
~~u~ handbook series

introduction
1) Introduction to DECsystem-10 Software. 1
2) Getting Started with Timesharing. 53
3) Beginners Guide to Multiprogram Batch.......... 87
4) Introduction to TECO 187

re~erence
5) TECO, Text Editor and Corrector Program 221
6) LINED, Line Editor for Disk Files 355
7) PIP, Peripheral Interchange Program 367
8) DECsystem-lO Operating System Commands 429

users
handbook

second edition

Additional copies of this handbook may be ordered from:
Program Library, DEC, Maynard, Mass. 01754. Order code: DEC-10-NGZS·D.

First Printing November 1971
Second 'Printing (Rev.) July 1972

The material in this· handbook is for information purposes and is subject to
change without notice.

Copyright © 1969, 1970, 1971, 1972 by
Digital Equipment Corporation

The following are trademarks of Digital .Equipment Corporation,
Maynard, Massachusetts

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

introduction

sortware

timesharing

beginners batch

teco (intro.>

ref:erence

teco

lined

. .

pip

commands

index

NOTICE

For the reader's convenience:

1) Consecutive page numbers have been added to the top center of each page in the handbook;

these numbers have the form -nn .. -- (for example -25-) and are supplied in addition to

the standard document numbers printed at the bottom center of each page.

2) The appropriate document name has been added to the top outside corner of each page of

the handbook.

3) A global index comprised of the merged and alphabetized entries of all of the indexes which

were previously part of the documents contained by the handbook is supplied at the end of

the handbook. The global index replaces the individual document indexes.

4) The entries of the global index and the Table of Contents for each document reference the

consecutive page numbers located at the top center of each page.

5) Black locator tabs are printed on the outside edge of the first ten pages of each document

in the handbook. A tab locator page on which each set of tabs is identified by the name of

the document which they represent is supplied at the front of the handbook.

v

FOREWORD

This handbook is an introduction to the DECsystem-1 O. It is intended to be a guide to using the system and, as

such, should be read before advancing to more detailed documentation. The collection of documents in this

handbook is taken from the DECsystem-10 SOFTWARE NOTEBOOKS (DEC-10-SYZB-D) and in all cases, the

documents are reprinted without change.

The documents in this handbook reflect the following versions of the software:

Monitor 5.05
TECO version 23
LI NED version 13A
PIP version 32

Support program version numbers are specified on page 431 of this handbook.

The DECsystem-1 0 User's Handbook is one in the set of DECsystem-1 0 handbooks. The other handbooks com­

prising this series are:

(1) The COBO L Language Handbook and its supplement,

(2) The Mathematical Languages Handbook, which includes FORTRAN, BASIC, and ALGOL,

(3) The Assembly Language Handbook, which includes the System Reference Manual, MACRO,
DECsystem-10 Monitor Calls, LOADER, DDT, CREF, FILCOM, FUDGE2, and GLOB.

These handbooks may also be ordered from the Program Library, Digital Equipment Corporation.

vi i

The DECsystem-l0 is more than a processor and its as­
sociated peripheral devices. Because it is a system,
there are many parts, or components, working together
to achieve a goal in a manner that is both convenient for
the user of the system and advantageous for the oper­
ation of the system. It is a machine designed to be utili­
zed concurrently by many users who wish to perform
various operations. There are three major components
of the computing system, as shown in Figure 1-1: the
actual machine, or hardware; the operating system, or
monitor; and the languages and utilities, or non-resident
software.

r----------,
I KAIO OR KI101-------1 L ~~~

rr USE~:A:~
COMPILERS METHODS OF

INPUT I ASSEMBLERS
EDITORS

UTILITIES I DEBUGGING AIDS ~ ________ NON-RESIDENT
SUPPORT PROGRAMS SOFTWARE

L ____ ...J
10-0820

Figure 1-1 DECsystem-l0Components

1.1 DECsystem-IO HARDWARE

The DECsystem-l0 hardware consists of one or two cen­
tral processors and various memories and input/output
devices connected to these processors. There are five
different systems included in the DECsystem-l0 family,

- 9 -

1-1

INTRO TO SOFTWARE

CHAPTER 1
THE DECsystem-lO

each system being distinguished by the hardware associ­
ated with the central processor. By adding hardware to
an individual system, additional performance is
achieved. However when adding hardware to expand
from a small system to a larger system, no software
changes are required. A single operating system and
command control language can be used for all con­
figurations of the DECsystem-l0.

1.2 DECsystem-IO OPERATING SYSTEM

The DECsystem-l0 hardware has numerous
capabilities: it is powerful, fast, and highly sophis­
ticated. Because of its complexity, this machine is not
usually directly manipulated by its users. The users
communicate with an intermediary, the operating
system, in order to direct their problems to the actual
machine and to receive solutions back. With many users
on the system, this second component of the
DECsystem-l0 must also keep track of what each user
does and the devices and system resources that each
user accesses. Though the operating system cannot be
seen like the actual machine, the action of the operating
system is the most important and noticeable part of the
system to each user. It is true that the operating system
can do nothing for the user if the actual machine does not
exist, but the user normally does not think of this. If the
operating system accomplishes for him what he wants
the actual machine to do,he is satisfied. Therefore, it is
important to the user that he can depend on the same op­
erating system regardless of the hardware that com­
poses the actual machine.

The operating system is always resident in the core
memory of the actual machine and is composed of three
parts <refer to Figure 1-1). Because'there are so many
services that can be obtained from the operating
system, including the allocation of core memory,
processor time, and devices of the actual machine, one
part, the service request handler, is responsible for
accepting requests for these services. The service

INTRa TO SOFTWARE - 10 -

request handler passes the requests to another part, the
sharable resource allocator, which is responsible for
allocating the services requested. If the requested ser­
vice is for use of a device, the 110 service routines are
then notified to carry out the user's request.

1.3 DECsystem-l0 NON-RESIDENT SOFTWARE

The third component of the DECsystem-10 is the non­
resident software, those programs necessary for the
varied operation of the computing system. This software
includes the compilers, assemblers, editors, debugging
programs, and operating system support programs.
These software programs reside on a high-speed mass
storage device of the actual machine and are brought
into memory when needed by a user. By utilizing the non­
resident software, the user of the computing system can
create programs, transfer them from one device to an­
other, compile, edit, execute, and debug them, and then
receive the results of execution on any specified device.

1.4 DECsystem-l0 MULTIPROCESSING

The DECsystem-10 can be a single-processor system or
a dual-processor system, composed of a primary
processoranda secondary processor. Each processor in
the dual-processor system runs user programs, sched­
ules itself, and fields instruction traps. In addition to
these tasks, the primary processor also has control of all
the input/output devices and processes all requests to
the operating system. The primary processor completes
any job that the secondary processor could not finish
because of a request to the operating system. The two
processors are connected to the same memory and exe­
cute the same copy of the operating system, thereby
saving core memory over a multiprocessing system in
which each processor has its own copy. The primary
objective in the DECsystem-10 dual-processor
environment is to provide more processing power than
that found in the single~processor DECsystem-10. This
means that with the addition of the second processor,
more users can run at the same time. Or, if more users
are not allowed on the system, the addition of the second
processor reduces the elapsed time required to com­
plete the processing of most programs.

1.5 MULTIMODE COMPUTING

The DECsystem-10 is designed for the concurrent oper­
ations of timesharing, multiprogram batch, real-time,
and remote communications in either single or dual­
processor systems. In providing these multifunction
capabilities, the DECsystem-lO services interactive
users, operates local and remote batch stations, and per­
forms data acquisition and control functions for on-line

1-2

laboratories and other real-time projects. By
dynamically adjusting system operation, the
DECsystem-lO'provides many features for each class of
user and is therefore able to meet a large variety of com­
putational requirements.

1.5.1 Timesharing

Timesharing takes maximum advantage of the
capabilities of the computing system by allowing many
independent users to share the facilities of the
DECsystem-lO simultaneously. Because of the inter­
active, conversational, rapid-response nature of time­
sharing, a wide range of tasks - from solving simple
mathematical problems to implementing complete and
complex information gathering and processing
networks - can be performed by the user. The number
of users on the system at anyone time depends on the
system configuration and the total computing load on the
system. DECsystem-10 timesharing is designed to allow
for up to 512 active terminals. These terminals include
CRTs and other terminals which operate at speeds of 110
to 2400 baud. Terminal users can be located at the com­
puter center or at remote locations connected to the
computer center by communication lines.

1.5.1.1 Command Control Language ...:.- By allowing
resources to be shared among users, the timesharing
environment utilizes processor time and system
resources that are wasted in single-user systems. Users
are not restricted to a small set of system resources, but
instead are provided with the full variety of facilities. By
means of his terminal, the user has on-line access to
most of the system's features. This on-line access is
available through the operating system command con­
trol language, which is the means by which the time­
sharing user communicates with the computing system.

Through the command language, the user controls the
running of his task,or job, to achieve the results he
desires. He can create, edit, and delete his files; start,
suspend, and terminate his job; compile, execute, and
debug his program. In addition, since
multiprogramming batch software accepts the same
command language as the timesharing software, any
user can enter his program into the batch run queue.
Thus, any timesharing terminal can act as a remote job
entry terminal.

1.5.1.2 Peripheral Devices - With the command lan­
guage, the user can also request assignment of any per­
ipheral device, e.g., magnetic tape, DECtape, and
private disk pack, for his own exclusive use. When the
request for assignment is received, the operating
system verifies that the device is available to this user,

- 11 - INTRa TO SOFTWARE

and the user is granted its private use until he
relinquishes it. In this way, the user can also have com­
plete control of devices such as card readers and
punches, paper-tape readers and punches, and line print­
ers.

1.5.1.3 Spooling - When private assignment of a slow­
speed device (e.g., card punch, line printer, paper-tape
punch, and plotter) is not required, the user can employ
the spooling programs of the operating system. Spooling
is a method by which output to a slow-speed device is
placed on a high-speed disk or drum. This technique pre­
vents the user from using unnecessary time and space in
core while waiting for either a device to become avail­
able or output to be completed. In addition, the device is
managed to a better degree because the users cannot tie
it up indefinitely, and the demand fluctuations ex­
perienced by these devices are equalized.

1.5.1.4 Mass Storage File System - Mass storage
devices, such as disks and drums, cannot be requested
for a user's exclusive use, but must be shared among all
users. Because many users share these devices, the op­
erating system must ensure independence among the
users; one user's actions must not affect the activities of
another unless the users desire to work together. To
guarantee such independence, the operating system
provides a file syste m for disks, disk packs, and drums.
Each uSer's data is organized into groups of 128-word
blocks called files. The user gives a name to each of his
files, and the list of these names is kept by the operating
system for each user. The operating system is then re­
sponsible for protecting each user's file storage from in­
trusion by unauthorized users:

In addition to allowing independent file storage for
users, the operating system permits sharing of files
among individual users. For example, programmers
working on the same project can share the same data in
order to complete a project without duplication of effort.
The operating system lets the user specify protection
rights, or codes, for his files. These codes designate if
other users may read the file, and after access, if the
files can be modified in any way.

The user of the DECsystem-l0 is not required to pre­
allocate file storage; the operating system allocates and
deallocates the file storage space dynamically on
demand. Not only is this convenient for the user because
he does not have to worry about allocation when he is
creating files, but this feature also conserves storage by
preventing large portions of storage from being unnec­
essarily tied up.

1-3

1.5.1.5 Core Utilization - The DECsystem-l0 is a
multiprogramming system; i.e., it allows multiple inde­
pendent user programs to reside simultaneously in core
and to run concurrently. This technique of sharing core
and processor time enhances the efficient operation of
the system by switching the processor from a program
that is temporarily stopped because of I/O transmission
to a program that is executable. When core and the
processor are shared in this manner, each user's
program has a memory area distinct from the area of
other users. Any attempt to read or change information
outside of the area a user can access immediately stops
the program and notifies the operating system.

Because available core can contain only a finite number
of programs at anyone time, the computing system
employs a secondary memory, usually disk or drum, to
increase the number of users serviced. User programs
exist on the secondary memory and move into core for
execution. Programs in core exchange places with the
programs being transferred from secondary memory
for maximum use of available core. Because the trans­
ferring, or swapping, takes place directly between core
and the secondary memory, the central processor can be
operating on a user program in one part of core while
swapping is taking place in another. This independent
overlapped operation greatly improves system utili­
zation by increasing the number of users that can be
accommodated at the same time.

To further increase the utilization of core, the operating
system allows the users to share the same copy of a
program or data segment. This prevents the excessive
core usage that results when a program is duplicated for
several users. A program that can be shared is called a
reentrant program and is divided into two parts or
segments. One segment contains the code that is not

, modified during execution (e.g., compilers and assem­
blers) and can be used by any number of users. The other
segment contains the. user's code and data that are de­
veloped during the compiling process. The operating
system invokes protection for shared segments to guar­
antee that they are not accidentally modified.

1.5.1.6 General-Purpose Timesharing - Timesharing on
the DECsystem-l0 is general purpose; i.e., the system is
designed in such a way that the command language,
input/output processing, file structures, and job sched­
uling are independent of the programming language
being used. In addition, standard software interfaces
make it easy for the user to develop his own special lan­
guages or systems. This general purpose approach is
demonstrated by the many programming languages
implemented by DECsystem-l0 customers.

INTRa TO SOFTWARE

1.5.2 Multiprogram Batch

Multiprogram batch software enables the DECsystem-
10 to execute up to 14 batch jobs concurrently with
timesharing jobs. Just as the timesharing user com­
municates with the system by way of his terminal, the
batch user normally communicates by way of the card
reader. (However, he can enter his job from an inter­
active terminal.) Unlike the timesharing user, the
batch user can punch his job on cards, insert a few
appropriate control cards, and leave his job for an op­
erator to run. In addition, the user can debug his

- 12 -

program in the timesharing environment and then run it
in batch mode without any additional coding.

1.5.2.1 Multiprogram Batch Components - The
multiprogram batch software consists of a series of
programs: the Stacker, CDRSTK; the batch controller,
BATCON; the queue manager, QMANGR; and the
output spoolers, LPTSPL, CDPSPL, PTPSPL, and
PLTSPL (see Figure 1-2). The stacker is responsible for
reading the input from the input device and for entering
the job into the batch controller's input queue. Although

10-0819

Figure 1-2 Programs in the Batch System

1-4

- 13 - INTRO TO SOFTWARE

the Stacker is oriented toward card reader input, it
allows jobs to be entered from any input device that
supports ASCII code. The input information is then sepa­
rated according to the control commands and placed
into disk files, either user data files or the batch con­
troller's control file, for subsequent processing. In addi­
tion, the Stacker creates the job's log file and enters a
report of its processing of the job, along with a recond of
any operator intervention during its processing. The log
file is part of the standard output that the user receives
when his job terminates.

After the Stacker reads the end-of-file and closes the
disk files, it makes an entry in the batch controller's
input queue. The batch controller processes batch jobs
by reading the entries in its queue. The control file
created by the Stacker is read by the batch controller,
and data and non-resident software commands are
passed directly to the user's job. Operating system com­
mands are detected by the batch controller and passed
to the operating system for action. Most operating­
system and non-resisdent-software commands available
to the timesharing user are also available to the batch
user. Therefore, only one control language need be
learned for both timesharing and batch. During the
processing of the job and the control file, the batch con­
troller adds information to the log file for later analysis
by the user.

The queue manager is responsible for scheduling jobs
and maintaining both the batch controller's input queue
and the output spooling queues. A job is scheduled to run
under the batch controller according to external prior­
ities, processing time limits, and core requirements
which are dynamically computed by the queue manager,
and according to parameters specified by the user for
his job, such as start and deadline time limits for
program execution. The queue manager makes an entry
for the job in the batch input queue based upon the
various priorities. After the job is completed, the queue
manager again schedules it for output by placing an
entry in an output queue. When the output is finished, the
job's entry in the output queue is deleted by the queue
manager.

The output spooling programs improve system through­
put by allowing the output from a job to be written
temporarily on the disk for later transfer instead of
being written immediately on a particular output device.
The log file and all job output are placed by the queu~
manager into one or more output queues to await
spooling. When the specified device is available, the
output is then processed by the appropriate spooling
program. These spooling programs may be utilized by
all users of the computing system.

1-5

1.5.2.2 Batch Use .of System Features - The
multiprogram batch software employs many of the com­
puting system's features in order to operate with max­
imum efficiency. Because core memory is not
partitioned between batch and timesharing jobs, batch
jobs can occupy any available area of core. Fast
throughput for high priority batch jobs is accomplished
with the same swapping technique used for rapid re­
sponse to interactive users. When available core is not
large enough for a high priority batch job, the operating
system transfers programs of lower priority to secon­
dary memory in order to provide space for the job. This
I/O transfer is done at the same time that the processor
is operating on another job. Thus, processing can be
overlapped with I/O to utilize time that would otherwise
be wasted. Batch jobs can also share programs with
timesharing and other batch jobs. Only one copy of a
sharable program need be in core to service any number
of batch and timesharing jobs at the same time.

1.5.2.3 Flexibility of the Batch System - Multiprogram
batch allows the user a wide range of flexibility. The
Stacker normally reads from the card reader, but can
read from magnetic tape, DECtape, or disk packs in
order to create a control file on disk and to enter the job
into the batch controller's input queue. However, a job
can be entered from an interactive terminal, in which
case the user bypasses the Stacker and creates a control
file on disk for the batch controller. The control file con­
tains the operating system commands and non-resident
software commands necessary to run the job. The user
then enters the job into the batch controller's input
queue by way of an operating system command string.
In this command string, the user can include switches to
define the operation and set the priorities and limits o.n
core memory and processor time.

1.5.2.4 Job Dependency - Although jobs are entered
sequentially into the batch system, they are not neces­
sarily run in the order that they are read because of pri­
orities, either set by the user in a stacker control com­
mand or computed by the queue manager when
determining the sch~duling of jobs. Occasionally, the
user may wish to submit jobs that must be executed in a
particular order; in other words, the execution of one job
is dependent on another. To ensure that jobs are exe­
cuted in the pro~r order, the user must specify an initial
dependency count in a control command of the depend­
ent job. This dependency count is then part of the input
queue entry. A control command in the job on which the
dependent job depends decrements the count. When the
count becomes zero, the dependent job is executed.

1.5.2.5 Error Recovery - The user can control system
response to error conditions by including in his job com­
mands to the batch controller to aid in error recovery.

INTRa TO SOFTWARE - 14 -

These commands are copied into the control file by the
Slacker. With error recovery commands, the user speci­
fies the action to be taken when his program contains a
fatal error, as for example, to skip to the next program
or to transfer to a special user-written error handling
routine. If an error occurs and the user did not include
error recovery conditions in his job, the batch controller
initiates a standard dump of the user's core area and
terminates the job. This core dump provides the user
with the means to debug his program.

Although the batch system allows a large number of
parameters to be specified, it is capable of operating
with very few user-specified values. If a parameter is
missing, the batch system supplies a reasonable default
value. These defaults can be modified by the individual
installations.

1.5.2.1; Operator Intervention - Normal operating func­
tions performed by the programs in the batch system
require little or no operator intervention; however, the
operator can exercise a great deal of control if neces­
sary. He can specify the number of system resources to
be dedicated to batch processing by limiting the number
of programs and both the core and processor time for in­
dividual programs. He can stop a job at any point,
requeue it, and then change its priorities. By examining
the system queues, he can determine the status of all
batch jobs. In addition, the programs in the batch
system can communicate information to the operator
and record a disk log of all messages printed at the oper­
ator's console. All operator intervention during the
running of the stacker and the batch controller causes
messages to be written in the user's log file, as well as in
the operator's log file, for later analysis.

1.5.:~ Real-Time

For a system to be satisfactory for real-time appli­
cations, two important requirements must be met. The
more important requirement is fast response time.
Because real-time devices cannot store their informa­
tion until the computing system is ready to accept it, the
system would be useless for real-time if the response
requirements of a real-time project could not be satis­
fied. The operating system must allocate system
resources dynamically in order to satisfy the response
and computational requirements of real-time jobs
without affecting the simultaneous operations of time­
sharing and batch jobs. As part of its normal operation,
the DECsystem-lO operating system satisfies this re­
sponse requirement by overlapping I/O operations with
processing time and by reacting to a constantly chang­
ing system load quickly and efficiently.

1-6

The second requirement is protection. Each user of the
computing system must be protected from other users,
just as the system itself is protected from all user
program errors. In addition, since real-time systems
have special real-time devices associated with jobs, the
computing system must be protected from hardware
faults that could cause system breakdown. And, because
protection is part of the function of the operating
system, the real-time software employs this feature to
protect users as well as itself against hardware and soft­
ware failures. Therefore, inherent in the operating
system is the capability of real-time, and it is by way of
calls to the operating system that the user obtains real­
time services. The services obtained by calls within the
user's program include 1) locking a job in core, 2) con­
necting a real-time device to the priority interrupt
system, 3) placing a job in a high-priority run queue, 4)
initiating the execution of FORTRAN or machine lan­
guage code on receipt of an interrupt, and 5) dis­
connecting a real-time device from the priority inter­
rupt system.

1.5.:1.1 Locking Jobs - Memory space is occupied by the
resident operating system and by a mix of real-time and
non-real-time jobs. The only fixed partition is between
the resident operating system and the remainder of
memory. Since a real-time job needs to be in memory so
as not to lose information when its associated real-time
device interrupts, the job can request that it be locked
into core. This means that the job is not to be swapped to
secondary memory and guarantees that the job is read­
ily available when needed. The operating system
optimizes the placement of the job by positioning it in
core so as to obtain the maximum amount of contiguous
core space in the remaining memory. Because memory
is not divided into fixed partitions, it can be utilized to a
better degree by dynamically allocating more space to
real-time jobs when real-time demands are high. As
real-time demands lessen, more memory can be made
available to timesharing and batch usage.

1.5.:1.2 Real-Time Devices - The real-time user can con­
nect real-time devices to the priority interrupt system,
respond to these devices at interrupt level, remove the
devices from the interrupt system, and/or change the
priority interrupt level on which these devices are as­
signed. There is no requirement that these devices be
connected at system generation time. The user specifies
both the names of the devices generating the interrupts
and the priority levels on which the devices function. The
operating system then links the devices to the interrupt
system.

- 15 - INTRO TO SOFTWARE

The user can control the real-time device in one of two
ways: single mode or block mode. In single mode, the
user's interrupt program is run every time the real-time
device interrupts. In block mode, the user's interrupt
program is run after an entire block of data has been
read from the real-time device. When the interrupt
occurs from the device in single mode or at the end of a
block of data in block mode, the operating system saves
the current state of the machine and jumps to the user's
interrupt routine. The user services his device and then
returns control to the operating system to restore the
previous state of the machine and to dismiss the inter­
rupt. Any number of real-time devices may be placed on
any available priority interrupt channel.

1.5.3.3 High-priority Run Queues - The real-time user
can receive faster response by placing jobs in high-prior­
ty run queues. These queues are examined before all oth­
er run queues in the computing system, and any run­
nable job in a high-priority queue is executed before jobs
in other queues. In addition, jobs in high-priority queues
are not swapped to secondary memory until all other
queues have been scanned. When jobs in a high-priority
queue are to be swapped, the lowest priority job is
swapped first and the highest priority job last. The high­
est priority job swapped to secondary memory is the
first job to be brought into core for immediate execution.
Therefore, in addition to being scanned before all other
queues for job execution, the high-priority queues are
examined after all other queues for swapping to secon­
dary memory and before all other queues for swapping
from secondary memory.

1.5.3.4 Job Communication - The DECsystem-l~ oper­
ating system enables a real-time user to communicate
with other jobs through the use of sharable data areas.
This also enables a data analysis program, for example,
to read or write an area in the real-time job's core space.
Since the real-time job associated with the data
acquisition would be locked in core, the data analysis
program residing on secondary memory would become
core resident only when the real-time job had filled a
core buffer with data. Operating system calls can be
used to allow the data analysis program to remain
dormant on secondary memory until a specified event
occurs in the real-time job, e.g., a buffer has been filled
with data for the data analysis program to read. When
the specified event occurs, the dormant program is then
activated to process the data. The core space for the
real-time job's buffer area or the space for the dormant
job does not need to be reserved at system generation
time. The hardware working in conjunction with the op­
erating system's core management facilities provides
optimum core usage.

1-7

1.5.4 Remote Communications

Until the capability of remote communications was
implemented, each remote user of the PDP-I0 had been
individually linked to the computer center by separate
long distance telephone lines. Also, the only device that
the remote user had available at his location was the
terminal; he was able to utilize available devices at the
central station, but he could not obtain output other than
his terminal output at his remote site. Either he had to
travel to the central station to obtain a listing or he had
to have the listings delivered to him. However, with
remote communications hardware and software, listing
files and data can be sent via a single synchronous full­
duplex line to a small remote computer, which in turn
services many remote peripherals, including terminals,
card readers, and line printers. This eliminates the need
for the user to travel to the central site to obtain his
output. The remote computer and its associated per­
ipherals constitute a remote station.

Remote station use of the central computer is
essentially the same as local use. All sharable programs
and peripherals available to local users at the central
computer station are also available to remote users. The
remote user specifies the resources he wants to use and,
if available, they are then allocated in the same manner
as to a local user. In addition to utilizing the peripherals
at the central station, the remote user can access
devices located at his station or at another remote
station. Local users at the central stawon can also make
use of the peripherals at remote stations. Therefore, by
specifying a station number in appropriate commands to
the operating system, each user of the DECsystem-l0 is
given considerable flexibility in allocating system facil­
ities and in directing input and output to the station of his
choice.

The DECsystem-l0 allows for simultaneous operation of
multiple remote stations. Software provisions are in­
corporated in the operating system to differentiate one
remote station from another. By utilizing peripheral
devices at various stations, the user is provided with in­
creased capabilities. For example, data can be collected
from various remote stations, compiled and processed
at the central station, and then the results of the
processing can be sent to all contributors of the data.

Operating system commands not only allow a user to
access peripherals at other remote stations, but also
allow him to pretend that his job is at a remote station

INTRO TO SOFTWARE - 16 -

different from the physical station at which he is
actually located. In this case, the user has a logical
station and can run entire jobs from this station. With
this capability, a local user at the central station could
become a remote user as far as the system was con­
cerned by changing the location of his job to a remote
station in contact with the central station.

1-8

In summary, any computer, regardless of how powerful,
is only as good as the operating system that maximizes
its capabilities. The DECsystem-10 enhances the speed,
power, and flexibility of the PDP-10 by dynamically re­
sponding to the changing user load and, in doing so,
provides the user with a truly flexible and easily-used
computing system.

- 17- INTRO TO SOFTWARE·

CHAPTER 2
NON-RESIDENT SYSTEM SOFTWARE

For the computer to execute any of the basic operations
which it is capable of executing, it must be told which op­
eration it is to perform and where to find the information
on which to perform the operation. This requires that a
language be established by which the user can indicate
to the computer what it needs to know. This language is
the machine language of the computer and is unique for
each machine. This machine language is the means by
which the computer's circuits are instructed to perform
the desired operation and because of this, it is the fastest
and most direct method of programming. However, ma­
chine language programming is not the easiest method
of programming for most users to employ. Although it is
not impossible to memorize all of the operation codes
recognized by the computer, it can be very difficult for
the programmer to remember where each piece of infor­
mation is inside memory in order to direct the computer
to it. Therefore, symbolic language programming was
developed to aid the programmer in manipulating the
computer.

With symbolic language programming, programs are
written using symbols which, when translated, equal the
machine language of the computer. Symbol operation
codes (mnemonics that specify which operation the user
wants the computer to perform) are translated to the
actual, or absolute, operation codes that the computer
understands. Addresses of core are designated with
symbolic labels and are converted into absolute core ad­
dresses so that the computer can locate the information
on which to perform the desired operation.

There are three kinds of translators used in symbolic
language programming: assemblers, compilers, and in­
terpreters. An assembler is a program that is able to
take another program written in symbolic language and
translate it, item by item, into machine language. There­
fore, to assemble a program means to substitute one
absolute value for one symbolic notation until the entire
program has been translated. A compiler also translates

2-1

a symbolic language program into a machine language
program, but the substitution is not one-to-one. A
program written in a compiler language is freer in
format than an assembly language program, and the lan­
guage elements usually resemble English words. The
compiler is larger and more complex than most assem­
blers, because it translates a program that is farther
away from the machine language. Generally, one state­
ment written in a compiler language is translated into
several machine language instructions. Although a com­
piler occupies more space in memory and is generally
slower than an assembler, a program written in a com­
piler language is more compatible with other computer
models, and the language itself is easier to learn and
write because of its general statements and freer
format. An interpreter differs from an assembler or a
compiler in that a binary version of the program is not
produced for storage. In other words, the source text is
translated to machine language everytime it is used, al­
lowing for extensive checking of errors during execu­
tion.

2.1 DECsyslem-IO ASSEMBLER

MACRO is the symbolic assembly program on the
DECsystem-10. It makes machine language
programming easier and faster for the user by (1) trans- .
lating symbolic operation codes in the source program
into the binary codes needed in machine language in­
structions, (2) relating symbols specified by the user to
numeric values, (3) assigning absolute core addresses to
the symbolic addresses of program instructions and
data, and (4) preparing an output listing of the program
which includes any errors detected during the assembly
process.

MACRO programs consist of a series of statements that
are usually prepared on the user's terminal with a
system editing program. The elements in each state­
ment do not have to be placed in certain columns nor
must they be separated in a rigid fashion. The assembler

INTRO TO SOFTWARE - 18 -

interprets and processes these statements, generates
binary instructions or data words, and performs the as­
sembly.

MACRO is a two-pass assembler. This means that the as­
sembler reads the source program twice. Basically, on
the first pass, all symbols are defined and placed in the
symbol table with their numeric values, and on the
second pass, the binary (machine) code is generated.
Although not as fast as a one-pass assembler, MACRO is
more efficient in that less core is used in generating the
machine language code and the output to the user is not
as long.

MACRO is a device-independent program; it allows the
user to select at runtime standard peripheral devices for
input and output files. For example, input of the source
program can come from the user's terminal and output
of the assembled binary program can go to a magnetic
tape, and output of the program listing can go to the line
printer.

The MACRO ·assembler contains powerful macro
capabilities that allow the user to create new language
elements. This capability is useful when a sequence of
code is used several times with only the arguments
changed. The code sequence is defined with dummy
arguments as a macro instruction. Thus, a single state­
ment in the source program referring to the macro by
name, along with a list of the real arguments, generates
the correct and entire sequence. This capability allows
for the expansion' and adaptation of the assembler in
order to perform specialized functions for each
programming job.

2.2 DECsystem-lO COMPILERS

2.2.1 ALGOL

The ALGOrithmic Language, ALGOL, is a scientific lan­
guage designed for describing computational processes,
or algorithms. It is a problem-solving language in which
the problem is expressed as complete and precise state­
ments of a procedure.

The DECsystem-lO ALGOL system is based on ALGOL-
60. It is composed of the ALGOL processor, or compiler,
and the ALGOL object time system. The compiler is re­
sponsible for reading programs written in the ALGOL
language and converting these programs into machine
language. Also any errors the user made in writing his
program are detected by the compiler and passed on to
the user.

The ALGOL object time system provides spe<;ial ser­
vices, including the input/output service, for the com­
piled ALGOL program. Part of the object time system
is the ALGOL library -a set of routines that the user's
program can call in order to perform calculations.
These include the mathematical functions and the
string and data transmission routines. These routines
are loaded with the user's program when required;
the user need only make a call to them. The
remainder of the object time system is responsible for
the running of the program and providing services for
system resources, such as core allocation and man­
agement and assignment of peripheral devices.

2.2.2 BASIC

The Beginner's All-purpose Symbolic Instruction Code,
BASIC, is a problem-solving language that is easy to
learn because of its conversational nature. It is
particularly suited to a timesharing environment
because of the ease of interaction between the user
and the computer. This language can be used to solve

, problems with varying degrees of complexity, and
thus, has wide application in the educational, business,
and scientific markets.

2-2

BASIC is one of the simplest of the programming com­
piler languages available because of the small nun'lber '
of clearly understandable and readily learned com­
mands that are required for solving almost any problem.
The BASIC language is divided into two sections: one
section of elementary commands that the user must
know in order to write simple programs and the second
section of advanced techniques for efficient and well-or­
ganized programs.

The BASIC user types in computational procedures as a
series of numbered statements that are composed of
common English terms and standard mathematical
notation. When the statements are entered, a run-type
command initiates the execution of the program and
returns the results almost instantaneously.

The BASIC system has several special features built into
its design. For one, BASIC contains its own editing facil­
ities. Existing programs and data files can be modified
directly with BASIC instead of with a system editor by
adding or deleting lines, by renaming the file, or by
resequencing the line numbers. The user can combine
two files into one and request a listing of all or part of the
file on either the line printer or the terminal. Secondly,
BASIC allows various peripheral devices to be used for
storage or retrieval of programs and data files. The user
can input programs or data files from the paper-tape
reader on the terminal or output them to the terminal's

- 19 - INTRa TO SOFTWARE

paper-tape punch. Also, the data file capability allows a
program to read information from or write information
to the disk. Thirdly, output to the terminal can be
formatted by including tabs, spaces, and columnar head­
ings. Finally, BASIC has an expanded command set that
includes commands designed exclusively for matrix
computations. Elementary mathematical functions are
contained in the command set along with methods by
which the user can define his own functions.

2.2.3 COBOL

The COmmon Business Oriented Language, COBOL, is
an industry-wide data processing language that is de­
signed for business applications, such as payroll, in­
ventory control, and accounts-receivable.

Because COBOL programs are written in terms that are
familiar.to the business user, he can easily describe the
formats of his data and the actions to be performed on
this data in simple English-like statements. Therefore,
programming training is minimal, COBOL programs
are self-documenting, and programming of desired ap­
plications is accomplished quickly and easily.

The COBOL system is composed of a number of soft­
ware components. The first is the COBOL compiler
which is responsible for initializing the program,
scanning the command strings for correct syntax, gen­
erating the code, listing, and final assembly. The sec­
ond component is the object time system, LIBOL,
which consists of subroutines used by the code gener­
ated by the compiler. These subroutines include the
I/O, conversion, comparison, and mathematical rou­
tines available to the COBOL user. Another component
is the source library maintenance program, which
builds and maintains a library of source language
entries that can be included in the user's source
program at compile time. A fourth component is the
stand-alone report generator, COBRG, which produces
COBOL source programs, which when compiled and
loaded, generate reports. The stand-alone program,
SORT, accepts commands from the user's terminal in
order to perform simple sorting of files. The RERUN
program is used to restart a COBOL program that was
interrupted during execution because of a system fail­
ure, device error, or disk quota error. COBDDT is a
utility that debugs COBOL programs. Finally, !SAM
builds and maintains indexed sequential files for the
user.

DECsystem-lO COBOL accepts two source program
formats: conventional format and standard format. The
conventional format is employed when the user desires
his source programs to be compatible with other COBOL

2-3

compilers. This is the format normally used when input
is from the card reader. The standard format is provided
for users who are familiar with the format used in
DECsystem-lO operations. It differs from conventional
format in that sequence numbers and identification are
not used because most DECsystem-lO programs require
neither. The compiler assumes that the source program
is written in standard format unless the appropriate
switch is included in the command string to the compiler
or the special sequence numbers created by the sym­
bolic editor LINED are detected by the compiler.

DECsystem-lO COBOL is the highest level of ANSI CO­
BOL available and because it operates within the oper­
ating system, it offers the user the many features of the
DECsystem-lO in addition to the business processing ca­
pability of the language. These features enable the CO­
BOL user to run programs in either, or both, timesharing
or batch processing environments, to perform on-line
editing and debugging of his programs with the system
programs available, to choose various peripheral de­
vices for input and output, and to write programs that
can be shared with other users.

2.2.4 FORTRAN

The FORmula TRANSlator language, FORTRAN, is the
most widely used procedure-oriented programming lan­
guage. It is designed for solving scientific-type problems
and thus is composed of mathematical-like statements
constructed in accordance with precisely formulated
rules. Therefore, programs written in the FORTRAN
language consist of meaningful sequences of these state­
ments that are intended to direct the computer to per­
form the specified computations.

FORTRAN has a varied use in every segment of the
computer market. Universities find that FORTRAN is a
good language with which to teach students how to solve
problems via the computer. Scientific markets rely on
FORTRAN because of the ease in which scientific
problems can be expressed. In addition, FORTRAN is
used as the primary data processing language by time­
sharing utilities.

Because of this wide market, DECsystem-lO FORTRAN
is designed to meet the needs of all users. The
FORTRAN system is easy to use in either the time­
sharing or batch processing environments. Under time­
sharing, the user operates in an interactive editing and
debugging environment. Under batch processing, the
user submits his program through the

INTRO TO SOFTWARE - 20 -

multi program batch software in order to have the com­
piling, loading, and executing phases performed without
his intervention.

FORTRAN programs can be entered into the FORTRAN
system from a number of devices : disk, magnetic tape,
DECtape, user terminal, paper-tape reader, and card
reader. In addition to data files created by FORTRAN,
the user can submit data files or FORTRAN source files
created by the system programs LINED, PIP, or TECO.
The data files contain the data needed by the user's
object program during execution. The source files con­
tain the FORTRAN source text to be compiled by the
FORTRAN compiler. Commands are entered directly to
the FORTRAN compiler with a run-type command or in­
directly through a system utility program that accepts
and interprets the user's command string and passes it
to the compiler. Output can then be received on the
user's terminal, disk, DECtape, magnetic tape, card
punch, or paper-tape punch.

2.3 DECsystem-IO INTERPRETER

The Algebraic Interpretive Dialogue, AID, is the
DECsystem-lO adaptation of the language elements of
JOSS, a program developed by the RAND Corporation.
To write a program in the AID language requires no pre­
vious programming experience. Commands to AID are
typed in via the user's terminal as imperative English
sentences. Each command occupies one line and can be
executed immediately or stored as part of a routine for
later execution. The beginning of each command is a
verb taken from the set of AID verbs. These verbs allow
the user to read, store, and delete items in storage; halt
the current processing and either resume or cancel exe­
cution; type information on his terminal; and define
arithmetic formulas and functions for repetitive use that
are not provided for in the language. However, many
common algebraic and geometric functions are pro­
vided for the user's convenience.

The AID program is device-independent. The user can
create external files for storage of subroutines and data
for subsequent recall and use. These files may be stored
on any retrievable storage media, but for accessibility
and speed, most files are stored on disk.

2.4 DECsystem-IO EDITORS

2.4.1 LINED

The line editor for disk files, LINED, is used to create
and edit source files written in ASCII code with line
numbers appended. These line numbers allow LINED to

2-4

reference a line iF! the file at any time without having the
user close and then reopen the file. The user has the
option of either specifying the beginning line number and
the increment to the next line number when inserting
lines or allowing LINED to assume a beginning line
number and increment if the user specification is
omitted.

Commands to LINED allow the user to create a new file
or edit an existing file by inserting, replacing, or deleting
lines within the file. Single or multiple lines of the file
can be printed on the user's terminal for an aid in
editing. When the user has the file as he desires, he
closes the file and can either open a new file or return to
monitor level to assemble or compile his file.

2.4.2TECO

The Text Editor and COrrector program, TECO, is a
powerful editor used to edit any ASCII text file with a
minimum of effort. TECO commands can be separated
into two groups: one group of elementary commands
that can be applied to most editing tasks, and the larger
set of sophisticated commands for character string
searching, text block movement, conditional com­
mands, programmed editing, and command repetition.

TECO is a character-oriented editor. This means that
one or more characters in a line can be changed without
retyping the remainder of the line. TECO has the
capability to edit any source document: programs writ­
ten in MACRO, FORTRAN, COBOL, ALGOL, or any
other source language; specification; memoranda; and
other types of arbitrarily-formatted text. The TECO
program does not require that line numbers or other spe­
cial formatting be associated with the text.

Editing is performed by TECO via an editing buffer,
which is a section within TECO's core area. Editing is
accomplished by reading text from any device (except a
user's terminal) into the editing buffer <inputting), by
modifying the text in the buffer with data received from
either the user's terminal or a command file (inserting),

and by writing the modified text in the buffer to an
output file (outputting).

A position indicator, or buffer pointer, is used to locate
characters within the buffer and its position determines
the effect of many of TECO's commands. It is always
positioned before the first character, between two char­
acters, or after the last character in the buffer. Various
commands, such as insertion commands, always ,take
place at the current position of the buffer pointer.

- 21 - INTRO TO SOFTWARE

Commands to TECO manipulate data within the editing
buffer. Input and output commands read data from the
input file into the buffer and output data from the buffer
to the output file. One or more characters can be in­
serted into the editing buffer, deleted from the buffer,
searchedior, and or typed out with commands from the
user at his terminal. In addition, the user can employ
iteration commands to execute a sequence of commands
repeatedly and conditional execution commands to
create conditional branches and skips.

2.4.3 SOUP

The SOftware Updating Package, SOUP, is a set of
programs that facilitates the updating of system or user
source files. Because software is constantly being up­
dated to reflect changes and improvements made by
DEC, a method to make the updating process easier and
faster for all concerned was developed. SOUP enables
DEC to distribute a file containing only the differences
to the software routine instead of redistributing the
entire routine. In addition, since customers frequently
maintain system files that are modified to reflect their
individual needs, SOUP can be used to update these mod­
ified files as well. Although SOUP was implemented to
update system files, it can be employed to update any
source file with more than one version.

The SOftware Updating Package consists of three
programs. The first program, CAM, is responsible for 1)

comparing the new version of DEC's system file to the
previous version to produce a correction file, and 2)
merging two correction files derived from the same
system file to produce a single correction file. The
correction file contains a series of editing changes that
reflect the differences between the old and new versions
of the system files. The two functions of CAM can be per­
formed simultaneously or one at a time depending on the
user's command string to CAM.

The second program, COMPIO, is used when the custom­
er has modified DEC's file to such an extent that CAM
cannot compare the modified file to the original file due
to buffer overflow. COMPIO has extremely large buffers
and can, therefore, be used to generate the correction
file.

The third program, FED, reads the correction file and
edits the copy of the system file by making the changes
indicated in the correction file. When FED has com­
pleted its processing, the user has an updated file. As a
software manufacturer, DEC sends the user a
correction file, and he, in turn, need only run the FED
program in order to update his system files.

2-5

2.4.4 RUNOFF

RUNOFF facilitates preparing typed or printed manu­
scripts by performing line justification, page
numbering, titling, indexing, formatting, and case
shifting as directed by the user. The user creates a file
with TECO or LINED and inputs his material through
his terminal. In addition to inputting the text, the user in­
cludes information for formatting and case shifting.
RUNOFF processes the file and produces the final
formatted file to be output to the terminal, the line print­
er, or to another file.

With RUNOFF, large amounts of material can be in­
serted into or deleted from the file without retyping the
unchanged text. After the group of modifications have
been added to the file, RUNOFF produces a new copy of
the file which is properly paged and formatted.

2.5 DECsystem-lO UTILITIES

2.5.1CREF

The cross-reference listing program, CREF, is an aid in
program debugging and modification. It produces a
sequence-numbered assembly listing followed by tables
showing cross-references of all operand-type symbols,
all user-defined operators, and all machine op codes and
pseudo-op codes.

The input to CREF is a modified assembly listing
created during assembly or compilation. The command
string entered by the user specifies the device on which
this assembly listing is located along with the output
device on which to list the cross-reference tables and as­
sembly listing. Switches can also be included in the com­
mand string in order to control magnetic tape
positioning and to select specific sections of the listing
output.

2.5.2DDT

The Dynamic Debugging Technique, DDT, is used for
on-line program composition of object programs and for
on-line checkout and testing of these programs. For ex­
ample, the user can perform rapid checkout of a new
program by making a change resulting from an error
detected by DDT and then immediately executing that
section of the program for testing. .

After the source program has been compiled or assem­
bled, the binary object program with its table of defined
symbols is loaded with DDT. In command strings to

INTRa TO SOFTWARE - 22 -

DDT, the user can specify locations in his program, or
breakpoints, where DDT is to suspend execution in order
to accept further commands. In this way, the user can
ckeck out his program section-by-section and if an error
occurs, insert the corrected code immediately. Either
before DDT begins execution or at breakpoints, the user
can examine and modify the contents of any location. In­
sertions and deletions can be in source language code or
in various numeric and text modes. DDT also performs
searches, gives conditional dumps, and calls user-coded
debugging subroutines at breakpoint locations.

2.5.3 File Backup

The file backup system enables the user to recover from
a system failure or other unintentional destruction of
data on the disk by 1) preserving disk files on a storage
medium and 2) later retrieving these files and placing
them back onto the disk. Two system programs are in­
vol ved in this storage and retrieval system: the
BACKUP program used to save the disk files on the spec­
ified storage device, and the RESTORE program used to
return these files to the disk. Using the BACKUP
program, the user can save individual disk files or the
entire disk on magnetic tape, DECtape, or disk. When
restoring these saved files to the disk with the RE­
STORE program, the user can return the entire contents
of the storage device to the disk or return only selected
portions.

2.5.4 FILEX

The file transfer program, FILEX, converts between
various core image formats and reads or writes various
DECtape directory formats and standard disk files.
Files are transferred as 36-bit binary data with no
processing performed on the data except that necessary
to convert the core image representation. The core
image formats that can be used in conversions are: 1)

saved-file format, 2) expanded core image file format,
3) dump format, 4) simple block format (Project MAC's
equivalent of DEC's .SAV format), and 5) binary file
format. The desired core image format is determined by
the specific extension associated with the file but this ex­
tension may be overridden by the use of switches in com­
mand strings to FILEX.

DECtapes can be read or written in binary, PDP-6
DECtape format, MIT Project MAC PDP-6/lO DECtape
format, PDP-ll, or PDP-I5 format. In the latter two
cases, ASCII files will be converted. The DECtape can
be processed quickly via a disk scratch file, which is a
much faster method for a tape with many files. This

2-6

scratch file can be preserved and reused in later com­
mand strings. In addition, the DECtape directory can be
listed on the user's terminal or zeroed in the appropriate
format on the tape. These DECtape format and
processing specifiers are indicated by command string
switches.

2.5.5 LOADER

The LOADER provides automatic loading and
relocation of binary programs generated by the stan­
dard DEC compilers and assemblers, produces an
optional storage map, and performs loading and library
searching regardless of the input medium. In addition,
this program loads and links relocatable binary
programs generated by the compilers and assemblers
prior to execution and generates a symbol table in core
for execution with DDT.

The user specifies in the LOADER command string the
device from which the relocatable binary programs are
to be loaded and the device on which any storage maps or
undefined globals are written. Switches can be included
in the command string 1) to specify the types of symbols
to be loaded or listed, 2) to indicate that the run time li­
braries are to be searched for symbol definitions, 3) to
load the DDT program, and 4) to clear and restart the
LOADER. In addition, special switches allow the user to
create CHAIN files-a feature used to segement
FORTRAN programs that are too large to be loaded into
core as one unit. These CHAIN files consist of complete
programs and subroutines that can be read into core and
executed as needed.

When the loading process is completed, the loaded
program can be written onto an output device with a
monitor SAVE command so that it can be executed at a
later time without rerunning the LOADER.

2.5.6 PIP

The Peripheral Interchange Program, PIP, is used to
transfer data files from one I/O device to another. Com­
mands to PIP are formatted to accept any number of
input (source) devices and one output (destination)
device. Files can be transferred from one or more
source devices to the destination device as either one
combined file or individual files. Switches contained in
the command string to PIP provide the user with the fol­
lowing capabilities: 1) naming the files to be trans­
ferred, 2) editing data in any of the input files, 3) defining
the mode of transfer, 4) manipulating the directory of a
device if it has a directory, 5) controlling magnetic tape
and card punch functions, and 6) recovering from errors
during processing.

- 23 -

2.6 DECsystem-l0 MONITOR SUPPORT PROGRAMS

2.6.1 MONGEN

The monitor generator, MONGEN, is a dialogue
program that enables the system programmer to define
the hardware configuration of his individual installation
and the set of software options that he wishes to select
for his system. This program is a prerequisite for
creating a new monitor.

The system programmer defines his configuration in
one of four dialogues by answering MONGEN's ques­
tions in conversational.mode. MONGEN transmits one
question at a time to the user's terminal, and the user
answers appropriately depending on the content of each
question. After all questions have been answered,
MONGEN produces MACRO source files containing t);le
user's answers. These source files are then assembled
and loaded with the symbol definition file and the
monitor data base to yield a monitor tailored to the indi­
vidual installation.

2.6.20PSER

The operator service program, OPSER, facilitates
multiple job control from a single terminal by allowing
the operator or the user to initiate several jobs, called
subjobs, from his terminal. The OPSER program acts as
the supervisor of the various subjobs by allowing
monitor-level and user-level commands to be passed to
all of the subjobs or to individually selected subjobs.
Output from the various subjobs can then be retrieved by
OPSER.

2-7

INTRO TO SOFTWARE

The subjobs of OPSER run on pseudo-TTY s, a simulated
terminal not defined by hardware. All initializations of
the pseudo-TTYs are performed by OPSER; the oper­
ator need only supply a subjob name. By running system
programs, which ordinarily require a dedicated
terminal, as subjobs of OPSER, output from the various
programs can be concentrated on one hardware
terminal instead of many. In addition, OPSER is able to
maintain an I/O link between the running jobs and the
operator-a feature that is not available when· programs
run on their own dedicated terminals.

2.6.3 LOGIN

LOGIN is the system program used to gain access to the
DECsystem-lO. This program determines by
appropriate dialogue with the user who he is, whether or
not he is currently authorized to use the system, and if
so, establishes the user's initial profile, informs him 'of
any messages of the day, and reports any errors
detected in his disk files.

2.6.4 KJOB-LOGOUT

The system programs KJOB and LOGOUT are used
when leaving the DECsystem-lO. Their many functions
include saving the user's disk files in the state in which
he desires them, enforcing logged-out quotas on all disk
file structures, terminating the user's job, and returning
the resources allocated to the user back to the system.
These resources include the user's job number, his
allocated I/O devices, and his allocated core.

INTRO TO SOFTWARE - 24-

- 25 - INTRO TO SOFTWARE

CHAPTER 3
THE RESIDENT OPERATING SYSTEM

The resident operating system is made up of a number of
separate and somewhat independent parts, or routines
(s~e Figure 3-I). Some of these routines are cyclic in
nature and are repeated at every system clock interrupt
(tick) to ensure that every user of the computing system
is receiving his requested services. These cyclic rou­
tines are:

1) the command processor, or decoder
2) the scheduler, and
3) theswapper.

The command decoder is responsible for interpreting
commands typed by the user on his terminal and passing
them to the appropriate system program or routine. The
scheduler decides which user is to run in the interval be­
tween the clock interrupts, allocates sharable system
resources, and saves and restores conditions needed to
start a program interrupted by the clock. The swapper
rotates user jobs between secondary memory (usually
disk or drum) and core memory after deciding which
jobs should be in core but are not. These routines con­
stitute the part of the operating system that allows many
jobs to be operating simultaneously.

The non-cyclic routines of the operating system are in­
voked only by user programs and are responsible for
providing these programs with the services available
through the operating system. These routines are:

1) the UUO handler,
2) the input output routines, and
3) the file handler.

The UUO handler is the means by which the user
program communicates with the operating system in
order to have a service performed. Communication is by
way of programmed operators (also known as UUOs)
contained in the user program which, when executed, go

3-1

to the operating system for processing. The input/ out­
put routines are the routines responsible for directing
data transfers between peripheral devices and user
programs in core memory. These routines are invoked
through the UUO handler, thus saving the user the
detailed programming needed to control peripheral
devices. The file handler adds permanent user storage to
the computing system by allowing users to store named
programs and data as files.

3.1 THE COMMAND DECODER

The command decoder is the communications link be­
tween the user at his terminal and the operating system.
Because all requests for system resources are initiated
via the command decoder, it is the most visible part of
the system to each user. When the user types commands
and / or requests on his terminal, the characters are
stored in an input buffer in the operating system. The
command decoder examines these characters in the
buffer, checks them for correct syntax, and invokes the
system program or user program as specified by the
command.

On each clock interrupt, control is given to the command
decoder to interpret and process one command in the
input buffer. The command appearing in the input buffer
is matched with the table of valid commands accepted
by the operating system. A match occurs if the com­
mand typed in exactly matches a command stored in the
system, or if the characters typed in match the begin­
ning characters of only one command. When the match
is successful, the legality information (or flags) associ­
ated with the command is checked to see if the command
can be performed immediately. For instance, a com­
mand can be delayed if the job is swapped out to the disk
and the command requires that the job be resident in
core; the command is executed on a later clock interrupt
when the job is back in core. If all conditions as specified
by the legality flags are met, control is passed to the
appropriate program.

INTRO TO SOFTWARE - 26 -

~INPUT-OUTPUT
I ROUTINES

'-------- J

~

I
L-CYCLIC I . ROUTINES

I
I
I L ____ _ I

______ -.J

Figure 3-1 The Resident Operating System

:1.2 THE SCHEDULER

The DECsystem-l0is a multiprogramming system; i.e.,
it allows several user jobs to reside in core simulta­
neously and to operate sequentially. It is then the job of
the scheduler to decide which jobs should run at any
given time. In addition to the multiprogramming fea­
ture, the DECsystem-l0 employs a swapping technique
whereby jobs can exist on an external storage device
(e.g., disk or drum) as well as in core. Therefore, the
scheduler decides not only what job is to be run next but
also when a job-is to be swapped out onto disk or drum
and later brought back into core.

All jobs in the system are retained in ordered groupings
called queues. These queues have various priorities that
reflect the status of each job at any given moment. The
queue in which a job is placed depends on the system
resource for which it is waiting and, because a job can
wait for only one resource at a time, it can be in only one

queue at a time. Several of the possible queues in the sys­
temare:

1) run queues for jobs waiting for, or jobs in ex­
ecution.

2) I/O wait queues for jobs waiting for data
transfers to be complet~d.

3) I/O wait satisfied queues for jobs waiting to
run after data transfers have been com­
pleted.

4) resource wait queues for jobs waiting for
some system resource, and

5) null queue for all job numbers that are not
currently being used.

The job's position within certain queues determines the
priority of the job with respect to other jobs in the same
queue. For example, if a job is first in the queue for a
sharable device, it has the highest priority for the device
when it becomes available. However, if a job is in an 1/0

- 27 -

wait queue, it remains in the queue until the I/O is com­
pleted. Therefore, in an I/O wait queue, the job's
position has no significance. The status of a job is
changed each time it is placed into a different queue.

The scheduling of jobs into different queues is governed
by the system clock. This clock divides the time for the
central processor into one-sixtieths of a second. Each
job, when it is assigned to run, is given a time slice of a
1/2 second or two seconds, depending on the run queue.
When the time slice expires for the job, the clock notifies
the central processor and scheduling is performed. The
job whose time slice just expired is moved into another
run queue, and the scheduler selects the first job in the
run queue to run in the next time slice.

Scheduling may be forced before the time slice has ex­
pired if the currently running job reaches a point at
which it cannot immediately continue. Whenever an op­
erating system routine discovers that it cannot complete
a function requested by the job (e.g., it is waiting for I/O
to complete or the job needs a device which it currently
does not have), it calls the scheduler so that another job
can be selected to run. The job that was stopped is then
requeued and is scheduled to be run when the function it
requested can be completed. For example: when the
currently running job begins input from a DECtape, it is
placed into the I/O wait queue, and the input is begun. A
second job is scheduled to run while the input of the first
job proceeds. If the second job then decides to access a
DECtape, it is stopped because the DECtape control is
busy, and it is placed in the queue for jobs waiting to
access the DECtape control. A third job is set to run. The
input operation of the first job finishes, freeing the
DECtape control for the second job. The I/O operation of
the second job is initiated, and the job is transferred
from the device wait queue to the I/O wait queue. The /
first job is transferred from the I/O wait queue to the
highest priority run queue. This permits the first job to
preempt the running of the third job. When the time slice
of the first job becomes zero, it is moved into the second
run queue, and the third job runs again until the second
job completes its I/O operations.

In addition, data transfers use the scheduler to permit
the user to overlap computation with data transmission.
In unbuffered data modes, the user :;;upplies an address
of a command list containing pointers to locations in his
area to and from which data is to be transferred. When
thelransfer is initiated, the job is scheduled into an I/O
wait queue where it remains until the device signals the
scheduler that the entire transfer has been completed.

3-3

INTRO TO SOFTWARE

In buffered modes, each buffer contains information to
prevent the user and the device from using the same
buffer at the same time. If the user requires the buffer
currently being used by the device as his next buffer, the
user's job is scheduled into an I/O wait queue. When the
device finishes using the buffer, the device calls the
scheduler to reactivate the job.

3.3 THE SWAPPER

The swapper is responsible for keeping in core the jobs
most likely to be runnable. It determines if a job should
be in core by scanning the various queues in which a job
may be. If the swapper decides that a job should be
brought into core, it may have to take another job
already in core and transfer it to secondary memory.
Therefore, the swapper is not only responsible for
bringing a job into core but is also responsible for
selecting the job to be swapped out.

A job is swapped to secondary memory for one of two
reasons: 1) a job that is more eligible to run needs to be
swapped in and there is not enough room in core for both
jobs, and 2) the job needs to expand its core size and
there is not enough core space to do so. If the later case is
true, the job must be swapped out and then swapped in
later with the new allocation of core.

The swapper checks periodically to see if a job should be
swapped in. If there is no such job, then it checks to see if
a job is requesting more core. If there is no job wishing
to expand its size, then the swapper does nothing further
and waits until the next clock tick.

3.4 THE UUO HANDLER

The UUO handler is responsible for accepting requests
for services available through the operating system.
These requests are made by the user program via soft­
ware-implemented instructions known as programmed
operators, or UUOs. The various services obtainable by
the user program include:

1) communicating with the I/O devices on the
, computing system, including connecting

and responding to any special devices that
may be desired on the system for real-time
programming,

2) receiving or changing information con­
cerning either the computing system as a
whole or the individual program,

INTRO TO SOFTWARE - 28 -

3) altering the operation of the computing
system as it concerns the user job, such as
controlling execution by trapping or
suspending, or controlling core memory by
locking,

4) communicating and transferring control be­
tween user programs.

The UUO handler is the only means by which a user
program can give control to the operating system in
order to have a service performed. Contained in the user
program are operation codes which, when executed,
cause the hardware to transfer control to the UUO han­
dler for processing. This routine obtains its arguments
from the user program. The core location at which the
UUO operation was executed is then remembered. Mter
the UUO request has been processed, control is returned
to the user program at the first or second instruction fol­
lowing the UUO. In this way, the software supplements
the hardware by providing services that are invoked
through the execution ef a single core location just as the
hardware services are invoked.

:J.5 THE INPUT/OUTPUT ROUTINES

I/O programming in the DECsystem-lO is highly con­
venient for the user because all of the burdensome
details of programming are performed by the operating
system. The user informs the operating system of his
requirements for I/O by means of UUOs contained in his
program. The actual input/output routines needed are
then called by the UUO handler.

Since the operating system channels communication be­
tween the user program and the device, the user does not
need to know all the peculiarities of each device on the
system. In fact, the user program can be written in a
similar manner for all devices. The operating system
will ignore, without returning an error message, oper­
ations that are not pertinent to the device being used.
Thus, a terminal file and a disk file can be processed
identically by the user program. In addition, user
programs can be written to be independent of any
particular device. The operating system allows the user
program to specify a logical device name, which can be
associated with any physical device at the time when the
program is to be executed. Because of this feature, a
program that is coded to use a specific device does not
need to be rewritten if the device is unavailable. The
device can be designated as a logical device name and
assigned to an available physical device with one com­
mand to the operating system.

3-4

Data is transmitted between the device and the user·
program in one of two methods: unbuffered mode or
buffered mode. With unbuffered data modes, the user in
his program supplies the device with an address, which
is the beginning of a command list. Essentially, this
command list contains pointers specifying areas in the
user's allocated core to or from which data is to be trans­
ferred. The user program then waits until the operating
system signals that the entire command list has been
processed. Therefore, during this data transfer, the user
program is idly waiting for the transfer to be completed.

Data transfers in buffered mode utilize a ring of buffers
set up in the user's core area. Buffered transfers allow
the user program and the operating system's I/O rou­
tines to operate asynchronously. As the user program
uses one buffer, the operating system processes another
one by filling or emptying it as interrupts occur from the
device. To prevent the user program and the operating
system from using the same buffer at the same time,
each buffer has a use bit that designates who is using the
buffer. Buffered data transfers are faster than
unbuffered transfers because the user program and the
operating system can be working together in processing
the data.

Several steps must be followed by the user program in
order for the operating system to have the information it
needs to control the data transfers. Each step is in­
dicated to the operating system with one programmed
operator. In the first step, the i'>pecific device to be used
in the data transfer must be selected and linked to the
user program with one-of the software I/O channels
available to the user's job (OPEN or IN IT programmed
operators). This device remains associated with the
software I/O channel until it is disassociated from it (via
a programmed operator) or a second device is associ­
ated with the same channel. In addition to specifying the
I/O channel and the device name, the user program can
supply an initial file status, which includes the type of
data transfer to be used with the device (e.g., ASCII,
binary), and the location of the headers to be used in
buffered data transfers. The operating system stores in­
formation in these headers when the user program exe­
cutes programmed operators, and the user program
obtains from these headers all the information needed to
fill or empty buffers.

Another set of programmed operators <INBUF and
OUTBUF) establishes the actual buffers to be used for
input and output. This procedure is not necessary if the
user is satisfied to accept the two buffers automatically
set up for him by the operating system.

- 29 -

The next step is to select the file that the user program
will be using when reading or writing data. This group of
operators (LOOKUP and ENTER) is not required for
devices that are not file-structured (e.g., card reader,
magnetic tape, paper-tape punch); however, if used,
they will be ignored thus allowing file-structured devices
to be substituted for non-file-structured devices without
the user rewriting the program.

The third step is to perform the data transmission be­
tween the user program and the file (IN, INPUT, OUT,
and OUTPUT). When the data has been transmitted to
either the user program on input or the file on output, the
file must be closed (CLOSE, fourth step) and the device
released from the channel <RELEASE, fifth step). This
same sequence of programmed operators is performed
for all devices; therefore, the I/O system is truly device
independent because the user program does not have to
be changed every time a different device is used.

In addition to reading or writing data to the standard I/O
devices, provisions are included in the operating system
for using the terminal for I/O during the execution of the
user program. This capability is also obtained through
programmed operators. As the user program is running,
it can pause to accept input from or to type output to the
terminal. The operating system does all buffering for
the user, thus saving him programming time. This
method of terminal I/O provides the user with a con­
venient way of interacting with his running program.

3.6 FILE HANDLER

The disk file handler manages user and system data;
thus, this data can be stored, retrieved, protected, amI/or
shared amoung other users of the computing system. All
information in the system is stored as named files in a
uniform and consistent fashion thus allowing the infor­
mation to be accessed by name instead of by physical
disk addresses. Therefore, to reference a file, the user
does not need to know where the file is physically
located. A named file is uniquely identified in the system
by a filename and extension, an ordered list of directory
names (UFDs and SFDs) which identify the owner of the
file, and a file structure name which identifies the group
of disk units containing the file.

Usually a complete disk system is composed of many
disk units of the same and or different types of disks.
Therefore, the disk system consists of one or more file
structures-a logical arrangement of files on one or more
disk units of the same type. This method of file storage
allows the user to designate which disk unit of the file
structure he wishes to use when storing his files. Each

3-5

INTRO TO SOFTWARE

file structure is logically complete and is the smallest
section of file memory that can be removed from the
system without disturbing other units in other file struc­
tures. All pointers to areas in a file structure are by way
of logical block numbers rather than physical disk ad­
dresses; there are no pointers to areas in other file
structures, thereby allowing the file structure to be
removed.

A file structure consists of two types of files: the data
files that physically contain the stored data or
programs, and the directory files that contain pointers
to the data files. Included in these directory files are
master file directories, user file directories, and sub-file
directories. Each file structure has one master file
directory (MFD). This directory file is the master list of
all the users of the file structure. The entries contained
in the MFD are all the names of the user file directories
on the file structure. Each user with access to the file
structure has a user file directory (UFD) that contains
the names of all his files on that file structure; therefore,
there are many UFDs on each file structure. As an entry
in the user file directory, the user can include another
type of directory file, a sub-file directory (SFD). The
sub-file directory is similar to the other types of
directory files in that it contains as entries all the names
of files within the directory. This third level of directory
allows groups of files belonging to the same user to be
separate from each other. This is useful when organizing
a large number of files according to function. In addi­
tion, sub-file directories allow non-conflicting simulta­
neous batch runs of the same program using the same
filenames.

As long as the files are in different sub-file directories,
they are unique. Sub-file directories exist as files pointed
to by the user file directory, and can be nested to the
depth specified by the installation via a MONGEN ques­
tion

All disk files are composed of two parts: data and infor­
mation used to retrieve the data. The retrieval part of
the file contains the pointers to the entire file, and is
stored in two distinct locations on the device and
accessed separately from the data. System reliability is
increased with this method because the probability of
destroying the retrieval information is reduced; system
performance is improved because the number of
positionings needed for random-access methods is
reduced. The storing of retrieval information is the
same for both sequential and random access files. Thus
a file can be created sequentially and later read
randomly, or vice versa, without any data conversion.

INTRa TO SOFTWARE - 30 -

One section of the retrieval information is used to speci­
fy the protection associated with the file. This protection
is necessary because disk storage is shared among all
users, each of whom may desire to share files with, or
prevent files from being written, read or deleted by,
other users. These protection codes are assigned by the
user when the file is created and designate the users who
have privileges to access the file. Users are divided into
three categories: the user who created the file (the
owner of the file), the user on the same project as the
owner of the file, and the remaining users of the system.
The owner of the file controls the protection of the file;
thus, he can indicate who may read, write, or modify his
file. It is always possible for the owner to change the
protection of his file and when it is changed, the new
protection remains until he modifies it again. If a file is
created without a protection code, the operating system
substitutes an installation-defined standard protection
code.

Disk quotas are associated with each user (each project­
programmer number) on each file structure in order to
limit the amount of information that can be stored in the
UFD of a particular file structure. When the user gains
access to the computing system, he automatically
begins using his logged-in quota. This quota is not a guar­
anteed amount of space, and the user must compete with
other users for it. When the user leaves the computing
system, he must be within his logged-out quota. This
quota is the amount of disk storage space that the user is
allowed to maintain when he is not using the system and
is enforced by the system program that is used in leaving
the system. Quotas are determined by the individual in­
stallations and are, therefore, used to ration disk
resources in a predetermined manner.

To a user, a file structure is like a device; i.e., a file.
structure name or a set of file structure names can be
used as the device name in command strings or UUO
calls to the operating system. Although file structures or
the units composing the file structures can be specified
by their actual names, most users specify a general, or
generic, name (DSK) which will cause the operating
system to select the appropriate file structure. The
appropriate file structure is determined by a job search
list. Each job has its own job search list with the file
structure names in the order in which they are to be

3-6

accessed when the generic name is specified as the
device. This search list is established by LOGIN and thus
each user has a UFD for his project-programmer
number in each file structure in which LOGIN allows
him to have files.

File writing on the disk can be defined by one of three
methods: creating, superseding, and updating. The user
is creating a file if no other file of the same name exists
in the user's directory on the indicated file structure. If
another file with the same 'name already exists in the
directory, the user is superseding, or replacing, the old
file with the new file. Other users sharing the old file at
the time it is being superseded continue using the old file
and are not affected until they finish using the file and
then try to reaccess it later. At that time, they read the
new file. When a user updates a file, he modifies selected
parts of the file without creating an entirely new version.
This method eliminates the need to recopy a file when
making only a small number of changes. If pther users
try to access a file while it is being updated, tlrey receive
an error.

File storage is dynamically allocated by the file handler
during program operations, so the user does not need to
give initial estimates of file length or the number of files.
Files can be any length, and each user may have as
many files as he wishes, as long as disk space is avail­
able and the user has not exceeded his logged-in quota.
This feature is extremely useful during program devel­
opment or debugging when the final size of the file is still
unknown. However, for efficient random access, a user
can reserve a contiguous area on the disk if he desires.
When he has completed processing, he can keep his pre­
allocated file space for future use or return it so that
other users can have access to it.

3.7 SUMMARY

In summary, the resident operating system supervises
user jobs and provides various services to these jobs. It
acts as an operator by performing specific functions in
response to specific events which occur within the
system. Many functions are performed in accordance
with a periodic event, the system clock interrupt. Other
functions are responded to in accordance with the action
of the user program.

Absolute address
The address that is permanently assigned to a storage lo­
cation by the machine designer.

Access date
The date on which a file on disk was last read. If a file has
not been read since it was created, the creation date and
the access date are the same. The access date is kept in
the retrieval information block for the file.

Access list
The table in monitor core that reflects the status of all
files open for reading or writing in addition ~o the status
of those files recently closed.

Access privileges
Attributes of a file which specify the class of users
allowed to access the file and the type of access which
they are allowed.

Access time
The interval between the instant at which data is re­
quested from a storage device or data is requested for a
storage device and the instant at which delivery or stor­
age is begun.

ACCT.SYS
The file that contains all project-programmer numbers,
passwords, initial profiles, and time of day users are
allowed on the system. It does not contain file structure
quotas.

Accumulator
The register and associated equipment in the arithmetic
unit of the computer in which arithmetical and logical
operations are performed.

Active search list
An ordered list of file structures for each job which spec­
ifies the order in whicn the directory is searched. These
file structures are the ones listed before the FENCE by

- 31 - INTRO TO SOFTWARE

4-1

CHAPTER 4
GLOSSARY

the SETSRC program. Device DSK is defined by this list
for each job.

Actual transfer
The hardware operation whereby the channel actually
passes data between the memory system and the con­
trol. The third step of the transfer operation (veri­
fication, search, actual transfer).

Address

(1) An identification represented by a name,
label, or number for a register, a location in
storage, or any other data source or destina­
tion.

(2) The part of an instruction that specifies the
location of an operand of the instruction.

ALCFIL
A program used for allocating space for a new file or
reallocating space for an existing file in one contiguous
region on the disk.

ALGOTS
The ALGOL object time system.

All CPU job
A job which the monitor can run on either processor in a
dual-processor system depending on the I/O activity and
the system load.

Arithmetic unit
The portion of the hardware in which arithmetic and lo­
gical operations are performed.

Assemble
To prepare a machine-language program from a sym­
bolic-language program by substituting absolute oper­
ation codes for symbolic operation codes and absolute or
relocatable addresses for symbolic addresses.

INTRO TO SOFTWARE - 32 -

Assembler
A program which accepts symbolic code and translates
it into machine instruction, item by item.

Assigning a device
To allocate an I/O device to the user's job either for the
duration of the job or until the user relinquishes it.

Asychronous

(1) Pertaining to the procedure by which the
hardware does not wait for one operation to
be completed before starting a second oper­
ation.

(2) Pertaining to the method of data trans­
mission in which each character is sent with
its own synchronizing information.

AUXACC.SYS
The file that contains the standard list of public file
structures for each user' and information (such as
quotas) for those file structures.

Bad Allocation Table (BAT) block
A block written by the MAP program or the monitor on
every disk unit. This block enumerates the bad regions
of consecutive bad blocks on that unit so that they are not
reused. The BAT blocks appear in the HOME.SYS file.

BADBLK.SYS
The file that contains all bad blocks. It may be read but
not deleted' and is useful for testing error recovery.

Base address
A given address from which an absolute address is de­
rived by combination with a relative address.

Batch processing
The technique of executing a set of computer programs
in an unattended mode.

BATCON
The Batch controller. This program reads a job's control
file, starts the job, and controls the job by passing com­
mands and data to it.

Block
A 1281Q-word unit of wsk storage lietermined li>y hard­
ware and software; 128 w8rds ,are always written,
adrung zeros as necessary, although less than 128 words
can be read.

4-2

BOOTS
A bootstrap program whose main functions are to load a
program into core from a disk SAVE file and to dump
core as a SAVE file for later analysis.

Bootstrap
A technique or device designed to bring itself into a de­
sired state by means of its own action, e.g., a machine
routine whose first instructions are sufficient to bring
the rest of itself into the computer from an input device.

Breakpoint
A location at which program operation is suspended in
order to examine partial results.

Buffer
A device or area uSed temporarily to hold information
being transmitted between external and internal storage
devices or I/O devices and internal high-speed storage.
A buffer is often a special register or a designated area
of internal storage.

Buffer pointer
A movable position in!licator that is positioned between
two characters in an editing buffer, before the first char­
acter in the buffer, or after the last character in the
buffer.

Byte
Any contiguous set of bits within a word.

Calling sequence
A specified arrangement of instructions and data neces­
sary to pass parameters and control to and from a given
subroutine.

CDRSTK
The Batch input stacker. CDRSTK reads any sequential
input stream, sets up the job's control file and data files,
and enters the job into the Batch input queue.

Central processing unit (CPu)
The portion of the computer that contains the arithmet­
ic, logical, control circuits, and I/O interface of the basic
sys~em.

Central site
The location of the central computer. Used in con­
jUl1CtiOR with remote comml:lnications to mean the loca­
tion of the DECsystem-lO central processor.

- 33 - INTRO TO SOFTWARE

CHAIN
A program that allows the user to segment FORTRAN
programs that are too large to load or fit into available
core. It reads successive segments of coding into core
and links them to the program already in core.

Channel
(1) A path along which signals can be sent;

e.g., data channel, output channel.
(2) A partially autonomous portion of the

PDP-IO which can overlap I/O trans­
mission while computations proceed si­
multaneously.

CHECKPOINT
A program used to maintain the accounting information
on the disk.

Clear
To erase the contents of a location by replacing the con­
tents with blanks or zeros.

Cluster
A single-or multi-block unit of disk storage assignment.
It is a parameter of each disk file structure.

CODE
A code conversion program that translates files written
in binary-coded decimal to ASCII and vice versa.

COMPIL
A utility program that allows the user to type a short,
concise command string in order to cause a series of op­
erations to be performed. COMPIL deciphers the com­
mand and constructs new command strings for the
system program that actually processes the command.

Compressed file pointer
An IS-bit pointer to the unit within the file structure and
to the first super-cluster of the file.

Concatenation
The joining of two strings of characters to produce a
longer string, often used to create symbols in macro de­
fining.

Conditional jump
A jump that occurs if specified criteria are met.

Context switching
The saving of sufficient hardware and software informa­
tion of a process so that it may be continued at a later
time, and the restoring of another process.

4-3

Continued directory
The collection of all directories with a particular name
and path on all file structures in the job's search list.

Continued MFD
The MFDs on all file structures in the job's search list.

Continued SFD
The SFDs on all file structures in the job's search list
which have the same name and path.

Continued UFD
The UFDs for the same project-programmer number on
all file structures in the job's search list.

Control
The device which controls the operation of connected
units. It can initiate simultaneous positioning commands
to some of its units and then perform a data transfer for
one of its units.

Control character
A character with an ASCII representation of 0-37. It is
typed by holding down the CTRL key on the terminal
while striking a character key. It can be punched on a
card via the multi-punch key.

Copy
To transfer a file from one device to another (e.g., with
PIP or the FILEX program).

CORM AX
The largest contiguous size that an unlocked job can be.
This value can range from CORMIN to-total user core.

CORMIN
Thequaranteed amount of contiguous core which a
single unlocked job can have: This value can range from
o to total user core.

Counter
A device such as a register or storage location used to
represent the number of occurrences of a certain event.

CPU
See central processing unit.

CPUO
In a dual-processor system, the processor that performs
the same activities as the processor in a single processor
system, including all I/O operations, command and UUO
processing, swapping, and interrupt handling. Also
known as the primary processor.

INTRO TO SOFTWARE - 34-

CPUl
In a dual-processor system, the processor that operates
only in user mode except when it is required to find an­
other job to run or to send APR traps to the user. Also
known as the secondary processor.

CRASH.SAV
A file written on disk by BOOTS as part of the crash res­
tart procedure. This file is used by FILDDT for system
debugging.

Create
To open, write, and close a file for the first time. Only
one user at a time can create a file with a given name
and extension in the same directory or sub-directory of a
file structure.

CREF
A program which produces a sequence-numbered as­
sembly listing followed by tables showing cross refer­
ences for all operand-type symbols, all user-defined op­
erators, and I or all op codes and pseudo-op codes.

Customer
A Digital customer purchasing a DECsystem-lO as dis­
tinguished from a user at a console who may be purchas­
ing time from a customer.

Cylinder
The hardware-defined region of consecutive logical disk
blocks which can be read or written without reposition­
ing.

DAEMON
A program for writing all or parts of a job's core area
and associated monitor tables onto disk.

Data Channel
The device which passes data between the memory
system and the control.

DATDMP
A program for dumping the core data base.

DECtape
A convenient, pocket-sized reel of random access mag­
netic tape developed by Digital Equipment Corporation.

DDT
The Dynamic Debugging Technique program used for
on-line checkout, testing, and program composition of
object programs.

4-4

Device routines
Routines that perform I/O for specific storage devices
and translate logical block numbers to physical disk ad­
dresses. These routines also handle error recovery and
ensure ease of programming through device indepen­
dence.

DIRECT
A program for producing directory listings of disks and
DECtapes.

Directory
A file which contains the names and the pointers to other
files on the device. On disk, a directory is continued
across all the file structures in a job's search list. Contin­
ued MFDs, UFDs, and SFDs are all directories. The
DIRECT monitor command lists a directory.

Directory device
A storage retrieval device such as disk or "DECtape
which contains a file describing the layout of stored data
(programs and other files).

Directory path
The ordered list of directory names, starting with a UFD
name, which uniquely specifies a directory' without
regard to a file structure. Also known as a path. A file
structure name, a path, and a filename and extension
are needed to uniquely identify a file in the system.

Dismounting a file structure
The process of deleting a file structure from a user's
active search list by using the DISMOUNT command. It
does not necessarily imply physical removal of the file
structure from the system.

Doorbell
The device by which processors in a multiprocessing
system interrupt each other. This is an optional device.

Dormant file structure
A file structure that is physically mounted but has no
current users, i.e., the mount count is zero.

Dormant segment
A sharable high segment kept on a swapping space, and
possible core, which is in no user's addressing space.

DSK
The generic device name for disk-like devices. Actual
file structure names are defined for each job by the file
structure search list.

- 35 - INTRa TO SOFTWARE

DSKLST
A program which gives statuses and statistics of all user
disk files at a given point in time.

DSKRAT
A damage assessment pogram that scans a file structure
and reports any inconsistencies detected.

Dump
A listing of all variables and their values, or a listing of
the values of all locations in core.

DUMP
A program that outputs selected portions of a file in one
of the various formats that can be specified by the user.

EDDT
A version of DDT used for debugging programs, such as
the monitor, in executive mode.

Effective address
The actual address used, that is, the specified address as
modified by any indexing or indirect addressing rules.

Entry point
A point in a subroutine to which control is transferred
when the subroutine is called.

Executive mode
A central processor mode characterized by the lack of
memory protection and relocation and by the normal ex­
ecution of all defined operation codes.

Extended file
A file which contains one or more extended RIBs to con­
tain the retrieval pointers.

Extended RIB
Additional retrieval information blocks (RIBs) re­
quired when the retrieval pointers in a file overflow the
prime RIB.

FAILSAFE
A utility program used to save the contents of the disk on
magnetic tape and later restore the saved contents back
onto disk.

FILDDT
A version of DDT used for examining and changing a file
on disk instead of in core memory. This program is used
to examine a monitor for debugging purposes.

4-5

File
An ordered collection of 36-bit words comprising come
puter instructions and/or data. A file can be of any
length, limited only by the available space on the device
and the user's maximum space allotment on that device.
A file is uniquely identified in the system by a file struc­
ture name or directory name, a directory path, and a
filename and extension.

Filename
A name of one to six alphanumeric characters chosen by
the user to identify a file.

Filename extension
One to three alphanumeric characters usually chosen by
the program to describe the class of information in a file.

File specification
A list of quantities which uniquely identify a named file.
A complete file specification consists of: the name of the
physical device or file structure on which the file is
stored, the name of the file including its extension, the
name of the directory in which the file is contained, and
the protection code associated with the file. File specifi­
cations are ignored for non-file-oriented devices.

File structure
The logical arrangement of 128-word blocks on one or
more units of the same type to form a collection of
named files.

File-structured device
A device on which data is given names and arranged into
files; the device also contains directories of these
names.

File structure owner
The user whose project-programmer number is associ­
ated with the file structure in the administrative file
STRLST.SYS. The REACT program is used to enter or
delete this project-programmer number or any of the
other information that is contained in an STRLST.SYS.
entry.

File structure search list
For each job, a list that specifies the order in which the
file structures that user can access are to be searched
when device DSK: is specified. Also called a job search
list.

FILEX
A general file transfer program used to convert between
various core image formats and to read and write
various DECtape directory formats and standard disk
files.

INTRO TO SOFTWARE - 36 -

Flag
An indicator that signals the occurrence of some condi­
tion, such as the end of a word.

Fragmentation.
The technique used when swapped segments cannot be
allocated in one contiguous set of blocks on the swapping
space.

FUDGE2
A file update generator used to update files containing
one or more relocatable binary programs and to manipu­
late programs within program files.

Full path name
The ordered list which uniquely identifies a specific disk
file. This list consists of the directory path plus the file­
name and extension.

Generic name
An abbreviation fora physical name. This abbreviation
is usually three characters.

Get
To transfer a save file from a -device into core using a
bootstrap program or the monitor.

GLOB
A program which reads multiple binary program files
and generates an alphabetic cross-referenced list of all
the global symbols encountered.

Global request
A request to the LOADER to link a global symbol to a
program.

Global symbol
Any symbol accessible to other programs.

GRIPE
A program that reads text from the user and records it in
a disk file for later analysis by the operations staff.

Group
A contiguous set of disk clusters allocated as a single
unit of storage and described by a single retrieval point­
er.

High segment
The segment of the user's core which generally contains
pure code and which can be shared by other jobs; it is
usually write-protected.

4-6

Home block
The block written twice on every unit which identifies
the file structure the unit belongs to and its position on
the file structure. This block specifies all the para­
meters of the file structure along with the location of the
MFD. The home block appears in the HOME. SYS file.

HOME.SYS
The file that contains a number of special blocks for
system use. These blocks are the home blocks, the BAT
blocks, the ISW blocks, and block zero.

Idle segment
A sharable high segment which users in core are not
using; however, at least one swapped-out user is using it
else it would be a dormant segment.

Idle time
The percent of uptime in which no job wanted to run, i.e. j­
all jobs were HAL Ted or waiting for some external
action such as I/O.

Immediate mode addressing
The process through which the right half of the word
gives the operand and not the address.

Impure code
The code which is modified during the course of a run,
e.g., data tables.

Indirect address
An address in a computer imtruction which indicates a
location where the address of the referenced operand is
to be found.

INITIA
A program for performing standard system in­
itialization for a particular terminal. It is used to initiate
specific programs, such as the spooling programs, on
the designated terminal.

Initialize
To set counters, switches, or addresses to zero or other
starting values either at the beginning of or at per­
scribed points in a computer routine.

Interjob dependency
The technique by which a Batch job is kept from running
until after the running of another job. The first job is de­
pendent on the second job.

Interleaving
To increase effective memory speed by configuring the
memory addressing so that adjacent addresses refer­
ence alternate asynchronous memories.

- 37- INTRa TO SOFTWARE

Internal symbol
A symbol which generates a global definition which is
used to satisfy all global requests for that symbol.

Interrupt
A signal which when activated causes a transfer of con­
trol to a specific location in memory thereby breaking
the normal operation of the routine being executed. An
interrupt is caused by an external event such as a done
condition in a peripheral. It is distinguished from a trap
which is caused by the execution of a processor instruc­
tion.

ISWblock
A block written by the refresher which contains the bit
map for the initial storage allocation table for swapping.
Any bad regions are marked as already in use. The ISW
block appears in the HOME.SYS file.

Job
The entire sequence of steps, from beginning to end, that
the user initiates from his interactive terminal or card
deck or that the operator initiates from his operator's
console.

Job Data Area
The first 140 octal locations of a user's core area. This
area provides storage for items used by both the monitor
and the user program.

Job search list
See File Structure Search List.

Job site
The location at which jobs are run. Also called program
site.

Job step
A serial or parallel sequence of processes invoked by a
user to perform an operation.

Jump
A departure from the normal sequence of executing in­
structions.

Label
A symbolic name used to identify a statement of a pro­
gram.

Latency
(1) The time from initiation of a transfer op­

eration to the beginning of actual trans­
fer; Le., veri.fication plus search time.

4-7

(2) The delay while waiting for a rotating
memory to reach a given location as desired
by the user. The average latency is one half
the revolution time.

LlBOL
The COBOL object time system.

Library search mode
The mode in which a program is loaded only if one or
more of its declared entry symbols satisfies an unde­
fined global request. LIB40 is scanned in this mode so as
to load only programs that the user needs.

LIB40
The standard DEC-supplied library of the FORTRAN
object time system and math routines. This library
resides on device SYS.

Line
A string of characters terminated with a vertical tab,
form feed, or line feed. The terminator belongs to the
line that it terminates.

Load
To produce a core image file from a relocatable binary

. file (.REL) using the LOADER program. This operation
is not to be confused with the GET operation: with the
GET operation a core image file has already been- pro­
duced.

LOADER
A program that provides automatic loading and reloca­
tion of MACRO, FORTRAN, and COBOL generated
binary programs, produces an optional storage map, and
performs loading and library searching. Also, the pro­
gram loads and links relocatable binary programs gen­
erated by MACRO, COBOL, and FORTRAN and gener­
ates a symbol table in core for execution under DDT.

Local peripherals
The I/O devices and other data processing equipment,
excluding the central processor, located at the central
site.

Local symbol
A symbol used only within the program in which it is de­
fined (all non-global symbols). It is not accessible to
other programs even though the programs are loaded to­
gether.

Locked job
A job in core that is never a candidate for swapping or
shuffling.

INTRa TO SOFTWARE - 38 -

Logical device name
An alphanumeric name chosen by the user to represent a
physical device. This name can be used synonymously
with the physical device name in all references to the
device. Logical device names allow device indepen­
dence in that the most convenient physical device can
then be associated with the logical name at run time.

LOGIN
The program by which the users gain access to the com­
puting system.

LOOKFL
A program for typing the characteristics of a single disk
file, such as creation date and number of words written,
on the terminal.

Lost time
The percent of uptime that the null job was running, but
at least on other job wanted to run (was not waiting for a
device) but could not because one of the following was
true:

a. the job was being swapped out.
b. the job was being swapped in.
c. the job was on disk waiting to be swapped in.
d. the job was momentarily stopped so devices

could become inactive in order to shuffle job .
in core.

Low segment
The segment of core containing the job data area and I/O
buffers. This area is unique and accessible to the user
and is often used to contain the user's program. If the
user is working with a shared program, this area con­
tains data tables, etc.

MAINT.SYS
The area of the disk reserved for maintenance use only.

Macro
An instruction in a source language which is equivalent
to a specified sequence of machine instructions.

Mask
(1) A combination of bits that is used to con­

trol the retention or elimination of
portions of any word, character, or byte
in memory.

(2) On half-duplex circuits, the characters
typed on the terminal to make the
password unreadable.

4-8

Master file directory
The file created at refresh time which contains the name
of all user file directories including itself. Referred to as
theMFD.

Master slave system
A specific multiprocessing system involving two proces­
sors where one processor has a more important role
than the other.

Memory protection
A scheme for preventing access to certain areas of stor­
age for purposes of reading or writing.

Mnemonic symbol
A symbolic representation for a computer instruction.

MONEY
A program for reading the system's time accounting file
and assigning a monetary charge for each user accord­
ing to the time and resources that he has used on the
system.

MONGENtime
The time at which the monitor software configuration is
being defined or changed. The monitor must then be re­
loaded with LOADER.

Monitor
The collection of programs which schedules and controls
the operation of user and system programs, performs
overlapped I/O, provides context switching, and allo­
cates resources so that the computer's time is efficiently
used.

Mount Count
The count of the number of jobs which have a file struc­
ture in their active or passive search lists.

Mounting a device
To request assignment of an I/O device via the operator.

Mounting a file structure
The process of adding a file structure to one's search
list. If the file structure is not already defined and
mounted, this is requested of the operator.

Multiprocessing
Simultaneous execution of two Qr more computer pro­
grams by a computer.

Multiprocessing system
A system with two or more central processors sharing
some or all of the hardware resources, such as, disks
memories, and or monitors.

- 39 - INTRO TO SOFTWARE

Multiprogramming
A technique that allows scheduling in such a way that
more than one job is in an executable state at anyone
time.

Named file
A named ordered collection of 36-bit words (instructions
and or data) whose length is not restricted by size or
core.

Nesting
To include a routine or block of data within a larger rou­
tine or block of data.

Non-directory device
A device such as a magnetic tape or paper tape which
does not contain a file describing the layout of stored
data.

No-op
An instruction that specifically instructs the computer
to do nothing. The next instruction in sequence is then
executed.

Non-sharable segment
A segment for which each user has his own copy. This
segment can be created by a CORE or REMAP UUO or
initialized from a file.

Object time system
The routines for a particular language which support the
compiled code._Usually includes I/O and trap-handling
routines.

Offset
The number of locations toward zero a program must be
moved before it can be executed.

OMOUNT
A program for operator interfacing for handling
requests concerning removable media.

ONCE ONLY time
The time at which the operator can change a number of
monitor parameters when the monitor is started up.

One's complement
A complement formed by setting each bit in a binary
number to the opposite state.

Operand
The symbolic addresses of the data to be accessed when
an instruction is executed, or the input data or argu­
ments of a pseudo-op or macro instruction.

4-9

Overlay
The technique of repeatedly using the same blocks of in­
ternal storage during different stages of a program.
When one routine is no longer needed in storage, another
routine can replace all or part of it.

PackID
A 6-character SIXBIT name or number used to Wliquely
identify a disk pack.

Page
(1) Any number of lines terminated with a

form feed character:
(2) The smallest allocatable unit of core stor­

age.

Parity bit
A binary digit appended to an array of bits to make the
sum of all the bits always odd or always even.

Parity check
A check that tests whether the number of ones or zeros in
an array of binary digits is odd or even.

Passive search list
An unordered list of the file structures which have been
in the job's active search list and have never been dis­
mounted. Device DSK is not defined by this list.

Path
See directory path.

Peripheral equipment
Any unit of equipment, distinct from the central process­
ing unit, which can provide the system with outside com­
munication.

Physical unit name
The SIXBIT name consisting of 3 to 6 characters that is
associated with each unit. Examples: FHAO, FHAl,
DPAO, DPA7, LPT, DTA3.

PIP
The Peripheral Interchange Program which transfers
data files from one standard I/O device to another and
performs simple editing and magnetic tape control func­
tions.

PLEASE
A program that provides the user with two-way commu­
nication with the operator.

Pointer
The location containing an address rather than data
which is used in indirect addressing.

INTRa TO SOFTWARE - 40 -

Pool
One or more logically complete file structures that pro­
vide file storage for the users and that require no special
action on the part of the user.

Position operation
The operation of moving the read-write heads of a disk to
the proper cylinder prior to a data transfer. This oper­
ation requires the control for several microseconds to in­
itiate activity, but does not require the channel or
memory system.

Prime RIB
The first retrieval information block (RIB) of a file. This
block contains all of the user arguments.

Privileged program
(1) Any program running under project

number I, programmer number 2.
(2) A monitor support program executed by a

monitor command and, therefore, has the
JACCT (job status bit) set, for example,
LOGOUT.

Priority interrupt
The interrupt that usurps control of the computer pro­
gram or system and jumps to an interrupt service rou­
tine if its priority is higher than the interrupt currently
being serviced, if any.

Process
A collection of segments that perform a particular task.
A hardware state is associated with a process: a virtual
memory, a processor, a stack, etc.

Program break
The length of a program; the first location not used by a
program (before relocation).

Program counter (PC)
A register that, at the beginning of each instruction, nor­
mally contains an address one greater than the location
of the current instruction.

Programmed operators
Instructions which, instead of doing computation, cause
a jump into the monitor system or the user area at a pre­
determined point. The monitor interprets these entries
as commands from the user program to perform speci­
fied operations.

Program origin
The location assigned by the LOADER to relocatable
zero of a program.

4-10

Project-programmer number
Two octal quantities, separated by commas, which,
when considered as a unit, identify the user and his file
storage area on a file structure.

Protected location
A storage location reserved for special purposes in
which data cannot be stored without undergoing a
screening procedure to establish suitability for storage
therein.

Protection address
The maximum relative address that the user can refer­
ence.

Pseudo-op
An operation that is not part of the computer's operation
repertoire as realized by hardware; hence, an extension
of the set of machine operations. In MACRO, pseudo-ops
are directions for assembly operations.

Public disk pack
A disk pack belonging to the storage pool and whose stor­
age is available to all users.

Pure code
Code which is never modified in the process of execu­
tion. Therefore, it is possible to let many users share the
same co,py of a program.

Pushdown list
A list that is constructed and maintained so that the item
to be retrieved is the most recently stored item in the
list, i.e., last in, first out.

QMANGR
The Batch queue manager. QMANGR is called by
BATCON to schedule jobs by computing and dynami­
cally revising job priorities.

Quantum time
The run time given to each job when it is assigned to run.

QUE
The system-wide name defining the location of the spool­
ing and operator work-request queues.

Queue
(1) A list of jobs to be scheduled or run

according to system, operator, or user­
assigned priorities. Examples: Batch
input queue, spooling queues, monitor
scheduling queues.

- 41 -

(2) The system program that allows users to
add, delete, list, or modify queue entries
in the various system queues.

QUOLST
A program that prints the user's quotas for each file
structure in his search list and the number of free blocks
available in each file structure.

QUOTA.SYS
The file that contains a list of users and their quotas for
the private file structure on which the file resides.

Random access
A process in which the access time is effectively inde­
pendent of the location of the data.

REACT
A program for maintaining administrative control files.
H can be used to create, modify, delete or list entries in a
file.

Read
To open a file for input.

Record
A collection of related items of data treated as a unit.

Reentrant program
A two-segment program composed of a sharable and
non-sharable segment.

Reformat
To write new headers on a disk pack using the D50B diag­
nostic program.

Refresh
To remove all files from a file structure and to build the
initial set of files based on information in the HOM block.

Relative address
The address before hardware or software relocation is
added.

Relocate
To move a routine from one portion of storage to another
and to adjust the necessary address references so that
the routine can be executed in its new location.

Relocation address
The absolute core address of the first location in the
program segment.

4-11

INTRa TO SOFTWARE

Relocation constant
The number added by the LOADER to every relocatable
reference within a program. The relocation constant is
the relocated break of the previous program.

Remote Batch
A feature of the computing system that allows data
I/O and job control of Batch processing from a distant
terminal over a synchronous communication link.

Remote peripherals
The I/O devices and other data processing equipment,
except the central processor, located at the site of the
remote Batch terminal.

Removing a file structure
The process of physically removing a file structure from
the system. This is requested with the REMOVE switch
in the DISMOUNT command string and requires the op­
erator's approval.

Response time
The time between the generation of an inquiry and the
receipt of an response.

Return

Run

(1) The set of instructions at the end of a
subroutine that permits control to return
to the proper point in the main program.

(2) The point in the main program to which
control is returned.

To transfer a save file from a device into core and to
begin execution.

RUNOFF
A program that facilitates the preparation of typed or
printed manuscripts by performing formatting, case
shifting, line justification, page numbering, titling, and
indexing.

SAT.SYS
. The Storage Allocation Table file which contains a bit for
each cluster in the file structure. Clusters which are free
are indicated by zero and clusters which are bad, allo­
cated and non-existent are indicated by one.

Save
To produce a save file from a core image using a bootst­
rap program or the monitor. This operation is the
opposite of the GET operation.

INTRO TO SOFTWARE - 42 -

SCRIPT
A program that sends predetermined sequences of char­
acters over multiple pseudo-TTYs in order to simulate a
load on the system for analysis.

Search
The Controller reads sector headers to find the correct
sector. The second step in the transfer operation.

Sector
A physical portion of a mass storage device.

Segment
A logical collection of data, either program data or code,
that is the building block of a program. The monitor
keeps a segment in core and/or on the swapping device.

Segment Resident Block
A block that contains all the information that the moni­
tor requires for a particular segment.

SETSRC
A program that allows the user to list or change the
search list that is automatically set up for him at job in­
itialization time.

SFD
A directory pointed to by a UFD or a higher-level SFD.
These directories exist as files under the UFD.

Sharable segment
A segment which can be used by several users at a time.

Shared code
Pure code residing in the high segment of user's core.

Single access
The status of a file structure that allows only one par­
ticular job to access the file structure. This job is the one
whose project number matches the project number of
the owner of the file structure.

Skip
An instruction that causes control to bypass one instruc­
tion and proceed to the next instruction.

Spooling
The technique by which output to slow-speed devices is
placed into queues to await transmission; this allows
more efficient use of the particular device, core
memory, and the central processor unit.

Static dump
A dump that is performed at a particular point in time
with respect to a machine run, frequently at the end of a
run.

4-12

STRLST.SYS
The administrative file that describes each file struc­
ture in the system. This file is used by the MOUNT com­
mandonly.

Sub-directory
A continued SFD.

Supersede
To open a file for writing, write the file and close the file
when an older copy of the same name already exists.
Only one user at a time may supersede a given file at any
one time. The older copy of the file is deleted when all
users are finished reading it.

Super-cluster
A contiguous set of one or more clusters introduced to
compress the file pointer for large units into 18 bits. See
compressed file pointer.

Swapping
The movement by the monitor of user programs be­
tween core and secondary storage.

Swapping class
The classes of swapping units divided according to
speed. Class 0 contains the fastest swapping units.

Swapping device
Secondary storage that is suitable for swapping, usually
a high-speed disk or drum.

SWAP.SYS
The file containing the swapping area on a file strucutre.

Symbolic address
An address used to specify a storage location in the con­
text of a particular program. Symbolic addresses must
then be translated into absolute addresses by the assem­
bler.

Symbol table
A table which contains all defined symbols and the
binary value assigned to each symbol.

SYS
A system-wide logical name for the system library. This
is the area where the standard programs of the system
are maintained.

SYSDPY
A variation of the SYSTAT program wQich runs on a
keyboard display at up to 2400 baud.

- 43 -

SYS search list
The file structure search list defined at ONCE-ONLY
time for device SYS.

SYSTAT
A program that displays on the user's terminal the
status of the system at any time.

TECO
A sophisticated text editor and corrector program that
allows simple editing requests, character string
searches, _ complex program editing, command repeti­
tion, and text block movement. TECO editing is per­
formed on files recorded in ASCII characters.

TENDMP
A utility program used to save and restore core images
on DECtape or magnetic tape. It operates only in execu­
tivemode.

Total user core
The amount of physical core which can be used for
locked and unlocked jobs.

Track
The portion of a moving storage medium, such as disk,
drum, or tape, that is accessible to a given reading head
position.

Transfer operation
The hardware operation of connecting a channel to a
controller and a controller to a unit for passing data be­
tween the memory and the unit. The transfer operation
involves verification, search, and actual transfer.

Trap
An unprogrammed conditional jump to a known loca­
tion, automatically activated by a side effect of execu­
ting a processor instruction. The location from which the
jump occurred is then recorded. It is distinguished from
an interrupt which is caused by an external event.

Two's complement
A number used to represent the negative of a given
value. This number is obtained by alternating the bit
configuration of each bit in the binary number and
adding one to the result.

UFD
A file whose entries are the names of files existing in a
given project-programmer number area within a file
structure.

UMOUNT
A program for user interfacing for the handling of
Eequests concerning removable media.

4-13

INTRa TO SOFTWARE

Unconditional transfer
An instruction which transfers control to a specified lo­
cation.

Unit
The smallest portion of a device that can be positioned
independently from all other units. Several examples of
units are: a disk, a disk pack, and a drum.

Update
To open a file for reading and writing simultaneously on
the same software channel, rewrite one or more blocks
in place, and close the file. Only one user at a time may
update a given file.

User
A person who utilizes the facilities of the DECsystem-10.

User file directory
SeeUFD.

User I/O mode
The central processor mode that allows privileged user
programs to be run with automatic protection and relo­
cation in effect, as well as the normal execution of all de­
fined operation codes.

User library
Any user file containing one or more programs of which
some or all can be loaded in library search mode.

User mode
A hardware-defined state during which instructions are
executed normally except for all I/O and HALT instruc­
tions which cause immediate jumps to the monitor. This
makes it possible to prevent the user from interferring
with other users or with the operation of the monitor.
Memory protection and location are in effect so that the
user can modify only his area of core.

User program
All of the code running under control of the monitor in an
addressing space of its own.

Verification
The controller reads sector headers to see if the mechan­
ical parts of the system have correctly positioned the
arm. The first step in the transfer operation.

Vestigial job data area
The first 10 locations of the high segment used to contain
data for initializing certain locations in the job data
area.

INTRa TO SOFTWARE

Virtual core
The size of the job, both low and high segments.

Wildcard construction
A technique used to designate a group of files without
enumerating each file separately. The filename, exten­
sion, or project-programmer number in a file specifica­
tion can be replaced totally with an asterisk or partially
with a question mark to represent the group of files de­
sired.

- 44 -

4-14

Word
An ordered set of bits which occupies one storage loca­
tion and is treatedby the computer circuits as a unit. The
word length of the DECsystem-10 is 36 bits.

Zero compression
The technique of compressing a core image by eliminat­
ing consecutive blocks of zeros.

- 45 - INTRa TO SOFTWARE

DECsystem-10 is the name for the family of DEC's large
computing systems. Each of the five systems in the
DECsystem-10 range is centered around one or two
PDP-10 central processors. The systems are dis­
tinguished from each other by their range of perform­
ance, which is achieved by adding more hardware. The
additional hardware that increases performance in the
expansion from a small to a larger system includes:
swapping devices, central processors, core memories,
and peripheral equipment, including data commu­
nications systems. The systems have no fixed hardware
boundary because an individual system can be expanded
to any size. No software changes are required in ex­
panding an individual system; all configurations of the
DECsystem-lO use the same operating system for all ap­
plications.

A.I DECsystem-I040

The 1040 is the smallest of the five systems. The typical
configuration of this system has a KAIO central
processor, 32 to 64K high-speed MElO core memories,
the RP02G disk system with up to two disk packs, the
TM10G magnetic tape system with up to two drives, and
low-speed peripheral equipment including a CR10F card·
reader, an LP10A line printer, and local DC10 lines. This
is an excellent system for the scientific research lab
where multiple real-time tasks and general computing
are required, and also for small colleges where there is a
need for handling administrative, student, and faculty
workloads simultaneously. The system is easily ex­
pandable with most equipment on the DECsystem-10
Equipment List.

A.2 DECsystem-1050

T~e Hl50 is afull capahility, medium pewer system. The
a<ilditi<m of a high-speed RM10G swapping drum system
silbstantiaHy increases the number of simultaneous
users on the system. Other compenents of this system in­
clucle: the KAlO central f>rGcessor, 64 to OOK higlq-speed

A-I

APPENDIX A

DECsystem-lO HARDWARE

MElO core memories, the RP02G disk system with up to
four disk packs, the TM10G magnetic tape system, the
CR10D card reader, the LPlOC line printer, and 32 local
lines in either the DC10 or DC68A communications
system. The 1050 is well-suited for the educational and
scientific environments because it has the capability of
running ALGOL, BASIC, COBOL, and FORTRAN com­
pilers concurrently on a configuration that is economic­
ally priced and easy to learn and use. Business data
processing areas find that with the 1050, COBOL
program preparation is enhanced by interactive editing
and debugging via local or remote terminals.

A.3 DECsystem-I055

The 1055 is the dual processor equivalent of DECsystem-
1050 with fast execution of compute-bound jobs because
of the addition of the second processor. This system has
two parallel KA10 processors connected with one oper­
ating system in order to double the computing power of
the 1050 and at the same time to maintain the same inter­
face between the user and the computing system. This
approach of co-equal processors gives the user in­
creased computing capacity when processing power is in
heavy demand under multi-task loads. In addition to the
two KA10 processors, the typical 1055 has 80K of MElO
core memories, with one MX10 memory port
multiplexer, one RM10G drum system, one RP03G disk
system with up to eight disk packs, one TU40G, 120KC
magnetic tape system, one CR10 card reader, the LPU)C
line printer, and 32 local lines, either a DCIO system or a
DC68A system.

A.4 DECsystem-Hl79

The 1@79 is a large-scale comtmtiRg system with moce
than twice the central }ilrocessor speed of the
DECsystem-1050 because of the KI16 central precessGr.
This processor has hardware memory paging, dGHble-·
precision flGating-peint arithmetic, instructi(}n look­
aheas, ami virtual memQry ca,ability. In addition to the

INTRO TO SOFTWARE - 46 -

KilO processor, the typical 1070 comprises at least 96K
(480K bytes) ofME10core memory, 690K words (4.1 mil­
lion characters) of RMlOG high-speed drum storage, an
RP03G disk system of four disk drives with a total of 41.6
million words (249.6 million characters) of storage,
TU40G magnetic tape system with three 120KC drives, a
1200 character-per-minute CRlOE card reader, a 1000
line-per-minute LP10C line printer and a communication
system capable of 128 lines (either DClO or DC68A).
With the increased memory size, the high performance
peripheral systems, and the large file system, the 1070 is
configured for maximum support of remote batch
capabilities through the synchronous communication
equipment. Multiple remote stations have simultaneous
access to the DECsystem-1070, with each capable of con­
centrating up to 16 terminals to its computer.

A.5 DECsystem-1077

The 1077 is the dual-processor 1070 with fast execution of
computing loads because of the second KilO central
processor. In addition, this system typically has 128K
(640K bytes) of core memory, 690K words (4.1 million
characters) of RM10G drum storage, a RP03G disk
system with four disk drives for a total of 41.6 million
words (249.6 million characters) of storage, a TU40G
magnetic tape system with four 120KC drives, a 1000
line-per-minute LP10C line printer, a 1200 character-per­
minute CR10E card reader, and a DC10 or DC68A com­
munication system capable of 128 lines. In expanding to
the 1077 from a smaller system, the user notices in­
creased computing power, but he does not need to
change his programs or learn a new command language
or operating system.

A.6 PROCESSOR - KAIO

The KA10 arithmetic processor is the processing unit for
the three smallest DECsystem-10 machines. Its stan­
dard I/O devices are: a. a 300 character-per-second
photoelectric paper-tape reader, b. a 50 character-per­
second paper-tape punch, c. an operator's console that
provides the operator with information and intervention
capabilities when desired, and d. a standard Model
35KSR console teleprinter operating at 10 characters­
per-second (considered as part of the operator's con­
sole). The 36-bit instruction word format of the KA10
provides 512 operation codes, of which 366 are hard­
wired. The remainder are programmed operators or are
reserved for future uSe.

The fast registers, KM10, are sixteen 36-bit integrated
circuit registers used as multiple accumulators, index
registers, or memory locations. These registers have an

A-2

access time of 200 ns and when used as memory
locations can double the execution speed of a program.
The dual memory protection and relocation registers,
KTlOA, Slllow the software to define two areas for each
user and to protect the remaining of core from these
users.

The priority interrupt system of the central processor
has seven levels of interrupts for the devices attached to
the I/O bus. The entire priority interrupt system is
programmable. With software, any number of devices
can be attached to any level, individual levels or the
entire priority interrupt system can be deactivated and
later reactivated, and interrupts can be requested on
any level. With the executive control logic, the KAIO op­
erates in one of three modes: a. executive mode, which
allows all instructions to be executed and suppresses
relocation. b. user mode, in which some instructions are
not allowed (Le., I/O instructions) and relocation and
protection are in effect, and c. user I/O mode, where all
instructions are valid but relocation and protection are
still in effect.

A.7 PROCESSOR - KilO

The KilO central processor used with the larger
DECsystem-10 machines is nearly twice as fast as the
KA10 processor. This increase in speed results from the
use of different architecture, faster circuits, a more
complex adder, improved algorithms, and lookahead in­
struction logic, which obtains the next instruction during
the execution of the current instruction.

Core memory is managed by the paging system of the
KilO. This system allows the user program to access an
effective address space of up to 256K words. This space
is segmented into 51210 pages of 51210 contiguous words
each. These pages do not have to be contiguous in the
'physical core memory.

The KilO processor provides memory address mapping
from a program's effective address space to the
physieal address space by substitution of the most
significant bits of the effective address. This mapping
provides access to the entire physical memory space,
which is 16 times larger than the effective address
space. (The program's effective address space is 256K
08 bits); the physical address spac'e is 4096K (22 bits) l.
Memory mapping takes place using a page table as
follows: the most significant nine bits of the effective
address, the page number, is used as an index into the
appropriate page table. The effective page number is
then replaced by the information located in the page
table entry. This information is a physical page number

- 47-

of 13 bits. These 13 bits are concatenated with the least
significant 9 bits of the effective address, the word
address within the page, in order to form the 22-bit
physical address. More core is then able to be addressed
when providing a physical address space much larger
than the effective address space. This gives programs
the ability to access 4 million words.

Eight instructions for double-precision floating-point
arithmetic and three instructions for converting be­
tween fixed-point and floating-point formats are in the
KilO instruction repertoire. The double-precision word
format gives precision of 1 part in 4.6 x 10 18 and an ex­
ponent to the power of 256.

The KilO processor provides measures for handling~
arithmetic overflow and underflow conditions,
pushdown list overflow conditions, and page failure con­
ditions directly by the execution of programmed trap in­
structions instead of resorting to a program interrupt
system. The trap instruction is executed in the same
address space as the instruction that caused the trap.
Therefore, user programs can handle their own traps by
directing the monitor to place a jump to a user routine in
the trap location.

The maximum uninterruptable interval on the priority
interrupt system is 10J,Ls. The I/O bus cycle time of the
KilO processor is 2.7 J,LS . Interrupt response is enhanced .
by the four blocks of general-purpose registers. Each
block contains 16 registers that facilitate both rapid con­
text switching between programs and interrupt han­
dling.

The KilO operates in one of two modes, user mode and
exec mode. Each of these modes have two submodes: a.
public mode and concealed mode in user mode, and b. su­
pervisor mode and kernel mode in exec mode.

User programs operate in user mode. In this mode, the
program can access up to 256K words. All instructions
are legal except those that interfere with other users or
the integrity of the system. A program in public mode
can transfer to a program in concealed mode only by
transferring to locations that have ENTRY instructions.
A program in concealed mode can read, write (if

allowed), execute, and transfer to any location desig­
nated as public. Concealed mode allows the loading of
proprietary software with a user program and data, but
prevents the user program from changing or copying the
software. This provides direct interaction between the
user and the proprietary software with virtually no over­
head.

A-3

INTRa TO SOFTWARE

The operating system operates in exec mode. The small­
er part of the operating system operates in kernel mode
and performs both 1/0 for the system and any functions
that effect all users of the system. The larger part of the
operating system operates in supervisor mode and per­
forms general management of the system and the func­
tions that effect only one user at a time.

A.S CORE MEMORIES

The MElO core memory contains 16,384 words with a
read access time of 600 nanoseconds and a full cycle time
of one microsecond. Up to 16 memory modules can be
connected to provide 256K of core storage. Each module
can contain up to four ports. This memory features both
two-and four-way interleaving with switches on each
memory module. It is specifically built for the KilO
processor in that it can recognize the 22-bit address
space. It also takes advantage of the overlap memory
control of the KilO, which results in a 20 % increase in
speed.

The MD10G mass memory system consists of 64K MD10
core memory and a MD10E including cables. The basic
unit of the MDlO memory has 65,536 words of storage at
36 bits per word. The unit has an access time of 830 ns, a
cycle time of 1.8 J,LS , and two-or four-way interleaving
between cabnets. This memory is equipped with four
access ports for connection to the processor and data
channels. The MD10E core memory expansion module
expands the MD10E up to 128K in increments of 32,768
words.

The MDlOH mass memory system consists of 128K
MD10 core memories and three MD10Es including
cables.

A.9 DRUM SYSTEM

The RM10G drum system consists of a DF10 data chan­
nel, a RC10 fixed-head drum control, and a RM10B fixed­
head drum. The DFlO controls the transfer of data be­
tween a device controller and one port in memory. Up to
eight controllers or special devices can be connected to
the DF10, providing one data path to core memory. In
other words, one device can be transferring data, and
other devices on the DFHI must wait until the device has
completed the data transfer. The rate of transfer is
determined by the speed of the device using the DF10.
The RC10 controls up to four RM10B drums. It connects
to the processor via the I/O bus for control and status in­
formation. Under program control, it establishes a data
path between the drum and a core memory port via the

INTRO TO SOFTWARE - 48 -

DF10. The RM10B provides 345,000 36-bit words for fast­
access storage available for swapping, data storage, and
program libraries. It has an average latency time of 8.5
ms and an average transfer time of 4.5 /lS per 36-bit
word (or about 10.2 ms and 5.4 /lS respectively when op­
erating with 50 Hz power). Due to its speed, the drum
should be connected to the highest priority memory port
via-the DF10.

A.1O DISK SYSTEMS

The RP02G disk system consists of the DFlO data chan­
nel, a RP10 disk control, and two RP02 disk pack drives.
The RPlO disk control can provide control of up to eight
RP02 disk pack drives. It connects to a DFlO data chan­
nel and the I/O bus. The RP02 disk drive provides stor­
age for up to 5,120,000 36-bit words on interchangeable
disk packs. The average access time is 47.5 ms, which in­
cludes 12.5 ms average rotational latency, and the trans­
fer rate is 15 /lS per word.

The RP03G disk system includes a DF10 data channel, a
RP10C disk control, and four RP03 disk pack drives. The
RP10C can control up to eight RP02 or RP03 (or a com­
bination of the two) disk pack drives. The RP03 has a
total of 400 cylinders that give twice the storage capacity
of the RP02.The average access time is 41.5 ms including
the 12.5 ms average rotational latency, and the transfer
rate is identical to the RP02.

The maximum disk system storage capacity is: up to
four controllers, each with eight drives, giving a total of
327,680,000 words, or in excess of 1.966 x 10 9 characters
of on-line storage.

A.ll MAGNETIC TAPE SYSTEMS

The TD10G DECtape system consists of a TD10
DECtape controller and a TU56 DECtape transport. The
TD10 controls either four TU56 dual DECtape transports
or eight TU55 DECtape transports. Data is transferred
between the TDlO and the central processor over the I/O
bus at the average rate of one 36-bit word every 400 /lS.

The TU56 transport reads and writes magnetic tape at
15K characters per second. The tapes are 3-3/4 in. in
diameter, 260 ft. long, and 3/4 in. wide. Each tape has a
directory providing random access to user files. The
tape units are bidirectional and redundantly recorded,
resulting in greater maintainability and reliability.

The TMlOG 36KC magnetic tape system has a TM10A
magnetic tape control and either two TU10 or two TU20
magnetic tape units. The TM10A controls the operation
of up to eight tape transports and provides a data path
from the tape transport to the central processor via the

A-4

I/O bus. The data transfer rate is determined by the
speed and density of the drive being controlled. The
TU10 magnetic tape unit reads and writes 9-channel
(TUlOE) or 7-channel (TUlOF) industry standard tape at
45 in. per second and a density of 200, 556, and 800 bits per
inch (TUlOE) or bits per second (TUlOF). The TU20A
magnetic tape unit reads and writes 9-channel USASI
standard magnetic tape at a rate of 45 in. per second and
with a density of 800 bits per inch. The TMlO controller
assembles four 8-bit characters per 36-bit word transfer.
The TU20B magnetic tape unit reads and writes 7-chan­
nel industry standard magnetic tape at the rate of 45 in.
per second and with densities of 200, 556, and 800 bits per
inch. The TM10 controller assembles six 6-bit characters
per 36-bit word for transfer.

The TU40G 120KC magnetic tape system includes a
DF10 data channel, a TM10B magnetic tape control, and
two TU40 magnetic tape units. The DF10 controls the
transfer of data between eight device controllers and
one port of core memory. The TMlOB controls up to
eight tape transports. This control uses the I/O bus to re­
ceive information from and to provide status to the
processor. It establishes a data path from the tape tranS­
port to core memory via the DFlO. The transfer rate of
the control is determined by the speed and density of the
tape transport performing the transfer. The TU40 reads
and writes 9-channel USASI standard magnetic tape at
150 in. per second and a density of 200, 556, and 800 bits
per inch. The TU41 reads and writes 7-channel industry
standard tape at 150 in. per second and a density of 200,
556, and 800 bits per inch.

A.12 INPUT/OUTPUT DEVICES

A.12.1 Card Readers

The card readers offered with the DECsystem-lO have
insignificant card wear, high tolerance to damaged
cards and are virtually jam proof. The life of an individ­
ual card has been proven to be in excess of 1000 passes.
These readers are designed to permit the operator to
load and unload cards while the reader is operating.

The CR10D card reader is a table-top model that reads
80-column EIA standard cards at 1000 cards per minute.
The capacity of the card hopper is 1000 cards. The card
reader controller connects to the BAlO hard copy con­
troller.

The CRlOE console model card reader inputs 80-column
EIA standard cards at 1200 cards per minute. The max­
imum number of cards held by the input and output
hoppers is 2250 cards. The controller is mounted in the
BA10 hard copy controller cabinet.

- 49 -

The CRlOF card reader is a table-top model and reads
SO-column EIA standard cards at the rate of 300 cards
per minute. The hopper of the CRlOF holds 600 cards.
The controller connects to the BA10 hard copy con­
troller.

A.12.2 Card Punch

The CPlOA card punch punches cards at the rate of
either 200 cards per minute when punching all SO
columns or 365 cards per minute when punching only the
first 16 columns. The card hopper and stacker capacities
are 1000 cards. The card punch controller is mounted in
the BAlO hard copy controller cabinet.

A.12.3 Line Printers

The 64-character LPlOA line printer prints 300 lines per
minute and 132 columns per line. The printable charac­
ter set is composed up upper-case characters, numbers,
and special characters. The line printer is connected to
the I/O bus via a controller mounted in the BAlO hard
copy {!ontroller.

The 64-character LPlOC line printer prints 1000 lines per
minute and 132 columns per line. The printable charac­
ter set is the same as the LP10A character set. The line
printer is connected to the I/O bus with the BA10 hard
copy controller.

A.12.4 Plotters

The XY plotter control is the interface for CalComp 500
and 600 series digital incremental plotters. It is normally
mounted in the BA10 hard copy controller, but can be
mounted in the TD10 DECtape controller cabinet.

A.12.4.1 XYIOA CalComp Plotter Model 565-The XY10A
plotter is interfaced to the I/O bus via a controller
mounted in the BAlO. This plotter has the following spec­
ifications:

Step Size Steps Minute Width of paper

0.01 in. lS,OOO 12in.
0.005 in. lS,OOO 12in.
O.lmm lS,OOO 12in.

A.12.4.2 XYIOB CalComp Plotter Model 563- The XYlOB
plotter is interfaced to the I/O bus via a controller

A-5

INTRO TO SOFTWARE

mounted in the BA10. The plotter has the following speci­
fications:

Step Size

0.01 in.
0.005 in.
O.lmm

Steps Minute

12,000
lS,OOO
lS,OOO

A.12.5 BAIO Hard Copy Control

Width of paper

3lin.
31 in.
31 in.

The BA10 control cabinet contains the controllers for the
card readers, card punch, line printers, and plotters. It
has the power supplies and fans necessary to support the
controllers.

A.13 TELETYPES AND TERMINALS

The Teletypes and Terminals used on the DC10 and the
DC6SA are similar except for different cables and inter­
face connectors.

A.13.1 Local DClO Use

The LT33A teleprinter is the 33TS machine (33KSR,
friction feed).

The LT33B teleprinter is the 33TY machine (33ASR,
sprocket feed, automatic reader control XON/XOFF
feature).

The LT35A teleprinter is the VSL312HF machine
(35KSR, sprocket feed).

A.13.2 Local DC68A Use

The LT33C teleprinter is the 33TS machine (33KSR,
friction feed).

The LT33H teleprinter is the 33TY machine (33ASR,
sprocket feed, automatic reader control XON I XOFF
feature).

The LT35C teleprinter is the VSL312HF machine
(35KSR, sprocket feed).

A.13.3 CRT displays

The VT06 alphanumeric terminal is a CRT display
terminal capable of transmitting data locally or over
standard phone lines using data sets conforming to the
RS-232-C standard. The VT06 can functionally be inter­
changed with a teleprinter. In addition, the VT06 can be

INTRa TO SOFTWARE - 50-

used _ for display-oriented operations by utilizing the
cursor-control features. It has 25 lines of 72 characters
each and operates asychronously full-or half-duplex at a
variety of baud rates up to 2400 baud, selectable by a
switch on the rear panel.

The VT05 alphanumeric terminal is a CRT display
terminal capable of full-and half-duplex data trans­
mission at rates up to 300 baud. Alphanumerics can be
superimposed over a video image derived from closed
circuit TV or video tape.

A.14 DATA COMMUNICATIONS SYSTEMS

The data communication equipment includes two
systems for asychronous communications (hardwired
and programmable), two systems for synchronous com­
munications (low capacity and high capacity) and a
remote batch terminal.

A.14.1 DCIO Data Line Scanner

The DCI0 hardwired data line scanner interfaces
asychronous communications lines to the processor via
the I/O bus. The DClOA control unit is the basic unit and
contains the I/O interface and control logic. This unit
provides on-line servicing of up to 64 local commu­
nication lines. It accomodates any device that uses
eight-or five-level serial teletype code. Standard system
software supports interactive ASCII terminals at speeds .
up to 2400 baud. For some special communication appli­
cations, the DCI0 can operate at higher speeds. Full­
duplex with local copy and half-duplex data modes are
available on each line serviced.

The DCI0B is an eight-line group unit connected to the
DCI0A and provides an interface for up to eight local
lines. It can be used in full-duplex or full-duplex with
local copy operation. To provide carrier detection or
data set status control, the DCI0E is required.

The DClOC eight-line telegraph relay assembly provides
an interface to long distance telegraph lines using full-or
half-duplex facilities.

The DCI0D telegraph power supply is the standard line
voltage supply used with DCI0C (120 Vdc at 2A)'

The DCI0E data set control provides expanded
processor control of eight data sets in the DCI0 system.

A-6

A.14.2 DC68A Communication System

The DC68A programmable communications system is
built around the 680/1 communications version of the
PDP-8/ I. Characters are assembled via program con­
trol, which results in a very low incremental cost per
line. The DC68A is optimized for a large number of 110
baud lines, but will operate at speeds up to 300 baud. The
PDP-8II is under monitor control and transfer across the
interface occurs on the character-by-character basis.
The DC68A provides on-line servicing of up to 63 commu­
nication lines. Terminals can be local or remote through
data sets. The standard configuration includes one DAI0
interface, one PDP-8/I-D computer (4K of memory with
MP8/1 parity option, and a Model 33ASR teleprinter),
one DL8/1 serial line adapter, one DC08A serial line
multiplexor, and three clocks for line frequency oper­
ations at 110, 150, or 300 baud rates. Additional options
mentioned in this section are required for implementing
a specific number of local or data sets.

The M750 dual serial line adapter implements two full­
duplex channels in the basic communication system.
One unit is required for every two local or data set lines.
The DC08B local line panel accommodates up to 48 local
terminals suitable for direct 680/1 connection. The
DCO~F modem interface and control multiplexor accom­
modates up to 32 dual modem control units to handle up
to 64 asynchronous lines. The DC08G dual modem con­
trol unit implements two modem control units in the
DC08F. It includes 25 ft. cables with modem connector
DB-25D.

A.14.3 DSIO Synchronous Line Unit

The DSI0 synchronous line unit is an interface between
the DECsystem-lO I/O bus and one full-or half-duplex
voice grade synchronous modem to a remote batch
terminal, high-speed display, remote job entry station,
or another computer. The synchronous modem meets
EIA RS-232B or C standards, such as the Bell System
20lB. System software supports full-duplex operation of
an DSI0 at up to 9600 baud, or two DSI0s at up to 4800
baud each.

A.14.4 DC75 Synchronous Communications System

The DC75 synchronous communication system is a PDP-
11-based front-end system designed to efficiently handle
multiple synchronous lines. The basic DC75 system in­
cludesa DLlO interface, one PDP-11/20, and a DS11 syn­
chronous modem interface implemented for eight lines.

- 51 -

The DLlO is a direct memory interface between the
DECsystem-l0 memory and the PDP-ll commu­
nications processor. Each DLI0 can connect up to four
PDP-Us.

A basic DC75 system can handle eight full-duplex lines at
speeds up to 4800 baud each, or four lines at 9600 baud. It
can be expanded to handle 16 lines at 2400 baud by
implementing additional DSUline capability.

For applications requiring additional line capability at
4800 baud or 9600 baud, up to three additional PDP­
U/DSll combinations can be added to the DLlO inter­
face unit. Each additional PDP-U/DSll combination
provides a line throughput capability equal to the initial
system.

For special applications, the DC75 can be programmed
to handle a mix of line speeds, character sizes, and
message formats. The DSll modem interface hardware

A-7

INTRa TO SOFTWARE

has provision for 6-, 8-, or 12-bit character sizes, and
these characters can be efficiently packed into
DECsystem-l0 memory by the DLlO.

A.14.5 De7l Remote Batch Station

The DC71 remote batch station consists of a PDP-8II
processor, an operator Teletype, a card reader, a line
printer, and a synchronous interface. The DC71 connects
to the DSI0 or the DC75 via a full-duplex synchronous
communications link. The remote batch terminal can be
either a DC71A or DC71B terminal. The DC71A is con­
figured with a 132-column line printer with a 64-charac­
ter set. The DC71B is configured with a 96-character set
line printer. The DC71D Teletype Concentrator package
includes eight lines for connecting to the DC71A or
DC71B. Another eight lines can be added by connecting
the DC71E to the DC7ID. Terminals can be Teletypes,
VT06 or VT05 display terminals, or other teletype-com­
patible terminal interfaces, at speeds up to 2400 baud.

INTRa TO SOFTWARE - 52 -

- 53 -

GETTING STARTED
WITH TIMESHARING

DEC-IO-MTWB-D

d4gK.of·equtpment corporation· maynard. massachusetts

TI MESHAR ING - 54-

Copyright © 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa­
tion purposes and is subject to change with­
out notice.

The following are trademarks of Digital Equip­
ment Corporati on, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

1st Printing June 1971

2nd Printing July 1972

- 55 - TI MESHARING

CONTENTS

Page

1.0 Getting on the System 59

2.0 Files 61

3.0 Creating Files 62

3.1 The CREATE Command 63

3.2 The MAKE Command 64

4.0 Editing Files 64

4.1 The EDIT Command 64

4.2 The TECO Command 65

5.0 Manipulating Files 65

5.1 The DIRECT Command 66

5.2 The TYPE Command 66

5.3 The DELETE Command 67

5.4 The RENAME Command 67

6.0 Translating, Loading, Executing, Debugging Programs 67

6.1 The COMPILE Command 67

6.2 The LOAD Command 68

6.3 The EXECUTE Command 68

6.4 The DEBUG Command 69

7.0 Getting Information from the System 70

7.1 The P JOB Command 71

7.2 The DAYTIME Command 71

7.3 The TIME Command 71

8.0 Leaving the System 72

8.1 The KJOB Command 72

9.0 How to Live with the Terminal 73

9.1 Control -C 73

9.2 The RETURN Key 74

9.3 The RUBOUT Key 74

9.4 Control -U 74

9.5 The ALTMODE Key 75

9.6 Control -0 75

10.0 Peripheral Devices 75

11.0 Commands to Allocate System Resources 77

11. 1 The ASSIGN Command 77

iii

TI MESHAR ING - 56 -

CONTENTS (Cont)

Page

11.2 The MOUNT Command 78

11.3 The DEASSIGN Command 79

11.4 The DISMOUNT Command 79

11.5 The REASSIGN Command 79

11.6 The FIN ISH Command 80

11.7 The CORE Command 80

12.0 Commands to Manipulate Terminals 80

12.1 The SEND Command 80

12.2 The DETACH Command 81

12.3 The ATTACH Command 81

13.0 Commands to Request Line Printer Output 81

13.1 The PRINT Command 81

13.2 The CREF Command 82

13.3 The DIRECT Command 82

14.0 Commands to Manipulate Core Images 83

14.1 The SAVE Command 83

14.2 The RUN Command 83

14.3 The R Command 83

14.4 The GET Command 84

15.0 Commands to Start a Program 84

15.1 The START Command 84

15.2 The HALT (te) Command 84

15.3 The CONTINUE Command 84

16.0 Additional Commands to Get Information from the
System 85

16.1 The RESOURCES Command 85

16.2 The SYSTAT Command 85

TABLES

Table No. Title Page

Peripheral Devices 75

iv

- 57 - T I MESHAR ING

FOREWORD

Getting Started With Timesharing is a simplified guide intended for the beginning timesharing user of

the DECsystem-10. This document presents an overall view of the timesharing use of the System, but

does not describe every command available to the user. DECsystem-lO OPERATING SYSTEM

COMMANDS (DEC-lO-MRDC-D) is the complete reference document for the command repertoire,. and

it should be referred to for any additional information.

TIMESHARING - 58 -

- 59 - TI MESHAR ING

Programs are typed directly into the computer by means of the terminal. By typing in programs, you

establish communication with other programs already resident in the computer. The first resident pro­

gram you communicate with is the monitor, the most important program in the computer. The monitor

is the master program that plays an important role in the efficient operation of the computer. Just as

the terminal is your link with the computer, the monitor is your link with the programs within the com­

puter.

The monitor has many functions to perform, I ike keeping a record of what each user is doing and de­

ciding what user should be serviced next and for how long. The one function of the monitor that is of

greatest concern at this point is that the monitor retrieves any resident programs that you need. This

retrieval happens only if the monitor "understands" what is expected of it. The commands to the mon­

itor which are explained in the following sections are sufficient for the terminal to be the device by

which information is inputted into the system and by which the system outputs its results.

See section 9.0 for a discussion on How to Live With
the Terminal.

1.0 GETTING ON THE SYSTEM

In order to gain access to the timesharing system, you must say hello to the system by "logging in".

The first move is to make contact with the computer facility by whatever means the facility has estab­

lished (e.g., acoustic coupler, telephone, or dataphone). Next, notice the plastic knob (the power

switch) on the lower right-hand side of the terminal. This knob has 'three positions: ON,. OFF, and

LOCAL (turning clockwise). When the knob is in the LOCAL position, the terminal is like a typewriter;

it is not communicating with the system at all. The knob must be turned to the ON position in order

to establish communication with the computer. When the terminal is turned ON, type a IC (depress

the CTRL key and type C). This action establishes communication with the monitor. The monitor

We wish to express appreciation to Stanford University for the use of their Stanford A-1 Project User's
Manual, Chapter 1, SAILON No. 54, as a guide in writing the material in this section.

TI MESHAR ING - 60-

signifies its readiness to accept commands by responding with a period (.). All the commands discussed

in this document can only be typed to the monitor. They are operative when the monitor has typed a

period, signifying that it is waiting for a command.

The first program the monitor should call in for you is the LOGIN program. This is accomplished by

typing LOGIN followed by a carriage-return (depress the RETURN key). All commands to the monitor

should be terminated with a carriage-retu~. When the monitor "sees" a carriage-return, it knows that

a command has been typed and it begins to execute the command.

In the text, underscoring is used to designate terminal output.
A carriage-return is designated by a) .

By typing LOGIN, you cause the monitor to read the LOGIN program from the disk into core memory

and it is this program that is now in control of your terminal. Before the LOGIN program is called in,

the monitor assigns you a job number for system bookkeeping purposes. The system responds with an

information message similar to the following.

JOB 17

5S0218A TTY34

In the first line, the system has assigned your job number (17) and has given both the name of the mon­

itor and its version number and the number of your terminal line. The version number changes whenever

a change, or patch, is incorporated into the monitor. In the second line, the number sign (#), which

is typed out by the LOGIN program, signifies that it wants your identification.

The standard identification code is in the form of project numbers and programmer numbers, but indi­

vidual installations may have different codes. The numbers, or whatever code each installation uses,

are assigned to each user by the installation. The LOGIN program waits for you to type in your project

number and your programmer number, separated by a comma and terminated with a carriage-return,

following the number sign.

JOB 17 5SvJ218A TTY34
.!L27 ,400)

An alternate method of typing in your project number and programmer number is to type your identifica­

tion on the same line as the LOGIN command and to follow it with a carriage return. The system re­

sponds with the information message, and the LOGIN program does not type out the number sign. For

example,

.LOGIN 27,4(0)
JOB 17 550218A TTY34

2

- 61 - TIMESHARING

The LOGIN program needs one more itemto complete its analysis of your identification. This it

requests in the next line by asking for your password.

JOB 17 5S(~218A ~
#27. LlVJVJ)
PASSloJORD:)

Type in your password, which is also assigned by the installation, followed by a carriage-return. To

maintain password security, the LOGIN program does not print the password.

If the identification typed in matches the identification stored in the accounting file in the monitor,

the LOGIN program signifies its acceptance by responding with the time, date, day of the week, the

message of the day (if any), and a period.

.:.LOGII\J)
JOB 17 SSVJ218A lIrli
#27. LlVJ0)
PASSWORD:)
1050 LI-I'1AY-71 ~
TYPE SYS:SCHED .E.QB. SYSTEM
SCHEDULE

.LOGIN ~7.Llk1k1)
JOB 1 7 5S~)21 SA .II..:Q!i
PASSWOND:)
1050 LI-MAY~71 WED
T"Y'P'E SYS:SCHED FORSYSTEt-:
SCHEDULE

This typeout indicates that the LOGIN program has exited and returned control to the monitor. You

have successfully logged in and may now have the monitor call in other programs for you. If the iden­

tification typed in does not match the identification in the accounting file, the monitor types out the

error message

?INVALID ENTRY-TRY AGAIN
II

If this error message occurs, type in the correct project-programmer numbers and password.

2.0 FILES

When you want to run a program, first type in the program and decide on a name for it. The program

is stored on the disk.with the specified name. Then translate the program by calling in a translator

and giving it the name of the program you wish to translate.

A program, or data, is stored on the disk in fj les. If a pragram is being typed in to a text editor (for

example, TEeO), the editor is busy accepting the characters being typed in and generating a disk file

for them. Then, when the program is to be translated, the translator reads this file just created and

generates a relocatable binary file. Since you may have many files and the other users on the computer

may have files, there must be a method for keeping all of these files separate. This is accomplished by

3

TI MESHARING - 62-

giving each user a unique area on the disk. This area is identified by your project and programmer

numbers. For example, if your project and programmer numbers are 27,400, you have a disk area by

that name. Each file you create goes to your disk area and must be uniquely named.

Files are named with a certain convention, the same as a person is named. The first name, the file­

name, is the actual name of the file, and the last name; the filename extension, indicates what group

the fi Ie is associated with. The filename and the filename extension are separated by a period.

Filenames a.re from one to six letters or digits. All letters or digits after the sixth are ignored. The

filename extension is from one to three letters or digits. It is generally used to indicate the type of

information in the file. The following are examples of standard filename extensions.

.TMP

. MAC

.F4

• BAS

.AlG

.CBl

.REl

.SAV

Temporary fi I e

Source file in MACRO language

Source file in FORTRAN IV language

Source file in BASIC language

Source file in ALGOL language

Source file in COBOL language

Relocatable binary file

A saved core image

Since files are identified by the complete name and the project and programmer numbers, two users

may use the same filename as long as they have different project and programmer numbers; the files

would be distinct and separate. The following are examples of filenames with filename extensions.

MAIN.F4 A FORTRAN file named MAIN

SAMPLE. BAS A BASIC file named SAMPLE

TESTl. TMP A temporary file named TESTl

NAME.REl A relocatable binary file named NAME

3.0 CREATING FILES

The two commands mentioned in this section use two editors to create a new disk file. One of the

editors is UNED, a line-oriented editor, and the other is TECO, the Text Editor and Corrector (refer

to the LINED and TECO documents in the DECsystem-lO Software N~tebooks). Each command re­

quires a filename as its argument and should have a filename extension. A new file may be created

with either of these commands, depending on the editor desired.

- 63 - TI MESHAR ING

3.1 The CREATE Command

The CREATE command is used only to create a new disk file. When this command is executed, the

monitor calls in UNED to initialize a disk file with the specified name and to accept input from the

terminal. At this point, begin to type in your program, line by line. UNED types a line number at

the beginning of each line so that later a reference to a given line may be made in order to make cor­

rections. Below is a sample program using the commands discussed so far.

tC

JOB 17 5S0218A

PASSIJJORD:)

1050 4-MAY-71 WED
TYPE SYS:SCHED FOR
SYSTEM SCHEDULE

CkFATF MAI~.F~)

*

)

00010 TYPE 53)

Establish communi cation with the monitor.
Type C while depressing the CTRL key.

Begin the login procedure and type in your
identification.

The job number assigned, followed by the
monitor name and version and the terminal
line number. The LOGIN program requests
identification (project number and program­
mer number) if it was not typed on the sanie
I ine as the LOGIN command.

The LOGIN program requests password.
Type it in; it is not printed.

If identification matches identification
stored in the system, the monitor responds
with the time, date, day of the week, mes­
sage of the day, and a peri od.

A new file on the disk is to be created and
called MAIN.F4. The extension .F4 is used
because the program is to be a FORTRAN
source file. UNED is called in to create
the file.

Response from LINED signifying it is ready
to accept commands.

A command to LINED to insert line numbers
starting with 10 and incrementing by 10
(refer to the LINED document).

Type in your FORTRAN PROGRAM.

00020 53 FORMAT (' THIS IS MY PROGRAM'))

00030 FND)

00040 $

*

F)

5

The ($) (altmode) is a command to LINED
to en'ithe insert. On the terminal this key
is labeled ALT, ESC, or PREFIX.

Response from LINED signifying it is ready
to accept another command.

A command to LINED to end the creation of
the file.

TIMESHARING

*

rC

- 64-

Response from LINED indicating readiness to
accept a command.

Retum to the monitor.

The monitor now has control of the program.

The three LINED commands (I, G), E) shown in the examples are fully discussed in the LINED

document.

3.2 The MAKE Command

This command can also be used to open a new disk file for creation. It differs from the CREATE com­

mand in that TECO is used instead of LINED. (TECO is discussed in the DECsystem-10 Software

Notebooks). Otherwise, the CREATE and MAKE commands operate in the same manner •

• MAKE FILEA.F4)
!I (Text input) H
EX!!>!!>
EXIT

.!.

The altmode ($) and the EX command are commands to TECO and are explained in the TECO document.

4.0 EDITING ALES

After creating a text file, you may wish to modify, or edit, it. The following two commands cause

an existing file to be opened for changes. One command (EDIT) calls in LINED, and the other (TEeO)

calls in TECO. In general, the editor used to create the file should be used for editing. Each com­

mand requires, as its argument, the same fi lename and fi lename extension used to create the file.

4.1 The EDIT Command

The EDIT command causes LINED to be called in and, ds the name implies, signifies that you wish to

edit the specified file. LINED responds with an asterisk and waits for input. The file specified must

be an already existing sequence-numbered file on the disk. For example, in Paragraph 3.1, the file

MAl N. F4 was created. I f the command

is given to edit the file, the computer responds with an error message (assuming that there was no file

named MAIM .F4). The command

6

- 65 - TIMESHARING

causes the right fi Ie to be opened for editing.

4.2 The TECO Command

The TECO command is similar to the EDIT command except that it causes the TECO program to open an I already existing file on the disk for editing purposes. The command sequence

.H:CO F ILE:A .FLf)
! (editing) ~,5;
*FX .. ·'f

causes TECOto open FILEA. F4 for editing and close the fi Ie upon completion, creating a backup fi Ie

out of the original file. Whenever one of the commands used to create or edit a file is executed, this

command with its arguments (filename and filename extension) is "remembered" in a temporary file on

the disk. Because of this, the file last edited may be recalled for the next edit without having the

filename specified again. For example, if the command

.CRFATF PROGI .~'!AC)

is executed, then you may type the command

instead of

.fOIT PkOGI.r.'AC)

assuming that no other CREATE, TECO, MAKE, or EDIT command that changed the filename was used

in-between. As mentioned before, if a command tries to edit a file that has not been created, an error

message is given.

5.0 MANIPULATING FILES

You may have many files saved on your disk area. (For discussion on how to save a file on your disk

area, refer to Paragraph 14.1.) The list of your files, along with lists of other users' files, is kept on

the disk in what are called user directories. Suppose you cannot remember if you have created and

saved a particular file. The next command helps in just that type of situation.

Version 23 TECO 7 July 19n

TIMESHARING -66-

5.1 The DIRECT Command

The DIRECT command requests from the monitor a listing of the directory of your disk area. The

monitor responds by typing on the terminal the names of your fil"es, the length of each fi Ie in the num­

ber of DECsystem-l0 disk blocks written (a block is 12810 words), and the date on which each file was

created. The protection associated with each file is also output. This protection is a code that indi­

cates which users are allowed to access your files. It is automatically assigned when you create the

file. Refer to DECsystem-l0 Monitor Calls (DEC-l0-MRRB-D) for an explanation of file protection.

Names of files not explicitly created by you may show up in the directory. These files were created

as intermediate files for storage by programs you may have used. For example, in translating a file,

the translator generates a file with the same filename but with a filename extension of .REL. This

file contains the relocatable binary translation of the source file. You may also notice filenames with

the filename extension of .TMP. This extension signifies a temporary file created and used by differ­

ent system programs.

5.2 The TYPE Command

By listing your directory on the terminal, you know the names of the files on your disk area. But what

if you have forgotten the information contained in a particular file? The TYPE command causes the

contents of source files specified in your command string to be typed on your terminal. For example,

the command

.TYPE IVIA IN .Fit)

causes the file MAIN. F4 to be typed on the terminal. Multiple fi les seporated by commas may be

specified in one command string, and only source files, not binary files, may be listed.

This command allows the "asterisk construction" to be used. This means that the filename or the fi le­

name extension may be replaced with an asterisk to mean any filename or filename extension. For

example, the command

.TYPF. FILEB.*)

causes all files named FILEB, regardless of filename extensions, to be typed. The command

causes all files with the filename extension of .MAC to be typed. The command

.=..TYPE *.*)

causes all files to be typed.

8

- 67 - TIMESHARING

5.3 The DELETE Command

Having finished with a file, you may erase it from your disk area with the DELETE command. Multiple

files may be deleted in one command string by separating the files with commas. For example,

.DELFTE LINEAR)

and

.:.DELETE CHANGF..F4, SINE.REL)

are both legal commands. The asterisk convention discussed in section 5.2 may also be used with the

DELETE command.

5.4 The RENAME Command

The names of one or more fi les on your disk area may be changed with the RENAME command. The old

filename on the right and the new filename on the left are separated by an equal (=) sign. In renam­

ing more than one file, each pair of filenames (new = old) is separated by commas. For example, the

command

.:.RF:f\IAiVE SAL.ES .CPL=GkOSS .CBL..F ILE:2 .FLj=F ILE 1 .FLj)

changes the name of file GROSS.CBL to SALES.CBL and file FILE1. F4 to FILE2. F4. The old filename

no longer appears in your directory; instead the new filenames appear containing exactly the same data

as in the old files. The asterisk convention may again be used. For example, the command

causes all files with no filename extension to have the extension .F4.

6.0 TRANSLATING, LOADING, EXECUTING, DEBUGGING PROGRAMS

As this point you know how to get on the system, how to create and edit a source fj Ie of a program,

and how to list your source file on the terminal. The program has not been executed. This only happens

after it has been translated into the binary machine language understandable to the computer and loaded

into core memory. More often than not the program must be debugged.

6.1 The COMPILE Command

This command has as its argument one or more filenames separated by' commas. It causes each command

to be processed (translated) if necessary by the appropriate processor (translator). It is considered

necessary to process a file if no .REL file of the source file exists, or if the .REL file was created

9

TIMESHARING - 68 -

before the last time the source file was edited. If the .REL file is up-to-date, no translation is done.

The appropriate processor is determined by examining the extension of the file. The following shows

which processor is used for various extensions.

. MAC

.F4

.ALG

.CBL

.REL

other than above,
or null

MACRO assembler

FORTRAN IV compiler

ALGOL compiler

COBOL compiler

No processing is done

"Standard processor"

The standard processor is used to translate programs with null or nonstandard extensions. The standard

processor is FORTRAN at the beginning of the command string, but may be changed by use of various

switches {refer to DECsystem-10 Operating System Commands}. Although it is not necessary to indi­

cate the extensian of a file in the COMPILE command string, the standard processor-can be disregarded

if all source fi les are kept with the appropriate extension.

When the appropriate translator has translated the source file, there is a file on your disk area with

the fi lename extension • REL and the same fi lename as the source file. This fi Ie is where the translator

stores the results of its translation and is called the relocatable binary of the program. The program is

now translated into binary machine language, but is still on the disk. Since the disk is used for storage

and not for execution, a copy of the binary program must be loaded into core memory to form a ~

image. The core memory of the computer is used for execution; it is like a scratch pad. The COMPILE

command does not generate a core image, but the following three commands do.

6.2 The LOAD Command

The LOAD command performs the same operations as the COMPILE command and in addition causes the

LOADER to be run. The LOADER is a program that takes the specified REL files, links them together,

and generates a core image. The LOAD command does not cause execution of the program.

6.3 The EXECUTE Command

This command performs the functions of the LOAD command and also begins execution of the loaded

programs, if no translation or loading errors are detected. The compiled program is now in core mem­

ory and running, and what happens next depends on the pr()gram. More than likely, the program is

not returning the correct answers, and you now enter the magic world of program debugging.

10

- 69 - TIMESHARING

6.4 The DEBUG Command

This command prepares for the debugging of a program in addition to performing the functions of the

COMPILE and LOAD commands. DDT, the Dynamic Debugging Technique program (refer to the DDT

manual, DEC-l0-CDDE-D), is loaded into core memory first, followed by the program. Upon com­

pletion of loading, DDT is started rather than the program. A command to DDT may then be issued to

begin the program execution. This command should be used by the experienced programmer familiar

with DDT. The above four commands have extended command forms discussed in DECsystem-1O

Operating System Commends.

The following is an example showing the compilation and execution of a FORTRAN main program and

subroutine. The login procedure is not shown •

• Cf<EATF ~1A T~!.F4)

!,I)

("0010 TYPE 69)

CREATE a disk file.

Command to LINED to begin inserting on
line 10, incrementing by 10.

Statements of the FORTRAN main program.

0VlVl20 69 FORMAT (. THIS IS THE MAIN PkOGkAM'))

00030

00040

00050

*E) -
!,TC

• CREATE

*1)

00010

CALL SUBI)

END)

$

PkOG .F4)

SURROUT INE SUBR)

TYPE H)5)

Altmode ends the insert.

LINED command to end the edit.

Return to the monitor.

Create a disk file for the subroutine •

Begin inserting at line 10 incrementing by
10.

Statements of the FORTRAN Subroutine.

00030 105 FORMAT (. THIS IS THF Slll-'kOl!TINE'»)

RETURN)

$

FORTRAN: MAIN.F4

FORTRAN: PROG .F4

LOADING

11

Altmode ends the insert.

LINED command to end the edit.

Return to monitor.

Request execution of the programs created.

FORTRAN reports its progress.

TI MESHAR ING - 70 -

000001 UNDEFINED GLOBALS

SUB 1 00til152

1
LOADER 3K CORE

?EXECUTION DELETED

EXIT

.:.ED IT)

0001 til SUBROUTINE

00020 TYPE .105

':'I10 i
00010' SUBROUTINE

00020 ' $

!E)

*tC

FORTRAN: PkOG.F4

LOADING

LOADER 3K CORE

EXECUTION

SUBR

SU81)

THIS IS THE MAIN PROGRAM

THIS IS THF S1.IBkOt.'T Ii"E

There is no subroutine named SUB 1 •

This includes the space for the loader.

No execution was done.

Ask to edit PROG. F4, fi I ename need not be
mentioned since it was the last file named.

Type lines 00010 and 00020 on the terminal.

Insert a new line 10.

Terminate the insert.

End the edit.

Request execution.

Only the subroutine is recompiled since
only it has been edited.

Both MAIN and PROG are loaded.

Execution begins.

CPU TIME: 0.03 SEC. ELAPSED TIME: 0.13 SEC.

NO EXECUTION ERRORS DETECTED

FoX IT Execution ends.

7.0 GETTING INFORMATION FROM THE SYSTEM

There are several monitor commands that are used to obtain information from the system. Three com­

mands useful at this point are discussed in this section, and additional commands are discussed in Para­

graph 16.0.

12

- 71 - TIMESHARING

7.1 The P JOB Command

If you have forgotten the job number assigned to you at LOGIN time, you may use the PJOB command

to obtain it. The system responds to this command by typing out your assigned job number. For ex­

ample,

.!f' JOB)
17

7.2 The DAYTIME Command

This command gives the date followed by the time of day. The time is presented in the following for­

mat:

hh:mm:ss

where hh represents the hours, mm represents the minutes, and ss represents the seconds. For example,

.!.DAYT IME)
17-~,AY-71

7.3 The TIME Command

14:37:35

The TIME command produces three lines of typeout. The first line is the total running time since the

last TIME command was typed. The second line is the total running time since you logged in. The

third line is used for accounting purposes. The time is presented in the following format:

hh:mm .ss

where hh represents the hours, mm the minutes, and 5S the seconds to the nearest hundreth. For ex­

ample,

.!.T Itv'E)
52.45
02:'?9.95
KI LO -C Of<E -SEC =57

In the first two lines, you are told that you have been running 52.45 seconds since the last time you

typed the TIME command, and a total of 2 minutes and 29.95 seconds since you logged in. The third

line of typeout is used by your installation for accounting and is the integrated product of running

time and core size. Refer to DECsystem-lO Operating System Commands.

13

TIMESHARING -72-

8.0 LEAVING THE SYSTEM

Now that you know how to log into the system and create and run a program, you might be wondering

how you leave the system. You have to tell the system you are leaving, and you do this by the KJOB

command.

8.1 The KJOB Command

The KJOB command is your way of saying goodbye to the system. Many things happeA when you type

the command. The job number assigned to you is released and your terminal is now fre.e for another

user. An automatic TIME command is performed. In addition, if you have any files on your disk area,

the monitor responds with

CONFIRM:

and you have several options available to you. By typing H and a carriage return after the CONFIRM:

message, the monitor lists the options available. For example, the following typeout occurs by re­

sponding to the CONFIRM: message with H and a carriage return.

IN RESPONSE TO CONFIRM:ITYPE ONE OF: BDFHIKlPQSUWX
B TO PERFORM ALGORITHM TO GET BELOW LOGGED OUT QUOTA
D TO DELETE All FILES
(ASKS ARE YOU SURE? TYPE Y OR CR)
F TO TRY TO LOGOUT FAST BY lEAVING ALL FILES ON DSK
H TO TYPE THIS TEXT
I TO INDIVIDUAllY rZTERMINE WHAT TO DO WITH All FILES

AFTER EACH FILE NAME IS TYPED OUTI TYPE ONE OF: EKPQS
E TO SKIP TO NEXT FILE STRUCTURE AND SAVE THIS FILE IF

BELOW lOGGED OUT QUOTA ON THIS FILE STRUCTURE
K TO DELETE THE FILE
P TO PRESERVE THE FILE
Q TO REPORT IF STIll OVER lOGGED OUT QUOTAI THEN REPEAT FILE
S TO SAVE THE FILE WITH PRESENT PROTECTION

K TO DELETE ALL UNPRESERVED FILES
l TO lIST All FILES
P TO PRESERVE All EXCEPT TEMP FILES
Q TO REPORT IF OVER lOGGED OUT QUOTA
S TO SAVE All EXCEPT TEMP FILES
U SAME AS I BUT AUTOMATICAllY PRESERVE FILES ALREADY PRESERVED
W TO lIST FILES WHEN DFLFTFD
X TO SlJPPRESS LIST I NG FILES WHEN DELETED

IF A lETTER IS FOllOWED BY A SPACE AND A lIST OF FILE STKUCTURES
ONLY THOSE SPECIFIED WIll BE AFFECTED BY THE COMMAND. ALSO
CONFIRM WIll BE TYPED AGAIN.

NOTE: FILE SIZE IS NO. OF BLOCKS ALLOCATED .JHICH f'iAY bE LARGER THAN THF
NO. OF BLOCKS WRITTEN (DIRECTORY COM~AND).

A FILE IS PRESERVED IF ITS ACCESS CODE IS GE 100

CONFIRM:

14

- 73 - TIMESHARING

You may now use the options available. If K was used as the option, the following is a sample of

what is output to your terminal.

JOB 33~ USER [27~560] LOGGED OFF TTY34
DELETED ALL 2 FILES (3. DISK BLOCKS)
RUNTIME 0 MIN~ 00.29 SEC

1317 20-MAY-71

Remember that the CONFIRM message is typed only if there are files on your disk area. If there are

no files on your disk area, the typeout would look like the following:

.!.KJOB)
JOB 17~ USER [27~320I] LOGGED OFF TTY17 131720-MAY-71
RUNTIME '" MIN~ 00.29 SEC

9.0 HOW TO LIVE WITH THE TERMINAL

On the terminal, there is a special key marked CTRL called the Control Key. If this key is held down

and a character key is depressed, the terminal types what is known as a control character rather than

the character printed on the key. In this way, more characters can be used than there are keys on the

keyboard. Most of the control characters do not print on the terminal, but cause special functions to

occur, as described in the following sections.

There are several other special keys that are recognized by the system. 'The system constantly monitors

the typed characters and, most of the time, sends the characters to the program being executed. The

important characters not passed to the program are also explained in the following sections. (Refer to

DECsystem-10 Monitor Calls for more explanations of special characters.)

9.1 Control - C

Control - C (tc) interrupts the program that is currently running and takes you back to the monitor.

The monitor responds to a control - C by typing a period on your terminal, and you may then type an­

other monitor command. For example, suppose you are running a program in BASIC, and you now

decide you want to leave BASIC and run a program in AID. When BASIC requests input from your

terminal by typing an asterisk, type control - C to terminate BASIC and return to the monitor. You

may now issue a command to the monitor to initialize AID (.R AID). If the program is not requesting

input from your terminal (i .e., the program is in the middle of execution) when you type control - C,

the program is not stopped immediately. In this case, type control - C twice in a row to stop the

execution of the program and return control to the monitor. If you wish to continue at the same place

that the program was interrupted, type the monitor command CONTINUE. As an example, suppose

you want the computer to add a million numbers and to print t~e square root of the sum. Since you are

charged by the amount of processing time your program uses, you want to make sure your program does

15

TIMESHARING - 74-

not take an unreasonable amount of processing time to run. Therefore, after the computer has begun

execution of your program, type control - C twice to interrupt your program. You are now communi­

cating with the monitor and may issue the monitor command TIME to find out how long your program

has been running. If you wish to continue your program, type CONTINUE and the computer begins

where it was interrupted.

9.2 The RETURN Key

This key causes two operations to be performed: (1) a carriage-return and {2} an automatic line-feed.

This means that the typing element returns to the beginning of the line {carriage-return} and that the

paper is advanced one line (I ine-feed) •. Commands to the monitor are terminated by depressing this

key.

9.3 The RUBOUT Key

The RUBOUT key permits correction of typing errors. Depressing this key once causes the last charqc­

ter typed to b.e deleted. Depressing the key n times causes the last n characters typed to be deleted.

RUBOUT does not delete characters beyond the previous carriage-return, line-feed, or altmode. Nor

does RUBOUT function if the program has already processed the characters you wish to delete.

The monitor types the deleted characters, delimited by backslashes. For example, if you were typing

CREATE and go as far as CRAT, you can correct the error by typing two RUBOUTS and then the correct

letters. The typeout would be

CRAT\T A \EATE

Notice that you typed only two RUBOUTS, but \TA \ was printed. This shows the deleted characters,

but in reverse order. {Note that when using TECO, del eted characters are not enclosed in backslashes.}

9.4 Control - U

Control - U {tU} is used if you have completely mistyped the current line and wish to start over again.

Once you type a carriage-return, the command is read by the computer, and line-editing features can

no longer be used on that line. Control - U causes the deletion of the entire line, back to the last

carriage-return, line-feed, or altmode. The system responds with a carriage-return, line-feed so you

may start aga in.

16

TIMESHARING

9.5 The ALTMODE Key

The ALTMODE key, which is labeled ALTMODE, ESC, or PREFIX, is used as a command terminator

for several programs, including TECO and LINED. Since the ALTMODE is a nonprinting character,

the terminal prints an ALTMODE as a dollar sign ($).

9.6 Control - 0

Control - 0 (to) tells the computer to suppress terminal output. For example, if you issue a command

to type out 100 lines of text and then decide that you do not want the typeout, type control - 0 to

stop the output. Another command may then be typed as if the typeout had terminated normally.

10.0 PERIPHERAL DEVICES

The system controls many peripheral devices, such as terminals, magnetic tape drives, DECtape drives,

card readers and punches, line printers, papertape readers and punches, and disks. The monitor is

responsible both for allocating" these peripheral devices, as well as other system resources (e.g., core

memory), and for maintaining a pool of such available resources from which you can draw.

Each device controlled by the system has a physical name associated with it. The physical name is

unique. It consists of three letters and zero to three numerals specifying a unit number. The following

table lists the physical names associated with various peripheral devices.

Device

Terminal

Console TTY

Paper Tape Reader

Paper Tape Punch

Plotter

Line Printer

Card Reader

Card Punch

DECtape

Magnetic Tape

Disk

Display

Table 1
Peripheral Devices

Physical Name

TTYO, TTY1, ... , TTY77

CTY

PTR

PTP

PLT

LPT

CDR

CDP

DT AO, DT A 1, ... , DT A7

MTAO, MTA1, ... , MTA7

DSK

DIS

17

TI MESHAR I NG - 76-

You may also give each device a logical device name. The logical device name is an alias, and the

device can be referred to either by this alias or by the physical name. The logical name consists of

one to six alphanumeric characters of your choice. The reason for logical device names is toat in

writing a program you may use arbitrarily selected device names (logical device names) that can be

assigned to the most convenient physical devices at runtime. However, care should be exercised in

assigning logical device names because these names have priority over physical device names. For

example, if a DECtape is assigned the logical name DSK, then all of your programs attempting to use

the disk via the physical name DSK end up using the DECtape instead. It is wise not to give any de­

vice the logical name DSK because certain monitor commands (such as the COMPILE commands) make

extensive use of special features that the disk has but other devices do not have. The following ex­

amples show the use of logical and physical device names •

• ASS IGN DTA ABC)

.ASSIGN "'TAJ Xyz)

• ASS IGN PTk FOO)

Assign a DECtape the logical name ABC.

Assign magnetic tape drive #1 the logical name
XYZ •

Assign the papertape reader the logical name
FOO.

In order to use most peripheral devices, you must assign the desired device to your job. You may as­

sign a device either by a program or from the console. 'The first kind of assignment occurs when you

write a program that uses a particular device. When the program begins using the device, it is assigned

to you on a temporary basis and released from you when your program has finished with it. The second I kind of assignment occurs when you explicitly assign the device by means of the ASSIGN or MOUNT

monitor command. This is a permanent assignment that is in effeCt until the device is released by a

DEASSIGN, DISMOUNT, or FINISH monitor command or by your logging off the system.

When you assign a device to your job, the monitor associates your job number with that device. This

means that no other user may use the device while you are using it. The only exception is the disk,

which is accessible by all users. When you assign the disk, you are aUocated a 'fraction of the disk,

not the entire unit. When you deassign a device or kill your job, the device is returned to the mon­

itor's pool of available resources.

Under normal circumstances, the spooling mechanism built into the system is used to output to slow­

speed devices. Spooling is the method by which output to these devices (usually the line printer, card

punch, paper tape punch, and plotter) is placed on the disk first and then output to the device at a later

time. This method of using a device saves you time because you do not have to wait for the device to

be freed if it is being used by another user nor do you have to wait for your files to be output before you

5.05 Monitor 18 July 1972

I

- 77- TIMESHARING

can perform another operation. Once your files have been placed on the disk, you can do another task,

such as running a program or leaving the system by killing your iob. After you leave the system

(KJOB), your files will be output whenever the device you requested to output them is available.

The spooling of files to the line printer is described in Paragraph 13.0. Refer to the DECsystem-lO

Operating System Commands manual for a discussion of spooling to other devices.

11.0 COMMANDS TO ALLOCATE SYSTEM RESOURCES

11.1 The ASSIGN Command

The ASSIGN command is used to assign a peripheral device on a permanent basis for the duration of

your iob or unti I you expl icitly deassign it. This command must have as an argument the legal physical

device name (see Table 1) of the device you wish to assign. For example, if you want to assign a

DECtape drive to your iob, type

:..ASS IGN DTA)

The monitor responds with the message

DTtI n ASS I GNED

where n is the unit number of the DECtape drive assigned to your iob. If all drives are in use, the

monitor responds with

and you must wait until a drive becomes available. You may assign a specific DECtape drive as fol­

lows:

.ASS IGN DTA3)

The monitor responds with

DTA3 ASSIGNED

if the drive is available, or

ALREADY ASSIGNED TO JOB n

if iob n is using DECtape drive #3.

The ASSIGN command may also have, as an optional argument, a logical device name following the

physical device name. The logical device name may be used in place of the physical device name in

all references to the device. For example, if you want to use DECtape drive #1 and have it named

SA MPLE, type the command

.ASSIGN DTAl SM1PLE)

If DECtape drive *1 is free, the monitor responds with

DTAl ASSIGNED

5.05 Monitor 19 July 1972

TI MESHAR ING - 78 -

and stores the logical name you typed. You may then refer to the DECtape by the name SAMPLE until

I you explicitly release the device, assign the name SAMPLE to another device, or kill your iob.

I

Logical names can be very useful. Suppose you write a program that uses DECtape drive #5 and refers

to it by its physical name (DTA5). When you run your program, you find that DECtape drive #3 is the

only drive avai lable. Instead of rewriting your program to use DECtape drive #3, type

!.ASSIGN DTA3 DTA5)

Thereafter, whenever your program refers to DTA5, it is actually referring to DTA3. Since logical

device names are strictly your own, they are different from the logical names of other users. The

following is an example using physical and logical device names .

• ASS IG~! DTA NAty'E)

DEVICE DTA. ASSIGNED

.ASS IGN DTA LINE)

Assign a DECtape drive the logical name
NAME.

DECtape drive #4 has been assigned.

Find another DECtape drive; assign the
logical name LINE.

ASS IGNED TO JOBS N). N •••• All DECtape drives are in use.
--------------~~-2----,!..ASS I ~N PTP. NAIVIE) Reserve paper tape punch.
%LOGICAL NAME WAS IN USE.
DEVICE PTP ASSIGNED

~ASS IGN DTA3 LINE)

ALREADY ASSIGNED TO JOB7

Paper tape punch is assigned and NAME
now refers to PTP.

Request DEC tape drive #3 and give it the
logical name LINE.

Another user (iob 7) has DT A3.

11.2 The MOUNT Command

The MOUNT command is similar to the ASSIGN command in that it is used to assign a peripheral de­

vice to your iob. However, unlike the ASSIGN command, it requests operator intervention. This is

useful for users who cannot place their devices on the computer because they are too far away. These

users are called remote users because they are connected to the computer via communications lines.

For example, if you have DECtapes at the location of the computer (commonly called the central site)

but are using the computer remotely, you can use the MOUNT command to assign a DECtape drive and

to have the operator place the DECtape on the drive.

This command must have as an argument the legal physical device name (see Table 1) of the device you

wish to assign and may have a logical device nome. These arguments are the same as in the ASSIGN

ct;>mmand. In addition, switches can be used to specify items to be considered by the operator. Only

the following three switches are appl icable in th is manual; the remainder are described in

DECsystem-10 Operating System Commands

/RONLY or /WLOCK

5.05 Monitor 20

Specifies that the volume is read only and
that it cannot be written on.

July 1972

- 79 - TIMESHARING

/VID:name Specifies the name used to identify the
volume (storage medium) to the operator.
The name can be in one of two forms:
1) any string of 25 characters or less con­
taining only letters, digits, periods, and
hyphens or 2) any string of 25 characters
or less enclosed in single quotes. The
string cannot contain break characters
or single quotes.

/WENABL Specifies that the volume is enabled for
writing. This condition is assumed if
no switches appear in the ~UNT com­
mand string.

11.3 The DEASSIGN Command

The DEASSIGN command is used to release one or more devices currently associated with your iob.

This command may have as an argument a physical or logical device name. If an argument is given,

the specified devices are released. If an argument is not specified, all devices assigned to your iob

are released. When devices are released, they are returned to the monitor's pool of available re­

sources for use by other users. The DEASSIGN command does not affect any temporary assignments

your iob may have for devices.

11.4 The DISMOUNT Command

The DIS~UNT command is similar to the DEASSIGN command because it is used to return devices to

the monitor. In addition, it notifies the operator to remove the volume (storage medium) from the de­

vice (i.e., DECtape from a DECtape drive, cards from a card reader, and so forth). This command

takes a physical device name as an argument. The device must have been previously assigned with the

ASSIGN or MOUNT command. The switch /REMOVE follows the device name in order to tell the

operator to physically remove the volume from the device. For example,

.DISMOUNT DTA4:/REMOVE)

notifies the operator to deassign DTA4 and remove the tape from the drive.

11.5 The REASSIGN Command

The REASSIGN command allows you to give a device assigned to you to another user without having the

device returned to the monitor's pool of available resources. Two arguments are required with this

command: the name of the device being reassigned and the iob number of the user who is receiving

the device. For example, suppose you have finished with DECtape drive #6 and the person who is iob

10 wonts it. Type the command

.REASSIGN DTA6 10)

This deassigns DECtape drive #6 from your iob and assigns it to job 10, just as if you had typed

.DEASS I GN DTA6)

5.05 Monitor 21 July 1972

TI MESHAR ING - 80 -

and iob 10 had typed

.ASS IGN DTA6)

immediately thereafter. All devices except the iob's terminal can be reassigned.

11.6 The FINISH Command

The FINISH command is used to prematurely terminate a program that is being executed while preserv­

ing as much output as possible. If this command is not used, part or all of the output file may be lost.

The FINISH command may be followed by a physical or logical device name, in which case any input

or output currently in progress in relation to that device is terminated. If no device is specified, in­

put or output is terminated on all devices assigned to your iob. The monitor responds to this command

by terminating output, closing the file, and releasing the device for use by others.

This command could be used if you were generating an assembly listing of a program on your disk area

and decided that you wanted only the first part of the listing, not the entire listing. Type

tC
.:rINISH DSK)

and the monitor completes the writing of your listing and releases the disk.

11.7 The CORE Command

The CORE command allows you to modify the amount of core assigned to your iob. The command is

followed by a decimal number representing the total number of 1K blocks (1024 word blocks) that you

want the program to have from this point on. For example, if you want the program to have 8K blocks

of core, type

.:.CORE 8)

and the monitor gives the program 8K blocks, if available. If you request additional core and there is

none available, the monitor responds with an error message. If the CORE command is followed by the

decimal number 0, your program disappears from core because you are requesting OK blocks of core.

If the decimal number following the command is omitted, the monitor types out (l)the total number of

1K blocks you have,(2) the maximum you can request, and (3) the amount of core not assigned to

any user.

12.0 COMMANDS TO MANIPULATE TERMINALS

12.1 The SEND Command

The SEND command allows you to send a line of text to another terminal in the system. The command

is typed followed by the number of the terminal to whi ch you are sending the message followed by the

message and a carriage return. This message is printed on the receiving terminal and is preceded by

22

- 81 - TIMESHARING

the number of your terminol. If the receiver of the message is busy, that is, his terminal is not commu­

nicating with the monitor, you receive the message BUSY and your message is not sent. If you are

sending a message to an operator, the receiving terminal is never busy.

12.2 The DETACH Command

The DETACH command causes your terminal to be disconnected from your program and released to con­

trol another iob. This means that, while your program is disconnected, you may log in again, receive

a new iob number, and do something else. The iob that was disassociated from your terminal is said to

be a detached iob. This means that it is not under control of any user's console. If your detached iob

attempts to type something to the terminal, it is stopped, for there is no terminal attached tciH.

12.3 The ATTACH Command

The ATTACH ~ommand allows you to attach a console to a detached iob. You must specify the number

of the iob to which you wish to attach. If you are the owner of the detached iob, your console is im­

mediately detached from your current iob and attached to your detached iob. After this command is

executed, the console is in communication with the monitor. If the iob you iust attached to happens

to be running, type CONTINUE without affecting the status of the iob.

If you are not the owner of the detached iob, you must also specify the proiect-programmer number of

the owner. The proiect-programmer number must be enclosed in square brackets (e.g., [27,400]) for

this command to work. If the iob whose iob number you typed is already attached to a terminal, you

cannot attach and the monitor responds with
?TTYn ALREADY ATTACHED

where n is the number of the terminal artached to the iob. Observe that only one terminal can be

attached to a iob at any time.

13.0 COMMANDS TO REQUEST LINE PRINTER OUTPUT

In Paragraph 5.2, the TYPE command for listing source files on your terminal was discussed. In addi­

tion, there are three commands that may be used to list files on the line printer via the spooling

mechanism.

13.1 The PRINT Command

The PRINT command is used to list disk files on the line printer via the spooling mechanism. This

command takes a filename, or many filenames separated by commas, as an argument. Switches can

also be used with the PRINT command. Although many switches are available, only a few pertinent

ones are mentioned below. The remainder are discussed in DECsystem-l0 Operating System Commands.

/COPIES:n

5.05 Monitor 23

Specifies the number of copies that you
want of the fi Ie. Th is number must be
less than 64. If this switch is not given,
one copy is produced.

July 19n

TIMESHARING

/LIMIT:n

/SPACING:DOUBLE
ISPACING:SINGLE
/SPACING:TRIPLE

- 82 -

Specifies the maximum number of pages
you want printed. If this switch is not
given, the maximum number is 200 pages.

Spec ifies that the output will be double,
single, or triple spaced. If the /SPACING
switch is not given, the output is
single-spaced.

All files remain in your disk area except for temporary files; these fi les are deleted after they are

printed.

