
..
'" -......
'" '"

oS ..., - ..-.. c:::.~-. c:::.:--
"" ~~-.

'" ..,.-. " C;:)~-.
c::,':-- "" f::::::»::--
~:---

..-..
"'-.

..,. - -..., "0
-.,. <0,. Co

'""> <0,. ..~
Co, ...,. <0 ~

~

BEGINNER'S GUIDE TO

MULTIPROGRAM BATCH

DEC-10-0MPBA-C-D

digital equipment corporation · maynard. massachusetts

1st Edition, May 1972
2nd Edition, April 1974
3rd Edition, December 1974

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Cor
poration assumes no responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for
use on a single computer system and can be copied (with inclusion of DIGITAL's copy
right notice) only for use in such system, except as may otherwise be provided in writing
by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by DIGITAL.

Copyright © 1972, 1973, 1974, by Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts:

CDP INDAC
COMPUTER LAB KAlO
COMSYST LAB-8
COMTEX LAB-8/e
DDT LAB-K
DEC OMNIBUS
DECCOMM OS/8
DECTAPE PDP
DIBOL PHA
DIGITAL PS/8
DNC QUICKPOINT
ED GRIN RAD-8
EDUSYSTEM RSTS
FLIP CHIP RSX
FOCAL RTM
GLC-8 RT-ll
IDAC SABR
IDACS TYPESET 8

UNIBUS

ii

Beginner's Batch

PREFACE

The Beginner's Guide to Multiprogram Batch has been written for the user who knows a
programming language and requires only a rudimentary knowledge of Batch operations.

HOW TO USE THIS MANUAL

For those users whose mode of input is cards, the following chapters or sections of chapters
should be read.

Chapter 1

Chapter 2

Chapter 4

Chapter 5,
Section 5.2

Introduction

Entering a Job to Batch from Cards

Interpreting Your Printed Output

Using Cards to Enter Jobs

According to the language in which his/her program is written, the user should pay particu
lar attention to the following sections.

FORTRAN - Section 2.2.3 Card Deck to Run FORTRAN Programs

ALGOL

COBOL

MACRO

BASIC

- Section 2.2.1 Card Deck to Run ALGOL Programs

- Section 2.2.2 Card Deck to Run COBOL Programs

- Section 2.2.4 Card Deck to Run MACRO Programs

- Section 2.3.1 Card Decks for Programs that Do Not Have Special
Control Cards

For users who input their jobs through interactive terminals, the following chapters or
sections of chapters are recommended.

Chapter 1

Chapter 3

Chapter 4

Chapter 5,
Section 5.1

Introduction

Entering a Job to Batch from a Terminal

Interpreting Your Printed Output

Using the Terminal to Enter Jobs

iii

REFERENCES

Not all of the commands and cards for Batch are described in this manual. Those users
who wish to know more about Multiprogram Batch can refer to Chapter 3 in the
DECsystem-10 Operating System Commands manual. Also in that manual, the SUBMIT
command is described in Chapter 2.

An elementary description of the basic monitor commands can be found in the document
Getting Started with Timesharing. The DECsystem-10 Operating System Commands manual
contains the description of all the monitor commands available to the user.

Error messages from the system programs supplied by DEC that are invoked by the user's
job are explained in the applicable manuals. For example, if a user's FORTRAN program
fails to compile successfully, the error messages he receives from the FORTRAN compiler
can be found in Chapter 11 of the FORTRAN IV Programmer's Reference Manual, in the
DECsystem-10 Mathematical Languages Handbook, and in Appendix G of the DECsystem-
10 FORTRAN-10 Language Manual (DEC-10-LFORA-B-DJ.

iv

CONVENTIONS USED IN THIS MANUAL

The following is a list of symbols and conventions used in this manual.

dd-mmm-yy hh:mm

filename.ext

hh:mm:ss

jobname

[proj,prog]

n

t

A set of numbers, or numbers and a word that indi
cates the date and time; e.g., 15-5-72 14:15 or
l5~MAY -72 14: 15. Time is represented using a
24 hour clock, 14:15 means 2:15 P.M.

The name and extension that can be associated with
a file. The name can be 1 to 6 characters in length
and the extension can be 1 to 4 characters in length.
The first character of the extension must always be
a period. The extension is optional. Refer to the
glossary for definitions of filename and filename ex
tension.

A set of numbers representing time in the form
hours:minutes:seconds. Leading zeros can be omit
ted, but colons must be present between two numbers.
For example,S :35 :20 means five hours, 35 minutes,
and 20 seconds.

The name that is assigned to a job. It can contain up
to six characters. Refer to the glossary for the defi
nition of a job.

The user number assigned to each user, commonly called
called a project-programmer number. The two num
bers that make up the project-programmer number
must be separated by a comma or a slash. Refer to
the glossary for the definition of a project-programmer
number.

A number that specifies either a required number or
an amount of things such as cards or line printer
pages. This number can contain as many digits as
are necessary to specify the amount required; e.g.,
5,25, 125, etc.

A number representing an amount of time, usually in
minutes. This number can contain as many digits as
are necessary to specify the amount of time required;
e.g., 5, 25, 125, etc.

v

Term

ALGOL

Alphanumeric

ASCII Code

Assemble

Assembler

Assembly Language

Assem bly Listing

BASIC

GLOSSARY

Definition

ALGOrithmic Language. A scientific oriented
language that contains a complete syntax for de
scribing computational algorithms.

Any of the letters of the alphabet (A through Z)
and the numerals (0 through 9).

American Standard Code for Information Inter
change. A 7 -bit code in which information is
recorded.

To prepare a machine-language program from a
symbolic-language program by substituting absolute
operation codes for symbolic operation codes and
absolute or relocatable addresses for symbolic
addresses.

A program which accepts symbolic code and trans
lates it into machine instructions, item by item.
The assembler on the DECsystem-IO is called the
MACRO assembler.

The machine-oriented symbolic programming
language belonging to an assembly system. The
assembly language for the DECsystem-lO is
MACRO.

A printed list which is the byproduct of an assembly
run. It lists in logical-instruction sequence all details
of a routine showing the coded and symbolic nota
tion next to the actual assigned notations established
by the assembly procedure.

Beginner's All-purpose Symbolic Instruction Code.
A timesharing computer programming language that
is used for direct communication between terminal
units and remotely located computer centers. The
language is similar to FORTRAN II and was developed
by Dartmouth College.

vi

Term

Batch Processing

Card

Card Column

Card Field

Card Row

Central Processing Unit (CPU)

Central Site

Character

COBOL

Command

Compile

GLOSSARY (cont)

Definition

The techn~que of executing a set of computer pro
grams in art- unattended mode.

A punch card with 80 vertical columns representing
80 characters. Each column is divided into two sec
tions, one with character positions labeled zero
through nine, and the other labeled eleven (11) and
twelve (12). The 11 and 12 positions are also re
ferred to as the X and Y zone punches, respectively.

One of the vertical lines of punching positions on a
punched card.

A fixed number of consecutive card columns assigned
to a unit of information.

\
One of the horizontal lines of punching positions on
a punched card.

The portion of the computer that contains the arith
metic, logical, control circuits, and I/O interface of
the basic system.

The location of the central computer. Used in con
junction with remote communication to mean the
location of the DECsystem-lO central processor.

One symbol of a set of elementary symbols such as
those corresponding to the keys on a typewriter.
The symbols usually include the decimal digits 0
through 9, the letters A through Z, punctuation
marks, a space, operation symbols, and any other
special symbols which a computer may read, store,
or write.

COmmon Business Oriented Language. An auto
matic programming language used in programming
data processing applications.

An instruction that causes the computer to execute
a specified operation.

To produce a machine or intermediate language
routine from a routine written in a high level source
language.

vii

Term

Compiler

Computer

Computer Operator

Continuation Card

Control File

Core Storage

CPU

Cross Reference Listing

Data

Debug

GLOSSARY (cont)

Definition

A programming system which translates a high level
source language into a language suitable for a par
ticular machine. A compiler converts a source
language program into intermediate or machine
language. Some compilers used on the DECsystem-
10 are: ALGOL, BASIC, COBOL, FORTRAN.

A device with self-contained memory capable of
accepting information, processing the information,
and outputting results.

A person who manipulates the controls of a com
puter and performs all operational functions that
are required in a computing system, such as:
loading a tape transport, placing cards in the input
hopper, removing printouts from the printer rack,
and so forth.

A punched card which contains information that
was started on a previous punched card.

The file made by the user that directs Batch in
the processing of your job.

A storage device normally used for main memory
in a computer.

See central processing unit.

A printed listing that identifies all references of an
assembled program to a specific label. This listing
is provided immediately after a source program
has been assembled.

A general term used to denote any or all facts,
numbers, letters, and symbols, or facts that refer
to or describe an object, idea, condition, situation,
or other factors. It represents basic elements of
information which can be processed or produced
by a computer.

To locate and correct any mistakes in a computer
program.

viii

Term

Disk

Dump

Execute

Extension

File

Filename

Filename Extension

FORTRAN

Job

Jobstep

K

Label

GLOSSARY (cont)

Definition

A form of mass storage device in which information
is stored in named files.

A listing of all variables and their values, or a listing
of the values of all locations in core.

To interpret an instruction and perform the indicated
operation(s).

See filename extension.

An ordered collection of 36-bit words comprising
computer instructions and/or data. A file can be
of any length, limited only by the available space
on the storage device and the user's maximum space
allotment on that device.

A name of one to six alphanumeric characters
chosen by the user to identify a file.

One to four alphanumeric characters usually chosen
to describe the class of information in a file. The
first character of the extension must always be a
period.

FORmula TRANslator. A procedure oriented pro
gramming language that was designed for solving
scientific type problems. The language is widely
used in many areas of engineering, mathematics,
physics, chemistry, biology, psychology, industry,
military, and business.

The entire sequence of steps, from beginning to end,
that you initiate from your interactive terminal or
card deck or that the operator initiates from the
operator's console.

A serial or parallel sequence of processes invoked by
a user to perform an operation.

A symbol used to represent a thousand; for example,
32K is equivalent to 32,000.

A symbolic name used to identify a statement in the
control file.

ix

Term

Log File

Monitor

Monitor Command

Mounting a Device

Multiprogramming

Object Program

Password

Peripheral Device

Project-Programmer Number

Program

Programming

GLOSSARY (cont)

Definition

A file into which Batch writes a record of a user's
entire job. This file is printed as the final step in
Batch's processing of a job.

The collection of programs which schedules and
controls the operation of user and system programs.

An instruction to the monitor to perform an oper
ation.

A request to assign an I/O device via the operator.

A technique that allows scheduling in such a way
that more than one job is in an executable state
at anyone time.

The program which is the output of compilation or
assembly. Often the object program is a machine
language program ready for execution.

The secret word assigned to a user that, along with
that user's number (project-programmer number),
identifies him uniquely to the system.

Any unit of equipment, distinct from the central
processing unit, which can provide the system with
outside communication.

Two numbers separated by a comma which, when
considered as a unit, identify the user and that
user's file storage area.

The complete plan for the solution of a problem,
more specifically the complete sequence of machine
instructions and routines necessary to solve a
problem.

The science of translating a problem from its physical
environment to a language that a computer can under
stand and obey. The process of planning the pro
cedure for solving a problem. This may involve,
among other things, the analysis of the problem,
preparation of a flowchart, coding of the problem,
establishing input-output formats, establishing testing
and checkout procedures, allocation of storage, prep
aration of documentation, and supervision of the
running of the program on a computer.

x

Term

Queue

Software

Source Deck

Source Language

Source Program

Terminal

GLOSSARY (cont)

Definition

A list of jobs to be scheduled or run according to
system, operator, or user-assigned priorities. For
example, the Batch input queue.

The totality of programs and routines used to expand
the capabilities of computers, such as compilers,
assemblers, operational programs, service routines,
utility routines, and subroutines.

A card deck comprising a computer program, in
symbolic language.

The original form in which a program is prepared
prior to processing by the computer.

A computer program written in a language designed
for ease of expression of a class of problems or
procedures, by humans. A translator (assembler,
compiler, or interpreter) is used to perform the
mechanics of translating the source program into
a machine language program that can be run on a
computer.

A keyboard unit that is often used to enter infor
mation into a computer and to accept output from
a computer. It is often used as a timesharing
terminal on a remotely located computer center.

xi

CONTENTS

Page

CHAPTER 1 INTRODUCTION 1-1
1.1 WHAT IS MULTIPROGRAM BATCH 1-1
1.2 HOW TO USE BATCH 1-1
1.2.1 Setting Up Your Job 1-1
1.2.2 Running Your Job . 1-2
1.2.3 Receiving Your Output 1-2
1.2.4 Recovering From Errors . 1-2
1.3 SUMMARY. 1-3

CHAPTER 2 ENTERING A JOB TO BATCH FROM CARDS 2-1
2.1 FORMAT OF THE CARDS IN YOUR DECK 2-2
2.2 SETTING UP YOUR CARD DECK 2-3
2.2.1 Card Deck to Run ALGOL Programs 2-3
2.2.2 Card Deck to Run COBOL IPrograms 2-4
2.2.3 Card Deck to Run FORTRAN Programs 2-5
2.2.4 Card Deck to Run 'MACRO Programs 2-6
2.3 PUTTING COMMANDS INTO THE CONTROL FILE

FROM CARDS 2-7
2.3.1 Card Decks for Programs that do not have Special

Control Cards . 2-8
2.4 CONTROL CARDS FOR BATCH' (IN ALPHABETICAL

ORDER) . 2-11
2.4.1 The $ALGOL Card . 2-11
2.4.2 The $COBOL Card . 2-13
2.4.3 The $DATA Card 2-14
2.4.4 The $DECK Card. 2-20
2.4.5 The $EOJ Card 2-22
2.4.6 The $ERROR Card. 2-22
2.4.7 The $EXECUTE Card . 2-23
2.4.8 The $FORTRAN Card and $F40 Card 2-24
2.4.9 The $JOB Card 2-26
2.4.10 The $MACRO Card. 2-30
2.4.11 The $NOERROR Card 2-32
2.4.12 The $PASSWORD Card 2-33

I
2.4.13 The $SEQUENCE Card 2-34
2.4.14 The $TOPSlO Card. 2-34
2.5 SPECIFYING ERROR RECOVERY IN THE

CONTROL FILE. 2-35

xii

Page

CHAPTER 3 ENTERING A JOB TO BATCH FROM A TERMINAL. 3-1
3.1 CREATING THE CONTROL FILE 3-2
3.1.1 Format of Lines in the Control File 3-3
3.2 SUBMITTING THE JOB TO BATCH. 3-3
3.2.1 Queue Operation Switches . 34
3.2.2 General Switches . 3-5
3.2.3 File-Control Switches . 3-7
3.2.4 Examples of Submitting Jobs. 3-9
3.3 BATCH COMMANDS (IN ALPHABETICAL ORDER) . 3-10
3.3.1 The .BACKTO Command 3-10
3.3.2 The .ERROR Command. 3-11
3.3.3 The .GOTO Command 3-12
3.3.4 The .IF Command 3.13
3.3.5 The .NOERROR Command. 3-14
3.3.6 The .PLEASE Command 3-15 I
3.4 SPECIFYING ERROR RECOVERY IN THE CONTROL

FILE 3-15

CHAPTER 4 INTERPRETING YOUR PRINTED OUTPUT 4-1
4.1 _OUTPUT FROM YOUR JOB 4-1
4.2 BATCH OUTPUT 4-1
4.3 OTHER PRINTED OUTPUT . 4-2
4.4 SAMPLE BATCH OUTPUT 4-2
4.4.1 Sample Output From A Job On Cards 4-2
4.4.2 Sample Output From A Job From A Terminal. 4-4

CHAPTER 5 PERFORMING COMMON TASKS WITH BATCH. 5-1
5.1 ' USING THE TERMINAL TO ENTER JOBS . 5-1
5.2 USING CARDS TO ENTER JOBS. 5-8

xiii

CHAPTER 1

INTRODUCTION

1.1 WHAT IS MULTIPROGRAM BATCH

Multiprogram Batch is a group of programs that allows you to submit a job to the
DECsystem-lO on a leave-it basis. That is, you give the job to an operator (if on cards)
or submit it directly to the computer (if from a timesharing terminal) so that you can do
something else while your job is running. A job is any combination of programs, their
associated data, and commands necessary to control the programs.

Some of the jobs that are commonly processed under Batch are those that:

1. Are frequently run for production,

2. Are large and long running,

3. Require large amounts of data, or

4. Need no actions by you when they are running.

1.2 HOW TO USE BATCH

Batch allows you to submit your job to the computer through either an operator or a
timesharing terminal, and receive your output from the operator when the job has
finished. Output is never returned at a timesharing terminal even if your job is entered
from one;.instead, it is sent to a peripheral device (normally the line printer) at the com
puter site and returned to you in the manner designated by the installation manager.

1.2.1 Setting Up Your Job

You must make up a control file to use Batch. A control file is a list of commands for
the monitor, system programs, or Batch itself that tells Batch what steps to follow to
process your job and the order in which to process them. When you enter your job on
cards, you can take advantage of the special control cards that cause Batch to insert
commands into the control file for you. When you enter your job from a timesharing
terminal, you must put all the commands for your job into the control file yourself.

The steps that you must take to create a control file from cards are described in Chapter 2.
Creating a control file from a timesharing terminal is described in Chapter 3.

1-1

1.2.2 Running Your Job

After you submit the job, it waits in a queue with other jobs until Batch schedules it to
run under guidelines established by the installation manager. Some factors that affect how
long your job waits in the queue are its size, the amount of core it needs, the amount of
time that it will take to run it, and whether or not you have specified a certain deadline
when you want it run. When the job is started, Batch reads the control file and performs
the actions necessary to run the job. For example,Batch passes monitor commands to the
monitor which performs the actions called for and passes commands to system programs
so that their processing can be performed.

As each step in the control file is performed, Batch records it in a log file. For example,
if a monitor command such as COMPILE is processed, Batch passes it to the monitor and
writes it in the log file. The monitor response is also written in the log file. Any response
from your job that would be written on the terminal during timesharing is written in the
log file by Batch.

1.2.3 Receiving Your Output

When the job is completed successfully and output has been sent to all devices, Batch
terminates the log file and has it printed. The output from your job and the log file are
then returned, to you. Output from your job can be in the form of a line-printer listing,
punched cards, punched paper tape, plots, DECtape, or magnetic tape. If the output is to
a DECtape or magnetic tape, you must include commands in your job to mount these
tapes so that your output can be written on them. This is also true if you have input to
any of the programs in your job written on tape. If your output is to cards, paper tape,
the plotter, or the line printer, you must specify to Batch the approximate amount of
cards, paper tape, plotter time, or pages that you require. These restrictions are to help
Batch restrain runaway programs. An example of using the MOUNT command in the
control file to request mounting of tapes is shown in Chapter 5. The way that you specify
the amounts of paper, cards, etc, is described in Chapter 2, "The $JOB Card" and in
Chapter 3, "Submitting Your Job".

1.2.4 Recovering from Errors

If an error occurs in your job, either from an error in your program or from an erroneous
command in the control file, Batch writes the error message in the log file and usually
terminates the job. In addition, if the error occurred in your program, Batch causes a
dump to be taken of your area of core. You can, however, put commands in the control
file so that Batch can help you recover from errors in your job and continue running.
Error recovery from a card job is described in Chapter 2; from a job entered from a ter
minal, in Chapter 3. Dumps, along with other printed ciutput from a Batch job, are
described in Chapter 4.

1-2

1.3 SUMMARY

The steps that you must perform to enter a job to the computer through Batch are as
follows:

1. Create a control file either from cards (refer to Chapter 2) or from a terminal
(refer to Chapter 3).

2. Submit the job to Batch, either to the operator for a card job (Chapter 2) or
directly to Batch from a terminal (Chapter 3).

3. Pick up your output and interpret it (refer to Chapter 4).

Some sample jobs that are run through Batch from cards and from a terminal are shown
in Chapter 5.

1-3

CHAPTER 2

ENTERING A JOB TO BATCH FROM CARDS

Batch runs your job by reading a control file that contains commands to the monitor,
system programs, or Batch itself. You have to make up the control file, but Batch pro
vides you with special control cards to help you make up control files for simple jobs.
These control cards make it easy for you to submit your programs to the computer and
to create your control file to run these programs. Most of these control cards cause
Batch to insert commands into the control file and/or copy programs and data into disk
files. Some are used to show the beginning of your job and to identify it; and one is
used to indicate the end of it. Batch control cards are also available to help you recover
from errors that may occur while your job is running.

The leftmost column of the following table shows the section (if any) of this chapter
where an introductory explanation of the control card is given. You can find a more
technical explanation of these cards in the DECsystem-i 0 Operating System Commands
manual Section 3.4.

Section 2.4.l $ALGOL
$BLISS

Section 2.4.2 $COBOL
$CREATE

Section 2.4.3 $ DATA
Section 2.4.4 $DECK

$ DUMP
$EOD

Section 2.4.5 $EOJ
Section 2.4.6 $ERROR
Section 2.4.7 $ EXECUTE
Section 2.4.8 $FORTRAN and $F40

$INCLUDE
Section 2.4.9 $JOB
Section 2.4.l 0 $MACRO

$MESSAGE
$MODE

Section 2.4.11 $NOERROR
Section 2.4.l2 $PASSWORD

$RELOCATABLE
Section 2.4.l3 $SEQUENCE

$SNOBOL
Section 2.4.l4 $TOPS1O

2-1

I

I

I

I

I

2.1 FORMAT OF THE CARDS IN YOUR DECK

The card decks that you input to Batch can contain any combination of Batch control
cards; commands to the monitor, system programs, and Batch itself; programs and data
that will be copied into separate disk files, and data that will be copied into the control
file for your program to read.

