
DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

PDP-8 FORTRAN

PROGRAMMING MANUAL

DE~-'l8-AFI'C-D

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Copyright 1964 by Digital Equipi11.ent Corporation

Reprinted

Oc tober 1 966
September 1967

Revised

fv\oy 1967
Oc tober 1 967

Chapter

2

3

4

5

6

CONTENTS

INTRODUCTION. 0 ••• 0 • '.0

THE FORTRAN LANGUAGE

Statements •••. o • .
Program Format ••

Types of Statements

.
•••• e •••••••••••••••••••••••••••••••••••

Comments ••• 0 ..
Continuation .0 ••• 0

The Character Set. 0

FORTRAN ARITHMETIC.

...

..
.....................................

Arithmetic Expressions ..••••••.•••••••••••••••••••••••••••••

Consta nts .. .

Variables .. .

Operators

Functions ..
The Ari thmetic Statements

NUMBER REPRESENTA nON AND VARIABLE TYPES 0" 0 .. 0 0

Integers and Floating Point Numbers. 0 •••

Fixed-And Floating-Point Representation •• 00 •• 0.00. 0 •••••••• 00

Types of Variables .•••.•.•••.•.•••••..•.•••••..•••••....•.•

SUBSCRIPTED VARIABLES .•••..................•...•....•..••••

Arrays ..•..•.••

Subscripts •• •• 4

The Dimension Statement.

PROGRAM CONTROL •• 0

Program Termination ••...•••••.••••.••••••••••••••••••••••. 4

5 TO P •••.••...•••••.•••••.•••••.••••••••••.•••.•••••.

PAUSE 00

END Statement.

Branches and Loops 0 ••• 0 • 0 • 0

The GO TO Statement 0 •

iii

3

3

4

4

5

5

6

7

7

8

8

9

11

12

15

15

16

17

19

19

19

20

23

23

23

23

24

24

24

Chapter

7

8

9

CON TEN T S (continued)

Integer Summation .. .

Page

25

Limits and Decisions - The IF statement................... 25

DO Loops.. 27

The CONTINUE Statement. • . . • • • • • .• . . . • • • . • • 30

Computed GO TO .. 30

INPUT AND OUTPUT .•..•.•....••.•.••.......•.••....•.•....• 33

Available Devices .. 33

Input-Output Statements. . • • • • . • . • • • . . • • . • . • . • . . 34

Device Selection and Direction of Transfer ••.•..•...••..• 35

Statement Number of Format Statement. • • • • • . • . • 35

List. 36

Format Specifications Statement. • . . . • . . . • • • . . . • • . 37

Control Elements E and I .•.•...•....•.•..•.•...•...•..• 37

Input. 37

Correcting Typing Errors .•.••.•.....•...•.••.••...•..•. 39

Output 39

Other Format Control Elements.............................. 40

Quote CI) (Hollerith Output). . . • . • . . • • . • . . • • • . • • . . . • • . • . 40

Slash (/) .. 42

FORTRAN WITH DECTAPE OPTION .•..•....•.•..•.••....•.••..•

FORTRAN Compiler with DECtape I/O Options .•••.......•

43

43

Use of Symbol print with FORTRAN .•..••.•..•.•....••.•. 43

FORTRAN Operating System with DECtape I/O Option. • . . . 44

DECtape FORTRAN Statements and Operation. • . . • . • . • 44

PDP-5/8 FORTRAN SYMBOLPRINT .••...•..••.•••.••..•.•.•...•• 49

IV

Appendix

A

B

C

D

E

F

G

Figure

2

3

CON TEN T S (coni v

OPERATING PROCEDURES FOR RIM ANU
BIN PAPER TAPE LOADERS .•..••...•..•.•.... " •.•.•...•...•... 51

Read-In-Mode Loader (RIM) .••.••. ..•.•...•...•.•..•••••• 51

Binary Loader (BIN) .••...•••.•.......•.•••.....•.•.•.•.•. 53

PREPARATION OF SYMBOLIC (SOURCE) TAPE 55

FORTRAN OPERATING PROCEDURES •.•.••.•..•..••...•...•.•.. 57

Campi I er • . • . . • . • 57

Symbo I pri nt .•. . • • • . . • . • • . . • . . • • • • • . • • • . • . • • . • • . • 57

Operating System ... 58

I/O Control. 59

FORMAT OF COMPILER OUTPUT 60

Interpretive Code•......•...•.•.•.....•.•......•..• 60

ASR-33 8-BIT CHARACTER SET .•..•.•.••.••••.•.•.•••••.••.••.• 61

PDP-5/8 FORTRAN SOURCE PROGRAM RESTRICTIONS .•.•..•...•. 62

PDP-8 Compi ler and Operating System Core Map . • . . . • . . • • • . . . 62

DIAGNOSTICS .. . 63

Dynamic Error Correction•........•.......... 63

Compile Time Diagnostics.................................. 64

Format of D i agnosti cs . 64

Operating System Diagnostics. • •• • . • • • . • . • . • • . . • • . • . . . • • • • . • 66

ILLUSTRATIONS

A Fortran Program . . • . • . . • • . • . • . . . • . . . • . • • • • 3

Example of Comments ...•..•••••.•.••.••.•••••..•.•..••.•......

The Conti nued Statement ••..•.•.•••...•••.••.•..•.•.•..•.••...•

v

5

6

Figure

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

ILL U S T RAT ION S {continued}

Number Representation .•....•.•....••.•.....•...•....•..•.•.. ~

Index i ng Statements .•..•.•.....•.•.•.....•.•....••.•.••.•.•...

Schemati c Representation of Program Branch ing •.•.•••••••.•••••••.

Integer Summation •.•.•.•••••..••.•.•.•..••.•.••••.•..•.•.••.•

Use of IF Statement in Integer Summation Problem .••••.•.••••.••.•

IF Statement with Substatement Feature •••••.•••.•.•••.•••.•.•••.

Fibonacci Series

Fibonacci Series Calculation Programmed As a DO Loop .••••....•••

Nested DO Loops .. .

DO Loops••........•.........•...

Program Branching in DO Loops ••.•••••.•.•••••••••.•.••••••••••

Input-Output Statement •••••••••..••.••••••.••••.••.•.•..•.••••

A List Example••.....••.......•..•.....

Examples of Quote and Slash ••••.••.••••••.••.•.••••.•••.•••••.

Schematic Example of Storage and Retrieval of Data on DECtape •••••

Program Example of Storage and Retrieval of Data on DECtape •••••••

vi

Page

17

21

24

25

26

26

27

27

~8

1.9

30

34

36

41

46

47

PREFACE

The program discussed in this manual, though written for use on the Pro

grammed Data Processor-8 computer, can also be used without change on

Digitalis Programmed Data Processor-5. This compatibility between the

libraries of the two computers results in three major advantages:

1. The PDP-8 comes to the user complete with an extensive se

lection of system programs and routines making the full data pro

cessing capability of the new computer immediately available to

each user, el iminating many of the common initial programming

delays .

2. The PDP-8 programming system takes advantage of the many

man-years of field testing by PDP-5 users.

3. Each computer can take immediate advantage of the continu

ing program developments for the other.

vii

CHAPTER

Using a digital computer to solve a problem 9,"nerail~, ;,,'olves the following series of steps:

a. Determining the correct procedlJr€~ i.:) bE: i; .• , including mathematical

formulas, the handling of data, the pre~cnto~i:;nlj results, etc.

b. Arranging the procec;ures in the proper order.

c. Determining the sequence of computer instructions that will perform the

operations spec ified.

d. Converting the sequence of instructions into binary notations in a physi

cal medium capable of being entered into the computer for execution.

Much of the progress and development in programming has been made in discovering ways to

make the computer perform more of the steps I isted, above, and leaving the programmer free

to concentrate more on the problem itself. At first, programmers entered instructions manually

from the computer console or prepared the binary program for direct input. Later, a symbol ic

notation was developed for a cornputer instruction set, and programs called assemblers were

written that could interpret a tape or card deck punched with this notation. These assemblers

translate each symbolic instruction into a machine operation and assemble an executable pro

gram. Thus, an assembler can accept input from step c above.

An assembler requires that the programmer be familiar 'Nit;; :~"'; particular instruction set of the

computer being used. To solve the same on another con:pJ".:i would usually require complete

reprogramming.

To free the programmer from the need of learnin~3 a given com;Juter's language before using

the machine to solve problems, compilers were developed which :JCcept input more closely re

lated to the problem and convert the input into an executable program. FORTRAN is such a

compiler. It accepts input in the form of statements which resemble mathematical formulas

(hence its name, which stands for FORmula TRANslation) and compi les sequences of instructions

necessary to perform the procedures specified. Non-mathematical operations are specified by

Engl ish words. In terms of the steps given above, a FORTRAN source program is a produc t of

step b; the computer performs steps c and d.

A FORTRAN compiler can thus be written for any digital computer to convert a source program

into an executable program. Extensive reprogramming is made unnecessary, since the same

source program can be compiled on different machines with only minor changes.

The PDP-8 FORTRAN System consists of two subsystems: the compiler and the object time system.

The FORTRAN Compiler contains the instructions the computer requires to perform the clerical

work of translating the FORTRAN version of the problem statement into an object program in

the language of the object system.

When the compiler detects errors in statement format or usage, it prints out diagnostic messages

(see Appendix A). The programmer or operator may then take the appropriate corrective meas-

ures.

After compilation, the object time system is used to execute the program. This system contains

the interpreter, the arithmetic function subroutines, and the input-output packages. When

program execution is required, the object time system, object program, and the data it will

work with are loaded into the computer for solution of the problem.

This is a one-pass compiler, which means the source language tape must be read only once.

The compiler generates one tape which contains coding in a form that is executable under con

trol of the object time system.

To use the system, it is only necessary to load the compiler. The compiler then processes the

source language tape and generates the object program tape. This object program tape can

be run at any time simply by loading the object system, which, in turn, loads and executes

the object program.

2

CHAPTER 2

THE FORTRAN LANGUAGE

STATEMENTS

Figure 1 is an example of a FORTRAN program, consisting of a title, the body of the program,

and the end statement.

The first line of the program is the title, which may be anything the programmer writes to iden

tify the program. It is not incorporated into the final executable program.

The body of the program is a series of statements, each of which specifies a sequence of math

ematical operations, controls the flow of the program, or performs other tasks related to the

proper working of the program.

The end statement must be physically the last statement of every FORTRAN program. Its func

tion is to indicate to the compiler that nothing more connected with the preceding program is

to follow.