13.2 The CREF Command

The CREF command is used to list a certain type of file called a cross-reference file. This command

is an invaluable aid in program debugging. If a COMPILE, LOAD EXECUTE, or DEBUG command string

(refer to Paragraph 6.0) has a /CREF switch, the command string generates an expanded I isting that

includes (1) the original code as it appears in the file, (2) the octal values the code represents, (3)

the relative locations into which the octal values go, (4) a list of all the symbols your program uses,

and (5) the numbers of the lines on which each symbol appears. This is called a cross-reference listing.

To print this listing file, you must call in a special cross-reference lister with the CREF command. All

the cross-reference listing files you have generated since the last CREF command are printed on the

line printer. The file containing the names of the cross-reference listing files is then deleted so that

subsequent CREF commands will not list them again.

13.3 The DIRECT Command

When a DTAn: argument is specified with the DIRECT command, the directory of DECtape n is typed

on the terminal. (Refer to Paragraph 5.1 for a discussion of the DIRECT command when no argument

is specified.) For example, the command

: . .0 I1<ECTOI~ Y DTtl2:)

types the directory of DEC tape drive #2 on the terminal.

Besides having optional device arguments, this command has several switch options. One switch

option is /F. Including /F in the command string causes the short form of the directory to be listed

on the terminal. The short form of the directory consists of the names of your files. '(The long form

of the directory also lists the creation dates and lengths of each flIe.) Another switch option is /L.
Including /L in the command string causes the output of the directory to go to the line printer rather

than to the terminal. For example, the command

.:,DIRECTORY IL)

lists your directory of your disk area on the line printer. The line printer is assigned to you on a

temporary basis and is released when the output is finished.

5.05 Monitor 24 July 1972

- 83 - TIMESHARING

14.0 COMMANDS TO MANIPULATE CORE IMAGES

By using one of the following commands, you can load core image files (refer to Paragraph 6.1 for

the definition of a core image file) from disk, DECtapes, and magnetic tapes into core and then later

save the core images. These files can be retrieved and controlled fr~m the user's console. Files on

disk and DECtape are called by filename, and if you have any files on magnetic tape, you must posi­

tion the tape to the beginning of the file.

14.1 The SAVE Command

The SAVE command causes your current core image to be saved on the specified device with the

specified filename. This command must be followed by several arguments. First, you must tell the

monitor the device on which you want to save the core image. A colon must follow the device name.

Second, you must give a name to the core image file. If the filename extension is not specified, the

monitor designates one. You may specify the amount of core in which you want your file saved by

specifying a decimal number to represent the number of 1K blocks. For example, if you want to save

your core image on DEC tape drive #2, give it the name SALES, and allow 12K of core for storage,

type
.SAVE DTA2: SALES 12)

A file called SALES is created and your core image is stored in it. If you list your DECtape directory,

the length of the file is slightly over 12,000 words. After you use this command, you cannot continue

executing the program. The program can be restarted only from the beginning.

14.2 The RUN Command

The RUN command allows you to run programs you previously saved on the disk, DECtape, or magnetic

tape. This command reads the core image file from a storage device and starts its execution. You

must specify the device containing the core image file' and the name of that file. The file must have

been saved previously with a SAVE command. If the file is not a saved program, the monitor responds

with an error message. If the core image file you want to execute is on another user's disk area, you

must specify his prolect-programmer number, enclosed in square brackets. Again, you may specify

the amount of core to be assigned to the program if different from the minimum core needed to load

the program or from the core argument of the SAVE command.

14.3 The R Command

The R command is a special form of the RUN command. This command runs programs that are part of

the system, rather than programs that are your own. The R command is the usual way to run a system

program that does not have a direct monitor command associated with" it. For example, the only way

to run BASIC and AID is by the commands

.:.R BAS Ie),

25

TIMESHARING - 84 -

and

.=.R AID;

A device name or a proiect programmer number may not be specified for this command.

14.4 The GET Command

The GET command is the same as the RUN command except that it does not start the program; it merely

generates a core image and exits. The monitor types

JOB SETUP

and is ready to accept another command.

15.0 COMMANDS TO START A PROGRAM

15.1 The START Command

The START command begins execution of the program at its starting address, the location specified

within the file, and is valid only if you have a core image. This command allowsyou to specify an­

other starting address by typing the octal address after the command. Normally, to start a program,

type
.:.START)

but to start a program at the specified octal location 347, type

.::START 347 ~

A GET command followed by a START command is equivalent to a RUN command.

15.2 The HALT (t C) Command

Typing tc stops your program and takes you back to the monitor. The program "remembers" at what

point it was interrupted so that it may subsequently be continued. After typing t c, you may type any

commands that do not affect the status of your program (e.g., PJOB, DAYTIME, RESOURCES) and

still be able to continue the execution of the program with a CONTINUE command. However, con­

tinuing is impossible if you issue any command that runs a new program, such as, a RUN or R command.

15.3 The CONTINUE Command

If you stop your program by a HALT (tC) command, you may resume execution from the point at which

it was interrupted by typing the CONTINUE command. You may continue the program only if you

exit by typing control - C. If the program exited on an error condition of some sort, the monitor does

not let you continue. It types

CAN'T CONTINUE

26

- 85 - TIMESHARING

if you try. However, you may continue your program if it has halted and given the typeout

HALT AT USERn

16.0 ADDITIONAL COMMANDS TO GET INFORMATION FROM THE SYSTEM

16.1 The RESOURCES Command

The RESOURCES command types out a list of all the available devices {except terminals} on your ter­

minal. For example,

~ESOURCES)
PTYl~CDR~PTR,~TAl~CDP~PLT

At the time of this command, there were six devices available.

16.2 The SYSTAT Command

The SYSTAT command produces a summary of the current status of the system and may be typed without

logging in. Included in the summary is a list of the jobs curre~tly logged in, along with their project­

programmer numbers, program names being run, and runtime. The following typeout is a partial exam­

ple of SYSTAT output. More information is contained in this program and can be obtained by running

SYSTAT.

STATUS OF 5S02240 SYSTEM #2 AT 1:34:02 P.M. ON 11-MAY-71

UPTI~E 5:10:56~ 24% NULL TIME = 19% IDLE + 5% LOST
?2 JOBS IN USE OUT OF 37. 22 LOGGED IN~ DETACHED

JOB WHO LINED loJHAT SIZE(K) STATE RUN

1 [OPR) P0 aMOUNT 2+4 SL S\~

2 [OPR) PI OMOUNT 2+4 SL SW
3 [OPR) P2 CDRSTK 2 SL SW
4 [OPR) P3 BATCON 4+4 SL sw -
5 [aPR) P4 LPTSPL 3+4 CB sw
6 [OPR) P5 PTPSPL 2+3 SL SW
7 [OPR] P6 CHKPNT. 2 SL sw
8 [OPR] P7 MSCOPE 1 +SPY SL
9 [OPR) P10 TYLOST 2+5 SL SW

10 10~16 23 DIRECT 1+3 tC SW
11 [OPR] 12 SYSDPY 3+SPY RN
12 **,** DET DAEMON 7+SPY SL SW
13 [OPR) CTY OPSER 1 +2 SL SW
14 20,574 1 DIRECT 1 +3 TI sw
15 40~65 21 TECO 2+3 TI SW
16 117.1,566 3 BATCON 0+4 CB S~oJ

17 11~131 1 1 DIRECT 1 +3 tC sw
lR 10~77 213 MONLOD 12+2 RN SloJ
19 [OPR] 2 FAILSA 10 WS
20 HJ~63 0 FD5224 23 TI SW
21 [SELF] 26 SYSTAT 4+SPY RN
22 H),34 24 KJOB 6+4 RN
& MEANS LOCKED IN CORE
PNN CORRESPONDS TO TTY42+NN

27

TIME

21
22

1 : 01
47

5 :39
41

5
58:15 &

3
2':31

45:09
1

25
13
20

4: 1 7
4

4:59
16

3
4
3

TI MESHAR ING - 86-

- 87-

DEC-lO-OMPBA-A-D

BEGINNER'S GUIDE TO
MUL TIPROGRAM BATCH

digital equipment corporation • maynard." massachusetts

BEGINNER'S BATCH - 88 -

Copyright © 1972 by Digital Equipment Corporation

The material in this manual is for informa­
tional purPoses and is subject to change
without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FlIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

1st Edition May 1972

- 89 - BEGINNER'S BATCH

FOREWORD

The Beginner's Guide to Multiprogram Batch has been written for the inexperienced or casual user

who has little knowledge of programming techniques and who requires only a rudimentgry knowledge

of Batch operations.

HOW TO USE THIS MANUAL

For those users whose mode of input is cards, the following chapters or sections of chapters should

be read.

Chapter 1 Introduction

Chapter 2

Chapter 4

Entering a Job to Batch from Cards

Interpreting Your Printed Output

Chapter 5, Section 5.2 Using Cards to Enter Jobs

According to the language in which his program is written, the user should pay particular attention

to the following sections.

FORTRAN

ALGOL

COBOL

MACRO

BASIC

Section 2.2.3 Card Deck to Run FORTRAN Programs

Section 2.2.1 Card Deck to Run ALGOL Programs

Section 2.2.2 Card Deck to Run COBOL Programs

Section 2.2.4 Card Deck to Run MACRO Programs

Section 2.3.1 Card Decks for Progra~s That Do Not Have Special
Control Cards

For users who input their iobs through interactive terminals, the following chapters or sections of

chapters are recommended.

Chapter 1 Introduction

Chapter 3

Chapter 4

Entering a Job to Batch from a Terminal

Interpreting Your Printed Output

Chapter 5, Section 5.1 Using the Terminal to Enter Jobs

iii

BEGINNER'S BATCH - 90 -

REFERENCES

Not 011 of the commands and cards for Batch are described in this manual. Those users who wish

to know more about Multiprogram Batch can refer to Chapter 3 in the DECsystem-lO Operating

System Commands manual. Also in that manual, the SUBMIT command is described in Chapter 2.

An elementary description of the basic monitor commands can be found in the document Getting

Started with Timesharing. The DECsystem-l0 Operating System Commands manual contains the

descriptions of all the monitor commands available to the user.

Error messages from the system programs supplied by DEC that are invoked by the user's iob are

explained in the applicable manuals. For example, if a user's FORTRAN program fails to compile

successfully, the error messages he receives from the FORTRAN compiler can be found in

Chapter 11 of the FORTRAN IV Programmer's Reference Manual in the DECsystem-l0 Mathematical

languages Handbook.

iv

- 91 - BEGINNER'S BATCH

CONVENTIONS USED IN THIS MANUAL

The following is a list of symbols and conventions used in this manual.

dd-mmm-yy hhmm

filename. ext

hh:mm:ss

jobname

[proj, prog]

n

A set of numbers or numbers and a word
that indicates the date and time, e.g.,
15-5-72 1415 or 15-MAY-72 1415
means 2:15 PM on May 15, 1972.

The name and extension that can be put
on a file. The name can be 1 to 6
characters in length and the extension
can be 1 to 4 characters in length. The
first character of the extension must always
be a period. The extension is optional.
Refer to the glossary for definitions of file­
name and filename extension.

A set of numbers representing time in the
form hours:minutes:seconds. Leading
zeros can be omitted, but colons must be
present between two numbers. For
example, 5:35:20 means five hours, 35
minutes, and 20 seconds.

The name that is assigned to a job. It
can contain up to 6 characters. Refer
to the glossary for the definition of a job.

The user number assi gned to each user,
commonly called a project-programmer
number. It must be enclosed in square
brackets. The two numbers that make up
the project-programmer number must be
separated by a comma or a slash. Refer
to the glossary for the definition of a
project-programmer number.

A number that specifies either a required
number or an amount of things such as
cards or line-printer pages. This number
can contain as many digits as are nec­
essary to specify the amount required,
e. g., 5, 25, 125, etc.

A number representing an amount of time
usually in minutes. This number can
contain as many digits as are necessary
to specify the amount of time required,
e . g .• , 5, 25, 1 25, etc.

v

BEGINNER'S BATCH

Term

ALGOL

Alphanumeric

ASCII Code

Assemble

Assembler

Assembly Language

Assembly Listing

BASIC

Batch processing

Card

- 92 -

GLOSSARY

Definition

ALGOrithmic Language. A scientific oriented
language that contains a complete syntax for
describing computational algorithms.

The characters which include the letter of the
alphabet (A through Z), the numerals (0 through 9),
and letters of the other special symbols such
as -, I, *, $, ., (,), +.

American Standard Code for Information Inter­
change. A 7-bit code in which information is
recorded.

To prepare a machine-language program from a
symbolic-language program by substituting
absolute operation codes for symbolic operation.
codes and absolute or relocatable addresses for
symbol ic addresses.

A program which accepts symbolic code and
translates it into machine instruction, item by
item. The assembler on the DECsystem-IO is
called the MACRO assembler.

The machine-oriented symbolic programming
language belonging to an assembly system.
The assembly language for the DEC -system-I 0
is MACRO.

A printed list which is the byproduct of an
assembly run. It I ists in logical-instruction
sequence all details of a routine showing the
coded and symbol ic notation next to the actual
assigned notations established by the assembly
procedure.

Beginner's All-purpose Symbolic Instruction Code.
A time-sharing computer programming language
that is used for direct communication between
teletype units and remotely located computer
ce~ters. The language is similar to FORTRAN II
and was developed by Dartmouth College ..

The technique of executing a set of computer
programs in on unattended mode.

A punch card with 80 vertical columns representing
80 characters. Each column is divided into two
sections one with character positions labeled zero
through nine, and the other labeled eleven (11)
and twelve (12). The II and 12 positions are
also referred to as the X and Y zone punches, re­
spectively.

vi

Term

Card Column

Card Field

Card Row

Central processing unit (C PU)

Central Site

Character

COBOL

Command

Compile

Compiler

Computer

Computer Operator

Continuation Card

Control File

- 93 - BEGINNER'S BATCH

GLOSSARY (Cont)

Definition

{)ne of the vertical lines of punching positions
on a punched card.

A fixed number of consecutive card columns
assigned to a unit of information.

One of the horizontal lines of punching
positions on a punched card.

The portion of the computer that contains the
arithmetic, logical, control circuits, and I/O
interface of the basic system.

The location of the central computer. Used in
coniunction with remote communications to mean
the location of the DECsystem-lO central processor,

One symbol of a set of elementary symbols such as
those corresponding to the keys on a typewriter.
The symbols usually include the decimal digits
o through 9, the letters A through Z, punctutation
marks, operation symbols, and any other special
symbols which a computer may read, store, or write.

COmmon Business Oriented Language. An auto­
matic programming language used in programming
data processing applications.

The part of an instruction that causes the computer
to execute a specified operation.

To produce a machine or intermediate language
routine from a routine writl1!n in CI high level
source language.

A programming system which translates a high level
source language into a language suitable for a
particular machine. A compiler is a translator that
converts a source language program into inter­
mediate or machine language. Some compilers used
on the DECsystem-10 are: ALGOL, BASIC,
COBOL, FORTRAN.

A device with self-contained memory capable of
accepting information, processing the information,
and outputting results.

A person who manipulates the controls of a computer
and performs all operational functions that are re­
quired in a computing system, such as, loading a
.tape transport, placing cards in the input hopper,
removing printouts from the printer rack, and so forth.

A punched card wh ich contains information that
was started on a previous punched card.

The file made by the user that directs Batch in
the processing of his iob.

vii

BEGINNER'S BATCH

Term

Core Storage

CPU

Cross Reference listing

Data

Debug

Disk

Dump

Execute

Extension

File

Filename

Fi.lename extension

FORTRAN

Job

- 94-

GLOSSARY (Cont)

Definition

A storage device normally used for main memory
in a computer.

See central processing unit.

A printed I isting that identifies all references of
an assembled program to a specific label. This
listing is provided immediately after a source
program has been assembled.

A general term used to denote any or all facts,
numbers, letters, and symbols, or facts that
refer to or describe an obiect, idea, condition,
situation, or other factors. It represents basic
elements of information which can be processed
or produced by a' computer.

To locate and correct any mistakes in a
computer program.

A form of mass storage device in which informa­
tion is stored in nomed files.

A listing of all variables and their values, or a
listing of the values of all locations in core.

To interpret an instruction and "perform the
indicated ·operation(s).

See filename extension.

An ordered collection of 36-bit words comprising
computer instructions and/or data. A file can be
of any length, limited only by the available space
on the device and the user's maximum space allot­
ment on that device.

A name of one to six alphanumeric characters
chosen by the user"to identify a fi Ie.

One to four alphanumeric characters usually
chosen to describe the class of information
in a file. The first character of the extension
must always be a period.

FORmula TRANslator. A procedure oriented
programming language that was designed for
solving scientific type problems. The language is
widely used in many areas of engineering, mathe­
matics, physics, chemistry, biology, psychology,
industry" mil i tary, and busi ness.

The entire sequence of steps, from beginning to
end, that the user initiates from his interactive
terminal or card deck or that the operator
initiates from his operator's console.

viii

Term

Jobstep

K

Label

Log File

Monitor

Monitor Command

Mounting a device

Multiprogramming

Obiect Program

Password

Peripheral devices

Proiect-programmer number

Program

Programming

- 95 - BEGINNER'S BATCH

GLOSSARY (Cont)

Definition

A serial or parallel sequence of processes invoked
by a user to perform an operati)n.

A symbol used to represent a t~,ousandi for
example, 32K is equivalent to 32,000.

A symbolic name used to identify a statement
in the control file.

A file into which Batch writes a record of a user's
entire iob. This file is printed as the final step in
Batch's processing of a iob.

The collection of programs wh ich schedules and
controls the operation of user and system programs.

An instruction to the monitor to perform an operation.

To request assignment of an I/O device via
the operator.

A technique that allows scheduling in such a way
that more than one iob is in an executable state
at anyone time.

The program which is the output of compilation or
assembly. Often the obiect program is a machine
language program ready for execution.

The word assigned to a user that, along with his USer
number (proiect-programmer number), identifies him
uniquely to the system.

Any unit of equipment, distinct from the central
processing unit, which can provide the system
with outside communication.

Two numbers separated by a comma, which, when
considered as a unit, identify the user and his file
storage area.

The complete plan for the solution of a problem,
more specifically the complete sequence of machine
instructions and routines necessary to solve
a problem.

The science of translating a problem from its
physical Ilnvironment to a language that a com­
puter can understand and obey. The process of
planning the procedure for solving a problem ..
This may involve among other things the analysis
of the problem, preparation of a flowchart, coding
of the problem, establishing input-output formats,
establishing testing and checkout procedures,
allocation of storage, preparation of documenta­
tion, and supervision of the running of the program
on a computer.

ix

BEGINNER'S BATCH

Term

Queue

Software

Source Deck

Source Language

Source Program

Terminal

- 96 -

GLOSSARY (Cont)

Definition

A I ist of iobs to be scheduled or run according
to system, operator, or user-assigned priorities.
For example, the Batch input queue.

The total ity of programs and routines used to
expend the capabilities of computers, such as
compilers, assemblers, operational programs,
service routines, utility routines, and
subroutines.

A card deck comprising a computer program,
in symbolic language.

The ariginal form in which a program is pre­
pared prior to processing by the computer.

A computer program written in a language
designed for ease of expression of a class of
problems or procedures, by humans. A trans­
lator (assembler, compiler; or interpreter) is
used to perform the mechan ics of translating
the source program into a machine language
program that can be run on a computer.

A keyboard unit that is often used to enter
informatibn into a computer and to accept
output from a computer. It is often used as
a time-sharing terminal on a remotely located
computer center.

x

CHAPTER 1

1.1
1.2
1. 2.1
1. 2.2
1.2.3
1. 2.4
1.3

CHAPTER 2

2.1
2.2

2.2.1
2.2.2
2.2.3
2.2.4
2.3

2.3.1
2.4

2.4.1
2.4.2

2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11
2.4.12
2.4.13
2.5

CHAPTER 3

3.1
3.1.1
3.2
3.2.1
3.2.2

- 97-

CONTENTS

INTRODUCTION

What is MultiprogramBatch

How to Use Batch

Setting Up Your Job

Running Your Job

Receiving Your Output

Recovering from Errors

Summary

ENTERING A JOB TO BATCH FROM CARDS

Format of the Cards in Your Deck

Setting up Your Card Deck

Card Deck to Run ALGOL Programs

Card Deck to Run COBOL Programs

Card Deck to Run FORTRAN Programs

Card Deck to Run MACRO Programs

Putting Commands into the Control File from Cards

Card Decks for Programs that do not have Special Control Cards

Control Cards for Batch (in Alphabetical Order)

The $ALGOL Card

The $COBOL Card

The $DA T A Card

The $DECK Card

The End-of-File Card

The $EOD Card

The $ERROR Card

The $FORTRAN Card

The $JOB Card

The $MACRO Card

The $NOERROR Card

The $PASSWORD Card

The $SEQUENCE Card

Specifying Error Recovery in the Control Fi Ie

ENTERING A JOB TO BATCH FROM A TERMINAL

Creating the Control File

Format of Lines in the Control File

Submitting the Job to Batch

Queue Operation Switches

General Switches

xi

BEGINNER'S BATCH

Page

99

99

99

100
100
100
100

103
104
105
106
106
107

108
109

111

113

115

119
121
121
122
123
125
127
129

130
131
131

137
138
139
140
141

BEGINNER'S BATCH - 98 -

3.2.3
3.2.4
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.4

CHAPTER 4

4.1
4.2
4.3
4.4

4.4.1
4.4.2
4.4.3

CHAPTER 5

5.1
5.2

CONTENTS (Cont)

File-Control Switches

Examples of Submitting Jobs

Batch Commands (in Alphabetic Order)

The. BACKTO Command

The .ERROR Command

The . GOTO Command

The .IF Command

The. NOERROR Command

Specifying Error Recovery in the Control Fi Ie

INTERPRETING YOUR PRINTED OUTPUT

Output from Your Job

Batch Output

Other Printed Output

Sample Batch Output

Sample Output from a Job on Cards

Sample Output from a Job from a Terminal

Sample Dump

PERFORMING COMMON TASKS WITH BATCH

Using the Terminal to Enter Jobs

Using Cards to Enter Jobs

xii

Page

143
144

146
146
146
147
148
149
150

153
153
154
154
154
157
160

169

169

176

- 99 -

1.1 WHAT IS MULTI PROGRAM BATCH

BEGINNER'S BATCH

CHAPTER 1

INTRODUCTION

Multiprogram Batch is a group of programs that allow you to submit a iob to the DECsystem-l0 on a

leave-it basis. That is, you give the iob to an operator (if on cards) or submit it directly to the com­

puter (if from a timesharing terminal) so that you can do something else while your iob is running. A

iob is any combination of programs, their assaciated data, and commands necessary to control the

programs.

Some of the iobs that are commonly processed under Batch are those that:

1. Are frequently run for production,

2. Are large and long running,

3. Require large amounts of data, or

4. Need no actions by you when they are running.

1.2 HOW TO USE BATCH

Batch allows you to submit your iob to the computer through either an operator or a timesharing

terminal, and receive your output from the operator when the iob has finished. Output is never re­

turned at a timesharing terminal even if your iob is entered from one; instead, it is sent to a peripheral

device (normally the line printer) at the computer site and returned to you in the manner designated

by the installation manager.

1.2.1 Setting Up Your Job

You must make up a control file to use Batch. A control file is a list of commands for the monitor,

system programs, or Batch itself that tells Batch what steps to follow to process your iob and the order

in which to process them. When you enter your lob on cards, you can take advantage of the special

control cards that cause Batch to insert commands into the control file for you. When you enter your

iob from a timesharing terminal, you must put all the commands for your iob into the control file

yourself. The steps that you must take to create a control file from cards are described in Chapter 2.

Creating a control file from a timesharing terminal is described in Chapter 3.

1-1

BEGINNER'S BATCH - 100 -

1.2.2 Running Your Job

After you submit the iob, it waits in a queue with of her iobs until Batch schedules it to run under

guidelines established by the installation manager. Some factors that affect how long your iob waits

in the queue are its size, the amount of core it needs, the amount of time that it will take to run it,

and whether or not you have specified a certain deadl ine when you want it run. When the iob is

started, Butch reads the control file and performs the actions necessary to run the iob. For example,

Batch passes monitor commands to the monitor which performs the actions called for and passes com­

mands to system programs so that their processing can be performed.

As each step in the control fi Ie is performed, Batch records it in a log fi Ie. For example, if a

monitor command such as COMPILE is processed-; Batch passes it to the monitor ond writes it in the

log file. The monitor response is also written in the log file. Any response from your iob that would

be written on the terminal during timesharing is written in the log file by Batch.

1.2.3 Receiving Your Output

When the iob is completed successfully and output has been sent to all devices, Batch terminates the

log file and has it printed. The output from your iob and the log file are then returned to you. Out­

put from your iob can be in the form of line-printer listings, punched cards, punched paper tape,

plots, DECtape, or magnetic tape. If the output is to a DECtape or magnetic tape, you must include

commands in your iob to mount these tapes so that your output can be written on them. This is also

true if you have input to any of the programs in your iob written on tape. If your output is to cards,

paper tape, the plotter, or the line printer, you must specify to Batch the approximate amount of

cards, paper tape, plotter time, or pages that you require. These restrictions are to help Batch

restrain runaway programs. An example of using the MOUNT command in the control file to request

mounting of tapes is shown in Chapter 5. The way that you specify the amounts of paper, cards, etc.

is described in Chapter 2, "The $JOB Card" and in Chapter 3, "Submitting Your Job."

1.2.4 Recovering from Errors

If an error occurs in your job, either from an error in your program or from an erroneous command in

the control file, Batch writes the error message in the log file and usually terminates the job. In addi­

tion, if the error occurred in your program, Batch causes a dump to be taken of your area of core.

You can, however, put commands in the control file so that Batch can help you recover from errors

in your iob and continue running. Error recovery from a card iob is described in Chapter 2; from a

iob entered from a terminal, in Chapter 3. Dumps, along with other printed output from a Batch iob,

are described in Chapter 4.

1.3 SUMMARY

In summary, the steps that you must perform to enter a iob to the computer through Batch are as

follows:

1-2

- 101 - BEGINNER'S BATCH

1. Create a control file either from cards (refer to Chapter 2) or from a
terminal (refer to Chapter 3).

2. Submit the iob to Batch, either to the operator for a card iob (Chapter 2)
or directly to Batch for a terminal (Chapter 3).

3. Pick up your output and interpret it (refer to Chapter 4).

Some sample iobs that are run through Batch from cards and from a terminal are shown in Chapter 5.

1-3

BEGINNER'S BATCH - 102-

- 103 - BEGINNER'S BATCH

CHAPTER 2

ENTERING A JOB TO BATCH FROM CARDS

Batch runs your ;ob by reading a control file that contains commands to the monitor, system pro­

grams, or Batch itself. You have to make up the control file, but Batch provides you with special

control cards to help you make up control files for simple ;obs. These control cards make it easy for

you to submit your programs to the computer and to create your control file to run these programs.

Most of these control cards cause Batch to insert commands into the control fi Ie and/or copy pro­

grams and data into disk files. Some are used to show the beginning of your ;ob and to identify it;

and one is used to indicate the end of it. Batch control cards are also avai lable to help you recover

from errors that may occur while you ;ob is running. The following is a list of the control cards which

are described in greater detail in Section 2.4.

$SEQUENCE
$JOB
$PASSWORD
$ALGOL
$COBOL
$FORTRAN
$MACRO
$DECK
$DATA
$EOD
$ERROR
$NOERROR
end-of-file

2.1 FORMAT OF THE CARDS IN YOUR DECK

Section 2.4.12
Section 2.4.9
Section 2.4. 12
Section 2.4.1
Section 2.4.2
Section 2.4.8
Section 2.4.10
Section 2.4.4
Section 2.4.3
Section 2.4.6
Section 2.4.7
Section 2.4.11
Section 2.4.5

The card decks that you input to Batch can contain any combination of Batch control cards; com­

mands to the monitor, system programs, and Batch itself; programs and data that will be copied into

separate disk files; and data that will be copied into the control file for your program to read.

The Batch control cards must contain a dollar sign ($) in column 1 and a command that starts in

column 2. The command must be followed by at least one space, which can then be followed by the

other information on the card. The end-of-file is the only exception to this format; it is identified

by special punches in columns 1 and 80. Refer to the individual description of each card for any

special format requirements.

2-1

BEGINNER'S BATCH - 104 -

If you include a card with a monitor command, you must place a period in column 1 and follow it

immediately with the command. Any information that follows the command is in the format that is

shown for the command in the DECsystem-10 Operating System Commands manual.

To include a command to a system program on a card, you must punch an asterisk (*) in column 1 and

punch the command string immediately following the asterisk. Refer to the manual for the system

program that you wish to use.

Batch commands are punched like monitor commands; that is, a period is punched in column 1 and

the command immediately follows the period.

The card format for your program depends on the language in which you have written the program;

refer to the reference manual for the programming language that you are using for the format of each

line of your program. The same is true for your data. The format that is required for the data by the

programming language that you are using is described in the language reference manual.

If you want to include data for your program in the control file, you punch it as you would data that

is read from a separate file. The only restriction on data in the control file is that alphabetic data

that is preceded by a dollar sign ($) must be preceded by an additional dollar sign so that Batch will

not interpret such data as its own control commands.

If you put any special characters other than those described above in the first column of a card, you

may get unexpected results because Batch interprets other special characters in special ways. If you

want to know about other special characters, refer to the DECsystem-10 Operation System Commands

manual, Chapter 3.

If you have more information than will fit on one card, you can continue on the next card by placing

a hyphen (-) as the last nonspace character on the card to be continued and the rest of the informa­

tion on the next card.

Comments can also be included either as separate cards or on cards containing other information.

To include a comment on a separate card, you must punch a semicolon (;) in column 1 and follow it

immediately with the comment. To add a comment to a card, you must precede the comment with a

semicolon (;) after all the information that you need has been put on the card. Comments that are on

separate cards will normally be copied by Batch into your control file and later copied into your

log file.

2.2 SETTING UP YOUR CARD DECK

Since the most common tasks performed in a job are compilation and execution of one or more pro­

grams, simple control cards are available that wi II cause Batch to insert commands into the control

file for these tasks. However, a Batch job can do anything a timesharing job can do and if you wish

to perform more complicated tasks, you will have to include monitor commands in your deck to direct

2-2

- 105 - BEGINNER'S BATCH

Batch to execute your tasks. The way in which you include monitor commands and also commands to

other system programs is described in Section 2.3.

The control cards that you can use to compile and execute programs written in ALGOL, COBOL,

FORTRAN, and MACRO are shown in sections 2.2.1,2.2.2,2.2.3, and 2.2.4. Certain control

cards are always required in a Batch iob. Others are required only at some installations. The

$JOB card and the end-of-file card are always required. The $SEQUENCE and $PASSWORD

cards may be required, depending on the installation.

If the $SEQUENCE card is required, it must be the first card in the deck. The $JOB card must

always be either the second card in the deck if the $SEQUENCE card is required, or the first card

in the deck if the $SEQUENCE card is not required. If it is required, the $PASSWORD card must

immediately follow the $JOB card. It will be assumed in this manual that the $SEQUENtE and

the $PASSWORD cards are required. The end-of-file card must be the last card in the deck to in­

dicate to Batch that it has read the end of your iob. This end-of-file card is only used to end your

entire iob, not to end individual files in your iob.

The cards that come between the first and last cards constitute your iob. Setting up decks for speci­

fic languages is shown in the sections that follow.

2.2.1 Card Deck to Run ALGOL Programs

To run ALGOL programs, you use the $ALGOL and $DATA cards. You put a $ALGOL card in front

of your ALGOL program to make Batch copy your program into a disk file and insert a COMPILE

command into your control file. The $ALGOL card is described in detail in Section 2.4.1.

You put a $DATA card in front of the data that goes with the program to make Batch copy your data

into another disk file and insert an EXECUTE command into your control file. The $DATA card is

described in Section 2.4.3.

Thus, to compile and execute an ALGOL program, your card deck would appear as follows.

10-0915

2-3

BEGINNER'S BATCH - 106 -

Refer to the description of each card for the information that goes on it. The way that you tell your

program how to find its data is described in Section 2.4.'3.1.

2.2.2 Card Deck to Run COBOL Programs

To run COBOL programs, you can use the $COBOL card and the $DATAcard. You put a $COBOL

card in front of your COBOL program to make Batch copy your program into a disk file and insert a

COMPILE command into your control file. The $COBOL card is described in detail in Section

2.4.2.

You put a $DATA card in front of the data that goes with your program to make Batch copy your

data into another disk file and insert an EXECUTE command into your control file. The $DATA

card is described in Section 2.4.3.

Thus, to compile and execute one COBOL program, your card deck would appear as follows.

Refer to the description of each card for the information that goes on it. The way that you tell your

program how to find its data is described in Section 2.4.3.1

2.2.3 Card Deck to Run FORTRAN Programs

To run FORTRAN programs, you can use the $FORTRAN and $DATA cards. You put a $FORTRAN

card in front of your FORTRAN program to make Batch copy your program into a disk file and insert

a COMPILE command into your control file. The $FORTRAN card is described in detail in

Section 2.4.8.

2-4

- 107 - BEGINNER'S BATCH

You put a $DATA card in front of the data that goes with your program to make Batch copy your data

into another disk file and insert an EXECUTE command into your control file. The $DATA card is

described in Section 2.4.3.

Thus, to compile and execute one .FORTRAN progra.m, your card deck would appear as follows.

10-0917

Refer to the description of each card for the information that goes on it. The way that you tell your

program how to find its data is described in Section 2.4.3.1.

2.2.4 Card Deck to Run MACRO Programs

To run MACRO programs, you can use the $MACRO and $DATA cards. You put a $MACRO card

in front of your MACRO program to make Batch copy your program into a disk file and insert a

COMPILE command into your control file. The $MACRO card is described in detail in

Section 2.4.10.

You put a $DA T A card in front of the data that goes wi th your program to make Batch copy your data

into another disk file and insert an EXECUTE command into your control file. The $DATA card is

described in Section 2.4.3. Thus, to assemble and execute one MACRO program, your card deck

would appear as follows.

2-5

BEGINNER'S BATCH - 108 -

10-0918

Refer to the description of each card for the information that goes on it.

2.3 PUTTING COMMANDS INTO THE CONTROL FILE FROM CARDS

Batch puts commands into the control file for you when xou use certain control cards. However,

only a small number of kinds of commands can be put in the control file in this way. If you wish

to perform operations in addition to compilation and execution, you must include commands in your

card deck so that Batch will copy them into your control file. Where you put these commands in

your card deck determines their positions in the control file. Batch reads your card deck in se­

quential order, copying commands into the control file as they, or the special" control cards, are

read. However, Batch, when it reads a control card that tells it to copy a program or data into a

disk file, copies every card that follows such a control card until it meets another control card. To

ensure that your commands are not copied into a file with programs or data, you must place a special

control card, the $EOD card, at the end of a program deck if you wish to follow the program with

a command. For example, if you have a FORTRAN program that creates its own data and does not

need to use a $DATA card, you could include the following cards in your deck.

2-6

- 109 - BEGINNER'S BATCH

(command to load and execute the program)

(to tell Batch to stop copying into the program file)

10-0919

The only commands that you cannot use in a Batch iob are CSTART, CCONT, ATTACH, DETACH,

and SEND. Batch will ignore these commands when it reads them in the control file. Also, you

cannot use the LOGIN command in your Batch iob because you will get an error that will terminate

your iob. Batch logs your iob in according to your $JOB and $PASSWORD cards.

2.3.1 Card Decks for Programs That Do Not Have Special Control Cards

By combining monitor commands with control cards such as $DECK and $EOD, in addition to the re­

quired control cards, you can process any program that does not have special control cards for it.

You put a $DECK card in front of a program, data, or any other group of cards to make Batch copy

the cards that follow the $DECK card. into a disk file. However, Batch does not put a command into

the control file when it reads a $DECK card. The $DECK card is described in detail in

Section 2.4.4.

For example, a BASIC program does not have a specific control card. To run a BASIC program under

Batch from cards, you can combine the$DECK card and the $EOD card with monitor commands. You

also use a $DECK card to copy the data for a ·BASIC program because the $DATA card puts an

EXECUTE command into the control fi Ie and BASIC does not use the EXECUTE command to run.

The following example shows a card deck that enters a BASIC program for running under Batch.

2-7

BEGINNER'S BATCH - 110 -

IENO-OF- FILE

II-RUN

.R BASIC

The BASIC program contains statements that read data from a disk file. You answer OLD to the

BASIC question

NEW OR OLD

because the file is on disk and can be retrieved by BASIC.

If your BASIC program reads data that is to be input by you during the running of the program, you

enter the data in the control file so that it will be passed to your program by Batch. This is shown

in the following example.

} (data for the program)

2-8

- 111 - BEGINNER'S BATCH

You can use the same technique to enter programs written in any language that does not have a

specific control card, provided that your installation supports the language. Also, you can run sys­

tem programs under Batch using the same technique.

2.4 CONTROL CARDS FOR BATCH (IN ALPHABETICAL ORDER)

The speci 01 control cards for Batch are described below in detai I. On Iy the control cards that are

pertinent to this manual are discussed. Refer to DECsystem-10 Operating System Command

(DEC-lO-MRDC-D) for the remaining cards. The same is true for some of the switches that can be

included on each card. If a switch is not described in this manual, it can be found in the

DECsystem-10 Operating System Commands manual.

2.4.1 The $ALGOL Card

You put a $ALGOL card in front of your ALGOL program to make Batch copy your ALGOL program

into a disk file and insert a COMPILE command into your control file. Thus, when Batch runs your

iob, your ALGOL program will be compiled. You can put some optional information on the

$ALGOL card to tell Batch more about your program or the cards that your program is punched on.

The $ALGOL card has the form:

fi lename. ext

/switches

(switches)

$ ALGOL fi lenome .. ex t Iswitches (switches)

2-9

10 -0902

specifies the optional filename and extension
that you can tell Batch to put on the fi Ie that
it creates for your program. If you omit the
filename and extension, Batch will create
a unique name for your file and add the ex­
tension .ALG to it.

are switches to Batch to tell it how to read
your program an'd whether or not to request
a compilation listing when the program is
compiled. The switches can be put on the
card in any order and are described below.

are switches that Batch passes to the ALGOL
compiler when it puts the COMPILE command
in the control file. These switches must be
enclosed in parentheses, must not be preceded
by slashes, and mayor may not be separated
by commas. The switches for the ALGOL com­
piler are described in Section 18.1 in Chapter
18 of the DECsystem-lO ALGOL Programmer's
Reference Manual (DEC-lO-KAZB-D).

BEGINNER'S BATCH -112 -

;WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of the ALGOL program. You can make Batch

stop reading at a specific column by means of the ;WIDTH switch; in which you indicate the number

of a column at which to stop. Thus, if you have no useful information in the last 10 columns of each

card of your program, you can tell Batch to read only up to column 70 by specifying

;WIDTH:70

on the $ALGOL card.

/NOLIST Switch

Normally, the $ALGOL card tells BQtch to ask the compiler to generate a compilation listing of

your ALGOL program. The listing is then printed as part of your iob's output. If you don't want this

listing, you can include the /NOLIST switch on the ALGOL card to stop generation of the listing.

/SUPPRESS:OFF Switch

When Batch reads the cards of your ALGOL program, it normally does not copy any trailing spaces

into the disk file to save space on the disk. If you want Batch to copy everything on the cards up to

column 80 or any column that you may specify in the ;WIDTH switch, you must include the

/SUPPRESS:OFF switch on the $ALGOL card.

Examples

The simplest form of the $ALGOL card is shown in the following example.

$ALGOL

This card causes Batchto copy your program into a file to which Batch gives a unique name and the

extension .ALG. The cards in the program are read up to column 80 with trailing spaces suppressed.

A listing file is produced when the program is compiled. This listing is written as part of the iob's

output. No compi ler switches are passed to ALGOL.

The following is an example of a $ALGOL card with switches.

$ALGOL MYPROG.ALG ;WIDTH:72/NOLIST (lOOOD,N,Q)

With this card, your ALGOL program is copied into 0 file named MYPROG.ALG and a COMPILE

command is entered into the control fi Ie. The cards in the program are read up to column 72 ,and

trailing spaces up to column 72 are not copied into the file. When the program is compiled, no

listing is produced, and the compiler reads and acts upon the switches 1000D, N,and Q given to

it by Batch.

2-10

- 113 - BEGINNER'S BATCH

2.4.2 The $COBOL Card

You place the $COBOL card in front of your COBOL program to make Batch copy your COBOL

program into a disk file and insert a COMPILE command into your control file. Thus, when Batch

runs your iob, your COBOL program will be compiled. You can put some optional information on

the $COBOL card to tell Batch more about your program or the cards that your program is punched

on.

The $COBOL card has the form:

fi lename. ext

/switches

{switches}

$COBOL fil.nom l/swilch.s(swilch.s)

10-0903

specifies the optional fi lename and extension
that you can tell Batch to put on the file that
it creates for your program. If you om i t the
filename and extension, Batch will create
a unique name for your file and add the ex­
tension . CBL to it.

are switches to Batch to ten it how to read
your program. The switches are described
below.

are switches that Batch passes to the COBOL
compiler when it puts the COMPILE command
in the control file. These switches must be
enclosed in parentheses, must not be preceded
by slashes, and mayor may not be separated
by commas. The switches for the COBOL
compiler are described in Table D-3 in
Appendix D of the DECsystem-10 COBO~
Pro~ammer's ReferencJl Manual
(DE -lO-KClC-D).

/'NIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of the COBOL program. You can make Batch

stop reading at a specific column by means of the /'NIDTH switch, in which you indicate the number

of a column at which to stop. Thus, if you have no useful' information in the last 10 columns of each

.card of your program, you can tell Batch to read' only up to column 70 by specifying

/'NIDTH:70

on the $COBOL card.

2-11

BEGINNER'S BATCH - 114 -

/SUPPRESS:OFF Switch

When Batch reads the cards of your COBOL program, it normally does not copy any trailing spaces

into the disk file to save space on the disk. If you want Batch to copy everything on the card up to

column 80 or any column that you may specify in the ;WIDTH switch, you must include the

/SUPPRESS:OFF switch on the $COBOL card.

/CREF Switch

If you want a cross-reference listing of your COBOL program, you can include the /CREF switch on

the $COBOL card to tell Batch to ask the COBOL compiler to produce a cross-reference listing

when it compiles your program. This listing is printed as part of your iob's output. You do not have

to include a command to run the CREF program to get this listing, Batch will do it for you.

/SEQUENCE Switch

The COBOL compiler assumes that your COBO L program is in standard DECsystem-1O format. The

/SEQUENCE switch, which Batch passes to the compiler, makes the compiler r!'!cognize that yaur

program is in conventional {i.e., industry-wide} format. A program in conventional farm at has

sequence numbers in columns 1 through 6 and comments that begin in column 73. When the

/SEQUENCE switch is specified, the width of the card" is assumed to be 72, not 80 columns. The

following example shows programs in conventianal and standard formats.

IF YOUR PROGRAM LOOKS LIKE:

1
000010
000020
000030

8 73
IDENTIFICATION DIVISION MYPROG
PROGRAM-ID. MYPROG ...•.... MYPROG
AUTHOR. ABB MYPROG

IF YOUR PROGRAM LOOKS LIKE:

1
IDENTIFICATION DiViSiON•
PROGRAM-ID. MYPROG••..
AUTHOR. ABB

Examples

The simplest form of the $COBOL card is:

$COBOL

YOU SHOULD:

Include the /SEQUENCE
switch because your program
is in conventional format.

YOU SHOULD:

Omit the /SEQUENCE
switch because your program
is in DEC system -10 standard format.

This card tells Batch to copy your program into a file and assign a unique name and the extension

.CBL. All 80 columns of the c;ards are read, trailing spaces are not copied, and the compiler is

told that the program is in standard format. No switches are passed to the compiler, and a listing

fi Ie is produced when the iob is run. The I isting is printed as part of the iob's output.

2-12

- 115 - BEGINNER'S BATCH

The following is an example of a $COBOL card with switches.

$COBOL MYPROG.CBL/SEQUENCE (N,P)

With this card, your COBOL program is copied into a disk file named MYPROG.CBL and a

COMPILE command is inserted into the control file. The cards are read only up to column 72 and

trai I ing spaces up to column 72 are not copied into your file. Batch passes the Nand P switches to

the compiler, and tells the compiler to accept the program in conventional format. A listing file is

produced when the program is compiled. This listing is printed as part of the iob's output.

2.4.3 The $DATA Card

You put a $DATA card in front of the data for your program to make Batch copy it into a disk file

and to insert an EXECUTE command into your control file. Within the EXECUTE command, Batch

requests a loader map for you. When your iob is run, any programs that were entered with $ALGOL,

$FORTRAN, or $MACRO cards that came before the $DATA card are executed. Every time that

Batch reads one of the $Ianguage cards, it adds it to a list that it keeps. When it then reads a

$DATA card, each program in Batch's list is put into the EXECUTE command string that the $DATA

card puts into the control file. After the $DATA card is read by Batch and the EXECUTE command

is put into the control file with the names of the programs that preceded the $DATA card, Batch

clears its I ist so that it can start a new I ist for programs entered later. If you have 'more than one set

of data for a program or programs, you can precede each set with a $DAT A card to put two EXECUTE

commands into the control file to run your program or programs twice. An EXECUTE command follow­

ing another EXECUTE command in the control file without intervening $Ianguage cards causes the

programs executed by the first EXECUTE command to be loaded and executed again.

If your data is included in the program so that you do not have cards with data on them, you can still

use the $DATA card to insert an EXECUTE command into the control file.

The form of the $DA T A card is:

fi lename. ext

$DATA filename. ext/switches

!O- 0904

specifies the optional filename and extension
that you can tell Batch to put on the file
that it creates for your data. If you omit the
filename and extension, Batch will create
a unique name for your file and add the
extension .CDR to it.

2-13

BEGINNER'S BATCH

/switches

- 116 -

are switches to Batch to tell it how to read
the cards of your data. The switches are
described below.

;WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your data. You can make Batch stop

reading at a specific column by means of the ;WIDTH switch, in which you indicate the number of

a column at which to stop. Thus, if you have information in the last 10 columns of each card of your

data; you can tell Batch to read only up to column 70 by specifying

;WIDTH:70

on the iDA T A card.

/SUPPRESS:OFF Switch

When Batch reads the cards of your data, it normally does not copy any trailing spaces into the disk

file to save space on the disk. If you want Batch to copy everything on the cards up to column 80

or any column that you specify in the ;WIDTH switch, you must include the /SUPPRESS:OFF switch

on the $DA T A card.

Examples

The simplest form of the $DAT A card is:

$DATA

This card causes Batch to copy your data into a file and to assign a unique name and the extension

.CDR to it. All 80 columns of the cards are read and trai ling spaces are not copied into the fi Ie.

The following example shows a $DATA card with switches.

$DATA MYDAT. DAT ;WIDTH:72 SUPPRESS:OFF

The data that follows this card is copied into a file named MYDAT. DAT and an EXECUTE command

is inserted into the control file. When Botch reads the cords of the data, it reads only up to column

72 and copies trailing spaces into the data file.

2.4.3.1 Naming Data Files on the $DATA Cord - If you want to nome your data file on the $DATA

card rather than letting Batch nome it for you, you must, in your program, assign that fi Ie to disk as

shown in the following examples.

2-14

- 117 -

COBOt Example

ENVIRONMENT DIVISION.

INPUT-0UTPUT SECTION.

SELECT SALES, ASSIGN TO DSK.

DATA DIVISION.

FILE SECTION.

BEGINNER'S BATCH

FD SALES, VALUE OF IDENTIFICATION IS "SALES CDS".

The $DATA card would then appear as follows.

$DATA SALES.CDS

FORTRAN Examples

You can assign your data to disk in several ways when you use FORTRAN. You can read from unit 1,

which is the disk, in your program and use the name FOR01 . DAT as the filename on your $DATA

card, as shown in the following statements.

READ (l,f), list

$DATA FOROl.DAT

You can also tell FORTRAN to read from logical unit 2, which is normally the card reader, and

assign unit 2 or the card reader (CDR) t.o disk (DSK). You use the name FOR02.DAT on the $DATA

card in this case.

READ (2,f), list

.ASSIGN DSK CDR (in the control file)
$DATA FOR02. DAT

You can also use a specific disk device such as DSKO as the unit from which you will read. In the

control file, you would then assign DSKO to DSK. The unit number of DSKO is 20 and thus the name

on the $DATA card would be FOR20.DAT.

2-15

BEGINNER'S BATCH - 118 -

READ (20,f), list

.ASSIGN DSK DSKO (in the control file)
$DATA F0R20. DAT

ALGOL Example

To read your data from the disk in an ALGOL program, you would use the following statements. You

can assign your data to any channel (signified by c) and you can give your data file any name as long

as the name that you use in your program is the same as that put on the $DAT A card.

INPUT (c, "DSK")
SELECT INPUT (c)
OPENFILE (c, "MYDAT. DATil)

$DATA MYDAT.DAT

This is to ensure that your program finds your data in the disk file under the name that you have

assigned to it.

If you let Batch assign a name to your data fi Ie, you wi II not know the name that your data fi I e wi II

have and should therefore assign your data file, without a name, to the card reader. Batch will tell

the monitor in this case to look for your data in a disk file when your program wants to read it. The

following examples illustrate how to do this.

COBOL Example

ENVIRONMENT DIVISION.

INPUT-GUTPUT SECTION.

SElECT SALES, ASSIGN TO CDR.

DATA DIVISION.

FILE SECTION.

FD SALES, LABEL RECORDS ARE OMITTED.

2-16

- 119 - BEGINNER'S BATCH

FORTRAN Example

To read your data from the card reader, you use the unit number 2 or no unit number, as shown below.

READ (2,f), list

$DATA

READ f, list

$DATA

ALGOL Example

In an ALGOL program, you would assign the desired channel (signified by c) to the card reader,

select the desired channel, but you would not explicitly open the named file on thp. channel because

the file does not have a name that is known to you.

INPUT (c, "CDR")
SELECT INPUT (c)

$DATA

The $DATA card cannot be used for data for programs written in languages other than ALGOL,

COBOL, FORTRAN, and MACRO. It can, however, be used for programs that are in relocatable

binary form. Thus, data for BASIC programs cannot be copied by means of the $DATA card; you

should instead use the $DECK card, described below.

2.4.4 The $DECK Card

You can put the $DECK card in front of any program, data, or other set of information to make Batch

copy the program, data, or information into a disk file. Batch does not insert a command into the

control file when it reads the $DECK card. You must include commands in your card deck that Batch

will copy into the control file to process the file created by Batch because of the $DECK card.

2-17

BEGINNER'S BATCH

The form of the $DECK card is:

fi lename. ext

/switches

- 120 -

$DECK filename. ext/switches

10- 0905

specifies the optional filename and extension
that you can tell Batch to put on the file
that it creates for your program or data.
If you omit the filename and extension, Batch
will create a unique name for your fi Ie.

are switches to Batch to tell it how to read
the cards in your deck. The switches are
described below.

;WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card in your deck. You can make Batch stop

reading at a specific column by means of the ;WIDTH switch, in which you indicate the number of

a column at wh ich to stop. Thus, if you have information in the last 10 columns of each card in your

deck, you can tell Batch to read only up to column 70 by specifying

;WIDTH:70

on the $DECK card.

/SUPPRESS:OFF Switch

When Batch reads the cards in your deck, it normally does not copy any trailing spaces into the disk

fi Ie to save space on the disk. If you want Batch to copy everything on the cards up to column 80 or

any column that you specify in the ;WIDTH switch, you must include the /SUPPRESS:OFF switch on

the $DECK card.

Examples

The simplest form of the $DECK card is:

$DECK

This card causes Batch to copy your deck into a disk file and to assign a unique name to it. All 80

columns of the cards are read and trailing spaces are not copies into the file.

2-18

- 121 - BEGINNER'S BATCH

The following shows an example of a $DECK card.

$DECK MYDECK .CDS ;\IVIDTH:50 /SUPPRESS:OFF

The deck that follows this card is copied into a disk file named MYDECK .CDS. When Batch reads

the cards in the deck, it reads up to column 50 and copies trailing spaces into the file.

2.4.5 The End-of-File Card

You must put the end-of-file card at the end of the deck containing your complete iob to tell Batch

that it has reached the end of your iob. Unlike the other Batch control cards, the end-of-file card

does not have a dollar sign ($) and a command on it. It contains special punches that are recognized

by Batch as the end-of-file. These punches must be in rows 6,7,8, and 9 of column 1. So that the end­

of-file card can be recognized in any orientation (e.g., upside down), you should punch rows 12,

11,0, (6,7,8, and 9 and leave rows 2,3,4, and 5 blank in both columns 1 and 80. If you omit the

end-of-fi Ie card, an error message wi II be issued un less the installation makes the operator put the

card on any deck that does not have one. However, your iob will still be scheduled. The form of

the end-of-file card is shown below.

10-0906

2.4.6 The $EOD Card

You put a $EOD card at the end of the cards being copied into a file due to a $DECK, $DATA,

or $Ianguage card. This card tells Batch to stop copying cards into the file. If another Batch control

card follows the cards being copied, you don't need the $EOD card because Batch stops copying

cards into a file when it reads a Batch control card. The only time that the $EOD card is necessary

is when you wish to follow the cards being copied into a file by a card other than a control card,

e.g., a card containing a command. Refer to Section 2.3 for a description of including commands

in your deck.

2-19

BEGINNER'S BATCH - 122 -

The $EOD card has the form:

10-0907

An example of using the $EOD card is shown below where the user wishes to load the COBOL de­

bugging program COBDDT with his prognJ"n.

$COBOL MYPROG.CBL

$EOD

• LOAD %S MYPROG.CBL, SYS:COBDDT

. ST ART MYPROG

If the $EOD card had not been included in the above example, the .LOAD and .START commands

would have been copied into the file with the COBOL program, rather than being copied into the

control file.

2.4.7 The $ERROR Card

You can use the $ERROR card and the $NOERROR card (described later in this chapter) to specify

error recovery in the control file. When Batch reads the $ERROR card, it inserts a special Batch

command into the control file, the .IF (ERROR) command. This command will later tell B-ltch what

to do when an error occurs when your iob is being processed. How to perform error recovery is

described in Section 2.5.

The $ERROR card has the form:

statement

$ERROR statement

10-0908

is a command to the mon i tor, to a system
program or a special Batch command such
as .GOTO or .BACKTO.

Batch enters an .IF (ERROR) command into the control file when it reads the $ERROR card, and in­

cludes the statement from the $ERROR card in the .IF (ERROR) command in the form:

.IF (ERROR) statement

2-20

- 123 - BEGINNER'S BATCH

The Batch commands • GOTO and • BACK TO have the forms:

.GOTO statement label

• BACKTO statement label

statement label is the label of a line in the control file.
The labe I can contain from 1 to 6 alpha­
betic characters and must be followed by
a double colon (::) when it is labelling
a line.

The. GOTO command tells Batch to search forward in the control fi Ie on disk unti I it finds the line

containing the label. The. BACKTO command tells Batch to search back in the control file on disk
to find the line containing the label. You must supply the labelled line and any related lines for

which Batch will search. Include these lines in your card deck where you want them to be copied

into the control file. If Batch cannot find a labelled line that is searching for as a result of a

. GOTO or a . BACKTO statement, it terminates your iob.

2.4.8 The $FORTRAN Card

You place the $FORTRAN card in front of your FORTRAN program to make Batch copy your pro­

gram into a disk file and insert a COMPILE command into your control file. Thus, when Batch runs

your iob, your FORTRAN program will be compiled. You can put some optional information on the

$FORTRAN card to tell Batch more about your program or the cards that your program is punched on.

The $FORTRAN card has the form:

fi lename. ext

/switches

$FORTRAN filename .eKt/switches(switches}

2-21

10-0909

specifies the optional filename and extension
that you can tell Batch to put on the fi Ie that
it creates for your program. If you omit the
filename and extension, Batch will create a
unique name for your file and add the
extension . F4 to it.

are switches to Batch to tell it how to read
your program. The switches are described
below.

BEGINNER'S BATCH

(switches)

- 124 -

are switches that Batch passes to the FORTRAN
compiler when it puts the CO MPI LE command
in the control file. These switches must be
enclosed in parentheses, must not be preceded
by slashes, and mayor may not be separated
by commas. The switches for the FORTRAN
compiler are described in Table 11-1 in
Chapter 11 of the DECsystem-10 FORTRAN IV
Proerammer's Reference Manual
(DE -10-AFDO-D).

/WIDTH:n Switch

Normally, Batch reads up to 72 columns on every card of the FORTRAN program. You can make

Batch stop reading at a specific column by means of the /WIDTH switch, in which you include the

number of the column at which to stop. The FORTRAN compiler only reads FORTRAN statements

up to column 72, even if you tell Batch to read up to column 80. But, if you wish to have MPB

read only up to column 60, you can specify

/WIDTH:60

on the $FORTRAN card.

/SUPPRESS:OFF Switch

When Batch reads the cards of your FORTRAN program, it normally does not copy any trailing

spaces into the disk file to save space on the disk. If you want Batch to copy everything on the

card up to column 72 or any column that you specify in the /WIDTH switch, you must include the

/SUPPRESS:OFF switch on the $FORTRAN card.

/CREF Switch

If you want a cross-reference listing of your FORTRAN program, you can include the /CREF switch

on the $FORTRAN card to tell Batch to ask the FORTRAN compiler to produce a cross-reference

listing when it compiles your program. This listing is printed as part of your ;ob's output. You do not

have to include a command to run the CREF program to get this listing, Batch will do it for you.

/NOLIST Switch

Normally, the $FORTRAN card tells Batch to ask the compiler to generate a compilation listing of

your FORTRAN program. The listing is then printed as part of your ;ob's output. If you don't want

this listing, you can include the /NOLIST switch on the $FORTRAN card to stop generation of

the listing.

Examples

The simplest form of the $FORTRAN card is:

$FORTRAN

2-22

- 125 - BEGINNER'S BATCH

This card tells Batch to copy your program into a disk file and assign a unique name and the extension

• F4. The first 72 columns of the cards are read, trail ing spaces are not copied, and a I isting file is

produced when the iob is run. No switches are passed to the compiler. The listing is printed as part

of the iob's output.

The following is an example of a $FORTRAN card with switches.

$FORTRAN MYPROG. F4 /CREF /NOLIST/SU PPRESS:OFF (I, M)

With this card, your FORTRAN program is copied into a disk file named MYPROG.F4 and a

COMPILE command is inserted into the control file. The cards are' read only up to column 72 and

trailing spaces up to column 72 are copied into your file. A cross-reference listing of your program

will be generated, but a compilation listing will not. Batch passes the I and M switches to the

compiler.

2.4.9 The $JOB Card

You must include the $JOB card as the first card in your deck or as the second card following the

$SEQUENCE card, which is described later in this chapter. The $JOB card tells Batch whose iob

that it is processing and, optionally, the name of the iob, and any constraints that you want to place

on the iob. When Batch reads the $JOB card and the $PASSWORD card, if it is required, it cre­

ates the control file and begins the log file for your iob. Batch then places commands into the

control file that are taken from the cards that follow the $JOB card.

The $JOB card has the form:

name

[proi, prog]

$JOB name [prai. prol!1lswitCh ..

2-23

10-0910

is the optional name that you can give to
the iob. If you omit the name, Botch will
create a unique name for your iob. The name
of the iol;> is that which Batch gives to
your control file and log file. To the iob
name, Batch adds the extension .cn
for the control file. It adds the extension
• LOG to the name for the log file.

is your proiect-programmer number, i. e. ,
the number that you were assigned by the
installation to allow you to gain access to
the DECsystem-lO. Normally, the project­
programmer number is two numbers sep­
arated by a comma and enclosed in square
brackets.

BEGINNER'S BATCH

/switches

- 126 -

are switches to Batch to tell it the constraints
that you have placed on your job. They
are described below.

/AFTER:dd-mmm-yy hhmm Switch

If you don't want Batch to run your job until after a certain time on a certain day, you can include

the /AFTER switch on your $JOB card. The date and time are specified in the form dd-mmm-yy hhmm

(e.g., 20-MAY-72 0215). If this switch is not included, Batch runs your job at the time that it

would normally schedule such a job, based on its size, the amoun"ts of core and time required, and

other parameters.

/AFTER:+t Switch

If you don't want Batch to run your job until after a certain number of minutes have elapsed since

the job was entered, include this form of the /AFTER switch on the $JOB card. The number of

minutes that the job must wait after it has been entered is specified in the form +t (e.g., +15). If

this switch is not included, Batch will schedule the job as it normally does.

NOTE

If any of the programs in your job have output to slow­
speed devices such as the card punch, the paper-tape
punch, the line printer, and the plotter, do not include
an ASSIGN command in your job. Batch will take care
of this output for you as long as you specify the switches
for these devices, which are described below.

/CARDS:nK Switch

If any program in your job has punched card output, you must include the /CARDS switch on the

$JOB card to specify the approximate number of cards that your job will punch. Up to a maximum

of 10,000 cards can be specified in the form nK or n (e.g., 5K or 5 specifies 5,000 cards). If you

do not specify the /CARDS switch, no cards will be punched, even if you want them. If you do not

specify enough cards, the remaining output over the number of cards specified will be lost without

notification to you.

/CORE:nK Switch

You can specify the amount of core in which the programs in your job will run "by means of the

/CORE switch. You specify the amount of core in the form n or nK (e.g., 25 or 25K). You sliould

try to estimate as closely as possible the amount of core that your job will need. If you don't specify

enough, your job can't run. If you don't specify the amount of core that your job will need, Batch

wi II assume 25K or an amount set by the installation.

/FEET:n Switch

If any program in your job has punched paper-tape output, you must include the /FEET switch on the

$JOB card to specify the approximate number of feet of paper tape that your job will punch. You

2-24

- 127 - BEGINNER'S BATCH

specify the number of feet in the form n (e.g., 50). If you do not specify the /FEET switch, no paper

tape will be punched, even if you want it. If you do not specify enough paper tape, the output that

remains over the number of feet that you specify wi II be lost and the message ?OUTPUT FOR MS

LIMIT EXCEEDED will be punched in block letters in the tape.

/PAGES:n Switch

Normally, Batch allows your iob to print up to 100 pages. Included in this number are the log file

and any compi lation I istings that you may request. If you need more than 100 pages for your iob,

you must include the /PAGES switch on the $JOB card to indicate the approximate number of pages

that your iob will print. If your output exceeds either the maximum that Batch allows or the n'Umber

that you specified in the /PAGES switch, the excess output will not be printed and the message

?OUTPUT FORMS LIMIT EXCEEDED will be written in the log file. However, even if you exceed

the maximum, the first 10 pages of the log file will be printed.

/TIME:hh:mm:ss Switch

Normally, Batch allows your iob to use up to 5 minutes of central processor time. Central processor

(CPU) time is the amount of time "that your iob runs in core, not the amount of time that it takes

Batch to process your iob. If you need more than 5 minutes of CPU time, you must inc lude the

/TIME switch on the $JOB card to indicate the approximate amount of time that you will need. If

you don't specify enough time, Batch will terminate your iob when the time is up. However, if you

specify a large amount of time, Batch may hold your iob in the queue until it can schedule a large

amount of time for it.

The value in the /rIME switch is given in the form hh:mm:ss (hours:minutes:seconds). However, if you

specify only one number, Batch assumes that you mean seconds. Two numbers separated by a colon

(:) is assumed to mean minutes and seconds. Only when you specify all three numbers, separated by

colons, does Batch assume that you mean hours, minutes, and seconds. For example:

/TlME:25
/rIME:1:25
/TIME:1:25:00

means 25 seconds
means 1 minute and 25 seconds
means 1 hour and 25 minutes

/TPLOT:t Switch

If you have any programs in your iob that do output to the plotter, you must include the /TPLOT

switch on the $JOB card so that your output will be plotted. If the /TPLOT switch is not included,

no output will be plotted. If enough minutes (specified in the form t) are not specified, any plotter

output left after the time has expired will be lost without notification to you.

2.4.10 The $MACRO Card

You place a $MACRO card in front of your MACRO program to make Batch copy your program into

a disk file and insert a COMPILE command into your control file. Thus, when Batch runs your iob,

2-25

BEGINNER'S BATCH - 128 -

your MACRO program will be assembled. You can put some optional information on the $MACRO

card to tell Batch more about your program or the cards that your program is punched on.

The $MACRO card has the form:

fi lename. ext

/switches

(switches)

$MACRO fi lenome .ext /switches (switches)

fa -091'

specifies the optional filename and ex­
tensi on that you can te II Batch to put
on the fi Ie that it creates for your pro­
gram. If you omit the filename and
extension, Batch will create a unique
name for your fi Ie and add the extension
• MAC to it.

are switches to Batch to tell it how to
read your program and the kind of
I istings that you want. The switches
are described below.

are switches that Batch passes to the
MACRO assembler when it puts the
COMPILE command in the control file.
The switches must be enclosed in paren­
theses, must not be preceded by slashes,
and mayor may not be separated by
commas. The switches for the MACRO
assembler are described in Table H-l
in Appendix H of the DECsystem-lO
MACRO-IO Assembler Programmer's
Reference Manual (DEC-l0-AMZB-D).

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your MACRO program. You can make

Batch stop reading at a specific column by means of the /WIDTH switch, in which you include the

number of the column at which to stop. Thus, if you wish to have Batch read only up to column 70,

you can specify

/WIDTH:70

on the $MACRO card.

/SUPPRESS:OFF Switch

When Batch reads the cards of your MACRO program, it normally does not copy any trailing spaces

into the disk file to save space on the disk. If you want Batch to copy everything on the cards up to

column 80 or any column that you specify in the /WIDTH switch, you must include the /SUPPRESS:OFF

switch on the $MACRO card.

2-26

- 129 - BEGINNER'S BATCH

/CREF Switch

If you want a cross reference listing of your MACRO program, 'you can include the /CREF switch on

the $MACRO card to tell Batch to ask the MACRO assembler to produce a cross-reference listing

when it assembles your program. This listing is printed as part of your iob's output. You do not have

to include a command to run the CREF program to get this listing, Batch will do it for you.

/NOLIST Switch

Normally, the $MACRO card tells Batch to ask the assembler to generate an assembly listing of your

I\JjACRO program. The listing is then printed as part of your iob's output. If yau don't want this

listing, you can include the /NOLIST switch on the $MACRO card to stop generation of the listing:

Examples

The simplest form of the $MACRO card is:

$MACRO

This card tells Batch to copy your program into a disk file and assign a unique name and the extension

. MAC to it. All 80 columns of the cards are read, trailing spaces are not copied, and a listing file

is produced when the iob is run. The I isting is printed as part of the iob's output. No switches are

passed to the assembler.

The following is an example of a $MACRO card with switches.

$MACRO MYPROG.MAC /SUPPRESS:OFF /WIDTH:72 (p,a,X)

With this card, your MACRO program is copied into a disk file named MYPROG. MAC and a

COMPILE command is inserted into the control file. The cards are read only up to column 72 and

trailing spaces are copied into your file. An assembly listing is generated, and Batch passes the p,a,

and X switches to the assembler.

2.4.11 The $NOERROR Card

You can use the $NOERROR card and the $ERROR card (described in Section 2.3.7) to specify

error recovery in the control file.

When Batch reads the $NOE~ROR card, it inserts a special Batch command into the control file,

the .IF (NOERROR) command. This command tells Batch what to do when an error occurs when your

iob is being processed. How to perform error recovery is described in Section 2.5.

2-27

BEGINNER'S BATCH - 130 -

The $NOERROR card has the form:

$ NOERROR s'otement

statement

10- ()91 2

is a command to the monitor or a special Butch
command such as .GOTO or .BACKTO.

Batch enters an .IF (NOERROR) command into the control file when it reads the $NOERROR card,

and includes the statement from the $NOERROR card in the .IF (NOERROR) command in the form:

.IF (NOERROR) statement

The Butch commands. GOTO and. BACKTO have the forms:

. GOTO statement label

. BACKTO statement label

statement label is the label of a line in the control file.
The label can contain from 1 to 6 alphabetic
characters and must be followed by a double
colon (::) when it is labelling a line.

The .GOTO command tells Batch to search forward in the control file until it finds the line con­

taining the label. The. BACK TO command tells Batch to search back in the control file to find the

line containing the label. You must supply the labelled line and any related lines for which Batch

will search. Include these lines in your card deck where you want them to be copied into the control

file. If Batch cannot find a labelled line that is searching for as a result of a .GOTO or a

• BACKTO statement, it terminates your iob.

2.4. 12 The $PASSWOR D Card

You put the password that has been assigned to you on the $PASSWORD card to tell Batch that you

are an authori zed user of the system.

In coniunction with the $JOB card, the $PASSWORD card identifies you to Batch and tells Batch to

create the control file and log file for your iob. If you put a password on the $PASSWORD card that

does not match the password stored in the system for you, Batch will not create any files and will

terminate your iob. Some installations may not require the $PASSWORD card; if it is required at

your installation, you must put it immediately after the $JOB card.

2-28

The $PASSWORD card has the form:

password

2.4.13 The $SEQUENCE Card

- 131 - BEGINNER'S BATCH

$ PASSWORD password

10- 0313

is a 1 to 6 charocter password that is
stored in the system to identif)l you.

You use the $SEQUENCE card to specify a unique sequence number for your iob. This card mayor

may not be required by the installation or may be supplied by the personnel at the installation. If

the card is required, you must include it as the first card in the deck containing your iob.

The form of the $SEQUENCE card is:

$SEQUENCE n

n

10- 0901

is the unique sequence number assigned
to your iob.

2.5 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

Normally, when an error occurs in your-iob, Batch terminates the iob and, if the error occurred when

one of your programs was running, causes.a dump of your core area. The dump is printed with your

output and log file. You can specify recovery from errors in the control file by means of the $ERROR

and $NOERROR cards, described in Sections 2.4.7 and 2.4.11. You must include one of these cards

at the point in the control file that an error may occur. When an error occurs, Batch examines the

next monitor-level line (i.e., not a I ine that contains ·data or a command string to a system program)

to find an .IF (ERROR) statement to tell it what to do about the error. If an error does not occur and

an .IF (ERROR) statement is present, the .IF (ERROR) statement is not executed. Thus, if you have

a program that you are not sure is error-free, you can include a $ERROR or $NOERROR card to tell

Batch what to do if an error occurs, as shown in the following example.

2-29

BEGINNER'S BATCH - 132 -

The above cards would cause Batch to make the following entries in the control file .

. COMPILE •.•

. IF (ERROR) statement

On either the $ERROR or $NOERROR card, you must include a statement that tells Batch what to

do. You can use any monitor command, a command to a program, or one of the special Batch com­

mands. The .GOTO and .BACKTO commands are two Batch commands for this purpose. Refer to

Section 2.4.7 for descriptions of these commands. Be sure, if you use .GOTO or .BACKTO on

your $ERROR or $NOERROR card, that you supply a line for the control file that has the label that

you specified in the .GOTO or .BACKTO commands.

Two sample iobs are shown below. The first shows using $ERROR and the .GOTO command to

specify error recovery. The second example shows the use of the $NOERROR card and the

. GOTO command.

If you have a program that you are not sure will compile without errors, you can include another

version of the same program in your iob (that hopefully will compile) and tell Batch to compile the

second program if the first has an error. The cards to enter this iob are shown below.

2-30

- 133 -

These cards set up the following control fi Ie for you .

. COMPILE jCOMPILE MYPROG. F4 jLlST

.IF (ERROR) .GOTO A

. EXECUTE MYPROG. REL jMAP:MAP. LST

.GOTO B
A:: iCONTINUE
.COMPILE jCOMPILE PROG2.F4jLlST
.EXECUTE PROG2.F4
B:: iCONTINUE

BEGINNER'S BATCH

10-0922

The $FORTRAN card told Batch to copy the program MYPROG.F4 into a disk file and to insert a

COMPILE command into the control file. The $ERROR card told Batch to insert .IF (ERROR)

. GOTO A into the control fi Ie. The data was copied into a disk fi Ie and an EXECUTE command

was put into the control file because of the $DATA card. The $EOD card told Batch to stop copying

cards into the data file, so Batch put the next two lines into the contral file. The second

$FORTRAN card told Batch to copy the program PROG2.F4 into a disk file and put a COMPILE

command into the control file. Another $EOD card told Batch to stop copying into the program file,

so Batch put the next two lines into the control file. An EXECUTE command was used instead of a

2-31

BEGINNER'S BATCH - 134 -

$DATA card because the data was already in a file on disk, although the $DATA card does not have

to have data with it to put an EXECUTE command in the control file.

When the iob is started, Butch reads the control file and passes commands to the monitor. If an error

occurs in the compilation of the first program, Batch finds the .IF statement and executes the .GOTO

command contained in it. The command tells Batch to look for the line labelled A, which contains

a comment, so Batch goes on to the next line. The second program is compiled and then executed

with the data. The next I ine Is a comment, so Batch continues to the end of the control fi Ie. If an

error does not occur in the first program, Batch skips the. IF statement, executes the program with

the data, skips the unnecessary error procedures, and continues to the end of the control file.

A variation of the above procedure is shown below using the $NOERROR card and the .GOTO

command. The difference is that Batch skips the .IF statement if an error occurs, and performs it

if an error does not occur.

10-0923

2-32

- 135 -

Batch reads the cards and puts the follawing commands into the control file •

• COMPILE jCOMPILE MYPROG.F4 lUST
.IF (NOERROR) .GOTO A
.COMPILE jCOMPILE PROG2. F4 lUST
.EXECUTE PROG2.F4
.GOTO B
A:: iCONTINUE
.EXECUTE MYPROG.F4
B:: iCONTINUE

BEGINNER'S BATCH

The $FORTRAN card tells Batch to copy the FORTRAN program into a file named MYPROG.F4,

and to insert a COMPILE command into the control file. The $ERROR card tells Batch to insert an

.IF command into the control file. The second $FORTRAN card tells Batch to copy tlie· second pro­

gram into a disk file named PROG2.F4 and to insert another COMPILE command into the control

file. Instead of a $DATA card, a $DECK card is used to tell Batch to copy the data into a disk file

named FOROl.DAT. The $DATA card is not used here because it would have the names of both

programs in its list for the EXECUTE command generation, which would cause an error when the iob

is run. To tell Batch to stop copying cards into the data file, the $EOD card comes next. Thus,

Batch copies the next five lines into the control file.

When the iob is run, Batch passes the COMPILE command to the monitor to compile the first pro­

gram. If an error does not occur, .the .IF c~mmand is read and the .GOTO command is executed.

Batch skips to the line labelled A, which is a comment, and continues reading the control file. The

program MYPROG. F4 is executed with the data and the end of the iob is reached. If an error

occurs, Batch skips the .IF statement and continues reading the control file. PROG2. F4 is compi led

and then executed with the data. Batch is then told to go to the line labelled B, which is a comment

line. The end of the iob follows.

The examples shown above illustrate only two ways that you can specify error recovery in the control

file. You can also use the .BACKTO command or any monitor command that you choose to help you

recover from errors in your iob.

You do not have to attempt to recover from errors while your iob is running; You can correct your

errors according to the error messages in the log file when your iob is returned to you, and then run

your iob again. Batch will also print a dump of your core area if an error occurs while your iob is

running and you have not specified error recovery. If you can read dumps, this can also aid you to

correct your errors. The log file and dumps are described in Chapter 4.

2-33

BEGINNER'S BATCH - 136 -

- 137 - BEGINNER'S BATCH

CHAPTER 3

ENTERING A JOB TO BATCH FROM A TERMINAL

When you enter a iob to Batch from a timesharing terminal, you must create a control file that Batch

can use to run your iob. The control file contains all the commands that you would use to run your

iob if you were running under timesharing. For example, if you wanted to compile and execute a

program called MYPROG.CBL, the typeout would appear as follows •

• COMPIl.E
C0801.1
EXIT
• EXECUTE
LOADING

MYPROG.CBL
MYPROG

MYPROG.C8L

LOADE~ lK CORE
EXECUTION
EXIT

}

}

(Your request)

The system's reply

(Your request)

The system's reply

The control fi Ie to tell Batch to run the same iob appears as the following .

• COMPILE MYPROC;.C8L
,EXECUTE MYPROG.CBL

When the iob is run, the commands are passed to the monitor to be executed. The commands and

their replies from the monitor are written in the log file so that the entire dialog shown above appears

in the log file.

To create a control file and submit it to Batch from a terminal, you must perform the following steps.

1. LOGIN to the system as a timesharing user.

2. Write a control file using an editor such as TECO or LINED.

3. When you finish the control file, close and save it on disk.

4. Submit the iob to Batch using the monitor command SUBMIT or QUEUE INP:.

You can then wait for your output to be returned at the designated place.

3.1 CREATING THE CONTROL FILE

After you have logged into the system as you normally would to start a timesharing iob, you must run

an editor so that you can create your control file.

The control file can contain monitor commands, system program commands, data that would normally

be entered from a terminal, and special Batch commands. The Batch commands are described in

3-1

BEGINNER'S BATCH - 138 -

Section 3.3. What you write in the control file depends on what you wish your job to accomplish.

An example of a job that you can enter to Batch from a terminal is as follows.

1. Compile a program that is on disk.

2. Load and execute the program with data from another disk file.

3. Print the output on the line printer.

4. Write the output into a disk fi Ie also.

4. Compile a second program.

6. Load and execute the second program with the data output from
the fi rst program.

7. Pri nt the output from the second program.

The control file that you would write for the above iob is as follows •

• COMPILE MYPROG,r4/COM P ILE
.EX[OUTE MYPROG.r4
,COMPILE PROG2,~4/COMPILE
.EXECUTE PROG2,~4

You include statements in your programs to read the data from the disk files and write the output to

the printer and the disk. The output to the line printer is written with your log file as part of the

total output of your iob.

If an error occurs in your iob, Batch will not continue, but will terminate the iob and, if the error

occurs while one of your programs is running, cause a dump to be taken of your core area. The dump

is then printed with your iob's output. To avoid having your iob terminated because an error occurs,

you can specify error recovery in the control file using the special Batch commands. Error recovery

is described in Section 3.4.

Any monitor command that you can use in a timesharing iob can be used in a Batch iob with the fol­

lowing exceptions. The ATTACH, DETACH, CCONT, CSTART, and SEND commands have no

meaning in a Batch iob. If you include one of these commands in your iob, Batch will write the

command and an error label BAERR into your log file, will not process the command, and will then

continue the iob from that point. Do not include a LOGIN-command in your control file because

Batch logs the iob for you. If you put in a LOGIN command, your iob will be terminated.

3.1.1 Format of Lines in the Control File

Since you can put monitor, system program, and Batch commands, as well as data into the control file,

you have to tell Batch what kind of line it is reading. The format of each of these lines is described

below. Each line normally begin'S in column 1, but Batch always starts reading at the first nontab

or nonblank character, regardless of the column in which it appears.

To include a monitor or Batch command, you must put a period (.) in the first column and follow it

immediately with the command. Any information that follows a monitor command is in the format

3-2

- 139 - BEGINNER'S BATCH

shown for the command in Chapter 3 of the DECsystem-10 Operating System Commands manual. Any

information that follows a Batch command is in the format shown in Section 3.3 in this chapter.

If you include a command string to a system program, you must place an asterisk (*) in column 1 and

follow it immediately with the command string. For the format of command strings, refer to the man­

ual for the specific system program that you wish to use.

If you want to include a command to a system program that does not accept carriage return as the end

of the line (e.g., TECO and DDT), you must substitute an equal sign (=) for the asterisk so that Batch

will suppress the carriage return at the end of the line.

To include data for your program in the control file, write it as you would data that is read from a

separate file. The only restriction on data in the control file is that alphabetic data that is preceded

by a dollar sign ($) must be preceded by an additional dollar sign so that Batch will not mistake it

for a comment.

If you put any special characters other than those described above in the first column of the line, you

may get unexpected results because Batch interprets other special characters in special ways. If you

want to know about other special characters, refer to Chapter 3 of the DECsystem-lO Operating

System Commands manual.

If you have more information than will fit on one line, you can continue on the next line by placing

a hyphen (-) as the last nonspace character on the line to be continued and the rest of the informa­

tion on the next line.

Comments can also be included either as separate lines in the control file or on lines containing

other information. To include a comment on a separate line, you must put a semicolon(i) in column

and follow it immediately with the comment. To add a comment to a'iine, you must precede the

comment with a semicolon (i) after all the information that you need has been put on the line.

3.2 SUBMITTING THE JOB TO BATCH

After you have created the control file and saved it on disk, you'must enter it into the Batch queue

so that it can be run. All programs and data that are to be processed when the iob is run must be

made up in advance or be generated during the running of the iob. You can have them on any medium

but, if they are on devices other than disk, you must include commands in your control file to have

the operator mount the devices on which your programs and data reside. It is recommended that your

programs and as much of your data as is possible reside on disk. An example of including MOUNT

commands in the control file to mount tapes is shown in Chapter 5.

You enter your iob into Batch's queue by means of the SUBMIT or QUEUE INP: monitor command.

These commands have the forms:

SUBMIT iobname = control filename.ext, log filename. ext/switches
QUEUE INP:iobname = control filename.ext, log filename. ext / switches

3-3

BEGINNER'S BATCH

lobname

control filename.ext

log filename.ext

- 140 -

is the name that you give to your lob.
If this name is omitted, Batch uses the
name of the control file.

is the name that you have given to the
control file that you created. You can
add an extension, but if you don't, Batch
will assume an extension of .CTL.

is the name that Batch will give the log
file when it is created. You can add an
extension, but if you don't, Batch will
assume an extension of • LOG.

You must specify the name of the control file. If the name of the log fi Ie is omitted, its name wi I L

be taken from the name of the control file.

/switches are switches to Batch to tell it how to
process your lob and what your output
wi II look like. Most switches can
appear anywhere in the command string;
however, a few must be placed after the
files to which they pertain. The various
kinds of switches are described below.

Three kinds of switches are available to you to use in the SUBMIT and QUEUE INP: commands. The

switches are: queue operation, general, and file control. Each category of switch and the switches

in each category are described in the following sections.

3.2.1 Queue Operation Switches

Queue operation switches describe the actions that you want Batch to perform with your lob. Only

one of this type of switch can be placed in the command string, and it can appear anywhere in the

command string.

/CREATE Switch

With the /CREATE switch, you tell Batch that you .?re entering a lob into its queue. The lob will

then wait in the queue until Batch is ready to process it. If you omit a queue operation switch from

the SUBMIT command string, Batch will assume the /CREATE switch, i.e., it will assume that you

are entering a lob. An example of this switch follows.

I\< ILL Switch

You put the I\< ILL switch in a SUBMIT command to tell Batch that you want to delete a lob that you

previously entered into its queue. For example, if you submit a lob and discover that you left a

command out of the control file, you could delete the queue entry by issuing another SUBMIT com­

mand for that lob with a I\< ILL switch in it. After you have corrected the control file, you could

resubmit the lob to Batch. However, if Batch has already started to run Y9ur lob; it will ignore

3-4

- 141 - BEGINNER'S BATCH

your request to delete the lob and issue the message %QUEUE REQUEST INP:lobname[prol,progl

INTERLOCKED IN QUEUE MANAGER. When you use the /KILL switch, you must specify the lob

name in the SUBMIT command or you will kill all the lobs that you may have in the Batch input queue.

/MODIFY Switch

If you want to change any switch value that you have previously entered in a SUBMIT command,

you can include the /MODIFY in a new SUBMIT command to tell Batch which switch value that you

want to change. You can change any switch value that can be entered in a SUBMIT command. The

switch value that you want changed is written immediately after the /MODIFY switch. For example,

to change the number of pages in a /PAGE switch (described below), you could issue the following

command;

SUBMIT MYJOa = IMODlry/PAGE:S00

The value specified in the /PAGE switch that follows the /MODIFY switch replaces the previous

value. If Batch has already started the lob in which you wish to change a switch, the /MODIFY

switch will' be ignored, and Batch will issue the message %QUEUE REQUEST INP:lobname[prol,progl

INTERLOCKED IN QUEUE MANAGER.

3.2.2 General Switches

You use the general switches to define limits for your lob. Such limits as core, pages of output, and

the time that your lob will run can be specified as general switches. Each general switch can be

specified only once in a SUB MIT command, although each can be modified in subsequent SUB MIT

commands by means of the /MODIFY switch. You can put a general switch anywhere in the com­

mand string because it affects the entire lob, not lust one file in the lob.

/AFTER:t Switch

If you don't want Batch to run your lob until after a certain time or until after a certain number of

minutes have elapsed since the lob was entered, you can include the /AFTER switch in the SUBMIT

command string. The time is specified in the form hhmm (e.g., 1215) and the number of minutes

that the lob must wait is specified in the form +t (e.g., +15). If you omit the switch, or the colon

and the value in the switch, Batch will schedule your lob as it normally would.

NOTE

If any of the programs in your lob have output to slow­
speed devices such as the card punch, the paper-tape
punch, the line printer, and the plotter, do not include
an ASSIGN command in your lob. Batch will take care
of this output for you as long as you specify the switches
for these devices, which are described below.

3-5

BEGINNER'S BATCH - 142 -

/CARDSm Switch

If any program in your iob has punched card output, you must include the /CARDS switch in the

SUBMIT command to specify the approximate number of cards that your job will punch. The number

of cards is specified in the form n (e.g.; 1000). If you do not specify the /CARDS switch, no cards

will be punched, even if you want them. If you specify the switch without the colon and a value,

up to 2000 cards can be punched by your iob. If you do not specify enough cards, the output that

remains after the limit is reached will be lost without notification to you.

/COREm Switch

You can specify the moximum amount <;If core in which the programs in your job will run by means

of the /CORE switch. You specify the amount of core in the form n (e.g., 25) which indicotes

decimal thousands. You should try to estimate as closely as possible the amount of core that your

iob will need. If you don't specify enough, you iob can't run to completion. If you omit the switch,

Batch will assume 25K of core or an amount set by the installation. If you specify the switch without

the colon and a value, Batch will assume 40K of core or an amount set by the installation.

/FEET:n Switch

If any program in your iob has punched-paper-tape output, you must include the /FEET switch in the

SUBMIT command to specify the approximate number of feet of paper tape that your job will punch.

You specify the number of feet in the form n (e.g., 50). If you do not specify the /FEET switch,

no paper tape will be punched, even if you want it. If you specify the /FEET switch without the

colon and a value, Batch will assume the numbe~ of feet equal to 10 times the number of disk blocks

that your paper tape output would occupy plus 20. If you do not specify enough paper tape, the

output that remains after the limit is exceeded will be lost and the message '?OUTPUT FORMS LIMIT

EXCEEDED will be punched into the tape in block letters.

/PAGE:n Switch

Normally, Batch allows your iob to print up to 200 pages. Included in this number are the log file

and any listings that you may request. If you need more than 200 pages for your iob, you must in­

clude the /PAGES switch in the SUBMIT command to indicate the approximate number of pages that

your iob will print. If you include the switch without the colon and a value, Batch will assume that

you will print up to 2000 pages. If your output exceeds either the moximum that Batch allows or the

number that you specified in the /PAGE switch, the excess output will be lost and the message

?OUTPUT FORMS LIMIT EXCEEDED will be printed. However, even if you exceed the moximum,

the first 10 pages of the log file will be printed.

/TIME: hh:mm:ss Switch

Normally, Batch allows your iob to use up to 5 minutes of central processor time. Central processor

(CPU) time is the amount of time that your iob runs in core, not the amount of time that it takes

3-6

- 143 - BEGINNER'S BATCH

Batch to process your iob. If you need more than 5 minutes of CPU time, you must include the

/TIME switch in the SUBMIT command to indicate the approximate amount of time that you will need.

If you specify the switch without the colon and a value, Batch will ossume that you need 1 hour of

CPU time. If you don't specify enough time, Batch will terminate your iob when the time is up.

The value in the /TiME s,witch is given in the form hh:mm:ss (hours:minutes:seconds). However, if

you specify only one number, Batch assumes that you mean seconds. Two numbers separated by a

colon is assumed to mean minutes and seconds. Only when you specify all three numbers, separated

by colons, does Batch assume that you mean hours, minutes, and seconds. For examp1e:

/TIME:25
/TIME:l:25
/TIME:l :25:00

means 25 seconds
means 1 minute and 25 seconds
means 1 hour and 25 minutes.

/TPLOT:t Switch

If you have any programs in your iob that do output to the plotter, you must include the /TPLOT

switch in the SUBMIT command so that your output will be plotted. If the /TPLOT switch is not

included, no output will be plotted. If you specify the switch without the number of minutes

(specified in the form t), Batch will allow output equal to 10 minutes of plotter time. If enough

minutes are not specified, any plotter output left after the time has expired will be lost without

notification to you.

3.2.3 File-Control Switches

File-control switches allow you to specify parameters for individual files in the SUB MIT command.

The control file can receive a special parameter, while the log file does not, and vice versa. If

you place a file-control switch before the two filenames in the SUBMIT command, the switch applies

to both fi les in the request. If you place the switch after one of the files in the command, it refers

to only that file.

/DISPOSE Switch

The /DISPOSE switch can have one of three values:

/DISPOSE:DELETE
/DISPOSE: PRESERVE
/DISPOSE:RENAME

/DISPOSE:DELETE allows you to specify that either the control file or the log file (or both) should

be deleted after the iob is run. The log file is deleted from your disk area only after it has been

printed.

/DISPOSE:PRESERVE allows you to specify that one or both of your files should be left in your disk

area after the iob is finished and all output printed.

3-7

BEGINNER'S BATCH - 144 -

/DISPOSE:RENAME tells Batch that you want the specified file to be taken from your disk area

immediately and put in Batch's disk area. In the case of the log file, /DISPOSE:RENAME only works

for a log file that already exists on your disk area. Do not use /DISPOSE:RENAME for a log file

that does not yet exist. After the iob has been run and the output has been printed, the file that

was renamed is deleted from Batch's disk area.

If you omit the /DISPOSE switch, Batch assumes /DISPOSE:PRESERVE. That is, both the control

file and the log file are saved in your disk area. If you plan to use the control file again, then it is

best to omit the /DISPOSE switch for the control file. If you don't want to keep the control file

because you don't have enough room in your disk area, specify either /DISPOSE:DELETE or

/DISPOSE:RENAME. /DISPOSE:DELETE will cause the control file to stay in your disk area until

after the iob is finished and then be deleted. /DISPOSE:RENAME will cause Batch to immediately

move your control file to its own disk area where it will stay until the iob is finished, at which time

it will be deleted. You should use /DISPOSE:RENAME when you will be over your logged-out

quota if the control file remains in your disk area when you log off the system.

Unless you have some use for the copy of the log file that wi II remain in your disk area even after it

has been printed, use the /DISPOSE:DELETE switch to have the log file deleted after it is printed.

If you do not delete the log file and you run the iob again using the same log filename, your new log

file will be appended to the old log file and they will both be printed as part of the new iob.

The switches, and the assumptions made if they or their values are omitted, are all subiect to change

by each installation. Check with the installation where you run your iobs to find out what differences

exist between the values described here and those at the installation. Additional switches are avail­

able for use with the SUBMIT command. For information about these switches, refer to the SUBMIT

command in Chapter 2 of the DECsystem-lO Operating System Commands manual (DEC-10-MRDC-D).

You can obtain further information about Batch in Chapter 3 of the aforementioned manual.

3.2.4 Examples of Submitting Jobs

The following are sample iobs that are entered to Batch by means of the SUBMIT command. The iobs

are shown in the following order.

1. Creating the control file.

2. Submitting the iob to Batch using the SUBMIT command •

• COMPI~E MYPROG.~4 I~ISTIGOM~I~E
.EX~CUTE MVPROG.~4

After the control file to compile and execute the FORTRAN program has been written and saved,

you must submit the iob to Batch.

SUBMIT MyFILE

3-8

- 145 - BEGINNER'S BATCH

When Batch reads this SUBMIT command, it assumes the following:

1. The control filename and extension are MYFILE.CTL.

2. The name of the iob is MYFILE.

3. The log file will be named MYFILE.LOG.

4. Both the control file and the log file will be saved in your disk area
(/DISPOSE: PRESERVE).

5. An entry is being created in Batch's queue (/CREATE).

6. No cards will be punched by the iob (/CARDS:O).

7. The maximum amount of core to be used to run the iob is 25K (/CORE:25).

8. No paper tape will be punched (/FEET:O).

9. 200 is the maximum number of pages to be printed (/PAGE:200).

10. The maximum amount of CPU time is 5 minutes (/TIME:5:00).

11. No plotter time will be used (/TPLOT:O).

The next example shows the control file that was created at the beginning of this chapter being

submitted to Batch •

• COMPlkE MYPROG,F4/CQM~ILE
.EXECUTE MYFILE.F4
.co~n!LE PROG2,F4/COMPlLE
,EXEcuTE PROG2,F4

After you have saved the control file, you must submit the iob to Batch.

When Batch reads this request, it assumes the following:

1. The name of the iob is MYFILE.

2. The name of the control file is MYFILE.CTL.

3. The log file will be named MYFILE.LOG.

4. An entry is being created in Batch's queue (/CREATE).

5. The log file will be deleted after it is printed (/DISPOSE:DELETE).

6. The control file will be saved in your disk area (/DISPOSE:PRESERVE).

7. A maximum of 500 cards can be punched by the iqb (/CARDS:500).

8. The maximum amount of core that can be used is 25K (CORE:25).

9. No paper tape will be punched by the iob (/FEET:O).

10. 20 is the maximum number of pages that can be printed (/PAGE:20).

11. The maximum amount of CPU time that the iob can use is 20 minutes
(/TI ME:20:00).

12. No plotter time will be used (/TPLOT:O).

If you made an error in the SUBMIT command when you submitted either of these iobs, Batch will

type an error message on your terminal to explain your error so that you can correct it.

3-9

BEGINNER'S BATCH - 146 -

3.3 BATCH COMMANDS (IN ALPHABETICAL ORDER)

You can write certain special Batch commands in the control file to tell Batch how to process your

control file. Each of these commands must be preceded by a period so that Batch will recognize it.

The commands are described in detail in the following sections.

3.3.1 The. BACKTO Command

You can use the .BACKTO command to direct Batch to search back in the control file for a line with

a specified label. The. BACK TO command has the form:

. BACKTO label

label is a 1- to 6-character alphanumeric label
for a statement. It must be followed by a
double colon (::) when it labels a state­
ment to show that it is label.

Normally, Batch reads the control file line-by-line and passes the commands and data to the monitor

and your program. When you put a . BACKTO command into the control file, you tell Batch to

interrupt the normal reading sequence and to search back in the control file to find a I ine containing

the label specified in the • BACK TO command. When it reaches the labelled line, Batch executes

the line and continues from that point (unless the line contains another .BACKTO command or a

.GOTO command, described below).

If Batch cannot find the labelled line, it terminates your iob. An example of the .BACKTO com­

mand is as follows.

ABCI: .DIRECT

.8ACKTO ABC

3.3.2 The. ERROR Command

With the .ERROR command, you can specify to Batch the character that you wish to be recognized

as the beginning of an error message. Normally, whe-n Batch reads a message that begins with a

question mark (?), it assumes a fatal error has occurred and terminates the iob, unless you have

specified error recovery (refer to Section 3.4). If you wish Batch to recognize another character

as the beginning of a fatal error message, you must specify the character in the .ERROR command.

This command has the form:

. ERROR character

character

3-10

is a single ASC II character that is
recognized in the DECsystem-10.

- 147 - BEGINNER'S BATCH

If you do not specify a character in the .ERROR command, Batch uses the standard error character,

the question mark. When a I ine that is preceded by the character that you specify in the. ERROR

command is passed to Batch from the monitor, a system program or is issued by Batch itself, Batch

treats the line as a fatal error and terminates the iob, exactly as it would if the line were preceded

by a question mark. Any messages preceded by other characters will not be recognized by Batch as

errors. The only exception is the ?TlME LIMIT EXCEEDED message. No matter what character you

specify as the beginning of an error, Batch will recognize this message and terminate your iob.

If you do not include the .ERROR command in your control file, Batch will recognize the question

mark as the beginning character of a fatal error message, unless you include the .NOERROR com­

mand in your control file to cause Batch to ignore fatal errors (refer to Section 3.3.5).

An example of the. ERROR command follows.

,
,ERROR %

.ERR0R

In this example, you specify in the middle of the control file that you want Batch to recognize the

percent sign (%) as the beginning character of a fatal error from that point in the control file.

Further on in the control file, you tell Batch to go back to recognizing the question mark as the

beginning of a fatal error message.

3.3.3 The .GOTO Command

You can include the .GOTO command in your control file to direct Batch to skip over lines in the

control file to find a specific line. The .GOTO command has the form:

.GOTO label

label is a 1- to 6-character alphanumeric
label for a statement. It must be
followed by a double colon (::) when it
labels a stdtement to show that it is
a label.

When Batch encounters a • GOTO command in the control file, it searches forward in the control

fi Ie to find the label specified in the. GOTO command. Batch then resumes processing of the

control fi Ie at the line with the specified label. If Batch cannot find the labelled line, it termi­

nates your job.

If you do not include a • GOTO command in the control file, Batch reads the control file sequentially

from the first statement to the last, unless you include a • BACK TO statement (refer to Section 3.3.1).

3-11

BEGINNER'S BATCH - 148 -

An example of the .GOTO command follows.

,
.GOT(J ABC

,
ABC: I ,DIRE.CT

You can use the .GOTO command as the statement in an .IF command (refer to Section 3.3.4) to

aid you in error processing. For example:

.It (ERROR) ,GO!O ABC

,
ABC; I I TYPE MypHOG

3.3.4 The .IF Command

You can include the .IF command in your control file to specify an error recovery procedure to Batch

or to specify normal processing if an error does not occur. The .IF statement has the forms:

.IF (ERROR) statement

.IF (NOERROR) statement

statement is a command to the monitor, to a pro­
gram, or to Batch.

The .IF command can be used in two ways as shown in its two forms. You can include the

.IF (ERROR) command in your control file at the place where you may have an error. The

.IF (ERROR) command must be the next monitor-level line (as opposed to a line in your program

or a line of data) in your control file after an error occurs so that Batch will not terminate your iob.

In the .IF (ERROR) command, you direct Batch to either go back or forward in your control file

to find a I ine that will perform some task for you, or direct Batch to perform a task for you at that

point in your control file, or to direct the monitor or any other program to perform some task for you.

You can use the .IF (NOERROR) command also to direct Batch or the monitor to perform tasks for

you when an error does not occur at the point in your control file where you place the .IF (NOERROR)

command. Thus, if you expect that an error will occur in your program, you can include an

.IF (NOERROR) command to direct Batch in case the error does not occur, and then put the error

processing lines immediately following the command. Refer to Section 3.4 for an example of using

.IF (NOERROR) and .IF (ERROR).

If an error occurs and Batch does not find an .IF command as the next monitor-level line in the

control file, Batch writes an error message in the log file and terminates the iob. If one of your

3-12

- 149 - BEGINNER'S BATCH

programs is running when an error occurs and there is no .IF command, Batch causes dump to be

taken and terminates your iob.

3.3.5 The. NOERROR Command

You can use the. NOERROR command to tell Batch to ignore all error messages issued by the

monitor, system programs, and Batch itself. The only exception is the message ?T1ME LIMIT

EXCEEDED. Batch will always recognize this. as an error message and terminate your iob. The

• NOERROR command has the form:

.NOERROR

When Batch reads the. NOERROR command, it ignores any error messages that would normally

cause it to terminate your iob. However, Batch still writes the error message in the log file so that

you can examine your errors when your output is returned.

You can use. NOERROR commands in coniunction with. ERROR commands in the control file to

control error reporting. For example, if you wish to ignore errors at the beginning and end but not

in the middle of the control file, place. ERROR and. NOERROR commands at the appropriate

places in the control file. In addition, you can also specify which messages must be treated as

fatal errors.

I

• NOEFiROR

I

• ERR!'lF, %

• E R Ii,~ ~i

•
,NOE;;':OOR

The first command tells Batch to ignore all errors in your iob. The second command tells Batch to

recognize as errors any message that starts with a percent sign (%). You change the error reporting

with the next command to tell Batch to go back t~ recognizing messq;Jes that begin with a question

mark as fatal. The second .NOERROR command tells Batch to ignore all error messages again. If

the ?T1 ME LI MIT EXCEEDED message is issued at any time, Batch wi II print the message and

terminate the iob.

3-13

BEGINNER'S BATCH - 150 -

3.4 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

If you don't specify error recovery when an error occurs in your iob, Batch terminates the iob and,

if the error occurs when one of your programs is running, causes a dump of your core area. You can

specify error recovery in the control file by means of the Batch commands, especially the .IF com­

mand. You must include the .IF command at the point between programs in the control file that an

error may occur. When an error occurs, Batch examines the next monitor-level line (i. e., not a

line that contains -data or a command string to a system program) to find an .IF command to tell it

what to do with the error. If an error does not occur and an .IF (ERROR) command is present, the

.IF (ERROR) command is not executed. Similarly, if an error does not occur and you have included

an .IF (NOERROR) command, the .IF command is processed. Thus, if you have a program that you are

not sure is error-free, you can include an .IF command to tell Batch what to do if an error occurs, as

shown in the following example •

• COMPILE MYPHOG·F4
.If (lRROR) STAiEMENT

In either the .IF (ERROR) or the .IF (NOERROR) command, you must include a statement that tells

Batch what to do. You can use any monitor command or one of the Batch commands. The .GOTO

and .BACKTO commands are commonly used for this purpose. Refer to Sections 3.3.1 and 3.3.3 for

descriptions of these commands. Be sure, if you use. GOTO or . BACKTO in the .IF command, that

you supply a line in the control file that has the label that you specified in the .GOTO or .BACKTO

command.

Two sample iobs are shown below. The first shows the .IF (ERROR) command and the .GOTO com­

mand to specify error recovery. The second example shows the use of the. IF (NOERROR) and

.GOTO commands.

If you have a program that you are not sure will compile without errors, you can include another

version of the same program in your iob (that hopefully will compile) and tell Batch to compile the

second program if the first has an error. You write the control file as follows •

• COMnILE ICOMPILE MyPROG,F4 'LIST
.IF (ERROR) ,GOIO A
.EXECUTE MYPROG.f4
.GOTt'1 B
All ICONTIi\UE
.COMPIlE ICOMPILE PROG~.F4 '.IST
.EXE~UTE PROG2.~4
BII ICONTI~:uE

When the iob is run, Batch reads the control file and passes commands to the monitor. If an error

occurs in the compilation of the first program, Batch finds the .IF (ERROR) command and executes

the. GOTO command contained in it. The command tells Batch to look for the I ine labelled A,

whi ch contains a comment, so Batch continues to the end of the control file. If an error does not

3-14

- 151 - BEGINNER'S BATCH

occur in the first program, Batch skips the .IF (ERROR) command, executes the program with its

data, skips the unnecessary error procedures, and continues to the end of the control file.

A variation of the above procedure is shown below using the .IF (NOERROR) command and the

.GOTO command. The difference is that Batch skips the .IF (NOERROR) command if an error

occurs, and performs it if on error does not occur. The following is the control file that you would

create.

.COM~ILE ICOMPILE MVPROG,r4 ILIST

.IF CNOERROR1 ,GOTO A

.CO~PILE ICOMPI~E FROG2,F4 I.IST
,EXE~UTE PROG2,r4
,GOT~ B
A " leo N T PW t:
,EXECUTE MVPROG.F4
BII 'CONTINUE

When the iob is run, Batch passes the COMPILE command to the monitor to compile the first pro­

gram. If an error does not occur, the .IF (NOERROR) command and the .GOTO command are

executed. Batch skips to the I ine labelled A, which is a comment, and continues reading the

control file. The program MYPROG.F4 is executed with its data and the end of the iob is reached.

If an error occurs, Batch skips the .IF (NOERROR) command and continues reading the control

file. PROG2.F4 is compiled and then executed with the same data that the first program would

have used. Batch is then told to go to the line labelled B, which is a comment line. The end of

the iob follows.

The examples shown above illustrate only two ways that you can specify error recovery in the control

file. You can also use the other Batch commands, or any monitor command that you choose to help

you recover from errors in your iob.

You do not have to attempt to recover from errors wh i I e your iob is runn i ng. You can correct your

errors according to the error messages in the log file when your iob is returned to you, and then run

your iob again. Batch wi II also print a dump of your core area if an error occurs whi Ie your iob is

running and you have not specified error recovery. If you can read dumps, this can also aid you to

correct your errors. The log file and dumps are described in Chapter 4.

3-15

BEGINNER'S BATCH - 152 -

- 153 - BEGINNER'S BATCH

CHAPTER 4

INTERPRETING YOUR PRINTED OUTPUT

You can receive three kinds of printed output from your Batch iob:

1. Output that you request, i.e., the results of your iob.

2. Output from Batch, i.e., the log file.

3. Output that is the result of actions by your iob or by Batch, the monitor,
or system programs. Examples of this output are compilation listings,
cross-reference I istings, error messages, and core dumps requested by Batch.

4.1 OUTPUT FROM YOUR JOB

Although this chapter deals mainly with printed output, you can have output to any device that the

installation supports, as long as the installation allows you to use these devices. If your output is

directed to the line printer, it will be printed separate from the log file. The printed output from

each program will be preceded by two pages containing your name and proiect-programmer number

and other pertinent information. Following these pages are two"header pages containing the name

of your output file in block letters. The output follows these header pages. A trailer page follows

your output. This page contains the same information that is on the first two pages. The header

and trailer pages also include three rows of numbers (reap vertically from 001 to 132).

If your output is that which would normally be sent to the terminal. it will be printed in the log file.

In the sample output shown in Section 4.4, the output from the program is included in the log file

because it is directed to the terminal rather than the line printer.

4.2 BATCH OUTPUT

The output from Batch consists of a log file that contains all the statements in the control file, com­

mands sent to the monitor from Batch for you, and the replies to the commands from the monitor and

system programs like the compilers. Any error message sent from the monitor or a system program, or

from Batch itself, is also written in the log fi Ie. Refer to the DECsystem-l0 Operating System

Commands manual (DEC-l0-MRDC-D) for a list of the error messages from the monitor. The messages

from each system program are listed in the applicable manuals.

You can ignore most of the information in the log file because it is system information and need not

concern you. If you wish, you can keep it for reference by system programmers if unexpected results

occur in your iob.

4-1

BEGINNER'S BATCH - 154 -

4.3 OTHER PRINTED OUTPUT

Other output that you can get as a result of your lob includes compiler and cross-reference listings,

loader maps for programs that were successfully loaded, and dumps that you can request or that Batch

gives to you when an error occurs in your program.

The compiler and cross-reference listings are those listings generated by the compiler if you request

them. When you enter your iob from cards, Batch requests compilation listings for you unless you

specify otherwise. Cross-reference I istings are generated for you only if you specifically ask Batch

for them. When you enter your lob from a terminal, you must request the listings in the COMPILE

command. Also, if you request a cross-reference listing, you must run the CREF program (by means

of the CREF command) to get your listing printed.

If you enter your lob from cards and include a $DATA card to request execution of a program, Batch

requests a loader map for you. This map shows the locations in memory into which your program was

placed. If you enter your lob from a terminal, you must request a loader map in the EXECUTE com­

mand if you wish to have one. If you wish to know the locations into which your program was loaded,

the loader map can be of use to you. Otherwise, you can ignore it. A loader map is shown in the

sample output in Section 4.4, however, it is not interpreted in this manual.

If a fatal error occurs in a program in your lob and you have not included an error recovery command

to Batch, Batch will not try to recover from the error for you. Instead, it will write the error

message in the control file, request dump of your memory area, and terminate your lob. The dump is

then printed with your ou.tput. If you can read dumps, the dump that Batch requests for you may be

helpful in finding your errors. Otherwise, you can ignore the dump and use the error messages to

locate the errors in your program. A sample dump is shown in Section 4.4, but it is not interpreted.

It is shown so that you can recognize it if you ever receive one.

4.4 SAMPLE BATCH OUTPUT

Two sample lobs and their output are shown in the following sections. The first shows a lob entered

from cards, the second shows a lob entered from a terminal. The log file is somewhat different for

the two types of lobs. Following the sample lobs is a sample dump.

4.4. 1 Sample Output from a Job on Cards

This example shows a lob in which a small COBOL program is compiled and executed. The card

deck is as follows.

4-2

- 155 -

COBOL SOURCE PROGRAM

The COBOL program is as follows.

IDENTIFICATION DIVISION.
PROGRAM-ID. MYPROG.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
START.

BEGINNER'S BATCH

10-0924

DISPLAY "THIS IS TO SHOW SAMPLE OUTPUT FROM MPB'.".
DISPLAY "THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.".
STOP RUN.

When the iob is run, the program is compiled and a compilation listing is produced. The listing is

shown below. Note that the compiler put sequence numbers on the program even though they were

not in the original program.

PRO G RAM M Y pRO G, COBOL 3(43)

0001 lDENTIrlCATION DIVISION.
0002 PROGRAM-IO. MYPROG;
0003 rNVIRONMrNT DIVISION,
0004 DATA DIVISION,
0005 PROC~DU~E DIV1~ION,
0006 START.
0007 OISP~AY "THIS IS TO SHOW SA~PLE OUTPUT FROM MPB,".
0008 DISPLAY "THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.",
0009 STOP RUN,

NO ERRORS DEfECTED

After the program is compiled, it is loaded and executed. Since Batch requests a loader map when it

puts the EXECUTE command in the control file, the loader map is the next thing printed from your iob.

It is shown below. Note that each of these print-outs are preceded by headers, which are not shown

in these examples.

4-3

.,..
J,.

e~1246 IS THE ~UW SEGMENT BREAK

MAP STORA~E MAP 10'42 21-MAR-72

STARTING AODRES§ 001200 PROG COBO~

.COMH, 00014'" 00;040

MYPROG,' 00121!11!' 001103
START, 11101 2 00
AI.TE:R, 000143
MONEY , 000;47
TRAC3, 000;54

TRACeD 00124~ 00001113
BTRAC, 0Q11~44
TRPOP, Qlr2I10i!44

COBO~ 1K CORE, ~45 WORDS F'RE£
LOAorR USED 2+4K CORE

F'l~ES,
OVRF'N,
MEr'UH,
"NM,

PTr~G,

tILE MYPROG

0021140 USES.
1!IfIl0H4 IIOINT.
11I012f15~ TRAC1.
000155 fCOT.

001245 TRACE.

121811J141 SECiWO.
IIIU1 45 COMMA.
1Ilet/l1'2 TRAC2.
1/!0I/J1'6 "PR.

121 III U43 TRPD,

00~1~2
12f001~6
12f001!>3
12112f01!>7

01Z12~4

III
m
Q

Z
Z
m
;;0

VI

III »
-I
()
::z::

~

- 157 - BEGINNER'S BATCH

Following loading, the program is executed. The program in this example does not.have output to the

line printer, instead its output is written to a terminal. Because this is a Batch iob, the terminal

output is written in the log file. The log file is printed next because the end of the iob is reached.

The log file contains all the dialog between your iob and the monitor and system programs, and some

commands that Batch sent to the monitor for you. An annotated log file is shown on the following

pages. Note that each line in the log file is preceded by the time of day when the line was written.

Following the time is a word that describes what kind of information is on each line. You do not need

to know what each of these words means because much of the information is system information.

4-5

"""" J.

10141&43 OATE
UJI41143 CARO
UJ 141144 STSUM

1121 I 41 1'121 8VERS
10"1411'121 8DATE
1r/I14ll'l2I ElASUM

1IIl1411,0
Ul1411!i
lI'42Ie~
1IIJ142 101
1rIJ I 4 2 I IIl1
101421U
Ull42111l1
UlI421t1'J8
1014211218
1IIl142108
101 4211!J8
UH 42 "'8

Ull42108
10 142"11121
10142132
1,0142132
1I/l142132

MONTR
IONTR

USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

MONTR
USER
MONTR
MONTR
MONTR

21·~AR~72 5~4A1E OUAL CPU CDRSTK VER 12(17) aSK
SJOB MVJOe C10,1164J
END 0' rILE 4rTER 15 CAROS. 1214 rILES, 1213 BL~S

BATr.nN 7 (35) I NP: SUBJOB 1211 OF" 06
21-MAR~72
MYJOBtll21l~164J FOR e*t11/l,1164J LOG F"ILE IN tll21,1164J
REQUEST CR£ATEO AT 10:411121121 21-MAR~72
UNIQUEI 2 RESTART, 1

,L.OGIN 1I'Il/1164
JOB 24 554A1E OUAL. CPU TTY102
OTHER ~oes SAM~ pp~
112141 21.MAR.72 TUE

,SET TIME: 30121.

,S£T S~OOL AL.L

•
SS£QUENCE U
SJOB MVJOB t10,1164J
SCOenL. MyPROQ.CBL
.COMP ICOMPl~E MVPROG,CBL/LIST ICREATED BY CDRSTK
COBOLI MYPROG
EXIT

}
}

This is system information that Batch
enters. It need not concern you.

Batch logs your iob into the system.
The information that follows it is the
system response.

These are commands that Batch
entered for you.

These are the cards that you entered.

This is the command entered by
Batch for you.

The answer to the COMPILE command
from the monitor.

to
m
G)

Z
Z
m
:;0

VI

to
l>
-t
n
:::I:

<.ro
(Xl

oj>.
I
'l

10142 32 MONTR
121142 32 MONTR
11/1142 32 MONTR
10142 '9 USER
10143 1!I2J USER
Ull43 !!J0 USER
1014:5 U USER
1111143 2lIIJ USER
1111143 !lI0 USER
10143 210 USE~
10143 "0 MONTR
10143 210 MONTR
10143 !!J0 MONTR
1IIJ143 2IIIJ MONTR

10 43 0" MONTR
1I1J 43 U USER
10 43 21 USER
1IIJ 43 21 USER
10 43 21 USER
10 43 21 USER
Ul 43 21 MONTR
Ul 43 21 MONTR
10 43 22 MONTR
10 43 25 K-QUE
10 43 30 KJ08
11/1 43 43 L.GOUT
1&1 43 45 L.GOUT
10 43 45 L.GOUT
10 43 4' LGOUT

Ul1431'4 LI'MSG
11'/J14412rz1 LFMSG
11'/1145120 L.PMSG
U'45121 L.PMSG
UI46125 L.PMSG

SDATA) Your $DATA card.
.SET CDR QAA.COR lCREATED BY CDRSTK }

• ,E XE: C l"lAP 1 ~A FI • LI~ TIRE I.- M YP ROG. RE L I CRE A TE 0 Bye 0 R 5 T K Commands entered by Batch for you.

Monitor response to the EXECUTE

L.OADING }
0012 46. IS THE LOW SEGMENT BREAK

COBOL 1K CORE: command.
EXECUTION
TH I S I ~ TO SyOw SAMI'LE OUTPUT fROM M~B. j This is the output from your program.
THESE TWO LI~ES ARE OUTI'UT fROM THE ~ROGRAM.

EXIT Monitor indicates that execution of
your program has ended.

•
n!NI
.DEL MYPROQ.qEL,QAA,COR,MYPROG.CBL
rILES DELETE~I
MYPROG.REL
QAA. COR
MYF'Ror;;·CBL
03 BLOCKS F'REEO

•

1 Command entered by Batch.

J ."po"re to the DELETE Commo"d.

.KJOB ~SKBIMVJOB.LOG[111J,1164~:/W/l:4/B/VS:111J/VLI201!!/VDID
TOTAL OF 7 B~oet<s IN LFT REQUEST lThis is the LOGOUT dialog, giving
OTHER ~OBS SAME PPN system information.
JOe ~4' USER [10,1164J LOGGED OF'F TTY102 104321-MAR./2
SAVED ALL 4 rILES (25, OISK BL.OCKS>
ANOTHER JOB STILL LOGGEO IN UNDER [10,1164J
RUNTIM~ III Ml~, 03,97 SEC

LPTSFIL VERSION 4(12'> RUNNING ON LPT3 }
JOB MYJOB rI.E DSKB1:MYPROG,LST[10.1164J FOR (10,1164J STARTED This is more system information.
DSKS1IMVPROG.LST[10,1164J DONE
JOB MyJOB rl~E DSKB1:MAP.LPTC10,1164J FOR [10.1164~ STARTED
OSKB1IMAF',LPTC10,1164J OONE

~

OJ
m
G>
Z
Z
m
:::0
Vl

OJ
»
-I
()
:::I:

BEGINNER'S BATCH - 160 -

4.4.2 Sample Output from a Job from a Terminal

This example shows the same iob described above as it would be entered from a terminal. You would

first create the program as a file on disk.

IDENTlrlCATION DIVISION,
PROGR~M.IO. MYPROQ.
ENVI~ONMENT DIVlSION •

. DATA DIVISION.
PROCr.OURE DIVISION,
START.
OISP~4Y "THIS IS TO SHOW SAM~L£ OUTPUT rROM MPB.".
DISPLAY "THESE !WO LIN~S ARE OUTPUT FROM THE PROGRAM,".
STOP RUN.

Then you would make up a control file to compile and execute the COBOL program.

~COMPI~E MYPROG.C8L
,EXECUTE MYPROG

You must then submit the iob to Batch using· the SUBMIT command.

SUBMIT MYJOB

When the iob is run, the program is compiled and a listing is produced, even though you did not re­

quest it. This is because the C9BOl compiler always produces a listing. Note that the compiler

adds sequence numbers to the listing, even through you did not include these numbers on the program.

PRO G R A H M Y P HOG. 22-MAR-72 15.10

0001 IOENTIrlCATION DIVISION,
0002 PROGRAM-IO. MYPROG.
8003 ENVIRONMENT DIVISION,
0004 DATA DIVISION,
IIUJS PROCEDUHE, 0 I V I S I ON,
8006 START.
0007 nISP~AY "THIS IS TO SHOW SAMPLE OUTPUT FROM MPB.",
8008 DISPLAY "THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.".
8809 STOP RUN.

NO ERRORS DETEC!ED

Because you did not request it specifically in the EXECUTE command, you will not get a loader map

of your program. The log file is printed next as the last of your output. The output from the program

is written in the log file because it is output·to the terminal and the log file simulates a terminal

dialog. The log file also contains some commands that Batch sent to the moni~or for you and some

additional system information. An annotated log file is shown on the following page. Note that

each line in the log file is preceded by the time of day when the line was written. Following the

time is a word that describes what kind of information is on each line. You do not have to know

what each of these words means because much of the information is system information.

4-8

.j:>.
I

-0

1511119:06 BVERS
151091~6 BDATE
15. 091 ~6 BASU~i

15 09 ~6 MONTR
15 09 1216 MONTR
15 09 27 USER
15 09 27 USER
15 09 27 USER
15 09 51 USER
15 U 06 MONTR
15 10 rl6 MONiR
15 10 26 MO;'TR
15 1l'l 06 MONTR
15 1~ 07 MO~~TR
15 leo 07 MONTR

15112 07 MONTR
15112 31 USER
15111 18 MONTR
15111 18
15 I 11 18 ,M 0 r~ T R
15111 30 USER
15111 30 USER
15111 30 USER
15 III 30 USER
15111 30 USER
15111 30 USER
15111 30 MONTR
15111 30 MO~HR
15111 30 MONTR
15111 30 MONTR
15111 30 MONTR
15111 58 K-QUE
15115 ::35 LGOUT
1511~ 36 LGOUT
15115136 LGOUT
1511'5144 lPMSG
15116:C!J6 LPMSG
15117105 lPMSG

BATeON 7(3&) INP: SUBJOB 01 Or 06
22-MAR-72
MPB(10'1164J FOR -SMITH 0(10,1164J LOG rILE IN C10,~164J
REOUES! CR~ATED AT 1~:07:32 22-MAR-72

This is sytem information that Batch
enters. It need not concern you.

UNIQUE' 2 RESTART 1 0

.LOGIN 10,1164
JOB 35 ~54Alr DUAL CPU TTY102
OT~ER JOBS SAME PP~
1509 22 .. MAR-72

.S~T TIME 3021

• SET SI-lOOL A_l

.,CO~PILE MygROG.CBL
COBOLI MYPROG.
EX 1 T
MONTR
.,EXECUT~ MygROG.CBL
LOADING·

COBOL 1K CORe:
EXECUT 1 ON

WED

THIS l~ TO S~OW SAMPLE OUTPUT FROM MPB.
THESE !WO Ll~ES AR~ OUTPUT rROM THE PROGRAM,

EX I T

.

Batch logs your iob into the system.
The information that follows is the
system response.

} These are commends that Betch enters
for you .

)
ThiS is the commend from your control
fi Ie end the response.

}
ThiS is enother commend from your
control file and its response.

}ThiS is the output from your program.

}ThiS indicates that execution has ended.

• KJOB USKB01 ~pB. lO(;C 10,1164 J=/W/r 14/9/VR: 10/VS 1425/y/L 12ihll'/VD I}
TOT AL OF 4 B_OCKS I I\J L.PT REQUESl . This is the LOGOUT dialog, which
JOB 3~, USER C10.116 4 J lOGGED 0 •• TTY102 1515 22-MAR.12 gives system information.
SAVED ALL 10 FILES (125, OISK BLOCKS)
RUNTIME 0 MI~, 04.0, SEC
LPTSPL.. YER. 5 I:lN 4 (125) RUNN I NG ON LPT3 } This is more system information.
JOB MP~ FILE DSKB1IMYPROG.LSTC10,116 4 J FOR C10,116 4JSTARTEO
DSKB1I MYPROG.LSTC10,1164j DONE

0-
~

OJ
m
G'l
Z
Z
m
;:0

VI

OJ »
-I
()
::I:

BEGINNER'S BATCH - 162 -

4.4.3 Sample Dump

Shown on the following pages is the log file containing an error message and the dump that Batch

requested as a result of the message. The error resulted from use of a logical name in a program

without assigning the logical name to a physical device at run time.

The dump lists the assembly language equivalent of your program, and the location in memory in

octal, decimal, ASCII code, and SIXBIT code. (SIXBIT code-is a compressed form of ASCII used

in COBOL and some system programs.) Only the first three pages of the dump are shown.

4-10

1412!5142 BVERS
1412'142 BDATE
1412",42 BASUM

14 2' 42 MONTR
14 25 42 MONTR
14 U 45 USF'A
14 2' ., USER

~ 14 2!1 45 USER
I 14 2!1 "6 MONTR -

1" 2' 46 MONTR
14 U 46 MONTR
U 2' "6 MONTR
14 2' 46 MONTR
1" 2!J 46 MONTR
14 25 4? MONTR
14 2!J 47 MONTR
14 2' 47 MONTR

BATeON 7(36) rNPI SUBJOB 01 Of 1116
22-MAR-72
INJOBC 111l.1164J fOR .GORFINKLE ·Cll1l,116~J LOG r.lLE IN
A£QUES! CREATEO AT 14:24:35 22-MAR-72
UNIQUE~ 2 RESTART I III

,LOGIN 1111,1164
JOB 30 5'4A1f QUAL CPU TTYl1112
OT~ER JOBS SAM£ PPN
1425 22.MAR·72 WED

,SET TIME :!01Z1

,SET S~OOL. A:'L

,.COMPILE £XAMPLE.C8L

EXIT

0-w

III
m
G)

Z
Z
m
:;0

VI

III »
-I
n
::I:

14 25:47 MONTR
14 25:5~ USER
14 25:55 USEF<
14 25:55 USER
14 25:55 USER
14 2!5:55 USEJ(
14 25 55 USER
14 25 55 USEI<
14 25 55 USER
14 25 55 USfl<
14125 55 USER
14:25 55 MONTIol
14:25 55 MONTR
14:25 55 MONTR
14:25 55 MONTR

• 14 25 56 MONTR
.!. 14 25 56 MON1R
N 14 25 56 MONTR

14 25 56 MON1R
14 26 04 USEr;
14 26 1ti4 USEFI
14 26 15 "'IONTR
14 26 15 MONTR
14 26 15 MONTR
14 26 15 MONTR
14 26 17 K .. Ql;E.

14 26 21 KJOb

14126 31 I.GOl!T
14: 26 32. I.GOliT
14:26 32 I.GOliT
14:26 32 loGOuT
14:26 40 LPMSG
14:27 04 I.PMSG
14:.29 24 I.PMSG

•• ~XECUTE EX.MPI.E.Ca~
LOADING

COBOl. lK CORE
EXECUTION

INIT TOOK THE ERROR kETURN
DEvICE MAGl IS NOT A DEVICE OR IS NOT AVAII.ABI.E TO THIS JOB

INIT TOOK THE ERRO~ kE1URN
DEVICE MAG2 IS NOT • DEVICE OR IS NOT AVAILABE TO THIS JOB

?I.AST COBOl. UUO CAI.I.EO FROM USER 1.0CATION 4001155

EXIT

.tI.OSE

.DUMP

o SYMBOLS EXTRACTED

EXIT

.KJUB DSK~1:INJOB.LO&t10,1164]=/W/Z:4/B/VR:1~/VS:422/VI.:2001VO:p
TOTAl. OF 3~ BI.OCKS IN I-PT REQUEST
OTHER JOoS SAME PPN

JOB 30, USE.R [10,1164] LOGGED OFF TTV102 1426 22-MAR.72
SAVED ALI. 6 FILES (1~0. DISK BI.OCKS)
A~OTHER· JO~ sTII.L LObGE.D IN UNDER [10,1164]
RUNTIME 0 MIN, 1~.79 stC
I.PTSPL VERSION 4(125) RUWNING ON I.PT3
JOB INJoS FILE OsKB010300AE[10,~154l FOR tlV,,1164] STARTED
DSKB0:~30uAE[1~,1164] UONE

}

This is the error
message that caused
Batch to request the
dump.

OJ
m
G'>
Z
Z
m
;;0

V)

OJ

~
()
::t

~

- 165 -

QUICK DUMP VERSION %3(24) tFI~E SYSIQUIKDM.CC~]

MONITOR INFORMATION

BEGINNER'S BATCH

MONITOR NAME 554A1F DUAL. CPU BUIL.T ON 03-21-72

SYSTEM SERIA~ NUMBER IS 160

MONITOR VERSION IS 000000,050400

JOB INFORMATION

DUMP TAKEN 3.22-72 AT 14:25

DAEMON VERSION 6(21)-0

JOB NUMBER 30

TTY102 PPN t10,1164] CHARGE NUMBER 0

RUN TIME -0 ~IN. 50 SECONDS

TOTAL. KCS -6

TOTAL. OF 128 DISK READS, 10 DISK WRITES

PRIV. BITs"

THERE ARE 0 REAL. TIME DEVICES IN USE

CURRENT HPQ IS " L.AST HPQ COMMAND HAS 0

HISEG NAME DSKBIL.IBOL. .SHR

HISEG DIRECTORy t1, A]

USER NAME IS GORFINKL.E

USER CORE L.IMIT IS 261632 WORDS

USER TIME ~I~IT' IS 299 SECONDS

PROGRAM NAME I~ COBOL.

4-13

BEGINNER'S BATCH - 166 -

CORE INFORMATION

PC • 700000,057777 OPC • 000000,000000
LAST UUO AT 440004,000005

SYMBOLIC LOCATIONS
PC • BLKI 57777
OPC • 7
~AST UUO AT ANDCS 6(4)

ACS,IN OCTAL.

01
~I
61
111
141
171

010500,000002
5541117,220000
00e0~0,0011!1i00
0000'-10,00021'14
310000,0011112
7776~\1,0011163

ACS IN DECIMAL:

000000,000000
000000,000002
200022,001361
777777,000000
0~4001, 0014211

522202,715530
000000,000000
000000,001777
000000,001425
o IIHII 000 , 000000

01
71
151

1157627906
17184588529
537133844

o -23~19569576 -19837149184 2 0
1023 132 -2621411 789 26843546378

o -3~291469

S~LECTED CORE AREAS DUMPED AS INSTRUCTION,OCTAL,OECIMAL,SIXBIT,ASCII

4-14

AROUND teAt17) [HOPEFUI.LY A PUSH DOWN LIST]

14431 DPS 0,814 137240,001406 12792628014 +2' , N J
14441 UU001/:2 3,728 002140,001330 293602008 l' +8 F I-
14451 UU0012 01200QJ,000000 1342177280 10 • 14461 JRST 795 204000,001433 23080400011 !S. , , +
14471 PUSHJ 15.815 260740,001407 23748150063 6" ,0
14501 Z 17 000000,000021 17 1
1451/. UU0001 1,728 001040,001330 142507064 (' .8 " I-
14021 UU0001 1,661 001040,001220 1426069517 (' .5 " J
14531 PUSHJ 15,'113 260760,000161 23752343660 6'P ,Q , 8
14541 UU0001 5,753(14) 001206,001361 179831537 .N .Q .P)(
14551 CATL 8,699 301400,001273 25971131067 8, • t 00 1
1456. tATL 8,766 301400,001376 25971131134 8, • 00
14571 AOS (15) 350017,000000 31142445056 • 1 I)(

~ 14601 POPJ 15, 263740,000000 24150802432 61'
I 14611 2 000000,000000 0 ()o. - '" IJl 14621 Z 000000,000000 0

14631 UU0010 131191 010000, .400167 1073873015 , .,w ,
14641 tAM 131497 310000,400651 26843677097 51 '&1 2 T
14601 CAM 131555 310000,400743 26843677155 9 .'t 2 Q
14661 tAM 132709 310000,403145 26843678309 9 '9E 2 2
14671 2 000000,000000 0
14701 2 000000,00011100 0
14711 2 000000,000000 0
14721 2 000000,000000 0
14731 2 000000,000000 0
14741 2 000000,000000 0
14751 Z 000000,000000 0
14761 Z 000000,000000 0 G:I
14771 2 000000,000000 0 m

15001 Z 000000,000000 1/1
G')

15011 Z 000000,000000 0 Z
Z 15021 Z 000000,000000 0 m

10031 Z 000000,000000 0 :;tI

V>

G:I »
-t
()
:J:

BEGINNER'S BATCH - 168 -

- 169 - BEGINNER'S BATCH

CHAPTER 5

PERFORMING COMMON TASKS WITH BATCH

This chapter shows some sample jobs that are run from a terminal and from cards. Section 5.1

illustrates entering jobs from a terminal. Section 5.2 shows entering jobs from cards. The examples

are the same in both cases, the difference is only in the way that they are entered.

5.1 USING THE TER MINAL TO ENTER JOBS

ALGOL Example

The first job is a simple ALGOL program that writes output to the terminal. Since the job is being

entered through Batch, the output is written in the log file instead of on the terminal.

BEGIN

END

REAL XI INTEGER II
XI· 11
FOR I I. 1 UNTIL 1000 DO X .- X+I,
PRINT(lC)'

The control file for the program is as follows .

• COMPILE MYPROG.ALG/LIST
.EXECUTE MYPROG.ALG

SUBMIT MYF'ILE

When Batch starts th! job, the statements in the control file call the ALGOL compiler to compile the

program. Batch then calls the loader to load the program for execution. A listing of the program

will be printed with the log file, as shown below •.

DECSYSTEM 10 ALGOL-50. V. 2AC14e)1
13-APR-72 lel2el57

0001il03 Bl
START OF BLOCK 1
000006
000006
000016
000023
01110026 El

END BLOCK i, CaNT 0

o ERRORS

1 BEGIN

2 REAL X, INTEGER
;, X IU,
4 !fOR I 1.1 UNTIL
5 PRINTClC)f
6 END

5-1

II

1000 DO X I-X+II

1.11
I

'"

15'25'50 BVERS
15:25:50 BDATE
15125:50 BASUM

15:25150 MONTR
15 25 5k' MONTR
15 25 51 USER
15 25 51 USER
15 25 51 USER
15 25 52 MONTR
15 25 52 MONTR
15 25 52 MDNTR
15 25 52 MONTR
15 25 53 MONTR
15 25 53 MONTR
15 25 53 MONTR
15'25 56 USER
15125 57 MDNTR
15125157 MONTR
15125'58 MDNTR
15125.58 MONTR
15'25:58 USER
15126:06 USER
15126106 USER
15:26 06 USER
15126 07 USER
15126 07 USER
15126 07 USER
15126 07 USEFI
15:26 07 USER
15126 07 USER
15126 07 USER
15126 07 MONTR
15126 07 MONTR
15:26 07 MONTR
15 26 08 K-QUE
15 26 12 KJOB
15 26 15 I..GOUT
15 26 15 LGOUT
15 26 15 I..GOUT
15 26 15 L.GOUT
15 26 21 L.PMSG
15. 26 42 I..PMSG
15 27 35 L.PMSG

BATCON 7(52) INPI SU8JuB 01 OF 06
13 .. APR-72 '
MYFII..E[U!,146lJ fOR .SMITH ,*[10,1461] 1..0G f'II..E IN [10,1461]
REQUEST CREATED AT 15:24:39 13"APR~72
UNIQUE: 2 RESTART: 11)

.L.OGIN 10/1461
JOB 2~ 55425E DUAL. CPU TTY110
OTHER JOBS SAME PPN
1525 13-APR.72 THUR

.SET TIME 300

• SET sPOOL. AI...L

•• COMPIL.E MYPROG.AI..G/I,.IST
AI,.GOI.: MYPROG

EXIT

•• EXECUTE MYPROG.ALG
L.OADING

MVPROG 1K CORE
EXECUTION

5.0050100& 5

ENO OF EXECUTION .. lK CORE

EXECUTION TIMEI 0.08 S~CS.

ELAPSED TIME 1 0.15 SECS.

• • KJOB DSKB0IMVfIL.E.L.UG[10,1461J./~/ZI4/B/VR:1~/VSI384/VL.:200IVDIP
TOTAl.. OF 3 BI..OCKS IN L.PT REQUEST
OTHER JOBS SAME PPN
JOB 2~, USER [10,1461] 1..0GGED OfF TTY110 1526 13-AFR-72
SAvED AI..L. 40 fIL.ES (65~. DISK BLOCKS)
ANOTHER JOB STII..L. 1..0GGto IN UNDER [10,1461l
RUNTIME 0 MIN, ~3.25 SEC
LPTSPL. vERSION 4A(141) RUNNING ON I.PT2
JOEl MVfIL.E fIL.E DSKBItJIMYPROG.I..ST[10,1461J FOR [10,1461] STARTEO
DSKB0:MVPROG.L.ST[10~14~lJ DONE

OJ
m
G>
Z
Z
m
;;0

V>

OJ »
-I
n
I

~

- 171 - BEGINNER'S BATCH

BASIC Example

The next sample shows how to enter a BASIC program to Batch. You must make up the file and save

it on disk. Then make up a control file that simulates the dialog with the BASIC system. The pro­

gram is shown below.

!!I INPUT 0
10 IF D • 2 THEN 110
20 PRINT qx VALUE~,"SINE","RESDLUTIONn
30 fOR Xa0 TO 3 STEP D
40 IF SIN(X)caH THEN 81
50 LETxeaX
60 LET MaSIN(X)
ae NEXT X
g0 PRINT xe, H,D
100 GO TO !5
110 ENO

The program requests data from the user when it is running. You include the data in the control file.

The final data item must be 2 to conclude the program. The control file follows •

• R BASIC
*OLD
*DSKIMYBAS.BAS
*RUN
.1
,01
.001
2
*BYE

The output from the program will be printed in the control file because it would normally be printed

on the terminal. The command to submit the lob to Batch is as follows.

SUBMIT • BAS.tTL

15141837 BVERS BATeON 7 (:S2) INPI SU8JOB 02 OF 06
1~B41:37 BOATE 13-APR-72
15:41137 BASUf'I BAS [10, 14613 FOR *SMITH *[10,14613 LOG FIL.E IN [10,1461]

REQUEST tREATED AT 1!5140123 13.APR .. 72
UNIQUEI 2 RESTART 1 0

15141 37 MONTR
15141 37 MONTR .L.OGIN 10/1461
15141 351 USER· JOB U5 55425E DUAL CPU TTY lU5
15:41 40 USER OTHER JOBS SAME PPN
1!5:41 40 USER 1!541 13-APR.72 THUR
15:41 41 MONTR
1!5:41 41 MONTR .SET TIME 300
15:41 41 MONTR
15141 41 MONTR .SET SPOOL ALI..
15 :41 41 MONTR
15 :41 41 MONTR
15141 41 ,.,ONTR •• R BASIC
15141 41 USER
15141 42 USER
15141 42 USER NEW OR OLO··*OLO

5-3

BEGINNER'S BATCH - 172 -

15 41 42
15 41 43
15 41 43
15 41 43
15 41 47
15 41 47
15 41 47
15 41 47
15 41 47
15 41 47
15141 47
15'41 47
15141 47
15 41 47
15 41 48
15 41 48
15 41 48
15 41 48
15 41 49
15 41 49
HS 41 49
15 41 49
15 41 49
15 41 50
15 41 50
15 41 50
15 41 52
15 41:52
15 41:53

USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONTR

OLD FILE NAME •• *DSK:MYbAS

READY
*RUN

MYBAS

?1
X VALUE
3.
1 .~H

)(VALUE
3.
1.11101

X V.4LUE
2.99999
12

15:41

SINE
0.14112

SINE
0.141121

SINE
0.14113

TIME: 1.50 SEeS.

RE.40Y
*6YE

RESOLUTION
0.1

RESOLUTION
0.01

RESOLUTION
0.001

JOB 15, USER [10,1461l L.OGGED OFF TTY115
SAVED ALL 33 FILES (000. DISK BLOCKS)
.4NOTH~R JOB STIL.L LOGGeO IN UNDER [10,14513
RUNTIME 0 MIN, 03.05 SEC

FORTRAN Example

1541

The third example shows a FORTRAN program that prints output on the line printer. In the control

file, you want to tell Batch to delete your relocatable binary file if an error occurs when your pro­

gram is executed. Otherwise, you want Batch to save your relocatable binary file as it normally

would. The program is shown below.

C THIS PROGR.4M CALCULATES PRIME NUMBERS FROM 11 TO 50.
PO 10 I _11,50,2
J-1

4 J-J+2
A-J
A-I/A
1..I1J
BIA-1.
IF (e) 5,10,5

5 IF (J.I.T.SQRT(FL.OATCI») GO TO 4
PRINT 105, I

10 CONTINUE
105 FORMAT (14, , IS PRIME. ')

END

5-4

- 173 - BEGINNER'S BATCH

The control file to compile and execute this program, deleting the relocatable binary file if there is

an execution error, is as follows .

• COMPILE MyPROG.F4
.EXECUTE MYPROG.F4
,IF (NOERROR) .GOTO END
.DELETE MYPROG.REL
END: I ,END OF JOB

The command to submit this lob is as follows.

SUBMIT MYFDR.CTL,MYFOR,LDG/DISPOSEIDELETE

The log file will be deleted after the output has been printed.

e915~107 BVERS BATCO~ 7(52) INP: SUBJOB ~2 OF 06
09150107 8DA1E 14-APR-72
19153.a7 BASUM MyrORt 10,1461J FOR .SMITH :C10,1461] LOG FILE IN C10,1461J

REOU£S! CR£ATEO AT 09:49119 14-APR-72
UNIQUE' 2 RESTART. I1J

09 50107 MONTR
09 5el07 MONTR .LOGIN 10/1461
09 50109 USER JOB 23 554251 DUAL CPU TTYU5
09 50109 USER OTHER JOBS SAME PPN
09 50 13 USER 0950 14-APR.72 FRI
09 50 13 MONTR
09 50 13 MONTR .SET TIME 300
09 50 14 MONTR
09 50 14 MONTR .SfT SPOOL ALL
09 50 14 MONTR
09 50 14 MONTR ,.COMPILE MYPROG.F4
09 50 16 USER FORTRAN: MYPROG,F4
09 50 17 MONTR
09 50 17 MONTR EXIT
09 50 17 MONTR
09 50 17 MONTR •• EXECUTE MYPROG.F4
1159 50 17 USER LOADING
09 50 23 USER
09 50 23 USER MyPROG 21< CORE
eg 50 23 USER EXECUTION
1159 50 23 USER
09 50 23 USER 11 IS PRIME.
09 50 23 USER 13 IS PRIME,
09 50 23 USER 17 IS PRIME.
1159150 23 USER 19 IS PRIME.
1159150 23 USER 23 IS PRIME.
091 5 rill 23 USER 29 IS PRIME.
09150123 USER 31 IS PRIME.
0!H50123 USER 37 IS PRIME.
0!U50123 USER 41 IS PRIME.
11J91~0123 USER 43 IS PRIME
09:50123 USER 4' IS PRIME.
fd9150123 USER
01H5e:23 USER CPU TIMEI " ,37 ELAPSEC TIMEI 0,60
1159:50123 USER NO EXECUTIUN ERRORS DETECTED
09150125 MDNTR
091511J125 MONTR EXIT
09.50125 MONTR
09150127 MONTR
09 U'1I27 MONTR • END.

,END OF JOB
5-5

BEGINNER'S BATCH - 174-

09;50127 MONTR
0!H50128 K-QUE
09:50:;32 KJOB
09;50:34 I.GOuT
09:50:34 I..GOLJT
09:50:34 I.GOUT
09:50:34 I.GOUT

.KJOB DSKB1:HYFOR.1..0Gt10,1461]./W/Z:4/B/VR:10/VSJ42~/VI.:2001VO:P
TOTAl.. OF 3 BI.OCKS IN I.PT REQUEST
OTHER JOBS SAME PPN
JOB 23, USER [10,1461] 1.0GGED OFF TTY115 0950 14-APR-72
SAVED ALI.. 33 FII..ES (610. DISK BI..OCKS)
ANOTHER JOB STII..I. 1.0GG~0 IN UNDER [10,1461]
RUNTIME 0 MIN, 05.39 S~C

COBOL Example

The fourth program shows a COBOL program that reads a magnetic tape and writes output on another

magnetic tape. To have your magnetic tapes mounted on drives and assigned to you, you must re­

quest that the operator mount them. Since you do not know which drives will be assigned to your

iob, you must assign them in your iob with logical device names. The MOUNT command assigns

the drive to your iob and associates the logical name that you specify in it with the physical drive

assigned. You should include a PLEASE command to the operator to tell him that you want two

magnetic tape drives. If he can't let you have the drives because they are in use, you can ask him

to enter your iob again. Your magnetic tapes, one with the input data, the other blank so that you

can write on it, should be given to the operator or kept at the central site, so that the operator can

find your tapes. The program is as follows.

IDENTIFICATIO~ DIVISION.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.'
FII.E-CONTROI..

SEI.ECT INFII., ASSIGN MA
SEI.ECT OUTFIL, ASSIGN HAG2.

DATA DIVISION.
FII.E SECTION.
FD INFII., LABEl. RECORO. ARE STANDARD,

VAI.UE OF IDENTIFICATION IS "INFIL OAT",
BI.OCK CONTAINS 20 RECORDS.

01 INREC, PIC X(80).
FD OUTFIL, I.ABEL RECORDS ARE STANDARD,

VALUE OF IDENTIFICATION IS "OUTFILDAT",
BLOCK CONTAINS 12 RECORDS.

01 OUTREt, PIC X(S0).
PROCEDURE DIVISION.
START.

1.00P.

FIN.

OPEN INPUT INFII., OUTPUT OUTFIL.

READ INFILI AT END GO TO FIN.
WRITE OUTREC FROM INREC.
GO TO 1.00P.

CI.OSE OUTFIL, INFIL.
STOP RUN.

5-6

- 175 - BEGINNER'S BATCH

The control file and the SUBMIT command to enter this program to Batch is as follows .
• PLEASE NEED TwO MAGTAPES, IF I CAN'T HAVE THEM, REQUEUE •
• MOUNT MTAIMAG1/VIDIINFIL IHONLY
.MOUNT MTAIMAG2/VIDIOUTFIL/~ENABLE
.COMPILE MYPROG.CBL
.EXECUTE MYPROG.CBL
.DISMOUNT MAG11
.DISMOUNT MAG21
.DELETE MyPROG.*

.SUBMIT MYJOB-MYJOB.CTL
The log file is shown below.

lla53:26 BVERS
11153:26 BDATE
11153:26 BASUM

11:53:26 MONTR
11153126 MONTR
11:53130 USER
11153:30 USER
11:53:30 USER
11153:30 MONTR
11: 53130 MONTR
11 53 3i1l MONTR
11 53 30 MONTR
11 53 30 MONTR
11 53 30 MONTR
11 53 50 MONTR
11 53 50 USER
11 53 52 USER
11 54 19 USER
11 54 19 USER
11 54 21 MONTR
11 54 22 USER
11 54125 USER
11 57 23 USER
11 57 23 USER
11 57 23 MONTR
11 57 25 MONTR
11 57 25 MONTR
11 57 25 MONTR
11 57 25 MDNTR
11 57 48 USEf(
11 58 05 USER
11 58 05 USER
11 58 05 USER
11 58 05 MONTR
11a58 05 MONTR
11 58105 MONTR
11 58:05 MONTR
11 58112 USER
11 58112 USER
11 58:45 USER
11 58146 MONTR
11 58146 MONTR
11 58158 USER
11 58 a 58 USER
12 00107 USER

BATCON 7(53) INPI SUS JOB 01 OF 06
20-APR-72
MYJOB [10, 1416J FOR *SMITH * [10, 1461] LOG FILE IN [10,1461]
REQUEST CREATED AT 11152131 20~APR.72
UNIQUE: 2 RESTART: ill

.LOGIN 10/1461
JOB 17 554250 DUAL CPU TTY103
OTHER JOBS SAME PPN
1153 20-APR-72 THURS

.SET TIME 300

.SET SPOOL ALL

•• PLEASE NEED TWO MAG TAPES, IF I CAN'T HAVE THEM, REQUEUE.
.MOUNT MTAIMAG1/VIOIINfIL/RONLY
OPERATOR NOTIFIED
WAITING •••
MAG1 (MTAll MOUNTED

•• MOUNT MTAIMAG2/VIDIOUTFIL/WENABL
OPERATOR NOTIFIED
WAITING •••
MAG2 (MTA2) MOUNTED

•• COMPILE MYPROG.CBL

EXIT

•• EXECUTE MYPROG.CBL
LOADING

COBOL 1~ CORE
EXECUTION

EXIT

•• DISMOUNT MAG1:
OPERATOR NOTIFIED
WA IT I NG •••
MAG1 DISMOUNTED

.. DISMOUNT MAG21
OPERATOR NOTIFIED
WAITING •••
MAG2 DISMOUNTED

5-7

BEGINNER'S BATCH - 176 -

12 00:07 MONTR
12 11)1.1 07 MOf\jTR
12 ~0 07 "1()N'fR
12 flH1 1,0 ~ .. GIl;E
12 f21\1 14 KJOt:
12 ~'i1 17 LGOl.JT
12 0e 18 LGOUT
12 00 18 LGOLJT
12 flrt. 18 L.GUU T
12 22 1V, LP M5G

.

.KJOB DSKo0:MYJOB.L.Ob[1~,1461l=/W/Z:4/B/VR:10/VS:b0YVL.:20V./VP:10/VD
TOTAL OF 4 8LOCKS IN LPT REQUEST
OThER JOBS SAME PPN
J[jt:l 17, UStR [10,1461l LOGGED OFF TTY103 12.'0 20 .. APR .. 72
SAVEO ALL 3~ FILES (b4~. DISK BLOC~S)
ANOTHER Ja~ STILL. L.ObGtD IN UNDER [1~,1461]
RUNTI~E 0 MIN, 06.39 StC
LPTSPL VERSION 4A(141) RUNNING ON LPT0

5.2 USING CARDS TO ENTER JOBS

ALGOL Example

The first job is a simple ALGOL program that writes its output into the log file because it has state­

ments that would cause it normally to write to the terminal. The program is as follows.

BEGIN

END

REAL X; INTEGER I;
X := 1;
FOR I := 1 UNTIL 1000 DO X := X+I;
PRINT(X) ;

The cards to enter this program are as follows.

10-0925

The control file that MPB makes up for you contains the following commands •

• COMPILE MYPROG.ALG /COMPILE /LIST
. EXECUTE

The output, including the log file is shown below.

5-8

09101143 DUE
09101:43 CARD

09101145 STSUM

09:01153 BVERS
091011 53 BDATE
09 Hlll 53 BASUM

09 01:53 MONTR
09 01 53 MONTR
09 01 58 USER
09 01 58 USER
09 01 58 USER
09 01 58 MONTR
09 01 58 MONTR
09 01 58 MONTR
09 01 58 MONTR
09 01 59 MONTR
09 01 59 MONTR

09102101 MONTR

09102 UH MONTR
09102108 USER
09102:08 MONTR
09102108 MONTR
09102: 08 MONTR
149: 02:08 MONTR

09102:08 MONTR
09102110 USER
09102127 USER
09102139 USER
09102139 USER
09:02: 39 USER
09102141 USER
09102141 USER
09102141 USER
09102141 USER
09102141 USER
1/19102141 USER
09102141 USER
09 : 1/1 2 1 41 M 0 N-T R

09102:41 MONTR
09102142 USER
09102142 USER
09102: 43 USER
09102:43 USER
09102143 MONTR
09102143 MONTR
09102144 MONTR
09102145 K-QUE

- 177 - BEGINNER'S BATCH

13-APR-72 55425E ~UAl. CPU CORSTK VER 12(25) OSK
SJOB ALGJ8t10/14611
SAI.GOL MYPROG.AI.G/NOLIST

END OF FILE AFTER 12 CARDS, 03 FILES, 03 BLKS

BATtON 7(52) INPI SU8J08 02 OF 06
13-APR-72
ALGJB [10, 14151] FOR ** t10, 14511 LOG FILE IN [10,1451]
REQUEST CREATED AT 051101108 13-APR-72
UNIQUEI 2 RESTARTI 1

.L.OGIN 10.1461
JOB 13 55425E DUAL CPU TTY115
OTHER JOBS SAME PPN
0901 13-APR-72 THUR

.5ET TIME 300

.SET SPOOL ALL.

•
SJOB ALGJ8t10/141511
• ,ALGOL MYPROG.ALG/NOL.IST
.COMP /COMPILE MYPROG.ALG /N
AL.GOLI t-IYPROG

EXIT

• SEOD
.EXECUTE
ALGOL: MYPROG
LOADING

MYPROG lK CORE
EXECUTIOh

5.0050100& 5

ENO OF EXECUTION - 1K CORE

EXECUTION TIMEI 0.08 SECS.

El. APSEo TI ME 1 0.12 SlCS.
•
XFIN:
.DEL MYPROG.REL,MVPROG.ALG
FII-ES DEI-TEol
MYPROG.REL
MvPROG.ALG
02 BL.OCK-S FREED

•

'CREATED BY CORSTK

.KJOB DSKBIALGJB.LOGt10,14611 a /W/ZI4/B/VSI320/VLI10/VOID
TOTAL OF 4 BLOCKS IN LPT REQUEST

5-9

BEGINNER'S BATCH - 178 -

BASIC Exomple

The next exomple shows entering 0 BASIC progrom. You must include the progrom ofter 0 $DECK

cord so thot it will be copied into 0 file on disk. No $DATA cord con be used becouse BASIC does

not use the EXECUTE commond ond becouse the dote is entered in the control file. The progrom re-:

quests dote when it is running; it finds the doto in the control file. The finol dote item must be 2 so

thot the progrom con be concluded. The progrom is shown below.

5 INPUT D
10IFD=2THEN110
20 PRINT "X VALUE" "SINE" "RESOLUTION"
30 FORX=OT03STEPD '
40 IF SIN(X) =M THEM 80
50 LET XO = X
60 LET M = SIN(X)
80 NEXT X
90 PRINT XO, M, D
100 GO TO 5
110 END

The cords to enter the progrom ond run it ore os follows.

10-0926

The output from the progrom will be printed in the log file becouse it would normolly be printed on

theterminol. The log file is shown below.

5-10

1111~145 DATE
111HI45 CARO
111Ul46 STSUM

1111~149 BVERS
1111C,149 BOHE
1111?1149 BASUM

1111'-"149 MONTR
111121149 MO~TR
11110151 USER
1111(1'151 USER
1111"152 USE.R
111a153 USER
111l:J1!53 MONTR
111leq53 MONTR
1111~153 MONTR
111 H 153 MONTR
1111~153 MONTR
1111:)153 MONTR

11110153 MONTR
ll11iH53 USER
11111,1!1~)4 USER
11: H 154 USE.R
1111~:55 USER
11: 1~ 55 USlR
11'1'" 55 USER
1111Q! 56 USER
11 1('1 56 USER
11 10 56 USER
11 lei 56 USER
11 121 56 USER
11 1(1: 56 USER
11 1Q; 56 USER
11 10 57 USER
11 1~ 57 USER
11 10 57 USER
11 1:'1 59 USER
11 1'21 59 USER
11 U 59 USER
11 1~ 59 USER
11 11 0~ uSER
11 11 021 USER
11 11 00 USER
11111 021 USER
11111 210 USE"
11111 1!l21 USER
11111 01 USER
11111 211 USER
11111 213 USER
11111 03 USE"
11111 03 USER
11111 03 MONTR

- 179 - BEGINNER'S BATCH

13-APR-72 55425E DUAL CPU CDRSTK VER 12 (26) DSK
$JOe 8ASJOBL10/1461J
END or rILE AFTER 24 CARDS. 213 FILES. 214 BlKS

BATCON 7 (52) I NP: SUBJOB 2110F 14
13-APR-72
BASJOB L10,1 461J FOR •• (121.1461] LOG rILE IN [121,1461'
REQUES! CREATED AT 111219157 13-APR-72
UNIQUE! 2 RESTART I 1

.LOGIN 121,1 461
JOB 19 55425E DUAL OPU TTYl14
OTHER JOBS SAM£ PPN
1110 13.ADR.72 THUR

.SET TIME 32121

.SET SPOO\. A~l

•
SJOB BASJOBC10/14611
SOEC\(MY8AS.9AS
SEOD
.R SASIC

NEW OR OLo.-.OLD
O~D ~ILE NAME-.~DSKIMYBAS

1.1
X VAI.UE
3.
1. III 1

l(VALUE
3.
? .~u

X VALUE
2.99999
12

11110

.SINE
0,1 4 112

SINE
~.141121

SINE
~,14113

TIMEI 1,521 SEeS.

READY
-BYE

RESOLUTION
1Il·1

RESOLUTION
1Il.01

RESO~UTION
0.21"'1

JOB 19, US~R C10.1461J ~OGGEO OF r TTY114 1111 13-APR.72
SAVED AL~ 33 rILED (6011l, DISK BLOCKS)
ANOTHER JOB STILL ~OGGED IN UNDER (12.1461)
RUNTIME III Ml~. 03,05 SEC

5-11

BEGINNER'S BATCH - 180 -

FORTRAN Example

The third example shows a FORTRAN program that prints output on the line printer. In the control

file, you want to tell Batch to punch your relocatable binary program if it executes correctly. Other­

wise, you want to end your iob so that you can find your error from the message in the log file. The

program is shown below.

C THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50.
DO 101=11,50,2
J=l

4 J=J+2
A=J
A=I/A
L=I/J
B=A-L
IF (B) 5,10,5

5 IF (J. LT. SQRT(FLOAT(I))) GO TO 4
PRINT 105, I

10 CONTINUE
105 FORMAT (14, , IS PRIME. ')

END

The cards used to enter this program are as follows.

-EXECUTE

FORTRAN PROGRAM

$FORTRAN MVPROG.F4

10

5-12

IEND-OF-FILE

1O-09~ 1

- 181 - BEGINNER'S BATCH

Batch puts the following commands into the control file as a result of the cards you entered •

• COMPILE MYPROG.F4 /COMPILE /LIST
.EXECUTE MYPROG.REL /MAP:MAP.LPT
.IF (ERROR) .GOTO END
.R PIP
~DP:MYPROG = DSK:MYPROG.REL
END:: ;END OF JOB

The printed output from the job, including the log file is shown below.

\MVP~OG,F'4 F'40 \125 12wAPR-72 13:43

DO U %:11,50,2
J=l

4 ~.J.2
A:J
A; I I A
L:I/J
l:hA-L
IF' e 8) 5,UI,5

5 IF" (J,_T.SQRT (F'LOAT ([)l) GO TO 4
!Y~E 1Z5,I

10 CONTrNJE
105 FORMAT (14. '.IS PRIME,')

I::ND
SUBPQOGRAMS

F'ORSF;, J08FF F'LOAT S~RT INTO. 1 NT I, ExIT

SCALARS

61 J 62 A 63 L

PAGE 1

64 B 65

13, 43 :tIJl DATE 12-APR-72 554A48 DUAL CPU CDRSTK VER 12(26) OSK
1314311111 CARD
13143103 STSUM

1314:3121 BVERS
13.43121 BDATE
13143:21 BASUM

13 43121 MONTR
13 43121 MONTR
13 43124 USER
13 43:24 USER
13 43126 USER
13 43128 MONTR
13 43128 MONTR
13 43128 MONTR
13 43128 MONTR
13 43128 MONTR
13 43128 MOtliTR

$JOB T~STt1~,1461jleARDI1K
END OF FILE AFTER 19 CARDS. 03 FILES, 04 BlKS

BATeeN 7(52) INPI SUBJOB 01 OF' 14
12-AI'R-72
TESTC10,1461~ FOR •• [10,1461J LOG FILE IN [10,1461]
REOUES! CREATEO AT 13:42:04 12~APR-72
UNIQUE! 2 RESTARTI 1

,LOcIN 10,1461
JOB 11 554A4B QUAL CPU TTY102
OT~ER JOBS SAME "PN
1343 12.A~R.72 WED

.SET TIME 20

,SET SPOOL A ... L

,
SJOe TESTt1~,1461J/CARDI1K
SFORTRAN MVP~OG.F4

5-13

BEGINNER'S BATCH

1314~128 MOr-.TR
13143:30 USER
13143133 MONTR
13143133 ~10NTR
13143133 MONTR
13143133 M (j ~~ i R

13143133 MONTR
13143134 USER
13'43:37 USER
131431 41 USER
13 43 411 USU,

13 43 42 USER
13 43 42 USER
13 43 42 USER
13 43 42 USER
13 43 412 USER
13 43 412 USER
13 43 412 USER
13 43 42 USER
13 43 42 USER
13 43143 USE.R
13 43,43 USER
13 43,43 USER
13143,413 USER
13143:43 USER
13'431413 USER

13'43:43 USE~
1314~143 MONTR
131431413 MONTR
13143143 MONTR
13143:43 MONTR
13143143 USE!:!
131431 43 MONTR

13143144 MllNTR

13143.44 USER
131 4 3:44 USER
13143,45 USER
13143146 USER
13:43146 USER
13143146 MONTR
13:43146 MONTR
13143148 MC!~TR
13143148 K-QUE
13 143152 KJ08
13;43154 LGOUT
13143154 LGOUT
13143,54 LGOUT
13'43154 LGOUT
13143157 LPMSG
13144:1112 LPMSG
13144;1119 LPMSG

- 182 -

.COM~ ICOMPI.E MYPPOG,F4/LIST
rORTRANI MY'ROG.F4

EXIT

· $EOD
.EXECUTE
rORTRAN: MY'ROG.~4
LOAOING

MYPROG 2K CO~E

EXECUTIO"l

11 IS PRIME.
13 IS PRIMe:.
17 IS ~RIHE.
19 IS PRIME.
23 IS F'RIMr::.
29 15 PR'IME.
31 IS PRIME.
37 IS PRIME.
41 IS PRIME.
43 IS PRIME,
47 IS PRIME.

;CREATEO BY CDRSTK

CPU TIME: 0.27 ELAPSED TIME: 1.82

NO EXECUTION ERRORS DETECTED

EXIT
.R pIP
.CDpl MYPROG.DSK:MYPROG,REL
,
ENO,
lEND OF JOB
•
Y.FINI
.DEL HYPROG.qEL,MYPROG.F4
rIl.ES DEl.ETE:):
MYPROG.REL,
MYPROG.F'4
03 BLOCKS FREED

· ,KJ08 DSKBITEST,LO~C10.1461J=/W/~;4/P/VS:277/VLI2~0/VDID
TOTAl. O~ 6 B~OCKS IN l.PT REQUEST
OTHER JOSS SAMr PPN
JOB 11. US~R C10.1461J LOGGED OFr TTY102 1343 12-A~n-72
SAVED ALl. 30 FILES (585, DISK BLOCKS)
ANOT~E~ JOe STILL LOGGEO IN UNDER C10,1461J
RUNTIME 0 MI~. 05,64 DEC .1

LPTSPI. VERSl~N 4A(141) RUNNING ON LPT1
JOB TE~T F'IL£ OSK811MYPROG.LSTC10,1461J FOR C10,1461JSTARTED
DSKB1IMYPRoG.LSTC1~,1461J DONE

5-14

- 183 - BEGINNER'S BATCH

COBOL Example

The fourth program shows a COBOL program that reads data from a magentic tape and writes output

on another magnetic tape. To have your magnetic tapes mounted on drives and assigned to you, you

must request that the operator mount them. Since you do not know which drives will be assigned to

your job, you must assign them in your job with logical device names. The MOUNT command

assigns the drive to your job and associates the logical name that you specify in it with the physical

drive assigned. You should include a PLEASE command to the operator to tell him that you want two

magnetic tape drives. If he can't let you have the drives because they are in use, you can ask him

to enter your job again. Your magnetic tapes, one with the input data, the other blank so that you

can write on it, shou Id be given to the operator with your card deck or kept at the central site, so

that the operator can find your tapes. The program is as follows.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
INPUT-oUTPUT SECTION.
FILE-CONTROL.

SELECT INFIL, ASSIGN MAG 1.
SELECT OUTFIL, ASSIGN MAG2.

DATA DIVISION.
FILE SECTION.
FD INFIL, LABEL RECORDS ARE STANDARD,

VALUE OF IDENTIFICATION IS "INFIL DATil,
BLOCK CONTAINS 20 RECORDS.

01 INREC, PIC X(80).
FD OUTFIL, LABEL RECORDS ARE STANDARD,

VALUE OF IDENTIFICATION IS "OUTFILDAT",
BLOCK CONTAINS 12 RECORDS.

01 OUTREC, PIC X(80).
PROCEDURE DIVISION.
START. .

OPEN INPUT INFIL, OUTPUT OUTFIL.
LOOP.

FIN.

READ INFIL; AT END GO TO FIN.
WRITE OUTREC FROM INREC.
GO TO LOOP.

CLOSE OUTFIL, INFIL.
STOP RUN.

The cards to enter this job are shown below.

5-15

BEGINNER'S BATCH - 184 -

10- 0928

Batch puts the following commands into thecontrol file for you.

· PLEASE NEED TWO MAG TAPES, IF I CAN'T HAVE THEM, REQUEUE.
· MOUNT MTA:MAG1,NID:INFIL IRONLY
· MOUNT MTA:MAG2;VID:OUTFIL /WENABL
.COMPILE ICOMPILE MYPROG.CBL ILIST
• EXECUTE MYPROG. REL IMAP:MAP. LPT
.DISMOUNT MAG1:
.DISMOUNT MAG2:

The printed output from your iob is shown below.

MAP STJRACiE: ~AP 15142 2Z·AP~-'72

STAF<"I~G ADDRESS 0211~216 :tROG COBOL FILE MyPROG

,CO~". 0l2i2i141ii 21211040

COBOL. iJIi) 1221iIJ 0211317 r!L.ES.
START, 21~1~flJ6 QVRFN.
AI..TER, ZCl0143 MEMRY.
MONEY, 0121fli147 '~~M .
TQAC3, 12100154

TRAC~~ :::!~1451 21r/l~l2le3 PTF"LG.
BTRAC, 0J1~621
T'lPOP, 0<l1~60

COBOL 1K C~RE. £05 ~ORDS fRE~
LOAnER USE~ 2·4~ CORE

02101421 USES, 000141
000144 POINT. 000145
012l01~2 TRAC1, PJrlll2l152
01210155 %OT. 000156

001461 TRACE. "01457

5-16

SEGWD.
CO'1MA.
TRAC2.
"pR,

TRPD,

000142
000146
iZ!3121153
~012l157

~~1~60

- 185 - BEGINNER'S BATCH

P R ~ G RAM COB 0 L. • COBOl 3(43)

15141.

0001
21~02
0003
0004
0005
0006
21007
0006
0009
0010
21011
212112
0013
02114
0015
"016
0017
0018
001'i
0f/12~
0021
0022
0023
0024
02125
0026
0027

PAGE 1

IDENTIrlCATION DIVISIoN.
rNVIRONM~NT DIVISION.
INPUT-OUTPUT SECTION.
FIL.E-CONTROl.

SEL.~OT INrll. ASSIGN MAG1.
SEllCT OUTFlL., ASSIGN ~AG2.

DATA DIVISION,
rILE SECTION.
FD INfll' LABEL RE=ORDS ARE STANDARD,

V4CUE Or IDENTI~IOATION IS "INFlL DAT",
BLOCK CONTAINS 2~ RECORDS.

01 lNH(C. PIC X(80).
F'D OU!F'IL, L.ABEL. R~CORDS ARE STANDARD,

VALUE OF iDENTIFICATION IS "OUTF'llDAT".
BLOCK cONTAINS 12 RECORDS.

01 OUTREC, plO X<e01.
PROCEDURE DIVI~ION,
START.

LOOP

r IN.

OPEN I~PUT INrIL, OUTPUT OUTF'IL.

REAU INF'IL.I AT E~D GO TO FIN.
WRI!E OUTREC fRO~ INREC.
GOTO LOOP,

ClO~E OUTF'IL, !N~IL..
STOP RUN,

NO E~RORS DETEC!ED

15137137 DlITE
15137137 C~RD
15137138 STSUM

15137146 BVERS
15137146 BDATE
15137146 BASUM

15137146 MGNTR
15137146 MONTR
15137148 USER
15137;50 U!)ER
15137:53 USER
15137153 MONTR
15137153 MONTR
15137:54 MeNTR
15137154 MONTR
15137154 MONTR
15137154 Mni~ TR

15137154 M.ONTR
15'38117 MONTR
1513"118 USER
15138:18 USER
1513QI59 USEf1
1513~159 USER

20-APH-72 55425~ DUAL CPU DSRSTK VER 12(26) DSK
$JOB COBJOBC10/1 461J
END Or rIL.E ArTER 37 CARDS. ~4 FILES, 06 BlKS

BATeON 7 (53) I NP: SUB JOB rill OF 06
2~-APR-72

COBJ08 L10,1 461j FOR ~.(10,1461J LOG rILE IN [10,1461~
REQUES! CREATED AT 15136134 20-APR-72
UNIQUE' 2 RESTART 1 1

,L.OG I N 10/1 461
JOB 24 554250 OUAL CPU TTYlr1l3
OTHER JOBS SAME PPN
1537 20.A~R.72 THUR

• SET Tl ME 3021

.SET SPOOL. A~L

.
SJOe COBJOBC1~/1461J
.P~EASE NEED T~O MAG TAPES. IF' CAN'T HAVE T~EM, REQU(UE,
.MOUNT MTA'MAG1/VI~IINrll/RONOLY
OP(RATUR NOTIFIED
WAITll~G."
MAGl (MTAf/I) MOUNTED

5-17

BEGINNER'S BATCH - 186 -

15139159 MOr~TR

15141"1101 USER
15140:01 USER
151411~1 USE.R
15141.31 USER
15141131 MONTR

15141:31 MONTR
15141:35 USER
15141159 MOr~TR
15141:!59 MO;~TR

15141&59 MDi'/TR

15141159 MONTR
15141159 MONTR
15141159 MOi';TR
151421QJ4 USER
1'142104 USE~
151421215 USER
151421216 USER
15142107 USER
l~H 421 fli9 MONTR
1514~109 MONTR
15142:09 MONTR
15,42;Z9 MO~lTR

15142109 MONTR
15142109 USER
15142:10 USER
15'4~129 USER
15142:29 MONTR
15.42:29 MONTR
15142.3fIJ USER
15'42.31 USER
15142.47 USER
15'42147 MONTR
1514~;47 MClNTR

1514? 47 MONTR
1514<> 51 USER
1514i.' 5J USER
15142 57 UH.R
1':4~ 59 USER
15:43 0Z USE~
15 43 IZ1 Mm'TR
15 43 I1J1 MONTR
15 ;:~ 01 MO~HR

15 43 03 K·QUE
15 43 t'l9 KJOB
15 43 12 LGlJl1T
15 43 13 LGCUT
15 43 13 L(:QUT
15 4~ 13 L.GOUT
15 44 07 L.PMSG
15 44 15 L.PMSG
15 44 25 LCMSG
15 414 25 LP:-1SG
15 4i! 35 LPMSG

"MOUN! MTAI~AG2/VIO:OUTrIL/WENA8L
OP~RATOR NOTlrrED
WAITING •• ,
MAG2 tHTAll MOUNTED

•
SCOeOl MVPRO~.~BL
,COMP ICOMPl~E MVPROG,CBL/LlST lCREATED BY CDRST~
COBOLI
EXIT

•
SOATA
,srT CUR QAA.COR iCREATED BY CDR5TK

.,~X~C:IMAP:~AP.LPT IREL MYPROG.REL
LOADING
0~1462 IS TH£ LOW SEGMENT BREAK

COBOL 11(CORE
~xe:CUTl O~

EX I T

•
SEOo
.OIS'10UNT MA~ll
oprRATORNOTlrJED
WA I T I NG·. , ,
MAGi QISMOUNTEO

.,OISMOUNT MAG2:
OPERATOR NoTlrllO
WAlT.ING., ,
MAG2 DISMOUNTEO

•
"FI N •
• DEL MYPROG'~EL.QAA,COR,MYPROG.CBL.
rILES DEI.ETE~:
MyPROG·REL
CU. c:o H
MY~RCG·C81.
07 BLOCKS f'REE

·

JCREAT~O BV CORSTK

.KJ08 DSKBIC~BJ08,LOGt10.1461]=/1/2:4/B/VS:628/VLI200/vDID
TOTAL Or 9 B~OCKS IN lPT REQUEST
OTHER JOBS SAME PpN
JOB 24, USER [10.1461J LOGGED Orr TTY103 1543 20-A~R.72
SAVED ALI. 43 rilES (855, DISK BLOCKS)
ANOT~ER JOB STILL LOGGED IN UNDER [10.1461)
RUNTIME 0 MI~. 07,14 SEC
LPTSPl VERSI~N 4A(141) RUNNING ON LPT2
Jog COBJOB FILE DS~BlIMYPRQG.LSTC10.1461] rOR (10.1461~ STARTED
OSKB1IMYPROG.LSTC1~.1461J DONE
J09 COBJOB FILE DSKB1IMAP.LPT(10,1461J rOR (10,1461J STARTED
OSKB1I MAP,LPT(10.1461J DONE

5-18

- 187 -

DEC-IO-UTECA-A-D

dec
INTRODUCTION TO TECO
(TEXT EDITOR AND CORRECTOR)

This document represents the software as of version 23 of TECO.

digital equipment corporation. maynard, massachusetts

I NTRO TO TECO - 188 -

Copyright © 1972 by Digital Equipment Corporation

The material in this manual is for informa­
tional purposes and is subject to change
without notice.