The Batch control cards must contain a dollar sign ($) in column 1 and a command that
starts in column 2. The command must be followed by at least one space, which can
then be followed by the other information on the card. Refer to the individual descrip
tion of each card for any special format requirements.

If you include a card with a monitor command, you must place a period in column 1
and follow it immediately with the command. Any information that follows the command
is in the format that is shown for the command in the DECsystem-10 Operating System
Commands manual. You must place a $TOPSlO card immediately before the monitor
command in the card deck (see Section 2.4.14).

To include a command to a system program on a card, you must punch an asterisk (*)
in column 1 and punch the command string immediately following the asterisk. Refer to
the manual for the system program that you wish to use.

Batch commands are punched like monitor commands; that is, a period is punched in
column 1 and the command immediately follows the period. You must also place a
$TOPSlO card before Batch commands in the card deck (see Section 2.4.14).

The card format for your program depends on the language in which you have written
the program; refer to the reference manual for the programming language that you are
using for the format of each line of your program. The same is true for your data. The
format that is required for the data by the programming language that you are using is
described in the language reference manual.

If you want to include data for your program in the control file, you punch it as you
would data that is read from a separate file. This applies to data on cards only. If you
are submitting your data directly to Batch via a timesharing terminal, you will not need
the extra dollar sign ($).

If you put any special characters other than those described above in the first column of
a card, you may get unexpected results because Batch interprets other special characters in
special ways. If you want to know about other special characters, refer to the DECsystem-
10 Operating System Commands manual, Chapter 3.

If you have more information than will fit on one card, you can continue on the next
card by placing a hyphen (-) as the last nonspace character on the card to be continued
and the rest of the information on the next card.

Comments can also be included either as separate cards or on cards containing other infor
mation. To include a comment on a separate card, you must punch a dollar sign ($) in
column 1, the comment character, an exclamation point (!), in column 2 and then the
comment. To add a comment to a card, you must precede the comment with an exclama
tion point (!) after all the information that you need has been put on the card. Formerly,

2-2

the semicolon (;) was the only character used to indicate the beginning of a comment.
Both the exclamation point (!) and the semicolon (;) are used now for this purpose. How
ever, you should use the exclamation point (!) for any new jobs submitted to Batch.

2.2 SETIING UP YOUR CARD DECK

Since the most common tasks performed in a job are compilation and execution of one
or more programs, simple control cards are available that will cause Batch to insert
commands into the control file for these tasks. However, a Batch job can do anything a
timesharing job can do and if you wish to perform more complicated tasks, you will have
to include monitor commands in your deck to direct Batch to execute your tasks. Section
2.3 describes the way in which you include monitor commands and commands to other
system programs.

The control cards that you can use to compile and execute programs written in ALGOL,
COBOL, FORTRAN, and MACRO are shown in Sections 2.2.1, 2.2.2, 2.2.3, and 2.2.4.
Certain control cards are always required in a Batch job. The $JOB card and the $EOJ
card are always req~ired. The $SEQUENCE and $PASSWORD cards may be required,
depending on the installation.

If the $SEQUENCE card is required, it must be the first card in the deck. The $JOB
card must always be either the second card in the deck if the $SEQUENCE card is re
quired, or 'the first card in the deck if the $SEQUENCE card is not required. If it is re
quired, the $PASSWORD card must immediately follow the $JOB card. It will be assumed
in this malmal that the $SEQUENCE and the $PASSWORD cards are required. The $EOJ
card must be the last card in the deck to indicate to Batch that it has read the end of your
job. This $EOJ card is orily used to end your entire job, not to end individual files in your
job. l

The cards that come between the first and last cards constitute your job. Setting up
decks for specific languages is shown in the sections that follow.

2.2.1 Card Deck to Run ALGOL Programs

To run ALGOL programs, you use the $ALGOL and $DATA cards. You put a $ALGOL
card in front of your ALGOL program to make Batch copy your program into a disk file
and insert a COMPILE command into your control file. The $ALGOL card is described
in detail in Section 2.4.1.

You put a $DATA card in front of the data that goes with the program to make Batch
copy your data into another disk file and insert an EXECUTE command into your control
me. The $DATA card is described in Section 2.4.3.

2-3

I

Thus, to compile and execute an ALGOL program, your card deck would appear as shown
in Figure 2-1.

$EOJ

Figure 2-1

Refer to the description of each card for the information that goes on it. The way that
you tell your program how to find its data is described in Section 2.4.3.1.

2.2.2 Card Deck to Run COBOL Programs

To run COBOL programs, you can use the $COBOL card and the $DATA card. You put
a $COBOL card in front of your COBOL program to make Batch copy your program into
a disk file and insert a COMPILE command into your control file. The $COBOL card is
described in detail in Section 2.4.2.

You put a $DATA card in front of the data that goes with your program to make Batch
copy your data into another disk file and insert an EXECUTE command into your control
file. The $DATA card is described in Section 2.4.3.

2-4

Thus, to compile and execute one COBOL program, your card deck would appear as shown
in Figure 2-2.

$EOJ

COBOL SOURCE PROGRAM

$PASSWORD

Figure 2-2

Refer to the description of each card for the information that goes on it. The way that
you tell your program how to find its data is described in Section 2.4.3.1.

2.2.3 Card Deck to Run FORTRAN Programs

To run FORTRAN programs, you can use the $FORTRAN or $F40 and $DATA cards.
You put a $FORTRAN card in front of your FORTRAN program to make Batch copy
your program· into a disk file and insert a COMPILE command into your control file.
The $FORTRAN and $F40 cards are described in detail in Section 2.4.B. .

You put a $DATA card in front of the data that goes with your program to make Batch
copy your data into another disk file and insert an EXECUTE command into your control
fIle. The $DATA card is described in Section 2.4.3.

2-5

I

I

Thus, to compile and execute one FORTRAN program, your card deck would appear as
shown in Figure 2-3.

Figure 2-3

Refer to the description of each card for the information that goes on it. The way
that you tell your program how to find its data is described in Section 2.4.3.1.

2.2.4 Card Deck to Run MACRO Programs

To run MACRO programs, you can use the $MACRO and $DATA cards. You put a
$MACRO card in front of your MACRO program to make Batch copy your program into
a disk file and insert a COMPILE command into your control file. The $MACRO card is
described in detail in Section 2.4.10.

You put a $DATA card in front of the data that goes with your program to make Batch
copy your data into another disk file and insert an EXECUTE command into your control
file. The $DATA card is described in Section 2.4.3.

2-6

Thus, to assemble and execute one MACRO program, your card deck would appear as
shown in Figure 2-4.

$SEQUENCE

Figure 2-4

Refer to the description of each card for the information that goes on it.

2.3 PUTTING COMMANDS INTO THE CONTROL FILE FROM CARDS

Batch puts commands into the control file for you when you use certain control cards.
However, only a small number of commands can be put in the control file ip this way.
If you wish to perform operations in addition to compilation and execution, you must in
clude commands in your card deck so that Batch will copy them into your control file.
Where you put these commands in your card deck determines their position in the con~
trol file. Batch reads your card deck in sequential order, copying commands into the con
trol file as they, or the special control cards, are read. However, Batch, when it reads a
control card that tells it to copy a program or data into a disk file, copies every card
that follows such a control card until it meets another control card. If you want to fol
low your program or data with Batch commands or monitor commands, you must insert
a $TOPSlO card immediately before these commands in your card deck. The $TOPS10
card directs Batch to copy all cards following it into the control file. Therefore, a single
monitor or Batch command or a group of consecutive monitor and/or Batch commands
must be preceded by a $TOPSlO card. The copying of these commands is terminated by
the next control card in the deck. The $TOPS10 card is described in Section 2.4.14.

2-7

I

I

For example, in order to compare two card decks and produce a list of the differences,
you could include the cards shown in Figure 2-5 in your deck.

Figure 2-5

The only commands that you cannot use in a Batch job are CSTART, CCONT, ATTACH,
DETACH, and SEND. Batch will ignore these commands when it reads them in the control
file. Also, you cannot use the LOGIN command in your Batch job because you will get an
error that will terminate your job. Batch logs your job in accordance with your $JOB and
$P ASSWORD cards.

2.3.1 Card Decks for Programs That Do Not Have Special Control Cards

I By combining monitor commands with the $DECK control card, you can process any pro
gram that does not have special control cards. You put a $DECK card in front of a pro
gram, data, or any other group of cards to make Batch copy the cards that follow the
$DECK card into a disk file and, if the user requests, to place the file into a specific output

2-8

queue (or queues). The $DECK card is described in detail in Section 2.4.4. You put a I
$TOPSIO card in front of monitor and Batch commands to cause Batch to copy these
commands into the control file. The $TOPSIO card is described in detail in Section 2.4.14.

For example, a BASIC program does not have a specific control card. To run a BASIC pro
gram under Batch from cards, you can combine the $DECK card and the $TOPSIO card with
monitor commands. You also use a $DECK card to copy the data for a BASIC program be
cause the $DATA card puts an EXECUTE command into the control file, and BASIC does
not use the EXECUTE command to run. The $TOPSIO card causes Batch to copy the I
monitor commands into the control file.

Figure 2-6 shows a card deck that enters a BASIC program for running under Batch.

I

$DECK (FOR PROGRAM)

$PASSWORD

$SEQUENCE

Figure 2-6

2-9

I

The BASIC program contains statements that read data from a disk file. You answer
OLD to the BASIC question

NEW OR OLD-

because the file is on disk and can be retrieved by BASIC.

If your BASIC program reads data that is to be input by you during the running of the
program, you enter the data in the control file so that it will be passed to your program by
Batch. This is shown in Figure 2-7.

$EOJ

*MONITOR

$TOPS1~/switches

$DEeK (FOR PROGRAM)

$PASSWORD

$ SEQUENCE

Figure 2-7

2-10

You can use the same technique to enter programs written in any language that does not
have a specific control card, provided that your installation supports the language. Also,
you can run system programs under Batch using the same technique.

2.4 CONTROL CARDS FOR BATCH (In Alphabetical Order)

The special control cards for Batch are described below in detail. Only the control cards
that are pertinent to this manual are discussed. Refer to DECsystem-10 Operating System
Commands (DEC-10-MRDD-D) for the remaining cards. The same is true for some of the
switches that can be included on each card. If a switch is not described in this manual,
it can be found in the DECsystem-10 Operating System Commands manual.

2.4.1 The $ALGOL Card

You put a $ALGOL card in front of your ALGOL program to make Batch copy your
ALGOL program into a disk file, create a unique filename of the form LN???? with the
extension .ALG, and insert a COMPILE command into your control file. Thus, when
Batch runs your job, your ALGOL program will be compiled. You can put some
optional information on the $ALGOL card to tell Batch more about your program or
the cards that your program is punched on.

The $ALGOL card has the form:

(switches)

/switches

$ALGOL(switches)/switches

are switches that Batch passes to the ALGOL compiler when it
puts the COMPILE command in the control file. These switches
must be enclosed in parentheses, must not be preceded by slashes,
and mayor may not be separated by commas. The switches for
the ALGOL compiler are described in Section 18.1 in Chapter 18
of the DECsystem-10 ALGOL Programmer's Reference Manual
(DEC-10-LALMA-A-D).

are switches to Batch to tell it how to read your program and
whether or not to request a compilation listing when the program
is compiled. The switches can be put on the card in any order
and are described below.

2-11

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of the ALGOL program. You can
make Batch stop reading at a specific column by means of the /WIDTH switch, in which
you indicate the number of a column at which to stop. Thus, if you have no useful infor
mation in the last ten columns of each card of your program, you can tell Batch to read
only up to column 70 by specifying

/WIDTH:70

on the $ALGOL card.

/NOLIST Switch

Normally, the $ALGOL card tells Batch to ask the compiler to generate a compilation
listing of your ALGOL program. The listing is then printed as part of your job's output.
If you don't want this listing, you can include the /NOLIST switch on the ALGOL card
to stop generation of the listing.

/SUPPRESS Switch

When Batch reads the cards of your ALGOL program, it normally copies everything on
the card up to column 80 or any column you may specify in the /WIDTH switch. How
ever, if you do not want trailing spaces copied (to save space on the disk, for example),
you can tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces
into the disk file.

Examples

The simplest form of the $ALGOL card is shown in the following example.

$ ALGOL

I This card causes Batch to copy your program into a file to which Batch gives a unique
name of the form LN???? and the extension .ALG. The cards in the program are read up
to column 80 and trailing spaces are not suppressed. A listing file is produced when the
program is compiled. This listing is written as part of the job's output. No compiler
switches are passed to ALGOL.

The following is an example of a $ALGOL card with switches.

$ALGOL (1 OOOD,N ,Q)/NOLIST /SUPPRESS/WIDTH:72

I With this card, Batch copies your program onto disk, assigns your program a unique file
name of the form LN???? .ALG, and inserts a COMPILE command into the control file.
The compiler reads and acts upon the switches lOOOD, N, and Q given to it by Batch.
When the program is compiled, no listing is produced. The cards in the program are read
up to column 72 and trailing spaces up to column 72 are not copied into the file.

2-12

2.4.2 The $COBOL Card

You place the $COBOL card in front of your COBOL program to make Batch copy your I
COBOL program into a disk file, create a unique filename of the form LN???? with the
extension .CBL, and insert a COMPILE command into your control file. Thus, when
Batch runs your job, your COBOL program will be compiled. You can put some optional
information on the $COBOL card to tell Batch more about your program or the cards that
your program is punched on.

The $COBOL card has the form:

(switches)

/switches

$COBOL(switches)/switches

are switches that Batch passes to the COBOL compiler when it
puts the COMPILE command in the control file. These switches
must be enclosed in parentheses, must not be preceded by slashes,
and mayor may not be separated by commas. The switches for
the COBOL compiler are described in Table D-3 in Appendix D
of the DECsysfem-10 COBOL Programmer's Reference Manual
(DEC-l O-LCPRA -A -D).

are switches to Batch to tell it how to read your program, and
whether or not to request a compilation listing when the program
is compiled. The switches can be put on the card in any order
and are described below.

/WlDTH:n Switch

Normally, Batch reads up to 80 columns on every card of the COBOL program. You can
make Batch stop reading at a specific column by means of the /WIDTH switch, in which
you indicate the number of a column at which to stop. Thus, if you have no useful infor
mation in the last ten columns of each card of your program, you can tell Batch to read
only up to column 70 by specifying

/WIDTH:70

on the $COBOL card.

2-13

I

I

/SUPPRESS Switch

When Batch reads the cards of your COBOL program, it normally copies everything on the
card up to column 80 or any column you may specify on the /WIDTH switch. However,
if you do not want trailing spaces copied (to save space on the disk, for example), you can
tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces into the
disk file.

Examples

The simplest form of the $COBOL card is:

$COBOL

This card tells Batch to copy your program into a file and assign a unique name of the
form LN???? and the extension .CBL. All 80 columns of the cards are read and trailing
spaces are copied. No switches are passed to the compiler, and a listing file is produced
when the job is run. The listing is printed as part of the job's output.

The following is an example of a $COBOL card with switches.

$COBOL (N ,P)/SUPPRESS/WIDTH: 72

With this card, Batch copies your program onto disk, assigns your program a unique file
name of the form LN???? .CBL, and inserts a COMPILE command into the control file.
Batch passes the Nand P switches to the compiler. The cards are read only up to column
72 and trailing spaces up to column 72 are not copied into your file. A listing file is
produced when the program is compiled. This listing is printed as part of the job's output.

2.4.3 The $DATA Card

You put a $DATA card in front of the data for your program to make Batch copy it into
a disk me and to insert an EXECUTE command into your control file. When your job is
run, any programs that were entered with $ALGOL, $COBOL, $FORTRAN, or $MACRO
cards that came before the $DATA card, are executed. Every time that Batch reads one
of the $-language cards, it adds it to a list that it keeps. When it then reads a $DATA
card, each program in Batch's list is put into the EXECUTE command string that the
$DATA card puts into the control file. When Batch reads another $-language card after
the $DATA card, Batch clears its list so that it can start a new list for programs entered
later. If you have more than one set of data for a program or programs, you can precede
each set with a $DATA card to put two EXECUTE commands into the control file to
run your program or programs twice. An EXECUTE command following another EXE
CUTE command in the control me without intervening $-language cards causes the pro
grams executed by the first EXECUTE command to be loaded and executed again.

If your data is included in the program so that you do not have cards with data on them,
you can use the $EXECUTE card (paragraph 2.4.7) to insert an EXECUTE command into
the control file.

2-14

The form of the $DATA card is:

fIlename.ext

/switches

$DATA filename.ext/switches

specifies the optional fIlename and extension that you can tell Batch
to put on the fIle that it creates for your data. If you omit the fIle
name and extension, Batch will create a unique name for your fIle
and add the extension .CDR to it.

are switches to Batch to tell it how to read your data cards. The
switches are described below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your data. You can make Batch
stop reading at a specific column by means of the /WIDTH switch, in which you indicate
the number of a column at which to stop. Thus, if you have no useful information in the
last ten columns of each card of your data, you can tell Batch to read only up to column
70 by specifying

/WIDTH:70

on the $DATA card.

/SUPPRESS Switch

When Batch reads the cards of your data, it normally copies everything on the card up to
column 80 or up to any column you may specify on the /WIDTH switch. However, if
you do not want trailing spaces copied (to save space on the disk, for example), you can
tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces into the
disk fIle.

2-15

/MAP

If you want a loader map to be generated and printed for you when your program is run,
you can specify the /MAP switch on the $DATA card to tell Batch to request one for you
within the EXECUTE command it places in your control file.

Examples

The simplest form of the $DATA card is:

$DATA

This card causes Batch to copy your data into a file and to assign a unique name and the
extension .CDR to it. All 80 columns of the cards are read and trailing spaces are copied
into the file.

The following example shows a $DATA card with switches.

$DATA MYDAT.DAT/WIDTH:72

The data that follows this card is copied into a file named MYDAT.DAT and an EXE
CUTE command is inserted into the control file. When Batch reads the cards of the data,
it reads only up to column 72 and copies trailing spaces into the data file.

2.4.3.1 Naming Data Files on the $DATA Card - If you want to name your data file on
the $DATA card rather than letting Batch name it for you, you must, in your program,
assign that file to disk as shown in the following examples.

COBOL Example

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO DSK.

DATA DIVISION.
FILE SECTION.
FD SALES, VALUE OF IDENTIFICATION IS "SALES CDS".

2-16

The $DATA card would then appear as follows.

$DATA SALES.CDS

FORTRAN Examples

You can assign your data to disk in several ways when you use FORTRAN. You can read
from unit 1, which is the disk, in your program and use the name FOROl.DAT as the
filename on your $DATA card, as shown in the following statements.

READ (l,f), list

$DATA FOR01.DAT

You can also tell FORTRAN to read from logical unit 2, which is normally the card
reader, and assign unit 2 or the card reader (CDR) to disk (DSK). You can use the name
FOR02.DAT on the $DATA card in this case.

READ (2,f), list

.ASSIGN DSK CDR (in the control file)
$DATA FOR02.DAT

You can also use a specific disk device such as DSKO as the unit from which you will read.
In the control file, you would then assign DSKO to DSK. The unit number of DSKO is
20 and thus the name on the $DATA card would be FOR20.DAT.

READ (20,0, list

.ASSIGN DSK DSKO (in the control file)
$DATA FOR20.DAT

2-17

ALGOL Example

To read your data from the disk in an ALGOL program, you would use the following
statements. You can assign your data to any channel (signified by c) and you can give
your data file any name as long as the name that you use in your program is the same
as that put on the $DATA card.

INPUT (c, "DSK")
SELECT INPUT (c)
OPENFILE (c, "MYDAT.DAT")

$DATA MYDAT.DAT

This is to ensure that your program finds your data in the disk file under the name that
you have assigned to it.

If you let Batch assign a name to your data file, you will not know the name that your
data file will have and should therefore assign your data file, without a name, to the card
reader. Batch will tell the monitor in this case to look for your data in a disk file when
your program wants to read it. The following examples illustrate how to do this.

COBOL Example

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO CDR.

DATA DIVISION.
FILE SECTION.
FD SALES, LABEL RECORDS ARE OMITTED.

2-18

FORTRAN Example

To read your data from the card reader, you use the unit number 2 or no unit number, as
shown below.

FUEllI> (2,f), list

ENI>
$I>llTll

FUEllI> f, list

ENI>
$I>llTll

ALGOL Example

In an l\LGOL program, you would assign the desired channel (signified by c) to the card
reader, select the desired channel, but you would not explicitly open the named file on
the channel because the file does not have a name that is known to you.

INPUT (c, "CI>R")
SELECT INPUT (c)

$I>llTll

The $I>llTll card cannot be used for data for programs written in languages other than
llLGOL, BLISS, COBOL, FORTRllN, and MllCRO. It can, however, be used for pro
grams that are in relocatable binary form. Thus, data for BllSIC programs cannot be
copied by means of the $I>llTll card; you should instead use the $I>ECK carel, described
below.

2-19

2.4.4 The $DECK Card

You can put the $DECK card in front of any program, data, or other set of information
to make Batch copy the program, data, or information into a disk file. Batch (by means
of the appropriate switch or switches) will also insert commands into the control file to
have your program, data, or information printed, plotted and/or punched on cards and/or
paper tape.

