
-
!

, (

I

I (~

l

FORTRAN IV (F 40)

, (

(

•

(

l

(

b

,
,\

FORTRAN IV (F40)
PROGRAMMER'S

REFERENCE MANUAL

The information in this ,document reflects the software as of
Version 27 of the FORTRAN Compiler.

Additional copies of this manual may be ordered from: Software Distribution Center,

Digital Equipment Corporation, Maynard, Ma 01754 Order Code: DEC-I0-LFLMA-B-D

DIGITAL EQUIPMENT CORPORATION. MAYNARD, MASSACHUSETTS

1st Printing March 1967
2nd Printing (Rev) November 1967
3rd Printing (Rev) September 1968
4th Printing April 1969
5th Printing June 1969
6th Printing September 1969
7th Printing (Rev) February 1970
Update Pages October 1970
Update Pages February 1971
Update Pages October 1971
Update Pages May 1972
Update Pages June 1974·
8th Printing (Rev) January 1975

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a
single computer system and can be copied (with inclusion of DIGITAL's copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIG IT AL.

Copyright©1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975
by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this document requests
the user's critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP
COMPUTER LAB
COMSYST
COMTEX
DDT
DEC
DECCOMM
DECTAPE
DIBOL

DIGITAL
DNC
EDGRIN
EDUSYSTEM
FLIP CHIP
FOCAL
GLC-8
IDAC
IDACS

INDAC
KAlO
LAB-8
LAB-8/e
LAB-K
OMNIBUS
OS/8
PDP
PHA

PS/8
QUICKPOINT
RAD-8
RSTS
RSX
RTM
RT-ll
SABR
TYPESET 8
UNIBUS

.,

"

CONTENTS

Page

PREFACE ... ix

INTRODUCTION TO THE FORTRAN SYSTEM ... xi

SECTION

CHAPTER

CHAPTER

CHAPTER

I THE DECsystem-lO FORTRAN IV (F40) LANGUAGE

1 INTRODUCTION TO THE FORTRAN LANGUAGE
1.1 Line Format .. 1-1
1.1.1 Statement Number Field .. " 1-1
1.1.2 Line Continuation Field .. 1-1
1.1.3 Statement Field , 1-2
1.1.4 Comment Line .. 1-3
1.2 Character Set. ... 1-3

2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2

3
3.1

CONSTANTS, VARIABLES, AND EXPRESSIONS
Constants .. " 2-1
Integer Constants .. 2-1
Real Constants .. 2-1
Double Precision Constants 2-2
Octal Constants .. 2-2
Complex Constants .. 2-2
Logical Constants .. 2-3
Literal Constants .. 2-3
Variables ... 2-4
Scalar Variables .. 2-4
Array Variables .. 2-4
Expressions ... 2-6
Numeric Expressions .. 2-6
Logical Expressions .. 2-9

THE ARITHMETIC STATEMENT
General Description .. 3-1

iii

CHAPTER

CHAPTER

CHAPTER

4
4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.3
4.4
4.5
4.6
4.7

5
5.1
5.1.1
5.1.2
5.2.
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.3
5.4

6
6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.2.1
6.2.2
6.3
6.3.1

CONTENTS (Cont)

Page
CONTROL STATEMENTS
GO TO Statemen t. ... 4-1
Unconditional GO TO Statements 4-1
Computed GO TO Statements 4-1
Assigned GO TO Statement 4-2
IF Statement .. 4-2
Numerical IF Statements 4-3
Logical IF Statements .. 4-3
DO Statement ... 4-4
CONTINUE Statement. .. 4-6
PAUSE Statement " 4-6
STOP Statement ... 4-7
END Statement ... 4-7

DATA TRANSMISSION STATEMENTS
Nonexecutable Statements 5-1
FORMAT Statement. .. 5-1
NAMELIST Statement. 5-11
Data Transmission Statements 5-13
Input/Output Lists .. 5-13
Input/Output Records ... 5-14
PRINT Statement .. 5-15
PUNCH Statement " 5-15
TYPE Statement. ... 5-16
WRITE Statemen t. ... 5-16
READ Statemen 1. .. 5-17
REREAD Statemen t. ... 5-18
ACCEPT Statement. .. 5-19
Device Control Statements 5-20
Encode and Decode Statements 5-20

SPECIFICATION STATEMENTS
Storage Specification Statements 6-2
DIMENSION Statement. 6-2
COMMON Statement .. 6-4
EQUIVALENCE Statement '" 6-5
EQUIV ALENCE and COMMON 6-6
Data Specification Statements 6-6
DATA Statement .. 6-7
BLOCK DATA Statement 6-8
Type Declaration Statements 6-8
IMPLICIT Statement. .. 6-9

iv

CHAPTER

CHAPTER

CHAPTER

SECTION

CHAPTER

CHAPTER

7
7.1
7.2
7.3
7.4
7.4.1
7.5
7.5.1
7.5.2
7.5.3
7.6
7.6.1
7.7.

8
8.1
8.1.1
8.1.2

9

II

10
10.1
10.1.1
10.2
10.2.1
10.2.2

11
11.1
11.2
11.3
11.4

11.5

CONTENTS (Cont)

Page
SUBPROGRAM STATEMENTS
Dummy Identifiers .. 7-1
Library Subprograms ... 7-1
Arithmetic Function Definition Statement 7-1
FUNCTION Subprograms 7-2
FUNCTION Statement. .. 7-2
SUBROUTINE Subprograms 7-4
SUBROUTINE Statement 7-4
CALL Statement .. 7-5
RETURN Statement ... 7-5
BLOCK DATA Subprograms 7-6
BLOCK DATA Statement 7-6
EXTERNAL Statement .. 7-6

FILE CONTROL STATEMENTS
OPEN and CLOSE Statements 8-1
Options for OPEN and CLOSE Statements 8-2
Summary ofOPEN/CLOSE Statement Options , 8-9

SUMMARY OF DECsystem-10 FORTRAN STATEMENTS 9-1

THE OBJECT TIME SYSTEM

FORLIB
The FORTRAN Object Time System , 10-1
FOROTS .. 10-1
Science Library and FORTRAN Utility Subprograms 10-2
FORTRAN Library Functions 10-2
FORTRAN Library Subroutines 10-7

INTERACTING WITH NON-FORTRAN PROGRAMS AND FILES
Calling Sequences ... 11-1
Accum ulator Usage ... 11-1
Argument Lists ... 11-2
Converting Existing MACRO-10 Libraries for Use
with FORTRAN ... 11-4
Mixing FORTRAN-lO and FORTRAN IV (F40) Compiled
Programs .. 11-4

v

CHAPTER

CHAPTER

APPENDIX

APPENDIX

12
12.1
12.2
12.3

13
13.1
13.2
13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.3
13.3.1
13.3.2

A
A.l
A.2

B
B.l
B.2
B.3
B.4
B.5
B.6
B.7
B.S
B.9
B.1O
B.ll
B.12
B.13
B.14
B.15
B.16
B.17
B.1S
B.19
B.20

CONTENTS (Cont)

FORTRAN IV (F40) COMPILER AND DIAGNOSTICS
Running the FORTRAN IV (F40) Compiler 12-1
Monitor Commands to Run the FORTRAN IV (F40) Compiler 12-1
Diagnostics .. 12-3

FORTRAN USER PROGRAMMING
ASCII Character Set. .. 13-1
FORTRAN Input/Output 13-2
Logical and Physical Peripheral Device Assignments 13-3
ASCII Data Files .. 13-5
FORTRAN Binary Data Files 13-5
Mixed Mode Data Files .. 13-6
Image Mode Files ... 13-6
Random Access Programming 13-7
How to Use Random Access 13-7
Restrictions .. 13-7

LIMITATIONS IN THE FORTRAN IV (F40) COMPILER
Code Generation Errors .. A-I
Error Conditions Which Do Not Generate
Correct Error Messages .. A-2

SUMMARY OF DDT FUNCTIONS
Type-out Modes ... B-1
Address Modes .. B-1
Radix Change ... B-2
Prevailing vs. Temporary Modes B-2
Storage Words .. B-2
Related Storage Word .. B-3
One-Time Only Typeouts B-3
Typing In ... B-4
Symbols .. B-5
Special DDT Symbols .. B-5
Arithmetic Operators .. B-6
Field Delimiters in Symbolic Typeins B-6
Breakpoints ... B-6
Conditional Breakpoints .. B-7
Starting the Program ... B-7
Searching .. B-S
Unused Functions ... B-S
Zeroing Memory .. B-S
Special Characters ... B-9
Paper Tape Commands ... B-9

vi

~-.

1-1
2-1
4-1

2-1
3-1
5-1
5-2
5-3
8-1
10-1
10-2
12-1
12-2
12-3
13-1
13-2
13-3

FIGURES

Page

Typical FORTRAN Coding Form 1-2
Array Storage ... 2-5
Nested 00 Loops .. 4-5

TABLES

Page

Types of Resultant Subexpressions 2-8
Allowed Assignment Statements 3-2
MagnitudeofInternal Data 5-3
Numeric Field Codes: .. 5-3
Device Control Statements 5-20
OPEN/CLOSE Statement Arguments 8-10
FORTRAN Library Functions 10-3
FORTRAN Library Subroutines 10-7
FORTRAN Compiler Switch Options 12-2
FORTRAN Compiler Diagnostics (Command Errors) 12-3
FORTRAN Compiler Diagnostics (Compilation Errors) 12-5
ASCII Character Set. : 13-1
DECsystem-lO FOR TRAN Standard Peripheral Devices 13-2
FORTRAN Logical Device Assignments 13-4

vii

r,.·

PREFACE

This is a reference manual describing the specific statements and features of the FORTRAN IV
(F40) language for the DECsystem-lO. It is written for the experienced FORTRAN programmer
who is interested in writing and running FORTRAN programs alone or in conjunction with
MACRO-IO programs in the time-sharing environment. Familiarity with the basic concepts of
FORTRAN programming on the part of the user is assumed. DECsystem-lO
FORTRAN conforms to the requirements of the USA Standard FORTRAN (1966).

FORTRAN IV (F40) is one of two FORTRAN compilers offered by Digital Equipment
Corporation. The languages implemented by these two compilers are slightly different. The other
FORTRAN compiler is called FORTRAN-IO and is described in the DECsystem-lO
FORTRAN-lO Language Manual (DEC-IO-LFORA-C-D). The FORTRAN-IO Language Manual
contains a complete description of the FOROTS object time system which is used by both compi
lers.

ix

)

)

INTRODUCTION TO THE FORTRAN SYSTEM

The FORTRAN compiler translates source programs written in the FORTRAN language into the
machine language of the DECsystem-lO. This translated version ofthe FORTRAN program exists
as a retrievable, relocatable binary file on some storage device. All relocatable binary filenames
have the extension .REL ifthey reside on a directory-oriented device (disk or DECtape).

In order for the FORTRAN program to be processed, LINK-IO must load the relocatable binary
file into core memory. Also loaded are any relocatable binary files found in the FORTRAN library
(FORLIB) which are necessary for the program's execution. Within the FORTRAN source pro- I
gram, the library files may be called explicitly, such as SIN, in the statement

X=SIN(Y)

or implicitly, such as FLOUT., the floating-point to ASCII conversion routine, which is implied in
the following statements.

PRINT 3,X
3 FORMAT(1X,F4.2)

A FORTRAN main program and its FORTRAN and/or MACRO-lO subprograms may be com
piled or assembled separately and then linked together by LINK-lO at load time. The core image
may then be saved on a storage device. When saved on a directory storage device, these files have
the extension .sA V.

The monitor acts as the interface between the user and the computer so that all users are protected
from one another and appear to have system resources available to themselves. Several user pro
grams are loaded into core at once and the monitor schedules each program to run for a certain
length of time. The monitor directs data flow between I/O devices and user programs, making the
programs device independent, and overlaps 110 operations concurrently with computations.

In a multiprogramming system, all jobs reside in core and the scheduler decides which of these
jobs should run. In a swapping system, jobs can exist on an external storage device (usually disk)
as well as in core. The scheduler decides not only which job is to run but also when a job is to be
swapped out onto the disk or brought back into core.

The number of users that can be handled by a given size time-sharing configuration is further in
creased by using the reentrant user-programming capability. This means that a sequence of in
structions may be entered by more than one user job at a time. Therefore, a single copy of a reen
trant program may be shared by a number of users at the same time to increase system economy.
The FORTRAN compiler and operating system are both reentrant.

xi

<.'

SECTION I

The DECsystem-lO FORTRAN IV (F40) Language

The seven chapters of this section deal with the DECsystem 10 FORTRAN IV (F40) language.
Included in these chapters are the language elements of FORTRAN and the six categories of
FORTRAN statements (arithmetic, control, input/output, specification, subprogram, and file I
control).

CHAPTER 1

INTRODUCTION TO THE FORTRAN LANGUAGE

The term FORTRAN (FORmula TRANslation) is used interchangeably to designate both the
FORTRAN language and the FORTRAN translator or compiler. The FORTRAN language is
composed of mathematical-form statements constructed in accordance with precisely formulated
rules. FORTRAN programs consist of meaningful sequences of FORTRAN statements intended
to direct the computer to perform the specified operations and computations.

The FORTRAN compiler is itself a computer program that examines FORTRAN statements and
tells the computer how to translate the statements into machine language. The compiler runs in a
minimum of 12K of core. The program written in FORTRAN language is called the source pro
gram. The resultant machine language program is called the object program.

1.1 LINE FORMAT

Each line of a FORTRAN program consists of three fields: statement number field, line continua
tion field, and statement field. A typical FORTRAN program is shown in Figure 1-1.

1.1.1 Statement Number Field

A statement number consists of from one to five digits in columns 1-5. Leading zeros and all
blanks in this field are ignored. Statement numbers may be in any order and must be unique. Any
statement referenced by another statement must have a statement number. For source programs
prepared on a teletypewriter, a horizontal tab may be used to skip to the statement field with from
o through 5 characters in the label field. This is the only place a tab is not treated as a space.

1.1.2 Line Continuation Field

If a FORTRAN statement is so large that it cannot conveniently fit into one statement field, the
statement fields of up to 19 additional lines may be used to specify the complete statement. Any
line which is not continued, or the first line of a sequence of continued lines, must have a blank or
zero in column 6. Continuation lines must have a character other than blank or zero in column 6. If
a continuation line is desired when a TAB is used in the statement number field, a digit from 1 to 9
must immediately follow the TAB.

1-1

FORTRAN
CODER DATE PAGE

CODING FORM PftOBlEM

C-Con"'1enl
S·SJ'l"I'Ibolrc

1~;AaT~~;:~ FORTRAN STATEMENT IDENTIfiCATION

NUMB!~

1 2 3 .4 5 7 8 9 10 11 12131"151617181920212223~2S26272a29303' 3233 3.3536373839 .. 041 .. 2.35 .. 6,47 .. 8.495051525354555657585960616263 ,A 656661616970n n 137' 75767778791

T HIS PROJiRM CA.LCULA,TE 5 PRIME NllMBERS FR,QM 1..4.- TO 50
D,Q 10 1=11 50 2

J = 1
4 J,= J+ 2

A=J,

- ,I,I!..

L-III

B =A-L

I F .(,B.), 5 1 0 5
5 I F ,(,J •. LT . .s.QRT .(FL.QAT .(I.l.l.) .GO TO 4

TY P E 105 I

1.0, .QNTI NUE

1 05 FORMAT ,(I4 ' IS PR IM.E: ',)

lEND

, ..

I 2 3 .. .5 6 7. , 1011 1213,. 15 1617'1'9202122231'252627212930 313213U153&3731".O .. ' .. :z.,5..,. .. 7 ... A9.50.51S:zS3S.SS56S75.5960616263'46,5666761.,70.7111 73707""n",, ..
PG-3 DIGITAL EQUIPMENT CORPORATION • MAYNARD. MASSACHUSETTS

Figure 1-1 Typical FORTRAN Coding Form

1.1.3 Statement Field

Any FORTRAN statement, as described in later sections, may appear in the statement field (col
umns 7-72). Except for alphanumeric data within a FORMAT statement, DATA statement, or lit
eral constant, blanks (spaces) and TABS are ignored and may be used freely for appearance pur
poses. Thus the following statements are equivalent.

END (tab) FILE (tab) 2
END (space) FILE (space) 2
ENDFILE2

1-2

1.1.4 Comment Line

Any line that starts with one of the characters $ * I or the letter C in column 1 is interpreted as a
line of comments. Comment lines are printed onto any listings requested but are otherwise ignored
by the compiler. Columns 2-72 may be used in any format for comment purposes. A comment line
must not immediately precede a continuation line.

As an aid for program debugging, the letter D in column 1 causes the line to be interpreted as a
comment unless the II switch appears in the command string. (Refer to Table 12-1 for Compiler
Switch options.) If the II switch is present, the letter D in column 1 is interpreted as a space and
the line is compiled as a program statement.

1.2 CHARACTER SET

The following characters are used in the FORTRAN language:

Blank 0 (cL P
1 A Q

" 2 B R

3 C S

$ 4 D T

% 5 E U

& 6 F V

7 G W

(8 H X
) 9 I y

* J Z

+ K l
< L

M

> N

I ? 0

NOTE

ASCII characters greater than Z (1328) are replaced by
the error character "l". See Chapter 13 for the internal
representation of these characters.

1-3

..

..

CHAPTER 2

CONSTANTS, VARIABLES, AND EXPRESSIONS

The rules for defining constants and variables and for forming expressions are described in this
chapter.

2.1 CONSTANTS

Seven types of constants are permitted in a FORTRAN source program: integer or fixed point, real
or single precision floating point, double precision floating point, octal, complex, logical, and literal.

2.1.1 Integer Constants

An integer constant consists of from one to eleven decimal digits written without a decimal point.
A negative constant must be preceded by a minus sign. A positive constant may be preceded by a
plus sign.

Examples: 3
+10

-528
8085

An integer constant must fall within the range -235+ 1 to 235-1. When used for the value of a sub
script, the value of the integer constant is taken as modulo 218.

2.1.2 Real Constants

Real constants are written as a string of decimal digits including a decimal point. A real constant
may consist of any number of digits but only the leftmost 9 digits appear in the compiled program.
Real constants may be given a decimal scale factor by appending an E followed by a signed integer
constant. The field following the letter E must not be blank, but may be zero.

Examples: 15.
0.0
.579

-10.794
5.0E(i.e., 5000.)
5.0E+3(i.e.,5000)
5.0E-3(i.e.,0.005)

2-1

A real constant has precision to eight digits. The magnitude must lie approximately within the
range 0.14 x 1O-38to 1.7 X 1038• Real constants occupy one word of DECsystem-l0 storage.

2.1.3 Double Precision Constants

A double precision constant is specified by a string of decimal digits, including a decimal point,
which are followed by the letter D and a signed decimal scale factor. The field following the letter
D must not be blank, but may be zero.

Examples: 24.671325982134 DO
3.6D2(i.e.,360.)
3.6D-2 (i.e., .036)
3.0DO

Double precision constants have precision to 16 digits. The magnitude of a double precision con
stant must lie approximately between 0.14x 10-38 and 1.7 x 1038• Double precision constants occupy
two words of DECsystem -10 storage.

2.1.4 Octal Constants

A number preceded by a double quote represents an octal constant. An octal constant may appear
in an arithmetic or logical expression or a DATA statement. Only the digits 0-7 may be used and
only the last twelve digits are significant. A minus sign may precede the octal number, in which
case the number is negated. A maximum of 12 octal digits are stored in each 36-bit word.

Examples: "7777
"-31563

2.1.S Complex Constants

FORTRAN provides for direct operations on complex numbers. Complex constants are written as
_ an ordered pair of real constants separated by a comma and enclosed in parentheses.

Examples: (.70712, -.70712)
(8.763E3,2.297)

The first constant of the pair represents the real part of the complex number, and the second con
stant represents the imaginary part. The real and imaginary parts may each be signed. The enclos
ing parentheses are part of the constant and always appear, regardless of context. Each part is in
ternally represented by one single precision floating point word. They occupy consecutive loca
tions of DECsystem-l0 storage.

2-2

--,

FORTRAN arithmetic operations on complex numbers, unlike normal arithmetic operations,
must be of the form:

A±B =a\±b\+i(a2±b2)

A*B = (a\b\-a2b2) +i(a2b\ a\b2)

(a\b\+a2b2) +i(a2b\-a\b2)

A/B=----

where A = a\ + ia2 , B = b\ + ib2, and i =F-l

2.1.6 Logical Constants -

The two logical constants, .TRUE. and .FALSE., have the internal values -1 and 0, respectively.
The enclosing periods are part of the constant and always appear.

Logical constants may be entered in DATA or input statements as signed octal integers (-1 and
0). Logical quantities may be operated on in either arithmetic or logical statements. Only the sign is
tested to determine the truth value of a logical variable.

2.1.7 Literal Constants

A literal constant may be in either of two forms

A. A string of alphanumeric and/or special characters enclosed in single quotes; two
adjacent single quotes within the constant are treated as one single quote.

B. A string of characters in the form

where x\x2 ••• xn is the literal constant, and n is the number of characters following
theH.

Literal constants may be entered in DATA statements or input statements as a string of up to five
7-bit ASCII characters per variable 00 characters if the variable is double precision or complex).
Literal constants may be operated on in either arithmetic or logical statements.

NOTE
Literal constants used as subprogram arguments will
have a zero word as an end-of-string indicator.

2-3

Examples:

2.2 VARIABLES

CALL SUB ('LITERAL CONSTANT')
'DON"T'
5HDON'T
A = 'FIVE' + 42
B = (5HABCDE.AND."376)/2

A variable is a quantity whose value may change during the execution of a program. Variables are
specified by name and type. The name of a variable consists of one or more alphanumeric charac
ters, the first one of which must be alphabetic. Only the first six characters are interpreted as de
fining the variable name. The type of variable (integer, real, logical, double precision, or complex)
may be specified explicitly by a type declaration statement or implicitly by the IMPLICIT state
ment. If the variable is not specified in this manner, then a first letter ofI, J, K, L, M or N indicates
a fixed point (integer) variable; any other first letter indicates a floating point (real) variable. Vari
ables of any type may be either scalar or array variables. When used in a subscript or as an index to
a DO Statement, the value of the integer variable is taken as modulo 218 •

2.2.1 Scalar Variables

A scalar variable represents a single quantity.

Examples:

2.2.2 Array Variables

A
G2
POPULATION

An array variable represents a single element of an n dimensional array of quantities. The variable
is denoted by the array name followed by a subscript list enclosed in parentheses. The subscript list
is a sequence of integer expressions, separated by commas. The expressions may be of any form or
type providing they are explicitly changed to type integer when each is completely evaluated. Each
expression represents a subscript, and the values of the expressions determine the array element
referred to. For example, the row vector Ai would be represented by the subscripted variable A(J),
and the element, in the second column of the first row of the square matrix A, would be repre
sented by AO,2). Arrays may have any number of dimensions.

Examples: YO)
STATION (K)
A (3* K+2, I, J-I)

The three arrays above (Y, STATION, and A) would have to be dimensioned by a DIMENSION,
COMMON, or type declaration statement prior to their first appearance in an executable state
ment or in a DATA or NAMELISTstatement. (Array dimensioning is discussed in Chapter 6).

