
BASIC
User's Guide

Order No. DEC-20-LBMAA-A-D

BASIC
User's Guide

Order No. DEC-20-LBMAA-A-D

digital equipment corporation · maynard. massachusetts

First Printing January 1976

The information in this document is subject to change without notice and should not be construed as a commit
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright@ 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-lO MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-lO
DECCOMM DECsystem-20 TYPESET-ll

1/81-14

CONTENTS

Page

CHAPTER 1 INTRODUCTION ... 1-1
1.1 EXAMPLE OF A BASIC PROGRAM 1-1
1.2 DISCUSSION OF THE PROGRAM 1-2
1.3 FUNDAMENTAL CONCEPTS OF BASIC 1-4
1.3.1 Arithemtic Operations -. : . 1-4
1.3.2 Mathematical Functions. .. 1-5
1.3.3 Numbers .. 1-6
1.3.4 Variables. .. 1-6
1.3.5 Relational Symbols. .. 1-6
1.4 SUMMARY OF ELEMENTARY BASIC STATEMENTS 1-7
1.4.1 LET Statement ... 1-7
1.4.2 READ and DATA Statements 1-7
1.4.3 PRINT Statement. .. 1-8
1.4.4 GO TO Statement. .. 1-9
1.4.5 IF - THEN Statement. .. 1-9
1.4.6 ON - GO TO Statement 1-9
1.4.7 END Statement ... 1-10

CHAPTER 2 LOOPS ... 2-1
2.1 FOR AND NEXT STATEMENTS 2-1
2.2 NESTED LOOPS .. 2-4

CHAPTER 3 USTS AND TABLES ... 3-1
3.1 THE DIMENSION STATEMENT (DIM) 3-1
3.2 EXAMPLE .. 3-2
3.3 SUMMARY .. 3-3

CHAYI'ER 4 HOW TO RUN BASIC ... 4-1
4.1 GAINING ACCESS TO BASIC 4-1
4.1.1 Contacting the DECsystem-20 Computer 4-1
4.1. 2 Identifying Yourself to the System 4-1
4.1.3 Accessing BASIC .. 4-2
4.2 ENTERING THE PROGRAM 4-4
4.3 EXECUTING THE PROGRAM . 4-4
4.4 CORRECTING THE PROGRAM 4-5
4.5 INTERRUPTING EXECUTION 4-5
4.5.1 Returning to System Command Level 4-5
4.6 LEAVING THE COMPUTER . 4-6
4.7 EXAMPLE OF A BASIC RUN 4-6
4.8 ERRORS AND DEBUGGING. 4-7
4.8.1 Example of Finding and Correcting 4-7

iii

CHAPTER 5
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.2
5.2.1
5.2.2

CHAPTER 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

CHAPTER 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

CHAPTER 8
8.1
8.2
8.3
8.4
8.5
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6

CONTENTS (Cont.)

Page

FUNCTIONS AND SUBROUTINES 5-1
FUNCTIONS ... 5-1

The Integer Function (INT) 5-1
The Random Number Generator Function (RND) 5-1
The RANDOMIZE Statement . 5-3
The Sign Function (SGN) . 5-4
The Time Function (TIM) 5-4
The Define User Function (DEF) and Function End Statement (FNEND) 5-5

SUBROUTINES . 5-6
GOSUB and RETURN Statements 5-6
Example . 5-6

MORE SOPHISTICATED TECHNIQUES 6-1
MORE ABOUT THE PRINT SYSTEM . 6-1
INPUT STATEMENT ... 6-4
STOP STATEMENT .. 6-5
REMARKS STATEMENT (REM) 6-5
RESTORE STATEMENT ... 6-6
CHAIN STATEMENT . 6-6
MARGIN STATEMENT ... 6-7
PAGE STATEMENT .. 6-8
NOPAGE STATEMENT ... 6-8

VECTORS AND MATRICES 7-1
MAT INSTRUCTION CONVENTIONS 7-1
MAT C = ZER, MAT C = CON, MAT C = IDN 7-2
MAT PRINT A .. 7-3
MAT INPUT V AND THE NUM FUNCTION 7-3
MAT B =A .. 7-4
MAT C = A + B AND MAT C = A - B 7-4
MAT C = A * B .. 7-4
MAT C = TRN(A) .. 7-4
MAT C = (K) * A .. 7-4
MAT C = INV(A) AND THE DET FUNCTION 7-4
EXAMPLES OF MATRIX PROGRAMS 7-5
SIMULATION OF N-DIMENSIONAL ARRAYS 7-7

ALPHANUMERIC INFORMATION (STRINGS) 8-1
READING AND PRINTING STRINGS ,................. 8-1
STRING CONVENTIONS .. 8-2
NUMERIC AND STRING DATA BLOCKS . 8-3
THE CHANGE STATEMENT 8-3
STRING CONCATENATION 8-6
STRING MANIPULATION FUNCTIONS . 8-6

The LEN Function " . 8-6
The ASC and CHR$ Functions 8-7
The VAL and STR$ Functions 8-8
The LEFT$, RIGHT$, and MID$ Functions 8-9
The SP ACE$ Function 8-11
The INSTR Function 8-12

iv

CHAPTER 9
9.1
9.2
9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.4
9.4.1
9.4.2
9.4.3
9.5
9.6
9.6.1
9.6.2
9.6.3
9.6.3.1
9.6.3.2
9.7
9.8

CHAPTER 10
10.1
10.1.1
10.1.2
10.2
10.3
10.4
10.5
10.5.1
10.5.2
10.6
10.7

10.8
10.9

10.10

CHAPTER 11
11.1
11.2
11.2.1
11.2.1.1
11.2.1.2
11.2.2
11.2.3
11.2.4

CONTENTS (Cont.)

Page

EDIT AND CONTROL 9-1
CREATING THE FILE MEMORY 9-1
liSTING FILES ... 9-3
EDITING A FILE IN MEMORY .. 9-5

Replacing Complete Lines 9-5
Deleting Lines .. 9-5
Renumbering Lines in the Memory File 9-5
Clearing the Entire File " 9-6
Merging One File With Another. .. 9-6

TRANSFERRING FILES 9-7
Transferring Files From Memory Storage 9-7
Transferring Files From One Storage Device to Another 9-8
Destroying Files .. 9-8

EXECUTING A BASIC PROGRAM .. 9-8
ENTERING SYSTEM COMMAND LEVEL FROM BASIC 9-9

What is System Command Level? 9-9
Letting the System Type Part of a Command .. 9-9
Returning to BASIC From System Command Level 9-10
User's Memory Preserved 9-10
User's Memory Destroyed 9-11

OBTAINING INFORMATION 9-11
LEAVING BASIC .. 9-12

DATA FILE CAPABILITY 10-1
TYPES OF DATA FILES 10-1

Sequential Access Files 10-1
Random Access Files 10-2

THE FILE AND FILES STATEMENTS 10-2
THE SCRATCH AND RESTORE STATEMENTS 10-4
THE READ AND INPUT STATEMENTS 10-5
THE WRITE AND PRINT STATEMENTS 10-7

WRITE and PRINT Statements for Sequential Access Files 10-7
WRITE and PRINT Statements for Random Access Files 10-9

THE SET STATEMENT AND THE LOC AND LOF FUNCTIONS 10-9
THE QUOTE, QUOTE ALL, NO QUOTE and NOQUOTE

ALL STATEMENTS .. 10-10
THE MARGIN AND MARGIN ALL STATEMENTS 10-12
THE PAGE, PAGE ALL, NOPAGE, AND NOPAGE

ALL STATEMENTS. .. 10-12
THE IF END STATEMENT 10-14

FORMATTED OUTPUT .. 11-1
THE USING STATEMENTS 11-1
IMAGE SPECIFICATIONS 11-3

Numeric Image Specifications. .. 11-3
Integer Image Specifications. .. 11-3
Decimal Image Specifications .. 11-4
Edited Numeric Image Specification 11-5
String Image Specifications 11-8
Printing Characters .. 11-9

v

APPENDIX

APPENDIX

APPENDIX

TABLE

A
A.l
A.2
A.3
AA
A.5

B

C

8-1
9-1
9-2
9-3

CONTENTS (Cont.)

Page

SUMMARY OF BASIC STATEMENTS A-I
ELEMENTARY BASIC STATEMENTS A-I
ADVANCED BASIC STATEMENTS A-2
MATRIX INSTRUCTIONS A-2
DATA FILE STATEMENTS A-3
FUNCTIONS. A-4

BASIC DIAGNOSTIC MESSAGES B-1

ACCESSING ANOTHER USER'S FILE Col

TABLES
Page

ASCII Numbers and Equivalent Characters 8-4
Commands That Enter System Command Level From BASIC 9-9
Useful System Commands ' 9-10
Commands That Reenter BASIC When Core is Preserved 9-10

B-1 Command Error Messages .. B-1
B-2 Compilation Error Messages B-3
B-3 Execution Error Messages .. B-5

vi

PREFACE

WHY BASIC? Because BASIC is a problem-solving language that is conversational and easy to learn, it has a wide
application in the scientific, business, and educational communities. It can be used to solve both simple and com
plex mathematical problems from the user's terminal and is particularly suited for timesharing.

In writing a computer program, it is necessary to use a language or vocabulary that the computer recognizes. Be
cause the BASIC language is composed of easily understood statements and commands, it is one of the simplest of
all programming languages to learn.

BASIC is similar to other programming languages in many respects; and is aimed at facilitating communication be
tween the user and the computer in a timesharing system. As with most programming languages, BASIC is divided
into two sections:

1. Elementary statements that the user must know to write simple programs, and
2. Advanced techniques needed to efficiently organize complicated problems.

As a BASIC user, you type in a computational procedure as a series of numbered statements by using common
English syntax and familiar mathematical notation. You can solve almost any problem by spending a small amount
of time learning the necessary elementary commands. After becoming more experienced, you can add the advanced
techniques needed to perform more intricate manipulations and to express your problem more efficiently and con
cisely. Once you have entered your statements via the terminal simply type in RUN or RUNNH. These commands
initiate the execution of your program and return your results almost instantaneously.

SPECIAL FEATURES OF BASIC - BASIC incorporates the following special features:

1. Matrix Computations - A special set of 13 commands designed exclusively for performing matrix
computations.

2. Alphanumeric Information Handling - Single alphabetic or alphanumeric strings or vectors can be
read, printed, and defmed in LET and IF ... THEN statements. Individual characters within these
strings can be easily accessed by the user. Conversion can be performed between characters and their
ASCII equivalents. Tests can be made for alphabetic order.

3. Program Control and Storage Facilities - Programs or data files can be stored on or retrieved from
various devices (i.e., disk, magnetic tape, or card reader).

4. Program Editing Facilities - An existing program or data file can be edited by adding or deleting lines,
by renaming it, or be resequencing the line numbers. The user can combine two programs or data files
in to one and request either a listing of all or part of it on the terminal or a listing of all of it on the
high-speed line printer.

5. Formatting of Output - Controlled formatting of terminal output, includes tabbing, spacing, and
printing columnar headings.

6. Documentation and Debugging Aids - Documenting programs by the insertion of remarks within
procedures enables recall of needed information at some later date and is invaluable in situations where
the program is shared by other users. Debugging of programs is aided by the typeout of meaningful
diagnostic messages which pinpoint syntactical and logical errors detected during execution.

vii

CHAPTER 1

INTRODUCTION

This chapter introduces the user to BASIC on the DEC system-20 and to its restrictions and characteristics. The best
introduction lies in beginning with a BASIC program and discussing each step completely.

1.1 EXAMPLE OF A BASIC PROGRAM
The following example is a complete BASIC program, named UNEAR, that can be used to solve a system of two
simultaneous linear equations in two variables

ax + by = c

dx+ey=f

and then used to solve two different systems, each differing from the above system only in the constants c and f.
If ae - bd is not equal to 0, this system can be solved to find that

ce - bf x=--
ae - bd

and af - cd
y = ae - bd

If ae - bd = 0, there is either no solution or there are many, but there is no unique solution. Study this example
carefully and then read the commentary and explanation. {In most cases the purpose of each line in the program
is self-evident.}

:LO F~EI~D AYx~~DvE.)
:I. ~:.i LET (3::::A*E B::i<D..J
:?() IF G::::0 THEN (!)!.:.'i.)

:3() I,:I:::AD C v F.)
3!':i LET ><:::: (C*E BX<F) /G')
40 LET Y::" «(l*r c:)/<D) /(3 • ./

45 PRINT XvY.)
!:50 DC) TO 3().)
55 PRINT "NO UNIQUE SOLUTION".)
60 DATA :1. ,2v4..J
6!5 DATf~ 2 Y '7!'~.'i .)
70 DATA :l.v3v4v-7..J
7!:'i END

NOTE

All statements are terminated by pressing
the RETURN key (represented in this text
by the symbol .)}. The RETURN key
echoes as a carriage return, line feed.

I-I

Introduction

1.2 DISCUSSION OF THE PROGRAM
A program consists of lines containing statements which are instructions to BASIC. Every statement line must begin
with a line number of from 1 to 5 digits. Because the line number is a label distinguishing one statement from an
other, each line number must be unique with respect to all others in the same program.

When you run the program, BASIC sorts out the statements, putting them into the order specified by the line num
bers. Consequently, you can type the statements in any order, as long as you prefix each statement with a line num
ber indicating its proper sequence in the order of execution.

Spaces and tabs were typed in this sample program because they do make a program easier to read. However, they
are not necessary for proper program execution.

With this preface, the above example can be followed through step-by-step.

10

The first statement, 10, is a READ statement and must be accompanied by one or more DATA statements. When
the computer encounters a READ statement while executing a program, it causes the variables listed after the READ
to be given values according to the next available numbers in the DATA statements. In this example, we read A
in statement 10 and assign the value 1 to it from statement 70 and, similarly, with Band 2, and with D and 4. At
this point, the available data in statement 70 has been exhausted, but there is more in statement 80, and we take
the value 2 to be assigned to E.

LET G::::A*E B*D

Next, in statement 15, which is a LET statement, a formula is to be evaluated. (The asterisk (*) is used to denote
multiplication.) In this statement, we compute the value of AE - BD, and call the result G. In general, a LET state
ment directs the computer to set a variable (e.g., G) equal to the formula on the right side of the equal sign.

IF (;)::::() THEN 6~::.i

If G is equal to zero, the system has no unique solution. Therefore, we next ask, in line 20, if G is equal to zero.

60
6~:.i

70
T5

PRINT "NO UNIQUE SOLUTION"
DATA 1,2,4
DATA 2Y-·7~J~:.i
DATA 1,:3,4, /
END

If the computer discovers a "yes" answer to the question, it is directed to go to line 55, where it prints NO UNIQUE
SOLUTION. Since DATA statements are not executable statements, the computer then goes to line 75 which tells
it to END the program.

30 READ erF

If the answer is "no" to the qu~stion "Is G equal to zero?", the computer goes to line 30. The computer is now
directed to read the next two entries, -7 and 5, from the DATA statements (both are in statement 65) and to assign
them to C and F, respectively. The computer is now ready to solve the system

x + 2y =·7
4x + 2y = 5

3~5

40
LET X=(C*E-B*F)/G
LET Y=(A*F-C*D)/G

1-2

Introduction

In statements 35 and 40, we instruct the computer to compute the value of X and Y according to the formulas
provided, using parentheses to indicate that C*E - B*F is calculated before the result is divided by G .

.a":.
".J

c:. ('
... J .,)

PF~INT)(yY
Gc) TD 30

The computer prints the two values X and Yin line 45. Having done this, it moves on to line 50, where it is reverted
to line 30. With additional numbers in the DATA statements, the computer is told in line 30 to take the next one
and assign it to C, and the one after that to F. Thus,

x + 2y = 1
4x + 2y = 3

As before, it fmds the solutions in 35 and 40, prints them out in 45, and then is directed in 50 to revert to 30.

In line 30, the computer reads two more values, 4 and -7, which it finds in line 70. It then proceeds to solve the
system

x+2y=4
4x + 2y = 7

and print out the solutions. Since there are no more pairs of numbers in the DATA statement available for C and
F, the computer prints OUT OF DATA IN 30 and stops.

Ifline number 45 (PRINT X, Y) had been omitted, the computer would have solved the three systems and then told
us when it was out of data. If we had omitted line 20, and G were equal to zero, the computer would print DIVI
SION BY ZERO IN 35 and DIVISION BY ZERO IN 40. Had we omitted statement 50 (GO TO 30), the computer
would have solved the first system, printed out the values of X and Y, and then gone to line 55, where it would be
directed to print NO UNIQUE SOLUTION.

The particular choice of line numbers is arbitrary as long as the statements are numbered in the order the machine
is to follow. We would normally number the statements 10,20,30, ... , 130, so that later we can insert additional
statements. Thus, if we find that we have omitted two statements between those numbered 40 and 50, we can give
them any two numbers between 40 and 50 - - say 44 and 46. Regarding DATA statements, we need only put the
numbers in the order that we want them read (the first for A, the second for B, the third for D, the fourth for E,
the fifth for C, the sixth for F, the seventh for the next C, etc.). In place of the three statements numbered 60, 65
and 70, we could have written the statement:

or, more naturally,

60 DATA 1,2,4,2
65 DATA -7,5
70 DtlTtl 1~/:::~
75 DATA 4,-7

to indicate that the coefficients appear in the first data statement and the various pairs of right-hand constants
appear in the subsequent statements.

1-3

Introduction

The program and the resulting run is shown below as it appears on the terminal

10 READ A,B,D,E
15 LE'r G=A*E-B*D
20 IF 0=0 THEN 65
:::~O F,:EAD c::~ .. F
35 LET X=(C*E-B*F)/G
40 LET Y=(AkF-C*D)/O
45 PRINT X,Y
~.:5 0 (3 [I T C) ::5 ()
55 PRINT "NO UNIQUE SOLUTION"
60 DATA 1,2,4
6 ~5 II (1 T (1 2 ~.' ... '.:.:! ~.' ~5

70 DATA 1,3,4,-7
'.7~.:j END

F:I . ..IN

4
() ~ 666·~·)6)·

.- :::~ (. ':~:I () (:'j (~) '7

.... ~.:5 .:. ~5
o ,. 16,~)f.:,(.·7
::5 .;. :J3333

? OUT OF DATA IN LINE 30

1 ~.;.'.i U C: "I" ')' '5

NOTE

Remember to terminate all statements by pressing
the RETURN key.

After typing the program, we type the command RUN and press the RETURN key to direct the computer to exe
cute the program. Note that the computer, before printing out the answers, printed the name LINEAR which we
gave to the problem (refer to Paragraph 4.1) and the time and date of the computation. The message OUT OF
DATA IN 30, may be ignored here. However, in some instances, it indicates an error in the program. The TIME
message, printed out at the end of execution, indicates the compile and execute time used by the program; this
time is slightly dependent upon other jobs being processed by the computer and consequently will not be exactly
the same each time the same program is run.

1.3 FUNDAMENTAL CONCEPTS OF BASIC
BASIC can perform many operations such as adding, subtracting, multiplying, dividing, extracting square roots,
raising a number to a power, and fmding the sine of an angle measured in radians.

1.3.1 Arithmetic Operations
The computer performs its primary function (that of computation) by evaluating formulas similar to those used in
standard mathematical calculation, with the exception th~t all BASIC formulas must be written on a single line.

1-4

Introduction

The following operators can be used to write a formula.

Operator

+
+

*
/
+
**

Example

A+B
+A
A-B
-A
A*B
A/B
Xt2
X**2

Meaning

add B toA
Positive A (unary)
subtract B from A
Negative A
Multiply B by A
divide A by B
fmd X2 1 the symbolst and ** indicate
fmd x2 identical functions.

If we type A + B * C t D, the computer first raises C to the power D, multiplies this result by B, and then adds the
resulting product to A. We must use parentheses to indicate any other order. For example, if it is the product of B
and C that we want raised to the power D, we must write A + (B * C) t D; or if we want to multiply A + B to the
power D, we write (A + B) * C t D. We could add A to B, multiply their sum by C, and raise the product to the
power D by writing «A + B) * C) t D. The order of precedence is summarized in the following rules.

1. The formula inside parentheses is evaluated before the parenthesized quantity is used in computations.
2. Normally two operators cannot be contiguous. However the operators + and - can follow the operators

*, / , **, or t (e.g., *-). In such a case, the + or - takes precedence over its leading *, / ,**, or· + .
Otherwise:

3. In the absence of parentheses in a formula, ** and t take precedence over * and / ,which take pre
cedence over + and -.

4. In the absence of parentheses in a formula whose only operators are * and /, BASIC performs the opera
tions from left to right, in the order that they are read.

5. In the absence of parentheses in a formula whose only operators are + and -, BASIC performs the opera
tions from left to right, in the order that they are read.

The rules tell us that the computer, faced with A - B - C, (as usual) subtracts B from A, and then C from their
difference; faced with A/B/C, it divides A by B, and that quotient by C. Given At B tc, the computer raises the
number A to the power B and takes the resulting number and raises it to the power C. If there is any question about
the precedence, put in more parentheses to eliminate possible ambiguities.

1.3.2 Mathematical Functions
In addition to these five arithmetic operations, BASIC can evaluate certain mathematical functions. These functions
are given special three-letter English names.

Function Interpretation

SIN (X) Find the sine of X
X interpreted as

COS (X) Find the cosine of X
an angle measured

TAN (X) Find the tangent of X
COT (X) Find the cotangent of X

in radians

ATN (X) Find the arctangent of X
EXP (X) Find e raised to the X power (eX)
LOG (X), or LN(X) Find the naturallogari thm of X (log to the base e)

or LOGE(X) X interpreted
ABS (X) Find the absolute value of X (1 X 1) as a
SQR (X) or SQRT(X) Find the square root of X (~ number
CLOG (X) or LOGI0(X) Find the common logarithm of X (log to the base 10)

1-5

Introduction

Other functions are also available in BASIC. They are described in Chapters 5 (INT, RND, SGN, TIM), 7 (NUM,
DET), 8 (string functions), and 10 (LOC, LOF). In place of X, we may substitute any formula or number in paren
theses following any of these functions. For example, we may ask the computer to find .J4'+X3 by writing SQR
(4 + X + 3), or the arctangent of 3X -2eX + 8 by writing ATN (3 * X - 2 * EXP (X) + 8). If the above value of
(~ 17 is needed, the two-line program can be written:

10 PRINT (5/6)~17
;.~O END

and the computer fmds the decimal form of this number and prints it out.

1.3.3 Numbers
A number may be positive or negative and it may contain up to eight digits, but it must be expressed in decimal
form (Le., 2, -3.675, 12345678, -.98765432, and 483.4156). The following are not numbers in BASIC: 14/3 and
SQR(7). The computer can find the decimal expansion of 14/3 or SQR(7), but we may not include either in a list
of DATA. We gain further flexibility by using the letter E, which stands for: times ten to the power. Thus, we
may write .0012345678 as .l2345678E-2 or 12345678E-I0 or 1234.5678E-6. We do not write E7 as a number,
but write IE7 to indicate that it is I that is multiplied by 107.

1.3.4 Variables
A simple (Le., unsubscripted) numeric variable in BASIC is denoted by any letter or by any letter followed by a
single digit. (Refer to Chapter 3 for a discussion of subscripted numeric variables and to Chapter 8 for a disl,;ussion 0

subscripted and unsubscripted string variables.) Thus, the computer interprets B7 as a variable, along with A, X, N5,
10, and 01. A numeric variable in BASIC stands for a number, usually one that is not krlown to the programmer at
the time the program is written. Variables are given or assigned by LET and READ statements. The value so assigned
does not change until the next time a LET or READ statement is encountered with a value for that variable. How
ever, all numeric variables are set equal to 0 before a RUN. Consequently, it is only necessary to assign a value to a
numeric variable when a value other than 0 is required.

Although the computer does little in the way of correcting during computation, it sometimes helps if an absolute
value hasn't been indicated. For example, if you ask for the square root of -7 or the logarithm of -5, the computer
gives the square root of 7 along with an error message stating that you have asked for the square root of a negative
number, or it gives the logarithm of 5 along with the error message that you have asked for the logarithm of a
negative number.

1.3.5 Relational Symbols
Six other mathematical symbols of relation are used inJF-THEN statements where it is necessary to compare values.
An example of the use of these relation symbols was given in the sample program liNEAR.

Any of the following six standard relations may be used:

Symbol Example Meaning

A=B A is equal to B
< A<B A is less than B
<= A<=B A is less than or equal to B
> A>B A is greater than B
>= A>=B A is greater than or equal to B
<> A<>B A is not equal to B

Note that while BASIC outputs its answers with only six places of accuracy, variables and formulas may have values
accurate to more than six places: !fit is desired that result X be checked to only N places, the function

1-6

Introduction

10 INT (X*10-N+.5)/10~N

should be used.

1.4 SUMMARY OF ELEMENTARY BASIC STATEMENTS
Several elementary BASIC statements have been introduced in our discussions. In describing each of these state·
ments, a line is assumed, and brackets are used to denote a general type. For example, [variable] refers to any
variable.

1.4.1 LET Statement
The LET statement is used when computations must be performed. This command is not of algebraic equality, but
a command to the computer to perform the indicated computations and assign the answer to a certain variable.
Each LET statement is of the form:

LET [variable] = [formula]
or

[variable] = [formula]

Generally, several variables may be assigned the same value by a single LET statement. Examples of assigning a value
to a single variable are given in the following two state men ts:

100 LET X=X+1
259 W7=(W-X4-3)*(Z-A/(A-B)-17)

Examples of assigning a value to more than one variable are given in the following statements:

~5() X::::Y~3::::f.l (~5? :1.) :::::1.

9()

104.2 READ and DATA Statements

The variables X, Y3 and A(3,1) are
assigned the value 1.

The variables W and Z are assigned
the value 3X-4X2

READ and DATA statements are used to enter information into the computer. We use a READ statement to assign
to the listed variables those values which are obtained from a DATA statement. Neither statement is used without
the other. If you include a READ statement without a DATA Statement, your program will not run, and you will
receive this message:

?NODATA

If you include the DATA statement without the READ statement, your program will appear to run but the result
of any computation will be O.

A READ statement causes the variables listed in it to be given in order, the next available numbers in the collection
of DATA statements. Before the program is run, the computer takes all of the DATA statements in the order they
appear and creates a large data block. Each time a READ statement is encountered anywhere in the program, the
data block supplies the next available number or numbers. If the data block runs out of data, the program is assumed
to be finished and we get an OUT OF DATA message.

Since we have to read in data before we can work with it, READ statements normally occur near the beginning of
a program. The location of DATA statements is arbitrary, as long as they occur in the correct order. A common
practice is to collect all DATA statements and place them just before the END statement.

1·7

Introduction

Each READ statement is of the form:

READ [sequence of variables]

Each DATA statement is of the form:

DATA [sequence of numbers]

150 READ X~Y?Z?X1~Y2~Q9
330 DATA 4,2,1.7
340 DATA 6.734E-3v-174.321,3.1415927

234 READ B(K)
263 DATA 2~3,5v7v9v11v10?8v6~4

10 READ R(I~J)

440 DATA -3,5v-9,2.37v2.9876~-437.2343-5
450 DATA 2.765y5.5576~2.3789E2

Remember that numbers, not formulas, are put in a DATA statement, and that 15/7 and SQR(3) are formulas.
Refer to Chapter 3 for a discussion of the subscripted variables.

1.4.3 PRINT Statement
The common uses of the PRINT statement are to print

1. the results of some computations,
2. a message included in the program,
3. a combination of 1. and 2.,
4. a blank line.

The following are examples of type 1.:

100 PRINT X,SQR(X)
135 PRINT XvY,Zv B*B-4*A*C, EXP(A-B)

The first example prints X, and a few spaces to the right, the square root of X. The second prints five different
numbers:

2 A-B X,Y,Z,B -4AC, and E

The computer computes the two formulas and prints up to five numbers per line in this format.

The following are examples of type 2.:

100 PRINT "NO UNIQUE SOLUTION"
430 PRINT "X VALUE", "SINE", "RESOLUTION"
500 PRINT X,M,D

line 100 prints the words "NO UNIQUE SOLUTION", and line 430 prints the three labels with spaces between
them. The labels in 430 automatically line up with the three numbers called for in PRINT statement 500.

The following is an example of type 3.:

150 PRINT "THE VALUE OF X IS" X
30 PRINT "THE SQUARE ROOT OF " X "IS· SQR(X)

·1-8

Introduction

If the first has computed the value of X to be 3, it prints out: THE VALUE OF X IS 3. If the second has computed
the value of X to be 625, it prints out: THE SQUARE ROOT OF 625 IS 25.

The following is an example of type 4.:

2~:;() PF~INT

The computer advances the paper one line when it encounters this command.

1.4.4 GO TO Statement
The GO TO statement is used when we want the computer to unconditionally transfer to some statement other
than the next sequential statement. In the LINEAR problem, we direct the computer to go through the same pro
cess for different values ofC and F with a GO TO statement. This statement is in the form of GO TO [line number].

1.4.5 IF - THEN Statement
The IF - THEN statement is used to transfer conditionally from the sequential order of statements according to the
truth of some relation. It is sometimes called a conditional GO TO statement. Each IF - THEN statement is of the
form:

IF [formula] [relation] [formula], THEN [line number]

The comma preceding THEN is optional and can be omitted.

The following are two examples of this statement:

4() IF SIN(X)(=M THEN 80
2() IF G=O ,THEN 65

The first asks if the sine of X is less than or equal to M, and skips to line 80 if so. The second asks if G is equal to
0, and skips to line 65 if so. In each case, if the answer to the question is no, the computer goes to the next line.

1.4.6 ON - GO TO Statement
The IF - THEN statement allows a two-way fork in a program; the ON - GO TO statement allows a many-way
switch. The ON - GO TO statement has the form:

ON [formula] ,GO TO [line number] , [line number] , ... [line number]

The comma preceding the GO TO can be omitted. For example:

80 ON X GO TO 100,200,150

This condition causes the following to occur:

If X = 1, the program goes to line 100,
If X = 2, the program goes to line 200,
If X = 3, the program goes to line 150

In other words, any formula may occur in place' of X, and the instruction may contain any number of line numbers,
as long as it fits on a single line. The value of the formula is computed and its integer part is taken. If this is 1,

1-9

Introduction

the program transfers to the line whose number is first on the list; ifits integer part is 2, the program transfers to
the line whose number is the second one, etc. If the integer part of the formula is below 1, or larger than the num
ber of line numbers listed, an error message is printed. To increase the similarity between the ON - GO TO and IF
- THEN instructions, the instruction

75 IF X>5 THEN 200

may also be written as:

75 IF X>5 GOT a 200

Conversely, THEN may be used in an ON - GO TO statement.

