dlilglilt]all

decsUscenmio

users
handbook

second edition

introduction reference

software teco
timesharing lined
beginners batch pip

teco (intro) commands

handbook series



introduction

1) Introduction to DECsystem-10 Software .................... 1
2) Getting Started with Timesharing ................... ... .. 53
3) Beginners Guide to Multiprogram Batch .................... 87
4) Introductionto TECO ... 187
reference

5) TECO, Text Editor and Corrector Program ................ 221
6) LINED, Line Editor for Disk Files .............................. 355
7) PIP, Peripheral Interchange Program ........................ 367
8) DECsystem-10 Operating System Commands ............ 429



dlilgliltlall

decsystenio

- users
handbook

second edition

Additional copies of this handbook may be ordered from: -
Program Library, DEC, Maynard, Mass. 01754. Order code: DEC-10-NGZB-D.

handbook series



First Printing November 1971
Second Printing (Rev.) July 1972

The material in this- handbook is for information purposes and is subject to
change without notice.

Copyright © 1969, 1970, 1971, 1972 by
Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts

DEC PDP
FLIP CHIP FOCAL
DIGITAL

COMPUTER LAB



introduction |

software N

timesharing [N
beginners batch [l

teco (intro) [N

reference







NOTICE

For the reader’s convenience:

1)

2)

3)

4)

5)

Consecutive page numbers have been added to the top center of each page in the handbook;
these numbers have the form —nn..— (for example —25— ) and are supplied in addition to
the standard document numbers printed at the bottom center of each page.

The appropriate document name has been added to the top outside corner of each page of
the handbook.

A global index comprised of the merged and alphabetized entries of all of the indexes which
were previously part of the documents conta.ined by the handbook is supplied at the end of
the handbook. The global index replaces the individual document indexes.

The entries of the global index and the Table of Contents for each document reference the
consecutive page numbers located at the top center of each page.

Black locator tabs are printed on the outside edge of the first ten pages of each document
in the handbook. A tab locator page on which each set of tabs is identified by the name of
the document which they represent is supplied at the front of the handbook.






FOREWORD

This handbook is an introduction to the DECsystem-10. It is intended to be a guide to using the system and, as
such, should be read before advancing to more detailed documentation. The collection of documents in this
handbook is taken from the DECsystem-10 SOFTWARE NOTEBOOKS (DEC-10-SYZB-D) and in all cases, the
documents are reprinted without change.

The documents in this handbook reflect the following versions of the software:

Monitor 5.05
TECO version 23
LINED version 13A
PIP version 32

Support program version numbers are specified on page 431 of this handbook.

The DECsystem-10 User’s Handbook is one in the set of DECsystem-10 handbooks. The other handbooks com-
prising this series are:

(1) The COBOL Language Handbook and its supplement,
(2) The Mathematical Languages Handbook, which includes FORTRAN, BASIC, and ALGOL,

(3) The Assembly Language Handbook, which includes the System Reference Manual, MACRO,
DECsystem-10 Monitor Calls, LOADER, DDT, CREF, FILCOM, FUDGE2, and GLOB.

These handbooks may also be ordered from the Program Library, Digital Equipment Corporation.

vii






[NCrocUcCion







The DECsystem-10 is more than a processor and its as-
sociated peripheral devices. Because it is a system,
there are many parts, or components, working together
to achieve a goal in a manner that is both convenient for
the user of the system and advantageous for the oper-
ation of the system. It is a machine designed to be utili-
zed concurrently by many users who wish to perform
various operations. There are three major components
of the computing system, as shown in Figure 1-1: the
actual machine, or hardware; the operating system, or
monitor; and the languages and utilities, or non-resident
software.

| {xa10 or ko] 1/0 DEVICES e ARESHINE
' SHAREABIII SERVICE 1/0 OPERATING SYSTEM
RESOURCE REQUEST SERVICE
l ALLOCATOR HANDLER ROUTINES | (SOFTWARE)
I USER PROGRAMS —I MEDIA
COMPILERS DG METHODS OF
I ASSEMBLERS TTY INPUT INPU
)
I DEBUGGING AIDS | | NON-RESIDENT
SUPPORT PRC I SOFTWARE

10-0820

Figure 1-1 DECsystem-10 Components

1.1 DECsystem-10 HARDWARE

The DECsystem-10 hardware consists of one or two cen-
tral processors and various memories and input/output
devices connected to these processors. There are five
different systems included in the DECsystem-10 family,

1-1

INTRO TO SOFTWARE

CHAPTER 1
THE DECsystem-10

each system being distinguished by the hardware associ-
ated with the central processor. By adding hardware to
an individual system, additional performance is
achieved. However when adding hardware to expand
from a small system to a larger system, no software
changes are required. A single operating system and
command control language can be used for all con-
figurations of the DECsystem-10.

1.2 DECsystem-10 OPERATING SYSTEM

The DECsystem-10 hardware has numerous
capabilities: it is powerful, fast, and highly sophis-
ticated. Because of its complexity, this machine is not
usually directly manipulated by its users. The users
communicate with an intermediary, the operating
system, in order to direct their problems to the actual
machine and to receive solutions back. With many users
on the system, this second component of the
DECsystem-10 must also keep track of what each user
does and the devices and system resources that each
user accesses. Though the operating system cannot be
seen like the actual machine, the action of the operating
system is the most important and noticeable part of the
system to each user. It is true that the operating system
can do nothing for the user if the actual machine does not
exist, but the user normally does not think of this. If the
operating system accomplishes for him what he wants
the actual machine to do,he is satisfied. Therefore, it is
important to the user that he can depend on the same op-
erating system regardless of the hardware that com-
poses the actual machine.

The operating system is always resident in the core
memory of the actual machine and is composed of three
parts (refer to Figure 1-1). Because there are so many
services that can be obtained from the operating
system, including the allocation of core memory,
processor time, and devices of the actual machine, one
part, the service request handler, is responsible for
accepting requests for these services. The service




INTRO TO SOFTWARE

request handler passes the requests to another part, the
sharable resource allocator, which is responsible for
allocating the services requested. If the requested ser-
vice is for use of a device, the I/0 service routines are
then notified to carry out the user’s request.

1.3 DECsystem-10 NON-RESIDENT SOFTWARE

The third component of the DECsystem-10 is the non-
resident software, those programs necessary for the
varied operation of the computing system. This software
includes the compilers, assemblers, editors, debugging
programs, and operating system support programs.
These software programs reside on a high-speed mass
storage device of the actual machine and are brought
into memory when needed by a user. By utilizing the non-
resident software, the user of the computing system can
create programs, transfer them from one device to an-
other, compile, edit, execute, and debug them, and then
receive the results of execution on any specified device.

1.4 DECsystem-10 MULTIPROCESSING

The DECsystem-10 can be a single-processor system or
a dual-processor system, composed of a primary
processoranda secondary processor. Each processor in
the dual-processor system runs user programs, sched-
ules itself, and fields instruction traps. In addition to
these tasks, the primary processor also has control of all
the input /output devices and processes all requests to
the operating system. The primary processor completes
any job that the secondary processor could not finish
because of a request to the operating system. The two
processors are connected to the same memory and exe-
cute the same copy of the operating system, thereby
saving core memory over a multiprocessing system in
which each processor has its own copy. The primary
objective in the DECsystem-10 dual-processor
environment is to provide more processing power than
that found in the single-processor DECsystem-10. This
means that with the addition of the second processor,
more users can run at the same time. Or, if more users
are not allowed on the system, the addition of the second
processor reduces the elapsed time required to com-
" plete the processing of most programs.

1.5 MULTIMODE COMPUTING

The DECsystem-10 is designed for the concurrent oper-
ations of timesharing, multiprogram batch, real-time,
and remote communications in either single or dual-
processor systems. In providing these multifunction
capabilities, the DECsystem-10 services interactive
users, operates local and remote batch stations, and per-
forms data acquisition and control functions for on-line

-10 -

laboratories and other real-time projects. By
dynamically adjusting system operation, the
DECsystem-10 provides many features for each class of
user and is therefore able to meet a large variety of com-
putational requirements.

1.5.1 Timesharing

Timesharing takes maximum advantage of the
capabilities of the computing system by allowing many
independent users to share the facilities of the
DECsystem-10 simultaneously. Because of the inter-
active, conversational, rapid-response nature of time-
sharing, a wide range of tasks — from solving simple
mathematical problems to implementing complete and
complex information gathering and processing
networks — can be performed by the user. The number
of users on the system at any one time depends on the
system configuration and the total computing load on the
system. DECsystem-10 timesharing is designed to allow
for up to 512 active terminals. These terminals include
CRTs and other terminals which operate at speeds of 110
to 2400 baud. Terminal users can be located at the com-
puter center or at remote locations connected to the
computer center by communication lines.

1.5.1.1 Command Control Language — By allowing
resources to be shared among users, the timesharing
environment utilizes processor time and system
resources that are wasted in single-user systems. Users
are not restricted to a small set of system resources, but
instead are provided with the full variety of facilities. By
means of his terminal, the user has on-line access to
most of the system’s features. This on-line access is
available through the operating system command con-
trol language, which is. the means by which the time-
sharing user communicates with the computing system.

Through the command language, the user controls the
running of his task, or job, to achieve the results he
desires. He can create, edit, and delete his files; start,
suspend, and terminate his job; compile, execute, and
debug his program. In addition, since
multiprogramming batch software accepts the same
command language as the timesharing software, any
user can enter his program into the batch run queue.
Thus, any timesharing terminal can act as a remote job
entry terminal.

1.5.1.2 Peripheral Devices — With the command lan-
guage, the user can also request assignment of any per-
ipheral device, e.g., magnetic tape, DECtape, and
private disk pack, for his own exclusive use. When the
request for assignment is received, the operating
system verifies that the device is available to this user,



-1 -

and the user is granted its private use until he
relinquishes it. In this way, the user can also have com-
plete control of devices such as card readers and
punches, paper-tape readers and punches, and line print-
ers.

1.5.1.3 Spooling — When private assignment of a slow-
speed device (e.g., card punch, line printer, paper-tape
punch, and plotter) is not required, the user can employ
the spooling programs of the operating system. Spooling
is a method by which output to a slow-speed device is
placed on a high-speed disk or drum. This technique pre-
vents the user from using unnecessary time and space in
core while waiting for either a device to become avail-
able or output to be completed. In addition, the device is
managed to a better degree because the users cannot tie
it up indefinitely, and the demand fluctuations ex-
perienced by these devices are equalized.

1.5.1.4 Mass Storage File System — Mass storage
devices, such as disks and drums, cannot be requested
for a user’s exclusive use, but must be shared among all
users. Because many users share these devices, the op-
erating system must ensure independence among the
users; one user’s actions must not affect the activities of
another unless the users desire to work together. To
guarantee such independence, the operating system
provides a file system for disks, disk packs, and drums.
Each user’s data is organized into groups of 128-word
blocks called files. The user gives a name to each of his
files, and the list of these names is kept by the operating
system for each user. The operating system is then re-
sponsible for protecting each user’s file storage from in-
trusion by unauthorized users.

In addition to allowing independent file storage for
users, the operating system permits sharing of files
among individual users. For example, programmers
working on the same project can share the same data in
order to complete a project without duplication of effort.
The operating system lets the user specify protection
rights, or codes, for his files. These codes designate if
other users may read the file, and after access, if the
files can be modified in any way.

The user of the DECsystem-10 is not required to pre-
allocate file storage; the operating system allocates and
deallocates the file storage space dynamically on
demand. Not only is this convenient for the user because
he does not have to worry about allocation when he is
creating files, but this feature also conserves storage by
preventing large portions of storage from being unnec-
essarily tied up.

INTRO TO SOFTWARE

1.5.1.5 Core Utilization — The DECsystem-10 is a
multiprogramming system; i.e., it allows multiple inde-
pendent user programs to reside simultaneously in core
and to run concurrently. This technique of sharing core
and processor time enhances the efficient operation of
the system by switching the processor from a program
that is temporarily stopped because of I/0 transmission
to a program that is executable. When core and the
processor are shared in this manner, each user’s
program has a memory area distinct from the area of
other users. Any attempt to read or change information
outside of the area a user can access immediately stops
the program and notifies the operating system.

Because available core can contain only a finite number
of programs at any one time, the computing system
employs a secondary memory, usually disk or drum, to
increase the number of users serviced. User programs
exist on the secondary memory and move into core for

. execution. Programs in core exchange places with the

programs being transferred from secondary memory
for maximum use of available core. Because the trans-
ferring, or swapping, takes place directly between core
and the secondary memory, the central processor can be
operating on a user program in one part of core while
swapping is taking place in another. This independent
overlapped operation greatly improves system utili-
zation by increasing the number of users that can be
accommodated at the same time.

To further increase the utilization of core, the operating
system allows the users to share the same copy of a
program or data segment. This prevents the excessive
core usage that results when a program is duplicated for
several users. A program that can be shared is called a
reentrant program and is divided into two parts or
segments. One segment contains the code that is not

- modified during execution (e.g., compilers and assem-

blers) and can be used by any number of users. The other
segment contains the user’s code and data that are de-
veloped during the compiling process. The operating
system invokes protection for shared segments to guar-
antee that they are not accidentally modified.

1.5.1.6 General-Purpose Timesharing — Timesharing on
the DECsystem-10 is general purpose; i.e., the system is
designed in such a way that the command language,
input /output processing, file structures, and job sched-
uling are independent of the programming language
being used. In addition, standard software interfaces
make it easy for the user to develop his own special lan-
guages or systems. This general purpose approach is
demonstrated by the many programming languages
implemented by DECsystem-10 customers.




INTRO TO SOFTWARE

1.5.2 Multiprogram Batch

Multiprogram batch software enables the DECsystem-
10 to execute up to 14 batch jobs concurrently with
timesharing jobs. Just as the timesharing user com-
municates with the system by way of his terminal, the
batch user normally communicates by way of the card
reader. (However, he can enter his job from an inter-
active terminal.) Unlike the timesharing user, the
batch user can punch his job on cards, insert a few
appropriate control cards, and leave his job for an op-
erator to run. In addition, the user can debug his

TTY INPUT
USER
PROGRAM

LOCAL
CARD
INPUT

CARD
STACKER

QUEUE
MANAGER
BATCH
INPOT
QUEUE
\ \\
BATCH
CONTROLLER
pTP
ouTPUT
QUEUE
LPT
OUTPUT
QUEUE
cop
OUTPUT
QUEUE
PLT
OUTPUT
QUEUE
GUTPUT
SPOOLERS
PTPSPL LPTSPL
COPSPL.PLTSPL
LINE
P e € PRINTER

-12 -

program in the timesharing environment and then run it
in batch mode without any additional coding.

1.5.2.1 Multiprogram Batch Components — The
multiprogram batch software consists of a series of
programs: the Stacker, CDRSTK; the batch controller,
BATCON; the queue manager, QMANGR; and the
output spoolers, LPTSPL, CDPSPL, PTPSPL, and
PLTSPL (see Figure 1-2). The stacker is responsible for
reading the input from the input device and for entering
the job into the batch controller’s input queue. Although

REMOTE
CARD
INPUT

CARD
STACKER

(UP TO 14 JOBS)

i

USER JOB

USER JOB

PLOTTER ‘

10-0819

Figure 1-2 Programs in the Batch System



-13 -

the Stacker is oriented toward card reader input, it
allows jobs to be entered from any input device that
supports ASCII code. The input information is then sepa-
rated according to the control commands and placed
into disk files, either user data files or the batch con-
troller’s control file, for subsequent processing. In addi-
tion, the Stacker creates the job’s log file and enters a
report of its processing of the job, along with a recond of
any operator intervention during its processing. The log
file is part of the standard output that the user receives
when his job terminates.

After the Stacker reads the end-of-file and closes the
disk files, it makes an entry in the batch controller’s
input queue. The batch controller processes batch jobs
by reading the entries in its queue. The control file
created by the Stacker is read by the batch controller,
and data and non-resident software commands are
passed directly to the user’s job. Operating system com-
mands are detected by the batch controller and passed
to the operating system for action. Most operating-
system and non-resisdent-software commands available
to the timesharing user are also available to the batch
user. Therefore, only one control language need be
learned for both timesharing and batch. During the
processing of the job and the control file, the batch con-
troller adds information to the log file for later analysis
by the user.

The queue manager is responsible for scheduling jobs
and maintaining both the batch controller’s input queue
and the output spooling queues. A job is scheduled to run
under the batch controller according to external prior-
ities, processing time limits, and core requirements
which are dynamically computed by the queue manager,
and according to parameters specified by the user for
his job, such as start and deadline time limits for
program execution. The queue manager makes an entry
for the job in the batch input queue based upon the
various priorities. After the job is completed, the queue
manager again schedules it for output by placing an
entry in an output queue. When the output is finished, the
job’s entry in the output queue is deleted by the queue
manager.

The output spooling programs improve system through-
put by allowing the output from a job to be written
temporarily on the disk for later transfer instead of
being written immediately on a particular output device.
The log file and all job output are placed by the queue
manager into one or more output queues to await
spooling. When the specified device is available, the
output is then processed by the appropriate spooling
program. These spooling programs may be utilized by
all users of the computing system.

INTRO TO SOFTWARE

1.5.2.2 Batch Use .of System Features — The
multiprogram batch software employs many of the com-
puting system’s features in order to operate with max-
imum efficiency. Because core memory is not
partitioned between batch and timesharing jobs, batch
jobs can occupy any available area of core. Fast
throughput for high priority batch jobs is accomplished
with the same swapping technique used for rapid re-
sponse to interactive users. When available core is not
large enough for a high priority batch job, the operating
system transfers programs of lower priority to secon-
dary memory in order to provide space for the job. This
I/0 transfer is done at the same time that the processor
is operating on another job. Thus, processing can be
overlapped with I/0 to utilize time that would otherwise
be wasted. Batch jobs can also share programs with
timesharing and other batch jobs. Only one copy of a
sharable program need be in core to service any number
of batch and timesharing jobs at the same time.

1.5.2.3 Flexibility of the Batch System — Multiprogram
batch allows the user a wide range of flexibility. The
Stacker normally reads from the card reader, but can
read from magnetic tape, DECtape, or disk packs in
order to create a control file on disk and to enter the job
into the batch controller’s input queue. However, a job
can be entered from an interactive terminal, in which
case the user bypasses the Stacker and creates a control
file on disk for the batch controller. The control file con-
tains the operating system commands and non-resident
software commands necessary to run the job. The user
then enters the job into the batch controller’s input
queue by way of an operating system command string.
In this command string, the user can include switches to
define the operation and set the priorities and limits on
core memory and processor time.

1.5.2.4 Job Dependency — Although jobs are entered
sequentially into the batch system, they are not neces-
sarily run in the order that they are read because of pri-
orities, either set by the user in a stacker control com-
mand or computed by the queue manager when
determining the scheduling of jobs. Occasionally, the
user may wish to submit jobs that must be executed in a
particular order; in other words, the execution of one job
is dependent on another. To ensure that jobs are exe-
cuted in the proper order, the user must specify an initial
dependency count in a control command of the depend-
ent job. This dependency count is then part of the input
queue entry. A control command in the job on which the
dependent job depends decrements the count. When the
count becomes zero, the dependent job is executed.

1.5.2.5 Error Recovery — The user can control system
response to error conditions by including in his job com-
mands to the batch controller to aid in error recovery.




INTRO TO SOFTWARE

These commands are copied into the control file by the
Stacker. With error recovery commands, the user speci-
fies the action to be taken when his program contains a
fatal error, as for example, to skip to the next program
or to transfer to a special user-written error handling
routine. If an error occurs and the user did not include
error recovery conditions in his job, the batch controller
initiates a standard dump of the user’s core area and
terminates the job. This core dump provides the user
with the means to debug his program. -

Although the batch system allows a large number of
parameters to be specified, it is capable of operating
with very few user-specified values. If a parameter is
missing, the batch system supplies a reasonable default
value. These defaults can be modified by the individual
installations.

1.5.2.6 Operator Intervention — Normal operating func-
tions performed by the programs in the batch system
require little or no operator intervention; however, the
operator can exercise a great deal of control if neces-
sary. He can specify the number of system resources to
be dedicated to batch processing by limiting the number
of programs and both the core and processor time for in-
dividual programs. He can stop a job at any point,
requeue it, and then change its priorities. By examining
the system queues, he can determine the status of all
batch jobs. In addition, the programs in the batch
system can communicate information to the operator
and record a disk log of all messages printed at the oper-
ator’s console. All operator intervention during the
running of the stacker and the batch controller causes
messages to be written in the user’s log file, as well as in
the operator’s log file, for later analysis.

1.5.3 Real-Time

For a system to be satisfactory for real-time appli-
cations, two important requirements must be met. The
more important requirement is fast response time.
Because real-time devices cannot store their informa-
tion until the computing system is ready to accept it, the
system would be useless for real-time if the response
requirements of a real-time project could not be satis-
fied. The operating system must allocate system
resources dynamically in order to satisfy the response
and computational requirements of real-time jobs
without affecting the simultaneous operations of time-
sharing and batch jobs. As part of its normal operation,
the DECsystem-10 operating system satisfies this re-
sponse requirement by overlapping I/O operations with
processing time and by reacting to a constantly chang-
ing system load quickly and efficiently.

- 14 -

The second requirement is protection. Each user of the
computing system must be protected from other users,
just as the system itself is protected from all user
program errors. In addition, since real-time systems
have special real-time devices associated with jobs, the
computing system must be protected from hardware
faults that could cause system breakdown. And, because
protection is part of the function of the operating
system, the real-time software employs this feature to
protect users as well as itself against hardware and soft-
ware failures. Therefore, inherent in the operating
system is the capability of real-time, and it is by way of
calls to the operating system that the user obtains real-
time services. The services obtained by calls within the
user’s program include 1) locking a job in core, 2) con-
necting a real-time device to the priority interrupt
system, 3) placing a job in a high-priority run queue, 4)
initiating the execution of FORTRAN or machine lan-
guage code on receipt of an interrupt, and 5) dis-
connecting a real-time device from the priority inter-
rupt system.

1.5.3.1 Locking Jobs — Memory space is occupied by the
resident operating system and by a mix of real-time and
non-real-time jobs. The only fixed partition is between
the resident operating system and the remainder of
memory. Since a real-time job needs to be in memory so
as not to lose information when its associated real-time
device interrupts, the job can request that it be locked
into core. This means that the job is not to be swapped to
secondary memory and guarantees that the job is read-
ily available when needed. The operating system
optimizes the placement of the job by positioning it in
core so as to obtain the maximum amount of contiguous
core space in the remaining memory. Because memory
is not divided into fixed partitions, it can be utilized to a
better degree by dynamically allocating more space to
real-time jobs when real-time demands are high. As
real-time demands lessen, more memory can be made
available to timesharing and batch usage.

1.5.3.2 Real-Time Devices — The real-time user can con-
nect real-time devices to the priority interrupt system,
respond to these devices at interrupt level, remove the
devices from the interrupt system, and/or change the
priority interrupt level on which these devices are as-
signed. There is no requirement that these devices be
connected at system generation time. The user specifies
both the names of the devices generating the interrupts
and the priority levels on which the devices function. The
operating system then links the devices to the interrupt
system.



-15 -

The user can control the real-time device in one of two
ways: single mode or block mode. In single mode, the
user’s interrupt program is run every time the real-time
device interrupts. In block mode, the user’s interrupt
program is run after an entire block of data has been
read from the real-time device. When the interrupt
occurs from the device in single mode or at the end of a
block of data in block mode, the operating system saves
the current state of the machine and jumps to the user’s
interrupt routine. The user services his device and then
returns control to the operating system to restore the
previous state of the machine and to dismiss the inter-
rupt. Any number of real-time devices may be placed on
any available priority interrupt channel.

1.5.3.3 High-priority Run Queues — The real-time user
canreceive faster response by placing jobs in high-prior-
ty run queues. These queues are examined before all oth-
er run queues in the computing system, and any run-
nable jobin a high-priority queue is executed before jobs
in other queues. In addition, jobs in high-priority queues
are not swapped to secondary memory until all other
queues have been scanned. When jobs in a high-priority
queue are to be swapped, the lowest priority job is
swapped first and the highest priority job last. The high-
est priority job swapped to secondary memory is the
first job to be brought into core for immediate execution.
Therefore, in addition to being scanned before all other
queues for job execution, the high-priority queues are
examined after all other queues for swapping to secon-
dary memory and before all other queues for swapping
from secondary memory.

1.5.3.4 Job Communication — The DECsystem-10 oper-
ating system enables a real-time user to communicate
with other jobs through the use of sharable data areas.
This also enables a data analysis program, for example,
toreador write an area in the real-time job’s core space.
Since the real-time job associated with the data
acquisition would be locked in core, the data analysis

program residing on secondary memory would become -

core resident only when the real-time job had filled a
core buffer with data. Operating system calls can be
used to allow the data analysis program to remain
dormant on secondary memory until a specified event
occurs in the real-time job, e.g., a buffer has been filled
with data for the data analysis program to read. When
the specified event occurs, the dormant program is then
activated to process the data. The core space for the
real-time job’s buffer area or the space for the dormant
job does not need to be reserved at system generation
time. The hardware working in conjunction with the op-
erating system’s core management facilities provides
optimum core usage.

INTRO TO SOFTWARE

1.5.4 Remote Communications

Until the capability of remote communications was
implemented, each remote user of the PDP-10 had been
individually linked to the computer center by separate
long distance telephone lines. Also, the only device that
the remote user had available at his location was the
terminal; he was able to utilize available devices at the
central station, but he could not obtain output other than
his terminal output at his remote site. Either he had to
travel to the central station to obtain a listing or he had
to have the listings delivered to him. However, with
remote communications hardware and software, listing
files and data can be sent via a single synchronous full-
duplex line to a small remote computer, which in turn
services many remote peripherals, including terminals,
card readers, and line printers. This eliminates the need
for the user to travel to the central site to obtain his
output. The remote computer and its associated per-
ipherals constitute a remote station.

Remote station use of the central computer is

essentially the same as local use. All sharable programs
and peripherals available to local users at the central
computer station are also available to remote users. The
remote user specifies the resources he wants to use and,
if available, they are then allocated in the same manner
as to a local user. In addition to utilizing the peripherals
at the central station, the remote user can access
devices located at his station or at another remote
station. Local users at the central station can also make
use of the peripherals at remote stations. Therefore, by
specifying a station number in appropriate commands to
the operating system, each user of the DECsystem-10 is
given considerable flexibility in allocating system facil-
ities and in directing input and output to the station of his
choice.

The DECsystem-10 allows for simultaneous operation of
multiple remote stations. Software provisions are in-
corporated in the operating system to differentiate one
remote station from another. By utilizing peripheral
devices at various stations, the user is provided with in-
creased capabilities. For example, data can be collected
from various remote stations, compiled and processed
at the central station, and then the results of the
processing can be sent to all contributors of the data.

Operating system commands not only allow a user to
access peripherals at other remote stations, but also
allow him to pretend that his job is at a remote station




INTRO TO SOFTWARE

different from the physical station at which he is
actually located. In this case, the user has a logical
station and can run entire jobs from this station. With
this capability, a local user at the central station could
become a remote user as far as the system was con-
cerned by changing the location of his job to a remote
station in contact with the central station.

-16 -

In summary, any computer, regardless of how powerful,
is only as good as the operating system that maximizes
its capabilities. The DECsystem-10 enhances the speed,
power, and flexibility of the PDP-10 by dynamically re-
sponding to the changing user load and, in doing so,
provides the user with a truly flexible and easily-used
computing system.



-17 -

INTRO TO SOFTWARE

CHAPTER 2

NON-RESIDENT SYSTEM SOFTWARE

For the computer to execute any of the basic operations
which it is capable of executing, it must be told which op-
erationit is to perform and where to find the information
on which to perform the operation. This requires that a
language be established by which the user can indicate
to the computer what it needs to know. This language is
the machine language of the computer and is unique for
each machine. This machine language is the means by
which the computer’s circuits are instructed to perform
the desired operation and because of this, it is the fastest
and most direct method of programming. However, ma-
chine language programming is not the easiest method
of programming for most users to employ. Although it is
not impossible to memorize all of the operation codes
recognized by the computer, it can be very difficult for
the programmer to remember where each piece of infor-
mation is inside memory in order to direct the computer
to it. Therefore, symbolic language programming was
developed to aid the programmer in manipulating the
computer.

With symbolic language programming, programs are
written using symbols which, when translated, equal the
machine language of the computer. Symbol operation
codes (mnemonics that specify which operation the user
wants the computer to perform) are translated to the
actual, or absolute, operation codes that the computer
understands. Addresses of core are designated with
symbolic labels and are converted into absolute core ad-
dresses so that the computer can locate the information
on which to perform the desired operation.

There are three kinds of translators used in symbolic
language programming: assemblers, compilers, and in-
terpreters. An assembler is a program that is able to
take another program written in symbolic language and
translateit, item by item, into machine language. There-
fore, to assemble a program means to substitute one
absolute value for one symbolic notation until the entire
program has been translated. A compiler also translates

a symbolic language program into a machine language
program, but the substitution is not one-to-one. A
program written in a compiler language is freer in
format than an assembly language program, and the lan-
guage elements usually resemble English words. The
compiler is larger and more complex than most assem-
blers, because it translates a program that is farther
away from the machine language. Generally, one state-
ment written in a compiler language is translated into
several machine language instructions. Although a com-
piler occupies more space in memory and is generally
slower than an assembler, a program written in a com-
piler language is more compatible with other computer
models, and the language itself is easier to learn and
write because of its general statements and freer
format. An interpreter differs from an assembler or a
compiler in that a binary version of the program is not
produced for storage. In other words, the source text is
translated to machine language everytime it is used, al-
lowing for extensive checking of errors during execu-
tion.

2.1 DECsystem-10 ASSEMBLER

MACRO is the symbolic assembly program on the
DECsystem-10. It makes machine language
programming easier and faster for the user by (1) trans- °
lating symbolic operation codes in the source program
into the bihary codes needed in machine language in-
structions, (2) relating symbols specified by the user to
numeric values, (3) assigning absolute core addresses to
the symbolic addresses of program instructions and
data, and (4) preparing an output listing of the program
which includes any errors detected during the assembly
process.

MACRO programs consist of a series of statements that
are usually prepared on the user’s terminal with a
system editing program. The elements in each state-
ment do not have to be placed in certain columns nor
must they be separated in a rigid fashion. The assembler




INTRO TO SOFTWARE

interprets and processes these statements, generates
binary instructions or data words, and performs the as-
sembly.

MACROis a two-pass assembler. This means that the as-
sembler reads the source program twice. Basically, on
the first pass, all symbols are defined and placed in the
symbol table with their numeric values, and on the
second pass, the binary (machine) code is generated.
Although not as fast as a one-pass assembler, MACRO is
more efficient in that less core is used in generating the
machine language code and the output to the user is not
as long.

MACRO is a device-independent program; it allows the
user to select at runtime standard peripheral devices for
input and output files. For example, input of the source
program can come from the user’s terminal and output
of the assembled binary program can go to a magnetic
tape, and output of the program listing can go to the line
printer.

The MACRO -assembler contains powerful macro
capabilities that allow the user to create new language
elements. This capability is useful when a sequence of
code is used several times with only the arguments
changed. The code sequence is defined with dummy
arguments as a macro instruction. Thus, a single state-
ment in the source program referring to the macro by
name, along with a list of the real arguments, generates
the correct and entire sequence. This capability allows
for the expansion and adaptation of the assembler in
order to perform specialized functions for each
programming job. -

2.2DECsystem-10 COMPILERS
2.2.1 ALGOL

The ALGOrithmic Language, ALGOL, is a scientific lan-
guage designed for describing computational processes,
or algorithms. It is a problem-solving language in which
the problem is expressed as complete and precise state-
ments of a procedure.

The DECsystem-10 ALGOL system is based on ALGOL-
60. It is composed of the ALGOL processor, or compiler,
- and the ALGOL object time system. The compiler is re-
sponsible for reading programs written in the ALGOL
language and converting these programs into machine
language. Also any errors the user made in writing his
program are detected by the compiler and passed on to
the user.

-18 -

The ALGOL object time system provides special ser-
vices, including the input/output service, for the com-
piled ALGOL program. Part of the object time system
is the ALGOL library -a set of routines that the user’s
program can call in order to perform calculations.
These include the mathematical functions and the
string and data transmission routines. These routines
are loaded with the user’s program when required;
the user need only make a call to them. The
remainder of the object time system is responsible for
the running of the program and providing services for
system resources, such as core allocation and man-
agement and assignment of peripheral devices.

2.2.2 BASIC

The Beginner’s All-purpose Symbolic Instruction Code,
BASIC, is a problem-solving language that is easy to
learn because of its conversational nature. It is
particularly suited to a timesharing environment
because of the ease of interaction between the user
and the computer. This language can be used to solve

- problems with varying degrees of complexity, and

2-2

thus, has wide application in the educational, business,
and scientific markets.

BASIC is one of the simplest of the programming com-
piler languages available because of the small number -
of clearly understandable and readily learned com-
mands that are required for solving almost any problem.
The BASIC language is divided into two sections: one
section of elementary commands that the user must
know in order to write simple programs and the second
section of advanced techniques for efficient and well-or-
ganized programs.

The BASIC user types in computational procedures as a
series of numbered statements that are composed of
common English terms and standard mathematical
notation. When the statements are entered, a run-type
command initiates the execution of the program and
returns the results almost instantaneously.

The BASIC system has several special features built into
its design. For one, BASIC contains its own editing facil-
ities. Existing programs and data files can be modified
directly with BASIC instead of with a system editor by
adding or deleting lines, by renaming the file, or by
resequencing the line numbers. The user can combine
two files into one and request a listing of all or part of the
file on either the line printer or the terminal. Secondly,
BASIC allows various peripheral devices to be used for
storage or retrieval of programs and data files. The user
can input programs or data files from the paper-tape -
reader on the terminal or output them to the terminal’s



-19 -

paper-tape punch. Also, the data file capability allows a
program to read information from or write information
to the disk. Thirdly, output to the terminal can be
formatted by including tabs, spaces, and columnar head-
ings. Finally, BASIC has an expanded command set that
includes commands designed exclusively for matrix
computations. Elementary mathematical functions are
contained in the command set along with methods by
which the user can define his own functions.

2.2.3COBOL

The COmmon Business Oriented Language, COBOL, is
an industry-wide data processing language that is de-
signed for business applications, such as payroll, in-
ventory control, and accounts-receivable.

Because COBOL programs are written in terms that are
familiar to the business user, he can easily describe the
formats of his data and the actions to be performed on
this data in simple English-like statements. Therefore,
programming training is minimal, COBOL programs
_ are self-documenting, and programming of desired ap-
plications is accomplished quickly and easily.

The COBOL system is composed of a number of soft-
ware components. The first is the COBOL compiler
which is responsible for initializing the program,
scanning the command strings for correct syntax, gen-
erating the code, listing, and final assembly. The sec-
ond component is the object time system, LIBOL,
which consists of subroutines used by the code gener-
ated by the compiler. These subroutines include the
I/0, conversion, comparison, and mathematical rou-
tines available to the COBOL user. Another component
is the source library maintenance program, which
builds and maintains a library of source language
entries that can be included in the user’s source
program at compile time. A fourth component is the
stand-alone report generator, COBRG, which produces
COBOL source programs, which when compiled and
loaded, generate reports. The stand-alone program,
SORT, accepts commands from the user’s terminal in
order to perform simple sorting of files. The RERUN
program is used to restart a COBOL program that was
interrupted during execution because of a system fail-
ure, device error, or disk quota error. COBDDT is a
utility that debugs COBOL programs. Finally, ISAM
builds and maintains indexed sequential files for the
user.

DECsystem-10 COBOL accepts two source program
formats: conventional format and standard format. The
conventional format is employed when the user desires
his source programs to be compatible with other COBOL

2-3

INTRO TO SOFTWARE

compilers. This is the format normally used when input
is from the card reader. The standard format s provided
for users who are familiar with the format used in
DECsystem-10 operations. It differs from conventional
format in that sequence numbers and identification are
not used because most DECsystem-10 programs require
neither. The compiler assumes that the source program
is written in standard format unless the appropriate
switch is included in the command string to the compiler
or the special sequence numbers created by the sym-
bolic editor LINED are detected by the compiler.

DECsystem-10 COBOL is the highest level of ANSI CO-
BOL available and because it operates within the oper-
ating system, it offers the user the many features of the
DECsystem-10 in addition to the business processing ca-
pability of the language. These features enable the CO-
BOL user to run programs in either, or both, timesharing
or batch processing environments, to perform on-line
editing and debugging of his programs with the system
programs available, to choose various peripheral de-
vices for input and output, and to write programs that
can be shared with other users.

2.2.4FORTRAN

The FORmula TRANSIator language, FORTRAN, is the
most widely used procedure-oriented programming lan-
guage. It is designed for solving scientific-type problems
and thus is composed of mathematical-like statements
constructed in accordance with precisely formulated
rules. Therefore, programs written in the FORTRAN
language consist of meaningful sequences of these state-
ments that are intended to direct the computer to per-
form the specified computations.

FORTRAN has a varied use in every segment of the
computer market. Universities find that FORTRAN is a
good language with which to teach students how to solve
problems via the computer. Scientific markets rely on
FORTRAN because of the ease in which scientific
problems can be expressed. In addition, FORTRAN is
used as the primary data processing language by time-
sharing utilities.

Because of this wide market, DECsystem-10 FORTRAN
is designed to meet the needs of all users. The
FORTRAN system is easy to use in either the time-
sharing or batch processing environments. Under time-
sharing, the user operates in an interactive editing and
debugging environment. Under batch processing, the
user submits his program through the




INTRO TO SOFTWARE

multiprogram batch software in order to have the com-
piling, loading, and executing phases performed without
his intervention.

FORTRAN programs can be entered into the FORTRAN
system from a number of devices: disk, magnetic tape,
DECtape, user terminal, paper-tape reader, and card
reader. In addition to data files created by FORTRAN,
the user can submit data files or FORTRAN source files
created by the system programs LINED, PIP, or TECO.
The data files contain the data needed by the user’s
object program during execution. The source files con-
tain the FORTRAN source text to be compiled by the
FORTRAN compiler. Commands are entered directly to
the FORTRAN compiler with a run-type command or in-
directly through a system utility program that accepts
and interprets the user’s command string and passes it
to the compiler. Output can then be received on the
user’s terminal, disk, DECtape, magnetic tape, card
punch, or paper-tape punch.

2.3 DECsystem-10 INTERPRETER

The Algebraic Interpretive Dialogue, AID, is the
DECsystem-10 adaptation of the language elements of
JOSS, a program developed by the RAND Corporation.
To write a program in the AID language requires no pre-
vious programming experience. Commands to AID are
typed in via the user’s terminal as imperative English
sentences. Each command occupies one line and can be
executed immediately or stored as part of a routine for
later execution. The beginning of each command is a
verb taken from the set of AID verbs. These verbs allow
the user to read, store, and delete items in storage; halt
the current processing and either resume or cancel exe-
cution; type information on his terminal; and define
arithmetic formulas and functions for repetitive use that
are not provided for in the language. However, many
common algebraic and geometric functions are pro-
vided for the user’s convenience.

The AID program is device-independent. The user can
create external files for storage of subroutines and data
for subsequent recall and use. These files may be stored
on any retrievable storage media, but for accessibility
and speed, most files are stored on disk.

2.4 DECsystem-10 EDITORS
2.4.1LINED
The line editor for disk files, LINED, is used to create

and edit source files written in ASCII code with line
numbers appended. These line numbers allow LINED to

-20 -

2-4

reference aline in the file at any time without having the
user close and then reopen the file. The user has the
option of either specifying the beginning line number and
the increment to the next line number when inserting
lines or allowing LINED to assume a beginning line
number and increment if the user specification is
omitted.

Commands to LINED allow the user to create a new file
or edit an existing file by inserting, replacing, or deleting
lines within the file. Single or multiple lines of the file
can be printed on the user’s terminal for an aid in
editing. When the user has the file as he desires, he
closes the file and can either open a new file or return to
monitor level to assemble or compile his file.

24.2TECO

The Text Editor and COrrector program, TECO, is a
powerful editor used to edit any ASCII text file with a
minimum of effort. TECO commands can be separated
into two groups: one group of elementary commands
that can be applied to most editing tasks, and the larger
set of sophisticated commands for character string
searching, text block movement, conditional com-
mands, programmed editing, and command repetition.

TECO is a character-oriented editor. This means that
one or more characters in a line can be changed without
retyping the remainder of the line. TECO has the
capability to edit any source document: programs writ-
ten in MACRO, FORTRAN, COBOL, ALGOL, or any
other source language; specification; memoranda; and
other types of arbitrarily-formatted text. The TECO
program does not require that line numbers or other spe-
cial formatting be associated with the text.

Editing is performed by TECO via an editing buffer,
which is a section within TECO’s core area. Editing is
accomplished by reading text from any device (except a
user’s terminal) into the editing buffer (inputting), by
modifying the text in the buffer with data received from
either the user’s terminal or a command file (inserting),
and by writing the modified text in the buffer to an
output file (outputting).

A position indicator, or buffer pointer, is used to locate
characters within the buffer and its position determines
the effect of many of TECO’s commands. It is always
positioned before the first character, between two char-
acters, or after the last character in the buffer. Various
commands, such as insertion commands, always.take
place at the current position of the buffer pointer.



-921 -

Commands to TECO manipulate data within the editing
buffer. Input and output commands read data from the
input file into the buffer and output data from the buffer
to the output file. One or more characters can be in-
serted into the editing buffer, deleted from the buffer,
searched for, and or typed out with commands from the
user at his terminal. In addition, the user can employ
iteration commands to execute a sequence of commands
repeatedly and conditional execution commands to
create conditional branches and skips.

2.4.3SOUP

The SOftware Updating Package, SOUP, is a set of
programs that facilitates the updating of system or user

source files. Because software is constantly being up- -

dated to reflect changes and improvements made by
DEC, a method to make the updating process easier and
faster for all concerned was developed. SOUP enables
DEC to distribute a file containing only the differences
to the software routine instead of redistributing the
entire routine. In addition, since customers frequently
maintain system files that are modified to reflect their
individual needs, SOUP can be used to update these mod-
ified files as well. Although SOUP was implemented to
update system files, it can be employed to update any
source file with more than one version.

The SOftware Updating Package consists of three
programs. The first program, CAM, is responsible for 1)
comparing the new version of DEC’s system file to the
previous version to produce a correction file, and 2)
merging two correction files derived from the same
system file to produce a single correction file. The
correction file contains a series of editing changes that
reflect the differences between the old and new versions
of the system files. The two functions of CAM can be per-
formed simultaneously or one at a time depending on the
user’s commandstring to CAM.

The second program, COMP10, is used when the custom-
er has modified DEC’s file to such an extent that CAM
cannot compare the modified file to the original file due
to buffer overflow. COMP10 has extremely large buffers
and can, therefore, be used to generate the correction
file.

The third program, FED, reads the correction file and
edits the copy of the system file by making the changes
indicated in the correction file. When FED has com-
pleted its processing, the user has an updated file. As a
‘software manufacturer, DEC sends the user a
correction file, and he, in turn, need only run the FED
program in order to update his system files.

2-5

INTRO TO SOFTWARE

2.4.4RUNOFF

RUNOFTF facilitates preparing typed or printed manu-
scripts by performing line justification, page
numbering, titling, indexing, formatting, and case
shifting as directed by the user. The user creates a file
with TECO or LINED and inputs his material through
his terminal. In addition to inputting the text, the user in-
cludes information for formatting and case shifting.
RUNOFF processes the file and produces the final
formatted file to be output to the terminal, the line print-
er, or to another file.

With RUNOFF, large amounts of material can be in-
serted into or deleted from the file without retyping the
unchanged text. After the group of modifications have
been added to the file, RUNOFF produces a new copy of
the file which is properly paged and formatted.

2.5 DECsystem-10 UTILITIES

2.5.1CREF

The cross-reference listing program, CREF, is an aid in
program debugging and modification. It produces a
sequence-numbered assembly listing followed by tables
showing cross-references of all operand-type symbols,
all user-defined operators, and all machine op codes and
pseudo-op codes.

The input to CREF is a modified assembly listing
created during assembly or compilation. The command
string entered by the user specifies the device on which
this assembly listing is located along with the output
device on which to list the cross-reference tables and as-
sembly listing. Switches can also be included in the com-
mand string in order to control magnetic tape
positioning and to select specific sections of the listing
output.

2.5.2DDT

The Dynamic Debugging Technique, DDT, is used for
on-line program composition of object programs and for
on-line checkout and testing of these programs. For ex-
ample, the user can perform rapid checkout of a new
program by making a change resulting from an error
detected by DDT and then immediately executing that
section of the program for testing. '

After the source program has been compiled or assem-
bled, the binary object program with its table of defined
symbols is loaded with DDT. In command strings to



INTRO TO SOFTWARE

DDT, the user can specify locations in his program, or
breakpoints, where DDT is to suspend execution in order
to accept further commands. In this way, the user can
ckeck out his program section-by-section and if an error
occurs, insert the corrected code immediately. Either
before DDT begins execution or at breakpoints, the user

can examine and modify the contents of any location. In-

sertions and deletions can be in source language code or
in various numeric and text modes. DDT also performs
searches, gives conditional dumps, and calls user-coded
debugging subroutines at breakpoint locations.

2.5.3 File Backup

The file backup system enables the user to recover from
a system failure or other unintentional destruction of
data on the disk by 1) preserving disk files on a storage
medium and 2) later retrieving these files and placing
them back onto the disk. Two system programs are in-
volved in this storage and retrieval system: the
BACKUP program used to save the disk files on the spec-
ified storage device, and the RESTORE program used to
return these files to the disk. Using the BACKUP
program, the user can save individual disk files or the
entire disk on magnetic tape, DECtape, or disk. When
restoring these saved files to the disk with the RE-
STORE program, the user can return the entire contents
of the storage device to the disk or return only selected
portions.

2.5.4 FILEX

The file transfer program, FILEX, converts between
various core image formats and reads or writes various
DECtape directory formats and standard disk files.
Files are transferred as 36-bit binary data with no
processing performed on the data except that necessary
to convert the core image representation. The core
image formats that can be used in conversions are: 1)
saved-file format, 2) expanded core image file format,
3) dump format, 4) simple block format (Project MAC’s
equivalent of DEC’s .SAV format), and 5) binary file
format. The desired core image format is determined by
the specific extension associated with the file but this ex-
tension may be overridden by the use of switches in com-
mand strings to FILEX.

DECtapes can be read or written in binary, PDP-6
DECtape format, MIT Project MAC PDP-6/10 DECtape
format, PDP-11, or PDP-15 format. In the latter two
cases, ASCII files will be converted. The DECtape can
be processed quickly via a disk scratch file, which is a
much faster method for a tape with many files. This

-22 -

scratch file can be preserved and reused in later com-
mand strings. In addition, the DECtape directory can be
listed on the user’s terminal or zeroed in the appropriate
format on the tape. These DECtape format and
processing specifiers are indicated by command string
switches.

2.5.5 LOADER

The LOADER provides automatic loading and
relocation of binary programs generated by the stan-
dard DEC compilers and assemblers, produces an
optional storage map, and performs loading and library
searching regardless of the input medium. In addition,
this program loads and links relocatable binary
programs generated by the compilers and assemblers
prior to execution and generates a symbol table in core
for execution with DDT.

The user specifies in the LOADER command string the
device from which the relocatable binary programs are
to beloaded and the device on which any storage maps or
undefined globals are written. Switches can be included
in the command string 1) to specify the types of symbols
to be loaded or listed, 2) to indicate that the run time li-
braries are to be searched for symbol definitions, 3) to
load the DDT program, and 4) to clear and restart the
LOADER. In addition, special switches allow the user to
create CHAIN files—a feature used to segement
FORTRAN programs that are too large to be loaded into
core as one unit. These CHAIN files consist of complete
programs and subroutines that can be read into core and
executed as needed.

When the loading process is completed, the loaded
program can be written onto an output device with a
monitor SAVE command so that it can be executed at a
later time without rerunning the LOADER.

2.5.6 PIP

The Peripheral Interchange Program, PIP, is used to
transfer data files from one I/0 device to another. Com-
mands to PIP are formatted to accept any number of
input (source) devices and one output (destination)
device. Files can be transferred from one or more
source devices to the destination device as either one
combined file or individual files. Switches contained in
the command string to PIP provide the user with the fol-
lowing capabilities: 1) naming the files to be trans-
ferred, 2) editing data in any of the input files, 3) defining
the mode of transfer, 4) manipulating the directory of a
device if it has a directory, 5) controlling magnetic tape
and card punch functions, and 6) recovering from errors
during processing.



-23 -

2.6 DECsystem-10 MONITOR SUPPORT PROGRAMS

2.6.1 MONGEN

The monitor generator, MONGEN, is a dialogue
program that enables the system programmer to define
the hardware configuration of his individual installation
and the set of software options that he wishes to select
for his system. This program is a prerequisite for
creating a new monitor.

The system programmer defines his configuration in
one of four dialogues by answering MONGEN'’s ques-
tions in conversational mode. MONGEN transmits one
question at a time to the user’s terminal, and the user
answers appropriately depending on the content of each
question. After all questions have been answered,
MONGEN produces MACRO source files containing the
user’s answers. These source files are then assembled
and loaded with the symbol definition file and the
monitor data base to yield a monitor tailored to the indi-
vidual installation.

2.6.20PSER

The operator service program, OPSER, facilitates
multiple job control from a single terminal by allowing
the operator or the user to initiate several jobs, called
subjobs, from his terminal. The OPSER program acts as
the supervisor of the various subjobs by allowing
monitor-level and user-level commands to be passed to
all of the subjobs or to individually selected subjobs.
Output from the various subjobs can then be retrieved by
OPSER.

2-7

INTRO TO SOFTWARE

The subjobs of OPSER run on pseudo-TTYs, a simulated
terminal not defined by hardware. All initializations of
the pseudo-TTYs are performed by OPSER; the oper-
ator need only supply a subjob name. By running system
programs, which ordinarily require a dedicated
terminal, as subjobs of OPSER, output from the various
programs can be concentrated on one hardware
terminal instead of many. In addition, OPSER is able to
maintain an I/O link between the running jobs and the
operator—a feature that is not available when programs
run on their own dedicated terminals.

2.6.3 LOGIN

LOGIN is the system program used to gain access to the
DECsystem-10. This program determines by
appropriate dialogue with the user who he is, whether or
not he is currently authorized to use the system, and if
so, establishes the user’s initial profile, informs him of
any messages of the day, and reports any errors
detected in his disk files.

2.6.4 KJOB-LOGOUT

The system programs KJOB and LOGOUT are used

when leaving the DECsystem-10. Their many functions

include saving the user’s disk files in the state in which

he desires them, enforcing logged-out quotas on all disk
file structures, terminating the user’s job, and returning

the resources allocated to the user back to the system.

These resources include the user’s job number, his

allocated I/0 devices, and his allocated core.



INTRO TO SOFTWARE -24 -



- 25 -

INTRO TO SOFTWARE

CHAPTER 3

THE RESIDENT OPERATING SYSTEM

The resident operating system is made up of a number of
separate and somewhat independent parts, or routines
(see Figure 3-1). Some of these routines are cyclic in
nature and are repeated at every system clock interrupt
(tick) to ensure that every user of the computing system
is receiving his requested services. These cyclic rou-
tines are:

1) the command processor, or decoder
2) the scheduler, and
3) the swapper.

The command decoder is responsible for interpreting
commands typed by the user on his terminal and passing
them to the appropriate system program or routine. The
scheduler decides which user is to run in the interval be-
tween the clock interrupts, allocates sharable system
resources, and saves and restores conditions needed to
start a program interrupted by the clock. The swapper
rotates user jobs between secondary memory (usually
disk or drum) and core memory after deciding which
jobs should be in core but are not. These routines con-
stitute the part of the operating system that allows many
jobs to be operating simultaneously.

The non-cyclic routines of the operating system are in-
voked only by user programs and are responsible for
providing these programs with the services available
through the operating system. These routines are:

1) the UUO handler,
2) the input output routines, and
3) the file handler.

The UUO handler is the means by which the user
program communicates with the operating system in
order to have a service performed. Communication is by
way of programmed operators (also known as UUOs )
contained in the user program which, when executed, go

to the operating system for processing. The input/ out-
put routines are the routines responsible for directing
data transfers between peripheral devices and user
programs in core memory. These routines are invoked
through the UUO handler, thus saving the user the
detailed programming needed to control peripheral
devices. The file handler adds permanent user storage to
the computing system by allowing users to store named
programs and data as files.

3.1 THE COMMAND DECODER

The command decoder is the communications link be-
tween the user at his terminal and the operating system.
Because all requests for system resources are initiated
via the command decoder, it is the most visible part of
the system to each user. When the user types commands
and / or requests on his terminal, the characters are
stored in an input buffer in the operating system. The
command decoder examines these characters in the
buffer, checks them for correct syntax, and invokes the
system program or user program as specified by the
command.

On each clock interrupt, control is given to the command
decoder to interpret and process one command in the
input buffer. The command appearing in the input buffer
is matched with the table of valid commands accepted
by the operating system. A match occurs if the com-
mand typed in exactly matches a command stored in the
system, or if the characters typed in match the begin-
ning characters of only one command. When the match
is successful, the legality information (or flags) associ-
ated with the command is checked to see if the command
can be performed immediately. For instance, a com-
mand can be delayed if the job is swapped out to the disk
and the command requires that the job be resident in
core; the command is executed on a later clock interrupt .
when the job is back in core. If all conditions as specified
by the legality flags are met, control is passed to the
appropriate program.



INTRO TO SOFTWARE

OTHER
DEVICES

- 26 -

ROTATING
MEMORY

l———_———.———-—_ —
SCANNER OTHER ROTATING INPUT-OUTPUT
SERVICE SERVICE MEMORY |—— ROUTINES

l ROUTINE ROUTINES HANDLER

S — ]

uuo FILE
HANDLER HANDLER
(r— — — a— —.————_————]
COMMAND I I
| DECODER SWAPPER |
CYCLIC
I - ROUTINES
SCHEDULER
AND
RESOURCE
ALLOCATOR
USER
PROGRAM

10-0821

Figure3-1 The Resident Operating System

3.2 THE SCHEDULER

The DECsystem-10 is a multiprogramming system,; i.e.,
it allows several user jobs to reside in core simulta-
neously and to operate sequentially. It is then the job of
the scheduler to decide which jobs should run at any
given time. In addition to the multiprogramming fea-
ture, the DECsystem-10 employs a swapping technique
whereby jobs can exist on an external storage device
(e.g., disk or drum) as well as in core. Therefore, the
scheduler decides not only what job is to be run next but
also when a job'is to be swapped out onto disk or drum
and later brought back into core.

All jobs in the system are retained in ordered groupings
called queues . These queues have various priorities that
reflect the status of each job at any given moment. The
queue in which a job is placed depends on the system
resource for which it is waiting and, because a job can
wait for only one resource at a time, it can be in only one

queue at a time. Séveral of the possible queues in the sys-
tem are:

1) run queues for jobs waiting for, or jobs in ex-
ecution.

2) I/0 wait queues for jobs waiting for data
transfers to be completed.

3) I/0 wait satisfied queues for jobs waiting to
run after data transfers have been com-
pleted.

4) resource wait queues for jobs waiting for
some system resource, and

5) null queue for all job numbers that are not
currently being used.

The job’s position within certain queues determines the
priority of the job with respect to other jobs in the same
queue. For example, if a job is first in the queue for a
sharable device, it has the highest priority for the device
when it becomes available. However, if a job is in an 1/0



-27 -

wait queue, it remains in the queue until the 1/0 is com-
pleted. Therefore, in an I/O wait queue, the job’s
position has no significance. The status of a job is
changed each time it is placed into a different queue.

The scheduling of jobs into different queues is governed
by the system clock. This clock divides the time for the
central processor into one-sixtieths of a second. Each
job, when it is assigned to run, is given a time slice of a
1/2 second or two seconds, depending on the run queue.
When the time slice expires for the job, the clock notifies
the central processor and scheduling is performed. The
job whose time slice just expired is moved into another
run queue, and the scheduler selects the first job in the
run queue to run in the next time slice.

Scheduling may be forced before the time slice has ex-
pired if the currently running job reaches a point at
which it cannot immediately continue. Whenever an op-
erating system routine discovers that it cannot complete
a function requested by the job (e.g., it is waiting for I/0
to complete or the job needs a device which it currently
does not have), it calls the scheduler so that another job
can be selected to run. The job that was stopped is then
requeued and is scheduled to be run when the function it
requested can be completed. For example: when the
currently running job begins input from a DECtape, it is
placed into the I/0 wait queue, and the input is begun. A

- second job is scheduled to run while the input of the first
job proceeds. If the second job then decides to access a
DECtape, it is stopped because the DECtape control is
busy, and it is placed in the queue for jobs waiting to
access the DECtape control. A third job s set to run. The
input operation of the first job finishes, freeing the
DECtape control for the second job. The 1/0 operation of
the second job is initiated, and the job is transferred
from the device wait queue to the I/0 wait queue. The -
first job is transferred from the I/O wait queue to the
highest priority run queue. This permits the first job to
preempt the running of the third job. When the time slice
of the first job becomes zero, it is moved into the second
run queue, and the third job runs again until the second
job completes its I/O operations.

In addition, data transfers use the scheduler to permit
the user to overlap computation with data transmission.
In unbuffered data modes, the user supplies an address
of a command list containing pointers to locations in his
area to and from which data is to be transferred. When
the transfer is initiated, the job is scheduled into an 1/0
wait queue where it remains until the device signals the
scheduler that the entire transfer has been completed.

INTRO TO SOFTWARE

In buffered modes, each buffer contains information to
prevent the user and the device from using the same
buffer at the same time. If the user requires the buffer
currently being used by the device as his next buffer, the
user’s job is scheduled into an I/0 wait queue. When the
device finishes using the buffer, the device calls the
scheduler to reactivate the job.

3.3 THE SWAPPER

The swapper is responsible for keeping in core the jobs
most likely to be runnable. It determines if a job should
be in core by scanning the various queues in which a job
may be. If the swapper decides that a job should be
brought into core, it may have to take another job
already in core and transfer it to secondary memory.
Therefore, the swapper is not only responsible for
bringing a job into core but is also responsible for
selecting the job to be swapped out.

A job is swapped to secondary memory for one of two
reasons: 1) a job that is more eligible to run needs to be
swapped in and there is not enough room in core for both
jobs, and 2) the job needs to expand its core size and
there is not enough core space to do so. If the later case is
true, the job must be swapped out and then swapped in
later with the new allocation of core.

The swapper checks periodically to see if a job should be
swapped in. If there is no such job, then it checks to see if
a job is requesting more core. If there is no job wishing
to expand its size, then the swapper does nothing further
and waits until the next clock tick.

3.4 THE UUO HANDLER

The UUO handler is responsible for accepting requests
for services available through the operating system.
These requests are made by the user program via soft-
ware-implemented instructions known as programmed
operators, or UUOs. The various services obtainable by
the user program include:

1) communicating with the I/0 devices on the

= computing system, including connecting
and responding to any special devices that
may be desired on the system for real-time
programming,

2) receiving or changing information con-
cerning either the computing system as a
whole or the individual program,



INTRO TO SOFTWARE

3) altering the operation of the computing
system as it concerns the user job, such as
controlling execution by trapping or
suspending, or controlling core memory by
locking,

4) communicating and transferring control be-
tween user programs. '

The UUO handler is the only means by which a user
program can give control to the operating system in
order to have a service performed. Contained in the user
program are operation codes which, when executed,
cause the hardware to transfer control to the UUO han-
dler for processing. This routine obtains its arguments
from the user program. The core location at which the
UUO operation was executed is then remembered. After
the UUO request has been processed, control is returned
to the user program at the first or second instruction fol-
lowing the UUO. In this way, the software supplements
the hardware by providing services that are invoked
through the execution of a single core location just as the
hardware services are invoked.

3.5 THE INPUT/OUTPUT ROUTINES

I/0 programming in the DECsystem-10 is highly con-
venient for the user because all of the burdensome
details of programming are performed by the operating
system. The user informs the operating system of his
requirements for I/0 by means of UUOs contained in his
program. The actual input/output routines needed are
then called by the UUO handler.

Since the operating system channels communication be-
tween the user program and the device, the user does not
need to know all the peculiarities of each device on the
system. In fact, the user program can be written in a
similar manner for all devices. The operating system
will ignore, without returning an error message, oper-
ations that are not pertinent to the device being used.
Thus, a terminal file and a disk file can be processed
identically by the user program. In addition, user
programs can be written to be independent of any
particular device. The operating system allows the user
program to specify a logical device name, which can be
associated with any physical device at the time when the
program is to be executed. Because of this feature, a
program that is coded to use a specific device does not
need to be rewritten if the device is unavailable. The
device can be designated as a logical device name and
assigned to an available physical device with one com-
mand to the operating system.

34

- 28 -

Data is transmitted between the device and the user:
program in one of two methods: unbuffered mode or
buffered mode . With unbuffered data modes, the user in
his program supplies the device with an address, which
is the beginning of a command list. Essentially, this
command list contains pointers specifying areas in the
user’s allocated core to or from which data is to be trans-
ferred. The user program then waits until the operating
system signals that the entire command list has been
processed. Therefore, during this data transfer, the user
program is idly waiting for the transfer to be completed.

Data transfers in buffered mode utilize a ring of buffers
set up in the user’s core area. Buffered transfers allow
the user program and the operating system’s 1/0 rou-
tines to operate asynchronously. As the user program
uses one buffer, the operating system processes another
one by filling or emptying it as interrupts occur from the
device. To prevent the user program and the operating
system from using the same buffer at the same time,
each buffer has a use bit that designates who is using the
buffer. Buffered data transfers are faster than
unbuffered transfers because the user program and the
operating system can be working together in processing
the data.

Several steps must be followed by the user program in
order for the operating system to have the information it
needs to control the data transfers. Each step is in-
dicated to the operating system with one programmed
operator. In the first step, the specific device to be used
in the data transfer must be selected and linked to the
user program with one of the software 1/0 channels
available to the user’s job (OPEN or INIT programmed
operators). This device remains associated with the
software I1/0 channel until it is disassociated from it (via
a programmed operator) or a second device is associ-
ated with the same channel. In addition to specifying the
I/0 channel and the device name, the user program can
supply an initial file status, which includes the type of
data transfer to be used with the device (e.g., ASCII,
binary), and the location of the headers to be used in
buffered data transfers. The operating system stores in-
formation in these headers when the user program exe-
cutes programmed operators, and the user program
obtains from these headers all the information needed to
fill or empty buffers.

Another set of programmed operators (INBUF and
OUTBUF) establishes the actual buffers to be used for
input and output. This procedure is not necessary if the
user is satisfied to accept the two buffers automatically
set up for him by the operating system.



-29 -

The next step is to select the file that the user program
will be using when reading or writing data. This group of
operators (LOOKUP and ENTER) is not required for
devices that are not file-structured (e.g., card reader,
magnetic tape, paper-tape punch); however, if used,
they will be ignored thus allowing file-structured devices
to be substituted for non-file-structured devices without
the user rewriting the program.

The third step is to perform the data transmission be-
tween the user program and the file (IN, INPUT, OUT,
and OUTPUT). When the data has been transmitted to
either the user program on input or the file on output, the
file must be closed (CLOSE, fourth step) and the device
released from the channel (RELEASE, fifth step). This
same sequence of programmed operators is performed
for all devices; therefore, the I/0 system is truly device
independent because the user program does not have to
be changed every time a different deviceisused.

In addition to reading or writing data to the standard 1/0
devices, provisions are included in the operating system
for using the terminal for I/0 during the execution of the
user program. This capability is also obtained through
programmed operators. As the user program is running,
it can pause to accept input from or to type output to the
terminal. The operating system does all buffering for
the user, thus saving him programming time. This
method of terminal I/0 provides the user with a con-
venient way of interacting with his running program.

3.6 FILE HANDLER

The disk file handler manages user and system data;
thus, this data can be stored, retrieved, protected, andjor
shared amoung other users of the computing system. All
information in the system is stored as named files in a
uniform and consistent fashion thus allowing the infor-
mation to be accessed by name instead of by physical
disk addresses. Therefore, to reference a file, the user
does not need to know where the file is physically
located. A named file is uniquely identified in the system
by a filename and extension, an ordered list of directory
names (UFDs and SFDs) which identify the owner of the
file, and a file structure name which identifies the group
of disk units containing the file.

Usually a complete disk system is composed of many
disk units of the same and or different types of disks.
Therefore, the disk system consists of one or more file
structures-a logical arrangement of files on one or more
disk units of the same type. This method of file storage
allows the user to designate which disk unit of the file
structure he wishes to use when storing his files. Each

INTRO TO SOFTWARE

file structure is logically complete and is the smallest
section of file memory that can be removed from the
system without disturbing other units in other file struc-
tures. All pointers to areas in a file structure are by way
of logical block numbers rather than physical disk ad-
dresses; there are no pointers to areas in other file
structures, thereby allowing the file structure to be
removed.

A file structure consists of two types of files: the data
files that physically contain the stored data or
programs, and the directory files that contain pointers
to the data files. Included in these directory files are
master file directories, user file directories, and sub-file
directories. Each file structure has one master file
directory (MFD). This directory file is the master list of
all the users of the file structure. The entries contained
in the MFD are all the names of the user file directories
on the file structure. Each user with access to the file
structure has a user file directory (UFD) that contains
the names of all his files on that file structure; therefore,
there are many UFDs on each file structure. As an entry
in the user file directory, the user can include another
type of directory file, a sub-file directory (SFD). The
sub-file directory is similar to the other types of
directory files in that it contains as entries all the names
of files within the directory. This third level of directory
allows groups of files belonging to the same user to be
separate from each other. This is useful when organizing
a large number of files according to function. In addi-
tion, sub-file directories allow non-conflicting simulta-
neous batch runs of the same program using the same
filenames.

As long as the files are in different sub-file directories,
they are unique. Sub-file directories exist as files pointed
to by the user file directory, and can be nested to the
depth specified by the installation via a MONGEN ques-
tion

All disk files are composed of two parts: data and infor-
mation used to retrieve the data. The retrieval part of
the file contains the pointers to the entire file, and is
stored in two distinct locations on the device and
accessed separately from the data. System reliability is
increased with this method because the probability of
destroying the retrieval information is reduced; system
performance is improved because the number of
positionings needed for random-access methods is
reduced. The storing of retrieval information is the
same for both sequential and random access files. Thus
a file can be created sequentially and later read
randomly, or vice versa, without any data conversion.



INTRO TO SOFTWARE

One section of the retrieval information is used to speci-
fy the protection associated with the file. This protection
is necessary because disk storage is shared among all
users, each of whom may desire to share files with, or
prevent files from being written, read or deleted by,
other users. These protection codes are assigned by the
user when the file is created and designate the users who
have privileges to access the file. Users are divided into
three categories: the user who created the file (the
owner of the file), the user on the same project as the
owner of the file, and the remaining users of the system.
The owner of the file controls the protection of the file;
thus, he can indicate who may read, write, or modify his
file. It is always possible for the owner to change the
protection of his file and when it is changed, the new
protection remains until he modifies it again. If a file is
created without a protection code, the operating system
substitutes an installation-defined standard protection
code.

Disk quotas are associated with each user (each project-
programmer number) on each file structure in order to
limit the amount of information that can be stored in the
UFD of a particular file structure. When the user gains
access to the computing system, he automatically
begins using his logged-in quota. This quota is not a guar-
anteed amount of space, and the user must compete with
other users for it. When the user leaves the computing
system, he must be within his logged-out quota. This
quota is the amount of disk storage space that the user is
allowed to maintain when he is not using the system and
is enforced by the system program that is used in leaving
the system. Quotas are determined by the individual in-
stallations and are, therefore, used to ration disk
resources in a predetermined manner.

To a user, a file structure is like a device; i.e., a file.

structure name or a set of file structure names can be
used as the device name in command strings or UUO
calls to the operating system. Although file structures or
the units composing the file structures can be specified
by their actual names, most users specify a general, or
generic, name (DSK) which will cause the operating
system to select the appropriate file structure. The
appropriate file structure is determined by a job search
list. Each job has its own job search list with the file
structure names in the order in which they are to be

- 30 -

accessed when the generic name is specified as the
device. This search list is established by LOGIN and thus
each user has a UFD for his project-programmer
number in each file structure in which LOGIN allows
him to have files.

File writing on the disk can be defined by one of three
methods: creating, superseding, and updating. The user
is creating a file if no other file of the same name exists
in the user’s directory on the indicated file structure. If
another file with the same name already exists in the

" directory, the user is superseding, or replacing, the old

3-6

file with the new file. Other users sharing the old file at
the time it is being superseded continue using the old file
and are not affected until they finish using the file and
then try to reaccess it later. At that time, they read the
new file. When a user updates a file, he modifies selected
parts of the file without creating an entirely new version.
This method eliminates the need to recopy a file when
making only a small number of changes. If pther users
try to access a file while it is being updated, they receive
anerror.

File storage is dynamically allocated by the file handler
during program operations, so the user does not need to
give initial estimates of file length or the number of files.
Files can be any length, and each user may have as
many files as he wishes, as long as disk space is avail-
able and the user has not exceeded his logged-in quota.
This feature is extremely useful during program devel-
opment or debugging when the final size of the file is still
unknown. However, for efficient random access, a user
can reserve a contiguous area on the disk if he desires.
When he has completed processing, he can keep his pre-
allocated file space for future use or return it so that
other users can have access to it.

3.7SUMMARY

In summary, the resident operating system supervises
user jobs and provides various services to these jobs. It
acts as an operator by performing specific functions in
response to specific events which occur within the
system. Many functions are performed in accordance
with a periodic event, the system clock interrupt. Other
functions are responded to in accordance with the action
of the user program.



-31 -

Absolute address
The address that is permanently assigned to a storage lo-
cation by the machine designer.

Access date

The date on which a file on disk was last read. If a file has
not been read since it was created, the creation date and
the access date are the same. The access date is kept in
the retrieval information block for the file.

Access list

The table in monitor core that reflects the status of all
files open for reading or writing in addition to the status
of those files recently closed.

Access privileges
Attributes of a file which specify the class of users
allowed to access the file and the type of access which
they are allowed.

Access time
The interval between the instant at which data is re-
quested from a storage device or data is requested for a
storage device and the instant at which delivery or stor-
ageis begun.

ACCT. SYS

The file that contains all project-programmer numbers,
passwords, initial profiles, and time of day users are
allowed on the system. It does not contain file structure
quotas.

Accumulator

The register and associated equipment in the arithmetic
unit of the computer in which arithmetical and logical
operations are performed.

Active search list

An ordered list of file structures for each job which spec-
ifies the order in which the directory is searched. These
file structures are the ones listed before the FENCE by

4-1

INTRO TO SOFTWARE

CHAPTER 4
GLOSSARY

the SETSRC program. Device DSK is defined by this list
for each job.

Actual transfer

The hardware operation whereby the channel actually
passes data between the memory system and the con-
trol. The third step of the transfer operation (veri-
fication, search, actual transfer).

Address

(1) An identification represented by a name,
label, or number for a register, a location in
storage, or any other data source or destina-
tion. '

(2) The part of an instruction that specifies the

location of an operand of the instruction.

ALCFIL

A program used for allocating space for a new file or
reallocating space for an existing file in one contiguous
region on the disk.

ALGOTS
The ALGOL object time system.

Al CPU job

A job which the monitor can run on either processor in a
dual-processor system depending on the I/0 activity and
the system load.

Arithmetic unit
The portion of the hardware in which arithmetic and lo-
gical operations are performed.

Assemble

To prepare a machine-language program from a sym-
bolic-language program by substituting absolute oper- .
ation codes for symbolic operation codes and absolute or
relocatable addresses for symbolic addresses.



INTRO TO SOFTWARE

Assembler
A program which accepts symbolic code and translates
it into machine instruction, item by item.

Assigning a device
To allocate an I/0 device to the user’s job either for the
duration of the job or until the user relinquishes it.

Asychronous

(1) Pertaining to the procedure by which the
hardware does not wait for one operation to
be completed before starting a second oper-
ation.

(2) Pertaining to the method of data trans-
mission in which each character is sent with

its own synchronizing information.

AUXACC.SYS

The file that contains the standard list of public file
structures for each user and information (such as
quotas) for those file structures.

Bad Allocation Table (BAT) block

A block written by the MAP program or the monitor on
every disk unit. This block enumerates the bad regions
of consecutive bad blocks on that unit so that they are not
reused. The BAT blocks appear in the HOME.SYS file.

BADBLK.SYS

The file that contains all bad blocks. It may be read but

not deleted and is useful for testing error recovery.

Base address
A given address from which an absolute address is de-
rived by combination with arelative address.

Batch processing
The technique of executing a set of computer programs
in an unattended mode.

BATCON

The Batch controller. This program reads a job’s control
file, starts the job, and controls the job by passing com-
mands and data te it.

Block

A 128, 0-word unit of disk storage determined by hard-
ware and software; 128 werds are always written,
adding zeros as necessary, although less than 128 werds
can beread. '

4-2

-32 -

BOOTS

A bootstrap program whose main functions are to load a
program into core from a disk SAVE file and to dump
core as a SAVE file for later analysis.

Bootstrap

A technique or device designed to bring itself into a de-
sired state by means of its own action, e.g., a machine
routine whose first instructions are sufficient to bring -
therest of itself into the computer from an input device.

Breakpoint
A location at which program operation is suspended in
order to examine partial results.

Buffer

A device or area used temporarily to hold information
being transmitted between external and internal storage
devices or 1/0 devices and internal high-speed storage.
A buffer is often a special register or a designated area
of internal storage.

Buffer pointer

A movable position indicator that is positioned between
two characters in an editing buffer, before the first char-
acter in the buffer, or after the last character in the
buffer.

Byte
Any centiguous set of bits within a word.

Calling sequence

A specified arrangement of instructions and data neces-
sary to pass parameters and control to and from a given
subroutine.

CBDRSTK

The Batch input stacker. CDRSTK reads any sequential
input stream, sets up the job’s control file and data files,
and enters the job into the Batch input queue.

Central processing unit (CPU)

The portion of the computer that centains the arithmet-
ic, logical, control circuits, and I/0 interface of the basic
system.

Central site

The location of the central computer. Used in cen-
junctien with remoete communications te mean the loca-
tion of the DECsystem-10 central processor.



- 33 -

CHAIN

A program that allows the user to segment FORTRAN
programs that are too large to load or fit into available
core. It reads successive segments of coding into core
and links them to the program already in core.

Channel

(1) A path along which signals can be sent;
e.g., data channel, output channel.
A partially autonomous portion of the
PDP-10 which can overlap I/O trans-
mission while computations proceed si-
multaneously.

(2)

CHECKPOINT
A program used to maintain the accounting information
on the disk.

Clear
To erase the contents of a location by replacing the con-
tents with blanks or zeros.

Cluster
A single-or multi-block unit of disk storage assignment.
Itis a parameter of each disk file structure.

CODE
A code conversion program that translates files written
in binary-coded decimal to ASCII and vice versa.

COMPIL

A utility program that allows the user to type a short,
concise command string in order to cause a series of op-
erations to be performed. COMPIL deciphers the com-
mand and constructs new command strings for the
system program that actually processes the command.

Compressed file pointer
An 18-bit pointer to the unit within the file structure and
to the first super-cluster of the file.

Concatenation

The joining of two strings of characters to produce a
longer string, often used to create symbols in macro de-
fining.

Conditional jump
A jump that occurs if specified criteria are met.

Context switching

The saving of sufficient hardware and software informa-
tion of a process so that it may be continued at a later
time, and the restoring of another process.

4-3

INTRO TO SOFTWARE

Continued directory
The collection of all directories with a particular name
and path on all file structures in the job’s search list.

Continued MFD
The MFDs on all file structures in the job’s search list.

Continued SFD
The SFDs on all file structures in the job’s search list
which have the same name and path.

Continued UFD
The UFDs for the same project-programmer number on
all file structures in the job’s search list. :

Control

The device which controls the operation of connected
units. It can initiate simultaneous positioning commands
to some of its units and then perform a data transfer for
one of its units.

Control character

A character with an ASCII representation of 0-37. It is
typed by holding down the CTRL key on the terminal
while striking a character key. It can be punched on a
card via the multi-punch key.

Copy
To transfer a file from one device to another (e.g., with

PIP or the FILEX program).

CORMAX
The largest contiguous size that an unlocked job can be.
This value can range from CORMIN tototal user core.

CORMIN

The quaranteed amount of contiguous core which a
single unlocked job can have. This value can range from
0Oto total user core.

Counter
A device such as a register or storage location used to
represent the number of occurrences of a certain event.

CPU
See central processing unit.

CPUO

In a dual-processor system, the processor that performs
the same activities as the processor in a single processor
system, including all I/0 operations, command and UUO
processing, swapping, and interrupt handling. Also
known as the primary processor.



INTRO TO SOFTWARE

CPU1

In a dual-processor system, the processor that operates
only in user mode except when it is required to find an-
other job to run or to send APR traps to the user. Also
known as the secondary processor.

CRASH.SAV

A file written on disk by BOOTS as part of the crash res-
tart procedure. This file is used by FILDDT for system
debugging.

Create

To open, write, and close a file for the first time. Only
one user at a time can create a file with a given name
and extension in the same directory or sub-directory of a
file structure.

CREF

A program which produces a sequence-numbered as-
sembly listing followed by tables showing cross refer-
ences for all operand-type symbols, all user-defined op-
erators, and/or all op codes and pseudo-op codes.

Customer

A Digital customer purchasing a DECsystem-10 as dis-
tinguished from a user at a console who may be purchas-
ing time from a customer.

Cylinder

The hardware-defined region of consecutive logical disk
blocks which can be read or written without reposition-
ing.

DAEMON
A program for-writing all or parts of a job’s core area
and associated monitor tables onto disk.

Data Channel
The device which passes data between the memory
system and the control.

DATDMP
A program for dumping the core data base.

‘DECtape
A convenient, pocket-sized reel of random access mag-
netic tape developed by Digital Equipment Corporation.

DDT

The Dynamic Debugging Technique program used for
on-line checkout, testing, and program composition of
object programs.

4-4

- 34 -

Device routines

Routines that perform I/O for specific storage devices
and translate logical block numbers to physical disk ad-
dresses. These routines also handle error recovery and
ensure ease of programming through device indepen-
dence.

DIRECT
A program for producing dlrectory listings of disks and
DECtapes.

Directory

A file which contains the names and the pointers to other
files on the device. On disk, a directory is continued
across all the file structures in a job’s search list. Contin-
ued MFDs, UFDs, and SFDs are all directories. The
DIRECT monitor command lists a directory.

Directory device

A storage retrieval device such as disk or DECtape
which contains a file describing the layout of stored data
(programs and other files).

Directory path

The ordered list of directory names, starting with a UFD
name, which uniquely specifies a directory~ without
regard to a file structure. Also known as a path. A file
structure name, a path, and a filename and extension
are needed to uniquely identify a file in the system.

Dismounting a file structure

The process of deleting a file structure from a user’s
active search list by using the DISMOUNT command. It
does not necessarily imply physical removal of the file
structure from the system.

Doorbell
The device by which processors in a multiprocessing
system interrupt each other. This is an optional device.

Dormant file structure
A file structure that is physically mounted but has no
current users, i.e., the mount count is zero.

Dormant segment
A sharable high segment kept on a swappmg space, and
possible core, which is in no user’s addressing space.

DSK

The generic device name for disk-like devices. Actual
file structure names are defined for each job by the file
structure search list.



-35-

DSKLST
A program which gives statuses and statistics of all user
disk files at a given point in time.

DSKRAT
A damage assessment pogram that scans a file structure
and reports any inconsistencies detected.

Dump
A listing of all variables and their values, or a listing of
the values of all locations in core.

DUMP
A program that outputs selected portions of a file in one
of the various formats that can be specified by the user.

EDDT
A version of DDT used for debugging programs, such as
the monitor, in executive mode.

Effective address
The actual address used, that is, the specified address as
modified by any indexing or indirect addressing rules.

Entry point
A point in a subroutine to which control is transferred
when the subroutine is called.

Executive mode

A central processor mode characterized by the lack of
memory protection and relocation and by the normal ex-
ecution of all defined operation codes.

Extended file _
A file which contains one or more extended RIBs to con-
tain the retrieval pointers.

Extended RIB

Additional retrieval information blocks (RIBs) re-
quired when the retrieval pointers in a file overflow the
prime RIB.

FAILSAFE

A utility program used to save the contents of the disk on
magnetic tape and later restore the saved contents back
onto disk.

FILDDT

A version of DDT used for examining and changing a file
on disk instead of in core memory. This program is used
to examine a monitor for debugging purposes.

INTRO TO SOFTWARE

File

An ordered collection of 36-bit words comprising com-
puter instructions and/or data. A file can be of any
length, limited only by the available space on the device
and the user’s maximum space allotment on that device.
A file is uniquely identified in the system by a file struc-
ture name or directory name, a directory path, and a
filename and extension. '

Filename

- Aname of one to six alphanumeric characters chosen by

4-5

the user to identify a file.

Filename extension
One to three alphanumeric characters usually chosen by
the program to describe the class of information in a file.