2-4

1-Dimensional Array A(10)

,A(I) ,A(2) ,A(3), A(4), A(5) I A(6) I A(7) I A(8) I A(9) I A(lO) I
CONSECUTIVE STORAGE LOCATIONS

2-Dimensional Array B(5,5)

3-Dimensional Array C(5,5,5)

51 C(I,I,3)

52 C(2.I,3)

26 ClI.I.2) 31 CO,2.2l
27 C(2J,2) 32 C(22 2)

I C(I I I) 6 C(12 I) II C(l3 I)
2 C(2,I,I) 7 C(2.2.1l 12 C(2,3,1)
3 C(3.I,I) 8 C(3.2.1) 13 C(3,31)
4 C(41 I) 9 C(42 I) 14 C(431)
5 C(5.I,I) 10 C(5.2.1) 15 C(5,3.1)

I 8(1.1) 6 B(I.2) II B(I.3) 16 B(I.4) 21 B(I.5)

2 B(2.1) 7 B(2.2) 12 B(2.3) 17 B(2,4) 22 B(2.5)

3 B(3.1) 8 B(3.2) 13 B(3.3) 18 B(3.4) 23 B(3.5)

4 B(4.1) 9 B(4.2) 14 B(4.3) 19 B(4.4) 24 B(4.5)

5 B(5.1) 10 B(5.2) 15 B(5.3) 20 B(5.4) 25 B(5.5)

B(3.1) IS THE THIRD STORAGE WORD IN SEQUENCE

B(3.4) IS THE EIGHTEENTH STORAGE WORD IN SEQUENCE

101 C(I.I.5) 106 C(I.2.5) III C(1.3,5) 116 C(I.4.5) 121 C(I.5,5)

102 C(2.1.5) 107 C(2.2,5) 112 C(23.5) 117 C(2.4,5) 122 C(2,5,5)

76 C(I.I.4) 81 C(I.2.4) 86 C(l3.4) 91 C(144) 96 CII 5 4) 118 C(3.4,5) 123 C(3,5, 5)

77 C(2,I,4) 82 C(2,2,4) 87 C(2,3.41 92 C(24,41 97 C(2,5,4) 119 C(4,4,5) 124 C(4 5 5)

56 C(I,2,3) 61 CII,3,3) 66 C(I,4,3) 71 C(I,5,3) 98 C(3,5.4) 120 C(5,4,5) 125 C(5,5,5)

57 C(2,2.3) 62 C(2,3,3) 67 C!2,4.3) 72 C(2.5,3) 99 C(4,5,4)

36 c(l.3,2) 41 C(I.4,2) 46 C(I.5.2) 73 C(3,5.3) 100 C(5,5,4)

37 C(2.3,2) 42 C(242) 47 C(2.5.2) 74 C(4.5.3)
16 C(l4 I) 21 CO 5 I) 4B C(3,5,2) 75 C(5,5.3)
17 C(2,4 .1) 22 C(2.5.1) 49 C(4.5,2)
18 C(341) 23 C(351) 50 C(5,5,2)
19 C(44 I) 24 C(451)
20 c(5.4.1) 25 C(5.5.1)

C(1,3,2) is the 36th storage word in sequence,

C(l, 1 ,5) is the 101st storage word in sequence,

Figure 2-1
Array Storage

2-5

Arrays are stored in increasing storage locations with the first subscript varying most rapidly and
the last subscript varying least rapidly. For example, the 2-dimensional array BO, 1) is stored in the
following order: BO,n, B(2,!), ... , BO,n, BO,2), B(2,2), ... , BO,2), ... , BO,J).

2.3 EXPRESSIONS

Expressions may be either numeric or logical. To evaluate an expression, the object program per
forms the calculations specified by the quantities and operators within the expression.

2.3.1 Numeric Expressions

A numeric expression is a sequence of constants, variables, and function references separated by
numeric operators and parentheses in accordance with mathematical convention and the rules
given below.

The numeric operators are +, -, *, t, **, denoting, respectively, addition, subtraction, mUltiplica
tion, division, and exponentiation.

In addition to the basic numeric operators, function references are also provided to facilitate the
evaluation of functions such as sine, cosine, and square root. A function is a subprogram which
acts upon one or more quantities, called arguments, to produce a single quantity called the function
value. Function references are denoted by the identifier, which names the function (such as SIN,
COS, etc.), followed by an argument list enclosed in parentheses:

identifier(argument, argument, ... , argument)

At least one argument must be present. An argument may be an expression, an array identifier, a
subprogram identifier, or an alphanumeric string.

Function type is given by the type of the identifier which names the function. The type of the
function is independent of the types of its arguments. (See Chapter 7, Section 7.4.1.1.)

A numeric expression may consist of a single element (constant, variable, or function reference):

2.71828
ZeN)
TAN (THETA)

Compound numeric expressions may be formed by using numeric operations to combine basic
elements:

X+3.
TOTALIA
TAN(PhM)
(X+3.) -(TOTALlA) *TAN (PhM)

2-6

Compound numeric expressions must be constructed according to the following rules:

A. With respect to the numeric operators +, -, *, I, any type of quantity (logical, octal,
integer, real, double precision, complex or literal) may be combined with any other,
with one exception: a complex quantity cannot be combined with a double precision
quantity.

The resultant type of the combination of any two types may be found in Table 2-1.
The conversions between data types will occur as follows:

(1) A literal constant will be combined with any integer constant as an integer
and with a real or double word as a real or double word quantity. (Double
word refers to both double precision and complex.)

(2) An integer quantity (constant, variable, or function reference) combined
with a real or double word quantity results in an expression of the type
real or double word respectively; e.g., an integer variable plus a complex
variable will result in a complex subexpression. The integer is converted
to floating point and then added to the real part of the complex number.
The imaginary part is unchanged.

(3) A real quantity (constant, variable, or function reference) combined with
a double word quantity results in an expression that is of the same type as
the double word quantity.

(4) A logical or octal quantity is combined with an integer, real, or double
word quantity as if it were an integer quantity in the integer case, or a real
quantity in the real or double word case (i.e., no conversion takes place).

B. Any numeric expression may be enclosed in parentheses and considered to be a ba
sic element.

(X+Y)/2
(ZETA)
(COS(SIN(PhM)+X))

C. Numeric expressions which are preceded by a + or - sign are also numeric expres
sions:

+X
-(ALPHA*BETA)
-SQRT(-GAMMA)

D. If the precedence of numeric operations is not given explicitly by parentheses, it is
understood to be the following (in order of decreasing precedence):

Operator

**
* and I
+and-

2-7

Explanation

numeric exponentiation
numeric multiplication and division
numeric addition and subtraction

In the case of operations of equal hierarchy, the calculation is performed from left to
right.

E. No two numeric operators may appear in sequence. For instance:

is improper. Use of parentheses yields the correct form:

By use of the foregoing rules, all permissible numeric expressions may be formed. As an example
of a typical numeric expression using numeric operators and a function reference, the expression
for one of the roots of the general quadratic equation:

would be coded as:

-b+ .Jb 2 - 4ac
2a

Table 2-1
Types of Resultant Sub expressions

Type of Quantity

+, -, *, I Real Integer Complex

Real Real Real Complex

Integer Real Integer Complex

Complex Complex Complex Complex

Type of
Quantity

Double Double Double Not
Precision Precision Precision Allowed

Logical, Real Integer Complex
Octal, or
Literal

2-8

Logical,
Double Octal, or
Precision Literal

Double Real
Precision

Double Integer
Precision

Not Complex
Allowed

Double Double
Precision Precision

Double Logical,
Precision Octal, or

Literal

2.3.2 Logical Expressions

A logical expression consists of constants, variables, function references, and arithmetic expres
sions, separated by logical operators or relational operators. Logical expressions are provided in
FORTRAN to permit the implementation of various forms of symbolic logic. Logical masks may
be represented by using octal constants. The result of a logical expression has the logical value
TRUE (negative) or FALSE (positive or zero) and therefore, only uses one word.

2.3.2.1 Logical Operators - The logical operators, which include the enclosing periods and their
definitions, are as follows, where P and Q are expressions:

. NOT.P

P.AND.Q

P.OR.Q

P.XOR.Q

P.EQV.Q

Has the value. TR UE. only if P is .F ALSE., and has the value .F ALSE .
only if Pis .TR UE.

Has the value .TRUE. only ifP and Q are both .TRUE., and has the
value .F ALSE. if either P or Q is .F ALSE.

(Inclusive OR) Has the value .TRUE. if either P or Q is .TRUE., and
has the value .F ALSE. only if both P and Q are .F ALSE.

(Exclusive OR) Has the value .TRUE. if either P or Q but not both are
.TRUE., and has the value .FALSE. otherwise.

(Equivalence) Has the value .TRUE. ifP and Q are both .TRUE. or
bo!h .F ALSE., and has the value .F ALSE. otherwise.

Logical expressions are evaluated by combining the full word values of P and Q (only the high
order part if P and Q are double precision, only the real part if P and Q are complex) using the
appropriate logical operator. The result is .TR UE. if it is arithmetically negative and FALSE if it is
arithmetically positive or zero.

Logical operators may be used to form new variables, for example,

x = Y.AND.Z
E = E.xOR."400000000000

2.3.2.2 Relational Operators - The relational operators are as follows:

Operator

.GT.

.GE.

.LT .

. LE.

.EQ.

.NE.

2-9

Relation

greater than
greater than or equal to
less than
less than or equal to
equal to
not equal to

The enclosing periods are part ofthe operato.r and must be present.

Mixed expressions involving integer, real, and double precision types may be combined with rela
tionals. The value of such an expression will be .TRUE. (-1) or .FALSE. (0).

The relational operators .EQ. and .NE. may also be used with COMPLEX expressions. (Double
word quantities are equal ifthe corresponding parts are equal.)

A logical expression may consist of a single element (constant, varia_ble, function reference, or re
lation):

.TRUE.
X.GE.3.14159

Single elements may be combined through use oflogical operators to form compound logical ex
pressions, such as:

TV AL.AND.lNDEX
BOOL(M) .OR.K.EQ.LIMIT

Any logical expression may be enclosed in parentheses and regarded as an element:

(T.XOR.S) .AND.(R.EQ V.Q)
CALL PARITY «2.GT.Y.OR.X.GE.Y).AND.NEVER)

Any logical expression may be preceded by the unary operator .NOT. as in:

.NOT.T

.NOT.x+7.GT.Y+Z
BOOL(K).AND .. NOT.(TV AL.OR.R)

No two logical operators may appear in sequence, except in the case where .NOT. appears as the
second of two logical operators, as in the example above. Two decimal points may appear in se
quence, as in the example above, or when one belongs to an operator and the other to a constant.

When the precedence of operators is not given explicitly by parentheses, it is understood to be as
follows (in order of decreasing precedence):

**
*,!
+-,
.GT.,.GE.,.LT.,.LE.,.EQ.,.NE .
. NOT .
. AND .
. OR .
. EQV., .xOR.

2-10

For example, the logical expression:

.NOT.ZETA**2+Y*MASS.GT.K-2.0R.PARITY.AND. X.EQ.Y

is interpreted as

(.NOT.«(ZETA**2)+(Y*MASS».GT.(K-2»).OR. (PARITY.AND.(X.EQ.Y»

2-11

CHAPTER 3

THE ARITHMETIC STATEMENT

3.1 GENERAL DESCRIPTION

One of the key features of FORTRAN is the ease with which arithmetic computations can be
coded~ Computations to be performed by FORTRAN are indicated by arithmetic statements,
which have the general form:

A=B

where A is a variable, B is an expression, and = is a replacement operator. The arithmetic state
ment causes the FORTRAN object program to evaluate the expression B and assign the resultant
value to the variable A. Note that the = sign signifies replacement, not equality. Thus, expressions
of the form:

A=A+Band
A=A*B

are quite meaningful and indicate that the value of the variable A is to be replaced by the result of
the expression to the right of the = sign.

Examples: Y=l*Y
P=.TRUE.
X(N)=N*ZETA(ALPHA *M/PI)+(I.,-l.)

Table 3-1 indicates which type of expression may be equated to each type of variable in an
arithmetic statement. 0 indicates that the assignment is performed directly (no conversion of any

sort is done); R indicates that only the real part of the variable is set to the value of the expression
(the imaginary part is set to zero); C means that the expression is converted to the type of the
variable; and H means that only the high-order portion of the evaluated expression is assigned to
the variable.

The expression value is made to agree in type with the assignment variable before replacement
occurs. For example, in the statement:

THETA=W*(ABETA+E)

if THETA is an integer and the expression is real, the expression value is truncated to an integer
before assignment to THETA.

3-1

Table 3-1
Allowed Assignment Statements

Expression

Variable Real Integer Complex

Real D C R,D

Integer C D R,C

Complex D,R,I C,R,I D

Double D,H,L, C,H,L R,D,H,L
Precision

Logical D D R,D

D - Direct Replacement

C - Conversion between integer and floating point

R - Real only

- Set imaginary part to 0

H - High order only

L - Set low order part to 0

3-2

Logical,
Double Octal,or
Precision Literal

Constant

H,D D

H,C D

H,D,R,I D,R,I

D D,H,L

H,D D

CHAPTER 4

CONTROL STATEMENTS

FOR TRAN compiled programs normally execute statements sequentially in the order in which
they were presented to the compiler. However, the following control statements are available to
alter the normal sequence of statement execution: GO TO, IF, DO, PAUSE, STOP, END, CALL,
RETURN. CALL and RETURN are used to enter and return from subroutines.

4.1 GO TO STATEMENT

The GO TO statement has three forms: unconditional, computed, and assigned.

4.1.1 Unconditional GO TO Statements

Unconditional GO TO statements are of the form:

GOTOn

where n is the number of an executable statement. Control is transferred to the statement num
bered n. An unconditional GO TO statement may appear anywhere in the source program, except
as the terminal statement of a DO loop.

4.1.2 Computed GO TO Statements

Computed GO TO statements have the form:

where nl'n 2, ••• ,n k are statement numbers, and i is an integer expression.

This statement transfers control to the statement numbered nl'n 2, ••• ,nk if i has the value
1, 2, ... ,k, respectively. If i exceeds the size of the list of statement numbers or is less than one,

execution will proceed to the next executable statement. Any number of statement numbers may
appear in the list. There is no restriction on other uses for the integer variable i in the program.

4-1

In the example

GO TO (20,1O,5),K

the variable K acts as a switch, causing a transfer to statement 20 if K= 1, to statement 10 if K=2, or
to statement 5 if K=3.

A computed GO TO statement may appear anywhere in the source program, except as the termi
nal statement of a DO loop.

4.1.3 Assigned GO TO Statement·

Assigned GO TO statements have two equivalent forms:

GOTOk

and

where k is a variable or array element and np n2, ••• ,nk are statement numbers. Any number of
statement numbers may appear in the list. Both forms of the assigned GO TO have the effect of
transferring control to the statement whose number is currently associated with the variable k.
The second form of the assigned GO TO statement passes control to the next executable statement
if k is not associated with one of the statement numbers in the list. This association is established
through the use of the ASSIGN statement, the general form of which is:

ASSIGN i TO k

where i is a statement number and k is a variable or array element. If more than one ASSIGN
statement refers to the same integer variable name, the value assigned by the last executed state
ment is the current value.

Examples: ASSIGN 21 TO INT ASSIGN 1000 TO INT

GO TO INT GO TO INT, (2,21,1000,310)

An assigned GO TO statement may appear anywhere in the source program, except as the termi
nal statement of a DO loop.

4.2 IF STATEMENT

IF statements have two forms in FORTRAN: numerical and logical.

4-2

4.2.1 Numerical IF Statements

Numerical IF statements are of the form:

where nl'n 2,n3 are statement numbers. This statement transfers control to the statement num
bered nl'n 2,n 3 if the value of the numeric expression is less than, equal to, or greater than zero,
respectively. All three statement numbers must be present. The expression may not be complex.

Examples: IF (ETA) 4,7,12
IF (KAPPA-L 00» 20,14,14

4.2.2 Logical IF Statements

Logical IF statements have the form:

IF (expression)S

where S is a complete statement. The expression must be logical. S may be any executable state
ment other than a DO statement or another logical IF statement (see Chapter 2, Section 2.3.2). If
the value of the expression is .F ALSE. (positive or zero), control passes to the next sequential
statement. If value of the expression is .TRUE. (negative), statement S is executed. After execu
tion of S, control passes to the next sequential statement unless S is a numerical IF statement or a
GO TO statement; in these cases, control is transferred as indicated. If the expression is .TRUE.
(negative) and S is a CALL statement, control is transferred to the next sequential statement upon
return from the subroutine.

Numbers are present in the logical expression:

IF (B)Y=X*SIN(Z)
W=Y**2

If the value of B is .TRUE., the statements Y=X*SIN(Z) and W==Y**2 are executed in that order.
If the value ofB is .FALSE., the statement Y=X*SIN(Z) is not executed.

Examples: IF (T.OR.S)X=Y+l
IF (Z.GT.x(K» CALL SWITCH (S,Y)
IF (K.EQ.lNDEX) GO TO 15

NOTE

Care should be taken in testing floating point numbers
for equality in IF statements as rounding may cause
unexpected results.

4-3

4.3 DOSTATEMENT

The DO statement simplifies the coding of iterative procedures. DO statements are of the form:

where n is a statement number, i is a nonsubscripted integer variable, and ml'm2,m3 are any in
teger expressions. If m3 is not specified, it is understood to be 1.

The DO statement causes the statements which follow, up to and including the statement num
bered n, to be executed repeatedly. This group of statements is called the range of the DO state
ment. The integer variable i of the DO statement is called the index. The values of ml'm 2, and m3'
are called, respectively, the initial, limit, and increment values of the index.

A zero increment (m3) is not allowed. The increment m3 may be negative if mj~m2' Ifm j:::::;m2,
the increment m3 must be positive. The index variable can assume legal values only if
(m2-m)*m3~0. (m j is the current value of the index variable m!.)

Examples: Form

DO 10 1=1,5,2
DO 10 1=5,1,-1
DO 10 I=J,K,5
DO 10 I=J,K,-5
DO 10 L=I,J,-K
DO 10 L=I,J,K

J:::::;K
J~K

Restriction

I:::::;J,K <0 or I~J,K >0
I:::::;J,K >0 or I~J,K <0

Initially, the statements of the range are executed with the initial value assigned to the index. This
initial execution is always performed, regardless of the values of the limit and increment. After
each execution of the range, the increment value is added to the value of the index and the result
is compared with the limit value. If the value of the index is not greater than the limit value, the
range is executed again using the new value of the index. When the increment value is negative,
another execution will be performed if the new value of the index is not less than the limit value.

After the last execution of the range, control passes to the statement immediately following the
range. This exit from the range is called the normal exit. Exit may also be accomplished by a trans
fer from within the range.

The range of a DO statement may include other DO statements, provided that the range of each
contained DO statement is entirely within the range of the containing DO statement. When one
00 loop is completely contained in another, it is said to be nested. DO loops can be nested to any
depth. A transfer into the range of a DO statement from outside the range is not allowed.

More than one DO loop within a nest of DO loops can end on the same statement. This terminal
statement is considered to belong to the innermost DO loop that ends on the terminal statement.
The statement label of such a terminal statement cannot be used in any GO TO or arithmetic IF
statements except those that occur within the 00 loop to which the terminal statement belongs.

4-4

\
I

Valid DO Loop Nest

c

Control must not pass from within loop A
or loop B into loop D, or from loop D into'
loop A or loop B.

Invalid DO Loop Nest

B

A

c

Loop C is not fully within the rarige of
loop B even though it is within the range
ofloop A.

Figure 4-1
Nested DO Loops

Within the range of a DO statement, the index is available for use as an ordinary variable. After a
transfer from within the range, the index retains its current value and is available for use as a vari
able. The value of the index variable becomes undefined when the DO loop it controls is satisfied.
The values of the initial, limit, and incremen t variables for the index and the index of the DO loop,
may not be altered within the range of the DO statement.

The range of a DO statement must not end with a GO TO type statement or a numerical IF state
ment. If an assigned GO TO statement is in the range of a DO loop, all the statements to which it
may transfer must be either in the range of the DO loop or all must be outside the range. A logical
IF statement is allowed as the last statement of the range. In this case, control is transferred as
follows. The range is considered ended when, and if, control would normally pass to the statement
following the entire logical IF statement.

As an example, consider the sequences:

DO 5 K = 1,4
5 IF(X(K).GT.Y(K))Y(K) = X(K)
6 ...

Statement 5 is executed four times whether the statement Y(K) = X(K) is executed or not. State
ment 6 is not executed until statement 5 has been executed four times.

4-5

Examples: DO 22 L = 1,30
DO 45 K = 2,LlMIT,-3
DO 7 X = T,MAX,L

4.4 CONTINUESTATEMENT

The CONTINUE statement has the form:

CONTINUE

This statement is a dummy statement, used primarily as a target for transfers, particularly as the
last statement in the range of a DO statement. For example, in the sequence:

DO 7 K = START,END

IF (X(K»22,13,7

7 CONTINUE

a positive value of X(K) begins another execution of the range. The CONTINUE provides a target
address for the IF statement and ends the range of the DO statement.

4.5 PAUSE STATEMENT

The PAUSE statement enables the program to incorporate operator activity into the sequence of
automatic events. The PAUSE statement assumes one of three forms:

PAUSE
PAUSE n
PAUSE 'xxxxx'

where n is an unsigned string of six or less octal digits, and 'xxxxx' is a literal message.

Execution of the PAUSE statemen t causes the message or the octal digits, if any, to be typed on
the user's teletypewriter, Program execution may be resumed (at the next executable FORTRAN
statement) from the console by typing "G", followed by a carriage return. Program execution may
be terminated by typing "X," followed by a carriage return,

Example: PAUSE 167
PAUSE 'NOW IS THE TIME'

4-6

4.6 STOP STATEMENT

The STOP statement has the forms:

STOP or
STOP n

where n is an unsigned string of one to five octal digits.

The STOP statement terminates the program and returns control to the monitor system. (Termina
tion of a program may also be accomplished by a CALL to the EXIT or DUMP subroutines.) Use
of the STOP statement implies a call to the EXIT subroutine.

4.7 ENDSTATEMENT

The END statement has the form:

END

The END statement informs the compiler to terminate compilation and must be the physically last
statement of the program. The END statement implies a STOP statement in a main program or a
RETURN statement in a subroutine or a function. The END statement is implied by an end-of
file.

4-7

CHAPTER 5

DATA TRANSMISSION STATEMENTS

Data transmission statements are used to control the transfer of data between computer memory
and either peripheral devices or other locations in computer memory. These statements are also
used to specify the format of the output data. Data transmission statements are divided into the
following four categories.

A. Nonexecutable statements that enable conversions between internal form data
within core memory and external form data (FORMAT), or specify lists of arrays
and variables for input/output transfer (NAMELIST).

B. Statements that specify transmission of data between computer memory and I/O
devices: READ, WRITE, PRINT, PUNCH, TYPE, ACCEPT.

C. Statements that control magnetic tape unit mechanisms: REWIND, BACKSPACE,
END FILE, UNLOAD, SKIP RECORD.

D. Statements that specify transmission of data between series of locations in memory:
ENCODE, DECODE.

5.1 NONEXECUTABLE STATEMENTS

The FORMAT statement enables the user to specify the form and arrangement of data on the se
lected external medium. The NAMELIST statement provides for conversion and input/output
transmission of data without reference to a FORMAT statement.