1.4.7 END Statement
Every program must have an END statement, and it must be the statement with the highest line number in the
program.

999 END

1-10

CHAPrER2

LOOPS

We are frequently interested in writing a program in which one or more portions are executed a number of times,
usually with slight variations each time. To write a program in such a way that the portions of the program to be
repeated are written just once, we use loops. A loop is a block of instructions that the computer executes repeated
ly until a specified condition is met.

The use of loops is illustrated and explained by using two versions of a program that performs the simple task of
printing out the positive integers 1 through 100 together with the square root of each. The first version, which does
not use a loop, is 101 statements long and reads

10 PRINT 1vSQR(1)
20 PRINT 2vSQR(2)
30 PRINT 3vSQR(3)

99()
:1.000
:1. () 1 ()

.
PRINT 99vSQR(99)
PRINT 100,SQR(100)
END

The second version, which uses one type of loop, obtains the same results with far fewer instructions (5 instead of
101):

10 I ... ET X::::1
20 PRINT XvSQReX)
30 LET X=X+1
40 IF X<=100 THEN 20
~:.)O END

Statement 10 gives the value of 1 to X and initializes the loop. In line 20, both 1 and its square root are printed.
Then, in line 30, X is increased by 1, to a value of 2. Line 40 asks whether X is less than or equal to 100; an affirma
tive answer directs the computer back to line 20, where it prints 2 andy'2ii"nd goes to 30. Again, X is increased by
1, this time to 3, and at 40 it goes back to 20. This process is repeated -line 20 (print 3 and y'3), line 30 (X = 4),
line 40 (since 4 < 100, go back to line 20), etc. - - until the loop has been traversed 100 times. Then, after it has
printed 100 and its square root, X becomes 101. The computer now receives a negative answer to the question in
line 40 (X is greater than 100, not less than or equal to it), does not return to 20 but moves on to line 50 and
ends the program.

All loops contain four characteristics:

1. initialization (line 10),
2. the body (line 20),
3. modification (line 30), and
4. an exit test (line 40).

2.1 FORANDNEXTSTATEMENTS
BASIC provides two statements to specify a loop; the FOR statement and the NEXT statement.

2-1

LOOPS

10 FOR X=l TO 100
20 PRINT X,SQR(X)
:3 () i\~ I::: X or)(
40 E:ND

In line 10, X is set equal to 1, and a test is executed, like that of line 40 above. Line 30 carries out two tasks: X is
increased by 1, and control transfers back to the test in line 10. There the test is carried out to determine whether
to execute the body of the loop again or to go on to the statement following line 30. Thus, lines 10 and 30 take
the place oflines 10,30, and 40 in the previous program.

Note that the value of X is increased by 1 each time BASIC goes through the loop. If we want a different increase,
e.g., 5, we could specify it by writing the following:

10 FOR X=l TO 100 STE:P 5

and then the value of X on the first time through the loop would be 1, on the second time 6, on the third 11, and
on the last time 96. The step of 5 which would take X beyond 100 to 101 causes control to transfer to line 40,
which ends the program. The STEP may be positive, negative, or zero. We could have caused the original results to
be printed in reverse order by writing line 10 as follows:

10 FOR X=100 TO 1 STE:P -1

In the absence of a STEP instruction, a step-size of + 1 is assumed.

The word BY may be substituted for the word STEP; FOR TO BY and FOR TO STEP statements are completely
equivalent.

More complicated FOR statements are allowed. The initial value, the final value, and the step-size may all be
formulas of any complexity. For example, we could write the following:

10 FOR X=N+7*Z TO (Z-N)/3 BY CN-4*Z)/10

For a positive or zero step-size, the loop continues as long as the control variable is less than or equal to the final
value. For a negative step-size, the loop continues as long as the control variable is greater than or equal to the final
value.

If the initial value is greater than the final value (less than the final value for negative step-size), the body of the
loop is not performed at all, but the computer immediately passes to the statement following the NEXT. The
following program for adding up the first n integers gives the correct result 0 when n is O.

10 F-:EAD N
20 L.ET ~;:::O

30 FOR K=l TO N
40 L.ET S=StK
~::jO NEXT 1-:;
60 PF~INT S
"70 GO TD 10
90 DATA 3,10,0
99 END

In the follOwing description of the instructions used to specify a loop, a line number is assumed and brackets are
used to denote a general type.

2-2

LOOPS

A FOR statement has one of two forms:

FOR lnumeriC]
variable· = [formula] TO [formula] STEP [formula]

or

FOR lnumeric]
variable = [formula] TO [formula] BY [formula]

Most commonly, the expressions are integers and the STEP or BY is omitted. In the latter case a step-size of + 1 is
assumed. The accompanying NEXT statement has one of two forms.

NEXT [variable]

NEXT [variable, variable, ... variable]

The first form contains one variable that must be the same as that following FOR in the FOR statement. The se
cond form of the NEXT statement contains two or more variables separated by commas. These variables must also
match the variables in their accompanying FOR statements.

When the second form of NEXT is used, the variables must be written in the same order as they would be written
in separate NEXT statements. That is, the variable that matches the last FOR statement is first, that which matches
the next-to-Iast FOR is second, and the variable that matches the first FOR statement is last. This causes the loops
to be nested properly (refer to section 2.2). For example:

FOR X FOR X

FORY FORY

FOR Z is equivalent to FORZ

NEXTZ NEXTZ, Y,X

NEXTY

NEXT X

Note that for each FOR statement there is one and only one variable in a NEXT statement, and vice versa. Some
examples of FOR and NEXT statements are:

30 FOR x=o TO 3 STEP D
BO NEXT X

120 FOR X4=(17tCOS(Z»/3 TO 3*SQR(10) BY 1/4
23~) NEXT X4

240 FOR X=8 TO 3 STEP -1
456 FOR J=-3 TO 12 BY 2
!500 NEXT ,J, X

Line 120 specifies that the successive values of X4 are .25 apart, in increasing order. Line 240 specifies that the
successive values of X will be 8, 7, 6, 5,4,3. line 456 specifies that J will take on values -3, -1,1,3,5,7,9, and
11. If the initial, final, or step-size index values are given as formulas, these formulas are evaluated only upon

2-3

LOOPS

entering the FOR statement; therefore, if after this evaluation we change the value of a variable in one of these
formulas, we do not affect the index value.

The control variable can be changed in the body of the loop; it should be noted that the exit test always uses the
latest value of this variable.

The following difficulty can occur with loops, both FOR-NEXT loops and loops explicitly written with LET and IF
statements (as in the example on page 2-1). The calculation of the index values (initial, final, and step-size) is sub
ject to precision limitations inherent in the computer. These values are represented in the computer as binary num
bers. When the values are integer, they can be represented exactly in binary; however, it is not always possible to
represent decimal values exactly in binary when they contain a fractional part. For example, a loop of the form:

40 FOR X=O TO 10 STEP 0.1
(?!:5 NEXT X

executes 100 times instead of 101 times because the internal value for 0.1 is not exactly 0.1. After the hundredth
execution of the loop, X is not exactly equal to 10, it is slightly larger than 10, so the loop stops. Whenever possible,
it is advisable to use indices that have integer values because then the loop will always execute the correct number
of times.

2.2 NESTED LOOPS
Nested loops (loops within loops) can be expressed with FOR and NEXT statements. They must be nested and not
crossed as the following skeleton examples illustrate:

Allowed Allowed Not Allowed

~FORX FOR X ~FORX
[FORY

[fORY

FORY
NEXTY FORZ NEXT X
NEXT X [NEXTZ NEXTY

[FORW
NEXTW
NEXTY

[FORZ
NEXTZ
NEXT X

2-4

CHAPTER 3

LISTS AND TABLES

In addition to the ordinary variables used by BASIC, variables can be used to designate the elements of a list or a
table. Many occasions arise where a list or a table of numbers is used over and over, and, since it is inconvenient to
use a separate variable for each number, BASIC allows the programmer to designate the name of a list or table by a
single letter or a single letter followed by a single digit.

lists are used when we might ordinarily use a single subscript, as in writing the coefficients of a polynomial
(aO' at, a2' ... , ~). Tables are used when a double subscript is to be used, as in writing the elements of a matrix

,(bi,j)' The variables used in BASIC consist of a single letter or a letter and a digit which is the name of the list or
table, followed by the subscript in parentheses. Thus,

A(O), A(1), A(2), ... ,A(n)

represents the coefficients of a polynomial, and

B7(1, 1), B7(1, 2) , ... ,B7(n,n)

represents the elements of a matrix. (Refer to Chapter 8 for a discussion of string variables.)

The single letter or the letter and digit denoting a list or a table name may also be used without confusion to de
note a simple variable. However, the same name may not be used to denote both a list and a table in the same pro
gram because BASIC recognizes a list as a special kind of table having only one column. The form of the subscript
is flexible; A list item B(1 + K) may be used, or a table item Q(A(3,7), B-C) may be used. The value of the sub
script must not be less than zero.

We can enter the list A(O), A(1), ... , A(10) into a program by the following lines:

10 FOR 1=0 TO 10
20 READ A(I)
;30 j\IEXT I

3.1 THE DIMENSION STATEMENT (DIM)
BASIC automatically reserves room for any list or table with subscripts of 10 or fewer. However, if we want larger
subscripts, we must use a DIM statement. This statement indicates to the computer that the specified space is to be
allowed for the list or table. DIM can also be written as DIMENSION. For example, the instruction

10 DIM A(15)

reserves 16 spaces for list A (A(O), A(1), A(2), ... ,A(15). The instruction

20 DIMENSION Y5(10,15)

3-1

Lists and Tables

reserves 176 spaces for matrix Y5 (10 + 1 rows * 15 + 1 columns). Space may be reserved for more than one list
and/or table with a single DIM statement by separating the entries with commas, as shown in the following example:

NOTE

The numbering of subscripts begins with zero.

A DIM (or DIMENSION) statement is not executed; therefore, it may appear on any line before the END state
ment. However, the best place to put it is at the beginning so that it is not forgotten. If we enter a table with a sub
script greater than 10, without a DIM statement, BASIC gives an error message, telling us that we have a subscript
error. This condition can be rectified by entering a DIM statement with a line number less than the line number of
the END statement.

A DIM (or DIMENSION) statement is normally used to reserve additional space, but in a long program that re
quires many small tables, it may be used to reserve less space for tables in order to have more space for the program.
When in doubt, declare a larger dimension than you expect to use, but not one so large that there is no room for
the program. For example, if we want a list of 15 numbers entered, we may write the following:

10 DIM A(25)
20 1:~EI~;I:O N
30 FOR 1=1 TO N
40 READ A(I)
~)(i NEXT I
60 DI{i·r (.:1 :I. ~:.)

70 DATA 2y3,5y7,11y131,17,19,23,29,31,37y41,43,47

Statements 20 and 60 could have been eliminated by writing 30 as FOR I = 1 TO 15 but the program as typed
allows for the lengthening of the list by changing only statement 60, as long as the list does not exceed 25 and there
is sufficient data.

We could enter a 3-by-5 table into a program by writing the following~

60
." ~)

I""'" cH)

FOF:: 1::::1 TD ~::'

FOF: ... J:::::I. TO ~::i

F:Er::ID :t~~.~ (I , ,.1)
NEXT ,..I
NEX·r I
1) P-. or "~'I ::.~!/:3!1 ~:.i !J •••• 9 !I :~~

D(.)TI~ 4,····:-;-·,3:,4,··-2
D(.:lT(.:1 4,3,····3,~:),7

Again, we may enter a table with no DIM (or DIMENSION) statement; BASIC then handles all the entries from
B(O,O) to B(10,10).

3.2 EXAMPLE
Below are the statements and run of a program which uses both a list and a table. The program computes the total
sales of five salesmen, all of whom sell the same three products. The list, P, gives the price per item of the three
products and the table, S, tells how many items of each product each man sold. Product 1 sells for $1.25 per item,
product 2, for $4.30 per item, and product 3, for $2.50 per item; also, salesman 1 sold 40 items of the first pro
duct, 10 of the second, 35 of the third, and so on. The program reads in the price list in lines 40 through 80, using
data in lines 910 through 930. The same program could be used again, modifying only line 900 if the prices change,
and only lines 910 through 930 to enter the sales in another month. This sample program does not need a DIM

3-2

Lists and Tables

statement, because the computer automatically reserves enough space to allow all subscripts to run from 0 to 10.

NOTE

Since spaces are ignored, statements may be indented for
visual identity of the various loops within the program.

10 FClI:~ I:::::I. TO 3
20 READ PCI)
;30 NEXT I
40 FOI:~ I::::1 TO :'5
50 FOR J=l TO 5
f.,() I:~EAD SCI? J)
70 NE}(Y' ,.)
ElO NEXT I
('rO FOI:~ ~J:::':I. TO ~:;

:1.00 I...ET ~:;::::O

:1.:1.0 FOR I=:I. TO 3
120 I...ET S=StPCI)*SCIvJ)
:1. ~50 NEXT I
:1.40 PRINT "TOTAl... SAI...ES FOR SAI...ESMAN"J?"$"S
:1. ~.)() NEXT ,.)
900 DATA 1.25?4.30?2.50
910 DATA 40v20v37v29v42
920 DATA 10,16,3,21v8
930 DATA 35v47?29,16,33
99<y END

:L:I. t () '7

TDTAI... ~lAI...E~:i FDR SAI...E~:iMI~N
TOT(.~I... SI~I...E!3 FClF~ SALESMAN
TOTAl... BAI...ES FClFi: ~:; A 1... E,~:) M (.~l N
TOTAL. !:iAI ... E!:) FOI:~ Sj~I...ESM(.~N

TOTAl... Sf.1L..ES FOI:~ S(.1I...E!:li'ir.1N
r:r:MI::: : () <. 20 !:'EC!3.

3.3 SUMMARY

:1. ~:;""c)C"j'·"·7!.:'.;

:I. ~I; :l.f:!().~::;

:~~ !Ii ::~:I.:I..>3

::~; !I; :1.3:1. <. (.:.~:.'i

4 ~I; 1 (~) c) -> ~!.:.i ~:5

~.'.'j ',Ii :1.69.,4

Because the number of simple variable names is limited, BASIC allows a programmer to use lists and tables to in
crease the number of problems that can be programmed easily and concisely. A single letter or a single letter follow
ed by a single digit is used for the name of the list or table, and the subscript that follows is enclosed in parentheses.
A subscript may be a number or any legal expression.

lists and tables are called subscripted variables, and simple variables are called unsubscripted variables. Usually, you
can use a subscripted variable anywhere that you use an unsubscripted variable. However, the variable mentioned
immediately after FOR in the FOR statement and after NEXT in the NEXT statement must be an unsubscripted
variable. The initial, terminal and step values may be any legal expression.

3-3

Lists and Tables

To enter a list or a table with a subscript greater than 10, a DIM statement, which has DIMENSION as an alternate
form, is used to retain sufficient space, as in the following examples:

20 DIMENSION H(35)
35 DIM Q8(5~25)

The first example enables us to enter list H with 36 items (H(O), H(1), ... ,H(35». The second reserves space
for a table of 156 items (5 + 1 rows * 25 + 1 columns).

34

CHAPTER 4

HOW TO RUN BASIC

Now that you have learned how to write a simple BASIC program, your next step is to learn how to gain access to
the BASIC interpreter. By using the computer terminal, you can solve your problem by interacting with BASIC.
But first, you must satisfy certain requirements to communicate with the system. These steps are fully explained in
the manual GETTING STARTED WITH THE DECSYSTEM-20.

4.1 GAINING ACCESS TO BASIC
After arriving at a terminal, follow three steps to enter BASIC:

1. Contact the DECsystem-20 computer,
2. Complete the LOGIN procedure, and
3. Access BASIC.

4.1.1 Contacting the DECsystem-20 Computer
In order to contact the DECsystem-20, the terminal must be connected to the system in one of two ways:

1. Directly - using a cable that leads from the terminal to the computer, or
2. Indirectly - using the telephone system to link the terminal to the computer.

With a direct connection, all you need to know is how to tum the computer to an on-line position. However, with
an indirect connection, you need to obtain instructions from the operations staff at your particular installation.
The procedure for using a telephone system connection differs from one installation to another. The easiest and
quickest way to find out how to use the terminal is to have someone give you a demonstration.

4.1.2 Identifying Yourself to the System
Before you can "LOGIN" to the system, you need to obtain three items from the computer administration staff.
These items are

I. Your user name,
2. Your password, and
3. Your account number.

These three items uniquely identify you to the system so that you can receive storage space and be charged appro
pria tely for the use of the computer.

Once you have the terminal turned on, press the key labeled CTRL and, at the same time, type a "C. This process
is called typing a CTRL/C and is printed as "C on the terminal. After you type a "C, the system responds with
an identification message and then prints an at sign (@) character on the next line.

V 1.02.34, S~stem 555, 24-0CT-75. EXEC 0.55
HI

The @ is a prompt character telling you that the system is ready for you to type any valid system command.

Now after the @ appears, do the following:

1. Type the letters LOG and press the ESCape key (labeled ESC). The computer responds by printing
IN (USER).

4-1

How to Run BASIC

2. Type your user name and press the ESC key. The computer responds by printing (PASSWORD). The ex
ample is for the user MASELLA.

@LOGIN (USER) MASELLA (PASSWORD)

3. Now type your password and press the ESC key. (Since your password is a secret, it does not appear on
your terminal.) After you press the ESC key, the computer responds with (ACCOVNT#).

@LOGIN (USER) MASELLA (PASSWORD) «(~lCCDUNT :11:)

4. Finally, type your account number and press the RETURN key.

@LOGIN (USER) MASELLA (PASSWORD) (i~lCC()UNT :11:) :I. 040G..J

If your name, password, and account number are valid, the system types a message similar to the one below:

JOB 18 ON TTY31 10-NOV-75 12:01
Ii)

The following example shows the entire LOGIN process. Underlining indicates the words you type as opposed to
the words the computer prints. Since the ESC and RETURN keys do not print a character on the terminal, a dollar
sign ($) indicates where you press the ESC key, and a curved arrow (..J) indicates where you press the RETURN
key.

V 1.02.34, Ssstem 555v 24-0CT-75. EXEC 0.55
(~I... DO I N $ (Uf:lEF~) M(.~~:)f::l... L I~ $ (PASSWOI=<:D) .1. (ACe; DUNT :11:) 1040() ..J
JO'B 1:1. ON TTY:3:1. :I.O···NOV····?!:) :I.O::L?

(;-)

At this point you are ready to access BASIC.

4.1.3 Accessing BASIC
When the DECsystem-20 is ready to accept commands, the system responds with an at sign (@). When you see the
@ on your terminal, type the word BASIC and press the RETURN key .

. This action clears the memory area and establishes contact with the BASIC interpreter. When BASIC is ready to
accept cornman ds, it prin ts

READYy FOR HELP TYPE HELP.

NOll

In some cases, the system automatically executes the
BASIC command for the user. If READY, FOR HELP
TYPE HELP appears immediately after the LOGIN
procedure, this option has been enacted.

After this message appears, you can type any acceptable BASIC command or statement and start inputting your
program. If you need to refresh your memory, you can type

HEI...P./

4-2

How to Run BASIC

and a list of commands and statements acceptable to BASIC will be printed on the tenninal. You may not, how·
ever, use any of the system commands while in BASIC mode.

If you are going to create a new program type

BASIC responds with the following:

NEt..1 FILE N(~ME········

Type the name of your program and press the RETURN key. Basic responds with READY and you can start in·
putting your program.

If you want to work, work a previously created program that you have saved on a storage device, type

DLD ./

BASIC then asks for the name of the old program, as follows:

DLD FILE N(~ME······-

Respond by typing the name of the old file. If your old file is stored on a device other than disk, you must type the
device name as in the following example:

MTA:I.: TEST + BA!:)./

BASIC retrieves the file and replaces the current contents of memory with the file TEST.BAS. You need not
specify disk as the device since this is the default.

Device names are as follows:

DSK
TTY
TTYO through TTY I 77
LPT
MTAO through MTA7
CRD
SYS
BAS

disk
your terminal
tenninals 0 through 177
line prin ter
magnetic tapes 0 through 7
card reader
system device
library where an installation can store BASIC programs for all BASIC
users.

Some installations may not have all the devices listed here. If you specify a device that does not exist or that is not
available for your use, BASIC prints an error message to that effect. If the device you specify with the OLD com·
mand can only do output, you will also receive a message from BASIC.

Program names, once entered into the computer, are referred to as filenames. These names can be from one to six
characters made up of letters, digits, or a combination of both. In addi tion to the filename, you can also specify
a type. The type follows the name of the file and is separated by a period. The type can be from one to three char·
acters made up of letters, digits, or both.

If you recall an old program from storage, you must be the exact same name and type you assigned to it when it
was saved.

4-3

How To Run BASIC

You can also type your filename and device on the same line as the NEW or OLD command. In this case, BASIC
does not request the filename again. For example, if you type

NEW TEST..}

BASIC responds with

!="EJ~DY

If you specify a filename without a type, the type BAS is assumed; it is illegal to specify a type without specifying
a filename. If you do not specify a filename, type, or device, BASIC creates your file on disk and names the file
for you.

NONAME.BAS

4.2 ENlERING THE PROGRAM
After you type your filename, BASIC responds with

Now you can begin to type your program. The format of each line is:

line number statement ..J

Make sure that each line begins with a line number containing one to five digits, with no spaces and no nondigit
characters. Also be sure to start each new line at the beginning of the terminal line and press the RETURN key upon
completion of each line.

If, in the process of typing a line, you make a typing error and notice it before you terminate the line, you can
correct it by pressing the RUBOUT key (or DELETE key on some terminals) once for each character to be erased,
going from right to left until the character in error is erased. Then continue typing, beginning by correcting the
character in error. The following is an example of this process:

10 PRNITT\I\N\INT 2,3

NOTE

The RUBOUT (or DELETE) key prints a backslash (\).
When you press the DELETE key, the system prints the
character you deleted, then a backslash (\).

4.3 EXECUTING THE PROGRAM
After typing the complete program (do not forget to end with an END statement), type

BASIC prints the name of the program, the time of day, and the current date. This output is called the header.
BASIC then analyzes the program. If you type

FWNNH..}

the header is not printed. (NH stands for No header.)

44

How to Run BASIC

If the program can be run, BASIC executes it and prints any results requested by PRINT statements. The printing
of results does not guarantee that the program is correct (the results could be wrong), but it does indicate that no
grammatical errors exist (L e., missing line numbers, misspelled words, illegal syntax). If errors of this type do exist,
BASIC prints a message (or several messages) naming the errors. A list of diagnostic messages with their meanings
is given in Appendix B.

4.4 CORRECTING THE PROGRAM
If you receive an error message informing you, for example, that line 60 is in error, you can correct the line by
typing it again correctly. BASIC automatically replaces the old line 60 with the new line 60. If you wish to to eli·
minate line 110, for example, from your program, simply type the line number and the RETURN key.

1.1.0...J

If you want to insert a statement between two lines such as lines 60 and 70, type a line beginning with a number
between 60 and 70 (Le., 61,65,69).

4.5 INTERRUPTING EXECUTION
If the results BASIC is printing seem to be incorrect, you may want to

1. suppress print out, or
2. stop execution.

To suppress print out, type CTRL/O, AO (hold down the CTRL key and type 0). The program continues to run
but the results are not printed on the terminal.

To stop program execution, type CTRL/C twice. (ACAC). This action halts program execution, closes any files
that are open in the program (refer to Chapter 10), and returns you to BASIC command level.

BASIC responds with

F~E,!:)DY

At this point, you can modify your program, start from scratch, or bring in an OLD program.

4.5.1 Returning to System Command Level
If you wish to leave BASIC and return to system command level, type

MON I TOR ...J

The system responds with an at sign () and waits for you to type a system command. If you know you are going
to return to BASIC after working at system command level, be sure you do not issue a system command that will
change or destroy what you have in memory (Le., the PLEASE command destroys memory).

When you decide to return to BASIC mode, type one of the following commands:

1. START,
2. REENTER, or
3. CONTINUE.

BASIC responds with

F~E(.:IDY

and you can continue working in BASIC. If memory is destroyed, type the word BASIC to reenter BASIC mode.

4·5

How to Run BASIC

4.6 LEAVING mE COMPUTER
When you wish to leave the computer, type

The system responds by logging you off the system completely.

JOB llv USER [4,521J LOGGED OFF TTY31
FWNT I ME 4. ~:;2 SI:::C

10::~O :I.O····N()V····"?:S

4.7 EXAMPLE OF A BASIC RUN
The following is a simple example of the use of BASIC under a timesharing system:

V 1.02.32v Swstem 555v 15-()CT-"?5. EXEC 0.51
@LOGIN (USER) MASELLA (PASSWORD) (ACCOUNT') 10400

JOB 18 ON TTY31 17-0CT-75 08:31
mI-MSIC

READYv FOR HELP TYPE HELP.

NEW
NEW FILE NAME--SAMPLE

READY

10
:1.5
20
"')1::'
.,; J

RUN

SAMPLE

:I.

2

';;'or~ N:::: 1. TO 7
PRINT
PRINT Nv SemCN)
PRINT
NEXT N
PI:;:INT
pr~ I NT II DONE •
PI;~INT

END

:I.

:1..4:1.421

:l.7···0CT····75

4·6

System Information
LOGIN Procedure
Password is not Printed
System Response
Accessing BASIC

BASIC Command Level

Creating a New File
BASIC asks for filename

Ready to Receive
Statements

Typing the Program

Running the Program

How To Run BASIC

3

4 '1 ".

5

6

7

nONE

TINE:

I~EAI)Y

BYE
JOB 18v USER [4,521J LOGGED OFF TTY31
RUNTIME 1.99 !3EC

4.8 ERRORS AND DEBUGGING

Program executes properly.

Logging off the system

()B:~3 :I. ?····OCT···7r:'j

Occasionally, the first run of a new program is free of errors and gives the correct answers. But, more commonly,
errors are present and have to be corrected. Errors are of two types:

1. Grammatical errors - errors of form which prevent the running of the program, and
2. Logical errors - errors in logic which produce wrong answers or no answers at all.

A grammatical error causes BASIC to print messages describing the mistake. These messages are listed and explained
in Appendix B. Logical errors are more difficult to uncover, particularly when the program gives answers which
seem to be correct. In either case, after the errors are discovered, they can be corrected by changing lines, inserting
lines, or by deleting lines from the program.

As indicated previously, you can change a line by typing it correctly with the same line number; you can insert a
line by typing it with a line number between those of two existing lines; you can delete a line by typing its line num·
ber and pressing the RETURN key. Note that you can insert a line only if the original lines are not consecutive in
tegers. For this reason, you should begin by using line numbers that are multiples of five or ten.

These corrections can be made either before or after a run. Since BASIC sorts out lines and arranges them in nu
merical order, a line can be retyped out of sequence. Simply retype the offending line with its original line number.

4.8.1 Example of Finding and Correcting Errors
We can best illustrate the process of fmding and correcting errors in a program by showing you an example. We are
going to write a program to do two things:

4-7

How to Run BASIC

1. Find the value of X between 0 and 3 for which the sine of X is the maximum.
2. Print each value of X and the value of its sine.

Since we already know the correct value is n/2, we want the program to test successive values of X from 0 to 3,
first using intervals of .1, then .01, and finally .001. Thus, we ask the computer to find the sine of 0, .1, .2, .3, ... ,
of2.8, 2.9, and 3, and to determine which of these 31 values is the largest. It does so by testing the SIN(O) and
SIN (.1) to see which is larger, and calling the larger of these two numbers M. The program then compares M and
the SIN (.2) and calls the larger M. This new value of M is then compared to SIN (.3). Each time a larger value of M
is found, the computer stores the corresponding value of X into XO.

When this loop is complete, M will have been assigned to the largest value. The program then repeats the search,
this time checking the 301 numbers 0, .01, .02, .03, ... ,2.98,2.99 and 3, finding the sine of each, and checking
to see which has the largest sine.

At the end of the three searches, we want the computer to print

1. the value of XO which has the largest sine,
2. the sine of that number, and
3. the interval of search (.1, .01, or .001).

Before going to the terminal, we write the following program:

10 READD
20 LET XO = 0
30 FOR X = 0 TO 3 STEP D
40 IF SIN (X) < = M THEN 100
50 LETXO= X
60 LET M = SIN (XO)
70 PRINT XO, X, D
80 NEXTXO
90 GOTO 20

100 DATA .1, .01, .001
110 END

The follOwing is a list of the entire sequence with explanatory comments on the right side:

NEW MAXSIN

I;:EADY
10
20
:~o

40
50
l!O
'70
80
90
20
100
:1.:1.0

F;:EAD D
LWF~ XO=::O
FOR X=O TO 3 STEP D
IF SINE\E\(X>(=M THEN 100
LET XO:==X
LET M::::SIN(X)
PI:nNT XD,X~:O

NEXT T\T\XO
GD TD 20
LET XO::::O
DATA .1,.01,.001
END

4-8

Note the use of the RUBOUT key
(echoes as a \) to erase a character in
line 40 (which should have started
IF SIN (X), etc.) and in line 80.

We discover that LET was mistyped in
line 20, and we correct it after 90.

How to Run BASIC

FWN

:1. f.l DCT '7!::;

'f ILLEGAL 1..)AF~Ir-1BLE IN LINE '70
"'!~ NEXT

.? FClF;:

TIMEt

70
40
ElO
FWN

o. :1.

0.2
o • ~~
0.4
o. '·'c

I~:UN

~JITHOI..JT FDF~ IN LINE no

WITHOUT NEx"r IN LINE ~5()

PI:;:INT X()~X?D

IF SIN(X){=M THEN 80
NEXT X

15t36 16-0CT-75

0.1 0.1
0.2 0.1
0.3 0.1
0.4 0.1

O. :1.

:1. 6 ClCT '?!~j

? UNDEFINED LINE NUMBER 20 IN LINE 90

TII"!E:

4-9

After receiving the first error message,
we inspect line 70 and find that we
used XO for a variable instead of XO.
The next two error messages relate to
lines 30 and 80 having mixed variables.
These are corrected by changing line 80.

Both of these changes are made by
retyping lines 70 and 80. In looking
over the program, we also discover that
the IF - THEN statement in 40 directed
the compllter to a DATA statement and
not to line 80 where it should go. This
is obviously incorrect. We are having
every value of X printed, so we direct
the machine to cease operations by
typing fC twice even while it is running.
We notice that SIN(O) is compared with
M on the first time through the loop,
but we had assigned a value to XO but
not to M. However, we recall that all
variables are set equal to zero before a
RUN; therefore, line 20 is unnecessary.

