
VAX-11 COBOL-74

Language

Reference Manual

Order No. AA-C985A-TE

I I I I 5555555Y.J I I I
I I

I

January 1979

This document is intended primarily for reference use. It describes the VAX-11
COBOL-74 language.

VAX-11 COBOL-74

Language

Reference Manual

Order No. AA-C98SA-TE

OPERATING SYSTEM AND VERSION: VAXIVMS V01.5

SOFTWARE VERSION: VAX-11 COBOL-74 V04

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation· maynard, massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license, and
may only be used or copied it in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979 Digital Equipment Corporation

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECnet
DECsystem-10
DECSYSTEM-20
DECtape
DECUS
DIBOL
DIGITAL

5/79-14

FOCAL
lAS
MASSBUS
PDP
RSX
UNffiUS
VAX
VMS

Contents
Page

Preface tX

Acknowledgments tX

Chapter 1 Overview of the COBOL Language

1.1 COBOL Language Elements . 1-1

1.1.1 COBOL Character Set . 1-2
1.1.2 COBOL Words 1-2

1.1.2.1 User-Defined Words. 1-2
1.1.2.2 Reserved Words. 1-2

1.1.3 Literals 1-4

1.1.3.1 Numeric Literals 1--4
1.1.3.2 Alphanumeric Literals. 1-1)

1.1.4 Separators. 1-1)

1.1.4.1 Space 1-1)
1.1.4.2 Comma and Semicolon 1-1)
1.1.4.3 Left and Right Parentheses 1-6
1.1.4.4 Quotation Marks 1-6
1.1.4.5 Horizontal Tab . 1-6

1.1.5 Format Punctuation 1-6

1.2 Meta-Language Elements 1-6

1.2.1 Underline. 1-6
1.2.2 Brackets and Braces . 1-6
1.2.3 The Ellipsis. 1-7

1.3 Source Reference Format. 1-7

1.3.1 Conventional Reference Format. 1-7

1.3.1.1 Reference Format Areas . 1-7
1.3.1.2 Continuation of Lines . 1-8
1.3.1.3 Blank Lines. 1-9
1.3.1.4 Comment Lines. 1-9
1.3.1.5 Short Lines and Tab Characters . 1-9

1.3.2 Terminal Reference Format. 1-10

1.4 Language Organization. 1-10

1.4.1 Division Header. 1-10
1.4.2 Section Header -1-11
1.4.3 Paragraph, Paragraph Header, Paragraph-Name. 1-11
1.4.4 Data Division Entries 1-12
1.4.5 Declaratives . 1-12

1.5 Sample Format Entry Page. 1-13

Chapter 2 Identification Division

2.1 PROGRAM-ID Paragraph 2-2
2.2 DATE-COMPILED Paragraph 2-3

m

Chapter 3 Environment Division

3.1 CONFIGURATION SECTION.

3.1.1 SOURCE-COMPUTER Paragraph
3.1.2 OBJECT-COMPUTER Paragraph
3.1.3 SPECIAL-NAMES Paragraph

3.2 INPUT-OUTPUT SECTION

3.2.1 FILE-CONTROL Paragraph
3.2.2 I-O-CONTROL Paragraph.

Chapter 4 Data Division

4.1 File Description - Complete Entry Skeleton.

4.2

4.3

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7

BLOCK CONTAINS Clause
CODE-SET Clause
DATA RECORDS Clause .
LABEL RECORDS Clause.
LINAGE Clause
RECORD CONTAINS Clause
VALUE OF ID Clause .

Data Description Concepts. . . .

4.2.1 Physical Aspects of a File
4.2.2 Record Concepts ..
4.2.3 Record Description. . . .
4.2.4 Classes of Data
4.2.5 Selection of Numeric Character Representation
4.2.6 Algebraic Signs
4.2.7 Standard Alignment Rules
4.2.8 Item Alignment for Increased Object-Code Efficiency

Data Description - Complete Entry Skeleton
4.3.1 BLANK WHEN ZERO Clause.
4.3.2 Data-Name or FILLER Clause
4.3.3 JUSTIFIED Clause
4.3.4 Level-Number..
4.3.5 OCCURS Clause. .
4.3.6 PICTURE Clause .
4.3.7 REDEFINES Clause.
4.3.8 RENAMES Clause ..
4.3.9 SIGN Clause
4.3.10 SYNCHRONIZED Clause
4.3.11 USAGE Clause
4.3.12 VALUE Clause

Chapter 5 Procedure Division

iv

5.1 General Description

5.1.1 Declaratives .
5.1.2 Procedures..

5.2 Procedure Division Header.
5.3 Procedure Division Body ..

3-2

3-2
3-3
3-4

3-6

3-8
3-14

4-4

4-5
4-7
4-8
4-9
4-10
4-13
4-14

4-15

4-15
4-15
4-15
4-17
4-17
4-17
4-18
4-18

4-19
4-22
4-23
4-24
4-25
4-26
4-29
4-38
4-40
4-42
4-44
4-46
4-49

5-1

5-1
5-1

5-2
5-3

5.4 Statements and Sentences . 5-3

5.4.1 Conditional Statement. 5-4
5.4.2 Conditional Sentence. 5-4
5.4.3 Compiler-Directing Statement 5-4
5.4.4 Compiler-Directing Sentence 5-4
5.4.5 Imperative Statement 5-5
5.4.6 Imperative Sentence . 5-5
5.4.7 Statement Categories 5-5
5.4.8 Uniqueness of Reference 5-6

5.4.8.1 Qualification 5-7
5.4.8.2 Subscripting 5-8
5.4.8.3 Indexing 5-9
5.4.8.4 Internal Formats of Subscripts, Index-Names and

Index-Data- Items. 5-9
5.4.8.5 Identifier . 5-10
5.4.8.6 Condition-Name 5-10

5.4.9 Explicit and Implicit Specifications. 5-11

5.4.9.1 Explicit and Implicit Procedure Division References. 5-11
5.4.9.2 Explicit and Implicit Transfers of Control 5-11
5.4.9.3 Explicit and Implicit Attributes 5-12

5.5 Ari thmetic Expressions. 5-12

5.5.1 Arithmetic Operators. 5-13
5.5.2 Formation and Evaluation Rules 5-13

5.6 Conditional Expressions 5-14

5.6.1 Simple Conditions. 5-15
5.6.2 Relation Condition. 5-15
5.6.3 Comparison of Numeric Operands 5-16
5.6.4 Comparison of Alphanumeric Operands. 5-16
,5.6.5 Comparisons Involving Index-Names and/or Index Data Items 5-17
5.6.6 Class Condition 5-18
5.6.7 Condition-Name Condition (Conditional Variable) . 5-18
5.6.8 Switch-Status Condition . 5-19
5.6.9 Sign Condition. 5-19
5.6.10 Complex Conditions . 5-19
5.6.11 Negated Simple Conditions. 5-20
5.6.12 Combined and Negated Combined Conditions. 5-20
5.6.13 Abbreviated Combined Condition Relations. 5-21
5.6.14 Condition Evaluation Rules. 5-22

5.7 Common Phrases and General Rules for Statement Formats 5-23

5.7.1 ROUNDED Phrase. 5-23
5.7.2 SIZE ERROR Phrase 5-24
5.7.3 CORRESPONDING Phrase 5-24
5.7.4 Arithmetic Statements. 5-25
5.7.5 Multiple Results in Arithmetic Statements 5-25
5.7.6 Overlapping Operands 5-26
5.7.7 Incompatible Data. 5-26

5.8 ACCEPT Statement. 5-27
5.9 ADD Statement . 5-29
5.10 ALTER Statement. 5-31

v

5.11 CALL Statement
5.12 CLOSE Statement (Sequential)
5.13 CLOSE Statement (Indexed & Relative)
5.14 COMPUTE Statement
5.15 DELETE Statement (Indexed & Relative)
5.16 DISPLAY Statement.
5.17 DIVIDE Statement
5.18 EXIT Statement. .
5.19 GO TO Statement.
5.20 IF Statement . . .
5.21 INSPECT Statement
5.22 MOVE Statement . .
5.23 MULTIPLY Statement.
5.24 OPEN Statement (Sequential) .
5.25 OPEN Statement (Indexed & Relative) .
5.26 PERFORM Statement. . . .
5.27 READ Statement (Sequential)
5.28 READ Statement (Relative) .
5.29 READ Statement (Indexed) .
5.30 REWRITE Statement (Sequential) .
5.31 REWRITE Statement (Relative)
5.32 REWRITE Statement (Indexed)
5.33 SEARCH Statement.
5.34 SET Statement
5.35 START Statement (Relative).
5.36 START Statement (Indexed) .
5.37 STOP Statement . . .
5.38 STRING Statement . .
5.39 SUBTRACT Statement
5.40 UNSTRING Statement
5.41 USE Statement
5.42 WRITE Statement (Sequential)
5.43 WRITE Statement (Relative).
5.44 WRITE Statement (Indexed) .

Chapter 6 The Library Module

Appendix A Reserved Words

Appendix B Character Sets

Appendix C File Status Key Values

Glossary

Index

Figures

Ul

5-1 VARYING Phrase for PERFORM with One Condition. .
5-2 VARYING Phrase for PERFORM with Two Conditions .
5-3 VARYING Phrase for PERFORM with Three Conditions.
5-4 Format 1 SEARCH with Two WHEN Phrases.

.5-32

.5-34

.5-39

.5-40

.5-41

.5-43

.5-44

.5-47

.5-48

.5-49

.5-51

.5-58

.5-62

.5-64

.5-68

.5-71

.5-80

.5-83

.5-87

.5-91

.5-93

.5-95

.5-98

.5-103

.5-105

.5-107

.5-109

.5-110

.5-113

.5-115

.5-119

.5-121

.5-125

.5-128

.5-75

.5-76

.5-77

.5-102

Tables

3-1
3-2
4-1
4-2
4-3
4-4
5-1
5-2
5-3
5-4
5-5
5-6
5-7
B-1
C-1
C-2

Access Modes and File Organization
Possible Combinations of Status Keys 1 and 2.
Classes and Categories of Elementary and Group Data Items.
Types of Editing by Data Category. .
Editing with Sign-Control Symbols
PICTURE Character Precedence Table
Symbol Combinations in Arithmetic Expressions
Combinations of Conditions, Logical Operators, and Parentheses.
Relationship of CLOSE Statement Formats to File Categories
Permissible MOVE Statements.
Permissible Input-Output Statements for Sequential Files
Permissible Input-Output Statements for Indexed and Relative Files .
Permissible Operand Combinations in the SET Statement.
Character Sets.
Sequential VO File Status Key Values
Relative and Indexed I/O File Status Key Values

.3-7

.3-11

.4-17

.4-33

.4-34

.4-37

.5-14

.5-21

.5-35

.5-61

.5-65

.5-69

.5-104

.B-2

.C-1

.C-2

Commercial Engineering Publications typeset this manual using DIGITAL's
TMS-ll System.

955ALL

un

Preface

This reference manual describes the COBOL language as implemented in
VAX-ll COBOL-74 for the VAX-U system. It adheres to the 1974 ANSI
standard. Furthermore, the text of this manual is based on American
National Standard Programming Language COBOL, ANSI Document
X3.23-1974.

You should have a working knowledge of the COBOL language before using
this book, which is a reference document; it is not a tutorial guide for begin
ning COBOL programmers.

Chapter 1 contains an overview of the COBOL language. Chapters 2 through 5
detail the four COBOL divisions. A discussion of the Library module appears
in Chapter 6. Appendixes A, B, and C contain the COBOL reserved word list,
character set tables, and FILE STATUS codes.

Frequent references to the VAX-ll COBOL-74 User's Guide (User's Guide)
appear in the text. The User's Guide and the VAX-ll SORT User's Guide
contain additional information about the compiler, the runtime system, error
messages, and utility programs.

Acknowledgments

COBOL is an industry language. It is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by
any contributor or by the committee in connection therewith.

The authors and copyright holders of the copyrighted material used herein
are: FLOW-MATIC (trademark of Sperry Rand Corporation), programming
for the Univac (R) I and II, Data Automation Systems copyrighted 1955, 1959,
by Sperry Rand Corporation; IBM Commercial Translator Form No.
F2S-S013, copyrighted 1959 by IBM; FACT, DSI 27 A5260-2760, copyrighted
1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part,
in the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

lX

Chapter 1

Overview of the COBOL Language

This chapter contains general information about the language and structure
of COBOL source programs. It describes the elements of COBOL and its
meta-language, reference formats, and language organization. A sample for
mat entry concludes the chapter and introduces the source language state
ments discussed in later chapters.

1.1 COBOL Language Elements

The COBOL language consists of the following components:

• Divisions

• Sections

• Paragraphs

• Sentences

• Clauses

• Statements

• Entries

• Words

• Characters

There are four divisions in COBOL programs: the Identification Division,
the Environment Division, the Data Division, and the Procedure Division.
Each division can contain sections, which in turn can contain paragraphs.
Each paragraph can contain one or more sentences, clauses, statements, or
entries.

The basic building blocks of these COBOL components include the COBOL
character set, character-strings, COBOL words, separators/punctuation and
literals.

1-1

1.1.1 COBOL Character Set

The basic and indivisible unit of the COBOL language is the character. Indi
vidual characters combine to form character-strings of one or more contiguous
characters, and separators, which are punctuation character-strings. The
character set for character-strings and separators includes the letters
A through Z, digits, and special characters. The complete COBOL character
set appears in Appendix B.

For nonnumeric literals, comment entries, and comment lines, the character
set is expanded to include the entire computer character set except for some
special characters (such as the carriage return) that control I/O devices. The
computer character set and its subsets appear in Appendix B.

NOTE:

If special characters, other than commas and semicolons, ap
pear in general formats, you must use them in your source
program as well.

1.1.2 COBOL Words

A COBOL word is a character-string of not more than 30 ASCII characters.
There are two classes of words: user-defined words and reserved words. A
COBOL word can belong to one and only one of these classes.

1.1.2.1 User-Defined Words - COBOL words that you must supply to satisfy
the format of a clause or statement. User-defined words consist of characters
selected from the set A through Z, the digits 0 through 9, and the hyphen (-).
A hyphen can neither begin nor end a user-defined word.

There are 12 types of user-defined words:

condi tion -name
data-name
file-name
index-name
level-number
mnemonic-name

paragraph-name
program-name
record-name
section -name
segment-number
~ext-name

Each· of these types is defined in the glossary.

1.1.2.2 Reserved Words - A specific list of COBOL words that you can use
only as specified in the general formats. Do not use a reserved word as a user
defined word. (See Appendix A for a complete list of COBOL reserved words.)

There are six types of reserved words:

1. Key words - Words that you must use in a particular format. Key words
are upper case and underlined in general formats. Consider the following
example.

COMPUTE identifier-l [ROUNDED} [, identifier-2 [ROUNDED}} ...
arithmetic-expression [; ON SIZE ERROR imperative-statement}

In this case, COMPUTE, ROUNDED, SIZE, and ERROR are key words.

1-2 Overview of the COBOL Language

2. Optional Words - Words you can use or omit without altering the seman
tics of the COBOL program. Optional words are upper case, but not under
lined, in general formats. In the previous example, the word ON is an
optional word.

3. Connectives - There are three types of connectives:

a. Qualifier connectives - associate a
or a text-name with its qualifiers:

data-name, a condition-name,
OF, IN. (See Section 5.4.S.1,

Qualification.)

b. Series connectives - link two or more consecutive operands: separa
tor comma or separator semicolon.

c. Logical connectives - express the following four conditions: AND,
OR, AND NOT, OR NOT.

4. Special Registers - Compiler-generated storage areas, such as LINAGE
COUNTER, that are named and referred to by reserved words. (See Sec
tion 4.1.5, LINAGE Clause.)

5. Figurative Constants - Words that name and refer to specific constant
values generated by the compiler. The singular and plural forms of figura
tive constants are equivalent, and you can use them interchangeably. Do
not put quotation marks around figurative constants.

Reserved words and their figurative constant values follow:
ZERO Represents the value ·(f. or one or more of the character
ZEROS '0', depending on context.
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL literal

Represents one or more of the character space from the computer char
acter set.

Represents one or more of the character that has the highest ordinal
position in the computer character set (hex 7F).

Represents one or more of the character that has the lowest ordinal
position in the computer character set (hex 00).

Represents one or more of the character ''''.

Represents one or more repetitions of the string of characters comprising
the literal. The literal must be either an alphanumeric literal or a figura
tive constant other than ALL literal. When a figurative constant is used,
the word ALL is redundant and serves only to enhance readability.

When a figurative constant represents a string of one or more characters,
the compiler determines the string's length from context according to the
following rules:
a. When a figurative constant is associated with another data item (for

example, when the figurative constant is moved to or compared with
another data item), the string of characters that the figurative con
stant represents is repeated character by character to the right (or
truncated on the right in the case of ALL literal) until the size of the
resultant string equals the size of the associated data item. This is
done prior to and independent of the application of any JUSTIFIED
clause specified for the data item. (See Section 4.3.3, JUSTIFIED
Clause.)

Overview of the COBOL Language 1-3

b. When a figurative constant is not associated with another data item
(for example, when the figurative constant appears in a DISPLAY,
STRING, UNSTRING or STOP statement), the length of the string is
one character.

You can use a figurative constant wherever a literal appears in a format.
Whenever the literal is restricted to numeric characters, however, use only
the ZERO (ZEROS, ZEROES) figurative constant.

6. Special-Character Words - The arithmetic operators + (addition),
- (subtraction), * (multiplication), / (division), ** (exponentiation), and
relation characters < (less than), > (greater than), and = (equal to). You
must use these words where they appear in general formats even though
they are not underlined.

1.1.3 Literals

A literal is a character-string whose value is determined by the ordered set of
characters of which it is composed. There are two types of literals: numeric
and alphanumeric (alphanumeric is sometimes referred to as "nonnumeric").

NOTE:

A figurative constant can also serve as a literal.

1.1.3.1 Numeric Literal - A character-string of 1 to 20 characters selected
from the digits 0 through 9, the plus sign, the minus sign, and the decimal
point.

The value of a numeric literal is the algebraic quantity represented by the
characters in the literal. The size of the literal equals the number of digits
specified, including leading zeros, if any. Every numeric literal is category
numeric. (See Section 4.3.6, PICTURE Clause.)

The rules for forming numeric literals are:

1. A numeric literal must contain at least one digit and not more than 18
digits.

2. A numeric literal must not contain more than one sign character. If a sign
is used, it must appear as the leftmost character of the literal. If the literal
has no sign, its value is positive.

3. A numeric literal must not contain more than one decimal point. The
decimal point is treated as an assumed decimal point and can appear
anywhere within the literal except as the rightmost character. If the literal
contains no decimal point, it is an integer. (The word "integer" appearing
in a general format represents a non-zero, positive numeric literal with no
decimal point.)

4. The compiler treats a numeric literal enclosed in quotation marks as an
alphanumeric literal.

1-4 Overview of the COBOL Language

1.1.3.2 Alphanumeric Literal - A character-string of 1 to 127 allowable char
acters from the computer character set. It is delimited on both ends by quota
tion marks.

The value of an alphanumeric literal in the object program is the value of the
character-string itself, except that: (1) the delimiting quotation marks are
excluded, and (2) each embedded pair of contiguous quotation marks repre
sents a single quotation mark character; all other punctuation characters are
part of the value of the alphanumeric literal and are not separators. Alpha
numeric literals are category alphanumeric. (See Section 4.3.6, PICTURE
Clause.)

The rules for forming alphanumeric literals are:

1. An alphanumeric literal must contain a space or left parenthesis immedi
ately before the opening quotation mark.

2. An alphanumeric literal must contain a separator (space, comma, semicol
on, or right parenthesis) or terminator (period) immediately after the clos
ing quotation mark.

3. To represent a single quotation mark character within an alphanumeric
literal, use two contiguous quotation marks.

1.1.4 Separators

A separator is a string of one or more of the punctuation characters described
in this section. The rules for forming separators follow:

1.1.4.1 Space

1. Where a space is used as a separator, more than one space can be used.

2. A space can immediately precede any separator except the closing quota
tion mark. Before a closing quotation mark, the space is considered part of
an alphanumeric literal rather than a separator.

NOTE:

Section 1.3, Source Reference Formats, describes the only
exception to the first two· rules.

3. A space can immediately follow any separator except the opening quota
tion mark. After an opening quotation mark, the space is considered part
of an alphanumeric literal rather than a separator.

1.1.4.2 Comma and Semicolon - The comma and semicolon function as
separators only when they are immediately followed by a space. Insert these
separators only where explicitly permitted by the general formats, by format
punctuation rules, by statement and sentence structure definitions, or by
reference format rules.

Overview of the COBOL Language 1-5

1.1.4.3 Left and Right Parentheses - Left and right parentheses are separa
tors only when used in balanced pairs.

1.1.4.4 Quotation Marks - Quotation marks used in balanced pairs delimit
alphanumeric literals. (See Section 1.1.3.2, Alphanumeric Literals.)

1.1.4.5 Horizontal Tab - The horizontal tab character vertically aligns state
ments or clauses on successive lines of the source program listing. It adheres to
the same rules that govern the space character. The compiler, upon en
countering a tab character, generates one or more space characters consistent
with the tab character position in the source line. (See Sections 1.3, Source
Reference Formats.)

1.1.5 Format Punctuation

The comma, semicolon, and period appear in some formats. The comma and
semicolon are optional and interchangeable. The period, however, is manda
tory: Supply a period wherever one is shown in a general format. You must
also specify a period to terminate a paragraph.

1.2 Meta-Language Elements

Meta-language elements describe the allowable use of language elements.
They appear in formats but are not coded into source language statements.

1.2.1 Underline

Underlined, upper-case words denote reserved key words. The absence of an
underline in an upper case word denotes an optional word.

1.2.2 Brackets and Braces

Brackets, [], enclose an optional portion of a general format. When they
enclose vertically stacked entries, brackets indicate that you can, at your
option, select one of the enclosed entries. Braces, I I, surrounding vertically
stacked entries indicate that you must choose one of the enclosed entries.

In the following example, brackets indicate that the entire clause is optional.
If you use the clause, you must select either SYNCHRONIZED or SYNC. You
can select either LEFT or RIGHT (or neither).

[{SYNCHRONIZED}
SYNC

[LEFT]]
!illlliT

NOTE:

In the general format for a clause, choices that are vertically
stacked between brackets indicate that you have the option of
overriding a default condition. The default condition is always
described in the general rules for the clause.

1-6 Overview of the COBOL Language

1.2.3 The Ellipsis

The ellipsis (. ..) indicates that you can repeat the item preceding it. This item
is usually enclosed in brackets or braces. Consider the following example.

[SAME [RECORDl AREA FOR file-name-l Ifile-name-21 ... l ...

The ellipsis following the outside brackets indicates that you can repeat the
entire clause. The other ellipsis allows you to repeat the item in braces.

1.3 Source Reference Format

The compiler provides two formats for coding your source programs: conven
tional and terminal. The former is based on the traditional, 80-column
punched card format. The latter is a DEC-specified format that shortens a
source line by using horizontal tabs and carriage returns; the terminal format
works well when you use a text editor from an on-line terminal.

NOTE:

The compiler assumes terminal format as a default, but you
can use either format. (The User's Guide discusses format
selection.)

Use the reformatting program (REFORMAT) to change a terminal format
program to conventional format for ease in transporting the source program
to other COBOL compilers. (The User's Guide discusses the REFORMAT
utility.)

NOTE:

The rules for spacing presented in this discussion of reference
formats take precedence over all other spacing rules.

1.3.1 Conventional Reference Format

The conventional reference format provides rules for coding your source pro
gram on 80-column punched cards. These rules are described in the following
sections.

1.3.1.1 Reference Format Areas

1. Sequence Number Area - Character positions 1 through 6. Reserved for
source line sequence numbers that enable you to locate and edit source
lines in your program. The compiler ignores the contents of this field.

2. Continuation/Comment Indicator Area - Character position 7. Contains a
character that directs the compiler to process the source line in one of the
following ways:

Overview of the COBOL Language 1-7

Character

blank ()

hyphen (-)

asterisk (*)

slash (/)

Source line processed as

Default - The compiler processes the line as normal
COBOL text.

Continuation line - The compiler processes the line as a continuation of
the previous source line. (See Section 1.3.1.2, Continuation of Lines.)

Comment line - The compiler transfers the contents of this line, as is, to
the source listing and does not check syntax. (See Section 1.3.1.4, Comment
Lines.)

Comment line - The compiler treats the line as if it were a comment line,
except that it advances the source listing to the top of the next page before
printing the line.

3. Area A - Character positions 8 through 11. Contains division headers,
section headers; paragraph headers, paragraph-names, level-indicators,
and certain level numbers.

4. Area B - Character positions 12 through 72. Contains all other COBOL
text.

5. Identification Field - Character positions 73 through 80. Contains source
program documentation that has no effect on compilation.

1.3.1.2 Continuation of Lines

1. Divide a multi-line sentence or entry by continuing in Area B of the next
line.

2. Break a word or numeric literal from one line to the next by placing a
hyphen (-) in character position 7 of the continuation line; the first non
blank character that you enter in Area B will become the next character of
the continued word or numeric literal.

3. Break an alphanumeric literal from one line to the next by placing a
hyphen in character position 7 of the continuation line. Put a quotation
mark before the first character of the continuation literal. The literal can
begin anywhere in Area B of the continuation line.

Consider the following example:

001010 01 CONTINUATION-NUMERIC.
001020 02 NUMERIC-LITERAL PIC 9(18) VALUE IS 12345678912345
001030- 6789.
001040 01 CONTINUATION-ALPHANUMERIC.
001050 02 ALPHANUMERIC-LITERAL PIC X(26) VALUE IS "ABCOEFGHIJKLM
001060 - "NO PQRSTUI.JW)-(YZ" •
001070 PROCEDURE DIVISION.
001080 CONTINUATION-SENTENCE.
001090 IF NUMERIC-LITERAL NOT EQUAL TO ALPHANUMERIC-LITERAL
001100 GO TO END-PROGRAM
001110 ELSE GO TO CONTINUATION-SENTENCE.
001120 END-PROGRAM.
001130 STOP RUN.

1-8 Overview of the COBOL Language

Source lines 001010 through 001030 show how to continue a numeric literal;
lines 001040 through 001060 show line continuation for an alphanumeric
literal. Finally, source lines 001090 through 001110 contain a sentence that
continues for three lines.

1.3.1.3 Blank Lines - Include blank lines (character positions 7 through 72
blank) anywhere in a source program except immediately before a continua
tion line.