C; THIS PROGRAM CALCULATES FACTORIALS
5; TYPE 200

10; ACCEPT 300,X
FACT=Y=l.
I F (X) 5,32,30

30; IF(X-Y)41,32,33
32; TYPE400,X,FACT

GO TO 10
33; FACT=FACT * (Y=Y+1 .)

GO TO 30
41; PAUSE

GO TO 5
200; FORMAT V, "PLEASE TYPE A POSITIVE NUMBER", /)
300; FORMAT (E)
400; FORMAT V, E, "FACTORIAL IS", E)

END

Figure 1 A Fortran Program

3

PROGRAM FORMAT

Each line contains two fields: the first, which begins at the margin, is an identification fiud;

the second contains the statement proper (see Figure 1).

The identification field extends from the left-hand margin up to a semicolon character. This

field may be left blank, or it may contain one of the following types of identification:

1. The first digit of a statement number. This number, which may be any

positive integer from 1 to 2047 inclusive, identifies the statement on that

line for reference by other parts of the program. Statement numbers are

used for program control or to assist the programmer in identifying segments

of h is program. Up to 40 statements can have statement numbers.

2. The letter C. This identifies the remainder of the line as a comment (see

Section Comments).

The semicolon (i) is necessary only if the statement is numbered or is a comment, (i.e., if the

identification field is blank, the semicolon may be omitted).

The statement field begins immediately after the semicolon and extends through the next car

riage return. Although the continuation character (') allows a single statement to extend over

two or more lines, no more than one statement can be written on one line.

TYPES OF STATEMENTS

FORTRAN statements are of several types with differing functions distinguished as follows:

1. Arithmetic statements resemble algebraic formulas. They specify the

mathematical operations to be performed.

2. Program control statements direct the flow of the program.

3. Specification statements allocate data storage, determine variable and

data types, and spec ify i nput-output formats.

4

4. Input-output statements control the transfer of information into and out

of the compu ter .

COtv\.MENTS

Although a FORTRAN program using Engl ish words and mathematical symbols can be read and

understood more easily than a symbol ic language program, it is helpful to provide comments

freely throughout the program to expla in the procedures be ing used. Such comments, identified

by a C in the first position of the I ine, are not interpreted by the compi ler and have no effect

on the executable program.

Ci CALCULATE PERCENTAGE OF CORRECT RESPONSES
Ci PERCENTAGE = -1 IF THERE ARE NO ITEMS
Ci IN CATEGORY

DO 471=1,57
DO 48 J=l, 6
IF (ITMS (J)) 46, 46, 51

46i PRCN (I) = -1 .0

Figure 2 Example of Comments

CONTINUATION

Frequently, a statement may be too long to fit on one line. If the character single quote (')

appears as the last character of a I ine before the carriage return, the next I ine is treated as

a continuation of the statement on the I ine above (see Figure 3). A statement may be continued

on as many lines as necessary to complete it, but the maximum number of characters in the state

ment may not exceed 128.

5

1; FORMAT
IF (NR (1) -1)) 2, 2, 3

2; AP=-14.73
GO TO 6

3; IF (NR (1) -2) 4, 4, 5
4; AP=-44.19

GO TO 6
5; AP=SH (2)*3. O-AG (4)/'

AG (1)+SQTF (AG (14))

Figure 3 The Continued Statement

THE CHARACTER SET

The characters which are meaningful in FORTRAN belong to the ASCII set listed in Appendix D.

Of these, the acceptable characters are: all letters and numbers - A through Z, 0 through 9;

control characters - semicolon (;), carriage return (CR), line feed (LF), single quote ('), double

quote ("), left parenthesis (, right parenthesis), period (.), comma (,); and the operators -

plus (+), minus (-), slash V)' asterisk (*), equal sign (==). All other characters are ignored by

the compiler except in Hollerith information of FORMAT statements where all Teletype char

acters are legal. The character space has no grammatical function except in FORMAT state

ments, but may be used freely to make a program easily readable.

6

CHAPTER 3

FORTRAN ARITHMETIC

ARITHMETIC EXPRESSIONS

An algebraic formula such as the following

[5a + 4b (x2 - xO)] 12a sin 9

represents a relationship between literal symbols (a, b, x, xO' 9) and constants (5, 4, 2) in

dicated by mathematical functions and arithmetic signs (+, -, I, multiplication, exponentiation,

sine). This same formula can be written as a FORTRAN arithmetic expression with very little

change in appearance:

The construction of both expressions is the same; the differences are notational.

The elements of an arithmetic expression are of four types: constants, variables, operators, and

functions. An expression may consist of a single constant, a single variable, or a string of con

stants, variables, and functions connected by operators.

The following examples demonstrate the properties of arithmetic expressions. Each expression

is shown with its corresponding algebraic form.

Algebraic Expression

2
ax + bx + c

(2 ,2) a - 0 ----
(a + b\2
\ • J

. 2
4 11' r

3

FO~TRAN Expression

(A**2 - B*k2) I (A+B) **2

4.* PI*R**2/3.

7

3xlT- 2 (x+y)
4.25

a .sin 9+ 2a . cos (9 -45)

2~
3

A*SINF{THTA)+2. *A*COSF(THTA-O. 7853982)

2. *SQTF{X)/3.

Constants

Constants are explicit numerical quantites. They may be integers, decimals, or numbers in

decimal exponent form. Some examples follow:

integers

5 -70 2047

decimals

18.75 3.14159 -0.00025

dec ima I exponent

1 .66E-16
-16

(meaning 1.66x 10)

These different forms of numerical representation are described in detail in Chapter 4.

Variables

A variable is a literal symbol whose value is not implicit; its value may be changed during the

execution of the program. A variable name is composed of one or more characters according

to these three rules:

1. The only characters which may be IJsed in a variable nome are A through

Z and 0 through 9.

2. The first character must be alphabetic (i.e., A through Z).

3. Only the first four characters of any variable name are meaningfu I. All

characters after the fourth are ignored by the compiler.

8

Some examples of acceptable variable names are:

A

K

THTA

XZRO

LST8

P51

DC8B EPSL

XSUM

The name EX IT represents one variable, not two. (Remember that blank spaces have no func

tion in FORTRAN.) Thus, EX IT, EXIT, or even EXI T, are identical names as far as the com

pi ler is concerned because they a II reference the same variable.

The name EPSILON would be interpreted by the compiler as EPSI, since only the first four char

acters are meaningful. For example, the two names XSUMl and XSUM2 would be considered

identical.

Some incorrect variable names are:

9SRT

GO(5

CSH$

(first character not alphabetic)

(illegal character included)

(illegal character included)

Operators

The operators are symbols representing the common arithmetic operations. The important rule

about operators in the FORTRAN arithmetic expressions is this: Every operation must be ex

plicitly represented by an operator. In particular, the multiplication sign must never be left

out. A symbol for exponentiation is also provided since superscript notation is not available.

To illustrate the rule, here are the FORTRAN and algebraic forms given in the section on arith-

metic expressions:

(5.*A + 4.*B*(X**2-XZRO)) / (2.*A*SINF (THTA))

[5a + 4b (X2 - XO)] /2a sing

Normally, a FORTRAN expression is evaluated from left to right just as an algebraic formula

is. There are exceptions to this rule. Certain operations are always pertormed before others

regardless of order. This priority of evaluation is as follows:

9

1 st. Expressions ()
within parentheses

2nd. Unary minus

3rd. Exponentiation **
4th. Multipl ication *

Division /
5th. Addition +

Subtraction

The term binding strength is sometimes used to refer to the relative position of an operator in a

table such as the one above, which is in the order of descending binding strength. Thus, ex

ponentiation has a greater binding strength than addition, and mul tipl ication and division have

equal binding strength.

The unary minus is simply the operator which indicates a quantity whose value is less than zero,

such as -53, -GAMME, -K. It refers only to the operand which it precedes as opposed to a

binary operator, which refers to operands on either side of itself, as in the expression a-b. A

unary minus is recognized by the fact that it is preceded by another operator, not by an oper

and. For example:

A + B**-2/C-D

The first minus (indicating a negative exponent) is unary; the second (indicating a subtraction)

is binary.

The left-to-right rule can now be stated more prec isely as follows:

A sequence of operations of equal binding strength is evaluated from left to right.

To change the order of evaluation, parentheses are required. Thus, the expression A-B*C IS

evaluated as A-(B*C), not (A-B)*C. The example below gives a few more illustrations of the

left-to-right rule.

The expression

A/B*C
A/B/C
A**B**C

10

is evaluated as

(A/B)*C
(A/B)/C
(A**B)**C

An easy way to check the proper pairing of parentheses is by counting out, illustrated in the

following example:

(Z+AM*(ZM+1 .» I «X**2+C**2)*P)
1 2 10 12 1 0

The procedure is this: Reading the expression from left to right, assign the number 1 to the first

left parentheses (if you encounter a right parenthesis first, the expression is already wrong:) In

crease the count by one each time a left parenthesis is read, and decrease the count by one

when a right parenthesis is used. When the expression has been completely scanned, the count

should be zero. If it becomes less than zero during the scanning, there are too many rightparen

theses. If itis greater than zero at the end of an expression, then the pairing is incorrect.

Use of Parentheses

Note the use of parentheses in the following example below. They are used to enclose the

subscript of the dimensioned variable 0, to specify the order of operations of the expression

involving A, B, C, and to enc lose the argument of the function.

D(I+J) = (A+B)**C+SINF (X)

In algebra there are several devices, such as square brackets ([]), rococo brackets ({ }),

etc., for distinguishing between levels when subexpressions are nested. In FORTRAN, only

the curved parentheses are available, so the programmer must be especially careful to make

certain that parentheses are properly paired. In a given expression, the number of left paren

theses must be equal to the number of right parentheses.

Functions

Functions are used in FORTRAN just as they are in ordinary mathematics -- as variables in an

arithmetic expression.

The function name represents a special subprogram which performs the calculation necessary to

evaluate the function; the result is used in the computation of the expression in which the func-

tion occurs.

PDP-5/8 FORTRAN provides several mathematical functions: square root, sine, cosine, arc tan

gent, exponentiation, and natural logarithm.

11

The argument of a function can be a simple or subscripted variable or an expression. The argu

ment must be in floating point. FORTRAN recognizes a term as a function when the term is a

predefined symbol ending in F followed by an argument enclosed in parentheses (if the F is

missing from the term, the symbol is treated as a subscripted variable). The argument of a func

tion can consist of another function or group of functions. For example, the expression:

LOGF(SINF(X/2)/COSF(X/2)) is equivalent to log*tan ~.