File specification

A list of quantities which uniquely identify a named file.
A complete file specification consists of : the name of the
physical device or file structure on which the file is
stored, the name of the file including its extension, the
name of the directory in which the file is contained, and
the protection code associated with the file. File specifi-
cations are ignored for non-file-oriented devices.

File structure )

The logical arrangement of 128-word blocks on one or
more units of the same type to form a collection of
named files.

File-structured device )

A device on which data is given names and arranged into
files; the device also contains directories of these
names.

File structure owner

The user whose project-programmer number is associ-
ated with the file structure in the administrative file
STRLST.SYS. The REACT program is used to enter or
delete this project-programmer number or any of the
other information that is contained in an STRLST.SYS.
entry.

File structure search list

For each job, a list that specifies the order in which the
file structures that user can access are to be searched
when device DSK: is specified. Also called a job search
list.

FILEX

A general file transfer program used to convert between
various core image formats and to read and write
various DECtape directory formats andstandard disk
files. ’



INTRO TO SOFTWARE

Flag
An indicator that signals the occurrence of some condi-
tion, such as the end of a word.

Fragmentation . -

The technique used when swapped segments cannot be
allocated in one contiguous set of blocks on the swapping
space.

FUDGE2

A file update generator used to update files containing
one or more relocatable binary programs and to manipu-
late programs within program files.

Full path name

The ordered list which uniquely identifies a specific disk
file. This list consists of the directory path plus the file-
name and extension.

Generic name
An abbreviation fora physical name. This abbreviation
is usually three characters.

Get
To transfer a save file from a device into core using a
bootstrap program or the monitor.

GLOB

A program which reads multiple binary program files
and generates an alphabetic cross-referenced list of all
the global symbols encountered.

Global request
A request to the LOADER to link a global symbeol to a
program.

Global symbol
Any symbol accessible to other programs.

GRIPE
A program that reads text from the user and records it in
adisk file for later analysis by the operations staff.

Group

A contiguous set of disk clusters allocated as a single
unit of storage and described by a single retrieval point-
er. :

High segment

The segment of the user’s core which generally contains
pure code and which can be shared by other jobs; it is
usually write-protected.

4-6

- 36 -

Home block

The block written twice on every unit which identifies
the file structure the unit belongs to and its position on
the file structure. This block specifies all the para-
meters of the file structure along with the location of the
MFD. The home block appears in the HOME. SYS file.

HOME.SYS

The file that contains a number of special blocks for
system use. These blocks are the home blocks, the BAT
blocks, the ISW blocks, and block zero.

Idle segment

A sharable high segment which users in core are not
using; however, at least one swapped-out user is using it
else it would be a dormant segment.

Idle time

The percent of uptime in which no job wanted to run, i.e.;.
all jobs were HALTed or waiting for some external
actionsuch as I/0.

Immediate mode addressing
The process through which the right half of the word
gives the operand and not the address.

Impure code .
The code which is modified during the course of a run,
e.g., data tables.

Indirect address

An address in a computer instruction which indicates a
location where the address of the referenced operand is
to be found.

INITIA

A program for performing standard system in-
itialization for a particular terminal. It is used to initiate
specific programs, such as the spooling programs, on
the designated terminal.

Initialize

To set counters, switches, or addresses to zero or other
starting values either at the beginning of or at per-
scribed points in a computer routine.

Interjob dependency

The technique by which a Batch job is kept from running
until after the running of another job. The first job is de-
pendent on the second job.

Interleaving

To increase effective memory speed by configuring the
memory addressing so that adjacent addresses refer-
ence alternate asynchronous memories.



- 37 -

Internal symbol
A symbol which generates a global definition which is
used to satisfy all global requests for that symbol.

Interrupt

A signal which when activated causes a transfer of con-
trol to a specific location in memory thereby breaking
the normal operation of the routine being executed. An
interrupt is caused by an external event such as a done
condition in a peripheral. It is distinguished from a trap
which is caused by the execution of a processor instruc-
tion.

ISW block

A block written by the refresher which contains the bit
map for the initial storage allocation table for swapping.
Any bad regions are marked as already in use. The ISW
block appears in the HOME.SYS file.

Job

The entire sequence of steps, from beginning to end, that
the user initiates from his interactive terminal or card
deck or that the operator initiates from his operator’s
console.

Job Data Area

The first 140 octal locations of a user’s core area. This
area provides storage for items used by both the monitor
and the user program.

Jobsearch list
See File Structure Search List.

Jobsite
The location at which jobs are run. Also called program
site.

Job step
A serial or parallel sequence of processes invoked by a
user to perform an operation.

Jump :
A departure from the normal sequence of executing in-
structions.

Label
A symbolic name used to identify a statement of a pro-
gram.

Latency
(1) The time from initiation of a transfer op-
eration to the beginning of actual trans-
fer; i.e., verification plus search time.

INTRO TO SOFTWARE

(2) The delay while waiting for a rotating
memory to reach a given location as desired
by the user. The average latency is one half

the revolution time.

LIBOL
The COBOL object time system.

Library search mode

The mode in which a program is loaded only if one or
more of its declared entry symbols satisfies an unde-
fined global request. LIB40 is scanned in this mode so as
toload only programs that the user needs.

LIB40

The standard DEC-supplied library of the FORTRAN
object time system and math routines. This library
resides on device SYS.

Line

A string of characters terminated with a vertical tab,
form feed, or line feed. The terminator belongs to the
line that it terminates.

Load
To produce a core image file from a relocatable binary

‘file (.REL) using the LOADER program. This operation

is not to be confused with the GET operation: with the
GET operation a core image file has already been pro-
duced.

LOADER

A program that provides automatic loading and reloca-
tion of MACRO, FORTRAN, and COBOL generated
binary programs, produces an optional storage map, and
performs loading and library searching. Also, the pro-
gram loads and links relocatable binary programs gen-
erated by MACRO, COBOL, and FORTRAN and gener-
ates a symbol table in core for execution under DDT.

Local peripherals

The I/0 devices and other data processing equipment,
excluding the central processor, located at the central
site.

Local symbol

A symbol used only within the program in which it is de-
fined (all non-global symbols). It is not accessible to
other programs even though the programs are loaded to-
gether.

Locked job
A job in core that is never a candidate for swapping or
shuffling.



INTRO TO SOFTWARE

Logical device name

An alphanumeric name chosen by the user to represent a
physical device. This name can be used synonymously
with the physical device name in all references to the
device. Logical device names allow device indepen-
dence in that the most convenient physical device can
then be associated with the logical name at run time.

LOGIN
The program by which the users gain access to the com-
puting system.

LOOKFL

A program for typing the characteristics of a single disk
file, such as creation date and number of words written,
on the terminal.

Lost time

The percent of uptime that the null job was running, but
at least on other job wanted to run (was not waiting for a
device) but could not because one of the following was
true:

a. the job was being swapped out.

b. the job was being swapped in.

c. the job was on disk waiting to be swapped in.

d. the job was momentarily stopped so devices
could become inactive in order to shuffle job -
in core.

Low segment

The segment of core containing the jobdata areaand I/0
buffers. This area is unique and accessible to the user
and is often used to contain the user’s program. If the
user is working with a shared program, this area con-
tains datatables, etc.

MAINT.SYS
The area of the disk reserved for maintenance use only.

Macro
An instruction in a source language which is equivalent
to a specified sequence of machine instructions.

Mask

(1) A combination of bits that is used to con-
trol the retention or elimination of
portions of any word, character, or byte
in memory.
On half-duplex circuits, the characters
typed on the terminal to make the
password unreadable.

(2)

-38 -

4-8

Master file directory

The file created at refresh time which contains the name
of all user file directories including itself. Referred to as
the MFD.

Master slave system

A specific multiprocessing system involving two proces-
sors where one processor has a more important role
than the other.

Memory protection
A scheme for preventing access to certain areas of stor-
age for purposes of reading or writing.

Mnemonic symbol
A symbolic representation for a computer instruction.

MONEY

A program for reading the system’s time accounting file
and assigning a monetary charge for each user accord-
ing to the time and resources that he has used on the
system.

MONGEN time

The time at which the monitor software configuration is
being defined or changed. The monitor must then be re-
loaded with LOADER.

Monitor

The collection of programs which schedules and controls
the operation of user and system programs, performs
overlapped I/0, provides context switching, and allo-
cates resources so that the computer’s time is efficiently
used.

Mount Count
The count of the number of jobs which have a file struc-
ture in their active or passive search lists.

Mounting a device
To request assignment of an 1/0 device via the operator.

Mounting a file structure

The process of adding a file structure to one’s search
list. If the file structure is not already defined and
mounted, this is requested of the operator.

Multiprocessing
Simultaneous execution of two or more computer pro-
grams by a computer.

Multiprocessing system

A system with two or more central processors sharing
some or all of the hardware resources, such as, disks
memories, and or monitors. ’



-39 -

Multiprogramming

A technique that allows scheduling in such a way that
more than one job is in an executable state at any one
time.

Named file

A named ordered collection of 36-bit words (instructions
and or data) whose length is not restricted by size or
core.

Nesting
To include a routine or block of data within a larger rou-
tine or block of data.

Non-directory device

A device such as a magnetic tape or paper tape which
does not contain a file describing the layout of stored
data.

No-op

An instruction that specifically instructs the computer
to do nothing. The next instruction in sequence is then
executed.

Non-sharable segment

A segment for which each user has his own copy.This
segment can be created by a CORE or REMAP UUO or
initialized from a file.

Object time system

The routines for a particular language which support the
compiled code. Usually includes 1/0 and trap-handling
routines.

v Offset
The number of locations toward zero a program must be
moved before it can be executed.

OMOUNT
A program for operator interfacing for handling
requests concerning removable media.

ONCE ONLY time
The time at which the operator can change a number of
monitor parameters when the monitor is started up.

One’s complement
A complement formed by setting each bit in a binary
number to the opposite state.

Operand

The symbolic addresses of the data to be accessed when
an instruction is executed, or the input data or argu-
ments of a pseudo-op or macro instruction.

49

INTRO TO SOFTWARE

Overlay

The technique of repeatedly using the same blocks of in-
ternal storage during different stages of a program.
When one routine is no longer needed in storage, another
routine canreplace all or part of it.

Pack ID
A 6-character SIXBIT name or number used to uniquely
identify a disk pack.

Page
(1) Any number of lines terminated with a
form feed character:
(2) The smallest allocatable unit of core stor-
age.

Parity bit
A binary digit appended to an array of bits to make the
sum of all the bits always odd or always even.

Parity check
A check that tests whether the number of ones or zeros in
an array of binary digits is odd or even.

Passive search list

An unordered list of the file structures which have been
in the job’s active search list and have never been dis-
mounted. Device DSK is not defined by this list.

Path
See directory path.

Peripheral equipment .

Any unit of equipment, distinct from the central process-
ing unit, which can provide the system with outside com-
munication.

Physical unit name

The SIXBIT name consisting of 3 to 6 characters that is
associated with each unit. Examples: FHA0, FHA1,
DPAO, DPA7, LPT, DTA3.

PIP

The Peripheral Interchange Program which transfers
data files from one standard I/0 device to another and
performs simple editing and magnetic tape control func-
tions.

PLEASE
A program that provides the user with two-way commu-
nication with the operator.

Pointer
The location containing an address rather than data
which is used in indirect addressing.



INTRO TO SOFTWARE

Pool

One or more logically complete file structures that pro-
vide file storage for the users and that require no special
action on the part of the user.

Position operation

The operation of moving the read-write heads of a disk to
the proper cylinder prior to a data transfer. This oper-
ationrequires the control for several microseconds to in-
itiate activity, but does not require the channel or
memory system.

Prime RIB
The first retrieval information block (RIB) of a file. This
block contains all of the user arguments.

Privileged program

(1) Any program running under project
number 1, programmer number 2.
A monitor support program executed by a
monitor command and, therefore, has the
JACCT (job status bit) set, for example,
LOGOUT.

(2)

Priority interrupt

The interrupt that usurps control of the computer pro-
gram or system and jumps to an interrupt service rou-
tine if its priority is higher than the interrupt currently
being serviced, if any.

Process

A collection of segments that perform a particular task.
A hardware state is associated with a process: a virtual
memory, a processor, a stack, etc.

Program break
The length of a program; the first location not used by a
program (before relocation).

Program counter (PC)

Aregister that, at the beginning of each instruction, nor-
mally contains an address one greater than the location
of the current instruction.

Programmed operators

Instructions which, instead of doing computation, cause
a jump into the monitor system or the user area at a pre-
determined point. The monitor interprets these entries
as commands from the user program to perform speci-
fied operations.

Program origin )
The location assigned by the LOADER to relocatable
zero of a program.

- 40 -

4-10

Project-programmer number

Two octal quantities, separated by commas, which,
when considered as a unit, identify the user and his file
storage area on a file structure.

Protected location

A storage location reserved for special purposes in
which data cannot be stored without undergoing a
screening procedure to establish suitability for storage
therein.

Protection address
The maximum relative address that the user can refer-
ence.

Pseudo-op

An operation that is not part of the computer’s operation
repertoire as realized by hardware; hence, an extension
of the set of machine operations. In MACRO, pseudo-ops
are directions for assembly operations.

Public disk pack
A disk pack belonging to the storage pool and whose stor-
age is available to all users.

Pure code

Code which is never modified in the process of execu-
tion. Therefore, it is possible to let many users share the
same copy of a program.

Pushdown list

Alist that is constructed and maintained so that the item
to be retrieved is the most recently stored item in the
list,i.e., last in, first out.

QMANGR

The Batch queue manager. QMANGR is called by
BATCON to schedule jobs by computing and dynami-
cally revising job priorities.

Quantum time
The run time given to each job when it is assigned to run.

QUE
The system-wide name defining the location of the spool-
ing and operator work-request queues.

Queue
(1) A list of jobs to be scheduled or run
according to system, operator, or user-
assigned priorities. Examples: Batch
input queue, spooling queues, monitor
scheduling queues.



- 4] -

(2) The system program that allows users to
add, delete, list, or modify queue entries
in the various system queues.

QUOLST

A program that prints the user’s quotas for each file
structure in his search list and the number of free blocks
available in each file structure.

QUOTA.SYS
The file that contains a list of users and their quotas for
the private file structure on which the file resides.

Random access
A process in which the access time is effectively inde-
pendent of the location of the data.

REACT

A program for maintaining administrative control files.
It can be used to create, modify, delete or list entries in a
file.

Read
To open a file for input.

Record
A collection of related items of data treated as a unit.

Reentrant program
A two-segment program composed of a sharable and
non-sharable segment.

Reformat
To write new headers on a disk pack using the D50B diag-
nostic program.

Refresh
To remove all files from a file structure and to build the
initial set of files based on information in the HOM block.

Relative address
The address before hardware or software relocation is
added.

Relocate

To move a routine from one portion of storage to another
and to adjust the necessary address references so that
the routine can be executed in its new location.

Relocation address
The absolute core address of the first location in the
program segment.

4-11

INTRO TO SOFTWARE

Relocation constant

The number added by the LOADER to every relocatable
reference within a program. The relocation constant is
the relocated break of the previous program.

Remote Batch

A feature of the computing system that allows data
I/0 and job control of Batch processing from a distant
terminal over a synchronous communication link.

Remote peripherals

The 1/0 devices and other data processing equipment,
except the central processor, located at the site of the
remote Batch terminal.

Removing a file structure

The process of physically removing a file structure from
the system. This is requested with the REMOVE switch
in the DISMOUNT command string and requires the op-
erator’s approval.

Response time
The time between the generation of an inquiry and the
receipt of anresponse.

Return
(1) The set of instructions at the end of a
subroutine that permits control to return
to the proper point in the main program.
(2) The point in the main program to which
control is returned.

Run
To transfer a save file from a device into core and to
begin execution.

RUNOFF
A program that facilitates the preparation of typed or
printed manuscripts by performing formatting, case
shifting, line justification, page numbering, titling, and
indexing.

SAT.SYS

“The Storage Allocation Table file which contains a bit for

each cluster in the file structure. Clusters which are free
are indicated by zero and clusters which are bad, allo-
cated and non-existent are indicated by one. .

Save

To produce a save file from a core image using a bootst-
rap program or the monitor. This operation is the
opposite of the GET operation.



INTRO TO SOFTWARE

SCRIPT

A program that sends predetermined sequences of char-
acters over multiple pseudo-TTYs in order to simulate a
load on the system for analysis.

Search
The Controller reads sector headers to find the correct
sector. The second step in the transfer operation.

Sector
A physical portion of a mass storage device.

Segment

Alogical collection of data, either program data or code,
that is the building block of a program. The monitor
keeps a segment in core and/or on the swapping device.

Segment Resident Block
A block that contains all the information that the moni-
tor requires for a particular segment.

SETSRC

A program that allows the user to list or change the
search list that is automatically set up for him at job in-
itialization time.

SFD
A directory pointed to by a UFD or a higher-level SFD.
These directories exist as files under the UFD.

Sharable segment
A segment which can be used by several users at a time.

Shared code
Pure code residing in the high segment of user’s core.

Single access

The status of a file structure that allows only one par-
ticular job to access the file structure. This job is the one
whose project number matches the project number of
the owner of the file structure.

Skip
An instruction that causes control to bypass one instruc-
tion and proceed to the next instruction.

Spooling

The technique by which output to slow-speed devices is
placed into queues to await transmission; this allows
more efficient use of the particular device, core
memory, and the central processor unit.

Static dump

A dump that is performed at a particular point in time
with respect to a machine run, frequently at the end of a
run.

4-12

- 42 -

STRLST.SYS

The administrative file that describes each file struc-
ture in the system. This file is used by the MOUNT com-
mand only.

Sub-directory
A continued SFD.

Supersede

To open a file for writing, write the file and close the file
when an older copy of the same name already exists.
Only one user at a time may supersede a given file at any
one time. The older copy of the file is deleted when all
users are finished reading it.

Super-cluster

A contiguous set of one or more clusters introduced to
compress the file pointer for large units into 18 bits. See
compressed file pointer.

Swapping
The movement by the monitor of user programs be-
tween core and secondary storage.

Swapping class
The classes of swapping units divided according to
speed. Class 0 contains the fastest swapping units.

Swapping device
Secondary storage that is suitable for swapping, usually
a high-speed disk or drum.

SWAP.SYS
The file containing the swapping area on a file strucutre.

Symbolic address

An address used to specify a storage location in the con-
text of a particular program. Symbolic addresses must
then be translated into absolute addresses by the assem-
bler.

Symbeol table
A table which contains all defined symbols and the
binary value assigned to each symbol.

SYS

A system-wide logical name for the system library. This
is the area where the standard programs of the system
are maintained.

SYSDPY
A variation of the SYSTAT program which runs on a
keyboard display at up to 2400 baud.



- 43 -

SYS search list
The file structure search list defined at ONCE-ONLY
time for device SYS.

SYSTAT
A program that displays on the user’s terminal the
status of the system at any time.

TECO

A sophisticated text editor and corrector program that
allows simple editing requests, character string
searches, complex program editing, command repeti-
tion, and text block movement. TECO editing is per-
formed on files recorded in ASCII characters.

TENDMP
A utility program used to save and restore core images
on DECtape or magnetic tape. It operates only in execu-
tive mode.

Total user core
The amount of physical core which can be used for
locked and unlocked jobs.

Track

The portion of a moving storage medium, such as disk,
drum, or tape, that is accessible to a given reading head
position.

Transfer operation

The hardware operation of connecting a channel to a
controller and a controller to a unit for passing data be-
tween the memory and the unit. The transfer operation
involves verification, search, and actual transfer.

Trap

An unprogrammed conditional jump to a known loca-
tion, automatically activated by a side effect of execu-
ting a processor instruction. The location from which the
jump occurred is then recorded. It is distinguished from
an interrupt which is caused by an external event.

Two’s complement

A number used to represent the negative of a given
value. This number is obtained by alternating the bit
configuration of each bit in the binary number and
adding one to the result.

UFD

A file whose entries are the names of files existing in a
given project-programmer number area within a file
structure.

UMOUNT

A program for user interfacing for the handling of

requests concerning removable media.

4-13

INTRO TO SOFTWARE

Unconditional transfer
An instruction which transfers control to a specified lo-
cation.

Unit

The smallest portion of a device that can be positioned
independently from all other units. Several examples of
units are: a disk, a disk pack, and a drum.

Update

To open a file for reading and writing simultaneously on
the same software channel, rewrite one or more blocks
in place, and close the file. Only one user at a time may
update a given file.

User
A person who utilizes the facilities of the DECsystem-10.

User file directory
See UFD.

User I/0 mode

The central processor mode that allows privileged user
programs to be run with automatic protection and relo-
cation in effect, as well as the normal execution of all de-
fined operation codes.

User library
Any user file containing one or more programs of which
some or all can be loaded in library search mode.

User mode

A hardware-defined state during which instructions are
executed normally except for all I/0 and HALT instruc-
tions which cause immediate jumps to the monitor. This
makes it possible to prevent the user from interferring
with other users or with the operation of the monitor.
Memory protection and location are in effect so that the
user can modify only his area of core.

User program
All of the code running under control of the monitor in an
addressing space of its own.

Verification

The controller reads sector headers to see if the mechan-
ical parts of the system have correctly positioned the
arm. The first step in the transfer operation.

Vestigial job data area

The first 10 locations of the high segment used to contain
data for initializing certain locations in the job data
area.



INTRO TO SOFTWARE

Virtual core
The size of the job, both low and high segments.

Wildcard construction

A technique used to designate a group of files without
enumerating each file separately. The filename, exten-
sion, or project-programmer number in a file specifica-
tion can be replaced totally with an asterisk or partially
with a question mark to represent the group of files de-
sired.

— 44 -

4-14

Word

An ordered set of bits which occupies one storage loca-
tion and is treated by the computer circuits as a unit. The
word length of the DECsystem-10is 36 bits.

Zero compression
The technique of compressing a core image by eliminat-
ing consecutive blocks of zeros.



- 45 -

DECsystem-10 is the name for the family of DEC’s large
computing systems. Each of the five systems in the
DECsystem-10 range is centered around one or two
PDP-10 central processors. The systems are dis-
tinguished from each other by their range of perform-
ance, which is achieved by adding more hardware. The
additional hardware that increases performance in the
expansion from a small to a larger system includes:
swapping devices, central processors, core memories,
and peripheral equipment, including data commu-
nications systems. The systems have no fixed hardware
boundary because an individual system can be expanded
to any size. No software changes are required in ex-
panding an individual system; all configurations of the
DECsystem-10 use the same operating system for all ap-
plications.

A.1 DECsystem-1040

The 1040 is the smallest of the five systems. The typical
configuration of this system has a KA10 central
processor, 32 to 64K high-speed ME10 core memories,
the RP02G disk system with up to two disk packs, the
TM10G magnetic tape system with up to two drives, and
low-speed peripheral equipment including a CR10F card-
reader, an LP10A line printer, and local DC10 lines. This
is an excellent system for the scientific research lab
where multiple real-time tasks and general computing
are required, and also for small colleges where there is a
need for handling administrative, student, and faculty
workloads simultaneously. The system is easily ex-
pandable with most equipment on the DECsystem-10
Equipment List.

A.2 BECsystem-1050

The 1050 is a full capability, medium pewer system. The
addition of a high-speed RM16G swapping drum system
sitbstantially increases the number of simultaneous
users on the system. Other components of this system in-
clude: the KA10 central precessor, 64 te 96K high-speed

INTRO TO SOFTWARE

APPENDIX A
DECsystem-10 HARDWARE

ME10 core memories, the RP02G disk system with up to
four disk packs, the TM10G magnetic tape system, the
CR10D card reader, the LP10C line printer, and 32 local
lines in either the DC10 or DC68A communications
system. The 1050 is well-suited for the educational and
scientific environments because it has the capability of
running ALGOL, BASIC, COBOL,and FORTRAN com-
pilers concurrently on a configuration that is economic-
ally priced and easy to learn and use. Business data
processing areas find that with the 1050, COBOL
program preparation is enhanced by interactive editing
and debugging via local or remote terminals.

A.3 DECsystem-1055

The 1055 is the dual processor equivalent of DECsystem-
1050 with fast execution of compute-bound jobs because
of the addition of the second processor. This system has
two parallel KA10 processors connected with one oper-
ating system in order to double the computing power of
the 1050 and at the same time to maintain the same inter-
face between the user and the computing system. This
approach of co-equal processors gives the user in-
creased computing capacity when processing power is in
heavy demand under multi-task loads. In addition to the
two KA10 processors, the typical 1055 has 80K of ME10
core memories, with one MX10 memory port
multiplexer, one RM10G drum system, one RP03G disk
system with up to eight disk packs, one TU40G, 120KC
magnetic tape system, one CR10 card reader, the LP10C
line printer, and 32 local lines, either a DC10 system or a
DC68A system.

A.4 DECsystem-1670

The 1670 is a large-scale cemputing system with mere
than twice the central processor speed of the
DECsystem-1050 beeause of the KI10 central precesser.
This processor has hardware memoeory paging, deuble--
precision fleating-point arithmetic, instruction leek-
ahead, and virtual memery eapability. In addition to the



INTRO TO SOFTWARE

KI10 processor, the typical 1070 comprises at least 96K
(480K bytes) of ME10 core memory, 690K words (4.1 mil-
lion characters) of RM10G high-speed drum storage, an
RP03G disk system of four disk drives with a total of 41.6
million words (249.6 million characters) of storage,
TU40G magnetic tape system with three 120KC drives, a
1200 character-per-minute CR10E card reader, a 1000
line-per-minute LP10C line printer and a communication
system capable of 128 lines (either DC10 or DC68A).
With the increased memory size, the high performance
peripheral systems, and the large file system, the 1070 is
configured for maximum support of remote batch
capabilities through the synchronous communication
equipment. Multiple remote stations have simultaneous
access to the DECsystem-1070, with each capable of con-
centrating up to 16 terminals to its computer.

A.5 DECsystem-1077

The 1077 is the dual-processor 1070 with fast execution of
computing loads because of the second KI10 central
processor. In addition, this system typically has 128K
(640K bytes) of core memory, 690K words (4.1 million
characters) of RM10G drum storage, a RP03G disk
system with four disk drives for a total of 41.6 million
words (249.6 million characters) of storage, a TU40G
magnetic tape system with four 120KC drives, a 1000
line-per-minute LP10C line printer, a 1200 character-per-
minute CR10E card reader, and a DC10 or DC68A com-
munication system capable of 128 lines. In expanding to
the 1077 from a smaller system, the user notices in-
creased computing power, but he does not need to
change his programs or learn a new command language
or operating system.

A.6 PROCESSOR — KA10

The KA10 arithmetic processor is the processing unit for
the three smallest DECsystem-10 machines. Its stan-
dard I/0 devices are: a. a 300 character-per-second
photoelectric paper-tape reader, b. a 50 character-per-
second paper-tape punch, c. an operator’s console that
provides the operator with information and intervention
capabilities when desired, and d. a standard Model
35KSR console teleprinter operating at 10 characters-
per-second (considered as part of the operator’s con-
sole). The 36-bit instruction word format of the KA10
provides 512 operation codes, of which 366 are hard-
wired. The remainder are programmed operators or are
reserved for future use.

The fast registers, KM10, are sixteen 36-bit integrated
circuit registers used as multiple accumulators, index
registers, or memory locations. These registers have an

- 46 -

A-2

access time of 200 ns and when used as memory
locations can double the execution speed of a program.
The dual memory protection and relocation registers,
KT10A, allow the software to define two areas for each
user and to protect the remaining of core from these
users.

The priority interrupt system of the central processor
has seven levels of interrupts for the devices attached to
the I/O bus. The entire priority interrupt system is
programmable. With software, any number of devices
can be attached to any level, individual levels or the
entire priority interrupt system can be deactivated and
later reactivated, and interrupts can be requested on
any level. With the executive control logic, the KA10 op-
erates in one of three modes: a. executive mode, which
allows all instructions to be executed and suppresses
relocation. b. user mode, in which some instructions are
not allowed (i.e., I/0 instructions) and relocation and
protection are in effect, and c. user I1/0 mode, where all
instructions are valid but relocation and protection are
still in effect.

A.7PROCESSOR —KI10

The KI10 central processor used with the larger
DECsystem-10 machines is nearly twice as fast as the
KAI10 processor. This increase in speed results from the
use of different architecture, faster circuits, a more
complex adder, improved algorithms, and lookahead in-
struction logic, which obtains the next instruction during
the execution of the current instruction.

Core memory is managed by the paging system of the
KI10. This system allows the user program to access an
effective address space of up to 256K words. This space
is segmented into 512,, pages of 512, contiguous words
each. These pages do not have to be contiguous in the
‘physical core memory.

The KI10 processor provides memory address mapping
from a program’s effective address space to the
physical address space by substitution of the most
significant bits of the effective address. This mapping
provides access to the entire physical memory space,
which is 16 times larger than the effective address
space. (The program’s effective address space is 256K
(18 bits) ; the physical address space is 4096K (22 bits)).
Memory mapping takes place using a page table as
follows: the most significant nine bits of the effective
address, the page number, is used as an index into the
appropriate page table. The effective page number is
then replaced by the information located in the page
table entry. This information is a physical page number



- 47 -

of 13 bits. These 13 bits are concatenated with the least
significant 9 bits of the effective address, the word
address within the page, in order to form the 22-bit
physical address. More core is then able to be addressed
when providing a physical address space much larger
than the effective address space. This gives programs
the ability to access 4 million words.

Eight instructions for double-precision floating-point
arithmetic and three instructions for converting be-
tween fixed-point and floating-point formats are in the
KI10 instruction repertoire. The double-precision word
format gives precision of 1 part in 4.6 x 10 '8 and an ex-
ponent to the power of 256.

- The KI10 processor provides measures for handling-
arithmetic overflow and underflow conditions,
pushdown list overflow conditions, and page failure con-
ditions directly by the execution of programmed trap in-
structions instead of resorting to a program interrupt
system. The trap instruction is executed in the same
address space as the instruction that caused the trap.
Therefore, user programs can handle their own traps by
directing the monitor to place a jump to a user routine in
the traplocation.

The maximum uninterruptable interval on the priority
interrupt system is 10us. The I/0 bus cycle time of the

KI10 processor is 2.7 us . Interrupt response is enhanced |

by the four blocks of general-purpose registers. Each
block contains 16 registers that facilitate both rapid con-
text switching between programs and interrupt han-
dling.

The KI10 operates in one of two modes, user mode and
exec mode. Each of these modes have two submodes: a.
public mode and concealed mode in user mode, and b. su-
pervisor mode and kernel mode in exec mode.

User programs operate in user mode. In this mode, the
program can access up to 256K words. All instructions
are legal except those that interfere with other users or
the integrity of the system. A program in public mode
can transfer to a program in concealed mode only by
transferring to locations that have ENTRY instructions.
A program in concealed mode can read, write (if
allowed), execute, and transfer to any location desig-
nated as public. Concealed mode allows the loading of
proprietary software with a user program and data, but
prevents the user program from changing or copying the
software. This provides direct interaction between the
user and the proprietary software with virtually no over-
head.

A3

INTRO TO SOFTWARE

The operating system operates in exec mode. The small-
er part of the operating system operates in kernel mode
and performs both /0O for the system and any functions
that effect all users of the system. The larger part of the
operating system operates in supervisor mode and per-
forms general management of the system and the func-
tions that effect only one user at atime.

A.8 CORE MEMORIES

The ME10 core memory contains 16,384 words with a
read access time of 600 nanoseconds and a full cycle time
of one microsecond. Up to 16 memory modules can be
connected to provide 256K of core storage. Each module
can contain up to four ports. This memory features both
two-and four-way interleaving with switches on each
memory module. It is specifically built for the KI10
processor in that it can recognize the 22-bit address
space. It also takes advantage of the overlap memory
control of the KI10, which results in a 20% increase in
speed.

The MD10G mass memory system consists of 64K MD10
core memory and a MD10E including cables. The basic
unit of the MD10 memory has 65,536 words of storage at
36 bits per word. The unit has an access time of 830 ns, a
cycle time of 1.8 s, and two-or four-way interleaving
between cabnets. This memory is equipped with four
access ports for connection to the processor and data
channels. The MD10E core memory expansion module
expands the MD10E up to 128K in increments of 32,768
words.

The MD10H mass memory system consists of 128K
MD10 core memories and three MD10Es including
cables.

A.9 DRUMSYSTEM

The RM10G drum system consists of a DF10 data chan-
nel, a RC10 fixed-head drum control, and a RM10B fixed-
head drum. The DF10 controls the transfer of data be-
tween a device controller and one port in memory. Up to
eight controllers or special devices can be connected to
the DF10, providing one data path to core memory. In
other words, one device can be transferring data, and
other devices on the DF10 must wait until the device has
completed the data transfer. The rate of transfer is
determined by the speed of the device using the DF10.
The RC10 controls up to four RM10B drums. It connects
to the processor via the 1/0 bus for control and status in-
formation. Under program control, it establishes a data
path between the drum and a core memory port via the



INTRO TO SOFTWARE

DF10. The RM10B provides 345,000 36-bit words for fast-
access storage available for swapping, data storage, and
program libraries. It has an average latency time of 8.5
ms and an average transfer time of 4.5 us per 36-bit
word (or about 10.2ms and 5.4 us respectively when op-
erating with 50 Hz power). Due to its speed, the drum
should be connected to the highest priority memory port
via the DF10.

A.10 DISK SYSTEMS

The RP02G disk system consists of the DF10 data chan-
nel, a RP10 disk control, and two RP02 disk pack drives.
The RP10 disk control can provide control of up to eight
RP02 disk pack drives. It connects to a DF10 data chan-
nel and the I/0 bus. The RP02 disk drive provides stor-
age for up to 5,120,000 36-bit words on interchangeable
disk packs. The average access time is 47.5 ms, which in-
cludes 12.5 ms average rotational latency, and the trans-
fer rate is 15 us per word.

The RP03G disk system includes a DF10 data channel, a
RP10C disk control, and four RP03 disk pack drives. The
RP10C can control up to eight RP02 or RP03 (or a com-
bination of the two) disk pack drives. The RP03 has a
total of 400 cylinders that give twice the storage capacity
of the RP02.The average access time is 41.5 ms including
the 12.5 ms average rotational latency, and the transfer
rate is identical to the RP02.

The maximum disk system storage capacity is: up to
four controllers, each with eight drives, giving a total of
327,680,000 words, or in excess of 1.966 x 10 9 characters
of on-line storage.

A.11 MAGNETIC TAPE SYSTEMS

The TD10G DECtape system consists of a TD10
DECtape controller and a TU56 DECtape transport. The
TD10 controls either four TU56 dual DECtape transports
or eight TU55 DECtape transports. Data is transferred
between the TD10 and the central processor over the I/0
bus at the average rate of one 36-bit word every 400 us.
The TU56 transport reads and writes magnetic tape at
15K characters per second. The tapes are 3-3/4 in. in
diameter, 260 ft. long, and 3/4 in. wide. Each tape has a
directory providing random access to user files. The

- 48 -

1/0 bus. The data transfer rate is determined by the
speed and density of the drive being controlled. The
TU10 magnetic tape unit reads and writes 9-channel
(TU10E) or 7-channel (TU10F) industry standard tape at
45in. per second and a density of 200, 556, and 800 bits per
inch (TU10E) or bits per second (TU10F). The TU20A
magnetic tape unit reads and writes 9-channel USASI
standard magnetic tape at a rate of 45 in. per second and
with a density of 800 bits per inch. The TM10 controller
assembles four 8-bit characters per 36-bit word transfer.
The TU20B magnetic tape unit reads and writes 7-chan-
nel industry standard magnetic tape at the rate of 45 in.
per second and with densities of 200, 556, and 800 bits per
inch. The TM10 controller assembles six 6-bit characters
per 36-bit word for transfer.

The TU40G 120KC magnetic tape system includes a
DF'10 data channel, a TM10B magnetic tape control, and
two TU40 magnetic tape units. The DF10 controls the
transfer of data between eight device controllers and
one port of core memory. The TM10B controls up to
eight tape transports. This control uses the I/O bus to re-
ceive information from and to provide status to the
processor. It establishes a data path from the tape trans-
port to core memory via the DF10. The transfer rate of
the control is determined by the speed and density of the
tape transport performing the transfer. The TU40 reads
and writes 9-channel USASI standard magnetic tape at
150 in. per second and a density of 200, 556, and 800 bits
per inch. The TU41 reads and writes 7-channel industry
standard tape at 150 in. per second and a density of 200,
556, and 800 bits per inch.

A.12INPUT/OUTPUT DEVICES
A.12.1 Card Readers

The card readers offered with the DECsystem-10 have

_ insignificant card wear, high tolerance to damaged

tape units are bidirectional and redundantly recorded,

resulting in greater maintainability and reliability.

The TM10G 36KC magnetic tape system has a TM10A
magnetic tape control and either two TU10 or two TU20
magnetic tape units. The TM10A controls the operation
of up to eight tape transports and provides a data path
from the tape transport to the central processor via the

A-4

cards and are virtually jamproof. The life of an individ-
ual card has been proven to be in excess of 1000 passes.
These readers are designed to permit the operator to
load and unload cards while the reader is operating.

The CR10D card reader is a table-top model that reads
80-column EIA standard cards at 1000 cards per minute.
The capacity of the card hopper is 1000 cards. The card
reader controller connects to the BA10 hard copy con-
troller.

The CRI10E console model card reader inputs 80-column
EIA standard cards at 1200 cards per minute. The max-
imum number of cards held by the input and output
hoppers is 2250 cards. The controller is mounted in the
BA10 hard copy controller cabinet.



- 49 -

The CR10F card reader is a table-top model and reads
80-column EIA standard cards at the rate of 300 cards
per minute. The hopper of the CR10F holds 600 cards.
The controller connects to the BA10 hard copy con-
troller.

A.12.2 Card Punch

The CP10A card punch punches cards at the rate of
either 200 cards per minute when punching all 80
columns or 365 cards per minute when punching only the
first 16 columns. The card hopper and stacker capacities
are 1000 cards. The card punch controller is mounted in
the BA10 hard copy controller cabinet.

A.12.3 Line Printers

The 64-character LP10A line printer prints 300 lines per
minute and 132 columns per line. The printable charac-
ter set is composed up upper-case characters, numbers,
and special characters. The line printer is connected to
the I/0 bus via a controller mounted in the BA10 hard
copy controller.

The 64-character LP10C line printer prints 1000 lines per
minute and 132 columns per line. The printable charac-
ter set is the same as the LP10A character set. The line
printer is connected to the I/O bus with the BA10 hard
copy controller.

A.12.4 Plotters

The XY plotter control is the interface for CalComp 500
and 600 series digital incremental plotters. It is normally
mounted in the BA10 hard copy controller, but can be
mounted in the TD10 DECtape controller cabinet.

A.12.4.1 XY10A CalComp Plotter Model 565—The XY10A
plotter is interfaced to the I/O bus via a controller
mounted in the BA10. This plotter has the following spec-
ifications:

Step Size Steps Minute Width of paper
0.01in. 18,000 12in.
0.005 in. 18,000 12in.
0.1mm 18,000 12in.

A.12.4.2XY10B CalComp Plotter Model 563— The XY10B
plotter is interfaced to the I/O bus via a controller

A-5

INTRO TO SOFTWARE

mounted in the BA10. The plotter has the following speci-
fications:

Step Size Steps Minute Width of paper
0.01in. 12,000 3lin.
0.005 in. 18,000 3lin.
0.1mm 18,000 3lin.

A.12.5 BA10 Hard Copy Control

The BA10 control cabinet contains the controllers for the
card readers, card punch, line printers, and plotters. It
has the power supplies and fans necessary to support the
controllers.

A.13 TELETYPES AND TERMINALS

The Teletypes and Terminals used on the DC10 and the
DC68A are similar except for different cables and inter-
face connectors.

A.13.1 Local DC10 Use

The LT33A teleprinter is the 33TS machine (33KSR,
friction feed).

The LT33B teleprinter is the 33TY machine (33ASR,
sprocket feed, automatic reader control XON/XOFF
feature).

The LT35A teleprinter is the VSL312HF machine
(35KSR, sprocket feed).

A.13.2 Local DC68A Use

The LT33C teleprinter is the 33TS machine (33KSR,
friction feed).

The LT33H teleprinter is the 33TY machine (33ASR,
sprocket feed, automatic reader control XON/XOFF
feature).

The LT35C teleprinter is the VSL312HF machine
(35KSR, sprocket feed). ‘

A.13.3 CRT displays

The VT06 alphanumeric terminal is a CRT display
terminal capable of transmitting data locally or over
standard phone lines using data sets conforming to the
RS-232-C standard. The VT06 can functionally be inter-
changed with a teleprinter. In addition, the VT06 can be



INTRO TO SOFTWARE

used for display-oriented operations by utilizing the
cursor-control features. It has 25 lines of 72 characters
each and operates asychronously full-or half-duplex at a
variety of baud rates up to 2400 baud, selectable by a
switch on the rear panel.

The VT05 alphanumeric terminal is a CRT display
terminal capable of full-and half-duplex data trans-
mission at rates up to 300 baud. Alphanumerics can be
superimposed over a video image derived from closed
circuit TV or video tape.

A.14 DATA COMMUNICATIONS SYSTEMS

The data communication equipment includes two
systems for asychronous communications (hardwired
and programmable), two systems for synchronous com-
munications (low capacity and high capacity) and a
remote batch terminal.

A.14.1 DC10 Data Line Scanner

The DC10 hardwired data line scanner interfaces
asychronous communications lines to the processor via
the I/0 bus. The DC10A control unit is the basic unit and
contains the I/0 interface and control logic. This unit
provides on-line servicing of up to 64 local commu-
nication lines. It accomodates any device that uses
eight-or five-level serial teletype code. Standard system

software supports interactive ASCII terminals at speeds

up to 2400 baud. For some special communication appli-
cations, the DC10 can operate at higher speeds. Full-
duplex with local copy and half-duplex data modes are
available on each line serviced.

The DC10B is an eight-line group unit connected to the
DC10A and provides an interface for up to eight local
lines. It can be used in full-duplex or full-duplex with
local copy operation. To provide carrier detection or
data set status control, the DC10E is required.

The DC10C eight-line telegraph relay assembly provides
an interface to long distance telegraph lines using full-or
half-duplex facilities.

The DC10D telegraph power supply is the standard line
voltage supply used with DC10C (120 Vdc at 2A).

The DC10E data set control provides expanded
processor control of eight data sets in the DC10 system.

A-6

-50 -

A.14.2 DC68A Communication System

The DC68A programmable communications system is
built around the 680/I communications version of the
PDP-8/1. Characters are assembled via program con-
trol, which results in a very low incremental cost per-
line. The DC68A is optimized for a large number of 110
baud lines, but will operate at speeds up to 300 baud. The
PDP-8/1is under monitor control and transfer across the
interface occurs on the character-by-character basis.
The DC68A provides on-line servicing of up to 63 commu-
nication lines. Terminals can be local or remote through
data sets. The standard configuration includes one DA10
interface, one PDP-8/I-D computer (4K of memory with
MP8/I parity option, and a Model 33ASR teleprinter),
one DL8/I serial line adapter, one DC08A serial line
multiplexor, and three clocks for line frequency oper-
ations at 110, 150, or 300 baud rates. Additional options
mentioned in this section are required for implementing
a specific number of local or data sets.

The M750 dual serial line adapter implements two full-
duplex channels in the basic communication system.
One unit is required for every two local or data set lines.
The DC08B local line panel accommodates up to 48 local
terminals suitable for direct 680/1 connection. The
DCO08F modem interface and control multiplexor accom-
modates up to 32 dual modem control units to handle up
to 64 asynchronous lines. The DC08G dual modem con-
trol unit implements two modem control units in the
DCOo8F. It includes 25 ft. cables with modem connector
DB-25D. '

A.14.3 DS10 Synchrenous Line Unit

The DS10 synchronous line unit is an interface between
the DECsystem-10 1/0 bus and one full-or half-duplex
voice grade synchronous modem to a remote batch
terminal, high-speed display, remote job entry station,
or another computer. The synchronous modem meets
EIA RS-232B or C standards, such as the Bell System
201B. System software supports full-duplex operation of
an DS10 at up to 9600 baud, or two DS10s at up to 4800
baud each.

A.14.4 DC75 Synchronous Communications System

The DC75 synchronous communication system is a PDP-
11-based front-end system designed to efficiently handle
multiple synchronous lines. The basic DC75 system in-
cludes a DL10 interface, one PDP-11/20, and a DS11 syn-
chronous modem interface implemented for eight lines.



- 5] -

The DL10 is a direct memory interface between the
DECsystem-10 memory and the PDP-11 commu-
nications processor. Each DL10 can connect up to four
PDP-11s.

A basic DC75 system can handle eight full-duplex lines at
speeds up to 4800 baud each, or four lines at 9600 baud. It
can be expanded to handle 16 lines at 2400 baud by
implementing additional DS11 line capability.

For applications requiring additional line capability at
4800 baud or 9600 baud, up to three additional PDP-
11/DS11 combinations can be added to the DL10 inter-
face unit. Each additional PDP-11/DS11 combination
provides a line throughput capability equal to the initial
system.

For special applications, the DC75 can be programmed
to handle a mix of line speeds, character sizes, and
message formats. The DS11 modem interface hardware

A-7

INTRO TO SOFTWARE

has provision for 6-, 8-, or 12-bit character sizes, and
these characters can be efficiently packed into
DECsystem-10 memory by the DL10.

A.14.5 DC71 Remote Batch Station

The DC71 remote batch station consists of a PDP-8/1
processor, an operator Teletype, a card reader, a line
printer, and a synchronous interface. The DC71 connects
to the DS10 or the DC75 via a full-duplex synchronous
communications link. The remote batch terminal can be
either a DC71A or DC71B terminal. The DC71A is con-
figured with a 132-column line printer with a 64-charac-
ter set. The DC71B is configured with a 96-character set
line printer. The DC71D Teletype Concentrator package
includes eight lines for connecting to the DC71A or
DC71B. Another eight lines can be added by connecting
the DC71E to the DC71D. Terminals can be Teletypes,
VTo06 or VT05 display terminals, or other teletype-com-
patible terminal interfaces, at speeds up to 2400 baud.



INTRO TO SOFTWARE

-52 -



_53_

DEC-10-MTWB-D

QeCSUSteMIC
GETTING STARTED
WITH TIMESHARING

digital equipment corporation - maynard. massachusetts




TIMESHARING - 54 -

Ist Printing June 1971
2nd Printing July 1972

Copyright © 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa-

tion purposes and is subject to change with-
out notice.

The following are trademarks of Digital Equip-
ment Corporation, Maynard, Massachusetts:
DEC PDP

FLIP CHIP FOCAL

DIGITAL COMPUTER LAB



—

o
—— O O O U A W N

RS E—
—

o o o

o~

Do ki o ki o

NV N0 0 0 NV VYV V0 00N NN N OO0 A D AEWWWDN
—-— O —- O W N

.
—

.
—

_55_

CONTENTS

Getting on the System
Files

Creating Files

The CREATE Command
The MAKE Command
Editing Files

The EDIT Command
The TECO Command
Manipulating Files
The DIRECT Command
The TYPE Command
The DELETE Command
The RENAME Command

Translating, Loading, Executing, Debugging Programs

The COMPILE Command

The LOAD Command

The EXECUTE Command

The DEBUG Command
Getting Information from the System
The PJOB Command

The DAYTIME Command

The TIME Command

Leaving the System -

The KJOB Comrﬁcnd

How to Live with the Terminal
Control -C

The RETURN Key

The RUBOUT Key

Control -U

The ALTMODE Key

Control -O

Peripheral Devices

Commands to Allocate System Resources

The ASSIGN Command

aee
1t

TIMESHARING

Page

59
61
62
63

gL

65
65
66
66
67
67
67
67
68
68
69
70
71
71
71
72
72
73
73
74
74
74
75
75
75
77
77




TIMESHARING

—
— O N O 0 b W N

—
.l\)
- O W N

13.3
14.0
14.1
14.2
14.3
14.4
15.0
15.1
15.2
15.3
16.0

16.1
16.2

Table No.

1

_56-

CONTENTS (Cont)

The MOUNT Command

The DEASSIGN Command

The DISMOUNT Command

The REASSIGN Command

The FINISH Command

The CORE Command

Commands to Manipulate Terminals
The SEND Command

The DETACH Command

The ATTACH Command

Commands to Request Line Printer Output
The PRINT Command

The CREF Command

The DIRECT Command

Commands to Manipulate Core Images
The SAVE Command

The RUN Command

The R Command

The GET Command

Commands to Start a Program

The START Command

The HALT (tC) Command

The CONTINUE Command

Additional Commands to Get Information from the

System
The RESOURCES Command
The SYSTAT Command

TABLES

Title

Peripheral Devices

Page

78
79
79
79
80
80
80
80
81
81
81
81
82
82
83
83
83
83
84
84
84
84
84

85
85
85

Page

75



-57 - TIMESHARING

FOREWORD

Getting Started With Timesharing is a simplified guide intended for the beginning timesharing user of
the DECsystem=10. This document presents an overall view of the timesharing use of the System, but
does not descrjbe every command available to the user. DECsystem-10 OPERATING SYSTEM
COMMANDS (DEC-10-MRDC-D) is the complete reference document for the command repertoire,. and

it should be referred to for any additional information.




TIMESHARING

-58_



-5 - TIMESHARING

Programs are typed directly into the computer by means of the terminal. By typing in programs, you

establish communication with other programs already resident in the computer. The first resident pro-
gram you communicate with is the monitor, the most important program in the computer. The monitor
is the master program that plays an important role in the efficient operation of the computer. Just as
the terminal is your link with the computer, the monitor is your link with the programs within the com-

puter.

The monitor has many functions to perform, like keeping a record of what each user is doing and de-
ciding what user should be serviced next and for how long. The one function of the monitor that is of
greatest concern at this point is that the monitor retrieves any resident programs that you need. This
retrieval happens only if the monitor "understands" what is expected of it. The commands to the mon-
itor which are explained in the following sections are sufficient for the terminal to be the device by

which information is inputted into the system and by which the system outputs its results.

See section 9.0 for a.discussion on How to Live With
the Terminal.

1.0 GETTING ON THE SYSTEM

In order to gain access to the timesharing system, you must say hello to the system by "logging in".

The first move is to make contact with the computer facility by whatever means the facility has estab-
lished (e.g., acoustic coupler, telephone, or dataphone). Next, notice the plastic knob (the power
switch) on the lower right-hand side of thé terminal. This knob has three positions: ON, OFF, and
LOCAL (turning clockwise). When the knob is in the LOCAL position, the terminal is like a typewriter;
it is not communicating with the system at all. The knob must be turned to the ON position in order

to establish communication with the computer. When the terminal is turned ON, type a tC (depress

the CTRL key and type C). This action establishes communication with the monitor. The monitor

We wish to express appreciation to Stanford University for the use of their Stanford A-1 Project User's
Manual, Chapter 1, SAILON No. 54, as a guide in writing the material in this section.



TIMESHARING - 60 -

signifies its readiness to accept commands by responding with a period (.). All the commands discussed
in this document can only be typed to the monitor. They are operative when the monitor has typed a

period, signifying that it is waiting for a command.

The first program the monitor should call in for you is the LOGIN program. This is accomplished by
typing LOGIN followed by a carriage-return (depress the RETURN key). All commands to the monitor
should be terminated with a carriage-retum. When the monitor "sees" a carriage-retumn, it knows that

a command has been typed and it begins to execute the command.

In the text, underscoring is used to designate terminal output.
A carriage-return is designated by a ) .

By typing LOGIN, you cause the monitor to read the LOGIN program from the disk into core memory
and it is this program that is now in control of your terminal. Before the LOGIN program is called in,
the monitor assigns you a job number for system bookkeeping purposes. The system responds with an

information message similar to the following.

JoB 17 55021 8A TTY34
#

In the first line, the system has assigned your job number (17) and has given both the name of the mon-
itor and its version number and the number of your terminal line. The version number changes whenever
a change, or patch, is incorporated into the monitor. In the second line, the number sign (*), which

is typed out by the LOGIN program, signifies that it wants your identification.

The standard identification code is in the form of project numbers and programmer numbers, but indi-
vidual installations may have different codes. The numbers, or whatever code each installation uses,
are assigned to each user by the installation. The LOGIN program waits for you to type in your project
number and your programmer number, separated by a comma and terminated with a carriage-return,

following the number sign.

JOB 17  550218A  TTY34
#27,400 )

An alternate method of typing in your project number and programmer number is to type your identifica-
tion on the same line as the LOGIN command and to follow it with a carriage return. The system re-
sponds with the information message, and the LOGIN program does not type out the number sign. For
example,

<LOGIN 27,400 )
JoB 17  Sse2igA  ITY34




- 61 - "~ TIMESHARING

The LOGIN program needs one more item to complete its analysis of your identification. This it
requests in the next line by asking for your password.
JeB 17 SSM218A TTY34

#27,400 )
PASSWORD : P

Type in your password, which is also assigned by the installation, followed by a carriage-retum. To

maintain password security, the LOGIN program does not print the password.

If the identification typed in matches the identification stored in the accounting file in the monitor,

the LOGIN program signifies its acceptance by responding with the time, date, day of the week, the

message of the day (if any), and a period.

sLOGIN ) <LOGIN 27,400 )

JoB 17 5S@218A  TTY34 JOB 17  5Su21gA  TTY34
#27,400 ) PASSWORD :

PASSWORD : ) 1950  4-MAY-71  WED
1950 4-MAY-T1  WED TYPE SYS:SCHED FOR SYSTEN
TYPE SYS:SCHED FOR SYSTEM SCHEDULE

SCHEDULE <~

This typeout indicates that the LOGIN program has exited and returned control to the monitor. You
have successfully logged in and may now have the monitor call in other programs for you. If the iden-
tification typed in does not match the identification in the accounting file, the monitor types out the

error message

ZINVALID ENTRY-TRY AGAIN
#

If this error message occurs, type in the correct project-programmer numbers and password.

2.0 FILES

When you want to run a program, first type in the program and decide on a name for it. The program
is stored on the disk.with the specified name. Then translate the program by calling in a translator

and giving it the name of the program you wish to translate.

A program, or data, is stored on the disk in files. If a program is being typed in to a text editor (for
example, TECO), the editor is busy accepting the characters being typed in and generating a disk file
for them. Then, when the program is to be translated, the translator reads this file just created and
generates a relocatable binary file. Since you may have many files and the other users on the computer

may have files, there must be a method for keeping all of these files separate. This is accomplished by



TIMESHARING =62 -

giving each user a unique area on the disk. This area is identified by your project and programmer
numbers. For example, if your project and programmer numbers are 27,400, you have a disk area by

that name. Each file you create goes to your disk area and must be uniquely named.

Files are named with a certain convention, the same as a person is named. The first name, the file-
name, is the actual name of the file, and the last name, the filename extension, indicates what group

the file is associated with. The filename and the filename extension are separated by a period.

Filenames are from one to six letters or digits. All letters or digits after the sixth are ignored. The
filename extension is from one to three letters or digits. It is generally used to indicate the type of

information in the file. The following are examples of standard filename extensions.

.TMP Temporary file .

.MAC Source file in MACRO language

.F4 Source file in FORTRAN 1V language
.BAS Source file in BASIC language

.ALG Source file in ALGOL language
.CBL Source file in COBOL language

.REL Relocatable binary file

.SAV A saved core image

Since files are identified by the complete name and the project and programmer numbers, two users
may use the same filename as long as they have different project and programmer numbers; the files

would be distinct and separate. The following are examples of filenames with filename extensions.

MAIN.F4 A FORTRAN file named MAIN
SAMPLE.BAS A BASIC file named SAMPLE
TESTI.TMP A temporary file named TEST1
NAME.REL A relocatable binary file named NAME

3.0 CREATING FILES

The two commands mentioned in this section use two editors to create a new disk file. One of the
editors is LINED, a line-oriented editor, and the other is TECO, the Text Editor and Corrector (refer
to the LINED and TECO documents in the DECsystem=10 Software Néfebook;). Each command re-

quires a filename as its argument and should have a filename extension. A new file may be created

with either of these commands, depending on the editor desired.



3.1 The CREATE Command

=63 - TIMESHARING

The CREATE command is used only to create a new disk file. When this command is executed, the

monitor calls in LINED to initialize a disk file with the specified name and to accept input from the

terminal. At this point, begin to type in your program, line by line. LINED types a line number at

the beginning of each line so that later a reference to a given line may be made in order to make cor-

rections. Below is a sample program using the commands discussed so far.

tC

sLOGIN 27,400 ) Begin the login procedure and type in your

JoB 17

5S@218A  ITY34 The job number assigned, followed by the

Establish communication with the monitor.

Type C while depressing the CTRL key.

identification.

PASSWORD :

1050

monitor name and version and the terminal
line number. The LOGIN program requests
identification (project number and program-
mer number) if it was not typed on the same
line as the LOGIN command.

pj The LOGIN program requests password.
Type it in; it is not printed.

4-MAY-T1 WED If identification matches identification

TYPE SYS:SCHED FOR stored in the system, the monitor responds

SYSTEM SCHEDULE with the time, date, day of the week, mes-

.

sage of the day, and a period.

CRFATE MAINJF4 ) A new file on the disk is to be created and

| #

20210
anpen
o239

00040

| *

53

called MAIN.F4. The extension .F4 is used
because the program is to be a FORTRAN

source file. LINED is called in to create
the file.

Response from LINED signifying it is ready
to accept commands.

A command to LINED to insert line numbers
starting with 10 and incrementing by 10
(refer to the LINED document).

TYPE 53 ) Type in your FORTRAN PROGRAM,
FORMAT (' THIS 1S MY PKROGRAM') )

FND )

$ The @ (altmode) is a command to LINED
to end the insert. On the terminal this key
is labeled ALT, ESC, or PREFIX.

Response from LINED signifying it is ready
to accept another command.

A command to LINED to end the creation of
the file.



TIMESHARING - 64 -

* Response from LINED indicating readiness to
accept a command.

1C Retum to the monitor.

The monitor now has control of the program.

The three LINED commands (I, , E) shown in fhe-examples are fully discussed in the LINED

document.

3.2 The MAKE Command

This command can also be used to open a new disk file for creation. It differs from the CREATE com-

mand in that TECO is used instead of LINED. (TECO is discussed in the DECsystem=10 Software
Notebooks). Otherwise, the CREATE and MAKE commands operate in the same manner.

SMAKE  FILEA.F4 )
*I (Text input) L3
EX$®
EXIT

.
-

The altmode ($) and the EX command are commands to TECO and are explained in the TECO document.

4.0 EDITING FILES

After creating a text file, you may wish to modify, or edit, it. The following two commands cause
an existing file to be opened for changes. One command (EDIT) calls in LINED, and the other (TECO)
calls in TECO. In general, the editor used to create the file should be used for editing. Each com-

mand requires, as its argument, the same filename and filename extension used to create the file.

4,1 The EDIT Command

The EDIT command causes LINED to be called in and, o the name implies, signifies that you wish to
edit the specified file. LINED responds with an asterisk and waits for input. The file specified must
be an already existing sequence-numbered file on the disk. For example, in Paragraph 3.1, the file
MAIN. F4 was created. If the command

EDIT MAIM.F4 )

is given to edit the file, the computer responds with an error message (assuming that there was no file
named MAIM.F4). The command



- 65 - TIMESHARING

FDIT MAINF4 )

causes the right file to be opened for editing.

4.2 The TECO Command

The TECO command is similar to the EDIT command except that it causes the TECO program to open an
already existing file on the disk for editing purposes. The command sequence
.TECO FILEA.F4 )

* (editing) $3
*FKEF

causes TECO to open FILEA.F4 for editing and close the file upon completion, creating a backup file
out of the original file. Whenever one of the commands used to create or edit a file is executed, this
command with its arguments (filename and filename extension) is "remembered" ina temporary file on
the disk. Because of this, the file last edited may be recalled for the next edit without having the

filename specified again. For example, if the command

.CREATF. PROG1 «MAC )

is executed, then you may type the command

FDIT)

instead of

SFDIT  PKROG1.MAC)

assuming that no other CREATE, TECO, MAKE, or EDIT command that changed the filename was used
in-between. As mentioned before, if a command tries to edit a file that has not been created, an error

message is given.

5.0 MANIPULATING FILES

You may have many files saved on your disk area. (For discussion on how to save a file on your disk
area, refer to Paragraph 14.1.) The list of your files, along with lists of other users' files, is kept on
the disk in what are called user directories. Suppose you cannot remember if you have created and

saved a particular file. The next command helps in just that type of situation.

Version 23 TECO v 7 July 1972



TIMESHARING - 66 -

5.1 The DIRECT Command

The DIRECT command requests from the monitor a listing of the directory of your disk area. The
monitor responds by typing on the terminal the names of your files, the length of each file in the num=-
ber of DECsystem=10 disk blocks written (a block is 128]0 words), and the date on which each file was
created. The protection associated with each file is also output. This protection is a code that indi-
cates which users are allowed to access your files. It is automatically assigned when you create the
file. Refer to DECsystem=10 Monitor Calls (DEC-10-MRRB-D) for an explanation of file protection.

Names of files not explicitly created by you may show up in the directory. These files were created
as intermediate files for storage by programs you may have used. For example, in translating a file,
the translator generates a file with the same filename but with a filename extension of .REL. This
file contains the relocatable binary translation of the source file. You may also notice filenames with
the filename extension of .TMP. This extension signifies a temporary file created and used by differ-

ent system programs.

5.2 The TYPE Command

By listing your directory on the terminal, you know the names of the files on your disk area. But what
if you have forgotten the information contained in a particular file? The TYPE command causes the
contents of source files specified in your command string to be typed on your terminal. For example,

the command

TYPE MAINGF4 )

causes the file MAIN.F4 to be typed on the terminal. Multiple files separated by commas may be

specified in one command string, and only source files, not binary files, may be listed.

This command allows the "asterisk construction" to be used. This means that the filename or the file-
name extension may be replaced with an asterisk to mean any filename or filename extension. For

example, the command

JTYPE FILEB.* )

causes all files named FILEB, regardless of filename extensions, to be typed. The command

JTYPE  #.MAC )

causes all files with the filename extension of .MAC to be typed. The command

STYPE *o% )

causes all files to be typed.



-67 - TIMESHARING

5.3 The DELETE Command

Having finished with a file, you may erase it from your disk area with the DELETE command. Multiple

files may be deleted in one command string by separating the files with commas. For example,

LDELETE LINEAR )

and

SDELETE CHANGE.F4, SINE.RFL )

are both legal commands. The asterisk convention discussed in section 5.2 may also be used with the
DELETE command.

5.4 The RENAME Command

The names of one or more files on your disk area may be changed with the RENAME command. The old
filename on the right and the new filename on the left are separated by an equal (=) sign. In renam-
ing more than one file, each pair of filenames (new=old) is separated by commas. For example, the

command
_-_RF,NA!VE SALES «CRL=GROSS +CBLFILEZ2 «F4=FILE]l«F4 )
changes the name of file GROSS.CBL to SALES.CBL and file FILE1.F4 to FILE2.F4. The old filename

no longer appears in your directory; instead the new filenames appear containing exactly the same data

as in the old files. The asterisk convention may again be used. For example, the command

RENAME  %eF4=% )

causes all files with no filename extension to have the extension .F4.

6.0 TRANSLATING, LOADING, EXECUTING, DEBUGGING PROGRAMS

As this point you know how to get on the system, how to create and edit a source file of a program,
and how to list your source file on the terminal. The program has not been executed. This only happens
after it has been translated into the binary machine language understandable to the computer and loaded

into core memory. More often than not the program must be debugged.

6.1 The COMPILE Command

This command has as its argument one or more filenames separated by commas. It causes each command
to be processed (translated) if necessary by the appropriate processor (translator). It is considered

necessary to process a file if no .REL file of the source file exists, or if the .REL file was created



TIMESHARING - 68 -

before the last time the source file was edited. If the .REL file is up-to-date, no translation is done.
The appropriate processor is determined by examining the extension of the file. The following shows

which processor is used for various extensions.

.MAC MACRO assembler
.F4 FORTRAN 1V compiler
.ALG ALGOL compiler
.CBL COBOL compiler
.REL No processing is done
other than above, "Standard processor"
or null

The standard processor is used to translate programs with null or nonstandard extensions. The standard
processor is FORTRAN at the beginning of the command string, but may be changed by use of various
switches (refer to DECsystem=10 Operating System Commands). Although it is not necessary to indi-

cate the extension of a file in the COMPILE command string, the standard processor can be disregarded

if all source files are kept with the appropriate extension.

When the appropriate translator has translated the source file, there is a file on your disk area with
the filename extension .REL and the same filename as the source file. This file is where the translator

stores the results of its translation and is called the relocatable binary of the program. The program is

now translated into binary machine language, but is still on the disk. Since the disk is used for storage
and not for execution, a copy of the binary program must be loaded into core memory to form a core

image. The core memory of the computer is used for execution; it is like a scratch pad. The COMPILE

command does not generate a core image, but the following three commands do.

6.2 The LOAD Command

The LOAD command performs the same operations as the COMPILE command and in addition causes the
LOADER to be run. The LOADER is a program that takes the specified REL files, links them together,

and generates a core image. The LOAD command does not cause execution of the program.

6.3 The EXECUTE Command

This command performs the functions of the LOAD command and also begins execution of the loaded
programs, if no translation or loading errors are detected. The compiled program is now in core mem-
ory and running, and what happens next depends on the program. More than likely, the program is

not returning the correct answers, and you now enter the magic world of program debugging.

10



-9 - TIMESHARING

6.4 The DEBUG Command

This command prepares for the debugging of a program in addition to performing the functions of the
COMPILE and LOAD commands. DDT, the Dynamic Debugging Technique program (refer to the DDT
manual, DEC-10-CDDE-D), is loaded into core memory first, followed by the program. Upon com-
pletion of loading, DDT is started rather than the program. A command to DDT may then be issued to
begin the program execution. This command should be used by the experienced programmer familiar

with DDT. The above four commands have extended command forms discussed in DECsystem-10
Operating System Commuands.

The following is an example showing the compilation and execution of @ FORTRAN main program and

subroutine. The login procedure is not shown.

<CKEATE MAIN.F4 ) CREATE a disk file.

) Command to LINED to begin inserting on
line 10, incrementing by 10.

MN10 TYPE 49 ) Statements of the FORTRAN main program.

ANN29 69 FORMAT (' THIS IS THE MAIN PKOGKAM') )

00306 CALL SUB1 )

on0 40 END )

70850 $ Altmode ends the insert.

) LINED command to end the edit.

*1C Retum to the monitor.

<CREATE PKOG.F4 ) Create a disk file for the subroutine.

*1 ) Begin inserting at line 10 incrementing by
10.

0010 SUBROUTINE SUBK )  Statements of the FORTRAN Subroutine.

2nN20 TYPE 105 )

20030 1AS FORMAT (' THIS IS THF SUHhﬂllTlNE'))

000 40 . RETURN )

09950 $ Altmode ends the insert.

*E ) LINED command to end the edit.

*1C Retum to monitor. '
SEXECUTE MAINF4,PRCG.F4 J Request execution of the programs created.
FORTRAN:  MAIN.F4 FORTRAN reports its progress.

FORTRAN ¢ PROG«F 4

LOAD ING

1




TIMESHARING

_70_

N0BN@1 UNDEFINED GLOBALS

SuB1 nAn152

?

LOADER 3K CORE

?EXECUTION DELETED

EXIT

«EDIT )

*#10,20 )

e10
20920
*110 )

SUBROUT INE SUBR
TYPE 105

28018'  SUBROUTINE SUBI1 )
9020 %

)

*1C

+EXECUTE NMAIN.F4,PROG.F4 )

FORTRAN ¢ PKOG«F 4

LOAD ING

LOADER 3K CORE

EXECUTION

THIS IS THE MAIN PROGRAM

THIS IS THFE SUBRKOUTINE

CPU TIME:

.23 SEC. ELAPSED TIME:

There is no subroutine named SUB1.

This includes the space for the loader.

No execution was done.

Ask to edit PROG.F4, filename need not be
mentioned since it was the last file named.

Type lines 00010 and 00020 on the terminal.

Insert a new line 10.

Terminate the insert.

End the edit.

Request execution.

Only the subroutine is recompiled since
only it has been edited.

Both MAIN and PROG are loaded.

Execution begins.

#e«13 SEC.

NG EXECUTION ERRORS DETECTED

EXIT

Execution ends.

7.0 GETTING INFORMATION FROM THE SYSTEM

There are several monitor commands that are used to obtain information from the system. Three com-
mands useful at this point are discussed in this section, and additional commands are discussed in Para-

graph 16.0.

12



=71 - TIMESHARING

7.1 The PJOB Command

If you have forgotten the job number assigned to you at LOGIN time, you may use the PJOB command
to obtain it. The system responds to this command by typing out your assigned job number. For ex-
ample,

<PJOB )

7

7.2 The DAYTIME Command

This command gives the date followed by the time of day. The time is presented in the following for-

mat:

hh:mm:ss

where hh represents the hours, mm represents the minutes, and ss represents the seconds. For example,

DAYTIME )
17-MAY-71  14:37:35

7.3 The TIME Command

The TIME command produces three lines of typecut. The first line is the total running time since the
last TIME command was typed. The second line is the total running time since you logged in. The

third line is used for accounting purposes. The time is presented in the following format:

hh:mm.ss

where hh represents the hours, mm the minutes, and ss the seconds to the nearest hundreth. For ex-

ample,

STIME )

52.45

92:29.95
KILO-CORFE-SEC=57

In the first two lines, you are told that you have been running 52.45 seconds since the last time you
typed the TIME command, and a total of 2 minutes and 29.95 seconds since you logged in. The third
line of typeout is used by your installation for accounting and is the integrated product of running

time and core size. Refer to DECsystem-10 Operating System Commands.

13



TIMESHARING =72 -

8.0 LEAVING THE SYSTEM

Now that you know how to log into the system and create and run a program, you might be wondering
how you leave the system. You have to tell the system you are leaving, and you do this by the KJOB

command.

8.1 The KJOB Command

The KJOB command is your way of saying goodbye to the system. Many things happen when you type
the command. The job number assigned to you is released and your terminal is now free for another
user. An automatic TIME command is performed. In addition, if you have any files on your disk area,

the monitor responds with

CONFIRM:

and you have several options available to you. By typing H and a carriage return after the CONFIRM:
message, the monitor lists the options available. For example, the following typeout occurs by re=

sponding to the CONFIRM: message with H and a carriage return.

IN RESPONSE TO CONFIRM:>TYPE GNE OF: BDFHIKLPQSUWX

B TO PERFORM ALGORITHM TO GET BELOW LOGGED OUT QUOTA

D TO DELETE ALL FILES :

(ASKS ARE YOU SURE?, TYPE Y OR CR) .

F TO TRY TO LOGOUT FAST BY LEAVING ALL FILES ON DSK

H TO TYPE THIS TEXT

I TO INDIVIDUALLY DEZTERMINE WHAT TO DO WITH ALL FILES
AFTER EACH FILE NAME IS TYPED OUT, TYPE ONE OF3: EKPQS
E TO SKIP TO NEXT FILE STRUCTURE AND SAVE THIS FILE IF
BELOW LCGGED OUT QUOTA ON THIS FILE STRUCTURE

K TO DELETE THE FILE

P TO PRESERVE THE FILE

Q@ TO REPORT IF STILL OVER LOGGED OUT @UOTA, THEN REPEAT FILE
S TO SAVE THE FILE WITH PRESENT PROTECTION

TO DELETE ALL UNPRESERVED FILES

TO LIST ALL FILES

TO PRESERVE ALL EXCEPT TEMP FILES

TO REPORT IF OVER LOGGED OUT QUOTA

TQ SAVE ALL EXCEPT TEMP FILES

SAME AS I BUT AUTOMATICALLY PRESERVE FILES ALREADY PRESERVED
TO LIST FILES WHEN DELETED

TO SUPPRESS LISTING FILES WHEN DELETED

XECWwovr=x

IF A LETTER IS FOLLOWED BY A SPACE AND A LIST OF FILE STRUCTURES
ONLY THOSE SPECIFIED WILL BE AFFECTED BY THE COMMAND. ALSO
CONFIRM WILL BE TYPED AGAIN.

NOTE: FILE SIZE IS NO. OF BLOCKS ALLOCATED WHICH MAY BE LARGER THAN THE
MO« OF BLOCKS WRITTEN (DIRECTORY COMMAND) .

A FILE 1S PRESERVED IF ITS ACCESS CODE IS GE 100

CONF IRM:



=73 - TIMESHARING

You may now use the options available. If K was used as the option, the following is a sample of
what is output to your terminal .
JOB 33, USER [27,560] LOGGED OFF TTY34 1317 20-MAY-T1

DELETED ALL 2 FILES (3. DISK BLOCKS)
RUNTIME ® MIN, P0.29 SEC

Remember that the CONFIRM message is typed only if there are files on your disk area. If there are

no files on your disk area, the typeout would look like the following:

<KJOB )
JoB 17, USER [27,32A11 LOGGED OFF TTY17 1317 28-MAY-T71

RUNTIME ©® MIN, 00.29 SEC

9.0 HOW TO LIVE WITH THE TERMINAL

On the terminal, there is a special key marked CTRL called the Control Key. If this key is held down
and a character key is depressed, the terminal types what is known as a control character rather than
the character printed on the key. In this way, more characters can be used than there are keys on the
keyboard. Most of the control characters do not print on the terminal, but cause special functions to

occur, as described in the following sections.

There are several other special keys that are recognized by the system. The system constantly monitors
the typed characters and, most of the time, sends the characters to the program being executed.  The
important characters not passed to the program are also explained in the following sections. (Refer to

DECsystem=10 Monitor Calls for more explanations of spécial characters.)

9.1 Control - C

Control = C (1C) interrupts the program that is currently running and takes you back to the monitor.
The monitor responds to a control = C by typing a period on your terminal, and you may then type an-
other monitor command. For example, suppose you are running a program in BASIC, and you now
decide you want to leave BASIC and run a program in AID. When BASIC requests input from your
terminal by typing an asterisk, type control - C to terminate BASIC and return to the monitor. You
may now issue a command to the monitor to initialize AID (.R AID). If the program is not requesting
input from your terminal (i.e., the program is in the middle of execution) when you type control - C,
the program is not stopped immediately. In this case, type control - C twice in a row to stop the
execution of the program and return control to the monitor. If you wish to continue at the same place
that the program was interrupted, type the monitor command CONTINUE. As an example, suppose
you want the computer to add a million numbers and to print the square root of the sum. Since you are

charged by the amount of processing time your program uses, you want to make sure your program does

15



TIMESHARING =74 -

not take an unreasonable amount of processing time to run. Therefore, after the computer has begun
execution of your program, type control = C twice to interrupt your program. You are now communi-
cating with the monitor and may issue the monitor command TIME to find out how long your program
has been running. If you wish to continue your program, type CONTINUE and the computer begins

where it was interrupted.

9.2 The RETURN Key

This key causes two operations to be performed: (1) a carriage-return and (2) an automatic line-feed.
This means that the typing element returns to the beginning of the line (carriage-return) and that the
paper is advanced one line (line-feed). Commands to the monitor are terminated by depressing this

key .

9.3 The RUBOUT Key

The RUBOUT key permits correction of typing errors. Depressing this key once causes the last chargc-
ter typed to be deleted. Depressing the key n times causes the last n characters typed to be deleted.
RUBOUT does not delete characters beyond the previous carriage-return, line~feed, or altmode. Nor

does RUBOUT function if the program has already processed the characters you wish to delete.

The monitor types the deleted characters, delimited by backslashes. For example, if you were typing
CREATE and go as far as CRAT, you can correct the error by typing two RUBOUTS and then the correct
letters. The typeout would be

CRAT\TA\EATE

Notice that you typed only two RUBOUTS, but \TA\ was printed. This shows the deleted characters,

but in reverse order. (Note that when using TECO, deleted characters are not enclosed in backslashes.)

9.4 Control - U

Control = U (tU) is used if you have completely mistyped the current line and wish to start over again.
Once you type a carriage-return, the command is read by the computer, and line-editing features can
no longer be used on that line. Control = U causes the deletion of the entire line, back to the last

carriage-return, line-feed, or altmode. The system responds with a carriage-return, line-feed so you

may start again.

16



TIMESHARING

9.5 The ALTMODE Key

The ALTMODE key, which is labeled ALTMODE, ESC, or PREFIX, is used as a command terminator
for several programs, including TECO and LINED. Since the ALTMODE is a nonprinting character,
the terminal prints an ALTMODE as a dollar sign ($). :

9.6 Control - O

Control = O (tO) tells the computer to suppress terminal output. For example, if you issue a command
to type out 100 lines of text and then decide that you do not want the typeout, type control - O to
stop the output. Another command may then be typed as if the typeout had terminated normally.

10.0 PERIPHERAL DEVICES

The system controls many peripheral devices, such as terminals, magnetic fape'drives, DECtape drives,
card readers and punches, line printers, papertape readers and punches, and disks. The monitor is
responsible both for allocating these peripheral devices, as well as other system resources (e.g., core

memory), and for maintaining a pool of such available resources from which you can draw.

Each device controlled by the system has a physical name associated with it. The physical name is
unique. It consists of three letters and zero to three numerals specifying a unit number. The following

table lists the physical names associated with various peripheral devices.

Table 1
Peripheral Devices
Device Physical Name

Terminal 1TYO, TTY1, ..., TTY77
Console TTY cTY
Paper Tape Reader PTR
Paper Tape Punch PTP
Plotter PLT
Line Printer LPT
Card Reader CDR
Card Punch CDpP
DECtape DTAO, DTAI, ..., DTA7
Magnetic Tape MTAO, MTAI, ..., MTA7
Disk DSK
Display DIS

17



TIMESHARING =76 -

You may also give each device a logical device name. The logical device name is an alias, and the
device can be referred to either by this alias or by the physical name. The logical name consists of
one to six alphanumeric characters of your choice. The reason for logical device names is that in
writing a program you may use arbitrarily selected device names (logical device names) that can be -
assigned to the most convenient physical devices at runtime. However, care should be exercised in
assigning logical device names because these names have priority over physical device names. For
example, if a DECtape is assigned the logical name DSK, then all of your programs attempting to use
the disk via the physical name DSK end up using the DECtape instead. It is wise not to give any de-
vice the logical name DSK because certain monitor commands (suéh as the COMPILE commands) make
extensive use of special features that the disk has but other devices do not have. The following ex-

_amples show the use of logical and physical device names.

+ASSIGN DTA ABC) Assign a DECtape the logical name ABC.

+ASSIGN MTAl XYZ) Assign magnetic tape drive #1 the logical name
XYZ.

.ASSIGN PTK F0O ) Assign the papertape reader the logical name

- FOO.

In order to use most peripheral devices, you must assign the desired device to your job. You may as-
sign a device either by a program or from the console. "The first kind of assignment occurs when you
write a program that uses a particular device. When the program begins using the device, it is assigned
to you on a temporary basis and released from you when your program has finished with it. The second

- kind of assignment occurs when you explicitly assign the device by means of the ASSIGN or MOUNT
monitor command. This is a permanent assignment that is in effect until the device is released by a
DEASSIGN, DISMOUNT, or FINISH monitor command or by your logging off the system.

When Vyou assign a device to your job, the monitor associates your job number with that device. This
means that no other user may use the device while you are using it. The only exception is the disk,

which is accessible by all users. When you assign the disk, you are allocated a fraction of the disk,
not the entire unit. When you deassign a device or kill your job, the device is returned to the mon-

itor's pool of available resources.

Under normal circumstances, the spooling mechanism built into the system is used to output to slow-
speed devices. Spooling is the method by which output to these devices (usﬁally the line printer, card
punch, paper tape punch, and plotter) is placed on the disk first and then output to the device at a later
time. This method of using a device saves you time because you do not have to wait for the device to

be freed if it is being used by another user nor do you have to wait for your files to be output before you

5.05 Monitor 18 July 1972



=77 - TIMESHARING

can perform another operation. Once your files have been placed on the disk, you can do another task,
such as running a program or leaving the system by killing your job. After you leave the system
(KJOB), your files will be output whenever the device you requested to output them is available.

The spooling of files to the line printer is described in Paragraph 13.0. Refer to the DECsystem=-10

Operating System Commands manual for a discussion of spooling to other devices.

11.0 COMMANDS TO ALLOCATE SYSTEM RESOURCES
11.1 The ASSIGN Command

The ASSIGN command is used to assign a peripheral device on a permanent basis for the duration of
your job or until you explicitly deassign it. This command must have as an argument the legal physical
device name (see Table 1) of the device you wish to assign. For example, if you want to assign a

DECtape drive to your job, type

<ASSIGN DTA)

The monitor responds with the message

DTAN ASSIGNED

where n is the unit number of the DECtape drive assigned to your job. If all drives are in use, the

monitor responds with

ASSIGNED TO JOBS Ny N2, cee

and you must wait until a drive becomes available. You may assign a specific DECtape drive as fol-

lows:
+ASSIGN DTA3)

The monitor responds with

DTA3 ASSIGNED

if the drive is available, or

ALREADY ASSIGNED TO JOB n

if job n is using DECtape drive #3.