1.3.1.4 Comment Lines - Include comment lines (an asterisk in character
position 7) anywhere in a source program except before the Identification
Division. Successive comment lines must also contain asterisks in character
position 7.

You can use any character from the computer character set to write a com
ment line. Begin your comments in Area A or Area B. The compiler repro
duces comment lines on the source listing for documentation purposes.

NOTE:

The slash character (/) and asterisk (*) produce the same
results, except that the slash directs the compiler to advance
the source listing to the top of the next page before printing the
comment entry.

1.3.1.5 Short Lines and Tab Characters - If you use a medium other than
punched cards, you can shorten conventional format source lines: Either ter
minate the line with a carriage return, insert tab characters within the line to
replace space characters, or use a combination of the two.

The compiler treats a carriage return character as a redefinition of character
position 72. When you use a tab character, the compiler generates the re
quired number of space characters consistent with the tab character position
on the line. Tab stops are set in the compiler at character positions 7, 8, 12,
20, 28, 36, 44, 52, 60, 68, and 73.

Consider the following example, in which ~ stands for the carriage return
character and @ID stands for the tab character.

Shortened conventional source line

000130 01 @l FILE-A. 001

000140 @l 02 DATA-FIELD-A. 001

000150 @l @l 03 DESCRIPTION-A @l PIC)< (20) • 001

000160 @l @l 03 DESCRIPTION-B @l PIC)((20) • 001

000170 @l @l 03 DESCRIPTION-C @l PIC)((20) • 001

Overview of the COBOL Language 1-9

Source line as interpreted by the compiler

000130 01 FILE-A.
000140 02 DATA-FIELD-A.
000150 03 DESCRIPTION-A
000160 03 DESCRIPTION-B
000170 03 DESCRIPTION-C

1.3.2 Terminal Reference Format

PIC)-«20).
PIC)-«20).
PIC)-«20).

Terminal reference format is the compiler's default format. It is easy to use
with a computer terminal and is less time and space consuming than its
conventional counterpart. This format eliminates the sequence number and
identification fields and combines the indicator field with Area A.

The terminal reference format for a source line follows:

Character Position

1 through 4

5 through 65

Contents

Area A

Area B

NOTE:

Place continuation line (-), comment line (*), and skip-to-top
of-page (/) indicator characters in character position 1.

In terminal format, Area A and Area B contain the same kinds of source
entries as their conventional format counterparts. (See Section 1.3.1.1) Simi
larly, tab characters cause the compiler to generate a number of spaces con
sistent with the tab character position on the line. Tab stops are set to charac
ter positions 5, 13, 21, 29, 37, 45, 53, 61, and 66.

1.4 Language Organization

Each division, section, and paragraph in a COBOL program contains headers
followed by source text. The following sections describe both the organization
of these headers and their reference format positions.

1.4.1 Division Header

A division header indicates the beginning of a division. It is a specific combi
nation of words followed by a period. Division headers, in their order of
appearance, are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.

DATA DIVISION.
PROCEDURE DIVISION.

1-10 Overview of the COBOL Language

A division header must start in Area A. No non-comment text can appear
between it and the following section header, paragraph header, or paragraph
name, except for the key word DECLARATIVES (followed by a period and a
space), which can appear after the Procedure Division header.

1.4.2 Section Header

A section header indicates the beginning of a section in the Environment,
Data, and Procedure Divisions. In the Environment and Data Divisions, a
section header contains reserved words followed by the word SECTION (fol
lowed by a period and a space). In the Procedure Division, a section header
contains a user-defined word followed by the word SECTION (and an op
tional segment-number) followed by a period and a space. The permissible
section headers are:

In the Environment Division

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division

user-name SECTION [segment-number!.

The section header must start in Area A. No text can appear between it and
the following paragraph header or paragraph-name except for the USE sen
tence in the Procedure Division.

1.4.3 Paragraph, Paragraph Header, Paragraph-Name

Paragraphs begin with paragraph hea~ers (reserved words) or paragraph
names (user-defined words), depending on the division. In the Identification
and Environment Divisions, a paragraph consists of a paragraph header (fol
lowed by a period) and zero, one, or more entries. In the Procedure Division, a
paragraph consists of a paragraph-name (followed by a period) and zero, one,
or more entries. Data Division entries follow a different format. (See Section
1.4.4, Data Division Entries.)

The permissible paragraph headers are:

In the Identification Division

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

Overview of the COBOL Language 1-11

In the Environment Division

SOURCE-COMPUTER.
OBJECT -COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

A paragraph header or paragraph-name starts in Area A. The first sentence of
a paragraph begins either on the same line or in Area B of the next non-blank
line that is not a comment line. Successive sentences or entries begin either on
the same line as the previous one or in Area B of the next non-blank line that
is not a comment line. (See Section 1.3.1.2, Continuation of Lines.)

1.4.4 Data Division Entries

There are two types of Data Division entries: those that begin with a level
number (called "data-description-entries") and those that begin with a level
indicator. The only level indicator is FD (File Description).

Following every level indicator or level-number are (in order): a space, its
associated name, and a sequence of independent descriptive clauses. Each
clause except the last ends with a separator semicolon or a separator space;
the last clause ends with a period followed by a space.

Choose level-numbers from the set of values 1 through 49, 66, 77, and 88.
Write the level-numbers 1 through 9 either as a single digit or as a zero
followed by a significant digit. For level-numbers 01, 66, or 77, the entry
begins in Area A with the level-number followed by a space; the entry ends in
Area B with its associated record-name and descriptive information.

The FD level indicator entry begins in Area A with the level indicator followed
by at least one space; the entry continues in Area B with a file-name and
descriptive information.

You can maintain the same format for successive data-description-entries, or
you can indent according to level-number. When you indent, begin each new
level-number anywhere in Area A or Area B, and end anywhere within Area B.
Indentation does not affect the magnitude of the level-number. Note that your
output listing will be indented only if the input is indented.

1.4.5 Declaratives

The key words DECLARATIVES and END DECLARATIVES precede and
follow, respectively, the declaratives portion of the Procedure Division.
Each must appear on a line by itself, starting in Area A and ending with a
terminator period.

1-12 Overview of the COBOL Language

1.5 Sample Format Entry Page

The following page is a model of the entries that comprise the bulk of this
manual. Each COBOL division begins a new chapter, and each entry begins
on a new page.

Entry-Name

n.n.n Entry-Name

Function

Describes the function or effect of the entry.

General Format

A general format shows the specific arrangement of elements in
the entry. Formats are numbered if you can use more than one
specific arrangement. You must write all clauses (mandatory
and optional) in the sequence shown in these general formats.
Only in certain cases can clauses appear in sequences other
than those shown; these exceptions are stated explicitly in the
rules that follow the general format.

Syntax Rules

Syntax rules tell you how to order words or elements to form larger elements,
such as sentences, clauses, or statements. They also impose restrictions on
individual words or elements.

General Rules

General rules define or clarify the meaning (or relationship of meanings) of an
element or a set of elements. They define the semantics of the entry and the
entry's effect on program execution or compilation.

Examples

(If required)

Division Name

Overview of the COBOL Language 1-13

Chapter 2
Identification Division

Function

The Identification Division marks the beginning of a COBOL program. It also
identifies a program and its source listing.

General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

* [AUTHOR. [comment-entryJ ... J

* [INSTALLATION. [comment-entryJ ... J

* [DATE-WRITTEN. [comment-entryJ ... J

[DATE-COMPILED. [comment-entryJ ... J

* [SECURITY. [comment-entryJ ... J

* These paragraphs are not described in individual entries; they follow the same format as the
DATE-COMPILED paragraph and are for documentation only.

Syntax Rules

1. The Identification Division must be the first entry in a COBOL program.

2. The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

3. The PROGRAM-ID paragraph must immediately follow the Identification
Division header.

General Rules

1. The comment-entry can consist of any combination of characters from the
computer character set.

2. Comment-entries can span several lines. However, do not continue a
comment-entry by using a hyphen in the continuation indicator area.

2-1

PROGRAM-ID

2.1 PROGRAM-ID Paragraph

Function

The PROGRAM-ID paragraph identifies the program.

General Format

PROGRAM-ID. program-name.

Syntax Rule

The program-name must contain 1 to 15 characters from the get A through Z
and 0 through 9. Do not use the hyphen.

General Rules

1. The PROGRAM-ID paragraph must be pregent in every program and
must contain a program-name.

2. Program-name is a user-defined word that identifies a COBOL program.

3. The program-name identifies the object program entry point.

4. Program-names cannot exceed 15 characters in length.

5. The first eleven characters of the program-name must not duplicate the
first eleven characters of the program-name in any other program in the
linked image.

2-2 Identification Division

DATE·COMPILED

2.2 DATE·COMPILED Paragraph

Function

The DATE-COMPILED paragraph causes the compiler to display the compi
lation date on the source program listing in the Identification Division.

General Format

DATE-COMPILED. [comment-entry] ...

Syntax Rules

1. The comment-entry can consist of any combination of characters from the
computer character set.

2. Comment-entries can span several lines. However, do not continue a
comment-entry by using a hyphen in the continuation indicator area.

General Rules

1. During program compilation, the paragraph-name DATE-COMPILED
causes the current date to be inserted on a subsequent line of the program
listing. If a DATE-COMPILED paragraph is present, it is replaced during
compilation with a paragraph of the form:

DATE-COMPILED. comment-entry.
current-date

2. All listings produced during compilation contain the compilation date in
the header line of each page regardless of the presence or absence of the
DATE-COMPILED paragraph.

Identification Division 2-3

Chapter 3
Environment Division

Function

The Environment Division provides a standard method for describing the
program's hardware environment. It enables you to specify both (1) the com
piling and object computers, and (2) information about input-output control.

General Format

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SO URCE-COMPUTER. source-com puter-entryJ

[OBJECT-COMPUTER. object-computer-entryJ

[SPECIAL-NAMES. special-names-entryil

[I;-";PUT-OUTPUT SECTION.

FILE-CONTROL. Ifile-control-entryl ...

[I-O-CONTROL. input-output-control-entryil

Syntax Rules

1. The Environment Division must follow the Identification Division in every
COBOL program.

2. The Environment Division must begin with the reserved words
ENVIRONMENT DIVISION followed by a period and a space.

3-1

SOURCE-COMPUTER

3.1 CONFIGURATION SECTION

The Configuration Section can consist of three paragraphs: SOURCE
COMPUTER, OBJECT-COMPUTER, AND SPECIAL-NAMES.

3.1.1 SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph specifies the computer on which the
source program is to be compiled.

General Format

SOURCE-COMPUTER. VAX-ll.

General Rules

This paragraph is for documentation purposes only.

3-2 Environment Division

OBJECT-COMPUTER

3.1.2 OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph specifies the computer on which the
object program is to be executed.

General Format

OBJECT-COMPUTER. VAX-Ii [MEMORY SIZE integer ~~:~:CTERS]
MODULES

[, PROGRAM COLLATING SEQUENCE IS alphabet-namel

[, SEGMENT-LIMIT IS segment-number].

General Rule

This paragraph is for documentation purposes only.

Environment Division 3-3

SPECIAL-NAMES

3.1.3 SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph associates compiler features with user
specified mnemonic-names; it also associates alphabet-names (specified in
the OBJECT-COMPUTER paragraph) with character sets and/or collating
sequences.

General Format

[SPECIAL-NAMES.

[

CARD-READER
PAPER-TAPE-READER
CONSOLE
LINE-PRINTER
PAPER-TAPE-PUNCH

[SWITCH integer-I

IS mnemonio-name ... J

{
ON STATUS IS condition-name-I [,OFF STATUS IS condition-name-2]}

OFF STATUS IS condition-name-2 [,ON STATUS IS condition-name-I]]

[
alphabet-name IS {NATIVE}]

STANDARD-I

[CURRENCY SIGN IS literal]

[DECIMAL-POINT IS COMMA].]

Syntax Rules

1. You must use the SPECIAL-NAMES paragraph if your program in
cludes mnemonic-names, condition-names, alphabet-names, the
DECIMAL-POINT clause, or the CURRENCY SIGN clause.

2. Integer-l represents any integer from 1 to 16.

General Rules

1. The names CARD-READER, PAPER-TAPE-READER, and CONSOLE
refer to input devices. To transfer data from these devices, you can use the
mnemonic-names assigned to them with the ACCEPT statement in the
Procedure Division.

2. The names CONSOLE, LINE-PRINTER, and PAPER-TAPE-PUNCH
refer to output devices. To transfer data to these devices, you can use the
mnemonic-names assigned to them with the DISPLAY statement in the
Procedure Division.

3-4 Environment Division

SPECIAL-NAMES
Continued

3. The name SWITCH refers to a logical switch to which the operator can
assign a value at run-time. Chapter 2 of the User's Guide discusses the
procedure for setting program switches.

4. The condition-name assigned to the ON or OFF STATUS of a switch can
be used in a conditional expression. (See Section 5.6.8, Switch-Status
Condition.)

5. The alphabet-name clause relates a name to a collating sequence and/or
a character code set. An alphabet-name referenced in the PROGRAM
COLLATING SEQUENCE olause specifies a collating sequence. An
alphabet-name referenced in a CODE-SET clause in a file-description
entry specifies a character code set. (See Section 4.1.2, CODE-SET
Clause.)

a. If the STANDARD-l phrase is specified, the character code set or
collating sequence identified is that defined in the American National
Standard Code for Information Interchange, X3.4-1968.

b. Since the native character code set of your system is equivalent to the
ASCII code, specification of the NATIVE phrase is equivalent to speci
fication of the STANDARD-l phrase.

6. The literal that appears in the CURRENCY SIGN IS literal clause is used
in the PICTURE clause to represent the currency symbol. Use a single
character for the literal. Do not use any of the following characters:

a. Digits 0 through 9

b. Alphabetic characters A,B,C,D,L,P,R,S,V,X,Z or the space

c. Special characters *, +, -, , (comma), . (period), ; (semicolon), (,), ", /,
or =

If this clause is not present, you can only use the currency sign ($) in the
PICTURE clause.

7. The DECIMAL-POINT IS COMMA clause exchanges the function of
the comma and period in the PICTURE character-string and in numeric
literals.

Environment Division 3-5

3.2 INPUT-OUTPUT SECTION

The Input-Output Section consists of two paragraphs that describe the infor
mation needed to control the transmission and handling of data between
external media and the program. This section allows COBOL programs to
access records stored in various file organizations.

The file organizations supported by the compiler, and the access methods
available for processing them, are introduced below. Refer to the User's Guide
for a more .complete discussion of these topics.

File Organizations

The compiler supports three file organizations:

• Sequential
• Relative
• Indexed

Sequential files consist of records positioned one after the other in the order in
which they were originally written. Each record (except the last) has another
record following it. The location of a record is fixed in relation to the records
that precede and succeed it. Sequential files can be processed only in a serial
fashion. That is, to access a record in the middle of the file, the program must
access all the records preceding it.

Relative files, restricted to disk storage devices, consist of successively
numbered records. Each record is assigned a number relative to its position in
the file. Thus, the first record in a file occupies the first position and receives a
relative record number of 1, the second record occupies the second position
and receives a relative record number of 2, and so on. An individual record in
a relative file can be accessed directly (by specifying its relative record num
ber) or serially, like sequential files.

Indexed files, like relative files, are restricted to disk storage devices. They
consist of records and a primary key index (and optionally one or more alter
nate key indexes) used to process the records sequentially by key or randomly
by key. A key is a data item in each record of the file.

Access Modes

File organization determines the access modes that can be used to retrieve
and store records in the file. Though file organization is fixed when the file is
created (and cannot be changed later), the access mode is not fixed (except for
sequential files) until a program opens the file. Therefore, different programs
can use different access methods for the same file.

The compiler supports three access modes:

• Sequential
• Random
• Dynamic

3-6 Environment Division

In the sequential access mode, the program accesses records serially. The
first record must be accessed before the second, the second before the third,
and so on.

In the random access mode, the program accesses records individually by a
random record number or a data key.

Dynamic access allows you to choose at will between sequential or random
access.

Table 3-1 lists the allowable combinat ions of file organizations and access
modes.

Table 3-1: Access Modes and File Organizations

Access Mode

File Organization Sl'qul'ntiai Random Dynamic

Sequential Y{'~ No No

Relative Yes Yes Yes

Indexl'd Yes Yes Yes

The User's Guide further discusses the access modes and file organizations.

Environment Division 3-7

FILE-CONTROL

3.2.1 FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and specifies other file
related information.

General Format

FILE-CONTROL. 1file-control-entry l

Format 1 - Sequential Flle-Control-Entry

SELECT [OPTIONAL] file-name

ASSIGN TO literal-l

[• RESERVE integer-l [AREA]]

~REAS

[, ORGANIZATION IS SEQUENTIAL]

[, ACCESS MODE IS SEQUENTIAL]

[, FILE STATUS IS data-name-4] .

Format 2 - Relative Flle-Control-Entry

SELECT file-name

ASSIGN TO literal-l

[; RESERVE ;nteg,,-l

; ORGANIZATION IS

[
AREA]]

AREAS

RELATIVE

[. ACCESS MODE [S {::~~::T}IAL [. RELATIVE KEY IS data-name-l] 1
RELATIVE KEY IS data-name-l

DYNAMIC

[; FILE STATUS IS data-name-4] .

(continued on next page)

3-8 Environment Division

Format 3 - Inde~ed File-Control-Entry

SELECT file-name

ASSIGN TO literal-l

[RESERVE int",,-1 [
AREA]~
AREAS IJ

; ORGANIZATION IS INDEXED

[; ACCESS MODE IS {
SEQUENTIAL}]
RANDOM
DYNAMIC

; RECORD KEY IS data-name-2

FILE-CONTROL
Continued

[; ALTERNATE RECORD KEY IS data-name-3[WITH DUPLICATES]]' ..

L FILE STATUS IS data-name-4] .

Syntax Rules

All Formats

1. Specify the SELECT clause first in the file control entry. Clauses following
the SELECT clause can appear in any order. '

2. You must name each file described in a Data Division file-description
entry once and only once as file-name in the FILE-CONTROL paragraph.
Each file specified in the file control paragraph must have a corresponding
file-description-entry in the Data Division.

3. Literal-l must be an alphanumeric literal.

4. If you do not specify the ACCESS MODE IS clause, the compiler assumes
sequential access as a default.

5. You can qualify data-name-l, data-name-2, data-name-3, and data
name-4.

6. Data-name-4 must -be defined in the Working-Storage Section of the Data
Division as a 2-character alphanumeric data item.

Format 1
7. Specify the OPTIONAL phrase only for input files that need not be pres

ent whenever the object program is executed.

8. If you do not specify the ORGANIZATION IS SEQUENTIAL clause, the
compiler assumes sequential organization as a default.

Environment Division 3-9

FILE-CONTROL
Continued

Format 2
9. Specify the RELATIVE KEY phrase for a file if it will be referenced in a

START statement.

10. Data-name-1 must not be defined in a record-description-entry associated
with file-name.

11. The data item referenced by data-name-1 must be defined as an unsigned
integer.

Format 3
12. The data items referenced by data-name-2 and data-name-3 must each be

defined as alphanumeric data items in a record-description-entry associ
ated with that file-name.

13. Neither data-name-2 nor data-name-3 can describe a variable-sized item.

14. Data-name-3 cannot reference an item whose leftmost character position
corresponds to the leftmost character position of an item referenced by
data-name-2 or by any other data-name-3 associated with this file.

General Rules

All Formats

1. The ASSIGN clause specifies the default file specification of the file refer
enced by file-name. Literal-1 must be a file specification in command
string format. (See Section 4.1.7, VALUE OF ID Clause).

2. The ORGANIZATION clause specifies the logical organization of data in a
file. The file organization is established at the time a file is created. Once
established, the file organization cannot be changed.

3. If you specify the FILE STATUS clause, a value is placed into the
2-character data item (data-name-4) during the execution of a
CLOSE, DELETE, OPEN, READ, REWRITE, START, or WRITE state
ment and before the execution of any applicable USE procedure. This
value indicates the result of any input-output operation.

The leftmost character position of the FILE STATUS data item is known
as Status Key 1. It is set to one of the following values upon completion of
an input-output operation:

o = Successful Completion
1 = At End
2 = Invalid Key
3 = Permanent Error
9 = DEC-Defined

3-10 Environment Division

Status
Key 1

Successful'
Completion

(0)

At
End

(I)

Invalid
Key

(2)

Permanent
Error

(:1)

DEC-
Defined

(9)

FILE-CONTROL
Continued

The rightmost character position is known as Status Key 2. It further
describes the results of the input-output operation. This character will
contain one of the following values:

o No Further Information
1 Sequence Error
2 Duplicate Key
3 No Record Found
4 Boundary Violation
5 Allocation Failure
6 Buffer Failure
7 No File Found
8 Close Error
9 Close Reel Error

Possible combinations of Status Keys 1 and 2 are shown in Table 3-2.
Appendix C contains a complete listing of the File Status Keys and a
description of each.

Table 3-2: Possible Combinations of Status Keys 1 and 2

Status Key 2
CLOSE

No Further Sequence Duplicate 1\0 Record Boundary Allocation Buffer No File CLOSE HEEL
Info. Error Key Found Violation Failure Failure Found Error Error

(0) (1) (2) (3) (4) (5) (6) (7) (H) WI

X X("')

X

X("') X('*) X(") X(")

X XiX)

XC) Xl!!) X(iI!) X X X X X

*
**

Valid for sequentially organized files only.
Valid for indexed and relative files only.

!!
!!!

Valid for indexed files only.
File locked by another process.
Record locked by another process.
No sequential READ previous to a REWRITE or DELETE operation.

Environment Division 3-11

FILE-CONTROL
Continued

Format 1
4. The RESERVE clause specifies the number of input-output areas allo

cated for sequential files. This number equals the value of integer-I,
which cannot be greater than 127. If the RESERVE clause is not specified,
the number of input-output areas is determined by the Record Manage
ment Services (RMS) default.

5. Sequential files are accessed by predecessor/successor record relationships
established by the execution of WRITE statements when the file is created
or extended.

Format 2
6. The RESERVE clause specifies the number of input-output areas allo

cated for relative files. This number equals the value of integer-I, which
cannot be greater than 127. If the RESERVE clause is not specified, the
number of input-output areas is determined by the Record Management
Services (RMS) default.

7. When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. This sequence follows the order
of ascending relative record numbers of existing records in the file.

S. If the access mode is random, the value of the RELATIVE KEY data item
indicates the record to be accessed.

9. When the access mode is dynamic, records in the file can be accessed
sequentially and/or randomly.

10. Relative record numbers uniquely identify all records stored in a relative
file. The relative record number of a given record specifies the logical
ordinal position of the record in the file. The first logical record has a
relative record number of one (1), and subsequent logical records have
relative record numbers of 2, 3, 4,

11. The data item specified by data-name-l is used to communicate a relative
record number between the program and Record Management Services.

Format 3
12 The RESERVE clause specifies the number of input-output areas allo

cated for indexed files. This number equals the value of integer-I, which
must be greater than 1 and not greater than 127. If the RESERVE clause
is omitted, the number of input-output areas is determined by the Record
Management Services (RMS) default.

13. When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. This sequence follows the order
of ascending record key values in a given key of reference.

14. If the access mode is random, the value of the record key data item
specifies the record to be accessed.

3-12 Environment Division

FILE-CONTROL
Continued

15. When the access mode is dynamic, records in the file can be accessed
sequentially and/or randomly.

16. The RECORD KEY clause specifies the prime record key for the file and
provides an access path to records in an indexed file. The values of the
prime record key must be unique among file records.

17.An ALTERNATE RECORD KEY clause specifies an alternate record key
for the file. It provides an alternate access path to records in an indexed
file.

18. Retain the same data descriptions of data-name-2 and data-name-3, and
their same relative locations in a record, as those used when the file was
created. Retain the same alternate key specifications as well.

19. The DUPLICATES phrase specifies that the value of the associated alter
nate record key can be duplicated in any of the file records. If you do not
specify the DUPLICATES phrase, the value of the associated alternate
record key must not be duplicated in any of the records in the file.

Environment Division 3-13

I-O-CONTROL

3.2.2 I-O-CONTROL Paragraph

Function

The I-O-CONTROL paragraph specifies the memory area to be shared by
different files and the location of sequential files on a multiple-file tape.

General Format

I-O-CONTROL.

C SAME [RECORD] AREA FOR file-name-I t, file-name-2l ...] ...
[MULTIPLE FILE TAP~ CONTAINS file-name-3 [POSITION integer-I]

[file-name-4 jpOSITION integer-2]] ...] ...

[. APPLY PRINT-CONTROL ON file-name-5 [,file-name-6] ..]

Syntax Rules

1. You can include more than one SAME clause in a program.

2. A file-name must not appear in more than one SAME AREA clause or in
more than one SAME RECORD AREA clause.

3. If one or more file-names in a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause
must appear in the SAME RECORD AREA clause. However, additional
file-names can also appear in that SAME RECORD AREA clause (even if
they do not appear in the SAME AREA clause).

4. The files referenced in a SAME AREA clause or a SAME RECORD AREA
clause (or both) need not have the same organization or access mode.

General Rules

1. The SAME AREA clause specifies that two or more files are to use the
same memory area during processing. Therefore, it is not valid to have
more than one of the files open at the same time.

2. The SAME RECORD AREA clause specifies that two or more files are to
use the same memory area for processing the current logical record. More
than one (or all) of the files can be open at the same time. A logical record
in the shared area is considered as a logical record (1) of each opened,
output file whose file-name appears in this SAME RECORD AREA
clause, and (2) of the most recently read input file whose file-name appears
in this SAME RECORD AREA clause. This is equivalent to an implicit
redefinition of the area, i.e., records are aligned on the leftmost character
position.

3-14 Environment Division

I-a-CONTROL
Continued

3. The one-fIle-open rule for the SAME AREA clause takes precedence over
the multiple-files-open rule for the SAME RECORD AREA clause.

4. The MULTIPLE FILE clause is for documentation purposes only. It is
used when more than one file shares the same physical reel of tape. Re
gardless of the number of files on a single reel, only those files that are used
in the object program need be specified. If all file-names have been listed
in consecutive order, the POSITION clause need not be given. If any file in
the sequence is not listed, the position relative to the beginning of the tape
must be given. Not more than one file on the same tape reel can be open at
one time.

5. The compiler uses default techniques when the APPLY clause is not pres
ent; hence, the clause is always optional, as the following explanation
makes clear.