Line 90, of course, sent us back to line
20 to repeat the operation and not back
to line 10 to pick up a new value for D.
We retype line 90 and then type RUN
again.

We are about to print out the same
table as before. Each time that it goes
through the loop, it is printing out XO,
the current value of X, and the interval
size.

90 GDTD :1.0
I:~UN

jviAXElIN

() • :1.
() (0 ::.~

0.3
0.4
() • !~j

'70
B~:.:j

O.B

() • :1.
" '") U

o ~:3
0.4
O. !:5

0.:1.

PI:~INT XO,M,D

How to Run BASIC

:1. (!';ooooDCT ?~5

o. :1.

0.:1.
0.:1.
O. :I.

PRINNT "X VALUE","SIN"?RESOLUTIoN"
FWN

:1. 6 OCT '7~5

? INITIAL PART OF STATEMENT NEITHER
MATCHES A STATEMENT KEYWORD NOR HAS
A FORM LEGAL FOR AN IMPLIED LET--CHECK
FOR MISSPELLING IN LINE 5

TIME: 0.04 SECS.

READY
L-:"
•• J PRINT "X VA;UE","SIN"vRESOLUTION
I:;: UN

MAX!:>IN :1. (,)·_·OCT ?!::j

? ILLEGAL VARIABLE IN LINE 5

TIME: 0.03 SECS.

We rectify this condition by moving tht
PRINT statement outside the loop.
Typing 70 deletes that line, and line 85
is outside of the loop. We also realize
that we want M printed, not X. We
also decide to put in headings for the
columns by a PRINT statement.

There is an error in our PRINT state
ment: no left quotation mark for the
third item.

REA [I Y Retype line 5, with all of the required
5 PI:~:r NT II X IJf.IUJE"," SIN II , II 1:~EE;oLUT I ON" quotation marks.

RUN

MAXf:HN 16--C)CT ?~5

4-10

How to Run BASIC

X VAI ... LJE
1.6
1 • ~.)7
1.~:)71

SIN
O. 999~5"?4
:1 .•
:1 .•

? OUT OF DATA IN L.INE 10

TIME: 0.28 SEeS.

HEt~DY

L.IGT

MAXSIN

I:~ESDL.LJT ION
() • :1.
0.0:1.
O.()O:I.

:1. I.> ···DCT 7~:)

5 PRINT "X VAL.LJE"~"SIN","REGOL.LJTIDN"
1 0 F~EAD D
30 FDH X=O TO 3 STEP D
40 IF SIN(X)(=M THEN 80
~.)O L.ET)<O::::X
60 L.ET M=SIN(X)
80 NEXT X
85 PHINT XO,MvD
90 GOTD :1.0
100 DATA .1v.Olv.OOl
:I. :1. () END

1:~Er.IDY

!3AVE

These are the desired results. Of the 31
numbers (0,.1,.2,.3, ... ,2.8,2.9,3),
it is 1.6 which has the largest sine,
namely .999574; this is true for finer
subdivisions.

Having changed so many parts of the
program, we ask for a list of the cor
rected program.

The program is saved for later use.

A PRINT statement could have been inserted to check on the machine computations. For example, ifM were
checked, we could have inserted 65 PRINT M, and seen the values.

4-11

5.1 FUNCTIONS

CHAPTERS

FUNCTIONS AND SUBROUTINES

Occasionally, you may wan t to calculate a function, for example, the square of a number. Instead of writing a small
program to calculate this function, BASIC provides functions as part of the language, some of which are described
in Chapter 1. The remaining functions are described here, in Chapter 7, and in Chapters 8 and 10.

The desired function is called by a three-letter name. The value to be used is expressed explicitly or implicitly in
parentheses and follows the function name. The expression enclosed in parentheses is the argument of the function,
and it is evaluated and used as indicated by the f",nction name. For example:

15 LET B=SQR(4+X~3)

indicates that the expression (4 + X + 3) is to be evaluated and then the square root taken.

5.1.1 The Integer Function (INT)
The INT function appears in algebraic notation as [X] and returns the greatest integer of X that is less than or equal
to X. For example:

INT (2.35) = 2
INT (-2.35) =-3
INT (12) = 12

One use of this function is to ,ound numbers to the nearest integer by asking for INT (X + .5). For example:

INT (2.9 + .5) = INT (3.4) = 3

rounds 2.9 to 3. Another use is to round to any specific number of decimal places. For example:

INT (X * 10 + 2 + .5) / 10 + 2

rounds X correct to two decimal places and

INT(X * 10 + D + .5) /10 + D

rounds X correct to D decimal places.

5.1.2 The Random Number Generator Function (RND)
The RND function produces random numbers between 0 and 1. This function is used to simulate events that happen
in a somewhat random way. RND does not need an argument.

If we want the first 20 random numbers, we can write the following program and get 20 six-digit decimals.

5-1

Functions and Subroutines

LISTNH
10 FOR 1...=1 TO 20
20 PRINT RND,
:30 NEXT I...
40 Ei',ID

F:l..IN

o. /c)//4c)
0.644913
). /'.;:;/~!.:l.E····;':'>

0·;· ?::?'.?) 0 1
o • :3 ::.) :,:.~ ::.~ 6 3

TIME: 0.:1.9 SEeS.

:I. ~.;.:; [I CT····.? ~;.;.i

NOTE

This is a sample run of random numbers. The format of the
PRINT statemen t is discussed in Chapter 6.

:I. ,,:;····DCT····.?~.;5

0<.:':'>:1./[:')'3

TIME: 0.20 SEeS.

A second RUN gives exactly the same random numbers as the first RUN; this is done to facilitate the debugging of
programs. If we want 20 random one-digit integers, we can change line 20 to read as follows:

20 PRINT INT (lO*RND),

F:UN

5-2

Functions and Subroutines

We obtain the following:

F;: tll'.l D CJ l'/i :I. ~.:.:.i •••• Cl CT···· '.:.:.' ~.:.:;

2 t. '''. (? l:} \ . .' .\':.
.'" :1. :I. 0 l:~ /

I~\ (? 6 D (?
\ .. '

0 ::3 ":J
./ 1 ,-

TIME ., () :1."7 ~:) I:: c; ~:) • • •

F~E:I~DY

To vary the type of random numbers (20 random numbers ranging from 1 to 9, inclusive), change line 20 as follows:

20 PRINT INTC9*RNDt:l.);
F~l.JN

,.,
,'::.

.. ~
.'

TIME:: 0.:1.2 SE:CS.

")
,-:..

r,
,.::. :I.

:I. ~5""ClCT)'~:.:j

I::'
• •• J

To obtain random numbers which are integers from 5 to 24, inclusive, change line 20 to the following:

20 PRINT INT(20*RND+5);
F;:UN

:1.:1. t 2::.:;

lB :I. () :::.~4

19 7

TIME: 0.:1.2 SEeS.

:I.'.:.:.; Cl CT···· / !::;

1·4 1/ 1H 2:1. I::' ,.'

.....
I:: .

1:1.

If random numbers are to be chosen from the A integers of which B is the smallest, call for INT (A *RNDtB).

5.1.3 The RANDOMIZE Statement
As noted when we ran the first program of this chapter twice, we got the same numbers in the same order each
time. However, we get a different set with the RANDOMIZE statemen t, as in the following program:

5·3

I;:' . .}
:1.0

F:(lNDOi4 I :ZE
F'DF: /...:::::t. TO

Functions and Subroutines

20 PRINT INT(:l.O*RND)P
::)0 NEXT I...
40 END
Fi:UN

'7
i

F:Et",DY'
F:UN

1 4 '7 -<1 4

0.,12 GECf:;.

1

:I. ~:5""DCT)'~5

l'5····0CT····?~:5

n
Cl

'7
"

() ::.::: o :.:~

I::" . .}

() ()

RANDOMIZE (RANDOM) resets the numbers in a random way. For example, if this is the first instruction in a
program using random numbers, then repeated RUNs of the program produce different results. If the instruction is
absent, then the official list of random numbers is obtained in the usual order. It is suggested that a simulated
model should be debugged without this instruction so that one always obtains the same random numbers in test
runs. After the program is debugged, and before starting production runs, you insert the following:

10 F~,~NDOM

5.1.4 The Sign Function (SGN)
The SGN function assigns the value 1 to any positive number, 0 to zero, and -1 to any negative number. Thus,
SGN (7.23) = 1, SGN (0) = 0, and SGN (- .2387) = -1. For example, the following statement:

50 ON SGN(X)+2 GO TO :t.OOv200v300

transfers to 100 if X < 0, to 200 if X = 0, and to 300 if X > o.

5.1.5 The Time Function (TIM)
The TIM function returns the elapsed execution time, in seconds, of a program from the beginning of execution.
This time does not include compile and load time when a single program is run. However, when programs are
chained together (refer to 6.6 for a deSCription of chaining), TIM returns the total elapsed execution time since the
start of execution of the first program plus the compile, load and execution times of each subsequent program.
The TIM function does not accept an argument. For example:

5-4

Functions and Subroutines

10 READ A? Bv C

115 IF TIM - 16 THEN 150

:1.~:'jO END

5.1.6 The Define User Function (DEF) and Function End Statement (FNEND)
In addition to the functions BASIC provides, you may define up to 26 functions of your own with the DEF state
ment. The name of the defined function must be three letters, the first two of which are FN, e.g., FNA, FNB, ... ,
FNZ. Each DEF statement introduces a single function. For example, if you repeatedly use the function e-X2 + 5,
introduce the function by the following:

30 DEF FNEeX)=EXpe-X-2)t5

and call for various values of the function by FNE (.1), FNE (3.45), FNE (A+2), etc. This statement saves a great
deal of time when you need values of the function for a number of different values of the variable.

The DEF statement may occur anywhere in the program, and the expression to the right of the equal sign may be
any formula that fits on one line. It may include any combination of other functions, such as those defined by
different DEF statements; it also can involve other variables besides those denoting the argument of the function.

As in the following example each defined function may have zero, one, two, or more numeric variables; string
variables (refer to Chapter 8) are not allowed:

10 DEF FNBeX,Y)=3*X*Y-Y-3
105 DEF FNCeX,YvZvW)=FNB(X,Y)/FNB(Z,W)
~30 DEF FNA=3.1416*R-2

In the definition of FNA, the current value of R is used when FNA occurs. Similarly, if FNR is defmed by the
following:

70 DEF FNReX)=SQRe2tLOG(X)-EXPCY*Z):(XtSIN(2*Z»)

you can ask for FNR(2.7), and give new values to Y and Z before the next use of FNR.

The method of having multiple line DEFs is illustrated by the function shown below. Using this method, the possi
bility of using IF ... THEN as part of the definition is a great help as shown in the follOwing example:

10 DEF FNM(X,Y)
20 LET FNM=X
30 IF Y(=X THEN 50
40 LET FNM=Y
50 FNEND

The absence of the equal sign (=) in line 10 indicates that this is a multiple line DEF. In line 50, FNEND terminates
the definition. The expression FNM, without an argument, serves as a temporary variable for the computation of
the function value. The following example defines N-factorial:

5-5

Functions and Subroutines

10 DEF FNF(N)
20 LET FNF=1
30 FOR K=l TO N
40 LET FNF=K*FNF
:=:jO NEXT K
60 END

Any variable which is not an argument of FN _ in a DEF loop has its current value in the program. Multiple line
DEFs may not be nested and there must not be a transfer from inside the DEF to outside its range, or vice versa.
GOSUB and RETURN statements (refer to Section 5.2) are not ailowed in multiple line DEFs.

5.2 SUBROUTINES
When you have a procedure that is to be followed in several places in your program, the procedure may be written
as a subroutine. A subroutine is a self-contained program which is incorporated into the main program at specified
points. A subroutine differs from other control techniques in that the computer remembers where it was before it
entered the subroutine, and it returns to the appropriate place in the main program after executing the subroutine.

5.2.1 GOSUB and RETURN Statements
Two statements, GOSUB and RETURN, are required with subroutines. The subroutine is entered with a GOSUB
statement which can appear at any place in the main program except within a multiple line DEF. The GOSUB
statement is similar to a GO TO statement; however, with a GOSUB statement, the computer remembers where it
was prior to the transfer. Following is an example of the GOSUB statement:

9() G()SUB 2:1.()

where 210 is the line number of the first statement in the subroutine. The last line in the subroutine is a RETURN
statement which directs the computer to the statement following the GOSUB from which it transferred. For
example:

:3!:'j() f~ETUF~N

returns to the next highest line number greater than the GOSUB call at line number 90.

Care should be taken to make certain that the computer enters a subroutine only through a GOSUB statement and
exits via a RETURN statement.

5.2.2 Example
A program for determining the greatest common divisor (GCD) of three integers, using the Euclidean Algorithm,
illustrates the use of a subroutine. The first two numbers are selected in lines 30 and 40, and their GCD is deter
mined in the subroutine, lines 200 through 310. The GCD just found is called X in line 60; the third number is
called Y, in line 70; and the subroutine is entered from line 80 to find the GCD of these two numbers. This number
is, of course, the greatest common divisor of the three given numbers and is printed out with them in line 90.

A GOSUB inside a subroutine to perform another subroutine is called a nested GOSUB. It is necessary to exit from
a subroutine only with a RETURN statement. You may have several RETURNs in the subroutine, as long as exactly
one of them will be used.

5-6

Functions and Subroutines

GCD~5NO :1. ?····ClCT····7~)

10 PRINT "A","B",·C","GCD"
20 READ A,B,C
~30 LET X::::A
40 I ... ET Y::::B
50 GOSUB 200
60 LET X::::G
70 LET Y::=C
80 GClSUB 200
90 PRINT A,B,C,G
:1.00 GO TO 20
110 DATA 60,90,120
120 DATA 38456,64872,98765
130 DATA 32,384,72
200 LET Q=INT(X/Y)
210 LET R=X-Q*Y
220 IF R=O THEN 300
230 LET X=Y
240 LET Y=R
250 GO TO 200
300 LET G=Y
310 RETURN
320 END

RUN

GCn:3NO 09:03 1. 7····0CT··-75

A B C GCD
6() 90 1.20 :3()
3B4!:56 t>4872 9876!5 :r.
-.1",)
.... 1.· .. :304 ?2 8

1 OUT OF DATA IN LINE 2()

TIME: 0.27 SEeS.

5-7

CHAPTER 6

MORE SOPHISTICATED TECHNIQUES

The preceding chapters have covered the essential elements of BASIC. At this point, you are in a position to write
BASIC programs and to input these programs to the computer via your terminal. The commands and techniques
discussed so far are sufficient for most programs. This chapter and remaining ones are for a programmer who
wishes to perform more intricate manipulations and to express programs in a more sophisticated manner.

6.1 MORE ABOUT THE PRINT STATEMENT
The PRINT statement permits a greater flexibility for the more advanced programmer who wishes to have a dif
ferent format for his output. BASIC normally outputs items from PRINT statements in the forms described in
this chapter.1 Numeric items are printed in the format:

Snn ... nh

l~LL one space

numeric value

sign: space if positive; - if negative

String items (refer to Chapter 8) are printed exactly as they appear but without the enclosing quotes. To have
text printed within quotes, the statement would appear as:

10 PRINT " "TEXT" "

The terminal line is divided into zones of 14 spaces each. A comma in a PRINT statement is a signal to the terminal
to move to the next print zone on the current line or, if necessary, to the beginning of the first print zone of the
next line. A semicolon in a PRINT statement causes no motion of the terminal. <PA> (page) in a PRINT statement
moves the terminal to the beginning of the first print zone of the first line on the next page of output. Commas,
semicolons, and <PA>delimiters can appear in PRINT statements without intervening data items. Each delimiter
causes terminal movement as previously described. For example, PRINT A"B causes the value of A to be printed
in the first zone, the terminal to be moved to the third zone, and the value of B to be printed in the third zone. If
two items in a PRINT statement are clearly distinct, the separating commas, semicolons, or <P A> delimiters can
be omitted and the items are treated as though they were separated by one semicolon.

When you type in the following program:

:1. ()

::H>
4" ·V

Ferl:;; 1=:::1. TD :1.:::;
PI:~INT I
NEXT I
END

the terminal prints 1 at the beginning of a line, 2 at the beginning of the next line, and, finally, 15 on the fifteenth
line. But, by changing line 20 to read as follows:

PF~:J:NT I ~

IThis chapter describes the noquote mode of output. The user can explicitly change the mode to quote mode by using a QUOTE
statement. Refer to Chapter 10 for the description of Quote and noquote modes and their associated statements.

6-1

More Sophisticated Techniques

the numbers are printed in the zones, reading as follows:

F:UNNH

:I.

:1.:1.

r~EADY

,.,
,.::.
"'J
/

:1.2

,"'I
'.j.'

:1.4

(::'
d

If you want the numbers printed in this fashion, but compressed, change line 20 by replacing the comma with a
semicolon as in the following example:

The following results are printed:

F:UNNH

:I. 2 3 4 5 6 7 8 9 :1.0 :1.:1. :1.2 t3 :1.4 :I.~.:j

The end of a Print statement signals a new line, unless a comma or semicolon is the last symbol. Thus, the following
instruction:

50 PRINT XvY

prints two numbers and then returns to the next line, while the instruction:

50 PRINT XvYv

prints these two values and does not return. The next number to be printed appears in the third zone, after the
values of X and Y in the first two zones.

Since the end of a PRINT statement signals a new line,

2!:SO PF~INT

causes the terminal to advance the paper one line, to put a blank line for vertical spacing of your results, or to
complete a partially filled line.

50 FOR M=1 TO N
:1.:1.0 FOR J=O TO M
120 PRINT BCMvJ);
:1.30 NEXT J
:1.40 Pf~INT

:1. !7iO NEXT M
:1.1.)0 END

6-2

More Sophisticated Techniques

This program prints B(1,0) and next to it 8(1,1). Without line 140, the terminal would go on printing 8(2,0),
B(2,1), and 8(2,2) on the same line, and then 8(3,0), 8(3,1), etc. After the terminal prints the 8(1,1) value
corresponding to M = 1, line 140 directs it to start a new line; after printing the value of 8(2,2) corresponding
to M = 2, line 140 directs it to start another new line, etc.

The following instructions:

!~jO PI:;:INT "TIME"; "!:;HAF~"; "ING"
51 PRINT" ON"; " THE ";"DECSYSTEM-20"
~j2 END

cause the printing of the following:

TIMESHARING ON THE DECSYSTEM-20

The items enclosed in quotes in statements 50 and 51 are strings.

The following instructions:

:1.0 N::::~.~j

20 PRINT "END OF PAGE" N <PA)
30 PRINT "ITEM"vv"NO. ORDERED"vv"TOTAL PRICE"
40 END

cause the printing of

END DF PI~GE !::i

followed by a form-feed to position the terminal paper at the top of a new page, where the following is printed:

TTFM
~t~·ONE

Nfl OF'r. r-r'rT .. : .. • ' . .I :: .. \ :: . . 1

3rdZONE

len AL PI~ I CE
5th ZONE

Formatting of output can be controlled even further by means of the T A8 function, in the form TAB(n), where
n is the desired print position. T A8 can contain any numeric formula as its argument. The value of the numeric
formula is computed and then truncated to an integer. This integer is treated modulo the current output right
margin. Setting the output right margin is described in Section 6.7. For example, if the output right margin is 72,
which is the default margin, a value in the range 0 through 71 is obtained. The first print position on the line is
column O. Thus, TAB(17) causes the terminal to move to column 17 (unless it has already passed this position, in
which case the TAB is ignored). For example, inserting the following line in a loop

55 PRINT X; TAB(12); Y; TAB(27);Z

causes the X values to start in column 0, the Y values in column 12, and the Z values in column 27.

The following rules are used to interpret the printed results:

1. If a number is an integer, the decimal point is not printed. If the integer contains more than eight
digits, it is printed in the format as follows:

6-3

More Sophisticated Techniques

sn.nnnnnEsp ----.-LL E (Exponent) followed by the sign of the exponent,
followed by p (power of 10)

next five digits

first digit

sign: space if positive; - if negative

For example, 32,437, 580, 259 is written as 3.24376E+ I O.
2. For any decimal number, no more than six significant digits are printed.
3. For a number less than 0.1, the E notation is used, unless the entire significant part of the number can

be printed as a 6-digit decimal number. Thus, 0.03456 indicates that the number is exactly
0.0345600000, while 3.45600E-2 indicates that the number has been rounded to 0.0345600.

4. Trailing zeros after the decimal point are not printed.

The following program, in which powers of 2 are printed out, demonstrates how numbers are printed.

LISTNH
10 FOR N=-5 TO 30
20 PRINT 2~N'

30 NEXT N
40 END

F~I:::ADY

0.03125 0.0625 0.125 0.25 0.5
512 1024 2048 4096 8192 16384
524288 1048576 2097152 4194304
67108864 1.34218E+8 2.68435E+8

TIME: 0.22 SEeS.

I:;:E(~DY

6.2 INPUT STATEMENT

124
~32"76B

H?:0860B
~::.i. ~3687:I.E+B

;32 64
1:3:1.072

:1.2!:l
26::.~:1..14

1677"7216 33554432
1 • 07::~?4E+<;J

At times, during the running of a program, it is desirable to have data entered. This is particularly true when one
person writes the program and saves it on the storage device as a library program (refer to SAVE command,
Chapter 9), and other persons use the program and supply their own data. Data may be entered by an INPUT
statement, which acts as a READ but accepts numbers of alphanumeric data from the terminal keyboard. For
example, to supply values for X and Y into a program, type the following:

40 INPUTX,Y

prior to the first statement which uses either of these numbers. When BASIC encounters this statement, it types
a question mark. Type two numbers, separated by a comma, and presses the RETURN key, and BASIC continues
the program. No number can be longer than 8 digits. If you type more items then the statement requests, BASIC
just ignores the excess. However, if you input fewer items than the statement requests, BASIC prints another
question mark (1).

6-4

More Sophisticated Techniques

Frequently, an INPUT statement is combined with a PRINT statement to make sure that you know what the
question mark is asking for. You might type in the following statement:

20 PRINT ·YOUR VALUES OF X,Y, AND Z ARE";
30 INPUT X,Y,Z

and BASIC types out the following:

YOUR VALUE OF X,Yy AND Z ARE?

Without the semicolon at the end of line 20, the question mark would have been printed on the next line. Data
entered via an INPUT statement is not saved with the program. Therefore, INPUT should be used only when small
amounts of data are to be entered, or when necessary during the running of the program.

6.3 STOP STATEMENT
STOP is equivalent to GO TO XXXXX, where xxxxx is the line number of the END statement in the program.
For example, the following two program portions are exactly equivalent:

GO TO <;><;>9 250

• • + + • + + + + ~ + + +

GO TO <;><;><;> 340 STOP

+ + ~ + + + • + + + + + +

END END

6.4 REMARKS STATEMENT (REM)
REM provides a means for inserting explanatory remarks in the program. BASIC completely ignores the remainder
of that line, allowing you to follow the REM with directions for using the program, with identifications of the parts
of a long program, or with any other information. Although what follows REM is ignored, its line number may be
used in a GO TO or IF-THEN statement as in the following:

LTSTNH
:1.00
:1.:1.0
:1.20
200
:~O()

I:~EAI:IY

REM INSERT IN LINES 900-998. TTHE FIRST
REM NUMBER IS Ny THE NUMBER OF POINTS. THEN
REM THE DATA POINTS THEMSELVES ARE ENTERED, BY
REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS
F~ETUF;:N

GOSUr~ 200

A second method for adding comments to a program consists of placing an apostrophe (') at the end of the line, and
following it by a remark. Everything following the apostrophe is ignored. This method cannot be used in an image
statement. Image statements are described in Chapter 11. Apostrophes within string constants are not treated as
remark characters.

6-5

More Sophisticated Techniques

6.5 RESTORE STATEMENT
The RESTORE statement permits READing the data in the DATA statements of a program more than once.
Whenever RESTORE is encountered in a program, BASIC restores the data block pointer to the first number in the
first DATA statement. A subsequent READ statement then starts reading the data allover again. However, if the
desired data is preceded by code numbers or parameters, superfluous READ statements should be used to pass over
these numbers. As an example, the following program portion reads the data, restores the data block to its original
state, and reads the data again. Note the use of line 570 (READ X) to pass over the value ofN, which is already
known.

100 F~[(.lD N
U.O FOI:~ :[:::::1. TD N

1 :::.~ () !=~[I~D '/ .,

:1.30 • • • • • • • • •

2()O NE><T :[

2:1.0 • • • ., + + •

~:)6() REf:)TDI~[

~::;'?() I=<:EAD X
I.·C\()
,.J\.)\ .. FDF: :[::::1 TD N
~:;90 r~[AD X
6()() • • • • • •
?()O D(.HA • • • • •
?:LO DATA • • • • • •

6.6 CHAIN STATEMENT
The CHAIN statement provides a means for one program to call another program so that programs can be written
separately and executed together in a chain. The CHAIN statement has one of the forms:

CHAIN [alphabetic string]
or CHAIN [alphabetic string] , [numeric formula]

The alphabetic string is either the name of the program being chained to, in the form device:ftlename.typ
(optionally enclosed in quotes), or a string variable l that has as its value the name of the program being chained to,
in the form device:ftlename.typ. The device and the type can be omitted, but the ftlename must be present. If
the device is omitted, DSK: is assumed; if the type is omitted, .BAS is assumed.

The numeric formula specifies a line number in the program being chained to; its value is truncated to an integer.

A few examples of the CHAIN statement are:

CHAIN A$
CHAIN B2$, N*EXP(W)
CHAIN PTR:MAIN, 50

When BASIC encounters a'CHAIN statement in a program, it stops execution of that program, retrieves the program
named in the CHAIN statement from the specified device, compiles the chained program, and begins execution
either at the line number specified in the CHAIN statement or at the beginning of the program if no line number was
specified. Only the heading of the first program in the chain is printed, and the TIME: message is printed only after

1 A string variable is a variable that is used to store an alphabetic string. A string variable is composed of a letter and a dollar sign .
($), e.g., A$ or B2$. String variables are described in Chapter 8.

6-6

More Sophisticated Techniques

the last program in the chain has been executed. Error messages for the programs in the chain, excluding the first
program, have the name of the program appended. For example:

OVERFLOW IN 100 IN TEST4.BAK

indicates that an overflow error occurred in line 1100 in the chained program TEST4.BAK. Programs that run
individually, or the first program in a chain will not have the program name appended.

The following is an example of program chaining.

NI~~;W
NlW filL NAME--PROG3

F;;EI~lDY

10 PF;;INT 10
11 ~:;TDP

20 PF;;INT 20
2:1. END

F;E:(.lDY
!"IEIA
NE:W FILE NAME--PROG2

F~E(.lDY

10
;!.O
30
f~UNNH

'1' :1. 0

:1.0

F;;EAD'Y

INPUT N
CH(.IIN PF;[)G3 ~.' N
END

6.7 MARGIN STATEMENT
Normally, the right margin for output to the terminal is set at the 72nd character position (numbering begins at 0).
The MARGIN statement allows the user to specify a right margin at the 1st to the 132nd character position inclusive.
This margin becomes effective on the first new line of output after the MARGIN statement, and remains in effect
until the next time the margin is set by a MARGIN statement or until the end of the program's execution, whichever
is sooner. At the end of program execution, the output margin is reset to the 72nd character position.

The form of the margin statement is:

MARGIN [numeric formula]

6-7

More Sophisticated Techniques

The numeric formula is a numeric constant, variable, or expression that specifies the right margin; it is truncated to
an integer before the margin is set. Some examples of the MARGIN statement are:

MARGIN 75
MARGIN 32*N

The right margin for input from the terminal is not affected by MARGIN statements; it is always 142 characters
between the left and right margins. Lines of input that are longer than 142 characters will result in error messages.

The system, as well as BASIC, considers the normal terminal output margin to be 72 characters. Therefore, when a
margin greater than 72 characters is needed, the system command TERMINAL WIDTH must be used in addition
to the BASIC MARGIN statement. Otherwise, the system will output a leading carriage return-line feed if an
attempt is made to output a seventy-third character on a line. Before the program is run, the user must issue the
command:

MON:rTor~

to BASIC and then type:

@TERMINAL WIDTH 127
F~EENTEI:::

to reenter BASIC. The number must be between 8 and 127 inclusive. If you specify a number outside this range
with the TERMINAL WIDTH command, the system will appear to accept it, but your margin will not be set. The
system will not output its carriage return-line feed until after the 127th character on a line; consequently, BASIC
can control the margin as the MARGIN statements specify without interference from the system.

6.8 PAGE STATEMENT
Normally, output to the terminal is not divided into pages. The PAGE statement allows the user to set a page size
of any positive number of lines. This page size remains in effect until the page size is set again by a PAGE statement,
or until the terminal is set back into nopage mode by a NOPAGE statement (described in Section 6.9), or until the
end of the program's execution. At the end of program execution, the terminal is reset to nopage mode.

The form of the PAGE statement is:

PAGE [numeric formula]

The numeric formula specifies the page size; it is truncated to an integer before the page size is set.

When a PAGE statement is executed, BASIC ends the current output line (if necessary), outputs a form-feed to
position the terminal paper at the top of the next page, and starts counting lines beginning with the next line of
output. As soon as a new page is necessary, a form-feed is output. Whenever a PRINT statement containing
<P A> is executed, the line count for the terminal page is set back to zero.

6.9 NOPAGE STATEMENT
The NOPAGE statement sets the terminal back to nopage mode (Le., the output to the terminal is no longer auto
matically divided into pages). The NOPAGE statement need only be used to change the mode back from page mode
(set by a PAGE statement) because the default is nopage mode for all terminal output. The form of the statement is

NOPAGE

The NOPAGE statement has no effect on the execution of <PA> delimiters in PRINT statements; they are
executed as usual.

6-8

CHAFfER 7

VECfORS AND MATRICES

Operations on lists (vectors) and tables (matrices) occur frequently; therefore, a special set of 13 instructions for
matrix computations, all of which are identified by the starting word MAT, is used. These instructions are not
necessary and can be replaced by combinations of other BASIC instructions, but use of the MAT instructions
results in shorter programs that run much faster.

The MAT instructions are as follows:

MAT READ a

MATc=ZER

MATc=CON

MATc=IDN

MAT PRINT a

MAT INPUT v

MAT b =a

MATc=a+b

MATc=a- b

MATc=a*b

MAT c = TRN(a)

MAT c =(k) * a

MAT c = INV (a)

Read the matrix, the dimensions have been previously specified. More than one
matrix can be specified. Place a comma between matrices as a delimiter.