The PDP-5/8 FORTRAN I ibrary currently consists of the following functions:

Function Name

SQTF (X)

SINF (X)

COSF (X)

ATNF (X)

EXPF (X)

LOGF (X)

Meaning

square root of X

sine of X, where X is expressed in radians

cosine of X, where X is expressed in radians

arc tangent X, where the angl e is given

in radians

exponential of X

logarithm of X

THE ARITHMETIC STATEMENT

The arithmetic statement relates a variable V to an arithmetic expression E by means of the

equal sign (=). Thus:

V:= E

Such a statement looks like a mathematical equation, but it is treated differently. The equal

sign is interpreted in a special sensei it does not represent a relation between left and right

members, but it specifies an operation to be performed.

NOTE: In an arithmetic statement, the value of the expression to
the right of the equal sign replaces the value of the variable on the
left.

This means that the value of the left-hand variable will be different after the execution of an

arithmetic statement. A few illustrations of the arithmetic statement are given below.

12

a. VMAX = VO + AXi

b. T=2.*PI*SQTF(1./:J'

c. PI = 3.14159

d. THTA = OMGA + ALPH*T**2/2.

e. MIN = MINO

f. INDX =- INDX +2

With the interpretation of the equal sign defined previously, example f becomes meaningful as an

arithmetic statement. If, for example, the value of INDX is 40 before the statement is executed,

its value will be 42 after execution.

Perhaps another way of looking at the equal sign illustrates its use and interpretation more fully.

In arithmetic expressions, a binary operator requires an operand on its left and right. The equal

sign of an arithmetic statement is considered to be a binary operator also. This interpretation

is demonstrated in the following revised table of operators:

Operator Use Interpretation

(Unary) -A negate A

** A**B raise A to the Bth power

* A*B multiply A by B

I AlB divide A by B

+ A+B add B to A

(Binary) A-B subtract B from A

= A=B replace A with B

Treated this way, the equal sign is considered to have the lowest binding strength of all the

operators. This means that the expression on the right is evaluated before the operation in

dicated by = is performed.

The most important result of treating the equal sign as a binary operator is that it may be used

more than once in an arithmetic statement. Consider the following:

CPRM = (CKL - CKG) I (CPG = P*(Q + 1 .))

13

The internal arithmetic statement, CPG = P*(Q + I.), is set off from the rest of the statement

by parentheses. The complete statement is a concise way of expressing the following common

type of mathematical procedure:

Let

where c = p*(q+l)
pg

The stating of a relation followed by the conditions for evaluating any of the variables can be

expressed in a single arithmetic statement in FORTRAN.

Another important result of treating the equal sign as an operator is that the operations may be

performed in sequence. Just as there may be a series of additions, A+B+C, so may there be a

series of replacements, A=B=C=D. Note that since the operand to the left of an equals sign

must be a variable, only the rightmost operand, represented by D in the example, may be an

arithmetic' expression. The statement is interpreted as follows: "Let the value of the expression

D replace the value of the variable C, which then replaces the value of the variable B" and

so on. In other words, the value of the rightmost expression is given to each of the variables

in the string to the left. A common USE.: for this construction is in setting up initial values:

XZRO=SZRO=AZRO=O

T = T1 = T2= T3=60

P=FP=4.*ATM-AK

Only single level replacements will compile correctly in this manner.

For example: Statements of the type A(l) = A(2) = R(l) = 0.123 are not allowed ,!nd will not

compile properly.

Another useful resul t in treating the equal sign as an operator is that the value of an expression

on the right of an equa I sign is converted to the mode of the left-hand variable before storage,

if necessary.

Example: A=M

K=B

14

CHAPTER 4

NUMBER REPRESENTATION AND

VARIABLE TYPES

INTEGERS AND FLOATING POINT NUMBERS

In mathematics there are many ways to categorize numbers. They may be positive or negative,

rational or irrational, whole numbers or fractions. In FORTRAN, the treatment of numbers is

separated into integers and decimals, distinguished as follows:

1. Integers are positive or negative numbers written without a decimal point.

These numbers are integers: 9, 17, 147, 1024, 2047. The last number, 2047,

is the largest quantity that can be expressed as a FORTRAN integer. For frac

tional quantities and for numbers larger than ±2047 (which is 211 _1), the sec

ond type of number is required.

When using integer arithmetic, any fractional results are truncated. For ex

ample, the expression M=N/3 with N=8 would result in M=2. This applies

only to division because multipl ication, addition and subtraction yield in

tegra I resu I ts.

2. Floating point numbers have two forms. They are simple decimals, such

as 0.0025, .4, 57.; 2. 71828j or numbers in dec ima I exponent form. Num

bers in decimal exponent form are simple decimals multiplied by a power of 10.

Examples:

Mathematical Form

6.023 x 1023

1 .66 x 10-16

72. x 1012

15

FORTRAN Form

6.023E23

1.66E-16

72E12

In general, a floating point number in decimal eXQoner't f0rm is NE±i(.• wher'3

N may be on integer or simple decimal, and l< i5 or. iwescr frorr: C ;-0 99, In·'

clusive. The construction NE±K is used to represent til'-" r" .. mber Nx 10K . The

following are floating point representcltions of the number 19

19'.0
.19E2

1 .9E+1
1900E-2
19'0.OE-l

FIXED-AND FLOATING-POINT REPRESEt'--ITATlOi'!

The difference between integers and real numbers in FORTFU}N is ,:18 WV/:;1 \··/hich ec:ch is

represented in core memory .

.A. FORTRAI'-l integer is stored In one 12-bit computer Vlor:~ . he s;':' (I

to be to the right of the rightmost digit. A FORTRAr'~ intcue:' :10/ r<)r:;(c."~"j H',e ran!):::

-2047 through +2047. All integers greater them ±20·Q are token :) 2U4:3 (thct i:; 2049 :s

taken as 0001 r 4099 is taken as 3).

The floatin· point format consists of two parts:' an expc-:,,,,·-:r (c,(c:',';mc'~ isti! and (1 :nanti~sa.

The man:!:",,] is a decimal fraction with the decimal point' (,s)umed 10 be :0 th.3 left of the left

most digiL The mantissa is always normalized; that IS, it is stored with i20dir!g zeros elimin

ated so that the leftmost bit is always significcmt. The exponent re?les~nt5 the power of two

by which the mantissa is multiplied to obtain j-he true value of thE' number Tor use in computa-·

tion. The exponent and mantissa each are stored in 2's complemeni for,,-.

16

SIGN OF
MANTISSA

SIGN

+
I I MAGNITUDE

o 1
O. FORTRAN INTEGER

SIGN OF EXPONENT ,-
1 I ! EXPONENT

t01

MANTISSA

b.FLOATING POINT

Figure 4 Number Representation

TYPES OF VARIABLES

11

11

Since variables represent numeric quantities, the type of representation must be specified in

some manner. In normal programming, variable types are specified using the FORTRAN con

ventions as follows:

1. Integer variable names must begin with one of the letters I, J, K, L, M, or N.

2. Floating pointvariables are designated by names beginn ing with any other letter.

These are ir.teger variable names: INDX, KDTA, M359. These are floating-point variable

names: ZXRO, CONT, FICA.

Integers cannot appear in floating point expressions except as exponents or subscripts. Some

examples of illegal and legal expressions are as follows:

Expression

A(I)*B(J)**2
I(M)*K(N)
4.*J
I+D
16.*B
(K+16)*3
A**(I+2)/B
8*A

Legal

Yes
Yes
No
No
Yes
Yes
Yes
No

17

Mode

Floating
Fixed

Floating
Fixed
Floating

CHAPTER 5

SUBSCRIPTED VARIABLES

ARRAYS

An array is a grouping of data. A column of figures, the elements of a vector, a list, and a

matrix are all arrays. In mathematics, an element of an array is referenced by means of a sym

bol denoting the array and subscripts identifying the position of the element. For example,

the sixth element in a vector v is designated v 6'

In FORTRAN, array elements are similarly identified. The array is given a name subject to

the same rules as the names of variables, described in Chapters 3 and 4. The subscript which

identifies an element of the array is enclosed in parentheses. The element referred to in the

preceding paragraph would have the following form in FORTRAN:

V(6)

Such a name designates a subscripted variable, which may be used in computation just like a

simple variable. The array name determines the mode, integer, or floating point of all the

elements in the array.

The example below gives a few illustrations of the use of subscripted variables.

a. X(I+L)=X(I)+ALPH(I)*P(I)

b. X(I+3)=X(I+2)+X(I+1)j2.

c. C(J)=A(I*J+3)

d. A=B(6)

Subscripts

As the example above illustrates, subscripts may be quite diverse in form. In fact, a subscript

may be any acceptable FORTRAN arithmetic expression as long as it is integer-valued. This

means that there may not be any floating-point quantities in a subscript expression.

19

The Dimension Statement

Array names must be identified as such to the FORTRAN compi ler. Two items of information

must be provided in any program using arrays:

1. Wh ich are the subscripted variables?

2. What is the maximum dimension of the subscript? (When an array is used,

a certain amount of storage space must be set aside for its elements; hence

this requirement.)

All the above information is provided by the following spec ification statement:

DIMENSION A(20), B(15)

where A and B are array names, and the integer constants 20 and 15 are the max imum dimen

sions of each subscript.

The rules governing the use of array names and the dimension statement are as follows:

All array names must appear in a dimension statement. DIMENSION may be used as many

times as desired and may appear anywhere in the FORTRAN program, provided that the DI

MENSION of an array appears before any statement which references the array.

DIMENSION L1ST(30), MAT(100), REGR(20)

In the statement in the example above, the names LIST and MAT designate integer arrays; that

is, each element is an integer. The third name, RE GR, designates a floating-point array. The

first array is a list of 30 elements maximum, so that 30 words of storage are set aside for its use.

The third array is floating-point and there are 20 elements in it. Since this array is floating,

each element requires 3 words of storage so that 60 words are set aside for the array.

DIMENSION B(30), 1(15)

Th is version of the PDP-5/8 FORTRAN does not have the fac i I ity for double subscripted variables.

To accomplish double subscripting, the programmer has to include indexing statements in the

source program as illustrated in Figure 5.