If the FD entry does not specify a LINAGE clause, you can specify the
APPLY PRINT-CONTROL clause for a printable file. The APPLY
PRINT-CONTROL clause supplies a default LINAGE clause.

If you specify neither APPLY PRINT-CONTROL nor LINAGE for a
sequential file, a WRITE statement with the ADVANCING option will
include formatting information in the record.

Environment Division 3-15

Chapter 4
Data Division

Function

The Data Division describes the data that the object program receives as
input, manipulates, creates, and produces as output.

General Format

DATA DIVISION.

[FILE SECTION.

[file-description-entry jrecord -description-entrYI ... J ••• J
[WORKING-STORAGE SECTION.

[
77-leVel-deSCriPtiOn-entryJ ...]

[

record-description-entry

LINKAGE SECTION.

[
77-level-description-entry] ...]

record-description-entry

Syntax Rules

1. The Data Division must follow the Environment Division in every COBOL
program.

2. The Data Division must begin with the reserved words Data Division fol
lowed by a period and a space.

4-1

General Rules

File Section

The File Section describes the program's files. It begins with a section header
followed by file-description-entries and record-description-entries.

1. File-Description-Entry

The file-description-entry consists of a level indicator (FD), a file-name,
and a series of independent clauses. These clauses describe the size of
physical and logical records, the presence or absence of label records, and
the names of the data records that are described for the file. The entry
itself is terminated by a period.

2. Record-Description-Entry

A record-description-entry is a set of data-description-entries that describe
the characteristics of a particular record. Each data-description-entry con
sists of a level-number followed, as required, by a data-name and a series
of independent clauses.

A record description has a hierarchical structure; therefore, the clauses
used in an entry can vary considerably, depending upon whether or not the
entry is followed by subordinate entries.

Working-Storage Section

The Working-Storage Section begins with the section header followed by en
tries that describe records and noncontiguous data items. Each Working
Storage Section record name (and each data-name for noncontiguous data
items) must be unique.

1. Noncontiguous Working-Storage

Noncontiguous elementary items are data items in Working-Storage that
bear no hierarchical relationship to one another and are not grouped into
records. Each of these items is defined in a separate data-description
entry.

2. Working-Storage Records

Working-Storage records are data elements and constants in Working
Storage that bear a definite hierarchical relationship to one another
and are grouped into records according to the rules for forming record
descri ptions.

4-2 Data Division

3. Initial Values

Specify the initial value of any item in the Working-Storage Section,
except an index' data item, by using the VALUE clause in the data
description-entry (see Section 4.3.12, VALUE Clause). The initial
value of any index data item is unpredictable.

Linkage Section

The Linkage Section in a program is meaningful only if: (1) the object pro
gram is to function under the control of a CALL statement (see Section 5.11),
and (2) the USING phrase in the Procedure Division header is not empty (see
Section 5.2).

The Linkage Section begins with the section header followed by record
description-entries. These entries describe data available through the calling
program but to be referred to in both the calling and the called program. No
space is allocated in the program for data items defined in the Linkage
Section. Procedure Division references to these data items are resolved at
object time by equating the reference in the called program to the location
used in the calling program. In the case of index-names, no such correspond
ence is established; index-names in the calling and called programs always
refer to separate indexes.

Data items defined in the Linkage Section of the called program can be
referenced in the Procedure Division of that program if and only if they are:

1. Operands of the USING phrase of the Procedure Division header.

2. Subordinate to operands of the USING phrase of the Procedure Division
header.

3. Defined with a REDEFINES or RENAMES clause, the object of which is
an operand of the USING phrase of the Procedure Division header.

4. Items subordinate to any of the items defined in number 3 above.

5. Condition-names and index-names associated with data items that meet
any of the above conditions.

Data Division 4-3

4.1 File Description - Complete Entry Skeleton

Function

The file description gives information about the physical structure, identifica-
tion, and record names of a file. .

General Format

FD file-name

[; BLOCK CONTAINS Unteg,H TO] {
RECORDS }]

integer-2
CHARACTERS

[; RECORD CONTAINS Unteger-3 TQ] integer-4 CHARACTERS]

{
RECORD IS } {STANDARD}

; LABEL
RECORDS ARE OMITTED

[{
data-name-I}]

; VALUE OF ID IS .
hteral-I

; DATA ~ date-name-3 G data-name-~ ... [
RECORD IS)]

'RECORDS ARE'

[
. {data-name-5} [{data-name-6}]

; LINAGE IS . LINES ,WITH FOOTING AT .
Integer-5 Integer-6

[{
data-name-7}] [{data-name-8}]]

, LINES AT TOP . ' LINES AT BOTTOM· .
Integer-7 Integer-8

[; CODE-SET IS alphabet-name]'

Syntax Rules

1. The level indicator FD identifies the beginning of a file description and
must appear before the file-name.

2. Clauses that follow the file-name are frequeI,ltly optional, and their order of
appearance is immaterial.

3. One or more record-description-entries must follow the file-description
entry.

4-4 Data Division

BLOCK CONTAINS

4.1.1 BLOCK CONTAINS Clause

Function

The BLOCK CONTAINS clause specifies the mapping of a logical record into
physical blocks recorded on the storage medium.

General Format

{
RECORDS }

BLOCK CO:\,TAIKS [integer-l TO] integer-2
CHARACTERS

Syntax Rules

The reserved word RECORD does not appear in this clause; therefore, if
integer-2 has the value 1, write the clause as BLOCK CONTAINS 1
RECORDS.

General Rules

1. Integer-I, if present, is ignored.

2. Block size can be stated in terms of RECORDS.

a. For a file of fixed-length records that is assigned to magnetic tape, each
block except the last will contain integer-2 records. Integer-I, if pres
ent, is ignored. (See Section 4.1.6, RECORD CONTAINS Clause.)

b. For a file of variable-length records that is assigned to magnetic tape,
the compiler calculates the buffer size by multiplying the largest record
size, plus four bytes, by the value of integer-2. (See Section 4.1.6,
RECORD CONTAINS Clause.)

c. For a sequential file assigned to a disk device, there are no unused
bytes in any block and the records can span block boundaries.

d. For files with relative or indexed organization assigned to a directory
device, the compiler uses the value of integer-2 to calculate the size of
the block. Because of overhead bytes, this size mayor may not be equal
to the record size times integer-2. (The User's Guide fully describes the
compiler's algorithms for computing block size.)

3. Block size can be stated in terms of CHARACTERS.

a. For files assigned to magnetic tape, the size of the block is the maxi
mum of either:

(1) Integer-2 bytes, or
(2) The size of the largest record'(add four overhead bytes for variable

length records).

Data Division 4-5

BLOCK CONTAINS
Continued

b. For files with sequential organization assigned to a disk device, records
are packed together in each physical block. There are no unused bytes
in any block, and the records can span block boundaries.

c. For files with relative or indexed organization, the block size is inte
ger-2 bytes. Integer-2 must be at least as large as the largest record,
plus any overhead bytes, and should be a multiple of 512 bytes. (The
User's Guide further discusses block size computation.)

4. When you do not specify a BLOCK CONTAINS clause, block size is
calculated as follows:

a. For files assigned to magnetic tape, the block size is the size of the
largest record plus any overhead bytes.

b. For files with sequential organization assigned to a disk device, the
records are packed together in each physical block. There are no unused
bytes in any block, and the records can span block boundaries.

c. For files with relative or indexed organization, the block size is the
smallest number of physical blocks that can contain one record, plus
any overhead bytes.

4-6 Data Division

CODE-SET

4.1.2 CODE·SET Clause

Function

The CODE-SET clause specifies the character code set used to represent data
on an external medium.

General Format

CODE-SET IS alphabet-name

Syntax Rules

1. When you specify the CODE-SET clause for a file, all data in that file
must be described as USAGE IS DISPLAY; any signed numeric data must
be described with the SIGN IS SEPARATE clause.

2. You can specify the CODE-SET clause only for files with sequential
organization.

General Rules

1. Alphabet-name specifies the character code convention used to represent
data on the external medium. It also specifies the algorithm for converting
character codes on the external medium from/to native character codes.
This conversion occurs during the execution of an input or output opera
tion. (See Section 3.1.3, SPECIAL-NAMES Paragraph.)

2. If you do not specify the CODE-SET clause, the compiler assumes the
native character code set as the default.

Data Division 4-7

DATA RECORDS

4.1.3 DATA RECORDS Clause

Function

The DATA RECORDS clause serves only as documentation for the names of a
file's data records.

General Format

{
RECORD IS }

DATA data-name-l [, data-name-2] ...
RECORDS ARE

Syntax Rule

Data-name-1 and data-name-2 are the names of data records associated with
the file.

General Rules

1. This optional clause is for documentation purposes only. The compiler
does not check the names of the records against the names appearing in
the 01 record descriptions that follow the file description.

2. Conceptually, all data records of a file share the same area, even if there
are multiple data record descriptions.

4-8 Data Division

LABEL RECORDS

4.1.4 LABEL RECORDS Clause

Function

The LABEL RECORDS clause specifies the presence or absence of labels.

General Format

{
RECORD IS } {STANDARD}

LABEL
RECORDS ARE OMITTED

Syntax Rule

This clause is required in every file-description-entry.

General Rules

1. STANDARD specifies that labels meeting file system label specifications
exist for the file or for the device to which the file is assigned.

2. OMITTED specifies that no explicit labels exist for the file or for the
device to which the file is assigned.

3. Specify STANDARD for all files assigned to directory devices.

4. Specify OMITTED only for files assigned to non-directory devices.

Data Division 4-9

LINAGE

4.1.5 LINAGE Clause

Function

The LINAGE clause specifies the number of lines on a logical page for sequen
tial output files. It also specifies the size of the top and bottom margins on the
logical page, and the logical line number at which the footing area begins.

General Format

LINAGE IS {~ata-name-l} LINES ~ WITH FOOTING AT {~ata-name-2}1
Integer-l t Integer-2 J

r LINES AT TOP {~ata-name-3}] [LINES AT BOTTOM {~ata-name-4}]
L mteger-3 mteger-4

Syntax Rules

1. Data-name-I, data-name-2, data-name-3, and data-name-4 must refer
ence elementary, unsigned, numeric, integer data items.

2. The value of integer-I must be greater than zero.

3. The value of integer-2 must not be greater than that of integer-I.

4. The value of integer-3 and integer-4 can be zero.

General Rules

1. The LINAGE clause pertains to sequential output files only.

2. The LINAGE clause specifies the number of lines on a logical page. The
logical page size is the sum of the values referenced by each phrase except
the FOOTING phrase. If you do not specify the LINES AT TOP or LINES
AT BOTTOM phrases, the values for these functions ate zero. If you do
not specify the FOOTING phrase, the assumed value equals either
integer-lor the contents of the data item referenced by data-name-I,
whichever is specified.

There is no necessary relationship between the size of a logical page and
the size of a physical page.

3. The value of integer-I, or the data item referenced by data-name-I, speci
fies the number of lines that can be written and/or spaced in the page
body. This value must be greater than zero.

4. The value of integer-3, or the data item referenced by data-name-3, speci
fies the number of lines in the top margin of a logical page. This value can
be zero.

4-10 Data Division

LINAGE
Continued

5. The value of integer-4, or the data item referenced by data-name-4, speci
fies the number of lines in the bottom margin of a logical page. This value
can be zero.

6. The value of integer-2, or the data item referenced by data-name-2, speci
fies the line number in the page body at which the footing area begins.
This value must be greater than zero and less than or equal to the value of
integer-lor the data item referenced by data-name-I.

The footing area is that area of the logical page between the line repre
sented by the value integer-2 (or the data item referenced by data
name-2) and the line represented by the value integer-I (or the data item
referenced by data-name-I), inclusive.

7. During the execution of an OPEN statement with the OUTPUT phrase
specified, the values of integer-I, integer-3, and integer-4 are used to
specify the number of lines in the sections of a logical page. The value of
integer-2 is used at that time to define the footing area. These values are
used for all logical pages written during a given execution of the program .

. 8. The values of the data items referenced by data-name-I, data-name-3,
and data-name-4 are used as follows:

a. When an OPEN statement with the OUTPUT phrase is executed for
the file, the data item values are used to specify the number of lines to
be in each indicated section of the first logical page.

b. When a WRITE statement with the ADVANCING PAGE phrase is
executed or page overflow condition occurs, the data item values are
used to specify the number of lines to be in each indicated section of the
next logical page. (See Section 5.42, WRITE Statement.)

9. When an OPEN statement with the OUTPUT phrase is executed for the
file, the data item value referenced by data-name-2 is used to define the
footing area for the first logical page. When a WRITE statement with the
ADVANCING PAGE phrase is executed or a page overflow condition
occurs, the value will be used to define the footing area for the next logical
page.

10. The presence of a LINAGE clause generates a LINAGE-COUNTER. At
any given time, the LINAGE-COUNTER value represents the current line
position in the page body. The rules governing the LINAGE-COUNTER
are as follows:

a. The compiler supplies a separate LINAGE-COUNTER for each file
whose file-description-entry contains a LINAGE clause.

Data Division 4-11

LINAGE
Continued

b. Procedure Division statements can reference (but not modify)
LINAGE-COUNTER. Because more than one LINAGE-COUNTER
can exist in a program, you must qualify LINAGE-COUNTER by file
name when necessary. LINAGE-COUNTER is implicitly defined as a
one-word COMPUTATIONAL item.

c. During the execution of a WRITE statement to a file, LINAGE
COUNTER is automat ically modified according to the following
rules:

(1) When you specify the ADVANCING PAGE phrase of the WRITE
statement. the LINAGE-COUNTER is automatically reset to one.

(2) When you specify the ADVANCING identifier-2 or integer phrase
of the WRITE statement. the LINAGE-COUNTER is incremented
by the integer or by t he value of the data item referenced by
identifier-2.

t;n When you do not specify the ADVANCING phrase of the WRITE
statement. the LINAGE-COUNTER is incremented by the value
one. (See Section 5.42. WRITE Statement.)

(4) The value of LINAGE-COUNTER is automatically reset to one
when each successive logical page begins. (See Section 5.42,
WRITE Statement.)

d. The value of LINAGE-COUNTER is automatically set to one when an
OPEN statement is executed for the associated file.

11. Each logical page immediately follows the one before with no additional
spacing.

4-12 Data Division

RECORD CONTAINS

4.1.6 RECORD CONTAINS Clause

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS

General Rules

1. The record-description-entry completely defines the size of each data
record; therefore, the RECORD CONTAINS clause cannot change the
memory storage allocated to the records.

2. For a relative file, record size on the storage medium is fixed and equal to a
value that is large enough to hold the largest record described in the file.
This rule is not affected by the RECORD CONTAINS clause.

3. For a sequential or indexed file, record size on the storage medium can be
fixed or variable. If the record descriptions for a file yield variable record
sizes, the record storage areas allocated on the storage medium will vary in
size and will be preceded by a byte count word supplied automatically by
Record Management Services.

4. If the record descriptions for a file all yield record sizes that are the same
size, the record storage areas allocated on the storage medium will be fixed
in size and will not be preceded by a byte count word. However, you can
force a variable size record format, with a byte count word prefix on each
record, by using a RECORD CONTAINS clause with the "integer-l TO"
phrase.

5. Do not use integer-2 by itself unless all data records in the file have the
same size; in this case, integer-2 represents the exact number of characters
in the data record. If integer-l and integer-2 both appear, they refer to the
number of characters in the smallest size data record and the number in
the largest size data record, respectively.

6. Record size is specified in terms of the number of character positions
needed to store the logical record, regardless of the character types used to
represent the items in the logical record. It is determined by summing the
number of characters in all elementary items, plus any characters required
by implicit or explicit synchronization.

7. Except for forcing a variable record storage size on the medium, the
RECORD CONTAINS clause is for documentation only.

Data Division 4-13

VALUE OF 10

4.1.7 VALUE OF 10 Clause

Function

The VALUE OF ID clause particularizes the description of an item in the
label records associated with a file.

General Format

VALUE OF ID IS {data-name}

literal

Syntax Rules

1. Do not use the VALUE OF ID clause when you specify LABEL RECORDS
ARE OMITTED.

2. Data-name cannot be subscripted or indexed, nor can it be described with
the USAGE IS INDEX clause.

3. Data-name must be in the Working-Storage Section.

4. Data-name must be an alphanumeric elementary item.

5. Literal must be a alphanumeric literal.

General Rules

1. For an existing file, the VALUE OF ID literal or data-name supplies infor
mation that enables Record Management Services to locate and identify
the desired file.

2. For an output file, the VALUE OF ID literal or data-name supplies infor
mation that enables Record Management Services to create the desired
file.

3. The VALUE OF ID literal or data-name is interpreted as a file specifica
tion in command string format. File specifications are discussed in the
User's Guide.

4-14 Data Division

4.2 Data Description Concepts

This section presents basic data description concepts. Actual COBOL clauses
used to describe data appear in Section 4.3.

COBOL makes data as computer-independent as possible. Therefore,
data used in COBOL programs is described using a standard rather than
equipment-oriented format. This standard data format uses the decimal sys
tem to represent numbers and characters from the computer character set to
describe alphanumeric data items.

4.2.1 Physical Aspects of a File

The physical aspects of a file describe data as it appears on the input or
output medium. Physical aspects include such features as:

1. The mapping of logical records into the physical structure of the file
medium, and

2. The ways of identifying a file.

4.2.2 Record Concepts
It is important to distinguish between a logical record and a physical record. A
COBOL logical record is a uniquely identifiable group of related information
that is treated as a unit. A physical record is a physical unit of information; its
size and recording mode are hardware dependent and bear no direct relation
ship to the size of the file contained on a device.

One or more logical records can be contained in a single physical unit; or, in
the case of formatted storage media, a logical record can require more than
one physical unit to contain it. Source language methods describe the rela
tionships of logical records to physical units. Using these predefined relation
ships, COBOL input-output statements then allow access to logical records
through the facilities of the hardware-software system.

NOTE:

In this manual, the term "record" refers to a logical record,
unless the term "physical record" is specifically used.

The concept of a logical record is not restricted to file data, but is carried over
into the definition of Working Storage. Thus, Working Storage can be grouped
into logical records and defined by a series of record-description-entries.

4.2.3 Record Description

A record description consists of a set of data-description-entries that describe
the characteristics of a record. Each entry consists of a level-number followed
by a data-name, if required, and a series of independent clauses, as required.

Data Division 4-15

Levels

Logical records are described as hierarchical structures. The level concept
arises from the need to specify subdivisions of a record, and to even further
subdivide records to permit progressively more detailed data definition.

The basic and indivisible subdivision of a record is the elementary item.
A record either consists of a sequence of elementary items or is itself an
elementary item.

A group item is a set of elementary items. Each group item consists of a
named sequence of one or more elementary items. Group items, in turn, can
combine to form group items containing one or more group items, etc. Thus,
an elementary item can belong to more than one group item.

Level-Numbers

A system of level-numbers shows the hierarchical organization of elementary
items and group items. Since records are the most inclusive data items, level
numbers for records start at 01. Less inclusive data items are assigned higher
(though not necessarily successive) level-numbers not greater in value than
49; special level-numbers -- 66, 77, and 88 -- are exceptions to this rule.
Separate entries are written in the source program for each level-number
used.

A group includes all group and elementary items following it until a level
number less than or equal to the level-number of that group is encountered.
All items that are immediately subordinate to a given group item must be
described using identical level-numbers; these level-numbers must be greater
than the level-number used to describe that group item.

Three types of entries exist for which there is no true concept of level. These
are:

1. Entries that identify RENAMES items,

2. Entries that specify noncontiguous Working Storage data items, and

3. Entries that specify condition-names.

Entries that specify RENAMES items have been assigned the special level
number 66. They can be used only as described in Format 2 of the Data
Description Entry Skeleton. (See Section 4.3.)

Entries that specify noncontiguous data items have been assigned the special
level-number 77. They are not subdivisions of other items and cannot them
selves be subdivided.

Entries that specify condition-names to be associated with particular values
of a conditional variable have been assigned the special level-number 88.

4-16 Data Division

4.2.4 Classes of Data

The five categories of data items (alphabetic, numeric; alphanumeric, al
phanumeric edited, and numeric edited) are grouped into three classes:
alphabetic, numeric, and alphanumeric. For alphabetic and numeric, the
classes and categories are synonymous. The alphanumeric class includes the
categories of alphanumeric edited, numeric edited and alphanumeric.

Every elementary item except an index data item belongs to one of the classes
and, further, to one of the categories. The class of a group item is treated as
alphanumeric regardless of the class of elementary items subordinate to it.
Table 4-1 shows the relationship of the classes and categories of data items.

Table 4-1: Classes and Categories of Elementary and Group Data Items

Level of Item Class Category

Alphabetic Alphabetic

Numeric Numeric

Elementary Numeric Edited

Alphanumeric Alphanumeric Edited

Alphanumeric

Alphabetic

Numeric

Non-Elementary Alphanumeric Numeric Edited

(Group) Alphanumeric Edited

Alphanumeric

4.2.5 Selection of Numeric Character Representation

The value of a numeric item can be represented in binary, decimal, or packed
decimal form. The form can be selected by using the USAGE clause of the
data-description-entry .

4.2.6 Algebraic Signs

Algebraic signs fall into two categories: operational signs and editing signs.
The former are associated with signed numeric data items to indicate their
algebraic properties; the latter appear in edited items to identify their sign.

The SIGN clause permits you to explicitly state the location of the operational
sign. The clause is optional; if it is not used, operational signs are represented
by a default.

Editing signs are inserted into a data item by using the sign control symbols of
the PICTURE clause.

Data Division 4-17

4.2.7 Standard Alignment Rules

The standard rules for positioning data within an elementary item when mov
ing data depend on the category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving
character positions with zero fill or truncation on either end, as
required.

b. When an assumed decimal point is not explicitly specified, the data
item is treated as if it had an assumed decimal point immediately
following its rightmost character and is aligned as in paragraph 1.a
above.

2. If the receiving data item is a numeric edited data item, the data moved to
the edited data item is aligned by decimal point with zero fill or truncation
at either end, as required, within the receiving character positions of the
data item, except where editing requirements cause replacement of the
leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited
data item), alphanumeric edited or alphabetic, the sending data is moved
to the receiving character positions and aligned at the leftmost character
position in the data item with space fill or truncation to the right, as
required.

If the JUSTIFIED clause is specified for the receiving item, these standard
rules are modified as described in the JUSTIFIED Clause. (See Section 4.3.3,
JUSTIFIED Clause.)

4.2.8 Item Alignment for Increased Object-Code Efficiency

All binary items are automatically aligned and SYNCHRONIZED RIGHT.
(See Section 4.3.11, USAGE Clause.) The SYNCHRONIZED clause can be
used to control word alignment of DISPLAY or packed-decimal data.

All index data items are automatically SYNCHRONIZED RIGHT and
occu py two bytes.

4-18 Data Division

4.3 Data Description - Complete Entry Skeleton

Function

A data-description-entry specifies the characteristics of a particular item of
data.

General Format

Format 1

level-number ,data-name~ll
lFILLER f

L REDEFINES data-name-2]

[USAGE IS]

COMPUTATIONAL
COMP
COMPUTATIONAL-3
COMP-3
DISPLAY
DISPLAY-6
DISPLAY-7

INDEX

t [SIGN IS[{
LEADING}]

[SEPARATE CHARACTER]
TRAILING

~
, SYNCHRONIZEDl [LEFT]]

l SYNC f RIGHT

~ {JUSTIFIED}

l JUST
RIGHT]

[; BLANK WHEN ZERO]

[; VALUE IS literal]

(continued on next page)

Data Division 4-19

~ {
integer-l TO integer-2 TIMES DEPENDING ON data-name-:3}

OCCURS
integer-2 TIMES

[{::::::~~G}KEY IS d",-nom,-4 ~'t'_nam~'_5]] ---
[INDEXED BY index-name-l [index-name-2l ...] .

Format 2

66 data-name-l; RENAMES data-name-2

Format 3

88 condition-name;

[. li",,1-3

Syntax Rules

r,THROUGH} .1 II THRU data-name-3J

{
VALUE IS }

VALUES ARE

[{
THROUGHl

THRU f

[{
THROUGH}

literal-l

THRU

1i",,1-4]}_

lit'''I-~

1. The level-number in Format 1 can be any number from 01-49 or 77.

2. You can write the clauses in any order, with two exceptions: the data
name-lor FILLER clause fIlust immediately follow the level-number; the
REDEFINES clause, when used, must immediately follow the data
name-1 clause.

3. The PICTURE clause must be specified for all elementary items except
index data items; for these items, the PICTURE clause is not permitted.

4. The words THRU and THROUGH are equivalent.

4-20 Data Division

General Rules

1. A data-name is a user-defined word that names a data item. When used in
the general formats, data-name represents a word that can neither be
subscripted nor indexed unless specifically permitted by the rules of that
format. A data-name must contain at least one alphabetic character; how
ever, it need not begin with an alphabetic character; the alphabetic char
acters can be positioned anywhere in the data-name. Qualification is
sometimes permitted; therefore, data-names need not always be unique.

2. The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO clauses can be specified only for an elementary data item.

3. Format 3 is used for each condition-name. Each condition-name requires a
separate entry with level-number 88. The entry contains the name of the
condition and the value(s) or range of values associated with the condition
name. Condition-name entries for a conditional variable must follow the
defining entry for the associated item. A condition-name can be associated
with any data-description-entry containing a level-number, except the
following:

a. Another condition-name,

b. A group containing items with descriptions, including JUSTIFIED,
SYNCHRONIZED or USAGE (other than USAGE IS DISPLAY),

c. An index data item, and

d. A level 66 item.

Data Division 4-21

BLANK WHEN ZERO

4.3.1 BLANK WHEN ZERO Clause

Function

The BLANK WHEN ZERO clause causes an item to be filled entirely with
spaces when its value is zero.

General Format

BLANK WHEN ZERO

Syntax Rule

The BLANK WHEN ZERO clause can be used only for an elementary item
whose PICTURE is specified as numeric edited or numeric. (See Section 4.3.6,
PICTURE Clause.)

General Rules

1. When the BLANK WHEN ZERO clause applies to an item that is used as
a receiving field for a numeric value, the item will contain nothing but
spaces if the value being stored is O.

2. When the BLANK WHEN ZERO clause is used for an item whose
PICTURE is numeric, the category of the item is considered to be
numeric edited.

4-22 Data Division

Data-Name or FILLER

4.3.2 Data-Name or FILLER Clause

Function

A data-name specifies the name of the data being described. The word
FILLER specifies an elementary item of the logical record that is not to be
referenced explicitly.