Fill out c with zeros.

Fill out c with ones.

Set up c as an identity matrix.

Print the matrix. (Semicolons can be used immediately following any matrix which
you wish to have printed in a closely packed format.) More than one matrix can be
specified. Place a comma between matrices as a delimiter.

Call for the input of a vector.

Set matrix b equal to matrix a.

Add the two matrices a and b and store the results in matrix c.

Subtract the matrix b from the matrix a and store the results in matrix c.

Multiply the matrix a by the matrix b and store the results in matrix c.

Transpose the matrix a and store the results in matrix c.

Multiply the matrix a by the number k and store the results in matrix c. The number,
which must be in parentheses, may also be given by a formula.

Invert the matrix a and store the results in matrix c.

7.1 MAT INSTRUCTION CONVENTIONS
The following convention has been adopted for MAT instructions: while every vector has a component 0, and
every matrix has a row 0 and a column 0, the MAT instructions ignore these. Thus, if we have a matrix of dimen
sion M-by-N in a MAT instruction, the rows are numbered 1,2, ... ,M, and the columns 1,2, ... , N.

If a numeric array is referenced in a MAT statement other than MAT INPUT, BASIC sets up the array as a matrix
with two dimensions unless you have specifically declared in a DIM (or DIMENSION) statement that the array is
a vector.

The DIM statement may simply indicate what the maximum dimension is to be. Thus, if we write the following:

M may have up to 20 rows and up to 35 columns. This statement is written to reserve enough space'for the matrix;
consequently, the only concern at this point is that the dimensions declared are large enough to accommodate the
matrix. However, in the absence of DIM (or DIMENSION) statements, all vectors may have up to 10 components

7-1

Vectors and Matrices

and matrices up to 10 rows and 10 columns. This is to say that in the absence of DIM (or DIMENSION) statements,
this much space is automatically reserved for vectors and matrices on their appearance in the program. The actual
dimension of a matrix may be determined either when it is first set up (by a DIM statenlent) or when it is computed.
Thus the following

:1.0 DIt, N(20v?)

reads a 20-by-7 matrix for M, while the following:

50 MAT READ M(17~30)

reads a 17-by-30 matrix for M, provided sufficient space has been saved for it by writing

10 DIMENSION MC20,35)

7.2 MAT C = ZER, MAT C = CON, MAT C = ION
The following three instructions:

MATM =ZER
MATM=CON
MATM = lDN

(sets up matrix M with all components equal to zero)
(sets up matrix M with all components equal to one)
(sets up matrix M as an identity matrix)

act like MAT READ as far as the dimension of the resulting matrix is concerned. For example,

MAT M = CON (7, 3)

sets up a 7-by-3 matrix with 1 in every component, while in the following:

MATM=CON

sets up a matrix, with ones in every component, and a 10-by-1O dimension (unless previously given other dimen
sions). It should be noted, however, that these instructions have no effect on row and column zero. Thus, the
following instructions:

10 DIM M(20,?)
20 MAT READ M(?v3)
+++(0++++

3~::j MAT t'1::::CClN
70 MAT M=ZER(15~?)

90 MAT M=ZER(16vl0)

first read in a 7-by-3 matrix for M. Then they set up a 7-by-3 matrix of allIs for M (the actual dimension having
been set up as 7-by-3 in line 20). Next they set up M as a 15-by-7 all-zero matrix. (Note that although this is
larger than the previous M, it is within the limits set in 10.) An error message results because of line 90. The limit
set in line 10 is (20 + 1) x (7 + 1) = 168 components, and in 90 we are calling for (16 + 1) x (10 + 1) = 187/compo
nents. Thus, although the zero rows and columns are ignored in MAT instructions, they playa role in determining
dimension limits. For example,

90 MAT M=ZER(25,5)

would not yield an error message.

7-2

Vectors and Matrices

Perhaps it should be noted that an instruction such as MAT READ M(2, 2) which sets up a matrix and which, as
previously mentioned, ignores the zero row and column, does, however, affect the zero row and column. The
redimensioning which may be implicit in an instruction causes the relocation of some numbers; therefore, they may
not appear subsequently in the same place. Thus, even if we have first LET M(l,O) = M(2,O) = 1, and then MAT
READ M(2,2), the values ofM(l,O) and M(2,O) now are O. Thus when using MAT instructions, it is best not to use
row and column zero.

7.3 MAT PRINT A
The following instruction:

MAT PRINT A, B; C

causes the three matrices to be printed with A and C in the normal format (i.e., with five components to a line and
each new row starting on a new line) and B closely packed.

Vectors may be used in place of matrices, as long as the above rules are observed. Since a vector like V(l) is treated
as a column vector by BASIC, a row vector has to be introduced as a matrix that has only one row, namely row 1.
Thus,

DIM X(7), YeO,S)

introduces a 7-component column vector and a S-component row vector.

If V is a vector, then

MAT PRINT V

prints the vector V as a column vector.

MAT PRINT V,

prints Vas a row vector, five numbers to the line, while

MAT PRINT V;

prints Vas a row vector, closely packed.

7.4 MAT INPUT V AND THE NUM FUNCTION
The following instruction:

MAT INPUT V

calls for the input of a vector. The number of components in the vector need not be specified. Normally, the input
is limited by its having to be typed on one line. However, by ending the line of input with an ampersand (&) before
the carriage return, the machine asks for more input on the next line. There must be at least one data item preceding
the ampersand on the line or an error message will be issued. Note that, although the number of components need
not be specified, if we wish to input more than 10 numbers, we must save sufficient space with a DIM statement.
After the input, the function NUM equals the number of components, and V(l), V(2), ... , V(NUM) become the
numbers that are input, allowing variable length input. For example,

7-3

Vectors and Matrices

~j I ... ET !J::::()

1() MAT INPUT V
20 L.ET N::::NUM
30 IF N=O THEN 99
40 FOR 1 = 1 TO N
45 L.ET S=StV(I)
!50 NEXT I
60 pr~INT S/N
i'O GO TO 5
f:lO END

allows the user to type in sets of numbers, which are averaged. The program takes advantage of the fact that zero
numbers may be input, and it uses this as a signal to stop. Thus, the user can stop by simply pushing RETURN on
an input request. If an ampersand is used, it need only be preceded by a comma when the item immediately pre
ceding it is an unquoted string.

7.5 MATB=A
This instruction sets up B to be the same as A and, in doing so, dimensions B to be the same as A, provided that
sufficient space has been saved for B.

7.6 MATC=A +BAND MAT C=A - B
For these instructions to be legal, A and B must have the same dimensions, and enough space must be saved for C.
These statements cause C to assume the same dimensions as A and B. Instructions such as MAT A = A ± Bare
legal; the indicated operation is performed and the answer stored in A. Only a single arithmetic operation is
allowed; therefore, MAT D = A + B - C is illegal but may be achieved with two MAT instructions:

10 MATD=A+B
20 MATD=D-C

7.7 MATC=A*B
For this instruction to be legal, it is necessary that the number of columns in A be equal to the number of rows in
B. For example, if matrix A has dimension L-by-M and matrix B has dimension M-by-N, then C = A * B has dimen
sion L-by-N. It should be noted that while MAT A = A + B may be legal, MAT A = A * B is self-destructive because,
in multiplying two matrices, we destroy components which would be needed to complete the computation.
MAT B = A * A is, of course, legal provided that A is a "square" matrix.

7.8 MATC=TRN(A)
This instruction lets C be the transpose of the matrix A. Thus, if matrix A is an M-by-N matrix, C is an N-by-M
matrix. The instruction MAT C = TRN (C) is legal.

7.9 MATC=(K)*A
This instruction allows C to be the matrix A multiplied by the number K (Le., each component of A is multiplied by
K to form the components of C). The number K, which must be in parentheses, may be replaced by a formula.
MAT A = (K) * A is legal.

7.10 MAT C = INV(A) AND THE DET FUNCTION
This instruction allows C to be the inverse of A. (A must be a square matrix.) The function DET is available after
the execution ofthe inversion, and it will equal the determinant of A. Consequently, the user can obtain the
determinant of a matrix by inverting the matrix and then noting what value DET has. If the determinant of a matrix
is zero, the matrix is Singular and its inverse is meaningless. When an attempt is made to invert a matrix whose
determinant is zero, the warning message is printed,

XSINGULAR MATRIX INVERTED IN nn

DET is set equal to zero, and the program execution continues.

7-4

Vectors and Matrices

7.11 EXAMPLES OF MATRIX PROGRAMS
The first example reads in A and B in line 30 and, in so doing, sets up the correct dimensions. Then, in line 40,
A + A is computed and the answer is called C. This automatically dimensions C to be the same as A. Note that
the data in line 90 results in A being 2-by-3 and in B being 3-by-3. Both MAT PRINT formats are illustrated, and
one method of labeling a matrix print is shown.

:1.0 DIM A(20,20), IH20,2(» , C(20,20)
20 I:~EAD M,N
:30 MAT I~EAD A(M,N) dHN,N)
4()

!:'jO
6()

lO
..... 1::.
/ ,.J

BO
90
9:1.
92
93
94
95
99

I:~EADY

RUN

MAnnx

246

MAT C::::A+A
MAT PRINT (: ;
MI~T C>:A*B
PI~INT
PI~INT n A*B:::: n ,

MAT PF~INT ("' .,

[lArA 2, :3
nt~Tt~ :1. \,2,:3
DATA 4,!:.),6

DATA :1. yO, ····:1.
DATA 0, :1., :1.
DATA 00--:1. ,0 l' 0
END

8 :1.0 :1.2

f-l* B::::

.... ::~ ,-,2

TIME: 0.:1.9 SECS.

1. O····NClV···· 7!::i

····3

····9

7-5

Vectors and Matrices

The second example inverts an n-by-n Hilbert matrix:

I
1/2
1/3

lIn

1/2 1/3 ..•
1/3 1/4 . .•
1/4 lIS ..•

l/n+ll/n+2

lIn
I/n + I
I/n + 2

1/2n-l

Ordinary BASIC instructions are used to set up the matrix in lines 50 to 90. Note that this occurs after correct
dimensions have been declared. A single instruction then results in the computation of the inverse, and one more
instruction prints it. Because the function DET is available after an inversion, it is taken advantage of in line 130,
and is used to print the value of the determinant of A. In this example, we have supplied 4 for N in the DATA state
ment and have made a run for this case:

:1.0
20
30

REM THIS PROGRAM INVERTS AN N-BY-N HILBERT MATRIX
DIM AC20y20),B(20,20)

~:;o

60
?O
BO
90
:100

:/. ~:'j

2()

I:~EAD N
rlAT A::::CON (N, N)
FO/:~ I:::: :1. T() N
F()F~ ..J::= :/. TO N
LET AClv..J)=:l./(It..J-:l.)
NEXT . .1
NEXT I
MAT B::::INV (A;'
P/:nNT "INV (i~) ::::"

MI~T F'F~:rNT B
PI:~INT

30 PRINT "DETERMINANT OF A=" DET
90 DI~TI~ 4
99 END

F~EADY

I~UN

/--II/ ... MAT

16 • O()O :1.

.. ··:1.20.00:1.

240.0(H

.. ··:1.40.00:1.

:/.2t21 :/.0 NOV-.. 7~'j

-,120.00:1. 240.00:1.

:1.200 + 01 '-2700.0:1 .

.... 2700.01 6480.03

1680.01 "-4200.02

7-6

.. .. 140.001

:/.c)(:lO.Ol

.... 4200.02

2800.0:1.

Vectors and Matrices

DETERMINANT OF A= 1.65343E-7

TIME: 0.27 SEeS.

A 20-by-20 matrix is inverted in about 0.5 seconds. However, the reader is warned that beyond n = 7, the Hilbert
matrix cannot be inverted because of severe round-off errors.

7.12 SIMULA nON OF N-DIMENSIONAL ARRAYS
Although it is not possible to create n-dimensional arrays in BASIC, the method outlined below does simulate
them. The example is of a three-dimensional array, but it has been written in such a way that it could be easily
changed to four dimensions or higher. We use the fact that functions can have any number of variables, and we set
up a l-to-l correspondence between the components of the array and the components of a vector which equals the
product of the dimensions of the array. For example, if the array has dimensions 2, 3, 5, then the vector has 30
components. A multiple line DEF could be used in place of the simple DEF in line 30 if the user wished to include
error messages. The printout is in the form of two 3-by-5 matrices.

10 DIM V(1000)
20 MAT READ D(3)
30 DEF FNA(IvJ,K)=«I-1)*D(2)t(J-1»*D(3)tK
50 FOR 1=1 TO D(1)
55 FOR J=1 TO D(2)
60 FOR K=1 TO D(3)
80 LET V(FNA(I,J,K»=It2*JtK~2
90 PRINT VCFNA(I,J,K»,
:I.O() NEXT 1\
:1.:1.0 NEXT1

:1. :1.2 PH I NT
:1.1 ~:j PI:~ I NT
:1.20 NEXT I
:l.3() DATA 2,3,5
:1.40 END

7-7

3AI:;:F~AY :1.2 t 21.;

4 .'"
/

6 s>
n :I. :I.

~5 8
'7 1.0
('>
7 :1.2

TIME: 0.3:1. SEeS.

F:EADY
!3A'JE

Vectors and Matrices

:1. O NDIJ '?~)

l? :I.? r) C:'
A' •• \:)

:1.4 2:1. 30
:1.6 ::.~ :'5 32

:1.3 ::~O 2?
:1. !:'j ")"')

A. 3:1.
:1"1 .. I ::.~4 33

7-8

CHAPTER 8

ALPHANUMERIC INFORMATION (STRINGS)

In previous chapters, we have dealt only with numerical information. However, BASIC also processes alphanumeric
information in the form of strings. A string is a sequence of characters, each of which is a letter, a digit, a space, or
some other character. A string, however, cannot contain a character that is a line terminator (i.e., a line feed, form
feed, or vertical tab), or a carriage return.

String constants are normally enclosed in quotes (e.g., "TOTAL VALUE"). In some cases, the quotes can be
omitted. Where this is allowed, it is explicitly stated in the description of the particular type of statement found
elsewhere in this manual.

Variables may be introduced for simple strings and string vectors, but not for string matrices. Any simple variable,
followed by a dollar sign ($), stands for a string; e.g., A$ and C7$. A vector variable, followed by $, denotes a list of
strings; e.g., V$(n) or A2$(n), where n is the nth string in the list. For example, V$(7) is the seventh string in the
list V.

8.1 READING AND PRINTING STRINGS
Strings may be read and printed. For example:

10 READ A.,B.vCS
20 PRINT CS; BS; AS
30 DATA ING~SHAR,TIME

40 END

causes TIMESHARING to be printed. The effect of the semicolon in the PRINT statement is consistent with that
discussed in Chapter 6; i.e., it causes output of the alphanumeric items in a close-packed form. Commas, <P A>
delimiters, and TABs may be used as in any other PRINT statement. The loop:

70 FOR 1=1 TO 12
80 READ MS(I)
90 NEXT I

reads a list of 12 strings.

In place of the READ and PRINT, corresponding MAT instructions may be used for lists. For example, MAT
PRINT M$; causes the members of the list to be printed without spaces between them. We may also use INPUT or
MAT INPUT. After a MAT INPUT, the function NUM equals the number of strings inputted. When using the
MAT INPUT statement, you can continue inputting strings on the next line by typing an ampersand (&) on the
current line immediately before pressing the RETURN key. A comma must precede the ampersand if the string
immediately before the ampersand is unquoted. If the string is unquoted and a comma does not separate the string
from the ampersand, the ampersand will be treated as part of the string. Thus, either MARY,& or "MARY"& is
legal input.

As usual, lists are assumed to have no more than 10 elements; otherwise, a DIM (or DIMENSION) statement is
required. The following statement:

10 DIM MS(20)

saves space for 20 strings in the M$ list.

8-1

Alphanumeric Information (Strings)

In the DATA statements, numbers and strings may be intermixed. Numbers are assigned only to numerical variable:
and strings only to string variables. Strings in DATA statements are recognized by the fact that they start with a
letter. If they do not, they must be enclosed in quotes. The same requirement holds for a string containing a
comma. For example:

The only convention on INPUT and MAT INPUT is that a string containing a comma must be enclosed in quotes.
The following example shows the correct format for a response to a MAT INPUT:

MR. JONES, "146 MAIN ST., MAYNARD, MASS."

8.2 STRING CONVENTIONS
In every method of inputting string information into a program (DATA, INPUT, MAT INPUT, etc.), leading blanks
are ignored unless the string, including the blanks, is enclosed in quotes. String constants (which must be enclosed
in quotes) or string variables may occur in LET and IF-THEN statements. The following two examples are self
explanatory:

10 LET YS="YES"
20 IF A7S="YES" THEN 200

The relation "<" is interpreted as "earlier in alphabetic order." The other relational symbols work in a similar
manner. In any comparison, trailing blanks in a string are ignored, as in the following:

"YES" = "YES"

We illustrate these possibilities by the following program, which reads a list of strings and alphabetizes them:

10 DIM LS(SO)
20 F~EAD N
30 MAT READ LS(N)
40 FOR I=l TO N
50 FOR J=l TO N-l
60 IF L$(J) (LS(Jtl) THEN 100
70 LET AS=LSeJ)
80 LET LS(J)=LS(Jtl)
90 LET LS(Jtl)=A$
:1. 00 NEXT ,J
1tO NEXT I
120 MAT PRINT L$
900 DATA SvONEvTWOvTHREE,FOURvFIVE
99(") END

Omitting the $ signs in this program serves to read a list of numbers and to print them in increasing order.

A rather common use is illustrated by the following:

330 PRINT "DO YOU WISH TO CONTINUER;
340 INPUT AS
350 IF AS="YES" THEN 10
360 !:>TOP

8-2

Alphanumeric Information (Strings)

8.3 NUMERIC AND STRING DATA BLOCKS
Numeric and string data are kept in two separate blocks, and these act independently of each other. The RESTORE
statement resets both the data pointers for the numerical data and string data back to the beginning of their blocks.
RESTORE* resets the pointer only for the numerical data and RESTORE $ only for the string data.

8.4 THE CHANGE STATEMENT
In BASIC, it is very easy to obtain the individual digits in a number by using the function INT. One way to obtain
the individual characters in a string is with the instruction CHANGE. The use of CHANGE is best illustrated with
the following examples.

:1.0
:I. ~.'.';

20"
0"'1::'
.• : ... !

::5 ~.'.';

40

READY
1:~l.JN

26
Bl

(>!.:,:;
C) .. ,
' •• J.,'"

D I ~'l (~, (6:'.'; ;.
r;: E (.~, II (:~ !I;
CHI~NGE: A~I:· TD I~:

F'Cm 1::::0 TO (1 (0)
F'F~INT (I (I) ;:
j\IE:XT I
DATA ABCDE:FGHIJKLMNOPQRSTUVWXYZ
END

:l.2····NDI) }':.'j

66 A:":) ".J." 68 .f. e)
\.J I '?O)':1. '72 };:->

B;'~ B4 B!.::i t) .t. B7 DB <:)t::) <';>0 \.,I\.} \.J ,.

TIME: 0.:1.4 SE:CS.

'.74 "j.lI::'
I .. .1

"1 L
I \.) ?? 78 } ('I BO

In line 15, the instruction CHANGE A$ TO A has caused the vector A to have as its zero component the number of
characters in the string A$ and, also, to have certain numbers in the other components. These numbers are the
American Standard Code for Information Interchange (ASCII) numbers for the characters appearing in the string
(e.g., A(1) is 65 - the ASCII number for A).

Table 8-1 lists the ASCII numbers for printing and nonprinting characters. Note that the nonprinting characters
are shown in the table as codes containing two or three letters. These codes are not output; the actual meaning of
the ASCII number is output (e.g., 7 causes the bell to ring, it does not print BEL).

8-3

Alphanumeric Information (Strings)

Table 8-1
ASCII Numbers and Equivalent Characters

ASCII ASCII

Decimal Decimal

Number Character Meaning Number Character Meaning

0 NUL Null 43 + Plus sign

1 SOH Start of heading 44 , Comma

2 STX Start of text 45 - Minus sign or hyphen

3 ETX End of text 46 Period or decimal point

4 EOT End of transmission 47 / Slash

5 ENQ Enquiry 48 0 Zero

6 ACK Acknowledge 49 1 One

7 BEL Bell 50 2 Two

8 BS Backspace 51 3 Three

9 HT Horizontal tab 52 4 Four

10 LF Line feed 53 5 Five

11 VT Vertical tab 54 6 Six

12 FF Form feed 55 7 Seven

13 CR Carriage return 56 8 Eight

14 SO Shift out 57 9 Nine

15 SI Shift in 58 Colon

16 DLE Data link escape 59 , Semicolon

17 DCl Device control 1 60 < ! Left angle bracket

18 DC2 Device control 2 61 = Equal sign

19 DC3 Device control 3 62 > Right angle bracket

20 DC4 Device control 4 63 ? Question mark

21 NAK Negative acknowledgement 64 @ At sign

22 SYN Synchronous idle 65 A Upper case A

23 ETB End of transmission block 66 B Upper case B

24 CAN Cancel 67 C Upper case C

25 EM End of medium 68 D Upper case D

26 SUB Substitute 69 E Upper case E

27 ESC Escape 70 F Upper case F

28 FS File separator 71 G Upper case G

29 GS Group separator 72 H Upper case H

30 RS Record separator 73 I Upper case I

31 US Unit separator 74 J Upper case J
32 SP Space or blank 75 K Upper case K

33 ! Exclamation mark 76 L Upper case L

34 " Quotation mark 77 M Upper case M

35 # Number sign 78 N Upper case N

36 $ Dollar sign 79 0 Upper case 0
37 % Percent sign 80 P Upper case P

38 & Ampersand 81 Q Upper case Q

39
,

Apostrophe 82 R Upper case R

40 (Left parenthesis 83 S Upper case S

41) Right parenthesis 84 T Upper case T

42 * Asterisk 85 U Upper case U

Note: Recall that line feed (LF), form feed (FF), vertical tab (VT), and carriage return (CR) are
illegal in strings.

8-4

Alphanumeric Information (Strings)

Table 8-1 (Cont.)
ASCII Numbers and Equivalent Characters

ASCII ASCII
Decimal Decimal
Number Character Meaning Number Character

86 V Upper case V 107 k
87 W Upper case W 108 I
88 X Upper case X 109 m
89 y Upper case Y 110 n
90 Z Upper case Z III 0

91 [Left square bracket 112 p
92 \ Back slash 113 q
93] Right square bracket 114 r
94

~

or t Circumflex or up arrow 115 s
95 +- or Back arrow or underscore 116 t -
96

,
Grave accent 117 u

97 a Lower case a 118 v
98 b Lower case b 119 w
99 c Lower case c 120 x

100 d Lower case d 121 Y
101 e Lower case e 122 z
102 f Lower case f 123 {
103 g Lower case g 124 I
104 h Lower case h 125 }
105 i Lower case i 126 ~

106 j Lower case j 127 DEL

The other use of CHANGE is illustrated by the following:

:1. ()

:I. ~5
20
:::.~ ~:5

30

40

F:EI~[tY

F:UNI··1H

TI~1E:

FOF~ I ::::0 TO ~:;

I:;:EAD tl (I)
NEXT I
DATA 5,65,66v67,68,69
CHI!:jNGE A TO A~I;

PF~INT l!:j~;

END

Meaning

Lower case k
Lower case I
Lower case m
Lower case n
Lower case 0

Lower case p
Lower case q
Lower case r
Lower case s
Lower case t
Lower case u
Lower case v
Lower case w
Lower case x
Lower case y
Lower case z
Left brace
Vertical line
Right brace
Tilde
Delete

This program prints ABCDE because the numbers 65 through 69 are the code numbers for A through E. Before
CHANGE is used in the vector-to-string direction, we must give the number of characters which are to be in the
string as the zero component of the vector. In line 15, A(O) is read as 5. The following is a final example:

8-5

Alphanumeric Information (Strings)

5 DIM V(1)8)
10 PRINT "WHAT DO YOU WANT THE VECTOR V TO BE";
20 MAT INPUT V
~v LET V(O)~NUM
35 IF NUM=O lHEN 70
40 CHANGE V TO At
~::jO F'F: I I\!T (:IW
(~O C')c)TO :I. Co

'.:·:"0 END

F:EtlDY'
RL,NNH

lAiHtlT DO
(····<····YZ

1,.1 H(:I '1' DO

YOU

YfJU

VJtl I"! T

(.. ,ltINT

THE

THE

! ":":!n:i~'" ()*+y .. ·· •.. /O::.:?

',JECTClF:

I.) E f:: TOR

I . .))"0 BE ?40

I ..) TO I::E '?:'::::':)

WHAT DO YOU WANT THE VECTOR V TO BE ?
F:EI~nY

Fi:Ef.IDY

r ·4~::j !.' 60 y 4~:5 !' B(;} ?

y :34 !i :3~.:5 ":-' .(. .. ::0 ••.•• ~I :.':)/ !.'

<;.lO

"XC- •• ~. t" 40 41 ~ ... t." !' ,.::r :~. l' :.'

Note that in this example we have used the availability of the function NUM after a MAT INPUT to find the
number of characters in the string which is to result from line 40.

8.5 STRING CONCATENATION

!' ,,!}? .,
.;~.:

Strings can be concatenated by means of the plus sign operator (+). The plus sign can be used to concatenate string
formulas wherever a string formula is legal, with the exception that informatic,n cannot be stored by means of LET
or CHANGE statements in concatenated string variables. That is, concatenated string variables cannot appear to
the left of the equal sign in a LET statement or as the right-hand argument in a CHANGE statement. For example,
LET A$=B$+C$ is legal, but LET A$+B$=C$ is not; and similarly, CHANGE A$+B$ TO X is legal, but CHANGE X
TO A$+B$ is not. An example of string concatenation is:

10 INPUT AS
20 CHAIN ASt"MAIN.PRG"
30 END

The program causes chaining to the program MAIN .PRG.

8.6 STRING MANIPULATION FUNCTIONS
A number of functions have been implemented that perform manipulations on strings. These functions are LEN,
ASC, CHR$, VAL, STR$, LEFT$, RIGHT$, MID$, SPACES, and INSTR. Functions that return strings have names
that end in a dollar sign ($); those functions that return numbers have names that do not end in a dollar sign.

8.6.1 The LEN Function
The LEN function returns the number of characters in a string. It has the form:

LEN (string formula)

8-6

Alphanumeric Information (Strings)

Examples:

:1.0 F~EAD Alf;, B!f;
20
~50

40
I:~UNNH

PRINT LENCAStBSt"AROUND H)

DATA Hl.n:', .? "DOWN, AND •
END

20

TIME:

:1.0 IF LEN CAS><>O THEN 30
20 PRINT "AS IS A NULL STRING"
:30 END

8.6.2 The ASC and CHR$ Functions
The ASC and CHR$ functions perform conversion of ASCII numbers in the same manner as the CHANGE state·
ment. The ASC function converts one character to its ASCII decimal equivalent, and the CHR$ function converts
an ASCII decimal number to its equivalent character.

The ASC function has the form:

ASC (argument)

The argument can be either one character or the two· or three·letter code that represents a non printing character
(refer to Table 8·1 for these codes). ASC returns the equivalent ASCII decimal number for the character.

The CHR$ function has the form:

CHR$ (numeric formula)

The value of the numeric formula is truncated to an integer that must be in the range 0 through 127 and cannot be
the numbers 10 through 13. If the integer is less than 0 or greater than 127 or one of the numbers 10 through 13,
an error message is issued. This integer is then interpreted as an ASCII decimal number that is converted to its
equivalent character (refer to Table 8·1 for the ASCII numbers and the equivalent characters).

An example of the ASC and CHR$ functions follows.

5 FOR T=ASC(A) TO ASCCA)t3
10 PRINT "THIS IS TEST" t CHRS(T)
:I.!::i NEXT T
20 END

8·7

Alphanumeric Information (Strings)

This is the beginning of a FOR loop that successively prints:

THIS IS TEST (.~

THI:3 I ::l TE!:lT I"' ':,
THI::) IS TE::lT C
THI::) IS TE:~;T D

TIMEt

8.6.3 The VAL and STR$ Functions
The VAL and STR$ functions perform conversions from numbers to strings and strings to numbers. The form of
the VAL function is:

VAL (string formula)

The string formula must look like a number; if it does not, an error message is issued. VAL returns the actual
number that the string represents. The VAL function does not return the ASCII value of the number that the string
represents, it returns the number. For example, VAL ("25") returns the number 25. The 25 that is the argument
to VAL is a string, the 25 that VAL returns is a number.

If the string argument represents a number that is greater than about 1.7E38 in magnitude or non-zero, but less than
about 1.4E-39 in magnitude, the appropriate overflow or underflow message is issued and the value returned is
about 1.7E38, about -1.7E38, or zero, whichever is appropriate.

Example:

lO INPUT I:')~~

20 PRINT VAL (AS)*2
30 END

F<EI!~nY

F~UNNH

'!':~~.46:1.:l.2:1.
4. (j'2224

TIME: () • :1.7 SEeS.

The STR$ function returns the string representation (as a number) of its argument. The form of STR$ is:

STR$ (numeric formula)

The string that is returned is in the form in which numbers are output in BASIC (see Section 6.1). For example,
PRINT STR$ (1.76111124) prints the string 1.76111.

8-8

Alphanumeric Information (Strings)

Examples:

:1. () I~ =:: 2 ~:i (.) 1.
20 B'=STR'(A)
:30 PFn NT B~;

40 END
I:~UNNH

TIME: 0.09 SEeS.

FE(~DY

F~EADY

H)
~;~()

:30
X:{~I;::::BTF;:' (A)
CHI~NGE B~~ TO X

40
!50
F~UNNH

PRINT X(O); X(i); X(2)
END

TIME: 0.1.0 BEeB.

8.6.4 The LEFTS, RIGHTS, and MIDS Functions
The LEFTS, RIGHTS, and MID$ functions return substrings of their string arguments.