The following are trademarks of Digital Equipment
Corporation I fv\aynard I fv\assachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

1st Printing May 1972

- 189 - INTRO TO TECO

CONTENTS

CHAPTER 1 INTRODUCTION TO TECO 191

1.1 General Operating Procedure 191

1.2 Initialization 192

1.3 Special Symbols Used in this Document 193

1.4 General Command String Syntax 194

1.5 Erasing Commands 195

1.6 Command Arguments 196

CHAPTER 2 TECO COMMANDS

2.1 Input Commands 197

2.2 Buffer Pointer Positioning 198

2.3 Text Typeout 200

2.4 Deletion Commands 201

2.5 Insertion Command 202

2.6 Output Commands 204

2.7 Special Exit Commands 205

2.8 Search Commands 206

CHAPTER 3 ERROR MESSAGES

TABLES

1-1 Special Symbols 193

3-1 TECO Error Messages 210

iii

I NTRO TO TECO - 190 -

- 191 - INTRO TO TECO

CHAPTER 1

INTRODUCTION TO TECO

TECO, a very powerful text editor, enables the advanced DECsystem-10 user to edit any ASC II text

with a minimum of effort. All editing can be accomplished by using only a few simple commands; or

the user may select any of a large set of sophisticated commands such as character string searching,

command repetition, conditional commands, programmed editing, and text block movement. In this

description of TECO only the basic commands are described. If the user requires information about

the more advanced uses of TECO, he can refer to the TECO manual in the DECsystem-lO Users

Handbook.

TECO is a character-oriented editor. One or more characters in a I ine can be modified without

retyping the rest of the 'I ine. Any sort of document can be edited: programs written in FORTRAN,

COBOL, MACRO-la, or any other language; memoranda; specifications; and other types of

arbitrarily formatted text. TECO does not require that I ine numbers or any other extraneous informa­

tion be associated with the text.

1.1 GENERAL OPERATING PROCEDURE

TECO operates on ASCII data files. A file is an ordered set of data on some peripheral device.

In the case of TECO, a data fi Ie is some type of document. An input fi Ie may be a named fi Ie on

disk or DECtape, a file on magnetic tape, a deck of punched cards, or a punched paper tape. An

output file can be written onto any of these same devices. The input file for a given editing opera­

tion is the file to which the user wishes to make changes. If the user is using TECO to create a new

file, there is no input file. The output file is either the newly created file or the edited version

of the input file. An output file is not required if the user wishes merely to examine a file without

making any changes.

In general, the process of editing proceeds as follows. The user first specified the file he wishes to

edit and then reads in a "page" of text. A page is normally an amount of text that is intended for

a single sheet of paper. Form feeds are used to separate a document into pages. On input, TECO

interprets form feeds as end-of-page indicators. It is not required, however, that a document be so

divided into pages. If a form feed is not encountered, TECO simply reads as much text as will

reasonabl y fit into its editing buffer. For the purposes of th is document, the word ~ is used to

mean the segment of text in TECO's editing buffer.

1-1

INTRO TO TECO - 192-

When a page has been read into the buffer, the user can modify this text by using the various editing

commands. When he has finished editing the page, he outputs it and reads in the next page. This

process continues unti I, after the last page has been output, the user closes the output fi Ie. If there

are several pages where no editing is required, there are commands which may be used to skim over

them.

1.2 INITIALIZATION

The two main uses of TECO are (1) to create a new disk file, and (2) to edit an existing disk file.

These are the only uses of TECO described in this document. In particular, the use of TECO

with devices other than disk is not described. The beginner can get around this limitation by using

PI P to transfer fi les to and from disk. (Refer to the PI P manual in the DECsystem-10 Users

Handbook for information about PI P.)

The two main uses of TECO are so common that there are direct monitor commands to initialize

TECO for executing them. The command

. MAK E fi lename. ext)

is used to initialize TECO for creating a new disk file. Filename.ext is the name that the user gives

to the new file. The filename can be from one to six alphanumeric characters. This is followed

(optionally) by a period (.) and a filename extension of from one to three alphanumeric characters.

The most commonly used filename extensions are:

.F4

.CBL
• MAC

for FORTRAN source programs
for COBOL source programs
for MACRO-10 source programs

The MAKE command opens a new disk file to receive output from TECO and gives it the name speci­

fied by the user. Once the fi Ie has been opened it is then actually created by using the insert and

output commands, which are explained in sections 2.5 and 2.6 of this document.

The command

.!... TECO filename.ext)

is used to initialize TECO for editing an existing disk file, named filename.ext. The filename and

filename extension must be exactly the same as those of the file that is to be edited. The TECO

command opens the specified file for input by TECO and opens a new file, with a temporary name,

for output of the edited version. When output of the new version is completed, the original version

of the file is automatically renamed filename.BAK, and the newly edited version is given the name of

the original fi Ie. The fi lename extension • BAK is used for backup files.

1-2

- 193 - INTRO TO TECO

After TECO has been initialized for a particular iob, it responds by typing an asterisk (*). The

asterisk indicates that TECO is ready to accept commands; it is typed at the beginning of TECO's

operation and at the completion of execution of every command string.

Examples:

.!. MAKE EARNNG.F4) This command initializes TECO for creation
of a new disk file called EARNNG.F4.
The extension. F4 is used because the *
file is to be a FORTRAN source file •

.!. TECO LlB40. MAC) This command initializes TECO for editing
the existing disk file LlB40. MAC. At the
completion of editing, TECO automatically
changes the name of the original version of
LlB40. MAC to LlB40.BAK and gives the
name LlB40. MAC to the new version.

*

NOTE

The TECO command cannot be used to edit a file which
has the fi lename extension . BAK. To edit a backup file
the. user must first rename the backup file. For example,
to edit the file LlB40. BAK the user should proceed as
follows:
.!. RENAME LlB40.0LD=LlB40.BAK)

.!. TECO LlB40.0LD)

*

1.3 SPECIAL SYMBOLS USED IN THIS DOCUMENT

Symbol

)

CD

fC

Table 1-1
Special Symbols

Character Represented

Carriage Return

Altmode

Control C

1-3

Comment

Whenever the RETURN key is typed,
TECO automatically appends a line
feed to the carriage return.

On most terminals, the altmode key
is labeled "ALTMODE", but on some
it is labeled "ESC" or "PREFIX";,
Since the altmode is a non-printing
character, TECO indicates that it
has received an altmode type-in by
echoing a dollar sign ($).

This character is typed by typing
the letter C while holding down the
CTRL key. Other control characters
are represented in similar fashion.

I

INTRO TO TECO

Symbol

(FORM)

j

-I

/::;

@

- 194 -

Table 1-1 (Cont)
Special Symbols

Character Represented

Form Feed

Line Feed

Tab

Space

Rubout

1.4 GENERAL COMMAND STRING SYNTAX

Comment

Form feed is typed by typing ®
(control F).

This symbol is used only when a line
feed is explicitly typed. It is not
used for the line feed which is
automatically assumed when a
carri age return is typed.

Tab is typed by typing @
(control \).

This symbol is used occasionally
for emphasis.

This key is used to nullify a
character erroneously typed in a
command string. Its use is ex-
plained fully in Section 1.5.

TECO commands are usually given by typing the one- or two- letter name of the command. However,

many of the commands take arguments. Some typical examples are shown below, to give the reader

an idea how TECO commands look. These commands are fully explained later in the manual.

L
PW
ISAMPLE<!)
3K

TECO commands may be given one at a time. However, it is usually more convenient to type, in a

single command string, several commands that form a logical group. An example of a command string

is shown below.

A command string may be typed after TECO indicates its readiness by printing an asterisk. Command

strings are formed by merely writing one command after another. Command strings are terminated by

typing two consecutive altmodes.

Execution of the command string begins only after the double altmode has been typed. At that point

each command in the string is executed in turn, starting at the left. When all commands in the string

have been executed, TECO prints another asterisk, indicating its readiness to accept another command.

1-4

- 195 - INTRO TO TECO

If some command in the string cannot be executed because of a command error, execution of the

command string stops at that point, and an error message is printed. Commands preceding the bad

command are executed. The bad command and those following it are not executed.

1.5 ERASING COMMANDS

Typographical errors, if discovered while typing a command string, may be "erased" by use of the

rubout key. This process is best explained by an example.

*3LKILEIF ERICXON

After typing this much of the command string, the user discovers that he has misspelled the name

"Ericson." To n_ullify his error, he types three successive rubouts. As he does this, TECO responds

by retyping the characters which are being rubbed out.

~3LKILEIF ERICXON @ ~-@ Q @ ~

Of course, rubout is a non-printing character so the actual line looks like this:

* 3LKILEIF ERICXONNOX

Once he has rubbed out the bad character, the user continues the command string from the last

correct character.

~ 3LKILEIF ERICXONNOXSON<!)OLTCDeV

The actual function of the rubout character is to delete the last typed character in t

Consequently, if the -bad character is not the last in the string, all characters back to that point must

be deleted. Rubout characters do not enter the command string.

An entire command string may be erased, if it has not yet been terminated, by typing two successive

tG (control G) characters.

Example:

* 3LKILIEF ERICXONtGtG

1.6 COMMAND ARGUMENTS

tG tG causes the entire command
string to be relected. TECO types a
new asterisk and awaits a new command.

There are two types of arguments for TECO commands. Some commands require numeric arguments

and some require alphanumeric (text) arguments.

1-5

INTRO TO TECO - 196 -

Numeric arguments, and also all numeric type-outs by TECO, are decimal integers. Numeric argu­

ments always precede the command to which they apply. A typical example of a command taking

a numeric argument is the command to delete three characters: "3D".

Alphanumeric arguments are textual arguments meant to be interpreted as ASCII code by TECO.

Alphanumeric arguments always follow the command to which they apply, and they must always be

terminated by an altmode. Examples of alphanumeric arguments are (1) text to be inserted, and (2)

character strings to be searched for.

Example:

: ISOMETHING CDCD The argument is "SOMETHING".

As shown in the above example, the altmode used to terminate an alphanumeric argument may also

serve as one of the two altmodes necessary to terminate a command string. Any ASCII character

except null, altmode, and rubout may be included in an alphanumeric argument.

1-6

- 197-

2.1 INPUT COMMANDS

INTRO TO TECO

CHAPTER 2

TECO COMMANDS

The Y (yank) cammand first clears the editing buffer and then reads the next page of the input file

into the buffer.

A single Y command is automatically performed by the command

• TECO filename.ext)

so that when editing with this command the first page of the input file is automatically read in before

TECO prints the first asterisk.

The Y command may be used to delete entire pages of a file, since the editing buffer is completely

cleared before the input is performed.

The A (append) command reads in the next page of the input file without clearing the current contents

of the editing buffer. This command is used to combine several pages of a document. When the A

command is used, the form feed separating the page already in the buffer and the page to be read in

is removed. Thus after the A command the two pages are combined into one.

If the editing buffer does not have enough room to accommodate an A command which has been given,

TECO automatically expands its buffer and then executes the A command. The user is notified of this

action by a message of the 'following form

[3K CORE]

If sufficient core is not available to allow buffer expansion, the user is notified by an error message.

NOTE

On either an A or a Y command the form feed termi­
nating the page to be read in is not actually read into
the buffer. It is removed on input and a single form
feed is appended to the end of the buffer when the
buffer is output.

2-1

INTRO TO TECO

Examples:

• TECO REPORT .CBL..)

*

*

~AACDCD
*

~A®CD
[4K CORE]

*

2.2 BUFFER POINTER POSITIONING

- 198 -

This command, as part of the process of
initial izing TECO for editing the disk fi Ie
REPORT .CBL, automatically clears the
buffer and then reads in the first page of
the file.

This command deletes the entire contents of
the buffer and then reads in the next page of
the input file.

Read the next two pages of the input file into
the buffer, combining them with the page
already in the buffer.

The buffer is expanded as required by the A
command. In most cases this message need be
of no concern to the user. It is important
only if the system is low on core and does
not have swapping capability.

Since TECO is a character-qriented editor, it is very important that the user understand the concept

of the buffer pointer. The position of the buffer pointer determines the effect of many of the editing

commands. For example, insertion and deletion always take place at the current position of the

buffer pointer.

The buffer pointer is simply a movable position indicator. It is always positioned between two char­

acters in the editing buffer, or before the first character in the buffer, or after the last character in

the buffer. It is never positioned "on" a particular character, but rather before or after the character.

The pointer may be moved forward or backward over any number of characters.

The J command moves the buffer pointer to the beginning of the buffer, i. e., to the position imme­

diately before the first character in the buffer.

The ZJ command moves the pointer to the end of the buffer, i.e., to the position following the last

character in the buffer.

The C command advances the pointer over one character in the buffer. The C command may be pre­

ceded by a (decimal) numeric argument. The command nC moves the pointer forward over n characters.

(The pointer cannot be advanced beyond the end of the buffer.)

The R command moves the pointer backward over one character in the buffer. This command may also

be preceded by a numeric argument. The command nR moves the pointer backward over n characters.

(The pointer cannot be moved backward beyond the beginning of the buffer.)

2-2

- 199 - INTRO TO TECO

The L command is used to advance the buffer pointer or move it backward, on a line-by-line basis.

The L command takes a numeric argument, which may be positive, negative, or zero, and is under­

stood to be one (1) if om itted.

The action of the L command with various arguments is best explained in a more concrete way.

Suppose the buffer pointer is positioned at the beginning of line b, or at some position within line b.

The command L, or 1L, advances the pointer to the beginning of line b+1, i.e., to the position

following the line feed which terminates line b.

The command nL, where n >0, advances the pointer to the beginning of line b+n.

The command OL moves the pointer to the beginning of line b. If the pointer is already at the be­

ginning of line b, nothing happens.

The command -L moves the pointer back to the beginning of line b-1.

The command ilL moves the pointer back to the beginning of line b-n.

Examples:

*

NOTE

After execution of a Y command, the buffer pointer is
always positioned before the first character in the
buffer. {The Y command automatically executes an
implicit J command.} The A command does not change
the position of the buffer pointer.

In examples, the position of the buffer pointer is often
represented in this manual by the symbol t lust below
the line of text.

The J command moves the pointer to the beginning
of the first I ine in the buffer. The 3L command
then moves it to the beginning of the fourth line.

This moves the pointer to the beginning of the
next to last line in the buffer.

~ZJ-2L @@
*

*

*OL2R @@
*

ABCDEF
t

Advances the pointer to the position following
the fourth character in the next line.

OL moves the pointer back to the beginning of
the I ine it is currently on. Then 2R moves it back
over the carriage return-line feed pair which
terminates the preceding line.

In this example of text stored in the buffer, the
position of the buffer pointer is shown to be
between Band C.

2-3

INTRO TO TECO - 200 -

2.3 TEXT TYPE-OUT

Various parts of the text in the buffer can be typed out for examination. This is done by use of the

T command. Just what is typed out depends on" the position of the buffer pointer and the argument

given. The T command never moves the buffer pointer.

The command T types out everything from the buffer pointer through the next line feed. Thus, if the

pointer is at the beginning of a line, the command T causes that line to be typed out. If the pointer

is in the middle of a line, T causes the portion of the line following the pointer to be typed.

The command nT (n >0) is used to type out n lines, i. e., everything from the buffer pointer through

the nth line feed following it.

The command aT types out everything from the beginning of the cu~rent I ine up to the buffer pointer.

This is useful for determining the position of the pointer.

The command HT types out the entire contents of the buffer.

The user, especially one new to TECO, should use the T command often, to make sure the buffer

pointer is where he thinks it is.

During execution of any T command, the user may stop the terminal output by typing the to

(control 0) character. This command causes TECO to finish execution of the command string,

omitting all further type-out. The to command does not carryover to the next command string.

Examples:

~ OlT CDCD
ENTIRE LINE TYPED

*

~OTT CD CD
ENTIRE LINE TYPED

*

*2T ®CD
EF

GHIJKl

*

This command string is used to move the pointer
back to the beginning of a line and then typ'e out
the entire line. It is frequently used after in­
sertion and search commands.

This command string causes the entire line to
be typed without moving the pointer. It is useful
after insertion and search commands when it is not
convenient to move the pointer back to the
beginning of the line.

If the buffer contains the text below with the
pointer between D and E,

ABCDtEF) !

GHIJKl)!
MNOPQR)!

th is command causes the typeout shown.

"ABCD" is not typed because these characters pre­
cede the pointer. MNO PQR is not typed because
these characters follow the second line feed.

2-4

- 201 - INTRO TO TECO

2.4 DELETION COMMANDS

Characters are deleted individually by using the D command. The command D deletes the character

immediately following the buffer pointer. The command nD, where n >0, deletes the n characters

immediately following the pointer. The commands -D and ."D delete the character or the n

characters, respectively, which immediately precede the buffer pointer.

Lines are deleted using the K command. The K command may be preceded by a numeric argument,

which is understood to be 1, if omitted. The command nK (n> 0) deletes everything from the

current position of the pointer through the nth line-feed character following the pointer. The

command HK deletes the entire contents of the buffer.

At the conclusion of a D or K command the buffer pointer is positioned between the characters which

precede and follow the deletion.

Examples:

The editing buffer contains the following three lines of text,
and the pointer is positioned between the G and H.

ABCDEFGtHIJKLM) 1

NOPQRSTUVWXYZ) 1

1234567890) 1

~4D®®
*

*
*-3D ®®

*

*7D®®

*

* 2K10D ®®

*

Delete HIJK.

Delete G.

Delete EFG.

Delete HIJKLM) 1 but do not delete the line
feed at the end of the first line.

Delete HIJKLM) I.

Since the carriage return and line feed at the end
of the first line are deleted, the text in the buffer
after this command would 'be:
ABCDEFGNOPQRSTUVWXYZ) 1
1234567890) 1

This would leave the buffer containing only
ABCDEFG) 1

2-5

INTRO TO TECO

* OLK CD CD
*

* L2K CD CD
*

* HK CD CD
*

2.5 INSERTION COMMAND

- 202 -

This is the command string that is required to
kill (delete) the entire first line.

This kills the last two lines.

Kill the entire buffer.

The only insertion command is the I command. The ASCII text that is to be inserted into the buffer is

typed immediately after the letter I. The text to be inserted is terminated by an altmode.

Any ASCII character except null, altmode, and rubout may be included in the text to be inserted.

Specifically, spaces, tabs, carriage returns, form feeds, line feeds, and control characters are all

allowed. If a carriage return is typed in an insertion, it is automatically followed by aline feed.

The text to be inserted is placed in the buffer at the position of the buffer pointer, i. e., between

the characters. At the conclusion of the insertion command the buffer poi"nter is positioned at the

end of the insertion.

Any number of lines may be inserted with a single I command. For the user's protection, however,

no more than 10 to 20 lines should be inserted with each I command.

Examples:

If the buffer contains ABCDtEF) with the pointer between D and E, the command

~ IXYZ CD CD produces ABCDXYZtEF) I

*

*

* II

..

~ 3RI~ CD4CI~ CD CD

*

~I ~RM)
CD$

*

produces ABCD) I
t EF) I

produces ABCD I

tEF)

produces A~BCDE~ /) I

Th is command is used to separate the page in the
buffer into two pages. Both pages, however,
remain in the buffer. They are not actually
separated unti I output.

2-6

* JILINE ONE)

LINE TWO)
LINE THREE)

CD CD
*

~KI)

CD CD
*

2.6 OUTPUT COMMANDS

- 203 - INTRO TO TECO

This example shows insertion of several lines of
text at the begi nn i ng of the buffer.

This is the command string used to delete the
tail of a line without removing the carriage
return-I ine feed at the end of the line. If the
buffer contains

ABtCD) ~
EFGH) ,

This command will produce

AB)~
tEFGH),

The command P causes (1) the entire contents of the editing buffer to be output to the output file

and (2) an implicit Y command to be performed which reads in the next page of the input file. This

command is used after editing of a given page is complete and the user is ready to move on to the

next page.

The P command may be used with a positive numeric argument to skim over several pages. Specific­

ally, the nP command causes the n consecutive pages of the input file, starting with the page in the

editing buffer, to be output, and then the n+lst page to be yanked in.

The PW command merely outputs the page currently in the editing buffer. It does not clear the

buffer, it does not read in any more text, and it does not move the buffer pointer. This command is

used when creating a new file. It is also used to output the last page of a fi Ie.

If the buffer is empty, the PW and P commands have no effect.

The EF command must be used to close the output fi Ie after all output to it is complet.e. EF is

normally used after the PW command which outputs the last page of the file.

Examples:

~ PWEF CD CD
*

~ PT CD CD
FIRST LINE

*

This is the command string usually used to
cI ose out a fi I e when the I ast page of the fi Ie
is in the buffer.

This command string outputs the current page,
reads in the next page, and then types the
first line of the new page.

2-7

INTRO TO TECO

*

2.7 SPECIAL EXIT COMMANDS

- 204-

If, for example, page 6 of a document is in the
ed i t i ng buffer, th i s command causes pages 6
through 13 of the document to be output,
one after the other, and then reads in page 14.

The EX command is used to conclude an editing iob with a minimum of effort. Its use is best shown

by an example.

Suppose the user is editing a 30-page file and suppose that the last actual change to the file is made

on page 10. At this point the user gives the command

* EX CD0

In this case the action performed by TECO is equivalent to the command string 20PPWEF, with an

automatic return to the monitor at the end. Thus, the action of TECO is (1) to rapidly move all the

rest of the input fi Ie on to the output fi Ie, (2) c lose the output fi Ie, and (3) to return control to

the mon i tor.

The EG command is even more effic ient. This command performs exactly the same functions as the

EX command, but after that it causes re-execution of the last COMPILE, LOAD, EXECUTE, or

DEBUG command attempted before TECO was called.

For example, suppose the user gives the command

~ COMPILE PLOT .F4)

To request compilation of a FORTRAN source program, but the compiler discovers errors in the code.

The user would then call TECO to correct these errors:

~ TECO PLOT. F4)

*

When all the errors are edited, the user exits from TECO with the command

This causes the COMPILE command to be executed again on the file PLOT. F4, after TECO has

finished output of the file.

2-8

- 205 - INTRO TO TECO

Any TECO iob may be aborted by using the standard return-to-monitor command: tc tc (control C

typed twice). However, it this command is typed before the output file is closed, the output file

is lost.

If no input or output operations are in progress a single t C is sufficient to exit from TECO to the

monitor. In such a case, the user may reenter TECO without destroying the iob he was previously

executing. This is illustrated in the following example.

. TECO SOURCE. MAC)

* ICOMMENTS ®®
*tc

:.. DEASSIGN LPT)

:.. DAYTIME)

24-MAY-72 10:34

:.. REE)

*

2.8 SEARCH COMMANDS

A TECO iob-is started •

The user exits to perform a few simple monitor
commands.

The user reenters TECO. The previous buffer
is still intact.

In many cases the simplest way to position the buffer pointer is by using a character string search.

A search command causes TECO to scan through the text unti I a specified string of characters is

found, and then to position the pointer at the end of this string. There are two main search commands.

The S command is used to search for a character string within the editing buffer. The string to be

searched for is specified as an alphanumerical argument following the S command. This argument

must be terminated by an altmode. The character string to be searched for may contain any ASCII

character except null, altmode, or rubout.

The S command may be preceded by a numerical argument n > 1. This argument is used to search for

the nth occurrence of a character string. Thus a 2S command searches for the second occurrence of

the particular character string, skipping the first occurrence. If n is omitted, n = 1 is assumed.

Execution of the S command begins at the position of the buffer pointer and continues to the end of

the buffer. if the specified character string is not found in this range, an error message is printed and

the buffer pointer is set to the beginning of the buffer.

Examples:

*SA-IB ®®
*

This causes the pointer to be positioned after the
B in the first o.ccurrence of the string-
A - tab - B past the current position of the pointer.

2-9

INTRO TO TECO

* J2SNAME ®®
*

* S20)

TAG: 0 OLT 00
TAG: REST OF LINE

*

- 206 -

This causes the pointer to be positioned after
the second occurrence of the string" NAME" in
the buffer.

This moves the pointer to the positionj·ust
following the colon in the string "20 ~ TAG:",
then repositions the pointer to the beginning of
the line (iust before the "TAG:") and types out
the entire line starting with "TAG:".

Warning: When attempting a search it is very easy to overlook an occurrence of the search string

preceding the one which the user desires. For example, he may want to move the pointer after the

word "AND" but erroneously position it after a preceding occurrence of a word like "THOUSAND".

For this reason the user, especially the novice, is strongly urged to execute a T command to ascertain

the position of the pointer after each search command.

Example:

~SWORD 0 OTT 00
FORMAT(1X, 'WORD')

~ Ito WORD2 00
*

Here the user wishes to insert" to WORD2"
after "WORD". He wisely types out the line
to make sure he is at the right place, before
inserting "WORD2".

The other principle search command is the N command. The difference is that an S search ends at

the end of the current buffer, whereas an N search does not. An N search begins like an S search,

but if th,e character string is not found in the current buffer, an automatic P command is executed.

The current page is outputted, the next page read in, and the search continued on the new page.

This process continues until either the string is found or the input file is exhausted.

If the N search does find the specified character string, the pointer is positioned at its end.

If the string is not found, an error message is generated. In this case the user caused himself a fair

amount of delay. If an N search fails, the user must close the file with an EX command, then reopen

it and try the N search again with a character string that can be found. The user is strongly urged to

be careful when typing search character strings. Remember also that a search string must be terminated

with an altmode.

2-10

- 207 -

Example:

~ NSTRING - 3D CD CD
?SRH CANNOT FIND "STRING-3D"

~EX CD CD
.!... TECO filename. ext)

* NSTRING CD -3D CD CD
*

Version 23 TECO 2-11

INTRO TO TECO

Here the user meant to search for the
character string "STRING", and to
delete the last three characters of the
stri ng. However, he forgot to term i nate
the search string with an altmode and
this caused the unsatisfied search request
error message (?SRH).

May 1972

INTRO TO TECO - 208 -

- 209 - INTRO TO TECO

CHAPTER 3

ERROR MESSAGES

When TECO encounters an illegal command or a command that for any other reason cannot be executed,

an error message is printed on the user's terminal. Such messages contain a three-character code of the

form ?aaa and a one-line description of the error.

To get more information about the error, the user can type a slash (/) immediately after he receives

the error message. TECO will type an additional message that describes the error in more detail.

All three parts of the error messages from TECO are given in Table 3-1.

When an error message is generated, the command to which it refers is not executed, the remainder

of the command string is ignored, and TECO retruns to the idle state by typing an asterisk and

awaiting a new command string.

The novice user is c:specially warned that there are a great many TECO commands that have not been

described in this introductory material. Almost every letter of the alphabet and many of the special

characters have meanings as TECO commands. Hence, the user should be careful when typing

command strings. The beginner should probably stick to relatively short command strings.

In the following table, all TECO error messages are listed, even though some of them refer to the

more advanced commands not described in this manual. Error messages referring to the advanced

commands wi II probably be encountered by the user of this introductory material only if he has typed

an unintended command letter.

The complete set of TECO commands is fully described in the TECO manual in the DEC-system-10

Users Handbook.. Since most editing can be done using only the basic commands covered in this intro­

ductory material, most users should be able to get along without the more advanced description for

some time. The novice should gain complete mastery of the basic commands before attempting to use

any of the advanced commands.

Version 23 TECO 3-1 May 1972

INTRO TO TECO

?ARG

1)
2}
3}
4}

?BAK

?COR

?COS

?EBD

?EBF

?EBO

?EBP

Versian 23 TECO

- 210 -

Table 3-1
TECO Error Messages

Improper Arguments
The following argument combinations are illegal:
, {no argument before comma}
m,n, {where m and n are numeric terms}
H, {because H=B,Z is already two arguments}
,H {H following other arguments}

Cannot Delete Old Backup File
Failure in rename process at close of editing lob initiated by
an EB command or a TECO command. There exists an old
backup file fi Inam. BAK with a protection<nnn> such that it
cannot be deleted. Hence the input file filnam.ext cannot
be renamed to "filnam.BAK". The output file is closed with
the filenam "nnnTEC. TEMP", where nnn is the user's lob
number. The RENAME UUO error code is nn.

Storage Capacity Exceeded
The current operation requires more memory storage than
TECO now has and TECO is unable to obtain more core
from the mon i tor. Th i s message can occur as a resu I t of
anyone of the following things:

1)

2}

3}

command buffer overflow while a long command
string is being typed,
Q-register buffer overflow caused by an X or
[command,
editing buffer overflow caused by an insert command
or a read command.

Contradictory Output Switches
The GENLSN and SUPLSN switches may not both be used
with the same output fi Ie.

EB with Device dev Is Illegal
The EB command and the TECO command may be specified
only with file structured devices, i.e., disk and DECtape.

EB with Illegal File filnam.ext
The EB command and the TECO command may not be used
with a file having the filename extension ".BAK" or with
a file having the nome "nnnTEC.TMP". Where nnn is the
user's lob number, the user must either use on ER-EW
sequence, or rename the file.

EB, EW, or EZ Before Current EB Job Closed
After an output fi Ie has been opened by a TECO command
or an EB command, no further EB, EW, or EZ commands
may be given until the current output file is closed.

EB Illegal Because of File filnam.ext Protection
The file filnam.ext cannot be edited with on EB command
or a TECO command because it has a protection <nnn> such
that it cannot be renamed at close time.

3-2 May 1972

?EEE

?EMA

?EMD

?ENT-oO

-01

-02

-03

-06

-14

Version 23 TECO

- 211 - INTRO TO TECO

Table 3-1 (Cont)
TECO Error Messages

Unable to Read Error Message Fi Ie
An error, whose code was typed previous to this error
message, has occurred, and while TECO was trying to find
the proper error message in the error message file, one of
the following errors occurred: 1) the error message fi Ie,
TECO.ERR, could not be found on device SYS:, 2) an input
error occurred while TECO was reading the file TECO.ERR,
3) The error message corresponding to that error code is
missing from TECO.ERR, 4) the user's TECO iob does not
currently have enough room for a buffer to read the error
message into, and no more core can be obtained from the
monitor, 5) for some strange reason device SYS: could not
be initialized for input.

EM with Illegal Argument nn
The argument n in an nEM command must be greater than zero.

EM with No Input Device Open
EM commands apply only to the input device, and so should
be preceded by an ER (or equivalent) command. To position
a tape for output, that unit should be temporarily opened
for input while doing the EM commands.

Illegal Output Filename IIfilnam.ext"
ENTER UUO failure O. The filename llfilnam.ext" specified
for the output file cannot be used. The format is invalid.

Output UFD dev: [pi, pg] Not Found
ENTER UUO failure 1. The file filnam.ext[pi,pg] specified
for output by an EW, EZ, or MAKE command cannot be
created because there is no user file directory with proiect-
programmer number [pi, pg] on device dev.

Output Protection Failure
ENTER UUO failure 2. The file filnam.ext[pi,pg] specified
for output by an EW, EZ, EB, MAKE, or TECO command
cannot be created either because it already exists and is
write-protected <nnn> against the user, or because the UFD
it is to be entered into is write-protected against the user.

Output File Being Modified
ENTER UUO failure 3. The file filnam.ext specified for
output by an EW, EZ, EB, MAKE, or T.ECO command cannot
be created because it is currently being created or modified
by another iob.

Output UFD or RIB Error
!:iNTER UUO failure 6. The output file filnam.ext cannot be
created because a bad directory block was encountered by the
monitor while the ENTER was in progress. The user may try
repeating the EW, EB, or TECO command, but if the error
persists, it is impossible to proceed. Notify your system
manager.

No Room or Quota Exceeded on dev:
ENTER UUO failure 14. The output fi Ie filnam. ext cannot be
created because there is no more free space on device dev:, or
because the user's quota is already exceeded there.

3-3 May 1972

INTRO TO TECO

-15

-16

-23

-24

-25

-26

-nn

?EOA

?FNF-OO

-01

-02

Version 23 TECO

- 212 -

Table 3-1 (Cont)
TECO Error Messages

Write Lock on dev:
ENTER UUO failure 15. The output file filnam.ext cannot be
created because the output file structure is write-locked.

Monitor Table Space Exhausted
ENTER UUO failure 16. The output fi Ie fi Inam. ext cannot be
created because there is not enough table space left in the
monitor to allow the ENTER. The user may try repeating the
EW, EB, or TECO command, but if the error persists he will
have to wait until conditions improve.

Output SFD not Found
ENTER UUO failure 23. The output file filnam.ext cannot be
created because the sub-file-directory on which it should be
ENTERed cannot be found.

Search List Empt~
ENTER UUO fai ure 24. The output file filnam.ext cannot be
created because the user's file structure search list is empty.

Output SFD Nested too Deeply
ENTER UUO failure 25. The output file filnam.ext cannot be
created because the specified SFD path for the ENTER is
nested too deepl y.

No Create for Specified SFD Path
ENTER UUO failure 26. The output file filnam.ext cannot be
created because the specified SFD path for the ENTER is set
for no creation.

ENTER Fai lure nn on Output Fi Ie filnam. ext
The attempted ENTER of the output file filnam.ext has failed
and the monitor has returned an error code of nn. This error
is not expected to occur on an ENTER. Please send the TTY
printout showing what you were. doing to DEC with an SPR form.

nEO Argument Too Large
The argument n given with an EO command is larger than the
standard (maximum) setting of EO=n for this version of TECO.
This must be an older version of TECO than the user thinks he
is using; the features corresponding to EO=n do not exist.

Input File filnam.ext Not Found
LOOKUP UUO failure O. The file filnam.ext specified for
input by an ER, EB, or TECO command was not found on the
input device dev.

Input UFD dev: [pi, pg] Not Found
LOOKUP UUO failure 1. The file filnam.ext[pi,pg] specified
for input by an ER, EB, or TECO command cannot be found
because there is no User File Directory with proiect-programmer
number [pi, pg] on device dev.

Input Protection Fai lure
LOOKUP UUO failure 2. The file filnam.ext[pi,pg] specified
for input by an ER, EB, or TECO command cannot be read
because it is read-protected <nnn > against the user.

3-4 May 1972

-06

-16

-23

-24

-25

-nn

?FUL

?IAS

?ICE

?ICT

Version 23 TECO

- 213 - INTRO TO TECO

Table 3-1 (Cont)
TECO Error Messages

Input UFD or R IS Error
LOOKUP UUO failure 6. The input file filnam.ext cannot be
read because a bad directory block was encountered by the
monitor while the LOOKUP was in progress. The user may try
repeating the ER, ES, or TECO command, but if the error
persists ,~II is lost. Notify your system manager.

Monitor-T able Space Exhausted
LOOKUP UUO failure 16. The input file filnam.ext cannot be
read because there is not enough table space left in the monitor
to allow the LOOKUP. The user may try repeating the ER, ES,
or TECO command, but if the error persists he wi II have to wait
until system conditions improve.

Input SFD not Found
LOOKUP UUO failure 23. Th,e input file filnam.ext cannot be
found because the sub-file-dirE!ctory on which it should be
looked up cannot be found.

Search Li st Empty
LOOKUP UUO failure 24. The input fi Ie filnom. ext cannot be
found because the user's file structure search list is empty.

Input SFD Nested too Deeply
LOOKUP UUO failure 25. The input file filnam.ext cannot be
found because the specified SFD path for the LOOKUP is
nested too deeply.

LOOKUP Failure nn on Input File filnam.ext
The attempted LOOKUP on the Input file filnam.ext has
failed and the monitor has returned an error code of nn. This
error is not expected to occur on a LOOKUP. Please send
the TTY printout showing what you were doing to DEC with
an SPR form.

Device dev: Directory Full
ENTER UUO failure n. The file filnam.ext specified for
output by an EW or MAKE command cannot be created on
DECtape dev because the tape directory is full.

Incomplete < •.• > or (•••) in Macro.
A macro contained in a Q-register and being executed by an M
command contains an iteration that is not closed within the
Q-register by a >, or a parenthetical expression that is not
closed within the Q-register by a).

Illegal Control-E Command in Search Argument
A search argument contains a ® command that is either
not defined or incomplete.

Illegal Control Command t <char> in text Argument
In order to be entered as text in an Insert command or search
command, all control characters (t@ - tH and tN - t -) must
be preceded by tR or tT. Otherwise they are interpreted as
commands. The control character " t <char>" is an undefined
text argument control command.

3-5 May 1972

INTRO TO TECO

?IDV

?IEC

?IEM

?IFC

?IFN

?ILL

?ILR

?INP-nnOOOO

Version 23 TECO

- 214-

Table 3-1 (Cont)
TECO Error Messages

Input Device dev Not Available
Initialization failure. Unable to initialize the device dev for
input. Either the device is being used by someone else right
now, or else it does not exist in the system.

Illegal Character "<char>" After E
The only commands starting with the letter E are EB, EF, EG,
EH, EM, EO, ER, H, EU, EW, and EZ. When used as a
command (i.e., not in a text argument) E may not be followed
by any character except one of these.

Re-Init Failure on Device dev After EM
Unable to re-initialize the device dev after executing an EM
command on it. If thi~ error persists after retrying to initialize
.the device with an ER command (or EW command if output to
the device is desired), consu It your system manager.

Illegal Character "<char>" After F
The only commands starting with the letter Fare FS and FN.
When used as a command (other than EF or in a text argument)
F may not be followed by any character other than one of these.

Illegal Character "<char>" in Filename
File specifications must be of the form dev:filnam.ext[m,nl ®
where dev, filnam, and ext are al phanumeric, and m and
n are numeric. No characters other than the ones specified
may appear between the *', ER, EW, or EZ command and
the altmode terminator (\!j).

Illegal Command <char>
The character "<char >" is not defined as a valid
TECO command.

Cannot Lookup Input File filnam.ext to Rename It
Failure in rename process at close of editing lob initiated by an
EB command or a TECO command. Unable to do a LOOKUP on
the original input file dev:fi Inam. ext in order to rename it
"fi Inam. BAK". The output file is closed with the name
"nnnTEC. TMP", where nnn is the user's lob number. The
LOOKUP UUO error code is nn.

Input Error nnOOOO on File filnam.ext.
A read error has occurred during input. The input file filnam.ext
has been released. The user may try again to read the file, but
if .the error persists, the user will have to return to his backup
file. The input device status word error flags are nnOOOO.
(Note: This number represents the I/o status word (rh) with bits
22-35 masked out.)
(040000 -- block too large).
(100000 -- pari ty or checksum error).
(140000 -- block too large and parity error).
(200000 -- device error, data missed).
(240000 -- block too large and device error).
(300000 -- parity error and device error).
(340000 -- block too large, parity error, and

device error).

3-6 May 1972

?IOS

?IQC

?IQN

?IRB

?IRN

?ISA

?MAP

Version- 23 TECO

- 215 - INTRO TO TECO

Table 3-1 (Cont)
TECO Error Messages

(400000 -- improper mode).
(440000 -- block too large and improper mode).
(500000 -- parity error and improper mode).
(540000 -- block too large, parity error, and

improper mode).
(600000 -- device error and improper mode).
(640000 -- block too large, device error, and

improper mode).
(700000 -- parity error, device error, and

improper mode).
(740000 -- block too large, parity error, device

error, and improper mode).

Illegal Character "<char>" in I/O Switch
The only valid characters in switches used with file selection
commands are the alphabetic characters.

Illegal command" <char>
The only valid "commands are "G, "L, "N, "E, "C, "A,
"D, "V, "W, "T, "F, "5, and "U.

Illegal Q-register Name "<char>"
The Q-register name specified by a Q, U, X, G, %,
M, [,], or * command must be a letter (A through Z)
or a digit (0 through 9).

Cannot Rename Input File filnam.ext to filnam.BAK
Fai lure .in rename process at close of editing iob initiated
by an EB command or a TECO command. The attempt to
rename the original input file filnam.ext to the backup
filename "filnam.BAK" has failed. The output file is
closed with the name "nnnTEC. TMP", where nnn is the
user's iob number. The RENAME UUO error code is nn.

Cannot RE-Init Device dev for Rename Process
Failure in rename process at close of editing iob initiated by
an EB command or a TECO command.
Cannot reinitialize the original input device dev in order
to rename the input fi Ie fi Inam. ext to "fi I nam. BAK' '. The
output fil~ is closed with the name "nnnTEC. TMP", where
nnn is the user's iob number.

n Argument with Search Command
The argument preceding a"search command indicates the number
of times a match must be found before the search is considered
successful. This argument must be greater than O.

Missing'
In attempting to execute a conditional skip command (a "
command whose argument does not satisfy the required condition)
no ' command closing the conditional execution string can be
found. Note: n" .•• ' strings must be complete within a single
macro level.

3-7 May 1972

INTRO TO TECO

?MEE

?MEF

?MEO

?MEQ

?MEU

?MIQ

?MlA

?MlP

?MRA

Version 23 TECO

- 216 -

Table 3-1 (Cont)
TECO Error Messages

. Macro Ending with E
A command macro being executed from a Q-register ends with
the character "E". This is an incomplete command. E is the
initial character of an entire set of commands. The other char-
acter of the command begun by E must be in the same macro
with the E.

Macro Ending with F
A command macro being executed from a Q-register ends with
the character "F" (not an. EF). This is an incomplete command.
F is the initial character of an entire set of commands. The
other character of the command begun by F must be in the
same macro with the F.

Macro Ending with Unterminated 0 Command
The last cOf!1mand in a command macro being execut~d from
a Q-register is an 0 command with no altmode to mark the
end of the tag-name argument. The argument for the 0 command
must be complete within the Q-register.

Macro Ending with II

A command macro being executed from a Q-register ends
wi th the" character. This is an incomplete command. The
II command must be followed by one of the characters G,
l, N, E, C, A, D, V, W, T, F, 5, or U to indicate the
condition under which the following commands are to be
executed. This character must be in the Q-register with the" .

Macro Ending with t
A command macro being execute_d from a Q-register ends with
the t character. Th is is an incomplete command. The
t command takes a single character text argument that must be
in the Q-register with the t.

Macro Ending with <char>
A command macro being executed from a Q-register ends with
the character II <char> II. This is an incomplete command. The
<char> command takes a single character text argument to name
the Q-register to which it applies. This argument must be in the
same macro as the <char> command itself.

Missing <
There is a right angle bracket not matched by a left angle
bracket somewhere to its left. (Note: an iteration in a macro
stored in a Q-register must be complete within the Q-register.)

Missing (
Command string contains a right parenthesis that is not matched
by a corresponding left parenthesis.

Missing>
In attempting to exit from an iteration field with a; command (or
to skip over an iteration field with a 0 argument) no > command
closing the iteration can be found. Note: iteration fields
must be complete within a single macro level.

3-8 May 1972

?MRP

?MUU

?NAE

?NAI

?NAQ

?NAU

-.-------------.
?NCS

r---------

?NFI

r---------- -------
?NFO

?NTQ

?OCT

--
?ODV

Version 23 TECO

- 217 - INTRO TO TECO

Table 3-1 (Cont)
TECO Error Messages

Missing)
The command string contains, within an iteration field, a
parenthetical expression that is not closed by a right
parenthesis.

Macro Ending with 1 1
A command macro being executed from a Q-register ends with
control-t or 1 t. This is an incomplete command. The
1 1 command takes a single character text argument that must
be in the Q-register with the t 1 •

No Argument Before =
The command n= or n= causes the value n to be typed. The
= command must be preceded by either a specific numeric
argument or a command that returns a numeric value.

No Altmode after nl
Unless the EO value has been set to 1, the numeric insert
command nl must be immediately followed by altmode.

No Argument Before II

The" command must be preceded by a single numerlc argument
on which the decision to execute the following commands or
skip to the matching I is based.

No Argument Before U
The command nUi stores the value n in Q-register i. The
U command must be preceded by either a specific numeric
argument or a command that returns a numeric value.

No Command String Seen Prior to *i
The *i command saves the preceding command string in
Q-register i. In this case no command string has previously
been given.

No Fi Ie for Input
Before issuing an input command (Y or A) it is necessary to open
an input file by use of an ER, EB, or TECO command.

No File for Output
Before giving an output command (PW, P, N, EX, or EG)
it is necessary to open an output file by use of an EB, EW,
EZ, MAKE, or TECO command.

No Text in Q -regi ster x
Q-register x, specified by a G or M command, does not
contain text.

"8" or "9" in Octal Digit String
In a digit string preceded by 10, only the octal digits 0-7
may be used.

Output Device dev Not Available
In itial ization fai lure. Unable to initial ize the device dev for
output. Either the device is,being used by someone else right
now, or it is write locked, or else it does not exist in the system.

3-9 May 1972

INTRO TO TECO

?OLR

?O UT -nnOOOO

?PAR

?POP

?PPN

Version 23 TECO

- 218 -

Table 3-1 (Cont)
TECO Error Messages

Cannot Lookup Output File dev:filnam.ext to Rename It
Failure in rename process at close of editing iob initiated
by an EB command or a TECO command. The special LOOKUP
on the output file filnam.ext required for DECtape in order to
rename the file to 'filnam.ext" has failed. The original input
file filnam.ext has been renamed "filnam.BAK", but the
output file is closed with the name "nnnTEC. TMP", where
nnn is the user's iob number. The LOOKUP UUO error
code is nn.

Output Error nnOOOO - Output File nnnTEC. TMP Closed
An error on the output device is fatal. The output file is
closed at the end of the last data that was successfully
output. It has the filename "nnnTEC.TMP", where nnn is
the user's iob number. See Section 4.3 for a recovery
technique. The output device status word error flags are
nnOOOO. (Note: This number represents the I/O status
word (rh) with bits 22-35 masked out.)
(000000 -- end of tape).
(040000 -- block number too large: device full or

quota exceeded).
(100000 -- parity or checksum error).
(140000 -- block number too large and parity error).
(200000 -- device error, data missed).
(240000 -- block number too large and device error).
(300000 -- parity error and device error).
(340000 -- block number too large, parity error,

and device error).
(400000 -- improper mode or device write locked).
(440000 -- block number too large and improper mode).
(500000 -- parity error and improper mode).
(540000 -- block number too large, parity error,

and improper mode) •.
(600000 -- device error and improper mode).
(640000 -- block number too large, device error,

and improper mode).
(700000 -- parity error, device error, and improper mode).
(740000 -- block number too large, parity error,

device error, and improper mode).

Confused Use of Parentheses
A string of the form (... < ...) has been encountered.
Parentheses should be used only to enclose combinations of
numeric arguments. An iteration may not be opened and
not closed between a left and right parenthesis.

Attempt to Move Pointer Off Page with J, C, R, or 0
The argument specified with a J, C, R, or 0 command must
point to a position within the current size of the buffer, i.e.,
between 0 and Z, inclusive.

Illegal Character "<char>" in Proiect-programmer Number
Proiect-programmer numbers in file specifications must be given
in the form [m, n] where m and n are octal digit strings separated
by a comma. No characters other than the ones specified may
appear between the enclosing brackets.

3-10 May 1972

?RNO

?SAL

?SNA

?SNI

?SRH

?STC

?STL

?TAG

?TAL

?TTY

Version 23 TECO

- 219 - INTRO TO TECO

Table 3-1 (Cont)
TECO Error Messages

Cannot Rename Output File nnnTEC. TMP
Failure in rename process at close of editing job initiated
by an EB command or a TECO command. The attempt to
rename the output file nnnTEC. TMP to the name
"filnam.ext" originally specified in the EB or TECO
command has failed. The original input file filnam.ext
has been renamed "filnam.BAK", but the output file is
closed with the name "nnnTEC. TMP", where nnn is the
user's job number. The RENAME UUO error code is nn.

Second Argument Less Than First
In a two-argument command, the first argument must be
less than or equal to the second.

-'
Initial Search with No Argument
A search command with null argument has been given, but
there 'was no preceding search command from which the
argument could be taken.

; Not in an Iteration
The semicolon command may be used only with a string of
commands enclosed by angle brackets, i.e., in an
iteration field.

Cannot Find "<text>"
A search command not preceded by a colon modifier and not
within an iteration has failed to find the specified character
string "<text>". After an S search fails the pointer is left
positioned at the beginning of the buffer. After an N or-
search fai Is the last page of the input file has been input and,
in the case of the N, output, and the buffer cleared. Note
that when this message occurs, the text string printed
includes all control-character commands included in the
search argument.

Search String Too Long
The maximum length of a search string is 80 characters
including all string control commands and their arguments.

Search String too Long
The maximum length of a search string is 36 character
positions, not counting extra characters required to
specify a single position.

Missing Tag Ixxx!
The tag Ixxx! specified by an 0 command cannot be found.
This tag must be in the same macro level as the 0 command
referencing it.

Two Arguments with L
The L command takes at most one numeric argument, namely,
the number of lines over which the buffer pointer is to be moved.

Illegal TTY 1-0 Device
A terminal may be specified as an input-output device in an
ER, EW, EZ, or MAKE command only if it is not being used
to control an attached job, the user's own terminal included.

3-11 May 1972

INTRO TO TECO

?UCA

?UFS

?UIN

?UIS

?USR

?UTG

?UUO

Version 23TECO

- 220 -

Table 3-1 (Coot)
TECO Error Messages

Unterminated f A Command
A f A message type-out command has been given, but there is
no corresponding f A to mark the end of the message. fA
commands must be complete within a single command level.

Macro Ending with Un terminated File Selection Command
The last command in a command macro being executed from a
Q-register is a file selection command (ER, EW, ES, or EZ)
with no altmode to mark the end of the fi Ie specifications.
The file selection command must be complete within the
Q-register.

Unterminated Insert Command
An insert command (possibly ar @ insert command) has been
given without terminating the text argument at the same
macro level.

Undefined I/O Switch "/xxx"
The switch "/xxx" is not defined with either input or output
file selection commands. The only switches currently defined
for i,isut or output file selection commands are /GENLSN
and SUPLSN.

Unterminated Search Command
A search command (possibly an @ search command) has been
given without terminating the text argument at the same
macro level.

Unterminated Tag
A command string tag has been indicated by a I command,
but there is no corresponding! to mark the end of the tag.
Tags must be complete within a single command level.

Illegal UUO
Internal error. The illegal instruction <Ih,rh> has been
encountered at address nnnnnn. This is caused by either
a TECO bug or a monitor bug. Please give this printout
to your system manager, or submit it to DEC with an SPR.

3-12 May 1972

- 221 -

DEC-IO-ETEE-D

TECO
TEXT EDITOR AND CORRECTOR PROGRAM
PROGRAMMER'S REFERENCE MANUAL

This manual reflects the software as of Version 23 of TECD.

digital equipment corporation · maynard. massachusetts

TECO - 222 -

1st Printing January 1968
2nd Printing October 1968

3rd Pri nti ng August 1969
4th Printing April 1970

5th Printing (Rev) October 1970
6th Printing (Rev) May 1972

Copyright © 1968, 1969, 1970, 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa­
tion purposes and is subject to change with­
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

- 223-

NEW AND CHANGED INFORMATION

This manual reflects the software as of version 23. It has been
revised to include all new and changed material since version
21A of the TECO software. Change bars in the left margin
are used to indicate the new and revised information.

iii

TECO

TECO - 224-

CHAPTER 1

CHAPTER 2

2.1

2.2

2.2.1

2.2.2

2.2.3
2.2.4
2.3

2.4
2.5

2.6
2.7

2.7.1

2.7.2
2.7.3
2.8
2.9

CHAPTER 3

3.1

3.1.1
3.1.2

3.1.3
3.1.4

3.2

3.2.1

3.2.2

3.2.3

3.2.4
3.2.5
3.2.6

3.2.7

3.3

3.3.1

3.3.2

3.3.3
3.4
3.5
3.5.1

- 225 -

CONTENTS

INTRODUCTION

CONCEPTS

Data Files

Character Set

Speci al Characters

Control Characters

Carriage Control Functions

Symbols

Data Format

Editing Buffer

Buffer Pointer

General Command String Syntax

Arguments

Alphanumeric Arguments

Numeric Arguments

Commands That Return a Value

Q-Registers

Core Expansion

COMMANDS

Initialization Commands

R TECO Command

MAK E Command

TECO Command

Examples of the Use of Initialization Commands

File Selection Commands

ER Command

EM Command

EW Command

EZ Command

EB Command

Editing Line-Sequence Numbered Files

Examples of the Use of File Section Commands

Input Commands

Y Command

A Command

Examples of the Use of Input Commands

Special Characters as Buffer Position Numeric Arguments

Buffer Pointer Positioning Commands

J Command

v

TECO

Page

2a1

233

233
234
235
235
236

236
237
238
239

239

240
240

241
243

243
244

247
247

247
248
250

250
251
251
251

253
253
254

254
255
256

257

257

257

258
258

TECO

3.5.2

3.5.3

3.5.4
3.5.5

3.6
3.6.1
3.6.2
3.6.3

3.6.4

3.6.5
3.6.6

3.7
3.7.1

3.7.2
3.7.3
3.8
3.8.1
3.8.2
3.8.3

3.8.4
3.8.5
3.8.6

3.8.7

3.8.7.1

3.8.7.2

3.8.8

3.9
3.9.1
3.9.2

3.9.3

3.9.4

3.10
3.10.1

3.10.2

3.10.3
3.11

3.11. 1
3.11.2
3.11. 3

- 226 -

CONTENTS (Cont)

C Command

R Command

L Command

Examples of the Use of Buffer Pointer Positioning Commands

Text Type-out Commands

T Command

@Command

tL Command

nET Command

Case Flagging On Type-out

Examples of the User Text Typeout Commands

Deletion Commands

K Command

D Command

Examples of the Use of Deletion Commands

Insertion Commands

I Command

Tab Command

@I Command

nl ® Command

n\ Command

Examples of the Use of Insertion Commands

Case Control with Insert Commands

Alphabetic Case Control

Special" Lower Case" Characters

Inserting Control Characters

Output Commands

PW Command

P Command

EF Command

Examples of the Use of.Output Commands

Ex it Commands

EX Command

EG Command

@ and ® Commands

Search Commands

S Command

FS Command

N Command

vi

Page

258

258

259

259
260
260
260
261
261
262
262
264
264

264

265
265

266

266
266

266
267

267

268
268
270
271

272
272
272
274
274
275

275
276
276

278
279

279
279

3.11.4

3.11.5

3.11.6

3.11.6.1

3.11.6.2

3.11. 7

3.11.8

3.11.8.1

3.11.8.2

3.11.8.3

3.11.8.4

3. 11. 9

3.11.10

3.12

3.12.1

3.12.2

3.13

3.13.1

3.13.2

3.13.3

3.13.4

3.14

3.14.1

3.14.1.1

3.14.1.2

3.14.1.3

3.14.2

3.14.2.1

3.14.2.2

3.14.2.3

3.14.3

3.14.4

3.14.5

3.15

3.16

3.16.1

3.17

3.17.1

3.17.2

3.17.3

- 227-

CONTENTS (Cont)

FN Command

Backarrow Command

Search Command Modifiers

@Modifier

Colon Modifier

Automatic Typeout After Searches

Case Control in Searches

Alphabetic Case Control in Search Arguments

Special" Lower Case" Characters

Control Characters in Search Arguments

Case Match Mode Control in Searches

Spec;ial Match Control Characters

Examples of the Use of Search Commands

Iteration Commands

Angle Bracket « ... »
Semicolon Command

Flow Control Commands

Command String Tags

o Command

Conditional Execution Commands

Examples of the Use of Flow Control Commands

Q-Register Commands

Commands for Storing Integers

U Command

Q Command

% Command

Commands for Storing Character Strings

X Command

G Command

M Command

Saving the Previous Command String

Q-Register Pushdown List

Examples of the Use of Q-Register Commands

Numeric Typeout Command

Special Numeric Values

Examples of the Use of the Special Numeric Arguments

TECO Programming Aids

@Command

Question Mark (1) Command

The EO Value

vii

TECO

Page

280

280

281

281

281

282

282

282

285

285

285

286

287

289

289

289

291

291

292

292

293

295

295

295

295

295

295

295

296

296

296

297

297

300

300

302

303

304

304

TECO

3.18
3.18.1

CHAPTER 4

4.1

4.2
4.3

4.4

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.3
5.1.4

5.2
5.2.1
5.2.2

5.2.3

- 228 -

CONTENTS (Cont)

Command String Type-in Control Commands

Carriage Return, line Feed, and Spaces

TECHNIQUES

Creation, Execution, and Editing of a FORTRAN Program

Rearranging a File

Splitting and Merging Files

Example of an Advanced TECO Macro

USER ERRORS

Erasing Commands

Rubout Command

Double @ Command

@ Command

Bell-Space Command

Error Messages

Question Mark Command

S I ash Command

EH Command

APPENDICES

APPENDIX A TECO ERROR MESSAGES

APPENDIX B ASCII CHARACTERS

APPENDIX C SUMMARY OF COMMANDS

viii

Page

306

306

307
309
310
313

319
319
320
320

321
321
322
323

325

337

345

- 229 - TEeO

CONTENTS (Cont)

Page

TABLES

2-1 Special Characters 235

2-2 Special Symbols 236

2-3 Numeric Operators 241

3-1 EM Commands 252

3-2 Special Buffer Position Arguments 258

3-3 L Commands 259

3-4 T Commands 260

3-5 K Commands 264

3-6 P Commands 273

3-7 Conditional Execution Commands 293

A-1 TECO Error Messages 325

B-1 ASCII Characters 337

C-1 Command Description 345

ix

TECO - 230 -

Chapter 1

Introduction

- 231 - TECO

This manual is a complete reference manual for the advanced TECO user. It is not designed to be used

as a beginner's text, and people who are learning TECO should not use it as such. Beginners are re­

ferred to the tutorial" Introduction to TECO", which appears in Section I of the DECsystem-l0 Users

Handbook.

TECO is a powerful text editor for use with all DECsystem-l0 systems. TECO enables the advanced

user to easily edit any ASCII text. Most editing can be accomplished using a few simple commands;

or the user can select any of a large set of sophisticated commands, such as character string searching,

command repetition, conditional commands, programmed editing, and text block movement. Refer

to Appendix C for a summary of the commands availabJe.

TECO editing is normally done on-line, using the terminal. However, the user can also write his

editing commands as a TECO command file and have his editing task run by an operator.

TECO is a character-oriented editor; one or more characters in a line can be modified without re­

typing the rest of the line. Any source document can be edited: programs written in FORTRAN,

COBOL, MACRO-IO, or any other language, as well as memoranda, specifications, and other types

of arbitrarily-formatted text. TECO does not require that line numbers or any other extraneous in­

formation be associated with the text. The full ASC II character set, printing and nonprinting

characters al ike, can be processed.

TECO requires a minimum of 5K of core memory, 3K of which is shared in a reentrant system. TECO

takes advantage of any additional core available to expand its buffers, as required.

A single terminal is required for typing in commands. Data can be input or output on any standard

I/O device.

1-1

TECO - 232-

Chapter 2

Concepts

2.1 DATA FILES

- 233- TECO

DECsystem-10 TECO operates on ASCII data files. The input file is the file that the user wishes to

change. The output file is the file that receives the newly created or edited data.

Inputting is defined as the process of reading in data that already exists in some computer-readable

form {paper tape; disk file, etc.}. Data can be input from any device except the user's terminal.{or

another user's terminal}. Inserting is defined as the actual typing in of new data and is done only at

the user's terminal.

1n the case of such hard-copy devices as the card reader and the paper-tape reader, only the device

need be specified to open a file for input or output. For disk and DECtape files, filenames, as well

as the device, must be specified. If no device is specified, the device DSK: is assumed. Magnetic

tape files are specified by naming the tape drive and by using special TECO commands to position

the tape properly.

Any I/O device name acceptable to the monitor can be used. Some examples are:

DSK:

DTAn:

MTAn:

CDR:

CDP:

PTR:

PTP:

LPT:

TTYn:

Disk {including drums}

DECtape {n is the number of the drive on which the
tape is mounted}

Magnetic tape {n is the number of the drive on which
the tape is mounted}

Card reader

Card punch

Paper-tape reader

Paper-tape punch

Line printer

Terminal number n, usually a terminal having a low­
speed reader or punch

2-1

TECO - 234-

NOTE

TTYn: used as an I/O device must be different from the
user's terminal and must not be the terminal of any
attached user.

Fi lenames for"disk and DEC tape fi les consist of two parts: the first part, the fi lename proper, consists

of from one to six alphanumeric characters; the second part, which is' optional, is called the "filename

extension." If given, the fi lename extension consists of from one to three al phanumeric characters

and is separated from the filename proper by a period. If the filename extension is not given, it is

defined as null and as such is distinctive. In the case of a null filename extension, the period after

the filename proper can be omitted.

Examples of fi len ames:

TECO.21

EARNNG .F4

0015J.CBL

GLOB. MAC

GLOB.BAK

FRMTTR. TEC

M20

M20.1

2.2 CHARACTER SET

The source file for TECO version 21

A FORTRAN source program

A COBOL source program

A MACRO-10 source program

A backup file

A file containing a TECO macro

A filename with null extension

A similar filename with non-null extension

The TECO character set is the full ASCII set. To obtain particular information about individual char­

acters, the user should refer to the table of ASCII characters in Appendix B. This table contains

the following:

a. A list of all ASCII characters and the symbols used in this manual to represent
them,

b. octal and decimal values of the characters, and,

c. comments concerning any special significance of each character.

In general, the user must be concerned with the character set on two levels: the data level and the

command level.

Every ASCII character from control-A (decimal value 01) through rubout (decimal value 127) is legal

in TECO data. They can all be input and output, and they can all be inserted. The only character

that is not completely legal as data is the null character (decimal value 0). The null character can be

inserted and output, but it is ignored on input. Form feed characters (decimal value 12) are com­

pletely legal in data but are treated specially on input (see Sections 2.3 and 3.3).

Most of the ASCII characters have some meaning when used as commands. Some are monitor commands.

When used as commands, the lower-case characters have the same meaning as their upper-case

2-2

I

I

- 235 - TECO

equivalents. The table in Appendix B tells where in this manual the uses of the various characters

as commands are explained.

2.2. 1 Special Characters

Because of their use as special immediate~action commands (monitor control commands or erasing

commands), certain characters must not be typed in explicitly as alphanumeric arguments. All of

them, however, are legal as data (except the null character) and can be inserted using special tech­

niques. The characters to which this restriction applies are referred to in this manual as "special

characters." These special characters are listed in Table 2-1.

@
@@

Character

(control-C)

(two successive
control-G's)

Table 2-1 t
Special Characters

(control-G, space)

@

®
(control-0)

(control-U)

ESCape or PREfix

ALTmode or ([9

Rubaut

Remarks

A monitor command

An erasing command
(A single control-G is
acceptable.)

Immediate editing command
(causes current line to be
retyped) •

A monitor command

An erasing command

Equivalent to ALTmode

Standard text argument
terminator (Two successive
ALTmodes terminate a
command string.)

An erasing command

tin monitors preceding the 5.02 monitor the characters @' @, and @
are also monitor commands and must be included in the aoove list for these systems.

2.2.2 Control Characters

Control characters are characters that are typed by holding down the CTRL key while striking a char­

acter key. The control characters have decimal values 0 through 31. When TECO is printing text,

a control character is printed as an up-arrow, followed by the character which is typed to produce

the control character. For example, control-A prints as " tA" •

In many cases the control character commands can be typed into command strings by using an alternate

procedure to the standard method of holding down the CTRL key while striking the desired character.

2-3

TECO - 236 -

Instead, the user can>first type up-arrow and then type the desired character without depressing the

CTRL key. For example, when used as a command, the two-character sequence up-arrow, H (denoted

by tH) is equivalent to the single character control-H (denoted by @). This method can be used

only when the control character is typed as a command, not when it is typed as text or as an alpha-

I nomeric argument. Control characters appearing as text arguments must be preceded by a ®.
Exceptions are noted at appropriate places throughout the manual.

2.2.3 Carriage Control Functions

A few of the control characters are the special terminal functions: bell, tab, line feed, vertical tab,

form feed, and carriage return. All of these characters echo by performing their particular function;

they also perform this function when TECO is printing out text from the buffer.

When a carriage return is typed in, the monitor automatically generates a line feed following it. The

echo to the carriage return type-in is a carriage return followed by a line feed. If the carriage return

is typed as an insert, a line feed is automatically inserted immediately after the carriage return.

Altmode (or escape or prefix) echoes and prints out as a dollar sign.

2.2.4 Symbols

In the examples in this manual, some special symbols are used to clearly indicate what the user must

type. These special symbols are listed in Table 2-2.

In all examples containing both characters typed by the monitor or TECO and characters typed by the

user, the characters typed by the monitor or TECO are underlined. Carriage control characters

(carriage return, form feed, etc.) typed by the user are indicated through use of the special symbols.

Symbol

-I
l

@

~~
)

L...I

(j)
@
@
tA

Table 2-2
Special Symbols

Character

tab

line feed

vertical tab

form feed

carri age return

space

altmode

rubout

control-A

up-arrow
followed by A

(Other control characters similarly denoted)

2-4

- 237- TECO

2.3 DATA FORMAT

TECO is capable of editing text written in any format. There are, however, features in TECO that

make use of the concept of a line and the concept of a page. Therefore, the user must know how

these concepts are defined in TECO.

Lines can be of any length. The characters that define the end of a line are the line feed, vertical

tab, and form feed. The end of the editing buffer also counts as an end-of-line character if there is

no other end-of-line character at the end of the buffer. When TECO counts lines, it does so by

counting these end-of-line characters. An end-of-line character is considered to belong to the line

that it terminates.

Examples:

The following text comprises three lines of text as defined by TECO:

LINE ONE!
LINE TWO)

LINE THREE) !

I The following text is considered to be two lines:

BEGINNING) OVERPRINT @ CONTINUATION)!

The first line is terminated by the @ character and the second by the! character.

Text to be edited by TECO does not have to contain end-of-line characters; however, if it does not

contain them, those features of TECO that count I ines will not be useful.

NOTE

If the EO value has been set to 1, the only end-of-line
character is the line feed {refer to Paragraph 3.17.3 for
a description of the EO value}.

Pages are defined in TECO by form feed characters, which act as page separators. They are not con­

sidered to belong to either of the two pages that they separate. Two consecutive form feed characters

delimit a null page. A form feed charater at the beginning of a file delimits a null page at the be­

ginning of the file. A form feed character at the end of a fi Ie has no effect in TECO. It can be

omitted.

2-5

TECO - 238 -

Examples:

The following fi Ie consists of two pages:

LINE ONE) j

LINE TWO ~ j

<l~~ LINE THREE) j

LINE FOUR ~ j

The following consists of four pages; the first and third pages are null:

eLiNEONE~j
LINE TWO ~ j

<[O~~ eLiNE THREE ~ j
LINE FOUR ~ j

TECO operates most efficiently with files that are divided into pages of approximately fifty or fewer

lines. Files with longer pages or files containing no form feed characters can be edited with TECO;

but, this process requires either additional core storage or more care when editing.

The processing of form feed characters by TECO must be thoroughly understood by the user. The page

concept is further discussed in relation to the size of the editing buffer in Section 2.4, and the rela­

tion of form feed characters to input and output commands is discussed in Sections 3.3,3.9,3.10,

and 3.11.

TECO may be used to editfiles containing the special line-sequence numbers produced by BASIC,

the PIP /S switch, LINED, and several other editors, but TECO does not need these numbers and

makes no special use of them {nor does it destroy them}. See Section 3.2.6 for an explanation of how

these numbers may be processed.

2.4 EDITING BUFFER

Editing is accomplished by:

a. Reading text into the editing buffer

b. Making changes to the text in this buffer

c. Writing the modified text out to a new fi Ie

The editing buffer is a block of core memory within TECO. Data is put in the editing buffer when it

is read in or inserted; it is kept in the editing buffer while it is being modified.

Text is packed in the editing buffer with five 7-bit ASCII characters per 36-bit word. When TECO is

running in the minimum 5K af core, the editing buffer holds approximately 3600 characters. Each

additional 1 K af core assigned to TECO increases the size of the editing buffer by 5120 characters.

2-6

- 239 - TECO

TECO normally passes data into and out of the editing buffer a page at a time. Pages are delineated

by form feed characters (see Sections 2.3 and 3.3).

2.5 BUFFER POINTER

TECO is a character-oriented editor, therefore, the concept of the buffer pointer must be understood

by the user. The position of the buffer pointer determines the effect of many editing commands. For

example, insertion and deletion always take place a.t the current position of the buffer pointer.

The buffer pointer is a movable position indicator. It is always positioned between two characters in

the editing buffer, or before the first character in the buffer, or after the last character in the buffer.

It is never positioned exactly ~ a particular character; it is positioned either immediately before

or after the character.

The pointer can be moved forward or backward over any number of characters. It cannot be moved

beyond the boundaries of the buffer; i. e., it cannot be moved further back than the position immedi­

ate�y prior to the first character in the buffer, and it cannot be moved further ahead than the position

immediately after the last character in the buffer.

In the examples in this manual showing text in the editing buffer, the position of the buffer pointer is

shown by a caret (1\) directly under the line of text.

Example:

TEXT IN THE EDRING BUFFER

When discussing text in the editing buffer in terms of lines, the phrase "current line" is frequently

used. The current line is the line at which the buffer pointer is currently directed. The pointer can

be positioned either at the beginning of the line or in the interior of the line.

2.6 GENERAL COMMAND STRING SYNTAX

Commands are given to TECO by typing a command string; command strings are formed by writing a

series of commands, one immediately after the other, and concluding with two consecutive altmodes

(refer to Appendix C for a summary of commands).

A command string may be typed after TECOindicates that it is ready by printing an asterisk. An

example of a command string is as follows:

~YIHEADING CD 2K4DNTAG CD 2LT CDC!)
Execution of the command string begins only after the two consecutive altmodes have been typed.

TECO then indicates that it is beginning execution of the command string by typing a carriage return-

2-7

I

I

TECO - 240 -

line feed. At that point, each command in the string is executed in turn, starting at the left. When

all commands in the string have been executed, TECO prints another asterisk indicating it is ready to

accept another command string.

If a command in the string cannot be executed due to a command error, execution of the command

string stops at that point, and an error message is printed. Commands preceding the command in error

are executed. The erroneous command and the commands following it are not executed. Errors,

error messages, and recovery techniques are fully discussed in Chapter 5.

There are exceptions to the general rule that commands are not executed until the end of the command

string has been indicated by two consecutive altmodes. These exceptions are the commands listed in

Table i-I rn Section 2.2.

2.7 ARGUMENTS

2.7.1 Alphanumeric Arguments

Most alphanumeric arguments are text arguments that are interpreted as ASCII data by TECO. Some

examples of text arguments are: data to be inserted in the buffer, search character strings, and com­

mand string tags. Other types of alphanumeric arguments are device and filenames and Q-register

names.

An alphanumeric argument always follows the command to which it applies. As a rule, most commands

that take text arguments require that the argument be terminated by an altmode; however, there are

exceptions to this rule which are explained at appropriate places in the manual.

An altmode used to terminate an alphanumeric argument can also function as one of the two altmodes

necessary to terminate a command string.

Example:

* ITEXT CD STEXT2 CD CD
*

The alphanumeric argument, "TEXT",
is terminated by an altmode. The
second argument, "TEXT2", is also
terminated by an altmode, but this
altmode is also used as one of the
altmades terminating the command string.

Any printable ASCII character is legal in an alphanumeric argument with the exception of the special

characters listed in Table 2-1, Section 2.2. In addition, non-printing characters are legal when they

are preceded by a ® .

2-8

- 241 - TECO

2.7.2 Numeric Arguments

Numeric arguments always precede the command to which they apply. In some cases, only a single

numeric argument is required; in others, a pair of numeric arguments is required.

When two numeric arguments are used, they are separated by a comma. In most cases, numeric argu­

ments must be positive; however, some commands allow a numeric argument to be negative or zero.

The number and type of numeric arguments allowed by each command are stated in the section in

which that command is explained.

Where a numeric argument is used to specify a buffer position, the number used is the number of

characters in the buffer to the left of that position. Thus, n means the position to the right of the

nth character in the buffer (between the nth and n+ 1 st characters).

Numeric arguments used in pairs are always buffer position arguments. Such a pair specifies all the

characters in the buffer that lie between the two buffer positions represented by the two arguments.

This definition is precise because the term "buffer position" always indicates a position before or

after a given character, not "on" or "at" the character.

Example:

12,20 This argument pair specifies the thirteenth (13th)
through the twentieth (20th) characters in the
buffer. These characters are spec ified because
the 12 indicates the position between the 12th
and 13th characters, and the 20 indicates the
position between the 20th and 21st characters.

Numeric arguments can be used in arithmetic/logical combinations. The characters shown in Table 2-3

are used as operators:;

Operator

+

+

space

-

Ignored,

Table 2-3
Numeric Operators

Function

if used before the first term
in a string.

Addition, if used between two terms.

Equivalent to +.

Negation, if used before the first
term in a string.

2-9

Example

+2=2

5+6=11

&.....12=2

5J=11

-2=-2

I

TECO

Operator

-
*

/

&

- 242-

Table 2-3 (Cont)
Numeric Operators

Function

Subtraction, if used between terms.

Multiply. (Used between two terms.)

Integer Divide (and drop the remainder).
(Used between two terms.)

Bitwise logical AND of the binary
representations of two terms, if used
between the terms.

Bitwise logical OR of the binary
representations of two terms, if used
between the terms.

Example

8-2=6

8*2=16

8/2=4
8/3=2

12 & 10=8

12# 10=14

When more than one arithmetic/logical operator is used in a single numeric argument, the operations

are performed from left to right. This sequence can be overridden through use of parentheses O. All

operations within parentheses are performed before those outside parentheses. Parentheses can be

nested'.

In TECO, numbers are ordinarily assumed to be decimal integers. Preceding a number with to
(uparrow-o, not control-o) causes the number to be read in octal radix.

Example:

Examples:

t0177 is equivalent to 127.

3*t010=24
2+3 * 4=20
2+(3 * 4)=14
2+(3 * (16/(3-1)) /2 +(2 * 5)) =24
2&(3#5) # 'i6=18
~((2+ (3 * 4) - 1 &(6 +8)) /2) =-6

The arithmetic/logical operators and parentheses can be used to form one or both of the numeric

arguments in a pair.

Example:

260 - (3 * 42), 250 + (77/3)

2-10

I

- 243 - TECO

2.7.3 Commands That Return a Value

Generally speaking, there are two main categories of TECO commands: 1) those that perform some

operation, such as inserting text, and 2) those that "return" a value, such as the number of characters

in the editing buffer. (There are also some commands that do both.)

A command is said to "return" a value if the command causes the current value of some quantity to be

calculated, and then the command takes on this value, becoming itself a numeric argument that may

be used by another command. Using such a command is equivalent to typing the particular number

that the command returns as a value, except that the value is not usually known in advance. This

value can then be used as an argument by the next command in the command string, provided that the

command is one that can take a numeric argument. Otherwise, it is ignored.

An example of a command that returns a value is the Z command (see Section 3.4). The Z command

returns a value equal to the number of characters in the buffer. It has no other function. Thus, in

order to be useful, Z must be used as a numeric argument preceding another command.

Commands that return values may be used in arithmetic/logical combinations with ~ach other and

with explicit numbers. All the same rules apply. Each command that returns a value has all the

properties of a number that has been explicitly typed in.

If commands that return values are concatenated with each other or with digits, the value returned

is that of the last command or number in the string. An operator preceding such a string continues

to apply.

Examples:

ZZ= Z
Z48 = 48
-2Z =-Z
3+ZZ = 3+Z

2.8 Q-REGISTERS

Q-registers are data storage registers that are available to the TECO user. Q-registers give a great

amount of editing power to the user by enabling programmed editing and text block movement. Data

stored in Q-registers is not disturbed by the flow of data into and out of the editing buffer. It can be

preserved throughout an entire TECO lob, and it is available for retrieval or change at any time.

There are 36 Q-registers; each Q-register has a single character name, which is either one of the

digits 0 through 9, or one of the letters A through Z. Also, there is a Q-register pushdown stack that

effectively makes available an additional 32 Q-registers for certain applications. 1

lThe number of entries in the pushdown stack can be increased by changing the parameter LPF in
TECO. MAC and reassembling TECO.

2-11

,

TECO - 244-

Two types of data can be stored in Q-registers: decimal integers or alphanumeric character strings.

For numeric storage, a Q-register can be used to hold a single positive, negative, or zero decimal

integer in the range _235 + S n S 235 -1. Numbers stored in Q-registers can be incremented, tested,

or recalled. Hence, Q-registers can be used as switches and counters, as well as for simple data-save

functions.

For text storage, a Q-register can be used to hold a character string of any length. Two types of

character strings can be stored: ordinary text and TECO command strings. Ordinary textual data

stored in a Q-register is copied into the Q-register from the editing buffer without destroying the copy

in the editing buffer. Storing text in a Q-register is useful for functions such as making many copies

of a given segment of text throughout a file without retyping it each time, for moving a block of text

from one position to another in a file, and for moving a block of text to another file.

Textual data in the form of T ECO command strings can also be stored in Q-registers. Such a command

string can be executed over and over throughout an editing iob, much like calling a subroutine. This

feature also enables an editing iob to be typed up off-line and then executed by an operator at a later

time. Such command strings can be edited iust as any other text.

2.9 CORE EXPANSION

The minimum 5K of core memory is allocated within TECO in the following manner. The executable

code is allocated 3K of core memory; this code is pure and is shared in a reentrant system. The other

2K of core memory is allocated to the data segment. Part of the data segment is used for program

variables and fixed-length I/O buffers, while the rest is used for three variable-length storage areas:

a. The. editing buffer,

b. the command string buffer, and

c. the storage area for Q-registers containing text.

When TECO is initialized, the three variable-length storage areas are assigned a specific amount of

space. After a command string is executed, the command string buffer is cleared. When text is de­

leted from the editing buffer, the formerly occupied space is reclaimed. However, during a TECO

iob, conditions can arise where the available space is not sufficient for the three variable-length

storage areas. For example, a command string having a single insert command with many lines of text

to be inserted may overflow the command string buffer. In such a case, TECO attempts to obtain the

required space from one of the other variable-length storage areas. If, however, all three areas are

fi lied to such an extent that the total amount of space allotted to all three is insufficient, TECO

automatically requests another 1K of core memory from the monitor.

If the request for more core is successful, operation continues normally. TECO prints a message of

the form" [nK COREl" {where n is the new number of 1K segments of (low) core allocated to the

2-12

I
- 245- TECO

user) to inform the user that his core has been expanded to the specified amount. (This message is

suppressed while the user is typing a command string.) If the request for more core is unsuccessful,

TECO stops execution of the command string at this point and prints the error message ?COR Storage

Capacity Exceeded.

2-13

TECO - 246 -

Chapter 3

Commands

3.1 INITIALIZATION COMMANDS

- 247- TECO

TECO is called by giving one of three different initialization commands to the monitor. An initiali­

zation command can be given whenever the monitor has typed a period to indicate that it is waiting

for a new command.

3.1. 1 R TECO Command

The general TECO initialization command is the command:

.!. R TECO)

*

This command calls TECO into core and initializes the program for general use. It does not automati­

cally initialize any particular devices or files for input or output.

When initialization is complete, an asterisk is typed to indicate that TECO is ready to receive a

command. This state, in which TECO waits for command string type in, is called command mode or

the idle state.

The R TECO command can be given with an argument:

.!.R TECO n)

where n is a decimal integer. The argument is used to request more than the minimum of 5K of core

memory for the TECO iob. If n is greater than 5, the monitor initializes the user's TECO iob with nK

of core, if possible. If n is not greater than 5, it has no effect.

3.1.2 MAKE Command

I The two main uses of TECO are (1) to create a new file, and (2) to edit an existing file. These two

uses are so common that there are special monitor commands to initialize TECO for executing them.

The command:

.!. MAK E dev:fi I nam. ext [proi, prog])

3-1

I

I

I

TECO - 248 -

is used to initialize TECO for creating a new file. Filnam.ext is the name that the user, using this

command, gives to the new file. Dev: is the device on which the file is to be created; it can be any

output device. If dev: is omitted, DSK: is assumed. If the output device is a disk device, [proi,prog)

is used to specify the user area in which the fi Ie is to be created; if [proi, prog) is omitted and the

device is DSK:, the file will be created in the user's own disk area. For a more precise explanation

of file specifications (dev:filnam.ext[proi,prog), see Section 3.2.1.

The MAKE command opens a new file to receive output from TECO and gives it the name specified.

Once the file has been opened, it is then actually created by using the insert and output commands.

Care should be used in the choice of the filename used with a MAKE command. If there is already a

file on the system device with the name specified, the MAKE command will cause the old file to be

overwritten and TECO will output the warning message %SUPERSEDING EXISTING FILE;' If the user

does not wish to supersede the file, he should type @ to return to the monitor. If no filename is

used with a MAKE command, the name of the last ASCII file used in a MAKE command or any other

edit-class command (MAKE, TECO, EDIT, or CREATE) is used. If no filename is given in a MAKE

command and no edit-class command was previously given, the error message "COMMAND ERROR"

is typed.

When initialization is completed, TECO types an asterisk to indicate its readiness to receive a com­

mand string. Usually the first command following a MAKE command is an insert command.

.:..MAKE dev:filnam.ext[proi, prog))

is equivalent to

.:..R TECO)

~EWdev:filnam. ext [proi, prog) @ CD

3. 1.3 TECO Command

The command

.:..TECO dev:filnam. ext [proi, prog))

is used to initial ize TECO for editing an existing file on disk or DEC tape. The fi Ie specifications

dev:filnam.ext[proi,prog) are interpreted in the same way as for the MAKE command, except that the

device must be a directory-structured device (disk or DECtape).

The filename and filename extension must be exactly the same as those of the file that is to be

edited.

3-2

- 249- TECO

The TECO command opens the specified file for input and reads in the first page of that fi Ie. It also

opens a new file, with a temporary name, for output of the edited version. The temporary name is of

the form nnnTEC. TMP, where nnn is the user's iob number, including leading zeros. When output of

the new version is completed, the original (input) version of the file is automatically renamed

filnam.BAK, and the new version is given the name of the original file. This operation is identical

to that used for the EB command (see Section 3.2.5).

If no filename is specified in a TECO command, the name of the ASCII file last referenced in any edit­

class command is assumed. If no filename is specified and no edit-class command has previously been

given, the error message "COMMAND ERROR" is typed. The TECO command cannot be used with

a file having the filename extension .BAK, nor with a file name nnnTEC.TMP, where nnn is the

user's iob number.

When initialization is completed, TECO types an asterisk to indicate its readiness to receive a

command string.

The command

.:.. TECO dev:fi Inam. ext [proi, progl.,)

is equivalent to

.R TECO

~EBdev:filnam.ext[proi,progl CD Y CDCD
If the proiect-programmer number specified in a TECO filnam.ext[proi,progl command is different

from the user's proiect-programmer number, the action of the TECO command is somewhat different

from that of the standard TECO command explained above. In this case the named file is taken for

input from the specified proiect-programmer area, but the output file is written in the user's ,own disk

area with the same name as the input file. This operation is identical to that used for the EB command

(see Section 3.2.5).

If [proi,progl is not the user's proiect-programmer number, the command:

.:..TECO filnam.ext [proi,progl)

is equivalent to

or to

.:..R TECO.,)

~EBfilnam.ext [proi, progl

.R TECO")

~E Rfi I nam. ext [proi, progl CD EWfi I nam. ext CD Y ax!)
and the input file is not renamed to filnam. BAK.

3-3

I

TECO - 250-

NOTE

The R TECO command must be used for iobs involving
editing a file on a device other than disk or DECtape,
or for editing a file named nnnTEC.TMP, or a file with
the filename extension . BAK. The R TECO command is
also preferred with complex editing iobs, 'where user
errors are I ike I y, because of the greater control it
gives over the input and output files. The R TECO
command requires the use of file selection commands
(see Section 3.2), whereas the MAKE and TECO
commands do not.

3.1.4 Examples of the Use of Initialization Commands

.:..MAKE EARNNG.F4)

*

.:..TECO LlB40. MAC)

.:..TECO)

.:..R TECO)

*

3.2 FILE SELECTION COMMANDS

This command initializes TECO for creation
of a FORTRAN file named EARNNG.F4.

This command initializes TECO for editing
the existing file LlB40.MAC. At the com­
pletion of editing, TECO automatically
changes the name of the original version
of LlB40. MAC to LlB40. BAK and gives
the name LlB40. MAC to the new version.

This initializes TECO for editing the disk
file last referenced in an edit-class com­
mand (MAKE, TECO, EDIT, or CREATE) •

This is the command to initialize TECO
for general-purpose editing. FILE se­
lection commands (see Section 3.2)
should follow.

File selection is the specification of the device from which input is to be taken and the device to

which output is to go. In the case of magnetic tape, fi Ie selection also involves positioning the tape.

In the case of directory-structured devices, disk and DECtape, a filename must be specified in ad­

dition to the device.

I If the user wants only to create a file, or to edit an existing disk or DECtape file, file selection can

be done by using either of the previously described initialization commands .

.:.. MAKE dev:fi Inam. ext [proi, prog])

or

.:.. TECO dev:fi Inam. ext [proi ,prog])

In all other cases, and in particular if the user initializes TECO with the R TECO command, one or

more o(the file selection commands described in this section must be ·used.

3-4

- 251 -

3.2.1 ER Command

The ER command is used to select a fi Ie for input. The general form is

*ERdev:filnam.ext [proi,prog] CD
where

a. dev: is the device name, which can be any name acceptable to the monitor.
The device name must be followed by a colon. If dev: is omitted, the
default value DSK: is assumed.

b. [proi,prog] is ignored when used with a device other than disk. proi is the
proiect number and prog is the programmer number of the disk area where the
specified file resides or, in the case of output, is to be written. If [proi, prog]
is omitted and the device is a disk, the user's proiect-programmer number is
assumed.

c. filnam.ext need'be used only if the device is a directory device, i.e., disk or
DECtape. filnam is the one-to-six character filename, and ext is the one-to
three character filename extension conforming to the rules stated in Section
2. 1. If the device is a disk or DEC tape , fi Inam must not be omitted;
.ext must not be omitted unless the null extension is explicitly intended.

d. The CD {altmode} functions as the argument terminator.

TECO

The ER command terminates input from any fi Ie that may have been previpusly opened for input, and

then opens the specified file for input.

The user may open one file for input, read only part of that file, and then, with another ER command,

release the first fi Ie and open a new fi Ie for input. It is not necessary to read to the end of a fi Ie

before opening another. However, opening the second file does end input from the first. There is

never more than one input file active. In Section 4.4, an example is given showing how to use multi­

ple ER commands to merge parts of several files. Data cannot be input without first giving an ER, or

equivalent, command.

3.2.2 EM Command

EM commands are used to position a magnetic tape for input or output. However, EM command apply

only to the magnetic tape that is currently open for input {i.e., opened by the latest ERMTAn: CD
command}. To position a magnetic tape for output, it is necessary to first initialize the tape for input,

then do the desired EM function, and then reopen the device for output.

The function of an EM command is determined by the value of a single numeric argument preceding

the EM. The various EM commands are shown in Table 3-1.

3.2.3 EW Command

The EW command is used to select a file for output. The general form is

:EW dev:fi I nam. ext [proi, prog] CD

3-5

I

TECO - 252-

The EW command opens the specified file for output. If any output file is already active, a new EW

command closes that file before opening the new file. Only one output file can be active at anyone

time. If a previously active output file is closed by an EW command, that closed file contains all

and only that data supplied to it by output commands preceding the new EW command.

If there is already an output file with the name specified, the EW command causes the old file to be

overwritten and TECO outputs the warning message %SUPERSEDING EXISTING FILE.

Multiple EW commands may be used without changing the input file. In Section 4.3, an example is

given showing how to use this technique in order to split a single input file into several parts.

The MAKE filnam.ext initialization command causes an automatic ~WDSK:filnam.ext (!) command

to be executed. Output may not be done without first giving an EW, or equivalent, command.

Command

EM or 1EM

3EM

6EM

7EM

8EM

9EM

11EM

14EM

15EM

Table 3-1
EM Commands

Function

Rewind the currently-selected input
magnetic tape to load point.

Write an end-of-file record on the
input tape.

Skip ahead one record.

Back up one record.

Skip ahead to logical end-of-tape
(defined by two successive end-of-file
marks). The 8E M command leaves the
tape positioned between the two end­
of file marks so that successive output
correctly overwrites the second EOF.

Rewind and unload.

Write 3 in. of blank tape.

Advance tape one file. This leaves
the tape positioned so that the next item read
will be the first record of the next file (or
the second end-of-file mark at the logical
end-of-tape).

Backspace tape one file. This leaves the
tape positioned so that the next item read
will be the end-of-file mark precedin3 the
file backspaced over (unless the file is the
first on the tape).

NOTE

The EM commands do not clear the internal input buffers.
It is best to reinitialize with a new ER command before
doing an EM command.

3-6

I
I

I

- 253- TECO

3.2.4 EZ Command

The EZ command is used only with disk, DECtape, or magnetic tape. Its function is equivalent to that

of the EW command except that before opening the specified output file it zeros the output device

directory if the device is a disk or DECtape, or it rewinds the tape if the device is a magnetic tape.

For other devices, it is treated exactly like an EW. The form is

~EZdev:filnam.ext[prol,prog] CD

3.2.5 EB Command

The EB command is used to open a file for editing in a manner similar to the initialization command

TECO dev:filnam.ext[prol,prog]) It can be used only for files on a disk or DECtape. The general

form of the command is

~EBdev:filnam.ext[prol,prog] CD
The exact operation of the EB command is as follows:

First, the EB command executes an automatic ERdev:filnam.ext <!). command, opening
the specified file for input and releasing any previously opened input file. Then, it
opens a temporary file to receive the output of the edited version of the input file.
This temporary file is named nnnTEC. TMP, where nnn is the user's lob number with
leading zeros. This a~n is equivalent to executing the command
EWdev:nnnTEC. TMP \!) . The output device is the same as the input device.
Fina"y, the EB commanc sets an internal flag indicating that special action must
be taken when the EB file is closed (by an EF, EX, or EG command - see
Sections 3.9 and 3.10). It also prohibits any further EW, EZ, or EB commands until
the file is closed.

When the EB file is closed, the following action takes place. First, if there already
exists on the device a file with the name filnam.BAK, it is deleted. Then, the input
file filnam.ext is renamed filnam.BAK. Fina"y, the output file, nnnTEC.TMP, is
renamed fi Inam. ext.

The effect of using the EB command is analogous to editing a file in place, to itself,
and converting the original version into a backup file. It updates the specified file
and keeps the most recent previous version as a backup file.

If the prolect-programmer number specified in an EBfilnam.ext[prol,prog] (!)
command is different from the user's, then the input file is taken from the specified
area, but the output fi Ie is written in the user's own area with the same name as the
input fi Ie. In other words, if [prol, prog] is not the user's prolect-programmer number,

*EBfilnam.ext [prol,prog] CD
is equivalent to

*ERfilnam.ext [prol,prog] CD EWfilnam.ext (!)
The EB command cannot be used with a fi Ie having the filename extension. BAK
nor with a file named nnnTEC.TMP. The TECO dev:filnam.ext[prol,pr~ ini­
tialization command causes an automatic EBdev:filnam.ext[prol,prog] QJ to
be executed (fo"owed by an automatic Y command).

3-7

TECO - 254 -

3.2.6 Editing Line-Sequence Numbered Files

Some ASCII files, e.g., those created by BASIC, PIP with the /S and /0 switches, and LINED, have

a special type of I ine number at the beginning of each line. These "I ine-sequence numbers" conform

to certain rules so that they may be ignored or treated specially by compilers and other programs. The

standards for line-sequence numbers are given in the LINED Program Reference Manual.

TECO does not need line-sequence numbers for operation, but TECO can be used to edit files con­

taining them. If such a file is edited with TECO the line-sequence numbers are, in the normal case,

simply preserved as additional text at the beginning of each line. The line-sequence numbers may be

deleted, edited, and inserted exactly like any other text. On output the line-sequence numbers are

output according to the standard, except that the tab after the number is output only if it is already

there. Leading zeros are added as necessary. If a line without a line-sequence number is en­

countered, a line-sequence number word of five spaces is placed at the beginning of the line.

The following switches are available for use with line-sequence-numbered files. These switches are

merely added to the appropriate file selection command.

ERdev:filnam.ext[proi,progJ/SUPLSN CD ®
EBdev:filnam.ext[proi,progJ/SUPLSN CD ®

causes line-sequence numbers to be suppressed at input time. The numbers will not be read into the

editing buffer. Also, the tabs following the line-sequence numbers, if they exist, will be suppressed.

EWdev:filnam.ext[proi,progJ/SUPLSN ® CD
causes the line-sequence numbers to be suppressed at output time. Tabs following the line-sequence

numbers wi II also be suppressed if they exist.

EWdev:filnam.ext[proi,progJ/GENLSN ® CD
EBdev:filnam.ext[proi,progJ/GENLSN CD CD

causes line-sequence numbers to be generated for the output file if they did not already exist in the

input file. Generated line-sequence numbers begin at 00010 and continue with increments of 10 for

each line.

Note that these switches are needed only if a change is to be made in the format of the file being

edited. If no switches are specified, a file is output in the same form as it was input.

3.2.7 Examples of the Use of File Selection Commands

* ERDTA2:CREF.2 CD EWDSK:CREF.3 CD®
*

3-8

This command string selects the
DECtape file CREF .2 on DECtape
drive 2 for input and opens a file
called CREF. 3 on the disk for
output. If there is a fi Ie named
CREF.3 already on the disk, it
will be overwritten.

- 255 -

* ERCDR: ® EWPTP: ® CD
*

~ERMTA1: ® EM14EM14EMEZDTA5:PROFIT .CBL ® ®

~ERPULSE.F4[11, 141] ®®
*

~EZMTA3: @®
*
:ERMTA1: CD 8EMEWMTA1: ®

~ EB22. F4 ® ®
*

* n<14EM> ®®
*

~EBCHESS.MAC[1,4] ®®

3.3 INPUT COMMANDS

TECO

Select the card reader for input
and the paper tape punch for
output.

This command string selects the
tape on magnetic tape drive 1
for input, then positions the tape
at the beginning of the third file
on that tape, and finally zeros
the directory of the DECtape on
drive 5 and opens an output file
named PROFIT.CBL on it.

Select the fi Ie PULSE. F4 in
proiect-programmer area [11, 14]
on the disk for input. If this file
is read-protected against the
current user, an error message
results.

Rewind the magnetic tape on
drive 3 and select it for output •

To position a magnetic tape for
output (other than iust a rewind),
the user must first select the tape
for input, then use EM commands
to position the tape, and finally
select the tape for output. In
this example, the 8EM command
positions the tape at the end of
data that had previously been
written on the tape. This enables
new output to the tape without
overwriting any of the previous
data.

This command selects the disk file
22. F4 for editing. When the
editing is completed, the file
22. F4 is the new version. The
old version is changed to the
backup file 22.BAK, and any
previous backup file 22. BAK
is deleted.

Advance magnetic tape n files.

This command opens the file
CHESS. MAC on the [1, 4] disk
area for input, and opens a file
CHESS. MAC on the user's own
disk area for output (assuming
the user's proiect-programmer
number is not [1,4]).

Input commands are used to read data from the input file, which must previously have been opened,

into the editing buffer. Input commands can be used only after an ER command (or the equivalent)

3-9

I

TECO - 256-

has been given. Input always begins at the beginning of the selected input file. Successive input

commands then read successive segments of data from th"e input fi Ie.

The amount of data read on an input command depends on the buffer size, the particular input command

used, and the data itself, as explained in the paragraphs below.

3.3.1 Y Command

The Y (yank) command first clears the editing buffer and then reads text into the buffer until one of

the following conditions is met:

a. The end of the input file is reached;

b. A form feed character is read;

c. the buffer is two-thirds full and a line feed is read (or filled to within
128 characters of capacity);

d. the buffer is completely filled.

The usual effect of the Y command is to clear the editing buffer and then read the next page of the

input file into it. Less than the entire next page is read in only if that page is too large to fit within

two-thirds of the buffer's capacity. If the cleared buffer is not large enough to accommodate at

least 3000 characters, TECO automatically expands its buffer by 1K, if possible, before beginning

to input. The user is notified of the buffer expansion by a message of the form [nK CORE], where

n is the new number of 1K segments of (low) core allocated to the user.

If the end of the input file has previously been read, the Y command only clears the buffer.

If a form feed is read (i. e., if input stops because of condition b), the form feed flag (®) is set

to -1. The form feed itself is not packed in the buffer with the rest of the text. A succeeding input

command begins input at the character following the form feed. If a form feed is not read, the form

feed flag is set to 0, and the next input command begins input at the character following the last

character previously read in. The form feed flag may be tested by the user (see Section 3.16), but

ordinari Iy this is not necessary.

A single Y command is automatically executed by the TECO filnam.ext initialization command causing

the first page of the input file to be read into the buffer before TECO prints the first asterisk.

The Y command sets the buffer pointer to the position preceding the first character in the buffer.

The Y command does not accept a numeric argument. If multiple Y commClnds, are desired, n <Y >
(where n is the number of pages to be ignored) can be typed.

3-10

- 257- TECO

3.3.2 A Command

The A {append} command reads in the next page of the input file without clearing the current contents

of the editing buffer. The new input data is appended to that which is already in the buffer {at the

end of that data}. The position of the buffer pointer is not changed. If there was a form feed char -

acter in the input file separating the data already in the buffer and the data read in, it is removed.

Thus, the A command can be used to combine several pages of a file.

I If the editing buffer does not have sufficient space to accommodate 3000 more characters, TECO

automatically expands its buffer by 1K, if possible, and then completes execution of the A command.

The user is notified of the buffer expansion by a message of the form [nK CORE] •

Input begun by an A command is terminated by any of the same four conditions that terminate a Y

command. The A command processes form feeds and the form feed flags in the same manner as the

Y command.

The A command does not accept a numeric argument. If multiple appends are desired, the user can

type n<A> where n is the number of pages to be appended to the buffer. Note that nA is a different

command {refer to Paragraph 3. 16}.

If the end of the input fi Ie was previously read, the A command has no effect.

3.3.3 Examples of the Use of Input Commands

~ERREPORT.CBL ® Y ®®
*

~®®
[3K CORE]

*

*ERDTA6:DATA.DOC ® yyy <D<D

This command string opens the disk file REPORT .CBL
for input and reads in the first page of that file.

This deletes the page of text currently in the editing
buffer, reads in the next two pages of the current input
fi Ie, appending the second page to the first.

This inputs the next page of the file, appending it to the
data already in the buffer. The previous contents of the
buffer are not altered and the pointer is not moved.

The buffer is expanded automatically, as required by the
A command. In most cases, this message is of no concern
to the user. It is important only if the system is nearly
overloaded.

This command string reads in and discards the first two
pages of the DECtape file DATA. DOC, and then reads
in the third page of that file.

3.4 SPECIAL CHARACTERS AS BUFFER POSITION NUMERIC ARGUMENTS

In many cases, numeric arguments are used to specify buffer positions. Because such arguments tend

to be large and not easi.l.y determined by counting, the buffer positions commonly used as arguments

are represented by special characters. These special characters are shown in Table 3-2.

3-11

TECO - 258 -

Table 3-2
Special Buffer Position Arguments

Character Value

B Equivalent to O. It represents the position at
the beginning of the buffer, i.e., preceding
the first character in the buffer.

Z Equals the total number of characters in the
buffer. Thus, Z represents the position at the
end of the buffer, immediately after the last
character in the buffer •

• (period) Equals the number of characters to the left of
the current position of the buffer pointer, and
hence represents the buffer pointer position
itself.

H Equivalent to the numeric argument pair B, Z.
Thus, in those commands that take two numeric
buffer position arguments, H represents the
whole of the buffer. This letter is particularly
useful with type-out and output commands.

The characters B, Z and. can be used in arithmetic expressions.

3.5 BUFFER POINTER POSITIONING COMMANDS

This section describes the most elementary commands for moving the buffer pointer. In addition to

these elementary commands, the search commands make up an entire set of powerful pointer­

positioning commands. The search commands are described in Section 3.11.

3.5.1 J Command

The nJ command moves the buffer pointer to the position immediately after the nth character in the

buffer. The command OJ moves the pointer to the beginning of the buffer, i.e., to the position im­

mediately preceding the first character in the buffer. The command J, not preceded by an argument,

is equivalent to OJ.

3.5.2 C Command

I If n~ 0, nC moves the pointer forward over n characters in the buffer. If n<O, nC moves the pointer

backward over n characters. The nC command is equivalent to • +nJ. The .command C is equivalent

to lCi -C is equivalent to -lC.

3.5.3 R Command

The R command is equivalent to -C. The nR command is equivalent to -nCo If n ~O, nR moves the

I pointer backward over n characters in the buffer. If n <0, nR moves the pointer forward over n

3-12

- 259 -

characters. The nR command is equivalent to • -nJ. The command R is equivalent to 1 R; -R is

equivalent to -1R.

3.5.4 L Command

TECO

The L command is used to move the buffer pointer over entire lines. The use of the L command with

various arguments is shown in Table 3-3.

Table 3-3
L Commands

Command Argument Function

L 1 assumed Advances the pointer to the beginning
of the line following the current line.

nL n>O Advances the pointer to the beginning
of the nth line following the current line.

OL 0 tv10ves the pointer back to the beginning
of the current line.

-L -1 assumed Moves the pointer back to the beginning
of the I ine preceding the current line.

nL n<O tv10ves the pointer back to the beginning
of the nth I ine preceding the current line.

If the user attempts to move the buffer pointer backward beyond the position immediately prior to the

first character in the buffer, or forward beyoncl the position immediately after the last character in the

buffer with a C, R, or J command, an error message is printed, and the pointer is not moved from the

position it had before the illegal command was given. With the L command no such error message

results, but the pointer will be moved beyond the boundary of the buffer.

3.5.5 Examples of the Use of Buffer Pointer Positioning Commands

~J3L CD CD
*

~ZJ-2L (!) CD
*

*L4C ®®
*

The J command moves the pointer to the beginning
of the fi rst line in the buffer. The 3L command
then moves it to the beginning of the fourth line.

The ZJ command moves the pointer to the end of
the last I ine in the buffer. Then the -2L command
moves the pointer to the beginning of the next
to last I ine in the buffer {assuming that the last
line is terminated by a line feed}.

Advance the pointer to the position following the
fourth character in the next line.

3-13

I

TECO

*OL2R CDC!)
*

*ZJC CDC!)

?POP

3.6 TEXT TYPE-oUT COMMANDS

3.6.1 T Command

- 260 -

The OL command moves the pointer back to the
beginning of the current line. Then the 2R com­
mand moves it back past the last two characters
in the preceding line (the second of which must
be a line terminator).

The J command moves the pointer to the beginning
of the buffer, and the -L command then has no
effect and therefore does not return an error
message.

The ZJ command moves the pointer to the end of
the buffer, and the C command then causes the
error message.

Attempt to move pointer off the page with the
C command.

Any part of the text in the editing buffer can be typed out for examination. This is accomplished by

using the T commands. The text typed out depends on the position of the buffer pointer and the

argument(s) given. The T commands never move the buffer pointer.

When used with a single numeric argument, T is a line-oriented type-out command; when used with a

pair of numeric arguments, T is a character-oriented type-out command. The various T commands are

described in Table 3-4.

3.6.2 ©Command

During the execution of any T command, the user can stop the terminal output by typing the special

monitor control-character @. The © command causes TECO to finish execution of the

command string omitting all further type-outs. The effect of the © command does not carryover

to the next command string. (This command may only be typed as a control character. The combina­

tion to (uparrow, 0) does not have the same effect.) Occasionally the asterisk output by TECO

when a command is finished is also suppressed by ©. If this occurs, the user can type @ .
TECO will respond with an asterisk if it is waiting for a command.

Command Argument

T 1 assumed

Table 3-4
T Commands

Function

Types out everything from the buffer pointer
through the next I ine terminator. If the pointer
is at the beginning of a line, T causes the entire
I ine to be typed out. If the pointer is in the
middle of a line, T causes that portion of the
line following the pointer to be typed out.

3-14

Command Argument

nT n >0

OT 0

-T -1 assumed

nT n<O

m,nT m<n

., .+nT n> 0

. -0,. T n>O

HT H = B,Z

3.6.3 tL Command

- 261 -

Table 3-4 (Cont)
T Commands

Function

Types out everything from the buffer pointer
through the nth line terminator following it.
If the pointer is at the beginning of a line,
this command types out the next n lines
(including the current line).

Types out everything from the beginning of
the current I ine up to the pointer. This
command is especially useful for determining
the position of the buffer pointer.

Types out everything in the line preceding
the current line, plus everything in the current
line up to the pointer.

Types out everything in the n lines preceding
the current line, plus everything in the current
line up to the pointer.

Types the m+ 1 st through the nth characters
in the buffer.

Types the n characters immediately following
the buffer pointer.

Types the n characters immediately preceding
the buffer pointer.

Types out the ent i re contents of the buffer.

TECO

If a form feed character, ® or tL, is included in a command string as a command, it causes a form

feed to be printed on the terminal when TECO reaches that point in execution of the command string.

This 'feature is useful for obtaining a clean printout of the text in the buffer.

3.6.4 nET Command

In normal typeout mode, most control characters print in the up-arrow form and altmodes print as

dollar signs. For the benefit of users with special terminal equipment, this feature can be suppressed.

The command 1 ET (any nonzero argument has the same effect as 1) changes the typeout commands so

that every ASCII character is delivered to the typeout device literally, i.e., with its own octal mode.

This is called literal type-out mode.

When TECO is in literal type-out mode, it can be restored to normal type-out mode, i.e., with sub­

stitutions for control characters and altmodes, by using the command OET.

I The ET command (with no argument) returns the value (O or 1) of the current setting of the type-out

mode switch. See Section 3.16 for an explanation of this command.

3-15

TECO - 262 -

3.6.5 Case Flagging On Type-out

TECO has three text type-out case-flagging modes: (1) lower case flagging, (2) upper case flagging,

and (3) no case flagging. In lower case flagging mode, all characters in the range octal 140 to 177.

are preceded by , (apostrophe) when typed out. In upper case flagging mode characters in the range

octal 100 to 137 are flagged with a preceding '. TECO is initially seHor lower case flagging.

The case flagging mode may be set as follows:

nEU (n >0)

OEU

nEU (n < 0)

EU

sets the typeout mode to flag upper case characters,

sets the mode to lower case fl agg i ng (standard),

sets the mode to no flagging,

(without argument) returns the value of the current
case flagging mode.

If TTY LC is on (i.e., the user's terminal handles lower case) or if the ET flag is on, no case flagging

ever occurs regardless of the EU setting.

3.6.6 Examples of the User Text Typeout Commands

The following examples assume the buffer contains the
text shown at the right, with the buffer pointer posi­
tioned between the M and the N

ABC DE) t
FGHIJ.) t
KL~NO) t
PQRST) t
UVWXY) .t
Z)t

Examples:

~T(!X!)
NO

*
~3T CD CD
NO

PQRST

UVWXY
*

*OT CD CD
KLM*

Note that no carriage return-line feed exists between
the beginning of the I ine the pointer is on and the
pointer itself, therefore, none are typed. The second
asterisk indicates that TECO is ready for the next
command.

3-16

*OTT ($)CD
RLMNO
..
~-2T CD CD

ABCDE

FGHIJ

KLM*

*.,.+6T CD CD

NO
1'0"*
~,.T CD CD
[M*

~OLT CDC!)

KLMNO

*
~HT CDCD
ABCDE

FG@) ..-
~tLHT tL CD CD

ABC DE
mmr
RDVf'I\IO
PQRST
uwrx:y
Z

*
~OETHTlETHTCD CD
~tAY$Z
XYZ

*

~CDCD
TECO M'A'N'U'A'L

~lEUT CDCD

'T'E'C'O 'MANUAL

~-lEUT (!) CD
TECO MANUAL

*

- 263 -

This pair of commands causes the entire current line to
be typed out without moving the pointer .

The six characters typed are NO) ! PQ.

This pair of commands types out the entire current
line and leaves the pointer at the beginning of
this line.

The user requests typeaut of the whole buffer,
but stops it with a \!9J immediately after the
G is typed.

This command string causes the entire contents
of the buffer to be typed out, with a form feed
printed before and after the text is printed.

If the buffer contains the text X ftA) Y (j) Z)!,
this command string causes it to be Yyped out in both
normal and literal modes, as shown. In the first line
typed out, the control-A and altmode are typed in
normal mode as up-arrow, A and dollar sign. In the
second line, typed in literal mode, tA and $ do not
appear because they are del ivered to the console
device in their true values, which are nonprinting
characters on most terminals.

The appearance of apostrophes in the typed text
indicates that "anual" is lower case.

1 EU changes TECO so that upper case characters
are flagged.

-1 EU stops case flagging.

3-17

TECO

I

TECO - 264-

3.7 DELETION COMMANDS

The K and D commands are used to delete characters from the editing buffer. The K command used

with a single numeric argument is a line-oriented deletion command. The D command and the K

command used with a pair of numeric arguments are character-oriented deletion commands.

3.7. 1 K Command

The various K commands are described in Table 3-5.

Command Argument

K 1 assumed

nK n>O

OK 0

-K -1 assumed

nK n<O

m,nK m<n

3.7.2 D Command

Table 3-5
K Commands

Function

Deletes everything from the buffer pointer
through the next I ine terminator. If the
pointer is at the beginning of a line, the
K command causes the entire line to be
deleted. If the pointer is in the middle of
a line, the K command deletes only the
portion of the line following the pointer
{including the .Iine terminator}.

Deletes everything from the buffer pointer
through the nth I ine terminator following it.

Deletes everything from the pointer back to
the beginning of the current line.

Deletes everything from the pointer back to
the beginning of the I ine preceding the
current line.

Deletes everything from the pointer back to
the beginning of the nth line preceding the
current line.

Deletes the m+lst through the nth characters
in the buffer and positions the pointer at the
point of deletion {that is, the pointer is set
equal to m}. _

Using the D command, characters can be deleted individually and in short strings. The nD command,

where n ~O, deletes the n characters immediately following the buffer pointer. If the argument n is

I omitted, n = 1 is assumed. The command nD, where n <::0, deletes the n characters immediately pre­

ceding the pointer; -D is equivalent to -1 D.

At the conclusion of any K or D command, the buffer pointer is positioned between the characters that

preceded and followed the deletion.

3-18

I

- 265 -

3.7.3 Examples of the LIse of Deletion Commands

The following examples assume that the buffer
contains the text shown at the right; the buffer
pointer is positioned between the M and the N.

ABCDE..) ,
FGHIJ) ,
K L~'\.NO..) ,:

Examples:

~6D ®®
*

~-D CD®
*

~-5D ®@
*

~-2D2D CD CD
*

~HK (i)G)
*

~,.K C!>C!>
*
;.,ZK ®®
~®CD
*

~OLK G)G)
*
~L3K G)(!)
*

~D®CD
*

~OK CDC!)
*
~-K ®C!>
*

3.8 INSERTION COMMANDS

PQR~T) ,
UVWXY j'
Z)'

Deletes NO..) 'PQ, changing the third
and fourth lines to KLMRST)'.

Deletes M.

Deletes.) 'KLM, changing the second
and third lines to FGHIJNO) '.

Deletes LMNO, changing the third
line to K.) '.

Deletes everything in the buffer, but does
not delete the form feed marking the end
of the page (if there is one).

Deletes everything from A through M.

Deletes everything from N through Z..) '.

Deletes NO'>' changing the third and
fourth lines to KLMPQRST .),.

Deletes the entire third line.

Deletes the last three I ines (everything
from P through Z..) ').

Deletes NO.) 'P, changing the third and
fourth lines to KLMQRST..) '.

Deletes KLM.

Deletes FGHIJ..) 'KLM.

TECO

The insertion commands are used to insert characters into the editing buffer from the user's terminal.

3-19

I

TECO - 266 -

3.8.1 I Command

The basic text insertion command is the I command used with the desired text as its argument. The

text argument is terminated by an altmode. The general form is

~Itext ®
This command inserts the ASCII text string, "text", into the editing buffer iust ahead of the buffer

pointer. After the insertion, the buffer pointer is positioned immediately after the last inserted

character. The altmode terminating the text argument is not inserted. The text to be inserted may

contain any character except the special characters (see Table 2-1), but control characters must be

treated specially (see Section 3.8.8).

3.8. 2 Tab Command

The tab command is equivalent to the I command, except that the tab command causes the tab itself

as well as all the following text up to the altmode to be inserted. In other words, if the first charac­

ter of a text string to be inserted by an I command is a tab, the I may be omitted. The general form

of the tab command is

~-Itext CD

3.8.3 @I Command

The @I command is slightly more powerful than the I command. This command enables the user to

insert single (but not double) altmode characters in addition to the characters that can be inserted

I with the I command. (To insert a double altmode, the second altmode must be preceded by a· @ .)
The @I command is useful for inserting TECO command strings into the editing buffer. The general

form is

I
I

~@I/text/

In this form, "text" is the text string to be inserted. The text argument must be immediately delimited,

both before and after by any single character which is not itself a part of the text to be inserted. In

this example, the delimiting character is the slash character. Altmode is not required to terminate the

text string; the second occurrence of the delimiting character terminates the text string. The text is

inserted immediately preceding the buffer pointer, as it is with the I command. The delimiting charac­

ter is not inserted.

3.8.4 nlCDCommand

Any ASCII character can be inserted into the buffer using the nl CD command. This includes all

characters that the I and @I commands cannot insert. However, the nl command inserts only one

character at a time. The command nl CD inserts the character with the ASCII value n (decimal) into

the buffer immediately preceding the pointer.

3-20

- 267- TECO

I Unless the EO value has been set to 1, the nl command must be followed by an altmode {refer to

Paragraph 3.17 for a description of the EO value}.

3.8.5 n\Command

The n\command is used to insert the ASCII representation of a decimal number n into the buffer. For

example, 349\inserts the ASCII characters 3, 4 and 9 into the buffer immediately preceding the

pointer. Note that n does not have to be a number typed in by the user. It can be a value returned

I by some other TECO command. Note that the n\command always inserts the decimal representation

of n.

I

3.8.6 Examples of the Use of Insertion Commands

The following examples assume that the buffer contains ABCIhEF) • with the pointer positioned

between D and E.

*1)

(00)
*

Produces ABCDXY~EF) •

Produces ABCD) t

I\EF) •

Produces ABCD I
I\EF) I

; -tXYZ CD CD Produces ABCD -tXY~EF"> I

:@I#IA~SA CD p.w# C!XDProduces ABCDIA G) SA G) PYj."EF) I

* t 0331 S I$' Produces ABCDf$\r-F) I - ~ ~
~101 G) 101 ®0 Produces ABCD I'
* I

I\EF) I

~Z \ CD CD Produces ABCD~F) I because Z has
the value 8.

:I~
*CD S

*121 CDCD
*

Produces ABCD8919\EF) I because Z
successively returns tile values 8, 9, and 10.

This command is used to separate the page
in the editing buffer into two pages. Both
pages, however, remain in the editing buffer.

This is equivalent to the command in preceding
example. It is convenient because it avoids
the form feed echo.

3-21

TECO

~JILINE ONE.,)

LINE TWO.,)
LINE THREE.,)

®(D
*
*KI.,)

IDQ)
*

~@I% TEXT CD x @ 0 %00
*

~t0777 \®®

3.8.7 Case Control with Insert Commands

- 268 -

This example shows insertion of several
lines of text at the beginning of the buffer.
Note that line feeds are inserted automati­
cally as the user types the carriage returns.

This command string is used to delete the
tail of a I ine without removing the carriage
return-line feed at the end of the line. If
the buffer contains

ABI\CD) l

EFGH ~ l
this command produces

AB) l
I\EFGH) l

This is used to insert a carriage return without
a line feed following it. The single rubout
deletes the lirie feed but not the carriage
return. (See Section 5.1 for an explana-
tion of rubout.)

This is a convenient method for inserting
multiple altmocles when using the @I command.

The sequence x tR()) ,where "x" is any
character except ¥mode, is typed between
the successive altmodes.

This is used to insert the ASCII'characters
511 at the current pointer position.

With the I, @I, and tab insert commands TECO ordinarily inserts text in the same case in which it

appears in the command string. The user may, however, alter the case of text being inserted by use

of the special case control commands described in this section.

3.8.7.1 Alphabetic Case Control - The features described in this section provide the method by

which alphabetic characters in the upper case range can be converted to the equivalent characters

in the lower case range, and vice-versa. Alphabetic case conversion is done by use of two control­

character commands,

® is used for translation to lower case,

@ is used for translation to upper case.

These two commands may be used within insert text arguments to cause case conversion on a tempo­

rary basis for that text argument, or as independent commands to cause' case conversion in all insert

and search text arguments.

Note that ® and @ affect only alphabetic characters. They have no effect on non-alphabetic

characters.

3-22

- 269 -

(l) ® ® and @J @J used within text arguments.

When used inside an insert text argument, two successive ® or ®
commands cause translation, to the specified case, of all following

alphabetic characters in that text argument.

Example:

*IF @@ OR USERS OF."@ @ TECO.(!Xi)

The above command inserts "For users of TECO." with the initial "F"

and "TECO" capitalized, and all the other letters in lower case.

(2) Single ® and @ used within text arguments.

When used inside an insert text argument, a single ® or @ command

causes translation of the next single character (if it is alphabetic) to the

specified case. The single @ or @J in a text argument takes

precedence over the case conversion ";ode defined by double ® or @

commands.

Example:

*1 ®®USER @PROGRAMOO

The above command causes the string "user Program" with the" P" in upper

case, and all the other letters in lower case to be inserted.

(3) Independent @ and @ Commands.

As explained above, when ®" and @ commands are used inside a text

argument, they affect only that particular text string. When used as inde­

pendent commands, however, @ and @J set TECO to a prevailing case

conversion mode that affects all insert and search text arguments (except as

specified by ® and ® commands within the text arguments). The

independent command @ or tV (or n ®, where n does not equal 0) sets

the prevailing case conversion mode so that all upper case alphabetic characters

in insert and search text arguments are translated to lower case, except where

TECO

@ commands within individual text arguments override the independent ®.

Example:

*tV$$

*I@ FOR USERS OF @J @ TECO.COO)

*IEXAMPLE ®CD
The above commands cause "For users of TECO." and "example" to be inserted

with all letters lower case except the "F" and "TECO". Likewise, the inde­

pendent command @ or tW (or n @ , where n does not equal 0) sets

the prevailing case conversion mode so that all lower case alphabetic characters

3-23

TECO - 270 -

in insert and search text arguments are translated to upper case, except where

@ commands within individual text arguments override the independent @
The independent @ command has the use explained above, obviously, only

when the user TTY has lower case capability and TTY LC is on. Otherwise the

® command serves merely to turn off the @ command.

(4) 0 @ and 0 @
The independent 0 ® and 0 @ commands both have the same effect, namely,

to restore TECO to the default condition where neither case of alphabetic char­

acters are translated to the opposite case, except by ® and @ commands

within text arguments.

TECO is initially set for no prevailing case conversion.

Note that the prevailing case conversion mode can have one, and only one,

setting at anyone time. The possible settings are:

convert upper case to lower case

convert lower case to upper case

no prevailing conversion

When any of these prevail ing modes is put into effect, it cancels any of the

others that were in effect.

The order of precedence of the case conversion commands is os follows:

Highest: single @ and @ inside text

Next: double ® and @ inside text

Lowest: independent ® and @

NOTE

If the EO value has been set to 1, @ and (tV)have
no special effect when used inside text argument*efer
to Paragraph 3.17 for a description of the EO value).

3.8.7.2 Special "Lower Case" Characters - When used inside an insert text argument, the control

command ® causes the immediately following character (if it is one of the special characters @,

[, \, J, t, or~ to be converted to the equivalent character in the lower case ASCII range (i.e.,

octal 140 or octal 173-177). That is,

@@becomes ASCII 140

@ [becomes { ASCII 173

@ \ becomes I ASCII 174

~
] becomes } ASCII 175

t t t becomes ASCII 176

@ - becomes @ ASCII 177

@ has no special effect within text arguments if the EO value has been set to 1.

3-24

- 271 -

Examples:

* tVI @ EXAMPLES FOR THE

@ @ TECO M €V @ ANUAL.

CDC!)
*OtVIEXAMPLE 1.

@ NI C@) e OMMAND.

®®
*

Inserts "Examples for the

TECO Manual.

EXAMPLE 1.

nr Command.".

Inserts a right brace (t)

TECO

3: 8. 8 Inserting Control Characters

As of version 22 of TECO all of the control characters @ - @' ® - @' and ® '
®, @' and e have been reserved as inside-text-commands (some as yet undefined). In order

to insert these characters, the user must employ either the @ or ® command.

® when used inside an insert text argument causes the next single character to be interpreted as

text rather than as a command, and accordingly to be inserted in the buffer. This applies to all

control characters including ® itself. It also applies to Altmode. (It does not, however, apply

to ©, @)' @), or RUBOUT.}

® when~used inside an insert text argument causes all succeeding instances of the above mentioned

control characters except ® and ® itself to be interpreted as text rather than as commands.

@ does not affect altmodes. A second instance of'@ in the same text argument nullifies the

effect of the first.

If the EO value has been set to 1, @ and ® have no special effect when used inside text

arguments, and all control characters can be inserted with no special treatment (refer to Paragraph

3.17 for a description of the EO value).

Examples:

NOTE

The clever WQY to create a TECO macro is simply to type
the macro as a long command string lust as if it w~ to
be executed immediately, but instead of typing ~ (!)
at the end, type @ @. Then type *i to place the
command string in Q-register i. (This stores the macro,
ready for execution, in Q-register i. (Refer to Para­
graph 3.14.3 for the description of the *i command.)

*1 ® @ TEXT ® @®® Inserts the text" @ TEXT @".
*

3-25

I

TECO - 272-

~INSTRING @ ® C!> ® Inserts "NSTRING C!>".
*

~I @@ SEARCH @
NSTRING @X!)
I@@TEXT@®®

IE @@XAMPLEI(OO

*

3.9 OUTPUT COMMANDS

Inserts" @ SEARCH @
NSTRING CD
I @@TEXTG)

I Example I" •

Output commands are used to transfer data from the editing buffer to the output file.

3.9.1 PW Command

The PW command is the basic output command. It does nothing but output. Depending on the argu­

ment used with it, the PW command outputs all or any part of the data in the editing buffer. It does

not, however, delete any data from the buffer, and it never moves the buffer pointer.

The PW command outputs the entire contents of the buffer and always appends a form feed to it.

The n PW command (n >0) outputs n copies of the text in the buffer, appending a form feed to each copy.

3.9.2 P Command

The P command is a combination command; when used with a single numeric argument (or no argument),

the P command does both output and input. The various functions of the P command are described in

Table 3-6.

Note that the P command (with a single argument) always clears the editing buffer before it inputs

the next page, and it leaves the pointer, at the beginning of the new page. If a P command is exe­

cuted after the end of the input file has already been reached or when there is no input file, the

buffer is simply cleared. No data is read in.

Unlike the PW command, the P command does not always cause a form feed to be output at the end of

the data output from the editing buffer. The P command outputs a form feed at the end of the data

only if a form feed was encountered to terminate the last input command.

3-26

I

I

I

I

Command Argument

P 1 assumed

nP n >0

m,nP m<n

HP H = B,Z

- 273 -

Table 3-6
P Commands

Function

Simi lar to PINY. Outputs the entire contents
of the buffer, then clears the buffer and reads in
the next page of input. The buffer pointer is
left at the beginning of the page that is read in.
If there is no input file, or no more data in the
input file, the buffer is left cleared. A form
feed character is appended to the end of the
data that is output only if the last input com­
mand was terminated by a form feed.

Executes the P command n times. This com:::.
mand can be used to skip over several pages
of text when no editing is required. The
nP command causes the n pages of the input
file, starting with the page currently in the
editing buffer, to be output, and then the
nth page after the current page to be yanked in.

When used with a pair of numeric arguments,
the P command does output only; it does not
clear any data from the buffer, it does not
input any more data, and it does not move the
buffer pointer. Also, the m,nP command never
causes a form feed to be appended to output 1 •
The only action of m,nP is to output the .
m+ 1st through the nth characters in the buffer.
(m,nP and m,nPW are equivalent.)

Outputs the entire contents of the buffer without
appending a form feed to it; the buffer is not
cleared, and no new data is read in. (HP and
HPW are equivalent.)

1 However, if a form feed character has been inserted in the buffer between the mth
and nth characters, it will be output.

TECO

The PW command does not clear the buffer and does not move the buffer pointer. The same is true of

a P command used with two arguments.

Note also that when a PW command is used, a form feed character is always automatically sent to the

output file immediately following the data from the buffer. (~ecall that when the page was read into

the buffer, the form feed character that terminated it, if any, was discarded and not read into the

buffer.) The form feed character is appended to the outgoing data regardless of whether or not a form

feed character was encountered when the data was read in, i. e., regardless of the setting of the form

feed fla9.. This is not true of the P command.

NOTE

If the EO value has been set to 1, the P command behaves
like the PW command with regard to form feeds.

3-27

I

TECO - 274 -

When a P or PW command is used with a double numeric argument (including an H argument), a form

feed character is never appended to the output data. This is true regardless of whether or not a form

feed character was encountered when the data was read in.

NOTE

The discussion in this section does not apply to the form
feed characters that the us~serted into the editing
buffer using 121 CD or I ~® commands. Form
feed characters in the buffer are output exactly as other
characters in the buffer.

If the editing buffer is empty when a P or PW command is executed, no output of any kind takes place.

No form feed character is output. If the user wants to create a blank page, an example of the

procedure is shown below.

As shown in the discussion above, the n P command can be used to skip over several pages to get to the

next page where editing is required. The nP command can also be used with a very large argument,

e.g., 10000, in order to skip to the end of the input file without doing any more editing. The Nand

EX commands are other commands which can be used for this purpose.

3.9.3 EFCommand

The EF command is the output file closing command. The EF command, or an equivalent command,

must be used to close the output file after all output to it is complete. The EF command is normally

used after the P command which outputs the last page of a file. The special exit commands EX and

EG (see Section 3.10) automatically cause an EF to be executed. Also, a new EW command causes

an EF to be executed on the previous output file, if any, before opening the new output file: Note

that if an EF command is execyted in the middle of the file, all succeeding pages of that file are lost.

3.9.4 Examples of the Use of Output Commands

~PT ®CD
FIRST LINE OF NEXT PAGE

*PEF ®®
*

*PWEF ®®

Output the current page, c I ear the buffer, read in
the next page, then type out the first line of the
new page.

Output the current page to the output file, and
then close the output file. This command string
is used to close a fi Ie (after writing the last page)
when it is not desirable to exit from TECO.

Equivalent to the preceding example, except that
the buffer is not altered.

3-28

~.,ZPO,.P <D®
*

I ~.,ZP121 CD O,.P @@
*

I *HK121 <D HP ®®
*

I *HK121 @ PW ® (!)
*

*

~300Pw(!X[)
*

*PWJKIJ.DOE @ PW @(!)

• MAKE FILE
:,lpage of text CD @
~Pl2nd page of text ® (!)
~Pllast page of text CD EX (!) CD

3.10 EXIT COMMANDS

- 275 - TECO

This command string outputs the entire contents of
the buffer, but it rearranges the data as it is out­
put. The part of the page that follows the buffer
pointer is output first by the., ZP command. Then
that part of the data which precedes the pointer is
output by the 0, • P command. No form feed charac­
ter is appended to either section of the output.

This performs the same function as the preceding
command string except that it does append a form
feed character to that part of the page that is
output last.

This command string produces a single blank page.

This produces two successive blank pages.

If page 6 of a fi Ie is in the editing buffer, this
command causes pages 6 through 13 of the fi Ie to
be output one after the other, and then reads in
page 14.

This outputs 300 copies of the current page.

This outputs the current buffer, the modifies
the first I ine and outputs the buffer again.

This is the usual method for creating a text file •

Exit commands are used to terminate ~ TECO lob and return to the monitor. There are four exit com­

I mands: EX, EG, @, and ®.

3.10.1 EX Command

The EX command is used to bring an editing lob to a satisfactory conclusion with a minimum of effort.

Its use is shown in the example below.

The user is editing a 30-page file and that the last actual change to the file is made on page 10. At

this point the user gives the command:

~EX®@
EXIT

fC

3-29

TECO - 276-

In this case, the action performed by TECO is equivalent to the command string 21 PEF, with an auto­

matic exit to the monitor at the end. Thus, the action of TECO is (1) to rapidly move all the rest of

the input file, including the page currently in the buffer, on to the output file; (2) to close the out­

put file; and (3) to return control to the monitor.

The EX command is the easiest method of finishing an editing lob, with the latter part of the input

file being properly output and the output file closed.

The EX command performs both input ane! output functions.

The EX command causes a form feed character to be output after the output of the buffer, on I y if a

form feed was encountered when that buffer of text was read in. In this way, the EX command main­

tains existing page sizes.

3.10.2 EG Command

The EG command first performs exactly the same functions as the EX command, and then causes the

last compile-class command (COMPILE, EXECUTE, LOAD, or DEBUG) attempted before TECO was

called, to be re-executed (with the same arguments). Generally, the EG command is used only to

exit from on editing lob that was initialized by an EB command or a TECO filnam.ext command.

As an example, suppose the user gives the command

.!.,.COMPILE PLOT.F4)

to request compilation of a FORTRAN source program, but the compiler encounters errors in the code.

The user then calls TECO to correct these errors with the command:

.!.,.TECO PLOT. F4)

*

When all the errors are edited, the user exits from TECO with the command

~EG0@
This command causes (1) the rest of the file PLOT.F4 to be output and closed, and (2) the command

COMPILE PLOT.F4 to be re-executed automatically.

3.10.3 @and ® Commands

The @ and ® commands do not perform any input or output. They are used strictly for exiting

to the mon i tor.

The command @ (-or tZ) is the simple exit command that can be entered into command strings. It

allows any I/O commands that have already been given to be completed, then closes the output file,

and then returns the user to the mon i tor.

3-30

Example:

~PWEF @)(!Xi)
EXIT

tc
.!...

- 277 -

The @ is executed as a regular command
in the command string when its turn comes.

NOTE

If the EO value has been set to 1 (refer to Paragraph 3.17.3),

a single @ is equivalent to @.

TECO

The © command is a monitor command that is used to immediately exit to the monitor. The @
command can be typed at any time, while typing a command string or while a command string is being

executed, and it will override everything else. It cannot be entered in the up-arrow, C form. If

there are any input/output functions in progress when @ is typed, a single ® will allow them

to be completed before exiting to the monitor. Double @ (® ®) interrupts everything, even

I/O in progress, and exits to the monitor immediately. The @ command does not cause the output

file to be closed.

Both @ and ® are abortive exit commands. However, when they are used, it is possible to

return to the TECO lob provided no other program has been called into core over the TECO lob.

Simple monitor commands such as ASSIGN, or PJOB, can be executed without damaging the TECO lob.

I After an exit to monitor level, even if the exit was caused not by a user ®, or @, but instead

by some problem detected by the monitor itself, the user can return to his TECO lob by using either

the CONTINUE or the REENTER command.

The command CONT causes TECO to begin operations exactly where it left off. Even I/O can be

interrupted and then continued.

Example:

~ERPTR: CD EWLPT: CD Y3P CDC!)
DEVICE LPT OK?

.!...CONT)

*

Here the monitor causes an exit to
monitor level because of a device
problem. After the user corrects the
problem, he continues the lob and the
current command string executes to
completion.

REENTER causes the TECO lob to be reentered with the contents of the editing buffer (when the exit

occurred) intact. After reentry by a REENTER, TECO reinitializes itself for a new command string.

Any previous commands still unexecuted at the time of the exit are lost. If a command string was

being executed when the exit occurred, the part of the string that was not executed before the exit will

3-31

I

TECO - 278 -

not be executed after the REENTER command. The user must determine how much of the command

string was executed. If I/O is interrupted, some portion of the input or output files is frequently

either lost or duplicated.

Examples:

~ICOMME@
• DEASSIGN LPT)
:-DAYTIME.)
T4-APR-70 10:34
;:.REV
*ICOMMENTS C!) CD
*
~<SFOO ® OL > C!) ®
©©

;:.REE..>

*

~50P ®C!)
@
©

• REE)
;Ii"

Before finishing a command string the
user exits to perform a monitor command •

He then reenters TECO. The command
string must be retype~l but the buffer is
still intact.

This is an in~ite loop {if FOO is in the
buffer}. \!9 ®.stops execution and
returns the user to the monitor. REE re­
starts TECO with the editing buffer intact
and the command buffer empty.

This is an example of what should not be
done. Interrupting execution of anl/O
command does not permit reentry. In
this case, some of the output file will
almost certainly be duplicated .

The contents of any Q-registers {refer to Paragraph 2.8} remain intact after a ®, CONT or ®,
REENTER command sequence.

3.11 SEARCH COMMANDS

In many cases the simplest way to reposition the buffer pointer is by using a character string search.

A search command causes TECO to scan through the text until a specified string of characters is found,

and then to position the pointer at the end of this string.

The string of characters to be searched for is suppl ied as a text argument with the search command

The search string can be from 1 to 36 character positions in length or up to 80 characters including all

control commands.

If an exact match for the search string is found in the text, the buffer pointer is positioned immediately

after the last character in this match. If the string is not found, TECO positions the pointer at the

beginning of the buffer and notifies the user of the failure. The failure notice may take one of two

forms, depending on the type of search command used. For further explanation see the paragraph

below.

All searches begin at the current position of the buffer pointer.

3-32

- 279 -

I lf no text argument is provided with a search command, e.g., S (!)c!pr @N//, the search is

executed using the last previous search command argument.

3.11.1 S Command

TECO

The S Command is used to search for a character string within the current editing buffer. If the string

is not found between the current buffer pointer position and the end of the buffer, the search fails.

After an unsuccessful S search, the buffer pointer is reset to the beginning of the buffer, and, unless

the: modifier (explained below) was used -or the search is within an iteration (see Section 3.12),

an error message is printed.

The general form of the S command is

~Sstring CD
For the standard S command, the search string is provided as a normal alphanumeric argument following

the S and terminated by an altmode. "string" can cantain any character except the special charac­

ters listed in Table 2-1.

The S command may be used with a single numeric argument. The command nS causes a search for the

nth occurrence of the specified search string. When n is omitted, n=l is assumed. n must be greater

than O.

3. 11 .2 FS Command

The FS command is used to search for a character string within the current editing buffer (function of

the S command) and replace it with another string. If the string to be replaced is not found after the

current buffer pointer position and before the end of the buffer, the search fails and no replacement

is made.

The general form of the FS command is

~FSstringl (!) string2 CD
where string 1 is the string to be deleted and string2 is the string to be inserted in its place. If string 2

is omitted, string 1 is deleted without any string replacing it. However, even when string2 is omitted,

its terminating altmode must be present as shown in the form:

~Sstri ng 1 (!) (!)

3.11.3 N Command

The N command combines the S command with input/output functions. The N command is used to

search for a character string in a page of the input file which may not yet have been read into the

buffer. The N command has the same form as the S command.

3-33

TECO - 280 -

The N command functions exactly like the S command except that an N search does not terminate at

the end of the page currently in the buffer. If no match for the search string is found between the

current buffer pointer position and the end of the buffer, the current page is output, the buffer is

cleared, the next page is read in, and the search starts over at the beginning of the new page. This

process continues until a match is found or the input file is exhausted.

If an N search fails, the entire input file has been passed through the buffer and del ivered to the out­

put file, and the buffer cleared. The output file is not closed. Unless the: modifier was used or the

search is within an iteration, an error message is typed to notify the user that the search has failed.

An N search will not detect a match when the matching characters are split across two buffer loads.

I The output function of the N command is exactly like the P command and the EX command. If a form

feed character was encountered when a given page was read in, a form feed character is appended to

that page when it is output; otherwise, no form feed character is output.

The N command can be used with a single numeric argument. The command nN causes a search for

the nth occurrence of the specified search string. When n is omitted, n=l is assumed. n must be

greater than O.

3. 11 .4 FN Command

The FN command is used to search for a character string in a page of the input file which may not yet

have been read into the buffer (function of the N command) and to replace it with another string. The

FN command operates like the N command when searching for the string. If the $earch fails, no

replacement occurs.

The general form of the FN command is

~FNstring1 (!) string2 (!)
where string 1 is the string to be deleted and string2 is the string to be inserted in its place. If string2

is omitted, string1 is deleted without any string replacing it. However, even when string2 is omitted,

its terminating altmode must be present as shown in the form

~FNstring 1 ® ®

3.11.5 Backarrow Command

The backarrow command is identical to the N command except that a backarrow search generates no

output. Generally, where the N command executes a P, the backarrow command executes a Y. The

back arrow search is used for examination functions and for discarding parts of a file. The general

form of the back arrow command is

~tring (!) (!)

3-34

- 281 - TECO

The backarrow command can also be used with a single numeric argument. The command n-causes

a search for the nth occurrence of the specified search string. When n is omitted, n=l is assumed.

n must be greater than o.

3.11.6 Search Command Modifiers

3.11.6.1 @ Modifier - There are two search command modifiers. The @ modifier is used to alter

the method which TECO reads the search command's text argument from the command string. The

I general form of a @ search command is the same for S, FS, N, FN, and backarrow. It is

1@nS/string/

I The @ modifier is placed before the S, FS, N, FN, or back arrow, and before the numeric argument,

if any. When the @ modifier is used, the search string argument is delimited, not by the search

command and an altmode, but by the first character typed after the search command and the next re­

currence of this character. In the example above, the delimiting character is a slash. The delimiting

character may be any character except a character that appears in the search string itself. With the

@ modifier, single (but not double) altmodes can be used in the search string. The @ modifier can

be used in an FS or FN command to separate the strings with a delimiting character other than altmode.

This is useful in cases where a double altmode cannot terminate the command. A double altmode

terminates'an FS or FN command when the replacement string is omitted to allow deletion of the

string for which the search is made. Use of the @ search commands is similar to the use of the @I

insert command (refer to Paragraph 3.8.3).

3.11.6.2 Colon Modifier - The colon modifier is used to alter the execution of a search command in

the event the search fai Is. Without the colon modifier, a search that fails causes an error message to

be printed; if the colon modifier is used, no error message is printed. Instead, every colon search

command executed returns a numeric value that can be printed out, stored in a Q-register, or tested

by a conditional branch. A colon search command returns the value -1 if the search is successful,

and the value 0 if the search fails.

I The general form of a colon search command is the same for S, FS, N, FN, and back arrow searches:

~:nSstring ®

I

The colon precedes the search command letter and its numeric argument, if any. Both the colon and

@ modifiers may be used on a search command, in either order.

The concept of a command returning a value is explained in Section 2.7.3. Just as the Z command

takes on a value that may be used as a numeric argument, so also the command :Sstring CD takes on

a value of 0 or -1 after it is executed. If this is the last command in a command string, or if the

command following it does not take a numeric argument, the value returned by the colon search is

discarded. Hence, a colon search should be followed by a command that takes a numeric argument.

3-35

TECO - 282 -

The colon search commands reposition the buffer pointer in the same manner as other search commands,

regardless of whether or not the returned value is used.

The colon searches are used primarily in programmed editing and are usually followed by a conditional

command. Examples of the uses of colon searches are given in Sections 3.13 and 3.14.

3.11.7 Automatic Typeout After Searches

The ES command allows the user to specify automatic typeout of the line where a successful search

has terminated. The search cannot be in an iteration, nor can the search command be preceded by a

colon. When the FS or FN command is used, the typeout occurs after the insertion has taken place.

The user can also specify in the ES command that either a line feed or a character be inserted into the

typeout to indicate the position of the pointer. Unless the ES value is set, the default is that no

automati c typeout after searches will be performed.

The user can set the ES value in the following manner:

OES

-1ES

nES(n >0)

ES

3.11.8 Case Control in Searches

Restore TECO to the default of no
automatic typeout.

Set the ES value to cause automatic
typeout of a line on wh i ch a successfu I
search has termi nated.

Set the ES value to n. If n is in the
range 1 through 31, a single line feed
character is included in the typeout at the
position of the pointer. If n is 32 or
greater, the character with the ASC II
value specified by n is included in the
typeout at the position of the pointer.

Examine the setting of the ES flag.

When searching for alphabetic characters TECO wi II normally accept either upper or lower case

characters as a match. This is called "either-case mode". TECO may, however, be forced to exe­

cute any or all searches in "exact mode". In exact mode TECO will accept an alphabetic character

or a search match only if it has the same case as the corresponding character given 'by the user in the

text argument.

Before the techniques for match mode control can be explained, we must first explain the various

techniques for case control. Match mode control is explained in Section 3.11. 8. 4.

3.11.8.1 Alphabetic Case Control in Search Arguments - The case of alphabetic characters in

search text argument is controlled by the same set of commands used to control case in insert text

arguments.

3-36

- 283 - TECO

The features described in this section provide the method by which alphabetic characters in the upper

case range can be converted to the equivalent characters in the lower case range, and vice-versa.

Alphabetic case conversion is done by use of two control-character commands.

® is used for translation to lower case.

@is used for translation to upper case.

These two commands may be used within search text arguments to cause case conversion on a temporary

basis for that text argument, or as independent commands to cause case conversion in all insert and

search text arguments.

Note that @ and @ affect only alphabetic characters. They have no effect on non-alphabetic

characters.

(1) ® @ and ® @ used within text arguments.

When used inside a search text argument, two successive @ or @ commands

cause translation, to the specified case, of all following alphabetic characters

in that text argument.

Example:

·SF ® ® OR USERS OF @ ® TECO. ®CD
The above command searches for "For users of TECO." with the initial"F"

and "TECO" capitalized, and all the other letters in lower case.

(2) Single ® and @ used within text arguments.

When used inside a search text argument, a single ® or @ command causes

translation of the next single character (if it is alphabetic) to the specified case.

The single ® or @ in a text argument take precedence over the case

conversion made defined by double ® or@ commands.

Example:

*S ® ® USER @ PROGRAM CD CD
The above command causes a search for the string "user Program" with the" P"

in upper case, and all the other letters in lower case.

(3) Independent @ and @ commands.

As explained above, when @ and @ commands are used inside a text argument,

they affect only that particular text string. When used as independent commands,

however, @ and @ set TECO to a prevail ing case conversion mode that affects

all insert and search text arguments (except as specified by @ and @ commands

within the text arguments).

3-37

TECO - 284-

The independent command ® or tv (or n @ where n does not equal 0) sets

the prevailing case conversion mode so that all upper case alphabetic characters

in insert and search text arguments are translated to lower case, except where

@ commands within individual text arguments override the independent @.
Likewise, the independent command @, or tw (or n @' where n does not

equal 0) sets the prevailing case conversion mode so that all lower case alpha­

betic characters in insert and search text arguments are translated to upper case,

except where ® commands within individual text arguments override

the independent @.
The independent @ command has the use explained above, obviously, only

when the user TTY has lower case capability and TTY LC is on. Otherwise

the @ command serves merely to tum off the @ command.

(4) 0 @> and 0 @
The independent 0 @ and 0 @ commands both have the same effect,

namely, to restore TECO to the default condition where neither case of alpha­

betic characters are translated to the opposite case, except by ® and ®
commands within text arguments.

TECO is initially set for no prevailing case conversion.

Note that the prevailing case conversion mode can have one, and only one, setting at anyone time.

The possible settings are:

tv
tw
otV or Otw

convert upper case to lower case

convert lower case to upper case

no prevailing conversion

When any of these prevailing modes is put into effect, it cancels any of the others that were in

effect.

The order of precedence of the case conversion commands is as follows:

Highest: single @ and e inside text

Next: double @ and @ inside text

Lowest: independent ® and @J

NOTE

If the EO Value has been set to 1 (refer to Paragraph

3.17.3), @J and @ have no special effect when

encountered inside text arguments.

3-38

- 285 - TECO

3.11.8.2 Special "Lower Case" Characters - When used inside a search text argument, the control

command @ causes the immediately following character (if it is one of the special characters @,

[, \,], t, or -) to be converted to the equivalent character in the lower case ASC II range (i. e. ,

octal 140 or octal 173 to 177). , '@ has no special effect within text argllments if the EO value has

been set to 1. Refer to Paragraph 3.8.7.2 for examples.

3.11 .8.3 Control Characters in Search Arguments - As of version 22 of TECO all of the control

characters @ - @' ([8) - @' and ®, @' @, and e have been reserved

as inside-text-commands (some as yet undefined). In order to search for these characters, the user

must employ either the ® or ® command.

® when used inside a search text argument causes the next single character to be interpreted as

text rather than as a command: This applies to all control characters including ® itself. It also

applies to altmode. (It does not, however, apply to ©, @" @, or RUBOUT.)

@ when used inside a search text argument causes all succeeding instances of the above mentioned

control characters except ® and ® itself to be interpreted as text rather than as commands.

® does not affect altmodes. A second instance of ® in the same text argument nullifies the

effect of the fi rst .

If the EO value has been set to I, ® and ® have no special effect when used inside text argu­

ments, and all control characters (except the special characters) can be searched for with no special

treatment.

3.11.8.4 Case Match Mode Control in Searches - Unless special action is taken all searches are

executed in "either-case mode". This means that regardless of the setting of the prevailing case mode

by an independent ® or e command, a search for an alphabetic character will accept either

the corresponding upper or lower case character as a match.

However, if ® or @ case control commands are used within a search text argument, it is

assumed that the user desires an exact mode search, and a match will be accepted only for the cor­

responding characters in the exact case specified by the user.

If the user desires a search to be executed partly with exact mode and partly with either-case mode,

he should bracket the characters to be taken in either case with ® characters. (The ® char­

acter is entered by simultaneously depressing the CTRL, SHIFT, and L keys.)

For example, S ® ® ABC ® DEF ®® will be successful only with strings containing

lower case abc, but it will accept either upper or lower case def as G match for the last 3 characters.

3-39

TECO - 286 -

NOTE

If EO=1, all searches are executed in exact mode and

® has no special effect in text arguments.

The search mode can be forced to exact mode for all searches by use of the independent command

~ @, where n does not equal O. 0 @ resets fhe search mode to 'either' mode. @without an

argument returns the value of the search mode flag.

3.11.9 Special Match Control Characters

I There are five special control characters that can be used in search character string arguments. These

characters alter the usual character-matching process that goes on when a search is in progress. They

actually reside in the search string and are interpreted by the search routine itself.

The presence of a @ command in a search string is a signal that this particular character position

in the string is unimportant and that any character is to be accepted as a match for it. The ®
command is a free variable in the search string. To find a match, some character must be present in

the position occupied by the @ command; however, it does not matter what this character is.

The ® command in a search string is a restricted variable. Its presence indicates that any sepa­

rotor character is to be accepted as a match in its position. A separator character in any character

except a letter, a digit, a period, a dollar sign, or a percent sign; i.e., any character except a

I character that is commonly used in symbols. ® also accepts the beginning of the editing buffer

as a match.

The 9 command is another restricted variable. It must be followed by a single character argu­

ment: 9 x. The ~command signals that, in the position occupied by the ® and its

argument, any character is to be accepted as a match except the argument.

The ® command is used in a search string to indicate that the character following the ® is

to be interpreted literally rather than as a command, even if this character is one of the special match

control characters. The @ command has the same function as ®, but it is better to use @
because @ will not allow insertion of CD as a text character while @ will.

The @ command when used with an argument in a search string indicates particular groups of

characters to be accepted as a match. Depending on the argument, this command matches on the

first occurrence of one of the following groups.

@A
@D

@L

any al phabeti c character.

any digit.

any end of I ine character {or end of buffer character
in the absence of an end of line character}.

3-40

I

I
I

@S
@V iE W

tE <nnn>

tE [a,b,c, .•]

- 287-

any string of spaces and/or tabs;,

any lower case alphabetic character.

any upper case alphabetic character.

the ASCII character whose octal value is nnn.

anyone of the characters a, b, c, ••• (a, b, c, •• can
be any symbols that represent single characters).

TECO

Since the five commands @' @' ®, ®, and @ are used in the middle of ASCII

search strings, they cannot be entered in the up-arrow, character form allowable for some control

character commands. They must be typed as a single control character.

3.11.10 Examples of the Use of Search Commands

Examples:

~SA-IS ®®
*

*SNIX ®®
?SRH CANNOT FIND "NIX"

*

~NDIGITAL (!) (!)
*

*NLAST LIN PG 1
TST LIN PG2

<!)®
?SRH CANNOT FIND "LAST LIN PGl
1ST LIN PG 2

"
*

~12FSOF ® FOR ® CD

3-41

This causes the pointer to be positioned im­
mediately after the S, in the first occurrence
of the string A -IS after the current position
of the pointer.

The string N IX is not found between the
current pointer position and the end of the
buffer. The error message is typed and the
pointer moved to the beginning of the buffer.
The user may have typed an incorrect search
string, the pointer may have been positioned
somewhere in the buffer after the N, or the
string N IX may not have been read into the
current buffer.

If page 5 of the text is currently in the
buffer and the string DIGITAL does not occur
until page 15, this command causes pages 5
through 14 to be output and page 15 to be
read in. The pointer will be set immediately
after the l.

If this string actually exists in the file but
the two lines are not read into the same
buffer load, the N search will fail.

This command causes TECO to search the
current buffer for the 12th occurrence of the
string "OF" and replace it with the string
"FOR" •

TECO - 288 -

*5-VERSION88 (!) CD

:-IESSWORD CD CD
60 FORMAT ('WORD')

*

:5FSINTEREST CD CD

:NMASSACHUSETS CD (!)
?SRH CANNOT FIND" MASSACHUSETS

:EF ®®
:EBOUTPUT.FIL (!) Y (!) (!)
:NMASSACHUSETTS CD CD
*
:@3S+ (!) +IEF CD CD

*

I
*NA @ B ® C @ .D @ @CD(!)

*

3-42

This command can ~ used to determine if the
string VERSION88 occurs in the input file
five times. If it does, the pointer is posi­
tioned immediately after the fifth occurrence,
and everything in the input file, preceding
the page on which the fifth occurrence is
located, is discarded.

The ES value is set to -1 to cause the line
where the search ended to be typed. This
makes certain that the search has actually
found the right occurrence of the string. It is
easy to overlook an occurrence of a string
preceding the one which the user desires.

Th is command causes TECO to search the
current page for the fifth occurrence of th;;;...
string "INTEREST" and delete it. Two \!J's
must be present following the string to be
deleted; the first delimits the string to be
searched for and the second tells TECO that
there is no replacement string.

An N search should not be used where an S
search would suffice, because user errors with
the N command, such as the spelling error
shown here, can cause considerable delay.
In this example, the user's error caused him
to have to pass over the enti re fi Ie twice
instead of iust once.

The command @3S +(!) + searches for the
third occurrence of the altmode character
following the buffer pointer. When this alt­
mode is found, the characters EF are inserted
immediately after it. The plus characters
serve as the delimiters for the one-character
search string CD. The plus characters are
not part of the search string.

This command causes TECO to search for the
string "WR ITE#" and replace it with the
string "PRINT#." Each page of the text is
searched until the string is found.

Any of the following three strings of characters
would serve as a match for this N search:

A6B-C?D @
~B-ICJ @
AAB,C CD D @

None of the following four strings would serve
as a match:

AJB C-D3

A.B.C.D.

AABBCCD

AX B,-,C AX

I

':1 ESSFOUR G) CD
FOUR

SCORE AND SEVEN YEARS AGO

':lESFSI/O (!) 1-0 (!) G)
1-0
-CONTROL

3.12 ITERATION COMMANDS

3. 12. 1 Angle Bracket « ... »

- 289- TECO

Because the ES value was set to 1, automatic
typeout of the line occurs after the string
"FOUR" was found. A line feed was in­
serted at the pointer position in the line to
allow the user to easily locate the pointer.

This command string causes TECO to search
for the string" I/O" on the current page and
replace it with the string "1-0". The line
is then typed with a line feed at the position
of the pointer.

The user can cause a group of command to be iterated (repeatedly executed) any number of times by

placing these commands within angle brackets. The left angle bracket marks the beginning of a

command string loop and the right angle bracket marks the end of the loop. These command string

loops can be nested in the same manner as arithmetic expressions are nested within parentheses. loops

should be nested to no more than approximately 20 levels; otherwise, pushdown list overflow may occur.

A numeric argument can be used to specify the number of times a given loop is executed. The argu­

ment is placed before the left angle bracket in the form n < ... >. This causes the group of commands

within the brackets to be iterated n times. In a command of the form n < ... >, if the argument

n is less than or equal to zero, the commands contained within the angle brackets are skipped. If no

argument is given, the number of iterations is assumed to be infinite (235).

Example:

* J8< -lei) l> G) (!)
*

3. 12.2 Semicolon Command

This command string inserts a tab at the
beginning of the 'first eight lines in the
buffer and leaves the ~pointer positioned
at the beginning of the ninth line. The
J command starts the pointer off at the
beginning of the first line. The first com-
mand in the loop, -I (!) inserts a tab.
Then the next command, l, moves the
pointer to the next I ine to prepare
for the next iteration of the loop.

Iteration of a command string loop can be terminated before the iteration count is satisfied by using

the conditional iteration exit command, semicolon. The semicolon command can be used only within

angle brackets. It can be used with or without a numeric argument.

When used without a numeric argument, the semicolon command evaluates the outcome of the last

search (of any kind) that was executed before the semicolon command was encountered. If this search

was successful, command execution continues within the loop, as if no semicolon were present. If,

however, the most recent search failed, the semicolon command causes all those commands that follow

3-43

I

I

I

TECO - 290-

the semicolon in the loop to be skipped over, and command execution to pass on to the first command

following the right angle bracket which closes the innermast loop that the semicolon is in.

NOTE

Within a command loop, all searches are colon searches.
They do not generate error messages when a fai lure occurs,
instead they return a value of -1 if successful and 0 if
unsuccessful.

The semicolon command can also be used with a numeric argument. The command n; is ignored if

n<O. However, if n~O, the command n; causes command execution to exit from the loop iust as the

semicolon command exits from the loop when a search fa"ils.

Examples:

*J<OLlJAN ('$) FS1969 Q) 70 G);>HT (VG)
JAN REPOR'f" .
DEPT:

JAN 1970

JAN 1970

JAN 1970
JAN 1970

*

SALES
WHoLESALE:
RETAil:
EXPENSES:
OVERHEAD:
ADVERTIsiNG:
COMMissioNS:
RETURNS: •
INVENTORY:

*<S1969 ($) ;OLlDEC (!) > (!) (!)
T6K CaREt'
[71< CORE]
[8K CORE]

@®
.!...REE.J

*

3-44

This command string inserts JAN at the be­
ginning of the first I ine in the buffer and
at the beginning of each line that contains
the string 1970. It also changes the 69 in
every occurrence of 1969 to 70. The action
is as follows: The J command starts the
operation at the beginning of the buffer.
The first execution of the OL does nothing.

IJAN (!) then inserts JAN at the beginning

of the first line. Now, a search is made
for 1969. When 1969 is found,

FS1969 (!) 70 (V changes the

69 to 70. This completes the first itera­
tion; execution loops back to the <. OL
moves the pointer to the beginning of the
line where the 1969 was found. Here JAN
is inserted and then a search is begun for
the next 1969. This continues until the
search command fails to find another 1969.
When the search fails, the poi~ter is moved
to the beginning of the buffer. HT is the
next command which is executed. (It is
assumed that no I ine contains more than
one "1969.")

This command puts TECO into an infinite
loop because the OL causes the search com­
mand to keep finding the same 1969 over
and over again. If left to run long enough

the IDEC (!) command will eventually

exhaust available core and stop execution •
In this example, the user has stopped the

loop with· @ @ , and then REEntered.

:Y<NEXAMPLES: <!);<S)

(V; -leD L »CD CD
*

*EBfilnam.ext CD 50000<YHP>EX ® <!)

*<FSREAD CD WRITE CD ;>

~<@FN/ERROR//;>

- 291 - TECO

This is an example of nested loops. The
main loop searches for pages in a file that
contain the heading EXAMPLES:. When
this is found, execution enters the secondary
loop, which inserts a tab at the beginning
of all the succeeding lines on that page
(i .e., after every) I on that page). When
the second semicolon causes an exit from
the inner loop, execution loops back to the
N search. Finally, when the N search
fai Is, execution is completed.

Th is example shows how to remove all form
feeds from a fi Ie.

This command causes a search of the current
page for all occurrences of the string
"READ" and replacement of them with the
string "WR !TE" •

This command causes TECO to search all
the following pages for the string "ERROR"
and delete every occurrence of it. The @
construction must be used in this case be­
cause it allows the user to specify a de-

limiting character other than (!). The

delimiting character (in this case /) must
be specified twice after the string; the
first to end the string and the second to
indicate that a replacement string is not

present. If ® were used as the delimiter,

a double ® would be present which would

cause an erroneous resu It.

Only the methods described in this section should be used to exit from a loop. Specifically, the flow

control commands described in Section 3.13 should not be used. Some violations of this rule may be

successful, but generally they will not succeed.

Matching pairs of angle brackets defining loops within the loop may, however, occur following the

semicolon.

3.13 FLOW CONTROL COMMANDS

TECO contains commands that enable the user to write editing programs capable of solving most com­

plex editing problems. The iteration commands discussed in Section 3.12 are a specialized example.

In addition to these, TECO has an unconditional branch command and a set of conditional execution

commands that can be used to create any kind of conditional branch or conditional skip.

3.13.1 Command String Tags

To have branching in a command string, there must be a method of naming locations in the command

string. Location tags in the general form

3-45

I

TECO - 292 -

!tag!

may be placed anywhere in a command string (except in text arguments). A tag is delimited before

and after by an exclamation point and may contain any number of any ASCII characters except the

special characters listed in Table 2-1 and exclamation points.

Command string tags are also the recommended method for putting comments in TE-CO macros; they

need not be referenced.

3.13.2 0 Command

The unconditional branch command is the 0 command. The general form is

~Otag CD
The text argument following the 0 command and delimited by an altmode is the tag naming the desti­

nation of the branch. The tag location itself may be eithe/before or after the 0 command in the

command string. The 0 command causes the command string execution pointer to be moved to the

first character following the exclamation point that terminates the tag, and command execution con­

tinues from that point.

Tags are ignored except when an 0 command forces TECO to scan the command string for them.

3.13.3 Conditional Execution Commands

All conditional execution commands have the following general form:

*n11x ••• 1

In this form, n is the numeric argument on which the decision to execute or not to execute is based.

The quotation mark (") is the first character of all conditional execution commands. The letter x re­

presents the second character of the conditional execution command. The letter x may be anyone of

several letters depending on which conditional execution command is intended. The two command

characters, "x, may be followed by any string of commands terminated by an apostrophe('). If the

condition specified by x is satisfied by the argument n, all the commands between "x and I are exe­

cuted in the usual manner. If there is no branch command within the range "x ••• '~ then after the

last command in the range is executed, command execution falls through the apostrophe and executes

the next command following it. If n does not satisfy the condition specified by x, then all the com­

mands between "x and the matching I are skipped, and command execution continues with the first·

command following the apostrophe.

The commands "x and I must be used in matching pairs and they may be nested in the same manner that

parentheses surrounding arithmeti c expressions may be nested.

The individual conditional execution commands are shown in Table 3-7.

3-46

- 293 - TECO

Table 3-7
Conditional Execution Commands

Command Function

n"G Execute the commands that follow if n >0; otherwise, skip to
the matching apostrophe on the right.

n"L Execute the commands that follow if n<O; otherwise, skip to
the matching apostrophe on the right.

nilE Execute the commands that follow if n=O; otherwise, skip to
the matching apostrophe on the right.

n"N Execute the commands that follow if nlD; otherwise, skip to
the matching apostrophe on the right.

n"C Execute the commands that follow if n is the decimal value
of an ASC II symbol constituent character (a letter, digit,
$, ., or %); otherwise, skip to the matching apostrophe
on the right.

n-1"L Execute the commands that follow if n<O; otherwise,
skip to the matching apostrophe on theright.

n+1"G Execute the commands that follow if n>O; otherwise, skip to
the matching apostrophe on the right.

n"D Execute the commands that follow if n is in the digit range
(octal 60 to 71).

n"A Execute the commands that follow if n is in the alphabetic
range (octal 101 to 132 or 141 to 172).

n"V Execute the commands that follow if n is in the lower case
alphabetic range (octal 141-172).

n"W Execute the commands that follow if n is in the upper case
alphabetic range (octal 101 to 132).

n"T Execute the commands that follow if n is 'true' (flag is on)
(i.e., ifn<O).

nil F Execute the commands that follow if n is 'false' (flag is
off) (i. e., if n=O).

nilS Execute the commands that follow if n is 'successful'
(i.e., if n<O).

n"U Execute the commands that follow if n is 'unsuccessful'
(i.e., if n=O).

3. 13.4 Examples of the Use of Flow Control Commands

:!START! J-I -IPDP-10 TECO)

®
<S 5K G) ;R-DI6 G»
<5WAR ® ;-3DILOVE ® >

PZ" NOST ART <D '
EF (!) (!)

3-47

!INSERT PAGE HEADINGI

!CHANGE 5K TO 6K!

ICHANGE WAR TO LOVE I

!GET NEXT PAGE ANDI

! RESTART IF NOT NULL!

I

I
I

TECO - 294 -

This small editing program contains an example of the 0 command, i.e., the OSTART ® command

which causes a iump back·to !START!. It also confainsexamples of command string tags used purely

for documentation, e.g., !INSERT PAGE HEADING!. Normally, comments would be used only for

lengthy and complex macros that the user expects to maintain.

This example also shows how a conditional execution command may be combined with an 0 command to

produce a conditional branch. When all three of the editing functions have been performed on the

page, the P command is executed to output this page and read in the next. The program then tests

Z (the number of characters in the buffer) to determine if any data was read in. If zlo, data was

read in, therefore a branch is taken to restart the program. When finally Z=O, the command

OSTART (j) is skipped, and execution branches to the concluding EF command. This technique fails

when a file contai~s null pages (consecutive form feed characters). Therefore, the @ end-of-file

test is preferred.

~Z"NI##IZ-4OO0+l''G4000JOLl21 (j) O,.PO,.KO## CD 'ZJA.-Z"NO## ® "PEF CD CD
*

This slightly more complex command string shows how conditional execution commands ma)r be nested.

If the first Y command produces no data, the" N command sends execution to the matching apostro­

phe on the right. This is the last apostrophe, immediately prior to the PEF. Otherwise, the commands

following the liN are executed.

The function of this command string is to convert a file with pages of arbitrary lengths to one with

poges of approximately 4000 characters each.

The command string operates as follows: Z-4000 + l"G means if Z~4000, i.e., there are at least

4000 characters on the current page, execute the following commands; otherwise, skip to the matching

apostrophe (between <!) and Z}. If Z~4OO0, 4OO0JOL moves the pointer to the end of last complete

I line before the 4000th character in the buffer. Then, 121 (j) 0,. P outputs this much of the buffer

with a form feed character after it, and O,.K deletes that which has been output. Now, go back to

!##I and test Z again. Stay in this loop until Z<4000. Execution then skips to the apostrophe.

ZJ moves the pointer to the end of the current buffer. A appends another page, but leaves the

pointer (.) at the end of the previous page. • -Z" N checks to determine if any data was actually

read in. If so, the loop is reentered at IHN I; otherwise the end of the file has been reached. When

. -Z=O, execution skips to the matching apostrophe and then falls through the next apostrophe to the

PEF that closes the output file.

I ~<NSIN (j) ;:SCOS ® "S-3DITAN CD 'ZJ> <!) ®

This example shows how the value returned by a colon search can be used as the argument for a con­

ditional execution command. The N command searches through the file for the first.occurrence of

SIN on any page. When SIN is found, the command :SCOS ® checks for an occurrence of COS

3-48

I

- 295 - TECO

following SIN on the same page. The colon search command returns the value -1 if the search is

successful, and 0 if there is no COS following SIN on the page. This value is then used as the numeric

argument for the "S command. If :SCOS (!) has a value of -1, the occurrence of COS that was

found is replaced by TAN. If :SCOS (!) has a value of 0, the commands -3DITAN (!) are skipped.

We then iump to the end of this page, ignoring all further occurrences of SIN and COS on it, and

continue the iteration process.

3.14 Q-REGISTER COMMANDS

Q-registers are a powerful feature of TECO with many different uses. The general concept of Q­

registers is explained in Section 2.8. Section 3.14 explains the TECO commands that enable the use

of Q-registers.

The 36 Q-registers have the single character names A, B, C, ••• , Z, and 0, 1, 2, ••• , 9. In this

section, the letter i is used to represent the name of an arbitrary a-register.

3.14.1 Commands for Storing Integers

The following commands enable the use of Q-registers for storing single 36-bit integers.

3.14.1.1 U Command - The command nUi stores the decimal integer n in Q-register i. n may be

any integer in the range _235 + ~n:::235 -1. If anything was previously in Q-register i, it is destroyed.

3.14.1.2 Q Command - The command Qi is used to read the numeric value in Q-register i. Qi has

no function other than returning the value in the specified Q-register as a numeric argument. It does

not alter the value in the Q-register. In order to be useful, Qi must be used as a numeric argument

for another command. Qi is often used in coniunction with conditional commands.

3.14.1.3 % Command - The command % i adds 1 to the integer in Q-register i and then returns the

new value in the same manner as a Qi command. If the user wants to increment the value in Q-register

i, but does not want the returned value to be used as an argument for the next command, he should

type an altmode after the %i commqnd.

3. 14.2 Commands for Storing Character Strings

The following commands enable the user to store character strings of any length consistent with the

amount of core avai I able.

3.14.2.1 X Command - The X command copies characters from the editing buffer into a Q-register.

These characters are not removed from the editing buffer. Any data previously in the Q-register is

destroyed.

3-49

TECO - 296-

The various uses of the X command are as follows:

a. m,nXi {m<n} copies the m + 1st through the nth characters in the buffer into
Q-register i.

b. If n>O, nXi copies everything from the current buffer pointer position through
the nth following line terminator character into Q-register i. Xi is equivalent to
1Xi.

c. OXi copies everything from the beginning of the current line up to the buffer
pointer into Q-register i.

d. If n<O, nXi copies everything from the beginning of the nth line preceding
the current line up to the buffer pointer into Q-register i. -Xi is equivalent
to -1Xi.

An X command may require more core space for storage than is available. If so, TECO automatically

tries to expand its core. If successful, TECO prints a message in the form [nK CORE] to show the

new amount of core being used. If unsuccessful, TECO prints an error message and does not execute

the X command.

3.14.2.2 G Command - The command Gi fetches a copy of the entire character string stored in

Q-register i and inserts it into the editing buffer at the current position of the buffer pointer. The

contents of Q-register i are not changed. The buffer pointer is positioned at the right end of the

character string that was inserted by the G command.

3.14.2.3 M Command - TECO command strings are basically ASCII character strings and, as such,

can be inserted or read into the editing buffer iust like any other text. When a command string is in

the editing buffer, it can be edited but it cannot be executed, because at that point it appears to be

data to TECO. However, if the user copies a command string from the editing buffer into a Q-register

(using an X command), then this command string can be executed. The command that accomplishes

this is the Mi command.

The command Mi executes the text in Q-register i iust as if this text had been typed in the command

string instead of Mi. Using an Mi comlJlOnd is analogous to calling a subroutine. Any TECO com­

mands may be included in the command string or "macro" which is stored in and executed from the

Q-register. Even double altmodes can be included if there are conditions under which the user wants

execution to stop. The only restriction is that the commands must all be complete within the macro

in the Q-register. For example, a command and its argument must not be split apart, one in the main

command string with the Mi command and the other in the Q-register. Iterations and conditional exe­

cution strings, if included, must be complete within the Q-register. If an 0 command is used in the

Q-register macro, the tag to which it branches must be in the Q-register also. M commands may be

nested up to approximately 10 levels, depending on the contents of the internal pushdown list.

3.14.3 Saving the Previous Command String

After a command string has completed execution or if it has been aborted by means of the @ @
command, it may be stored in a Q-register. This is done by using an *i command as the first command

in the next command string.

3-50

I

- 297 - TECO

*i causes the entire previous command string, less one of the two concluding altmodes, to be stored

in Q-register i. If the command string was aborted by @ @, neither @ is stored with the

command string. The previous contents of Q-register i are lost. The asterisk has this function only

when used as the first command in a command string. At any other position in a command string,

asterisk has its usual meaning of multiplication (see Section 2.7.2).

If the user intended to use *i as the first command but typed some other command first instead, he may

recover the ability to use *i as the first command by typing enough rubouts to cause TECO to respond

with a carriage return/line feed and a new asterisk. This technique will not work perfectly if some

of the characters typed before the *i command were break characters (altmode, carriage return, etc.).

In th is case some of the- leading characters of the preceding command string will be overwritten.

The *i command is especially useful when an error occurs in a long command string. See the example

in Section 3.14.5.

3.14.4 Q-Register Pushdown List

An additional Q-register feature is the Q-register pushdown list, which may be used for temporary

storage during the execution of a command string.

The command [i pushes the contents of Q-register i onto the stack. It does not change the contents

of i.

The command Ji pops the last pushed entry from the top of the pushdown list into Q-register i. The

previous contents of Q-register i are lost; the:entry which was popped'off'the pushdown list is erased

from the top of the list.

NOTE

The Q-register pushdown list is cleared after the execu­
tion of each complete command string (i.e., every time
TECO types an * to indicate readiness to accept a new
command string).

The maximum depth of the Q-register pushdown list is 32 entries. (This number can be changed by

redefining LPF in TECO. MAC and reassembling TECO.)

3.14.5 Examples of the Use of Q-Register Commands

*QR -3UR CD CD

3-51

This command subtracts 3 from the value in
Q-register R

I

I

I

I

TECO - 298 -

*YISTIOUCIST + 1 !:Sl

- ® "S%C-50"LOST+l (])'121 (!) O,.PO,.KOST (!)'.J
ZUEAQE-Z"NQEJOST + 1 Q} PWEF (!) (!)