5.1.1 FORMAT Statement

FORMAT statements may be used with any appropriate input/output medium or
ENCODE/DECODE statement. FORMAT statements are of the form:

n FORMAT (SI'S2'''' SJ S: S~, ... , S! / .. .)

where n is a statement number, and each S is a data field specification.

FORMAT statements may be placed anywhere in the source program. Unless the FORMAT
statement contains only alphanumeric data for direct input/output transmission, it will be used in
conjunction with the list of a data transmission statemen t.

5-1

Slashes are used to specify unit records, which must be one of the following:

A. A tape or disk record with a maximum length corresponding to a line buffer (135
ASCII characters).

B. A punched card with a maximum of 80 characters.

C. A printed line with a maximum of 72 characters for a terminal and either 120 or 132
characters for the line printer.

During transmission of data, the object program scans the designated FORMAT statement. If a
specification for a numeric field is present (see Section 5.2.1 of this chapter) and the data transmis
sion statement contains items remaining to be transmitted, transmission takes place according to
the specifications. This process ceases and execution of the data transmission statement is termi
nated as soon as all specified items have been transmitted. Thus, the FORMAT statement may
contain specifications for more items than are specified by the data transmission statement. Con
versely, the FORMAT statement may contain specifications for fewer items than are specified by
the data transmission statement.

The following types of field specifications may appear in a FORMAT statement: numeric, numeric
with scale factors, logical, alphanumeric. The FORMAT statement also provides for handling mul
tiple record formats, formats stored as data, carriage control, skipping characters, blapk insertion,
and repetition. If an input list requires more characters than the input device supplies for a given
unit record, blanks are supplied.

5.1.1.1 Numeric Fields - Numeric field specification codes designate the type of conversion to
be performed. These codes and the corresponding internal and external forms of the num bers are
listed in Table 5-2.

The conversions are specified by the forms:

1. Dw.d
2. Ew.d
3. Fw.d
4. Iw
5. Ow
6. Gw.d

Gw
Gw.d,Gw.d

(for real or double precision)
(for integer or logical)
(for complex)

respectively. The letter D, E, F, 1,0, or G designates the conversion type; w is an integer specify
ing the field width, which may be greater than required to provide for blank columns between
numbers; d is an integer specifying the number of decimal places to the right of the decimal point
or, for G conversion, the number of significant digits. (For D, E, F, and G input, the position of the
decimal point in the external field takes precedence over the value of d in the format.)

For example,

FORMAT (I5,F10.2,D18.1O)

5-2

I ,

could be used to output the line,

bbb32bbbb-17.60bbb.5962547681D+03

on the output listing.

The G format is the general format code that is used to transmit real, double precision, integer,
logical, or complex data. The rules for input depend on the type specification of the corresponding
variable in the data list. The form of the output con version also depends on the individual variable
except in the case of real and double-precision data. In these cases the form of the output conver
sion is a function of the magnitude of the data being converted. The following table shows the
magnitude of the external data, M, and the resulting method of conversion.

Table 5-1
Magnitude of Internal Data

Magnitude of Data Resulting Conversion

O.1~M<l F(w-4).d,4x
l~M<lO F(w-4).(d-l),4x

10d-2~M< l()d-i F(w-4).l,4x
10d-i~M<lOd F(w-4).O,4x
All others Ew.d

The field width w should always be large enough to include spaces for the decimal point, sign, and
exponent. In all numeric field conversions if w is not large enough to accommodate the converted
number, the excess digits on the left will be lost; if the number is less than w spaces in length, the
number is right-adjusted in the field.

Conversion
Code

D

E

F

I

0

Table 5-2
Numeric Field Codes

Internal Form

Binary floating point
double.precision

Binary floating point

Binary floating point

Binary integer

Binary integer

5-3

External Form

Decimal floating point
with D exponent

Decimal floating point
with E exponent

Decimal fixed point

Decimal integer

Octal integer

Conversion
Code

G

Table 5-2 (Cont)
Numeric Field Codes

Internal Form

One of~he following:
single precision
binary floating point,
binary integer,
binary logical, or
binary complex

External Form

Single precision
decimal floating point
integer, logical (T or
F), or complex (two
decimal floating point
numbers), depending
upon the internal form

5.1.1.2 Numeric Fields with Scale Factors - Scale factors may be specified for D, E, F, and G
conversions. A scale factor is written nP where P is the identifying character and n is a signed or
unsigned integer that specifies the scale factor.

For F type conversions (or G type, if the external field is decimal fixed point), the scale factor
specifies a power of ten so that

external number = (internal number)* 10 (scalefactar)

For D, E, and G (external field not decimal fixed point) conversions, the scale factor multiplies the
number by a power of ten, but the exponent is changed accordingly leaving the number un
changed except in form. For example, if the statement:

FORMAT (F8.3,EI6.5)

corresponds to the line

bb26.451 bbbb-0.41321E-Ol

then the statement

FORMAT (-lPF8.3,2PE16.5)

might correspond to the line

bbb2.645bbb-41.32157E-03

In input operations, F type (and G type, if the external field is decimal fixed point) conversions are
the only types affected by scale factors.

When no scale factor is specified, it is understood to be zero. However, once a scale factor is speci
fied, it holds for all subsequent D, E, F, and G type conversions within the same format unless
another scale factor is encountered. The scale factor is reset to zero by specifying a scale factor of
zero. Scale factors have no effect on I and 0 type conversions.

5-4

5.1.1.3 Logical Fields - Logical data can be transmitted in a manner similar to numeric data by
use of the specification:

Lw

where L is the control character and w is an integer specifying the field width. The data is transmit
ted as the value of a logical variable in the input/output list.

If on input, the first non blank character in the data field is Tor F, the value of the logical variable
will be stored as true or false, respectively. If the entire data field'is blank or empty, a value of false
will be stored.

On output, w minus 1 blanks followed by T or F will be output if the value of the logical variable is
true or false, respectively.

5.1.1.4 Variable Field Width - The D, E, F, G, I, and 0 conversion types may appear in a FOR
MAT statement without the specification of the field width (w) or the number of places after the
decimal point (d). In the case of input, omitting the w implies that the numeric field is delimited by
any character which would otherwise be illegal in the field, in addition to the characters -, +,., E,
D, and blank provided they follow the numeric field. For example, input according to the format

10 FORMAT (21, F, E, 0)

might appear on the input medium as

-10,3/15.621-.0016E-1O,777.

In this case, commas delimit the numeric fields, blanks may also be used as field delimiters. On
output, omitting the w has the following effect:

Format

D
E
F
G
I
o

Becomes

D25.16
E15.7
F15.7
G 15.7 or G25.16
115
015

5.1.1.5 Alphanumeric Fields - Alphanumeric data can be transmitted in a manner similar to
numeric data by use of the form Aw, where A is the control character and w is the number of
characters in the field. The alphan umeric characters are transmitted as the value of a variable in an
input/output list. The variable may be of any type. For the sequence:

5-5

READ 5,V
5 FORMAT (A4)

causes four characters to be read and placed in memory as the value of the variable V.

Although w may have any value; the number of characters transmitted is limited by the maximum
number of characters which can be stored in the space allotted for the variable. This maximum
depends upon the variable type. For a double precision variable the maximum is ten characters;
for all other variables, the maximum is five characters. If w exceeds the maximum, the leftmost
characters are lost on input and replaced with blanks on output. If, on input, w is less than the
maximum, blanks are filled in to the right of the given characters until the maximum is reached.
If, on output, w is less than the maximum, the leftmost w characters are transmitted to the external
medium. Since for complex variables each word requires a separate field specification, the maxi
mum value for w is 5. For example,

COMPLEXC
ACCEPT 1, C

1 "FORMAT (2A5)

could be used to transmit ten alphanumeric characters into complex variable C.

5.1.1.6 Alphanumeric Data Within Format Statements - Alphanumeric data may be transmitted
directly into or from the format statement by two different methods: H-conversion, or the use of
single quotes.

In H-conversion, the alphanumeric string is specified by the format nH. H is the control character
and n is the number of characters in the string counting blanks. For example, the format in the
statement below can be used to print PROGRAM COMPLETE on the output listing.

FORMAT (17H PROGRAM COMPLETE)

The statement

FORMAT (16HPROGRAM COMPLETE)

causes ROGRAM COMPLETE to be printed.

Referring to this format in a READ statement would cause the 17 characters to be replaced with a
new string of characters.

The same effect is achieved by merely enclosing the alphanumeric data in quotes. The result is the
same as in H-conversion; on input, the characters between the quotes are replaced by input char
acters, and, on output, the characters between the quotes" (including blanks) are written as part of
the output data. A quote character within the data is represented by two successive quote marks.
For example, referring to:

FORMAT (' DON"T')

with an output statement would cause DON'T to be printed. Referring to

5-6

,a-

\
i

FORMAT ('DON''T')

causes ON'T to be printed. The first character referenced by the FORMAT statement for output is
interpreted as a carriage control character (see 5.1.1.13). TAB characters in FORMAT statements
are converted to single blanks at runtime by the FORTRAN object time system.

5.1.1. 7 Mixed Fields - An alphanumeric format field may be placed among other fields of the
format. For example, the statement:

FORMAT 05,7H FORCE=FlO.5)

can be used to output the line:

bbb22bFORCE=bbI7.68901

The separating comma may be omitted after an alphanumeric format field, as shown above.

5.1.1.8 Complex Fields - Complex quantities are transmitted as two independent real quantities.
The format specification consists of two successive real specifications or one repeated real specifi
cation. For instance, the statement:

FORMAT (2E15.4,2(F8.3,F8.5))

could be used in the transmission of three complex quantities.

5.1.1.9 Repetition of Field Specifications - Repetition of a field specification may be specified by
preceding the control character D, E, F, 1,0, G, L, or A by an unsigned integer giving the number
of repetitions desired. For example:

FORMAT (2E12.4,315)

is equivalent to:

FORMAT (E12.4,E12.4,15,15,15)

5.1.1.10 Repetition of Groups - A group of field specifications may be repeated by enclosing the
group in parentheses and preceding the whole with the repetition number. For example:

FORMAT (218,2(E15.5,2F8.3))

5-7

is equivalent to:

FORMAT (218,EI5.5,2F8.3,EI5.5,2F8.3)

5.1.1.11 Multiple Record Formats - To handle a group of input/output records where different
records have different field specifications, a slash is used to indicate a new record. For example,
the statement:

FORMAT (3081I5,2F8.4)

is equivalent to

FORMAT (308)

for the first record and

FORMAT (I5,2F8.4)

for the second record.

The separating comma may be omitted when a slash is used. When n slashes appear at the end or
beginning of a format, n blank records may be written on output or records skipped on input.
When n slashes appear in the middle of a format, n-l blank records are written or n-l records
skipped.

Both the slash and the closing parenthesis at the end of the format indicate the termination of a
record. If the list of an input/output statement dictates that transmission of data is to continue after
the closing parenthesis of the format is reached, the format is repeated starting with that group
repeat specification terminated by the last right parenthesis of level one or level zero if no level
one group exists.

Thus, the statement

FORMAT (F7.2,(2(EI5.5,EI5.4),I7))

level o~ J r Level 0
level 1 level 1-

causes the format

F7.2,2(EI5.5,E15.4),I7

to be used on the first record, and the format

2(EI5.5,EI5.4),17

to be used on succeeding records.

5-8

As a further example, consider the statement

FORMAT (F7.2/(2(E15.5,EI5.4),I7»

The first record has the format

F7.2

and successive records have the format

2(EI5.5,EI5.4),17

5.1.1.12 Formats Stored as Data - The ASCII character string comprising a format specification
may be stored as the values of an array. Input/output statements may refer to the format by giving
the array name, rather than the statement number of a FORMAT statement. The stored format
has the same form as a FORMAT statement excluding the word "FORMAT." The enclosing par
entheses are included.

As an example, consider the sequence:

DIMENSION SKELETON (2)
READ 1, (SKELETON (I), 1= 1,2)

1 FORMAT (2A5)
READ SKELETON,K,X

The first READ statement enters the ASCII string into the array SKELETON. In the second
READ statement, SKELETON is referred to as the format governing conversion of K and X.

5.1.1.13 Carriage Control- The first character of each ASCII record controls the spacing of the
line printer or terminal. This character is usually set by beginning a FORMAT statement for an
ASCII record with IHa, where a is the desired control character. The line spacing actions, listed
below, occur before printing:

FORTRAN
Character

space

o zero

one

Printer
Character

LF

LF,LF

FF

Octal

~

012

012

014

5-9

Skip to next line
with form feed after
60 lines

Skip aline

Form feed - go to
top of next page

Printer
Channel

8

8

FORTRAN Printer Octal Printer
Character Character Value Effect Channel

+ plus Suppress skipping -
overprint the line

* asterisk be3 023 Skip to next line 5
with no form feed

- minus LF,LF,LF 012 Skip two lines 8

2 two DLE 020 Space 112 of a page 2

3 three VT 013 Space 1/3 of a page 7

I slash DC4 024 Space 1/6 of a page 6

. period DC2 022 Triple space with a 4
form feed after every
20 lines printed

, comma DCl 021 Double space with a 3
form feed after every
30 lines printed

NOTE: Printer control characters OLE, DCl, DC2, DC3, and DC4 affect only the line printer.

A $ (dollar sign) as a format field specification code Suppresses the carriage return at the end ofthe
terminal or line printer line.

5.1.1.14 Spacing - Input and output can be made to begin at any position within a FORTRAN
record by use of the format code

Tw

where T is the control character and w is an unsigned integer constant specifying the character
position in a FORTRAN record where the transfer of data is to begin. When the output is printed,
w corresponds to the (w-l)th print position. This is because the first character of the output buffer
is a carriage control character and is not printed. It is recommended that the first field specification
of the output format be lx, except where a carriage control character is used.

For example,

2 FORMAT (T50, 'BLACK'T30, 'WHITE')

would cause the following line to be printed

5-10

fJ

Print Position 29

t
WHITE

For input, the statements

1 FORMAT(T35,'MONTH')
READ (3,0

Print Position 49

f
BLACK

cause the first 34 characters of the input data to be skipped, and the next 5 characters would re
place the characters M, 0, N, T, and H in storage. If an input record containing

ABCbbbXYZ

is read with the format specification

10 FORMAT (T7,A3,Tl,A3)

then the characters XYZ and ABC are read, in that order.

5.1.1.15 Blank or Skip Fields - Blanks may be introduced into an output record or characters
skipped on an input record by use of the specification nX. The control character is X; n is the
number of blanks or characters skipped and must be greater than zero. For example, the statement

FORMAT (5H STEPI5, lOX2HY=F7.3)

may be used to output the line

bSTEPbbb28bbbbbbbbbb Y =b-3.872

5.1.2 NAMELIST Statement

The NAMELIST statement, when used in conjunction with special forms of the READ and
WRITE statements, provides a method for transmitting and converting data without using a FOR
MA T statement or an 110 list. The N AMELIST statement has the form

where the X's are NAMELIST names, and the A's, B's, and C's are variable or array names.

Each list or variable mentioned in the NAMELIST statement is given the NAMELIST name im
mediately preceding the list. Thereafter, an 1/0 statement may refer to an entire list by mentioning
its NAMELIST name. For example:

5-11

--------- .---

N AMELIST IFREDI A,B,C/MAR THAID,E

states that A, B, and C belong to the NAMELIST name FRED, and D and E belong to MARTHA.

The use of NAME LIST statements must obey the following rules:

A. A NAMELIST name may not be longer than six characters; it must start with an
alphabetic character; it must be enclosed in slashes; it must precede the list of en
tries to which it refers; and it must be unique within the program.

B. A NAMELIST name may be defined only once and must be defined by a
NAME LIST statement. After a NAMELIST name has been defined, it may only
appear in READ or WRITE statements. The NAMELIST name must be defined in
advance of the READ or WRITE statement.

C. A variable used in a NAMELIST statement cannot be used as a dummy argument in
a subroutine definition.

D. Any dimensioned variable contained in a NAMELIST statement must have been
defined in a DIMENSION statement preceding the NAMELISTstatement.

5.1.2.1 Input Data For NAME LIST Statements - When a READ statement refers to a
NAMELIST name, the first character of all input records is ignored. Records are searched until
one is found with a $ or & as the second character immediately followed by the N AMELIST name
specified. Data is then converted and placed in memory until the end of a data group is signaled by
a $ or & either in the same record as the NAMELIST name, or in any succeeding record as long as
the $ or & is the second character of the record. Data items must be separated by commas and be
of the following form:

where V may be a variable name or an array name, with or without subscripts. The K's are
constants which may be integer, real, double precision, complex (written as (A, B) where A and B
are rea!), or logical (written as T for true and F for false). A series of J identical constants may be
represented by J*K where J is an unsigned integer and K is the repeated constant. Logical and
complex constants must be equated to logical and complex variables, respectively. The other types
of constants (real, double precision, and integers) may be equated to any other type of variable
(except logical or complex), and will be converted to the variable type. For example, assume A is a
two-dimensional real array, B is a one-dimensional integer array, C is an integer variable, and that
the input data is as follows:

$FRED A(7,2)=4, B=3,6*2.8, C=3.32$
1
Column 2

A READ statement referring to the NAMELIST name FRED will result in the following: the
integer 4 will be converted to floating point and placed in A(7,2). The integer 3 will be placed in
B(l) and the floating point number 2.8 will be placed in B(2), B(3), ... , B(7). The floating point
number 3.32 will be converted to the integer 3 and placed in C.

5-12

5.1.2.2 Output Data For NAMELIST Statements - When a WRITE statement refers to·a
NAMELIST name, all variables and arrays and their values belonging to the NAMELIST name
will be written out, each according to its type. The complete array is written out by columns. The
output data will be written so that:

A. The fields for the data will be large enough to contain all the significant digits.

B. The output can be read by an input statement referencing the NAMELIST name.

For example, if JOE is a 2x3 array, the statements

N AMELIST IN AM 11 JOE,K 1,ALPHA
WRITE (u,NAM1)

generate the following form of output.

Column 2
!
$NAM1
JOE = -6.75,

-17.8,
K1 = 73.1,

.234E-04,
0.0,

ALPHA=3,$

5.2 DATA TRANSMISSION STATEMENTS

68.0,
-.197E+07,

The data transmission statements accomplish input/output transfer of data that may be listed in a
NAMELIST statement or defined in a FORMAT statement. When a FORMAT statement is used
to specify formats, the data transmission statement must contain a list of the quantities to be
transmitted. The data appears on the external media in the form of records.

5.2.1 Input/Output Lists

The list of an input/output statement specifies the order of transmission of the variable values.
During input, the new values of listed variables may be used in subscript or control expressions for
variables appearing later in the list. For example:

READ 13,L,A(L),B(L+ 1)

reads a new value of L and uses this value in the subscripts of A and B.

The transmission of array variables may be controlled by indexing similar to that used in the 00
statement. The list of controlled variables, followed by the index control, is enclosed in pa
entheses. For example,

READ 7, (X(K),K=l,4),A

5-13

is equivalent to:

READ 7, X(1),X(2),X(3),X(4),A

As in the DO statement, the initial, limit, and increment values may be given as integer expres
sions:

READ 5, N, (GAIN(K),K=l,MI2,N)

The indexing may be compounded as in the following:

READ 11, «MASS(K,L),K=1,4),L=1,5)

The above statement reads in the elements of array MASS in the following order:

MASS(1,l),MASS(2,l), ... ,MASS(4,l),MASS(1,2), ... ,MASS(4,5)

If an entire array is to be transmitted, the indexing may be omitted and only the array identifier
written. The array is transmitted in order of increasing subscripts with the first subscript varying
most rapidly. Thus, the example above could have been written:

READ 11, MASS

Entire arrays may also be designated for transmission by referring to a NAMELIST name (see de
scription of N AMELIST statemen t).

5.2.2 Input/Output Records

All information appearing on external media is irouped into records.The maximum amount of in
formation in one record and the manner of separation between records depends upon the me
dium. For punched cards, each card constitutes one record; on a terminal a record is one line, and
so forth. The amount of information contained in each ASCII record is specified by the FORMAT
reference and the 1/0 list. For magnetic tape binary records, the amoun t of information is specified
by the 110 list.

Each execution of an input or output statement initiates the transmission of a new data record.
Thus, the statement

READ 2, FIRST, SECOND, THIRD

is not necessarily equivalent to the statements

READ 2, FIRST
READ 2, SECOND
READ 2, THIRD

since, in the second case, at least three separate records are required, whereas, the single statement

READ 2, FIRST, SECOND, THIRD

5-14

may require one, two, three, or more records depending upon FORMAT st~tement 2.

If an input/output statement requests less than a full record of information, the unrequested part
of the record is lost and cannot be recovered by another input/output statement without reposi
tioning the record.

If an input/output list requires more than one ASCII record of information, successive records are
read.

5.2.3 PRINT Statement

The PRINT statement assumes one of two forms:

PRINT f, list
PRINT f

where f is a format reference.

The data is converted from internal to external form according to the designated format. If the data
to be transmitted is contained in the specified FORMAT statement, the second form of the state
ment is used.

Examples: PRINT 16, T, (B(K), K=I, M)
PRINT FI06, SPEED, MISS

In the second example, the format is stored in array F106.

5.2.4 PUNCH Statement

The PUNCH statement assumes one of two forms:

PUNCH f, list
PUNCH f

where f is a format reference.

Conversion from internal to external data forms is specified by the format reference. If the data to
be transmitted is contained in the designated FORMAT statement, the second form of the state
ment is used.

Examples: PUNCH 12, A, B(A), C(B(A»
PUNCH 7

5-15

5.2.5 TYPE Statement

The TYPE statement assumes one of two forms:

TYPE f, list
TYPE f

where f is a format reference.

This statement causes the values of the variables in the list to be read from memory and listed on
the user's teletypewriter. The data is converted from internal to external form according to the
designated format. If the data to be transmitted is contained in the designated FORMAT state
ment, the second form of the statement is used.

Examples: TYPE 14, K, (A(L), L=l, K)
TYPE FMT

5.2.6 WRITE Statement

The WRITE statement assumes one of the following forms:

WRITE (u,£) list
WRITE (u,£)
WRITE (u,N)
WRITE (u) list
WRITE (u#R,f) list

where u is a unit designation, f is a format reference, N is a NAMELIST name, and R is a record
number where I/O is to start.

The first form of the WRITE statement causes the values of the variables in the list to be read
from memory and written on the unit designated in ASCII form. The data is converted to external
form as specified by the designated FORMAT statement. .

The second form of the WRITE statement causes information to be read directly from the speci
fied format and written on the unit designated in ASCII form.

The third form of the WRITE statement causes the names and values of all variables and arrays
belonging to the NAMELIST name, N, to be read from memory and written on the unit desig
nated. The data is converted to external form according to the type of each variable and array.

The fourth form of the WRITE statement causes the values of the variables in the list to be read
from memory and written on the unit designated in binary form.

The fifth form of the WRITE statement causes the variables in the list to be written in the speci
fied record of the file on the disk unit designated. Either a pound sign (#) or a single quote (')
can be used to separate the unit and the record. This allows a programmer to access fixed-length
records directly, and eliminates the sequential writing of data to access one or more records within

5-16

"

the file. The file must first be defined properly by an OPEN statement (see Chapter 8). Output I
begins when the random WRITE specifying the record to which the writing is desired is given in
the correct format.