The LEFTS function returns a substring of a specified number of characters starting with the leftmost character of
its string argument. The LEFTS function has the form:

LEFTS (string formula, numeric formula)

The value of the numeric formula is truncated to an integer that specifies the number of characters in the substring.
If the specified number of characters is greater than the length of the string argument, the entire string is returned.
If the specified number of characters is less than or equal to zero, an error message is issued. For example,

1.0 PRINT LEFT'("THIS IS A TEST",7)
20 END

8-9

Alphanumeric Information (Strings)

prints the substring

THIS IS

The RIGHT$ function returns a substring of specified length ending at the rightmost character of its string argument.
The form of the RIGHT$ function is:

RIGHT$ (string formula, numeric formula)

The value of the numeric formula is truncated to an integer that specifies the number of characters in the substring
to be returned. If the number of characters is greater than the length of the string argument, the entire string is
returned. If the specified number of characters is less than or equal to zero, an error message is issued. For example,

S AS="HERE AND THERE"
10 PRINT RIGHT.eAS,S)
20 END

prints the substring

THEF~E

The MID$ function returns a substring of its string argument starting a specified number of characters from the
leftmost character of the string argument. The number of characters in the substring can also be specified. The
form of the MID$ function is:

MID$ (string formula, numeric formula-I, numeric formula-2)

The second numeric formula, which is truncated to an integer that specifies the number of characters in the substring,
is optional and can be omitted. If this argument is omitted, the substring includes all the remaining characters in
the string argument. The first numeric formula is truncated to an integer that specifies the leftmost character at
which the substring is to start. MID$ returns a null string if the first numeric formula when truncated to an integer
is greater than the number of characters in the string argument; if it is less than or equal to zero, an error message is
issued. If the number of characters in the substring is specified (by the second numeric formula) and is greater than
the number of characters in the string argument beginning at the specified character, MID$ returns the string argu
ment starting at the specified character. If the number of characters is less than or equal to zero, an error message
is issued.

Examples:

10 PRINT MIDS("TOTAL OUTPUT IN MARCH·~17)
20 END

I:~UNNH

MAF~CH

T:rME: 0.04 SECS.

READY

8-10

Alphanumeric Information (Strings)

10 PRINT MIDt ("ABCDEF",3,1)

RUNNH

, ,.,

TIME: 0.05 SECS.

8.6.5 The SPACES Function
The SPACES function returns a string of spaces. The form of the SPACES function is:

SPACES (numeric formula)

The value of the numeric formula is truncated to an integer that specifies the number of spaces in the string to be
returned. If the integer is less than or equal to zero or greater than 132, an error message is issued.

Example:

10 AS=BS="HERE H

20 FOR T=l TO 3
30 PRINT AS~ SPACESeT); Bt
~5!'=') NEXT T
40 END

F~EADY

1:~l.JNNH

HEF~E HEI:~E

HEF~E HEF~E
HEI:~E HEI:~E

TIME: 0.10 SECS.

F:EI~DY

8.6.6 The INSTR Function
The INSTR function searches for a specified substring within a string and returns the position of the fust character
of that substring within the string. The positions are numbered from the leftmost character in the string. The user
can optionally specify that the search for the substring begin at a character position other than the first. The form
of the INSTR function is:

INSTR (numeric formula, string formula-I, string formula-2)

The numeric formula, which is truncated to an integer that specifies the starting character position, is optional and
can be omitted. If the numeric argument is omitted, the search begins at the first character position. The first
string argument is the string searched; the second string argument is the substring searched for. If the value of the
numeric formula (if specified) is greater than the number of characters in the string or if the substring cannot be

8-11

Alphanumeric Information (Strings)

found in the string, INSTR returns a value of zero. If the value of the numeric formula is less than or equal to
zero, an error message is issued. If the second string argument is a null string, INSTR returns the character position
at which the search started, unless that position is past the last character in the string. In that case, INSTR returns
a value of zero.

Examples:

1 ()

F:UNNH

TThE~

F~[I~DY

to

F~UNNH

1::'
•• ..1

T J ME:~

PRINT INSTR ("ABCDCEF"~·C")

PRINT INSTR (4,"ABCDCEF",·C")

o. 0"7 ~:)[C~:l ,.

Note that if the second string argument occurs more than once within that part of the first string argument that is
searched, the first occurrence found is used.

8-12

There are BASIC commands which do the following:

1. Create, edit and manipulate fIles,
2. Run BASIC programs,
3. Cause the user to enter system command level,
4. Obtain information, and
5. Set the input mode.

CHAPTER 9

EDIT AND CONTROL

These commands operate on an entire BASIC program, and therefore are functionally different from the BASIC
statements which comprise the program. For example; typing the LENGTH command causes BASIC to output the
length (in characters) of the current program in memory. If, however, the user includes the LENGTH command as
a statement in his BASIC program, an error is generated and the program cannot run .. Commands are executed
after the RETURN key is pressed; statements are executed after a program has been created and the RUN command
is issued.

9.1 CREATING THE FILE IN MEMORY
A fIle is a collection of data. This data may be BASIC statements, thereby comprising a BASIC program; it may be
data for a BASIC program, or it may be a combination of a program and data. Four media are used to store files.
They are

1. Disk pack,
2. Magnetic tape,
3. Cards, and
4. Memory

At the time the user types BASIC, a memory area is allocated for his use and cleared of any previous user's files.
Memory may be thought of as a working storage area. Any work done on a file is performed in memory, however,
the user may not keep fIles in memory for a prolonged period of time. Permanent storage of that nature is reserved
for storage devices such as disk and magnetic tape, and cards.

In order to create a new file, edit an existing me or run a file containing a BASIC program, the me must first be
established in memory. The NEW command, the OLD command and the default to NONAME provide the means
by which a fIle is established in a working area. Refer to the WEAVE command in Paragraph 9.3 for an additional
method of moving files into memory.

I NEW filename.typ J

The user gives the NEW command to create a new file in memory. This file is given the name filename.typ. Before
establishing the new me, BASIC clears the user's memory. Thus, the fIle previously in user memory (if any) is
destroyed. (To retain the me, a SAVE command should be issued before the NEW command is given. Refer to
Paragraph 9.3.)

When issuing the NEW command, fIlename.typ may be omitted. In this case BASIC asks for the fIlename.typ
by typing:

NEW FILE NAME·····

9·1

Edit and Control

The user types the filename.typ

If the type is not included (Le., .typ is left out) BASIC assumes .BAS. If a carriage return is substituted for
filename.typ BASIC types ?WHAT? and disregards the NEW command.

Once the NEW command is given, BASIC establishes the file by clearing the user's memory and assigning the
filename. When it is ready to accept the contents of the file, BASIC types READY. The user then inputs the file
simply by typing it on the terminal. (Refer to Chapter 4.) .

When the user is finished inputting the new file, he types tc to return to the BASIC user mode (he was in input
mode).

The user should be aware that at this point the new file is only in memory and not in permanent storage. This
means that a command which clears the user's memory (for example; a BYE, NEW or OLD command) destroys the
me the user just input. The SAVE and REPLACE commands (described in Paragraph 9.4) store a me on the disk.

I:~EADY

:1.0 I NP 1...1 T I:~ :1. y F;:2 y F~3

Establish a new file called RESIS.BAS.

20
30

R= (Rl*R2*R3) / «R2*R3) t Rl*(R2tR3»
PRINT "THE PARALLEL RESISTANCE = ";R

Type the file.

·4() END
Put RESIS.BAS on disk storage.

F~[i~DY

OLD dev:filename.typ

By using the OLD command, the user replaces the me in memory with one from a storage device. As with the NEW
command, the contents of the user's memory are cleared before the designated file is brought in. The storage
device on which the file is located is given by dev:. Omitting dev: causes the default device (Le., disk) to be
selected. The file is identified by fIlename.typ. If omitted, BASIC requests the fIlename.typ by typing:

ClI ... n FILE N.!1ME · .. ·

The user should then type the filename. typo If he presses carriage return, the command aborts and returns to
BASIC user level. If the type is omitted .BAS is assumed. The file obtained from the device must have line
numbers. The indicated mename is now the current filename.

Retrieving a file from a device in this manner does not delete the file on the source storage device. However, if
the user modifies the file in memory, thereby creating a new version of that file, the new version is not retained
on a permanent storage device until a SAVE, REPLACE or COPY command is executed. (Refer to Paragraph 9.4.)

Default to NONAME

There is a third way to establish a file in memory. After BASIC responds with READY, the user may start typing
the contents of his file. By this action the user is adding to the material in memory without assigning a new name
to memory and without initially clearing its contents. If no filename is assigned to memory (as is the case after
issuing BASIC), it takes the default name NONAME. Any action the user takes with the me should use NONAME
unless a RENAME command is given.

9-2

Edit and Control

READY, FOR HELP TYPE HELP.
!:'i INPUT E 1.
:1.0 INPUT F:
2 ~.::.; I :::: E :J. / I:~

Type in contents of
fIle.

35 PRINT "THE EQUIVALENT CURRENT IS",I, n AMPERES"
40 END
I ... :r ~:; T

NDNA,1E

!:.:j INPUT E :1.

:1.0 INPUT F:
2!::.; I ::::E:J. /F:

:f. 3····N(JV····"?~5

Request output of
file in user core.

Filename is called
NONAME since no
fIlename was specified.

35 PRINT "THE EQUIVALENT CURRENT IS",I, " AMPERES"
40 END

The RENAME command alters the name of the fIle in memory. This function is useful especially after a default
to NONAME.

I RENAME dev: fIlename. typ I
The name of the user's file in memory is changed to dev: fIlename. typ when the user issues the RENAME command.

If dev: and/or .typ are left out when the command is given, the original dev:and/or .typ are kept.

RENAME EQUIV.BAS

9.2 LISTING FILES
Often the contents of a fIle in the user's memory or of a file in permanent storage must be examined. The LIST,
QUEUE and to commands produce a printed copy of the desired file. In addition, refer to the COPY command
in Paragraph 9.4.

LIST range, range, ...
LISTNH range, range, ...

The LIST and LISTNH commands, given without any range arguments, print the entire contents of a fIle in the
user's memory area. LIST prints a one-line heading which includes the name of the file, the time and the date.
LISTNH prints the specified lines without the heading.

If only part of the memory storage fIle is desired, range arguments are used to identify the desired lines. If more
than one part is needed, additional range arguments can be added provided that each succeeding range specification
is separated by a comma.

9-3

Edit and Control

Range arguments are permitted in one of two forms:

n A single line is printed when its line-number, n, is used as a range argument.

x-y A group of lines is output when the range argument is put in the form x-y, where x is the line-number
of the first line in the group, and y is the line-number of the last line in the group.

The lines are printed on the user's terminal in order of ascending line-numbers.

LISTREVERSE
LISTNHREVERSE

LISTREVERSE and LISTNHREVERSE print the contents of the user's memory area in order of descending line
numbers. LISTREVERSE precedes the output with a heading, LISTNHREVERSE eliminates the heading.

I ... I ~:;TF~EVEF~SE

E(~UI') :1.():~53 :1. 3····NOV 7~::i

40 END
35 PRINT "THE EQUIVALENT CURRENT IS"~IY " AMPERES"
2~~.i 1::::1::.:1. /I:~
:1.0 INPUT I:;:
!::j INPUT E 1.

I~EI~r:rY

[IQJ
to suppresses the output of a me. BASIC responds with READY after termination.

IQUEUE mename.typ/UNSAVE/nCOPIES/LIMITm I
The QUEUE command causes the specified me to be printed on the line printer. This me must have been previously
stored on disk by a SAVE, REPLACE or COpy command. The me in storage is not affected by this command.

If the type of the mename is omitted, .BAS is assumed.

The three optional switches/UNSAVE, /nCOPIES, and/LIMITm can be included in any order. UNSAVE and
LIMIT can be abbreviated to as little as U and L respectively while the word COPIES can be omitted entirely.
For example, QUEUE RETURN/U/L12/2 tells BASIC to list two copies of the file RETURN.BAS, but not exceed
12 pages in doing so. The file is deleted (unsaved).

When the /UNSA VE switch is given, the file is immediately removed from the user's permanent (disk) storage area,
then it is listed. Without this switch the file is retained. The n/COPIES switch causes n copies of the me to be
printed to a maximum of 63 copies. Without this switch, one copy is printed. The /LIMITm switch indicates the
maximum number of line printer pages that can be printed. Without this switch 200 pages is the limit. The
arguments nand m must be integers.

More than one file listing can be requested by placing a comma between each succeeding filename and its associated
switches.

9-4

QUEUE EQUIV.BAS/2COPIES

FILED C~UEI...IED!

EC~U:r V <. B('~~:;

9.3 EDITING A FILE IN MEMORY

Edit and Control

Request 2 copies of the file EQUIV.BAS
be output on the line printer.

After a file has been entered into the user's memory by a NEW command, OLD command or a default to NONAME,
the user may want to edit the file to eliminate any errors.

9.3.1 Replacing Complete Lines
The user inserts new lines and replaces existing lines by first typing the appropriate line-number and following it
with a line of text.

Type Line Number
When BASIC is in user mode, typing a line number followed by text can have one of two consequences.

1. If there is no existing line associated with that line-number, BASIC enters both the new line-number
and the line into the file in the user's memory.

2. If there is already a line in the file with the specified line-number, that line is deleted and the new line
is inserted in its place.

Simply typing a line number without any text establishes a blank line.

If you change your mind about an edit before pressing the RETURN key, press Control-U CU). This action com
pletely aborts the edit command line.

9.3.2 Deleting Lines

I DELETE range, range, ... I
The DELETE command eliminates lines from the user's file in memory. The range arguments specify which
line(s) are to be eliminated.

Range arguments are permitted in one of two forms:

n A single line is deleted when its line-number, n, is used as a range argument.

x-y A group of lines is deleted when the range argument is put in the form x-y, where x is the line-number
of the first line in the group, and y is the line-number of the last line in the group.

DELETE 125v 250-425, 900

9.3.3 Renumbering Lines in the File

I RESEQUENCE n,f,k I

Delete line 125, lines 250 thru 425
inclusive and line 900.

RESEQUENCE modifies the line-numbers of the file in user memory. Line-number f is changed to line-number n.
Succeeding lines are then incremented by k. N must be greater than the line number immediately preceding f to
prevent overwriting.

9-5

Edit and Control

When f is omitted entirely the first line of the file takes line-number n, and succeeding lines take line-numbers
n+k, n+2k, and so forth. Even though f is omitted, both commas are retained.

In cases where a single argument, n, is given, the first line-number is changed to n and succeeding line-numbers are
produced, incrementing by 10.

F:E::I!1DY

9.3.4 Clearing the Entire File

I SCRATCH !

Renumber line 25 to 100 and number
succeeding lines incrementing by 100.

The SCRATCH command deletes all line-numbers and their associated lines from user memory. The name
associated with the file in memory is kept the same.

F~EI~DY

9.3.5 Merging One File with Another

I WEAVE dev:filename.typ!

The WEAVE command locates a me with the name filename.typ on dev:. This file is then merged into the me in
user memory. If two lines have the same line-number, the line in the me named in the WEAVE command replaces
the line in the me in memory. Otherwise, the lines from the file are merged in sequential line-number order into
the me in memory.

DLD F~ES1S. Bf.1G

F~EADY

I... 1STNH

Take a copy of file RESIS.BAS from disk storage and put it in
memory.

List RESIS.BAS

10 INPUT Rl,R2,R3
20 R=(Rl*R2*R3)/(CR2*R3)tRl*(R2tR3»
30 PRINT "THE PARALLEL RESISTANCE = ";R
40 END

F~EADY
DLD E:(~l.J I 'vi. BI~S

I:~EADY

I... ISTNH

!::i I NF'UT E 1
to INPUT F~
2!5 I::;:E:/'/I:~

Take EQUIV.BAS and put it in memory. (RESIS.BAS is
cleared from memory.)

List EQUIV.BAS

35 PRINT "THE: EQUIVALENT CURRENT IS",1, • AMPERES"
4() END

F.:EADY
WEAVE REGIS.BAS

I:;:EADY
I ... IST

MERGE RESIS.BAS into the file in memory
(EQUIV.BAS).

9-6

fQUrV

1::.,1
:1. ()

20
25
30
:35
40

r~EAnY

Edit and Control

1.1:0:L :1.3····NCJV··-?~:i

INPUT E1
INPUT F~1.rF~2di:~~

R=(R1*R2*R3)/«R2*R3)tRl*(R2tR3»
I::::E1./r~

PRINT "THE PARALLEL RESISTANCE = ";R
PRINT "THE EQUIVALENT CURRENT IS·,Iy • AMPERES·
END

9.4 TRANSFERRING FILES

Line 5 inserted.
Line lOis replaced.
Line 20 is inserted.
Line 25 is retained.
Line 30 is inserted.
Line 35 is retained.
Line 40 is replaced.

Once a user has prepared a file in his portion of memory, he will want to move the modified file to permanent
storage such as disk or magnetic tape. In addition, the user may want to move files from one storage device to
another.

9.4.1 Transferring Files From Memory Storage
Upon creating, weaving and editing a file in storage, a user wants to retain a copy of the file for future use. The
SAVE and REPLACE commands are then used.

I SAVE dev: filename. typ I
The SAVE command puts the file currently in user memory on the storage device dev:, under the name of
filename. typ.

If dev: is omitted DSK: is assumed. If .typ is omitted .BAS is assumed. The fJ.J.ename.typ may be omitted, in which
case the current filename.typ is used. The type cannot be specified if the filename is omitted.

The SAVE command does not overwrite an existing file of the same name. REPLACE should be used if that result
is desired.

Instruct BASIC to SAVE the present fJ.J.e on disk storage.

I REPLACE dev: filename.typ I
- The REPLACE command deletes an existing file called fJ.J.ename.typ which is on the device dev: and inserts a new

me from user memory in its place, keeping the same name.

If the device is DSK: the old file must be present on the device or an error message will be issued.

The arguments dev:, fJ.J.ename, and .typ can be omitted with the same conditions described for the SAVE command.

Also, refer to the OLD command (paragraph 9.1) and the WEAVE command (Paragraph 9.3.5), both of which
transfer lines into memory.

REPLACE

F~E:ADY

9-7

Edit and Control

9.4.2 Transferring Files From One Storage Device to Another

I COpy devl:filenamel.typ > dev2:filename2.typ I
The COpy command reads filename!. typ on dev 1: and transfers a copy of it to dev2: where it is given the name
filename2. typo

If the device is omitted, DSK: is assumed. If the device is not a disk, the filename and type can be omitted. Not€
when the filename is omitted, the type must also be omitted. Should the device be a disk the filename must be
specified, but the type can be omitted, and then the type .BAS is used.

The filenamel .typ need not have line-numbers to be acceptable to COpy. The program currently in memory is n
disturbed by a COpy command.

9.4.3 Destroying Files

I UNSAVE dev:filename.typ, dev:filename.typ, ... I
The UNSA VE command deletes the named files from the indicated devices.

The arguments dev:, filename, and .typ can be omitted. If dev: is omitted, DSK: is assumed. If .typ is omitted,
.BAS is assumed. If filename.typ is omitted, the current filename.typ is used.

In specifying more than one file to be UNSAVEd, the user must separate the filenames with commas.

UNSAVE RESIS.BAS

FIL[~:) UNS()'v'ED:
I:;:ESI~)

9.5 EXECUTING A BASIC PROGRAM
If the user's file is a BASIC program and it has been created, edited, and saved, it is ready to be compiled and
executed. Note: A BASIC file does not have to be a BASIC program. The Edit and Control Commands discusse<
in this chapter are also used in creating files containing data and files containing text. The user does not want to
compile and execute a data file or a text file. The RUN, CHAIN and tc commands aid the user in processing his
BASIC program.

1~~~Hnl
The RUN commands compile the entire program residing in user memory. The RUN command generates a
heading upon running the program; while RUNNH deletes the heading. After compilation, the program is
executed starting at statement number n. If n is omitted, execution starts at the very beginning of the program.

CHAIN
The CHAIN statement can be included in a BASIC program to cause one program to run another program. For
further information refer to Paragraph 6.6.

Itctci

Two tc's stop a running program and return the user to the BASIC command mode. All files that were opened 1
the program are closed.

9-8

Edit and Control

9.6 ENTERING SYSTEM COMMAND LEVEL
While in BASIC, the user may desire the use additional I/O devices, obtain system information or request a special
service. In order to accomplish these and other similar tasks, the user must put his terminal at system command
level.

9.6.1 What is System Command Level?
Once BASIC has printed "READY, FOR HELP TYPE HELP", the user knows that he has successfully entered
BASIC and he can now type BASIC commands. In the DECsystem-20 environment, there can be many people
using a large variety of system programs (of which BASIC is one), running their own programs, or performing other
functions. The operating system is the supervisory program which schedules and controls those operations
requested by each user, so that the system can better serve all users.

To issue a request to the system (a system command) after entering BASIC, the user must leave BASIC and enter
system command level. He may then use the appropriate system command(s).

When the user is finished and desires to reenter BASIC, he must type certain system command(s) to leave system
command level and enter BASIC. (For more information on the commands, refer to the DECsystem-20 User's
Guide.)

Table 9-1
Commands That Enter System Command Level From BASIC

Command Result

MONITOR Causes the user to leave BASIC and enter system command level. The process is complete
when the system prints an at sign (@), indicating that the user may type any system
command.

Caution - Some system commands which run a program in performing their function,
destroy the contents of memory. This means that all work done in BASIC that has not
been permanently stored somewhere else (Le., magnetic tape) by using a BASIC command
will be lost. Refer to Section 9.4.

SYSTEM Is almost identical to the MONITOR command in function. Unlike MONITOR, however,
it does not allow the user to reenter BASIC by typing CONTINUE; only REENTER or
START will succeed.

9.6.2 Letting the System Type Part of a Command
If you want the system to help you type a command, press the ESC key after typing any part of the command. If
it is able to help you, the system will type as much of the command as it can and then wait for you to type in
more. If the system is not able to help you, it will ring the terminal bell and wait for you to type in more of the
command.

This method of typing is called recognition input.

@REWSIND (DEVICE) MTA1:

When you press the ESC key after typing REW, the system responds with the rest of the command name and the
guide word (DEVICE) indicating that it wants you to give a device name as an argument. Guide words, such as
the one given in this example, make the command more readable and also tell you the type of argument the
system expects you to type. After you type the proper argument(s), press the RETURN key.

The following table lists useful system commands and their functions. The words in parentheses are guide words.
The dollar sign ($) represents where you should press the ESC key, and the back arrow -' represents where you
should press the RETURN key.

9-9

Edit and Control

Table 9-2
Useful System Commands

Command Function

AS$SIGN (DEVICE) dev:...} Allocates an I/O device to the user's job for the duration of the job or until
a DEASSIGN command is given. No operator intervention is required.
However, if you want to mount a magnetic tape, ASSIGN the magnetic
tape and then call the operator with the PLEASE command. The operator
will mount your magtape.

DA YTIME...} Prints the date and the time of day.

DEA$SSIGN (DEVICE)dev:...) Releases a device the user has previously assigned to his job. If you had the
operator mount a magtape, DEASSIGN your device and then send a mes
sage to the operator, via the PLEASE command, to dismount your magtape.

DIRECTORY"')

PLEASE...)

Prints the names of all user files currently on disk storage.

Allows the user uninterrupted communications with the operator.
(Destroys memory)

REW$IND (DEVICE) dev:...)

SYSTAT...}

Rewinds a magnetic tape. (Destroys memory)

Runs a program which prints status information about the system.

Prints the total running time of the entire job. This is called a CTRL/T.

Rewinds and DEASSIGNs a magnetic tape. (Destroys Memory)

AT)

UNL$OAD (DEVICE) dev: ...)

9.6.3 Returning to BASIC From System Command Level
There are two different methods of returning to BASIC from system command level. The method the user employs
depends upon whether he preserved or destroyed his memory area.

9.6.3.1 User's Memory Preserved - If the user has entered system command level and has not issued a system
command which destroys the contents of his memory, he may use one of the following commands to reenter
BASIC.

Command

REENTER or
START

CONTINUE

F~EADY

SYSTEM

Table 9-3
Commands That Reenter BASIC When Memory is Preserved

Function

The user can exit from the system and reenter BASIC by typing either REENTER or
START. If, while in system command level, the user has issued a system command
which destroys user memory neither the REENTER nor the START command
causes the user to reenter BASIC. In this case he must type BASIC.

The CONTINUE command serves exactly the same purpose as REENTER or START
as far as BASIC is concerned. However, it will only be successful in reentering
BASIC after a BASIC MONITOR command; it will not work after a SYSTEM com-
mand has been used.

Enter System Command Level

!!?ASSIGN MTA:!. Request MTAI be allocated to the job.

MTA:!. A~)SIGNEn System assigns MT AI.

9-10

E?CONTINUE

'!>C,~N' T CONT INUE
(!1ST(.ll~:T

Edit and Control

Try to reenter to BASIC.

Cannot type CONTINUE after a SYSTEM command.
Alternative request to return to BASIC.

O.K. BASIC responds.

9.6.3.2 User's Memory Destroyed - When the user desires to return to BASIC after he has destroyed his memory
storage area he does so by typing BASIC. BASIC responds with "READY, FOR HELP TYPE HELP" when it is
ready to accept commands.

<MA!3ELI ... A>
3AF.:F.:AY • BI~f:) .2
[l I 1"; • B,~f:) ,.::?

FClUJ'·} ,. DA!3.?
C-iCD3NO. B(.~!:l ,. 2
HII ... MI~T .Bf~!:;.2
I ... I~:)T. Bi~!3.,::2
ME!:;~:)AC·)E ,. TXT. :I.
pr;:DG3 ,. B(~!::; ,. {
TE)(T <- Bi~!:;. 2 y-4

TOTAL DF :1.0 FILES
(;?F:E[NT[I:~

9.7 OBTAINING INFORMATION

Enter System Command Level
Request listing of user files.

Reentering BASIC.

Three commands, CATALOG, HELP and LENGTH, retrieve important information from the system concerning
available I/O devices, commands and program size.

I CATALOG device: I
After the CATALOG device: command is entered, the system lists on the user's terminal the names and types
of the user's files residing on the named device. When device: is omitted, DSK: is assumed.

device: can be

SYS:

DSKn:

Typing SYS: as the device lists the system programs stored on the system device SYS.

n (a number or letter) specifies a particular disk when more than one is available. If n is omitted,
files on all disks are listed.

Type the names of all files on disk DSK.

9·11

:~(ll~I~AY (. BtlS
D I ~1 • Bi:":I~)
EC~l.JI\J • BA~:;
GCD3NO. Bi~~:;
HI Lt1AT • BA~3
I...I~:;T .BI~~:;

PF,:ClG3 • BA~:;
TEXT .BAS

I HELP \

Edit and Control

Files on DSK are listed.

After the user types the HELP command BASIC types a list of BASIC commands and a brief explanation of each
on the user's terminal.

F~E(lDY

HELP

I LENGTH

Request BASIC to output a brief description
of its commands.

The LENGTH command instructs the system to output the approximate length of the source program (stored in
the user's memory) expressed as the number of characters.

LENGTH
B!::.i CHI~F\ACTEI~~:;

ADDITIONAL INFORMATION
Information about the system is available via the use of operating system commands. Refer to Section 9.6.

9.8 LEAVING BASIC
When the user has finished all his work, he wants to use BYE or GOODBYE.

BYE and GOODBYE exit the user from BASIC and log him off the DECsystem 20. Refer to Section 4.6.

9-12

CHAPTER 10

DATA FILE CAPABIliTY

The data file capability allows a program to write information into and read information from data files that are
on the disk.

Nine input/output channels are reserved for handling data files from a program. A data file must be assigned to a
channel before it can be referenced in the program. At any given time, a program can have one and only one file on
each channel and one and only one channel assigned to each file. Consequently, a maximum of nine files can be
open simultaneously. However, because it is possible for a program to change or establish file/channel assignments
while it is running, there is no limit to the number of data files that can be referenced in one program.

10.1 TYPES OF DATA FILES
There are two types of data files acceptable to BASIC: sequential access files and random access files.

10.1.1 Sequential Access Files
Sequential access files are those files that contain information that must be read or written sequentially, one item
after another, from the beginning of the file. A sequential access file is either in write mode or read mode, but
cannot be in both modes at the same time. When read mode is established, reading starts at the beginning of the
file. When write mode is established, the file is erased and writing starts at the beginning of the file.

An important distinction to note about sequential access files is that they can be listed in readable form on the
user's terminal or line printer. Sequential access files consist oflines that contain data items. A sequential access
file can be either a line-numbered file or a nonline-numbered file. Line-numbered files are like BASIC programs
in that they can be manipulated by any of the commands described in Chapter 9 (e.g., OLD, LIST, DELETE)
except the RUN(NH) and CHAIN commands. Nonline-numbered files cannot be handled by any of the commands
that expect a file to have line numbers; they can only be manipulated by the COPY, QUEUE, and UNSA VE
commands. They can be listed on the user's terminal by means of the COpy command; for example:

COpy TEST4 >TTY:

Sequential access files do not necessarily have to be created by a program; they can be created at the editing level
in BASIC. Line-numbered files can be created or modified just as a BASIC program is created or modified. Non
line-numbered files can be created at the terminal and then transferred to a storage device such as the disk by means
of the COPY command. The following conventions must be observed when dealing with a sequential access file at
the editing level:

1. In line-numbered files, each line number must be followed immediately by at least one space, a tab,
or the letter D.

2. A line can contain any number of data items separated from one another by at least one space, a
comma, or a tab. However, the line must not be longer than 142 characters (counting the line number
and its following delimiter, but not the carriage return and line feed that terminate the line). It is not
necessary to have a space, comma, or tab after the last data item on the line. Note that blank tabs
are not ignored in a data file as they are in a program.

3. A data item is any numeric constant (refer to Section 1.3.3) or string constant (refer to Chapter 8).
Numeric constants must not contain blanks or tabs. If a string is to contain a blank, comma, or tab,
the user must enclose the string in quotes; otherwise it will be read as more than one data item by the
statements that read data.

10-1

Data File Capability

Section 10.4 contains an example of the use of a line-numbered data file created at the editing level. Section 10.5.1
contains an example of a program that creates both a line-numbered data file and a nonline-numbered data file and
shows what these files look like when they are copied to the terminal.

Because it requires execution time for a program to read and write line numbers in a data file, a nonline-numbered
data file should be used in preference to a line-numbered data file unless the user specifically wishes to edit the
data file with commands such as DELETE.

Another distinction between sequential access files is whether the file is a pure data file or a text file. A pure data
file is used primarily for the storage of data. A text file contains data that is probably destined for output to the
line printer, because it is a report, a fmancial statement, or the like. The user must follow slightly different pro
cedures in his program depending on the type of fIle he wishes to handle. For example, a string that contains a
blank must be enclosed in quotes when it is written into a pure data file, otherwise it will be seen as more than one
string when data is read from the file. However, such a string should not be enclosed in quotes when it is written
into a text file because text mes are not normally read back into a program, and the superflous quotes would spoil
the appearance of the file when it is printed. The procedures to follow when handling each type of file are ex
plained in Sections 10.5.1 and 10.7.

