
DEC - 08 - ASAB - D

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

PAL III SYMBOLIC ASSEMBLER

PDP-8 PROGRAMMING MANUAL

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Copyright 1967 by Digital Equipment Corporation

Revised March 1967

Reprinted November 1967

ii

PREFACE

The PDP-8 comes to the user complete with an extensive selection of system programs and routines making

the full data processing capability of the new computer immediately available to each user, el iminating

many commonly experienced initial programming delays.

The programs described in these abstracts come from two sources, past programm ing effort on the PDP-5

computer, and present and continuing programming effort on the PDP-8. Thus the PDP-8 programming

system takes advantage of the many man-years of program development and field testing by PDP-5 users.

Although in many cases PDP-8 programs originated as PDP-5 programs, all util ity and functional program

documentation is issued in a new, recursive format introduced with the PDP-8.

Programs written by users of either the PDP-5 or the PDP-8 and submitted to the users' library (DEC US -

Digital Equipment Corporation Users' Society) are immediately available to PDP-8 users.

Consequently, users of either computer can take immediate advantage of the continuing program develop

ments for the other.

iii

CONTENTS

Chapter Page

INTRODUCTION•...••.•........•.•.•...........•..••...... 0.... 1-1

2 ILLUSTRATIONS OF PDP-8 ASSEMBLER FEATURES ...•..•.•..••..•.•.•.... 2-1

The Location Counter ...••••••.•.••..••.•••••.•...•...••...• 0..... 2-1

Coding Illustrations .• 0 0 0.................................. 2-1

3 THE SOURCE LANGUAGE ..•••••••••••.•....•....•...............•.... 3-1

The Character Set•.•.....•.•.•.•......•••............•••... 3-1

Lette rs .•..•••.••.....•....•.•••..••••.•••••••.••••.•.••...•. 3-1

Digits 0..................... 3-1

Punctuation Characters ...•.•••••••.....•.•.................... 3-1

Ignored Characters••..••........•..........•.•........•. 3-2

Illegal Characters•.••••.......••....•......•.. 3-2

Elements... 3-2

Number .•••••••.•.•.•..•.•.•••.•..••..••.•.••........••.•..• 3-2

Symbol .•.••..•.•••••••••••••••••••••••••.••.•...•.•..•.•.•.. 3-3

Parameter Assignments ...•.•.....•.............. 3-3

Symbol Definition ...••.........•................................. 3-4

Expressions•.........•...........•..••.•.••.....•.•.......... 3-5

Current Address Indicator•..................................•. 3-8

Comments ..•.•.•...••...•.........••....•...••..........••.••... 3-9

Pseudo-Instructions ... 3-9

4 PROGRAM PREPARATION AND ASSEMBLER OUTPUT•..•••..... 4-1

Program Tape•.. 4-1

5 OPERATING INSTRUCTIONS 5-1

Summary•..•................... 5-2

6 SYMBOL TABLE ALTERATION .. . 6-1

v

CONTENTS (continued)

Appendix Page

SYMBOL LiSTS.. Al-l

2 ASCII CHARACTER SET .. . A2-1

VI

CHAPTER 1

INTRODUCTION

The use of an assembly program has become standard practice in the programming of digital computers.

Use of an assembler permits a programmer to code in a more convenient language than basic machine code.

The advantages of this practice are widely recognized: Easily recognized mnemonic codes are used in

stead of numeric codes; instructions or data may be referred to by a symbolic name; decimal data may be

used as such with the assembler making the required decimal-to-binary conversion; programs may be al

tered without extensive changes in the source language; and debugging is simplified.

The basic process performed by the Assembler is the substitution of numeric values for symbols, according

to associations found in the symbol table. In addition, the user may request that the Assembler itself as

sign values to the user's own symbols at assembly time. These symbols are normally used to name memory

locations, which may then be referenced by name.

The ability to use mnemonic names to represent machine instructions is of great value. The name TAD re

minds the user of the Two's complement ADdition instruction, while the number 1¢¢¢ does not. Conse

quently, the instructions are easier to remember when mnemonics are used. The same is true of location

names. It is much easier to associate the name TOTAL with the location containing the accumulated

total than it is to remember that location 1374 contains the total.

Another advantage is that, since the assignment of absolute numbers to symbolic locations is done by the

Assembler, the updating of a program by adding or removing instructions is simplified.

In addition to translating statements directly into their binary equivalents, the Assembler will accept in

structions for performing translations. These instructions may not look different from other instructions,

but they do not generate binary codes. For this reason, they are referred to as pseudo-instructions. For

example, the pseudo-instruction DECIMAL tells the Assembler that all numbers following in the program

are to be taken as decimal rather than as octal. This instruction is important to the assembly process but

has no binary equivalent in the object program. Certain other features of assembly can be directed to the

Assembler by the setting of the switch register, abbreviated SR.

The PDP-S Assembly system consists of the Assembler (PAL III) and the Binary Loader (Digital-S-2-U). A

source program prepared in the source language using ASCII code is translated by the Assembler into a

binary object tape in two passes through the A:,sembler. The object binary tape is loaded by the Binary

Loader into the computer ready for execution.

1-1

During the first pass of the assembly, all symbols are defined and placed in the Assembler's symbol table.

During the second pass, the binary equivalents of the input source language are generated and punched.

The Assembler has an optional third pass, which produces an "assembly listing," or a listing with the lo

cation, generated binary, and source code side by side on a line.