The form of the $DECK card is:

filename.ext

/switches

$DECK filename.ext/switches

specifies the optional filename and extension that you can tell
Batch to put on the file that it creates for your program or data.
If you omit the filename and extension, Batch will create a unique
name for your file.

are switches to Batch to tell it how to read and write the cards in
your deck. The switches are described below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card in your deck. You can make Batch
stop reading at a specific column by means of the /WIDTH switch, in which you indicate
the number of a column at which to stop. Thus, if you have no information in the last
10 columns of each card in your deck, you can tell Batch to read only up to column 70
by specifying

/WIDTH:70

on the $DECK card.

2-20

jSUPPRESS Switch

When Batch reads the cards in your deck, it normally copies everything on the card up to
column 80 (or up to any column you may specify on the /WIDTH switch). However, if
you do not want trailing spaces copied (to save space on the disk, for example), you can
tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces into the
disk file.

jCPUNCH

Batch will place the file it has just created on disk into the card-punch output queue.

jPLOT

Batch will place the file it has just created on disk into the plotter output queue.

/PRINT

Batch will place the file it has just created on disk into the line-printer output queue.

jTPUNCH

Batch will place the file it has just created on disk into the paper-tape punch output queue.

Examples

The simplest form of the $DECK card is:

$DECK

This card causes Batch to copy your deck into a disk file and to assign a unique name to
it. All 80 columns of the cards are read and trailing spaces are copied into the file. The
file is not placed into any output queue.

The following shows an example of a $DECK card.

$DECK MYDECK.CDSjWIDTH:50/PRINT

The deck that follows this card is copied into a disk file named MYDECK.CDS. When
Batch reads the cards in the deck, it reads up to column 50 and copies trailing spaces into
the file. The disk file created from your cards will be placed in the line-printer output
queue.

2-21

2.4.5 The $EOJ Card

You must put the $EOJ card at the end of the deck containing your complete job to tell
Batch that it has reached the end of your job. If you omit the $EOJ card, an error mes
sage will be issued unless it is the practice of your installation to have the operator put the
card on any deck that does not have one. However, your job will still be scheduled. The
form of the $EOJ card is shown below.

$EOJ

2.4.6 The $ERROR Card

You can use the $ERROR card and the $NOERROR card (described later in this Chapter)
to specify error recovery in the control file. When Batch reads the $ERROR card, it inserts
a special Batch command into the control file, the .IF (ERROR) command. This command
will later tell Batch what to do when an error occurs when your job is being processed.
How to perform error recovery is described in Section 2.5.

The $ERROR card has the form:

$ERROR statement

2-22

statement is a command to the monitor, to a system program or a special
Batch command such as .GOTO or .BACKTO.

Batch enters an .IF (ERROR) command into the control file when it reads the $ERROR
card, and includes the statement from the $ERROR card in the .IF (ERROR) command
in the form:

.IF (ERROR) statement

The Batch commands .GOTO and .BACKTO have the forms:

.GOTO statement label

.BACKTO statement label

statement label is the label of a line in the control file. The label can contain from
one to six alphabetic characters and must be followed by a double
colon (::) when it is labelling a line.

The .GOTO command tells Batch to search forward in the control file on disk until it finds
the line containing the label. The .BACKTO command tells Batch to search back in the
control file on disk to fine the line containing the label. .BACKTO initiates the search at I
the beginning of the control file. You must supply the labelled line and any related lines
for which Batch will search. Include these lines in your card deck where you want them
to be copied into the control file. If Batch cannot find a labelled line that it is searching
for as a result of a .GOTO or a .BACKTO statement, it terminates your job.

2.4.7 The $EXECUTE Card

The $EXECUTE card is used to place an EXECUTE monitor command into your control
file. It is similar in function to a $DATA (Paragraph 2.4.3) only the $EXECUTE card
does not have a data deck following it. This card is used when there is no data or when
your data already exists on disk. The files to be placed in the EXECUTE command string
generated by the $EXECUTE card are determined in the same way that they are for a
$DATA card. The form of the $EXECUTE card is shown below.

$EXECUTE/switch

i

2-23

I

/switch is a switch to Batch to tell it what to include in the command
it inserts in the control file.

/MAP

If you want a loader map to be generated and printed for you when your program is run
you can specify the /MAP switch on the $EXECUTE card to tell Batch to request one
for you within the EXECUTE command it places in your control file.

2.4.8 The $FORTRAN and $F40 Cards

You place the $FORTRAN or $F40 card in front of your FORTRAN program to make
Batch copy your program into a disk file, create a unique filename of the form LN????
with the extension .FOR (or .F4), and insert a COMPILE command into your control file.
The $FORTRAN card is used when you want a FORTRAN-lO program compiled, and the
$F40 card is used when you want an F40 program compiled. You can put some optional
information on the $FORTRAN or $F40 card to tell Batch more about your program or
the cards that your program is punched on.

The $FORTRAN card has the form:

$FORTRAN(switches)/switches

The $F40 card has the same format. The only difference is that you punch $F40 rather
than $FORTRAN.

(switches) are switches that Batch passes to the FORTRAN compiler when it
puts the COMPILE command in the control file. These switches
must be enclosed in parentheses, must not be preceded by slashes,
and mayor may not be separated by commas. The switches for
the FORTRAN compilers are described in Table C-l in Appendix
C of the DECsystem-lO FORTRAN-IO Language Manual (DEC-IO
LFORA-B-D) and in Table 12-1 in Chapter 12 of the DECsystem-lO
FORTRAN IV Programmer's Reference Manual (DEC-IO-LFLMA
B-D).

2-24

/WIDm:n Switch

Normally, Batch reads up to 80 columns on every card of the FORTRAN program. You
can make Batch stop reading at a specific column by means of the /WIDTH switch, in
which you include the number of the column at which to stop. The FORTRAN compiler
only reads FORTRAN statements up to column 72, even if you tell Batch to read up to
column 80. But, if you wish to read only up to column 60, you can specify

/WIDTH:60

on the $FORTRAN or $F40 card.

/SUPPRESS Switch

When Batch reads the cards of your FORTRAN program, it normally copies everything on
the card up to column 80 (or up to any column you may specify in the /WIDTH switch).
However, if you do not want trailing spaces copied (to save space on the disk, for example),
you can tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces
into the disk file.

/CREF Switch

If you want a cross-reference listing of your FORTRAN program, you can include the
/CREF switch on the $FORTRAN or $F40 card to tell Batch to ask the FORTRAN com
piler to produce a cross-reference listing when it compiles your program. This listing is
printed as part of your job's output.

/NOLISr Switch

Normally, the $FORTRAN or $F40 card tells Batch to ask the compiler to generate a
compilation listing of your FORTRAN program. The listing is then printed as part of
your job's output. If you do not want this listing, you can include the /NOLIST switch
on the $FORTRAN or $F40 card to stop generation of the listing.

Examples

The simplest form of the $FORTRAN card is:

$ FORTRAN

The simplest form of the $F40 card is:

$F40

2-25

The $FORTRAN or $F40 card tells Batch to copy your program into a disk file and
assign a unique name and the extension. The extension will be .FOR when you use the
$FORTRAN card, and it will be .F4 when you use the $F40 card. All 80 columns of
the cards are read, trailing spaces are copied, and a listing file is produced when the job
is run. No switches are passed to the compiler. The listing is printed as part of the job's
output.

The following is an example of a $FORTRAN and $F40 card with switches.

$FORTRAN (I,M)/CREF/WIDTH:72
or

$F40 (I,M)/CREF/WIDTH:72

I With this card, Batch copies your program onto disk, assigns your program a unique file
name of the form LN????FOR (or .F4), and inserts a COMPILE command into the con
trol file. Batch passes the I and M switches to the compiler. The cards are read only up
to column 72 and trailing spaces up to column 72 are copied into your file. A cross-
reference listing of your program will be generated.

2.4.9 The SJOB Card

You must include the SlOB card as the first card in your deck or as the second card fol
lowing the $SEQUENCE card, which is described later in this chapter.

The $JOB card tells Batch whose job it is processing and; optionally, the name of the job,
and any constraints that you want to place on the job. When Batch reads the $JOB card
and the $PASSWORD card, if it is required, it creates the control file and begins the log
file for your job. Batch then places into the control file the commands that are taken
from the cards that follow the $JOB card.

The $JOB card has the form:

$JOBname[proj,prog]/switches

2-26

name

[proj,prog]

/switches

is the optional name that you can give to the job. If you omit the
name, Batch will create a unique name for your job. The name of
the job is that which Batch gives to your control file and log file.
To the job name, Batch adds the extension .CTL for the control
file. It adds the extension .LOG to the name for the log file.

is your project-programmer number; i.e., the number that you were
assigned by the installation to allow you to gain access to the
DECsystem-IO. Normally, the project-programmer number is two
numbers separated by a comma and enclosed in square brackets.

are switches to Batch to tell it the constraints that you have placed
on your job. They are described below.

/AFTER:dd-mmm-yy hh:mm Switch

If you do not want Batch to run your job until after a certain time on a certain day, you
can include the / AFTER switch on your $JOB card. The date and time are specified in
the form dd-mmm-yy hh:mm (e.g., 20-MAY-72 02:15). If this switch is not included,
Batch runs your job at the time that it would normally schedule such a job, based on its
size, the amounts of core and time required, and e>ther parameters.

/AFTER:+hh:mm Switch

If you do not want Batch to run your job until after a certain amount of time has elapsed
since the job was entered, include this form of the / AFTER switch on the $JOB card.
The amount of time that the job must wait after it has been entered is specified in the
form +hh:mm (e.g., + 1 :30). If this switch is not included, Batch will schedule the job as
it normally does.

NOTE

If any of the programs in your job have output
to slow-speed devices such as the card punch, the
paper-tape punch, the line printer, and the plotter,
do not include an ASSIGN command in your job.
Batch will take care of this output for you as long
as you specify the switches for these devices, which
are described below.

/CARDS:n Switch

If any program in your job has punched card output, you must include the /CARDS switch
on the $JOB card to specify the approximate number of cards that your job will punch.
Up to a maximum of 10,000 cards can be specified in the form n (where n represents a

2-27

decimal number from 1 to 10,000). If you do not specify the /CARDS switch, no cards
will be punched, even if you want them. If you do not specify enough cards, the re
maining output over the number of cards specified will be lost without notification to you.

/CORE:nK Switch

You can specify the amount of core in which the programs in your job will run by means
of the /CORE switch. You specify the amount of core in the form nor nK (e.g., 25 or
25K). You should try to estimate as closely as possible the amount of core that your job
will need. If you do not specify enough, your job cannot run. If you do not specify the
amount of core that your job will need, Batch will assume 25K or an amount set by the
installation.

/CORE:nP Switch

You can also specify the amount of core your job will need in pages, up to the maximum
allowed by the installation. You specify the amount of core in the form nP (e.g., 60P).
If you do not specify the amount your job will need, Batch will assume SOP or an amount
set by the installation.

/DEADLINE:dd-mm-yy hh:mm

If you want your job to be completed by a specified date and time, you can include the
/DEADLINE switch on your $JOB card. The date and time are specified if). the form
dd-mm-yy hh:mm. Hours are specified using a 24 hour clock. The resultin~DEADLINE
time must be greater than the AFTER time. If this switch is not included, Batch com
pletes your job in the time it normally would, based on the job size and other parameters.

/DEADLINE:+hh:mm

If you want Batch to start your job by a specified time, you can include this form of the
/DEADLINE switch on your $JOB card. You enter the time in the form +hh:mm (e.g.,
+10:15 which means, start this job after ten hours and fifteen minutes have passed). If
this switch is not included, Batch will schedule the job as it normally does.

/FEET:n Switch

If any program in your job has punched paper-tape output, you must include the /PEET
switch on the $JOB card to specify the approximate number of feet of paper tape that
your job will punch. You specify the number of feet in the form n (e.g., 50). If you do
not specify the /PEET switch, no paper tape will be punched, even if you want it. If you
do not specify enough paper tape, the output that remains over the number of feet that
you specify will be lost and the message ?OUTPUT PORMS LIMIT EXCEEDED will be
punched in block letters on the tape.

2-28

/NAME:name Switch

You can include your name by inserting this switch on your $JOB card. Your name can
be up to 12 characters, and it can also be a quoted string. This switch is optional unless
your installation requires it. If it is required, then the name you insert must match the
name in the accounting files of your installation.

/PAGES:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in this number are
the log file and any compilation listings that you may request. If you need more than
200 pages for your job, you must include the /PAGES switch on the $JOB card to indi
cate the approximate number of pages that your job will print. If your output exceeds
either the maximum that Batch allows or the number that you specified in the /PAGES
switch, the excess output will not be printed and the message ?OUTPUT FORMS LIMIT
EXCEEDED will be written in the log file. However, even if you exceed the maximum,
the first ten pages of the log file will be printed.

/TIME:hh:mm:ss Switch

Normally, Batch allows your job to use up to five minutes of central processor time.
Central processor (CPU) time is the amount of time that your job runs in core, not the
amount of time that it takes Batch to process your job. If you need more than five
minutes of CPU time, you must include the /TIME switch on the $JOB card to indicate
the approximate amount of time that you will need. If you do not specify enough time,
Batch will terminate your job when the time is up. However, if you specify a large
amount of time, Batch may hold your job in the queue until it can schedule a large
amount of time for it.

The value in the /TIME switch is given in the form hh:mm:ss (hours:minutes:seconds).
However, if you specify only one number, Batch assumes that you mean seconds. Two
numbers separated by a colon (:) are assumed to mean minutes and seconds. Only when
you specify all three numbers, separated by colons, does Batch assume that you mean
hours, minutes, and seconds.

/TIME:25
/TIME:l :25
/TIME:l :25 :00

means 25 seconds
means 1 minute and 25 seconds
means 1 hour and 25 minutes

/TPLOT:t Switch

If you have any programs in your job that do output to the plotter, you must include the
/TPLOT switch on the $JOB card so that your output will be plotted. If the /TPLOT
switch is not included, no output will be plotted. If enough minutes (specified in the
form t) are not specified, any plotter output left after the time has expired will be lost
without notification to you.

2-29

I

The following rules apply to all switches in the above list that require a time and/or date
to be specified:

When you specify the time of day (hh:mm:ss)

1. You must not omit the colon (:) or colons.

When you specify a date (dd-mm-yy)

1. You must not omit the hyphens.

2. You must specify both the day and the month as a minimum requirement.

3. You can abbreviate the month to 3 letters or use the numeric representation of
the month (e.g., JUL and 7 both indicate July).

4. If you omit the year, the date (and its associated time, if present) will be inter
preted to mean the next occurrence of that date (and time).

5. If you omit the time from a date specification, the time is assumed to be mid
night on the specified date. In the example below the current date of 5-DEC-74
will be assumed.

/ AFTER:20~DEC-74
/DEADLINE:19-Jan 20:00
/DEADLINE:19-l 20:00

2.4.10 The $MACRO Card

means midnight on December 20, 1974.
means 8 P.M. on January 19, 1975.
means 8 P.M. on January 19, 1975.

You place a $MACRO card in front of your MACRO program to make Batch copy your
program into a disk file, create a unique filename in the form of LN???? with the exten
sion .MAC, and insert a COMPILE command into your control file. Thus, when Batch
runs your job, your MACRO program will be assembled. You can put some optional
information on the $MACRO card to tell Batch more about your program or the cards
that your program is punched on.

The $MACRO card has the form:

$MACRO(switches)/switches

2-30

(switches)

/switches

are switches that Batch passes to the MACRO assembler when it puts
the COMPILE command in the control file. The switches must be
enclosed in parentheses, must not be preceded by slashes, and may
or may not be preceded by commas. The switches for the MACRO
assembler are described in Table 4-1 in Chapter 4 of the DECsystem-
10 MACRO-10 Assembler Programmer's Reference Manual (DEC-10-
LMCOA -A -DJ.

are switches to Batch to tell it how to read your program and whether
or not to request a compilation listing when the program is compiled.
The switches can be put on the card in any order and are described
below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your MACRO program. You
can make Batch stop reading at a specific column by means of the /WIDTH switch, in
which you include the number of the column at which to stop. Thus, if you wish to have
Batch read only up to column 70, you can specify

/WIDTH:70

on the $MACRO card.

/SUPPRESS Switch

When Batch reads the cards of your MACRO program, it normally copies everything on the
card up to column 80 (or up to any column you may specify on the /WIDTH switch).
However, if you do not want trailing spaces copied (to save space on the disk, for example),
you can tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces
into the disk file.

/CREF Switch

If you want a cross-reference listing of your MACRO program, you can include the /CREF
switch on the $MACRO card to tell Batch to ask the MACRO assembler to produce a
cross-reference listing when it assembles your program. This listing is printed as part of
your job's output.

/NOLIST Switch

Normally, the $MACRO card tells Batch to ask the assembler to generate an assembly
listing of your MACRO program. This listing is then printed as part of your job's output.
If you do not want this listing, you can include the /NOLIST switch on the $MACRO
card to stop generation of the listing.

2-31

I

Examples

The simplest form of the $MACRO card is:

$MACRO

This card tells Batch to copy your program into a disk file and assign a unique name and
the extension .MAC to it. All 80 columns of the cards are read, trailing spaces are copied,
and a listing file is produced when the job is run. The listing is printed as part of the
job's output. No switches are passed to the assembler.

The following is an example of a $MACRO card with switches.

$MACRO (P,Q,X)/WIDTH:72

With this card, Batch copies your program onto disk, assigns your program a unique file
name of the form LN???? .MAC, and inserts a COMPILE command into the control file.
Batch passes the P, Q, and X switches to the assembler. The cards are read only up to
column 72 and trailing spaces are copied into your file. An assembly listing is generated.

2.4.11 The $NOERROR Card

You can use the $NOERROR card and the $ERROR card (described in Section 2.4.6) to
specify error recovery in the control file.

When Batch reads the $NOERROR card, it inserts a special Batch command into the con
trol file, the .IF (NOERROR) command. This command tells Batch what to do when an
error occurs when your job is being processed. How to perform error recovery is described
in Section 2.5.

The $NOERROR card has the form:

statement

$NOERROR statement

is a command to the monitor or a special Batch command such as
.GOTO or .BACKTO.

2-32

Batch enters an .IF (NOERROR) command into the control file when it reads the
$NOERROR card, and includes the statement from the $NOERROR card in the .IF
(NOERROR) command in the form:

.IF (NOERROR) statement

The Batch commands .GOTO and .BACKTO have the forms:

.GOTO statement label

.BACKTO statement label

statement label is the label of a line in the control file. The label can contain from
one to six alphabetic characters and must be followed by a double
colon (::) when it is labelling a line.

The .GOTO command tells Batch to search forward in the control file until it finds the line
containing the label. The .BACKTO command tells Batch to search back in the control
file to find the line containing the label. .BACKTO initiates the search at the beginning of
the control file. You must supply the labelled line and any related lines for which Batch
will search. Include these lines in your card deck where you want them to be copied into
the control file. If Batch cannot find a labelled line that it is searching for as a result of
a .GOTO or a .BACKTO statement, it terminates your job.

2.4.12 The $PASSWORD Card

You put the password that has been assigned to you on the $P ASSWORD card to tell
Batch that you are an authorized user of the system.

In conjunction with the SlOB card, the $PASSWORD card identifies you to Batch and
tells Batch to create the control file and log file for your job. If you put a password on
the $PASSWORD card that does not match the password stored in the system for you,
Batch will not create any files and will terminate your job. Some installations may not
require the $PASSWORD card; if it is required at your installation, you must put it
immediately after the SlOB card.

The $PASSWORD card has the form:

$PASSWORD password

2-33

password is a one to six character password that is stored in the system to
identify you. There must be exactly one space between the end of
the card name ($PASSWORD) and the first character of your pass
word.

2.4.13 The $SEQUENCE Card

You can use the $SEQUENCE card to specify a unique sequence number for your job.
This card mayor may not be required by the installation or may be supplied by the
personnel at the installation. If the card is required, you must include it as the first card
in the deck containing your job.

The form of the $SEQUENCE card is:

$SEQUENCE n

n is the unique sequence number assigned to your job.

2.4.14 The $TOPSIO Card

You can include monitor commands and Batch commands in your card deck by inserting
a $TOPSIO card immediately before these commands. The $TOPSIO card directs Batch
to copy all cards following it into the Batch control file. Therefore, a single monitor or
Batch command or a group of consecutive monitor and/or Batch commands must be pre
ceded by a $TOPSIO card. The copying process is terminated by the next control card
in the deck.

2-34

The form of the $TOPSIO card is:

/switches

$TOPSl~/switches

are switches to Batch to tell it how to read and interpret your
input.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your data. You can make Batch
stop reading at a specific column by using the /WIDTH switch, in which you indicate the
column number at which Batch is to stop reading. Thus, if you have no useful information
in the last ten columns of each card of your data, you can tell Batch to read only up to
column 70 by specifying

/WIDTH:70

on the $TOPSIO card.

/SUPPRESS Switch

When Batch reads the cards of your data, it normally copies everything on the card up to
column 80 or up to any column you may specify on the /WIDTH switch. However, if
you do not want trailing spaces copied (to save space on the disk, for example), you can
tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces into the
disk file.

2.5 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

Normally, when an error occurs in your job, Batch terminates the job and, if the error
occurred when one of your programs was running, causes a dump of your core area. The
dump is printed with your output and log file. You can specify recovery from errors
in the control file by means of the $ERROR and $NOERROR cards, described in Sec
tions 2.4.6 and 2.4.11. You must include one of these cards at the point in the control

2-35

I

file that an error may occur. When an error occurs, Batch examines the next monitor-level
line (Le., not a line that contains data or a command string to a system program) to find
an .IF (ERROR) statement to tell it what to do about the error. If an error does not
occur and an .IF (ERROR) statement is present, the .IF (ERROR) statement is not exe
cuted.