10.1.2 Random Access Files
Random access files are data files that are not necessarily read or written sequentially. The user can read items from
or write items into a random access file without having the items followed one after the other. The items in a
random access file are not recorded in a form suitable for listing, and therefore cannot be output to the user's
terminal or the line printer. Random access files cannot be handled by any of the BASIC commands other than
COPY and UNSAVE. A random access me can be copied to the disk or magnetic tape, but not to any other device
(terminal or line-printer). Copying a random access file to a device other than disk or magnetic tape will cause
errors to be introduced into the file.

Random access files, unlike sequential access files, do not distinguish between read mode and write mode. The
user can read or write any item in a random access file at any time by first setting a pointer to that item. A random
access file contains either string data or numeric data, but not both. Each data item in a random access fIle takes
up the same amount of storage space, called a record, on the disk. BASIC must know the record size for the random
access fIle in order to correctly move the pointer for that me from one data item to another. The record size for a
random access numeric file is set by BASIC because the storage space required for a number in such a file is always
the same. The storage space required for a string, however, is dependent upon the number of characters in the
string. Thus, for a random access string file the user must specify the number of characters in the longest string in
the file so that BASIC can set the record size accordingly. This specification takes place when the file is assigned
to a channel. Refer to the description of the FILES and FILE statements in Section 10.2. When creating a new
random access string file, if the user specifies too few characters an error message is issued when a string too long
to fit into a record is written. If too many characters are specified for a record, the strings will always fit, but space
will be wasted on the disk. When he is dealing with an existing file, the user does not have to specify a record size.
If he does specify a record size for an existing file, the record size must match that with which the file was written.

BASIC processes random access fIles more quickly than it processes sequential access fIles. Consequently, if the
user wishes to read or write large amounts of data in sequential order, but does not require that the data be in
listable form, he should consider using a random access fIle to take advantage of its speed. A random access file
can easily be read or written in sequential order.

10.2 THE FILE AND FILES STATEMENTS
The FILE and FILES statements perform identical functions. They both assign a fIle to a channel and establish
the access type of the me (sequential, random access string, or random access numeric). The difference between
FILE and FILES is that FILE is an executable statement while FILES is not. Before execution of the program
begins, BASIC collects all of the FILES statements in the program, makes the channel assignments and sets the fIle
access types as they were declared in the FILES statements. The FILES statements are not used again during that
execution of the program. GO TO and GOSUB statements to FILES statements work just as they do to REM

10-2

Data File Capability

statements; i.e .• execution will transfer to the first executable statement following the FILES statement. The FILE
statement. on the other hand. assigns channels and establishes file access types during program execution. thereby
allowing the user to change file/channel assignments during the running of his program.

The FILE and FILES statements accept fllename arguments of the form:

filename.typ access type

where filename and .typ are the filename and type of the file in the form described in Chapter 4. The filename
must be specified. but the type can be omitted. If the type is omitted •. BAS is assumed. Access type can be a
percent sign (%); a dollar sign ($) optionally followed by one. two. or three digits; or omitted. If the access type
is omitted. the file is assumed to be a sequential access flle. If a percent sign is specified. the file is assumed to be
a random access numeric file. A dollar sign optionally followed by a one- to three-digit number indicates a random
access string file. The number following the dollar sign specifies the number of characters in the longest string that
the file will contain. A maximum of 132 characters and a minimum of one character can be specified. If the
number is omitted from the dollar sign access type and the file does not presently exist. a default length of 34
characters is established. If the number is omitted from the dollar sign access type and the file does exist. the
length with which the me was previously written is estabJished.

The FILES statement has the form:

FILES fllenm.typ access type.filenm.typ access type •... filenm.typ access type

where the arguments can be separated by a comma or a semicolon. Channels are assigned consecutively to the
arguments of all the FILES statements in the program. If an argument is omitted. the channel for the missing
argument is skipped. For example. if a program contains only these FILES statements:

10 FILES " A;,B
20 FILES C,D,
~50 FII ... E!:) E.

file A will be assigned to channel 3. file B to channelS. file C to channel 6. flle D to channel 7. and file E to
channel 9.

The FILE statement has the form:

FILE argl.arg2 •... argn

where the arguments can be separated by a comma or a semicolon. At least one argument must be present in a
FILE statement. Each argument that assigns a sequential access file to a channel is of the form:

~. string formula
or ~: string formula

Each argument that assigns a random access file to a channel is of the form:

:N. string formula
or :N: string formula

N is a numeric formula having a value from 1 to 9 that specifies the channel; the value is truncated to an integer
if necessary. The string fomula is of the form:

filename.typ access type

10-3

Data File Capability

Note that the channel specifier for a random access file is preceded by a colon (:) while the channel specifier for a
sequential access file is preceded by a number sign (#). This is true of all data file statements and functions that in
clude channel specifiers. Some data file statements and functions do not require the number sign or colon to be
specified explicitly, but default to one or the other. See the description of the various statements and functions in
the following sections for details. An attempt to reference a file with a channel specifier of the wrong type causes
an error message.

The FILE statement does not permit the enclosing quotes to be omitted when its string formula argument is a
constant. This is because a statement of the form FILE: 1 , B$ would cause an ambiguity. The B$ could be taken
as a variable (B$) or as a random access string file named B.

Before the FILE statement assigns a file to a channel, it checks to see if a file already exists on that channel; if so,
the old file is closed and removed from the channel before the new file "is assigned. The access type of the old file
is immaterial; it is permissible, for example, to close an old sequential access file on a channel and then open a
random access file on that channel. Any file open on a channel at the end of program execution or whenever
BASIC is reentered is automatically closed and removed from that channel.

Examples of FILES and FILE statements are:

10 FILE 'ly "ONEDAT"; 14,"OUTDAT"
20 FILE :n::~: "CHI\DAT.4·, :9~' B$+"/.:"
30 FILES FOUR.OUTS, MAIN.a;;; PROGS16
40 FILE :H: f.! * 2 , "BASFIL"

10.3 THE SCRATCH AND RESTORE STATEMENTS
The SCRATCH statement has the form:

SCRATCH argl, arg2, ... argn

The RESTORE statement has the form:

RESTORE argI, arg2, ... argn

where the arguments can be separated by a comma or a semicolon. An argument is of the form:

For sequential access files:
#N

For random access fIles:
:N

where N is a numeric formula having a value from 1 through 9 that specifies the channel. If necessary, the value is
truncated to an integer. If neither a number sign nor a colon is present in front of the N, the number sign is
assumed. At least one argument must be present in a SCRATCH or RESTORE statement.

Scratching a sequential access file erases it and sets it in write mode. Writing will start at the beginning of the fIle.
Referencing a sequential access fIle with a statement that does input (READ, INPUT, or IF END, described in
Sections 10.4 and 10.10) while it is in write mode results in a fatal error.

Scratching a random access fIle simply erases it and sets the pointer for the file to the first record in the fIle.

Restoring a sequential access file sets the fIle in read mode. Reading will start at the beginning of the file. Referenc
ing a sequential access file with a statement that does output (WRITE or PRINT, described in Section 10.5)

10-4

Data File Capability

while it is in read mode results in a fatal error. When a sequential access me is opened by a FILES or FILE state·
ment and the file exists at that time, it is automatically set in read mode; it is not necessary to restore it. It is only
necessary to restore a sequential access file if it has been set in write mode and the user wishes to set it to read
mode in the same program.

Restoring a random access file simply sets the pointer for the file to the first record in the me. When a random
access me is opened on a channel by a FILE or FILES statement, its pointer is automatically set to point to the
first record of the me.

Examples of the SCRATCH and RESTORE statements are:

1.0 SCRATCH :U:4, . ")
" AO •• , :ft: T '--:L , l.

20 SCr;:ATCH :8::1. , 2, :~ , 4
no F~EST()I~E +,.,

+ It •• :0: <;' , l.
90 r~EST()RE 8m;: (X) ,2 ,:3, 7

10.4 THE READ AND INPUT STATEMENTS
The READ and INPUT statements read data items from meso The READ statement has the following forms:

For sequential access mes:
READ #N, variable, variable, ... variable

For random access mes:
READ :N, variable, variable, ... variable

The INPUT statement has the following forms:

For sequential access mes:
INPUT #N, variable, variable, ... variable

For random access mes:
INPUT :N, variable, variable, ... variable

N is a numeric formula having a value from 1 through 9 that specifies the channel. The value is truncated to an in·
teger if necessary. At least one variable must be present in each READ or INPUT statement. The delimiter follow·
ing N can be a comma or a colon. The variables are separated from one another by a comma or semicolon.

The variables in a READ or INPUT statement for a sequential access me can be string or numeric or a mixture of
both. The variables in a READ or INPUT statement for a random access me can be string or numeric, but not both,
because a given random access me cannot contain both string and numeric data items.

READ and INPUT statements for sequential access mes differ from one another in the following way. The READ
statement expects each line of data in the me to begin with a line number, which it then skips. That is, the line
number is not treated as data. If a line number is not present, an error message is issued. The INPUT statement, on
the other hand, does not expect a line number on each line of data. If one is present, it is read as data. It is illegal
to use both INPUT and READ statements to read from the same sequential access me unless the file has been reo
stored between the two types of statements. An attempt to mix READ and INPUT statements for sequential access
mes results in a fatal error message.

10·5

Data File Capability

Examples of the READ and INPUT statements for sequential access files are:

10 READ *2, ACI), L,BS
30 READ .6, ZS
105 INPUT .4, B(K)
120 INPUT *7, WS, M

Read and INPUT statements for random access files are completely equivalent. They both begin reading at the item
that the pointer for the file specifies, and continue reading sequentially until all of the variables have been filled. It
is legal to use both READ and INPUT statements to input from the same random access file.

If the user attempts to read beyond the last item in either a sequential access or a random access file, a fatal error
message is issued. In a random access me, it is possible to have items that have not been written but that are within
the file (because some subsequent item has been written). If such an item is in a numeric file and is read, a value of
zero is input. If such an item is in a string file, a string containing no characters is returned.

Examples of READ and INPUT statements for random access files are:

20 READ :2, Av B(l), C; F2
so READ :4v FS, GS(8)
210 INPUT :1, Q(2)
240 INPUT :S: Nl; N2; N3

The following example shows a sequential access me being created at the editing level and then read by a program.

TEST2 :l.6· .. ·DCT·· .. ?~5

10 "LANTHANIDE SERIES'
20 LA,CE,PP,ND,PM,SM,EU.GD,TB.DY,HO,ER
25 TM,YB.LU.5?,71

READY
DLD TABL.E

READY
I ... IST

TABLE

!.:i D I 14 A !I, (:1. !.,,;)
10 FILES flST2
:1.5 F~EAD '11::1. "rc~:·
20 FOR X=l TD 15
25 READ Il,AS(X)
::SO NEX'r X
35 READ 11,Nl.N2
40 PRINT 'THIS IS lH~ 'IBS
45 PFnNT

PI:~INT "ELEMENT", • i~,·TDI·'i] C NUI\'j13EI:~"

PI:~INT

60

70
75

I:~EADY

FDF~ Y"":I. TO 1~,,;

PRINT AS(Y),Nl-:l.tY
NEXT Y
END

10·6

The user types in and then SA YEs
the data file "TEST2".

The old file "TABLE" is retrieved
and listed.

Data File Capability

THlb I':;fHE

ELEhEi'T

I I:.:; \ I

,ANTHANIDE SERIES

('If U ('i 1 !,,: f'"II, .. : i"iU 1:: F;:

I ~ ." ..
. ,.r

. "" I,)

,/ J

Tl(iF; """, :::,FC:::i,

An example of reading from a random access file is given in Section 10.6.

10.5 THE WRITE AND PRINT STATEMENTS
The WRITE and PRINT statements write data items into files.

10.5.1 WRITE and PRINT Statements for Sequential Access Files
The WRITE and PRINT statements for sequential access files have the following forms:

WRITE #N, list of formulas and delimiters
PRINT #N, list of formulas and delimiters

where N is the channel specifier. The delimiter following N can be a comma or a colon; it can be omitted if the
list is omitted. The formulas in the list can be string or numeric or both. The TAB function can be used. The
delimiters can be commas, semicolons, or <PA> delimiters; they have the same meanings that they have in the
PRINT statement for the terminal (refer to Chapter 6).

WRITE and PRINT statements for sequential access files differ from one another in the following way. The
WRITE statement begins each line of output with a line number followed by a tab. The first line in the file is
numbered 1000 and subsequent line numbers are incremented by 10. The PRINT statement, on the other hand,
does not begin lines with line numbers. It is illegal to use both WRITE and PRINT statements to write to the
same sequential access file unless the file has been erased (by means of the SCRATCH command) between the
two types of statements. An attempt to mix WRITE and PRINT statements result in a fatal error message.

Files created by WRITE statements are normally read by READ statements. Files created by PRINT statements
are normally read by INPUT statements.

10-7

Data File Capability

Examples of the WRITE and PRINT statements for sequential access fIles are:

50 WRITE 12, SQRCA)tEXPCG); Q(I)
75 PRINT 17, <PA> BCI)v,C(I),vD(I)
:l:I.() pr~INT

:1. :1. () ""F~ I TE :0::3

The normal mode of output for WRITE and PRINT statements for sequential access data fIles is noquote mode.
In noquote mode, strings are not enclosed in quotes even if they contain characters that the READ and INPUT
statements see as delimiters. Also, strings are concatenated if they are output with a semicolon separating them.
Noquote mode is the mode used when writing a text fIle (refer to Section 10.1.1 for a description of text files
and pure data files). Noquote is the default mode; a sequential access file is automatically set in noquote mode wher
it is assigned to a channel by a FILE or FILES statement. However, noquote mode is not suitable when writing
pure data files because the integrity of the data is not maintained. In ord~r to write a pure data file, the me must
be set in quote mode. This can be done by the QUOTE or QUOTE ALL statement, both of which are described in
Section 10.7. When a file is in quote mode, BASIC accepts WRITE and PRINT statements that are in the usual form
but it makes whatever small changes that are necessary to the formatting in order to preserve the integrity of the
data items. Refer to Section 10.7 for details about the changes that are made.

An example of the actions performed by the WRITE and PRINT statements follows.

10 FILES A, B
20 SCRATCH 11,2
30 WRITE 11, 1;2v TAB(70),3
-40 prUNT :R:2v "AR;4
:'.'jO END

F~UNNH

TIME:

I1:EADY

COpy (.1

O:LOOO
0:1.0:1.0
0:1.020

F~EI~DY

o. 90 SEC~l.

:> TTY:
:I. :=?
;3

COPY B >- TTY:
A -4

r~EADY

10·8

Data File Capability

10.S.2 WRITE and PRINT Statements for Random Access Files
The WRITE and PRINT statements for random access files have the forms:

WRITE :N, formula, formula, ... formula
PRINT :N, formula, formula, ... formula

where N is the channel specifier. The delimiter following the channel specifier can be a comma or a colon. At
least one formula must be present in each statement. The formulas are separated from one another by a comma.
In a given statement, all of the formulas must be string or all of them must be numeric because a random access
file is either string or numeric but not both.

WRITE and PRINT statements for random access files are exactly equivalent; they both begin writing into the
record that the pointer for the file specifies, and continue writing sequentially until all of their arguments have been
written. It is legal to use both WRITE and PRINT statements to write to the same random access file.

Examples of WRITE and PRINT statements for random access files are:

IAIF~ I TE
PI:;:INT

':-"')
(• ..:.. ~I N? 1..., t1

i::l~I;, B~I;+I]!I; (I)

An example of writing to a random access file is shown below in Section 10.6.

10.6 THE SET STATEMENT AND THE LOC AND LOF FUNCTIONS
The SET statement has the form:

SET argl, arg2, ... argn

where the arguments can be separated by commas or semicolons. Each argument has the form:

:N, numeric formula
or :N: numeric formula

where N is the channel specifier. The colon preceding the channel specifier can be omitted because SET is only
used for random access files; the colon is therefore redundant. Each SET statement must have at least one
argument. When a SET statement is executed, the pointer for the file on the specified channel is moved so that it
points to the item in the file that is specified by the numeric formula, which has been truncated to an int!'!ger. If
the numeric formula after truncation is less than or equal to zero, an error message is issued. The items in the file
are numbered sequentially; the first item in the file is 1, the second 2, and so forth. The next statement in the
program that reads from or writes to the random access file will read or write the item to which the pointer was set,
provided that the pointer has not been moved again by a subsequent SET statement or another statement.

Examples of SET statements are:

SET ::3, lOOp :4, :1.~50
SET ::I.,lv :4p2:1.~5

10-9

Data File Capability

An example of a program using the SET statement follows.

10 FILES TE8T4%
20 FOR T=l TO 10
30 WRITE 11v T
40 NEXT T
50 FOR T=l TO 10 BY 2
60 SET 11v T
70 READ liv X
BO PI:::INT X
(YO NEXT T
:100 END

r::EADY
I:::UNNH

:l

7

TIMES 0.85 SECS.

F~EADY

Two functions, LaC and LOF, return information about random access files. LaC returns the number of the
record to which the pointer for the file currently points, and LOF returns the number of the last record in the file.

The forms of LaC are:

LOC(N)
LaC (:N)

The forms of LOF are:

LOF (N)
LOF(:N)

where N is the channel specifier. An error message is issued if a random access file is not assigned to the specified
channel when the function is executed.

An example of these functions is:

10 IF LOC(2)(=LOF(2) THEN 30
20 PRINT "FINISHED FILE ON CHANNEL 2 8

10.7 THE QUOTE, QUOTE ALL, NOQUOTE, AND NOQUOTE ALL STATEMENTS
As was discussed in Section 10.5.1, the default mode for output to sequential access data files or to the terminal
is noquote mode. The QUOTE and QUOTE ALL statements allow the user to change the mode of the terminal
and sequential access files to quote mode. Quote mode changes the way that the data items are written into the

10-10

Data File Capability

mes or onto the terminal. In quote mode, strings are enclosed in double quotes by BASIC if they contain blanks,
tabs, or commas; a leading blank is output immediately before strings and negative numbers; and a double quote
character cannot be output by the user. If such an attempt is made to output a double quote character, an error
message is issued. Also a data item cannot be longer than the maximum amount of space available on a new line.
If an attempt is made to output a data item longer than this, a fatal error message results. In noquote mode, the
data item would be split across two or more lines. These modifications to the normal formatting are sufficient to
insure that the integrity of the data is maintained, as was discussed in Section 10.5 .1.

The opposite of quote mode is noquote mode, which can be set by the NOQUOTE and NOQUOTE ALL statements.
Noquote mode is the default mode for the terminal and sequential access meso Whenever a sequential access me is
assigned to a channel by a FILES or a FILE statement, it is automatically set in noquote mode. NOQUOTE and
NOQUOTE ALL statements are only necessary if the user wishes to change a fIle from quote to noquote mode.

When creating a pure data fIle, in addition to setting the fIle in quote mode, it is good practice to separate the
formulas in the WRITE or PRINT statements with semicolons to pack the data items close together. Although
separating the formulas with commas is permissible, it will waste space on the disk.

The form of the QUOTE statement is:

QUOTE arg1, arg2, ... argn

where each argument has the form:

#N
or N

where N is the channel specifier. If an argument is omitted, the terminal is· specified; for example,

elUOTE ~ :1. y 4

refers to the terminal and the files on channels 1 and 4.

Since QUOTE is assumed to have at least one argument, the statement

!:; () OUOTE

specifies the terminal.

The form of the QUOTE ALL statement is:

QUOTE ALL

QUOTE ALL refers to channels 1 through 9, but not to the terminal.

When a channel is referenced in a QUOTE or QUOTE ALL statement and that channel has a sequential access file
currently assigned to it, output to the file is done in quote mode. If a sequential access file is not presently assigned
to the channel, nothing is done and no error message is returned.

The form of the NOQUOTE statement is the same as that of the QUOTE statement, except that the word
NOQUOTE is substituted for the word QUOTE. Examples of NOQUOTE statements are:

10
:=?()

NO(~l.JOTE :11:7 y ,2
NO(~UOT[

The first example specifies the files on channels 7 and 2 and the terminal. The second example specifies the terminal.

10-11

Data File Capability

The form of the NOQUOTE ALL statement is:

NOQUOTEALL

When a channel is referenced by a NOQUOTE or NOQUOTE ALL statement and that channel has a sequential
access me currently assigned to it, output to the file will be written in noquote mode. If a sequential access file is
not presently assigned to the channel, nothing is done and no error message is returned.

The use of the QUOTE ALL or NOQUOTE ALL statement is a convenient way to set all sequential acess files
currently assigned to channels into the appropriate mode, since the statements will not return error messages about
or affect unassigned channels or the terminal and will not damage any of the random access fIles currently assigned
to channels.

Quote or noquote mode can be set even if the file is in read mode because these modes have no effect on input. They
will affect the output if the file is subsequently put into write mode.

If the mode is changed from quote to noquote or vice versa, the change takes effect immediately.

10.8 THE MARGIN AND MARGIN ALL STATEMENTS
Normally, the right output margin for the terminal and sequential access files is 72 characters. Whenever a sequen
tial access fIle is assigned to a channel by a FILES or a FILE statement, the file's output margin is automatically set
to 72 characters. At the beginning of and also at the end of program execution, the terminal output margin is set
to 72 characters. There is no margin in a random access fIle.

The MARGIN and MARGIN ALL statements allow the user to set the right output margin for the terminal or any
sequential access fIle from 1 to 132 characters. 1 The form of the MARGIN statement is:

MARGIN argl, arg2, ... argn

where each argument has the form:

#N, numeric formula

The arguments can be separated by commas or semicolons. N is the channel specifier. The numeric formula
specifies the margin size; it is truncated to an integer. Either a comma or a colon can be used to separate the channel
number from the margin size.

If only the margin size is present in the argument, that argument refers to the terminal. For example:

3!) MARGIN 75, *8:126

sets a margin of 75 characters for the terminal and a margin of 120 characters for the file on channel 8.

The form of the MARGIN ALL statement is:

MARGIN ALL numeric formula

This statement sets the sequential access files on channels 1 through 9 to the margin specified by the numeric
formula, the value of which is truncated to an integer before the margin is set. The terminal is not affected by the
MARGIN ALL statement. Examples of the MARGIN ALL statement are:

60
65

MAr~GIN ALL.. 120
MARGIN ALL.. N*ABS(KCI»

lThe system command TERMINAL WIDTH must be used in addition to the BASIC MARGIN statement if the user wishes to set the
output margin for the terminal to any size greater than 72 characters but less than 127. Refer to Section 6.7 for details.

10-12

Data File Capability

Neither the MARGIN nor MARGIN ALL statement has any effect on random access mes or on channels that have
no mes assigned to them. Consequently, the MARGIN ALL statement is a convenient way to set a margin for all
sequential access files currently assigned to channels.

The margins set by the MARGIN and MARGIN ALL statements apply only to output. The margin for input lines
for both the terminal and sequential access mes is not affected by these statements; it is always 142 characters. An
attempt to input a line longer than 142 characters results in an error message.

A margin set by a MARGIN or MARGIN ALL statement takes effect as soon as a new line of output is begun for the
terminal or the sequential access file.

Although the right margin can be set to any number between 1 and 132 characters, the margin for lines output by
WRITE statements must be at least 7 characters to allow for the line number and its following tab. If the margin is
less than 7 characters for a line-numbered me, an error message is issued by the first WRITE statement referencing
the file.

10.9 THE PAGE, PAGE ALL, NOPAGE, AND NOPAGE ALL STATEMENTS
Normally, output to the terminal or to sequential access files is not divided into pages; that is, it is in nopage mode.
Whenever a sequential access file is assigned to a channel by a FILES or a FILE statement, it is automatically set in
nopage mode. At the beginning and also at the end of program execution, the terminal is set to nopage mode. The
PAGE ~nd PAGE ALL statements allow the user to set a page size of any positive number of lines for the terminal
and sequential access files. The NOPAGE and NOPAGE ALL statements allow the user to set the terminal and
sequential access files to nopage mode. Nopage and page modes are meaningless for random access files.

The form of the PAGE statement is:

PAGE argl, arg2, ... argn

where each argument has the form:

#N, numeric formula

The arguments can be separated by commas or semicolons. N is the channel specifier. The numeric formula is
truncated to an integer and used to specify the page size. Either a comma or a colon can be used to separate the
channel number from the page size.

If only a page size is present in an argument, that argument refers to the terminal; for example:

4() PAGE 11~ 66; 50, 17:62

sets the files on channels 1 and 7 to page sizes of 66 and 62 lines respectively, and the terminal to a page size of
50 lines.

The form of the PAGE ALL statement is:

PAGE ALL numeric formula

This statement sets the sequential access mes on channels 1 through 9 to a page size specified by the numeric
formula; however, the terminal is not affected. The value of the numeric formula is truncated to an integer before
the page size is set. An example of the PAGE ALL statement is:

90 PAGE I~L.L. 0 (2) *B

10-13

Data File Capability

Neither the PAGE nor PAGE ALL statement has any effect on random access files or on channels that have no
files assigned to them. Consequently, the PAGE ALL statement is a convenient way to set a page size for all of the
sequential access files currently assigned to channels. If a PAGE or PAGE ALL statement specifies a page size of
zero or less than zero, an error message is issued.

When a PAGE or PAGE ALL statement is executed for a sequential access file that is in write mode or for the
terminal, BASIC ends the current line of output (if necessary), outputs a leading form feed, and starts counting
lines beginning with the next line output. Subsequently, whenever a new page becomes necessary, a form feed is
output and the line count is set back to zero. Execution of a <FA> delimiter sets the line count to zero. PAGE
and PAGE ALL statements can be executed for sequential access files in read mode; in this case, the leading form
feed is not output. A page size remains in effect until another PAGE or PAGE ALL statement changes it, until a
NOPAGE or NOPAGE ALL statement is executed for that file or the terminal, or until the end of program execu
tion. Setting the page size for the terminal is further described in Chapter 6.

The form of the NOPAGE statement is:

NOPAGE argI, arg2, ... argn

where each argument has the form:

#N
or N

where N is the channel specifier. If an argument is omitted, the terminal is specified; for example:

1.0 NDPAGE :U:3" 2

refers to the terminal and the files on channels 2 and 3.

Since the NOPAGE statement is assumed to have at least one argument, the statement

7() NDPAGE

refers to the terminal.

The form of the NOPAGE ALL statement is:

NOPAGEALL

The NOPAGE ALL statement sets all of the sequential access files on channels I through 9 in nopage mode, but
does not affect the terminal.

Like the PAGE and PAGE ALL statements, NOPAGE and NOPAGE ALL statements have no effect on channels
that have random access files or no files assigned to them. Consequently, the NOPAGE ALL statement is a con
venient way to set all of the sequential access files currently assigned to channels into nopage mode.

10.10 THE IF END STATEMENT
The IF END statement allows the user to determine whether or not there is any data left in a file between the
current position in the file and the end of the file.

10-14

Data File Capability

The statement forms are:

For sequential access files:

~GOTO! . IF END #N, ~ THEN line number

For random access files:

~GOTOt .
IF END :N, 1 THEN ~ line number

where N is the channel specifier. The line number must refer to a line in the program and must follow the rules for
line numbers discussed in Chapter 1. Either THEN or GO TO must be used in the statement. The comma preceding
THEN or GO TO is optional.

The IF END statement will execute for a sequential access file only if the file is in read mode; an error message will
be issued if the me is in write mode or if it does not exist. The IF END statement will always execute for a random
access file that exists because such a file does not distinguish between read and write modes. For the purposes of
the IF END statement, the end of a random access file is considered to be just beyond the final record in the file.
The LOC and LOF functions described in Section 10.6 can also be used to determine whether or not there is any
data between the current pointer position in a random access file and the end of the file.

If an IF END statement is executed for a sequential access me that is in read mode but that has not yet been
referenced by a READ or INPUT statement, the IF END statement will assume that the me does not have line
numbers. Thus, if an IF END statement is executed for a line-numbered file that has not been referenced by a READ
statement, the IF END statement will treat line numbers as data items and will erroneously report that there is
data in the file if only line numbers remain in the me. As soon as a READ or INPUT statement is executed for a
file, the IF END statement correctly interprets the kind of file (line-numbered or nonline-numbered) and can
distinguish between line numbers and data.

The following example shows how the IF END statement works for sequential access meso

10 FILES TEST
20 SCRATCH 11
30 FOR X=l TO 5
40 READ A
50 WRITE 11v A
toO NEXT X
70 RESTORE 11
SO FOR 1=1 TO 10
90 PRINT "I = u; Iv
100 IF END 11 THEN 170
110 READ 11, Bel)
120 PRINT BCI)
:1.30 NEXT I
140 PRINT "FAILED"
:1. ~.'.50 !3TOP
160 DATA -1,-2,-3p-49-5,-toY-7v-8y~9Y-I0
:1.70 END

F~EADY

FWNNH

10-15

Data File Capability

1: .. - 1 ····:1.
I _ .. '1

A" ••

I _ .. 3 "X '-,J

I 4 ····4
I .. - !:.)

, ,.)

:r 6

TIME: 0.1'4 SEeS.

READY

If the final record written into a random access me is record number 1804, for example, the IF END statement
will cause a transfer when it is executed only if the pointer for that file has a value of 1805 or greater at that time.

10-16

CHAPTER 11

FORMATTED OUTPUT

The user who wishes to control the format of his output more than is permitted by the PRINT, PRINT#, and
WRITE# statements described in Chapters 6 and 10 can use the statements described in this chapter. These state
ments are PRINT USING, PRINT USING#, and WRITE USING#. They all use a special formatting string, called an
image, to format their output.

11.1 THE USING STATEMENTS
The PRINT USING statement allows formatting of string and numeric output to the terminal. The forms of the
PRINT USING statement are:

PRINT USING line number, list
PRINT USING string formula, list

THE PRINT USING# and WRITE USING# statements allow formatting of output to data files. PRINT USING#
formats output to data files without line numbers; WRITE USING# formats output to line-numbered data files: The
forms of the PRINT USING# statement are:

PRINT USING #N, line number, list
PRINT USING #N, string formula, list
PRINT #N, USING line number, list
PRINT #N, USING string formula, list

The forms of the WRITE USING# statement are:

WRITE USING #N, line number, list
WRITE USING #N, string formula, list
WRITE #N, USING line number, list
WRITE #N, USING string formula, list

N is a numeric formula having a value from 1 through 9 that specifies the channel that the file is on. The comma
following N can be omitted in the forms in which N precedes the word USING. The list has the form:

formula delimiter formula delimiter ... formula

The formulas are either string or numeric and the delimiters are commas or semicolons. At least one formula must
be present in the list.