The ASSIGN command may also have, as an optional argument, a logical device name following the
physical device name. The logical device name may be used in place of the physical device name in
all references to the device. For example, if you want to use DECtape drive #1 and have it named
SAMPLE, type the command

+ASSIGN DTAl SAMPLE )

If DECtape drive #1 is free, the monitor responds with

DTA1 ASSIGNED

5.05 Monitor 19 July 1972



TIMESHARING -78 -

and stores the logical name you typed. You may then refer to the DECtape by the name SAMPLE until

you explicitly release the device, assign the name SAMPLE to another device, or kill your job.

Logical names can be very useful. Suppose you write a program that uses DECtape drive #5 and refers
to it by its physical name (DTA5). When you run your program, you find that DECtape drive #3 is the
only drive available. Instead of rewriting your program to use DECtape drive #3, type

*ASSIGN DTA3 DTAS )

Thereafter, whenever your program refers to DTAS5, it is actually referring to DTA3. Since logical
device names are strictly your own, they are different from the logical names of other users. The

following is an example using physical and logical device names.

SASSIGN DTA NAME ) Assign a DECtape drive the logical name
: NAME.

DEVICE DTA4 ASSIGNED DECtape drive 4 has been assigned.

.ASSIGN DTA LINE ) Find another DECtape drive; assign the

logical name LINE.
ASSIGNED TO JOBS N, N,s eee All DECtape drives are in use.

+ASSIGN PTP,NAME ) Reserve paper tape punch.
ZLOGICAL NAME WAS IN USE,
DEVICE PTP ASSIGNED Paper tape punch is assigned and NAME
- now refers to PTP,
sASSIGN DTA3 LINE ) Request DECtape drive #3 and give it the
logical name LINE.
ALREADY ASSIGNED TO JOB7 Another user (job 7) has DTA3.

11.2 The MOUNT Command

The MOUNT command is similar to the ASSIGN command in that it is used to assign a peripheral de-
vice to your job. However, unlike the ASSIGN command, it requests operator intervention. This is
useful for users who cannot place their devices on the computer because they are too far away. These
users are called remote users because they are connected to the computer via communications lines.
For example, if you have DECtapes at the location of the computer (commonly called the central site)
but are using the computer remotely, you can use the MOUNT command to assign a DECtape drive and

to have the operator place the DECtape on the drive.

This command must have as an argument the legal physical device name (see Table 1) of the device you
wish to assign and may have a logical device name. These arguments are the same as in the ASSIGN
command. In addition, switches can be used to specify items to be considered by the operator. Only
the following three switches are applicable in this manual; the remainder are described in

DECsystem=10 Operating System Commands

/RONLY or /WLOCK Specifies that the volume is read only and
that it cannot be written on.

5,05 Monitor 20 July 1972



~-79 - TIMESHARING

/VID:name Specifies the name used to identify the
volume (storage medium) to the operator.
The name can be in one of two forms:
1) any string of 25 characters or less con-
taining only letters, digits, periods, and
hyphens or 2) any string of 25 characters
or less enclosed in single quotes. The
string cannot contain break characters
or single quotes.

/WENABL Specifies that the volume is enabled for
writing. This condition is assumed if
no switches appear in the MOUNT com-
mand string.

11.3 The DEASSIGN Command

The DEASSIGN command is used to release one or more devices currently associated with your job.
This command may have as an argument a physical or logical device name. If an argument is given,
the specified devices are released. If an argument is not specified, all devices assigned to your job
are released. When devices are released, they are returned to the monitor's pool of available re-
sources for use by other users. The DEASSIGN command does not affect any temporary assignments

your job may have for devices.

11.4 The DISMOUNT Command

The DISMOUNT command is similar to the DEASSIGN command because it is used to return devices to
the monitor. In addition, it notifies the operator to remove the volume (storage medium) from the de-
vice (i.e., DECtape from a DECtape drive, cards from a card reader, and so forth). This command
takes a physical device name as an argument. The device must have been previously assigned with the
ASSIGN or MOUNT command. The switch /REMOVE follows the device name in order to tell the

operator to physically remove the volume from the device. For example,

+DISMOUNT DTA4:/KEMOVE )

notifies the operator to deassign DTA4 and remove the tape from the drive.

11.5 The REASSIGN Command

The REASSIGN command allows you to give a device assigned to you to another user without having the
device returned to the monitor's pool of available resources. Two arguments are required with this
command: the name of the device being reassigned and the job number of the user who is receiving

the device. For example, suppose you have finished with DECtape drive #6 and the person who is job

10 wants it. Type the command

+REASSIGN DTA6 10 )

This deassigns DECtape drive #6 from your job and assigns it to job 10, just as if you had typed

<DEASSIGN DTA6 )

5.05 Monitor 2 July 1972



TIMESHARING - 80 -

and job 10 had typed

.ASSIGN DTA6 )

immediately thereafter. All devices except the job's terminal can be reassigned.

11.6 The FINISH Command

The FINISH command is used to prematurely terminate a program that is being executed while preserv-
ing as much output as possible. If this command is not used, part or all of the output file may be lost.
The FINISH command may be followed by a physical or logical device name, in which case any input
or output currently in progress in relation to that device is terminated. If no device is specified, in-
put or output is terminated on all devices assigned to your job. The monitor responds to this command

by terminating output, closing the file, and releasing the device for use by others.

This command could be used if you were generating an assembly listing of a program on your disk area

and decided that you wanted only the first part of the listing, not the entire listing. Type

tC
FINISH DSK )

and the monitor completes the writing of your listing and releases the disk.

11.7 The CORE Command

The CORE command allows you to modify the amount of core assigned to your job. The command is
followed by a decimal number representing the total number of 1K blocks (1024 word blocks) that you
want the program to have from this point on. For example, if you want the program to have 8K blocks
of core, type

<CORE &)

and the monitor gives the program 8K blocks, if available. If you request additional core and there is
none available, the monitor responds with an error message. If the CORE command is followed by the
. decimal number 0, your program disappears from core because you are requesting OK blocks of core.

If the decimal number following the command is omitted, the monitor types out (1)-the total number of
1K blocks you have, (2) the maximum you can request, and (3) the amount of core not assigned to

any user.

12.0 COMMANDS TO MANIPULATE TERMINALS
12.1 The SEND Command

The SEND command allows you to send a line of text to another terminal in the system. The command
is typed followed by the number of the terminal to which you are sending the message followed by the

message and a carriage return. This message is printed on the receiving terminal and is preceded by

22



-81 - TIMESHARING

the number of your terminal. If the receiver of the message is busy, that is, his terminal is not commu-
nicating with the monitor, you receive the message BUSY and your message is not sent. If you are

sending a message to an operator, the receiving terminal is never busy.

12.2 The DETACH Command

The DETACH command causes your terminal to be disconnected from your program and released to con-
trol another job. This means that, while your program is disconnected, you may log in again, receive
a new job number, and do something else. The job that was disasseciated from your terminal is said to
be a detached job. This means that it is not under control of any user's console. If your detached job

attempts to type something to the terminal, it is stopped, for there is no terminal attached t6 it.

12.3 The ATTACH Command

The ATTACH command allows you to attach a console to a detached job. You must specify the number
of the job to which you wish to attach. If you are the owner of the detached job, your console is im-
mediately detached from your current job and attached to your detached job. After this command is
executed, the console is in communication with the monitor. If the job you just attached to happens

to be running, type CONTINUE without affecting the status of the job.

If you are not the owner of the detached job, you must also specify the project=-programmer number of
the owner. The project-programmer number must be enclosed in square brackets (e.g., [27,4001) for
this command to work. If the job whose job number you typed is already attached to a terminal, you

cannot attach and the monitor responds with
?TTYn ALREADY ATTACHED

where n is the number of the terminal attached to the job. Observe that only one terminal can be

attached to a job at any time.

13.0 COMMANDS TO REQUEST LINE PRINTER OUTPUT

In Paragraph 5.2, the TYPE command for listing source files on your terminal was discussed. In addi=
tion, there are three commands that may be used to list files on the line printer via the spooling

mechanism.

13.1 The PRINT Command

The PRINT command is used to list disk files on the line printer via the spooling mechanism. This
command takes a filename, or many filenames separated by commas, as an argument. Switches can
also be used with the PRINT command. Although many switches are available, only a few pertinent

ones are mentioned below. The remainder are discussed in DECsystem-10 Operating System Commands.

/COPIES:n Specifies the number of copies that you
want of the file. This number must be
less than 64. If this switch is not given,
one copy is produced.

5.05 MOn“’Or 23 JUIY ]972



TIMESHARING -82-

/LIMIT:n Specifies the maximum number of pages
you want printed. If this switch is not
given, the maximum number is 200 pages.

/SPACING:DOUBLE Specifies that the output will be double,
/SPACING:SINGLE single, or triple spaced. If the /SPACING

/SPACING:TRIPLE switch is not given, the output is
single-spaced. .

All files remain in your disk area except for temporary files; these files are deleted after they are

printed.

13.2 The CREF Command

The CREF command is used to list a certain type of file called a cross-reference file. This command

is an invaluable aid in program debugging. If a COMPILE, LOAD EXECUTE, or DEBUG command string
(refer to Paragraph 6.0) has a /CREF switch, the command string generates an expanded listing that
includes (1) the original code as it appears in the fiIeA, (2) the octal values the code represents, (3)

the relative locations into which the octal values go, (4) a list of all the symbols your program uses,

and (5) the numbers of the lines on which each symbol appears. This is called a cross-reference listing.
To print this listing file, you must call in a special cross-reference lister with the CREF command. All
the cross-reference listing files you have generated since the last CREF command are printed on the
line printer. The file containing the names of the cross-reference listing files is then deleted so that

subsequent CREF commands will not list them again.

13.3 The DIRECT Command

When a DTAn: argument is specified with the DIRECT command, the directory of DECtape n is typed
on the terminal. (Refer to Paragraph 5.1 for a discussion of the DIRECT command when no argument

is specified.) For example, the command

«DIRECTOKY DTA2:)

types the directory of DECtape drive #2 on the terminal.

Besides having optional device arguments, this command has several switch options. One switch
option is /F Including /F in the command string causes the short form of the directory to be listed
on the terminal. The short form of the directory consists of the names of your files. *(The long form
of the directory also lists the creation dates and lengths of each file.) Another switch option is /L.
Including /L in the command string causes the output of the directory to go to the line printer rather

than to the terminal. For example, the command

DIKECTORY /L )

lists your directory of your disk area on the line printer. The line printer is assigned to you on a

temporary basis and is released when the output is finished.

5.05 Monitor 24 July 1972



-83 - TIMESHARING

14.0 COMMANDS TO MANIPULATE CORE IMAGES

By using one of the following commands, you can load core image files (refer to Paragraph 6.1 for
the definition of a core image file) from disk, DECtapes, and magnetic tapes into core and then later
save the core images. These files can be retrieved and controlled from the user's console. Files on
disk and DECtape are called by filename, and if you have any files on magnetic tape, you must posi-

tion the tape to the beginning of the file.

14.1 The SAVE Command

The SAVE command causes your current core image to be saved on the specified device with the
specified filename. This command must be followed by several arguments. First, you must tell the
monitor the device on which you want to save the core image. A colon must follow the device name.
Second, you must give a name to the core image file. If the filename extension is not specified, the
monitor designates one. You may specify the amount of core in which you want your file saved by
specifying a decimal number to represent the number of 1K blocks. For example, if you want to save
your core image on DECtape drive #2, give it the name SALES, and allow 12K of core for storage,

type
+SAVE DTA2: SALES 12 )

A file called SALES is created and your core image is stored in it. If you list your DECtape directory,
the length of the file is slightly over 12,000 words. After you use this command, you cannot continue

executing the program. The program can be restarted only from the beginning.

14.2 The RUN Command

The RUN command allows you to run programs you previously saved on the disk, DECtape, or magnetic
tape. This command reads the core image file from a storage device and starts its execution. You
must specify the device containing the core image file and the name of that file. The file must have
been saved previously with a SAVE command. If the file is not a saved program, the monitor responds
with an error message. If the core image file you want to execute is on another user's disk area, you
must specify his project-programmer number, enclosed in square brackets. Again, you may specify
the amount of core to be assigned to the program if different from the minimum core needed to load

the program or from the core argument of the SAVE command.

14.3 The R Command

The R command is a special form of the RUN command. This command runs programs that are part of
the system, rather than programs that are your own. The R command is the usual way to run a system
program that does not have a direct monitor command associated with it. For example, the only way
to run BASIC and AID is by the commands

R BASIC)



TIMESHARING -84 -

and
R AID )

A device name or a project programmer number may not be specified for this command.

14.4 The GET Command
The GET command is the same as the RUN command except that it does not start the program; it merely
generates a core image and exits. The monitor types

JOB SETUP

and is ready to accept another command.

15.0 COMMANDS TO START A PROGRAM
15.1 The START Command

The START command begins execution of the program at its starting address, the location specified
within the file, and is valid only if you have a core image. This command allows you to specify an-

other starting address by typing the octal address after the command. Normally, to start a program,

type
+START )

but to start a program at the specified octal location 347, type

START 347 )

A GET command followed by a START command is equivalent to a RUN command. -

15.2 The HALT ( t C) Command

Typing 1C stops your program and takes you back to the monitor. The program '‘remembers'" at what
point it was interrupted so that it may subsequently be continued. After typing tC, you may type any
commands that do not affect the status of your program (e.g., PJOB, DAYTIME, RESOURCES) and
still be able to continue the execution of the program with a CONTINUE command. However, con-

tinuing is impossible if you issue any command that runs a new program, such as a RUN or R command.

15.3 The CONTINUE Command

If you stop your program by a HALT (1C) command, you may resume execution from the point at which
it was interrupted by typing the CONTINUE command. You may continue the program only if you
exit by typing control - C. If the program exited on an error condition of some sort, the monitor does

not let you continue. It types

CAN'T CONTINUE

26



-85 - TIMESHARING

if you try. However, you may continue your program if it has halted and given the typeout

HALT AT USER n

16.0 ADDITIONAL COMMANDS TO GET INFORMATION FROM THE SYSTEM
16.1 The RESOURCES Command

The RESOURCES command types out a list of all the available devices (except terminals) on your ter-

minal. For example,

+RESOURCES )
PTY1,CDR>PTRsMTA1,CDP,PLT

At the time of this command, there were six devices available.

16.2 The SYSTAT Command

The SYSTAT command produces a summary of the current status of the system and may be typed without
logging in. Included in the summary is a list of the jobs currently logged in, along with their project-
programmer numbers, program names being run, and runtime. The following typeout is a partial exam=

ple of SYSTAT output. More information is contained in this program and can be obtained by running
SYSTAT.

STATUS CF 5892240 SYSTEM #2 AT 1:34:02 P.Me ON 11-MAY-T71

UPTIME S5:10:56, 247 NULL TIME = 194 IDLE + 5% LOST
22 JOBS IN USE OUT OF 37. 22 LOGGED IN» 1 DETACHED

JOB WHO LINE# WHAT SIZE(K) STATE RUN TIME
1 [CPR) PO OMOUNT 2+4 SL Sw 21
2 (CPR) P1 OMOUNT . 2+4 SL SwW 22
3 [OPR1 P2 CDRSTK 2 SL SW 1:01
4 [OPR] P3 BATCON 4+4 SL SW- 47
5 [OPR1 P4 LPTSPL 3+4 CB SW 5:39
13 [OPR] PS5 PTPSPL 2+3 SL SW 41
7 LOPR] P6 CHKPNT . 2 SL Sw )
8 [OPR1 P7 MSCOPE 1+SPY SL 58:15 &
9 LOPR] P10 TYLOST 2+5 SL SwW 3
19 10516 23 DIRECT 1+3 tC SW 2231

11 [OPR1 12 SYSDPY 3+SPY RN 45:09

12 *% 5 k% DET DAEMON 7+SPY SL S 1

13 {OPR] CTY OPSER 142 SL SwW 25
14 205,574 1 DIRECT 1+3 TI SW 13

15 40565 21 TECO 243 TI SW 29
16 10,566 3 BATCON 0+4 CB SW 43217

17 11,131 11 DIRECT 1+3 tC SW 4
18 10,77 20 MONLOD 12+2 RN SW 4359
19 [OPR1] 2 FAILSA 19 WS 16

20 10563 2 FD5224 23 TI SW 3

21 (SELF1] 26 SYSTAT 4+SPY RN 4

22 16534 24 KJOB 6+4 RN 3

& MEANS LOCKED IN CORE
PNN CORRESPONDS TO TTY42+NN

27



TIMESHARING

_86_



_87-

DEC-10-OMPBA-A-D

decsyUscenic
BEGINNER’S GUIDE TO
MULTIPROGRAM BATCH

digital equipment corporation - maynard. massachusetts



BEGINNER'S BATCH

-88_

Copyright © 1972 by Digital Equipment Corporation

The material in this manual is for informa-
tional purposes and is subject to change
without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

1st Edition May 1972



-89 - BEGINNER'S BATCH

FOREWORD

The Beginner's Guide to Multiprogram Batch has been written for the inexperienced or casual user

who has little knowledge of programming techniques and who requires only a rudimentary knowledge

of Batch operations.

HOW TO USE THIS MANUAL

For those users whose mode of input is cards, the following chapters or sections of chapters should
be read.

Chapter 1 Introduction

Chapter 2 Entering a Job to Batch from Cards

Chapter 4 Interpreting Your Printed Output

Chapter 5, Section 5.2 Using Cards to Enter Jobs

- According to the language in which his program is written, the user should pay particular attention
to the following sections. :
FORTRAN - Section 2.2.3 Card Deck to Run FORTRAN Programs

ALGOL - Section 2,2,1 Card Deck to Run ALGOL Programs
CcOBOL - Section 2.2.2 Card Deck to Run COBOL Programs
MACRO - Section 2.2.4 Card Deck to Run MACRO Programs
BASIC - Section 2.3.1 Card Decks for Programs That Do Not Have Special

Control Cards

For users who input their jobs through interactive terminals, the following chapters or sections of
chapters are recommended.

Chapter 1 Introduction

Chapter 3 Entering a Job to Batch from a Terminal

Chapter 4 Interpreting Your Printed Output

Chapter 5, Section 5.1 Using the Terminal to Enter Jobs

cer
(AR



BEGINNER'S BATCH -90 -

REFERENCES

Not all of the commands and cards for Batch are described in this manual. Those users who wish

to know more about Multiprogram Batch can refer to Chapter 3 in the DECsystem=10 Operating

System Commands manual. Also in that manual, the SUBMIT command is described in Chapter 2.

An elementary description of the basic monitor commands can be found in the document Getting

Started with Timesharing. The DECsystem=10 Operating System Commands manual contains the

descriptions of all the monitor commands available to the user.

Error messages from the system programs supplied by DEC that are invoked by the user's job are
explained in the applicable manuals. For example, if a user's FORTRAN program fails to compile
successfully, the error messages he receives from the FORTRAN compiler can be found in

Chapter 11 of the FORTRAN IV Programmer's Reference Manual in the DECsystem-10 Mathematical

Languages Handbook.




-91 - BEGINNER'S BATCH

CONVENTIONS USED IN THIS MANUAL

The following is a list of symbols and conventions used in this manual.

dd-mmm=-yy hhmm A set of numbers or numbers and a word

that indicates the date and time, e.g.,
15-5-72 1415 or 15-MAY-72 1415
means 2:15 PM on May 15, 1972.

filename.ext The name and extension that can be put

hh:mm:ss

jobname

[proj, prog]

on afile. The name can be 1 to 6
characters in length and the extension

can be 1 to 4 characters in length. The
first character of the extension must always
be a period. The extension is optional.
Refer to the glossary for definitions of file-
name and filename extension.

A set of numbers representing time in the
form hours:minutes:seconds. Leading
zeros can be omitted, but colons must be
present between two numbers. For
example, 5:35:20 means five hours, 35
minutes, and 20 seconds.

The name that is assigned to a job. It
can contain up to é characters. Refer
to the glossary for the definition of a job.

The user number assigned to each user,
commonly called a project-programmer
number. It must be enclosed in square
brackets. The two numbers that make up
the project-programmer number must be
separated by a comma or a slash. Refer
to the glossary for the definition of a
project-programmer number.

A number that specifies either a required
number or an amount of things such as
cards or line-printer pages. This number
can contain as many digits as are nec-
essary to specify the amount required,
e.g., 5, 25, 125, etc. :

A number representing an amount of time
usually in minutes. This number can
contain as many digits as are necessary
to specify the amount of time required,
e.g., 5, 25, 125, etc.




BEGINNER'S BATCH

Term

ALGOL

Alphanumeric

ASCII Code

Assemble

Assembler

Assembly Language

Assembly Listing

BASIC

Batch processing

Card

_92_

GLOSSARY

Definition

ALGOrithmic Language. A scientific oriented
language that contains a complete syntax for
describing computdtional algorithms.

The characters which include the letter of the
alphabet (A through Z), the numerals (0 through 9),
and letters of the other special symbols such

as -I /I *I $l ’[(I)I +

American Standard Code for Information Inter-
change. A 7-bit code in which information is
recorded.

To prepare a machine-language program from a
symbolic-language program by substituting
absolute operation codes for symbolic operation.
codes and absolute or relocatable addresses for
symbolic addresses.

A program which accepts symbolic code and
translates it into machine instruction, item by
item. The assembler on the DECsystem=10 is
called the MACRO assembler.

The machine -oriented symbolic programming
language belonging to an assembly system.
The assembly language for the DEC-system=10
is MACRO. .

A printed list which is the byproduct of an
assembly run. It lists in logical =instruction
sequence all details of a routine showing the
coded and symbolic notation next to the actual
assigned notations established by the assembly
procedure.

Beginner's All-purpose Symbolic Instruction Code.
A time-sharing computer programming language
that is used for direct communication between
teletype units and remotely located computer
centers. The language is similar to FORTRAN 11
and was developed by Dartmouth College. .

The technique of executing a set of computer
programs in an unattended mode.

A punch card with 80 vertical columns representing
80 characters. Each column is divided into two
seéctions one with character positions labeled zero
through nine, and the other labeled eleven (11)
and twelve (12). The 11 and 12 positions are

also referred to as the X and Y zone punches, re-
spectively.

vi



-93 - BEGINNER'S BATCH

GLOSSARY (Cont)

Term Definition

Card Column * ‘One of the vertical lines of punching positions
on a punched card.

Card Field A fixed number of consecutive card columns
assigned to a unit of information.

Card Row . One of the horizontal lines of punching
positions on a punched card.

Central processing unit (CPU) The portion of the computer that contains the
arithmetic, logical, control circuits, and I/O
interface of the basic system.

Central Site The location of the central computer. Used in
conjunction with remote communications to mean
the location of the DECsystem=-10 central processor.

Character One symbol of a set of elementary symbols such as
those corresponding to the keys on a typewriter.
The symbols usually include the decimal digits
0 through 9, the letters A through Z, punctutation
marks, operation symbols, and any other special
symbols which a computer may read, store, or write.

COBOL COmmon Business Oriented Language. An auto-
matic programming language used in programming
data processing applications.

Command The part of an instruction that causes the computer
to execute a specified operation.

Compile To produce a machine or intermediate language
routine from a routine written in a high level
source language.

Compiler A programming system which translates a high level
source language into a language suitable for a
particular machine. A compiler is a translator that
converts a source language program into inter-
mediate or machine language. Some compilers used
on the DECsystem=-10 are: ALGOL, BASIC,
COBOL, FORTRAN,

Computer A device with self-contained memory capable of
accepting information, processing the information,
and outputting results.

Computer Operator A person who manipulates the controls of a computer
and performs all operational functions that are re-
quired in a computing system, such as, loading a
tape transport, placing cards in the input hopper,
removing printouts from the printer rack, and so forth.

Continuation Card A punched card which contains information that
was started on a previous punched card.

Control File The file made by the user that directs Batch in
the processing of his job.

vii



BEGINNER'S BATCH

Term

Core Storage

CPU

Cross Reference Listing

Data

Dump
Execute

Extension

File

Filename

Filename extension

FORTRAN

Job

-94-

GLOSSARY (Cont)

Definition

A storage device normally used for main memory
in a computer,

See central processing unit.

A printed listing that identifies all references of
an assembled program to a specific label. This
listing is provided immediately aofter a source
program has been assembled.

A general term used to denote any or all facts,
numbers, letters, and symbols, or facts that
refer to or describe an object, idea, condition,
situation, or other factors. It represents basic
elements of information which can be processed
or produced by a computer.

To locate and correct any mistakes in a
computer program.

A form of mass storage device in which informa-
tion is stored in named files.

A listing of all variables and their values, or a
listing of the values of all locations in core.

To interpret an instruction and-perform the
indicated operation(s).

See filename extension.

An ordered collection of 36-bit words comprising
computer instructions and/or data. A file can be
of any length, limited only by the available space
on the device and the user's maximum space allot-
ment on that device.

A name of one to six alphanumeric characters
chosen by the userto identify a file.

One to four alphanumeric characters usually
chosen to describe the class of information
ina file. The first characfer of the extension
must always be a period.

FORmula TRANslator. A procedure oriented
programming language that was designed for
solving scientific type problems. The language is
widely used in many areas of engineering, mathe-
matics, physics, chemistry, biology, psychology,
industry »military, and business. :

The entire sequence of steps, from beginning to
end, that the user initiates from his interactive
terminal or card deck or that the operator
initiates from his operator's console.

viii



-95 - BEGINNER'S BATCH

GLOSSARY (Cont)

Term Definition
Jobstep A serial or paralle!l sequence of processes invoked
by a user to perform an operatisn.

K A symbol used to represent a thousand; for
example, 32K is equivalent to 32,000.

Label A symbolic name used to identify a statement
in the control file.

Log File A file into which Batch writes a record of a user's
entire job. This file is printed as the final step in
Batch's processing of a job.

Monitor The collection of programs which schedules and
controls the operation of user and system programs.

Monitor Command An instruction to the monitor to perform an operation.

Mounting a device To request assignment of an |/O device via
the operator.

Multiprogramming A technique that allows scheduling in such a way
that more than one job is in an executable state
at any one time.

Object Program The program which is the output of compilation or
assembly. Often the object program is a machine
language program ready for execution.

Password The word assigned to a user that, along with his user
number (project -programmer number), identifies him
uniquely to the system.

Peripheral devices Any unit of equipment, distinct from the central
processing unit, which can provide the system
with outside communication.

Project-programmer number Two numbers separated by a comma, which, when
considered as a unit, identify the user and his file
storage area.

Program The complete plan for the solution of a problem,
more specifically the complete sequence of machine
instructions and routines necessary to solve
a problem.

Programming The science of translating a problem from its
physical environment to a language that a com=
puter can understand and obey. The process of
planning the procedure for solving a problem.
This may involve among other things the analysis
of the problem, preparation of a flowchart, coding
of the problem, establishing input-output formats,
establishing testing and checkout procedures,
allocation of storage, preparation of documenta-
tion, and supervision of the running of the program
on a computer.



BEGINNER'S BATCH -96 -

GLOSSARY (Cont)

Term Definition

Queve A list of jobs to be scheduled or run according
to system, operator, or user-assigned priorities.
For example, the Batch input queue.

Software The totality of programs and routines used to
expend the capabilities of computers, such as
compilers, assemblers, operational programs,
service routines, utility routines, and
subroutines.

Source Deck A card deck comprising a computer program,
in symbolic language.

Source Language The original form in which a program is pre-
pared prior to processing by the computer.

Source Program A computer program written in a language
designed for ease of expression of a class of
problems or procedures, by humans. A trans-
lator (assembler, compiler; or interpreter) is
used to perform the mechanics of translating
the source program into a machine language
program that can be run on a computer.

Terminal A keyboard unit that is often used to enter
information info a computer and to accept
output from a computer. It is often used as
a time=sharing terminal on a remotely located
computer center.



CHAPTER 1
1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3

CHAPTER 2
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11
2.4.12
2.4.13
2.5

CHAPTER 3
3.1

3.1.1

3.2

3.2.1
3.2.2

- 97 -
CONTENTS

INTRODUCTION

What is Multiprogram Batch
How to Use Batch

Setting Up Your Job
Running Your Job
Receiving Your Output
Recovering from Errors '

Summary

ENTERING A JOB TO BATCH FROM CARDS
Format of the Cards in Your Deck

Setting up Your Card Deck

Card Deck to Run ALGOL Programs

Card Deck to Run COBOL Programs

Card Deck to Run FORTRAN Programs

Card Deck to Run MACRO Programs

Putting Commands into the Control File from Cards
Card Decks for Programs that do not have Special Control Cards
Control Cards for Batch (in Alphabetical Order)
The $ALGOL Card

The $COBOL Card

The $DATA Card

The $DECK Card

The End-of~File Card

The $EOD Card

The $ERROR Card

The $FORTRAN Card

The $JOB Card

The $MACRO Card

The $NOERROR Card

The $PASSWORD Card

The $SEQUENCE Card

Specifying Error Recovery in the Control File

ENTERING A JOB TO BATCH FROM A TERMINAL
Creating the Control File

Format of Lines in the Control File

Submitting the Job to Batch

Queue Operation Switches

General Switches

BEGINNER'S BATCH

Page

99
99
99
100
100
100
100

103
104
105
106
106
107
108
109
1M

113
115
19
121
121
122
123
125
127
129
130
131
131

137
138
139
140
141




BEGINNER'S BATCH -98 -

3.2.3
3.2.4
3.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.4

CHAPTER 4
4.1

4.2

4.3

4.4

4.4.1
4.4.2
4.4.3

CHAPTER 5
5.1
5.2

CONTENTS (Cont)

File-Control Switches

Examples of Submitting Jobs

Batch Commands (in Alphabetic Order)

The .BACKTO Command

The .ERROR Command

The .GOTO Command

The .IF Command

The .NOERROR Command

Specifying Error Recovery in the Control File

INTERPRETING YOUR PRINTED OUTPUT
Output from Your Job

Batch Output

Other Printed Qutput

Sample Batch Output

Sample Output from a Job on Cards

Sample Output from a Job from a Terminal

Sample Dump
PERFORMING COMMON TASKS WITH BATCH

Using the Terminal to Enter Jobs
Using Cards to Enter Jobs

xii

Page
143
144
146
146
146
147
148
149
150

153
153
154
154
154
157
160

169
169
176



-99 - BEGINNER'S BATCH

CHAPTER 1
INTRODUCTION

1.1 WHAT IS MULTIPROGRAM BATCH

Multiprogram Batch is a group of programs that allow you to submit a job to the DECsystem=10 on a
leave-it basis. That is, you give the job to an operator (if on cards) or submit it directly to the com-
puter (if from a timesharing terminal) so that you can do something else while your job is running. A

job is any combination of programs, their associated data, and commands necessary to control the

programs.

Some of the jobs that are commonly processed under Batch are those that:
1. Are frequently run for production,
2. Are large and long running,

3. Require large amounts of data, or
4.

Need no actions by you when they are running.

1.2 HOW TO USE BATCH

Batch allows you to submit your job to the computer through either an operator or a timesharing
terminal, and receive your output from the operator when the job has finished. Output is never re-
turned at a timesharing terminal even if your job is entered from one; instead, it is sent to a peripheral
device (normally the line printer) at the computer site and returned to you in the manner designated

by the installation manager.

1.2.1 Setting Up Your Job

You must make up a control file to use Batch. A control file is a list of commands for the monitor,
system programs, or Batch itself that tells Batch what steps to follow to process your job and the order
in which to process them. When you enter your job on cards, you can take advantage of the special
control cards that cause Batch to insert commands into the control file for you. When you enter your
job from a timesharing terminal, you must put all the commands for your job into the control file
yourself. The steps that you must take to create a control file from cards are described in Chapter 2.

Creating a control file from a timesharing terminal is described in Chapter 3.

1-1



BEGINNER'S BATCH -100 -

1.2.2 Running Your Job

After you submit the job, it waits in a queue with ofher jobs until Batch schedules it to run under
guidelines established by the installation manager. Some factors that affect how long your job waits
in the queue are its size, the amount of core it needs, the amount of time that it will take to run it,
and whether or not you have specified a certain deadline when you want it run. When the job is
started, Batch reads the control file and performs the actions necessary to run the job. For example,
Batch passes monitor commands to the monitor which performs the actions called for and passes com=

mands to system programs so that their processing can be performed.

As each step in the control file is performed, Batch records it in a log file. For example, if a
monitor command such as COMPILE is processed; Batch passes it to the monitor and writes it in the
log file. The monitor response is-also written in the log file. Any response from your job that would

be written on the terminal during timesharing is written in the log file by Batch.

1.2.3 Receiving Your Output

When the job is completed successfully and output has been sent to all devices, Batch terminates the
log file and has it printed. The output from your job and the log file are then returned to you. Out=
put from your job can be in the form of line-printer listings, punched cards, punched paper tape,
plots, DECtape, or magnetic tape. If the output is to a DECtape or magnetic tape, you must include
commands in your job to mount these tapes so that your output can be written on them. This is also
true if you have input to any of the programs in your job written on tape. If your output is to cards,
paper tape, the plotter, or the line printer, you must specify to Batch the approximate amount of
cards, paper tape, plotter time, or pages that you require. These restrictions are to help Batch
restrain runaway programs. An example of using the MOUNT command in the control file to request
mounting of tapes is shown in Chapter 5. The way that you specify the amounts of paper, cards, etc.
is described in Chapter 2, ''The $JOB Card'’ and in Chapter 3, ''Submitting Your Job."

1.2.4 Recovering from Errors

If an error occurs in your job, either from an error in your program or from an erroneous command in
the control file, Batch writes the error message in the log file and usually terminates the job. In addi-
tion, if the error occurred in your program, Batch causes a dump to be taken of your area of core.

You can, however, put commands in the control file so that Batch can help you recover from errors

in your job and continue running. Error recovery from a card job is described in Chapter 2; from a

job entered from a terminal, in Chapter 3. Dumps, along with other printed output from a Batch job,

are described in Chapter 4.

1.3 SUMMARY

In summary, the steps that you must perform to enter a job to the computer through Batch are as

follows:



- 101 - BEGINNER'S BATCH

1. Create a control file either from cards (refer to Chapter 2) or from a
terminal (refer to Chapter 3).

2. Submit the job to Batch, either to the operator for a card job (Chapter 2)
or directly to Batch for a terminal (Chapter 3).

3. Pick up your output and interpret it (refer to Chapter 4).

Some sample jobs that are run through Batch from cards and from a terminal are shown in Chapter 5.




BEGINNER'S BATCH -102.-



- 103 - BEGINNER'S BATCH

CHAPTER 2
ENTERING A JOB TO BATCH FROM CARDS

Batch runs your job by reading a control file that contains commands to the monitor, system pro-
grams, or Batch itself. You have to make up the control file, but Batch provides you with special
control cards to help you make up control files for simple jobs. These control cards make it easy for
you to submit your programs to the computer and to create your control file to run these programs.
Most of these control cards cause Batch to insert commands into the control file and/or copy pro-

grams and data into disk files. Some are used to show the beginning of your job and to identify it;

and one is used to indicate the end of it. Batch control cards are also available to help you recover
from errors that may occur while you job is running. The following is a list of the control cards which

are described in greater detail in Section 2.4,

$SEQUENCE Section 2.4.12
$JOB Section 2.4.9
$PASSWORD Section 2.4.12
$ALGOL Section 2.4.1
$COBOL Section 2.4.2
$FORTRAN Section 2.4.8
$MACRO Section 2.4.10
$DECK Section 2.4.4
$DATA Section 2.4.3
$EOD Section 2.4.6
$ERROR Section 2.4.7
$NOERROR Section 2.4.11
end-of-file Section 2.4.5

2.1 FORMAT OF THE CARDS IN YOUR DECK

The card decks that you input to Batch can contain any combination of Batch control cards; com-
mands to the monitor, system programs, and Batch itself; programs and data that will be copied into

separate disk files; and data that will be copied into the control file for your program to read.

The Batch control cards must contain a dollar sign ($) in column 1 and a command that starts in
column 2. The command must be followed by at least one space, which can then be followed by the
other information on the card. The end-of-file is the only exception to this format; it is identified
by special punches in columns 1 and 80. Refer to the individual description of each card for any

special format requirements.

2-1



BEGINNER'S BATCH - 104 -

If you include a card with a monitor command, you must place a period in column 1 and follow it
immediately with the command. Any information that follows the command is in the format that is

shown for the command in the DECsystem-10 Operating System Commands manual.

To include a command to a system program on a card, you must punch an asterisk (*) in column 1 and
punch the command string immediately following the asterisk. Refer to the manual for the system

program that you wish to use.

Batch commands are punched like monitor commands; that is, a period is punched in column 1 and

the command immediately follows the period.

The card format for your program depends on the language in which you have written the program;
refer to the reference manual for the programming language that you are using for the format of each
line of your program. The same is true for your data. The format that is required for the data by the

programming language that you are using is described in the language reference manual.

If you want to include data for your program in the control file, you punch it as you would data that
is read from a separate file. The only restriction on data in the control file is that alphabetic data
that is preceded by a dollar sign ($) must be preceded by an additional dollar sign so that Batch will

not interpret such data as its own control commands.

If you put any special characters other than those described above in the first column of a card, you
may get unexpected results because Batch interprets other special characters in special ways. If you

want to know about other special characters, refer to the DECsystem=-10 Operation System Commands

manual, Chapter 3.

If you have more information than will fit on one card, you can continue on the next card by placing
a hyphen (~) as the last nonspace character on the card to be continued and the rest of the informa-

tion on the next card.

Comments can also be included either as separate cards or on cards containing other information.

To include a comment on a separate card, you must punch a semicolon (;) in column 1 and follow it
immediately with the comment. To add a comment to a card, you must precede the comment with a
semicolon (;) after all the information that you need has been put on the card. Comments that are on
separate cards will normally be copied by Batch into your control file and later copied into your

log file.

2.2 SETTING UP YOUR CARD DECK

Since the most common tasks performed in a job are compilation and execution of one or more pro-
grams, simple control cards are available that will cause Batch to insert commands into the control
file for these tasks. However, a Batch job can do anything a timesharing job can do and if you wish

to perform more complicated tasks, you will have to include monitor commands in your deck to direct

2-2



=105 - BEGINNER'S BATCH

Batch to execute your tasks. The way in which you include monitor commands and also commands to

other system programs is described in Section 2.3.

The control cards that you can use to compile and execute programs written in ALGOL, COBOL,
FORTRAN, and MACRO are shown in sections 2.2.1, 2.2.2, 2.2.3, and 2.2.4. Certain control
cards are always required in a Batch job. Others are required only at some installations. The
$JOB card and the end-of-file card are always required. The $SEQUENCE and $PASSWORD

cards may be required, depending on the installation.

If the $SEQUENCE card is required, it must be the first card in the deck. The $JOB card must
always be either the second card in the deck if the $SEQUENCE card is required, or the first card
in the deck if the $SEQUENCE card is not required. If it is required, the $PASSWORD card must
immediately follow the $JOB card. It will be assumed in this manual that the $SEQUENCE and
the $PASSWORD cards are required. The end-offile card must be the last card in the deck to in-
dicate to Batch that it has read the end of your job. This end-of-file card is only used to end your

entire job, not to end individual files in your job.

The cards that come between the first and last cards constitute your job. Setting up decks for speci-

fic languages is shown in the sections that follow.

2.2.1 Card Deck to Run ALGOL Programs

To run ALGOL programs, you use the $ALGOL and $DATA cards. You put a $ALGOL card in front
of your ALGOL program to make Batch copy your program into a disk file and insert a COMPILE

command into your control file. The $ALGOL card is described in detail in Section 2.4.1,

You put a $DATA card in front of the data that goes with the program to make Batch copy your data
into another disk file and insert an EXECUTE command into your control file. The $DATA card is
described in Section 2.4, 3.

Thus, to compile and execute an ALGOL program, your card deck would appear as follows.

4/ ALGOL PROGRAM
SALGOL
$PASSWORD

$J08B
$SEQUENCE

10- 0915

2-3



BEGINNER'S BATCH - 106 -

Refer to the description of each card for the information that goes on it. The way that you tell your

program how to find its data is described in Section 2.4.8.1,

2.2.2 Card Deck t§ Run COBOL Programs

To run COBOL programs, you can use the $COBOL card and the $DATA card. You put a $COBOL
card in front of your COBOL program to make Batch copy your program into a disk file and insert a
COMPILE command into your control file, The $COBOL card is described in detail in Section
2.4.2, ’

You put a $DATA card in front of the data that goes with your program to make Batch copy your
data into another disk file and insert an EXECUTE command into your control file. The $DATA

card is described in Section 2.4.3.

Thus, to compile and execute one COBOL program, your card deck would appear as follows.

Y
il
//DATA FOR PROGRAM

$DATA

$coBOL
$PASSWORD
$voB
$SEQUENCE

10 09'¢

Refer to the description of each card for the information that goes on it. The way that you tell your

program how to find its data is described in Section 2.4.3.1

2.2.3 Card Deck to Run FORTRAN Programs

To run FORTRAN programs, you can use the $FORTRAN and $DATA cards. You put a $FORTRAN
card in front of your FORTRAN program to make Batch copy your program into a disk file and insert
a COMPILE command into your control file. The $FORTRAN card is described in detail in

Section 2.4.8,



- 107 - BEGINNER'S BATCH

You put a $DATA card in front of the data that goes with your program to make Batch copy your data
into another disk file and insert an EXECUTE command into your control file. The $DATA card is
described in Section 2.4.3.

Thus, to compile and execute one FORTRAN program, your card deck would appear as follows.

SFORTRAN

$PASSWORD

$J08

$SEQUENCE

10-0917

Refer to the description of each card for the information that goes on it. The way that you tell your

program how to find its data is described in Section 2.4.3.1.

2.2.4 Card Deck to Run MACRO Programs
To run MACRO programs, you can use the $MACRO and $DATA cards. You put a $MACRO card

in front of your MACRO program to make Batch copy your program into a disk file and insert a
COMPILE command into your control file. The $MACRO card is described in detail in
Section 2.4.10.

You put a $DATA card in front of the data that goes with your program to make Batch copy your data
into another disk file and insert an EXECUTE command into your control file. The $DATA card is
described in Section 2.4.3. Thus, to assemble and execute one MACRO program, your card deck

would appear as follows,



BEGINNER'S BATCH - 108 -

'END'OF- FILE

DATA FOR PROGRAM

MACRO PROGRAM

$MACRO

$PASSWORD

$s08

$SEQUENCE

10-0918

Refer to the description of each card for the information that goes on it.

2.3 PUTTING COMMANDS INTO THE CONTROL FILE FROM CARDS

Batch puts commands into the control file for you when you use certain control cards. However,
only a small number of kinds of commands can be put in the control file in this way. If you wish

to perform operations in addition to compilation and execution, you must include commands in your
card deck so that Batch will copy them into your control file. Where you put these commands in
your card deck determines their positions in the control file. Batch reads your card deck in se-
quential order, copying commands into the control file as they, or the special control cards, are
read. However, Batch, when it reads a control card that tells it to copy a program or data into a
disk file, copies every card that follows such a control card until it meets another control card. To
ensure that your commands are not copied into a file with programs or data, you must place a special
control card, the $EOD card, at the end of a program deck if you wish to follow the program with
a command. For example, if you have a FORTRAN program that creates its own data and does not

need to use a $DATA card, you could include the following cards in your deck.



- 109 - BEGINNER'S BATCH

/:END-OF-FILE \
I
I

«EXECUTE (command to load and execute the program)

(to tell Batch to stop copying into the program file)

V' FORTRAN PROGRAM

$FORTRAN

$PASSWORD

$J08

$SEQUENCE

10-0919

The only commands that you cannot use in a Batch job are CSTART, CCONT, ATTACH, DETACH,
and SEND. Batch will ignore these commands when it reads them in the control file. Also, you
cannot use the LOGIN command in your Batch job because you will get an error that will terminate
your job. Batch logs your job in according to your $JOB and $PASSWORD cards.

2.3.1 Card Decks for Programs That Do Not Have Special Control Cards

By combining monitor commands with control cards such as $DECK and $EOD, in addition to the re-
quired control cards, you can process any program that does not have special control cards for it.
You put a $DECK card in front of a program, data, or any other group of cards to make Batch copy
the cards that follow the $DECK card into a disk file. However, Batch does not put a command into
the control file when it reads a $DECK card. The $DECK card is described in detail in

Section 2.4.4.

For example, a BASIC program does not have a specific control card. To run a BASIC program under
Batch from cards, you can combine the $DECK card and the $EOD card with monitor commands. You
also use a $DECK card to copy the data for a BASIC program because the $DATA card puts an
EXECUTE command into the control file and BASIC does not use the EXECUTE command to run.

The following example shows a card deck that enters a BASIC program for running under Batch.



BEGINNER'S BATCH

- 110 -

:END- OF - FILE

~BYE

*RUN
*0L0
*R BASIC

DATA FOR PROGRAM

$DECK (FOR DATA)

BASIC PROGRAM

$DECK (FOR PROGRAM)

$PASSWORD

$SEQUENCE

16 5920

The BASIC program contains statements that read data from a disk file. You answer OLD to the

BASIC question

NEW OR OLD --

because the file is on disk and can be retrieved by BASIC.

If your BASIC program reads data that is to be input by you during the running of the program, you

enter the data in the control file so that it will be passed to your program by Batch. This is shown

in the following example.

|END-OF -FILE
#BYE
3,5-9,1,8
5,1,3,4,-7
1,2,4,2,-7
#RUN

BASIC PROGRAM

$DECK (FOR PROGRAM) [:
$PASSWORD it
$us08 )
$SEQUENCE

*0LD
.R BASIC

(data for the program)



=111 - BEGINNER'S BATCH

You can use the same technique to enter programs written in any language that does not have a
specific control card, provided that your installation supports the language. Also, you can run sys-

tem programs under Batch using the same technique.

2.4 CONTROL CARDS FOR BATCH (IN ALPHABETICAL ORDER)

The special control cards for Batch are described below in detail. Only the control cards that are

pertinent to this manual are discussed. Refer to DECsystem-10 Operating System Command

(DEC-10-MRDC-D) for the remaining cards. The same is true for some of the switches that can be
included on each card. [f a switch is not described in this manual, it can be found in the

DECsystem-10 Operating System Commands manual.

2.4.1 The $ALGOL Card

You put a $ALGOL card in front of your ALGOL program to make Batch copy your ALGOL program
into a disk file and insert a COMPILE command into your control file. Thus, when Batch runs your
job, your ALGOL program will be compiled. You can put some optional information on the

$ALGOL card to tell Batch more about your program or the cards that your program is punched on.

The $ALGOL card has the form:

$ALGOL filename.ext/switches(switches)

10-0902

filename. ext specifies the optional filename and extension
that you can tell Batch to put on the file that
it creates for your program. |f you omit the
filename and extension, Batch will create
a unique name for your file and add the ex-
tension .ALG to it.

/switches are switches to Batch to tell it how to read
your program and whether or not to request
a compilation listing when the program is
compiled. The switches can be put on the
card in any order and are described below.

(switches) are switches that Batch passes to the ALGOL
compiler when it puts the COMPILE command
in the control file. These switches must be
enclosed in parentheses, must not be preceded
by slashes, and may or may not be separated
by commas. The switches for the ALGOL com-
piler are described in Section 18.1 in Chapter
18 of the DECsystem=10 ALGOL Programmer's
Reference Manual (DEC-10-KAZB-D).




BEGINNER'S BATCH -12-

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of the ALGOL program. You can make Batch
stop reading at a specific column by means of the /WIDTH switch, in which you indicate the number
of a column at which to stop. Thus, if you have no useful information in the last 10 columns of each

card of your program, you can tell Batch to read only up to column 70 by specifying
/WIDTH:70
on the $ALGOL card.

/NOLIST Switch

Normally, the $ALGOL card tells Batch to ask the compiler to generate a compilation listing of
your ALGOL program. The listing is then printed as part of your job's output. If you don't want this
listing, you can include the /NOLIST switch on the ALGOL card to stop generation of the listing.

/SUPPRESS:OFF Switch

When Batch reads the cards of your ALGOL program, it normally does not copy any trailing spaces
into the disk file to save space on the disk. [f you want Batch to copy everything on the cards up to
column 80 or any column that you may specify in the /WIDTH switch, you must include the
/SUPPRESS:OFF switch on the $ALGOL card.

Examples
The simplest form of the $ALGOL card is shown in the following example.
$ALGOL

This card causes Batch to copy your program into a file to which Batch gives a unique name and the
extension .ALG. The cards in the program are read up to column 80 with trailing spaces suppressed.
A listing file is produced when the program is compiled. This listing is written as part of the job's

output. No compiler switches are passed to ALGOL.

The following is an example of a $ALGOL card with switches.
$ALGOL MYPROG .ALG /WIDTH:72 /NOLIST (1COOD, N, Q)
With this card, your ALGOL program is copied into a file named MYPROG.ALG and a COMPILE

command is entered into the control file. The cards in the program are read up to column 72 and
trailing spaces up to column 72 are not copied into the file. When the program is compiled, no
listing is produced, and the compiler reads and acts upon the switches 10OOOD, N, and Q given to
it by Batch.



- 113 - BEGINNER'S BATCH

2.4.2 The $COBOL Card
You place the $COBOL card in front of your COBOL program to make Batch copy your COBOL

program into a disk file and insert a COMPILE command into your control file. Thus, when Batch
runs your job, your COBOL program will be compiled. You can put some optional information on
the $COBOL card to tell Batch more about your program or the cards that your program is punched

on.

The $COBOL card has the form:

$COBOL filename.ext/switches(switches)

10-0903

filename.ext specifies the optional filename and extension
that you can tell Batch to put on the file that
it creates for your program. If you omit the
filename and extension, Batch will create
a unique name for your file and add the ex~
tension .CBL to it.

/switches are switches to Batch to tell it how to read
your program. The switches are described
below.

(switches) are switches that Batch passes to the COBOL

compiler when it puts the COMPILE command
in the control file. These switches must be
enclosed in parentheses, must not be preceded
by slashes, and may or may not be separated
by commas. The switches for the COBOL
compiler are described in Table D-3 in
Appendix D of the DECsystem=-10 COBOL,
Programmer's Reference Manual

[DEC-10-KCIC-D).

/WIDTH:n Switch
Normally, Batch reads up to 80 columns on every card of the COBOL program. You can make Batch
stop reading at a specific column by means of the /WIDTH switch, in which you indicate the number
of a column at which to stop. Thus, if you have no useful information in the last 10 columns of each
card of your program, you can tell Batch to read only up to column 70 by specifying

/WIDTH:70

on the $COBOL card.



BEGINNER'S BATCH -114 -

/SUPPRESS:OFF Switch

When Batch reads the cards of your COBOL program, it normally does not copy any trailing spaces
into the disk file to save space on the disk. If you want Batch to copy everything on the card up to
column 80 or any column that you may specify in the /WIDTH switch, you must include the
/SUPPRESS:OFF switch on the $COBOL card.

/CREF Switch

If you want a cross-reference listing of your COBOL program, you can include the /CREF switch on
the $COBOL card to tell Batch to ask the COBOL compiler to produce a cross-reference listing
when it compiles your program. This listing is printed as part of your job's output. You do not have

to include a command to run the CREF program to get this listing, Batch will do it for you.

/SEQUENCE Switch

The COBOL compiler assumes that your COBOL program is in standard DECsystem=10 format. The
/SEQUENCE switch, which Batch passes to the compiler, makes the compiler recognize that your
program is in conventional (i.e., industry-wide) format. A program in conventional format has
sequence numbers in columns 1 through é and comments that begin in column 73. When the
/SEQUENCE switch is specified, the width of the card is assumed to be 72, not 80 columns. The

following example shows programs in conventional and standard formats.

IF YOUR PROGRAM LOOKS LIKE: YO.U SHOULD:

1 8 73

000010 IDENTIFICATION DIVISION..... MYPROG Include the /SEQUENCE

000020 PROGRAM-ID. MYPROG........ MYPROG switch because your program

000030 AUTHOR. ABB..........cvn..... MYPROG is in conventional format.

IF YOUR PROGRAM LOOKS LIKE: YOU SHOULD:

] .

IDENTIFICATION DIVISION...... Omit the /SEQUENCE

PROGRAM-ID. MYPROG......... switch because your program

AUTHOR. ABB......cvvvvinnvnnn. is in DECsystem-10 standard format.
Examples

The simplest form of the $COBOL card is:
$COBOL

This card tells Batch to copy your program into a file and assign a unique name and the extension
.CBL. AIll 80 columns of the cards are read, trailing spaces are not copied, and the compiler is
told that the program is in standard format. No switches are passed to the compiler, and a listing

file is produced when the job is run. The listing is printed as part of the job's output.



=115 - BEGINNER'S BATCH

The following is an example of a $COBOL card with switches.
$COBOL MYPROG.CBL /SEQUENCE (N, P)
With this card, your COBOL program is copied into a disk file named MYPROG.CBL and a

COMPILE command is inserted into the control file. The cards are read only up to column 72 and
trailing spaces up to column 72 are not copied into your file. Batch passes the N and P switches to
the compiler, and tells the compiler to accept the program in conventional format. A listing file is

produced when the program is compiled. This listing is printed as part of the job's output.

2.4.3 The $DATA Card

You put a $DATA card in front of the data for your program to make Batch copy it into a disk file
and to insert an EXECUTE command into your control file, Within the EXECUTE command, Batch
requests a loader map for you. When your job is run, any programs that were entered with $ALGOL,
$FORTRAN, or $MACRO cards that came before the $DATA card are executed. Every time that
Batch reads one of the $language cards, it adds it to a list that it keeps. When it then reads a
$DATA card, each program in Batch's list is put into the EXECUTE command string that the $DATA
card puts into the control file. After the $DATA card is read by Batch and the EXECUTE command
is put into the control file with the names of the programs that preceded the $DATA card, Batch
clears its list so that it can start a new list for programs entered later. If you have more than one set
of data for a program or programs, you can precede each set with a $DATA card to put two EXECUTE
commands into the control file to run your program or programs twice. An EXECUTE command follow-
ing another EXECUTE command in the control file without intervening $language cards causes the

programs executed by the first EXECUTE command to be loaded and executed again.

If your data is included in the program so that you do not have cards with data on them, you can still
use the $DATA card to insert an EXECUTE command into the control file.

The form of the $DATA card is:

SDATA filename. ext/switches

10-0904

filename. ext specifies the optional filename and extension
that you can tell Batch to put on the file
that it creates for your data. [f you omit the
filename and extension, Batch will create
a unique name for your file and add the
extension .CDR fo it.



BEGINNER'S BATCH =116 -

/switches are switches to Batch to tell it how to read
the cards of your data. The switches are
described below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your data. You can make Batch stop
reading at a specific column by means of the /WIDTH switch, in which you indicate the number of
a column at which to stop. Thus, if you have information in the last 10 columns of each card of your

data, you can tell Batch to read only up to column 70 by specifying
/WIDTH:70

on the $DATA card.
/SUPPRESS:OFF Switch

When Batch reads the cards of your d&to, it normally does not copy any trailing spaces into the disk
file to save space on the disk. If you want Batch to copy everything on the cards up to column 80
or any column that you specify in the /WIDTH switch, you must include the /SUPPRESS:OFF switch
on the $DATA card.

Examples

The simplest form of the $DATA card is:

$DATA
This card causes Batch to copy your data into a file and tc; assign a unique name and the extension
.CDR to it. All 80 columns of the cards are read and trailing spaces are not copied into the file.
The following example shows a $DATA card with switches.

$DATA MYDAT.DAT /WIDTH:72 SUPPRESS:OFF
The data that follows this card is copied into a file named MYDAT.DAT and an EXECUTE command

is inserted into the control file. When Batch reads the cards of the data, it reads only up to column

72 and copies trailing spaces into the data file.

2.4.3.1 Naming Data Files on the $DATA Card - If you want to name your data file on the $DATA
card rather than letting Batch name it for you, you must, in your program, assign that file to disk as

shown in the following examples.

2-14



-117 - BEGINNER'S BATCH

COBOL Example

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO DSK.

DATA DIVISION.
FILE SECTION.
FD SALES, VALUE OF IDENTIFICATION IS "'SALES CDS'".

The $DATA card would then appear as follows.
$DATA SALES.CDS

FORTRAN Examples

You can assign your data to disk in several ways when you use FORTRAN. You can read from unit 1,
which is the disk, in your program and use the name FORO1.DAT as the filename on your $DATA

card, as shown in the following statements.

READ (1,f), list

$DATA FORO1.DAT

You can also tell FORTRAN to read from logical unit 2, which is normally the card reader, and
assign unit 2 or the card reader (CDR) to disk (DSK). You use the name FOR02, DAT on the $DATA

card in this case.

READ (2,f), list

.ASSIGI\] DSK CDR (in the control file)
$DATA FOR02.DAT

You can also use a specific disk device such as DSKO as the unit from which you will read. In the
control file, you would then assign DSKO to DSK. The unit number of DSKO is 20 and thus the name
on the $DATA card would be FOR20.DAT.



BEGINNER'S BATCH -118 -

READ (20, f), list

.ASSIGN DSK DSKO (in the control file)
$DATA FOR20.DAT

ALGOL Example

To read your data from the disk in an ALGOL program, you would use.the following statements. You
can assign your data to any channel (signified by c) and you can give your data file any name as long

as the name that you use in your program is the same as that put on the $DATA card.

INPUT (c, ""DSK"")
SELECT INPUT (c)
OPENFILE (c, '"MYDAT.DAT'")

$DATA MYDAT.DAT

This is to ensure that your program finds your data in the disk file under the name that you have

assigned to it.

If you let Batch assign a name to your data file, you will not know the name that your data file will
have and should therefore assign your data file, without a name, to the card reader. Batch will tell
the monitor in this case to look for your data in a disk file when your program wants to read it. The

following examples illustrate how to do this.

COBOL Example

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO CDR.

DATA DIVISION.
FILE SECTION.
FD SALES, LABEL RECORDS ARE OMITTED.



=119 - BEGINNER'S BATCH

FORTRAN Example

To read your data from the card reader, you use the unit number 2 or no unit number, as shown below.

READ (2,f), list

$DATA
READ f, list

$DATA
ALGOL Example

In an ALGOL program, you would assign the desired channel (signified by c) to the card reader,
select the desired channel, but you would not explicitly open the named file on the channe! because

the file does not have a name that is known to you.

INPUT (c, ""CDR")
SELECT INPUT (c)

$DATA

The $DATA card cannot be used for data for programs written in languages other than ALGOL,
COBOL, FORTRAN, and MACRO. It can, however, be used for programs that are in relocatable
binary form. Thus, data for BASIC programs cannot be copied by means of the $DATA card; you
should instead use the $DECK card, described below.

2.4.4 The $DECK Card

You can put the $DECK card in front of any program, data, or other set of information to make Batch
copy the program, data, or information into a disk file. Batch does not insert a command into the
control file when it reads the $DECK card. You must include commands in your card deck that Batch

will copy into the control file to process the file created by Batch because of the $DECK card.



BEGINNER'S BATCH -120 -

The form of the $DECK card is:

SDECK filename.ext/switches

10-0905

filename. ext specifies the optional filename and extension
that you can tell Batch to put on the file
that it creates for your program or data.
If you omit the filename and extension, Batch
will create a unique name for your file.

/switches are switches to Batch to tell it how to read
the cards in your deck. The switches are
described below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card in your deck. You can make Batch stop
reading at a specific column by means of the /WIDTH switch, in which you indicate the number of
a column at which to stop. Thus, if you have information in the last 10 columns of each card in your

deck, you can tell Batch to read only up to column 70 by specifying
/WIDTH:70

on the $DECK card.

/SUPPRESS:OFF Switch

When Batch reads the cards in your deck, it normally does not copy any trailing spaces into the disk
file to save space on the disk. If you want Batch to copy everything on the cards up to column 80 or
any column that you specify in the /WIDTH switch, you must include the /SUPPRESS:OFF switch on
the $DECK card.

Examples

The simplest form of the $DECK card is:
$DECK

This card causes Batch to copy your deck into a disk file and to assign a unique name to it. All 80

columns of the cards are read and trailing spaces are not copies into the file.



=121 - BEGINNER'S BATCH

The following shows an example of a $DECK card.
$DECK MYDECK.CDS /WIDTH:50 /SUPPRESS:OFF

The deck that follows this card is copied into a disk file named MYDECK .CDS. When Batch reads

the cards in the deck, it reads up to column 50 and copies trailing spaces into the file.

2.4.5 The End-of-File Card

You must put the end-of-file card at the end of the deck containing your complete job to tell Batch

that it has reached the end of your job. Unlike the other Batch control cards, the end-of-file card
does not have a dollar sign (§) and a command on it. It contains special punches that are recognized

by Batch as the end-of-file. These punches must be in rows 6,7,8, and 9 of column 1. So that the end-
of-file card can be recognized in any orientation (e.g., upside down), you should punch rows 12,
11,0,1,6,7,8, and 9 and leave rows 2,3,4, and 5 blank in both columns 1 and 80. If you omit the
end-of-file card, an error message will be issued unless the installation makes the operator put the

card on any deck that does not have one. However, your job will still be scheduled. The form of

the end-of -file card is shown below.

10-0906

2.4.6 The $EOD Card

You put a $EOD card at the end of the cards being copied into a file due to a $DECK, $DATA,

or $language card. This card tells Batch to stop copying cards into the file. If another Batch control
card follows the cards being copied, you don't need the $EOD card because Batch stops copying
cards into a file when it reads a Batch control card. The only time that the $EOD card is necessary
is when you wish to follow the cards being copied into a file by a card other than a control card,
e.g., a card containing a command. Refer to Section 2.3 for a description of including commands

in your deck.



BEGINNER'S BATCH -122 -

The $EOD card has the form:

$EOD

10-0907

An example of using the $EOD card is shown below where the user wishes to load the COBOL de-
bugging program COBDDT with his program.

$COBOL MYPROG.CBL

$EOD
.LOAD %S MYPROG.CBL, SYS:COBDDT
.START MYPROG

If the $EOD card had not been included in the above example, the .LOAD and .START commands
would have been copied into the file with the COBOL program, rather than being copied into the

control file.

2.4.7 The $ERROR Card
You can use the $ERROR card and the $NOERROR card (described later in this chapter) to specify

error recovery in the control file. When Batch reads the $ERROR card, it inserts a special Batch
command into the control file, the .IF (ERROR) command. This command will later tell Batch what
to do when an error occurs when your job is being processed. How to perform error recovery is
described in Section 2.5.

The $ERROR card has the form:

$ERROR statement

10-0908

statement is a command to the monitor, to a system
program or a special Batch command such

as .GOTO or .BACKTO.

Batch enters an .IF (ERROR) command into the control file when it reads the $ERROR card, and in-
cludes the statement from the $ERROR card in the .IF (ERROR) command in the form:

.IF (ERROR) statement

2-20



=123 - BEGINNER'S BATCH

The Batch commands .GOTO and .BACKTO have the forms:

.GOTO statement label
.BACKTO statement label

statement label is the label of a line in the control file.
The label can contain from 1 to 6 alpha-
betic charactérs and must be followed by
a double colon (::) when it is labelling
a line.

The . GOTO command tells Batch to search forward in the control file on disk until it finds the line
containing the label. The .BACKTO command tells Batch to search back in the control file on disk
to find the line containing the label. You must supply the labelled line and any related lines for
which Batch will search. Include these lines in your card deck where you want them to be copied
into the control file. If Batch cannot find a labelled line that is searching for as a result of a
.GOTO or a .BACKTO statement, it terminates your job.

2.4.8 The $FORTRAN Card

You place the $FORTRAN card in front of your FORTRAN program to make Batch copy your pro-
gram into a disk file and insert a COMPILE command into your control file. Thus, when Batch runs
your job, your FORTRAN program will be compiled. You can put some optional information on the

$FORTRAN card to tell Batch more about your program or the cards that your program is punched on.

The $FORTRAN card has the form:

$FORTRAN filename.ext/switches(switches)

10-0909

filename. ext specifies the optional filename and extension
that you can tell Batch to put on the file that
it creates for your program. If you omit the
filename and extension, Batch will create a
unique name for your file and add the
extension .F4 to it.

/switches are switches to Batch to tell it how to read
Eour program. The switches are described
elow.

2-21



BEGINNER'S BATCH - 124 -

(switches) are switches that Batch passes to the FORTRAN
compiler when it puts the COMPILE command
in the control file. These switches must be
enclosed in parentheses, must not be preceded
by slashes, and may or may not be separated
by commas. The switches for the FORTRAN
compiler are described in Table 11-1 in
Chapter 11 of the DECsystem-10 FORTRAN 1V
Programmer's Reference Manual
(DEC-10-AFDO-D).

/WIDTH:n Switch

Normally, Batch reads up to 72 columns on every card of the FORTRAN program. You can make
Batch stop reading at a specific column by means of the /WIDTH switch, in which you include the
number of the column at which to stop. The FORTRAN compiler only reads FORTRAN statements
up to column 72, even if you tell Batch to read up to column 80. But, if you wish to have MPB

read only up to column 60, you can specify
/WIDTH:60
on the $FORTRAN card.

/SUPPRESS:OFF Switch

When Batch reads the cards of your FORTRAN program, it normally does not copy any trailing
spaces into the disk file to save space on the disk. If you want Batch to copy everything on the
card up to column 72 or any column that you specify in the /WIDTH switch, you must include the
/SUPPRESS:OFF switch on the $FORTRAN card.

/CREF Switch

If you want a cross-reference listing of your FORTRAN program, you can include the /CREF switch
on the FORTRAN card to tell Batch to ask the FORTRAN compiler to produce a cross-reference
listing when it compiles your program. This listing is printed as part of your job's output. You do not

have to include a command to run the CREF program to get this listing, Batch will do it for you.
/NOLIST Switch

Normally, the $FORTRAN card tells Batch to ask the compiler to generate a compilation listing of
your FORTRAN program. The listing is then printed os part of your job's output. If you don't want
this listing, .you can include the /NOLIST switch on the $FORTRAN card to stop generation of

the listing.

Examples

The simplest form of the $FORTRAN card is:
$FORTRAN

2-22



=125 - BEGINNER'S BATCH

This card tells Batch to copy your program into a disk file and assign a unique name and the extension
.F4. The first 72 columns of the cards are read, trailing spaces are not copied, and a listing file is
produced when the job is run. No switches are passed to the compiler. The listing is printed as part

of the job's output.

The following is an example of a $FORTRAN card with switches.
$FORTRAN MYPROG.F4 /CREF /NOLIST/SUPPRESS:OFF (I, M)
With this card, your FORTRAN program is copied into a disk file named MYPROG.F4 and a

COMPILE command is inserted into the control file. The cards are read only up to column 72 and
trailing spaces up to column 72 are copied into your file. A cross-reference listing of your program
will be generated, but a compilation listing will not. Batch passes the | and M switches to the

compiler.

2.4.9 The $JOB Card

You must include the $JOB card as the first card in your deck or as the second card following the
$SEQUENCE card, which is described later in this chapter. The $JOB card tells Batch whose job
that it is processing and, optionally, the name of the job, and any constraints that you want to place
on the job. When Batch reads the $JOB card and the $PASSWORD card, if it is required, it cre-
ates the control file and begins the log file for your job. Batch then places commands into the
control file that are taken from the cards that follow the $JOB card.

The $JOB card has the form:

$J0B name [pvoi, pvog] /switches

10-0910

name is the optional name that you can give to
the job. If you omit the name, Batch will
create a unique name for your job. The name
of the job is that which Batch gives to
your control file and log file. To the job
name, Batch adds the extension .CTL
for the control file. It adds the extension
.LOG to the name for the log file.

[proij, prog] is your project-programmer number, i.e.,
the number that you were assigned by the
installation to allow you to gain access to
the DECsystem=10. Normally, the project-
programmer number is two numbers sep=
arated by a comma and enclosed in square
brackets.

2-23



BEGINNER'S BATCH -126 -

/switches are switches to Batch to tell it the constraints
that you have placed on your job. They
are described below.

/AFTER:dd-mmm=-yy hhmm Switch

If you don't want Batch to run your job until aofter a certain time on a certain day, you can include
the /AFTER switch on your $JOB card. The date and time are specified in the form dd-mmm-yy hhmm
(e.g., 20-MAY-72 0215). If this switch is not included, Batch runs your job at the time that it
would normally schedule such a job, based on its size, the amounts of core and time required, and

other parameters.
/AFTER:+t Switch

If you don't want Batch to run your job until after a certain number of minutes have elapsed since
the job was entered, include this form of the /AFTER switch on the $JOB card. The number of
minutes that the job must wait after it has been entered is specified in the form +t (e.g., +15). If

this switch is not included, Batch will schedule the job as it normally does.

NOTE

If any of the programs in your job have output to slow=
speed devices such as the card punch, the paper-tape
punch, the line printer, and the plotter, do not include
an ASSIGN command in your job. Batch will take care
of this output for you as long as you specify the switches
for these devices, which are described below.

/CARDS:nK Switch

If any program in your job has punched card output, you must include the /CARDS switch on the
$JOB card to specify the approximate number of cards that your job will punch. Up to a maximum
of 10,000 cards can be specified in the form nK or n (e.g., 5K or 5 specifies 5,000 cards). If you
do not specify the /CARDS switch, no cards will be punched, even if you want them. If you do not
specify enough cards, the remaining output over the number of cards specified will be lost without

notification to you.
/CORE:nK Switch

You can specify the amount of core in which the programs in your job will run by means of the
/CORE switch. You specify the amount of core in the form n.or nK (e.g., 25 or 25K). You should
try to estimate as closely as possible the amount of core that your job will need. If you don't specify
enough, -your job can't run. [f you don't specify the amount of core that your job will need, Batch

will assume 25K or an amount set by the installation.
/FEET:n Switch

If any program in your job has punched paper=tape output, you must include the /FEET switch on the
$JOB card to specify the approximate number of feet of paper tape that your job will punch. You

2-24



-127 - BEGINNER'S BATCH

specify the number of feet in the form n (e.g., 50). If you do not specify the /FEET switch, no paper
tape will be punched, even if you want it. If you do not specify enough paper tape, the output that
remains over the number of feet that you specify will be lost and the message 20UTPUT FORMS
LIMIT EXCEEDED will be punched in block letters in the tape.

/PAGES:n Switch

Normally, Batch allows your job to print up to 100 pages. Included in this number are the log file
and any compilation listings that you may request. [f you need more than 100 pages for your job,
you must include the /PAGES switch on the $JOB card to indicate the approximate number of pages
that your job will print. If your output exceeds either the maximum that Batch allows or the number
that you specified in the /PAGES switch, the excess output will not be printed and the message
?0UTPUT FORMS LIMIT EXCEEDED will be written in the log file. However, even if you exceed
the maximum, the first 10 pages of the log file will be printed.

/TIME:hh:mm:ss Switch

Normally, Batch allows your job to use up to 5 minutes of central processor time. Central processor
(CPU) time is the amount of time that your job runs in core, not the amount of time that it takes
Batch to process your job. If you need more than 5 minutes of CPU time, you must include the
/TIME switch on the $JOB card to indicate the approximate amount of time that you will need. If
you don't specify enough time, Batch will terminate your job when the time is up. However, if you
specify a large amount of time, Batch may hold your job in the queue until it can schedule a large

amount of time for it.

The value in the /TIME switch is given in the form hh:mm:ss (hours:minutes:seconds). However, if you
specify only one number, Batch assumes that you mean seconds. Two numbers separated by a colon
() is assumed to mean minutes and seconds. Only when you specify all three numbers, separated by

colons, does Batch assume that you mean hours, minutes, and seconds. For example:

/TIME:25 means 25 seconds
/TIME:1:25 means 1 minute and 25 seconds
/TIME:1:25:00 means 1 hour and 25 minutes

/TPLOT:t Switch

If you have any programs in your job that do output to the plotter, you must include the /TPLOT
switch on the $JOB card so that your output will be plotted. If the /TPLOT switch is not included,
no output will be plotted. If enough minutes (specified in the form t) are not specified, any plotter

output left after the time has expired will be lost without notification to you.
2.4,10 The $MACRO Card

You place a $MACRO card in front of your MACRO program to make Batch copy your program into

a disk file and insert a COMPILE command into your control file. Thus, when Batch runs your job,

2-25



BEGINNER'S BATCH -128 -

your MACRO program will be assembled. You can put some optional information on the $MACRO

card to tell Batch more about your program or the cards that your program is punched on.

The $MACRO card has the form:

$MACRO filename .ext/switches(switches)

fo-o9n

filename. ext specifies the optional filename and ex-
tension that you can tell Batch to put
on the file that it creates for your pro-
gram. [f you omit the filename and
extension, Batch will create a unique

name for your file and add the extension
.MAC to it. :

Jswitches are switches to Batch to tell it how to
read your program and the kind of
listings that you want. The switches
are described below.

(switches) are switches that Batch passes to the
MACRO assembler when it puts the
COMPILE command in the control file.
The switches must be enclosed in paren-
theses, must not be preceded by slashes,
and may or may not be separated by
commas. The switches for the MACRO
assembler are described in Table H-1
in Appendix H of the DECsystem=10
MACRO-10 Assembler Programmer's
Reference Marual (DEC-10-AMZB-D).

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your MACRO program. You can make
Batch stop reading at a specific column by means of the /WIDTH switch, in which you include the
number of the column at which to stop. Thus, if you wish to have Batch read only up to column 70,

you can specify
/WIDTH:70
on the $MACRO card.

/SUPPRESS:OFF Switch

When Batch reads the cards of your MACRO program, it normally does not copy any trailing spaces
into the disk file to save space on the disk. If you want Batch to copy everything on the cards up to
column 80 or any column that you specify in the /WIDTH switch, you must include the /SUPPRESS:OFF
switch on the $MACRO card.

2-26



=129 - BEGINNER'S BATCH

/CREF Switch

If you want a cross reference listing of your MACRO program, you can include the /CREF switch on
the $MACRO card to tell Batch to ask the MACRO assembler to produce a cross-reference listing
when it assembles your program. This listing is printed as part of your job's output. You do not have

to include a command to run the CREF program to get this listing, Batch will do it for you.
/NOLIST Switch

Normally, the $MACRO card tells Batch to ask the assembler to generate an assembly listing of your
MACRO program. The listing is then printed as part of your job's output. If you don't want this
listing, you can include the /NOLIST switch on the $MACRO card to stop generation of the listing.

Examples

The simplest form of the $MACRO card is:
$MACRO

This card tells Batch to copy your program into a disk file and assign a unique name and the extension
.MAC to it. All 80 columns of the cards are read, trailing spaces are not copied, and a listing file
is produced when the job is run. The listing is printed as part of the job's output. No switches are

passed to the assembler.
The following is an example of a $MACRO card with switches.

$MACRO MYPRCG.MAC /SUPPRESS:OFF /WIDTH:72 (P, Q, X)
With this card, your MACRO program is copied into a disk file named MYPROG.MAC and a

COMPILE command is inserted into the control file. The cards are read only up to column 72 and
trailing spaces are copied into your file. An assembly listing is generated, and Batch passes the P, Q,

and X switches to the assembler.

2.4.11 The $NOERROR Card
You can use the $NOERROR card and the $ERROR card (described in Section 2.3.7) to specify

error recovery in the control file.

When Batch reads the $NOERROR card, it inserts a special Batch command into the control file,
the .IF (NOERROR) command. This command tells Batch what to do when an error occurs when your

job is being processed. How to perform error recovery is described in Section 2.5.

2-27



BEGINNER'S BATCH -130 -

The $NOERROR card has the form:

$NOERROR statement

10-0912

statement is a command to the monitor or a special Batch
command such as .GOTO or .BACKTO.

Batch enters an . IF (NOERROR) command into the control file when it reads the $NOERROR card,
and includes the statement from the $NOERROR card in the .IF (NOERROR) command in the form:

.IF (NOERROR) statement
The Batch commands .GOTO and .BACKTO have the forms:

.GOTO statement label
.BACKTO statement label

statement label is the label of a line in the control file.
The label can contain from 1 to 6 alphabetic
characters and must be followed by a double
colon (::) when it is labelling a line.

The .GOTO command tells Batch to search forward in the control file until it finds the line con-
taining the label. The .BACKTO command tells Batch to search back in the control file to find the
line containing the label. You must supply the labelled line and any related lines for which Batch
will search. Include these lines in your card deck where you want them to be copied into the control
file. If Batch cannot find a labelled line that is searching for as a result of a .GOTO or a

.BACKTO statement, it terminates your job.

2.4,12 The $PASSWORD Card

You put the password that has been assigned to you on the $PASSWORD card to tell Batch that you

are an authorized user of the system.

In conjunction with the $JOB card, the $PASSWORD card identifies you to Batch and tells Batch to
create the control file and log file for your job. If you put a password on the $PASSWORD card that
does not match the password stored in the system for you, Batch will not create any files and will
terminate your job. Some installations may not require the $PASSWORD card; if it is required at

your installation, you must put it immediately after the $JOB card.

2-28



- 131 - - BEGINNER'S BATCH

The $PASSWORD card has the form:

$PASSWORD password

10-0913

password is a 1 to 6 character password that is
stored in the system to identify you.

2.4.13 The $SEQUENCE Card

You use the $SEQUENCE card to specify a unique sequence number for your job. This card may or
may not be required by the installation or may be supplied by the personnel at the installation. If

the card is required, you must include it as the first card in the deck containing your job.

The form of the $SEQUENCE card is:

$SEQUENCE n

10-0901

n is the unique sequence number assigned
to your job.

2.5 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

Normally, when an error occurs in yourjob, Batch terminates the job and, if the error occurred when
one of your programs was running, causes.a dump of your core area. The dump is printed with your
output and log file. You can specify recovery from errors in the control file by means of the $ERROR
and $NOERROR cards, described in Sections 2.4.7 and 2.4.11. You must include one of these cards
at the point in the control file that an error may occur. When an error occurs, Batch examines the
next monitor-level line (i.e., not a line that contains data or a command string to a system program)
to find an .IF (ERROR) statement to tell it what to do about the error. If an error does not occur and
an .IF (ERROR) statement is present, the .IF (ERROR) statement is not executed. Thus, if you have
a program that you are not sure is error-free, you can include a $ERROR or $NOERROR card to tell

Batch what to do if an error occurs, as shown in the following example.

2-29



BEGINNER'S BATCH -132 -

| END-OF-FILE

REMAINDER OF JOB
SERROR (OR $NOERROR)

/FORTRAN PROGRAM
$FORTRAN
$PASSWORD
$J08
$SEQUENCE

10-09'4

The above cards would cause Batch to make the following entries in the control file.

.COMPILE ...
.IF (ERROR) statement

On either the $ERROR or $NOERROR card, you must include a statement that tells Batch what to
do. You can use any monitor command, a command to a program, or one of the special Batch com-
mands. The .GOTO and .BACKTO commands are two Batch commands for this purpose. Refer to
Section 2.4.7 for descriptions of these commands. Be sure, if you use .GOTO or .BACKTO on
your $ERROR or $NOERROR card, that you supply a line for the control file that has the label that
you specified in the .GOTO or .BACKTO commands.

Two sample jobs are shown below. The first shows using 8ERROR and the .GOTO command to
specify error recovery. The second example shows the use of the $NOERROR card and the
.GOTO command.

If you have a program that you are not sure will compile without errors, you can include another
version of the same program in your job (that hopefully will compile) and tell Batch to compile the

second program if the first has an error. The cards to enter this job are shown below.

2-30



=133 -

BEGINNER'S BATCH

/

B ,CONTINUE

*EXECUTE PROG2.F4

$E0D

FORTRAN SOURCE PROGRAM

$FORTRAN PROG2.F4

A’ ;CONTINUE
*GOTO B

$EOD

$FORTRAN MYPROG.F4

$PASSWORD ABCD

$J0B [27,744)

$SEQUENCE 101

These cards set up the following control file for you.

.COMPILE /COMPILE MYPROG.F4 /LIST
.IF (ERROR) .GOTO A

LEXECUTE MYPROG.REL /MAP:MAP. LST
.GOTO B

A:: ;CONTINUE

.COMPILE /COMPILE PROG2.F4 /LIST
.EXECUTE PROG2.F4

B:: ;CONTINUE

10-0922

The $FORTRAN card told Batch to copy the program MYPROG .F4 into a disk file and to insert a
COMPILE command into the control file. The $ERROR card told Batch to insert .IF (ERROR)
.GOTO A into the control file, The data was copied into a disk file and an EXECUTE command

was put into the control file because of the $DATA card. The $EOD card told Batch to stop copying
cards into the data file, so Batch put the next two lines into the control file. The second
$FORTRAN card told Batch to copy the program PROG2.F4 into a disk file and put a COMPILE
command into the control file. Another $EOD card told Batch to stop copying into the program file,

so Batch put the next two lines into the control file. An EXECUTE command was used instead of a

2-31



BEGINNER'S BATCH - 134 -

$DATA card because the data was already in a file on disk, although the $DATA card does not have
to have data with it to put an EXECUTE command in the control file.

When the job is started, Batch reads the control file and passes commands to the monitor. If an error
occurs in the compilation of the first program, Batch finds the . IF statement and executes the .GOTO
command contained in it. The command tells Batch to look for the line labelled A, which contains

a comment, so Batch goes on to the next line. The second program is compiled and then executed
with the data. The next line is a comment, so Batch continues to the end of the control file. If an
error does not occur in the first program, Batch skips the .IF statement, executes the program with

the data, skips the unnecessary error procedures, and continues to the end of the control file.