Thus, if you have a program that you are not sure is error-free, you can include a $ERROR
or $NOERROR card to tell Batch what to do if an error occurs, as shown in Figure 2-8.

$EOJ

REMAINDER OF JOB

$ERROR (OR $NOERROR)

FORTRAN SOURCE PROGRAM

Figure 2-8

The above cards would cause Batch to make the following entries in the control file .

. COMPILE ...

.IF (ERROR) statement

On either the $ERROR or $NOERROR card, you must include a statement that tells
Batch what to do. You can use any monitor command, a command to a program, or
one of the special Batch commands. The .GOTO and .BACKTO commands are two
Batch commands for this purpose. Refer to Section 2.4.6 for descriptions of these

2-36

commands. Be sure, if you use .GOTO or .BACKTO on your $ERROR or $NOERROR
card, that you supply a line for the control file that has the label that you specified in
the .GOTO or .BACKTO commands.

Two sample jobs are shown below. The first shows using $ERROR and the .GOTO com
mand to specify error recovery. The second example shows the use of the $NOERROR
card and the .GOTO command.

If you have a program that you are not sure will compile without errors, you can include
another version of the same program in your job (that hopefully will compile) and tell
Batch to compile the second program if the first has an error. The cards to enter this
job are shown in Figure 2-9.

These cards set up the following control file for you .

. COMPILE jCOMPILE LN???? .FOR JLIST

.IF (ERROR) .GOTO A

.EXECUTE LN????REL jMAP:MAP.LST

.GOTO B
A:: !CONTINUE
.COMPILE jCOMPILE LN???? .FOR JLIST
.EXECUTE LN???? .FOR
B:: !CONTINUE

The $FORTRAN card told Batch to copy the program into a disk file, to create a unique
filename for the program in the form LN???? .FOR, and to insert a COMPILE command
into the control file. The $ERROR card told Batch to insert .IF (ERROR) .GOTO A
into the control file. The data was copied into a disk file and an EXECUTE command
was put into the control file because of the $DATA card. The $TOPS10 card told Batch
to start copying cards into the control file, so Batch put the next two lines into the con
trol file. The second $FORTRAN card told Batch to copy the program into a disk file,
create a unique filename for the program in the form LN???? .FOR, and put a COMPILE
command into the control file. A $EXECUTE card was used instead of a $DA TA card
because the data was already in a file on disk. The next line was put into the control
file.

When the job is started, Batch reads the control file and passes commands to the monitor.
If an error occurs in the compilation of the first program, Batch finds the .IF statement
and executes the .GOTO command contained in it. The command tells Batch to look for
the line labelled A, which contains a comment, so Batch goes on to the next line. The
second program is compiled and then executed with the data. The next line is a comment,
so Batch continues to the end of the control file. If an error does not occur in the first
program, Batch skips the .IF statement, executes the program with the data, skips the
unnecessary error procedures, and continues to the end of the control file.

A variation of the above procedure is shown in Figure 2-10 using the $NOERROR card
and the .GOTO command. The difference is that Batch skips the .IF statement if an
error occurs, and performs it if an error does not occur.

2-37

$EOJ

B: : ! CONTINUE

$EXECUTE

SOURCE PROGRAM

A:: ! CONTINUE

DATA FOR PROGRAM

$DATA FOR01.DAT/MAP

$ERROR .GOTO A

FORTRAN SOURCE PROGRAM

I
$JOB [4,77743]

$SEQUENCE 101

Figure 2-9

2-38

$EOJ

A::! CONTINUE

I

SOURCE PROGRAM

I
.GOTO A

PROGRAM

I
$PASSWORD ABCD

$SEQUENCE l~l

Figure 2-10

2-39

I

I

I

Batch reads the cards and puts the following commands into the control file .

. COMPILE jCOMPILE LN???? .FOR JLIST

.IF (NOERROR) .GOTO A

.COMPILE jCOMPILE LN???? .FOR JLIST

.EXECUTE LN???? .FOR

.GOTO B
A:: ! CONTINUE
.EXECUTE LN???? .FOR
B:: !CONTINUE

The $FORTRAN card tells Batch to copy the FORTRAN program into a file, to create
a unique filename of the form LN???? .FOR, and to insert a COMPILE command into
the control file. The $NOERROR card tells Batch to insert an .IF command into the
control file.

The second $FORTRAN card tells Batch to copy the second program into a disk file, to
create a unique filename of the form LN???? .FOR and to insert another COMPILE com
mand into the control file. Instead of a $DATA card, a $DECK card is used to tell Batch
to copy the data into a disk file named FOROl.DAT. The $DATA card is not used here
because it would have the names of both programs in its list for the EXECUTE command
generation, which would cause an error when the job is run. To tell Batch to start copy
ing cards into the control file, the $TOPSIO card comes next. Thus, Batch copies the
next five lines into the control file.

When the job is run, Batch passes the COMPILE command to the monitor to compile the
first program. If an error does not occur, the .IF command is read and the .GOTO com
mand is executed. Batch skips to the line labelled A, which is a comment, and continues
reading the control file. The program LN???? .FOR is executed with the data and the
end of the job is reached. If an error occurs, Batch skips the .IF statement and continues
reading the control file. The second program is compiled and then executed with the data.
Batch is then told to go to the line labelled B, which is a comment line. The end of the
job follows. The EXECUTE monitor command was used in this job rather than the
$EXECUTE card. The $EXECUTE card would have caused the names of both programs
to be included in the EXECUTE command which would have resulted in an error when
the job was run.

The examples shown above illustrate only two ways that you can specify error recovery
in the control file. You can use the .BACKTO command or any monitor command that
you choose to help you recover from errors in your job.

You do not have to attempt to recover from errors while your job is running. You can
correct your errors according to the error messages in the log file when your job is re
turned to you, and then run your job again. You can find a complete list of error mes
sages in Chapter 4 of the DECsystem-10 Operating System Commands manual. Batch
will also print a dump of your core area if an error occurs while your job is running and
you have not specified error recovery. If you can read dumps, this can also aid you to
correct your errors. The log file and dumps are described in Chapter 4.

2-40

CHAPTER 3

ENTERING A JOB TO BATCH FROM A TERMINAL

When you enter a job to Batch from a timesharing terminal, you must create a control
file that Batch can use to run your job. The control file contains all the commands that
you would use to run your job if you were running under timesharing. For example, if
you wanted to compile and execute a program called MYPROG.CBL, the typeout would
appear as follows:

.COMPILE MYPROG.CBL)
COBOL: MAIN [MYPROG]
EXIT
.EXECUTE MYPROG.CBL

LOADING)
LOADER lK CORE
EXECUTION
EXIT

(Your request)

The system's reply
(Your request)

The system's reply

The control file to tell Batch to run the same job appears as the following:

.COMPILE MYPROG.CBL

.EXECUTE MYPROG .CBL

When the job is run, the commands are passed to the monitor to be executed. The com
mands and their replies from the monitor are written in the log file so that the entire
dialog shown above appears in the log file.

To create a control file and submit it to Batch from a terminal, you must perform the
following steps:

1. LOGIN to the system as a timesharing user.

2. Write a control file using an editor such as TECO or LINED.

3. When you finish the control file, close and save· it on disk.

4. Submit the job to Batch using the monitor command SUBMIT or QUEUE INP:

You can then wait for your output to be returned at the designated place.

3-1

3.1 CREATING mE CONTROL FILE

After you have logged into the system as you normally would to start a timesharing job,
you must run an editor so that you can create your control file.

The control file can contain monitor commands, system program commands, data that
would normally be entered from a terminal, and special Batch commands. The Batch
commands are described in Section 3.3. What you write in the control file depends on
what you wish your job to accomplish. An example of a job that you can enter to Batch
from a terminal is as follows:

1. Compile a program that is on disk.

2. Load and execute the program with data from another disk file.

3. Print the output on the line printer.

4. Write the output into a disk file also.

5. Compile a second program.

6. Load and execute the second program with the data output from the first
program.

7. Print the output from the second program.

The control file that you would write for the above job is as follows:

.COMPILE MYPROG.F4/COMPILE

.EXECUTE MYPROG.F4

.COMPILE PROG2.F4/COMPILE

.EXECUTE PROG2.F4

Y oti include statements in your programs to read the data from the disk files and write
the output to the printer and the disk. The output to the line printer is written with
your log file as part of the total output of your job.

If an error occurs in your job, Batch will not continue, but will terminate the job and, if
the error occurs while one of your programs is running, cause a dump to be taken of your
core area. The dump is then printed with your job's output. To avoid having your job
terminated because an error occurs, you can specify error recovery in the control file using
the special Batch commands. Error recovery is described in Section 3.4.

Any monitor command that you can use in a timesharing job can be used in a Batch job
with the following exceptions. The ATTACH, DETACH, CCONT, CSTART, and SEND
commands have no meaning in a Batch job. If you include one of these commands in
your job, Batch will write the command and an error message into your log file, will not
process the command, and will then continue the job from that point. Do not include a
LOGIN command in your control file because Batch logs the job for you. If you put in a
LOGIN command, your job will be terminated.

3-2

3.1.1 Format of Lines in the Control File

Since you can put monitor, system program, and Batch commands, as well as data into
the control me, you have to tell Batch what kind of line it is reading. The format of each
of these lines is described below. Each line normally begins in column I, but Batch al
ways starts reading at the first nontab or nonblank character, regardless of the column in
which it appears.

To include a monitor or Batch command, you must put a period (.) in the first column
and follow it immediately with the command. Any information that follows a monitor
command is in the format shown for the command in Chapter 2 of the DECsystem-lO
Operating System Commands manual.

If you include a command string to a system program, you must place an asterisk (*) in
column 1 and follow it immediately with the command string. For the format of com
mand strings, refer to the manual for the specific system program that you wish to use.

If you want to include a command to a system program that does not accept carriage re
turn as the end of the line (e.g., TECO and DDT), you must substitute an equal sign (=)
for the asterisk so that Batch will suppress the carriage return at the end of the line.

To include data for your program in the control me, write it as you would data that is
read from a separate me. The only restriction on data in the control me is that alphabetic
data that is preceded by a dollar sign ($) must be preceded by an additional dollar sign
so that Batch will not mistake it for its own control command.

If you put any special characters other than those described above in the first column of
the line, you may get unexpected results because Batch interprets other special characters
in special ways. If you want to know about other special characters, refer to Chapter 3
of the DECsystem-lO Operating System Commands manual.

If you have more information than will fit on one line, you can continue on the next line
by placing a hyphen (-) as the last nonspace character on the line to be continued and the
rest of the information on the next line. -

Comments can also be included either as separate lines in the control file or on lines con
taining other information. To include a comment on a separate line, you must put an
exclamation point (!) in column 1 and follow it with the comment. To add a comment to I
a line after your data, you must precede the comment with an exclamation point (!). For
merly, the semicolon (;) was the only character used .to indicate the beginning of a comment.
Both the exclamation point (!) and the semicolon (;) are used now for this purpose. How
ever, you should use the exclamation point (!) for any new jobs submitted to Batch.

3.2 SUBMITTING THE JOB TO BATCH

After you have created the control me and saved it on disk, you must enter it into the
Batch queue so that it can be run. All programs and data that are to be processed when
the job is run must be made up in advance or be generated during the running of the job.
You can have them on any medium but, if they are on devices other than disk, you must
include commands in your control file to have the operator mount the devices on which
your program and data reside.

3-3

It is recommended that your programs and as much of your data as is possible reside
on disk. An example of including MOUNT commands in the control file to mount tapes
is shown in Chapter 5.

You enter your job in Batch's queue by means of the SUBMIT or QUEUE INP: monitor
command. These commands have the forms:

SUBMIT jobname=control filename.ext, log filename.ext/switches
QUEUE INP:jobname=control filename.ext, log filename.ext/switches

jobname is the name that you give to your job. If this name
is omitted, Batch uses the name of the control file.

control filename.ext is the name that you have given to the control file that you
created. You can add an extension, but if you do not, Batch
will assume an extension of .CTL.

log filename. ext is the name that Batch will give the log file when it is created.
You can add an extension, but if you do not, Batch will
assume an extension of .LOG.

You must specify the name of the control file. If the name of the log file is omitted,
its name will be taken from the name of the control file.

/switches are switches to Batch to tell it how to process your job and
what your output will look like. Most switches can appear
anywhere in the command string; however, a few must be
placed after the files to which they pertain. The various kinds
of switches are described below.

Three kinds of switches are available to you to use in the SUBMIT and QUEUE INP:
commands. The switches are: queue operation, general, and file control. Each category
of switch and the switches in each category are described in the following sections.

3.2.1 Queue Operation Switches

Queue operation switches describe the actions that you want Batch to perform with your
job. Only one of this type of switch can be placed in the command string, and it can
appear anywhere in the command string.

/CREATE Switch

With the /CREATE switch, you tell Batch that you are entering a job into its queue. The
job will then wait in the queue until Batch is ready to process it. If you omit a queue
operation switch from the SUBMIT command string, Batch will assume the /CREATE switch,
i.e., it will assume that you are entering a job. An example of this switch follows.

3-4

SUBMIT MYJOB = MYFILE.CTL, MYLOG.LOG /CREATE

/KILL Switch

You put the /KILL switch in a SUBMIT command to tell Batch that you want to delete
a job that you previously entered into its queue. For example, if you submit a job and
discover that you left a command out of the control file, you could delete the queue entry
by issuing another SUBMIT command for that job with a /KILL switch in it. After you
have corrected the control file, you could resubmit the job to Batch. However, if Batch
has already started to run your job, it will ignore your request to delete the job and issue
the message %QUEUE REQUEST INP:jobname[proj,prog] INTERLOCKED IN QUEUE
MANAGER. When you use the /KILL switch, you must specify the job name in the
SUBMIT command or you will kill all the jobs that you may have in the Batch input
queue.

/MODIFY Switch

If you want to change any switch value that you have previously entered in a/SUBMIT
command, you can include the /MODIFY in a new SUBMIT command to tell Batch which
switch value that you want to change. You can change any switch value that can be en
tered in a SUBMIT command. The switch value that you want changed is written immedi
ately after the /MODIFY switch. For example, to change the number of pages in a /P AGE
switch (described below), you could issue the following command.

SUBMIT MYJOB = /MODIFY/PAGE:SOO

The value specified in the /P AGE switch that follows the /MODIFY switch replaces the
previous value. If Batch has already started the job in which you wish to change a switch,
the /MODIFY switch will be ignored, and Batch will issue the message %QUEUE REQUEST
INP:jobname[proj.prog] INTERLOCKED IN QUEUE MANAGER.

3.2.2 General Switches

You use the general switches to define limits for your job. Such limits as core, pages of
output, and the time that your job will run can be specified as general switches. Each
general switch can be specified only once in a SUBMIT command, although each can be
modified in subsequent SUBMIT commands by means of the /MODIFY switch. You can
put a general switch anywhere in the command string because it affects the entire job, not
just one file in the job.

/AFTER:hh:mm Switch

If you do not want Batch to run your job until after a certain time or until after a certain
number of minutes have elapsed since the job was entered, you can include the / AFTER
switch in the SUBMIT command string. The time is specified in the form hh:mm (e.g.,
12:IS) and the amount of time that the job must wait is specified in the form +hh:mm
(e.g., + 1: IS). If you omit the switch, or the colon and the value in the switch, Batch will
schedule your job as it normally would.

3-S

NOTE

If any of the programs in your job have output
to slow-speed devices such as the card punch, the
paper-tape punch, the line printer, and the plotter,
do not include an ASSIGN command to your job.
Batch will take care of this output for you as long
as you specify the switches for these devices, which
are described below.

/CARDS:n Switch

If any program in your job has punched card output, you must include the /CARDS
switch in the SUBMIT command to specify the approximate number of cards that your
job will punch. The number of cards is specified in the form n (e.g.; 1000). If you do
not specify the /CARDS switch, no cards will be punched, even if you want them. If you
specify the switch without the colon and a value, up to 2000 cards can be punched by
your job. If you do not specify enough cards, the output that remains after the limit is
reached will be lost without notification to you.

/CORE:n Switch

You can specify the maximum amount of core in which the program in your job will run
by means of the /CORE switch. You specify the amount of core in the form n (e.g., 25)
which indicates decimal thousands. You should try to estimate as closely as possible the
amount of core that your job will need. If you do not specify enough, your job cannot
run to completion. If you omit the switch, Batch will assume 25K of core or an amount
set by the installation. If you specify the switch without the colon and a value, Batch
will assume 40K of core or an amount set by the installation.

/FEET:n Switch

If any program in your job has punched paper-tape output, you must include the /FEET
switch in the SUBMIT command to specify the approximate number of feet of paper tape
that your job will punch. You specify the number of feet in the form n (e.g., 50). If
you do not specify the /FEET switch, no paper tape will be punched, even if you want it.
If you specify the /FEET switch without the colon and a value, Batch will assume the
number of feet equal to 10 times the number of disk blocks that your paper tape output
would occupy plus 20. If you do not specify enough paper tape, the output that remains
after the limit is exceeded will be lost and the message ?OUTPUT FORMS LIMIT EXCEEDED
will be punched into the tape in block letters.

/PAGE:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in this number are the
log file and any listings that you may request. If you need more than 200 pages for your

3-6

job, you must include the /PAGES switch in the SUBMIT command to indicate the
approximate number of pages that your job will print. If you include the switch without
the colon and a value, Batch will assume that you will print up to 2000 pages. If
your output exceeds either the maximum that Batch allows or the number that you speci
fied in the /PAGE switch, the excess output will be lost and the message ?OUTPUT FORMS
LIMIT EXCEEDED will be printed. However, even if you exceed the maximum, the first
ten pages of the log file will be printed.

/TIME:hh:mm:ss Switch

Normally, Batch allows your job to use up to five minutes of central processor time.
Central processor (CPU) time is the amount of time that your job runs in core, not the
amount of time that it takes Batch to process your job. If you need more than five minutes
of CPU time, you must include the /TIME switch in the SUBMIT command to indicate
the approximate amount of time that you will need. If you specify the switch without
the colon and a 'value, Batch will assume that you need one hour of CPU time. If you
do not specify enough time, Batch will terminate your job when the time is up.

The value in the /TIME switch is given in the form hh:mm:ss (hours:minutes:seconds).
However, if you specify only one number, Batch assumes that you me.an seconds. Two
numbers separated by a colon are assumed to mean minutes and seconds. Only when you
specify all three numbers, separated by colons, does Batch assume that you mean hours,
minutes, and seconds. For example:

/TIME:25
/TIME:I :25
/TIME:I :25:00

means 25 seconds
means I minute and 25 seconds
means I hour and 25 minutes

/TPLOT:t Switch

If you have any programs in your job that do output to the plotter, you must include
the /TPLOT switch in the SUBMIT command so that your output will be plotted. If the
/TPLOT switch is not included, no output will be plotted. If you specify the switch with
out the number of minutes (specified in the form t), Batch will allow output equal to ten
minutes of plotter time. If enough time is not specified, any plotter output left after the
time has expired, will be lost without notification to you.

3.2.3 File-Control Switches

File-control switches allow you to specify parameters for individual files in the SUBMIT
command. The control file can receive a special parameter, while the log file does not,
and vice versa. If you place a file-control switch before the two filenames in the SUBMIT
command, the switch applies to both files in the request. If you place the switch after
one of the files in the command, it refers only to that file.

3-7

/DISPOSE Switch

The /DISPOSE switch can have one of three values:

/DISPOSE : DELETE
/DISPOSE :PRESERVE
/DISPOSE: RENAME

/DISPOSE:DELETE allows you to specify that either the control file or the log file (or
both) should be deleted after the job is run. The log file is deleted from your disk area
only after it has been printed.

/DISPOSE:PRESERVE allows you to specify that one or both of your files should be left
in your disk area after the job is finished and all output printed.

/DISPOSE:RENAME tells Batch that you want the specified file to be taken from your
disk area immediately and put in Batch's disk area. In the case of the log file,
/DISPOSE:RENAME only works for a log file that already exists on your disk area. Do
not use /DISPOSE:RENAME for a log file that does not yet exist. After the job has been
run and the output has been printed, the file that was renamed is deleted from Batch's
disk area.

If you omit the /DISPOSE switch, Batch assumes /DISPOSE:PRESERVE. That is, both
the control file and the log file are saved in your disk area. If you plan to use the con
trol file again, then it is best to omit the /DISPOSE switch for the control file. If you
do not want to keep the control file because you do not have enough room in your disk
area, specify either jDISPOSE:DELETE or /DISPOSE:RENAME. /DISPOSE:DELETE will
cause the control file to stay in your disk area until after the job is finished and then be
deleted. /DISPOSE:RENAME will cause Batch to immediately move your control file to
its own disk area where it will stay until the job is finished, at which time it will be de
leted. You should use /DISPOSE:RENAME when you will be over your logged-out quota
if the control file remains in your disk area when you log off the system.

Unless you have some use for the copy of the log file that will remain in your disk area
even after it has been printed, use the /DISPOSE:DELETE switch to have the log file
deleted after it is printed. If you do not delete the log file and you run the job again
using the same log filename, your new log file will be appended to the old log file and
they will both be printed as part of the new job.

The switches, and the assumptions made if they or their values are omitted, are all sub
ject to change by each installation. Check with the installation where you run your jobs
to find out what differences exist between the values described here and those at the
installation. Additional switches are available for use with the SUBMIT command. For
information about these switches, refer to the SUBMIT command in Chapter 2 of the
DECsystem-lO Operating System Commands manual (DEC-IO-MRDD-DJ. You can obtain
further information about Batch in Chapter 3 of the aforementioned manual.