~O,.XI0,.KZJGl (!)(!)

~ZJ-5XAJ8LGA (!) <D

3-52

This command string arranges a file into
pages of 50 lines each. The Y command
starts operation at the beginning of the file.
At I ST I the command OUC sets the value 0
in Q-register C. At IST+ll search begins
for a I ine feed. The command :S l CV
returns a value of -1 if a line feed is found,
in which case "s causes the fallowing
commands to be executed. The %C com­
mand increments Q-register C by 1 and
returns the new value in C. If %C<50,
iump back to IST+ll and search for another
line feed. However, if %C=50, proceed
as follows: (1) insert a form feed character
because the output command used does not
output one automatically, (2) output every­
thing from the beginning of the buffer
through the form feed character, then (3)
delete everything that was output and (4) go
back to 1ST I where the counter is reini-
ti alized and start over.

If the search command fai Is to find another
line, with the value in Q-register C less
than 50, it returns the value 0, therefore
the "S command causes a skip to the apos­
trophe at the end of the second line. The
carriage return is ignored (see Section 3.18).
The ZUE command stores the number of
characters currently in the buffer in Q­
register E. The A command reads in more
data without moving the buffer pointer,
while QE-Z"N checks the old value of Z
with the new value to see if any data was
actually read. If data was read, QEJ sets
the pointer at the end of the old data and
before the new data, then continue the line
count at IST+l I. If not, output the last
page and close the file.

This command string moves everything to the
left of the pointer from its position at the be-
ginning of the page to the end of the page.
The O,.Xl command puts everything from
the top of the page to the pointer in Q­
register 1. The 0., K command deletes this
data from its present position. The ZJ com­
mand moves the pointer to the end of the
page. At this point the command G 1 copies
the contents of Q-register 1 into the buffer
at the position of the pointer.

This command string puts a copy of the last
five lines of the page into Q-register A and
then puts a copy of these five lines imme­
diately after the eighth line in the page.
It does not delete the five lines from their
position at the end of the page.

- 299 - TECO

~HK@I#J<SREAD CV ;-4DIACCEPT CD)#HXS CD ®
~Y4PMS6PMS2PMSEX CD CD
EXIT

tC

.!..

In this example, the @I command inserts a
short macro into the buffer. The # char­
acter is used to del imit the insertion. The
HXS command stores this macro in Q-register
S. In the second command string, the MS
command executes the stored macro on
pages 5, 11, and 13 of the input file.
Note that the initial Y command clears the
macro from the buffer before the first page
is read in. The EX command copies all re­
maining pages, closes the output file, and
returns to the monitor.

~J16< [DSDIMENSION CD OLlXDK >J4Ll6<GD]> CD CD
*

~A LOT OF TEXT G) CD
?NFI NO FILE FOR INPUT

~* Z G)(j)

~GZ CDG)

*-D (j)G)
*

~5DITITLE CD NLONG STRING CD
-BDIA LOT OF TEXT CD CD
?NFO No File for Output

~*Z G)CD
~.UP CD CD
~JGZ CD CD

*J9D ®CD

3-53

The 16 <[DSDIMENSION (j) OLlXDK>
command locates the first 16 lines on the
current page that have the word
DIMENSION in them, stores them on the
Q-register pushdown list, and then deletes
them from their present positions. Then the
J4Ll6<GD]D> command brings these 16
lines back onto the page immediately after
the fourth line from the top.

Assume the user meant to insert "A LOT
OF TEXT" but forgot thfil "I" at the be­
ginning. The following technique illus­
trates the simple way to recover from this
common error.

Move the entire command string (with lust
one altmode at the end) into Q-register Z.

Move the command string from Q-register
Z into the editing buffer at the current
pointer position.

Delete the altmode at the end of the com­
mand string. The rest of the command
string is the text that was to be inserted,
and it is now inserted.

An error is encountered early in a long
command string. (The N-search failed
because it could not output the page in the
editing buffer. The commands preceding
the N -search have been executed.)

Save that entire command string in
Q-register Z.

Save the current pointer position. Move
- the pointer to the beginning of the buffer

(a convenient place to edit the command
string), and get the string back from Q­
register Z.

Delete the commands "5DITITLE CD"
that have already been executed.

TECO

~EWOUT. FIL (i) G)
~STEXT ® DI ® ®

~O,.XZ ®®

~O,.K G)®

~QPJ ®®

~MZ G)G)
*
~<SDIVIS G) ;S= (j)RINOTcD
LlX1KLG1> (DC!)
?ILL Illegal Command W

~*ZHKGZ C!) G)

*JDHXZ (i) G)

3.15 NUMERIC TYPEOUT COMMAND

- 300 -

Correct the error.
Get back to the end of the c~mand string.
The D command deletes the ~ at the
end of the command string.

Put the corrected string back into
Q-register Z.

Delete the command string from the editing
buffer.

Move the pointer back to its previous po­
sition. {In this particular case this step
is not actually necessary.)

Execute the corrected command string.

This example shows a simple technique for
creating a TECO macro. The user purposely
begins the command string with an illegal
command. The rest of the command string
is the TECO macro the user wishes to
create.

When the expected error occurs, move the
command string to Q-register Z, then
move it into the editing buffer.

Delete the W from the beginning of the
macro, then save the correct macro in
Q-register Z.

The numeric typeout command is n=, where n is the numeric value to be typed in decimal radix. If a

double = sign is used, the' numeric value is typed in octal radix.

Example:

~YZ = C!) (!)
2529
;r-

-;IA== (!) CD
40

3.16 SPECIAL NUMERIC VALUES

This reads in a page and then types
out the (decimal) number of characters
in the page.

This 'types the octal representation of
the next character in the buffer.

Several TECO commands, which have no other purpose than to return some particular numeric value,

have already been discussed in this manual. These commands are B, Z, ., and Qi. Some commands

that execute a function whi Ie returning a numeric value have also been discussed. These commands

are % i,. colon searches, and all searches within iterations. The concept of a.,command return ing a

numeric value is explained in Section 3.11.

3-54

- 301 - TECO

All of these commands can be used as numeric arguments for commands that take a numeric argument,

e.g., nl, n=, n;, nD, nUi, etc. To perform this function place the command, which returns a numeric

value, in the position of n immediately before the command that takes a numeric argument.

There are several other commands that return numeric values; these commands are listed below.

The nA command (where n can be any numeric value, and serves only to differentiate
this command from the A (append) command) is equivalent to the ASCII value of the
character immediately to the right of the buffer pointer. The nA command equals 0,
if the pointer is at the end of the buffer. The nA command is used primarily with
conditional commands where one is checking for a particular character or range
of characters.

The ® (or tE) command returns the value of the form feed flag. If, on the last input
command (Y or A), input was terminated because a form feed character was encountered,
E equals -1; otherwise, E equals O. For further discussion of the form feed flag, see
Sections 2.4, 3.3, 3.9, 3.10, 3.11 and 4.2.

The @ (or tN) command returns the value of the end-of-file flag. If the end of
the input fi Ie was seen on the last input command (Y or A), tN = -1; otherwise,
tN={). When tN is set to -1, it will remain -1 until cleared by an ER or EB command.

When tN is first set to -1, new data mayor may not have been read into the editing
buffer. Consequently, the tN flag should usually be tested after processing the
input data.

The tF {or @)1 command is equivalent to the value of the console data switches.

The ® (or tH) command is equivalent to the time of day in 60th's of a second
(50th's where 50 Hz power is used).

The ET comm~md (without a numeric argument) returns the value of the ET flag. The
ET command equals -1 if the flag is on and equals 0 if the flag is off. The significance
of this flag is discussed in Section 3.6 When the ET flag is on, the T command delivers
all characters, including altmodes and control characters, to the terminal in their exact
form rather than substituting other characters.

The EU command returns the value of the case flag. The EU value is 1 if upper case
characters are flagged on typeout; 0, if lower case characters are flagged on typeout
(default); and -1, if no case flagging is being performed. Refer to Section 3.6.

The EH command returns the value of the error message flag. The EH value is 1 if only the
error is typed; 2, if the error code plus one line is typed (default); and 3 if the full
error message is typed. Refer to Section 5.2.

The EO command returns the value of the version number flag. The EO value is 1 for
version 21A of TECO and 2 for versions 22 and 23 of TECO. Refer to Section 3.17.

The ES command returns the value of the automatic typeout flag. The ES value is -1
for automatic typeout after successful searches, 1 through 31 for automatic typeout
with a line feed to indicate the pointer position, a decimal number greater than 31
for automatic typeout with the character equal to the ASCII value of the decimal
number indicating the pointer position, and 0 for no automatic typeout (default).
Refer to Section 3.11.

1When using TECO with monitors prior to the 5.02 monitor, the tF TECO command must be entered in
the up-arrow, F form because control-F is interpreted as a special monitor command (see Section 3.18).

3-55

I

I

TECO - 302 -

The @ (or t t) command, followed by an arbitrary character x, is equivalent to
the ASCII value of the character that immediately follows the ® in the com­
mand string. For example, in the command @ A, the character A is an argu­
ment for @ and is not interpreted as a command. (@ A equals 65.)

The backslash(\) command (without a numeric argument) is equivalent to the decimal
value of the digit string (optionally preceded by a + or - sign) immediately following
the current position of the buffer pointer. The value is terminated by the first nondigit
character encountered. If there is no digit string immediately following the buffer
pointer, backslash equals 0. The backs lash command moves the buffer pointer to the
right end of the digit string and assumes the value of the digit string.

The ® (or IT) command is used to enable type-in of characters while the command

string is being executed. When the ® command is enountered in a command
string, execution of the command string stops and waits for the user to type any single

character. When this character is typed, the ® command assumes the value of
this character. Hence, the @ command is useful only as a numeric argument for
another command, e. g., the command ITUC puts the ASC II value of the typed
character into Q-register C.

The ® command is most often used with a @ message string preceding it (see
Section 3.17). The message string is used to inform th$ user that TECO is waiting
for a character to be typed in.

3.16. I Examples of the Use of the Special Numeric Arguments

~J3CIA== <!) ®
71

*

If the fourth character in the buffer is 9,
the command string returns the indicated result.

*J!A!IA-97"GIA-123"LlA-32UCDQCI <!) OB CD I I

CIB!2A"NOA <!) I <!) CD
*

*P<-I- @ ;A> <!)@
T3K CORE]
[4K CORE]

*

This command string converts all lower case
alphabetic characters in the buffer to upper case.
Starting at the beginning of the buffer (J), if
the next character has a decimal ASCII value
between 97 and 122 inclusive (lA-97"GIA-I 23" L),
store the upper case value of this character in
Q-register C (lA-32UC), delete the character (D)
and replace it with the value in Q-register
C(QCI CD). Then TECO skips to IB I (OB ($);
otherwise, it advances to the next character (c).
In either case, at IB I TECO checks to determine if
there is another character in the buffer (2A"N) and

if so, returns to IAI (OA @). When 2A equals 0,
execution stops.

This command string outputs the current page, and
then continues input until a form feed character
is detected. This command string could be used
on a fi Ie that is not divided into pages of a reason­
able size. The A command is r~atedly executed
until ® equals -I. When ~ equals -I, the

semicolon command causes an exit from the loop.

3-56

* tF= tH=ET= CD CD
13094886497
1823373
- 1
;r-

*tt MUO CD ®
*
"YNCHAPTER ®\= CD CD
T6 '-J
*

~<SFUNCTION '-J(i); @)

- 303 - TECO

This command string causes the (decimal) value
of the console data switches, the time of day
in 60th's of a second, and the value of the ET
flag to be typed out. At this execution, the
console switches were set to octal 254064000141,
the time was 08:26:29:33, and the ET flag was on.

This command string stores the ASCII value of the
letter M (77) in Q-register O.

This command string searches for the next chapter
heading and then types out the number of the
chapter. The bu'ffer pointer is positioned immedi­
ately following the 6, after the command in this
example has been executed.

I FUNCTION LETTER @® I(!»CD CD
FUNCTION LETTER M

Here, the @ command is used as the argument

for an ni ® insert command. This command string
inserts the letter which is typed in following each
occurrence of the string FUNCTION that is found
by the search cpmmand.

I
FUNCTIoN LETTER K
FUNCTION LETTER C

*
*<YITITLE

-CD pwtN; >QXD
*

3.17 TECO PROGRAMMING AIDS

This command string inserts "TITLE" at the top
of each page of a fi Ie.

Bugs can occur in editing macros written in TECO language as in any other program; therefore, TECO

provides the following debugging aids for the TECO user.

3.17.1 @ Command

The user can cause a statement to be typed out at any point in the execution of a command string.

The @ command is used to perform this function. The general form of this command is

@ text @
The first @ is the actual command. It can be entered either as @ or tAo The string

"text" is the character string that TECO types out when the @ command is encountered. The

second @ command marks the end of the text to be typed and must be entered as @. The text

string can contain any characters except @ and the special charac:ters listed in Table 2-1.

3-57

I

I

I

TECO - 304-

Example:

~YISTI @ NEW PAGE

@ OUC !ST+1!:S l

® IN%C-50"LOST+1 ® ' 12 I(!)O,. PO,.KOST CD' ,)
ZUEAQE-Z" NOST=l CD' @ END,)

@ PWEF ®CD
NEW PAGE
NEW pAGE
NEW pAGE
NEW pAGE
NEW pAGE
END .-

3.17.2 Question Mark (?) Command

This command string is identical to a~ample
used in Section 3.14; however two ~
commands have been added.'

The question mark command bas two uses in TECO. When question mark is the first character typed

by the user after TECO has typed out an error message, it has the special function described in

Section 5.2. However, at any other time the question mark can be entered in a command string

exactly like any other command. This use of the question mark command causes TECO to enter trace

mode. In trace mode, TECO types out each command as it is executed. A second question mark

command takes TECO out of trace mode.

Example:

~JHT?ILl1A-9"NIMI1A-58"NCOM ® 'CD -I CD 'LOL CD CD
AB: L1NE1

LINE 2
C: LINEr-

lINE4

ILI1A-9"N I M! 1A-58"NCOM$lA-58"NCO I MI1A-58"NCD $ 'LOL$lA-9"NLO ILI1A-9"N I
MllA-S8"NCO I MllA-58"NCD $'LO IL!lA-9"NLO IL! lA-9"N I MllA-58"NC?POP

*J?HT CD ®
J?
'AS: L1NE1

LlNE2
C: LlNE3

LlNE4

*

3.17.3 The EO Value

After the first question mark command, TECO
begins typing out each command as it is exe­
cuted. This enables the user to see exactly
what the command string is doing. The ?POP
error message is caused by the attempt to
move the pointer beyond the end of the
fourth (and last) line (the end of the buffer)
with the C command.

The second question mark command turns off
the trace feature so that the "HT" following
it is not printed.

The EO (Edit Old) feature enables TECO users to protect existing TECO macros from future changes

to the TECO specifications. In most cases when features are added to TECO, the changes merely

3-58

- 305 - TECO

involve additional commands whose existence in no way affects old TECO macros. The EO feature

does not apply to changes such as these. Occasionally, however, a new feature would cause old

macros not to run properly. The EO feature is designed to protect old macros from such changes.

Every version of TECO has an EO value. For all versions of TECO up through version 21A, the EO

value is 1. For TECO versions 22 and 23, and all succeeding versions until the next specification

change that would affect old macros, the EO value is 2.

The EO value is always initially set to the maximum value for the version of TECO being run. This

enables all new features.

By using the EO command the EO value can be set to a lower value so as to disable features of TECO

that were implemented since the macro was written and which would cause the macro not to function

properly. The EO command does not disable all new features, but ,only those that affect old macros.

OEO or

nEO (n<O)

resets the EO value to the maximum (standard)

for the version of TECO in use.

nEO (O<n<=max)

EO (no argument)

sets the EO value to n.

returns the current value of the EO flag.

All TECO macros written before version 22 should be edited by putting "1 EO" at the beginning and

"OEO" at the end. All macros written with version 22 should have "2EO" at 'the beginning and

"OEO" at the end, etc.

Table 3-8
Features Enabled by EO Values Greater Than 1

EO=l Base value.

EO=2 (1) Standard al~mode changed from ASCII 175 to 033.

(2) All control characters within text arguments reserved

as commands, instead of only @' @' ®, @
in search strings.

(3) Standard searches accept either upper or lower case

alphabetic characters as a match.

(4) Vertical tab and form feed recognized as end-of-line

characters in addition to line feed.

(5) The P command does not create form feeds.

(6) Command string lumps wi II not accept instances of

the target characters occurring within text arguments.

(7) Because of (6) comments should be enclosed only by I ••• !.

(8) The nl command must be followed by altmode.

(9) The @exit command is changed to @.

3-59

TECO

Examples:

~EO= Q)Q)
.1.
~lEOEO== Q) (j)

~EOEO== <D®
2

*

- 306 -

Initial setting is EO=2 •

Set EO value to 1.

Revert back to EO~aximum.

3.18 COMMAND STRING TYPE-IN CONTROL COMMANDS

The use of two successive altmodes as the command string terminator has already been discussed in

Section 2.6. The use of rubout, @, and double @ as command string erasing commands is

discussed in Section 5.1. There are other characters, however, that are useful in the creation of

command strings.

3.18.1 Carriage Return, Line Feed, and Spaces

Except as text arguments, the characters carriage return and line feed are ignored in command strings.

Spaces are also ignored except (1) when used in text arguments, and (2) when used between two nu­

meric arguments as a + (see Section' 2.7.2). Hence, these characters can be employed by the user

when formatting command strings. The carriage return (and the monitor-supplied line feed following

it) is used to enable the user to conveniently type command strings much longer than a single line.

Spaces are used to lend clarity to more complicated macros.

3-60

Chapter .4

Techniques

- 307-

4.1 CREATION, EXECUTION, AND EDITING OF A FORTRAN PROGRAM

This section demonstrates the use of TECO's multi-purpose commands to simplify the creation and

editing of programs.

The following example shows the creation and immediate execution of a FORTRAN program •

.:..MAKE ATEST.F4)

~ -\TYPE 1)

FORMAT ('COMPILER
ARITHMETIC TEST').)

J=3)

K=7)

X.5 ~ 5 ~
CD-T CDC!)

X=.5

~ -j1l=K/J*(X*l. E+2-K *K/

(3. *J».>

. R=10.6)

5=3.5)

1=5.)

J=2)

N=7)

Z=R+S*I/J*N/3)

TYPE 2,II,Z)

FORMAT (18,F20.12).)

END.)

CD EXCD®
EXIT

tc

. =.5

Give the command to create the
disk file ATEST.F4 using TECO.

Begin insertion with the TAB command.

Rub out erroneous .5 .

Stop insertion and use the -T command
to verify last line inserted.

Continue insertion.

End insertion, and then use the EX
command to output and close the file.

4-1

TECO

TECO

:...EXECUTE ATEST)

FORTRAN: ATEST.F4

UNDEFINED LBLS

2

MULTIPLY DEFINED LBLS

1

- 308 -

MAIN. ERRORS DETECTED: 2

?TOTAL ERRORS DETECTED: 2

LOADING

LOADER 4K CORE

?EXECUTION DELETED

EXIT

tC

:...TECO)

~SF20. CD OLDI2 CD OTT G)@
2 FORMAT (l8,F20.12)

~EG0@
FORTRAN: ATEST.F4

LOADING

LOADER 4K CORE
EXECUTION
COMPILER ARITHMETIC TEST

EXIT

fC

:...

103 21.683333118562

NOTES

Give the command to compile and
execute A TEST. F4.

The FORTRAN compi ler discovers
errors in the program.

Call TECO to edit ATEST .F4.

Change the second I abel 1 to 2,
and then verify the change.

Output the new version and auto­
matically cause a repeat of the ex­
ecution by using the EG command.

Success.

a. The command MAKE ATEST. F4) is equivalent to
the following sequence of commands:

.R TECO)
;li"EWA TEST. F4 CD 0
;Ii"

b. The -T command does not move the buffer pointer,
therefore, the user can continue insertion from the
point he left off.

c. In this example, the EX command is equivalent to
PWEF @>.

d. No filename is given with the command TECO,
therefore the name of the file used in the most re­
cent edit-class command (i .e., MAKE, or TECO
command) is assumed. In the example, the com­
mand TECO) is equivalent to

.R TECO)
;li"EBATEST. F4 CD Y G) CD
;Ii"

4-2

- 309 -

NOTES (Cont)

e. The command SF20. (j) moves the pointer to the
line the user wishes to correct. The OL command
positions the pointer immediately prior to the bad
cha~er 1. The D command deletes the 1; the
12 l..!J command inserts 2 in its place. The OTT
command types out this entire line.

f. The command EG (]) ® is equivalent (in this
example) to

*PWEF @ CD(D
EXIT
1L
.:..EXECUTE ATEST. F4)

TECO

4.2 REARRANGING A FILE

In Section 3.14, an example shows the use of a Q-register in moving a segment of text from one

place on a page to another place on the same page. This section describes how to move blocks of

text, or whole pages, to entirely different places in a file.

Example:

The user has a file named PGM. MAC on the disk and this file contains data in the following form:

AB €0 CD @ EF <EO!~ GH @ IJ ®~0 KL €B> MN ~ OP

where each of the letters A, B, C ••• represents 20 I ines of text.

The user intends to rearrange the fi Ie, as shown in the following example:

AOB <l~~ D €0 MN <E~~ EF <E~~ ICJ <[O~~ KL <0~~ P cE~~ GH

The following commands achieve this rearrangement .

• R TECO 6)

~EBPGM. MAC (!) Y (j) G)
~NC CDC!)
~J20X1 (!)®
~20KG) (!)

~NG (j) G)

~HX2 G)G)

~yG)®

~20L G) (j)

4-3

Call TECO with extra core.

Specify the file and get the first page.

Output AB €:9>and input CD.

Save all of C in Q-register 1.

Delete C from its position in the editing
buffer.

Save all of GH in Q-register 2.

Delete GH and input IJ.

Out-

Move the pointer to the beginning .of J.

TECO

~G1 00
~NM 00

~HX1 CDCD
~y CD CD
~J20X3 (!2 CD
~20K CDC!)
~P CD CD
~G2 00
*HPEF CDC!)

- 310 -

*EBPGM.MAC CD Y CD CD

~20L C!) G)
~G3 CDCD
~ND CD CD
~PWHK CDC!)
~G1 C!) CD
~EX 0 CD
EXIT

tC

.:...

4.3 SPLITTING AND MERGING FILES

Bring in all of C from Q-register 1.

Output ICJ ®~B> input KL, output

KL €~, and input MN.

Save all of MN in Q-register 1 (there­
by discarding the previous contents).

Delete MN and input OP.

Save all of 0 in Q-register 3.

Delete 0 from the editing buffer.

Output P ~B> and clear the edit­
ing buffer.

Bring GH into the buffer from Q­
register 2.

Output GH, close the output file (now
called nnnTEC. TMP), rename the input
fi Ie PG M. BAK, and then rename the
output file PGM. MAC.

Now edit the partially revised fi Ie
iust output. Loop around to the be­
ginning of the file.

Move the pointer to the beginning of B.

Bring in all of 0 from Q-register 3.

O"P" AO~~ and ;'P" D.
Output D OR ,and then clear
the buffer.

Bring in all of MN from Q-register 1.

Output MN @ and continue the

input/output sequence until GH has
been output. Then close the output
file (called nnnTEC. TMP), delete the
previous PGM.BAK, rename the input
file PGM. BAK, and then rename the
new output file PGM. MAC. Finally,
exit to the monitor.

This section demonstrates the procedure to split a file into several smaller files and the procedure to

merge parts of several files.

Example 1: Splitting a File

Assume the user has a. file named FILE.CBL on the disk; this file contains data in the following form:

AB@CD<[~B>EF@GH@IJ@KL@MN@OP

4-4

- 311 -

where each of the letters A, B, C, .•. represents 20 lines of text. The user wants to separate

FILE.CBL into two files:

FILE. I 000'0;0;09 AB ~ CD ood
FILE.2 containing KL OR M

a.

b.

And to discard the rest of the data. To accomplish this proceed as follows •

.:..R TECO)

*ERFILE.CBL CD EWFILE.1 (!)@

~y @@

~P ® ®
~H PEF ® ®
*-K (!)(!)

5WFILE.2 ®®
~P @ @
*20L CD CD
~O,. PEF ® CD
*@

.:..

Example 2: Merging Files

Assumed the user has two fi les:

a. MATH.BAK containing

Call TECO.

Open the input fi Ie and the first
output file.

Input AB.

Output AB @ and input CD.

Output CD and then close the out­
put file FILE. 1.

Clear the buffer (deleting CD from
it) and continue inputting pages of
the fi Ie and search ing for K. If K
is not found on a given page, clear
the buffer, and read in the next
page. The - command does not
perform output. Thus EF, GH, and
IJ are all read in and then deleted.
When KL is read in, the search stops.

Open the second output fi Ie.

Output KL ~B> and input MN.

Position pointer at the end of M.

Output M and then close the output
file FILE.2.

Exit to the monitor with the iob
completed •

AB €B> CD @ EF @ GH «O~B> IJ <e§B>KL

b. MATH.F4 containing

A'B' @ C'D' S E'F'

TECO

Where A, B, C, ••• each represents 20 lines of text, and A', B', .•• represent updated versions of

A, B, •...

4-5

TECO - 312 -

The user wants to merge MATH.F4 with the latter half of MATH.BAK to produce:

MATH. NEW containing

A'B <[O~9>C'D' SE'F' <[O~~GHS U<[03 KL

He proceeds as follows.

• R TECO

~ERMATH.F4 CV
EWMATH.NEW CDCV
~y CVe!)
~NF' (DC!)

~PW C!) CD
*ERMATH.BAK CDC!)
~y CDC!)
~_G CDCD

~NL C!)C!)

*HPEF @ C!)®
EXIT
~

Call TECO •

Open the first input file and the out­
put file.

Input A'B'.

Output A'B'~R ,input C'D',

output C'D' FORM, and input E'F'.

Output "E'F' OR .

Close input from MATH.F4, and open
MATH.BAK for input.

Delete E'F' from the buffer and input
AB.

Delete AB, input and delete CD and
EF, then input GH.

Output GH ~ , input and then

output U ~ , then input KL.

Output KL, close the output file
MATH. NEW, and then exit to the
monitor with the iob completed.

The technique shown in Example 2 illustrates the best method for recovering from the error indicated

by the error message:

?OUT-200000 Output Error 200000 - Output File 018TEC.TMP Closed

If this error occurs during an editing iob initialized by the TECO filnam.ext) command or on EB

command, the incomplete output file has a temporary name of the form nnnTEC. TMP (see Section 3.2);

otherwise, the incomplete output file will have the nome specified by the user. (Refer to Appendix A

for a list of error messages and their meanings.)

Example 3 is more expl icit illustration of recovery from the foregoing error.

4-6

I

I

- 313 -

Example 3: Recovery from an Output Error

. TECO FIL. DOC)

~edit a few pages CD (!)

~P ®(!)

?OUT-200000 Output Error 200000 - Output File 018TEC. TMP Closed

~ER018TEC.TMP CD EWFIL.NEW CD Y G)G)
~Nlast page edited and successfully output @ (j)
~PW @G)
~ERFIL. DOC G) Y (!)@

~-Iast page edited and successfully output @ G)
~y and edit next page G) CD
~Nnext place to edit @ ®
~finish editing normally G) ®

~EX@CD
EXIT

tC

.!,.RENAME FIL. DOC=FIL. NEW)

4.4 EXAMPLE OF AN ADVANCED TECO MACRO

This section demonstrates a TECO macro for formatting DECsystem-lO Macro assembly language

programs.

The procedure for executing this macro is as follows:

.!,.R TECO 6)

~ERDTA7:PGMFMT. TEC CD CD

~YHX1 CDC!>
~EBPROGRM.MAC C!>CD
~y CD CD
~M1 CD@

*@
.!,.

4-7

Call TECO with enough core to cov­
er the maximum page size.

Open the file containing the macro
itself for input.

Input the. macro and save it in Q­
register 1.

Open for editing the fi Ie that is to
be formatted by the macro.

Read in the first page of the file.

Execute the macro.

Exit with fob completed .

TECO

I
I

I

TECO - 314 -

Formatting Macro (PGMFMT.TEC)

1 EO 1ST ART IOUL<S I

G) ;%L>ZJR1A-10"N%L' ICOUNT LINES ON PAGE I

ILOOPIJQL<OUC IEXECUTE LOOP ONCE FOR EACH LlNEI

I FSTCHI 1A"COTAG (!),
IFSTCH211A-9"ECOOP (!) 'lA-32"NOZ (!),
IFSTCH31% C-8"GOZ (!) 'C1A-32"EOFSTCH3@'lA-9"EQC-7"GOZ @ 'COFSTCH4 (!),
QC-8"GOZ G),
IFSTCH410US ICHANGE LEADING SPACES TO A TAB I

IFSTCH51-D%S-QC"LOFSTCH5 @, -I([)OOp (!)
!TAG I%C-6"GOZ CD 'C1A"COTAG (!) 'lA-58"NOZ @,

ICOLONIOUSC1A-9"ECOOP CD 'lA-32"NOZ @' ILOOK FOR A COLONI

ICOLON2 I%S G) C1A-32"EOCOLON2 G) 'QC+QS-7"GOZ @ 'QC+QS-7"EOCOLON3

(!)'lA-9"NOZ CD 'D

ICOLON3IR1A-32"EDOCOLON3 (!)
'C -I <D ICHG S PACES AFTER COLON TO TAB I

IOPl1A-90"GOZ (!) 'lA-65"LOZ CD 'OUC

IOP21%C (!) C1A-90"GOZ CD 'lA-64"GOOP2 ® 'lA-57"GOZ @ 'lA-47"GOOP2CD'

1A-9"EC1A-32"EOZ CD 'lA-9"EOZ CD IGIVE UP IF NO OPERANDS I

1A-32"NOZ @ 'QC-7"GOZ CD 'C1A-32"EOZ (!) 'lA-9"EOZ (!),

-D -I ® I IF A SINGLE SPACE FOLLOWS OP, CHANGE IT TO A TAB I

IOP310UC

IEOL!%C @ ILOOK FOR END OF LINE OR SEMI-COLON!

IEOL211A-9"EOEOL (!) 'lA-13"G1A-59"NOEOL CD 'OUS

ISEMI1R1A-32"N1A-9"NOSEMI2 Q) , '%S (!) ILiNE UP COMMENTSI

ISEMI2!QS"NC -I @ QC-QS-8"L -I@ , , ,

IZIL>

PZ"NOSTART CD 'OUC !LOOK FOR NEXT PAGEl

I !GET IYZ"NOSTART (!) '%C-10"NOGET CD 'EFOEO IQUITWHEN 10YANKS YIELD NO DATA I

I
An expl anati on of the macro follows.

lEO

ISTART I

OUL

<SI CD ;%L>

ZJR 1 A-10" N%L'

The 1 EO command enables only those features
found in versions prior to 21A for which this
macro was written.

It is assumed that the pointer is at the begin­
ning of the first page of the file.

Initialize line counter.

Count the I ine feed characters on tfie page.

If the last character on the page is not
a line feed, count those characters fol­
lowing the last line feed character as
one more line.

4-8

I

I

ICOUNT LINES ON PAGE!

JQL<

OUC

1A-90"GOZ CD'

1A"COTAG G)'

!FSTCH2!lA-9"ECOOP CD'
1A-32"NOZ G)'

IFSTCH3!%C-8"GOZ (j)'C

1A-32"EOFSTCH3 (j)'

1A-9I EQC-7"GOZ (j)'

COFSTCH4 CD 'QC-8"GOZ (!)'

IFSTCH4!OUS

!FSTCH5! -D

%S-QC"LOFSTCH5 (j)'

!TAG !%C-6"GOZ (!) 'C

1A"COTAG (j)'

1A-58"NOZ CD 'OCOLON G)

!COLON IOUSC

- 315 -

This is the standard technique for including
comments in TECO macros.

Execute everything which follows, down
to the> character on the second to the
I ast line, once for each Ii ne on the page.

Initialize first character counter for the line.

If the first character in the line is greater
than Z (decimal 90) in the ASCII set, skip
this I ine by iumping to ! Z I.

If the first character is alphabetic or period,
or %, or a dollar sign (i. e., legal as the
first character of a Macro language symbol),
go to !TAG!. Otherwise, go to !FSTCH21.

If the fi rst character is a tab, move the
poi nter past the tab, then go to ! 0 P! .

If the first character is a space, continue
on to !FSTCH3!; otherwise, skip this line.

Increment the character counter (counting
leading spaces), and if the new total is
more than eight spaces, skip to the next
line; otherwise, move the pointer to the
next character.

If the next character is another space, go
back to !FSTCH3!.

If the character is ne i ther a tab nor a space,
and if more than eight spaces preceded this
character, skip to the next line. If the
character is a tab, but more than seven
spaces preceded this tab, skip to the next
line. Otherwise, go to !FSTCH41.

Initialize space deleted counter.

Delete last space seen.

Increment space deleted counter. Then, if
the new value of this counter is still less
than the number of characters (spaces)
counted on the line, go back to !FSTCH51.

When the count of spaces deleted reaches
the number of spaces there were, insert
a tab and then go to lOP!.

Increment the character counter (counting
characters in the tag), and if the new tota I
is more than six spaces, skip to the next
line. Otherwise, move the pointer to the
next character.

If the next character is a symbol constituent,
go back to ! TAG! •

If the character is a colon, go on to
!COLON!; otherwise, skip to the next line.

Initial ize counter of spaces following the
colon, and move the pointer to the next
character.

4-9

TECO

TECO

1A-9"ECOOP @,

1A-32"NOZ @,

!COLON2!%S @ C

1A-32"EOCOLON2 (!),

QC+QS-7"GOZ Q)'

QC+QS-7"EOCOLON3 CD'
1A-9"NOZ (!) 'D

!COLON3!R

1A-32"EDOCOLON3 @,

C -Ie!) OOP CD

!OP!1A-90"GOZ CD'
1A-65"LOZ (!) 'OUC

!OP2!%C @ C

1A-90"GOZ G}
lA-64"GOOP2 @,
lA-57"GOZ CD'
lA-47"GOOP2 G}

lA-9"E

C1A-32"EOZ (]),

1A-9"EOZ @ 'OOP3 (!)

- 316 -

If the character after the colon is a tab,
move the pointer to the next character
and go to !OP!.

If the character is not a space either,
skip to the next line. Otherwise, con­
tinue on to !COLON2!.

Increment the space-following-colon
counter, and then move the pointer to
the nexf character. The altmode following
%S prevents the value returned by the %S
command from being used as an argument for
the following C command.

If the next character is another space, go
back to !COLON2!.

If the total count of the symbol characters
before the colon and the spaces after the
colon is more than seven, skip to the
next line.

If the count mentioned above exactly equals
seven, go to ICOLON3!.

With the count mentioned above less than
seven, if the next character is not a tab,
skip to the next line. If this character
is a tab, delete it and continue to
!COLON3!.

Move pointer back one character (i .e.,
back past the next space or the colon).

If the character passed over is a space
delete it and go back to !COLON3!.

Otherwise, the pointer is now in front
of the colon. Move it forward over the
colon and then insert a tab to replace
the deleted spaces. Then go to !OP!.

If the first character in the operator
field is not alphabetic, skip to the next
line. Otherwise, initialize the op field
character counter.

Increment operator field character counter
and then move poi nter to the next character.

If the next character is above Z in the
ASCII set, skip to the next line. If it is
aiphabetic, go back to !OP2!.

If the character is greater than the
digit nine in the ASCII set, skip to the
next line. If it is a digit, go back to
!OP2!.

If the character is not a tab, skip to
the' following the comment "GIVE UP IF
NO 0 PE RANDS". The leading spaces
are for appearance only and are ignored.
(A tab could not be used for this purpose.)

If it is a tab, move the pointer to the next
character. If this character is a tab or a
space, skip to the next line. If the charac­
ter is anything else, go to IOP3!.

4-10

1A-32"NOZ CD'

QC-7"GOZ CD 'C

1A-32"EOZ (!) 1A-9"EOZ (!),

-D -i CD

!OP3!OUC

IEOLl%C CD C

1A-9"EOEOL CD'

1A-13"G

1A-59"NOEOL (!),

OUS

!SEMI !R1A-32"N1A-9"

NOSEMI2 CD"
%S (!) DOSEMI CD

!SEMI2!QS"N

QC-QS-8"L -I CD ' , ,

!Z!L>

P

Z"NOSTARTCD'

- 317 -

If the letter following the last letter or
digit vf the operator is anything but a
space (or the tab that was processed
above), skip to the next line.

If the operator is more than seven char­
acters long, skip to the next line.
Otherwise,' move the pointer to the
character after the space following the
operator.

If this character is another space or a
tab, skip to the next line.

Delete the space between operator and
operand and insert a tab in its place.

Initialize operand character counter.

Increment operand character counter
and move pointer to the next character.

If the character is a tab, go back to
!EOL!.

If the character is equal to or below
carriage return in the ASCII set, skip
to the next I ine by skipping to the last
, in the line starting with !SEMI2!.

If the character is not a semicolon, go
back to ! EOL!.

Initialize the counter for spaces and
tabs preceding the semicolon.

Move the pointer back one more charac­
ter from the semicolon. If this character
is not a space or tab, go to !SEMI2!.

. Count the space or tab, then delete it
and go back to ISEMI!.

If there are no spaces or tabs preceding
the semicolon, skip to the next line by
skipping to the next to the last 'in this
line. This check prevents most cases of
inserting tabs before semicolons that
occur in SIXBIT or ASCIZ fields.

Move pointer forward over the last char­
acter seen, and then insert a tab before
the semicolon.

If the number of characters in the operand
field, not counting the spaces and tabs
preceding the semicolon, is less than
eight, insert a second tab. Otherwise,
skip to the next line.

Move pointer to the next line, and then
go back to the beginning of the loop.

When every line on the page has been
edited by the loop, output this page,
c lear the buffer, and then yank in the
next page.

If the yank produces any new data, go
back to !START!.

4-11

TECO

TECO

OUC

!GET!YZ"NOSTART CD'
%C-10"NOGET CD ·
EF

OEO

- 318 -

Otherwise, initial ize the yank counter.

Try another yank. If this produces any
new data, go back to ! ST ART! •

Increment the yank counter, and if it is
still less than 10, try again.

When a total of 10 straight yanks after the
P command fails to produce any new data,
close the output file.

The OEO command re-enables TECO com­
mands to the current version.

4-12

Chapter 5

User Errors

- 319 - TECO

Th is chapter describes two types of errors: (1) typing errors discovered by the user before a command

string is completed, and (2) command errors detected by TECO. The user should realize, however,

that there is a third class of error. Because TECO interprets almost every character as a command,

there can be cases where, if the user fails to notice a command string typing error, TECO executes

a command that the user did not 'ntend. For example, if the user meant to type the command

*INAME (!) (!)
but forgot to type the "I", then TECO is forced to interpret the command as an N-search for "AME"

and act accordingly. There is no way to protect the user from errors of this type.

5.1 ERASING COMMANDS

If the user makes an error whi Ie typing a command string and discovers the error before terminating

the command string (with a double altmode), the error can be corrected using one of three erasing

commands described below. All of these must be typed before the double altmode that terminates

the command string.

5.1.1 Rubout Command

Rubout is used to erase typed-in characters one at a time starting with the last character typed in.

Example

After typing the portion of the command string shown below, the user discovers that he has mispelled

the name" Ericson" •

*3LKILEIF ERICXON

To nullify the error, he types three successive rubouts. As he does this, TECO responds by retyping

the characters whi ch are being rubbed out.

*LKILEIF ERICXON @ N @ 0 @ ~
The actual function of the rubout character is to delete the last typed character in the command string.

Consequently, if the incorrect character is not the last in the string, all characters back to that point

must also be rubbed out.

5-1

I

TECO - 320 -

Rubout is a nonprinting character; consequently, the actual line appears as follows:

*LKILEIF ERICXONNOX

When the user has rubbed out the incorrect character, he continues the command string from the last

correct character.

~3LKLEIF ERICXONNOXSON @ OTT ev ev
Two successive rubouts are required to erase a carriage return and the monitor-generated line feed

following it.

5.1.2 Double @ Command

The command @ @ (two successive control-Gs) is used to erase an entire command string.

In the following example the user has decided, after typing the II Nil , to quit and start over. He does

this by typing two successive control-Gs. (Control-G echoes visibly as II tG" and audibly as a

bell ring.)

*3LKILEEF ERIXON @ @
*

@ @ cannot be typed in the alternate up-arrow, character form described in Section 2.2.

5.1.3 @ Command

The @ command is another erasing command available to the TECO user. The @ command

erases everything in a command string back to the last carriage-return/end-of-line character pair.

It does not erase the carriage-return nor end-of-I ine character. The end-of-I ine characters are line

feed, vertical tab and form feed.

In monitors previous to 5.02B, control-U is intercepted by the monitor and erases only back to the most

recent break character (carriage-return, linefeed, formfeed, al tmode).

Example 1:

~ILlNE ONE)

LINE TWO)

LINE THREE)

KINE FOUR (fQ)
LINE FOUR)

eve!>
*

The user makes an error t~g the
fourth line and uses the ~ com­
mand to erase the entire line. The

{tTh command causes a carriage
're(urn-line feed to be echoed but the
carriage return and I ine feed are not
inserted.

5-2

Example 2:

~ILlNE ONE)

LINE TWO)

KINE THREE)

@) LINE FOUR

~
LINE THREE)

LINE FOUR)

C!)C!)
*

5.1.4 Bell-Space Command

- 321 -

The user makes an error on the third line
but does not notice it unti I he is on the
fourth line. In order to erase back to his
error without erasing the entire command
string, he types control-U, rubout,
control-U. The first @ erases "LINE

FOUR". The rubout erases the line feed
that marks the end of the th i rd line, and
the second @ erases "LINE THREE"
and the carriage-return at its end.

TECO

The bell-space command is not actually an erasing command, but it is usually used in coniunction

with the erasing commands. Its function is to cause the current line of the command string to be re­

typed. It is used when the user has typed so many rubouts on a I ine that he cannot tell exactly what

has been typed.

Specifically, if the user types @ and space in succession, everything in the command string back

to, but not including, the last carriage return line feed pair is immediately retyped on the next line.

The user may then continue the command string just as if bell-space had not been typed. The bell­

space is not stored in the command string. Neither does it remove anything from the command string.

Example:

~ISTAET: @ _ @ T @ ~RT:-ITRZE -ISW, @L....I
START: TRZE SW,CCLFLG -I; CLEAR FLAG

G)(!)
*

5.2 ERROR MESSAGES

When TECO encounters an illegal command or a command that cannot be executed, an error message

is printed on the user's terminal. An error message consists of three parts, some of which are printed

automatically and some of which can be printed at the user's option. The first part of the message is

a question mark followed by a 3-letter mnemor,lic code for the error message. The second is a brief,

one-I ine, statement of the error condition. The last part is a more complete explanation of the error.

In the standard version of TECO the first two parts of the error message are automatically printed; the

third part is printed only if the user requests it. In Section 5.2.2 there is an explanation of how to

5-3

I

TECO - 322 -

obtain the optional parts of the error message, and in Section 5.2.3 there is an explanation of how to

change TECO so that more or less of the error message is printed automatically.

When an error message is generated, the command to which it refers is not executed, the remainder

of the command string is ignored, and TECO returns to command mode. Also any commands that the

user might have typed ahead are erased.

Example:

:SWORD (i) -4DUINEW (j) CD
?NAU No Argument Before U

*

The error message points out the presence
of a U command not preceded by a numeric

argument. The commands SWORD (j) -4D

have been executed, but the commands
UINEW (!) have not.

After an error message has been printed, the user has the option to use either or both of two special

commands, ? and I, that are designed to help the user after a command error has been encountered.

These commands are described below. Note, however, that these two commands have the special

properties described below only immediately after an error has occurred. If any other command is

typed after an error has occurred, TECO assumes that a new command string is being typed and the

ability to use the? and I commands for this error is lost.

Also note. that the *i command described in Section 3.8.8 is frequently useful after an error is

encountered.

5.2.1 Question Mark Command

In some cases, the user may not be able to determine immediately which command in the string caused

the error. This could occur, for example, if there were several commands of the same type in the com­

mand string. In such a case, the user can use the question mark command to obtain more information.

The question mark command, when used immediately after an error message typeout, causes the offend­

ing command and several of the preceding characters in the command string to be typed out. A

maximum of 10 characters of the command string are typed; usually this number is sufficient to identify

the command that caused the error. Note that when the question mark command is used in this manner,

it is not necessary to type altmode or any other character after the question mark.

A second question mark is always typed after the last character of the group. The character at which

the error was detected is the last character before the second question mark typed.

Another use of the question mark command is explained in Section 3.17.

5-4

I

- 323 - TECO

Example:

~H X 2PG2ZJ-1U2PG2ZJ (!) (j)
?NTQ No Text in Q-register 2

According to the error message, one of
the G2 commands specifies a Q-register
that does not contain text. The question
mark command is used and the second *? 2ZJ-lU2PG2?

*
G2 command is identified as the offending
command.

5.2.2 Slash Command

When a command error occurs, one or more of the three parts of the corresponding error message is

automatically printed. If all three parts of the error message have not yet been printed and the user

needs a more detailed explanation of the error, he may type the slash command to obtain more

information.

The slash command, when used immediately after an error message, causes the next unprinted part of

the error message to be printed. It may be used enough times to cause all three parts of the error

message to be printed, but no more. Note that when the slash command is used in this manner, it is

not necessary to type altmode or any other character after the slash.

NOTE

The verbal parts 2 and 3 of the error messages printed by
TECO are obtained from a system file (TECO.ERR) ex­
ternal to TECO itself. If for any reason th is file cannot
be read, only the code portion of the error message is
printed, and this is followed by the special message
"? EEE Unable to Read Error Message File". In this
case the / command cannot be used.

Another use of / is described in Section 2.7.2.

Example:

~EBTEST .CBl ® EX (!) (j)
?BAK Cannot Delete Old Backup Fi Ie

5.2.3 EH Command

As was stated above, TECO error messages consist of three parts. The first, or code, part is always

automatically typed. With the standard version of TECO, the second, brief message, part is also auto­

matically typed. The third, more lengthy part is obtained by the / command at the option of the user.

5-5

TEeo - 324-

By use of the EH command, the user may change TEeO so that more or less of the error message is

automatically typed. This is done as follows:

lEH

2EH

3EH

OEH

EH

sets TEeO so that only the code part of the error message is automatically
printed.

sets TEeO so that both the code and the 1-1 ine message parts of the
message are automatically printed.

sets TEeO so that all three parts of the error message are always
automatically typed.

resets TEeO to the system standard mode of error message typeout.
(Normally equivalent to 2EH.)

(with no argument) returns the value of the current EH setting.

5-6

I

- 325 - TECO

Appendix A

TECO Error Messages

The following table lists the error messages from TECO. The three-letter message preceded by a

question mark is always typed; the second part of the error message, which is a short explanation of

the error, is always typed in standard versions of TECO. The detailed message is typed if the user

types a slash command (/) immediately following the short error message.

?ARG

1)
2)
3)
4)

?BAK

?COR

?COS

?EBD

Table A-1
TECO Error Messages

Improper Arguments
The following argument combinations are illegal:
, (no argument before comma)
m,n, (where m and n are numeric terms)
H, (because H=B,Z is already two arguments)
,H (H following other arguments)

Cannot Delete Old Backup File
Failure in rename process at close of editing lob initiated
by an EB command or a TECO command. There exists an
old backup file filnam. BAK with a protection<::nnn> such
that it cannot be deleted. Hence the input file filnam.ext
cannot be renamed to "filnam. BAK". The output file is
closed with the filename "nnnTEC. TEMP", where nnn is
the user's lob number. The RENAME UUO error code is nn .

. Storage Capacity Exceeded
The current operation requires more memory storage than
TECO now has and TECO is unable to obtain more core
from the monitor. This message can occur as q result of
any.Olle of the following things:
1) command buffer overflow while a long command

string is being typed,
2) Q-register buffer overflow caused by an X or [

command,
3) editing buffer overflow caused by an insert command

or a read command.

Contradictory Output Switches
The GENLSN and SUPLSN switches may not both be used
with the same output fi Ie.

EB with Device dev Is Illegal
The EB command and the TECO command may be specified
only with file structured devices, i.e., disk and DECtape.

A-1

TECO

?EBF

?EBO

?EBP

?EEE

?EMA

?EMD

?ENT-oO

-01

-02

- 326 -

Table A-1 (Cont)
TECO Error Messages

EB with Illegal File filnam.ext
The EB command and the TECO command may not be used
with a file having the filename extension ".BAK" or with
a file having the name "nnnTEC. TMP". Where nnn is the
user's iob number, the user must either use an ER-EW se­
quence, or rename the fi Ie.

EB, EW, or EZ Before Current EB Job Closed
After an output fi Ie has been opened by a TECO command
or an EB command, no further EB, EW, or EZ commands
may be given until the current output file is closed.

EB Illegal Because of File filnam.ext Protection
The file filnam.ext cannot be edited with an EB command
or a TECO command because it has a protection <nnn>
such that it cannot be renamed at close time.

Unable to Read Error Message File
An error, whose code was typed previous to this error
message, has occurred, and while TECO was trying to
find the proper error message in the error message file,
one of the following errors occurred:
1) the error message file, TECO.ERR, could not be

found on device SYS:,
2) an input error occurred while TECO was reading the

file TECO.ERR,
3) the error message corresponding to that error code is

missingsfrom TECO.ERR,
4) the user's TECO iob does not currently have enough

room for a buffer to read the error message file into,
and no more core can be obtained from the monitor,

5) for some strange reason device SYS: could not be
initialized for input.

EM with Illegal Argument nn
The argument n in an nEM command must be greater than zero.

EM with No Input Device Open
EM commands apply only to the input device, and so
should be preceded by an ER (or equivalent) command.
To position a tape for output, that unit should be tem­
porarily opened for input whrle doing the EM commands.

Illegal Output Filename "filnam.ext"
ENTER UUO failure O. The filename "filnam.ext"
spec"ified for the output file cannot be used. The
format is invalid.

Output UFD dev: [pi, pg] Not Found
ENTER UUO failure 1. The file filnam.ext[pi,pg]
specified for output by an EW, EZ, or MAKE command
cannot be created because there is no user file directory
with proiect-programmer number [pi, pg] on device dev.

Output Protection Fai lure
ENTER UUO failure 2. The file filnam.ext[pi,pg] speci­
fied for output by an EW, EZ, EB, MAKE, or TECO command
cannot be created either because it already exists and is
write-protected <nnn> against the user, or because the UFD
it is to be entered into is write-protected against the user.

A-2

-03

-06

-14

-15

-16

-23

-24

-25

-26

-nn

- 327-

Table A-1 (Cont)
TECO Error Messages

Output File Being Modified
ENTER UUO failure 3. The file filnam.ext specified for
output by an EW, EZ, EB, MAKE, or TECO command
cannot be created because it is current being created
or modified by another iob.

Output UFD or RIB Error
ENTER UUO failure 6. The output file filnam.ext cannot
be created because a bad directory block was encountered
by the monitor while the ENTER was in progress. The user
may try repeating the EW, EB, or TECO command, but if
the error persists, it is impossible to proceed. Notify your
system manager.

No Room or Quota Exceeded on dev:
ENTER UUO failure 14. The output file filnam.ext cannot
be created because there is no more free space on device dev:,
or because the user's quota is already exceeded there.

Write Lock on dev:
ENTER UUO failure 15. The output file filnam.ext cannot
be created because the output file structure is write-locked.

Monitor Table Space Exhausted
ENTER UUO failure 16. The output file filnam.ext cannot
be created because there is not enough table space left in
the monitor to allow the ENTER. The user may try repeating
the EW, EB, or TECO command, but if the error persists he
will have to wait until conditions improve.

Output SFD Not Found
ENTER UUO failure 23. The output file filnam.ext cannot
be created. because the sub-file-directory on which it should
be ENTERed cannot be found.

Search List Empty
ENTER UUO failure 24. The output file filnam.ext cannot
be created because the user's file structure search list is empty.

Output SFD Nested too Deeply
ENTER UUO failure 25. The output file filnam.ext cannot
be created because the specified ·SFD path for the ENTER is
nested too deeply.

No Create for Specified SFD Path
ENTER UUO failure 26. The output file filnam.ext cannot
be created because the specified SFD path for the ENTER
is set for no creation.

ENTER Failure nn on Output File filnam.ext
The attempted ENTER of the output file filnam.ext has failed
and the monitor has returned an error code of nn. This error
is not expected to occur on an ENTER. Please send the TTY
printout showing what you are doing to DEC with an SPR form.

A-3

TECO

TECO

?EOA

?FNF-oO

-01

-02

-06

..,.16

-23

-24

-25

-nn

- 328 -

Table A-1 (Cont)
TECO Error Messages

nEO Argument Too Large
The argument n given with an EO command is larger than the
standard (maximum) setting in EO" for th is version of TECO.
This must be an older version of TECO than the user thinks he
is using; the features corresponding to EO" do not exist.

Input File filnam.ext Not Found
LOOKUP UUO failure O. The file filnam.ext specified for
input by an ER, EB, or TECO command was not found on the
input device dev.

Input UFD dev: [pi, pg] Not Found
LOOKUP UUO failure 1. The file filnam.ext[pi,pg] speci­
fied for input by an ER, EB, or TECO command cannot be
found because there is no User File Directory with proiect­
programmer number [pi, pg] on device dev.

Input Protection Fai lure
LOOKUP UUO failure 2. The file filnam.ext[pi,pg] speci­
fied for input by an ER, EB, or TECO command cannot be
read because it is read-protected <nnn> against the user.

Input UFD or RIB Error
LOOKUP UUO failure 6. The input file filnam.ext cannot
be read because a bad directory block was encountered by
the monitor while the LOOKUP was in progress. The user
may try repeating the ER, EB, or TECO command, but if the
error persists all is lost. Notify your system manager.

Monitor Table Space Exhausted
LOOKUP UUO failure 16. The input file filnam.ext cannot
be read because there is not enough table space left in the
monitor to allow the LOOKUP. The user may try repeating
the ER, EB, or TECO command, but if the error persists he
will have to wait until system conditions improve.

Input SFD not Found
LOOKUP UUO failure 23. The input file filnam.ext cannot
be found because the sub-file-directory on which it should be
looked up cannot be found.

Search List Empty
LOOKUP UUO failure 24. The input file filnam.ext cannot
be found because the user's file structure search I ist is empty.

Input SFD Nested too Deeply
LOOKUP UUO failure 25. The input file filnam.ext cannot
be found because the specified SFD path for the LOOKUP
is nested too deeply.

LOOKUP F~ilure nn on Input File filnam.ext
The attempted LOOKUP on the Input file filnam.ext has
failed and the monitor filS returned an error code of nn.
This error is not expected to occur on a LOOP:: UP. Please
send the TTY printout showing what you were doing to DEC
with an SPR form.

A-4

?FUL

?IAB

?ICE

?ICT

?IDV

?IEC

?IEM

?IFC

?IFN

?ILL

?ILR

- 329 -

Table A-l (Cont)
TECO Error Messages

Device dev: Directory Full
ENTER UUO failure n. The file filnam.ext specified for
output by an EW or MAKE command cannot be created on
DEC tape dev because the tape directory is fu II.

Incomplete < ••• > or (•••) in Macro
A macro contained in a Q-register and being executed by an
M command contains an iteration that is not closed within the
Q-register by a >, or a parenthetical expression that is not
closed within the Q-register by a).

Illegal Control-E Command in ~ch Argument
A search argument contains a ~ command that is
either not defined or incomplete.

Illegal Control Command t < char> in text Argument
In order to be entered as text in an Insert command or search
command, all control characters (t@ - tH and tN - t-)
must be preceded by tR or tT. Otherwise they are inter­
preted as commands. The control character" t <char>" is
on undefined text argument control command~

Input Davice dev Not Available
Initialization failure. Unable to initialize the device dev
for input. Either the device is being used by someone else
right now, or else it does not exist in the system.

Illegal Character "<char>" After E
The only commands starting with the letter E are EB, EF,
EG, EH, EM, EO, ER, ET, EU, EW, and EZ. When used
as a command (i .e., not in a text argument) E may not be
followed by any character except one of these.

Re-Init Failure on Device dev After EM

TECO

Unable to re-initialize the device dev after executing an
EM command on it. If th is error persists after retrying to
initialize the device with an ER command (or EW command
if output to the device is desired), consult your syste~ manager.

Illegal Character "<char>" after F
The only commands starting with the letter Fare FS and FN.
When used as a command (other than EF or in a text argument)
F may not be followed by any character other than one of these.

Illegal Character "<char>" in Filename 1':\
File specifications must be of the form dev:filnam.ext[m,n] \.lJ
where dev, filnam, and ext are alphanumeric, and m and n
are numeric. No characters other than the ones specified may
appear between the EB, ER, EW, or EZ command and the

altmode terminator(!)).

Illegal Command <char>
The character "<char>" is not defined as a valid TECO command.

Cannot Lookup Input File filnam.ext. to Rename It
Fai lure in rename process at close of editing iob initiated by an EB
command or a TECO command. Unable to do a LOOKUP on the ori­
ginal input file dev:filnam.ext in order to rename it "filnam.BAK".
The output file is closed with the name "nnnTEC. TMP", where nnn
is the user's iob number. The LOOKUP error code is nn.

A-5

TECO

?INP-nnOOOO

?IOS

?IQC

?IQN

?IRB

?IRN

?ISA

- 330 -

Table A-1 (Cont)
TECO Error Messages

Input Error nnOOOO on File filnam.ext.
A read error has occurred during input. The input file
filnam.ext has been released. The user may try again to
read the file, but if the error persists, the user will have
to return to his backup file. The input device status word
error flags are nnOOOO. (Note: This number represents the
I/O status word (rh) with bits 22-35 masked out.)
(040000 -- block too large).
(100000 -- parity or checksum error).
(140000 -- block too large and parity error).
(200000 -- device error, data missed).
(240000 -- block too large and device error).
(300000 -- parity error and device error).
(340000 -- block too large, parity error, and device error).
(400000 -- improper mode).
(440000 -- block too large and improper mode).
(500000 -- parity error and improper mode).
(540000 -- block too large, parity error, and improper mode).
(600000 -- device error and improper mode).
(640000 :-- block too large, device error, and improper mode).
(700000 -- parity error, device error, and improper mode).
(740000 -- block too large, parity error, device error,

and improper mode) •.

Illegal Character "<char>" in I/O Switch
The only valid characters in switches used with file selection
commands are the alphabetic characters.

Illegal command "<char>
The only valid" commands are "G, "L, "N, "E, "C, "A,
"0, "V, "W, "T, "F, "5, and "U.

Illegal Q-register Name "<char>"
The Q-register name specified by a Q, U, X, G, %, M,
[,], or * command must be a letter (A thru Z) or a digit
(0 thru 9).

Cannot Rename Input File filnam.ext to filnam.BAK
Failure in rename process at close of editing lob initiated
by an EB command or a TECO command. The attempt to
rename the original input file filnam.ext to the backup
filename "filnam.BAK" has failed. The output file is
closed with the name "nnnTEC. TMP", where nnn is the
user's lob number. The RENAME UUO error code is nn.

Cannot RE-Init Device dev for Rename Process
Failure in rename process at close of editing lob initiated
by an EB command or a TECO command. Cannot reinitialize
the original input device dev in order to rename the input file
filnam.ext to "filnam.BAK". The output file is closed with
the name "nnnTEC. TMP", where nnn is the user's lob number.

n Argument with Search Command
The argument preceding a search command indicates the number
of times a match must be found before the search is considered
successful. This argument must be greater than O.

A-6

?MAP

?MEE

?MEF

?MEO

?MEQ

?MEU

?MIQ

?MLA

?MLP

- 331 -

Table A-1 (Cont)
TECO Error Messages

Missing-'
In attempting to execute a conditional skip command (a "
command whose argument does not satisfy the required con­
dition) no • command closing the conditional execution string
can be found. Note: n" ••• ' strings must be complete
within a single macro level.

Macro Ending with E
A command macro being executed from a Q-register ends
with the character "E". This is an incomplete command.
E is the initial character of an entire set of commands. The
other character of the command begun by E must be in the
same macro with the E.

Macro Ending with F
A command macro being executed from a Q-register ends with
the character "F" (not an EF). This is an incomplete command.
F is the initial character of an entire set of commands. The
other character of the command begun by F must be in the same
macro with the F.

Macro Ending with Unterminated 0 Command
The last command in a command macro being executed from a
Q-register is an Q command with no altmode to mark the end
of the tag-name argument. The argument for the 0 command
must be complete within the Q-register.

Macro Ending with"
A command macro being executed from a Q-register ends with
the" character. This is an incomplete command. The" com­
mand must be followed by one of the characters G, L, N, E,
C, A, D, V, W, T, F, S, or U to indicate the condition under
which the following commands are to be executed. This char­
acter must be in the Q-register with the" •

Macro Ending with t

TECO

A command macro being executed from a Q-register ends with the
t character. This is an incomplete command. The t command
takes a single character text argument that must be in the
Q-register with the t •

Macro Ending with <char>
A command macro being executed from a Q-register ends with
the «,:haracter "<char>". This is an incomplete command.
The <char> command takes a single character text argument
to name the Q-register to which it applies. This argument
must be in the same macro as the <char> command itself.

Missing <
There is a right angle bracket not matched by a left angle
bracket somewhere to its left. (Note: an iteration in a macro
stored in a Q-register must be complete within the Q-register.)

Missing (
Command string contains a right parenthesis that is not matched
by a corresponding left parenthesis.

A-7

TECO

?MRA

?MRP

?MUU

?NAE

?NAI

?NAQ

?NAU

?NCS

?NFI

?NFO

?NTQ

?OCT

- 332 -

Table A-l (Cont)
TECO Error Messages

Missing»
In attempting to exit from an iteration field with a i command
(or to skip over an iteration field with a 0 argument) no >
command closing the iteration can be found. Note: iteration
fields must be complete within a single macro level.

Missing)
The command string contains, within an iteration field, a
parenthetical expression that is not closed by a right
parenthesis.

Macro Ending with t t
A command macro being executed from a Q-register ends with
control-t or tt. This is an incomplete command. The tt
command takes a single character text argument that must be
in the Q-register with the t t •

No Argument Before =
The command n= or n== causes the value n to be typed. The
= command must be preceded by either a specific numeric
argument or a command that returns a numeric value.

No Altmode after nl
Unless the EO value has been setto l, the numeric insert
command nl must be immediately followed byaltmode.

No Argument Before II
The" command must be preceded by a single numeric argu­
ment on which the decision to execute the following commands
or skip to the matching I is based.

No Argument Before U
The command nUi stores the value n in Q-register i. The U
command must be preceded by either a specific numeric argu­
ment or a command that returns a numeric value.

No Command String Seen Prior to *i
The *i command saves the precedirg command string in Q-register i.
In this case no command string has previously been given.

No File for Input
Before issuing an input command (Y or A) it is necessary
to open an input file by use of an ER, EB, or TECO command.

No File for Output
Before giving an output command (PW, P, N, EX, or EG) it
is necessary to open an output fi Ie by use of an EB, EW, EZ,
MAKE, or TECO command.

No Text in Q-register x
Q-register x, specified by a G or M command, does not
contain text.

"8" or "9" in Octal Digit String
In a digit string preceded by to, only the octal digits
0-7 may be used.

A-8

?ODV

?OLR

?OUT-nnooOO

?PAR

?POP

- 333 -

Table A-l (Cont)
TECO Error Messages

Output Device dev Not Available
Initial ization failure. Unable to initial ize the device dev
for output. Either the device is being used by someone
else right now, or it is write locked, or else it does not
exist in the system.

Cannot Lookup Output File dev:filnam.ext to Rename It
Failure in rename process at close of editing iob initiated by
an EB command or a TECO command. The special LOOKUP
on the output file filnam.ext required for"DECtape in order to
rename the file to "filnam.ext" has failed. The ori_ginal input
file filnam.ext has been renamed "filnam.BAK", but the out­
put file is closed with the name "nnnTEC. TMP", where nnn is
the user's iob number. The LOOKUP UUO error code is nn.

Output Error nnOooO - Output File nnnTEe. TMP Closed
An error on the output device is fatal. The output file is closed
at the end of the last data that was successfully output. It has
the filename "nnn TEC. T MP", where nnn is the user's iob
number. See Section 4.3 for a recovery technique. The out­
put -device status word error flags are nnOOOO. (Note: This
number represents the I/o status word (rh) with bits 22-35
masked Ol,lt.)
(000000 -- end of tape).
(040000 -- block number too large: device full or

quota exceeded).
(100000 -- parity or checksum error).
(140000 -- block number too large and parity error).
(200000 -- device error, data missed).
(240000 -- block number too large and device errror).
(300000 -- parity error and device error).
(340000 -- block number too large, parity error,

and device error).
(400000 -- improper mode or device write locked).
(440000 -- block number too large and improper mode).
(500000 -- parity error and improper mode).
(540000 -- block number too lorge, parity error,

and improper mode).
(600000 -- device error and improper mode).
(640000 -- block number too large, device error,

and improper m9de).
(700000 -- parity error, device error, and improper

mode).
(740000 -- block number too large, parity error,

device error, and improper mode).

Confused Use of Parentheses
A string of the form (••• < ...) has been encountered.
Parentheses should be used only to enclose combinations
of numeric arguments. An iteration may not be opened
and not closed between a left and right parenthesis.

Attempt to Move Pointer Off Page with J, C, R, or D
The argument specified with a J, C, R, or D command must
point to a position within the current size of the buffer,
i.e., between 0 and Z, inclusive.

A-9

TECO

TECO

?PPN

?RNO

?SAL

?SNA

?SNI

?SRH

?STC

?STL

?TAG

?TAL

- 334 -

Table A-l (Cont)
TECO Error Messages

Illegal Character "<ch~r>" in Proiect-programmer Number

Proiect-programmer numbers in file specifications must be given
in the form [m, n] where m and n are octal digit strings separated
by a comma. No characters other than the ones specified may
appear between the enclosing brackets.

Cannot Rename Output File nnnTEC. TMP
Failure in rename process at close of editing iob initiated by
an EB command or a TECO command. The attempt to rename
the output fi Ie nnn TEC. T MP to the name "filnam .ext"
originally specified in the EB or TECO command has failed.
The original input file filnam.ext has been renamed
"filnam.BAK", but the output file is closed with the
name "nnnTEC. TMP", where nnn is the user's iob number.
The RENAME UUO error code is nn.

Second Argument Less Than First
In a two-argument command, the first argument must be
less than or equal to the second.

Initial Search with No Argument
A search command with null argument has been given, but
there was no preceding search command from which the
argument cou Id be taken.

i Not in an Iteration
The semicolon command may be used only with a string
of commands enclosed by angle brackets, i.e., in an
iteration field.

Cannot Find "<text>"
A search command not preceded by a colon modifier and
not within an iteration has fai led to find the specified
character string "<text>". After an S search fails the
pointer is left positioned at the beginning of the buffer.
After an N or _ search fai Is the I ast page of the input
file has been input and, in the case of N, output, and
the buffer c I eared. Note that when th i s message occurs,
the text string printed includes all control-character
commands included in the search argument.

Search String Too Long
The maximum length of a search string is 80 characters
inclyding all string control commands and their arguments.

Search String too Long
The maximum length of a search string is 36 character
positions, not counting extra characters required to
specify a single position.

Missing Tag Ixxx!
The tag !xxx! specified by an 0 command cannot be
found. This tag must be in the same macro level as the
o command referencing it.

Two Arguments with L
The L command takes at most one numeri c argument, name I y,
the number of I ines over which the buffer pointer is to be
moved.

A-10

?TTY

?UCA

?UFS

?UIN

?UIS

?USR

?UTG

?UUO

- 335-

Table A-l (Cont)
TECO Error Messages

Illegal TTY 1-0 Device
A terminal may be specified as an input-output device in an
ER, EW, EZ, or MAKE command only if it is not being used
to control an attached lob, the userls own terminal included.

Unterminated fA Command
A fA message type-out command has been given, but there is
no corresponding fA to mark the end of the message. fA
commands must be complete within a single command level.

Macro Ending with Unterminated File Selection Command
The last command in a command macro being executed from a
Q-register is a file selection command (ER, EW, EB, or EZ)
with no altmode to mark the end of the file specifications.
The file selection command must be complete within the
Q-register.

Unterminated Insert Command
An 'insert command {possibly an @ insert command} has been
given without terminating the text argument at the same
macro level.

Undefined I/O Switch II/XXX"

The switch "/xxx" is not defined with either input or output
file selection commands. The only switches currently defined
for input or output file selection commands are
/GENLSN and /SU PLSN.

Unterminated Search Command
A search command {possibly an @ search command}
has been given without terminating the text argument at
the same macro level.

Unterminated Tag
A command string tag has been indicated by a ! command,
but there is no corresponding! to mark the end of the tag.
Tags must be complete within a single command level.

Illegal UUO
Internal error. The illegal instruction <Ih, rh> has been
encountered at address nnnnnn. This is cause,d by either a
TECO bug or a monitor bug. Please give printout to your
system manager, or submit it to DEC with an S PR.

A-ll

TECO

TECO - 336 -

I

Appendix B

ASCII Characters

Character

Null or
Control-Shift-P

Control-A

Control-B

Control-C

Control-D

Control-E

Control-F

Bell

Backspace

Tab

line Feed

Manual
Symbol

@
@

@

®
@

Octal

000

001

002

003

004

005

006

007

010

011

012

- 337-

Table B-1
ASC II Characters

Decimal

o

1

2

3

4

5

6

7

8

9

10

B-1

TECO

Comment and Section Reference

Ignored on input. Ignored on type-in.

nl(!)insert only.

TECO command (Section 3.17).

~nitor command (Section 3.18). A
special character (Section 2.2).

Monitor command (Section 3.10). A
special character (Section 2.2). nle!)
insert only. Echoes as tC-carriage
return-line feed.

TECO command (Section 3.17).

TECO command (Sections 3.11 and
3.16).

TECO command (Section 3.16).
~nitor command (Section 3.18).
A special character (Section 2.2).

Echoes and prints as a single bell ring

and tG. Double @and @~are
TECO commands (Section 5.1)
and special characters (Section 2.2).

TECO command (Section 3.16). Prints
as tHo

TECO command (Section 3.8).

Ignored in command strings except as a
text argument (Section 3.18). The
symbol l is used only to represent an
explicitly-typed line feed. It is not
used for the line feed that the monitor

I

I

TECO

Character

Line Feed (Cont)

Vertical Tab

Form Feed

Carriage Return

Control-N

Control-o

Control-P

Control-Q

Control-R

Control-S

Control-T

Control-U

Control-V

Control-W

Control-X

Control-Y

Control-Z

Manual
Symbol

@
@
@

®

Octal

013

014

015

016

017

020

021

022

023

024

025

026

027

030

031

032

- 338 -

Table B-1 (Cont)
ASC II Characters

Decimal

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

B-2

Comment and Section Reference

generates when a carriage return is typed.
In data, I ine feed defines the end of a
I ine (Section 2.3).

In data, vertical tab defines the end of
a line (Section 2.3).

TECO command (Section 3.6). In data,
form feed defines the end of a page
(Section 2.3).

Ignored in command strings except as a
text argument. (Section 3.18). When
this character is typed the monitor auto­
matically generates a line feed following
it.

TECO command (Section 3.11).

Monitor command (Section 3.6). A
special character (Section 2.2). nlCD
insert only. Echoes as to-carriage
return-line feed.

Monitor command (Section 3.18). A
special character (Section 2.2).

TECO command (Section 3.11).

TECO command (Sections 3.8 and 3.11).

TECO command (Section 3.11).

Two different uses as TECO commands
(Sections 3.8, 3.11, 3.16).

TECO command (Section 5.1). A
special character (Section 2.2).nlC!)in­
sert on I y. Echoes as tu carri age
return-line feed.

TECO command (Sections 3.8 and 3.11).

TECO command (Sections 3.8 and 3.11).

Two different uses as TECO commands
(Section 3.11).

TECO command (Section 3.10). Echoes
as tZ-carriage return-line feed. Used
as end-of-file signal when doing data
input from a TTY.

Character Manual Octal
Symbol

Altmode or CD 033
(Control-Shift-K)

Control-Shift-L ® 034

Control-Shift-M @ 035

Control-Shift-N @ 036

Control-Shift-O e 037

Space ~ 040

! 041

II 042

043

$ 044

% 045

& 046

I 047

(050

) 051

I * 052

+ 053

, 054

- 055

. 056

I / 057

- 339 -

Table B-1 (Cont)
ASC II Characters

Decimal

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

B-3

TECO

Comment and Section Reference

Alphanumeric argument terminator
(Section 2.7). A special character
(Section 2.2). Echoes and prints as $.
Two successive altmodes are used to
terminate a command string (Section 2.6)

TECO command (Section 3.11).

Two different uses as TECO commands
(Sections 3.8, 3.11, 3.16).

TECO command (Section 2.7). Ignored
in command strings except as a text ar-
gument or when used instead of + with
numeric arguments (Section 3.18).

TECO command (Section 3.13).

Used as a prefix for a whole class of
TECO commands (Section 3.13).

TECO command (Section 2.7).

TECO command (Section 3.14).

TECO command (Section 2.7).

TECO command (Section 3.13).

TECO command (Section 2.7).

TECO command (Section 2.7).

Two different uses as TECO commands
(Sections 2.7 and 2.14).

TECO command (Section 2.7).

TECO command (Section 2.7).

TECO command (Section 2.7).

TECO command (Sections 3.2 and 3.4).

Two different uses as TECO commands
(Sections 2.7 and 5.2).

TECO

Character Manual Octal Symbol

0 060

1 061

2 062

3 063

4 064

5 065

6 066

7 067

8 070

9 071

: 072

; 073

< 074

= 075

> 076

? 077

@ 100

A 101

B 102

C 103

D 104

I
E 105

- 340-

Table B-1 (Cont)
ASCII Characters

Decimal

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

B-4

Comment and Section Reference

TECO command (Section 3.11). Device
name delimiter (Section 3.2).

TECO command (Section 3. 12).

TECO command (Section 3.12).

TECO command (Section 3.15).

TECO command (Section 3.12).

Two different uses as TECO commands
(Sections 3.17 and 5.2).

TECO command (Sections 3.8 and 3.11).

Two different uses as TECO commands
(Sections 3.3 and 3.15).

TECO command (Section 3.4). Also used
in the EB command (Section 3.2).

TECO command (Section 3.5). Also used
in the "C command (Section 3.13).

TECO command (Section 3.7).

Used as a prefix for many TECO com-
mands: EB, EF, EG, EH, EM, EO, ER,
ES, ET, EU, EW, EX EZ (Sections
3.2, 3.6, 3.9, 3.10). Also used in the
liE command (Section 3.13).

Character
Manual
Symbol

I F

G

H

I

J

K

L

M

I N

0

P

Q

R

S

T

U

V

W

X

Octal

106

107

110

111

112

113

114

115

116

117

120

121

122

123

124

125

126

127

130

- 341 -

Table B-1 (Cont)
ASCII Characters

Decimal

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

B-5

TECO

Comment and Section Reference

Used in the EF commands (Section 3.9).
Also in FS and FN commands (Section
3.11).

TECO command (Section 3.14). Also
used in the EG command (Section 3. 10)
and "G command (Section 3.13).

TECO command (Section 3.4).

TECO command (Section 3.8).

TECO command (Section 3.5).

TECO command (Section 3.7).

TECO command (Section 3.5). Also
used in the II L command (Section 3.13).

TECO command (Section 3.14). Also
used in the EM command (Section 3.2).

TECO command (Section 3.11). Also
used in the liN command (Section 3.13).
Also used in FN command (Section 3.11).

TECO command (Section 3.13).

TECO command (Section 3.9).

TECO command (Section 3.14).

TECO command (Section 3.5). Also
used in the ER command (Section 3.2).

TECO command (Section 3.11). Also
used in ES and FS commands (Section
3.11).

TECO command (Section 3.6). Also
used in the ET command (Sections 3.6
and 3.16).

TECO command (Section 3.14).

Used in the EW command (Section 3.2)
and the PW command (Section 3.4).
Otherwise ignored in command strings.

TECO command (Section 3.14). Also
used in the EX command (Section 3.10).

rECO

Character Manual Octal Symbol

y 131

Z 132

[133

'\ 134

] 135

tor 1\ t 136

-or - 137 -, 140

a 141

b 142

c 143

d 144

e 145

f 146

g 147

h 150

i 151

i 152

k 153

I 154

m 155

n 156

0 157

p 160

q 161

- 342-

rable B-1 (Cont)
ASC II Characters

Decimal

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

B-6

Command and Section Reference

rECO command (Section 3.3).

rECO command (Section 3.4). Also
used in the EZ command (Section 3.2).

rECO command (Sections 3.2 and 3.14).

Two different uses as TECO commands
(Sections 3.8 and 3.14).

rECO command (Sections 3.2 and 3.14).

When used as a command, indicates that
the next character is to· be interpreted as
a control character.

rECO command (Section 3.11).

Equivalent to A in command strings.

Equivalent to B in command strings.

Equivalent to C in command strings.

Equivalent to D in command strings.

Equivalent to E in command strings.

Equivalent to F in command strings.

Equivalent to G in command strings.

Equivalent to H in command strings.

Equivalent to I in command strings.

Equivalent to J in command strings.

Equivalent to K in command strings.

Equivalent to L in command strings.

Equivalent to M in command strings.

Equivalent to N in command strings.

Equivalent to 0 in command strings.

Equivalent to P in command strings.

Equivalent to Q in command strings.

Character Manual Octal Symbol

r 162

s 163

t 164

u 165

v 166

w 167

x 170

y 171

z 172

{ 173

I 174

} 175

176

Rubout or @ 177
Delete

- 343 -

Table B-1 (Cont)
ASCII Characters

Decimal

114

115

116

117

118

119

120

121

122

123

124

125

126

127

B-7

TECO

Comment and Section Reference

Equivalent to R in command strings.

E'luivalent to S in command strings.

Equivalent to T in command strings.

Equivalent to U in command strings.

Equivalent to V in command strings.

Equivalent to W in command strings.

Equivalent to X in command strings.

Equivalent to Y in command strings.

Equivalent to Z in command strings.

Converted to altmode (033) when read
from TTY unless user has specified
TTY LC mode. Equivalent to altmode
(033) when executing commands or
being typed as text if the EO value has
been set to 1.

Converted to altmode (033) when read
from TTY unless user has specified
TTY LC mode. Equivalent to altmode
(033) when executing commands or
being typed as text if the EO value has
been set to 1.

TECO command (Section 5.l).
character (Secti')n 2.2).

A special

nl(!)insert only. Does not print.
Eclioes as the character being erased.

TECO - 344-

- 345 -

Appendix C

Summary of Commands

C.1 INITIALIZATION AND FILE SELECTION

Command

l<Jev:fi Inam. ext [proi, prog]

ERfilespec ifi cation CD
nEM

EWfilespecification (!)
EZfilespecification CD
EBfilespecification CD

MAKEfilespec)

~ECOfilespec)

I/GENLSN

I!SUPLSN

~

V>-

B

Table C-1
Command Description

Function

INITIALIZATION AND FILE SELECTION

File specifications

Select file for input.

Position magnetic tape

Select file for output.

Zero directory and select file for output.

Select file for input and output, with back-
up file protection.

Equivalent to EWfilnam.ext (1).
Equivalent to EBfilnam.ext (1) Y.

Used with EW or EB to cause line sequence
numbers to be generated.

Used with ER, EB, or EW to suppress line
sequence numbers.

INPUT

Clear Buffer and input one page.

Input one page and append to current buffer
contents.

BUFFER POSITIONS

Before first character; O.

Current pointer position; number of characters
to the left of the pointer.

C-1

TECO

Reference

(Section 3.2)

(Section 3.2)

(Section 3.2)

(Section 3.2)

(Section 3.2)

(Section 3.2)

(Section 3. 1)

(Section 3.1)

(Section 3.2)

(Section 3.2)

(Section 3.3)

(Section 3.3)

(Section 3.4)

(Section 3.4)

I

TECO

z

m,n

H

m+n

m n
L.....I

m-n

m*m

min
m8n

()

to

nJ

nC

nR

nL

nT

m,nT

n=

I n==

lET

DEl

Command

- 346-

Table C-l (Cont)
Command Description

Function

End of the buffer; number of characters in
the buffer.

m+ 1 st through nth characters in the buffer.

Entire buffer; B, Z.

ARGUMENT OPERATORS

Add.

Add.

Subtract.

Multiply.

Divide and truncate.

Logical AND.

Logical OR.

Perform enclosed operations first.

Accept number in octal radix.

POINTER POSITIONING

Move pointer to position between nth and
n+1st characters.

Advance pointer n positions.

Move pointer back n positions. Equivalent
to -nCo

Move pointer to beginning of nth line from
current pointer position.

TYPE-OUT

Type all text in the buffer from the current
pointer position to the beginning of the nth
I ine from the pointer position.

Type the m+ 1st through the nth characters.

Type the decimal integer n.

Type the octal integer n.

Change typeout mode so that no substitutions
are made for nonprinting characters.

Restore typeout mode to normal.

C-2

Reference

(Section 3.4)

(Section 2.7)

(Section 3.4)

(Section 2.7)

(Section 2.7)

(Section 2.7)

(Section 2.7)

(Section 2.7)

(Section 2.7)

(Section 2.7)

(Section 2.7)

(Section 2.7)

(Section 3.5)

(Section 3.5)

(Section 3.5)

(Section 3.5)

(Section 3.6)

(Section 3.6)

(Section 3. 15)

(Section 3.15)

(Section 3.6)

(Section 3.6)

Command

OEU

lEU

-lEU

-IES

nES(n>O)

OES

@message @
t L or form feed

@

nD

-nD

nK

m,nK

Itext CD
I nle!)

@I/TEXT/

n\

®
@
@

- 34"7 -

Table C-l (Cont)
Command Description

Function

Flag lower case characters on typeout
(standard) .

Flag upper case characters on typeout.

No case flagging on typeout.

Set automatic typeout after searches.

Set automatic typeout after searches and
include a character to indicate the position
of the pointer.

Set to no automatic typeout after searches.

Type the message enc losed.

Type a form feed.

Inhibit typeout.

DELETION

Delete the n characters following the pointer
position.

Delete the n characters preceding the pointer
position.

Delete all characters in the buffer from
current pointer position to the beginning
of the nth I ine from the pointer position.

Delete the m+lst through the nth characters.

INSERTION

Insert the text delimited by I and altmode.

Insert the character with ASCII value n
(decimal).

Insert the text delimited by the arbitrary
character followi ng I.

Insert the ASC II representation of the
decimal integer n.

Translate to lower case.

Translate to upper case.

When used inside text arguments, this means
translate special characters @, [, ",], t,
- to "lower case" range.

C-3

TECO

Reference

(Section 3.6)

(Section 3.6)

(Section 3.6)

(Section 3.11)

(Section 3.11)

(Section 3.11)

(Section 3.17)

(Section 3.6)

(Section 3.6)

(Section 3.7)

(Section 3.7)

(Section 3.7)

(Section 3.7)

(Section 3.8)

(Section 3.8)

(Section 3.8)

(Section 3.8)

(Section 3.8)

(Section 3.8)

(Section 3.8)

TECO - 348 -

Table C-l (Cont)
Command Description

Command Function Reference

INSERTION (Cont)

@ Accept next character as text. (Section 3.8)

@ Used inside text arguments to cause all control (Section 3.8)

characters except ®, @, and altmode
to be taken as text. Nullified by a second @ .

OUTPUT AND EXIT

PW Output the current page and append a form (Section 3.9)
feed character to it.

I nP Output the current page, clear the buffer, (Section 3.9).
and read in the next page. Continue this
process until the nth page from the current
page has been input.

m,nP Output the m+ 1 st through the nth characters. (Section 3.9)
Do not append a form feed character, and
do not change the buffer.

EF Close the output file. (Section 3.9)

@ or tz Close the output file and exit to the (Section 3.10)
monitor.

® Exit to the monitor. (Section 3. 10)

EX Output the remainder of the file, close the
output file, and then exit to the monitor.

{Section 3.10)

EG Output the remainder of the file, close and (Section 3.10)
then re-execute the last compile-class com-
mand that was typed.

SEARCH

nStext ® Search for the nth occurrence {following the (Section 3. 11)
pointer) of the text delimited by Sand
altmode, but do not go beyond the end of
the current page.

I
nFStext (!) text (!) Search for the nth occurrence {following the (Section 3.11)

pointer) of the first text string and replace
it with the second text string. Do not go
beyond the end of the current page.

nNtext ® Equivalent to nStext CD except that if {Section 3.1 n
the text is not found on the current page,
pages are input and output until it is found.

C-4

I

I

Command

nFNtext (!) text (!)

n _ text (!)

:nStext ®

@nS/text/

o @ or otx
n @ or n tX (nlO)

@
@
@

@
@

- 349 -

Table C-1 (Cont)
Command Description

Function

SEARCH (Cont)

Equivalent to nFStext @ text (!) except

that if the text is not found on the current
page, pages are input and output until it is
found.

Equivalent to nNtext ® p.xcept that it
does input on I y, no output.

Equivalent to nStext ® except that it
returns a value of -1 if the search succeeds
or 0 if it fails instead of an error message.
The: command can also be used with FS, N,
FN, and-.

Equivalent to nStext @ except that the
text is delimited by the arbitrary character
fo II owi ng the S. The @ command maya I so
be used with FS,N, FN, and-.

Reset search mode to accept either case.

Set search mode to "exact" mode.

Translate to lower case.

Translate to upper case.

When used inside text arguments, this means
translate special characters @, [, \ ,], t,
- to "lower case" range.

Accept next character as text.

Used inside text arguments to cause all
control characters except @' ®,
and altmode to be taken as text. Nullified

by (I second @.
Used inside search argments to indicate
accept either case for following characters.

Nullified by a second. ®.
When used inside a text argument, accept
any character at this position in the search
string.

Accept any separator character at this
position.

Accept any character except the arbitrary

character a following @ .

C-5

TECO

Reference

(Section 3.11)

(Section 3.11)

(Section 3.11)

(Section 3.11)

(Section 3.11)

(Section 3.11)

(Section 3.11)

(Section 3. 11)

(Section 3. 11)

(Section 3.11)

(Section 3.11)

(Section 3.11)

(Section 3.11)

(Section 3.11)

(Section 3. 11)

TECO

Command

@

® A

@ V

® W

@ D

@ L

® S

@ <nnn>

@ [a,b,c ••• J

n< >

n;

;

Itagl

Otag (!)
n" Ecommands'

n" Ncommands'

n' , Lcommands'

n"Gcommands'

n -I" Lcommands'

n+ 1 "Gcommands'

n"Ccommands'

- 350 -

Table C-l (Cont)
Command Description

Function

SEARCH (Cont)

Take the next character in the search string
literally, even if it is a control character.

Accept any alphabetic character as a match.

Accept any lower case alphabetic character
as a match.

Accept any upper case alphabetic character
as a match.

Accept any digit as a match.

Accept any end-of-I ine character as a match.

Accept any string of spaces and/or tabs
as a match.

Accept the ASC II character whose octal
value is nnn as a match.

Accept anyone of the characters in the
brackets as a match.

ITERATION AND FLOW CONTROL

Perform the enclosed command string n times.

If n=O, iump out of the current iteration field.

Jump out of the current iteration field, if the
last search executed failed.

Define a position in the command string with
the name "tag".

Jump to the position defined by Itagl.

If n=O, execute the commands specified
between "E and '; otherwise, skip to the'.

If nlO, execute the enclosed commands.

If n<O, execute the enclosed commands.

If n>O, execute the enclosed commands.

If n~O, execute the enclosed commands.

If n~O, execute the enclosed commands.

If n is the ASCII value (decimal) of a symbol
constituent character, execute the enclosed
commands.

C-6

Reference

(Section 3.11)

(Section 3.11)

(Section 3.11)

(Section 3. 11)

(Section 3.11)

(Section 3. 11)

(Section 3.11)

(Section 3.11)

(Section 3.12)

(Section 3.12)

(Section 3. 12)

(Section 3.13)

(Section 3. 13)

(Section 3.13)

(Section 3.13)

(Section 3.13)

(Section 3.13)

(Section 3.13)

(Section 3. 13)

(Section 3. 13)

Command

n"Dcommands'

n" Acommands'

n"Vcommands'

n"Wcommands'

n"Tcommands'

n" Fcommands'

n" Scommands'

n" Ucommands'

nUi

Qi

%i

nXi

m,nXi

Gi

Mi

[i

Ji

I *. I

- 351 -

Table C-l (Cont)
Command Description

Function

ITERATION AND FLOW CONTROL (Cont)

If n is a digit execute the enclosed commands.

If n is alphabetic, execute the. enclosed
commands.

If n is lower case alphabetic, execute the
enclosed commands.

If n is upper case alphabetic, execute the
enclosed commands.

If n is true, execute the enclosed commands.

If n is false, execute the enclosed commands.

If n is "successful", execute the enclosed
commands.

If n is "unsuccessful", execute the enclosed
commands.

Q-REGISTER

Store the integer n in Q-register i.

Equal to the value stored in Q-register i.

Increment the value in Q-register i by 1
and return this value.

Store, in Q-register i, all characters from
the current pointer position to the beginning
of the nth line from the pointer.

Store the m+ 1st through nth characters in
Q-register i.

Place the text in Q-register i at the current
pointer position.

Execute the text in Q-register i as a command
string.

Push the current contents of Q-register i onto
the Q-register pushdown list.

Pop th~ last stored entry from the Q-register
pushdown I ist into Q-register i.

(As first command in a string.) Save the
preceding command string in Q-register i.

C-7

TECO

Reference

(Section 3.13)

(Section 3.13)

(Section 3.13)

(Section 3. 13)

(Section 3. 13)

(Section 3. 13)

(Section 3. 13)

(Section 3. 13)

(Section 3.14)

(Section 3. 14)

(Section 3.14)

(Section 3. 14)

(Section 3. 14)

(Section 3.14)

(Section 3.14)

(Section 3.14)

(Section 3.14)

(Section 3.14)

TECO

Command

1A

@ or tE

I @ or tN·

tF or @
@) or tH

ET

@ or tX

EU

EO

EH

@ x or t tx

\

® or tT

/

*. I

- 352-

Table C-1 (Ccmt)
Command Description

Function

SPECIAL NUMERIC VALUES

The ASCII value (decimal) of the character
following the pointer.

The form feed flag. Equals 0 if no form feed
character was read on the last input, -1
otherwise.

The end-of-file flag; equals -1 if end of input
file seen on last input. Otherwise equals O.

Decimal value of the console data switches.

The time of day in 60th's of a second.

The value of the type-out mode switch.
Equals 0 for normal type-out, '-1 otherwise.

Value of the search mode flag.
mode, -1'= exact mode.)

(O=either case

The value of the EU flag.
+1 = flag upper case characters.
o = flag lower case characters,

-1 = no case flagging on typeout.

The value of the EO flag. 1 = version 21 A,
2= versions 22 and 23.

The value of the EH flag. 1 = code only,
2= code plus one line, 3=·all of error message.

Equivalent to the ASCII value (in decimal)
of the arbitrary character x following t t •

Equivalent to the decimal value of the
digit string following the pointer.

Stop command execution and then take
on the ASCII value {in decimal) of the
character typed in by the user.

AIDS

When used after an error message, this causes
a more detailed explanation of the error to be
typed.

When used at the beginnir:lg of a command
string, this causes the entire command string
(with one of the two concluding altmodes)
to be moved into Q-register i.

C-8

Reference

(Section 3.16)

(Section 3. 16)

(Section 3.16)

(Section 3.16)

(Section 3.16)

(Section 3.16)

(Section 3. 11)

(Section 3.6)

(Section 3.17)

(Section 5.2)

(Section 3.16)

(Section 3.16)

(Section 3.16)

(Section 5.2)

(Sect ion 5.2)

?

?

@

@ @
@)

@~
OEO

nEO (A/O)

1EH

2EH

3EH

OEH

- 353 -

Table C-1 (Cont)
Command Description

AIDS (Cont)

When used after an error message I this causes
the offending command to be typed out (with"
a few of the commands preceding it).

Enter trace mode. A second? command
takes TECO out of trace mode.

Erase last character typed in the command
string.

Erase the entire command string.

Erase everything typed in back to the last
break character.

Retype current line of command string.

Restore the EO value to standard.

Set the EO value to n.

Type only code part of error messages.

Type error code plus one line.

Type all three parts of error.

Equivalent to 2EH.

C-9

TECO

(Section 5.2)

(Section 3.17)

(Section 5.1)

(Section 5. 1)

(Section 5. 1)

(Section 5.1)

(Section 3.17)

(Section 3.17)

(Section 5,,2)

(Section 5.2)

(Section 5.2)

(Section 5.2)

TECO - 354 -

- 355 -

DEC-! O-ULNDA-A-D

LINED
LINE EDITOR FOR DISK FILES

digital equipment corporation. maynard. massachusetts

LINED - 356 -

1st Printing June 1971
2nd Printing (Rev) July 1972

Copyright © 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa­
tional purposes and is subject to change
without notice.

The following are trademarks of Digital Equipment
Corporation, Mcynard, Mcssachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

- 357- LINED

CONTENTS

Page

1.0 Monitor Commands

1.1 CREATE Command

1.2 EDIT Command

2.0 LINED Commands

2.1 Inserting or Replacing a Line 2

2.2 Inserting Multiple Lines 2

2.3 Deleting a Line 2

2.4 Deleting Multiple Lines 3

2.5 Printing a Line 3

2.6 Printing Multiple Lines 3

2.7 C losing the Current Fi Ie 3

2.8 Examples of Command Sequence 3

3.0 Auxiliary Commands 4

3.1 R LINED 4

3.2 Initializing a File for Processing 4

4.0 LINED Conventions and Restrictions 4

5.0 Error Handl ing 5

6.0 Implementation 7

7.0 Standard for DECsystem-10 Line Sequence Numbers 7

iii

LINED - 358 -

- 359 - LINED

LINED

A LINE EDITOR FOR DECsystem-10 FILES

LINED is a line editor for disk files. It is used to create and edit source program files which are

written on disk in ASCII code with line sequence numbers appended. LINED has the ability to refer­

ence any line at any time without the user having to close and reopen the file. LINED is a reentrant

program and loads in 2K pure and 2K impure segments of core.

NOTE

In this document, computer typeouts are indicated by
underscoring. The Jlmbol) represents the RETURN
key. The symbol W represents the ALTMODE key.

1.0 MONITOR COMMANDS

The MONITOR commands CREATE and EDIT may be used to select a file for editing with LINED. A

temporary disk file, called ###EDT .TMP, is created for passing the commands to LINED.

1.1 The CREATE Command

The CREATE command calls in LINED and opens the specified new disk file for editing. The CREATE

command is of the form:

.CREATE filename.ext)

1.2 The EDIT Command

The EDIT command calls in LINED and opens the specified existing disk file for editing. The EDIT

command is of the form:

.,!EDIT filename.ext ;

2.0 LINED COMMANDS

LINED indicates its readiness to receive commands by typing an asterisk. At this time LINED is said to

be in command mode. The user may then type in the following LINED commands.

Version 13A July 1972

LINED

2.1 Inserting or Replacing a Line

:!:...Innnnn

nnnn aaaa •••••• a

nnnxx <D
*

- 360 -

Insert or replace the following typed line at line number nnnnn of
the currently open file; nnnnn can be specified as a line sequence
number or a point (.), or it can be omitted entirely. A point
refers to the last line which was typed, or the last line deleted,
or the last line inserted. If nnnnn is omitted, it is assumed to be
10.

When LINED has typed a line sequence number, the program enters text mode. In the text mode,

characters typed by the user are understood to be text for the insertion. Following the user's typein

of the line to be inserted, LINED types out the next sequential line number (nnnnn+lO) following

which the user presses the AL TMODE key (sometimes labeled PREfIX or ESC) to terminate the insert

process and return to LINED command level.

If there already exists a line at nnnnn, it will be replaced. A single quote following the line number

indicates that insertion at this line number will cause the existing line to be replaced.

2.2 Inserting Multiple Lines

~Innnnn,iiiii

nnnnn aaaao .•.••• a

nnnxx bbbbb •••••• b

nnnyy <D
*

Insert the following typed Lines, beginning at line number nnnnn
(which can be specified as either a line number or a point) of the
currently open file. Each time a line is entered, nnnnn is in­
creased by the specified increment,iiiii. If iiiii is omitted, it is
assumed to be 10 (if iiiii has never been specified previously), or
the previous increment specified.

If nnnnn is omitted, it is assumed to be 10, and the result becomes the line number of the next inser­

tion. Type ALTMODE on the line following the last insertion to return to LINED command mode.

LINED then awaits another command.

A double quote following a line number indicates that the increment specified for the current insert

instruction has resulted in an existing line being skipped.

2.3 Deleting a Line

::... Dnnnnn

Version 13A

Delete a line number nnnnn from the currently open file; nnnnn
can be specified as either a line sequence number or a point.

2 July 1972

2.4 Deleting Multiple Lines

':Dmmmmm, nnnnn

2.5 Printing a Line

*Pnnnnn

2.6 Printing Multiple Lines

::.. Pmmmmm,nnnnn

2.7 Closing the Current File

E)

- 361 - LINED

Delete Lines mmmmm through nnnnn from the currently open file;
mmmmm must be less than nnnnn. Either mmmmm or nnnnn may be
specified as a point as long as mmmmm is less than nnnnn.

Print line nnnnn on the user's Teletype; nnnnn can be specified as
either a line sequence number or a point. Typing ALTMODE fol­
lowing a typeout will cause the next sequential line to be printed.

Print lines mmmmm through nnnnn of the currently open file; mmmmm
must be less than nnnnn. Either'mmmmm or nnnnn may be specified
as a point as long as mmmmm is less than nnnnn.

Closes the current file and returns to LINED command mode. At
this point, the user may either open another file or type tc to
return to Monitor level to assemble, list, and/or save his file on
a permanent storage device (e.g., DECtape).

2.8 Examples of Command Sequence

Example 1

.CREATE FILEA

":110
00010 THE PROGRAM
00020 IS INSERTED
00030 HERE

00350 <D
~
..:tc

Version 13A

RUN LINED AND OPE~ FILE FILEA

BEGIN INSERTING LINES AT LINE NUMBER
10 INCREMENTING BY 10.

RETURN CONTROL TO LINED COMMAND
MODE BY TYPING ® . CLOSE FILE FILEA
BY TYPING AN E. TYPING A t C RETURNS
TO THE MONITOR COMMAND LEVEL.

3 July 1972

LINED

Example 2

.EDIT FILEA

*Pl0,30
00010 THE PROGRAM
00020 IS INSERTED
00030 HERE
~I20
00020 IS PLACED
00030 CD
~D30
*P 10,30

00010 THE PROGRAM
00020 IS PLACED
~E

.:::tc

3.0 AUXILIARY COMMANDS

- 362 -

RUN LINED AND OPEN EXISTING FILE
FILEA
PRINT LINES 10 THROUGH 30
PRINTOUT

INSERT LINE 20

DELETE LINE 30
PRINT LINES 10 THROUGH 30
PRINTOUT

TYPE E TO CLOSE FILE FILEA
TYPING A t C RETURNS JOB TO MONITOR
CONTROL LEVEL.

These Auxiliary Commands provide an alternate method of calling LINED and opening files. In most

cases, auxiliary commands can be replaced by the mOnitor instructions CREATE and EDIT (Section 1).

3.1 R LINED

LINED can be called in from the system device by typing

.R LINED)
*

LINED responds with an asterisk to indicate its readiness to receive a command.

3.2 Initializing a File for Processing

S filename • ext)

S filename.ext CD

Select an existing disk file, filename • ext ,
for editing.

Select (create) a new disk file for editing,
calling it filename.ext.

4.0 LINED CONVENTIONS AND RESTRICTIONS

The following conventions and restrictions should be noted.

a. Files are written with the installation standard protection. See the DECsystem-l0
Operating System Commands manual for explanation of protected files.

Version 13A 4 July 1972

- 363- LINED

b. When in insert mode, typing ALTMODE following the printout of the next insertion line
sequence number causes a returned to LINED command level. Typing ALTMODE to
terminate a line of text to be inserted causes the text line to be ignored.

00010

00020

*

00010

*

LINE OF TEXT

<D Returns to LINED command level

LINE OF TEXT (j) Line is ignored

c. LINED assumes that all blocks in a disk file have an integral number of lines (i .e., each
block begins with a sequence number and no line is split between blocks). This will al­
ways be the case with files which have been created and edited only with LINED; how­
ever, if sequence numbers have been removed, say by TECO, they may be restored by
using PIP switch /5.

d. LINED files can be resequenced using PIP switch /5.

e. Line number 0 is illegal and cannot be used.

f. Lines can be edited in any order; however, editing lines by ascending line numbers
reduces file access time.

5.0 ERROR HANDLING

When an error is detected, LINED types a message and returns the user to LINED command level (indi­

cated by the output of an * on the Teletype). Some errors are fatal and cause control to return to the

monitor. Error messages for LINED are given in Table 1.

Message

?FILE NAME ALREADY IN USE

?FILE NOT SPECIFIED

?ILLEGAL COMMAND

?INPUT FILE NOT FOUND

Version 13A

Table 1
LINED Error Messages

Meaning

The filename specified in a CREATE or 5 command
already e:<jsts on disk. Type the 5 command with a
correct filename, followed by (!).
The user attempted to execute an editing command
without first naming the file to be edited. Using
an S command, name the file to be edited.

The user attempted to use a letter that is not a
command • Type the correct command letter.

The file named in an EDIT or 5 command cannot be
found on disk. Either place the file on disk, or
create the file with the S command followed by <D .

(continued on next page)

5 July 1972

LINED

Message

?L1NE REFERENCED DOES NOT EXIST

- 364 -

Table 1 (Cont)
LINED Error Messages

Meaning

A line referenced in a P or D command does not
exist in the fi Ie. Either retype the command with
the correct I ine number, or insert the line.

SYSTEM ERROR READING COMMAND FILE A system error occurred while LINED was trying to
read the CCL command file generated by a CREATE
or EDIT command. Try to create or select the fi Ie
using the appropriate form of the S command.

NOTE

The following are internal system errors and cause
control to return to the monitor.

?CANNOT ACCESS DISK

?CANNOT INIT TTY

?ERROR IN RENAME PROCESS
INPUT FILE CLOSED WITH NAME

filnam.ext
OUTPUT FILE CLOSED WITH NAME

###L1N.TMP

?ERROR IN RENAME PROCESS
INPUT FILE CLOSED WITH NAME

###TMP.TMP
OUTPUT FILE CLOSED WITH NAME

###L1N.TMP

?ERROR IN RENAME PROCESS
INPUT FILE CLOSED WITH NAME

###TMP.TMP
OUTPUT FILE CLOSED WITH NAME

filnam.ext

?INPUT ERROR.
INCOMPLETE OUTPUT FILE CLOSED
WITH NAME ###L1N.TMP

?NO CORE AVAILABLE FOR DATA SEGMENT

?OUTPUT ERROR.
INCOMPLETE OUTPUT FILE CLOSED
WITH NAME ###L1N.TMP

Version 13A 6

LINED cannot access the disk. This message can
only occur at the beginning of operations. Notify
the system manager.

LINED cannot initialize the user's terminal. This
message can only occur at program initialization.
Notify the system manager.

An error occurred while LINED was renaming the
output file. The input file should be renamed
filnam.BAK and the output file should be renamed
filnam .ext.

An error occurred while LINED was renaming the
files. The input file should be renamed filnam.BAK
and the output file should be renamed filnam.ext.

An error occurred while LINED was renaming the
files. The input file should be renamed filnam.BAK

In the three messages above, ### is the user's job
number and filnam .ext ·is the name of the file that
he was editing.

A system error occurred on input. The output file
is incomplete; thus, the user must start editing
again with the backup file.

There is no core available for LINED to do editing
on the user's file. This message can occur only
during program initialization. Notify the system
manager.

A system error occurred on output. The output fi Ie
is incomplete; thus the user must start editing again
with the backup file.

July 1"972

- 365 - LINED

6.0 IMPLEMENTATION

The following explanation is intended to help the user to understand how LINED works so that he may

use it more effectively.

Lines of text are stored in a lOOO-word working buffer. Each line has a I-word header containing

two items. The left half contains the sequence number of the line, and the right half contains the

number of words (including the word containing the line header) needed to store the line of text. Thus,

to find the beginning of the next line of text, it is necessary to simply take the address of the current

line header and add the word count of the current line.

Several pointer words are used to keep track of the lines in the working buffer. WRTLST contains the

sequence number of the highest line in the buffer. SN contains the sequence number of the line cur­

rently being handled in a command.

When LINED discovers that SN is greater than WRTLST, it knows that the line being sought has already

passed through the working buffer. This line is not directly accessible, because there is no way to read

a disk file backwards. Consequently, it is necessary for LINED to close the file and then reopen it.

This process of going from the current position of the file to the end of the file, from there to the be­

ginning of the file, and finally to the line being sought is accomplished as follows:

a. To close the file, all remaining text must be passed through the working buffer to the
temporary output file {called###LIN.TMP}. This is done by giving the subroutine
FNDLIN {which finds a line whose sequence number is SN} the highest possible sequence
number - 99999.

b. Next, the original file is renamed to ###TMP.TMP, the temporary output file is renamed
to the original filename and the original file {###TMP. TMP} is renamed to name. BAK
{same name as original with an extension of BAK}.

c. FNDLIN is then given the sequence number being sought, and LINED continues with the
original command.

7.0 STANDARD FOR DECsystem-IO LINE SEQUENCE NUMBERS

ASCII data files containing line sequence numbers conform to the following rules.

a. Each line must begin at a word boundary. Lines are padded at the e~d with nulls to fi II
an integral number of words.

b. Every line must have a line sequence number.

c. The line sequence number consists of five ASCII characters contained in the first word of
the line.

d. Bit 35 of the line sequence number word is set to I.

e. The line sequence number can contain only decimal digits. The characters preceding
the first non-zero digit should be ASCII zeros. However, on input, leading spaces as
well as leading zeros are accepted for compatibility with those data files that have
leading spaces.

Version 13A 7 July 1972

LINED - 366 -

f. The first character after the line sequence number is always a tab except in files created
by BASIC. All compilers except BASIC ignore the character after the line sequence
number. The utility programs (editors and PIP) automatically cause a tab to follow the
line sequence number when they are creating new line sequence numbers. However, for
compatibility with BASIC, the utility programs do not force a tab after the line sequence
number when they are merely transferring existing line sequence numbers from an input
frJe to an output fjJ ...

g. Line blocking is optional.

Version 13A 8 July 1972

PDP-10
PIP

- 367-

DEC-10-PPEO-D

(PERIPHERAL INTERCHANGE PROGRAM)
PROGRAMMER'S REFERENCE MANUAL

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

PIP - 368 -

1st Edition, October 1967
2nd Edit~on (Rev) May, 1968

3rd Edition (Rev) November, 1968
4th Edition (Rev) November, 1969

5th Edition (Rev) June, 1970
6th Edition (Rev) March, 1972

Copyright @ 1967, 1968, 1969, 1970, 1972 by Digital Equipment
Corporation

The material in this manual is for informa­
tion purposes and is subject to change with­
out notice.

The following are trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC

FLIP CHIP

DIGITAL

PDP

FOCAL

COMPUTER LAB

-~- PIP

PREFACE

The functions provided the user by the DECsystem-10 Peripheral Inter­

change Program (PIP) and their use are described in this manual.

NOTE

Monitor commands are available which perform
the common PIP functions of copying, renaming,
protecting and deleting files.

It was assumed in the preparation of this manual that the reader is

familiar with or has access to the DECsystem-10 Monitor Calls manual

and the DECsystem-10 Monitor Commands manual. These manuals as well

as the PIP manual are available in the DECsystem-10 Software Notebook

and in the following handbooks:

a) DECsystem-10 User's Handbook (contains both PIP and the
Monitor commands manuals).

b) DECsystem-10 Assembly Language Handbook (contains
Monitor calls manual).

iii

PIP - 370 -

SECTION 1.

1.1

1.1.1

1.2

SECTION 2.

2.1

2.1.1

2.1. 2

2.1. 3

2.2

2.2.1

2.2.2

2.3

2.3.1

2.3.2

2.3.2.1

2.3.2.2

2.3.2.3

2.4

2.4.1

2.4.2

2.4.3

2.5

2.5.1

2.6

SECTION 3

3.1

3.1.1

3.2

3.2.1

3.2.1.1

3.2.1.2

3.2.2

3.2.3

3.2.4

- 371 -

CONTENTS

INTRODUCTION

INTRODUCTION

Controlling PIP Indirectly

WRITING CONVENTIONS

PIP COMMAND STRING AND ITS BASIC ELEMENTS

COMMAND STRING

Command Format

File Specification

Command String Delimiters

DEVICE NAMES

Physical Device Names

Logical Device Names

FILENAMES

Naming Files with Octal Constants

Wildcard Characters

The Asterisk Symbol

The Question Mark Symbol

Combining * and ? Wildcard Symbols

DIRECTORY IDENTIFIER

UFD-Only Identifiers

SFD (Full Directory Path) Identifiers

Specifying Default and Current [Directory]
Identifiers

FILE ACCESS PROTECTION CODES

Digit Numeric Protection Code Values

UFD AND SFD PROTECTION CODES

STANDARD PIP SWITCHES

OPTIONAL PIP FUNCTIONS

Adding Switches to PIP Commands

BASIC TRANSFER FUNCTION

X-Switch Copy Files Without Combining

Non-Directory to Directory Copy Operation

Assinging Names to DECtape Tapes

DX-Switch, Copy All but Specified Files

Transfer Without X-Switch (Combine Files)

U-Switch, Copy DEC tape Blocks ~, 1, and 2

v

375
375
376

379

379
380
382

383
383
383

384
385
386
386
386
386
387
388
388

389
390

391
392

393

393
394
394
395
397
397
398
398

PIP

PIP

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

3.3.7.1

3.3.8

3.3.9

3.3.10

3.3.11

3.4

3.5

3.5.1

3.5.2

3.5.3

3.5.3.1

3.5.4

3.5.5

3.5.6

3.6

SECTION 4

4.1

4.2

4.2.1

4.2.2

4.2.2.1

4.2.2.2

4.3

4.4

- 372 -

CONTENTS

A-Switch, Integral Output Lines (Line
Blocking)

C-Switch, Delete Trailing Spaces and
Convert Multiple Spaces to Tabs

E,Switch, Ignore Card Sequence Numbers

N-Switch, Delete Sequence Number

S-Switch, Insert Sequence Numbers

O-Switch, Insert Sequence Numbers and
Increment by One

P-Switch, Prepare FORTRAN Output for
Line Printer Listing

Copy FORTRAN Binary Files

T-Switch, Delete Trailing Spaces

W-Switch, Converts Tabs to Spaces

V-Switch, Match Angle Brackets

Y-Switch, DEC tape to Paper Tape

SET DATA MODE, SWITCHES B, H AND I

FILE DIRECTORY SWITCHES

L-Switch, List Source Device Directory

F-Switch, Ltst Limited Source Directory

R-Switch, Rename Source Files

Changing Source UFD or SFD Protection Code
Using the Rename (R) Function

D-Switch, Delete Files

Z-Switch, Zero Directory

Q-Switch, Print Summary of PIP Functions

PERMITTED SWITCH COMBINATIONS

SPECIAL PIP SWITCHES

SPECIAL PIP FUNCTIONS

MAGNETIC TAPE SWITCHES

Switches for Setting Density and Parity
Parameters

Switches for Positioning Magnetic Tape

Backspace to Start of Current File

Advance to End of Current File

G-SWITCH, ERROR RECOVERY

J-SWITCH, CARD PUNCH

vi

399

399

399

399

400

400

400

401

402
402
402
403

405

406
406

407
407

408
409

411

411

413

415
415

415
416

417
417
417
418

- 373 - PIP

CONTENTS

SECTION 5 PIP ERROR REPORTING AND ERROR MESSAGES

5.1 ERROR MESSAGES 419
5.2 I/O ERROR MESSAGES 419
5.3 FILE REFERENCE ERRORS 420
5.4 PIP COMMAND ERRORS 421
5.5 Y-SWITCH ERRORS 422
5.6 GENERAL ERROR MESSAGES 422
5.7 TMPCOR (DEVICE TMP) ERROR MESSAGES 424

APPENDIX A STANDARD FILENAME EXTENSIONS 425

vii

PIP - 374-

- 375 - PIP

SECTION 1

INTRODUCTION

1.1 INTRODUCTION

PIP (Peripheral Interchange Program) transfers files between standard

I/O devices and can be used to perform simple editing and magnetic

tape control operations during those transfer operations.

To call PIP into core (1) from the Monitor level, the user types the

command

.R PIP <CR>

When PIP is loaded and ready for input it prints the character * at

the console. The user may then enter the command string needed to

perform the desired operations followed by a carriage return input.

On completion of the operation or operations requested in a command

string, PIP again prints the character * to indicate that it is ready

for the next command string input. To exit from PIP, the user types

a Control C (tC) command.

1.1.1 Controlling PIP Indirectly

PIP is normally controlled by commands entered via the console key­

board. PIP, however, is also capable of reading commands from a pre­

pared file and executing these commands as if they had been just en­

tered via the input console. PIP command files which are to be pro­

cessed indirectly are identified by the addition of the symbol @ to

their identifying file specification (see paragraph 2.1.2 for a de­

scription of file specifications). For example, the file specifica­

tion FOO.CCL@ iuentifies the file FOO.CCL as an indirect command file.

Any filename extension may be used in specifying an indirect command

file, however, if none is given, the default extension .CCL is assumed.

An indirect PIP command file consists of one or more PIP commands

structured as described in Section 2.

(1) The PIP program operates in 4K pure core plus a minimum of lK
of impure core in ~ll DECsystem-10 systems.

1-1

PIP - 376 -

Once PIP is in core, the user passes control of PIP to an indirect

command file by entering the file's filename. For example, the in­

put command sequence

.R PIP
*FOO.CCL@

<CR>
<CR>

loads PIP and initiates the execution of the indirect PIP command

file FOO.CCL.

1.2 WRITING CONVENTIONS

The following symbols and abbreviations are used throughout this

manual:

symbol or
Abbreviation

dev:

file.ext

[directory]

fch

=

*

Meaning

Any logical or physical device name, the colon
must be included when it is used as part of a
PIP command.

Any filename and filename extension.

Identifies the directory of a specific file
storage area within the system; it may also
specify the location of specific file within
the identified storage area. (See paragraph
2.4 for a detailed description of [directory].)

When the input terminal used is either a Model
33 or 35 Teletype unit, the right and left
brackets are input in the following manner:

To Obtain a:

a) left bracket
b) right bracket

~

SHIFT K
SHIFT M

A control character obtained by depressing
the CTRL key and then the selected character
key (e.g. tz).

An equals character is used in the PIP command
to separate the destination and source command
sections.

NOTE

PIP will also accept the back arrow (SHIFT-O)
entry. A SHIFT-O entry is echoed on the term­
inal printer as the symbol +.

PIP's response to a command string to indicate
that it is ready for the next input string.

1-2

Symbol or
Abbreviation

<CR>

n

t

- 377-

Meaning

The Monitor's response to a command string to in­
dicate that it is ready for the next command.

This symbol represents a carriage return, line­
feed operation. It is initiated by the entry of
a RETURN keyboard input. A RETURN input is norm­
ally used to terminate each PIP input command.

Underscoring indicates computer typeout.

A number, either octal or decimal.

This up-arrow symbol indicates the use of a CTRL
key entry. The up-arrow is used with other char­
aGter key inputs to produce special control en­
tries such as tc which requests that control be
returned to the Monitor. Up-arrows are also used
to enclose identifiers which may be assigned to
DECtapes using the facilities provided by PIP
(see 3.2.1. 2.) .

1-3

PIP

PIP - 378 -

- 379 -

SECTION 2

PIP COMMAND STRING AND ITS BASIC ELEMENTS

2.1 COMMAND STRING

PIP command strings may be of any length; both upper and lower case

characters may be used. PIP commands are normally terminated and

the requested operation is initiated by a RETURN keyboard entry

(i.e., <CR». However, an ALT MODE, line feed, vertical TAB or

form feed keyboard entry can also be used as a command terminator.

2.1.1 Command Format

All PIP commands which involve the interchange (transfer) or data

must have the following format:

DESTINATION=SOURCE <Terminator>

where:

a. The DESTINATION portion of a PIP command describes
the device and filets) which are to receive the
transferred data. This portion of a command con­
sists of either one file specification or a subset
of a file specification.

b. The equals sign is a required delimiter in all PIP
commands to separate the DESTINATION and SOURCE por­
tions of the command.

c. The SOURCE side of the command describes the device
from which the transferred data is to be taken.
This portion of a command may contain one or more
file specifications or subsets of file specifications.

d. A Terminator is required to end each PIP command. A
RETURN entry (symbolized as <CR» is normally used,
however, any other paper-motion command may be used
as a terminator.

PIP

PIP commands which do not require the transfer of information may be

written using the form

DESTINATION=Terminator

The equals delimiter and a terminator are still required in commands

2-1

PIP - 380 -

formatted in this manner despite the fact that only the destination

portion of the command is used.

2.1.2 File Specification

A file specification contains all of the information needed to identi­

fy a file involved in a PIP function. It may consist of:

1. a device name;
2. a filename;
3. a directory identifier;
4. a protection code which is to be assigned to

either a specified file, a User File Direc­
tory (UFD) , or a SubFile Directory (SFD);

5. and an identifier to be assigned to the tape
mounted on a specified DECtape unit.

The format of a PIP command containing all possible items of a file

specification is:

dev:name.ext[directory] <nnn>tidentt=dev:name.ext[direc tory] <CR>

where:

1. DEV is either a physical device name (e.g., DSK, DTAl,
etc.) or a logical device name (refer to paragraph 2.2).

2. NAME is a 1 to 6 alphameric character identification
which is either to be assigned to a new file (NAME is
on the destination side of the command) or which identi­
fies an existing file (NAME is on the source side of
the command). (Refer to paragraph 2.3 for a description
of filenames.)

3. EXT is a 1 to 3- character extension assigned to the name
of a file either by the user or by the system. (Refer to
paragraph 2.3 for a description of filename extensions.)

4. [DIRECTORY] is the identifier of a specific directory
(i.e., UFD or MFD) within the system. This identifier

may consist of a project,programmer number pair and
Sub File Directory (SFD) names. (See paragraph 2.4 for
details.

5. <nnn> is a 3-digit protection code which is to be as­
signed to either one or more destination files or to a
specified User File Directoryl. (Refer to paragraph
2.5 for a description of protection codes.)

6. tIDENTt is a 1 to 6 character name which is to be given
to the contents of a DECtape reel mounted on a specified
DECtape unit. (Refer to paragraph 3.2.1.2 for details.)

lA User File Directory (UFD) is contained by the system for each user
permitted access to it. A user's UFD is identified by his project,pro­
grammer number; it contains the names of all files belonging to the
user together with pointers to the actual location of each file.

2-2

-381 - PIP

The manner in which each of the possible elements of a file specifi­

cation may be used in either the destination or source portions of

a PIP command is described in the following table:

Element Destination Source

dev.

name

.ext

Name of device onto which
the specified file is to
be written.

Name to be assigned to
the copied file.

User-specified file-name
extension.

Name of device on which
the specified file re­
sides.

Name of the file to be
copied.

Current filename exten­
sion.

[directory] Identification of the disk
storage area which is to
receive the file to be
transferred.

Identification of the
disk storage area which
contains the file to be
copied.

NOTE

The [directory] identifier must include a full directory
path specification whenever sub-file directories are in­
volved. For example [proj,prog,SFDA ... SFDn]. (See para­
graph 2.4 for more details.)

<nnn> Protection code to be as­
signed to either a copied
file or a specified UFD.

NOT PERMITTED IN SOURCE
PORTION OF PIP COMMANDS.

tidentt Name to be assigned to
the tape mounted on a
specified DEC tape unit.

NOT PERMITTED IN SOURCE
PORTION OF PIP COMMANDS.

File specifications may be delimited by:

1. an equals character (=) if the specification is on the
destination side of the command string (e.g.
dev:name.ext= ... <CR».

NOTE

PIP will accept a back-arrow entry (+)
in place of the equals character (=).

2. a comma (,) if the specification is on the source side
of the command string and is one of a series of file
specifications. For example

dev=devl:name.ext,dev2:name.ext,name.ext, .. name.ext<CR>

3. a RETURN <CR> entry if it is the last item on the source
side of a command. For example

dev=devl:name.ext,dev2:name.ext, .• devn:name.ext<CR>

2-3

PIP - 382 -

2.1.3 Command String Delimiters

The delimiters which may be used to separate the elements of a PIP

command string are described in the following table.

Delimiter

[]

< >

tt

()

PIP COMMAND STRING DELIMITERS

Use and Description

The colon delimiter follows and identifies a device
name. For example, the device DTAI is specified as
DTAl: in PIP commands.

Square brackets are used to enclose the user
DIRECTORY numbers and SFD names (if SFDs are used) .
For example [40,633] or [40,63"3,SFDl,SFD2, •.• SFDn]
represent the manner in which DIRECTORY numbers
can be written.

Angle brackets must be used to enclose a protection
code (e.g. <¢57> which is to be assigned to either
a file or a user file directory (UFO).

Commas are used to separate user project and pro­
grammer numbers, and file specification groups.
For example

dev: [4¢,633]=dev:name.ext,riame.ext<CR>

A name to be assigned as an identifier to a DEC­
tape is enclosed within a set of up-arrows (e.g.
tMACFLSt).

A period delimiter must be the first character of
a filename extension. The form on an extension is
.ext.

A number symbol is used as a flag to indicate the
presence of an octal constant in a filename or a
filename extension.

An exclamation symbol may be used to delimit a
file specification. When used, the ! symbol
causes control to be returned to the Monitor from
PIP and the specified file (or program) to be
loaded and run. This function is provided as a
user convenience to eliminate the need for several
control entries.

The equals character must be used to separate the
destination and source portions of a PIP command.

Parentheses are used to enclose magnetic tape op­
tions, PIP control switches, and one or more PIP
function switches. The form of a command employing
parentheses to enclose a series of switches is:

dev:name.ext(swlsw2 •• swn)= .•• <CR>

2-4

- 383 -

2.2 DEVICE NAMES

Both physical or logical device names may be used in PIP commands.

The user must remember that a logical name takes precedence over a

physical name when both are used in the same command.

2.2.1 Physical Device Names

Each standard DECsystem-10 peripheral device is assigned a specific

device name consisting of a 3-character generic name plus either a

unit number (0 to 777) or:

1) 3 characters,
2) 3 characters and a station number,
3) an abbreviated disk name or,
4) the name of a disk file structure.

A list of the generic physical device names is given below:

Device

Card Punch
Card Reader
Console '!'TY
DEC tape
Disk

Packs
Fixed-Head

Display
Line Printer
Magnetic Tape
Operator Terminal
Paper-tape Punch
Paper-tape Reader
Plotter
Pseudo-TTY
System Library
Terminal
Pseudo-device TMPCOR

PERIPHERAL DEVICES

Generic Physical Device Name

CDP
CDR
CTY
DTA
DSK
DPx
FHx
DIS
LPT
MTA
aPR
PTP
PTR
PLT
PTY
SYS
TTY
TMP

2.2.2 Logical Device Names

PIP

A logical device name is a user-assigned designation which is em­

ployed in the preparation of a program in place of a specific physi­

cal device name. The utie of logical device names permits the program­

mer to write programs which do not specify one particular device but

may use, at run time, any available device which can perform the re­

quired function.

2-5

PIP -~-

Logical device names may consist of from one to six alphanumeric

characters of the user's choice.

2.3 FILENAMES

Filenames are file identifiers assigned either by the system (for

system programs) or by the user. A filename may consist of a name

field and an extension field but only a name field is required.

Whenever both fields are used in a filename, it has the form name.ext.

A period delimiter is required as the first character of the exten­

sion. Filename fields are defined as:

1. Name Field. Names of files may consist of from one
to six alphanumeric characters or octal constants;
in user-assigned names the characters may be arbitrar­
ily selected by the user. Names generated by the user
must be unique at least within the file structure in
which the file is located.

2. Extension Field. Filename extensions may consist of
up to three alphanumeric characters. Extensions are
normally used to specify the type of data contained
by the file identified by the filename field. File­
name extensions which are recognized by the system
and the type of data each specifies are given in Ap­
pendix A. In filenames, users may specify a standard
extension (one recognized by the system), one which
he has devised, or none at all. If no extension is
given in a filename, the system may add one to the
filename during PIP operations.

PIP utilizes the filename extension given in a file
specification to determine whether the file is to be
transferred in a binary or ASCII mode. If it is all
possible, PIP will transfer files in a binary mode
since it is faster.

In dealing with filename extensions PIP performs a
specific series of tests in order to determine the
mode which should be used during a requested transfer
operation. The following mode determination tests
are performed in succession until PIP obtains a firm
indication as to the type of mode required:

a) PIP tests for the presence of a data
mode switch (see paragraph 3.4.). If
no switch is found, PIP goes to the
next test.

b) PIP tests for the presence of a known
(standard) filename extension which
specifies a binary mode of transfer
(see Appendix A). If no binary exten­
sions are found, PIP goes to the next
test.

2-6

- 385 -

c) PIP tests both the input and output
devices specified to determine if they
are both capable of handling binary
data. If either or both of the devices
cannot handle binary, the transfer is made
in the ASCII mode. If both devices can
handle binary data, PIP goes to .the next
test.

d) PIP tests for the presence of an X op­
tion switch (IX) in the command string;
if it is found, the transfer is made in
the binary mode. If an X option is-not
found, PIP goes to the next test.

e) PIP tests for the presence of commas
(non-delimiters) in the command string;
if commas are found an ASCII mode is
indicated. If no commas are found, the
transfer is made in the binary mode.

2.3.1 Naming Files with Octal Constants

PIP

Octal constants may be used as either a part of or all of a filename.

In either of the foregoing cases, the first constant of each group

of octal constants which appear in a filename must be preceded by

the symbol #, and each group is delimited by a non-octal digit or

a character. For example, the filenames:

1. #l24ABC. ext

2. #12AB#34.ext

3. #l2467~.#l23

are all acceptable to PIP.

(constants are used as part of a filename)

(constants are intermixed with other char­
acters)

(constants form the whole filename)

The symbol # is not regarded by PIP as part of the filename but is

used only as a flag to PIP to indicate an octal constant.

The number of octal digits used in a filename or an extension should

be even since two octal constants may be stored in a SIXBIT character.

If an odd number of octal constants is given, PIP will add an extra

~ to the filename or extension. For example, the constant #123 would

be expanded to #123~ by PIP.

Names comprised of octal constants are left-justified by PIP. The

following are examples of the use of octal filenames:

DTA~1:#12467~.BIN=DSK:#1~~~J~.BIN<CR>

2-7

PIP - 386 -

2.3.2 Wildcard Characters

The two symbols * and? may be used in PIP to represent, respectively,

complete fields and single characters. These symbols are referred

to as wildcard characters; their use is described in the following

paragraphs.

2.3.2.1 THE ASTERISK SYMBOL The asterisk symbol * may be used

to replace a filename or extension:

1. name field (e.g. *.ext),

2. extension field (e.g. name,*),

3. both filename fields (e.g., *.*).

For example, the filename FILEA.MAC, which specifies the MACRO source

language file named FILEA, may be altered by the use of the asterisk

in . the fo Ilm·ling manner:

1. *.MAC specifies all files with the extension .MAC.

2. FILEA.* specifies all files with the name FILEA, and,

3. *.* specifies all files.

2.3.2.2 THE QUESTION MARK SYMBOL The character? may be used to

indicate a wild character in file names and extensions. The symbol?

replaces characters of a filename to mask out any or all of the char­

acters of a name, extension or both the name and extension fields of

a file. When PIP processes a filename which includes? characters,

it ignores the wildcard characters. This masking capability enables

the user to specify, with one command, groups of files whose file­

name.s have common characters identically positioned wi thin their

filenames. For example, assume that the device DTAl contains the

files TEST1.BIN, TEST2.BIN, TEST3.BIN and TEST4.BIN; the user can

specify all of these files with one file specification:

DTA1:TEST?BIN

2.3.2.3 COMBINING * AND? WILDCARD SYMBOLS The symbols * and ?

can be combined in filenames to specify specific groups of files which

have common characteristics in either or both of their name or exten­

sion files.

2-8

- 387-

For example, the file specification

ABC??? *

specifies all files having the character group ABC as the first

three characters of its filename. Again, the file specification

*.??A

specifies all files having an extension which has the character A

as its third character.

PIP

In combining the * and? symbols, the user should remember that for:

a. filenames, * is equivalent to ??????, and

b. extensions, * is equivalent to ???

For example, the filenames *.* and ????????? are equivalent.

2.4 DIRECTORY IDENTIFIER

The [directory] identifier is used in PIP commands to identify a

specific:

a) User File Directory (UFO),

b. Sub File Directory (SFD) , or

c) a specific UFD-SFD directory path.

The item identified by a given [directory] identifier can be a direc­

tory or an item located within a directory which belongs to either

the current user or, when the protection code scheme permits, to

another user: (Refer to paragraph 2.5 for a description of protec­

tion codes.)

~ [directory] identifier can consist of a project,programmer number

pair (abbreviated as proj,prog) and the names of SFDs. The most

expanded form of the [directory) identifier is:

[proj,prog,SFD1,SFD2, ... SFDn]

As shown, a [directory] identifier is always enclosed within square

brackets and its elements are delimited by commas.

2-9

PIP - 388 -

2.4.1 UFD-Only Identifiers

Each UFD is identified in the system by the project, programmer num­

ber pair assigned to the user for whom the UFD was created. A

[directory] identifier for a UFD has the form

[proj,prog]

UFD [directory] identifiers may be written without either one or both

of the project,programmer numbers. In such cases, PIP assumes either

a previously specified default number or the number assigned to the

current user. For example, assume that the current user is logged

in under the number pair [57,124] and that no default identifier has

been specified. The current user can use [directory] identifiers

having any of the following formats:

The Format: Which is Interpreted by PIP as:

1) [, [57,124]

2) [57,] [57,124]

3) [,124] [57,124]

2.4.2 SFD (Full Directory Path) Identifiers

A Sub File Directory (SFD) is identified by its user-assigned name

plus the project, programmer number pair which identifies the UFD

in which it is located. A [directory] identifier for an SFD then

has the form

[proj,prog,SFDname]

Whenever an SFD is located in a UFD which has a multi-level direc­

tory arrangement, the UFD containing the desired SFD must be in­

cluded in the [directory] identifier for the desired SFD. A [direc­

tory] identifier for an SFO in a multi-directory level UFO has the

form

[proj,prog,SFD1,SF02, ... SFDn]

and is referred to as a full directory path identifier. For example,

assuming that the current UFD is identified by the proj,prog number

pair 57,124 and has the following directory organization:

2-10

Level 1

Level 2

Level 3

Level 4

SFDl

SFD2

- 389 -

UFD

SFDA

the [directory] identifier for SFD2 is written as

[57,124,SFDA,SFD1,SFD2]

SFDB

SFDC

PIP

The proj,prog number pairs in full directory path identifiers may

be written using the format variations described in paragraph 2.4.2.

However, when no proj,prog numbers are specified by the user, two

commas must be used in the identifier in the following manner

[, ,SFD1, .•• SFDn]

The first comma represents the delimiter between the proj,prog num­

bers; the second represents the delimiter between the last number

(prog) and the first SFD name.

2.4.3 Specifying Default and Current [Directory] Identifiers

The position in which a [directory] identifier is given in a PIP

command determines if it is viewed as a default identifier for all

subsequent file specifications given in that command or is the

current identifier for an individual file specification.

If a [Directory] identifier is given before one or more file speci­

fications of a command it regarded as the DEFAULT identifier for

those specifications. For example, in a command segment having the

form:

[directory A] File Specification 1,File Specification 2

the identifier [directory A] is the default for both File Specifica­

tions 1 and 2.

If a [Directory] identifier is given after the filename within a

File Specification it is viewed as the current identifier for that

file specification and will override any given default [directory].

The form of a file specification with the current identifier specified

is:

dev:filename.ext[directory]

2-11

PIP -m-

Both default and current [directory] identifiers can be specified

in the same PIP command. For example, the PIP command source seg­

ment:

=dev: [directory A]filename.ext,dev:filename.ext[directory B]<CR>

is valid. In the foregoing example, the identifier [directory A] is

the default identifier for the first file specification; and will

act as the default identifier for the second file specification if

[directory B] is not given. When [directory B] is given, it over­

rides the default identifier and is accepted as the identifier for

the second file specification.

2.5 FILE ACCESS PROTECTION CODES

Three-digit (octal) protection codes which specify the degree of ac­

cess that each of three possible types of users may gain to a file

can be specified in the destination side of a PIP command string.

File access protection codes are written within angle brackets and

must contain three digit positions (e.g., <nnn». Each digit within

a protection code specifies the type of access a specific type of

user may have to the file or files involved. Considering the pro­

tection code <nln2n3> the digits give the file access code for the

following types of users:

a. nl

b. n2

c. n3

File OWNER

project MEMBER, and

OTHER system users.

The user types are defined as follows:

1. FLLE OWNERS. Users who are logged in under either:

a. the same programmer number as that of the
UFD which contains the file; or

b. the same project and programmer number as
associated with the UFD which contains the
file.

The decision as to which of the above items defines
an OWNER is made at Monitor Generation time.

2. PROJECT MEMBER. Users who are logged in under the
same project number as that which identifiers the
UFD containing the file.

2-12

- 391 -

3. OTHER USERS, any user of the system whose project
and programmer number do not match those of the UFD
containing the file in question.

PIP

File access protection codes are placed in PIP commands after the

destination filename of the file involved. For example, the command

DPA3:FILEA.BIN<nnn>=DSK:SOURCE.BIN<CR>

copies the contents of file SOURCE.BIN onto disk pack device DPA3

under the name FILEA.BIN with an assigned file protection code of

nnn.

2.5.1 Digit Numeric Protection Code Values

Each of the digits in a 3-digit file protection code may be assigned

an encoded numeric value ranging from ¢ to 7. The meaning of each

octal value is:

Code Value

7

6

5

4

3

2

1

¢

Permitted Operations

No access privileges. File may be looked
up if the UFD permits.

Execute only.

Read, execute.

Append, read, execute.

Update, append, read, execute.

Write, update, append, read, execute.

Rename, write, update, append, read, execute.

Change protection, rename, write, update, ap­
pend, read, execute.

Files are afforded the greatest protection by the code value 7; the

least protection by ¢. It is always possible for the owner of a

file to change the access protection associated with that file even

if the owner-protection field is not set to ¢; thus, the values ¢

and 1 are equivalent for the owner. Files with their owner-protection

field set to 1 are preserved (i.e., saved by .KJOB/K).

It is recommended that important files such as source files be as­

signed an owner-protection code of 2. This level of protection will

prevent the file from being accidentally deleted by permitting them

to be edited.

2-13

PIP - 392 -

2.6 UFD AND SFD PROTECTION CODES

When a user directory (UFD or SFD) is created, it is assigned a

3-digit octal access protection code by either the owner of the

file or, by default, the system. The 3-digit code specifies the

type of access permitted to the directory by each of the three

possible classes of users (i.e., OWNER, MEMBER, or OTHER). (Refer

to paragraph 2.5 for a description of user classes.)

Once assigned, a directory access protection code may be changed

by the owner and, if the protection code permits (i.e. CREATES

allowed), by users other than the owner. (Refer to the description

of the PIP rename option given in paragraph 3.5.3.1 for the procedure

required to change directory protection codes.)

The access protection code assigned each user class ffiay range from

o through 7; the following table lists the codes and the operations

which each permits.

CODE

o

1

2

3

4

5

6

7

Revised

PERMITTED OPERATION(S)

Access not permitted.

The directory may be read as a file.

CREATEs are permitted.

The directory may be read as a file and
CREATEs are permitted.

LOOKUPs are permitted.

The directory may be read as a file and
LOOKUPs are permitted.

CREATEs and LOOKUPs are both permitted.

The directory may be read as a file and
both CREATEs and LOOKUPs are permitted.

June 1972

2-14

- 393 - PIP

SECTION 3

STANDARD PIP SWITCHES

3.1 OPTIONAL PIP FUNCTIONS

PIP provides the user with a group of optional functions which can

be executed during the performance of the primary PIP transfer func­

tion.

Each optional function is assigned an identifier which, when added

as a "switch" to a PIP command, initiates the execution of the identi­

fied function.

For the purposes of this manual, the PIP optional functions are di­

vided into standard and special groups. The standard group of op­

tions described in this section consist of switches which:

1. determine which files are transferred;

2. edit all the data contained by each source file;

3. define the mode of transfer;

4. manipulate the directory of a directory-type device.

All optional functions which deal with non-directory devices and

which perform functions other than those listed above are considered

special and are described in Section 4.

3.1.1 Adding Switches to PIP Commands

All switches in PIP commands must be preceded by a slash (i.e., /sw);

for example, the optional function identified by the letter w is added

to a PIP command:

*DTA1:DESTFL.BIN/w=DSK:FILEA.BIN,FILEB.BIN<CR>

When more than one switch is to be added to a command, they may be

listed either separated py slashes (e.g., /B/X ••.•) or enclosed in

parentheses (e.g., (BX».

3-1

PIP - 394-

3.2 BASIC TRANSFER FUNCTION

The basic function performed by PIP is the interchange (i.e., read/

write transfer) of files or data blocks between devices. There are

two types of transfer operations:

1. An optional X-switch transfer in which the source
files or blocks are transferred as separate files
to the destination device.

2. A non-X type in which all files or blocks trans­
ferred from the source device are combined (i.e.,
concatenated) into a single file on the destina­
tion device.

3.2.1 X-Switch Copy Files Without Combining

The use of the x-switch enables the user to move (copy) a group of

source files onto the destination device as individual files without

changing their creation dates, time dates, filenames and filename

extensions. The following are examples of how the x-switch is used

in PIP:

1. To transfer all the user's disk files to a DECtape,
type:

DTA1:/X=DSK:*.*<CR>

Assuming that there are three files on the user's
disk area named FILEA, FILEB, FILEC.REL, these
files will be transferred to DTAl and can be refer­
enced on DTAl by those names.

One significant difference between the disk and all
other devices is file protection. If the disk is
the source device, PIP will by-pass those protected
files to which the current user is not permitted
access. A suitable message is then issued by PIP
if the rest of the command string is successfully
executed. Similar processing is described later
for the L, Z and D switches. If none of these
switches is given, a requested DSK file which is
protected will cause termination of the request.

2. To transfer all the files from card reader to disk,
type:

DSK:/X+CDR:*<CR>

When transferring files from the card reader with
the * command, the input files must either be
wholly ASCII or wholly binary.

3-2

- 395 -

3. To transfer two specific files from user [11,7]'s
disk area to a DECtape, type:

DTA2:/X=DSK: [11,7]FILEA,REL.FILEA.MAC<CR>

4. To copy files from a paper tape onto a directory­
type device, the user may employ either:

a. A copy command in which the number of files
to be read are specified by adding a series
of commas to the command after the source
device name (i.e., PTR""",). The number
of commas required is always one less than
the total number of files to be transferred.
For example, the command:

DSK:/X=PTR:",,<CR>

specifies that five (5) files are to be
copied from paper tape and written, indi­
vidually, into the current user's disk area.

b. A copy command in which all the files con­
tained by a paper tape are to be copied onto
a specified device. For example, the command

DSK:/X=PTR:*<CR>

specifies that all files contained on the paper
tape loaded as PTR are to be copied into the
current user's disk area. Whenever a command
of this type is used, the last file on the
paper tape must be followed by two consecutive
end-of-file codes.

NOTE

In both the foregoing examples, PIP
will generate any needed destination
filenames. This function is described
in paragraph 3.2.1.1.

PIP

Whenever the x-switch is used and is not combined with an editing

option, PIP transfers any file involved as it appeared on the source

device. x-switch operations are copy operations and are referred

to as such.

3.2.1.1 NON-DIRECTORY TO DIRECTORY COPY OPERATION In copying

files from a non-directory device onto a directory-type device, PIP

must perform special operations in naming the destination files. For

example, a special case of source and destination filenames arises

in the command:

DTA2:FNME.EXT/X=HTA~:*<CR>

3-3

PIP - 396 -

Here, every file is to be copied from a non-directory device (MTA~)

to a directory device (DTA2) without combining files (Ix). Only one

destination filename is given (i.e" FNME.EXT) but the source device

(MTA~) may contain more than one file. If more than one file is

transferred, it is necessary for PIP to generate a unique filename

for each copied file. PIP generates filenames by developing a 6-

character name field in which the first three characters are either:

1. the first three characters of a given destination
filename, or

2. the characters "XXX" if no destination filename
is given in t"he command.

The second portion of the PIP-generated name field consists of tbe

decimal numbers ~~l through 999 which are added, in sequence, to

each filename developed during the Ix copy operation.

For filename extensions, PIP uses either the extension of a given

destination filename or a null field if no filename is given in the

command.

For example, assuming that three files are present on MTA~, the

command:

DTA2:FNME.EXT/x=HTA~:*<cR>

transfers the files to DTA2 and establishes the following names in

the DEC tape directory for the files copied:

1. FNM~~1. EXT,

2. FNM~~2.EXT,

3. FNM~~3.EXT.

If, in the above example, the command given did not include a destina­

tion filename (i.e., DTA2:/x=MTA~:*<CR» the copied files would have

been named:

1. XXX.0.01

2. xxx.0~2

3. XXX~~3

3-4

- 397-

The use of the 3-digit decimal number for the last three characters

of the filename name gives the user 999 possible input files from

non-directory devices. If PIP finds more than 999 files on the

source device it will terminate the transfer operation after the

999th file is copied and will issue the error message

?TERMINATE/X,MAX OF 999 FILES PROCESSED.

PIP

Any error messages referring to individual files named by PIP (either

input or output) will use the generated filename.

3.2.1.2 ASSIGNING NAMES TO DECTAPE TAPES A tape mounted on a

specified DECtape unit can be assigned an identifier during copy

operations. Identifiers are from 1 to 6 character names (any SIXBIT

character - except t - within the code range 40-137 can be used)

which are added to the DECtape's directory (128th word). DECtape

identifiers can be read by PIP, FILEX and DIRECT programs; the

Monitor does not read identifiers. A DECtape identifier is assigned

by adding the selected name to a PIP command when the DEC tape to be

named is mounted on the specified destination device.

The format-required for a DECtape identifier is

tnamet

A DECtape identifier is inserted into a PIP command following the

given destination device name:

dev:tnamet=source file specification(s)

For example, the command

DTA3:tMYFILEt/X=DTAl:.*

specifies that the DECtape on device DTA3 be given the identifier

"MYFILE" and receive cop1es of all the files contained by the tape

on device DTA1.

3.2.2 OX-Switch, Copy All But Specified Files

When the OX-switch is added to a PIP command it causes all the files

to be copied from the source device to the destination device except

3-5

PIP - 398 -

those files which are named in the command string. If the source

device is DSK, a maximum of 10 source-file specifications are allowed.

Only directory-type devices are allowed as source devices; no check

is made on the existence of the files which are not to be copied.

Only one source device is permitted; for example, the command

DTA1: (ZDX)=DSK:*.LST,*.SAV,CREF.CRF<CR>

zeroes out the directory of DTAl and transfers to DTA1, from the

disk, all files except CREF.CRF and all files with either the exten­

sion .LST or .SAV.

3.2.3 Transfer Without X-Switch (Combine Files)

When the X-switch is not included in a PIP command all files or

blocks transferred from the source device are combined into a single

file on the destination device. For example:

1. To combine three paper tape files into one, type

PTP:=PTR:,,<CR>

2. To combine two files on DECtape into one on another
DECtape, type

DTA3:FILCOM=DTA2:FILA,FILB<CR>

3. To combine files from two DECtapes into one on
the user's disk area, type

DSK:DSKFIL=DTA2:0NE,DTA4:TWO.MAC<CR>

4. To combine all the files on MTA~ into one file on
the user's disk area, type

DSK:TAPE.MAC=MTA~:*<CR>

(This assumes that MTA~ is positioned at the Load
Point) .

3.2.4 U-Switch, Copy DECtape Blocks ~, 1 and 2

The U-switch is used during DECtape-to-DECtape copy operation to

specify that Blocks ~, 1 and 2 of the source tape are to be copied

onto the destination tape.

This switch is commonly used to transfer DTBOOT from one tape to

another. For example, the command:

3-6

- 399 - PIP

DTAl:/U=DTA5:<CR>

transfers blocks ~ through 2 of DTA5 to DTAI.

3.3.1 A-Switch, Integral Output Lines (Line Blocking)

The use of the A-switch (/A) in a PIP command specifies that each

output buffer is to contain an integral number of lines, no lines

are to be split between physical output buffers. Line blocking is

required for FORTRAN ASCII input. Each line starts with anew word.

3.3.2 C-Switch, Delete Trailing Spaces and Convert Multiple Spaces
to Tabs

The addition of a C-switch (/C) to a PIP command causes groups of

multiple spaces in the material being copied to be replaced by one

or more TAB codes; trailing spaces are deleted.

The conversion of the spaces to TAB codes is performed in relation

to the standard line TAB "stop" positions located at 8-character

intervals throughout the line. Only those groups of multiple spaces

which precede a TAB "stop" will produce a TAB code. For example:

1. [space] [stop]--will not produce a TAB code.

2. [space] [space] [stop]--will produce [TAB].

3. [space] [space] [stop] [space] [space]--will produce [TAB]
[space] [space]

A totally blank input line is replaced by one space when this switch

is used. The C-switch is used to save space when storing card images

in DSK file structures. The conversion of spaces to tabs must be

done with care since it could alter Hollerith text.

3.3.3 E-Switch, Ignore Card Sequence Numbers

This switch, normally used when a card reader is the source device,

causes characters (i.e., columns) 73 through 8~ of each input line

to be replaced by spaces.

3.3.4 N-Switch, Delete Sequence Number

This switch causes line sequence numbers to be deleted from any

ASCII file being transferred. Line sequence numbers are recognized

3-7

PIP -@-

as any word in the file in which bit 35 is a binary 1 and follows a

carriage return, vertical TAB, form feed for start-of-file identifi­

cation. Nulls used to fill the last word(s) of a line are ignored.

If a line sequence number is followed by a TAB, the TAB is also

deleted.

3.3.5 S-Switch, Insert Sequence Numbers

This switch causes a line sequence number to be computed and inserted

as the output buffer at the start of each line. Sequence numbers are

indicated by a 1 in bit 35 of a word following a carriage return, a

vertical TAB or start-of-file indicator.

Sequence numbers assigned by PIP take the form nnnnn, starting at

~~~l~ and ranging through 999~ in increments of l~. Approximately 

one-third of each output buffer is left blank to facilitate editing 

operations on the file (DTA only) . 

3.3.6 O-Switch, Insert Sequence Numbers and Increment By 1 

This switch causep the same operations to be performed as those for 

switch S, (see 3.3.5) except that the assigned sequence numbers are 

incremented by 1 instead of l~. 

3.3.7 P-Switch, Prepare FORTRAN Output for Line Printer Listing 

This switch causes PIP to take output generated by a FORTRAN program, 

which was output on a device other than the line printer (LPT) , for 

which it was intended, and performs thd carriage control character 

interpretations needed when the data is sent to the LPT. The first 

character in each input line is interpreted by PIP according to the 

following table. 

3-8 



- 401 - PIP 

FORTRAN CARRIAGE CONTROL CHARACTER INTERPRETATION 

Carriage Control 
Character Produced 
by FORTRAN Program 

space 

* 

+ 

, (comma) 

/ 

ASCII Character(s) 
Substituted 

~23 

~15 

~2l 

~15, (H2, ~12 

~22 

~24 

Line Printer Action 

Skips to next line 
(single space) with a 

FORM FEED after every 
6~ lines. 

Skips to next line with 
no FORM l!'EED. 

Precede line with a car­
r iage. return only (i. e . , 
over-print previous 
line) . 

Skips to next 1/3~th of 
page. 

Skips two lines. 

Skips to next 1/2~th of 
page. 

Skips to next 1/6th of 
page. 

~ ~15,~12 Skips 1 line (double 
space) . 

1 ~14 Skips to top of next 
page (page eject). 

2 ~2~ Skips to next 1/2 page. 

3 ~13 Skips to next 1/3 page 
(also vertical tab). 

3.3.7.1 COPY FORTRAN BINARY FILES The binary mode switch (/B) 

can be combined with /P in a PIP command to enable the user to obtain 

a copy of a FORTRAN binary file. The /B/P switch combination is needed 

when copying FORTRAN binary filets) from a DECtape source onto a Disk 

in order to insert a needed contro·l word into each physical buffer. 

The /B/P switch combination is not needed if both the source and 

destination devices have the same buffer size. The format for a 

FORTRAN binary file copy command is 

dev:name.ext/B/P=dev:name.ext ••• <CR> 

3-9 



PIP - 402 -

3.3.8 T-Switch, Delete Trailing Spaces 

This switch causes all trailing spaces to be deleted from the file 

being transferred. If a transfer line consists of nothing but spaces, 

then a single space and a line terminator will be retained in its place 

in the copied file. 

3.3.9 W-Switch, Converts Tabs to Spaces 

The addition of a w-swi tch (/W) to a PIP command causes each TAB code 

contained by the material being copied to be converted to one or 

more sequential spaces. 

The number of spaces produced when a TAB code is converted is deter­

mined by the position of the TAB in relation to the standard line TAB 

"stops". Each line has TAB stops positioned at 8-character intervals 

throughout the length of the line. When a TAB is converted in a /W 

switch operation, only enough spaces are produced to reach the next 

sequential line TAB stop position. For example, the series 

[stop]ABCD[TAB] 

is converted to 

[stop]ABCDspspspsp[stop] 

where: 

sp space. 

The use of the W-switch causes files previously edited by the use 

of a C-switch to be restored to their original form (less the deleted 

~railing spaces). 

3.3.10 V-Switch, Match Angle Brackets 

This switch is not a true edit switch, because the input file is not 

edited. The use of this switch generates an output file which con­

tains the results of cumulative matching of angle brackets located 

in the input file. If a line in the input file contains brackets 

which are not needed to match earlier brackets and which match each 

other, no output occurs. In all other cases where brackets occur, 

3-10 



-@- PIP 

a cumulative total and the line currently considered are printed. 

The symbol > scores a negative count; the symbol < scores a positive 

count. A. typical use for this switch is to check source input to 

the MACRO-l~ Assembler; for example, assuming that the file A contains: 

The request 

LPT:=DTA2:A/V<CR> 

ONE«> 
TWO< 
THREE> 
FOUR<» 
FIVE<> 
SIX> 

results in the Line Printer output: 

1 ONE«> 
2 TWO< 
1 THREE> 
~ FOUR<» 

-1 SIX> 

From this general example, the most likely conclusion is that there 

is either a < missing or an extra> in this file. Line five (i.e., 

FIVE <» was not printed because the brackets which it contained 

were matched. 

3.3.11 Y-Switch, DECtape to Paper Tape 

The Y-switch enables the user to transfer DECtape files having the 

filename extension .RMT, .RTB or .SAV onto SAVE-formatted RIM1~ or 

RIM1~~ paper tapes. The type and contents of the paper tape produced 

in a Y-transfer is determined by the source file filename extension. 

If the extension is: 

1. .RMT, - A RIM1~ paper tape (with terminating trans­
fer word) is produced; 

2. .RTB, - A RIM1~~ paper tape (with RIM loader and 
terminating transfer word) is produced; 

3. .SAV, - A RIM1~B paper tape is produced (with 
neither RIM loader nor terminating transfer word). 

For example, the command 

PTP:/Y=DTA2:TESTI.RTB<CR> 

3-11 



PIP - 404-

will punch a RIM1~B tape as described in item 1 of the foregoing 

description from DECtape file TESTI.RTB. 

Switches D and X may be used in conjunction with the Y-switch. 

It is assumed that .RTB, .RMT and .SAV files are all in the standard 

"save" file format. In particular, it is assumed that no block of 

an .RMT saved file overlaps a preceding one. 

NOTE 

Optional switch Y is obtained by setting RIMSW=l 
at assembly time (see source file PIP.CTL.). 

The functions performed by PIP during /Y transfers in response to 

each possible type of source file filename extension are: 

1. An .RTB file causes PIP to: 

a. Punch a RIM loader. 

b. Punch an I/O word (-n,x) at the start of each 
data block. The variable n is the number of 
data words punched in each block and has the 
octal value 17, or less. The variable x is 
the starting address-l for loading the following 
data. Successive values of x are derived from 
the pointer words in the DECtape blocks. The 
first value of x is the value of the right side 
of the first pointer word in the DECtape file. 

c. The complete DECtape file is punched as de­
scribed in item b. 

d. The final block punched is followed by a block 
containing a transfer word. If the right half 
of .JBSA contains ~ then a halt is punched. If 
the right half of .JBSA contains a non-zero 
value, a jump to that address is punched. 

2. A .SAV file is treated in the same way as one having 
.RTB extension except that no RIM loader and no transfer 
word are punched. 

3. An .RTM file initiates PIP functions which are similar 
to those described for .RTB files but which have the 
following differences: 

a. Only one IOWD is produced, (-n,x) where (n-l) 
data words and a transfer instruction follow. 

b. The first of the (n-l) data words punched 
from the saved file is the first word of the 
logical block which contains location .JBDA 
(i.e., the first location after the end of 
the JOBDATA area) . 

3-12 



- 405 -

c. The variable x is then set to the start­
ing address (address-l) of the first data 
word found. The effective program length 
is determined by the relationship n=(.JBFF)-x. 
Data is now transferred from (x+l) until 
(n-l) words have been punched. 

d. Zero fill is used if a pointer word in a 
source block indicates noncontinuous data. 
The transfer word, calculated as described 
for .RTB files terminates the output file. 

3.4 SET DATA MODE, SWITCHES B, H AND I 

PIP 

The addition of optional data mode switches to a PIP command speci­

fies the mode in which the file(s) involved must be transferred. 

Data modes are device dependent; complete descriptions of their 

use and effect on different devices are given in the DECsystem-l~ 

Monitor Calls manual. 

If both input and output devices can do binary I/O, no editing 

switches are in force and no concatenation is required. All files 

are transferred in binary mode (36-bit bytes). If an editing switch 

that requires PIP to do character processing is used, ASCII mode 

is used. The data mode switches are: 

1. /B - initializes the input and output devices in 
binary mode. 

.BIN 

.CHN 

.CKP 

.DAF 

.DAT 

.DCR 

.DMP 

NOTE 

Since PIP recognizes the following 
as binary extension, /B is not re­
quired when these extensions are 
used in the PIP command. 

Binary Extensions Recognized by PIP 

.HGH 

.INI 

. LOW 

.QUC 

.QUD 

.QUE 

.QUF 

.RES 

.SAV 

.SFD 

.SHR 

.SYS 

.UFD 

2. /H - initializes the input and output devices in 
image binary mode. 

3. /1 - initializes the input and output devices in 
image mode. 

3-13 



PIP - 406 -

3.5 FILE DIRECTORY SWITCHES 

Optional PIP switches whose functions affect user file directories 

are described in paragraphs 3.5.1 through 3.5.6. 

3.5.1 L-Switch, List Source Device Directory 

NOTE 

The Monitor command DIRECT provides the 
user with more facilities for obtaining 
directory-type information than the PIP 
L-switch option (refer to the DECsystem­
l~ Monitor Command Manual for details). 

This switch enables the user to obtain a listing of the source device 

directory. The type of output device used affects the directory list­

ing as follows: 

1. If the output device is TTY, the directory listing 
formats for directory-type devices are: 

a. For .DTA source (e.g., TTY:=DTA4:/L<CR» 

n FREE BLOCKS LEFT 
filename.ext no .. of blocks creation date 

b. For DSK source (e.g., TTY:=DSK:/L<CR» 

DIRECTORY [directory] (CURRENT TIME) (TODAY'S DATE) 
where [directory] is the project-programmer 
number of the requested directory. 

filename.ext<protection>no.of blocks creation date 

Total Blks n 

Asterisk or question mark wildcard symbols (refer to paragraph 2.3.2.2) 

can be used in either the specified filename or extension fields to 

cause only those files in the disk directory of a particular filename 

or extension to be listed. Thus, the command TTY:/L=DSK:*.REL<CR> 

causes only those files with extension .REL to be printed in the direc­

tory listing. 

3-14 



- 407-

2. If the output is not TTY, the directory listing is 
printed in one of the following formats: 

a. For DTA, source format is as in paragraph 1. (a) 

b. For DSK, source format is as in paragraph 1. (b) 
but includes access date and mode as well as 
the creation time and access date. If any disk 
file is protected, as much information as pos­
sible is given about it. 

3.5.2 F-Switch, List Limited Source Directory 

PIP 

This switch performs, essentially, the same function as the L-switch; 

however, only the filenames and extensions of the files in the speci­

fied disk or DECtape directory are listed. 

NOTE 

The Monitor command DIRECT provides the 
user with more facilities for obtaining 
directory-type information than the PIP 
F-switch option (refer to the DECsystem­
l~ Monitor Command Manual for details) . 

Only DSK: and vTAn: are permitted as source device; if no source 

device is given, DSK: is assumed. 

For example .. the command 

TTY:/F=<CR> 

lists the directory of the user's disk area as described. The /F switch 

may work in cases where /L will not because of file access protection. 

3.5.3 R-Switch, Rename Source Files 

The use of this switch causes PIP to rename the source file to the 

name given as the destination file name. Only one source file 

specification can be given. If more than one is given, the error 

message PIP COMMAND ERROR is printed and no action is taken. The 

destination file specification can take the following forms (pro­

tection can always be specified): 

1. Filename. extension 
2. Filename. * 
3. * ,Extension 
4. *.*<protection> 

3-15 



PIP -408-

5. Filename 
6. ?????? ext 
7. ????????? 
8. *.??? 
9. ??????* 

In fact, <protection> can always be specified but the request *.* (4) 

has no effect without it. If no protection is specified, the current 

file protection is not altered. 

During a rename operation on device DSK, if PIP finds that the file­

name to be changed exists on more than one file structure, PIP wi.ll 

output the following message to the user's terminal: 

?AMBIGUOUS[file structure list] [filename.ext] 

The following are examples of the proper use of the /R switch: 

1. DSK:MONI.F4/R=MONI.MAC<CR> 

Rename the file MONI.MAC as MONI.F4. 

2. DSK : MON2 ,* /R=MONA. * <C.R> 

Rename all files of name MONA and any extension 
to retain the extensions but take the new name 
MON2. 

3. DSK:*.EXT/R=*.MAC<CR> 

Rename all files of extension MAC to retain their 
own names but take the extension EXT. 

4. DSK:*.*<~77>/R=*.SAV<CR> 

Give all files of extension SAV the protection 
~77 

5. DTAl:MON2/R=MONA.REL<CR> 

Rename the file MONA.REL to have the name MON2 
and the null extension. 

3.5.3.1 CHANGING SOURCE UFD OR SFD PROTECTION CODE USING THE RENAME 
(R) FUNCTION 

- The access protection codes assigned to UFDs or SFDs can be changed 

using the PIP rename switch (/R) if the privileges assigned the cur­

rent user permits the operation. (Refer to the DECsystem-lO Monitor 

Calls manual for a detailed description of user UFD and SFD access 

privileges.) The owner of a directory is always permitted the use of 

the PIP rename function. 

3-16 



-~- PIP 

The command format requir~d to change a directory access protection 

code is 

where: 

*dev: [directory] .UFD<nnn>/R=[directory].UFD<CR> 

1. <nnn> represents the desired (new) protection code. 

2. [directory] must be the same on both sides of the 
command. 

3. The user indicates to PIP that the protection 
code of the identified directory (UFD or SFD) 
is to be changed by specifying the extension 
.UFD without a filename. Note that the same ex­
tension, .UFD, is used when changing the access 
protection of an SFD as well as for changing the 
protection of a UFD. 

The following examples illustrate the use of the /R switch in chang­

ing the access protection codes of directories. 

1. The command: 

DSKA: [57,123].UFD<222>/R=[57,123].UFD<CR> 

changes the access code of the UFD identified by the 
number pair 57,123 to /222. 

2. The command 

DSKA: [57,123,AAA,BBB,111].UFD<222>/R=[57,123,AAA,BBB,111].UFD<CR> 

changes the access code of the SFD named 111 to the value 
222. Note that the last name given in the [directory] 
identifier is the SFD which is affected by the /R opera­
tion. 

3.5.4 D-Switch, Delete Files 

This switch causes PIP to delete one or more specified files from 

the device given in the destination side of the PIP command. Only 

one device can b~ specified in a delete command; it is assumed that 

the source and destination devices are the same device. 

For example, the following command 

DSK:/D=FILEA,FILEB,FILEC.MAC,*.REL<CR> 

3-17 



PIP - 410 -

causes PIP to delete from the user's disk area files FILEA, FILEB, 

FILEC.MAC and all files having the extension .REL. 

If a nonexistent file is specified in a delete command, PIP prints 

the error message 

%filename.ext FILE WAS NOT FOUND 

and continues to process-deletions of the existing specified files. 

If an existing file is found to be protected it will be skipped and 

the message 

?filename.ext (2) PROTECTION FAILURE 

is printed. If a user has the correct privileges he can delete files 

from other users' areas. 

NOTE 

An attempt to delete files from a DECtape that is 
write-locked results in the error message 

DEVICE dev.name OPR operator station no. 
ACTION REQUESTED 

being printed at the user's terminal. When a sys­
tem operator has write-enabled the DECtape unit 
involved, he will start the requested action and 
cause the message 

CONT BY OPER 

to be printed at the user's terminal. 

On completion of a disk delete operation, PIP lists the names of 

the files deleted and the total number of blocks freed by the deletion. 

For example, assume that a file th-ree blocks in length and named 

FILEA.MAC exists in the current UFD: the command for its deletion and 

the subsequent messages printed by PIP would appear as: 

*DSK:/D=FILEA.MAC <CR> 

FILES DELETED: 

FILEA.Ml\C 

3 ULOCKS FREED 

* 

(user command) 

(PIP response) 

(PIP response) 

(PIP response) 

3-18 



- 411 - PIP 

3.5.5 Z Switch, Zero Directory 

The use of this switch causes PIP to zero out the directory of the 

destination's device; a source device does not have to be specified 

in the command. A Z-switch request is implemented before any other 

operation specified in the command string in which it occurs. Thus, 

DTA2:CARDS/Z=CDR:<CR> 

zeroes out the directory of DTA2 before transferring one file from 

CDR onto DTA2. The command 

DTA2:/Z=<CR> 

zeroes out the directory of DTA2. 

If the destination device is the disk, an attempt is made to delete 

all the files whose names are found in the directory specified. If 

protection codes prohibit the deletion of some of the files, the re­

quest will terminate after as many files as possible have been deleted, 

and the message 

?filename.ext(2)PROTECTION FAILURE 

is printed. The user should then change the protection of the pro­

tected files and repeat his request if he wants all files deleted. 

For example, the command 

DSK:FLOUT/Z=DTA2:CARY<CR> 

zeroes out the directory of the user's disk area, transfers file CARY 

from DTA2 to the disk, and names the disk file FLOUT. 

3.5.6 Q-Switch, Print Summary of PIP Functions 

This switch causes PIP to print on a specified device the system 

device file SYS:PIP.HLP. This file contains an alphabetical list 

of all PIP switches and functions. For example, the command 

LPT:/Q=<CR> 

causes the following summary to be listed on the line printer: 

3-19 



PIP 

PIP 

A 
B 
C 

D 
E 
F 

G 
H 
I 
J 

L 
M 
N 
0 

P 

Q 

R 
S 

T 
U 
V 
W 
X 
*'l 

Z 

MTA switches: 

- 412-

Switches (Alphabetic order) Summary 

Line Blocking 
Binary Processing (Mode) 
Suppress Trailing Spaces, Convert 

Multiple Spaces to TABs 
Delete File 
Treat (Card) Columns 73-80 as Spaces 
List Disk or DTA Directory *Filenames 

and Ext. only) 
Ignore I/O Errors 
Image Binary Processing (Mode) 
Image Processing (Mode) 
Punch Cards in 029 (Output Device 

must be CDP) 
List Directory 
See MTA Switches Below 
Delete Sequence Numbers 
Same as /S switch, except Increment 

is by 1 
FORTRAN output Conversion assumed. 

Convert format control character 
for LPT listing. /B/P FORTRAN 
Binary 

Print (this) List of Switches and 
Meanings 

Rename File 
Resequence, or Add Sequence Number 

to File; increment is by l~ 
Suppress Trailing Spaces Only 
Copy Block ~ (DTA) 
Match parentheses «» 
Convert TABs to Multiple Spaces 
Copy Specified Files 
RIM, DTA to PIP if source extension is RTB 
Destination format is RIM Loader, RIM l~~ 
file transfer. If source extension is SAV 
destination format is as RTB - RIM l~B file 
only. If source extension is RMT destina­
tion format is RIMl~. 
Zero Out Directory 

Enclose in parentheses ( ). 

M followed by 8 means select 
5 
2 
E 
A 
D 
B 
P 
W 
T 
U 
F 

8~~ B.P.I. Density 
556 B.P.I. Density 
2~~ B.P.I. Density 
Even Parity 
Advance MTAI File 
Advance l-:lTAl Record 
Backspace MTAI File 
Backspace MTAI Record 
Rewind MTA or DTA 
Skip to Logical EOT 
Rewind and Unload MTA 
Mark EOF 

or DTA 

(M#NA), (M#NB), (M#ND), (M#NP) mean advance or backspace MTAn 
files, or records. 

*This is an optional switch obtained by setting RIMSW=l at assembly time. 

3-20 



- 413 - PIP 

3.6 PERMITTED SWITCH COMBINATIONS 

The combinations of PIP's standard and special option switches which 

are permitted in PIP commands are illustrated in the :'ollowing matrix. 

ABC D E F G " J K L M N 0 P Q R STU V W x y 

A 

B 

C I 

D 

E I 

F 

I 

I 

I 

G I I I I I I I I I 

H 

J I 

K 

L 

M I I I 

N I 

o I 

p 

I 

I 

Q I I I 

R 

S I 

T 

U 

v I 

W 

I 

I 

I 

I 

x I I I 

y 

I I I 

I 

I 

I 

I 

I 

I 

I I I 

I 

I 

I I I 

I I I I 

I I I I I I 

LEGEND: 

Blank 

I I I 

I 

I 

I 

I I I I I 

I I I I I 

I I 

I I 

I I 

I I I I I I I I I 

I 

I 

I 

I I I I I I I 

I 

I 

I I I 

I I I 

I 

I 

I 

I 

I I 

I I I I I I I I 

I I 

I 

I I 

I I I 

I 

I 

I I 

I I I 

I I 

I I 

I I 

I 

IIIIII I I I I I I I 

A permitted combination 
A permitted but unlikely combination 
Not permitted 
Special purpose combin~tion 
Untested or unused combination 

3-21 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

# 

I 

I 

I 

I 

I 

I 

I 

Notes 

ASCII mode 

Binary mode 

ASCII mode 

Delete only 

ASCII mode 

List Directory only 

Always legal 

Binary mode 

Binary mode 

ASCII mode 

Unused 

List Directory only 

Magnetic Tape Only 

ASCII mode 

ASCII 

FORTRAN 

Prints file PIP. HLP 

Rename only 

ASCII mode 

ASCII mode 

DTA only 

ASCII mode 

ASCII mode 

ASCII or Binary mode 

Binary mode 

Output only 



PIP - 414 -



- 415 - PIP 

SECTION 4 

SPECIAL PIP SWITCHES 

4.1 SPECIAL PIP FUNCTIONS 

This section contains descriptions of optional PIP functions used in 

magnetic tape, error recovery and card punch operations. 

4.2 MAGNETIC TAPE SWITCHES 

When magnetic tape is used in a file transfer, PIP can set the tape 

parity and density parameters and position the tape reels. In PIP 

commands, magnetic tape switches apply to only one particular magnetic 

tape unit or file specification. 

The optional PIP magnetic tape (MTA) switches are written enclosed 

in parentheses; the letter M is used as the first character of all 

optional switches or series of switches (e.g. (Msw) or (Mswlsw2 .. ). 

MTA switches must appear within the command file specifications of 

the particu.lar file to which they refer. Thus, MTA switches refer 

to a particular device and, except for density and parity selections, 

to a particular file specification of that device. 

4.2.1 Switches for Setting Density and Parity Parameters 

The default Monitor density of 8~~ bits-per-word (bpi) and odd parity 

are assumed unless either the Monitor SET DENSITY command was given 

or one of the following switches is included in the PIP command file 

specifications: 

Switch 

(M8 ) 
(M5) 
(M2) 
(ME) 

Meaning 

8~~ bpi density (default valuei 
556 bpi density 
2~~ bpi density 
Even parity (odd parity is default) 

The following command string causes PIP to transfer a file from MTAl 

to MTA2 at 2~~ bpi, with even parity (and in ASCII line mode) 

MTA2: (M2E)=MTA1(ME2) <CR> 

4-1 



PIP -416-

4.2.2 Switches for Positioning Magnetic Tape 

The following switches are used in PIP command strings for magnetic 

tape handling: 

Switch 

(MA) 
(MB) 
(MD) 
(MP) 
(MW) 
(MT) 
(MU) 
(MF) 

Function Performed 

Advance tape reel one file. 
Backspace tape reel one file. 
Advance tape reel one record. 
Backspace tape reel one record. 
Rewind tape reel. 
Skip to logical End-of-Tape. 
Rewind and unload. 
Mark End-of-File. 

In PIP MTA commands, the source device need not be given. For 

example, to rewind MTA1:, type 

MTA1: (MW) =<CR> 

If a source device is specified in the command string, information 

transfer will occur, except when PIP is requested to rewind and un­

load a magnetic tape. 

Several magnetic t~pe functions may be specified in a single command 

string. Density or parity, when changed, will appear in the file 

specification. In the following example, density is set to 2~~ bpi, 

parity is even, the tape is to be rewound and the first, third, fourth 

and fifth files on that reel are to be printed on the line printer. 

LPT:=MTA1: (M2EW), (MA),,<CR> 

If multiple backspace, advance file or record movements are needed, 

the number of movements required is specified by #n (interpreted as 

decimal). All positioning switches are implemented before any 

related file transfers are made; thus MTA1:(M#3A)-PTR: will advance MTAl 

by three files before transferring a paper tape file to it. 

1. If a backspace file (M#nB) request is given, after 
completion of "n+l" backspace files one advance 
file request is made unless the tape is at Load 
Point. In this way the tape is always initially 
positioned at the beginning of a file. Thus, the 
command: 

MTA~: (MB) =<CR> 

4-2 



- 417 -

will backspace MTA~ to the start of the previous 
file. 

2. If the Load Point is reached before a backspace 
file or record request is completed, an error 
diagnostic will terminate the run and the fol­
lowing error message is printed 

?LOAD POINT BEFORE END OF BACKSPACE REQUEST? 

3. Only one MTA movement per file specification is 
allowed in a command string. Thus: 

MTA~: (MT# 2B) = ••• <CR> 

is illegal since it requests two distinct types 
of MTA movement. 

PIP 

4.2.2.1 BACKSPACE TO START OF CURRENT FILE The specification of ~ 

as the value of n in a multiple backspace command (e.g., M#~B) causes 

the tape to be backspaced to the start of the current file. The use 

of M#~B is not the same as MB, switch MB is equivalent to M#lB~ 

4.2.2.2 ADVANCE TO END OF CURRENT FILE The specification of ~ as 

the value of n in a multiple advance command (e.g., M#~A) causes the 

tape to be moved to a point just before the EOF marker of the current 

file. The use of M#~A is not the same as MA, switch MA is equivalent 

to M#lA. 

NOTE 

The advance and backspace record requests are 
available as a convenience for the knowledgeable 
user, and should be approached with caution. 
Always remember that PIP typically has mUltiple 
input and output buffers and the physical posi­
tion of the tape need not correspond to the physi­
cal position of the record currently being pro­
cessed. 

4.3 G-SWITCH, ERROR RECOVERY 

If the error recovery switch /G is present in a command string, a 

specific set of I/O errors will be acknowledged by error messages. 

The I/O errors affected by the presence or absence of /G are listed 

in Section 5, paragraph 5.2, item 3 of the error messages, and are 

flagged by an asterisk (*). Processing will continue after the error 

message is printed as though no error had occurred. Thus, must I/O 

errors occurring within a file may be overridden. However, if the 

same error condition occurs in each buffer of the file, the error 

4-3 



PIP - 418 -

message is repeated for each buffer until either the end of file 

occurs or the error condition disappears. A disk directory is used 

as an input file if it is read to be either listed or searched and 

is obtained as a core image from the Monitor; therefore, it is not 

subject to the input errors which may be diagnosed by PIP. However, 

I/O errors can occur for DECtape directories and are diagnosed at the 

Monitor level when a directory is read or written. This is, typically, 

on a LOOKUP or RELEAS request. If the G-switch is not used, any I/O 

error will close the current output file and, after printing a suit­

able message, terminate the current request to PIP. 

4.4 J-SWITCH, CARD PUNCH 

The J-switch causes cards to be punched in ~29 mode. The output de­

vice specified by the command string must be the card punch (COP). 

4-4 



- 419 -

SECTION 5 

ERROR REPORTING AND ERROR MESSAGES 

5.1 ERROR MESSAGES 

This section describes the various types of error conditions and 

error messages that can occur during PIP operations. 

The special treatment of recoverable error messages which prevent 

the current job being prematurely terminated when running under the 

Batch Processor is also described. 

PIP 

When an error message terminates a PIP run, both the input and out­

put devices are released. This means that all files, fully or partly 

created, are available on the destination device. 

NOTE 

All error messages preceded by a question mark 
(?) indicate a fatal (non-recoverable) error. 

5.2 I/O ERROR MESSAGES 

I/O error messages are opened with a description of the relevant 

device and file; for example, 

1. INPUT 

OUTPUT 

DEVICE DTA3:FILE FILNAM.EXT ••• 

DEVICE DTA3:FILE FLNAM.EXT •.• 2. 

3. DISK DIRECTORY READ ••• 

Device 

DTA,DKS,MTA 
*CDR 
*OTHER 
*ALL DEVICES 
*ALL DEVICES 
DTA 

*OTHER 
*MTA 

Message 

WRITE (LOCK) ERROR 
7-9 PUNCH MISSING 
BINARY DATA INCOMPLETE 
DEVICE ERROR 
CHECKSUM OR PARITY ERROR 
BLOCK OR BLOCK NUMBER 
TOO LARGE 
INPUT BUFFER OVERFLOW 
PHYSICAL EOT 

*Recoverable error if a G-switch is used, read paragraph 4.3 for a 
description of /G. 

5-1 



PIP - 420 -

Thus, for the command DTA4:CON.REL=DTA3:CON.REL, if DTA4 is WRITE 

LOCKed, PIP prints the error message: 

?OUTPUT DEVICE DTA4:FILE CON,REL WRITE(LOCK)ERROR 

Other messages for devices are: 

1. ?DEVICE dev DOES NOT EXIST (DEVCHR request) 

2. ?DEVICE dev NOT AVAILABLE (INIT request) 

5.3 FILE REFERENCE ERRORS 

The following error messages can occur during a LOOKUP, RENAME or 

ENTER request on disk. 

message:? (filename. ext) then one of the following: 

(~) FILE WAS NOT FOUND or (~) ILLEGAL FILE NAME (used 
for enter errors only) 

(1) NO DIRECTORY FOR PROJECT-PROGRAMMER NUMBER 
(2) PROTECTION FAILURE 
(3) FILE WAS BEING MODIFIED 
(4) RENAME FILE NAME ALREADY EXISTS 
(5) ILLEGAL SEQUENCE OF UUOS 
(6) BAD UFD OR BAD RIB 
(7) NOT A SAV FILE 

(l~) NOT ENOUGH CORE 
(11) DEVICE NOT AVAILABLE 
(12) NO SUCH DEVICE 
(13) NOT TWO RELOC REG. CAPABILITY 
(14) NO ROOM OR QUOTA EXCEEDED 
(15) WRITE LOCK ERROR 
(16) NOT ENOUGH MONITOR TABLE SPACE 
(17) PARTIAL ALLOCATION ONLY 
(2~) BLOCK NOT FREE ON ALLOCATION 
(21) CAN'T SUPERSEDE (ENTER) AN EXISTING DIRECTORY 
(22) CAN'T DELETE (RENAME) A NON-EMPTY DIRECTORY 
(23) SFD NOT FOUND 
(24) SEARCH LIST EMPTY 
(25) SFD NESTED TOO DEEPLY 
(26) NO-CREATE ON FOR SPECIFIED SFD PATH 

If the error code (V) is greater than 26 8 , the error message: 

?(V) LOOKUP,ENTER, OR RENAME ERROR 

is printed. 

Error values are used by the UUO's LOOKUP, ENTER and RENAME. Refer 

to the DECsystem-lO Monitor Calls manual for complete descriptions 

of these UUO's. 

5-2 



- 421 -

The following error messages may be given on a reject to an ENTER 

request on DECtape: 

1. The error message printed if ther'e is no room for 
an entry in a DECtape directory is 

?DIRECTORY FULL: 

2. The error message printed if a zero filename is 
given for a DECtape output file is 

?ILLEGAL FILE NAME: 

PiP 

The following message is given if a filename is not found in a direc­

tory search of disk or DEC tape 

?NO FILE NAMED filename. ext 

5.4 PIP COMMAND ERRORS 

The following error messages are output by PIP on the detection of 

errors in the user command string: 

1. ?PIP COMMAND ERROR 

Some of the possible causes of this type of error 
are: 

a. an illegal format for a command string, 

b. a nonexistent switch was requested, 

c. a filename other than * or *.* was given 
for a non-directory (source) device. 

2. ?INCORRECT PROJECT-PROGRAMMER NUMBER: 

The project-programmer number must be in the form 

[number,number] 

where ¢<number<777777 S ' a full path specification 
must be made if SFD's are involved. 

3. ?SFD LIST TOO LONG: 

Too many SFD's were listed in the full directory 
path. A maximum of five levels (not including 
the UFD) is permitted in a directory path speci­
fication. 

4. ?ILLEGAL PROTECTION: 

The protection number must be in the form <number>, 
where: ¢<=number<=777 S ' 

5-3 



PIP -422-

5. ?NO BLOCK ~ COpy 

The /U switch was specified, but PIP was not as­
sembled to allow this. 

6. ?TOO MANY REQUESTS FOR ••• (magnetic tape) 

Conflicting density and/or parity requests were 
given. 

5.5 Y-SWITCH ERRORS 

The following error messages occur only when the Y-switch is included 

in the PIP command string: 

1. ?DTA to PTP ONLY: 

Only DECtape input and paper tape output are permitted. 

2. ?/Y SWITCH NOT AVAILABLE THIS ASSEMBLY: 

The /Y switch was specified, but PIP was not assembled 
to allow this. 

3. FILE filename. ext ILLEGAL EXTENSION: 

The extensions of the filenames given must be .RMT, 
.RTB or .SAV. 

4. Filename.ext ILLEGAL FORMAT: 

The reasons for getting the diagnostic ILLEGAL FORMAT 
are: 

a. a zero length file was found, 

b. the required job data information was not avail­
able, 

c. a block overlapped a previous block (RIM l~), 

d. an EOF was found when data was expected, 

e. a pointer word ex~ected but not found in the 
source file. 

5.6 GENERAL ERR{)R MESSAGES 

The following is a list of the PIP error messages which are not in­

cluded in any of the preceding categories: 

1. ?DISK OR DECTAPE INPUT REQUIRED: 

This message is printed when a non-directory source 
device is specified for a PIP function which requires 
a directory-type $ource device. 

5-4 



- 423 -

2. ?filename.ext ILLEGAL FILE NAME: 

This message is output if an attempt is made to 
ENTER without giving a filename. 

3. Errors found during Ix, Iz, ID, and IR operations 
result in error messages which pertain to the speci­
fic error found. Error messages for these operations 
are printed only if no other fatal error occurs be­
fore the command string is processed. If another 
error does occur, its diagnostic takes precedence 
over the diagnostics for the above switch functions. 

4. ?4K NEEDED: 

4K not currently available but is needed (for non­
reentrant disk system). 

5. ?DECTAPE IIO ONLY: 

The IIO device for a block ~ copy (/U switch) must 
be a DECtape. 

6. ?TERMINATE IX.MAX. OF 999 FILES PROCESSED: 

PIP, during a Ix copy function from a non-directory 
device, has processed 999 files. This is the maxi­
mum number of files which such a IX request can 
handle. 

7. ?TOO MANY INPUT DEVICES: 

This error is for the ID and IDX functions; only 
one input device is allowed when these switches are 
used. If more than one device is specified in a ID 
command and the first device given is DSK, the disk 
files are deleted when this diagnostic is given. 

8. ?NO FILE NAMED PIP.HLP: 

The data file requested by a PIP Q-switch is not 
available on the system device~ 

9. ?LINE TOO LONG: 

During an ASCII mode file transfer a line containing 
more than 18~ characters was detected. This occurs 
only when switches entailing line processing are 
given (i.e., IA or IS). 

10. ?LOAD POINT BEFORE END OF BACKSPACE REQUEST: 

This diagnostic occurs only if either the MTA (M#nB) 
or (M#nP) switch is used. If the Load Point is 
sensed before the "n" backspace files or records 
function is completed, an error is assumed to have 
been made by the user. 

5-5 

PIP 



PIP - 424 -

5.7 TMPCOR (DEVICE TMP) ERROR MESSAGES 

If the temporary storage facilities provided by the UUO TMPCOR are 

used or are attempted to be used during PIP operations, the follow­

ing error messages can occur: 

1. ?TMPCOR NOT AVAILABLE: 

2. ?NOT ENOUGH ROOM IN TMPCOR: 

3. ?COMMAND NOT YET SUPPORTED FOR TMPCOR: 

4. nn TMPCOR WORDS FREE 

Number of word locations free in the TMPCOR storage 
area. 

Refer to the DECsystem-l~ Monitor Calls manual for a description of 

the UUO TMPCOR. 

5-6 



Filename 
Extension 

AID 

ALG 

ALP 

BAC 

BAK 

BAS 

BIN 

BLB 

BLI 

BNC 

BUG 

CAL 

CBL 

CCL 

CCO 

CKP 

CHN 

CMD 

CMP 

COR 

CRF 

- 425 - PIP 

APPENDIX A 

STANDARD FILENAME EXTENSIONS 

Type of 
File 

Source 

Source 

ASCII 

Object 

Source 

Source 

Object 

ASCII 

Source 

ASCII 

Object 

Object 

Source 

ASCII 

ASCII 

Binary 

Object 

ASCII 

ASCII 

ASCII 

ASCII 

Table A-l 

Filename Extensions 

Meaning 

Source file in AID language. 

Source file in ALGOL language. 

Printer forms alignment. 

Output from the BASIC Compiler. 

Backup file from TECO or LINED. 

Source file in BASIC language. 

Binary file. 

Blurb file. 

Source file in BLISS language. 

BINCOM output. 

Saved to show a program error. 

CAL data and program files. 

Source file in COBOL language. 

Alternate convention for command file 
(@ construction for programs other 
than COMPIL). 

Listing of modifications to non­
resident software. 

Checkpoint cora image file created 
by COBOL operating system. 

CHAIN file. 

Command file for indirect commands 
(@ construction for COMPIL). 

Complaint file by GRIPE. 

Correction file for SOUP. 

CREF (cross-reference) input file. 

A-l 



PIP 

Filename 
Extension 

CTL 

DAE 

OAT 

OCR 

DDT 

DIR 

DMP 

DOC 

ERR 

F4 

FLO 

FRM 

FUD 

HGH 

HLP 

INI 

LOG 

LOW 

LSD 

LSQ 

LST 

MAC 

MAN 

- 426 -

Table A-I 

Filename Extensions (Cont'd) 

Type of 
File 

ASCII 

Binary 

ASCII, 
Binary 

Binary 

ASCII 

ASCII 

PDP-6 

ASCII 

ASCII 

Source 

ASCII 

ASCII 

ASCII 

Object 

ASCII 

ASCII, 
Binary 

ASCII 

Object 

ASCII 

ASCII 

ASCII 

Source 

ASCII 

Meaning 

MP batch control file. 

Default output for DAEMON-taken core 
dump. 

Data (FORTRAN) file. 

Core image save (DCORE). 

Input file to FILDDT. 

Directory from FILE command or DIRECT 
program. 

PDP-6 format for a file created by a 
SAVE command. 

Listing of modifications to the most 
recent version of the software. 

Error message file. 

Source file in FORTRAN language. 

English language flowchart. 

Form. 

FUDGE2 listing output. 

Nonsharable high segment of a two-segment 
program. 

Help files containing switch explanations, 
etc. 

Initialization file. 

MP batch log file. 

Low segment of a two-segment program. 

Default output for DUMP program. 

Queue listing. 

Listing data. 

Source file in MACRO language. 

Manual (documentation) file. 

A-2 



Filename 
Extensions 

MAP 

MEM 

MSB 

MUS 

OLD 

OPR 

PAL 

PBT 

PLG 

QUC 

QUD 

QUE 

QUF 

REL 

RIM 

RMT 

RNC 

RND 

RNO 

RNP 

RSP 

RTB 

SAV 

SCP 

SFD 

SHR 

- 427 - PIP 

Table A-I 

Filename Extensions (Cont'd) 

Type of 
File 

ASCII 

ASCII 

Object 

Source 

Source 

ASCII 

Source 

ASCII 

ASCII 

Binary 

ASCII, 
Binary 

Binary 

Binary 

Object 

Object 

Object 

ASCII 

ASCII 

ASCII 

ASCII 

ASCII 

Object 

Object 

ASCII 

Binary 

Object 

Meaning 

Loader map file. 

Memorandum file. 

Music compiler binary output. 

Music compiler input. 

Backup source program. 

Installation and assembly instructions. 

Source file in PAL l~ (PDP-8 assembler). 

P-batch control file. 

P-batch log file. 

Queue change request file. 

Queued data file. 

Queue request file. 

Master queue and request file. 

Relocatable binary file. 

RIM loader file. 

Read-In mode (RIM) format file (PIP). 

RUNOFF input for producing a .CCO file. 

RUNOFF input for producing a .DOC file. 

Programming specifications in RUNOFF 
input. 

RUNOFF input for producing a .OPR file. 

Script response time log file. 

Read-In mode (RIMl~B) format file (PIP). 

Low segment from a one-segment program. 

SCRIPT control file. 

Sub-file directory (restricted usage) • 

Sharable high segment file of a two­
segment program. 

A-3 



PIP 

Filename 
Extension 

SNO 

SNP 

SRC 

SVE 

SYS 

TEC 

TMP 

TXT 

UFO 

UPO 

WCH 

XPN 

- 428 -

Table A-I 

Filename Extensions (Cont'd) 

Type of 
File 

Source 

ASCII 

ASCII 

Object 

Binary 

ASCII 

ASCII, 
Binary 

ASCII 

Binary 

ASCII 

ASCII 

Object 

Meaning 

Source file in SNOBOL language. 

Snapshot of disk by OSKLST. 

SRCCOM output. 

.SAVed file from a single user Monitor. 

Special System files. 

TECO macro. 

Temporary files. 

Text file. 

User file directory (restricted usage) . 

Updates flagged in margin (SRCCOM). 

SCRIPT r-tonitor (WATCH) file. 

Expanded save file (FILEX). 

A-4 



- 429 -

DEC-lO-MRDC-D 

OPERATING SYSTEM COMMANDS 

This manual reflects the software associated with the 5.05 
monitor. For individual system program version numbers, 
refer to Page iii. 

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS 



COMMANDS - 430-

1st Printing May 1971 
2nd Printing (Rev) December 1971 
3rd Printi~g (Rev) June 1972 

Copyright © 1971, 1972 by Digital Equipment Corporation 

The material in thls manual is for informa­
tional purposes and is subject to change 
without notice. 

The following are trademarks of Digital Equipment 
Corporation, Maynard, Massachusetts: 

DEC 
FLIP CHIP 
DIGITAL 

PDP 
FOCAL 
COMPUTER LAB 



- 431 - COMMANDS 

SOFTWARE VERSION NUMBERS 

The following versions of the software are discussed in this manual. 

ALCFIL Version 7 INITIA Version 3 

BACKUP Preliminary Information KJOB Version 47 

BATCON Version 6 LINED Version 13 

CDRSTK Version 11 LOGIN Version 53 

COMPIL Version 20 Monitor 5.05 

COpy Version 6 OMOUNT Version 22 

CREF Version 46 OPSER Version 4 

DAEMON Version 6 PIP Version 32 

DIRECT Version 2 PLEASE Version 11 

DUMP Version 4 QUEUE Version 3 

FILCOM Version 16 QUOLST Version 4 

FILEX Version 15 REATTA Version 3 

FUDGE2 Version 14 RESTORE Preliminary Information 

GLOB Version 5 SETSRC Version 11 

GRIPE Version 3 SYSTAT Version 467 

HELP Version 3 TECO Version 23 

UMOUNT Version 20 

iii 



COMMANDS - 432-



- 433 -

CONTENTS 

CHAPTER 1 INTRODUCTION 

1.1 

1.2 

1.3 

1. 3.1 

1.3.1.1 

1.3.2 

1.4 

1.4.1 

1.4.2 

1:4.2.1 

1.4.2.2 

1.4.2.3 

1.4.2.4 

1.5 

1.5.1 

1.5.2 

1.5.3 

1.5.4 

1.5.5 

1.5.6 

1.5.7 

1.5.8 

Jobs 

Manitor Made and User Mode 

Command Interpreters 

Manitor Command Language Interpreter 

Special Characters 

Batch Command Interpreter 

Command Formats 

Command Names 

Command Arguments 

Project-Programmer Numbers and Passwords 

Device Names 

Fi Ie Structure Names 

File Specifications 

COMPIL-Class Commands 

Indirect Commands (@ Construction) 

The + Construction 

The = Construction 

The < > Construction 

Compile Switches 

Standard Processor 

Processor Switches 

LOADER Switches 

CHAPTER 2 SYSTEM COMMANDS AND PROGRAMS 

2.1 

2.1.1 

2.1.2 

2.1.3 

2.1.4 

2.1.5 

2.1.6 

2.1.7 

2.1.8 

Commands by Functional Groups 

Job Initialization Commands 

Facility Allocation Commands 

Source File Preparation Commands 

File Manipulation Commands 

Object Program Preparation Commands 

Object Program Control Commands 

Object Program Examination Commands 

Multiple Job Control Commands 

v 

COMMANDS 

Page 

443 

444 

445 

445 

446 

447 

447 

447 

448 

448 

448 

451 

451 

453 

454 

455 

456 

456 

457 

457 

458 

460 

463 

463 

464 

465 

465 

465 

465 

466 

466 



COMMANDS - 434-

CONTENTS (Cont) 

Page 

2.1.9 Job Termination Command 466 

2.1.10 Sending Messages 466 

2.1.11 Job Information Commands 467 

2.1.12 System Information Commands 467 

ALCFIL prOQram 468 

ASSIGN command 470 

A TT AC H command 472 

BAC KS PAC Ecommand 474 

BACKUP program 475 

CLOSE command 479 

COMPILE command 480 

CONTINUE command 485 

COpy command 486 

COpy program 488 

CORE command 491 

CPUNCH command 493 

CREATE command 498 

CREF command 499 

CSTART command 
CCONTINUE command 500 

D (deposit) command 502 

DAYTIME command 504 

DCORE command 505 

DDT command 510 

DEASSIGN command 512 

DEBUG command 513 

DE LETE command 517 

DET AC H command 519 

DIRECT command 520 

DISMOUNT command 525 

DSK command 527 

DUMP command 529 

DUMP program 530 

E (examine) command 536 

vi 



- 435 - COMMANDS 

CONTENTS (Cont) 

Page 

EDIT command 537 

EOF command 538 

EXECUTE command 539 

FILCOM program 543 

FI LE command 553 

FILEX pragram 557 

FINISH command 560 

FUDGE command 562 

FUDGE2 program 563 

GET command 568 

GLOB program 569 

GRIPE program 573 

HALT command 574 

HELP command 575 

INITIA command 577 

JCONTINUE command 578 

KJOB command 579 

LIST command 584 

LOAD command 585 

LOCATE command 589 

LOGIN command 590 

MAKE command 592 

MOUNT command 593 

OPSER program 597 

PJOB command 601 

PLEASE command 602 

PLOT command 604 

PRESERVE command 6C1J 

PRI NT command 610 

PROTECT command 616 

QUEUE command 618 

QUOLST program 631 

R command 632 

REASSIGN command 633 

vii 



COMMANDS - 436 -

CONTENTS (Cont) 

Page 

REA TT A program 635 

REENTER command 637 

RENAME command 638 

RESOURCES command 640 

RESTORE program 641 

REWIND command 645 

RUN command 646 

SA VE command 648 

SC HED command 650 

SEND command 651 

SET BLOCKSIZE command 653 

SET C DR command 654 

SET CPU command 655 

SET DENSITY command 657 

SET DSKPRI command 658 

SET HPQ command 659 

SET SPOOL command 660 

SETSRC program 662 

SET TIME command 666 

SET TTY or TTY command 668 

Sl=T WATCH command 672 

SKIP command 675 

SSAVE command 677 

START command 679 

SUBMIT command 680 

SYSTAT command 686 

TECO command 693 

TIME command 694 

TPI INC H command 696 

TYPE command 702 

UNLOAD command 703 

VERSION command 704 

WHERE command 706 

ZERO command 707 

viii 



- 437- COMMANDS 

CONTENTS (Cont) 

Page 

CHAPTER 3 BATCH SYSTEM COMMANDS 

3.1 Batch Components 709 

3.1. 1 The Stacker 709 

3.1.2 The Queue Manager 710 

3.1.3 The Batch Controller 710 

3.1.4 The Output Spoolers 712 

3.2 Submitting Jobs 712 

3.2.1 Submitting a Job with Cards 713 

3.2.1.1 The $JOB Card 713 

3.2.1.2 The $PASSWORD Card 713 

3.2.1.3 The $FORTRAN Card 713 

3.2.1.4 The $DATA Card 714 

3.2.1.5 The End of File Card 714 

3.2.1.6 Output 714 

3.2.2 Submitting a Job with a File 714 

3.2.2.1 Image of the $JOB Card 714 

3.2.2.2 Image of the $FORTRAN Card 715 

3.2.2.3 Image of the $EOD Card 715 

3.2.2.4 Image of the $DA TA Card 715 

3.2.2.5 Running CDRSTK 715 

3.2.3 Submitting a Job with a Control file to the Batch 
Controller 716 

3.2.4 Interjob Dependency 716 

3.3 CDRSTK Control Cards 717 

3.3.1 $ALGOL 718 

3.3.2 $COBOL 719 

3.3.3 $DATA 721 

3.3.4 $DECK 723 

3.3.5 $DUMP 723 

3.3.6 $EOD 724 

3.3.7 $ERROR 
$NOERROR 724 

3.3.8 $FORTRAN or $F40 725 

3.3.9 $JOB 727 

ix 



COMMANDS - 438 -

CONTENTS (Cont) 

Page 

3.3.10 $MACRO 7'19 

3.3.11 $MODE 730 

3.3.12 $PASSWORD 731 

3.3.13 $ RELOCATABLE 731 

3.3.14 $SEQUENCE 732 

3.4 BATCON Control File Commands 732 

3.4.1 .BACKTO 734 

3.4.2 .CHKPNT 735 

3.4.3 • ERROR 735 

3.4.4 .GOTO 735 

3.4.5 .IF 736. 

3.4.6 • NOERROR 737 

3.4.7 • NOOPERATOR 737 

3.4.8 • OPERATOR 737 

3.4.9 • REQUEUE 738 

3.4.10 • REVIVE 739 

3.4.11 .SILENCE 739 

3.5 Job Output 739 

3.5.1 The Log File 740 

3.5.1.1 CDRSTK Messages 740 

3.5.1.2 CDRSTK Error Reporting 741 

3.5.1.3 Batch Controller Messages 742 

3.5.1.4 Batch Controller Error Reporting 742 

3.6 Sample Jobs 743 

CHAPTER 4 SYSTEM DIAGNOSTIC MESSAGES AND ERROR CODES 

4.1 System Diagnostic Messages 748 

4.2 Error Codes 780 

APPENDIX A STANDARD FILENAME EXTENSIONS 783 

APPENDIX B CARD CODES 787 

APPENDIX C TEMPORARY FILES 791 

APPENDIX D SAVE AND SSAVE COMMANDS 795 

x 



- 439 - COMMANDS 

ILLUSTRATIONS 

Figure No. Title Page 

3-1 Typical Job on Cards 713 

3-2 Sample Job #1 743 

3-3 Sample Job #2 744 

3-4 Sample Job #3 744 

3-5 Sample Job #4 745 

3-6 Sample Job #5 746 

TABLES 

Table No. Title Page 

1-1 System Devices 449 

1-2 Processor Switches 459 

4-1 Error Codes 780 

A-1 Filename Extensions 783 

B-1 ASCII Card Codes 787 

B-2 DEC -029 Card Codes 789 

B-3 DEC-026 Card Codes 790 

C-1 Temporary Files 791 

xi 



COMMANDS - 440 -

FOREWORD 

DECsystem-lO Operating System Commands is a complete reference document describing the commands 

available in the DECsystem-10 operating system. The information presented in this manual reflects the 

5.05 release of the monitor and other related programs. Commands to both the monitor command lan­

guage interpreter and the programs in the Batch system are grouped in a Iphabetica I order for easy ref­

erence to the command repertoire. 

DECsystem-lO Operating System Commands does not include reference material on assembly language 

programming. This information can be found in DECsystem-lO Monitor Calls (DEC-lO-MRRC-D), 

which is intended for the experienced assembly language programmer. Included in DECsystem-10 

Monitor Calls are discussions of the monitor programmed operators and the various I/O devices con­

nected to the system. The two manuals, DECsystem-10 Operating System Commands and DECsystem-lO 

Monitor Calls, supersede the Timesharing Monitors Programmer's Reference Manual (DEC-T9-MTZD-D) 

and a II of its updates. 

A third manual, Introduction to DECsystem-10 Software (DEC-lO-MZDA-D), is a general overview 

of the DECsystem-lO. It is written for the person, not necessari Iy a programmer, who knows computers 

and computing concepts and who desires to know the relationship between the various-components of 

the DECsystem-lO. This manual is not intended to be a programmer's reference manual, and therefore, 

it is recommended that it be read at least once before reading the above-mentioned reference 

documents. 

SYNOPSIS OF DECsystem-10 OPERATING SYSTEM COMMANDS 

Chapter 1 presents all of the commands available to the user and introduces the various components of 

the operating system that interface with the user. Chapter 2 is a detai led description of the commands 

processed by the monitor command language interpreter. Presented in Chapter 3 are the commands to 

the Batch system and a discussion of the programs in this system. The DECsystem-lO system error mes­

sages and error codes are listed in Chapter 4 along with descriptive information on how to correct the 

errors. The appendices contain supplementary reference material and tables. 

5.05 Monitor xii June 1972 



- 441 - COMMANDS 

CONVENTIONS USED IN DECsystem-10 OPERATING SYSTEM COMMANDS 

The following conventions have been used throughout this manual: 

dev: 

list 

arg 

jobn 

file.ext 

core 

adr 

C(adr) 

[proj,progJ 

fs 

tx 

* 

) 

n 

Any logical or physical device name. The colon must be 
included when a device is used as part of a file specification. 

A single file specification or a string of file specifications. 
A file specification consists of a filename (with or without 
a filename extension), a device name if the file is not on 
disk, a project-programmer number, if the fi Ie is not in the 
user's disk area, and a protection code. 

A pair of file specifications or a string of pairs of file speci­
fications. 

A job number assigned by the monitor. 

Any legal filename and filename extension. 

Decimal number of 1 K blocks of core. 

An octa I address. 

The contents of an octal address. 

Project-programmer numbers; the square brackets must be 
included in the command string. 

Any legal file structure name or abbreviation. 

The symbol used to indicate an altmode. 

A control character obtained by depressing the CTRL key 
and then the character key x. 

A back arrow used in command strings to separate the input and 
output fi Ie specifications. 

The system program response to a command string. 

The monitor response to a command string. 

The symbol used to indicate that the user shou ld depress the 
RETURN key. This key must be used to terminate every com­
mand to the Monitor Command Language Interpreter. 

Underscoring used to indicate computer typeout. 

A decimal number. 

An equal sign used in command strings to separate the 
input and output file specifications. 

xiii 



COMMANDS - 442 -



- 443 - COMMANDS 

CHAPTER 1 

INTRODUCTION 

The DECsystem-10 Operating System is the interface between the user and the actual machine. The 

operating system, or monitor, has many functions, some of which are: 

1. scheduling multiple and simultaneous use of the system, 

2. protecting users of the system from one another, 

3. allowing access to system resources including peripheral devices, 

4. providing a comprehensive disk file system, 

5. directing data flow between peripheral devices and the user's program, 

6. controlling non-interactive jobs, and 

7. overlapping input-output operations with computations for high system efficiency. 

The user communicates with the operating system by means of the monitor command language. With 

the command language he may access all available resources of the computing system and obtain all 

the servi ces provided by the operating system. 

1.1 JOBS 

The DECsystem-10 computinq system is a multiprogramming system; that is, control is transferred rap­

idly among a number of jobs in such a way that all jobs appear to be running simultaneously. The 

term job refers to the entire sequence of steps, from beginning to end, that the user initiates from his 

interactive terminal or card deck or that the operator initiates from his operator's console. When a 

user initiates a job from his interactive terminal, the beginning of the job is designated by the LOGIN 

command and the end by the KJOB command. If a user initiates a job with a card deck, the beginning 

of the job is the $JOB card and the end is the end-of-file card. Operator jobs usually begin when the 

system is initialized and end when the system goes down. 

Jobs, which may be timesharing, batch, or real-time in nature, may be initiated at the central com­

puter site or at remote locations connected by the telephone system. Once a user initiates a job, it 

is possible for him to initiate another job without killing the first one. For example, a user can initiate 

a timesharing job and by using the SUBMIT monitor commanrl submit a second job for batch processing 

1-1 



COMMANDS - 444-

(refer to Chapter 2). He may then wait for the results from this batch job, or have the results auto­

matically output while he continues his timesharing job. 

In configuring and loading the DECsystem-10, the system administrator sets the maximum number of 

jobs that his system can simultaneously handle. This number may be up to 127 jobs if the system has 

enough memory, disk storage, processor capacity, and terminals to handle this load. 

1.2 MONITOR MODE AND USER MODE 

From the timesharing user's point of view, his terminal is in either monitor mode or user mode. In 

monitor mode, each line the user types in is sent to the monitor command language interpreter. The 

execution of certain commands (as noted in the following examples) piaces the terminal in user mode. 

When the terminal is in user mode, it becomes simply an I/O device for that user. In addition, user 

programs use the terminal for two purposes. The user program will either accept user command strings 

from the terminal (user mode) or use the terminal as a direct I/O device (data mode). 

Example (terminal dialogue): 

monitor mode 

user mode 

data mode 

monitor mode 

user mode 

data mode 

.:.R PIP) 

!DSK:PkOr,I.~AC~TTY:) 

THIS IS FILE I tZ 

assembly listing 

monitor command 

user command string 

user program using terminal 
as input device 

monitor command 

user command string 

user program using terminal 
as an output devi ce 

The special character tc (produced by typing C with the CONTROL key depressed) is used by a time­

sharing user to stop a user program and return the terminal to monitor mode. If the user prog-am is 

waiting for input from the terminal, the user needs to type only one tc to return the terminal to 

monitor mode; otherwise, he must type two tC's. Because of this procedure, the user knows that his 

program is not waiting for input if there is no response from the monitor after one tC. Certain com­

mands cause the user program to start running or to continue (as noted in the following chapter) but 

leave the terminal in monitor mode. 

1-2 



- 445 - COMMANDS 

When the system is started, each terminal is in monitor mode ready for users to log in. However, if 

the system becomes fu Ily loaded (i. e., the maximum number of jobs that the system is set to hand Ie 

has been initiated), then any unused terminals from which access is requested will receive the message 

JOB CAPACITY EXCEEDED. 

The card-oriented Batch user can think of his cards as being in stack mode, monitor mode, or user 

mode. When the card is in stack mode, it contains a control command beginning with a $ (refer to 

Chapter 3) and is sent to the Stacker, CDRSTK. CDRSTK interprets these commands and performs var­

ious actions to create a control file for the Batch Controller. When the card is in monitor mode, it 

contains a monitor command preceded by a period and is copied by CDRSTK into the control file. 

When the card is in user mode, it contains a user-level program command preceded by an asterisk or 

an equal sign and is also copied by CDRSTK into the control file. As each line in the control file is 

executed, the Batch Controller passes the monitor-level line to the monitor command language inter­

preter and the user-level line to the user program. 

Example (sample card deck): 

USER MODE 

MONITOR MODE 

MONITOR MODE 

STACK MODE 

DATA MODE 

STACK MODE 

/i 
fiIXOSYS'LOADER.* 

b·RPIP 
.QUEUE LPT: 0 PROG 

$EOD 

MACRO PROGRAM 

$MACRO 

1.3 COMMAND INTERPRETERS 

1.3.1 Monitor Command Language Interpreter 

I 
I 
I 
I 

I 
I 
I 

r!. 

-
-

-

END OF CARD DECK 

USER COMMAND STR ING 

MONITOR COMMAND 

MONITOR COMMAND 

CDRSTK CONTROL COMMAND 

CDRSTK CONTROL COMMAND 

10-0897 

When the terminal is in monitor mode, the user communicates with the monitor command language in­

terpreter. By means of commands to this interpreter, the user may initialize jobs, allocate facilities, 

prepare source files, manipulate files, prepare, control, and examine object programs, control job 

sequences and multiple jobs, terminate jobs, send messages, and obtain job and system information. 

The commands described in Chapter 2 are processed by this interpreter. 

1-3 



COMMANDS - 446 -

Most commands are processed without delay. However, a command may be momentarily delayed if a 

job is swapped out to the disk and the command requires that the job be resident in core; the command 

is executed when the job is swapped into core. The completion of each command is signaled by the 

output of a carriage return, line feed sequence. If the terminal is left in monitor mode, a period fol­

lows the carriage return, line feed. If the terminal is left in user mode, any response other than a 

carriage return, line feed comes from the user's program. For example, most standard system programs 

immediately send an asterisk(*) to the user's terminal to indicate their readiness to accept user com­

mand strings. 

The type-ahead technique may be employed by the experienced timesharing user at a terminal. This 

means that the user does not have to wait for the completion of one command before he can begin an­

other. For example, if two operations are desired from the monitor, the request for the second opera­

tion can be typed before receiving the period after completion of the first. 

The command interpreter makes several checks before processing commands from users. On disk systems, 

if a user who has not logged in types a command that requires him to be logged in, the system responds 

with 

?LOGIN PLEASE 

and the user's command is not executed. The commands discussed in Chapter 2 all require login except 

where explicitly stated otherwise. When a command is recognized that requires the job to have core 

and the job has no core allocated, the command interpreter responds with 

?NO CORE ASSIGNED 

and the user's command is not executed. 

1.3.1.1 Special Characters - There are several special characters recognized by the monitor com­

mand language interpreter that cause specific functions to be performed. As noted previously I control­

C (tC) interrupts the program that is currently running and returns the terminal to monitor mode. This 

character causes the input line back to the last break character (e.g., carriage return, line feed) to 

be deleted (equivalent to the action of a fU). Two control-C's are necessary if the user program is 

not requesting input from the terminal (i .e., the program is in the middle of execution). 

The RUBOUT key on the terminal generates a character that causes the last character typed to be de­

leted. This permits correction of typing errors. Depressing the RUBOUT key n times causes the last n 

characters typed to be deleted. The deleted characters are echoed on the terminal enclosed in back­

slashes ('\.). Characters beyond the last break character or characters already processed by the user 

program are not deleted. 

1-4 



- 447- COMMANDS 

Control-U (tU) causes the deletion of the current line, back to the last break character. The system 

responds with a carriage return, line feed so that the line may be typed again. Once a break charac­

ter has been typed, line-editing features ( tU and RUBOUT) can no longer be used on that line, except 

when running TECO. 

Control-O (to) suppresses output to the terminal. The system responds with a carriage return, line 

I feed sequence. A subsequent control-O re-enables output to the terminal. At remote stations, the 

effect of the to may be somewhat de layed. 

1 .3.2 Batch Command Interpreter 

The monitor command language interpreter is used for all monitor commands submitted via the Batch 

system. In addition, the Batch user issues commands that are only used by the Batch programs, Stacker 

(CDRSTK) and Batch Controller (BATCON). Control commands, discussed in Chapter 3, are processed 

by the Stacker and, by means of these commands, the user can create a control file, a log file, and 

data fi les; can enter jobs into the Batch input queue; and can insert monitor commands into the control 

file. An additional interpretation is done by the Batch Controller. When the job is executed, the 

Batch Controller processes the control file to pass monitor commands to the monitor command language 

interpreter and user-level commands to the appropriate programs. 

1.4 COMMAND FORMATS 

Each command is a line of ASCII characters in upper and/or lower case. Spaces and TABs preceding 

the command name are ignored. Comments may be typed on the same line as the command by preceding 

the comment with a semicolon. The monitor and batch command language interpreters do not interpret 

or execute a line of comments. Every command to the monitor command interpreter should be termi­

nated by pressing the RETURN key on the console. In examples in this manual, the symbol) is used 

to indicate that the user should depress the RETURN key. If the command is in error, the command up 

to the error is typed out by the monitor preceded and followed by a ?, and the terminal remains in 

mon itor mode. 

1 .4. 1 Command Names 

Commands to the monitor command interpreter are alphabetic strings of one to six characters; charac­

ters after the sixth are ignored. Only enough characters to uniquely identify the command need be 

typed. It is recommended that a Batch job use the full command name since the abbreviations may 

change with the addition of new commands. 

1-5 



COMMANDS - 448-

Installations choosing to implement additional commands should take care to preserve the uniqueness 

of the first three letters of existing commands. 

Control commands to the Stacker in the multiprogramming batch system must have a dollar sign ($) in 

the first column of the card or the line and an alphabetic character in the second column. Only the 

first part of the command name need be specified; as long as the specified command name is unique, it 

is accepted. The first three characters of the command name are generally sufficient to ensure unique-

ness. 

1 .4.2 Command Arguments 

Arguments follow the command name and are separated from it by a space or TAB. If the monitor com­

mand interpreter recognizes a command name, but a necessary argument is mi ssing, the monitor responds 

with 

?TOO FEW ARGUMENTS 

Extra arguments are ignored. 

1.4.2.1 Project-Programmer Numbers and Passwords - Access to the DECsystem-l0 is limited to 

authorized users. The system administrator provides each authorized user with a project number, a 

programmer number, and a password. The project numbers range from 1 to 377777 octal (numbers 1 

to 10 are reserved for DEC) and the programmer numbers range from 1 to 777777 octal (numbers 1 to 7 

are reserved for DEC and numbers 400000 to 777777 are reserved for special purposes)l. These numbers 

identify the user and his file storage area on a file structure. In a command string, the project and 

programmer numbers are separated with a comma and must be enclosed in square brackets, e.g., [10,7J. 

The password is from one to six SIX BIT characters and is only used when logging on the computing sys-

I tem. To maintain password security, the monitor does not echo the password. On terminals with local 

copy (refer to DECsystem-l0 Monitor Calls), a mask is typed to make the password unreadable. 

1.4.2.2 Device Names - Associated with each system device controlled by the computing system is 

a physical device name. This name consists of three letters, zero to three numerals specifying the 

I unit number, and a colon. Table 1-1 lists the generic physical device names associated with the 

various system devices. 

I lWhen the programmer number is from 1 to 7, all project numbers are reserved for DEC. 

1-6 



I 

Device 

All Disks 
Card Punch 
Card Reader 
Console TTY 
DECtape 
Disk 

Packs 
Fixed-Head 

Display 

- 449-

Table 1-1 
System Devices 

Generic Physical Device Name 

ALL: 
CDP: 
CDR: 
CTY: 
DTx:t 
DSK: 
DPx: t 
FHx:t 
DIS: 

Experimenta I System Library NEW: 
Help Library HLP: 
Line Printer LPT: 
Magnetic Tape MTA: 
Operator Terminal OPR: 
Paper-tape Punch PTP: 
Paper-tape Reader PTR: 
Plotter PLT: 
Pseudo-TTY PTY: 
System Library SYS: 
Terminal TTY: 

tX represents A,B, •.• , indicating the first controller, second con­
troller, etc. 

COMMANDS 

The user may also assign a logical device name to a physical device. The logical name is from one to 

I six alphanumeric characters of the user's choice, followed by a colon, and is used synonymously with 

a physical device name in all references to the device. Logical device names allow the user, when 

writing-his program, to use arbitrarily selected device names, which he assigns to the most convenient 

physical devices at run time. However, care should be exercised when assigning logical device names 

because these names have priority over physical device names. For example, if a DECtape is assigned 

the logical name DSK, then all of the user's programs attempting to use the disk via the device name 

DSK wi 11 use the DECtape instead. 

Except for disk devices, only one logical device name can be associated at anyone time with a physi­

cal device. The same logical name can be used for a second physical device by disassociating it from 

the first device and associating it with the second device via the ASSIGN command. Logical device 

5.05 Monitor 1-7 



COMMANDS - 450 -

names are disassociated from all devices with the DEASSIGN command (refer to Chapter 2). Subse­

quent ASSIGN commands (refer to Chapter 2) to all devices except disk devices replace the old logical 

name with the new one. 

The following is an example of the use of physical and logical device names. Underscoring is used to 

i ndi cate computer typeout. 

.!.ASSIGN OTA: A8C:) 

DEVICE DTA6 ASSIGNED 

.:!'-SSrGN PTP: ABC:) 

% LOGICAL NA~E WAS IN USE~ 
PTP ASSIGNED 

.R PIP) 

~BC:"DTA6:FILEA) 

• ASS IGN DTA: DEF:) 

~ASSIGN DTA6: DEF:) 

DEVICE DTA6 ASSIGNED 

~DEASSIGN PTP:) 

,.!.R PIP) 

~BC:"DEF:FILEB) 

?DFVICE ABC DOES NOT EXIST 

User requests a DECtape drive with the logical name 
ABC. 

Monitor has given the user drive DTA6. The user 
mounts a DECtape on drive DTA6 . 

User requests the paper-tape punch with the logical 
name ABC. 

Paper-tape punch is reserved, and ABC now refers to 
the PTP. 

User requests the system program PIP (Peripheral Inter­
change Program). 

User issues a command string to PIP asking that file 
FILEA be transferred from device DTA6 to logical 
device ABC (physical device PTP: which is assigned 
to the user). 

User returns to mon i tor mode • 

User requests another DECtape drive with logical name 
DEF. 

All drives are in use by the specified jobs. No 
DECtape drive is assigned, and no logical assign­
ment is made. 

User requests drive DTA6 (which he already has) with 
logical name DEF. The copy of the directory currently 
in core is cleared. 

User mounts a new DECtape on the previously assigned 
drive. The new DECtape directory is read into core 
when next accessed. 

User deassigns PTP, thereby clearing the logical name 
ABC. 

User requests PI P • 

User requests that fi Ie FI LEB be transferred from devi ce 
DEF to devi ce ABC. 

The logical device name ABC is no longer assigned. 

(continued on next page) 

1-8 



!,tC 

~ASSIGN DTA6: XYZ:) 

DEVICE DrA6 ASSIGNED 

- 451 - COMMANDS 

User returns to monitor mode. 

User requests drive DTA6 again with logical name XYZ. 
The logical name DEF is no longer associated with DTA6. 
The old directory is cleared from core. 

User mounts a new DECtape. The new directory is read 
into core when next accessed. 

1.4.2.3 File Structure Names - Disk devices are grouped according to file structures, which are 

logical arrangements of 128-word blocks on one or more disk units of the same type. Examples of 

types of disk units are: an RP02 disk pack or an RM10B drum. Although a file structure can exist on 

exactly one disk unit, it can be distributed over several disk units of the same type and designated 

by a single name. However, two file structures cannot exist on the same unit. Each file structure has 

a SIXBn name specified by the operator at structure definition time. This name can consist of five or 

less alphanumeric characters and must not duplicate a physical device name, a unit name, or an exist­

ing file structure name. The recommended names for public fi Ie structures are DSKA, DSKB, .•• , 

DSKN in order of decreasing speed. 

1.4.2.4 File Specifications - All information (programs and data) in the system is stored as named 

files. Each named file has associated with it a file specification which consists of 

1. the physical device name or file structure name, 
2. the filename, 
3. the filename extension, 
4. the ordered list of directory names, and 
5. the access protection code. 

The first four items of the file specification are necessary to uniquely identify a disk file. File 

specifications are ignored when given for devices other than DECtape or disk since these two devices 

are the only directory-oriented devices. In addition, items 4 and 5 do not apply to DECtapes. 

The physical device name used for DECtape or the file structure name used for disk may be any legal 

I device name discussed in the foregoing sections. A colon should always follow the device name; e.g., 

DTA3:. The filename is from one to six SIXBn characters; all characters after the sixth are ignored. The 

filename extension is a period following by zero to three characters and is used to indicate the type of 

information in the file. {Refer to Appendix A for a list of standard fi lename extensions.} It is recom­

mended that only the standard extensions be used even though other extensions are valid. Most programs 

I only recognize filenames and extensions consisting of letters and digits. The ordered list of directory 

names identifies the disk area in which the file is stored. This list can be a user file directory {UFD} 

5.05 Monitor 1-9 



COMMANDS - 452-

I represented by the project-programmer number of the owner of the files in the directory or can be a 

user fi Ie directory followed by one or more sub-fi Ie directories {SFDs}. {Refer to the DECsystem-10 

Monitor Calls for a description of SFDs.} The directory name must be enclosed in square brackets. 

I 

The access protection of the file is a three-digit code designating which users can read or write the 

file and must be enclosed in angle brackets. The protection code is specified only for output files. 

For a given file, the users are divided into three groups: the owner of the file, the users with the same 

project number as the owner, and the rest of the users. The standard protection code is 057 which 

allows users in the owner's project to read and execute the file and prevents access by all other users. 

{For a complete description of access protection, refer to DECsystem-10 Monitor Calls.} The standard 

protection code can be redefined by the various installations. 

In command strings, the filename, the device name if the file is not on disk, and the directory name if 

the file is not in the user's disk area, are required. The filename extension, the device name if the 

file is on the disk, the directory name if the file is in the user's disk area, and the protection code are 

optional. The following are examples of file specifications: 

TEXT.MAC 
DTA3:FILEA 
DSK:PROG2.CBL [10,16] 

DSKA:MAIN.F4[27,235] <057> 

filename and extension 
device and filename 
device, fi lename, extension, and 
directory name 
complete file specification 

Many command strings allow the wi Idcard construction to be used. This means that the fi lename, the 

extension, or the directory name may be replaced totally with an asterisk or partially with a question 

mark to designate certain filenames, extensions, or directories. The asterisk is used as a wild field to 

designate the entire filename, extension, or directory name. For example, 

filename. * 

*.ext 

* * 
*. * [proiect , *] 

All files with this fi lename and any extension. 

All files with this extension and any filename. 

All files. 

All files in directories with this project number and 
any programmer number. 

The question mark is used as a wild character to designate part of the filename, extension, or direct­

cry name. A question mark is used for each character that is to be matched; i.e., PR?? matches on 

four characters or less. For example, 

filename .M?? 

TES?? .ext 

????? 

All fi les with this fi lename and any extension 
beginning with M. 

All files with this extension and any filename up 
to 5 characters beginning with TES. 

All fi les with filenames of tWo characters or less. 

{continued on next page} 

1-10 



[25,5??] 

- 453 - COMMANDS 

All files in directories with the project number 25 
and the programmer numbers 50D-5n. 

The asterisk and the question mark can be specified together in the same construction. 

?? .* All files with filenames of two characters or less. 

In addition, the directory name can be specified with the project number, the programmer number, or 

both numbers missing. The following are examples of the various ways of representing a particular 

directory • 

[15,23] 

[,30] 

[36 ,] 

[ ,] 

[-] 

The UFO [15,23]. 

The UFD that has the user's project number and the 
specified programmer number (30). 

The UFO that has the specified project number (36) 
and the user's programmer number. 

The user's UFD. 

The user's default directory which may be different 
from his UFD (refer to the DECsystem-l0 Monitor 
Calls and the SETSRC program). 

The number sign can be used to represent a fi lename or extension that contains characters that cannot 

be typed because they have special meanings in the system. For example, if a file with the name 

* .MAC were typed in a command string, the user would be referencing all files with the extension 

.MAC since the * designates all files with the specified extension MAC. To allow a filename or ex­

tension to be typed that is composed of special characters, the user employs the number sign followed 

by the octal representation of the SIXBIT fi lename or extension. For example, #120000000000 repre­

sents the file named *. If letters or digits are part of the filename or the extension containing the 

special characters, the octal representation of the letters or digits must also appear following the num-

ber sign. In other words, the number sign must be placed at the beginning of the filename and all 

I 
characters following must be represented in octal. Furthermore, this construction can be used to read 

the contents of a UFD. For example, #000010000073.UFD [1,1] represents the file named 10,73.UFD 

in the directory [1,1]. 

The programs that recognize the number sign are DUMP, DIRECT, PIP, and QU EU E. 

1.5 COMPIL-CLASS COMMANDS 

Certain monitor commands simplify communication between the user and the system programs of the 

DECsystem-l0 by allowing the user to type a short, concise monitor command string that causes a series 

of operations to be performed. These commands are known as COMPIL-class commands and are de­

scribed in detail in Chapter 2. These commands cause the monitor to run the COMPIL program, which 

5.05 Monitor 1-11 



COMMANDS - 454-

deciphers the command and constructs new command strings for the system program (e.g., TECO, PIP, 

LINED, FORTRAN) that actually processes the command. Each time CREATE, MAKE, EDIT, or TECO 

is executed, the command with its arguments is written as a temporary file in core or on the disk. 

Therefore, the file specification last edited may be recalled for the next edit without specifying the 

arguments again. (This is an exception to the requirement that the filename must always be specified.) 

For example, if the command 

• CREATE PROGX .MAC 

is executed, then the user may later type the command 

• EDIT 

instead of 

• EDIT PROGX .MAC 

assuming no other EDIT-class command that changed the filename was used in the interim. 

The COMPILE, LOAD, EXECUTE, and DEBUG commands with their arguments are also written in a 

temporary file so that the file specification given last may be recalled without specifying the arguments 

again. 

The temporary files containing these file specifications have filenames of the following form: 

nnnxxx. TMP 

where nnn is the user's job number in decimal, with leading zeros to make three digits, and xxx speci­

fies the use of the file. Refer to Appendix C for a list of the temporary files. 

1 .5.1 Indirect Commands (@ Construction) 

When there are many program names and switches, they can be put into a file and do not have to be 

typed in for each compilation. This is accomplished by the use of the @ file construction, which 

may be combined with any COMPIL-class command. 

The @ file may appear at any point after the first word in the command. In this construction, the 

word file must be a filename, which may have an extension and a project-programmer number. If the 

extension is omitted, a search is made for the command file with a null extension and then for a com­

mand file with the extension .CMD. The information in the specified command file is then put into 

the command string to rep.lace the characters @ file. 

1-12 



- 455 - COMMANDS 

For example, if the file FLIST contains the string 

FILEB, FILE C/LIS T , FILED 

then the command 

• COMPILE FILEA, FILEB, FILEC/LIST, FILED, FILEZ 

could be replaced by 

• COMPILE FILEA,@FLIST,FILEZ 

Command files may contain the @ file construction to a depth of nine levels. 1 If this process of in­

direction results in files pointing in a loop, the maximum depth is rapidly exceeded and an error mes­

sage is produced. 

The following rules apply in handling format characters in a command file. 

a. Spaces are used to del imit words but are otherwise ignored. Similarly, the characters 
TAB, VTAB, and FORM are treated like spaces. 

b. To allow long command strings, command terminators (CARRIAGE RETURN, LINE FEED, 
AL TMODE) are ignored if the first nonblank character after a sequence of command 
terminators is a comma. Otherwise, they are treated either as commas by the COMPILE, 
LOAD, EXECUTE, and DEBUG commands or as command terminators by all other 
COMPIL -class commands. 

c. Blank lines are completely ignored because strings of returns and line feeds are considered 
together. 

d. Comments may be included in command files by preceding the comment with a semicolon. 
All text from the semi colon to the I ine feed is ignored. 

e. If command fi les are sequenced, the sequence numbers are ignored. 

1 .5.2 The + Construction 2 

A single relocatable binary file may be produced from a collection of input source files by the "+" 

construction. For example: a user may wish to compile the parameter file, PAR.MAC, the switch file, 

SWIT.MAC, and the file that is the body of the program, MAIN.MAC. This is specified by the 

following command: 

.COMPILE PAR+SWIT+MAIN 

I 1 However, if BLISS, SNOBOL, and MACXll (the PDP-ll assembler for the PDP-10) are added as 
processors, one less level of indirecting for each processor is obtained. These processors will be 
recognized only when the appropriate assembly switches are set. These assembly switch settings are 
not supported. 

2Use in COMPILE, LOAD, EXECUTE, and DEBUG commands only. 

1-13 



COMMANDS - 456-

The name of the last input file in the string is given to any output (.REL, .CRF, and/or • LST) files 

(e.g., MAIN in the preceding example). The source files in the "+" construction may each con­

tain device and extension information and project-programmer numbers. 

1 .5.3 The = Construction 1 

Usually the filename of the relocatable binary file is the same as that of the source file, with the ex­

tension specifying the difference. This can be changed by the "=" construction, which allows a file­

name other than the source filename to be given to the associated output files. For example: if a 

binary file named BINARY .REL is desired from a source program named SOURCE.MAC, the following 

command is used • 

• COMPILE BINARY=SOURCE 

This technique may be used to specify an output name to a file produced by the use of "+" construction. 

To give the name WHOLE.REL to the binary file produced by PARTl.MAC and PART2.MAC, the fol­

lowing is typed • 

• COMPILE WHOLE=PARTl+PART2 

Although the most common use of the "=" construction is to change the filename of the output files, 

this technique may be used to change any of the other default conditions. The default condition for 

processor output is DSK:source.REL [self]. For example: if the output is desired on DTA3 with the 

filename FILEX, the following command may be used: 

EXECUTE DTA3:FlLEX=FILE1.F4 

1 .5.4 The < > Construction 1 

The <>construction causes the programs within the angle brackets to be assembled with the same 

parameter file. If + is used, it must appear before the <>construction. For example to assemble the 

files LPTSER.MAC, PTPSER.MAC, and PTRSER.MAC, each with the parameter file PAR.MAC, the 

user cou Id type 

• CaMPI LE PAR+LPTSER, PAR+PTPSER, PAR+PTRSER 

With the angle brackets, however, the command becomes 

• CaMPI LE PAR+< LPTSER, PTPSER, PTRSER > 

However, the following command is invalid: 

• CaMPI LE < LPTSER, PTPSER, PTRSER >+PAR 

1 Used in COMPILE, LOAD, EXECUTE, and DEBUG commands only. 

1-14 



- 457- COMMANDS 

1.5.5 Compile Switches 

The COMPILE, LOAD, EXECUTE, and DEBUG commands can be modified by including switches in the 

command string. These switches can be used to indicate the processor to be used, to force a compila­

tion, to generate listings, to create libraries, to search user libraries, and to obtain loader maps. 

Each switch is preceded by a slash and terminated with a non-alphanumeric character, usually a space 

or a comma. The switch used can be abbreviated if the abbreviation uniquely identifies the switch. 

The switches used with these four commands are either temporary or permanent. A temporary switch 

applies only to the file immediately preceding it. An intervening space or comma cannot separate the 

filename and the switch. For example, 

• COMPILE PROG, TEST/MACRO ,SUBLET 

The /MACRO switch applies only to the file named TEST. 

A permanent switch applies to all files following it until modified by a subsequent switch. It is sepa­

rated from the fi Ie by spaces, commas, or a combination of both. For example, 

• COMPILE PROG /MACRO TEST, SUBLET 
.COMPILE PROG ,/MACRO, TEST ,SUBLET 
.COMPILE PROG,/MACRO TEST,SUBLET 
• COMPILE PROG /MACRO, TEST, SUBLET 

In all four examples, the /MACRO switch applies to the files named TEST and SUBLET. 

The switches that can be used with the COMPILE, LOAD, EXECUTE, and DEBUG commands are de­

scribed in the individual command explanations in Chapter 2. 

1 .5.6 Standard Processor 

Files with recognizable processor extensions (e.g., .MAC, • CBL, • F4, .ALG) are always translated 

by the processor implied by the extension. 1 For example, a file named DATPRO.CBL will be proces­

sed by the COBOL compiler. Files without a recognizable processor extension are compiled or assem­

bled according to the standard proc;essor, which is normally FORTRAN at the beginning of the command 

string. The user can control the setting of the standard processor by including switches in the 

COMPILE, LOAD, EXECUTE, or DEBUG command string. Refer to the appropriate command descrip­

tions in Chapter 2 for the switches used to change the standard processor. 

1By setting the appropriate assembly switches, SNOBOL, BUSS, and MACXll (the PDP-ll assembler 
for the PDP-lO) will be recognized as processors. However, these assembly switch settings are not 
supported. 

1-15 



COMMANDS - 458 -

In the following examples, the installation has chosen FORTRAN as the standard processor. The 

command 
.COMPILE NOEXT 

causes the file named NOEXT (with a null extension) to be compiled by FORTRAN. The command 

.COMPILE FILEZ.MIN 

also compi les the file with FORTRAN since .MIN is not recognized as a processor extension. The com­

mand 

• COMPILE APART,DATA/COBOL, TEST 

causes the files APART and TEST to be compiled by FORTRAN and the file DATA by COBOL. 

The switches used to change the standard processor can be temporary or permanent switches (refer to 

Paragraph 1.5.5). For exampl e, 

• COMPILE APART, /COBOL DATA, TEST 

causes APART to be compiled by FORTRAN, and DATA and TEST to be compiled by COBOL. 

Note that if source files are specified with the appropriate extensions, the subject of the standard 

processor can be disregarded, since files with processor extensions are always translated by the proces­

sor i mpli ed • 

1 .5.7 Processor Switches 

Occasionally it is necessarylo pass switches to the assembler or compiler being used in a COMPILE, 

LOAD, EXECUTE, or DEBUG command. For each translation (assembly or compi lation), the COMPIL 

program sends a command string to the translator containing three parts: the source files, a binary 

output file, and a listing file. To incluae switches with these files, the user must: 

a. If the + construction is used, group the switches according to each related source file. 

b. Group the switches according to the three types of files (source, binary, and listing) for 
each file. 

c. For each source file, separate the groups of switches by commas. 

d. Enclose all the switches for each source file within one set of parentheses. 

(SSSS) 
(SSSS, BBBB) 
(SSSS ,BBBB ,LLLL) 

Only source switches are present. 
Source and binary switches are present. 
Source, binary, and listing switches are present. 

e. Place each parenthesized string immediately after the source file to which it refers. 

The processor switches are listed in Table 1-2, along with their meanings and the types of files to 

wh i ch they apply. 

1-16 



Processor Source Binary 

ALGOL 
D 

E 

L 

Q 

S 

COBOL A A 

E E 

L 

M M 

P 
R" 

S S 

W W 
Z 

FORTRAN 
A A 
B B 

I S 

T T 
W W 

Z 

- 459 - COMMANDS 

Table 1-2 
Processor Switches 

Listing Meaning 

Set dynamic storage region for own arrays 
(known as the heap). 
The source file has line numbers in columns 
73-80. 
List the source program. 

N Suppress the error print out on the terminal. 
Delimit the words in quotes. 
Suppress the listing of the source program. 

A Allow the listing of code generated. 
C Produce a cross-referenced listing of aH user-

defined items in the source program,. 
E Check the program for errors but do not gene-

rate code. 
Use the preceding file descriptor as a library 
file whenever the COPY verb is encountered. 

M Print a map showing the parameters of the user-
defined item. 

N Suppress output of source errors on the terminal. 
Do not generate trace calls and symbols. 
Produce a two-segment object program. The 
high segment contains the resident sections of 
the Procedure division; the low segment con-
tains everything else. When the object program 
is loaded, LIBOL is added to the high segment. 

S The source file has sequence numbers in columns 
1-6 and comments starting in column 73. 

W Rewind the magnetic tape. 
Z Zero the DECtape directory. 

A Advance magnetic tape reel by one file. 
B Backspace magnetic tape reel by one file. 
C Generate a CREF-type cross-reference listing. 
D List error message codes only. 
E Print an octal listing of the binary program in 

addition to the symbolic listing. Must be ac-
com pan i ed by 1M. 

I Translate the letter D in column 1 as a space 
and treat the line as a normal FORTRAN state-
ment. 

M Include MACRO coding in output listing. 
N Suppress output of error messages on the terminal 

Produce code for execution on the KA 1 0 if run-
ning on the KIlO, and vice-versa. 

T Skip to the logical end of magnetic tape. 
W Rewind the magnetic tape. 
Z Zero the DECtape directory. 

(continued on next page) 

1-17 



COMMANDS 

Processor Source Binary 

MACRO 
A A 
B B 

0 0 
P P 
Q Q 

T T 
W W 

Z 

Examples: 

- 460-

Table 1-2 (Cant) 
Processor Switches 

listing Meaning 

A Advance magneti c tape reel by one fil e. 
B Backspace magnetic tape reel by one file. 
C Produce listing file in a format acceptable as 

input to CREF. 
E list macro expansions. 
F Byte sizes match the format of the instruction. 
G Byte sizes are two lS-bit fields. 
L Reinstate listing (used after list suppression by 5 

switch) • 
M Suppress ASCII text in macro and repeat expan-

sion (SALL). 
N Suppress error printouts on the terminal. 
0 Allow literals to occupy only one line. 
P Increase the size of the pushdown list. 
Q Suppress questionable (Q) error indications on 

the listing. 
5 Suppress li sti ng • 
T Skip to the logical end of magnetic tape. 
W Rewind the magnetic tape. 
X Suppress all macro expansions. 
Z Zero the DECtape directory. 

.!)EBUG TEST (N) Suppress typeout of errors during assembly • 

• COMPILE OUTPUT=MTA(~: (\~,S,M)/L Rewind the magtape 011), compile the first file, 
produce bi nary output for the KI 10(5), and i n­
clude the MACRO coding in the output listing 
(M). Output files are given the names 
OUTPUT.REL and OUTPUI.LSI. 

.COMP ILEIt~ACRO A=MTA0: 0),,0 )/L Rewind the magtape 011), compile the first file, 
and suppress Q (questionable) error indications on 
the listing. Note that when a binary switch is not 
present, the delimiting comma must appear • 

• COfVlP ILE IMACRO A=MTA0: (,,8 )/L Campile file at current position of the tape and 
suppress Q error indications on the listing. Note 
that when the source and binary switches are not 
present, the delimiting commas must appear. 

1.5.S LOADER Switches 

In complex loading processes, it may be necessary to pass switches to the LOADER to direct its opera­

tion. This is accomplished by the % character. The % has the same meaning as that of the / in the 

l-lS 



- 461 - COMMANDS 

LOADER'S command string (refer to the LOADER documentation). Also, like the I, the % takes a 

leading sign (+or -) and one letter (or a sequence of digits and one letter) following it. Therefore, to 

set a program origin of 6000 for program C, the user types 

.LOAD A,B,o/060000C,D 

The COMPIL program allows more than one LOADER switch to be specified. For example: 

.LOAD PROG %F/MAP 

Refer to the LOAD command in Chapter 2 for a description of lMAP. 

The most commonly used LOADER switches are: 

a. %S Load with symbols. 
b. %nO Set program origin to n. 
c. %F Cause early search of the default libraries. 
d. %P Prevent search of the default libraries. 

1-19 



COMMANDS - 462-



- 463 - COMMANDS 

CHAPTER 2 

SYSTEM COMMANDS AND PROGRAMS 

Although there is one operating system for all configurations of the DECsystem-10, some commands 

may not be included in each DECsystem-lO. This is especially true of the DECsystem-1040, the basic 

system intended for small installations that do not want all of the system's feafures because of a con­

straint on core. Commands are deleted from the DECsystem-1040 by feature test switches {recognized 

by the beginning characters Fn defined at MONGEN time. In the standard DECsystem-1040, many 

of these switches are not set and, therefore, the corresponding commands are not available. This saves 

core but limits various features of the operating system. In the command descriptions that follow, the 

Characteristics section indicates if the switch is normally off in the DECsystem-1040. If not stated, 

the command is.available on all DECsystem-10s. 

In many cases, there are-two commands to run a program. For example, the indirect command MAKE 

and the direct command R TECO both run the TECO program. In the DECsystem-1040, the switch 

imp'lementing the indirect command may not be set but the switch implementing the direct command is 

always set. Therefore, it is always possible to run a program with the .R or .RUN command, even 

if the switch implementing the corresponding indirect command is off. 

2.1 COMMANDS BY FUNCTIONAL GROUPS 

Although the commands are arranged in alphabetical order for ease of reference, they can be divided 

into functional groups for ease of learning. These groups with their associated commands are as follows. 

2.1.1 Job Initialization Commands 

Since the system is limited to authorized persons, these commands protect the system from unauthorized 

use. 

INITIA 
LOGIN 

2-1 



COMMANDS - 464-

2.1.2 Facility Allocation Commands 

The monitor allocates peripheral devices, file structure storage, and core memory to users on request 

and protects these allocated facilities from interference by other users. Software provisions are incor­

porated in the monitor to differentiate the central station from the remote stations. Certain monitor 

commands, for example, ASSIGN and PLEASE, include station identification arguments to allow both 

user-access and allocation of system resources at any station. This feature gives the user considerable 

flexibility in allocating system facilities and directing input and output to the sta,tion of his choice. 

For example, by specifying a station number, the user can assign devices and input data from a periph­

eral device at a station other than his own. In addition, by using the LOCATE command, he can 

logically establish his job at a station other than his physical station. If the station identification 

argument is not inc,luded in a command, the system automatically directs input qnd output to the user's 

logical station. The user's logical station is the same as his physical station if he' has not issued the 

LOCATE command. 

When a nonsharable device is assigned to a job, it is removed from the monitor's pool of available re­

sources. Any attempt by another user to reference or assign the devi ce fails. Thus, a user should 

never leave the system without first returning his allocated facilities to the monitor pool. Allocated 

facilities are automatically returned to the monitor pool when the user deassigns them or kills his job. 

Until a user returns these facilities, no other users may utilize them except through operator interven­

tion. 

Assignable devices (i .e., nondisk and nonspooled devices) in the monitor's pool of available resources 

are designated as being either unrestricted or restricted devices. An unrestricted device can be as­

signed (ASSIGN command or INIT UUO) by any user. A restricted device can be assigned only by a 

privileged job (i.e., a job logged in under [1,2] or running with the JACCT bit set). However, a 

nonprivileged user can have a restricted device assigned to him via the MOUNT command. This com­

mand allows operator intervention for the selection or denial of a particular device; thus the operator 

can control the use of the assignable devices. This is particularly useful when there are multiprogram­

ming batch and interactive jobs competing for the same devices. The restricted status of a device is set 

or removed by the OPSER commands :RESTRICT and :UNRESTRICT. 

The facility allocation commands are as follows: 

ASSIGN 
CLOSE 
CORE 
DEASSIGN 

5.05 Monitor 

DISMOUNT 
FINISH 
LOCATE 
MOUNT 

REASSIGN 
SET BLOCKSIZE 
SET CDR 
SET CPU 

2-2 

SET DENSITY 
SET DSKPRI 
SET HPQ 
SET SPOOL 
SET TTY or TTY 



- 465 - COMMANDS 

2.1.3 Source Fi Ie Preparation Commands 

These commands call the system editing programs in order to create or edit a specified text file. The 

system editing programs available are LINED (a line-oriented editor) and TECO (a ·character-oriented 

editor). In general, the editor used to create the file should be used for editing, since LINED requires 

line-blocked files and TECO does not. 

CREATE 
EDIT 
MAKE 
TECO 

2.1.4 File Manipulation Commands 

The commands in this group allow the user to manipulate his files to any desired extent. He can list 

source files, and DECtape and disk directories on the terminal or the line printer, possibly via the 

spooling mechanism. He can delete or rename files from disk and DECtape. In addition, the user can 

transfer files between standard I/o devices, perform conversion between various core image formats, 

and read and write various directory formats. Disk space can be either allocated for a new file or re­

allocated for an existing file. Finally, the user can place files in the system queues and obtain listings 

of entries in these queues. 

ALCFlL 
BACKSPACE 
BACKUP 
COPY 
CPUNCH 
DELETE 

DIRECT 
EOF 
FILE 
FlLEX 
LIST 
PLOT 

2.1.5 Object Program Preparation Commands 

PRESERVE 
PRINT 
PROTECT 
QUEUE 
RENAME 
RESTORE 

REWIND 
SKIP 
SUBMIT 
TPUNCH 
lYPE 
UNLOAD 
ZERO 

The commands in this group are used to prepare object programs and save the user's core area as one or 

two fi les. 

COMPILE 
CREF 
DEBUG 

2.1.6 Object Program Control Commands 

EXECUTE 
FUDGE 
FUDGE2 

LOAD 
SAVE 
SSAVE 

By using the commands in this group, the user can load core image files from retrievable storage de­

vices (i.e., disk, DECtape, magnetic tape). These files can be retrieved and controlled from the 

user's terminal. Fi les stored on disk and DECtape are addressabl e by name. Fi les on magnetic tape 

2-3 



COMMANDS - 466 -

require the user to pre-position the tape to the beginning of the file. Refer to DECsystem-10 Monitor 

Calls, o,apter 1, for a description of the job data area locations referenced by the command descrip­

tions in this group. 

CaNT (CCONT) 
DDT 
GET 

HALT 
JCONT 
R 

2.1.7 Obj ect Program Exami nation Commands 

REENTER 
RUN 
START (CSTART) 

The commands in this group aid the user in examining and analyzing his object program. Dumps of the 

user's core area can be taken and later processed by the system program DUMP according to the argu­

ments spec i fi ed by the user. 

D (deposit) 
DCORE 
DUMP 
E (examine) 

2.1.8 Multiple Job Control Commands 

There is not necessarily a one-to-one relationship between jobs and terminals. A terminal must initiate 

a job, but the user or operator may issue commands to permit a job to float in a detached state where 

it is not associated with a particular terminal. Thus, more than one job may be controlled from the 

same terminal. 

ATTACH 
CCONT 

2.1.9 Job Termination Command 

CSTART 
DETACH 

OPSER 
REATTA 

When the user leaves the system, all facilities allocated to his job must be returned to the monitor 

faci lity pool so that they are available to other users. 

KJOB 

2.1.10 Sending Messages 

The commands in this group allow the user interconsole communication with other users of the system 

or with operators at any station. In addition, the user may record information in a disk fi Ie to be read 

by the operations staff at a later time. 

GRIPE 
PLEASE 
SEND 

2-4 



- 467- COMMANDS 

2. 1 .11 Job Information Commands 

The user can obtain various job-related information with this group of commands. This information 

includes the number of his job, the quotas for each file structure associated with his job, and the run­

ning time and disk space that his job has used. In addition, the user may type or modify his file struc­

ture search list. 

DSK 
PJOB 

2.1 .12 System Information Commands 

QUOLST 
SETSRC 

SET TIME 
SET WATCH 
TIME 

With the commands in this group, the user is able to obtain system status information, including the 

time of day, the list of available devices, file structures, and physical units not in file structures, the 

scheduled use of the system, and the location of a specific peripheral device. 

DAYTIME 
RESOURCES 

SCHED 
SYSTAT 

2-5 

VERSION 
WHERE 



COMMANDS - 468 -

I ALCFIL pr.Ograml 

Function 

The ALCFIL program enables.t~e user to allocate space for a new file or reallocate space 
for an existing file in one contiguous region on the disk. The size of the region is restricted 
by the size of the cluster count field (usually 512) times the cluster size of the file structure 
times the number of pointers in a disk device data block (not less than 10). 

Command Format 

R ALCFIL 

The ALCFIL program responds with 

/H FOR HELP 
FILE? 

The user may respond with 

dev:fi Ie .ext [proj ,prog] 
or /H (for help) 
or /X (to exit) 

where dey: is a file structure or physical unit name. If dey: is omitted, DSK is assumed. 
If one of the other arguments is omitted, 0 is assumed. If a filename is specified, the 
number of blocks presently allocated, if nonzero, is typed. ALCFIL responds with 

ALLOCATE? 

User may type Nor N,M (decimal numbers) 

N = total number of blocks to be allocated for the file. 
M = logical block within the file structure or unit (depending on dev:) 

where the allocation is to begin. 

If the total number of blocks requested cannot be allocated (because of disk quotas), 
a partial allocation is given and the message 

PARTIAL ALLOCATION ONLY 
is typed. The user can issue the DIRECT command with the ALLOCATE switch to 
determine the number of blocks allocated. If the new blocks can be allocated, 
the message 

ALLOCATED 

is typed. 

Since an extended ENTER (refer to DECsystem-lO Monitor Calls) is executed to 
allocate the new blocks, the file need not exist before the blocks are allocated. 

Version 7 ALCFIL 2-6 



- 469 - COMMANDS 

IALCFIL program (Cant) I 

Characteri sti cs 

The R ALCFIL command: 

Places the terminal in user mode. 
Runs the ALCFIL program I thereby destroying the user's core image. 

Associated Messages 

Refer to Chapter 4. 

Example 

.R ALCF IL) 

IH FOR HELP 
FILE? TEST4.TST) 
AiIO'CATE? 2000) 

ALLOCATED 
FILE? TESTS.TST) 
AITOCATE? 1000) 

ALLOCATED 
f..!.!:&1 TESTS. TST) 
1000 BLOCKS ALREADY ALLOCATED 
ALLOCATE? 500:;'> 

ALLOCATED 
FILE? V!:>KB:FILEA) 
ALLOcATE? 3",.'11) 

~AriIIAL ALLOCATION ONLY 
E..!.!:&1 IX 

~ 

!.Dlri/ALLOC) 

FILEA 175 <057> 14-APR-72 

!. 

Version 7 ALCFIL 2-7 

DSKB: 



COMMANDS - 470 -

ASSIGN command 

Function 

The ASSIGN command allocates an I/o device to the user's job for the duration of the job or 
until a DEASSIGN command is given. This command, applied to DECtapes, clears the copy 
of the directory currently in core, forcing any directory references to read a new copy from 
the tape. (Refer to DECsystem-10 Monitor Calls for further details.) 

Although DECtape is the only device that should be ASSIGNed before use, to ensure that the 
monitor has a copy of the proper DECtape directory in its core area, it is wise to ASSIGN all 
devices, such as magnetic tape, before use. 

Command Formats 

1. ASSIGN phys-devn log-dev 

phys-devn = any physical device listed in Table 1-1 in Paragraph 1.4.2.2, followed by 
a 1-to-3 digit number representing a specific unit, or any file structure name. This argu­
ment is required. With this command format, the monitor attempts to assign the device 
specifically requested. If unable to assign the device, the monitor types an appropriate 
message (refer to Chapter 4). 

log-dev = a logical name assigned by the user. This argument is optional. Except for 
disk devices, only one logical name can be assigned to a physical device. Subsequent 
ASSIGN commands to all devices except disk devices replace the old logical name with 
the new one. Logical names are disassociated from all devices by the DEASSIGN com­
mand. 

2. ASSIG N phys-devSnn log-dev 

phys-devSnn = any physical device followed by the letter S and a 1 or 2 digit number 
representing a specific station, or any file structure name. This argument is required. 
With this command format, the monitor attempts to assign a device at the requested 
station. An appropriate message is typed if the device cannot be assigned (refer to 
o.apter 4). 

log-dev = same as above. 

3. ASSIGN phys-dev log-dev 

phys-dev = any physical device followed by a null argument implying any device of the 
designated type, or any file structure name. This argument is required. With this com­
mand format, the monitor attempts to assign the requested device at the user's logical 
station. If this type of device does not exist at the user's logical station, the monitor 
attempts to assign the device at the central station. If unable to assign the device, the 
monitor types an appropriate message (refer to o.apter 4). 

log-dev = same as above. 

2-8 



I 

- 471 - COMMANDS 

I ASSIGN command (Cont)1 

Characteristi cs 

The ASSIGN command: 

Leaves the terminal in monitor mode. 

Restrictions 

A comma may not be used to separate the logical and physical device names. If a comma is 
used, the monitor terminates its scan at the comma; therefore, the logical name is not assigned. 

Non-privileged jobs (i .e., jobs not logged in as [1,2] or running with JACCT set) can only 
use this command to allocate unrestricted I/o devices. Restricted devices can be obtained by 
non-privileged jobs via the MOUNT command. The ASSIGN when issued by a privileged job 
allocates both restricted and unrestricted devices. 

Associated Messages 

Refer. to Chapter 4. 

Examples 

.!.AS.5ICN LPT2:) 
LPT2 A 55 I PJJ:() 

.!.AS CDRS2:) 
erR4 AS~;yr.N,,"[) 

.!.ASSIGN TTY1:LPT:) 
TTY 1 AS."! r,'IF[\ 

.!. AS LPT:) 
L P T 4 ASS I r. ~J f () 

• AS~Ir.N DTA':) 
IDEVICE NCT ASSIGNABLE 

.!.AS'5IGN DTA:) 
DrA4 ASqG"JFO 

5.05 Monitor 

The user assigns a specific line printer (LPT2) • 

The user assigns any available card reader at 
station 2. 

The user assigns TlY 1 and gives it logical name 
LPT. 

The user assigns any available line printer. The 
LPT chosen is at either the user's station or the 
central station • 

A non-privil eged user attempted to allocate a re­
stricted device (DTA2). 

The user then uses the generic device name (DTA) 
to obtain the device. He could have used the 
MOUNT command to assign the restricted device 
DTA2. 

2-9 



COMMANDS - 472-

ATT ACH command 

Function 

The ATTACH command detaches the current job, if any, and connects the terminal to a 
detached job. 

Command Format 

ATTACH job [proj ,prog] 

job = the job number of the job to which the terminal is to be attached. This argument 
is required. 

[proj ,prog] = the project-programmer number of the originator of the desired job. This 
argument may be omitted if it is the same as the job to which the terminal is currently 
attached. The operator (device OPR) or a user logged-in under [l,2] may always 
attach to a job although another terminal is attached, provided he specifies the proper 
[proj ,prog] • 

To prevent users from attaching the jobs without knowing the PASSWORD associated with the 
job, a new job is temporarily created when the [proj,prog] argument is specified. This tem­
porary job runs LOGIN to check the password. This can result in the current job not being 
able to attach to the specified job if the job capacity of the system would be exceeded with 
the creation of the temporary job. However, the current job is sti II detached even if there 
are no available jobs. The operator or any job logged-in as [1,2] can always attach to 
another job since they do not require the creation of a temporary job. 

o,aracteri sti cs 

The ATTACH command: 

Restrictions 

Leaves the terminal in monitor mode. 
Does not require LOGIN. 
Depends on FTATTACH which is normally absent in the DECsystem-1040. 

Remote users cannot attach to jobs with a project number of 1. Batch users cannot issue this 
command. 

Associated Messages 

Refer to Chapter 4. 

2-10 



- 473 - COMMANDS 

IATTACH command (Cont)1 

Examples 

f. 

2. 

.I<TT 1) 
FROM JOB 5 

.!. 

.LOG 27,235) 
JOB 7 SS04 TTY25 
f!ASSWQRO; 
!~34 23-FF.B-72 WED 

L~TTACH 35 [50,27]) 
FROM JOa Z 
P ~SSWORD,: 

.!.~TTACH 7) 
?CAN'T ATT. T!L.JOB. 

• K/F) 

The user attaches to job 1 from job 5. The two jobs 
have the same [proj,progj and therefore, the argument 
is not required • 

The user logs-in and rs given job 7. TTY25 is now 
attached to job 7. 

The user attaches to an .existing job (36) and there­
by detaches his current job (7). Since the [proj, 
prog] associated with job 36 is different than the 
user's, he must specify the [proj ,prog] of the de­
sired job. The system then requests the PASSWORD. 
If the given PASSWORD is correct, the terminal is 
attached to job 36. 

The terminal is attached to job 36 • 

The user attempts to attach to job 7. The command 
fails because the [proj ,prog] of job 7 is not the 
same as the [proj ,prog] of job 36. The terminal is 
sti II attached to job 36 • 

JOB 35,USER [50,27] LOGGED OFF TTY25 te3!5 23-FE8-72 
RUNTIME 0MIN,00,34SEC The user killed job 36. The terminal is currently 

not attached to any job. 

.ATTACH 7) 
ltAN'T ~TT TO JOB 

.HT~CH 7 [27,235]) 
IDS~.QB.r;L 

, -

Since the terminal is currently not attached to a 
job, the command fails because there is no [proj, 
prog] to compare with ,the [proj ,prog] of job 7. 

The comrrcnd is accepted and the PASSWORD is re­
quested. The message FROM JOBn is not output 
since the terminal was not attached to a job. 

The terminal is attached to job 7. 

5.05 tv\on i tor 2-11 



COMMANDS - 474 -

BACKSPACE command 1 

Function 

The BACKSPACE command spaces a magnetic tape backward a specified number of files or 
physical records. This command, depending on its arguments, is equivalent to the following 
PIP command strings: 

MTAn: (M InB). 
MTAn: (M InP) • 

Command Formats 

1. BACKSPACE MTAn: x FILES 

skips backward x files. 

2. BACKSPACE MTAn: x RECORDS 

skips backward x records. 

Characteristics 

The BACKSPACE command: 

Leaves the terminal in manitor mode. 
Runs the PIP program. 
Depends on FTCCLX which is normally absent in the DECsystem-l040 • 

. Ass'ociated Messages 

Refer to Chapter 4. 

Examples 

.!8AC fw'TA2: 7 "ECORDS) 

.8ACKSP f;1TA3: II FILES) 

1 This command runs the COMPIL program, which interprets the command before running the PIP 
program. 

Version 20 COMPIL 
Version 32 PIP 

2-12 



- 475 - COMMANDS 

BACKUP program 

Function 

The BACKUP program enables the user to save disk files on magnetic tape (MTA), DECtape 
(DTA), or disk (DSK). The save can be of the entire disk or selected subsets of the disk. 

The BACKUP program places data in the following files: 

1. BACKUP SET file 

This file contains the data saved on the backup medium (MTA, DSK, DTA) with 
one BACKUP command. When data is saved on disk, the BACKUP SET fi Ie is one 
file with file delimiting control words. When written on magnetic tape, it is 
several files written in buffered binary mode. 

The BACKUP SET file is composed of a BACKUP header, a user set, and a 
BACKUP trailer. The BACKUP header is one block in length and contains infor­
mation concerning the creation of the BACKUP SET. This information includes the 
name and date of creation, the name of the system, and the user identification. 

The USER SET contains the directories and the files associated with the directories 
for all user areas. Even if a user has files on more than one file structure, his 
files will be saved together. For example, all files on all file structures for user 
1,2 will be stored before the files for user 1,3. In other words, the user set is 
ordered according to project-programmer number, not according to file structures. 
However, within individual project-programmer numbers, all files on one file 
structure are saved before fi I es on another. 

The BACKUP trailer contains information about the user set that was just created. 
This information includes the time, the date, and the length of the user set. The 
BACKUP trailer immediately follows the user set. 

2. INDEX file 

This file contains the directories and the filenames of all the disk areas that have 
been saved on the backup medium. In addition, it contains the relative block 
number in the BACKUP SET file where each element (file) begins. The index file 
is the last file written on the backup medium and is separated from the BACKUP 
SET file. It can be saved on DECtape and can be listed, if desired. 

3. COMMAND RECOVERY file 

This file contains information that indicates how much of the user's command has 
been processed and how much of the command remains. It is updated at every 
check point in order to make crash recovery possible. 

4. log Rle 

The user is given a log file to aid him in error analysis. This file contains a 
record of either all actions performed by the BACKUP and RESTORE programs or 
only errors encountered in processing. The log file is a listing file. 

Preliminary Information 2-13 



COMMANDS - 476-

IBACKUP program (Cont)I 

Command Format 

R BACKUP 

The user may type any of the following commands after the slash output by the BACKUP 
program. These commands are stored in core and are processed only when a START 
command is given by the user. All commands are terminated with a carriage return. 
Multiple files may be specified in one command string by separating the filenames 
with commas. The full wildcard construction may be used to replace the filename, the 
extension, or the directory (refer to Paragraph 1.4.2.4). 

Command 

BACKSPACE FILE 

BACKSPACE SET 

BACKSPACE UFD 

BACKUP dev2: file descriptor <­

dev 1: [proj ,prog] /switch 

DELETE dev: file.ext 

DENSITY MTAn:x 

DUMP ON dev: file.ext 

ERROR DUMP dev: 

Preliminary Information 

Explanation 

Backspaces the magnetic tape to a user file header and positions 
the tape immediately before the header. 

Backspaces the magnetic tape to a BACKUP header and positions 
the tape either immediately before the header or to the begin­
ning of the tape if there is no BACKUP header (i .e., there is 
only one BACKUP SET on the tape). 

Backspaces the magnetic tape to a UFD header and positions the 
tape immediately before the header. 

Writes the designated file on dev2 from dev1. The user may 
specify files to be taken from and/or written to a user's area 
other than his own, provided that he has access privileges to 
the user areas. The device arguments are required. 

/switch = /EXCEPT file descriptor 

Indicates the files and/or areas that should not be written as 
BACKUP files. 

Deletes the file named from the specified device. The specified 
device must be the device for which a BACKUP has been taken. 

Sets the magnetic tape density as specified by x. 

x = 2 200 bpi 
x = 5 556 bpi 
x = 8 800 bpi 

The default is the system standard defined at MaNGEN time. 

Dump the contents of the BACKUP set file beginning at the 
present position and ending at the next fi Ie control word. All 
types of errors are ignored. The device on which the dump is 
to be written may not be a listing device. 

Returns to the last file control word and dumps the file on the 
device specified if a transmission error occurs during the backup 
of any file. 

(continued on next page) 

2-14 



- 477- COMMANDS 

I BACKUP program (Cont) I 

Command Explanation 

INDEX dev: file.ext Writes the index file with the designated filename on the device 
named. The index fi Ie is also written on the disk and saved as 
the last file on the backup medium. The default is 
DSK:MTnnnn. BKP where nnnn corresponds to the tape sequence 
number. 

LOG dev: file.ext /switch Writes a file on the specified device which contains a record of 
the operations performed. The default is DSK:BACKUP .LOG. 

/Switch = /ERROR 

Logs only the errors. This switch is optional. If omitted, all 
operations are recorded. 

PARIlY dev: ODD or EVEN Specifies the parity on magnetic tape as odd or even. The de­
fault is odd. 

REWIND dev: 

START 

UNLOAD dev: 

Characteri sti cs 

On magnetic tape, closes the backup set and rewinds the tape. 
On di sk, c loses the backup set. 

Begins execution of a series of commands sent previously. Com­
mands are not processed until a START command is given. If 
there are no commands to be processed when the START is exe­
cuted, the command recovery file is searched for executable 
commands. 

Performs a rewind and unload to magnetic tape. 

The user may restart the BACKUP program at any time. By issuing a tC tC START 
sequence, the user can cancel present operations and specify new commands. A 
tC START sequence deletes the command recovery file if the next command given to 
the BACKUP program is not START. If START is the next command to BACKUP, the 
command recovery file is scanned, and the BACKUP program continues according to 
the information in the file. A tC CONT sequence does not delete the command 
recovery fiI e, but compl etes the current requests. After all requests have been com­
pleted, the BACKUP program closes out the log file, and types BACKUP COMPLETED 
and an asterisk on the user's terminal indicating that it is ready for more requests. 

MTA rewinds due to the magnetic tape being filled are actually rewind and unload 
operations to insure that the magnetic tape is not overwritten. When the BACKUP pro­
gram reaches completion, the magnetic tape last written on remains in position unless 
a REWIND command is given. 

The R BACKUP command: 

Runs the BACKUP program, thereby destroying the user's core image. 

Preliminary Information 2-15 



COMMANDS - 478 -

I BACKUP program (Cont) I 

Associated Messages 

Refer to Chapter 4. 

Examples 

.~ BACKUP) 

IBACKUP I"ITAI :"OSKB: [U.22el ••• ) 
ZINOEX OSKC:BAKFIL.LST) 
.L..START) 

,'BACKUP COMPL~JEO AT 1614el22 
Ite 

Preliminary Information 2-16 



- 479 - COMMANDS 

CLOSE command 

Function 

The aOSE command terminates any input or output currently in progress on the specified de­
vice, and automatically performs the aOSE UUO {refer to DECsystem-10 Monitor Calls}. 
Files are ClOSEd, but not RELEASEd, and logical names and device assignments are preserved. 
Since most programs aOSE files when they finish performing a command string, the CLOSE 
command is provided for the occurrence of a program not terminating or a program being de­
bugged. This command causes any disk files being written to be entered into the user's UFD. 
If a CLOSE is not done, the next RESET by a command (R, RUN, GED or program will delete 
the partially written file. 

Command Format 

CLOSE dev 

dev = the logical or physical name of the device on which I/o is to be terminated. 
This argument is optional. 

If dev is omitted, I/O is terminated on all devices, except for the job's controlling 
terminal, and all files are CLOSEd. 

Characteri sti cs 

The aOSE command: 

Leaves the terminal in monitor mode. 
Req u i res core. 
Depends on FTFINISH which is normally absent in the DECsystem-1040. 

Restrictions 

The user cannot continue, but can start at thtl beginning or enter DDT. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.CL.OSE PTR;) 

7CL.OSE OEVA I) . 
~CL.OSE) 

2-17 



COMMANDS - 480-

!COMPILE command 1 

Function 

The COMPILE command produces relocatable binary files (.REL files) and/or compilation list­
ings for the specified source program files. The assembler or compiler used is determined by 
the source file extension or by switches in the command string. If no switches appear in the 
command string, the following translators are used: 

Source Rle Extension Translator Used 

.ALG 

.BLI 

.CBL 

.F4 

.MAC 
• Pll 
.SNO 

ALGOL compiler 
BLISS compiler2 
COBOL compiler 
FORTRAN compiler (F40) 

~g~1 a~::::~~;r2 
SNOBOL compile~ 

Other than above, or null Standard processor, which is usually FORTRAN at 
the beginning of the command string (refer to 
Parograph 1.5.6). 

NOTE 
If a source file has a recognizable processor extension (see 
above), the processor cannot be changed with a switch. The 
only time that a processor can be specified with a switch is 
when the source file has a non-recognizable processor exten­
sion or a null extension. 

Normally the source file is translated if there is no corresponding binary (.REL) file or if the 
source file's date and time is later than or equal to the binary file's date and time. If the 
binary file is newer than the source file, the source file is not translated and the current .REL 
file is used. However, switches can be used to override this action. 

Each time the COMPILE, LOAD, EXECUTE, or DEBUG command is executed, the command 
with its arguments is remembered in a temporary file on disk, or in core if the monitor has the 
TMPCOR feature. Therefore, the fi I ename used last can be recall ed for the next command 
without specifying the arguments ogain (refer to Paragraph 1.5). 

The COMPILE command accepts several command constructions: the @ construction (indirect 
commands), the + construction, the = construction, and the < > construction. Refer to 
Paragraph 1.5 for a complete description of each of these constructions. 

1 This command runs the COMPIL program, which interprets the command before running the appro­
pri ate processor. 

2SNOBOL, BLISS, and MACXll (the PDP-ll assembler for the PDP-10) will be recognized as pro­
cessors only if the appropriate assembly switches are set. However, these assembly switch settings 
are not supported. 

Version 20 COMPIL 2-18 



- 481 - COMMANDS 

ICOMPILE command (Cont) I 

Command Format 

COMPILE list 

list = a single file specification, or a string of file specifications separated by commas. 
A file specification consists of a device name, a filename with or without an exten­
sion, and a directory name. 

The following switches can be used to moaify the command string. These switches can 
be temporary or permanent switches (refer to Paragraph 1.5.5). Note that all the 
switches allowed with the LOAD, EXECUTE, and DEBUG commands can be used with 
the COMPILE command. However, only the switches pertinent to COMPILE are listed 
below; the others are ignored. 

/ALGOL 

/BLISS 1 

/COBOL 

/COMPILE 

/CREF 

/FORTRAN 

Compile the file with ALGOL. Assumed for files with the exten­
sion of .ALG. 

Compile the file with BLISS. Assumed for files with the extension 
of .BLI. 

Compile the file with COBOL. Assumed for files with the exten­
sion of • CBL. 

Force a compilation on this. file even though a binary file exists 
with a newer date and time than the source file. This switch is 
used to obtain an extra compilation (e.g., in order to obtain a 
listing of the compilation) since normally compilation is not per­
formed if the binary file is newer than the source file. 

Produce a cross-reference listing file on the disk for each file 
compi led for later processing by the CREF program. These fi les 
have the filename of the source file and the extension of .CRF. 
The file can then be listed with the CREF command. However, 
with COBOL files, the cross-referenced listing is always appen­
ded to the listing file. No additional command need be given to 
obtain the listing. 

Compile the file with FORTRAN. Assumed for files with the ex­
tension of • F4 and all fi les with non-recQgnizable processor ex­
tensions (if FORTRAN is the standard processor). 

1 BLISS will be recognized as a processor only if the appropriate assembly switch is set. However, this 
assembly switch setting is not supported. 

Version 20 COMPIL 2-19 



COMMANDS 

I COMPILE command (Cont)1 

Command Format (cont) 

/RJDGE 

/L1ST 

/MACRO 

/MACXll l 

/NOCOMPILE 

/NOLIST 

/SNOBOL 1 

- 482-

Create a disk file containing the names of the .REL files produced 
by the command string. When the FUDGE command is given, PIP 
reads this file in order to generate a library REL file. Arguments 
to this switch are: 

/RJDGE:dev:file.ext [proj ,prog] 

dev: - the device on which to write the file. DSK: is assumed. 

file.ext - the name of the library file. The filename is required. 
If the extension is omitted, it is assumed to be • REL. 

[proj ,prog] - the directory in which to place the file. The user's 
directory is assumed if none is given. 

This switch is permanent in the sense that it pertains to all • REl 
files generated by the command string. 

Generate a disk listing file, for each file compiled, with the file­
name of the source file and the extension of .LST. These files can 
be listed later with the LIST command. Unless this switch is speci­
fied, listing files are not generated except in COBOL; COBOL 
listings are always generated. 

Assemble the file with MACRO. Assumed for files with extension 
of .MAC. 

Assemble the file with MACXll. Assumed for files with extension 
of .Pll. 

Complement the /COMPILE switch by not forcing a compilation on 
a source file whose date is not as recent as the date on the binary 
file. /NOCOMPILE is the default action. 

Do not generate listing files. This is the default action except for 
COBOL files; COBOL listings are always generated. 

Compile the file with SNOBOL. Assumed for files with an exten­
sion of .SNO. 

lSNOBOL and MACXll (the PDP-ll assembler for the PDP-lO) will be recognized as processors only 
if the appropriate assembly switches are set. However, these assembly switch settings are not 
supported • 

Version 20 COMPIL 2-20 



- 483 - COMMANDS 

ICOMPILE command (Coot)1 

Characteri sti cs 

The COMPILE command: 

Restri ctions 

Leaves the termi nal in monitor mode. 
Runs the appropriate processor. 

The wildcard construction cannot be used. 

Associated Messages 

Refer to o,apter 4. 

Examples 

.COMPILE PROG,TEST.MAC.MANAGE/COBOL) 

Compiles PROG {with noll extension} with FORTRAN, TEST. MAC with MACRO, and 
MANAGE {with null extension} with COBOL only if REL files do not exist with later 
dates. A listing file is generated only for MANAGE. The files generated are 
PROG.REL, TEST.REL, MANAGE.REL, and MANAGE.LST. 

~r.OMP!LE ILIST SIGN.MAC,TABLES/NOLIST,MULTI.ALG) 

Compiles SIGN.MAC with MACRO, TABLES {with null extension} with FORTRAN, 
and MUL TI.ALG with ALGOL. Listing files are generated for SIGN.MAC and 
MULTI.ALG • 

• COMPILE/CREF/COMPILE DIVIDE.SUBTRC,ADD) 

Forces a compilation of the source files although current .Ra files exist and generates 
cross-referenced listing files. The files created are DIVIDE.CRF, DIVIDE.REL, 
SUBTRC.CRF, SUBTRC.Ra, ADD.CRF, and ADD.REL. 

~COMPILE IfUDGE:MONITR.REL'LIBALL) 

Compiles the files contained in the command file LlBALL and enters the names of all 
the REL files generated in a temporary disk file. When the FUDGE command is given, 
PIP generates the library REL file with name MONITR.REL. The library is created with 
the REL files in the same order as they were specified in the command file. 

Version 20 COMPIL 2-21 



I 

COMMANDS - 484-

I COMPILE command (Cant) I 

Examples (cont) 

.COMPILE OUTPUT-MTA0:(W,S,Ml/L) 

Rewinds the magnetic tape ~), compiles the first file with FORTRAN, produces binary 
output for the KA10 (S), and includes the MACRO coding in the output listing (M). 
These switches are processor switches (refer to Paragraph 1.5.7). A listing file is gene­
rated with the name OUTPUT.LST, along with the file OUTPUT.REL. 

Version 20 COMPIL 2-22 



- 485 - COMMANDS 

CONTINUE command I 
Function 

The CONTINUE command starts the program at the saved program counter address stored in 
.JBPC by a HALT command (tC) or a HALT instruction. Refer to DECsystem-10 Monitor Calls 
for a descri ption of the job data area. 

Command Format 

CONTINUE 

Characteri sti cs 

The CONTINUE command: 

Places the terminal in user mode. 
Requires core. 
Does not require LOGIN. 

Associated Messages 

Refer to Chapter 4. 

Example 

..:.RUN LOOP) 
TC 
TC 
.!.DA YT rfli'E) 
23-rEB-72 16:33:10 
.!.CONT) 

Run a program called LOOP in your disk area • 

Stop the program. 
Check the time of day • 

Continue the program. 

2-23 



COMMANDS - 486-

COpy command 11 

Function 

The COPY command transfers fifes from one standard I/o devi ce to another. The command 
string can contain one device output specification and any number of input specifications. 
The equal sign separates the destination (output) side from the source (input) side. This com­
mand runs PIP and performs the basic PIP function of transferring files. 

Command Format 

COPY dev: file.ext [proj,prog)<nnn>=dev: file.ext [proj,prog), file.ext [proj,progJ, ••• 

dev: = a physical or logical device name. If the device name is omitted, DSK: is 
assumed. 

file.ext = the name of the file(s) to be used on input or for output. If the output file­
name is omitted, the input filemane is assumed. PIP combines the files if many input 
files are being transferred to one output file. If many input fi les are being transferred 
to the same number of output files, PIP uses the IX switch to keep the files separate. 
The wildcard construction is allowed. 

[proj ,prog) = the disk area in which either the files are to be read or written. If this 
argument is omitted, the user's default disk area is assumed. The user may transfer files 
to or from another area only if he has access to the area. 

<nnn> = the protection code to be given to the output fif e(s). If omitted, the system 
standard is assigned. 

Switches can be passed to PIP by enclosing them in parentheses in the COPY command string. 
When COMPIL interprets the command string, it passes the switches on to PIP. 

Characteristi cs 

The CO Py command: 

Leaves the terminal in monitor mode. 
Runs the PIP program, thereby destroying the user's core image. 
Depends on FTCCLX which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

1 This command runs the COMPIL program, which interprets the command before running PIP. 

Version 20 COMPIL 
Version 32 PIP 

2-24 



Examples 

- 487- COMMANDS 

I COpy command (Cont) I 

The three files from DTA3 are transferred to the user's disk area with the same file­
names • 

• COPY DTA3: OlJTPUT=*. *) 

All files in the user's disk are transferred to one file on DTA3 with the name 
OUTPUT • 

• COPY FILEA.*=DTA1: SOUI<CE.*) 

The input files on DTA 1 named SOURCE with any extension are transferred to DSK with 
the filename FllEA and the same extension. The number of output files equal the 
number of input files • 

• COPY YOllkS.CBL [20. 17J = IV'INE.C8L ) 

The file MINE.CBl from the user's disk area is transferred to [20,171 disk area with 
the name YOURS.CBL. The user must have privileges to write in area [20,17]. 

Version 20 COMPIl 
Version 32 PIP 2-25 



COMMANDS - 488 -

COpy program 

Function 

The COPY program is a DECtape copy routine that allows the user ·to 

1. Copy the entire contents of an input DECtape to an output DECtape. 
2. Zero all blocks on an output DECtape and clear the directory. 
3. Perform a word-by-word comparison of two D ECtapes. 
4. Load a bootstrap loader and write it in blocks 0, 1, and 2 of the output DECtape. 

Command Format 

.R COPY"> 
~output DTA:=input DTA: Iswitches 

Iswitches = one or more of the following switches. Switches are preceded by a slash 
or enclosed in parentheses and can appear anywhere in the command string. 

Version 6 COPY 

Ic Copy all blocks from the input DECtape to the output DECtape. 

IG Do not restart the program after a parity error. Output an error mes­
sage and continue the program. 

IH Type the available switches and their meanings. 

IL Load the bootstrap loader into a core buffer. COPY expects the loader 
to be on logical device PTR in the file named BSLDR.REL. Note that 
COPY must be SAVed if the loader is to be preserved with the COPY 
core image. 

IN Suppress the directory listing. 

IT Write the bootstrap loader in blocks 0, 1, and 2 of the output DECtape. 

Iv 

Iz 
16 

This switch accepts, as input from the terminal, a core bank or offset. 
The loader is offset and then written on the tape. 

core bank = nnnK (16K to 256K) 
offset = 1000 to 777600 octal 

Verify the similarities of the two DECtapes by performing a word-by­
word comparison and typing on the terminal the number of discrepancies 
discovered. 

Zero all blocks of the output DECtape and clear the directory. 

Leok for the directory in PDP-6 format (i .e., in block one instead of 
block 144). 

2-26 



- 489- COMMANDS 

I COpy prowam (Cont~ 

Command Format (cont) 

If no switches are specified, IC (copy) and IV (verify) are assumed by default. Note 
that upon completion, the directory in core may not agree with the directory of the 
output DECtape. The output DECtape should be reassigned to guarantee that the 
directory in core is up-to-date. 

Characteristi cs 

The R COPY command: 

Places the terminal in user mode. 
Runs the COPY program, thereby destroying the user's core image. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.R COpY) 

!DTA7: = DTA3:) 

!DTA2: /z= ) 

!.tC 

~ASSIGN DSK:PTk:) 

Run COPY 

Copy the contents of DTA3 to DTA7 and determine 
if the two DECtapes are the same (default condi­
tion). If the DECtapes disagree I the number of 
discrepancies is typed on the terminal. 

Zero all blocks and clear the directory on DTA2. 

Return to moni tor mode. 

.RENAME BSLDR.KEL=DTBOOT.KEL) 

The bootstrap loader must be on logical device PTR. 

COPY expects the bootstrap loader to be named 
BSLDR. 

!ok COpY) 

YL) 

~SAVE DSK :COPY ) 

Version 6 COPY 

Run COPY 

Load the bootstrap loader into a core buffer. 

Return to monitor mode. 

Save COPY so that the bootstrap loader is preserved 
with the COPY core image. 

2-27 



COMMANDS 

I COpy program (Cont) I 

Examples (cont) 

.:,.STAIH) 

!,DTA5 :/T=) 

- 490 -

Start the COPY program • 

Write the bootstrap loader in blocks 0, 1, and 2 of 
DTA5. 

TYPE COkE BANK AND OFFSET FOk DT800T 

64K) 

Version 6 COPY 

Respond with size of core bank or offset. 

Size of core bank (64K core bank = 177000 offset, 
top of core -1000) 

Return to monitor mode. 

2-28 



I 

- 491 - COMMANDS 

CORE command 

Function 

The CORE command types or modifies the amount of core assigned to the user's job. Because 
programs usually allocate core, the user generally does not need this command. It is included 
for completeness and is used more frequently in non-swapping systems than in swapping systems. 

If the job is locked into core, this command with a nonzero argument cannot be satisfied and 
therefore gives an erroneous return. 

Command format 

CORE n 

Characteri sti cs 

n = a decimal number. This argument is optional. 

If n is omitted, the monitor types out the amount of core used and does not change the 
core assignment. 

If n = 0, the low and high segments disappear from the virtual addressing space of the 
job. 

If n >0, n represents the total number of blocks of core to be assigned to the job from 
this point on. 

If n is less than high plus minimum low segment si~e, n plus high segment size is 
assumed. 

Core arguments can be specified in units of 1024 words or 512 words (a page) by 
following n with the letter K or P, respectively. for example, 3P represents 3 pages 
or 1536 words. If K or P is not specified, K (1024 words) is assumed. 

On systems with the KA10 processor (DECsystem-l040, 1050, or 1055), 1024 words 
is the minimum unit of allocation and therefore, all arguments are rounded up to the 
nearest multiple of 1024 words. For example, 3P on the KA 10 is treated the same as 
2K. 

The CORE command: 

Leaves the terminal in monitor mode. 
Does not operate when a device is currently transmitting data. 

5.05 Jv\onitor 2-29 



I 

COMMANDS 

I CORE command (Cont) I 

Associated Messages 

Refer to Chapter 4. 

Examples 

.:.COkE 5) 

.!.CORF) 
5+0/46K CeRE 
VIR. CORE LEFT 274 

.:.CORE 10P) 

.:.COR F 
10+0/931' ceRE 
VIR .CORE LEFT 

5.05 Iv\onitor 

549P 

- 492 -

2-30 



- 493 - COMMANDS 

CPUNCH command 

Function 

The CPUNCH command is used to place entries into the card punch output queue. This com­
mand is equivalent to the following form of the QUEUE command: 

QUEUE CDP: job name = list of input specifications 

Command Format 

CPUNCH jobname = list of input specifications 

jobname = name of the job being entered into the queue. The default is the name of 
the first file in the request, not the name of the first file given. These differ when the 
the first file given does not yet exist. 

input specifications = a si.ngle file specification or a string of file specifications, sepa­
rated by commas, for the disk files being processed. A file specification is in the 
form dev:file.ext [proj ,prog]. 

dev: = any file structure to which CDPSPL will have access; the default is DSK:. 

file.ext = names of the files. The filename is optional. The default for the first file­
name is *, the default for subsequent files is the last filename used. The extension 
can be omitted; the default is .CDP. 

[proj ,prog] = a directory to which the user has access; the user's directory is assumed 
if none is specified. 

Note that if all arguments to the command are omitted (i.e., only the command name is given), 
the listing of all entries in the card punch queue for all jobs of all users is output. 

The wildcard construction can be used for the input specifications. Switches thQt aid in con­
structing the queue entry can also appear as part of the input specifications. These switches 
are divided into three categories: 

1. 

2. 

3. 

Version 3 QUEUE 

Queue-operation - Only one of these switches can be placed in the command 
string because they define the type of queue request. The switch used can appear 
anywhere in the command string. 

General - Each switch in this category can appear only once in the command 
string because they affect the entire request. The switch used can appear any­
where in the command string. 

Fi Ie contro I - Any number of. these switches can appear in the command stri ng 
because they are specific to individual files within the request. The switch used 
must be adjacent to the file to which it applies. If the switch precedes the file­
name, it becomes the default for subsequent files. 

2-31 



COMMANDS - 494-

ICPUNCH command (Cont) I 

Command Format (cont) 

The following switches can be used with the CPUNCH command. 

Switch 

/AFTER:tt 

/BEFORE:t 

/BEGIN:n 

/COPIES:n 

/CREATE 

/DEADLINE:tt 

/DISPOSE:DELETE 

/DISPOSE:PRESERVE 

Version 3 QUEUE 

Explanation Category 

Process the request after the specifi ed time; tt is either General 
in the form of hhmm (time of day) or +hhmm (time later 
than the current time). The resulting AFTER time must 
be less then the DEADLINE time. If the switch, or the 
value of the switch, is omitted, no AFTER constraints 
are assumed. 

Queue only the files with a creation date before time General 
t where t is in the form dd-mmm-yy hhmm. If the 
switch, or the value of the switch, is omitted, no 
BEFORE constraints are assumed. 

Start the output on the nth card. The default is to File Control 
begin output on the first card. 

Repeat the output the specified number of times. File Control 
N must be less than 64. If more than 63 copies 
are needed, two separate requests must be made. If 
this switch is not specified, the default is 1. 

Make a new entry into the card punch output queue. Queue Operation 
This switch is the default for the queue-operation 
switches. 

Process the request before the specified time; tt is General 
either in the form hhmm (time of day) or -+hhmm 
(time later than the current time). The resulting 
DEADLINE time must be greater than the AFTER time. 
If the switch, or the value of the switch, is omit-
ted, no DEADLINE constraints are assumed. 

Delete the file after spooling. File Control 

Save the file after spooling. This is the default for File Control 
all files except files with extensions .LST, • TMP, 
or .CDP (if protection of .CDP is Oxx). 

2-32 



Command format (cont) 

Switch 

IDISPOSE:RENAME 

IF 

lFORMS:a 

IKIll 

11IMIT:n 

/lIST 

IMODIFY 

Version 3 QUEUE 

- 495 - COMMANDS 

ICPUNCH command (Contll 

Explanation Category 

Rename the file from the specified directory immedi- File Control 
ately, remove it from the logged-out quota, and 
delete it after spooling. This is the default for files 
with extensions of .lST, • T MP, and, if the protection 
is Oxx; .CDP. 

list the entries in the card punch queue, but do not up- Queue Operation 
date the queues. Therefore, the list may not be an up-
to-date listing but the listing will be faster than with 
11IST. 

Place the output on the specified form. The argument General 
to the switch must be six alphabetic characters. The 
default is that normal forms are used. 

Remove the specified entry from the card punch queue. Queue Operation 
This switch can be used for deleting a previously-
submitted request as long as the request has not been 
started by th e Spoo I ers • 

limit the output to the specified number of cards. General 

After updating the queues, list the entries in the card Queue Op~ration 
punch queue; if this switch, along with all other 
switches, is omitted, all entries for all jobs of all 
users are listed. 

Alter the specified parameters in the job. This switch Queue Operation 
requires that the user have access rights to the job. 
It can be used for altering a previously submitted re-
quest as long as the request has not been started by the 
Spooler. 

2-33 



COMMANDS - 496 -

I CPUNCH command (Cant) I 

Command Format (cont) 

Switch Explanation Category 

/N~ Accept the request even if the file does not yet exist. File Control 
An appropriate error message is given if the fi Ie does 
not exist by the time the request is processed by the 
spooler. 

/NULL Accept the request even if there is nothing in the re- General 
quest (i .e., create a queue entry to be later modi-
fied). No error message is given if there are no files 
in the request. 

/OKNONE Do not output message if no files match the wildcard File Control 
construction. This is assumed at KJOB time. 

/PHYSICAL Suppress logical device name assignments for the device File Control 
specified • 

/PRIORIlY :n Assign the specified external priority (n=O to 62) to the General 
request. The larger the number, the greater priority 
the job has. The default is 10 if no switch is given 
and 20 if the switch is specified without a value. 

/PROTECT:nnn Assign the protection nnn (octal) to the job. If the General 
switch, or the value of the switch, is omitted, the 
standard protection is assumed. 

/PUNCH:026 Punch the files in 026 Ho"erith code. If a /PUNCH: File Control 
switch is not given the files are punched according to 
the data mode specified in the file. 

/PUNCH:ASCII Punch the files in ASCII card code. If a /PUNCH: File Control 
switch is not given, the files are punched according 
to the data mode specified in the file. 

/PU NCH :BINARY Punch the files in binary card code. If a /PUNCH: File Control 
switch is not given, the files are punched according 
to the data mode specified in the file. 

/PUNCH:D029 Punch the files in DEC029 card code. If a /PUNCH: File Control 
switch is not given, the files are punched according 
to the data mode specified in the file. 

/PUNCH:IMAGE Punch the files in image card code. If a /PUNCH: File Control 
switch is not given, the fi les are punched according 
to the data mode specified in the file. 

/REMOVE Remove the file from the queue. This switch is valid File Control 
only with the /MODIFY and can be used to remove a 
previously submitted file as long as CDPSPL has not 
started processing the request. 

Version 3 QUEUE 2-34 



Command Format (cont) 

Switch 

/SEQ:n 

/SINCE:t 

/START:n 

/STRS 

/UNPRESERVED 

o,aracteristics 

- 497- COMMANDS 

ICPUNCH command (Contll 

Explanation Category 

Specify a sequence number to help in identifying a ra- General 
quest to be modified or deleted. 

Queue only the files with creation dates after the speci- General 
fied time. t is in the form dd-mmm-yy hhmm. 

Begin on the nth line of the file. If the switch, or the File Control 
value of the switch, is omitted, the spooler starts with 
the first line. 

Search for the file on all file structures in the search File Control 
list and take each occurrence. The default is to take 
just the first occurrence. 

Output the files only if they are not preserved (i.e., General 
the first digit is 0). This switch avoids redundant 
punching. 

The CPUNCH command: 

leaves the terminal in manitor mode. 
Runs the QUEUE program, thereby destroying the user's core image. 
Depends on FTQCOM which is normally absent in the DECSystem-1040. 

Associated Messages 

Refer to o,apter 4. 

Examples 

• CI"'LJNCI1 !;¥:'lA1.I':AC/r>uNCH:A5CI I) Punch the file SYSTAT • MAC in ASCII format • 

.CPUNCH SY5TAT.REL/PUNCH:BINAR~/ArTER:1700) 

Punch the file SYSTAT .REl in binary format, 
but do not begin punching it until aft~r 5:00 pm. 

Version 3 QUEUE 2-35 



COMMANDS - 498 -

CREATE command 1 

Function 

The CREATE command runs LINED (Line Editor for disk) and opens a new file on disk for 
creation. Refer to the LINED writeup in the DECsystem-10 Saftware Notebooks. 

CDmmand rormat 

CREATE file.ext 

file.ext = any legal filename and filename extension. The filename is required; 
the filename extension is optional. 

Characteri sti cs 

The CREATE command: 

Places the terminal in user mode. 
Runs the LINED program, thereby destroying the-user's core image. 
Depends on FTCCLX which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Example 

.CREATE TFSTI .F4) 

* 

1This command runs the COMPIl program,which interprets the commands before running LINED. 

Version 20 COMPIl 
Version 13 LINED 2-36 



- 499 - COMMANDS 

CREF command 

Function 

The CREF command runs CREF and lists on the line printer (LPT) any cross-reference listing 
files generated by previous COMPILE, LOAD, EXECUTE, and DEBUG commands, using the 
/CREF switch, since the job was initiated. The file containing the names of these CREF­
listing files is then deleted so that subsequent CREF commands will not list them again. The 
output goes either to LPT immediately or to the disk to be spooled later to LPT. When the 
logical device na."e LPT is assigned to a device other than the line printer, the CREF files 
are stored on tho' devi ce with the same fi lename and the extensi on . LST. 

Command Format 

CREF 

Characteristi cs 

The CREF command: 

Leaves the terminal in monitor mode. 
Runs the CREF program, thereby destroying the user's core image. 
Depends on HCCl)( which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Example 

.COMPILE/CREF.PROMAC) 

.:.CREf) 

.:.LOADICIIV,Ar' :l'JAMEItCONALL) 

• Al:il:iIGN ~IAI Lr'r) 

:..C.1.EF) 

Version 46 CREF 

Compi Ie the fi les contai ned in the command fi Ie 
PROMAC and produce CREF input compatible 
cross-reference listing files on the disk. 

Process and Ii st the cross-reference Ii sti ng fi les 
produced by the COM PI LE command. 

Compi Ie and load the fi les contai ned in the 
command fi Ie CONALL. Produce a loader map 
with the fi lename NAME and CREF input 
compatible cross-reference listing files on the 
disk. 

Assign the logical name LPT to MTAI • 

Store the CREF files on MTAI to be listed at a 
later time. 

2-37 



COMMANDS - 500 -

CST ART command 
CCONTINUE command 

Function 

The CSTART and CCONTINUE commands are identical to the START and CONTINUE com­
mands, respectively, except that the terminal is left in the monitor mode. 

Command Format 

CSTART adr 
CCONTINUE 

Characteri sti cs 

adr = the address at which execution is to begin if other than the location specified 
within the file (.JBSA). If adr is not specified, the starting address comes from .JBSA. 
An explicit starting address of 0 may be specified for adr. 
To use: 

1. Begin the program with the terminal in user mode. 

2. Type control information to the program, then type tC to halt the job 
with the terminal in monitor mode. 

3. Type CCONTINUE to allow job to continue running and leave the terminal 
in monitor mode. 

4. Additional monitor commands can now be entered from the terminal. 

The CSTART and CCONTINUE commands: 

Restrictions 

leave the terminal in monitor mode. 
Require core. 
Depend on FTATTACH which is normally absent in the DECsystem-1040. 

These commands.should not be used when the user program (which is continuing to run) is also 
requesting input from the terminal. These commands are not available to Batch users. 

Associated Messages 

Refer to Chapter 4. 

2-38 



Example 

• TYPE LOOP.F<4) 
ACCEPT 101,1 

10 FORMAT 0) 
00 201 Jal,I 

20 CONTINUE 
ill 

• EXECUTE LOOP) 

FORTRAN:LOOP.F<4 
LOADING 
bOOP 2K CORE 
EXECUTION 
1000000 

tC 
tC 

..!,CCONT) 

.!. TIME) 

0§9~ 
1 • 2 
KICO=CQRE-SEC.133 

• TIME) 
1.45 
23.017 
Kf[O:CORE-SEC-157 

... SYSTATJ 
PLEASE ~YPE AC FIRST 

• TIME) 
~ 00 
it:i7 
~CORE-SEC.157 
.:,tC 

.!.CONT) 

- 501 - COMMA.NDS 

CST ART command ( ) 
Cont 

CCONTINUE command 

The user types his source program • 

The user compiles, loads, and executes the program. 

The user indicates that the program should loop 
1000000 times. 

The user stops the program. 

The user continues the program but keeps the term­
inal in monitor mode. 

The user times the program • 

The program is still running. 

SYSTAT would cause the program to terminate • 

The program appears to have finished because the 
runtime has stopped incrementing. The program will 
not output until the CaNT command is given. 

Return to the manitor • 

Continue the program so it can complete its typing. 

CPU TIME:5.~5 £LAPSED TIME:115.73 
NO EXECUTION ERRORS DETECTED 

2-39 



COMMANDS - 502-

D (deposit) command 

Function 

The D command deposits information in the user's core area (high or low segment). When de­
bugging a sharable program with the D command, the SAVE command should be used rather than 
the SSAVE command (refer to Appendix D). 

Command Format 

D Ih rh adr 

Characteristics 

Ih = the octal value to be deposited in the left half of the location. This argument is 
required. 

rh = the octal value to be deposited in the right half of the location. This argument 
is required. 

adr = the address of the location into which the information is to be deposited. This 
argument is optional. 

If adr is omitted, the data is deposited in the location following the last D adr or in 
the location of the last E adr (whichever was last). 

The D command: 

Leaves the terminal in monitor mode. 
Requires core. 

Associated Messages 

Refer to Chapter 4. 

2-40 



Example 

.D 266000 2616 141 

!.E 140 
000140/ 047000 000000 

§ 
000140/ 047000 000001 

- 503 -

.D 47000 1 

COMMANDS 

10 command (Contij 

Deposit in location 141. 

Examine location 140. 
Since adr is omitted, the deposit is in the location 
of the last E command. 

The examine is of the location of 
the previ ous D command. 

2-41 



COMMANDS - 504-

DAYTIME command 

Function 

The DAYTIME command types the date followed by the time of day. The date and time are 
typed in the following format: 

where 

dd-mmm-yy 

dd = day 
mmm = month 
yy = year 
hh = hours 
mm = minutes 

hh:mm:ss 

ss = seconds to nearest hundredth. 

o,mmand Format 

DAYTIME 

Characteristics 

The DAYTIME command 

Leaves the tenninal in monitor mode. 
Does not require LOGIN. 
Does not destroy the user's core area. 

Example 

.DAY) 
11-SEP-70 22:36:34 

.DA) 
is-DEC-71 :47 :02 

! 

2-42 



- 505 - COMMANDS 

DeORE command 

Function 

The DCORE command causes the DAEMON program to write a core-image file of the user's 
core area that includes all accumulators and all relevant job tables. The jog can continue to 
run; i.e., the DCORE command does not destroy the user's core area. The file produced may 
be later processed by the DUMP program, if the user so desires. 

The DAEMON-written file consists of four categories: JOB, CONRGURATION, DDB, and 
CORE. Each category has a two-word header, the first word contains the category number and 
the second word contains the number of data words in the category. The categories are as 
follows: 

Mnemonic 

JOB 

CONFIGURATION 

DDB 

CORE 

Category Number 

2 

3 

4 

Descri ption, 

Job related information. 

The Configllration Tabl e (. G TCN F) from 
the GETTAB UUO. 

The device data blocks (DDB) assigned to 
this job. 

The user's core area, both low and high 
segments, in zero-compressed format 
(refer to Appendix D). 

The third word of each category begins the data for that category. DAEMON treats each 
category as a file and the addresses within the category start at zero. The user cannot examine 
the category header nor can he read past the end of one category into the next category. 

Version 6 DAEMON 2-43 



COMMANDS - 506-

I DCORE command (Cont) I 

Function (cont) 

The DAEMON-written file appears as follows: 

1 category number 1 
34 number of octal words that follow 

34 words 1 } job related information 

2 category number 2 
25 number of octal words that follow 

25 words ! } . GTCNF table 

3 category number 3 
N number of octal words that follow 

n1 

t n1 words of DDB1 
N = n1 + n2 + ••• + nm 

N words 
n2 

n2 words of DDB2 Device Data Blocks 

n m 
words of DDB 

+ 
* 

n 
m m 

4 category number 4 
N number of octal words that follow 

N words I } user's core in zero-compressed format 

Category 1 presently contains the following information, but may expand as more GETTAB 
entries appear. 

Word 1 

Version 6 DAEMON 

Version of DAEMON that wrote the file. 
DATE the file was written in standard system format. 
TIME in milliseconds that the file was written. 
JOB NUMBER in left half, HIGH SEG number (or O) in right half. 

(continued on next page) 

2-44 



- 507 - COMMANDS 

IDCORE command (Contll 

Function (cont) 

Word 5 LH is reserved, TlY LINE NUMBER in right half. 
• G TS TS (job status word) for job • 
• GTSTS for high segment • 
• GTPPN (project-programmer number) for job • 
• GTPPN for high segment. 
• G TPRG (user program name) for job • 
• GTPRG for high segment • 
• GTTIM (total time used) for job. 
• G TK CT (kilo-core-ti cks) for job • 
• GTPRV (privilege bits) for job • 
• GTSWP {swapping parameters} for job • 

Word 20 • GTSWP for high segment. 
• G TRCT (di sk b locks read) for job • 
• GTWCT (disk blocks written) for job • 
• GTTDB {time of day of last disk allocation, number of disk blocks 

allocated} for job • 
• GTDEV (device or file structure name) for high segment • 
• GTNMl (first half of user's name) for job • 
• GTNM2 (last half of user's name) for job • 
• GTCNO (charge number) for job • 
• GTTMP (TMPCOR pointers) for job • 
• GTWCH (WATCH bits) for job • 
• GTSPL (spooling control bits) for job • 
• GTRTD (real-time status word) for job • 

Word 34 • GTLIM (time limit in jiffies) for job. 

Category 2 presently contains the following information, but may expand if more .GTCNF 
entries are added. 

%CNFGO 
~ 

%CNFG4 
%CNDTO 
%CNDT1 
%CNTAP 
%CNTIM 
%CNDAT 
%CNSIZ 
%CNOPR 

Version 6 DAEMON 

Name of system in ASCIZ. 

Date of system in ASCIZ. 

Name of system devi ce in SIX BIT . 
Time of day in jiffi~s. 
Today's date. 
Highest location in monitor + 1. 
Name of aPR TTY console. 

2-45 

continued on next page} 



COMMANDS - 508 -

I DCORE command (Cont) I 

Function (cont) 

%CNDEV 
%CNSGT 
%CNTWR 
%CNSTS 
%CNSER 
%CNNSM 
%CNPTY 
%CNFRE 
%CNLOC 
%CNSTB 

LH = beginning of DDB chain. 
LH = -* of high segments, RH = -.JI of jobs. 
Non zero if system has two register hardware and software. 
LH = feature switches, RH = current state of switches. 
Serial number of processor. 
# of nanoseconds per memory cycle. 
PTY parameters for Batch. 
AOBJN word to use bit map in monitor. 
LH = 0, RH = address of free 4-word core b lock area. 
Link to ST B chai n for remote Batch. 

Category 3 contains the device data blocks currently in use for this job. Each DDB is 
preceded by a word containing the length of the DDB. 

Category 4 is a compressed core image of both the high and low segments, i.e., it contains 
only nonzero words. 

Command Format 

DCORE dev:name .ext [proj ,prog] 

Characteristi cs 

dev: = a disk-like device on which the core-image file is to be written. If omitted, 
DSK is assumed. 

name.ext = the name of the file to be written. The default filename is nnnDAE, 
where nnn is the job number in decimal, and the default extension is • TMP. If a 
filename is specified, the default extension is .DAE. 

[proj ,prog] = the disk arel] other than that of the user. If omitted, the user's disk area 
(the number under which he is logged in) is assumed. 

The DCORE command: 

Leaves the terminal in monitor mode. 
Runs the DAEMON program. 
Can continue after command. 
Depends on FTDAEM which is normally absent in the DECsystem-l040. 

Version 6 DAEMON 2-46 



Associated Messages 

Refer to o,apter 4. 

Examples 

.DCORE) 

.DCORE DSKB:FILEC) 

. -

Version 6 DAEMON 

- 509 - COMMANDS 

I DCORE command (Cont)1 

The core image file is written on the user's area of 
the disk with the name nnnDAE. TMP where nnn is 
the user's job number. 

The core image fi Ie is written in the user's area on 
DSKB with name FllEC.DAE • 

2-47 



COMMANDS - 510 -

DDT command 

Function 

The DDT command copies the saved program counter value from .JBPC into .JBOPC and starts 
the program at an alternate entry point specified in .JBDDT (beginning address of DDT as set 
by Linking Loader). DDT contains commands to allow the user to start or resume at any desired 
address. Refer to DECsystem-10 IV\onitor Calls for a description of the job data area locations. 

If the job was executing a UUO when interrupted (i.e., it was in exec mode and not in TTY 
input wait or SLEEP mode), the monitor sets a status bit (UTRP) and continues the job at the 
location at which it was interrupted. When the UUO processing is completed, the monitor 
clears the status bit, sets .JBOPC to the address following the UUO, and then traps to the 
DDT address found in .JBDDT. If the job is in exec mode and in TTY input wait or SLEEP 
mode, the trap to the DDT address occurs immediately and .JBOPC contains the address of the 
UUO. If the job is in user mode, the trap also occurs immediately. Therefore, it is always 
possible to continue the interrupted program after trapping to DDT by executing a JRSTF @ 
.JBOPC. 

For additional information on the DDT program, refer to the DDT Programmer's Reference Man­
ual in the DECsystem-10 Software Notebooks. 

Command Format 

DDT 

Characteri st i cs 

The DDT command: 

Places the terminal in user mode. 
Requires core. 
Requires the user to have a job number. 

Associated Messoges 

Refer to Chapter 4. 

2-48 



Examples 

• TYPE LOOP.MAC) 
LOOP: J~ST LOOP 

END LOOP 

• DEBUG LOOP 
MACRO:.MAIN 
LOADING 

LOOP 3K CORE 
DDT EXECUTION 

fl, 

• SAVE) 
JOB SAVED 

• START 

tC 
tC 

.!.[\DT) 

LOO~/JR5T LOOP CALLI12 
JRSTF @.d130flC$X 

EXIT 

- 511 - COMMANDS 

I DDT command (Cont)1 

Type an undebugged program • 

Assemble and load the program with DDT • 

Save the program • 

Start the program • 

Stop it. 

Enter DDT. 

Fix the program. 

2-49 



I 

COMMANDS - 512 -

I DEASSIGN command 

FlJnction 

The DEASSIGN command returns one or more devices currently ASSIGNed to the user's job 
back to the monitor pool of available devices and clears any logical names. Restricteddevices 
are returned to the restricted pool, and unrestricted devices to the unrestricted pool. Note 
that an INITed device is not returned to the monitor pool unless a RELEASE UUO is done, 
only the logical name is cleared. Therefore, this command is provided for programs that are 
not termimating or programs that are being debugged. The command, applied to DECtapes, 
clears the copy of the directly currently in core, forcing tlie next directory reference to 
read a new copy from the tape. (Refer to DECsystem-l0 Monitor Colis for further details.) 

Command format 

DEASSIGN dev 

dev = either the logical or physical device name. This argument is optional. If it is 
not specified, all devices assigned to the user's job, except the job's controlling ter­
minai, are deassigned, and the logical name of the controlling terminal is cleared. 

Characteristics 

The DEASSIGN command: 

Leaves the terminal in monitor mode. 

Associated Messoges 

Refer to Chapter 4. 

Examples 

..:DEASSIGN LPT:) 

..:DEASS IGN) 

The line printer is returned to themonHor's pool 
of available resources • 

All devices assigned to the job are returned. 

2-50 



- 513 - COMMANDS 

DEBUG command 1 

Function 

The DEBUG command translates the specified source files if necessary (function of the COMPILE 
command), loads the REL files generated (function of the LOAD command), and prepares for de­
bugging. DDT (the Dynamic Debugging Technique program) is loaded first, followed by the 
user's program with local symbols. Upon completion of loading, control is transferred to the 
DDT program. This program is used to check programs section by section by allowing the user to 
examine and modify the contents of any location either before execution or during breakpoints. 
Refer to the DDT documentation for a description of the DDT commands. 

Each time a COMPILE, LOAD, EXECUTE, or DEBUG command is executed, the command with 
its arguments is remembered in a temporary file on disk, or in core if the monitor has the 
TMPCOR feature. Therefore, the last filename used can be recalled for the next command 
without specifying the arguments again (refer to Paragraph 1.5). 

The DEBUG command accepts several command constructions: the @ construction (indirect 
commands), the + construction, the = construction, and the < > construction. Refer to 
Paragraph 1.5 for a complete description of each of these constructions. 

Command Format 

DEBUG list 

list = a single file specification, or a string of file specifications separated by commas. 
A file specification consists of a device name, a filename with or without an exten­
sion, and a directory name. 

The following switches can be used to modify the command string. These switches can 
be temporary or permanent (refer to Paragraph 1 .5.5) • 

/ALGOL 

/COBOL 

Compile the file with ALGOL. Assumed for files with the ex­
tension of .ALG. 

Compile the file with BLISS. Assumed for files with the exten­
sion of • BLI. 

Compile the file with COBOL. Assumed for files with the ex­
tension of • CBL. 

(continued on next page) 

1This command runs the COMPIL program, which interprets the command before running the appro­
priate processor, the LOADER, and DDT. 

2BLISS will be recognized as a processor only if the appropriate assembly switch is set. However, 
this assembly switch setting is not supported. 

Version 20 COMPIL 2-51 



COMMANDS 

I DEBUG command (Contll 

Command Format (cont) 

/COMPILE 

/CREF 

I 
/FORTRAN 

/FUDGE 

/LIBRARY 

Version 20 COMPIL 

- 514 -

Force a compilation on this file even though a binary file exists 
with a newer date and time than the source file. This switch is 
used to obtain an extra compi lation (e.g., in order to obtain a 
listing of the compilation) since normally compilation is not per­
formed if the binary file is newer than the source file. 

Produce a cross-reference listing file on the disk for each file 
compiled for later processing by the CREF program. These fi les 
have the fi lename of the source fi Ie and the extension of • CRF. 
The file can then be listed with the CREF command. However, 
with COBOL files, the cross-reference listing is always appended 
to the listing file. No additional command need be given to 
obtain the listing. 

Compile the file with FORTRAN. Assumed for files with the 
extension of .F4 and all files with non-recognizable processor 
extensions (if FORTRAN is the standard processor). 

Create a disk file containing the names of the .REL files pro­
duced by the command string. When the FUDGE command is 
given, PIP reads this file in order to generate a library REL file. 
Arguments to this switch are: 

/FUDGE:dev:file .ext [proj ,prog] 

dev: - the device on which to write the file. DSK: is assumed. 

file.ext - the name of the library file. The filename is re­
quired. If the extension is omitted, it is assumed to be .REL. 

[proj ,prog] - the directory in which to place the fi Ie. The 
user's directory is assumed if none is given. 

This switch is permanent in the sense that it pertains to all REL 
files generated by the command string. 

Load the fi les in library search mode. This mode causes a pro­
gram file in a special library file to be loaded only if one or 
more of its declared entry symbols satisfies an undefined global 
request in the source file. The system libraries are always 
searched. Refer to the LOAD ER documentation. 

(continued on next page) 

2-52 



Command Format (cont) 

/L1ST 

/LMAP 

/MACRO 

/MAP 

/MACXll 1 

/NOCOMPILE 

/NOLIST 

/NOSEARCH 

- 515 - COMMANDS 

I DEBUG command (Cont) I 

Generate 0 disk listing file, for each file compiled, with the 
filename of the source fi Ie and the extension. LST. These files 
can be listed later with the LIST command. Unless this switch is 
specified, listing files are not generated except in COBOL; 
COBOL listings are always generated. 

Produce a loader map during the loading process (same action 
as /MAP) containing the local symbols. 

Assemble the file with MACRO. Assumed for files with exten­
sions of .MAC. 

Produce a loader map during the loading process. When this 
switch is encountered, a loader map is requested from the 
loader. After the library search of the system libraries, the 
map is written in the user's disk area with either the filename 
specified by the user(e.g., /MAP:file) or the default filename 
MAP .MAP. This switch is an exception to the permanent 
switch rule in that it causes only one map to be produced 
even though it may appear as a permanent switch. 

Assemble the file with MACX11. Assumed for files with the 
extension • Pl1 • 

Complement the /COMPILE switch by not forcing a compilation 
on a source file whose date is not as recent as the date on the 
binary file. Note that this switch is not the same as the /REL 
switch, which turns off all compilation, even if the source file 
is newer than the REL file. /NOCOMPILE is the default 
action. 

Do not generate listing files. This is the default action except 
for COBOL files; COBOL listings are always generated. 

Loads all routines of the file whether the routines are referenced 
or not. Since this is the default action, this switch is used 
only to turn off library search mode (/L1BRARY). This switch is 
not equivalent to the /p switch of .the LOADER, which does not 
search any libraries. The /NOSEARCH default is to search the 
system libraries. 

(continued on next page) 

1MACXll (the PDP-ll assembler for the PDP-10) will be recognized as a processor only if the appro­
priate assembly switch is set. However, this assembly switch setting is not supported. 

Version 20 COMPIL 2-53 



COMMANDS 

I DEBUG command (Cant) I 

Command Format (cant) 

Characteristics 

/REL 

/SNOBOL 1 

The DEBUG command: 

- 516 -

Use the existing REL files although newer source files may be 
present. 

Compile the file with SNOBOL. Assumed for files with exten­
sions of .SNO. 

Places the terminal in user mode. 
Runs the appropriate processor, the LOADER, and DDT. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.:,DEBUG/L FILEA,F'ILEB,FILEC/N,FILED) 

~DEBUG TES T ) 
MACRO: TEST 
LOADING 

LOADER 2K CQHE 
DDT EXEGUlION 

.1 BLT 15,0(16) 

Generate listings for FILEA, FlLEB, and 
FILED 

1 SNOBOL will be recognized as a processor only if the appropriate assembly switch is set. However, 
this assembly switch setting is not supported. 

Version 20 COMPIL 2-54 



I 

- 517 - COMMANDS 

DELETE command 1 

Function 

The DELETE command deletes one or more files from disk or DECtape. 

Command Format 

DELETE list 

list = a single file specification or a string of file specifications separated by commas. 
The full wildcard construction (* and ?) can be used. 

If a device or file structure name is specified, it remains in effect until changed or 
unti I the end of command string is reached. 

Characteristics 

The DELETE command: 

Leaves the terminal in monitor mode. 
Runs the PIP program, thereby destroying the user's core image. 
Depends on FTCa.X which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.!.DEL *. MAC) 
FILES DELETED: 
Tl • MAC 
T2.MAC 
T3.MAC 
14 BLOCKS FREED 

.:PEL TEST 1 • MAC) 
FIU-:S DELETED: 
TEST! .MAC 
3 ALOCKS FREED 

1 This command runs the COMPIL program, which interprets the command before running PIP. 

Version 20 COMPIL 
Version 32 PIP 2-55 



COMMANDS 

IDELETE command (Cont)I 

Examples (cont) 

.DEL TEST??F4) 
FILES DELETED. 
TEST,F4 
TESTS.F4 
TEST0;'.f4 
TESTZ,F4 
2! BLoCKS FREED 

Version 20 COMPIL 
Version 32 PIP 

- 518 -

2-56 



- 519 - COMMANDS 

DETACH command 

Function 

The DETACH command disconnects the terminal from the user's job without affecting the status 
of the job. The user terminal is now free to control another job, either by initiating a new 
job or attaching to a currently running detached job. 

Command Format 

DETACH 

Characteristi cs 

The DETACH command: 

Detaches the terminal. 
Depends on FTAITACH which is normally absent in the DECsystem-1040. 

Restrictions 

This command is not available to Batch users. 

Associated Messages 

Refer to Chapter 4. 

Example 

.:.DETACH) 
F'RO~ JOB 1 

2-57 



COMMANDS - 520 -

I DIRECT command 

Function 

The DIRECT command lists the directory entries specified by the argument list. The standard 
output consists of the following columns: filename, filename extension, length in blocks 
written, protection, creation date, version number, structure,. name , and directory name. 

Command Format 

DIRECT output specification = list of input specifications 

list = A single file specification, or a string of filesspecifications separated by commas or 
plus signs. The devices used on input can be DSK:, DTA:, MTA:, and TMP: (TMPCOR). If 
the device is a magnetic tape, the tape is rewound before and after the listing operation and 
analyzed to determine if it is a FAILSAFE or BACKUP tape. The default input specification 
is DSK:*. *, and the user's directories in all file structures defined by the job's search list are 
listed. Generally, a devi ce name, an extension, or a directory name that precedes the file­
name becomes the default for all succeeding fules in the list. The full wildcard construction 
can be used. 

output specification = This argument (and the equal sign) is optional. If the entire output 
specification is omitted, the default is TTY:. If an output filename is given, the default de­
vice is DSK:. If an output filename is not given, and one is needed, the filename is generated 
from the time of day as hhmmss. The default output extension is .DIR. The wildcard con­
struction canno t be used in the output speci fi cat ion. 

The following switches may be used in the command string. Switches that precede the file­
name become the default for all succeeding files. Switches can be abbreviated as long as the 
abbreviation is unique. 

/ACCESS:n 

/ALLOC 

Version 2 DIRECT 

Update the access date to the current date for any fi Ie of n blocks 
or less accessed by the DIRECT program. n is the written length 
unless the ALLOC switch is used and is a decimal number. If 
/ACCESS is omitted, the date is not changed. If /ACCESS is 
specified but :n is omitted, n=5 is assumed. 

List the allocated length of the file instead of the written length. 
The allocated length is used by LOGOUT in checking quotas. 
(Disk and magnetic tape only.) 

(continued on next page) 

2-58 



Command Format (cont) 

/CHECKSUM 

/DENSITY:n 

/DETAIL 

/FAST 

/HELP 

I /HELP:S 

/LIST 

/MARKS 

/OKNONE 

/PARITY :ODD 
/PARITY :EVEN 

/PHYSICAL 

/PROTECTION:nnn 

/RU N :fi I e spec 

/RUNOFFSET:n 

/SLOW 

Version 2 DIRECT 

- 521 - COMMANDS 

[DIRECT command (Cant) I 

Compute and print an 18-bit checksum for each file. This check­
sum is computed by rotating the result left one bit before adding 
each word. (Disk and magnetic tape only.) 

Use the specified density when reading a magnetic tape. N is 
200,556, or 800 bpi. The default is installation dependent 
and is modified by the SET DENSITY command. 

Print all nonzero words in the LOOKUP block. The protection and 
data mode are also listed, even if they are zero. The author is not 
listed if it is the same as the owner of the directory. (Disk and 
magnetic tape only.) 

list short form of directory (i .e., filename, extension, structure 
name, and directory name). - Equivalent to /F. 

Help text which indicates some of the switches available and how 
to use them. Equivalent to /H. 

list all switches (S) without their explanations. An asterisk pre­
fixes those switches which have a single-letter abbreviation. 

list the output on device LPT:. Equivalent to /L. 
Indicate each tape mark and UFO wben reading a magnetic tape. 

Suppress the error message if no files match the wildcard construc­
tion. 

Specify the parity to be used when reading a magnetic tape. The 
default is 0 DD. 

Ignore logical names used for device names. 

Give the output fi Ie the protection nnn (octal). 

Run the specified program when this command is finished. 

Run the program specified with /RUN with an offset of n. If the 
switch is omitted, the default is 0; if the switch is given without a 
value, the default is 1. 

Output a full listing that includes the filename, extension, length 
in blocks written, protection, creation time, access date, structure 
name, and directory name. Equivalent to Is. (Disk and magnetic 
tape only.) 

(continued on next page) 

2-59 



COMMANDS 

IDIRECT command (ContI I 

Command Format (cont) 

ISORT 

ISUMMARY 

ITITlES 

IUNITS 

;\VIDTH:n 

;\VORDS 

Characteristi cs 

The DIRECT command: 

- 522 -

List the file structure name and directory name on each line instead 
of only on the first line in which they change. Multiple spaces 
are output instead of TABs. This switch is used to prepare a file to 
be sorted by the SORT program. 

Output only the summary line which indicates the total number of 
blocks and files. Note a IF ISUMMARY lists a IF listing followed 
by the summary. 

Cause a heading to be output on each page consisting of a label 
for each column, date, time, and page number. Standard output 
to the line printer has this heading. 

List the name of the actual disk unit instead of the file structure 
name. 

Output several entries on a single line to make the output n col­
umns wide. For example, if IF is specified for output to the scope, 
four filenames appear per line. The default for n is 64 columns. 

Output the length of the file in words instead of blocks. 

Leaves the terminal in monitor mode. 
Runs the DIRECT program, thereby destroying the user's core image. 
Depends on FTCCLX which is normally absent in the DECsystem-1040. 

Examples 

.0 If-< DTA3:) 

.D I R *. t-,AC ) 

.DIR TFST.F4[27.601) 

Version 2 DIRECT 

Lists all files on DTA3. 

Lists all files with MAC filename extension in all 
fi I e structures in the job search list. 

Lists the directory entry for file TEST.F4 in user 
area 27,60. 

(continued on next page) 

2-60 



- 523 -

Examples (cont) 

.!.OIRECT) 

SAMPL CTL 
PIP OAE 
G1150AE TMP 
WEIRD 
WEIRD SAV 

TOTAL OF 48 

.DIRECT/ALLOC 

UMPL CTL 
PIP OAE 
G16DAE TMP 
WEIRD 
WEIRD SAY 

TOTAL OF 58 

1 
1/1 
22 
4 
21 

BLOCKS 

3 
2 
24 
6 
23 

BLOCKS 

.:.DIRECT/DETAIL) 

IN 

IN 

DSKC0ISAMPL.CTL[27.23!51 
ACCESS DATEI 5-JAN.72 

4155. 
4055. 
4l'l!S!S. 
4055. 
4055. 

5 FILES 

4155. 
C055. 
4055. 
4055. 
4055. 

5 FILES 

4-MAY-71 
25-FEB.72 
2!5-FEB.72 
25-FEB.72 
25·FEB-72 

ON OSKCI 

4-MAY-71 
25-FEB-72 
25-FEB-72 
25-FEB-72 
25-FEB-72 

ON OSKC: 

CREATION TIME, DATEI 16:51 4-MAY-71 
ACCESS PROTECTION I 155 
MODE: 14 
WORDS WRITTEN I 54. 
ESTIMATED LENGTH: 5. 
BLOCKS ALLOCATED I 3. 
DATA BLOCK IN DIRECTORY: 303. 

DSKC0IPIP.DAE[27.2351 
ACCESS DATE: 25-FEB-72 
CREATION TIME, OATEI 13:47 25-FEB-72 
ACCESS PROTECTION: 055 
MODE: 17 
BLOCKS ALLOCATEO: 2. 
AUTHOR: 1,2 
DATA RLOCK IN DIRECTORY: 303. 

Version 2 DIRECT 2-61 

COMMANDS 

I DIRECT command (Cont)1 

DSKCI [27,235] 

34(70) 

[27,235] 

DSKCI [27,235] 

34(70) 

[27,·235] 

(continued on next page) 



COMMANDS - 524-

I DIRECT command (Cont) I 

Examples (cont) 

DSKC0IG15~AE.TMP[27,235] 
ACCESS DATE: 25-FEB-72 
CREATION TI~E, DATE: 14:1~ 25-FEB-72 
ACCESS PROTECTION: 05~ 
MODE: 17 
WORDS WRITTEN: 2816. 
BLOCKS ALLOCATED: 24. 
AUTHOR:1,2 
DATA BLOCK IN DIRECTORY: 30~. 

DSKC0:WEIRO. [27,235] 
ACCESS DATE: 25-FEB-72 
CREATIO~ TIME, DATE: 14:88 25-FEB-72 
ACCESS PROTECTION: e55 
MODE: 1 
WORDS WRITTEN: 471. 
BLOCKS ALLOCATED: 5. 
DATA BLOCK IN DIRECTORY: 3~3. 

DSKC0:WEIRD.SAV[27,235] 
ACCESS DATE: 25-FEB-72 
CREATION TIME, DATE: 14:09 25-FEB-72 
ACCESS PROTECTION: ~55 
MODE: 1111 
WORDS WRITTEN: 2566. 
VERSION:34(711l) 
BLOCKS ALLOCATED: 23. 
DATA BLOCK IN DIRECTORY: 3~3. 

TOTAL OF 48 BLOCKS IN 5 FILES O~ DSKC: [27,235] 

Version 2 DIRECT 

Lists the directory entries for user with project 
number 40 and the user's programmer number. 

2-62 



I 

- 525 - COMMANDS 

IDISMOUNT command I 

Function 

The DISMOUNT command allows a user to return devices to the monitor pool of available re­
sources and to remove a file structure from his search list. Restricted devices are returned to 
the restricted pOOl and unrestricted devices to the unrestricted pool. The command applied to 
non-file structures IS identical to the DEASSIGN command if the user waits for completion of 
the operator action. If the user does not wait for completion (e.g., he types a control-C 
after the message OPERATOR NOTIFIED), the device is not deassigned, but the request to the 
operator is still queued for the purpose of removing the media. The user must then issue the 
DEASSIGN command to release the device. This command applied to file structures enforces 
logged-out quotas (if necessary), allows physical removal of disk packs (if there are no other 
users of the pack), and removes the file structure name from the job's search list. 

The UMOUNT program runs privileged in the user's core area when the DISMOUNT command 
is typed. This program scans the user's command string, checks its validity, and performs as 
much of the requested action as possible. The UMOUNT program can complete all actions 
requested by the DISMOUNT command except for the action of physically removing packs, 
tapes, or cards. When operator action is required, the UMOUNT program writes a command 
file on 3,3 disk area and notifies the OMOUNT program (running on the operator's terminal) 
to perform the action. When the operator action has been completed, OMOUNT deletes the 
command file and notifies UMOUNT (if UMOUNT is waiting) to inform the user of completion. 

Command Format 

DISMOUNT dev: switches 

dev: = any previously ASSIGNed or MOUNTed device or file structure name. This 
argument is required. 

switches = the following switches are optional and only enough characters to make the 
switch unique are required. 

/CHECK 

/HELP 

/PAUSE 

Version 20 UMOUNT 

Check and list pending requests. 

Type this list. 

Notify the user before requesting operator action. The user can 
then abort the command if"desired. 

(continued on next page) 

2-63 



I 

COMMANDS 

I DISMOUNT command (Cont)l 

Command Format (cont) 

/REMOVE 

o.aracteri sti cs 

The DISMOUNT command: 

- 526 -

Notify operator to physically remove disk packs, tape, or cards. 
A file structure is removed from the system only if no other users 
are using it. A request to remove the pack is queued to the opera­
tor and the message WAITI NG • • • is typed to the user. If the 
user does not want to wait for confirmation of the operator action, 
he may type control-C. This switch must be specified to notify the 
operator to remove the pack, even if no other jobs are using it. 

Places the terminal in user mode. 
Runs the UMOUNT program, thereby destroying the user's core image. 
Depends on FTCaX and FTMOUN which are normally absent in the DECsystem-l040. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.!.DISMOUNT DSKA:) 
DSKA IUSMC1UNTEfl 

.!.DISMOUNT OTA4:/R) 
OPERATOR NOTIFIED 

WAITING ••• 

'c 

.!.DISMOUNT/CHECK) 
NONE PENDING 
0,COMMANDS IN QUEUE 
.!. 

Version 20 UMOUNT 

The user dismounts the file structure DSKA. This 
does not require an operator action • 

The user asks the operator to deassign DTA4 and 
remove the tape. 

The command is waiting for completion of the 
operator action. 

The user does not wish to wait for confirmation of 
removal. 

The user checks for completion and determines that 
his request is finished. 

2-64 



- 527- COMMANDS 

DSK command 

Function 

The DSK command types disk usage for the combined structures of the job, since the last DSK 
command, followed by the total disk usage since the job was initialized (logged in). Disk 
usage is typed in the following format: 

RD, WT=I,J 
RD,WT=M,N 

where I and J are the incremental number of 128-word blocks read and written since the last 
DSK command, and M and N are the total number of 128-word blocks read and written since 
the job was initialized. 

NOTE 
I and J are kept modulo 4096. If automatic READ or 
WRITE print outs have been enabled using the SET 
WATCH command, I and J are usually zero, since the 
SET WATCH output also resets these values. 

Command Format 

DSK job 

Characteristi cs 

job = the job number of the job for which the disk usage is desired. This argument is 
optional. 

If job is omitted, the job to which theterminal is attached is assumed. 

If job is supplied (whether the job of this user or another user) the incremental quantities 
are not reset to zero. 

The DSK command: 

Leaves the terminal in monitor mode. 

Associated Messages 

Refer to Chapter 4. 

2-65 



COMMANDS 

IOSK command (Cont) I 

Example 

.!.DSK) 
RDI WT=1210 
RD 1 WT=4751243 

.!. 

- 528 -

2-66 



- 529 - COMMANDS 

DUMP command 

Function 

The DUMP command calls the DAEMON program to write a core image file (function of the 
DCORE command) and then invokes the DUMP program to analyze the file written and to pro­
vide printable output. The core image file is named nnnDAE. TMP where nnn is the user's job 
number. This file is described in detail in the DCORE command description. 

Command Formats 

1. DUMP /command /command /command ••• 
2. DUMP @ dev:file .ext [proj ,prog] 
3. DUMP 

The commands that appear in the DUMP command string are passed to the DUMP pragram and 
therefore are described in the DUMP program description. A DUMP command using a command 
fi Ie can also specify these commands. A DUMP command without any arguments prints a short 
dump of the user's core area via the command file QUIKDM. CCL which resides on device SYS:. 

Characteristics 

The DUMP command: 

Leaves the terminal in monitor mode. 
Runs the DAEMON program. 
Depends on FTDAEM which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.OUMP/OUT:TTYS/MOOE:ASCII,SIX8IT/WIDTH:7,10/JUST:L,R.) 
7RIGHTMA:26/0[3000 & 3004 

This command string writes a core iMage file named nnnDAE. TMP and invokes the 
DUMP program to perform the output. The output goes to the terminal and the modes 
used on output are ASCII and SIXBn. The ASCII field is 7 characters long, left justi­
fied and the SIXBIT field is 10 characters long, right justified. The right margin of the 
output in 26 characters. The dump consists of the contents of word 3000 to word 3004. 
The hyphen is used to continue the command string onto the next line. 

Version 6 DAEMON 
Version 4 DUMP 2-67 



COMMANDS - 530 -

DUMP program 

Function 

The DUMP program provides printable dumps of arbitrary data files in modes and forms specified 
by the user. The DUMP program accepts any data file as input and produces an ASCII file 
suitable for listing by PIP, the output spoolers, or other listing programs. For example, the 
DUMP program takes core im.age files prepared by the DAEMON program or SAVEd files pro­
duced by the monitor. For a description of the DAEMON-written file, refer to the DCORE 
command. 

Command Formats 

1. R DUMP,) 
/command') 

2. R DUMP) 
/@dev:filu.ext [proj ,prog] 

NOTE 
DUMP indicates its readiness by typing a slash (/) instead 
of an asterisk. 

The commands with their arguments are as follows. Lines can be continued by typing a hyphen 
followed by a carriage return. 

Command I ADDRESS 

ALL 

APPEND 

AUTOFORMAT 

CATEGORY 

Version 4 DUMP 

Argument 

ON or OFF 

ON or OFF 

mnemonic for name of 
category. Can be JOB, 
CONFIGURATION, 
DDB, or CORE. 

Meaning 

Specifies if the address is to be dumped along with 
its contents. The defau I tis 0 N • 

Dumps the entire file. If the file is a DAEMON 
core image fi Ie, the entire category is dumped. 

Appends the output to the output file. The existing 
output file is not overwritten. This command is the 
default; its complement is SUPERSEDE. 

Attempts to format output with Ii ne feeds, form 
feeds, and titles, if ON. If OFF, the user is 
responsible for all formatting. The default is ON. 

Selects the category of the DAEMON dump file to 
be used. Addressing begins with 0 at the beginning 
of each category. The default category is CORE. 
If the input file is not a DAEMON file, this switch 
has no effect. 

(continued on next page) 

2-68 



I 

I 

I 

Command Formats (cont) 

Command 

CLOSE 

DUMP 

EJECT 

EXIT 

INPUT 

I RADIX 

JUSTIFY 

LEFTMARGIN 

LlNEPAGE 

Version 4 DUMP 

Argument 

dump descriptor, 
dump descriptor, ••• 

<file descriptor> 

decimal number 

LEFT, CENTER, or 
RIGHT 

expression 

expression 

- 531 - COMMANDS 

I DUMP program (Cont)1 

Meaning 

Closes the output fi Ie. After th is command is given, 
another OUT command should be given before the 
next command wh i ch does any output. 

Dumps the specified bytes in the current modes. 

Starts a new page in the output file. 

Closes all files and retums control to the monitor 
( t Z has the same effect). 

Specifies the input file. The defaults are: 
DSK:nnnDAE. TMP where nnn is the job number; the 
user's directory. If the filename is specified, it 
determines the extension from the set .TMP, .DAE, 
.SHR, .SAV, .HGH, .LOW, .XPN, and .DMP in 
that order. If an extension is specified with no 
fi lename, the extension determines the filename. 

Specifies radix for numbers for input. This com­
mand uses decimal to compute the argument. The 
default is 10 for decimal. The argument must be 
numeric. If numeral is 0 or is missing, the input 
radix is set back to its default value. 

Specifies the justification of the output in the out­
put field. If the output overflows the output field, 
the entire output appears; it is not truncated. This 
switch is used in a one-to-one relationship with the 
MODE and WIDTH commands. If there are more 
MODE commands, an argument of LEFT is used. If 
there are more JUSTIFY commands, they are 
ignored • 

Sets the left margin of the output file. The default 
is O. 

Specifies the number of lines per output page. The 
default is 50. 

(continued on next page) 

2-69 



COMMANDS 

IDUMP program (Cont) I 

Command Formats (cont) 

Command Argument 

MODES 

NUMPAGE 

ASCII, DEOMAL, NULL, 
NUMERIC, OCTAL, 
RADIX50, SIX BIT, 
SOCTAL, or SYMBOUC. 

expression 

I ORADIX 

OUTPUT 

decimal number 

<file descriptor> 

RIGHTMARGIN expression 

I 
SUPERSEDE 

Version 4 DUMP 

- 532 -

Meaning 

Selects the type of output. ASOI dumps the word 
as a single right justified character if bits 0-28 are 
zero or as 5 ASOI characters if bits 0-28 are non­
zero. Non printing characters print as a space. 
DEOMAL dumps as a signed decimal number. NULL 
declares that nothing is to be dumped. NUMERIC 
dumps as a signed number in the current output radix. 
OCTAL dumps as hal f-words separated by a comma 
(default) and takes '13 positions. RADIX50 dumps 
in RADIX50. SIXBIT dumps as one SIXBIT character 
if bits 0-24 are zero, or 6 SIXBIT characters if 
bits 0-24 are nonzero. SOCTAL dumps as signed 
octal and suppresses leading zeroes. SYMBOUC 
dumps as a symbolic instruction. 

Any mode specification can appear more than once 
in the command string. The output is in the same 
order as the MODE list. 

Specifies that pages are to be numbered. If expres­
sion is 0, page numbering is turned off. If expres­
sion is not 0, page numbering begins at page = 
<expression>. If command is omitted, numbering 
starts at the fi rst page. 

Specifies radix for numbers for output. The defau It 
is 10 for decimal. If number is 0, the standard is 
used. The argument to this command is decimal 
and must not be an expressi on. 

Specifies the output file. The defaults are: LPT:, 
the filename of the input file; the extension. LSD; 
the user's directory. 

Sets the right margin of the output file. A field 
may overflow the right margin if it will not fit be­
tween the left and right margins. If ADDRESS is ON, 
the new Ii ne wi II have an address typed. If a page 
overflow occurs, a title line may also be printed. 

Specifies that the output is to supersede an existing 
fi Ie of the same name, if there is one. The comple­
ment of this command is APPEND, which is the 
default. 

(continued on next page) 

2-70 



Command rormats (cont) 

Command 

SYFILE 

TDUMP 

TITLE 

TYPE 

TYPE 

TYPE 

TYPE 

TYPE 

lYPE 

WIDTH 

XTRACT 

Argument 

<fi Ie descriptor> 

dump descriptor, 
dump descriptor, ••• 

<string of characters> 

DAE 

DAT 

HGH 

LOW 

SAV 

SHR 

XPN 

expression 

- 533 - COMMANDS 

I DUMP program (Cont) I 

Meaning 

Specifies the file to take symbols from if XTRACT 
command is specified. Defaults are: DSK:, the 
fi I ename of the input fi I e; one of the saved fi I e 
extensions; the user's directory area. 

Dumps specified bytes to both output file and TTY • 

Specifies a title to be included in the subsequent 
page headings. If no argument is specified, titling 
is turned off. 

After this command, an EJECT command should be 
given to skip to a new page. 

Specifies that the input file is separated by 
DAEMON. 

Specifies that the input file is a data file (i .e., no 
special format; therefore, no special processing is 
done). 

Specifies that the input file is in .HGH file format. 

Specifies that the input file is in .LOW file format. 

Specifies that the input file is in .SAV file format. 

Specifies that the input file is in .SHR file format. 

Specifies that the input file is in .XPN file format. 

Selects the width of each output mode (see the 
MODE and JUSTIFY commands). If a MODE com­
mand is specified without a corresponding WIDTH, 
the byte is dumped in exactly the number of posi­
tions required followed by 3 blanks. If a WIDTH 
command is specified, no free blanks are output. 
If a MODE specification overflows its WIDTH speci­
fication, the entire output is given without justifi­
cation. If expression is omitted, a null list will be 
generated. 

Uses the file specified in the last SYALE command 
as a core image and extracts the symbol table. 

11f TYPE is not specified, the extension of the input file is used to determine the type of file being 
produced. If the extension is not one recognized in the TYPE command, TYPE DAE is assumed. 

Version 4 DUMP 2-71 



COMMANDS - 534-

I DUMP program (contlj 

Command Formats (cont) 

An ~Rression is an octal or decimal number, a symbol, arithmetic operations using expressions 
(+, -, ~and t grouped with parentheses), or contents operators ([, \, and @). A symbol 
is a string of SIXBIT characters, or program symbol, where program defines the program con­
taining symbol. 

A text string is a string of characters enclosed in single quotes. Special characters are repre­
sented by patterns of graphic characters. To override these special patterns, a double quote 
indicates that the next character is to be accepted as is, without including it as part of a 
special pattern. The following' patterns represent non-graphic characters and are replaced in 
output strings by the characters represented unless a double quote appears. 

<EL> 
<VT> 
<FF> 
<AL> 
<HT> 

- end line, <CR-LF> 
- vertical tab 
- form feed 
- altmode 
- horizontal tab 

t <letter> - control character 
\ <letter> - lower case character 

A byte descriptor is the description of the byte in the input fi Ie to be dumped. The format is: 

where 

WORDS <POS, SIZE> 

WORDS = the address of the word desired. 

POS = the position of the byte within the word. It specifies the bit number of the left­
most bit in the byte. 

SIZE = the number of bits in the byte. It may be any size and can cross word or block 
boundari es • 

A dump descri ptor has the form 

<FROM byte-descriptor> & <TO byte descriptor> 

signifying everything from the first byte descriptor to the second. 

Version 4 DUMP 2-72 



- 535 -

Characteri sti cs 

The R DUMP command: 

Places the terminal in user mode. 
Is used with disk monitors only. 
Runs the DUMP program. 

Associated Messages 

Refer to Chapter 4. 

Version 4 DUMP 2-73 

COMMANDS 

I DUMP program (Cont)I 



COMMANDS - 536-

I E (examine) command 

Function 

The E command examines a core location in the user's area (high or low segment). 

Command Format 

E adr 

adr is required the first time the E or D command is used. If adr is specified, the con­
tents of the location are typed out in half-word octal mode. 

If adr is not specified, the contents of the location following the previously specified 
E adr or the location of the previous D adr (whichever was last) are typed out. 

Characteri sti cs 

The E command: 

Leaves the terminal in monitor mode. 
Requires core. 

Associated Messages 

Refer to Chapter 4. 

Example 

-.!.E 140) 
0001401 264000 002616 .E 
0001411 000000 000000 .E 
0001421 000000 000000 

2-74 



- 537- COMMANDS 

EDIT command 1 

Function 

The EDIT command runs LINED (Line Editor for disk) and opens an already existing line 
sequence-numbered file on disk for editing. Refer to the LINED writeup in the DECsystem-10 
Software Notebooks. 

Command Format 

EDIT file .ext 

file.ext = a filename and filename extension of an existing file. This argument is op­
tional if a CREATE or EDIT command has been given since the initialization of the job, 
because the arguments of the EDIT-class commands are remembered in temporary files 
on the disk or in core if the monitor has the TMPCOR feature. 

Characteri sti cs 

The EDIT command: 

Places the terminal in user mode. 
Runs the LINED program, thereby destroying the user's core image. 
Depends on FTCa.X which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Example 

.EDIT TEST.1'4) 

!. 

1 This command runs the COMPIl program, which interprets the command before running LINED. 

Version 20 COMPIl 
Version 13 LINED 2-75 



COMMANDS - 538-

I EOF command 1 

Function 

The EOF command writes an end of file marl< on the specified magnetic tape. This command is 
equivalent to the following PIP command string: 

MTAn: (M~ .. 

CDmmand rormat 

EOF MTAn: 

o,aracteristics 

The EO F command: 

Leaves the terminCiI in monitor mode. 
Runs the PIP program, tflerebydestroying the user's core image. 
Depends on FTCaX which is normally absent in the DECsystem-l 040. 

Associ ated Messages 

Refer to o,apter 4. 

Examples 

.EOI' MTA3:) 

1 This command runs the COMPIL program, which interprets the command before running the PIP program. 

Version 20 COMPIL 
Version 32 PIP 2-76 



- 539- COMMANDS 

EXECUTE command 1 

Function 

The EXECUTE command translates the specific source fi les if necessary (function of COMPILE 
command), loads the REL files generated into a core image (function of LOAD command), and 
begins execution of the program. The assembler or compiler used is determined from the 
source file extensions or from switches in the command string (refer to the COMPILE command). 
If a REL file already exists with a newer date than that of the source file, compilation is not 
performed (unless requested explicitly via a switch). 

This command is equivalent to a LOAD and START sequence of commands. 

Each time a COMPILE, LOAD, EXECUTE, or DEBUG command is executed, the command with 
its arguments is remembered in a temporary file on disk, or in core if the monitor has the 
TMPCOR feature. Therefore, the last filename used can be recalled for the next command 
without specifying the arguments again (refer to Paragraph 1 .5). 

The EXECUTE command accepts several command constructions: the @ construction (indirect 
commands), the + construction, the = construction, and the < > construction. Refer to Para­
graph 1.5 for a complete description of each of these constructions. 

Command Format 

EXECUTE list 

list = a single file specification, or a string of file specifications separated by commas. 
A file specification consists of a device name, a filename with or without an extension, 
and a directory name. 

The following switches can be used to modify the command string. These switches can 
be temporary or permanent switches (refer to Paragraph 1.5.5). 

/ALGOL 

/COBOL 

Compile the file with ALGOL. Assumed for files with the exten­
sion of .ALG. 

Compile the file with BLISS. Assumed for files with the extension 
of .BLI. 

Compile the file with COBOL. Assumed for files with the exten­
sion of • CBL. 

(continued on next page) 

1 This command runs the COMPIL program, which interprets the command before running the appropriate 
processor and the LOADER. 

2BLlSS will be recognized as a processor only if the appropriate assembly switch is set. However, this 
assembly switch setting is not supported. 

Version 20 COMPIL 2-77 



COMMANDS 

I EXECUTE command {ContI I 

Command Format (cont) 

/COMPILE 

/CREF 

/FORTRAN 

/FUDGE 

/UBRARY 

lUST 

Version 20 COMPIL 

- 540-

Force a compilation on this file even though a binary file exists 
with a newer date and time than the source fi Ie. This switch is 
used to obtai n an extra compilati on (e. g., in order to obtai n a 
listing of the com pi lation) since normally compi lation is not per­
formed if the binary file is newer than the source file. 

Produce a cross-reference listing fi Ie on the disk for each fi Ie 
compi led for later processi ng by the CREF program. These fi les 
have the fi lename of the source fi Ie and the extensi on of . CRF. 
The files can then be listed with the CREF command. However, 
with COBOL fi les, the cross-referenced listi ng is appended to 
the listing file. No additional command need be given to obtain 
the listing. 

Compile the file with FORTRAN. Assumed for files with the ex­
tension of .F4 and all files with nonrecognizable processor exten­
sions (if FORTRAN is the standard processor). 

Create a disk file containing the names of the .REL files produced 
by the command string. When the FUDGE command is given, PIP 
reads this file in order to generate a library REL file. Arguments to 
this switch are: 

/FUDGE:dev:fi le.ext[pro;, progJ 

dev: - the device on which to write the file. DSK: is assumed. 

file.ext - the name of the library file. The filename is required. 
If the extension is omitted, it is assumed to be . REl. 

[proj,progJ - the directory in which to place the file. The user's 
directory is assumed if none is given. 

This switch is permanent in the sense that it pertains to all REL files 
generated by the command stri ng. 

Load the files in library search mode. This mode causes a program 
file in a special library file to be loaded only if one or more of its 
declared entry symbols satisfies an undefined global request in the 
source file. The system Ii brari es are a Iways searched. Refer to 
the LOADER documentation. 

Generate a disk listing file, for each file compiled, with the 
fi lename of the source fi Ie and the extensi on of • LST. These 
files can be listed later with the LIST command. Unless this 
switch is specified, listing files are not generated except in 
COBOL; COBOL listings are always generated. 

(continued on next page) 

2-78 



Command Fonnat (cont) 

/LMAP 

/MACRO 

/MACX11 1 

/MAP 

/NOCOMPILE 

/NOLIST 

/NOSEARCH 

/REL 

/SNOBOL2 

- 541 - COMMANDS 

I EXECUTE command (Cont) I 

Produce a loader map during the loading process (same action as 
/MAP) containing the local symbols. 

Assemble the file with MACRO. Assumed for files with extensions 
of .MAC. 

Assemble the file with MACXll. Assumed for files with extensions 
of .Pl1. 

Produce loader maps during the loading process. When this switch 
is encountered, a loader map is requested from the loader. After 
the library search of the system libraries, the map is written in the 
user's disk area with either the fi lename specified by the user 
(e.g., /MAP:file) or the default filename MAP.MAP. This switch 
is an exception to the pennanent switch rule in that it causes only 
one map to be produced even though it appears as a pennanent 
switch. 

Complement the /COMPILE switch by not forcing a compilation on 
a source file whose date is not as recent as the date on the binary 
file. Note that this switch is not the same as the /REL switch, 
which turns off all compilation, even if the source file is newer 
than the REL file. /NOCOMPILE is the default action. 

Do not generate listing files. This is the default action except for 
COBOL files; COBOL listings are always generated. 

Loods all routines of the file whether the routines are referenced or 
not. Since this is the default action, this switch is used only to 
turn off library search mode (/LIBRARY). This is not equivalent to 
the!P LOADER switch, which does not search any libraries; the 
/NOSEARCH switch scans the system libraries. 

Use the existing REL files although newer source files may be 
present. 

Compile the file with SNOBOL. Assumed for files with an exten­
sion of .SNO. 

l MACX11 , the PDP-ll assembler'for the PDP-10, will be recognized as a processor only if the appro­
priate assembly switch is set. However, this assembly switch setting is not supported. 

2SNOBOL will be recognized as a processor only if the appropriate assembly switch is set. However, 
this assembly switch setting is not supported. 

Version 20 COMPIL 2-79 



COMMANDS - 542 -

I EXECUTE command (Cont) I 

Characteristi cs 

The EXECUTE command: 

Places the terminal in user mode. 
Runs the appropriate processor and the LOADER. 
Storts the execution of the compiled and loaded program. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.:..E: .... ECLlTE TEST) 
MACRO: TEST 
LOADING 

LOADEH 2X COHE 
EXECUTION 

Version 20 COMPIL 2-80 



- 543 - COMMANDS 

FILCOM program 

Function 

The FILCOM program is used to compare two versions of a file and to output any differences. 
Generally, this comparison is line by line for ASCII files or word by word for binary files. 
FILCOM determines the type of comparison to use by examining either the switches specified 
in the command string or the extensions of the files. Switches always take precedence over 
fi I e extensions. 

Command Format 

.!oR FILCOM) 
~output dev:file.ext [proj ,prog] = input dev1 :file.ext [proj ,prog], 

input dev 2:file .ext [proj ,prog] 

output dev: 

input dev: 

Defaults 

= the device on which the differences are to be output. 

= the device on which an input file resides. 

1. If the entire output specification is omitted (including the equal sign), the output device 
is assumed to be TlY • 

2. If an output filename is specified, the default output device is DSK. 

3. If the output filename is omitted, the second input filename is used, unless it is null. In 
this case, the filename FILCOM is used. 

4. If the output extension is omitted, .SCM is used on a source compare and .BCM is used 
on a binary compare. 

5. If the [proj ,prog] is omitted (input or output side), the user's default directory is assumed. 

6. If an input device is omitted, it is assumed to be DSK. 

7. If the filename and/or extension of the second input file is omitted, it is taken from the 
first input file. 

8. A dot following the filename of the second input is necessary to explicitly indicate a null 
extension, if the extension of the first input file is not null. 

Version 16 FILCOM 2-81 



COMMANDS - 544 -

IFILCOM program (Cont) I 

Command Format (cont) 

9. The second input file specification cannot be null unless a binary compare is being per­
formed. In a binary compare, if the first input file is not followed by a comma and a 
second input file descriptor, the input file is compared to a zero file and is output in its 
entirety. This gives the user a method of listing a binary file. Refer to Example 4. 

Switches 

The following switches can appear in the command string, depending on whether a source com­
pare or a binary source compare is being performed. 

Binary Compare 

IH Type list of switches available (help text). 

InL Specify the lower limit for a partial binary compare (n is an octal number). 
This switch, when used with the InU switch, allows a binary file to be 
compared only within the specified limits. 

InU Specify the upper limit for a partial binary compare (n is an octal number). 
This switch, when used with the InL switch, allows a binary file to be com­
pared only within the specified limits. 

/W Compare files in binary mode without expanding the files first (refer to 
Appendix D). This switch is used to compare two binary fi les with ASCII 
extensions. 

Ix Expand SAV files before comparing them in binary mode. This action re­
moves differences resulting from zero compression (refer to Appendix D). 

Source Compare 

IA Compare files in ASCII mode. This switch is used to force a source com­
pare on two ASCII files with binary extensions. 

18 Compare blank lines. Without this switch, blank lines are ignored. 

Ic Ignore comments (all text on aline following a semicolon) and spacing 
(spaces and tabs). This switch does not cause a line consisting entirely of 
a comment to become a blank line, which is normally ignored. 

(continued on next page) 

Version 16 FILCOM 2-82 



- 545 - COMMANDS 

IFILCOM program (cont)1 

Command Format {cont} 

Source Compare {cont} 

/H Type list of switches available (help text). 

/nL Specify the number of lines that determine a match {n is an octal number}. 
A match means that n successive lines in each input file have been found 
identical. When a match is found, all differences occurring before the 
match and after the previous match are output. In addition, the first line 
of the current match is output ofter the differences to aid in locating the 
place within each file at which the differences occurred. The default 
value for n is 3. 

/5 Ignore spaces and tabs. 

/U Compare in update mode. This means that the output file consists of the 
second input file with vertical bars next to the lines that differ from the 
first input file. This feature is useful when updating a document because 
the changes made to the latest edition are flagged with change bars in the 
left margin. The latest edition of the document is the second input file. 

If switches are not specified in the command string, t~ files are compared in the mode implied 
by the extension. The following extensions are recognized as binary and cause a binary com­
pare if one or both of the input files have one of the extensions • 

.BAC 

.BIN 

.BUG 
• CAL 
.CHN 
.DAE 
.DCR 
.DMP 

.HGH 

.LOW 

.MSB 

.OVR 

.QUE 

.QUF 

.REL 
• RIM 

• RMT 
.RTB 
.SAV 
.SFD 
.SHR 
.SVE 
.SYS 
.UFD 
.XPN 

Binary files are compared word by word starting at word 0 except for the following two cases: 

1. Files with extensions .SHR and .HGH are assumed to be high segment files. Since 
the word count starts at 400000, upper and lower limits, if used, must be greater 
than {or equal to in the case of the lower limit} 400000. 

2. Files with extensions .SAV, .LOW, and .SVE are assumed to be compressed core 
image fi les and are expanded before comparing. 

Version 16 FILCOM 2-83 



COMMANDS - 546-

I FILCOM program (Con!) I 

Command Format (cont) 

Conflicts are resolved by switches or defaults. If a conflict arises in the absence of switches, 
the files are assumed to be ordinary binary files. 

Output 

In most cases, headers consisting of the device, filename, extension, and creation date of 
each input file are listed before the differences are output. However, headers do not appear 
on output from the /U switch (update mode on source compare). 

Source compare output - After the headers are listed, the following notation appears in the 
left column of the output 

n)m 

where 

n is the number of the input file, and 
m is the page number of the input file (see examples). 

The right column lists the differences occurring between matches in the input files. Following 
the list of differences, a line identical to each file is output for reference purposes. 

The output from the /U switch differs from the above-described output in that the output file 
created is the second input file with vertical bars in the left column next to the lines that are 
different from the first input file. 

Binary compare output - When a difference is encountered between the two input files, a line 
in the following format appears on the output device: 

octal loc. fi rst fi I e-word second fi I e-word XOR of both words 

If the exclusive OR (XOR) of the two words diffel1 only in the right half, the third word output 
is the absolute value of the difference of the two right halves. This usually indicates an ad­
dress that changed. 

If one input file is shorter than the other, after the end of file is encountered on the shorter 
file, the remainder of the longer file is output. 

Version 16 FIlCOM 2-84 



- 547- COMMANDS 

IFILCOM program (Cant) I 

Characteristics 

The R FIlCOM command: 

Places the terminal in user mode. 
Runs the FIlCOM program, thereby destroying the user's core image. 

Associ ated Messages 

Refer to Chapter 4. 

Examples 

1. The user has the following two ASCII files on disk: 

First Fi Ie 

FILE A 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 

First File 

N 
a 
p 
Q 

R 
5 
T 
U 
V 
W 
x 
y 

z 

Version 16 FIlCOM 

Second File 

FILE B 

A 
B 
C 
G 
H 
I 
J 
1 
2 
3 

Second File 

N 
a 
p 
Q 

R 
5 
T 
U 
V 
4 
5 
W 
X 
Y 
Z 

2-85 

page 1 

T 
page 2 

(continued on next page) 



COMMANDS - 548 -

I F I LCOM program (Cont) I 

Examples (cont) 

To compare the two files and output the differences on the terminal, the following sequence 
is used: 

.R F"ILCOM) 

!.F" ILEA#F" ILEB) 

___ ~F"ILE I) DSK:F"ILEA 
headers~F"lLE 2) DSK:FILfB 

Run the FILCOM program. 

Compare the two files on disk and output the dif­
ferences on the terminal. By default, three consec­
utive identical lines determine a match. 

CREATED: 1456 17-JAN-1972 
CREATED: 1456 17-JAN-1972 

line 
identical 
in both 

1>1 

<~~** 
2) 1 
2) 

~ILE A> 

F'ILE 8 

Rrst difference 

files A 

************** 
I) 1 D } 
J) E}-' ...... ~---- Second difference 

I' 1 ) F' 
me I) G 

identical ....--""'" **** 
in both --"'2) 1 G 

files ************** 
I) 1 K 
I) L 
J) M 
1)2 N 

:~:~tical <;;;* 1 
in both 2) 2 
files 2) 3 

2)2 N 

Third difference 

************** 
line <:!;. w 
identical 
in both 

2)2 4 ) ... Fourth difference 2) 5 
fi les 2) w 

************** t L This column indicates the page number of the file. 

This column indicates either the first file or the second file. 

(continued on next page) 

Version 16 FILCOM 2-86 



- 549 - COMMANDS 

IFILCOM program (Cont)I 

Examples (cont) 

To compare the two files and output the differences on the line printer, the following commands 
are used. Note that in this example the number of successive lines that determines a match has 
been set to 4 with the /4L switch • 

.!oR F'ILCOM) 
!LPT:/4L=FILEA,FILEB) 

Version 16 FILCOM 

FILE I) DSK:FILEA 
FILE 2> DSK:FILEB 

1>1 FILE A 
1> A 
1> B 
1> C 
1> D 
1 ) E 
1> F 
1> G 

**** 
2>1 
2) 
2) 
2) 
2) 
************** 
I) 1 K 
1> L 
1 ) '"' 
1>2 N 
**** 
2>1 1 
2) 2 
2) 3 
2)2 N 
************** 
1)2 IN 

**** 
2)2 4 
2) 5 
2) IN 

******* ** ** ** * 

CREATED: 1456 17-JAN-1972 
CREATED: 1456 17-JAN-1972 

These lines are listed as being different because 
the /4L switch specifies that 4 consecutive lines 
must be found identical in the two files before they 
are considered as a match. 

(continued on next page) 

2-87 



COMMANDS - 550-

I FILCOM program (Contll 

Examples (cont) 

To compare the two files so that the second input Ale is output with vertical bars in the left 
column next to the lines that differ from the first input file, use the following command se­
quence. 

!oR F J LCOM) 
~LPT:/lI=FJLEA,FJLEB) 

rILE B 

A 
B 
C 
(3 
H 
I 
J 
1 
2 
3 
N 
o 
P 
Q 
R 
S 
T 
U 
V 
4 
5 
W 
X 
Y 
Z 

The lines with vertical bars indicate the differences 
between the two A I es. 

The lines with vertical bars indicate the differences 
between the two files. 

2. To compare two binary fi les on the disk and output the differences on the terminal, use 
the following command sequence • 

Version 16 FILCOM 

.!R F ILCOM) 
~TTY:~DSK:DIAL.REL,DIAL2) 
FILE I) DSK:DIAL.REL CREATED: 0000 23-DEC-1971 
FILE 2) DSK:DIAL2.REL CREATED: 0000 12-AUG-1971 

0vH'IVl00 
000002 
000003 
000004 

000004 000001 
000000 054716 
000006 000001 
000000 000000 

2-88 

000004 000060 
000311 372712 
017573 510354 
017573 513216 

000057 
000311 326004 
017575 510355 
017573 513216 



- 551 - COMMANDS 

IFILCOM program (Cont)) 

Examples (cont) 

3. To compare two high segment files, the command sequence below is used. I\Iote that the 
locations begin at 400000 • 

• R F'ILCO,",) 
~TTY:~SYS:TABLE.SHk' TABL£.SHR) 
fILE 1) SYS:TABLE.SHH CREATEDl 2020 
F'ILE 2) DSK:TA8LE.SHR CREATED: 1829 

400000 001611 400010 001630 407157 
400003 006675 000000 015024 407670 
400004 005600 000070 004700 000113 
400005 545741 444562 554143 625700 
400010 634000 000000 260740 403516 
400011 474000 000000 200000 414036 
400012 402000 000156 202000 000720 
400013 200040 406354 201000 000472 

4. To list a binary file, use the following command sequence. 

~R F'ILCOM) 
!TTY:~SYS:DOT.REL) 
000000 000004 000001 
000001 000000 000000 
000002 000000 054716 
000003 000006 000001 
000004 000000 000000 
000005 000007 517716 
000006 000001 000002 
000007 000000 000000 

24-JAN-1972 
30-NOV-1971 

000021 0~7147 

013651 407670 
001100 000163 
011602 261262 
454740 403516 
674000 4141336 
600000 000676 
001040 406726 

I\Iote that the following sequence will not work because of the terminating comma. 

!TTY:~SYS:DOT.REL,~ 

?COMMAND ER.ROR 

Version 16 FIlCOM 2-89 



COMMANDS - 552-

I FILCOM program (Cont)1 

Examples (cont) 

5. To compare two binary files between locations 150-160 (octal). 

.R FILCOM) 
!TTY: 1150L/160U"SYS :SYSTAT .SAV,SYS :SYSDPY .SAV) 
FILE 1) SYS:SYSTAT.SAV CREATED: 0818 30-NOV-19~1 
FILE 2) SYS:SYSDPY.SAV CREATED: 1642 29-NOV-1971 

000150 200400 000137 200740 003217 000340 003320 
000151 260740 004226 404500 004242 664240 000064 
000152 260740 004253 661500 002000 401240 006253 
000153 200040 fiHil5011 260740 002723 060700 007732 
000154 260740 004063 200040 004243 060700 000220 
000155 201041 777777 202040 003241 003001 774536 
000156 047040 000042 200040 004241 247000 004203 
000157 254000 000174 251040 004142 005040 004036 
000160 476000 006774 211040 000144 667040 006630 

6. To compare two .SAV files. Note that the files are expanded before the comparison. 

,!.R FILCOM) 
!TTY:pSYS:TRY1.SAV,SYS:TRY.SAV) 
fILE 1) SYS :TRYI .SAV CREATED: 2043 05-JAN-1972 
rILE 2) SYS:TRY.SAV CREATED: 0818 30-NOV-1971 

00fiH 14 004000 000140 000000 000000 004000 000140 
000116 777536 005536 000000 000000 777536 005536 
000117 000000 005536 000000 000000 005536 
000120 006000 000140 007222 000140 001222 000000 
000121 000000 006000 000000 007222 001222 
000130 010000 000005 000000 000000 010000 000005 
000133 003727 005777 006643 007777 005164 002000 
000137 003400 000070 046700 000004 045300 000074 
000140 264000 001454 047000 000000 223000 001454 
000141 260040 001773 200040 005075 060000 004706 
000142 201240 001447 402000 006644 603240 007203 
000143 542240 001634 251040 007221 713200 006415 
000144 260040 002774 403000 000015 663040 002761 
000145 621000 000010 476000 006715 257000 006705 
000146 200240 003504 200740 006606 000500 005302 
000147 251240 000012 051140 005076 200300 005064 
000150 402000 003613 200400 000137 602400 003724 
000151 201040 003730 260740 004226 061700 007516 
000152 200260 003632 260740 004253 060520 007461 
000153 321240 000164 200040 005011 121200 005175 

Version 16 FILCOM 2-90 



I 

I 

- 553 - COMMANDS 

FILE command I 

Function 

The FILE command provides remote control of DECtape-to-disk and disk-to-DECtape transfers 
on operator-handled DECtapes. 

Command Formats 

1. FILE C 

2. 

3. 

4. 

5. 

Checks the queue of ALE commands to be read to determine if any of the user's re­
quests are still pending. No argument is required. Pending requests will be listed. 

FILE D, id, file.ext, file.ext, ••• 

Deletes the specified files from DECtape. Requires Tape ID and list of filenames as 
arguments. The tape ID is any alphanumeric name of 6 characters or less that is used 
to identify the tape. Upon completion, an automatic FILE L is performed. 

FILE F, id, file.ext, file.ext, ••• 

Rles information onto a DECtape. Requires Tape ID and list of filenames as arguments. 
Upon completion, an automatic ALE L is performed. 

FILE L, id 

Reads the directory of a DECtape and places it in the user's disk area as an ASCII fi Ie 
with filename id .DIR. id is any alphanumeric name of 6 characters or less that is used 
to identify the tape. It is the only argument. The user may then read the directory 
with a monitor command string. (See Examples). 

FILE R, id, file.ext, file.ext, ••• 

Recalls (transfers) information from the user's DECtape to the disk. Requires Tape id 
and list of filenames as arguments. If the specified files already exist, they are 
superseded with the ones from the DECtape. If the specified files do not exist, they 
will be created on the first file structure in the job's search list for which creation is 
allowed. After the files are transferred, an automatic ALE L is performed. 

Version 20 UMOUNT 2-91 



COMMANDS - 554-

I FILE command (Cont) I 

Command Formats (cont) 

6. FILE W 

Waits until all of the user's pending requests are processed before continuing. If there 
are pending requests, the message WAITING ••• is typed to the user. Control returns 
when all requests have been processed. The user may type controJ-C if he decides 
not to wait. 

7. FILE Z, id, file.ext, file.ext, 

Zeroes the directory of the DECtape before the files are copied and then performs the 
same operations as the F option. Requires Tape id and may have a list of filenames as 
arguments. After the files are copied, an automatic FILE L is performed. 

The C and W funcitons are the only requests that are performed immediately. The other re­
quests are placed in a queue to be performed whenever possible. The user's terminal and job 
are free to proceed before the request is completed. The function argument is optional. If the 
function argument is not specified, a brief dialogue is performed. 

In most cases the user does not need to specify which file structures the files are on because 
UMOUNT determines this (with LOa KUPs) and passes the information to aMOUNT • 

. However, file structure names may be specified in file descriptors. When no structure name is 
explicitly typed, the default is initially the first file structure in the user's search list (implied 
by DSK:) on which he is allowed to create files. Refer to the description of the SETSRC pro­
gram. When a file structure name is typed or implied, it becomes the new default. 

The asterisk construction may be used, but care should be taken when generic DSK: is typed. 
Because DSK: may define many file structures, the single file structure is chosen as follows: 

When the asterisk construction is used for the filename or extension, the fir-st structure 
on which the user may create files in his search list is used. This is called the user's 
standard fi I e structure. 

If the asterisk construction is not used and the file exists, the first file structure in the search 
list that contains the specified file is used, unless overridden by a default. (See Examples.) 
If the file does not exist, the standard structure is used. 

Version 20 UMOUNT 

WARNING 
If th~ user has a search list with multiple file structures, 
the asterisk construction when used with the FILE R com­
mand can cause files to be created rather than superseded. 

2-92 



- 555 - COMMANDS 

I FILE command (Contll 

Characteristi cs 

The FIL E command: 

Leaves the terminal in monitor mode. 
Runs the UMOUNT program, thereby destroys the user's core image. 
Depends on FTCa.X which is normally absent in the DECsystem-1040. 

Restrictions 

The project-programmer number may not be specified in file descriptors. 

Associated Messages 

Refer to o,apter 4. 

Examples 

.FILE R,MINE,MAIN.F4.SUBFIL.MAC) The files MAIN. F4 and SUBFIL.MAC are taken 
from the user's DECtape labeled MINE and placed 
on the first file structure in the user's search list 
for which creation is allowed. There are two com­
mands in the queue (counting this one) • 

REQUEST STORED 
2.COMMANDS IN QUEUE 

• FILE CJ 
~, R JO~24 TTY~ 27,23~ MINE 
3. COMMANDS IN QUEUE 

Version 20 UMOUNT 

DSKB I, aSKS: MA I ~_.F~,§UBFIL. MAC) 
The user checks to see if his request is still waiting 
to be processed. The first line of the output indi­
cates that the user's request is second in the queue 
(2.), that the request made is a RECALL (R), that 
the user's job is 24 (JOB24), that the user is on 
terminalS (TTY5) under the project-programmer 
number of [27,235] (27 ,235), that the tape is iden­
tified by the name MINE (MINE), and that the files 
will be written in the directory on DSKB: (DSKB:). 
The second line indicates that there are 3 commands 
in the queue. 

(continued on next page) 

2-93 



I 

COMMANDS 

IFILE command (Cont) I 

Examples (cont) 

.FILE L, 4) 

• TYPE 4.0IR) 

- 556 -

The user wants the directory on the DECtape labeled 
4 to be placed in his disk area as an ASCII file • 

The user then reads the directory file with the 
1Y PE command. 

If the user's search list is as follows: 

DSKA/N, DSKB, DSKC 

with file A on DSKA, file Bon DSKB, and file Con DSKC, the following commands are 
equivalent: 

The user types: 

.FILE F,2,A,B,C 

The user could have typed: 

.FILE F,2,DSKIA,DSKIB, 
DSKIC 

The first file structure that contains each file is used. 

.FILE R,3,A,DSKB:B,C .FILE R,3,OSKIA,OSKBIB, 
OSKBIC 

The command as passed to OMOUNT: 

.FILE F,2,DSKAIA, OSKB:B, 
DSKC:t 

.FILE R,3,OSKAIA,DSK~:B, 
DSKBIC 

The user changes the default to DSKB and even though file C exists on DSKC, file C is created 
on DSKB; files A and Bare .superseded • 

• F" I lE F", I , ....... 

Because the asterisk convention was used, the first file structure on which the user may create 
fi les (DSKB) is used. 

.F"IlE R,2,A,C .... , 
DSKC:B.* 

• FIlE R,2,DSK:A, 
DSKB:C.*,DSKC:B.* 

.FIlE R,2,DSKA:A • 
DSK8:C.*.DSKC:B.'" 

8ecause of the asterisk convention, DSKB is used for file C (even though file C exists on 
DSKC). The user explicitly typed a structure name for file B; therefore, DSKC is used even 
though file B is on DSKB. File A is superseded. 

Version 20 UMOUNT 2-94 



- 557- COMMANDS 

FILEX program 

Function 

The FILEX program is a general file transfer program intended to convert between various core 
image formats, and to read and write various directory formats. Files are transferred as 36-bit 
data. The only processing on the data is that necessary to convert between various core image 
representations. 

Command Format 

.R FlLEX) 
*dev:ofile .ext [proj ,prog] <nnn > /switches = dev:ifile .ext [proj ,prog] /switches 

If the project-programmer and/or the switches appear after the device name, they 
apply to all the following files. If they appear after the filename, the specifiers 
apply only to the preceding file. The input filename or extension may be * in which 
case the usual processing of the * construction occurs (refer to the TYPE command). 
The output filename and extension may be * in which case the filename and extension 
of the input file is copied. If the output filename or extension is missing, the same 
procedure occurs as with the * construction, except that all core image files are 
written with the default extension and format appropriate to the output device (unless 
overridden by switches). 

If a protection <nnn> is not specified, files are written with the system standard pro­
tection unless the files are being written on SYS. On SYS, files are written with pro­
tection <155>, except for files with extension .SYS. These files have the default 
protection of <157>. 

Meaning of Switches: 

Help text 

/H to obtain an explanation of the command string and individual 
switches. 

DECtape Format Specifiers 

Version 15 FILEX 

/F 
/M 
/0 
/T 
/V 

PDP-15 DEC tape format 

MIT project MA.C PDP-6/10 DEC tape format 

Old DEC PDP-6 DEC tape format 

normal PDP-10 directory format 

PDP-ll DECtape format (Note that PDP-ll contiguous files are 
not supported by FILEX.) 

2-95 



COMMANDS - 558-

I FILEX program (Cant) I 

Command Format (cont) 

File Format Specifiers 

IA ASCII processing; meaningful only for PDP-ll and PDP-15 tapes. 

IB binary processing; overrides default extension. 

Ic compressed; save file format. This format is assumed for files with 
extensions .SAV, .LOW, .SVE. The default output extension is 
.SAV unless the input extension is .LOWor .SVE, in which case 
the extension remains unchanged. 

10 dump format. This format is assumed for files with extension .DMP. 

IE expanded core image files (used by FILDDT). This format is assumed 
for files with extension .XPN. The default output extension is 
.XPN. 

II image processing; meaningful only for PDP-ll and PDP-15 tapes. 

Is simple block (SBLK) format, project MAC's equivalent of .SAV for­
mat. The defaul t output extension is • BI N. 

DECtape Processing Specifiers 

IG 

IL 

Ip 

IQ 

IR 

Iz 

Version 15 FILEX 

(go on), ignores read errors on input device. FILEX checks the 
always-bod-checksum bit in the 5-series monitor, so this switch is 
not needed for files with • RPABC on (e.g., CRASH. SA V) • 

(list), causes a directory on an input DECtape file to be typed on 
the terminal, or causes a directory listing of the output DECtape at 
the end (i.e., after the output) • 

(preserved), causes qui ck processing {/Q} and preserves the scratch 
file after processing for use by another command. 

(quick), causes an input or output DECtape to be processed quickly 
via a scratch file. 

(reuse), reuses a scratch file preserved by a Ip in a previous com­
mand. 

(zero), causes the appropriate format of a zeroed directory to be 
written on a DECtape output file. If TAPEID appears in the output 
specifier, then TAPEID is written as the tope identifier in the direc­
tory. TAP EID is preceded by a up arrow (t) and may be 6 characters 
on a PDP-10 tape, 3 characters on a project MAC tape, and is not 
present on a PDP-6 tape. 

2-96 



- 559- COMMANDS 

IFILEX program (contll 

Characteristics 

The R FlLEX command: 

Runs the FILEX program, thereby destroying the user's core image. 

Examples 

.R FILEX) 
!DSK:pDTAl:TEST.DMP/C 

.k FILEX 
*DSK:SERI0S.XPN(10,IJpDSKC:CRASH.SAV(\,4J 

Version 15 FILEX 2-97 

The dump format file is com­
pressed and written as TEST.SAV. 

Copy CRASH. SA V to an ex­
panded format file for FlLDDT 
to examine. 



COMMANDS - 560-

FINISH command 

Function 

The FINISH command terminates any input or output currently in progress on the specified de­
vice and automatically performs the RELEASE UUO (which CLOSES the files) and DEASSIGN 
command, thus making the device available to another user. This command is preferred over 
the DEASSIGN command because it completely disassociates an INITed device from the user's 
job, thereby preventing the user from continuing his program. If the user wishes to continue 
his program, he should use the DEASSIGN command. 

Command Format 

FINISH dev 

Characteristics 

dev = the logical or physical name of the device on which I/o is to be terminated. 
This argum,ent is optional. 

If dev is omitted, I/o is terminated on all devices, except the job's controlling 
terminal and the logical name of the controlling terminal is cleared. 

The FINISH command: 

Restrictions 

Leaves the terminal in monitor mode. 
Requi res core. 
Depends on FTFINISH which is normally absent in the DECsystem-l040. 

The user cannot continue his program if the device was INITed, but he can start at the begin­
ning or enter DDT. 

Associated Messages 

Refer to Chapter 4. 

2-98 



- 561 - COMMANDS 

I FINISH command (cont)1 

Examples 

..:F"lNISH COfU) 
.!. 
,!.F" I N ISH OU7:) 
.!. 
.!F"INISH LPTI) 

.:. 

2-99 



COMMANDS - 562-

I FUDGE command 1 

Function 

The FUDGE command causes PIP to read a temporary file generated by a previous COMPilE, 
lOAD, EXECUTE, or DEBUG command using the /FUDGE switch and to create a library REl 
file. The library is created with the REl files in the same order in which they were specified 
in the command string containing the /FUDGE sWitch. 

NOTE 
Since the COMPIl program sorts out files by compilers, mixed 
FORTRAN and MACRO programs are sorted so that all 
FORTRAN programs are compiled first and MACRO programs 
second. However, the /FUDGE switch combines them in the 
order in which the COMPIl program encountered them. 

Command Format 

FUDGE 

Characteri sti cs 

The FUDGE command: 

leaves the terminal in monitor mode. 
Runs the PIP program, thereby destroying the user's core image. 
Depends on FTCClX which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Examples 

1 

~COMPIL/FUDGEILIBARY/MACRO TEST,MATH,DATPRO.CBL,SCIENC.F~) 

Create a disk file named LIBARY which contains the names of all the 
REl files produced. 

!..FUDGE) 

Create the library file and call it LIBARY. This file contains the following: 
TEST.REl, MATH.REl, DATPRO.REl, and SCIENC.REl. 

This command runs the COMPIl pragram, which interprets the command before running the PIP 
program. 

Version 20 COMPIl 
Version 32 PIP 2-100 



- 563- COMMANDS 

FUDGE2 program 

Function 

The FUDGE2 program is used to update files containing one or more relocatable binary pro­
grams and to manipulate programs within program files. Three files are used in the updating 
process: 

1. A master file containing the file to be updated. 
2. A transaction file containing the file of programs to be used when updating. 
3. An output file containing the updated file. 

All three files can be on the same device if the device is DSK. The two input files can be on 
the same DECtape. 

The desired function of FUDGE2 is specified by a command code at the end of the command 
string. Only one command code can be specified in each command string. The command 
string is then terminated with an ALTmode, represented in this manual by a dollar sign ($). 
Switches can also be used to manipulate file directories and to position a magnetic tape. 

Command rormat 

.!.R FUDGE2.J 
!output dev:file. ext=master dev:file .ext<programs>, transaction dev:file • ext <programs > 

(command)$ 

output dev: 

master dev: 

transaction dev: 

file.ext 

Version 14 FUDGE2 

= the device on which the updated file is written. If omitted, 
DSK is assumed. 

= the device containing the file to be updated. If omitted, the 
default is DSK. 

= the device containing the files of programs to be used in the 
updating process. When more than one file is transferred from 
magnetic tape or paper tape, a colon must follow the device 
name for each file. ror example, 

MTA:: : Transfer 3 fi I es 

If the device is omitted, DSK is assumed. 

= the filename and extension of each file. Filenames must be 
specified for directory devices, but the extension can be omitted. 
If the extension is not given, it is assumed to be • REL unless the 
/L switch appears in the command string. In this case, the output 
extension .LST is assumed. 

(continued on next page) 

2-101 



COMMANDS 

I FUDGE2 program (Cont) I 

Command Format (cant) 

file .ext (cant) 

<programs> 

(command) 

Version 14 FUDGE2 

- 564-

Project-programmer numbers appearing after a filename apply 
to that file only. If the project-programmer number appears 
before the filename, it applies to all subsequent files until 
another device is specified. 

The asterisk convention can be used with the input files (refer 
to Paragraph 1.4.2.4). 

= Names of programs (on DSK or DTA only) to be used in the up­
dating process. They are grouped within angle brackets in the 
same order as they appear in the file and are separated by 
commas. When manipulating all the programs within a file, 
only the filename need be specified. Program names cannot 
appear for the output file. 

= Code for the function to be performed. This code can be either 
preceded by a slash or enclosed in pareotheses and must appear 
at the end of the command string. Each command results in the 
updated file being output to the output device. The command 
codes are as follows: 

A Append the specified programs in the transaction file(s) 
to the master fi Ie. 

C Delete local symbols from the master file. 

D Delete the specified programs from the master file. 

E Extract the specified files and/or programs from the 
input files. The entire file is extracted if program 
names are not specified. 

H Type the commands and switches available. 

Insert programs from the specified transaction files into 
the master file. The programs from the transaction files 
are inserted immediately before the specified programs 
in the master file. 

L List the names and lengths of all relocatable programs 
within a file. The length is in one of two forms: 

low segment break, high segment break or 
program break, absolute break 

The length of FORTRAN programs is not output. 

(continued on next page) 

2-102 



- 565 - COMMANDS 

I FUDGE2 program (Cont)1 

Command Format {cont} 

{command} {cont} R Replace the specified programs in the master file with 
the specified programs in the transaction file. The num­
ber of replacing programs must be the same as the num­
ber of programs to replace. 

S List all the entry points within a program. These entry 
points are listed across the page. 

X Write index blocks into a library file. Index blocks 
are used in a direct access library search {refer to the 
LOADER documentation}. This command implies a C 
command. 

Rle directories can be manipulated and magnetic tapes positioned by including switches in the 
command string. These switches can appear anywhere in the command string and are preceded 
by a slash or enclosed in parentheses. The following switches are available: 

IB Backspace a magnetic tape one file. 

IK Advance a magnetic tape one file. 

IT Skip to the logical end of-tape on a magnetic tape. 

/W Rewind a magnetic tape. 

Iz Clear the directory of the output DECtape. 

Characteri sti cs 

The R FUDGE2 command: 

Places the terminal in user mode. 
Runs the FUDGE2 program I thereby destroying the user's core image. 

Associated Messages 

Refer to Chapter 4. 

Version 14 FUDGE2 2-103 



COMMANDS 

I FUDGE2 program (Cant) I 

Examples 

.R FUDGE2) 
.!:LPT:=DTAI :LIB40Cl}$ 

- 566-

list all relocatable programs (.REL) from the file 
LIB40, located on DTA1, on the line printer • 

.!.U::iK :LIB4BB=DTA2: LIB4AA ''''EXP .3;EXP .3C >1 
OTAI :F4<EXP.3AIEXP.3B>(f()$ Replace programs EXP.3 and EXP.3C located in 

file UB4M on DTA2, with programs EXP.3A and 
EXP .3B in File F4 on DTA 1; write out the new 
UB4M file on disk and call it LIB4BB. 

!DTAI :NFILE=OSK:MFILE<MIIM2IM3IM4> 

DTA3:TFILEA<TAIITA2> 
DTA4:TFILEB<TBIITB2>/I$ 

Insert into MFILE the programs TAl and TA2 from 
TFILEA, and TBl and TB2 from TFILEB. Create 
NALE with the following order: 

TAl ,Ml, TA2,M2, TBl ,Na, TB2,M4 

Insertion is on a one-to-one basis. If there are 
more programs to be inserted than specified pro­
grams before whi ch they are to. be inserted, the 
extra fiI es are ignored. 

!pTA I :NFILE=DSK:MFILE<MIIM2IM3IM4> 
DTA3 :TF ILEA However in this example (where TFILEA and 
DTA4 :TF ILEBII$ , • 

TALEB contain the programs TAl and TA2 and TBl 
and TB2, respectively) create an NFILE with the 
following order: 

TAl, TA2,Ml, TB1, TB2,M2,Na,M4 

!pTA2:TESTA=MTAI:(WK)IMTA2: :CZA)$ 

Clear the directory of DTA2; rewind MTAl and ad­
vance the tape one file; append the first two pro­
gram files from MTA2 to the second file on MTAl 
and write out the resultant file on disk, calling it 
TESTA. 

!OUTPUT=LIBARYIDTAI:LIBARY<FILEYIFILEZ>/A$ 

Version 14 FUDGE2 

Append the programs ALEY and FILEZ contained 
in the file UBARY on DTAl to the end of the file 
LlBARY on disk. Write the new file on disk and 
call it OUTPUT. 

(continued on next page) 

2-104 



- 567- COMMANDS 

IFUDGE2 program (Cant) I 

~~ (cont) 

~NEWFIL=OLDFIL<TEST,SU8TkC,MULTI>,BASfIL<PkOG,; 

ROUT I N, ANSI.~ER >, SU8f I L <MATH> (E) $ Extract the specified programs from the files 
OLDFIL, BASFIL, and SUBFlL and create a new 
output file called NEWFIL. The order of the pro­
grams in NEWFIL is as follows: TEST, SUBTRC, 
MULTI, PROG, ROUTIN, ANSWER, MATH. 

Retum to the monitor. 

Version 14 FUDGE2 2-105 



COMMANDS - 568 -

I GET command I 

Function 

The GET command loads a core image from a retrievable storage device but does not begin 
execution. 

This command clears all of user core. However, programs should not count on this action and 
should explicitly clear those areas of core that are expected to contain zeroes (i .e., programs 
should be self-initializing). This action allows programs to be restarted by a tC, START 
sequence without having to do another GET command. 

On magnetic tape, if the low or high segment is missing, a null record is output before the 
EOF for the missing segment so that two EOFs cannot occur consecutively. Therefore, a 
saved null segment does not appear as a logical EOT (2 EOFs in a row). 

Command Format 

GET dev:fjle.ext [proj,prog] core 

The arguments and the defaults are the same as in the RUN command. 

The extension applies to the low file, not the high file. An extension of .SHR, then 
.HGH, is assumed for the high file. If the user types an extension of .SHR or .HGH, 
the extension is treated as a null extension since. SHR and. HGH are confusing as low 
fi Ie extensi ons. 

Characteristics 

The GET command: 

Leaves the terminal in monitor mode. 
Does not operate when the device is currently transmitting data. 

Associated Messages 

Refer to Chapter 4. 

Example 

.GET SYS:PIP) 
JOB SETUP 

.GET TEST) 
JOB SETUP 

2-106 



- 569 - COMMANDS 

GLOB program 

Function 

The GLOB program reads multiple binary program files and produces an alphabetical cross­
referenced list of all the global symbols (symbols accessible to other programs) encountered. 
This program also searches files in library search mode, checking for globals, if the program 
file was loaded by the LOADER in library search mode (refer to the LOADER documentation). 

The GLOB program has two phases of operation; the first phase is to scan the input files and 
build an internal symbol table, and the second, to produce output based on the symbol tabl.e. 
Because of these phases, the user can input commands to GLOB in one of two ways. The first 
way is to specify one command string containing both the output and input specifications. 
(This is the command string format most system programs accept.) The second is to separate 
the command string into a series of input commands and output commands. 

Command Formats 

1. R GLOB 

outdev:fi Ie. ext [proj 'J;!:.0g] = input dev:fi Ie. ext[proj ,prog] , fi Ie. ext, ••• ,dev:fi Ie. ext 
[proj ,prog] W 

2. R GLOB 

followed by one or more input commands in the form 

dev:fi Ie. ext [pro j ,prog] , fi Ie .ext [pro j ,prog ) , ••• ,dev:fil e. ext [proj ,prog] , ••• ) 

and then one or more output commands in the form 

outdev:file.ext[proj,prog] = <D 
When the user separates his input to GLOB into input commands and output commands (Com­
mand Format #2), the input commands contain only input specifications and the output com­
mands, only output specifications. Each output command causes a listing to be generated; 
any number of listings can be printed from the symbol table generated from the current input 
files as long as no input commands occur after the first output command. When an input com­
mand is encountered after output has been generated, the current symbol table is destroyed 
and a new one begun. 

Defaults 

1. If the device is omitted, it is assumed to be DSK. However, if the entire output specifi­
cation is omitted, the output device is TN. 

(continued on next page) 

Version 5 GLOB 2-107 



COMMANDS - 570 -

I GLOB program (Cont) I 

Command Format (cont) 

Defaults (cont) 

2. If the output filename is omitted, it is the name of the last input file. The input filenames 
are required. 

3. If the output extension is omitted, • GLB is used. If the input extension is omitted, it 
is assumed to be .REL unless the null extension is explicitly specified by a dot following 
the filename. 

4. If the project-programmer number [proj ,prog] is omitted, the user's default directory is 
used. 

5. An AL Tmode terminates the command input and signals GLOB to output the cross-referenced 
listing. In other words, a listing is not output until GLOB encounters an Al Tmode. The 
ALTmode appears at the end of the command string shown in Command Format #1 or at the 
end of each output command shown in Command Format #2. 

Switches 

Switches control the types of global listings to be output. Each switch can be preceded by a 
slash, or several switches can be enclosed in parentheses. Only the most recently specified 
switch (except for L, M, P, a, and X, which are always in effect) is in effect at any given 
time. If no switches are specified, oil globol symbols are output. The following switches are 
available. 

/A Output all global symbols. This is the default if no switches are specified. 

/E List only multiple defined or undefined (erroneous) symbols. 

/F List nonrelocatable (fixed) symbols only. 

/H List the switches available (help text). 

/L Scan programs only if they contain globals previously defined and not yet 
satisfied (library search mode). 

/M Turn off library search mode scanning resulting from a /L switch. 

/N List only symbols which are never referenced. 

/p List all routines that define a symbol to have the same value. The routine 
that defines the symbol first is listed followed by a plus (+) sign. Subse­
quent routines that deFine the symbol are listed preceded by a plus sign. 

/a Suppress the listing of subsequent definers that result from the /p switch. 

(continued on next page) 

Version 5 GLOB 2-108 



- 571 - COMMANDS 

I G LOB program (Cant) I 

Command Format {cont} 

Switches {cont} 

Characteri sti cs 

IR List only relocatable symbols. 

Is List symbols with non-conflicting values that are defined in more than one 
program. 

Ix Do not print listing header when output device is not the terminal, and 
include listing header when it is the terminal. Without this switch, the 
header is printed on all devices except the terminal. The listing header is 
in the following format: 

FLAGS SYMBOL OCTAL VALUE DEFINED IN REFERENCED IN 

Symbols listed are in alphabetical-order according to their ASCII code 
values. The octal value is followed by a prime {'} if the symbol is relo­
catable. The value is then relative to the beginning of the program in 
which the symbol is defined. Flags preceding the symbol are shown 
below. 

M Multiply defined symbol {all values are shown}. 

N Never referred to {i.e., was not declared external in any of 
the binary programs}. 

S Multiply specified symbol {i .e., defined in more than one 
program but with non~confNcting values}. The name of the 
first program in whiCh the symbol was encountered is followed 
by a plus sign. 

U Undefined symbol. 

The R GLOB command: 

Places the terminal in user mode. 
Runs the GLOB program, thereby destroying the user's core image. 

Associated Messages 

Refer to Chapter 4. 

Version 5 GLOB 2-109 



COMMANDS - 572-

I GLOB program (Cont) I 

Examples 

.R GLOB) Run the GLOB program. 

!LPT:=MAIN~DTA2:SUB40~SUB50 ® All global symbols in the programs MAIN {on DSK}, 
SUMO, and SUB50 {on DTA2} are listed on the line 
printer. Along with the symbol is listed its value, 
the program in which it is defined, all programs in 
which it is referenced, and any error flags. 

!DTA4:BATCH.REL~DATA~DTA6:NUMBER.REL~CLASS) 

!DSK:MATH.REL~LIBARY.) The programs to be scanned are BATCH.REL, 
DATA.REL on DTA4; NUMBER.REL, a.ASS.REL 
on DTA6; and MATH. REL, LlBARY.null on DSK. 

!LPT :=/Ji" ® 
!"SK :SYMBOL=/R ® 

!TTY:=/E ® 
U EXTSYM SUBRTE 

Version 5 GLOB 

List only nonrelocatable symbols on the line printer. 

List only relocatable symbols in the file named 
SY MBOL in the user's default directory. 

Pri nt all erroneous symbols on the termi nal. EXTSY M 
is an undefined symbol appearing in the program 
SUBRTE. 

Return to monitor mode. 

2-110 



I 

I 

- 573 - COMMANDS 

GRIPE program I 
Function 

The GRIPE program accepts text from a user and records it in a disk file, thereby enabling users 
to record comments and complaints to be read at a later time by the operations staff. 

Command Format 

R GRIPE 

When the GRIPE program responds with aYES? I type the text I using as many lines as 
necessary I terminated with an ESCAPE. The text is written as a file with <157>pro­
tection and includes a header with the date I time I and project-programmer number of 
the user writing the comment. Therefore I the user does not need to identify himself. 

Characteri sti cs 

The R GRIPE command: 

Places the terminal in user mode. 
Runs the GRIPE program I thereby destroying the user's core image. 

Associated Messages 

Refer to Chapter 4. 

Example 

.R GR IPE) 

YES? (TYPE ESCAPE WHEN THROUGH) THIS CONSOLE IS 
ALMOST OUT OF PAPER$ 
THANK YOU 

Version 3 GRIPE 2-111 



COMMANDS - 574 -

HALT command 

Function 

The HALT (tC) command transmits a HALT command to the monitor command interpreter. It 
stops the job and stores the program counter in the job data area (. JBPe). Refer to the 
DECsystem-10 fv\onitor Calls for a description of the job data area. 

Command Format 

HALT (Ie) 

Characteristics 

The HALT (Ie) command: 

Places the terminal in monitor mode. 
Does not require LOGIN. 

Example 

fC 

2-112 



- 575 - COMMANDS 

HELP command 

Function 

The HELP command is used to obtain useful documentation on various system features. 

Command Formats 

1. HELP 

outputs the instructions for receiving information. 

2. HELP * 

outputs the names of features that have available documentation. 

3. HELP name 

outputs the information on the named feature. 

Only the first six characters of the argument to the command are scanned. These characters 
must be A through Z, 0 through 9, or asterisk (*). 

q,aracteristi cs 

The HELP command: 

Leaves the terminal in monitor mode. 
Does not require LOGIN. 

Associated Messages 

Refer to Chapter 4. 

Version 3 HELP 2-113 



COMMANDS - 576 -

I HELP command (Cont) I 

Examples 

~HELP .) 

HELP IS AVAILABLE FOR THE FOLLOwING: 
BATCON COPSPL CORST~ DIRECT FAILSA FGEN 
HELP LPTSPL MATCH MTCOPY PIP PLTSPL 
PTPSPL SOUP TECO 

..!,HELP DIRECT) 

TYPE OUT.INPUT+INPUT+ ••• 
IACCESS:N • ACCESS ALL LISTED FILES UNDER N BLOCKS LONG 
IALLOCATED • GIVE ALLOCATED LENGTH 
ICHECKSUM • COMPUTE CHECKSUM OF EACH FILE 
IOETAIL • EVERYTHING FROM EXTENDEO LOOKUP 
IF • FAST MODE 
IH • THIS TEXT 
IL • OUT TO LPT 
IPHYSICAL _ 00 PHYSICAL OPENS 
IS • SLOW MODE 
ISORT • PREPARE FOR SORTING 
ISUMMARY • JUST PRINT SUMMARY LINE 
ITITlES • INCLUDE TITLES 
IUNITS - GIVE SPECIFIC UNIT 
IW~DTH:N • TRY TO FILL PAPER WIDTH OF N COLUMNS 
IWORDS _ OUTPUT LENGTHS IN WO~DS 

• IS WILD NAME. ETC. 
? IS WILD lETTER OF NAME. ETC. 
"OUT-" MAY BE OMITTED 
DEFAULT IS TTY:.DIR-DSK:*.*CMY DIRECTORY] 

Version 3 HELP 2-114 



I 

- 577- COMMANDS 

INITIA command 

Function 

The INITIA command performs standard system initialization for the terminal issuing the com­
mand. This command is issued automatically at system startup and at the 400 series restart at 
certain designated terminals, but may be re-issued at any time by the user. This command is 
used to initiate specific system programs, such as the operator service program, OPSER, on a 
particular console. 

The INITIA command runs SYS:INITIA.SAV which, depending upon the system configuration 
and the number of the TlY from which it is typed, may cause any of a number of events to 
occur. For more information, refer to the INITIA specification in Notebook 7 of the 
DECsystem-10 Software Notebooks. 

Command Format 

INITIA 

Characteri st i cs 

The INITIA command: 

Leaves the terminal in monitor mode. 
Runs a specific system program. 
Does not require" LOGIN. 
Depends on FTCCLX which is normally absent in the DECsystem-1040. 

Associated Messoges 

Refer to Chapter 4. 

Examples 

.INITIA) 
5504 5Y5 #2 22:12:17 TTY24 

Version 3INITIA 2-115 



COMMANDS - 578 -

JCONTINUE command 

Function 

The JCONTINUE command forces a continue of the specified job if the job was in a 
IC state because of a call to the device error message routine (HNGSTP). 

Command Format 

JCONTINUE n 

n = the number of-the job to be continued. This argument is required. 

Characteristi cs 

The JCONTINUE command: 

Places the terminal in monitor mode. 
Does not require LOG} N. 
Depends on FTJCON which is normally absent in the DECsystem-l040. 

Associated Messages 

Refer to Chapter 4. 

Example 

.JCONT 14) 

2-116 



- 579- COMMANDS 

KJOB command I 

Function 

In multiprogramming systems, the KJOB command: 

Stops all assigned I/O devices and returns them to the monitor pool. 

Returns all allocated core to the monitor pool. 

Returns the job number to the pool. 

Leaves the console in the monitor mode. 

Performs an automatic TIME command. 

In swapping systems, the KJOB command performs all the above procedures. In addition, the 
command responds with 

CONFIRM: 

The user may type tC to abort logout, or type an optional file structure name (or I ist of file 
structure names) preceded by one of the following: . 

F ) to logout immediately saving all fi les (including temporary files) as they are. 
Identical to R LOGOUT, or RUN UUO to LOGOUT. 

D) to delete all files on the specified file structures. Responds with ARE YOU 
SURE? Type Y or D for YES, any other character for NO. 

K) to delete all unprotected files (i.e., files with Oxx protection code) on the 
specified file structures. If project 1 or other jobs are logged-in with the same 
project-programmer number, responds with ARE YOU SURE? Type Y or K for 
YES, any other character for NO. 

P ) to save and protect (i .e., assign a protection code of 1 in the owner's field) 
all but temporary files (TMP, CRF, LST) on the specified file structures. If 
project 1 or other jobs are logged-in with the same project-programmer num­
ber, responds with ARE YOU SURE? Type Y or P for YES, any other character 
for NO. 

S) to save without protecting all but temporary files on the specified file struc­
tures. If project 1 or other jobs are logged-in with the same project-programmer 
number, responds with ARE YOU SURE? Type Y or S for YES, any other char­
acter for NO. 

L) to list the directories of the specified file structures. 

I ) to individually determine what to do with all files on the specified file struc­
ture as follows: 

(continued on next poge) 

Version 47 KJOB 2-117 



COMMANDS - 580 -

I KJOB command (Contll 

Function (cont) 

After each filename is listed, type 

P) to protect the file. 

S) to save the file. 

K) to delete the file. 

Q) to learn if over logged-out quota on this file structure. If not 
over quota, nothing is typed, and the same filename is repeated. 

E) to skip to next file structure and save this fi Ie if below logged-out 
quota for this file structure. If not below logged-out quota, a 
message is typed and the same filename is repeated. 

H) to list responses and meanings. 

U) to individually determine what to do with all but protected files. Protected 
fi I es are a I ways preserved. 

B) to delete no files except when user is over the logged-out quota, then delete 
enough files to be below quota. The files are deleted in the following order: 
1) unprotected fi les according to the category of the file, 2) spooled files not 
previously queued, and 3) protected files according to the category of the file. 
The categories of files are as follows: 1) temporary files, 2) relocatable files, 
3) backup files, 4) save files, and 5) all other files. 

Q) to learn if over logged-out quota on the specified file structures. 

H) to list the KJOB options and their meanings. 

W) to list the names of the files that are deleted. 

X) to turn off the listing of the names of the files that are deleted. Complement 
ofW. 

If no file structure names are specified, the responses are for all file structure names in the job 
search list. If file structure names are specified, the responses apply to those file structures, 
and CONFIRM is retyped. The KJOB command ignores all logical assignments. 

The user has the option of going through the CONFIRM dialogue, even if other jobs are logged­
in under the same project-programmer number or if he is logged-in under project 1. (However, 
if sufficient responses are included on the KJOB command line or in a temporary file entered 
through an alternate entry point, CONFIRM is not typed.) By responding to a CONFIRM mes­
sage, the user has an opportunity to organize his disk area by deleting or preserving specific 
files. 

The KJOB program calls the QUEUE program to perform the queuing of files which have been 
deferred to logout time. This includes all spooled output unless the user has specifically 
queued output spooling earlier. Queuing may be suppressed with the /Z response (see below). 

Version 47 KJOB 2-118 



I 

- 581 - COMMANDS 

I KJOB command (Cont)1 

Command Formats 

1. KJOB 

CONFIRM: 

When the CONFIRM: response is given, the user may type any of the above-described 
letters followed by an optional file structure name or list of file structure names separ­
ated by commas. The user may type one of the above-described I etters, fo I lowed by 
optional file structure names, on the same line as the KJOB command, and the 
CONFIRM: message will not be typed. 

2. KJOB <log file descriptor> = / <letter> <list of file structure names>/<Ietter> 
<list of file structure names> etc. 

<log file descriptor> has the following form: <dev:file.ext [proj ,prog] >. If the log 
file is not a disk or spooled device, TlY is used. 

<letter> = any letter from the above-described set. In addition, the following re­
sponses are available to any jobs using this command format: 

Version 47 KJOB 

/Z:n specifies the degree of queuing desired: 

n = 0 suppresses all normal queuing done at LOGOUT time. 
n = 1 queues the log file only. 
n = 2 queues the log file and spooled output (*.LPT, etc.) 
n = 3 queues the log file, spooled output, and *. LST. 
n =4queues the log file, spooled output, *.LST, and any requests 

deferred to LOGOUT time (deferred requests are not yet imple­
mented). 

If Z is given without a value or if there are no spool bits set for job, Z:O is 
assumed. Otherwise, /Z:2 is assumed. 

/VL:n specifies that the limit of pages for LPT files is to be n (decimal). 

/VC:n specifies that the limit of cards for CDP files is to be n (decimal). 

/VT:n specifies that the limit of feet of poper tape for PTP files is to be n 
{decimal} • 

/VP:n specifies that the limit of minutes for PLT files is to be n {decimal}. 

/VR:n specifies that the priority of the queue request is to be n; n is from 0 
through 62. /VR:62 is the standard. 

(continued on next page) 

2-119 



COMMANDS - 582-

I KJOB command (Cant) I 

Command Formats (cant) 

/VS:n specifies that the sequence number for the queue request is to be n. 

/VD:v specifies that the fi Ie disposition of the log file is to be v. 

v = D deletes the log file after printing. 
v = P preserves the log file after printing. 
v = R renames the log file before printing to the queue area and 

deletes it after printing. 

Default is /VD:R. 

If a value to the above switches is not specified, the value is equivalent to 0 
(e.g., /VD is equivalent to /VD:O). For the /VX switches, a value of 0 is 
equivalent to the standard (e.g., /VD =/VD:O =/VD:R). 

The letters must appear on the input side of the command string. If the log fi Ie 
is specified, all TlY output is appended to the log file. If no log file is speci­
fied or if the log file is not a disk or spooled device, the default is TlY. In 
addition, if responses to CONFIRM are required and are not specified on the 
KJOB command line, these responses will then be read from TlY. Therefore, 
users should be careful when employing this command format. 

3. The KJOB program may be entered at the CCl entry point through the RUN UUO. When 
this is done, TMPCOR file KJO or disk file nnnKJO. TMP, where nnn is the user's job 
number in decimal, is used instead of the TlY input. This temporary fi Ie has the follow­
ing format: 

Characteri sti cs 

KJOB <log file descriptor> = / <list of file structure names>/ <letter> 
< list of fil e structure names> etc. 

The KJOB command: 

Detaches the terminal. 
Stops all assigned I/o devices since it does not operate when a device is currently 

transm i tti ng data. 
Runs the KJOB and lOGOUT programs. 
Does not require lOGIN. 

Associated Messages 

Refer to Chapter 4. 

Version 47 KJOB 2-120 



- 583- COMMANDS 

(KJOB command (Contll 

Examples 

1. An example of the CONFIRM dialogue. 

:.K) 
I) CONrIRM: 

DSKB: 
TEST4 .TST <12155> 2121121121. BLKS . K) . 
TESTS .TST <12155> 51215. BLKS : p) 
TIl .BAK <12155> 5. BLKS ~3 T2 .BAK <12155> 5. BLKS 
T3 .BAK <12155> 5. BLKS K) 
TEST .BAK <055> 5. BLKS 

ij TEST .REL <055> 5. BLKS 
TEST .MAC <055> 5. BLKS 
TEST .SHR <12155> 30. BLKS : S) 
JOB 5~ USER [112I~63 ] LOGGED Orr TTY24 AT 2309 II-MAY-71 
DELETED 5 1'1 LES 
SAVED 4 riLES 2565 TOTAL BLOCKS USED 
RUNT IME 0 MIN~ 1210.6121 SEC 

2. An example of the user bypassing the CONFIRM dialogue. 

:,.K/r) 
JOB 9~ USER [112I~11121] LOGGED Orr TTY3 1349 18-MAR-71 
SAVED ALL 23 riLES (63121. DISK BLOCKS) 
RUNTIME 1 MIN# 51.52 SEC 

3. An example of the command when used in the Batch system. The output appears in the 
log file. 

12:2121:51 MONTR K DSKBI2I:MUM.LOG[10#110]=/W/B/VL:21210 
12:21:02 LGOUT JOB 12~ USER [10~110] LOGGED Orr TTY50 1221 18-MAR-71 
12:21 :1212 LGOUT SAVED ALL 38 rILES (1275. DISK BLOCKS) 
12:21:02 LGOUT ANOTHER JOB STILL LOGGED IN UNDER [10#11121] 
12:21:02 LGOUT RUNTIME 121 MIN# 1210.65 SEC 

4. An example of the User specifying two switches • 

.!.K/W/B) 
DELETED: 
MYFILE 
JOB 14~ USER (2121~275] LOGGED OFF TTY35 1454 13~APR-72 
DELETED 1 FILES (112122. DISK BLOCKS) 
SAVED 52 FILES (1735. DISK BLOCKS) 
HUNTIME 121 MIN~ 1212.6121 SEC 

Version 47 KJOB 2-121 



COMMANDS - 584-

LIST command 1 

Function 

The LIST command directs PIP to list the contents of named source file(s) on the line printer 
(LPT). The output goes either to LPT immediately or to the disk to be spooled to LPT if it is 
being spooled for this job. Refer to the QUEUE and PRINT commands. If the LPT is being 
spooled, the QUEUE program should always be used since it saves time and disk accesses. 

Command Format 

LIST list 

list = a single file specification or a sting of file specifications separated by commas. 
A file specification consists of a device name, a filename and extension, and a direc­
tory name. This argument is required. 

Switches can be passed to PIP by enclosing them in parentheses in the LIST command 
string. When COMPIL interprets the command string, it passes the switches on to PIP. 

Characteri sti cs 

The l:IST command: 

Leaves the terminal in monitor mode. 
Runs the PIP program, thereby destroying the user's core image. 
Depends on FTCCLX which is normally absent in the DECsystem-l040. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.LIST TEST.*) 
:LIST * .MAC) 
:LIST DTA4:A,B,C) 

1 
This command runs the COMPIL program, which interprets the command before running PIP. 

Version 20 COMPIL 
Version 32 PIP 2-122 



- 585- COMMANDS 

LOAD command 1 

Function 

The LOAD command translates the specified source files if necessary (function of COMPILE 
command), runs the LOADER, and loads the .REL files generated. The assembler or compiler 
used is determined by the source file extension or by switches in the command string (refer to 
the COMPILE command). If a REL file already exists with a more recent date than that of 
the source file, compilation is not performed (unless requested via a switch). 

This command generates a core image but does not begin execution. At this point, the user can 
start his program or save the core image for future execution. 

Each time the COMPILE, LOAD, EXECUTE, or DEBUG command is executed, the command 
with its arguments is remembered in a temporary file on disk, or in core if the monitor has the 
TMPCOR feature. Therefore, the filename used last can be recalled for the next command 
without specifying the arguments again (refer to Paragraph 1.5). 

The LOAD command accepts several command constructions: the @ construction (indirect com­
mands), the + construction, the = construction, and the < > construction. Refer to Paragraph 
1.5 for a complete description of each of these constructions. 

Command Format 

LOAD list 

list = a single file specification, or a'string of file specifications separated by commas. 
A file specification consists of a device name, a filename with or without an exten­
sion, and a directory name. 

The following switches can be used to modify the command string. These switches can 
be temporary or permanent switches (refer to Paragraph 1.5.5). 

/ALGOL 

/COBOL 

Compile the file with ALGOL. Assumed for files with the exten­
sion of .ALG. 

Compile the file with BLISS. Assumed for files with the extension 
of .BLI. 

Compile the file with COBOL. Assumed for files with the exten­
sion of .CBL. 

(continued on next page) 

lThis command runs the COMPIL program, which interprets the command before running the appropriate 
processor and the LOADER. 

2BLISS will be recognized as a processor only if the appropriate assembly switch is set. However, this 
assembly switch setting is not supported. 

Version 20 COMPIL 2-123 



COMMANDS 

I LOAD command (Cant) I 

Command Format (cont) 

/COMPILE 

/CREF 

/FORTRAN 

/FUDGE 

/L1BRARY 

/L1ST 

Version 20 COMPIL 

- 586-

Force a compilation of this file even though a binary file exists 
with a newer date and time than the source file. This switch is 
used to obtain an extra compi lation (e.g., in order to obtain a 
listing of the compilation) since normally compilation is not per­
formed if the binary fi Ie is newer than the source fi Ie. 

Produce a cross-reference listing file on the disk for each file com­
pi led for later processing by the CRJ:F program. These fi les have the 
filename of the source file and the extension of .CRF. The files 
can then be I isted with the CREF command. However, with CO BO L 
files, the cross-referenced listing is always appended to the listing 
file. No additional command need be given to obtain the listing. 

Compile the file with FORTRAN. Assumed for files with the ex­
tension of .F4 and all files with nonrecognizable processor exten­
sions (if FORTRAN is the standard processor). 

Create a disk file containing the names of the .REL files produced 
by the command string. When the FUDGE command is given, PIP 
reads this file in order to generate a library REL fi Ie. Arguments 
to this switch are: 

/FUDGE:dev:file • ext [proj ,prog) 

dev: - the device on which to write the file. DSK: is assumed. 

file.ext - the name of the librdry file. The filename is required. 
If the extension is omitted, it is assumed to be .REL. 

[proj ,prog] - the directory in which to place the file. The user's 
directory is assumed if none is given. 

This switch is permanent in the sense that it pertains to all REL files 
generated by the command string. 

Load the files in library search mode. This mode causes a program 
file in a special library file to be loaded only if one or more of its 
declared entry symbols satisfies an undefined global request in the 
source file. The default libraries are always searched. Refer to 
the LOADER documentation. 

Generate a disk listing file, for each file compiled, with the file­
name of the source file and the extension of • LST. These fi les can 
be listed later with the LIST command. Unless this switch is speci­
fied' listing files are not generated except in COBOL; COBOL 
listings are always generated. 

(continued on next page) 

2-124 



Command Format (cont) 

Characteristics 

/LMAP 

/MACRO 

/MACXll 1 

/MAP 

/NOCOMPILE 

/NOLIST 

/NOSEARCH 

/REL 

/SNOBOL2 

The LOAD command: 

- 587- COMMANDS 

I LOAD command (Cont) I 

Produce.a loader map during the loading process (same action as 
/MAP) containing the local symbols. 

Assemble the file with MACRO. Assumed for files with extensions 
of ./lM.C. 

Assemble the file with MACXll. Assumed for files with an exten­
sion of .Pll. 

Produce a loader map during the loading process. When this switch 
is encountered, a loader map is requested from the loader. After 
the library search of the defau It libraries, the map is written with 
the filename specified by the user (e.g., /MAP:file) or with the de­
fault filename MAP.MAP in the user's disk area. This switch 
is an exception to the permanent compiie sWitch rule in that it 
causes only one map to be produced although it may appear as a 
permanent switch. 

Complement the /COMPILE switch by not forcing a compilation on 
a source file whose date is not as recent as the date on the binary 
file. Note that this switch is not the same as the /REL switch, 
which turns off all compilation, even if the source file is newer 
than the REL file. /NOCOMPILE is the default action. 

Do not gener~te listing files. This is the default action except for 
COBOL fi les; COBOL listings are always generated. 

Load all routines of the file whether the routines are referenced or 
not. Since this is the default action, this switch is used only to 
turn off library search mode (/LIBRARY). This is not equivalent 
to the /p LOADER switch because /P does not search any libraries 
where/NOSEARCH will scan the default libraries. 

Use the existing .REL files although a newer source file may be 
present. 

Compile the file with SNO BOL. Assumed for files with an exten­
sion of .SNO. 

Leaves the terminal in monitor mode. 
Runs the appropriate processor and the LOA DER. 

1 MACXll (the PDP-II assembler for the PDP-lO) will be recognized as a processor only if the appro­
priate assembly switch is set. However, this assembly switch setting is not supported. 

2SNOBOL wi II be recognized as a processor only if the appropriate assembly switch is set. However, 
this assembly switch setting is not supported. 

Version 20 COMPIL 2-125 



COMMANDS 

I LOAD command (ContI I 

Associated Messages 

Refer to Chapter 4. 

Examples 

.:.LOAlJ lEsr) 
l"JACriO: TE!>T 
LOADING 

LOADEH 2K COrlE 

l!;XIT 

!. 

Version 20 COMPIL 

- 588 -

2-126 



- 589- COMMANDS 

I LOCATE command I 

Function 

The LOCATE command logically establishes the user's job at a specified station. When the job 
is initiated, the user's logical station corresponds to his physical station. Therefore, this com­
mand is needed only if the user desires to change his logical station. 

Command Format 

LOCATE nn 

nn = the station number. 

An argument of 0 denotes the central station. A null argument implies the station of 
the user's terminal, i.e., his physical station. 

Characteristi cs 

The LOCATE command: 

Leaves the terminal in monitor mode. 
Depends on FTREM which is normally absent in the DECsystem-1040. 

Restri ctions 

The LOCATE command must specify a station that is currently in contact with the central 
station. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.LOCATE' 2) . 
:LOC 0) 

.!. 

2-127 



COMMANDS - 590 -

I LOGIN command 

Function 

The LOGIN command is used to gain access to the system. This command loads a Monitor 
Support program which accepts the user's LOGIN data. The user types in his project and 
programmer numbers followed by his password ~ To login successfully, the project and pro­
grammer numbers and the password typed in by the user must match the project and programmer 
numbers and password stored in the system accounting file (SYS:ACCT.SYS). 

Command Format 

LOGIN proj ,prog 

Characteristics 

proj ,prog = the user's project-programmer number. The project and programmer numbers 
may be separated by either a comma or a slash. If a slash is used, the message of the 
day is not output to the user unl ess the date on the fiI e containing the message 
(NOTICE. TX1) is later than the last time the user logged-in. If this is true, the mes­
sage is typed only once,· whereas, when the comma is used, the message is output 
every time the user logs in. This argument may be tyP.ed on the same line as the 
LOGIN command, or on the following line after LOGIN types out the number sign. 

The LOGIN commarld: 

Returns the terminal to monitor mode or starts a program running if specified in 
ACCT. SYS entry for proj, prog. 

Runs the LOGIN program. 
Does not require LOGIN. 

Associated Messages 

Refer to Chapter 4. 

Version 53 LOGIN 2-128 



- 591 - COMMANDS 

LOGIN command (Contll 

Example 

The following is the procedure used to gain access to the system . 

• LOGIN 27,235) 
joB 21 5S~417A TTY23 

PASS~JORD : 

1135 8-JUN-71 THUR 
TYPE SYS:SCHED FOR NEXT 
WEEKS SCHEDULE 

Version 53 LOGIN 

LOGIN types the job number assigned to user (job 
number 21), followed by monitor name, version 
number, and console line number. If the user does 
not type his project-programmer number on the same 
line as the LOGIN command, LOGIN outputs a 
number sign indicating that the user should type in 
his project-programmer number. 

System requests user to type his password. User 
types password followed by carriage return (refer to 
Parograph 1.4.2.1). To maintain password security, 
the monitor does not echo the password. On termina,ls 
with local-copy (refer to DECsystem-l0 Mlnitor 
Calls), a mask is typed to make the password un­
readable. 

If user entries are correct, the system responds with 
time, date, day of the week, the message of the 
day (if any), and a period, indicating readiness to 
accept another command. 

2-129 



I 

COMMANDS - 592-

I MAKE command 1 

Function 

The MAKE command runs TECO (Text Editor and Corrector) and creates a new file on the 
disk. If a file already exists with the same name, a warning message is given and the file 
is superseded. Refer to the TECO manual in Notebook 6 of the DECsystem-10 Software 
Notebooks. 

Command Format 

MAKE dev:file.ext [proi,prog] 

Characteristics 

dev: = the device or file structure name on which the file is to be created. If omitted, 
DSK: is assumed. 

file.ext = any legal filename and filename extension. The filename is required; the 
filename extension is optional. 

[proj ,prog] = the directory in which the file is to be created. If omitted, the user's 
defaul t directory is assumed. Note that the defaul t directory may be an SFD or some 
other UFD. 

The MAKE command: 

Places the terminal in user mode. 
Runs the TECO program, thereby destroying the user's core image. 
Depends on FTCCLX which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Example 

.fVlAKE TEST3.MAC) 

* 

1 This command runs the COMPIL program, which interprets the commands before running TECO. 

Version 20 COMPIL 
Version 23 TECO 2-130 



I 

- 593 - COMMANDS 

MOUNT command 

Function 

The MOUNT command allows the uSE;lr to request assignment of a device via the operator. 
This command is similar to the ASSIGN command, but, whereas the ASSIGN command operates 
without operator communication, the MOUNT command requests operator interaction when 
necessary. For exam pi e, if a Batch user requests a DECtape drive and all drives are in use, 
then the operator can free one for the user, if he wishes. The user can request devices from 
the restricted pool of devices. 

The MOUNT command gives the operator greater control over assignment of devices on the 
system. When a user requests a device via this command, the operator has the option of either 
sel ecting a specific unit (e.g., D TA5) or cancell ing the request compl etely (all units of this 
type are in use and the operatoi' does not want to free one for this user). The operator may 
also mount the media for the requested unit if the media is sufficiently identified (e.g., a 
deck of cards in the card reader or an identifi ed DECtape on a specific drive) . 

When the MOUNT command is used to gain access to a file structure, it allows the user to 
specify a particular drive, places the file structure name at the end of the job's search list, 
and waits for completion of operator action, if desired. Each file structure can have an ad­
ministrative file, QUOTA.SYS, which contains a list of quotas for all users allowed access to 
the structure. When the file structure is mounted, a UFD is created for the user if he has an 
entry in QUOTA.SYS on the file structure. 

The MOUNT command runs the UMOUNT program in the user's core area. UMOUNT scans 
the command string and completes as much of the command as possible without operator inter- . 
venti on • When operator intervention is required, UMOUNT queues a request to the OMOUNT 
program by writing a command file on the 3,3 disk area. OMOUNT examines these command 
files and interacts with the operator. When the command file is deleted, the operator action 
has been completed. UMOUNT waits for this completion of operator action unless the user 
types a control-C. When a control-C is typed, the user does not receive a message of con­
firmation, but can later use the /CHECK switch to see if his request is still pending (see 
Examples) • 

Command Format 

MOUNT dev: log-dev /switches (drives) 

dev: =one of the following: (1) a physical device name (e.g., DTA3, CDR, MTA) , 
(2) a logical name previously associated with a physical device by either a MOUNT 
or ASSIGN command, or (3) a file structure name (one that is already mounted or 
one whose name appears in S TRLST .SYS). This argument is required. 

(continued on next page) 

Version 20 UMOUNT 2-131 



COMMANDS - 594-

I MOUNT command (Cont) I 

Command Format (cont) 

log-dev = any SIXBn name that is not the same as dev:. In other words, it may not 
be a physical device name or logical name that is currently being used or has previously 
been used as dev:. This argument is optional. 

switches = The following switches are optional and only enough characters to make the 
switch unique are required. The unique names are underlined below . 

Version 20 UMOUNT 

.Lf.HECK 

/HELP 

~ULTI 

/PAUSE 

~ONLY 

/SINGLE 

/VID:name 

/WENABL 

Check and I ist pending requests. 

Type this list. 

Multi-access, disk only, complement of /SINGLE, 
default condition. 

Notify the user before sending the message to the 
operator for a request. The user can then abort 
the command if desired. 

Read only, same as /WLOCK. 

Only this job can access files on the structure 
(single access), file protection is enforced for 
him, disk only. 

A visual identification passed to the operator as a 
comment to assist him in identifying a particular unit 
to mount. The argument can be in one of two forms: 
1) any string of up to 25 characters containing only 
letters, digits, periods, and hyphens, or 2) any 
string of up to 25 characters enclosed in single 
quotes. However, break characters and single 
quotes are not allowed in the stri ng. The nami ng 
and use of this switch is relevant only to the extent 
that the installation operator knows what it means. 
The PLEASE command should be used for any complex 
procedures or long communications with the opera­
tor. 

Write enable for this job, complement of /WLOCK, 
default condition. 

(continued on next page) 

2-132 



- 595 - COMMANDS 

I MOUNT command (Cont) I 

Command Format (cont) 

Characteristi cs 

/VVLOCK Write locked for this job. Th is job cannot write on 
this file structure and the monitor will not update 
BAT blocks or the access date. If /SINGLE is 
given, the operator may set hardware write lock 
to ensure that nothing is written. 

(drives) = the physical drives on which the units are to be mounted. A drive argument 
may be used only when mounting file structures. The drives must be in the logical unit 
order within the file structure. Drive names are separated by commas. Leading and 
embedded drives that are not specified must be represented by null ncimes ("DPA3). 
Unspecified trailing drives may be omitted. Drive names are as follows: 

Blank, null - unspecified. UMOUNT finds one of proper type. 

Two letters - controller class (e.g., DP). 

Three letters - specific controller (e.g., DPA). UMOUNT finds a drive on 
that controller. 

Three letters and one or two digits - specific drive (e.g., DPAO, DPA1). 

The user, by specifying a drive list, may force the packs to be mounted on specifi c 
drives or controllers. If no drive (or incomplete) specification is given, an available 
drive of the proper type is found. 

The MOUNT command: 

Places the terminal in user mode. 
Runs the UMOUNT program, thereby destroying the user's core image. 
Depends on FTCCLX and FTMOUN which are normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Version 20 UMOUNT 2-133 



COMMANDS 

I MOUNT command (Cont) I 

Examples 

• MOUNT PR I V: ) 
PR I V fVOUf\1TED 

.~OUNT PA~:(DPA •• DPB)/S 

.!tv'(oUNT MINE:) 
OPERATOR NOTIFIED 
WA I T I NG ••• 
tC 

.!.I"OUNT ICHEC K) 

NONE PEND ING 
.:R SETSRC) 
!oT 

,!tC 

.!.MOUNT DTA INPUT 

OPERATOR NOTIFIED 
WA IT I NG ••• 
INPUT (DTAS) MOUNTED 

.!.MOUNT INPUT/VID:32S 

OPERATOR NOTIFIED 
WA IT I NG ••• 
INPUT (DTAS) MOUNTED 

.!./II10UNT INPUT OUTPUT 

OUTPUT COTAS) fV'OLINTED 

Version 20 UMOUNT 

- 596 -

Asks the operator to mount the file structure PRIV . 

Requests that the first unit of file structure PAY be 
mounted on Controller A, the second unit on any 
controller, the third unit on controller B, and 
any remaining units on any drives. The structure 
will be single access (i. e., avai lable only to this 
job) • 

Mount the file structure MINE. 
The request is queued to the operator. 
UMOUNT is waiting for the request to be completed. 
The user does not wait for confirmation. 

The user wants to know if his request has been 
processed. 

The request has been processed. 
The user wants to know if the file structure is in 
his search list. 
The file structure has been added to his search list. 

The user wants the operator to select a DECtape 
drive and assign it with logical name INPUT. 

The request is queued to the operator. 
UMOUNT is waiting for the request to be completed. 
The operator has selected DTA5. 
T he user asks the operator to mount the DECtape 
labelecJ 325. He may use either DTA5 or INPUT 
to refer to his devi ce • For examp Ie, the Batch user 
would use INPUT since he would not know what 
DECtape drive he is assigned. 

The request is queued. 
UMOUNT is waiting for confirmation. 
The mount is successful. 
The user changes the logical name to OUTPUT • 
The logical name INPUT is no longer valid. 
The mount is successful. 

2-134 



- 597- COMMANDS 

OPSER program 

Function 

The OPSER program facilitates multiple job control from a single operator terminal by allowing 
the operator to run several jobs call ed subjobs from his terminal. The OPSER program acts as 
the supervisor of the various subjobs by allowing monitor level or user level commands to be 
passed to all of the sub jobs or to selected subjobs. Output from the various subjobs may be re­
trieved by OPSER. 

The subjobs of OPSER run on psuedo- TTYs (refer to DECsxstem-10 Monitor Calls) and all 
initializations of the pseudo-TTYs are performed by OPSER. The operator needs only to pro­
vide the sub job name, either an OPSER-provided subjob number or an operator-assigned name. 
System programs that require a dedicated terminal can be run as sub jobs of OPSER. By running 
system jobs on pseudo-TTYs, OPSER is able to maintain an I/o link between the running jobs 
and the operator. In addition, the output from the various subjobs is concentrated on one 
terminal instead of many, as was the case when each system program required its own terminal. 

Refer to the MPB Operator's Manual in the DECsystem-10 Software Notebooks for complete 
information on OPSER. 

Command Format 

R OPSER 

OPSER signifies its readiness to process commands by typing an asterisk if no subjobs 
are in use or sub jobs are in a wait for an operator actibn. OPSER responds with an 
exclamation point when a subjob is running. Commands may be entered whenever 
OPSER is operating. Each command is preceded by a colon and must be typed to 
suffici ent length to make it unique. 

:AUTO/hh:mm filespec 

1 
:BATMAX n 

1 
:BATMIN n 

1 Not yet implemented. 

Version 4 OPSER 

OPSER Commands 

Process the specified file as an automatic startup 
file. The file is terminated by an end-of-file or 
the typing of a line on the console by the operator. 
This is the normal way that the standard subjobs are 
started by the operator. The time argument is op­
tional; when it is given, the AUTO file is run at 
the specified time. 

Specify the maximum number of batch jobs allowed. 

Specify the minimum number of batch jobs guaran­
teed. 

(continued on next page) 

2-135 



I 

I 

COMMANDS 

IOPSER program (Cont)1 

Command Format (cont) 

:CLOSE 

:CURRENT 

:DAYTIME 

:DEFINE xxx=n 

:DEVICE nam:log:n 

:ERROR n 

:EXIT 

:FREE 

:HELP 

:JCONT n 

:KJOB, n,m,p 

:KILL n,m,p 

:KSYS hhmm 

:LOGIN proj ,prog 

:MSGLVL 0 

Version 4 OPSER 

- 598 -

Close the disk log file without opening a new one. 

Type the number of the current sub job (the last 
one typed into). Output from another subjob does 
not affect current sub job . 

Obtain the current date and time. 

Associate the symbol xxx as the mnemonic for sub­
job number n. The symbol B is reserved for the sub­
job running BATCON. 

Assign the device with the physical name nam and 
logical name log to subjob n. The logical name is 
optional but a null field must be typed if the name 
is omitted, e.g., :DEVICE CDR::3. 

Report only error messages (that is, ignore nonerror 
messages from sub job n). Message reporting is re­
sumed with the :REVIVE command. 

Exit to the monitor if no subjobs are in use; other­
wise give a list of those that are running. This 
should be used instead of fC, since EXIT does not 
return the job to monitor mode if there are any 
active sub jobs. 

Type the first free subjob number. 

Type a text which briefly explains the command;. 

Continue the specified stopped job. 

Kill the specifi ed sub jobs saving ali fiI es. Causes 
/Z:O to be included to KJOB so spooled files are 
not queued. 

Kill the specified sub jobs • This is identical to 
:KJOB. 

Stop all timesharing at the time specified by hhmm. 

Login a new subjob. If no project-programmer num­
ber is typed, assume OPSE R's project-programmer 
number. 

Cause the response to the :WHAT command to in­
clude the JOBSTS bits. 

(continued on next page) 

2-136 



I 

Command Format (cont) 

:MSGLVL 1 

:QUEUE <line> 

:RESOURCES 
1 

:RESTRICT dev 

:REVIVE n 

:SEND <line> 

:SET a 

:SET RUN CPUn 

:SET RUN NO CPUn 

:SILENCE n 

:SLOGIN proj, prog 

:STOP n 

:SYSTAT xx 

:TLOG fi lespec 

:TTYTST 

1 Not yet implemented. 

Version 4 OPSER 

- 599 - COMMANDS 

I OPSER program (Cont)1 

Cause the response to :WHAT command to eliminate 
the JOBSTS bits. 

Initi ate the first free subjob and send the typed-in 
Ii ne to the system queue manager. 

Type the list of the ava i lab Ie system resources. 

Make the specified device a restricted device (i .e., 
one that is assignable only by a privileged job or 
the MOUNT program). 

Resume normal echoing of output from subjob n. 

Simulate the SEND monitor command. 

Simulate a SET monitor command. Valid SET mon­
itor commands are SET CORMAX, SET CORMIN, 
SET DATE, SET DAYTIME, SET LOGMAX, SET 
OPR TTY, SET SCHED, and SET TTY. 

Add CPUn to the pool of CPUs to be used for run­
ning jobs. 

Remove CPUn from the pool of CPUs to be used for 
running jobs. 

Ignore all output from subjob n. 

LOGIN one subjob but suppress its response. If proj, 
prog is omitted, OPSER uses its own. 

Put the specified subjob in monitor mode. This is 
equivalent to inputting two control-C's in inter­
active mode. 

Run SYSTAT with optional argument xx over the first 
free subjob. 

Create a disk log file with the specified name. If 
the file already exists, a message is typed to deter­
mine whether the existing file should be superseded. 
If not, the fj Ie is appended to the existing one. 
Default for fi lespec is OPSER. LOG. 

Test this terminal by typing all the ASCII characters 
between octal 40 and 174, inclusive. 

(continued on next page) 

2-137 



] 

COMMANDS 

I OPSER program (Cont)I 

Command Format (cont) 

1 
:UNRESTRICT dev 

:WHAT n,m,p 

- 600 -

Make the specified device a unrestricted device 
(i.e., one that is assignable by both privileged and 
non-privi leged jobs). 

Type the status of the specified subjobs on the term­
inal. The status includes a SYSTAT with the time, 
the ti me of the last input and the last output, and a 
linear listing of the JOBSTS bits. 

When a subjob number or name is required in a command string, the subjob may be 
specified in one of four ways. It can be omitted, in which case the last subjob typed 
into is used. The mnemonic ALL may be used, in which case all active subjobs are 
implied. A decimal number can be used from zero to the limit OPSER is generated for. 
Finally, a mnemonic can be assigned to the subjob with the :DEFINE command. 

Examples 

,!.it OPS~J-I.) 
* :iWTO CT'I'.A TO 

:i"JSGLVL k:l 
:TLOG 
:SLOG 
:DEI'INE DAE= 
DAE -rl DAEi",ON 
:.sLOG 
:DEFINE M= 
M -it OMOUNT 
M-STArlT 
: SLOG 
:DEFINE L= 
L -rl U'T SP L 
L-STARI 
:SLOG 
:DEFINE 8= 
8 -i",J08 5 
8-R SAICON 
B-Sl'AHT 

lNot yet implemented. 

Version 4 OPSER 

To start an automatic startup file. 

An example of an automatic startup file. 

2-138 



- 601 - COMMANDS 

PJOB command 

Function 

The PJOB command causes the monitor to respond with the job to which the user's terminal is 
attached. 

Command Format 

PJOB 

Characteristi cs 

The PJOB command: 

Leaves the terminal in monitor mode. 

Associated Messages 

Refer to Chapter 4. 

Example 

.PJOS) 
T 

.!. 

2-139 



I 

I 

I 

COMMANDS - 602-

PLEASE command 

Function 

The PLEASE command allows the user non-conflicting two-way communication with the desig­
nated stati on operator. 

Command Format 

PLEASE dev: prog! text 

Characteristi cs 

dey = any terminal not assigned to a job (i.e., is not a job's controlling terminal) with 
which the user wishes to communicate, including: 

a. TTYn: directs the text to a specific terminal unit. The default is TTYO. 
b. OPRnn: directs the text to the operator's terminal station nn. 
c. (nu II argume nt) di rects the text to TTYO att he centra I stati on. 

prog! = the name of the system program to be run automatically when the message is 
completed. This argument may appear before or after the device argument and must be 
concluded with an exclamation point. If PLEASE is entered at the CCl entry point, it 
reads fi Ie nnnPlS. TMP. This fi Ie is sent to the designated device. After the operator 
terminates the request, the specified program will be run at its CCl entry point. 
Neither the dey: or prog! argument can be used from a Batch control fi Ie. 

text = the user's message. The argument is required. Characters are not transmitted 
unti I the RETURN, vertical tab, or form feed key is depressed, at which point the 
entire line is transmitted. 

When the user depresses the RETURN, verti ca I tab, or form feed key, a message i nform­
i ng the operator of the ca IIer's station number, proj-prog number or user's name if 
monitor job tables are available, and text message is printed on dey:. An ESCAPE or 
control-C on either the user's terminal or dey: causes communication to terminate and 
the user's TTY to be left in monitor mode. Note that when the line terminates with an 
ESCAPE, the line is typed but the operator response is not waited for. Messages may 
be typed in both directions without retyping the command. 

The PLEASE command: 

Places the terminal in user mode until ESCAPE is typed. 
Runs a system program except when used with Batch. 
Depends on FTCClX which is normally absent in the DECsysfem-1040. 

Version 11 PLEASE 2-140 



- 603 - COMMANDS 

I PLEASE command (Cant) I 

Restri cti ons 

For Batch users, the PLEASE command is trapped by the Batch Controller and on Iy PLEASE text 
is allowed. It can be used to request operator action while in the Batch mode. The line of 
text can only be one line terminated with an ESCAPE. 

Assoc i ated Messages 

Refer to Chapter 4. 

Example 

~PLEASE TELL ME WHEN DTA3 WILL BE FREE) 
OPERATOR HAS BEEN NOTIFIED 
IN HALF AN HOUR 
THANKS 
tC 

Version 11 PLEASE 2-141 



COMMANDS - 604 -

I PLOT command 

Function 

The PLOT command is used to place entries in the plotter output queue. This command is 
equivalent to the following form of the QUEUE command: 

QUEUE PLT:jobname = list of input specifications 

Command Format 

PLOT jobname = list of input specifications 

jobname = name of the job being entered into the queue. The defau It is the name of 
the first file in the request, not the name of the first file given. These differ when the 
first fi Ie given does not yet exist. 

input specifications = a single file specification or a string of file specifications, 
separated by commas, for the disk fi les being processed. A fi Ie specification is in the 
form dev:fi Ie. ext[proj, progj • 

dev: = any file structure to which PLTSPL will have access; the default is DSK:. 

file.ext = names of the files. The filename is optional. The default for the 
first filename is *, the default for subsequent files is the last filename used. 
The extension can be omitted; the default is .PLT. 

[proj,progj = a directory to which the user has access; the user's directory is 
assumed if none is specified. 

If no arguments are given with the command (i .e., only the command name is given), 
the entries for all jobs of all users are output. The asterisk convention can be used 
for the input specifications. Switches that aid in constructing the queue entry can 
appear as part of the input specifications. These switches are divided into three cate­
gories: 

Version 3 QUEUE 

1. Queue-operation - Only one of these switches can be placed in the com­
mand string because they define the type of queue request. The switch 
used can appear anywhere in the command string. 

2. General - Each switch in this category can appear only once in the com­
mand string because they affect the entire request. The switch used can 
appear anywhere in the command stri ng. 

(continued on next page) 

2-142 



Command Format (cont) 

- 605 - COMMANDS 

I PLOT command (Cont)1 

3. File control - Any number of these switches can appear in the command 
string because they are specific to individual files within the request. The 
switch used must be adjacent to the file to which it applies. If the switch 
precedes the fi lename, it becomes the defau It for subsequent fi les. 

The following switches can be used with the PLOT command: 

Switch 

/ AFTER:tt 

/BEFORE:t 

/BEGIN:n 

/COPIES:n 

/CREATE 

/DEADLINE:tt 

/DISPOSE:DELETE 

/D IS POS E :PRESE RVE 

Version 3 QUEUE 

Exp lanati on 

Process the request after the specified time; it is either 
in the form of hhmm (time of day) or +hhmm (time later 
tban the current time). The resulting AFTER time must 
be less than the DEADLINE time. If the switch, or the 
value of the switch, is omitted, no AFTER constraints 
are assumed. 

Queue only the files with creation dates before t where 
t is in the form dd-mmm-yy hhmm. 

Start the output after n feet. The default is to start 
output at the beginning. 

Repeat the output the specified number of times. n 
must be less than 64. If more than 63 copies are 
needed, two separate requests must be made. If the 
switch is omitted, single copies are output. 

Make a new entry into the plotter 9utput queue. This 
switch is the default for the queue-operation switches. 

Process the request before the specified time; tt is 
either in the form hhmm (time of day) or +hhmm (time 
later than the current time). The resulting DEADLINE 
time must be greater than the AFTER time. If the 
switch, or the value of the switch, is omitted, no 
DEADLINE constraints are assumed. 

Delete the file after spooling. 

Save the file after spooling. This is the default for all 
fi les except fi les with extensions. LST, • TMP, and, if 
the protection is Oxx, • PLT. 

Category 

General 

General 

Fi Ie Control 

Fi Ie Control 

Queue Operation 

General 

Fi Ie Contro I 

Fi Ie Control 

(continued on next-page) 

2-143 



COMMANDS 

I PLOT command (Cant) I 

Command Format (cont) 

Switch 

lOIS POSE :RENAME 

IF 

IFORMS:a 

IKILL 

IUMIT:n 

lUST 

IMODIFY 

INEW 

Version 3 QUEUE 

- 606-

Explanation Category 

Rename the file from the specified directory immediately, File Control 
remove it from the logged-out quota and delete it after 
spooling. This is the default for files with extensions 
• LST, • T MP I and if the protection -is Oxx, • PL T. 

List the entires in the plotter queue, but do not update Queue Operation 
the queues. Therefore, the list may not be an up-to-date 
listing but the listing wi" be faster than with lUST. 

Place the output on the specified form. The argument General 
to the switch must be six alphabetic characters. The de-
fault is that normal forms are used. 

Remove the specified entry from the plotter queue. This Queue Operation 
switch can be used for deleting a previously submitted 
request as long as the request has not been started by 
the spoolers. 

Limit the output to the specified number of pages. General 

List the entries in the plotter queue; if the switch, along General 
with all other switches, is omitted, all entries for all jobs 
of all users are listed. 

Alter the specified parameters in the job. This switch Queue Operation 
requires that the user have access rights to the job. It 
can be used for altering a previously submitted request 
as long as the request has not been started by the spool-
ers. 

Accept the request even if the fi Ie does not yet exist. File Control 

(continued on next page) 

2-144 



Command Format (cont) 

Switch 

/NOTE:a 

/NULL 

/OKNONE 

/PHYSICAL 

/PLOT :ASCII 

/PLOT :BINARY 

/PLOT :IMAGE 

/ PRIORITY :n 

/PROTECT :nnn 

/REMOVE 

/SEQ:n 

/SINCE:t 

Version 3 QUEUE 

- 607- COMMANDS 

I PLOT command (Cont)1 

Exp lanat i on 

Plot the specified text (a) in the output. 

Accept the request even if there is nothing in the re­
quest. No error message is given. 

Do not output message if no fi les match the wi Idcard 
construction. This is assumed at KJOB time. 

Suppress logical device name assignments for the device 
specified. 

Plot the fi Ie in ASCII mode. If the /PLOT: switch is 
omitted, the fi Ie is plotted in the data mode specified in 
the file. 

Plot the fj Ie in binary mode. If the /PLOT: switch is 
omitted, the file is plotted in the data mode specified 
in the fi Ie. 

Plot the fi Ie in image mode. If /PLOT: switch is omit­
ted, the fi Ie is plotted in the data mode specified in the 
fi Ie. 

Assign the speciHed externa-I priority (n=O to 62) to the 
request. The larger the number, the greater priori ty the 
job has. The default is 10 if no switch is given and 20 
if the switch is specified without a value. 

Assign the protection nnn (octal) to the job. If the 
switch or the value of the switch is omitted, the standard 
protection is assumed. 

Remove the file from the queue. This switch is valid 
only with /MODIFY and can be used to remove a pre­
viously submitted fj Ie as long as the spoolers have not 
started processing the request. 

Specify a sequence number to help in identifying a 
request to be modified or deleted. 

Queue only the files with creation dates after the speci­
fied time t where t is in the form dd-mmm-yy hhmm. 

Category 

Fi Ie Control 

General 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

General 

General 

Fi Ie Contro I 

General 

General 

(continued on next page) 

2-145 



COMMANDS 

I PLOT command (Cont) I 

Command Format (cont) 

Switch 

/START:n 

/STRS 

/UN PRESERVED 

Characteristi cs 

- 608 -

Explanation 

Start on the nth line of the file. If the switch, or the 
value of the switch is omitted, the first line is assumed. 

Search for the fi Ie on a II fi Ie structures in the search list 
and take e,!ch occurrence. The default is to take just 
the fi rst occurrence. 

Output the files only if they are not preserved (i.e., 
the first digit of the protection code is 0). This 
switch avoids redundant plotting. 

Category 

Fi Ie Control 

Fi Ie Control 

General 

The PLOT command: 

Leaves the terminal in monitor mode. 
Runs the QUEUE program, thereby destroying the user's core image. 
Depends on FTQCOM which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Examples 

~PLOT *.PLT/FOHMS:PLAIN) 

Version 3 QUEUE 

Cause all files with the extension PLT in the user's 
area to be plotted. Because these are spooled fi les 
(i • e., have the extensi on . PL T), the files are 
renamed out of the user's area immediately, and 
deleted after plotting. The operator is asked to 
put PLAI N paper on the plotter. 

2-146 



I 

- 609 - COMMANDS 

PRESERVE command 1 

Function 

The PRESERVE command renames the specified files with the standard protection inclusively! 
ORed with 100 (usually 155 or 157). The files are then preserved and KJOB will not delete 
them unless requested to. This command has the same action as the P argument to the KJOB 
command when individually determining what to do with each file. 

Command Format 

PRESERVE file 1.ext, file2. ext, file3. ext, ... 

The full wildcard construction can be used for either the filename or the extension. 

Characteri sti cs 

The PRESERVE command: 

Leaves the terminal in monitor mode. 
Runs the PIP program, thereby destroying the user's core image. 
Depends on FTCCLX which is normally absent in the DECsystem-l040. 

Assoc i ated Messages 

Refer to Chapter 4. 

Example 

':'pRESERVE TEST.MAC) 
.PRE PROGI COLE.r4INAf.iE •• ) 

l This command runs the COMPIL program, which interprets the command before running PIP. 

Version 20 COMPIL 
Version 32 PIP 2-147 



COMMANDS - 610 -

I PRINT command 

Function 

The PRINT command is used to place entries into the line printer output queue. This command 
is equivalent to the following form of the QUEUE command: 

QUEUE LPT:jobname = list of input specifications 

Command Format 

PRINT jobname = list of input specifications 

jobname = name of the job being entered into the queue. The default is the name of 
the first file in the request, not the name of the first file given. These differ when the 
first fi Ie Qiven does not yet exist. 

input specifications = a single file specification or a string of file specifications, sepa­
rated by commas, for the di sk fi les be i ng processed. A fi Ie speci fj cati on is in the form 
dev :fi Ie. ext[proj, prog]. 

dev: = any file structure to which LPTSPL will have access; the default is DSK:. 

file.ext = names of the files. The filename is optional. The default for the 
fi rst fi lename is *, the defau It for subsequent fi les in the last fi lename used. 
The extension can be omitted; the default is . LPT. 

[proj,prog] = a directory to which the user has access; the user's directory is 
assumed if none is specified. 

If no arguments are given with the command (i.e., only the command name is given), 
the entries for all jobs for all users are output. 

The asterisk convention can be used for the input specifications. Switches that aid in 
constructing the queue entry can appear as part of the input specifications. These 
switches are divided into three categories: 

Version 3 QUEUE 

1. Queue-operation - Only one of these switches can be placed in the com­
mand stri ng because they defi ne the type of queue request. The swi tch 
used can appear anywhere in the command string. 

2. General - Each switch in this category can appear only once in the com­
mand string because they affect the entire request. The switch used can 
appear anywhere in the command string. 

(continued on next page) 

2-148 



Command Format (cont) 

- 611 - COMMANDS 

IPRINT command (Conti I 

3. File control - Any number of these switches can appear in the command 
string because they are specificto individual files within the request. The 
switch used must be adjacent to the fi Ie to which it applies. If the switch 
precedes the fi lename, it becomes the defau It for subsequent fi les. 

The following switches can be used with the PRINT command: 

Switch Exp lanati on Category 

/ AFTER:tt Process the request after the specified time; tt is either General 
in the form of hhmm (time of day) or +hhmm (time later 
fhan the current time). The resulting AFTER time must 
be less than the DEADLINE time. If the switch, or the 
va lue of the switch, is omitted, no AFTER constraints 
are assumed. 

/BEFORE:t Queue only the files with a creation date before time t, General 
where t is in the form dd-mmm-yy hhmm. If this switch 
is omitted, no BEFORE constraints are assumed. 

/BEGIN:n Start the output·on the nth page. The default is to begin File Control 
output on the fi rst page. 

/COPIES:n. Repeat the output the specified number of times. n must Fi Ie Control 
be less than 64. If more than 63 copies are needed, two 
separate requests must be made. If this switch is omitted, 
one copy is given. 

/CREATE Make a new entry into the line printer output queue. Queue Operation 
This switch is the default for the queue-operation 
switches. 

/DEAD LINE :tt Process the request before the specified time; tt is either General 
in the form hhmm (time of day) or +hhmm (time later than 
the current time). The resulting DEADLINE time must 
be greater than the AFTER time. If the switch, or the 
value of the switch, is omitted, no DEADLINE con-
straints are assumed. 

/DISPOSE :DELETE Delete the fi Ie after spooling. Fi Ie Control 

/DISPOSE :PRESERVE Save the file after spooling. This is the default for all File Control 
files except files with extensions of • LST, • TMP, and, 
if the protection is ()xx, • LPT. 

(continued on next page) 

Version 3 QUEUE 2-149 



COMMANDS - 612 -

IPRINT command (Contll 

Command Format {cont) 

Switch 

/DISPOSE:RENAME 

/F 

/FI LE :ASCII 

/FILE:COBOL 

/FILE:FORTRAN 

/FORMS:a 

/HEADER:O or 1 

/KILL 

/UMIT:n 

lUST 

/LOG 

Version 3 QUEUE 

Explanation Category 

Rename the fi Ie from the specified directory immediately, Fi Ie Control 
remove it from the logged-out quota, and delete it after 
spooling. This is the default for files with extensions 
. LST, • TMP, and, if the protection is Oxx, • LPT. 

List the entries in the line printer queue, but do not up- Queue Operation 
date the queues. Therefore, the list may not be an up-
to-date listing but the listing will be faster than with 
lUST. 

Indicate that the input file format is to be interpreted File Control 
as ASCII text. This is assumed for all files with ex-
tensi ons other than • DA T. 

Indicate that the input file format is to be interpreted File Control 
as COBOL SIXBn text. 

Indicate that the input file format is to be interpreted File Control 
FORTRAN ASCII text {obeys FORTRAN carriage control 
characters}. This is assumed for fi les with the extensi on 
of . DAT. 

Place the output on the specified form. The argument to General 
the switch must be six alphabetic characters. The default 
is that normal forms are used. 

Output block headers at the beginning of the file, if 1 File Control 
{defau It}. Do not output headers, if O. 

Remove the specified entry from the Batch input queue. Queue Operation 
This switch can be used for deleting a previously sub-
mitted request as long as the request has not been started 
by the spooler. 

Limit the output to the specified number of pages. General 

List the entries in the line printer queue; if the switch, Queue Operation 
along with all other switches, is omitted, all entries 
f.pr all jobs of all users are listed. 

Define the fi Ie that the spoolers wi II use to record their Fi Ie Control 
process. The default is jobname . LOG. 

{continued on next page} 

2-150 



Command Format (cont) 

Switch 

/MODIFY 

/NEW 

/NOTE:a 

/NULL 

/OKBINARY 

/OKNONE 

/PHYSICAL 

/PRINT :ARROW 

/PRINT :ASCII 

/PRINT :OCTAL 

/PRINT :SUPPRESS 

/ PRIORITY :n 

/PROTECT :nnn 

Version 3 QUEUE 

- 613 - COMMANDS 

IPRINT command (Cont)1 

Exp lanati on Category 

Alter the specified parameters in the job. This switch Queue Operation 
requires that the user have access rights to the job. It 
can be used for altering a previously submitted request 
as long as the request has not been started by the spooler. 

Accept the request even if the fi Ie does not yet exist. Fi Ie Control 

Print the specified text (a) in the output. File Control 

Accept the request even if there is nothing in the General 
request. No error message is given. 

Print files whose extensions imply binary information. File Control 
Normally files with extensions .SAY, .SHR, • LOW, 
• REL, and. HGH wi II not appear in the print queue. 

Do not output message if no fj les match the wi Idcard Fi Ie Control 
construction. This is assumed at KJOB time. 

Suppress logical device name assignments for the device File Control 
specified. 

Convert a II control characters to up-arrow format except Fi Ie Control 
011-015 and 020-024. This is the default. 

Send the fi Ie to the line printer with no changes. Fi Ie Control 

Perform an octa I dump of the fi Ie. Fi Ie Control 

Suppress all carriage-control characters except for File Control 
ASCII code characters LF and CRj this switch implies 
the use of the /PRINT :ARROW and is equiva lent to 
the operator command to the spooler (SUPPRESS). 

Assign the specified external priority (n=O to 62) to the General 
request. The larger the number, the greater pri ori ty 
the job has. The default is 10 if no switch is given and 
20 if the switch is specified without a value. 

Assign the protection nnn (octal) to the job. If the General 
switch, or the value of the switch, is omitted, the stan-
dard protection is assumed. 

(conti nued on next page) 

2-151 



COMMANDS 

I PRINT command (Cont) I 

Command Format (cont) 

Switch 

/REMOVE 

/REPORT :code 

/SEQ:n 

/SINCE:t 

/SPACING:DOUBLE 

/SPACING:SINGLE 

/SPACING:TRIPLE 

/START:n 

/STRS 

- 614-

Explanation 

Remove the file from the queue. This switch is valid only 
with /MODIFY and can be used to remove a previously 
submitted fi Ie as long as the spooler has not started pro­
cessi ng the request. 

Print the specified report within a COBOL report file. 
Code can be up to 12 characters in length. 

Specify a sequence number to help·in identifying a re­
quest to be modified or deleted. 

Queue on Iy the fi les with creation dates after the speci­
fied time t where t is in the form dd-mmm-yy hhmm. 

Double-space the output lines. 

Single-space the output lines. This is the default if no 
/SPACING switch is used. 

T ri p Ie-space the output lines. 

Start on the nth line of the file. If the switch, or the 
value of the switch, is omitted, the first line is assumed. 

Search for the fi Ie on all fi Ie structures in the search list 
and take each occurrence. The default is to take just 
the first occurrence. 

Category 

Fi Ie Control 

Fi Ie Control 

General 

General 

Fi Ie Contro I 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

/UN PRESERVED Output the filEjs only if they are not preserved (i.e., the General 
first digit of the protection code is 0). This switch 
avoids redundant printing. 

Cha recteri sti cs 

The PRINT command: 

Leaves the terminal in monitor mode. 
Runs the QUEUE program, thereby destroying the user's core image. 
Depends on FTQCOM which is normally absent in the DECsystem-1040. 

Assoc i ated Messages 

Refer to Chapter 4. 

Version 3 QUEUE 2-152 



- 615 - COMMANDS 

Examples 

.PRINT NOTICE.TXT) 

.PRINT SYSTAT.SCM/DISP:REN/COP:2) 

• PRINT *.TXT/Hr.AD:0/FORMS:2PART) 

I PRINT command (Cont) I 

Print the file DSK:NOTICE. TXT. 

Print two copies of the file DSK:SYSTAT.SCM from 
the user's default area. Rename the fi Ie out of the 
user's area immediately and delete it after spooling • 

Print all files in the user's area which have the 
extension. TXT. Do not print file headers between 
the files. Print the files on forms known to the 
operator as 2 PART • 

• PRINT ISEQ :356/KILL) Remove the request with sequence number 356 from 
the LPT queue. This is accepted only if the spooler 
has not started processi n9 the request. 

~PHINT LOADER.SAV/OKBINAHY/PRINT:SUPPRESS) 

Print a file known to be a binary file and suppress 
a II carri age control characters except CR and LF • 

• PRINT PRGMAC.HELIPHINT:OCTAL) Print an octal dump of the file PRGMAC.REL. 

Version 3 QUEUE 2-153 



COMMANDS - 616 -

I PROTECT command 1 

Function 

The PROTECT command renames the specified fi les with the requested protection. The action 
of this command is simi lar to the R switch in PIP. 

The protection of a file is indicated by three octal digits. Each digit represents a particular 
class of user. The first digit represents the owner of the fi Ie, the second represents users with 
the same project number of the owner, and the third represents all of the other users. Each 
number in the three digit code can be one of the following: 

7 No access privi leges 
6 Execute the fi Ie only 
5 Read and execute the fi Ie 
4 Append, read, and execute the fi Ie 
3 Update, append, read, and execute the fi Ie 
2 Write, update, append, read, and execute the fi Ie 
1 Rename, write, update, append, read, and execute the file 
o Change protection, rename, write, update, append, read, and execute the 

file. 

The standard protection is normally 057 which means the owner has all privileges (0), users in 
the owner's project can read and execute the fi Ie (5), and a II other users cannot access the fi Ie 
(7). However, the system standard may be changed by the individual installations. 

Command Format 

PROTECT fi Ie 1 <nnn>, fi le2 <nnn>, fi le3 <nnn>, ••• 

Characteristi cs 

The protection can be specified before the filename in which case it is the default for 
subsequent fi les unti I changed. The fu II wi Idcard construction can be used for either 
the fi lename or the extensi on. 

The PROTECT command: 

Leaves the terminal in monitor mode. 
Runs the PIP program, thereby destroying the user's core image. 
Depends on HCCl)( which is normally absent in the DECsystem-1040. 

1This command runs the COMPIL program, which interprets the command before running PIP. 

Version 20 COMPIL 
Version 32 PIP 2-154 



- 617 -

Associ ated Messages 

Refer to Chapter 4. 

Examples 

':'pROTECT FOkM.*<) 57» 
.PRO MAIN.MAC<)23>. <456>EQUIL.CBL.ADD.ALG) 

Version 20 COMPIL 
Version 32 PI P 2-155 

COMMANDS 

IPROTECT command (Cont) I 



COMMANDS - 618 -

QUEUE command 

Function 

The QUEUE command allows the user to make entries in several system queues - the input 
queue for the Batch system, and the output spooling queues for the line printer, the card punch, 
the paper-tape punch, and the plotter. The QUEUE command also provides the means of ob­
taining listings of the entries in the queues. 

Command Formats 

1. QUEUE INP: jobname == control file specification, log file specification 

To make an entry in the Batch input queue, INP:. 

2. QUEUE output queue name: jobname == list of input specifications 

To make an entry in an output spooli ng queue. 

3. QUEUE listing file specifications/LIST == list of queue names 

To obtain a listing of the entries in a queue. 

4. The following six commands can be substituted for the various formats of the QUEUE 
command: 

a. CPUNCH jobname == list of input specifications 
equivalent to QUEUE CDP: jobname == list 

b. PLOT jobname == list of input specifications 
equivalent to QUEUE PLT: jobname == list 

c. PRINT jobname == list of input specifications 
equivalent to QUEUE LPT: jobname == list 

d. PUNCH jobname == list of input specifications 1 

equivalent to QUEUE PTP: jobname == list 

e. SUBMIT jobname == control file name, log file name 
equivalent to QUEUE INP: jobname == control fi Ie, log fi Ie 

f. TPUNCH jobname == list of input specifications 
equivalent to QUEUE PTP: jobname == list 

Queue names are taken from the following list: 

INP: (I:) 
LPT: (L:) 
CDP: (C:) 
PTP: (PT:) 
PLT: (PL:) 

Batch input queue 
line printer output queue, default condition 
card punch output queue 
paper-tape pUf1ch output queue 
plotter output queue 

1 1 The PUNCH command can be redefi ned by the insta lIation to be equiya lent to 
QUEUE CDP: jobname == list. 

Version 3 QUEUE 2-156 



- 619 - COMMANDS 

I QUEUE command (Contll 

Command Formats (cont) 

Control fi Ie specifi cation is the fi Ie specification, plus switches and keyword parameters, 
for the control file being submitted to the Batch input queue. This file can be on any file 
structure that the user has access to; the default is DSK:. The filename is required, but the 
extension can be omitted; the default is .cn. The asterisk construction is legal for the 
filename or extension. 

Log file specification is the file specification for the file that is to be used to record actions 
taken during the execution of the control file. This file can be on any file structure in which 
the user can write. The default is the same file structure in which the control file resides. 
If the filename is missing, the log file is given the same name as the control file. If the 
extension is omitted, it is . LOG. 

Jobname is the name of the job being entered into the queue. The default jobname is the name 
of the first file in the request not the first file given. These names are different when the first 
fi Ie given does not yet exist. 

Input specifications are the file specifications for the disk files to be processed, and the various 
switches and keyword parameters that aid in constTucting the queue entry. The files can be on 
any file structure that the queue processor has access to; the default is DSK:. The fi les can be 
in any directory, provided that the user has r~ad-access to them; the default is the user's direc­
tory. The filename is optional; the default is * for the first filename. The default for subse­
quent filenames is the last filename used .. Note that the asterisk construction is legal only in 
the input specifications. The extension can be omitted because each queue has a default ex­
tension for the files to be processed. These default extensions are: 

.CTL - Batch input queue 
· LPT - line printer queue 
· CDP - card punch queue 
· PTP - paper-tape punch queue 
• PLT - plotter queue 

The listing file specification is the description of the listing file. The default for the listing 
file destination is TTY unless a name is specified. If no queue names are specified, all queues 
for all the jobs of all users are listed. 

Switches - Three categories of switches are provided. The first category contains the switches 
that define the operation; the second contains the switches that can appear only once because 
they affect the entire request; the third contains the switches specific to each file. In general, 
switches that precede the filename become the default for all succeeding files. This is true 
also for a device name, an extension, or a directory name that precedes afilename. 

Queue-Operation Switches - Only one of this type of switch can be placed in a command 
string, because these switches define the type of queue request. This switch may appear any­
where in the command string. 

Version 3 QUEUE 2-157 



COMMANDS - 620 -

\aUEUE command (Cont) I 

Command Formats (cont) 

General Queue Switches - Each of these switches can appear only once in a command string. 
They affect the entire request, generally in terms of schedul ing. These switches can appear 
anywhere in the command string. 

File-Control Switches - These switches affect the individual files in a request and must be 
adjacent to the filename in the command string. In order to change the defaults for the rest 
of the files, however, these switches must appear before a filename. 

In the table of switches below, the following conventions have been used: 

Switch 

/AFTER:t 

/BEFORE:t 

/BEGIN 

/CARDS:n 

ALL - Switches that can appear for both the Batch input queue and the output 
queues. 

INPUT - Switches that can appear only for the Batch input queue. 

LIST - Switches that can appear only for the listing file specification. 

OUTPUT - Switches that can appear only for the output queues. 

Meaning Category 

Process the request after the speci - Genera I 
fied time. t is either in the form 
hhmm (time of day) or +hhmm (time 
later than the current time). The re-
sulting AFTER time must be less than 
the DEADLINE time. If the switch, 
or the va lue of the switch, is omitted, 
no AFTER constraints are assumed. 

Queue only the files with creation General 
dates before time t where t = dd-
mmm-yy hhmm. 

Start the output on the nth page, Fi Ie Control 
card, or foot. The defau It is to 
begin output on the first unit. 

Use n (decimal) as the maximum num- General 
ber of cards that can be punched by 
the job. If the switch is omitted, no 
cards are punched. If the switch is 
given with no value, 2000 cards is 
assumed as the maximum. 

Queues 

ALL 

OUTPUT 

OUTPUT 

INPUT 

(continued on next page) 

Version 3 QUEUE 2-158 



- 621 - COMMANDS 

I QUEUE command (ContI I 

Command Formats (cont) 

Switch Meaning Category Queues 

/CHARGE:a 
1 

Charge the run to the specified ac- General ALL 
count. 

/COPIES:n Repeat the output the specified num- Fi Ie Control OUTPUT 

I 
ber of times (n must be less than 64). 
The default is one copy. If more than 
63 copies are desired, two requests 
must be made. 

/CORE:n Use n (in decimal K) as the maximum General INPUT 
amount of core memory that the job 

I 
can usc. If the switch is omitted, 
the maximum of 25Kis assumed; if 
the value of the switch is omitted, 
a maximum of 40K is assumed. 

/CREATE Make a new entry in the specified Queue Operati on ALL 
queue. This switch is the default 
for the queue-operation switches. 

/DEADLINE:t Process the request before the speci- General ALL 
fied time. t is either in the form 
hhmm (time of day) or +hhmm (time 
later than the current time). The 
resulting DEADLINE time must be 
greater than the / AFTER time. 
If the switch, or the value of the 
switch is omitted, no DEADLINE 
constraints are assumed. 

/DEFER 1 Make a new entry in the specified Queue Operati on ALL 
queue, but the request is deferred 
unti I LOGOUT. 

(continued on next page) 

1Not yet implemented. 

Version 3 QUEUE 2-159 



I 

COMMANDS 

IQUEUE command (Cont) I 

Command Formats (cont) 

Switch 

/DEPEND:n 

/DISPOSE:DELETE 

/DISPOSE:PRESERVE 

/DISPOSE :RENAME 

/F 

/FEET :n 

Version 3 QUEUE 

- 622 -

Meaning Category Queues 

Specifies the initial value of the General INPUT 
dependency count in decimal. When 
used with /MODIFY, this switch 
changes the dependency count of 
another job. If n is a signed num-
ber (+ or -), that number is added 
to or subtracted from the dependent 
job's count. If n is not a signed 
number, the dependent job's count 
is changed to n. If this switch is 
omitted, no dependency is 
assumed. 

De lete the fi Ie after spooli ng. Fi Ie Control ALL 

Save the fi Ie after spool ing. This Fi Ie Control ALL 
is the default for files with exten-
sions of .LST, .TMP, and if pro-
tection is Oxx, .CDP, .LPT, .PLT, 
.PTP. 

Rename the fi Ie from the specified Fi te Control ALL 
directory immediately, remove it 
from the logged-out quota, and 
delete it after spooling. This is 
the defau It for fi les with exten-
sions of • LST, • TMP, and if pro-
tection is Oxx, • CDP, . LPT, 
• PLT, . PTP. 

List the entries in the queue, but Queue Operation LIST 
do not update the queues. There-
fore, the list may not be an up-to-
date listing of the queues but the 
listing will be faster than with 
/LIST. 

Use n (in decimal) as the maximum General INPUT 
number of feet of paper tape that 
the job can punch. If the switch is 
omitted, no paper tape is punched. 
If the value is omitted, the default is 
1O*B+20 feet, where B is the num-
ber of blocks in the request. 

(continued on next page) 

2-160 



Command Formats (cont) 

Switch 

/FILE:ASCII 

/FILE:COBOL 

/FILE:ELEVEN 

/FILE:FORTRAN 

/FORMS:a 

I 
/HEADER:O or 1 

/HELP 

/KILL 

Version 3 QUEUE 

- 623 -

Meaning 

Specify that the input fi Ie format 
is to be interpreted as ASCII text. 
This is assumed for all files with 
extensi ons other than • DAT . 

Category 

Fi Ie Control 

Specify that the input fi Ie format Fi Ie Control 
is to be interpreted as COBOL 
SIXBn text. 

Specify that the input fi Ie format File Control 
is to be interpreted as bi nary format. 

Specify that the input fj Ie format Fi Ie Control 
is to be interpreted as FORTRAN 
ASCII text (obeys FORTRAN 
carriage control characters). This 
is assumed for files with an 
extension of . DAT. 

Place the output on the named forms. General 
The argument to the switch must be 
six alphabetic characters. Normal 
forms (14 x 11) are used if this 
switch is omitted. Narrow forms 
are 8-1/2 x 11. 

Output block headers at begin­
ni ng of the file if 1 (defau It); do 
not output headers if O. 

Print a message giving the general 
format of the command stri ng and ex­
plains the dialogue that is entered 
if the user needs additional help. 

Fi Ie Control 

COMMANDS 

I QUEUE cammand (Cant) I 

Queues 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

Remove the specified entry from the Queue Operation ALL 
specified queue. This switch re-
quires an output specification; it 
does not defau It to LPT:* The 
/KILL switch can be used for delet-
ing a previously submitted request 
as long as the request has not been 
started. 

(continued on next page) 

2-161 



COMMANDS 

IQUEUE command (ContI I 

Command Formats (cont) 

Switch I /LIMIT:n 

/LIST 

VLOG 

/MODIFY 

I 
/NEW 

/NOTE:a 

/NULL 

/OKBINARY 

/OKNONE 

Version 3 QUEUE 

- 624-

Meaning 

Limit the output to the specified 
number of pages, cards, feet, or 
minutes. 

List the specified entries in the 
queue; the default entries are those 
for queues for all the jobs of all 
users. 

Define the file that the spoolers will 
use to record their output. The de­
fault is jobname. LOG. 

Category 

General 

Queue Operation 

Fi Ie Control 

Alter the specified parameters in the Queue Operation 
specified jobs; this switch requires 
that the user have access ri ghts to the 
job. It also requires a queue name; it 
does not default to the LPT. This 
switch can be used to modify a pre-
vi ously submitted request as long as 
the request has not been started. 

Accept request even if fi Ie does not 
yet exist. This is the defau It for the 
log file of Batch input queue. 

Output the specified text (a) in the 
output. 

Accept request even if there is 
nothing in the request. No error 
message is given. 

Fi Ie Control 

Fi Ie Control 

General 

Print files whose extensions include File Control 
binary information. Normally files 
with extensions .SAV, .SHR, • LOW, 
.REL, and .HGH will not be in print 
queues. 

Do not produce message if no fi les 
match the wi Idcard constructi on. 

Fi Ie Control 

Queues 

OUTPUT 

LIST 

OUTPUT (LPT) 

ALL 

ALL 

OUTPUT 

OUTPUT 

OUTPUT (LPT) 

OUTPUT 

(continued on next page) 

2-162 



- 625 - COMMANDS 

I QUEUE command (Cant) I 

Command Formats (cont) 

Switch Meaning Category Queues ---
/OUTPUT:n Cause job to terminate with a /Z:n General INPUT 

to KJOB (n is from 0 to 4). 

N=O Suppress all normal queuing 
performed at LOGOUT time. 

N=l Queue only the log fi Ie. 

N=2 Queue on Iy the log fi Ie and 
spooled output (e.g., *.LPT). 

N=3 Queue the log fi Ie, spooled 
output, and *. LST fi les. 

N=4 Queue the log fi Ie, spooled 
output, *. lST fi les, a nd any 
requests deferred to LOGOUT 
time. 

/PAGE:n Use n (decimal) as the maximum General INPUT 
number of pages of output that the 

I 
job can print. If the switch is 
omitted, the maximum is 200 pages; 
if only the value is omitted, a max-
imum of 2000 pages can be printed. 

/PAPER:x Identi.cal to /PUNCH:x, /PRINT :x, Fi!e Control OUTPUT 
/TAPE:x, or /PLOT:x. 

/PHYSICAL Suppress logical device names for Fi Ie Control ALL 
the specified device. 

/PLOT :ASCII Plot the fi ie in ASCII mode. If Fi Ie Control OUTPUT (PLT) 
the /PLOT switch is omitted, the 
file is plotted in the data mode 
specified in the fi Ie. 

/PLOT :BINARY Plot the file in binary mode. If Fi Ie Control OUTPUT (PLT) 
the /PLOT switch is omitted, the 
file is plotted in the data mode 
specified in the fi Ie. 

(cont i nued on next page) 

Version 3 QUEUE 2-163 



COMMANDS - 626-

I QUEUE command (Cont) I 

Command Formats (cont) 

Switch 

I/PlOHMAGE 

/PRINT :ARROW 

I 

I 

/PRINT :ASCII 

/PRINT :OCT AL 

/PRINT :SUPPRESS 

/PRIORITY:n 

/PROTECT:nnn 

/PUNCH:026 

/PUNCH :ASCII 

Version 3 QUEUE 

Meaning 

Plot the fi Ie in i mage mode. If the 
/PLOT switch is omitted, the file is 
plotted in the data mode specified in 
the fi Ie. 

Convert all control characters to up­
arrow format except 011-015 and 
020-024. This is the default. 

Send the file to the line printer with 
no changes. 

Print the fi Ie in octal. 

Suppress all character-control char­
acters except for ASCII code charac­
ters LF and CRi this switch implies 
the use of the /PRINT:ARROW. 
Equivalent to operator command to 
spooler (SUPPRESS). 

Category 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

Give the specified external priority General 
(n = 0 to 62) to the request. A larger 
number is greater pri ority. The de-
fault is 10 if no switch is given, and 
20 if a switch is given without the 
value. 

Specify a protection nnn (in octal) 
for this job or queue entry. If the 
switch, or the va lue of the switch, 
is omitted, the standard protection 
is assumed. 

Punch fi les in 026 Hollerith code. 
If the /PUNCH switch is not given, 
the fi les are punched according to 
the data mode of the fi Ie. 

Punch fi les in ASCII card code. If 
the /PUNCH switch is not given, 
the fi les are punched according to 
the data mode of the fj Ie. 

2-164 

General 

Fi Ie Control 

Fi Ie Control 

Queues 

OUTPUT (PLT) 

OUTPUT (LPT) 

OUTPUT (LPT) 

OUTPUT (LPT) 

OUTPUT (LPT) 

ALL 

ALL 

OUTPUT (CDP) 

OUTPUT (CDP) 

(continued on next page) 



- 627- COMMANDS 

IQUEUE command (Cont~ 

Command Formats (cont) 

Switch Meaning Category Queues 

/PUNCH:BINARY Punch fj les in binary card format. If Fi Ie Control OUTPUT (CDP) 
the /PUNCH switch is not given, 
the fi les are punched accordi ng to 
the data mode of the fi Ie. 

/PUNCH:D029 Punch fi les in the old DEC 029 card Fi Ie Control OUTPUT (CDP) 
code. If the /PUNCH switch is not 
given, the fi les are punched accord-
i ng to the data mode of the fi Ie. 

/PUNCH:IMAGE Punch files in image mode. If the File Control OUTPUT (CDP) 
/PUNCH switch is not given, the 
fi les are punched according to the 
data mode of the fj Ie. 

/REMOVE Remove the fj Ie from the queue. Fi Ie Control OUTPUT 
This switch is valid only with the 
/MODIFY switch and can be used 
to remove a previously submitted 
fj Ie as long as the Batch System 
has not started processi ng the- job. 

/RE PORT :code Print the specified report within a File Control OUTPUT (LPT) 
COBOL report file. Code can be 
up to 12 characters in length. 

/RESTART:O or 1 A value of 0 (default) means the General INPUT 
job cannot be requeued or restarted 
by the operator after a system crash. 
A message is sent to the job's log 
file. A value of 1 means the job 
wi II be requeued or restarted. The 
job should not be restartable if there 
are changes to the permanent fj Ie 
directory. 

/SEQ:n Specify a sequence number to aid General ALL 
in identifying a request to be modi-
fied or deleted. 

Queue on Iy the fi les with creati on Genera I OUT PUT 
dates after the specified time t 
where t is in the form dd-mmm-yy 
hhmm. (continued on next page) 

Version 3 QUEUE 2-165 



COMMANDS 

IQUEUE command (Contll 

Command Formats (cont) 

Switch 

/SPACING:DOUBLE 

/SPACING:SINGLE 

jSPACING:TRIPLE I /START~ 
/STRS 

I /TAPE,ASCII 

/TAPE:BINARY 

/T APE :IBINARY 

/TAPE:IMAGE 

Version 3 QUEUE 

- 628 -

Meani ng Category 

Double-space the output lines. File Control 

Si ng Ie-space the pri nted Ii nes Fi Ie Control 
(defau It). 

Triple-space the printed lines. File Control 

Start on n Ii ne of the fi Ie. If the Fi Ie Control 
switch, or the value of the switch, 
is omitted, the Batch System 
starts with the first line. 

Search for the fi Ie on a II structures Fi Ie Control 
in the search list and takes each 
occurrence. The default is to take 
just the fi rst occurrence of the fi Ie. 

Punch the tape in ASCII code. If File Control 
the /TAPE switch is not given, the 
fi les are punched accordi ng to the 
data mode of the fi Ie. 

Punch the tape in binary mode. If File Control 
the /TAPE switch is not given, the 
fi les are p\.lnched according to the 
data mode of the fi Ie. 

Punch the tape in image-binary File Control 
mode. If the /TAPE switch is not 
given, the fi les are punched accord-
i ng to the data mode of the fi Ie. 

Punch the tape in image mode. If File Control 
the /TAPE switch is not specified, 
the files are punched according to 
the data mode of the fi Ie. 

Specify the central processor time General 
limit for the job. If no switch is 
specified, the limit is 5 minutes; if 
the switch is specified without a 
value, the limit is 1 hour. 

2-166 

Queues 

OUTPUT (LPT) 

OUTPUT (LPT) 

OUTPUT (LPT) 

ALL 

OUTPUT 

OUTPUT (PTP) 

OUTPUT (PTP) 

OUTPUT (PTP) 

OUTPUT (PTP) 

INPUT 

(continued on next page) 



- 629 - COMMANDS 

I QUEUE command (Cant) I 

Command Formats (cont) 

Switch Meani ng Category 

/TPLOT:n Use n (decimal minutes) as the max- General 

/UNIQUE: 0 or 1 

/UNPRESERVED 

/ZDEFER1 

Characteristi cs 

imum amount of plotting time allowed 
for the job. If the switch is omitted, 
no plotter time is allowed; if the 
value is omitted but the switch is 
given, the maximum plotter time is 
10 minutes. 

Run any number of Batch jobs under 
this project-programmer number at 
the same time, if O. Runs only one 
Batch job at anyone time, if 1 
(defau It). 

Output file only if not preserved. 

Create a new entry in a queue and 
defer it until LOGOUT; however, 
the deferred file is zeroed first so 
that all previous /DEFER requests 
from the current job are de leted. 

The QUEUE command (and its associated variations): 

Leaves the terminal in monitor mode. 

General 

General 

Queue Operation 

Runs the QUEUE program, thereby destroying the user's core image. 
Does not require LOGIN when only queue listings are desired. 
Depends on FTQCOM which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

1 Not yet implemented. 

Version 3 QUEUE 2-167 

Queues 

INPUT 

INPUT 

OUTPUT 

ALL 



COMMANDS 

IQUEUE command (Cont) I 

Examples. 

.!QUEUE F"I LEA .. F I LEB ..) 

.!QUEUE I NP: =TEST ..) 

• QUEUE IN :PAYR=MAN) 

• QUEUE DSK:A.X=/LIST) 

.QUEUE INP:FREED=FILEA/CREATE 
-/PRIORITY:4/TIME:l :5) 

- 630-

Enter files FILEA. LPT and FILEB. LPT in the line­
printer queue under the jobname of FILEA. 

Enter file TEST. cn in the Batch input queue under 
jobname TEST and log file with name TEST. LOG • 

Enter file MAN.Cn in the Batch input queue 
under jobname PAYR and log fi Ie with name 
MAN. LOG • 

Place a queue listing of all jobs into fi Ie A.X in 
the user's disk area. 

Place file FILEA.Cn in the Batch input queue with 
the jobname FREED. An external priority of 4 and 
CPU time limit of one minute and five seconds are 
set for the job. The log file is named FILEA. LOG • 

.:. QUE U E ! N F' : T EST -I K ILL..) Remove the entry correspondi"g to TEST. cn from 
the Batch input queue. 

~QUEUE INP:JOBNAM=/MOOIFY/TIME:200) 

Alter the time parameter of the entry corresponding 
to JOBNAM.Cn in the Batch input queue • 

.!uu~UE IN~:=J08.CTL/~AGE5:500/T~LOT:?'0..) 

Establish a limit of 500 pages and 20 minutes of 
plotting on the output generated by this job • 

• QuI::uE ~Lr: =JOB .PLl' ILIl' IT :20) Queue a file to PLTSPL with a limit of 20 minutes 
of plotting time. 

Version 3 QUEUE 2-168 



- 631 - COMMANDS 

QUOLST program 

Function 

The QUOLST program informs the user of both the amount of disk space he has used and the 
amount he has left on each fj Ie structure in his search Ii st. Thi s program a Iso returns the 
amount of free space that the system has left for all users of the structure. Free system space 
on structures not in the user's search list is not output. This information can be obtained by 
typing SYSTAT IF. 
The output given for each file structure consists of 1) the structure name, 2) the number of 
blocks used, and 3) the numbers of blocks left in the logged-in quota, in the logged-out 
quota, and on the structure. 

Command Format 

R QUOLST 

Characteristics 

The R QUOLST command: 

Leaves the terminal in monitor mode. 
Runs the QUOLST program, thereby destroying the user's core image. 

Examples 

.!rt bluOLS 1) 

uSErl: 2'( ,400 
SIrt uSIW LEFI:(IN) 
DSKA : .0 hl00 
D;;iKB : 491 9509 
D!> KG: 0 10000 

USErl: 31,50 
5IH USED LEFf:(IN) 

1022 -22 
DSKB : 1735 71$265 
I.lSKC: o 

Version 4 QUOLST 

(OUT) 
lk3i/5 

4509 
5000 

(OUT) 
-922 
8265 
1000 

2-169 

(SYS) 
2i7~~ 
4240 

396 

(SYS) 
4215 

36 
6378 

The user is over quota on DSKA: 
and must delete files before he 
can logout. 



COMMANDS - 632-

R command 

Function 

The R command loads a core image from the system device and starts it at the location specified 
within the file (.JBSA). It is equivalent to RUN SYS: file.ext core and is the usual way to run 
a system program that does not have a direct monitor command to run it. 

This command clears all of user core. However, programs should not count on this action and 
should explicitly clear those areas of core that are expected to contain zeroes (i .e., programs 
should be self-initializing). This action allows programs to be restcirted by a te, START 
sequence without having to do another R command. 

On magnetic tape, if the low or high segment is missing, a null record is output before the EOF 
for the missing segment so that two EOFs cannot occur consecutively. Therefore, a saved null 
segment does not appear as a logical EOT (2 EOFs in a row). 

Command Format 

R fi Ie • ext core 

Characteri sti cs 

Arguments are the same as in the RUN command except that SYS: is used as the default 
device. ~n nondisk monitors, the default is the generic name that matches the system 
device.) Refer to the RUN command for a discussion of the core argument. 

The extension applies to the low file, not the high file. An extension of • SHR, then 
. HGH, is assumed for the high file. If the user types an extension of • SHR or • HGH, 
the extension is treated as a null extension since .SHR and .HGH are confusing as low 
file extensions. 

The R command: 

Places the terminal in user mode. 
Runs a system program. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.R PIP) 

* .R PIP 5) 
~ 

2-170 



I 

- 633- COMMANDS 

REASSIGN command 

Function 

The REASSIGN command allows one job to pass a device to a second job without having the 
device go through the monitor device pool (restricted or unrestricted). Both restricted and un­
restricted devices can be reassigned. This command, applied to DECtapes, clears the copy of 
the directory currently in core, forcing the next directory reference to read a new copy from 
the tape, but does not clear the logical name assignment. If a device is INITed, a 
RELEASE UUO is performed unless the user issuing the command is reassigning the device to 
himself • 

Command Format 

REASSIGN dev job 

dev = the physi calor logi cal name of the devi ce to be reassigned. This argument is 
required. 

job = the number of the job to which the device is to be reassigned. If no job is 
specified, the device is reassigned to the job issuing the command. This is useful 
when the user wants to force the next directory reference to come from the tape instead 
of core. 

A logical name which is also a physical name can be reassigned only if the job issuing the com­
mand and the job to which the device is to be reassigned have the same project-programmer 
number, or the user issuing the command has operator privileges (logged-in under [l, 2J or 
logged-in at OPR). However, a logical name cann'ot be duplicated; i.e., two devices can­
not have the same logical name. 

Characteristi cs 

The REASSIGN command: 

Restri ctions 

Leaves the terminal in monitor mode. 
Requires core. 
Does not operate when the device is currently transmitting data. 

The job's controlling terminal cannot be reassigned. 

5.05 Monitor 2-171 



COMMANDS - 634-

I REASSIGN command (Cont)1 

Associated Messages 

Refer to Chapter 4. 

Examples 

• REASSIGN LPTS17) Reassign the line printer to job 17 . 

..!REASSIGN COPS4) Reassign the card punch to job 4. 
!. 

2-172 



- 635 - COMMANDS 

REATT A program 

Function 

The REATTA program allows a user to transfer his job from one terminal to another. Unlike the 
ATTACH command, REATTA does not require a password or that the terminal be of the same 
type that LOGIN recognizes in order to run the job. For example, usually a [1,2J job can 
run only on a local terminal. However, the REA TTA program can be used to attach a [1,2J 
job from a local terminal to a remote terminal. 

Before reattaching his job, the user should verify that the terminal to which he is attaching is 
turned on and working properly. Otherwise, it might be difficult to retrieve the job. 

Command Format 

.!oR REATTA) 

REATTA responds by asking for the new terminal name. 

lYPE NEW TlY NAME: 

The user answers with either the new terminal name (e.g., ClY, TlY2) or number 
(e.g., 2). REATTA then responds with 

FROM JOB n 

on the old terminal, and 

NOW ATTACHED TO JOB n 

on the new terminal. 

Charac teri sti cs 

The R REA TTA command: 

Leaves the terminal in monitor mode. 
Runs the REATTA program, thereby destroying the user's core image. 

Restri ctions 

The R REATTA command is not available to Batch users. 

Version 3 REATTA 2-173 



COMMANDS 

IREATTA program (Cont) I 

Associated Messages 

Refer to Chapter 4. 

Examples 

.R REATTA) 

TYPE NEW TTY NAME: TTY27) 

FROM JOB 7 

!. 

NOW ATTACHED TO JOB 7 

.!. 

Version 3 REATTA 

- 636 -

;appears on old terminal 

;appears on TlY 27 

2-174 



- 637- COMMANDS 

REENTER command 

Function 

The REENTER command is similar to the DDT command. It copies the saved program counter 
value from .JBPC into .JBOPC and starts the program at an alternate entry point specified in 
• JBREN (must be set by the user or his program). If the job was executing a UUO when it was 
interrupted (i .e., in exec mode but not in TTY input wait or SLEEP mode), the monitor con­
tinues the job until the UUO is completed and then traps to the REENTER address in .JBREN. 
If the job is in TTY input wait or SLEEP mode, the trap to the REENTER address occurs immedi­
atelyand • JBOPC contains the address of the UUO. If the job is in user mode, the trap also 
occurs immediately. Therefore, it is always possible to continue the interrupted program after 
trapping by executing a JRSTF@.JBOPC. 

Command Format 

REENTER 

Characteri sti cs 

The REENTER command: 

Places the terminal in user mode. 
Requires core. 
Requires the user to have a job number. 

Associated Messages 

Refer to Chapter 4. 

Example 

~EE) 

1-175 



I 

COMMANDS - 638 -

I RENAME command 1 

Function 

The RENAME command changes the name of one or more fi les on disk or DECtape. 

Command Format 

RENAME arg 

Characteri sti cs 

arg = a pair of file specifications separated by an equal sign, or a string of such pairs 
separated by commas: 

RENAME new1 = old1, new2 = old21" •• 

Device or file structure names can be specified only with the new filename and remain 
in effect until changed or until the end of command string is reached. In addition, a 
protection may be specified with the new fi lename and remains in effect only for that 
filename. This command accepts the full wildcard construction. 

The RENAME command: 

Leaves the terminal in monitor mode. 
Runs the PIP program, thereby destroying the user's core image. 
Depends on FTCCLX which is normally absent in the DECsystem-1040. 

Assoc i ated Messages 

Refer to Chapter 4. 

1 This command runs the COMPIL program, which interprets the command before running PIP. 

Version 20 COMPIL 
Version 32 PIP 2-176 



Example 

.RENAME T! I .MAC=Tl .MAC) 
FILES RENAMED: 
TI • MAC 

.RENAME *.SAK=*.MAC) 
FILES RENAMED: 
TlI.MAC 
12 .MAC 
T3 .MAC 

-639 -

!.RENAME TEST.MAC<057>=TEST.MAC) 
rILES RENAMED: 
TEST .MAC 

.!. 

Version 20 COMPIl 
Version 32 PIP 2-177 

COMMANDS 

I RENAME command (Cont) I 



COMMANDS - 640-

I RESOURCES command 

Function 

The RESOURCES command prints the names of all available devices (except TTY's and PTY's), 
all file structures, and all physical units not in file structures (unless they are down or non­
existent) • 

Command Format 

RESOURCES 

Characteristics 

The RESOURCES command: 

Leaves the terminal in monitor mode. 
Does not require LOGIN. 

Example 

A,RES) 
OSKA,DSKB,OSKC.OPB0,OPB1.COR0,2,PTR0,LPT0,1,2,3~DTA0.3, •• ~.6.'.M~A~11,2, 
PTP0,COP0,PbT0,QIS0 

2-178 



- 641 - COMMANDS 

RESTORE program I 

Function 

The RESTORE program enables the user to place back onto disk that which was saved on the 
backup medium (magnetic tape, disk, or DECtape) with the BACKUP program. This includes 
restoring the entire disk or a subset of the disk. The data to be returned to the disk is read 
from the BACKUP SET fi Ie. This fi Ie contains the data that was saved with one BACKUP com­
mand. On a restore, either the BACKUP SET file can be scanned for the desired fi les or the 
index fi Ie can be searched to determine where the requested data is stored within the 
BACKUP SET file. The index file contains the directories of all areas written on the backup 
medium along with the relative block number in the BACKUP SET file where each file begins. 
When the entire backup medium is being restored, the RESTORE program starts at the beginning 
of the index fi Ie and conti nues u nti lit reaches the last file in the index. 

During a restore, a command recovery file is created that contains information concerning the 
portion of the user's command that has been executed and the portion that is remaining. This 
fi Ie resides on the disk and is updated as porti ons of the user's request are comp leted. The com­
mand recovery fi Ie is valuable if the system fai Is because only part of the restore need be 
redone. 

As fi les are restored to disk, UFDs are created for each fi Ie structure on which the user has 
files. These newly created UFDs are then entered into the MFD. 

Command Format 

R RESTORE 

The following commands may be typed by the user after the RESTORE program outputs 
a slash. These commands are stored in core and are not processed until the START 
command is given. The full wildcard construction may be used to replace the file­
name or the extension (refer to Paragraph 1.4.2.4). 

Command 

BACKSPACE ALE 

BACKSPACE SET 

BACKSPACE UFD 

Preliminary Information 

Explanation 

Backspaces the magnetic tape to a user file header and pasitions 
the tape before the header. 

Backspaces the magnetic tape to a BACKUP header and positions 
the tape either before the header or to the beginning of the tape 
if there is no BACKUP header (i .e., there is only one BACKUP set 
on the tape). 

Backspaces the magnetic tape to a UFD header and positions the 
tape i mmed i ate Iy before the header. 

(continued on next page) 

2-179 



COMMANDS 

IRESTORE program (Cont) I 

Command Format (cont) 

Command 

DELETE dev:file .ext 

DENSITY MTAn:x 

DUMP ON dev:file.ext 

ERROR DUMP/switch 

ERROR HALT/switch 

INDEX dev:file.ext 

Preliminary Information 

- 642 -

Explanation 

Deletes the named file from the designated device. This device 
must be one on which a BACKUP has been done. 

Sets the magnetic tape density as specified by x. 

x = 2 200 bpi 
x = 5 556 bpi 
x = 8 800 bpi 

The default is the system standard defined at MONGEN time. 
Dumps the contents of the BACKUP set file beginning at the present 
position and ending at the next file control word. All types of 
errors are ignored. The device on which a dump is to be written 
may not be a listing device. 

Returns to the last file control word and dumps the file if a trans­
mission error of the type specified has occurred. 

/switch = any or all of the following 

/CHECKSUM 
/pARITY 
~EAD 
/WRITE 

Halts program execution if the type of error specified by /switch 
occurs during restoring. An asterisk is typed to the user so that he 
may type further instructions. The user may want to backspace 
the tape and dump it. The command recovery file is destroyed 
unless simply a START command is given. In this case, the current 
file is skipped and the next command in the recovery file is 
executed. 

/switch = any or all of the following: 

/CHECKSUM 
/EXCEPT 
/pARITY 
~EAD 

Reads the index file with the designated filenames from the device 
specified. 

(continued on next page) 

2-180 



Command Format (cont) 

Command 

LOG dev:file.ext /switch 

PARITY de v: ODD or EVEN 

RESTORE dev1: [p,p] file.ext 
+- dev2/switch 

REWIND dey: 

SET ACCESS dd-mmm-yy 

SET CREATION dd-mmm-yy 

SKIP dey: FILE 

SKIP dey: SET 

SKIP dey: UFD 

START 

UNLOAD dey: 

Preliminary Information 

- 643 - COMMANDS 

IRESTORE program (Cont)1 

Explanation 

Writes a fi Ie on the specified device so that operations of the 
RESTORE program can be recorded. The default is 
DSK:RESTOR. LOG. 

/switch = /ERROR 

Logs only the errors. If this switch is omitted, all operations are 
recorded. 

Specifies the parity on magnetic tape as odd or even. The default 
is odd. 

Writes the specified files from dev2 to the designated area on dev1. 
For example, if all of the disk is to be restored from the entire 
BACKUP SET file, the command is 

RESTORE DSK: +-MTA1: 

/switch = /EXCEPT file descriptor 

Indi cates the fi les that should not be restored. 

On magnetic tape, closes BACKUP set and rewinds tape. On disk, 
closes BACKU.P set. 

Sets the access date to be used when restoring files. The files will 
be restored only if accessed after this date. 

Sets the creation date to be used when restoring files. The files 
will be restored only if created after this date. 

Advances to next file trailer, EOF1, and positions after it. 

Advances to next BACKUP set trailer and positions after it, or 
skips to end of the tape and positions the tape between the tape 
marks. 

Advances to next UFD header, HDR 1, and positions before the 
header. 

Begins execution of a series of commands entered previously. 
Commands are not processed unt i I a START command. If there are 
no commands to be processed when the START is executed, the 
command recovery fi Ie is searched for an executable command. 

Performs a rewind and unload to the magnetic tape. 

2-181 



COMMANDS - 644-

IRESTORE program (Cant) I 

Command Format (cont) 

Characteristics 

The RESTORE program may be restarted by the user at any time. The user can cancel 
current requests and specify new ones with a fC fC START sequence. The command 
recovery file is deleted with a fC START sequence unless the next command given to 
RESTORE is a START. If this is the case, the command recovery file is searched and 
the RESTORE program proceeds according to the information in the file. A fC CONT 
sequence does not delete the command recovery file; this sequence of commands com­
pletes the current requests. 

Upon completion of all requests, the RESTORE program closes the log file and types an 
asterisk on the user's terminal indicating its readiness for more requests. Rewinds to the 
magnetic tape due to it being filled are actually rewind and unload operations to en­
sure that the magnetic tope is not overwritten. When the RESTORE program reaches 
completion, the magnetic tape last written on remains in position unless a REWIND 
command is given. 

The R RESTORE command: 

Runs the RESTORE program, thereby destroying the user's core image. 

Associated Messages 

Refer to Chapter 4. 

Preliminary Information 2-182 



- 645- COMMANDS 

REWIND command 1 

Function 

The REWIND command rewinds a magnetic tape or a DECtape. This command is equivalent to 
the PIP command string: 

dey: (MW)'" 

Command Format 

REWIND dey: 

dev: = a magnetic tape (MTAn) or a DECtape (DTAn). 

Characteri sti cs 

The REWIND command: 

leaves the terminal in monitor mode. 
Runs the PIP program, thereby destroying the user's core image. 
Depends on FTCCLX which is normally absent in the DECsystem-l040. 

Associated Messages 

Refer to Chapter 4. 

ExalTlples 

.REW OTA4:) 

.REW INO tvlTA 1 :) 

l~hiS command runs the COMPIL program, which interprets the command before running the PIP program. 

Version 20 COMPIL 
VersiGm 32 PIP 2-183 



COMMANDS - 646 -

RUN command 

Function 

The RUN command loads a core image from a retrievable storage device and starts at the 
location specified within the file (. JBSA). 

If the program has two segments, both the low and high segments are set up. If the high file 
has extension .SHR (as opposed to .HGH), the high segment will be shared. Therefore, if the 
user has RUN (or GET) the same program, I/O will not usually be required for the high seg­
ment. A two-segment program may have a low file extension (.LOW). 

The RUN command clears all of user core. However, programs should not count on this action 
and should explicitly clear those areas of core that are expected to contain zeroes (i.e., the 
programs should be self-initializing). This action allows programs to be restarted by a 
fC, START sequence without having to do another RUN command. 

On magnetic tape, if the low or high segment is missing, a null record is output before the 
EOF for the missing segment so that two EOFs cannot occur consecutively. Therefore, a saved 
nu II segment does not appear as a logi ca I E OT (2 E OFs ina row). 

Command Format 

RUN dev:file.ext [proj,prog] core 

5.05 Monitor 

dev: = the logical or physical name of the device containing the core image. The de­
fault device name is DSK:.(In nondisk monitors, the default is the generic name that 
matches the system device.) 

file.ext = the name of the file containing the core image; . ext applies to the low file, 
not the high file. An extension of .SHR, then .HGH, is assumed for the high file. If 
the user types an extension of • SHR or . HGH, the extension is treated as a null exten­
sion since .SHR and. HGH are confusing as low file extensions. The default filename 
is the job's current name as set by the last R, RUN, GET, SAVE, or SSAVE command, 
the last SETNAM UUO, or the last command whi ch ran a program. 

[proj,progl = the project-programmer number; required only if core image file is loca­
ted in a disk area other than the user's. 

core = the amount of core to be assigned to the sum of the low and high segments if 
different from minimum core needed to load the program or from the core argument of 
the SAVE command wh ich saved the fi Ie. 

If core < the minimum low segment size, then an error message occurs. 

If core ~the minimum low segment size and < the sum of the high segment and the min­
imum low segment size, then the core assignment is the low segment size. 

If core 2 the sum of the minimum low segment and the high segment size, then the core 
assignment is the size of both the low and high segments to be used. 

2-184 



- 647- COMMANDS 

I RUN command (Cont) I 

Command Format (cont) 

Core arguments can be specified in untts of 1024 words or 512 words (a page) by 
following the number with K or P, respectively. For example, 2P represents 2 pages 
or 1024 words. If K or P is not specified, K (1024 words) is assumed. 

Note that on KAI0 based systems (DECsystem-l040, 1050, 1055), the minimum unit 
of allocation is 1024 words. Therefore, all arguments are rounded up to the nearest 
multiple of 1024 words (e.g., 3P is treated as 2K on a KAI0 based system). 

Since previous core is returned, MTA must have the core argument because there is no 
directory telling how much core is for the low segment. Refer to Appendix D. 

Characteristi cs 

The RUN command: 

Places the terminal in user mode. 

Restri cti ons 

On systems with a large amount of core memory, the user should not specify a core argument 
that forces the high segment to start higher than 400000 (i.e., a core argument of greater than 
128K) unless the program's high segment is location independent. If this is done, the 
ILLEGAL UUO error message is likely to occur. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.RUN TEST) 

.RUN HISTST [10,63J) 

.RUN DTA3 :TESTl) 

5.05 Monitor 2-185 



I 

I 

COMMANDS - 648-

SAVE command 

Function 

The SAVE command writes out a core image of the user's core area on the specified device. 
It saves any user program (two-segment sharable, one-segment nonsharable, or two-segment 
nonsharable) as one or two files. Later, when the program is loaded by a GET, R, or RUN 
command, it will be nonsharable. If DDT was loaded with the program, the entire core area is 
written; if not, the area starting from zero up through the program break (as specified by .JBFF) 
is written. Refer to DECsystem-lO Monitor Calls for a description of the job. data area loca­
tions referenced by this command. 

The SAVE command should be used instead of the SSAVE command when debugging a two­
segment program. Refer to Appendix D for additional information on the SAVE command. 

On magnetic tape, if the low or high segment is missing, a null record is output before the 
EOF for the missing segment so that two EOFs cannot occur consecutively. Therefore, a 
saved nu II segment does not appear as a logi ca I E OT (2 E OFs ina row). 

Command Format 

SAVE dev:fjle.ext [proj,prog] core 

5.05 Moni tor 

dev = the device on which the core image file is to be written. The default device 
name is DSK:. In nondisk monitors, the default-is the generic name that matches the 
system device. The colon following the device name is required if a device is speci­
fied. 

file.ext = the name to be assigned to the core image file. The default filename is the 
job's current name as set by the last R, RUN, GET, SAVE, or SSAVE command, the 
last command which ran a program (e.g., DIRECT), or the last SETNAM UUO. 

ext applies to the low fi Ie, not the high fi Ie. An extension of • SHR, then. HGH, is 
assumed for the high file. If the user types an extension of .SHR or .HGH, the exten­
sion is treated as a null extension since .SHR and .HGH are confusing as low file ex­
tensions. If ext is omitted and the program has only one segment, the ext is assumed 
to be • SAV. If ext is omitted and the program has two segments, the high segment wi II 
have extension. HGH, und the low segment wi II have extension. LOW. 

[proj,prog] = the name of the disk area on which the core image file is to be written. 

core = the amount of core in which the program is to be run. This value is stored in 
JOBDAT as the job's core area (. JBCOR) and is used by subsequent RUN and GET 
commands. This argument is optional. 

Core arguments can be specified in units of 1024 words or 512 words (a page) by 
following the number with K or P respectively. For example, 2P represents 2 pages or 
1024 words. If K or P is not specified, K (1024 words) is assumed. 

2-186 



I 

- 649- COMMANDS 

I SAVE command (Cont)J 

Command Format (cont) 

Note that on KAl0 based systems (DECsystem-l040, 1050, 1055)-. the minimum unit of 
allocation is 1024 words. Therefore, all arguments are rounded up to the nearest 
multiple of 1024 words (e.g., 3P is treated as 2K on a KA10 based system). 

If core is omitted, only the number of blocks required by the core image area (as ex­
plained in the RUN command description) is assumed. 

Characteri sti cs 

The SAVE command: 

Leaves the terminal in monitor mode. 
Requires core. 
Does not operate when a device is currently transmitting data. 

Associated Messages 

Refer to Chapter 4. 

Example 

-.:,SAVE ,) 
..DB SAVED 

.SAVE DTA3:TEST) 
JoB SAVED 

5.05 Monitor 2-187 



COMMANDS - 650-

I SCHED command 

Function 

The SCHED command types out the schedu Ie bits as set by the last privi leged SET SCHED com­
mand. The schedule bits are as follows: 

o regu lar timeshari ng. 
1 no further logins allowed except from CTV. 
2 no further logins from remote terminals, and no answering of data sets. 
4 batch jobs only. 

100 device mounts can be done without operator intervention. 
200 unspooling allowed. 
400 no operator coverage. 

Command Format 

SCHED 

Characteristics 

The SCHED command: 

Example 

Leaves the terminal in monitor mode. 
Does not require LOGIN. 
Depends on output from the SET SCHED command which is normally absent in the 
DECsystem-1040. 

• SCHEO) 
000400 

Regular timesharing, but no operator coverage • 

2-188 



I 

I 

I 

- 651 - COMMANDS 

SEND command 

Function 

The SEND command provides a mechanism for one-way interconsole communication. (This 
command replaces the TALK command.) A line of information is transmitted from one terminal 
to another, with the i dentifi cati on of the termi na I sendi ng the i nformati on. Wi th remote com­
munications capabilities, SEND is able to differentiate between stati ons. 

When the SEND command is sent from the central station operator's terminal (OPR) or from a 
terminal logged in as [1,2), it allows a broadcast of a line of information to all non-slaved 
terminals (including remote terminals) in the system. This allows important information to be 
dispersed, such as system shutdown or hardware problems. SEND ALL messages do not go to 
slaved terminals unless the SET TTY NO GAG bit is set to permit reception when the terminal 
is busy. 

A busy test is made on single-destination messages before the message is sent unless the sender 
or the receiver of the message is OPR or a job logged-in as [1,2). The receiver of the message 
is considered busy if his terminal is not at monitor command level. If the receiver is busy, the 
sender receives the message BUSY and the information is not sent, unless the receiving terminal 
has the TTY NO GAG bit set (refer to the SET TTY command). If the receiving terminal is 
turned off, the information appears to have been sent, since the hardware cannot detect this 
condition on hard-wired terminals. 

Command Format 

SEND dev: text 

or 

SEND JOB n text 

5.05 Monitor 

dev = any physical terminal name (CTY included) or OPRnn. If OPRnn is specified, 
the message is sent to the operator at station nn. If OPR (nn is null) is specified, the 
message is sent to the operator at the user's logical station. If the terminal sending 
the message is the operator's terminal, the argument may be ALL to provide the broad­
cast operati on • 

n = the job number to which the message is to be sent. 

The message printed on the receiving terminal appears as follows: 

iiTTY n: - text 

where 

n is the TTY sending the message, and text is the message. A bell sounds on 
the receiving terminal when the message is sent. 

2-189 



COMMANDS - 652-

ISEND command (Cont) 1 

Characteristi cs 

The SEND command: 

Leaves the terminal in monitor mode. 
Does not require LOGIN. 
Depends on FTTALK which is normally absent in the DECsystem-l040. 

Restri cti ons 

The SEND command is not available to the Batch user. 

Associated Messages 

Refer to Chapter 4. 

Examples 

~SEND OPR: PLEASE WRITE-ENABLE DTA3) 

2-190 



- 653 - COMMANDS 

SET BLOCKSIZE command I 

Function 

The SET BLOCKSIZE command sets a default blocksize for the specified magnetic tape. 

Command Format 

SET BLOCKSIZE dev: nnnn 

dev: = MTAn: where n is the number of the magnetic tape drive for which the blocksize 
is to be set, or a logical name associated with a physical magnetic tape. The user 
must have the magnetic tape assigned to him. This argument is required. 

nnnn = a decimal number up to a maximum of 4095 designating the block size for this 
magnetic tape. No additional checking is done for the legality of the specified num­
ber besides the check for the maximum 4095. This argument is required. 

Characteri sti cs 

The SET BLOCKSIZE command: 

Leaves the terminal in monitor mode. 
Depends on both FTSET and FTMTSET which are normally absent in the DECsystem-104O. 

Examples 

.SET BLOCK SIZE MTA2:395~) 

.ASSIGN MTA4:NAMEI) 
'FITA4 ASSIGNED 
.SET BLOCK SIZE NAME12000) 

2-191 



COMMANDS - 654-

I SET CDR command 

Function 

The SET CDR command sets the filename for the next card-reader spooling intercept {refer to 
DECsystem-10 Monitor Calls}. This command is generally not needed, even when the card 
reader is being simulated on the disk via the spooling mechanism. It is included in case the 
user wishes to reset or change the spooling. In addition, the Batch Controller uses this com­
mand to read spooled input card decks. 

Command Format 

SET CDR filename 

filename = one- to three-character filename to be used on next card-reader I NIT • 

Characteri sti cs 

The SET CDR command: 

Leaves the terminal in monitor mode. 
Depends on FTSET and FTSPL which are normally absent in the DECsystem-l040. 

Examples 

.SET CDR A) 

.:. 
.SET CDR MAS) 

2-192 



- 655- COMMANDS 

SET CPU command I 

Function 

The SET CPU command allows a privileged user to change the CPUs on which his job can run. 
It is used in a multiprocessing system to specify whether the programs run under the job can be 
processed on the primary CPU, the secondary CPU, or either CPU. The job remains with the 
specified CPU until (1) another SET CPU command with a different specification is given, (2) 
a KJOB command is issued, or (3) the user's program overrides the SET CPU command by issuing 
the SETUUO with a different specification. If the SETUUO overrides the command, the 
specification given in the UUO remains in effect until a RESET or EXIT UUO or another SETUUO 
with a different specification is executed. When an EXIT or RESET UUO is executed, 
the job reverts back to the specification given in the last SET CPU command. When the user 
logs in, the CPU specification is usually set to ALL. The schedulers for each CPU compete 
for jobs with the ALL specification so that the load is dynamically balanced between CPUs. 
Therefore, this command is generally not needed but is providec.l in case the user wishes to 
change the CPU specification. 

Command Formats 

1 . SET CPU CPxn 

adds the specified CPU to the job's CPU specification. 

2. SET CPU NO CPxn 

removes the specified CPU from the job's CPU specification. 

3. SET CPU ALL 

adds all of the CPUs to the job's CPU specification. 

4. SET CPU ONLY CPxn 

changes the CPU specification so that it includes only the specified CPU. 

x = either U designating a logical name or A or I designating physical names for 
a KA 10 processor (DECsystem-1055) or a KIl 0 processor (DECsystem -1077), 
respectively. 

n = a decimal number from 0 to the number of processors in the system. 

2-193 



COMMANDS - 656-

ISET CPU command (Cont) I 

Characteristics 

The SET CPU command: 

leaves the termi·nal in monitor mode. 
Depends on FTSET and FTMS which are normally absent in the DECsystem-l040, 1050, 
and 1070. 

Restrictions 

The privileges required for using this command are determined by bit 5 (JP.CCC) of the 
privi lege word, • GTPRV. 

Associated Messages 

Refer to Chapter 4. 

Examples 

~SET CPU ONLY CPU 1) . 
• SET CPU CPA0) 

2-194 



- 657- COMMANDS 

SET DENSITY command 

Function 

The SET DENSITY command sets a default density for the specified magnetic tape. 

Command Format 

SET DENSITY dev: nnn 

Characteristics 

dev: = MTAn: where n is the number of the magnetic tape drive for which the density 
is to be set, or a logical name associated with a physical magnetic tape. The user must 
have the device assigned to him. This argument is required. 

nnn = 200 bpi 
556 bpi 
800 bpi 

This argument is required. 

The SET DENSITY command: 

Leaves the terminal in monitor mode. 
Depends on both FTSET and FTMTSET which are normally absent in the DECsystem-l040. 

Examples 

~SET DFNSITY ~TA5: 556) 

2-195 



COMMANDS - 658 -

I SET DSKPRI command 

Function 

The SET OSKPRI command allows a privileged user to set the priority for his job's disk operations 
(data transfers and head positionings). The standard priority is 0, and the range of permissible 
values is -3 to +3. This means that a priority lower than the standard can be specified, as well 
as one higher than the standard. The priority specified applies to all disk I/O channels cur­
rently open or subsequently opened whose priority has not been explicitly set with a DISK. UUO 
(refer to DECsystem-l0 Monitor Calls). The priority specified in the SET DSKPRI command re­
mains in effect until (1) another SET DSKPRI command is given with a different priority, (2) a 
KJOB command is issued, or (3) the user's program overrides the SET DSKPRI command by 
issuing a DISK. UUO with a different priority. 

Command Format 

SET DSKPRI n 

Characteristics 

n = a decimal number from -3 to +3 indicating the priority to be associated with the 
job's disk operations. When n = 0, the priority is the normal timesharing priority. 

The SET DSKPRI command: 

Leaves the terminal in monitor mode. 
Depends on both FTSET and FTDPRI which are normally absent in the DECsystem-l040. 

Restrictions 

The privi leges required for using this command are determined by bits 1 and 2 of the privi lege 
word, .GTPRV. These two bits specify an octal number from 0-3. The user is always allowed 
a 0 priority. 

Examples 

.SET DSKPRI 2) 

.!. 

5.05 Moni tor 2-196 



- 659 - COMMANDS 

I SET HPQ command t 

Function 

The SET HPO command allows a privileged user to place his job in a high-priority scheduler 
run queue. With this command, the user obtains a faster response and CPU time than in the 
normal timesharing queues. The job remains in the specified high-priority queue until (1) 
another SET HPO command to a different high-priority queue is given, (2) a KJOB command is 
issued, or (3) the user's program overrides the SET HPQ command by issuing an HPO UUO with 
a different value. If an HPQ UUO overrides the command, the level specified in the UUO re­
mains in effect until a RESET or EXIT UUO or another HPQ UUO with a different value is exe­
cuted. When an EXIT or RESET UUO is executed, the job is returned to the high-priority queue 
specified in the SET HPQ comman_d. 

Command Format 

SET HPO n 

Characteristi cs 

n = a decimal number from 0 to 15 indicating the high-priority queue to be entered. 
When n = 0, the ql.'eue is the normal timesharing run queue. Queue numbers from 1 
to 15 are high-priority queues. The number of high-priority queues is an installation 
parameter and may be less than 15. 

The SET HPO command: 

Leaves the terminal in monitor mode. 
Depends on both FTSET and FTHPQ which are normally absent in the DECsystem-1040. 

Restrictions 

The privileges required for using this command are determined by bits 6 through 9 of the privi­
lege word, .GTPRV. These four bits specify an octal number from 0-17, which is the highest 
pri ority queue attai nable by the user. 

Examples 

.SET HPQ 4) 

2-197 



COMMANDS - 660-

I SET SPOOL command 

Function 

The SET SPOOL command adds devices to or deletes devices from the current list of devices 
being spooled for this job. Spooling is the mechanism by which I/O to or from slow-speed de­
vices is simulated on disk. Devices capable of being spooled are: the line printer, the card 
punch, the card reader, the paper tape punch, and the plotter. 

Command Formats 

1 • SET SPOO L dev 1, dev2, ..• devn 

adds the specified devi ces to the job's spool list. 

2. SET SPOOL ALL 

places all spooling devices i.nto the spool list. 

3. SET SPOOL NONE 

clears the entire spool list. 

4. SET SPOOL NO dev1, dev2, ••. devn 

removes the specified devices from the job's spool list. 

dey 1, dev2, ••• devn = names of one or more devices to be added to or del eted from 
the current spool list. 

Characteristi cs 

The SET SPOOL command: 

Leaves the terminal in monitor mode. 
Depends on both FTSET and FTSPL which are normally absent in the DECsystem-1040. 

Restri ctions 

To unspool devices, the job must have (1) the privi lege bit set in . GTPRV, (2) bit 28 (200 
octal) set in the STATES word by the operator SET SCHED command, or (3) the user must be 
logged-in under [1,2]. 

2-198 



- 661 - COMMANDS 

ISET SPOOL command (Cont)] 

Assoc i ated Messages 

Refer to Chapter 4. 

Examples 

.SET SPOOL COP:) . 
::!SET SP OOL NO LP T:) . 
:-SET SPr'lnl NONE) 



COMMANDS - 662 -

SETSRC program 

Function 

The SETSRC program is used to manipulate the job's search list or the system's search list. A 
search list is defined to be the order of fi Ie structures that are to be searched whenever generic 
device DSK: is explicitly or implicitly specified by the user. This search list is originally de­
fined by the system manager to include the fi Ie structures which the user can access. With the 
SETSRC program, the user can alter the search list defined for him by adding or deleting file 
stru ctures. 

The search list is in the form 

fs1/s/s, fs2/s/s, ••• , FENCE, •••• , fs9/s/s 

where fs is the name of the fi Ie structure and /s is a switch modifying the fj Ie structure. The 
fi Ie structures on the left of the FENCE comprise the active search list and represent the 
generic device DSK for this job. The files to the right of the FENCE comprise the passive 
search list and represent file structures that were once in the active search list. Fi Ie structures 
are kept in the passive search list in order that quotas can be checked on a DISMOUNT or 
KJOB command. The FENCE represents the boundary between the active and passive search 
list. 

Note that the MOUNT and DISMOUNT commands can also change the job's search list by 
adding or deleting a file structure. Since the SETSRC program does not create a UFD if one 
does not exist, the MOUNT command shou Id be used to create a UFD. The name of the new 
fj Ie structure is placed at the end of the search list. 

Refer to the SETSRC specification in the DECsystem-10 Software Notebooks for a complete 
description of the SETSRC program. 

Command Format 

R SETSRC 

The user can then respond with any of the following commands: 

Command 

A 

Versi on 11 SETSRC 

Exp lanati on 

Add one or more file structures to the existing search list. The file struc­
tures (with any switches) are appended to the beginning or the end of the 
active search list according to the following specifications: 

1. If no asterisk appears in the specification (e.g., fs1, fs2) or if an 
asterisk appears before the file structure names (e.g., *, fs1, fs2), 
the fi Ie structures are added to the end of the search list. 

(continued on next page) 

2-200 



Command Format (cont) 

Command 

A (cont) 

C 

CP 

CS 

H 

M 

R 

T 

TP 

TS 

- 663 - COMMANDS 

I SETSRC program (Cont)1 

Exp lanati on 

2. If the asterisk follows the file structure names (e.g., fs1, fs2, *), the 
file structures are added to the beginning of the search list. 

3. If the asterisk appears in the middle of the fj Ie structures (e.g., 
fs1, *, fs2), the file structures before the asterisk are added to the 
beginning of the search list and the fi Ie structures after the asterisk 
are added to the ~nd. 

If the specified file structure is currently in the search list, it is removed 
and then added in the desired position. Therefore, this command can be 
used to reorder the search Ii st. 

Create a new search list for this job. Any fi Ie structures in the current 
search list which are not in the new list are moved to the passive search 
list. 

Create a new defau It di rectory path. 

Create a new system search list (i. e., the fi Ie structure search list for 
device SYS:). The user must be logged in under [1,2] to use this command. 

Obtain information about the avai lable commands. 

Modify the current search list and DSK specification by altering the switch 
settings for individual fi Ie structures. This command does not add or 
remove fi Ie structures from the search list. 

Remove file structures from the search list. They are placed on the right 
side of the FENCE (passive search list) so that on subsequent LOGOUTs or 
DISMOUNTs quota limits can be checked. 

Type the search list of the job. 

Type the defau It di rectory path. 

Type the system search Ii st • 

The following switches can be used in the SETSRC command stri ng. Switches that modify fj Ie 
structures must appear immediately after the fi Ie structure that they modify. Other switches 
can appear anywhere in the command string. The switches can be abbreviated as long as the 
abbreviati on is unique. The minimum number of characters is underli ned below. 

Switches that modify fj Ie structures 

/CREATE Allow new fi les to be created on the fi Ie structure. 

(conti nued on next page) 

Version 11 SETSRC 2-201 



COMMANDS 

I SETSRC program (Cant) I 
Command Format (cont) 

/NOCREATE 

/NOWRITE 

/WRITE 

- 664-

Do not allow new fi les to be created on the fi Ie structure when DSK is 
specified, but allow files to be superseded. Files can be created on the 
file structure if the user specifies the file structure name explicitly. 

Do not allow writing on the file structure for this job (i.e., the file 
structure is read only). 

Allow writing on the file structure. 

If no switches are specified, /CREATE and /WRITE are assumed. For compatibility with 
previous versions of SETSRC, /N is equivalent to /NOCREATE and /Requivalent to /NOWRITE. 

Switches that modify the directory path (used only with the CP command) 

These switches can be typed in directly as commands by omitting the CP command and the slash 
(i .e., /SCAN is equivalent to CP/SCAN). 

/NOSCAN Cancel the scan switch for the directory path. 

/SCAN Set the scan switch for the di rectory path. 

Switches that modify the DSK or SYS specification (used only with the C and M commands) 

These switches can be typed indirectly as commands by omitting the C or M command and the 
slash (i .e., NOSYS is equivalent to M/NOSYS). 

IUS: [proj,progJ Set the job's library directory to the UFD [proj,prog] and add it to the 
user's DSK specification. This means that if a file is not found in the 
user's directories in his search list, the library directory will then be 
searched for the fi Ie. 

/NOUS 

/NOSYS 

/NONEW 

/SYS 

/NEW 

Characteri sti cs 

Remove the library directory from the user's DSK specification. 

Remove the SYS specification from the user's DSK specification. 

Remove the [ 1,5] directory from the user's SYS specification. 

Add the SYS specification to the user's DSK specification. This means that 
if a file cannot be found in the user's directories in his search list or in his 
library directory (if /US: [ proj, prog] has been specified), the system 
di rectory [ 1,4] wi II then be searched for the fi Ie. 

Add the directory [ 1,5] to the user's SYS specifi cation. This means that 
when the system directory is searched, the directory [ 1,5] will be searched 
before the di rectory [ 1,4]. 

The R SETSRC command 

Places the terminol in user mode. 
Runs the SETSRC program, thereby destroying the user's core image. 

Version 11 SETSRC 2-202 



- 665 - COMMANDS 

I SETSRC program (contll 

Restri cti ons 

The user must be logged in under [1,2] to create a new system search list. The directory path 
commands (CP and TP) are meaningful only with the 5.04 and later monitors and only if FTSFD 
is 011. 

Examples 

.R SETSRC) 

!l) 

DSKB:, j'ENCE 

,!A D!:)KA:) 
,!l 
U!:)Kl:J: ,O!:iKA:, FENCE 

,!A D!:i KG: , * ) 
,!T) 

O!:iKC: ,DSKB: ,DSKA: ,FENGE 
,!rl D!:iKA:.) 
!1' ) 

DSKC: ,DSKB: ,j'ENCE,DSKA: 

*1'1 D!:)Kl:J :/NOiNrllTE) 

*1', ILIB:(27'~iiH1)) 

.!.:)y!:») 

*1') 
ILIB:(27,500J/5YS 

O!:) KA: , D!:iKt3 : , OSKC : , FENCE 

Version 11 SETSRC 

The userls search list is defined as DSKB. 

Add DSKA to the end of the search list. 

The user's search list is defined as DSKB, DSKA. 

Add DSKC to the beginning of the search list. 

Remove DSKA from the search list. 

The userls search list is defined as DSKC, DSKB. 

Do not allow writing on DSKB. 

Set the user's library di rectory to [27,500] and add 
it to the user's DSK specification. 
Add SYS: to the user's DSK specification . 

The user IS DSK and SYS specifications are first 
followed by the user's search list. 

The system search list is defined as DSKA, DSKB, 
DSKC. 

2-203 



I 

COMMANDS - 666 -

SET TIME command 

Function 

The SET TIME command sets a central processor time limit for a job. When the time limit is 
reached, the job is stopped and a message is typed. A timesharing job may be continued by 
typing CONT, but no time limit is in effect unless it is reset. A Batch job cannot be con­
tinued. 

Command Format 

SET TIME n 

n = number of seconds of central processor time to which the job is limited. An argu­
ment of 0 cancels the time remaining. 

Characteri sti cs 

The SET TIME command: 

Leaves the terminal in monitor mode. 
Depends on both FTSET and FTTLIM which are normally absent in the DECsystem-1040. 

Assoc i ated Messages 

Refer to Chapter 4. 

Examples 

• f-1AKE LOOP.F4) 

U 
!.fX$! 

C["INTINUE 
GOTC 1~ 
END 

• TYPE LOOP.F4) 
T0 CONTINUE 

GOTO 1(1) 
END 

Create a program with an indefinite loop • 

Type the program • 

(continued on next page) 

2-204 



Examp les (cont) 

.LOAD LOOP) 
FORTRAN: LCQP.F4 
LOADING 

LOOP 2K CORE 

EXIT 
• SET TI""E 5) 

• TIME) 
3.5'" 
5.'"5Y 
HfiI-CORE-SEC-32 

.:.START) 

'TIME LIMIT EXCEEDED 

t TI,..E) 
· .0111 
TM7 
~ c 0 ~ E - SEC - 5 7. 

• -

- 667- COMMANDS 

ISET TIME command (Cont)1 

Compi Ie and load the program. 

Set the time limit to 5 seconds. 

Clear the incremental run time, so that the 
SET TIME command can be checked. 

Start the loop • 

As expected, the time limit was exceeded. 

2-205 



COMMANDS - 668 -

I SET TTY or TTY command 

Function 

The SET TTY command (or TTY command) declares properties of the terminal line on which the 
command is typed to the scanner service. With hardwired TTYs, the system manager can set the 
default conditions, so that this command is usually not needed. However, the user is likely to 
use this command on data sets, where the terminal cannot be predicted. 

Command Formats 

1. SET TTY NO word 

equivalent to TTY NO word 

2. SET TTY word 

5.05 Monitor 

equivalent to TTY word 

NO = the argument that determines whether a bit is to be set or cleared. This argu­
ment is optional. 

word = the various words representing bits that may be modified by this command. The 
words are as follows: 

SET TTY ALTMODE 

SET TTY NO ALTMODE 

SET TTY BLAN KS 

SET TTY NO BLANKS 

SET TTY CRLF 

SET TTY NO CRLF 

SET TTY ECHO 

Converts the ALTmode codes of 175 and 176 to the 
ASCII standard escape character 033. 

Restores the individual identity of the codes 175 
and 176. 

Restores multiple carriage return-line feeds and 
form feeds. 

Suppresses blank lines (consecutive carriage return­
Ii ne feeds after the first) and outputs form feeds 
and vertical tabs as 2 carriage return-line feeds. 
This is used for the display terminal in order to 
prevent the output from moving up off the screen. 

Restores the carriage return. 

The carriage return normally output at the end of a 
line exceeding the carriage width is suppressed. 

Restores the normtll echoing of each character 
typed in. 

(continued on next page) 

2-206 



Command Formats (cont) 

SET TTY NO ECHO 

SET TTY FILL n 

SET TTY NO FILL 

Character 
Name 

BS 
HT 
LF 
VT 
FF 
CR 
XON 
TAPE 
XOFF 
NTAP 

- 669 - COMMANDS 

ISET TTY command (Cont)1 

The terminal line has local copy and the computer 
should not echo characters typed in. 

The filler class n is assigned to this terminal. The 
filler character is always DEL (RUBOUT I 377 octal). 
No fi Ilers are supplied for image mode output. 

Equivalent to TTY FILL O. Fillers for output and 
echoing are determined from the following: 

Number of Fillers for Filler Class 
Octal 

0 1 2 3 

010 0 2 6 6 
011 0 lor2 1 or 2 1 or 2t 
012 0 1 6 6 
013 0 2 6 6 
014 0 12 21 21 
015 0 lor2 2 or 4 2 or 4tt 
021 0 1 1 1 
022 0 1 1 1 
023 0 1 1 1 
024 0 1 1 1 

tl if 0-3 spaces to tab stop; 2 if 4-7 spaces to tab stop. 
ttl or 2 if CR is typed; 2 or 4 if CR is supplied because the line is 

too long. 

SET TTY FORM 

SET TTY NO FORM 

SET TTY GAG 

SET TTY NO GAG 

SET TTY LC 

This terminal has hardware FORM (PAGE) and VT 
(verti co I tab) characters. 

The monitor sends eight line feeds for a FORM and 
four line feeds for a VT. 

The SEND command cannot be received at this ter­
minGI unless the termina,1 is (,l·t command level 
(inItiol ~k1te). 

The SfNID command can be received at this termi­
nal even though it is not at command level. 

The t.ronslQtian of ~ower-case characters input tG 
upper eGSe is suppressed. 

2-207 



COMMANDS 

ISET TTY command (Cont)I 

Command Formats (cont) 

SET TTY NO LC 

SET TTY PAGE 

SET TTY NO PAGE 

SET TTY SLAVE 

SET TTY TAB 

SET TTY NO TAB 

SET TTY TAPE 

SET TTY NO TAPE 

SET TTY WIDTH n 

5.05 Moni tor 

- 670 -

The monitor translates lower-case characters to 
upper case as they are received. In either case, 
the echo sent back by the monitor matches the case 
of the characters after translation. By looking at 
the printout, the user can determine what transla­
tion was performed by the monitor. 

The user has the abi Iity to temporari Iy suspend sys­
tem typeout without losing it. The XOFF key (fS) 
suspends the typeout, and the XON key (to) re­
stores it. The X OFF and X ON keys are not echoed 
and are not sent to the user's program. This com­
mand is useful for display terminals where the user 
may want to read a page of text before it disappears 
from the screen. Note that this preempts the use 
of tS and to for reading paper tape (see 
SET TTY TAPE). 

The typeout control abi Iity of the XOFF and XON 
keys is disabled. The current interpretation of these 
keys depends on the last SET TTY TAPE command. 

The terminal becomes slaved, i.e., no commands 
may be typed on the terminal, and the terminal may 
be ASSIGNed by another user. The user can slave 
only his own terminal and must contact the operator 
in order to unslave it. 

This terminal has hardware TAB stops every eight 
columns. 

The monitor simu lates TAB output from programs by 
sending the necessary number of SPACE characters. 

The XON key (to) causes the terminal to read 
paper tape. The XOFF key (fS) causes the term-
i na I to stop readi ng paper tape. 

The XON key (1O) and the XOFF key (IS) have no 
special paper tape function. They may have a 
PAGE function. 

The carriage width (the point at which a free car­
riage return is inserted) is set to n. The range of n 
is 17 (two TAB stops) to 200 decimal·. 

2-208 



- 671 - COMMANDS 

I SET TTY command (Cant) I 

Characteristics 

The SET TTY command: 

Leaves the terminal in monitor mode. 
Does not require LOGIN. 
Depends on FTSET which is normally absent in the DECsystem-1040. However, the 
TTY command format can always be used. 

2-209 



COMMANDS - 672-

I SET WATCH command 

Function 

The SET WATCH command sets the system to print incremental job statistics automatically. 
This command provides the user with a tool for measuring the performance of his programs. 

Command Formats 

1. SET WATCH arg 1, arg2 , ••• ,args 

prints the specified WATCH statistics. 

2. SET WATCH ALL 

prints all the WATCH statistics. 

3. SET WATCH NONE 

eliminates the printing of all WATCH statisti cs. 

4. SET WATCH NO arg1, arg2"" ,args 

eliminates the printing of the specified WATCH statistics. 

The following arguments enable printing whenever a monitor command switches the 
console from monitor to user mode. 

arg= DAY prints the time of day, as [HH:MM.SS] 

arg = VERSION prints the version of the program in standard format 
(refer to the VERSION command). 

The following arguments enable printing whenever the console is returned to monitor 
mode via the lC, EXIT, HALT, ERROR IN JOB n, or DEVICE xxx OPR zz ACTION 
REQUESTED messages. 

arg = READ prints the incremental number of disk blocks read modulo 4096. 

arg = RUN prints the incremental run time. 

erg = WAIT prints the wait time (time elapsed since the user started or contin­
ued the program). 

arg = WRITE prints the incremental number of disk blocks written modulo 4096. 

2-210 



- 673 - COMMANDS 

ISET WATCJ-t command (Contll 

Command Formats (cont) 

Characteristi cs 

Any combination of the arguments may be specified in any order. Statistics are not 
printed for commands that do not run programs, such as ASSIGN or PJOB. When a 
user logs in, his job is set to WATCH the statistics of which he has notified the system 
manager. The information on what statistics to WATCH is kept in ACCT.SYS. 

The order of the error message is the same as the order of output. Therefore, a user 
who forgets either the argument or the significance of the statistics can find these out 
by examining the message. A single space is always typed between each statistic, 
whether the statistic appears or not; therefore, it is possible to tell which statistics 
are being typed. 

NOTE 

Enabling WATCH output interacts with the incremental 
data typed by the TIME and DSK commands. 

The SET WATCH command: 

Leaves the terminal in monitor mode. 
Depends on FTSET and FTWATCH which are normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

2-211 



COMMANDS - 674-

I SET WATCH command (Cant) I 

Examples 

1. !.SET WATCH p) 
?ARGS ARE: DAY,kUN,WAIT,kEAD,WkITE,VEkSION,ALL,NONE 

,!.SET \~ATCH) 
?ARGS ARE: DAY,RUN,WAIT,kEAD,WkITE,VEkSION,ALL,NONE 

.:.SFT WATCH DAY kUN WA IT READ Wk ITE 

.:f< PIP) 
[2P : 3 f< : 1 9 ] 
,!tC 
[0010 2.95 457 243] 

2. :5ET WATCH VERS ION DAY) 

.:R TF'::CO) 
[9:44:30] 

[S:TECO 22(64) + ] 
*tC 

2-212 



- 675 - COMMANDS 

SKIP command 1 I 
Function 

The SKIP command spaces a magneti'c tape forward a specified number of fi les or records or to 
the logical end of tape. This command, depending on its arguments, is equivalent to the 
following PIP command strings: 

MTAn: (M #nA)-­
MTAn: (M #nD) -­
MTAn: (M #nT) --

Command Formats 

1. SKIP MTAn: x FILES 

advances forward x fi les. 

2. SKIP MTAn: x RECORDS 

advances forward x records. 

3. SKIP MTAn: EOT 

advances forward to the lOgical end of tape. 

I The words FILES, RECORDS, CII'ld EOT can be Cilobreviated to F, R, and E, respectively. 

Chc;HCilc,terj sti Cs 

The SKIP command: 

Leaves the termi 001 in m0ni t0r mede. 
Runs the PIP program, thereey aes,tr0y1A§ #Ie Iolser's C0re image. 
DepenQs en HCCL.)( which is n(imnaHy Clbseflt in the DECsystem-104'O. 

Associ Cilted MesSQ@leS 

!\-efer te Chept.er 4. 

1This command runs the COMPIL program, which interprets the command before running the PIP program. 

Version 20 COMPIL 
Version 32 PIP 2-213 



COMMANDS 

ISKIP command (Cont) I 

Examples 

.SKIP IVTA0: 4 FILES) 

.SK IP IVTA I: EOT) 

.~K IP fv'TA2: 20 kFCOkDS) 

Version 20 COMPIL 
Version 32 PI P 

- 676 -

2-214 



I 

- 677-
COMMANDS 

SSAVE command I 

Function 

The SSAVE command is the same as the SAVE command except that the high segment, if present, 
will be sharable when it is loaded with the GET command. To indicate this sharability, the 
high segment is written with extension .SHR instead of .HGH. A subsequent GET will cause 
the high segment to be sharable. Because an error message is not given if the program does 
not have a high segment, a user can use this command to save system programs without having 
to know which are sharable. 

On magnetic tape, if the low or high segment is missing, a null record is output before the 
EOF for the missing segment so that two EOFs cannot occur consecutively. Therefore, a saved 
nu II segment does not appear as a logi ca I E OT (2 E OFs ina row). 

The SAVE command rather than the SSAVE command, should be used when debugging the pro­
gram. This is because a GET command after a SSAVE command does not reinitialize the 
original high segment from the file after the user modifies it with the D command or the DDT 
program. Refer to Appendix D for more information on the SSAVE command. 

Command Format 

SSAVE dev:file.ext [proi,progj core 

Arguments and defaults are the same as in the SAVE command. 

Characteristics 

The SSAVE command: 

Leaves the terminal in monitor mode. 
Requires core. 
Does not operate when a device is currently transmitting data. 

Associated Messages 

Refer to Chapter 4. 

Example 

.SSAVE DSK:TEST) 
joB SAVED 

!. 

2-215 

(continued on next page) 



COMMANDS 

ISSAVE command (Cant) I 

Example (Cont) 

.LOAD f ILEl) 
~CRO: fIlEl 
LOAD ING 

LOADER 1 K CORE 
EXIT 

.SSAVE) 
JoB SAVED 

• GET) 
JoB SETUP 

- 678 -

Campi Ie and load program. 

Save a sharable copy. The filename is taken from 
the routine that contained the starting address. 

Get a sharable copy . 

2-216 



- 679 - COMMANDS 

ST ART command 

Function 

The START command begins execution of a program either previously loaded with the GET com­
mand or interrupted (e.g., tC). The old program counter is copied from .JBPC to .JBOPC. 
An explicit start address is optional, and, if omitted, the address supplied in the file (.JBSA) 
is used. If an address argument is specified and the job was executing a UUO when interrupted 
(i. e., it was in exec mode but not in TTY input wait or S LEE P mode), the moni tor sets a status 
bit (UTRP) and continues the job at the location at which it was interrupted before trapping to 
the specified START address. When the UUO processing is completed, the monitor clears the 
status bit, sets .JBOPC to the address following the UUO, and then traps to the START address. 
If the job is in TTY input wait or SLEEP mode, the trap to the program occurs immediately, and 
• JBOPC contains the address of the UUO. If the job is in user mode, the trap also occurs im­
mediately. 

Command Format 

START adr 

Characteristi cs 

adr = the address at which execution is to begin if other than the location specified 
within the file (.JBSA). This argument is optional. If adr is not specified, the address 
comes from. JBSA. A starting address of 0 may be specified. 

The START command: 

Places the terminal in user mode. 
Does not operate when a device is currently transmitting data. 
Requires core. 
Requires LOGIN if an address argument is specified. 

Associated Messages 

Refer to Chapter 4. 

Example 

!.START) 

2-217 



COMMANDS - 680 -

I SUBMIT command 

Function 

The SUBMIT command is used to place entries into the input queue for the Batch system. This 
command is equivalent to the following form of the QUEUE command: 

QUEUE INP: jobname = control file, log file 

Command Format 

SUBMIT jobname = control fi Ie, log fi Ie 

jobname = name of the job being entered into the queue. 

control file = name of the control file. This file contains all monitor-level and user­
level commands for processing by the Batch Controller (BATCON}. 

log fi Ie = name of the log fi Ie. This file is used by the Batch Controller to record its 
processing of the job. 

Only the two files mentioned above can be specified in a request to the Batch input queue. 
The name of the control fi Ie is required; the log fi Ie name is optional and, if omitted, is taken 
from the control file. If the jobname is ommited, it is the name of the first file in the request, 
not the name of the first file given. If an extension is omitted, the following are assumed: 

. cn for the control fi Ie 

. LOG for the log fi Ie. 

Three categories of switches can be used in the command string: 

1. Queue-operation - Only one of these switches can be placed in the command 
string because they define the type of queue request. The switch used can appear 
anywhere in the command stri ng. 

2. General - Each switch in this category can appear only once in the command string 
because they affect the enti re request. The swi tch used can appear anywhere in 
the command string. 

3. Fi Ie control - Any number of these switches can appear in the command string be­
cause they are specific to individual files within the request. The switch used 
must be adjacent to the fi Ie to which it applies. If the switch precedes the fi le­
name, it becomes the de fa l,lIt for subsequent files. 

Version 3 QUEUE 2-218 



- 681 - COMMANDS 

I SUBMIT command (Cant) I 

Command Format (cont) 

The following switches can be used with the SUBMIT command. 

Switch 

/AFTER:tt 

/CARDS:n 

/CORE:n 

/CREATE 

/DEADLINE:tt 

/DEPEND:n 

/DISPOSE:DELETE 

Version 3 QUEUE 

Explanati on 

Process the request after the specified time; tt is either 
in the form of hhmm (time of day) or +hhmm (time later 
than the current time). The resulting AFTER time must 
be less than the DEADLINE time. If the switch, or the 
value of the switch, is omitted, no AFTER constraints 
are assumed. 

Use n (decima I) as the maximum number of cards that 
can be punched by the job. If the switch is omitted, 
no cards are punched. If the switch is given with no 
value, 2000 cards is assumed as the default. 

Use n (decimal K) as the maximum amount of core 
memory that the job can use. If the switch is omit­
ted, 25K is the maximum. If the switch is specified, 
but the va lue is omitted, the defau It maximum is 
40K. 

Make a new entry into the Batch input queue. This 
switch is the default for the queue-operation switches. 

Process the request before the specified time; tt is 
either in the form hhmm (time of day) or +hhmm 
(time later than the current time). The resu Iting 
DEADLINE time must be greater than the AFTER 
time. If the switch, or the value of the switch, is 
omitted, no DEADLINE constraint~ are assumed. 

Specify the initial value of the dependency count 
(in decimal). When used with /MODIFY, this 
switch changes the dependency count of another 
job. If n is a signed number (+ or -), that number 
is added to or subtracted from the dependent job's 
count. If n is not a signed number, the dependent 
job's count is changed to n. If this switch is omit­
ted, no dependency is assumed. 

De lete the fi Ie after processi ng. 

Category 

General 

General 

General 

Queue Operation 

General 

General 

Fi Ie Control 

(continued on next page) 

2-219 



COMMANDS - 682-

I SUBMIT command (Cont) I 

Command Format (cont) 

Switch 

/DISPOSE:PRESERVE 

/DISPOSE:RENAME 

/F 

/FEET:n 

/KILL 

lUSt 

/MODIFY 

/NEW 

Version 3 QUEUE 

Explanation 

Save the file after processing. This is the default for 
all fi les except those with extensions. TMP, . LST, 
.CDP, .LPT, .PLT, and .PTP. 

Rename the file from the specified directory imme­
diately, remove it from the logged-out quota, and 
delete it after processing. This is the default for 
files with extensions .TMP, .LST, .CDP, .LPT, 
.PLT, and .PTP. 

List the entries in the input queue, but do not update 
the queues. Therefore, the list may not be an up-to­
date listing, but the listing will be faster than with 
JUST. 

Use n (decimal) as the maximum number of feet of 
paper tape that the job can punch. If the switch is 
omitted, no paper tape is punched. If the value is 
omitted, the default is 10*B+20 feet, where B is 
the number of blocks in the request. 

Remove the specified entry from the Batch input 
queue. This switch can be used for deleting a 
previously-submitted request as long as the request 
has not been started by the Batch Controller. 

List the entries in the input queue; the default is all 
entries for all jobs of all users. 

Alter the specified parameters in the job. This switch 
requires that the user have access rights to the job. 
It can be used for altering a previously submitted re­
quest as long as the request has not been started by the 
Batch Controller. 

Accept the request although the fi Ie does not yet 
exist. This is the default for the log file. When 
~acing this switch with the control file, the user 
can submit his job and then create the control file. 

Category 

Fi Ie Control 

Fi Ie Control 

Queue Operati on 

General 

Queue Operati on 

Queue Operati on 

Queue Operati on 

Fi Ie Control 

(continued on next page) 

2-220 



Command Format {conti 

Switch 

/OUTPUT:n 

/PAGE:n 

/PHYSICAL 

/PRI ORITY :n 

/PROTECT :nnn 

/RESTART:O or 1 

/SEQ:n 

Version 3 QUEUE 

- 683 -

Exp lanati on 

Cause job to terminate with a /Z:n to KJOB (n is 
from 0 to 4). 

N=O Suppress all normal queuing performed at 
LOGOUT time. 

N=l Queue only the log file. 
N=2 Queue only the log fi Ie and spooled out­

put (e.g., *. LPT). 
N=3 Queue the log file, spooled output, and 

*. LST fi les. 
N=4 Queue the log fi Ie, spooled output, 

*. LST fi les, and any requests deferred to 
LOGOUT time (default). 

Use n (decimal) as the maximum number of pages of 
output that the job can print. If the entire switch 
is omitted, the maximum is 200 pages; if only the 
value is omitted, the maximum is 2000 pages. 

Suppress logical device name assignments for the 
device specified. 

Assign the specified external priority (n=O to 62) 
to the request. The larger the number, the greater 
priority the job has. The default is 10 if no switch 
is given and 20 if the switch is specified without a 
value. 

Assi gn the protecti on nnn (octa I) to the job. If the 
switch, or the value of the switch, is omitted, the 
standard protecti on is assumed. 

A value of 0 means the job is not requeued or re­
started by the Batch Controller after a system crash 
{default}. A message is sent to the job's log file. 
A value of 1 means the job is restarted by the Batch 
Controller. 

Specify a sequence number to help in identifying 
a request to be modified or deleted. 

2-221 

COMMANDS 

I SUBMIT command (Cont) I 

Category 

General 

General 

Fi Ie Control 

General 

General 

General 

General 

(continued on next page) 



COMMANDS - 684 -

ISUBMIT command (Cont) I 

Command Format (cont) 

Switch 

/START:n 

/START:xxx 

/TIME:hhmmss 

/TPLOT:n 

/UNIQUE:O or 1 

Characteristics 

Exp lanati on 

Begin on the nth line of the control fj Ie. If the 
switch, or the value of the switch, is omitted, the 
Batch Controller starts with the first line. 

Start at the statement labe lied xxx (up to 5 characters) 
of the contro I fj Ie. 

Specify the central processor time limit for the job. If 
no switch is specified, the limit is 5 minutes; if the 
switch is given without a va lue, the limit is 1 hour. 

Use n (decimal minutes) as the maximum amount of 
plotting time allowed for the job. If the switch is 
omitted, no plotter time is allowed; if the value is 
omitted, but the switch is given, the maximum is 
10 minutes. 

Run any number of Batch jobs under this project­
programmer number at the same time, if O. Run 
only one Batch job at anyone time, if 1 (default). 

The SUBMIT command: 

Leaves the terminal in monitor mode. 
Runs the QUEUE program. 

Category 

Fi Ie Control 

Fi Ie Control 

General 

General 

General 

Depends on FTQCOM which is normally absent in the DECsystem-1040. 

Associ ated Messages 

Refer to Chapter 4. 

Version 3 QUEUE 2-222 



- 685 - COMMANDS 

I SUBMIT command (Conti I 

Examples 

~SUBMIT USRJOB=CO~TRL,LOGFIL) 

The defaults are as follows: 

1. control fi Ie name is CONTRL. cn 
2. log file name is LOGFIL. LOG 
3. no cards punched (/CARDS:O) 
4. maximum core of 25K (/CORE:25) 
5. no dependency (/DEPEND:O) 
6. control and log files are saved after spooling (/DISPOSE:PRESERVE) 
7. no paper tape punched (/FEET:O) 
8. all line printer output is spooled with the maximum pages being 200 

(/OUTPUT :4, /PAGE :200) 
9. priority is 1{) (/PRIORITY:10) 

10. standard protection is assumed (/PROTECT:nnn (standard)) 
11. job is not restarted after a crash (/RESTART:O) 
12. control file is begun on the first line (/START:1) 
13. maximum CPU time is 5 minutes (/TIME:O:05) 
14. no plotter time allowed (/TPLOT:O) 
15. only one job at a time under a given project-programmer number is run 

(UNIQUE:1) 

.SUBMIT U~RJO~./MODIFY/FEET:35/CORE) 

Modify the original request to include 35 feet as the maximum number of feet of paper 
tape that the job can punch and 40K of core as the maximum amount of core that the 
job can use. This command is valid only if the job has not been started yet by the 
Batch system. 

~SUPMIT USRJOBD/KILL) 

Kill the job on Iy if it has not been started by the Batch system. 

Version 3 QUEUE 2-223 



I 

COMMANDS - 686 -

SYSTAT command 

Function 

The SYSTAT command runs a system program which prints status information about the system. 
This information allows a user to determine the load on the system before logging-in. 

To write the output on the disk as a file with name SYSTAT. TXT, assign device DSK with 
logical name SYSTAT. 

The SYSTAT command types the status of the system: system name, time of day, date, uptime, 
percent null time (idle plus lost time), number of jobs in use. 

It types the status of each job logged-in: job number; project-programmer number (**, ** = 
detached, [OPR] = the project-programmer number of the operator, [SELF] = user's project­
programmer number); terminal line number (CTY = console terminal, DET = detached, Pn = PTY 
number); program name being run; program size; job and swapped state (refer to DECsystem-10 
Monitor Calls); run time since logged-in. 

It types the status of high segments being used: narpe (PRIV = nonsharable, OBS = superseded); 
device or fi Ie structure name from which the segment came; directory name (**, ** if detached); 
size (SW = swapped out, SWF = swapped out and fragmented, F = in core and fragmented on 
disk, Spy = user is executing the Spy UUO); number of users in core or on the disk. 

The command types swapping space used, virtual core used, swapping ratio, active swapping 
ratio, virtual core saved by sharing, average job size. 

It types status of busy devices: device name, job number, hQW device is assigned (AS = 
ASSIGN command, IN1i = INlT or OI'EN UUO, AS+INH = bath ways). 

lit ty-pes system file struc"l:tI'es: free blecks, rn<WAIt count, single-access job. 

It types remote St<ltti0A5: nllm0er of stat ion, status of stati on • 

It tyJMS dataset cGlrWr01: nllmber ClJf t.he TTY, stgtU5 I!lf TTY • 

Version 467 SYSTAT 2-224 



I 

I 

- 687- COMMANDS 

[SYSTAT command (Cont)1 

Command Format 

SYSTAT arg 

Characteristics 

arg = one or more single letters (in any order) used to type any subset of the SYSTAT 
output. This argument is optional. The following message, produced by typing 
SYSTAT /H, lists the various arguments to the SYSTAT command • 

• SYSTAT IH) 
SYSTAT V467(S) 
SYSTAT INSTRUCTIONS: 
TYPE "SYS<C.RET.>" TO LIST THE ENTIKE ~TATU~I OK 
TYPE "SYS" FOLLOWED BY ONE OR tv,ORE LETTERS AS FOLLOWS-­
B BUSY DEVICE STAT~S 
D DORMANT SEGMENT STATUS 
E NON-DISK ERROR REPORT 
F FILE STRI~TURE STATUS 
H THIS I"'ESSAGE 
J JaR STAniS 
L OUTPUT TO LPT 
N NON-JOB STATUS (ALL RUT J) 
a OTHER SYSTEM STATUS 
P DISK PERFORMANCE 
R REMOTE STATION STATUS 
S SHORT JOB STATUS 
T DATASET STATUS 
X READ DSK:CRASH.XPN 
NNN PRINTS JUST JOB NNN (. DOES THIS JOB) 
[PIPNl PRINTS JIJST JORS WITH THAT PkOJ-PkOG (P AND/Ok PN t-iAY bE *) 

#NNN PRINTS JUST JOBS FROM TERMINAL NNN 
(ALSOI C=CTY, PNN=PTYNNI TNN=TTYNNI.-THIS TTY) 

The SYSTAT command: 

Leaves the terminal in monitor mode. 
Runs the SYSTAT program, thereby destroying the user's core image. 
Does not require LOGIN. 

Depends on FTCCLX which is normally absent in the DECsystem-l040. 

Version 467 SYST AT 2-225 



COMMANDS - 688 -

I SYSTAT command (Cont) I 

Exampies 

~.:ii.:iTAT) 

b!AIU::' OF B5iil4~0-05 #413. Af 16:15:1'1 ON 11 -At>R -72 

Ut-' r It<:~ 7:00:5':1. 108% NULL IIl':E = 105% IDLE + 3% LOST 
5.J .JOB.:; IN U::'E OUT OF 64. 50 LOGGED IN. 2 DETACHED 

JOB wHO LINEN wHAT .:iIZECK) STAn: HUN TIl"'E 

1 [Ot>rl ] DET OAEt<:ON 5 +St> l' SL sw 20 
2 41l1.64 131 TECO 2+3 IC SW 7 
3 (uPH] 2 OPSEH 1 +3 HB SIN 3:43 
4 [Ot>H] 4 UI"OUNT 2+3 IC Sw 3:38 
5 2.111 3 I' It> 1 +4 IC sw 26 
6 2'14,.1431 60 COBOOT 14+8 RN 12: 1 5 
'I [ot>rl ] cry I' It> 1 +4 IC sw 43 
8 16.35 2~ FDS},S 22 II !:jill 1: 37 
'J 347.1246 65 PIP 1 +4 IC sw 5 

1 III 271.1131 64 QUEUE 2+4 IC sw 29 
1 1 (Or'r{ ] P0 BATCON 2+3 fiN 2:45 
12 2 'I 1 • 7~ 1 61 SEEK 2 +8 rI sw 5:138 
13 33'1.1113 114 KJOB 1 +3 IC SW 13 
14 41l1.64 150 TECO 2 +3 TI SW 4:37 
15 122.216 124 kJOB 1 +4 CB 2 
16 16.10 'I t>2 S1'STAT 6+SPY SL SW 25 
1 7 142.1243 62 TECO 2+3 TI 1 :00 
18 146.51210 112 IECO 2+3 TI 2:09 
19 40.65 14 'I EDITS 2+6 II SIN 1 :24 
20 2411.353 155 TECO 2 +3 II SIN 1 
21 CUr'rl ] 1'1 LPTSPL 2 10 13:47 
22 345.1417 74 EDITS 2+6 IC SW 43 
23 caPri J P3 U>ISPL 2 10 18:39 
24 (Or'H] t>4 PTt>SPL 2 +3 HB SW 1 :25 
25 (OPrl J 1 Ot>.:iER 1 +3 HB SW 46 
26 [ot>H. J 1'6 Ot>rl Ofv 0 2+5 TI SW 1 : 38 
2 " (Ot>H. J 1'5 OPH.Or-;O 2+5 SL SW 1 : 31 
28 360.1436 137 Ufo<OLlNT 2+3 CB 1 : 01 
29 125.207 15 EDITS 2+6 II Sill 1 
3121 110.1412 127 TECD 2+3 DI 7 
31 402.570 12 I' If' 1 +4 CB SIN 1 :26 
32 405.505 25 PIP 1 +4 IC SW 1 : 1.3 
33 4(1):,633 146 TECD 2 +3 TI 5:33 
34 211.'/131 14 SEEK 2+8 TI SW 4 
35 10.20 142 0 13+34 TI 33: 14 
36 413.521 21 TECD 2+3 II P.0 
37 41l12.570 ~7 DCIDE 4 IC SIN 12 

(continued on next page) 

Version 467 SYSTAT 2-226 



- 689 -

Examples (cont) 

38 122,1202 136 EDITS 2+6 
3~ 60,60 153 TECO 2+3 
40 406,104 35 PLEASE 1 
41 4102,5'(4 36 SPACE 2 
'12 2 '( 1 ,701 30 HAFCO' 6+8 
43 14,1145 P10 .\Jl>OUNI 2+3 
44 14,1145 1 1 DIRECT 1 +3 
45 2,5 135 l.lUJo:UE 3+3 
46 11,176 144 CO/V,PCI 5 
4 '( 10,33 DEI Ut-OUNT 2+3 
48 10,34 6 TECO 4+3 
49 2,!:l 13 S'rSfAT 6+SPY 
50 110,1367 157 TECO 2+3 
51 340,110 '( 26 AID 2+9 
52 2,5 7 SYSTAT 4 
53 122,1007 122 n:co 2+3 
r'NN C Otu,ESr'ONDS IO TT'il72+NN 

HIGH SEGi"JENTS: 
i'rtOGHAi". DEVICE OWNJo:/\ HI GH( 10 USEHS 

Or'SEH DSKil S¥S 3 SW ·2 
DIrlECT VSKB S'rS 3 SW 
lJt-oANGn VSKtl S'I'5 3 2 
pIt' D5~B S'I'S 4 51.' 5 
TECO DSKB S'rS 3 12 
EVIlS DSKB SYS 6 sw 4 
(rIiIV> JOB 35 34 1 
lJUI!;UE OS !ill S'rS 4 2 
LIBLiL DSlill SYS 8 4 
Oi",OUNT D.':.Iili S'I'S 5 SW 2 
PTPSt-'L DSKB SYS 3 SW 1 
UI',OUNI DSlill SYS 3 4 
KJOB DSKB S'rS 3 SIN 1 
AID IJSKI:3 S'I'S 9 SW 

SWAPPING St'ACE USED 156/635 = 25% 
VIrlI. COHE USEV = 254/635 = 40% 
SWArr'ING rlATIO = 254/144 = 1.~ 
ACIIVE SWAPPING rlATIO = 75/144 = 0.5 

COMMANDS 

I SYSTAT command (Cont)1 

II SW 1 
TO 6:33 
SL SW 3 
TI SW 10 
n 2:11 
SL SIN 1 
'C SW 45 
CB SW 0 
TO 2:16 
TO SW 1 
II 3:02 
HN 0 
TI SW 16 
HN SW 1 
CB 0 
II SIN 24 

VIHT. COrlE S~VED BY SHArlING = 115/(115+254) = 31% 
AVb(AGE JOB SIt,E = 163/53 = 3 d + 206/53 = 3 .• 9 TOTAL 369/53 

(continued on next page) 

Version 467 SYSTAT 2-227 



COMMANDS 

ISYSTAT command (Conti I 

Examp les (cont) 

BU~'i DEVICE~: 

DEVICE JOB 

LPTII:l 23 
Lt>Tl 21 
DTAl 14 
DfA2 19 
DTA3 33 
DfA4 1 
DTA6 21 
iHA'I 26 
MIAI 31 
I",TA2 35 
MTA3 31 
PIP0 24 
72 DI~X DDB~ 

wH'i 

AS+INIT 
AS+INIT 
AS 
AS 
A~ 

AS 
AS+INIT 
AS+INIT 
AS 
AS 
A~ 

INIT 

S'iSTE~ ~ILE ~THUCTUHES: 

NAME ~HEE MOUNT 
D~XA 105 12 
DSKB 17220 54 
DSKC 35~95 5 
DIAU 2~35 3 
TOTAL FriEE 56655 

DATASET CONTHOL 
'flU STATUS 

60 IN USE 
61 IN USE 
62 IN USE 
64 IN USE 
65 IN USE 
12 IN USE 
74 IN USE 

• XJOB 

Version 467 SYSTAT 

- 690-

LOGICAL 

(continued on next page) 

2-228 



- 691 - COMMANDS 

I SYST AT command (Cont) I 

Examp les (cont) 

.SYSTAT r') 

SfATUS OF 850400-05 '40 AT 16:27:49 ON 11-APR-72 

VISK PERI'-OH/",ANCE STATI5TICS: 
UNIT 01{ FIS 

HH Bill OH Ow XR XW MR ~W 

D5KA 716 FHEE 
~'HA1<lHD002>: 716 FREE .. 0 SEEKS 

6616 177 59861 8811 0 0 30062 27935 
EHROn5: 1DAT:1 RETRIES:1 2CONI:4000 .. 15 1CONI:4000 .. 4015 2DATAI:21 1DATAI 

: 140071 
DSKB 17215 fo'REE 
DPA0(102446>: 4445 FHEE .. 54617 SEEKS 

30498 39483 12648 1155 0 0 41622 10489 
MSB ERRORS: 1DAT:11 HETrlIES:1 2CONI:15 1CONI:5 .. 4015 2DATAI:54661 .. 40000 
1DATAI:54661 .. 40000 

DPA1(117986>: 4345 FREE .. 42791 SEEKS 
37609 41724 17037 2790 0 0 20563 9505 

MS8 ERRORS: 1DEV:8 1DAf:240 RETRIES:1 2CONI:15 1CONI:5 .. 4015 2DATAI:102 
261 .. 240000 1DATAI:1~2261 .. 240000 
VPA2(102376>: 4170 FREE .. 33215 SEEKS 

35205 35413 14911 1236 0 0 15503 7687 
/",58 

SEEKS VPA4(102490>: 4310 FREE .. 32078 
38472 32920 12599 

~58 ERHOHS: 1DEV:6 RETRIES:3 
1DATAI:456661 .. 0 

2215 0 0 9711 5934 
2CONI:15 1CONI:40015 2DATAI:456661 .. 400000 

V5KC 35925 FREE 
VPA5(lo1669>: 35925 FREE .. 2863 SEEKS 

1705 337 250 1 
l'j58 

DIAG 2945 FREE 
DPA6(DIAG01>: 2945 FREE .. 6808 SEEKS 

2133 2532 8423 533 

ACrIVE SwAPPING 
UNIT H 
joHA0 809992 
jo'HAl 397720 

• KJOB 

Version 467 SYSTAT 

STAT ISTICS: 
III USED( 10 
366056 2tH 1335 
351376 181/300 

2-229 

84% 
60% 

o o 4236 1014 

8199 2602 



COMMANDS 

ISYSTAT command (C~ 

Examples (Cont) 

.J,SVS [10,.]) 
SVSTAT VAS7 (5) 
10 [SELF] HI 
14 1~,133 ~ 

.l.SVS 10) 
SVSTAT VA"7 (5) 

STATUS OF 

- 692-

SYSTAT 5+SPV 
THO 2+3 

RN 
TI 

UPTIME 45:47, fi0X NULL TI~E • 5!5X IOLE + 5X LOST 
15 JOBS IN USE OUT of 37. 15 LOGGED IN, 1 OETACHED 

SWAPPING SPACE USED = 6~/3!5~ • 19X 
VIRT. CORE USED • 65/350 • 24% 
SWAPPING RATIO • 85/18 • 4.7 
ACTIVE SWAPPING RATIO. 5/1S • 0.3 
VIRT. CORE SAvEn BV SHARING. 5/(5+85) • 6X 

3 
47 

AVERAGE JOB SIZE. 49/15 • 3.3 + 41/15 • 2.7 TOTAL. 90/15 • 6.0 

VersiGn 467 SYSTAT 2-230 



- 693 - COMMANDS 

TECO command 1 

Function 

The TECO command runs TECO and opens an already existing file on disk for editing. 
Refer to the TECO man~al in the DECsystem-10 Software Notebooks. 

Command Format 

TECO dev:fjle.ext [proj,prog) 

dev: = the device or fi Ie structure name containing the existing fi Ie. If omitted, DSK: 
is assumed. 

file. ext = the filename and filename extension of the existing file. If omitted, the 
arguments of the last EDn-class command are used. 

[proj,prog) = the directory name in which the file appears. If omitted, the user's 
di rectory is assumed. 

Characteristi cs 

The TECO command: 

Places the terminal in user mode. 
Runs the TECO program, thereby destroying the user's core image. 
Depends on FTCCl.)( which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Example 

~TECO TEST! .~AC) 

*tC 

.TECO OSKB:FILNAM.CBL [100#27]) 

1This command runs the COMPIL program, which interprets the commands before running TECO. 

Version 20 COMPIL 
Version 23 TECO 2-231 



COMMANDS - 694-

TIME command 

Function 

The TIME command causes typeout of the total running time since the last TIME command, fol­
lowed by the total running time used by the job since it was initialized (logged-in), followed 
by the integrated product of running time and core size (KILO-CORE-SEC==). Time is typed in 
the following format: 

where 

hh :mm:ss • hh 

hh == hours 
mm == minutes 
ss. hh == seconds to nearest hundredth. 

Interrupt level and job scheduling times are charged to the user who was running when the 
interrupt or rescheduling occurred. 

NOTE 

If automatic runtime is enabled using the SET WATCH 
command, the incremental runtime is usually O. 

Command Format 

TIME job 

Characteristi cs 

job == the job number of the job whose timing is desired. If job is omitted, the job to 
which the terminal is attached is assumed. In this case, monitor types out the incre­
mental running time (running time since last TIME command) as well as the total run­
ning time since the job was initialized. 

The TIME command: 

Leaves the terminal in monitor mode. 
Does not require LOGIN. 

Associated Messages 

Refer to Chapter 4. 

2-232 



Example 

• TIME) 
'.38 
III 38 
iITEi5'~CORE-SEClIl 

.TI) 

::~: 
KIL.O-CORE-SHIIl 

~DIR/F) 

NEW505 
NEW505 
FO!) 
C 
PETAL.S 
PETAL.S 
CSHEL.L 
CIO 
TRYCIO 
METER 
SURFIT 

~TI) 
0.40 
L.ll. 

B~K 
RNO 
SFD 
MAC 
F4 
SAV 
MAC 
t-'AC 
MAC 
RNO 
ALG 

KIL.n-CORE-SECaS 

DSKB: 

DSKCZ 

- 695 - COMMANDS 

[TIME command (ContI I 

The command is given for the first time after LOGIN; 
therefore, the incremental time equals the total 
time since LOGIN. 

[1\~.770] 

The DIRECT command took .40 seconds of runtime 
and 5 ki lo-core-seconds. 

2-233 



COMMANDS - 696 -

TPUNCH command 

Function 

The TPUNCH command is used to place entries into the paper-tape punch output queue. This 
command is equivalent to the following form of the QUEUE command: 

QUEUE PTP: jobname = list of input specifications. 

The TPUNCH command can be further abbreviated to 

PUNCH jobname = list of input specifications. 

However, individual installations may redefine PUNCH to mean output to the card-punch 
queue instead of the paper-tape punch queue. 

Command Format 

TPUNCH jobname = list of input specifications 

jobname = name of the job being entered into the queue. The default is the name of 
the first file in the request not the name of the first file given. These differ when the 
fi rst fi Ie given dges not yet exist. 

input specifi cations = a sing Ie fj Ie specifi cation or a string of fi Ie specifi cations, 
separated by commas, for the disk files being processed. A file specification is in the 
form dev:fi Ie. ext [proj, prog]. 

dev: = any fi Ie structure to whi ch PTPSPL wi II have access; the defau It is DSK:. 

fi Ie. ext = names of the fi les. The fi lename is opti ona I. The defau It for the fi rst fi le­
name is *, the default for subsequent files is the last filename used. The extension can 
be omitted; the default is .PTP. 

[proj,progJ = a directory to which the user has access; the user's directory is assumed if 
none is specified. 

The wildcard construction can be used for the input specifications. 

If no arguments appear in the command string (i.e., only the command name is given), all 
entries in the paper-tape punch queue for all jtlbs are listed. 

Switches that aid in constructing the queue entry can also appear as part of the input specifi­
cations. These switches are divided into three categories: 

1. Queue-operation - Only one of these switches can be placed "in the command 
string because they define the type of queue request. The switch used can appear 
anywhere in the command string. 

(continued on next page) 

Version 3 QUEUE 2-234 



- 697- COMMANDS 

I TPUNCH command (Cont) I 

Command Format (cont) 

2. General - Each switch in this category can appear only once in the command 
string because they affect the entire request. The switch used can appear any­
where in the command string. 

3. File control - Any number of these switches can appear in the command string 
because they are specific to individual files within the request. The switch used 
must be adjacent to the file to which it applies. If the switch precedes the file­
name, it becomes the default for subsequent files. 

The following switches can be used with the TPUNCH command. 

Switch 

/AFTER:tt 

/BEFORE:t 

/BEGIN:n 

/COPIES:n 

/CREATE 

/DEADLINE:tt 

Version 3 QUEUE 

Exp lanati on 

Process the request after the specified time; tt is either 
in the form of hhmm (time of day) or +hhmm (time later 
than the current time). The resulting AFTER time must 
be less than the DEADLINE time. If the switch, or the 
value of the switch, is omitted, no AFTER constraints 
are assumed. 

Queue on Iy the fi les wi th a creati on date before 
time t where t is in the form dd-mmm-yy. 

Start the output on the nth foot of tape. The default 
: ~ to beg: n 0,-,t1"_'t on thE! fi rst foot. 

Repeat the output the specified number of times. N 
must be less than 64. If more than 63 copies are 
needed, two separate requests must be made. If this 
switch is omitted, one copy is made. 

Make a new entry into the paper-tape output queue. 
This switch is the default for the queue-operation 
switches. 

Process the request before the specified time; tt is 
either in the form hhmm (time of day) or +hhmm 
(time later than the current time). The resulting 
DEADUNE time must be greater than the AFTER 
time. If the switch, or the value of the switch, is 
omitted, no DEADUNE constraints are assumed. 

Category 

General 

General 

Fi Ie Control 

Fi Ie Control 

Queue Operation 

General 

(continued on next page) 

2-235 



COMMANDS - 698 -

ITPUNCH command (Cont) I 

Command Format (cont) 

Switch 

/DISPOSE:DELETE 

/DISPOSE:PRESERVE 

/DISPOSE:RENAME 

/F 

/FILE:ASQI 

/FILE:ELEVEN 

/KILL 

Version 3 QUEUE 

Explanation 

Delete the file after spooling. 

Save the file after spooling. This is the default 
of all fi les except fi les with extensions of • LST, 
.TMP, andiftheprotectionisOxx, .PTP. 

Rename the fi Ie from the specified directory im­
mediately, remove it from the logged-out quota, 
and delete it after spooling. If omitted, this 
is the default for files with extensions. LST, 
.TMP, andiftheprotectionisOxx, .PTP. 

List the entries in the paper-tape punch queue, but 
do not update the queues. Therefore, the list may 
not be an up-to-date listing, but the listing will be 
faster than with JUST. 

I ndi cate that the fi Ie format is ASCII text. Th i sis 
the defau It. 

Indicate that the file format is MACXll binary for­
mat. 

Remove the specified entry from the paper-tape 
punch queue. This switch can be used for deleting 
a previously submitted request as long as the request 
has not been started by the paper-tape punch spooler. 

Category 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

Queue Operati on 

Fi Ie Control 

Fi Ie Control 

Queue Operati on 

(continued on next page) 

2-236 



Command Format (cont) 

Switch 

/UMIT:n 

JUST 

/MODIFY 

/NEW 

/NOTE:a 

/NULL 

/OKNONE 

/PHYSICAL 

/PRI ORITY :n 

/PROTECT :nnn 

/REMOVE 

Version 3 QUEUE 

- 699 - COMMANDS 

ITPUNCH command (cont)j 

Exp lanati on 

Limit the output to the specified number of feet. The 
default is 10*B+20 feet, where B is the number of 
blocks in the request. 

List the entries in the paper-tape punch queue; if the 
switch, along with all other switches, is omitted, all 
entries for all jobs of all users are listed. 

Alter the specified parameters in the job. This switch 
requires that the user have access rights to the job. 
It can be used for altering a previously submitted 
request as long as the request has not been started by 
the spooler. 

Accept the request even if the file does not yet exist. 

Punch the specified text (a) in the output. 

Accept the request even if there is nothing in the 
request. No error message is given. 

Do not output message if no fi les match the wi Id­
card construction. This is assumed at KJOB time. 

Suppress logi ca I devi ce name assi gnments for the 
device specified. 

Assign the specified external priority (n = 0 to 62) 
to the request. The larger the number, the greater 
priority the job has. The default is 10 if no switch 
is given and 20 if the switch is specified without a 
value. 

Assign the protection nnn (octal) to the job. If the 
switch, or the value of the switch, is omitted, the 
standard protection is assumed. 

Remove the file from the queue. This switch is valid 
only with the /MODIFY switch and can be used to 
remove a previously submitted fi Ie as long as the 
spooler has not started processi ng the request. 

Category 

General 

Queue Operation 

Queue Operation 

Fi Ie Control 

Fi Ie Control 

General 

File Control 

Fi Ie Control 

General 

General 

Fi Ie Control 

(continued on next page) 

2-237 



COMMANDS - 700 -

I TPUNCH command (Cant) I 

Command Format (cont) 

Switch 

/SEQ:n 

/SINCE:t 

/START:n 

/STRS 

/TAPE:ASCII 

/T APE :BI NARY 

/TAPE:IBINARY 

/TAPE:IMAGE 

/UN PRESERVED 

Characteristi cs 

Explanation 

Specify a sequence number to help identify a request 
to be modified or deleted. 

Queue only the fj les with creation dates after the 
specified time t where t is in the form dd-mmm-yy. 

Begin on the nth line of the file. If the switch, or, 
the va lue of the switch, is omi tted, the spooler 
starts with the first line. 

Search for the fi Ie on a II fi Ie structures in the search 
list and take each occurrence. The default is to take 
just the first occurrence. 

Punch the tape in ASCII code. If the /TAPE switch is 
not specified, the file is punched according to the 
data mode of the fi Ie. 

Punch the tape in binary mode. If the /TAPE switch 
is not specified, the fi Ie is punched according to the 
data mode of the fi Ie. 

Punch the tape in image-binary mode. If the /TAPE 
switch is not specified, the file is punched according 
to the data mode of the fi Ie. 

Punch the tape in image mode. If the /TAPE switch 
is not specified, the fi Ie is punched according to the 
data mode of the fi Ie. 

Output the fi les on Iy if they are not preserved (i. e. , 
the first digit is 0). This switch avoids redundant 
pri nti ng. 

The TPUNCH command: 

Leaves the terminal in monitor mode. 

Category 

General 

General 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

Fi Ie Control 

General 

Runs the QUEUE program, thereby destroying the user's core image. 
Depends on FTQCOM which is normally absent in the DECsystem-1040. 

Version 3 QUEUE 2-238 



- 701 - COMMANDS 

ITPUNCH command (Condl 

Associated Messages 

Refer to Chapter 4. 

Examples 

.TPUNCH TFNDMP.RFL/TAPE:BINARY/COPIES:5) 

Punch 5 copies, in binary mode, of the file DSK:TENDMP.REL. 

Version 3 QUEUE 2-239 



I 

COMMANDS - 702-

I TYPE command 1 

Function 

The TYPE command directs PIP to type the contents of the named source fi le(s) on the user's 
terminal. 

To stop the typi ng, type IC tw i ce. 

Command Format 

TYPE list 

list = a single file specification or a string of file specifications separated by commas. 
The filename is required. The extension is required if the fi-Iename has an extension. 

In addition, the full wildcard construction can be used. 

Switches can be passed to PIP by enclosing them in parentheses in the TYPE command 
string. When COMPIL interprets the command string, it passes the switches on to PIP. 

Characteristi cs 

The TYPE command: 

Leaves the terminal in monitor mode. 
Runs the PIP program, thereby destroying the user's core area. 
Depends on FTCCLX which is normally absent in the DECsystem-1040. 

Associ ated Messages 

Refer to Chapter 4. 

Examples 

.TYPE FILEA,DTA0:FILER.MAC) 
7TYPF *.H~P,DTA4:C) 

1 This command runs the COMPIL program, whi ch interprets the command before running PIP. 

Version 20 COMPIL 
Version 32 PIP 2-240 



I 

- 703 - COMMANDS 

UNLOAD command 1 

Function 

The UNLOAD command rewinds and unloads a magnetic tape or a DECtape. This command is 
equivalent to the following PIP command string: 

dev: (MU) -

Command Format 

UNLOAD dev: 

dev: = a magnetic tape (MTAn) or a DECtape (DTAn). 

Characteristi cs 

The UN LOAD command: 

Leaves the terminal in monitor mode. 
Runs the PIP program, thereby destroying the user's core image. 
Depends on FTCCLX which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.UNLOAD OTA?:) 

.UNL ~1TA3:) 

1 This command runs the COMPIL program, which interprets the command before running the PIP program. 

Version 20 COMPIL 
Version 32 PIP 2-241 



COMMANDS - 704-

I VERSION command 

Function 

1 

The VERSION command prints the version number of tire program in the user's core area 
(i.e., the last program run implicitly or explicitly). The version number is obtained from 
. JBVER and • JBHVR in the job data area and is pri nted in standard format. The output 
from this command is in one of the following representations: 

low + high The low and high segments are different. 

low 

low + 

+1 

+ high 1 

There is only a low segment. 

The low and high segments are the same. 

A GETSEG UUO has been done to a high segment which 
matches the low segment. 

A GETSEG UUO has been done to a high segment which 
does not match the low segment. 

The high segment has been released. 

With the VERSION command, the low and high segments are represented in the format 

name vers i on 

With the SET WATCH VERSION command, the low and high segments are represented in one 
of three formats: 

name version 

:name version 

S:name version 

The program is not from SYS: 

The output is the result of a SETNAM UUO (e.g., at the 
end of loading). 

The program is a system program (not logi cal devi ce SYS:). 

The name is a SIX BIT name and. the version is in standard format. When printing the version 
number, the standard format is: 

major version minor version (edit) - group who modified program last 

Output only from the SET WATCH VERSION command. 

2-242 



-705 - COMMANDS 

I VERSION command {Conti I 

Function (cont) 

The major version is octal; the minor version is alphabetic; the edit is octal and enclosed in 
parentheses; and the group who last modified the program is octal and preceded by a hyphen 
(0 = DEC development, 1 = all other DEC personnel, and 2-7 = customer use). There are no 
spaces separating the items, and if an item is zero, it does not appear in print. The paren­
theses and hyphen also do not appear in print if the corresponding item is zero. The following 
are examples of version numbers output in standard format. 

10B(335)-1 

7(5) 

54A 

Command Format 

VERSION 

Characteristi cs 

The VERSION command: 

major version 10, minor version B, edit number 335, 
group that modified program last 1. 

major version 7, minor version 0, edit number 5, group 
that modified program last 0. 

major version 54, minor version A, edit number 0, group 
that modified program last 0. 

Leaves the terminal in monitor mode. 
Oepends on FlVERS which is normally absent in the DECsystem-l040. 

Examples 

.R TECO) 

.!tC 

.VERS ION) 
TECO 22(64) + 

!TYPF SAMPL.TXT) 
THIS IS A- TF-XT FILE 

.:.VERS ION) 
PIP 31(35) + 

2-243 



COMMANDS - 706-

I WHERE comm·and 

Function 

The WHERE command enables the user to determine the station at which a specific peripheral 
device is located. If the station of a particular terminal is requested, the number returned is 
the physical location of the terminal which mayor may not be the location of the controlling 
job. This depends on whether the user changed his job's logi ca I location with the LOCATE 
command. 

Command Format 

Wf-jERE devn 

dev = any physical device name and n is the unit number. 

Characteristi cs 

The WHERE command: 

Leaves the terminal in monitor mode. 
Does not require LOGIN. 
Depends on FTREM which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Examples 

• WHERE' CDP2:) 
r 
.!.WH TTY:) 

~ 

.!.WHE nPR:) 
;I 

• WHERE CTY:) 
T 

jstati on of CDR2. 

jstation of job's terminal. 

jstation of job issuing command. 

j centra I stati on. 

2-244 



- 707- COMMANDS 

ZERO command 1 

Function 

The ZERO command clears the directory of the output device. This command is equivalent to 
the following PIP command string: 

dev: jZ .. 

Command Format 

ZERO dev: 

dev: = a DECtape (DTAn) or a disk (DSK). This argument is required. 

A directory name can be specified with ZERO DSK: and if the user has access to the 
specified directory, the directory is zeroed. If no dire~tory is specified, the user's 
directory is assumed. 

Characteristi cs 

The ZERO command: 

Leaves the terminal in monitor mode. 
Runs the PIP program, thereby destroying the user's core image. 
Depends on FTCCl)( which is normally absent in the DECsystem-1040. 

Associated Messages 

Refer to Chapter 4. 

Examples 

.ZER DTA4:) 

.:.ZERO DSK:) 

.ZER DSK: [27,40]) 

lThis command runs the COMPIL program, which interprets the command before running the PIP program. 

Version 20 COMPIL 
Version 32 PIP 2-245 



COMMANDS - 708 -



- 709 - COMMANDS 

CHAPTER 3 

BATCH SYSTEM COMMANDS 

The Batch System, operating under the control of the DECsystem-lO Operating System, increases sys­

tem throughput by processing jobs that do not require human i nteracti on. Types of jobs best suited for 

a batch environment are: large and long-running jobs, jobs that require large amounts of data, fre­

quently run production jobs, and jobs that require little or no interaction with the user. Up to 14 

Batch jobs can be processed concurrently without adversely affecting the running of timesharing jobs. 

Batch jobs may be entered from 

1. Local devices 
2. Remote devi ces 
3. Interactive terminals. 

3.1 BATCH COMPONENTS 

The Batch System consists of a group of programs; some are used for Batch operations only, others are 

avai lable for vari ous operati ons of the tota I computi ng system. 

The individual Batch components are: the Stacker, CDRSTK; the Queue Manager, QMANGR; the 

Batch Controller, BATCON; and the output spoolers, LPTSPL (line printer), CDPSPL (card punch), 

PLTSPL (plotter), and PTPSPL (paper-tape punch). 

3. 1. 1 The Stacker 

The Stacker, CDRSTK, is responsible for 

1. reading a sequential-input stream from an input device, 

2. separating the input by placing it in files according to the control cards contained in the 
input stream, 

3. creating the job's log file and entering a report of its processing, and 

4. entering the job into the Batch input queue. 

3-1 



COMMANDS - 710 -

When input is from the card reader, CDRSTK accepts ASCII, binary, 026, and DEC-029 Hollerith 

code. (Refer to Appendix B for tables of card codes.) The input is read in image mode, and CDRSTK 

converts it to one of the mentioned codes. If input is from any other device, only ASCII code is 

accepted. 

CDRSTK creates three types of files during its copying of the input data: the user's data files, the 

Batch control fi Ie, and the job's log fi Ie. The data fi les are created according to the control cards 

in the input and are placed into the user's disk area. Programs and data are copied into these files and 

are passed to the job, while it is running, by the Batch Controller. Refer to Paragraph 3.3 for the 

description of the control cards that cause CDRSTK to copy information into these files. 

A user control fi Ie is created for each va lid job and is subsequent Iy processed by the Batch Controller. 

This file contains all monitor level and user level commands encountered in the input. CDRSTK also 

enters commands resulting from the processing of certain control cards and any information that does 

not follow specific control card format. The control file is placed in the user's disk area. Refer 

to Paragraph 3.4 for a description of the Batch Controller commands that can be entered into the con­

trol fi Ie. 

The job's log fi Ie contains a report of the CDRSTK's processing, a long with a record of any operator 

intervention during its operation. This file is in the user's disk area along with the other CDRSTK­

created files and is deleted after it is printed by the line printer spooler. 

3.1.2 The Queue Manager 

The Queue Manager, QMANGR, is the program that schedules jobs and maintains system queues. 

When CDRSTK finishes processing a job, it makes an entry into the Batch input queue. The Queue 

Manager computes and dynamically revises priorities for the job and notifies the Batch Controller when 

the job is to be run. Jobs are scheduled for running according to the parameters pertaining to each 

job and to the priorities established by the system. While the job is running, its queue entry is flagged 

to show it is in use, but the entry is not deleted from the queue unti I the job terminates. When the job 

is logged off the system, an output queue entry is usually made and the entry in the input queue is 

deleted. The Queue Manager again schedules the job's output and deletes the job's output queue 

entry only when the output is completely finished. 

3.1.3 The Batch Controller 

The Batch Controller, BATCON, controls all jobs entered into the Batch System. It reads the control 

file created by CDRSTK or the user and initiates and controls the running of the job by passing data 

and system program commands directly to it. 

3-2 



- 711 - COMMANDS 

Monitor commands are examined by the Batch Controller and passed to the monitor for action. The 

Controller determines the destination of commands by interpreting the character in column 1 in each 

line of the control file. If column 1 contains a space or a tab, the spaces are ignored until a nonspace 

character is encountered. If column 1 contains an alphabetic or numeric character, the line is either 

at monitor command level or at user command level. If column 1 contains a special character, the 

Batch Controller interprets the line as follows: 

$ (dollar sign) - The interpretation depends upon the character in column 2. 

If column 2 contai ns an alphabeti c character, the line is copied to the log fi Ie as a com­
ment because it is a Stacker control line and has already been processed. 

If column 2 contains a numeric or special character, the line is treated as data. 

If column 2 contains a dollar sign' ($), the initial dollar sign is suppressed and the line is 
treated as data. 

If column 2 contains a line feed, vertical tab, or form feed, a blank line is entered into 
the log fi Ie. 

(period) - The interpretation depends upon the character in column 2. 

If column 2 contains an alphabetic character, the line is treated as a monitor command 
and the period is suppressed. 

If column 2 contains a nonalphabetic character, the line is treated as data with the 
peri od as part of the data. 

* (asterisk) - The line is treated as' a user-level command or program data and the asterisk is 
suppressed. This is the standard input data method for most system programs. 

= (equal sign) - The line is treated as a user level command or program data. The equal sign is 
suppressed and final spaces and the end of the line are suppressed (i .e., not passed to the prq­
gram). This line normally indicates a DDT or TECO command because these commands termi­
nate with special characters rather than the end of the line and would not function properly if 
the end of the line were passed. 

; (semicolon) - The line is treated as a comment to the log file. 

% (percent sign) - The line is treated as part of a command level statement label. The percent 
sign is normally reserved for DEC use. If % is encountered when the job has had no error, the 
control file is advanced, unless a %AN is encountered. In this case, the %FIN is executed. 
Refer to the discussion of the .IF command in Paragraph 3.4.5. 

The Batch Controller does not examine the contents of any lines in the control fi Ie other than those 

destined for the monitor. However, when it encounters an up-arrow (t), it converts the up-arrow as 

follows: 

If the character following the up-arrow is a numeric character, the up-arrow and the digit are 
passed to the job. 

If the character followi ng the up-arrow is an a Iphabeti c character, the up-arrow and the 
character are translated to a control character; e.g., fA is translated to CTRL-A. 

(continued on next page) 

3-3 



COMMANDS - 712 -

If the character following the up-arrow is another up-arrow, the first up-arrow is ignored and 
the second up-arrow is treated as an up-arrow; e.g., f fA is treated as fA (up-arrow A) and 
f f fA is treated as f fA (up-arrow up-arrow A). 

If the job is requesting input and is at monitor level, the control file is read until a command or inter­

mediate level line is found. If a job is requesting input at data level and the next line is a monitor 

command, the Batch Controller inserts a control-C. 

A Batch user may not issue the following monitor commands when his job is operating in batch mode: I ATTACH, DETACH, CCONT, CSTART, and SEND. If these commands are used, the line is suppressed 

and flagged at BATERR in the log file and the job is continued. All other monitor commands and 

system program commands may be used by a job operating in batch mode. 

The Batch Controller makes entries to the log fi Ie to record its processing of the control fi Ie and the 

job. 

3.1.4 The Output Spoolers 

The output spoolers receive job output that has been placed into the output queues by the Queue 

Manager. Usually a job's output is placed in a line printer queue to be printed at a later time by the 

LPTSPL spooling program at the same station from which the input was received. The output filenames 

are in the form QxxSnn. LPT, where xx is a random number, and nn is the station number of the printer 

where the job is currently located. However, the user can also specify other output devices either in 

his programs within his job or by means of the QUEUE monitor command in his job. The first method 

causes output to the card punch, paper-tape punch, or plotter to be automatically spooled by the 

system. The second specifies nonstandard output spooling to any of the spooling devices. 

3.2 SUBMITTING JOBS 

A job is a unit that consists of one step or a group of steps. It can contain (l) a single program and its 

related data, or several programs and their data, and (2) the monitor and user-level commands that are 

required to control the programs. 

The Batch system allows the user to submit his job by one of the following three methods: 

1. The user punches his job on cards, inserts control cards to CDRSTK, and leaves his cards 
at the designated place for the operator to run (refer to Paragraph 3.2.1). 

2. The user creates his job as a file for input to CDRSTK (instead of having his job on cards) 
and then runs CDRSTK himself (refer to Paragraph 3.2.2). 

3. The user bypasses CDRSTK by creati ng his own control fi Ie on disk for the Batch Controller 
and then enters his job into the Batch input queue from his terminal (refer to Paragraph 
3.2.3). 

Version 6 BATCON 3-4 



- 713 - COMMANDS 

3.2.1 Submitting a Job with Cards 

With this method, a job is submitted via a deck of cards, bounded by the control cards that mark its 

beginning and end. Other control cards to CDRSTK are interspersed among the card deck to direct 

CDRSTK's processing. Figure 3-1 shows a job containing the appropriate control cards to CDRSTK. 

This job compiles, loads, executes, and lists a FORTRAN program. 

10-0729 

Figure 3-1 Typical Job on Cards 

3.2.1.1 The $JOB Card - This card notifies CDRSTK that a job is to be processed. CDRSTK creates 

a control file into which commands are placed for the Botch Controller and a log file on the disk. The 

first argument (TEST2) shown on this card is the user-assigned name for the job; the second argument 

([20,27]) is the project-programmer number of the user. For a description of switches which can be 

used on this card, refer to Paragraph 3.3.9. 

3.2.1.2 The $PASSWORD Card - This card contains the PASSWORD associated with the project­

programmer number specified on the $JOB card. In Figure 3-1, the PASSWORD is MUMB, which was 

assigned to the user by the system manager. Refer to Paragraph 3.3.12 for more information on the 

$PASSWORD card. 

3.2.1.3 The $FORTRAN Card - This card causes CDRSTK to insert a COMPILE monitor command 

(refer to Chapter 2) into the control file in order to cause the program to be compiled. Immediately 

following the $FORTRAN card is the FORTRAN source program to be compiled. The source program 

is read into a disk file with the specified filename (or a default name if a filename is not given) and 

with an extension of .F4. Refer to Paragraph 3.3.8 for more information on the $FORTRAN card. 

3-5 



COMMANDS -714 -

3.2.1.4 The $DATA Card - The card after the FORTRAN program is the $DATA card. This card 

causes CDRSTK to insert an EXECUTE monitor command (refer to Chapter 2) into the control fi Ie in 

order to load and then execute the previously compiled program. Refer to Paragraph 3.3.3 for 

additional information on this card. 

3.2.1.5 The End of Fi Ie Card - The last card shown in the example is the end-of-fi Ie card. This card 

signals the end of the job. The card is recognized by CDRSTK as the end of the file because of the 

punches in rows 12, 11,0, 1,6, 7, 8, 9 in columns 1 and 80 of the card. Refer to Paragraph 3.3 for 

more information about this card. 

3.2.1.6 Output - Once the program is punched on cards, the card deck is submitted to the operator, 

who in turn stacks the job in the card reader. The user receives his output in the form of line printer 

listings. Refer to Paragraph 3.5 for an explanation of the job output. 

The CDRSTK control cards shown in Figure 3-1 are just a few of the control cards available to the 

user. For a complete description of all the CDRSTK control cards, refer to Paragraph 3.3. 

3.2.2 Submitting a Job with a File 

With this method, a job is submitted via a file contained on any input device that supports ASOI 

code. This file contains the program and data with card images of the control cards for CDRSTK. The 

following example shows the creation of a disk file containing a FORTRAN program and card images 

of CDRSTK control commands. Note that it corresponds to the card example in Paragraph 3.2.1 . 

.=.LOGII\' ?~1,27) 
~JORI7 5SCL! TTYII 
PASS\:JOhD: 
1~20 15-MAH-72 WED 
.IVAKF JOR) *1 $JOR'TFST2, [20,27 J) 
$FOHTHAN) 
C FORTRAN PkOGRAIV GOFS HFHE 
$[OD) 
$DATA) 
$$ 
.!EX$$ 

.!. 

3.2.2.1 Image of the $JOB Card - The first line of the file is an image of the $JOB card. Note that 

the $ character must be the first character of the line in order for CDRSTK to recognize it as a control 

command. This line causes a control fi Ie and a log fi Ie to be created on the disk when CDRSTK is run. 

The first argument (TEST2) is the user-assigned name for the job; the second ([20,27]) is the 

3-6 



- 715 - COMMANDS 

project-programmer number of the user. The $PASSWORD card image is not needed because the user 

is already logged-in when creating the input file. For additional information on the $JOB card, refer 

to Paragraph 3.3.9. 

3.2.2.2 Image of the $FORTRAN Card - This Ii ne causes CDRSTK to insert a COMPILE monitor com­

mand (refer to Chapter 2) into the control file in order to compile the program. The source program 

follows immediately and is read into a disk file with the specified filename (or a default name if a file­

name is not given) and with an extension of .F4. Refer to Paragraph 3.3.8 for more information on 

the $FORTRAN card. 

3.2.2.3 Image of the $EOD Card - This line indicates to CDRSTK the end of the FORTRAN program. 

Refer to Paragraph 3.3.6 for more i nformati on. 

3.2.2.4 Image of the $DATA Card - This line causes CDRSTK to insert an EXECUTE monitor com­

mand (refer to Chapter 2) into the control file in order to load and execute the program. 

3.2.2.5 Running CDRSTK - Once the file is created and CDRSTK is run by the user, it processes the 

user-created file in the same manner as it processes input files of jobs entered directly by the operator. 

The user runs CDRSTK by typing 

:..R CDRSTK ) 

CDRSTK responds with an asterisk, and then the user types in the following command 

~START dev :file.ext) 

where dev: is the name of the device containing the input file for CDRSTK and file.ext is the name of 

the file. Using the above file, the command is 

.iSTART DSK:JOR) 

and CDRSTK responds with 

1 

When CDRSTK has completed its processing (i.e., when it has created the control and log files and has 

entered the job into the Batch input queue), it responds with 

3-7 



COMMANDS - 716 -

indicating its readiness to accept another file. At this point, the user can enter another file or return 

to monitor mode with a tC. 

The card images shown in the preceding example are only a few of the CDRSTK control card images 

available. Refer to Paragraph 3.3 for a complete description of all of the control cards. 

3.2.3 Submitting a Job with a Control File to the Batch Controller 

With this method, a job is submitted via the steps withi n a control file to the Batch Controller. The 

fi Ie must be a disk fi Ie and is created with a system editor. Since this file is processed directly by 

the Batch Controller, control card images are not used. The control fi Ie consists of monitor commands, 

user program commands, comments, and sequence control statements. Refer to Paragraph 3.4 for a 

description of control file commands. The following is an example of creating a control file. It 

assumes that a file named DATA.F4 already exists on disk. 

~AKE JOB .CTL ) 

*I.EXECUTE ICOMP ILE DATA .F4 ILlST) 

$$ 

F:X$ $ 

Once the control fi Ie is created, the user can enter the job into the Batch input queue one of three 

ways:· 

1. SUBMIT jobname = control fi Ie, log fi Ie 

refer to the SUBMIT command in Chapter 2. 

2. QUEUE INP: jobname = control file, log file 

refer to the QUEUE command in Chapter 2. 

3. R QUEUE 

refer to the QUEUE specification in Notebook 7 of the DECsystem-lO Software Notebooks. 

3.2.4 Interjob Dependency 

Jobs are not necessari Iy run in the order that they are read into the Batch System. Priorities stipulated 

by the user on the $JOB card (refer to Paragraph 3.3.9) and additional parameters set by the Batch 

System are dynamically computed by the Queue Manager to determine in what order the jobs are run. 

However, it is often useful to submit several jobs that must be run in a specific order, for example, one 

job updates a master file and another job processes it. Therefore, the running of one job is dependent 

upon the running of the other. Although these jobs could be combined into one large job, it is some­

times necessary to keep them distinct; i.e., they might be submitted by different people at different 

3-8 



- 717 - COMMANDS 

times. Because the jobs in the Batch System are run in order of priority, the user specifies an addition­

al priority, an initial dependency count, on the $JOB card of the dependent job. This dependency 

count becomes part of the queue entry. Any input queue entry that has a dependency count greater 

than zero cannot be scheduled. When the count becomes zero, the job is scheduled, based upon the 

time it was submitted and the time that the dependency count became zero. If the dependency count 

becomes negative, an advisory message is sent to the issuing job and to the dependent job. The 

dependency count can be altered by including the QUEUE command as part of any job upon which the 

dependent job is waiting. (Refer to the QUEUE monitor command.) The QUEUE command switch that 

allows the user to change the dependency count of another job is the /MODIFY/DEPEND:nn switch. 

If the user specifies a plus or minus sign before the count (nn), that number is subtracted from or added 

to the dependent job's count. If the user does not specify a sign, the dependent job's count is changed 

to the count specified in the /MODIFY/DEPEND: switch. 

3.3 CDRSTK CONTROL CARDS 

Control cards are interspersed among the input stream to aid CDRSTK in separating the input into the 

appropriate fi les, either the user's data fi les or the control fi Ie processed by the Batch Controller. The 

control cards contain a dollar sign ($) in column 1 and an alphabetic character in column 2. These are 

the only cards read and interpreted by CDRSTK; the remainder of the input is separated and placed into 

the appropri ate fi Ie. Note that if the user creates his own control fi Ie, he bypasses CDRSTK, and, 

therefore, does not use these control cards. 

Only the first part of the command name or switch need be specified; as long as the name is unique, 

it is accepted. The first three characters of a command name are generally sufficient to ensure 

uniqueness. The standard comment and continuation conventions for the system can be used on the 

control card. A comment is preceded by a semicolon; characters after the semicolon to the end of 

the card are treated as comments. A card may be continued by placing a hyphen as the last non-TAB 

or non-space character before the end of the card. Comments beginning with a semicolon, TABs, and 

spaces can follow. All defaults for control card parameters are installation parameters. 

The end-of-file is used to signal the end of the job. When input is from the card reader, an end-of­

file card is used. Column 1 of this card has rows 4 and 5 blank and rows 6, 7, 8, and 9 punched. 

The recommended form of this card has columns 1 and 80 containing punches in rows 12, II, 0, I, 6, 

7, 8, 9, with rows 2, 3, 4, and 5 blank, so that the card can be recognized in any orientation. 

When devices other than the card reader are used for input, the standard end-of-file for each device 

is treated by CDRSTK as the end of the job. 

3-9 



COMMANDS - 718 -

3.3.1 

$ALGOL 

Function 

This card causes CDRSTK to copy the named ALGOL program onto disk and to insert a 
COMPILE monitor command into the control file. The card is placed at the beginning of the 
source program. When the job is run, the specified program is compiled and temporary relo­
catable binary and listing files are created. The binary and listing files can be made perman­
ent if the user renames them to change their protection. The source file can be preserved by 
means of the IPROTECT switch. The listing file is printed as part of the job's output. 

Processor switches can be passed to the ALGOL compi ler by including them in the command 
stri ng. The positi on of these switches in the command determi nes thei r posi ti on in the 
COMPILE command generated by CDRSTK. For example 

$ALGOL INOLIST (Ell N) 

results in the following COMPILE command 

• COMPILE ICOMPILE DECKAA.ALG INOLIST (E" N) 

Refer to Paragraph 1.5.7 for a description of the ALGOL processor switches. 

Card Format 

I $ALGOL dev:name.ext [proj,progj (processor switches) IS/52 • • • /5 n 

I 

Switch 

IASCII 

ID029 

ILIST 

dey: = a file structure name. If omitted, DSK is assumed. 

name. ext = the name of the file to be created on disk. If omitted, CDRSTK assigns a 
unique fi lename of the form DECKaa (where aa = AA through ZZ) with the extension 
.ALG. It is recommended, however, that the user select a distinct filename for each 
job that is in the Batch system simultaneously. 

[proj,progj = a directory name other than that specified on the $JOB card. If omitted, 
the project-programmer number on the $JOB card is used. 

(processor switches) = the switches to be passed to the ALGOL compi ler. They must be 
enclosed in parentheses and the slash cannot appear in connection with these switches. 

IS/52 .•• /5 = the switches that control the mode of input interpretation and the 
lisfing of thencompiled program. 

Meaning 

The input is read in ASCII mode. 

The card deck is read in the old DEC-029 format. 
This format is simi lar to ASCII and is avai lab Ie 
only in those installations that use DEC-029 format. 

A temporary listing fi Ie of the program is created. 

Default 

on 

off 

on 

(continued on next page) 

Version 11 CDRSTK 3-10 



- 719 - COMMANDS 

Card Format (cont) 

Switch Meaning 

/NOUST 

/PROTECT :nnn 

No listing file of the program is created. 

The protection to be set for the fi Ie (in octal). 

Default 

off 

The fi Ie is preserved 
only until KJOB 
for the job. 

/SUPPRESS: When ON is specified, trailing blanks are suppressed. 
They are not suppressed when OFF is specified. 

on 
ON or OFF 

/WIDTH:nn The maximum number of columns to be read. If the 
specified width is less than 80, only that number of 
columns is read. The remaining columns are treated 
as blank. Normally this switch is only used when 
the /SUPPRESS switch is on. 

80 

/026 The card deck is read in 026 card code. off 

Restri cti ons 

The /026 and /D029 switches app lyon Iy to card reader input. Input from other devi ces must 
be read in ASCII code; otherwise an error message is written in the log file and the job is 
term i nated • 

3.3.2 

$COBOL 

Function 

This card causes CDRSTK to copy the specified COBOL program onto disk. The card is placed 
at the beginning of the source program, and when CDRSTK reads the card, it inserts a 
COMPILE monitor command into the control fi Ie and copies the COBOL program into the fi Ie 
on the specified disk area. When the job is run, the program is compi led and a temporary re­
locatable binary file and a temporary listing file are created. The binary and listing files can 
be made permanent if the user renames them to change their protection. The source file can 
be preserved if the user specifies the /PROTECT switch. The listing file is printed as part of 
the job's output. 

Processor switches can be passed to the COBOL compiler oy including them in the command 
string. The position of these switches in the command determines their position in the 
COMPILE command generated by CDRSTK. 

For example 

$COBOL (A, M, C) /PROTECT :057 

results in the following COMPILE command 

.COMPILE /COMPILE DECKAB.CBL (A,M,C) JUST 

Refer to Paragraph 1.5.7 for a description of the COBOL processor switches. 

Version 11 CDRSTK 3-11 



COMMANDS - 720 -

Card Format 

I $COBOL dev:name.ext [proj,progj (processor switches) /5/52 " ,/Sn 

I 

Switch 

/ASCII 

/D029 

lUST 

/PROTECT :nnn 

/SEQUENCE 

/SUPPRESS: 
ON or OFF 

;WIDTH:nn 

/026 

Restri ctions 

dev: = a file structure name. If omitted, DSK is assumed. 

name.ext = the name of the file to be created on disk. If omitted, CDRSTK assigns a 
unique fi lename of the form DECKaa (where aa = AA through ZZ) with the extension 
.CBL. It is recommended, however, that the user select a distinct name for each job 
in the Batch system simu Itaneous Iy. 

[proj,progj = a directory name other than that specified on the $JOB card. If omitted, 
the project-programmer number on the $JOB card is used. 

(processor switches) = the switches to be passed to the COBOL compi ler. They must be 
enclosed in parentheses and the slash cannot appear in connection with these switches. 

/5/52" ./5 = the switches that control the mode of input interpretation and the list­
ing oTthe colripiled program. 

Meaning 

The input is read in ASCII mode. 

The card deck is read in the old DEC-029 format. 
This format is simi lar to ASCII format and is avai lable 
only in those installations that use DEC-029 format. 

Default 

on 

off 

A temporary listing file of the program is created. on 

Specifies the protection to be set for the job (in octal). The file is preserved 
only until KJOB 
for the job. 

The program is read in conventional COBOL format on 
with sequence numbers in columns 1 through 6, and 
comments beginning in column 73.- When this switch 
is specified, the default width is 72. 

When ON is specified, trailing blanks are suppressed. on 
They are not suppressed when OFF is specified. 

The maximum number of columns to be read. If the 80 
specified width is less than 80, only that number of 
columns is read, the remaining columns are treated 
as blank. Normally this switch is used only when 
the /SUPPRESS switch is on. 

The card deck is read in 026 card code. off 

The /026 and /D029 switches apply only to card reader input. Input from other devices must 
be read in ASOI code; otherwise, an error message is written in the log file and the job is 
terminated. 

Version 11 CDRSTK 3-12 



- 721 - COMMANDS 

3.3.3 

$DATA 

Function 

This card causes CDRSTK to copy data into a file on the user's disk area and to insert an 
EXECUTE monitor command into the control fi Ie. 

CDRSTK maintains a list of filenames of all source or relocatable programs that have been pro­
cessed since the beginning of the job or the last $DATA card read. Each time a program is 
copied by the CDRSTK, its name is placed in the list and given an extension of • REL. When 
the $DATA card is read, CDRSTK places an EXECUTE command into the control file and copies 
the filenames of the programs into the EXECUTE command string. On the next $Ianguage card, 
CDRSTK clears the list of fi lenames so that the next entri es into the list reflect on Iy those fi le­
names copied since the last $DATA command was read. When the job is run, the programs are 
loaded and executed. No compilation is performed because the programs are either in relo­
catab Ie bi nary form or have been previ ous iy compi led because of the $language card. If two 
$DATA cards appear in a row, the same programs are reloaded and executed again. 

Loader switches can be passed to the LOADER by placing them in the command string. When 
CDRSTK places these switches in the EXECUTE command, it converts them to the standard 
LOADER switch format (i .e., % switch). For instance, 

$DATA'(S,F) 

causes the following EXECUTE command to be generated 

• EXECUTE .•• %S %F 

Card Format 

$DATA dev:name.ext [proj,progj /S/S2" ,/Sn 

dev: = a file structure name. If omitted, DSK is assumed. 

name. ext = the filename of the file to be created. If omitted, CDRSTK creates a 
unique fi lename of the form Qaa (aa = AA through ZZ) with the extension. CDR. 

It is recommended, however, that the user select a distinct name for each job that 
is in the iatch system simultaneously, so that he can distinguish the various output 
listings. 

[proj,progj = the directory name if different from the one specified on the $JOB card. 
If omitted, the project-programmer number specified on the $JOB card is used. 

/S /S ••• /S = switches that control the mode of reading and interpreting of the input 
1. 2 n 

meUla. 

Version 11 CDRSTK 3-13 



COMMANDS 

Card Format (cont) 

Switch 

/ASCII 

/BINARY 

/D029 

/IMAGE:n 

/PROTECT :nnn 

/SUPPRESS: 
ON or OFF 

/WIDTH:nn 

/026 

- 722-

Meaning 

The input stream is read in ASCII mode. 

The card deck is read in binary card form. This switch 
is ordinari Iy not necessary because the first column of 
each card is checked for punches in rows 7 and 9. If 
these rows are punched, the card is read in binary. 

The card deck is read in the old DEC-029 format. This 
format is similar to ASCII format and is available only 
for compatabi lity with old decks. 

The card deck is read in image mode. The switch must 
be followed by a decimal number in the range 2 
through 80. This causes ensuing cards to be read in 
image mode unti I either end-of-fj Ie is reached or a 
card is read that contains punches in all rows of col­
umn 1 and all rows in column n. The CDRSTK control 
commands are not recognized when cards are read in 
image mode. 

A protecti on of nnn (octa I) is set for the fi Ie; if not 
specified, the file is preserved only until a KJOB 
command for the job. 

When ON is specified, trailing spaces are suppressed. 
They are not suppressed when OFF is specified. 

The maximum number of columns to be read. If the 
specified width is less than 80, only that number of 
columns is read. The remaining columns are treated 
as blanks. Normally, this switch is only used when 
the /SUPPRESS switch is on. For example, /WIDTH:72 
causes the CDRSTK to disregard columns 73 through 80 
and to suppress any trailing spaces up to column 72. 

The card deck is read in 026 card code. 

Default 

on 

off 

off 

off 

on 

80 

off 

The modes ASCII, 026, IMAGE, and D029 are mutually exclusive modes for interpreting 
Hollerith punches. When one of those modes is set, it remains in effect until changed (refer 
to the $MODE card) or the end of fi Ie is reached. 

The defaults for all modes are reset by the next $MODE card or by individual switches in other 
control cards such as in the $DECK card. . 

Requirements 

If the data is contained withil') the programs instead of being a separate file, a $DATA card or 
an EXECUTE command must be placed after the programs. The program wi II not be executed 
otherwise. 

3-14 



- 723 - COMMAND5 

Restri cti ons 

This card can be used only when the programs in the job have been entered with a $Ianguage 
card or $RE LOCATABLE card, si nce CDR5TK mai ntai ns a list of the fi lenames of programs that 
are input with these commands. If the user wishes only to have the programs compi led, no 
$DATA card or EXECUTE command shou Id appear in the job. 

3.3.4 

$DECK ) 

Function 

This card causes CDR5TK to copy all statements up to the next control card into a data file. 

Card Format 

$DECK dev:name.ext [proj,prog] /5/52 " ./\ 

Rest ri cti ons 

dev:= a file structure name. The default is normally D5K. 

name.ext = the user-assigned name and extension of the file to be created. If omitted, 
a unique filename in the form DECKaa (aa = AA through ZZ) is ereated by CDR5TK 
with the extension. CDR. It is recommended, however, that the user select a distinct 
name for each job that is in the Batch system simultaneously. 

[proj,prog] = a disk area other than the one supplied on the $JOB card. If omitted, 
the project-programmer number specified on the $JOB card is used. 

/5/52 " ./5 = switches that control the mode of reading and interpreting of the input 
mecHa. The rwitches are identical to the switches described for the $DATA card. 

The /BINARY, /026, /IMAGE, and /D029 switches apply only to card reader input. Input 
from other devices must be read in A5CII code; otherwise an error message is written in the 
log file and the job is terminated. 

3.3.5 

$DUMP 

Function 

This card causes CDR5TK to insert a DUMP monitor command into the control fi Ie which invokes 
a dump, according to the arguments specified, when an error is detected by the Batch Control­
ler. 

3-15 



COMMANDS -724 -

Card Format 

3.3.6 

$DUMP /command arg/command arg ••• 

The commands and their arguments are the same as described for the DUMP program. (Refer to 
Chapter 2). Two of the commands useful to a Batch job are duplicated below. 

Command 

ALL 

DUMP 

Argument 

dump descriptor, 
dump descriptor, ••• 

Meaning 

Dumps the enti re fi Ie. 

Dumps the specified bytes in the current modes. 

I $'OD 

Function 

This card terminates the input that is being copied into a data fi Ie by CDRSTK because of 
a preceding $DECK card. All control cards with the exception of $MODE perform this action, 
i.e., terminate the copying of input. If input is not being copied and this card is read, 
CDRSTK ignores it. $EOD is only necessary when the user wishes to place a line of input 
which is not a CDRSTK control card after input that is being copied into a data file. 

Card Format 

$EOD 

3.3.7 

$ERROR 
$NOERROR 

Function 

These cards are used to aid the Batch Controller in processing errors. They cause CDRSTK to 
insert an .IF statement into the control file; e.g., .IF (ERROR) or .IF (NOERROR). Refer to 
Paragraph 3.4.5 for an explanation of the .IF statement. These cards must appear at the point 
at which the error occurs. 

3-16 



- 725 - COMMANDS 

Card Formats 

$ERROR statement 

$NOERROR statement 

statement = an executabl e monitor or batch command preceded by a period. If 
the statement directs the Batch CDntroller to go to a statement label, the statement 
label line and any related lines must be included in the sequence of commands 
at the pI ace the user wants it executed. For exampl e, 

$FORTRAN TESTl 

$ERROR .GOTO A 
$DATA TESTlDA 

$ERROR .GOTO A 
A: CONT 
$FORTRAN TEST2 

3.3.8 

$FORTRAN or $F40 

Function 

This card causes CDRSTK to copy the named FORTRAN program onto disk and to insert a 
COMPILE monitor command into the control file. The card is placed at the beginning of the 
source program. When the job is run, the specified program is compiled and temporary relo­
catable binary and listing files are created. The binary and listing files can be made perman­
ent if the .Jser renames them to change their protection. The source file can be preserved by 
means of the /PROTECT switch. The listing file is printed as part of the job's output. 

Processor switches can be passed to the FORTRAN compiler by including them in the command 
string. Their position in the command string determines their position in the COMPILE com­
mand generated by CDRSTK. For example, 

$FORTRAN (A,S, D) /NOLIST 

results in the following COMPILE command 

• COMPILE /COMPILE DECKII. F4 (A,S, D) /NOUST 

Refer to Paragraph 1.5.7 for a description of the FORTRAN processor switches. 

Version 11 CDRSTK 3-17 



I 

I 

COMMANDS - 726-

Card Format 

$FORTRAN dev:name.ext [proj,progj (processor switches) /SlS2" ,/Sn 

$F40 dev:name.ext [proj,progj (processor switches) /SlS2" ,/Sn 

Switch 

/ASCII 

/CREF 

/D029 

/LIST 

/M 

/NOLIST 

/PROTECT :nnn 

/SUPPR'ESS: 
ON or OFF 

/WIDTH:nn 

/026 

Restri cti ons 

dev: = a file structure name. If omitted, DSK is assumed. 

name. ext = the name of the file to be created on disk. If omitted, CDRSTK assigns a 
unique fi lename of the form DECKaa (where aa = AA through ZZ) with the extension 
.F4. It is recommended, however, that the user select a distinct nome for each job 
in the Batch system simu Itaneously. 

[proj,progj = a directory nome other than that specified on the $JOB cord. If omitted, 
the project-programmer number on the $JOB cord is used. 

(processor switches) = the switches to be passed to the FORTRAN compi ler. They must 
be enc losed in parentheses and the slash cannot appear in connecti on wi th these 
switches. 

/SlS2" ./S = the switches that control the mode of input interpretation and the list­
i ng onhe co~pi led program. 

Meaning Default 

The input is read in ASCII mode. on 

A cross-referenced listing fi Ie is created to be pro- off 
cessed by the CREF program. 

The cord deck is read in the old DEC-029 format. This off 
format is simi lor to ASCII' and is avai lable only in those 
installations that use DEC-029 format. 

A temporary listing fi Ie of the program is created. on 

The MACRO coding is included in the output listing. off 

No listing file of the program is created. off 

The protection to be set for the fi Ie (in octal). The fi Ie is preserved 
on Iy unti I KJOB for 
the job. 

When ON is specified, trailing blanks are suppressed. 
They are not suppressed when OFF is specified. 

The maximum number of columns to be read. If the 
specified width is less than 80, only that number of 
columns is read. The remaining columns are treated 
as blank. Normally this switch·is only used when 
the /SUPPRESS switch is on. 

The cord deck is read in 026 cord code. 

72 

off 

The /026 and /D029 switches apply only to cord reader input. Input from other devices must 
be read in ASOI code; otherwise, an error message is written in the log file and the job is 
term i nated • 

Version 11 CDRSTK 3-18 



-727 - COMMANDS 

3.3.9 

$JOB 

Function 

This card, in conjunction with the $PASSWORD card (if required), causes CDRSTK to create a 
control fi Ie and a log fi Ie on disk into whi ch commands are placed for the Batch Controller. 
The filename of the control file is the name of the job specified in the command string, and 
the extensi on is • CTL. CDRSTK a Iso uses this name as the fi lename of the log fi Ie with an 
extension of • LOG. If the jobname is omitted from the command string, CDRSTK creates a 
unique name for the control file and log file. It is recommended, however, that the user select 
a distinct name for each job that is in the Batch system simultaneously, so that he can distin­
guish the various output listings. In general, the jobname used on input appears in the output 
queues. CDRSTK adds the control and log fi les to the directory of the specified project­
programmer number. 

The user may specify a wildcard designation (#) for the programmer number in the $JOB card, 
for example, 

$JOB FLEX[4,#] or $JOB FLEX [4] 

This specifi cation causes CDRSTK to look at ACCT. SYS (an administrative fi Ie) in order to 
determine if the wildcard option is allowed for I'his project. If it is, CDRSTK provides a unique 
programmer number within the project. If it is not allowed, CDRSTK returns an error message 
and continues with the next job. 

Card Format 

name = the user-assigned name for the job; if omitted, CDRSTK creates a unique name 
of the form JOBaaa (aaa = AAA through ZZZ) for the control and log fi les. 

[proi,prog] = the project-programmer number of the user who submitted the job. This 
argument is required. A space or comma can separate this argument from the jobname. 

/SlS2 .. . /\ = switches taken from the following group. These switches are optional. 

Switch Meaning Default 

/ AFTER:dd-mmm-yy hhmm 

/AFTER:+tt 

/CARDS:nnk 

The job cannot be run until after the speci­
fied date and time. The resulting AFTER 
time must be less than the DEADliNE time. 

The job cannot be run until after the input 
time plus the number of minutes indicated 
by tt. 

The maximum number of cards (up to 10K) 
that can be punched by the job (in decimal). 
K is optional. 

None 

None 

o 

(conti nued on next page) 

3-19 



COMMANDS 

Card Format (cont) 

Switch 

/CHARGE:aa 

/CORE:nnk 

/DEADLINE:dd-mmm-yy hhmm 

/DEADLINE:+tt 

/DEPEND:nn 

/FEET:nn 

/LOCA TE:Snn 

/NAME:aa 

/PAGES:nn 

/PRIORITY:nn 

/PRO TECT :nnn 

/RESTART:O or 1 

/TIME:hh:mm:ss 

/TPLOT:mm 

/UNIQUE:O or 1 

Requi rements 

- 728 -

Meaning 

The job is charged to a user-specified account 
(aa = name of the account). 

Maximum amount of core (in decimal) that can 
be used by the job up to the maximum allowed 
by the installation. K is optional. 

The job must be completed by the specified 
date and time. The resulting DEADliNE 
time must be greater than the AFTER time. 

The job must be started by the indicated 
number of minutes after it is input. 

Initial interjob dependency count (in decimal). 

The number of feet of paper tape that wi II be 
punched by the job. 

Specifies the remote station of the job and 
where the output is to be sent. 

The user's name in up to 12 characters. 

The maximum number of pages in decimal to 
be printed by the job, including the log file 
and compilation listing. 

The external priority of the job; the highest 
priority that can be specified is 62 (decimal). 

The protection (in octal) for the job, the control 
fiI e, and the log fiI e. 

If 0, the job cannot be restarted by the operator. 
The job can be restarted if 1 is specified. The 
job should not be restartable if there are changes 
to the permanent file directory. 

The limit placed on the amount of CPU time 
used by the job 0 

The number of minutes of plotter time that the 
job wi II use. 

If 1, only one Batch job at a time is run using 
the specified directory. If 0, any number of 
Batch jobs can be run at the same time using the 
specified directory. 

Default 

None 

25K 

None 

None 

o 
o 

The station where 
the cards were 
input. 

None 

100 

o 

Preserved only 
until KJOB is 
given for the job. 

o 

5.0 (5 minutes) 

o 

The $JOB card must immediately follow the $SEQUENCE card, or be the first card if the 
$SEQUENCE card is not required. 

3-20 



- 729- COMMANDS 

3.3.10 

$MACRO 

Function 

This card causes the CDRSTK to copy the designated MACRO program onto disk and is placed 
at the beginning of the source program. When CDRSTK reads the card, it inserts a COMPILE 
monitor command into the control fi Ie and copies the MACRO program into the file on the 
specified disk area. When the job is run, the program is assembled and a temporary relocat­
able bi nary fi Ie and listi ng fi les are created. The bi nary and listi ng files can be made per­
manent if the user renames them to change their protection. The source file is preserved by 
means of the/PROTECT switch. The listing file is printed as part of the job's output. 

Processor switches can be passed to the MACRO assembler by including them in the command 
string. Their position in the command string determines their position in the COMPILE com­
mand generated by CDRSTK. For example 

$MACRO /PROTECT:055 0N,S,Q) 

results in 

,COMPILE /COMPILE DECKCB.MAC /PROTECT:055 0N, S,Q) lUST 

Card Format 

I $MACRO dev:name.ext [proj,progj (processor switches) /5/52" ,/Sn 

I 
Switch 

/ASOI 

/CREF 

dev: = a fi Ie structure name. If omitted, DSK is assumed. 

name. ext = the name of the file to be created on disk. If omitted, CDRSTK assigns a 
unique filename in the form DECKaa (aa = AA through ZZ) with the extension .MAC. 
However, it is recommended that the user select a distinct name for each job in the 
Batch system simultaneously. 

[proj,progj = a directory name other than that specified on the $JOB card. If omitted, 
the project-programmer number on the $JOB card is used. 

(processor switches) = the switches to be passed to the MACRO assembler. They must 
be enclosed in parentheses and the slash cannot appear in connection with these 
switches. 

/5/52, .. /5 = the switches that control the mode of input interpretation and the list­
j ng ofThe ass~mbled program. 

Meaning 

The input is read in ASCII mode. 

A cross-referenced listing file is created to be pro­
cessed by the CREF program. 

Default 

on 

off 

(continued on next page) 

Version 11 CDRSTK 3-21 



COMMANDS - 730 -

Card Format (cont) 

Switch 

/D029 

lUST 

/NOUST 

/PROTECT:nnn 

/SUPPRESS: 
ON or OFF 

jWIDTH:nn 

/026 

Restrictions 

Meaning 

The card deck is read in the old DEC-029 format. 
This format is simi lor to ASCII and avai lable only in 
those i nsta lIati ons that use DEC-029 format. 

A temporary listi ng fi Ie of the program is created. 

No listing file of the program is created. 

The protecti on to be set for the fi Ie (i n octo I). 

When ON is specified, trailing blanks are suppressed. 
When OFF is specified, they are not suppressed. 

The maximum number of columns to be typed. If the 
specified width is less than 80, only that number of 
columns is read. The remaining columns are treated 
as blank. Normally, this switch is used only when 
the /SUPPRESS switch is on. 

The card deck is read in 026 card code. 

Default 

off 

on 

off 

The fi Ie is preserved 
on Iy unti I KJOB for 
the job. 

on 

80 

off 

The /026 and /D029 switches apply on Iy to card reader input. Input from other devi ces must 
be read in ASOI code; otherwise, an error message is written in the log file and the job is 
term i noted. 

3.3.11 

I $MODE 

Function 

This card causes CDRSTK to change the mode in which it is interpreting the input stream. The 
$MODE card can be placed anywhere after the $PASSWORD card in the command sequence 
and is terminated by another $MODE card or the end-of-file (which terminates the job). This 
command does not terminate the copying of input preceded by a $DECK card. 

Card Format 

/S/S2" ./S = switches that control the mode of reading and interpreting of the input 
meaia. Thes~ switches are identical to the switches described for the $DATA card. 

3-22 



- 731 - COMMANDS 

Restri cti ons 

The mode switches /026, /IMAGE, /D029, and /BI NARY can be used on Iy for card input. 
Input from other devices is always read as ASCII code. Thus, the only switches that can be 
used with the $MODE card for devi ces other than the card reader are /SUPPRESS and /WIDTH. 

3.3.12 

$PASSWORD 

Function 

This card contains the password associated with the project-programmer number specified in 
the $JOB card. If the password does not match the password stored in the system for the speci­
fied project-programmer number, CDRSTK does not create any files and aborts the job. Use of 
this command is an insta lIati on opti on. 

Card Format 

$PASSWORD password 

password = 1 to 6 character password. 

Requi rements 

If the $PASSWORD card is required, it must immediately follow the $JOB card. 

3.3.13 

$RELOCATABLE 

Function 

This card causes CDRSTK to copy a relocatable binary program from cards to a fi Ie on the user's 
disk area. The cards are read in binary mode. 

Card Format 

$RHOCATABLE dev:name.ext [proj,prog1/S1 

dev: = a fi Ie structure name. If omi tted, DSK is assumed. 

name. ext = the name of the file into which the program is copi ed . If the fi lename is 
omitted, CDRSTK creates a unique name in the form DECKaa (aa = AA through ZZ). It 
is recommended that the user select a distinct name for each job in the Batch system 
simultaneously. If the extension is omitted, . REL is assumed. 

(conti nued on next page) 

3-23 



COMMANDS - 732-

Card Format (cont) 

[proj,progj = the disk directory if different from the one specified on the $JOB card. 
If omitted, the project-programmer number on the $JOB card is assumed. 

lSI = IPROTECT:nnn (octal) 

The protection for the fi Ie to be created. If not specified, the fi Ie is preserved 
only unti I a KJOB command for the job is executed. 

Restri cti ons 

3.3.14 

Relocatable binary programs can only be read when the input is from cards. 

The program followi ng this command must be read in bi nary; the mode cannot be changed unti I 
a nonbinary file is copied. If an attempt is made to change the mode, an error message will be 
issued and the job wi II be aborted. 

I $SEQUENCE 

Function 

This card specifies the job's unique sequence number. The use of this card depends on the re­
quirements of the particular installation. 

Card Format 

$SEQUENCE n 

n = a decimal number 

Requi rements 

If the installation requires this command, it must be the first card in the input stream. 

3.4 BATCON CONTROL FILE COMMANDS 

Ordinarily the Batch Controller reads the control file in a sequential manner. The commands described 

in this section can appear in the control fi Ie to interrupt the sequential processing of the control fi Ie in 

order to specify error recovery. If an error occurs in the job, the Batch Controller is notified of the 

error; the user has the opti on of inc ludi ng severa I methods of error recovery. 

The user may include an .IF command in the control file. When the error occurs, the Batch Controller 

examines the next monitor level line in the control file for an .IF command to determine what action 

3-24 



- 733 - COMMANDS 

to take on the error. It does not search past the next executable monitor line in the control file for 

the .IF command; therefore, if this command is used, it must be the next monitor command in the con­

trol fi Ie. 

If the user does not wish to include an .IF command, he may include two tYI,es of error recovery rou­

tines in the control fi Ie, one type labeled O/OERR (error processing for non-system programs) and the 

other labeled O/OCERR (error processing for compilers and system programs). A system program is one 

found on a device specified in the SYS search list in [1,4]. If SYS is assigned as a logical device 

name, the programs are considered user programs, not system programs. After an error occurs in the 

job and the next executable monitor line in the control file is not an .IF statement, the Batch Control­

ler searches for the labeled error recovery control lines and processes the statements following these 

labels. These routi nes may be placed anywhere in the control fj Ie. Once the Batch Controller has 

processed the routine, it continues from that point in the control file; it does not read backwards over 

sections of the control fj Ie skipped in searching for the error routines. The following example shows 

the use of a O/OERR error recovery routi ne . 

• COMP ILE SAI'lPLE ILIST) 
.MOUNT MT~:3 IVID:42936) 
.EXECUTE) 
.DISMOll:>JT "J) 
.R SORT)' 
*MUMP.SRT.FOk04.DAT/R80/Kl.10) 
.QUEUE MUiV:P .SRT ) 
%Ei{K: .CLOSE) 
.Dlft.'P) 
.DISr~OUNT 3) 
%FIN:.DfLETE FOR04.DAT) 

Depending on the type of error found, the following operations are performed. If a compilation error 

occurs, only the compilation and the listing result. No tape is mounted. If an execution error results, 

1. the program is compiled, 
2. the tape is mounted, 
3. the program begins execution, 
4. the output is closed, 
5. a quick dump of core is taken, 
6. the tape is dismounted, and 
7. the file FOR04.DAT is deleted. 

If a SORT error occurs, the program compiles, the tape is mounted, the program is executed, and the 

file FOR04.DAT is deleted. Finally, if no errors result, 

1. the program is compi led, 
2. the tape is mounted, 
3. the program is executed, 
4. the tape is dismounted, 
5. the sort is performed, 
6. MUMP.SRT is printed, and 
7. the file FOR04. DAT is deleted. 

3-25 



COMMANDS - 734-

When the user is bypassing CDRSTK and creating his own control file, he may place a %FIN at the end 

of the control file. (CDRSTK, in creating the control file, automatically places a %FIN at the end.) 

This label is used for cleanup purposes, e.g., deleting the input files. In creating the control file, 

the user may place other %FIN's at various points in the fi Ie for periodic cleanup of his job. For 

example, this label is used in a special kind of error recovery. If the time allocated to the job runs 

to the maximum limit specified in the $JOB command (refer to Paragraph 3.3.9) or by the Batch sys­

tem, the user is given an additional 10% of his allocated time to cleanup his job before it is aborted. 

Because the user includes a %FIN, cleanup is performed and the results of the job's processing are not 

lost when the job is aborted. The user should be careful in using the %FIN in the control file because 

if the Batch Controller is searching for an error recovery routine and %FIN is placed before a %ERR or 

%CERR, the %FIN is executed and the Batch Controller assumes the error recovery routine has been 

satisfied and does not search any longer for %ERR or %CERR. Furthermore, a . GOTO label cannot 

bypass a %FIN label. Therefore, the best place to put a %FIN is as the last line in the control file. 

If an error occurs in the job and the user either was not running a system program or has not included 

an . IF command or error recovery control Ii nes, the Batch Controller initiates a standard quick dump 

of the user's core area and terminates the job (refer to the DUMP command in Chapter 2). The Batch 

Controller also initiates a dump if it is searching for a %ERR and reads a %FIN instead. 

3.4.1 

.BACKTO 

Function 

The. BACKTO command is used by Batch users to interrupt the sequential reading of the control 
file by the Batch Controller. Control is transferred in a backward direction. This command 
can be used with a .IF command to specify transfer of control to an error routine. 

Command Format 

. BACKTO label 

label = label of a statement in the control file. This label is from one to six alpha­
numeric characters terminated with a colon and must not begin with a % character. 

When the. BACKTO command is encountered, the Batch Controller searches for the labeled 
statement and transfers control to it. If the statement is not found, the job is terminated. 

3-26 



- 735 - COMMANDS 

3.4.2 

.CHKPNT 

Function 

The. CHKPNT command is used to aid in error recovery when a Batch job is terminated abnor­
mally by a system failure. As many. CHKPNT commands as desired can be placed in the 
control file. When the job is restarted after the failure, the program begins at the location 
of the last. CHKPNT command instead of at the beginning of the program. 

Command Format 

.CHKPNT label 

label = label of a statement in the control file. This label is from one to five alpha­
numeric characters. When the label appears with the statement in the control fi Ie, it 
must be followed by a double colon instead of the usual single colon (e.g., 
label :: statement). 

3.4.3 

. ERROR 

Function 

The. ERROR command causes the Batch Controller to recognize a message beginning with the 
specified character as an error in the job. 

Command Format 

. ERR OR character 

character = the beginning character of the line that is to be recognized as an error 
(e.g., %). If this argument is not specified, a ? at the beginning of a line is'con­
si dered as an error. 

3.4.4 

.GOTO 

Function 

The. GOTO command is used by Batch users to interrupt the sequential reading of the control 
fi Ie by the Batch Controller. Control is transferred ina forward direction. This command may 
be used with a .IF.command to specify transfer of control to an error routine. 

Version 6 BATCON 3-27 



COMMANDS - 736 -

Command Format 

. GOTO label 

label = label of a statement in the control file. The label appearing in the control file 
is from one to six alpahnumeric characters terminated with a colon and must not begin 
with a % character. 

When the. GOTO command is encountered, the Batch Controller searches for the labeled 
statement and transfers control to it. If the statement is not found before the end of the con­
trol file is reached, the job is termi nated. 

Examples 

3.4.5 

. IF 

.EX TEST.MAC/L 

.IF" (ERROR) .GOTO A 

.GOTO B 
A::.QUEUE LPT:~TEST.MAC 

.GOTO 8 
H: : J 

Function 

The .IF command is used by Batch users to aid the Batch Controller in processing errors. The 
Batch Controller recognizes the existence of an error when it encounters a line beginning with 
a question mark that is output from the job to the log file or a line that begins with the char­
acter specified in the. ERROR command. When the error occurs, this command must be the 
next monitor level command in the control fi Ie. 

Command Format 

.IF (condition) statement 

(condition) = ERROR or NOERROR. The parentheses must be included. 

statement = an executab Ie moni tor or batch command preceded by a peri od . 

If the specified condition is true, the statement is executed. If the specified condition is not 
true, the Batch Controller processes the next line in the control file. 

3-28 



- 737- COMMANDS 

3.4.6 

. NOERROR 

Function 

The. NOERROR command instructs the Batch Controller to ignore all errors (including messages 
beginning with a question mark) in the job. This is especially useful in TECO searches. How­
ever, the message 

?TIME liMIT EXCEEDED 

always indicates that an error exists. 

Command Format 

. NOERROR 

3.4.7 

. NOOPERATOR 

Function 

The. NOOPERATOR command designates that no messages from the job are to be output to 
the controlling terminal. 

Command Format 

. NOOPERATOR 

3.4.8 

. OPERATOR 

Function 

The. OPERATOR command makes it possible for the job, or a program within the job, to com­
municate with the operator. Any message from the job, starting with the specified character 
(refer to Chapter 4), is typed on the controlling terminal. The job then waits for operator 
intervention and the operator's answer restarts the job. 

(conti nued on next page) 

3-29 



COMMANDS - 738-

Function (cont) 

When the. OPERATOR command is in effect, the Batch Controller ignores an . IF statement un­
less the. NOOPERATOR command is given first, and proceeds to search for an error recovery 
routine labeled with either %ERR: or %CERR: (refer to Paragraph 3.4). This action is taken in 
order to minimize output to the operator in case of an unexpected transfer of control. However, 
when an error occurs, the Batch Controller preserves the error status across the. NOOPERATOR 
command and looks for the .IF statement as the next monitor-level command. In other words, 
an .IF statement following a . NOOPERATOR command will be executed. Refer to the follow­
ing examples. 

In the example below, the .IF statement will be ignored . 

• OPERATOR 'Z. 
.F<IIN TFSPRG 
.IF (EkF(Oi~) .GOTO TAG 

However, in the following example, the .IF statement will be executed . 

• OPERATOR % 
.RPN TESPRG 
.N(lOPFRATOR 
.11' (ERROR) .GOTO TAG 

Command Format 

. OPERA TOR character 

character = the beginning character of the line that is to be sent to the operator 
(e.g., %). If this argument is not specified, $ at the beginning of the line is assumed. 

3.4.9 

I .REQUEUE 

Function 

The. REQUEUE command indicates to the Batch Controller that the job is to be requeued, 
instead of terminated, after an error. It is normally used with the .IF (ERROR) command (e.g., 
.IF (ERROR) . REQUEUE). The iob is restarted after a default requeue time at the specified 
labe lin the control fi Ie . 

Command Format 

. REQ UEUE labe I 

Version 6 BATCON 3-30 



- 739 - COMMANDS 

3.4.10 

. REVIVE 

Function 

The. REVIVE command causes all output from the job to be placed in the log fi Ie. 

Command Format 

. REVIVE 

3.4.11 

. SILENCE 

Function 

The .SILENCE command suppresses all output from the job except error messages to the log file. 
This means that the only lines appearing in the log file will be those that begin with a question 
mark. 

Command Format 

. SILENCE 

3.5 JOB OUTPUT 

The output from a user's job is normally in the form of printed listings containing the user's job output, 

compilation listings, any memory dumps requested by the user or initiated by the Batch Controller, and 

the log file indicating the processing performed by the programs in the Batch system. The results from 

the job and the log file are automatically placed in the queue for the line printer spooler, LPTSPL, 

unless the job was submitted with the /OUTPUT:O switch. However, the user can output to any device 

in the system. When a user program specifies a slow-speed spooling device, the Batch system places 

the output into a queue for the appropriate spooler. If the user wishes specific files to be output to 

particular spooled devices outside of his programs, he can include the QUEUE monitor commands in his 

control fi Ie to specify the output device and any additional parameters that he wishes. 

Compi lation listings are produced from the $Ianguage control cards unless the user specifies otherwise. 

These listings are automatically spooled to the line printer. The user can also include the COMPILE 

monitor command in his job with switches to produce listings. 

3-31 



COMMANDS -740 -

The user can include any of the monitor DUMP commands or the CDRSTK card $DUMP to request mem­

ory dumps during program testing. Under normal error conditions, the Batch Controller performs an 

automatic two-page dump for the user (refer to Paragraph 3.4). 

3.5.1 The Log File 

As part of its processing, CDRSTK creates a log fi Ie for each job so that the user can examine the 

processing performed by the CDRSTK and BATCON programs. The log fi Ie is the first part of the job's 

output. CDRSTK enters a record of its own processing, any errors detected, and any operator inter­

ventions. When the job is run, the Batch Controller places additional messages into the log file, in­

cluding each line of the control file as it is passed to the job, any error conditions, and any operator 

actions. The LOGOUT program appends an accounting summary message to the log file when the job 

terminates. This message is simi lar to the message received when an interactive user logs off the sys­

tem (refer to the KJOB command in Chapter 2). Note that the log file is appended to for jobs of the 

same name; thus it may be necessary to delete this fi Ie before running another job with the same name. 

3.5.1.1 CDRSTK Messages - CDRSTK places six kinds of messages into the log fi Ie. The first line of 

each message is identified by the time that CDRSTK placed the message into the fi Ie and by an iden­

tifying word in columns 1 through 16. The identifier for each kind of message is taken from the 

followi ng group: 

DATE -- gives the date, system name, CDRSTK version, and the input device. 

STACK -- identifies any CDRSTK nonerror message. 

STERR -- identifies any CDRSTK error message. 

CARD -- describes any card image not in an error message. 

STSUM -- identifies the summary message at the end of the CDRSTK's processing. 

STOPR -- describes any operator actions that occurred during the CDRSTK's processing. 

The first entry in the log file always contains the identifier DATE and a message giving the date, the 

system name, the current version of CDRSTK, and the input device; for example, 

10:20:06 DATE 13-MAY-71 5S03C System 40 CDRSTK version 7 device CD~1 

The $SEQUENCE and the $JOB commands are the next two lines printed. The $PASSWORD command 

is never printed for reasons of security. When the end-of-file is read, CDRSTK prints a summary mes­

sage givi ng the number of cards read, the number of fi les and blocks written, and the number of each 

type of error that occurred. The summary is also placed in the system accounting file. An example 

of the job summary is given below. 

3-32 



- 741 -

11 :25:38 STSUM End-of-Fi Ie after 423 cards, 3 fi les (4O blocks) written 

4 Ho Ileri th errors (nonfata I) 

2 Binary Sequence errors (fatal) 

Job Aborted by CDRSTK 

COMMANOS 

Between the beginning and ending messages, CDRSTK prints any operator actions as they occur, some 

nonerror messages, and reports of errors it has detected. The following are examples of nonerror mes­

sages from CDRSTK. 

CARD 

STOPR 

STOPR 

$JOB TESTA, [10,225] 

JOB STOPPED BY OPERATOR 

CONTINUED BY OPERATOR 

3.5.1.2 CDRSTK Error Reporting - CDRSTK places messages in the log file that describe errors that 

have occurred during its processing. The following errors are detected, and their degree of severity 

is as specified: 

Fatal Errors 

a. Error on the $J OB card. 
b. Error on the $PASSWORD card. 
c. Unrecognizable command on a CDRSTK control card. 
d. Error in a parameter on a CDRSTK control card. 
e. Binary sequence error - issued a maximum of five times per deck. 
f. Improper code (binary rather than Hollerith, or vice versa). 

Nonfata I Errors 

a. Hollerith error (invalid punch). 
b. Missing end-of-fi Ie card. 

Error messages are issued by CDRSTK to the log file either up to the first fatal error, or, for nonfatal 

errors, up to a maximum of 200 errors or errors on 10% of the total card count, whichever is greater. 

However, CDRSTK continues processing the job up to the end-of-file. The following are examples of 

error messages placed in the log fi Ie by CDRSTK. 

JOB ABORTED BY OPERATOR 

JOB ABORTED - HOLLERITH ERRORS 

CARD #nnn 

CARD #nnn 

CARD #nnn 

CARD #nnn 

CARD #nnn 

FATAL CARD 

COL #nnn 

CARD SEQUENCE ERROR 

SWITCH ERROR 

MODE ERROR 

NON-BINARY CARD IN BINARY DECK 

3-33 



COMMANDS - 742-

Each card-reading error results in a message which includes the first card column in error, the deck 

number and columns 1 through 30 of the $DECK card, and the card number within the deck and within 

the job. The faulty card image appears on the next line with a backward slash (\) indicating the col-

umn in error. 

11 :15:05 STERR Hollerith error at col. 7 of card 241, card 73 in deck 2 ($FORTRAN MAIN). 

3 \ORMAT ('FOO') 

3.5.1.3 Batch Controller Messages - The Batch Controller messages are similar to those of the Stacker. 

The times followed by an identifying notation are placed in columns 1 through 160f the first line of 

each message. The i denti fi ers for the Batch Controller messages are descri bed in the li st be low: 

BVERS -- denotes the version of BATCON. 

BDATE -- identifies the date BATCON processed the job. 

BATCH -- identifies any Batch Controller nonerror message. 

BAOPR -- describes any operator action. 

BAERR -- denotes any Batch Controller error message; 

MONTR -- identifies a line input or output at monitor level. 

USER -- describes any line input or output at user level. 

BASUM -- gives the Batch Controller summary message. 

The first line in the log file printed by the Batch Controller is the version number. As each line in 

the control fi Ie is reacJ, it is printed in the log fi Ie as well as being passed to the user program or to 

the monitor. Any time that the operator performs some action that affects the job, the Batch Controller 

records it in the log fi Ie. The BA TC ON program enters a message in the log fi Ie every ti me it generates 

a monitor command. For example, if a fatal error occurs in the job and the user has not included an 

.IF statement, a %ERR routine or a %CERR routine in the control file, the Batch Controller generates 

a DUMP command. It also generates a LOGIN and a KJOB monitor command for each job. 

Any-errors in the input that are detected by the Batch Controller are printed in the log file. 

3.5.1.4 Batch Controller Error Reporting - The Batch Controller places the identifier BAERR on any 

line that i·t detects as being an error. The errors that are detected are listed below; the first three 

are fatal errors. 

a. Missing condition (ERROR or NOERROR) or missing statement in an .IF statement. 

b. Missing statement label in the. GOTO or BACKTO command. 

c. The labeled statement in a . GOTO command cannot be fo.und after the. GOTO or before 
the. BACKTO command in the control fi Ie. 

d. Use of the ATTACH, DETACH, SEND, CCONT, and CSTART monitor commands. 

3-34 



- 743 - COMMANDS 

Most user error conditions are not flagged by the Batch Controller, they are passed to the monitor 

where they are flagged as errors. 

3.6 SAMPLE JOBS 

The following sample job setups illustrate the versati lity of the Batch System. 

The first example, Figure 3-2, shows a setup to list a card deck.with the QUEUE monitor command. 

Zi~EUE * .CDR 

I 
I 
I 

~$EOD I 
I 
I 

LCARD DECK 
..J.. 

I~ 
r-

$DECK 

$ PASSW SAMPLE 

$JOB TEST t [15,271/NAME:J.JONES 
t-

,.... 

-

10-0730 

Figure 3-2 Sample Job #1 

The second example, Figure 3-3, produces a CREF listing of a MACRO deck whether or not errors 

occur in the program. 

The third example, Figure 3-4, illustrates the use of error processing commands. 

3-35 



COMMANDS -744 -

10-0728 

Figure 3-3 Sample Job #2 

A.; OR ANYTHING 

·GOTO A 

It = TESTX 

B: .R CREF 

'GOTO A 

'IF (ERROR) • GOTO B 

• R MACRO 

MACRO DECK 

~DECK TESTX. MAC 

~PASSWORD HOPE 

$JOB ERROR [40,32]/NAME: C.KENT 

10-0727 

Figure 3-4 Sample Job #3 

3-36 



- 745 - COMMANDS 

Figure 3-5 illustrates a MACRO assembly, two FORTRAN compi lations, and execution of all three 

programs, and shows how monitor commands are entered along with the programs and the Stacker 

control cards. 

10- 0726 

Figure 3-5 Sample Job #4 

3-37 



COMMANDS - 746 -

Figure 3-6 shows a simple SOUP update. Three base fi les are copied from cards to disk. The user 

files are on DECtape and the correction from DEC is on paper tape. 

10-0725 

Figure 3-6 Sample Job #5 

3-38 



- 747- COMMANDS 

CHAPTER 4 

SYSTEM DIAGNOSTIC MESSAGES AND ERROR CODES 

The following conventions are used in describing the system diagnostic messages: 

dev 

file structure name 

file.ext 

adr 

n 

abc 

x 

switch 

represents a legal device name. 

represents a legal file structure name. 

represents a legal fil ename and extension. 

represents a user address. 

represents a number. 

represents a disk unit or drive. 

represents an alphabetic character 

represents a switch. 

Most messages returned to the user fall in one of five categories. These categories are determined by 

the beginning character of the message. 

? at the start of the message indicates a fatal error message. 

% at the start of the message represents an advisory or warning message. 

[at the beginning of the message indicates a comment line. 

$ at the beginning of the message represents an operator/job communication 
line. A response is expected. 

I (quote) at the beginning of the message represents a comment to the operator. 
No response is expected. 

Programs and/or commands causing the error message are given in parentheses. (Note that the ONCE­

only messages have been removed and placed in ONCE. RNO in the DECsystem-lO Software Notebooks.) 

The descriptive text given with the message indicates what action the user should take when he 

receives the message. He can, if necessary, notify the operator of any problems that he is having by 

issuing the SEND, PLEASE, or R GRIPE command. 

4-1 



COMMANDS - 748 -

4.1 SYSTEM DIAGNOSTIC MESSAGES 

The typein is typed back preceded and followed by ? 

The monitor encountered an incorrect character {e.g., a letter in a numeric argument). The 
incorrect character appears immediate Iy before the second? . 

For example: 

.CORE ABC 
?CORE A? 

ACCOUNTING SYSTEM FAILURE ... 

A program cou Id not append an entry to the accounti ng fi Ie. Notify the operator. 
(LOGIN, LOGOUT). 

?ADDRESS CHECK FOR DEVICE dey 

(1) The monitor checked a user address on a UUO and found it to be too large (>C(. JBREL)) or 
too small (~C(. JBPFI))i in other words, the address lies outside the bounds of the user program 
(2) The SAVed file is too large for the core assigned, or the file is not a core image file. 
(GET). 

$ALL AREAS ON BACKUP 

The BACKUP program has processed all of the project-programmer numbers specified and is 
now closing the associated fi les. (BACKUP). 

?ALREADY ASSIGNED TO JOB n 

The device is already assigned to another user's job (job n). 

?AMBIGUOUS ABBREVIATION 

A command or switch has been abbreviated to the point that it is not unique. (COMPIL). 

?ARGS ARE: DAY, RUN, WAIT, READ, WRITE, VERSION, ALL, NONE 

The user either did not type an argument or typed an illegal argument in the SET WATCH 
command stri ng. 

dey: ASSIGNED 

The devi ce has been successfu Ily assi gned to the user's job. 

?ASSIGNED TO JOB n1, n2, ... 

If there is more than one device of the type specified, the numbers of the other jobs that have 
the same type of devi ce are output, un less the user assi gni ng the devi ce has a II the devi ces of 
the specified type. In this case, ?DEVICE ASSIGNED TO JOB is output. 

?ATTACH TO USER JOB FAILED 

DAEMON could not attach to the user's job. (DAEMON). 

4-2 



- 749 - COMMANDS 

$BACKUP COMPLETED AT time 

The BACKUP program has successfully completed. (BACKUP). 

?BAD DENSITY 

The value given with the DENSITY command was not valid. (RESTORE). 

?BAD DIRECTORY FOR DEVICE DTAn 

The system cannot read or write the DECtape directory without getting some kind of error. This 
error often occurs when the user tri es to write on a write-locked tape or use a DECtape that 
has never been written on. 

?BATCH ONLY 

The command issued can only be given by a batch job. 

BLOCK NOT FREE 

M specifies a unit or fi Ie structure logica I block that is not free. (ALCFI L). 

n BLOCKS ALREADY ALLOCATED 

The fi Ie already exists. The new specification replaces, rather than updafes, the old 
specification. (ALCFIL). 

?n1 K BLOCKS OF CORE NEEDED 

The user's current core allocation is less than the contents of .JBFF. 

?BOMB OUT 

The location within INITIA that detected the error will be in AC 15 and the console lights. 
(INITlA). 

?BOOTSTRAP LOADER IS NOT IN COPY; TRY IL 
An attempt was made to write the bootstrap loader onto a DECtape via the IT switch before the 
loader was loaded into a core buffer and preserved with the COPY core image. (COpy 
program). 

?BOOTSTRAP LOADER WILL NOT FIT IN 3 BLOCKS 

The user's bootstrap loader is too big to fit into blocks a, 1, and 2 of the output DECtape. 
(COPY program). 

?BUFFER CAPACITY EXCEEDED AND NO CORE AVAILABLE 

?BUSY 

The buffer is not large enough to handle the number of lines required for looking ahead for 
matches, and additional core is not available. (FILCOM). 

The terminal addressed is not communicating with the monitor (i .e., it is accepting a command 
or returning output from a command). The operator's terminal is never busy. (SEND, JCONT). 

4-3 



COMMANDS - 750 -

?CANNOT DO I/O AS REQUESTED 

Input (or output) cannot be performed on one of the devices specified for input (output). For 
example, input may have been requested for a device that can only do output. (FUDGE2). 

?CANNOT DO OUTPUT TO DEVICE dev 

Output was attempted to a device that can only do input, or to a device assigned a logical 
name. (QUEUE). 

?CANNOT PROCESS EXTERNAL SYMBOLS 

External symbols were encountered while loading the bootstrap loader with the /L switch. 
(COpy program). 

?CANNOT PROCESS HIGH SEG'S 

Whi Ie loadi ng the bootstrap loader with the /L switch, high segment code was encountered. 
(COpy program). 

?CANNOT REATTACH FROM A BATCH SUBJOB 

Batch jobs are not allowed to reattach their jobs. (REATTA). 

$%CANT ACCESS COMMAND FILE - CONTINUING 

The command recovery file is not being created. This file contains information as to how much 
of the user's command has been processed and how much is remaining. Without this fi Ie, the 
user must start at the beginning if the system crashes. (BACKUP, RESTORE). 

?CANT ACCESS DEVICE dev 

The device specified cannot be INITed. The device is either in use or has an error, such as, 
being off-line. The user should request another device, or check this device for errors. 
(BACKUP, RESTORE). 

$%CANT ACCESS INDEX DEVICE - CONTINUING dev 

The device specified for the index fi Ie cannot be INITed and an index fi Ie is not being 
created. The user can start over if he wants to create an index file. (BACKUP, RESTORE). 

?CANT ACCESS SYSTEM FILES 

ACCT.SYS could not be read. Only the operator may LOGIN until ACCT.SYS is ready. 
Consult the operator. (LOGIN). 

?CANT ADD TO YOUR FILE STRUCTURE SEARCH UST n 

n is the error code from STRUUO when trying to add a file structure to search list. (LOGIN). 

?CANT A TT TO JOB 

The project-programmer number specified is not that of the owner of the desired job, the 
project-programmer number was not give.n when it was required, or the PASSWORD given was 
incorrect. (A TT AC H). 

4-4 



- 751 - COMMANDS 

?dev CANT BE REASSIGNED 

(1) The job's controlling terminal cannot be reassigned, or (2) the logical name would be dup­
licated, or (3) the logical name is a physical device name in the system and the job reassign­
ing the device is either logged-in under a different project-programmer number or does not 
have operator privileges. (REASSIGN). 

?CANT CONTINUE 

The job was terminated due to (1) all ERROR IN JOB messages (except for HALT), (2) the 
EXIT UUO, (3) the CLOSE command, or (4) the REA command when the device was INITed, 
and the user attempted to continue his program at the point at which I/O was terminated. The 
job cannot be continued. 

CANT CREATE NEW FILE STRUCTURE SEARCH liST 

The moni tor cannot create a new fj Ie structure search list. 

?CANT DECIPHER COMMAND 

The command typed isnot recognized by the BACKUP program. (BACKUP, RESTORE). 

?CANT DECIPHER THAT 

There is a syntax error in the command string. (MOUNT, DISMOUNT, FILE). 

?CANT DET DEY 

The user is not logged-in under [1,2]. 

?CANT ENTER OUTPUT FILE n file descriptor 

The ENTER to write the output fi Ie fai led; n is the disk error code. (DUMP). 

?CANT EXPAND TABLE xxxx 

The DUMP program ran out of core in attempting to expand the indicated table. (DUMP). 

?CANT FIND INPUT FILE n fi Ie descriptor 

DUMP cannot locate the file specified as the input file; n is the disk error code. (DUMP). 

?CANT FIND FILE file.ext 

The spec i fi ed fi Ie cou Id not be found. 

?CANT GET SWAPPING PARAMETERS 

DAEMON tried to obtain the job's swapping parameters and failed. (DAEMON). 

?CANT GET SWAPPING POINTER FOR JOB 

DAEMON tried to obtain the pointer to the user's job on the swapping space and could not 
because the GETTAB UUO failed. (DAEMON). 

4-5 



COMMANDS - 752-

?CANT GET USERS PPN 

DAEMON tried to obtain the user's project-programmer number and could not because a 
GETTAB UUO failed. (DAEMON). ' 

?CANT OPEN fi Ie structure name 

The fj Ie structure is mounted but cannot be opened. No UFD is created, though one may 
already exist. (LOGIN). 

?CANT OPEN CHANNEL FOR DEVICE dev 

The OPEN on the channel for the named device failed. (BACKUP, RESTORE). 

?CANT OPEN DEVICE dev 

The specified device does not exist or it is assigned to another user. (DAEMON). 

?CANT OPEN INDEX FILE 

The OPEN fai led for the index fi Ie. (BACKUP, RESTORE). 

?CANT OPEN SWAP UNIT abc 

DAEMON attempted to use the indicated swapping unit and failed. (DAEMON). 

?CANT RELEASE UFD INTERLOCK FOR dev [p,p] 

The UFD interlock cannot be released for the named device. (BACKUP). 

?CANT RENAME -FI LE PRESERVED 

An attempt was made via the /DISPOSE:RENAME switch to delete a preserved fi Ie (j .e., a 
fi Ie whose owner's field is greater than 0). (QUEUE). 

?CANT SET OUR SEARCH UST 

DAEMON tried to set its search list and failed in its attempt. (DAEMON). 

?CANT SET SEARCH UST = USER'S 

DAEMON attempted to set its fj Ie structure search list to be the same as the user's search list. 
(DAEMON). 

?COMMAND ERROR 

General catch-all error response for most commands. The syntax of the command is in error, 
and the command cannot be deciphered. 

In FILCOM, one of the following errors occurred in the last command string typed. 

1. There is no separator (- or =) between the output and input specifications. 
2. The input specification is completely null. 
3. The two input fi les are not separated by a comma. 
4. A fi Ie descriptor consists of characters other than alphanumeric characters. 

(continued on next page) 

4-6 



- 753 - COMMANDS 

5. FI LCOM does not recognize the specified switch. 
6. The project-programmer number is not in standard format, i.e., [proj,progj. 
7. The value of the specified switch is not octal. 
8. The first input file is followed by a comma but the second input file is null. 

?COMMAND SYNTAX ERROR 
TYPE /H FOR HELP 

An illegal command string was entered. (GLOB). 

?COMMA REQUIRED IN DIRECTORY 

A project-programmer number has been specified without the separating comma. 
(DUMP, QUEUE, BACKUP, RESTORE). 

CONT BY OPR 

The job has been continued by the operator. This message appears on the console of the job 
being continued. (JCONT). 

?CONTROL AND LOG FILES MUST BE DISTINCT 

The control file cannot be the same file as the log file. (QUEUE). 

12K CORE NEEDED AND NOT AVAILABLE 

FILCOM needs 2K of core to initialize I/O devices and this core is not available from the 
monitor . (FILCOM). 

O/OCPUn OPRl ACTION REQUESTED 

The Job's CPU specification includes a CPU which is not running or is not scheduling jobs. 
The monitor remembers the specification and uses the CPU as soon as it is started. If at least 
one CPU is running, the message is printed only once, since the job can run on another CPU. 

?DAEMON FILE MUST BE WRITTEN ON A DISK 

The device specified was a nondisk device. (DAEMON). 

?DAEMON NOT RUNNING 

The DAEMON program has not been initialized. It must be started by the operator to allow 
the DUMP and DC ORE commands to operate. (DUMP, DCORE). 

?DETACH UUO FAILED 

DAEMON cou Id not detach itself from the TTY. Note that DAEMON does not detach itself 
if it is loaded with DDT. (DAEMON). 

?DATA ERROR ON DEVICE PTR 

A read error has occurred on the paper-tape reader. (COpy program). 

4-7 



COMMANDS - 754-

?DESTINATION DEVICE ERROR 

An I/O error occurred on the output device. (GLOB). 

?DEVICE CANT BE REASSIGNED 

(1) The job's controlling terminal cannot be reassigned, (2) the logical name would be dupli­
cated, or (3) the logical name is a physical device name and the job reassigning the device is 
either logged in under a different project-programmer number or is not the operator. 

?DEVICE ERROR ON OUTPUT DEVICE 

A write error has occurred on the output file. (FUDGE2). 

?DEYICE INIT FAILURE 

The specified device has been assigned to another job or does not exist. (COPY program). 

?DEVICE MTAn NEEDS A WRITE RING, INSERT ONE AND TYPE <CR> 

This message is returned by the BACKUP and RESTORE programs. 

?DEYICE MUST BE A DECTAPE 

The only device that can be specified in the COPY command string is the DECtape. (COpy 
program). 

?DEVICE dev NOT A DIRECTORY DEVICE 

This message is returned by the BACKUP program. 

?DEVICE NOT ASSIGNABLE 

A non-privileged user cannot assign the requested device because it belongs to the restricted 
pool of devices. The user should try to assign the device with the MOUNT command. 
(ASSIGN). 

?DEVICE NOT AVAILABLE 

Specified device cannot be initialized because another user is using it or because it does not 
exist. 

?DEVICE WILDCARD ILLEGAL 

The wildcard construction cannot be used in the device specification. (DUMP, QUEUE, 
BACKUP, RESTORE). 

?DIALOG MODE NOT SUPPORTED 

The capabi lity of interactive dialogue with the user has not been implemented. (QUEUE). 

?DIRECTORY FULL ON OUTPUT DEVICE 

There is no room in the file directory on the output device to add the updated file (nondisk 
devices only). (FUDGE2). 

4-8 



- 755 - COMMANDS 

device name DISMOUNTED 

The DISMOUNT command has completed. 

?device name DISMOUNT INCOMPLETE 

The DISMOUNT command was unsuccessful. In most cases, the reasons for failure have already 
been listed by nonerror messages. 

DONT KNOW CTY UNE NUMBER 

The DCORE command cannotbe typed on CTY. (DAEMON). 

?DOUBLE DEVICE ILLEGAL 

Two device names appeared in a row without an intervening filename, or two colons appeared 
in a row, e.g., LPT:PTP: or DSKA ::FILEX. (DUMP, QUEUE). 

?DOUBLE DIRECTORY ILLEGAL 

Two directory names cannot appear without an intervening filename. (DUMP, QUEUE). 

?DOUBLE EXTENSION ILLEGAL 

Two extensions cannot appear without an intervening filename or comma. (DUMP, QUEUE). 

?DOUBLE FILENAME ILLEGAL 

Two filenames appeared in a row, or two periods appeared in a row; e.g., Q TESTl TEST2 or 
TEXTX .. MAC. (DUMP, QUEUE). 

DPAn NO DRIVE AVAILABLE ON THIS CONTROLLER 

The drives on the specified controller are all in use. (MOUNT). 

?DSK CANT BE REASSIGNED 

An attempt was made to reassign the prototype disk device data block (DDB). 

?DSKCHR FAILURE n ON UNIT abc 

The DSKCHR UUO gave an unexpected error return; n is the disk error code. Notify the 
operator. (DAEMON, KJOB). 

%END OF TAPE id ON dev 
PLEASE MOUNT TAPE id+l AND TYPE <CR> TO CONTINUE: 

This message is sent to the operator. (RESTORE). 

%END OF TAPE id ON dev 
PLEASE MOUNT NEXT TAPE AND TYPE <CR> TO CONTINUE 

This message is sent to the operator. (BACKUP). 

4-9 



COMMANDS - 756 -

%END OF TAPE n ON MTAn AT time 

The end of the tape has been reached. (RESTORE). 

$END OF TAPE n ON r~~~~ x AT time 
lDSKj 

This message appears in the log fi Ie. (BACKUP). 

?ENTER ERROR n 
?DIRECTORY FULL 

No additional files can be added to the directory of the output device; n is the disk error code. 
(GLOB). 

?ENTER FAI LURE 

The DECtape directory is full (i.e., there is no room for the file to be written on the DECtape). 

?ENTER FAILURE n 

The output filename is null; n is the error code for an illegal filename (nondisk devices only). 
(FUDGE2). 

?ENTER FAILURE FOR INDEX FILE 

The ENTER failed for the index file. (BACKUP). 

?ENTER FAILURE IN QUEUE MANAGER 

QUEUE was unable to enter the files into the output queue. (QUEUE). 

?ENTER FAILURE n ON (~;~MON} FILE 

The ENTER to write the fi Ie fai led; n is the disk error code. 

?ENTRY BLOCK TOO LARGE PROGRAM name 

The entry block of the named program is too large for the FUDGE2 entry table, which allows 
for 100 entry names. FUDGE2 can be reassembled with a larger table. (FUDGE2). 

?ERROR CLOSING OUTPUT, STATUS = n 

An I/O error occurred while closing the file on disk; n is the disk error code. (DUMP). 

?ERROR IN JOB n 

A fatal error occurred in the job or in the monitor while servicing the job. This typeout 
usually precedes a one-line description of the error. 

4-10 



- 757- COMMANDS 

?EXCEED LOG-OUT m QUOTA BY n BLOCKS 

The total number of blocks for all the user's files exceeds the maximum permitted value (m) by 
the indicated amount n. The user may use PIP or the DELETE command to remove files. Until 
the user is under the limit, he cannot dismount the fi Ie structure. (DISMOUNT). 

?EXECUTION DELETED 

A program is prevented from being executed because of errors detected during assembly, com­
pilation, or loading. Loading is performed, but the loader exits to the monitor without start­
in!J execution. (LOADER). 

?EXPECTED FORMAT IS "NNNK" = 16K to 256K 

The core-bank specified whi Ie processing the /T switch is not within the acceptable range or 
does not terminate with the letter K; e.g., 32 is not acceptable; 32K is. (COpy program). 

%FAILURE ON {~~~~} FOR ERROR FILE--CONTINUlNG 

The error fi Ie could not be generated. The BACKUP program is continuing without one. 
(BACKUP). 

?FAILURE ON [INIT } FOR LOG ALE 
. lOPEN 

The log file could not be generated. (BACKUP, RESTORE). 

%FAILURE OUTPUTTING ERROR FILE--CONTINUING 

The error file could not be output. The BACKUP program is ,continuing its processing. 
(BACKUP, RESTORE). 

%FAILURE {~i~~~~G} UFD FOR dev [proj,progj 

The UFD for the named device could not be read (BACKUP) or created (RESTORE). 

%FAILURE TO INTERLOCK UFD FOR dev [proj,progj 

The UFD interlock for the named device failed. (BACKUP). 

file structure name A LE ERRORS EXIST 

One of the fi les ina fi Ie structure has an error status, as flagged in the UFD of that file 
structure. (LOGIN). 

?FILENAME ALREADY IN USE 

The specified file already exists. (COMPIL). 

?FILENAME REQUIRED FOR INPUT QUEUE 

A fi Ie cannot be entered into the Batch input queue without a fi lename. (Q UEUE). 

4-11 



COMMANDS - 758 -

?FILE n NOT IN SAY FORMAT 

The user indicated via the IX switch that the fi Ie is to be expanded but the specified fi Ie is 
not in compressed fi Ie format. N is ei ther 1 or 2 i ndi cati ng the fi rst fi Ie or the second fj Ie. 
(FILCOM). 

?FILE n READ ERROR 

An error has occurred on either the first or second input device. (FILCOM). 

?FILE SWITCHES ILLEGAL IN OUTPUT FILE 

File switches cannot appear on the left of the equal sign, i.e., in the output specification. 
(QUEUE). 

?(3) FILE WAS BEING MODIFIED-file.ext 

Another user is modifying the file. (COMPIL). 

?(O) FILE WAS NOT FOUND-file.ext 

The named file could not be located. (COMPIL). 

?FORMAT OR READ ERROR IN AUXACC. SYS 

LOGIN unexpectedly found an end-of-file or an error in AUXACC.SYS. Notify the operator. 
(LOGIN). 

file.ext FOUND BAD BY FAILSAFE READING MTA 

The fi Ie in the fi Ie structure has an error status as fla~ed in the UFD of the fi Ie structure. 
(LOGIN). 

FROM JOB n 

An informative message telling the user the job number to which the console was attached or 
from which the console is detaching. (ATTACH, DETACH). 

?FUDGE2 SYNTAX ERROR 

An illegal command string was entered; for example, the left arrow was omitted or a program 
name was specified for the output fj Ie. (FUDGE2). 

?GIYING BACK TOO MUCH CORE 

An internal problem in the DUMP program. Notify your system programmer or software 
specialist. (DUMP). 

?HALT AT USER adr 

The user's program executed a HALT i nstructi on at adr. Typi ng CONTI N UE resumes executi on 
at the effective address of the HALT instruction.. 

4-12 



- 759 - COMMANDS 

file.ext HARDWARE DATA READ ERROR DETECTED 

The file has a hardware data read error flagged in the UFD of the file structure. (LOGIN). 

file.ext HARDWARE DATA WRITE ERROR DETECTED 

The file has a hardware data write error flagged in the UFD of the file structure. (LOGIN). 

?HUNG DEVICE dev 

If a device does not respond within a certain period after it is referenced, the system decides 
that the device is not functioning and outputs this message. 

?ILLEGAL BACKUP DEVICE 

The BACKUP operations can be done only on disk, magnetic tape, and DECtape. (BACKUP). 

?ILLEGAL BLOCK TYPE 

Whi Ie loading the bootstrap loader with the /L switch, an unrecognizable block type was en­
countered by COPY. (COpy program). 

?ILLEGAL COMMAND SYNTAX CHARACTER x 

The character x is used incorrectly in the command string. (QUEUE, BACKUP). 

?ILLEGAL DATA MODE FOR DEVICE dev AT USER adr 

The data mode specified for a device in the user's program is illegal, such as dump mode for 
the terminal. 

?drive ILLEGAL DRIVE NAME 

The drive specified by the user is in conflict with the unit or controller type required by the 
units of the fi Ie structure. (MOUNT). 

?ILLEGAL IN BATCH JOB 

The ATTACH, DETACH, SEND, CCONT, and CSTART monitor commands cannot be used by a 
batch job. 

?I LLEGAL JOB NUMBER 

The job number is too large or is not defined in this configuration. 

?ILLEGAL QUEUE DEVICE 

The queue name specified cannot be used with the given switch. (QUEUE). 

?ILLEGAL QUEUE NAME xxx 

The queue is not one of the system queues, or the queue is a logical name. (QUEUE). 

4-13 



COMMANDS - 760-

?ILLEGAL TO CREATE REQUEST FOR SOMEONE ELSE 

Only the operator logged in under 1,2 can create queueing request for other users. (QUEUE). 

?ILLEGAL UUO AT USER adr 

An i lIega I UUO was executed at user locati on adr. 

?ILL INST. AT USER adr 

An illegal operation code was encountered in the user's program. 

?I LL MEM REF AT USER adr 

An illegal memory reference was made by the user's program. If this message occurred on a 
memory write, the error is at adr-1 since the program counter has been advanced. If it occur­
red on a memory read, then the illegal instruction is probably in location adr. The user should 
use the E command to first examine location adr-1 and then location adr in order to determine 
the illegal instruction. The index registers may also have to be examined. 

?INDEX FILE CANNOT GO TO A USTING DEVICE 

This message is returned by the BACKUP and RESTORE programs. 

?INPUT AND OUTPUT DECTAPES MAY NOT BE THE SAME DEVICE 

The COpy program performs its operations on an input DECtape and an output DECtape. These 
DECtapes cannot be the same. (COpy program). 

?INPUT (or OUTPUT) BLOCK TOO LARGE 

A DECtape block number greater than 11018 was encountered. (COPY program). 

?INPUT (or OUTPUT) CHECKSUM OR PARITY ERROR 

A read (or write) error has been detected. (COPY program). 

?INPUT DEVICE dev CANNOT DO OUTPUT AT USER adr 

Output was attempted on a device that can only do input (e.g., the card reader). 

?INPUT (or OUTPUT) DEVICE ERROR 

The DECtape control unit has detected the loss of data or a missed block. (COpy program). 

?INPUT DEVICE NOT A DISK 

The input specifications in a QUEUE command must be disk fi les. (QUEUE). 

?INPUT ERROR 

An I/O error occurred while reading a temporary command file from the disk. File should be 
rewritten. (COMPIL). 

4-14 



- 761 - COMMANDS 

?INPUT ERROR - file. ext FILE NOT FOUND 

The specified file could not be found on the input device. (FILCOM). 

{
file.UFD} 

%1 N PUT ERROR DSKn fi Ie. MFD [proj, prog] 
file.SFD 

The BACKUP program cannot access the entries in the named directory. These entries will not 
be saved on the BACKUP medium. The BACKUP program continues by advancing to the next 
directory. (BACKUP). 

?INPUT ERROR, STATUS = n 

An 1/0 error occurred while reading the file from disk; n is the disk error code. A new INPUT 
command causes a new LOOKUP to be done. (DUMP, DAEMON). 

?INPUT FAILED FOR FILE DSKn file.ext [proj,prog] 

The INPUT failed for the specified file. (BACKUP, RESTORE). 

?INPUT (or OUTPUT) PREMATURE END OF FILE 

When copying a DECtape, COPY encountered the end of fi Ie before it expected it. This may 
happen when copying a PDP-9 DECtape to a PDP-10 DECtape. (COpy program). 

?INSUFFICIENT CORE FOR QUEUE 

There is not enough core in system at the time of the KJOB command to make an output queue 
entry. (QUEUE). 

?INVAUD ARGUMENT 

The argument specified on a BACKSPACE or PARITY command is unknown. (BACKUP, RESTORE). 

?INVAUD ENTRY - TRY AGAIN 
# 

An illegal project-programmer number or password was entered and did not match identification 
in system. The user is to retype his project-programmer number and password. (LOGIN). 

?1/0 TO UNASSIGNED CHANNEL AT USER adr 

An attempt was made to do an OUTPUT, INPUT, OUT, or IN to a device that the user's pro­
gram has not initialized. 

?x IS AN ILLEGAL (~~~~HCTER} 
An illegal character or switch was encountered in the command string. (FUDGE2). 

?symbol IS A MULTIPLY DEFINED LOCAL 

The named symbol is in more than one symbol table with different values. (DUMP). 

4-15 



COMMANDS - 762-

?symbol IS AN UNDEFINED SYMBOL 

The named symbol is not in DUMP's symbol table. (DUMP). 

?symbol IS AN UNDEFINED SYMBOL TABLE NAME 

The named symbol table has not been loaded with an XTRACT command. (DUMP). 

? JOB CAPAQTY EXCEEDED 

This message is received by a user who attempts to login after the maximum number of jobs that 
the system has been set to handle has been initiated. The user should login in at a later time. 
(LOGIN). 

? JOB NOT WAITING 

The job specified is not waiting to be continued. (JCONT). 

JOB SAVED 

The output is completed. 

JOBn USER [p,p} LOGGED OFF TTY nAT hhmm dd-mm-yy 
DE LETED <ALL> n FI LES 
SAVED <ALL> n FILES m TOTAL BLOCKS USED 
ANOTHER JOB STILL LOGGED IN UNDER [p,p} 
RUNTIME n MIN m SEC 

This information is typed as user logs off successfully. Note that m is total blocks allocated as 
opposed to blocks written. Therefore, it is always greater than or equal to the number of 
blocks written. Files are allocated in units of blocks called clusters. The system administra­
tor selects the cluster size for each file structure, usually one block per cluster for FH file 
structures, and 5 or 10 blocks per cluster for DP file structures. (KJOB). 

?LANGUAGE PROCESSOR CONFUCT 

The use of the + construction has resulted in a mixture of source languages. (COMPIL). 

?LEVEL D ON LY 

The command issued is avai lable only in 5-series monitors. 

?UNKAGE ERROR - RUN UUO 

An I/O error occurred whi Ie reading a program from the device SYS:. (C OM PI L). 

O/OUSTING DEVICE OUTPUT ERROR, STATUS = 

The devi ce sped fj ed for the output has an error. A new OUT command se lecti ng a new fi Ie 
can be given or an OUT and APPEND command sequence to try again. (DUMP). 

?USTING ENTER FAILURE n 

The ENTER to write the output file fai led; n is the disk error code. (QUEUE). 

4-16 



- 763 - COMMANDS 

?USTING OPEN FAILURE ON DEVICE dev 

The OPEN failed on device dev. (QUEUE). 

? LOCKED-OUT BY OPERATOR 

The operator is preventing any new accesses to the file structure in order that it may be re­
moved. (MOUNT). 

file structure name LOGGED OUT QUOTA n EXCEEDED BY m BLOCKS 

The user's allocation on the file structure named is greater than his logged out quota. The user 
must go through the CONFIRM dialogue and de fete files until he is under the quota allowed to 
log off. (KJOB, LOGOUT). 

O/OLOGICAL NAME WAS IN USE, DEVICE dev ASSIGNED 

The user previously assigned this logical name to another device. The logical name is cleared 
from the fi rst devi ce and assi gned to the second . 

?LOGIN PLEASE 

A command that requires the user to be logged in has been typed to the monitor; it cannot be 
accepted unti I the user performs a LOGIN. 

?LOGIN PLEASE TO USE SWITCH CREATE 

The user must be logged in to make a new entry into a system queue. (QUEUE). 

? LOOKUP ERROR n 
?file.ext FILE NOT FOUND 

The named file cannot be found in the directory on the specified device. (GLOB) 

O/OLOOKUP ERROR DSKn file [proj,progj 

The BACKUP or RESTORE program cannot access the indicated file and continues by skipping 
to the next file. (BACKUP, RESTORE). 

?LOOKUP FAILED, "BSLDR.REL" 

Whi Ie processing the /L switch, COPY could not find the bootstrap loader named BSLDR. REl. 
(COpy program). 

?LOOKUP FAILURE 

The LOOKUP to read the disk file failed. This message is followed by a line explaining the 
reason for fai lure. (FUDGE2). 

?fi Ie structure name LOOKUP FAI LURE n 

The LOOKUP to read the fi Ie failed; n is the disk error code. 

4-17 



COMMANDS - 764-

?LOOKUP FAILURE FOR INPUT FILE n file 

DUMP cannot read the input file. (DUMP). 

?LOOKUP FAILURE n ON DAEMON FILE 

The LOOKUP to read the DAEMON file failed; n is the disk error code. (DAEMON). 

?MAX == n 

A value was specified for an argument that is greater than the maximum value (n) allowed. 
(DUMP). 

?MAY NOT LOGIN AS MFD PPN 

No one can login as [1,1) because this number is the project-programmer number of the MFD. 
(LOGIN). 

{

LOCAL } 
REMOTE 

?MAY NOT LOGIN DATA SET 
BATCH JOB SUBJOB 
REMOTE CTY OR OPR 

ACCT. SYS entry does not permit the project-programmer number to login at the terminal that is 
being used. (LOGIN). 

?MAY NOT LOGOUT WITH FILE STRUCTURES FOR LOGICAL NAMES 

A file structure in the job's search list is assigned a logical name, and only physical device 
names are recognized. The user should deassign the logica~names. (KJOB, LOGOUT). 

?MEM PAR ERROR AT USER PC adr 

The processor detected a memory parity error in the low or high segment whi Ie the job was exe­
cuting. The adr is the address of the PC stored by the hardware rather than the user address of 
the parity error. The operator also receives an error message giving the range of absolute ad­
dresses in case memory reconfiguration is necessary. DAEMON is awakened in order to record 
the pertinent information about the error for field service personnel. 

The user must start a new copy of his program by typing the appropriate monitor command R, 
RUN, or GET. He should not start the program over by typing START, since the error is likely 
to reoccur or the program operate with incorrect data. 

?MFD (LOOKUP} FAILURE 
. READ 

The MFD cannot be accessed. (BACKUP). 

?MORE THAN ONE (OUTPUT} DEVICE ILLEGAL 
. INPUT 

Fi les for the BACKUP operations can be taken from or written to only one device at a time. 
(BACKUP, RESTORE). 

4-18 



- 765 - COMMANDS 

?MORE THAN ONE OUTPUT FILE ILLEGAL 

Only one output queue-name may be specified in the QUEUE command string. (QUEUE). 

device MOUNTED 

The device is mounted and ready for use. The MOUNT command has completed. If a file 
structure was mounted, a list of the unit ID's and the drives on which they are mounted is 
output. (MOUNT). 

?device MOUNT INCOMPLETE 

The MOUNT command has not completed successfully. In most cases, the reasons for failure 
have already been listed by nonerror messages. In a Batch job, MOUNT INCOMPLETE not 
preceded by a message may indicate that the user is attempting to mount a spooled device 
without executing a SET SPOOL command to unspool the device. The user must have 
unspool privileges in his accounting file entry in order to unspool and mount spooled devices. 

?MUST BE IN OWNER'S PROJECT FOR SINGLE ACCESS 

The user may not request single-access VSINGLE switch) unless he has the same project num­
ber as the owner of the file structure. This requirement is enforced since a user with single 
access may execute super-USETI/USETO UUOS. (MOUNT). 

name MUST NOT BE A LOGICAL NAME 

The structure named contains the operator request queue (3,3. UFD) and must not be the logical 
name for some other structure. (MOUNT). 

?fi Ie structure name MUST NOT BE WRITE-PROTECTED 

NAME: 

The named structure is being used to queue requests to the operator and therefore may not be 
write-protected, SETSRC may be used to change the protection. (MOUNT, DISMOUNT, 
FILE). 

The ACCT. SYS entry for this project-programmer number requires the user to type a name which 
matches the one in ACCT. SYS in order to login. (LOGIN). 

?NEED 5.03 OR LATER FOR REATTACH COMMAND 

The REATTA program depends on UUOs available in the 5.03 release of the monitor. The user 
attempted to run the program using an older monitor. (REATTA). 

?NESTING TOO DEEP 

The @ construction exceeds a depth of nine and may be due to a loop of@ command files. 
(COMPIL). 

?NO CORE ASSIGNED 

No core was allocated when the GET command was given and no core argument was specified 
in the GET. 

NO DIFFERENCES ENCOUNTERED 

No differences were found between the two input files. (FILCOM). 

4-19 



COMMANDS - 766 .• 

?(1) NO DIRECTORY FOR PROJECT-PROGRAMMER NUMBER - fj le.ext 

A UFD does not exist for the requested project-programmer number. (COMPI L). 

?NO END BLOCK ENCOUNTERED 

The last block of the bootstrap loader program must be an end block (refer to the MACRO 
manual). (COpy program). 

?NO ENTRY IN AUXACC. SYS 
NO SEARCH UST OR UFDS CREATED 

If the user has no entry in AUXACC.SYS, LOGIN does not create UFDS or a search list. User 
is logged-in and has UFDs if they existed previously. He may write only on file structures that 
have UFDs or read all file structures. He may also create a file structure search list with 
SETSRC. The user can create UFDs on those fi Ie structures for whi ch he has an entry in 
QUOTA.SYS by using the MOUNT command. (LOGIN). 

NO ENTRY IN QUOTA.SYS 

The user may uti lize the fi Ie structure, but no UFD is created if he does already have one. 
(MOUNT). 

%NO INFO ON "name" 

The user specified a feature that has no avai lab Ie documentation. (HELP). 

?NO INPUT DEVICE SPECIFIED 
SPECIFY INPUT DEVICE NOW: 

An input device name was not specified prior to the START command. (RESTORE). 

?NO MODIFIER ALLOWED IN SWITCH switch 

The switch specified cannot have an argument. (QUEUE). 

NONE PENDING 

None of the user's requests to the operator are pending. 

?NON-EXISTENT DRIVE DPAn 

The user has specified a drive that does not exist in the system. (MOUNT). 

%NON-EXISTENT FILE input specification 

The file specified for input could not be found. This message is not output if the /NEW switch 
is specified for the file. (QUEUE). 

? NON-EX MEM AT USER adr 

Usually due to an error in the monitor. 

4-20 



- 767- COMMANDS 

?NO OPR.JOB FOR THIS REQUEST 

An operator request has been issued, but there is no OMOUNT running and enabled to service 
the request. The request is still queued unless the/PAUSE switch was given. 

?NO OUTPUT DEVICE SPECIFIED 
SPECIFY OUTPUT DEVICE NOW: 

An output device name was not specified prior to the START command. (BACKUP). 

?NO PRIVILEGES TO SET CPU 

The user does not have the privi lege bits set by LOGIN from ACCT. SYS to change the CPU 
specification. The user should request that these privilege bits be set by the system manager. 

?NO PRIVS TO UNSPOOL 

The user does not have privi leges to unspool devices, and the operator has net set bit 28 in the 
STATES word. 

?NO REMOTE USERS. TRY AGAIN LATER 

The operator has used the SET SCHEDULE command to prevent LOGINs from remote terminals. 
The message of the day is still typed. (LOGIN). 

NO ROOM IN QUEUE, TRY AGAIN LATER 

There is no room in the queue for the user's request to be sent to the operator. (MOUNT). 

?(14) NO ROOM OR QUOTA EXCEEDED - file. ext 

There is no room on the fi Ie structure or the user's quota on the fi Ie structure has been exceeded. 

%NO RUNNING CPUS IN SPECIFICATION 

If none of the CPUs in the job's CPU specification are running, the user receives this message 
every mi nute unti I the CPU is started or he types a new SET CPU commanq. 

?NO START ADR 

Starting address or reenter address is zero, because the user failed to specify the starting ad­
dress in the END statement of the source program or in the START command. However, an im­
plicit starting address of 0 may be specified. 

?NO SUCH DEVICE 

The device name does not exist or was not assigned to this job. 

?NO SUCH JOB 

An attempt was made to attach to a job that has not been initialized. 

?NO SUCH STR 

A nonexistent fi Ie structure was specified. (KJOB). 

4-21 



COMMANDS - 768 -

?NO SUCH TTY 

The terminal number is not part of the system configuration. 

?NO SUCH UNIT 

The unit does not exist or all units of this type are in use. 

?NOT A JOB 

The job number is not assigned to any currently running job. (ATTACH, DSK, JCONT). 
There is no job logged in at this terminal. (CONTINUE). 

?NOT A SAVE FILE 

The fi Ie is not a core image fi Ie. 

?NOT A SPOOUNG DEVICE 

The device specified is not one of the spooling devices (LPT, CDP, CDR, PTP, PLT). 

?NOT A STR - TRY AGAIN 

The fi Ie structure specified is not recognized by the monitor. 

?NOT A TTY 

The device name given is not a terminal. (REATTA). 

?drive NOT AVAILABLE 

The drive indicated by the user is not currently avai lable. (MOUNT). 

?command NOT CODED 

A command that is not in this version of DUMP was specified in the command string. (DUMP). 

?NOT ENOUGH ARGUMENTS 

An insufficient number of fj les of one type has been specified. (FUDGE2). 

?NOT ENOUGH CORE 

The system cannot supply enough core to use as buffers or to read in a system program. 
(COMPIL). 

NOT ENOUGH DRIVES AVAILABLE 

There are currently not enough drives of the right type to mount the file structure. (MOUNT). 

NOT ENOUGH TABLE SPACE FOR SWAPPING UNITS 

There are more swapping units than DAEMON allowed for. DAEMON should be reassembled. 
(DAEMON). 

4-22 



- 769- COMMANDS 

?dev file.ext program NOT FOUND 

The file or the program was not found on the device or in the file specified. If a program name 
is printed, this message may indicate that the program names in the command string appear in 
a sequence different from their sequence within the fi Ie. Therefore, the program may actually 
exist but was missed because of the incorrect sequence in the command string. (FUDGE2). 

?file. SAY NOT FOUND 

The program fi Ie requested cannot be found on the system device or the specified device. 

drive NOT READY 

The indicated drive is either off-line or physically write-locked when write-enabled was re­
quested. The operator will be notified. (MOUNT). 

?NOT YET SUPPORTED COMMAND CODE switch 

A switch has been specified that is not implemented. (QUEUE). 

NO UFD CREATED 

The user may access the file structure, but he cannot write in his disk area since he has no 
UFD. (MOUNT). 

?NULL DEVICE ILLEGAL 

A colon has been found without a preceding device name. (QUEUE, BACKUP, RESTORE). 

?NXM adr 

While computing the value of an expression, a non-existent location was specified when 
referencing the input fi Ie. (DUMP). 

?nk OF CORE NEEDED or ?nP OF CORE NEEDED 

There is insufficient free core to load the fi les; n is the size being requested for the segment 
that fai led (either high or low segment, not the sum of the high and low segments). This mes­
sage occurs when the virtual core for the system has been exceeded or the core for this job has 
been exceeded. The user should type CORE) to determine what core has been exceeded, and 
whether the high or low segment was too big. K denotes 1024 words which is the unit of core 
allocation on a KA10-based system, and P denotes 512 words (one page) which is the unit of 
allocation on a KIlO-based system. 

?OFFSET = 1000 TO m600 (OCTAL) 

The offset specified by the user is not within the acceptable range. (COpy program). 

?ONLY BATCH USERS MAY LOGIN. TRY AGAIN LATER 

The operator has used the SET SCHEDULE command to prevent LOGINs, except for BATCH 
jobs. The message of the day is still typed. (LOGIN). 

4-23 



COMMANDS - 770 -

?OPEN FAILED FOR DEVICE dev 

The OPEN for the named device failed. (BACKUP, RESTORE). 

?OPEN FAILURE ON DATA DEVICE dev 

The OPEN on the specified device failed. (DUMP). 

OPERATOR BUSY, HANG ON PLEASE. 

The user must wait for the operator to become avai lable. 

OPERATOR NOTIFIED 

(1) The operator is available and the user may continue typing his message. (PLEASE). 
(2) A request is queued to the operator to perform a specified action. (MOUNT, DISMOUNT). 

OPERATOR REQUESTED TO MOUNT UNITS 

A request is queued to the operator to mount and ready the packs on the proper drives. 
(MOUNT). 

OPERATOR REQUESTED TO READY DRIVES 

One or more drives (as specified by previous messages) are not ready. A request is queued to 
the operator. (MOUNT). 

OPERATOR REQUESTED TO REMOVE PACKS 

A request to physically remove the packs has been queued to the operator. (DISMOUNT). 

OTHER USERS - CANNOT SINGLE ACCESS 

Other users are currently using the fj Ie structure that has been specified with the single-access 
switch (/SINGLE). The switch is ignored. (MOUNT). 

OTHER USERS - CANT REMOVE 

A DISMOUNT command requesting physical removal (/REMOV switch) of a pack has been 
issued and there are other users of the pack. The switch is ignored. (DISMOUNT). 

OTHER USERS SAME PPN 

A program has determi ned that other jobs are currently logged-i n under the same project­
programmer number. (LOGIN, KJOB). 

?OUT OF BOUNDS 

The specified adr is not in the user's core area, or the high segment is write-protected and the 
user does not have privileges to the file that initialized the high segment. (D, E). 

?OUTPUT DEVICE dev CANNOT DO INPUT AT USER adr 

An attempt was made to input from an output device (e. g., the Ii ne pri nter). 

4-24 



- 771 - COMMANDS 

?OUTPUT DEVICE ERROR 

An error has occurred on the output device. (FILCOM). 

?OUTPUT ERROR 

An I/O error occurred while writing a temporary command file on disk. (COMPIL). 

?OUTPUT ERROR, STATUS = n 

An I/O error occurred while writing the file on disk; n is the disk error code. (DAEMON). 

?OUTPUT INITIAUZATION ERROR 

The output device cannot be initialized for one of the following reasons: 

1. The device doe not exist or is assigned to another job. 
2. The device is not an output device. 
3. The file cannot be placed on the output device. (FILCOM). 

PASSWORD: 

The user must type a PASSWORD which matches that in the ACCT.SYS entry for this project­
programmer number. Echoing is suppressed to preserve PASSWORD security. If the user is at a 
half-duplex (local copy) terminal, this mess~ge is replaced by a sequence of random over-typed 
characters, over which the user types his PASSWORD. (LOGIN). 

PAUSE ... (tC TO QUIT, CR TO CONT) 

The /PAUSE switch has been specified, and-an operator action is about to be requested. tC 
aborts the command before the request is queued to the operator. Carri age return-Ii ne feed 
allows the command to continue, and the request is queued to the operator. (DISMOUNT). 

?PC OUT OF BOUNDS AT USER adr 

An i Ilega I transfer has been made by the user program to user locati on adr. 

?PLEASE KJOB OR DETACH 

Attempt was made to LOGIN a job when the user already has a job initialized at that terminal. 
(LOGIN). 

?PLEASE LOGIN AS [OPR] 

The operator is the only person that can initialize DAEMON by typing R DAEMON. 

? PLEASE TYPE tC FIRST 

A command which would start a job has been issued after a CSTART or CCONT. 

?PPN HAS EXPIRED 

The current date is greater than the expiration date of the project-programmer number. The 
user may not login until expiration date is changed by the system manager. (LOGIN). 

4-25 



COMMANDS - 772-

?PROGRAM ERROR WHILE RESETTING MASTER DEVICE 

FUDGE2 cannot find the master device or cannot find the program on the master device. 
(FUDGE2). 

?PROJECT 1 MAY NOT BE PTY 

Project 1 is never allowed to login over a pseudo-TTY. (LOGIN). 

?PROTECTION FAILURE DSK file.ext [proj,progJ 

The user does not have access to the specified disk areas for either a read or a write. 
(BACKUP, RESTORE). 

?(2) PROTECTION FAILURE - file.ext 

There was a protection failure or the directory on DECtape had no room for the file. (COMPIL). 

?PTR I NIT FAILURE 

The logical device PTR is not available or could not otherwise be initialized. (COpy program). 

QUOTA. SYS LOOKUP FAILURE 

The LOOKUP to read QUOTA.SYS failed. (MOUNT). 

QUOTA.SYS NOT ON STRUCTURE 

QUOTA.SYS is not part of this structure. The user may still use the file structure, but no 
UFD wi II be created. (MOUNT). 

QUOTA.SYS READ ERROR 

An I/O error occurred while reading QUOTA.SYS. (MOUNT). 

QUOTA.SYS WRONG FORMAT VERSION 

Wrong version of QUOTA.SYS is on the file structure being mounted. Consult the operator. 
(MOUNT). 

%READ ERROR DSKn file [proj,progJ 

The BACKUP or RESTORE program cannot input the designated file. (BACKUP, RESTORE). 

?fi Ie structure name RENAME FAILURE n 

The RENAME to change the protection of the file failed; n is the disk error code. (KJOB, 
LOGOUT). 

?(4) RENAME FILENAME ALREADY EXISTS - file.ext 

The new filename on a RENAME command already exists. (COMPIL). 

4-26 



- 773 - COMMANDS 

REQ UEST ST ORED 
n COMMANDS IN QUEUE 

The request typed by the user has been placed in a queue to be performed when possible. n is 
the number of requests in the queue for all users. (FILE, MOUNT, DISMOUNT). 

?REQUIRES DEVICE NAME 

The device name or file structure name is required with the MOUNT and DISMOUNT commands. 

$RESTOR COMPLETED AT time 

The RESTORE program has successfully completed. (RESTORE). 

?RIGHT BRACKET REQUIRED IN DIRECTORY 

The project-programmer number must be enclosed in square brackets. (QUEUE). 

%SEARCH UST DOES NOT ALLOW CREATES 

There are no file structures available to the user on which he can write. Run MOUNT or 
SETSRC to modify the search list as necessary. (LOGIN). 

%SEARCH UST ERROR [proj,progj 

The BACKUP or RESTORE program is unable to obtain the search list for the named project­
programmer number. The program advances to the next project-programmer number. (BACKUP, 
RESTORE). 

%SEARCH UST IS EMPTY 

There are no file structures in the DSK: search list that are available to the user. He can run 
the SETSRC program to modify his search list. (LOGIN). 

?SINGLE-ACCESS BY JOB n 

The file structure is already single access by the indicated user. (MOUNT). 

file.ext SOFTWARE CHECKSUM OR REDUNDANCY ERROR 

The file has no error as flagged in the UFD of the fi Ie structure. (LOGIN). 

?SOME OTHER TIME 

The user is not scheduled to LOGIN at this time. He should try again when he is allowed to 
login. (LOGIN). 

?SORRY, CANT OPEN DSK, PLEASE CALL THE OPERATOR 

This message is returned from the GRIPE program. 

?SORRY, CANT WRITE IN COMPLAINT AREA, PLEASE CALL THE OPERATOR 

Th i s message is returned from the GRI PE program. 

4-27 



COMMANDS -774 -

?SORRY, COMPLAINT BASKET IS FULL, PLEASE CALL THE OPERATOR 

This message is returned from the GRIPE program. 

?SORRY, NO UFD FOR COMPLAINT BASKET, PLEASE CALL THE OPERATOR. 

This message is returned from the GRIPE program. 

{ BACKUP} . START OF RESTORE VERSION n AT time YEAR nn DAY dd 

The BACKUP or RESTORE program is beginning its processing. (BACKUP, RESTORE). 

?STATION NOT IN CONTACT 

The requested station is not in contact with the central station. (LOCATE). 

?STATION NUMBER INVAUD 

The requested station number is not recognized by the system. (LOCATE). 

STRUCTURE ALREADY MOUNTED 

The requested file structure already exists and does not need to be physically mounted. 
(MOUNT). 

?STRUCTURE NOT IN STRLST. SYS 

The file structure name does not exist in the system administrator's file SYS:STRLST. SYS and, 
therefore, is not defined for the system. The operator or administrator may be requested to 
define the file structure by addi ng it to STRLST. SYS with the REACT program. (MOUNT). 

?STRUUO FA! LURE 

The STRUUO UUO gave an error return. Notify the operator. (KJOB, LOGOUT). 

O/OSUPERSEDING EXISTING FILE 

A warning message indicating that a file already exists with the specified name. This file is 
being superseded. (TECO). 

O/OSWAP READ ERROR UNIT abc STATUS == n 

An I/O error occurred while reading the swapping space. The data is written into the 
DAEMON file as read. (DCORE). 

?SWITCH ERROR 

An illegal switch specification was given. (COpy program). 

?switch SWITCH ILLEGAL 

The switch specified cannot be used with the given queue name. (QUEUE, BACKUP, RESTORE). 

?SWITCH VALUE TOO LARGE x 

The value given to the switch exceeds the maximum value. (QUEUE). 

l4-28 



- 775 - COMMANDS 

?SYNTAX ERROR 

There is a syntax error in the command stri ng. Check for incorrect parentheses or two operators 
ina row. 

?SYSSTR FAI LURE 

The SYSSTR UUO gave an error return. Notify the operator. (KJOB, LOGOUT). 

?SYSTEM ERROR - xxxxxx 

System errors designate operator or system errors and are not a direct fau It of the user. They 
are typed for possible diagnostic used. 

?SYSTEM NOT AVAILABLE 

The operator has used the SET SCHED command to prevent LOGINs from timesharing terminals. 
The message of the day is still typed. (LOGIN). 

?TABLE OVERFLOW - CORE UUO FAILED TRYING TO EXPAND TO xxx 

The GLOB program requested additional core from the monitor, but none was available. 
(GLOB). 

?THIS MONITOR WAS BUILT FOR A xxx AND WILL NOT RUN PROPERLY ON A yyy 

The monitor is not running on the machine for which it was built. xxx and yyy are PDP-6, 
KA 10, or KilO. 

?TIME liMIT EXCEEDED 

The time limit allocated for the job has been reached. The job is stopped and the terminal is 
returned to monitor mode. 

TIMESHARING WILL CEASE IN m HOURS n MINUTES 

The KSYS command (OPSER) or SET KSYS UUO has been issued in order to stop timesharing on 
the system at the indicated time. 

?TOO FEW ARGUMENTS 

A command has been typed, but necessary arguments are missing. 

?TOO MANY FILENAMES OR PROGRAM NAMES 

More than 40 program names or fj lenames were specifi ed in the command stri ng. The user 
should separate the job into several segments. (FUDGE2). 

?TOO MANY FILE STRUCTURES 

The number of file structures exceeds the capacity of the monitor data base. The current limit 
is 1410 , (ONCE ONLY). 

4-29 



COMMANDS -776 -

?TOO MANY NAMES or ?TOO MANY SWITCHES 

Command string complexity exceeds table space in the COMPIL program. (COMPlL). 

?TRANSMISSION ERROR 

During a SAVE, GET, or RUN command, the system received parity errors from the device, or 
was unable to read the user's fi Ie in some other way. This can be as simple as trying to write 
on a write-locked tape. 

?TRANSMISSION ERROR ON INPUT DEVICE dev 

A transmission error has occurred while reading data from the specified device. (FUDGE2). 

?TRlED TO OVERWRITE DATA WORD 

After writing the core image fi Ie, DAEMON backs up to overwrite a word not known pre­
viously (e.g., the length of the category). In overwriting the word, DAEMON encountered 
a deviation from the standard pattern used in originally writing the word. (DAEMON). 

?TRY LARGER ARG 

The specified argument is too small for the program. This message is followed by the standard 
output. (CORE). 

?TTYn ALREADY ATTACHED 

Job number is erroneous and is attached to another console, or another user is attached to the 
job. 

?TTY IN USE 

The terminal requested is already controlling a job or is otherwise in use. (REATTA). 

TYPE CORE BANK OR OFFSET FOR DTBOOT 

On a IT switch, COPY asks for a core bank or offset for the bootstrap loader. The core bank 
is 16K to 256K and the offset is 1000 to 777600 octal. (COPY program). 

TYPE H FOR HELP 

An unintelligible response or command has been typed. Either the filename or the CONFIRM: 
message is repeate~ depending upon what was typed. (KJOB). 

?UFD ENTER FAILURE n 

Failure in trying to create UFO; n is the disk error code. Notify the operator. (LOGIN). 

O/OUFO ERROR OSKn [proj,prog] 

The BACKUP or RESTORE program cannot access the UFO (LOOKUP failure). It advances to 
the next UFO. (BACKUP, RESTORE). 

4-30 



- 777- COMMANDS 

?file structure name UFD INTERLOCK BUSY 

Could not get UFD interlock when trying to set up a UFO. The UFO is not currently set up. 
Notify the operator. (LOGIN). 

?UFD LOOKUP FAILURE n 

A failure occurred in setting up a UFD; n is the disk error code. Notify the operator. (LOGIN). 

?UFD OUTPUT FAILURE n 

The output failed when trying to create the UFD (4-series); n is the software channel status. 
(LOGIN). 

?file structure name UFO READ ERROR, STATUS = n 

A read error occurred while reading the user's UFD on the file structure. Status n tells which 
error occurred. Notify the operator. (KJOB, LOGOUT). 

?UFD RENAME FAILURE n 

A failure occurred in setting up a UFD; n is the disk error code. Notify the operator. (LOGIN). 

?UNDEFINEO SWITCH switch 

The specified switch is either undefined or not unique. (MOUNT, DISMOUNT). 

?UNEQUAL NUMBER OF MASTER AND TRANSACTION PROGRAMS 

On a replace request, the number of master programs (or fi les) does not equal the number of 
transaction programs (or files). (FUDGE2). 

UNIT abc ALREADY MOUNTED ON DRIVE DPAn 

The file structure is already mounted but is on different drives than the user specified. 
(MOUNT). 

?UNKNOWN COMMAND 

The monitor passed a command to COMPIL which COMPIL does not recognize. (COMPIL). 

?UNKNOWN DEFAULT FOR SWITCH switch 

The default condition is not known for the specified switch. (DUMP, QUEUE). 

?UNKNOWN OR INVAUD COMMAND - TYPE GO TO CONTINUE 

This message is typed by the BACKUP and RESTORE programs. 

?UNKNOWN SWITCH switch 

The switch named has been mistyped. (DUMP, QUEUE). 

4-31 



COMMANDS - 778 -

?UNKNOWN SWITCH VALUE n 

The argument specified with the switch has been mistyped. (DUMP, QUEUE). 

?UNRECOGNIZABLE SWITCH 

An ambiguous or undefined word followed a slash. (COMPIL). 

?UUO AT USER adr 

This message accompanies many error messages and indicates the location of the UUO that was 
the last instruction the user program executed before the error occurred. 

n VERIFICATION ERRORS 

On a word by word comparison requested via the /V switch, n discrepancies have been de­
tected between the input DECtape and OtJtput DECtape. (COpy program). 

WAITING ... 

A request has been queued to the operator and the command is waiting for the operator to com­
plete the request. If the user does not want to wait for completion of the operator's action, 
he can type control-C without aborting the command. The operator action will still be com­
pleted. Later a DISMOUNT/CHECK or MOUNT/CHECK can be given to check for comple­
tion. (MOUNT, DISMOUNT). 

WAIT PLS 

The system's primary accounting fj Ie FACT. SYS was busy. It is retried for ten seconds before 
FACT.XOl is tried. This message can appear if many users are logging in simultaneously. 
(LOGIN, KJOB, LOGOUT). 

O/OWARNING - INPUT REQUEST USES ONLY TWO ENTRIES 

Only two files can be specified in the input queue request, the control file and the log file. 
(QUEUE). 

!WARNING NO INDEX ON OUTPUT FILE-CONTINUING 

The user has changed the structure of the index library file when deleting, appending, or in­
serting, thereby invalidating the index. The index has been removed from the new file. Re­
indexing is required. (FUDGE2). 

?dev WASNT ASSIGNED 

The device is not currently assigned to the user's job and cannot be deassigned or reassigned by 
the job. 

?WASNT DEl 

The specified device is not detached. 

4-32 



- 779 - COMMANDS 

{
NAME } 

?WILDCARD ILLEGAL IN INPUT QUEUE FILE DIRECTORY 
EXTENSION 

The wi Idcard construction cannot be used when specifying the Batch input queue. (QUEUE). 

{
NAME } 

?WILDCARD ILLEGAL IN OUTPUT DIRECTORY 
EXTENSION 

The wildcard construction cannot be used in the output queue specification. (QUEUE). 

?WRITE LOCK ERROR 

An attempt was made to write on a write-locked DECtape. (COPY program). 

?WRONG FORMAT FOR SYMBOL 

A symbol was given in the format program :symbol and a symbol name did not follow the colon; 
in other words, the colon must be followed by a symbol. (DUMP). 

?WRONG FORMAT VERSION NUMBER IN SYSTEM FILES 

Wrong version of ACCLSYS or AUXACC.SYS is on the system. Consult the operator so that he 
can run REACT to change the accounting fi les. (LOGIN). 

YOU ARE LOGGED IN AS n,m 

When a user logs in with a unique progr.ammer number (project, #), this message informs him of 
the project-programmer number that LOGIN assigned. (LOGIN). 

?YOU DONT HAVE PRIVILEGES TO WRITE (~~~MON) FILE 

The user attempted to write in a file to which he did not have access. (DAEMON). 

?l+lnK CORE 
VIR. CORE LEFT = 0 

The swapping space or the core allocated to timesharing is all in use (i.e., there is no avail­
able virtual core). The user should wait a few minutes, and then attempt to login again. If 
this message sti II appears, it shou Id be reported to the operator. 

m+n/p CORE 
VIR. CORE LEFT = v 

Key: m = number of blocks in low segment. 
n = number of blocks in high segment. 
p = maximum core per job. (Maximum physical user core unless limited by operator, or 
there are jobs locked in core (refer to DECsystem-10 Monitor Calls)). 
v = number of K blocks unassigned in core and on the swapping device. 

~~uic ihur nK represents 1024-word blocks which is the unit of core allocation on a KAlO­
based system, and nP respresents 512-word blocks which is the unit of allocation on a KIlO­
based system. 

4-33 



COMMANDS - 780-

4.2 ERROR CODES 

The following error codes are returned in AC on RUN and GETSEG UUOs, in location E + 1 on 4-word 

argument blocks of LOOKUP, ENTER, and RENAME UUOs, and in the right half of location E + 3 on 

extended LOOKUP, ENTER, and RENAME UUOs. The codes are defined in the S.MAC monitor file. 

Symbol Code 

ERFNF% 0 

ERIPPOh 1 

ERPRT% 2 

ERFBM% 3 

ERAEF% 4 

ERISU% 5 

ERTRN% 6 

ERNSF% 7 

ERNEC% 10 

ERDNA% 11 

ERNSD% 12 

ERlLU% 13 

ERNRM% 14 

ERWLK% 15 

ERNET% 16 

ERPOA% 17 

ERBNF% 20 

Table 4-1 
Error Codes 

Explanation 

File not found, illegal filename (0,*), or filenames do 
not match (UPDATE). 

UFD does not exist on specified file structures. (Incor­
rect project-programmer number.) 

Protection failure or directory full on DTA. 

Rle being modified (ENTER). 

Already existing filename (RENAME) or different filename 
(ENTER after LOOKUP). 

Illegal sequence of UUOs (RENAME with neither 
LOOKUP nor ENTER, LOOKUP after ENTER). 

a. T ransmi ssion, devi ce, or data error 
(RUN, GETSEG only). 

b. Hardware-detected devi ce or data error de­
tected while reading the UFD RIB or UFD 
data block. 

c. Software-detected data inconsistency error 
detected while reading the UFD or file RIB. 

Not a saved file (RUN, GETSEG only). 

Not enough core (RUN, GETSEG only). 

Device not available (RUN, GETSEG only). 

No such device (RUN, GETSEG only). 

Illegal UUO (GETSEG only). No two-register relocation 
capability • 

No room on this file structure or quota exceeded (over­
drawn quota not considered) • 

Write-lock error. Cannot write on file structure. 

Not enough table space in free core of monitor. 

Partial allocation only. 

Block not free on allocated position. 

(continued on next page) 

4-34 



Symbol Code 

ERNSD% 21 

ERDNE% 22 

ERSNF% 23 

ERSLE% 24 

ERLVL% 25 

ERNCE% 26 

ERSNS% 27 

- 781 -

Table 4-1 (Cont) 
Error Codes 

Explanati on 

Cannot supersede an existing directory (ENTER). 

Cannot delete a non-empty directory (RENAME). 

COMMANDS 

Sub-directory not found (some SFD in the specified path 
was not found). 

Search list empty (LOOKUP or ENTER was performed on 
generic device DSK and the search list is empty). 

Cannot create a SFD nested deeper than the maximum 
allowed level of nesting. 

No fi Ie structure in the job's search Ii st has both the no-
create bit and the write-lock bit equal to zero and has the 
UFD or SFD specified by the defau It or expli cit path 
(ENTER on generic device DSK only). 

A GETSEG from a locked low segment is not for a high 
segment that is a dormant, active, or idle segment. 

4-35 



COMMANDS - 782 -



Fi lename Extensi on 

AID 

ALG 

ALP 

ATO 

B10 

B11 

BAC 

BAK 

BAS 

I BCM 

BIN 

I BKP 

BLB 

BU 

BUG 

CAL 

CBL 

CCL 

CCO 

I CDP 

CKP 

- 783 - COMMANDS 

APPENDIX A 

STANDARD FILENAME EXTENSIONS 

Table A-1 
Fi lename Extensions 

Meaning Type of File 

Source file in AID language Source 

Source fi Ie in ALGOL language Source 

Printer forms alignment ASOI 

OPSER automatic command fi Ie ASCII 

Source fi Ie in BUSS,..10 Source 

Source file in BUSS-11 Source 

Output from the BASI C Compi ler Object 

Backup fi Ie from TECO or LINED Source 

Source fi Ie in BASIC language Source 

Listing fi Ie created by FILCOM (binary compare) ASOI 

Binary file for PDP-8 (DC68A) Object 

Index fi Ie created by the BACKUP program ASCII 

Blurb file ASCII 

Source file in BLISS language Source 

Saved to show a program error Object 

CAL data and program fi les Object 

Source file in COBOL language Source 

Alternate convention for command fi Ie (@ com-
mand fi Ie constructi on for programs other than 
COMPIL) ASCII 

Listing of modifications to non resident software ASOI 

Spooled output for card punch ASOI, Binary 

Checkpoint core image file created by COBOL 
operati ng system Binary 

(continued on next page) 

A-1 



COMMANDS 

Filename Extel')sion 

CHN 

CMD 

CMP 

COR 

CRF 

cn 
DAE 

DAT 

DDT 

DIR 

DMP 

DOC 

DSE 

DSF 

ERR 

F4 

FAL 

FLO 

FRM 

FUD 

HGH 

HLP 

IDA 

IDX 

INI 

LAP 

UB 

LOG 

-784 -

Table A-l (Cont) 
Fi lename Extensions 

Meaning 

CHAIN file 

Command file for indirect commands (@ construc-
tion for COMPlL) 

Complaint file by GRIPE 

Correction file for SOUP 

CREF (cross-reference) input fi Ie 

MP batch control fi Ie 

Default output for DAEMON-taken core dumps 

Data (FORTRAN) file 

Input fi Ie to FI LDDT 

Directory from FILE command or DIRECT program 

COBOL compi ler dump fi Ie 

Listing of modifications to the most recent version 
of the software 

Directory sorted by extension 

Di rectory sorted by filename 

Error message fi Ie 

Source fi Ie in FORTRAN language 

Source file in FAIL language 

English language flowchart 

Blank form for handwritten records 

FUDGE2 listing output 

Nonsharable high segment of a two-segment pro-
gram (created by SAVE command) 

Help files containing switch explanations, etc. 

COBOL ISAM data fi Ie 

Index file of a COBOL ISAM file 

Initialization file 

Output from the USP compiler 

COBOL source library 

MP batch log file 

Type of File 

Object 

ASCII 

ASCII 

ASCII 

ASOI 

ASCII 

Binary 

ASOI, Binary 

ASCII 

ASCII 

ASOI 

ASOI 

ASCII 

ASCII 

ASOI 

Source 

Source 

ASOI 

ASCII 

ASOI 

Object 

ASCII 

ASCII, Binary 

ASCII, SIX BIT 

ASOI, Binary 

ASCII 

ASOI 

ASOI 

(conti nued on next page) 

A-2 



Fi lename Extension 

LOW 

LPT 

LSD 

LSP 

LSQ 

LST 

MAC 

MAN 

MAP 

MEM 

I MIM 

MSB 

MUS 

OLD 

OPR 

OVR 

PAL 

Pll 

I PLl 

PLT 

PTP 

Qxx 

QUD 

QUE 

QUF 

REL 

RIM 

RMT 

RNC 

RND 

- 785 -

Table A-1 (Cont) 
Fi lename Extensi ons 

Meaning 

Low segment of a two-segment program (created 
by SAVE command) 

Spooled output for Ii ne pri nter 

Defau It output for DUMP program 

Source file in USP language 

Queue listing created by QUEUE program 

Listing data created by assemblers and compi lers 

Source fi Ie in MACRO language 

Manual (documentation) fi Ie 

Loader map fi Ie 

Memorandum fi Ie 

Snapshot of MIMIC simulator 

Musi c compi ler bi nary output 

Music compiler input 

Backup source program 

Installation and assembly instructions 

COBOL overlay file 

Source file in PAL 10 {PDP-8 assembler} 

Source program in MACXII language 

Source fi Ie in PL 1 language 

Spooled output for plotter 

Spooled output for paper-tape punch 

BAK files (all xx) 

Queued data fi Ie 

Queue request fi Ie 

Master queue and request fi Ie 

Relocatable binary file 

RIM loader fi Ie 

Read-in mode (RIM) format fi Ie (PIP) 

RUNOFF input for producing a ,CCO file 

RUNOFF input for producing a ,DOC file 

A-3 

COMMANDS 

Type of File 

Object 

ASOI 

ASCII 

Source 

ASCII 

ASOI 

Source 

ASCII 

ASCII 

ASOI 

Bi,nary 

Object 

Source 

Source 

ASCII 

Object 

Source 

Source 

Source 

ASCII 

ASCII, Binary 

ASOI 

ASOI, Binary 

Binary 

Binary 

Object 

Object 

Object 

ASOI 

ASOI 



COMMANDS 

Fi lename Extension 

RNO 

RNP 

RSP 

RST 

RTB 

SAV 

I SCM 

SCP 

SEQ 

SFD 

SHR 

SNO 

SNP 

SRC 

SVE 

SYS 

TEC 

TEM 

TMP 

TXT 

UFD 

UPD 

WCH 

XPN 

- 786 -

Table A-l (Cont) 
Fi lename Extensi ons 

Meaning 

Programming specifications in RUNOFF input 

R UN OF F input for produci ng a . 0 PR fi Ie 

Script response time log fi Ie 

Index fi Ie created by the REST ORE program 

Read-in mode (RIM lOB} format file (PIP) 

low segment from a one-segment program 
(c'i"eated by SAVE command) 

Listing file created by FIlCOM (source compare) 

SCRI PT control fi Ie 

Sequential COBOL data fi Ie, input to ISAM 
program 

Subfile directory (restricted usage) 

Sharable high segment fi Ie of a two-segment pro-
gram (created by SAVE command) 

Source fi Ie in SN OBOl language 

Snapshot of disk by DSKlST 

Source fi les 

. SAVed file from a single user monitor 

Special system fi les 

TECO macro 

Temporary fi les 

Temporary fi les 

Text file 

User file directory (restricted usage) 

Updates flagged in margin (FIlCOM) 

SCRIPT monitor (WATCH) file 

Expanded save fi Ie (R lEX) 

A-4 

Type of Fi Ie 

ASCII 

ASCII 

ASOI 

ASCII 

Object 

Object 

ASCII 

ASCII 

ASCII, SIXBIT 

Binary 

Object 

Source 

ASCII 

ASCII 

Object 

Binary 

ASOI 

ASOI, Binary 

ASOI, Binary 

ASCII 

Binary 

ASCII 

ASCII 

Object 



ASCII Octal 
Character Code 

NULL 00 
CTRL-A 01 
CTRL-B 02 
CTRL-C 03 
CTRL-D 04 
CTRL-E 05 
CTRL-F 06 
CTRL-G 07 
CTRL-H 10 
TAB 11 
LF 12 
VT 13 
FF 14 
CR 15 
CTRL-N 16 
CTRL-O 17 
CTRL-P 20 
CTRL-Q 21 
CTRL-R 22 
CTRL-S 23 
CTRL-T 24 
CTRL-U 25 
CTRL-V 26 
CTRL-W 27 
CTRL-X 30 
CTRL-Y 31 
CTRL-Z 32 
ESCAPE 33 
CTRL-\ 34 
CTRL-J 35 
CTRL-t 36 
CTRL--- 37 
SPACE 40 

- 787-

Table B-1 
ASCII Card Codes 

Card ASCII 
Punches Character 

12-0-9-8-1 @ 

12-9-1 A 
12-9-2 B 
12-9-3 C 
9-7 D 
0-9-8-5 E 
0-9-8-6 F 
0-9-8-7 G 
11-9-6 H 
12-9-5 I 
0-9-5 J 
12-9-8-3 K 
12-9-8-4 L 
12-9-8-5 M 
12-9-8-6 N 
12-9-8-7 0 
12-11-9-8-1 P 
11-9-1 Q 
11-9-2 R 
11-9-3 S 
9-8-4 T 
9-8-5 U 
9-2 V 
0-9-6 W 
11-9-8 X 
11-9-8-1 Y 
9-8-7 Z 
0-9-7 [ 

11-9-8-4 \ 
11-9-8-5 J 
11-9-8-6 t 1\ 
11-9-8-7 -- -

\ 

COMMANDS 

APPENDIX B 

CARD CODES 

Octal Card 
Code Punches 

100 8-4 
101 12-1 
102 12-2 
103 12-3 
104 12-4 
105 12-5 
106 12-6 
107 12-7 
110 12-8 
111 12-9 
112 11-1 
113 11-2 
114 11-3 
115 11-4 
116 11-5 
117 11-6 
120 11-7 
121 11-8 
122 11-9 
123 0-2 
124 0-3 
125 0-4 
126 0-5 
127 0-6 
130 0-7 
131 0-8 
132 0-9 
133 12-8-2 
134 0-8-2 
135 11-8-2 
136 11-8-7 
137 0-8-5 
140 8-1 

NOTE: The ASCII character ESCAPE (octal 33) is also CTRL- [ on a terminal. 

B-1 



COMMANDS 

ASCII Octal 
Character Code 

1 41 
II 42 
# 43 
$ 44 
% 45 
& 46 
I 47 
( 50 
) 51 
* 52 
+ 53 
I 54 
- 55 
. 56 
/ 57 
0 60 
1 61 
2 62 
3 63 
4 64 
5 65 
6 66 
7 67 
8 70 
9 71 
: 72 
; 73 
< 74 
= 75 
> 76 
? 77 

Card 

- 788 -

Table B-1 (Cont) 
ASCII Card Codes 

ASCII 
Punches Character 

. 
12-8-7 a 
8-7 b 
8-3 c 
11-8-3 d 
0-8-4 e 
12 f 
8-5 9 
12-8-5 h 
11-8-5 i 
11-8-4 i 
12-8-6 k 
0-8-3 I 
11 m 
12-8-3 n 
0-1 0 

0 P 
1 q 
2 r 
3 s 
4 t 
5 u 
6 v 
7 w 
8 x 
9 y 
8-2 z 
11-8-6 { 
12-8-4 I 
8-6 } 
0-8-6 -
0-8-7 DEL 

Octal Card 
Code Punches 

141 12-0-1 
142 12-0-2 
143 12-0-3 
144 12-0-4 
145 12-0-5 
146 12-0-6 
147 12-0-7 
150 12-0-8 
151 12-0-9 
152 12-11-1 
153 12-11-2 
154 12-11-3 
155 12-11-4 
156 12-11-5 
157 12-11-6 
160 12-11-7 
161 12-11-8 
162 12-11-9 
163 11-0-2 
164 11-0-3 
165 11-0-4 
166 11-0-5 
167 11-0-6 
170 11-0-7 
171 11-0-8 
172 11-0-9 
173 12-0 
174 12-11 
175 11-0 
176 11-0-1 
177 12-9-7 

NOTE: The ASCII characters} and - (octal 175 and 176) are treated by the monitor as ALTmode 
which is often considered to be the same as ESCAPE. 

B-2 



Character 

SPACE 
I 
II 

# 

$ 
% 
& 
I 

( 
) 

* 
+ 
I 

-
. 
/ 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
: 

; 
< 
= 

> 
? 

NOTE: 

Octal 
Code 

40 
41 
42 
43 
44 
45 
46 
47 
50 
51 
52 
53 
54 
55 
56 
57 
60 
61 
62 
63 
64 
65 
66 
67 
70 
71 
72 
73 
74 
75 
76 
77 

- 789 -

Table B-2 
DEC-029 Card Codes 

Card 
Punches Character 

@ 

11-8-2 A 
8-7 B 
8-3 C 
11-8-3 D 
0-8-4 E 
12 F 
8-5 G 
12-8-5 H 
11-8-5 I 
11-8-4 J 
12-8-6 K 
0-8-3 L 
11 M 
12-8-3 N 
0-1 0 
0 P 
1 Q 
2 R 
3 S 
4 T 
5 U 
6 V 
7 W 
8 X 
9 Y 
8-2 Z 
11-8-6 [ 

12-8-4 \ 
8-6 J 
0-8-6 t 1\ 

0-8-7 .. -
Octal codes 0-37 and 140-177 are the same as in ASCII. 

B-3 

COMMANDS 

Octal Card 
Code Punches 

100 8-4 
101 12-1 
102 12-2 
103 12-3 
104 12-4 
105 12-5 
106 12-6 
107 12-7 
110 12-8 
111 12-9 
112 11-1 
113 11-2 
114 11-3 
115 11-4 
116 11-5 
117 11-6 
120 11-7 
121 11-8 
122 11-9 
123 0-2 
124 0-3 
125 0-4 
126 0-5 
127 0-6 
130 0-7 
131 0-8 
132 0-9 
133 12-8-2 
134 11-8-7 
135 0-8-2 
136 12-8-7 
137 0-8-5 



COMMANDS 

Octal 
Character Code 

SPACE 40 
I 41 
II 42 
/I 43 
$ 44 
% 45 
& 46 
I 47 
( 50 
) 51 
* 52 
+ 53 
, 54 
- 55 . 56 
/ 57 
0 60 
1 61 
2 62 
3 63 
4 64 
5 65 
6 66 
7 67 
8 70 
9 71 
: 72 
; 73 
< 74 
= 75 
> 76 
? 77 

-790 -

Table B-3 
DEC-026 Card Codes 

Card 
Punches Character 

@ 
12-8-7 A 
0-8-5 B 
0-8-6 C 
11-8-3 D 
0-8-7 E 
11-8-7 F 
8-6 G 
0-8-4 H 
12-8-4 I 
11-8-4 J 
12 K 
0-8-3 L 
11 M 
12-8-3 N 
0-1 0 
0 P 
1 Q 

2 R 
3 S 
4 T 
5 U 
6 V 
7 W 
8 X 
9 Y 
11-8-2/11-0 Z 
0-8-2 [ 

12-8-6 \ 
8-3 ]/\ 
11-8-6 t 
12-8-2/12-0 .... -

NOTE: Octal codes 0-37 and 140-177 are the same as in ASCII. 

B-4 

Octal Card 
Code Punches 

100 8-4 
101 12-1 
102 12-2 
103 12-3 
104 12-4 
105 12-5 
106 12-6 
107 12-7 
110 12-8 
111 12-9 
112 11-1 
113 11-2 
114 11-3 
115 11-4 
116 11-5 
117 11-6 
120 11-7 
121 11-8 
122 11-9 
123 0-2 
124 0-3 
125 0-4 
126 0-5 
127 0-6 
130 0-7 
131 0-8 
132 0-9 
133 11-8-5 
134 8-7 
135 12-8-5 
136 8-5 
137 8-2 



- 791 - COMMANDS 

APPENDIX C 

TEMPORARY FILES 

The temporary files in Table C-1 are used by various programs in the DECsystem-10 computing system. 

These files are in the following form: 

nnn xxx. TMP 

where nnn is the user's job number in decimal, with leading zeroes to make three digits, and xxx 

specifies the use of the file. 

Name 

nnn ALG.TMP 

nnn AS 1. TMP 
nnn AS2. TMP 
nnn AS3. TMP 

nnn BLI.TMP 

nnn COB. TMP 

nnn CPY.TMP 

nnn CRE. TMP 

nnn DAE. TMP 

nnn DMP.TMP 

TableC-1 
Temporary Files 

Meaning 

Read by ALGOL and contains one line for each program to be com­
piled. It may also contain the command NAME! which causes 
ALGOL to transfer control to the named program. 

Written, read, and deleted by COBOL and contains input to the 
COBOL assembler. 

Read by BUSS and contains one line for each program to be compi led. 

Read by COBOL and contains one line for each program to be com­
piled. It may also contain the command NAME! which causes 
COBOL to transfer control to the named program. 

Written, read, and deleted by COBOL and contains copies of source 
files with library routines inserted. 

Read by CREF and contains commands for each file which has pro­
duced a CREF listing on the disk. COMPIL also reads this file each 
time a new CREF listing is generated to prevent multiple requests 
for the same file and to prevent discarding other requests that may 
not yet have been listed. 

Written by DAEMON to be read by DUMP. 

Read by DUMP as an input command file. 

C-1 



I 

COMMANDS 

Name 

nnn EDS. TMP 

nnn EDT. TMP 

nnn ERA. TMP 

nnn FOR. TMP 

nnn GEN. TMP 

nnn KJO. TMP 

nnn LGO. TMP 

nnn LIN. TMP 

nnn LIT. TMP 

nnn LOA. TMP 

nnn MAC. TMP 

nnn P11. TMP 

nnn PLS. TMP 

nnn PIP. TMP 

nnn QUE. TMP 

nnn RNO. TMP 

nnn 501. TMP 

nnn SVc. TMP 

nnn SNO. TMP 

- 792-

Table C-1 (Cont) 
Temporary Files 

Meaning 

Used by COMPI L to store the arguments of the most recent EDIT, 
CREATE, TECO, or MAKE command. 

Written by COMPIL and read by liNED or TECO. It contains a 
command for each EDIT, CREATE, TECO, or MAKE command. 
For the MAKE or CREATE commands, it contains the command 

5 file.ext [p,p] CD 
For TECO or EDIT commands, it contains the command 

5 file.ext [p,p] ) 

Written, read, and deleted by COBOL and is the error file. 

Read by FORTRAN and contains one line for each program to be 
compi led. It maya Iso contai n the command NAME! whi ch causes 
FORTRAN to transfer control to the named program. 

Written, read, and deleted by COBOL and contains the output of 
syntax processi ng. 

Read by KJOB as an input command fi Ie. 

Read by LOGOUT as an input command file. 

Created by LINED and contains output fi Ie unti I the rename 
process. 

Written, read, and deleted by COBOL and contains copy of the 
literal pool. 

Read by LOADER and contains commands necessary for loading. 

Read by MACRO and contains one line for each program to be 
assembled. It may also contain the command NAME! which causes 
MACRO to transfer control to the named program. 

Read by MACX11 (the PDP-11 assembler for the PDP-10) and con­
tains one line for each program to be assembled. 

Read by PLEASE as an input command file. 

Read by PIP and contains commands to implement the COMPIL-class 
commands that run PI P . 

Read by QUEUE as an input command file. 

Read by RUNOFF and contains commands for each fi Ie which has 
produced a RUNOFF listing on the disk. 

Written, read, and deleted by COBOL and contains the inter­
mediate sorted results of the data. 

Used by COMPIL to store the arguments of the most recent COMPILE, 
LOAD, EXECUTE, or DEBUG command. 

Read by SNOBOL and contains one line for each program to be 
compiled. 

(continued on next page) 

C-2 



Name 

nnn TEC. TMP 

nnn TMP. TMP 

nnn XFO. TMP 

nnn XFR. TMP 

- 793 -

Table C-1 (Cont) 
Temporary Fi les 

Meaning 

COMMANDS 

Created by TECO and contains output file until the rename process. 

Created by LINED during the rename process. 

Created by FILEX as a result of the Q switch on the output side. 

Created by FILEX as a result of the Q switch on the input side. 

C-3 



COMMANDS - 794-



- 795 - COMMANDS 

APPENDIX D 

SAVE AND SSAVE COMMANDS 

Before writing SAVed or LOW fj les in response to SAVE and SSAVE commands (refer to the individual 

command descriptions in Chapter 2), the monitor compresses the user's core image by eliminating con­

secutive blocks of zeroes. This technique is known as zero-compression and is used to save space on 

file media. Low segment files are zero-compressed on devices DTA, MTA, and DSK, but high seg­

ment files are not because the high segment can be shared at the time of the command. 

SAVed files are ordinary binary files and can be copied using the /B switch in PIP. Files with the 

LOW or SAV extension may be read in dump mode, but must be reexpanded before being run. The 

monitor expands the file after input on a RUN, R, or GET command. The FILEX program may be used 

to expand the fi Ie for other purposes. 

The data format of a zero-compressed SAVed file consists of a series of IOWDs and data block pairs and 

is terminated by a JRST A where A is the program starting address as specified by the contents of .JBSA. 

The format is as follows: 

'WD -"', ", H I 

XWD -nN, odr N-l 

1----------1 } nN WORDS 

JRST A 

10-0544 

D-l 



COMMANDS - 796-

Each 10WD describes the length of the following data block and the original location of the data in 

core. The LH of the 10WD can be positive in which case the number of words is taken as the number 

of words greater than 128K. 

SAVed files are read into the user's core area starting at location .JBSAV and then are expanded to 

occupy the original relative locations. If the first word read is not an 10WD and is positive, an old­

format, noncom pressed saved fi Ie is assumed and no expansion is performed. 

A SAVE command issued to a magnetic tape writes 

a. a high segment (possibly null) 

b. an EOF 

c. a low segment {possibly null} 

d. an EOF. 

~0~ ~ ~ ~B~ ~ 
y y 

HIGH SEGMENT LOW SEGMENT 

OR D~~ ~~ ~ 
"--y---J 

NULL HIGH SEGMENT LOW SEGMENT 10-0540 

The monitor does not determine the file size of a low segment on a GET from magnetic tape; therefore, 

a user must always specify a core argument or have enough core assigned to his job for the file. 

To save file space, only the high segment up through the highest nonzero location {relative to high 

segment origin} loaded, as specified in the LH of .JBHRL, will be written by the SAVE command. If 

LH is zero {high segment created by CORE or REMAP UUO} or DDT is present, the entire high segment 

wi II be written. 

The LOADER indicates to the SAVE command how much data was loaded above the job data area in the 

low segment by setting the LH of .JBCOR to the highest location in the low segment that was not ex­

plicitly loaded with data {either zero or nonzero}. Most programs are written so that only the high 

segment contains nonzero data. In this case, SAVE and SSAVE write only the high segments. This 

also saves file space and I/O time with the GET command. 

A number of locations in the job data area need to be initialized on a GET, although there is no other 

data in the low segment. The SAVE command copies these locations into the first 108 locations of the 

D-2 



- 797- COMMANDS 

high segment, provided it is not sharable. The locations are referred to as the vestigial job data area 

(refer to DECsystem-10 Monitor Calls, Chapter 1). Therefore, the LOADER will load high segment 

programs starting at location 400010. 

To prevent user confusion, SAVE and SSAVE delete a previous fi Ie with the~xtension . SHR or . HGH; 

therefore, SAVE deletes a file with the extension .SHR and SSAVE deletes a file with the extension 

.HGH. SAYE and SSAVE commands also delete files with the extension. LOW, if the high segment 

was the on Iy seg ment wr i tten . 

The regular access rights of the saved file indicate whether a user can perform a GET, R, or RUN 

command. These commands assume that the user wants to execute (but not modify) the high segment, 

independent of the access rights of the file used to initialize the segment. The monitor always enables 

the hardware user-mode write protect to prevent the user program from storing into the segment in­

advertently. 

To debug a reentrant system program, the user should make a private, nonsharable copy, rather than 

modify the shared version and possibly cause harm to other users. To make a pri vate, nonsharable 

copy, the following commands are used: 

GET prog 

SAVE 

GET 

Writes a file in the user directory as nonsharable. The high 
segment in the user's addressing space remains sharable. 

Overlays the sharable program with the nonsharable one from 
the user's directory. Now the user can make patches while 
other users share the version in the library. 

If the user is debugging a sharable program in his UFD with the D command or the DDT program, it is 

recommended that the program be nonsharable instead of sharable. The reason for this is that the user 

may wish to modify the high segment during the debugging phase and later reinitialize the original 

unmodified high segment from the file with a GET command. However, since the high segment is 

sharable, the monitor will not do I/O into it, will not reinitialize it from the disk file, and the user 

will receive the modified high segment instead. 

NOTE 

DDT modifies the high segment when it inserts breakpoints. 

The following examples are the incorrect and correct methods of debugging a sharable program. After 

the debugging phase is completed, the SSAVE command should be used to save the program. 

D-3 



COMMANDS - 798 -

Example 1: Incorrect Method 

.!.nF811(; prog ) 
FXECUT I ON 
tC 
:.SSAVE) 
:.GET ) 
JOB SETUP) 
.E 400010 
400010/777777 777777 .D 0 0) 

!.E) 
400010/ III 0 
!.GET) 
J08 SFTUP 
.!oE 400(10) 
400~10/ (1 0 

Example 2: Correct Method 

.!.DEBUG prog) 
EXECLIT I ON 
tC 
!SAVE) 
.!GET) 
~IOR SETl)P 
.!E 40(010) 
400(1H1/777777 777777 .D 0 0) 
.F. .> 
4"Hf010/ Vi ('I 

.GET .> 
JOB ~ETUP 
:! 400(10) 
40001H/777777 777777 

;SAVE should be used in debugging 

;not the original 777777 7mn 

;the original file 

Note that there are applications for a sharable data segment when the modified version of the sharable 

segment is wanted rather than the original segment as initialized from the file. The SSAVE command 

is then used. 

A SAVE of a one-segment program and a SSAVE of a two-segment program of the same name can coexist 

in the same directory, and the monitor keeps the two versions separate. This allows for a common li­

brary, of reentrant and non-reentrant versions of the same system programs to service both the PDP-6 

and the DECsystem-10. A sharable program may be superseded into the directory by the SSAVE com­

mand. The monitor clears the high segment in its table of sharable segments in use but does not remove 

the segment from the addressing space of users currently using it. Only the users doing a GET, R, or 

RUN command or a RUN or GETSEG UUO have the new sharable version. 

When the SAVE or SSAVE command is used to save a sharable program with only a high file, the moni­

tor does not modify the vestigial job data area. This prohibits unauthorized users from modifying the 

first 10 locations of a shared segment by executing a SAVE or SSAVE command. This restriction does 

D-4 



- 799 - COMMANDS 

not exist if a low file is also written, because the GET command reads the low file after the high file, 

so that the real job data area locations are set from the low file. To change the version number of a 

sharable two-segment program with only a high file, the following commands are used. 

GET prog 
SAVE 
GET 
D nnn mmm 137 
SSAVE 

The SAVE command makes the program non-sharable so that the vestigial job data area can be modified 

by the SSA VE • 

D-5 



COMMANDS - 800 -



-801- INDEX 

INDEX 

A 

t A (control-A) see Control commands (TECO) 

A (append) command, 197 (lNTRO TO TECO) 

A (append) command, 257, 293, 301 (TECO) 

A Switch, 399 (PIP) 

Absolute Addresses, 17 (lNTRO TO SOFlWARE) 

/ACCESS, 520 (COMMANDS) 

Accessing the system, 590 (COMMANDS) 

Active search list, 662 (COMMANDS) 

Adding comments, 104, 139 (BEGINNER'S 
BATCH) 

Adding devices to spool list, 660 (COMMANDS) 

Addition, 241 (TECO) 

Advance command, 417 (PI P) 

/AFTER switch (BEGINNER'S BATCH) 

$JOB card, 126 
SUBMIT command, 141 

/AFTER switch, 494, 605, 611, 620, 681, 697 
(COMMANDS) 

AID Interpreter, 20 (lNTRO TO SOFlWARE) 

AlCFll program, 468 (COMMANDS) 

AlCFll program, 31 (lNTRO TO SOFlWARE) 

ALGOL (BEGINNER'S BATCH) 

compiler switches, 111 
definition, 91 
deck, setting up, 105 
job, examples, 169, 176 
program, compiling and executing, 105 

ALGOL, 18 (lNTRO TO SOFlWARE) 

$AlGOl card, 105, 111 (BEGINNER'S BATCH) 

examples, 112 
switches, 111 

$AlGOl card, 718 (COMMANDS) 

/AlGOl switch, 481, 513, 539, 585 
(COMMANDS) 

AlGOTS, 18, 31 (lNTRO TO SOFlWARE) 

/AlLOC, 520 (COMMANDS) 

Allocating disk space, 468 (COMMANDS) 

Allocating facilities, 464 (COMMANDS) 

ASSIGN, 470 
CLOSE, 479 
CORE, 491 
DEASSIGN, 512 
DISMOUNT, 525 
FINISH, 560 
lOCATE, 589 
MOUNT, 593 
REASSIGN, 633 
SET BlOCKSIZE, 653 
SET CDR, 654 
SET CPU, 655 
SET DENSITY, 657 
SET DSKPRI, 658 
SET HPQ, 659 
SET SPOOL, 660 
SET TTY, 668 
TTY, 668 

Allocating I/O devices, 470, 593 (COMMANDS) 

Allocating system resources, 77 (TIMESHARING) 

ASSIGN, 77 
CORE, 80 
DEASSIGN, 79 
DISMOUNT, 79 
FINISH, 80 
MOUNT, 78 
REASSIGN, 79 

Allocation (lNTRO TO SOFlWARE) 

File Storage, 11, 30 

Allocator (INTRO TO SOFlWARE) 

Shareable Resource, 10 

Alphabetic case control (TECO) 

in insert commands, 268 
in search arguments, 282 

Alphanumeric, definition, 92 
(BEGINNER'S BATCH) 

Alphanumeric argument, 196 (INTRO TO TECO) 

Alphanumeric argument, 236, 240 (TECO) 

Altmode, 235, 236, 239, 240, 251, 261, 266, 
267, 288, 291, 295, 296, 319 (TECO) 

AlTMODE key, 75 (TIMESHARING) 

Altmode symbol ( CD ), 193, 194 (INTRO TO 
TECO) 

Index-l 



INDEX -802-

INDEX (Cont) 

& (ampersand), 242 (TECO) 

Analyzing a core image file, 529 (COMMANDS) 

AND, 242 (TECO) 

Angle brackets, 382 (PI P) 

< > (angle brackets), 288, 291 (TECO) 

Angle bracket matching, V switch, 402 (PIP) 

, (apostrophe) command, 292, 317 (TECO) 

Argument pair, 241 (TECO) 

Arguments, 247 (TECO) 

alphanumeric, 236, 240 
numeric, 241, 251, 257 
text, 240 

Arguments, command, 195 (INTRO TO TECO) 

Argument terminator, 251 (TECO) 

Arithmetic/logical operators, 241, 242 (TECO) 

ASCII code, definition, 92 (BEGINNER'S BATCH) 

Assemble, definition, 92 (BEGINNER'S BATCH) 

Assembler, definition, 92 (BEGINNER'S BATCH) 

Assembler (lNTRO TO SOFTWARE) 

MACRO, 17 

Assembling and executing a MACRO program, 107 
(BEGINNER'S BATCH) 

Assembly language, definition, 92 (BEGINNER'S 
BA TCH) 

Assembly listing, definition, 92 (BEGINNER'S 
BATCH) 

ASSIGN command, 470 (COMMANDS) 

ASSIGN command, 77 (TIMESHARING) 

Assigning devices, 76 (TIMESHARING) 

ASSIGN,77 
MOUNT,78 

Assigning input devices in programs (BEGINNER'S 
BATCH) 

ALGOL 
disk, 118 
card reader, 119 

COBOL 
disk, 117 
card reader, 118 

FORTRAN 
disk, 117 
card reader, 119 

Assigning names to DECtape, 395 (PIP) 

Assignment, device, 10 (INTRO TO SOFTWARE) 

* (asterisk), 240, 242, 247, 248, 249, 262 
(TECO) 

*i command, 271, 296 (TECO) 

Asterisk construction, 452 (COMMANDS) 

Asterisk construction, 66 (TIMESHARING) 

Asterisk (*) symbol usage, 375, 386, 406 (PIP) 

Asterisk (*) usage, 193 (INTRO TO TECO) 

At (@) symbol usage, 375 (PIP) 

@ (at sign modifier), 281 (TEeO) 

@I command, 266, 299 (TECO) 

A TIACH command, 472 (COMMANDS) 

A TTACH command, 81 (TIMESHARING) 

Automatic typeout (TECO) 

after searches, 282 
flag, obtaining the value, 301 

Auxiliary LINED commands, 362 (LINED) 

Available devices, listing of, 640 (COMMANDS) 

B, 258 (TECO) 

Bswitch, 405 (PIP) 

B 

Back-arrow (SHIFT-O), 376 (PIP) 

- (back arrow) command, 280 (TECO) 

t (control-backslash) command, see control 
commands (TECO) 

\ (backslash) command, 267, 302, 303 (TECO) 

BACKSPACE command, 474 (COMMANDS) 

Backspace file request, 416, 417 (PI P) 

Backspace one file, 252 (TECO) 

• BACKTO command, 123, 130, 146 
(BEGINNER'S BATCH) 

example, 146 

• BACKTO command, 734 (COMMANDS) 

Index-2 



-803- INDEX 

INDEX (Cont) 

Backup file, 193 (INTRO TO TECO) 

Backup file, 253, 255 (TECO) 

Back up one record, 252 (TECO) 

BACKUP program, 475 (COMMANDS) 

BACKUP program, 22 (lNTRO TO SOFlWARE) 

BACKUP SET file, 475 (COMMANDS) 

SAK, 234, 249, 253 (TECO) 

BASIC (BEGINNER'S BATCH) 

deck, setting up, 109 
definition, 92 
job, examples, 171, 178 
program, running, 109 

BASIC, 18 (INTRO TO SOFlWARE) 

Batch (BEGINNER'S BATCH) 

commands, 146 
format, 138 

control cards, 103 
format, 103 

output, 153 
processing, definition, 92 
queue, entering jobs, 139 

Batch (INTRO TO SOFlWARE) 

Multiprogram, 12 

Batch command interpreter, 447 (COMMANDS) 

Batch controller, 710 (COMMANDS) 

commands for, 732 

Batch Controller, 13 (INTRO TO SOFlWARE) 

Batch input queue, 680 (COMMANDS) 

Batch Operator intervention, 14 (INTRO TO 
SOFlWARE) 

Batch sample jobs, 743 (COMMANDS) 

Batch system commands, 709 (COMMANDS) 

BATCON, 710 (COMMANDS) 

control file commands, 732 
error reporting, 742 
messages, 742 

BATCON, 12, 32 (INTRO TO SOFlWARE) 

/BEFORE, 494, 605, 611, 620, 697 (COMMANDS) 

/BEGIN, 494, 605, 611, 620, 697 (COMMANDS) 

Beginning in DDT, 510, 513 (COMMANDS) 

Bell, 236, 320 (TECO) 

Bell-space command, 321 (TECO) 

Binary mode switch (B), 401 (PIP) 

Bit (lNTRO TO SOFlWARE) 

Use, 28 

Blank page, 274, 275 (TECO) 

Blank tape, 252 (TECO) 

/BLlSS, 481, 513, 539, 585 (COMMANDS) 

Block, 66 (TIMESHARING) 

Block Mode, 15 (INTRO TO SOFlWARE) 

Block Numbers (INTRO TO SOFlWARE) 

Logical, 29 

Blocksize of magnetic tape, 653 (COMMANDS) 

Blocks of text, 309 (TECO) 

BOOTS, 32 (INTRO TO SOFlWARE) 

Boundary of the buffer, 259 (TECO) 

/B/P switch combination, 401 (PIP) 

Brackets, angle see Angle brackets (TECO) 

Brackets, square see Square brackets (TECO) 

Break character, 320 (TECO) 

Breakpoints, 22, 32 (INTRO TO SOFlWARE) 

Buffer, 32 (INTRO TO SOFlWARE) 

Editing, 20 

Buffer, command string, 244 (TECO) 

, editing, 239, 243, 244 
pointer, 239, 256, 257, 258, 259, 260, 264, 

267, 268, 278, 280, 296, 302 
position, 241, 257 

Buffer, editing, 191 (INTRO TO TECO) 

Buffer boundary, 259 (TECO) 

Buffered Modes, 27, 28 (INTRO TO SOFlWARE) 

Buffer Pointer, 20, 32 (INTRO TO SOFlWARE) 

Buffer pointer, 198 (I NTRO TO TECO) 

Buffers (INTRO TO SOFlWARE) 

Ring of, 28 

Buffers, 231, 244, 257 (TECO) 

Byte descriptor, 534 (COMMANDS) 

Index-3 



INDEX -804-

INDEX (Cont) 

C 

t C (control-C) command see Control commands 
(TECO) 

C (advance pointer by character) command, 198 
(lNTRO TO TECO) 

C coml!land, 258, 293 (TECO) 

C switch, 399 (PIP) 

CAM, 21 (INTRO TO SOFlWARE) 

Capabilities (INTRO TO SOFlWARE) 

macro, 18 

Card, definition, 92 (BEGINNER'S BATCH) 

column, definition, 93 
field, definition, 93 
format, 103 
output, specifying amount, 126, 142 
row, definition, 93 

Card codes, 787 (COMMANDS) 

Card Punch, 49 (lNTRO TO SOFlWARE) 

Card punch, J-switch, 418 (PIP) 

Card punch queue, 593 (COMMANDS) 

Card Readers, 48 (INTRO TO SOFlWARE) 

Card reader spooling intercept, 654 (COMMAND'S) 

/CARDS switch (BEGINNER'S BATCH) 

$JOB card, 126 
SUBMIT command, 142 

/CARDS switch, 620, 681 (COMMANDS) 

Cards to specify error recovery, 122, 129 
(BEGINNER'S BATCH) 

Caret, 239 (TECO) 

Carriage return, 236, 239, 262, 267, 306, 320 
(TECO) 

Categories of messages, 747 (COMMANDS) 

Categories of TECO commands, 243 (TECO) 

Causing the current line to be retyped, 321 (TECO) 

CCONTINUE command, 500 (COMMANDS) 

CDRSTK, TCE (COMMANDS) 

error reporting, 741 
messages, 740 

CDRSTK, 12, 32 (lNTRO TO SOFlWARE) 

Central processing unit, definition, 93 
(BEGINNER'S BATCH) 

Central processor time limit, 666 (COMMANDS) 

Central site, definition, 93 (BEGINNER'S BATCH) 

Central site, 78 (TIMESHARING) 

%CERR, 733 (COMMANDS) 

CHAIN, 33 (INTRO TO SOFlWARE) 

CHAIN Files, 22 (lNTRO TO SOFlWARE) 

Changing (TECO) 

qmount of error reporting, 324 
maximum number of entries in the O-register 

pushdown list, 251 

Changing CPU specification, 655 (COMMANDS) 

Changing filenames, 67 (TIMESHARING) 

Changing logical station, 589 (COMMANDS) 

Changing modes, 730 (COMMANDS) 

Changing switch in a queue entry, 141 
(BEGINNER'S BATCH) 

Changing UFD or SFD protection code, 408 (PIP) 

Channels (lNTRO TO SOFlWARE) 

Software I/O, 28 

Character, definition, 93 (BEGINNER'S BATCH) 
Carriage return symbol (..) ), 193 (lNTRO TO TECO) Ch I 236 (TECO) aracters, contro , 
<CR> carriage return usage, 377 (PI P) 

Case control (TECO) 

in insert commands, 268 
in search arguments, 282 

Case flag, obtaining the value, 301 (n:CO) 

Case flagging on typeout, 262 (TECO) 

,special, 235 

Character set, 234 (TECO) 

Case match mode control in searches, 285 (TECO) 

Character strings, 244, 296 (TECO) 

CHECKPOINT, 33 (INTRO TO SOFlWARE) 

/CHECKSUM, 521 (COMMANDS) 

.CHKPNT command, 735 (COMMANDS) 

Index-4 



-805- INDEX 

INDEX (Cont) 

Clearing directories, 470, 512, 633, 707 
(COMMANDS) 

Clearing logical names, 512 (COMMANDS) 

CLOSE, 29 (lNTRO TO SOFlWARE) 

Close, 252, 253, 274, 276, 307 (TECO) 

CLOSE command, 479 (COMMANDS) 

Close files, 192, 204 (INTRO TO TECO) 

Closing the current file, 361 (LINED) 

COBOL (BEGINNER'S BATCH) 

compiler switches, 113 
deck, setting up, 106 
definition, 92 
job, examples, 154, 174, 183 
program 

compiling and executing, 106 
format, 114 

COBOL, 19 (INTRO TO SOFlWARE) 

$COBOL card, 106, 113 (BEGINNER'S BATCH) 

examples, 114 
switches, 113 

$COBOL card, 719 (COMMANDS) 

/COBOL switch, 481, 513, 539, 585 
(COMMANDS) 

COBRG, 19 (lNTRO TO SOFlWARE) 

CODE, 33 (INTRO TO SOFlWARE) 

Codes (COMMANDS) 

card, 787 
error, 780 

Codes (lNTRO TO SOFlWARE) 

Protection, 11, 30 

: (colon), 251 (TECO) 

: (colon modifier), 279, 281 (TECO) 

: (colon) search, 281, 294 (TECO) 

Colon (:) usage, 376, 382 (PIP) 

Combinations of switches, 411 (PIP) 

Combine files, transfer without X-switch, 398 
(PIP) 

Combine pages, 197 (lNTRO TO TECO) 

Combining * and? wildcard symbols, 386 (PIP) 

Combining files, 486 (COMMANDS) 

Comma, 241 (TECO) 

Comma usage, 382 (PI P) 

Command, definition, 93 (BEGINNER'S BATCH) 

Command (COMMANDS) 

arguments, 448 
delay, 446 
formats, 447 
interpreters, 445 
names, 447 

Command arguments, 195 (lNTRO TO TECO) 

Command buffer, 278 (TECO) 

Command Control Language, 10 (INTRO TO 
SOFlWARE) 

Command Decoder, 25 (INTRO TO SOFlWARE) 

Command error, 195 (lNTRO TO TECO) 

Command error, 240, 319 (TECO) 

Command errors, 421 (PIP) 

Command list, 28 (INTRO TO SOFlWARE) 

Command mode, 247 (TECO) 

Command recovery file, 475 (COMMANDS) 

Commands (COMMANDS) 

Batch, 709 
COMPIL-c1ass, 453 
system, 463 

Commands (INTRO TO TECO) 

A (append page), 197 
C (advance pointer by character), 198 
D (delete character), 201 
EF (close output file), 203 
EG (close file, reexecute monitor command), 

204 
EX (close file), 204 
HK (delete buffer), 201 
HT (type entire buffer), 200 
I (insert), 202 
J (move pointer to beginning), 198 
K (delete line), 199 
L (move pointer by lines), 199 
MAKE (make disk file), 192 
N (search file), 206, 207 
P (output buffer), 203 
PN (output page), 203 

Index-5 



INDEX -806-

INDEX (Cont) 

Commands (cont) (INTRO TO TECO) 

R (move pointer backwards by character), 198 
S (search buffer), 205, 206 
T (type), 200 
TECO (initialize file for editing), 192 
Y (yank next page), 197 
ZJ (move pointer to end), 198 

Commands, 359 (LINED) 

D, 360 
E, 361 
I, 360 
P, 361 
S, 362 

Commands (INTRO TO TECO) 

erasing, 195 
input, 197 

Commands (TECO) 

edit class, 248 
erasing, 235 
immediate action, 235 
monitor, 235, 248 
that return a value, 243 

Commands, summary of, see Appendix C (TECO) 

Commands not available in Batch, 109, 138 
(BEGINNER'S BATCH) 

Commands to specify error recovery, 148 
(BEGINNER'S BATCH) 

Command string, (INTRO TO TECO) 

execution, 194 
syntax, 194 
termination, 194 

Command string, 379 (PIP) 

delimiters, 382 
format, 379 

Command string buffer, 244 (TECO) 

Command strings, 239, 240, 244, 276, 277, 291, 
296, 306, 319, 321 (TECO) 

Command string syntax, 239 (TECO) 

Comments, 104, 139 (BEGINNER'S BATCH) 

Comments, 294 (TECO) 

Communicating with operator, 466, 737 
(COMMANDS) 

DISMOUNT, 525 
FILE, 553 
GRIPE, 573 
MOUNT, 593 
PLEASE, 602 
SEND, 651 

Communications (INTRO TO SOFlWARE) 

Data, 50 
Remote, 15 

COMP10, 21 (INTRO TO SOFlWARE) 

Comparing DECtapes, 488 (COMMANDS) 

Comparing files, 543 (COMMANDS) 

COMPIL, 33 (INTRO TO SOFlWARE) 

Compile, definition, 93 (BEGINNER'S BATCH) 

Compile-class command, 276 (TECO) 

COMPIL-class commands, 453 (COMMANDS) 

switches, 457 

/COMPILE, 481, 513, 540, 586 (COMMANDS) 

COMPILE command, 480 (COMMANDS) 

COMPILE command, 276 (TECO) 

COMPILE command, 67 (TIMESHARING) 

Compiler, definition, 93 (BEGINNER'S BATCH) 

Compilers, 17 (INTRO TO SOFlWARE) 

ALGOL, 18 
BASIC, 18 
COBOL, 19 
FORTRAN, 19 

Compiling and executing a program (BEGINNER'S 
BATCH) 

ALGOL, 105 
COBOL, 106 
FORTRAN, 107 

Compiling programs, 480 (COMMANDS) 

ALGOL, 718 
COBOL, 718 
FORTRAN, 725 
MACRO, 729 

Index-6 



-807- INDEX 

INDEX (Cont) 

Components (lNTRO TO SOFlWARE) 

DECsystem-10, 9 
Multiprogram batch, 12 
Operating System, 25 

Components, Batch, 709 (COMMANDS) 

Computer, definition, 93 (BEGINNER'S BATCH) 

Computer operator, definition, 93 (BEGINNER'S 
BATCH) 

Computing (lNTRO TO SOFlWARE) 

Multimode, 10 

Conditional branch, 281, 284 (TECO) 

Conditional command, 276 (TECO) 

Conditional execution, 286 (TECO) 

Conditional execution commands, 292, 294 (TECO) 

Conditional skip, 291 (TECO) 

CONFIGURA TlON category, 505 (COMMANDS) 

Connecting to a detached job, 472 
(COMMANDS) 

Console data switches, 301, 302 (TECO) 

Contents of card decks, 103 (BEGINNER'S BATCH) 

Contents operators, 534 (COMMANDS) 

Continuation card, definition, 93 (BEGINNER'S 
BATCH) 

Continuation of information on a card, 104 
(BEGINNER'S BATCH) 

Continuation of lines in control file, 139 
(BEGINNER'S BATCH) 

CONTINUE, 277 (TECO) 

CONTINUE command, 485 (COMMANDS) 

CONTINUE command, 84 (TIMESHARING) 

Continuing a job, 578 (COMMANDS) 

Continuing a program, 84 (TIMESHARING) 

Control (PIP) 

direct, 375 
indirect, 375 

Control-C, 444, 446 (COMMANDS) 

Control cards, 103 (BEGINNER'S BATCH) 

Control characters, 193 (lNTRO TO TECO) 

Control characters, 235, 261, 286, (TECO) 

Control characters, 73 (TIMESHARING) 

Control-C, 73 
Control-O, 75 
Control-U, 74 

Control commands, 717 (COMMANDS) 

Control commands (TECO) 

t t r 270 
t\,285 
t [, 235 
t A, 302, 303 
t C, 235, 275, 276, 290 
t E, 286, 301 
t F, 301, 303 
t G, 235, 306, 320 
t G t G, 235, 320 
t GL-I, 321 
t H, 301, 303 
t L, 261 
t N, 286, 288, 301 
t 0, 235, 260, 263 
t R, 271, 285, 286 
t S, 286, 288 
t T, 271, 285, 302, 303 
t V, 268, 283 
t vtv, 269,283 
t W, 268, 283 
t WtW, 269, 283 
t U, 235, 306, 320, 321 
t X, 286, 288 
t Z, 275, 276 

Control file, 99, 103, 137 (BEGINNER'S 
BATCH) 

creating, 103, 137 
definition, 93 
examples, 137, 138, 160 
format of lines, 138 
putting commands in, 108 

Control file, 680, 710, 716, 727 (COMMANDS) 

commands, 732 

Control key, 73 (TIMESHARING) 

Control Language (INTRO TO SOFlWARE) 

Command, 10 

Controller (lNTRO TO SOFlWARE) 

Batch, 13 

Index-7 



INDEX -808-

INDEX (Cont) 

Controlling error reporting, 149 (BEGINNER'S 
BATCH) 

Controlling multiple jobs, 466 (COMMANDS) 

ATTACH,472 
CCONT,500 
CSTART, 500 
DETACH, 519 
OPSER, 597 
REATTA,635 

Controlling number of cord columns read 
(BEGINNER'S BATCH) 

$AlGOl card, 112 
$COBOl cord, 113 
$DATA cord, 116 
$DECK card, 120 
$FORTRAN card, 124 
$MACRO cord, 128 

Controlling object programs, 465 (COMMANDS) 

CONTINUE, 485 
DDT,510 
GET, 568 
HALT, 574 
JCONT,578 
R, 632 
REENTER, 637 
RUN,646 
START, 679 

Control-O, 447 (COMMANDS) 

Control-U, 447 (COMMANDS) 

Conventional COBOL format, 114 (BEGINNER'S 
BA TCH) 

Conventional Format, 19 (lNTRO TO SOFlWARE) 

Conventions, writing, 375 (PIP) 

Conventions and restrictions, 362 (LINED) 

Converting special characters to lower case, 270, 
285 (TECO) 

COpy program, 488 (COMMANDS) 

Copying, 395 (PIP) 

Copying data into disk files, 115 (BEGINNER'S 
BATCH) 

Copying DECtapes, 488 (COMMANDS) 

Copying into a data file, 723 (COMMANDS) 

Copying programs into disk files (BEGINNER'S 
BATCH) 

ALGOL, 111 
COBOL, 113 
FORTRAN, 123 
MACRO, 127 

Copying relocafable binary programs, 731 
(COMMANDS) 

Copying trailing spaces into files (BEGINNER'S 
BA TCH) 

$AlGOl cord, 112 
$COBOl cord, 114 
$DATA card, 116 
$DECK cord, 120 
$FORTRAN card, 124 
$MACRO card, 128 

Core (BEGINNER'S BATCH) 

definition, 94 
specifying amount, 126, 142 

Core, 231, 238, 244, 247, 256, 257, 296, 309 
(TECO) 

Core allocation, 491 (COMMANDS) 

CORE category, 505 (COMMANDS) 

Core check, 446 (COMMANDS) 

CORE command, 491 (COMMANDS) 

CORE command, 80 (TIMESHARING) 

Core expansion, 244, 256, 257 (TECO) 

/COPIES, 494, 605, 611, 621, 697 (COMMANDS) Core image, 68 (TIMESHARING) 

Copy (PIP) 

a" but specified files 
(DS switch), 397 

files without combining, 
(X switch), 394 

FORTRAN binary files, 401 

COpy command, 486 (COMMANDS) 

Index-8 

Core-image files, 505, 529 (COMMANDS) 

Core Memories, 47 (lNTRO TO SOFlWARE) 

/CORE switch (BEGINNER'S BATCH) 

$JOB card, 126 
SUBMIT command, 142 

/CORE switch, 621, 681 (COMMANDS) 



-809- INDEX 

INDEX (Cont) 

Core Utilization, 11 (lNTRO TO SOFlWARE) 

CORMAX, 33 (lNTRO TO SOFlWARE) 

CORMIN, 33 (lNTRO TO SOFlWARE) 

Correcting typing errors, 74 (TIMESHARING) 

CPU, definition, 94 (BEGINNER'S BATCH) 

CPUNCH command, 493 (COMMANDS) 

CPU specification, 655 (COMMANDS) 

CPU time, specifying amount, 127, 142 
(BEGINNER'S BATCH) 

CREATE, 359 (LINED) 

Create, 248, 250 (TECO) 

CREA TE command, 498 (COMMANDS) 

CREA TE command, 63 (TIMESHARING) 

/CREATE switch (SUBMIT command), 140 
(BEGINNER'S BATCH) 

/CREATE switch, 494, 605, 611, 621, 681, 697 
(COMMANDS) 

Creating, 30 (lNTRO TO SOFlWARE) 

Creating control file, 103, 137 (BEGINNER'S 
BATCH) 

Creating entry in the Batch queue, 140 
(BEGINNER'S BATCH) 

Creating files, 498, 592 (COMMANDS) 

control, 716, 727 
library REL files, 482, 513, 540, 562, 586 

Creating files, 62 (TiMESHARING) 

CREATE, 63 
MAKE, 64 

Creating TECO macro, 271 (TECO) 

CREF command, 499 (COMMANDS) 

CREF command, 82 (TIMESHARING) 

/CREF switch (BEGINNER'S BATCH) 

$COBOL card, 114 
$FORTRAN card, 124 
$MACRO card, 129 

/CREF switch, 481, 513, 540, 586 (COMMANDS) 

CREF Utility, 21, 34 (lNTRO TO SOFlWARE) 

Cross reference listing, definition, 93 
(BEGINNER'S BATCH) 

$COBOL card, 113 
$FORTRAN card, 124 
$MACRO card, 129 

Cross reference listing, 82 (TIMESHARING) 

Cross-referenced listing files, 499 (COMMANDS) 

CSTART command, 500 (COMMANDS) 

CTRL key, 235 (TECO) 

Current line, 239, 259, 261,321 (TECO) 

Cyclic Routines, 25 (lNTRO TO SOFlWARE) 

D 

D 'Command, 360 (LINED) 

D (delete character) command, 201 (lNTRO TO 
TECO) 

D (delete) command, 264, 265, 293 (TECO) 

D (deposit) command, 502 (COMMANDS) 

D switch, 404, 409 (PIP) 

DX switch, copy all but specified (PIP) 

files, 397 

DAEMON, 34 (lNTRO TO SOFlWARE) 

DAEMON program, 505, 529 (COMMANDS) 

DAEMON-written file, 505 (COMMANDS) 

Data, definition, 94 (BEGINNER'S BATCH) 

Data Areas (INTRO TO SOFlWARE) 

Sharable, 15 

$DATA card, 105, 106, 107, 115 (BEGINNER'S 
BATCH) 

examples, 116 
naming data files, 1·16 
switches, 116 

$DATA card, 714, 715, 721 (COMMANDS) 

Data Communications System, 50 (INTRO TO 
SOFlWARE) 

Data file, 191 (lNTRO TO TECO) 

Data line in control file, format, 139 (BEGINNER'S 
BATCH) 

Index-9 



INDEX -810-

INDEX (Cont) 

Data Modes (INTRO TO SOFlWARE) 

Buffered, 27, 28 
Unbuffered, 27, 28 

Data mode switches, 405 (PIP) 

Data Transfers, 27 (lNTRO TO SOFlWARE) 

DATDMP, 34 (INTRO TO SOFlWARE) 

DAYTIME command, 504 (COMMANDS) 

DAYTIME command, 71 (TIMESHARING) 

DCORE command, 505 (COMMANDS) 

DDB category, 505 (COMMANDS) 

DDT command, 510 (COMMANDS) 

DDT program, 69 (TIMESHARING) 

DDT Utility, 21, 34 (INTRO TO SOFlWARE) 

/DEADLINE, 494, 605, 611, 621, 681, 697 
(COMMANDS) 

DEASSIGN command, 512 (COMMANDS) 

DEASSIGN command, 79 (TIMESHARING) 

Debug, definition, 94 (BEGINNER'S BATCH) 

DEBUG, 276 (TECO) 

DEBUG command, 513 (COMMANDS) 

DEBUG command, 69 (TIMESHARING) 

Debugging (COMMANDS) 

reentrant programs, 797 
sharable programs, 797 

Debugging programs, 67 (TIMESHARING) 

DEBUG, 69 

Decimal number, 266 (TECO) 

$DECK card, 109, 119 (BEGINNER'S BATCH) 

examples, 120 
switches, 120 

$DECK card, 723 (COMMANDS) 

Decoder (INTRO TO SOFlWARE) 

Command, 25 

DECsystem-10 Components, 9 (INTRO TO 
SOFlWARE) 

DECsystem-10 Family, 9, 45 (lNTRO TO 
SOFlWARE) 

DECsystem-1040, 45 (INTRO TO SOFlWARE) 

DECsystem-1050, 45 (lNTRO TO SOFlWARE) 

DECsystem-1055, 45 (INTRO TO SOFlWARE) 

DECsystem-1070, 45 (lNTRO TO SOFlWARE) 

DECsystem-1077, 46 (INTRO TO SOFlWARE) 

DECtape control, remote, 553 (COMMANDS) 

DECtape copy routine, 488 (COMMANDS) 

DECtape tape names, 397 (PIP) 

DECtape to paper tape copy, Y (PIP) 

switch, 403 

Defining limits for a job, 141 (BEGINNER'S 
BATCH) 

DELETE command, 517 (COMMANDS) 

DELETE command, 67 (TIMESHARING) 

Delete disk, 410 (PIP) 

Delete files (D switch), 409 (PIP) 

Delete sequence number (N switch), 399 (PIP) 

Delete trailing spaces, T switch, 402 (PIP) 

Deleting (BEGINNER'S BATCH) 

control file, 143 
job from the queue, 140 
log file, 143 

Deleting a line, 360 (LINED) 

Deleting characters, 74 (TIMESHARING) 

Deleting DECtape and disk files, 517 (COMMANDS) 

Deleting devices from spool list, 660 (COMMANDS) 

Deleting files when over quota, 580 (COMMANDS) 

Deleting multiple lines, 361 (L1 NED) 

Deletion commands, 201 (INTRO TO TECO) 

Delimiters, command string, 382 (PIP) 

/DENSITY, 521 (COMMANDS) 

Density, magnetic tape, 657 (COMMANDS) 

Density and parity parameters, 415 (PIP) 

switches for setting, 415 

/DEPEND, 622, 681 (COMMANDS) 

Dependency, 716 (COMMANDS) 

setting the, 622, 681 

Index-10 



-811- INDEX 

INDEX (Cont) 

Dependency (INTRO TO SOFlWARE) 

Job, 13 

Deposit command, 502 (COMMANDS) 

Depositing information, 502 (COMMANDS) 

Describing actions to be performed by Batch, 140 
(BEGINNER'S BATCH) 

Designating particular groups of characters as a 
match in searches, 286 (TECO) 

DETACH command, 519 (COMMANDS) 

DETACH command, 81 (TIMESHARING) 

/DETAIL, 521 (COMMANDS) 

Determining the command that caused an error, 
322 (TECO) 

Directory listings, 520 (COMMANDS) 

Directory names, 451 (COMMANDS) 

Directory structured devices, 250 (TECO) 

Disconnecting a job, 81 (TIMESHARING) 

Disconnecting the terminal, 519 (COMMANDS) 

Disk, definition, 94 (BEGINNER'S BATCH) 

Disk area, 251 (TECO) 

Disk area, 62 (TIMESHARING) 

Disk deletion, 410 (PIP) 

Disk priority, 658 (COMMANDS) 

Disk Quotas, 30 (INTRO TO SOFlWARE) 

Disk System, 29, 48 (lNTRO TO SOFlWARE) 

Determining station of a device, 706 (COMMANDS) Disk usage, 527 (COMMANDS) 

Device, 231, 248, 249, 250, 251, 253 (TECO) DISMOUNT command, 525 (COMMANDS) 

Device Assignment, 10 (lNTRO TO SOFlWARE) 

Device name, 448 (COMMANDS) 

Device Name (INTRO TO SOFlWARE) 

Logical, 28 

Device name, 383 (PIP) 

Device name, 233, 251 (TECO) 

Devices (BEGINNER'S BATCH) 

mounting, definition, 95 
peripheral, definition, 95 

Devices (lNTRO TO SOFlWARE) 

Input/Output, 48 
Real- Time, 14 
Sharing, 11 

Devices, 75 (TIMESHARING) 

Device station, 706 (COMMANDS) 

Digit numeric protection code values, 391 (PIP) 

Digit string, 302 (TECO) 

DIRECT, 34 (INTRO TO SOFlWARE) 

DIRECT command, 520 (COMMANDS) 

DIRECT command, 66, 82 (TIMESHARING) 

Direct control, 375 (PIP) 

Directory Files, 29, 34 (INTRO TO SOFlWARE) 

Directory identifier, 387, 389 (PI P) 

DISMOUNT command, 79 (TIMESHARING) 

/DISPOSE switch, 143 (BEGINNER'S BATCH) 

/DISPOSE:DELETE, 143 
/DISPOSE: PRESERVE, 143 
/DISPOSE: RENAME, 144 

/DISPOSE switch, 494, 605, 611, 622, 681, 698 
(COMMANDS) 

Divide, 242 (TECO) 

Documentation (COMMANDS) 

obtaining, 575 
updating, 545 

$ (dollar sign), 261, 286 (TECO) 

Double altmode, 194 (lNTRO TO TECO) 

Drum System, 47 (INTRO TO SOFlWARE) 

DSK, 30, 34 (INTRO TO SOFlWARE) 

DSK command, 527 (COMMANDS) 

DSKLST, 35 (lNTRO TO SOFlWARE) 

DSKRAT, 35 (lNTRO TO SOFlWARE) 

Dump, 154 (BEGINNER'S BATCH) 

definition, 94 
example, 162 

DUMP, 35 (INTRO TO SOFlWARE) 

$DUMP card, 723 (COMMANDS) 

DUMP command, 529 (COMMANDS) 

Index-II 



INDEX -812-

INDEX (Cont) 

Dump descriptor, 534 (COMMANDS) 

Dumping files, 529, 530 (COMMANDS) 

DUMP program, 530 (COMMANDS) 

E 

t E (control-E) see Control commands (TECO) 

E command, 536 (COMMANDS) 

E command, 361 (LINED) 

E command, 293 (TECO) 

EB command, 249, 253 (TECO) 

E switch, 399 (PIP) 

Echo, 236 (TECO) 

EDDT, 35 (INTRO TO SOFlWARE) 

EDIT, 359 (LINED) 

Edit, 248, 250 (TECO) 

EDIT command, 537 (COMMANDS) 

EDIT command, 64 (TIMESHARING) 

Edit-class command, 248 (TECO) 

Editing, programmed, 243 (TECO) 

Editing Buffer, 20 (INTRO TO SOFlWARE) 

Editing buffer, 239, 243, 254, 256, 260, 265, 
266, 267, 272, 278, 279, 296 (TECO) 

Editing existing files, 248 (TECO) 

Editing files, 537, 693 (COMMANDS) 

Editing files, 192 (lNTRO TO TECO) 

Editing files, 64 (TIMESHARING) 

EDIT, 64 
TECO,65 

Editing line-sequence numbered files, 254 (TECO) 

Editing process, 191 (INTRO TO TECO) 

Editors (lNTRO TO SOFlWARE) 

LINED, 20 
RUNOFF, 21 
SOUP, 21 
TECO, 20 

EF (close output file) command, 203 (lNTRO TO 
TECO) 

EF command, 274 (TECO) 

EG (close file, reexecute monitor command) 
command, 204 (INTRO TO TECO) 

EG command, 275, 276, 308 (TECO) 

EH command, 301, 323 (TECO) 

EM command, 251, 252 (TECO) 

End-of-file card, 105, 121 (BEGINNER'S BATCH) 

End-of-file card, 714, 717 (COMMANDS) 

End-of-file flag, obtaining value, 301 (TECO). 

End-of-file record, 252 (TECO) 

End-of-file writing, 538 (COMMANDS) 

End of page indicator, 191 (INTRO TO TECO) 

ENTER, 29 (INTRO TO SOFlWARE) 

Entering items in system queues, 618 (COMMANDS) 

Entering job, 137 (BEGINNER'S BATCH) 

into batch's queue, 139 

EO command, 301, 305 (TECO) 

EO value, 304 (TECO) 

$EOD card, 108, 121 (BEGINNER'S BATCH) 

$EOD card, 715, 724 (COMMANDS) 

EOF command, 538 (COMMANDS) 

= (equal sign) command, 300, 303 (TECO) 

Equals (=) symbol delimiter, 376, 379, 382 (PIP) 

ER, 251, 254 (TECO) 

Erasing (TECO) 

entire command string, 320 
single character, 320 

Erasing commands, 195 (INTRO TO TECO) 

Erasing commands, 235, 306, 319, 320 (TECO) 

Erasing files, 67 (TIMESHARING) 

%ERR, 733 (COMMANDS) 

Error, command See Command Error (TECO) 

$ERROR card, 122 (BEGINNER'S BATCH) 

$ERROR card, 724 (COMMANDS) 

Error codes, 780 (COMMANDS) 

.ERROR command, 146 (BEGINNER'S BATCH) 

example, 147 

Index-12 



-813- INDEX 

INDEX (Cont) 

• ERROR command, 735 (COMMANDS) 

Error handling, 363 (LINED) 

Error in command, 195 (INTRO TO TECO) 

Error message categories, 747 (COMMANDS) 

Error message flag, obtaining the value, 301, 324 
(TECO) 

Error messages, 153 (BEGINNER'S BATCH) 

Error messages, (COMMANDS) 

BATCON, 742 
CDRSTK, 741 
system, 747 

Error messages, 2rE (INTRO TO TECO) 

Error messages, 363 (LINED) 

Error messages, 419 (PI P) 

general, 422 
TMPCOR (device TMP), 424 

Error messages, 321, 322, 325 (TECO) 

Error recovery, 131, 150 (BEGINNER'S BATCH) 

examples, 132, 134, 150, 151 

Error recovery, 724, 732 (COMMANDS) 

Error Recovery, Batch, 13 (INTRO TO 
SOFlWARE) 

Error recovery, G-switch, 417 (PIP) 

Error reporting (COMMANDS) 

BATCON, 742 
CDRSTK, 741 

Errors (PI P) 

file reference, 420 
I/O, 418 
Y-switch, 422 

Errors, 319 (TECO) 

ESC, 235, 236 (TECO) 

ES command, 282, 301 (TECO) 

ET command, 261, 301, 303 (TECO) 

ET flag, 301, 303 (TECO) 

EU command, 301 (TECO) 

EW command, 248, 251, 252, 274 (TECO) 

EX (close file) command, 204 (INTRO TO TECO) 

EX command, 275, 276, 307, 308 (TECO) 

Examine command, 536 (COMMANDS) 

Examining core locations, 536 (COMMANDS) 

Examining object programs, 466 (COMMANDS) 

D,502 
DCORE,505 
DUMP, 529, 530 
E, 536 

Examples (BEGINNER'S BATCH) 

$ALGOL card, 112 
ALGOL job, 169, 176 
· BACKTO command, 146 
BASIC job, 110, 171, 178 
$COBOL card, 114 
COBOL job, 154, 174, 183 
Control file, 138, 160 
$DATA card, 116 
$DECK card, 120 
dump, 162 
• ERROR command, 147 
error recovery, 132, 134, 150, 151 
$FORTRAN card, 124 
FORTRAN job, 172 
· GOTO command, 148 
job, 138, 169, 176 
loader map, 156 
log file, 158, 161 
$MACRO card, 129 
MOUNT command, 175, 183 
mounting tapes, 175, 183 
• NOERROR command, 149 
output, 154, 160 
submitting jobs, 144 
use of $EOD card, 108, 122 

Examples, 361 (LINED) 

Examples, (TIMESHARING) 

assigning devices, 78 
compiling and executing, 69 
creati ng a file, 63 
logging in, 61 
KJOB CONFIRM dialogue, 72 
SYSTAT, 85 

Exclamation point, 292 (TECO) 

Exclamation symbol (!), 382 (PI P) 

Execute, definition, 94 (BEGINNER'S BATCH) 

EXECUTE, 276 (TECO) 

Index-13 



INDEX -814-

INDEX (Cont) 

EXECUTE command, 539 (COMMANDS) 

EXECUTE command, 68 (TIMESHARING) 

Executing programs, 539, 679, 721 (COMMANDS) 

Executing programs, 67 (TIMESHARING) 

EXECUTE, 68 

Execution, 239, 244 (TECO) 

Execution of command string, 194 (INTRO TO 
TECO) 

Exit, 275, 276, 277 (TECO) 

Exit commands, 204 (lNTRO TO TECO) 

Exit command, 275, 276, 278 (TECO) 

Exiting from PIP, 375 (PIP) 

Expression, 534 (COMMANDS) 

Extension, definition, 94 (BEGINNER'S BATCH) 

Extensions, filename, 783 (COMMANDS) 

Extension, filename, 192 (lNTRO TO TECO) 

EZ command, 253 (TECO) 

F 

t F (control-F) see Control commands (TECO) 

F command, 293 (TECO) 

F switch, 407 (PIP) 

/F, QUEUE, 612, 622, 682, 698 (COMMANDS) 

$F40 card, 725 (COMMANDS) 

Facility allocation, 464 (COMMANDS) 

ASSIGN,470 
CLOSE, 479 
CORE, 491 
DEASSIGN, 512 
DISMOUNT, 525 
FINISH, 560 
LOCATE,589 
MOUNT, 593 
REASSIGN, 633 
SET BLOCKSIZE, 653 
SET CDR, 654 
SET CPU, 655 
SET DENSITY, 657 
SET DSKPRI, 658 
SET HPQ, 659 
SET SPOOL, 660 

Facility allocation, (cont) 

SET TTY, 668 
TTY, 668 

FAILSAFE, 35 (lNTRO TO SOFlWARE) 

Fatal error, character recognized as, 146 
(BEGINNER'S BATCH) 

Features enabled by EO values greater than 1, 
305 (TECO) 

Feature test switches, 463 (COMMANDS) 

FED, 21 (INTRO TO SOFlWARE) 

/FEET switch (BEGINNER'S BATCH) 

$JOB card, 126 
SUBMIT command, 142 

/FEET switch, 622, 682 (COMMANDS) 

Fields, filename, 384 (PIP) 

FILCOM program, 543 (COMMANDS) 

FILDDT, 35 (INTRO TO SOFlWARE) 

/FILE, 612, 623, 698 (COMMANDS) 

File (INTRO TO SOFlWARE) 

Directory, 29 
Log, 13 

File, definition, 94 (BEGINNER'S BATCH) 

File, definition, 191 (INTRO TO TECO) 

File access protection codes, 383, 390, 391 
( PIP) 

File Backup Utility, 22 (lNTRO TO SOFlWARE) 

FILE command, 553 (COMMANDS) 

File-control switches, 143 (BEGINNER'S BATCH) 

File control switches, 493 (COMMANDS) 

File creation, 191 (lNTRO TO TECO) 

File devices, 191 (INTRO TO TECO) 

File Directory, 29, 34 (INTRO TO SOFlWARE) 

File directory switches, 406 (PI P) 

File Handler, 25, 29 (INTRO TO SOFlWARE) 

File manipulation, 465 (COMMANDS) 

ALCFIL, 468 
BACKSPACE, 474 
BACKUP, 475 
COPY, 486 

Index-14 



-815- INDEX 

INDEX (Cont) 

File manipulation (cont) 

CPUNCH/493 
DELETE/517 
DIRECT/ 520 
EOF/ 538 
FILE/ 553 
FILEX/ 557 
LIST/ 584 
PLOT/ 604 
PRESERVE/ 609 
PRINT/ 610 
PROTECT/ 616 
QUEUE/ 618 
RENAME/638 
RESTORE/ 641 
REWIND/ 645 
SKIP/ 675 
SUBMIT/ 680 
TPUNCH/696 
TYPE/ 702 
UNLOAD/ 703 
ZERO/ 707 

Filename/ definition/ 94 (BEGINNER'S BATCH) 

Filename/ 451 (COMMANDS) 

Filename, 192 (lNTRO TO TECO) 

Filename/ 233/ 234/ 248/ 249/ 250/ 251 (TECO) 

Filename, 62 (TIMESHARING) 

Filename extension/ definition/ 94 
(BEGINNER'S BATCH) 

Filename extension/ 451/ 783 (COMMANDS) 

Filename extension, 234/ 249/ 251, 253, (TECO) 

Filename extension/ 62 (TIMESHARING) 

Filename fields/ 383 (PI P) 

Filenames/ 384 (PI P) 

generation of/ 396 

File Owner/ 30 (lNTRO TO SOFTWARE) 

File protection/ 616 (COMMANDS) 

File protection codes, 409 (PI P) 

changing of/ 408 
UFD and SFD / 392 

File reference errors/ 420 (PIP) 

File request/backspace, 416 (PI P) 

Files/ 11 (INTRO TO SOFTWARE) 

Chain/ 22 
DireCTOry / 29 / 35 
Named / 29 / 39 
Sharing/ 11 

Files/ 61 (TIMESHARING) 

Files/ temporary/ 454/ 791 (COMMANDS 

File selection/ 249/ 251 (TECO) 

File specification/ 451 (COMMANDS) 

File specification/ 29/ 35 (INTRO TO SOFT­
WARE) 

File specification/ 380/ 381 (PIP) 

delimiters/ 381 

File Storage Allocation/ 11/ 30 (INTRO TO 
SOFTWARE) 

File structure names/ 451 (COMMANDS) 

File structures/ 29/ 35 (lNTRO TO SOFTWARE) 

File System/ 11/ 29 (INTRO TO SOFTWARE) 

File transfer/ 395 (PI P) 

nondirectory device to directory 
device, 395 

File transfer program/ 557 (COMMANDS) 

FILEX program/ 557 (COMMANDS) 

FILEX program/ 22/ 35 (lNTRO TO SOFTWARE) 

Filler classes, 669 (COMMANDS) 

%FIN, 734 (COMMANDS) 

FINISH command/ 560 (COMMANDS) 

FINISH command, 80 (TIMESHARING) 

Flow control commands/ 291 (TECO) 

FN command/ 280 (TECO) 

Format (BEGINNER'S BATCH) 

$ALGOL card/ 111 
. BAC KTO command, 123, 133 
Batch command, 138 
Batch command card/ 104 
Card, 103 
$COBOL card, 111 
control cards, 103 
$DATA card, 115 

Index-15 



INDEX 

Format (cont) (BEGINNER'S BATCH) 

data cards, 104 
data line, 139 
$DECK card, 120 
end-of-file card, 121 
$EOD card, 122 
$ERROR card, 122 
.ERROR command, 146 
$FORTRAN card, 123 
.GOTO command, 123, 147 
.IF command, 148 
.IF (ERROR) command, 122, 148 
.IF (NOERROR) command, 130, 148 
$JOB card, 125 
lines in control file, 138 
$MACRO card, 128 
monitor command 

card, 104 
line, 138 

$NOERROR card, 130 
. NOERROR command, 149 
$PASSWORD card, 131 
program cards, 1 04 
QUEUE INP: monitor command, 139 
$SEQUENCE card, 131 
SUBMIT monitor command, 139 
system program command 

card, 104 
line, 139 

Format, 237 (TECO) 

Formats, command, 447 (COMMANDS 

Formatting command strings, 306 (TECO) 

Form feed, 191 (INTRO TO TECO) 

removal, 197 
symbol, 194 

Form feed characters, 234, 236, 237, 238, 
256,261,272,273,274,309,310,312 
(TECO) 

Form feed flag, 256, 273, 301, 302 (TECO) 

Form feed processing, 309 (TECO) 

-816-

INDEX (Cont) 

FORTRAN, 19 (INTRO TO SOFlWARE) 

FORTRAN binary files, copying, 401 (PIP) 

$FORTRAN card, 106, 123 (BEGINNER'S 
BA TCH) 

examples, 124 
switches, 123 

$FORTRAN card, 713, 715, 725 (COMMANDS) 

FORTRAN carriage control character 

interpretation, 401 (PIP) 

/FORTRAN switch, 481, 513, 540, 586 
(COMMANDS) 

FS command, 279 (TECO) 

/FUDGE, 482, 513, 540, 586 (COMMANDS) 

FUDGE command, 562 (COMMANDS) 

FUDGE2 program, 563 (COMMANDS 

FUDGE2 program, 36 (INTRO TOSOFlWARE) 

Functional groups of commands, 463 
(COMMANDS) 

Functions, optional, 393 (PI P) 

Functions of control cards, 103 (BEGINNER'S 
BATCH) 

G 

G (control-G) see Control commands 
(TECO) 

G command, 293, 296 (TECO) 

G switch, error recovery, 417 (PIP) 

Gaining access (COMMANDS) 

of a device, 470, 593 
to a file structure, 593 
to the system, 590 

General error messages, 422 (PI P) 

General QUEUE switches, 493 (COMMANDS) 

General Switches, 141 (BEGINNER'S 
/FORMS, 495, 606, 612, 623 (COMMANDS) BATCH) 

FORTRAN (BEGINNER'S BATCH) 

compiler switches, 124 
deck, setting up, 106 
definition, 94 
job, examples, 172, 180 
program, compiling and executing, 107 

Generating cross-referenced listing, 481 
(COMMANDS) 

global symbols, 569 

Generating library REL files, 482, 513, 540, 
562, 586 (COMMANDS) 

Index-16 



-817- INDEX 

INDEX (cont) 

Generic Name, 30, 36 (INTRO TO SOFlWARE) 

/GENLSN (generate line-sequence numbers) 
(TECO) 

switch, 254 

GET command, 568 (COMMANDS) 

GET command, 84 (TIMESHARING) 

Getting date and time, 71 (TIMESHARING) 

Getting information, 70, 85 (TIMESHARING) 

DAYTIME, 71 
PJOB, 71 
RESOURCES, 85 
SYSTAT, 85 
TIME, 71 

Getting job number, 71 (TIMESHARING) 

Getting on the system, 59 (TIMESHARING) 

Getting running time, 71 (TIMESHARING) 

Global symbols, 569 (COMMANDS) 

GLOB program, 569 (COMMANDS) 

GLOB program, 36 (lNTRO TO SOFlWARE) 

Glossary, 31 (INTRO TO SOFlWARE) 

. GOTO command, 123, 130, 147 (BEGINNER'S 
BATCH) 

example, 148 

. GOTO command, 735 (COMMANDS) 

GRIPE program, 573 (COMMANDS) 

GRIPE program, 36 (INTRO TO SOFlWARE) 

Groups of commands, 463 (COMMANDS 

H 

t H (control-H) see Control commands (TECO) 

H, 258 (TECO) 

H switch, 405 (PI P) 

HALT command, 574 (COMMANDS) 

HALT command, 84 (TIMESHARING) 

Handler, (INTRO TO SOFlWARE) 

File, 25, 29 
Servi ce Request, 9 
UUO, 25, 28 

Hardware, 9, 45 (lNTRO TO SOFlWARE) 

Hardware requirements, 375 (PI P) 

/HEADER, 612, 623 (COMMANDS) 

HELP command, 575 (COMMANDS) 

High priority queues, 659 (COMMANDS) 

High-Priority Ru n Queues, 15 (INTRO TO 
SOFlWARE) 

HK (delete buffer) command, 201 (lNTRO TO 
TECO) 

Holding a job until a specified time, 126, 141 
(BEGINNER'S BATCH) 

How Batch reads (BEGINNER'S BATCH) 

card decks, 108 
control files, 146 

How to use Batch, 99 (BEGINNER'S BATCH) 

HP command, 310, 311 (TECO) 

HT (type entire buffer) command, 200 (lNTRO 
TO TECO) 

I (insert) command, 202, 203 (lNTRO TO 
TECO) 

I command, 360 (LI NED) 

I command, 266, 267 (TECO) 

*i command, 271, 296 (TECO) 

I switch, 405 (PI P) 

Identification code, 60 (TIMESHARING) 

Identifier (PI P) 

DECtape, 397 
directory, 387 

Identifying the job, 127 (BEGINNER'S 
BATCH) 

Identifying the user, 130 (BEGINNER'S 
BATCH) 

Idle state, 247 (TECO) 

.IF command (BEGINNER'S BATCH) 

.IF (ERROR), 122, 148 

.IF (NOERROR), 129, 148 

Ignore card sequence numbers, (PI P) 

(E switch,) 399 

Index-17 



INDEX -818-

INDEX (cont) 

Ignoring fatal error messages, 149 
(BEGINNER'S BATCH) 

Illegal commands, 209 (lNTRO TO TECO) 

Immediate action commands, 235 (TECO) 

Implementation, 365 (LINED) 

INBUF, 28 (lNTRO TO SOFlWARE) 

Increasing the number of entries in the pushdown 
stack, 243 (TECO) 

Increment, 295 (TECO) 

INDEX file, 475 (COMMANDS) 

Indirect commands, 454 (COMMANDS) 

Indirect control, 375 (PIP) 

Information about job, 467 (COMMANDS) 

DSK, 527 
PJOB,601 
QUOLST,631 
SETSRC, 662 
SET TIME, 666 
SET WA TCH, 672 
TIME, 694 

Information about system, 467 (COMMANDS) 

DAYTIME, 504 
RESOURCES, 640 
SCHED, 650 
SYSTAT, 686 
VERSION, 704 
WHERE, 706 

I NIT, 28 (lNTRO TO SOFlWARE) 

INITIA, 36 (lNTRO TO SOFlWARE) 

INITIA command, 577 (COMMANDS) 

Initialization, 247, 250 (TECO) 

Initialization of TECO, 192 (lNTRO TO TECO) 

Initializing a file for processing, 362 (LINED) 

Initializing a job, 463 (COMMANDS) 

Batch, 712 
INITIA, 577 
LOGIN,590 

Input, 233, 234, 249, 251, 253, 255, 256, 
272, 273, 276, 278, 279 (TECO) 

Input commands, 197 (lNTRO TO TECO) 

Input file, 233, 272, 276, 278, 279, 288 (TECO) 

Input file devices, 191 (lNTRO TO TECO) 

Input/Output Devices, 48 (lNTRO TO SOFT­
WARE) 

Input/Output Routines, 25, 28 (lNTRO TO 
SOFlWARE) 

Input queue, Batch, 680 (COMMANDS) 

Input Queue, 13 (lNTRO TO SOFlWARE) 

INPUT UUO, 29 (lNTRO TO SOFlWARE) 

Insert, 233, 234, 248, 264, 265 (TECO) 

Inserting (TECO) 

control characters, 271 
single control characters as text, 271 
succeeding control characters as text, 271 

Inserting a line, 360 (LINED) 

Inserting multiple lines, 360 (LINED) 

Insertion, 307 (TECO) 

Insertion command, 264 (TECO) 

Insert sequence numbers, S-switch, 400 (PIP) 

Inside-text command, 271, 285 (TECO) 

Integer divide, 242 (TECO) 

Interjob dependency, 716 (COMMANDS) 

Interpreters, 17 (lNTRO TO SOFlWARE) 

AID, 20 

Interpreting control-characters as text in 
searches (TECO) 

single characters, 285 
succeeding characters, 285 

Interpreting printed output, 153 (BEGINNER'S 
BATCH) 

Interrupting sequential reading of control file, 
734, 735 (COMMANDS) 

Interrupt System (INTRO TO SOFlWARE) 

Priority, 14, 46 

Intervention, (lNTRO TO SOFlWARE) 

Batch Operator, 14 

I/O (PIP) 

errors, 418 
messages, 419 

Index-18 



-819- INDEX 

INDEX (cont) 

I/O Channels (lNTRO TO SOFlWARE) 

Software, 28 

I/O Service Routines, 10, 28 (INTRO TO 
SOFlWARE) 

Iteration, 289, '196 (TECO) 

J 

J (move pointer to beginning) command, 198 
(INTRO TO TECO) 

J command, 258 (TECO) 

J switch, card punch, 418 (PIP) 

JCONTINUE command, 578 (COMMANDS) 

Job, 99 (BEGINNER'S BATCH) 

definition, 94 
entering to Batch, 137 
examples, 138, 169, 176 
submitting, 139 

examples, 144 

Job, 443, 712 (COMMANDS) 

$JOB card, 105, 125 (BEGINNER'S BATCH) 

switches, 126 

$JOB card, 713, 714, 727 (COMMANDS) 

JOB category, 505 (COMMANDS) 

Job contained in a file, 714 (COMMANDS) 

Job Dependency, 13 (lNTRO TO SOFlWARE) 

Job in a control file, 716 (COMMANDS) 

Job information, 467 (COMMANDS) 

DSK, 527 
PJOB, 601 
QUOLST, 631 
SETSRC, 662 
SET TIME, 666 
SET WATCH, 672 
TIME, 694 

Job initialization, 463 (COMMANDS) 

Batch, 712 
INITIA, 577 
LOGIN,590 

Job Locking, 14 (INTRO TO SOFlWARE) 

Jobname, definition, 91 (BEGINNER'S BATCH) 

Jobname, 493, 604, 610, 619, 680, 696 
(COMMANDS) 

Job number, 60 (TIMESHARING) 

Job on cards, 713 (COMMANDS) 

Job output, Batch, 739 (COMMANDS) 

Job search list, 662 (COMMANDS) 

Job Search List, 30, 35 (lNTRO TO SOFT­
WARE) 

Jobstep, definition, 95 (BEGINNER'S BATCH) 

Job termination, 466 (COMMANDS) 

KJOB, 579 

K 

K, definition, 95 (BEGINNER'S BATCH) 

K (delete line) command, 201 (lNTRO TO 
TECO) 

K command, 264, 265 (TECO) 

KA10, 46 (INTRO TO SOFlWARE) 

KilO, 46 (lNTRO TO SOFlWARE) 

Killing your job, 579 (COMMANDS) 

/KILL switch, 140 (BEGINNER'S BATCH) 

/KILL switch, 495, 606, 612, 623, 682, 698 
COMMANDS) 

Kinds of printed output, 153 (BEGINNER'S 
BATCH) 

KJOB, 23 (INTRO TO SOFlWARE) 

KJOB command, 579 (COMMANDS) 

KJOB command, 72 (TIMESHARING) 

L 

t L (control-L) see Control commands (TECO) 

L (move pointer by lines )command, 199 (INTRO 
TO TECO) 

L command, 259, '193 (TECO) 

Lswitch,406(PIP) 

Label, definition, 95 (BEGINNER'S BATCH) 

Language (lNTRO TO SOFlWARE) 

Command Control, 10 
Machine, 17 

Language Programming (INTRO TO SOFlWARE) 

Symbolic, 17 

Index-19 



INDEX -820-

INDEX (cont) 

Leaving the system, 72 (TIMESHARING) 

Leaving the terminal in monitor mode, 500 
(COMMANDS) 

LlB40, 37 (INTRO TO SOFlWARE) 

LlBOL, 19, 37 (INTRO TO SOFlWARE) 

IUBRARY, 514, 540, 586 (COMMANDS) 

Library Maintenance Program, 19 (INTRO TO 
SOFlWARE) 

IUMIT, 495, 606, 612, 624, 699 (COMMANDS) 

Line, 237, 259, 260, 268 (TECO) 

Line continuation, 139 (BEGINNER'S BATCH) 

LINED program, 498, 537 (COMMANDS) 

LINED program, 20 (INTRO TO SOFlWARE) 

LINED program, 62, 64 (TIMESHARING) 

Line editor, 359 (LINED) 

Line feed, 236, 237, 256, 262, 306, 320 (TECO) 

Line feed symbol (~), 194 (lNTRO TO TECO) 

Line numbers, 20 (INTRO TO SOFlWARE) 

Line Printer, 49 (lNTRO TO SOFlWARE) 

Line printer listing, FORTRAN, (PIP) 

(P switch), 400 

Line printer output, 8] (TiMESHAR ING) 

CREF. 82 
DIRECT, 82 
PRINT, 81 

Line printer output, specifying amount, 127, 142 
(BEGINNER'S BATCH) 

Line printer queue, 610 (COMMANDS) 

Line sequence numbered files, 254 (TECO) 

Line sequence numbers, 365 (LINED) 

line sequence numbers, 238, 254 (TECO) 

line terminators, 237 (TECO) 

list (lNTRO TO SOFlWARE) 

Command, 28 
Job Search, 30 

lUST, COMPIL, 482, 515, 540, 586 
(COMMANDS) 

lUST, DIRECT, 521 (COMMANDS) 

lUST, QUEUE, 495, 606, 612, 624, 682, 699 
(COMMANDS) 

LIST command, 584 (COMMANDS) 

Listing available devices, 640 (COMMANDS) 

Listing cross-referenced file!;, 499 (COMMANDS) 

Listing directories, 520 (COMMANDS) 

Listing directories, 66, 82 (TIMESHARING) 

Listing files, 66, 81 (TIMESHARING) 

Listings, 154 (BEGINNER'S BATCH) 

listing source files, 584 (COMMANDS) 

list limited sOl!rce directory, (PIP) 

F-switch, 407 

list source device directory, (PI P) 

L switch, 406 

literal type-out mode, 261 (TECO) 

IlMAP, 515, 541, 587 (COMMANDS) 

LOAD, 276 (TECO) 

LOAD command, 585 (COMMANDS) 

LOAD command, 68 (TIMESHARING) 

Loader map, 154 (BEGINNER'S BATCH) 

example, 156 

LOADER program, 22, 37 (INTRO TO SOFT-
WARE) 

LOADER program, 68 (TIMESHARING) 

LOADER switches, 460 (COMMANDS) 

Loading and starting core image file, 632, 646 
(COMMANDS) 

loading and writing a Bootstrap loader, 488 
(COMMANDS) 

loading core image file, 568 (COMMANDS 

and starting, 632, 646 

Loading files, 585 (COMMANDS) 

Loading PIP, 375 (PIP) 

Loading programs, 67 (TIMESHARING) 

LOAD, 68 

Load point, 252 (TECO) 

LOCATE command, 589 (COMMANDS) 

Index-20 



-821- INDEX 

INDEX (cont) 

Locking Jobs, 14 (lNTRO TO SOFTWARE) 

/LOG, 612, 624 (COMMANDS) 

Log file, 100, 153 (BEGINNER'S BATCH) 

definition, 95 
examples, 158, 161 

Log file (COMMANDS) 

BACKUP, 475 
BATCH, 680, 710, 727, 740 

Log File, 13 (lNTRO TO SOFlWARE) 

Logged-In Quota, 30 (INTRO TO SOFlWARE) 

Logged-Out Quota, 30 (lNTRO TO SOFlWARE) 

Logging on, 590 (COMMANDS) 

Logging off, 579 (COMMANDS) 

Logical AND, 242 (TECO) 

Logical Block Numbers, 29 (lNTRO TO SOFT­
WARE) 

Logical device name, 449 (COMMANDS) 

example of, 450 

Logical Device Name, 28, 38 (lNTRO TO 
SOFlWARE) 

Logical device name, 383 (PIP) 

Logical device name, 76 (TIMESHARING) 

Logical OR, 242 (TECO) 

Logical station, 589 (COMMANDS) 

Logical Station, 16 (INTRO TO SOFlWARE) 

Login check, 446 (COMMANDS) 

LOGIN command, 590 (COMMANDS) 

LOGIN command, 60 (TIMESHARING) 

LOGIN program, 23, 38 (lNTRO TO SOFlWARE) 

LOGIN program, 60 (TIMESHARING) 

LOGOUT, 23 (lNTRO TO SOFlWARE) 

LOOKFL, 38 (INTRO TO SOFlWARE) 

LOOKUP, 29 (INTRO TO SOFlWARE) 

Loop, 278, 289 (TECO) 

Lower case flagging, 262 (TECO) 

M 

M command, 296, 313 (TECO) 

Machine Language, 17 (INTRO TO SOFlWARE) 

MACRO (BEGINNER'S BATCH) 

assembler switches, 128 
deck, setting up, 107 
program, assembling and executing, 107 

MACRO, 17 (INTRO TO SOFlWARE) 

Macro, 313, 314 (TECO) 

Macro Capabilities, 18 (INTRO TO SOFT­
WARE) 

$MACRO card, 107, 127 (BEGINNER'S 
BATCH) 

examples, 129 
switches, 128 

$MACRO card, 729 (COMMANDS) 

/MACROswitch, 482, 515, 541, 587 
(COMMANDS) 

/MACXll, 482, 515", 541, 587 (COMMANDS) 

Magnetic tape, 251, 252, 255 (TECO) 

Magnetic tape density, 657 (COMMANDS) 

Magnetic tape switches, 415,416 (PIP) 

Magnetic Tape Systems, 48 (INTRO TO SOFT-
WARE) 

Main uses of TECO, 247 (TECO) 

MAKE command, 592 (COMMANDS) 

MAKE (make disk file) command, 192 (lNTRO 
TO TECO) 

MAKE command, 247, 248, 250, 252, 307, 
308 (TECO) 

MAKE command, 64 (TIMESHARING) 

Manager (INTRO TO SOFlWARE) 

Queue, 13 

Manipulating core images, 83 (TIMESHARING) 

GET, 84 
R, 83 
RUN, 83 
SAVE, 83 

Index-21 



INDEX -822-

INDEX (cont) 

Manipulating files, 465 (COMMANDS) 

ALCFIL,468 
BACKSPACE, 474 
BACKUP, 475 
COPY, 486 
CPUNCH,493 
DElETE, 517 
DIRECT, 520 
EOF, 538 
FILE, 533 
FILEX, 557 
LIST, 584 
PLOT, 604 
PRESERVE, 6C1J 
PRINT, 610 
PROTECT, 616 
QUEUE, 618 
RENAME, 638 
RESTORE, 641 
REWIND, 645 
SKIP, 675 
SUBMIT, 680 
TPUNCH, 696 
TYPE, 702 
UNLOAD, 703 
ZERO, 707 

Manipulating files, 65 (TIMESHARING) 

DELETE, 67 
DIRECT, 66 
RENAME, 67 
TYPE, 66 

Manipulating terminals, 80 (TIMESHARING) 

ATTACH, 81 
DETACH, 81 
SEND, 80 

/MARKS, 521 (COMMANDS) 

Master file, 563 (COMMANDS) 

Master File Directory, 29, 38 (lNTRO TO 
SOFlWARE) 

Maximum length of search strings, 278 (TECO) 

Memory (lNTRO TO SOFlWARE) 

Core, 47 
Secondary, 11 

Merge, 310, 311 (TECO) 

Message of the day, 590 (COMMANDS) 

Messages (COMMANDS) 

BATCON,742 
CDRSTK, 740 
system, 747 

MFD, 29, 38 (lNTRO TO SOFlWARE) 

- (minus), 242 (TECO) 

$MODE card, 730 (COMMANDS) 

Modes (lNTRO TO SOFlWARE) 

Block, 15 
Buffered Data, 28 
Single, 15 
Unbuffered Data, 28 

Modifiers, 281 (TECO) 

/MODIFY switch, 141 (BEGINNER'S BATCH) 

/MODIFY switch, 495, 606, 613, 624, 682, 
699 (COMMANDS) 

Modifying amount of core assigned, 491 
(COMMANDS) 

Modifying text, 192 (lNTRO TO TECO) 

MONEY, 38 (lNTRO TO SOFlWARE) 

MONGEN, 23, 38 (lNTRO TO SOFlWARE) 

Monitor, definition, 95 (BEGINNER'S BATCH) 

Monitor, 59 (TIMESHARING) 

Monitor command (BEGINNER'S BATCH) 

card format, 104 
definition, 95 
line format, 138 

Monitor command language, 443 (COMMANDS) 

Monitor commands, 235, 248 (TECO) 

Monitor mode, 444 (COMMANDS) 

Monitor Support Programs, 23 (lNTRO TO 
SOFlWARE) 

MOUNT command, 100 (BEGINNER'S BATCH) 

example, 175, 183 

MOUNT command, 593 (COMMANDS) 

MOUNT command, 78 (TIMESHARING) 

Mounting a device, definition, 95 
(BEGINNER'S BATCH) 

Index-22 



-823- INDEX 

INDEX (cont) 

Mounting tapes, 100 (BEGINNER'S BATCH) 

examples, 175, 183 

Moving a file to Batch's disk area, 144 
(BEGINNER'S BATCH) 

/MULTI, 594 (COMMANDS) 

Multimode Computing, 10 (INTRO TO SOFlWARE) 

Multiple job control, 466 (COMMANDS) 

ATTACH, 472 
CCONT, 500 
CSTART, 500 
DETACH, 519 
OPSER, 597 
REATTA, 635 

Multiply, 242 (TECO) 

Multiprocessing, 10, 38 (lNTRO TO SOFlWARE) 

Multiprogram Batch, 99 (BEGINNER'S BATCH) 

Multiprogram Batch, 12 (INTRO TO SOFlWARE) 

Multiprogramming, definition, 95 (BEGINNER'S 
BATCH) 

Multiprogramming, 443 (COMMANDS) 

Multiprogramming, 11, 28, 39 (INTRO TO 
SOFlWARE) 

Multi-purpose commands, 307 (TECO) 

N 

t N (control-N) see Control commands (TECO) 

N (search file) command, 206, 207 (INTRO TO 
TECO) 

N command, 279, 281, 293, 310 (TECO) 

N switch, delete sequence number, 399 (PIP) 

nA command, 301 (TECO) 

n\ command, 266 (TECO) 

nK CORE, 244, 256 (TECO) 

nI CD command, 266 (TECO) 

Name (INTRO TO SOFlWARE) 

Generic, 30, 36 
Logical Device, 28, 38 

Named Files, 29, 39 (INTRO TO SOFlWARE) 

Naming control files, 140 (BEGINNER'S BATCH) 

Naming data files on the $DATA card, 116 
(BEGINNER'S BATCH) 

Naming files, 62 (TIMESHARING) 

Naming files with octal constants, 385 (PIP) 

Naming jobs, 125, 140 (BEGINNER'S BATCH) 

Naming log files, 140 (BEGINNER'S BATCH) 

Negation, 242 (TECO) 

/NEW, 496, 606, 613, 624, 682, 699 
(COMMANDS) 

nnnTEe. TMP, 249, 253 (TECO) 

No case flagging, 262 (TECO) 

/NOCOMPILE, 482, 515, 541, 587 
(COMMANDS) 

$NOERROR card, 129 (BEGINNER'S BATCH) 

$NOERROR card, 724 (COMMANDS) 

• NOERROR command, 149 (BEGINNER'S 
BATCH) 

example, 149 

• NOERROR command, 737 (COMMANDS) 

/NOLIST switch (BEGINNER'S BATCH) 

$ALGOL card, 111 
$FORTRAN card, 124 
$MACRO card, 129 

/NOLIST switch, 482, 515, 541, 587 
(COMMANDS) 

Non-directory to Directory copy (PIP) 

operation, 395 

Non-Resident Software, 10, 17 (lNTRO TO 
SOFlWARE) 

• NOOPERATOR command, 737 (COMMANDS) 

No prevailing case conversion, 270 (TECO) 

/NOSEARCH, 515, 541, 587 (COMMANDS) 

/NOTE, 607, 613, 624 (COMMANDS) 

NOTICE. TXT, 590 (COMMANDS) 

Null, 234 (TECO) 

Null extension, 234, 251 (TECO) 

Null page, 238 (TECO) 

Index-23 



INDEX -824-

INDEX (cont) 

/NULL switch, 496, 607, 613, 624, 699 
(COMMANDS) 

Numbers (lNTRO TO SOFlWARE) 

Line, 20 
Logical Block, 29 

# symbol, 385 (PIP) 

Numeric argument, 196 (INTRO TO TECO) 

Numeric argument, 241, 251, 257, 281 (TECO) 

Numeric operators, 242 (TECO) 

o 
t 0 (control-O) see Control commands (TECO) 

o command, 292 (TECO) 

o switch, insert sequence numbers and 

increment. by one, 400 (PIP) 

Object program, definition, 95 (BEGINNER'S 
(BATCH) 

Object program control, 465 (COMMANDS) 

CONTINUE, 495 
DDT, 510 
GET, 568 
HALT, 574 
JCONT,578 
R, 632 
REENTER, 637 
RUN, 646 
START, 679 

Object program examination, 466 (COMMANDS) 

D,502 
DCORE, 505 
DUMP, 529, 530 
E, 536 

Object program preparation, 465 (COMMANDS) 

COMPILE, 480 
CREF, 499 
DEBUG, 513 
EXECUTE, 539 
FUDGE, 562 
FUDGE2,563 
LOAD,585 
SAVE, 648 
SSAVE, 677 

Obtaining cross reference listing (BEGINNER'S 
BATCH) 

$COBOL cord, 114 
$FORTRAN cord, 124 
$MACRO cord, 129 

Obtaining documentation, 575 (COMMANDS) 

Obtaining entries in queues, 618 (COMMANDS) 

Obtaining information, 70, 85 (TIMESHARING) 

DAYTIME, 71 
PJOB, 71 
RESOURCES, 85 
SYSTAT, 85 
TIME, 71 

Obtaining job number, 601 (COMMANDS) 

Obtaining more information about errors, 323 
(TECO) 

Obtaining printable dumps, 530 (COMMANDS) 

Obtaining the date and time, 504 
(COMMANDS) 

Obtaining the value of (TECO) 

automatic typeout flog, 301 
case flog, 301 
end-of-file flog, 301 
error message flog, 301, 324 
search mode flog, 286 
typeout mode switch, 261 
version number flag, 301 

Octal constants as filename, 385 (PIP) 

Octal numbers, 242 (TECO) 

/OKBINARY, 613, 624 (COMMANDS) 

/OKNONE, DIRECT, 521 (COMMANDS) 

/OKNONE, QUEUE, 496, 607, 613, 624, 
699 (COMMANDS) 

OMOUNT program, 525, 554, 593 
(COMMANDS) 

OMOUNT program, 39 (INTRO TOSOFlWARE) 

OPEN, 28 (INTRO TO SOFlWARE) 

Opening a file, 192 (lNTRO TO TECO) 

Opening a new file, 248 (TECO) 

Operating procedure, 191 (lNTRO TO TECO) 

Index-24 



-825- INDEX 

INDEX (cont) 

Operating system, 443 (COMMANDS) 

commands, 463 

Operating System, 9, 25 (INTRO TO SOFlWARE) 

Operating the terminal, 73 (TIMESHARING) 

Operator, computer, definition, 93 (BEGINNER'S 
. BATCH) 

. OPERATOR command, 737 (COMMANDS) 

Operator communication, 466 (COMMANDS) 

DISMOUNT, 525 
FILE, 553 
GRIPE, 573 
MOUNT, 593 
PLEASE, 602 
SEND, 651 

Operator communication, 78, 79 (TIMESHARING) 

Operator Intervention (INTRO TO SOFlWARE) 

Batch, 14 

Operators (INTRO TO SOFlWARE) 

Programmed, 25, 27, 40 

Operators, 242 (TECO) 

OPSER program, 597 (COMMANDS) 

OPSER program, 23 (lNTRO TO SOFlWARE) 

Optional functions, 393 (PIP) 

Optional PIP functions, 415 (PIP) 

OR, 242 (TECO) 

OUT, 29 (INTRO TO SOFlWARE) 

OUTBUF, 28 (lNTRO TO SOFlWARE) 

/OUTPUT, 625, 683 (COMMANDS) 

Output (BEGINNER'S BATCH) 

card, 100 
lineprinter, 100 
paper tape, 1 00 
plotter, 100 
tape, 100 

Output, 234, 250, 251, 252, 272, 274, 276, 
277, 287, 302, 307, 310 (TECO) 

Output, Batch, 739 (COMMANDS) 

Output, specifying amount (BEGINNER'S BATCH) 

card, 126, 142 
line printer pages, 127, 142 
paper tape, 126, 142 

Output commands, 203 (INTRO TO TECO) 

Output commands, 272 (TECO) 

Output error, 313 (TECO) 

Output file, 233, 272, 273, 275, 278, 280 
(TECO) 

Output file devices, 191 (INTRO TO TECO) 

Output from a job, 153 (BEGINNER'S BATCH) 

Output Spoolers, 11, 13 (INTRO TO SOFT-
WARE) 

OUTPUT UUO, 29 (lNTRO TO SOFlWARE) 

Owner (INTRO TO SOFlWARE) 

File, 30 

P 

P (output buffer) command, 203 (INTRO TO 
TECO) 

P command, 361 (L\ NED) 

P command, 272, 274, 280 (TECO) 

P switch, prepare FORTRAN output for Line 
Printer listing, 400 (PI P) 

Page, 237, 238, 239, 256, 267, 272, 279, 
287, 302, 309, 311 (TECO) 

Pages, 491 (COMMANDS) 

Pages, 191, 192 (INTRO TO TECO) 

cQmbining, 197 
reading into buffer, 197 

Pages, specifying number to print, 127 
(BEGINNER'S BATCH) 

/PAGE switch (SUBMIT command), 142 
(BEGINNER'S BATCH) 

/PAGE switch, 625, 683 (COMMANDS) 

/PAGES switch ($JOB card), 127 (BEGINNER'S 
(BATCH) 

/PAPER, 625 (COMMANDS) 

Paper-tape output, specifying amount, 126, 
142 (BEGINNER'S BATCH) 

Paper tape punch queue, 696 (COMMANDS) 

Parentheses, 242 (TECO) 

Parentheses usage, 382, 415 (PI P) 

/PARITY, 521 (COMMANDS) 

Partial allocation, 468 (COMMANDS) 
plotter time, 127, 143 

Index-25 



INDEX -826-

INDEX (cont) 

Parts of error messages, 321 (TECO) 

Passing devices to jobs, 633 (COMMANDS) 

Passive search list, 662 (COMMANDS) 

Password, definition, 95 (BEGINNER'S BATCH) 

Password, 448 (COMMANDS) 

Password, 61 (TIMESHARING) 

$PASSWORD card, 99, 130 (BEGINNER'S 
(BA TCH) 

$PASSWORD card, 713, 731 (COMMANDS) 

/PAUSE, 525, 594 (COMMANDS) 

% (percent sign) command, 295, 314 (TECO) 

Period, 234, 286, 293 (TECO) 

. (period), 258, 293 (TECO) 

Period (.) usage, 192 (INTRO TO TECO) 

Period (.) usage, 377, 382 (PI P) 

Peripheral devices, definition, (BEGINNER'S 
BATCH) 

Peripheral devices, 383 (PIP) 

Peripheral devices, 75 (TIMESHARING) 

Permanent switch, 457 (COMMANDS) 

/PHYSICAL, DIRECT, 521 (COMMANDS) 

/PHYSICAL, QUEUE, 496, 607, 613, 625, 683, 
699 (COMMANDS 

Physical device name, 448 (COMMANDS) 

example of, 450 

Physical device name, 383 (PIP) 

Physical device name, 75 (TIMESHARING) 

PI P command errors, 421 (PI P) 

PIP program, 22, 39 (INTRO TO SOFlWARE) 

PIP program, 192 (lNTRO TO TECO) 

PJOB command, 601 (COMMANDS) 

PJOB command, 71 (TIMESHARING) 

PLEASE, 39 (lNTRO TO SOFlWARE) 

PLEASE command, 602 (COMMANDS) 

/PLOT, 607, 625 (COMMANDS) 

PLOT command, 604 (COMMANDS) 

Plotter output queue, 604 (COMMANDS) 

Plotters, 49 (lNTRO TO SOFlWARE) 

Plotter time, specifying amount, 127, 143 
(BEGINNER'S BATCH) 

Plotting files, 604 (COMMANDS) 

+ (plus), 241 (TECO) 

Pointer (INTRO TO SOFlWARE) 

Buffer, 20 

Pointer, buffer see Buffer pointer (TECO) 

Pointer, buffer, 198 (INTRO TO TECO) 

Pointer position, 198 (lNTRO TO TECO) 

Position, buffer, 241 (TECO) 

Preparing dumps, 505, 529 (COMMANDS) 

Preparing object programs, 465 (COMMANDS) 

COMPILE, 480 
CREF, 499 
DEBUG,419 
EXECUTE, 539 
FUDGE, 562 
FUDGE2, 563 
LOAD,585 
SAVE, 648 
SSAVE, 677 

Preparing source files, 465 (COMMANDS) 

CREATE, 498 
EDIT, 537 
MAKE,592 
TECO, 693 

Preserving (BEGINNER'S BATCH) 

control file, 143 
log file, 143 

Preserving files, 609 (COMMANDS) 

Primary Processor, 10 (INTRO TO SOFlWARE) 

/PRINT, 613, 626 (COMMANDS) 

PRINT command, 610 (COMMANDS) 

PRINT command, 81 (TIMESHARING) 

Printed, output, 154 (BEGINNER's BATCH) 

kinds, 153 

Printers (lNTRO TO SOFlWARE) 

Line, 49 

Printing a line, 361 (LINED) 

Index-26 



-827- INDEX 

INDEX (cont) 

Printing files, 610 (COMMANDS) 

Printing incremental job statistics, 672 

Printing source files, 584 (COMMANDS) 

Printing system statistics, 686 (COMMANDS) 

Printing version numbers, 672, 704 (COMMANDS) 

Print summary of PIP functions, (PIP) 

Q switch, 411 

/PRIORITY, 496, 607, 613, 626, 683, 699 
(COMMANDS) 

Priority Interrupt System, 14, 46 (lNTRO TO 
SOFlWARE) 

Processing errors, 724, 732 (COMMANDS) 

Processors, 46 (INTRO TO SOFlWARE) 

Primary, 10 
Secondary, 1 0 

Processors, 68 (TIMESHARING) 

Processor switches, 458 (COMMANDS) 

Producing cross-referenced listing, 481 
(COMMANDS) 

global symbols, 569 

Producing REL files, 480 (COMMANDS) 

Program (BEGINNER'S BATCH) 

definition, 95 
object, definition, 95 
source definition, 95 

Program (INTRO TO SOFlWARE) 

Reentrant, 11 
Source Library Maintenance, 19 

Program execution, 539 (COMMANDS) 

Programmed editing, 243 (TECO) 

Programmed Operators, 25, 27, 40 
(INTRO TO SOFlWARE) 

Programmer number, 251 (TECO) 

Programming, definition, 95 (BEGINNER'S 
BATCH) 

Programming (INTRO TO SOFlWARE) 

Symbolic Language, 17 

Programs (COMMANDS) 

system, 463 

Programs (INTRO TO SOFlWARE) 

Monitor Support, 23 
Spooling, 13 

Project number, 251 (TECO) 

Project-programmer area, 248, 249, 255 (TECO) 

Project-programmer number, 125 (BEGINNER'S 
BATCH) 

definition, 95 

Project-programmer number, 448, 590 
(COMMANDS) 

Project-programmer number, 251, 253 (TECO) 

Project-programmer number, 60 (TIMESHARING) 

[proj,progl, 125 (BEGINNER'S BATCH) 

definition, 95 

[proj,prog], 251 (TECO) 

Proj, prog number pairs, 389 (PIP) 

Properties of terminals, 668 (COMMANDS) 

/PROTECT, DIRECT, 521 (COMMANDS) 

/PROTECT, QUEUE, 496, 607, 613, 626, 
683, 699 (COMMANDS) 

PROTECT command, 616 (COMMANDS) 

Protecting old macros from new features in 
TECO, 305 (TECO) 

Protection codes, 616 (COMMANDS) 

Protection Codes, 11, 30 (INTRO TO SOFT­
WARE) 

Protection codes, 390, 391 (PIP) 

changing of, 408 
digit numeric values, 391 

Protection codes, 66 (TIMESHARING) 

Providing printable dumps, 530 (COMMANDS) 

Pseudo-TTYS, 23 (INTRO TO SOFlWARE) 

Punch Card, 49 (INTRO TO SOFTWARE) 

/PUNCH, 496, 626 (COMMANDS) 

PUNCH command, 696 (COMMANDS) 

Punching cards, 493 (COMMANDS) 

Pushdown stack, increasing the number of 
entries, 243 (TECO) 

Index-27 



INDEX -828-

INDEX (cont) 

Putting commands in the control file, 108 
(BEGINNER'S BATCH) 

Putting comments in TEeO macros, 292 (TECO) 

PH (output page) command, 203 (lNTRO TO 
TECO) 

PH command, 272, 273, 274, 310r 312 (TEeO) 

PNY command, 273 (TECO) 

Q command, 295 (TECO) 

QMANGR, 710 (COMMANDS) 

Q 

QMANGR, 12, 40 (INTRO TO SOFTWARE) 

Q-register, 243, 244, 295, 296 (TECO) 

Q-register commands, 295 (TECO) 

Q-register pushdown list, 297 (TECO) 

Q-register pushdown stack, 243 (TECO) 

Q switch, print summary of PI P functions, 411 
(PIP) 

? (question mark) command, 304, 322 (TECO) 

Question mark construction, 452 (COMMANDS) 

Question mark (?) symbol, 386, 406 (PIP) 

Queue, 40 (INTRO TO SOFTWARE) 

Input, 13 

QUEUE command, 618 (COMMANDS) 

Queue, definition, 96 (BEGINNER'S BATCH) 

entering a job into, 139 

QUEUE INP: monitor command, 139 
(BEGINNER'S BATCH) 

Queue manager, 710 (COMMANDS) 

Queue Manager, 13 (lNTRO TO SOFTWARE) 

Queue names, 618 (COMMANDS) 

Queue operation switches, 140 (BEGINNER'S 
BATCH) 

Queue operation switches, 493 (COMMANDS) 

Queues, 26 (INTRO TO SOFTWARE) 

High-Priority Run, 15 

Queuing files, 581 (COMMANDS) 

QUOLST program, 631 (COMMANDS) 

QUOLST program, 41 (INTRO TO SOFTWARE) 

Quota (lNTRO TO SOFTWARE) 

Logged-In, 30 
Logged-Out, 30 

Quotas (lNTRO TO SOFTWARE) 

Disk, 30 

Quotas, typing, 631 (COMMANDS) 

QUOTA.SYS, 593 (COMMANDS) 

II (quotation mark) command, 282, 314 (TECO) 

R 

R (control-R) see Control commands (TECO) 

R command, 632 (COMMANDS) 

R (move pointer backwards by character) 
(INTRO TO TECO) 

command, 198 

R command, 258 (TEeO) 

R cOl!lmand, 83 (TIMESHARING) 

R switch, Rename Source Files, 407 (PIP) 

REACT, 41 (INTRO TO SOFTWARE) 

Readers, Card, 48 (INTRO TO SOFTWARE) 

Reading a card deck, 108 (BEGINNER'S BATCH) 

Reading control file backward, 734 (COMMANDS) 

Reading control file forward, 735 (COMMANDS) 

Reallocating disk space, 468 (COMMANDS) 

Real- Time, 14 (INTRO TO SOFTWARE) 

Real- Time Devices; 14 (INTRO TO SOFTWARE) 

Real- Time Reguirements, 14 (INTRO TO SOFTWARE) 

Rearranging, 309 (TEeO) 

REASSIGN command, 633 (COMMANDS) 

REASSIGN command, 79 (TIMESHARING) 

Reassigning devices, 79 (TIMESHARING) 

Reattaching jobs, 472, 635 (COMMANDS) 

REA ITA program, 635 (COMMANDS) 

Receiving output, 100 (BEGINNER'S BATCH) 

Index-28 



-829- INDEX 

INDEX (cont) 

Recording complaints, 573 (COMMANDS) 

Recovering from errors, 100, 131, 150 
(BEGINNER'S BATCH) 

Recovery, Error, 13 (INTRO TO SOFTWARE) 

REENTER, 277, 290 (TECO) 

REENTER command, 637 (COMMANDS) 

Reentrant Program, 11 (INTRO TO SOFlWARE) 

Reentry to TECO, 205 (INTRO TO TECO) 

/REL, 516, 541, 587 (COMMANDS) 

RELEASE, 29 (INTRO TO SOFlWARE) 

Release, 251, 253 (TECO) 

Relocatable binary, 68 (TIMESHARING) 

$RELOCATABLE card, 731 (COMMANDS) 

Remembered arguments, 454 (COMMANDS) 

Remembered arguments, 65 (TIMESHARING) 

Remote Communications, 15 (INTRO TO 
SOFlWARE) 

Remote DECtape control, 553 (COMMANDS) 

Remote Station, 15, 51 (lNTRO TO SOFlWARE) 

Remote users, 78 (TIMESHARING) 

/REMOVE, DISMOUNT, 526 (COMMANDS) 

/REMOVE, QUEUE, 496, 607, 614, 627, 699 
(COMMANDS) 

Removi ng fi Ie structure from search list, 525 
(COMMANDS) 

Rename, 249, 253 (TEeO) 

Rename backup file, 193 (INTRO TO TECO) 

RENAME command, 638 (COMMANDS) 

RENAME command, 67 (TIMESHARING) 

Rename (R) function, 408 (PI P) 

Renaming files, 638 (COMMANDS) 

with any protection, 616 
with standard protection, 609 

Replacing a line, 360 (LINED) 

/REPORT, 614, 627 (COMMANDS) 

Request Handler, Service, 9 (INTRO TO 
SOFlWARE) 

.REQUEUE command, 738 (COMMANDS) 

Required control cards, 105 (BEGINNER'S 
BATCH) 

RERUN, 19 (lNTRO TO SOFlWARE) 

Resident Operating System, 9, 25 (INTRO TO 
SOFlWARE) 

Resource Allocator, Sharable, 10 (INTRO TO 
SOFlWARE) 

RESOURCES command, 640 (COMMANDS) 

RESOURCES command, 85 (TIMESHARING) 

/RESTART, 627, 683 (COMMANDS) 

Restarting batch job after failure, 735 
(COMMANDS) 

RESTORE program, 641 (COMMANDS) 

RESTORE program, 22 (lNTRO TO SOFlWARE) 

Restoring files, 641 (COMMANDS) 

Restoring TECO to no prevailing case conversion, 
270, 284 (TECO) 

Restricted devices, 464 (COMMANDS) 

Retrieval Information, 29 (I NTRO TO SOFlW ARE) 

Return a numeric value, 281, 301 (TECO) 

Returning devices, 512, 525, 560, 579 
(COMMANDS) 

Returning devices (TIMESHARING) 

DEASSIGN, 79 
DISMOUNT, 79 
FINISH, 80 
KJOB, 72 

Returning to the monitor, 73 (TIMESHARING) 

RETURN key, 74 (TIMESHARING) 

Retyping the current line, 321 (TEeO) 

.REVIVE command, 739 (COMMANDS) 

Rewind, 252, 255 (TECO) 

REWIND command, 645 (COMMANDS) 

Rewinding MTA, DTA, 645 (COMMANDS) 

Rewinding and unloading MTA, 703 (COMMANDS) 

Ring of Buffers, 28 (lNTRO TO SOFlWARE) 

R LINED, 362 (LINED) 

Routines (lNTRO TO SOFlWARE) 

Cyclic, 25 

Index-29 



INDEX -830-

INDEX (cont) 

Routi nes (cont) 

I/O Service, 10 
Input/Output, 25, 28 

R TECO command, 247, 249, 250 (TECO) 

Rubout, 235, 236, 268, 306, 307, 319 (TECO) 

RUBOUT key, 446 (COMMANDS) 

RUBOUT key, 195 (lNTRO TO TECO) 

RUBOUT key, 74 (TIMESHARING) 

Rubout symbol ( @ ), 194 (INTRO TO TECO) 

/RUN, 521 (COMMANDS) 

RUN command, 646 (COMMANDS) 

RUN command, 83 (TIMESHARING) 

Running CDRSTK, 715 (COMMANDS) 

Running jobs, 99, 103, 137 (BEGINNER'S 
BATCH) 

ALGOL, 105 
BASIC, 109 
COBOL, 106 
FORTRAN, 106 
MACRO, 107 

Running programs, 463 (COMMANDS) 

Running programs, 61, 83 (TIMESHARING) 

Running time, 71 (TIMESHARING) 

RUNOFF Editor, 21, 41 (INTRO TO SOFlWARE) 

/RUNOFFSET, 521 (COMMANDS) 

Run Queues (INTRO TO SOFlWARE) 

High-Priority, 15 

S 

S (control-S) see Control commands (TECO) 

S (search buffer) command, 205, 206 (lNTRO TO 
TECO) 

S command, 362 (LINED) 

S command, 279, 281, 293 (TECO) 

S Switch, insert sequence numbers, 400 (PIP) 

Sample jobs, Batch, 743 (COMMANDS) 

SAVE command, 648, 795 (COMMANDS) 

SAVE command, 83 (TIMESHARING) 

Saving core images, 648, 677 (COMMANDS) 

Saving core images, 83 (TIMESHARING) 

Saving files, 475, 579 (COMMANDS) 

Saving previous command string, 296 (TECO) 

SCHED command, 650 (COMMANDS) 

Schedule bits, 650 (COMMANDS) 

Scheduler, 25, 26 (lNTRO TO SOFlWARE) 

SCRIPT program, 42 (lNTRO TO SOFlWARE) 

Search, 278, 279, 280 (TECO) 

Search command modifiers, 281 (TECO) 

Search commands, 205 (lNTRO TO TECO) 

Searching (TECO) 

and deleting strings, 279, 280 
and replacing strings, 279, 280 
in "either-case-mode", 285, 
in "exact-case-mode", 285, 286 
partly in "exact-case" and partly in 

"either-case" mode, 285 

Searching bock in the control file, 123, 130, 
146 (BEGINNER'S BATCH) 

Search i ng forward in the control fil e, 123, 130, 
147 (BEGINNER'S BATCH) 

Search list, 662 (COMMANDS) 

Search list, job, 30 (INTRO TO SOFTWARE) 

Search string, 278, 279, 281 (TECO) 

Secondary Memory, 11 (lNTRO TO SOFlWARE) 

Secondary Processor, 10 (lNTRO TO SOFlWARE) 

Segments, 11, 42 (INTRO TO SOFlWARE) 

; (semicolon) command, 289, 291 (TECO) 

SEND command, 651 (COMMANDS) 

SEND command, 80 (TIMESHARING) 

Sending messages, 466 (COMMANDS) 

GRIPE, 573 
PLEASE, 602 
SEND, 651 

Separator character, 286 (TEC 0) 

$SEQUENCE card, 105, 111 (BEGINNER'S 
BATCH) 

$SEQUENCE card, 732 (COMMANDS) 

Index-30 



-831- INDEX 

INDEX (cont) 

Sequence number, delete (N switch), 399 (PIP) 

Sequence number, ignore card (E switch), 399 (PIP) 

Sequence number and increment by one, 0 switch, 
insert, 400 (PI P) 

Sequence numbers, S-switch, insert, 400 (PIP) 

/SEQUENCE switch ($COBOL card), 114 
(BEGINNER'S BATCH) 

/SEQUENCE switch, 497, 607, 614, 627, 683, 700 
(COMMANDS) 

Service Request Handler, 9 (INTRO TO SOFTWARE) 

Service Routines (INTRO TO SOFTWARE) 

I/O, 10 

SET BLOCKSIZE command, 653 (COMMANDS) 

SET CDR command, 654 (COMMANDS) 

SET CPU command, 655 (COMMANDS) 

Set data mode switches, B, H and I, 405 (PI P) 

SET DENSITY command, 657 (COMMANDS) 

SET DSKPRI command, 658 (COMMANDS) 

SET HPQ command, 659 (COMMANDS) 

SET SPOOL command, 660 (COMMANDS) 

SETSRC program, 662 (COMMANDS) 

SETSRC program, 42 (lNTRO TO SOFTWARE) 

SET TIME command, 666 (COMMANDS) 

Setting (TECO) 

case flagging mode, 262 
EO value, 305 
TECO to a prevailing case conversion mode, 

269, 283 
version number of TECO, 305 

Setting up a card deck, 104 (BEGINNER'S 
BATCH) 

ALGOL, 105 
BASIC, 99 
COBOL, 106 
FORTRAN, 106 
MACRO, 107 

Setting up a job, 99 (BEGINNER'S BATCH) 

SET TTY command, 668 (COMMANDS) 

SET WATCH command, 672 (COMMANDS) 

SFD, 29, 42 (INTRO TO SOFTWARE) 

SFD (full directory path) indentifiers, 388 (PIP) 

Sharable Data Areas, 15 (INTRO TO SOFTWARE) 

Sharable Resource Allocator, 10 (lNTRO TO 
SOFTWARE) 

Sharing Devices, 11 (lNTRO TO SOFTWARE) 

Sharing Files, 11 (INTRO TO SOFTWARE) 

.SILENCE command, 739 (COMMANDS) 

/SINCE, 497, 607, 614, 627, 700 (COMMANDS) 

/SINGLE, 594 (COMMANDS) 

Single Mode, 15 (INTRO TO SOFTWARE) 

Skip, 273, 274 (TECO) 

SKIP command, 675 (COMMANDS) 

Skip one file, 252 (TECO) 

Skip one record, 252 (TECO) 

Skip to end-of-tape, 252 (TECO) 

/ (slash), 242 (TECO) 

/ (Slash) command, 323 (TECO) 

Slice, Time, 27 (INTRO TO SOFTWARE) 

/SLOW, 521 (COMMANDS) 

/SNOBOL, 482, 516, 541, 587 (COMMANDS) 

Software (INTRO TO SOFTWARE) 

Non-Resident, 10, 17 

Software, definition, 96 (BEGINNER'S BATCH) 

Software I/O Channels, 28 (INTRO TO SOFTWARE) 

/SORT, 522 (COMMANDS) 

SORT program, 19 (INTRO TO SOFTWARE) 

SOUP Editor, 21 (lNTRO TO SOFTWARE) 

Source (BEGINNER'S BATCH) 

deck, definition, 96 
language, definition, 96 
program, definition, 96 

Source file preparation, 465 (COMMANDS) 

CREATE, 498 
EDIT, 537 
MAKE, 592 
TECO, 693 

Source files (COMMANDS) 

listing, 584 
typing, 702 

Index-31 



INDEX -832-

INDEX (cont) 

Source Library Maintenance Program, 19 
(INTRO TO SOFlWARE) 

Space, 236, 241, 306 (TECO) 

Space symbol (6), 194 (lNTRO TO TECO) 

/SPACING, 614, 628 (COMMANDS) 

Spacing magnetic tape (COMMANDS) 

backwards, 474 
forward, 675 

Special characters, 446 (COMMANDS) 

Batch, 711 

Special characters, 235, 266, 292 (TECO) 

Special functions, 415 (PIP) 

Special "lower case" characters, 270, 285 (TECO) 

Special numeric values, 300 (TECO) 

Specification File, 29, 35 (INTRO TO SOFlWARE) 

Specifying amount (BEGINNER'S BATCH) 

cards to be punched, 126, 142 
core, 126, 142 
CPU time, 127, 142 
pages to be printed, 127, 142 
paper tape to be punched, 126, 142 
plotter time, 127, 143 

Specifying blocksize, 653 (COMMANDS) 

Specifying character to be recognized as a 
fatal error, 146 (BEGINNER'S BATCH) 

Specifying conventional COBOL format, 114 
(BEGINNER'S BATCH) 

Specifying disposal of a file, 143 (BEGINNER'S 
BA TCH) 

Specifying error recovery, 131, 150 
(BEGINNER'S BATCH) 

Specifying number for a job, 131 (BEGINNER'S 
BA TCH) 

Specifying parameters for a file, 143 (BEGINNER'S 
BA TCH) 

Splitting, 310 (TECO) 

Spoolers (INTRO TO SOFlWARE) 

Output, 11, 13 

Spooling, 618, 660, 712 (COMMANDS) 

card punch files, 493 
input queue, 680 

Spooli ng (cont) 

line printer files, 584, 610 
paper tape punch files, 696 
plotter files, 604 

Spool ing, 11, 42 (I NTRO TO SOFlW ARE) 

Spooling, 76, 81 (TIMESHARING) 

Spooling Programs, 13 (INTRO TO SOFlWARE) 

Square brackets, 382 ( PI P) 

[ I (square brackets), 297 (TECO) 

SSAVE command, 677, 795 (COMMANDS) 

STACKER, 709 (COMMANDS) 

STACKER, 12 (INTRO TO SOFlWARE) 

Stack mode, 445 (COMMANDS) 

Standard COBOL format, 114 (BEGINNER'S 
BATCH) 

Standard for DECsystem-1 0 I ine sequence 
numbers, 365 (LlNEDJ 

Standard Format, 19 (INTRO TO SOFlWARE) 

Standard optional functions, 393 (PI P) 

Standard PI P switches, 393 (PI P) 

Standard processor, 457 (COMMANDS) 

Standard processor, 68 (TIMESHARING) 

Standard protection, 616 (COMMANDS) 

renaming files to, 609 

/START, 497, 608, 614, 628, 684, 700 
(COMMANDS) 

START command, 679 (COMMANDS) 

START command, 84 (TIMESHARING) 

Starting core image file and loading, 632, 646 
(COMMANDS) 

Starting the program (COMMANDS) 

at alternate entry point, 637 
at beginning, 679 
at DDT, 510, 513 

Starting the program, 84 (TIMESHARING) 

Station (INTRO TO SOFlWARE) 

Logical, 16 
Remote, 15, 51 

Station of a device, 706 (COMMANDS) 

Index-32 



-833- INDEX 

INDEX (cont) 

Steps to enter a job to Batch, 100 
(BEGINNER'S BATCH) 

Stop Teletype output, 200 (INTRO TO :rECO) 

Stopping the job, 574 (COMMANDS) 

Storage Allocation File, 11, 30 (lNTRO TO 
SOFTWARE) 

Strings, command, 235, 240, 244 (TECO) 

/STRS, 497, 608, 614, 628, 700 (COMMANDS) 

Structures, 29 (I NTRO TO SOFTWARE) 

Subfile Directory, 29, 42 (INTRO TO SOFTWARE) 

Subfile Directory (SFD), 388 (PIP) 

Subjobs, 597 (COMMANDS) 

Subjobs, 23 (INTRO TO SOFTWARE) 

SUBMIT monitor command, 139 (BEGINNER'S 
BATCH) 

switches, 140 

SUBMIT monitor command, 680 (COMMANDS) 

Submitting a job, 99, 137, 139 (BEGINNER'S 
BATCH) 

examples, 144 

Submitting Batch jobs, 712 (COMMANDS) 

Subroutine, 244 (TECO) 

Subtraction, 242 (TECO) 

/SUMMARY, 522 (COMMANDS) 

Superseding, 30 (INTRO TO SOFTWARE) 

/SUPLSN (suppress line-sequence numbers) 
switch, 254 (TECO) 

Support Programs (INTRO TO SOFTWARE) 

Monitor, 23 

Suppressing listings (BEGINNER'S BATCH) 

ALGOL, 112 
FORTRAN, 124 
MACRO, 129 

Suppressing terminal output, 75 (TIMESHARING) 

/SUPPRESS:OFF switch (BEGINNER'S BATCH) 

$ALGOL card, 112 
$COBOL card, 114 
$DATA card, 116 
$DECK card, 120 
$FORTRAN card, 124 
$MACRO card, 128 

Index-33 

Swapper, 25, 27 (INTRO TO SOFTWARE) 

Swapping, 11 (INTRO TO SOFTWARE) 

Switch combinations, 413 (PIP) 

Switches, 393 (PIP) 

magnetic tape, 415, 416 
for setting density and parity 
parameters, 415 

Switches for line-sequence numbers, 254 (TECO) 

Switches in SUBMIT command, 140 (BEGINNER'S 
BATCH) 

Switch summary, 412 (PIP) 

Symbolic Language Programming, 17 (lNTRO TO 
SOFTWARE) 

Symbols, 236 (TECO) 

Symbols used in document, 193 (INTRO TO TECO) 

Syntax of command string, 194 (INTRO TO TECO) 

SYSDPY, 42 (lNTRO TO SOFTWARE) 

SYSTAT command, 686 (COMMANDS) 

SYSTAT command, 85 (TIMESHARING) 

SYSTAT program, 43 (INTRO TO SOFTWARE) 

System (INTRO TO SOFTWARE) 

Data Communications, 50 
Disk, 48 
Drum, 47 
File, 11, 29 
Magnetic Tape, 48 
Multiprogramming, 11, 26 
Operating, 9, 25 
Priority Interrupt, 14, 46 

System commands, 463 (COMMANDS) 

System information, 467 (COMMANDS) 

DAYTIME, 504 
RESOURCES, 640 
SCHED,650 
SYSTAT, 686 
VERSION, 704 
WHERE, 706 

System messages, 747 (COMMANDS) 

System program command (BEGINNER'S BATCH) 

card format, 104 
line format, 139 

System programs, 463 (COMMANDS) 



INDEX -834-

INDEX (cont) 

System queues, 618 (COMMANDS) 

System status, 686 (COMMANDS) 

System stcitus, 85 (TIMESHARING) 

T 

t T (control- T) see Control commands (TECO) 

T (type) command, 200 (INTRO TO TECO) 

T command, 260, 293 (TECO) 

T switch, delete trailing spaces, 402 (PIP) 

TAB, 236, 237 (TECO) 

TAB codes, 399 (PIP) 

Tab command, 266 (TECO) 

Tab symbol ( -I ), 194 (lNTRO TO TECO) 

Tab to space conversion, W-switch, 402 (PIP) 

Tag, 292 (TECO) 

/TAPE, 628, 700 (COMMANDS) 

TECO command, 693 (COMMANDS) 

TECO (initialize file for editing) command, 192 
(INTRO TO TECO) 

TECO command, 248, 249, 250, 253, 256, 308 
(TECO) 

TECO command, 65 (TIMESHARING) 

TECO filnam.ext command, 249 (TECO) 

TECO program, 592, 693 (COMMANDS) 

TECO program, 20, 43 (lNTRO TO SOFlWARE) 

TECO program, 62, 65 (TIMESHARING) 

Teletype, 231, 233 (TECO) 

Teletype output, stopping, 200 (INTRO TO TECO) 

Teletypes and Terminals, 49 (INTRO TO 
SOFlWARE) 

Temporary case conversion, 268, 283 (TECO) 

Temporary files, 454, 791 (COMMANDS) 

Temporary file, 253 (TECO) 

Temporary file, 65 (TIMESHARING) 

Temporary switch, 457 (COMMANDS) 

TENDMP program, 43 (INTRO TO SOFlWARE) 

Terminal, 59, 73 (TIMESHARING) 

Terminal I/O, 29 (INTRO TO SOFlWARE) 

Terminal properties, 668 (COMMANDS) 

Terminating commands, 74, 75 (TIMESHARING) 

Terminating input into a data file, 724 
(COMMANDS) 

Terminating I/O, 479 (COMMANDS) 

Terminating jobs, 560 (COMMANDS) 

KJOB, 579 

Termination of command string, 194 (lNTRO TO 
TECO) 

Terminator, 379 (PI P) 

Terminator, argument, 251 (TECO) 

Text argument, 240, 266, 278, 281, 292 (TECO) 

Text block movement, 243 (TECO) 

Text modification, 192 (INTRO TO TECO) 

Text string, 534 (COMMANDS) 

Text typeout, 200 (INTRO TO TECO) 

Textual arguments, 196 (lNTRO TO TECO) 

/TIME, 628 (COMMANDS) 

TIME command, 694 (COMMANDS) 

TIME command, 71 (TIMESHARING) 

Time of day, 301, 303 (TECO) 

Timesharing, 10 (lNTRO TO SOFlWARE) 

Time slice, 27 (lNTRO TO SOFlWARE) 

/TITLES, 522 (COMMANDS) 

TMPCOR (device TMP) error messages, 424 (PIP) 

Total running time, 694 (COMMANDS) 

/TPLOT switch (BEGINNER'S BATCH) 

$JOB card, 127 
SUBMIT command, 143 

/TPLOT switch, 629, 684 (COMMANDS) 

TPUNCH command, 696 (COMMANDS) 

Trace mode, 304 (TECO) 

Trailing spaces, 399 (PIP) 

Transaction file, 563 (COMMANDS) 

Transfer function, 394 (PI P) 

Transferring files, 486, 557 (COMMANDS) 

Index-34 



-835- INDEX 

INDEX (cont) 

Transfers (lNTRO TO SOFTWARE) 

Data, 27 

Transfer without X-switch (combine files), 398 (PI P) 

Translating (TECO) 

group of characters to lower case, 269, 283 
group of characters to upper case, 269, 283 
single characters to lower case, 269, 283 
single characters to upper case, 269, 283 

Translating programs, 67 (TIMESHARING) 

COMPILE, 67 

TTY command, 668 (COMMANDS) 

TTY used as an I/O device, 234 (TECO) 

Two-Pass Assembler, 17 (lNTRO TO SOFTWARE) 

Type-ahead technique, 446 (COMMANDS) 

TYPE command, 702 (COMMANDS) 

TYPE command, 66 (TIMESHARING) 

Type-in, 306 (TECO) 

Type-out, 260, 300 (TECO) 

Type-out commands, 260, 300 (TECO) 

Type-out mode, 262 (TECO) 

U command, 293, 295 (TECO) 

U switch, copy DECtape blocks 0, 1 and 2, 398 
( PIP) 

UFD, 29, 43 (INTRO TO SOFTWARE) 

UFD and SFD File protection codes, 392 (PIP) 

UFD-only identifiers, 388 (PI P) 

UMOUNT program 525, 554, 593 (COMMANDS) 

UMOUNT program, 43 (INTRO TO SOFTWARE) 

Unbuffered Data Modes, 27, 28 (lNTRO TO 
SOFTWARE) 

Unconditional branch, 292 (TECO) 

Underline, 236 (TECO) 

Underscoring, 377 (PIP) 

/UNIQUE, 629, 684 (COMMANDS) 

/UNITS, 522 (COMMANDS) 

Unload, 252 (TECO) 

UNLOAD command, 703 (COMMANDS) 

Unloading magnetic tape, 703 (COMMANDS) 

fUN PRESERVED, 497, 608, 614, 629, 700 
(COMMANDS) 

Typing amount of core assigned, 491 (COMMANDS) Unrestricted devices, 464, 471 (COMMANDS) 

Typing disk usage, 527 (COMMANDS) Up-arrow, 236 (TECO) 

Typing errors, 319 (TECO) 

Typing line over, 74 (TIMESHARING) 

Typing numeric value (TECO) 

in decimal, 300 
in octal, 300 

Typing quotas, 631 (COMMANDS) 

Typing running time, 694 (COMMANDS) 

Typing source files, 702 (COMMANDS) 

Typing source files, 66 (TIMESHARING) 

Typing system schedule, 650 (COMMANDS) 

Typographical error correction, 195 (INTRO TO 
TECO) 

U 

t U (control-U) see Control commands (TECO) 

tt (control up-arrow), 270, 285, 302 (TECO) 

Up-arrow, Batch, 711 (COMMANDS) 

Up-arrow-O, 242 (TECO) 

Up-arrow ( t ) symbol usage, 377 (PI P) 

Update, 253 (TECO) 

Update mode, FILCOM, 545 (COMMANDS) 

Updating, 30 (INTRO TO SOFTWARE) 

Updating REL files, 563 (COMMANDS) 

Upper case flagging, 262 (TECO) 

Use Bit, 28 (INTRO TO SOFTWARE) 

User directories, 65 (TIMESHARING) 

User File Directory, 29, 43 (lNTRO TO 
SOFTWARE) 

User Fi Ie Directory (UFD), 380 (PI P) 

User mode, 444 (COMMANDS) 

USER SET, 475 (COMMANDS) 

Uses of TECO, 262 (TECO) 

Index-35 



INDEX -836-

INDEX (cont) 

Utilities (INTRO TO SOFlWARE) 

CREF, 21 
DDT, 21 
File Backup, 22 
FILEX, 22 
LOADER,22 
PIP, 22 

Utilization, Core, 11 (INTRO TO SOFlWARE) 

UUO Handler, 25, 27 (INTRO TO SOFlWARE) 

UUOS, 25, 27 (INTRO TO SOFlWARE) 

v 
t V (control-V) see Control commands (TECO) 

V command, 293 (TECO) 

V switch, match angle brackets, 402 (PIP) 

/Vx, KJOB, 581 (COMMANDS) 

Values, obtaining (TECO) 

automatic typeout flag, 301 
case flag, 301 
end-of-file flag, 301 
error message flag, 301, 324 
search mode flag, 286 
typeout mode switch, 261 
version number flag, 301 

VERSION command, 704 (COMMANDS) 

Version number flag, obtaining the value, 301 
(TECO) 

Vertical tab, 236, 237 (TECO) 

Vestigial job data area, 797 (COMMANDS) 

/VID, 594 (COMMANDS) 

W 

t W (control-W) see Control commands (TECO) 

W command, 293 (TECO) 

W switch, convert tabs to spaces, 402 (PIP) 

;WENABL, 594 (COMMANDS) 

WHERE command, 706 (COMMANDS) 

;WIDTH switch (BEGINNER'S BATCH) 

$ALGOL card, 112 
$COBOL card, 113 
$DATA card, 116 
$DECK card, 120 
$FORTRAN card, 124 
$MACRO card, 128 

;WIDTH switch, 522 (COMMANDS) 

Wildcard characters, 386 (PI P) 

Wildcard construction, 452 (COMMANDS) 

;WLOCK, 595 (COMMANDS) 

;WORDS, 522 (COMMANDS) 

Writing and loading a Bootstrap loader, 488 
(COMMANDS) 

Writing complaints, 573 (COMMANDS) 

Writing conventions, 376 (PI P) 

Writing core-image files, 505, 529 (COMMANDS) 

Writing end of file, 538 (COMMANDS) 

X 

t X (control-X) see Control commands (TECO) 

X command, 295, 296 (TECO) 

X switch, copy files without combining, 394, 
404 (PIP) 

Y 

Y (yank) command, 197 (INTRO TO TECO) 

Y command, 249, 253, 256, 301 (TECO) 

Y switch, DECtape to Paper Tape (PIP) 

copy, 403 
errors, 422 

Yank command, 256 (TECO) 

Z 

t Z (control-Z) see Control commands (TECO) 

Z, 258, 267, 316 (TECO) 

/Z, KJOB, 581 (COMMANDS) 

Z switch, 411 (PIP) 

ZJ (move pointer to end) command, 198 (lNTRO 
TO TECO) 

ZJ command, 259 (TECO) 

ZERO command, 707 (COMMANDS) 

Zero-compression, 795 (COMMANDS) 

Zeroing DECtapes, 488 (COMMANDS) 

Index-36 



READER'S COMMENTS 
DECsystem-lO 
USERS HANDBOOK 
DEC-IO-NGZB-D 

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publi­
cations. To do this effectively we need user feedback: your critical evaluation of this document. Please give 
specific page and line references when appropriate. 

ERRORS NOTED IN THIS PUBLICATION: 

SUGGESTIONS FOR IMPROVEMENT OF THIS PUBLICATION: 

DEC also strives to keep its customers informed about current DEC software and publications. Thus, the follow 
ing periodically distributed publications are available upon request. Please check the publication(s) desired. 

o PDP-IO User's Bookshelf, a bibliography of current programming documents. 

o Program Library Price List, a list of available software documents and programs. 

Name _______________________________________ ___ Date 

Organization 

Street ___________________________________________________________________ __ 

City ________________ _ State _______________________ Zip Code ______ _ 



----------~~-----------

- - - - - - - DoNotTear-FoldHereandStaple - - - - - - - - -

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Digital Equipment Corporation 
Software Information Services 
146 Main Street 
Maynard, Massachusetts 01754 

FIRST CLASS 
PERMIT NO. 33 

MAYNARD, MASS. 



DIGITAL EQUIPMENT CORPORATION mD~DDmD WORLD-WIDE SALES AND SERVICE 

MAIN OFFICE AND PLANT 
146 Main Sirut, Maynard, Ma.sechuselta. U.S.A. 01754· Te/ephone~ From Metropolllen Boslon 646-8600· Elsewhere: (617}897-5'" 

TWX; 710-347-c212 Ceb/e: DIGITAL MAYN TeJex; 9+8457 

NORTHEAST 
REGIONAL OFFICE 
275 Wyman Street, Waltham, Massachueetts 02154 
Telephone: {617}-890-00201033O TWX: 710-32+0019 
WALTHAM 
15 Lunda Street. Weltham, Maaaachusetta 02154 
Telephone: (617)-891-1030 TWX: 710-324-6919 
CAMBRIDGE/BOSTON 
899 Main Street. Cembrldge. Maseachueetts 02139 
Telephone (617).-191-6130 TWX: 710·320-1167 
ROCHESTER 
130 AlIens Creek Rosd, Rocheeter. New York 14618 
Telephone 016)-481-1700 TWX' 710-253-3078 
CONNECTICUT 
240 Pomeroy Ave., Meriden Conn 06450 
Telephone (203)·237·8-44117~ TWX- 710·-461·0054 

MID-ATLANTIC - SOUTHEAST 
REGIONAL OFFICE 
U S Route 1. Princeton, New Jersey 06540 
Telephone: (6Cl9)-452.2Q.iO TWX 510·665-2338 
NEW YORK 
95 Cedar Lane, Englewood. New Jersey 01631 
Telephone: (201)·871-.. 9&4, (212)·594 6955. (212)·136-~1 
TWX 710·991-9721 
NEW JERSEY 
1259 Route 48. ParsIppany. New Jer.ey 070~ 
Telephone. (201)·335-3300 TWX 710·961·8319 
PRINCETON 
U.S. Route 1 
Princeton. New Jersey 08540 
Telephone: (609) "52-29-40 TWX: 510-685-2338 
LONG ISLAND 
I Huntington Quadrangle 
Suite lS01 Huntington Stet Ion. New York 117-46 
Telephone: (516)-694-4131, (212).895-8095 
PHILADELPHIA 
StaUon Squsre Three, Peoll. Pennsylvanle 19301 
Telephone: (215)·&47-<4900/4410 Telex; 510-668·8395 
WASHINGTON 
Executive BuildIng 
6811 Kenilworth Ave .. Riverdale. Maryland 20840 
Telephone: (:J)1).779·1600/7S2-8797 TWX, 710-826·9662 
DURHAM/CHAPEL HILL 
2704 Chepel Hili Boulevard 
Durhllm. North Cerollne 27707 
Telephone: (919)·0489·3347 TWX S10-92H1912 
ORLANDO 

UNITED STATES 
MID-ATLANTIC - SOUTHEAST (conL) 
KNOXVILLE 
6311 Klngaton Pike, Suite 21E 
Knoxville, Tennessee 37919 
Telephone: (615)·588-6571 TWX: 810-583-0123 

CENTRAL 
REGIONAL OFFICE 
1850 Frontage Road, Northbrook, Illinois 60062 
Telephone: (312}-"98-25OO TW)(' 910-686-0655 

PITTSBURGH 
0400 Penn Center Boulevard 
Pittsburgh, Pennsylvsnta 15235 
Telephone: ("'2)-243-9«>4 TWX,710·797-3657 

CHICAGO 
1850 Frontsge ROAd. Northbrook. IIl1noll 60062 
Telephone, (312)-498-2500 TWX: 910-686-0655 

ANN ARBOR 
230 Huron View Boulevard. Ann Arbor. Mlchlgen 048103 
Telephone: (313)·761·1150 TWX,810-223-0053 

INDIANAPOLIS 
21 Beechwey Drive - Suite G 
Indlenapolls. Indlane 4622" 
Telephone: (317)·243-6341 TWX 810·341·a...36 

MINNEAPOLIS 
Suite 111, 0030 Cedar Avenue South. 
Minneapolis. Minnesota 55420 
Telephone: (612}-854-6562-3-4·5 TWK 910-576-2816 

CLEVELAND 
Psrk Hili Bldg .. 35104 Euclid Ave 
Willoughby. Ohio 44094 
Telephone. (216)-!M6-84&4 TWX 810-"27·2608 

ST. LOUIS 
Suite 110. 115 Progress Pky. Merylend Heights. 
Mlssourl~3 

Telephone: (31 .. )-878--4310 TWX, 910-764--0031 

DAYTON 
3101 Kettering Blvd . Dayton, Ohio "5-439 
Telephone (513).299·7377 TWX, 810·"59·1876 

MILWAUKEE 
8531 W. Cepltol Drive. Milwaukee, Wllconsln 53222 
Telephone: (-114)-463·9110 TWX, 910-262·1199 

DALLAS 
Suite 1:J), 7001 Lake Ellenor Drive, Orlendo, Florida 32809 8855 North Stemmons Freeway 
Telephone: (305)-851-4450 TWX· 810-850-0180 Dellas. Tuas 75247 
ATLANTA Telephone (214)·638·4880 TWX 910·961-4000 

2815 Cleervlew Piece. Suite 100. HOUSTON 
Atlanta. Georgie 30340 3417 Milam Street. Suite A. Houaton. TUlIs 77002 
Telephone: (404)-451·37341373513736 TWX: 810-757-4223 Telephone (713)·524-2961 TWX: 910·881-1851 

EUROPEAN HEADQUARTERS 
Dlg1lal Equipment Corporation International Europe 
61 Route de l'Alre 
1211 Geneva 26. SWitzerland 
Telephone 427950 Telex 22 683 

FRANCE 
EquIpment Digital S AR.L 
PARIS 
327 Rue de Charenton. 75 Parle 1211W1. France 
Telaphone: 344-76-07 Telex: 21339 
GRENOBLE 
10 rue Auguate Ravler. F-38 Grenoble, France 
Te lephone: 06) fIT 87 32 Telex~ 32 882 F (Code 212) 

GERMANY 
Digital Equipment GmbH 

MUNICH 
8 Muenchen 13. Wellenstelnplatz 2 
Telephone: 0811-35031 Telex: 524-226 
COLOGNE 
5 Koeln, BIsmercketr88ae 7, 
Telephone: 0221-522181 Telex 888-2269 
Telegram Flip Chip Keeln 

FRANKFURT 
6078 Neu.lsenburg 2 
Am Forsthaus Gravenbruch 5-7 
Te lephone: 06102-5526 Telex, 41·7~ 

HANNOVER 
3 Hennover, Podblelsklalraase 102 
Telephone: 0511-69-70-95 Telex: 922·952 

AUSTRIA 
DigItal Equipment Corporetion Geemb.H 
VIENNA 
Marlahllferstreaae 138, 1150 Vienna 15, Aostrla 
Telephone: 85 51 96 

UNITED KINGDOM 
Dlgltsl Equipment Co .• ltd 

UK HEADQUARTERS 
Arkwright Road. Reading, Berka 
Telephone' 0734-583555 Talex, 84327 
READING 
The Evening Poet Building. Tena Road 
Reeding. Berks. 
BIRMINGHAM 
29/31, Birmingham Roed. Sutton Coldfleld. Warwlcks 
Telephone: (~) 21-355 5501 Telex: 337060 
MANCHESTER 
13 Upper PreCinct, Walkden, Manchester M28 SAZ 
Telephone: 061-790-&411 Telex: 668666 
LONDON 
Bilton House. Uxbridge Rosd, Ellllng, London W.5. 
Telephone' 01·579-2334 Telex: 22371 
EDINBURGH 
Shiel House, Cralg.hlll, lIvlngaton, 
West Lothian. Scotland 
Telephone: 32705 / Telex: 727113 

NETHERLANDS 
THE HAGUE 
Dlgltel Equipment N.V. 
Sir Winston Churchillisen 370 
RIJawlJk/The Hague, Netherlande 
Telephone: 070-995-160 Telex; 32533 

BELGIUM 
BRUSSELS 
Digital Equipment NV./SA 
100 Rue D'Arlon 
1040 Brussels, Belgium 
Talephone,02-139256 Telex, 25297 

INTERNATIONAL 
SWEDEN 
Digital Equipment Aktlebolag 

STOCKHOLM 
Vretenvagen 2, S-171 54 Solna, Sweden 
Telephone, 98 1390 Telex, 17050 
Ceble; Digital Stockholm 

NORWAY 
Digital EquIpment 
OSLO 
c l o Flrme Servu:e 
Waldenmarthraneagate 64-B-88 
Oslo 1. Norway 
Telephone 371985.3702 30 Telex 166 .. 3 

DENMARK 
Digital Equipment Corporetion 

COPENHAGEN 
Vesterbrogede 1--40. 1620 Copenhagen V 

SWITZERLAND 
Digital Equipment Corporetlon SA. 

GENEVA 
81 Route de I"Aire 
1211 Geneva 26. SWitzerland 
Telephone .. 27950 Telex 2268J 
ZURICH 
Scheuchzerstraase 21 
CH·fI)06 Zunch. SWitzerland 
Telephone 01 /60 35 66 Telex 56059 

ITALY 
Digital Equipment S.p.A 

MILAN 
Corao Gerlbaldl 49. 20121 Mlhmo, Italy 
Telephone: 872 748 694 394 Telex: 33815 

SPAIN 
MADRID 
Atelo Ingenleroa S.A., Enrlgue Larreta 12. Medrld 16 
Telephone: 2153543 I Telex: 27249 

BARCELONA 

Atalo Ingenleros S,A., Ganduxer 76, Barcelona 6 
Telephone: 221 44 66 
Dlgltsl Equipment CorporatIon ltd. 

AUSTRALIA 
Digital Equipment Auatralla Pty. ltd. 

SYDNEY 
P,O. Box 491. Crows Nest 
N.S.W, Austrelle 3065 
Telephone: -439-2566 Talex: AA2071t1J 
Ceble: Digital, Sydney 

MELBOURNE 

60 Psrk Street. South Melbourna . Victoria, 3205 
Telephone: 696-142 Telex, AA40616 

PERTH 

643 Murray Street 
West Perth. Western Australle 8005 
Telephone: 214-993 Telex: AA92140 

BRISBANE 

139 Merlvele Street. South Brlsbsne 
Queensland. Australia .. 101 
Telephone ~7 Telex: AA40616 

ADELAIDE 

6 Montrole Avenue 
Norwood, South Austrella !i067 
Telephone: 631-339 Telex: AAB2825 

CENTRAL (COnL) 
NEW ORLEANS 
3100 Rldgelake Drive, Suite 108 
Metairie. LOUISiana 70002 
Telephone_ 504-837-0257 

WEST 
REGIONAL OFFICE 
310 Soquel Way, Sunnyvale, California 9«l86 
Telephone, {«l8)-735-9200 
ANAHEIM 
801 E. Ball Aoad, Anaheim, California 92805 
Telephone; (7'-4}-776-6932/87Xl TWX: 91()'S91·'189 
WEST LOS ANGELES 
1510 Cotner Avenue. loa Angel •• , Callfoma 90025 
Telephone: (213)-479-379114318 TWX: 91()..342-6Q99 
SAN DIEGO 
3«4 Hancock Street 
Sen Otego. California 92110 
Telephone: (71-4)-298-0591. 0593 TWX 910-335-1230 
SAN FRANCISCO 
1400 Terra Bella 
Mountain View, California 94040 
Telephone: (-415}964-6200 TWX: 910-3~12fi6 
PALO ALTO 
560 San AntoniO Rd . Palo Alto. California ~306 
Telephone; (-4'5}gss.6200 TWX: 910-373-1266 
OAKLAND 
7850 Edgewater Drive 
Oakland, California 94621 
Telephone: (04'5)·635·5453!7B:lJ TWX: 910-366-7238 
ALBUQUERQUE 
6:l13 Indian School Road, NE 
Albuquerque, N,M 87110 
Telephone: (505)-296-~11/~28 TWX: 910-989-0614 
DENVER 
2305 Soulh Coloredo Blvd .• Suite #5 
Denver, Colorado EKl222 
Telephone: (303)-757-3332/758-1656/758-1659 
TWX: 910-931-2650 
SEATTLE 
1521 13lth N.E, Bellevue, WashIngton 9000S 
Telephone: (206)-4~/455-5404 TWX: 910--+43-2308 
SA/.T LAKE CITY 
431 South 3rd Eeet. Sell Lake City. Utah 84111 
Telephone: (801)-328-9838 TWX: 910-925-5634 
PHOENIX 
4358 Eaat Broadway Road 
Phoenix. Arizona 8S04O 
Telephone: (602) 268-3488 TWX: 910-95()....4691 
PORTLAND 
Suite 168 
5319 S.W. Cenyon Court, Port lend, Ore, 97221 
Telephone: (503) 297-3761/3765 

NEW ZEALAND 
Dlglta~ Equipment CorporatIon ltd. 
AUCKLAND 
Hilton Houae. ~ Queen Street. Box 2471 A. 
Aucklend. New Zealand 
Telephone, 75-533 

CANADA 
Drgltel Equipment of Canade, Ltd 

CANADIAN HEADQUARTERS 
150 Rosemond Street. Carleton Place. Ontario 
Telephone (613)-257-2615 TWX: 610·561·1651 

OTTAWA 
120 Holland Street. Ottawa 3. OntarIo KIV OX7 
Telephone. (613)·725-2193 TWX, 610-562·8907 
TORONTO 
230 Lakeshore Road East. Port Credit. OntarIo 
Telephone: (416)-274--12"1 TWX, 61~92-4306 
MONTREAL 
9675 Cote de lIease Aoed 
Dorval. Quebec, Canada 160 
Telephone 514--638·9393 TWX 6\0· .. 22-.. ,24 

EDMONTON 
5531 - 103 Street 
Edmonton. Alberts, Canada 
Telephone: (0403)-4304-9333 TWX 610-831-22-48 

VANCOUVER 
Digital Equipment of Canede. Ltd 
2210 West 12th Avenue 
Vancouver 9. British Columbia. Caneda 
Telephone: (004)·736-5616 TWX, 6\0·929-2008 

ARGENTINA 
BUENOS AIRES 
Coealn S.A. 
Vlrrey del PI no 4071. Buenos AIres 
Telephone: 52-3185 Telex, 012·2284 

VENEZUELA 
CARACAS 
Coasln SA (Salea only) 
Apartedo 50939 
Salana Grande No.1. Caracas 
Telephone: 72·9637 Ceble: INSTRUVEN 

CHILE 
SANTIAGO 
Coesln Chile Ltda. (asles only) 
Casille 14588, Correo 15. Senti ego 
Telephone, 396713 Ceble: COACHIL 

IAPAN 
TOKYO 
Alkel Trading Co .• ltd. (aales only) 
Kozeto·Kalkan Bldg. 
No. 18--1", Nishlshlmbaehl '·chome 
Mlnato·Ku, Tokyo, Japen 
Telephone, 5915246 Telex, 781-4208 
Digital Equipment Corporation International 
Kowa BUilding No. 17, Second Floor 
2·7 Nishl·Azebu I·Chome 
Mlnato·Ku. Tokyo, Japan 
Telephone, 404-589416 Telex: TK-&428 

PHILIPPINES 
Stenford Computer Corporation 
P.O Box 1608 
416 Dasmarlnas St .• Manila 
Telephone: 49-68-96 Telex: 742-0352 

INDIA 
H.S. Sonawela Mg Director (Salea Only) 
HINDITRON SERVICES PUT LTD. 
00/ A Nepean Sea Road 
Bombay, India 




	A000.tif
	A100.tif
	A200.tif
	A300.tif
	A400.tif
	A500.tif
	A600.tif
	A700.tif
	A800.tif