5.2.7 READ Statement

The READ statement assumes one of the following forms:

READ f, list
READ f
READ (u,f) list
READ (u,f)
READ (u,N)
READ (u) list
READ (u#R,f) list
READ (u,f,END=C, ERR=d) list
READ (u,f,END=C) list
READ (u,f,ERR=d) list

where f is a format reference, u is a unit designation, N is a NAMELIST name, R is a record num
ber where 110 is to start, C is a statement number to which control is transferred upon encounter
ing an end-of-file, and d is the statement number to which control is transferred upon encounter
ing an error condition on the input data.

The first form of the READ statement causes information to be read from cards and put in mem
ory as values of the variables in the list. The data is converted from external to internal form as
specified by the referenced FORMAT statement.

Example: READ 28,ZI,Z2,Z3

The second form of the READ statement is used if the data read from cards is to be transmitted
directly into the specified format.

Example: READ 10

The third form of the READ statement causes ASCII information to be read from the unit desig
nated and stored in memory as values of the variables in the list. The data is converted to internal
form as specified by the referenced FORMA Tstatement.

Example: READ (I,15)ETA,PI

The fourth form of the READ statement causes ASCII information to be read from the unit desig
nated and transmitted directly into the specified format.

Example: READ (N,105)

The fifth form of the READ statement causes data of the form described in the discussion of input
data for NAMELIST statements to be read from the unit designated and stored in memory as val
ues of the variables or arrays specified.

5-17

-------------_._-----

I

I

Example: READ (2,FRED)

The sixth form of the READ statement causes binary information to be read from the unit desig
nated and stored in memory as values of the variables in the list.

Example: READ {M)GAIN,Z,AI

The seventh form ofthe READ statement causes information to be read from the specified record
in a disk file into the variables of the list. This allows random access of fixed-length records in a
disk file. The file from which records are to be read is defined by the OPEN statement (see Chap
ter 8).

Example: DOUBLE PRECISION FIL
DIMENSION A(6)
DATA FILI'FILE.ONE' /
OPEN (UNIT=4,ACCESS='RANDOM',FILE=FIL,DIRECTOR Y ='11,23')
READ (4#54,5)A

This example reads the 54th record from FILE.ONE on the disk area belonging to programmer
[11,23] into the list variables A(1) through A(6).

The eighth form of the READ statement causes control to be transferred if an end-of-file or error
condition is encountered on the input data. The arguments END=c and ERR=d are optional and
if both are included, either may appear first. If an end-of-file is encountered, control transfers to
the statement specified by END=c. If an END parameter is not specified, 110 on that device ter
minates and the program halts with an error message to the user's TTY. If an error on input is
encountered, control transfers to the statement specified by ERR=d. If an ERR=d parameter is
not specified, the program halts with an error message to the user's TTY.

Example: READ (7,7,END=888, ERR=999) A

888 (control transfers here if an end-of-file is encountered)

999 (control transfers here if an error on input is encountered)

5.2.8 REREAD Statement

The reread feature allows a FORTRAN program to reread information from the last used input
file. The format used during the reread need not correspond to the original read format, and the
information may be read as many times as desired.

A. To reread from an input device, the following coding would be used:

5-18

READ (16,100)A

REREAD 105,A

The REREAD 105,A statement causes the last input device used to be reread accord
ing to format statement 105. The original read format and a subsequent reread format
need not be the same.

B. The reread feature cannot be used until an input from a file has been accomplished. If
the feature is used prematurely, an error message will be generated.

C. Information may be reread as many times as desired using either the same or a new
format statement each time.

D. The reread feature must be used with some forethought and care since it rereads
from the last input file used, Le.:

The following example will reread from the file on Device No. 10, not Device No. 16:

READ (16,100)A

READ (10,200)B

REREAD 1l0,A

5.2.9 ACCEPT Statement

The ACCEPT statement assumes one of two forms:

ACCEPT f, list
ACCEPT f

where f is a format reference.

This statement causes information to be input from the user's teletypewriter and put in memOry as
values of the variables in the list. The data is converted to internal form as specified by the format.
If the transmission of data is directly in to the designated format, the second form of the statemen t
is used.

Examples: ACCEPT 12,ALPHA,.,BETA
ACCEPT 27

5-19

5.3 DEVICE CONTROL STATEMENTS

Device control statements and their corresponding effects are listed in Table 5-3.

Table 5-3
Device Control Statements

Statement Effect

BACKSPACE u Backspaces designated tape one ASCII record or one
logical binary record.

ENDFILE u Writes an end-of-file.

REWIND u Rewinds tape on designated unit.

SKIP RECORD u Causes skipping of one ASCII record or one logical
binary record.

UNLOAD u Rewinds and unloads the designated tape.

5.4 ENCODE AND DECODE STATEMENTS

ENCODE and DECODE statements transfer data, according to format specifications, from one
section of user's core to another. No peripheral equipment is involved. DECODE is used to change
data in ASCII format to data in another format. ENCODE changes data of another format into data
in ASCII format.

The two statements are ofthe form

where

ENCODE(c,f,v) L(l), ... ,L(N)
DECODE(c,f,v) L(1), ... ,L(N)

c = the number of ASCII characters
f = the format statement number or array name
v = the starting address of the ASCII record referenced
L(l),. : . ,L(N) = the list of variables.

A slash cannot appear in- the FORMAT statement referenced by an ENCODE or DECODE state
ment.

5-20

.-,

\

)

Example: Assume the contents of the variables to be as follows:

A(I) contains the floating-point binary number 300.45
A(2) contains the floating-point binary number 3.0
J contains the binary integer value 1.
B is a four-word array of indeterminate contents
C contains the ASCII string 12345

D02J=1,2
ENCODE (I6,l0,B) J, A(J)

10 FORMAT (IX,2HA(,Il,4H) = ,F8.2)
TYPE 11,B

11 FORMAT (4A5)
2 CONTINUE

DECODE (5, 12, C) B
12 FORMAT (3F1.0, IX, FLO)

TYPE 13,B
13 FORMAT (4F5.2)

END

Array B can contain 20 ASCII characters. The result of the ENCODE statement after the first
iteration ofthe DO loop is:

B(l)
B(2)
B(3)
B(4)

A(1)

300.4
5

The result after the second iteration is:

B(1) §§(2)
B(2) = .
B(3) 3.0
B(4)

Typed as

A(1) = 300.45

Typed as

A(2) = 3.0

The result of the DECODE statement is to extract the digits 1,2, and 3 from C, convert them to
floating point binary values, and store them in B(I), B(2), and B(3) and then skip the next charac
ter (4), extract the digit 5 from C, convert it to a floating point binary value, and store it in B(4).

5-21

..... ;~

CHAPTER 6

SPECIFICATION STATEMENTS

Specification statements allocate storage and furnish information about variables and constants to
the compiler. Specification statements may be divided into three categories, as follows:

A. Storage specification statements: DIMENSION, COMMON, and
EQUIV ALENCE.

B. Data specification statements: DATA and BLOCK DATA.

C. Type declaration statements: INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, SUBSCRIPT INTEGER, and IMPLICIT.

By extending the USA Standard in regard to specification statements, DECsystem-l0 FORTRAN
allows the following statements to be used anywhere in the program, provided that the variables
they specify appear in executable statements only after the particular specification statement. The
specification statement must not appear in the range of a DO loop.

DIMENSION statement
EXTERNAL statement (described in Chapter 7)
COMMON statement
EQUIVALENCE statement
Type declaration statements
DATA statement

A sample program that incorporates these statements follows.

DOUBLE PRECISION D
DIMENSION y(1O), D(5)
y(l) = -1.0
INTEG ER XX (5)
Y(2) = ABS(Y(1»
DATA XX/l,2,3,4,5,/
DO 101= 3,7

10 Y(I) = XX(I-2)
COMMONZ
Z=Y(1)*Y(2)/(Y(3) + Y(5»
END

Only IMPLICIT statements and arithmetic function definition statements (described in Chapter
7) must appear in the program before any executable statement. .

6-1

In addition, arrays must be dimensional before being referenced in a NAMELIST,
EQUIV ALENCE, or DATA statement. DOUBLE PRECISION and COMPLEX arrays must be
declared before they are'dimensioned.

6.1 STORAGE SPECIFICATION STATEMENTS

6.1.1 DIMENSION Statement

The DIMENSION statement is used to declare identifiers to be array identifiers and to specify the
number and bounds of the array subscripts. The information supplied in a DIMENSION
statement is required for the allocation of memory for arrays. Any number of arrays may be de
clared in a single DIMENSION statement. The DIMENSION statement has the form

where S is an array specification.

Each array variable appearing in the program must represent an element of an array declared in a
DIMENSION statement, unless the dimension information is given in a COMMON or TYPE
statement. Dimension information may appear only once for a given variable.

Each array specification gives the array identifier and the minimum and maximum values which
each of its subscripts may assume in the following form:

identifier(min/max, minImax, ... ,minImax)

The minima and maxima must be integers. The minimum must not exceed the maximum. For
example, the statement

DIMENSION EDGE(-II1,4/S)

specifies EDGE to be a two-dimensional array whose first subscript may vary from -1 to 1 inclu
sive, and the second from 4 to S inclusive.

Minimum values of 1 may be omitted. For example,

NET(S,lO)

is interpreted as:

NET(1IS,1I1 0)

Examples: DIMENSION FORCE(-111 ,0/3,2,2,-7/3)
DIMENSION PLACE(3,3,3),JI(2,2/4),K(2S6)

6-2

Arrays may also be declared in the COMMON or type declaration statements in the same way:

COMMON X(IO,4),Y,Z
INTEGER A(7,32),B
DOUBLE PRECISION K(-2/6,1O)

6.1.1.1 Adjustable Dimensions - Within either a FUNCTION or SUBROUTINE subprogram,
DIMENSION and TYPE statements may use integer variables in an array specification, provided
that the array name and variable dimensions are dummy arguments of the subprogram. The actual
array name and values for the dummy variables are given by the calling program when the subpro
gram is called. The variable dimensions may not be altered within the subprogram (Le., typing the
array DOUBLE PRECISION or COMPLEX after it has been dimensioned) and must be less than
or equal to the explicit dimensions declared in the calling program.

Example: SUBROUTINE SBR(ARRAY, Ml,M2,M3,M4)
DIMENSION ARRAY (MlIM2,M3/M4)

DO 27 L=M3,M4
DO 27 K=Ml,M2

27 ARRAY(K,L)=V ALUE

END

The calling program for SBR might be:

DIMENSION Al(IO,20),A2(IOOO,4)

CALL SBR(Al,5,lO,1O,20)

6-3

CALL SBR(A2,lOO,250,2,4)

END

6.1.2 COMMON Statement

The COMMON statement causes specified variables or arrayS to be stored in an area available to
other programs. By means of COMMON statements; the data ofa main program and/or the data of
its subprograms may share a common storage area.

The Common area may be divided into separate blocks which are identified by block names. A
block is specified as follows:

Iblock identifier/identifier, identifier, .. ,identifier

The identifier enclosed in slashes is the block name. The identifiers which follow are the names of
the variables or arrays assigned to the block and are placed in the block in the order in which they
appear in the block specification. A common block may have the same name as a variable in the
same program.

The COMMON statement has the general form

COMMON/BLOCKll A,B;C/BLOCK2/D,E,FI . ..

Where BLOCKl, BLOCK2, ... are the block names, and A, B, C, .. ; are the variables to be assigned
to each block. For example, the statement

COMMON/R/X,Y,T/C/U,V,W,Z

in.dicates that the elements X, Y; and T are to be placed in block R in that order; and that U, V, W,
and Z are to be placed in block C.

Block entries are linked sequentially throughout the program, beginning with the first COMMON
statement. For example, the statements

COMMON/DI ALPHA/RI A,B/C/S
COMMON/C/X,Y/R/U,V,W

have the same effect as the statement

COMMON/DI ALPHA/RI A,B,U,V,W/C/S,X,Y

One block of common storage, referred to as blank common, may be left unlabeled. Blank com
mon is indicated by two consecutive slashes. For example,

6-4

,)

.">

COMMON/R/X,YIIB,C,D

indicates that B, C, and D are placed in blank common. The slashes may be omitted when blank
common is the first block of the statement.

COMMON B,C,D

Storage allocation for blocks of the same name begins at the same location for all programs exe~
cuted together. For example, if a program contains

COMMON A,B/R/X,Y,Z

as its first COMMON statement, and a subprogram has

COMMON/R/U, V,W IID,E,F

as its first COMMON statement, the qUantities represented by X and U are stored in the same lo
cation. A similar correspondence holds for A and D in blank common;

Common blocks may be any length provided that no program attempts to enlarge a given common
block declared by a previously loaded program.

Array names appearing in COMMON statements may have dimension information appended if
the arrays are not declared in DIMENSION or type declaration statements. For example,

COMMON ALPHA,T(15,lO,5),GAMMA

specifies the dimensions of the array T while entering T in blank common. Variable dimension
array identifiers may not appear in a COMMON statement, nor may other dummy identifiers.
Each array name appearing in a COMMON statement mUst be dimensioned somewhere in the
program containing the COMMON statement.

6.1.3 EQUIVALENCE Statement

The EQUIVALENCE statement causes more than one variable within a given program to share
the same storage location. The EQUtV ALENCE statement has the form

where the V's are variable names.

The inclusion of two or more references in a parenthetical list indicates that the quantities in the
list are to share the same memory location. For example,

EQUIVALENCE(RED,BLUE)

specifies that the variables RED and BLUE are stored in the same location.

6-5

The relation of equivalence is transitive; e.g., the two statements,

EQUIV ALENCE(A,B),(B,C)
EQUIV ALENCE(A,B,C)

have the same effect.

The subscripts of array variables must be integer constan ts.

Example: EQUIVALENCE(X,A(3),Y(2,1,4»,(BETA(2,2),ALPHA)

6.1.4 EQUIVALENCE and COMMON

Identifiers may appear in both COMMON and EQUIVALENCE statements provided the follow
ing rules are observed.

A. No two quantities in common may be set equivalent to one another.

B. Quantities placed in a common block by means of EQUIVALENCE statements may
cause the end of the common block to be extended. For example, the statements

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIV ALENCE(A,Y)

causes the common block R to extend from X to A(4), arranged as follows:

X
Y A(1)
Z A(2)

(same location)
(same location)

A(3)
A(4)

C. EQUIV ALENCE statements which cause extension of the start of a common block
are not allowed. For example, the sequence

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE(X,A(3»

is not permitted, since it would require A(l) and A(2) to extend the starting location
of block R.

6.2 DATA SPECIFlCATION STATEMENTS

The DATA statement is used to specify initial or constant values for variables. The specified val
ues are compiled into the object program, and become the values assumed by the variables when
program execution begins.

6-6

<';

6.2.1 DATA Statement

The data to be compiled into the object program is specified in a DATA statement. The DATA
statement has the form

where each list is in the same form as an input/output list, and the d's are data items for each list.

Indexing may be used in a list provided the initial, limit, and increment (if any) are given as con
stants. Expressions used as subscripts must have the form

where c, and c2 are integer constants and i is the induction variable. If an entire array is to be de
fined, only the array identifier need be listed. Variables in COMMON may appear on the lists only
if the DATA statement occurs in a BLOCK DATA subprogram. (See Chapter 7, Section 7.6)

The data items following each list correspond one-to-one with the variables of the list. Each item
of the data specifies the value given to its corresponding variable with no implied type conversion.
Thus, integer variables can only be defined numerically by integer constants, real variables by real
constants, double precision variables by double precision constants, and so forth. Refer to Section
2.1 for definitions of the various constants. Data items may be numeric constants, alphanumeric
strings, octal constants, or logical constants. For example,

DATA ALPHA, BETA/.S, 16.E-2/

specifies the value.5 for ALPHA and the value.16 for BETA.

Alphanumeric data is packed into words according to the data word size in the manner of A con
version; however, excess characters are not permitted. The specification is written as nH followed
by n characters or is imbedded in single quotes. Double precision variables must have at least six
characters assigned to them in OAT A statements.

Octal data is specified by the letter 0 or the character", followed by a signed or unsigned octal
integer of one to twelve digits.

Logical constants are written as .TRUE., .FALSE., T, or F. For example:

DATA NOTE,K/4HFOOT,O-7712/
DATA QUOTE/'QUOTE'/

Any item of the data may be preceded by an integer followed by an asterisk. The integer indicates
the number of times the item is to be repeated. For example,

DATA(A(K),K=1,20)/61E2, 19*32El/

specifies 20 values for the array A; the value 6100 for A(I); the value 320 for A(2) through A(20).
To cause an array or part of an array to be initialized to blanks, the blank areas must be specified
explicitly in the DATA statement. For example,

6-7

DATA(A(J),1=1,lO)rI2345',9*' '/

causes the first word of A to contain 12345 in ASCII and the next nine words of the array to be
blank.

6.2.2 BLOC1\. DATA Statement

The BLOCK DATA statement has the form:

BLOCK DATA

This IiItatement declares the pro~ram which follows to be a data specification subprogram. Data
may be entered into labeled or blank common.

The first statement of the subprogram must be the BLOCK DATA statement. The subprogram
may contain only the declarative statements associated with the data being defined.

Example; BWCKDATA
COMMON/R/S.Y /C/Z,W,V
DIMENSION Y(3)
DOUBLE PRECISION X
COMPLEXZ
DATA Y/IE-l,2*3E2/,X,Z/11.877DO,(-1.41421,L41421)/
END

Data may be entered into more than one block of common in one subprogram.

6.3 TYPE I)ECLARATION STATEMENTS

The type declaration statements INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGI
CAL, IMPLICIT, and SUDSCRIPT INTEGER are used to specify the type of identifiers appearing
in a program. An identifier may appear in only one type statement. Type statements maY be used
to ~ive dimension specifications for arrays.

The explicit type declaration statements have the general form

type identifier,identifier,identifier, ..

where type is one ofthe following:

INTEGER,REAL,DOUBLE PRECISION,COMPLEX,LOGICAL,
SUBSCRIPT INTEGER

In addition, for the sake of compatibility the followin~ types have been made equivalent:

INTEGER is equivalent to INTEGER *4 and SUBSCRIPT INTEGER
REAL is equivalent to REAL "'4

DOUBLE PRECISION is equivalent to REAL *8
LOGICAL is equivalent to LOGICAL *1 and LOGICAL *4
COMPLEX is equivalent to COMPLEX*8

The listed identifiers are declared by the statement to be of the stated type. Fixed point variables in
a SUBSCRIPT INTEGER statement must fall between _227 and 227 .

6.3.1 IMPLICIT Statement

The IMPLICIT statement has the form

where type represents INTEGER, REAL, LOGICAL, COMPLEX, DOUBLE PRECISION, or one
of the equivalent types listed in Section 6.3 (except SUBSCRIPT INTEGER) and al'a2, ••• repre
sent single alphabetic characters, each separa.ted by commas, or a range of characters (in al
phabetic sequence) denoted by the first and last characters of the range separated by a minus sign
(e.g., (A-D».

This statement causes any program variable which is not mentioned in a type statement, and
whose first character is one of those listed in the IMPLICIT statement, to be classified according to
the type appearing before the list in which the character appears. As an example, the statement

IMPLICIT REAL(A-D,L,N.P)

causes all variables starting with the letters A through D,L, and N through P to be typed as real,
unless they are explicitly declared otherwise.

The initial state of the compiler is set as if the statement

IMPLICIT REAL(A-H,O-Z), INTEGER(I-N)

were at the beginning of the program. This state is in effect unless an IMPLICIT statement
changes the above interpretation; i.e., identifiers, whose types are not explicitly declared, are typed
as follows.

A. Identifiers beginning with I, J, K, L, M, or N are assigned integer type.

B. Identifiers not assigned integer type are assigned real type.

If the program contains an IMPLICIT statement, this statement will override throughout the pro
gram the implicit state initially set by the compiler. No program may contain more than one IM
PLICIT declaration for the same letter.

6-9

CHAPTER 7

SUBPROGRAM STATEMENTS

FORTRAN subprograms may be either internal or external. Internal subprograms are defined and
may be used only within the program containing the definition. The arithmetic function definition
statement is used to define internal functions.

External subprograms are defined separately from (Le., external to) the programs that call them,
pnd are complete programs which conform to all the rules of FORTRAN programs. They are com
piled as closed subroutines; Le., they appear only once in the object program regardless of the
number of times they are used. External subprograms are defined by means of the statements
FUNCTION and SUBROUTINE.

7.1 DUMMY IDENTIFIERS

Subprogram definition statements contain dummy identifiers, representing the arguments of the
subprogram. They are used as ordinary identifiers within the subprogram definition and indicate
the sort of arguments that may appear and how the arguments are used. The dummy identifiers
are replaced by the actual arguments when the subprogram is executed.

7.2 LIBRARY SUBPROGRAMS

The standard FORTRAN library for the DECsystem-l0 includes built-in functions, FUNCTION
subprograms, and SUBROUTINE subprograms, listed and described in Chapter 10. Built-in func
tions are open subroutines; that is, they are incorporated into the object program each time they
are referred to by the source program. FUNCTION and SUBROUTINE subprograms are closed
subroutines; their names derive from the types of subprogram statements used to define them.

7.3 ARITHMETIC FUNCTION DEFINITION STATEMENT

The arithmetic function definition statement has the form:

iden tifier(iden tifier ,iden tifier, ...) =expression

This statement defines an internal subprogram. The entire definition is contained in the single
statement. The first identifier is the name ofthe subprogram being defined.

7-1

Arithmetic function subprograms are single-valued functions with at least one argument. The type
of the function is determined by the type of the function identifier.

The identifiers enclosed in parentheses represent the arguments of the function. These are
dummy identifiers; they may appear only as scalar variables in the defining expression. Dummy
identifiers have meaning and must be unique only within the defining statement. Dummy identifi
ers must agree in order, number, and type with the actllal arguments given at execution time.

Identifiers, appearing in the defining expression, which do not represent arguments are treated as
ordinary variables. The defining expression may include external functions or other previously de
fined arithmetic statement functions.

All arithmetic function definition statements must precede the first executable statement of the
program.

Examples: SSQR(K)=K*(K+1)*(2*K+ 1)/6
ACOSH(X)=(EXP(XI A)+EXP(- XI A)) 12

In the last example above, X is a dummy identifier and A is an ordinary identifier. At execution
time, the function is evaluated using the current value of the quantity represented by A.

7.4 FUNCTION SUBPROGRAMS

A FUNCTION subprogram is a single-valued function th~t may be called by using its name as a
function name in an arithmetic expression, such as FUNC(N), where FUNe js the name of the
subprogram that evaluates the corresponding function of the argument N. A FUNCTION subpro
gram begins with a FUNCTION statement a,nd ends with an END statement. It returns control to
the calling program by means of one or more RETURN statements.

7.4.1 FUNCTION Statement

The FUNCTION statement has the form:

FUNCTION identifier(argument,argument, ...)

This statement declares the program which follows to be a FUNCTION subprogram. The identi
fier is the name of the function being defined. This identifier must not be used as a dummy argu
ment or a,ppear in any nonexecutable statement in the program other than as a scalar variable in a
TYPE statement, It must appear as a scalar varia,ble and be assigned a va,lue during execution of
the sllbprogram which is the function value.