3-8

3.2.4 Examples of Submitting Jobs

The following are sample jobs that are entered to Batch by means of the SUBMIT com
mand. The jobs are shown in the following order.

1. Creating the control file.

2. Submitting the job to Batch using the SUBMIT command.

The control file consists of a command to compile the F40 program and execute it .

. COMPILE MYPROG.F4 /LIST/COMPILE

.EXECUTE MYPROG.F4

After the control file to compile and execute the FORTRAN program has been written
and saved, you must submit the job to Batch.

SUBMIT MY FILE

When Batch reads this SUBMIT command, it assumes the following:

1. The control filename and extension are MYFILE.CTL.

2. The name of the job is MYFILE.

3. The log file will be named MYFILE.LOG.

4. Both the control file and the log file will be saved in your disk area
(/DISPOSE :PRESERVE).

5. An entrY.is being created in Batch's queue (/CREATE).

6. No cards will be punched by the job (/CARDS:O).

•

7. The maximum amount of core to be used to run the job is 25K (fCORE:25).

8. No paper tape will be punched (/FEET:O).

9. 200 is the maximum number of pages to be printed (/PAGE:200).

10. The maximum amount of CPU time is 5 minutes (/TIME:5 :00).

11. No plotter time will be used (/TPLOT:O).

The next example shows the control file that was created at the beginning of this chapter
being submitted to Batch .

. COMPILE MYPROG.F4/COMPILE

.EXECUTE MYFILE.F4

.COMPILE PROG2.F4/COMPILE

.EXECUTE PROG2.F4

3-9

After you have saved the control file, you must submit the job to Batch.

SUBMIT MYSELF = MYFILE.CTL,MYFILE.LOG/DlSPOSE: DELETE/TIME: 20: OO/CARDS :500

When Batch reads this request, it assumes the following:

1. The name of the job is MYFILE.

2. The name of the control file is MYFILE.CTL.

3. The log file will be named MYFILE.LOG.

4. An entry is being created in Batch's queue (/CREATE).

5. The log file will be deleted after it is printed (/DISPOSE:DELETE).

6. The control file will be saved in your disk area (/DISPOSE:PRESERVE).

7. A maximum of 500 cards can be punched by the job (/CARDS:500).

8. The maximum amount of core that can be used is 25K (CORE:25).

9. No paper tape will be punched by the job (/FEET:O).

10. 200 is the maximum number of pages that can be printed (/PAGE:200).

11. The maximum amount of CPU time that the job can use is 20 minutes
(fTIME:20 :00).

12. No plotter time will be used (fTPLOT:O).

If you made an error in the SUBMIT command when you submitted either of these jobs,
Batch will type an error message on your terminal to explain your error so that you can
correct it.

3.3 BATCH COMMANDS (In Alphabetical Order)

You can write certain special Batch commands in the control file to tell Batch how to
process your control file. Each of these commands must be preceded by a period so that
Batch will recognize it. The commands are described in detail in the following sections.

3.3.1 The .BACKTO Command

You can use the .BACKTO command to direct Batch to search back in the control file
for a line with a specified label. The .BACKTO command has the form:

.BACKTO label

3-10

where

label is a 1- to 6-character alphanumeric label for a statement. It must be
followed by a double colon (: :).

Normally, Batch reads the control file line-by-line and passes the commands and data to
the monitor and your program. When you put a .BACKTO command into the control
file, you tell Batch to interrupt the normal reading sequence and to search back in the
control file to find a line containing the label specified in the .BACKTO command. The
.BACKTO command searches for. the label you specified starting from the beginning of
the file and ending at the place the command was given. When the labelled line is reached,
Batch executes the line and continues from that point (unless the line contains another
.BACKTO command or a .GOTO command, described below).

If Batch cannot find the labelled line, it terminates your job. An example of the .BACK
TO command is as follows.

ABC:: .DIRECT

.BACKTO ABC

3.3.2 The .ERROR Command

With the .ERROR command, you can specify to Batch the character that you wish to be
recognized as the beginning of an error message. Normally, when Batch reads a message
that begins with a question mark (?), it assumes a fatal error has occurred and terminates
the job, unless you have specified error recovery (refer to Section 3.4). If you wish Batch
to recognize another character as the beginning of a fatal error message, you must specify
the character in the .ERROR command. The character specified may not be a control
character, an exclamation point (!) or a semicolon(;). The exclamation point and semi
colon will be interpreted as the comment character and will not function as the error
signal character. This command has the form:

.ERROR character

where

character is a single ASCII character that is recognized in the DECsystem-10.

If you do not specify a character in the .ERROR command, Batch uses the standard error
character, the question mark. When a line that begins with the character that you specify
in the .ERROR command is passed to Batch from the monitor, a system program, or is
issued by Batch itself, Batch treats the line as a fatal error and terminates the job, exactly
as it would if the line were preceded by a question mark. Any messages preceded by other
characters will not be recognized by Batch as errors.

3-11

If you do not include the .ERROR command in your control file, Batch will recognize the
question mark as the beginning character of a fatal error message, unless you include the
.NOERROR command in your control file to cause Batch to ignore fatal errors (refer to
Section 3.3 .5).

An example of the .ERRORcommand follows .

. ERROR %

.ERROR

In this example, you specify in the middle of the control file that you want Batch to
recognize the question mark (?) and the percent sign (%) as the beginning character of
a fatal error from that point in the control file. Further on in the control file, you tell
Batch to go back to recognizing the question mark as the beginning of a fatal error mes
sage.

3.3.3 The .GOTO Command

You can include the .GOTO command in your control file to direct Batch to skip over
lines in the control file to find a specific line. The .GOTO command has the form:

where

label

.GOTO label

is a 1- to 6-character alphanumeric label for a statement. It must
be followed by a double colon (: :).

When Batch encounters a .GOTO command in the control file, it searches forward in the
control file to find the label specified in the .GOTO command. Batch then resumes proc
essing of the control file at the line with the specified label. If the label is not found,
Batch will issue the message

BTNCNF COULD NOT FIND LABEL xxxxxx

and the job will be terminated.

If you do not include a .GOTO command in the control file, Batch reads the control file
sequentially from the first statement to the last, unless you include a .BACKTO statement
(refer to Section 3.3.1).

3-12

An example of the .GOTO command follows .

. GOTO ABC

ABC:: .DIRECT

You can use the .GOTO command as the statement in an .IF command (refer to Section
3.3.4) to aid you in error processing. For example:

.IF (ERROR) .GOTO ABC

ABC:: .TYPE MYPROG

3.3.4 The.lF Command

You can include the .IF command in your control file to specify an error recovery pro
cedure to Batch or to specify normal processing if an error does not occur. The.lF
statement has the forms:

.IF (ERROR) statement (The parentheses must be included.)

.IF (NOERROR) statement (The parentheses must be included.)

where

statement is a command to the monitor, to a program, or to Batch.

The .IF command can be used in two ways as shown in its two forms. You can include
the .IF (ERROR) command in your control file at the place where you may have an
error. The.IF (ERROR) command must be the next monitor-level line (as opposed to
a line in your program or a line of data) in your control file after an error occurs so that
Batch will not terminate your job. In the .IF (ERROR) command, you direct Batch
to either go back or forward in your control file to find a line that will perform some
task for you, or direct Batch to perform a task for you at that point in your control file,
or to direct the monitor or any other program to perform some task for you.

You can use the .IF (NOERROR) command also to direct Batch or the monitor to per
form tasks for you when an error does not occur at the point in your control file where
you place the .IF (NOERROR) command. Thus, if you expect that an error will occur

3-13

in your program, you can include an .IF (NOERROR) command to direct Batch in case
the error does not occur, and then put the error processing lines immediately following
the command. Refer to Section 3.4 for an example of using .IF (NOERROR) and .IF
(ERROR).

If an error occurs and Batch does not find an .IF command as the next monitor-level line
in the control file, Batch writes an error message in the log file and terminates the job.
If one of your programs is running when an error occurs and there is no .IF command,
Batch causes a dump to be taken and terminates your job.

3.3.5 The .NOERROR Command

You can use the .NOERROR command to tell Batch to ignore all error messages issued by
the monitor, system programs, and Batch itself. The only exception is the message ?TIME
LIMIT EXCEEDED. Batch will always recognize this as an error message and terminate
your job. The .NOERROR command has the form:

.NOERROR

When Batch reads the .NOERROR command, it ignores any error messages that would
normally cause it to terminate your job.

You can use .NOERROR commands in conjunction with .ERROR commands in the con
trol file to control error reporting. For example, if you wish to ignore errors at the begin
ning and end but not in the middle of the control file, place .ERROR and .NOERROR
commands at the appropriate places in the control file. In addition, you can also specify
which messages must be treated as fatal errors ..

. NOERROR

.ERROR %

.ERROR

.NOERROR

The first command tells Batch to ignore all errors in your job. The second command tells
Batch to recognize as errors any message that starts with a question mark (?) and a percent
sign (%). You change the error reporting with the next command to tell Batch to go back

3-14

to recognize messages that begin with a question mark as fatal. The second .NOERROR
command tells Batch to ignore all error messages again. If the ?TIME LIMIT EXCEEDED
message is issued at any time, Batch will print the message and terminate the job.

3.3.6 The .PLEASE Command

You can direct Batch to type a specified message to the system operator by including the
.PLEASE command in your control file. The .PLEASE command has the form:

message

ESCape

.PLEASE message ESCape~

is the message to be typed to the system operator.

is the ESCape character. If this character is present, processing con
tinues normally after the message has been output to the operator.
If the character is omitted, the job will wait for a response from the
operator before resuming its normal processing. The ESCape char
acter may be generated via the sequence t [(circumflex-opening
bracket).

the carriage-return/line-feed is required.

3.4 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

If you do not specify error recovery when an error occurs in your job, Batch terminates
the job and, if the error occurs when one of your programs is running, causes a dump of
your core area. You can specify error recovery in the control file by means of the Batch
commands, especially the .IF command. You must include the .IF command at the point
between programs in the control file that an error may occur. When an error occurs,
Batch examines the next monitor-level line (Le., not a line that contains data or a com
mand string to a system program) to find an .IF command to tell it what to do with the
error. If an error does not occur and an .IF (ERROR) command is present, the .IF
(ERROR) command is not executed. Similarly, if an error does not occur and you have
included an .IF (NOERROR) command, the .IF command is processed. Batch does not
search past the next executable monitor line in the control file for the .IF command.
Therefore, if this command is used, it must be the next monitor level or Batch command
in the control file. Thus, if you have a program that you are not sure is error-free, you
can include an .IF command to tell Batch what to do if an error occurs, as shown in the
following example .

. COMPILE MYPROG.F4

.IF (ERROR) STATEMENT

In either the .IF (ERROR) or the .IF (NOERROR) command, you should include a state
ment that tells Batch what to do. You can use any monitor command or one of the
Batch commands. The .GOTO and .BACKTO commands are commonly used for this

3-15

purpose. Refer to Sections 3.3.1 and 3.3.3 for descriptions of these commands. Be sure,
if you use .GOTO or .BACKTO in the .IF command, that you supply a line in the control
file that has the label that you specified in the .GOTO or .BACKTO command.

Two sample jobs are shown below. The first shows the .IF (ERROR) command and the
.GOTO command to specify error recovery. The second example shows the use of the
.IF (NOERROR) and .GOTO commands.

If you have a program that you are not sure will compile without errors, you can include
another version of the same program in your job (that hopefully will compile) and tell
Batch to compile the second program if the first has an error. You write the control file
as follows .

. COMPILE jCOMPILE MYPROG.F4 JUST

.IF (ERROR) .GOTO A

.EXECUTE MYPROG.F4

.GOTO B
A:: !CONTINUE
.COMPILE jCOMPILE PROG2.F4 lUST
.EXECUTE PROG2.F4
B:: !CONTINUE

When the job is run, Batch reads the control file and passes commands to the monitor. If
an error occurs in the compilation of the first program, Batch finds the .IF (ERROR) com
mand and executes the .GOTO command contained in it. The command tells Batch to
look for the line labelled A, which contains a comment, so Batch continues to the end of
the control file. If an error does not occur in the first program, Batch skips the .IF
(ERROR) command, executes the program with its data, skips the unnecessary error
procedures, and continues to the end of the control file. A variation of the above pro
cedure is shown below using the .IF (NO ERROR) command and the .GOTO command.
The difference is that Batch skips the .IF (NOERROR) command if an error occurs, and
performs it if an error does not occur. The following is the control file that you would
create.

.COMPILE jCOMPILE MYPROG.F 4 JUST

.IF (NOERROR) .GOTO A

.COMPILE jCOMPILE PROG2.F4 lUST

.EXECUTE PROG2.F4

.GOTO B
A:: !CONTINUE
.EXECUTE MYPROG.F4
B:: !CONTINUE

When the job is run, Batch passes the COMPILE command to the monitor to compile the
first program. If an error does not occur, the .IF (NOERROR) command and the .GOTO
command are executed, Batch skips to the line labelled A, which is a comment, and con
tinues reading the control file. The program MYPROG.F4 is executed with its data and
the end of the job is reached. If an error occurs, Batch skips the .IF (NOERROR) com
mand and continues reading the control file. PROG2.F4 is compiled and then executed
with the same data that the first program would have used. Batch is then told to go to
the line labelled B, which is a comment line. The end of the job follows.

3-16

The examples shown above illustrate only two ways that you can specify error recovery
in the control file. You can also use the other Batch commands, or any monitor command
that you choose to help you recover from errors in your job.

You do not have to attempt to recover from errors while your job is running. You can
correct your errors according to the error messages in the log file when your job is re
turned to you, and then run your job again. Batch will also print a dump of your core
area if an error occurs while your job is running and you have not specified error recovery.
If you can read dumps, this can also aid you to correct your errors. The log file and
dumps are described in Chapter 4.

3-17

CHAPTER 4

INTERPRETING YOUR PRINTED OUTPUT

You can receive three kinds of printed output from your Batch jobs:

1. Output that you request; i.e., the results of your job.

2. Output from Batch; i.e., the log file.

3. Output that is the result of actions by your job or by Batch, the monitor, or
system programs. Examples of this output are compilation listings, cross
reference listings, error messages, and core dumps requested by Batch.

4.1 OUTPUT FROM YOUR JOB

Although this chapter deals mainly with printed output, you can have output to any de
vice that the installation supports, as long as the installation allows you to use these de
vices. If your output is directed to the line printer, it will be printed separate from the
log file. The printed output from each program will be preceded by two pages containing
your name and project-programmer number and other pertinent information. Following
these pages are two header pages containing the name of your output file in block letters.
The output follows these header pages. A trailer page follows your output. This page
contains the same information that is on the first two pages. The header and trailer pages
also include three rows of numbers (read vertically from 001 to 132).

If your output is that which would normally be sent to the terminal, it will be printed in
the log file. In the sample output shown in Section 4.4, the output from the program is
included in the log file because it is directed to the terminal rather than the line printer.

4.2 BATCH OUTPUT

The output from Batch consists of a log file that contains all the statements in the control
file, commands sent to the monitor from Batch for you, and the replies to the commands
from the monitor and system programs like the compilers. Any error message sent from
the monitor or system program, or from Batch itself, is also written in the log file. Re
fer to the DECsystem-10 Operating System Commands manual (DEC-10-MRDD-D) for a
list of the error messages from the monitor. The messages from each system program are
listed in the applicable manuals.

4-1

You can ignore most of the information in the log file because it is system information
and need not concern you. If you wish, you can keep it for reference by system pro
grammers if unexpected results occur in your job.

4.3 OrnER PRINTED OUTPUT

Other output that you can get as a result of your job includes compiler and cross-reference
listings, loader maps for programs that were successfully loaded, and dumps that you can
request or that Batch gives to you when an error occurs in your program.

The compiler and cross-reference listings are those listings generated by the compiler if you
request them. When you enter your job from cards, Batch requests compilation listings
for you unless you specify otherwise. Cross-reference listings are generated for you only
if you specifically ask Batch for them. When you enter your job from a terminal, you
must request the listings in the COMPILE command. Also, if you request a cross-reference
listing, you must run the CREF program (by means of the CREF command) to get your
listing printed.

If ybu enter your job from cards and include a $DATA or $EXECUTE card to request
execution of a program, you may ask Batch to request a loader map for you. This map
shows the locations in memory into which your program was placed. If you enter your
job from a terminal, you must request a loader map in the EXECUTE command if you
wish to have one. If you wish to know the locations into which your program was loaded,
the loader map can be of use to you. Otherwise, you can ignore it. A loader map is
shown in the sample output in Section 4.4; however, it is not interpreted in this manual.

If a fatal error occurs in a program in your job and you have not included an error recovery
command to Batch, Batch will not try to recover from the error for you. Instead, it will
write the error message in the control file, request a dump of your memory area, and ter
minate your job. The dump is then printed with your output. If you can read dumps,
the dump that Batch requests for you may be helpful in finding your errors. Otherwise,
you can ignore the dump and use the error messages to locate the errors in your program.

4.4 SAMPLE BATCH OUTPUT

Two sample jobs and their output are shown in the following sections. The first shows a
job entered from cards, the second shows a job entered from a terminal. The log file is
somewhat different for the two types of jobs.

4.4.1 Sample Output from a Job on Cards

This example shows a job in which a small COBOL program is compiled and executed.
The card deck is shown in Figure 4-1.

4-2

$EOJ

$EXECUTE/MAP

COBOL SOURCE PROGRAM

$PASSWORD ABCD

$JOB MYJOB(4,77743]

$SEQUENCE 1.0

Figure 4-1

The COBOL program is as follows.

IDENTIFICATION DIVISION.
PROGRAM-ID. MYPROG.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
START.
DISPLAY "THIS IS TO SHOW SAMPLE OUTPUT FROM MPB.".
DISPLAY "THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.".
STOP RUN.

When the job is run, the program is compiled and a compilation listing is produced. The
listing is shown below. Note that the compiler puts sequence numbers on the program
even though they were not in the original program.

4-3

PRO G RAM M Y PRO G COrOL qA(1~7l
LN30D0,C9L 08-NOV·73 14!~1

0001 IDE~TIrICATION DIVISION.
00~2 PROCRAM·IO. MYPROG.
00r3 ENVIRONMENT DIVISION,
~004 DATA DIVISION.
00~5 PRDCEDURE DIVISION.
00,z6 START.
00~7 DISPLAY "THIS IS TO SHO~ SAM~LE OUTPUT fnO~ MPg,"
01iH:8 D I SPLAV "THESE TWO Ll NES ARE O'.JTf'U1' rROM THE PROGRAM I"
00~9 STOP RUN.

NO ERRORS DETECTED

After the program is compiled, it is loaded and executed. Since the /MAP switch was
specified on the $EXECUTE card, Batch requests a loader map when it puts the EXE
CUTE command in the control file, the loader map is the next thing printed from your
job. It is shown on the following page. Note that each of these printouts is preceded
by headers, which are not shown in these examples.

Following loading, the program is executed, The program in this example does not have
output to the line printer. Instead its output is written to a terminal. Because this is a
Batch job, the terminal output is written in the log file. The log file is printed next
because the end of the job is reached. The log file contains all the dialog between your
job and the monitor and system programs and some commands that Batch sent to the
monitor for you. An annotated log file is shown on the following pages. Note that
each line in the log file is preceded by the time of day when the line was written. Fol
lowing the time is a word that describes what kind of information is on each line. You
do not need to know what each of these words means because much of the information
is system information.

4-4

.j::>. ,
VI

~INK-10 symbol map of MAP ~age 1
Produoed by ~INK~10 version 2A(244) on 12_NQV.A4 at 14117147

~ow segment starts ~t 0 ends at 13 40 length 13 41 = 1K
287 words free In LOW segment .
45 Global symbolS loaded, therefore mlM, hash size Is 51
Start address Is 1242, looated In ~r~gra~ MyPROG

1I111111 II ... 'HHt

J080AT·INITIA~·SYM80~S

i!ero length mOdule

11 1111

LI80L~STATICpAREA
~ow segment starts at 1 4 0 endS ~t 1177 I e!1gth 10 40 (octal), 544, (deelma.!!

,COMM. 140 Common I e"gth ~~4,

11 •• 11 .. • .. 11 ••• 11.

MYPROG from OSK!LN30D0.REL[4,77743J create~ by COBrL On 12.Nov~84 at 14113 100
Low segment starts at 1200 endS at 13j1 lengt~ 132 (octal), 90, (deolmal I

MyPROG 1262 Entry HelOQatable

..... 11 11

TRACED from SYS!~IBOL.H(Lr1,4J created on 26.~ep-~4 at 13:52:00
Low segment starts at 1332 endS at 1340 length

BTRAC.
PTF'~G •
TRPD,

1335
1337
1335

........... 11"11 .. 11 ..