The PDP-S Assembly system also includes the Symbolic Tape Editor (Digital-S-l-S) for altering or editing

the source language tapei the DEC Debugging Tape (DDT -S, Digital-S-4-S) for debugging the object

program by communicating with it in the source language, and various other utility programs such as

dumps, etc.

The Assembler requires a basic PDP-S system consisting of the 33 ASR Tape Reader and Punch and a 4K core

memory. The Assembler can use either the 750C Photo-Electric Reader, the 75E High-Speed Punch, or

both. The basic Assembler allows 590 user symbols when using the 33 ASR and allows 495 user symbols

when using the photoelectric reader. The Extended Assembler contains additional symbols for all optional

devices. This symbol list is to be found in the Appendix.

1-2

CHAPTER 2

ILLUSTRATIONS OF PDP-8 ASSEMBLER FEATURES

THE LOCATION COUNTER

In general, statements generate 12-bit binary words which are placed into consecutive memory locations

when the object tape is loaded. The location counter is a register used by the PDP-8 Assembler to keep

track of the next memory location available. It is updated after processing each statement. The location

counter may be explicitly set by an element or expression preceded by an asterisk. The element or ex

pression following the asterisk sets the current location counter to the value of that element or expression.

Subsequent instruc:::tions are assembled into subsequent locations.

Example:

The next instruction would be placed in location 3¢¢. The location counter is initially set to ¢2¢¢.

CODING ILLUSTRATIONS

To illustrate some of the features of the PDP-8 Assembler, a small routine has been chosen and coded in

a number of different ways. The routine continually adds 1 to the contents of a location until the result

is positive, then halts. The instructions used are represented as their octal codes (more compact than the

binary actually used). The number being incremented is in location 17¢. The notation C(A) means the

contents of location A.

*1¢¢
117¢ /C(17¢) INTO AC

*1¢1
7¢¢1 /ADD1 TOAC

*1¢2
317¢ /STORE IN LOCATION 17¢

*1¢3
117¢ /FETCH C(17¢)

*1¢4
771¢ /SKIP ON POSITIVE AC, CLEAR AC

*1¢5
51¢¢ /JUMP TO LOCATION 1¢¢

*1¢6
74¢2 /HALT

*17¢
¢ /WILL CONTAIN NUMBER TO BE INCREMENTED

Since the location counter is automatically incremented, specifying sequential addresses could have been

avoided after the first address in the progression. In addition, the names of the PDP-8 instructions cou Id

have been used in place of the octal codes. The octal representation of these instructions is substituted

by the Assembler whenever symbols appear in the program.

2-1

Example 2:

* 1,0'~
TAD 17,0'
lAC
DCA 17,0'
TAD 17,0'
SPA CLA
JMP 1,0',0'
HLT

*17,0'
,0'

The same program could have been written using symbolic address tags. The comma after the symbol A

indicates to the Assembler that the location in which it places the instruction TAD B is to be named A.

Information associating the symbol A with the number of actual locations is placed in the Assembler's sym

bol table. Consequently, when processing the instruction JMP A, the Assembler finds the symbols JMP

and A in the symbol table and uses these values to form the binary equivalent of the instruction JMP A.

Example 3:

* 1,0',0'
A, TAD B

lAC

*17,0'

DCA B
TAD B
SPA CLA
JMP A
HLT

B, ,0'

Unless the user specifically wanted to use location 17,0' for storage, he cou Id let the Assembler assign the

location.

Example 4:

* 1,0',0'
A, TAD B

lAC
DCA B
TAD B
SPA CLA
JMP A
HLT

B, ,0'

2-2

CHAPTER 3

THE SOURCE LANGUAGE

This chapter explains the features of the ASCII source language available to the user of PAL III.

THE CHARACTER SET

Letters

ABC D E •.. X Y Z

1 2 345 678 9 ¢

Punctuation Characters

Since a number of characters are invisible (i.e. nonprinting), the following notation is used to represent

them in the examples:

L......J space

tab

carriage return

The following characters are used to specify operations to be performed upon symbols or numbers:

Character

+

*

$

space

plus

minus

carriage return

tab

comma

equals

asterisk

semicolon

dollar sign

Use

combine symbols or numbers

combine symbols or numbers

combine symbols or numbers

terminate line

combine symbols or numbers or format the
source tape

assign symbolic address

define parameters

set current location counter

terminate coding line

terminate pass

3-1

/

form feed

blank tape

ru bouts

code 2¢¢

line feed

point

slash

has value equal to current location counter

indicates start of a comment

Ignored Characters

end of a logical page of a source program (See Symbolic Editor 8-1-S)

used for leader/trai ler

used for deleting characters

used for leader /trai I er

follows carriage return

Illegal Characters

All other characters are illegal and cause the Illegal Character error printout: IC dddd AT dddd during

PASS1. The first number is the value of the offending character/ and the second is the value of the cur

rent location counter where it occurred. Illegal characters are ignored.

ELEMENTS

Any group of letters/ digits/ and punctuation which represents binary values less than 212 is an element.

Number

Any sequence of numbers delimited by punctuation characters forms a number.

Example:

1
12
4372

The radix control pseudo-instructions indicate to the Assembler the radix to be used in number interpreta

tion. The pseudo-instruction DECIMAL indicates that all numbers are to be interpreted as decimal unti I

the next occurrence of the pseudo-instruction OCTAL.

The pseudo-instruction OCTAL indicates that all numbers are to be interpreted as octal unti I the next oc

currence of the pseudo-instruction DECIMAL. The radix is initially set to octal and remains octal unless

otherwise specified.