The USING statements output each formula in their lists under the control of an image that specifies the format.
The image is a string of characters that describe the form of the output (integer, decimal, string, etc.) and the place
ment of the output on the output line. If the USING statement contains a line number as its argument, the image is
on the line specified by that line number. Such a line is called an image statement and has the form:

line number: string of characters

The string of characters in an image statement is not enclosed in quotes. For example:

11-1

Formatted Output

10 PRINT USING 20, A
20 : THE ANSWER IS I1I1

Image statements cannot be terminated by the apostrophe remarks indicator because an apostrophe can be used as
a format control character in an image.

If the USING statement contains a string formula as its argument, the image is the value of the string formula. If
the string formula is a string constant, it must be enclosed in quotes. An example of the image in the USING state
ment is:

10 PRINT USING "THE ANSWER IS 1111", A

When a USING statement is executed, BASIC begins a new line of output, and the first argument in the USING
statement is output into the first specification in the image. If there are more arguments in the USING statement
than specifications in the image, a new output line is begun and the specifications in the image are used again.
USING statements always write complete lines. The current margin set for the terminal or the data file referenced
does not affect USING statements; however, an attempt to create a line longer than 132 characters results in an
error message. Quote and noquote modes do not affect USING statements; USING statements ignore both modes.

The WRITE USING# statement performs the same functions as the PRINT USING# statement except that WRITE
USING# places a line number and a tab at the beginning of each line. Neither the line number nor the tab are
specified in the image. WRITE USING# statements must be used for files that have line numbers, and PRINT
USING# statements must be used for files that do not have line numbers. If an attempt is made to use a WRITE#
or WRITE USING# statement for a file that was previously written by PRINT# or PRINT USING# statements, an
error message will be issued unless an intervening SCRATCH# statement erased the file. Similarly, an attempt to
use PRINT# or PRINT USING# statements for a file that was previously referenced by WRITE# or WRITE
USING# statements results in an error message unless an intervening SCRATCH# statement erased the file.

An example of PRINT USING# and WRITE USING# is shown below.

10 FILES TEST1,TEST2
20 SCRATCH 11, 12
30 AS = "THE INDEX
40 FOR T = 1 TO 3
50 PRINT USING 11,
60 WRITE USING 12,
:70 NEXT T
DO END

F<EADY
FWNNH

TH1E: O. 89 ~3ECE> +

F~EADY
C;C)F:1Y Tr::S T 1. :::.
THE INDEX IE>
THE INDEX IS
THE INDEX IS

TTY:
:L
2
3

IE>

A!I; ,
A!I; ,

:0::0: n

T
T

11-2

I:;:EAf.lY
COpy TE8T2 > TTY:
01000 THE INDEX IS 1
01010 THE INDEX IS 2
01020 THE INDEX IS 3
0:1.03()

11.2 IMAGE SPECIFICATIONS

Formatted Output

An image is a string that contains format characters and printing characters. The format characters form specifica
tions that describe how the values of the arguments of the USING statement will be arranged on an ou tput line.
More than one specification can be present in an image, but to avoid ambiguities when outputting numbers, the
user should separate numeric specifications by string specifications, printing characters, or spaces. Note that spaces
are printing characters and, therefore, as many spaces as are inserted between specifications will be inserted between
the output items. That is, if two spaces separate a numeric specification from the preceding specification, two spaces
will separate the numbers that are output according to these specifications. If numeric specifications are not
separated from one another, ambiguities will generally exist and BASIC will make arbitrary decisions about the
specifications. In general, it will accept as much of the speCifications as it can, stopping when a character is seen
that clearly delimits a specification because it considers that it has reached the end of the specification. String
specifications need not be separated from one another because they are not ambiguous. Printing characters are
output exactly as they appear in the image.

Image specifications can be divided into three major kinds:

1. Numeric image specifications,
2. Edited numeric image specifications, and
3. String image specifications.

11. 2.1 Numeric Image Specifications
Numeric image specifications are used to describe the formats of integer and decimal numbers. Format characters
within the image specification indicate the digits, sign, decimal point, and exponent of the number. Numbers in
BASIC normally contain eight significant digits, and never contain more than nine significant digits. If a numeric
image specification would cause a number to be output with more than nine significant digits, zeroes are substituted
for all digits after the ninth. The format characters in all numeric image specifications must be contiguous.

The format characters used in numeric image specifications are:

(number sign)
. (decimal point)
tttt (four up-arrows)l

Number signs in the specification indicate the digits in the number and a minus sign if the number is negative. At
least two number signs must be present at the beginning of the image specification; an isolated number sign is
treated as a printing character. A number sign is written in the image specification for each digit in the number to be
output plus one additional number sign to indicate a minus sign if the number to be output is negative. For example,
to output a negative four-digit integer, at least five number signs should be written in the image specifications; a
non-negative number containing four digits requires only four number signs.

11.2.1.1 Integer Image Specifications - Numbers can be output as integers by means of an image specification con
taining only number signs. As stated above, an additional number sign must be included in the image specification

IOn some terminals, the circumflex (A) is used instead of the up-arrow (t).

11-3

Formatted Output

for a minus sign if the number is negative. If the number is positive or zero, no sign is output; if the number is
negative, a minus sign is output. If insufficient characters are present in the image specification, an ampersand (&)
is placed in the first position of the output field and the field is widened to the right to accommodate the number.
If the image specification width is larger than necessary to accommodate the number, the number is right-justified
in the output field. The number to be output is truncated to an integer if it is not an integer. An example showing
integer image specifications follows.

:1.0

::~o

40
~)()

J=~UNNH

I:~EAD (.':" B , C , 1) , E
DATA 25.6, -14.7, 4, -9.1, -41876.3
PRINT USING "tl •• Iii·, AyB,B
f.ll~ ::::" :1/::/1: :1/: 41: :ft: n

PRINT USING A$,D,E
END

2::) ····:1.4
····:1.4

:~····4:I.G76

TIME: O. :1.0 !:>ECS.

11.2.1.2 Decimal Image Specifications - Decimal image specifications must contain number signs, as in integer
image specifications, and a single decimal point. Optionally, the user can include four up-arrows (tttt) at the end
of a decimal specification to indicate that the number is to be output with an explicit exponent. A number output
under control of a decimal image specification always contains an explicit decimal point.

When four up-arrows are present in the image specification, an explicit exponent is output in the form E±nn. The
sign of the exponent is always output, a plus sign for positive or zero exponents, a minus sign for negative expo
nents (e.g., E+OI).

The decimal point in the image specification causes the decimal point to be fixed in the output field. Thus number
.signs that precede the decimal point in the image specification reserve space in the output field for the digits before
the decimal point and a minus sign if the number is negative. At least one digit is always output before the decimal
point, even if the digit is zero. The number signs that follow the decimal point in the image specification reserve
space for the digits after the decimal point in the output field.

If the number is to be output with an explicit exponent, a position must be reserved for the sign of the number even
if the number is positive (a space is output for the sign of a positive number). When the number with the exponent
is output all of the positions before the decimal point in the output field are used and the exponent is adjusted
accordingly. If the number is not to be output with an explicit exponent, and more spaces are reserved before the
decimal point than are necessary, the number is right-justified in the output field and leading spaces are appended.
If insufficient spaces are reserved before the decimal point, an ampersand (&) is placed in the first position of the
output field and the field is widened to the right to accommodate the number.

11-4

Formatted Output

Whether or not the number is output with an explicit exponent, as many digits are output following the decimal
point as there are number signs following the decimal point in the image specification. The number is rounded or
trailing zeros are added if necessary.

An example of the use of decimal image specifications follows.

10 READ A,B,C,D,E,F
20 :$*~$.*i ii. ii.i#i*
30 PRINT USING 20, A,B,C,D,E,F
40 DATA 100.256, 3.6, 218.24318
50 DATA -4.6, 3, 0.01256
60 PRINT
70 PRINT USING 80, 100.2, 14
80 :~*i.i--_M ii$._M~M

90 END

FWNNH

100.:;~6
· .. ·4.60

4. &:;! H~. ~~432
:3. 0.0:1.26

:1.0.0E+0:1. :I.4.E+OO

0.:1.:3 SECS.

I~EA1)Y

11.2.2 Edited Numeric Image Specification
For those users who wish to output numbers in a form suitable for accounting reports, payrolls, and the like,
additional format characters can be included in numeric image specifications to cause the numbers to be edited.
The format characters used for edited numeric specifications are:

1. Comma (,),
2. Minus sign (-),
3. Asterisk (*), and
4. Dollar sign ($).

Comma
One or more commas in the integer part of a numeric image specification causes the digits in the output number to
be grouped into hundreds, thousands, etc., and separated by commas (e.g., 1,000,000). The commas, however,
cannot be in the first two places in the specification. Only one comma need be present in the image specification
for the number to be output with commas in the required places, but a pound sign or a comma must be present in
the image specification to reserve space for each comma to be output. For example, to print the number 1,365,072,
the image specification must contain one comma and at least eight pound signs and/or commas. It is useful, how·
ever, to position commas in the specification where they will appear when they are output, e.g., ##,###,###. A
comma that is not part of a numeric image specification is treated as a printing character.

11·5

Formatted Output

Example:

10 PRINT USING H •••• ~ ••• H,1E4,1E5,1E6
20 pr~~INT

30 PRINT USING 40, -141516.8
40 :",y"",.,
::.:jO END

F~EI~DY
F~I...INNI·I

lO:,OOO
lOOvOOO

~~ :1. v 000 ~ 000

····:1.4:1. v::):l.6.B

TIME: 0.:1.1 SEtS.

Trailing Minus Sign
A trailing minus sign in a numeric image specification causes the number to have its sign printed at its end, rather
than at its beginning (e.g., 27-). A trailing minus sign in a number is often used in a report to indicate a debit.
When a trailing minus sign is present in the image specification, a position need not be saved at the beginning of
the image specification for the sign of the number, since the minus sign reserves a place for the sign. When the trail
ing minus sign is present in the image specification and the output number is positive or zero, the sign field on out
put is blank. A minus sign that does not end a numeric image specification is treated as a printing character.

Example:

10 PRINT USING " ••• -",lO,-l4,l37.B
:':::0 PF;.~INT

30 PRINT USING 40,-:l.4l5l6.8~-:l.4

40 :",""'.1- ••. ~~~~-
::50 END

Fi~E(~DY

F~l.JNNH

10
:1.4····

:I. 3·/

TIME: 0.02 SEtS.

F~EADY

11-6

Formatted Output

Leading Asterisk
If a numeric image specification begins with two or more asterisks instead of number signs, the number is output
with leading asterisks fIlling any unused positions in the output field. Leading asterisks are often used when printing
checks or in any application that requires that the numbers be protected (i.e., so that no additional digits can be
added).

Within an image specification, an asterisk can replace one or all of the number signs. In image specifications with
leading asterisks, negative numbers can be output only if there is a trailing minus sign in the image specification. If
a trailing minus sign is not present in the image specification and an attempt is made to output a negative number,
an error message will be issued. Thus, an additional position need not be saved for a leading sign. Four up-arrows
cannot be present in an image specification that contains leading asterisks. Thus, numbers with explicit exponents
cannot be output with leading asterisks. An isolated asterisk in an image is treated as a printing character.

An example showing image specifications with leading asterisks follows.

:1.0
20

30

F~UNNH

*:t.:3 • ~.:i6
**4. :::iD
**:3.10
*19.6:1.
100.~)()

A!I;::::" ***. **"
F:EAD X, Y ~ l, W , U
DATA 13.56, 4.577, 3.1, 19.612, 100.50
PRINT USING AS, X,Y,Z,WvU
PF~INT

PRINT USING "*****v*** **11-", lE6v-1E3
END

:1. 1,000,000 :1.000····

TIME: O. :1.:3 SEeS.

Floating Dollar Sign
If a numeric image specification begins with two or more dollar signs instead of number signs, the number is output
with a floating dollar sign. That is, a dollar sign is always output in the position immediately preceding the first
digit of the number, even if there are fewer digits in the number than there positions specified in the image specifi
cation. This capability is often used to protect checks so that there are never any spaces left between the dollar sign
and the number.

The dollar sign can replace any or all of the number signs in the image specification (Le., $$$$.$$ is exactly the same
as $$##.##). An additional position at the beginning of the image specification must be indicated to save a place
for the dollar sign in the output field.

When the floating dollar sign is used in the image specification, negative numbers can be output only if there is a
trailing minus sign. If a trailing minus sign is not present in the image specification and an attempt is made to out
put a negative number, an error message is issued. Thus, a space need not be reserved for a leading sign in the output

11-7

Formatted Output

field. Four up-arrows cannot be present in a numeric image specification that contains dollar signs. Thus, numbers
with explicit exponents cannot be output with floating dollar signs. An isolated dollar sign in an image is treated
as a printing character.

An example showing floating dollar sign ,specifications follows. Note that the image in line 10 contains a decimal
numeric image specification that is preceded by a dollar sign. This single dollar sign is treated as a printing character
and, as shown in the example, is fixed in the output field.

10
2()

ISSSS.S' S$ ••••••
/:U::AD A p ~h e

:.:~O

DATA 100.43, 19.678v 0.97
PRINT USING 10, A,A,B,B,C,C
PF~:J:NT

40
~)O

PRINT USING ",S",,",1000
END

F~UNNH

~;:I. O() • 43
~;:t 9.68
~lO.(i7

!/; :/. p 000

TIME:

!/; 100.4:3
~; 1.9.6,8

0.97

0+:1.1. SEes.

11.2.3 String Image Specifications
The string image specifications allow the user to right-justify, left-justify, or center strings in the output field. In
addition, the user can specify an image that causes the width of the output field to be extended if the string is
larger than the image specifies.

The format characters for string output are:

1. (apostrophe)
2. C (center)
3. L (left-justify)
4. R (right-justify)
5. E (extend)

A string image specification contains one apostrophe (') and as many of the format characters C, L, R, or E as are
necessary to output the string. The apostrophe is counted with the format characters when BASIC determines the
length of the output field. The format characters cannot be mixed within an image specification. If the image
specification contains only the apostrophe, only the first character in the string is output. The characters in a string
image specification must be contiguous.

11-8

Formatted Output

C F onnat Character
C format characters following the apostrophe in a string image specification cause the string to be centered in the
output field. If a string cannot be exactly centered (e.g., a two-character string in a three-character field), it will be
off-center one character position to the left. If the string to be output is longer than the image specification, the
string is left-justified in the output field and the right-most characters that overflow are truncated.

L Fonnat Character
L format characters following the apostrophe in a string image specification cause the string to be left-justified in the
output field. If the string to be output is longer than the image specification, the string is left-justified in the field
and the rightmost characters that overflow are truncated.

R Fonnat Character
R format characters following the apostrophe is a string image specification cause the string to be right-justified in
the output field. If the string to be output is longer than the image specification, the string is left-justified in the
field and the rightmost characters that overflow are truncated.

E F onnat Character
E format characters following the apostrophe in a string image specification cause the string to be left-justified in the
output field. If the string to be output is longer than the image specification, the output field is widened (extended)
to the right to accommodate all the characters in the string.

The following example shows the use of the string image specification.

:to ~cccc ~EEEE ~ I ... LL.. !...
20 INPUT A~I>

30 IF AS="STOp· GOIO 60
40 PRINT USING 10, A$,ASyAS,AS,A$
~:iO GO TO 20
bO END

I~EADY

I:~UNNH

1'ABDC
I~x:!nc ABDC
'~I~lnCDEF

ABDC ABDC A

ABCDE ABCDEF ABCDE ABeDE A
1'A

A
"~STOP

TIME:

I:~[ADY

A A A A

Note that the last three fields in the second line printed are displaced one position because of the field extension
necessary in the second field of the line.

11.2.4 Printing Characters
All characters in an image that are not format control characters are printing characters. Printing characters are
output exactly as they appear in the image. Format control characters only appear as part of image specifications;

11-9

Formatted Output

if a character used as a format control character (e.g., $, E, *) does not appear as part of an image specification, it
is treated as a printing character. If the USING statement does not use all of the specifications in an image, all of
the printing characters except those following the unused specifications are printed. Similarly, if the USING state
ment uses the specifications in an image more than once, the printing characters in the image will be output as many
times as the image is used. An example showing the use of printing characters in images follows.

10 : 'E TRUNCATED 'RRRR ROUNDED
20 : THE DATE IS: 'RRRRRRR1976
30 :A=tll AND THE SQUARE ROOT OF A=II
40 F:oF~INT USING 20!! "4····,JUI ... Y •
~.:=iO PI:~ I NT
60 PRINT USING 10, "ALL NUMERIC OUTPUT FROM THIS PROGRAM IS·

B () l-:':or :::: 2 ~::.i
90 PRINT USING 30~AySQR(A)
:1.00 END

F:EAD\(

THE:: DI~TE IS: 4 JUl...y :I. (?76

ALL NUMERIC OUTPUT FROM THIS PROGRAM IS TRUNCATED

A= 25 AND THE SQUARE ROOT OF A= 5

TIME: 0.:1.5 SEeS.

11-10

A.I ELEMENTARY BASIC STATEMENTS

APPENDIX A

SUMMARY OF BASIC STATEMENTS

The following subset of the BASIC command repertoire includes the most commonly used commands and is suffi
cient for solving most problems.

DATA [data list]

READ [sequence of variables]

PRINT [sequence of formulas and format
control characters]

LET [variable] = [formula] or
[variable] = [formula]

GO TO [line number]

IF [formula] [relation] [formula],

{ THEN} .
GO TO [lme number]

FOR
numeric
variable [formulal1 TO

{ SBTyEP} [formula2] [formula3]

NEXT [nu~ericJ or
vanable

NEXT [numeric numeric numericl
variable, variable ... variable J

{GO TO}
ON [x], THEN [line numbeq,]

[line number2,] [line numbern]

DIM [variable] (subscript) or
DIMENSION [variable] (subscript)

END

OAT A statements are used to supply one or more num
bers or alphanumeric strings to be accessed by READ
statements. READ statements, in tum, assign the next
available data, numeric or string as appropriate, in the
DATA statement to the variables listed.

Types of values of the specified formulas, which may
be separated by format control characters. If two
formulas are not separated by one or more format
control characters, they are treated as though they were
separated by a semicolon.

Assigns the value of the formula to the specified variable.

Transfers control to the line number specified and
continues execution from that point.

If the stated relationship is true, then transfers control
to the line number specified; if not, continues in
sequence. The comma preceding THEN and GO TO is
optional.

Used for looping repetitively through a series of steps.
The FOR statement initializes the variable to the value
of formula 1 and then performs the following steps until
the NEXT statement is encountered. The NEXT state
ment increments the variable by the value of formula3.
(If omitted, the increment value is assumed to be + 1.)
The resultant value is then compared to the value of
formula2. If variable ";;formula2, control is sent back to
the step following the FOR statement and the sequence of
steps is repeated; eventually, when variable >formula2,
control continues in sequence at the step following the
current NEXT argument.

If the integer portion of x = I, transfers control to line
number I, if x = 2, to line number2, etc. [x] may be a
formula. The comma preceding GO TO and THEN is
optional.

Enables the user to enter a table or array with a subscript
greater than 10 (i.e., more than 10 items).

Last statement to be executed in the program, and must
be present.

A-I

A.2 ADVANCED BASIC STATEMENTS
GOSUB [line number]

[line number]

Subroutine

Summary o/BASIC Statements

Simplifies the execution of a subroutine at several
different points in the program by providing an automatic
RETURN from the subroutine to the next sequential
statement following the appropriate GOSUB (the
GOSUB which sent control to the subroutine).

RETURN

INPUT [variable(s)]

STOP

REM

RESTORE

CHANGE [string ~~rmula 1
numerIC vectoJ

TO

[nume:~ vectoJ

string variable

CHAIN [string formula]
or CHAIN [string formula],

[numeric formula]

MARGIN [numeric formula]

PAGE [numeric formula]

NOPAGE

QUOTE

NO QUOTE

PRINT USING [line ~~mber]

string formula
[sequence of formulas]

A.3 MATRIX INSTRUCTIONS

Causes typeout of a? to the user and waits for user to
respond by typing the value(s) of the variable(s).

Equivalent to GO TO [line number of END statement] .

Permits typing of remarks within the program. The
insertion of short comments following any BASIC
statement (except an image statement) is accomplished by
preceding such comments with an apostrophe (').

Sets pointer back to beginning of string of OAT A values.

Changes a string formula to a numeric vector, or
changes a numeric vector to a string variable.

Stops execution of the current program and begins
execution of the new program at the beginning or at the
the specified line.

Sets the terminal to the specified output margin.

Output to the terminal is divided into pages of the
specified length.

Output to the terminal is not divided into pages.

The terminal is set to quote mode (see Chapter 10).

The terminal is set to noquote mode (see Chapter 10).

Types the values of the formulas in the format deter
mined by the image specified by the line number
or string formula.

NOTE
The word "vector" may be substituted for the word
"matrix" in the following explanations.

MAT READ a, b, c

MATc=ZER

Read the three matrices, their dimensions having been
previously specified.

Fill out c with zeros.

A-2

Summary of BASIC Statements

MATc= CON

MTAc= IDN

MAT PRINT a, b, c

MAT INPUT v

MATb =a

MATc=a+b

MATc=a- b

MATc=a*b

MAT c = TRN(a)

MAT c= (k) * a

MAT c = INV(a)

Fill out c with ones.

Set up c as an identity matrix.

Print the three matrices.

Input a vector.

Set matrix b = matrix a.

Add the two matrices, a and b.

Subtract matrix b from matrix a.

Multiply matrix a by matrix b.

Transpose matrix a.

Multiply matrix a by the number k. (k, which must be in
parentheses, may also be given by a numeric formula.)

Invert matrix a.

(Refer to Section A.5 for the special matrix functions NUM and DET.)

A.4 DATA FILE STATEMENTS
FILE [sequence of [channel specifier]

[fIlename argumentsJ

FILES [sequence of fIlename arguments]

SCRATCH [sequence of channel specifiers]

RESTORE [sequence of channel specifiers]

WRITE [channel specifier]
[sequence offormulas]

READ [channel specifier]
[sequence of variables]

PRINT [channel specifier]
[sequence of formulas]

INPUT [channel specifier]
[sequence of variables]

IF END [channel specifier] ,

{~~E:a} [line number]

MARGIN [sequence of [channel specifier]
[numeric formulaJ]

Assigns files to channels during program execution.

Assigns files to channels before program execution
begins.

Erases a sequential access file and puts it in write mode;
or erases a random access file and sets the record pointer
to the beginning of the file.

Puts a sequential access file in read mode or sets the
record pointer for a random access file to the beginning
of the file.

Causes data to be output to a file on the specified
channel. Used for sequential access fIles with line
numbers, or for random access files.

Causes data to be input from a file on the specified channel.
Used for sequential access files with line numbers or for
random access files.

Causes data to be output to a file on the specified
channel. Used for sequential access files without line
numbers or for random access files.

Causes data to be input from a fIle on the specified
channel. Used for sequential access files without line
numbers or for random access files.

Determines whether or not there is data in a file
between the current position and the end of the file.
The comma preceding THEN or GO TO is optional.

Sets the specified output margins for the sequential
access files on the specified channels.

A-3

Summary of BASIC Statements

MARGIN ALL [numeric formula]

PAGE [sequence of [channel specifier]
[numeric formula]]

PAGE ALL [numeric formula]

NOPAGE [sequence of channel specifiers]

NOPAGEALL

QUOTE [sequence of channel specifiers]

QUOTE ALL

NOQUOTE [sequence of channel specifiers]

NO QUOTE ALL

SET [sequence of [channel specifier]
[numeric formula]]

PR[:: ;:,::"1 JSP'ci~W;~~;;:Of
string formula

or
PRINT USING [channel specifier],

[line number] [sequence of
string formula 'formulas]

WRITE [Channelrecifier], USING

[
line number [f

or sequence 0

• C I formulas]
strmg lormu a

or

W[~~eEn~~:~ [JChanne~s~::~:::] ~f
or formulas]

string formula

A.S FUNCTIONS

Sets the specified output margin for the sequential access
files on channels 1 through 9.

Sets the specified output page sizes for the sequential
access files on the specified channels.

Sets the specified output page size for the sequential
access fIles on channels 1 through 9.

Output to the sequential access files on the specified
channels is not divided into pages.

Output to the sequential access files on channels
1 through 9 is not divided into pages.

Puts the sequential access files on the specified channels
into quote mode (see Chapter 10).

Puts the sequential access files on channels 1 through 9
into quote mode (see Chapter 10).

Puts the sequential access files on the specified channels
into noquote mode (see Chapter 10).

Puts the sequential access fIles on channels 1 through 9
into noquote mode (see Chapter 10).

Moves the record pointers for random access files.

Causes data to be output to a sequential access file with·
out line numbers on the specified channel. The data
is output in the format determined by the image specified
by the line number or string formula. In the first form,
the comma following the channel specifier can be omitted.

Causes data to be output to a line·numbered sequential
access file on the specified channel. The data is output
in the format determined by the image specified by the
line number or string formula. In the first form, the
comma following the channel specifier can be omitted.

In addition to the common arithmetic operators of addition (+), subtraction (-), multiplication (*), division (/),
and exponentiation (t or **), BASIC includes the following elementary numeric functions:

SIN (numeric formula) COT (numeric formula) LOG, or LN, or LOGE
COS (numeric formula) ATN (numeric formula) ABS
TAN (numeric formula) EXP (numeric formula) SQR or SQRT

CLOG or LOG 10

A-4

(numeric formula)
(numeric formula)
(numeric formula)
(numeric formula)

Summary of BASIC Statements

Some advanced numeric functions include the following:

INT (numeric formula)

RND

SGN (numeric formula)

TIM

Finds the greatest integer not greater than its argument.

Generates random numbers between 0 and 1. The same
set of random numbers can be generated repeatedly for
purposes of program testing and debugging. The
statement

RANDOMIZE

can be used to cause the generation of new sets of random
numbers.

Assigns a value of 1 if its argument is positive, 0 if its
argument is 0, or -1 if its argument is negative.

Returns the elapsed execution time, in seconds, since
the program started execution. The time does not
include compile and load time except when programs are
chained. In such a case, the compile and load times of the
programs after the first are included in the time returned.

Two functions used with matrix computations are as follows:

NUM

DET

Two functions for use with random access files are:

LOC (channel specifier)

LOF (channel specifier)

Functions for manipulating strings are:

ASC (one character or a 2- or 3-letter code)

CHR$ (numeric formula)

INSTR (numeric formula, string formula,
string formula)

or
INSTR (string formula, string formula)

LEFT$ (string formula, numeric formula)

Equals number of components following an INPUT.

Equals the determinant of a matrix after inversion.

Returns the number of the current record in the file
on the specified channel.

Returns the number of the last record in the file on the
specified channel.

Returns the decimal ASCII code for its argument.
The two- or three-letter codes are listed in Table 8-1.

The opposite function to ASC. The argument is trun
cated to an integer that is interpreted as an ASCII decimal
number; a one-character string is returned.

Searches for the second string within the first string
argument. In the first form, the search starts at the
character position specified by the numeric formula,
truncated to an integer. In the second form, the
search starts at the beginning of the string. Returns
zero if the substring not found; returns the position of
the first character in the substring if it is found.

Return a substring of the string formula, starting from
the left. The substring contains the number of charac
ters specified by the numeric formula truncated to an
integer.

A-S

Summary of BASIC Statements

LEN (string formula)

MID$ (string formula, numeric formula,
numeric formula)

or
MID$ (string formula, numeric formula)

RIGHT$ (string formula, numeric formula)

SPACES (numeric formula)

STR$ (numeric formula)

VAL (string formula)

Returns the number of characters in its argument.

Returns a substring of the string formula, starting at
the character position specified by the first numeric
formula truncated to an integer. In the first form,
the substring contains the number of characters
specified by the second numeric formula truncated
to an integer. In the second form, the substring con
tinues to the end of the string.

Returns a substring of the string formula, starting from
the right, containing the number of characters specified
by the numeric formula truncated to an integer.

Returns a string of the number of spaces specified by
the numeric formula truncated to an integer.

Returns a string representation of its argument.

The opposite function to STR$. Returns the number
that the string argument represents.

The user can also define his own function by use of the DEFine statement. For example,

[line number] DEF FNC(x) = SIN (x) + T AN(x) - 10

where x is a dummy variable. (Defme the user function FNC as the formula SIN(x) + T AN(x) - 10.)

NOTE
DEFine statements may be extended onto more than one
line; all other statements are restricted to a single line
(refer to Section 5.1.5).

A-6

APPENDIXB

BASIC DIAGNOSTIC MESSAGES

Most messages typed out by BASIC are self-explanatory. BASIC diagnostic messages are divided into three cate
gories and listed in the three tables below:

1. Command errors in Table B-1
2. Compilation errors in Table B-2
3. Execution errors in Table B-3

Table B-1
Command Error Messages

Message Explanation

?CANNOT INPUT FROM THIS DEVICE An attempt has been made to input to a device that
can only do output, or vice versa.

?CANNOT OUTPUT TO THIS DEVICE

?CANNOT OUTPUT mename.typ A COPY, SAVE, or REPLACE command could not
enter a me to output it. The actual name of the me
is typed, not filename.typ.

?CATALOG DEVICE MUST BE DISK A device other than disk was specified in a
CATALOG command.

?COMMAND ERROR (YOU MAY NOT OVER- The given RESEQUENCE command would have
WRITE LINES OR CHANGE THEIR ORDER) changed the order of lines in the me. The command

is ignored.

?COMMAND ERROR (LINE NUMBERS MAY The given RESEQUENCE command is not executed
NOT EXCEED 99999) for that reason.

?DELETE COMMAND MUST SPECIFY WHICH A DELETE command has no arguments.
LINES TO DELETE

?DUPLICATE FILENAME, REPLACE OR User tried to SAVE a me that already exists.
RENAME

?DUPLICATE SWITCH IN QUEUE ARGUMENT Two switches of the same type have been specified for
one QUEUE argument.

?FILE dev:menm.typ COULD NOT BE
UNSAVED

?FILE dev:menm.type NOT FOUND A me that was requested does not exist.

?LlNE TOO LONG A line of input is greater than 142 characters, not
counting the terminating carriage return, line feed.