Entry
Globeq
Entry

[End 0' LINK-10 map Of MAPJ

:1 e I 0 c a 1; a b I e
r;e1ocata"lll
'le1ocatable

7 (ootal),

CSDDT,
TRACE,
TRPOP,

1~36
1~32
~~35

7, (decimal)

Entrat
Entry
Entrat

Relooatable
Relocatable
Relocatable

1411<1;49 STl.lAT
1411171149 STCRP
14;H1;4\1 STCRD
14111;36 STCRD
14111;44 ST~jSG
14111;46 STC'1D
14111146 STCRD
14111;46 STSUM
14111146 STSUM
14111146 snUM

14;121,:2 BAJOB
141121[2 BAFIL
141121."2 BHIL
1'1:12;,.2 BASUM

14 :12' ~i3 MO~>lTR
14112 :13 MD!,jTR
14112 14 USER
14112 43 iJS(~
14112 46 MOf.jiR
14: 12 46 MO,\jTR
14113 31 USER
14117 102 MOf_TR

.j::>. 14117 Z2 MO~TR
I 14 1 17 1 ~; 2 M 0 N T R 0\

141171,'2 MOfJTR
14117112 USlR
14117156 USER
14117156 USER
14117j56 USER
14; 181l;2 MONTR
14118102 MO\lTR
14118; (;2 MOrnR
14118102 MO;HR
14118102 BLABL
14118;i'2 MO~jTR

14118 H19 USER
14:18124 USER
14118j24 USER
14118138 USlR
14118136 USER
14118151 MO"JTR
14118;51 MOr-TR
14119;17 K~~UE
14119140 LGOUT
1'111914'11 LGOUT
1'1119140 LGDUT
14120 P'0 I.PMSG
1'11201'19 I.PMSG
14120119 I.PMSG
141213120 Lp r1SG
1412['1132 LPMSG

12.NOV-84 R~717b SYS #.~/2 SPRI~T Version 2(1°35) Ry,n!ng o~ COR0
$SEQUENCl le
$JOB MYJOB C4.77743)
$COBOL
~ I Ie DSKI~N3000,CB~ Created. 9 Cards Read - 2 BlOCkS Wrltte~
~EXECUTE IMAP
~EOJ
End of Job Encountered
l5 Cards Read
~atch Input Request Create~

~ATCON version 12(110 4 1) ru"nln~ ~YJor se~uence 1~ In stream 5
InDut frOm DSKB0IMYJOB.CTL(4,777433
Output to OSK811MYJOB,I.~G[41777431
Job parameters
Tlme:00:05:0~ UnlaUelYES RestartlYES

.LOGIN 4/77743 ISPOOI.:ALl/TI~EI3~0/1.~CATE!1/~AME!"TEST"
JOB 7 R5717b SYS #4~/2 11Y152
1412 12-Nov-84 ~on

.,COMPIL ICOMP/COB OSKIL~3'D~,C8L/LIST
COBOL: MYPROG (LN3~D0,C8LJ

EX IT

.,EXECUT IREl/MAP:LPTIMAP ~SKILN30n0,RC~
LINK; Loading
ll.NKXCT MYPROG E~ecutlon]
iHIS IS TO SHOW SAMPLE OUTDUT FROM MPB,
THESE T~O I.INES ARE OUTPUT FRO" THE PROGRAM.

EXIT

:r.FIN: ;
.DELETE DSKI~N30D0.CBI.,DSKII.~3~D~,rEL
Files deleted:
LN30D0.CBI.
il2 Blocks freed
LN30Dei.REI.
102 Blocks freed

.KJ08 DSK81:MYJ08.~OG=IW/8/~14/VRI10/VSI10/V~:200/VDID
Total of 7 bleeks 11'\ 3 files I~ LPTSl reqUest
Job 7. User (4,77743J I.og~e~ off TTY152 1419 12~Nov-e4
Saved all files <7o blOCkS)
Runtime 6.16 Sec
~PTSP~ Version 6(344) Run~ln~ on LPT0
JOb MYJ08 file DSK81ILN3;lD';'t4,77743~ for ~4,?7743J started
PSK81:L N3 0D0C4,77743J Do~e
Job MYJOB fl Ie PSK811MAPC4,17743J for t4,77143) started
OSKB1;MAP(4,77743] Done

The lines prefixed by "STCRD" show the cards
you entered. The rest is system information
that need not concern you.

}
This is system information that Batch enters.
It need not concern you.

}
Batch logs your job into the system. The infor
mation that follows it is the system response.

} These are commands that Batch entered for you.

} The answer to the compile command from the
monitor.

} Commands entered by Batch for you.

) Monitor response to the EXECUTE command.

} This is output from your program.

) Monitor indicates that execution of your pro
gram has ended.

}
This is the LOGOUT dialogue, giving system
information.

} Thi, it mo," ,y'('m i.rom.tin,

4.4.2 Sample Output from a Job from a Terminal

This example shows the same job described above as it would be entered from a terminal.
You would first create the program as a file on disk.

IDENTIFICATION DIVISION.
PROGRAM-ID. MYPROG.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
START.
DISPLAY "THIS IS TO SHOW SAMPLE OUTPUT FROM MPB.".
DISPLAY "THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.".
STOP RUN.

Then you would make up a control file to compile and execute the COBOL program .

. COMPILE MYPROG .CBL

.EXECUTE MYPROG .CBL

You must then submit the job to Batch using the SUBMIT command.

SUBMIT MYJOB

When the job is run, the program is compiled and a listing is produced, even though you
did not request it. This is because the COBOL compiler always produces a listing. Note
that the compiler adds sequence numbers to the listing, even though you did not include
these numbers on the program.

p ~ 0 G R A ~ M Y PRO G.
MyPROG.C8L 29-FEB-74 21156

00:1 IDENTIrICATION UIVISIQN.
00J2 PROGRAM-Ie. MYPHOG.
00/3 ENVIRQN~ENT DIV1SION.
0~'4 OATA DIVISION.
~0.'5 PROCEDURE.: DIVISION.
f~0i'6 START.
001'7 DISPLAY "THIS IS TO SHOW SAMPLE ouTPUT FROM MPG,".
00,'8 D I SPLAY "THESE TWO LINES ARt. OUTPUT f:'R('M T"E PPOCRAM.".
00:9 STOP RUN,

NO ERRCRS DETECTED

4-7

Because you did not request it specifically in the EXECUTE command, you will not get
a loader map of your program. The log file is printed next as the last of your output.
The output from the program is written in the log file because it is output to the termi
nal and the log file simulates a terminal dialog. The log file also contains some commands
that Batch sent to the monitor for you and some additional system information. An anno
tated log file is shown on the following page. Note that each line in the log file is pre
ceded by the time of day when the line was written. Following the time is a word that
describes what kind of information is on each line. You do.not have to know what each
of these words means because much of the information is system information.

4-8

~

-.b

15.12129 BAJOB
15.12129 BArIL
15i12129 BArIL
15.12.29 BASUM

15112129 MONTR
15112129 MONTR
15112135 USER
15112135 USER
15.12.35 USER
15112135 MONTR
15112135 MONTR
15.12140 MONTR
15112140 MONTR
15112140 MONTR
15112.40 MONTR
15112143 USER
15112.46 USER
15.12.49 USER
15112.49 USER
15112.49 MONTR

15.12149 MON'l'R
15112.49 MONTR
15112149 MONTR
15112155 I<"'QIJE
15:12159 LGOUT
15113100 LGOUT
15113100 LGoUT
15113102 LPMSG

BATCON VERSION 12(1041) RUNNING MYJOB SEQUENCE 368 IN STREAM 2
INPUT FROM DSKBIIMYJOB.[4,77743]
OUTPUT TO DSKBIIMYJOB.LOGf4,77743]
JOB PARAMETERS
TIMEIOOI05100 UNIQUEIYES RE&TARTINO

.LOGIN 4/77743 ISPOOLIALL/TIME.300/LOCATEII/NAME."TEST"
JOB 35 RX7AVA SYS .514/546 TTY224
[LGNJSP OTHER J08S SAME PPN]
1512 14-0CT-84 SUN

•• COMPILE MYPROG.CBL

EXIT

•• EXECUTE MYPROG.CBL
LINK. LOADING
[LNKXCT MYPROG EXECUTION]
THIS IS TO SHOW SAMPLE OUTPUT FROM MPB.
THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.

EXIT

,I<JOB DSI<Bl.MYJOB.LOG=/W/B/ZI4/VRI10/VS,368/VL'200/VP,lO/VDIP
TOTAL OF 2 8LoCI<S IN 1 FILE IN LPTS1 REQU~ST _
JOB 35, USER [4,77743] LOGGED OFF TTY224 1512 14-0CT-84
SAVED ALL FILES (BO BLOCKS)
RUNTIME 4.03 SEC
LPTSPL VERSION 6(344) RUNNING ON LPT2

}
This is system information that Batch enters. It
need not concern you.

}
Batch logs your job into the system. The infor
mation that follows is the system response.

} These are commands that Batch enters for you.

)
This is another command from your control file
and the response.

} This is the output from your program.

} This indicates that execution has ended.

}
This is the LOGOUT dialogue, which gives
system information.

CHAPTER 5

PERFORMING COMMON TASKS WITH BATCH

This chapter shows some sample jobs that are run from a terminal and from cards. Section
5.1 illustrates entering jobs from a terminal. Section 5.2 shows entering jobs from cards.
The examples are the same in both cases, the difference is only in the way that they are
entered.

5.1 USING mE TERMINAL TO ENTER JOBS

ALGOL Example

The first job is a simple ALGOL program that writes output to the terminal. Since the
job is being entered through Batch, the output is written in the log file instead of on the
terminal.

BEGIN
REAL X;INTEGER I;
X := 1;
FOR I := 1 UNTIL 1000 DO X := X+I;
PRINT (X);

END

The control file for the program is as follows:

.COMPILE MYPROG.ALG/LIST

.EXECUTE MYPROG .ALG

SUBMIT MYFILE

When Batch starts the job, the statements in the control file call the ALGOL compiler to
compile the program. Batch then calls the loader to load the program for execution. A
listing of the program will be printed with the log file, as shown below.

5-1

DECSYSTEM 10 ALGOL-60, VERSION 3A(300) 15:13113

000003 B1 00100 BEGIN
StART OF BLOCK 1
000004 00200 REAL X, INTEGER I,
000004 00300 X :=1,
000014 00400 FOR I 1=1 UNTIL 1000 DU X 1= X+I,
000021 00500 PRINT(X),
000024 E1 00600 END

END BLOCK 1, CONT 0

o ERRORS

5-2

til

W

15113104 BAJOB
15113.04 BAFIL
15113104 BAFIL
15113.04 BASUM

15 13 04 MONT~
15 13 04 MONT~
15 13 08 USE~
15 13 08 USER
15 13 10 MONTR
15 13 10 MONTR
15 13 14 USER
15 13 14 MONTR
15 13 14 MONTR
15 13 14 MONTR
15 13 14 MONTR
15 13 17 USER
15 13 20 USER
15 13 22 USER
15 13 22 USER
15 13 22 USER

15 13122 USER
15 13.22 USER
15 13.22 USER
15 13.22 USEP,
15 13122 MONTR
15 13122 MONTR
15 13i"30 I<-QUE
15 13.34 LGOUT
15 13134 LGOUT
15 13134 LGOUT
15 13,37 LPMSG
15 13140 LPMSG
15 13144 LPMSG

BATeON VERSION 12(1041) RUNNING MYFILE SEQUENCE 369 IN STREAM 2
INPUT FROM DSKB1,MYFILE,[4,77743]
OUTPUT TO DSI<Bl.MYFILE.LOG[4,77743]
JOB PARAMETERS
TIME.OOI05100 UNIQUEIYES RESTARTINO

,LOGIN 4/77743 ISPOOLIALL/TIMEI300/LOCATEI1/NAMEa"TEST"
JOB 3 RX7AVA SYB #514/546 TTY224
1513 14-0CT-84 SUN

.,COMPILE ALGOL,ALG/LIST
ALGOL. ALGOL

EXIT

"EXECUTE ALGOL,ALG
LINK. LOADING
[LNKXCT ALGOL EXECUTION]
5,0050100& 5

END OF EXECUTION - lK CORE

EXECUTION TIMEt 0,04 SECS,

ELAPSED TIME. 0,08 SECS,

.KJOB DSKB1.MYFILE,LOG=/W/B/ZI4/VRll0/VSI369/VLI200/VPll0/VDIP
TOTAL OF 3 BLOCKS IN 2 FILES IN LPTBl REQUEST
JOB 3, USER [4,77743] LOGGED OFF TTY224 1513 14-0CT-e4
SAVED ALL FILES Cl00 BLOCKS)
RUNTIME 4.52 SEC
LPTSPL VERSION 6(344) RUNNING ON LPT2
JOB MYFILE FILE OSKB1IALGOL[4,77743] fOR [4,77743] STARTED
DSKBlIALGOL[4,77743J DONE

BASIC Example

The next sample shows how to enter a BASIC program to Batch. You must make up the
file and save it on disk. Then make up a control file that simulates the dialog with the
BASIC system. The program is shown below.

5 INPUT D
10 IF D = 2 THEN 110
20 PRINT "X VALUE","SINE","RESOLUTION"
30 FOR X=O TO 3 STEP D
40 IF SIN(X)<=M THEN 80
50 LET XO=X
60 LET M=SIN(X)
80 NEXT X
90 PRINT XO, M,D
100 GO TO 5
110 END

The program requests data from the user when it is running. You include the data in the
control file. The final data item must be 2 to conclude the program. The control file
follows.

.R BASIC
*OLD
*DSK:MYBAS.BAS
* RUN
.1
.01
.001
2
*MONITOR

The output from the terminal will be printed in the control file because it would normally
be printed on the terminal. The command to submit the job to Batch is as follows.

SUBMIT = BAS.CTL

5-4

11134106 B1IJOB
11: 34: ntl BAFIL
111341 06 BAFIL
11134: nti BASUr-I

11 34: n6 ~lONTR

11 34:07 O'IIONTR
11 34: 13 USER
11 34:13 USER
11 34:;J,t; USER
11 34::'.6 ~'ONTR
11 34::'.6 ~lO~ITR
11 34::},7 US~;R

11 H:49 lISER
11 34: 49 USER
11 34: 49 USER
11 34:49 USER
11 34:!'B lISER
11 34:!'8 USER
11 H:!'8 USER
11 34:~9 USER
11 34:!'i9 USER
11 34 !'9 USER
11 H ~9 lISER
11 34 !'9 USER
11 34 !'i9 USER
11 35 00 USER
11 35 00 lISER
11 35 ,)0 USE.R
11 35 no USEFI
11 35.00 USER
11 35 00 USI'~R
11 35 02 USER
11 35 02 US!::R
11 35 02 USEP
11 35 02 USER
11 35 02 USER
11 35 02 USER
11 35 02 USER
11 35 02 US~:R
11 35 02 USER
11 35 02 MOflTR
11 35 02 MONTR
11.35 :'.4 l".-QUE
11135 H L"OUT
11 : 35:15 LGOUT
11: 35: ."45 LGOUT
llt35:H LP~iSG

BATe ON version 12(1041) runninQ BAS sequence 25 in stream 2
Input from DSKBOIBAS.CTLC4,77743]
Output to DSl"80IBAS.LOG[4,77743]
Job parameters
Tlme10~105100 UniquelYES FlestartlNQ

.LOGIN 4/77743 ISPOOL.ALL/TIMEI300/LOCATEI1/NAMEI"TEST"
JOB 30 FlX7ATa SYS -514/546 TTY223
[LGNJSP Otner jabs same PPNJ
1134 21-oct-84 Sun

•• R BASIC

READY, FOR HELP TYPE HELP.
*OLO
OLD FILE NAME--*DSK:MYBAS.BAS

READY
*RUN

1.1
X VALUe:

1.6
1.01

X VALUJ:::
1.57
1.0 0 1

X VALUJ:::
1,571
12

11134

5P)E
0.999574

51 N~:
1.

SINF,
1 •

TIME: 0.59 SEeS.

FlEADY
*MONlTUR

21-0CT-84

RESOl-uTIC'.
0.1

FlF.SLlLUTIOj,:
0.01

R~:SOLUTlOr..

0,001

.KJOB USKBU:BAS,LOG=/W/B/Z:4/VR:I0IVSI25/VL:200/VPIIO/VDIP
Total Of 3 blOCKs 1n 1 file in LPTSl request
Job 30, User [4,77743] Logged off TTY223 1135 21-0ct-84
Saved all files (30 blOCKS)
Runtlrre 4.10 Sec
LPTSPL Version 0(344) RUnning on LPTO

5-5

FORTRAN Example

The third example shows a FORTRAN-lO program that prints output on the line printer.
In the control file, you want to tell Batch to delete your relocatable binary file if an error
occurs when your program is executed. Otherwise, you want Batch to save your relocatable
binary file as it normally would. The program is shown below.

C THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50.
DO 10 I = 11 ,5 0,2
J=l

4 J=J+2
A=J
A=I/A
L=I/J
B=A-L
IF (B) 5,10,5

5 IF (J.LT.SQRT(FLOAT(I))) GO TO 4
PRINT 105,1

10 CONTINUE
105 FORMAT (14, 'IS PRIME.')

END

The control file to compile and execute this program, deleting the relocatab1e binary file
if there is an execution error, is as follows .

. COMPILE MYPROG.FOR

.EXECUTE MYPROG.REL

.IF (NOERROR) .GOTO END

.DELETE MYPROG .REL
END:: !END OF JOB

The command to submit this job is as follows.

SUBMIT MYFOR.CTL,MYFOR.LOG/DISPOSE : DELETE

The output and log file are shown on the following page. The log file will be deleted
after it has been printed.

11 IS PRIME.
13 IS PRIME.
17 IS PRIME.
19 IS PRIME.
23 IS PRIME.
29 IS PRIME.
31 IS PRIME.
37 IS PRIME.
41 IS PRIME.
43 IS PRIME,
47 IS PRIME.

5-6

14144:50 BAJOB
14:44:50 BAFIL
14:44:50 BAFIL
14:44:50 BASUM

14:14:51 MONTR
14114:51 MONTR
14:44:55 USER
14:44:55 USER
14:45100 USER
14:45 00 MONTR
14:45 00 MONTR
14:45 20 USER
14:46 39 MaNTR
14:46 39 MONTR
14:46 42 USFR
14147 13 USER

VI 14:47 17 USER I

" 14:47 17 USER
14:47 18 USER
14:47 18 MONTR

14:47:18 MONTR
14:17:18 MONTR
14:47118 TRUE
14117118 BATCH
14147118 BLABL

14 17:18 MONTR
14 17:43 K-QUE:
14 17:53 KJOB
14 47:55 LGaUT
14 17:56 LGaUT
14 47156 LGOUT
14 48:04 LPMSG
14 48:10 LPMSG
14 48122 LPMSG

BATCON VERSION 12(1041) RUNNING MYfUR SEQUENCE 414 IN STR~AM 7
INPUT FROM DSKB1.MYFOR.CTL[4,77743J
OUTPUT TO DSK81,MYFOR.LOG[4,777431
JOB PARAMETERS
TIMEIOO:OS:OO UNIQUE::Y~S RESTART:NO

.LOGIN 4/77743 /5POOL:ALL/TIME:300/LOCAIEI1/NAM~I"TEST"
JOB 20 RX7AVC SYS #514/546 TTY231
[LGNJSP OTHER JOBS SAME PPNJ
1444 1~-OCT-84 MON

•• COMPILE FORT.FOR
FORTRAN: FORT

•• EXECUTE FURT.fOR
LINK I LOADING
[LNKXCT FORT EXECUTION]

END OF EXECUTION
CPU TIMEI 0.13 ELAPSED TIMEr 1.A3
EXIT

•
.IF (NOE!:RROR)
.GOTO END
1':ND II
,END OF JOB
,KJOB DSKB1:MYFOR.LOG=/W/B/Z:4/VR:l0/VS:414/VLI200/VP:10/VD:0
TOTAL OF 3 BLOCKS IN 2 FILES IN LPTSl REQUEST
OTHER JOBS SAME ppN
JOB 20, USER [4,77743] LOGGED OFF TTY231 1447 lS-0CT-a4
ANOTHER JOB STILL LOGGED IN UNDER [4,77743]
RUNTIME 7.33 SEC
LPTSPL VERSION 6(344) RUNNING ON LPT2
JOB MYFOR FILE DSKBO:FORLPT[4,71743J FOR (4,77143J STARTED
DSKBOIFORLPT[4,77743J DONE

COBOL Example

The fourth program shows a COBOL program that reads a magnetic tape and writes out
put on another magnetic tape. To have your magnetic tapes mounted on drives and
assigned to you, you must request that the operator mount them. Since you do not
know which drives will be assigned to your job, you must assign them in your job with
logical device names. The MOUNT command assigns the drive to your job and associates
the logical name that you specify in it with the physical drive assigned. You should in
clude a PLEASE command to the operator to tell him that you want two magnetic tape
drives. If he cannot let you have the drives because they are in use, you can ask him to
enter your job again. Your magnetic tapes, one with the input data, the other blank so
that you can write on it, should be given to the operator or kept at the central site, so
that· the operator can find your tapes. The program is as follows.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INFIL, ASSIGN MAG 1.
SELECT OUTFIL, ASSIGN MAG2.

DATA DIVISION.
FILE SECTION.
FD INFIL, LABEL RECORDS ARE STANDARD

VALUE OF IDENTIFICATION IS "INFIL DAT",
BLOCK CONTAINS 20 RECORDS.

01 INREC, PIC X(80).
FD OUTFIL, LABEL RECORDS ARE STANDARD.

VALUE OF IDENTIFICATION IS "OUTFILDAT",
BLOCK CONTAINS 12 RECORDS.

01 OUTREC, PIC X(80).
PROCEDURE DIVISION.
START.

OPEN INPUT INFIL, OUTPUT OUTFIL.
LOOP.

FIN.

READ INFIL AT END GO TO FIN.
WRITE OUTREC FROM INREC.
GO TO LOOP.

CLOSE OUTFIL, INFIL.
STOP RUN.

5-8

The control file and the SUBMIT command to enter this program to Batch are as follows .

.PLEASE NEED TWO MAGTAPES, IF I CAN'T HAVE THEM, REQUEUE.