20

Ci MATRIX MULTIPLY
DIMENSION A(36), 8(36), C(36)
ACCEPT 1, I

1i FORMAT (I)
DO 10 M=I, I
DO 10 N=I, I
INDX=M+I*(N-1)
ACCEPT 2, A(INDX)

2; FORMAT (E)
10; CONTINUE

TYPE 15
15; FORMAT (j,I,/)

DO 20 M=I, I
DO 20 N=1, I
INDX=M+I*(N-l)
ACCEPT 2, 8(1NDX)
C(lNDX)=O

20; CONTINUE
DO 30 M=I, I
DO 30 N=1, I
DO 30 K=I, I
IC:=-N+I*(M-l)
IA=K+I*(M-l)
IB=N+I*(K- "I)
C(lC)=C(lC)+A(IA)*B(IB)

30; CONTINUE
TYPE 15
DO 40 M=11 I
TYPE 21
DO 40 N=II' I
INDX=N+I*(M-l)
TYPE 2, C(lNDX)

40; CONTINUE
21; FORMA T (j)

TYPE 15
END

Figure 5 Indexing Statements

In this example the matrices are stored column wise in memory, that is, sequential locations in

memory are used as follows:

Element

all
a21
a31
a41
a51
a61

a12
a22

a56
a66

Relative Position
in Memory (INDX)

1
2
3
4
5
6

7
8

35
36

If referencing element a56 in the array, M=5, N=6 (I would be =6 for a 6 by 6 array.), and

INDX=M+I*(N-l }=5+6*5=35. If referenc ing element a 22, IN DX=2+6*1 =8.

22

CHAPTER 6

PROGRAM CONTROL

In this chapter, the FORTRAN statements which have been described as isolated elements are

discussed in their proper context -- in program sequences. It is obvious that FORTRAN state

ments are executed in the order in which they are written unless instructions are given to the

contrary. Such instructions are provided by the program control statements, which allow the

programmer to alter the sequence, repeat sections, suspend operations, or bring the program to

a complete halt.

PROGRAM TERMINATION

A program arranged so that the last written statement is the final and only stopping place needs

no special terminating indication. The end statement automatically determines the final halt.

Most programs, however, contain loops and branches so that the last executed statement is often

somewhere in the middle of the written program. Frequently, there may be more than one stop

ping point. Such terminations are indicated by the statement:

STOP

This causes a final, complete halt; no further computation is possible.

When a STOP is encountered during program execution at object time, the system signifies that

a stop has occurred by typing an exclamation mark (~) on the tape teleprinter.

The stop statement prevents further computation after it has been executed. There is a way,

however, to suspend operation for a time and then restart the program manua Ily. This proce

dure is frequently necessary when the operator must do such tasks as load ing and unloading

tapes or card decks in thE; middle of a program. This kind of temporary halt is provided by the

foi lowing statement:

PAUSE

23

This brings the program to a halt, but the operator may restart it at any time by pressing the

CONTINUE key on the computer console.

END Statement

END occurs alone on a line and indicates the physical end of the program to the FORTRAN com

piler. It must be followed by carriage return and line feed. Every program must contain an END

statement.

BRANCHES AND LOOPS

The GO TO Statement

There are various ways in which program flow may be directed. As shown schematically in

Figure 6, a program may be a straight-line sequence (1), or it may branch to an entirely dif

ferent sequence (2), return to an earlier point (3), or skip to a later point (4).

--
J 3

2 ~

.. I 4 -
"

1

Figure 6 Schematic Representation of Program Branching

All of these branches can be performed in several ways, the simplest of which is by using the

statement:

GO TO N

24

where N is a statement number used in the program. The use of this statement is described in

the following example, which also illustrates the construction of a loop, the name given to

program branches of the type shown in Figure 6, No.3.

Integer Summation

In the example below, the sum of successive integers is accumulated by repeated addition. The

main computation is provided by the three-instruction loop beginning with statement 2. The

statements preceding this loop provide the starting conditions; this is called the initialization.

The partial sum is set to zero, and the first integer is given the value of one. The loop then

proceeds to add the integer value to the partial sum, increment the integer, and repeat the

operation.

C; SUM OF FIRST N INTEGERS BY ITERATION
KSUM=O
INUM=l

2; KSUM=INUM+KSUM
INUM=INUM+l
GO TO 2

Figure 7 Integer Summation

Limits and Decisions - The IF Statement

The program shown in the preceding example performs the required computation, but there is

one flaw: the loop is endless. To get out of the loop, the user must know when to stop the

iteration and what to do afterwards.

The IF statement fulfills both requirements. It has the following form:

IF (E)K, L,M

where E is any variable name, arithmetic expression, or arithmetic statement, and K, L, and

M are statement numbers. The statement is interpreted in th is way:

if the value of E is less than 0, GO TO statement K
value of E is equal to 0, GO TO statement L
value of E is greater than 0, GO TO statement M

25

Thus, the IF statement makes the decision of when to stop by evaluating an expression, and

also provides the program branch choices which depend on the results of the evaluation.

C; SUM OF THE FIRST 50 INTEGERS
KSUM=O
INUM=l

2; KSUM=INUM+KSUM
INUM=INUM+1
IF (INUM-50) 2,2,3

3; STOP

Figure 8 Use of IF Statement in Integer Summation Problem

In this example, the initialization and main loop are the same as for the preceding example

except that the GO TO statement of the earlier program has been replaced by an IF statement.

This statement says: If the value of the variable INUM is less than or equal to 50 (which is

the same as saying that if the value of the expression INUM-50 is less than or equal to zero),

go to statement 2 and continue the computation. If the value is greater than 50, stop.

A further improvement on the example above can be made if the feature of substatements with

in an expression is incorporated (refer to pages 13 and 14).

C; SUM OF THE FIRST 50 INTEGERS
KSUM=O
INUM=50

2; KSUM=INUM+KSUM
IF(INUM=INUM-l) 3,3,2

3; STOP

Figure 9 IF Statement with Substatement Feature

In this example, the sum is formed by counting down, but the same results are achieved. The

initialization is changed so that INUM starts with the value of 50 instead of 0, and the state

ment INUM=INUM+1 is no longer required.

26

A loop may also be used to compute a series of values. The following example is a program to

generate terms in the Fibonacci series of integers, in which each succeeding member of lne

series is the sum of the two members preceding it:

C;

,
5· ,
6· ,
,

10;

FIBONACCI SERIES, 100 TERMS
DIMENSION FIB(100)
FIB(1)=1
FIB(2)=1
K=3
FIB(K)=FIB(K-l)+FIB(K-2)
K=K+1
IF (K-100) 5,5,10
STOP

Fi gure 1 0 Fi bonacc i Seri es

In this program, the initialization includes a dimension statement which reserves space in

storage, and two statements wh ich provide the starting values necessary to generate the series.

Each time a term is computed, the subscript is indexed so that each succeeding term is stored

in the next location in the table. As soon as the subscript reaches 100, the calculation stops.

DO Loops

Iterative procedures such as the loop in the example above are so common that a more concise

way of presenting them is warranted. In this example, three statements are required to initia

lize the subscript, increment it, and test for termination. The following type of statement

combines all these functions:

DO n I=K1, K2, K3

Here, n is a statement number, I is a simple integer variable, and K1, K2, and K3 are index

ing parameters which provide, in order, the initial value of I, the final (terminating) value of

I, and the indexing increment of I. If K3 is omitted from the statement, it is assumed equal to

one. Statement n must be a CONTINUE statement.

27

C; FIBONACCI SERIES, 1 00 TER~S
DIMENSION FIBCl 00)
FIB(l) = 1
FIB(2) = 1

DO 5 K=3, 100
FI B(K)=FI B(K -1)+FI B(K -2)

5; CONTINUE

STOP I
_______ "~ __ , ____ ,_J

Figure 11 Fibonacci Series C(deulation Progrommed As a 00 I.<)op

In words, the DO statement says: Do all st()terrr:~nts through stat~~ment 5 for t<--,~, when state

ment 5 is encountered. Perform the followinq test: If K+1 is less thcm or equol to 100, set

K=K+1 and continue on in the proqrom by eX.Q,.;IJlinq l'he first statemenl" (lner If}!) DO. If the

K+1 is greater than lOa, the n0xt SG(11.JCntioj sj.'inrneni· following sh)temenr :5 IS executed. In

this example this is a STOP.

DO loops are commonly used in computul'lons wah subscripted variables. In these cases, it is

usually necessary to perform loops within loops. Such nesting of loops is permitted in FORTRAN

1)0 H) J::::l, 20
X(l)O
DO 5 J==2,iIO,2
X (I)=X (I)+(B(J)-Z(J))* * 2

5; CONTINUE
;\(I)::-:X (1)* -k 2+C (1)

10; CONTINUE

Fi5jUre 12 r-lested DO Loops

In the previous example, sequential elements in j-he X Clrwy are formed by summing the square

of the difference of every second element in the Band Z arrays. Then the A array is formed

by summing every element in n C array and the square of every element in the X array. The

algebraic expression for the loop is as follows:

2 A. :=X. - C. for i 1, 2, 3, ... 20
I I 1

where
x . . -

I
~ (b .. "z.)2 for j =c 2, 4, 6, ... 40

j ==2 J J

28

The following general rules about DO loops must be observed.

1. DO loops may be nested, but they may not overlap. Nested loops may

end on the same statement, but an inner loop may not extend beyond the

last statement of an outer loop. Figure 13 schematically illustrates permit

ted and forbidden arrangements.

2. If the user transfers into the range of a DO, the variable I is not initia

lized as specified in the DO statement. Transferring into the range of a DO

is allowed as long as:

a. Incrementing and testing start with the present value of I.

b. Control was originally transferred out of the DO other than

by completing it.

3. A DO loop must end on a CONTINUE statement.

r------ 1

~~ ,......-- 2

~--3

[[[~
o. b.

Figure 13 DO Loops

Those in a are permitted; loops 5, 6, and 7 end on the same state

ment. The arrangements in b are not permitted; loop 3 ends on a

statement outside the range of loop 1 .

29

Illegal DO Nesting

,
10;

I
20;

Figure 14

DO 101=1,20
DO 20 J=l,lOO,2
SUM=:(X(I)-Y(I))** 2
CONTINUE
Z(J)=SUM+A(J)
CONTINUE

I~
4

~
6~
7 •

Program Branching in DO Loops

Branches 2, 5, 6, and 7 are permi tted; branches 1, 3, and 4 are not.