General Format

{ data-name}
FILLER

Syntax Rule

In the File, Working-Storage and Linkage Sections, a data-name or the key
word FILLER must be the first word following the level-number in each data
description-entry.

General Rule

The key word FILLER can be used to name an elementary item in a record.
Under no circumstances can you refer explicitly to a FILLER item. However,
you can use the key word FILLER as a conditional variable; such use does not
require explicit reference to the FILLER item.

Data Division 4-23

JUSTIFIED

4.3.3 JUSTIFIED Clause

Function

The JUSTIFIED clause specifies non-standard positioning of data within a
receiving data item.

General Format

{
JUSTIFIED}

RIGHT
JUST

Syntax Rules

1. The JUSTIFIED clause can be specified only at the elementary item level.

2. JUST is an abbreviation for JUSTIFIED.

3. The JUSTIFIED clause cannot be specified for any data item described as
numeric or for which editing is specified.

General Rules

1. The leftmost characters of a receiving item are truncated when: (a) the
receiving data item is described with the JUSTIFIED clause, and (b) the
sending data item is larger than the receiving item. Data is aligned at the
rightmost character position in the item with space fill for the leftmost
character positions when: (a) the receiving data item is described with the
JUSTIFIED clause, and (b) the receiving item is larger than the sending
data item.

2. When the JUSTIFIED clause is omitted, the standard rules for aligning
data within an elementary item apply. (See Section 4.2.7, Standard Align
ment Rules.)

4-24 Data Division

Level-Number

4.3.4 Level-Number

Function

The level-number defines the hierarchy of data within a logical record. It also
identifies entries for non-contiguous working storage items, condition-names,
and the RENAMES clause.

General Format

level-number

Syntax Rules

1. A level-number must be the first element in each data-description-entry.

2. Data-description-entries subordinate to an FD entry must have level
numbers with the values 01-49, 66, or 88.

3. Data-description-entries in the Working-Storage Section and Linkage Sec
tion must have level-numbers with the values 01-49, 66, 77, or 88.

General Rules

1. The level-number 01 identifies the first entry in each record description.

2. Special level-numbers have been assigned to certain entries where no real
concept of level applies:

a. Level-number 77 identifies noncontiguous working storage data items.
It can be used only as described by Format 1 of the data description
skeleton. (See Section 4.3.)

b. Level-number 66 applies to entries that define RENAMES items. It
can be used only as described in Format 2 of the data description
skeleton. (See Section 4.3.)

c. Level-number 88 applies to entries that define condition-names associ
ated with a conditional variable. It can be used only as described in
Format 3 of the data description skeleton. (See Section 4.3.)

3. Multiple level 01 entries subordinate to an FD level indicator are implicit
redefinitions of the same area.

Data Division 4-25

OCCURS

4.3.5 OCCURS Clause

Function

The OCCURS clause eliminates the need for separate entries for repeated
data items and supplies information required for the application of subscripts
or indexes.

General Format

Fo'rmat 1

OCCURS integer-2 TIMES

[{
ASCENDING }]

KEY IS data-name-2 [,data-name-31
DESCENDING

[INDEXED BY index-name-l [, index-name-21 ... 1

Format 2

OCCURS integer-l TO integer-2 TIMES DEPENDING ON data-name-l

[{
ASCENDING }]

KEY IS data-name-2 [,data-name-31
DESCENDING

[INDEXED BY index-name-l [,index-name-21 ... 1

Syntax Rules

1. Where both integer-1 and integer-2 are used, the value of integer-1 must
be less than the value of integer-2. Integer-1 must be greater than or equal
to 1.

2. The data description of data-name-1 must describe a positive integer.

3. Data~name~ 1, data-name-2, data-name-3, ... can be qualified.

4. Data-name-2 must be either the name of the entry containing the
OCCURS clause or the name of an entry subordinate to the entry contain
ing the OCCURS clause.

5. Data-name-3, etc., must be the name of an entry subordinate to the group
item that is the subject of this entry.

6. An INDEXED BY phrase is required if the subject of this entry (or an
entry subordinate to this entry) is to be referred to by indexing. The index
name identified by this clause cannot be defined elsewhere, because its
storage allocation and format are hardware-dependent and are not associ
ated with any data hierarchy.

4-26 Data Division

OCCURS
Continued

7. A data-description-entry that contains Format 2 of the OCCURS clause
can be followed in its record description only by subordinate data-descrip
tion-entries.

8. The OCCURS clause cannot be specified in a data-description-entry that:

a. Has a 01, 77, or an 88 level-number, or

b. Describes an item whose size is variable. The size of an item is variable
if the data description of any subordinate item contains Format 2 of
the OCCURS clause.

9. In Format 2, the data item defined by data-name-1 must not occupy a
character position with in the range of: (a) the first character position
defined by the data-description-entry containing the OCCURS clause, and
(b) the last character position defined by the record-description-entry
containing that OCCURS clause.

10. If data-name-2 is not the subject of this entry, then:

a. All the items identified by the data-names in the KEY IS phrase must
be in the group item that is the subject of this entry.

b. Items identified by the data-name in the KEY IS phrase must not
contain an OCCURS clause.

c. No entry containing an OCCURS clause can appear between the items
identified by the data-names in the KEY IS phrase and the subject of
this entry.

11. Index-name-1, index-name-2, ... must be unique words in the program.

General Rules

1. The OCCURS clause is used to define tables and other homogeneous sets
of repeated data items. Whenever the OCCURS clause is used, the data
name that is the subject of this entry must either be subscripted or indexed
whenever it appears in a Procedure Division statement other than
SEARCH. Further, if the subject of this entry is the name of a group item,
then all data-names subordinate to the group entry must be subscripted or
indexed whenever they are used as operands, except as the object of a
REDEFINES clause.

2. Except for the OCCURS clause itself, all data description clauses associ
ated with an item whose description includes an OCCURS clause apply to
each occurrence of the item described.

Data Division 4-27

OCCURS
Continued

3. The number of occurrences of the subject entry is defined as follows:

a. In Format 1, the value of integer-2 specifies the number of occurrences.

b. In Format 2, the current value of the data item referenced by
data-name-1 represents the number of occurrences.

Format 2 specifies that the subject of this entry has a variable number
of occurrences. The value of integer-2 represents the maximum num
ber of occurrences, while the value of integer-1 represents the mini
mum. This does not imply that the length of the subject of the entry is
variable, but that the number of occurrences is variable.

The value of the data item referenced by data-name-1 must fall within
the range integer-1 through integer-2. Reducing the value of the data
item referenced by data-name-1 means that the contents of data items
whose occurrence numbers now exceed the value of the data item refer
enced by data-name-1 cannot be referenced.

4. When you reference a group item having subordinate to it an entry specify
ing Format 2 of the OCCURS clause, only that part of the table area
specified by the value of data-name-1 is used in the operation.

5. The KEY IS phrase indicates that repeated data is arranged in ascending
or descending order according to the values contained in data-name-2,
data-name-3, etc. The specific order is determined according to the rules
for comparison of operands. (See Section 5.6.3, Comparison of Numeric
Operands, and Section 5.6.4, Comparison of Alphanumeric Operands.)
The data-names are listed in their descending order of significance.

4-28 Data Division

PICTURE

4.3.6 PICTURE Clause

Function

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

General Format

{
PICTURE}

IS character-string

PIC

Syntax. Rules

1. A PICTURE clause can be specified only at the elementary item level.

2. The PICTURE clause must be specified for all elementary items except
index data items; for these items, the clause is not allowed.

3. A character-string consists of symbols that are allowable combinations of
characters in the COBOL character set. The allowable combinations deter
mine the category of the elementary item.

4. The maximum number of characters allowed in the character-string is :30.

5. PIC is an abbreviation for PICTURE.

6. When the asterisk is used as the zero suppression symbol, it cannot appear
in the same entry as the BLANK WHEN ZERO clause.

General Rules

1. Five categories of data can be described with a PICTURE clause: alpha
betic, numeric, alphanumeric, alphanumeric edited, and numeric edited.

2. To define an item as alphabetic:

a. Its PICTURE character-string can contain only the symbols A and B,
and

b. Its contents, when represented in standard data format, can be any
combination of the 26 letters of the alphabet (A-Z) and the space.

3. To define an item as numeric:

a. Its PICTURE character-string can contain only the symbols 9, P, S,
and V. The number of digit positions that can be described by the
PICTURE character-string must range from 1 to 18 inclusive, regard
less of sign.

Data Division 4-29

PICTURE
Continued

b. If unsigned, its contents, when represented in standard data format,
must be a combination of the numerals ° through 9; if signed, the item
can also contain a +, -, or other representation of an operational sign.
(See Section 4.3.9, SIGN Clause.)

4. To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain combinations of
the symbols A, X, 9, and the item is treated as if the character-string
contained all Xs. A PICTURE character-string that contains all As or
all 9s does not define an alphanumeric item.

b. Its contents, when represented in standard data format, are allowable
characters in the computer character set.

5. To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain combinations of
the following symbols: A, X, 9, B, 0, and /. The character-string must
contain at least one of the following combinations:

1. B and X
2. ° and X
3. / and X
4. ° and A
5. / and A

b. When represented in standard data format, the contents are allowable
characters in the computer character set.

6. To define an item as numeric edited:

a. Its PICTURE character-string is restricted to certain combinations of
the following symbols: B, /, P, V, Z, 0, 9, ,(comma), .(period), *, +, -,

CR, DB, and the currency symbol. The allowable combinations are
determined from the order of precedence of symbols and from the
editing rules.

1. The number of digit positions that can be represented in the
PICTURE character-string must range from 1 to 18, inclusive.

2. The character-string must. contain at least one 0, B, /, Z, *, +,

,(comma), .(period), -, CR, DB, or currency symbol.

b. The contents of the character positions of those symbols that are al
lowed to represent a digit in standard data format must be numerals
(0-9).

4-30 Data Division

PICTURE
Continued

7. The number of character positions occupied by an elementary item in
standard data format (its size) is determined by the number of allowable
symbols that represent character positions. An integer enclosed in
parentheses following the symbols A, ,(comma), X, 9, P, Z, *, B, /, 0, +, -,
or the currency symbol indicates the number of consecutive occurrences of
the symbol. Note that the following symbols can appear only once in a
given PICTURE: S, V, .(period), CR, and DB.

8. The functions of the symbols used to describe an elementary item are as
follows:

A Each A in the character-string represents a character position that
can contain only a letter of the alphabet or a space.

B Each B represents a character position into which a space charac
ter will be inserted.

, PEach P indicates an assumed decimal scaling position. It specifies
the location of an assumed decimal point when the point is not in
the number that appears in the data item.

The scaling position character P is not counted in determining the
size of the data item. Scaling position characters are counted,
however, in determining the maximum number of digit positions
(18) in numeric edited items or numeric items.

P can appear only as the leftmost or rightmost part of a PICTURE
description as a continuous string of Ps; because P implies an
assumed decimal point (to the left of Ps if Ps are leftmost
PICTURE characters and to the right if Ps are rightmost
PICTURE characters), the assumed decimal point symbol V is
redundant as either the l~ftmost or rightmost character within
such a PICTURE description. Furthermore, the character P and
the insertion character. (decimal point) cannot both occur in the
same PICTURE character-string.

In any operation involving conversion of data from one form of
internal representation to another, if the data item being converted
is described with the PICTURE character P, each digit position
described by a P is considered to contain the value 0, and the size
of the data item is considered to include the digit positions so
described.

S The S indicates the presence, but neither the representation nor,
necessarily, the position of an operational sign; it must be written
as the leftmost character in the PICTURE. The S is riot counted in
determining the size of the elementary item unless the entry is
subject to a SIGN clause that specifies the optional SEPARATE
CHARACTER phrase. (See Section 4.3.9, SIGN Clause.)

Data Division 4-31

PICTURE
Continued

V The V indicates the location of an assumed decimal point. It can
appear only once in a character-string. The V does not represent a
character position and, therefore, is not counted in determining the
size of the elementary item. When the assumed decimal point is to
the right of the rightmost symbol in the string, the V is redundant.

X Each X in the character-string represents a character position that
contains any allowable character from the computer character set.

Z Each Z can be used only to represent the leftmost leading numeric
character positions that will be replaced by a space character when
the content of that character position is O. Each Z is counted in
determining the size of the item.

9 Each 9 represents a character position that contains a numeral; it
is counted in determining the size of the item.

o Each 0 (zero) represents a character position into which the num
eral 0 will be inserted. The 0 is counted in determining the size of
the item.

/ Each / (stroke) represents a character position into which the
stroke character will be inserted. The / is counted in determining
the size of the item.

Each , (comma) represents a character position into which the
comma character will be inserted. This character position is
counted in determining the size of the item. The insertion charac
ter , (comma) must not be the last character in the PICTURE
character-string.

For a given program, the functions of the period and comma are
exchanged if the DECIMAL-POINT IS COMMA clause appears in
the SPECIAL-NAMES paragraph: the rules for the period will
apply to the comma (and vice versa) whenever these symbols ap
pear in a PICTURE clause.

The . (period) is an editing symbol that represents the decimal
point for alignment purposes. It also represents a character position
into which the character .(period) will be inserted. The insertion
character .(period) must not be the last character in the PICTURE
character-string. It is counted in determining the size of the item.

+, These editing sign-control symbols represent the character position
into which these symbols will be placed. The symbols are mutually

CR, exclusive in anyone character-string, and each character used in
DB the symbol is counted in determining the size of the data item.

4-32 Data Division

*

cs

PICTURE
Continued

Each * (asterisk) represents a leading numeric character position
into which an * will be placed when the content of that position is
o. Each * is counted in determining the size of the item.

The currency symbol represents a character position into which a
currency symbol is to be placed. It is represented either by the
default currency sign ($) or by the single character specified in the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph.
The currency symbol is counted in determining the size of the item.

Editing Rules

1. Editing in the PICTURE clause can be performed either by insertion or by
suppression and replacement. There are four types of insertion editing
available. They are:

a. Simple insertion
b. Special insertion
c. Fixed insertion
d. Floating insertion

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks

2. The type of editing that can be performed depends on the data-item
category. The following table specifies the allowable types of editing by'
category:

Table 4-2: Types of Editing by Data Category

Category Type of Editing

Alphabetic Simple insertion B only

:"Jumeric None

Alphanumeric None

Alphanumeric Edited Simple insertion 0, B and I

:"Jumeric Edited All, subject to Editing Rule 3

3. Floating insertion editing and editing by zero suppression and replacement
are mutually exclusive in a PICTURE clause. Only one type of replace
ment can be used with zero suppression.

Data Division 4-33

PICTURE
Continued

4. Simple Insertion Editing. The , (comma), B (space), 0 (zero), and
/ (stroke) are used as the insertion characters. They are counted in deter
mining the size of the item and represent the position in the item into
which the character will be inserted.

5. Special Insertion Editing. The. (period) is used as the insertion character.
In addition, it also represents the decimal point for alignment purposes.
The insertion character (used for the actual decimal point) is counted in
determining the size of the item. The use of the assumed decimal point,
('V') and the actual decimal point (represented by the insertion charac
ter) in the same PICTURE character-string is not allowed. The result of
special insertion editing is the appearance of the insertion character in the
item in the same position as shown in the character-string.

6. Fixed Insertion Editing. The currency symbol and the editing sign control
symbols +, -, CR, and DB are the insertion characters. Only one currency
symbol and one of the editing sign-control symbols can be used in a given
PICTURE character-string.

When the symbols CR or DB are used, they represent two character posi
tions in determining the size of the item; they must represent the right
most character positions that are counted in determining the size of the
item. The symbols + or - must be either the leftmost or rightmost charac
ter position to be counted in determining the size of the item. The currency
symbol must be the leftmost character position to be counted in the size of
the item except that it can be preceded by either a + or a - symbol. Fixed
insertion editing results in the insertion character occupying the same
character position in the edited item as it did in the PICTURE character
string.

Editing sign-control symbols produce the following results, depending
upon the value of the data item:

Table 4-3: Editing with Sign-Control Symbols

Result

Editing Symbol In Data Item Data Item
Picture Character-String Positive or Zero Negative

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

4-34 Data Division

PICTURE
Continued

7. Floating Insertion Editing. The currency symbol and editing sign-control
symbols + or - are the floating insertion characters. They are mutually
exclusive in a given PICTURE character-string.

Floating insertion editing is indicated by using a string of at least two of
the floating insertion characters. This string can contain any of the fixed
insertion symbols or have fixed insertion characters immediately to its
right. The simple insertion characters are part of the floating string.

The leftmost (rightmost) character of the floating insertion string repre
sents the leftmost (rightmost) limit of the floating symbol in the data item.

The second floating character from the left represents the leftmost limit of
the numeric data that can be stored in the data item. Non-zero, numeric
data can replace all characters at or to the right of this limit.

There are only two ways of representing floating insertion editing: (1) the
insertion character can represent any or all of the leading numeric charac
ter positions on the left of the decimal point, or (2) the insertion character
can represent all of the numeric character positions in the PICTURE
character-string.

a. If the insertion characters are only to the left of the decimal point, a
single floating insertion character will be placed into the character
position immediately preceding either the decimal point or the first
non-zero digit in the data represented by the insertion symbol string,
whichever is farther to the left in the PICTURE character-string. The
character positions to the left of the insertion character are replaced
with spaces.

b. If the insertion character represents all of the numeric character posi
tions, the result depends upon the value of the data. If the value is 0,
the entire data item will contain spaces. If the value is not 0, the result
is the same as in (a).

To avoid truncation, the minimum size of the PICTURE character-string
for the receiving data item must be the number of characters in the send
ing data item, plus the number of non-floating insertion characters being
edited into the receiving data item, plus one for the floating insertion
character.

8. Zero Suppression Editing. The suppression of leading Os in numeric char
acter positions is indicated by the use of the Z or the * (asterisk) as
suppression symbols. These symbols are mutually exclusive in a given
PICTURE character-string. Each suppression symbol is counted in deter
mining the size of the item. If Z is used, the replacement character will be
the space, and if the asterisk is used, the replacement character will be *.

Data Division 4-35

PICTURE
Continued

Zero suppression and replacement is indicated in a PICTURE character
string by using a string of one or more of the allowable symbols to represent
leading numeric character positions that are to be replaced when the asso
ciated character position in the data contains a zero. Any of the simple
insertion characters embedded in the string of symbols or to the immediate
right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing
zero suppression: (1) suppression symbols can represent any or all of the
leading numeric character positions to the left of the decimal point, or (2)
suppression symbols can represent all of the numeric character positions in
the PICTURE character-string.

a. If the suppression symbols appear only to the left of the decimal point,
any leading ° in the data that corresponds to a symbol in the string is
replaced by the replacement character. Suppression terminates at the
first non-zero digit in the data represented by the suppression symbol
string or at the decimal point, whichever is encountered first.

b. If the suppression symbols represent all numeric character positions
and the value of the data is not 0, the result is the same as if the
suppression characters were not specified. If the value is 0, the entire
data item will be spaces if the suppression symbol is Z or all asterisks
(except for the actual decimal point) if the suppression symbol is *.

9. The symbols +, -, *, Z, and the currency symbol, when used as floating
replacement characters, are 'mutually exclusive within a given character
string.

Precedence Rules

The following table shows the order of precedence when using characters as
symbols in a character-string. An X at an intersection indicates that the
symbol(s) at the top of the column can precede the symbol(s) at the left of the
row. Arguments appearing in braces indicate that the symbols are mutually
exclusive. The currency symbol is indicated by the symbol "cs".

At least one of the symbols A, X, Z, 9 or *, or at least two of the symbols +,-,
or cs, must be present in a PICTURE string.

The non-floating insertion symbols + and -, the floating insertion symbols Z,
*, +, -, and cs, and other symbol P appear twice in the following table. The
leftmost column and uppermost row for each symbol represent its use to the
left of the decimal point position. The second appearance of the symbol repre
sents its use to the right of the decimal point position.

4-36 Data Division

First
Symbol

Second
Symbol

B

0

!II I .-I

0- 0

.~ t ,
"li: Ul
o s::
.-I 0 . r..
1.j.J
s:: ~

(~) o Q)
Z !II

s::
H (~)

(CR
DB.!

cs

(:)
!II

(:) ...-t
0

o-t (!:) .~ Ul
.j.J s::
lIS 0

(!) 0
...-t.j.J
r.. ~

Q)
!II cs
s::
H

cs

9

!II (~) ...-t
0

t S
Ul

~ V
Q)

..c::
.j.J p 0

p

Table 4-4: PICTURE Character Precedence Table

Non-Floating Floating
Insertion Symbols Insertion Symbols

0 I e'l (:) IrCR-
B , . -.! II..DB-

cs (Z'l
*-'

(;) (+\
j C) cs cs

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

X X X x X X X x x

X X X X X X ·x x x X

x x X x x x x x x x

x

x x x x x x x

x x x x x x x x x

x x x x x x

x x x x x x x x

X X X X X X

X X X X X X X X

x x x x x x x x x x

X X X

x x x x x x x x x

x x x x x x x x x

x x

9

x

x

x

x

X

X

x

x

X

x

x

PICTURE
Continued

Other Symbols

(~ S V P P

x x x

x x x

x x X

x x

X X X

x x x

x x

,

x X

X x

x x x x

X

x x

x x

x x x

Data Division 4-37

REDEFINES

4.3.7 REDEFINES Clause

Function

The REDEFINES clause allows different data-description-entries to describe
the same computer storage area.

General Format

level-number data-name-l; REDEFINES data-name-2

NOTE:

Level-number, data-name-l, and the semicolon are shown in
the above format to improve clarity. They are not part of the
REDEFINES clause.

Syntax Rules

1. The REDEFINES clause must immediately follow data-name-1.

2. The level-numbers of data-name-l and data-name-2 must be identical;
they must not be 66 or 88. (Level 77 items can be redefined.)

3. This clause must not be used in level 01 entries in the File Section.

4. The data-description-entry for data-name-2 cannot contain a
REDEFINES clause; however, data-name-2 can be subordinate to an
item whose data-description-entry contains a REDEFINES clause. The
data-description-entry for data-name-2 cannot contain an OCCURS
clause. However, data-name-2 can be subordinate to an item whose data
description-entry contains an OCCURS clause. In this case, the reference
to data-name-2 in the REDEFINES clause cannot be subscripted or
indexed. Neither the original definition nor the redefinition can include
an item whose size is variable as defined in the OCCURS Clause. (See
Section 4.3.5, OCCURS Clause.)

5. No entry having a level-number numerically lower than the level-number
of data-name-2 and data-name-l can occur between the data-description
entries of data-name-2 and data-name-1.

General Rules

1. Redefinition starts at the area allocated to data-name-2 and ends when a
level-number les$ than or equal to that of data-name-2 is encountered.

4-38 Data Division

REDEFINES
Continued

2. When the level-number of data-name-1 is other than 01, it must specify
the same number of character positions contained in the data item refer
enced by data-name-2. Note that the REDEFINES clause specifies the
redefinition of a storage area, not of the data items occupying the area.

3. Multiple redefinitions of the same character positions are permitted. The
entries giving the new descriptions of the character positions must follow
the entries defining the area being redefined, without intervening entries
that define new character positions. Multiple redefinitions of the same
character positions must all use the data-name of the entry that originally
defined the area.

4. The entries giving the new description of the character positions must not
contain any VALUE clauses, except in condition-name entries.

5. Multiple level 01 entries subordinate to an FD level indicator represent
implicit redefinitions of the same area.

Data Division 4-39

RENAMES

4.3.8 RENAMES Clause

Function

The RENAMES clause permits alternative, possibly overlapping, groupings
of elementary items.

General Format

[I THROUGH}
66 data-name-l; RENAMES data-name-2

THRU

NOTE:

Level-number 66, data-name-1 and the semicolon are shown in
the above format to improve clarity. They are not part of the
RENAMES clause.

Syntax Rules

1. All RENAMES entries referring to data items within a given logical record
must immediately follow the last data-description-entry of the associated
record -description -entry.

2. Data-name-2 and data-name-3 must be names of elementary items or
groups of elementary items in the same logical record and cannot be the
same data-name. A 66 level entry cannot rename another 66 level entry,
nor can it rename a 77, 88, or 01 level entry.

3. Data-name-1 cannot be used as a qualifier and can only be qualified by
the names of the associated level 01 or FD entries. Neither data-name-2
nor data-name-3 can have an OCCURS clause in its data-description
entry; nor can either be subordinate to an item that has an OCCURS
clause in its data-description-entry.

4. The beginning of the area described by data-name-3 must not be to the
left of the beginning of the area described by data-name-2. The end of the
area described by data-name-3 must be to the right of the end of the area
described by data-name-2. Data-name-3, therefore, cannot be subordinate
to data-name-2.

5. Data-name-2 and data-name-3 can be qualified.

6. The words THRU and THROUGH are equivalent.

7. No item within the range including data-name-2 and data-name-3 can
have a variable size as defined in the OCCURS clause. (See Section 4.3.5,
OCCURS Clause.)

4-40 Data Division

General Rules

RENAMES
Continued

1. One or more RENAMES entries can be written for a logical record.

2. When data-name-3 is specified, data-name-1 is a group item that includes
all elementary items: (1) starting with data-name-2 (if data-name-2 is an
elementary item) or the first elementary item in data-name-2 (if data
name-2 is a group item) and (2) concluding with data-name-3 (if data
name-3 is an elementary item) or the last elementary item in data-name-3
(if data-name-3 is a group item).

3. When data-name-3 is not specified, data-name-2 can be either a group or
an elementary item; when data-name-2 is a group (elementary) item,
data-name-l is treated as a group (elementary) item.

Data Division 4-41

SIGN

4.3.9 SIGN Clause

Function

The SIGN clause specifies the position and the mode of representation of the
operational sign when it is necessary to explicitly describe these properties.

General Format

[SIGN IS] [SEPARATE CHARACTER] {
LEADING}

TRAILING

Syntax Rules

1. The SIGN clause can be specified only for a numeric data-description
entry whose PICTURE contains the character S, or a group item contain
ing at least one such numeric data-description-entry.

2. The numeric data-description-entries to which the SIGN clause applies
must be described as USAGE IS DISPLAY.

3. At most one SIGN clause can apply to any given numeric data
description-entry.

General Rules

1. The SIGN clause specifies the position and the mode of representation of
the operational sign for the numeric data-description-entry to which it
applies, or for each numeric data-description-entry subordinate to the
group to which it applies. The SIGN clause applies only to numeric data
description-entries whose PICTURE contains the character S; the S indi
cates the presence of the operational sign (though not its representation or,
necessarily, its position).