.MOUNT MTA:MAGl/VID:INFIL /RONLY/REELID:9TRACK I

.MOUNT MTA:MAG2/VID:OUTFIL/WENABLE/REELID :9TRACK

.COMPILE MYPROG.CBL

.EXECUTE MYPROG.CBL

.DISMOUNT MAG 1 :

.DISMOUNT MAG2:

.DELETE MYPROG. *

.SUBMIT MYJOB=MYJOB.CTL

The log file is shown on the following page.

5-9

10:28:02 BAJOB
10:28:02 BAFIL
10;281(12 BAF'IL
10128H)2 BASUM

10:28;02 Mi:lNTP
10:29 02 MONTI<
10:28 ('19 USFf.l
\0:28 09 USF?
10:28 09 U5E'P
10:211 11 MONTR
10:2>1 11 !-IONTR
10:28 11 BA'I'C'H
10:28 53 MONTR
10:20 '55 USE?
10:29 56 USE'P
10:29 43 USI"'P
1 0: 29 43 MONTf.l
10:29 43 MO~TTf.l

10:2<:! 45 USE?
10:2 Q 46 USE'P
10:311 26 USEf.l
10! 3-1 26 MONTR
10:30 26 MONTf.l
10no 28 MONTI<
10:30 21:1 MnNTR
10:3 fl 29 USER
10:30 31 UI'H:P
10: 30 33 MOMTR
10:1 0 33 MONTR
to:3!) 33 MONTf.l
10:30 33 MnNTR
10:30 35 USER
tona 35 USE?
10:30 35 TlSr.?
10:10 36 US!':R
10: 31 04 USE?
1 0 ~ 11 04 MI")NTR
, 0: 31 04 MONTI<
10: 11 0& USE?
to:1\ 1')6 USFR
to: 11 06 tJ5F;R
1013!. 07 USER
10:31 29 USEP
10:n 7.9 MnNTP
10 :H 29 MONTR
10:31 31 USFf.l
10! 11 32 USEf.l
10: '31 33 USER
to! H 34 USER
! 0: 31 35 MONTR
10:31 35 MONTR
10: It 38 K-QIJE
10:31 40 KJn~
to: J1 42 LGnTJT
1013\142 LGOUT
10!l1:42 LGOUT
10:11:45 LPMSG

BATCON VERsInN 17(104t) RUNNING MYCOR SEQUENCE 1226 IN STREAM t
INPUT FROM DSKB1IMYCOB.CTL[4.77743]
OUTPUT TO nSKB1:MYCOB.LOG[4,77743]
JOB PARAMETERS
TIME:0010510fl TlNIQUEIYtS RESTART,YES

.LOGIN 4/77743 I~PQOL:ALt/TIMEt300/LOC.TEI1/NAME:"TESTn
JOB 3 R57ATA SYS #40/2 TTY145
[LGN,JSP OTI*.:P JORS SAME pp~q
1028 24-0CT-R4 WED

· .pLEA~E ~E~D TWO MAGTAPE~, IF I CA~IT HAVE THB~, REQUEUE.
.MOUNT ~TAI~AG1/VIDIINFIL/RONLY/R~~LIDt9TRACK
REQUEST QUEUF.D
WAITING •••
MAG1 MOUNTED. MT~O USED

•• MOUNT MT.:MAG2/VIDIOUTFIL/WENARLE/REELrDI9TRAC~
REQUEST QUFUED
WAITING •••
MAG2 MOUNTED. MT~1 USEn

•• COMPILE ~O~.C8~

•• EXECUTE COS.CRL
LINKI I,OADING
[LNIOCCT COR F.XECIITION.l

EXIT

• .DISMOUNT i~AG1:

[MTROI REAn (W/H/S'= 34010/0 wRITE (W/H/S)= 326/0/flJ
Rr-QUrST QUEUF.D
~JAITING •••
MTRI') DISMOUNTED

•• DISMOUNT MIIG2:

[MTBl/9TRACK WRITE (W/H/S)= 32610/01
REQUEST QUI':UF.n
WAITING •••
MTB1 DISMOUNTEO

• .DE1,ETE COB.*
~. nES DELE TEn I
cnS.CSL
COB. REI,
05 StOCKS FREED

.KJOR DSKBll~YCO~.LOG=/W/B/ZI4/VRI10/VSI1226/VtI200/VP:10/VOIP
TOTAL OF 3 StOCKS tN 1 FIL~ IN LPTSl REQUEST
"THEP JOBS SAME pp~
JOB 3, USER r4,777431 LOGGED OFF TTI145 1031 24-0CT-B4
ANOTHER JOR STILL LOGGED IN UNDER [4,77743]
RUNTIME 4.90 SEC
LPTSPL VERSION 6(344) RUNNING ON LPT1

5-10

5.2 USING CARDS TO ENTER JOBS

ALGOL Example

The first job is a simple ALGOL program that writes its output into the log file because
it has statements that would cause it normally to write to the terminal. The program is
as follows.

BEGIN

END

REAL X; INTEGER I;
X :=1;
FOR I :=1 UNTIL 1000 DO X :=X+I;
PRINT (X);

The cards to enter this program are shown in Figure 5-1.

$EOJ

$PASSWORD ABeD

$JOB ALGJOB[4,77743]

Figure 5-1

The output, including the log file, is shown on the following page.

5-11

I

081 06 ,25 STOAT
08106125 SrCRD
08106125 STeRD
08106129 SrCRD
08106129 Sr!~SG
08106130 STCRD
0810613fIJ STCRD
08106130 STSUM
0811:l61:30 STSUM
08106131 STSUM

081061:la 8AJOB
08106138 BArIL
0B106;30 I3AFIL
08H'l61;S8 BASUM

0810613B ~10'~TR
08106138 1'1 O'~ T R
08106139 IJSER
081<'16;43 USER
0.8106145 MO"TR
0BI06145 MO'HR
081fil6;48 USER
08H16149 MO~TR
08106.149 MO'iTR
0810614':1 M O~JTR
12181061 49 MO"lTR
121811:)6151 USER
08106157 USE:;
08HJ61S8 USlR
08:06;5B USER
<'I810615B usER
08 1riJ6 1'58 USER
<'181061 58 USER
0BI06158 US!:..FI
0B106;58 USER
08106158 MO\lTR
0B106158 MONTR
08106158 ALA8L
0B106158 MONTR
0BI07100 IJSER
0B1071;)2 USER
08:07102 USER
081071Z2 USER
08 H'7 1')2 USER
061071f.i 2 MONTR
08Hl712i2 MONTR
08107106 K"QUE
081071~)9 LGOUT
06107109 LGOUT
08107 ;<)9 LGOUT
08107111 LPMSG

13~NOV-84 R57ATa SYS #40/2 SPRI~T Version 2(1035) RunnIng on COR0
$SEQUENCE j.0
$JOB AL.GJOB (4,77743J
$AL.GOL/NOLIST
FI Ie OSKlLN401D,ALG Created. 6 Card$ Read - 1 BloOkS Wrltten
$EXECUTE
$EOJ
End of Job EncoYntered
12 CardS Read
Batch Inpyt Reauest Created

BATeoN version 12(1041) rynnln~ AL.GJOB seqye~ce 10 In stream 2
Input frOm OSKB0!AL.GJOB,C1L[4,77743J
Output to DSKB1IAL.GJOB,LOG[4,77743J
Job narameters
rlme:~0!n5:~Z UnlQUelYlS RestartlVES

,LOGIN 4/77743 ISPOOL.:ALL/TIMEI3?0/LOCATE!1/~AME!"TEST"
JOB 17 R57ATa sys #4~/? TTY147
~606 13- No v· 84 TUB

"COMPIL. ICOMP/AkG DSKIL~401D,ALG
ALGOL: LN401D

EXIT

.,EXECUT IREL. DSK:LN 40j.D,RFL
LINK: I.,.oadlng
~L~KXCT LN401D ExecutlonJ

l,021000!2i& 3

END OF EXECUTION ~ lK CORE

EXECUTION TIMEI 0,04 SECS,

EL.APSED TIME: <1,08 SEeS,

%f IN: :
,DELETE OSK:LN401D,ALG,OSKILN4C1D,REL
Files deleted:
LN4010,ALG
fJ1 Blocks freed
L.N401D,HEL
01 810cks freed

,KJOB DSK81IALGJOB,LOG=/W/8/!!./VRlle/VSI10/VL:2~0/VD:D
Total of 3 blocks In 1 file In LPTS1 reqUest
Job 17, User [4,77743J L.6qged 0" TTY147 e807 13~Ncv~84
Saved all files (90 blOCKS) .
Runtime 3,43 sec
LPTSPL Version 6(344) Running on l,PT0

5-12

BASIC Example

The next example shows how to enter a BASIC program. You must include the program
after a $DECK card so that it will be copied into a file on disk. No $DATA card can be
used because BASIC does not use the EXECUTE command and because the data is entered
in the control file. The program requests data when it is running; it finds the data in the
control file. The final data item must be 2 so that the program can be concluded. The
program is shown below.

5 INPUT D
10 IF D = 2 THEN 110
20 PRINT "X VALUE", "SINE", "RESOLUTION"
30 FOR X = 0 TO 3 STEP D
40 IF SIN(X)=M THEN 80
50 LET XO = X
60 LET M = SIN (X)
80 NEXT X
90 PRINT XO, M, D
100 GO TO 5
110 END

5-13

I

The cards to enter the program and run it are shown in Figure 5-2.

$EOJ

*MONITOR

*DSK:MYBAS.BAS

*OLD

.R BASIC

$TOPS1~/switches

$JOB BASJOB[4,77743]

Figure 5-2

The output from the program will be printed in the log file because it would normally be
printed on the terminal. The log file is shown on the following page.

5-14

08106154 STDAT
081061,4 STCRD
081"'6154 STCRD
081"'6155 STCRD
08106;% STMSG
08106;57 STCRD
08106;57 STCRD
08106;57 STSUM
06106157 STSUM
061061~8 STSUM

06H17;13 BAJOB
06107113 BAFIL
08107;13 BAFIL
061.07113 BASiJM

08107:13 ~IOiJTR

06 107113 ~IO~!TR

06107113 USER
08107117 USER
08H'7117 MONTR
06107117 MONTR
06107;22 I,iSER
0B107;22 USE:R
06107122 USER
fl6t Y.l7122 USER
08107,23 USE:R
06107;25 USER
08107;25 USER
2161071~;;' USER
0BI07125 USE:R
06:07125 USER
06all;27 USER
"B1071n USER
0B:~7127 USER
"6107127 USER
<16107128 USE:R
06:07126 USER
0810712B USER
06107;29 USER
0611:17;29 USER
0610"1;2'1 USER
06107;31 USER
061~7132 USER
08:"7:32 USER
081071,36 USER
0811217136 USEI,
08H:l7136 USER
"610713tl USER
08:071;$6 USE:R
0!!lQJ7:36 USLR
08:07136 Ma'JTR
216107i36 MO'4TR
06107140 K-QUE
216107:45 I.GOUT
081071·~5 I.GOUT
0810714:; LGOUT
218H17;48 LPMSG

13-NOV-B4 R51ATa SYS #40/2 Sp81NT Version 2(1035) RUnnJ~g on CDR0
~SEQUENCE 10
$J08 BASJOB C4,77743J
:i>DECK MY[3AS, BAS
Fi Ie DSK:MYBAS.8AS Created - 11 Cards Read - 2 Blocks WrItten
$TOPS10
$EOJ
End of Job EncQuntered
26 Card5 Read
~atch Input Re1uest Createj

BATCON version 12(1~41) runnlnq 8ASJOB Sequence ~0 In stream 2
Input frOm DSKB0~8ASJ08,CTLC4.77743J
Output to DSKB1IBASJOB.LO~C4,77743J
Job parameters
TI~e:~0:~5:00 UnlquelYFS RestartlYES

.LOGIN 4/777 4 3 ISPOO~:ALL/TIMEI3~0/~nCATE!1/~AME!~TEST~
JOB 17 R57ATa SYS #4J/2 TTY147
0607 13-Nov.64 Tue

•• R 8ASIC

HEADy, FOR HELP TyPE HELP.

*OLD
DLn FILE NAME--*OSKIMYBAS,lAS

READY
*RUN

MYBAS

1,1
X VALUE
3.
1.01

X VALUE
3.
1.001

X VALUE
2,99999
12

SIrJE
O,14112

SPiE
i!I.14112

TIME: 1.61 SECS,

READY
*MONITOR

RESOLUTION
0,1

RESOLUTION
0,01

RESOLUTION
0, i;E" 1

,KJOB DSKBlI8ASJOB.LOG=/~/G/Z:4/VRll~/VSI10/VLI200/VD:D
Total of? blocks In 1 file In loPTSl reqUest
JOb 11, User [4,77743) Logged off TTY147ea~7 13~Nov.a4
Saved all files (100 blOCKS)
f~u,'tl!T1e :.1,80 Sec
LPTSPL Version 6(344) Run~l"g on LPT~

5-15

I

FORTRAN Example

The third example shows a FORTRAN-10 program that prints output on the line printer.
In the control file, you want to tell Batch to punch your re10catab1e binary program if it
executes correctly. Otherwise, you want to end your job so that you can find your error
from the message in the log file. The program is shown below.

C THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50.
DO 10 1=11,50,2
J=l

4 J=J+2
A=J
A=I/A
L=I/J
B=A-L
IF (B) 5, 10, 5

5 IF (J.LT.SQRT(FLOAT(I)))GO TO 4
PRINT 105,1

10 CONTINUE
1 05 FORMAT (14,' IS PRIME.')

END

The cards used to enter this program are shown in Figure 5-3.

$EOJ

END::!END OF JOB

$EXECUTE

$JOB TEST[4,777431/CARDS:5~

Figure 5-3

5-16

Batch puts the following commands into the control file as a result of the cards you en
tered.

.COMPILE LN???? .FOR/COMPILE/LIST

.EXECUTE LN???? .REL

.IF (ERROR) .GOTO END

.R PIP
*CDP:MYPROG = DSK:LN????REL
END:: !END OF JOB

The printed output from the job, including the log file, is shown on the following page.

SotH.
FLOAT FLOAT, SQRT

SCALARS AND ARRAYS

8 1 J

TE"i"°R'\RIES

,Ol000 13

Ai~GUMENT BLOCK.S I

11 IS PRI~IE,
1-~ IS PRIME,
17 IS PRlflE,
1; IS PRIME,
2~ IS PRIME,
29 IS PRIME,
31 IS PRIME,
37 IS PRIME,
41 IS PRPH.,
43 IS PRIME,
47 IS PRIt1E.

2 3 I. 5

5-17

6

08:".,;21 STDAT
0el~"121 STeRD
38107;;!1 STeRO
"8: ril7; ;'2 STeRD
08;~7:23 STf1SG
08 I 071 ,'4 STCRD
0el07124 STeRD
0e:07124 STCRD
08:07;;"4 STERR
08107;24 SH.RR
08:07124 STeRD
°8; 07 1<'4 STSUM
0a:07;;:4 STSUM
0e:07124 STSUM

0e:07;4B 8,\.)08
08107;48 8AFIL
08107:48 8M I L
08:07;':0 8A.SUM

08: ~'7 1 4<J MO'iTR
0810714<J ~IO:iTR

0810714<J USE.:;
08107152 USE"
081071;,;S ~10 ''1 R
0e 1 071 ')..5 '1Q'JTR
08107:;'7 USE',
0e:08::.:7 MO'iTR
08108;l'l MO"TR
08108:;'9 USER
08108116 USER
08:0812iJ USC,
08:08;20 USE.~
08Hl812iJ USEIi
08;08120 Mo'nR
0e108;20 MO'HR
0e108:20 MO'HR
0elfil8120 FALSE
08108120 BLA1L

081fil8;20 8LA'lL
0el08120 MO"TR
08H'I8;22 USE"
fil8 11:18 1 23 USER
08108;23 USEIi
08108;24 USl::l
l1Ie108:24 USER
0eHJ8;24 MOHR
0e;08124 MOrqR
filtll08128 K·')UE
08108132 LGOUT
081fil8132 LGOUT
08:08:32 LGOUT
eJB :;lS;,3, L?~1 SG
i1lBI08;43 LP~1SG

08108153 LPt"\SG
0e1081'3 LPMSG
08109: ('2 LP'1SG

13·~OV-84 R57ATa SVS #40/2 SpqI~T Version 2(1035) RunnIng on COR\1l
'hSEQUOJC[1';
~J08 TE5T[4,77743J ICARDSI~0
'hF::lRTRAN
F I Ie DSK:L N4 01E,FOR Created. 14 Cards Read - 2 BlOCkS WrItten
$EXECun
HCPS10
$ERROR. GO TO E',O
% S P T FT C T hiS car d S h a u I d f () I I o'v a :n 0 p t: 10 Car d

car d: END: I ! END Or JOB
'liEOJ
[nd of JOb (ncounterad
<!3 Cl3.rdS Read
Uatch Input Request Create~

HATCON version 12(10 41) ru~n'n~ TE~T sequence 10 In stream 2
Inout frOm DSK80 I TEST.CTL(1,77743J
Output to DSK81 I TEST,LOG[<,77743J
Job para.'neters
llma:0e!~5:09 unlqUelyFS PestartlYES

.LOGIN 4/77743 ISPOOL:ALL/~I'1EI3011l;LGC4TE!1/~AME!"TEST"
JOB 17 R~7ATa SYS #4:,2 TTY147
CB07 13-~ov-84 TUB

.• CQMPIL ICOHP/F10 OSKIL~4~1[,~OR/lI5T
FORTPAN~ LN40lE

"EXECUT IREL OS~:LN401[,RlL
LPJK: loading
LLNKXCT LN401[Execution]

E.ND OF EXECUTION
CPU TIME: 0,21 ELAPSED T1 [I 1,92
lXIT

,IF(ERPOR) ,CO TO E~D

E.ND: :
: E~!D OF .)OR
%FPi: :
,DELETE DSKilN401E,FOR/DSKIL N401E,REL
Files deleted:
LN401E .FOR
;12 810cKs freer:i
LN401E.RE.L
"2 Blocks freed

.KJOB DSK81ITEST , LOG=/W/B;114/VRI10/VSI1B/VLI211l0/yC;5\1l/yDID
Total of 8 blocks In 3 files I" LPTSl request
Job 17, User [4,77743J Logged off TTY147 ~811l8 13~Nov.84
Saved all files (70 blOCkS)
Runtime 5,23 Sec
LpTSPL Version 6(344) Runnl~g on LPT0
Job TEST fl Ie DSKB0ILN401E[4.77743J for C~,77743J started
OSK80:L N4 01E[4,77743J Done
Job TEST f II e QSKB0!FQRLPTC4/77743J for [~, 77743J started
USK80:FCHLPT[4,77743J Done

5-18

COBOL Example

The fourth program shows a COBOL program that reads data from a magnetic tape and
writes output on another magnetic tape. To have your magnetic tapes mounted on drives
and assigned to you, you must request that the operator mount them. Since you do not
know which drives will be assigned to your job, you must assign them in your job with
logical device names. The MOUNT command assigns the drive to your job and associates
the logical name that you specify in it with the physical drive assigned. You should in
clude a PLEASE command to the operator to tell him that you want two magnetic tape
drives. If he cannot let you have the drives because they are in use, you can ask him to
enter your job again. Your magnetic tapes, one with the input data, the other blank so
that you can write on it, should be given to the operator with your card deck or kept at
the central site, so that the operator can find your tapes. The program is as follows.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL

SELECT INFIL, ASSIGN MAG 1.
SELECT OUTFIL, ASSIGN MAG2.

DATA DIVISION.
FILE SECTION.
FD INFIL, LABEL RECORDS ARE STANDARD.

VALUE OF IDENTIFICATION IS "INFIL DAT".
BLOCK CONTAINS 20 RECORDS.

01 INREC, PIC X (80)
FD OUTFIL, LABEL RECORDS ARE STANDARD

VALUE OF IDENTIFICATION IS "OUTFILDAT".
BLOCK CONTAINS 12 RECORDS.

01 OUTREC, PIC X (80).
PROCEDURE DIVISION.
START.

OPEN INPUT INFIL, OUTPUT OUTFIL.
LOOP.

FIN.

READ INFIL AT END GO TO FIN.
WRITE OUTREC FROM INREC.
GO TO LOOP.

CLOSE OUTFIL, INFIL.
STOP RUN

5-19

I

I

The cards to enter this job are shown in Figure 5-4.

$EOJ

.DISMOUNT MAG2:

.MOUNT MTA:MAG2/VID:OUTFIL/WENABL/REELID:9TRACK

.MOUNT MTA:MAG1/vID:INFIL/RONLY/REELID:9TRACK

.PLEASE NEED TWO MAGTAPES

Figure 54

Batch puts the following commands into the control me for you.

.PLEASE NEED TWO MAG TAPES, IF I CAN'T HAVE THEM, REQUEUE .

. MOUNT MTA:MAG I /VID :INFIL /RONL Y /REELID :9TRACK

.MOUNT MTA:MAG2/VID:OUTFIL /WENABL/REELID:9TRACK

.COMPILE /COMPILE LN???? .CBL /LIST

.EXECUTE MYPROG.REL

.DISMOUNT MAG I:

.DISMOUNT MAG2:

5-20

The printed output from your job is shown below.