The CONTINUE Statement'

Since the DO loop may contain alternate courses of action, programmers frequently wish to

make the last executable statement of a loop, a test to determine which of the alternatives

should be taken next. However, Rule 3 above forbids a DO loop to end on an IF or GO TO;

so a special statement is provided which is not an executable statement itself, but provides a

termination for such a DO loop. The statement is:

CONTINUE

DO loops must be terminated on a CONTII'lUE statement.

30

Computed GO TO

The GO TO statement described in the section on branches and loops is unconditional and pro

vides no alternatives. The IF statement offers a maximum of three branch points. One way of

providing a greater number of alternatives is by using the COMPUTED GO TO, which has the

following form:

GO TO (Kl ,K2,K3, ••• Kn),J

where the K's are statement numbers, and J is a simple integer variable, which takes on values

of 1, 2, 3, ••• n according to the results of some previous computation. For example,

NAR = 14*J/2+K

GO TO (5, 7, 5, 7, 5, 7, 10), IV AR

causes a branch to statement 5 when N AR=l ,3, or 5; to statement 7 when IV AR=2,4, or 6;

and to statement 10 when N AR=7 •

When IVAR is less than one or greater than seven, the next sequential statement after the GO

TO is executed.

31

CHAPTER 7

INPUT AND OUTPLT

AVAILABLE DEVICES

So far, we have assumed that all information (programs, data, and subprograms) was in memory,

without regard to how it got there. Programs, of course, are read in by a special loader, but

the programmer is responsible for the input of data and the otuput of results by including these

operations in his program.

For any input-output procedure, several items must be specified:

1. In which direction is the data going? In FORTRAN terms, the data com

ing in is being read into memory; information going out is being written on

whatever medium is specified.

2. Which device is being used? Information can be transferred between

core and either of two different input-o'Jtput devices; each VO operation

must spec ify wh ich device is involved.

3. Where in core memory is the data coming from or going to? The amount

of data and its location in the computer storage must be specified.

4. In what mode is the data represented? In addition to floating- and

fixed-point modes for numeric data, there is the Hollerith mode for trans

ferring alphanumeric or text information.

5. What is the arrangement of the data? In FORTRAN terms, the format

of incoming or outgoing data is specified.

For every data transfer between core memory and an external device, two statements are re

quired to provide all of the information listed above. The first three items are specified by

the input-output statement and the last two items are determined by the FORMAT statement.

33

PDP-5/8 FORTRAN provides for communication of data to and from a program in the following

ways.

1. ASCII Coded Data - (Appendix E)

The Teletype can be used to transfer data to the program either via the key

board on which the user types the data, or from previously punched paper

tape read via the teletype reader.

Data can be output from a program to the Teletype, producing a printed copy

with or without the corresponding punched paper tape (depending on whether

or not the punch is turned on).

The high-speed reader and punch can (1lso be used for data transfer via

punched paper tape. No printed copy is made when output is to the h igh

speed punch.

2. BI NARY Coded Data

DECtape can also be used for data transfer in which case the data is stored

as a core image on tape in 128 word blocks of 12-bit binCiry words.

INPUT-OUTPUT STATEMENTS

The input-output statements control this transfer of information. As illustrated in Figure 15,

I/O statements consist of three basic items of information: the device being accessed and the

direction of transfer; the number of the FORMAT statement that controls the arrangement of

data; and the list of names of the variables whose values are to be output or changed by new

inputs.

ACCEPT N,V(I), V(I+1), V (I+2) l L (List of vodobl: names

Statement number of FORMAT statement

Device selection and direction of transfer

Figure 15 Input-Output Statement

34

Device Selection and Direction of Transfer

ACCEPT and TYPE transfer information between the Teletype and the PDP-5/8.

ACCEPT causes information to be accepted intc) core memory from either the Teletype paper

tape reader, the keyboard, or the photo-electric reader, depending on a switch option selected

at run time.

TYPE causes information to be transferred from core memory to the Teletype printer, or the

printer and paper tape punch depending on whether the punch is activated or not, or to the

high-speed punch depending on a switch option selected at run time.

READ causes information to be read into core memory from DECtape. (See Chapter 8 for details.)

WRITE causes information to be written on DECtape from core memory.

;READ UNIT, BLOCK, FORMAT, LIST
;WRITE UNIT, BLOCK, FORMAT, LIST

where UNIT and BLOCK specify the DECtape unit to be used, and the position of information

on tape respectively (UNIT and BLOCK can be either constants or variables). The balance of

these statements is exactly analogous to the corresponding information in a TYPE statement.

FORMAT specifies the format statement I and LIST specifies the variables to be written from,

or read into core.

Bit 0 of the SWITCH REGISTER must be set to 1 (up) when compiling or running a program con

taining READ and WRITE statements and 0 (down) otherwise. Failure to properly set the switch

will cause error diagnostics. (See Appendix G.)

Statement Number of Format Statement

Following the instruction that selects the device and direction of transfer is the statement num

ber of the FORMAT statement that controls the arrangement of the information being transferred.

Example:

ACCEPT 10, A
10; FORMAT (E)

Every I/o statement must have a reference to a FORMAT statement.

35

List

The next item of specification in the I/O statement is the names of the variables or array

elements that are involved in the transfer. These names are arranged in a sequential list in

the order that their values are transferred. There is no restriction on the modes of the variables

in the list or the number of names that can appear in a list as long as they are compatible with

the corresponding FORMAT statement.

TYPE 10, A, I, B,C(I+K), N(J+L)
10; FORMAT (E, I, E,/)

A=A+(C(J)**2-C(N)**2)

; TYPE 10,A,J,B,C(N)

Figure 16 A List Example

If the list contains more names than there are elements in the FORMAT statement, when the

elements are exhausted the FORMAT statement is reinitialized, and the first element in the

FORMAT statement corresponds to the next name in the list.

For instance in the preceding example when the value of the variable B is typed in the E format,

the control character slash (I) causes a carriage-return line-feed to occur. Then the FORMAT

statement is reinitialized, and the array element C(I+K) is typed in the E format and the array

element N(J+L) in the I format.

Correspondingly, the list does not have to exhaust the elements of a FORMAT statement. If

there are fewer names in the list than there are elements in the FORMAT statement, the pro

gram completes the I/O operation and proceeds to the next sequential FORTRAN statement. If

this next statement is another I/O statement that references a previously unexhausted FORMAT

36

statement, that FORMAT statement is reinitialized. In other words, FORMAT statements are

reinitialized when they are first referenced or when all of thei r elements are exhausted.

FORMAT SPECIFICATIONS STATEMENT

As already mentioned in the previous description of input-output statements, the FORMAT state

ment controls the arrangement and mode of the information being transferred. The values of

the names appearing in the list of the I/o statement are transferred in the mode specified by

the corresponding element in the FORMAT statement. These controlling elements consist of

the characters E, I, slash (/) and quote ("). The set of elements must be enclosed in parentheses

and separated by commas.

Example: FORMAT (E,I,/, II HOLLERITH")

Control Elements E and I

The control elements E and I are used for defining the mode of the data be ing transferred. When

a variable is transferred in the E format, it is stored or output in floating point. If the variable

is transferred in the I format, it is stored or output infixed po i nt. Mode conversion on input

or output can be accomplished b8cause the elements in the FORMAT statement define the mode

of the data and the mode of the variable is overriden.

Example:
TYPE 10, A

10j FORMAT (I)

The variable A is typed as an integer and the fractional part of A is truncated. For instance,

if A has a value of 14.96, only the integer part, 14, would be typed. If A has an absolute

value of less than one, zero would be typed.

Input data words consist of a sign, the decimal value, an exponent value if the data is floating

point, and a field terminating character such as space. Any character that is not a number,

decimal point, sign, or E can be used to terminate a field except the character rub out. When

typing data, any number of spaces or other non-numeric characters can be typed before the sign

37

or decimal value is typed to make the data sheet more readable. If a mistake is made when

typing data words, the last word or partial word can be erased from core memory by typing the

character rub out.

These input words can be tranl'iferred into core memory from either the Teletype paper-tape

reader, the keyboard, the photo-electric reader or DECtape. They can be entered in either

fixed- or floating-point modes for integers or decimal fractions. The mode in which they will

be stored is controlled by the corresponding element in the FORMAT statement.

Integer Values - Fixed Point - FORMAT (I)

An integer data field consists of a sign (minus or space) and up to four decimal characters.

Some examples of integer values are as follows:

Typed Numbers

-2001
-40
-0040

16
-2047

Values Accepted

-2001
-0040
-0040

0016
-2047

Decimal Fraction Values - Floating Point -, FORMAT (E)

A floating-point input word .consists of a sign*, the data value of up to seven decimal char

acters, an E if an exponent is to be included, the sign of an exponent, and the exponent

which is the power of ten that the data word is multipl ied by.

Example:

dddd.dddEnn

The d's represent characters in the data word and n represents the power of ten of the

exponent. Either the sign, the decimal point, or the entire exponent part can be omitted. If

the sign is left out, the number is assumed to be positivei if the decimal point is left out, it is

assumed to appear after the rightmost decimal character. If the exponent is omitted, the power

of ten is taken as zero.

*Plus sign can be represented by a plus or space character. Minus is represented by a minus
character. If a sign character is absent from the data word, the data is stored as positive.

38

Examples of floating-point values are as follows:

Typed Numbers

16

.16E02

1600.E-02

Values Accepted

2 0.16x 10
2 0.16x10
2

0.16x 10

Correcting Typing Errors

If a mistake is made when typing data words int() a FORTRAN program, the mistake can be cor

rected by canceling or erasing the data word before typing the terminating character and then

retyp i ng the data word that is in error.

To cance I or erase a word, type a rub out character.

When this character is detected during the acceptance of a data word and before the termination

character has been transmitted, the data word appearing before the character rub out is erased

from memory. Operations on the names in the I ist do not advance to the next sequential name

until a complete data word and the terminating character have been received.

Output

Data Word Output - Floating and Fixed Modes - FORMAT (E) and FORMAT (I)

Integer values are always printed as the sign and a maximum of four characters with spaces re

placing leading zeros. Floating-point values are printed in a floating-point format which con

sists of sign, leading zero, decimal point, seven decimal characters, the character E, the sign

of the exponent (minus or plus), and an expor.ent value of two characters.