3-2

Symbol

My sequence of letters and digits beginning with a letter and delimited by punctuation characters is a

symbol. Although a symbol may be any length, only the first six characters are considered, and any ad

ditional characters are ignored; symbols which are identical in their first six characters are considered

identical.

The Assembler has in its permanent symbol table definitions of the symbols for all PDP-8 operation codes,

operate commands, and many lOT commands (see the Appendix for a complete list). These may be used

without prior definition by the user.

Examples:

JMS

A

is a symbol whose value of 4¢fOfO is taken from the operation code
definitions.

is a user-created symbol. When used as a symbolic address tag,
its value is the address of the instruction it tags. This value is
assigned by the Assembler.

PARAMETER ASSIGNMENTS

A parameter may be assigned by use of the equal sign. The symbol to the left of the equal sign is assigned

the value of the expression on the right.

Examples:

A=6
EXIT=RETURN=JMP 110

Symbols defined by use of the equal sign may be used in any valid expression.

Example:

A=lfO>t
B=4fOfO
A+B

TAD A
has the value 51010
has the value 111010

If the expression to the left of the egual sign has already been defined, the ReDefinition diagnostic:

RD XXXXXX AT dddd

Wi II be typed where XXXXXX is the symbol's name and dddd is the contents of the current location

counter at the point of redefinition. The new value will be stored in the symbol table.

3-3

Example:

*1¢¢
ClA=76¢¢

wi II cause the di agnosti c:

RD ClA AT

Whenever ClA is used after this point, it will have the value 76¢¢.

SYMBOL DEFINITION

A symbol may be defined by the user in one of two ways

(1) by use of parameter assignment

Example:

DISMIS=JMP I ¢

and (2) by use of the comma

When a symbol is terminated by a comma, it is assigned a value equal to the current location counter.

If it is defined more than once in this manner, the Assembler will type the duplicate tag diagnostic:

DT XXXXXX AT dddd

where XXXXXX is the symbol, and dddd is the current location counter at the ,econd occurrence of the

attempted symbol definition. The symbol is not redefined.

Example:

*3¢¢
START,

CONTlN,

A,
COUNTER,

START,

TAD A
DCA COUNTER
JMS lEAVE
JMP SJART
-74
¢
ClA Cll

The symbol "START" would have a value of ¢3¢¢, the symbol "CONTIN" would have a value of ¢3¢2,

the symbol "A" would have a value of ¢3¢4, the symbol "COUNTER" (considered by the Assembler to be

COUNTE) would have a value of ¢3¢5, and when the Assembler processed the next line, it would type

during PASS1:

3-4

DT START AT

Since the first PASS of PAL III is used to define all symbols in the symbol table, the Assembler will type

a diagnostic if, at the end of PASS 1, there are any symbols remaining undefined. For example:

*717j;1
A, TAD C

CLA CMA
HLT
JMP Al

C, j;1
$

would produce the Undefined Address diagnostic:

UA xxxxxx AT dddd

where XXX XXX is the symbol and dddd is the location at which it was first seen. The entire symbol table

is printed at the end of PASSI. In the case of the above example, this would be:

A 717j;1
UA Al AT 7173
C 7174

If, during PASS1, PAL III detects that its symbol table is full (in other words, that there is no more memory

space to store symbols and their associated values), the Symbol Table full diagnostic:

ST XXXXXX AT dddd

is typed. XXX XXX is the symbol that caused overflow, and dddd is the current location when the over

flow occurred. The Assembler halts and may not be restarted. The source program shou Id be segmented,

or more address arithmetic used, to reduce the number of symbols. PAL Ill's symbol capacity is:

Using 33 ASRi 655 symbols. The basic symbol table contains 65 symbols (see Appendix) leaving 59j;1 user

defined symbols. Using the 75j;1 Photo-Electric Reader; 56j;1 symbols. The basic symbol table contains 65

symbols leaving 495 user-defined symbols.

EXPRESS I ONS

Symbols and numbers are combined with certain operators to form expressions. There are three operators:

+ plus

minus

L..J space

this signifies 2's complement addition

this signifies 2's complement subtraction

space is interpreted in context. Since a PDP-8 instruction has an opera
tion code of three bits as well as an indirect bit, a page bit, and seven
address bits, the Assembler must combine memory reference instructions

3-5

AND ¢¢¢¢
TAD 1¢¢¢
ISZ 2¢¢¢
DCA 3¢¢¢
JMS 4¢¢¢
JMP 5¢¢¢

FADD 1¢¢¢
FSUB 2¢¢¢
FMPY 3¢¢¢
FDIV 4¢¢¢
FGET 5¢¢¢
FPUT 6¢¢¢
FNOR 7¢¢¢
FEXT ¢¢¢¢

in a manner somewhat different from the way in which it combines operate
or lOT instructions. The Assembler accomplishes this by differentiating
the symbols in its permanent symbol table. The following symbols are
used as memory reference instruction op codes:

logical AND
Two's complement ADdition
Index and Skip if Zero
Deposit and Clear Accumulator
JuMp to Subroutine
JuMP

Floating ADDition
Floating SUBtraction
Floating MultiPlY
Floating DIVide
Floating GET
Floating PUT
Floating NORmalize
Floating EXiT

When the Assembler has processed one of these symbols, the space acts as an address field delimiter:

*41¢¢
JMP A

A, CLA

A has the value 41¢1, JMP has the value 5¢¢¢, and the space acts as a field delimiter. These symbols

are combined as follows:

The seven address bits of A are taken, i.e.:

The remaining bits of the address are tested to see if they are zero's (page zero reference); if they are not,

the current page bit is set:

The operation code is then ORed into the expression to form:

1¢1 ¢11 ¢¢¢ ¢¢1

or, written more concisely:

53¢1

3-6

In addition to the above outlined tests, the page bits of the address field are compared with the page bits

of the current location counter. If the page bits of the address field are nonzero and do not equal the page

bits of the current location counter, an out-of-page reference is being attempted and the Illegal Reference

diagnostic is printed on PASS2 or PASS3.