Arguments appearing in the list enclosed in parentheses are dummy arguments representing the
function argument. The arguments must agree in number, order, and type with the actual argu
ments used in the calling program. FUNCTION subprogram arguments may be expressions, al~
phanumeric strings, array names, statement labels preceded by an asterisk (*) or dollar sign ($), or
subprogram names.

7·2

-,

Dummy arguments may appear in the subprogram as scalar identifiers, array identifiers, subpro
gram identifiers, or an asterisk (*) or dollar sign ($), denoting statement labels in the calling pro
gram. A function must have at least one dummy argument, Dummy arguments representing array
names must appear within the subprogram in a DIMENSION statement, or one of the type state
ments that provide dimension information. Dimensions given as constants must equal the dimen
sions of the corresponding arrays in the calling program. In a DIMENSION statement, dummy
identifiers may be used to specify adjustable dimensions for array name arguments. For example,
in the statement sequence:

FUNCTION TABLE(A,M,N,B,X,Y)

DIMENSION A(M,N),B(10),C(50)

The dimensions of array A are specified by the dummies M and N, while the dimension of arraY B
is given as a constant. The various values given for M and N by the calling program must be those
of the actual arrays which the dummy A represents. The arrays may each be of different size but
must have two dimensions. The arrays are dimensioned in the programs that use the function.

Dummy dimensions may be given only for dummy arrays. In the example above the array C must
be given absolute dimensions, since C is not a dummy identifier. A dummy identifier maY not ap
pear in an EQUIVALENCE statement in the FUNCTION subprogram.

A function must not modify any arguments which appear in the FORTRAN arithmetic expression
calling the function. Modification of implicit arguments from the calling program, such as vari
ables in COMMON and DO loop indexes, is not allowed. The only FORTRAN statements not al
lowed in a FUNCTION subprogram are SUBROUTINE, BLOCK DATA, and another FUNC
TION statement,

7.4.1.1 Function Type - The type of the function is the type of identifier us~d to name the
function. This identifier may be typed, implicitly or explicitly, in the same WaY as any other identi
fier. Alternatively, the function may be explicitly typed in the FUNCTION statement itself by pre
ceding the word FUNCTION with one of the types or equivalent types described in Section 6.3.
For example:

INTEGER FUNCTION
REAL FUNCTION
COMPLEX FUNCTION
LOGICAL FUNCTION
DOUBLE PRECISION FUNCTION
REAL*8 FUNCTION

7-3

Thus, the statement

COMPLEX FUNCTION HPRIME(S,N)

is equivalent to the statements

FUNCTION HPRIME(S,N)
COMPLEX HPRIME

Examples: FUNCTION MA Y(RANGE, EP, YP, ZP)
COMPLEX FUNCTION COT(ARG)
DOUBLE PRECISION FUNCTION LIMIT(X,Y)
FUNCTION WORK (A,$,C)

7.5 SUBROUTINE SUBPROGRAMS

A SUBROUTINE subprogram may be multivalued and can be referred to only by a CALL state
ment. A SUBROUTINE subprogram begins with a SUBROUTINE statement and returns control
to the calling program by means of one or more RETURN statements.

7.5.1 SUBROUTINE Statement

The SUBROUTINE statement has the form:

SUBROUTINE identifier(argument,argument, .. .)

This statement declares the program which follows to be a SUBROUTINE subprogram. The first
identifier is the subroutine name. This identifier cannot be used as a dummy argument or appear
in any nonexecutable statement in the program other than as a scalar variable in a TYPE state
ment. The subroutine name can, however, be used as a scalar variable in any executable statement
in the program. The arguments in the list enclosed in parentheses are dummy arguments repre
senting the arguments of the subprogram. The dummy arguments must agree in number, order,
and type with the actual arguments used by the calling program.

SUBROUTINE subprograms may have expressions, alphanumeric strings, array names, statement
labels, and subprogram names as arguments. The dummy arguments may appear as scalar, array,
subprogram identifiers, or an asterisk (*) or dollar sign ($) denoting a statement label in the calling
program. Dummy arguments representing statement labels can be used only in connection with
the RETURN statement.

Dummy identifiers which represent array names must be dimensioned within the subprogram by
a DIMENSION or type declaration statement. As in the case of a FUNCTION subprogram, either
constants or dummy identifiers may be used to specify dimensions in a DIMENSION statement.
The dummy arguments must not appear in an EQUIVALENCE or COMMON statement in the
SUBROUTINE subprogram.

7-4

A SUBROUTINE subprogram may use one or more of its dummy identifiers to represent results.
The subprogram name is not used for the return of results. A SUBROUTINE subprogram need
not have any argument at all.

Examples: SUBROUTINE FACTOR(COEFF,N,ROOTS)
SUBROUTINE RESIDU(NUM,N,DEN,M,RES)
SUBROUTINE SERIES
SUBROUTINE TYPE(A,$,B, *)

The only FORTRAN statements not allowed in a function subprogram are FUNCTION, BLOCK
DATA, and another SUBROUTINE statement.

7.5.2 CALL Statement

The CALL statement assumes one of two forms:

CALL identifier
CALL identifier (argument,argument, ... ,argument)

The CALL statement is used to transfer control to SUBROUTINE subprogram. The identifier is
the subprogram name.

The arguments may be expressions, array identifiers, alphanumeric strings, subprogram identifi
ers, or statement labels of the calling program preceded by an asterisk (*), dollar sign ($), or am
persand (&). Arguments may be of any type, but must agree in number, order, type, and array size
(except for adjustable arrays, as discussed under the DIMENSION statement) with the corre
sponding arguments in the SUBROUTINE statement of the called subroutine. Unlike a function, a
subroutine may produce more than one value and cannot be referred to as a basic element in an
expression.

A subroutine may use one or more of its arguments to return results to the calling program. If no
arguments at all are required, the first form is used.

Examples: CALL EXIT
CALL SWITCH (SIN,2.LE.BET A,X**4, Y)
CALL TEST (V ALUE,123,275)
CALL TYPE(A,$1O,B,*20,&30)

The identifier used to name the subroutine is not assigned a type and has no relation to the types
of the arguments. Arguments which are constants or formed as expressions must not be modified
by the subroutine.

7.5.3 RETURN Statement

The RETURN statement has one of two forms:

7-5

RETURN
RETURNi

where i is an integer constant or an integer variable. The value of i must be positive, and specifies
that the return is to the i -th argument of the referencing statement (where the i -th argument is a
statement number preceded by a $ or *). If i=O, the return is the same as with the first form of the
RETURN statement.

This statement returns control from a subprogram to the calling program. Normally, the last state"
ment executed in a subprogram is a RETURN statement. Any number of RETURN statements
may appear in a subprogram. For purposes of debugging functions and subroutines originally writ
ten as main programs, the RETURN statement has been made equivalent to the STOP statement
in a main program.

7.6 BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram is a data specification subprogram and is used to enter initial values
into variables in COMMON for use by FORTRAN subprograms and MACRO-lO main programs
(see Chapter 9). No executable statements may appear ina BLOCK DATA subprogram.

7.6.1 BLOCK DATA Statement

The BLOCK DATA statemen.t has the form:

BLOCK DATA

This statement declares the program which follows to be a data specification subprogram and it
must be the first statement of the subprogram (see Chapter 6, Section 6.2.2).

7.7 EXTERNALSTATEMENT

FUNCTION and SUBROUTINE subprogram names may be used as the actual arguments of sub
programs. Such subprogram names must be distinguished from ordinary variables by their appear
ance in an EXTERNAL statement. The EXTERNAL statement has the form:

EXTERNAL identifier, identifier; ... ,identifier

This statement declares the listed identifiers to be s~bprogram names. Any subprogram name
given as an argument to another subprogram must have previously appeared in an external decla
ration in the calling program (i.e., as an identifier in an EXTERNAL or CALL statement or as a
function name in an expression).

-,

Example: EXTERNAL SIN, COS

CALL TRIGF(SIN, 1.5,ANSWER)

CALL TRIGF(COS,.87,ANSWER)

END

SUBROUTINE TRIGF(FUNC,ARG,ANSWER)

ANSWER = FUNC(ARG)

RETURN
END

To reference external variables from a MACRO-IO program by name, place the variables in
named COMMON. Use the name of the variable as the name of the COMMON block:

COMMON IAIA/B/B(13)/CIC(6,7)

7-7

;)

CHAPTER 8

FILE CONTROL STATEMENTS

File control statements are used to set up files and establish parameters for 110 operations and to
terminate I/O operations.

The OPEN and CLOSE file control statements are described in this chapter.

8.1 OPEN AND CLOSE STATEMENTS

Both the OPEN and CLOSE statements are unique to DECsystem-lO FORTRAN. They both use
the same format and have the same options and arguments.

The OPEN statement enables the user to explicitly define all of the important aspects of each de
sired data transfer operation. It provides an extensive list of required and optional arguments
which define in detail:

A. the name and location of the data file
B. the type of access required
C. the data format within the file
D. the protection code l to be assigned to an output data file
E. the disposition ofthe data file
F. data file record, block and file sizes
G. a data file version identifier
H. error modes

In addition, a DIALOG argument is provided which permits the user to establish a dialog mode of
operation when the OPEN statement containing it is executed. In a dialog mode, interactive com
munication between the user's terminal and program is established. This enables the user, during
program execution, to define, redefine, or defer the values of the optional arguments contained by
the current OPEN statement.

The OPEN statement has the general form:

OPEN(argument,argument, .. .)

I Refer to Chapter 6 of the DECsystem-lO Monitor Calls Manual (DEC-lO-MRRD-D) for a description of file access pro
tection codes.

8-1

The CLOSE statement is used in the termination of an I/O operation to dissociate the I/O device
being used from the active file and file-related information, and to restore the core occupied by I/O
buffers and other transfer-related operations. All required device dependent termination functions
are also performed on the execution of a CLOSE statement, including release of the unit.

Once a CLOSE statement has been executed, another OPEN statement is required to regain access
to the closed file.

The CLOSE statement has the general form:

CLOSE(argument,argument, ...)

8.1.1 Options for OPEN and CLOSE Statements

The options and their arguments which may be used in both OPEN and CLOSE statements are
listed below.

A. UNIT This option is required. It defines the FORTRAN I/O unit num
ber to be used. FORTRAN devices are identified by assigned
decimal numbers within the range 1 to 63 (unless redefined by
the installation). UNIT may, however, be assigned an integer
variable or constant. This argument has the form:

UNIT= An integer variable or constant

NOTE
FOR TRAN logi~al device assignments are described
in Section 13.2.1 (Table 13-3).

B. DEVICE

C. ACCESS

This option may specify either the physical or logical name of
the I/O device involved. (A logical name always takes pre
cedence over a physical name.) The DEVICE argument may
specify I/O devices located at remote stations, as well as logical
devices. If this option is omitted, the first logical name u (where
u is the decimal unit number) is tried. If this is not successful,
the standard (default) device is attempted. The DEVICE argu
ment has the form:

DEVICE= A literal constant or variable

ACCESS describes the type of input and/or output statements
and the file access mode to be used in a specified data transfer
operation. ACCESS may be assigned anyone of the following six
names, each of which iridicates a specific type ofI/O operation:

8-2

\'

1. 'SEQIN'

2. 'SEQ OUT'

The specified data file is to be read in se
quential access mode.

The specified data file is to be written in a
sequential access mode.

3. 'SEQINOUT' The specified data file may first be read
then written (READ/WRITE sequence)
record-by-record in a sequential access
mode. When SEQINOUT is specified, a
WRITE/READ sequence is illegal unless
the file has been removed.

4. 'RANDOM'

5. 'RAN DIN'

6. 'APPEND'

The specified data file may be either read or
written, one record at a time. In a random
access mode of operation, the relative posi
tion of each record is independent of the
previous READ or WRITE statement; all
records accessed must have a fixed logical
record length. This argument is required for
random access operations. A disk device
must be specified when RANDOM is used.

This argument enables the user to establish
a special, read-only random access mode
with a named file. In a RANDIN mode, the
user may read the named file simulta
neously with other users who have also es
tablished a RANDIN mode and with the
owner of the file. The use of RAN DIN en
ables a data base to be shared by more than
one user at a time.

The record specified by a corresponding
WRITE statement is to be added to the log
ical end of a named file. The modified file
must then be closed and reopened in order
to be read.

The ACCESS argument has the form:

8-3

'SEQIN'
'SEQOUT'
'SEQINOUT'

ACCESS= 'RANDOM'
'RANDIN'
'APPEND'
variable (set to literal)

D. MODE This option defines the character set of an external file or rec
ord. Use of this argument is optional. Ifit is not given, one of the
following is assumed:

ASCII for a formatted 110 file transfer

Binary for an unformatted I/O file transfer

One of the following character set specifications must be used
with the MODE argument:

'ASCII' Specifies an ASCII character set.

'BINARY' Specifies data formatted as a FORTRAN binary
data file.

'IMAGE' Specifies an image (I) mode data transfer for the as
sociated READ or WRITE statements. IMAGE is
an unformatted binary mode.

'DUMP' The data file to be transferred is to be handled in a
DUMP mode of operation.

NOTE
Refer to the DECsystem-lO Monitor Calls Manual for
a detailed description of these data modes.

The MODE argument has the form: .

MODE=

'ASCII'
'BINARY'
'IMAGE'
'DUMP'
variable (set to literal)

E. DISPOSE This option specifies an action to be taken regarding a file at
close time. When used, DISPOSE must be either an ASCII vari
able or one of the following literals:

'SAVE' Leave the file on the device.

'DELETE' If the device involved is either a DECtape
or disk, remove the file. Otherwise, take no
action.

'PRINT' If the file is on the disk, queue it for print
ing. Otherwise, take no action.

8-4

F. FILE

G. PROTECTION

'LIST' Same as "PRINT", but file is deleted after
printing.

'PUNCH' Paper tape punch output.

'RENAME' Change filename.

If the DISPOSE argument is not given, the argument DIS
POSE='SA VE' is assumed. The DISPOSE argument has the
form:

DISPOSE=

'SAVE'
'DELETE'
'PRINT'
'LIST'
'PUNCH'
'RENAME'
variable (set to literal)

This option specifies the name of the file involved in the data
transfer operation. FILE· must be either an ASCII literal or a
double precision, complex, or single precision variable. Single
precision variables are assumed to contain a 1 to 5 character file
specification; double precision variables permit lO-character file
specifications. The format is a 1 to 6 character filename option
ally followed by a period and a 0 to 3 character extension. Any
excess characters in either the name or extension are ignored. If
the period and extension are omitted, the extension .DAT is as
sumed. If just the extension is omitted, the null extension is as
sumed.

If a file name is not specified or is zero, a default name is gener
ated which has the form

FORxx.DAT

where xx is the FORTRAN logical unit number (decimal) or is
the logical unit name for the default statements ACCEPT,
PRINT, PUNCH, READ, or TYPE. The FILE argument has
the form:

FILE= An ASCII literal or variable (set to literal)

This option specifies a protection code to be assigned the data
file being transferred. The protection code determines the level
of access that three possible classes of users (i.e., owner, mem
ber, or other) will have to the file. PROTECTION may be a 3-
digit octal literal or a variable. If the argument is assigned a zero
value or is not given, the default protection code established for
the DECsystem-lO installation is used. The PROTECTION ar
gument has the form:

8-5

H. DIRECTORY

PROTECTION= 3-digit octal or integer variable

This option is used for disk files only. It specifies the location of
the user file directory (UFD) or the sub-file directory (SFD)
which contains the file specified in the OPEN statement. A di
rectory identifier may consist of either

1. the user's project-programmer number, which identifies the
UFD (for example, 10,7), or

2. a UFD/SFD directory path specification. A path specifica
tion lists the UFD and the names of the SFD's which form a
path to the desired SFD. For example, the following path
specification identifies the path leading to SFD 1234:

1O,7,SFDA,SFDB,1234

NOTE
Refer to the DECsystem-l0 Monitor Calls Manual for
a complete description of directories and multilevel di
rectory structures.

The DIRECTORY argument has the form:

DIRECTOR Y = A literal or variable containing a UFD
name or directory path specification

The user may also establish an array containing the directory
specification as its elements and reference the array in the
DIRECTOR Y argument. Single precision arrays permit 5-
character directory names to be used; double precision arrays
permit 6-character names to be used. A zero (0) entry must be
used to terminate a directory path specification given in an ar
ray.

Examples of the use of single and double precision arrays in an
OPEN statement DIRECTOR Y specification follow:

1. Single Precision Array

OPEN (UNIT=5,DIRECTORY=PATH, ...)

where PATH and its elements are

DIMENSION PATH (5)
PATH (1)="10
PATH (2)="7
PATH (3)='SFDA'
PATH (4)='SFDB'
PATH (5)=0

8-6

project number
programmer number

} names of subfile
directories (SFD's)

)

2. Double Precision Array

OPEN(UNIT=5,DIRECTORY=PATH, ...)

where PATH and its elements are

DOUBLE PRECISION PATH (5)

PATH 0)"000010000007 project, pro
grammer numbers=
UFO

PATH (2)'SFDABC' 1
PATH (3) 'MY AREA'
PATH (4)'YOURIT'
PATH (5) 0

names of sub-file
directories (SFD's)

The elements of a directory specification may then be either a
literal or a single or double precision array.

The following is an example of a literal specification:

DIRECTORY='1O,7,SFD1,SFD2,SFD3' , ---.-. --'V"~
project- sub-file
programmer directory
number path

Whenever the specification is an array, the required project and
programmer numbers may be specified either as one word with
the project number in the left half and the programmer number
in the right half, or as the right halves of separate sequential
word locations.

I. BUFFER COUNT This option enables the user to specify the number of 110 buf
fers to be assigned to a particular device. If this argument is not
given or is assigned a value of zero, the monitor default is as
sumed. This argument has the form:

J. FILE SIZE

BUFFER COUNT= An integer constant or variable

This option is used for disk operations only. It enables the user
to estimate the number of words that an output file is going to
contain. The use of FILE SIZE allows a user to ensure at the
start of a program that enough space is available for its execu
tion. If the size specified is found to be too small during program
execution, the monitor allocates additional space according to
the normal monitor algorithms. The value assigned to the FILE
SIZE argument may be either an integer constant or variable.

8-7

K. VERSION

L. BLOCK SIZE

M. RECORD SIZE

N. ASSOCIATE
VARIABLE

O. PARITY

P. DENSITY

This argument has the form:

FILE SIZE= An integer constant or variable

This option is used for disk operations only. It enables the user
to assign a 12-digit octal version number to a file when it is out
put. The quantity assigned to the VERSION argument may be
either an octal constant or variable. This argument has the form:

VERSION= An octal constant or integer variable

This option enables the user to specify a physical storage block
size for devices other than disk or DECtape. The value assigned
the BLOCK SIZE argument may be either an integer constant
or variable. The size specified must be greater than or equal to 3
and less than or equal to 4095. This argument has the form:

BLOCK SIZE= An integer constant or variable

This option enables the user to force all logical records to be a
specified length. If a logical record exceeds the specified length,
it is truncated. If it is less than the specified length, nulls are
added to pad the record to its full size. The RECORD SIZE argu
ment is required whenever a random access mode is specified.
The value assigned to this argument may be either an integer
constant or variable and may be expressed as the numbers of
words or characters, depending on the mode of the file being
described. This argument has the form:

RECORD SIZE= An integer constant or variable

This option is for disk random access operations only. It stores
the number of the record to be accessed next ifthe program be
ing executed were to continue to access files sequentially from
the specified random access file. This argument has the form:

ASSOCIATE V ARIABLE= An integer variable

This option is for magnetic tape operations only. It permits the
user to specify the type of parity to be observed (odd or even)
during the transfer of data. This option has the form:

PARITY=
'ODD'
'EVEN'
variable (set to literal)

This option is for magnetic tape operations only. It permits the
user to specify any of three possible bit-per-inch (bpi) tape den
sity parameters for magnetic tape transfer operations. This op
tion has the form:

8-8

'-'
Q. DIALOG

'200'
DENSITY= '556'

'800'
variable (set to literal)

The use of this option in an OPEN statement enables the user to
supersede or defer, at execution time,1he values previously as
signed to the argumentS of the statement. The value assigned to
DIALOG may be null, a literal, or an array. This argument has
the form:

DIALOG= Literal, array, or null

Whenever DIALOG is assigned a null value, it establishes a
user/program dialogue mode when the OPEN statement con
taining it is executed. During a dialogue mode, FOROTS outputs
the following messages at the user's terminal.

ENTER FILE SPECIFICATIONS FOR LOGICAL
UNIT XX

FOROTS then types the existing file specifications defined by
the current OPEN statement.

Once the message and defined file specifications are output, the
user may enter any desired changes. Only the arguments that
are to be changed need to be entered.

Whenever a literal or an array is assigned to DIALOG, it must
contain in ASCII the file specification information or indicate
where to request dialog information.

8.1.2 Summary of OPEN/CLOSE Statement Options

The options permitted and required in the OPEN and CLOSE statements and the type of value
required by each are summarized in Table 8-1.

8-9

Argument

UNIT=
MODE=
DIRECTORY=
FILESIZE=
BUFFER COUNT=
ASSOCIATE V ARIABLE=
ACCESS=

FILE=
DIALOG=
BLOCKSIZE=
VERSION=
DEVICE=
PROTECTION=
DISPOSE=
RECORD SIZE=
PARITY=
DENSITY=

Table 8-1
OPEN/CLOSE Statement Arguments

Values Required

Integer variable or constant
Literal constant or variable
Literal or array
Integer constant or variable
Integer constant or variable
Integer variable
'SEQIN', 'SEQOUT', 'SEQINOUT'
'RAN DIN', 'RANDOM', 'APPEND', or variable
Literal constant or variable
Literal array or null
Integer constant or variable
Octal constant or variable
Literal constant or variable
Octal constant or integer variable
Literal constant or variable
Integer constant or integer variable
Literal constant or variable
Literal constant or variable

8-10

CHAPTER 9

SUMMARY OF DECsystem-lO FORTRAN STATEMENTS

CONTROL STATEMENTS

General Form

ASSIGNi tom

CALL name (ai' a2, •• .)

CONTINUE

GOTOi

GOTOm

GO TO m, 01' i2, •••)

GO TO 01' i2, •••),m

IF (el)il' i2, i3

IF (e2)s

PAUSE

PAUSEj

PAUSE'h'

RETURN

RETURNi

STOP

END

9·1

Section References

4.1.3

7.5.2

4.4

4.3

4.1.1

4.1.3

4.1.3

4.1.2

4.2.1

4.2.2

4.5

4.5

4.5

7.5.3

7.5.3

4.6

4.7

DATA TRANSMISSION STATEMENTS

General Form

ACCEPTf

ACCEPT f, list

BACKSPACE unit

DECODE (n,f,v) list

END FILE unit

ENCODE (n,f,v) list

FORMAT (g)

PRINTf

PRINT f, list

PUNCHf

READf

READf, list

READ (unit, f)

READ (unit, f) list

READ (unit) list

READ (unit, name l)

READ (unit #R,f) list

READ (unit, f, END=c, ERR=d) list

READ (unit, f, END=c) list

READ (unit, f, ERR=d) list

REREAD f, list

REWIND unit

SKIP RECORD unit

9-2

Section References

5.2.9

5.2.9

5.3

5.4

5.3

5.4

5.1.1

5.2.3

5.2.3

5.2.4

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.8

5.3

5.3

.•

'"

DATA TRANSMISSIONS STATEMENTS (Cant)

General Form

TYPEf

TYPE f, list

WRITE (unit, f)

WRITE (unit, f) list

WRITE (unit) list

WRITE (unit, name!)