2. A numeric data-description-entry whose PICTURE contains the S, but to
which no SIGN clause applies, has an operational sign. In this default
case, the sign is a part of the right-most, or trailing, digit in the item
(much like an overpunch).

3. If the SEPARATE CHARACTER phrase is not present, then:

a. The operational sign is associated with the leading (or trailing) digit
position of the elementary numeric data item.

b. The letter S in the PICTURE character-string is not counted in deter
mining the size of the item (in terms of standard data format charac
ters) .

4-42 Data Division

SIGN
Continued

c. The digit position containing the operational sign holds a character
whose value represents both a numeric digit and the algebraic sign of
the item. The allowable characters for all combinations of the numeric
digits, and the positive and negative sign values, are:

DIGIT VALUES

1 2 3 4 5 6 7 8 9 0

POSITIVE A B C D E F G H I !
SIGN

NEGATIVE J K L M N 0 P Q R I

4. If the SEPARATE CHARACTER phrase is present, then:

a. The operational sign is the leading (or trailing) character position of the
elementary numeric data item; this character position is not a digit
position.

b. The letter S in a PICTURE character-string is counted in determining
the size of the item (in terms of standard data format characters).

c. The operational signs for positive and negative are the standard data
format characters + and -, respectively.

5. Every numeric data-description-entry whose PICTURE contains the char
acter S is a signed numeric data-description-entry. If a SIGN clause
applies to such an entry, and conversion is necessary for computation or
comparison purposes, conversion takes place automatically.

Data Division 4-43

SYNCHRONIZED

4.3.10 SYNCHRONIZED Clause

Function

The SYNCHRONIZED clause specifies the alignment of an elementary item
on a word boundary in computer memory. (See Section 4.2.8, Item Alignment
for Increased Object-Code Efficiency.)

General Format

{SYNCHRONIZED} [LEFT]
SYNC RIGHT

Syntax Rules

1. This clause can appear only with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

General Rules

1. Use of this clause aligns the subject data item on memory word boundaries
such that no other data item occupies any of the words delimiting the data
item. A memory word contains two character positions. If the number of
character positions required to store the data item is odd, the unused
character is not used for any other data item. These unused character
positions, however, are included in:

a. The size of any group item(s) to which the elementary item belongs.

b. The character positions redefined when this data item is the object of a
REDEFINES clause.

2. SYNCHRONIZED not followed by either RIGHT or LEFT specifies that
the elementary item is to be synchronized left.

3. SYNCHRONIZED LEFT specifies that the elementary item is to begin at
the even byte address of the memory word.

4. SYNCHRONIZED RIGHT specifies that the elementary item is to termi
nate on the odd byte address of the memory word.

5. Whenever a SYNCHRONIZED item is referenced in the source program,
the original size of the item, as shown in the PICTURE clause, is used to
determine any action that depends on size, such as justification, trunca
tion or overflow.

6. If the data description of an item contains the SYNCHRONIZED clause
and an operational sign, the sign of the item appears in the normal opera
tional sign position, regardless of whether the item is SYNCHRONIZED
LEFT or SYNCHRONIZED RIGHT.

4-44 Data Division

SYNCHRONIZED
Continued

7. All binary items and all INDEX items are automatically
SYNCHRONIZED and occupy an integral number of words. (See Section
4.3.11, USAGE Clause.)

8. When the SYNCHRONIZED clause is specified for an item in the scope of
an OCCURS clause, each occurrence is SYNCHRONIZED.

9. A fill byte is added to the end of each occurrence of a group item if all of
the following conditions are met:

a. One or more items within the group item are SYNCHRONIZED
(implicitly or explicitly).

b. The data description of the group item contains an OCCURS clause.

c. The size of the group is odd after synchronization of the items within it.

The group size then becomes even, causing each occurrence of an item
within the group to align on memory boundaries in the same manner as the
first occurrence of the item.

10. All record descriptions in both the File Section and Working-Storage Sec
tion, and all noncontiguous data items in the Working-Storage Section,
are automatically SYNCHRONIZED.

Data Division 4-45

USAGE

4.3.11 USAGE Clause

Function

The USAGE clause specifies the format of a data item in the computer's
storage.

General Format

COMPUTATIONAL
COMP
COMPUTATIONAL-3

[USAGE IS] COMP-3
DISPLAY
DISPLAY-6
DISPLAY-7
INDEX

Syntax Rules

1. COMP is an abbreviation for COMPUTATIONAL.

2. COMP-3 is an abbreviation for COMPUTATIONAL-3.

3. The PICTURE character-string of a COMP or COMP-3 item can contain
only 9s, the operational sign character S, the implied decimal point char
acter V, and one or more Ps. (See Section 4.3.6, PICTURE Clause.)

4. DISPLAY, DISPLAY-6, and DISPLAY-7 are equivalent.

5. An index data item can be referenced explicitly only in a SEARCH or
SET statement, a relation condition, the USING phrase of a Procedure
Division header, or the USING phrase of a CALL statement.

6. The SYNCHRONIZED, JUSTIFIED, PICTURE, SIGN, VALUE, and
BLANK WHEN ZERO clauses cannot be used to describe group or ele
mentary items described with the USAGE IS INDEX clause.

General Rules

1. The USAGE clause can be written at any level. If it is written at a group
level, it applies to each elementary item in the group. The USAGE clause
of an elementary item cannot contradict the USAGE clause of a group to
which the item belongs.

2. This clause specifies the manner in which a data item is represented in the
computer's storage. It does not affect the use of the data item, although
the specifications for some statements in the Procedure Division can re
strict the USAGE clause of the referenced operands.

4-46 Data Division

USAGE
Continued

3. A COMP or COMP-3 item can represent a value to be used in computa
tions and must be numeric. If a group item is described as COMP or
COMP-3, the specification applies to the elementary items in the group,
but not to the group itself; the group item cannot be used in computation.

4. An elementary item described with the USAGE IS INDEX clause is called
an index data item and contains a value that must correspond to an
occurrence number of a table element. The elementary item cannot be
a conditional variable. If a group item is described with a USAGE IS
INDEX clause, the elementary items in the group are all index data
items. However, the group item itself is not an index data item and cannot
be used in the SEARCH or SET statement or in a relation condition.

5. An index data item can be part of a group that is referred to in a MOVE or
input-output statement, in which case conversion does not occur.

6. If the USAGE clause is not specified for an elementary item or for any
group to which the item belongs, the USAGE is implicitly DISPLAY.

7. A COMP item is a binary value with an assumed decimal point that is
automatically SYNCHRONIZED and stored in memory (in one, two, or
four words) as follows:

PICTURE Range

89 TO 89(4)
89(5) TO 89(9)
89(10) TO 89(18)

8torage

1 word (2 bytes)
1 longword (4 bytes)
1 quadword (8 bytes)

8. The representation of the binary value is independent of the presence of V
or one or more Ps in its PICTURE character-string. The binary value of a
COMP item represents the exact decimal quantity whose description is
given by the PICTURE character-string as if it contained no V or P char
acters. However, the decimal point indicated by these characters is re
membered and used to adjust the binary value before using it in arithme
tic operations. Thus, the binary value represents the decimal value as
though it were an integer, and decimal accuracy is achieved, although
representation is binary. The internal representation of COMP items is
discussed in the User's Guide.

9. A COMP-3 item is a signed packed decimal value with an assumed deci
mal point that is stored internally as two decimal digits per byte (byte
aligned). The maximum size of a COMP-3 item is 18 decimal digits. Its
PICTURE character-string must contain an S. The item can begin in the
even address byte or the odd address byte subject to the implicit or ex
plicit synchronization. (See Section 4.3.10, SYNCHRONIZED Clause.)
The internal format of COMP-3 items is fully discussed in the User's
Guide.

Data Division 4-47

USAGE
Continued

10. A DISPLAY item is a string of bytes stored in memory as two bytes per
word. The item can begin in the even address byte or the odd address byte
subject to the implicit or explicit synchronization. (See Section 4.3.10,
SYNCHRONIZED Clause.)

11. Index data items are stored as one-word COMP items with PIC 9(4).

Their value is always positive.

Index data items are implicitly SYNCHRONIZED. Thus, when they are
described in record descriptions, they may cause automatic fill bytes to be
supplied.

4-48 Data Division

VALUE

4.3.12 VALUE Clause

Function

The VALUE clause defines the initial value of Working-Storage items and the
values associated with a condition-name.

General Format

Format 1

VALUE IS literal

Format 2

{
VALUE IS }

literal-l
VALUES ARE

[{ THROUGH} literal-2]

THRU

[{
THROUGH}

THRU
lite,.I-4]1

Syntax Rules

1. The words THRU and THROUGH are equivalent.

2. A signed numeric literal must have an associated signed numenc
PICTURE character-string.

3. All numeric literals in a VALUE clause of an item must have a value in the
range indicated by the PICTURE clause and must not have a value that
would require truncation of non-zero digits. Alphanumeric literals in a
VALUE clause of an item must not exceed the size indicated by the
PICTURE clause.

General Rules

1. The VALUE clause must not conflict with other clauses in the data de
scription of the item or in the data description in the hierarchy of the item.
The following rules apply:

a. If the category of the item is numeric, all literals in the VALUE clause
must be numeric. If the literal defines the value of a Working-Storage
item, it is aligned in the data item according to the standard alignment
rules. (See Section 4.2.7, Standard Alignment Rules.) ,

Data Division 4-49

VALUE
Continued

b. If the category of the item is alphabetic, alphanumeric, alphanumeric
edited or numeric edited, all literals in the VALUE clause must be
alphanumeric literals. The literal is aligned in the data item as if the
data item had been described as alphanumeric. (See Section 4.2.7,
Standard Alignment Rules.) Editing characters in the PICTURE clause
are included in determining the size of the data item, but they have no
effect on its initialization.

c. Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that is specified.

2. A figurative constant can be substituted III Format 1 and Format 2
wherever a literal is specified.

Condition-Name Rules

1. In a condition-name entry, the VALUE clause is required. The VALUE
clause and the condition-name itself are the only two clauses permitted in
the entry. The characteristics of a condition-name are implicitly those of
its conditional variable.

2. Format 2 can be used only in connection with condition-names. (See Sec
tion 1.1.2.1, User-Defined Words.) Wherever the THRU phrase is used,
literal-1 must be less than literal-2, literal-3 less than literal-4, etc.

Data-Description-Entries Other Than Condition-Names

1. Rules governing the use of the VALUE clause differ with the respective
sections of the Data Division:

a. In the File Section and the Linkage Section, the VALUE clause can be
used only in condition-name entries.

b. In the Working-Storage Section, the VALUE clause must be used in
condition-name entries. The VALUE clause can also be used to specify
the initial value of any other data item except an index data item, in
which case the clause causes the item to assume the specified value at
the start of the object program. If the VALUE clause is not used in an
item description, the initial value is undefined.

2. The VALUE clause must not be stated in a data-description-entry that
either contains an OCCURS clause or is subordinate to one that contains
an OCCURS clause. This rule does not apply to condition-name entries.
(See Section 4.3.5, OCCURS Clause.)

4-50 Data Division

VALUE
Continued

3. The VALUE clause must not be stated in a data-description-entry that
either contains a REDEFINES clause or is subordinate to one that con
tains a REDEFINES clause. This rule does not apply to condition-name
entries.

4. If the VALUE clause is used in an entry at the group level, the literal must
be a figurative constant or a alphanumeric literal, and the group area is
initialized without consideration for the individual elementary or group
items contained in this group. The VALUE clause cannot be stated at the
subordinate levels in this group.

5. The VALUE clause must not be written for a group containing items with
descriptions that include JUSTIFIED, SYNCHRONIZED, or USAGE
(other than USAGE IS DISPLAY).

Data Division 4-51

Chapter 5
Procedure Division

5.1 General Description

The Procedure Division must be included in every COBOL source program. It
specifies the processing to be performed on the files and file data described in
the Environment and Data Divisions. This division contains declaratives and
procedures.

5.1.1 Declaratives

Declarative sections must be grouped at the beginning of the Procedure
Division. They are preceded by the key word DECLARATIVES and followed
by the key words END DECLARATIVES. Declarative sections detail the
procedures to be followed whenever an 1-0 error occurs on a particular file.
(See Section 5.41, USE statement.)

5.1.2 Procedures

A procedure consists of a paragraph, a group of successive paragraphs, a
section, or a group of successive sections. If one paragraph is in a section, then

~ all paragraphs must be in sections. A procedure-name is a word used to refer
to a paragraph or section in the source program. It consists of a paragraph
name or a section-name.

The end of the Procedure Division and the physical end of the program is that
physical position in a COBOL source program after which no further text
appears.

A section consists of a section header followed by zero or more successive
paragraphs. A section ends immediately before the next section or at the end
of the Procedure Division. In the declaratives portion of the Procedure
Division, the section ends at the key words END DECLARATIVES.

5-1

A paragraph consists of a paragraph-name followed by a period and a space
and by zero or more successive sentences. A paragraph ends immediately
before the next paragraph-name or section name or at the end of the Procedure
Division. In the declaratives portion of the Procedure Division, a paragraph
ends at the key words END DECLARATIVES.

A sentence consists of one or more statements and is terminated by a period
followed by a space.

A statement is a syntactically valid combination of words and symbols begin
ning with a COBOL verb.

An identifier is the word or words necessary to make unique reference to a
data item. (See Section 5.4.8, Uniqueness of Reference.)

Execution begins with the first statement of the Procedure Division, excluding
declaratives. Statements are then executed in the order in which they are
presented for compilation, except where the rules indicate some other o.rder.

5.2 Procedure Division Header

The Procedure Division is identified by and must begin with the following
header:

PROCEDURE DIVISION I~ Idata-narne-Il l,data-narne-2l ... l .

The USING phrase is present if, and only if, the object program is to function
under the control of a CALL statement. A COBOL program which is to
function under the control of a CALL statement, but which has no arguments
passed to it, is specified by a USING phrase that contains no data-names (an
empty USING phrase).

Each of the operands in the USING phrase of the Procedure Division header
must be defined as a data item in the Linkage Section of the program in which
this header occurs, and it must have a 01 or 77 level-number.

Within a called program, Linkage Section data items are processed according
to their data descriptions given in the called program.

When the USING phrase is present, the object program operates as if data
name-l of the Procedure Division header in the called program and data
name-l in the USING phrase of the CALL statement in the calling program
refer to a single set of data that is equally available to both the called and
calling programs. Except that they must define an equal number of character
positions, their descriptions need not be the same. In like manner, there is an
equivalent relationship between data-name-2, ... , in the USING phrase of the
called program and data-name-2, ... , in the USING phrase of the CALL
statement in the calling program. A data-name must not appear more than
once in the USING phrase in the Procedure Division header of the called

5-2 Procedure Division

program; however, a given data-name can appear more than once III the
USING phrase of a CALL statement.

Data items defined in the Linkage Section of the called program can be
referenced within the Procedure Division of the called program if and only if
they are:

1. Operands of the USING phrase of the Procedure Division header.

2. Subordinate to operands of the USING phrase of the Procedure Division
header.

3. Defined with a REDEFINES or RENAMES clause, the object of which is
an operand of the USING phrase of the Procedure Division header.

4. Items subordinate to any of the items defined in number 3 above.

5. Condition-names and index-names associated with data items that meet
any of the above conditions.

5.3 Procedure Division Body

The body of the Procedure Division must conform to one of the following
formats:

Format 1

[DECLARATIVES.

tsection-name SECTION [segment-number].

[paragraph-name. [sentence] ...] .. l ..
END DECLARATIVES.]

tsection-name SECTION [segment-number].

[paragraph-name. [sentence] ...] ... J ...

Format 2

tparagraph-name. [sentence] .. l ..

5.4 Statements and Sentences

declarative-sentence

There are three types of statements: conditional, compiler-directing, and
imperative.

There are three types of sentences: conditional, compiler-directing, and
imperative.

Procedure Division 5-3

5.4.1 Conditional Statement

A conditional statement specifies that the truth value of a condition is to be
determined and that the subsequent action of the object program is depend
ent on this truth value.

A conditional statement is one of the following:

a. An IF statement or a SEARCH statement.

b. A READ statement that specifies the AT END or INVALID KEY phrase.

c. A WRITE statement that specifies the INVALID KEY or END-OF -PAGE
phrase.

d. A REWRITE or DELETE statement that specifies the INVALID KEY
phrase.

e. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) that specifies the SIZE ERROR phrase.

f. A STRING or UNSTRING statement that specifies the ON OVERFLOW
phrase.

g. A GO TO ... DEPENDING ... statement.

5.4.2 Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by an
imperative statement, terminated by a period, and followed by a space.

5.4.3 Compiler-Directing Statement

A compiler-directing statement causes the compiler to take a specific action
during compilation. It consists of a compiler-directing verb (USE or COPY)
and its operands.

5.4.4 Compiler-Directing Sentence

A compiler-directing sentence is a single compiler-directing statement
terminated by a period followed by a space.

5-4 Procedure Division

5.4.5 Imperative Statement

An imperative statement indicates a specific, unconditional action to be
taken by the object program. An imperative statement is any statement that
is neither a conditional statement nor a compiler-directing statement. An
imperative statement can consist of a sequence of imperative statements,
each possibly separated from the next by a separator. The imperative verbs
are:

ACCEPT
ADD(I) GO(5) SET
ALTER

INSPECT START(2)
STOP

CLOSE MOVE STRING(4)
COMPUTE(1)

MULTIPLY (1) SUBTRACT (1)
DELETE (2) OPEN

PERFORM
DISPLAY READ (3) UNSTRING(4)
DIVIDE (1) WRITE (2)
EXIT REWRITE (2)

(1) Without the optional SIZE ERROR phrase.
(2) Without the optional INVALID KEY phrase.
(3) Without the optional AT END phrase or INVALID KEY phrase.
(4) Without the optional ON OVERFLOW phrase.
(5) Without the optional DEPENDING phrase.

When imperative-statement appears in the general format of statements, it
refers to that sequence of consecutive imperative statements that must be
ended by a period, an ELSE phrase associated with a previous IF statement,
or a WHEN phrase associated with the previous SEARCH statement.

5.4.6 Imperative Sentence

An imperative sentence is an imperative statement terminated by a period,
and followed by a space.

5.4.7 Statement Categories

COBOL statements are categorized by verb type and format:

Category

Arithmetic

Verbs

ADD
COMPUTE
DIVIDE
INSPECT (TALLYING)
MULTIPLY
SUBTRACT

Procedure Division 5-5

Compiler-Directing

Conditional

Data Movement

Ending

Input-Output

Procedure Branching

Table-handling

\
COpy
USE

ADD (SIZE ERROR)
COMPUTE (SIZE ERROR)
DELETE (INVALID KEY)
DIVIDE (SIZE ERROR)
GO (DEPENDING)
IF
MULTIPLY (SIZE ERROR)
READ (END or INVALID KEY)
REWRITE (INVALID KEY)
SEARCH
START (INVALID KEY)
STRING (OVERFLOW)
SUBTRACT (SIZE ERROR)
UNSTRING (OVERFLOW)
WRITE (INVALID KEY or END-OF-PAGE)

{

ACCEPT (DATE, DAY, or TIME)
. INSPECT (REPLACING)
MOVE
STRING
UNSTRING

STOP

ACCEPT
CLOSE
DELETE
DISPLAY
OPEN
READ
REWRITE
START
STOP (literal)
WRITE

{ ~~~~R
GO TO
PERFORM

\
SEARCH
SET

IF is used as a verb in the COBOL language although it is not a verb in the
English language.

5.4.8 Uniqueness of Reference

Uniqueness of reference in a COBOL program is accomplished by using quali
fiers, subscripts, indexes, unique identifiers, and condition-names.

5-6 Procedure Division

5.4.8.1 Qualification - Every user-specified name that defines an element in
a COBOL source program must be unique, either because no other name has
the identical spelling and hyphenation or because the name exists within a
hierarchy of names such that references to the name can be made unique by
mentioning one or more of the higher levels of the hierarchy. The higher levels
are called qualifiers, and the process that specifies uniqueness is called quali
fication. Enough qualification must be mentioned to make the name unique;
however, it may not be necessary to mention all levels of the hierarchy.
Within the Data Division, all data-names used for qualification must be asso
ciated with a level indicator or a level-number. Therefore, two identical data
names must not appear as entries subordinate to a group item unless they are
capable of being made unique through qualification. In the Procedure
Division two identical paragraph-names must not appear in the same section.

In the hierarchy of qualification, names associated with a level indicator are
the most significant, followed, in order, by names associated with level-num
ber 01 and names associated with level-numbers 02 through 49. A section
name is the highest (and the only) qualifier available for a paragraph-name.
Thus, the most significant name in the hierarchy must be unique and cannot
be qualified. Subscripted or indexed data-names and conditional variables, as
well as procedure-names and data-names, can be made unique by qualifica
tion. The name of a conditional variable can be used as a qualifier for any of
its condition-names. Regardless of the available qualification, a name cannot
be both a data-name and a procedure-name.

Qualification is performed by following a data-name, a condition-name, a
paragraph-name, or a text-name by one or more phrases composed of a quali
fier preceded by IN or OF. IN and OF are logically equivalent.

The general formats for qualification are:

Format 1

,data-name-l t~I OF t
tcondition-name'~ IN ,

Format 2

data-name-2]

file-name

p.,a~aph-nam. [rJ Wdinn-nam.]

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the same
hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

Procedure Division 5-7

3. If a data-name or a condition-name is assigned to more than one data item
in a source program, the data-name or condition-name must be qualified
each time it is referred to in the Procedure, Environment, and Data Divi
sions (except in the REDEFINES clause, in which qualification must not
be used).

4. A paragraph-name must not be duplicated within a section. When a para
graph-name is qualified by a section-name, the word SECTION must not
appear. A paragraph-name need not be qualified when it is referenced from
within the same section.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. A name can be qualified even though it does not need qualifications; if
there is more than one combination of qualifiers that ensures uniqueness,
then any such set can be used. The complete set of qualifiers for a data
name must not be the same as any partial set of qualifiers for another
data-name. Qualified data-names can have up to 48 qualifiers.

5.4.8.2 Subscripting - Subscripts can be used only when reference is made to
an individual element within a list or table of like elements that have not been
assigned individual data-names. (See Section 4.3.5, OCCURS Clause.)

The subscript can be represented either by a numeric literal that is an integer
or by a data-name. The data-name must be a numeric elementary item that
represents an integer. When the subscript is represented by a data-name, the
data-name can be qualified but not subscripted.

The subscript can be signed and, if signed, it must be positive. The lowest
possible subscript value is 1. This value points to the first element of the
table. The next sequential elements of the table are pointed to by subscripts
whose values are 2, 3, The highest permissible subscript value, in any
particular case, is the maximum number of occurrences of the item as speci
fied in the OCCURS clause.

The subscript or set of subscripts that identify the table element are delimited
by a balanced pair of separators, the left and right parentheses, following the
table element data-name. The table element data-name appended with a
subscript is called a subscripted data-name or an identifier. When more than
one subscript is required, they are written in the order of successively less
inclusive dimensions of the data organization.

The format is:

{ data-name } (subscript-l [, sUbscript-2 [, subscript-3]])

condition-name

5-8 Procedure Division

5.4.8.3 Indexing - Indexing allows references to be made to individual ele
ments within a table of like elements. An index is assigned to a level of the
table by using the INDEXED BY phrase in the table's definition. A name
given in the INDEXED BY phrase is known as an index-name and is used to
refer to the assigned index. The value of an index corresponds to the occur
rence number of an element in the associated table. An index-name must be
initialized before it is used as a table reference. An index-name can be given
an initial value by a SET, SEARCH ALL, or Format 4 PERFORM statement.

Direct indexing is specified by using an index-name in the form of a subscript.
Relative indexing is specified when the index-name is followed, in order, by:
(1) the operator + or -, and (2) an unsigned integer numeric literal, all three
delimited by a balanced pair of separators, the left and right parentheses,
following the table element data-name. The occurrence number resulting
from relative indexing is determined by incrementing (where the operator + is
used) or decrementing (where the operator - is used) by the value of the
literal, the occurrence number represented by the value of the index. When
more than one index-name is required, they are written in the order of succes
sively less-inclusive dimensions of the data organization.

At the time of execution of a statement that refers to an indexed table ele
ment, the value contained in the index-name associated with the table ele
ment must neither correspond to a value less than one (1) nor to a value
greater than the highest permissible occurrence number of an element of the
associated table. This restriction also applies to the value resultant from
relative indexing.

The general format for indexing is:

{data-name } ({ index-name-l
condition-name literal-l

[{±}literal-2] }

[
, {indeX-name-2

literal-3

[{±}literal-4]} [{ mdex-name-:3 O±} literal-6]}]~)

Ii teral-5 IJ

5.4.8.4 Internal Formats of Subscripts, Index-Names and Index Data Items

l. Subscripts are stored as either binary or DISPLAY numeric integers with a
size that can vary from 1 to 18 digits. They can contain an operational
sign, although at the time of their use as a subscript the value must be
positive.

2. Index-names are stored as two-part items consisting of a binary occurrence
number and a binary index value. Both values are always positive.

Procedure Division 5-9

3. Index data items are stored as I word COMP items consisting of a binary
occurrence number with an implicit PIC 9(4) description. Their value is
always positive.

Index data items are implicitly SYNCHRONIZED; thus, when they are
described within record descriptions they can cause automatic fill bytes to
be supplied.

5.4.8.5 Identifier - An identifier is a term used to indicate that a data-name,
if not unique in a program, must be followed by a syntactically correct combi
nation of qualifiers, subscripts, or indexes necessary to ensure uniqueness.

The general formats for identifiers follow:

Format 1

d",-n,mo-! [{:} d,t,-n,mO-2] '"

[. ,ub""pt-3 J}]
Format 2

d,t,-n,m,-! [{:} dol, nom,-2]

[t index-name-2 [t±lliteral-4] }

literal-3

[
({indeX-name-l [{±lliteral-2]}

[. {:~:::I~~m'_3 [l±Ilit'''1-6J}]~)]
hteral-5 J

The following are restrictions on qualification, subscripting and indexing:

1. A data-name must not itself be subscripted or indexed when it is being
used as an index, subscript or qualifier.

2. Indexing is not permitted where subscripting is not permitted.

3. An index name can be modified only by the SET, SEARCH, and
PERFORM statements. Data items described by the USAGE IS INDEX
clause permit storage of the values associated with index-names as data in
a form called index data items.

4. Literal-I, literal-3, literal-5 in the above format must be positive numeric
integers. Literal-2, literal-4, and literal-6 must be unsigned numeric
integers.

5.4.8.6 Condition-Name - Each condition-name must be unique or be made
unique through qualification and/or indexing or subscripting.

5-10 Procedure Division

If qualification is used to make a condition-name unique, the associated con
ditional variable can be used as the first qualifier. If qualification is used, the
hierarchy of names associated with the conditional variable or the conditional
variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting, then
references to any of its condition-names also require the same combination of
indexing or subscripting.

The format and restrictions on the combined use of qualification, sub
scripting, and indexing of condition-names are exactly those pertaining to
"identifier", except that data-name-l is replaced by condition-name-1.

In the general formats, "condition-name" refers to a condition-name qualified,
indexed or subscripted, as necessary.

5.4.9 Explicit and Implicit Specifications

There are three types of explicit and implicit specifications that occur ill

COBOL source programs:

1. Explicit and· Implicit Procedure Division References
2. Explicit and Implicit Transfers of Control
3. Explicit and Implicit Attributes

5.4.9.1 Explicit and Implicit Procedure Division References- A COBOL
source program can reference data items either explicitly or implicitly in
Procedure Division statements. An explicit reference occurs when the name of
the referenced item is written in a Procedure Division statement or when the
name of the referenced item is copied into the Procedure Division by the
processing of a COpy statement. An implicit reference occurs when the item
is referenced by a Procedure Division statement without the name of the
referenced item being written in the source statement. Such an implicit refer
ence occurs if, and only if, the data item contributes to the execution of the
statement.

5.4.9.2 Explicit and Implicit Transfers of Control- In a COBOL program, each
statement is executed in the sequence in which it was written in the source
program unless an explicit transfer of control overrides this sequence. The
transfer of control from statement to statement occurs without writing an
explicit Procedure Division statement and, therefore, is an implicit transfer of
control.

COBOL provides both explicit and implicit means of altering the implicit
control transfer mechanism.

In addition to the implicit transfer of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without

Procedure Division 5-11

the execution of a procedure branching statement. COBOL provides the fol
lowing types of implicit control flow alterations that override the statement
to-statement transfers of control:

1. If a paragraph is being executed under control of another COBOL state
ment (for example, PERFORM, USE) and the paragraph is the last para
graph in the range of the controlling statement, then an implied transfer of
control occurs following the last statement in the paragraph to the control
mechanism of the last executed controlling statement.

2. When any COBOL statement is executed that results in the execution of a
declarative section, an implicit transfer of control to the declarative sec
tion occurs. Note that another implicit transfer of control occurs after
execution of the declarative section, as described in number 1 above.

An explicit transfer of control consists of an alteration of the implicit control
transfer mechanism by the execution of a procedure branching or conditional
statement. (See Section 5.4, Statements and Sentences.) An explicit transfer
of control can be caused only by the execution of a procedure branching or
conditional statement. The execution of the procedure branching statement
ALTER does not in itself constitute an explicit transfer of control, but affects
the explicit transfer of control that occurs when the associated GO TO state
ment is executed.

In this document, the term "next executable statement" is used to refer to the
next COBOL statement to which control is transferred according to the rules
above and the rules associated with each language element in the Procedure
Division.

5.4.9.3 Explicit and Implicit Attributes - Attributes can be implicitly or expli
citly specified. An attribute that has been explicitly specified is called an
explicit attribute. If an attribute has not been specified explicitly, then the
attribute takes on the default and is known as an implicit attribute.

For example, the usage of a data item need not be specified, in which case
data item usage is DISPLAY.

5.5 Arithmetic Expressions

An arithmetic expression can be an identifier of a numeric elementary item, a
numeric literal, such identifiers and literals separated by arithmetic opera
tors, two arithmetic expressions separated by an arithmetic operator, or an
arithmetic expression enclosed in parentheses. Any arithmetic expression may
be preceded by a unary operator. The permissible combinations of variables,
numeric literals, arithmetic operator and parentheses are given in Table 5-1,
Combination of Symbols in Arithmetic Expressions, Section 5.5.2.

5-12 Procedure Division

Those identifiers and literals appearing in an arithmetic expression must
represent either numeric elementary 'items or numeric literals on which arith
metic can be performed.

NOTE:

Arithmetic expressions must not contain non-integer
exponents.

5.5.1 Arithmetic Operators

An arithmetic operator is a single character or a fixed 2-character
combination.

There are five binary arithmetic operators and two unary arithmetic operators
that can be used in arithmetic expressions. They are represented by specific
characters that must be preceded by and followed by a space.

Binary Arithmetic
Operators

+

*
/
**

Unary Arithmetic
Operators

Meaning

Addition
Subtraction
M ultiplicat ion
Division
Exponent iation

Meaning

+ The effect of multiplication by numeric literal +- 1.
The effect of multiplication by numeric literal -1.

5.5.2 Formation And Evaluation Rules

1. Parentheses can be used in arithmetic expressions to specify the order in
which elements are to be evaluated. Expressions within parentheses are
evaluated first; and within nested parentheses, evaluation proceeds from
the least inclusive set to the most inclusive set. When parentheses are not
used or parenthesized expressions are at the same level of inclusiveness,
the following hierarchical order of execution is implied:

1st - Unary plus and minus
2nd - Exponentiation
3rd - Multiplication and division
4th - Addition and subtraction

Procedure Division 5-13

2. Parentheses are also used either (a) to eliminate ambiguities in logic where
consecutive operations' of the same hierarchical level appear, or (b) to
modify the normal hierarchical sequence of execution in expressions where
it is necessary to deviate from the normal precedence. When the sequence
of execution is not specified by parentheses, the order of execution of
consecutive operations of the same hierarchical level is from left to right.

3. The ways in which operators, variables, and parentheses can be combined
in an arithmetic expression are summarized in Table 5-1, where:

a. The letter P indicates a permissible pair of symbols.

b. The character - indicates an invalid pair of symbols.

c. The term variable indicates an identifier or literal.

Table 5-1: Symbol Combinations in Arithmetic Expressions

First Second Symbol

Symbol Variable * / ** - + Unary + or - ()

Variable - P - - p

* / ** + - P - P P -

Cnary + or - P - - p -

(p - p p -

) - p - - p

4. An arithmetic expression can begin only with an open parenthesis, a plus
sign, a minus sign, or a variable and can end only with a close parenthesis
or a variable. There must be a one-to-one correspondence between left and
right parentheses of an arithmetic expression; each left parenthesis is to
the left of its corresponding right parenthesis.

5. Arithmetic expressions allow you to combine arithmetic operations with
out restrictions on composite of operands and/or receiving data items.

5.6 Conditional Expressions

Conditional expressions identify conditions that are tested to enable the
object program to select between alternate paths of control depending upon
the truth value of the condition. Conditional expressions are specified in
the IF, SEARCH, and PERFORM statements. There are two categories of
conditions associated with conditional expressions: simple conditions and
complex conditions.

5-14 Procedure Division

5.6.1 Simple Conditions

The simple conditions are the relation, class, condition-name, switch-status,
and sign conditions. A simple condition has a truth value of true or false.

5.6.2 Relation Condition

A relation condition causes a comparison of two operands, each of which can
be the data item referenced by an identifier or a literal or the value resulting
from an arithmetic expression. A relation condition has a truth value of true if
the relation exists between the operands.

Comparison of two numeric operands is permitted regardless of the formats
specified in their respective USAGE clauses. However, for all other compari
sons the operands must have the same usage. If either of the operands is a
group item, the non-numeric comparison rules apply.

The general format of a relation condition is as follows:

{
identifier-l }
literal-l

arithmetic-expression-l

IS [NOT] GREATER THAN
IS [NOT] LESS THAN
IS [NOT] EQUAL TO
IS [NOT] >
IS [NOT] <
IS [NOT] =

NOTE:

{
identifier-2 }
literal-2

arithmetic-expression-2

The required relational characters >, <, and = are not under
lined to avoid confusion with other symbols such as greater
than-or-equal-to.

The first operand (identifier-I, literal-I, or arithmetic-expression-I) is called
the subject of the condition; the second operand (identifier-2, literal-2,or
arithmetic-expression-2) is called the object of the condition. The subject and
the object cannot both be literals.

The relational operator specifies the type of comparison to be made in a
relation condition. A space must precede and follow each reserved word
comprising the relational operator. When used, NOT and the next key word or
relation character are one relational operator that defines the comparison to

Procedure Division 5-15

be executed for truth value: e.g., NOT EQUAL is a truth test for an unequal
comparison; NOT GREATER is a truth test for an equal or less comparison.
The meaning of the relational operators is as follows:

Relational Operator

IS [NOT] GREATER THAN
IS [NOT] >

IS [NOT] LESS THAN
IS [NOT] <

IS [NOT] EQUAL TO
IS [NOT] =

Meaning

Greater than or not greater than

Less than or not less than

Equal to or not equal to

NOTE:

The required relational characters >, <, and = are not under
lined to avoid confusion with other symbols such as greater
than-or-equal-to.

5.6.3 Comparison of Numeric Operands

For operands whose class is numeric (see Section 4.2.4, Classes of Data), a
comparison is made with respect to the algebraic value of the operands. The
length of the literal or arithmetic-expression operands, in terms of number of
digits, is not significant. Zero is considered a unique value regardless of the
sign.

Comparison of these operands is permitted regardless of the manner in which
their usage is described. Unsigned numeric operands are considered positive
for purposes of comparison.

5.6.4 Comparison of Alphanumeric Operands

For nonnumeric operands, or numeric and nonnumeric operand combinations,
a comparison is made with respect to a specified collating sequence of charac
ters (See Section 3.1.2, OBJECT-COMPUTER paragraph). If one of the
operands is specified as numeric, it must be an integer data item (USAGE
DISPLA Y) or an integer literal:

1. If the nonnumeric operand is an elementary data item or a nonnumeric
literal, the numeric operand is treated as though it were moved to an
elementary alphanumeric data item of the same size as the numeric data
item (in terms of standard data format characters), and the contents of
this alphanumeric data item were then compared to the nonnumeric oper
and. (See Section 5.22, MOVE Statement and Section 4.3.6, PICTURE
Clause.)

5-16 Procedure Division

2. If the nonnumeric operand is a group item, the numeric operand is treated
as though it were moved to a group item of the same size as the numeric
data item (in terms of standard data format characters), and the contents
of this group item were then compared to the nonnumeric operand. (See
Section 5.22, MOVE Statement and Section 4.3.6, PICTURE Clause.)

3. A non-integer numeric operand cannot be compared to a nonnumeric
operand.

The size of an operand is the total number of standard data format characters
it contains. Numeric and nonnumeric operands can be compared only when
their usage is the same. -

Comparisons can be made between operands of equal size and operands of
unequal size.

1. Operands of equal size.

Comparison effectively proceeds by comparing characters in corresponding
character positions starting from the high order end and continuing until
either a pair of unequal characters is encountered or the low order end of
the operand is reached, whichever comes first. The operands are deter
mined to be equal if all pairs of characters compare equally through the
last pair, when the low order end is reached.

The first encountered pair of unequal characters is compared to determine
their relative position in the collating sequence. The operand containing
the character that is positioned higher in the collating sequence is consid
ered to be the greater operand.

2. Operands of unequal size.

Comparison proceeds as though the shorter operand were extended on the
right by sufficient space characters to make the operands of equal size.

5.6.5 Comparisons Involving Index-Names and/or Index Data
Items

Relation tests can be made between:

1. Two index-names. The result is the same as if the corresponding occur
rence numbers were compared.

2. An index-name and a data item (including an index data item) or literal.
The occurrence number that corresponds to the value of the index-name is
compared to the data item or literal.

3. An index data item and an index data item. The actual values are
compared.

Procedure Division 5-17

Index data items cannot be compared with literals or other data items that
are not index data items.

5.6.6 Class Condition

The class condition determines whether the operand is numeric or alphabetic.
Numeric consists entirely of the characters 0 through 9, with or without the
operational sign. Alphabetic consists entirely of the characters A through Z
and space. The general format for the class condition is as follows:

identifier IS [NOT] {
NUMERIC }

ALPHABETIC

The usage of the operand being tested must be described as DISPLAY.

When used, NOT and the next key word specify one class condition that
defines the class test to be executed for truth value, that is, NOT NUMERIC
is a truth test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description
describes the item as alphabetic or as a group item composed of elementary
items whose data description indicates the presence of operational sign(s). If
the data description of the item being tested does not indicate the presence of
an operational sign, the item being tested is determined to be numeric only if
the contents are numeric and an operational sign is not present. If the data
description of the item does indicate the presence of an operational sign, the
item being tested is determined to be numeric only if the contents are numeric
and a valid operational sign is present. Valid operational signs for data items
described with the SIGN IS SEPARATE clause are the standard data format
characters, + and -. (See Section 4.3.9, SIGN Clause, for the format of valid
operational signs when the SIGN IS SEPARATE clause is not present.)

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be
alphabetic only if the contents consist of any combination of the alphabetic
characters A through Z and the space.

5.6.7 Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to determine
whether or not its value is equal to one of the values associated with a
condition-name. The general format for the condition-name condition is as
follows:

condition-name

If the condition-name is associated with a range or ranges of values, then the
conditional variable is tested to determine whether or not its value falls in this
range, including the end values.

5-18 Procedure Division

The rules for comparing a conditional variable with a condition-name value
are the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the
condition-name equals the value of its associated conditional variable.

5.6.8 Switch-Status Condition

A switch-status condition determines the ON or OFF status of a numbered
switch. The switch number and the' ON or OFF value associated with the
condition must be named in the SPECIAL-NAMES paragraph of the
Environment Division. The general format for the switch-status condition is
as follows:

condi tion· name

The result of the test is true if the switch is set to the specified position
corresponding to the condition-name.

5.6.9 Sign Condition

The sign condition determines whether or not the algebraic value of a data
item is less than, greater than, or equal to O. The general format for a sign
condition is as follows:

{
POSITIVE}

arithmetic-expression IS [NOT] NEGATIVE
ZERO

When used, NOT and the next key word specify one sign condition that
defines the algebraic test to be executed for truth value; for example, NOT
ZERO is a truth test for a nonzero (positive or negative) value.

An operand is positive if its value is greater than 0, negative if its value is less
than 0, and 0 if its value is equal to O.

5.6.10 Complex Conditions

A complex condition is formed by combining simple conditions, combined
conditions and/or complex conditions with logical connectors (logical opera
tors AND and OR) or negating these conditions with logical negation (the
logical operator NOT). The truth value of a complex condition, whether
parenthesized or not, is that truth value which results from the interaction of
all stated logical operators on the individual truth values of simple conditions,
or the intermediate truth values of conditions logically connected or logically
negated.

Procedure Division 5-19

The logical operators and their meanings are:

Logical Operator

AND

OR

NOT

Meaning

Logical conjunction; the truth value is true if both of the
conjoined conditions are true; false if one or both of the
conjoined conditions are false.

Logical inclusive OR; the truth value is true if one or both
of the included conditions is true; false if both included
conditions are false.

Logical negation or reversal of truth value; the truth value
is true if the condition is false; false if the condition is true.

The logical operators must be preceded by a space and followed by a space.

5.6.11 Negated Simple Conditions

A simple condition is negated through the use of the logical operator NOT.
The truth value for the negated simple condition is the opposite of that for the
simple condition. Thus, the truth value of a negated simple condition is true
if, and only if, the truth value of the simple condition is false; the truth value
of a negated simple condition is false if, and only if, the truth value of the
simple condition is true. The inclusion in parentheses of a negated simple
condition does not change the truth value.

The general format for a negated simple condition is:

NOT simple-condition

5.6.12 Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of the
logical operators AND or OR.

The general format of a combined condition is:

condition { AONRD} condition

where condition can be one of the following:

1. A simple condition.

2. A negated simple condition.

3. A combined condition.

5-20 Procedure Division

4. A negated combined condition, that is, the NOT logical operator followed
by a combined condition enclosed within parentheses.

5. Combinations of the above, specified according to the rules summarized in
Table 5-2, Combinations of Conditions, Logical Operators, and
Paren theses.

Although parentheses need not be used when either AND or OR (but not
both) is used exclusively in a combined condition, they can be used to effect a
final truth value when a mixture of AND, OR and NOT is used.

Table 5-2 indicates the ways in which conditions and logical operators can be
combined and parenthesized. There must be a one-to-one correspondence
between left and right parentheses, and each left parenthesis must be to the
left of its corresponding right parenthesis.

Table 5-2: Combinations of Conditions, Logical Operators, and
Parentheses

In a left-to-right sequence of elements:

Location in
conditional
expression Element, when not first, Element when not last,

Given the following can be immediately can be immediately
element First Last preceded only by: followed only by:

simple·condition Yes Yes OR, NOT, AND, (OR, AND,)

OR or AND NO NO simple-condition,) simple-condition, NOT, (

NOT Yes NO OR, AND, (simple-condition, (

(Yes NO OR, NOT, AND, (simple-condition, NOT, (

) NO Yes simple-eondition,) OR, AND,)

Thus, the element pair OR NOT is permissible, while the pair NOT OR is not
permissible; NOT (is permissible, while NOT NOT is not permissible.

5.6.13 Abbreviated Combined Condition Relations

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation condi
tion contains a subject or subject and relational operator that are common
with the preceding relation condition, and no parentheses are used within
such a consecutive sequence, any relation condition except the first can be
abbreviated by the omission of one of the following:

1. The subject of the relation condition, or

2. The subject and relational operator of the relation condition.

Procedure Division 5-21

The format for an abbreviated combined relation condition is:

relation -condi tion { AONRDt , [NOT] [relational-operator] object ...

Within a sequence of relation conditions both of the above forms of abbrevia
tion can be used. The effect of using such abbreviations is as if the last
preceding stated subject were inserted in place of the omitted subject, and the
last stated relational operator were inserted in place of the omitted relational
operator. The result of such implied insertion must comply with the rules of
Table 5-2, Combinations of Conditions, Logical Operators, and Parentheses.
This insertion of an omitted subject and/or relational operator terminates
once a complete simple condition is encountered within a complex condition.

The interpretation applied to the use of the word NOT in an abbreviated
combined relation condition is as follows:

1. If the word immediately following NOT is GREATER or >, LESS or <, or
EQUAL or =, then the NOT participates as part of the relational operator;
otherwise,

2. The NOT is interpreted as a logical operator and, therefore, the implied
insertion of subject or relational operator results in a negated relation
condition.

Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents follow.

Condition

a > b AND NOT < c OR d

a NOT EQUAL b OR c

NOT a = b OR c

NOT (a GREATER b OR < c)

NOT (a NOT> bAND c AND NOT d)

Expanded Equivalent

((a> b) AND (a NOT < c)) OR (a :\0'1' < d)

(a NOT EQUAL b) OR (a]\;OT EQUAL c)

C'JOT (a = b)) OR (a = c)

NOT ((a GREATER b) OR (a < c))

NOT ((((a NOT> b) AND
(a NOT> c)) AND
(NOT (a NOT> d))))

5.6.14 Condition Evaluation Rules

Parentheses can be used to specify the. order in which individual conditions of
complex conditions are to be evaluated when it is necessary to depart from the
implied evaluation precedence. Conditions within parentheses are evaluated

5-22 Procedure Division

first, and, within nested parentheses, evaluation proceeds from the least in
clusive condition to the most inclusive condition. When parentheses are not
used or parenthesized conditions are at the same level of inclusiveness, the
following hierarchical order of logical evaluation is implied until the final
truth value is determined:

1. Values are established for arithmetic expressions. (See Formation and
Evaluation Rules, Section 5.5.2.)

2. Truth values for simple conditions are established in the following order:

a. Relation condition (following the expansion of any abbreviated relation
condition)

b. Class condition

c. Condition-name condition

d. Switch-status condition

e. Sign condition

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established (AND logical opera
tors, followed by OR logical operators).

5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified by
parentheses, the order of evaluation of consecutive operations of the same
hierarchical level is from left to right.

5.7 Common Phrases and General Rules for Statement Formats

In the statement descriptions that follow, several phrases appear
frequently: the ROUNDED phrase, the SIZE ERROR phrase, and the
CORRESPONDING phrase.

In the discussion below, a resultant-identifier is that identifier associated with
a result of an arithmetic operation.

5.7.1 ROUNDED Phrase

If, after decimal point alignment, the number of places in the fraction of the
result of an arithmetic operation is greater than the number of places pro
vided for the fraction of the resultant-identifier, truncation is relative to the
size provided for the resultant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by 1 whenever the most
significant digit of the excess is greater than or equal to 5.

Procedure Division 5-23

When the low-order integer positions in a resultant-identifier are represented
by the character P in the PICTURE clause for that resultant-identifier,
rounding or truncation occurs relative to the rightmost integer position for
which storage is allocated.

5.7.2 SIZE ERROR Phrase

If, after decimal point alignment, the absolute value of a result exceeds the
largest value that can be contained in the associated resultant-identifier, a
size error condition exists. Division by 0 always causes a size error condition.
The size error condition applies only to the final results of an arith
metic operation and does not apply to intermediate results, except in the
MULTIPLY and DIVIDE statements. Then the size error condition applies
to the intermediate results as well. If the ROUNDED phrase is specified,
rounding takes place before checking for size error. When such a size error
condition occurs, the subsequent action depends on whether or not the
SIZE ERROR phrase is specified.

1. If the SIZE ERROR phrase is not specified and a size error condition
occurs, the value of those resultant-identifier{s) affected is undefined. Val
ues of resultant-identifier{s) for which no size error condition occurs are
unaffected by size errors that occur for other resultant-identifier{s) during
execution of this operation.

2. If the SIZE ERROR phrase is specified and a size error condition occurs,
then the value of the resultant-identifier{s) affected by the size errors is
not altered. Values of resultant-identifier{s) for which no size error condi
tion occurs are unaffected by size errors that occur for other resultant
identifier{s) during execution of this operation. After completion of the
execution of this operation, the imperative statement in the SIZE ERROR
phrase is executed.

For the ADD statement with the CORRESPONDING phrase and the
SUBTRACT statement with the CORRESPONDING phrase, if any of the
individual operations produces a size-error condition, the imperative state
ment in the SIZE ERROR phrase is not executed until all of the individual
additions or subtractions are completed.

5.7.3 CORRESPONDING Phrase

If group-l and group-2 are identifiers that refer to group items, a pair of data
items, one from group-l and one from group-2, correspond if the following
conditions exist:

1. A data item in group-l and a data item in group-2 are not designated by
the key word FILLER and have the same data-name and the same quali
fiers up to, but not including, group-l and group-2.

5-24 Procedure Division

2. In the case of a MOVE statement with the CORRESPONDING phrase, at
least one of the data items is an elementary data item; in the case of the
ADD statement with the CORRESPONDING phrase or the SUBTRACT
statement with the CORRESPONDING phrase, both of the data items are
elementary numeric data items.

3. The description of group-l and group-2 must not contain level-number 66,
77, or 88 or the USAGE IS INDEX clause.

4. A data item that is subordinate to group-l or group-2 and contains a
REDEFINES, RENAMES, OCCURS, or. USAGE IS INDEX clause is
ignored, as are those data items subordinate to the data item that contains
the REDEFINES, OCCURS, or USAGE IS INDEX clause. However,
group-l and group-2 can have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses. (See
Section 4.3.5, OCCURS Clause.)

5.7.4 Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY,
and SUBTRACT statements. They have several common features.

1. The data descriptions of the operands need not be the same; any necessary
conversion and decimal point alignment is supplied throughout the
calculation.

2. The maximum size of each operand is 18 decimal digits. The composite of
operands, which is a hypothetical data item resulting from the super
imposition of specified operands in a statement aligned on their decimal
points, must not contain more than 18 decimal digits.

5.7.5 Multiple Results In Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements
can have multiple results. Such statements behave as though they had been
written in the following way:

1. A statement that performs all arithmetic necessary to arrive at the result
to be stored in the receiving items, and stores that result in a temporary
storage location.

2. A sequence of statements transferring or combining the value of this tem
porary location with a single result. These statements ate considered to be
written in the same left-to-right sequence in which the multiple results are
listed.

Procedure Division 5-25

The result of the statement

ADD A, B, C TO C, D (C), E

is equivalent to

ADD A, B, C GIVING temp

ADD temp TO C

ADD temp TO D (C)

ADD temp TO E

where temp is an intermediate result item defined as follows:

The number of integer places in temp is the maximum of the integer

places of all operands in the statement. The number of decimal places is

the maximum of all the operands in the statement. If the sum of the

number of integer places and decimal places is greater than 18, then the

number of integer places will be reduced until the sum equals 18. There

fore, high-order truncation could occur in some receiving operands',

depending on the resulting value of the arithmetic statement.

5.7.6 Overlapping Operands

When a sending and a receiving item in an arithmetic statement or
INSPECT, MOVE, SET, STRING, or UNSTRING statement share a part of
their storage areas, the result of the execution of such a statement is unde
fined. The compiler does not detect overlapping or potentially overlapping
operands.

5.7.7 Incompatible Data

Except for the class condition (see Section 5.6.6, Class Condition), when the
contents of a data item are referenced in the Procedure Division and the
contents of that data item are not compatible with the class specified for that
data item by its PICTURE clause, then the result of such a reference IS

undefined.

5-26' Procedure Division

ACCEPT

5.8 ACCEPT Statement

Function

The ACCEPT statement makes low-volume data available to the specified
data item.

General Format

Format 1

ACCEPT identifier [FROM mnemonic-name]

Format 2

ACCEPT identifier FROM

Syntax Rule

The mnemonic-name in Format 1 must be specified III the
SPECIAL-NAMES paragraph of the Environment Division and must be
associated with a hardware device.

General Rules

Format 1

1. The ACCEPT statement causes the transfer of data from the hardware
device. This data replaces the contents of the data item named by the
identifier.

2. The ACCEPT statement causes a stream of bytes to be transferred with no
editing or conversion to the data item specified by the identifier. The data
item is treated as alphanumeric regardless of its cla$s. The data is aligned
at the leftmost character position of the data item with space fill or trunca
tion to the right.

3. If the FROM mnemonic-name phrase is not specified, the hardware device
is the default system input device.

Format 2

4. The ACCEPT statement causes the information requested to be trans
ferred to the data item specified by the identifier according to the rules of
the MOVE statement. DATE, DAY, and TIME are conceptual data items
and, therefore, are not described in the COBOL program. Their usage is
DISPLAY.'