For example:

* 41.0.0
A, ClA Cll

*72.0.0
JMP A

The symbol in the address field of the jump instruction has a value of 41.0.0 while the current location

counter, i.e., the address where the instruction will be placed in memory, has a value of 72.0.0. This

instruction is illegal on the PDP-8 and will be flagged during PASS2 or PASS3 by the Illegal Reference

diagnostic:

IR 41.0.0 AT 72.0.0

The value 53.0.0 wou Id be assembled at location 72.0.0.

The symbol I caused the indirect bit (bit 3) to be set in a memory reference instruction: For example:

DCA 1.0

wou Id produce:

or:

341.0

When a space occurs in an expression that does not contain a memory reference instruction op code, it

means inclusive OR:

For example:

ClA Cll

the symbol ClA has a value of 72.0.0 and the symbol Cll has a value of 71.0.0; ClA Cll would produce 73.0.0.

User-defined symbols are treated as nonmemory reference instructions (see Pseudo-Instructions).

3-7

For example:

A=333
*222
B, CLA

Then the expressions and their values are shown below:

A+B
A-B
k...JB
-A
1-B
B-1
-71
etc.

¢555
¢111
¢333
7445
7557
¢221
77¢7

An expression is terminated by either a carriage-return ()) or a semicolon (i). If any information was

generated to be loaded, the current location counter is incremented.

Example:

RARi RTRi CMA)

Produces three registers of information and the current location counter is incremented after each ex

pression. The statement:

HALT=HLT CLA)

produce~ no information to be loaded (it produces an association in the Assembler's symbol table) and

hence does not increment the current location counter.

*4721
TEMP,)
TEM2, ¢)

The current location counter is not incremented after the line TEMP,) and hence the two symbols TEMP

and TEM2 are assigned the same value, in this case 4721 .

CURRENT ADDRESS INDICATOR

The single character period (.) has, at all times, a value equal to the value of the current location counter.

It may be used as any number or symbol (except to the left of the equal sign).

Example:

*2¢¢
JMP .+2

3-8

is equivalent to JMP 2~2.

*3~~
.+24~~

would produce, in register 3~~, the quantity 27~~

Example:

*22~~
CALL=JMS]

27

Since the second line, CALL=JMS] • does not increment the current location counter, ~~27 would be

placed in register 22~~ and CALL would have the value of]~~]]~ ~~02 or 46~~8'

The properties of the character (.) have been slightly changedi so that, it now acts as a terminator.

Previously, PAL III would neither diagnose nor correctly assemble expressions such as: JMP. (where

there is no space between the P and the .) PAL III now treats this (JMP.) as if it were this (JMP .)

COMMENTS

A comment field is indicated by the slash (/) character. The Assembler will ignore everything from

the slash to the next carriage return.

Example:

CLA /THIS IS A COMMENT

PSEUDO- INSTRUCTIONS

There are several pseudo-instructions that are used to direct the Assembler. These are:

DECIMAL

OCTAL

PAUSE

FIELD EXPRESSION

EXPUNGE

FIXTAB

Set the current radix to decimal

Set the current radix to octal

Stop the Assembler. The current pass is not terminated. PAUSE must be
at the physical end of the program tape segment as the reader routines are
buffered and the buffer is emptied when PAUSE is detected. The as
sembly is continued by depressing CONTINUE.

Causes a field setting to be punched during PASS2. This is recognized by
the Extended Memory Loader (Di gital-8-2A-U) and causes all subsequent
information to be loaded into the field specified by the expression. The
expression must be between ~ and 7, inc lusive •

Expunge the entire symbol table except for the pseudo-instructions.

Fix the current symbol table. Symbols that have been fixed are not
printed in the symbol table at the end of PASS] or PASS 3.

3-9

FIXMRI Fix memory reference instruction. This may be given only after
EXPUNGE. It tells the Assembler that the following symbol definition
is a memory reference instruction and is to be treated as described under
Expressions.

Example:

EXPUNGE
FIXMRI T AD=l,0,0,0
FIXMRI DCA=3,0,0,0
CLA=72,0,0
FIXTAB
PAUSE

When this program segment is read into the Assembler during PASS1, all symbol definitions are

deleted and the three symbols listed are added to the table.

This process is often performed to alter the Assembler's symbol table so that it contains only those

symbols that will be used. This may increase the Assembler's capacity for other user-defined symbols.

3-10

CHAPTER 4

PROGRAM PREPARATION AND ASSEMBLER OUTPUT

The source language tape (symbolic tape) is prepared in ASCII code on 8-channel punched paper tape

using an off-line Teletype or the on-line Symbolic Tape Editor (Digital-8-1-S). In general, a program

should begin with leader code which may be blank tape, code 2¢¢, or rubouts.

PROGRAM TAPE

Since the Assembler ignores certain codes, these may be used freely to produce a more readable symbolic

source tape. These codes are tab, line-feed, and form-feed.

The Assembler will also ignore extraneous spaces, carriage-return/line-feed combinations, and blank

tape.

The program body consists of statements and pseudo-instructions. The program is terminated by the dollar

sign followed by some trailer code. If the program is large, it may be segmented by use of the pseudo

instruction PAUSE. This often facilitates the editing of the source program since each section will be

physically smaller.

The Assembler initially sets its current location counter to ¢2¢¢. This is reset whenever the asterisk is processed.

During PASS1, all illegal characters cause a diagnostic to be printed. The character is ignored.

The following two programs are identical:

*2¢¢
/EXAMPLE OF FORMAT
/GENERATOR
BEGIN, ¢/START OF PROGRAM
KCC
KSF/WAIT FOR FLAG
JMP.-1/FLAG NOT SET YET
KRB/READ I N CHARACTER
DCA CHAR
TAD CHAR
TAD MSPACE/IS IT A SPACE?
SNA CLA
HLT/YES
JMP BEGIN+2 /NO: INPUT AGAIN
CHAR, ¢/TEMPORARY STORAGE
MSPACE, -24¢/-ASCII EQUIVALENT
/END OF EXAMPLE
$

4-1

*2¢¢
/EXAMPLE OF FORMAT
/GENERATOR
BEGIN, ¢

KCC
KSF
JMP .-1
KRB
DCA CHAR
TAD CHAR

/START OF PROGRAM

/WAIT FOR FLAG
/FLAG NOT SET YET
/READ IN CHARACTER

TAD MSPACE /IS IT A SPACE?
SNA CLA
HLT /YES
JMP BEGIN+2 /NO: INPUT AGAIN

CHAR, ¢ /TEMPORARY STORAGE
MSPACE, -24¢ /-ASCII EQUIVALENT
/END OF EXAMPLE
$

Both of these programs are identical and produce the same binary code. The second, however, is easier

to read.

During PASS1, the Assembler reads the source tape and defines all symbols used. The user's symbol table

is printed (or punched) at the end of PASS1. If any symbols remain undefined, the UA diagnostic is

printed. The symbol table is printed in alphabetic order. If the program listed above were assembled,

the PASS 1 output wou Id be:

BEGIN ¢2¢¢
CHAR ¢213
MSPACE ¢214

During PASS2, the Assembler reads the source tape and generates the binary code using the symbol table

equivalences defined during PASS1. The binary tape that is punched may be loaded by t~e Binary Loader

(Digital-S-2-U). This binary tape consists of leader code, an origin setting, and then data words. Every

occurrence of an asterisk experssion causes a new origin to be punched on the tape and resets the As

sembler's current location counter. At the end of PASS2, the checksum is punched on the binary tape

and trailer code is generated. During PASS2, the Assembler may diagnose an Illegal Reference. When

using the 33 ASR Punch, the diagnostic will be both typed and punched and will be preceded and followed

by rubouts. The Binary Loader will ignore everything that has been punched on a tape between rubouts.

During PASS'3, the Assembler reads the source tape and generates the code from the source statements.

The assembly listing is typed (or punched). It consists of the current location counter, the generated

code in octal, and the source statement. The symbol table is typed at the end of the pass. If the program

listed above were assembled, the PASS3 output would be:

4-2

*2~~
IEXAMPLE OF FORMAT
/GENERATOR

,02~~ ~~~~ BEGIN, ~ 1ST ART OF PROGRAM
~2~1 6~32 KCC
~2~2 6~31 KSF IWAIT FOR FLAG
~2~3 52~2 JMP.-1 IFLAG NOT SET YET
~2~4 6~36 KRB IREAD IN CHARACTER
~2~5 3213 DCA CHAR
~2~6 1213 TAD CHAR
~2~7 1214 TAD MSPACE lis IT A SPACE?
~21~ 765~ SNA CLA
~211 74~2 HLT IYES
~212 52~2 JMP BEGIN+2 INO: INPUT AGAIN
.0213 ~~~~ CHAR, ~ ITEMPORARY STORAGE
~214 754~ MSPACE, -24~ I-ASCII EQUIVALENT

IE N D OF EXAMPLE

BEGIN ~2~~
CHAR ~213
MSPACE ~214

4-3

CHAPTER 5

OPERATING INSTRUCTIONS

The PAL III Assembler is provided as a binary tape. This is loaded into the PDP-8 memory by means of

the Binary Loader, using either the 33 ASR Reader or the 750C Photo-Electric Reader (see Digital-8-2-U).

The Assembler will use either the 33 ASR Reader or the photo-electric reader to read the source language

tape, and it will use either the 33 ASR Punch or the 75E Punch for output. The selection of I/o devices

is made by the Assembler when it is started. The source language tape must be in the proper reader, with

the reader and punch turned on. When using the high-speed punch, the symbol table will be typed on

the 33 ASR if bit 11 of the switch register is 0 (downh it will be punched on the high-speed punch if bit

11 of the switch register is a 1 (up). When using the 33 ASR for symbol table output, the telepunch should

be left on, since the symbol table produced may be read by DDT (see Digital-8-4-S). All diagnostics

will be typed on the 33 ASR (except for the undefined address diagnostic when using the high-speed punch

and the bit 11 switch option). The binary tape produced during PASS2 will be punched using the 33 ASR

punch or the 75E Punch if it is included in the maching configuration and turned on. The only diagnostic

in PASS2 wi II be Illegal Reference. Since th is is typed on the 33 ASR, it may also be punched on the

binary tape. It will, however, be ignored by the Binary Loader. The bit 11 switch option may be used

during PASS3 also. If the machine is not equipped with the 75E High-Speed Punch, bit 11 will have no

effect •

In addition to the binary tape of the Assembler, the user is provided with an ASC IT tape containing

symbol definitions for the instruction sets of the available options to the PDP-8 (i.e., card readers,

magnetic tapes, A/D converters). Since there is only a finite amount of space available, expanding the

number of permanent symbols that the Assembler recognizes decreases the maximum number of symbols the

user may have available. For this reason, the ASCII Extended Definitions tape should be edited to con

tain definitions for only those options which the user has acquired. This tape should be read into the

Assembler only on PASS1. Since it permanently fixes the symbols it contains, it should not be read again

until PAL III is reloaded.

1. Load the Assembler using either the 33 ASR Reader or the 750C Photo-Electric

reader.

2. Set %2%% into the switch register; press LOAD ADDRESS.

3. Place the source language tape in the reader. Turn the reader on; turn the punch

on. Be certain that leader code is in the reader.

5-1

PASS1

4. Set Bits ~ and 1 of the switch register for the proper pass. These settings are:

Bit ~ Bit 1

~
1
1

1

~
1

PASS1
PASS2
PASS3

PASS 1 is required so that the Assembler can initialize its symbol table and define

all user symbols. After PASS1 has been made, either PASS2 or PASS3 may be made.

5. Bit 11 switch option

During PASS1 Bit 11 == 1

Bit 11 == ~

During P ASS2

During PASS3 Bit 11 == 1

Bit 11 == ~

Punch symbol table on high-speed punch if it is in the
machine configuration.

Type (and punch) the symbol table on the 33 ASR.

No effect

Punch assembly listing tape, in ASCII, on high-speed
punch.

Type assembly listing on 33 ASR.

6. Press START. The Assembler will halt at the end of each pass. Proceed from step 3.

If the Assembler has halted because of a PAUSE statement, put the next tape into the

reader and press CONTINUE.

SUMMARY

The Assembler reads the source tape, defines all user symbols, and outputs the user

symbol table in alphabetic order. PASS1 diagnostics are:

IC dddd AT xxx x Illegal Character

where dddd is the value of the illegal character and xxxx is the value of the current

location counter when the character was processed. The character is ignored.

RD XXXXXX AT dddd ReDefinition

where XXXXXX is the symbol being redefined and dddd is the value of the current

location counter at the point of redefinition. The symbol is redefined.

DT XXXXXX AT dddd Duplicate Tag

5-2

PASS2

An attempt is being made to redefine a symbol using the comma. XXXXXX is the

symbol and dddd is the value of the current location counter. The previous value of

the symbol is retained and the ~ymbol is not redefined.

ST XXXXXX AT dddd Symbol Table full

where XXXXXX is the symbol causing the overflow and dddd is the value of the Cur

rent Location Counter at the point of overflow. The Assembler halts and may not be

restarted.

UA XXXXXX AT dddd Undefined Address

where XXXXXX is the symbol that was used, but never defined, and dddd is the value

of the Current Location Counter when the symbol was first processed. This is typed

with the symbol table at the end of PASS1. The symbol is assigned a value equal to

the highest address on the memory page where it was first used.

The Assembler reads the source tape and using the symbol table defined during PASS 1,

generates and punches the binary code. This binary tape may then be loaded by the

Binary Loader. The PASS2 diagnostic is:

IR dddd AT xxxx Illegal Reference

where dddd is the address being referenced and xxxx is the value of the Current

Location Counter. The illegal address is then treated as if it were on the proper mem-

ory page.

Example:

* 73¢6
JMP 3¢7

would produce:

IR ¢3¢7 AT 73¢6

and would generate 53¢7 to be loaded into location 73¢6.

5-3

PASS3 The Assembler reads the source tape and, using the symbol table defined during PASS 1

generates and types the code represented by the sou rce statements. The Current Loca

tion Counter, the contents, and the source statement are typed side by side on one

line. If bit 11 of the switch register is a 1 and the machine configuration includes

the high-speed punch, the assembly listing will be punched in ASCII. The PASS3

di agnostic is Illegal Reference.

5-4

CHAPTER 6

SYMBOL TABLE ALTERATION

PAL III cont·'Jins a table of symbol definitions for the basic PDP-8 and its most common optional peripheral

devices. These are the symbols such as TAD, RFC or SPA, which do not have to be defined in every pro

gram. Th is table is considered to be PAL Ill's permanent symbol table. All the symbols it contains are

listed under the heading BASIC SYMBOLS in Appendix] of this manual. If the user had purchased one or

more of the optional devices whose instruction set is not defined among the BASIC SYMBOLS, for example,

EAE or an A/D CONVERTER, it would be desirable if he could add the necessary symbol definitions to the

permanent symbol table. This would eliminate the need for him to define these symbols in every program

he writes. The opposite case would be the user who needs more space for his symbols. He would like to be

able to delete all definitions except the ones he will actually use in his program.

For such purposes PAL III has three pseudo-instructions that may be used to alter its permanent symbol

table. These pseudo-instructions are recognized by the Assembler only during PASS]. During either

PASS2 or 3, they are ignored and have no effect.

The pseudo-instructions that alter the symbol table are:

EXPUNGE

FIXMRI

EXPUNGE the entire permanent symbol table, except for the 9 pseudo-instructions

I isted in Append ix] under BASIC SYMBOLS.

Fix Memory Reference Instructions. Th is must be followed on the same I ine by

a symbol definition statement (parameter assignment) since the memory reference

instructions are constructed in the symbol immediately following the pseudo

instructions. In other words the letters FIXMRI must be followed by one space,

the symbol for the MRI to be defined, an equal sign, and the actual value of the

symbol to the immediate left of the equal sign. The pseudo-instruction must be

repeated for each MRI to be defined. All MRPs must be defined before the

definition of any other symbol.

EXAMPLE: EXPUNGE
FIX MRI
FIX MRI

TAD = 1000
DCA = 3000

6-1

FIXTAB FIX the current symbol TABLE. All symbols that have been defined before the

occurance of th is pseudo- instruction are made part of the permanent symbol table

and will not be printed in the symbol table at the end of PASSl or PASS3.

An actual tape to add two symbols to those already in PAL Ill's permanent symbol table would have punched

on it in ASCII:

To use such a tape the user would:

CDF=62,01
CIF=6202
FIXTAB
PAUSE

1. Read in PAL III with the Binary Loader.

2. Set 200 in the SWITCH REGISTER and press LOAD ADDRESS.

3. Set switches for PASSl •

4. Put definitions tape (ASCII) in the proper reader.

5. Press START.

The PAUSE pseudo-instruction at the end of the tape indicates to the Assembler that the current PASS is

not ended and another tape is to follow.

6. With switches sti \I set to PASS1, put user's program in reader and press CONTINUE on the

console.

The next program to be assembled should not be preceded by the definitions since they are already in the

permanent symbol table and will be there until PAL III is reloaded.

After altering the symbol table to fit his needs the user might wish to keep PAL III in this state. This can

be done by punching a binary of the section of core occupied by PAL with its new symbol table.

To do this:

1. Read in PAL III and modify symbol table as desired.

2. PAL Ill's symbol table begins at location 235°8 • Count all the symbols in the altered symbol

table. Since each symbol and its value require four registers, multiply this number by 4.

Convert this number to octal and add it to 23508. This number is the upper limit of PAL III

The lower I imit is 0001 •

6-2

3. Using the directions for Binary Punch Routine. (Digital-8-5-U) and the I imits as stated in 2

above punch out the PAL III Assembler itself.

4. The output of the Binary Punch Routine is the Assembler with the modified Symbol Table and

may be loaded with the binary loader.

EXAMPLE: PAL III is loaded.

The following ASCII tape is read in on PASS1 ;

CDF = 6201
CIF = 6202
RDF = 6214
RIF = 6224
RMF = 6244
RIB = 6234
FIXTAB
PAUSE

The Assembler now has in its symbol table the "MEMORY EXTENSION CONTROL" symbols and

definitions. Six symbols were added and none removed. There were 84 symbols in the basic

Assembler, there are now 90 symbols which require a total of 360(10) or 5508 locations. Since

the symbol table starts at 2350, it extends to 23508 + 5508 or 312°8 • The Binary Punch

Routine is used to punch from 00018 through 31208 and the output is the Assembler with all the

basic symbols plus memory extension symbols.

6-3

/PSEUDO INSTRUCTIONS

FIELD
EXPUNGE
FIXMRI
PAUSE
FIXTAB
DECIMAL
OCTAL
I
:z
/MEMORY REFERENCE INSTRUCTIONS
AND ~~~~
TAD l~~~
ISZ 2~~~
DCA 3~~~
JMS 4¢~~
JMP 5~~~

/PROGRAM INTERRUPT

ION 6~~1
IOF 6~~2
/HIGH-SPEED READER
RSF 6~11
RRB 6~12
RFC 6~14

/HIGH-SPEED PUNCH

PSF 6~21
PCF 6~22
PPC 6~24
PLS 6~26

/KEYBOARD/READER
KSF 6~31
KCC 6~32
KRS 6~34
KRB 6~36

/GROUP 2 OPERATES
HLT 74~2
OSR 74¢4

APPENDIX 1

SYMBOL LISTS

BASIC SYMBOLS

/FLOATI NG-POI NT I NSTRUCTI ONS
FEXT ~~~~
FADD l~~~
FSUB 2~~~
FMPY 3~~~
FDIV 4¢~~
FGET 5~~~
FPUT 6~~~
FNOR 7~~~

/TELEPRI NTER/PUNCH
TSF 6~41
TCF 6~42
TLS 60'46
TPC 6~44

/GROUP 1 OPERATES

NOP 7~~~
lAC 7~~1
RAL 7~~4
RTL 7~~6

RAR
RTR
CML
CMA
CLL
CLA

7~1~
7~12
7~2¢
7~4¢
71~¢
72~¢

/COMBI NED OPERATES
CIA 7~41
LAS 76~4

Al-l

SKP
SNL
SZL
SZA
SNA
SMA
SPA

741.0
742.0
743.0
744.0
745~
75.0.0
751~

STL
GLK
STA

712.0
72.04
724.0

/DECTAPE DUAL TRANSPORT TYPE 555 AND CONTROL TYPE 552

MMMM 6757 MMSF 6761
MMMF 6756 MMCF 6772
MMML 6766 MMSC 6771
MMLS 6751 MMRS 6774
MMLM 6752 MMCC 6762
MMLF 6754 MMLC 6764

/DECTAPE TRANSPORT TYPE TU55 AND CONTROL TYPE TC,01

DTRA 6761 DTSF 6771
DTCA 6762 DTRB 6772
DTXA 6764 DTLB 6774

/MEMORY PARITY TYPE 188

SMP 61.01
CMP 61~4

EXTENDED SYMBOLS

/PDP -5 EAE SYMBOLS 153*

CAM 61~1 SZO 6114
LMQ 61~2 DIV 6121
LAR 61~4 RDM 6122
MUL 6111 SAF 6124
RDA 6112

/PDP-8 EAE SYMBOLS 182

MUY 74¢5 ASR 7415
DVI 74ff' LSR 7417
NMI 7411 MQL 7421
SHL 7413 SCA 7441
MQA 75~1 CAM 7621

/MEMORY EXTENSION CONTROL TYPE 183

CDF 62~1 RIF 6224
CIF 62~2 RMF 6244
RDF 6214 RIB 6234

/AUTO RESTART TYPE KR~l

SPL = 61.02

* PDP-5 EAE symbol definitions do not appear on the actual tape due to a conflict in the CAM
instructions of PDP-5 and PDP-8. PDP-8 EAE symbols should be deleted if those for PDP-5 are
inserted in the extended symbols tape.

Al-2

/ AD CONVERTER TYPE 189

ADC 6,0,04

/ AD CONVERTER/MULTIPLEXER 138E/139E

ADSF 6531 ADCC 6541
ADCV 6532 ADSC 6542
ADRB 6534 ADIC 6544

/OSCILLOSCOPE DISPLAY TYPE 34D

DCX 6,051 DYL 6,063
DXL 6,053 DIX 6,054
DCY 6,061 DIY 6,064
DXS 6,057 DYS 6,067

/SCOPETYPE 30N

DLB 6,074

ILIGHT PEN TYPE 37,0

DSF 6,071 DCF 6,072

/PLOTTER AND CONTROL TYPE 35,0B

PLSF 65,01 PLCF 65,02
PLPU 65,04 PLPR 6511
PLPU 6512 PLDD 6514
PLPL 6521 PLUD 6522
PLPD 6524

ICARD READER AND CONTROL TYPE CR,01 C

RCSF 6631 RCSP 6671
RCRA 6632 RCSE 6671
RCRB 6634 RCRD 6674

/CARD READER TYPE 451

CRSF 6632 CERS 6634 /also services card punch 450

CRRB 6671 CRSA 6672
CRSB 6674

/CARD PUNCH AND CONTROL TYPE 45,0

CPSF 6631 CPSE 6642
CPLB 6644

CPCF 6641 /CERS as appears under card reader 451

/LINE PRINTER TYPE 645

LCF 6652 LPR 6655
LSF 6661 LCB 6662
LLB 6664

A1-3

/SERIAL DRUM 25~ AND 251

DRCR 66~3
DRCF 6611
DRTS 6615
DRSC 6622

/MAGNETIC TAPE TYPE 57A

MSCR 67~1
MTS 67~6
MNC 6712
MSWF 6721
MCWF 6722
MIWF 6722
MDEF 6732
MEEF 6732
MTRS 6734
MRWC 6742
MCA 6745

/MAGNETIC TAPE TYPE 58~

TSRD
TSWR
TSSR
TWRT
TSRS

6715
6716
6722
6731
6734

DRCW
DREF
DRSE
DRCN

MCD
MSUR
MTC
MDWF
MEWF
MSEF
MCED
MIEF
MCC
MRCA

TIFM
TSDF
TSST
TCPI

66~5
6612
6621
6624

67~2
6711
6716
6722
6722
6731
6732
6732
6741
6744

67~7
6721
6724
6732

/EIGHT CHANNEL SAMPLE AND HOLD CONTROL TYPE ACm A

/OPTION TO TYPE 139E MULTIPLEXOR

HSC 6571
HAC 6572
SAC 6574

/DATA COMMUNICATION SYSTEMS TYPE 63~

TTINCR 64~1
TTl 64~2
TTO 64~4
TTCL 6411
TTSL 6412

TTRL
TTSKP
TTXON
TTXOF

A1-4

6414
6421
6422
6424

APPENDIX 2

ASCII CHARACTER SET

A 3,01 ,0 26,0

B 3,02 261

C 3,03 2 262

D 3,04 3 263

E 3,05 4 264

F 3,06 5 265

G 3,07 6 266

H 31,0 7 267

311 8 27,0

J 312 9 271

K 313 $ 244

L 314 * 252

M 315 + 253

N 316 254

0 317 255

P 32,0 256

Q 321 / 257

R 322 273

S 323 275

T 324 Space 24¢

U 325 Tab 211

V 326 Line Feed 212

W 327 Form Feed 214

X 33,0 Carri age-Return 215

y 331 Rubout 377

Z 332 Leader/Trailer 2,0,0*

*Code 2,0,0 may be used as leader/trailer. It is generated by depressing:

Sh i ft, CTRL, Repeat, @

Release the keys in reverse order.

A2-1

NOTE 1: PAL III does not require the presence of Channel 8. Thus, 1.0'1 is con-
sidered equivalent to 3.0'1. This is useful if the paper tape is prepared on a Teletype
that punches pari ty .

NOTE 2: All other characters are valid within comments.

A2-2

mamaomo
EQUIPMENT
CORPORATION
MAYNARD,MASSACHUSETTS

PRINTED IN U.S.A.