WRITE (unit #R, f) list

UNLOAD unit

SPECIFICA nON STATEMENTS

General Form

BLOCK DATA

COMMON a(n pn2, ...),b(n3,n4, •• J, ...

COMMON /blkl/a, b/blk2/c, d/ ...

COMPLEX a(np n2, ...), b(n3, n4, •••), •••

DATA t,u, .. .lkpk2,k3' .. .I

DIMENSION a(n!, n2, ...), b(np n2, .. J, ...

DOUBLE PRECISION a(n!, n2, ...), b(n3, n4, •••), •••

EQUIVALENCE (a(np ...), b(n2, .. J, ...), .. .

(c(n3,·. J, d(n4, •••), •• J, .. .

9-3

Section References

5.2.5

5.2.5

5.2.6

5.2.6

5.2.6

5.2.6

5.2.6

5.3

Section References

6.2.2

6.1.2

6.1.2

6.3

6.2.1

6.1.1

6.3

6.1.3

SPECIFICATIONS STATEMENTS (Cant)

General Form

EXTERNAL y,Z, ...

IMPLICITtype\(1\-1 2), type2(13-14)""

INTEGER a(nl' n2,·· .), b(n3, n4, •••), •••

LOGICAL a(nl' ti2, •••), b(n3, n4, •• .), •••

NAMELIST /name/a,b, .. ./hame/c,d, ...

REAL a(nl' n2, •• .) b(n3, n4, •• .), .••

SUBSCRIPT INTEGER a(np n2, •• .),b(n3, .. .), ...

Section References

7.7

6.3.1

6.3

6.3

5.1.2

6.3

6.3

ARITHMETIC STATEMENT FUNCTION DEFINITION

General Form

name (a,b, .. .)=e

FILE CONTROL STATEMENTS

General Form

OPEN (argument,argument, ...)

CLOSE (argument,argurnent, ...)

a,b,c,d

NOTES:

are expressions

are variable names

9-4

Section Reference

7.3

Section Reference

8.1

8.1

blkl, blk2 are block names

c is the statement number to which
control is transferred upon en-
countering an end-of-file

d is the statement number to which

('I
control is transferred upon en-
countering an error condition on
the input data.

e is an expression

e] is a noncomplex expression

e2 is a logical expression

f is a format number

g is a format specification

'h' is an alphanumeric

i,i l'i2, ... are statement numbers

j is an integer constant

kl'k2' ... are constants of the general formj*k
where k is any constant

11"2' ... are letters

list is an input/output Jist

m is an integer variable name

ml'm2,m3 are integer expressions

nl'n2, ... are dimension specifications

n are the number of ASCII characters

name is a subroutine or function name

namel'name2 are NAMELIST names

#R is a record number where 1/0 begins

s is a statement (not DO or logical IF)

t,u,v,w are variable names or input/output lists

9-5

unit

v

y,z

are type specifications

is an integer variable or constant
specifying a logical device number

is the starting address of the ASCII
record referenced

are external subprogram names

9-6

<,

[I
SECTION II

THE OBJECT TIME SYSTEM

The four chapters of this section contain information on FORLIB, SUBPROGRAM calling se~ I
quences, accumulator usage, compiler switches and diagnostic messages, and FORTRAN user
programming.

Complete information on the FOROTS object time system may be found in the DECsystem-lO
FORTRAN-lO Language Manual (DEC-lO-LFORA-C-D). I

...

o

CHAPTER 10

FORLIB

FORLIB is a single file which contains all of the programs in tne FORTRAN library. It is com
posed of three groups of programs:

(1) The FORTRAN Object Time System.

(2) Science Library.

(3) FORTRAN Utility Subprograms.

There are two forms of'FORLIB, one for the KA-1O and the other for the KI-IO. The KA-lOli
brary will run on the KI-IO, but will not take advantage of the speed of the KI-IO. The KI-IO li
brary will not run on the KA-IO because of the hardware differences. Also, the library used must
match the compiler used, i.e., KA-lO compiled code must use th(;! KA-lO FORLIB and the KI-IO
compiled code must use the KI-1O FORLIB.

10.1 THE FORTRAN OBJECT TIME SYSTEM

The system programs in the FORTRAN object time system act as the interface between the user's
program and the DECsystem-IO. All of these programs are invisible to the user's program. The
FOR TRAN object time system is loaded automatically from FORLIB and resides in the user's
core area along with the user's main programs and any library functions and subroutines that his
programs reference.

10.1.1 FOROTS

FOROTS is the main program of the FORTRAN object time system and is loaded whenever a
FOR TRAN main program is in core. The primary functions of FOROTS are

A. FORMAT statement processing,

B. Core management, and

C. Control ofI/O devices at runtime.

10.1.1.1 FORMAT Processing - FOROTS assumes that all FORMAT statements are syntactically
correct since the syntax of each statement is checked by the compiler. FOROTS scans the FOR-

10-1

I

I

I

MAT statements and performs the indicated 110 operations. FOROTS invokes the required con
version routine to actually do data conversion. The conversion routine that is used is a function of
the conversion indicated in the FORMAT statement and of the data type ofthe element in the I/O
list.

10.1.1.2 1/0 Device Control - FOROTS executes the required carriage control of output devices
that are physical listing devices (LPT, TTY) and stores the carriage control character at the begin
ning of each line if the output is going to a retrievable medium for deferred listing. When listings
are deferred, the appropriate switch in PIP can be used to list the file and execute the required
carriage control.

I 10.1.1.3 Additional Functions of FOROTS - FOROTS is responsible for the following:

•

A. Control of REREAD and ENCODE/DECODE features.

B. Interaction with EOFTST and READ (unit,f,END=C)list to handle end-of-file test
ing.

C. Control of the assignment of devices to software channels.

D. Control of the handling of filenames for 110 associated with directory devices.

E. Control of the opening and closing of data files .

10.2 SCIENCE LIBRARY AND FORTRAN UTILITY SUBPROGRAMS

The Science Library and FORTRAN Utility Subprograms extend the capabilities of the
FORTRAN language. These subprograms are called explicitly by the user. The subprograms
include the built-in FORTRAN math functions and the user-called utility subroutines which pro
vide optional 110 capabilities and control of and information about the program's environment.
The optional 110 capabilities and environmental control are achieved by the subroutines from in
teractions with the FORTRAN Operating System.

10.2.1 FORTRAN Library Functions

This section contains descrptions of all standard function subprograms provided with the FOR
TRAN library for the DECsystem-10. These functions are called by using the function mnemonic
as a function name in an arithmetic expression. The function mnemonics in Table 10-1 have the
types specified unless their types are explicitly or implicitly changed. (Refer to Section 6.3, "Type
Declaration Statements" and Section 6.3.1, "IMPLICIT Statement.")

10-2

......
o

I

W

u

Function Mnemonic

Absolute value:
Real ABS
Integer lABS
Double precision DABS
Complex to real CABS

Conversion:
Integer to real FLOAT*
Real to integer IFIX*

Double to real SNGL
Real to double DBLE
Integer to double DFLOAT
Complex to real
(obtain real part) REAL

Complex to real
(obtain imaginary AIMAG
part)
Real to complex CMPLX

Truncation:
Real to real AI NT
Real to integer INT*
Double to integer IDINT

Remaindering:
Real AMOD
Integer MOD
Double precision DMOD

Table 10-1
FORTRAN Library Functions

Number of Type of
Definition Arguments Argument Function

largl 1 Real Real
largl 1 Integer Integer
largl 1 Double Double
c=(x2 +y2)~ 1 Complex Real

1 Integer Real
Result is largest
integer < a 1 Real Integer

1 Double Real
1 Real Double
1 Integer Double

1 Complex Real

1 Complex Real

c=Arg l +i*Arg2 2 Real Complex

rgnor".<) 1 Real Real
largest integer J 1 Real Integer
.~arg 1 Double Integer

{ The rema;nde, J 2 Real Real
when Arg 1 is 2 Integer Integer
divided by Arg 2 2 Double Double

'These functions are not used on the KI-lO because they are unnecessary.

. ~

"

External Calls

SQRT

ERROR.,TRAPS

Function Mnemonic

Maximum Value: AMAXO
AMAXI
MAXO
MAXI
DMAXI

Minimum Value:
AMINO
AMINI
MINO
MINI

.....
o DMINI
I

oj::>.

Transfer of sign :
Real SIGN
Integer ISIGN
Double precision DSIGN

Positive Difference:
Real DIM
Integer IDIM

Exponential:
Real EXP
Double DEXP
Complex CEXP

.~

Table lO-l(Cont)
FORTRAN Library Functions

Number of Type of
Definition Arguments Argument FunctIOn

{ MaX(Mg"Mg".)j

Integer Real
Real Real

{~2 } Integer Integer
Real Integer
Double Double

{ Min (Mg ,Ng, •..) }

Integer Real
Real Real

{~2 } Integer Integer
Real Integer
Double Double

I Sgn(Mg')'IMg,,}

2 Real Real
2 Integer Integer
2 Double Double

fMg ,·Min (Mg,.Mg,> }
2 Real Real
2 Integer Integer

k~ } I Real Real
I Double Double
I Complex Complex

External Calls

FLOAT

IFIX

FLOAT

IFIX

ERROR.

EXP,SIN,COS.
ALOG,ERROR.

r.\ ~

"

Function Mnemonic

Logarithm:
Real ALOG

ALOGIO
Double o LOG

DLOGIO
Complex CLOG

Square Root:
Real SQRT

......
o

I
VI

Double DSQRT
Complex CSQRT

Sine:

f
Real (radians) SIN
Real (degrees) SIND
Double (radians) DSIN
Complex CSIN

Cosine:

I
Real (radians) COS
Real (degrees) COSO
Double (radians) DCOS
Complex CCOS

-

Table 10-1 (Cont)
FORTRAN Library Functions

Number of Type of
Definition Arguments Argument Function

loge(Arg) 1 Real Real
loglO(Arg) 1 Real Real
loge(Arg) 1 Double Double
loglO(Arg) 1 Double Double
loge(Arg) 1 Complex Complex

(Arg)Y2 1 Real Real
(Arg)Y2 1 Double Double
c=(x+iy)Y2 1 Complex Complex

l 1 Real Real
1 Real Real

sin (Arg) f 1 Double Double
1 Complex Complex

J

1 Real Real
1 Real Real

cos (Arg) 1 Double Double
1 Complex Complex

(,.

External Calls

ERROR.
ERROR.

ALOG,A T AN2,
SQRT,ERROR.

ERROR.

SQRT

SIN ,SIN H,COSH,
ALOG,EXP

SIN,SINH,COSH,
ALOG,EXP

Function Mnemonic

Hyperbolic:
Sine SINH
Cosine COSH
Tangent TANH

Arc - sine ASIN

Arc - cosine ACOS

-<?
0"1 Arc tangent

Real ATAN
Double DATAN
quotient of

two arguments ATAN2

DATAN2

Complex Conjugate CONJG

Random Number RAN

-- -

..
~

Table 10-1 (Cont)
FORTRAN Library Function

Number of
Definition Arguments

sinh (Arg) 1
cosh (Arg) 1
tanh(Arg) 1

asin (Arg) 1

acos (Arg) 1

atan (Arg) 1
atan (Arg) 1

atan (Arg/ Arg2) 2

atan (Arg/ Arg2) 2

Arg=X +iY,C=X - iY 1

result is a random 1
number in the range
ofOto 1.0.

Type of
I Argument t<unctlOn External Calls

I

,

Real Real EXP,ERROR.
Real Real EXP,ERROR.
Real Real EXP

Real Real ATAN,SQRT
ERROR.

Real Real ATAN,SQRT,
ERROR.

Real Real
Double Double

Real Real ATAN,ERROR.,
TRAPS

Double Double DATAN,ERROR.

Complex Complex

Integer Real
Real,
Double, or
Complex

~

"

10.2.2 FORTRAN Library Subroutines

This section contains descriptions of all standard subroutine subprograms provided within the
FORTRAN library for the DECsystem-lO. These subprograms are closed subroutines and are
called with a CALL statement.

Subroutine Name

DATE

DUMP

Table 10-2
FORTRAN Library Subroutines

Effect

Places today's date as left-justified ASCII charac-
ters into a dimensioned 2-word array.

CALL DATE (array)

where array is the 2-word array. The date is in
the form

dd-mmm-yy

where dd is a 2-digit day (if the first digit is 0, it is
converted to a blank), mmm is a 3-letter month
(e.g., MAR), and yy is a 2-digit year. The date is

. stored in ASCII code, left-justified in the two
words.

Causes particular portions of core to be dumped
and is referred to in the following form:

CALL DUMP (LpUl'Fp".,Ln,Un,F)

where Lj and U j are the variable names which
give the limits of core memory to be dumped. Ei-
ther Lj or U j may be upper or lower limits. F j is a
number indicating the format in which the dump
is to be performed: O=octal, 1=real, 2=integer,
and 3=ASCII.

If F is not 0,1,2,3, the dump is in octal. If Fn is
missing, the last section is dumped in octal. If Un
and F n are missing, an octal dump is made from L
to the end of the job area. If Ln' Un' and Fn are
missing, the entire job area is dumped in octal.

The dump is terminated by a call to EXIT.

10-7

•

Subroutine Name

• ERRSET

EXIT

•
ILL

LEGAL

•
PDUMP

RELEAS

'For explanation, see page 9-6.

Table 10-2 (Cont)
FORTRAN Library Subroutines

Effect

Allows the user to control the typeout of execu
tion-time arithmetic error messages, ERRSET is
called with one argument in integer mode.

CALL ERRSET(N)

Typeout of each type of error is suppressed after
N occurrences of that error message. If ERRSET
is not called, the default value of N is 2.

Returns control to the monitor and, therefore,
terminates the execution of the program.

Sets the ILLEG flag. If the flag is set and an ille
gal character is encountered in floating
point/double precision input, the corresponding
word is set to zero.

CALL ILL

Clears the ILLEG flag. If the flag is set and an il
legal character is encountered in floating
point/double precision input, the corresponding
word is set to zero.

CALL LEGAL

Is referred to in the following form:

where the arguments are the same as those for
DUMP. PDUMP is the same as DUMP except
that control returns to the calling program after
the dump has been executed.

Closes out I/O on a device initialized by the
FORTRAN object time system and returns it to
the uninitialized state.

CALL RELEAS (unit*)

10-8

Subroutine Name

SAVRAN

SETRAN

SLITE(i)

SLITET{i,j)

SSWTCH{i,j)

TIME

Table 10-2 (Cont)
FORTRAN Library Subroutines

Effect

SA VRAN is called with one argument in integer
mode. SA VRAN sets its argument to the last
random number (interpreted as an integer) that
has been generated by the function RAN.

SETRAN has one argument which must be a
non-negative integer <231 • The starting value of
the function RAN is set to the value of this argu-
ment, unless the argument is zero. In this case,
RAN uses its normal starting value.

Turns sense lights on or off. i is an integer ex-
pression. For::::;i::::;36 sense light i will be turned
on. Ifi=O, all sense lights will be turned off.

Checks the status of sense light i and sets the
variable j accordingly and turns off sense light i.
If i is on,j is set to 1; and if i is off,j is set to 2.

Checks the status of data switch i(0::::;i::::;35) and
sets the variable j accordingly. If i is set down,j is
set to 1; and, ifi is up, j is set to 2.

Returns the current time in its argument(s) in
left-justified ASCII characters. If TIME is called
with one argument,

CALL TIME (X)

the time is in the form

hh:mm

where hh is the hours (24-hour time) and mm is
the minutes. If a second argument is requested, .

CALL TIME(X,Y)
the first argument is returned as before and the
second has the form

sS.t

where ss is the seconds and t is the tenths of a
second.

10-9

CHAPTER 11

INTERACTING WITH NON-FORTRAN PROGRAMS AND FILES

11.1 CALLING SEQUENCES

The standard procedures for writing DECsystem-1 0 subroutine calls are described below:

1. Procedure

A. The calling program must load the right half of accumulator (AC) 16 with the
address of the first argument in the argument list.

B. The left half of AC 16 must be set to zero.

C. The subroutine is then called by a PUSHJ instruction to AC 17.

D. The returns will be made to the instruction immediately after the PUSHJ 17
instruction.

2. Restrictions

A. Skip returns are not permitted.

B. The contents of the pushdown stack located before the address specified by
AC 17 belongs to the calling program; it cannot be read by the called subpro
gram.

C. FOROTS assumes that it has control of the stack; therefore the user must not
create his own stack. The FOROTS stack is initialized by

JSP 16,RESET.

or the library routine CALL RESET.

11.2 ACCUMULATOR USAGE

The specific functions performed by accumulators (AC) 17, 16,0, and 1 are listed below:

1. Pushdown pointer

AC 17 is always maintained as a pushdown pointer. Its right half points to the last
location in use on the stack and its left half contains the negative of the number of

11-1

(words-I) allocated to the unused remainder of the stack. (A trap occurs when some
thing is pushed into the next to last location. The trap instruction may itself be a
PUSHJ on the KIlO processor which uses the last location.) A positive left halfis not
permitted.

2. Argument list pointer

AC 16 is used as the argument pointer. The called subprogram does not need to pre
serve its contents. The calling program cannot depend on getting back the address of
the argument list passed to the callee. AC 16 cannot point to the AC's or to the stack.

3. Temporary and value return registers

AC's 0 and 1 are used as temporary registers and for returning values. The called sub
program does not need to preserve the contents of AC's 0 and 1 (even ifnot return
ing a value). The calling program must never depend on getting back the original
contents of the data passed to the called subprogram.

4. Returning values

At the option of the designer of a called subprogram, a subroutine may pass back re
sults by modifying the arguments, returning a single precision value in AC 0 or a
double precision or complex value in AC's 0 and 1. A combination of the above may
be used. However, two single precision values cannot be returned in AC's 0 and 1
since FORTRAN would not be able to handle it.

5. Preserved AC's

FORTRAN FUNCTION subprograms preserve AC's 2-15; SUBROUTINE subpro
grams do not.

The design of the called subprogram cannot depend on the contents of any of the
AC's being set up by the calling subprogram, except for AC's 16 and 17. Passing in
formation must be" done explicitly by the argument list mechanism. Otherwise, the
called subprograms cannot be written in either FORTRAN or COBOL.

11.3 ARGUMENT LISTS

The format of the argument list is the following:

argument count word

first argument entry

argument list address second argument entry

last argument entry

11-2

The format ofthe argument count word is the following:

bits 0-17 These contain -n, where n is the number of argument entries.

bits 18-35 These are reserved and must be O.

The format of an argument entry is the following (each entry is a single word):

bits 0-8 Reserved for future DEC development (set to 0 for how).

Qits9-12 Argument type code.

bit 13 Indirect bit if desired.

bits 14-17 Index field, must be 0 for present.

bits 18-35 Address of the argument.

The following restrictions should be observed.

1. Neither the argument lists nor the arguments themselves can be on the stack. This
restriction is imposed so that the stack can be moved. The same restriction applies to
any indirect argument pointers.

2. The called program may not modify the argument list itself. The argument list may
be in a write-protected segment.

Note that the argument count word is at position -1 with respect to the contents of AC 16. This
word is always required even if the subroutine does not handle a variable number of arguments. A
subroutine which has no arguments must still provide an argument list consisting of two words
(i.e., the argument count word with a 0 in it and zero argument word).

Example:

MOVEI

PUSHJ

16,1+ [EXP-3BI7,A,B,C]

17,SUB

;SETUP ARG LIST

; CALL SUBROUTINE
; RETURN HERE

; SUBROUTINE TO SET THIRD ARG TO SUM OF FIRST TWO ARGS

SUB; MOVE
ADD
MOVEM
POPJ

T,@O (16)
T,@1 (16)
T;@2 (16)
17,

11-3

;GETFIRST ARG
;ADD SECOND ARG
;SET THIRD ARG
;RETURN TO CALLER

11.4 CONVERTING EXISTING MACRO-tO LIBRARIES FOR USE WITH FORTRAN

To conveniently convert existing MACRO-lO programs so that they will still load and execute cor
rectly when called from FORTRAN, the user can

1. transfer the initial entry sequence for a routine to

entry: CAIA

PUSH 17, CEXIT.

2. change all returns to POP] 17,0

These are the functions performed by the HELLO and GOODBY macros. These macros (available
in the file FORPRM.MAC, part of the FOROTS release) were successfully used in converting the
library routines to run FORTRAN.

In addition, since the FORTRAN compiler uses the indirect bits on argument lists (note that this
permits shared, pure code argument lists), it is essential that code which accesses parameters takes
this into account. Specifically, sequences that obtained the values of parameters through the use of
operations such as

HRRZ R,1(16)

to pick up the address of the second argument should be changed to

MOVEI R,@1(16)

This latter operation will work when interfacing to either FORTRAN IV (F40) or FORTRAN-lO.

11.5 MIXING FORTRAN-tO AND FORTRAN IV (F40) COMPILED PROGRAMS

Starting with Version 1A of LINK-lO, use of the switch IMIXFOR will permit loading of FOR
TRAN-10 and FORTRAN IV (F40) programs. This is achieved by modifying the code while it is
loaded.

This introduces extra code that results in a degradation of the execution of programs so loaded.
This feature is provided as a convenience for conversion. It is not intended that it be used for other
than conversion assistance.

11-4

CHAPTER 12

FORTRAN IV (F40) COMPILER AND DIAGNOSTICS

12.1 RUNNING THE FORTRAN IV (F40) COMPILER

The command to run the FORTRAN IV (F40) compiler is:

.RF40

A command to the compiler is of the general form:

object file name, listing filename=source file name(s)

EXAMPLE:

*MVPROG.REL,MYPROG.LST=MYPROG.F4

or

*MYPROG,MYPROG=MYPROG

The FORTRAN IV (F40) compiler will insert the default extensions if they have been omitted.

The switches to the compiler are shown in Table 12-1.

12.2 MONITOR COMMANDS TO RUN THE FORTRAN IV (F40) COMPILER

Compilation of FORTRAN source program files can be performed by use of the COMPILE,
LOAD, EXECUTE, and DEBUG commands.

COMPILE COMMAND

The COMPILE command produces relocatable binary files (REL files) for the specified source
program files.

FORM:
EX:

.COMPILE filename.ext

.COMPILE MAIN.F4

LOAD COMMAND

The LOAD command translates the specified source files if necessary, loads the REL files gener
ated into core and begins execution of the program.

12-1

FORM:
EX:

.LOAD filename.ext

.LOAD MAIN.F4

EXECUTE COMMAND

The EXECUTE command translates the specified files if necessary, loads the REL files generated
into core and begins execution of the program.

FORM:
EX:

.EXECUTE filename.ext

.EXECUTE MAIN.F4

DEBUG COMMAND

The DEBUG command translates the specified source files if necessary, loads the REL files gener
ated and prepares for debugging .

FORM:
EX:

. DEBUG filename.ext

.DEBUG MAIN.F4

Table 12-2 lists the FORTRAN Compiler Diagnostics.

Switch

At

Bt

ct

E

M

Table 12-1
FORTRAN Compiler Switch Options

Meaning

Advance magnetic tape reel by one file.

Backspace magnetic tape reel by one file.

Generate a CREF-type cross-reference listing. (DSK:CREF.TMP assumed if no list-dev
specified)

Complement: Do not produce cross-reference information (standard procedure).