A variation of the above procedure is shown below using the $NOERROR card and the .GOTO
command. The difference is that Batch skips the . IF statement if an error occurs, and performs it

if an error does not occur.

1
/e::;commue

/EXECUTE MYPROG.F4

/A'.Z ; CONTINUE

*GOTO B

*EXECUTE PROG2.F4

4
' DATA FOR FORTRAN PROGRAM

$DECK FORO1.DAT

$FORTRAN MYPROG. F4

$PASSWORD ABCD

$408 [27,741]

$SEQUENCE 101

10-0923

2-32



-135 - BEGINNER'S BATCH

Batch reads the cards and puts the following commands into the control file.

.COMPILE /COMPILE MYPROG.F4 /LIST
.IF (NOERROR) .GOTO A

.COMPILE /COMPILE PROG2.F4 /LIST
.EXECUTE PROG2.F4

.GOTO B

A:: ;CONTINUE

.EXECUTE MYPROG.F4

B:: ;CONTINUE

The $FORTRAN card tells Batch to copy the FORTRAN program into a file named MYPROG . F4,
and to insert a COMPILE command into the control file. The $ERROR card tells Batch to insert an
.IF command into the control file. The second $FORTRAN card tells Batch to copy the second pro=-
gram into a disk file named PROG2.F4 and to insert another COMPILE command into the control
file. Instead of a $DATA card, a $DECK card is used to tell Batch to copy the data into a disk file
named FORO1.DAT. The $DATA card is not used here because it would have the names of both
programs in its list for the EXECUTE command generation, which would cause an error when the job
is run. To tell Batch to stop copying cards into the data file, the $EOD card comes next. Thus,

Batch copies the next five lines into the control file.

When the job is run, Batch passes the COMPILE command to the monitor to compile the first pro-
gram. If an error does not occur, the . IF command is read and the .GOTO command is executed.
Batch skips to the line labelled A, which is a comment, and continues reading the control file. The
program MYPROG.F4 is executed with the data and the end of the job is reached. If an error
occurs, Batch skips the . IF statement and continues reading the control file. PROG2.F4 is compiled
and then executed with the data. Batch is then told to go to the line labelled B, which is a comment

line. The end of the job follows.

The examples shown above illustrate only two ways that you can specify error recovery in the control
file. You can also use the .BACKTO command or any monitor command that you choose to help you

recover from errors in your job.

You do not have to attempt to recover from errors while your job is running: You can correct your
errors according to the error messages in the log file when your job is returned to you, and then run
your job again. Batch will also print a dump of your core area if an error occurs while your job is
running and you have not specified error recovery. If you can read dumps, this can also aid you to

correct your errors. The log file and dumps are described in Chapter 4.

2-33



BEGINNER'S BATCH - 136 -



=137 - BEGINNER'S BATCH

CHAPTER 3
ENTERING A JOB TO BATCH FROM A TERMINAL

When you enter a job to Batch from a timesharing terminal, you must create a control file that Batch
can use to run your job. The control file contains all the commands that you would use to run your
job if you were running under timesharing. For example, if you wanted to compile and execute a

program called MYPROG.CBL, the typeout would appear as follows.

.COMPILE MYPROG.CBL (Your request)

CcoBOL ¢ YPRO

EXI?’L s ¢ The system's reply
+EXECUTE MYPROG.CBL (Your request)
LOADING

LOADER 1K CORE )
EXECUTION The system's reply

EXIT
The control file to tell Batch to run the same job appears as the following.

«COMPILE MYPROG.CBL
+EXECUTE MYPROG.CBL

When the job is run, the commands are passed to the monitor to be executed. The commands and
their replies from the monitor are written in the log file so that the entire dialog shown above appears

in the log file.

To create a control file and submit it to Batch from a terminal, you must perform the following steps.
1. LOGIN to the system as a timesharing user.
2. Write a control file using an editor such as TECO or LINED.
3. When you finish the control file, close and save it on disk.
4, Submit the job to Batch using the monitor command SUBMIT or QUEUE INP:.

You can then wait for your output to be returned at the designated place.

3.1 CREATING THE CONTROL FILE

After you have logged into the system as you normally would to start a timesharing job, you must run

an editor so that you can create your control file.

The control file can contain monitor commands, system program commands, data that would normally

be entered from a terminal, and special Batch commands. The Batch commands are described in

3-1



BEGINNER'S BATCH -138 -

Section 3.3. What you write in the control file depends on what you wish your job to accomplish.
An example of a job that you can enter to Batch from a terminal is as follows.

1. Compile a program that is on disk.

2. Load and execute the program with data from another disk file.

3. Print the output on the line printer.

4. Write the output into a disk file also.

4. Compile asecond program.

6

. Load and execute the second program with the data output from
the first program.

7. Print the output from the second program.

The control file that you would write for the above job is as follows.

+COMPILE MYPROG+F4/COMPILE
+EXECUTE MYPROG.F4
+COMPILE PROG2,F4/COMPILE
+EXECUTE PROG2,F4

You include statements in your programs to read the data from the disk files and write the output to
the printer and the disk. The output to the line printer is written with your log file as part of the
total output of your job.

If an error occurs in your job, Batch will not continue, but will terminate the job and, if the error
occurs while one of your programs is running, cause a dump to be taken of your core area. The dump
is then printed with your job's output. To avoid having your job terminated because an error occurs,
you can specify error recovery in the control file using the special Batch commands. Error recovery

is described in Section 3.4.

Any monitor command that you can use in a timesharing job can be used in a Batch job with the fol-
lowing exceptions. The ATTACH, DETACH, CCONT, CSTART, and SEND commands have no
meaning in a Batch job. If you include one of these commands in your job, Batch will write the
command and an error label BAERR into your log file, will not process the command, and will then
continue the job from that point. Do not include a LOGIN-command in your control file because

Batch logs the job for you. [f you put in a LOGIN command, your job will be terminated.

3.1.1 Format of Lines in the Control File

Since you can put monitor, system program, and Batch commands, as well as data into the control file,
you have to tell Batch what kind of line it is reading. The format of each of these lines is described
below. Each line normally begins in column 1, but Batch always starts reading at the first nontab

or nonblank character, regardless of the column in which it appears.

To include a monitor or Batch command, you must put a period (.) in the first column and follow it

immediately with the command. Any information that follows a monitor command is in the format



=139 - BEGINNER'S BATCH

shown for the command in Chapter 3 of the DECsystem=10 Operating System Commands manual. Any

information that follows a Batch command is in the format shown in Section 3.3 in this chapter.

If you include a command string to a system program, you must place an asterisk (*) in column 1 and
follow it immediately with the command string. For the format of command strings, refer to the man-

ual for the specific system program that you wish to use.

If you want to include a command to a system program that does not accept carriage return as the end
of the line (e.g., TECO and DDT), you must substitute an equal sign (=) for the asterisk so that Batch

will suppress the carriage return at the end of the line.

To include data for your program in the control file, write it as you would data that is read from a
separate file. The only restriction on data in the control file is that alphabetic data that is preceded
by a dollar sign ($) must be preceded by an additional dollar sign so that Batch will not mistake it

for a comment.

If you put any special characters other than those described above in the first column of the line, you
may get unexpected results because Batch interprets other special characters in special ways. If you

want to know about other special characters, refer to Chapter 3 of the DECsystem-10 Operating

System Commands manual.

If you have more information than will fit on one line, you can continue on the next line by placing
a hyphen (=) as the last nonspace character on the line to be continued and the rest of the informa-

tion on the next line.

Comments can also be included either as separate lines in the control file or on lines containing
other information. To include a comment on a separate line, you must put a semicolon(;) in column 1
and follow it immediately with the comment. To add a comment to a'line, you must precede the

comment with a semicolon (;) after all the information that you need has been put on the line.

3.2 SUBMITTING THE JOB TO BATCH

After you have created the control file and saved it on disk, you must enter it into the Batch queue

so that it can be run. All programs and data that are to be processed when the job is run must be

made up in advance or be generated during the running of the job. You can have them on any medium
but, if they are on devices other than disk, you must include commands in your control file to have
the operator mount the devices on which your programs and data reside. It is recommended that your
programs and as much of your data as is possible reside on disk. An example of including MOUNT

commands in the control file to mount tapes is shown in Chapter 5.
You enter your job into Batch's queue by means of the SUBMIT or QUEUE INP: monitor command.
These commands have the forms:

SUBMIT jobname = control filename.ext, log filename.ext /switches
QUEUE INP:jobname = control filename.ext, log filename.ext / switches



BEGINNER'S BATCH - 140 -

jobname is the name that you give to your job.
If this name is omitted, Batch uses the
name of the control file.

control filename.ext is the name that you have given to the
control file that you created. You can
add an extension, but if you don't, Batch
will assume an extension of .CTL,

log filename . ext is the name that Batch will give the log
file when it is created. You can add an
extension, but if you don't, Batch will
assume an extension of .LOG.

You must specify the name of the control file. If the name of the log file is omitted, its name will.
be taken from the name of the control file.
/switches are switches to Batch to tell it how to
process your job and what your output
will look like. Most switches can
appear anywhere in the command string;
however, a few must be placed ofter the

files to which they pertain. The various
kinds of switches are described below.

Three kinds of switches are available to you to use in the SUBMIT and QUEUE INP: commands. The
switches are: queue operation, general, and file control. Each category of switch and the switches

in each category are described in the following sections.

3.2.1 Queue Operation Switches

Queue operation switches describe the actions that you want Batch to perform with your job. Only
one of this type of switch can be placed in the command string, and it can appear anywhere in the

command string.
/CREATE Switch

With the /CREATE switch, you tell Batch that you are entering a job into its queue. The job will
then wait in the queue until Batch is ready to procéss‘ it. If you omit a queue operation switch from
the SUBMIT command string, Batch will assume the /CREATE switch, i.e., it will assume that you
are entering a job. An example of this switch follows.

SUBMIT MYJOB = MYFILE,CTL, MYLOG.LOG /CREATE

/KILL Switch

You put the /KILL switch in a SUBMIT command to tell Batch that you want to delete a job that you
previously entered into its queue. For example, if ydu submit a job and discover that you left a
command out of the control file, you could delete the queue entry by issuing another SUBMIT com-
mand for that job with a /KILL switch in it. After you have corrected the control file, you could

resubmit the job to Batch. However, if Batch has already started to run your job, it will ignore

3-4



- 141 - BEGINNER'S BATCH

your request to delete the job and issue the message %QUEUE REQUEST INP:jobname [proj, progl
INTERLOCKED IN QUEUE MANAGER. When you use the /KILL switch, you must specify the job
name in the SUBMIT command or you will kill all the jobs that you may have in the Batch input queue.

/MODIFY Switch

If you want to change any switch value that you have previously entered in a SUBMIT command,

you can include the /MODIFY in a new SUBMIT command to tell Batch which switch value that you
want to change. You can change any switch value that can be entered in a SUBMIT command. The
switch value that you want changed is written immediately after the /MODIFY switch. For example,
to change the number of pages in a /PAGE switch (described below), you could issue the following

command.

SUBMIT MYJOB = /MQDIFY/PAGE!5¢Q

The value specified in the /PAGE switch that follows the /MODIFY switch replaces the previous
“value. If Batch has already started the job in which you wish to change a switch, the /MODIFY
switch will be ignored, and Batch will issue the message %QUEUE REQUEST INP:jobname [proj, prog]
INTERLOCKED IN QUEUE MANAGER.

3.2.2 General Switches

You use the general switches to define limits for your job. Such limits as core, pages of output, and
the time that your job will run can be specified as general switches. Each general switch can be
specified only once in a SUBMIT command, although each can be modified in subsequent SUBMIT
commands by means of the /MODIFY switch. You can put a general switch anywhere in the com-

mand string because it affects the entire job, not just one file in the job.
/AFTER:t Switch

If you don't want Batch to run your job until ofter a certain time or until after a certain number of
minutes have elapsed since the job was entered, you can include the /AFTER switch in the SUBMIT
command string. The time is specified in the form hhmm (e.g., 1215) and the number of minutes

that the job must wait is specified in the form +t (e.g., +15). If you omit the switch, or the colon

and the value in the switch, Batch will schedule your job as it normally would.

NOTE

If any of the programs in your job have output to slow-
speed devices such as the card punch, the paper-tape
punch, the line printer, and the plotter, do not include
an ASSIGN command in your job. Batch will take care
of this output for you as long as you specify the switches
for these devices, which are described below.



BEGINNER'S BATCH - 142 -

/CARDS:n Switch

If any program in your job has punched card output, you must include the /CARDS switch in the
SUBMIT command to specify the approximate number of cards that your job will punch. The number
of cards is specified in the form n (e.g.; 1000). If you do not specify the /CARDS switch, no cards
will be punched, even if you want them. [f you specify the switch without the colon and a value,
up to 2000 cards can be punched by your job. [f you do not specify enough cards, the output that

remains after the limit is reached will be lost without notification to you.
/CORE:n Switch

You can specify the maximum amount of core in which the programs in your job will run by means

of the /CORE switch. You specify the amount of core in the form n (e.g., 25) which indicates
decimal thousands. You should try to estimate as closely as possible the amount of core that your

job will need. If you don't specify enough, you job can't run to completion. If you omit the switch,
Batch will assume 25K of core or an amount set by the installation. If you specify the switch without

the colon and a value, Batch will assume 40K of core or an amount set by the installation.
/FEET:n Switch

If any program in your job has punched-paper-tape output, you must include the /FEET switch in the
SUBMIT command to specify the approximate number of feet of paper tape that your job will punch.
You specify the number of feet in the form n (e.g., 50). If you do not specify the /FEET switch,

no paper tape will be punched, even if you want it. If you specify the /FEET switch without the
colon and a value, Batch will assume the numbed of feet equal to 10 times the number of disk blocks
that your paper tape output would occupy plus 20. If you do not specify enough paper tape, the
output that remains after the limit is exceeded will be lost and the message 20UTPUT FORMS LIMIT
EXCEEDED will be punched into the tape in block letters.

/PAGE:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in this number are the log file
and any listings that you may request. [If you need more than 200 pages for your job, you must in-
clude the /PAGES switch in the SUBMIT command to indicate the approximate number of pages that
your job will print. [f you include the switch without the colon and a value, Batch will assume that
you will print up to 2000 pages. If your output exceeds either the maximum that Batch allows or the
number that you specified in the /PAGE switch, the excess output will be lost and the message
20UTPUT FORMS LIMIT EXCEEDED will be printed. However, even if you exceed the maximum,
the first 10 pages of the log file will be printed.

/TIME: hh:mm:ss Switch

Normally, Batch allows your job to use up to 5 minutes of central processor time. Central processor

(CPU) time is the amount of time that your job runs in core, not the amount of time that it takes



- 143 - BEGINNER'S BATCH

Batch to process your job. [f you need more than 5 minutes of CPU time, you must include the
/TIME switch in the SUBMIT command to indicate the approximate amount of time that you will need.
If you specify the switch without the colon and a value, Batch will assume that you need 1 hour of

CPU time. If you don't specify enough time, Batch will terminate your job when the time is up.

The value in the /TIME switch is given in the form hh:mm:ss (hours:minutes:seconds). However, if
you specify only one number, Batch assumes that you mean seconds. Two numbers separated by a
colon is assumed to mean minutes and seconds. Only when you specify all three numbers, separated

by colons, does Batch assume that you mean hours, minutes, and seconds. For example:

/TIME:25 means 25 seconds
/TIME:1:25 means 1 minute and 25 seconds
/TIME:1:25:00 means 1 hour and 25 minutes.

/TPLOT:t Switch

If you have any programs in your job that do output to the plotter, you must include the /TPLOT
switch in the SUBMIT command so that your output will be plotted. If the /TPLOT switch is not
included, no output will be plotted. If you specify the switch without the number of minutes
(specified in the form t), Batch will allow output equal to 10 minutes of plotter time. If enough
minutes are not specified, any plotter output left after the time has expired will be lost without

notification to you.

3.2.3 File=Control Switches

File=control switches allow you to specify parameters for individual files in the SUBMIT command.
The control file can receive a special parameter, while the log file does not, and vice versa. If
you place a file-control switch before the two filenames in the SUBMIT command, the switch applies
to both files in the request. If you place the switch after one of the files in the command, it refers

to only that file.
/DISPOSE Switch

The /DISPOSE switch can have one of three values:

/DISPOSE:DELETE
/DISPOSE: PRESERVE
/DISPOSE:RENAME

/DISPOSE:DELETE allows you to specify that either the control file or the log file (or both) should
be deleted after the job is run. The log file is deleted from your disk area only after it has been

printed.

/DI‘SPOSE:PRESERVE allows you to specify that one or both of your files should be left in your disk

area after the job is finished and all output printed.



BEGINNER'S BATCH - 144 -

/DISPOSE:RENAME tells Batch that you want the specified file to be taken from your disk area
immediately and put in Batch's disk area. In the case of the log file, /DISPOSE:RENAME only works
for a log file that already exists on your disk area. Do not use /DISPOSE:RENAME for a log file

that does not yet exist. After the job has been run and the output has been printed, the file that

was renamed is deleted from Batch's disk area.

If you omit the /DISPOSE switch, Batch assumes /DISPOSE:PRESERVE, That is, both the control
file and the log file are saved in your disk area. If you plan to use the control file again, then it is
best to omit the /DISPOSE switch for the control file. [f you don't want to keep the control file
because you don't have enough room in your disk area, specify either /DISPOSE:DELETE or
/DISPOSE:RENAME. /DISPOSE:DELETE will cause the control file to stay in your disk area until
after the job is finished and then be deleted. /DISPOSE:RENAME will cause Batch to immediately
move your control file to its own disk area where it will stay until the job is finished, at which time
it will be deleted. You should use /DISPOSE:RENAME when you will be over your logged-out

quota if the control file remains in your disk area when you log off the system.

Unless you have some use for the copy of the log file that will remain in your disk area even ofter it
has been printed, use the /DISPOSE:DELETE switch to have the log file deleted after it is printed.

If you do not delete the log file and you run the job again using the same log filename, your new log
file will be appended to the old log file and they will both be printed as part of the new job.

The switches, and the assumptions made if they or their values are omitted, are all subject to change
by each installation. Check with the installation where you run your jobs to find out what differences
exist between the values described here and those at the installation. Additional switches are avail-
able for use with the SUBMIT command. For information about these switches, refer to the SUBMIT
command in Chapter 2 of the DECsystem-10 Operating System Commands manual (DEC-10-MRDC-D).

You can obtain further information about Batch in Chapter 3 of the aforementioned manual.

3.2.4 Examples of Submitting Jobs

The following are sample jobs that are entered to Batch by means of the SUBMIT command. The jobs
are shown in the following order.

1. Creating the control file.

2. Submitting the job to Batch using the SUBMIT command.

«COMPILE MYPROG.F4 /L 1ST/GOMPLE
«EXECUTE MYPROG+F4

After the control file to compile and execute the FORTRAN program has been written and saved,
you must submit the job to Batch.

SUBMIT MYFILE



- 145 - BEGINNER'S BATCH

When Batch reads this SUBMIT command, it assumes the following:

1.

hal

1
1

— O NV 00 N O O

The control filename and extension are MYFILE.CTL.
The name of the job is MYFILE.
The log file will be named MYFILE.LOG.

Both the control file and the log file will be saved in your disk area
(/DISPOSE: PRESERVE).

An entry is being created in Batch's queue (/CREATE).

No cards will be punched by the job (/CARDS:0).

The maximum amount of core to be used to run the job is 25K (/CORE:25).
No paper tape will be punched (/FEET:0).

200 is the maximum number of pages to be printed (/PAGE:200).

The maximum amount of CPU time is 5 minutes (/TIME:5:00).

No plotter time will be used (/TPLOT:0).

The next example shows the control file that was created at the beginning of this chapter being
submitted to Batch.

JCOMP[LE MYPROG F4/COMPILE
JEXECUTE MYFILE.F4
+COMPILE PROG2,F4/CoMPILE
VEXECUTE PROG2,F4

After you have saved the control file, you must submit the job to Batch.

SUBMIT a MYFILEMYFILE.LOG/DISPOSEIDELETE/TIME:20:03/CARDS:540

When Batch reads this request, it assumes the following:

1.

— —

12,

— O NV 00 NN O 0 bW N

The name of the job is MYFILE.

The name of the control file is MYFILE.CTL.

The log file will be named MYFILE.LOG.

An entry is being created in Batch's queue (/CREATE).

The log file will be deleted dofter it is printed (/DISPOSE:DELETE).

The control file will be saved in your disk area (/DISPOSE:PRESERVE).
A maximum of 500 cards can be punched by the job (/CARDS:500).

The maximum amount of core that can be used is 25K (CORE:25).

No paper tape will be punched by the job (/FEET:0).

20 is the maximum number of pages that can be printed (/PAGE:20).

The maximum amount of CPU time that the job can use is 20 minutes

(/TIME:20:00).
No plotter time will be used (/TPLOT:0).

If you made an error in the SUBMIT command when you submitted either of these jobs, Batch will

type an error message on your terminal to explain your error so that you can correct it.



BEGINNER'S BATCH - 146 -

3.3 BATCH COMMANDS (IN ALPHABETICAL ORDER)

You can write certain special Batch commands in the control file to tell Batch how to process your
control file. Each of these commands must be preceded by a period so that Batch will recognize it.

The commands are described in detail in the following sections.

3.3.1 The .BACKTO Command

You can use the .BACKTO command to direct Batch to search back in the control file for a line with
a specified label. The .BACKTO command has the form:

.BACKTO label

label is a 1- to 6-character alphanumeric label
for a statement. It must be followed by a
double colon (::) when it labels a state-
ment to show that it is label.

Normally, Batch reads the control file line-by-line and passes the commands and data to the monitor
and your program. When you put a .BACKTO command into the control file, you tell Batch to
interrupt the normal reading sequence and to search back in the control file to find a line containing
the label specified in the .BACKTO command. When it reaches the labelled line, Batch executes
the line and continues from that point (unless the line contains another .BACKTO command or a
.GOTO command, described below).

If Batch cannot find the labelled line, it terminates your job. An example of the .BACKTO com-

mand is as follows.

ABCs: ,DIRECT

+BACKTO ABC

3.3.2 The .ERROR Command

With the .ERROR command, you can specify to Batch the character that you wish to be recognized
as the beginning of an error message. Normally, when Batch reads a message that begins with a
question mark (?), it assumes a fatal error has occurred and terminates the job, unless you have
specified error recovery (refer to Section 3.4). If you wish Batch to recognize another character
as the beginning of a fatal error message,: you must specify the character in the .ERROR command.

This command has the form:
.ERROR character

character is a single ASCII character that is
recognized in the DECsystem=10.

3-10



- 147 - BEGINNER'S BATCH

If you do not specify a character in the .ERROR command, Batch uses the standard error character,
the question mark. When a line that is preceded by the character that you specify in the .ERROR
command is passed to Batch from the monitor, a system program or is issued by Batch itself, Batch
treats the line as a fatal error and terminates the job, exactly as it would if the line were preceded
by a question mark. Any messages preceded by other characters will not be recognized by Batch as
errors. The only exception is the ?TIME LIMIT EXCEEDED message. No matter what character you

specify as the beginning of an error, Batch will recognize this message and terminate your job.

If you do not include the .ERROR command in your control file, Batch will recognize the question
mark as the beginning character of a fatal error message, unless you include the .NOERROR com-

mand in your control file to cause Batch to ignore fatal errors (refer to Section 3.3.5).

An example of the .ERROR command follows.

e - e

+ERROR

+ERRNR

In this example, you specify in the middle of the control file that you want Batch to recognize the
percent sign (%) as the beginning character of a fatal error from that point in the control file.
Further on in the control file, you tell Batch to go back to recognizing the question mark as the

beginning of a fatal error message.

3.3.3 The .GOTO Command

You can include the .GOTO command in your control file to direct Batch to skip over lines in the

control file to find a specific line. The .GOTO command has the form:

.GOTO label

label is a 1- to 6-character alphanumeric
label for a statement. It must be
followed by a double colon (::) when it
labels a statement to show that it is
a label.

When Batch encounters a . GOTO command in the control file, it searches forward in the control
file to find the label specified in the .GOTO gommand. Batch then resumes processing of the
control file at the line with the specified label. If Batch cannot find the labelled line, it termi-

nates your job.

If you do not include a .GOTO command in the control file, Batch reads the control file sequentially

from the first statement to the last, unless you include a .BACKTO statement (refer to Section 3.3.1).



BEGINNER'S BATCH - 148 -

An example of the .GOTO command follows.

. '
+GOTH ABC

ABC:; DIRECT

You can use the .GOTO command as the statement in an .IF command (refer to Section 3.3.4) to

aid you in error processing. For example:

L]
«IF (ERROR) ,GOTO ARC
L]

ABCss ,TYPE MYPKOG

3.3.4 The .IF Command

You can include the .IF command in your control file to specify an error recovery procedure to Batch

or to specify normal processing if an error does not occur. The . IF statement has the forms:

.IF (ERROR) statement
.IF (NOERROR) statement

statement is a command to the monitor, to a pro-
gram, or to Batch.

The .IF command can be used in two ways as shown in its two forms. You can include the

.IF (ERROR) command in your control file at the place where you may have an error. The

.IF (ERROR) command must be the next monitor=level line (as opposed to a line in your program

or a line of data) in your control file after an error occurs so that Batch will not terminate your job.
In the .IF (ERROR) command, you direct Batch to either go back or forward in your control file

to find a line that will perform some task for you, or direct Batch to perform a task for you at that

point in your control file, or to direct the monitor or any other program to perform some task for you.

You can use the .IF (NOERROR) command also to direct Batch or the monitor to perform tasks for

you when an error does not occur at the point in your control file where you place the .IF (NOERROR)
command. Thus, if you expect that an error will occur in your program, you can include an

.IF (NOERROR) command to direct Batch in case the error does not occur, and then put the error
processing lines immediately following the command. Refer to Section 3.4 for an example of using

.IF (NOERROR) and . IF (ERROR). ‘

If an error occurs and Batch does not find an . IF command as the next monitor-level line in the

control file, Batch writes an error message in the log file and terminates the job. If one of your



=149 - BEGINNER'S BATCH

programs is running when an error occurs and there is no .IF command, Batch causes dump to be

taken and terminates your job.

3.3.5 The .NOERROR Command

You can use the . NOERROR command to tell Batch to ignore all error messages issued by the
monitor, system programs, and Batch itself. The only exception is the message ?TIME LIMIT
EXCEEDED. Batch will always recognize this as an error message and terminate your job. The
.NOERROR command has the form:

.NOERROR

When Batch reads the . NOERROR command, it ignores any error messages that would normally
cause it to terminate your job. However, Batch still writes the error message in the log file so that

you can examine your errors when your output is returned.

You can use .NOERROR commands in conjunction with .ERROR commands in the control file to
control error reporting. For example, if you wish to ignore errors at the beginning and end but not
in the middle of the control file, place .ERROR and .NOERROR commands at the appropriate
places in the control file. In addition, you can also specify which messages must be treated as

fatal errors.

1
*

'
+NOERROR

'

'

]
+ERROR %

The first command tells Batch to ignore all errors in your job. The second command tells Batch to
recognize as errors any message that starts with a percent sign (%). You change the error reporting
with the next command to tell Batch to go back to recognizing messages that begin with a question
mark as fatal. The second .NOERROR command tells Batch to ignore all error messages again. If
the ?TIME LIMIT EXCEEDED message is issued at any time, Batch will print the message and

terminate the job.



BEGINNER'S BATCH - 150 -

3.4 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

If you don't specify error recovery when an error occurs in your job, Batch terminates the job and,

if the error occurs when one of your programs is running, causes a dump of your core area. You can
specify error recovery in the control file by means of the Batch commands, especially the .IF com-
mand. You must include the .IF command at the point between programs in the control file that an
error may occur. When an error occurs, Batch examines the next monitor-level line (i.e., not a
line that contains data or a command string to a system program) to find an . IF command to tell it
what to do with the error. [f an error does not occur and an . IF (ERROR) command is present, the
.IF (ERROR) command is not executed. Similarly, if an error does not .occur and you have included
an . IF (NOERROR) command, the .IF command is processed. Thus, if you have a program that you are
not sure is error=free, you can include an .IF command to tell Batch what to do if an error occurs, as
shown in the following example.

+COMPILE MYPROG.F4
+IF (ERROR) STATEMENT

In either the .IF (ERROR) or the .IF (NOERROR) command, you must include a statement that tells
Batch what to do. You can use any monitor command or one of the Batch commands. The .GOTO
and .BACKTO commands are commonly used for this purpose. Refer to Sections 3.3.1 and 3.3.3 for
descriptions of these commands. Be sure, if you use .GOTO or .BACKTO in the .IF command, that
you supply a line in the control file that has the label that you specified in the .GOTO or .BACKTO

command.

Two sample jobs are shown below. The first shows the .IF (ERROR) command and the .GOTO com-
mand to specify error recovery. The second example shows the use of the .IF (NOERROR) and
.GOTO commands.

If you have a program that you are not sure will compile without errors, you can include another
version of the same program in your job (that hopefully will compile) and tell Batch to compile the
second program if the first has an error. You write the control file as follows.

+COMPILE /COMPILE MYPROG,F4 /| ]ST

+JF (ERROR) ,GOTO A

+EXECUTE MYPROG.F4

+GOTO B

At JCONTINUE

.COMPILE /CGMPILE PRNGZ,F4 /_{ST

JEXECUTE PROG2,t4

B3t JCONTINUE

When the job is run, Batch reads the control file and passes commands to the monitor. If an error
occurs in the compilation of the first program, Batch finds the .IF (ERROR) command and executes
the .GOTO command contained in it. The command tells Batch to look for the line labelled A,

which contains a comment, so Batch continues to the end of the control file. If an error does not

3-14



- 151 - BEGINNER'S BATCH

occur in the first program, Batch skips the .IF (ERROR) command, executes the program with its

data, skips the unnecessary error procedures, and continues to the end of the control file.

A variation of the above procedure is shown below using the .IF (NOERROR) command and the
.GOTO command. The difference is that Batch skips the .IF (NOERROR) command if an error
occurs, and performs it if an error does not occur. The following is the control file that you would

create.

+COMPILE /COMPILE MYPROG,F4 /L1IST
«IF (NOERROR) ,GoTo 4 .
+COMP]LE /COMPIWLE PROG2Z,.F4 /_1|87
+EXECYTE PROG2,r4

«GOTA B

A1l )CONTINUE

EXECUTE MYPROG.F4

Bit JCONTINUE

When the job is run, Batch passes the COMPILE command to the monitor to compile the first pro-
gram. If an error does not occur, the .IF (NOERROR) command and the .GOTO command are
executed. Batch skips to the line labelled A, which is a comment, and continues reading the
control file. The program MYPROG . F4 is executed with its data and the end of the job is reached.
If an error occurs, Batch skips the . IF (NOERROR) command and continues reading the control
file. PROG2.F4 is compiled and then executed with the same data that the first program would
have used. Batch is then told to go to the line labelled B, which is a comment line. The end of

the job follows.

The examples shown above illustrate only two ways that you can specify error recovery in the control
file. You can also use the other Batch commands, or any monitor command that you choose to help

you recover from errors in your job.

You do not have to attempt to recover from errors while your job is running. You can correct your
errors according to the error messages in the log file when your job is returned to you, and then run
your job again. Batch will also print a dump of your core area if an error occurs while your job is
running and you have not specified error recovery. If you can read dumps, this can also aid you to

correct your errors. The log file and dumps are described in Chapter 4.

3-15



BEGINNER'S BATCH -152 -



-153 - BEGINNER'S BATCH

CHAPTER 4
INTERPRETING YOUR PRINTED OUTPUT

You can receive three kinds of printed output from your Batch job:
1. Output that you request, i.e., the results of your job.
2. Output from Batch, i.e., the log file.

3. Output that is the result of actions by your job or by Batch, the monitor,
or system programs. Examples of this output are compilation listings,
cross-reference listings, error messages, and core dumps requested by Batch.

4.1 OUTPUT FROM YOUR JOB

Although this chapter deals mainly with printed output, you can have output to any device that the
installation supports, as long as the installation allows you to use these devices. If your output is
directed to the line printer, it will be printed separate from the log file. The printed output from
each program will be preceded by two pages containing your name and project-programmer number
and other pertinent information. Following these pages are two header pages containing the name
of your output file in block letters. The output follows these header pages. A trailer page follows
your output. This page contains the same information that is on the first two pages. The header

and trailer pages also include three rows of numbers (read vertically from 001 to 132).

If your output is that which would normally be sent to the terminal, it will be printed in the log file.
In the sample output shown in Section 4.4, the output from the program is included in the log file

because it is directed to the terminal rather than the line printer.

4.2 BATCH OUTPUT

The output from Batch consists of a log file that contains all the statements in the control file, com=
mands sent to the monitor from Batch for you, and the replies to the commands from the monitor and
system programs like the compilers. Any error message sent from the monitor or a system program, or

from Batch itself, is also written in the log file. Refer to the DECsystem-10 Operating System

Commands manual (DEC-10-MRDC-D) for a list of the error messages from the monitor. The messages

from each system program are listed in the applicable manuals.

You can ignore most of the information in the log file because it is system information and need not
concern you. If you wish, you can keep it for reference by system programmers if unexpected results

occur in your job.

4-1



BEGINNER'S BATCH - 154 -

4.3 OTHER PRINTED OUTPUT

Other output that you can get as a result of your job includes compiler and cross-reference listings,
loader maps for programs that were successfully loaded, and dumps that you can request or that Batch

gives to you when an error occurs in your program.

The compiler and cross-reference listings are those listings generated by the compiler if you request
them. When you enter your job from cards, Batch requests compilation listings for you unless you
specify otherwise. Cross—reference listings are generated for you only if you specifically ask Batch
for them. When you enter your job from a terminal, you must request the listings in the COMPILE
command. Also, if you request a cross-reference listing, you must run the CREF program (by'means
of the CREF command) to get your listing printed.

If you enter your job from cards and include a $DATA card to request execution of a program, Batch
requests a loader map for you. This map shows the locations in memory into which your program was
placed. If you enter your job from a terminal, you must request a loader map in the EXECUTE com-
mand if you wish to have one. If you wish to know the locations into which your program was loaded,
the loader map can be of use to you. Otherwise, you can ignore it. A loader map is shown in the

sample output in Section 4.4, however, it is not interpreted in this manual.

If a fatal error occurs in a program in your job and you have not included an error recovery command
to Batch, Batch will not try to recover from the error for you. Instead, it will write the error
message in the control file, request dump of your memory area, and terminate your job. The dump is
then printed with your output. If you can read dumps, the dump that Batch requests for you may be
helpful in finding your errors. Otherwise, you can ignore the dump and use the error messages to
locate the errors in your program. A sample dump is shown in Section 4.4, but it is not interpreted.

It is shown so that you can recognize it if you ever receive one.

4.4 SAMPLE BATCH OUTPUT

Two sample jobs and their output are shown in the following sections. The first shows a job entered
from cards, the second shows a job entered from a terminal . The log file is somewhat different for

the two types of jobs. Following the sample jobs is a sample dump.

4.4.1 Sample Output from a Job on Cards

This example shows a job in which a small COBOL program is compiled and executed. The card

deck is as follows.



- 155 -

BEGINNER'S BATCH

COBOL SOURCE PROGRAM

{END -OF-FILE

$COBOL MYPROG.CBL

$PASSWORD ABCD

$JOB MYJ08B [10,1164]

$SEQUENCE 10

The COBOL program is as follows.

IDENTIFICATION DIVISION.

PROGRAM-ID. MYPROG

.

ENVIRONMENT DIVISION.

DATA DIVISION.
PROCEDURE DIVISION.
START.

10-0924

DISPLAY *'THIS IS TO SHOW SAMPLE OUTPUT FROM MPB."'".
DISPLAY "'"THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.".

STOP RUN.

When the job is run, the program is compiled and a compilation listing is produced. The listing is

shown below. Note that the compiler put sequence numbers on the program even though they were

not in the original program.

PROGRAM

2Rl
2p02
2003
Poo4
2005
0006
2007
epos
oeee

MyYypROG,

IDENTIFICATION DIVISION,
PROGRAM=1D., MYPROG,
ENVIRONMENT DJVISJON,
DATA DIVISIQON,

PROCEDURE DIVISION,
START.

COBOL 3(43)

21~-MAR=72 10:42

DISPLAY "TH]S IS TO SHOW SAMPLE OUTPUT FROM MPB,", -
DISPLAY "THESE TWO LINES ARE QUTPUT FROM THE PROGRAM.",

STOP RyUN,

NO ERRORS DETECTED

After the program is compiled, it is loaded and executed. Since Batch requests a loader map when it

puts the EXECUTE command in the control file, the loader map is the next thing printed from your job.

It is shown below. Note that each of these print-outs are preceded by headers, which are not shown

in these examples.

4-3



P01246 1S THE LUW SEGMENT BREAK
MAP STORAGE MAP
STARTING ADDRESS  ¢@91208 PROG COBOL
«COMM, 200140 291040

MYPROG vol2e0 201103

START, 201200 FILES,

ALTER, p00143 OVRFN,

MONEY , 200147 MEMRY,

TRAC3, ¢reis4 XNM,
TRACED 001243 0p0vREa3

BTRAC, 001244 PIFLG,

TRPOP,  pO1244

COBOL 1K CORE, 345 WORDS FREE
LOADER USED 2+4K CORE

10142 21wMAR=72

FILE MYPROG

pe014g
000144
200150
280155

201245

VUSES.
POINT,
TRAC1,
x0T,

TRACE,

000141
000145
200152
0001%6

201243

SEGWD,
COMMA.,
TRAC2.
%XPR.,

TRPD,

op2L42
0p23196
202153
2p21>7

Pg1244

HO1vd S:4INNIO38

- 96| -



=157 - BEGINNER'S BATCH

Following loading, the program is executed. The program in this example does not.have output to the
line printer, instead its output is written to a terminal. Because this is a Batch job, the terminal
output is written in the log file. The log file is printed next because the end of the job is reached.
The log file contains all the dialog between your job and the monitor and system programs, and some
commands that Batch sent to the monitor for you. An annotated log file is shown on the following
pages. Note that each line in the log file is preceded by the time of day when the line was written.
Following the time is a word that describes what kind of information is on each line. You do not need

to know what each of these words means because much of the information is system information.



10141143
10141143
10141144

10141
1214

1
19141

30
2

3
15
150

12141180
1914115

1142101
10142101
ig142101
1014201
10142101
1214208
19142108
1214208
10142108
1p142108

19142108
10142110
10142132
10142132
10142132

DATE
CARD
§TSUM

BVERS
BOATE

BASUM

MONTR
1ONTR
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

MONTR
USER

MONTR
MONTR
MONTR

21=MAR=72 554A1E DUAL CPU
$J0B MYJOB [1g,1164]
END OF FILE AFTER 15 CARDS,

CORSTK VER 12(17) DSK

B4 FILES, 23 BLKS

BATCON 7(35) SUBJOB @1 OF B¢
21-MAR-72

MYJOBL12,1164] FOR a#[1@,1164] LOG FILE IN [10,1164]
REQUEST CREATED AT 10:41:09 21-MAR-72
UNIQUES 2 RESTART; 4

INP

+LOGIN 18/1184

JOB 24 584A1E DUAL CPU TTY1D2
OYHER JOBS SAME PPN

1941 21aMARE72 TUE

+SET TIME 398,
«SET SPOOL ALL

SSEQUENCE 1@

$J0B MYJOB (1p,1164)

$COBNL MYPROG,CBL

.COMP /COMPI_E MYPROG,CBL/LIST
C0BoL1 MYPROg

EXIT

JCREATED BY CDRSTK

I\

.

This is system information that Batch
enters, It need not concern you.

Batch logs your job into the system.
The information that follows it is the
system response.

These are commands that Batch
entered for you.

These are the cards that you entered.

This is the command entered by
Batch for you.

The answer to the COMPILE command
from the monitor.

HO1vd S«43INNIO3g

- 861 -



1p142132
10142132
10142132
1814289
10143420
10143100
10143100
10143400
10143100
ig143100
10143120
10143100
10143100
19143100

10143100
1p143421
10143121
10143121
10143121
1p143123
1014324
1P143921
10143122
10143125
10143130
10143143
19143145
10143145
10143145

19143154
1p144:290
19145120
18145321
10146125

MONTR
MONTR
MONTR
USER
USER
USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR

MONTR
USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
K=QUE
KJ08B
LGOUT
LGOUT
LGouT
LGouT

LPMSG
LPMSG
LPMSG
LPMSG
LPMSG

€oBoL 1K CORE

$DATA } Your $DATA card.

+SET CDR QAA,CDR ;CREATED BY CDRSTK
-.EXECG/MAP‘MAPoLPT /REL. MYPROG.REL }CREATED BYCDRST;} Commands entered by Batch for you.
LOADIN

001246 IS THE LOW SEGMENT BREAK
Monitor response to the EXECUTE
command.

EXECUTION

THIS IS TO SqoW SAMPLE QUTPUT FROM MPB. % This is the output from your program.

THESE TWO LINES ARE OUTPUT FROM THE PROGRAM,

Ex!IT Monitor indicates that execution of
your program has ended.

XFING

,DEL MYPROG.R¢L,QAA,CDR,MYPROG.CBL
FILES DELETEN:

MYPROGREL

DAA,CDR

MYPROG.CBL

23 BLOCKS FREED

Command entered by Batch.

Response to the DELETE Command.

+KJOB OSKBIMYJOB.LOGL1@,1164)=/W/24/B/VS31@/VL128@/VD1
TOTAL OF 7 BLOGKS IN LPT REGEJEST g O | This is the LOGOUT dialog, giving
OTHER JOBS SAME PPN system information.

JOB 24, USER (10,1164 LOGGED OFF TTY1@2 10243 21°MAR=/2

SAVED ALL 4 rFILES (25, DISK BLOCKS)

ANOTHER JOB STILL LOGGED IN UNDER [1@,1164]

RUNTIME @ MIN, 23,97 SEC

LPTSPL VERSION 4(125%) RUNNING ON LPT3

JOB MYJ0OB Fl_g DSKBL1:MYPROG,.LSTC1@,1164] FOR [1@,1164] STARTED This is more system information.

DSKB1iMYPROG, STL12,1164] DONE
JOB MYJOB FI_E DSKB1:MAP.LPT(1P,1164) FOR [12,1164) STARTED
DSKB1IMAP, PT[40,1164] DONE

- 651 -

HO1VE SHINNIO3E



BEGINNER'S BATCH - 160 -

4.4.2 Sample Output from a Job from a Terminal

This example shows the same job described above as it would be entered from a terminal. You would

first create the program as a file on disk.

IDENTIFICATION DIVISION,

PROGRAM=1D, MYPROG,

ENVIRONMENT DIVISION,

DATA DIVISION.

PROCEQURE DIVISION,

START,

ODISPLAY "THIS IS TO SHOW SAMPLE OUTPUT FROM MPB.",
DISPLAY "THESE TWQ LINES ARE QUTPUT FROM THE PROGRAM,".
STOP RUN,

Then you would make up a control file to compile and execute the COBOL program.

+COMPILE MYPROG.CBL
+EXECUTE MYPROG

You must then submit the job to Batch using-the SUBMIT command.
SUBMIT MYJ0B

When the job is run, the program is compiled and a listing is prodbced, even though you did not re-
quest it. This is because the COBOL compiler always produces a listing. Note that the compiler
adds sequence numbers to the listing, even through you did not include these numbers on the program.

PROGRAM MYPRDOG, coBoL 3(43) 22~MAR=72 15110

2001 IDENTIFICATION DIVISION.

go02 PROGRAM=1D. MYPROG,

PoR3 ENVIRONMENT DIVISION,

op04 DATA DJVISIQN,

ppes PROCEDURE, DIVIS]ON,

peos START.

0007 DISPLAY "THIS IS TO SHOW SAMPLE OUTPUT FROM MPB,",
geey STOP RyN,

NO ERRORS DETECIED

Because you did not request it specifically in the EXECUTE command, you will not get a loader map
of your program. The log file is printed next as the last of your output. The output from the program
is written in the log file because it is output-to the terminal and the log file simulates a terminal
dialog. The log file also contains some commands that Batch sent to the monitor for you and some
additional system information. An annotated log file is shown on the following page. Note that
each line in the log file is preceded by the time of day when the line was written. Following the
time is a word that describes what kind of information is on each line. You do not have to know

what each of these words means because much of the information is system information.



15199:06
131p9106
15109126

1510926
15109126
15109127
151g9:27
15109327
1510951
15110126
15t1a126
151123526
15110126
15112:27
15112107

15110187
15112131
15111118
151114148
151141148
15111130
15111330
15111130
15111430
15114130
15111130
151111302
15411:30
151141:30
15111130
15111130
15111:58
15115135
15115:36
15815136
15115144
15316306
15117105

BVERS
BDATE
BASUM

MONTR
MONTR
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

MONTR
USER
MONTR

MONTR

USER
USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
KeQUE
LGOUT
LGOUT
LGOUT
LPMSG
LPMSG
LPMSG

BATCON 7(36)
22=MAR=72
MPB[10+:1164] FOR #SMITH
REQUEST CREATED AT
UNIQUE?! 2 RESTARTI 2

INP: SUBJOB @1 OF P6
#[10,1164] LOG FILE IN [10,4164)
15:97:32 22-MAR-72

+LOGIN 10,1164
JOB 35 554A1F DUAL CPU TTy102
OTHER JOBS SaME PPN

1509 22mMAR=72 WED

,SET TIME 303
+SET SPOOL A_L

++COMPILE MYPROG.CBL
COBOLt MYPRROS,

EXtTY

MONTR

«EXECUTE MY®R0G.CBL
LOADING

coBoL 1k CoORE

EXECUTION

THIS IS TO S<4oW SAMPLE QUTPUT FROM MPRB.,
THESE TWO LINES ARE OUTPUT FROM THE PROGRAM,

EXIT

This is sytem information that Batch
enters. 1{t need not concern you.

Batch logs your job into the system.
The information that follows is the
system response.

These are commands that Batch enters
for you.

This is the command from your control
file and the response.

This is another command from your
ontrol file and its response.

Thls is the output from your program.

}This indicates that execution has ended.

\KJOB USKBZ iupB.LOGL1@,116415/W/214/8/VR:108/VS1425/y/L12¢:7/VD}

TOTAL OF 4 B_oCKS IN LPT REQUEST

JOB 35, USER [10,1164]) LOGGED OFF TTY1Q2
SAVED ALL 190 FILES (125, DISK BLOCKSJ
RUNTIME @ MIN, 24,08 SEC

LPTSPL VERSION 4(125) RUNNING ON LPT3

1515 22eMAR=/2

JOB MPB FILE DSKBLIMYPROG.LSTL1P,1164] FOR [10,1164]STARTED

DSKBL1iMYPROG,| 5TC12,1164] DONE

This is the LOGOUT dialog, which

gives system information.

} This is more system information.

- 19l -

HO1vd S.43INNIO3g



BEGINNER'S BATCH =162 -

4.4.3 Sample Dump

Shown on the following pages is the log file containing an error message and the dump that Batch
requested as a result of the message. The error resulted from use of a logical name in a program

without assigning the logical name to a physical device at run time.

The dump lists the assembly language equivalent of your program, and the location in memory in
octal, decimal, ASCII code, and SIXBIT code. (SIXBIT code-is a compressed form of ASCII used
in COBOL and some system programs.) Only the first three pages of the dump are shown.



Li-¥

14328142
1412842
141298142

14123142
14125142
14129145
14123145
1412845
14128146
14125140
14125146
1412%14¢
1412%,46
1412846
14125147
1412%147
141258147

BVERS
BOATE
BASUM

MONTR
MONTR
USFR

USER

USER

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

BATCON 7(36) [MP: SUBJOB 01 OF @6

22~MAR=72

INJOBL1@,1164] FOR #»GORFINKLE

#[10,11643 LOG FILE IN

REQUEST CREATED AT 14:24:35 22-MAR-72

UNIQUE! 2 RESTARTI @
LOGIN 10,1164

JoB 39 554A1F DUAL CPU TTY102

OTHER JOBS SAME PPN
1425 22-MAR-72

+SET TIME 300

«SET SPOOL ALL
++COMPILE EXAMPLE,CBL
EXIT

WED

- €91 -

HOLlv4a S 43INNIO38



cl-v

14325:47
14:25:50
14:25:55
14:325:55
14:25:55
14325:55
14:25:55%5
14325355
14:25:55
14:25¢55
14:125:55
14:25:55
14:25:55%
14325355
14325355

14825:56
14325156
14325256
14325356
142326:04
14326:04
14:26:15
14326115
14226315
14:26:15
14326217
14:26:24

14326231
14:26:32

14:26:32
14:326:32
14126140
14327:04
14329324

MONTR
USER
USEk
USER
USER
USER
USER
USER
USEFR
USER
USER
MONTR
MONTR
MONTR
MONTR

MONTR

MONTR

MONTR
MONTR
USERK

USEF

MONTR
MUNTR
MONTR
MONTR
KeQUE
KJOb

LGOLY
LGOULT
LGOLT
LGOUT
LPMSG
LPMSG
LPMSG

« o EXECUTE EXAMPLE,CBL

LOADING
COBOL 1k CORE

EXECUTION

INIT TOOK THE ERROR RETURN This is the error
DEVICE MAG] IS NOT A OEVICE OR IS NOT AVAILABLE TO0 THIS JOB \ message that caused
INIT TOOK THE ERROR, KETURN Batch to request the
DEVICE MAG2 IS NOT A DEVICE OR IS NOT AVAILABE TO THIS JoB dump.

?LAST COBOL UUO CALLED FROM USER LOQCATION 4201155

EXIT

L]

+CLOSE

«DUMP

© SYMBOLS EXTRACTED
EXIT

oKJUB DSKBISINJOB,LOG[1@,1164)3/W/Z234/B/VRE1A/VSE422/VLE200/VE P
TOTAL OF 3@ BLOCKS IN LPT REQUEST
OTHER JOBS SAME PPN

JOB 32, USER [10,1164) LOGGED OFF TTY102 1426 22=MAR=72
SAVED ALL 6 FILES (ivd. DISK BLOCKS)

ANOTHER JOB STILL LOGGED IN UNDER [18,1164)

RUNTIME @ MIN, 10,79 SEC

LPTSPL VERSION 4(125) RUWNNING ON LPT3 .

JOoB INJOB FILE OSKBPIM3QDAE([1MA,1164) FOR [1¢,1164) STARTED
DSKBO:B3VDAE([10,1164) UONE

HO1va S«43INNIDO38

- $91 -



=165 - BEGINNER'S BATCH

QUICK DUMP VERSION %3(24) (FILE SYS3GUIKDM,CCLJ
MONITOR INFORMATION

MONITOR NAME 554A1F DUAL CPU BUILT ON P3=21=72
SYSTEM SERIAL NUMBER IS 160
MONITOR VERSION IS 00Q@000,050400

JOB INFORMATION

DUMP TAKEN 3e22=72 AT 14325
DAEMON VERSION 6(21)=0

JOB NUMBER 3¢

TTY102 PPN ([10,1164) CHARGE NUMBER @
RUN TIME =@ MIN, 5@ SECONDS

TOTAL KCS =6

TOTAL OF 128 DISK READS, 10 DISK WRITES
PRIV, BITS 0

THERE ARE @ REAL TIME DEVICES IN USE
CURRENT HPG IS @ LAST HPQ COMMAND WAS @
HISEG NAME  DSKBSLIBOL +SHR

HISEG DIRECTORY [1,4)

USER NAME 1S GORFINKLE

USER CORE LIMIT IS 261632 WORDS

USER TIME LINIT IS 299 SECONDS

PROGRAM NAME IS COBOL

4-13



BEGINNER'S BATCH

CORE INFORMATION

- 166 -

PC = 700000,0857777 OPC = 223000P0,0@00000
LAST UUO AT 440004,000006

SYMBOLIC LOCATIONS

PC = BLKI 57777

OPC = 7

LAST UUO AT ANDCB 6(4)

ACS IN OCTAL:

e/ 2105¢e,000202 000AOE,000000  522202,715530

3/ 554147,220000 000000,000002 0@@000,000000

6/ e@coe2,000¢00  200022,001361 0000, 001777

11/ P000C0,000204 777777,000000 @@ABOR,001425

14/ 310000,001412 024001,001424  @OG00E, 200000

17/ 777601,001463

ACS IN DECIMAL:

o/ 1157627906 @  =23319569576 =19837149184 2 0 @
7/ 17184588529 1023 132 =262144 789 26843346378
15/ 537133844 @  =33291469

SELECTED CORE AREAS DUMPED AS INSTRUCTION,OCTAL,DECIMAL,SIXBIT,ASCII

4-14



Sl-¥

ARGUND C(aC17)

1443/ OPB
1444/ uuoae2
1445/ uuoey2

1446/ JRST
1447/ PUSHJ
1450/ Z

1451/ uuo@el
1452/ uuoeel
1453/ PUSHJ

1454/ uuoeel
1455/ CATL
1456, CATL
1457/ AOS
1460/ POPJ
1461/ z
1462/ Z
1463/ uuoaie
1464/ CAM
1465/ CaM
1466/ CAM
1467/ Z
1470/ z
1471/ 7
1472/ z
1473/ z
1474/ z
1475/ z
1476/ z
1477/ 4
1500/ )3
1501/ z
1502/ Y4
1503/ Z

{HOPEFULLY A PUSH DOWN LIST)

5,814
3,728

795
15,815
17
1,728
1,661
15,0413
5,753(14)
8,699
8,766
(15)
15,

131191
131497
131555
132709

137240,001456
002140,001330
212000,000000
254000,001433
2608740,001457
000000, 000021
001040,001330
001040,001225
260760,000161
001256,001361
301400,001273
301400,001376
350017 ,000000
263740,0000080
0P000Q,000000
000000,000000
010000,400167
310000,400651
310000,400743
310000,403145
200000,P00008
2o0000,200000
200000@,000000
220000,000000
000000,200000
000000,P000020
000Q00,00000208
000000n,200000
000000,000000
2000002,0000020
000000,000000
000200@,000000
200000,000000

12792628014
293602008
1342177280
23085450011
23748150063
17
142607064
142606997
23752343665
179831337
25971131067
25871131134
31142445056
24150802432
0

0
1073873015
26843677097
26843677158
26843678309

SIS

© O O ~—

oW
0l

e'C

#9E

NN

— XD T

N O~

=~ {91 -

HO1vd S« 43INNIO3g



BEGINNER'S BATCH - 168 -



=169 - BEGINNER'S BATCH

CHAPTER 5
PERFORMING COMMON TASKS WITH BATCH

This chapter shows some sample jobs that are run from a terminal and from cards. Section 5.1
illustrates entering jobs from a terminal. Section 5.2 shows entering jobs from cards. The examples
are the same in both cases, the difference is only in the way that they are entered.

5.1 USING THE TERMINAL TO ENTER JOBS

ALGOL Example

The first job is a simple ALGOL program that writes output to the terminal. Since the job is being

entered through Batch, the output is written in the log file instead of on the terminal.

BEGIN
REAL X; INTEGER Iy
X is 13
FOR I 3w § UNTIL 1000 D0 X t» Xe¢I}
PRINT(X)? )
END

The control file for the program is as follows.

«COMPILE MYPROG.ALG/LIST
EXECUTE MYPROG.ALG

SUBMIT MYFILE

When Batch starts the job, the statements in the control file call the ALGOL compiler to compile the
program. Batch then calls the loader to load the program for execution. A listing of the program
will be printed with the log file, as shown below.

DECSYSTEM 18 ALGOL=60, V., 2A(145)1
13=APR=72 15825357

000003 B1 {1 BEGIN

START OF BLOCK 1

op0e006 e REAL X7 INTEGER I}

000006 3 X 3®1)

000016 4 FOR I $wi UNTIL 1000 DO X 3mXely
000023 5 PRINT(X)?

peR026 EL 6 END

END BLOCK §, CONT D
© ERRORS

5-1



15325350 BVERS BATCON 7(52) INP: SUBJUB @i OF @6

15:25:50 BDATE 13=APRe72 ,

15825:50 BASUM MYFILE[10,1461] FOR #SMITH #([10,1461) LOG FILE IN [10,146%)
REQUEST CREATED AT 15324339 13=APRa72
UNIGUE: 2 RESTART! @

15525150 MONTR

15:25:50 MONTR ,LOGIN 10/1461

15825351 USER JOoB 20 55425E DUAL CPU TTY110O
15325151 USER OTHER JOBS SAME PPN
15325381 USER 1525 13=APRe72 THUR

15825852 MONTR

15825152 MONTR ,SET TIME 390

15325152 MONTR

15825152 MONTR ,SET SPOOL ALL

15325:53 MONTR

15:25:53 MONTR

153253583 MONTR ,,COMPILE MYPROG,ALG/LIST

15325:56 USER ALGOL: MYPROG

15125:57 MONTR

15825157 MONTR EXIT

15325:58 MONTR

15125158 MONTR , ,EXECUTE MYPROG,ALG

15325358 USER LOADING

15326:06 USER

15126306 USER MYPROG 1K CORE

15326:06 USER EXECUTION

15126307 USER 5.0050100& 5

15326:@7 USER

15326397 USER END OF EXECUTION « 1K CORE

15826307 USER

15326307 USER EXECUTION TIME: 0,08 SECS,

15326307 USER :

15126307 USER ELAPSED TIMES 0.15 SECS,

153263087 MONTR

15826307 MONTR

15326:27 MONTR ,KJOB DSKB@IMYFILE,LUG(1Q,1461)=/W/234/B/VR31uU/VS1384/VL2200/VDIP
15:26:08 K=QUE TOTAL OF 3 BLOCKS IN LPT REQUEST

15326112 KJOB OTHER JOB3 SAME PPN

1526315 LGOUT JOB 2p, USER [10,1461) LOGGED OFF TTY1i0 1526 13=AFRe72
15:26315 LGOUT SAVED ALL 42 FILES (65¢, DISK BLOCKS)
15326315 LGOUT AMOTHER JOB STILL LOGGED IN UNDER (1@,1461)
158263515 LGOUT RUNTIME © MIN, 03,25 SEC

15326121 LPMSG LPTSPL VERSION 4A(141) RUNNING ON LPT2
15:26142 LPMSG JOB MYFILE FILE DSKBWIMYPROG,LST([18,1461) FOR [1@,1461] STARTED
15327335 LPMSG DSKBUW:MYPROG,LST(10,1461) DONE

HO1V8 S:43INNI9O39d

-0/l -



=171 - BEGINNER'S BATCH

BASIC Example

The next sample shows how to enter a BASIC program to Batch. You must make up the file and save
it on disk. Then make up a control file that simulates the dialog with the BASIC system. The pro-
gram is shown below.

5 INPUT O

10 IF D » 2 THEN 110

20  PRINT "X VALUE®,"SINE","RESOLUTION"
30 FOR X=@ T0O 3 STEP D

40 IF SIN(X)<sM THEN 880

50 LETXOsX

69 LET MmSIN(X)
8o NEXT X

90 PRINT Xx@, M,0
108 GO 70 S

118 END

The program requests data from the user when it is running. You include the data in the control file.
The final data item must be 2 to conclude the program. The control file follows.

oR BASIC

«0LD
*DSK:MYBAS,BAS
«RUN

The output from the program will be printed in the control file because it would normally be printed

on the terminal. The command to submit the job to Batch is as follows.

SUBMIT = BAS,CTL

15341337 BVERS BATCON 7(52) INP3 SUBJOB @2 OF 06

15841:37 BDATE 13=APR=72

15341137 BASUM BAS([10,1461) FOR #SMITH #[10,1461) LOG FILE IN (10,1461)
REQUEST CREATED AT 15140323 13=APR=72
UNIQUES 2 RESTART: 0

15341337 MONTR

15341337 MONTR ,LOGIN 10/1464

15341:39 USER- JOB 15 55425E DUAL CPU TTY115
15141142 USER OTHER JOBS SAME PPN
15341340 USER 1541 13=APR=72 THUR

15341141 MONTR

15341841 MONTR ,SET TIME J00
15841141 MONTR

§16841341 MONTR ,SET SPOOL ALL
15341141 MONTR

15344141 MONTR

15341541 MONTR ,,R BASIC
15341341 USER

15341342 USER

15841142 USER NEW OR OLO==+0LD



BEGINNER'S BATCH =172 -

153411342
15341343
153141143
15:41:43
15344147
15341347
15341247
15341:47
15241247
15:41:47
15341347
153141147
15341:47
153441347
15341348
15341:48
15141248
151411348
15341:49
15141349
153411349
153411349
15341249
15341:50
15841150
15141:59
15341352
153141152
15:41:53

USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USEFK
USER
USER
USER
USER
USER
MONTR

OLD FILE NAME=w«DSK:MYBAS

READY

*RUN

MYBAS 15:41 13=APR=72
%41

X VALUE SINE RESOLUTION
3 0,14112 2,1

?2.41

X VALUE SINE RESOLUTION
Ja 0.141121 0.21
?.0201

X VALUE SINE RESOLUTION
2.99999 0.14113 0,004

72

TIME? 1,30 SECS,

READY

*BYE

JOB 15, USER [10,1461] LOGGED OFF TTY115 1541 13=APR=72
SAVED ALL 33 FILES (600, DISK BLOCKS)

ANOTHER JOB STILL LOGGED IN UNDER [12,1461)

RUNTIME @ MIN, 03,085 SEC

FORTRAN Example

The third example shows a FORTRAN program that prints output on the line printer. In the control

file, you want to tell Batch to delete your relocatable binary file if an error occurs when your pro-

gram is executed. Otherwise, you want Batch to save your relocatable binary file as it normally

would. The program is shown below.

¢

10
105

THIS PROGRAM CALCULATES PRIME NUMBERS FROM {1 TO S50,
DO 10 1 =»14,50,2

Jui

JuJ+2

AsJ

An]/A

Lal/zJ

BaAw|

IF (B) 5,10,5

IF (JJLT,SQGRT(FLOAT(I))) GO TO 4
PRINT 05,1

CONTINUE

FORMAT (14, ' IS PRIME,')

END



-173 -

BEGINNER'S BATCH

The control file to compile and execute this program, deleting the relocatable binary file if there is

an execution error, is as follows.

The command to submit this job is as follows.

The log file will be deleted after the output has been printed.
BATCON 7(52) [NP:

g9t157,87
R9150:187
29152127

09:50:07
p9350307
09150109
29:50109
29150313
09350313
09850313
09150314
09150114
09:50:14
p9:%5at14
09350316
Boi50817
P9:50117
p9:150317
091503217
g9150:17
09:50:23
09150123
29350:23
091501223
29350123
09:50:23
093150123
09850223
09350323
29150123
99150123
09350323
29150123
09350323
29:50123
09158123
0915023
09:5063:23
09150325
e9:50:25
09850325
09150127
e9i180127

«COMPILE MYPROG,.F4
+EXECUTE MYPROG,F4

+ IF (NOERROR) ,GOTO END
+DELETE MYPROG,REL
END:s JEND OF JOB

SUBMIT MYFOR,CTL,MYFOR,LOG/DISPOSESDELETE

BVERS
BDATE
BASUM

MONTR
MONTR
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
USER
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
USER
USER
USER
USER
USER

-USER

USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR

14=APR=72
MYFORC10,14617 FOR eSMITH :(1P,14611 LOG FILE IN ([1g,1441]

REQUEST CREATED AT @9:49119 14-APR-72

SUBJOB @2 OF D6

UNIQUEY 2 RESTART: @2

«LOGIN 12/146}

JOB 23

554251 DUAL CPU TTY11S

OTHER JOBS SAME PPN
2950

14»APRe72

«SET TIME 300

«SET SPOOL ALL
«sCOMPILE MYPROG,F4

FORTRAN?

EXIT

MYPROG,F4

e +EXECUTE MYPROG,.F4
LOADING

MYPROG 2K CORE
EXECUTION

i1
13
17
19
23
29
31
37
41
43
47

CPU TIMES v 37 ELAPSED TIMEY 2,60
NO EXECUTIUN ERRORS OETECTED

I8
I8
I8
I8
1§
I8
I8
I8
18
I8
18

EXIT

END?
JEND OF JOB

PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME

PRIME,



‘BEGINNER'S BATCH - 174 -

09350327
p9isez28
89150332
P9150:34
09:50:34
v9:50:34
09:50234

MONTR
K=QUE
KJOB

LGouT
LGOUT
LGOuUT
LGOUT

.KJOB DSKB1:IMYFOR,LOG(10,1461)8/W/284/B/VR1B/VS¥a20/VL 2208/ VD3P
TOTAL OF 3 BLOCKS IN LPT REQUEST

OTHER JOBS SAME PPN

JOB 23, USER ([1@,1461]) LOGGED OFF TTY115 2980 14=APR=72

SAVED ALL 33 FILES (618, DISK BLOCKS)

ANOTHER JOB STILL LOGGED IN UNDER [10,1461)

RUNTIME @ MIN, 85,39 SEC

COBOL Example

The fourth program shows a COBOL program that reads a magnetic tape and writes output on another

magnetic tape. To have your magnetic tapes mounted on drives and assigned to you, you must re=

quest that the operator mount them. Since you do not know which drives will be assigned to your

job, you must assign them in your job with logical device names. The MOUNT command assigns

the drive to your job and associates the logical name that you specify in it with the physical drive

assigned. You should include a PLEASE command to the operator to tell him that you want two

magnetic tape drives. If he can't let you have the drives because they are in use, you can ask him

to enter your job again. Your magnetic tapes, one with the input data, the other blank so that you

can write on it, should be given to the operator or kept at the central site, so that the operator can

find your tapes. The program is as follows.

IDENT
ENVIR
INPUT
FILE=

DATA
FILE
FD

a1
FD

01
PROCE
START

LoorP,

FIN,

IFICATIGN DIVISION,

ONMENT DIVISION,

«QUTPUT SECTION,

CONTROL,

SELECT INFIL, ASSIGN Ma

SELECT OUTFIL, ASSIGN MAG2,

DIVISION,

SECTION,

INFIL, LABEL RECORDS. ARE STANDARD,
VALUE OF IDENTIFICATION IS "INFIL DAT",
BLOCK CONTAINS 20 RECORDS,

INREC, PIC Xx(8@2),

OUTFIL, LABEL RECORDS ARE STANDARD,
VALUE OF IDENTIFICATION IS "OUTFILDAT",
BLOCK CONTAINS 12 RECORDS,

OUTREC, PIC Xx(80),

DURE DIVISION,

OPEN INPUT INFIL, OUTPUT OQUTFIL.

READ INFIL}J AT END GO TO FIN,
WRITE OUTREC FROM INREC,
G0 TO LOOP,

CLOSE OUTFIL, INFIL.
STOP RUN,



=175 -

BEGINNER'S BATCH

The control file and the SUBMIT command to enter this program to Batch is as follows.

«PLEASE NEED TwO MAGTAPES,
+MOUNT MTASMAG1/VIDSINFIL /RONLY

+MOUNT MTAIMAG2/VIDIOUTFIL/WENABLE
+COMPILE MYPROG,CBL
«EXECUTE MYPROG,CBL
+DISMOUNT MAG1t
«DISMOUNT MAG21
+DELETE MYPROG,*

«SUBMIT MYJOBsMYJOB,CTL
The log file is shown below.

11353:26
11853326
11853:26

11:53:26
11853126
11:53:3¢
11353330
11:53:30
11853:30
11:53:30
11:53:30
11:53:30
11:53:30
11:53:30
11:53:50
11:53:5¢
11:53:52
11854319
11:54319
118154321
118154322
11854225
11:57123
11:57:23
11357123
118571325
11357225
11:57:25
11357325
11857348
11:58:05
11158:05
11:58:85
11358:@85
113583025
11158205
11:58:85
11:58:312
11:58:42
113158:45
11358246
11858246
11158158
11358158
12:00:07

BVERS
BDATE
BASUM

MONTR
MONTR
USEFR

USER

USER

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

MONTR

USER
USER
USER
USER
MONTR
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
MONTR
MONTR
USEK
USER
USER

IF 1 CAN'T HAVE THEM, REGQUEUE,

BATCON 7(53) INP: SUBJOB @1 OF 06

20=APR=72

MYJOB(10,1416) FOR #SMITH «[18,1461) LOG FILE IN (1@¢,1461)
REQUEST CREATED AT 11352331 20=APR=72
UNIQUES 2 RESTART: @

.LOGIN 10/146}

JoB 17 554250 DUAL CPU TTY123

OTHER JOBS SAME PPN
1153 22=APR=72

.SET TIME 300

.SET SPOOL ALL

THURS

o PLEASE NEED TWO MAG TAPES,
+MOUNT MTAIMAGL/VIDSINFIL/RONLY

OPERATOR NOTIFIED
WAITING, e

MAGY (MTA1) MOUNTED

IF I CAN'T HAVE THEM, REQUEUE,

» o MOUNT MTAIMAG2/VIDSOUTFIL/WENABL

OPERATOR NOTIFIED
WAITING, e

MAG2 (MTA2) MOUNTED

««COMPILE MYPROG,CBL

EXIT

« o EXECUTE MYPROG,CBL

LOADING

CoBOL 1k CORE
EXECUTION

EXIT

««s DISMOUNT MAGY S
OPERATOR NOTIFIED
WAITING, e

MAGY DISMOUNTED

» o DISMOUNT MAG2S
OPERATOR NOTIFIED
WAITING, o0

MAG2 DISMUUNTED



BEGINNER'S BATCH =176 -

12304207 MONTR
12360897 MONTR

12:00:07 MOUNTR  KJOB DSKodtMYJOB,LUG(13,1461)=/W/254/8/VR31B/VSI60VLI232/VPE1A/VD
12:8081e K=GLE TOTAL OF 4 BLOCKS IN LPT REQUEST

12:20:14 KJOE CTHER JUBS SAME PPN

12364217 LGOULT JoB 17, USER [12,1461) LOGGEC OFF TTY123 12¢Q 20=APR=72

12:2¢:18 LGOUT SAVED ALL 33 FILES (bad, DISK BLOCKS)

122006218 LGOLT ANUTHER JOBE STILL LOGLGED IN UNDER [19,1461)

12:0@:18 LGOUT RUNTIME @ MIN, 06,39 SEC

12322316 LPMSG | PTSPL VERSION 4A(141) RUNNING ON LPT2

5.2 USING CARDS TO ENTER JOBS
ALGOL Example

The first job is a simple ALGOL program that writes its output info the log file because it has state=

ments that would cause it normally to write to the terminal. The program is as follows.

BEGIN
REAL X; INTEGER I;
X =1;
FOR | := 1 UNTIL 1000 DO X := X+I;
PRINT(X) ;
END

The cards to enter this program are as follows.

lEND - OF-FILE

. EXECUTE

$E0D

Y
/ ALGOL PROGRAM

$ALGOL MYPROG. ALG/NOLIST

$PASSWORD ABCD

$J08 ALGYSB [10,1461]

$SEQUENCE 10

10-0925

The control file that MPB makes up for you contains the following commands.

.COMPILE MYPROG.ALG /COMPILE /LIST
.EXECUTE

The output, including the log file is shown below.



09:011343
09:81:43

B9:R12:45

09:01353
89301353
89141153

09301353
09:01:53
09:01:58
09301358
09:01:58
09161:58
29301158
29101258
09:01:58
09101159
09201259

89:p2:01

09se2s01
es:p2:08
093102:08
@9:02:08
09i02:08
#9:02:08

poiv2:08
v9t02310
29302327
09102139
29302339
89:02:39
09:02341
09302341
09:02:41
0930234}
29302341
09102341
09302341
09302:41

pote2:4y
09102342
09102342
09302:43
09302:43
09302343
29302343
091021344
093021245

DATE
CARD

STSUM

BVERS
BDATE
BASUM

MONTR
MONTR
USER

USER

USER

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

MONTR

MONTR
USER

MONTR
MONTR
MONTR
MONTR

MONTR
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONTR

MONTR
USER
USER
USER
USER
MONTR
MONTR
MONTR
K=QUE

=177 - BEGINNER'S BATCH

13=APR®72 55425E OUAL CPU CDRSTK VER 12(26) DSK
$J0B ALGJB(10/1461)
$ALGOL MYPROG,ALG/NOLIST

END OF FILE AFTER 312 CARDS, ©3 FILES, 83 BLKS

BATCON 7(52) INP: SUBJOB @2 OF 06

13=APR=72

ALGJB([10,1464) FOR #+([10,1461) LOG FILE IN (10,1461)
REGQUEST CREATED AT 99201208 13-APR=72

UNIQUE: 2 RESTART: 1

«LOGIN 10,1461

Joe 13 55425E DUAL CPU TTY1153
OTHER JOBS SAME PPN
0901 13=APR=72 THUR

+SET TIME 308
«SET SPOOL ALL

$JOB ALGJB(10/1461)

$ALGOL MYPROG,ALG/NOLIST
_COMP /COMPILE MYPROGJALG /N  JCREATED BY CDRSTK
ALGOL2 MYPROG

ExIT

L]

$EQD

«EXECUTE
ALGOL: MYPROG
LOADING

MYPROG 1K CORE
EXECUTION
5,00501008 5

ENO OF EXECUTION =« 1K CORE
EXECUTION TIME: 0,88 SECS,
ELAPSED TIME: -0,12 SECS,

L[]

XFINS

.DEL MYPROG,REL,MYPRUG,ALG
FILES DELTED?

MYPROG,.REL

MYPROG,ALG

@2 BLOCKS FREED

:KJOB DSKBI1ALGJB,LOG(19,1461)m/W/214/B/VS3320/VL210/VDED
TOTAL OF 4 BLOCKS IN LPT REQUEST



BEGINNER'S BATCH =178 -

BASIC Example

The next example shows entering a BASIC program. You must include the program after a $DECK

card so that it will be copied into a file on disk. No $DATA card can be used because BASIC does
not use the EXECUTE command and because the data is entered in the control file. The program re=
quests data when it is running; it finds the data in the control file. The final data item must be 2 so

that the program can be concluded. The program is shown below.

5 INPUT D

10 IFD=2THEN 110

20  PRINT "X VALUE', "'SINE", ""RESOLUTION"
30 FORX=0TO 3STEP D

40  IF SIN(X) =M THEM 80

50 LET X0=X

60  LET M= SIN(X)

80  NEXT X

90 PRINT X0, M, D
100 GOTOS

110 END

The cards to enter the program and run it are as follows.

| END-OF-FILE

*BYE

*DSK :MYBAS.BAS
*OLD
.R BASIC

// BASIC PROGRAM
$DECK MYBAS.BAS
SPASSWORD ABCD

$u0B BASJOB [10,1461]
$SEQUENCE 10

10- 0926

The output from the program will be printed in the log file because it would normally be printed on

the terminal. The log file is shown below.



1111245
11112145
11:12146

11112149
11110149
11112149

11110149
11112149
11110151
11:17)51
11112452
11312153
11112153
11112153
11112153
11112153
11112153
11112153

11112153
11112153
11112154
11112154
114112355
11313155
11112455
11112156
11112156
11119156
11110186
11112156
11117156
Litie156
11112457
11112587
11412187
11312159
11112159
11112159
111192459
11111100
11111100
11111100
111114020
11111100
1111100
11114401
11:111:01
11114103
11111103
11111103
11111103

DATE
CARD
STSUM

BVERS
BDATE
BASUM

MONTR
MONTR
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

MONTR
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONTR

=179 -

BEGINNER'S BATCH

13«APR=72 55425E DUAL CPU CDRSTK VER 12 (26) DSK

$J0R BASJUOBL1gr1461]

END OF FILE AFTER 24 CARDS,

BATCON 7(52) [NP: SuBJY0B P1 OF 14

13=APR-72

P3 FILES, 24 BLKS

BASJOBL10,1461) FOR ##[10,14611 L 0G FILE IN [10,1464)
REOUEST CREATED AT 111893157 13-APR-72

UNTQUE! 2 RESTARTI 1
«LOGIN 10,4441

JOB 19 58425€ DUAL OPU TTY114

OTHER JOBS SAME PPN

111a 13wABRe72 THUR

+SET TIME 3872
+SET SPOOL ALL

$J08 BASJUQBLi@/1461)
$DECK MYBAS,.B3AS
$EQD

NEW OR OLDe-s0lLD
OLD FILE NAME-e®#DSKIMYBAS

READY

oRUN

MYBAS 11110
7.1

X VALUE .SINE

3 P,14112
.01

X VALUE SINE

3 @.141121
2.¢21

X VALUE SINE
2199999 2,14113
72

TIME! 1,52 SECS.

READY
*BYE

13-APR-72

RESQLUTION
.1

RESQLUTION
2.01

RESOLUTION
2.801

JOB 19+ USER [10,1461) LOGGED OFF TTY114
SAVED ALL 33 FILED (608, DISK BLOCKS)
ANOTHER JOB STILL LOGGED IN UNDER [18,1461]

RUNTIME @ MIN, 83,05 SEC

1111 13-APR=72



BEGINNER'S BATCH -180 -

FORTRAN Example

The third example shows a FORTRAN program that prints output on the line printer. In the control
file, you want to tell Batch to punch your relocatable binary program if it executes correctly. Other-
wise, you want to end your job so that you can find your error from the message in the log file. The

program is shown below.

C  THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50.
DO 10 I=11, 50, 2
J=1
4 J=J+2
A=J/
A=I/A
L=1/J
B=A-L
IF (B) 5,10,5
5 IF (J.LT.SQRT(FLOAT(I))) GO TO 4
PRINT 105, |
10 CONTINUE
105 FORMAT (14, ' IS PRIME. ')
END

The cards used to enter this program are as follows.

:END-OF-FILE |
i
|

END:: ;END OF JOB :

*CDP:MYPROG=DSK:MYPROG. REL

*R PIP

$ERROR ,GOTO END

*EXECUTE

$FORTRAN MYPROG.F4

$PASSWORD ABCD

$JOE TEST [10,1461] /CARDS 1K

$SEQUENCE 10

10-09¢7



=181 - BEGINNER'S BATCH

Batch puts the following commands into the control file as a result of the cards you entered.

.COMPILE MYPROG.F4 /COMPILE ALIST
.EXECUTE MYPROG.REL /MAP:MAP.LPT
.IF (ERROR) .GOTO END

.R PIP

*CDP:MYPROG = DSK:MYPROG. REL
END: : ;END OF JOB

The printed output from the job, including the log file is shown below.

\MYPROG,F4 Fa42 ves 12«APR-72 13:43 PAGE 1

00 12 1=11,59,2
J=1

4 JzJe2
A=
Az1/a
L=1/7J
E:A.L
IF (8) 5,10,%

5 IF (Jo_T4SORT (FLOAT (1))) GO TO 4
TyPE 125,1

12 CONTINJE

19 FORMAT (14, '#lS PRIME.")
END

SUBPRQGRAMS

FORSE, JOSFF FLOAT SQRT INTO, INTI, EXIT

SCALARS
1 61 v 62 A . 63 L 64 B 65
13143:01 DATE  12-APR-72 554448 DUAL CPU CDRSTK VER 12(26) DSK

13143;01 CARD  $J0B TESTL1D,1461]/CARDI1K
13143123 STSUM END OF FILE AFTER 19 CARDS, 83 FILES, @24 BLKS

13143121 BVERS BATCCN 7(52) [NP! SUBJOB 81 OF 14

13143121 BDATE 12-aAPR=72

13143:21 BASUM TEST[19Y,14613 FOR #«(10,1461) LOG FILE IN [10,1461)
REQUEST CREATED AT 13:42:84 12-APR-72
UNIQUE® 2 RESTART: 1

13143321 MONTR
13143124 MONTR ,LOGIN 10,1461

13143124 USER JoB 11 554448 DUAL CPU TTY182
131643124 USER OTHER JOBS SAME PPN
13143126 USER 1343 12aAPRe72 WED

13143128 MONTR

13143128 MONTR ,SET TIME 28
13143428 MONTR

13143128 MONTR ,SET SPOOL ALL
13143128 MONTR
13143128 MONTR ,
$,0g TESTL19,1461)/CARDI1K
SFORTRAN MYPR0G.F4



BEGINNER'S BATCH

13143128
13143;3¢
13143133
13143133
13147433
13143133

13143,;33
13143134
13143:37
13143341
13143141

13143342
13143:42
13143:42
13143142
13143142
13143142
13143342
13143142
13143142
13143343
13:43143
13143143
13143143
13142:43
1314343

1314243
13143;43
13143143
13143143
13143:43
13143143
131434143

13143144

13143144
13343144
13143145
13143146
13:43346
13143146
13143146
1314348
13:i43;48
13143352
13:43;54
13143:54
13143154
13143154
13143157
13144:02
13144309

MONTR
USER

MONTR
MONTR
MCNTR
MUNTR

MONTR
USER
USER
USER
USELR
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER

USER

MONTK
MONTR
MONTR
MONTR
USER

MONTR

MONTR

USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
K=QUE
KJ0B
LGouT
LGOUT
LGOUT
LSouUT
LPMSG
LPMSG
LPMSG

-182 -

+COMP /COMPI g MYPROG,F4/LIST ;CREATED BY CDRSTK
FORTRANG MY2ROG.F4

ExIr

$EO0D

JEXECUTE

FORTRAN: MY2ROG,.F4
LOADING

MYPROG 2K CORg
EXECUTION

11 1S PRIME.
13 1S PRIME.
17 1S PRIME.
19 1S PRIME.
23 1S PRIME.
29 1S PRIME.
31 1S PRIME.
37 1S PRIME.
41 1S PRIME.
43 1S PRIME.
47 1S PRIME.

CPU TIME: D.27 ELAPSED TIME: 1.82
NO gXECUT]ON gRRORS DETECTED

EX!T
R PIP
sCNPt MYPROGmDSKIMYPROG,REL

1]
END:
JEND OF J0B

%FI

.DEL MYPROG REL/MYPROG.F4
FILES DELETED:

MYPROGRE(

MYPROG.F 4

03 gLOCKS FREED

+KJOB DUSKBITEST.LOGL10,14613/W/234/P/VS:277/VLS22D/VDLD
TOTAL OF 6 BLQCKS IN LPT REQUEST

OTHER JOBS SaME PPN

JOB 11+ USER [10,1461) LOGGED OFF TTY1@2 1343 12-APRa72
SAVED AL 30 FILES (585, DISK BLOCKS)

ANOTHER JCB STILL LOGGED IN UNDER [1z 14613

RUNTIME @ MIN, 05,64 DEC

LPTSPL VERSIIN 4A<141) RUNNING ON LPT1

JOB TEST FlL:c DSKBLiMYPROG.LST(1p,1441] FOR (12,1461 STARTED
DSKB1IMYPROG, STL10,1461] DONE

5-14



- 183 - BEGINNER'S BATCH

COBOL Example

The fourth program shows a COBOL program that reads data from a magentic tape and writes output
on another magnetic tape. To have your magnetic tapes mounted on drives and assigned to you, you
must request that the operator mount them. Since you do not know which drives will be assigned to
your job, you must assign them in your job with logical device names. The MOUNT command
assigns the drive to your job and associates the logical name that you specify in it with the physical
drive assigned. You should include a PLEASE command to the operator to tell him that you want two
magnetic tape drives. |f he can't let you have the drives because they are in use, you can ask him
to enter your job again. Your magnetic tapes, one with the input data, the other blank so that you
can write on it, should be given to the operator with your card deck or kept at the central site, so

that the operator can find your tapes. The program is as follows.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INFIL, ASSIGN MAGI.
SELECT OUTFIL, ASSIGN MAG2.

DATA DIVISION.

FILE SECTICN.

FD  INFIL, LABEL RECORDS ARE STANDARD,
VALUE OF IDENTIFICATION IS ""INFIL DAT",
BLOCK CONTAINS 20 RECORDS.

01 INREC, PIC X(80).

FD  OUTFIL, LABEL RECORDS ARE STANDARD,
VALUE OF IDENTIFICATION IS ""OUTFILDAT",
BLOCK CONTAINS 12 RECORDS.

01  OUTREC, PIC X(80).

PROCEDURE DIVISION.

START. .

OPEN INPUT INFIL, OUTPUT OQUTFIL.

LOOP.
READ INFIL; AT END GO TO FIN.
WRITE OUTREC FROM INREC.
GO TO LOOP.

FIN.
CLOSE OUTFIL, INFIL.
STOP RUN.

The cards to enter this job are shown below.



BEGINNER'S BATCH - 184 -

$COBOL MYPROG.CBL

*MOUNT MTAtMAG?/VlD'OUTFIL/WENABL]

*MOUNT MTA:MAG1/VID:INFIL/RONLY I

*PLEASE NEED TWO MAGTARES l
$PASSWORD ABCD i

$J0B COBJOB [10,1461]
$SEQUENCE 10

10-0928

Batch puts the following commands into the control file for you.

. PLEASE NEED TWO MAG TAPES, IF | CAN'T HAVE THEM, REQUEUE.

.MOUNT MTA:MAG1/VID:INFIL /RONLY
.MOUNT MTA:MAG2/VID:OUTFIL /WENABL
.COMPILE /COMPILE MYPROG.CBL /LIST
.EXECUTE MYPROG.REL /MAP:MAP_LPT
.DISMOUNT MAGT:

.DISMOUNT MAG2:

The printed output from your job is shown below.
Pg1462 IS THE LOW SEGMENTY BREAK

MAP STORAGE MaP 15142 2Q«APR-72

STARTING ADDRESS na1406 9ROG COBOL FILE MYPROG

W COMM, 502140 291040

CoBOL 201200 221317 FILES. 00P14@¢ USES., @@0141 SEGWD.
START, 231996 OQVRFN. 0P0144 POINT, B@0145 COMMA,
ALTER, 700143 MEMRY. 0@@152 TRAC1, 880152 TRAC2.
MONEY, 736147  %NM.  B0@155 %0T.  BP01%56 %PR,
TRAC3, A%3154

TRACED Bg148/ 220223 PTFLG. 081461 TRACE, 801457 TRPD,
BTRAC, 731462
TRPOP, 271460

COBOL 1K CORE, <@5 wOROS FREZ
LOANER USED 2+4K CORE

720142
020146
239153
gRe1s57

p714960



PROSG
151414

peey
2902
0003
opR4
Po05
0226
2007
poee
0p09
po1p
PP11
po12
0013
0p14
Pg1s5
Ro16
2917
po1s
o116
P29
pp21
ep22
2023
Pp24
025
po26
ep27

R AM

-185 - BEGINNER'S BATCH

CoBolL - coBoL 3(43) 20«APR=72
PAGE 1

IDENTIFICATION DIVISIQON.

ENVIRONMENT DIVIS]ON,

INPUT-QUTPUT SECT]ON,

FILE=CONTROL,

SELECT INFIL, ASSIGN MAG1,
SELECT QUTFIL, ASSIGN MAGR2.

DATA DIVISION,

FILE SECT]ON,

FD INFIL,) LABEL REZQRDS ARE STANDARD
VaLUE oF IDENTIFICATION IS "INFIL DAT",
BLOCK CONTAINS 2y RECORDS.

01 INKEC, PJC x(80),

FO  OUTFIL, LABEL RZCORDS ARE STANDARD,
VALUE OF IDENTIFICATION IS "OUTFILDAT",
BLOCK CONTAINS g2 RECORDS.

21 OUTREC, PIC Xx(8p).

PROCEDURE DIVISION,

START.

OPEN INPUT INFIL, OUTPUT QUTFIL,

LOooP

REAVU INFILJ AY ENp GO TOQ FIN,
WRITE OYTREC FROM INREG,
GO TO LQOP.

FIN,

CLOSE OyuTFIL, INFIL.
STOP RUN,

NO ERRORS DETECIED

15137137
15137137
15137138

15137146
15137146
15137146

15137146
15137146
15137148
15137:50
15137:53
15137153
15137153
1513754
15137154
153137154
15137154

151371584
15138147
15135418
15133118
15139159
151334159

DATE
CARD
STSUM

BVERS
BOATE
BASUM

MGNTR
MONTR
USER

USER

USER

MONTR
MONTR
MCNTR
MONTR
MONTR
MONTR

MONTR
MONTR
USER
USER
USER
USER

20-APR=72 554252 DUAL CPU DSRSTK VER 12(26) DSK
$J0B8 COBJUOBL19/1461)
END OF FILE AFTER 37 CARDS., 84 FILES, 86 BLKS

BATCON 7(53) [NP: SUBJOB @21 OF 06
23=APR"72

€08,0BL10,1461] FOR #s[10,1461] (0G FILE IN [10,1464)
REQUEST CREATED AT 15136134 20-APR-72

UNIQUEY 2 REGTARTS 1

+LOGIN 18/1441

JoB 24 554250 DUAL CPU TTY103
OTHER JOBS SaME PPN
1537 20eAORe72 THUR

.SET TIME 303
+SET SPOOL ALL

$J0p COBJOBL1g/1461]

«PLEASE NEED TWO MAG TAPES, IF CAN'T HAVE THEM, REOQUEUVE,
JMOUNT MTAIMAGL/VIDIINFIL/RONOLY

OPERATOR NOTIFIED

WAITING,,,

MAG1 (MTA@) MOUNTED

5-17



BEGINNER'S BATCH

15139159
15147101
1514001
1514132
151441131
15141131

15141:31
15141:35
1514159
15141:5%9
15141:59

15141159
15141159
1%141159
15142024
15142124
15142125
1514226
1514227
15142129
15142109
15142:09
1514229

15142129
15142109

15142:10
15142429
15t42:29
15142329
15142130
15142131
15142147
15142147
1514247

15142147
15142:51
15142153
15142:57
15:42:59
153431020
1514321
15:43,21
1514%:0%
15143:83
15142129
15143112
15143:13
15843143
15143113
15:44107
15144115
15144125
15144;25
1534435

MONTR
USER
USER
USER
USER
MONTR

MONTR
USER

MONTR
MONTR
MONTR

MONTR
MONTR
MONTR
USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR

MONTR
USER

USER
USER
MONTR
MONTR
USER
USER
USER
MONTR
MONTR

MONTR
USER

USER

USER

USEFR

USER

MONTR
MONTR
MONTR
K=QUE
KJCB

LGouT
LGCUT
LEOUT
LGOUT
LPMSG
LPMSG
LOMSG
LPMSG
LPM3G

- 186 -

« oMOUNT MTYAIVWAG2/VID:OUTFIL/WENABL
OPERATOR NOTIFIED

WAITING,,,

MAG2 (MTALl) MOUNTED

$C0ROL MYPROS,CBL

+COMP /COMPI._g MYPRQG,CBL/LIST ;CREATED BY CDRSTk
coBoL ¢

ExIT

$DATA
+SET CUR QAA,CDR sCREATED BY CDRSTk

+EXEC . /MAPIMAP.LPT /REL MYPROG.REL ICREATED BY CORSTK
LOADING
2731462 1S THf LOW SEGMENT BREAK

CO8oL 1K CORE
EXECUTION

EXIT

$EOD
+OISMOUNT MA511
OPERATOR.NOTIFIED

WAITING,,,
MAGY OISMOUNTED

« o DISMOUNT Mag2:
OPERATOR NOTIFIED
WAITING, .,

MAG2 DISMOUNTED

XFINS

.DEL MYPROG.3FL,QGA4,COR,MYPROG.CBL
FILES DELETEN: )
MYPROG:REL

QAA,CDR

MYPRCG.CBL

@7 BLOCKS FReg

«KJOF USKB1COBJOB, 0GL10,14611=/1/2:4/B/VS:628/VL1200/vD1D
TOTAL OF 9 B_OCKS IN LPT REQUEST

OTHER JOBS SAME PPN

JO8 24, USER [10,1461) LOGGED OFF TTY1@3 1543 20-APR=72
SAVED ALL 43 FILES (855, DISK BLOCKS)

ANOTHER JOB STILL LOGGED IN UNDER [102,1461)

RUNTIME @ MIN, 27,14 SEC

LPTSPL VERSION 4A(141) RUNNING ON LPT2

JOR COBJYOB F1 E DSKBLIMYPROG,(STC1P,1461) FOR [1€,1461)STARTED
DSKBL1$¢MYPROG, STC108,14617 DONE

JOB CQBUNB FI{E DSKS1IMAP.LPTC10,1461]) FOR [13,14617 STARTED
NSKRL1tMAP, | PT[10,1461] DONE

5-18



-187 -
DEC-10-UTECA-A-D

decsystemic B
INTRODUCTION TO TECO
(TEXT EDITOR AND CORRECTOR)

This document represents the software as of version 23 of TECO.

digital equipment corporation - maynard, massachusetts



INTRO TO TECO

-188 -

Copyright © 1972 by Digital Equipment Corporation

The material in this manual is for informa-
tional purposes and is subject to change
without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

1st Printing May 1972



CHAPTER 1

o 0 W~

1
1
1
1.
1
1

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

CHAPTER 3

1-1
3-1

-189 -

CONTENTS

INTRODUCTION TO TECO

General Operating Procedure
Initialization

Special Symbols Used in this Document
General Command String Syntax
Erasing Commands

Command Arguments

TECO COMMANDS

Input Commands

Buffer Pointer Positioning
Text Typeout

Deletion Commands
Insertion Command
Output Commands

Special Exit Commands

Search Commands
ERROR MESSAGES

TABLES

Special Symbols
TECO Error Messages

7T}
i

INTRO TO TECO

191

191
192
193
194
195 .
196

197
198
200
201
202
204
205
206

193
210




INTRO TO TECO -190 -



=191 - INTRO TO TECO

CHAPTER 1
INTRODUCTION TO TECO

TECO, a very powerful text editor, enables the advanced DECsystem=10 user to edit any ASCII text
with a minimum of effort. All editing can be oécomplished by using only a few simple commands; or
the user may select any of a large set of sophisticated commands such as character string searching,
command repetition, conditional commands, programmed editing, and text block movement. In this
description of TECO only the basic commands are described. If the user requires information about
the more advanced uses of TECO, he can refer to the TECO manual in the DECsystem=10 Users
Handbook.

TECO is a character-oriented editor. One or more characters in a line can be modified without
retyping the rest of the line. Any sort of document can be edited: programs written in FORTRAN,
COBOL, MACRO-10, or any other language; memorandg; specifications; and other types of

arbitrarily formatted text. TECO does not require that line numbers or any other extraneous informa-

tion be associated with the text.

1.1 GENERAL OPERATING PROCEDURE

TECO operates on ASCII data files. A file is an ordered set of data on some peripheral device.

In the case of TECO, a data file is some type of document. An input file may be a named file on
disk or DECtape, a file on magnetic tape, a deck of punched cards, or a punched paper tape. An
output file can be written onto any of these same devices. The input file for a given editing opera-
tion is the file to which the user wishes to make changes. If the user is using TECO to create a new
file, there is no input file. The output file is either the newly created file or the edited version

of the input file. An output file is not required if the user wishes merely to examine a file without

making any changes.

In general, the process of editing proceeds as follows. The user first specified the file he wishes to
edit and then reads in a ''page'* of text. A page is normally an amount of text that is intended for
a single sheet of paper. Form feeds are used to separate a document into pages. On input, TECO
interprets form feeds as end-of-page indicators. It is not required, however, that a document be so
divided into pages. If a form feed is not encountered, TECO simply reads as much text as will
reasonably fit into its editing buffer. For the purposes of this document, the word page is used to
mean the segment of text in TECO's editing buffer.

1-1



INTRO TO TECO -192 -

When a page has been read into the buffer, the user can modify this text by using the various editing
commands. When he has finished editing the page, he outputs it and reads in the next page. This
process continues until, ofter the last page has been output, the user closes the output file. If there
are several pages where no editing is required, there are commands which may be used to skim over

them.

1.2 INITIALIZATION

The two main uses of TECO are (1) to create a new disk file, and (2) to edit an existing disk file.
These are the only uses of TECO described in this document. . In particular, the use of TECO

with devices other than disk is not described. The beginner can get around this limitation by using
PIP to transfer files to and from disk. (Refer to the PIP manual in the DECsystem=10 Users
Handbook for information about PIP.)

The two main uses of TECO are so common that there are direct monitor commands to initialize

TECO for executing them. The command
- MAKE filename.ext )

is used to initialize TECO for creating a new disk file. Filename.ext is the name that the user gives
to the new file. The filename can be from one to six alphanumeric characters. This is followed
(optionally) by a period (.) and a filename extension of from one to three alphanumeric characters.

The most commonly used filename extensions are:

.F4 for FORTRAN source programs
.CBL for COBOL source programs
.MAC for MACRO-10 source programs

The MAKE command opens a new disk file to receive output from TECO and gives it the name speci-
fied by the user. Once the file has been opened it is then actually created by using the insert and

output commands, which are explained in sections 2.5 and 2.6 of this document.
The command

. TECO filename.ext )
is used to initialize TECO for editing an existing disk file, named filename.ext. The filename and
filename extension must be exactly the same as those of the file that is to be edited. The TECO
command opens the specified file for input by TECO and opens a new file, with a temporary name,

for output of the edited version. When output of the new version is completed, the original version
of the file is automatically renamed filename .BAK, and the newly edited version is given the name of

the original file. The filename extension .BAK is used for backup files.

1-2



- 193 - INTRO TO TECO

After TECO has been initialized for a particular job, it responds by typing an asterisk (*). The
asterisk indicates that TECO is ready to accept commands; it is typed at the beginning of TECO's

operation and at the completion of execution of every command string.

Examples:

. MAKE EARNNG.F4 ) This command initializes TECO for creation
* of a new disk file called EARNNG.F4,
- The extension .F4 is used because the

file is to be a FORTRAN source file.
. TECO LIB40.MAC) This command initializes TECO for editing
* the existing disk file LIB40. MAC. At the

- completion of editing, TECO automatically
changes the name of the original version of
LIB40.MAC to LIB40.BAK and gives the
name LIB40. MAC to the new version.

NOTE
The TECO command cannot be used to edit a file which
has the filename extension .BAK. To edit a backup file
the. user must first rename the backup file. For example,
to edit the file LIB40.BAK the user should proceed as
follows:

. RENAME LIB40.OLD=LIB40.BAK )
TECO LIB40.0OLD J)

® |

1.3 SPECIAL SYMBOLS USED IN THIS DOCUMENT

~ Table 1-1
Special Symbols

Symbol Character Represented Comment

Jd Carriage Return Whenever the RETURN key is typed,
TECO automatically appends a line
feed to the carriage return.

@ Altmode On most terminals, the altmode key
is labeled ""ALTMODE'", but on some
it is labeled ""ESC'' or "' PREFIX"" A
Since the altmode is a non-printing
character, TECO indicates that it
has received an altmode type=in by
echoing a dollar sign ($).

tC Control C This character is typed by typing

the letter C while holding down the
CTRL key. Other control characters
are represented in similar fashion.




INTRO TO TECO - 194 -

Table 1-1 (Cont)
Special Symbols

Symbol Character Represented Comment

FORM Form Feed Form feed is typed by typing @
{

(control F).

Line Feed This symbol is used only when a line
feed is explicitly typed. It is not
used for the line feed which is
automatically assumed when a
carriage return is typed.

- Tab Tab is typed by typing @
(control 1).

A Space This symbol is used occasionally
for emphasis.

@ Rubout This key is used to nullify a

character erroneously typed in a
command string. |ts use is ex=
plained fully in Section 1.5.

1.4 GENERAL COMMAND STRING SYNTAX

TECO commands are usually given by typing the one=- or two- letter name of the command. However,
many of the commands take arguments. Some typical examples are shown below, to give the reader

an idea how TECO commands look. These commands are fully explained later in the manual.

L
PW

ISAMPLE (§)

3K

TECO commands may be given one at a time. However, it is usually more convenient to type, in a
single command string, several commands that form a logical group. An example of a command string

is shown below.

*IHEADING (§)NTAG: (§) 2L

A command string may be typed after TECO indicates its readiness by printing an asterisk. Command
strings are formed by merely writing one command after another. Command strings are terminated by

typing two consecutive altmodes.

Execution of the command string begins only after the double altmode has been typed. At that point
each command in the string is executed in turn, starting at the left. When all commands in the string

have been executed, TECO prints another asterisk, indicating its readiness to accept another command.



-195 - INTRO TO TECO

If some command in the string cannot be executed because of a command error, execution of the
command string stops at that point, and an error message is printed. Commands preceding the bad

command are executed. The bad command and those following it are not executed.

1.5 ERASING COMMANDS

Typographical errors, if discovered while typing a command string, may be ''erased'' by use of the

rubout key. This process is best ‘explained by an example.
*3LKILEIF ERICXON

After typing this much of the command string, the user discovers that he has misspelled the name
""Ericson.'' To nullify his error, he types three successive rubouts. As he does this, TECO responds

by retyping the characters which are being rubbed out.

*3LKILEIF ERICXON RO N'RD © & x.

Of course, rubout is a non-printing character so the actual line looks like this:

* 3LKILEIF ERICXONNOX

Once he has rubbed out the bad character, the user continues the command string from the last

correct character.

* 3LKILEIF ERICXONNOXSON (®) oLt (3)(®)

The actual function of the rubout character is to delete the last typed character in t
Consequently, if the bad character is not the last in the string, all characters back to that point must

be deleted. Rubout characters do not enter the command string.

An entire command string may be erased, if it has not yet been terminated, by typing two successive
tG (control G) characters.

Example:

* 3LKILIEF ERICXON1G G tG tG causes the entire command
string to be rejected. TECO types a
new asterisk and awaits a new command.

1.6 COMMAND ARGUMENTS

There are two types of arguments for TECO commands. Some commands require numeric arguments

and some require alphanumeric (text) arguments.



INTRO TO TECO =196 -

Numeric arguments, and also all numeric type-outs by TECO, are decimal integers. Numeric argu-
ments always precede the command to which they apply. A typical example of a command taking

a numeric argument is the command to delete three characters: ''3D'"'.

Alphanumeric arguments are textual arguments meant to be interpreted as ASCIl code by TECO,
Alphanumeric arguments always follow the command to which they apply, and they must always be
terminated by an altmode. Examples of alphanumeric arguments are (1) text to be inserted, and (2)

character strings to be searched for.
Example:

* ISOMETHING The argument is '*SOMETHING"".
As shown in the above example, the altmode used to terminate an alphanumeric argument may also

serve as one of the two altmodes necessary to terminate a command string. Any ASCII character

except null, altmode, and rubout may be included in an alphanumeric argument.



-197 - INTRO TO TECO

CHAPTER 2
TECO COMMANDS

2.1 INPUT COMMANDS

The Y (yank) command first clears the editing buffer and then reads the next page of the input file
into the buffer.

A single Y command is automatically performed by the command
. TECO filename.ext )

so that when editing with this command the first page of the input file is automatically read in before
TECO prints the first asterisk.

The Y command may be used to delete entire pages of a file, since the editing buffer is completely

cleared before the input is performed.

The A (append) command reads in the next page of the input file without clearing the current contents
of the editing buffer. This command is used to combine several pages of a document. When the A
command is used, the form feed separating the page already in the buffer and the page to be read in

is removed. Thus ofter the A command the two pages are combined into one.

If the editing buffer does not have enough room to accommodate an A command which has been given,
TECO automatically expands its buffer and then executes the A command. The user is notified of this

action by a message of the following form
[3K CORE]
If sufficient core is not available to allow buffer expansion, the user is notified by an error message.

NOTE

On either an A or a Y command the form feed termi-
nating the page to be read in is not actually read into
the buffer. It is removed on input and a single form
feed is appended to the end of the buffer when the
buffer is output.



INTRO TO TECO -198 -
Examples:

. TECO REPORT.CBL) This command, as part of the process of

* initializing TECO for editing the disk file

- REPORT.CBL, automatically clears the
buffer and then reads in the first page of

the file.
:Y This command deletes the entire contents of
* the buffer and then reads in the next page of

- the input file.

AA 0 9 Read the next two pages of the input file into
.. the buffer, combining them with the page

already in the buffer.

*A The buffer is expanded as re:quired by the A
[4K CORE] command. In most cases this message need be

of no concern to the user. It is important
only if the system is low on core and does
not have swapping capability.

*

2.2 BUFFER POINTER POSITIONING

Since TECO is a character-oriented editor, it is very important that the user understand the concept
of the buffer pointer. The position of the buffer pointer determines the effect of many of the editing
commands. For example, insertion and deletion always take place at the current position of the

buffer pointer.

The buffer pointer is simply a movable position indicator. It is always positioned between two char-
acters in the editing buffer, or before the first character in the buffer, or ofter the last character in
the buffer. It is never positioned ''on'' a particular character, but rather before or after the character.

The pointer may be moved forward or backward over any number of characters.

The J command moves the buffer pointer to the beginning of the buffer, i.e., to the position imme-

diately before the first character in the buffer.

The ZJ command moves the pointer to the end of the buffer, i.e., to the position following the last

character in the buffer.

The C command advances the pointer over one character in the buffer. The C command may be pre-
ceded by a (decimal) numeric argument. The command nC moves the pointer forward over n characters.

(The pointer cannot be advanced beyond the end of the buffer.)

The R command moves the pointer backward over one character in the buffer. This command may also
be preceded by a numeric argument. The command nR moves the pointer backward over n characters.

(The pointer cannot be moved backward beyond the beginning of the buffer.)



-199 - INTRO TO TECO

The L command is used to advance the buffer pointer or move it backward, on a line-by-line basis.

The L command takes a numeric argument, which may be positive, negative, or zero, and is under-
stood to be one (1) if omitted.

The action of the L command with various arguments is best explained in a more concrete way.

Suppose the buffer pointer is positioned at the beginning of line b, or af some position within line b.

The command L, or 1L, advances the pointer to the beginning of line b+1, i.e., to the position

following the line feed which terminates line b.

The command nL, where n >0, advances the pointer to the beginning of line bin.

The command OL moves the pointer to the beginning of line b. If the pointer is already at the be-

ginning of line b, nothing happens.

The command -L moves the pointer back to the beginning of line b-1.

The command -nL moves the pointer back to the beginning of line b-n.

Examples:

NOTE

After execution of a Y command, the buffer pointer is
always positioned before the first character in the
buffer. (The Y command automatically executes an
implicit J command.) The A command does not change
the position of the buffer pointer.

In examples, the position of the buffer pointer is often
represented in this manual by the symbol , just below
the line of text.

OO

.

ZZJ-2L
.

_-:EL4C
£0L2R ®®
.

ABCDEF
t

The J command moves the pointer to the beginning
of the first line in the buffer. The 3L command
then moves it to the beginning of the fourth line.

This moves the pointer to the beginning of the
next to last line in the buffer.

Advances the pointer to the position following
the fourth character in the next line.

OL moves the pointer back to the beginning of

the line it is currently on. Then 2R moves it back
over the carriage return-line feed pair which
terminates the preceding line.

In this example of text stored in the buffer, the
position of the buffer pointer is shown to be
between B and C.



INTRO TO TECO - 200 -

2.3 TEXT TYPE-OUT

Various parts of the text in the buffer can be typed out for examination. This is done by use of the
T command. Just what is typed out depends on the position of the buffer pointer and the argument

given. The T command never moves the buffer pointer.

The command T types out everything from the buffer pointer through the next line feed. Thus, if the
pointer is at the beginning of a line, the command T causes that line to be typed out. If the pointer

is in the middle of a line, T causes the portion of the line following the pointer to be typed.

The command nT (n>0) is used to type out n lines, i.e., everything from the buffer pointer through

the nth line feed following it.

The command OT types out everything from the beginning of the current line up to the buffer pointer.

This is useful for determining the position of the pointer.
The command HT types out the entire contents of the buffer.

The user, especially one new to TECO, should use the T command often, to make sure the buffer

pointer is where he thinks it is.

During execution of any T command, the user may stop the terminal output by typing the tO
(control O) character. This command causes TECO to finish execution of the command string,

omitting all further type-out. The 'O command does not carry over to the next command string.

Examples:

*OLT ‘ This command string is used to move the pointer

ENTIRE LINE TYPED back to the.beginnipg of a line and then fy?e_out
the entire line. It is frequently used after in

* sertion and search commands.

*OTT This command string causes the entire line to

o be typed without moving the pointer. It is useful

ENTIRE LINE TYPED after insertion and search commands when it is not

* convenient to move the pointer back to the
beginning of the line.

*2T . If the buffer contains the text below with the

EF pointer between D and E, )

GHLKL ABCDEF J) |

P GHIJKL 2!

* MNOPQR ) |

this command causes the typeout shown.

""ABCD" is not typed because these characters pre-
cede the pointer. MNOPQR is not typed because
these characters follow the second line feed.



- 201 - INTRO TO TECO

2.4 DELETION COMMANDS

Characters are deleted individually by using the D command. The command D deletes the character
immediately following the buffer pointer. The command nD, where n >0, deletes the n characters
immediately following the pointer. The commands -D and -nD delete the character or the n

characters, respectively, which immediately precede the buffer pointer.

Lines are deleted using the K command. The K command may be preceded by a numeric argument,
which is understood to be 1, if omitted. The command nK (n > 0) deletes everything from the
current position of the pointer through the nth line-feed character following the pointer. The

command HK deletes the entire contents of the buffer.

At the conclusion of a D or K command the buffer pointer is positioned between the characters which

precede and follow the deletion.
Examples:

The editing buffer contains the following three lines of text,
and the pointer is positioned between the G and H.

ABCDEFG,HIJKLM ) |
NOPQRSTUVWXYZ ) |
1234567890 ) |

*4D Delete HIJK.
*

D Delete G.
-3D Delete EFG.

7D Delete HIJKLM ) ¢ but do not delete the line

feed at the end of the first line.

K Delete HIJKLM ) i.

Since the carriage return and line feed at the end
of the first line are deleted, the text in the buffer
after this command would be:
ABCDEFGNOPQRSTUVWXYZ )

1234567890 )}

2K10D LhBléng;g l)e?ve the buffer containing only

| * 1 %

| % | *

| * | %

| % | %

*
*



INTRO TO TECO 202 -

*0LK This is the command string that is required to
. kill (delete) the entire first line.

L2K This kills the last two lines.
HK ' Kill the enf‘ire buffer.

| * | *

I ® ] *

2.5 INSERTION COMMAND

The only insertion command is the | command. The ASCII text that is to be inserted into the buffer is

typed immediately after the letter I. The text to be inserted is terminated by an altmode.

Any ASCII character except null, altmode, and rubout may be included in the text to be inserted.
Specifically, spaces, tabs, carriage returns, form feeds, line feeds, and control characters are all

allowed. If a carriage return is typed in an insertion, it is automatically followed by a line feed.

The text to be inserted is placed in the buffer at the position of the buffer pointer, i.e., between
the characters. At the conclusion of the insertion command the buffer pointer is positioned at the

end of the insertion.

Any number of lines may be inserted with a single | command. For the user's protection, however,

no more than 10 to 20 lines should be inserted with each | command.

Examples:

If the buffer contains ABCDEF) | with the pointer between D and E, the command

*IXyz _ " produces ABCDXYZ,EF px
*

*1) produces ABCD )!
o
*

* produces ABCD!

N EF) !

| {EF)

. |

;3RIA4CIA produces A,BCDE, F )
*

*1 \FORM This command is used to separate the page in the
9 buffer into two pages. Both pages, however,
» remain in the buffer. They are not actually

separated until output.



- 203 - INTRO TO TECO

* JILINE ONE) This example shows insertion of several lines of

LINE TWO ) text at the beginning of the buffer.

LINE THREE )

*

*Kl) This is the command string used to delete the

tail of a line without removing the carriage
return-line feed at the end of the line.- If the

* buffer contains

cpy b
Ersis |

This command will produce

AB
[EFGH

2.6 OUTPUT COMMANDS

The command P causes (1) the entire contents of the editing buffer to be output to the output file
and (2) an implicit Y command to be performed which reads in the next page of the input file. This
command is used aofter editing of a given page is complete and the user is ready to move on to the

next page.

The P command may be used with a positive numeric argument to skim over several pages. Specific-
ally, the nP command causes the n consecutive pages of the input file, starting with the page in the

editing buffer, to be output, and then the n+lst page to be yanked in.

The PW command merely outputs the page currently in the editing buffer. It does not clear the
buffer, it does not read in any more text, and it does not move the buffer pointer. This command is
used when creating a new file. It is also used to output the last page of a file.

If the buffer is empty, the PW and P commands have no effect.

The EF command must be used to close the output file after all outpat to it is complete. EF is

normally used after the PW command which outputs the last page of the file.

Examples:

* PWEF This is the command string usually used to

* close out a file when the last page of the file
- is in the buffer.

*PT This command string outputs the current page,
FIRST LINE reads in the next page, and then types the
—_ first line of the new page.

| *




INTRO TO TECO - 204 -

* 8P If, for example, page 6 of a document is in the
*

editing buffer, this command causes pages 6
- through 13 of the document to be output,
one after the other, and then reads in page 14.

2.7 SPECIAL EXIT COMMANDS

The EX command is used to conclude an editing job with a minimum of effort. lts use is best shown

by an example.

Suppose the user is editing a 30-page file and suppose that the last actual change to the file is made

on page 10. At this point the user gives the command

*EX

In this case the action performed by TECO is equivalent to the command string 20PPWEF, with an
automatic return to the monitor at the end. Thus, the action of TECO is (1) to rapidly move all the
rest of the input file on to the output file, (2) close the output file, and (3) to return control to

the monitor.

The EG command is even more efficient. This command performs exactly the same functions as the
EX command, but after that it causes re-execution of the last COMPILE, LOAD, EXECUTE, or
DEBUG command attempted before TECO was called.

For example, suppose the user gives the command
. COMPILE PLOT.F4)

To request compilation of a FORTRAN source program, but the compiler discovers errors in the code.

The user would then call TECO to correct these errors:

. TECO PLOT.F4)

*

When all the errors are edited, the user exits from TECO with the command

*EG

This causes the COMPILE command to be executed again on the file PLOT.F4, after TECO has
finished output of the file.



- 205 - INTRO TO TECO

Any TECO job may be aborted by using the standard return-to-monitor command: tC $C (control C
typed twice). However, it this command is typed before the output file is closed, the output file

is lost,

If no input or output operations are in progress a single t C is sufficient to exit from TECO to the
monitor. In such a case, the user may reenter TECO without destroying the job he was previously

executing. This is illustrated in the following example.

. TECO SOURCE.MAC) A TECO job’is started.

* ICOMMENTS

*tC The user exits to perform a few simple monitor
commands.

. DEASSIGN LPT)

. DAYTIME )

24-MAY-72  10:34

. REE) The user reenters TECO. The previous buffer

. is still intact.

2.8 SEARCH COMMANDS

In many cases the simplest way to position the buffer pointer is by using a character string search.
A search command causes TECO to scan through the text until a specified string of characters is

found, and then to position the pointer at the end of this string. There are two main search commands.

The S command is used to search for a character string within the editing buffer. The string to be
searched for is specified as an alphanumerical argument following the S command. This argument
must be terminated by an altmode. The character string to be searched for may contain any ASCII

character except null, altmode, or rubout.

The S command may be preceded by a numerical argument n > 1. This argument is used to search for
the nth occurrence of a character string. Thus a 25 command searches for the second occurrence of

the particular character string, skipping the first occurrence. [f n is omitted, n = 1 is assumed.

Execution of the S command begins at the position of the buffer pointer and continues to the end of
the buffer. If the specified character string is not found in this range, an error message is printed and

the buffer pointer is set to the beginning of the buffer.

Examples:

*SA B This causes the pointer to be positioned after the
* B in the first occurrence of the string-
- A - tab - B past the current position of the pointer.



INTRO TO TECO - 206 -

* J2SNAME This causes the pointer to be positioned after

* the second occurrence of the string '"NAME'' in
= the buffer.
*$520 p) This moves the pointer to the position 'uff

. following the colon in the string ''20 TAG:",

AG: oLt then repositions the pointer to the beginning of
TAG: REST OF LINE - the line (just before the ""TAG:'") and types out
* ‘ the entire line starting with '"'TAG:"".

Warning: When attempting a search it is very easy to overlook an occurrence of the search string
preceding the one which the user desires. For example, he may want to move the pointer after the
word '"AND"' but erroneously position it after a preceding occurrence of a word like ""'THOUSAND''.
For this reason the user, especially the novice, is strongly urged to execute a T command to ascertain

the position of the pointer after each search command.

Example:

* SWORD oTT Here the user wishes to insert "AWORDZ"

i1y ) after ""WORD"'. He wisely types out the line
FORMAT(1X, 'WORD") to make sure he is at the right place, before

*1,WORD2 inserting ""WORD2'",
*

The other principle search command is the N command. The difference is that an S search ends at

the end of the current buffer, whereas an N search does not. An N search begins like an S search,
but if the character string is not found in the current buffer, an automatic P command is executed.
The current page is outputted, the next page read in, and the search continued on the new page.

This process continues until either the string is found or the input file is exhausted.
If the N search does find the specified character string, the pointer is positioned at its end.

If the string is not found, an error message is generated. In this case the user caused himself a fair
amount of delay. If an N search fails, the user must close the file with an EX command, then reopen
it and try the N search again with a character string that can be found. The user is strongly urged to
be careful when typing search character strings. Remember also that a search string must be terminated

with an altmode.



- 207 - INTRO TO TECO

Example:

*NSTRING - 3D Here the user meant to search for the

" _2p character string ''STRING'', and to
2SRH CANNOT FIND "'STRING-3D delete the last three characters of the

*EX string. However, he forgot to terminate

. the search string with an altmode and
. TECO filename.ext ) this caused the unsatisfied search request

ZNSTRING -3D error message (?SRH).
*

Version 23 TECO 2-1 May 1972



INTRO TO TECO - 208 -



- 209 - INTRO TO TECO

CHAPTER 3
ERROR MESSAGES

When TECO encounters an illegal command or a command that for any other reason cannot be executed,
an error message is printed on the user's terminal. Such messages contain a three=character code of the

form ?aaa and a one-line description of the error.

To get more information about the error, the user can type aslash (/) immediately after he receives
the error message. TECO will type an additional message that describes the error in more detail.

All three parts of the error messages from TECO are given in Table 3-1.

When an error message is generated, the command to which it refers is not executed, the remainder
of the command string is ignored, and TECO retruns to the idle state by typing an asterisk and

awaiting a new command string.

The novice user is especially warned that there are a great many TECO commands that have not been
described in this introductory material. Almost every letter of the alphabet and many of the special
characters have meanings as TECO commands. Hence, the user should be careful when typing

command strings. The beginner should probably stick to relatively short command strings.

In the following table, all TECO error messages are listed, even though some of them refer to the
more advanced commands not described in this manual. Error messages referring to the advanced
commands will probably be encountered by the user of this introductory material only if he has typed

an unintended command letter.

The complete set of TECO commands is fully described in the TECO manual in the DEC-system-10
Users Handbook. Since most editing can be done using only the basic commands covered in this intro-
ductory material, most users should be able to get along without the more advanced description for
some time. The novice should gain complete mastery of the basic commands before attempting to use

any of the advanced commands.

Version 23 TECO v 3-1 May 1972



INTRO TO TECO -210 -

Table 3-1
TECO Error Messages

?ARG Improper Arguments
The following argument combinations are illegal:
1) , (no argument before comma)
2) m,n, (where m and n are numeric terms)
3) H, (because H=B, Z is already two arguments)
4) ,H (H following other arguments)
?BAK Cannot Delete Old Backup File

Failure in rename process at close of editing job initiated by
an EB command or a TECO command. There exists an old
backup file filnam.BAK with a protection<nnn> such that it
cannot be deleted. Hence the input file filnam.ext cannot
be renamed to ''filnam.BAK"''. The output file is closed with
the filenam ''nnnTEC.TEMP'', where nnn is the user's job
number. The RENAME UUO error code is nn.

?COR Storage Capacity Exceeded
The current operation requires more memory storage than
TECO now has and TECO is unable to obtain more core
from the monitor. This message can occur as a result of
any one of the following things:

1) command buffer overflow while a long command
string is being typed, v

2) Q-register buffer overflow caused by an X or
[ command,

3) editing buffer overflow caused by an insert command
or a read command.

?2COS Contradictory Output Switches
The GENLSN and SUPLSN switches may not both be used

with the same output file.

?EBD EB with Device dev Is lllegal
The EB command and the TECO command may be specified
only with file structured devices, i.e., disk and DECtape.

?EBF EB with lllegal File filnam.ext
The EB command and the TECO command may not be used
with a file having the filename extension ''.BAK'' or with
a file having the name '"'nnnTEC.TMP''., Where nnn is the
user's job number, the user must either use an ER-EW
sequence, or rename the file.

?EBO EB, EW, or EZ Before Current EB Job Closed
After an output file has been opened by a TECO command
or an EB command, no further EB, EW, or EZ commands
may be given until the current output file is closed.

?EBP EB lllegal Because of File filnam.ext Protection
The file filnam.ext cannot be edited with an EB command
or a TECO command because it has a protection <nnn> such
that it cannot be renamed at close time.

Version 23 TECO 3-2 May 1972



- 211 - INTRO TO TECO

Table 3-1 (Cont)
TECO Error Messages

?EEE

Unable to Read Error Message File

An error, whose code was typed previous to this error
message, has occurred, and while TECO was trying to find
the proper error message in the error message file, one of
the following errors occurred: 1) the error message file,
TECO.ERR, could not be found on device SYS:, 2) an input
error occurred while TECO was reading the file TECO,ERR,
3) The error message corresponding to that error code is
missing from TECO.ERR, 4) the user's TECO job does not
currently have enough room for a buffer to read the error
message into, and no more core can be obtained from the
monitor, 5) for some strange reason device SYS: could not
be initialized for input.

?EMA

EM with lllegal Argument nn
The argument n in an nEM command must be greater than zero.

?EMD

EM with No Input Device Open
EM commands apply only to the input device, and so should

‘be preceded by an ER (or equivalent) command. To position

a tape for output, that unit should be temporarily opened
for input while doing the EM commands.

?ENT-00

Illegal Output Filename '*filnam.ext"!
ENTER UUO failure 0. The filename ''filnam.ext'* specified
for the output file cannot be used. The format is invalid.

=01

Output UFD dev: [pj, pg] Not Found

ENTER UUO failure 1. The file filnam.ext[pj, pg] specified
for output by an EW, EZ, or MAKE command cannot be
created because there is no user file directory with project-
programmer number [pj,pgl on device dev.

Output Protection Failure

ENTER UUO failure 2. The file filnam.ext[pj,pgl specified
for output by an EW, EZ, EB, MAKE, or TECO command
cannot be created either because it already exists and is
write—protected <nnn> against the user, or because the UFD
it is to be entered into is write-protected against the user.

Output File Being Modified

ENTER UUO failure 3. The file filnam.ext specified for
output by an EW, EZ, EB, MAKE, or TECO command cannot
be created because it is currently being created or modified
by another job.

-06

Output UFD or RIB Error

ENTER UUO failure 6. The output file filnam.ext cannot be
created because a bad directory block was encountered by the
monitor while the ENTER was in progress. The user may try
repeating the EW, EB, or TECO command, but if the error
persists, it is impossible to proceed. Notify your system
manager.

No Room or Quota Exceeded on dev:

ENTER UUO failure 14. The output file filnam.ext cannot be
created because there is no more free space on device dev:, or
because the user's quota is already exceeded there.

Version 23 TECO

3-3 May 1972




INTRO TO TECO =212 -

Table 3-1 (Cont)
TECO Error Messages

-15 Write Lock on dev:
ENTER UUO failure 15. The output file fllnom ext cannot be
created because the output file structure is write-locked.

-16 Monitor Table Space Exhausted
ENTER UUO failure 16. The output file filnam.ext cannot be
created because there is not enough table space left in the
monitor to allow the ENTER. The user may try repeating the
EW, EB, or TECO command, but if the error persists he will
have to wait until conditions improve.

-23 Output SFD not Found
ENTER UUO failure 23. The output file filnam.ext cannot be
created because the sub-file-directory on which it should be
ENTERed cannot be found.

-24 Search List Empt(
ENTER UUO failure 24. The output file filnam.ext cannot be
created because the user's file structure search list is empty.

-25 Output SFD Nested too Deeply
ENTER UUO failure 25. The output file filnam.ext cannot be
created because the specified SFD path for the ENTER is
nested too deeply.

=26 No Create for Specified SFD Path
ENTER UUO failure 26. The output file filnam.ext cannot be
created because the specified SFD path for the ENTER is set
for no creation.

-nn ENTER Failure nn on Output File filnam.ext
The attempted ENTER of the output file filnam.ext has failed
and the monitor has returned an error code of nn. This error
is not expected to occur on an ENTER. Please send the TTY
printout showing what you were doing to DEC with an SPR form.

7EOA nEO Argument Too Large
The argument n given with an EO command is lorger than the
standard (maximum) sethng of EO=n for this version of TECO.
This must be an older version of TECO than the user thinks he
is using; the features corresponding to EO=n do not exist.

?FNF-00 Input File filnam.ext Not Found
LOOKUP UUO failure 0. The file filnam.ext specified for
input by an ER, EB, or TECO command was not found on the
input device dev.

-01 Input UFD dev:[pij, pg] Not Found
LOOKUP UUO failure 1. The file filnam.ext [pj, pgl specified
for input by an ER, EB, or TECO command cannot be found
because there is no User File Directory with project-programmer
number [pj, pgl on device dev.

-02 Input Protection Failure
LOOKUP UUO failure 2. The file filnam.ext[pj, pgl specified
for input by an ER, EB, or TECO command cannot be read
because it is read-protected <nnn > against the user.

Version 23 TECO 3-4 May 1972



- 213 - INTRO TO TECO

Table 3-1 (Cont)
TECO Error Messages

=06 Input UFD or RIB Error
LOOKUP UUO failure 6. The input file filnam.ext cannot be
read because a bad directory block was encountered by the
monitor while the LOOKUP was in progress. The user may try
repeating the ER, EB, or TECO command, but if the error
persists all is lost. Notify your system manager.

-16 Monitor-Table Space Exhausted
LOOKUP UUO failure 16. The input file filnam.ext cannot be
read because there is not enough table space left in the monitor
to allow the LOOKUP. The user may try repeating the ER, EB,
or TECO command, but if the error persists he will have to wait
until system conditions improve.

-23 Input SFD not Found
LOOKUP UUO failure 23. The input file filnam.ext cannot be
found because the sub—file-diréctory on which it should be
looked up cannot be found.

-24 Search List Empty
: LOOKUP UUO failure 24. The input file filnam.ext cannot be
found because the user's file structure search list is empty.

-25 Input SFD Nested too Deeply
LOOKUP UUO failure 25. The input file filnam.ext cannot be
found because the specified SFD path for the LOOKUP is
nested too deeply.

-nn LOOKUP Failure nn on Input File filnam.ext
The attempted LOOKUP on the Input file filnam.ext has
failed and the monitor has returned an error code of nn. This
error is not expected to occur on a LOOKUP, Please send
the TTY printout showing what you were doing to DEC with
an SPR form.

?FUL Device dev: Directory Full
ENTER UUO failure n. The file filnam.ext specified for
output by an EW or MAKE command cannot be created on
DECtape dev because the tape directory is full.

?IAB Incomplete <...> or (...) in Macro .
A macro contained in a Q-register and being executed by an M
command contains an iteration that is not closed within the
Q-register by a >, or a parenthetical expression that is not
closed within the Q-register by a).:

?ACE Illegal Control-E Command in Search Argument
A search argument contains a command that is either
not defined or incomplete.

?ACT Illegal Control Command t<char> in text Argument
In order to be entered as text in an Insert command or search
command, all control characters (1@~ tH and tN - t<) must
be preceded by 1R or 1T. Otherwise they are interpreted as
commands. The control character ' t <char>"'' is an undefined
text argument control command.

Version 23 TECO 3-5 May 1972



INTRO TO TECO

- 214 -

Table 3-1 (Cont)
TECO Error Messages

?IDV

Input Device dev Not Available

Initialization failure. Unable to initialize the device dev for
input. Either the device is being used by someone else right
now, or else it does not exist in the system.

?IEC

Illegal Character ''<char>'"' After E

The only commands starting with the letter E are EB, EF, EG,
EH, EM, EO, ER, ET, EU, EW, and EZ. When used as a
command (i.e., not in a text argument) E may not be followed
by any character except one of these.

?IEM

Re-Init Failure on Device dev After EM
Unable to re-initialize the device dev after executing an EM
command on it. If this error persists after retrying to initialize

the device with an ER command (or EW command if output to

the device is desired), consult your system manager.

?IFC

lllegal Character ''<char>'" After F

The only commands starting with the letter F are FS and FN.
When used as a command (other than EF or in a text argument)

F may not be followed by any character other than one of these.

?IFN

Illegal Character '*<char>"' in Filename

File specifications must be of the form dev:filnam.ext[m,n]
where dev, filnam, and ext are alphanumeric, and m and

n are numeric. No characters other than the ones specified
may appear between the ) ER, EW, or EZ command and

the altmode terminator (

?ILL

Illegal Command <char>
The character '*<char >'* is not defined as a valid
TECO command.

?ILR

Cannot Lookup Input File filnam.ext to Rename It

Failure in rename process at close of editing job initiated by an
EB command or a TECO command. Unable to do a LOOKUP on
the original input file dev:filnam.ext in order to rename it
""filnam.BAK"' . The output file is closed with the name
""annTEC.TMP'', where nnn is the user's job number. The
LOOKUP UUOQO error code is nn.

?INP-nn0000

Input Error nn0000 on File filnam.ext. .
A read error has occurred during input. The input file filnam.ext
has been released. The user may try again to read the file, but
if the error persists, the user will have to return to his backup
file. The input device status word error flags are nn0000.
(Note: This number represents the 1/O status word (rh) with bits
22-35 masked out.)
(040000 -- block too large).
(100000 -~ parity or checksum error).
(140000 -~ block too large and parity error).
(200000 -- device error, data missed).
(240000 -- block too large and device error).
(300000 -~ parity error and device error).
(340000 -- block too large, parity error, and

device error).

Version 23 TECO

3-6 May 1972




-215 - INTRO TO TECO

Table 3-1 (Cont)
TECO Error Messages

(400000 -- improper mode).

(440000 ~- block too large and improper mode).

(500000 -~ parity error and improper mode).

(540000 -- block too large, parity error, and
improper mode).

(600000 -- device error and improper mode).

(640000 -- block too large, device error, and
improper mode).

(700000 -- parity error, device error, and
improper mode).

(740000 -- block too large, parity error, device
error, and improper mode).

?10S Hlegal Character ''<char>'" in I/O Switch
The only valid characters in switches used with file selection
commands are the alphabetic characters.

?1QC Illegal command '* <char>
The only valid ""'commands are ''G, ''L, ''N, "E, "'C, "'A,
"p, nv’ "W, T, "'F, "S, and "'U.

?IQN lllegal Q-register Name ''<char>""
The Q-register name specified by a Q, U, X, G, %,
M, [,1, or * command must be a letter (A through Z)
or a digit (0 through 9).

?IRB Cannot Rename Input File filnam.ext to filnam.BAK
Failure in rename process at close of editing job initiated
by an EB command or a TECO command. The attempt to
rename the original input file filnam.ext to the backup
filename "'filnam.BAK'' has failed. The output file is
closed with the name ""nnnTEC.TMP'', where nnn is the
user's job number. The RENAME UUO error code is nn.

?IRN Cannot RE=Init Device dev for Rename Process
Failure in rename process at close of editing job initiated by
an EB command or a TECO command.
Cannot reinitialize the original input device dev in order
to rename the input file filnam.ext to *'filnam.BAK''. The
output file is closed with the name '""nnnTEC.TMP"', where
nnn is the user's job number.

?ISA n Argument with Search Command
The argument preceding assearch command indicates the number
of times a match must be found before the search is considered
successful. This argument must be greater than 0.

?MAP Missing

In attempting to execute a conditional skip command (a "
command whose argument does not satisfy the required condition)
no ' command closing the conditional execution string can be
found. Note: n''...' strings must be complete within a single
macro level.

Version- 23 TECO

3-7 May 1972




INTRO TO TECO - 216 -

Table 3-1 (Cont)
TECO Error Messages

?MEE “Macro Ending with E
A command macro being executed from a Q-register ends with
the character ''E''. This is an incomplete command. E is the
initial character of an entire set of commands. The other char-
acter of the command begun by E must be in the same macro
with the E.

?MEF Macro Ending with F
A command macro being executed from a Q-register ends with
the character "'F'* (not an.EF). This is an incomplete command.
F is the initial character of an entire set of commands. The
other character of the command begun by F must be in the
same macro with the F. )

?MEO Macro Ending with Unterminated O Command
The last command in a command macro being executed from
a Q-register is an O command with no altmode to mark the
end of the tag-name argument. The argument for the O command
must be complete within the Q-register.

MEQ Macro Ending with '
A command macro being executed from a Q-register ends
with the '' character. This is an incomplete command. The
'* command must be followed by one of the characters G,
L,N,E,C,A D,V,W,T,F,S, orUto indicate the
condition under which the following commands are to be
executed. This character must be in the Q-register with the '*.

?MEU Macro Ending with t
A command macro being executed from a Q-register ends with
the t character. This is an incomplete command. The
t command takes a single character text argument that must be
in the Q-register with the t,

MIQ Macro Ending with <char >
A command macro being executed from a Q-register ends with
the character ''<char >''. This is an incomplete command. The
<char> command takes a single character text argument to name
the Q-register to which it applies. This argument must be in the
same macro as the <char> command itself.

?MLA Missing <
There is a right angle bracket not matched by a left angle
bracket somewhere to its left. (Note: an iteration in a macro
stored in a Q-register must be complete within the Q-register.)

2MLP Missing (
Command string contains a right parenthesis that is not matched
by a corresponding left parenthesis.

?MRA Missing >
In attempting to exit from an iteration field with a ; command (or
to skip over an iteration field with a O argument) no > command
closing the iteration can be found. Note: iteration fields
must be complete within a single macro level.

Version 23 TECO 3-8 May 1972



-217 - INTRO TO TECO

Table 3-1 (Cont)
TECO Error Messages

?MRP

Missing )

The command string contains, within an iteration field, a
parenthetical expression that is not closed by a right
parenthesis.

?MUU

Macro Ending with tt

A command macro being executed from a Q-register ends with
control=t or tt, This is an incomplete command. The

t t command takes a single character text argument that must
be in the Q-register with the t 1,

?NAE

No Argument Before =

The command n= or n== causes the value n to be typed. The
= command must be preceded by either a specific numeric
argument or a command that returns a numeric value.

?NAI

No Altmode dofter nl
Unless the EO value has been set to 1, the numeric insert
command nl must be immediately followed by altmode.

NAQ

No Argument Before ''

The "' command must be preceded by a single numeric argument
on which the decision to execute the following commands or
skip to the matching ' is based.

?NAU

No Argument Before U

The command nUi stores the value n in Q-register i. The
U command must be preceded by either a specific numeric
argument or a command that returns a numeric value.

?NCS

No Command String Seen Prior to *i

The *i command saves the preceding command string in
Q-register i. In this case no command string has previously
been given.

?NFI

No File for Input
Before issuing an input command (Y or A) it is necessary to open
an input file by use of an ER, EB, or TECO command.

?NFO

No File for Output

Before giving an output command (PW, P, N, EX, or EG)
it is necessary to open an output file by use of an EB EW,
EZ, MAKE, or TECO command.

INTQ

No Text in Q-register x
Q-register x, specified by a G or M command, does not
contain text.

?20CT

"'8'" or ''9"" in Octal Digit String
In a digit string preceded by tO, only the octal digits 0-7
may be used.

20DV

Output Device dev Not Available

Initialization failure. Unable to initialize the device dev for
output. Either the device is'being used by someone else right
now, or it is write locked, or else it does not exist in the system.

Version 23 TECO

3-9 May 1972




INTRO TO TECO

-218 -

Table 3-1 (Cont)
TECO Error Messages

?20LR

Cannot Lookup Output File dev:filnam.ext to Rename It

Failure in rename process at close of editing job initiated

by an EB command or a TECO command. The special LOOKUP
on the output file filnam.ext required for DECtape in order to
rename the file to 'filnam.ext"cLas failed. The original input
file filnam.ext has been renamed ''filnam.BAK'', but the
output file is closed with the name "'nnnTEC.TMP'', where

nnn is the user's job number. The LOOKUP UUO error

code is nn.

20UT-nn0000

Output Error nn0000 - Output File nnnTEC.TMP Closed
An error on the output device is fatal. The output file is
closed at the end of the last data that was successfully
output. It has the filename ''nnnTEC.TMP"', where nnn is
the user's job number. See Section 4.3 for a recovery
technique. The output device status word error flags are
nn0000. (Note: This number represents the 1/O status
word (rh) with bits 22-35 masked out.)
(000000 -- end of tape).
(040000 -- block number too large: device full or

quota exceeded).
(100000 -- parity or checksum error).
(140000 -- ﬁlock number too large and parity error).
(200000 -~ device error, data missed).
(240000 -- block number too large and device error).
(300000 -~ parity error and device error).
(340000 -- Elock number too large, parity error,

and device error).
(400000 -- improper mode or device write locked).
(440000 -- block number too large and improper mode).
(500000 -- parity error and improper mode).
(540000 -- Elock number too large, parity error,

and improper mode). .
(600000 ~-- device error and improper mode).
(640000 -- block number too large, device error,

and improper mode).
(700000 -- parity error, device error, and improper mode).
(740000 -- block number too large, parity error,

device error, and improper mode).

?PAR

Confused Use of Parentheses

A string of the form (...<...) has been encountered.
Parentheses should be used only to enclose combinations of
numeric arguments. An iteration may not be opened and
not closed between a left and right parenthesis.

2POP

Attempt to Move Pointer Off Page with J, C, R, or D

The argument specified with a J, C, R, or D command must
point to a position within the current size of the buffer, i.e.,
between 0 and Z, inclusive.

?PPN

Illegal Character ''<char>' in Project~programmer Number
Project-programmer numbers in file specifications must be given
in the form [m,n] where m and n are octal digit strings separated
by a comma. No characters other than the ones specified may
appear between the enclosing brackets.

Version 23 TECO

3-10 May 1972




-219 - INTRO TO TECO

Table 3-1 (Cont)
TECO Error Messages

?RNO

Cannot Rename Output File nnnTEC.TMP

Failure in rename process at close of editing job initiated
by an EB command or a TECO command. The attempt to
rename the output file nnnTEC.TMP to the name
"'filnam.ext'' originally specified in the EB or TECO
command has failed. The original input file filnam.ext
has been renamed ''filnam.BAK"', but the output file is
closed with the name '""nnnTEC.TMP'', where nnn is the
user's job number. The RENAME UUO error code is nn.

?SAL

Second Argument Less Than First
In a two-argument command, the first argument must be
less than or equal to the second.

?SNA

Initial Search with No Argument

A search command with null argument has been given, but
there 'was no preceding search command from which the
argument could be taken.

?SNI

; Not in an lteration

The semicolon command may be used only with a string of
commands enclosed by angle brackets, i.e., in an
iteration field.

?SRH

Cannot Find "'<text>''

A search command not preceded by a colon modifier and not
within an iteration has failed to find the specified character
string '"<text>''. After an S search fails the pointer is left
positioned at the beginning of the buffer. After an N or <
search fails the last page of the input file has been input and,
in the case of the N, output, and the buffer cleared. Note
that when this message occurs, the text string printed
includes all control-character commands included in the
search argument.

?STC

Search String Too Long
The maximum length of a search string is 80 characters
including all string control commands and their arguments.

?STL

Search String too Long

The maximum length of a search string is 36 character
positions, not counting extra characters required to
specify a single position.

MAG

Missing Tag Ixxx!

The tag Ixxx! specified by an O command cannot be found.
This tag must be in the same macro level as the O command
referencing it.

?TAL

Two Arguments with L
The L command takes at most one numeric argument, namely,
the number of lines over which the buffer pointer is to be moved.

TY

Illegal TTY [-O Device

A terminal may be specified as an input-output device in an
ER, EW, EZ, or MAKE command only if it is not being used
to control an attached job, the user's own terminal included.

Version 23 TECO

3-1 May 1972



INTRO TO TECO =220 -

Table 3-1 (Cont)
TECO Error Messages

?UCA Unterminated t A Command
A 1A message type-out command has been given, but there is
no corresponding tA to mark the end of the message. tA
commands must be complete within a single command level.

?UFS Macro Ending with Unterminated File Selection Command
The last command in a command macro being executed from a
Q-register is a file selection command (ER, EW, EB, or EZ)
with no altmode to mark the end of the file specifications.
The file selection command must be complete within the
Q-register.

?2UIN Unterminated Insert Command
An insert command (possibly ar @ insert command) has been
given without terminating the text argument at the same
macro level.

2UIS Undefined /O Switch *'/xxx"'
The switch ''/xxx'" is not defined with either input or output
file selection commands. The only switches currently defined

for input or output file selection commands are /GENLSN
and /SUPLSN,

?USR Unterminated Search Command
A search command (possibly an @ search command) has been
given without terminating the text argument at the same
macro level.

TG Unterminated Tag
A command string tag has been indicated by a ! command,
but there is no corresponding ! to mark the end of the tag.
Tags must be complete within a single command level.

?UUO lllegal UUO
Internal error. The illegal instruction <lh,rh> has been
encountered at address nnnnnn. This is caused by either
a TECO bug or a monitor bug. Please give this printout
to your system manager, or submit it to DEC with an SPR,

Version 23 TECO 3-12 May 1972



relfarenca






- 221 -

DEC-10-ETEE-D

gecsystemio TECO
TEXT EDITOR AND CORRECTOR PROGRAM
PROGRAMMER’S REFERENCE MANUAL

This manual reflects the software as of Version 23 of TECO.

digital equipment corporation - maynard, massachusetts



TECO

- 222 -

Ist Printing January 1968

2nd Printing October 1968

3rd Printing August 1969

4th Printing April 1970

5th Printing (Rev) October 1970
6th Printing (Rev) May 1972

Copyright © 1968, 1969, 1970, 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa-
tion purposes and is subject to change with-
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB



=223 -

NEW AND CHANGED INFORMATION

This manual reflects the software as of version 23. It has been
revised to include all new and changed material since version
21A of the TECO software. Change bars in the left margin
are used to indicate the new and revised information.

T}
i

TECO




TECO - 224 -



=225 - TECO

CONTENTS
Page

CHAPTER 1 INTRODUCTION 231
CHAPTER 2 CONCEPTS 233
2.1 Data Files 233
2.2 Character Set 234
2.2.1 Special Characters 235
2,22 Control Characters 235
2.2.3 Carriage Control Functions 236
2.2.4 Symbols 236
2.3 Data Format 237
2.4 Editing Buffer 238
2.5 Buffer Pointer 239
2.6 General Command String Syntax 239
2.7 Arguments 240
2.7.1 Alphanumeric Arguments 240
2,7.2 Numeric Arguments 241
2.7.3 Commands That Return a Value 243
2.8 Q-Registers 243
2.9 Core Expansion 244
CHAPTER 3 COMMANDS

3.1 Initialization Commands 247
3.1.1 R TECO Command 247
3.1.2 MAKE Command 247
3.1.3 TECO Command 248
3.1.4 Examples of the Use of Initialization Commands 250
3.2 File Selection Commands 250
3.2.1 ER Command 251
3.2,2 EM Command 251
3.2.3 EW Command 251
3.2.4 EZ Command 253
3.2.5 EB Command 253
3.2.6 Editing Line-Sequence Numbered Files 254
3.2.7 Examples of the Use of File Section Commands 254
3.3 Input Commands 255
3.3.1 Y Command 256
3.3.2 A Command 257
3.3. Examples of the Use of Input Commands 257
3.4 Special Characters as Buffer Position Numeric Arguments 257
3.5 Buffer Pointer Positioning Commands 258
3.5.1 J Command 258



TECO

3.5.
3.5.
3.5.
3.5.
3.6
3.6.
3.6.
3.6.
3.6.
3.6.
3.6.
3.7
3.7.1
3.7.
3.7.3
3.8
3.8.
3.8.
3.8.
3.8.
3.8.
3.8.
3.8.
3.8.
3.8.
3.8.
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.10
3.10.1
3.10.2
3.10.3
3.1
3.1
3.11.2
3.11.3

o~ O AW N — G b W N

N

- 226 -
CONTENTS (Cont)

C Command
R Command
L Command
Examples of the Use of Buffer Pointer Positioning Commands
Text Type-Out Commands
T Command

‘ Command
tL Command
nET Command
Case Flagging On Type-out
Examples of the User Text Typeout Commands
Deletion Commands
K Command
D Command
Examples of the Use of Deletion Commands
Insertion Commands
| Command
Tab Command
@1 Command
nl Command
n\ Command
Examples of the Use of Insertion Commands
Case Control with Insert Commands
Alphabetic Case Control
Special ''Lower Case'' Characters
Inserting Control Characters
Output Commands
PW Command
P Command
EF Command
Examples of the Use of Output Commands
Exit Commands
EX Command
EG Command

@ and @ Commands
Search Commands
S Command
FS Command
N Command

vi

Page
258
258
259
259
260
260
260
261
261
262
262
264
264
264
265
265
266
266
266
266
267
267
268
268
270
271
272
272
272
274
274
275
275
276
276
278
279
279
279



1.

1.
1.
1.

L1,
.12
.12

.14.
.14,
.14,
.14,

.14,
.14,
.15
.16
.16.1
17
7.1
.17.2
.17.3

11.
11
11.

11.
11
11.
11.
11.

NV ©® ® ©® o N OO A
W NN~

—
o

12.2

.13
.13,
.13,
.13.
.13,
.14

AW N~

14,

14,
14.
14,
14.

O A W N DNDNMNN—= = =
w w

- 227 -
CONTENTS (Cont)

FN Command

Backarrow Command

Search Command Modifiers

@Modifier

Colon Modifier

Automatic Typeout After Searches

Case Control in Searches

Alphabetic Case Control in Search Arguments
Special ''"Lower Case'' Characters
Control Characters in Search Arguments
Case Match Mode Control in Searches
Special Match Control Characters
Examples of the Use of Search Commands
Iteration Commands

Angle Bracket (<...>)

Semicolon Command

Flow Control Commands

Command String Tags

O Command

Conditional Execution Commands
Examples of the Use of Flow Control Commands
Q-Register Commands

Commands for Storing Integers

U Command

Q Command

% Command

Commands for Storing Character Strings
X Command

G Command

M Command

Saving the Previous Command String
Q-Register Pushdown List

Examples of the Use of Q-Register Commands
Numeric Typeout Command

Special Numeric Values

Examples of the Use of the Special Numeric Arguments

TECO Programming Aids

@ Command

Question Mark (?) Command
The EO Value

vii

TECO

Pége
280
280
281
281
281
282
282
282
285
285
285
286
287
289
289
289
291
291
292
292
293
295
295
295
295
295
295
295
296
296
296
297
297
300
300
302

303
304
304




TECO

3.18
3.18.1

CHAPTER 4

4.1
4.2
4.3
4.4

CHAPTER 5

I P
. . . .
W N~

.2.1
.2.2
.2.3

G oee e e

APPENDIX A
APPENDIX B
APPENDIX C

- 228 -
CONTENTS (Cont)

Command String Type-in Control Commands

Carriage Return, Line Feed, and Spaces
TECHNIQUES

Creation, Execution, and Editing of a FORTRAN Program
Rearranging a File

Splitting and Merging Files

Example of an Advanced TECO Macro

USER ERRORS

Erasing Commands

Rubout Command

Double @ Command
Command

Bell-Space Command

Error Messages

Question Mark Command

Slash Command

EH Command

APPENDICES
TECO ERROR MESSAGES
ASCIlI CHARACTERS
SUMMARY OF COMMANDS

eee
vin

Page
306
306

307
309
310
313

319
319
320
320
321
321
322
323

325
337
345



2-1
2-2
2-3
3-1
3-2
3-3
3-4
3-5
3-6
3-7
A-1

C-1

- 229 -

CONTENTS (Cont)

TABLES
Special Characters
Special Symbols
Numeric Operators
EM Commands
Special Buffer Position Arguments
L Commands
T Commands
K Commands
P Commands
Conditional Execution Commands
TECO Error Messages
ASCII Characters

Command Description

TECO

235

241
252
258
259
260
264
273
293
325
337
345




TECO -230 -



=231 - TECO

Chapter 1
Introduction

This manual is a complete reference manual for the advanced TECO user. It is not designed to be used
as a beginner's text, and people who are learning TECO should not use it as such. Beginners are re-
ferred to the tutorial ''Introduction to TECO'', which appears in Section | of the DECsystem=-10 Users
Handbook.

TECO is a powerful text editor for use with all DECsystem-10 systems. TECO enables the advanced
user to easily edit any ASCII text. Most editing can be accomplished using a few simple commands;
or the user can select any of a large set of sophisticated commands, such as character string searching,
command repetition, conditional commands, programmed editing, and text block movement. Refer

to Appendix C for a summary of the commands available.

TECO editing is normally done on-line, using the terminal. However, the user can also write his

editing commands as a TECO command file and have his editing task run by an operator.

TECO is a character-oriented editor; one or more characters in a line can be modified without re-
typing the rest of the line. Any source document can be edited: programs written in FORTRAN,
COBOL, MACRO-10, or any other language, as well as memoranda, specifications, and other types

of arbitrarily—formatted text. TECO does not require that line numbers or any other extraneous in-

formation be associated with the text. The full ASCII character set, printing and nonprinting

characters alike, can be processed.

TECO requires a minimum of 5K of core memory, 3K of which is shared in a reentrant system. TECO

takes advantage of any additional core available to expand its buffers, as required.

A single terminal is required for typing in commands. Data can be input or output on any standard
1/O device.

1-1



TECO -232 -



- 233 - TECO

Chapter 2
Concepts

2.1 DATA FILES

DECsystem-10 TECO operates on ASCII data files. The input file is the file that the user wishes to

change. The output file is the file that receives the newly created or edited data.

Inputting is defined as the process of reading in data that already exists in some computer-readable
form (paper tape, disk file, etc.). Data can be input from any device except the user's terminal (or
another user's terminal). Inserting is defined as the actual typing in of new data and is done only at

the user's terminal.

1n the case of such hard-copy devices as the card reader and the paper-tape reader, only the device
need be specified to open a file for input or output. For disk and DECtape files, filenames, as well
as the device, must be specified. If no device is specified, the device DSK: is assumed. Magnetic
tape files are specified by naming the tape drive and by using special TECO commands to position

the tape properly.
Any 1/O device name acceptable to the monitor can be used. Some examples are:

DSK: Disk (including drums)

DTAn: DECtape (n is the number of the drive on which the
tape is mounted)

MTAn: Magnetic tape (n is the number of the drive on which
the tape is mounted)

CDR: Card reader
CDP: Card punch
PTR: Paper-tape reader
PTP: Paper-tape punch
LPT: Line printer

TTYn: Terminal number n, usually a terminal having a low-
speed reader or punch



TECO - 234 -

NOTE

TTYn: used as an /O device must be different from the
user's terminal and must not be the terminal of any
attached user.

Filenames for disk and DECtape files consist of two parts: the first part, the filename proper, consists
of from one to six alphanumeric characters; the second part, which is optional, is called the ''filename

extension."

If given, the filename extension consists of from one to three alphanumeric characters
and is separated from the filename proper by a period. If the filename extension is not given, it is
defined as null and as such is distinctive. In the case of a null filename extension, the period after

the filename proper can be omitted.

Examples of filenames:

TECO. 21 The source file for TECO version 21
EARNNG .F4 A FORTRAN source program

0015J.CBL A COBOL source program

GLOB.MAC A MACRO-10 source program
GLOB.BAK A backup file

FRMTTR.TEC A file containing a TECO macro

M20 A filename with null extension

M20.1 A similar filename with non-null extension

2.2 CHARACTER SET

The TECO character set is the full ASCIl set. To obtain particular information about individual char=
acters, the user should refer to the table of ASCII characters in Appendix B. This table contains

the following:

a. A list of all ASCII characters and the symbols used in this manual to represent
them,

b. octal and decimal values of the characters, and,

c. comments concerning any special significance of each character.

In general, the user must be concerned with the character set on two levels: the data level and the

command level.

Every ASCII character from control-A (decimal value 01) through rubout (decimal value 127) is legal
in TECO data. They can all be input and output, and they can all be inserted. The only character
that is not completely legal as data is the null character (decimal value 0). The null character can be
inserted and output, but it is ignored on input. Form feed characters (decimal value 12) are com-

pletely legal in data but are treated specially on input (see Sections 2.3 and 3.3).

Most of the ASCII characters have some meaning when used as commands. Some are monitor commands.

When used as commands, the lower-case characters have the same meaning as their upper-case

2-2



- 235 - TECO

equivalents. The table in Appendix B tells where in this manual the uses of the various characters

as commands are explained.

2.2.1 Special Characters

Because of their use as special immediate~action commands (monitor control commands or erasing
commands), certain characters must not be typed in explicitly as alphanumeric arguments. All of
them, however, are legal as data (except the null character) and can be inserted using special tech=
niques. The characters to which this restriction applies are referred to in this manual as ''special

characters.'' These special characters are listed in Table 2-1.

Table 2-1 t
Special Characters
Character Remarks
@ (control=C) A monitor command
@ @ (two successive An erasing command
control=G's) (A single control-G is
acceptable.)

@H (control -G, space) Immediate editing command
(causes current line to be
retyped).

(control-O) A monitor command

@ (control-U) An erasing command

ESCape or PREfix Equivalent to ALTmode

AlLTmode or @ Standard text argument
terminator (Two successive
AlLTmodes terminate a
command string.)

Rubout An erasing command

Tin monitors preceding the 5.02 monitor the characters , @ , and

are also monitor commands and must be included in the above list for these systems.

2.2.2 Control Characters

Control characters are characters that are typed by holding down the CTRL key while striking a char=
acter key. The control characters have decimal values 0 through 31. When TECO is printing text,
a control character is printed as an up-arrow, followed by the character which is typed to produce

the control character. For example, control-A prints as '' tA"',

In many cases the control character commands can be typed into command strings by using an alternate
procedure to the standard method of holding down the CTRL key while striking the desired character.

2-3



TECO - 236 -

Instead, the user can first type up~arrow and then type the desired character without depressing the
CTRL key. For example, when used as a command, the two-character sequence up-arrow, H (denoted
by tH) is equivalent to the single character control-H (denoted by @ ). This method can be used
only when the control character is typed as a command, not when it is typed as text or as an alpha-
numeric argument. Control characters appearing as text arguments must be preceded by a .

Exceptions are noted at appropriate places throughout the manual.

2.2.3 Carriage Control Functions
A few of the control characters are the special terminal functions: bell, tab, line feed, vertical tab,

form feed, and carriage return. All of these characters echo by performing their particular function;

they also perform this function when TECO is printing out text from the buffer.

When a carriage return is typed in, the monitor automatically generates a line feed following it. The
echo to the carriage return type=-in is a carriage return followed by a line feed. If the carriage return

is typed as an insert, a line feed is automatically inserted immediately after the carriage return.

Altmode (or escape or prefix) echoes and prints out as a dollar sign.

2.2.4 Symbols

In the examples in this manual, some special symbols are used to clearly indicate what the user must
type. These special symbols are listed in Table 2-2.

In all examples containing both characters typed by the monitor or TECO and characters typed by the
user, the characters typed by the monitor or TECO are underlined. Carriage control characters

(carriage return, form feed, etc.) typed by the user are indicated through use of the special symbols.

Table 2-2
Special Symbols
Symbol Character
~] tab
| line feed
@ vertical tab
form feed
J carriage return
— space
altmode
rubout
control A
tA up-arrow
followed by A

(Other control characters similarly denoted)

2-4



=237 - TECO

2.3 DATA FORMAT

TECO is capable of editing text written in any format. There are, however, features in TECO that
make use of the concept of a line and the concept of a page. Therefore, the user must know how

these concepts are defined in TECO.

Lines can be of any length. The characters that define the end of a line are the line feed, vertical
tab, and form feed. The end of the editing buffer also counts as an end-of-line character if there is
no other end-of-line character at the end of the buffer. When TECO counts lines, it does so by

counting these end-of-line characters. An end-of-line character is considered to belong to the line

that it terminates.

Examples:
The following text comprises three lines of text as defined by TECO:

LINE ONE ¢
LINE TWO )
LINE THREE ) }

The following text is considered to be two lines:
BEGINNING,) OVERPRINT () CONTINUATION )1
The first line is terminated by the @ character and the second by the } character.

Text to be edited by TECO does not have to contain end-of -line characters; however, if it does not

contain them, those features of TECO that count lines will not be useful.

NOTE

If the EO value has been set to 1, the only end-of-line
character is the line feed (refer to Paragraph 3.17.3 for
a description of the EO value).

Pages are defined in TECO by form feed characters, which act as page separators. They are not con-
sidered to belong to either of the two pages that they separate. Two consecutive form feed characters
delimit a null page. A form feed charater at the beginning of a file delimits a null page at the be-
ginning of the file. A form feed character at the end of a file has no effect in TECO. It can be

omitted.



TECO - 238 -
Examples:
The following file consists of two pages:

LINE ONE ) !
LINE TWO D}

LINE THREE ) 4

LINE FOUR U}

The following consists of four pages; the first and third pages are null:

LINE ONE U}

LINE TWO J ¢

LINE THREE ) ¢

LINE FOUR J!

TECO operates most efficiently with files that are divided into pages of approximately fifty or fewer
lines. Files with longer pages or files containing no form feed characters can be edited with TECO;

but, this process requires either additional core storage or more care when editing.

The processing of form feed characters by TECO must be thoroughly understood by the user. The page
concept is further discussed in relation to the size of the editing buffer in Section 2.4, and the rela-
tion of form feed characters to input and output commands is discussed in Sections 3.3, 3.9, 3.10,
and 3.11.

TECO may be used to edit files containing the special line-sequence numbers produced by BASIC,
the PIP /S switch, LINED, and several other editors, but TECO does not need these numbers and
makes no special use of them (nor does it destroy them). See Section 3.2.6 for an explanation of how

these numbers may be processed.

2.4 EDITING BUFFER
Editing is accomplished by:

a. Reading text into the editing buffer
b. Making changes to the text in this buffer

c. Writing the modified text out to a new file

The editing buffer is a block of core memory within TECO. Data is put in the editing buffer when it
is read in or inserted; it is kept in the editing buffer while it is being modified.

Text is packed in the editing buffer with five 7-bit ASCIl characters per 36-bit word. When TECO is
running in the minimum 5K of core, the editing buffer holds approximately 3600 characters. Each

additional 1K of core assigned to TECO increases the size of the editing buffer by 5120 characters.

2-6



- 239 - TECO

TECO normally passes data into and out of the editing buffer a page at a time. Pages are delineated

by form feed characters (see Sections 2.3 and 3.3).

2.5 BUFFER POINTER

TECO is a character-oriented editor, therefore, the concept of the buffer pointer must be understood
by the user. The position of the buffer pointer determines the effect of many editing commands. For

example, insertion and deletion always take place at the current position of the buffer pointer.

The buffer pointer is a movable position indicator. It is always positioned between two characters in
the editing buffer, or before the first character in the buffer, or after the last character in the buffer.
It is never positioned exactly on a particular character; it is positioned either immediately before

or after the character.

The pointer can be moved forward or backward over any number of characters. It cannot be moved
beyond the boundaries of the buffer; i.e., it cannot be moved further back than the position immedi-
ately prior to the first character in the buffer, and it cannot be moved further ahead than the position

immediately ofter the last character in the buffer.

In the examples in this manual showing text in the editing buffer, the position of the buffer poinfer is

shown by a caret (/\) directly under the line of text.
Example:

TEXT IN THE ED/I{ING BUFFER

When discussing text in the editing buffer in terms of lines, the phrase ''current line'' is frequently
used. The current line is the line at which the buffer pointer is currently directed. The pointer can
be positioned either at the beginning of the line or in the interior of the line.

2,6 GENERAL COMMAND STRING SYNTAX

Commands are given to TECO by typing a command string; command strings are formed by writing a
series of commands, one immediately after the other, and concluding with two consecutive altmodes

(refer to Appendix C for a summary of commands).

A command string may be typed after TECO indicates that it is ready by printing an asterisk. An

example of a command string is as follows:

*YIHEADING (3) 2K4DNTAG (§) 2Lt

Execution of the command string begins only after the two consecutive altmodes have been typed.

TECO then indicates that it is beginning execution of the command string by typing a carriage return-

2-7




TECO - 240 -

line feed. At that point, each command in the string is executed in turn, starting at the left. When
all commands in the string have been executed, TECO prints another asterisk indicating it is ready to

accept another command string.

If a command in the string cannot be executed due to a command error, execution of the command
string stops at that point, and an error message is printed. Commands preceding the command in error
l are executed. The erroneous command and the commands following it are not executed. Errors,

error messages, and recovery techniques are fully discussed in Chapter 5.

There are exceptions to the general rule that commands are not executed until the end of the command
string has been indicated by two consecutive altmodes. These exceptions are the commands listed in
Table 2-1 in Section 2.2,

2.7 ARGUMENTS
2.7.1 Alphanumeric Arguments

Most alphanumeric arguments are text arguments that are interpreted as ASCIl data by TECO. Some
examples of text arguments are: data to be inserted in the buffer, search character strings, and com-
mand string tags. Other types of alphanumeric arguments are device and filenames and Q-register

names.

An alphanumeric argument always follows the command to which it applies. As a rule, most commands
that take text arguments require that the argument be terminated by an altmode; however, there are

exceptions to this rule which are explained at appropriate places in the manual.

An altmode used to terminate an alphanumeric argument can also function as one of the two altmodes

necessary to terminate a command string.

Example:

is terminated by an altmode. The
second argument, ''TEXT2"', is also
terminated by an altmode, but this
altmode is also used as one of the
altmodes terminating the command string.

*ITEXT ‘ STEXT2 The alphanumeric argument, ""TEXT'',
*

Any printable ASCII character is legal in an alphanumeric argument with the exception of the special
I characters listed in Table 2-1, Section 2.2. In addition, non-printing characters are legal when they

are preceded by a .



- 241 - TECO

2.7.2 Numeric Arguments

Numeric arguments always precede the command to which they apply. In some cases, only a single

numeric argument is required; in others, a pair of numeric arguments is required.

When two numeric arguments are used, they are separated by a comma. In most cases, numeric argu=
ments must be positive; however, some commands allow a numeric argument to be negative or zero.
The number and type of numeric arguments allowed by each command are stated in the section in

which that command is explained.

Where a numeric argument is used to specify a buffer position, the number used is the number of
characters in the buffer to the left of that position.. Thus, n means the position to the right of the

nth character in the buffer (between the nth and nt+ 1st characters).

Numeric arguments used in pairs are always buffer position arguments. Such a pair specifies all the
characters in the buffer that lie between the two buffer positions represented by the two arguments.
This definition is precise because the term ''buffer position'' always indicates a position before or

after a given character, not ''on'' or 'at'' the character.
Example:

12,20 This argument pair specifies the thirteenth (13th)
through the twentieth (20th) characters in the
buffer. These characters are specified because
the 12 indicates the position between the 12th
and 13th characters, and the 20 indicates the
position between the 20th and 21st characters.

Numeric arguments can be used in arithmetic/logical combinations. The characters shown in Table 2-3

are used as operators.

Table 2-3
Numeric Operators
Operator Function Example
+ Ignored, if used before the first term +2=2
in astring.

+ Addition, if used between two terms. 5+6=11

space Equivalent to +. 1 2=2
S6=N1

- Negation, if used before the first -2=-2

term in a string.

2-9



TECO - 242 -

Table 2-3 (Cont)
Numeric Operators

Operator Function Example
- Subtraction, if used between terms. 8-2=6
* Multiply. (Used between two terms.) 8*2=16
/ Integer Divide (and drop the remainder). 8/2=4
(Used between two terms. ) 8/3=2
& Bitwise logical AND of the binary 12 &10=8

representations of two terms, if used
between the terms.

# Bitwise logical OR of the binary 12# 10=14
representations of two terms, if used
between the terms.

When more than one arithmetic/logical operator is used in a single numeric argument, the operations
are performed from left to right. This sequence can be overridden through use of parentheses (). All
operations within parentheses are performed before those outside parentheses. Parentheses can be

nested.

In TECO, numbers are ordinarily assumed to be decimal integers. Preceding a number with 1O

(uparrow-O, not control-O) causes the number to be read in octal radix.

Example:

tO177 is equivalent to 127,
Examples:

3*1010=24

243 * 4=20

2H3 * 4)=14

2H3 * (16/(3-1) ) /2 H2 * 5) ) =24
2&(3%5) # 16=18
“((2+(3*4)-1&(6+8)) /2) =-6

The arithmetic/logical operators and parentheses can be used to form one or both of the numeric

arguments in a pair.
Example:

260 - (3 * 42), 250 +(77/3)

2-10



- 243 - TECO

2.7.3 Commands That Return a Value

Generally spedking, there are two main categories of TECO commands: 1) those that perform some
operation, such as inserting text, and 2) those that ''return'' a value, such as the number of characters

in the editing buffer. (There are also some commands that do both.)

A command is said to "‘return'' a value if the command causes the current value of some quantity to be
calculated, and then the command takes on this value, becoming itself a numeric argument that may
be used by another command. Using such a command is equivalent to typing the particular number
that the command returns as a value, except that the value is not usually known in advance. This
value can then be used as an argument by the next command in the command string, provided that the

command is one that can take a numeric argument. Otherwise, it is ignored.

An example of a command that returns a value is the Z command (see Section 3.4). The Z command
returns a value equal to the number of characters in the buffer. It has no other function. Thus, in

order to be useful, Z must be used as a numeric argument preceding another command.

Commands that return values may be used in arithmetic/logical combinations with each other and
with explicit numbers. All the same rules apply. Each command that returns a value has all the

properties of a number that has been explicitly typed in.

If commands that return values are concatenated with each other or with digits, the value returned

is that of the last command or number in the string. An operator preceding such a string continues

to apply.

Examples:

Z2Z2=2

Z48 = 48
-2Z=-Z
3H+ZZ =3+Z

2.8 Q-REGISTERS

Q-registers are data storage registers that are available to the TECO user. Q-registers give a great
amount of editing power to the user by enabling programmed editing and text block movement. Data
stored in Q-registers is not disturbed by the flow of data into and out of the editing buffer. It can be

preserved throughout an entire TECO job, and it is available for retrieval or change at any time.

There are 36 Q-registers; each Q-register has a single character name, which is either one of the
digits O through 9, or one of the letters A through Z. Also, there is a Q-register pushdown stack that

effectively makes available an additional 32 Q-~registers for certain applications.

1The number of entries in the pu.§hdown stack can be increased by changing the parameter LPF in
TECO.MAC and reassembling TECO.



TECO - 244 -
Two types of data can be stored in Q-registers: decimal integers or alphanumeric character strings.

For numeric storage, a Q-register can be used to hold a single positive, negative, or zero decimal

integer in the range -235 +<n< 235 -1. Numbers stored in Q-registers can be incremented, tested,
or recalled. Hence, Q-registers can be used as switches and counters, as well as for simple data-save

functions.

For text storage, a Q-register can be used to hold a character string of any length. Two types of
character strings can be stored: ordinary text and TECO command strings. Ordinary textual data
stored in a Q-register is copied into the Q-register from the editing buffer without destroying the copy
in the editing buffer. Storing text in a Q-register is useful for functions such as making many copies
of a given segment of text throughout a file without retyping it each time, for moving a block of text

from one position to another in a file, and for moving a block of text to another file.

Textual data in the form of TECO command strings can also be stored in Q-registers. Such a command
string can be executed over and over throughout an editing job, much like calling a subroutine. This
feature also enables an editing job to be typed up off-line and then executed by an operator at a later

time. Such command strings can be edited just as any other text.

2.9 CORE EXPANSION

The minimum 5K of core memory is allocated within TECO in the following manner. The executable
code is allocated 3K of core memory; this code is pure and is shared in a reentrant system. The other
2K of core memory is allocated to the data segment. Part of the data segment is used for program

variables and fixed=length 1/O buffers, while the rest is used for three variable~length storage areas:

a. The.editing buffer,
b. the command string buffer, and

c. the storage area for Q-registers containing text.

When TECO is initialized, the three variable-length storage areas are assigned a specific amount of
space. After a command string is executed, the command string buffer is cleared. When text is de-
leted from the editing buffer, the formerly occupied space is reclaimed. However, during a TECO
job, conditions can arise where the available space is not sufficient for the three variable-length
storage areas. For example, a command string having a single insert command with many lines of text
to be inserted may overflow the command string buffer. In such a case, TECO attempts to obtain the
required space from one of the other variable-length storage areas. If, however, all three areas are
filled to such an extent that the total amount of space allotted to all three is insufficient, TECO

automatically requests another 1K of core memory from the monitor.

If the request for more core is successful, operation continues normally. TECO prints a message of

the form '*[nK CORE}'" (where n is the new number of 1K segments of (low) core allocated to the



=245 - TECO

user) to inform the user that his core has been expanded to the specified amount. (This message is
suppressed while the user is typing a command string.) [f the request for more core is unsuccessful,
TECO stops execution of the command string at this point and prints the error message 2COR Storage
Capacity Exceeded.



TECO

- 246 -



- 247 - TECO

Chapter 3
Commands

3.1 INITIALIZATION COMMANDS

TECO is called by giving one of three different initialization commands to the monitor. An initiali-
zation command can be given whenever the monitor has typed a period to indicate that it is waiting

for a new command.

3.1.1 R TECO Command
The geﬁeral TECO initialization command is the command:

. RTECO)

*

This command calls TECO into core and initializes the program for general use. It does not automati-

cally initialize any particular devices or files for input or output.

When initialization is complete, an asterisk is typed to indicate that TECO is ready to receive a
command. This state, in which TECO waits for command string type in, is called command mode or
the idle state.

The R TECO command can be given with an argument:

-RTECOn)

where n is a decimal integer. The argument is used to request more than the minimum of 5K of core
memory for the TECO job. If n is greater than 5, the monitor initializes the user's TECO job with nK

of core, if possible. If n is not greater than 5, it has no effect.

3.1.2 MAKE Command

The two main uses of TECO are (1) to create a new file, and (2) to edit an existing file. These two

uses are so common that there are special monitor commands to initialize TECO for executing them.

The command:

- MAKE dev:filnam.ext [proj, progl )

3-1



TECO - 248 -

is used to initialize TECO for creating a new file. Filnam.ext is the name that the user, using this
command, gives to the new file. Dev: is the device on which the file is to be created; it can be any
output device. [f dev: is omitted, DSK: is assumed. If the output device is a disk device, [proj,prog]
is used to specify the user area in which the file is to be created; if [proj,progl is omitted and the
device is DSK:, the file will be created in the user's own disk area. For a more precise explanation

of file specifications (dev:filnam.ext[proj, progl), see Section 3.2.1.

The MAKE command opens a new file to receive output from TECO and gives it the name specified.

Once the file has been opened, it is then actually created by using the insert and output commands.

Care should be used in the choice of the filename used with a MAKE commund. If there is already a
file on the system device with the name specified, the MAKE command will cause the old file to be
overwritten and TECO will output the warning message % SUPERSEDING EXISTING FILE:: If the user
does not wish to supersede the file, he should type @ to return to the monitor. If no filename is
used with a MAKE command, the name of the last ASClI file used in a MAKE command or any other
edit-class command (MAKE, TECO, EDIT, or CREATE) is used. If no filename is given in a MAKE
command and no edit-class command was previously given, the error message '"COMMAND ERROR'!

is typed.

When initialization is completed, TECO types an asterisk to indicate its readiness to receive a com-

mand string. Usually the first command following @ MAKE command is an insert command.
- MAKE dev:filnam.ext [proj, progl )

is equivalent to

.RTECO)
*EWdev:filnam. ext [proj, prog] @ @

3.1.3 TECO Command

The command
-TECO dev:filnam.ext [proj, progl)

is used to initialize TECO for editing an existing file on disk or DECtape. The file specifications
dev:filnam. ext [proj, progl are interpreted in the same way as for the MAKE command, except that the
device must be a directory-structured device (disk or DECtape).

The filename and filename extension must be exactly the same as those of the file that is to be

edited.



=249 - TECO

The TECO command opens the specified file for input and reads in the first page of that file. It also
opens a new file, with a temporary name, for output of the edited version. The temporary name is of
the form nnnTEC.TMP, where nnn is the user's job number, including leading zeros. When output of
the new version is completed, the original (input) version of the file is automatically renamed
filnam.BAK, and the new version is given the name of the original file. This operation is identical
to that used for the EB command (see Section 3.2.5).

If no filename is specified in a TECO command, the name of the ASCII file last referenced in any edit-
class command is assumed. If no filename is specified and no edit-class command has previously been
given, the error message ''COMMAND ERROR"' is typed. The TECO command cannot be used with

a file having the filename extension .BAK, nor with a file name nnnTEC.TMP, where nnn is the

user's job number.

When initialization is completed, TECO types an asterisk to indicate its readiness to receive a

command string.
The command
.TECO dev:filnam.ext [proj, progl,)

is equivalent to

.R TECO

*EBdev:filnam.ext [proj, prog] @ Y

If the project-programmer number specified in a TECO filnam.ext [proj, prog] command is different
from the user's project-programmer number, the action of the TECO command is somewhat different
from that of the standard TECO command explained above. In this case the named file is taken for
input from the specified project-programmer area, but the output file is written in the user's own disk
area with the same name as the input file. This operation is identical to that used for the EB command
(see Section 3.2.5). »

If [proj,progl is not the user's project-programmer number, the command:
.TECO filnam.ext [proj,progl)
is equivalent to

LR TECO)

*EBfilnam.ext [proi, prog] Y

or to

.RTECOJ

*ERfilnam.ext [proj, prog] EWfilnam. ext Y

and the input file is not renamed to filnam.BAK.

3-3



TECO - 250 -~

NOTE

The R TECO command must be used for jobs involving
editing a file on a device other than disk or DECtape,
or for editing a file named nnnTEC.TMP, or a file with
the filename extension .BAK., The R TECO command is
also preferred with complex editing jobs, ‘where user
errors are likely, because of the greater control it

gives over the input and output files. The R TECO
command requires the use of file selection commands
(see Section 3.2), whereas the MAKE and TECO
commands do not,

3.1.4 Examples of the Use of Initialization Commands

-MAKE EARNNG.F4) This command initializes TECO for creation
* of a FORTRAN file named EARNNG . F4.
.TECO LIB40.MAC ) This command initializes TECO for editing

the existing file LIB40, MAC. At the com-
pletion of editing, TECO automatically
changes the name of the original version

of LIB40.MAC to LIB40.BAK and gives
the name LIB40.MAC to the new version.

.TECO ) This initializes TECO for editing the disk
file last referenced in an edit-class com-
mand (MAKE, TECO, EDIT, or CREATE).

.RTECO ) This is the command to initialize TECO

" for general-purpose editing. FILE se-

- lection commands (see Section 3.2)
should follow.

3.2 FILE SELECTION COMMANDS

File selection is the specification of the device from which input is to be taken and the device to
which output is to go. In the case of magnetic tape, file selection also involves positioning the tape.
In the case of directory-structured devices, disk and DECtape, a filename must be specified in ad-

dition to the device.

If the user wants only to create a file, or to edit an existing disk or DECtape file, file selection can

be done by using either of the previously described initialization commands.

- MAKE dev:filnam.ext[proj, progl )
or

.TECO dev:filnam. ext [proj, progl )

In all other cases, and in particular if the user. initializes TECO with the R TECO command, one or

more of the file selection commands described in this section must be used.



- 251 - TECO

3.2.1 ER Command

The ER command is used to select a file for input. The general form is

*ERdev:filnam.ext [proj, prog]

where

a. dev: is the device name, which can be any name acceptable to the monitor.
The device name must be followed by a colon. If dev: is omitted, the
default value DSK: is assumed.

b. [proj,progl is ignored when used with a device other than disk. proj is the
project number and prog is the programmer number of the disk area where the
specified file resides or, in the case of output, is to be written. If [proj,progl
is omitted and the device is a disk, the user's project-programmer number is
assumed.

c. filnam.ext need be used only if the device is a directory device, i.e., disk or
DECtape. filnam is the one-to-six character filename, and ext is the one-to
three character filename extension conforming to the rules stated in Section
2.1. If the device is a disk or DECtape, filnam must not be omitted;

.ext must not be omitted unless the null extension is explicitly intended.

d. The (altmode) functions as the argument terminator.

The ER command terminates input from any file that may have been previously opened for input, and
then opens the specified file for input.

The user may open one file for input, read only part of that file, and then, with another ER command,
release the first file and open a new file for input. It is not necessary to read to the end of a file
before opening another. However, opening the second file does end input from the first. There is
never more than one input file active. In Section 4.4, an example is given showing how to use multi-
ple ER commands to merge parts of several files. Data cannot be input without first giving an ER, or

equivalent, command.

3.2.2 EM Command

EM commands are used to position a magnetic tape for input or output. However, EM command apply
only to the magnetic tape that is currently open for input (i.e., opened by the latest ERMTAn:
command). To position a magnetic tape for output, it is necessary to first initialize the tape for input,

then do the desired EM function, and then reopen the device for output.

The function of an EM command is determined by the value of a single numeric argument preceding

the EM. The various EM commands are shown in Table 3-1.

3.2.3 EW Command

The EW command is used to select a file for output. The general form is

*EWdev:filnam. ext [proj, prog]

3-5



TECO - 252 -

The EW command opens the specified file for output. If any output file is already active, a new EW
command closes that file before opening the new file. Only one output file can be active at any one
time. If a previously active output file is closed by an EW command, that closed file contains all

and only that data supplied to it by output commands preceding the new EW command.

If there is already an output file with the name specified, the EW command causes the old file to be
overwritten and TECO outputs the warning message % SUPERSEDING EXISTING FILE.

Multiple EW commands may be used without changing the input file. In Section 4.3, an example is

given showing how to use this technique in order to split a single input file into several parts.

The MAKE filnam.ext initialization command causes an automatic EWDSK :filnam. ext command

to be executed. Output may not be done without first giving an EW, or equivalent, command.

Table 3-1
EM Commands
Command Function
EMor 1EM Rewind the currently-selected input
magnetic tape to load point.
3EM Write an end-of -file record on the
input tape.
6EM Skip ahead one record.
7EM Back up one record.
8EM Skip ahead to logical end-of-tape

(defined by two successive end-of—file
marks). The 8EM command leaves the
tape positioned between the two end-
of file marks so that successive output
correctly overwrites the second EOF,

9EM Rewind and unload.
11EM Write 3 in. of blank tape.
14EM Advance tape one file. This leaves

the tape positioned so that the next item read
will be the first record of the next file (or
the second end-of-file mark at the logical
end-of -tape).

15EM Backspace tape one file. This leaves the
tape positioned so that the next item read
will be the end-of-file mark preceding the
file backspaced over (unless the file is the
first on the tape).

NOTE

The EM commands do not clear the internal input buffers.
It is best to reinitialize with a new ER command before
doing an EM command.




- 253 - TECO

3.2.4 EZ Command

The EZ command is used only with disk, DECtape, or magnetic tape. Its function is equivalent to that
of the EW command except that before opening the specified output file it zeros the output device
directory if the device is a disk or DECtape, or it rewinds the tape if the device is a magnetic tape.

For other devices, it is treated exactly like an EW. The form is

*EZdev:filnam. ext [proj, prog]

3.2.5 EB Command

The EB command is used to open a file for editing in a manner similar to the initialization command
TECO dev:filnam.ext [proj,progl) . It can be used only for files on a disk or DECtape. The general

form of the command is

*EBdev:filnam.ext [proj, prog]

The exact operation of the EB command is as follows:

First, the EB command executes an automatic ERdev:filnam.ext . command, opening
the specified file for input and releasing any previously opened input file. Then, it
opens a temporary file to receive the output of the edited version of the input file.

This temporary file is named nnnTEC.TMP, where nnn is the user's job number with
leading zeros. This action is equivalent to executing the command
EWdev:nnnTEC.TMP 6 . The output device is the same as the input device.

Finally, the EB commanid sets an internal flag indicating that special action must

be taken when the EB file is closed (by an EF, EX, or EG command - see

Sections 3.9 and 3.10). It also prohibits any further EW, EZ, or EB commands until
the file is closed. »

When the EB file is closed, the following action takes place. First, if there already
exists on the device a file with the name filnam.BAK, it is deleted. Then, the input
file filnam.ext is renamed filnam.BAK. Finally, the output file, nnnTEC.TMP, is
renamed filnam.ext.

The effect of using the EB command is analogous to editing a file in place, to itself,
and converting the original version into a backup file. It updates the specified file
and keeps the most recent previous version as a backup file.

If the project-programmer number specified in an EBfilnam.ext [proj, prog]
command is different from the user's, then the input file is taken from the specified
area, but the output file is written in the user's own area with the same name as the
input file. In other words, if [proj,prog] is not the user's project~programmer number,

*EBfilnam.ext [proj,prog]

is equivalent to

*ERfilnam.ext [proi, prog] EWfilnam.ext

The EB command cannot be used with a file having the filename extension .BAK
nor with a file named nnnTEC.TMP, The TECO dev:filnam.ext[proj, progl) ini-
tialization command causes an automatic EBdev:filnam.ext [proj, prog] to

be executed (followed by an automatic Y command).



TECO - 254 -

3.2.6 Editing Line-Sequence Numbered Files
Some ASClII files, e.g., those created by BASIC, PIP with the /S and /O switches, and LINED, have

a special type of line number at the beginning of each line. These ''line-sequence numbers'' conform
to certain rules so that they may be ignored or treated specially by compilers and other programs. The

standards for line-sequence numbers are given in the LINED Program Reference Manual.

TECO does not need line=sequence numbers for operation, but TECO can be used to edit files con-
taining them. If such a file is edited with TECO the line-sequence numbers are, in the normal case,
simply preserved as additional text at the beginning of each line. The line~sequence numbers may be
deleted, edited, and inserted exactly like any other text. On output the line-sequence numbers are
output according to the standard, except that the tab after the number is output only if it is already
there. Leading zeros are added s necessary. [f a line without a line-sequence number is en-

countered, a line-sequence number word of five spaces is placed at the beginning of the line.

The following switches are available for use with line-sequencenumbered files. These switches are

merely added to the appropriate file selection command.

ERdev:filnam. ext [proj, progl /SUPLSN
EBdev:filnam.ext [prof, progl /SUPLSN

causes line-sequence numbers to be suppressed at input time. The numbers will not be read into the

editing buffer. Also, the tabs following the line-sequence numbers, if they exist, will be suppressed.

EWdev:filnam.ext [proj, progl /SUPLSN

causes the line-sequence numbers to be suppressed at output time. Tabs following the line-sequence

numbers will also be suppressed if they exist.
EWdev:filnam.ext [proj, progl /GENLSN
EBdev:filnam.ext [proj, progl /GENLSN

causes line-sequence numbers to be generated for the output file if they did not already exist in the
input file. Generated line-sequence numbers begin at 00010 and continue with increments of 10 for

each line.

Note that these switches are needed only if a change is to be made in the format of the file being

edited. If no switches are specified, a file is output in the same form as it was input.

3.2.7 Examples of the Use of File Selection Commands

* ERDTA2:CREF.2 ($) EWDSK:CREF.3 (§) ($) This command string selects the
- . . . DECtape file CREF .2 on DECtape
* drive 2 for input and opens a file

- called CREF.3 on the disk for
output. If there is a file named
CREF.3 already on the disk, it
will be overwritten.



- 255 -

* ERCDR: (§) EWPTP:
*
*ERMTAT: (§) EMI4EMI4EMEZDTAS: PROFIT.CBL

*ERPULSE.F4[11,141]
*

*EZMIA3;
*
LERMTAT: (8) BEMEWMTAI:

*EB22.F4

*

* n<14EM>
*
*EBCHESS. MACI1, 4]

3.3 INPUT COMMANDS

TECO

Select the card reader for input
and the paper tape punch for
output.

This command string selects the
tape on magnetic tape drive 1
for input, then positions the tape
at the beginning of the third file
on that tape, and finally zeros
the directory of the DECtape on
drive 5 and opens an output file
named PROFIT.CBL on it.

Select the file PULSE.F4 in
project=-programmer area [11,14]
on the disk for input. If this file
is read-protected against the
current user, an error message
results.

Rewind the magnetic tape on
drive 3 and select it for output.

To position a magnetic tape for
output (other than just a rewind),
the user must first select the tape
for input, then use EM commands
to position the tape, and finally
select the tape for output. In
this example, the 8EM command
positions the tape at the end of
data that had previously been
written on the tape. This enables
new output to the tape without
overwriting any of the previous
data. :

This command selects the disk file
22.F4 for editing. When the
editing is completed, the file
22.F4 is the new version. The
old version is changed to the
backup file 22.BAK, and any
previous backup file 22.BAK

is deleted.

Advance magnetic tape n files.

This command opens the file
CHESS.MAC on the [1, 4] disk
area for input, and opens a file
CHESS.MAC on the user's own
disk area for output (assuming
the user's project-programmer
number is not [1,4]1).

Input commands are used to read data from the input file, which must previously have been opened,

into the editing buffer. Input commands can be used only aofter an ER command (or the equivalent)



TECO - 256 -

has been given. Input always begins at the beginning of the selected input file. Successive input
commands then read successive segments of data from the input file.

The amount of data read on an input command depends on the buffer size, the particular input command

used, and the data itself, as explained in the paragraphs below.

3.3.1 Y Command

The Y (yank) command first clears the editing buffer and then reads text into the buffer until one of

the following conditions is met:

a. The end of the input file is reached;
b. A form feed character is read;

c. the buffer is two-thirds full and a line feed is read (or filled to within
128 characters of capacity);

d. the buffer is completely filled.

The usual effect of the Y command is to clear the editing buffer and then read the next page of the
input file into it. Less than the entire next page is read in only if that page is too large to fit within
two-thirds of the buffer's capacity. If the cleared buffer is not large enough to accommodate at
least 3000 characters, TECO automatically expands its buffer by 1K, if possible, before beginning
to input. The user is notified of the buffer expansion by a message of the form [nK CORE], where

n is the new number of 1K segments of (low) core allocated to the user.
If the end of the input file has previously been read, the Y command only clears the buffer.

If a form feed is read (i.e., if input stops because of condition b), the form feed flag ( @) is set
to =1. The form feed itself is not packed in the buffer with the rest of the text. A succeeding input
command begins input at the character following the form feed. If a form feed is not read, the form
feed flag is set to 0, and the next input command begins input at the character following the last
character previously read in. The form feed flag may be tested by the user (see Section 3.16), but

ordinarily this is not necessary.

A single Y command is automatically executed by the TECO filnam.ext initialization command causing
the first page of the input file to be read into the buffer before TECO prints the first asterisk.

The Y command sets the buffer pointer to the position preceding the first character in the buffer.

The Y command does not accept a numeric argument. [f multiple Y commands are desired, n <Y >

(where n is the number of pages to be ignored) can be typed.



- 257 - TECO

3.3.2 A Command

The A (append) command reads in the next page of the input file without clearing the current contents
of the editing buffer. The new input data is appended to that which is already in the buffer (at the
end of that data). The position of the buffer pointer is not changed. If there was a form feed char -
acter in the input file separating the data already in the buffer and the data read in, it is removed.

Thus, the A command can be used to combine several pages of a file.

If the editing buffer does not have sufficient space to accommodate 3000 more characters, TECO
automatically expands its buffer by 1K, if possible, and then completes execution of the A command.

The user is notified of the buffer expansion by a message of the form [nK CORE].

Input begun by an A command is terminated by any of the same four conditions that terminate a Y
command. The A command processes form feeds and the form feed flags in the same manner as the

Y command.

The A command does not accept a numeric argument. [f multiple appends are desired, the user can
type n<A> where n is the number of pages to be appended to the buffer. Note that nA is a different
command (refer to Paragraph 3.16).

If the end of the input file was previously read, the A command has no effect.

3.3.3 Examples of the Use of Input Commands

*ERREPORT.CBL (§) Y This command string opens the disk file REPORT.CBL
. for input and reads in the first page of that file.

*YA . This deletes the page of text currently in the editing

¥ buffer, reads in the next two pages of the current input
file, appending the second page to the first.

*A This inputs the next page of the file, appending it to the

[3K CORE] data already in the buffer. The previous contents of the

buffer are not altered and the pointer is not moved.
*

- The buffer is expanded automatically, as required by the
A command. In most cases, this message is of no concern
to the user. It is important only if the system is nearly
overloaded.

*ERDTA6:DATA.DOC (§) YYY ($) (§) This command string reads in and discards the first two
- ‘ . . pages of the DECtape file DATA.DOC, and then reads
in the third page of that file.

3.4 SPECIAL CHARACTERS AS BUFFER POSITION NUMERIC ARGUMENTS

In many cases, numeric arguments are used to specify buffer positions. Because such arguments tend
to be large and not easily determined by counting, the buffer positions commonly used as arguments

are represented by special characters. These special characters are shown in Table 3-2.



TECO - 258 -

Table 3-2
Special Buffer Position Arguments

Character Value

B Equivalent to 0. It represents the position at
the beginning of the buffer, i.e., preceding
the first character in the buffer.

z Equals the total number of characters in the
buffer. Thus, Z represents the position at the
end of the buffer, immediately after the last
character in the buffer.

. (period) Equals the number of characters to the left of
the current position of the buffer pointer, and
henfe represents the buffer pointer position
itself.

H Equivalent to the numeric argument pair B, Z.
Thus, in those commands that take two numeric
buffer position arguments, H represents the
whole of the buffer. This letter is particularly
useful with type=-out and output commands.

The characters B, Z and . can be used in arithmetic expressions.

3.5 BUFFER POINTER POSITIONING COMMANDS

This section describes the most elementary commands for moving the buffer pointer. In addition to
these elementary commands, the search commands make up an entire set of powerful pointer-

positioning commands. The search commands are described in Section 3.11.

3.5.1 J Command

The nJ command moves the buffer pointer to the position immediately after the nth character in the
buffer. The command 0J moves the pointer to the beginning of the buffer, i.e., to the position im-
mediately preceding the first character in the buffer. The command J, not preceded by an argument,

is equivalent to 0J.

3.5.2 C Command

| If n> 0, nC moves the pointer forward over n characters in the buffer. If n<0, nC moves the pointer
backward over n characters. The nC command is equivalent to . +nJ. The command C is equivalent
- to 1C; =C is equivalent to -1C.

3.5.3 R Command

The R command is equivalent to =C. The nR command is equivalent to =nC. [f n >0, nR moves the

| pointer backward over n characters in the buffer. If n <0, nR moves the pointer forward over n

3-12



characters. The nR command is equivalent to .-nJ. The command R is equivalent to 1R; -R is

equivalent to -1R.

3.5.4 L Command

- 259 -

TECO

The L command is used to move the buffer pointer over entire lines. The use of the L command with

various arguments is shown in Table 3-3.

Table 3-3
L Commands
Command Argument Function
L 1 assumed Advances the pointer to the beginning
of the line following the current line.
nL n>0 Advances the pointer to the beginning
of the nth line following the current line.
oL 0 Moves the pointer back to the beginning
of the current line.
-L -1 assumed Moves the pointer back to the beginning
of the line preceding the current line.
nL n<0 Moves the pointer back to the beginning
of the nth line preceding the current line.

If the user attempts to move the buffer pointer backward beyond the position immediately prior to the

first character in the buffer, or forward beyond the position immediately after the last character in the

buffer with a C, R, or J command, an error message is printed, and the pointer is not moved from the

position it had before the illegal command was given. With the L command no such error message

results, but the pointer will be moved beyond the boundary of the buffer.

3.5.5 Examples of the Use of Buffer Pointer Positioning Commands

*J3L

*ZJ-2L
*

*L4C

The J command moves the pointer to the beginning
of the first line in the buffer. The 3L command
then moves it to the beginning of the fourth line.

The ZJ command moves the pointer to the end of
the last line in the buffer. Then the -2L command
moves the pointer to the beginning of the next

to last line in the buffer (assuming that the last
line is terminated by a line feed).

Advance the pointer to the position following the
fourth character in the next line.



TECO - 260 -

*OL2R The OL command moves the pointer back to the

* beginning of the current line. Then the 2R com-

- mand moves it back past the last two characters
in the preceding line (the second of which must
be a line terminator).

*J-L ‘ The J command moves the pointer to the beginning
of the buffer, and the =L command then has no
effect and therefore does not return an error
message.

*ZJ)C The ZJ command moves the pointer to the end of
the buffer, and the C command then causes the
error message. '

?POP Attempt to move pointer off the page with the
C command.

3.6 TEXT TYPE-OUT COMMANDS

3.6.1 T Command

Any part of the text in the editing buffer can be typed out for examination. This is accomplished by
using the T commands. The text typed out depends on the position of the buffer pointer and the

argument(s) given. The T commands never move the buffer pointer.

When used with a single numeric argument, T is a line-oriented type-out command; when used with a
pair of numeric arguments, T is a character-oriented type-out command. The various T commands are
described in Table 3-4.

3.6.2 Command

During the execution of any T command, the user can stop the terminal output by typing the special
monitor control-character . The command causes TECO to finish execution of the
command string omitting all further type-outs. The effect of the command does not carry over
to the next command string. (This command may only be typed as a control character. The combina=~
tion tO (uparrow, O) does not have the same effect.) Occasionally the asterisk output by TECO
when a command is finished is also suppressed by . . If this occurs, the user can type

'TECO will respond with an asterisk if it is waiting for a command.

Table 3-4
T Commands
Command Argument Function
T 1 assumed | Types out everything from the buffer pointer

through the next line terminator. If the pointer
is at the beginning of a line, T causes the entire
line to be typed out. If the pointer is in the
middle of a line, T caouses that portion of the
line following the pointer to be typed out.

3-14



- 261 - TECO

Table 3-4 (Cont)
T Commands

Command Argument Function

nT n>0 Types out everything from the buffer pointer
through the nth line terminator following it.
If the pointer is at the beginning of a line,
this command types out the next n lines
(including the current line).

) 0 Types out everything from the beginning of
the current line up to the pointer. This
command is especially useful for determining
the position of the buffer pointer.

-T -1 assumed | Types out everything in the line preceding
the current line, plus everything in the current
line up to the pointer.

nT n<0 Types out everything in the n lines preceding
the current line, plus everything in the current
line up to the pointer.

m,nT m<n Types the m+1st through the nth characters
in the buffer.

opoinT n>0 Types the n characters immediately following
the buffer pointer.

.n,.T n>0 Types the n characters immediately preceding
the buffer pointer.

HT H=8B,Z Types out the entire contents of the buffer.

3.6.3 tL Command

If a form feed character, @ or tL, is included in a command string as a command, it causes a form
feed to be printed on the terminal when TECO reaches that point in execution of the command string.

This feature is useful for obtaining a clean printout of the text in the buffer.

3.6.4 nET Command

In normal typeout mode, most control characters print in the up—-arrow form and altmodes print as
dollar signs. For the benefit of users with special terminal equipment, this feature can be suppressed.
The command 1ET (any nonzero argument has the same effect as 1) changes the typeout commands so
that every ASCII character is delivered to the typeout device literally, i.e., with its own octal mode.
This is called literal type-out mode.

When TECO is in literal type-out mode, it can be restored to normal type-out mode, i.e., with sub-

stitutions for control characters and altmodes, by using the command OET.

The ET command (with no argument) returns the value (0 or 1) of the current setting of the type-out

mode switch. See Section 3.16 for an explanation of this command.



TECO - 262 -

3.6.5 Case Flagging On Type-out

TECO has three text type-out case-flagging modes: (1) lower case flagging, (2) upper case flagging,
and (3) no case flagging. In lower case flagging mode, all characters in the range octal 140 to 177.
are preceded by ' (apostrophe) when typed out. In upper case flagging mode characters in the range

octal 100 to 137 are flagged with a preceding '. TECO is initially set for lower case flagging.

The case flagging mode may be set as follows:

nEU (n >0) sets the typeout mode to flag upper case characters,
OEU sets the mode to lower case flagging (standard),
nEU (n<0) sets the mode to no flagging,

EU (without argument) returns the value of the current

case flagging mode.

If TTY LC is on (i.e., the user's terminal handles lower case) or if the ET flag is on, no case flagging

ever occurs regardless of the EU setting.

3.6.6 Examples of the User Text Typeout Commands

The following examples assume the buffer contains the ABCDE) |}
text shown at the right, with the buffer pointer posi- FGHIJJ !
tioned between the M and the N KLMNO) !
PQRST) |
UVWXY) 4
Z)!
Examples:
OO,
NO
*
war
NO
PQRST
Uvwxy
FAALLAS
*0T Note that no carriage return-line feed exists between
ELM* the beginning of the line the pointer is on and the

pointer itself, therefore, none are typed. The second
asterisk indicates that TECO is ready for the next
command.



*ILHTIL

ABCDE
FGHIT
RCMNO
PQRST
-JVWXY
=

*
*0ETHTIETHT(S)

X1AY$Z
XYZ

*

LIO]O)]
TECO MA'N'U'A'L
*IEUT

'T'E'C'O '"MANUAL

*1euT )
TECO MANUAL

*

- 263 -

This pair of commands causes the entire current line to
be typed out without moving the pointer.

The six characters typed are NO)) {PQ.

This pair of commands types out the entire current
line and leaves the pointer at the beginning of
this line.

The user requests type put of the whole buffer,
but stops it with a immediately aofter the
G is typed.

This command string causes the entire contents
of the buffer to be typed out, with a form feed
printed before and after the text is printed.

If the buffer contains the text X @ Y ZJo4,
this command string causes it to be fyped out in both
normal and literal modes, as shown. In the first line
typed out, the control-A and altmode are typed in
normal mode as up-arrow, A and dollar sign. In the
second line, typed in literal mode, 'A and $ do not
appear because they are delivered to the console
device in their true values, which are nonprinting
characters on most terminals.

The appearance of apostrophes in the typed text
indicates that '"anual'' is lower case.

1EU changes TECO so that upper case characters
are flagged.

-1EU stops case flagging.

TECO



TECO - 264 -

3.7 DELETION COMMANDS

The K and D commands are used to delete characters from the editing buffer. The K command used
with a single numeric argument is a line-oriented deletion command. The D command and the K

command used with a pair of numeric arguments are character-oriented deletion commands.

3.7.1 K Command

The various K commands are described in Table 3-5.

Table 3-5
K Commands

Command Argument Function

K 1 assumed Deletes everything from the buffer pointer
through the next line terminator. If the
pointer is at the beginning of a line, the
K command causes the entire line to be
deleted. If the pointer is in the middle of
a line, the K command deletes only the
portion of the line following the pointer
(including the line terminator).

nK n>0 Deletes everything from the buffer pointer
through the nth line terminator following it.

0K 0 Deletes everything from the pointer back to
the beginning of the current line.

-K -1 assumed Deletes everything from the pointer back to
the beginning of the line preceding the
current line.

nK n<0 Deletes everything from the pointer back to
the beginning of the nth line preceding the
current line.

m,nK m<n Deletes the m+1st through the nth characters
in the buffer and positions the pointer at the
point of deletion (that is, the pointer is set
equal tom).

3.7.2 D Command

Using the D command, characters can be deleted individually and in short strings. The nD command,
where n >0, deletes the n characters immediately following the buffer pointer. If the argument n is
omitted, n = 1 is assumed. The command nD, where n <0, deletes the n characters immediately pre=-

ceding the pointer; -D is equivalent to -1D.

At the conclusion of any K or D command, the buffer pointer is positioned between the characters that

preceded and followed the deletion.

3-18



- 265 - TECO

3.7.3 Examples of the Use of Deletion Commands

The following examples assume that the buffer
contains the text shown at the right; the buffer
pointer is positioned between the M and the N.

Examples:

X®O

Hotl»]lx | *

®
©

in,;l

3.8 INSERTION COMMANDS

ABCDE,) |
FGHIJ )4
KLM,NO ) &
PQRST )
UVWXY
zJ)!

Deletes NO ) {PQ, changing the third
and fourth lines to KLMRST)!.

Deletes M.

Deletes,) IKLM, changing the second
and third lines to FGHIJNO)) |,

Deletes LMNO, changing the third
line to KJ 4.

Deletes everything in the buffer, but does
not delete the form feed marking the end
of the page (if there is one).

Deletes everything from A through M.

Deletes everything from N through Z ) {.

Deletes NO &) | changing the third and
fourth lines to KLMPQRST i.

Deletes the entire third line.

Deletes the last three lines (everything
from P through Z ) ).

Deletes NO ) {P, changing the third and
fourth lines to KLMQRST ) 4.

Deletes KLM.

Deletes FGHIJ ) KLM.

The insertion commands are used to insert characters into the editing buffer from the user's terminal.



TECO - 266 -

3.8.1 | Command

The basic text insertion command is the | command used with the desired text as its argument. The

text argument is terminated by an altmode. The general form is

Fltext

This command inserts the ASCII text string, ''text'', into the editing buffer just ahead of the buffer
pointer. After the insertion, the buffer pointer is positioned immediately aofter the last inserted
character. The altmode terminating the text argument is not inserted. The text to be inserted may
contain any character except the special characters (see Table 2-1), but control characters must be
treated specially (see Section 3.8.8).

3.8.2 Tab Command

The tab command is equivalent to the | command, except that the tab command causes the tab itself
as well as all the following text up to the altmode to be inserted. In other words, if the first charac-
ter of a text string to be inserted by an | command is a tab, the | may be omitted. The general form
of the tab command is

*jtext

3.8.3 @l Command

The @l command is slightly more powerful than the | command. This command enables the user to
insert single (but not double) altmode characters in addition to the characters that can be inserted
with the | command. (To insert a double altmode, the second altmode must be preceded by a- .)
The @I command is useful for inserting TECO command strings into the editing buffer. The general

form is
*@I/text/

In this form, ''text'' is the text string to be inserted. The text argument must be immediately delimited,
both before and after by any single character which is not itself a part of the text to be inserted. In
this example, the delimiting character is the slash character. Altmode is not required to terminate the
text string; the second occurrence of the delimiting character terminates the text string. The text is
inserted immediately preceding the buffer pointer, as it is with the | command. The delimiting charac-

ter is not inserted.

3.8.4 nICommond

Any ASCII character can be inserted into the buffer using the nl command. This includes all
characters that the | and @I commands cannot insert. However, the nl command inserts only one
character at a time. The command nl inserts the character with the ASCIl value n (decimal) into

the buffer immediately preceding the pointer.

3-20



- 267 - TECO

Unless the EO value has been set to 1, the nl command must be followed by an altmode (refer to

Paragraph 3.17 for a description of the EO value).

3.8.5 n\Commond

The n\command is used to insert the ASCII representation of a decimal number n into the buffer. For
example, 349\inserts the ASCII characters 3, 4 and 9 into the buffer immediately preceding the
pointer. Note that n does not have to be a number typed in by the user. It can be a value returned
by some other TECO command. Note that the n\ command always inserts the decimal representation

of n.

3.8.6 Examples of the Use of Insertion Commands

The following examples assume that the buffer contains ABCDAEF.) ¢ with the pointer positioned
between D and E.

*IXYZ Produces AB;DXYZ/\EF) :

*1) Produces ABCD ) +
N

*

N Produces ABCD {

- EFJ!
GO, NP
EBRI (@ <1 .(3)(B)  Produces A_BCDE,_FJ)!

*~ixyz Produces ABCD ~IXYZ,EF ) |
:@I#IASA Pw# Produces ABCDIA (B sa (§) PWEF) 1

*10331 (§) Produces ABCD($)EF) |

=01 @) 101 Produces ABCD{’/‘A
*
NEFD

*Z \ Produces ABCD8/\EF) { because Z has

"the value 8.

;z\z\z\ ® Produces ABCDB910rEF ) ¢ because Z

successively returns the values 8, 9, and 10.
* @ This command is used to separate the page
0 in the editing buffer into two pages. Both
ek pages, however, remain in the editing buffer.
*12i @ This is equivalent to the command in preceding
*

example. It is convenient because it avoids
- the form feed echo.

3-21



TECO - 28 -

*JILINE ONE)) 'Il'his example shol;/vs !i:serﬁon of seI;/er;al
ines of text at the beginning of the buffer.
HEE ;n/&‘é ) Note that line feeds are inserted automati-

cally as the user types the carriage returns.

(O],
*L) This command string is used to delete the
tail of a line without removing the carriage
B return-line feed at the end of the line. If
- the buffer contains

ABXCD ) ¢

EFGH) {

this command produces
AB)
AEFGH ) ¢

*
—l This is used to insert a carriage return without
a line feed following it. The single rubout

deletes the line feed but not the carriage
. return. (See Section 5.1 for an explana-

tion of rubout.)

*@I%TEXT @ x @ % This is a convenient method for inserting
*

multiple altmodes when using the @I command.

The sequence x , where ''x'' is any

character except altmode, is typed between
the successive altmodes.

*tQ777 This is used to insert the ASCII-characters
- \ 511 at the current pointer position.

3.8.7 Case Control with Insert Commands

With the |, @I, and tab insert commands TECO ordinarily inserts text in the same case in which it
appears in the command string. The usér may, however, alter the case of text being inserted by use

of the special case control commands described in this section.

3.8.7.1 Alphabetic Case Control - The features described in this section provide the method by
which alphabetic characters in the upper case range can be converted to the equivalent characters
in the lower case range, and vice-versa. Alphabetic case conversion is done by use of two control-

character commands,
@ is used for translation to lower case,
@ is used for translation to upper case.

These two commands may be used within insert text arguments to cause case conversion on a tempo-
rary basis for that text argument, or as independent commands to cause'case conversion in all insert

and search text arguments.

Note that @ and @ affect only alphabetic characters. They have no effect on non-alphabetic

characters.

3-22



m

- 269 - TECO

@ @ and @ @ used within text arguments.

When used inside an insert text argument, two successive @ or @
commands cause translation, to the specified case, of all following

alphabetic characters in that text argument.

Example:

()

“F @@ or ustrs o @ @) Teco. DE)

The above command inserts ''For users of TECO."" with the initial '"'F"

and ""TECO'! capitalized, and all the other letters in lower case.

Single @ and @ used within text arguments.

When used inside an insert text argument, a single @ or @ command
causes translation of the next single character (if it is alphabetic) to the

specified case. The single @ or in a text argument takes
precedence over the case conversion mode defined By double @ or @
commands.

Example:

(©)

* () @) user W PROGRAM(®E)

The above command causes the string ''user Program'' with the "' P'' in upper

case, and all the other letters in lower case to be inserted.

Independent @ and @ Commands.

As explained above, when @ ~and @ commands are used inside a text
argument, they affect only that particular text string. When used as inde-
pendent commands, however, @ and @ set TECO to a prevailing case
conversion mode that affects all insert and search text arguments (except as
specified by @ and @ commands within the text arguments). The
independent command @ or tV (orn @ , where n does not equal 0) sets
the prevailing case conversion mode so that all upper case alphabetic characters
in insert and search text arguments are translated to lower case, except where

@ commands within individual text arguments override the independent @ .

Example:

*1v§$

* W) FOR UsErs OF W) (W) TECO.(B)E)
*|EXAMPLE

The above commands cause '‘For users of TECO.'" and "'example'’ to be inserted
with all letters lower case except the ''F'' and ''TECO'', Likewise, the inde-
pendent command @ or tW (orn @ , where n does not equal 0) sets

the prevailing case conversion mode so that all lower case alphabetic characters

3-23



TECO - 270 -

in insert and search text arguments are translated to upper case, except where

commands within individual text arguments override the independent

The independent @ command has the use explained above, obviously, only
when the user TTY has lower case capability and TTY LC is on. Otherwise the

@ command serves merely to turn off the @ command.

@ 0@ and0o @

The independent 0 @ and 0 @ commands both have the same effect, namely,
to restore TECO to the default condition where neither case of alphabetic char-
acters are translated to the opposite case, except by @ and @ commiands

within text arguments.
TECO is initially set for no prevailing case conversion,

Note that the prevailing case conversion mode can have one, and only one,

setting at any one time. The possible settings are:

% convert upper case to lower case

convert lower case to upper case

0 @or 0 @ no prevailing conversion

When any of these prevailing modes is put into effect, it cancels any of the

others that were in effect.

The order of precedence of the case conversion commands is as follows:

Highest: single @ and @ inside text
Next: double @ and @ inside text
Lowest: independent @ and

NOTE

If the EO value has been set to 1, @ and have
no special effect when used inside texf arguments(refer
to Paragraph 3.17 for a description of the EO value).

3.8.7.2 Special ""Lower Case'* Characters - When used inside an insert text argument, the control
command @ causes the immediately following character (if it is one of the special characters @,
[,\, 1, t, or*) to be converted to the equivalent character in the lower case ASClI range (i.e.,
octal 140 or octal 173-177). That is,

@@ becomes \ ASCII 140
@ [ becomes { ASCI1 173
@ \becomes | ASCIl 174
(f) 1 becomes } ASCII 175
(11) 1 becomes ~ ASCII 176
() ~ becomes ASCII 177

@ has no special effect within text arguments if the EO value has been set to 1.

3-24



=271 - TECO

Examples:
*tVI| EXAMPLES FOR THE Inserts ''Examples for the
@ @ tEco M W) W) ANUAL. TECO Manual .
EXAMPLE 1.
*0 tVIEXAMPLE 1. nl Command.'".

@) N1 c@Y) @) ommanD.

# @ Inserts a right brace ({)

3:8.8 Inserting Control Characters

As of version 22 of TECO all of the control characters - @ , @ - @ , and @ ,

@ , @ , and @ have been reserved as inside-text-commands (some as yet undefined). In order
to insert these characters, the user must employ either the or @ command.

when used inside an insert text argument causes the next single character to be interpreted as
text rather than as a command, and accordingly to be inserted in the buffer. This applies to all
control characters including itself. It also applies to Altmode. (It does not, however, apply

o ©, ©, @, orrUBOUT.)

@ when"used inside an insert text argument causes all succeeding instances of the above mentioned
control characters except and @ itself to be interpreted as text rather than as commands.
@ does not aoffect altmodes. A second instance of ‘@ in the same text argument nullifies the

effect of the first.

If the EO value has been set to 1, and @ have no special effect when used inside text
arguments, and all control characters can be inserted with no special treatment (refer to Paragraph

3.17 for a description of the EO value).

NOTE

The clever way to create a TECO macro is simply to type
the macro as a long command string just as if it were to
be executed immediately, but instead of typing ($)

at the end, type @ @. Then type *i to place the
command string in Q-register i. (This stores the macro,
ready for execution, in Q-register i. (Refer to Para-
graph 3.14.3 for the description of the *i command.)

Examples:

* TEXT Inserts the text ** (&) TEXT (&) .

*

3-25



TECO -272 -

#INSTRING (R) DO ® Inserts '"NSTRING ($)"'.
*
# (@A) seARCH Inserts "' (&) SEARCH

NSTRING NSTRING

| % ) 1ext R@M 1 ) (V) TexT(®

(Y xamPLEI(D)E) IExample!"".

3.9 OUTPUT COMMANDS

Output commands are used to transfer data from the editing buffer to the output file.

3.9.1 PW Command

The PW command is the basic output command. It does nothing but output. Depending on the argu-
ment used with it, the PW command outputs all or any part of the data in the editing buffer. It does
not, however, delete any data from the buffer, and it never moves the buffer pointer.

The PW command outputs the entire contents of the buffer and always appends a form feed to it.
The nPW command (n >0) outputs n copies of the text in the buffer, appending a form feed to each copy.

3.9.2 P Command

The P command is a combination command; when used with a single numeric argument (or no argument),
the P command does both output and input. The various functions of the P command are described in
Table 3-6.

Note that the P command (with a single argument) always clears the editing buffer before it inputs
the next page, and it leaves the pointer, at the beginning of the new page. If a P command is exe=-
cuted after the end of the input file has already been reached or when there is no input file, the

buffer is simply cleared. No data is read in.
Unlike the PW command, the P command does not always cause a form feed to be output at the end of

the data output from the editing buffer. The P command outputs a form feed at the end of the data

only if a form feed was encountered to terminate the last input command.

3-26



=273 - TECO

Table 3-6
P Commands

Command Argument Function

P 1 assumed Similar to PWY. Outputs the entire contents

of the buffer, then clears the buffer and reads in
the next page of input. The buffer pointer is
left at the beginning of the page that is read in.
If there is no input file, or no more data in the
input file, the buffer is left cleared. A form
feed character is appended to the end of the
data that is output only if the last input com-
mand was terminated by a form feed.

nP n>0 Executes the P command n times. This com=
mand can be used to skip over several pages

of text when no editing is required. The

nP command causes the n pages of the input
file, starting with the page currently in the
editing buffer, to be output, and then the

nth page after the current page to be yanked in.

m,nP m<n When used with a pair of numeric arguments,
the P command does output only; it does not
clear any data from the buffer, it does not
input any more data, and it does not move the
buffer pointer. Also, the m,nP command never
causes a form feed to be appended to output!.
The only action of m,nP is to output the
m+1st through the nth characters in the buffer.
(m,nP and m,nPW are equivalent.)

HP H=8B,Z Outputs the entire contents of the buffer without
appending a form feed to it; the buffer is not
cleared, and no new data is read in. (HP and
HPW are equivalent.)

]However, if a form feed character has been inserted in the buffer between the mth
and nth characters, it will be output.

The PW command does not clear the buffer and does not move the buffer pointer. The same is true of

a P command used with two arguments.

Note also that when a PW command is used, a form feed character is always automatically sent to the
output file immediately following the data from the buffer. (Recall that when the page was read into
the buffer, the form feed character that terminated it, if any, was discarded and not read into the

buffer.) The form feed character is appended to the outgoing data regardless of whether or not a form
feed character was encountered when the data was read in, i.e., regardless of the setting of the form

feed flag. This is not true of the P command.

NOTE

If the EO value has been set to 1, the P command behaves
like the PW command with regard to form feeds.

3-27



TECO - 274 -

When a P or PW command is used with a double numeric argument (including an H argument), a form
feed character is never appended to the output data. This is true regardless of whether or not a form

feed character was encountered when the data was read in.

NOTE

The discussion in this section does not apply to the form
feed characters that the user has inserted into the editing

buffer using 12| or | @) commands. Form

feed characters in the buffer are output exactly as other
characters in the buffer.

If the editing buffer is empty when a P or PW command is executed, no output of any kind takes place.
No form feed character is output. If the user wants to create a blank page, an example of the

procedure is shown below.

As shown in the discussion above, the nP command can be used to skip over several pages to get to the
next page where editing is required. The nP command can also be used with a very large argument,
e.g., 10000, in order to skip to the end of the input file without doing any more editing. The N and

EX commands are other commands which can be used for this purpose.

3.9.3 EF Command

The EF command is the output file closing command. The EF command, or an equivalent command,
must be used to close the output file after all output to it is complete. The EF command is normally
used after the P command which outputs the last page of a file. The special exit commands EX and
EG (see Section 3.10) automatically cause an EF to be executed. Also, a new EW command causes
an EF to be executed on the previous output file, if any, before opening the new output file. Note

that if an EF command is executed in the middle of the file, all succeeding pages of that file are lost.

3.9.4 Examples of the Use of Output Commands

*PT Output the current page, clear the buffer, read in

FIRST LINE OF NEXT PAGE the next page, then type out the first line of the
new page.

*PEF Output the current page to the output file, and

* then close the output file. This command string

- is used to close a file (after writing the last page)
when it is not desirable to exit from TECO.

*PWEF Equivalent to the preceding example, except that

the buffer is not altered.

3-28



=275 - TECO

.,ZPO,.P This command string outputs the entire contents of
the buffer, but it rearranges the data as it is out-
put. The part of the page that follows the buffer
pointer is output first by the ., ZP command. Then
that part of the data which precedes the pointer is
output by the 0, .P command. No form feed charac-
ter is appended to either section of the output.

| % | *

*.,ZP12| 0,.P This performs the same function as the preceding

* command string except that it does append a form

- feed character to that part of the page that is
output last.

*HK12I 0 HP This command string produces a single blank page.

*

*HK121 0 PW This produces two successive blank pages.

*

:SP ) ) If page 6 of afile is in the editing buffer, this

* . . command causes pages 6 through 13 of the file to

- be output one after the other, and then reads in
page 14.

*300P! " This outputs 300 copies of the current page.

= pu

*

*PWJKIJ.DOE PW @ This outputs the current buffer, the modifies
the first line and outputs the buffer again.

. MAKE FILE This is the usual method for creating a text file.

leage of text @
*Pl2nd page of text
*Pllast page of text EX @

3.10 EXIT COMMANDS

Exit commands are used to terminate a TECO job and return to the monitor. There are four exit com=

mands: EX, EG, @ , and @ .

3.10.1 EX Command

The EX command is used to bring an editing job to a satisfactory conclusion with a minimum of effort.

Its use is shown in the example below.

The user is editing a 30-page file and that the last actual change to the file is made on page 10. At
this point the user gives the command:

= OO

EXIT
1C



TECO =276 -

In this case, the action performed by TECO is equivalent to the command string 21 PEF, with an auto-
matic exit to the monitor at the end. Thus, the action of TECO is (1) to rapidly move all the rest of
the input file, including the page currently in the buffer, on to the output file; (2) to close the out-
put file; and (3) to retum control to the monitor.

The EX command is the easiest method of finishing an editing job, with the latter part of the input
file being properly output and the output file closed.

The EX command performs both input and output functions.

The EX command causes a form feed character to be output after the output of the buffer, only if a
form feed was encountered when that buffer of text was read in. In this way, the EX command main-

tains existing page sizes.

3.10.2 EG Command

The EG command first performs exactly the same functions as the EX command, and then causes the
last compile-class command (COMPILE, EXECUTE, LOAD, or DEBUG) attempted before TECO was
called, to be re-executed (with the same arguments). Generally, the EG command is used only to

exit from an editing job that was initialized by an EB command or a TECO filnam.ext command.

As an example, suppose the user gives the command
.COMPILE PLOT.F4)

to request compilation of a FORTRAN source program, but the compiler encounters errors in the code.

The user then calls TECO to correct these errors with the command:

.TECO PLOT.F4)

*

When all the errors are edited, the user exits from TECO with the command

6 ®06

This command causes (1) the rest of the file PLOT.F4 to be output and closed, and (2) the command
COMPILE PLOT.F4 to be re-executed automatically.

3.10.3 @ond @ Commands

The @ and @ commands do not perform any input or output. They are used strictly for exiting

to the monitor.
The command @ for tZ) is the simple exit command that can be entered into command strings. It

allows any 1/O commands that have already been given to be completed, then closes the output file,

and then returns the user to the monitor.

3-30



=277 - TECO

Example:

*PWEF The @ is executed as a regular command

EXIT in the command string when its turn comes.

X

NOTE
If the EO value has been set to 1 (refer to Paragraph 3.17.3),

a single @ is equivalent to @ .

The @ command is a monitor command that is used to immediately exit to the monitor. The @
command can be typed at any time, while typing a command string or while a command string is being
executed, and it will override everything else. It cannot be entered in the up-arrow, C form. If

there are any input/output functions in progress when @ is typed, a single @ will allow them

to be completed before exiting to the monitor. Double @ ( @ @ ) interrupts everything, even
1/0 in progress, and exits to the monitor immediately. The @ command does not cause the output

file to be closed.

Both @ and @ are abortive exit commands. However, when they are used, it is possible to
return to the TECO job provided no other program has been called into core over the TECO job.
Simple monitor commands such as ASSIGN, or PJOB, can be executed without damaging the TECO job.

After an exit to monitor level, even if the exit was caused not by a user @ , or @ , but instead
by some problem detected by the monitor itself, the user can return to his TECO job by using either
the CONTINUE or the REENTER command.

The command CONT causes TECO to begin operations exactly where it left off. Even /O can be

interrupted and then continued.

Example:

*ERPTR: EWLPT: Y3P Here the monitor causes an exit to

monitor level because of a device
DEVICE LPT Ok? problem. After the user corrects the
.CONT) problem, he continues the job and the
* current command string executes to
- completion.

REENTER causes the TECO job to be reentered with the contents of the editing buffer (when the exit
occurred) intact. After reentry by a REENTER, TECO reinitializes itself for a new command string.
Any previous commands still unexecuted at the time of the exit are lost. If a command string was

being executed when the exit occurred, the part of the string that was not executed before the exit will

3-31



TECO - 278 -

not be executed after the REENTER command. The user must determine how much of the command
string was executed. If 1/O is interrupted, some portion of the input or output files is frequently -

either lost or duplicated.

Exomp|e§:
*ICOMME @ Before finishing a command string the
_DEASSIGN LPT J user exits to perform a mo.nitor command.
“DAYTIMEL
T4-APR-70 10:34 '
-REE) He then reenters TECO. The command
*ICOMMENTS ::irl'ngl;nr::::be retyped, but the buffer is
*

buffer). stops execution and

returns the user to the monitor. REE re-
._REE) starts TECO with the editing buffer intact
and the command buffer empty.

*50P This is an example of what should not be

done. Interrupting execution of an 1/QO
command does not permit reentry. In
@ this case, some of the output file will
_;FREE) almost certainly be duplicated.

*<sF00 (§) oL > This is an infinite loop (if FOO is in the
©© ©

*

The contents of any Q-registers (refer to Paragraph 2.8) remain intact after a @ , CONT or @ ,
REENTER command sequence.

3.11 SEARCH COMMANDS

In many cases the simplest way to reposition the buffer pointer is by using a character string search.
A search command causes TECO to scan through the text until a specified string of characters is found,

and then to position the pointer at the end of this string.

The string of characters to be searched for is supplied as a text argument with the search command.
The search string can be from 1 to 36 character positions in length or up to 80 characters including all

control commands.

If an exact match for the search string is found in the text, the buffer pointer is positioned immediately
after the last character in this match. [f the string is not found, TECO positions the pointer at the
beginning of the buffer and notifies the user of the failure. The failure notice may take one of two
forms, depending on the type of search command used. For further explanation see the paragraph

below.

All searches begin at the current position of the buffer pointer.

3-32



=279 - TECO

If no text argument is provided with a search command, e.g., S or @N//, the search is
executed using the last previous search command argument.

3.11.1 S Command

The S Command is used to search for a character string within the current editing buffer. If the string
is not found between the current buffer pointer position and the end of the buffer, the search fails.
After an unsuccessful S search, the buffer pointer is reset to the beginning of the buffer, and, unless
the : modifier (explained below) was used or the search is within an iteration (see Section 3.12),

an error message is printed.

The general form of the S command is

*Sstring

For the standard S command, the search string is provided as a normal alphanumeric argument following
the S and terminated by an altmode. ''string'’ can contain any character except the special charac-
ters listed in Table 2-1.

The S command may be used with a single numeric argument. The command nS causes a search for the
nth occurrence of the specified search string. When n is omitted, n=1 is assumed. n must be greater
than 0.

3.11.2 FS Command

The FS command is used to search for a character string within the current editing buffer (function of
the S command) and replace it with another string. If the string to be replaced is not found dfter the
current buffer pointer position and before the end of the buffer, the search fails and no replacement

is made.

The general form of the FS command is

*FSstring] string2

where string 1 is the string to be deleted and string2 is the string to be inserted in its place. If string 2
is omitted, string 1 is deleted without any string replacing it. However, even when string2 is omitted,

its terminating altmode must be present as shown in the form:

*FSstring]

3.11.3 N Command

The N command combines the S command with input/output functions. The N command is used to
search for a character string in a page of the input file which may not yet have been read into the

buffer. The N command has the same form as the S command.

3-33



TECO - 280 -

The N command functions exactly like the S command except that an N search does not terminate at
the end of the page currently in the buffer. If no match for the search string is found between the
current buffer pointer position and the end of the buffer, the current page is output, the buffer is
cleared, the next page is read in, and the search starts over at the beginning of the new page. This

process continues until a match is found or the input file is exhausted.

If an N search fails, the entire input file has been passed through the buffer and delivered to the out-
put file, and the buffer cleared. The output file is not closed. Unless the : modifier was used or the

search is within an iteration, an error message is typed to notify the user that the search has failed.
An N search will not detect a match when the matching characters are split across two buffer loads.

The output function of the N command is exactly like the P command and the EX command. If a form
feed character was encountered when a given page was read in, a form feed character is appended to

that page when it is output; otherwise, no form feed character is output.

The N command can be used with a single numeric argument. The command nN causes a search for
the nth occurrence of the specified search string. When n is omitted, n=1 is assumed. n must be

greater than 0.

3.11.4 FN Command

The FN command is used to search for a character string in a page of the input file which may not yet
have been read into the buffer (function of the N command) and to replace it with another string. The
FN command operates like the N command when searching for the string. If the search fails, no

replacement occurs.

The general form of the FN command is

*FNstringl string2

where stringl is the string to be deleted and string2 is the string to be inserted in its place. If string2
is omitted, stringl is deleted without any string replacing it. However, even when string2 is omitted,

its terminating altmode must be present as shown in the form

*FNstring1

3.11.5 Backarrow Command

The backarrow command is identical to the N command except that a backarrow search generates no
output. Generally, where the N command executes a P, the backarrow command executes a Y. The
backarrow search is used for examination functions and for discarding parts of a file. The general

form of the backarrow command is

Xstring



- 281 - TECO

The backarrow command can also be used with a single numeric argument. The command necauses
a search for the nth occurrence of the specified search string. When n is omitted, n=1 is assumed.

n must be greater than 0.

3.11.6 Search Command Modifiers

3.11.6.1 @ Modifier = There are two search command modifiers. The @ modifier is used to alter
the method which TECO reads the search command's text argument from the command string. The

general form of a @ search command is the same for S, FS, N, FN, and backarrow. It is
*@nS/string/

The @ modifier is placed before the S, FS, N, FN, or backarrow, and before the numeric argument,
if any. When the @ modifier is used, the search string argument is delimited, not by the search
command and an altmode, but by the first character typed ofter the search command and the next re-
currence of this character. In the example above, the delimiting character is a slash. The delimiting
character may be any character except a character that appears in the search string itself. With the
@ modifier, single (but not double) altmodes can be used in the search string. The @ modifier can

be used in an FS or FN command to separate the strings with a delimiting character other than altmode.
This is useful in cases where a double altmode cannot terminate the command. A double altmode
terminates-an FS or FN command when the replacement string is omitted to allow deletion of the

string for which the search is made. Use of the @ search commands is similar to the use of the @I

insert command (refer to Paragraph 3.8.3).

3.11.6.2 Colon Modifier - The colon modifier is used to alter the execution of a search command in
the event the search fails. Without the colon modifier, a search that fails causes an error message to
be printed; if the colon modifier is used, no error message is printed. Instead, every colon search
command executed returns a numeric value that can be printed out, stored in a Q-register, or tested
by a conditional branch. A colon search command returns the value -1 if the search is successful,

and the value 0 if the search fails.

The general form of a colon search command is the same for S, FS, N, FN, and backarrow searches:

*inSstring

The colon precedes the search command letter and its numeric argument, if any. Both the colon and

@ modifiers may be used on a search command, in either order.

The concept of a command returning a value is explained in Section 2.7.3. Just as the Z command
takes on a value that may be used as a numeric argument, so also the command :Sstring 0 takes on
a value of 0 or -1 dofter it is executed, If this is the last command in a command string, or if the
command following it does not take a numeric argument, the value returned by the colon search is

discarded. Hence, a colon search should be followed by a command that takes a numeric argument.

3-35



TECO - 282 -

The colon search commands reposition the buffer pointer in the same manner as other search commands,

regardless of whether or not the returned value is used.

The colon searches are used primarily in programmed editing and are usually followed by a conditional

command. Examples of the uses of colon searches are given in Sections 3.13 and 3.14.

3.11.7 Automatic Typeout After Searches

The ES command allows the user to specify automatic typeout of the line where a successful search
has terminated. The search cannot be in an iteration, nor can the search command be preceded by a
colon. When the FS or FN command is used, the typeout occurs after the insertion has taken place.
The user can also specify in the ES command that either a line feed or a character be inserted into the
typeout to indicate the position of the pointer. Unless the ES value is set, the default is that no

automatic typeout after searches will be performed.

The user can set the ES value in the following manner:
OES Restore TECO to the default of no
automatic typeout.

-1ES Set the ES value to cause automatic
typeout of a line on which a successful
search has terminated.

nES(n >0) Set the ES value ton. If nis in the
range 1 through 31, asingle line feed
character is included in the typeout at the
position of the pointer. [f nis 32 or
greater, the character with the ASCII
value specified by n is included in the
typeout at the position of the pointer.

ES Examine the setting of the ES flag.

3.11.8 Case Control in Searches

When searching for alphabetic characters TECO will normally accept either upper or lower case

characters as a match. This is called ''either-case mode''. TECO may, however, be forced to exe-
cute any or all searches in ''exact mode''. In exact mode TECO will accept an alphabetic character
or a search match only if it has the same case as the corresponding character given'by the user in the

text argument.

Before the techniques for match mode control can be explained, we must first explain the various

techniques for case control. Match mode control is explained in Section 3.11.8.4.

3.11.8.1 Alphabetic Case Control in Search Arguments - The case of alphabetic characters in
search text argument is controlled by the same set of commands used to control case in insert text

arguments,

3-36



- 283 - TECO

The features described in this section provide the method by which alphabetic characters in the upper

case range can be converted to the equivalent characters in the lower case range, and vice-versa.

Alphabetic case conversion is done by use of two control-character commands.

@ is used for translation to lower case.

@is used for translation to upper case.

These two commands may be used within search text arguments to cause case conversion on a temporary
basis for that text argument, or as independent commands to cause case conversion in all insert and

search text arguments.

Note that @ and @ affect only alphabetic characters. They have no effect on non-alphabetic

characters.

m @ @ and @ @ used within text arguments.

When used inside a search text argument, two successive @ or @ commands
cause translation, to the specified case, of all following alphabetic characters

in that text argument.

Example:

*sf W @) orusersoF @) @ TECO.

The above command searches for ''For users of TECO.'" with the initial ''F"

and ""TECO"' capitalized, and all the other letters in lower case.
(2) Single @ and @ used within text arguments.

When used inside a search text argument, a single @ or @ command causes
translation of the next single character (if it is alphabetic) to the specified case.
The single @ or @ in a text argument take precedence over the case
conversion mode defined by double @ or @ commands.

Example:

*s ) @) userR W) PROGRAM

The above command causes a search for the string ''user Program'' with the ''P''

in upper case, and all the other letters in lower case.

(3) Independent @ and @ commands.

As explained above, when @ and @ commands are used inside a text argument,
they affect only that particular text string. When used as independent commands,
however, @ and @ set TECO to a prevailing case conversion mode that affects
all insert and search text arguments (except as specified by @ and @ commands
within the text arguments). :

3-37



TECO - 284 -

The independent command @ or tV(orn @ where n does not equal 0) sets
the prevailing case conversion mode so that all upper case alphabetic characters
in insert and search text arguments are translated to lower case, except where

@ commands within individual text arguments override the independent @

Likewise, the independent command @, or W (or n @, where n does not
equal 0) sets the prevailing case conversion mode so that all fower case alpha-
betic characters in insert and search text arguments are translated to upper case,
except where @ commands within individual text arguments override

the independent @ .

The independent @ command has the use explained above, obviously, only
when the user TTY has lower case capability and TTY LC is on. Otherwise
the @ command serves merely to tumn off the @ command.

(4) 0@ ondO@

The independent O @ and 0 @ commands both have the same effect,
namely, to restore TECO to the default condition where neither case of alpha-
betic characters are translated to the opposite case, except by @ and @

commands within text arguments.

TECO is initially set for no prevailing case conversion.

Note that the prevailing case conversion mode can have one, and only one, setting at any one time.

The possible settings are:

tv convert upper case to lower case
w convert lower case to upper case
0tV or OtW no prevailing conversion

When any of these prevailing modes is put into effect, it cancels any of the others that were in

effect.

The order of precedence of the case conversion commands is as follows:

Highest: single and inside text
Next: double and inside text
Lowest: independent @ and @

NOTE

If the EO Value has been set to 1 (refer to Paragraph
3.17.3), @ and @ have no special effect when

encountered inside text arguments.

3-38



- 285 - TECO

3.11.8.2 Special ""Lower Case'' Characters - When used inside a search text argument, the control
command @ causes the immediately following character (if it is one of the special characters @,
[,\, 1, t, or «) to be converted to the equivalent character in the lower case ASCll range (i.e.,
octal 140 or octal 173 to 177). @ has no special effect within text arguments if the EO value has
been set to 1. Refer to Paragraph 3.8.7.2 for examples.

3.11.8.3 Control Characters in Search Arguments = As of version 22 of TECO all of the control

characters - @ , @ - @, and ®, @ , @ , and @ have been reserved

as inside-text-commands (some as yet undefined). In order to search for these characters, the user

must employ either the or @ command.

when used inside a search text argument causes the next single character to be interpreted as
text rather than as a command. This applies to all control characters including itself. It also
applies to altmode. (It does not, however, apply to @ , @ o @ , or RUBOUT.)

@ when used inside a search text argument causes all succeeding instances of the above mentioned
control characters except and @ itself to be interpreted as text rather than as commands.

@ does not affect altmodes. A second instance of in the same text argument nullifies the
effect of the first.

If the EO value has been set to 1, and @ have no special effect when used inside text argu-
ments, and all control characters (except the special characters) can be searched for with no special

treatment.

3.11.8.4 Case Match Mode Control in Searches - Unless special action is taken all searches are
executed in ""either-case mode''. This means that regardless of the setting of the prevailing case mode
by an independent @ or @ command, a search for an alphabetic character will accept either

the corresponding upper or lower case character as a match.

However, if @ or @ case control commands are used within a search text argument, it is
assumed that the user desires an exact mode search, and a match will be accepted only for the cor-

responding characters in the exact case specified by the user.

If the user desires a search to be executed partly with exact mode and partly with either-case mode,
he should bracket the characters to be taken in either case with @ characters. (The @ char-
acter is entered by simultaneously depressing the CTRL, SHIFT, and L keys.)

For example, S @ @ ABC ® DEF @ will be successful only with strings containing

lower case abc, but it will accept either upper or lower case def as a match for the last 3 characters.

3-39



TECO - 286 -

NOTE

If EO=1, all searches are executed in exact mode and

® has no special effect in text arguments.

The search mode can be forced to exact mode for all searches by use of the independent command
n @, where n does not equal 0. 0 @ resets the search mode to 'either' mode. @without an

argument returns the value of the search mode flag.

3.11.9 Special Match Control Characters

There are five special control characters that can be used in search character string arguments, These
characters alter the usual character-matching process that goes on when a search is in progress. They

actually reside in the search string and are interpreted by the search routine itself.

The presence of a @ command in a search string is a signal that this particular character position
in the string is unimportant and that any character is to be accepted as a match for it. The @
command is a free variable in the search string. To find a match, some character must be present in

the position occupied by the @ command; however, it does not matter what this character is.

The @ command in a search string is a restricted variable. Its presence indicates that any sepa-
rator character is to be accepted as a match in its position. A separator character in any character
except a letter, a digit, a period, a dollar sign, or a percent sign; i.e., any character except a

character that is commonly used in symbols. @ also accepts the beginning of the editing buffer

as a match.

The @ command is another restricted variable. It must be followed by a single character argu~
ment: @ x. The @commond signals that, in the position occupied by the @ and its

argument, any character is to be accepted as a match except the argument.

The command is used in a search string to indicate that the character following the is

to be interpreted literally rather than as a command, even if this character is one of the special match
control characters. The @ command has the same function as , but it is better to use
because @ will not allow insertion of as a text character while will.

The @ command when used with an argument in a search string indicates particular groups of
characters to be accepted as a match. Depending on the argument, this command matches on the
first occurrence of one of the following groups.
(tE) A any alphabetic character.
any digit.

() D
@ L any end of line character (or end of buffer character
in the absence of an end of line character).

3-40



- 287 - TECO

@ S any string of spaces and/or tabs..
\ any lower case alphabetic character.
() W any upper case alphabetic character.
(tE) <nnn > the ASCII character whose octal value is nnn.
@ la,b,c,..] any one of the characters a,b,c,... (g,b,c,.. can

be any symbols that represent single characters).

Since the five commands @ , @ , @ , , and @ are used in the middle of ASCII

search strings, they cannot be entered in the up~arrow, character form allowable for some control

character commands. They must be typed as a single control character.

3.11.10 Examples of the Use of Search Commands

Examples:

*SA —|B This causes the pointer to be positioned im-
*

mediately after the B, in the first occurrence
- of the string A —|B dfter the current position
of the pointer.

*SNIX The string NIX is not found between the
current pointer position and the end of the

?5RH CANNOT FIND CNIX buffer. The error message is typed and the

* pointer moved to the beginning of the buffer.

The user may have typed an incorrect search
string, the pointer may have been positioned
somewhere in the buffer ofter the N, or the
string NIX may not have been read into the
current buffer.

*NDIGITAL If page 5 of the text is currently in the
* buffer and the string DIGITAL does not occur

- until page 15, this command causes pages 5
through 14 to be output and page 15 to be
read in. The pointer will be set immediately
after the L.

*NLAST LIN PG1 If this string actually exists in the file but
TST LIN PG2 the two lines are not read into the same

buffer load, the N search will fail.

?SRH CANNOT FIND ""LAST LIN PG1
15T LIN PG 2

I *|

* éFSOF FOR This command causes TECO to search the

current buffer for the 12th occurrence of the
string ""OF'" and replace it with the string
1" FORl 1] .

3-41



TECO

*5+-VERSIONSS

*~|ESSWORD
60 FORMAT (‘WORD')

*

*5FSINTEREST

*NMASSACHUSETS
2SRH CANNOT FIND ' MASSACHUSETS
*EF

-
*EBOUTPUT.FIL (§) Y
*NMASSACHUSETTS

E@ss+ +IEF

*@FN/WRITEH/PRINTA/

- 288 -

;NA®B®C®~D @

3-42

This command can be used to determine if the
string VERSIONS8 occurs in the input file
five times. If it does, the pointer is posi-
tioned immediately after the fifth occurrence,
and everything in the input file, preceding
the page on which the fifth occurrence is
located, is discarded.

The ES value is set to =1 to cause the line
where the search ended to be typed. This
makes certain that the search has actually
found the right occurrence of the string. It is
easy to overlook an occurrence of a string
preceding the one which the user desires.

This command causes TECO to search the
current page for the fifth occurrence of thg
string ""INTEREST'' and delete it. Two ($)'s
must be present following the string to be
deleted; the first delimits the string to be
searched for and the second tells TECO that
there is no replacement string.

An N search should not be used where an S
search would suffice, because user errors with
the N command, such as the spelling error
shown here, can cause considerable delay.

In this example, the user's error caused him
to have to pass over the entire file twice
instead of just once.

The command @ 3S + + searches for the
third occurrence of the altmode character
following the buffer pointer. When this alt-
mode is found, the characters EF are inserted
immediately after it. The plus characters
serve as the delimiters for the one-character
search string 6 . The plus characters are
not part of the search string.

This command causes TECO to search for the
string ""WRITE#** and replace it with the
string "' PRINT# "' Each page of the text is
searched until the string is found.

Any of the following three strings of characters
would serve as a match for this N search:

asc (%)
AB-c p ®
AAB,C (§) D

None of the following four strings would serve
as a match:

AJB C-D3
A.B.C.D.
AABBCCD
AxB_cAX (D



- 289 - TECO

*1ESSFOUR Because the ES value was set to 1, automatic
FOUR typeout of the line occurs after the string
—_ “"FOUR'" was found. A line feed was in-
SCORE AND SEVEN YEARS AGO serted at the pointer position in the line to
allow the user to easily locate the pointer.
*1ESFSI1/O @ 1-O This command string causes TECO to search
-0 for the string ''1/O"" on the current page and
—CONTROL replace it with the string ''1-O'*, The line

is then typed with a line feed at the position
of the pointer.

3.12 ITERATION COMMANDS
3.12.1 Angle Bracket (<...>)

The user can cause a group of command to be iterated (repeatedly executed) any number of times by
placing these commands within angle brackets. The left angle bracket marks the beginning of a
command string loop and the right angle bracket marks the end of the loop. These command string
loops can be nested in the same manner as arithmetic expressions are nested within parentheses. Loops

should be nested to no more than approximately 20 levels; otherwise, pushdown list overflow may occur.

A numeric argument can be used to specify the number of times a given loop is executed. The argu-
ment is placed before the left angle bracket in the form n<...>. This causes the group of commands
within the brackets to be iterated n times. In a command of the form n <...>, if the argument

n is less than or equal to zero, the commands contained within the angle brackets are skipped. If no

argument is given, the number of iterations is assumed to be infinite (235).

Example:

*J8< "I L> This command string inserts a tab at the
*

beginning of the first eight lines in the

- buffer and leaves the pointer positioned
at the beginning of the ninth line. The
J command starts the pointer off at the
beginning of the first line. The first com-

mand in the loop, —| inserts a tab.
Then the next command, L, moves the
pointer to the next line to prepare

for the next iteration of the loop.

3.12.2 Semicolon Command

Iteration of a command string loop can be terminated before the iteration count is satisfied by using
the conditional iteration exit command, semicolon. The semicolon command can be used only within

angle brackets. It can be used with or without a numeric argument.

When used without a numeric argument, the semicolon command evaluates the outcome of the last
search (of any kind) that was executed before the semicolon command was encountered. If this search
was successful, command execution continues within the loop, as if no semicolon were present. If,

however, the most recent search failed, the semicolon command causes all those commands that follow

3-43



TECO

- 290 -

the semicolon in the loop to be skipped over, and command execution to pass on to the first command

following the right angle bracket which closes the innermost loop that the semicolon is in.

NOTE

Within a command loop, all searches are colon searches.
They do not generate error messages when a failure occurs,
instead they return a value of -1 if successful and 0 if

unsuccessful .

The semicolon command can also be used with a numeric argument. The command n; is ignored if

n<0. However, if n>0, the command n; causes command execution to exit from the loop just as the

semicolon command exits from the loop when a search fails.

Examples:

| *J<0LIJANR F$1969 (8) 70 (§);>HT

JAN REPO

D :

JAN 1970 SALES
WHOLESALE:
RETAIL:

JAN 1970 EXPENSES:
OVERHEAD:
ADVERTISING:

S:

JAN 1970 RETURNS: |

| JAN 1970  INVENTORY:

*

*<51969 () ;OLIDEC (§)>

T6K CORE
[7K CORE]
[8K CORE]
| ©©

.REE)

*

This command string inserts JAN at the be-
ginning of the first line in the buffer and

at the beginning of each line that contains
the string 1970. It also changes the 69 in
every occurrence of 1969 to 70. The action
is as follows: The J command starts the
operation at the beginning of the buffer.
The first execution of the OL does nothing.

IJAN then inserts JAN at the beginning

of the first line. Now, a search is made
for 1969. When 1969 is found,

F$1969 (8) 70 (8) changes the

69 to 70. This completes the first itera-
tion; execution loops back to the <. OL
moves the pointer to the beginning of the
line where the 1969 was found. Here JAN
is inserted and then a search is begun for
the next 1969. This continues until the
search command fails to find another 1969.
When the search fails, the pointer is moved
to the beginning of the buffer. HT is the
next command which is executed. (It is
assumed that no line contains more than
one ''1969.')

This command puts TECO into an infinite
loop because the OL causes the search com-
mand to keep finding the same 1969 over
and over again. If left to run long enough

the lDECcommond will eventually

exhaust available core and stop execution.
In this example, the user has stopped the

loop with- @ @ , and then REEntered.



- 291 - TECO

*Y<NEXAMPLES: ,'<S) This is an example of nested loops. The

. main loop searches for pages in a file that
’ -.l L > contain the heading EXAMPLES:. When
*

this is found, execution enters the secondary
loop, which inserts a tab at the beginning
of all the succeeding lines on that page
(i.e., ofter every )4 on that pageg). When
the second semicolon causes an exit from
the inner loop, execution loops back to the
N search. Finally, when the N search
fails, execution is completed.

*EBfilnam. ext o 50000< YHP>EX This example shows how to remove all form
feeds from a file.
*<FSREAD WRITE ;> This command causes a search of the current

page for all occurrences of the string
""READ'' and replacement of them with the
string "'"WRITE'",

*<@FN/ERROR//;> This command causes TECO to search all

- the following pages for the string "'ERROR"
and delete every occurrence of it. The @
construction must be used in this case be-
cause it allows the user to specify a de-

limiting character other than . The

delimiting character (in this case /) must
be specified twice after the string; the
first to end the string and the second to
indicate that a replacement string is not

present. If were used as the delimiter,
a double @ would be present which would

cause an erroneous result.

Only the methods described in this section should be used to exit from a loop. Specifically, the flow
control commands described in Section 3.13 should not be used. Some violations of this rule may be

successful, but generally they will not succeed.

Matching pairs of angle brackets defining loops within the loop may, however, occur following the

semicolon.

3.13 FLOW CONTROL COMMANDS

TECO contains commands that enable the user to write editing programs capable of solving most com=
plex editing problems. The iteration commands discussed in Section 3.12 are a specialized example.
In addition to these, TECO has an unconditional branch command and a set of conditional execution

commands that can be used to create any kind of conditional branch or conditional skip.
3.13.1 Command String Tags

To have branching in a command string, there must be a method of naming locations in the command

string. Location tags in the general form

3-45



TECO _ - 292 -

ltag!

may be placed anywhere in a command string (except in text arguments). A tag is delimited before
and after by an exclamation point and may contain any number of any ASCII characters except the

special characters listed in Table 2-1 and exclamation points.

Command string tags are also the recommended method for putting comments in TECO macros; they

need not be referenced.

3.13.2 O Command

The unconditional branch command is the O command. The general form is

*Otag

The text argument following the O command and delimited by an altmode is the tag naming the desti-
nation of the branch. The tag location itself may be either before or after the O command in the
command string. The O command causes the command string execution pointer to be moved to the
first character following the exclamation point that terminates the tag, and command execution con=

tinues from that point.

Tags are ignored except when an O command forces TECO to scan the command string for them,

3.13.3 Conditional Execution Commands
All conditional execution commands have the following general form:

*n''x, ..
In this form, n is the numeric argument on which the decision to execute or not to execute is based.
The quotation mark (*') is the first character of all conditional execution commands. The letter x re-
presents the second character of the conditional execution command. The letter x may be any one of
several letters depending on which conditional execution command is intended. The two command
characters, ''x, may be followed by any string of commands terminated by an apostrophe('). If the
condition specified by x is satisfied by the argument n, all the commands between ''x and ' are exe-
cuted in the usual manner. If there is no branch command within the range ''x..."; then aofter the
last command in the range is executed, command execution falls through the apostrophe and executes
the next command following it. If n does not satisfy the condition specified by x, then all the com=
mands between ''x and the matching ' are skipped, and command execution continues with the first

command following the apostrophe.

The commands ''x and ! must be used in matching pairs and they may be nested in the same manner that

parentheses surrounding arithmetic expressions may be nested.

The individual conditional execution commands are shown in Table 3-7.



=293 - TECO

Table 3-7

Conditional Execution Commands

Command Function

n''G Execute the commands that follow if n >0; otherwise, skip to
the matching apostrophe on the right.

n''L Execute the commands that follow if n<0; otherwise, skip to
the matching apostrophe on the right.

n"E Execute the commands that follow if n=0; otherwise, skip to
the matching apostrophe on the right.

n''N Execute the commands that follow if n#0; otherwise, skip to
the matching apostrophe on the right.

n''C Execute the commands that follow if n is the decimal value
of an ASCII symbol constituent character (a letter, digit,
$, ., or % ); otherwise, skip to the matching apostrophe
on the right.

n-1'"L Execute the commands that follow if n<0; otherwise,
skip to the matching apostrophe on the right.

nt1"'G Execute the commands that follow if n>0; otherwise, skip to
the matching apostrophe on the right.

n''D Execute the commands that follow if n is in the digit range
(octal 60 to 71).

n''A Execute the commands that follow if n is in the alphabetic
range (octal 101 to 132 or 141 to 172).

n''V Execute the commands that follow if n is in the lower case
alphabetic range (octal 141-172).

n''W Execute the commands that follow if n is in the upper case
alphabetic range (octal 101 to 132). _

n''T Execute the commands that follow if n is 'true' (flag is on)
(i.e., if n<0).

n''F Execute the commands that follow if n is 'false' (flag is
off) (i.e., if n=0).

n''S Execute the commands that follow if n is 'successful'
(i.e., if n<0).

n''U Execute the commands that follow if n is 'unsuccessful'

(i.e., if n=0).

3.13.4 Examples of the Use of Flow Control Commands

*ISTART! J—| —-|PDP-10 TECO)
TINSERT PAGE HEADING!

<s 5k (®) ;r-pl6 (B ICHANGE 5K TO 6K !
<SWAR (%) ;-3DILOVE (§) > ICHANGE WAR TO LOVE!
PZ''NOSTART(§)* IGET NEXT PAGE AND!

EF IRESTART IF NOT NULL!

3-47



TECO - 294 -

This small editing program contains an example of the O command, i.e., the OSTART command
which causes a jump backto ISTART!. It also contains examples of command string tags used purely
for documentation, e.g., !INSERT PAGE HEADING!. Normally, comments would be used only for

lengthy and complex macros that the user expects to maintain.

This example also shows how a conditional execution command may be combined with an O command to
produce a conditional branch. When all three of the editing functions have been performed on the
page, the P command is executed to output this page and read in the next. The program then tests

Z (the number of characters in the buffer) to determine if any data was read in. If Z#0, data was

read in, therefore a branch is taken to restart the proggam. When finally Z=0, the command

OSTART is skipped, and execution branches to the concluding EF command. This technique fails
when a file contains null pages (consecutive form feed characters). Therefore, the @ end-of file

test is preferred.

*yZ"' N 1##1Z-4000+1''G4000J0L121 (§) 0,. PO, .KO## 1ZJA.-Z"NO## ""PEF

*

This slightly more complex command string shows how conditional execution commands may be nested.
If the first Y command produces no data, the ''N command sends execution to the matching apostro=-
phe on the right. This is the last apostrophe, immediately prior to the PEF. Otherwise, the commands

following the ''N are executed.

The function of this command string is to convert a file with pages of arbitrary lengths to one with

pages of approximately 4000 characters each.

The command string operates as follows: Z-4000 + 1''G means if Z>4000, i.e., there are at least
4000 characters on the current page, execute the following commands; otherwise, skip to the matching
apostrophe (between and Z). |f Z>4000, 4000JOL moves the pointer to the end of last complete
line before the 4000th character in the buffer. Then, 12| 0, . P outputs this much of the buffer
with a form feed character after it, and 0, .K deletes that which has been output. Now, go back to
1##] and test Z again. Stay in this loop until Z<4000. Execution then skips to the apostrophe.

ZJ moves the pointer to the end of the current buffer. A appends another page, but leaves the
pointer (.) at the end of the previous page. .-Z''N checks to determine if any data was actually
read in. If so, the loop is reentered at 1##1; otherwise the end of the file has been reached. When
.=Z=0, execution skips to the matching apostrophe and then falls through the next apostrophe to the
PEF that closes the output file.

*<NSIN (§) ;:5c0s (§) "'s-3DITAN (§) 'Z2J>
This example shows how the value returned by a colon search can be used as the argument for a con=

ditional execution command. The N command searches through the file for the first.occurrence of
SIN on any page. When SIN is found, the command :SCOS checks for an occurrence of COS

3-48



=295 - TECO

following SIN on the same page. The colon search command returns the value -1 if the search is
successful, and O if there is no COS following SIN on the page. This value is then used as the numeric
argument for the ''S command. If :SCOS has a value of -1, the occurrence of COS that was
found is replaced by TAN. If :SCOS ($) has a value of 0, the commands -3DITAN are skipped.
We then jump to the end of this page, ignoring all further occurrences of SIN and COS on it, and

continue the iteration process.

3.14 Q-REGISTER COMMANDS

Q-registers are a powerful feature of TECO with many different uses. The general concept of Q-
registers is explained in Section 2.8. Section 3.14 explains the TECO commands that enable the use

of Q-registers.

The 36 Q-registers have the single character names A, B, C,..., Z, and0, 1, 2,..., 9. In this

section, the letter i is used to represent the name of an arbitrary Q-register.

3.14.1 Commands for Storing Integers

The following commands enable the use of Q-registers for storing single 36-bit integers.

3.14.1.1 U Command - The command nUi stores the decimal integer n in Q-register i. n may be

any integer in the range -235 +<n 5235 -1. If anything was previously in Q-register i, it is destroyed.

3.14.1.2 Q Command - The command Qi is used to read the numeric value in Q-register i. Qi has
no function other than returning the value in the specified Q-register as a numeric argument. It does
not alter the value in the Q-register. In order to be useful, Qi must be used as a numeric argument

for another command. Qi is often used in conjunction with conditional commands.

3.14.1.3 % Command - The command %i adds 1 to the integer in Q-register i and then returns the
new value in the same manner as a Qi command. If the user wants to increment the value in Q-register
i, but does not want the returned value to be used as an argument for the next command, he should

type an altmode after the %i command.

3.14.2 Commands for Storing Character Strings -

The following commands enable the user to store character strings of any length consistent with the

amount of core available.

3.14.2.1 X Command - The X command copies characters from the editing buffer into a Q-register.
These characters are not removed from the editing buffer. Any data previously in the Q-register is

destroyed.

3-49



TECO - 296 -

The various uses of the X command are as follows:
a. m,nXi (m<n) copies the m + 1st through the nth characters in the buffer into
Q-register i.

b. [If n>0, nXi copies everything from the current buffer pointer position through
the nth following line terminator character into Q-register i. Xi is equivalent to
1Xi. ’

c. OXi copies everything from the beginning of the current line up to the buffer
pointer into Q-register i.

d. [f n<0, nXi copies everything from the beginning of the nth line preceding
the current line up to the buffer pointer into Q-register i. -Xi is equivalent
to =1Xi.
An X command may require more core space for storage than is available. If so, TECO automatically
tries to expand its core. If successful, TECO prints a message in the form [nK CORE] to show the
new amount of core being used. If unsuccessful, TECO prints an error message and does not execute

the X command.

3.14.2,2 G Command - The command Gi fetches a copy of the entire character string stored in
Q-register i and inserts it into the editing buffer at the current position of the buffer pointer. The
contents of Q-register i are not changed. The buffer pointer is positioned at the right end of the

character string that was inserted by the G command.

3.14,2,.3 M Command - TECO command strings are basically ASCIl character strings and, as such,
can be inserted or read into the editing buffer just like any other text. When a command string is in
the editing buffer, it can be edited but it cannot be executed, because at that point it appears to be
data to TECO. However, if the user copies a command string from the editing buffer into a Q-register
(using an X command), then this command string can be executed. The command that accomplishes

this is the Mi command.

The command Mi executes the text in Q-register i just as if this text had been typed in the command
string instead of Mi. Using an Mi command is analogous to calling a subroutine. Any TECO com-
mands may be included in the command string or "'macro'' which is stored in and executed from the
Q-register. Even double altmodes can be included if there are conditions under which the user wants
execution to stop. The only restriction is that the commands must all be complete within the macro

in the Q-register. For example, a command and its argument must not be split apart, one in the main
command string with the Mi command and the other in the Q-register. lterations and conditional exe-
cution strings, if included, must be complete within the Q-register. If an O command is used in the
Q-register macro, the tag to which it branches must be in the Q-register also. M commands may be

nested up to approximately 10 levels, depending on the contents of the internal pushdown list.

3.14.3 Saving the Previous Command String

After a command string has completed execution or if it has been aborted by means of the @ @
command, it may be stored in a Q-register. This is done by using an *i command as the first command

in the next command string.

3-50



- 297 - TECO

*i causes the entire previous command string, less one of the two concluding altmodes, to be stored
in Q-register i. If the command string was aborted by @ @, neither @ is stored with the
command string. The previous contents of Q-register i are lost. The asterisk has this function only
when used as the first command in a command string. At any other position in a command string, |

asterisk has its usual meaning of multiplication (see Section 2.7.2).

If the user intended to use *i as the first command but typed some other command first instead, he may
recover the ability to use *i as the first command by typing enough rubouts to cause TECO to respond
with a carriage return/line feed and a new asterisk. This technique will not work perfectly if some

of the characters typed before the *i command were break characters (altmode, carriage return, etc.).

In this case some of the leading characters of the preceding command string will be overwritten.

The *i command is especially useful when an error occurs in a long command string. See the example
in Section 3.14.5.

3.14.4 Q-Register Pushdown List

An additional Q-register feature is the Q-register pushdown list, which may be used for temporary

storage during the execution of a command string.

The command [i pushes the contents of Q-register i onto the stack. It does not change the contents

of i.

The command ]i pops the last pushed entry from the top of the pushdown list into Q-register i. The
previous contents of Q-register i are lost; the entry which was popped off'the pushdown list is erased

from the top of the list.

NOTE

The Q-register pushdown list is cleared after the execu-
tion of each complete command string (i.e., every time
TECO types an * to indicate readiness to accept a new
command string).

The maximum depth of the Q-register pushdown list is 32 entries. (This number can be changed by
redefining LPF in TECO.MAC and reassembling TECO.)

3.14.5 Examples of the Use of Q-Register Commands

*QR=-3UR This command subtracts 3 from the value in
Q-register R .

3-51



TECO

*YISTIOQUCIST + 11:S4

- 298 -

15%C-50"LOST +1 (D121 (@) 0,.Po,.kOST (B)*)
ZUEAQE-Z"'NQEJOST +1 (§)' PWEF

*0,.X10,.k2JG1 (3X(§)

*ZJ-5XAJBLGA

3-52

This command string arranges a file into
pages of 50 lines each. The Y command
starts operation at the beginning of the file.
At ISTI the command OUC sets the value 0
in Q-register C. At IST+1! search begins

for a line feed. The command :S

returns a value of -1 if a line feed is found,
in which case ''S causes the following
commands to be executed. The %C com-
mand increments Q-register C by 1 and
returns the new value in C, If %C<50,
jump back to IST+1! and search for another
line feed. However, if %C=50, proceed
as follows: (1) insert a form feed character
because the output command used does not
output one automatically, (2) output every=
thing from the beginning of the buffer
through the form feed character, then (3)
delete everything that was output and (4) go
back to IST! where the counter is reini-
tialized and start over.

If the search command fails to find another
line, with the value in Q-register C less
than 50, it returns the value 0, therefore
the ''S command causes a skip to the apos-
trophe at the end of the second line. The
carriage return is ignored (see Section 3.18).
The ZUE command stores the number of
characters currently in the buffer in Q-
register E. The A command reads in more
data without moving the buffer pointer,
while QE-Z''N checks the old value of Z
with the new value to see if any data was
actually read. If data was read, QEJ sets
the pointer ot the end of the old data and
before the new data, then continue the line
count at ISTHI 1, If not, output the last
page and close the file.

This command string moves everything to the
left of the pointer from its position at the be-
ginning of the page to the end of the page.
The 0, .X1 command puts everything from
the top of the page to the pointer in Q-
register 1. The 0.,K command deletes this
data from its present position. The ZJ com-
mand moves the pointer to the end of the
page. At this point the command G1 copies
the contents of Q-register 1 into the buffer
at the position of the pointer.

This command string puts a copy of the last
five lines of the page into Q-register A and
then puts a copy of these five lines imme=-
diately after tﬁe eighth line in the page.

It does not delete the five lines from their
position at the end of the page.



- 299 -

TECO

*HK@I#J<SREAD @ ;-4DIACCEPT (§) >FHXS

*Y4PMS6PMS2PMSEX (§)
EXIT
1C

In this example, the @ command inserts a
short macro into the buffer. The # char-
acter is used to delimit the insertion. The
HXS command stores this macro in Q-register
S. -In the second command string, the MS
command executes the stored macro on
pages 5, 11, and 13 of the input file.
Note that the initial Y command clears the
macro from the buffer before the first page
is read in. The EX command copies all re-
maining pages, closes the output file, and
returns to the monitor.

*J16< [DSDIMENSION (§) OLIXDK >J4L16<GDI>

*

*A LOT OF TEXT

2?NFI NO FILE FOR INPUT

»z®®
*GZ

*-D

*5DITITLE (§) NLONG STRING
-8DIA LOT OF TEXT

?NFO No File for Output

»Z
* UP
*GZ

*J9D

3-53

The 16 <[DSDIMENSION (§) OLIXDK>
command locates the first 16 lines on the
current page that have the word
DIMENSION in them, stores them on the
Q-register pushdown list, and then deletes
them from their present positions. Then the
J4L16<GD]D> command brings these 16
lines back onto the page immediately after
the fourth line from the top.

Assume the user meant to insert ''A LOT

OF TEXT' but forgot the "'I'* at the be-
ginning. The following technique illus-
trates the simple way to recover from this
common error,

Move the entire command string (with just
one altmode at the end) into Q-register Z.

Move the command string. from Q-register
Z into the editing buffer at the current
pointer position.

Delete the altmode at the end of the com=
mand string. The rest of the command
string is the text that was to be inserted,
and it is now inserted.

An error is encountered early in a long
command string. (The N-search failed
because it could not output the page in the
editing buffer. The commands preceding
the N=search have been executed.)

Save that entire command string in
Q-register Z.

Save the current pointer position. Move

. the pointer to the beginning of the buffer

(a convenient place to edit the command
string), and get the string back from Q-
register Z,

Delete the commands ''5DITITLE "'
that have already been executed.



TECO

*EWOUT.FIL
*STEXT (§) D/

*0,.XZ
*0, .K
*QPJ

Mz
*
wespivis (8 ;5= @riNOT (B

LIXIKLG1> (3) (8)
?ILL Illegal Command W

*ZHKGZ
*JDHXZ

3.15 NUMERIC TYPEOUT COMMAND

- 300 -

Correct the error.

Get back to the end of the command string.
The D command deletes the at the

end of the command string.

Put the corrected string back into
Q-register Z.

Delete the command string from the editing
buffer.

Move the pointer back to its previous po-
sition. (In this particular case this step
is not actually necessary.)

Execute the corrected command string.

This example shows a simple technique for
creating a TECO macro. The user purposely
begins the command string with an illegal
command. The rest of the command string
is the TECO macro the user wishes to
create.

When the expected error occurs, move the
command string to Q-register Z, then
move it into the editing buffer.

Delete the W from the beginning of the
macro, then save the correct macro in
Q-register Z.

The numeric typeout command is n=, where n is the numeric value to be typed in decimal radix. If a

double = sign is used, the numeric value is typed in octal radix.

Example:
vz-
2529
£

3.16 SPECIAL NUMERIC VALUES

This reads in a page and then types
out the (decimal) number of characters
in the page.

This types the octal representation of
the next character in the buffer.

Several TECO commands, which have no other purpose than to return some particular numeric value,

have already been discussed in this manual. These commands are B, Z, ., and Qi. Some commands

that execute a function while returning a numeric value have also been discussed. These commands

are %i, colon searches, and all searches within iterations. The concept of a.command returning a

numeric value is explained in Section 3.11.

3-54



- 301 - TECO

All of these commands can be used as numeric arguments for commands that take a numeric argument,
e.g., nl, n=, n;, nD, nUi, etc. To perform this function place the command, which returns a numeric

value, in the position of n immediately before the command that takes a numeric argument.

There are several other commands that return numeric values; these commands are listed below.

The nA command (where n can be any numeric value, and serves only to differentiate
this command from the A (append) command) is equivalent to the ASCII value of the
character immediately to the right of the buffer pointer. The nA command equals 0,
if the pointer is at the end of the buffer. The nA command is used primarily with
conditional commands where ofie is checking for a particular character or range

of characters.

The @ (or tE) command returns the value of the form feed flag. If, on the last input

command (Y or A), input was terminated because a form feed character was encountered,
E equals -1; otherwise, E equals 0. For further discussion of the form feed flag, see

Sections 2.4, 3.3, 3.9, 3.10, 3.11 and 4.2.

The @ (or tN) command returns the value of the end-offile flag. If the end of
the input file was seen on the last input command (Y or A), N = -1; otherwise,

tN=0. When tN is set to -1, it will remain -1 until cleared by an ER or EB command.
When tN is first set to -1, new data may or may not have been read into the editing
buffer. Consequently, the tN flag should usually be tested after processing the

input data.

The tF (or @ )] command is equivalent to the value of the console data switches.

The @ (or tH) command is equivalent to the time of day in 60th's of a second
(50th's where 50 Hz power is used).

The ET command (without a numeric argument) returns the value of the ET flag. The

ET command equals -1 if the flag is on and equals 0 if the flag is off. The significance
of this flag is discussed in Section 3.6 When the ET flag is on, the T command delivers
all characters, including altmodes and control characters, to the terminal in their exact
form rather than substituting other characters.

The EU command returns the value of the case flag. The EU value is 1 if upper case
characters are flagged on typeout; 0, if lower case characters are flagged on typeout
(default); and -1, if no case flagging is being performed. Refer to Section 3.6.

The EH command returns the value of the error message flag. The EH value is 1 if only the
error is typed; 2, if the error code plus one line is typed (default); and 3 if the full
error message is typed. Refer to Section 5. 2.

The EO command returns the value of the version number flag. The EO value is 1 for
version 21A of TECO and 2 for versions 22 and 23 of TECO. Refer to Section 3.17,

The ES command returns the value of the automatic typeout flag. The ES value is -1
for automatic typeout after successful searches, 1 through 31 for automatic typeout
with a line feed to indicate the pointer position, a decimal number greater than 31
for automatic typeout with the cﬁarccter equal to the ASCII value of the decimal
number indicating the pointer position, and O for no automatic typeout (default).
Refer to Section 3.11,

]When using TECO with monitors prior to the 5.02 monitor, the tF TECO command must be entered in
the up-arrow, F form because control-F is interpreted as a special monitor command (see Section 3.18).

3-55



TECO

- 302 -

The@ (or t1) command, followed by an arbitrary character x, is equivalent to
the ASCII value of the character that immediately follows the in the com=-

mand string. For example, in the command

A, the character A is an argu-

ment for and is not interpreted as a command. ( A equals 65.)

The backslash(\) command (without a numeric argument) is equivalent to the decimal
value of the digit string (optionally preceded by a + or - sign) immediately following
the current position of the buffer pointer. The value is terminated by the first nondigit
character encountered. If there is no digit string immediately following the buffer
pointer, backslash equals 0. The backslish command moves the buffer pointer to the
right end of the digit string and assumes the value of the digit string.

The @ (or 1T) command is used to enable type=-in of characters while the command

string is being executed. When the

command is enountered in a command

string, execution of the command string stops and waits for the user to type any single

character. When this character is typed, the @ command assumes the value of

this character. Hence, the

command is useful only as a numeric argument for

another command, e.g., the command tTUC puts the ASCII value of the typed

character into Q-register C.

The @ command is most often used with a message string preceding it (see
Section 3.17). The message string is used to inform the user that TECO is waiting

for a character to be typed in.

3.16.1 Examples of the Use of the Special Numeric Arguments

*J3C1A==
n

*

If the fourth character in the buffer is 9,
the command string returns the indicated result.

*JIA11A-97""G1A-123"L1A-320cDQC] (§) 0B (§) '

CIB12A"NOA (®) *

pe-1- (@© ;8> @

T3K CORE]
TZ&KCORA

*

This command string converts all lower case
alphabetic characters in the buffer to upper case.
Starting at the beginning of the buffer (J), if

the next character has a decimal ASCII value
between 97 and 122 inclusive (1A-97''"G1A-123"'L),
store the upper case value of this character in
Q-register C (1A-32UC), delete the character (D)
and replace it with the value in Q-register

C(QCl ($)). Then TECO skips to 181 (OB (§));
otherwise, it advances to the next character (C).

In either case, at 1B! TECO checks to determine if
there is another character in the buffer (2A'*N) and

if so, returns to !Al (OA @), When 2A equals 0,
execution stops.

This command string outputs the current page, and

then continues input until a form feed character

is detected. This command string could be used

on a file that is not divided into pages of a reason-
able size. The A command is riéatedly executed

until @ equals -1. When equals -1, the
semicolon command causes an exit from the loop.

3-56



- 303 - TECO

*tF= tH=ET= This command string causes the (decimal) value

23094886497 of the console data switches, the time of day
7. in 60th's of a second, and the value of the ET

;__l flag to be typed out. At this execution, the

console switches were set to octal 254064000141,
the time was 08:26:29:33, and the ET flag was on,

*ttMUO This command string stores the ASCII value of the
. letter M (77) in Q-register 0.

FYNCHAPTER |...|\= This command string searches for the next chapter
Té heading and then types out the number of the

* chapter. The buffer pointer is positioned immedi-

ately following the 6, after the command in this
example has been executed.

*<SFUNCTION ._‘ ; ) Here, the @ command is used as the argument

FUNCTION LETTER @ |> for an ni insert command. This command string

inserts the letter which is typed in following each
FUNCTION LETTER M occurrence of. the string FUNCTION that is found

FUNC L R K R
FUNCT RC by the search command.

*
FLYITITLE This command string inserts "'TITLE' at the top

. of each page of a file.
® pwin; >(O®)

3.17 TECO PROGRAMMING AIDS

Bugs can occur in editing macros written in TECO language as in any other program; therefore, TECO

provides the following debugging aids for the TECO user.

3.17.1 @ Command

The user can cause a statement to be typed out at any point in the execution of a command string.

The command is used to perform this function. The general form of this command is

text

The first is the actual command. It can be entered either as or tA. The string

""text'' is the character string that TECO types out when the command is encountered. The
second command marks the end of the text to be typed and must be entered as . The text
string can contain any characters except and the special characters listed in Table 2-1.

3-57



TECO - 304 -

Example:
*YISTI NEW PAGE
OUCIST+11:S 4
"N%C-50"L0sTH () *121(3)o0,. Po,.kOsT (B)' )

ZUEAQE-Z"NOST=1 (§) * END_)

PWEF (§)

NEW PAGE This command string is identical to an gxample
NEW PAGE used in Section 3.14; however two ‘

NEW PAGE commands have been added.-

NEW PAGE

NEW PAGE

END

AL

3.17.2 Question Mark (?) Command

The question mark command has two uses in TECO. When question mark is the first character typed
by the user after TECO has typed out an error message, it has the special function described in
Section 5.2. However, at any other time the question mark can be entered in a command string
exactly like any other command. This use of the question mark command causes TECO to enter trace
mode. In trace mode, TECO types out each command as it is executed. A second question mark

command takes TECO out of trace mode.

Example:

*JHT?ILITA-9" NIMITA-58"NCOM (§) 'cD -{(®) 'toL ®) ®)
AB: _LINE]

LINE 2
C: LINE3
CINE4

ILITA-9""NIMITA-58""NCOMS$1A-58""NCO IMITA-58"NCD § 'LOL$T1A-9"'"NLOILITA-9'"'N!

- FOP
3T

AB: LINE1 After the first question mark command, TECO
[TNEZ begins typing out each command as it is exe=
C: LINE3 cuted. This enables the user to see exactly
LINE4 what the command string is doing. The ?POP
* error message is caused by the attempt to

- move the pointer beyond the end of the
' fourth (and last) line (the end of the buffer)
with the C command.

The second question mark command turns off
the trace feature so that the '*"HT'' following
it is not printed. :

3.17.3 The EO Value

The EO (Edit Old) feature enables TECO users to protect existing TECO macros from future changes
to the TECO specifications. In most cases when features are added to TECO, the changes merely

3-58



- 305 - TECO

involve additional commands whose existence in no way affects old TECO macros. The EO feature
does not apply to changes such as these. Occasionally, however, a new feature would cause old

macros not to run properly. The EO feature is designed to protect old macros from such changes.

Every version of TECO has an EO value. For all versions of TECO up through version 21A, the EO
value is 1. For TECO versions 22 and 23, and all succeeding versions until the next specification

change that would affect old macros, the EO value is 2.

The EO value is always initially set to the maximum value for the version of TECO being run. This

enables all new features.

By using the EO command the EO value can be set to a lower value so as to disable features of TECO
that were implemented since the macro was written and which would cause the macro not to function

properly. The EO command does not disable all new features, but only those that affect old macros.

OEO or resets the EO value to the maximum (standard)
nEO (n<0) for the version of TECO in use.

nEO (0<n<=max) sets the EO value to n.

EO (no argument) returns the current value of the EO flag.

All TECO macros written before version 22 should be edited by putting "' 1EQ'' at the beginning and
"OEOQ' at the end. All macros written with version 22 should have ''2EO'" at the beginning and
“"'OEO'' at the end, efc.

Table 3-8
Features Enabled by EO Values Greater Than 1

EO=1 Base value.

EO=2 (1)  Standard altmode changed from ASCII 175 to 033.

(2)  All control characters within text arguments reserved
as commands, instead of only @ @ @ @
in search strings.

(3) Standard searches accept evfher upper or lower case
alphabetic characters as a match.

(4) Vertical tab and form feed recognized as end-of -line
characters in addition to line feed.

(5) The P command does not create form feeds.

(6) Command string jumps will not accept instances of
the target characters occurring within text arguments.

(7)  Because of (6) comments should be enclosed only by 1...1.

(8) The nl command must be followed by altmode.

(9) The @exit command is changed to @ .

3-59



TECO - 306 -

Examples:

*EO= Initial setting is EO=2,
2

*IEOEO== @ Set EO value to 1.
EOEO== Revert back to EO.=maximum.

I 1s 1=

3.18 COMMAND STRING TYPE-IN CONTROL COMMANDS

The use of two successive altmodes as the command string terminator has already been discussed in
Section 2,6. The use of rubout, @ , and double @ as command string erasing commands is
discussed in Section 5.1. There are other characters, however, that are useful in the creation of

command strings.

3.18.1 Carriage Return, Line Feed, and Spaces

Except as text arguments, the characters carriage return and line feed are ignored in command strings.
Spaces are also ignored except (1) when used in text arguments, and (2) when used between two nu-
meric arguments as a + (see Section 2.7.2). Hence, these characters can be employed by the user
when formatting command strings. The carriage return (and the monitor-supplied line feed following
it) is used to enable the user to conveniently type command strings much longer than a single line.

Spaces are used to lend clarity to more complicated macros.

3-60



Chapter 4
Techniques

4.1

This section demonstrates the use of TECO's multi-purpose commands to simplify the creation and

editing of programs.

The following example shows the creation and immediate execution of a FORTRAN proegram.

.MAKE ATEST.F4 )

* TYPE 1))

1 FORMAT (‘COMPILER
ARITHMETIC TEST'),)

J=3)
K=7

X
TOO
X=.5

* 1=K /I*(X*1 . E+2-K *K/
(3.*9)))
'R=10.6)
$=3.5))
1=5 )
J=2)
N=7)
Z=R+S*1/J*N/3)
TYPE 2,11,Z)
1 FORMAT (18,F20.12))
END )

x®O®

EXIT
1C

2
.5;._=

- 307 -

CREATION, EXECUTION, AND EDITING OF A FORTRAN PROGRAM

Give the command to create the

disk file ATEST.F4 using TECO.

Begin insertion with the TAB command.

.5 Rub out erroneous .5.

Stop insertion and use the -T command
to verify last line inserted.

Continue insertion.

End insertion, and then use the EX
command to output and close the file.

4-1

TECO



TECO

-308 -

.EXECUTE ATEST)
FORTRAN: ATEST.F4
UNDEFINED LBLS

2
MULTIPLY DEFINED LBLS

1

MAIN. ERRORS DETECTED: 2
?TOTAL ERRORS DETECTED: 2
LOADING

LOADER 4K CORE
2EXECUTION DELETED

EXIT

lg

.TECO)

*sF20. () obiz () otr

FORMAT (18,F20.12)

*G

FORTRAN: ATEST.F4

Give the command to compile and
execute ATEST.F4.

The FORTRAN compiler discovers
errors in the program.

Call TECO to edit ATEST.F4,

Change the second label 1 to 2,
and then verify the change.

Output the new version and auto-
matically cause a repeat of the ex-

ecution by using the EG command.
LOADING

LOADER 4K CORE
EXECUTION

COMPILER ARITHMETIC TEST
103 21.683333118562

EXIT

1C

Success.

NOTES

a. The command MAKE ATEST.F4) is equivalent to
the followmg sequence of commands:

R TECO,)

FEWATEST. F4

b. The -T command does not move the buffer pointer,
therefore, the user can continue insertion from the
point he left off.

c. In this example, the EX command is equivalent to
PWEF

d. No filename is given with the command TECO,
therefore the name of the file used in the most re-
cent edit-class command (i.e., MAKE, or TECO
command) is assumed. In the exomple the com-
mand TECO)) is equivalent to

.R TECO)

FEBATEST.F4

4-2



- 309 - TECO

NOTES (Cont)

e. The command SF20. moves the pointer to the
line the user wishes to correct. The OL command
positions the pointer immediately prior to the bad
chargcter 1. The D command deletes the 1; the
12 6 command inserts 2 in its place. The OTT
command types out this entire line.

f. The command EG is equivalent (in this

example) to

*pwer (9

EXIT
T

.EXECUTE ATEST.F4)

4.2 REARRANGING A FILE

In Section 3.14, an example shows the use of a Q-register in moving a segment of text from one
place on a page to another place on the same page. This section describes how to move blocks of

text, or whole pages, to entirely different places in a file.

Example:

The user has a file named PGM. MAC on the disk and this file contains data in the following form:

ABCDEFGHIJ EorRM KL EorRM) MN FORM) OP

where each of the letters A, B, C... represents 20 lines of text.

The user intends to rearrange the file, as shown in the following example:

AOBDMNEFICJKLPGH

The following commands achieve this rearrangement.

.R TECO 6) Call TECO with extra core.
*EBPGM.MAC Y Specify the file and get the first page.
*NC Output AB cmd input CD.
*J20X1 Save all of C in Q-register 1.

:ZOK. Delete C from its position in the editing
buffer.

*NG Output D @ and input EF, Out-

put EF @ and input GH.
*HX2 . Save all of GH in Q-register 2.

*Y Delete GH and input 1J.

*20L Move the pointer to the beginning of J.

4-3



TECO

LIXOLO),
MOG®

*HX]

*Y
*J20X3
20k BB
i

*G2
*HPEF

- 310 -

*EBPGM.MAC (B) Y

1
*G3
*PWHK

LINOIO]
=X ®®

EXIT
c

4.3 SPLITTING AND MERGING FILES

Bring in all of C from Q-register 1.
Output ICJ input KL, output
KL , and input MN.

Save all of MN in Q-register 1 (there-
by discarding the previous contents).

Delete MN and input OP.
Save all of O in Q-register 3.
Delete O from the editing buffer.

Output P
ing buffer.

Bring GH into the buffer from Q-
register 2.

and clear the edit-

Qutput GH, close the output file (now
called nnnTEC.TMP), rename the input
file PGM.BAK, and then rename the
output file PGM.MAC.

Now edit the partially revised file
just output. Loop around to the be-
ginning of the file.

Move the pointer to the beginning of B.
Bring in all of O from Q-register 3.

Output AO and input D,
Output D M) , and then clear
the buffer. @

Bring in all of MN from Q-register 1.

Output MN and continue the

input/output sequence until GH has
been output. Then close the output
file (called nnnTEC.TMP), delete the
previous PGM.BAK, rename the input
file PGM.BAK, and then rename the
new output file PGM.MAC. Finally,
exit to the monitor.

This section demonstrates the procedure to split a file into several smaller files and the procedure to

merge parts of several files.

Example 1: Splitting a File

Assume the user has a.file named FILE.CBL on the disk; this file contains data in the following form:

ABCDEFGHIJKLMNOP



where each of the letters A, B, C, ...

=31 -

FILE.CBL into two files:
a. FILE.1 containing AB @ CD and

b. FILE. 2 containing KL @; M

And to discard the rest of the data. To accomplish this proceed as follows.

.R TECO)

*ERFILE.CBL () EWFILE. 1
*

i

*HPEF

K

*EWFILE. 2
hi

=20L (3) (®)
*0, . PEF (%)

)

Example 2: Merging Files

Assumed the user has two files:

a.

b.

Where A, B, C,...

A, B,....

MATH.BAK containing

represents 20 lines of text. The user wants to separate

Call TECO.

Open the input file and the first
output file,

Input AB.

Output AB and input CD.

Output CD and then close the out-
put file FILE.1.

Clear the buffer (deleting CD from
it) and continue inputting pages of
the file and searching for K. If K
is not found on a given page, clear
the buffer, and read in the next
page. The « command does not
perform output. Thus EF, GH, and
[J are all read in and then deleted.

When KL is read in, the search stops.

Open the second output file.

Output KL and input MN.

Position pointer at the end of M.

Output M and then close the output
file FILE.2.

Exit to the monitor with the job
completed.

B EORM) CD (FORM) EF (FORK) GH (FORM) 1) FORMKL

MATH.F4 containing

each represents 20 lines of text, and A', B', ...

TECO

represent updated versions of



TECO

=312 -

The user wants to merge MATH.F4 with the latter half of MATH.BAK to produce:

MATH. NEW containing

a'8 EORM) C'D" E'F GH 1J KL

He proceeds as follows.

.RTECO

*ERMATH. F4
EWMATH.NEW

Yy®OO®
*NF!

gl
*ERMATH.BAK

*y
*-G

*NL
*HPEF (19

EXIT
T

The technique shown in Example 2 illustrates the best method for recovering from the error indicated

by the error message:

Call TECO.

Open the first input file and the out-
put file.

Input A'B'.

Output A'B' @’ , input C'D*,

output C'D' , and input E'F'.

Output E'F' @ .
Close input from MATH.F4, and open
MATH.BAK for input.

Delete E'F* from the buffer and input
AB.

Delete AB, input and delete CD and
EF, then input GH.

Output GH @' , input and then
output 1J @) , then input KL.

Output KL, close the output file
MATH.NEW, and then exit to the
monitor with the job completed.

?0UT-200000 Output Error 200000 - Output File 018TEC.TMP Closed

If this error occurs during an editing job initialized by the TECO filnam.ext,) command or an EB

command, the incomplete output file has a temporary name of the form nnnTEC.TMP (see Section 3.2);
otherwise, the incomplete output file will have the name specified by the user. (Refer to Appendix A

for a list of error messages and their meanings. )

Example 3 is more explicit illustration of recovery from the foregoing error.



Example 3:

4.4 EXAMPLE OF AN ADVANCED TECO MACRO

-313 -

Recovery from an Output Error

.TECO FIL.DOC)
*edit a few pages
*p

TECO

?0UT-200000 Output Error 200000 - Output File 018TEC.TMP Closed

*ERO18TEC. TMP (§) EWFIL.NEW (3) Y
*Nlast page edited and successfully output .

*PW
*#rFIL.ooc (B Y ® B

*«last page edited and successfully output

*Y and edit next page
*Nnext place to edit
*inish editing normally
*EX

EXIT

1c

-RENAME FIL.DOC=FIL.NEW)

®®

This section demonstrates a TECO macro for formatting DECsystem-10 Macro assembly language

programs.

The procedure for executing this macro is as follows:

.RTECO 6)

*ERDTA7:PGMFMT.TEC
*YHX1
*EBPROGRM. MAC

*MI
* ©

4-7

Call TECO with enough core to cov-
er the maximum page size.

Open the file containing the macro
itself for input.

Input the macro and save it in Q-
register 1.

Open for editing the file that is to
be formatted by the macro.

Read in the first page of the file.
Execute the macro. »

Exit with.job completed.



TECO - 314 -

Formatting Macro (PGMFMT.TEC)

1EO ISTARTI0UL<S |
(®:%L>ZIR1A-10" N%L' ICOUNT LINES ON PAGE!
ILOOP 1JQL<OUC IEXECUTE LOOP ONCE FOR EACH LINE!

| irstcHnarcorac 3
IFSTCH2!1A-9"ECOOP (§) 1a-32'Noz (§)"
IFSTCH31% C-8"GOZ (§) 'C1A-32"EOFSTCH3 (§)'1A-9"EQC-7GOZ (§) 'cOFsTCH4 (§)'
ac-8'coz (§)" |
IFSTCH410US ICHANGE LEADING SPACES TO A TAB!
IFSTCH5!-D%S-QC"'LOFSTCH5 (8)' —I§) ooP
ITAG 1%C-6"'GOZ (§) 'C1A"COTAG (§) '1A-58"NOZ (§)"

|  icolontouscia-9tecoor (§) '1a-32'Noz (§) ILOOK FOR A COLON!
ICOLON21%S (§) C1A-32"EOCOLON2 (§) 'QC+Qs-7"GOZ (§) 'QC+QS-7""EOCOLONS
@®"1a-9"Noz (§) 'D
ICOLON3IR1A-32" EDOCOLONS

I cH ICHG SPACES AFTER COLON TO TAB!
10P11A-90"GOZ (§) '1A-65"LO0Z (§) 'ouC

10P21%C (§) C1A-90"GOZ (§) '1A-64'GOOP2 (§) '1A-57'GOZ (§) *1A-47"GoOP2(®)"

1A-9"EC1A-32"EO0Z (§) '1A-9"EOZ IGIVE UP IF NO OPERANDS!
1A-32"Noz (3) 'Qc-7'Goz (§) 'c1Aa-32"e0z (§) '1A-9"0Z (§)"
D HIF A SINGLE SPACE FOLLOWS OP, CHANGE IT TO A TAB!
10P310UC
IEOLI%C ILOOK FOR END OF LINE OR SEMI-COLON!
IEOL211A-9"EOEOL (§) '1A-13"G1A-59""NOEOL (§) '0Us
ISEMIIRTA-32""NTA-9""NOSEMI2 () ' '%S ILINE UP COMMENTS!
ISEMI2!QS"'NC = (®) Qc-qs-8"L =I(®) ' '
1ZI>
PZ'*NOSTART (§) 'ouc ILOOK FOR NEXT PAGE!
| !GETIYZ'NOSTART (§) '%C-10"NOGET (§) 'EFOEO IQUIT WHEN 10 YANKS YIELD NO DATA!

An explanation of the macro follows.

1EO The 1EO command enables only those features
| found in versions prior to 21A for which this
macro was written. ‘

ISTART! It is assumed that the pointer is at the begin=-
ning of the first page of the file.

OouL Initialize line counter.
<St ;%L> Count the line feed characters on the page.
ZJRTA-10""N%L' If the last character on the page is not

a line feed, count those characters fol-
lowing the last line feed character as
one more line.



ICOUNT LINES ON PAGE!

JQLL

oucC

1A-90"GOZ (§)"
1a"coTAG (B!

IFSTCH2!1A-9""ECOOP ‘

1A-32"Noz (§)"

IFSTCH31%C-8"GOZ (§)'C

1A-32""EOFSTCH3 (§)"

1A-9"EQC-7"GOZ (§)'

COFSTCH4 (§) 'Qc-8"Goz (§)"

IFSTCH410US
IFSTCH5!-D
%$-QC"'LOFSTCH5 (§)"

~(3) oop

ITAG1%C-6"GOZ (§) 'C

1atcotAG (3

1A-58"NOZ () 'OCOLON

ICOLONI!oUSC

-315 -

This is the standard technique for including
comments in TECO macros.

Execute everything which follows, down
to the > character on the second to the
last line, once for each line on the page.

Initialize first character counter for the line.

If the first character in the line is greater
than Z (decimal 90) in the ASCII set, skip
this line by jumping to 1Z1.

If the first character is alphabetic or period,
or %, or adollar sign (i.e., legal as the

first character of a Macro language symbol),
go to ITAG!. Otherwise, go to IFSTCH2!,

If the first character is a tab, move the
pointer past the tab, then go to !OP!.

If the first character is a space, continue
on to !FSTCH3!; otherwise, skip this line.

Increment the character counter (counting
leading spaces), and if the new total is
more than eight spaces, skip to the next
line; otherwise, move the pointer to the
next character.

If the next character is another space, go

back to !FSTCH3!.

If the character is neither a tab nor a space,
and if more than eight spaces preceded this
character, skip to the next line. If the
character is a tab, but more than seven
spaces preceded this tab, skip to the next
line. Otherwise, go to IFSTCH4!,

Initialize space deleted counter.
Delete last space seen.

Increment space deleted counter. Then, if
the new value of this counter is still less
than the number of characters (spaces)
counted on the line, go back to IFSTCH5!.

When the count of spaces deleted reaches
the number of spaces there were, insert
-a tab and then go to IOP!,

Increment the character counter (counting
characters in the tag), and if the new total
is more than six spaces, skip to the next
line. Otherwise, move the pointer to the
next character.

If the next character is a symbol constituent,
go back to ITAG!.

If the character is a colon, go on to

ICOLONI; otherwise, skip to the next line.

Initialize counter of spaces following the
colon, and move the pointer to the next
character.

4-9

TECO



TECO

1A-9"ECOOP (§)"
1a-32'Noz (§)"

ICOLON2!%5 (§) C

1A-32""EOCOLON2 (§)"

ac+as-7coz ()

QC+Qs-7""EOCOLONS (§)!

1A-9"NOZ (§) 'D

ICOLONBSIR

1A-32"EDOCOLON3 (§)

c - oor

1OP11A-90"GOZ ()"

1A-65"'L0Z (§) 'ouC
1opP21%C (§) C

14-90"G0Z (§)"
1A-64"'GOOP2 (§)"
1A-57G0z (§)"
1A-47GOOP2 ()"

1A-9"'E

c1a-32'e0z (§)"

1a-9mE0Z (§) 'O0P3

=316 -

If the character after the colon is a tab,
move the pointer to the next character
and go to 1OPI,

If the character is not a space either,
skip to the next line. Otherwise, con-
tinue on to ICOLON2!,

Increment the space—following-colon
counter, and then move the pointer to

the next character. The altmode following
%S prevents the value returned by the %5
command from being used as an argument for
the following C command.

If the next character is another space, go

back to ICOLON2!,

If the total count of the symbol characters
before the colon and the spaces after the
colon is more than seven, skip to the
next line.

If the count mentioned above exactly equals
seven, go to ICOLONS3!,

With the count mentioned above less than
seven, if the next character is not a tab,
skip to the next line. If this character

is a tab, delete it and continue to
ICOLONZ3!.

Move pointer back one character (i.e.,
back past the next space or the colon).

If the character passed over is a space
delete it and go back to ICOLON3!,

Otherwise, the pointer is now in front
of the colon. Move it forward over the
colon and then insert a tab to replace
the deleted spaces. Then go to IOP!,

If the first character in the operator
field is not alphabetic, skip to the next
line. Otherwise, initialize the op field
character counter.

Increment operator field character counter
and then move pointer to the next character.

If the next character is above Z in the
ASCII set, skip to the next line. If it is
aiphabetic, go back to OP21,

If the character is greater than the
digit nine in the ASCII set, skip to the
next line. If it is a digit, go back to
10P2!,

If the character is not a tab, skip to

the ' following the comment "*"GIVE UP IF
NO OPERANDS'. The leading spaces
are for appearance only and are ignored.
(A tab could not be used for this purpose.)

If it is a tab, move the pointer to the next
character. If this character is a tab or a
space, skip to the next line. If the charac-
ter is anything else, go to 1OP3!.

4-10



1A-32"Noz ()"

ac-7'Gcoz (§) 'c

14-32€0Z (§) 14-9"e0Z (®)"
-D -

10OP3!0UC

leoLt%wc (§) ¢

1A-9"EOEOL (§)"

1A-13"'G

1A-59"NOEOL (§)"
ous

ISEMIIRTA-32'""N1A-9"

NOSEMI2 (§) ' *
%S (§) DOSEMI

ISEMI2IQS"'N

C
Qc-Qs-8'L- (§) '

1Z1L>

2'NOSTART(8)"

=317 -

If the letter following the last letter or
digit of the operator is anything but a
space (or the tab that was processed
above), skip to the next line.

If the operator is more than seven char-
acters long, skip to the next line.
Otherwise, move the pointer to the
character after the space following the
operator.

If this character is another space or a
tab, skip to the next line.

Delete the space between operator and
operand and insert a tab in its place.

Initialize operand character counter.

Increment operand character counter
and move pointer to the next character.

If the character is a tab, go back to
IEOL!,

If the character is equal to or below
carriage return in the ASCII set, skip
to the next line by skipping to the last
' in the line starting with ISEMI21,

If the character is not a semicolon, go

back to 1EOL!.

Initialize the counter for spaces and
tabs preceding the semicolon.

Move the pointer back one more charac-
ter from the semicolon. If this character
is not a space or tab, go to ISEMI2!,

"Count the space or tab, then delete it

and go back to ISEMI!,

If there are no spaces or tabs preceding
the semicolon, skip to the next line by
skipping to the next to the last ' in this
line. This check prevents most cases of
inserting tabs before semicolons that

occur in SIXBIT or ASCIZ fields.

Move pointer forward over the last char-
acter seen, and then insert a tab before
the semicolon.

If the number of characters in the operand
field, not counting the spaces and tabs
preceding the semicolon, is less than
eight, insert a second tab. Otherwise,
skip to the next line.

Move pointer to the next line, and then
go back to the beginning of the loop.

When every line on the page has been
edited by the loop, output this page,
clear the buffer, and then yank in the
next page.

If the yank produces any new data, go
back to ISTART!.

TECO



TECO

ouc
IGETIYZ""NOSTART ()"

%C-10"NOGET (§)

EF

0EO

-318 -

Otherwise, initialize the yank counter.

Try another yank. If this produces any
new data, go back to ISTARTI,

increment the yank counter, and if it is
still less than 10, try again.

When a total of 10 straight yanks after the
P command fails to produce any new dataq,
close the output file.

The OEO command re-enables TECO com-
mands to the current version.



=319 - TECO

Chapter 5
User Errors

This chapter describes two types of errors: (1) typing errors discovered by the user before a command
string is completed, and (2) command errors detected by TECO. The user should realize, however,
that there is a third class of error. Because TECO interprets almost every character as a command,
there can be cases where, if the user fails to notice a command string typing error, TECO executes

a command that the user did not intend. For example, if the user meant to type the command

*INAME

but forgot to type the '"'I'*, then TECO is forced to interpret the command as an N-search for '"*AME"'

and act accordingly. There is no way to protect the user from errors of this type.

5.1 ERASING COMMANDS

If the user makes an error while typing a command string and discovers the error before terminating
the command string (with a double altmode), the error can be corrected using one of three erasing
commands described below. All of these must be typed before the double altmode that terminates

the command string.

5.1.1 Rubout Command
Rubout is used to erase typed-in characters one at a time starting with the last character typed in.
Example

After typing the portion of the command string shown below, the user discovers that he has mispelled

the name "'Ericson''.
*3LKILEIF ERICXON

To nullify the error, he types three successive rubouts. As he does this, TECO responds by retyping

the characters which are being rubbed out.

*LKILEIF ERICXON @) N ®R) © @) x.

The actual function of the rubout character is to delete the last typed character in the command string.
Consequently, if the incorrect character is not the last in the string, all characters back to that point

must also be rubbed out.



TECO - 320 -

Rubout is a nonprinting character; consequently, the actual line appears as follows:
*LKILEIF ERICXONNOX

When the user has rubbed out the incorrect character, he continues the command string from the last

correct character.

*3LKLEIF ERICXONNOXSON (§) oTT

Two successive rubouts are required to erase a carriage return and the monitor-generated line feed

following it.
5.1.2 Double @ Command

The command @ @ (two successive control-Gs) is used to erase an entire command string.

In the following example the user has decided, after typing the ''"N'', to quit and start over. He does

this by typing two successive control-Gs. (Control-G echoes visibly as '* tG'' and audibly as a

*3LKILEEF ERIXON (1O (O
*

bell ring.)

@ @ cannot be typed in the alternate up-arrow, character form described in Section 2.2.

5.1.3 @ Command
The @ command is another erasing command available to the TECO user. The @ command

erases everything in a command string back to the last carriage-return/end-of -line character pair.
It does not erase the carriage-return nor end-of-line character. The end-of-line characters are line

feed, vertical tab and form feed.

In monitors previous to 5.02B, control-U is intercepted by the monitor and erases only back to the most

recent break character (carriage-return, linefeed, formfeed, altmode).

Example 1:
*ILINE ONE) The user makes an error typing the
LINE TWO ) four;hfline ondf:ses the | c}c-.":n-
mand to erase the entire line. e
LINE THREE ) @ command causes a carriage
KINE FOUR refurn-line feed to be echoed but the
LINE FOUR) carriage return and line feed are not

e inserted.
:0



Example 2:

*ILINE ONE )
LINE TWO )

KINE THREE )

LINE FOUR
O

(V)

LINE THREE J
LINE FOUR )

5.1.4 Bell-Space Command

=321 -

The user makes an error on the third line
but does not notice it until he is on the
fourth line. In order to erase back to his
error without erasing the entire command
string, he types control=U, rubout,

control-U. The first @ erases ''LINE

FOUR' . The rubout erases the line feed
that marks the_end of the third line, and

the second erases ''LINE THREE"'
and the carriage-return at its end.

TECO

The bell-space command is not actually an erasing command, but it is usually used in conjunction

with the erasing commands. lts function is to cause the current line of the command string to be re-

typed. It is used when the user has typed so many rubouts on a line that he cannot tell exactly what

has been typed.

Specifically, if the user types @ and space in succession, everything in the command string back

to, but not including, the last carriage return line feed pair is immediately retyped on the next line.

The user may then continue the command string just as if bell-space had not been typed. The bell-

space is not stored in the command string. Neither does it remove anything from the command string.

Example:

“ISTAET: @O ¢ T ERT: ~{TRZE 5w, @,

START: TRZE SW,CCLFLG —|; CLEAR FLAG

5.2 ERROR MESSAGES

When TECO encounters an illegal command or a command that cannot be executed, an error message

is printed on the user's terminal. An error message consists of three parts, some of which are printed

automatically and some of which can be printed at the user's option. The first part of the message is

a question mark followed by a 3-letter mnemonic code for the error message. The second is a brief,

one-line, statement of the error condition. The last part is a more complete explanation of the error.

In the standard version of TECO the first two parts of the error message are automatically printed; the

third part is printed only if the user requests it. In Section 5.2.2 there is an explanation of how to



TECO =322 -

obtain the optional parts of the error message, and in Section 5.2.3 there is an explanation of how to

change TECO so that more or less of the error message is printed automatically.

When an error message is generated, the command to which it refers is not executed, the remainder
of the command string is ignored, and TECO returns to command mode. Also any commands that the
user might have typed ahead are erased.

Example:

*SWORD -4DUINEW The error message points out the presence

2NAU No Argument Before U of a U command not preceded by a numeric

* argument. The commands SWORD -4D

- have been executed, but the commands
UINEW ($) have not.

After an error message has been printed, the user has the option to use either or both of two special
commands, ? and /, that are designed to help the user after a command error has been encountered.
These commands are described below. Note, however, that these two commands have the special
properties described below only immediately after an error has occurred. If any other command is
typed after an error has occurred, TECO assumes that a new command string is being typed and the

ability to use the ? and / commands for this error is lost.

Also note.that the *i command described in Section 3.8.8 is frequently useful after an error is

encountered.

5.2.1 Question Mark Command

In some cases, the user may not be able to determine immediately which command in the string caused
the error. This could occur, for example, if there were several commands of the same type in the com=
mand string. In such a case, the user can use the question mark command to obtain more information.
The question mark command, when used immediately after an error message typeout, causes the offend-
ing command and several of the preceding characters in the command string to be typed out. A
maximum of 10 characters of the command string are typed; usually this number is sufficient to identify
the command that caused the error. Note that when the question mark command is used in this manner,

it is not necessary to type altmode or any other character after the question mark.

A second question mark is always typed after the last character of the group. The character at which

the error was detected is the last character before the second question mark typed.

Another use of the question mark command is explained in Section 3.17.



-323 - TECO

Example:
*H X 2PG2ZJ-1U2PG22Z) According to the error message, one of
o NP the G2 commands specifies a Q-register
2NTQ No Text in Q-register 2 that does not contain text. The question
*? 2ZJ-1U2PG2? mark command is used and the second
* G2 command is identified as the offending
- command.

5.2.2 Slash Command

When a command error occurs, one or more of the three parts of the corresponding error message is
automatically printed. If all three parts of the error message have not yet been printed and the user
needs a more detailed explanation of the error, he may type the slash command to obtain more

- information.

The slash command, when used immediately after an error message, causes the next unprinted part of
the error message to be printed. It may be used enough times to cause all three parts of the error
message to be printed, but no more. Note that when the slash command is used in this manner, it is

not necessary to type altmode or any other character after the slash.

NOTE

The verbal parts 2 and 3 of the error messages printed by
TECO are obtained from a system file (TECO.ERR) ex=
ternal to TECO itself. If for any reason this file cannot
be read, only the code portion of the error message is
printed, and this is followed by the special message
""?EEE Unable to Read Error Message File''. In this
case the / command cannot be used.

Another use of / is described in Section 2.7.2.

Example:

*EBTEST.CBL (§) EX

?BAK Cannot Delete Old Backup File

*/ Failure in rename process at close of editing job
initiated by an EB command or a TECO command. There
exists an old backup file TEST.BAK with a protection
<7#7> such that it cannot be deleted. Hence the in-

ut file TEST.CBL cannot be renamed to "'TEST.BAK"',

iﬁe output file is closed with the filename "O09TEC.TMP'',

The RENAME UUO error code is 2.

5.2.3 EH Command

As was stated above, TECO error messages consist of three parts. The first, or code, part is always
automatically typed. With the standard version of TECO, the second, brief message, part is also auto-

matically typed. The third, more lengthy part is obtained by the / command at the option of the user.



TECO -324 -

By use of the EH command, the user may change TECO so that more or less of the error message is

automatically typed. This is done as follows:

1EH sets TECO so that only the code part of the error message is automatically
printed.
2EH sets TECO so that both the code and the 1-line message parts of the

message are automatically printed.

3EH sets TECO so that all three parts of the error message are always
automatically typed.

OEH resets TECO to the system standard mode of error message typeout.
(Normally equivalent to 2EH.)

EH (with no argument) returns the value of the current EH setting.



Appendix A

=325 - TECO

TECO Error Messages

The following table lists the error messages from TECO. The three-letter message preceded by a

question mark is always typed; the second part of the error message, which is a short explanation of

the error, is always typed in standard versions of TECO. The detailed message is typed if the user

types a slash command (/) immediately following the short error message.

Table A-1
TECO Error Messages

?COR

?COS

?EBD

Improper Arguments
The following argument combinations are illegal:

, (no argument before comma)

m,n, (where m and n are numeric terms)

H, (because H=B, Z is already two arguments)
,H (H following other arguments)

Cannot Delete Old Backup File

Failure in rename process at close of editing job initiated
by an EB command or a TECO command. There exists an
old backup file filnam.BAK with a protection<nnn> such
that it cannot be deleted. Hence the input file filnam.ext
cannot be renamed to ''filnam.BAK"'. The output file is
closed with the filename '"nnnTEC.TEMP'', where nnn is
the user's job number. The RENAME UUO error code is nn.

Storage Capacity Exceeded

The current operation requires more memory storage than

TECO now has and TECO is unable to obtain more core

from the monitor. This message can occur as q result of

any one of the following things:

1) command buffer overflow while a long command
string is being typed,

2) Q-register buffer overflow caused by an X or {
command,

3) editing buffer overflow caused by an insert command
or a read command. .

Contradictory Output Switches
The GENLSN and SUPLSN switches may not both be used

with the same output file.

EB with Device dev Is lllegal
The EB command and the TECO command may be specified
only with file structured devices, i.e., disk and DECtape.




TECO

=326 -

Table A-1 (Cont)
TECO Error Messages

?EBF

?EBO

?EBP

?EEE

?EMA

?EMD

?ENT-00

-02

EB with lllegal File filnam.ext

The EB command and the TECO command may not be used
with a file having the filename extension ''.BAK"' or with
a file having the name '"nnnTEC.TMP'', Where nnn is the
user's job number, the user must either use an ER-EW se-
quence, or rename the file.

EB, EW, or EZ Before Current EB Job Closed

After an output file has been opened by a TECO command
or an EB command, no further EB, EW, or EZ commands
may be given until the current output file is closed.

EB Illegal Because of File filnam.ext Protection

The file filnam.ext cannot be edited with an EB command
or a TECO command because it has a protection <nnn>
such that it cannot be renamed at close time.

Unable to Read Error Message File

An error, whose code was typed previous to this error

message, has occurred, and while TECO was trying to

find the proper error message in the error message file,
one of the following errors occurred:

1) the error message file, TECO.ERR, could not be
found on device SYS:,

2) an input error occurred while TECO was reading the
file TECO.ERR,

3) the error message corresponding to that error code is
missingsfrom TECO.ERR,

4) the user's TECO job does not currently have enough
room for a buffer to read the error message file into,
and no more core can be obtained from the monitor,

5) for some strange reason device SYS: could not be
initialized for input.

EM with lllegal Argument nn
The argument n in an nEM command must be greater than zero.

EM with No Input Device Open

EM commands apply only to the input device, and so
should be preceded by an ER (or equivalent) command.
To position a tape for output, that unit should be tem-
porarily opened for input while doing the EM commands.

Illegal Output Filename ''filnam.ext*

ENTER UUO failure 0. The filename ''filnam.ext"!
specified for the output file cannot be used. The
format is invalid.

Output UFD dev:[pi, pg]l Not Found

ENTER UUO failure 1. The file filnam.ext [pj, pgl
specified for output by an EW, EZ, or MAKE command
cannot be created because there is no user file directory
with project-programmer number [pj, pgl on device dev.

Output Protection Failure

ENTER UUO failure 2. The file filnam.ext [pj, pgl speci-
fied for output by an EW, EZ, EB, MAKE, or TECO command
cannot be created either because it already exists and is
write -protected <nnn> against the user, or because the UFD
it is to be entered into is write-protected against the user.

A=2




=327 -

Table A-1 (Cont)
TECO Error Messages

TECO

-03

-06

=25

Output File Being Modified

ENTER UUO failure 3. The file filnam.ext specified for
output by an EW, EZ, EB, MAKE, or TECO command
cannot be created because it is current being created

or modified by another job.

Output UFD or RIB Error

ENTER UUO failure 6. The output file filnam.ext cannot
be created because a bad directory block was encountered
by the monitor while the ENTER was in progress. The user
may try repeating the EW, EB, or TECO command, but if

the error persists, it is impossible to proceed. Notify your
system manager.

No Room or Quota Exceeded on dev:

ENTER UUO failure 14. The output file filnam.ext cannot

be created because there is no more free space on device dev:,
or because the user's quota is already exceeded there.

Write Lock on dev:
ENTER UUO failure 15. The output file filnam.ext cannot
be created because the output file structure is write-locked.

Monitor Table Space Exhausted

ENTER UUO failure 16. The output file filnam.ext cannot
be created because there is not enough table space left in
the monitor to allow the ENTER. The user may try repeating
the EW, EB, or TECO command, but if the error persists he
will have to wait until conditions improve.

Output SFD Not Found
ENTER UUO failure 23. The output file filnam.ext cannot

be created because the sub-file-directory on which it should
be ENTERed cannot be found.

Search List Emptr
ENTER UUO failure 24. The output file filnam.ext cannot

be created because the user's file structure search list is empty.

Output SFD Nested too Deeply

ENTER UUO failure 25. The output file filnam.ext cannot
be created because the specified SFD path for the ENTER is
nested too deeply.

No Create for Specified SFD Path

ENTER UUO failure 26. The output file filnam.ext cannot
be created because the specified SFD path for the ENTER
is set for no creation.

ENTER Failure nn on Output File filnam.ext

The attempted ENTER of the output file filnam.ext has failed
and the monitor has returned an error code of nn. This error

is not expected to occur on an ENTER. Please send the TTY
printout showing what you are doing to DEC with an SPR form.




TECO

-328 -

Table A-1 (Cont)
TECO Error Messages

?EOA

2FNF-00

-02

nEO Argument Too Large

The argument n given with an EO command is larger than the
standard (maximum) seffmg in EO=n for this version of TECO.
This must be an older version of TECO than the user thinks he
is using; the features corresponding to EO=n do not exist.

Input File filnam.ext Not Found

LOOKUP UUO failure 0. The file filnam.ext specnfled for
input by an ER, EB, or TECO command was not found on the
input device dev.

Input UFD dev: [pj, pgl Not Found

LOOKUP UUO failure 1. The file filnam.ext [pj, pgl speci-
fied for input by an ER, EB, or TECO command cannot be
found because there is no User File Directory with project-
programmer number [pj,pgl on device dev.

Input Protection Failure

LOOKUP UUO failure 2. The file filnam.ext [pj, pgl speci-
fied for input by an ER, EB, or TECO command cannot be
read because it is read-protected <nnn> against the user.

Input UFD or RIB Error

LOOKUP UUO failure 6. The input file filnam.ext cannot
be read because a bad directory block was encountered by
the monitor while the LOOKUP was in progress. The user
may try repeating the ER, EB, or TECO command, but if the
error persists all is lost. Notify your system manager.

Monitor Table Space Exhausted

LOOKUP UUO failure 16. The input file filnam.ext cannot
be read because there is not enough table space left in the
monitor to allow the LOOKUP. The user may try repeating
the ER, EB, or TECO command, but if the error persists he
will have to wait until system conditions improve.

Input SFD not Found

LOOKUP UUO failure 23. The input file filnam.ext cannot
be found because the sub—file-directory on which it should be
looked up cannot be found.

Search List Empty
LOOKUP UUO failure 24. The input file filnam.ext cannot

be found because the user's file structure search list is empty.

Input SFD Nested too Deeply

LOOKUP UUO failure 25, The input file filnam,ext cannot
be found because the specified SFD path for the LOOKUP

is nested too deeply.

LOOKUP Failure nn on Input File filnam.ext

The attempted LOOKUP on the Input file filnam.ext has
failed and the monitor hos returned an error code of nn.
This error is not expected to occur on a LOOKUP. Please
send the TTY printout showing what you were doing to DEC
with an SPR form.




=329 - TECO

Table A-1 (Cont)
TECO Error Messages

?FUL

?IAB

?ICE

?ACT

?IDV

?IEC

?IEM

?IFC

2AFN

?LL

?ILR

Device dev: Directory Full

ENTER UUO failure n. The file filnam.ext specified for
output by an EW or MAKE command cannot be created on
DECtape dev because the tape directory is full.

Incomplete <...> or (...) in Macro

A macro contained in a Q-register and being executed by an
M command contains an iteration that is not closed within the
Q-register by a >, or a parenthetical expression that is not
closed within the Q-register by a ).

Illegal Control-E Command in Sgarch Argument

A search argument contains a @ command that is

either not defined or incomplete”

lllegal Control Command t<char> in text Argument

In order to be entered as text in an Insert command or search
command, all control characters (1@ - tH and IN = t==)
must be preceded by R or 1T. Otherwise they are inter-
preted as commands. The control character ' t <char>"" is
on undefined text argument control command.

Input Davice dev Not Available

Initialization failure. Unable to initialize the device dev
for input. Either the device is being used by someone else
right now, or else it does not exist in the system.

Itlegal Character ''<char>'" After E '
The only commands starting with the letter E are EB, EF,
EG, EH, EM, EO, ER, ET, EU, EW, and EZ. When used
as a command (i.e., not in a text argument) E may not be
followed by any character except one of these.

Re-Init Failure on Device dev After EM

Unable to re-initialize the device dev dofter executing an

EM command on it. [f this error persists ofter retrying to
initialize the device with an ER command (or EW command

if output to the device is desired), consult your system manager.

lllegal Character ''<char>'' ofter F

The only commands starting with the letter F are FS and FN.
When used as a command (other than EF or in a text argument)

F may not be followed by any character other than one of these.

Illegal Character ''<char>'' in Filename
File specifications must be of the form dev:filnam.ext[m,n] @
where dev, filnam, and ext are alphanumeric, and m and n

are numeric. No characters other than the ones specified may
appear between the EB, ER, EW, or EZ command and the

altmode terminator( ).

Illegal Command <char>
The character ''<char>'* is not defined as a valid TECO command.

Cannot Lookup Input File filnam.ext. to Rename It

Failure in rename process at close of editing job initiated by an EB
command or a TECO command. Unable to do a LOOKUP on the ori-|
ginal input file dev:filnam.ext in order to rename it ''filnam.BAK''.
The output file is closed with the name "'nnnTEC.TMP"', where nnn
is the user's job number. The LOOKUP error code is nn.

A=5




TECO

- 330 -

Table A-1 (Cont)
TECO Error Messages

?INP-nn0000

?10S

?1QC

?IQN

?IRB

?IRN

?ASA

Input Error nn0000 on File filnam.ext.
A read error has occurred during input. The input file
filnam.ext has been released. The user may try again to
read the file, but if the error persists, the user will have
to return to his backup file. The input device status word
error flags are nn0000. (Note: This number represents the
1/O status word (rh) with bits 22-35 masked out.)
(040000 -~ block too large).
(100000 -- parity or checksum error).
(140000 -- block too large and parity error).
(200000 ~- device error, data missed).
(240000 -- block too large and device error).
(300000 -~ parity error and device error).
(340000 -- block too large, parity error, and device error).
(400000 -- improper mode).
(440000 -~ block too large and improper mode).
(500000 -~ parity error and improper mode).
(540000 -- block too large, parity error, and improper mode).
(600000 -- device error and improper mode).
(640000 -- block too large, device error, and improper mode).
(700000 -- parity error, device error, and improper mode).
(740000 -- block too large, parity error, device error,

and improper mode). .

lllegal Character ''<char>'" in /O Switch
The only valid characters in switches used with file selection
commands are the alphabetic characters.

lllegal command ''<char> '
The only valid '' commands are ''G, ''L, ""N, "'E, ''C, "'A,
llDI Ilvl llW, llT, |IFI "S, and IIU.

Illegal Q-register Name ''<char>""

The Q-register name specified by a Q, U, X, G, %, M,
[, 1, or * command must be a letter (A thru Z) or a digit
(0 thru 9).

Cannot Rename Input File filnam.ext to filnam.BAK
Failure in rename process at close of editing job initiated
by an EB command or a TECO command. The attempt to
rename the original input file filnam.ext to the backup
filename ''filnam.BAK'' has failed. The output file is
closed with the name "'"nnnTEC.TMP'', where nnn is the
user's job number. The RENAME UUO error code is nn.

Cannot RE-Init Device dev for Rename Process

Failure in rename process at close of editing job initiated

by an EB command or a TECO command. Cannot reinitialize
the original input device dev in order to rename the input file
filnam.ext to ""filnam.BAK''., The output file is closed with
the name "'nnnTEC.TMP'', where nnn is the user's job number.

n Argument with Search Command

The argument preceding a search command indicates the number
of times a match must be found before the search is considered
successful. This argument must be greater than 0.




=331 - TECO

Table A-1 (Cont)
TECO Error Messages

?MAP

?MEE

?MEF

?MEO

MEQ

?MEU

MIQ

?MLA

?MLP

Missing

In attempting to execute a conditional skip command (a "'
command whose argument does not satisfy the required con-
dition) no ' command closing the conditional execution string
can be found. Note: n''...' strings must be complete
within a single macro level.

Macro Ending with E

A command macro being executed from a Q-register ends
with the character ''E"". This is an incomplete command.

E is the initial character of an entire set of commands. The
other character of the command begun by E must be in the
same macro with the E.

Macro Ending with F

A command macro being executed from a Q-register ends with
the character "'F'' (not an EF). This is an incomplete command.
F is the initial character of an entire set of commands. The
other character of the command begun by F must be in the same
macro with the F.

Macro Ending with Unterminated O Command

The last command in a command macro being executed from a
Q-register is an O. command with no altmode to mark the end
of the tag—name argument. The argument for the O command
must be complete within the Q-register.

Macro Ending with '

A command macro being executed from a Q-register ends with
the '' character. This is an incomplete command. The '' com-
mand must be followed by one of the characters G, L, N, E,
C,A,D,V,W,T,F,S, orU to indicate the condition under
which the following commands are to be executed. This char-
acter must be in the Q-register with the ' .

Macro Ending with 1

A command macro being executed from a Q-register ends with the
t character. This is an incomplete command. The t command
takes a single character text argument that must be in the
Q-register with the 1 .

Macro Ending with <char>

A command macro being executed from a Q-register ends with
the character ''<char>'". This is an incomplete command.
The <char> command takes a single character text argument
to name the Q-register to which it applies. This argument
must be in the same macro as the <char> command itself.

Missing <

There is a right angle bracket not matched by a left angle
bracket somewhere to its left. (Note: an iteration in a macro
stored in a Q-register must be complete within the Q-register.)

Missing (
Command string contains a right parenthesis that is not matched
by a corresponding left parenthesis.




TECO

-332-

Table A-1 (Cont)
TECO Error Messages

?MRA

?MRP

MUV

?NAE

?NAI

INAQ

?NAU

?NCS

?NFI

?NFO

NTQ

?0CT

Missing >

In attempting to exit from an iteration field with a ; command
(or to skip over an iteration field with a O argument) no >
command closing the iteration can be found. Note: iteration
fields must be complete within a single macro level.

Missing )

The command string contains, within an iteration field, a
parenthetical expression that is not closed by a right
parenthesis.

Macro Ending with tt

A command macro being executed from a Q-register ends with
control=t or tt. This is an incomplete command. The 1t
command takes a single character text argument that must be
in the Q-register with the 11,

No Argument Before =

The command n= or n== causes the value n to be typed. The
= command must be preceded by either a specific numeric
argument or a command that returns a numeric value.

No Altmode after nl »
Unless the EO value has been set to 1, the numeric insert
command nl must be immediately followed by altmode.

No Argument Before **

The "' command must be preceded by a single numeric argu-
ment on which the decision to execute the following commands
or skip to the matching ' is based.

No Argument Before U

The command nUi stores the value n in Q-register i. The U
command must be preceded by either a specific numeric argu-
ment or a command that returns a numeric value.

No Command String Seen Prior to *i
The *i command saves the preceding command string in Q-register i.
In this case no command string has previously been given.

No File for Input
Before issuing an input command (Y or A) it is necessary
to open an input file by use of an ER, EB, or TECO command.

No File for Output

Before giving an output command (PW, P, N, EX, or EG) it
is necessary to open an output file by use of an EB, EW, EZ,
MAKE, or TECO command.

No Text in Q-register x
Q-register x, specified by a G or M command, does not
contain fext.

18" or "9 in Octal Digit String
In a digit string preceded by 10, only the octal digits
0-7 may be used.




- 333 -

Table A-1 (Cont)
TECO Error Messages

TECO

20DV

?0LR

?20UT -nn0000

?PAR

2POP

Output Device dev Not Available

Initialization failure. Unable to initialize the device dev
for output. Either the device is being used by someone
else right now, or it is write locked, or else it does not
exist in the system.

Cannot Lookup Output File dev:filnam.ext to Rename It
Failure in rename process at close of editing job initiated by
an EB command or a TECO command. The special LOOKUP
on the output file filnam.ext required for DECtape in order to
rename the file to ''filnam.ext'' has failed. The original input
file filnam.ext has been renamed ''filnam.BAK'', but the out-
put file is closed with the name '"'"nnnTEC.TMP'', where nnn is
the user's job number. The LOOKUP UUO error code is nn.

Output Error nn0000 - Output File nnnTEC. TMP Closed
An error on the output device is fatal. The output file is closed
at the end of the last data that was successfully output. It has
the fitename "'nnnTEC.TMP"', where nnn is the user's job
number. See Section 4.3 for a recovery technique. The out-
put device status word error flags are nn0000. (Note: This
number represents the 1/O status word (rh) with bits 22-35
masked out.)
(000000 -~ end of tape).
(040000 -- block number too large: device full or

quota exceeded).
(100000 -- parity or checksum error).
(140000 -- block number too large and parity error).
(200000 -~ device error, data missed).
(240000 -~ block number too large and device errror).
(300000 -- parity error and device error).
(340000 -- block number too large, parity error,

and device error).
(400000 -- improper mode or device write locked).
(440000 -- block number too large and improper mode).
(500000 -~ parity error-and improper mode).
(540000 -- block number too large, parity error,

and improper mode).
(600000 -~ device error and improper mode).
(640000 ~-- block number too large, device error,

and improper mode).
(700000 -~ parity error, device error, and improper

mode).
(740000 -- block number too large, parity error,

device error, and improper mode).

Confused Use of Parentheses

A string of the form (...<...) has been encountered.
Parentheses should be used only to enclose combinations
of numeric arguments. An iteration may not be opened
and not closed between a left and right parenthesis.

Attempt to Move Pointer Off Page with J, C, R, or D

The argument specified with a J, C, R, or D command must
point to a position within the current size of the buffer,
i.e., between 0 and Z, inclusive.




TECO

- 334 -

Table A-1 (Cont)
TECO Error Messages

?PPN

?RNO

?SAL

?SNA

?SNI

2SRH

?STC

?STL

TAG

?TAL

Illegal Character ''<char>'"" in Project-programmer Number

Proiect-progrommer numbers in file specifications must be given
in the form [m,n] where m and n are octal digit strings separated
by a comma. No characters other than the ones specnfled may
appear between the enclosing brackets.

Cannot Rename Output File nnnTEC.TMP

Failure in rename process at close of editing job initiated by
an EB command or a TECO command. The attempt to rename
the output file nnnTEC.TMP to the name ''filnam.ext"
originarly specified in the EB or TECO command has failed.
The original input file filnam.ext has been renamed
"filnam.BAK'', but the output file is closed with the

name "'nnnTEC.TMP'', where nnn is the user's job number.
The RENAME UUOQO error code is nn.

Second Argument Less Than First
In a two-argument command, the first argument must be
less than or equal to the second.

Initial Search with No Argument

A search command with null argument has been given, but
there was no preceding search command from which the
argument could be taken.

; Not in an lteration

The semicolon command may be used only with a string
of commands enclosed by angle brackets, i.e., in an
iteration field.

Cannot Find ''<text>''

A search command not preceded by a colon modifier and
not within an iteration has failed to find the specified
character string ''<text>''. After an S search fails the
pointer is left positioned at the beginning of the buffer.
After an N or « search fails the last page of the input
file has been input and, in the case of N, output, and
the buffer cleared. Note that when this message occurs,
the text string printed includes all control-character
commands included in the search argument.

Search String Too Long
The maximum length of a search string is 80 characters
including all string control commands and their arguments.

Search String too Long

. The maximum length of a search string is 36 character

positions, not counting extra characters required to
specify a single position.

Missing Tag Ixxx!

The tag Ixxx! specified by an O command cannot be
found. This tag must be in the same macro level as the
O command referencing it.

Two Arguments with L

The L command takes at most one numeric argument, namely,
the number of lines over which the buffer pointer is to be
moved. :




- 335-

Table A-1 (Cont)
TECO Error Messages

TECO

nNTY
?UCA

?UFS

?2UIN

?UIS

?USR
UTG

?20U0

lllegal TTY 1-O Device

A terminal may be specified as an input-output device in an
ER, EW, EZ, or MAKE command only if it is not being used
to control an attached job, the user's own terminal included.

Unterminated A Command

A tA message type-out command has been given, but there is
no corresponding tA to mark the end of the message. 1A
commands must be complete within a single command level.

Macro Ending with Unterminated File Selection Command
The last command in a command macro being executed from a
Q-register is a file selection command (ER, EW, EB, or EZ)
with no altmode to mark the end of the file specifications.
The file selection command must be complete within the
Q-register.

Unterminated Insert Command

An insert command (possibly an @ insert command) has been
given without terminating the text argument at the same
macro level.

Undefined I/O Switch ' /xxx"'

The switch ''/xxx'" is not defined with either input or output
file selection commands. The only switches currently defined
for input or output file selection commands are

/GENLSN and /SUPLSN.

Unterminated Search Command

A search command (possibly an @ search command)

has been given without terminating the text argument at
the same macro level.

Unterminated Tag

A command string tag has been indicated by a | command,
but there is no corresponding ! to mark the end of the tag.
Tags must be complete within a single command level.

lllegal UUO

Internal error. The illegal instruction <lh,rh> has been
encountered at address nnnnnn. This is caused by either a
TECO bug or a monitor bug. Please give printout to your
system manager, or submit it to DEC with an SPR.




TECO - 336 -



-337 - TECO

Appendix B
ASCIl Characters

Table B-1
ASCII Characters
Manual Octal Decimal Comment and Section Reference
Character Symbol

Null or . 000 0 Ignored on input. Ignored on type=-in.

Control-Shift-P nl inserf only.

Control -A @ 001 1 TECO command (Section 3.17).

Control-B 002 2 Monitor command (Section 3 18). A
special character (Section 2.2).

Control-C @ 003 3 Monitor command (Section 3.10). A
special character (Section 2.2). nl
insert only. Echoes as tC-carriage

) return-line feed.

Control-D 004 4 TECO command (Section 3.17).

Control-E @ 005 5 TEC? command (Sections 3.11 and
3.16).

Control -F ) 006 6 TECO command (Section 3.16).
Monitor command (Section 3.18).