PRO G RAM M A I N
LN31 MH,CBL 09.NOV e 73 15:20 COBOL 5A(107)

0001 IDENTIFICATION DIVISION,
00r2 ENVIRONMENT DIVISION,
0003 INPUT-oUTPUT SECTION,
0004 fILE-CONTRO~.
0005 SELECT INFIL, ASSIGN MAGI,
0006 SELECT OUTfIL, ASSIGN MAG?,
00£7 QATA DIVISION,
0008 FILE SECTION.
0009 FO INFIL, LABEL RECORDS ARE STA\OARO,
0010 VALUE OF IDENTIFICATION IS ~l~FIL DAT~,
0011 BLOCK CONTAINS 20 RECORDS.
0012 01 INREC, PIC X(80),
~013 FD OUTFIL. LABEL RECORDS ARE STANDARD.
0014 VALUE Of IDENTIFICATION i5 "OUTFILOAT",
0015 BLOCK CONTAlNS 12 RECORDS.
0016 01 OUTREC, PIC X(80),
0017 PROCEDURE DIVISION,
0018 ST ART.
0019 OPEN INPUT INFIL, OUTPUT OUTFIL.
0020 LOOP,
0021 READ INflLI AT END GO TO FIN,
0022 WRITE OUTREC FROM INREC.
0023 GO TO ~OOP.
0024 FIN,
002~ CLOSE OUTFIL, INFIL,
0026 STOP RUN.

NO ERRORS OETECTED

5-21

15119150 STOAT
151191511l ST9RD
15 119;51/1 STCRD
15120123 STCRD
1512111123 STCRD
1512111126 STMSG
15121',,28 STCRD
151213128 STeRD
151213i28 STCRD
1512111128 ST~UM
151 2(H 28 STSUM
15120j30 STSUM

15121;11/1 BAJDB
15121Pkl BAFIL
15;21l1~ [HFIL
15121:Hl BASUM

151211lil HO~TR
15121111 MONTR
15121ill MO~TR
15121111 MOr~T R
15121111 MO~aR

15126139 BAJOB
15126139 BM'IL
15126139 BIIFIL
15126139 BASUM

15126139 MONTR
15126139 MONTR
15 26140 USER
15 26i46 USER
15 26j48 MONTR
15 26j48 MONTR
15 26146 BHCH
15 2711111 MONTR
15 27114 USER
15 27j15 USER
15 27142 USER
15 27,42 USER
15 27142 MONTR
15 27,44 USER
15 27i45 USER
1512611111 USER
15126111/1 USER
15128110 MONTR
15126114 USER
15128145 MONTR
15128145 MONTR
15128145 MONTR
15128,45 MONTR
15128153 USER

13~NOV·84 R5711Ta SYS #40/2 SpRINT VersIon 2(1035) Runn1ng On CDRB
SSEQUENCE llil
$JOB COB JOB C4.77743~
STOPS10
SCOBOL
FI Ie DSK;LN31MH.CB~ Created. 26 Cards Read. 4 BlOCkS Wr1tten
SEXECUTE
$T()PSlI?!
$EOJ
End of JCb Encountered
39 CardS Read
8atch Input Request Created

HIITCO~ versIOn 12(1041) running COBJOB seauence 10 1n stream 5
Input from DSKB1!COBJOB,CTL(4,77743J
Output to DSKB0!C08JOB,LOG(4,77743J
Job para nl eters
Tlma:0111!05:1110 UnlaUelYES Restar~IYES

,LOGIN 4/77743 /SPOOL:ALL/TIMEI3e0/~OCATE!1/~AME!"TEST"
?Job capacIty exceeded

BATeON versIon 12(1041) runnIng COBJOB SeQue"Ce 10 Tn stream 1
Input from DSKB1!COBJOB,CTLt4,77743J
OutPut to OSKB0!COBJOB,LOGC 4 ,77743J
Job parameters
Tlme:~01~5:00 UnlQUelYES Rastart!YES

.LOGIN 4/77743 ISPOOL;ALL/TIHEI3m~/LOCATE!1/NAME!"TEST"
JOB 12 R57ATa SYS #4@/2 TTV146
1526 13-No v.84 TUB

I

.PLEASE ~EED TWO MAGTAPES
,MOUNT MTA:MAG1/V1D!IN~IL/ROMLV/REE~IDI9TRACK
OPERATOR NOTI~IEO
wAITING, ••
MAGi (MTB~) MOUNTED

.,MOUNT MTA,MAG2/VIDIOUT~tL/WEN4eLE/REE~lO:9TRACK
OPERATOR NOTI~IED
WAITING",
MAG2 (MTB1) MOUNTED

•• COMPIL ICOMP/COB OSKILN31M~,CBL/LIST
COBOL! MAIN CLN31MH,CB~l

EXIT

.,EXECUT IREL DSK:~N3iMH,REL
LINKI I.o.dlng

5-22

1,129;'1 USlR
1,:2911.5 ~(1~:TR

1,1291.l.3 ~10'nR
1"29113 M0'.TR
1!:>129Il.5 Mj\'TR
151291l.7 USER
1!:>l291':'8 USER
1!:>/3413, USER
1 !:>I 34 S, i~O>ITR
1!:>134 35 M O~1T R
15134 .31.1 USER
1,134 40 USE~
15135 ,':3 USE'l
15135 '3 MOIHR
15135 \'3 W)'JTR
1,:.35 :.,3 (lLA8L
15/35 /3 MQ'ITR
15135 ':9 uSU-l
15/35 ,;<1 USER
15135 i '."J USER
1,135;H1 USER
15135111' USER
15135113 ~IO'HR
1!:>1351l3 MO'!TR
1!:>135j25 I{-,-<UE
15135131 LGOUT
15135;31 LG()UT
1!:>135;.31 LGOUT
15136;27 LP~;SG
15 136p6 LP~'SG

15136:46 LPnSG

LL~KXCT LN31~H EXecution)

[XIT

, ,D I Si~OUNT ~iAG1:

OPERATOR NOTIFIEJ
wA I T I \JG, , •
11AGl D I SMOl!~JTE')

• ,DISMOUNT ~;AG2:

OPERATOR NoTIFIE8
lolA !TING ...
MAG2 DISMOlHHED

;~F I \1: :
.DELEtE DSKILN31~H.GBL,CSKILN3!MH,REL
F-Iles deleted:
L.N31~lH. C8L
(14 8 lac k s f r e e d
LN31C1H. RF.L
l13 fJlocks freed

.KJ08 DSKB~:C08JOB.LOG=/~/~/~;4IVRll~/VSll~/VLI200/VDID
Total of ,11 blocks In 2 fj !es In LPTSl rllquest
Job 12. User [4,77743) Logged off TTY146 1535 13·N~v.84
Saved all fI!es (80 blockS)
Huntime B.'l9 Sec
LPTSPL VersIon 6(344) Run~I~g on LPT~
Job COBJOB fl Ie USK81:LN31PHC4,77743J for [4,777 43J started
USKS1:L N3 1MH(4,7 1743J Do~e

5-23

Adding comments, 2-2, 3-3
/AFTER switch

$JOB card, 2-26
SUBMIT command, 3-5

ALGOL
compiler switches, 2-11
definition, vi
deck, setting up, 2-3
job, examples, 5-1, 5-11

INDEX

program, compilation and execution, 2-4
$ALGOL card, 2-3,2-11

examples, 2-12
switches, 2-11

Alphanumeric, definition, vi
ASCII code, definition, vi
Assemble, definition, vi
Assembler, definition, vi
Assembly and execution of a MACRO

program, 2-30
Assembly language, definition, vi
Assembly listing, definition, vi
Assignment of input devices in

programs,
ALGOL

disk,2-18
card reader, 2-19

COBOL
disk,2-16
card reader, 2-18

FORTRAN
disk,2-17
card reader, 2-19

.BACKTO command, 2-23, 2-33, 3-10
example, 3-10

BASIC
deck, setup, 2-9
definition, vi
job, examples, 5-4, 5-13
program, running, 2-7

INDEX-1

Batch
commands, 3-10

format, 3-3
control cards, 2-1

format, 2-2
output, 4-1
processing, definition, vii
queue, job entry, 3-4

Card, definition, vii
column, definition, vii
field, definition, vii
format, 2-2
output, specification of limits, 2-27, 3-6
row, definition, vii

/CARDS switch
$JOB card, 2-27
SUBMIT command, 3-5

Cards to specify error recovery, 2-22,2-32
Central processing unit, definition, vii
Central site, definition, vii
Changing a switch in a queue entry, 3-5
Character, definition, vii
COBOL

compiler switches, 2-13
deck, set-up, 2-5
definition, vii
program

compilation and execution, 2-5
format, 2-13

$COBOL card, 2-5,2-13
examples, 2-14
switches, 2-13

Command, definition, vii
Commands not available in Batch, 2-8, 3-2
Commands to specify error recovery, 3-12
Comments, 2-2, 3-3
Compilation and execution of a pro

gram
Compile, definition, vii

Compiler, definition, viii
ALGOL, 2-4
COBOL, 2-5
FORTRAN, 2-6

Computer, definition, viii
Computer operator, definition, viii
Contents of card decks, 2-2
Continuation card, definition, viii
Continuation of lines in control file, 3-3
Continuation of information on a card,

2-2
Control cards, 2-1
Control file, 1-1, 2-1, 3-2

creation, 2-1,3-2
definition, viii
examples, 3-2, 4-7
format of lines, 3-2
insertion of commands, 2-7

Control of error reporting, 3-13
Control of the number of card columns

read,
$ALGOL card, 2-12
$COBOL card, 2-13
$DATA card, 2-15
$DECK card, 2-19
$FORTRAN card, 2-24
$MACRO card, 2-31

Copying data into disk files, 2-16
Copying programs into disk files

ALGOL, 2-11
COBOL, 2-13
FORTRAN, 2-24
MACRO card, 2-30

Copying trailing spaces into files
$ALGOL card, 2-12
$COBOL card, 2-14
$DATA card, 2-15
$DECK card, 2-19
$FORTRAN card, 2-25
$MACRO card, 2-31

Core
definition, viii
specifying amount, 2-28, 3-6

/CORE switch
$JOB card, 2-28
SUBMIT command, 3-6

CPU, definition, viii
CPU time, specifying amount, 2-29, 3-7
/CREATE switch (SUBMIT command), 3-4

INDEX-2

Creation of a control file, 2-1,3-2
Creation of an entry in the Batch queue,

3-4
/CREF switch

$FORTRAN card, 2-25
$MACRO card, 2-31

Cross reference listing, definition, viii
$FORTRAN card, 2-25.
$MACRO card, 2-29

$DATA card, 2-3, 2-4, 2-5, 2-15
examples, 2-16
naming data files, 2-16
switches, 2-15

Data, definition, viii
Data line in control file, format, 3-3
/DEADLINE switch

$JOB card, 2-28
Debug definition, viii
$DECK card, 2-8, 2-19

examples, 2-20
switches, 2-19

Defining limits for a job, 3-5
Deleting

control file, 3-7
job from the queue, 3-5
log file, 3-7, 3-8

Describing actions to be performed by
Batch, 3-4

Devices,
mounting, definition, x
peripheral, definition, x

Disk, definition, ix
/DISPOSE switch, 3-7

/DISPOSE:DELETE,3-7
/DISPOSE: PRESERVE, 3-8
/DISPOSE: RENAME, 3-8

Dump, 4-2
definition, ix

Entry of job, 3-1
into Batch's queue, 3-3

$EOJ card, 2-3, 2-22
$ERROR card, 2-22
.ERROR command, 3-11

example, 3-11
Error messages, 4-1
Error recovery, 2-32, 3-15

examples, 2-33, 3-15, 3-16

Examples
$ALGOL card, 2-11
ALGOL job, 5-1, 5-11
.BACKTO command, 3-10
BASIC job, 2-9, 2-10, 5-4, 5-13
$COBOL card, 2-13
COBOL job, 4-3,5-8,5-19
Control file, 3-2, 4-7
$DATA card, 2-15
$DECK card, 2-20
.ERROR command, 3-11
error recovery, 2-33, 3-15, 3-16
$FORTRAN card, 2-24
FORTRAN job, 5-6, 5-16
.GOTO command, 3-12
job, 3-2, 5-1, 5-11
loader map, 4-4
log file, 4-4, 4-8
$MACRO card, 2-30
MOUNT command, 5-8, 5-19
mounting tapes, 5-8, 5-19
.NOERROR command, 3-14
output, 4-2, 4-7
submitting jobs, 3-8

Exclamation point, 2-2
$EXECUTE card, 2-23
Execute, definition, ix
Extension, definition, ix

Fatal error, character recognized as, 3-11
/FEET switch

$JOB card, 2-28
SUBMIT command, 3-6

File, definition, ix
File-control switches, 3-7
Filename, definition, ix
Filename extension, definition, ix

Format
$ALGOL card, 2-11
.BACKTO command, 2-23, 3-10
Batch command, 3-2
Batch command card, 2-2
Card,2-1
$COBOL card, 2-13
control cards, 2-1
$DATA card, 2-15
data cards, 2-2
data line, 3-3
$DECK card, 2-20

INDEX-3

Format (cont)
$EOJ card, 2-22
$ERROR card, 2-22
.ERROR command, 3-11
$EXECUTE card, 2-23
$FORTRAN card, 2-24
.GOTO command, 2-23, 3-12
.IF (ERROR) Command, 2-23,3-13
.IF (NOERROR) Command, 2-33, 3-13
$JOB card, 2-26
lines in control file, 3-2
$MACRO card, 2-30
monitor command

card,2-2
line, 3-2

$NOERROR card, 2-32
NOERROR command, 3-14
$PASSWORD card, 2-33
program cards, 2-2
QUEUE INP: monitor command, 3-4
$SEQUENCE card, 2-34
SUBMIT monitor command, 3-4
system program command

card,2-2
line, 3-3

FORTRAN
compiler switches, 2-24
deck, set-up, 2-6
definition, ix
job, examples, 5-6, 5-16
program, compilation and execution,

2-6
$FORTRAN card, 2-6, 2-24

examples, 2-25, 5-15
switches, 2-24

Functions of control cards, 2-1

General switches, 3-5
.GOTO command, 2-23, 2-33,3-12

example, 3-12

Holding a job until a specified time,
2-27,3-5

How Batch reads
card decks, 2-7
control files, 3-10

How to use Batch, 1-1

Identifying the job, 2-26
Identifying the user, 2-33

.IF command
.IF (ERROR), 2-23, 3-13
.IF (NOERROR),.2-33, 3-13

Ignoring fatal error messages, 3-14
Interpretation of printed output, 4-1

Job, 1-1
definition, ix
entry to Batch, 3-1
examples, 3-2, 5-1,5-11
submitting, 3-3

examples, 3-8
$JOB card, 2-3, 2-26

switches, 2-26
Jobname, definition, v
Jobstep, definition, ix

K, definition, ix
/KILL switch, 3-5
Kind's of printed output, 4-1

Label, definition, ix
Line continuation, 3-3
Line printer output, specification

of limits, 2-27, 3-6
Listings, 4-2
Log file, 1-2,4-1

definition, x
examples, 4-4, 4-8

Loader map, 4-2
example, 4-4

MACRO
assembler switches, 2-31
deck, set-up, 2-6
program, assembly and execution, 2-6

$MACRO card, 2-6, 2-30
eXl;lmples, 2-32
switches, 2-31

/MAP switch
$DATA card, 2-16
$EXECUTE card, 2-24

/MODIFY switch, 3-5
Monitor, definition, x
Monitor ,command

card format, 2-2
definition, x
line format, 3-3

MOUNT command, 1-2
example, 5-8, 5-19

INDEX-4

Mounting a device, definition, x
Mounting tapes, 1-2

examples, 5-8, 5-19
Moving a file to Batch's disk area, 3-8
Multiprogram Batch, 1-1
Multiprogramming, definition, x

/NAME switch, 2-29
Naming control files, 3-4
Naming data files on the $DATA card,

2-16
Naming jobs, 2-26, 3-4
Naming log files, 3-4
$NOERROR card, 2-32
.NOERROR command, 3-14

example, 3-14
/NOLIST switch

$ALGOL card, 2-12
$FORTRAN card, 2-25
$MACRO card, 2-31

Object program, definition, x
Obtaining a cross reference listing

$FORTRAN card, 2-25
$MACRO card, 2-31

Operator, computer, definition, viii
Output

card,I-2
line printer, 1-2
paper tape, 1-2
plotter, 1-2
tape, 1-2

Output, specification of limits
card, 2-27, 3-6
line printer pages, 2-29, 3-6
paper tape, 2-28, 3:-6
plotter time, 2-29, 3-7

/PAGE switch (SUBMIT command), 3-6
Pages, specifying number to print, 2-29
/PAGES switch ($JOB card), 2-29
Paper-tape output, specification of

limits, 2-28, 3-6
$PASSWORD card, 2-8,2-33
Password, definition, x
Peripheral devices, definition, x
.PLEASE command, 3-15
Plotter time, specification of limits,

2-29,3-7

Preserving
control file, 3-8
log file, 3-8

Printed output, 4-2
kinds, 4-2

Program
definition, x
object, definition, x
source, definition, xi

Programming, definition, x
Project-programmer number, 2-27

definition, x
[proj,prog],2-27

definition, v
Putting commands in the control file, 2-7

Queue, definition, xi
entering a job into, 3-3

QUEUE INP:monitor command, 3-4
Queue operation switches, 3-4

Reading a card deck, 2-7
Receiving output, 1-2
Recovery from errors, 1-2,2-32,3-15
Required control cards, 2-3
Running jobs, 1-1, 2-1,3-1

ALGOL,2-3
BASIC, 2-9
COBOL,2-4
FORTRAN,2-5
MACRO, 2-6

Searching back in the control file,
2-23, 2-33, 3-10

Searching forward in the control file,
2-23,2-33,3-12

$SEQUENCE card, 2-3, 2-34
Set-up of a card deck, 2-2

ALGOL,2-3
BASIC, 2-9
COBOL,2-5
FORTRAN,2-6
MACRO, 2-6

Set-up ofajob, 1-1
Software, definition, xi
Source,

deck, definition, xi
language, definition, xi
program, definition, xi

Specification of limits
cards to be punched, 2-27,3-6
core, 2-28, 3-6

INDEX-5

Specification of limits (cont)
CPU time, 2-29,3-7
pages to be printed, 2-29, 3-6
paper tape to be punched, 2-28, 3-6
plotter time, 2-29, 3-7

Specifying character to be recognized as
a fatal error, 3-11

Specifying disposal of a file, 3-8
Specifying error recovery, 2-32, 3-15
Specifying a number for a job, 2-34
Specifying parameters for a file, 3-7
Steps to enter a job to Batch, 1-2
SUBMIT monitor command, 3-4

switches, 3-4
Submitting ajob, 1-1,3-1,3-3

examples, 3-9
Suppression of listings

ALGOL,2-l2
FORTRAN,2-25
MACRO, 2-31

/SUPPRESS switch
$ALGOL card, 2-12
$COBOL card, 2-14
$DATA card, 2-15
$DECK card, 2-21
$FORTRAN card, 2-25
$MACRO card, 2-31

Switches in SUBMIT command, 3-4
System program command

card format, 2-2
line format, 3-3

Terminal, definition, xi
Terminating copying of cards into files,

2-22
/TIME switch

$JOB card, 2-29
SUBMIT command, 3-7

$TOPSIO card, 2-2, 2-7, 2-34
example, 2-35
switches, 2-35

/TPLOT switch
$JOB card, 2-29
SUBMIT command, 3-7

/WIDTH switch
$ALGOL card, 2-12
$COBOL card, 2-13
$DATA card, 2-13
$DECK card, 2-21
$FORTRAN card, 2-24
$MACRO card, 2-31

Beginner's Guide to Multiprogram
Batch
DEC-lO-OMPBA-C-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Report (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date ____________________ ~ __ __

Organization __ __

Street __ _

City ___________________________ State _____________ Zip Code ____________ __

or
Country

If you do not require a written reply, please check here. []

.--Fold lIere--

.-----------------------------------~----------- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
M!'Ivn!'lrd. Mass!'IchnsAi:i:s 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

	A003.tif
	A004.tif
	A005.tif
	A006.tif
	A007.tif
	A008.tif
	A009.tif
	A010.tif
	A011.tif
	A012.tif
	A013.tif
	A014.tif
	A015.tif
	A016.tif
	A017.tif
	A018.tif
	A019.tif
	A020.tif
	A021.tif
	A022.tif
	A023.tif
	A024.tif
	A025.tif
	A026.tif
	A027.tif
	A028.tif
	A029.tif
	A030.tif
	A031.tif
	A032.tif
	A033.tif
	A034.tif
	A035.tif
	A036.tif
	A037.tif
	A038.tif
	A039.tif
	A040.tif
	A041.tif
	A042.tif
	A043.tif
	A044.tif
	A045.tif
	A046.tif
	A047.tif
	A048.tif
	A049.tif
	A050.tif
	A051.tif
	A052.tif
	A053.tif
	A054.tif
	A055.tif
	A056.tif
	A057.tif
	A058.tif
	A059.tif
	A060.tif
	A061.tif
	A062.tif
	A063.tif
	A064.tif
	A065.tif
	A066.tif
	A067.tif
	A068.tif
	A069.tif
	A070.tif
	A071.tif
	A072.tif
	A073.tif
	A074.tif
	A075.tif
	A076.tif
	A077.tif
	A078.tif
	A079.tif
	A080.tif
	A081.tif
	A082.tif
	A083.tif
	A084.tif
	A085.tif
	A086.tif
	A087.tif
	A088.tif
	A089.tif
	A090.tif
	A091.tif
	A092.tif
	A093.tif
	A094.tif
	A095.tif
	A096.tif
	A097.tif
	A098.tif
	A099.tif
	A100.tif
	A101.tif
	A102.tif
	A103.tif
	A104.tif
	A105.tif
	A106.tif
	A107.tif
	A108.tif
	A109.tif
	A110.tif
	A111.tif
	A112.tif
	A113.tif
	A114.tif
	A115.tif
	A116.tif
	A117.tif
	A118.tif
	A119.tif
	A120.tif