Print an octal listing of the binary program produced by the compiler in addition to the
symbolic listing output.

Complement: Do not produce octal listing (standard procedure).

Translate the letter D in column 1 as a space and treat the line as a normal FORTRAN
statement.

Complement: Translate the letter D in column 1 as a comment character and treat the
line as a comment (standard procedure).

Include MACRO coding in the output listing.

tSwllches A through C and T, W, and Z must immediately follow the device name or filename.extto which the individual
switch applies.

12-2

\\
"

Switch

N

s

Tt

Table 12-1 (Cont)
FORTRAN Compiler Switch Options

Meaning

Complement: Eliminate the MACRO coding from the output listing (standard proce
dure).

Suppress output of error messages on the terminal.

Complement: Output error messages on TTY (standard procedure).

If the compiler is running on the KA-lO, produce code for execution on the KI-IO and
vice-versa.

Skip to the logical end of the magnetic tape reel.

wt Rewind the magnetic tape reel.

zt Zero the DECtape directory.

12.3 DIAGNOSTICS
, ~~~

)) FORTRAN Compiler Diagnostics

)

\'))

(Command Errors)

Message

? BIN AR Y OUTPUT ERROR dev:filename.ext

?CANNOT FIND dev:filename.ext

? DEVICE INPUT ERROR for command string

IMPROPER 10 FOR DEVICE dev:

ILLEGAL MEMORY REFERENCE AT loc
COMPILA nON TERMINATED

Meaning

An output error has occurred on the device speci
fied for the binary program output.

Filename.ext cannot be found on this device.

Device error occurred while attempting to read
Monitor command file.

An input device specified for output (or vice versa)
or an illegal data mode was specified (e.g., binary
output to TTY).

An illegal memory reference has occurred and
compilation has stopped. The current output files
will be closed and the next source files read.

tSwitches A through C and T, W, and Z must immediately follow the device name or filename.ext to which the individual
switch applies.

12-3

1-8

1-9

1-10

1-11

1-12

1-13

1-14

1-15

1-16

Table 12-3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message Meaning

ARGUMENT TYPE DOESN'T AGREE The actual arguments for a function do not agree in
WITH FUNCTION SPEC type with the dummy arguments in the specifica-

tion of the function.

THIS FUNCTION REQUIRES MORE Not enough arguments were supplied for a func-
ARGUMENTS tion.

SUBPROGRAM NAME ALREADY IN USE A subprogram name has appeared in another state-
ment as a scalar or array variable, arithmetic func-
tion statement name, or COMMON block name.
(See Section 7.5)

DUMMY ARGUMENTIN DATA Dummy arguments may not appear in DATA state-
STATEMENT ments. (See Section 6.2.0

NOT A SCALAR OR ARRAY The variable defining the starting address for an
ENCODE/DECODE statement must be a scalar or
an array. (See Section 5.4)

The I/O unit name of a READ/WRITE statement
is not a scalar or array. (See Sections 5.2.6, 5.2.7)

An attempt to ASSIGN idabel number to a vari-
able that is not a scalar or array. (See Section 2.2)

An attempt to GO TO through a variable that is not
a scalar or array. (See Section 4.1)

ILLEGAL USE OF DUMMY ARGUMENT Dummy arguments may be used with functions or
subprograms only. (See Section 7.4.1,7.5.0

ILLEGAL DO LOOP PARAMETER The DO index must be a non-subscripted integer
variable while the initial, limit, and increment val-
ues of the index must be an integer expression; the
index may not be zero. (See Section 4.3)

I/O V ARIABLESMUST BE SCALARS Referencing data in an I/O statement other than
OR ARRAYS scalars or arrays is illegal. (See Section 5.2)

A CONFLICT EXISTS WITH A The function named used was previously declared
COMMON DECLARATION a scalar variable in a COMMON statement.

12-6

)

.

Table 12-3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message

S-l ILLEGAL NAME OR DELIMITER
OR KEY CHARACTER

S-2 STATEMENT KEYWORD NOT
RECOGNIZED

S-3 ILLEGAL FIELD SPECIFICATION

S-4 SCALAR VARIABLE - MAY NOT
BE SUBSCRIPTED

S-5 ILLEGAL TYPE SPECIFICATION

S-6 ARGUMENT IS NOT SINGLE LETTER

S-7 'NAMELIST' NOT FOLLOWED BY"/"

S-8 ILLEGAL CHARACTER IN LABEL

S-9 MISSING COMMA OR SLASH IN
SPECIFICATION STATEMENT

S-lO ILLEGAL ARITHMETIC "IF"
TOO MANY LABELS

S-ll A NUMBER WAS EXPECTED

12-7

Meaning

A variable name doesn't start with an alphabetic
character, or a delimiter such as the left parenthesis
that begins a format is missing, or a key character
such as the letter D in BLOCK DATA is missing.

A statement keyword such as ERASE was not
recognized possibly due to misspelling (e.g.,
ERASC 16).

The field width or decimal specification in a FOR
MAT statement must be integer. The number of
Hollerith characters in an H specification must be
equal to the number specified. (See Sections 5.1.1.1,
5.1.1.6)

An undimensioned variable (a scalar variable) is
being illegally subscripted (see Section 2.2.1) or a
scalar variable is subscripted in an
ENCODEIDECODE statement (see Section 5.4)

The type of constant specified is illegal or mis
spelled. (See Section 2.1)

Arguments in parentheses must be single letters in
IMPLICIT statement. (See Section 6.3.1)

The first character following NAMELIST must be
I. (See Section 5.1.2)

A non-numeric character was detected in the label
field of the statement, possibly because tabs or
spaces are missing.

A specification statement (see Chapter 9) requires a
comma or slash and it is missing.

An arithmetic "IF" statement must have no more
or less than three statement labels to transfer to.
Special optimization will occur if two of the labels
are the same, or one or more labels refer to the next
statement.

Only arrays which are subprogram arguments can
have adjustable dimensions. (See Section 6.1.1.1)

Table 12-3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message Meaning

S-12 IMPLICIT TYPE RANGE OVERLAPS An implicit type range encompasses a character
1>

PREVIOUS SPECIFICATION that has already been given an implicit type.

S-13 ATTEMPT TO USE AN ARRAY OR Variables may be either scalar or array but not both.
FUNCTION NAME AS A SCALAR Variables appearing in a DIMENSION statement or

must be subscripted when used. (See Section 2.2)
Function names must be followed by at least one
argument enclosed in parentheses (See Section

7.4).

S-14 ARRA Y NOT SUBSCRIPTED SeeS-13.

S-15 ILLEGAL USE OF AN ARITHMETIC Arithmetic function definition statement name is
FUNCTION NAME being used without arguments (Le., as a scalar) in

an arithmetic expression. (See Section 7.3)

S-16 MULTIPLE RETURN ILLEGAL A dollar sign ($) or an asterisk (*) must have ap-
WITHOUT STATEMENT LABEL ARG peared in the argument list of this subprogram to

represent the position of a statement label argu-
ment in the call.),

S-17 INCORRECT PAREN COUNT OR The number of left and right parentheses does not
MISSING IMPLIED DO INDEX match, or an undefined index variable was used in

defining a DO loop (see Section 5.2.1), or the num-
ber of implied DO loops and the number of match-
ing parentheses differ in a DATA statement. (See

, Section 6.2.1)

S-18 INVALID INDEX IN DO-LOOP OR The index of a DO statement must be a non-sub-
IMPLIED DO-LOOP scriptedinteger variable and must not be zero. (See

Section 4.3) The index is not used as a subscript in a
DATA list. (See Section 6.2.1)

S-19 EQUIVALENCE REQUIRES TWO OR The EQUIV ALENCE statement must have more
MORE ELEMENTS than one argument because it causes variables to

share the same location. (See Section 6.1.3)

S-20 ILLEGAL DEFINITION OF AN The statement function continues past its recog-
ARITHMETIC STATEMENT EUNCTION nized end point.

0

S-21 MISSING COMMA IN INPUT/OUTPUT An input/output list continues past its recognized
LIST end point.

S-22 STATEMENT CONTINUES PAST A statement other than those mentioned above
RECOGNIZED END POINT continued past its recognized end point.

12-8

r\

,,,

Table 12-3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message

S-23 ILLEGALCOMPLEXCONSTAN'T

S-24 NULLSTATEMENTILLEGAL

0-1 BLOCK DATA NOT SEPARATE
PROGRAM

0-2 SUBROUTINE IS NOT A SEPARATE
PROGRAM

0-3 STATEMENT OUT OF PLACE

0-4 EXECUTABLE STATEMENTS ILLEGAL
IN BLOCK DATA

A-I MINIMUM VALUE EXCEEDS
MAXIMUM VALUE

A-2 ATTEMPT TO ENTER A VARIABLE
INTO COMMON TWICE

A-3 ATTEMPT TO EQUIV ALENCE A SUB
PROGRAM NAMEOR DUMMY
ARGUMENT

A-4 NOT A CONSTANT OR DUMMY
ARGUMENT

A-5 CAUTION ** COMMON VARIABLE
PASSED AS ARGUMENT

M-l TOO MANY SUBSCRIPTS

M-2 WRONG NUMBER OF SUBSCRIPTS

M-3 CONST ANT OVERFLOW

Meaning

The parentheses of the complex constant enclose a
logical, Hollerith, or complex constant.

A line appears with a statement label but no state
ment.

Block Data must exist as a separate program. (See
Sections 6.2.2, 7.6)

A subroutine following a main program or another
subroutine subprogram may have no statement be
tween it and the preceding program's END state
ment and must begin with a SUBROUTINE state
ment. The previous program must have been ter
minated properly. (See Section 7.5)

The IMPLICIT specification statement and any
arithmetic function definition statement must
appear before any executable statement. (See
Chapter 6)

Block DATA statements cannot contain executable
statements.

Minimum value of an array exceeds the maximum
value specified. (See Section 6.1.1)

A variable name may appear in COMMON state
ment only once. (See Section 6.1.2)

An identifier defined as a subprogram name may
not appear in EQUIVALENCE statements in the
defining program. Dummy argument identifiers of
a subprogram may not appear in EQUIVALENCE
statements in that subprogram. (See Sections
6.1.3,7.1)

Only constant and dummy arguments may be used
as arguments in dimension statements. (See Section
7.4.1)

The variable may be multiply defined in the called
subprogram (See Sections 7.4.1, 7.5.1).

An array variable appears with more subscripts
than specified. (See Sections 2.2.2, 6.1.1)

An array variable appears with too few subscripts.
(See Sections 2.2.2, 6.1.1)

Too many significant digits in the formation of a
constant or the exponent is too large. (See Section
2.1)

12-9

I

Table 12-3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message

M-4 ILLEGAL 'IF' ARGUMENT

M-5 ILLEGAL CONVERSION IMPLIED

M-6 LABEL OUT OF RANGE OR ARRAY
TOO LARGE

M-7 UNTERMINATED HOLLERITH
STRING

M-8 SYSTEM ERROR - NO MORE SPACE
FOR RECURSIVE STORAGE

M-9 TOO MUCH OAT A - WRONG
ARRA Y SIZE OR LITERAL
TOO LONG

M-lO ILLEGAL 00 LOOP CLOSE

M-ll MORE DATA NEEDED- LITERAL
TOO SHORT OR TYPECONVER
SION EXPECTED

M-12 NON-INTEGER PARAMETER IN 'DO'
STATEMENT

M·13 NON-INTEGER SUBSCRIPT

M-14 ILLEGAL COMPARISON OF
COMPLEX VARIABLES

M-1S TOO MANY CONTINUATION CARDS

12-10

Meaning

Logical IF or DO statement adjacent to a logical IF
statement, or illegal expression within a logical IF
statement. (See Sections 4.2.2, 4.3)

Attempt to mix double precision ·and complex data
in the same expression. (See Section 2.3.1)

Illegal statement label (See Section 1.1.1) or array
size is greater than 21L 1.

A missing single quote or fewer than n characters
following an "n H" specification. (See Section
5.1.1.6)

The compiler's work roll is too small to hold the
parts of all the subexpressions this statement im
plies. Break this statement·or reassemble the com
piler with a larger work roll parameter (WORLEN=
1508 at present).

The list of DATA constants defines more words
than the list of OAT A variables specifies. This may
be due to an array of the wrong size in the list of
DATA variables, or definition of an integer, real, or
logical OAT A variable with a Hollerith constant of
more than five characters.

Illegal statement terminating a DO loop. (See Sec
tion 4.3)

The list of OAT A constants defines fewer words
than the list of OAT A variables specifies. This may
be due to a double precision or complex OAT A
variable defined with a Hollerith constant of less
than six characters, or a double precision OAT A
variable defined with a real constant.

DO statement parameters must be integers. (See
Section 4.3)

Array subscripts must be integer constants, vari
ables, or expressions. (See Section 4.3)

The only comparison allowed of complex variables
is .NE. or .EQ. (See Sections 2.2, 2.3)

More than 19 continuation cards. (See
Section 1.1.2)

Table 12-3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message

M-16 NON-INTEGER 110 UNITOR
CHARACTER COUNT

M-17 SYSTEM ERROR-ROLL OUT OF
RANGE

M-18 SYSTEM ERROR - NO MORE SPACE
FOR RECURSIVE CALLS

M-19 ILLEGAL USE OF STATEMENT
LABEL

M-20 ILLEGAL RECURSIVE CALL

M-21 DO LOOP INDEX ALREADY
BEING USED IN OPEN LOOP

M-22 ATTEMPTING TO MODIFY
ACTIVE DO LOOP INDEX

M-23 INTEGER EXPRESSION EXPECTED

M-24 ILLEGAL REPEAT COUNT

M-25 DUPLICATE ARGUMENT IN
OPEN/CLOSE STATEMENT

M-26 NOT A RECOGNIZED ARGUMENT
TO OPEN/CLOSE

M-27 UNIT IS A REQUIRED
ARGUMENT FOR OPEN/CLOSE

EXCESSIVE COUNT

OPEN DO LOOPS

UNDEFINED LABELS

12-11

Meaning

The 110 unit variable of a READ/WRITE state
ment, or the character count variable of an
ENCODE/DECODE statement, is not an integer
variable. (See Sections 5.2.6, 5.2.7, 5.4)

Compiler error. Report this message and its circum
stances via a Software Trouble Report.

The compiler's exit roll is too small to hold the re
turn addresses for all the recursive subroutine calls
this statement requires to be compiled. Break up
the statement or reassemble the compiler with a
larger exit roll parameter (EXLENl=201 s at pre
sent).

A GO TO or IF statement transfers to itself.

The statement function called itself. Recursive calls
are illegal in the FORTRAN language.

The index variable is already active as a DO loop in
dex variable.

An attempt to modify a variable is being made to an
active DO loop index, which cannot be modified.

The expression must compute to an integer value.

The repeat count for an item in a OAT A statement
is zero or negative.

An argument has been specified twice in the same
OPEN or CLOSE statement.

An invalid argument has been specified in an
OPEN or CLOSE statement. Note that argument
nameS cannot be abbreviated. Any attempt to do so
will generate this error message.

An OPEN or CLOSE statement was given without a
'UNIT=' in the argument list. -

The number specified is greater than the maximum
possible number of characters in a statement.

The list of statements are specified in DO state
ments but not defined.

The list of labels that do not appear in the label
field.

•

FOR TRAN also accepts the following codes in 7-bit ASCII - horizontal tab (010, line feed (012),
form feed (014), and carriage return (015).

13.2 FORTRAN INPUT/OUTPUT

In addition to the arithmetic functions, the DECsystem-l0 FORTRAN library (FOR LIB) contains
several subprograms which control FORTRAN I/O operations at runtime. The I/O subprograms
are compatible with the DECsystem-l 0 monitor.

Table 13-2
DECsystem-l0 FORTRAN Standard Peripheral Devices

Input/Output Buffer Size
Name Mnemonic Formatted Unformatted In Words Operation

Card Punch CDP Yes Yes 26 WRITE

Card Reader CDR Yes Yes 28 READ

Disk
(includes disk DSK Yes Yes 128 READ/WRITE
packs and drums)

,

DECtapes DTA Yes Yes 127 READ/WRITE

Line Printer LPT Yes No 26 WRITE

Magtape MTA Yes Yes 128 READ/WRITE

Plotter PLT Yes Yes 36 WRITE

Paper Tape Punch PTP Yes Yes 33 WRITE

Paper Tape Reader PTR Yes Yes 33 READ

Pseudo Terminal PTY Yes No 17 READ/WRITE

Terminal-User TTY Yes No 17 READ/WRITE

Terminal-Console CTY Yes No 17 READ/WRITE

13-2

)

)

)

13.2.1 Logical and Physical Peripheral Device Assignments

Logical and physical device assignments are controlled by either the user at runtime or a table
called DEVTB. The first entry in DEVTB. is the length of the table. Each entry after the first is a
sixbit ASCII device name. The position in the table of the device name corresponds to the FOR
TRAN logical number for that device. For example, in Table 13-3, magnetic tape 0 is the 16th en
try in DEVTB. Therefore, the statement

WRITE 06, 13)A

refers to magnetic tape O. The last five entries in DEVTB. correspond to the special FORTRAN
statements READ, ACCEPT, PRINT, PUNCH, and TYPE. Any device assignments may be
changed by reassembling DEVTB.

If the user gives the Monitor command

ASSIGN DSK 16

prior to the running of his program, a file named FORI6.DAT would be written on the disk. Simi
larly, the monitor command

ASSIGN LPT 16

causes output to go to the line printer.

The FORTRAN programmer can make logical assignments such that each device has its own
unique file as intended, but each can be on the disk. In order to use the devices available, the pro
grammer can make assignments at runtime and assign the disk to those not available.

For example, the FORTRAN logical device numbers, e.g., I=DSK, 2=CDR, 3=LPT, are used in
the file name. The written file names are FOR01.DAT, FOR02.DAT, etc. The same is true for
READ. For example, a WRITE(3,l)A,B,C, in the FORTRAN program generates the file name
FOR03.DAT on the disk if the disk has been assigned LPT or 3 prior to running the program.
(Note: REREAD rereads from the file belonging to the device last referenced in a READ state
ment, not FOR-6.DAT, as usual.) The programmer must, of course, realize his own mistake in as
signing the disk as the TTY in the case that FOROTS tries to type out error messages or PAUSE
messages.

More than one disk file may be accessed, without making logical assignments at runtime, by using
logical device numbers 1, and 20 through 24 in the FORTRAN program. Logical device number
19 refers to logical device FORTR which must be assigned at runtime and accesses file name
FORTR.DAT to maintain compatibility with the past system of de fault file name FORTR.DAT. In
all cases when the operating system fails to find a file specified, an attempt will be made to read
from file FORTR.DAT as before.

13-3

Table 13-3
FORTRAN Logical Device Assignments

Device/Function Default Filename FORTRAN Logical Unit Number Use

Standard Devices*

o ~FORxx.DAT-------, 00 ILLEGAL
DSK 01 DISK .~

CDR 02 Card Reader

LPT 03 Line Printer

CTY 04 Console Teletype
,...~ \

TTY 05 User's Teletype

PTR 06 Paper Tape Reader

PTP 07 Paper Tape Punch

DIS 08 Display

DTAI 09 DECtape

DTA2 10

j DTA3 11
DTA4 12
DTA5 13
DTA6 14
DTA7 15 DECtape

MTAO 16 Magnetic Tape

MTAI 17

+ MTA2 18
FORTR 19 Assignable Device

DSK 20 DISK
DSK 21

1 DSK 22
DSK 23
DSK 24
DEVI 25 Assignable Devices

DEV2 26

1
DEV3 27
DEV4 28
DEV5 29

t ,
+

DEV63 FOR63.DAT 63 DISK

t t
1 ! Pefault Devices (inaccessible to the user)

REREAD Current file -6 REREAD statement

CDR FORCDR.DAT -5 READ statement

TTY FORTTY.DAT -4 ACCEPT statement

LPT FORLPT.DAT -3 PRINT statement

PTP FORPTP.DAT -2 PUNCH statement

TTY FORTTY.DAT -1 TYPE statement

'The total number of standard devices permitted is an installation parameter.

13-4

13.2.2 ASCII Data Files

Each record within an ASCII data file consists of a set of contiguous 7-bit characters; each set is
terminated by a vertical paper-motion character (i.e., form feed, vertical tab, or line feed). All
ASCII records start on a word boundary; the last word in a record is padded with nulls, if neces
sary, to insure that the record also ends on a word boundary. Logical records may be split across
physical blocks. There is no implied maximum length for logical records.

NOTE
On sequential input, FOROTS does not require confor
mation to word boundaries: it reads whatever it sees.
However, any file that is written by FOROTS will con
form to the foregoing format requirements.

13.2.3 FORTRAN Binary Data Files

Each logical record in a FORTRAN binary data file contains data which may be referred to by
either a READ or WRITE statement in the program being executed. A logical record is preceded
by a control word and may have one or more control words embedded within it. In FORTRAN
binary data files, there is no relationship between logical records and physical device block sizes.
There is no implied maximum length for logical records.

13.2.3.1 Format of Binary Files - A FOROTS binary file may contain three forms of Logical Seg
ment Control Words (LSCW). These LSCW's give FOROTS the ability to distinguish ASCII files
from binary files.

LSCW

START 001+

CONTINUE 002+

END 003+

the number of words in the segment (exclusive of any
"END" LSCW's)

indicates that the segment of a disk block boundary contin
ues

number of words in the preceding segment including
LSCW's

If the access specified for a file (through the OPEN statement ACCESS=parameter is 'SEQ IN',
'SEQOUT', or 'SEQINOUT', all three LSCW's may appear in a record. If the access specified is
'RANDIN', 'APPEND', or 'RANDOM', all records are of the same length, and there are no
CONTINUE LSCW's.

13-5

13.2.4 Mixed Mode Data Files

FOROTS permits files containing both ASCII and binary data records to be read. Mixed files may
be accessed in either sequential or random access mode. Logical ASCII and binary records have
the same format as described in the preceding paragraphs.

13.2.5 Image Mode Files

The image data transfer mode is a buffered mode in which data is transferred in a blocked format
consisting of a word count located in the right half of the first data word of the buffer followed by
the number of 36-bit data words. The devices which permit image data transfers, and the form in
which the data is read or written, are listed below.

Device

Card Punch

Card Reader

Disk

Magnetic Tape

Paper Tape Punch

Data Forms

In image mode, each buffer contains three 12-bit bytes.
Each byte corresponds to one card column. Since there is
room for 81 columns in the buffer (3 X 27) and there are
only 80 columns on a card, the last word contains only two
bytes of data; the third byte is thrown away. Image causes
exactly one card to be punched for each output. The
CLOSE punches the last partial card and then punches an
EOFcard.

All 12 punches in all 80 columns are packed into the buffer
as 12-bit bytes. The first 12-bit byte contains column 1. The
last word of the buffer contains columns 79 and 80 as the
left and middle bytes, respectively. Cards are not split be
tween two buffers.

Data is written on the disk exactly as it appears in the buffer.
Data consists of 36-bit words.

Data appears on magnetic tape exactly as it appears in the
buffer. No processing or checksumming of any kind is per
formed by the service routine. The parity checking of the
magnetic tape system is sufficient assurance that the data is
correct. Normally, all data, both binary and ASCII, is writ
ten with odd parity and at 800 bits per inch unless changed
by the installation.