A special character (Section 2. 2).

Bell @ 007 7 Echoes and prints as a single bell ring
and 'G. Double @and @._,ore
TECO commands (Section 5.1) '
and special characters (Section 2.2).

Backspace @ 010 8 TECO command (Section 3.16). Prints
as tH. .

Tab - 011 9 TECO command (Section 3.8).

Line Feed | 012 10 Ignored in command strings except as a
text argument (Section 3.18). The
symbol { is used only to represent an
explicitly-typed line feed. It is not
used for the line feed that the monitor




TECO

- 338 -

Table B-1 (Cont)
ASCII Characters

Character Sf’viangﬂl Octdl Decimal Comment and Section Reference
ymbo

Line Feed (Cont) generates when a carriage return is typed.
In data, line feed defines the end of a
line (Section 2.3).

Vertical Tab @ 013 N In data, vertical tab defines the end of
a line (Section 2.3).

Form Feed 014 12 TECO command (Section 3.6). In data,
form feed defines the end of a page
(Section 2.3).

Carriage Return ) 015 13 Igndred in command strings except as a
text argument. (Section 3.18). When
this character is typed the monitor auto-
matically generates a line feed following
it.

Control-N @ 016 14 TECO command (Section 3.11).

Control-O 017 15 Monitor command (Section 3.6). A
special character (Section 2.2). nl
insert only. Echoes as 'O -carriage
return-line feed.

Control-P 020 16 Monitor command (Section 3.18). A

" special character (Section 2.2).

Control-Q @ 021 17 TECO command (Section 3.11).

Control-R 022 18 TECO command (Sections 3.8 and 3.11).

Control =S @ 023 19 TECO command (Section 3.11).

Control -T @ 024 20 Two different uses as TECO commands
(Sections 3.8, 3.11, 3.16).

Control-U @ 025 21 TECO command (Section 5.1). A
special character (Section 2.2).'n|in-
sert only. Echoes as U carriage
return-line feed.

Control -V @ 026 22 TECO command (Sections 3.8 and 3.11).

Control -W @ 027 23 TECO command (Sections 3.8 and 3.11).

Control-X @ 030 24 Two different uses as TECO commands

: (Section 3.11).
Control-Y ) 031 25
Control-Z @ 032 26 TECO command (Section 3.10). Echoes

as tZ-carriage return-line feed. Used
as end-of ~file signal when doing data
input from a TTY.




- 339 -

Table B-1 (Cont)
ASCII Characters

TECO

Character Manual Octal Decimal Comment and Section Reference
Symbol
Altmode or 033 27 Alphanumeric argument terminator
(Control =Shift-K) (Section 2.7). A special character
(Section 2.2). Echoes and prints as $.
Two successive altmodes are used to
terminate a command string (Section 2.6)]
Control-Shift-L @) 034 28 TECO command (Section 3.11).
Control-shift-M | (D 035 29
Control-Shift-N @ 036 30 Two different uses as TECO commands
(Sections 3.8, 3.11, 3.16).
Control-shift-0 | 037 31
Space — 040 32 TECO command (Section 2.7). Ignored
in command strings except as a text ar=
gument or when used instead of + with
numeric arguments (Section 3.18).
! 041 33 TECO command (Section 3.13).
" 042 34 Used as a prefix for a whole class of
TECO commands (Section 3.13).
# 043 35 TECO command (Section 2.7).
$ 044 36
% 045 37 TECO command (Section 3.14).
& 046 38 TECO command (Section 2.7).
! 047 39 TECO command (Section 3.13).
( 050 40 TECO command (Section 2.7).
) 051 41 TECO command (Section 2.7).
* 052 42 Two different uses as TECO commands
(Sections 2.7 and 2.14).
+ 053 43 TECO command (Section 2.7).
, 054 44 TECO command (Section 2.7).
- 055 45 TECO command (Section 2.7).
056 46 TECO command (Sections 3.2 and 3.4).
/ 057 47 . Two different uses as TECO commands
(Sections 2.7 and 5.2).




TECO

- 340 -

Table B-1 (Cont)
ASCII Characters

Character ?;;Eg: Octal Decimal - Comment and Section Reference
0 060 48
1 061 49
2 062 50
3 063 51
4 064 52
5 065 53
6 066 54
-7 067 55
8 070 56
9 071 57
072 58 TECO command (Section 3.11). Device
name delimiter (Section 3.2).
; 073 59 TECO command (Section 3.12).
< 074 60 TECO command (Section 3.12).
= 075 61 TECO command (Section 3.15).
> 076 62 TECO command (Section 3.12).
? 077 63 Two different uses as TECO commands
(Sections 3.17 and 5.2).
@ 100 64 TECO command (Sections 3.8 and 3.1 1).
A 101 65 Two different uses as TECO commands
(Sections 3.3 and 3.15).
B 102 66 TECO command (Section 3.4). Also used
in the EB command (Section 3.2). -
C 103 67 TECO command (Section 3.5). Also used
‘in the "'C command (Section 3.13).
D 104 68 TECO command (Section 3.7).
E 105 69 Used as a prefix for many TECO com-
mands: EB, EF, EG, EH, EM, EO, ER,
ES, ET, EU, EW, EX, EZ (Sections
3.2, 3.6, 3.9, 3.105. Also used in the
"'"E command (Section 3.13).




- 341 - TECO

Table B-1 (Cont)
ASCII Characters

Character EAOnEQ: Octal Decimal Comment and Section Reference
ymbol

F 106 70 Used in the EF commands (Section 3.9).
Also in FS and FN commands (Section
3.11).

G 107 71 TECO command (Section 3.14). Also
used in the EG command (Section 3. 10)
and "'G command (Section 3.13).

H 110 72 TECO command (Section 3.4).

| m 73 TECO command (Section 3.8).

J 112 74 TECO command (Section 3.5).

K 113 75 TECO command (Section 3.7).

L 114 76 TECO command (Section 3.5). Also
used in the "'L command (Section 3.13).

M 115 77 TECO command (Section 3.14). Also -
used in the EM command (Section 3.2).

N 116 78 TECO command (Section 3.11). Also
used in the ""N command (Section 3.13).
Also used in FN command (Section 3.11).

O 17 79 TECO command (Section 3.13).

P 120 80 TECO command (Section 3.9).

Q 121 81 TECO command (Section 3.14).

R 122 82 TECO command (Section 3.5). Also
used in the ER cpmmcnd (Section 3.2).

S 123 83 TECO command (Section 3.11). Also
used in ES and FS commands (Section
3.11).

T 124 84 TECO command (Section 3.6). Also
used in the ET command (Sections 3.6
and 3.16).

125 85 TECO command (Section 3.14),
\% 126 86
127 87 Used in the EW command (Section 3.2)

and the PW command (Section 3.4).
Otherwise ignored in command strings.

X 130 88 TECO command (Section 3.14). Also
used in the EX command (Section 3.10).




TECO

- 342 -

Table B-1 (Cont)
ASCII Characters

Character 2':/ c::g;l Octal Decimal Command and Section Reference
131 89 TECO command (Section 3.3).
132 90 TECO command (Section 3.4). Also
used in the EZ command (Section 3.2).
[ ‘ 133 21 TECO command (Sections 3.2 and 3. 14).
\ 134 92 Two different uses as TECO commands
(Sections 3.8 and 3.14).
] 135 93 TECO command (Sections 3.2 and 3.14).
tor N\ t 136 94 When used as a command, indicates that
the next character is to-be interpreted as
a control character.
-—or _ -— 137 95 TECO command (Section 3.11).
7 140 96
a 141 97 Equivalent to A in command strings.
b 142 98 Equivalent to B in command strings.
c 143 99 Equivalent to C in command strings.
d 144 100 Equivalent to D in command strings.
e 145 101 Equivalent to E in command strings.
f 146 102 Equivalent to F in command strings.
g 147 103 Equivalent to G in command strings.
h 150 104 Equivalent to H in command strings.
i 151 105 Equivalent to | in command strings.
i 152 106 Equivalent to J in command strings.
k 153 107 Equivalent to K in command strings.
| 154 108 Equivalent to L in command strings.
m 155 109 Equivalent to M in command strings.
n 156 110 Equivalent to N in command strings.
o 157 m Equivalent to O in command strings.
) 160 112 Equivalent to P in command strings.
q 161 113 Equivalent to Q in command strings.




-343 - TECO

Table B-1 (Cont)
ASCII Characters

Character P\S/lam;o: Octal Decimal Comment and Section Reference
ymbo
r 162 114 Equivalent to R in command strings.
s 163 115 Equivalent to S in command strings.
t 164 116 Equivalent to T in command strings.
u 165 117 Equivalent to U in command strings.
% 166 118 Equivalent to V in command strings.
w 167 119 Equivalent to W in command strings.
x 170 120 Equivalent to X in command strings.
y 7 121 Equivalent to Y in command strings.
z 172 122 Equivalent to Z in command strings.
{ 173 123
| 174 124
} 175 125 Converted to altmode (033) when read
from TTY unless user has specified
TTY LC mode. Equivalent to altmode
(033) when executing commands or
being typed as text if the EO value has
been set to 1.
176 126 Converted to altmode (033) when read
from TTY unless user has specified
TTY LC mode. Equivalent to altmode
(033) when executing commands or
being typed as text if the EO value has
been set to 1.
Rubout or @ 177 127 TECO command (Section 5.1). A special
Delete character (Section 2. 2).
nlinsert only. Does not print.
Echoes as the character being erased.




TECO

_344_



Appendix C

- 345 -

Summary of Commands

C.1 INITIALIZATION AND FILE SELECTION

Table C-1

Command Description

TECO

Command

Function

Reference

dev:filnam.ext [proj, prog]

ERfilespecification
nEM

EWfilespecification
EZfilespecification
EBfilespecification

MAKEFiIespec)
TECOfilespec)
GENLSN

SUPLSN

INITIALIZATION AND FILE SELECTION

File specifications

Select file for input.

Position magnetic tape

Select file for output.

Zero directory and select file for output.

Select file for input and output, with back=
up file protection.

Equivalent to EWfilnam.ext .
Equivalent to EBfilnam.ext Y.

Used with EW or EB to cause line sequence
numbers to be generated.

Used with ER, EB, or EW to suppress line
sequence numbers.

INPUT

Clear Buffer and input one page.

Input one page and append to current buffer
contents.

BUFFER POSITIONS

Before first character; 0,

Current pointer position; number of characters
to the left of the pointer.

(Section 3.2)
(Section 3.2)
(Section 3.2)
(Section 3.2)
(Section 3.2)
(Section 3.2)

(Section 3.1)
(Section 3.1)
(Section 3.2)

(Section 3.2)

(Section 3.3)
(Section 3.3)

(Section 3.4)
(Section 3.4)




TECO

- 346 -

Table C-1 (Cont)
Command Description

Command

Function

Reference

nJ

nC
nR

nL

nT

End of the buffer; number of characters in
the buffer.

m+1st through nth characters in the buffer.
Entire buffer; B, Z.

ARGUMENT OPERATORS
Add.

Add.

Subtract.

Multiply.

Divide and truncate.

Logical AND.

Logical OR.

Perform enclosed operations first.

Accept number in octal radix.

POINTER POSITIONING

Move pointer to position between nth and
ntlst characters.

Advance pointer n positions.

Move pointer back n positions. Equivalent
to -nC.

Move pointer to beginning of nth line from
current pointer position.

TYPE-OUT

Type all text in the buffer from the current
foinfer position to the beginning of the nth
ine from the pointer position.

" Type the m+1st through the nth characters.

Type the decimal integer n.

Type the octal integer n.

Change typeout mode so that no substitutions

are made for nonprinting characters.

Restore typeout mode to normal.

(Section 3.4)

(Section 2.7)
(Section 3.4)

(Section 2.7)
(Section 2.7)
(Section 2.7)
(Section 2.7)
(Section 2.7)
(Section 2.7)
(Section 2.7)
(Section 2.7)
(Section 2.7)

(Section 3.5)

(Section 3.5)
(Section 3.5)

(Section 3.5)

(Section 3.6)

(Section 3.6)
(Section 3.15)
(Section 3.15)
(Section 3.6)

(Section 3.6)




- 347 - TECO
Table C-1 (Cont)
Command Description
Command Function Reference

OEU Flag lower case characters on typeout (Section 3.6)

(standard).
1EU Flag upper case characters on typeout. (Section 3.6)
-1EU No case flagging on typeout. (Section 3.6)
-1ES Set automatic typeout ofter searches. (Section 3.11)
nES(n>0) Set automatic typeout ofter searches and (Section 3.11)

include a character to indicate the position

of the pointer. v
OES Set to no automatic typeout after searches. (Section 3.11)

@message @

tL or form feed

nD
-nD

nK

m,nK

ltext e
nI

@I/TEXT/

@ ~

Type the message enclosed.
Type a form feed.
Inhibit typeout.

DELETION

Delete the n characters following the pointer
position.

Delete the n characters preceding the pointer
position.

Delete all characters in the buffer from
current pointer position to the beginning
of the nth line from the pointer position.

Delete the m+1st through the nth characters.

INSERTION
Insert the text delimited by | and altmode.

Insert the character with ASCIl value n
(decimal).

Insert the text delimited by the arbitrary
character following |.

Insert the ASCII representation of the
decimal integer n.

Translate to lower case.
Translate to upper case.
When used inside text arguments, this means

translate special characters @, [, \, 1, t,
+ to ''lower case'' range.

(Section 3.17)
(Section 3.6)
(Section 3.6)

(Section 3.7)

(Section 3.7)

(Section 3.7)

(Section 3.7)

(Section 3.8)
(Section 3.8)

(Section 3.8)

(Section 3.8)

(Section 3.8)
(Section 3.8)
(Section 3.8)




TECO

_348-

Table C-1 (Cont)
Command Description

Command

Function

Reference

O

PW

nP

EF

@or tZ

EX

EG

nStext

nNtext

nFStext text

INSERTION (Cont)
Accept next character as text.

Used inside text arguments to cause all control
characters except ,
to be taken as text. Nullified by a second

, and altmode

OUTPUT AND EXIT

Output the current page and append a form
feed character to it.

Output the current page, clear the buffer,
and read in the next page. Continue this
process until the nth page from the current
page has been input.

Output ‘the m+1st through the nth characters.
Do not append a form feed character, and
do not change the buffer.

Close the output file.

Close the output file and exit to the
monitor.

Exit to the monitor.

Output the remainder of the file, close the
output file, and then exit to the monitor.

Output the remainder of the file, close and
then re-execute the last compile-class com=
mand that was typed.

SEARCH

Search for the nth occurrence (following the
pointer) of the text delimited by S and
altmode, but do not go beyond the end of
the current page.

Search for the nth occurrence (following the
pointer) of the first text string and replace
it with the second text string. Do not go
beyond the end of the current page.

Equivalent to nStext except that if

the text is not found on the current page,
pages are input and output until it is found.

(Section 3.8)
(Section 3.8)

(Section 3.9)

(Section 3.9).

(Section 3.9)

(Section 3.9)
(Section 3.10)

(Section 3.10)
{Section 3.10)

(Section 3.10)

(Section 3.11)

(Section 3.11)

(Section 3.11)




- 349 -

Table C-1 (Cont)

Command Description

TECO

:nStext

@nS/text/

0 (%) or 01X

In @ or n tX (n#0)

e 06060

®©@ @& O

does input only, no output.

Equivalent to nStext except that it

returns a value of -1 if the search succeeds
or 0 if it fails instead of an error message.
The : command can also be used with FS,N,
FN, and <.

Equivalent to nStext except that the

text is delimited by the arbitrary character
following the S. The @ command may also
be used with FS,N, FN, and<-.

Reset search mode to accept either case.
Set search mode to ''exact'' mode.
Translate to lower case.

Translate to upper case.

When used inside text arguments, this means
translate special characters @, [, \, 1, 1,
«~to ''lower case'' range.

Accept next character as text.

Used inside text arguments to cause all
control characters except , ,
and altmode to be taken as text. Nullified
by a second A

Used inside search argments to indicate
accept either case for following characters.

Nullified by a second.

When used inside a text argument, accept
any character at this position in the search
string.

Accept any separator character at this
position.

Accept any character except the arbitrary
character a following

(Section 3.

(Section 3.

(Section 3
(Section 3
(Section 3
(Section 3

(Section 3

(Section 3

(Section 3

(Section 3.

(Section 3.

(Section 3

(Section 3.

Command Function Reference
SEARCH (Cont)
LIFNtext text Equivalent to nFStext text except (Section 3.11)
that if the text is not found on the current
page, pages are input and output until it is
found. ‘
h - text Equivalent to nNtext except that it (Section 3.11)

.11)
1)
.11)
.11)
.11)

.11)
L11)

1)

',”)

1)




TECO

- 350 -

Table C-1 (Cont)
Command Description

Command

Function

Reference

n< >

n;

Itag!

Otag

n''Ecommands'

n'v 'Ncommands'
n''Lcommands’
n''Gcommands'
n-1" Lcomrﬁands'
n+1''Gcommands'

n''Ccommands'

SEARCH (Cont)

Take the next character in the search string
literally, even if it is a control character.

Accept any alphabetic character as a match.

Accept any lower case alphabetic character
as a match.

Accept any upper case alphabetic character
as a match.

Accept any digit as a match.
Accept any end-of-line character as a match.

Accept any string of spaces and/or tabs
as a match.

Accept the ASCII character whose octal
value is nnn as a match.

Accept any one of the characters in the
brackets as a match.

ITERATION AND FLOW CONTROL

Perform the enclosed command string n times.
If n=0, jump out of the current iteration field.

Jump out of the current iteration field, if the
last search executed failed.

Define a position in the command string with
the name ''tag'’.

Jump to the position defined by ltag!.

If n=0, execute the commands specified
between ''E and '; otherwise, skip to the '.

If n#0, execute the enclosed commands.
If n<0, execute the enclosed commands.

If n>0, execute the enclosed commands.

If n<0, execute the enclosed commands.

- If n>0, execute the enclosed commands.

If n is the ASCII value (decimal) of a symbol
constituent character, execute the enclosed
commands.

(Section 3.11)

(Section 3.11)
(Section 3.11)

(Section 3.11)
(Section 3.11)
(Section 3.11)

(Section 3.11)

(Section 3.11)

(Section 3.12)
(Section 3.12)
(Section 3.12)

(Section 3.13)

(Section 3.13)
(Section 3.13)

(Section 3.13)
(Section 3.13)
(Section 3.13)
(Section 3.13)
(Section 3.13)
(Section 3.13)




- 351 -

Table C-1 (Cont)

Command Description

TECO

Command

Function

Reference

n''Dcommands'

n'' Acommands'

n''Vcommands'

n''Wcommands'

n''Tcommands'
n''Fcommands’

nh''Scommands'

n''Ucommands’

|nUi

Qi

%i

nXi

m, nXi

Mi

[i

1i

ITERATION AND FLOW CONTROL (Cont)

If n is a digit execute the enclosed commands.

If n is alphabetic, execute the enclosed
commands.

If n is lower case alphabetic, execute the
enclosed commands.

If n is upper case alphabetic, execute the
enclosed commands.

If n is true, execute the enclosed commands.
If n is false, execute the enclosed commands.

If n is ""successful'', execute the enclosed
commands.

If n is "'unsuccessful'', execute the enclosed
commands.

Q-REGISTER

Store the integer n in Q-register i.
Equal to the value stored in Q-register i.

Increment the value in Q-register i by 1
and return this value.

Store, in Q-register i, all characters from
the current pointer position to the beginning
of the nth line from the pointer.

Store the m+1st through nth characters in
Q-register i.

Place the text in Q-register i at the current
pointer position,

Execute the text in Q-register i as a command
string.

Push the current contents of Q-register i onto
the Q-register pushdown list.

Pop the last stored entry from the Q-register
pushdown list into Q-register i.

(As first command in a string.) Save the
preceding command string in Q-register i.

(Section 3.13)
(Section 3.13)

(Section 3.13)
(Section 3.13)

(Section 3.13)
(Section 3.13)
(Section 3.13)

(Section 3.13)

(Section 3.14)
(Section 3.14)
(Section 3.14)

(Section 3.14)

(Section 3.14)
(Section 3.14)
(Section 3.14)
(Section 3.14)
(Section 3.14)

(Section 3.14)




TECO

-352 -

Table C-1 (Cont)

Command Description

Command

Function

Reference

1A

@or tE

@™ or N

tF or @
@ or

ET

@ or tX

EU

EO

EH

@ x or ttx

@ or 1T

SPECIAL NUMERIC VALUES

The ASCII value (decimal) of the character
following the pointer.

The form feed flag. Equals 0 if no form feed
character was read on the last input, =1
otherwise.

The end-of file flag; equals -1 if end of input
file seen on last input. Otherwise equals 0.

Decimal value of the console data switches.
The time of day in 60th's of a second.

The value of the type-out mode switch.
Equals O for normal type-out, ‘=1 otherwise.

Value of the search mode flag. (O=either case
mode, -1%= exact mode.)

The value of the EU flag.

+1 = flag upper case characters.
0 = flag lower case characters,

-1 = no case flagging on typeout.

The value of the EO flag. 1= version 21A,
2= versions 22 and 23.

The value of the EH flag. 1= code only,

2= code plus one line, 3=all of error message.

Equivalent to the ASCII value (in decimal)
of the arbitrary character x following t1.

Equivalent to the decimal value of the
digit string following the pointer.

Stop command execution and then take
on the ASClI value (in decimal) of the
character typed in by the user.

AIDS

When used after an error message, this causes
a more detciled explanation of the error to be
typed.

When used at the beginning of a command
string, this causes the entire command string
(with one of the two concluding altmodes)
to be moved into Q-register i.

(Section 3.16)

(Section 3.16)

(Section 3.16)

(Section 3.16)
(Section 3.16)
(Section 3.16)

(Section 3.11)

(Section 3.6)

(Section 3.17)

(Section 5.2)

(Section 3.16)

(Section 3.16)

~ (Section 3.16)

(Section 5.2)

(Section 5.2)




2EH
3EH
OEH

takes TECO out of trace mode.

Erase last character typed in the command
string.

Erase the entire command string.

Erase eve.ryfhing typed in back to the last
break character.

Retype current line of command string.
Restore the EO value to standard.

Set the EO value to n.

Type only code part of error messages.
Type error code plus one line.

Type all three parts of error.

Equivalent to 2EH.

(Section 3
(Section 5.

(Section 5.

(Section 5.

(Section 5.

(Section 3
(Section 3

(Section 5

(Section 5.
(Section 5.

(Section 5.

- 353 - TECO
Table C-1 (Cont)
Command Description
AIDS (Cont)

? When used after an error message, this causes (Section 5.2)

the offending command to be typed out (with

a few of the commands preceding it).
? Enter trace mode. A second ? command .17)

1)

1)
1)

1)
.17)
17)
.2)
2)
2)
2)




TECO - 354 -



- 355 -

DEC-10-ULNDA-A-D

deCcsUscenio LINED
LINE EDITOR FOR DISK FILES

digital equipment corporation - maynard. massachusetts



LINED - 356 -

Ist Printing June 1971
2nd Printing (Rev) July 1972

Copyright © 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa-
tional purposes and is subject to change
without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB



1.0
1.1
1.2
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
3.0
3.1
3.2
4.0
5.0
6.0
7.0

- 357 -

CONTENTS

Monitor Commands

CREATE Command

EDIT Command

LINED Commands

Inserting or Replacing a Line
Inseﬁ'ing Multiple Lines
Deleting a Line

Deleting Multiple Lines
Printing a Line

Printing Multiple Lines

Closing the Current File
Examples of Command Sequence
Auxiliary Commands

R LINED

Initializing a File for Processing
LINED Conventions and Restrictions
Error Handling

Implementation

Standard for DECsystem=10 Line Sequence Numbers

LINED

g
o

N N 0O & A A B WO W W W WDNNDNDND = - -




LINED - 358 -



- 359 - LINED

LINED
A LINE EDITOR FOR DECsystem=-10 FILES

LINED is a line editor for disk files. It is used to create and edit source program files which are
written on disk in ASCII code with line sequence numbers appended. LINED has the ability to refer-
ence any line at any time without the user having to close and reopen the file. LINED is a reentrant

program and loads in 2K pure and 2K impure segments of core.

NOTE

In this document, computer typeouts are indicated by
underscoring. The symbol ) represents the RETURN
key. The symbol é represents the ALTMODE key .

1.0 MONITOR COMMANDS

The MONITOR commands CREATE and EDIT may be used to select a file for editing with LINED. A
temporary disk file, called ###EDT.TMP, is created for passing the commands to LINED.

1.1 The CREATE Command

The CREATE command calls in LINED and opens the specified new disk file for editing. The CREATE

command is of the form:

CREATE filename .ext )

1.2 The EDIT Command

The EDIT command calls in LINED and opens the specified existing disk file for editing. The EDIT

command is of the form:

LEDIT filename.ext )

2.0 LINED COMMANDS

LINED indicates its readiness to receive commands by typing an asterisk. At this time LINED is said to

be in command mode. The user may then type in the following LINED commands.

Version 13A 1 July 1972



LINED =360 -

2.1 Inserting or Replacing a Line

X Innnnn Insert or replace the following typed line at line number nnnnn of
the currently open file; nnnnn can be specified as a line sequence
number or a point (.), or it can be omitted entirely. A point
nnnxx @ refers to the last line which was typed, or the last line deleted,

*

or the last line inserted. If nnnnn is omitted, it is assumed to be
- 10.

nnnn aaad......a

When LINED has typed a line sequence number, the program enters text mode. In the text mode,
characters typed by the user are understood to be text for the insertion. Following the user's typein
of the line to be inserted, LINED types out the next sequential line number (hnnnn+10) following
which the user presses the ALTMODE key (sometimes labeled PREFIX or ESC) to terminate the insert

process and return to LINED command level.

If there already exists a line at nnnnn, it will be replaced. A single quote following the line number

indicates that insertion at this line number will cause the existing line to be replaced.

2.2 Inserting Multiple Lines
*Innnnn, iiiii Insert the following typed lines, beginning at line number nnnnn
(which can be specified as either a line number or a point) of the
currently open file. Each time a line is entered, nnnnn is in-
nnnxx bbbbb......b creased by the specified increment, iiiii. If iiiii is omitted, it is
. assumed to be 10 (if iiiii has never been specified previously), or
. the previous increment specified.
oy ®

*

nnnnn aaaad......qa

If nnnnn is omitted, it is assumed to be 10, and the result becomes the line number of the next inser-
tion. Type ALTMODE on the line following the last insertion to return to LINED command mode.

LINED then awaits another command.
A double quote following a line number indicates that the increment specified for the current insert

instruction has resulted in an existing line being skipped.

2.3 Deleting a Line

* Dnnnnn Delete a line number nnnnn from the currently open file; nnnnn
can be specified as either a line sequence number or a point.

Version 13A 2 July 1972



2.4 Deleting Multiple Lines

*Dmmmmm,nnnnn

2.5 Printing a Line

*Pnnnnn

2.6 Printing Multiple Lines

* Pmmmmm, nnnnn

2.7 Closing the Current File

E)

- 361 - LINED

Delete Lines mmmmm through nnnnn from the currently open file;
mmmmm must be less than nnnnn. Either mmmmm or nnnnn may be
specified as a point as long as mmmmm is less than nnnnn.

Print line nnnnn on the user's Teletype; nnnnn can be specified as
either a line sequence number or a point. Typing ALTMODE fol-
lowing a typeout will cause the next sequential line to be printed.

Print lines mmmmm through nnnnn of the currently open file; mmmmm
must be less than nnnnn. Either mmmmm or nnnnn may be specified
as a point as long as mmmmm is less than nnnnn.

Closes the current file and returns to LINED command mode. At
this point, the user may either open another file or type $C to
return to Monitor level to assemble, list, and/or save his file on
a permanent storage device (e.g., DECtape).

2.8 Examples of Command Sequence

Example 1

.CREATE FILEA

*110

00010 THE PROGRAM
00020 IS INSERTED
00030 HERE

00350 @
ZE
*tc

Version 13A

RUN LINED AND OPEN FILE FILEA

BEGIN INSERTING LINES AT LINE NUMBER
10 INCREMENTING BY 10.

RETURN CONTROL TO LINED COMMAND
MODE BY TYPING (® . CLOSE FILE FILEA
BY TYPING AN E. TYPING A {C RETURNS
TO THE MONITOR COMMAND LEVEL.

3 July 1972



LINED

Example 2
LEDIT FILEA

*P10,30

00010 THE PROGRAM
00020 IS INSERTED
00030 HERE

*120

00020 IS PLACED
00030

*D30

*P 10,30

00010 THE PROGRAM
00020 IS PLACED

*E

*tc

- 362 -

RUN LINED AND OPEN EXISTING FILE
FILEA

PRINT LINES 10 THROUGH 30
PRINTOUT

INSERT LINE 20

DELETE LINE 30
PRINT LINES 10 THROUGH 30
PRINTOUT

TYPE E TO CLOSE FILE FILEA
TYPING A tC RETURNS JOB TO MONITOR
CONTROL LEVEL.

3.0 AUXILIARY COMMANDS

These Auxiliary Commands provide an alternate method of calling LINED and opening files. In most

cases, auxiliary commands can be replaced by the monitor instructions CREATE and EDIT (Section 1).

3.1 RLINED
LINED can be called in from the system device by typing

.R LINED )
*

LINED responds with an asterisk to indicate its readiness to receive a command.

3.2 Initializing a File for Processing

S filename.ext ) Select an existing disk file, filename.ext,
for editing.
S filename .ext @ Select (create) a new disk file for editing,

calling it filename.ext.

4.0 LINED CONVENTIONS AND RESTRICTIONS
The following conventions and restrictions should be noted.

a. Files are written with the installation standard protection. See the DECsystem-10
Operating System Commands manual for explanation of protected files.

Version 13A 4 July 1972



- 363 - LINED

b. When in insert mode, typing ALTMODE following the printout of the next insertion line
sequence number causes a returned to LINED command level. Typing ALTMODE to
terminate a line of text to be inserted causes the text line to be ignored.

00010 LINE OF TEXT
00020 Returns to LINED command level

00010  LINE OF TEXT () Line is ignored

c. LINED assumes that all blocks in a disk file have an integral number of lines (i.e., each
block begins with a sequence number and no line is split between blocks). This will al-
ways be the case with files which have been created and edited only with LINED; how-
ever, if sequence numbers have been removed, say by TECO, they may be restored by
using PIP switch /S.

d. LINED files can be resequenced using PIP switch /S.
e. Line number O is illegal and cannot be used.

f. Lines can be edited in any order; however, editing lines by ascending line numbers
reduces file access time.

5.0 ERROR HANDLING

When an error is detected, LINED types a message and returns the user to.LINED command level (indi-
cated by the output of an * on the Teletype). Some errors are fatal and cause control to return to the

monitor. Error messages for LINED are given in Table 1.

Table 1
LINED Error Messages

Message Meaning

?FILE NAME ALREADY IN USE The filename specified in a CREATE or S command
already exjsts on disk. Type the S command with a
correct filename, followed by .

?FILE NOT SPECIFIED The user attempted to execute an editing command
without first naming the file to be edited. Using
an S command, name the file to be edited.

?ILLEGAL COMMAND The user attempted to use a letter that is not a
command. Type the correct command letter.
?INPUT FILE NOT FOUND The file named in an EDIT or S command cannot be

found on disk. Either place the file on disk, or
create the file with the S command followed by ) .

(continued on next page)

Version 13A 5 July 1972



LINED

- 364 -

Table 1 (Cont)
LINED Error Messages

Message

Meaning

?PLINE REFERENCED DOES NOT EXIST

SYSTEM ERROR READING COMMAND FILE

A line referenced in a P or D command does not
exist in the file. Either retype the command with
the correct line number, or insert the line.

A system error occurred while LINED was trying to
read the CCL command file generated by a CREATE
or EDIT command. Try to create or select the file

using the appropriate form of the S command.

NOTE

The following are internal system errors and cause
control to return to the monitor.

?CANNOT ACCESS DISK
?CANNOT INIT TTY

?PERROR IN RENAME PROCESS

INPUT FILE CLOSED WITH NAME
filnam.ext

OUTPUT FILE CLOSED WITH NAME
#HLIN.TMP

?ERROR IN RENAME PROCESS

INPUT FILE CLOSED WITH NAME
###TMP . TMP

OUTPUT FILE CLOSED WITH NAME
#HHLIN.TMP

?ERROR IN RENAME PROCESS

INPUT FILE CLOSED WITH NAME
#H#TMP . TMP

OUTPUT FILE CLOSED WITH NAME
filnam.ext

?INPUT ERROR.
INCOMPLETE OUTPUT FILE CLOSED
WITH NAME ###LIN.TMP

?NO CORE AVAILABLE FOR DATA SEGMENT

?20UTPUT ERROR.
INCOMPLETE OUTPUT FILE CLOSED
WITH NAME ###LIN.TMP '

LINED cannot access the disk. This message can
only occur at the beginning of operations. Notify
the system manager.

LINED cannot initialize the user's terminal . This
message can only occur at program initialization.
Notify the system manager.

An error occurred while LINED was renaming the
output file. The input file should be renamed
filnam .BAK and the output file should be renamed
filnam.ext.

An error occurred while LINED was renaming the
files. The input file should be renamed filnam.BAK
and the output file should be renamed filnam.ext.

An error occurred while LINED was renaming the
files. The input file should be renamed filnam.BAK.

In the three messages above, ### is the user's job
number and filnam.ext is the name of the file that
he was editing.

A system error occurred on input. The output file
is incomplete; thus, the user must start editing
again with the backup file.

There is no core available for LINED to do editing
on the user's file. This message can occur only
during program initialization. Notify the system
manager .

A system error occurred on output. The output file
is incomplete; thus the user must start editing again
with the backup file.

Version 13A

July 1972



- 365 - LINED

6.0 IMPLEMENTATION

The following explanation is intended to help the user to understand how LINED works so that he may

use it more effectively.

Lines of text are stored in a 1000-word working buffer. Each line has a 1-word header containing

two items. The left half contains the sequence number of the line, and the right half contains the
number of words (including the word containing the line header) needed to store the line of text. Thus,
to find the beginning of the next line of text, it is necessary to simply take the address of the current

line header and add the word count of the current line.

Several pointer words are used to keep track of the lines in the working buffer. WRTLST contains the
sequence number of the highest line in the buffer. SN contains the sequence number of the line cur-

rently being handled in a command.

When LINED discovers that SN is greater than WRTLST, it knows that the line being sought has already
passed through the working buffer. This line is not directly accessible, because there is no way to read
a disk file backwards. Consequently, it is necessary for LINED to close the file and then reopen it.
This process of going from the current position of the file to the end of the file, from there to the be-
ginning of the file, and finally to the line being sought is accomplished as follows:
a. Toclose the file, all remaining text must be passed through the working buffer to the
temporary output file (called ###LIN.TMP). This is done by giving the subroutine

FNDLIN (which finds a line whose sequence number is SN) the highest possible sequence
number - 99999.

b. Next, the original file is renamed to ###TMP.TMP, the temporary output file is renamed
to the original filename and the original file (F##TMP.TMP) is renamed to name.BAK
(same name as original with an extension of BAK).

c. FNDLIN is then given the sequence number being sought, and LINED continues with the
original command.

7.0 STANDARD FOR DECsystem-10 LINE SEQUENCE NUMBERS

ASCII data files containing line sequence numbers conform to the following rules.

a. Each line must begin at a word boundary. Lines are padded at the end with nulls to fill
an integral number of words.

b. Every line must have a line sequence number.

c. The line sequence number consists of five ASCII characters contained in the first word of
the line.

d. Bit 35 of the line sequence number word is set to 1.

e. The line sequence number can contain only decimal digits. The characters preceding
the first non-zero digit should be ASCII zeros. However, on input, leading spaces as
well as leading zeros are accepted for compatibility with those data files that have
leading spaces.

Version 13A 7 July 1972



LINED

f.

g.

Version 13A

- 366 -

The first character after the line sequence number is always a tab except in files created
by BASIC. All compilers except BASIC ignore the character after the line sequence
number. The utility programs (editors and PIP) automatically cause a tab to follow the
line sequence number when they are creating new line sequence numbers. However, for
compatibility with BASIC, the utility programs do not force a tab after the line sequence
number when they are merely transferring existing line sequence numbers from an input
file to an output fila.

Line blocking is optional .

8 July 1972



- 367 -

DEC-10-PPEO-D

PDP-10
PIP

(PERIPHERAL INTERCHANGE PROGRAM)
PROGRAMMER'S REFERENCE MANUAL

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS



PIP - 368 -

lst Edition, October

2nd Edition (Rev) May,

3rd Edition (Rev) November,
4th Edition (Rev) November,
5th Edition (Rev) June,

6th Edition (Rev) March,

Copyright @ 1967, 1968, 1969, 1970, 1972 by Digital Equipment
Corporation

The material in this manual is for informa-
tion purposes and is subject to change with-
out notice.

The following are trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

1967
1968
1968
1969
1970
1972



- 369 - PIP

PREFACE

The functions provided the user by the DECsystem-10 Peripheral Inter-
change Program (PIP) and their use are described in this manual.

NOTE

Monitor commands are available which perform
the common PIP functions of copying, renaming,
protecting and deleting files.

It was assumed in the preparation of this manual that the reader is
familiar with or has access to the DECsystem-10 Monitor Calls manual
and the DECsystem-10 Monitor Commands manual. These manuals as well
as the PIP manual are available in the DECsystem-10 Software Notebook

and in the following handbooks:

a) DECsystem-10 User's Handbook (contains both PIP and the
Monitor commands manuals).

b) DECsystem-10 Assembly Language Handbook (contains
Monitor calls manual).

iii




PIP - 370 -



SECTION

SECTION

SECTION

1.
1.1
1.1.1
1.2

2.
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.4
2.4.1
2.4.2
2.4.3

2.5
2.5.1
2.6

3

3.1
3.1.1
3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.2
3.2.3
3.2.4

=371 -

CONTENTS

INTRODUCTION
INTRODUCTION

Controlling PIP Indirectly
WRITING CONVENTIONS

PIP COMMAND STRING AND ITS BASIC ELEMENTS

COMMAND STRING

Command Format
File Specification
Command String Delimiters
DEVICE NAMES
Physical Device Names
Logical Device Names
FILENAMES
Naming Files with Octal Constants
Wildcard Characters
The Asterisk Symbol
The Question Mark Symbol
Combining * and ? Wildcard Symbols
DIRECTORY IDENTIFIER
UFD-Only Identifiers
SFD (Full Directory Path) Identifiers

Specifying Default and Current [Directory]
Identifiers

FILE ACCESS PROTECTION CODES
Digit Numeric Protection Code Values
UFD AND SFD PROTECTION CODES

STANDARD PIP SWITCHES
OPTIONAL PIP FUNCTIONS
Adding Switches to PIP Commands
BASIC TRANSFER FUNCTION
X-Switch Copy Files Without Combining
Non-Directory to Directory Copy Operation
Assinging Names to DECtape Tapes
DX-Switch, Copy All but Specified Files
Transfer Without X-Switch (Combine Files)
U-Switch, Copy DECtape Blocks @, 1, and 2

PIP

375
375

376

379
379
380
382
383
383
383
384
385
386
386
386
386
387
388
388

389
390
391
392

393
393
394
394
395
397
397
398
398




PIP

SECTION

-372 -

CONTENTS
3.3.1 A-Switch, Integral Output Lines (Line
Blocking)
3.3.2 C-Switch, Delete Trailing Spaces and
) Convert Multiple Spaces to Tabs
3.3.3 E~Switch, Ignore Card Sequence Numbers
3.3.4 N-Switch, Delete Sequence Number
3.3.5 S-Switch, Insert Sequence Numbers
3.3.6 O-Switch, Insert Sequence Numbers and
Increment by One
3.3.7 P-Switch, Prepare FORTRAN Output for
Line Printer Listing
3.3.7.1 Copy FORTRAN Binary Files
3.3.8 T-Switch, Delete Trailing Spaces
3.3.9 W-Switch, Converts Tabs to Spaces
3.3.10 V-Switch, Match Angle Brackets
3.3.11 Y-Switch, DECtape to Paper Tape
3.4 SET DATA MODE, SWITCHES B, H AND I
3.5 FILE DIRECTORY SWITCHES
3.5.1 L-Switch, List Source Device Directory
3.5.2 F-Switch, List Limited Source Directory
3.5.3 R-Switch, Rename Source Files
3.5.3.1 Changing Source UFD or SFD Protection Code
Using the Rename (R) Function
3.5.4 D-Switch, Delete Files
3.5.5 Z-Switch, Zero Directory
3.5.6 Q-Switch, Print Summary of PIP Functions
3.6 PERMITTED SWITCH COMBINATIONS
4 SPECIAL PIP SWITCHES
4.1 SPECIAL PIP FUNCTIONS
4.2 MAGNETIC TAPE SWITCHES
4.2.1 Switches for Setting Density and Parity
Parameters
4.2.2 Switches for Positioning Magnetic Tape
4,2.2.1 Backspace to Start of Current File
4,2.2.2 Advance to End of Current File
4.3 G-SWITCH, ERROR RECOVERY
4.4 J-SWITCH, CARD PUNCH

vi

399

399
399
399
400

400

400
401
402
402
402
403
405
406
406
407
407

408
409
411
41
413

415
415

415
416
417
417
417
418



SECTION 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7

APPENDIX A

-373 -

CONTENTS

PIP ERROR REPORTING AND ERROR MESSAGES
ERROR MESSAGES

I/0 ERROR MESSAGES

FILE REFERENCE ERRORS

PIP COMMAND ERRORS

Y-SWITCH ERRORS

GENERAL ERROR MESSAGES

TMPCOR (DEVICE TMP) ERROR MESSAGES

STANDARD FILENAME EXTENSIONS

vii

PIP

419
419
420
421
422
422
424

425




PIP - 374 -



=375 - PIP

SECTION 1

INTRODUCTION

1.1 INTRODUCTION

PIP (Peripheral Interchange Program) transfers files between standard
I/0 devices and can be used to perform simple editing and magnetic

tape control operations during those transfer operations.

To call PIP into core (1) from the Monitor level, the user types the

command
.R PIP <CR>

When PIP is loaded and ready for ihput it prints the character * at
the console. The user may then enter the command string needed to
perform the desired operations followed by a carriage return input.
On completion of the operation or operations requested in a command
string, PIP again prints the character * to indicate that it is ready
for the next command string input. To exit from PIP, the user types

a Control C (4C) command.
1.1.1 Controlling PIP Indirectly

PIP is normally controlled by commands entered via the console key-
board. PIP, however, is also capable of reading commands from a pre-
pared file and executing these commands as if they had been just en-
tered via the input console. PIP command files which are to be pro-
cessed indirectly are identified by the addition of the symbol @ to
their identifying file specification (see paragraph 2.1.2 for a de-
scription of file specifications). For example, the file specifica-
tion FOO.CCLQ@ identifies the file FOO.CCL as an indirect command file.
Any filename extension may be used in specifying an indirect command

file, however, if none is given, the default extension .CCL is assumed.

An indirect PIP command file consists of one or more PIP commands

structured as described in Section 2.

(1) The PIP program operates in 4K pure core plus a minimum of 1K
of impure core in 411 DECsystem-10 systems.



PIP - 376 -
Once PIP is in core, the user passes control of PIP to an indirect
command file by entering the file's filename. For example, the in-

put command sequence

.R PIP <CR>
*FO0.CCL@ <CR>

loads PIP and initiates the execution of the indirect PIP command
file FOO.CCL.

1.2 WRITING CONVENTIONS

The following symbols and abbreviations are used throughout this
manual:

Symbol or
Abbreviation Meaning

dev: Any logical or physical device name, the colon
must be included when it is used as part of a
PIP command.

file.ext Any filename and filename extension.

[directory] Identifies the directory of a specific file
storage area within the system; it may also
specify the location of specific file within
the identified storage area. (See paragraph
2.4 for a detailed description of [directory].)

When the input terminal used is either a Model
33 or 35 Teletype unit, the right and left
brackets are input in the following manner:

To Obtain a: Type:

a) left bracket SHIFT K
b) right bracket SHIFT M

4+ch A control character obtained by depressing
the CTRL key and then the selected character
key (e.g. +2Z).

= An equals character is used in the PIP command
to separate the destination and source command
sections.
NOTE
PIP will also accept the back arrow (SHIFT-O)
entry. A SHIFT-O entry is echoed on the term-
inal printer as the symbol <.

* PIP's response to a command string to indicate
that it is ready for the next input string.

1-2



Symbol or

Abbreviation

<CR>

=377 -

Meaning

The Monitor's response to a command string to in-
dicate that it is ready for the next command.

This symbol represents a carriage return, line-
feed operation. It is initiated by the entry of
a RETURN keyboard input. A RETURN input is norm-

~ally used to terminate each PIP input command.

Underscoring indicates computer typeout.
A number, either octal or decimal.

This up-arrow symbol indicates the use of a CTRL
key entry. The up-arrow is used with other char-
acdter key inputs to produce special control en-
tries such as 4C which requests that control be
returned to the Monitor. Up-arrows are also used
to enclose identifiers which may be assigned to
DECtapes using the facilities provided by PIP
(see 3.2.1.2.).




PIP - 378 -



=379 - PIP
SECTION 2

PIP COMMAND STRING AND ITS BASIC ELEMBNTS

2.1 COMMAND STRING

PIP command strings may be of any length; both upper and lower case
characters may be used. PIP commands are normally terminated and
the requested operation is initiated by a RETURN keyboard entry
(i.e., <CR>»). However, an ALT MODE, line feed, vertical TAB or

form feed keyboard entry can also be used as a command terminator.
2.1.1 Command Format

All PIP commands which involve the interchange (transfer) or data
must have the following format:

DESTINATION=SOURCE <Terminator>
where:

a. The DESTINATION portion of a PIP command describes
the device and file(s) which are to receive the
transferred data. This portion of a command con-
sists of either one file specification or a subset
of a file specification. :

b. The equals sign is a required delimiter in all PIP
commands to separate the DESTINATION and SOURCE por-
tions of the command.

c. The SOURCE side of the command describes the device
from which the transferred data is to be taken.
This portion of a command may contain one or more
file specifications or subsets of file specifications.

d. A Terminator is required to end each PIP command. A
RETURN entry (symbolized as <CR>) is normally used,
however, any other paper-motion command may be used
as a terminator.

PIP commands which do not require the transfer of information may be

written using the form
DESTINATION=Terminator

The equals delimiter and a terminator are still required in commands




PIP - 380 -

formatted in this manner despite the fact that only the destination
portion of the command is used.

2.1.2 File Specification

A file specification contains all of the information needed to identi-

fy a file involved in a PIP function. It may consist of:

device name;

filename;

directory identifier;

protection code which is to be assigned to
either a specified file, a User File Direc-
tory (UFD), or a SubFile Directory (SFD);
5. and an identifier to be assigned to the tape
mounted on a specified DECtape unit.

B W N
o IR TR )

The format of a PIP command containing all possible items of a file

specification is:
dev:name.ext [directory] <nnn>+ident+t=dev:name.ext [directory] <CR>

where:

1l. DEV is either a physical device name (e.g., DSK, DTAl,
etc.) or a logical device name (refer to paragraph 2.2).

2. NAME is a 1 to 6 alphameric character identification
which is either to be assigned to a new file (NAME is
on the destination side of the command) or which identi-
fies an existing file (NAME is on the source side of
the command). (Refer to paragraph 2.3 for a description
of filenames.)

3. EXT is a 1 to 3- character extension assigned to the name
of a file either by the user or by the system. - (Refer to
paragraph 2.3 for a description of filename extensions.)

4, [DIRECTORY] is the identifier of a specific directory
(i.e., UFD or MFD) within the system. This identifier
may consist of a project,programmer number pair and
Sub File Directory (SFD) names. (See paragraph 2.4 for
details.

5. <nnn> is a 3-digit protection code which is to be as-
signed to either one or more destination files or to a
specified User File Directory!. (Refer to paragraph
2.5 for a description of protection codes.)

6. +IDENT+ is a 1 to 6 character name which is to be given
to the contents of a DECtape reel mounted on a specified
DECtape unit. (Refer to paragraph 3.2.1.2 for details.)

!A User File Directory (UFD) is contained by the system for each user
permitted access to it. A user's UFD is identified by his project,pro-
grammer number; it contains the names of all files belonging to the
user together with pointers to the actual location of each file.

2-2



- 381 - PIP

The manner in which each of the possible elements of a file specifi-
cation may be used in either the destination or source portions of
a PIP command is described in the following table:

Element Destination Source

dev. Name of device onto which Name of device on which
the specified file is to the specified file re-
be written. sides.

name Name to be assigned to Name of the file to be
the copied file. copied.

.ext User-specified file-name Current filename exten-
extension. sion.

[directory] Identification of the disk 1Identification of the
storage area which is to disk storage area which
receive the file to be contains the file to be
transferred. copied.

NOTE

The [directory] identifier must include a full directory
path specification whenever sub-file directories are in-
volved. For example [proj,prog,SFDA...SFDn]. (See para-
graph 2.4 for more details.)

<nnn> Protection code to be as- NOT PERMITTED IN SOURCE
signed to either a copied PORTION OF PIP COMMANDS.
file or a specified UFD.

+ident+ Name to be assigned to NOT PERMITTED IN SOURCE

the tape mounted on a PORTION OF PIP COMMANDS.
specified DECtape unit.

File specifications may be delimited by:

1. an equals character (=) if the specification is on the
destination side of the command string (e.g.
dev:name.ext=...<CR>).

NOTE

PIP will accept a back-arrow entry (<)
in place of the equals character (=).

2. a comma (,) if the specification is on the source side
of the command string and is one of a series of file
specifications. For example

dev=devl:name.ext,dev2:name.ext,name.ext,..name.ext<CR>

3. a RETURN <CR> entry if it is the last item on the source
side of a command. For example

dev=devl:name.ext,dev2:name.ext,..devn:name.ext<CR>




PiP - 382 -
2.1.3 Command String Delimiters
The delimiters which may be used to separate the elements of a PIP

command string are described in the following table.

PIP COMMAND STRING DELIMITERS

Delimiter Use and Description

: The colon delimiter follows and identifies a device
name. For example, the device DTAl is specified as
DTAl: in PIP commands.

[1] Square brackets are used to enclose the user
DIRECTORY numbers and SFD names (if SFDs are used).
For example [40,633] or [40,633,SFD1,SFD2,...SFDn]
represent the manner in which DIRECTORY numbers
can be written.

< > Angle brackets must be used to enclose a protection
code (e.g. <@57> which is to be assigned to either
a file or a user file directory (UFD).

’ Commas are used to separate user project and pro-
grammer numbers, and file specification groups.
For example

dev: [40,633]=dev:name.ext,name.ext<CR>

+4 A name to be assigned as an identifier to a DEC-
tape is enclosed within a set of up-arrows (e.g.
+MACFLS*) .

. A period delimiter must be the first character of
a filename extension. The form on an extension is
ext, :

# A number symbol is used as a flag to indicate the
presence of an octal constant in a filename or a
filename extension.

An exclamation symbol may be used to delimit a
file specification. When used, the ! symbol
causes control to be returned to the Monitor from
PIP and the specified file (or program) to be
loaded and run. This function is provided as a
user convenience to eliminate the need for several
control entries.

= The equals character must be used to separate the
destination and source portions of a PIP command.

() Parentheses are used to enclose magnetic tape op-
tions, PIP control switches, and one or more PIP
function switches. The form of a command employing
parentheses to enclose a series of switches is:

dev:name.ext (swlsw2..swn)=...<CR>



- 383 - PIP
2.2 DEVICE NAMES
Both physical or logical device names may be used in PIP commands.
The user must remember that a logical name takes precedence over a
physical name when both are used in the same command.
2.2.1 Physical Device Names
Each standard DECsystem-10 peripheral device is assigned a specific
device name consisting of a 3-character generic name plus either a

unit number (0 to 777) or:

1) 3 characters,

2) 3 characters and a station number,
3) an abbreviated disk name or,

4) the name of a disk file structure.

A list of the generic physical device names is given below:

PERIPHERAL DEVICES

Device Generic Physical Device Name
Card Punch CDP
Card Reader CDR
Console TTY CTY
DECtape DTA
Disk DSK
Packs DPx
Fixed-Head FHx
Display DIS
Line Printer LPT
Magnetic Tape MTA
Operator Terminal OPR
Paper-tape Punch PTP
Paper-tape Reader PTR
Plotter PLT
Pseudo-TTY PTY
System Library SYS
Terminal TTY
Pseudo-device TMPCOR TMP

2.2.2 Logical Device Names

A logical device name is a user-assigned designation which is em-
ployed in the preparation of a program in place of a specific physi-
cal device name. The use of logical device names permits the program-
mer to write programs which do not specify one particular device but
may use, at run time, any available device which can perform the re-

quired function.




PIP - 384 -

Logical device names may consist of from one to six alphanumeric

characters of the user's choice.
2.3 FILENAMES

Filenames are file identifiers assigned either by the system (for
system programs) or by the user. A filename may consist of a name
field and an extension field but only a name field is required.
Whenever both fields are used in a filename, it has the form name.ext.
A period delimiter is required as the first character of the exten-

sion. Filename fields are defined as:

1. Name Field. Names of files may consist of from one
to six alphanumeric characters or octal constants;
in user-assigned names the characters may be arbitrar-
ily selected by the user. Names generated by the user
must be unique at least within the file structure in
which the file is located.

2. Extension Field. Filename extensions may consist of
up to three alphanumeric characters. Extensions are
normally used to specify the type of data contained
by the file identified by the filename field. File-
name extensions which are recognized by the system
and the type of data each specifies are given in Ap-
pendix A. 1In filenames, users may specify a standard
extension (one recognized by the system), one which
he has devised, or none at all. If no extension is
given in a filename, the system may add one to the
filename during PIP operations.

PIP utilizes the filename extension given in a file
specification to determine whether the file is to be
transferred in a binary or ASCII mode. If it is all
possible, PIP will transfer files in a binary mode
since it is faster.

In dealing with filename extensions PIP performs a
specific series of tests in order to determine the
mode which should be used during a requested transfer
operation. The following mode determination tests
are performed in succession until PIP obtains a firm
indication as to the type of mode required:

a) PIP tests for the presence of a data
mode switch (see paragraph 3.4.). If
no switch is found, PIP goes to the
next test. .

b) PIP tests for the presence of a known
(standard) filename extension which
specifies a binary mode of transfer
(see Appendix A). If no binary exten-
sions are found, PIP goes to the next
test.



- 385 - PIP

c) PIP tests both the input and output
devices specified to determine if they
are both capable of handling binary
data. If either or both of the devices
cannot handle binary, the transfer is made
in the ASCII mode. If both devices can
handle binary data, PIP goes to the next
test.

d) PIP tests for the presence of an X op-
tion switch (/X) in the command string;
if it is found, the transfer is made in
the binary mode. If an X option is-not
found, PIP goes to the next test.

e) PIP tests for the presence of commas
(non-delimiters) in the command string;
if commas are found an ASCII mode is
indicated. If no commas are found, the
transfer is made in the binary mode.

2.3.1 Naming Files with Octal Constants

Octal conétants may be used as either a part of or all of a filename.
In either of the foregoing cases, the first constant of each group
of octal constants which appear in a filename must be preceded by

the symbol #, and each group is delimited by a non-octal digit or

a character. For example, the filenames:

1. #124ABC.ext (constants are used as part of a filename)

2. #12AB#34.ext (constants are intermixed with other char-
acters)

3. #124679.#123 (constants form the whole filename)

are all acceptable to PIP.

The symbol # is not regarded by PIP as part of the filename but is

used only as a flag to PIP to indicate an octal constant.

The number of octal digits used in a filename or an extension should
be even since two octal constants may be stored in a SIXBIT character.

If an odd number of octal constants is given, PIP will add an extra

@ to the filename or extension. For example, the constant #123 would
be expanded to #123¢ by PIP.

Names comprised of octal constants are left-justified by PIP. The

fdllowing are examples of the use of octal filenames:

DTA@G1:4#124670.BIN=DSK: #1g0@¢@@.BIN<CR>

2-7



PIP - 386 -
2.3.2 Wildcard Characters

The two symbols * and ? may be used in PIP to represent, respectively,
complete fields and single characters. These symbols are referred
to as wildcard characters; their use is described in the following

paragraphs.

2.3.2.1 THE ASTERISK SYMBOL - The asterisk symbol * may be used

to replace a filename or extension:

1. name field (e.g. *.ext),
2. extension field (e.g. name,*),
3. both filename fields (e.g., *.*).

For example, the filename FILEA.MAC, which specifies the MACRO source
language file named FILEA, may be altered by the use of the asterisk
in the following manner:

1. *,MAC specifies all files with the extension .MAC.
2. FILEA.* specifies all files with the name FILEA, and,
3. *.,* specifies all files.

2.3.2.2 THE QUESTION MARK SYMBOL - The character ? may be used to
indicate a wild character in file names and extensions. The symbol ?
replaces characters of a filename to mask out any or all of the char-
acters of a name, extension or both the name and extension fields of
a file. When PIP processes a filename which includes ? characters,
it ignores the wildcard characters. This masking capability enables
the user to specify, with one command, groups of files whose file-
names have common characters identically positioned within their
filenames. For example, assume that the device DTAl contains the
files TEST1.BIN, TEST2.BIN, TEST3.BIN and TEST4.BIN; the user can
specify all of these files with one file specification:

DTAl:TEST?.BIN

2.3.2.3 COMBINING * AND ? WILDCARD SYMBOLS - The symbols * and ?
can be combined in filenames to specify specific groups of files which
have common characteristics in either or both of their name or exten-

sion files.



-387 - PIP
For example, the file specification
ABC???.%*

specifies all files having the character group ABC as the first
three characters of its filename. Again, the file specification
* 2?7

specifies all files having an extension which has the character A

as its third character.
In combining the * and ? symbols, the user should remember that for:

a. filenames, * is equivalent to ????2??, and

b. extensions, * is equivalent to ?2?7?.

2.4 DIRECTORY IDENTIFIER

The [directory] identifier is used in PIP commands to identify a

specific:

a) User File Directory (UFD),
b. Sub File Directory (SFD), or
c) a specific UFD-SFD directory path.

The item identified by a given [directory] identifier can be a direc-
tory or an item located within a directory which belongs to either
the current user or, when the protection code scheme permits, to
another user! (Refer to paragraph 2.5 for a description of protec-

tion codes.)

A [directory] identifier can consist of a project,programmer number
pair (abbreviated as proj,prog) and the names of SFDs. The most
expanded form of the [directory) identifier is:

[proj,prog,SFD1l,SFD2,...SFDn]

As shown, a [directory] identifier is always enclosed within square

brackets and its elements are delimited by commas.



PIP - 388 -
2.4.1 UFD-Only Identifiers

Each UFD is identified in the system by the project,programmer num-
ber pair assigned to the user for whom the UFD was created. A
[directory] identifier for a UFD has the form

[proj,prog]

{UFD [directory] identifiers may be written without either one or both
of the project,programmer numbers. In such cases, PIP assumes either
a previously specified default number or the number assigned to the
current user. For example, assume that the current user is logged

in under the number pair [57,124] and that no default identifier has
been specified. The current user can use [directory] identifiers

having any of the following formats:

The Format: Which is Interpreted by PIP as:
1) (., 1 [57,124]
2) [57, 1 [57,124]
3) [ ,124) [57,124]

2.4.2 SFD (Full Directory Path) Identifiers

A Sub File Directory (SFD) is identified by its user-assigned name
plus the project,programmer number pair which identifies the UFD
in which it is located. A [directory] identifier for an SFD then

has the form
[proj,prog,SFDname]

Whenever an SFD is located in a UFD which has a multi-level direc-
tory arrangement, the UFD containing the desired SFD must be in-
cluded in the [directory] identifier for the desired SFD. A [direc-
tory] identifier for an SFD in a multi-directory level UFD has the

form
[proj,prog,SFD1,SFD2,...SFDn]
and is referred to as a full directory path identifier. For example,

assuming that the current UFD is identified by the proj,prog number
pair 57,124 and has the following directory organization:



- 389 - PIP

Level 1 UFD

Level 2 SFDA

Level 3 SFD1 SFDB
Level 4 SFD2 SFDC

the [directory] identifier for SFD2 is written as
[57,124,SFDA,SFD1,SFD2]

The proj,prog number pairs in full directory path identifiers may
be written using the format variations described in paragraph 2.4.2.
However, when no proj,prog numbers are specified by the user, two

commas must be used in the identifier in the following manner
[,,SFD1,...SFDn]

The first comma represents the delimiter between the proj,prog num-
bers; the second represents the delimiter between the last number
(prog) and the first SFD name.

2.4.3 Specifying Default and Current [Directory] Identifiers

The position in which a [directory] identifier is given in a PIP
command determines if it is viewed as a default identifier for all
subsequent file specifications given in that command or is the

current identifier for an individual file specffication.

If a [Directory] identifier is given before one or more file speci-
fications of a command it regarded as the DEFAULT identifier for
those specifications. For example, in a command segment having the

form:
[directory A] File Specification 1,File Specification 2

the identifier [directory A] is the default for both File Specifica-
tions 1 and 2.

If a [Directory] identifier is given after the filename within a
File Specification it is viewed as the current identifier for that
file specification and will override any given default [directoryl].
The form of a file specification with the current identifier specified
is:

dev:filename.ext [directory]

2-11



PIP -390 -

Both default and current [directory] identifiers can be specified
in the same PIP command. For example, the PIP command source seg-

ment:

=dev: [directory Alfilename.ext,dev:filename.ext[directory B]<CR>

is valid. 1In the foregoing example, the identifier [directory A] is
the default identifier for the first file specification; and will
act as the default identifier for the second file specification if
[directory B] is not given. When [directory B] is given, it over-
rides the default identifier and is accepted as the identifier for

the second file specification.

2.5 FILE ACCESS PROTECTION CODES

Three-digit (octal) protection codes which specify the degree of ac-
cess that each of three possible types of users may gain to a file
can be specified in the destination side of a PIP command string.
File access protection codes are written within angle brackets and
must contain three digit positions (e.g., <nnn>). Each digit within
a protection code specifies the type of access a specific type of
user may have to the file or files involved. Considering the pro-
tection code <nln2n3> the digits give the file access code for the
following types of users:

a. nl = File OWNER
b. n2 = project MEMBER, and
c. n3 = OTHER system users.

The user types are defined as follows:

1. FLLE OWNERS. Users who are logged in under either:

a. the same programmer number as that of the
UFD which contains the file; or

b. the same project and programmer number as
associated with the UFD which contains the
file.

The decision as to which of the above items defines
an OWNER is made at Monitor Generation time.

2. PROJECT MEMBER. Users who are logged in under the

same project number as that which identifiers the
UFD containing the file.

2-12



- 391 - PIP

3. OTHER USERS, any user of the system whose project
and programmer number do not match those of the UFD
containing the file in question.

File access protection codes are placed in PIP commands after the
destination filename of the file involved. For example, the command

DPA3:FILEA.BIN<nnn>=DSK:SOURCE.BIN<CR>
copies the contents of file SOURCE.BIN onto disk pack device DPA3
under the name FILEA.BIN with an assigned file protection code of
nnn.
2.5.1 Digit Numeric Protection Code Values
Each of the digits in a 3-digit file protection code may be assigned
an encoded numeric value ranging from @ to 7. The meaning of each

octal value is:

Code Value Permitted Operations

7 No access privileges. File may be looked
up if the UFD permits.

6 Execute only.

5 Read, execute.

4 Append, read, execute.

3 Update, append, read, execute.

2 Write, update, append, read, execute.

1 Rename, write, update, append, read, execute.
'] Change protection, rename, write, update, ap-

pend, read, execute.

Files are afforded the greatest protection by the code value 7; the
least protection by @#. It is always possible for the owner of a

file to change the access protection associated with that file even

if the owner-protection field is not set to @; thus, the values §

and 1 are equivalent for the owner. Files with their owner-protection

field set to 1 are preserved (i.e., saved by .KJOB/K).

It is recommended that important files such as source files be as-
signed an owner-protection code of 2. This level of protection will
prevent the file from being accidentally deleted by permitting them

to be edited.
2-13



PIP -392 -

2.6 UFD AND SFD PROTECTION CODES

When a user directory (UFD or SFD) is created, it is assigned a
3-digit octal access protection code by either the owner of the
file or, by default, the system. The 3-digit code specifies the
type of access permitted to the directory by each of the three
possible classes of users (i.e., OWNER, MEMBER, or OTHER). (Refer

to paragraph 2.5 for a description of user classes.)

Once assigned, a directory access protection code may be changed

by the owner and, if the protection code permits (i.e. CREATES
allowed), by users other than the owner. (Refer to the description
of the PIP rename option given in paragraph 3.5.3.1 for the procedure

required to change directory protection codes.)

The access protection code assigned each user class may range from
0 through 7; the following table lists the codes and the operations
which each permits.

CODE PERMITTED OPERATION (S)
0 Access not permitted.
1 The directory may be read as a file.
2 CREATEs are permitted.
3 The directory may be read as a file and

CREATEs are permitted.
4 LOOKUPs are permitted.

5 The directory may be read as a file and
LOOKUPs are permitted.

6 CREATEs and LOOKUPs are both permitted.

7 The directory may be read as a file and
both CREATEs and LOOKUPs are permitted.

Revised June 1972



-393 - PIP

SECTION 3

STANDARD PIP SWITCHES

3.1 OPTIONAL PIP FUNCTIONS

PIP provides the user with a group of optional functions which can
be executed during the performance of the primary PIP transfer func-

tion.

Each optional function is assigned an identifier which, when added
as a "switch" to a PIP command, initiates the execution of the identi-

fied function.
For the purposes of this manual, the PIP optional functions are di-
vided into standard and special groups. The standard group of op-

tions described in this section consist of switches which:

determine which files are transferred;

edit all the data contained by each source file;
define the mode of transfer;

> W N
.

.

manipulate the directory of a directory-type device.

All optional functions which deal with non-directory devices and
which perform functions other than those listed above are considered

special and are described in Section 4.

3.1.1 Adding Switches to PIP Commands

All switches in PIP commands must be preceded by a slash (i.e., /sw);
for example, the optional function identified by the letter w is added
to a PIP command:

*DTAl:DESTFL.BIN/w=DSK:FILEA.BIN,FILEB.BIN<CR>

When more than one switch is to be added to a command, they may be
listed either separated by slashes (e.g., /B/X....) or enclosed in
parentheses (e.g., (BX)).



PIP -394 -
3.2 BASIC TRANSFER FUNCTION

The basic function performed by PIP is the interchange (i.e., read/
write transfer) of files or data blocks between devices. There are

two types of transfer operations:

1. An optional X-switch transfer in which the source
files or blocks are transferred as separate files
to the destination device.

2. A non-X type in which all files or blocks trans-
ferred from the source device are combined (i.e.,
concatenated) into a single file on the destina-
tion device.

3.2.1 X-Switch Copy Files Without Combining

The use of the X-switch enables the user to move (copy) a group of
source files onto the destination device as individual files without
changing their creation dates, time dates, filenames and filename
extensions. The following are examples of how the X-switch is used
in PIP:

1. To -transfer all the user's disk files to a DECtape,
type:

DTAl:/X=DSK:* . *<CR>

Assuming that there are three files on the user's
disk area named FILEA, FILEB, FILEC.REL, these
files will be transferred to DTAl and can be refer-
enced on DTAl by those names.

One significant difference between the disk and all
other devices is file protection. If the disk is
the source device, PIP will by-pass those protected
files to which the current user is not permitted
access. A suitable message is then issued by PIP
if the rest of the command string is successfully
executed. Similar processing is described later
for the L, Z and D switches. If none of these
switches is given, a requested DSK file which is
protected will cause termination of the request.

2. To transfer all the files from card reader to disk,
type:

DSK:/X+CDR: *<CR>

When transferring files from the card reader with
the * command, the input files must either be
wholly ASCII or wholly binary.



- 395 - PIP

3. To transfer two specific files from user [11,7]'s
disk area to a DECtape, type:

DTA2:/X=DSK:[11,7]FILEA,REL.FILEA.MAC<CR>

4. To copy files from a paper tape onto a directory-
type device, the user may employ either:

a. A copy command in which the number of files
to be read are specified by adding a series
of commas to the command after the source
device name (i.e., PTR,,,,,,,). The number
of commas required is always one less than
the total number of files to be transferred.
For example, the command:

DSK:/X=PTR:,,,,<CR>

specifies that five (5) files are to be
copied from paper tape and written, indi-
vidually, into the current user's disk area.

b. A copy command in which all the files con-
tained by a paper tape are to be copied onto
a specified device. For example, the command

DSK:/X=PTR: *<CR>

specifies that all files contained on the paper
tape loaded as PTR are to be copied into the
current user's disk area. Whenever a command
of this type is used, the last file on the
paper tape must be followed by two consecutive
end-of-file codes.

NOTE

In both the foregoing examples, PIP
will generate any needed destination
filenames. This function is described
in paragraph 3.2.1.1.

Whenever the X-switch is used and is not combined with an editing
option, PIP transfers any file involved as it appeared on the source
device. X-switch operations are copy operations and are referred

to as such.

3.2.1.1 NON-DIRECTORY TO DIRECTORY COPY OPERATION - 1In copying
files from a non-directory device onto a directory-type device, PIP
must perform special operations in naming the destination files. For
example, a special case of source and destination filenames arises

in the command:

DTA2 :FNME .EXT/X=MTAf@ : *<CR>



PIP - 396 -

Here, every file is to be copied from a non-directory device (MTAQ)
to a directory device (DTA2) without combining files (/X). Only one
destination filename is given (i.e., FNME.EXT) but the source device
(MTAZ) may contain more than one file. If more than one file is
transferred, it is necessary for PIP to generate a unique filename
for each copied file. PIP generates filenames by developing a 6-

character name field in which the first three characters are either:

1. the first three characters of a given destination
filename, or

2. the characters "XXX" if no destination filename
is given in the command.

The second portion of the PIP-generated name field consists of the
decimal numbers @@l through 999 which are added, 1in sequence, to
each filename developed during the /X copy operation.

For filename extensions, PIP uses either the extension of a given
destination filename or a null field if no filename is given in the

command.

For example, assuming that three files are present on MTA@, the

command :

DTA2:FNME.EXT/X=MTA@: *<CR>

transfers the files to DTA2 and establishes the following names-in

the DECtape directory for the files copied:

1. FNM@@l.EXT,
2. FNM@@2.EXT,
3. FNM@@3.EXT.

If, in the above example, the command given did not include a destina-
tion filename (i.e., DTA2:/X=MTAf@:*<CR>) the copied files would have

been named:

1. XXXpgg1
2. XXXpg2
3. XXX@g@3



- 397 - PIP

The use of the 3-digit decimal number for the last three characters
of the filename name gives the user 999 possible input files from
non-directory devices. If PIP finds more than 999 files on the
source device it will terminate the transfer operation after the

999th file is copied and will issue the error message
?TERMINATE/X,MAX OF 999 FILES PROCESSED.

Any error messages referring to individual files named by PIP (either
input or output) will use the generated filename.

3.2.1.2 ASSIGNING NAMES TO DECTAPE TAPES - A tape mounted on a
specified DECtape unit can be assigned an identifier during copy
operations. Identifiers are from 1 to 6 character names (any SIXBIT
character - except 4 - within the code range 40-137 can be used)
which are added to the DECtape's directory (128th word). DECtape
identifiers can be read by PIP, FILEX and DIRECT programs; the
Monitor does not read identifiers. A DECtape identifier is assigned
by adding the selected name to a PIP command when the DECtape to be

named is mounted on the specified destination device.
The format-required for a DECtape identifier is
+name+

A DECtape identifier is inserted into a PIP command following the

given destination device name:

dev:tnamet=source file specification(s)
For example, the command

*DTA3:4MYFILE+/X=DTAl:* *
specifies that the DECtape on device DTA3 be given the identifier
"MYFILE" and receive copies of all the files contained by the tape
on device DTAl,

3.2.2 DX-Switch, Copy All But Specified Files

When the DX-switch is added to a PIP command it causes all the files

to be copied from the source device to the destination device except



PIP - 398 -

those files which are named in the command string. If the source
device is DSK, a maximum of 10 source-file specifications are allowed.
Only directory-type devices are allowed as source devices; no check
is made on the existence of the files which are not to be copied.

Only one source device is permitted; for example, the command
DTAl: (ZDX)=DSK:*.LST, *.SAV,CREF.CRF<CR>

zeroes out the directory of DTAl and transfers to DTAl, from the
disk, all files except CREF.CRF and all files with either the exten-
sion .LST or .SAV.

3.2.3 Transfer Without X-Switch (Combine Files)

When the X-switch is not included in a PIP command all files or
blocks transferred from the source device are combined into a single

file on the destination device. For example:

1. To combine three paper tape files into one, type
PTP:=PTR:, ,<CR>

2. To combine two files on DECtape into one on another
DECtape, type

DTA3:FILCOM=DTA2:FILA,FILB<CR>

3. To combine files from two DECtapes into one on
the user's disk area, type

DSK:DSKFIL=DTA2:0NE,DTA4:TWO.MAC<CR>

4., To combine all the files on MTA@ into one file on
the user's disk area, type

DSK:TAPE .MAC=MTAM : *<CR>
(This assumes that MTA@ is positioned at the Load
Point) .

3.2.4 U-Switch, Copy DECtape Blocks g, 1 and 2

The U-switch is used during DECtape-to-DECtape copy operation to
specify that Blocks @, 1 and 2 of the source tape are to be copied
onto the destination tape.

This switch is commonly used to transfer DTBOOT from one tape to

another. For example, the command:



- 399 - PIP

DTAl:/U=DTAS5:<CR>
transfers blocks @ through 2 of DTA5 to DTAl.
3.3.1 A-Switch, Integral Output Lines (Line Blocking)

The use of the A-switch (/A) in a PIP command specifies that each
output buffer is to contain an integral number of lines, no lines
are to be split between physical output buffers. Line blocking is
required for FORTRAN ASCII input. Each line starts with a new word.

3.3.2 C-Switch, Delete Trailing Spaces and Convert Multiple Spaces
to Tabs

The addition of a C-switch (/C) to a PIP command causes groups of
multiple spaces in the material being copied to be replaced by one
or more TAB codes; trailing spaces are deleted.

The conversion of the spaces to TAB codes is performed in relation
to the standard line TAB "stop" positions located at 8-character
intervals throughout the line. Only those groups of multiple spaces
which precede a TAB "stop" will produce a TAB code. For example:

1. [space][stop]—Qwill not produce a' TAB code.
2. [space][space] [stop]--will produce [TAB].

3. [space] [space] [stop] [space] [space]l--will produce [TAB]
[space] [space]

A totally blank input line is replaced by one space when this switch
is used. The C-switch is used to save space when storing card images
in DSK file structures. The conversion of spaces to tabs must be
done with care since it could alter Hollerith text.

3.3.3 E-Switch, Ignore Card Sequence Numbers

This switch, normally used when a card reader is the source device,
causes characters (i.e., columns) 73 through 8¢ of each input line

to be replaced by spaces.

3.3.4 N-Switch, Delete Sequence Number

This switch causes line sequence numbers to be deleted from any

ASCII file being transferred. Line sequence numbers are recognized

3-7



PIP - 400 -

as any word in the file in which bit 35 is a binary 1 and follows a
carriage return, vertical TAB, form feed for start-of-file identifi-
cation. Nulls used to fill the last word(s) of a line are ignored.
If a line sequence number is followed by a TAB, the TAB is also
deleted.

3.3.5 S-Switch, Insert Sequence Numbers

This switch causes a line sequence number to be computed and inserted
as the output buffer at the start of each line. Sequence numbers are
indicated by a 1 in bit 35 of a word following a carriage return, a

vertical TAB or start-of-file indicator.

Sequence numbers assigned by PIP take the form nnnnn, startihg at
#9@1@ and ranging through 999f in increments of 1f. Approximately
one-third of each output buffer is left blank to facilitate editing
operations on the file (DTA only).

3.3.6 O-Switch, Insert Sequence Numbers and Increment By 1

This switch causes the same operations to be performed as those for
switch S, (see 3.3.5) except that the assigned sequence numbers are
incremented by 1 instead of 14.

3.3.7 P-Switch, Prepare FORTRAN Output for Line Printer Listing

This switch causes PIP to take output generated by a FORTRAN program,
which was output on a device other than the line printer (LPT), for
which it was intended, and performs the carriage control character
interpretations needed when the data is sent to the LPT. The first
character in each input line is interpreted by PIP according to the
following table.



- 401 - PIP

FORTRAN CARRIAGE CONTROL CHARACTER INTERPRETATION

Carriage Control

Character Produced ASCII Character (s)
by FORTRAN Program Substituted Line Printer Action
space Skips to next line
(single space) with a
FORM FEED after every
\ 64 lines.
* @23 Skips to next line with
no FORM FEED.
+ 215 Precede line with a car-
riage return only (i.e.,
over-print previous
line).
, (comma) @21 Skips to next 1/3¢gth of
page.
= 715,012,012 Skips two lines.
. @22 Skips to next 1/2@th of
page.
/ @24 Skips to next 1/6th of
page.
g g215,012 Skips 1 line (double
space) .
1 g14 Skips to top of next
page (page eject).
2 220 Skips to next 1/2 page.
3 g13 Skips to next 1/3 page
(also vertical tab).
3.3.7.1 COPY FORTRAN BINARY FILES - The binary mode switch (/B)

can be combined with /P in a PIP command to enable the user to obtain

a copy of a FORTRAN binary file. The /B/P switch combination is needed
when copying FORTRAN binary file(s) from a DECtape source onto a Disk
in order to insert a needed control word into each physical buffer.

The /B/P switch combination is not needed if both the source and
destination devices have the same buffer size. The format for a

FORTRAN binary file copy command is

dev:name.ext/B/P=dev:name.ext...<CR>



PIP - 402 -
3.3.8 T-Switch, Delete Trailing Spaces

This switch causes all trailing spaces to be deleted from the file
being transferred. If a transfer line consists of nothing but spaces,
then a single space and a line terminator will be retained in its place

in the copied file.
3.3.9 W-Switch, Converts Tabs to Spaces

The addition of a W-switch (/W) to a PIP command causes each TAB code
contained by the material being copied to be converted to one or

more sequential spaces.

The number of spaces produced when a TAB code is converted is deter-
mined by the position of the TAB in relation to the standard line TAB
"stops". Each line has TAB stops positioned at 8-character intervals
throughout the length of the line. When a TAB is converted in a /W
switch operation, only enough spaces are produced to reach the next

sequential line TAB stop position. For example, the series
[stop]ABCD [TAB]
is converted to
[stop] ABCDspspspsp [stop]
where:
sp = space.
The use of the W-switch causes files previously edited by the use
of a C-switch to be restored to their original form (less the deleted
trailing spaces).
3.3.10 V-Switch, Match Angle Brackets
This switch is not a true edit switch, because the input file is not
edited. The use of this switch generates an output file which con-
tains the results of cumulative matching of angle brackets located
in the input file. If a line in the input file contains brackets

which are not needed to match earlier brackets and which match each

other, no output occurs. In all other cases where brackets occur,



- 403 - PIP

a cumulative total and the line currently considered are printed.

The symbol > scores a negative count; the symbol < scores a positive
count. A typical use for this switch is to check source input to

the MACRO-10 Assembler; for example, assuming that the file A contains:

ONE<<>
TWO<
THREE>
FOUR<>>
FIVE<>
SIX>

The request

LPT:=DTA2:A/V<CR>

results in the Line Printer output:

1 ONE<<>
2 TWO<

1 THREE>
@ FOUR<>>
-1 SIX>

From this general example, the most likely conclusion is that there
is either a < missing or an extra > in this file. Line five (i.e.,
FIVE <>) was not printed because the brackets which it contained

were matched.
3.3.11 Y-Switch, DECtape to Paper Tape

The Y-switch enables the user to transfer DECtape files having the
filename extension .RMT, .RTB or .SAV onto SAVE-formatted RIM1g or
RIM1g@ paper tapes. The type and contents of the paper tape produced
in a Y-transfer is determined by the source file filename extension.

If the extension is:
1. .RMT, - A RIM1f paper tape (with terminating trans-
fer word) is produced;

2. .RTB, - A RIM1gg paper tape (with RIM loader and
terminating transfer word) is produced;

3. .SAV, - A RIM1@B paper tape is produced (with
neither RIM loader nor terminating transfer word).

For example, the command

PTP:/Y=DTA2:TESTI.RTB<CR>

3-11



PIP - 404 -

will punch a RIM1@B tape as described in item 1 of the foregoing
description from DECtape file TESTI.RTB.

Switches D and X may be used in conjunction with the Y-switch.

It is assumed that .RTB, .RMT and .SAV files are all in the standard
"save" file format. 1In particular, it is assumed that no block of

an .RMT saved file overlaps a preceding one.

NOTE

Optional switch Y is obtained by setting RIMSW=1
at assembly time (see source file PIP.CTL.).

The functions performed by PIP during /Y transfers in response to

each possible type of source file filename extension are:

1. An .RTB file causes PIP to:

a._ Punch a RIM loader.

b. Punch an I/0 word (-n,x) at the start of each
data block. The variable n is the number of
data word<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>