Examples:

Integer Values

-1043

-0016

+0016

39

Output Format

-1043

16

+ 16

Floating-point values are printed as per example

where

SO. dddddddsxx

S is the sign, minus sign, or space
d is the seven decimal digits of the data word
s is the sign of the exponent value
xx is the exponent value

Output Format

-0.8388608E+07

0.1192092E-06

Decimal Value

-8,388,608.0

+.0000001192092

OTHER FORMAT CONTROL ELEMENTS

In most cases when data is to be presented it must be labeled and arranged properly on a data

sheet. In order that this can be accomplished with FORTRAN, a provision has been made so

that text information and spacing can be typed out along with the data words. These features

are provided by the special FORMAT control elements quote (") and slash (/).

Quote (") (Hollerith Output)

When text information is contained as part of a FORMAT and this information is enclosed in

quotes, it is output to the specified device as it appears in the statement. This output occurs

when a TYPE or WRITE statement references a FORMAT statement containing text and all other

elements of that FORMAT statement previous to the text have been used.

40

TYPE 10
10; FORMAT V, "THIS IS HOLLERITH" ,I;

TYPE 100, AMIN, AMAX
lOOi FORMAT V, "MINIMUM=",E,I,"MAXIMUM=",E,/)

TYPE 2';)
210; ;=ORM/\', V,I," CUiV\ULATIVE DISTRIBUTION II ,I,l

Ii INCREMENTS FREQUENCY" ,I)
DO 220 K=l, 100
TYPE 250, K, VALU(L), VALU(K+1), COUNT(K)

220; CONTINUE
250; FORt,AAT (I,ll ",E," II,E .. II II,E,/)

Figure 17 Examples of Quote and Slash

All legal Teletype characters can be contained within quotes and are output as text (Appendix D).

If a statement continues on another I ine the Hollerith field must be ended before typing the con

tinuation character C); it may be re-opened on the next line. Before text is output, the ele

ments of the FORMAT statement that appear in front of the Hollerith information must have

been used.

Example:

TYPE 10, VAR,SD
10; FORMAT (E,E,E, IIVARIANCE AND STANDARD DEVIATION",/)

In this example, the text is not typed because one of the E elements was not used.

41

Slash (/)

The slash character is used for typing a carriage return and line feed for advancing the paper

of the tape teleprinter. A carriage-return line-feed will by typed for every slash that appears

in the statement.

Example:

TYPE 10, A, B
10; FORMAT(/,/,/, E,/,/, E,/,/)

Three carriage-return I ine-feeds wi II be typed before the value of A; then two carriage-return

line-feeds will be typed before and after the value of B is typed.

The input subroutine of the object time system ignores all non-numeric characters except as data

word delimiters so that input data can be labeled and spaced in intermixing the appropriate

text and carriage-return I ine-feeds with the data.

42

CHAPTER 8

FORTRAN WITH DECTAPE OPTION

PDP-8 FORTRAN includes provisions for storage of data on DECtape. In this way FORTRAN

programs requiring large amounts of accessible data may be readily written to run on a 4K

PDP-5 or PDP-8.

The standard library version of the FORTRAN Compiler is written such that the type of DECtape

hardware to be used is irrelevant. The standard library version of the FORTRAN Operating

System is written to handle the TCOl DECtape Control with TU55 Tape Transports since these

are more common. There is, however, an overlay tape to convert the OP SYS to do the same

operations using the 552 Control with 555 DECtape Transports. If this overlay is required the

user should so specify when making requests to the library.

FORTRAN Compiler with DECtape VO Option

When the FORTRAN Compiler is read into core, it is equipped with a switch option governing

the compilation of DEC tape I/o statements (READ and WRITE). If the user wishes to compile

a program containing DEC tape I/O statements, he must set Switch Register bit 0 to 1 (up) be

fore starting any compilation.

The Compiler is designed so that the space occupied by the processing routines for this option

becomes part of the input statement buffer if SR bit 0 is set to O. This means that the DECtape

VO processing routines are destroyed if any compilation is done with bit 0 set to 0 and the

Compiler must be reloaded into core to regain the option.

Any program containing DEC tape VO statements must limit the length of the source statements

to 100 characters per statement.

Use of Symbolprint with FORTRAN

Symbolprint destroys a portion of the DECtape Compiler in core. The compiler must be re

loaded if it is to be used to accept a symbolic program containing DECtape I/O statements.

43

FORTRAN Operating System with DECtape I/o Option

When the FORTRAN Operating System is read into core, it is equipped with a switch option

governing the execution of DECtape I/O statements. If the user wishes to run a program con

taining such statements he must set Switch Register bit 0 to 1 before running his program.

There is a further condition which must be observed, since DECtape I/O requires a considerable

amount of additional processing routines. Like the Compiler, the OP SYS destroys its DECtape

handling routines if it is used with SR bit 0 set to 0, thus gaining extra space. This requires,

however, that the OP SYS must be reloaded into core to regain the option.

DECtape FORTRAN ShJtements and Operation

When using DECtape, the FORTRAN Operating System contains a buffer area which is defined

as a page of memory reserved to handle transfers to and from a block of DEC tape (128 10 data

words) .

The DECtape routines transfer one full block from tape to one page of core (and vice versa),

therefore, even if the block contains only one data word, the whole block wi II be read into

the OP SYS buffer, overlaying whatever had been there.

To store variables or arrays of data on DECtape requires two steps:

1. From the locations assigned by the OP SYS to the variables or allotted

to the arrays by a DIMENSION statement, the programmer must collect the

data and put it in the OP SYS buffer. This is done with pseudo WRITE

statements (in a DO loop in the case of arrays). (See below.)

2. He must write the buffer onto a block of DECtape. This is done by a

physical WRITE statement. (See below) The programmer must be aware of how

much data he has in the buffer and write it out on DECtape, before he overflows

the buffer. Overflow wi II cause an error diagnostic.

To retrieve data from DECtape is also a multiple operation.

1 • The programmer is responsible for remembering which block contains the

data he wishes to retrieve.

44

2. He must read th is block into the OP SYS buffer using a physical READ.

(See below.)

3. He must remember in which order he stored the variables or arrays and

reference them here in the same order.

4. He must disperse the data from the buffer to the locations assigned by the

OP SYS or allotted by a DIMENSION statement. This is done by pseudo READ

(in a DO loop for arrays). (See below.)

NOTE: Data which has been brought from tape into the buffer is not
yet available for use within the program. It must be dispersed first.

Pseudo WRITE and pseudo READ statements operate between the user program and the buffer

only. They are used to collect into the buffer data from within the user program and to dis

perse into the user program data in the buffer. They have no effect on the physical DECtape.

The user specifies pseudo READ or WRITE by specifying UNIT 0 and BLOCK 0 in the READ or

WRITE statement. Specifying any unit other than 0 will indicate that the user wishes to read

from DECtape into the buffer or write the buffer out on tape. Pseudo READ and WRITE are of

the form;

READ 0, 0 , FORMAT, LIST
WRITE 0,0, FORMAT, LIST

Physical READ and physical WRITE statements operate between the buffer of the OP SYS and

the DECtape. They cause the actual reading or writing of tape. The user specifies physical

READ or WRITE by specifying a UNIT number from 1-7 and the number of the actual block on

wh ich the data has been stored or is to be stored. They are of the form;

READ UNIT, BLOCK, FORMAT, LIST
WRITE UNIT, BLOCK, FORMAT, LIST

It is not necessary to specify a list on a physical READ or WRITE but it is advisable, since it

does no harm and is an aid to remembering which variables in which order are on which block.

Two examples fo Ilow wh i ch demonstrate the storage and retrieval of data.

45

Part 1

DIMENSION IDAT (128)

11 0; FORMAT (I)

DO 100 l=l,J l
WRITE 0, 0, 110, IDAT (I) J
100; CONTINUE

Part 2 { WRITE MU, MBlK, 110)

IDAT

BUFFER

· ·
MUNT=TAPE UNIT TO BE SELECTED
MBLK=BLOCK TO BE WRITTEN ON

J has been previously defined~128

This DO loop will WRITE J number

of elements of IDAT into the buffer

Th is statement wi II then store data

from buffer to tape

C;
C;
C;
C;
C;
C;

IBLK=INITIAL BLOCK TO BE SEARCHED FOR (TO REWIND TAPE)
VALUES FOR J AND K AS DIETERMINED BY USER MUST BE LESS THAN 200 · ·

DIMENSION IBFl (200), IBF2 (200)
90;FORMAT (I)
199;ACCEPT90, J,K, MUNT, MBLK, IBLK
DO 101=1, J
ACCEPT 90, IBFI (I)
10;CONTINUE

· · C;
C;
Ci
Ci
Ci

DATA HAS BEEN ACCEPTED NOW WE READ BLOCK ·0·
THIS INITIALIZES AND REWINDS THE TAPE
A GOOD IDEA TO DO THIS BUT NOT ESSENTIAL · ·

READ MUNT, IBLK, 90

46

,.
'-I · ·
C; TIME TO TAKE ACCEPTED DATA AND VvtUTE IT iNTO
C;
C;
C;
C;

THE BUFFER, NOT ONTO THE ACTUAL TA.PE. SEE ~'ART ONE OF DIAGRAM.
BUFFER IS WRITTEN BY SELECTIt'JG UNIT J'
DO LOOP NEEDED SINCE DATA IS It-J .\N ARRAY · ·

DO 31 l=l,J
WRITEO, 90, IBF1 (I)
31 ;CONTINUE

· · C;
C;
C;
C;

TAPE IS NOW PHYSICALLY WRITTEN BY SELECTING
A LOGICAL UNIT, OTHER THAN ZERO. SEE PART TWO OF DIAGRAM. · ·

WRITE MUNT, MNLK,90

· · C;
C;
C;

NOW READ BLOCK BACK INTO BUFFER · ·
READ MUNT, MBLK, 90

· · C;
C;
C;
C;

READ BUFFER AND STORE IT IN ANOTHER ARRAY
DO LOOP NEEDED BECAUSE OF ARRAY · ·

D0321=1,K
READ 0, 0, 90, IBF2(1)
32;CONTINUE
C;
C;
C;
C;
C;

* * * * * * * * * * ** *

ALL I/O DONE HALT.

* * * * * * * * * * * * *

DO 13 l=l,K
TYPE 91 ,IBF2(1)
91;FORMAT (/,I)
13;CONTINUE

PAUSE

· · C;
C;
C;

ALL DECTAPE I/O DONE, TYPE OUT CONTENTS OF ARRAY READ FROM DECTAPE

GO TO 199

END

· ·

47

CHAPTER 9

PDP-5/8 FORTRAN SYMBOLPRINT

FORTRAN Symbolprint is a useful aid in finding where a FORTRAN program is stored in inter

pretive memory, the exact memory locations assigned to each FORTRAN variable, and the

amount and location of interpretive core memory that is not used by a FORTRAN program.

Symbolprint loads over the FORTRAN Compiler and starts at address 600. The following is a

typical example of the typeout.

List of Variable Names

HW
TB
G
TF
MC
DSR
C1
C2
C3
C4

6312

Assigned Location

7546
7543
7540
7535
7534
7531
7526
7515
7504
7470

7241

Note that a single word only has been assigned for the fixed point variable MC.

The last two octal constants typed indicate respectively the highest address used by the program

in interpretive memory and the lowest address used for data. Therefore the area of core between

these two addresses is available. In the example there are

7241 -6312 -1 = 726

octal locations free.

49

A machine language subroutine may occupy this available space. Use the FORTRAN PAUSE

statement to link the FORTRAN program to the subroutine.

If PAUSE is followed by a number (decimal), lFORTRAN compiles (in effect) JMS to that ad

dress. For example:

; PAUSE 3328

effects JMS 6400. Location 6400 should contain coding such as the following:

SUBR, 0 .
JMP I SUBR

constituting the desired machine language program.

50

APPENDIX A

OPERATING PROCEDURES

FOR RIM AND BIN PAPER TAPE LOADERS

READ-IN-MODE LOADER (RIM)

1. The RIM Loader is a minimum-length, basic paper tape loader for the PDP-8. It is

initially stored in memory by way of the CONTROL console switches. Once stored, it

is considered to be a permenent occupant of local·ions 7756 through 7777 (absolute octal

addresses) and care should be taken to keep it from being destroyed.

2. A paper tape to be read in by the RIM Loader must be in RIM format:

87654 S 3 2 1

10000 . 000
o 1 A 1. A2
o 0 A3. A4
o 0 Xl. X2
o 0 X3. X4
o 1 A3. A4
o 0 A3. A4
o 0 Xl. X2
o 0 X3. X4

(ETC .)
10000 .00

Tape Channel

51

Leader/Trailer code
Absolute address to
contain next 4 digits
Contents of previous
4 digit address

Address

Contents
(ETC .)
Leader/Trailer code

3. The complete PDP-8 RIM Loader for the ASR-33 (SA=7756) is as follows:

Abs. Octal
Addr. Contents

7756, 6032
7757, 6031
7760 5357
7761 6036
7762, 7106
7763, 7006
7764, 7510
7765, 5357
7766, 7006
7767, 6031
7770, 5367
7771, 6034
7772, 7420
7773, 3776
7774, 3376
7775, 5356
7776, 0
7777, 5301

Tag

BEG,

TEMP,

Ins truc ti on i z

KCC
KSF
JMP .-1
KRB
CLL RTL
RTL
SPA
JMP BEG +1
RTL
KSF
JMP .-1
KRS
SNL
DCA I TEMP
DCA TEMP
JMP BEG
o
o

Comments

/clear AC and flag
/skip if flag=l
/Iooking for char
/read buffer

/ch 8 in ACO
/checking for leader
/found leader
/OK, ch7 in link

fread, do not clear
/checking for address
/store contents
/store address
/next word
/temp storage
/jump to start of bin loader

4. Placing the RIM Loader in memory I::y way of the CONTROL console switches is ac-

compl ished as follows:

a. Set 7756 in the switch register (SR)

b. Press LOAD ADDRESS

c. Set the first instruction in the SR (6032)

d. Press DEPOS IT

e. Set the next instruction in the SR

f. Press DE pas IT

g. Repeat steps e and f until all 16 instructions have been deposited.

52

5. To load a tape in RIM format, place the tape in the reader, set the SR to 7756, press

lOAD ADDRESS, press START, and start reader.

6. The complete PDP-8 RIM loader for the high-speed reader 750 (SA=7755) is as follows:

Abs. Octal
Addr. Contents Symbol ic:

7756 6014 BEG, RFC /c1ear flag and fetch char. into
buffer

7757 6011 RSF /skip when flag=l

7760 5357 JMP .-1
7761 6016 RRB RFC /read buffer into AC, get next char.

into buffer

7762 7106 Cll RTl /rotate channel 8 into

7763 7006 RTl /ACbitO
7764 7510 SPA lis it leader
7765 5374 JMP TEMP-2 /yes clear AC
7766 7006 RTl /NO rotate channel 7 to LINK
7767 6011 RSF
7770 5367 JMP .-1
7771 6016 RRB RFC
7772 7420 SNL /Iink set=origin

7773 3776 DCA I TEMP /store data
7774 3376 DCA TEMP /store address
7775 5357 JMP BEG +1 /next word
7776 0000 TEMP, 0 /temporary storage
7777 5301 0 / JMP to start of BIN loader

BINARY LOADER (BIN)

1. The BIN Loader is used to read in the machine language tapes. A binary-formatted tape

is about one half the length of a comparable RIM formatted tape. It can, therefore, be read

in about twice as fast as a RIM tape and is, for this reason, the more desirable format to use

with the 10 cps ASR-33 Reader.

2. To load a tape in BIN format, place the tape in the reader, set the SR to 7777; press

LOAD ADDRESS, press START, and start reader.

3. After a BIN has been read in, one of the twC) following conditions exist:

a. No checksum error: halt with AC=O

53

b. Checksum error: halt with AC=(computer :::f.,.,cksum) - (tape checksum). If a check-

sum error exists, a character was misread from the binary tape or is mispunched on the tape.

The operator should reload the binary tape; and if the same checksum error appears in the AC

indicator after readin, the binary tape was mispunched and a new copy should be obtained.

If a different checksum error appears after readin, the appropriate maintenance procedure

shou I d be fo \I owed.

54

APPENDIX B

PREPARATION OF SYMBOLIC (SOURCE) TAPE

1. Symbolic tape preparation using Symbolic Tape Editor. (It is to the user1s benefit to use

the Editor to put his source program on tape since using the Editor minimizes the chance of

extraneous characters getting on the tape and also facilitates deletion and correction

of statements.)

a. Load Symbol ic Tape Editor using Binary Loader.

b. Start Editor at 176 (Load Address, Start).

c. Type A~and type the symbol ic source program.

d. Hold the CTRL key and press the FORM key; the bell wi 11 sound.

e. Type PJ" followed by F~ when punch ing stops.

NOTE: For complete explanation of Editor, see Symbol ic Tape Editor Manual.

2. Symbolic tape preparation off-line using Teletype only.

a. Turn power on in computer (key on left in PDP-S, switch on right in PDP-5).

b. Turn Teletype LINE-OFF-LOCAL knob to LOCAL to disconnect

Teletype from computer.

c. Press PUNCH ON button on the Teletype.

d. Generate leader. *

e. Type the source program.

f. Generate tra i ler • *

*To generate leader/trailer (200 code), hold the CTRL and SHIFT keys with the left hand, de

press the REPT key and then the P with the right hand. Release in reverse order or a P will be

punched on the tape.

55

3. Manual symbol ic tape editing using the ASR-33.

a. An incorrect character might be typed whi Ie preparing the sym

bolic tape. Use the following procedures to correct the tape: (the

error is detected N characters after typing the incorrect character)

press the PUNCH B. SP. button N+l times, press rubout N+l times,

and continue.

b. Characters, words, or statements can be inserted or deleted after

the entire symbol ic tape has been prepared. Use the following pro

cedures to accompl ish such changes.

(1) Insertions - Duplicate the tape up to the point at which

it is desired to make an insertion (by turning the punch on,

plac ing the tape in the reader, starting the reader, and

stopping the reader with the READER switch using the print

out as a guide). Next, type the insertion. Continue by

pressing the READER switch to start and dupl icate the re

mainder of the tape.

(2) Deletions - Duplicate the tape up to the point at which

it is desired to make a deletion (see Insertions). Next, turn

the punch off; start the reader; and using the printout of the

information to be deleted as a guide, stop the reader. Con

tinue by turning the punch on and starting the reader to dup

I icate the rema inder of the tape.

56

APPENDIX C

FORTRAN OPERATING PROCEDURES

COMPILER

1. Load the Compiler with the Binary Loader (see Appendix A).

2. Put the starting address of the Compiler (0200 octal) into the switch register and press

LOAD ADDRESS.

3. Set I/O switches. (Conditional) See I/O Control.

4. Place the source language tape in the selec'red reader and turn on the reader and punch.

5. Press START.

6. At the end of compilation, the computer will halt with the run light off.

7. To compile additional programs, place the source language tape in the appropriate reader,

turn the reader and punch on, and press CONTINUE. I/O selections cannot be changed

without reloading compiler.

SYMBOLPRINT

Symbolprint is run immediately after compiling (I program and before compiling another or

loading the Operating System. (It cannot be run if the Operating System has been loaded

into core.)

Use of Symbolprint destroys the portion of the Compiler which processes DECtape READ and

WRITE statements. The Compiler must therefore be reloaded if it is to compile a source program

containing such statements.

a. Load Symbol print with the Binary Loader.

b. Set 0600 in the switch register.

c. Press LOAD ADDRESS and START, see Chapter 8.

57

OPERATING SYSTEM
(OBJECT TIME SYSTEM)

1. To load a compiled program:

a. Load the FORTRAN Operating System using the Binary Loader.

b. Place the Compiler output (interpretive code object tape) in the Teletype or

photo-electric reader. Turn on the reader, making sure ASR-33 is ON LINE.

c. Load the SWITCH REGISTER with 0200, and press LOAD ADDRESS.

d. Set switch register bit 1 to read in compiled tape from photo-electric reader or

Teletype (as shown below).

e. Press START. The Operating System reads the compiler output tape.

f. The Operating System halts at the end of loading. The loading is correct if

the checksum difference which appears in the AC equals o.
g. T urn off the reader and remove the compil er output tape from it.

2. To execute a program after loading

a. Set SWITCH REGISTER bits 0, 1, and 2 (as shown below).

b. If input is to be from paper tape!, put the data tape in the appropriate reader

and turn the reader on. If output is to be punched, turn punch on.

c. Press CONTINUE.

NOTE: Once loaded, a program can be executed any number of times.

NOTE: The Operating System need not be reloaded to run more than one program in

succession. To do so start at step b ,of section 1 .

3. ToRe-execute a Loaded Program

a. Set the SWITCH REGISTER to 0201 i press the LOAD ADDRESS key.

b. Set the SWITCH REGISTER for the I/O (as shown below).

c . Press START.

The FORTRAN Operating System checks each of its internal stacks after the execution of each

interpretive instruction to insure that there is neither stack overflow nor stack underflow. If a

FORTRAN program has been debugged and is known to operate correctly, this test may be NOPed

by changing C(0404} to 7000 (NOP). This wi" speed up the execution of the program by a

factor of about 2.

.5a

I/O CONTROL

The selection of I/O devices for both compiler and OP SYS is controlled by setting the switches

as shown below:

Bit Switch
Meaning

Number Position

0 0 The program contains only paper tape I/O statements.

1 The program contains DECtape I/O statements.

1 0 Compiler: Use the Teletype reader for input of source tape.

OP SYS: Use the Teletype reader for loading the object
program and the keyboard for ACCE PT statements.

1 Use the high speed reader.

2 0 Compiler: Use the Teletype printer/punch for compiler out-
put (interpretive code) tape and error diagnostics.

OP SYS: Use the Teletype printer/punch for TYPE statements.

1 Use the high speed punch (error diagnostics still come on
Teletype) .

59

APPENDIX 0

FORMAT OF COMPILER OUTPUT

INTERPRETIVE CODE

1. 200 codes (leader, ignored by loader)

2. Data blocks, each as follows:

a. origin (2 frames, first has bit 7 punched)

b. data words (2 frames/word)

3. Forward referencing table - first frame has bits 7 and 8 (only) punched

4. Checksum

a. first has bits 6, 7, and 8 (only) punched

b. next two frames are checksum

5. 200 codes (trailer, ignored by loader which stops after checksum)

6. Error comments, if any, in ASCII

61

APPENDIX E

ASR-33 8-BIT CHARACTER SET

Character
8-Bit Code

Character
8-Bit Code

(in Octal) (in Oc ta I)

A 301 241
B 302 II 242
C 303 # 243
D 304 $ 244
E 305 % 245
F 306 & 246
G 307 247
H 310 (250
I 311) 251
J 312 * 252
K 313 + 253
L 314 254
M 315 255
N 316 256
a 317 / 257
P 320 272
Q 321 273
R 322 < 274
S 323 = 275
T 324 > 276
U 325 ? 277
V 326 @ 300
W 327 [333
X 330 / 334
y 331] 335
Z 332 t 336

0 260 -+ 337
1 261 Leader/Tra i ler 200*
2 262 Line-Feed 212*
3 263 Carriage-Return 215
4 264 Space 240
5 265 Rub-out 377*
6 266 Blank 000*
7 267
8 270 * Ignored by the operating system
9 271

63

APPENDIX F

PDP-8 FORTRAN SOURCE PROGRAM RESTRICTIONS

The following limits are imposed upon all FORTRAN source programs for the PDP-8:

a. Not more than 1000 data cells. This includes all dimensioned variables, user

defined variables, constants, and all constants generated by the usage of a DO loop.

b. Not m::>re than 20 undefined forward references to unique statement numbers per

program. An undefined forward reference is a reference to any statement label that

has not previously occurred in the program. Mu Itiple references to the same undefined

statement numbers are considered as one reference.

c. Not more than 64 different variable names per program.

d. Not more than 128 characters per input statement. (When using the DECtape

Compiler, the input statement size is reduced to 100 characters.)

e. Not more than 40 numbered statements per program.

PDP-8 COMPILER AND OPERATING SYSTEM CORE MAP

The Compiler occupies the following core locations:

3 - 7600 Compiler itself plus tables

7200 - 7600

The Operating System occupies locations:

Compiler tables (undefined forward reference

table, etc.)

o - 5200 Operating System for paper tape I/O

o - 6000 Operating System for DECtape I/o

Locations 5200 - 7576 are available for the user's program when using paper tape input/output

or locations 6000 - 7576 when using DECtape.

NOTE: The 1000 data word restriction applies.

64

APPENDIX G

DIAGNOSTICS

Diagnostic procedures are provided in the compiler to assist the programmer in program compil

ation. When the compi ler detects errors in a FORTRAN source program, it prints out error mes

sages on the on-I ine tape-teleprinter. These messages indicate the source of the error and direct

the programmer's efforts to correc t the error.

To speed up the compiler process, the compiler prints out only an error code. The programmer

then looks up the error message corresponding to the code in table A-l and takes the appropri

ate corrective measures.

DYNAMIC ERROR CORRECTION

A user may choose to compile in either of two modes: the normal mode or the dynamic correc

tion mode. The latter allows the user to correct a statement, which the compiler has determined

contains a source-language error I by reenterin~~ the offending I ine via the tape teleprinter with

out having to physically correct the symbol ic tape and recompile. This feature is not implemented

in the high-speed reader version of the compiler since the higher speed of the device makes

recompi lation easy.

To choose the dynamic correction mode:

1. Load the starting address of the compiler (0200) in the console switches

and press LOAD ADDRESS.

2. Set SR bit 11 to 1, press START (can only be used with low speed paper

tape I/O).

If an error is detected, the diagnostic prints out in the normal fashion and the computer halts.

65

To correct the statement:

1. iurn READER switch to FREE.

2. With the READER switch still in the FREE positicn,css CONTINUE.

3. Type the new line in its entirety, * obeying all rule, for the source lar

guage and terminating the statement with a carriage-return line-feed.

4. Turn reader on and compilation will continue.

To leave the dynamic correction mode, restart the compiler in the normal fashion.

XXXX

COMPILE TIME DIAGNOSTICS

Format of Diagnostics

xx XX

I LThe identifying condition code

L The number of statements since the appearance of (j numbered
statement (octal value).

The statement number of the last numbered statement

Example:

10; A=I (J+l)
B=A*(B+SINF(THTA}

During compilation of the above statements the following error code would be printed,

10 11 11

*If the statement was numbered, do not reenter the statement number unless it was in error.

66

indicating that a statement which occurs eleven statements octal (eight decimal) after the

appearance of statement lOis in error. The message corresponding to code 11 shows that the

number of left and right parentheses is the statement is not equal. The statement is examined

and corrected; then compilation is resumed.

Diagnostic
Code

00

01

02

03

04

05

06

07

10

11

12

13

14

15

TABLE A-I

Conditions

Fixed- and floating-point modes have been mixed in an expres
sion.

Two operators appear adjacent to each other (i.e .,a variable
has been left out of an expression) e.g.,A=C + * D.

Compiler error - Reload Compiler and repeat compilation proc
ess. Contact Software Quality Control, PDP-8 Division if this
reoccurs.

A comma has been used illegally in an arithmetic statement.

Too many operators appear in a single statement,

A function argument is in fixed mode, e.g.,SINF(lNC).

A variable subscript is in floating point mode. This could also
indicate that an operator is missing, e.g.,A+B(C+l.) for
A=B*(C+1.) .

More than 64 (decimal) different variable names have been used
in the program.

Program too large - program and data requirements have over
lapped.

There is an unequal number of right and left parentheses in a
statement.

An illegal character was detected and ignored.

The compiler is unable to recognize or process this statement
due to some error in its format.

Program too large; program and data requirements have overlapped.

A subscripted variable is defined before the appearance of a
dimension statement, or a subscripted variable does not appear
in a dimension statement. It might also indicate that an oper
ator is missing in a fixed-mode expression, e.g., A=I(J-K)
for A=I*(J-K).

67

Diagnostic
Code

16

17

20

21

22

23

24

TABLE A-l (continued)

Conditions

Statement too long; more than 128 characters have been counted
not including spaces except in format statements where all legal
TTY characters are counted.

A floating-point operand should have been fixed-point, e.g.,
DO 1 0 1=1, 7.3.

A statement number that has been referenced does not appear
in the program. See the paragraph on the next page.

There are more than 40 numbered statements in the source program.

A statement cannot be compiled because it has too many incom
pleted operations, e ,. g .,C=A+(C+(D+(E+

Too many statements have been referenced before they are de
fined.

Attempt to com pi Ie a READ or WRITE progam statement after starting
program without switch 0 set.

If a statement number is referenced but does not appear in the source program, the diagnostic

code will be printed as follows:

xxxx 77 20

where the number usually reserved for the last numbered statement (xxxx) is replaced by the

missing statement number.

e.g., GO TO 100

The diagnostic would appear as follows where statement 100 is never defined.

100 77 20

OPERATING SYSTEM DIAGNOSTICS

Not all errors are detected by the compiler. Some errors can only be detected by the object

time system. Also, there are some conditions which indicate errors on the part of the compiler

and/or object system. When such an error occurs during running of a program, the computer

types out an error message containing an error number. The computer then halts. If the CON

TINUE toggle is pressed, the computer takes the action listed in the following table.

68

Error
Number

11

12

13

14

15

16

TABLE A-2

Possible Cause

Attempt to divide by zero

Floating point exponent on input
greater than plus or minus 2047

Illegal operation code (either
compi ler error, or data stored
over program, or transfer to data
sec tion)

Transfer to core location zero or
one

Non-format statement used for a
format

Illega I format statement consti
tuent

17 Attempt to fix large floating
point number

20

21

22

31

32

Attempt to take square root of a
negative number

Attempt to raise a negative num
ber to a power

Attempt to find the logarithm of
zero or a negative number

Select error.

Physical Tape trror.

33 DECtape buffer exceeded

34 DECtape control switch set
incorrectly

69

Action Taken

Quotient set to plus or minus largest
number representable in computer;
then continue executing instructions.

System executes next instruction.

System executes next instruction.

No recovery possible.

System executes next instruction.

System examines next constituent.

System takes square root of abso
lute va lue.

System raises absolute value to the
power specified.

System attempts to find logarithm of
absolute value. Note that log (abso
lute value (0)) still gives an error halt.

The operating system halts with the
called unit in bits 0-2 of the AC (0-3
if using 552/555). Recovery is possible
by correcting the logical Unit and
pressing continue.

The program halts with the error status
in the AC. (The configuration of bits
is dependent upon the tape control being
used.)

Error
Number

76

77

TABLE A-2 (continued)

Possible Cause

One of the stacks used by the
system has underflowed. (i.e. I
more data has been requested
than was placed on the stack)

One of the stacks has overflowed
(i .e. I more data placed on it
than there is storage in the ma
chine .)

70

Action Taken

No recovery possible. Since this may
be a system error, commun i cate pro
gram and circumstances to DEC.

Same as Error 76

momoomo
EQUIPMENT
CORPORATION
MAYNARD,MASSACHUSETTS

PRINTED IN U.S.A.