Binary words taken from the output buffer are split into 6-
bit bytes and punched with the eighth hole punched in
each frame. There is no format control or checksumming
performed by the 110 routine. Data punched in this mode is
read back by the paper tape reader in the same mode.

13-6

~i

Paper Tape Reader

Plotter

Characters not having the eighth hole punched are ignored.
Characters are truncated to six bits and packed six to the
word without further processing. This mode is useful for
reading binary tapes having arbitrary blocking format.

Six 6-bit characters per word are -transmitted to the plotter
exactly as they appear in the buffer.

13.3 RANDOM ACCESS PROGRAMMING

In random access programming, data is obtained from (or placed into) storage, where the time re
quired for this access is independent of the location of the data most recently obtained from (or
placed into) storage. Random access programming allows a programmer to access. any record
within a file with a single READ or WRITE statement independent of the location of the previ
ously accessed record within that file. For example, a programmer may read or write only the 10th
record in a file if he wishes. Random 110 is desirable when only a few records in a large file are to
be accessed, or when a file is to be read or written in a non-sequential manner, as in a sort.

Random access applies only to data files on the disk with fixed-length record sizes. Any fixed
length record file (formatted or unformatted) which has been written on th.e disk with FORTRAN
or with PIP using the A switch may be read or rewritten non-sequentially.

13.3.1 How to Use Random Access

A programmer may directly access fixed-length records in a disk file by defining the structure of
the file with an OPEN statement (see Chapter 8) and then specifying the record he wishes to ac
cess with a READ or WRITE statement.

110 begins when the random WRITE or READ is specified in the correct format. (See Sections
5.2.6 and 5.2.7.)

13.3.2 Restrictions

A number of restrictions are imposed in random access programming:

A. Mixed formatted and unformatted files are not accessible randomly.

B. Before random I/O is performed through a READ or WRITE statement, the file
must be properly defined through execution of an OPEN statement.

C. All FORTRAN data files must be created by FORTRAN or PIP with the A switch.

D. The records within the file must be of a fixed length.

E. Random access is used for disk files only.

F. Access to files is controlled by the file protection scheme in effect at each installa
tion. (See the DECsystem-lO Monitor Calls Manual for a discussion of file aCCeSS

•

•

privileges.) •

13-7

._-------------.---- ---

:c.

,)

.,
~

APPENDIX A

LIMITATIONS IN THE FORTRAN IV (F40) COMPILER

The FORTRAN IV (F40) compiler is intended to fill the need for a small and reliable FORTRAN
compiler. Its purpose is to provide an alternative to the larger FORTRAN-IO compiler when
optimization is not important or when there is a need for repeated compilation for debugging pur
poses. With the addition to the FORTRAN IV (F40) compiler of the OPEN and CLOSE file con
trol statements, the user has full access to the FOROTS object time system from an F40 compiled
program.

There are, however, some continuing problems with the F40 compiler. These problems lead to in
correctly compiled code under certain infrequent circumstances. Below is a description of known
limitations in version 27 of the FORTRAN IV (F40) compiler.

A.1 CODE GENERATION ERRORS

1. A partial result in a CALL statement may be handled incorrectly. For example:

CALL FUNC(INT+I, REAL*(INT+1)

will cause the second argument to be compiled incorrectly.

2. Nested subscripts in simple assignment and 110 statements may be compiled incor
rectly. For example:

R (I (J ,K) ,K) = INT

does not produce the same results as

M = I(J,K)
R(M,K) = INT

3. Subscripts repeated in an 110 statement will cause incorrect code for the second oc
currence of the subscript. For example, in the statement

WRITE (IJ(N), 7) (B(K),K=I,5), L(N)

the array reference L(N) fails.

4. Implied DO loops repeated in 1/0 statements may cause bad code. For example, in
the statement

READ 0,1) (A(L,J),J=I,5), A(2,5), (A(K,J),K=5,IO)

A-I

the second loop involving K will fail.

5. A double precision function which computes a single precision result may fail to
reset the second word of its result. For example:

DOUBLE PRECISION DFNC, D
DFNC(X) == X+l
D==DFNC(Y)

will set up AC 0 but not AC 1.

6. In general, any long, mixed-mode arithmetic statement may produce bad code, usu
ally due to improper register usage.

A.2 ERROR CONDITIONS WHICH DO NOT GENERATE CORRECT ERROR MESSAGES

1. If a name is entered into COMMON and then declared as a line function, the func
tion will take precedence. For example:

COMMON FINE
FINE(X) = X + 1

2. A repeated formal name in a statement function will generate the wrong error
message:

FOO (X,Y,Z,Y) = X + Y * z
1

STATEMENT KEYWORD NOT RECOGNIZED

A-2

~-;

APPENDIX B

SUMMARY OF DDT FUNCTIONS

This appendix gives a summary of functions performed by the Dynamic Debugging Technique
(DDT), which is used in conjunction with FORTRAN programming. It is not intended to teach
DDT to the user, but rather to serve as a reference guide for users who are already familiar with
DDT.

B.t TYPE-OUT MODES

The following are used to set the type-out mode:

Type Sample Output(s)

Symbolic instructions $S ADD 4, TAG+l
ADD 4, 4002

Numeric, in current radix $C 69.
105

Floating point $F 0.125E-3

7-bit ASCII text $T PQRST

SIXBIT text $6T TSRQPO

RADIX50 $5T 4DDTEND

Halfwords, two addresses $H 4002,,4005
X+l"X+4

Bytes (of n bits each) $NO $80 COULD YIELD
0,14,237,123,0

B.2 ADDRESS MODES

The following are used to set the address mode for typeout of symbolic instructions and.halfwords
(see examples above):

Relative to symbolic address

Absolute numeric address

$R

$A

B-1

TAG+l

4005

B.3 RADIX CHANGE

The following is used to change the radix of numeric type-outs

to n (for n~2): $NR $2R COULD YIELD
110101100000010000000000011100101100

B.4 PREVAILING VS. TEMPORARY MODES

The following are used in prevailing vs. temporary modes:

To set a temporary type-out or
address mode or a temporary
radix as shown in the commands
above, type

To set a prevailing type-out
or address mode on a prevail
ing radix, in the commands
above, substitute

To terminate temporary modes
and revert to prevailing modes,
type a carriage return

Initial prevailing (and tempor
ary) modes are

B.S STORAGE WORDS

The following are used to examine storage words:

To open and examine the con
tents of any address in current
type-out mode

To open a word, but inhibit the
type out of contents

To open and examine a word as
a number in the current radix

$

$$

)

$$S
$$R
$$8R

adrl

adr!

adr[

B-2

$C
$lOR

$$C
$$10R

LOCI 254020"DDTEND

LaC!

LaC [254020,,3454

) \

'.'

))

, ,

To open and examine a word as
a symbolic instruction

To retype the last quantity typed
(particularly used after changing
the current type-out mode)

B.6 RELATED STORAGE WORD

adr]

The following are used to examine related storage words:

To close the current open word
(making any modification typed
in) and to open the following re
lated words, examining them in
the current type-out mode:

To examine ADR + 1

To examine ADR-I

To examine the contents of the location
specified by the address of the last
quantity typed, and to set the location
pointer to this address

To examine the contents of address of
last quantity typed, but not change the
location pointer

To close the currently open word, with
out opening a new word, and revert to
permanent type-out modes

B.7 ONE-TIMEONLYTYPEOUTS

The following typeouts occur only one time:

To repeat the last typeout as a number
in the current radix

! (line feed)

l (or backspace,
on the Teletype
Model 37)

-+1 (TAB)

\ (backslash)

) (carriage return)

B-3

LOC] JRST @JDDTEND

$60; 25,40,20,00,34,54

$6T; 5%0 <L

To represent the address of the search
mask register

To represent the address of the saved
flags, etc.

To represent the pointers associated
with the nth breakpoint

B.11 ARITHMETIC OPERATORS ..

$M

$1

$nB

The following arithmetic operators are permitted in forming expressions:

Two's complement addition +

Two's complement subtraction

Integer multiplication *

Integer division (remainder discarded) , (apostrophe)

B.12 FIELD DELIMITERS IN SYMBOLIC TYPE-INS

The_following are field delimiters:

To delimit op-code name

To delimit accumulator field

To delimit two halfwords

To delimit index register

To indicate indirect addressing

B.13 BREAKPOINTS

The following are used for breakpoints:

To set a specific breakpoint n (1 < n < 8)

To set the next unused breakpoint

To set a breakpoint with automatic pro
ceed

one or more spaces JRST SUBR TE

, (comma)

left"right

()

@

adr$nB

adr$B

adr$$nB
adr$$B

B-6

-6"BEG IN-l

CAR$8B

303$B

CAR$$8B
303$$B

.('

li
I'

)i

))

(,

To set a breakpoint which will automat-
ically open and examine a specified ad-
dress,x x"adr$nB

x"adr$B
x"adr$$nB
x"adr$$B

To remove a specific breakpoint O$nB

To remove all breakpoints $B

To check the status of breakpoint n $nBI

To proceed from a breakpoint $P

To set the proceed count and proceed n$P

To proceed from a breakpoint and
thereafter proceed automatically $$P

n$$P

B.t4 CONDITIONAL BREAKPOINTS

The following are used for conditional breakpoints:

To insert a conditional instruction
(INST), or call a conditional routine,
when breakpoint n is reached

If the conditional instruction does not
cause a skip, the proceed counter is
decremented and checked. If the pro
ceed count ~O, a break occurs

If the conditional instruction or subrou
tine causes one skip, a break occurs.

If the conditional instruction or subrou
tine causes two skips, execution of the
program proceeds.

B.ts STARTINGTHEPROGRAM

$nB+11
$2B+ lI.Q

The following commands are used to start the program:

B-7

AC3"Z+6$5B
AC4"ABLE$B
AC3"Z+6$$5B
AC4"ABLE$$B

0$8B

$B

$P

25$P

$$P
25$$P

INST
CAIE 3,100

To start at the starting address in JOBSA $G

To start, or continue, at a specified ad-
dre~ ~~G

To execute an instruction inst$X

B.16 SEARCHING

The following commands are used for searching:

To set a lower limit (a), an upper limit
(b), a word to be searched for (c), and
search for that word a c$W

To set limits and search for a not-word a < b >c$N

To set limits and search for an effective
address a < b >c$E

To examine the mask used in searches
(initially contains all ones) $MI

To insert another quantity n in the mask n$M

B.17 UNUSED FUNCTIONS

The following is unused:

$U

B.1S ZEROING MEMORY

The following are used for zeroing memory:

To zero memory, except DDT, loca-
tions 20-137, and the symbol table $$Z

To zero memory locations FIRST through
LAST inclusive FIRST < LAST $$Z

B-8

$G

LOC$G

JRST2,@JOBOPC$X
returns to program after
TC and DDT commands

200<250>0$W

351<731>0$N

401<471 > LOC+6$E

$MI -1

777000777777$M

B.19 SPECIAL CHARACTERS

The following special characters are used in DDT typeouts:

Breakpoint stops

Break caused by conditional break
instruction >

Break because proceed counter :::::;0 »

Undefinecl symbol cannot be assembled U

Half-word type-outs left"righ t 401,,402

Unnormalized floating-point number #1.234E+27 #1.234E+27

To indicate an integer is decimal. The
decimal point is printed $ lOR 77=63.

Illegal command ?

If all eight breakpoints have been as-
signed ?

RUBOUTecho XXX

B.20 PAPER TAPE COMMANDS

The following commands are available only in EDDT:

To punch a RIMI OB ioader $L

To punch checksummed data blocks
where ADRI is the first, and ADR2 is

G~9 the last location of the data ADR1<ADR2

To punch data as above, except that ADR1<ADR2 E;~ more than two consecutive locations

(0~0 is fR) 'containing zeros are not p~nched.

To punch a one-word block to cause a
transfer to adr after the preceding pro-

" \ gram' h~ been loaded from paper tape adr$J

B-9

)

r ,

-'
)

ACCEPT Statement, 5-1, 5-19, 9-2
ACCESS option (OPEN/CLOSE), 8-2
Accumulator, 11-1
Adjustable dimensions, 6-3
A format, 5-5

. Alphanumeric fields, 5-5
Argument, def., 2-6
Argument lists, 11-2
Arithmetic function definition statement,

7-1, 9-4
Arithmetic operations on

complex numbers, 2-3
Arithmetic statement, 3-1
Array dimensioning, 2-4, 6-2
Array variables, 2-4
ASCII character set, 13-1
Assigned GO TO statement, 4-2, 9-1
ASSIGN Statement, 4-2 9-1
ASSOCIATE VARIABLE option

(OPEN/CLOSE), 8-8 .

BACKSPACE statement, 5-1, 5-20, 9-2
Blank common, 6-4
Blank fields, 5-11
Blank records, 5-8
BLOCK DATA statement, 6-8, 7-6, 9-3
BLOCK DATA subprogram, 7-6
Block identifier, 6-4
Block name, 6-4
BLOCK SIZE option (OPEN/CLOSE), 8-8
BUFFER COUNT option

(OPEN/CLOSE), 8-7

Calling sequences, 11-1
CALL statement, 7-5, 9-1
Carriage control, 5-7, 5-9
Character set, 1-3, 13-1
CLOSE statement, 8-2, 9-4
Closed subroutines, 7-1
Coding form, 1-2
Commands monitor, 12-1
Comment line, 1-3
Common block, 6-4
COMMON statement, 6-4, 6-6, 9-3
Common storage, 6-4

INDEX

COMPILE command, 12-1
Compiler diagnostics

command errors, 12-3
compilation errors, 12-5

Compiler limitations, A-I
Compiler switches, 12-2
COMPLEX (type declaration statement),

6-8, 9-3
Complex constants, 2-2
Complex fields, 5-7
Complex subexpression, 2-8
Compound expressions

logical, 2-10
numeric, 2-7

Computed GO TO statement, 4-1, 9-1
Constants

complex, 2-2
double precision, 2-2
integer, 2-1
literal, 2-3
logical, 2-3
octal, 2-2
real, 2-1

CONTINUE statement, 4-6, 9-1
Control'statements, 4-1, 9-1

CALL, 7-5
CONTINUE, 4-6
DO, 4-4
END, 4-7
GO TO, 4-1
IF, 4-2
PAUSE, 4-6
RETURN, 7-5
STOP, 4-7

Data files, 13-5
Data record, 5-14
Data specification statements, 6-1

DATA, 6-7, 9-3
BLOCK DATA, 6-8, 7-6, 9-3

Data specification subprogram, 6-8
DATA statement, 6-7, 9-3
Data transmission statements, 5-1, 5-13, 9-2

ACCEPT, 5-19
DECODE, 5-20

Index-l

Data Transmission Statements (cont.)
ENCODE, 5-20
PRINT, 5-15
PUNCH, 5-15
READ, 5-17
REREAD, 5-18
TYPE, 5-16
WRITE, 5-16

DATE subroutine, 10-7
DDT functions, B-1
DEBUG command, 12-2
DECODE statement, 5-20, 9-2
DENSITY option (OPEN/CLOSE), 8-8
Device assignments, 13-3
Device control statements, 5-20, 9-1, 9-2

BACKSPACE, 5-20
END FILE, 5-20
REWIND, 5-20
SKIP RECORD, 5-20
UNLOAD, 5-20

DEVICE option (OPEN/CLOSE), 8-2
Device table, 13-2, 13-4
DEVTB., 13-3
o format, 5-2 to 5-5
Diagnostic messages

command, 12-3
compilation, 12-5

DIALOG option (OPEN/CLOSE), 8-9
DIMENSION statement, 6-2, 9-4

adjustable dimension, 6-3
DIRECTOR Y option (OPEN/CLOSE), 8-6
DISPOSE option (OPEN/CLOSE), 8-4
DO loops, 4-4
DO statement, 4-4, 9-1
DOUBLE PRECISION (type declaration

statement), 6-8, 9-4
Double precision constants, 2-2
Double word, 2-7, 2-9
Dummy arguments, 7-2, 7-3
Dummy identifiers, 7-1, 7-2
DUMP, 10-7

E format, 5-2 to 5-5
ENCODE statement, 5-20, 9-2
END FILE statement, 5-20
END statement, 4-7
EQUIVALENCE statement, 6-5
ERRSET subroutine, 10-8
EXECUTE command, 12-2
EXIT subroutine, 10-8

Expressions, 2-6
logical, 2-9
numeric, 2-6

EXTERNAL statement, 7-6, 9-4
External subprograms, 7-1

F format, 5-2 to 5-5
Field delimiters, 5-5
Field specifications, 5-2
Field width, 5-2 to 5-5
File control statements, 8-1, 9-4

CLOSE, 8-2 .
OPEN, 8-1
options, 8-2, 8-10

FILE option (OPEN/CLOSE), 8-5
FILE SIZE option (OPEN/CLOSE), 8-7
FORLIB, 10-1
Formats stored as data, 5-9
FORMAT statement, 5-1

alphanumeric fields, 5-5
blan k fields, 5-11
complex fields, 5-7
logical fields, 5-5
mixed fields, 5-7
multiple records, 5-8
numeric fields, 5-2
variable field width, 5-5

FOROTS, 10-1 .
format processing, 10-1
110 device control, 10-2

FORTRAN object time system, 10-1
FORTRAN statements, summary of, 9-1
Function, def., 2-6
Function identifier, 2-6, 7-2
FUNCTION statement, 7-2
FUNCTION subprograms, 7-2
Function type, 2-6, 7-3
Function value, 2-6

G format, 5-2 to 5-5
GO TO statement

assigned, 4-2, 9-1
computed, 4-1, 9-1
unconditional, 4-1, 9-1

H-conversion, 5-6
Hierarchy

Index-2

of logical operators, 2-9
of numeric operators, 2-7, 2-10
of relational operators, 2-9

(

I format, 5~2 to 5-5
IF statement

logical, 4-3, 9-1
numerical, 4-3, 9-1

ILL subroutine, 10-8
IMPLICIT statement, 6-9, 9-4
INTEGER (type declaration statement),

6-8, 9-4
Integer constants, 2-1, 6-6
Interacting with non-FORTRAN programs,

11-1
Internal subprograms, 7-1
110 list, 5-13
110 records, 5-14

LEGAL subroutine, 10-8
L format, 5-5
Library functions, 10-2 to 1O~6
Library subprograms, 7-1, 10-2
Li brary subroutines, 10-7
Line continuation field, 1-1
Line format, 1-1
Line spacing, 5-9
Literal constants, 2-3
LOAD command, 12-1
LOGICAL (type declaration statement),

6-8, 9-4
Logical constants, 2-3
Logical devices, 13-3
Logical expressions, 2-9
Logical fields, 5-5
Logical IF statement, 4-3, 9-1
Logical operators, 2-9, 2-10
Loops, 00, 4-4

MACRO-10, interacting with, 11-4
Magnitude

of integer constan ts, 2-1.
of real constants, 2-2
of double-precision constants, 2-2

Mixed fields, 5-7
Mixing FORTRAN programs, 11-4
MODE option (OPEN/CLOSE), 8-4
Monitor commands, 12-1
Multiple record formats, 5-8

NAMELISTstatement, 5-1, 5-11, 9-4
input data, 5-12
output data, 5-13

Nested DO Loops, 4-4, 4-5

Non-executable statements
FORMAT statement, 5-1
N AMELIST statement, 5-11

Normal exit of a DO statement, 4-4
Numeric expressions, 2-6
Numeric fields, 5-2

repetition of, 5-7
Numeric IF statement, 4-3, 9-1
Numeric operations, 2-7
Numeric operators, 2-6

Octal constants, 2-2
o format, 5-2 to 5-5
OPEN statement, 8-1, 9-4
Open subroutines, 7-1
Operators

logical, 2-9
numeric, 2-6
relational, 2-9
priorities of, 2-10

PARITY option (OPEN/CLOSE), 8-8
. PAUSEstatement, 4-6, 9-1

PDUMP subroutine, 10-8
Precision

of double· precision constants, 2-2
of real constants, 2-2

PRINTstatement, 5-15, 9-2
Priorities of operators, 2-7, 2-10
PROTECTION option (OPEN/CLOSE), 8-5
PUNCH statement, 5-15, 9-2
Pushdown pointer, 11-1

Random access of records, 13-7
READ, 5-17, 9-2
WRITE, 5-16, 9-3 .

Range of a DO statement, 4-5

READ statement, 5-17, 9-2
REAL (type declaration statement), 6-8, 9-4
Real constants, 2-1
RECORD SIZE option (OPEN/CLOSE), 8-8
Relational operators, 2-9
RELEAS subroutine, 10-8
Repetition

of field specifications, 5-7
of groups, 5-7

Replacement operator, 3-1
REREADstatement, 5-18, 9-2
RETURN statement, 7-5, 9-1
REWIND statement, 5-20, 9-3

Index-3

Running FORTRAN, 12-1

SA VRAN subroutine, 10-9
Scalar variables, 2-4
Scale factor, 2-1, 2-2, 5-4
SETRAN subroutine, 10-9
SKIP RECORD statement, 5-20, 9-3
SLITE subroutine, 10-9
SLITET subroutine, 10-9
Spacing, 5-10
Specification statements, 6-1, 9-3

data specification, 6-6
storage specification, 6-2
type declaration, 6-8

SSWTCH subroutine, 10-9
Statement field, 1-2
Statement number field, 1-1
Statement numbers, 1-1
STOPstatement, 4-7, 9-1
Storage specification statements, 6-2

COMMON,6-4
DIMENSION, 6-2
EQUIVALENCE, 6-5

Stored formats, 5-9
Subprogram calling sequences, 11-1
SUBROUTINE statement, 7-4
Subroutine subprograms, 7-4

SUBROUTINE statement, 7-4
CALL statement, 7-5
RETURN statement, 7-5

SUBSCRIPT INTEGER (type declaration
statement), 6-8, 9-4

Summary of
DDT functions, B-1
FORTRAN statements, 9-1
OPEN/CLOSE statement options, 8-10

Symbolic logic, 2-9

Tab, horizontal, 1-1
Termination of a program, 4-7
T format, 5-10
TIME subroutine, 10-9
Type declaration statements, 6-8, 9-3
TYPE statement, 5-16, 9-3

Unconditional GO TO statement, 4-1, 9-1
UNIT option (OPEN/CLOSE), 8-2
Unit records, 5-2
UNLOAD statement, 5-20, 9-3

Variable field width, 5-5
Variables

Array, 2-4
Scalar, 2-4

VERSION option (OPEN/CLOSE), 8-8

WRITE statement, 5-16, 9-3

X format, 5-11

Index-4

J

)

)

)

"-

~)

NOTE:

DECsystem-lO
FORTRAN IV (F40)
Programmer's Reference Manual
DEC-IO-LFLMA-B-D

READER'S COMMENTS

This form is for document comments only. Problems with soft
ware should be reported on a Software Problem Report (SPR)
form

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Is there sufficient documt.;ntation on associated system programs required fOf use of the software
described in this manual? If not, what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

D

D

D

D

D

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

D Non-programmer interested in computer concepts and capabilities

Name ------___ Date ____________ __

Organization

Street

City ..,----____________ --->.JState _________ . ___ Zip Code __
or

Country

If you do not require a written reply, please check here. D

.--Fold lIere--

)

.--- Do Not Tear· Fold lIere and Staple --.)

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

(

()
.... _----

•

r
j

(

/
\

l

-,
io:

