expanded, this macro sets up the one argument required by the routine in RO and then causes the 
trap instruction with the number I in the lower byte. The trap handler should be written so that it 
recognizes a I as a call to SUB2. Notice that ARG here is being transmitted to SUB2 from the calling 
program. It may be data required by the routine or it may be a pointer to a longer list of arguments. 

In an operating system environment like R T -II, the EMT instruction is used to call system or monitor 
routines from a user program. The monitor of an operating system necessarily contains coding for many 
functions, such as I/O, file manipulation, etc. This coding is made accessible to the program through a 
series of macro calls that expand into EMT instructions with low bytes, indicating the desired routine or 
group of routines to which the desired routine belongs. Often a GPR is designated to be used to pass an 
identification code to further indicate to the trap handler which routine is desired. For example, the macro 
expansion for a resume execution command in RT-il is as follows . 

. MACRO .RSUM 
CM3,2 . 
. ENDM 

CM3 is defined: 

.MACRO CM3 CHAN, CODE 
MOV #CODE *400,RO 

.IIF NB CHAN,BISB CHAN,RO 
EMT 374 
.ENDM 

Note that the EMT low byte is 374. This is interpreted by the EMT handler to indicate a group of 
routines. Then the contents of RO (high byte) are tested by the handler to identify exactly which routine 
within the group is being requested - in this case routine number 2. (The CM3 call of the .RSUM is set up 
to pass the identification code.) 

8.3.12 Conversion Routines 
Almost all assembly language programs require the translation of data or results from one form to another. 
Code that performs such a transformation is called a conversion routine in this guide. Several commonly 
used conversion routines follow. 

Almost all assembly language programs involve some type of conversion routine. Octal-to-ASCII, octal-to
decimal, and decimal-to-ASCII are a few of the most widely used. 

8-22 



Arithmetic multiply and divide routines are fundamental to many conversion routines. Division is typically 
approached in one of two ways. 

I. The division can be accomplished through a combination of rotates and subtractions. 

Example: 

Assume the following code and register data; to make the example easier, also assume a 3-bit 
word. 

DIV: 

1$ 

2$ 

MOV #3,-(SP) 
CLR -(SP) 
ASL (SP) 
ASL RI 
ROLRO 
CMP RO,R3 
BLT 2$ 
SUB R3,RO 
INC (SP) 
DEC 2 (SP) 
BNE $1 

Therefore, to divide 7 by 2: 

RO = 000 
RI = III 
R3 = ala 
C bit = a 

STACK 
all 
000 

;SET UP DIGIT COUNTER 
;CLEAR RESULT 

;RO CONTAINS REMAINDER 
;INCREMENT RESULT 
;DECREMENT COUNTER 

remainder 
7 (multiplicand) 
2 (multiplier) 

counter 
quotient 

Following through the coding, the quotient, remainder, and dividend all shift left, manipulating 
the most significant digit first, etc. 

At the conclusion of the routine: 

RO = 001 
RI = 000 
R3 = ala 

STACK 
000 
all 

8-23 

remainder 

counter 
quotient 



2. The second method of division works by repeated subtraction of the powers of the divisor, 
keeping a count of the number of subtractions at each level. 

Example: 

To divide 22110 by 10, first try to subtract powers of 10 until a nonnegative value is obtained, 
counting the number of subtractions of each power. 

221 
-1000 

Negative, so go to the next lower power, and count for 103 = o. 

221 
-100 

121 count for 102 = 1 
-100 

21 count = 2 
-100 

Negative, so reduce power, and count for 102 = 2. 

21 
-10 

11 count for 101 = 1. 

11 
-10 

1 count = 2 
-10 

Negative, so count for 101 = 2. 

No lower power, so remainder is 1. 

Answer = 022, remainder 1. 

8-24 



Multiplication can be done with a combination of rotates and additions or with repetitive additions. 

Example: 

Assume the following code and a 3-bit word. 

ADD 

CLR RO 
MaY #3,CNT 
MaY RI,MULT; 

MORE: 

NOW; 

MULT: 
CNT: 

The following conditions exist for 6 times 3: 

RO = 000 
RI = 110 
R3 = OIl 

high-order half of result 
multiplicand 
multiplier 

After the routine is executed: 

RO = 0 I 0 high-order half of result 
R 1 = 0 I 0 low-order half of result 
R2 = 100 
CNT=O 
MULT = 110 

Example: 

Multiplication of RO by 508(101000). 

MUL50: 

If RO contains 7: 

RO = III 

After execution: 

MaY RO,-(SP) 
ASL RO 
ASL RO 
ADD (SP)+,RO 
ASL RO 
ASL RO 
ASL RO 
RETURN 

RO = 100011000 
(78 * 508 = 4308). 

8-25 

;HIGH HALF OF ANSWER 
;SET UP COUNTER 
;MULTIPLICAND 

ROR R2 
BCC NOW 
ADD MUL T,RO ;IF INDICATED, 

;MUL TIPLICAND 
ROR RO 
R04 RI 
DEC CNT 
BNE MORE 
o 
o 



ASCII Conversions - The conversion of ASCII characters to the internal representation of a number, as 
well as the conversion of an internal number to ASCII in I/O operations, presents a challenge. The 
following routine takes the 16-bit word in R 1 and stores the corresponding six ASCII characters in the 
buffer addressed by R2. 

OUT: 
LOOP: 

MOV 
MOV 
BIC 
ADD 
MOVB 
ASR 
ASR 
ASR 
DEC 
BNE 
BIC 
ADD 
MOVB 
RTS 

#5,RO 
Rl,-(SP) 
# 1 77770,@SP 
#'O,@SP 
(SP)+,-(R2) 
Rl 
Rl 
Rl 
RO 
LOOP 
#177776,Rl 
#'O,Rl 
R5,-(R2) 
PC 

8.4 PROGRAMMING THE PROCESSOR STATUS WORD 

;LOOP COUNT 
;COPY WORD INTO STACK 
;ONE OCTAL VALUE 
;CONVERT TO ASCII 
;STORE IN BUFFER 
;SHIFT 
;RIGHT 
;THREE 
;TEST IF DONE 
;NO, DO IT AGAIN 
;GET LAST BIT 
;CONVERT TO ASCII 
;STORE IN BUFFER 
;DONE,RETURN 

The current processor status can be read and written using several programming techniques on the PS. The 
PS has an I/O address of 17777776. The KDll1-A and other PDP-II processors implement this address, 
whereas LSI-II and LSI-ll/2 processors do not. One technique is to use the I/O address as a source or 
destination address with any instruction. 

CLR @#17777776 
MOV @#17777776, RO 

The first instruction clears the PS and the second instruction moves the contents of the PS to general 
register RO. 

The PS explicit address (17777776) can be accessed on a word or byte basis. The KDll1-A will recognize 
the PS odd address (17777777) and the access result will be identical to an odd memory address reference. 

Another technique is to use the two dedicated PS instructions, MTPS and MFPS. These instructions only 
reference the even byte. If memory management is enabled certain PS bits are protected. 

8-26 



8.S PROGRAMMING PERIPHERALS 
Programming LSI-II bus-compatible modules (devices) is simple. A special class of instructions that deals 
with input/output operations is unnecessary. The bus structure permits a unified addressing structure in 
which control, status, and data registers for devices are directly addressed as memory locations. Therefore, 
all operations on these registers, such as tranferring information into or out of them or manipulating data 
within them, are performed by normal memory reference instructions. 

The use of all memory reference instructions on device registers greatly increases the flexibility of 
input/output programming. For example, information in a device register can be compared directly with a 
value and a branch made on the result. 

CMP RBUF, #101 
BEQ SERVICE 

In this case, the program looks for 101 in the DLVII receiver data buffer register (RBUF) and branches if 
it finds it. There is no need to transfer the information into an intermediate register for comparison. 

When the character is of interest, a memory reference instruction can transfer the character into a user 
buffer in memory or to another peripheral device. The instruction: 

MOV DRINBUF LOC 

transfers a character from the DRVII data input buffer (DRINBUF) into a user-defined location. 

All arithmetic operations can be performed on a peripheral device register. For example, the instruction 
ADD # 1 0, DROUT BUF will add 10 to the DR V 11 's output buffer. All read/write device registers can be 
treated as accumulators. There is no need to funnel all data transfers, arithmetic operations, and compari
sons through one or a small number of accumulator registers. 

8.6 PDP-II PROGRAMMING EXAMPLES 
The programming examples on the following pages show how the instruction set, the addressing modes, 
and the programming techniques can be used to solve some simple problems. The format used is either 
PAL-II or MACRO-II. 

8-27 



Program Program 
Address Contents Label Op Code Operand Comments 

;PROGRAMMING EXAMPLE 
;SUBTRACT CONTENTS OF LaCS 700-710 
;FROM CONTENTS OF LaCS 1000-1010 

000000 RO=%O 
000001 RI-%I 
000002 R2=%2 
000003 R3=%3 
000004 R4=%4 
000005 R5=%5 
000006 SP=%6 
000007 PC=%7 

000500 .=500 
000500 012706 START: MaY #.,SP ;INIT STACK POINTER 

000500 
000504 012701 MaY #700,RI 

000700 
000510 012702 MaY #712,R2 

000712 
000514 012703 MaY #1000,R3 

001000 
000520 012704 MaY #1012,R4 

001012 
000524 005000 CLR RO 
000526 005005 CLR R5 
000430 062105 SUMI: ADD (RI)+,R5 ;START ADDING 
000532 020102 CMP RI,R2 ;FINISHED ADDING? 
000534 001375 BNE SUMI ;IF NOT BRANCH BACK 
000536 062300 SUM2: ADD (R3)+,RO ;START ADDING 
000540 020304 CMP R3,R4 ;FINISHED ADDING? 
000542 001375 BNE SUM2 ;IF NOT BRANCH BACK 

000544 160500 D1FF: SUB R5,RO ;SUBTRACT RESULTS 

000546 000000 HALT ;THA T'S ALL FOLKS 

000700 =700 
000700 000001 WORD 1,2,3,4,5 
000702 000002 
000704 000003 
000706 000004 
000710 000005 

001000 =1000 
001000 000004 WORD 4,5,6,7,8 
001002 000005 
001004 000006 
001006 000007 
001010 000010 

000500 END 

8-28 



Program 
Address 

Program 
Contents Label 

START: 

Op Code 

RO=%O 
Rl=%l 
R2=%2 
SP=%6 
PC=%7 

.=500 

MOV#.,SP 

Operand 

MOV #V ALUE,R I 
MOV #V ALUES+40.,R2 
CLR RO 

CHECK: TST (Rl)+ 
BPL NEXT 
INC RO 

NEXT: CMP R I ,R2 
BNE CHECK 
HALT 

VALUES: 0 
.END 

8-29 

Comments 

;PROGRAM TO COUNT NEGATIVE 
NUMBERS 
;IN A TABLE 
;20. SIGNED WORDS 
;BEGINNING AT LOC VALUES 
;COUNT HOW MANY ARE NEGATIVE IN RO 

;SET UP STACK 
;SET UP POINTER 
;SET UP COUNTER 

;TEST NUMBER 
;POSITIVE? 
;NO, INCREMENT 
;COUNTER 
;YES, FINISHED? 
;NO, GO BACK 
;YES, STOP 



Program 
Address 

Program 
Contents Label Op Code 

RO=%O 
RI=%I 
R2=%2 
R3=%3 
SP=%6 
PC=%7 

.=500 

START: MOV #.,SP 
MOV #16.,RI 

Operand 

MOV #SCORES,R2 
MOV #A VERAGE,R3 
CLR RO 

CHECK: CMP (R2)+,(R3) 
BLE NO 

INC RO 
NO: DEC RI 

BNE CHECK 
HALT 

AVERAGE: 65. 

SCORES· 25.,70.,100.,60.,80.,80.,40. 
55.,75.,100.,65.,90.,70.,65.,70 . 

. END 

8-30 

Comments 

;PROGRAM TO COUNT ABOVE AVERAGE 
QUIZ SCORES 
;LIST OF 16. QUIZ SCORES 
;BEGINNING AT LOC SCORES 
;KNOWN AVERAGE IN LOC AVERAGE 
;COUNT IN RO SCORES ABOVE AVERAGE 

;SET UP STACK 
;SET UP COUNTER 
;SET UP POINTER 

;COMPARE SCORE AND AVERAGE 
;LESS THAN OR EQUAL 
;TO AVERAGE? 
;NO, COUNT 
;YES, DECREMENT COUNTER 
;FINISHED? NO, CHECK 
;YES, STOP 



Program Program 
Address Contents Label Op Code Operand Comments 

;PROGRAMMING EXAMPLE 
;ACCEPT (IMMEDIATE ECHO) AND 
;STORE 20. CHARS 
;FROM THE KEYBOARD, OUTPUT CR & LF 
;ECHO ENTIRE STRING FROM STORAGE 

RO=%O 
RI=%I 
SP=%6 
CR=15 
LF=12 
TKS=I77560 
TKB=TKS+2 
TPS=TKB+2 
TPB=TPS+2 

.TITLE ECHO 

.=1000 
START: MOV #.,SP ;INITIALIZE STACK POINTER 
MOV #SAVE+2,RO ;SA OF BUFFER 

;BEYOND CR & LF 
MOV #20.,RI ;CHARACTER COUNT 

IN: TSTB @#TKS ;CHAR IN BUFFER? 
BPL IN ;IF NOT BRANCH BACK 

;ANDWAIT 
ECHO: TSTB @#TPS ;CHECK TELEPRINTER 

;READY STATUS 
BPL ECHO 
MOVB @#TKB,@#TPB ;ECHO CHARACTER 
MOVB @#TKB,(RO)+ ;STORE CHARACTER A WAY 
DEC RI 
BNE IN ;FINISHED INPUTTING? 

MOV #SAVE,RO ;SA OF BUFFER INCLUDING 
;CR & LF 

MOV #22.,RI ;COUNTER OF BUFFER 
;INCLUDING CR & LF 

OUT: TSTB @#TPS ;CHECK TELEPRINTER 
;READY STATUS 

BPL OUT 
MOVB (RO)+,@#TPB ;OUTPUT CHARACTER 
DEC RI 
BNE OUT ;FINISHED OUTPUTTING? 
HALT 

SAVE: .BYTE CR,LF 
.=.+20, 
.END 

8-31 



Program Program 
Address Contents Label 

INPUT: 

IN: 

OUT: 

SORT: 
NEXT: 

LOOP: 

LT: 

GT: 

INSERT: 

COUNT: 
LlNEI: 

LlNE2: 
BUFFER: 

Op Code Operand Comments 

;PROGRAMMING EXAMPLE 
;SUBROUTINE TO INPUT TEN Y ALUES 

MOY #BUFFER,RO ;SET UP SA OF 
;STORAGE BUFFER 

MOY #-IO.,RI ;SET UP COUNTER 
TSTB @#TKS ;TEST KYBD READY STATUS 
BPL IN 
TSTB @#TPS ;TEST TTO READY STATUS 
BPL OUT 
MOYB @#TKB,@#TPB ;ECHO CHARACTER 
MOYB @#TKB,(RO)+ ;STORE CHARACTER 
INC RI ;INC COUNTER 
BNE IN 
RTS PC ;EXIT 

;PROGRAMMING EXAMPLE 
;SUBROUTINE TO SORT TEN Y ALUES 

MOY #-10.,R4 
MOY COUNT,R3 
MOY #BUFFER+9.,RO 
ADD R3,RO 
MOYB (RO)+,RI 
CMPB (RO)+,RI 
BGEGT 
MOYB -(RO),R2 
MOYB R 1 ,(RO)+ 
MOY R2,RI 
INC R3 
BNE LOOP 
MOYB RI,BUFFER+IO.(R4) 
INC R4 
INC COUNT 
BNE NEXT 
MOY #-9.,COUNT ;RESTORE LOCATION COUNT 
RTS PC ;EXIT 

.WORD-9. 

.ASCII/INPUT ANY TEN SINGLE-DIGIT Y ALUES (0-9); I'LL/ 

.ASCII/SORT AND OUTPUT THEM IN/ 

.ASCII/SMALLEST TO LARGEST ORDER./ 

.=.+10 . 

. END INITSP ;FINISHED!!! 

8-32 



Program 
Address 

Program 
Contents Label 

INITSP: 

Op Code 

RO=%O 
RI=%I 
R2=%2 
R3=%3 
R4=%4 
RS=%S 
SP=%6 
PC=%7 
TKS=I77S60 

Operand Comments 

;PROGRAMMING EXAMPLE 
;SUBROUTINE EXAMPLE 
;INPUT TEN VALUES, SORT, AND 
;OUTPUT THEM IN SMALLEST TO LARGEST 
ORDER 

(address of terminal control status register) 
TKB=TKS+2 - (terminal data buffer register) 
TPS=TKB+2 
(terminal output control and status registers) 
TPB=TPS+2 - (terminal output data buffer) 

.=3000 

MOV #.,SP 
JSR PC,CRLF 
JSR RS, OUTPUT 
LlNEI 
69. 
JSR PC,CRLF 
JSR RS,OUTPUT 
LlNE2 
26. 
JSR PC,CRLF 
JSR PC,INPUT 
JSR PC,SORT 
JSR PC,CRLF 
JSR RS,OUTPUT 
BUFFER 
10. 
JSR PC,CRLF 
HALT 

8·33 

;INITIALIZE STACK POINTER 
;GO TO CRLF SUBROUTINE 
;GOT TO OUTPUT SUBROUTINE 
;SA OF LINE I BUFFER 
;NUMBER OF OUTPUTS 
;GO TO CRLF SUBROUTINE 
;GO TO OUTPUT SUBROUTINE 
;SA OF LINE 2 BUFFER 
;NUMBER OF OUTPUTS 
;GO TO CRLF SUBROUTINE 
;GO TO INPUT SUBROUTINE 
;GO TO SORT SUBROUTINE 
;GO TO CRLF SUBROUTINE 
;GO TO OUTPUT SUBROUTINE 
;INPUT BUFFER AREA 
;NUMBER OF OUTPUTS 

;THE END!!! 



Program Program 
Address Contents Label Op Code Operand 

CRLF: TSTB @#TPS 
BPL CRLF 
MOYB #15,@#TPB 

LNFD: TSTB @#TPS 
BPL LNFD 
MOYB # 12,@#TPB 
RTS PC 

OUTPUT: MOY (R5)+,RO 
MOY (R5)+,RI 
NEG RI 

AGAIN: TSTB @#TPS 
BPL AGAIN 

8.7 LOOPING TECHNIQUES 

MOYB (RO)+,@#TPB 
INCRI 
BNE AGAIN 
RTS R5 

Comments 

;PROGRAMMING EXAMPLE 
;SUBROUTINE TO OUTPUT A CR & LF 

;TEST TTO READY STATUS 

;OUTPUT CARRIAGE RETURN 
;TEST TTO READY STATUS 

;OUTPUT LINE FEED 
;EXIT 

;SUBROUTINE TO OUTPUT A 
;Y ARIABLE LENGTH MESSAGE 
;PICK UP SA OF DATA BLOCK 
;PICK UP NUMBER OF OUTPUTS 
;NEGATE IT 
;TEST ITO READY STATUS 

;OUTPUT CHARACTER 
;BUMP COUNTER 

Looping techniques are illustrated in the program segments below. The segments are used to clear a 50-
word table. 

I. Autoincrement (pointer address in GPR) 

LOOP: 

RO = %0 
MOV #TBL,RO 
CLR (RO)+ 
CMP RO,#TBL+ 1 00. 
BNE LOOP 

2. Autodecrement (pointer and limit values in GPR) 

LOOP: 

RO=%O 
RI=%I 
MOV #TBL,RO 
MOV #TBL+lOO.,RI 
CLR - (Rl) 
eMP RI,RO 
BNE LOOP 

8-34 



3. Counter (decrementing a GPR containing count) 

LOOP: 

RO=%O 
Rl=%l 
MOY #TBL,RO 
MOY #50.,Rl 
CLR (RO)+ 
DEC RI 
BNE LOOP 

4. Index Register Modification (indexed mode; modifying index value) 

LOOP: 

RO=%O 
CLRRO 
CLR TBL (RO) 
ADD #2,RO 
CMP RO,# 1 00. 
BNE LOOP 

5. Faster Index Register Modification (storing values in GPR) 

LOOP: 

RO=%O 
Rl=%l 
R2=%2 
MOY #2,RI 
MOY #100.,R2 
CLRRO 
CLR TBL (RO) 
ADD Rl,RO 
CMP RO,R2 
BNE LOOP 

6. Address Modification (indexed mode; modifying base address) 

LOOP: 

RO=%O 
MOY #TBL,RO 
CLR O(RO) 
ADD #2,LOOP+2 
CMP LooP+2,#100. 
BNE LOOP 

8-35 





9.1 INTRODUCTION 

CHAPTER 9 
BOOT ROMS AND DIAGNOSTICS 

The KDJ Il-A module may be incorporated into some type of LSI-II based system using a mass storage 
device and a system console. The system should contain a multifunction option such as the MXV II-B with 
a system device bootstrap program that is included in the MXV II-B2 ROM option. These ROMs are 
required for on-site Field Service support. 

The operation of the XXDP+ diagnostics for the KD1l1-A module are described in this section. 

9.2 MXVll-B2 ROM SET 
The MXVII-B2 ROM set is a bootstrap/diagnostic option for the MXVII-B multifunction module and 
the MRV 11-0 universal PROM module. The option performs bootstrap programs for mass storage 
devices and diagnostic programs on the CPU, memory, and I/O devices during power-up or when 
manually invoked. 

The bootstrap function is automatic at power-up if the CPU is configured for this feature. The system 
console can be used to boot devices at nonstandard I/O page addresses, select a secondary system device, 
or run a diagnostic program. 

CAUTION 
In the event of a power failure, if a system uses 
battery backup, the user should not power-up using 
the automatic mode. During the power-up sequence, 
this mode executes a memory diagnostic and could 
destroy the data stored. An alternative power-up 
mode should be selected. 

The MXV I1-B2 supports turnkey operation so that the user does not have to initiate the bootstrap 
function. It supports all the system devices currently available for the LSI-II bus. These include the 
RLOI, RL02, TVS05, TU58, RX50/RD51. 

9.2.1 Power-Up 
The MXV I1-B2 performs a memory diagnostic at power-up. On completion of the memory test, a search 
is conducted for a bootable device. During the power-up sequence, the console port is monitored for a 
CTRL C command and, if it occurs, the sequence is aborted and the BOOT?> prompt appears on the 
console. 

9-1 



9.2.2 Automatic Booting 
The KD111-A will power-up at 17 773 000 when power-up option 2 is selected. The MXVII-B2 option 
will automatically perform the power-up diagnostics and then search for a bootable device as follows. 

RLOI/RL02 (units 0 through 3) 
RX50/RD51 * (units 0 through 7) 
RX02 (units 0 and 1) 
RXOI (units 0 and 1) 
TSV05 (unit 0 only) 
TU58 

The MXVII-B2 boots a volume from unit 0 of the first mass storage device found. If unit 0 cannot be 
booted, it searches through RX and RD units 1-7 in sequence of the same device for a bootable volume. 
When a bootable volume cannot be located, it proceeds to the next device in sequence and exercises the 
same routine. A message appears on the console approximately every 30 seconds until a volume is 
bootstrap loaded. If no devices exist or respond to the booting sequence, then it will try to boot a TU58. 

When a bootable volume is found, the MXVII-B2 reads the boot code from the selected mass storage 
device and unit (logical block 0) into successive memory locations, starting at address O. It loads the unit 
number and the device CSR address into registers 0 and 1, respectively. 

9.2.3 Manual Booting 
Pressing a CTRL C before a device is booted will abort the program and enter the manual mode by issuing 
the BOOT?> program or ODT prompt "@". The KDll1-A module allows the user to select a bootstrap 
address by using power-up option 3. A list of the MXVII-B2 boot commands are listed in Table 9-1. 

Table 9-1 MXVII-B2 Boot Commands 

Command Group Function 

CLn Utility Clock on/off 
mDDn Boot Boot TU58 
mDLn Boot Boot RLOI/RL02 
mDUn Boot Boot MSCP devices (RX50/RD51)* 
mDXn Boot Boot RXOI 
mDYn Boot Boot RX02 
HE Utility Help 
IN Utility Initialize bus 
LD Utility Load from boot block 
MP Utility Show memory map 
mMSn Boot Boot TSV05 
n/ Utility Examine/deposit memory 
mNEn Boot Boot DECnet via DLVII-E 
mNFn Boot Boot DECnet via DLVII-F 
mNPn Boot Boot DECnet via DPV II 
mNUn Boot Boot DECnet via DUVII 
OD Utility Enter console ODT 
mTCn Utility Clock test 
TF Utility Floating-point test 
mTMn Utility Test memory 
mTSn Utility Serial line test 

* The boot searches for removable (RX50) disk and then fixed disk (RD51). 

* Sequences through MSCP (mass storage control protocol) removable units 0 through 7, then MSCP fixed units 0 through 7. 

9-2 



9.2.4 Error and Help Messages 
The MXVII-B2 ROMs will printout on the system console a variety of error and help messages when the 
system fails to be booted. In the automatic mode, a message is displayed every 30 seconds while it searches 
for a bootable device, this does not represent a failure. The messages can occur for either the automatic or 
manual mode. A fatal message is always preceded by BOOTROM-F-; other messages will provide helpful 
information to the user. The messages are listed in Table 9-2 with suggestions to help the user. 

Message* 

Automatic Boot Soft Error Message 

No device ready after x tries. 

Automatic Boot Fatal Error Messages 

?BOOTROM-F Memory parity 
error at xxxxxx. 

?BOOTROM-F Memory error at 
xxxxxx. 

?BOOTROM-F Unknown error -
call for help. 

xxxxxx 
@ 

Any partially printed message. 

General Command Error Messages 

?BOOTROM-F Syntax error in 
command. 

?BOOTROM-F No such com
mand - type HE for help. 

?BOOTROM-F Too many 
characters. 

?BOOTROM-F Number not 
octal. 

Table 9-2 MXVll-B2 Error Messages 

Cause 

No bootable device or volume available 
to load. This message repeats at 30-
second intervals until 10th message, 
then repeats at IS-minute intervals 
(approximately). 

Defective memory unit or MMU 
detected. 

Fatal hardware failure detected. 

Fatal hardware failure or bad system 
volume detected. 

Fatal hardware failure detected, possi
bly the console. 

Illegal character or other general input 
error occurred. 

Invalid or misspelled command 
entered. 

More than 8 octal digits typed before 
the 2-letter command, or more than I 
digit following command, or more than 
I 7 letters in command. 

An 8 or 9 was typed. 

* xx = device mnemonic, x = octal number 

9-3 

Suggested User Action 

Close doors on floppy if system is on 
RXOI or RX02 media. Make sure that 
RLOI/RL02 READY (white) indicator 
is on, etc. If problem is not obvious and 
the message repeats, press CTRL C and 
try to boot desired device with a key
board command. More specific messages 
will appear. 

Record the message and number. Turn 
power off, then on. If problem remains, 
service is required. If you wish to bypass 
the memory test, use manual mode by 
rebooting system, pressing CTRL C, and 
then using the LOAD command. 

Record all relevant information about 
the system, including the LED indicators 
on MXV II-B module (if installed). Ser
vice is required. 

Try a different system volume, if availa
ble (one you know works, if possible). If 
the problem remains, record information 
as above. Service is required. 

If possible, try a different console. If the 
problem remains, record information. 
Service is required. 

Retype command correctly. 

Refer to manual, or type HE to get a 
list of all valid commands. 

Retype command correctly. 

Determine correct number and retype 
command. 



Table 9-2 MXVll-B2 Error Messages (Cont) 

Message* Cause Suggested User Action 

Manual Boot Messages 
You can produce these messages by using one of the commands in the boot group (Table 9-1). Some device-specific messages 
are listed in the next section of this table. 

Enter a device and unit 

xx x boot block read. 

No boot block on volume. 

Unknown boot block on volume 
boot anyway? 

?BOOTROM-F No XX device 
at x. 

?BOOTROM-F XX x read error. 

?BOOTROM-F XX x error. 

?BOOTROM-F XX x not ready. 

Previous command was LD. 

Normal termination for a boot group 
command when the previous command 
was LD. 

The volume has a format that corre
sponds to a Digital data-only volume. 

The volume has a format that does not 
correspond to any Digital standard. 

If a CSR was explicitly typed in, it 
may be incorrect. If none was typed, 
the device is missing, defective, or con
figured for a nonstandard I/O page 
address. 

Error detected in the device or volume. 

Device error detected. 

Volume not ready to be read by device 
(for example, not loaded). 

* XX = device mnemonic, x = octal number 

9-4 

If you wish to load a device boot block 
into memory without executing it, enter 
a valid command from the boot group. 
Normal load-and-go operation is restored 
after the command executes. 

Examine or alter the boot block in loca
tions 000000 to 000776 by using console 
ODT. 

Remove the volume and replace with 
correct one, or (if it is not a Digital sys
tem volume) boot it with the LD com
mand. (Refer to LD command section.) 

Type N and retry with a different vol
ume. If it is not a Digital system vol
ume, type Y; this transfers control to 
secondary boot at location zero. 

If CSR was incorrect, retype with cor
rect CSR. If not, service is required. 
(Hardware must be supported by Digital, 
and device must be part of your system.) 

Try another volume you know is good. 
If the problem remains, service is 
required. 

Service may be required, unless there is 
an obvious solution. 

The solution depends on the device, and 
is usually obvious after inspection (for 
example, volume not inserted into 
device, floppy drive door open, or RL02 
disk cover left out). If the device has a 
panel of status indicators, they may give 
a clue. If there is no obvious solution, 
service may be required. 



Table 9-2 MXVtl-B2 Error Messages (Cont) 

Message* 

?BOOTROM-F Bad CSR 
number. 

?BOOTROM-F Bad Unit 
number. 

?BOOTROM-F Unknown error -
call for help. 

?BOOTROM-F Fatal ROM 
error. 

xxxxxx 
@ 

Any partially printed message. 

?BOOTROM-F Memory cache 
pari t y error. 

Cause 

CSR number typed in is greater than 
177 560, less than 160000, or odd, or 
specified CSR is that of the console. 

Specified unit does not exist in system, 
or the number is greater than maxi
mum number of units supported by 
single controller for specified device 
type. 

Fatal hardware failure detected. 

Fatal hardware failure or a bad system 
volume detected. 

Fatal hardware failure detected, possi
bly the console. 

Cache memory parity error or failure 
detected. 

Device-Specific Manual Boot Messages 

RX02 unit with RXOI volume. 
Boot anyway? (Occurs with 
RX02 floppy disk systems.) 

?BOOTROM-F Comm error. 
(Occurs only while booting 
DECnet via a serial line from a 
keyboard command, such as 
NE.) 

RX02 drive loaded with single-density 
volume. 

DECnet boot could not be executed 
due to hardware or software problem 
in host system, target system, or com
munication link. 

* xx = device mnemonic, x = octal number 

9-5 

Suggested User Action 

Retype the command, using correct 
CSR address. 

If device uses unit- number plugs, such 
as RL disks, they may have been 
changed or removed without operator 
knowledge. Check device for plugs and 
retype command. If not, there may be a 
hardware fault. 

Record all relevant information about 
the system, including LED indicators on 
the MXV I I -B module (if installed). Ser
vice is required. 

Try a different system volume, if availa
ble (one you know works, if possible). If 
the problem remains, record all relevant 
information, including the LED indica
tors on the MXV II-B module (if 
installed). Service may be required. 

If possible, try a different console. If 
problem remains, record all information. 
Service may be required. 

Replace processor module or continue to 
use system without cache (cache turned 
off). System simply runs slower. 

If you know the volume contains a valid 
RX02 boot-only block, type Y. If vol
ume is unknown, it may be an RXO I 
disk. 

Check the communication line. Service 
may be required. 



If the option is installed in the MXVII-B module, the LEOs on the module can indicate errors. 

The LEOs read as follows. The single red LED to one side of the green LED is bit 3; the three red LEOs to 
the other side of the green LED are bits 2 to 0, with bit 2 being the red LED closest to the green LED. 

3 

Red Green 

2 o 

Red Red Red (As seen looking at the edge of the board, with the 
components up.) 

In the following chart, a 1 indicates the LED is on, and 0 indicates the LED is off. The green LED 
indicates +5 Vdc is applied to RAM memory. 

The chart shows which part of the ROM program was executing when the system hung up. 

LEOs 
3 2 1 0 

0 0 0 0 Successful boot 
0 0 0 1 Comprehensive memory test 
0 0 1 0 Waiting for console input 
0 0 1 1 Low memory test (below 2000 octal) 
0 1 0 0 MSCP device (RX50/RD51) 
0 1 0 1 Not assigned 
0 1 I 0 Not assigned 
0 I I 1 RLO 1 /RL02 boot 
1 0 0 0 RXO 1 /RX02 boot 
I 0 0 I TSV05 boot 
I 0 1 0 Not assigned 
I 0 I I DPVII DEC net boot 
1 I 0 0 DUV 11 DECnet boot 
I I 0 1 DLVII DECnet boot 
I I I 0 TU58 boot 
I I I I Power-up initialization 

LED indicator codes that are not assigned should never appear when using the MXVll-B2. 

9.3 DIAGNOSTICS 

NOTE 
A 1111 indicator code appears after a successful 
DECnet boot. 

The XXDP+ diagnostic programs help to verify the system is functioning correctly or to isolate a faulty 
component. These are used for maintenance purposes and not as part of the normal system operation. The 
XXDP+ diagnostic software consists of a library of diagnostic programs designed to test individual system 
components. These can be chained together, dependent on the system configuration, to provide an overall 
system diagnostic. The diagnostics specifically used for the KDJlI-A module are listed in Table 9-3 and 
are described below. 

9-6 



Table 9-3 KDJII-A Diagnostics 

Name 

CZKDJAO 
CZKDKAO 
CZKDLAO 
CZKDMAO 

Function 

CPU tests 
Memory management tests 
Floating-point tests 
Cache memory tests 

The HALT trap option must be disabled by installing the W5 jumper when running these diagnostics. The 
diagnostic program can be halted by asserting the HALT line. This is done by pressing the BREAK key on 
the system console for systems configured to assert HALT when BREAK is keyed. They can be restarted 
by addressing location 152010 and pressing the G key on the system console. The system monitor "." will 
prompt and the diagnostic program can be selected by the run command R followed by the diagnostic 
name. The name will be echoed and the program started. The name of the diagnostic is printed on the first 
pass and completed tests are identified by the system console printing END PASS. When an error is 
detected, the diagnostic will halt and print out the error condition as follows. 

Error = Specific Function Being Tested 
Error = (Unique Error Number) 
Error PC = (PC at Time of Error) 

9.4 DIAGNOSTIC EXAMPLE 
An example of running the diagnostics is described below. The response of the user is underlined and the 
system response is typed. The W5 jumper must be installed. Comments are listed on the right hand side to 
further explain the example. 

Diagnostic 

28 
START? DL<CR> 

CHMDLC 1 XXDP+ DL MONITOR 
BOOTED VIA UNIT 0 
28K UNIBUS SYSTEM 

ENTER DATE (DD-MMM-YY): I-NOV-83 

RESTART ADDRESS: 152010 
THIS IS XXDP+. TYPE "H" OR 
"H/L" FOR HELP 

.R CZKDJO<CR> 

CZKDJO.BIC 

9-7 

Comments 

Booted DL device 

XXDP+ monitor 

May be LSI BUS or UNIBUS 
28K=MEMOR Y SIZE OR STANDARD 
User enters date 

Identifies restart address 

. = System monitor 
R = RUN command 
CZKDJO = Diagnostic 
<CR> = RETURN key 



CZKDJO KDJl t CPU Diagnostic 

END PASS # 1 
END PASS # 2 
END PASS # 3 
027622 

@152010G 

.R CZKDKO<CR> 

CZKDKO.BIC 

SET BIT 8 = 1 FOR 18 BIT SYSTEM 
SWR = 000000 NEW = <CR> 

CZKDKO KDJt t Memory Management 

END PASS # 1 
END PASS # 2 
END PASS # 3 
END PASS # 4 
012404 

@152010G 

.R CZKDLO<CR> 
CZKDLO.BIC 

CZKDLO KDJl t Floating Point 

END PASS # 1 
END PASS # 2 
END PASS # 3 
END PASS # 4 
END PASS # 5 
022242 

@152010G 

.R CZKDMO<CR> 
CZKDMO.BIC 
SET BIT 8 = 1 FOR 18 BIT SYSTEM 
SET BIT 9 = 1 FOR CACHE RAM AND TAG 

RELIABILITY TESTS 

SWR = 000000 NEW = <CR> 

9-8 

Halt test by pressing break 
Address at HALT 

Key restart address and 
G for GO 
Run diagnostic and return 

Set bit 8 by 000400 
Press return 

Halt test by pressing break 
address at halt 

Key restart address and 
G for GO 
Run diagnostic and return 

Halt by pressing BREAK 
address at HALT 

Key restart address and 
G for GO 
Run diagnostic and return 

Set bit 8 by 000400 
Set bit 9 by 001000 
Set bits 8 and 9 by 001400 

Press RETURN 



CZKDMO KDJl1 Cache Memory System 

END PASS # 1 
END PASS # 2 
END PASS # 3 
END PASS # 4 
END PASS # 5 
END PASS # 6 
010152 

@152010G 

.R 

9-9 

Halt test by pressing BREAK 
address at HALT 

Key restart address and 
G for GO 
System monitor and run 
command 





A.l GENERAL 

APPENDIX A 
INSTRUCTION TIMING 

The execution time required for the base instruction set and the floating-point instruction set used by the 
KDJ II-A is described in this appendix. The execution time for an instruction is dependent upon the type 
of instruction, the addressing mode used, and the type of memory accessed. In general, the total execution 
time is the sum of the base instruction fetch/execute time and the operand(s) address calculation/fetch 
time. 

The execution time provided for all read instructions assumes that the data is accessed from the module 
cache memory. When the data is accessed from the main memory, the execution time provided must be 
degraded. Memory write instructions, indicated by the "+" notation, must have the memory write time 
added to the listed time in order to determine the total time. 

The floating-point instruction execution timing is provided as a range. The actual performance is data 
dependent and will fall within the described range. 

A.2 BASE INSTRUCTION SET TIMING 
The execution times for the base instruction set are provided in Tables A-I through A-6 and are subject to 
the general notes listed at the end of Table A-6. 

Table A-I Source Address Time: All Double Operand 

Read 
Source Source Microcode Time Memory 

Instruction Mode Register Cycles (ns) Cycles 

ADD, SUB, 0 0-7 0 0 0 
CMP, BIT, I 0-7 2 534 I 
BIC, BIS, 2 0-6 2 534 I 
MOY 2 7 I 267 I 

3 0-6 4 1068 2 
3 7 3 801 2 
4 0-6 3 801 I 
4 7 6 1602 2 (Note 1) 
5 0-6 5 1335 2 
5 7 8 2136 3 (Note I) 
6 0-7 4 1068 2 
7 0-7 6 1602 3 

A-I 



Table A-2 Destination Address Time: Read-Only Single Operand 

Read 
Destination Destination Microcode Time Memory 

Instruction Mode Register Cycles (ns) Cycles 

TST, MUL, DIY, 0 0-7 0 0 0 
ASH, ASHC, MTPS, I 0-7 2 534 I 
MFPI, MFPD, CSM 2 0-6 2 534 I 

2 7 I 267 I 
3 0-6 4 1068 2 
3 7 3 801 2 
4 0-6 3 801 I 
4 7 7 1869 2 (Note 2) 
5 0-6 5 1335 2 
5 7 9 2403 3 (Note 3) 
6 0-7 4 1068 2 
7 0-7 6 1602 3 

Table A-3 Destination Address Time: Read-Only Double Operand 

Read 
Destination Destination Microcode Time Memory 

Instruction Mode Register Cycles (ns) Cycles 

CMP, BIT 0 0-7 0 0 0 
I 0-7 3 801 I 
2 0-6 3 801 I 
2 7 2 534 I 
3 0-6 5 1335 2 
3 7 4 1068 2 
4 0-6 4 1068 I 
4 7 8 1236 2 (Note 2) 
5 0-6 6 1602 2 
5 7 10 2670 3 (Note 3) 
6 0-7 5 1335 2 
7 0-7 7 1869 3 

Table A-4 Destination Address Time: Write-Only 

Memory Cycles 
Destination Destination Microcode Time 

Instruction Mode Register Cycles (ns) Read Write 

MOY, CLR, SXT, 0 0-6 0 0 0 0 
MFPS, MTPI, MTPD 0 7 5 1335 I 0 

I 0-6 2 534+ 0 I 
I 7 6 1602+ I I 
2 0-6 2 534+ 0 I 
2 7 6 1602+ I I 
3 0-6 4 1068+ I I 
3 7 3 801+ I I 
4 0-6 3 801+ 0 I 
4 7 7 1869+ I I 
5 0-6 5 1335+ I I 
5 7 9 2403+ 2 I 
6 0-7 4 1068+ I I 
7 0-7 6 1602+ 2 I 

A-2 



Table A-5 Destination Address Time: Read-Modify-Write 

Memory Cycles 
Destination Destination Microcode Time 

Instruction Mode Register Cycles (ns) Read Write 

ADD, SUB, ADC, 0 0-6 0 0 0 0 
SBC, BIC, BIS, 0 7 5 1335 1 0 
SWAB, NEG, INC, 1 0-6 3 801+ 1 1 
DEC, COM, XOR, 1 7 7 1869+ 2 1 
ROR, ROL, ASR, 2 0-6 3 801+ 1 1 
ASL 2 7 7 1869+ 2 1 

3 0-6 5 1335+ 2 1 
3 7 4 1068+ 2 1 
4 0-6 4 1068+ 1 1 
4 7 8 2136+ 2 1 (Note 2) 
5 0-6 6 1602+ 2 1 
5 7 10 2670+ 3 1 (Note 3) 
6 0-7 5 1335+ 2 1 
7 0-7 7 1869+ 3 1 

Table A-6 Execution, Fetch Time 

Memory Cycles 
Microcode Time 

Instruction Cycles (ns) Read Write 

Double Operand 

ADD, SUB, CMP, 267 0 
BIT, BIC, XOR, 
MOY, BIS 

Single Operand 

SWAB, CLR, COM, 267 0 
INC, DEC, NEG, 
ADC, SBC, TST, 
ROL, ROR, ASL, 
ASR, SXT, MFPS, 
XOR 

MFPI, MFPD 5 1335+ 

MTPS 8 2136 0 

MTPI, MTPD 3 801 2 0 

CSM 28 7476+ 3 3 

Extended Instruction Set 

MUL 22 5874 o (Notes 5, 11) 

DIY 
By zero 5 1335 o (Note 6) 
Other 34 9078 o (Notes 6, 7) 

ASH 4 1068 o (Notes 8, 11) 

ASHC 
No shift 5 1335 0 
Left 6 1602 o (Notes 8, 9, 11) 
Right 7 1869 o (Notes 8, 10, II) 

A-3 



Table A-6 Execution, Fetch Time (Cont) 

Double Operand Memory Cycles 
Microcode Time 

Instruction Cycles (ns) Read Write 

Program Control 

BRANCH 
Not Taken 2 534 I 0 
Taken 4 1068 2 0 

SOB 
Not Taken 3 801 I 0 
Taken 5 1335 2 0 

lOT, TRAP, 20 5340+ 4 2 
EMT, BPT 

MARK 10 2670 3 0 

Memory Cycles 
Destination Destination Microcode Time 

Instruction Mode Register Cycles (ns) Read Write 

JMP I 0-7 4 1068 2 0 
2 0-7 6 1602 2 0 
3 0-7 5 1335 3 0 
4 0-7 5 1335 2 0 
5 0-7 6 1602 3 0 
6 0-6 6 1602 3 0 
6 7 5 1335 3 0 
7 0-7 7 1869 4 0 

JSR (Note 4) I 0-7 9 2403+ 2 
2 0-7 10 2670+ 2 
3 0-6 10 2670+ 3 
3 7 9 2403+ 3 
4 0-7 10 2670+ 2 
5 0-7 II 2937+ 3 
6 0-6 10 2670+ 3 
6 7 9 2403+ 3 
7 0-7 12 3204+ 4 

Memory Cycles 
Microcode Time 

Instruction Cycles (ns) Read Write 

RTS 0-6 6 1602 3 0 

RTS 7 5 1335 3 0 

RTT, RTI 9 2403 4 0 

A-4 



Table A-6 Execution, Fetch Time (Cont) 

Double Operand 

Instruction 

Miscellaneous Instructions 

MFPT 

NOP, 
SET or CLEAR 
C, V, N,Z 

SPL 

HALT 

RESET 

WAIT 

Microcode 
Cycles 

2 

3 

7 

TBD 

TBD 

TBD 

General Notes to Tables A-I through A-6 

Time 
(ns) 

534 

801 

1869 

Memory Cycles 

Read Write 

o 

o 

o 

I. Subtract 534 ns and one read if both source and destination modes autodecrement PC, or if WRITE-ONLY or READ
MODIFY-WRITE mode 07 or 17 is used. 

2. READ-ONLY and READ-MODIFY-WRITE destination mode 47 references actually perform 3 read operations. For 
bookkeeping purposes, one of the reads is accounted for in the EXECUTE, FETCH TIMING. 

3. READ-ONL Y and READ-MODIFY-WRITE destination mode 57 references actually perform 4 read operations. For 
bookkeeping purposes one of the reads is accounted for in the EXECUTE, FETCH TIMING. 

4. Subtract 267 ns if link register is Pc. 

5. Add 267 ns if the source operand is negative. 

6. Subtract 267 ns if the source mode is not zero. 

7. Add 267 ns if the quotient is even. 
Add 534 ns if overflow occurs. 
Add 1335 ns and I read if the PC is used as a destination register, but only if source mode 47 or 57 is not used. 

8. Add 267 ns per shift. 

9. Add 267 ns if source operand<I5:6> is not zero. 

10. Subtract 267 ns if one shift only. 

II. Add 1068 ns and I read if the PC is used as a destination register, but only if source mode 47 or 57 is not used. 

A-5 



A.3 FLOA TlNG-POINT INSTRUCTION SET TIMING 
The execution time range for the floating-point instruction set is described in Tables A-7 through A-12. 

Table A-7 Instruction Execution Times (In Microseconds) 

Non-mode 0 
Instruction Minimum Typical Maximum Section 

ABSD 6.1 6.4 IV 
ABSF 5.1 5.3 IV 
ADDD 10.9 12.8 31.7 II 
ADDF 8.3 9.3 31.7 II 
CFCC 1.3 1.3 
CLRD 3.7 3.7 III 
CLRF 3.2 3.2 III 
CMPD 6.4 6.7 iI 
CMPF 4.8 5.1 II 
DlVD 42.7 44.5 II 
DlVF 15.7 16.8 II 
LOCDF 6.4 6.9 II 
LOCFD 5.3 5.6 II 
LDCID 8.3 11.2 V 
LDCIF 6.9 9.6 V 
LDCLD 8.3 13.9 V 
LOCLF 6.9 11.7 V 
LDD 4.3 4.5 II 
LDEXP 4.5 4.8 V 
LDF 3.2 3.5 II 
LDFPS 1.6 1.6 V 
MODD 53.9 51.9 71.5 II 
MODF 21.9 25.1 30.1 II 
MULD 44.0 46.1 II 
MULF 14.9 16.3 II 
NEGD 5.9 6.1 IV 
NEGF 4.8 5.1 IV 
SETD 1.6 1.6 
SETF 1.6 1.6 
SETI 1.6 1.6 
SETL 1.6 1.6 
STCDF 4.5 5.3 III 
STCDI 6.9 10.1 VI 
STCDL 6.9 14.4 VI 
STCFD 5.1 5.3 III 
STCFI 6.1 9.3 VI 
STCFL 6.1 13.6 VI 
STD 3.2 3.2 III 
STEXP 4.3 4.3 VI 
STF 2.1 2.1 III 
STFPS 2.4 2.4 VI 
STST 1.9 1.9 VI 
SUBD 12.5 14.7 32.5 II 
SUBF 9.9 10.9 27.7 II 
TSTD 2.9 3.2 II 
TSTF 2.4 2.7 II 

A-6 



Table A-8 Floating Source Modes 1-7 

Microcode Time Memory Memory 
Instruction Mode Register Cycles (ns) Read Write 

Single Precision 

ADDF, CMPF, I 0-7 3 801 2 0 
D1VF, LOCDF, 2 0-6 3 801 2 0 
LDF, MODF, 2 7 I 267 I 0 
MULF, SUBF, 3 0-6 4 J068 3 0 
TSTF 3 7 3 801 3 0 

4 0-7 4 1068 2 0 
5 0-7 5 1335 3 0 
6 0-7 4 J068 3 0 
7 0-7 6 1602 4 0 

Double Precision 

ADDD, CMPD, I 0-7 5 1335 4 0 
D1VD, LDCFD, 2 0-6 5 1335 4 0 
LDD, MODD, 2 7 0 0 I 0* 
MULD, SUBD, 3 0-6 6 1602 5 0 
TSTD 3 7 5 1335 5 0 

4 0-7 6 1602 4 0 
5 0-7 7 1869 5 0 
6 0-7 6 1602 5 0 
7 0-7 8 2136 6 0 

* Mode 27 references only access single word operands. The execution time listed has been compensated in order to accurately 
compute the total execution time. 

Table A-9 Floating Destination Modes 1-7 

Microcode Time Memory Memory 
Instruction Mode Register Cycles (ns) Read Write 

Single Precision 

CLRF, STCDF, STF I 0-7 3 801+ 0 2 
2 0-6 3 801+ 0 2 
2 7 I 267+ 0 I 
3 0-6 4 1068+ I 2 
3 7 3 801+ I 2 
4 0-7 4 1068+ 0 2 
5 0-7 5 1335+ I 2 
6 0-7 4 1068+ I 2 
7 0-7 6 1602+ 2 2 

Double Precision 

CLRD, STCFD, STD I 0-7 5 1335+ 0 4 
2 0-6 5 1335+ 0 4 
2 7 0 0 0 1* 
3 0-6 6 1602+ I 4 
3 7 5 1335+ I 4 
4 0-7 6 1602+ 0 4 
5 0-7 7 1869+ I 4 
6 0-7 6 1602+ 1 4 
7 0-7 8 2136+ 2 4 

* Mode 27 references only access single word operands. The execution time listed has been compensated in order to accurately 
compute the total execution time. 

A-7 



Table A-tO Floating Read-Modify-Write Modes 1-7 

Microcode Time Memory Memory 
Instruction Mode Register Cycles (ns) Read Write 

Single Precision 

ABSF, NEGF I 0-7 5 1335+ 2 2 
2 0-6 5 1335+ 2 2 
2 7 I 267+ I 1* 
3 0-6 6 1602+ 3 2 
3 7 5 1335+ 3 2 
4 0-7 6 1602+ 2 2 
5 0-7 7 1869+ 3 2 
6 0-7 6 1602+ 3 2 
7 0-7 8 2136+ 4 2 

Double Precision 

ABSO, NEGO I 0-7 9 2403+ 4 4 
2 0-6 9 2403+ 4 4 
2 7 0 0 I 1* 
3 0-6 10 2670+ 5 4 
3 7 9 2403+ 5 4 
4 0-7 10 2670+ 4 4 
5 0-7 II 2937+ 5 4 
6 0-7 10 2670+ 5 4 
7 0-7 12 3204+ 6 4 

* Mode 27 references only access single word operands. The execution time listed has been compensated in order to accurately 
compute the total execution time. 

Table A-ll Integer Source Modes 1-7 

Microcode Time Memory Memory 
Instruction Mode Register Cycles (ns) Read Write 

Integer 

LOClO, LCOlF, I 0-7 2 534 I 0 
LOEXP, LOFPS 2 0-6 2 534 I 0 

2 7 0 0 I 0* 
3 0-6 3 801 2 0 
3 7 2 534 2 0 
4 0-7 3 801 I 0 
5 0-7 4 1068 2 0 
6 0-7 3 801 2 0 
7 0-7 5 1335 3 0 

Long Integer 

LOCLO, LCOLF I 0-7 4 1068 2 0 
2 0-6 4 1068 2 0 
2 7 0 0 I 0* 
3 0-6 5 1335 3 0 
3 7 4 1068 3 0 
4 0-7 5 1335 2 0 
5 0-7 6 1602 3 0 
6 0-7 5 1335 3 0 
7 0-7 7 1869 4 0 

* Mode 27 references only access single word operands. The execution time listed has been compensated in order to accurately 
compute the total execution time. 

A-8 



Table A-12 Integer Destination Modes 1-7 

Microcode Time Memory Memory 
Instruction Mode Register Cycles (ns) Read Write 

Integer 

STCDI, STCFI, 1 0-7 2 534+ 0 
STEXP, STFPS 2 0-6 2 534+ 0 

2 7 2 534+ 0 
3 0-6 3 801+ 1 
3 7 2 534+ 1 
4 0-7 3 801+ 0 
5 0-7 4 1068+ 1 
6 0-7 3 801+ 1 
7 0-7 5 1335+ 2 

Long Integer 

STCDL,STCFL, STST 1 0-7 4 1068+ 0 2 
2 0-6 4 1068+ 0 2 
2 7 2 534+ 0 1 
3 0-6 5 1335+ 1 2 
3 7 4 1068+ 1 2 
4 0-7 5 1335+ 0 2 
5 0-7 6 1602+ 1 2 
6 0-7 5 1335+ 1 2 
7 0-7 7 1869+ 2 2 

A-9 





APPENDIX B 
PROGRAMMING DIFFERENCES 

The programming differences between the KDJ II-A processor and the other processors of the PDP-II 
family are summarized in Table B-1. 

B-1 



Table 8-1 KDJ1I-A Programming Differences 

Processors 

Feature 23/24 44 04 34 LSI/II 05/10 15/20 35/40 45 70 60 KDJ1I-A 

I. OPR %R, (R) +; OPR %R, - (R) using X X X X X 
the same register as both source and 
destination: contents of R are incre-
mented (decremented) by 2 before being 
used as the source operand. 

OPR %R, (R) +; OPR %R, - (R) using the X X X X X X X 
same register as both register and 
destination: initial contents of Rare 
used as the source operand. 

2. OPR %R, @ (R) +; OPR %R, @ - (R) X X X X X 
using the same register as both 
source and destination: contents of R 
are incremented (decremented) by 2 
before being used as the source 
operand. 

~ 
I 
tv OPR %R, @ (R) +; OPR %R, @ - (R) X X X X X X X 

using the same register as both 
source and destination: initial 
contents of R are used as the source 
operand. 

3. OPR PC, X (R); OPR PC, @ X (R); OPR X X X X X 
PC, @ A; OPR PC, A: location A will 
contain the PC of OPR +4. 

OPR PC, X (R); OPR PC, @ X (R), OPR X X X X X X X 
PC, A; OPR PC, @ A: location A will 
contain the PC of OPR +2. 

4. JMP (R) + or JSR reg, (R) +: contents X X 
of R are incremented by 2, then used 
as the new PC address. 

JMP (R) + or JSR reg, (R) +: initial X X X X X X X X X X 
contents of R are used as the new Pc. 



Table 8-1 KDJ11-A Programming Differences (Cont) 

Processors 

Feature 23/24 44 04 34 LSI/II 05/10 15/20 35/40 45 70 60 KDJII-A 

5. JMP %R or JSR reg, %R traps to 10 X X X X X X X X 
(illegal instruction). 

JMP %R or JSR reg, %R traps to 4 X X X X 
illegal instruction). 

6. SW AB does not change Y. X 
SW AB clears Y. X X X X X X X X X X X 

7. Register addresses (177700-177717) X 
are valid program addresses when 
used by CPU. 

Register addresses (177700-177717) X X X X X X X X 
time out when used as a program 
address by the CPU. Can be addressed 
under console operation. 

IJj 
I 

Register addresses (177700-177717) w X X X 
time out when used as an address by 
CPU or console. 

8. Basic instructions noted in PDP-ll X X X X X X X X X X X X 
Processor Handbook. 

SOB, MARK, RTT, SXT instructions* X X X X X X X X X 
ASH, ASHC, DIY, MUL, XOR X X X X X X X X X 

Floating-point instructions in base X X 
machine. 

MFPT instruction. X X X 

The external option KE II-A provides X X 
MUL, DIY, SHIFT operation in the 
same data format. 

*RTT instruction is available in 11/04 but is different than other implementations. 



tx;j 
I 

+:-

Table 8-1 KDJll-A Programming Differences (Cont) 

Processors 

Feature 23/24 44 04 34 LSI/ll 05/10 15/20 35/40 45 70 60 KDJll-A 

The KE II-E (expansion instruction set) 
provides the instructions MUL, DIV, 
ASH, and ASHC. These new instructions 
are 11/45 compatible. 

The KE II-F (floating instruction set) 
adds unique stack ordered oriented 
point instructions: F ADD, FSUB, FMUL, 
FDIB. 

The KEV -II adds EIS/F1S instructions 
MFP, MTP instructions 

SPL instruction 

CSM instruction 

9. Power fail during RESET instruction 
is not recognized until after the 
instruction is finished (70 milli
seconds). RESET instruction consists 
of 70 millisecond pause with INIT 
occurring during first 20 milliseconds. 

Power fail immediately ends the RESET 
instruction and traps if an INIT is 
in progress. A minimum INIT of micro
second occurs if instruction aborted. 
PDPII-04/34/44 are similar with no 
minimum INIT time. 

Power fail acts the same as 11/45 
(22 milliseconds with about 300 
nanoseconds minimum). Power fail 
during RESET fetch is fatal with no 
power down sequence. 

x x x 

X 

X 

X X X 

x 

x 

x 
x x X X 

X X X 

X 

X X X 

X X 

X 



Table 8-1 KDJll-A Programming Differences (Cont) 

Processors 

Feature 23/24 44 04 34 LSI/II 05/10 15/20 35/40 45 70 60 KDJ1I-A 

RESET instruction consists of 10 X X X 
microseconds of INIT followed by a 
90 microsecond pause. Reset instruc-
tion consists of a minimum 8.4 
microseconds followed by a minimum 
100 nanosecond pause. Power fail not 
recognized until the instruction 
completes. 

10. No RTT instruction. X X 
If RTT sets the T-bit, the T-bit X X X X X X X X X X 
trap occurs after the instruction 
following RTT. 

II. If RTI sets T-bit, T-bit trap X X 
is acknowledged after instruction 
following RTI. 

tl:l 
I 

VI If RTI sets T-bit, T-bit trap is X X X X X X X X X X 
acknowledged immediately following 
RTI. 

12. If an interrupt occurs during an X X X X X X X X X X 
instruction that has the T-bit set, 
the T-bit trap is acknowledged 
before the interrupt. 

If an interrupt occuurs during an X X 
instruction and the T-bit is set, 
the interrupt is acknowledged 
before T-bit trap. 

13. T-bit trap will sequence out of X X X X X X X X 
WAIT instruction. 

T-bit trap will not sequence out X X X 
of WAIT instruction. Waits until 
an interrupt. 



Table B-1 KDJII-A Programming Differences (Cont) 

Processors 

Feature 23/24 44 04 34 LSI/II 05/10 15/20 35/40 45 70 60 KDJII-A 

14. Explicit reference (direct access) X X X 
to PS can load T-bit. Console can 
also load T-bit. 

Only implicit references (RTI, RTT, X X X X X X X X X 
traps and interrupts) can load T-bit. 
Console cannot load T-bit. 

15. Odd address/nonexistent references X X X X X X 
using the SP cause a HALT. This is 
a case of double bus error with the 
second error occurring in the trap 
servicing the first error. Odd address 
trap not implemented in LSI-II, 11/23 
or 11/24. 

Odd address/nonexistent references X X X X X X 

~ using the stack pointer cause a fatal 
I 

trap. On bus error in trap service, 0\ 

new stack created at 0/2. 

16. The first instruction in an X X X X X X X X X X X 
interrupt routine will not be 
executed if another interrupt occurs 
at a higher priority level than 
assumed by the first interrupt. 

The first interrupt in an interrupt X 
service is guaranteed to be executed. 

17. Single general-purpose register X X X X X X X X X 
implemented. 

Dual general-purpose register set X X X 
implemented. 



Table B-1 KDJll-A Programming Differences (Cont) 

Processors 

Feature 23/24 44 04 34 LSI/II 05/10 15/20 35/40 45 70 60 KDJII-A 

18. PSW address, 177776, not imple- X 
mented; must use instructionns MTPS 
(move to PS) and MFPS (move from PS). 

PSW address implemented, MTPS and X X X X X X X X 
MFPS not implemented. 

PSW address and MTPS and MFPS X X X 
implemented. 

19. Only one interrupt level (BR4) X 
exists. 

Four interrupt levels exist. X X X X X X X X X X X 

20. Stack overflow not implemented. X 

t:D Some sort of stack overflow X X X X X X X X X X X 
I 

implemented. -..l 

21. Odd address trap not implemented. X X 

Odd address trap implemented. X X X X X X X X X X 

22. FMUL and FDIV instructions X 
implicitly use R6 (one push and 
pop); hence R6 must be set up 
correctly. 

FMUL and FDIV instructions do not X 
implicitly use R6. 

23. Due to their execution time, EIS X 
instructions can abort because of 
a device interrupt. 

EIS instructions do not abort X X X X X X X X 
because of a device interrupt. 

24. Due to their execution time, FIS X X 
instructions can abort because of 
a device interrupt. 



Table B-1 KDJll-A Programming Differences (Cont) 

Processors 

Feature 23/24 44 04 34 LSI/II 05/10 15/20 35/40 45 70 60 KDJ1I-A 

25. Due to their execution time, FPII X 
instructions can abort because of 
a device interrupt." 

FPII instructions do not abort X X X X X X 
because of a device interrupt. 

26. EIS instructions do a DA TIP and X 
DA TO bus sequence when fetching 
source operand. 

EIS instructions do a DATI bus X X X X X X X X 
sequence when fetching source 
operand. 

27. MOY instruction does just a DA TO X X X X X X X X X 
bus sequence for the last memory 

tJ:j cycle. I 
00 

MOY instruction does a DA TIP and X X X 
DATO bus sequence for the last 
memory cycle. 

28. If PC contains nonexistent memory X X X X X X X X X X 
and a bus error occurs, PC will 
have been incremented. 

If PC contains nonexistent memory X 
address and a bus error occurs, PC 
will be unchanged. 

29. If register contains nonexistent X X X X X X X X 
memory address in mode 2 and a bus 
error occurs, register will be in-
cremented. 

Same as above but register is X X X 
unchanged. 

tIntegral floating point assumed on 11/23 and 11/24; FPIIE assumed for 11/60. 



Table 8-1 KDJll-A Programming Differences (Cont) 

Processors 

Feature 23/24 44 04 34 LSI/II 05/10 15/20 35/40 45 70 60 KDJlI-A 

30. If register contains an odd value X X X X X X 
in mode 2 and a bus error occurs, 
register will be incremented. 

If register contains an odd value X X X X X 
in mode 2 and a bus error occurs, 
register will be unchanged. 

31. Condition codes restored to X 
original values after FIS interrupt 
abort (EIS does not abort on 35/40). 

Condition codes that are restored X 
after EIS/FIS interrupt abort are 
indeterminate. 

32. Op codes 075040 through 0753777 X X X X X X X X X X X 
t::I:' unconditionally trap to 10 as I 
\0 reserved op codes. 

If KEV-II option is present, op X 
codes 75040 through 07533 perform 
a memory read using the register 
specified by the low order 3 bits 
as a pointer. If the register contents 
are a nonexistent address, a trap to 4 
occurs. If the register contents are 
an existent address, a trap to 10 
occurs. 

33. Op codes 210 through 217 trap to X X X X X X X X X X X 
10 as reserved instructions. 

Op codes 210 through 21 7 are used as X 
a maintenance instruction. 



Table 8-1 KDJ11-A Programming Differences (Cont) 

Processors 

Feature 23/24 44 04 34 LSI/ll 05/10 15/20 35/40 45 70 60 KDJII-A 

34. Op codes 75040 through 75777 trap X X X X X X X X X X X 
to 10 as reserved instructions. 

If KEY-II options is present, op X 
codes 75040 through 7577 can be used 
as escapes to user microcode. If no 
user microcode exists, a trap to 10 
occurs. 

35. Op codes 170000 through 177777 trap X X X X 
to 10 as reserved instructions. 

Op codes 170000 through 177777 are X X X X X X X 
implemented as floating-point 
instructions. 

Op codes 170000 through 1777777 can X 
Q:j be used as escapes to user microcode. I 

0 If no user microcode exists, a trap 
to 10 occurs. 

Op code 076600 used for maintenance. X 

36. CLR and SXT do just a DA TO X X 
sequence for the last bus cycle. 

CLR and SXT do DA TIP-DATO sequence X X X X X X X X X X 
for the last bus cycle. 

37. MEM MGT maintenance mode MMRO X X X X X X 
bit 8 is implemented. 

MEM MGT maintenance mode MMRO bit X X 
8 is not implemented. 



Table 8-1 KDJII-A Programming Differences (Cont) 

Processors 

Feature 23/24 44 04 34 LSI/ll 05/10 15/20 35/40 45 70 60 KDJ11-A 

38. PS <15:12>, non kernel mode, non- X X X X X X 
kernel stack pointer and MTPx and 
MFPx instructions exist even when 
MEM MGT is not configured. 

PS <15:12>, non kernel mode, non- X 
kernel stack pointer, and MTPx and 
MFPx instructions exist only when 
MEM MGT is configured. 

39. Current mode PS bits <15:14> set X X X 
to 01 or 10 will cause a MEM MGT 
trap upon any memory reference. 

Current mode PS bits < 15: 14> set X 
to 10 will be treated as kernel 

~ 
mode (00) and not cause a MEM MGT 

I trap. 

Current mode PS bits < 15: 14> set X X X X 
to 10 will cause a MEM MGT trap 
upon any memory reference. 

40. MTPS in user mode will cause MEM X 
MGT trap if PS address 177776 nor 
mapped. If mapped, PS <07:05> and 
<03:00> affected. 

MTPS in nonuser mode will not cause X X 
MEM MGT trap and will only affect 
PS <03:00> regardless of whether PS 
address 177776 is mapped. 

41. MFPS in user mode will cause MEM X 
MGT if PS address 177776 not mapped. 
If mapped, PS <07:00> are accessed. 

MTPS in user mode will not trap X X 
regardless of whether PS address 
177776 is mapped. 



Table 8-1 KDJII-A Programming Differences (Cont) 

Processors 

Feature 23/24 44 04 34 LSI/II 05/10 15/20 35/40 45 70 60 KDJII-A 

42. Programs cannot execute out of X 
internal processor registers. 

Programs can execute out of internal X X X X X X X 
processor registers. 

43. A HALT instruction in user or X X X X 
supervisor mode will trap through 
location 4. 

A HALT instruction in user or super- X X X X 
visor mode will trap through location 
10. 

44. POR bit <00> implemented. X X 

POR bit <00> not implemented. X X X X X X 
t:C 

I 

tv 45. POR bit <07> (any access) X X 
implemented. 

POR bit <07> (any access) not X X X X X X 
implemented. 

46. Full PAR <15:00> implemented. X X X X 

Only PAR <II :00> implemented. X X X X 

47. MMRO < 12>-trap-memory X X 
management -im plemented. 

MMRO <12> not implemented. X X X X X X 

48. MMR3 <02:00> -0 space X X X X 
enable-implemented. 

MMR3 <02:00> not implemented. X X X X 



Table 8-1 KDJIl-A Programming Differences (Cont) 

Processors 

Feature 23/24 44 04 34 LSI/II 05/10 15/20 35/40 45 70 60 KDJ1I-A 

49. MMR3 <05:04>-IOMAP, 22-bit X X X X 
mapping enabled-implmented. 

MMR3 <05:04> not implemented. X X X X 

50. MMR3 <03>-CSM enable- X X 
implemented. 

MMR3 <03> not implemented. X X X X X X 

51. MMR2 tracks instruction fetches X X 
and interrupt vectors. 

MMR2 tracks only instruction X X X X X X 
fetches. 

52. MFPx %6, MTPx when PS <13:12> = X X X X X X X 
t:I:l 10 gives unpredictable results. I 

w 
MTPx %6, MTPx %6 when PS <13:12> = X 
lOuses user stack pointer. 





Abort (ABORT), 4-6 
Abort, function of, 4-17 

A 

Address Input/Output, (Ala) 4-4 
Address Latch Enable, (ALE) 4-5 
Addressing modes, 6-1 

autodecrement, 6-9 
autoincrement, 6-7 
deferred, 6-13 
direct, 6-4 
double-operand, 6-3 
index, 6-11 
PC relative, 6-17 
register, 6-6 
single-operand, 6-3 

AI/a coding, 4-4 

Bank Select (BS), 4-4 
BEVNT signal, 2-3 
Boot address, 2-3 
Boot ROM set, 9-1 

B 

Buffer Control (BUFCTL), 4-5 
Bus cycles, 4-6 

Ala, codes for, 4-4 
bus read, 4-7 
bus write, 4-8 
general-purpose read, 4-9 
general-purpose write, 4-1 ° 
interrupt acknowledge, 4-1 ° 
non-I/O (NaP), 4-6 

Bus, 4-6 
read transaction, 4-7 
receivers, 4-12, 4-24 
transmitters, 4-12, 4-25 
write transaction, 4-8 

c 
Cache control 

data path, 4-12, 4-17 
register, 4-19 

Cache memory, 1-27, 4-1 3 
control register, 1-30, 4-19 
data, 1-27, 4-13, 4-22 
description, 1-27,4-21 
error register, 1-32, 4-19 
hit/miss register, 1-32, 4-23 
operation, 4-21 
parity, 1-29,4-19,4-21 
timeout, 4-19 

Cache miss, 4-5, 4-23 
Clock (CLK I, CLK2), 4-5 
Code, 8-1 

coroutine, 8-14 
position dependent, 8-3 
position independent, 8-1 
reentrant, 8-13 

Configuration, 2-1 
factory, 2-3 
jumpers, 2-1 

Console ODT, 3-1 
commands, 3-3 
input sequence, 3-3 
invalid characters, 3-9 
output sequence, 3-3 
serial line interface, 3-2 
timeout, 3-9 

Continue (CaNT), 4-5 
CPU error register, 1-5 

D 

Data Address Lines (DAL), 4-6 
Data Valid (DV), 4-5 
Diagnostics, 9-6 
Diagnostic LEDs, 2-4, 4-29 
Direct Memory Access (DMA), 4-27 

INDEX-I 

INDEX 



Error message, 9-3 
Event (EVENT), 4-6 

Floating point, 1-33 
addressing, 1-38 

E 

F 

data formats, 1-33, 1-34, 7-2 
exception code register, 1-38, 7-6 
exception (FPE), 1-38 
nonvanishing numbers, 1-33 
status register, 1-35, 7-3 
undefined variables, 1-33, 7-2 
zero, 1-33, 7-1 

Floating-point instructions, 7-8 
ABSD,7-10 
ABSF,7-1O 
ADDD,7-11 
ADDF, 7-11 
CFCC, 7-12 
CLRD,7-12 
CLRF,7-12 
CMPD,7-13 
CMPF,7-13 
DIVD, 7-14 
DIVF, 7-14 
LDCDF,7-15 
LDCFD,7-15 
LDCID,7-16 
LDCIF,7-16 
LDCLD,7-16 
LDCLF,7-16 
LDD,7-18 
LDEXP, 7-17 
LDF,7-18 
LDFPS, 7-18 
MODD,7-19 
MODF,7-19 
MULD,7-22 
MULF,7-22 
NEGD,7-23 
NEGF,7-23 
SETF,7-24 
SET!,7-24 
SETL,7-24 
STCDF,7-25 
STCDI,7-26 
STCDL,7-26 
STCFD,7-25 
STCFI,7-26 

STCFL,7-26 
STEXP, 7-27 
STD,7-27 
STF,7-27 
STFPS, 7-28 
STST,7-28 
SUBD,7-29 
SUBF,7-29 
TSTD,7-30 
TSTF,7-30 

Flush counter, 4-20 

G 

General-purpose codes, 4-9, 4-10 
General-purpose read cycle, 4-9 
General-purpose registers, 1-2 
General-purpose write cycle, 4-10 

Halt (HALT), 4-5 
Halt option, 2-2 
Help message, 9-3 
Hit/miss logic, 4-23 

I and D space, 1-16 
Initialization, 4-27 
Initialize (INIT), 4-3 
Instruction, 6-21 

byte, 6-26 
formats, 6-22 
list, 6-27 
symbols, 6-21 

Instruction set, 6-21 
ADC, 6-43 
ADCB,6-43 
ADD,6-49 
ASH,6-51 
ASHC, 6-51 
ASL, 6-38 
ASLB,6-38 
ASR,6-37 
ASRB,6-37 
BCC, 6-60 
BCS, 6-61 
BEQ,6-58 
BGE,6-62 
BGT,6-63 
BHI,6-63 

INDEX-2 

H 

I 



BHIS, 6-64 
BIC,6-54 
BICB,6-54 
BIS, 6-54 
BISB,6-54 
BIT, 6-53 
BITB,6-53 
BLE,6-63 
BLO, 6-64 
BLOS, 6-64 
BLT,6-62 
BMI,6-59 
BNE,6-58 
BPL,6-59 
BPT,6-71 
BR,6-57 
BVC, 6-60 
BVS, 6-60 
CCC, 6-80 
CLC, 6-80 
CLN,6-80 
CLV, 6-80 
CLZ, 6-80 
CLR,6-31 
CLRB,6-31 
COM,6-32 
COMB,6-32 
CMP, 6-48 
CMPB,6-48 
CSM, 6-75 
DEC, 6-33 
DECB,6-33 
DIV, 6-52 
EMT,6-70 
HALT,6-77 
INC, 6-32 
INCB, 6-32 
IOT,6-72 
JMP, 6-65 
JSR,6-66 
MARK,6-73 
MFPD,6-79 
MFPI,6-79 
MFPS, 6-45 
MFPT,6-78 
MOV, 6-47 
MOVB,6-47 
MTPD,6-79 
MTPI,6-79 
MTPS, 6-46 
MUL,6-52 
NEG,6-34 
NEGB,6-34 

NOP, 6-67 
RESET,6-78 
ROL,6-40 
ROLB,6-40 
ROR,6-39 
RORB,6-39 
RTI,6-72 
RTS, 6-68 
RTT,6-73 
SOB, 6-67 
SBC, 6-44 
SBCB,6-44 
SCC, 6-66 
SEC, 6-66 
SEN, 6-66 
SEV, 6-66 
SEZ, 6-66 
SPL, 6-75 
SUB,6-50 
SWAB,6-41 
SXT,6-44 
TRAP, 6-71 
TST,6-35 
TSTB,6-35 
TSTSET, 6-36 
WAIT,6-77 
WRTLCK, 6-35 
XOR,6-56 

Installation, 2-16 
Interrupt acknowledge cycle, 4-11 
Interrupt and DMA control 

direct memory access (DMR), 4-5 
event (EVENT), 4-6 
floating-point exception (FPE), 4-6 
interrupt request (IRQ), 4-5 
power fail (PWRF), 4-6 

Interrupts and traps, 1-8, 1-9, 1-10 

L 

Line time clock register, 1-7, 4-20 
LSI bus 

characteristics, 5-22 
configuration, 5-26 
dati, 5-5 
datio, 5-10 
dato, 5-7 
DMA,5-12 
interrupts, 5-15, 5-16 
loading, 5-23, 5-29 
priority, 5-15 

INDEX-3 



M 

Maintenance register, 1-7, 2-6, 4-27 
Memory management, 1-10 

addressing, 1-13, 1-14 
fault recovery, 1-18, 1-22 
I and D space, 1-16 
implementation, 1-10 
mapping, 1-10 
page address registers (PAR), 1-18 
page descriptor registers (PDR), 1-18 
physical address construction, 1-15 
register 0 (MMRO), 1-20 
register 1 (MMRl), 1-21 
register 2 (MMR2), 1-21 
register 3 (MMR3), 1-21 
registers, 1-16 

MMRO, 1-20 
enable relocation bits, 1-20 
error flags, 1-20 
page address space bits, 1-20 
page number bits, 1-20 
processor mode bits, 1-20 
reserved bits, 1-20 

MMRl, 1-21 
MMR2, 1-21 
MMR3,1-21 

enable 22-bit mapping bit, 1-22 
enable CMS instruction bit, 1-22 
enable I/O map bits, 1-22 
kernel, supervisor and user bits, 1-22 
reserved bits, 1-22 

Module pinout, 2-9 
Memory system registers, 1-30, 4-19 

N 

Non-I/O (NOP) cycle, 4-6 

o 
Options, 2-10 

p 

Page address registers, I-I 8 
Page descriptor registers, 1-18 

access control field, 1-19 
bypass cache bit, 1-19 
expansion direction bit, 1-19 
page length field, 1-19 
page written bit, 1-19 
reserved bits, 1-19 

Parity error (PARITY), 4-6 
Power-down routine, 2-8 
Power-up circuit, 2-7 
Power-up routine, 2-7 
Predecode (PRDC), 4-5 
Processor status word, 1-3, 1-4, 8-26 
Program counter, 1-3 
Program interrupt request (PIRQ), 1-6 
Programming model, 1-2 

Software, 1-40 
Specifications, 2-18 
Stack pointer, 8-3, 8-6 
Status signals 

abort (ABORT), 4-6 

s 

cache miss (MISS), 4-5 
parity error (PARITY), 4-6 
predecode (PRDC), 4-5 

Stretch control (SCTL), 4-5 
Strobe (STRB), 4-5 
System control 

address I/O, 4-4 
bank select, 4-4 
buffer control, 4-5 
continue, 4-5 
data valid, 4-5 

TAG RAM, 4-23 
Timeout, 4-19 

Wakeup, 2-3 

INDEX-4 

T 

w 









Digital Equipment Corporation. Bedford, MA 01730 