?LOGOUT FAILED - TRY AGAIN A BYE or GOODBYE command could not transfer
control to the LOGOUT system program.

B-1

Basic Diagnostic Messages

Table B-1 (Cont.)
Command Error Messages

Message Explanation

?MISSING LINE NUMBER FOLLOWING During a WEAVE or OLD command, a line without
LINE nn l a line number was found in the file. The line is

thrown away.

?NO SUCH DEVICE, device The device is not available.

?PAGE LIMIT> 9999 OR < 1 IN QUEUE A LIMIT switch for a QUEUE argument was out of
ARGUMENT bounds.

?QUOTA EXCEEDED OR BLOCK NO. TOO Normally, this indicates that all of the space allowed
LARGE ON OUTPUT DEVICE on the output device has been used; no more can be

output to this device unless some of the user's files
are deleted from it. This can also mean that the
block number is too large for the output device.

?THIS COMMAND IS NOT IMPLEMENTED FOR
THIS SYSTEM

?UNDEFINED LINE NUMBER mm IN LINE nn

?UNSAVE DEVICE MUST BE DISK FILE A device other than disk was specified in an
dev: filenm. typ UNSA VE command.

?WHAT? Catchall command error.

> 63 OR < 1 COPIES REQUESTED IN QUEUE A COPIES switch for a QUEUE argument was out of
ARGUMENT bounds.

1 If the current program was called by a CHAIN statement, the name of the current program is appended to the
error message.

Table B·2
Compilation Error Messages

Message Explanation

?BAD DATA INTO LINE n Incorrect number or string data in a DATA state·
ment.

?DATA IS NOT IN CORRECT FORM Input data is not in correct form.
?END IS NOT LAST IN nn

?EOF IN LINE nn An attempt was made to read data from a me after
all data had been read.

?F AlLURE ON ENTRY IN LINE nn Channel is not available for SCRATCH command.

?FNEND BEFORE DEF IN LINE nn FNEND occurs, but not in a function DEF.

?FNEND BEFORE NEXT IN LINE nn A FOR occurred in a DEF, but its NEXT did not.

?FOR WITHOUT NEXT IN LINE nn

?GOSUB WITHIN DEF IN LINE nn A GOSUB statement is within a multiple line DEF.

?FUNCTION DEFINED TWICE IN LINE nn

?ILLEGAL ARGUMENT FOR ASC FUNCTION

INLINEnn

B·2

Basic LJiagnostic Messages

Table B-2 (Cont.)
Compilation Error Messages

Message

?ILLEGAL CHARACTER IN LINE nn

?ILLEGAL CONSTANT IN LINE nn

?ILLEGAL FORMAT IN LINE nn

?ILLEGAL FORMAT WHERE THE WORDS
THEN OR GO TO WERE EXPECTED IN
LINE nn

?ILLEGAL FORMULA IN LINE nn

?ILLEGAL INSTRUCTION IN LINE nn

?ILLEGAL LINE REFERENCE IN LINE nn

?ILLEGAL LINE REFERENCE mm IN LINE nn

?ILLEGAL RELATION IN LINE nn

?ILLEGAL VARIABLE IN LINE nn

?INCORRECT NUMBER OF ARGUMENTS IN
LINE nn

?INITIAL PART OF STATEMENT NEITHER
MATCHES A STATEMENT KEYWORD NOR
HAS A FORM LEGAL FOR AN IMPLIED LET -
CHECK FOR MISSPELLING IN LINE nn

?MIXED STRINGS AND NUMBERS IN LINE nn

?NESTED DEF IN LINE nn

?NEXT WITHOUT FOR IN LINE nn

?nn IS NOT AN IMAGE IN LINE nn

Explanation

A meaningless character; e.g., DIM # (1).

Catchall for other syntax errors.

Syntax error in arithmetic formula.

The first three non-blank, non-tab characters of the
statement do not match the first three characters of
any legal statement.

BASIC syntax required an integer, but user typed
something else; e.g., GO TO A.

In line nn, line mm was referred to illegally
because:

a. Line mm is a REM
b. The first character in line rom is an

apostrophe (').
c. One of the lines nn or mm is inside a

function; the other is not inside that
function.

Incorrect IF relation.

A function used with the wrong number of argu
ments.

Line nn illegally contains a string variable or
literal because:

a. No element of this statement may be a
string.

b. All elements must be strings but some
were not.

DEF within multiline DEF.

The specified line was referenced by a USING
statement as an image, but it is not an image
statement.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all compilation error messages. For example, NO DATA IN TEST.BAK.

B-3

Basic Diagnostic Messages

Table B-2 (Cont.)
Compilation Error Messages

Message

?NO CHARACTERS IN IMAGE IN LINE nn

?NODATA

?NO END INSTRUCTION

?NO FNEND FOR DEF FNx

?OUT OF ROOM

?RETURN WITHIN DEF IN LINE nn

?SPECIFlED LINE IS NOT AN IMAGE IN
LINE nn

?STRING RECORD LENGTH> 132 OR<lIN
LINE nn

?STRING VECTOR IS 2-DIM ARRAY

?SYSTEM ERROR

?TOO MANY FILES IN LINE nn

?UNDEFINED FUNCTION - FNx

?UNDEFlNED LINE NUMBER mm IN LINE nn

?USE VECTOR, NOT ARRAY IN LINE nn

?V ARIABLE DIMENSIONED TWICE IN LINE nn

?VECTOR CANNOT BE ARRAY IN LINE nn

?Characteq WAS SEEN WHERE character2
WAS EXPECTED IN LINE nn

Explanation

Program contains READ but not DATA.

The multiline DEF for FNx (the actual function
name, not FNx is typed) has no FNEND.

Cannot get more memory to make room for:

a. More compilation space.
b. Maximum space for all the vectors

and arrays
c. Space to store another string during

execution.

A RETURN statement is within a multiple line DEF.

The length of a record in a string random access file
was specified as greater than 132 or less than 1.

The user managed to do this error despite many
other checks.

An I/O error, or the UUO mechanism drops a bit,
or something similar to those errors.

A maximum of nine files can be open at one time
in a program.

The actual function name, not FNx, is typed.

In line nn, mm is used as a line number. Line
number mm does not exist.

A variable previously defined as a two-dimensional
array is now used in MAT input or CHANGE.

A variable previously used in a MAT INPUT or
CHANGE statement is now defined as a 2-
dimensional array in a DIM statement.

An erroneous character was used in place of the
correct character. Characteq and character2
are replaced by the appropriate characters or a
phrase describing the characters when the message
is issued.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all compilation error messages. For example, NO DATA IN TEST.BAK.

B4

Basic Diagnostic Messages

Table B-3
Execution Error Messages

Message

%ABSOLUTE VALUE RAISED TO POWER IN
LINE nn

? ATTEMPT TO OUTPUT A NEGATIVE NUMBER
TO A $ OR * FIELD IN LINE nn

?ATTEMPT TO OUTPUT A NUMBER TO A
STRING FIELD OR A STRING TO A
NUMERIC FIELD IN LINE nn

? ATTEMPT TO READ# OR INPUT# FROM A
FILE WHICH DOES NOT EXIST IN LINE nn

? ATTEMPT TO READ# OR INPUT# FROM A
FILE WHICH IS IN WRITE# OR PRINT#
MODE IN LINE nn

?ATTEMPT TO WRITE A LINE NUMBER
> 99,999 IN LINE nn

?ATTEMPT TO WRITE# OR PRINT# TO A
FILE WHICH HAS NOT BEEN SCRA TCH#ED
IN LINE nn

? ATTEMPT TO WRITE# OR PRINT# TO A
FILE WHICH IS IN READ# OR INPUT#
MODE IN LINE nn

?CHR$ ARGUMENT OUT OF BOUNDS IN
LINE nn

?DATA FILE LINE TOO LONG IN LINE nn

?DIMENSION ERROR IN LINE nn

Explanation

A USING statement attempted to output a negative
number to a floating dollar sign or leading asterisk
field that did not end in a minus sign.

A USING statement attempted to output a number
to a string field or a string to a numeric field.

An attempt was made to read from a file that does
not exist on the user's disk area.

An attempt was made to read from a sequential
access file that is not in read mode.

An attempt was made to write to a sequential
access file that is not in write mode.

An attempt was made to write to a sequential
access file that is not in write mode.

The argument to the CHR$ function was less than
zero or greater than 127.

An attempt has been made to read from a data file
a line which is greater than 142 characters long.

%DIVISION BY ZERO IN LINE nn t
?EXPONENT REQUESTED FOR * OR $ FIELD
IN LINE nn

?FILE IS NOT RANDOM ACCESS IN LINE nn

?FILE NEVER ESTABLISHED - REFERENCED
IN LINE nn

t An OVERFLOW error message means that an attempt has been made to create a number larger in mag
nitude than the largest number representable in the computer (approximately 1.7E + 38); when this
occurs, the largest representable number is returned (with the correct sign) and execution continues.
An UNDERFLOW error message means that an attempt has been made to create a nonzero number
smaller in magnitude than the smallest representable positive number (approximately 1.4E - 39); in this
case, zero is returned and execution continues. Division by zero is considered overflow; the largest
representable positive number is returned.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST.BAK.

B-5

Basic Diagnostic Messages

Table B-3 (Cont.)
Execution Error Messages

Message

?FILE NOT FOUND BY RESTORE COMMAND
IN LINE nn

?FILE filenm.typ ON MORE THAN ONE
CHANNEL IN LINE nn

?FILE NOT IN CORRECT FORM IN LINE nn

?FILE RECORD LENGTH OR TYPE DOES NOT
MATCH IN LINE nn

?IF END ASKED FOR UNREADABLE FILE IN
LINE nn

?ILLEGAL CHARACTER IN STRING IN LINE nn

?ILLEGAL CHARACTER SEEN IN LINE nn

?ILLEGAL FILENAME IN LINE nn

?ILLEGAL LINE REFERENCE IN RUN (NH) OR
CHAIN

?IMPOSSIBLE VECTOR LENGTH IN LINE nn

?INPUT DATA NOT IN CORRECT FORM
RETYPE LINE

?INSTR ARGUMENT OUT OF BOUNDS IN
LINE nn

?LEFT$ ARGUMENT OUT OF BOUNDS IN
LINEnn

?LINE NUMBER OUT OF BOUNDS IN LINE
nn

%LOG OF NEGATIVE NUMBER IN LINE nn

%LOG OF ZERO IN LINE nn

%MAGNITUDE OF SIN OR COS ARG TOO
LARGE TO BE SIGNIFICANT IN LINE nn

?MARGIN OUT OF BOUNDS IN LINE nn

Explanation

The user tried to establish the same file on more
than one channel.

A data error has been detected in a string random
access file.

An existing random access me does match the type
or record length specified for it in a FILE statement.

An attempt has been made to write onto a data
file a string containing an embedded line termina
tor or quote.

An attempt has been made to create an illegal
character in a CHANGE statement.

The string argument is not in the correct form. If
the argument is variable, check that it has been
defined.

The line at which execution is to begin is inside a
multiline DEF.

In a CHANGE (to string) statement, the zero element
of the number vector was negative or exceeded its
maximum dimension.

The line number argument is less than zero or
greater than 99,999. The RUN (NH) commands
return a ?WHAT? message in this situation.

When the argument for COS or SIN is too large to
be Significant, this message is issued and an answer
of 0 returned.

A MARGIN or MARGIN ALL statement specified
a margin greater than 132 characters or less than 1
character.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN LINE 20 IN TEST.BAK.

8-6

Basic Diagnostic Messages

Table B-3 (Cont.)
Execution Error Messages

Messages

?MARGIN TOO SMALL IN LINE nn

?MID$ ARGUMENT OUT OF BOUNDS IN
LINEnn

?MIXED RANDOM & SEQUENTIAL ACCESS
IN LINE nn

?MIXED READ#/INPUT# IN LINE nn

?MIXED WRITE#/PRINT# IN LINE nn

?NEGA TIVE STRING LENGTH IN LINE nn

?NO FIELDS IN IMAGE IN LINE nn

?NO ROOM FOR STRING IN LINE nn

?NO SUCH LINE IN RUN (NH) OR CHAIN

?NOT ENOUGH - ADD MORE

?ON EVALUATED OUT OF RANGE IN LINE nn

?OUT OF DATA IN LINE nn

?OUTPUT ITEM TOO LONG FOR LINE IN
LINE nn

?OUTPUT LINE 132 CHARACTERS IN
LINE nn

?OUTPUT STRING LENGTH RECORD
LENGTH IN LINE nn

%OVERFLOW IN LINE nn

Explanation

A WRITE# statement referenced a file that has a
margin of fewer than seven characters.

A random access statement or function referenced a
sequential access file, or vice versa.

An attempt was made to reference a file with both a
READ# and an INPUT# statement without an inter
vening RESTORE# statement.

An attempt was made to reference a file with both a
WRITE# and a PRINT# statement without an inter
vening SCRATCH# statement.

In a MID$, LEFT$, or RIGHT$ function, a negative
number of characters was specified for a substring.

An image contains neither string nor numeric fields.

In a CHANGE A$ TO A, the number of characters
in A$ exceeds the maximum size of A. A DIM
statement appropriately increasing the size of A
will cover this.

The specified line does not exist in the program.

The value of the ON index was < I or> the number
of branches. '

In quote mode, an attempt was made to write a
string or number that is too long to fit on one line.

A line of output created by a USING statement
is greater than 132 characters.

An attempt has been made to output to a random
access file a string which is too long to fit in one
record.

t

t An OVERFLOW error message means that an attempt has been made to create a number larger in mag
nitude than the largest number representable in the computer (approximately 1.7E + 38); when this
occurs, the largest representable number is returned (with the correct sign) and execution continues.
An UNDERFLOW error message means that an attempt has been made to create a nonzero number
smaller in magnitude than the smallest representable positive number (approximately 1.4E - 39); in
this case, zero is returned and execution continues. Division by zero is considered overflow; the
largest representable positive number is returned.

NOTE: If the. current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST.BAK.

B-7

Basic Diagnostic Messages

Table B-3 (Cont.)
Execution Error Messages

Message

%OVERFLOW IN EXP IN LINE nn

?PAGE LENGTH OUT OF BOUNDS IN LINE nn

?QUOTA EXCEEDED OR BLOCK NO. TOO
LARGE ON OUTPUT DEVICE

?RETURN BEFORE GOSUB IN LINE nn

?RIGHT$ ARGUMENT OUT OF BOUNDS IN
LINE nn

?SET ARGUMENT OUT OF BOUNDS IN
LINE nn

o/oSINGULAR MATRIX INVERTED IN LINE nn

?SPACE$ ARGUMENT OUT OF BOUNDS IN
LINE nn

o/oSQRT OF NEGATIVE NUMBER IN LINE nn

?STRING FORMULA 132 CHARACTERS IN
LINE nn

?STRING RECORD LENGTH 132 or 1 IN
LINE nn

?SUBROUTINE OR FUNCTION CALLS ITSELF
IN LINE nn

%TAN OF P1/2 OR COTAN OF ZERO IN
LINE nn

?TOO MANY ELEMENTS - RETYPE LINE

Explanation

An exponent greater than 88.028 has been speci
fied for the EXP function. An answer of the largest
representable number is returned and execution
continues.t

A PAGE or PAGE ALL statement specified in a page
length of less than one line.

Normally, this indicates that all of the space
allowed on the output device has been used; no
more can be output to this device unless some of
the user's files are deleted from it. It may also mean
that the block number is too large for the output
device.

The user attempted to set the value of the pointer to
zero or to a negative number.

The SPACE$ function was requested to return a
string that was less than or equal to zero or greater
than 132 characters.

A string formula contains more than 132 characters.

The record length for a string random access file
was speCified as less than one or greater than 132
characters.

FNA is defined in terms of FNB which is defined in
terms of FNA, or a similar situation with FUNC
TIONS or GOSUBS.

t An OVERFLOW error message means that an attempt has been made to create a number larger in mag
nitude than the largest number representable in the computer (approximately 1.7E + 38); when this
occurs, the largest representable number is returned (with the correct sign) and execution continues.
An UNDERFLOW error message means that an attempt has been made to create a nonzero number
smaller in magnitude than the smallest representable positive number (approximately l.4E - 39); in
this case, zero is returned and execution continues. Division by zero is considered overflow; the
largest representable positive number is returned.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST.BAK.

B-8

Basic Diagnostic Messages

Table B-3 (Cont.)
Execution Error Messages

Message

%UNDERFLOW IN EXP IN LINE nn

%UNDERFLOW IN LINE nn

?V AL ARGUMENT NOT IN CORRECT FORM
IN LINE nn

%ZERO TO A NEGATIVE POWER IN LINE nn

Explanation

An exponent less than -88.028 has been specified
for the EXP function. An answer of zero is returned
and the execution continues. t

t
The string argument to the VAL function does not
represent a legal number.

t An OVERFLOW error message means that an attempt has been made to create a number larger in mag
nitude than the largest number representable in the computer (approximately 1.7E + 38); when this
occurs, the largest representable number is returned (with the correct sign) and execution continues.
An UNDERFLOW error message means that an attempt has been made to create a nonzero number
smaller in magnitude than the smallest representable positive number (approximately l.4E - 39); in
this case, zero is returned and execution continues. Division by zero is\considered overflow; the
largest representable positive number is returned.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST.BAK.

8-9

APPENDIXC

ACCESSING ANOTHER USER'S FILE

The BASIC language has a way in which one user can access another user's file. Whenever a command requires a
device name as an argument, you substitute it with a logical name you defined at system command level. You can
use logical names in both the BASIC command line and in the program itself.

For tnore information about referencing other user's files, refer to the DECsystem-20 User's Guide.

C.I USING LOGICAL NAMES
To use logical names in accessing another file, you must do the following:

1. Give the DEFINE command to defme a logical name (of no more than six characters) as the other
user's directory name.

2. Use the logical name as the device name whenever giving the file specification.

C.l.t Giving the DEFINE Command
To give the DEFINE command, you LOGIN to the system, and before accessing BASIC

1. Type DEF and press the ESC key; the system prints INE (LOGICAL NAME).

@DEFINE (LOGICAL NAME)

2. Type the logical name (ending it with a colon is optional), then press the ESC key. The system
prints (AS).

@DEFINE (LOGICAL NAME) BAK: (AS)

3. Type the directory name (enclosed in angle brackets) and press the RETURN key. The system prints
an at sign (@).

@DEFINE (LOGICAL NAME) BAK: (AS) <BONSAVAGE>
(:)

To check the logical name, you can give this command:

@INFORMATION (ABOUT) LOGICAL-NAMES (OF)

The system responds with the logical names you have defined.

BAK => <BONSAVAGE>
(~

C-I

Accessing Another User's File

C.1.2 Using the Logical Name
You may include the logical name in a command line or in your own program. To include the logical name in a
command line, you type the logical name where you would ordinarily type the device name.

The following example shows how you would bring the file specification (BAKER)SPEC.BAS into memory,
(Remember you have already defined the directory (BONSAVAGE) with the logical name BAK:.)

READY, FOR HELP TYPE HELP.
OLD BAK:SPEC.BAS

In a BASIC program, you type the logical name instead of the device name. After giving the DEFINE command
while in system command level, you can include the logical name inside your program to reference the file.

The following example shows how you reference the file (BONSAV AGE)SPEC.BAS in a BASIC program:

:1.0 INPUT N
CHAIN BAK:SPEC.BAS
END

C-2

ABS, 1-5, A-4
Absolute value, 1-5, A-4
Access to BASIC, 4-1
Access type, 10-4
American Standard Code for Information

Interchange (ASCII), 8-4
Apostrophe,

Format character, 11-9
Remarks indicator, 6-5

Arithmetic operations, 1-5
ASC function, 8-7, A-5
ASCII numbers, 8-4
ATN, 1-5, A-4

BASIC, 4-2
Bugs, 4-7
BY, 2-2
BYE, 4-6, 9-12

C format character, 11-9
CATALOG, 9-11
CHAIN, 6-6, A-2
CHANGE, 8-3, A-2
CHR$ function, 8-7, A-5
CLOG, 1-5, A-4
Comma,

in image specification, 11-5
in PRINT statement, 6-1

Concatenation operator (+), 8-6
Conditional GO TO,

see IF-THEN
Constants,

see numbers
Control commands, 9-1
COPIES Switch (QUEUE), 9-4
COPY, 9-8
Correcting a BASIC program, 4-5
COS, 1-5, A-4
COT, 1-5, A-4
Creating a me, 9-1
tC, 4-5,9-8

DATA, 1-2,1-8,8-2, A-I
Data block, 1-8,8-3
Data me capability, 10-1, A-3
Debugging, 4-7
Decimal image specification, 11-4
DEF, 5-5, A-6
Defined function, 5-5, A-6

INDEX

Index-l

DELETE, 9-5
DET, 7-6, A-5
DEFINE command, C-l
Define names, 4-4
Diagnostic messages, B-1
DIM, 3-1,3-2,7-2, A-I
DIMENSION, 3-1,3-2,7-2, A-I
Dimensioning, 3-1,3-2,7-2,7-3

E format character, 11-9
Edit commands, 9-1,9-5
Edited numeric image specifications, 11-5
END, 1-2,1-10, A-I
Entering a BASIC program, 4-4,9-1
Errors,

grammatical, 4-7
logical, 4-7

Executing a BASIC program, 4-4,9-8
EXP, 1-5, A-4

FILE, 10-2, 10-3, A-3
Filename, 4-4
FILES, 10-2, 10-3, A-3

Creating, 9-1
Editing, 9-5
Listing, 9-3
Saving, 9-7
Transferring, 9-7

Floating dollar sign, 11-7
FNEND, 5-5
FOR, 2-1, A-I
Format characters, 11-3

Gaining Access to BASIC, 4-1
GOODBYE, 4-6, 9-12
GOSUB, 5-6, A-2
GO TO, 1-3,1-9, A-I

HELP, 4-2,9-12
Hilbert matrix, 7-6

Identity matrix, 7-2, A-3
IF END, 10-14, A-3
IF-THEN, 1-9,8-2, A-I
Image specifications, 11-3
Image statement, 11-1
INPUT, 6-4, A-2

data fIle, 10-5, A-3
INSTR function, 8-11, A-5

INT, 5-1, A-5
Integer function, 5-1, A-5
Integer image specification, 11-3
Interrupting execution of a BASIC program,

4-5

L format character, 11-9
Leading asterisk, 11-7
Leaving the computer, 4-6
LEFT$ function, 8-9, A-5
LEN function, 8-6, A-6
LENGTH, 9-12
LET. 1-2. 1-7. A-I
LIMIT switch (QUEUE), 9-4
Line-numbered file, 10-1,9-3
Line numbers, 1-2,1-4,4-4,9-5,9-6
LIST, 9-5
LIST REVERSE, 9-3
Lists, 3-1, 3-3
LOC function, 10-9, A-5
LOF function, 10-9, A-5
LOG, 1-5, A-4
LOGE, 1-5, A-4
LOG 10 , 1-5, A-4
Logical names, C-l
Loops, 2-1

nested, 2-4

MARGIN, 6-7, 10-12, A-2, A-4
MARGIN ALL, 10-12, A-3, A-4
Mathematical functions, 1-5, A-4
Matrices, 7-1

MAT B=A, 7-4, A-3
MAT C=A+B, 7-4, A-3
MAT C=A-B, 7-4, A-3
MAT C=A*B, 7-4, A-3
MAT C=CON, 7-2, A-3
MAT C=IDN, 7-2, A-3
MAT C=INV(A), 7-4, A-3
MAT C=(K)*A, 7-4, A-3
MAT C=TRN(A), 7-4, A-3
MAT C=ZER, 7-2. A-3
MAT INPUT, 7-3,8-1, A-3
MATPRINT,7-3,8-1,A-3
MAT READ, 7-1,8-2, A-2

MID$ function, 8-9, A-6
MONITOR, 4-5, 9-9

Natural logarithm, 1-5, A-4
N-dimensional arrays, simulation of, 7-7

INDEX (Cont.)

Index-2

Nested loops, 2-4
NEW, 4-3,9-1
NEXT, 2-1,2-2, A-I
Nonline-numbered files, 10-1
NONAME, default to, 9-2
NOPAGE, 6-8, 10-13, A-2, A-4
NOPAGE ALL, 10-13, A-2 .
NOQUOTE, 10-10, A-2, A-4
NOQUOTE ALL, 10-10, A-4
NUM, 7-3,8-4, A-5
Numbers, 1-7
Numeric image specifications, 11-3

OLD, 4-3,9-2
ON-GO TO, 1-9, A-I
to, 4-5,9-4

<PA> delimiter, 6-1
PAGE, 6-8,10-13, A-2, A-4
PAGE ALL, 10-13, A-4
PRINT, 1-3, 1-8,8-1,8-2,10-7, 10-9, A-I,

A-4
PRINT USING. 11-1, A-4
Printing characters in images, 11-3
Program names, 4-4
Pure data file, 10-2

QUEUE,9-4
QUOTE, 10-10, A-2, A-4
QUOTE ALL, 10-10, A-4

R format character, 11-9
Random access files, 10-2
Random numbers, 5-1, A-5
RANDOMIZE, 5-3, A-5
READ, 1-2,1-7,8-1,8-2,10-5, A-I, A-3
Reading and printing strings, 8-1
Record size for random access files, 10-2
Relational symbols, 1-6
REM, 6-5, A-2
RENAME,9-3
REPLACE, 9-7
RESEQUENCE, 9-5
RESTORE, 6-6,8-3, A-2
RETURN, 5-6, A-2
Returning to system command level, 4-5
RIGHT$ function, 8-9, A-6
RND, 5-3, A-5
RUBOUT Key, 4-4,4-7
RUN, 1-4,4-4,9-8
RUNNH, 1-4,4-4,9-8

SAVE, 4-11,9-7
SCRATCH, 9-6

data file, 10-4, A-3
Semicolons (in PRINT), 6-1
Sequential access files, 10-1
SET, 10-9, A-4
SGN, 54, A-5
Sign function, 5-4, A-5
SIN, 1-5, A-4
SPACES functions, 8-11, A-6
Spaces, 1-2
SQR, 1-5, A-4
SQRT, 1-5, A-4
Statements, 1-2
STEP, 2-2, 2-4
STOP, 6-5, A-2
String concatenation, 8-6
String constants, 8-1
String conventions, 8-2
String image specifications, 11-8
String manipulation functions, 8-6, A-5

ASC, 8-7, A-5
CHR$, 8-7, A-5
INSTR, 8-11, A-5
LEFT$, 8-9, A-5
LEN, 8-6, A-6
MID$, 8-9, A-6
RIGHT$, 8-9, A-6
SPACES, 8-11, A-6
STR$, 8-8, A-6
VAL, 8-8, A-6

String vectors, 8-1
Strings, 6-3,8-1

INDEX (Cont.)

Index-3

Subroutines, 5-5
nested, 5-6

Subscripts, 3-1, 3-2
SYS (system device), 9-9
SYSTEM,9-9
System Command Level, 9-9
System commands, 9-9

TAB, 6-3
Tables, 3-1,3-2
Tabs, 6-3
TAN, 1-5, A-4
Text data file, 10-1
TIM, 54, A-5
Trailing minus sign, 11-6
Transferring files, 9-7
Type, 9-2

UNSAVE,9-8
UNSA VE Switch (QUEUE), 9-4

VAL function, 8-8, A-6
Variables,

alphanumeric, 8-1
numeric, 1-6
subscripted, 3-1

Vectors, 7-1

WEAVE,9-6
WRITE, 10-7,10-8, A4
WRITE USING, 11-1, A-4

...
g
~

READER'S COMMENTS

DECsystem-20
BASIC User's Guide
DEC-20-LBMAA-A-D

NOTE: This form is for document comments only. Problems with software should be reported on a Software
Problem Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

£ Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Non-programmer interested in computer concepts and capabilities

Name Date __ __

Organization ______________________________________ _

Street __ __

City ________________ State ______ Zip Code ________ _

or
Country

If you require a written reply, please check here. 0

--Fold lIere---

-- Do Not Tear - Fold lIere and Staple --

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P.O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

	DEC-20-LBMAA-A-D BASIC User's Guide (front).tif
	Blank 'Letter' page (600dpi).tif
	A001.tif
	A002.tif
	A003.tif
	A004.tif
	A005.tif
	A006.tif
	A007.tif
	A008.tif
	A009.tif
	A010.tif
	A011.tif
	A012.tif
	A013.tif
	A014.tif
	A015.tif
	A016.tif
	A017.tif
	A018.tif
	A019.tif
	A020.tif
	A021.tif
	A022.tif
	A023.tif
	A024.tif
	A025.tif
	A026.tif
	A027.tif
	A028.tif
	A029.tif
	A030.tif
	A031.tif
	A032.tif
	A033.tif
	A034.tif
	A035.tif
	A036.tif
	A037.tif
	A038.tif
	A039.tif
	A040.tif
	A041.tif
	A042.tif
	A043.tif
	A044.tif
	A045.tif
	A046.tif
	A047.tif
	A048.tif
	A049.tif
	A050.tif
	A051.tif
	A052.tif
	A053.tif
	A054.tif
	A055.tif
	A056.tif
	A057.tif
	A058.tif
	A059.tif
	A060.tif
	A061.tif
	A062.tif
	A063.tif
	A064.tif
	A065.tif
	A066.tif
	A067.tif
	A068.tif
	A069.tif
	A070.tif
	A071.tif
	A072.tif
	A073.tif
	A074.tif
	A075.tif
	A076.tif
	A077.tif
	A078.tif
	A079.tif
	A080.tif
	A081.tif
	A082.tif
	A083.tif
	A084.tif
	A085.tif
	A086.tif
	A087.tif
	A088.tif
	A089.tif
	A090.tif
	A091.tif
	A092.tif
	A093.tif
	A094.tif
	A095.tif
	A096.tif
	A097.tif
	A098.tif
	A099.tif
	A100.tif
	A101.tif
	A102.tif
	A103.tif
	A104.tif
	A105.tif
	A106.tif
	A107.tif
	A108.tif
	A109.tif
	A110.tif
	A111.tif
	A112.tif
	A113.tif
	A114.tif
	A115.tif
	A116.tif
	A117.tif
	A118.tif
	A119.tif
	A120.tif
	A121.tif
	A122.tif
	A123.tif
	A124.tif
	A125.tif
	A126.tif
	A127.tif
	A128.tif
	A129.tif
	A130.tif
	A131.tif
	A132.tif
	A133.tif
	A134.tif
	A135.tif
	A136.tif
	Blank 'Letter' page (600dpi).tif
	DECsystem-20 (rear).tif