Procedure Division 5-27

ACCEPT
Continued

5. DATE is composed of the data elep1ents year of century, month of year,
and day of month. The sequence of the data element codes is from high
order to low order (left to right), that is, year of century, month of year,
and day of month. Thus, July 4, 1976 is expressed as 760704. DATE, when
accessed by a COBOL program, behaves as if it had been described in the
COBOL program as an unsigned elementary numeric integer data item six
digits long.

6. DAY is composed of the data elements year of century and day of year.
The sequence of the data element codes is from high order to low order (left
to right). That is, year of century, day of year. Thus, July 4, 1976 is
expressed as 76186. DAY, when accessed by a COBOL program, behaves
as if it had been described in a COBOL program as an unsigned, elementa
ry, numeric integer data item five digits long.

7. TIME consists of the data elements hours, minutes, seconds and hun
dredths of a second. TIME is based on elapsed time after midnight on a
24-hour clock basis; thus, 2:41 p.m. would be expressed as 14410000.
TIME, when accessed by a COBOL program, behaves as if it had been
described in a COBOL program as an unsigned, elementary, numeric in
teger data item eight digits long. The minimum value of TIME is
00000000; the maximum:value is 23595999.

5-28 Procedure Division

ADD

5.9 ADD Statement

Function

The ADD statement adds two or more numeric operands together and stores
the result.

General Format

Format 1

{
identifier-I} [, identifier-2]

ADD .,. TO identifier-3 [ROUNDED]
Ii teral-I , Ii teral-2

[, identifier-4 [ROUNDED]] ...

GON SIZE ERROR imperative-statemen~

Format 2

ADD {identifier-I} ,{identifier-2} [, identifier-3]

literal-I literal-2 , literal-3

GIVING identifier-4 [ROUNDED] [, identifier-5 [ROUNDED]] ...

[; ON SIZE ERROR imperative-statement]

Format 3

{
CORRESPONDING}

ADD identifier-I TO identifier-2 [ROUNDED]
CORR .

[; ON SIZE ERROR imperative-statement]

Syntax Rules

1. In Formats 1 and 2, each identifier must refer to an elementary numeric
item, except that, in Format 2, identifier-4, following the word GIVING,
must refer to either an elementary numeric item or an elementary numeric
edited item. In Format 3, each identifier must refer to a group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits (see
Section 5.7.4, Arithmetic Statements).

a. In Format 1, the composite of operands is determined by using all of the
operands in a given statement.

Procedure Division 5-29

ADD
Continued

b. In Format 2, the composite of operands is determined by using all of the
operands in a given statement excluding the data items that follow the
word GIVING.

c. In Format 3, the composite of operands is determined separately for
each pair of corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

1. If Format 1 is used, the values of the operands preceding the word TO are
added together, then the sum is added to the current value of identifier-3,
and the result is stored into identifier-3. This process is repeated for each
operand following identifier-3.

2. If Format 2 is used, the values of the operands preceding the word GIVING
are added together, then the sum is stored as the new value of each
identifier-4, ,identifier-5, ... ,.

3. If Format 3 is used, data items in identifier-I are added to and stored in
corresponding data items in identifier-2.

4. The compiler ensures that enough places are carried (unless an intermedi
ate result exceeds the I8-digit limitation) to avoid losing significant digits
during execution.

5-30 Procedure Division

ALTER

5.1 0 ALTER Statement

Function

The ALTER statement modifies the destination of a GO TO statement.

General Format

ALTER procedure-name-l TO [PROCEED TOl procedure-name-2

[, procedure-name-3 TO [PROCEED TOl procedure-name-4l ...

Syntax Rules

1. Each procedure-name-l, procedure-name-3, ... , is the name of a paragraph
that contains a single sentence consisting of a GO TO statement without
the DEPENDING phrase.

2. Each procedure-name-2, procedure-name-4, ... , is the name of a para
graph or section in the Procedure Division.

General Rule

Execution of the ALTER statement modifies the GO TO statement in the
paragraph named with procedure-name-l and procedure-name-3 so that
subsequent executions of the modified GO TO statements cause transfers of
control to procedure-name-2, procedure-name-4, ... , respectively.

Procedure Division 5-31

CALL

5.11 CALL Statement

Function

The CALL statement transfers control from one program to another within
the executable image.

General Format

CALL literal

[usmG
[BY REFERENCE]
BY VALUE identifier-l [identifier-2] ...
BY DESCRIPTOR

[
BY REFERENCE I
BY VALUE
BY DESCRIPTOR

[GIVING identifier-5]

Syntax Rules

identifi,,-3 [identifi,,-4 J. ..]

1

1. Literal must be a nonnumeric literal, one to 15 characters long, consisting
of the characters 0-9, A-Z, $ (dollar sign), and _ (underscore). Literal is
the entry point in the called subprogram, For COBOL subprograms, lit
eral is the called program's PROGRAM-ID.

2. The same identifier can be referenced more than once in the USING
phrase.

3. If an initial mechanism (REFERENCE, VALUE, or DESCRIPTOR) is
not specified, BY REFERENCE is the default.

4. A mechanism applies to all id~ntifiers following it until a new mechanism
(if any) is specified.

General Rules

1. The program whose name is specified by the value of literal is the called
program; the program in which the CALL statement appears is'the calling
program.

2. The execution of a CALL statement transfers control to the called pro
gram.

3. The CALL statement can appear anywhere in the Procedure Division of a
program, regardless of its segmentation structure.

5-32 Procedure Division

CALL
Continued

4. A called program is in its initial state the first time it is called within an
image.

I On all later entries into the called program, the state of the program
remains unchanged from its state when last exited. This includes all data
fields, the status and positioning of all files, and all alterable switch set
tings.

5. Called programs can contain CALL statements. However, a called pro
gram must not contain a CALL statement that directly or indirectly calls
the calling program. .

6. The USING phrase is included in the CALL statement only if there is a
nonempty USING phrase in the Procedure Division header of the called
COBOL program or a nonempty argument list in the header of the called
non-COBOL program. The number of operands in corresponding USING
phrases (or argument lists) must be identical.

7. The method by which the CALL statement makes data available to the
called program is known as the mechanism. The mechanisms are:

a. REFERENCE - The address of (pointer to) the data item is passed to
the called program. This is the default mechanism; that is, arguments
are passed by REFERENCE if a mechanism is not specified.

b. VALUE - The value contained in the data item is passed to the called
program. The data item must be a longword COMPUTATIONAL item
with no scaling or implied decimal point; that is, the picture of the
data item must be in the range S9(5) TO S9(9).

c. DESCRIPTOR - The address of (pointer to) the descriptor of the data
item is passed to the called program. The usage of the data item
cannot be COMPUTATIONAL.

8. Only the REFERENCE mechanism can be used to call COBOL subpro
grams. Identifiers in the PROCEDURE DIVISION USING phrase of a
called COBOL program are interpreted to be BY REFERENCE.

9. The order of appearance of identifiers in the USING phrase is critical.
Corresponding identifiers refer to a single set of data that is available to
the calling and called program. The correspondence is positional, not by
name. For index-names, no such correspondence is established; therefore,
index-names in the called and calling program always refer to separate
indexes.

For non-COBOL called programs, the mechanism for each identifier in the
using phrase must be identical to the mechanism for each argument in the
called program's argument list.

10. Identifier-5 must be defined as a COMPUTATIONAL integer with a pic
ture in the range S9(5) to S9(9). If the called program returns a single
longword (4-byte) function result, identifier-5 contains the value on re
turn from the called program.

COBOL programs cannot return a function result.

Procedure Division 5-33

CLOSE (Sequential)

5.12 CLOSE Statement (Sequential)

Function

The CLOSE statement terminates the processing of reels/units and files with
optional rewind and/or lock or removal, where applicable.

General Format

CLOSE file-name-l

r

, file-name-2

Syntax Rules

r -

{REEL} [WITH NO REWIND]
UNIT FOR REMOVAL

WITH {NO REWIND}
LOCK

'- - .-
{ REEL} [WITH NO REWINPf

UNIT FOR REMOVAL J

WITH {NO REWIND}
'- LOCK --

1. The REEL/UNIT phrase must be used only for sequential files.

2. The files referenced in the CLOSE statement need not all have the same
organization or access.

General Rules

. Except where otherwise stated in the general rules below, the terms REEL
and UNIT are synonymous and completely inte'rchahgeable in the CLOSE
statement. Treatment of sequential mass storage files is logically equivalent
to the treatment of a file on tape or an analogous sequential medium.

1. A CLOSE statement can be executed for a file only when the file is open.

2. For the purpose of showing the effect of various types of CLOSE state
ments as applied to various storage media, all files are divided into the
following categories:

a. Non-reel/unit. A file whose input or output medium is such that the
concept of rewind and reels/units has no meaning.

b. Sequential single-reel/unit. A sequential file that is entirely contained
on one reel/unit.

c. Sequential multi-reel/unit. A sequential file that is contained on more
than one reel/unit.

5-34 Procedure Division

CLOSE (Sequential)
Continued

3. The results of executing each type of CLOSE for each category of file are
summarized in Table 5-3.

Table 5-3: Relationship of CLOSE Statement Formats to File
Categories*

File Category

CLOSE Sequential Sequential
Statement Single- Multi-

Format Non-ReeVUnit Reel/Unit ReeVUnit

CLOSE C C,G C,G,A

CLOSE WITH LOCK C,E C,G,E C,G,E,A

CLOSE WITH NO REWIND X C,B C,B,A

CLOSE REELIUNIT X X F,G

CLOSE REEL/UNIT X X F,D,G
FOR REMOVAL

CLOSE REEL/GNIT X X F,B
WITH NO REWIND

*The definitions of the symbols in the table are given below. Where the definition depends on
whether the file is an input, output, or input-output file, alternate definitions are given;
otherwise, a definition applies to input, output, and input-output files.

A Previous Reels/Units Unaffected

Input Files and Input-Output Files:

All reels/units in the file prior to the current reel/unit are processed
according to the standard reel/unit swap procedure, except those
reels/units controlled by a prior CLOSE REEL/UNIT statement. If the
current reel/unit is not the last in the file, the reels/units in the file
following the current one are not processed.

Output Files:

All reels/units in the file prior to the current reel/unit are processed
according to the standard reel/unit swap procedure, exc~pt those
reels/units controlled by a prior CLOSE REEL/UNIT statement.

B No Rewind of Current Reel

The current reel/unit is left in its current position.

Procedure Division 5-35

CLOSE (Sequential)
Continued

C Close File

Input Files and Input-Output Files:

If the file is positioned at its end and label records are specified for the
file, the labels are processed according to the Record Management
Services. Closing operations specified by the Record Management Ser
vices are executed. If the file is positioned at its end and label records
are not specified for the file, label processing does not take place, but
other closing operations specified by the Record Management Services
are executed. If the file ~s positioned other than at its end, the closing
operations specified by the Record Management Services are execut
ed, but there is no ending label processing.

Output Files:

If label records are specified for the file, the labels are processed ac
cording to the standard label convention. Closing operations specified
by the Record Management Services are executed. If label records are
not specified for the file, label processing does not take place, but other
closing operations specified by the Record Management Services are
executed.

o Reel/Unit Removal

A Record Management Services defined technique is supplied to en
sure that the current reel or unit is rewound when applicable, and that
the operating system is notified that the reel or unit is logically re
moved from this run unit; however, the reel or unit can be accessed
again, in its proper order of reels or units within the file, if a CLOSE
statement without the REEL or UNIT phrase is subsequently exe
cuted for this file followed by the execution of an OPEN statement for
the file.

E File Lock

The file cannot be opened again during this execution of the run unit.

F Close Reel/Unit

Input Files:

The following operations take place:

(1) A reel/unit swap.

(2) The standard beginning reel/unit label procedure is executed.

The next executed READ statement for that file makes available the
next data record on the new reel/unit.

5-36 Procedure Division

Output Files and Input-Output Files:

The following operations take place:

CLOSE (Sequential)
Continued

(1) (For output files only) The standard ending reel/unit label
procedure is executed.

(2) A reel/unit swap.

(3) The standard beginning reel/unit label procedure is executed.

For input-output files, the next executed READ statement that refer
ences that file makes the next logical data record on the next mass
storage unit available. For output files, the next executed WRITE
statement that references that file directs the next logical data record
to the next reel/unit of the file.

G Rewind

The current reel or analogous device IS positioned at its physical
beginning.

X Illegal

This is an illegal combination of a CLOSE option and a file category.
The object program execution is terminated.

4. If the file is open when a STOP RUN statement is executed or when
program execution terminates prematurely on an error condition, the file is
closed automatically.

5. If the OPTIONAL phrase has been specified for the file in the
FILE- CONTROL paragraph of the Environment Division and the file is not
present, the standard end-of-file processing is not performed for that file.

6. If a CLOSE statement without the REEL or UNIT phrase has been exe
cuted for a file, no other statement can be executed that references that
file, either explicitly or implicitly, unless an intervening OPEN statement
for that file is executed.

7. The WITH NO REWIND and FOR REMOVAL phrases will have no effect
at object time if they do not apply to the storage medium on which the file
resides.

8. Following the successful execution of a CLOSE statement without the
REEL or UNIT phrase, the record area associated with a file-name is no
longer available.

Procedure Division 5-37

CLOSE (Sequential)
Continued

9. If an error occurs during the execution of a CLOSE statement issued
without the UNIT or REEL phrase specified, the CLOSE will not occur.
The value 98 is placed in the FILE STATUS data item (if one was speci
fied) associated with the file.

10. If an error occurs during the execution of a CLOSE statement issued with
the UNIT or REEL phrase specified, the CLOSE will not occur. The value
99 is placed in the FILE STATUS data item (if one was specified) associ
ated with the file.

5-38 Procedure Division

CLOSE (Indexed & Relative)

5.13 CLOSE Statement (Indexed and Relative)

Function

The CLOSE statement terminates the processing of files with optional lock.

General Format

CLOSE file-name-l [WITH LOCK] [file-name-2 [WITH LOCK]] ...

Syntax Rule

The files referenced in the CLOSE statement need not all have the same
organization or access.

General Rules

1. A CLOSE statement can only be executed for a file in an open mode.

2. After the CLOSE ... WITH LOCK statement is executed, the file cannot
be opened again during the current execution.

3. If a file is open when a STOP RUN statement is executed or when program
execution terminates prematurely un an error condition, the file is closed
automatically.

4. If a CLOSE statement has been executed for a file, no other statement can
be executed that references that file, either explicitly or implicitly, unless
an intervening OPEN statement for that file is executed.

5. Following the successful execution of a CLOSE statement, the record area
associated with file-name is no longer available.

6. If an error occurs during the execution of a CLOSE statement, the CLOSE
will not occur. The value 98 is placed in the FILE STATUS data item (if
one was specified) associated with the file.

Procedure Division· 5-39

COMPUTE

5.14 COMPUTE Statement

Function

The COMPUTE statement assigns the value of an arithmetic expression to
one or more data items .

General Format

COMPUTE identifier-l [ROUNDED] [, identifier-2 [ROUNDEDD ...

= arithmetic-expression [; ON SIZE ERROR imperative-statement]

Syntax Rule

Identifiers that appear only to the left of = must refer to either an elementary
numeric item or an elementary numeric edited item.

General Rules

1. An arithmetic expression, consisting of a single identifier or literal, pro
vides a method of setting the values of identifier-I, identifier-2, etc., equal
to the value of the single identifier or literal. (See Section 5.5, Arithmetic
Expressions.)

2. If more than one identifier is specified for the result of the operation that is
preceding = (equal sign), the value of the arithmetic expression is
computed, and then this value is stored as the new value of each of
identifier-I, identifier-2, etc., in turn.

3. The COMPUTE statement allows you to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data
items imposed by the arithmetic statements ADD, SUBTRACT,
MULTIPLY, and DIVIDE.

4. Arithmetic expressions must not contain non-integer exponents.

5-40 Procedure Division

DELETE (Indexed & Relative)

5.15 DELETE Statement (Indexed and Relative)

Function

The DELETE statement logically removes a record from a file on a directory
device.

General Format

DELETE file-name RECORD [; INVALID KEY imperative-statement]

Syntax Rules

1. The INVALID KEY phrase must not be specified for a DELETE state
ment that references a file in sequential access mode.

2. The INVALID KEY phrase must be specified for a DELETE statement
that references a file that is not in sequential access mode and for which an
applicable USE procedure is not specified.

General Rules

1. The associated file must be open in the 1-0 mode when the DELETE
statement is executed.

2. For files in the sequential access mode, the last input-output statement
executed for file-name prior to the execution of the DELETE statement
must have been a successfully executed READ statement. The record that
was accessed by that READ statement is logically removed from the file. If
the last input-output statement executed for the associated file was not a
successfully executed READ statement, the DELETE statement is not
attempted, and the value of 93 is placed in the File Status data item,
if any, associated with the file to indicate an unsuccessful DELETE
operation.

3. When the INVALID KEY condition is recognized, actions are taken in the
following order:

a. A value is placed into the FILE STATUS data item, if specified for
this file, to indicate an INVALID KEY condition.

b. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative
statement. Any USE procedure specified for this file is not executed.

c. If the INVALID KEY phrase is not specified, but a USE procedure is
specified, either explicitly or implicitly, for this file, that procedure is
executed.

When the INVALID KEY condition occurs, execution of the input-output
statement that recognized the condition is unsuccessful and the file is not
affected.

Procedure Division 5-41

DELETE (Indexed & Relative)
Continued

4. For a relative file in random or dynamic access mode, that record identi
fied by the contents of the RELATIVE KEY data item associated with file
name is logically removed from the file. An INVALID KEY condition can
arise; the action taken is as follows:

a. If the record specified by the contents of the RELATIVE KEY data
item does not exist, the value 23 is placed in the FILE STATUS data
item, if any, associated with the file to indicate an unsuccessful
DELETE operation.

b. If the contents of the RELATIVE KEY data item does not lie within
the range of the key values corresponding to the allocated space for this
file, a boundary violation exists. The value 24 is placed in the FILE
STATUS data item, if any, associated with the file to indicate an
unsuccessful DELETE operation.

5. For an indexed file accessed in random or dynamic mode, the record iden
tified by the contents of the prime record key data item is logically re
moved from the file. If the specified record does not exist, a value of 23
(Invalid Key Condition) is placed in the FILE STATUS data item associ
ated with file-name.

6. After the successful execution of a DELETE statement, the identified
record has been logically removed from the file and can no longer be
accessed.

7. The execution of a DELETE statement does not affect the contents of the
record area associated with file-name.

8. The current record pointer is not affected by the execution of a DELETE
statement.

9. A DELETE statement will fail if it is executed for a record that is being
simultaneously accessed by another process. The value 92 is placed in the
FILE STATUS data item, if one was specified for the file.

10. If an unexplained error occurs during the execution of a DELETE state
ment, the execution will fail. A value of 30 is placed in the FILE STATUS
data item, if one was specified for the file.

5-42 Procedure Division

DISPLAY

5.16 DISPLAY Statement

Function

The DISPLAY statement transfers low-volume data to an appropriate
hardware device.

General Format

{
identifier-I} [,identifier-2]

DISPLAY
literal-I ,literal-2

[UPON mnemonic-nameJ[WITH NO ADVANCING]

Syntax Rules

1. The mnemonic-name is associated with a hardware device m the
SPECIAL-NAMES paragraph in the Environment Division.

2. Each literal except ALL can be any figurative constant.

3. If the literal is numeric, it must be an unsigned integer.

General Rules

1. The DISPLAY statement causes the contents of each operand to be
transferred to the hardware device in the order listed, with no editing or
conversion.

2. If a figurative constant is specified as one of the operands, only a single
occurrence of the figurative constant is displayed.

3. When a DISPLAY statement contains more than one operand, the size of
the sending item is the sum of the sizes associated with the operands, and
the values of the operands are transferred in the sequence in which the
operands are encountered.

4. When the WITH NO ADVANCING phrase is not specified, a line feed
character is prefixed and a carriage return character is appended to the
sending item. If the sending item exceeds the size of a line on the hardware
device, the excess characters may appear on following line(s) or may be
lost, depending on the device driver routine. Vertical and horizontal for
matting characters may be placed in the sending item.

5. When the WITH NO ADVANCING phrase is specified, the carriage re
turn character is not appended to the sending item. Depending on the
device handler, the device will remain positioned on the same line and on
the character position following the last character displayed. This is espe
cially useful when typing prompting messages on the terminal.

6. If the UPON phrase is not used, the data is written on the user's standard
display device.

Procedure Division 5-43

DIVIDE

5.17 DIVIDE Statement

Format 1

Function

The DIVIDE statement divides one numeric data item into another and sets
the value of data items to the quotient and remainder.

General Format

DIVIDE {
identifier-I}

INTO identifier-2 [ROUNDED]

literal-l

[, identifier-3 [ROUNDED]] ...

[; ON SIZE ERROR imperative-statement]

Format 2

DIVIDE GIVING identifier-3 [ROUNDED] {
identifier-l } INTO { identifier-2 }

literal-l literal-2

[. identifier-4 [ROUNDED]]

[; ON SIZE ERROR imperative-statemen~

Format 3

DIVIDE {
identifier-l t BY

literal-l f
{

identifier-2}

literal-2

[. identifier-4 [ROU~DED]] ...

[; ON SIZE ERROR imperative-statement]

Format 4

GIVING identifier-3 [ROUNDED]

DIVIDE INTO GIVING identifier-3 [ROUNDED] {
identifier-I} '{ identifier-2}

literal-I literal-2

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

(continued on next page)

5-44 Procedure Division

Format 5

DIVIDE
Continued

{
identifier-I} BY

DIVIDE
literal-l

{
identifier-2}

GIVING identifier-3 [ROUNDED]

literal-2

REMAINDER identifier-4 [;ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to an elementary numeric item, except that any
identifier associated with the GIVING or REMAINDER phrase must refer
to either an elementary numeric item or an elementary numeric edited
item.

2. Each literal must be a numeric literal

3. The composite of operands, which is the hypothetical data item re
sulting from the superimposition of all receiving data items (except the
REMAINDER data item) of a given statement aligned on their decimal
points, must riot contain more than 18 digits.

General Rules

1. When Format 1 is used, the value of identifier-l or literal-l is divided into
the value of identifier-2. The value of the dividend (identifier-2) is re
placed by this quotient; the same' applies for identifier-l or literal-l and
identifier-3, etc.

2. When Format 2 is used, the value of identifier-l or literal-l is divided into
identifier-2 or literal-2, and the result is stored in identifier-3, identi
fier-4, etc.

....
3. When Format 3 is used, the value of identifier-l or literal-l is divided by

the value of identifier-2 or literal-2, and the result is stored in identifier-3,
identifier-4, etc.

4. Formats 4 and 5 are used when a remainder from the division operation is
desired, normally identifier-4. The remainder in COBOL is defined as the
result of subtracting the product of the quotient (identifier-3) and the
divisor from the dividend. If identifier-3 is defined as a numeric edited
item, the quotient used to calculate the remainder is an intermediate field
that contains the unedited quotient. If ROUNDED is used, the quotient
used to calculate the remainder is an intermediate field that contains the
quotient of the DIVIDE statement, truncated rather than rounded.

Procedure Division 5-45

DIVIDE
Continued

5. In Formats 4 and 5, the accuracy of the REMAINDER data item
(identifier-4) is defined by the calculation described above. Appropriate
decimal alignment and truncation (not rounding) will be performed for
the content of the data item referenced by identifier-4, as needed.

6. When the ON SIZE ERROR phrase is used in Formats 4 and 5, the follow
ing rules apply:

a. If the size error occurs on the quotient, no remainder calculation is
meaningful. Therefore, the contents of the data items referenced by
both identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs on the remainder, the contents of the data item
referenced by identifier-4 remain unchanged. However, as with other
instances of multiple results of arithmetic statements, you will have to
do your own analysis to recognize which situation has occurred.

5-46 Procedure Division

EXIT

5.18 EXIT Statement

Function

The EXIT statement provides a common end point for a series of procedures,
or marks the logical end of a called program.

General Format

EXIT [PROGRAM]

Syntax Rules

1. The EXIT statement without the PROGRAM phrase must appear only in
a sentence by itself and comprise the only sentence in the paragraph.

2. If an EXIT PROGRAM statement appears in a consecutive sequence of
imperative statements within a sentence, it must appear as the last state
ment in that sequence.

General Rules

1. An EXIT statement without the optional word PROGRAM serves only to
enable you to assign a procedure-name to a given point in a program. Such
an EXIT statement has no other effect on the compilation or execution of
the program.

2. Execution of an EXIT PROGRAM statement in a called program causes
control to be passed to the calling program. If the EXIT PROGRAM
statement is executed in a program that is not under the control of a
calling program, the EXIT PROGRAM statement causes execution of the
program to continue with the next executable statement.

Procedure Division 5-47

GO TO

5.19 GO TO Statement

Function

The GO TO statement transfers control from one part of the Procedure
Division to another.

General Format

Format 1

UQ TO (procedure-name-I]

Format 2

GQ TO procedure-name-l G procedure-name-~ ... , procedure-:name-n

DEPENDING ON identifier

Syntax Rules

1. Identifier is the name of a numeric elementary item described without any
positions to the right of the assumed decimal point.

2. When a paragraph is referenced by an ALTER statement, that paragraph
can consist only of a paragraph header followed by a Format 1 GO TO
statement.

3. A Format 1 GO TO statement without procedure-name-l can only appear
in a single statement paragraph.

4. If a GO TO statement represented by Format 1 appears in a consecutive
sequence of imperative statements within a sentence, it must appear as the
last statement in that sequence.

General Rules
\

1. When a GO TO statement represented by Format 1 is exe<;uted, control is
transferred to procedure-name-l or to another procedure-name if the GO
TO statement has been modified by an ALTER statement.

2. If procedure-name-l is not specified in Format 1, an ALTER statement
referring to this GO TO statement must be executed prior to the execution
of this GO TO statement.

3. When a GO TO statement represented by Format 2 is executed, control is
transferred to procedure-name-l, procedure-name-2, etc., depending on
whether the value of the identifier is 1, 2, ... , n. If the value of the identifier
is anything other than the positive or unsigned integers 1, 2, ... , n, then no
transfer occurs and control passes to the next statement in the normal
sequence for execution.

5-48 Procedure Division

IF

5.20 IF Statement

Function

The IF statement causes a condition to be evaluated. The subsequent flow of
control of the object program depends on whether the value of the condition is
true or false.

General Format

{
statement-l }

IF condition;
NEXT SENTENCE

[
;., ELSE statement-2]

ELSE NEXT SENTENCE

Syntax Rules

1. Statement-l and statement-2 represent either an imperative statement
or a conditional statement, and either can be followed by a conditional
statement.

2. The ELSE NEXT SENTENCE phrase can be omitted if it immediately
precedes the terminal period of the sentence.

General Rules

1. When an IF statement is executed, the following transfers of control occur:

a. If the condition is true, statement-l is executed if specified. If
statement-l contains a procedure branching or conditional state
ment, control is explicitly transferred in accordance with the rules
of that statement. If statement-l does not contain a procedure
branching or conditional statement, the ELSE phrase, if specified, is
ignored and control passes to the next executable senten~e.

b. If the condition is true and the NEXT SENTENCE phrase is specified
instead of statement-l, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

c. If the condition is false, statement-lor its surrogate NEXT
SENTENCE is ignored, and statement-2, if specified, is executed. If
statement-2 contains a procedure branching statement or conditional
statement, control is explicitly transferred in accordance with the
rules of that statement. If statement-2 does not contain a procedure
branching or conditional statement, control passes to the next
executable sentence. If the ELSE statement-2 phrase is not specified,
statement-l is ignored and control passes to the next executable
sentence.

Procedure Division 5-49

IF
Continued

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is
specified, statement-l is ignored, if specified, and control passes to the
next executable sentence.

2. Statement-l and/or statement-2 can contain an IF statement. In this case
the IF statement is said to be nested.

IF statements within IF statements can be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE en
countered is considered to apply to the immediately preceding IF that has
not been already paired with an ELSE.

5-50 Procedure Division

INSPECT

5.21 INSPECT Statement

I ..

Function

The INSPECT statement is used to count (Format 1), replace (Format 2), or
count and replace (Format 3) occurrences of single characters in a data item.

General Format

Format 1

Ii\SPECT identifier-l TALLYING

, identifier-2 FOR ,

,ALL }

tr.,EADING

CHARACTERS

Format 2

I""ISPECT identifier-l REPLACI:--.JG ,.

iden tifier-3

[{
BEFORE} . ~ {identifier-4}]

INI 1 IAL
AFTER literal-2

literal-l

{
identifier-6}

CHARACTERS BY
literal-4 -

[{
BEFORE} {identifier-7}]

INITIAL
AFTER literal-5

ALL

{
identifier-5} {identifier-6}~{BEFORE}. {identifier-7}]
,BY I]\;ITIAL

literal-3 literal-4 AFTER literal-5
, LEADIi\G

" Format 3

INSPECT identifier-l TALLYING

{
ALL }

, LEADING_

{
identifier-3}

~IBEFORE} literal-l
AFTER

{identifier-4}~ INITIAL
literal-2

, identifier-2 FOR

CHARACTERS

REPLACING

,.
CHARACTERS BY {

. dentifier-6} ~{BEFORE}
INITIAL

iteral-4 AFTER

, identifier-7t]
hteral-5 f.

,{identifier-5} BY {identifier-6}[{BEFORE} INITIAL {identifier-7}]

literal-3 literal-4 AFTER literal-5

, LEADI:--.JG

FIRST

" ~

Procedure Division 5-51

INSPECT
Continued

Syntax Rules

All Formats

1. Identifier-I must reference either a group item or any category of
elementary item described (either implicitly or explicitly) as USAGE
IS DISPLAY.

2. Identifier-3 .. .identifier-n must reference either an elementary alphabetic,
alphanumeric, or numeric item described (either implicitly or explicitly)
as USAGE IS DISPLAY.

3. Each literal must be nonnumeric and can be any figurative constant
except ALL.

4. Literal-I, literal-2, literal-3, literal-4, and literal-5, and the data items
referenced by identifier-3, identifier-4, identifier-5, identifier-6, and
identifier-7, can be any length except as specifically restricted by syntax
and general rules.

Formats 1 and 3 only

5. Identifier-2 must reference an elementary numeric data item.

6. If either literal-lor liter'al-2 is a figurative constant, the figurative con
stant refers to an implicit I-character data item.

Formats 2 and 3 only

7. The size of the data referenced by literal-4 or identifier-6 must be
equal to the size of the data referenced by literal-3 or identifier-5. When a
figurative constant is used as literal-4, the size of the figurative constant
is equal to the size of literal-3 or the size of the data item referenced by
identifier-5.

8. When the CHARACTERS phrase is used, literal-4, literal-5, or the size of
the data item referenced by identifier-6, identifier-7, must be one charac
ter in length.

9. When a figurative constant is used as literal-3, the data referenced by
literal-4 or identifier-6 must be one character in length.

5-52 Procedure Division

General Rules

All Formats

INSPECT
Continued

1. Inspection (which includes the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for
tallying and/or replacing) begins at the leftmost character position of the
data item referenced by identifier-I, regardless of its class, and proceeels
from left to right to the rightmost character position, as described in
General Rules 4 through 6.

2. For use in the INSPECT statement, the contents of the data item refer
enced by identifier-I, identifier-3, identifier-4, identifier-5, identifier-6 or
identifier-7 are treated as follows:

a. If any of the identifiers is described as alphanumeric, the INSPECT
statement treats the contents of each identifier as a cqaracter-string.

b. If any of the identifiers is described as unsigned numeric, the data
item is inspected as though it had been redefined as alphanumeric (see
General Rule 2a) and the INSPECT statement had been written to
reference the redefined data item.

c. If any of the identifiers is described as signed numeric, the data item is
inspected as though it had been moved to an unsigned numeric data
item of the same length and then the rules in General Rule 2b had been
applied. (See Section 5.22, MOVE Statement).

3. In General Rules 4 through 11, all references to literal-I, literal-2,
literal-3, literal-4, and literal-5 apply equally to the contents of the
data item referenced by identifier-3, identifier-4, identifier-5,
identifier-6, and identifier-7, respectively.

4. During inspection of the contents of the data item referenced by
identifier-I, each properly matched occurrence of literal-I is tallied
(Formats I and 3) and/or each properly matched occurrence of literal-3 is
replaced by literal-4 (Formats 2 and 3).

5. The comparison operation to determine the occurrences of li teral-I to be
tallied and/or occurrences of literal-3 to be replaced occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are consid
ered in the order they are specified in the INSPECT statement from
left to right. The first literal-I, literal-3 is compared to an equal num
ber of contiguous characters, starting with the leftmost character posi
tion in the data item referenced by identifier-I. Literal-I, literal-3 and
that portion of the contents of the data item referenced by identifier-I
match if, and only if, they are equal, character for character.

Procedure Division 5-53

INSPECT
Continued

b. If no match occurs in the comparison of the first literal-I, literal-3, the
comparison is repeated with each successive literal-I, literal-3, if any,
until either a match is found or there is no next successive literal-I,
literal-3. When there is no next successive literal-I, literal-3, the char
acter position in the data item referenced by identifier-l immediately
to the right of the leftmost character position considered in the last
comparison cycle is considered as the leftmost character position, and
the comparison cycle begins again with the first literal-I, literal-3.

c. Whenever a match occurs, tallying and/or replacing takes place as de-
. scribed in General Rules 8 through 10. The character position in the
data item referenced by identifier-l immediately to the right of the
rightmost character position that participated in the match is now
considered to be the leftmost character position of the data item refer
enced by identifier-I, and the comparison cycle starts again with the
first literal-I, literal-3.

d. The comparison operation continues until the rightmost character posi
tion of the data item referenced by identifier-l has participated in a
match or has been considered as the leftmost character position. When
this occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied I-character oper
and participates in the cycle described in paragraphs 5a through 5d
above, except that no comparison to the contents of the data item
referenced by identifier-l takes place. This implied character is consid
ered always to match the leftmost character of the contents of the data
item referenced by identifier-l participating in the current comparison
cycle.

6. The comparison operation defined in General Rule 5 is affected by the
BEFORE and AFTER phrases as follows:

a. If the BEFORE or AFTER phrase is not specified, literal-I, literal~3, or
the implied operand of the CHARACTERS phrase participates in the
comparison operation as described in General Rule 5.

b. If the BEFORE phrase is specified, the associated literal-I, literal-3 or
the implied operand of the CHARACTERS phrase participates only in
those comparison cycles that involve that portion of the contents of the
data item referenced by identifier-l from its leftmost character position
up to, but not including, the first occurrence of literal-2, literal-5
within the contents of the data item referenced by identifier-I. The
position of this first occurrence is determined before the first cycle of
the comparison operation described in General Rule 5 is begun.

If, on any comparison cycle, literal-I, literal-3 or the implied operand
of the CHARACTERS phrase is not eligible to participate, it is

5-54 Procedure Division

INSPECT
Continued

considered not to match the contents of the data item referenced by
identifier-I. If there is no occurrence of literal-2, literal-5 within the
contents of the data item referenced by identifier-I, its associated
literal-I, literal-3, or the implied operand of the CHARACTERS
phrase participates in the comparison operation as though the
BEFORE phrase had not been specified.

c. If the AFTER phrase is specified, the associated literal-I, literal-3 or
the implied operand of the CHARACTERS phrase can par~icipate only
in those comparison cycles which involve that portion of the contents of
the data item referenced by identifier-I. The comparison begins from
the character position immediately to the right of the rightmost charac
ter position of the first occurrence of literal-2, literal-5 within the con
tents of the data item referenced by identifier-I and the rightmost
character position ofthe data item referenced by identifier-I. The posi
tion of this first occurrence is determined before the first cycle of the
comparison operation described in General Rule 5 is begun.

If, on any comparison cycle, literal-I, literal-3 or the implied operand
of the CHARACTERS phrase is not eligible to participate, it is
considered not to match the contents of the data item referenced by
identifier-I. If there is no occurrence of literal-2, literal-5 within the
contents of the data item referenced by identifier-I, its associated
literal-I, literal-3, or the implied operand of the CHARACTERS
phrase is never eligible to participate in the comparison operation.

Format 1

7. The contents of the data item referenced by identifier-2 are not initialized
by the execution of the INSPECT statement.

8. The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data item refer
enced by identifier-2 is incremented by one for each occurrence of
literal-I matched within the contents of the data item referenced by
identifier-I.

b. If the LEADING phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one for each contiguous
occurrence of literal-I matched within the contents of the data item
referenced by identifier-I, provided that the leftmost such occurrence is
at the point where comparison began in the first comparison cycle in
which literal-I was eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one for each character
matched, in the sense of General Rule 5e, within the contents of the
data item referenced by identifier-I.

Procedure Division 5-55

INSPECT
Continued

Format 2

9. The required words ALL, LEADING, and FIRST are adjectives that apply
to each succeeding BY phrase until the next adjective appears.

10. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched,
in the sense of General Rule 5e, in the contents of the data item refer
enced by identifier-1 is replaced by literal-4.

b. When the adjective ALL is specified, each occurrence
of literal-3 matched in the contents of the data item referenced by
identifier-1 is replaced by literal-4.

c. When the adjective LEADING is specified, each contiguous occurrence
of literal-3 matched in the contents of the data item referenced by
identifier-1 is replaced by literal-4, provided that the leftmost occur

. rence is at the point where comparison began in the first comparison
cycle in which literal-1 was eligible to participate.

d. When the adjective FIRST is specified,. the leftmost occurrence of
literal-3 matched within the contents of the data item referenced by
identifier-1 is replaced by literal-4.

Format 3

11. A Format 3 INSPECT statement is interpreted and executed as though
two successive INSPECT statements specifying the same identifier-1 had
been written, with one statement being a Format 1 statement with
TALLYING phrases identical to those specified in the Format 3 state
ment, and the other statement being a Format 2 statement with
REPLACING phrases identical to those specified in the Format 3 state
ment. The general rules given for matching and counting apply to the
Format 1 statement, and the general rules given for matching and replac
ing apply to the Format 2 statement.

5-56 Procedure Division

Examples

Following are six examples of the INSPECT statement:

INSPECT
Continued

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A"
count-1 FOR LEADING "A" BEFORE INITIAL "L".

Where word = LARGE, count = 1, count-1 = O.

Where word = ANALYST, count = 0, count-1 = 1.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "N BY
"E" AFTER INITIAL "L".

Where word = CALLAR, count = 2, word = CALLAR.
Where word = SALAMI, count = 1, word = SALEMI.
Where word = LATTER, count = 1, word = LEITER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J"
REPLACING ALL "A" BY "B".

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.
Where word = JACK, count = 3, word = JBCK.
Where word = JUJMAB, count = 5, word = JUJMBB.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "N.

WORD BEFORE: 1 2 X Z ABC D
WORD AFTER: B B B B B ABC D

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "W" BY "Q",
AFTER INITIAL "R".

Where word = RXXBQWY, word = RYYZQQY.

Where word = YZACDWBR, word = YZACDWBR.
Where word = RA WRXEB, word = RAQRYEZ.

Procedure Division 5-57

MOVE

5.22 MOVE Statement

Function

The MOVE statement transfers data, in accordance with the rules of editing,
to one or more 'data areas.

General Format

Format 1

{
identifier-l}

MOVE TO identifier-2 [,identifier-:3l ...

literal

Format 2

{
CORRESPONDING}

MOVE identifier-l TO identifier-2
CQRR

Syntax Rules

1. Identifier-I and literal represent the sending area; identifier-2, identi
fier-3, ... , represent the receiving area.

2. CORR is an abbreviation for CORRESPONDING.

3. When the CORRESPONDING phrase is used, both identifiers must be
group items.

4. An index data item cannot appear as an operand of a MOVE statement.

General Rules

1. If the CORRESPONDING phrase is used, selected items within identi
fier-I are moved to selected items within identifier-2, according to the
rules given in Section 5.7.3, CORRESPONDING Phrase. The results are
the same as if you had referred to each pair of corresponding identifiers in
separate MOVE statements.

2. The data designated by the literal or identifier-I is moved first to identi
fier-2, then to identifier-3, The rules referring to identifier-2 also
apply to the other receiving areas. Any subscripting or indexing associated
with identifier-2, ... , is evaluated immediately before the data is moved to
the respective data item.

5-58 Procedure Division

MOVE
Continued

Any subscripting or indexing associated with identifier-l is evaluated only
once, immediately before data is moved to the first of the receiving
operands. Consider the following statement.

MOVE A (B) TO B, C (B)

The result of this statement is equivalent to:

MOVE A (B) TO temp

MOVE temp TO B
MOVE temp TO C (B)

where temp is an intermediate result item provided by the compiler.

3. Any MOVE in which the sending and receiving items are both elementary
items is an elementary move. Every elementary item belongs to one of the
following categories: numeric, alphabetic, alphanumeric, numeric edited,
alphanumeric edited. These categories are described in the PICTURE
clause. Numeric literals belong to the numeric category, and nonnumeric
literals belong to the alphanumeric category, while the figurative constant
ZERO belongs to the numeric category. The figurative constant SPACE
belongs to the alphabetic category. All other figurative constants belong to
the alphanumeric category.

The following rules apply to an elementary move between these categories:

a. The figurative constant SPACE, a numeric edited, alphanumeric edit
ed, or alphabetic data item must not be moved to a numeric or numeric
edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item
or a numeric edited data item must not be moved to an alphabetic data
item.

c. A non-integer numeric literal or a non-integer numeric data item must
not be moved to an alphanumeric or alphanumeric edited data item.

d. All other elementary moves are legal and are performed according to
the rules given in General Rule 4.

4. Any necessary conversion of data from one form of internal representation
to another takes place during legal elementary moves, as does as any
editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving
item, alignment and any necessary space filling take place as defined
under Standard Alignment Rules, Section 4.2.7. If the size of the send
ing item is greater than the size of the receiving item, the excess charac
ters are truncated on the right after the receiving item is filled. If the
sending item is described as being signed numeric, the operational sign

Procedure Division 5-59

MOVE
Continued

will not be moved; if the operational sign occupied a separate character
position, that character will not be moved, and the size of the sending
item is considered to be one less than its actual size (in terms of stan
dard data format characters).

b. When a numeric or numeric edited item is the receiving item, align
ment by decimal point and any necessary zero-filling take place as
defined under the Standard Alignment Rules, Section 4.2.7, except
where zeros are replaced because of editing requirements.

1. When a signed numeric item is the receiving item, the sign of the
sending item is placed in the receiving item. (See Section 4.3.9,
SIGN Clause.) Conversion of the representation of the sign takes
place as necessary. If the sending item is unsigned, a positive sign is
generated for the receiving item.

2. When an unsigned numeric item is the receiving item, the absolute
value of the sending item is moved and no operational sign is gener
ated for the receiving item.

3. When a data item described as alphanumeric is the sending item,
data is moved as if the sending item were described as an unsigned
numeric integer.

c. When a receiving field is described as alphabetic, justification and any
necessary space-filling take place· as defined under the Standard Align
ment Rules, Section 4.2.7. If the size of the sending item is greater than
the size of the receiving item, the excess characters are truncated on the
right after the receiving item is filled.

5. Any non-elementary move is treated exactly as if it were an alphanumeric
to alphanumeric elementary move, except that there is no conversion of
data from one form of internal representation to another. In such a move,
the receiving area is filled without consideration for the individual elemen
tary or group items contained within either the sending or receiving area.

6. The following table summarizes the permissible types of MOVE state
ments. References after slash marks (for example, /4c) refer to the applica
ble general rule for MOVE.

5-60 Procedure Division

MOVE
Continued

Table 5-4: Permissible MOVE Statements

Category of Receiving Data Item

Category of Numeric Integer
Sending Alphanumeric Edited Numeric Non-Integer

Data Item Alphabetic Alphanumeric Numeric Edited

Alphabetic Yes/4c Yes/4a No/3a
Alphanumeric Yes/4c Yes/4a Yes/4b
Alphanumeric Edited Yes/4c Yes/4a No/3a
Numeric Integer No/3b Yes/4a Yes/4b
Numeric Non-Integer No/3b No/3c Yes/4b
Numeric Edited No/3b Yes/4a No/3a

Procedure Division 5-61

MULTIPLY

5.23 MULTIPLY Statement

Function

The MULTIPLY statement multiplies numeric data items and sets the values
of data items equal to the results.

General Format

Format 1

identifier-l
MULTIPLY BY identifier-2 [ROUNDED]

literal-l

[, identifier-3 [ROUNDED]]

[; ON SIZE ERROR imperative-statement]

Format 2

identifier-l identifier-2
MULTIPLY BY GIVING identifier-3 [ROUNDED]

literal-l literal-l

[,identifier-4 [ROUNDED]] ...

[; ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item, except that in
Format 2 the identifier following the word GIVING must refer to either an
elementary numeric item or an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands, which is that hypothetical data item resulting
from the superimposition of all receiving data items of a given statement
aligned on their decimal points, must not contain more than eighteen (18)
digits.

5-62 Procedure Division

General Rules

MULTIPLY
Continued

1. When Format 1 is used, the value of identifier-lor literal-l is multiplied
by the value of identifier-2. The value of the multiplier (identifier-2) is
replaced by this product; the same result occurs for identifier-lor literal-l
and identifier-3, etc.

2. When Format 2 is used, the value of identifier-lor literal-l is multiplied
by the value of identifier-2 or literal-2 and the result is stored in identi
fier-3, identifier-4, etc.

Procedure Division 5-63

OPEN (Sequential)

5.24 OPEN Statement (Sequential)

OPEN

Function

The OPEN statement initiates the processing of files. It also performs check
ing and/or label writing and other input-output operations.

General Format

/ INPUT file-name-l5vITH NO REWINDJ[file-name-25vITH NO REWIND~... \

) OUTPUT file-name-35vITH NO REWINr:2J[file-name-45vITH NO REWIND]]".

J
1-0 file-name-5 [, file-name-6] ...

EXTEND file-name-7 [, file-name-8]

Syntax Rules

1. The NO REWIND phrase can be used only for sequential files.

2. The 1-0 phrase can be used only for files on directory devices.

3. The EXTEND phrase can be used only for sequential files.

f

I

4. The EXTEND phrase must not be specified for files on multiple file reels.

5. The files referenced in the OPEN statement need not all have the same
organization or access.

General Rules

1. The successful execution of an OPEN statement determines the availabil
ity of the file and results in the file's being in an open mode.

_ 2. The successful execution of an OPEN statement makes the associated
record area available to the program.

3. Prior to the successful execution of an OPEN statement for a given file, no
statement can be executed that explicitly or implicitly refers to that file.

4. An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. In Table 5-5, an X
indicates that the specified statement, used in the sequential access mode,
can be used with the sequential file organization and open mode given at
the top of the column.

5-64 Procedure Division

OPEN (Sequential)
Continued

Table 5-5: Permissible Input-Output Statements for Sequential
Files

Open Mode

Statement Input Output Input-Output Extend

READ X X

WRITE X X

REWRITE X

5. A file can be opened with the INPUT, OUTPUT, EXTEND and 1-0
phrases in the same program. Following the initial execution of an OPEN
statement for a file, each subsequent OPEN statement execution for that
same file must be preceded by the execution of a CLOSE statement,
without the REEL, UNIT, or LOCK phrase, for that file.

6. Execution of the OPEN statement does not obtain or release the first data
record.

7. If label records are specified for the file, the beginning labels are processed
as follows:

a. When the INPUT phrase is specified, execution of the OPEN statement
causes the labels to be checked in accordance with the Record Manage
ment Services conventions for input label checking.

b. When the OUTPUT phrase is specified, execution of the OPEN state
ment causes the labels to be written in accordance with the Record
Management Services conventions for output label writing.

The behavior of the OPEN statement when label records are specified
but not present, or when label records are not specified but are present,
is undefined.

S. The file-description-entry for file-name-1, file-name-2, file-name-5,
file-name-6, file-name-7, or file-name-S must be equivalent to that used
when the file was created.

9. If an input file is designated with the OPTIONAL clause in its SELECT
statement, the object program causes an interrogation for the presence or
absence of this file when the OPEN statement is executed. If the file is not
present, the first READ statement for this file causes the AT END condi
tion to occur.

10. The NO REWIND phrase can be used only with sequential single reel/unit
files.

11. The WITH NO REWIND phrase is ignored if it does not apply to the
storage medium on which the file resides.

Procedure Division 5-65

OPEN (Sequential)
Continued

12.1f the storage medium for the file permits rewinding, the following rules
apply:

a. When neither the EXTEND nor the NO REWIND phrase is specified,
execution of the OPEN statement causes the file to be positioned at its
beginning.

b. When the NO REWIND phrase is specified, execution of the OPEN
statement does not cause the file to be repositioned; the file must be
already positioned at its beginning prior to execution of the OPEN
statement.

13. For files being opened with the INPUT or 1-0 phrase, the OPEN statement
sets the current record pointer to the first record currently existing within
the file. If no records exist in the file, the current record pointer is set so
that the next executed READ statement for the file will result in an AT
END condition.

14. When the EXTEND phrase is specified, the OPEN statement positions
the file immediately following the last logical record qf that file. Subse
quent WRITE statements referencing that file will add records to the file
as though the file had been opened with the OUTPUT phrase.

15. When the EXTEND phrase is specified and the LABEL RECORDS clause
indicates label records are present, the execution of the OPEN statement
includes the following steps:

a. Beginning file labels are processed only in the case of a single reel/unit
file.

b. Beginning reel/unit labels on the last existing reel/unit are processed as
though the file was being opened with the INPUT phrase.

c. Existing ending file labels are processed as though the file is being
opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the
OUTPUT phrase.

16. The 1-0 phrase permits the opening of a directory file for both input and
output operations. Because this phrase implies the existence of the file, it
cannot be used if the directory file is being created.

17. When the 1-0 phrase is specified and the LABEL RECOR,DS clause indi
cates label records are present, the execution of the OPEN statement
includes the following steps:

a. Labels are checked in accordance with the specified conventions for
input-output label checking.

5-66 Procedure Division

OPEN (Sequential)
Continued

b. New labels are written in accordance with the standard conventions for
input-output label writing.

18. Upon successful execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated file contains
no data records.

19.1f the execution of an OPEN statement fails and a USE procedure is
specified for the file (either explicitly or implicitly), the USE procedure is
executed. Execution of an OPEN statement fails for any of the following
reasons:

NOTE:

The value in parentheses after each of the following state
ments is the value that is placed in the FILE STATUS data
item, if one was specified for the file.

a. An OPEN statement executed for a file that is already opened for
exclusive access by another task. (91)

b. An OPEN statement executed for a device that has no available file
space. (95)

c. An OPEN statement executed for a file that shares buffer space with an
already opened file. (96)

d. An OPEN statement executed for a file that cannot be found on its
associated I/O device. (97)

Procedure Division 5-67

OPEN (Indexed & Relative)

5.25 OPEN Statement (Indexed & Relative)

Function

The OPEN statement initiates the processing of files.

General Format

Syntax Rule

INPUT file-name-l
OUTPUT file-name-3

1-0 file-name-5

[, file-name-2]
[, file-name-4]
[, file-name-6]

The files referenced in the OPEN statement need not all have the same
organization or access.

General Rules

1. The successful execution of an OPEN statement determines the availabil
ity of the file and results in the file's being in an open mode.

2. The successful execution of the OPEN statement makes the associated
record area available to the program.

3. Prior to the successful execution of an OPEN statement for a given file, no
statement can be executed that explicitly or implicitly references that file.

4. An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. In Table 5-6, an X
indicates that the specified statement used in the access mode given for
that row can be used with indexed or relative file organizations and the
open mode given at the top of the column.

5-68 Procedure Division

OPEN (Indexed & Relative)
Continued

Table 5-6: Permissible Input-Output Statements for
Indexed and Relative Files

Open Mode

File Access
Mode Statement Input Output Input-Output

Sequential READ X X
WRITE X
REWRITE X
START X X
DELETE X

Random READ X X
WRITE X X
REWRITE X
START
DELETE X

Dynamic READ X X
READ NEXT X X
WRITE X X
REWRITE X
START X X
DELETE X

5. A file can be opened with the INPUT, OUTPUT, and 1-0 phrases in the
same program. Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement execution for that same file must
be preceded by the execution of a CLOSE statement, without the LOCK
phrase, for that file.

6. Execution of the OPEN statement does not obtain or release the first data
record.

7. The file-description-entry for file-name-l, file-name-2, file-name-5, or
file-name-6 must be equivalent to that used when this file was created.

8. For files being opened with the INPUT or 1-0 phrase, the OPEN statement
sets the current record pointer to the first record currently existing within
the file. For indexed files, the prime record key is established as the key of
reference and is used to determine the first record to be accessed. If no
records exist in the file, the next executed sequentially accessed READ
statement for the file results in an AT END condition.

9. Upon successful execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated file contains
no data records.

Procedure Division 5-69

OPEN (Indexed & Relative)
Continued

10. If the execution of an OPEN statement fails and a USE procedure is
specified for the file (either explicitly or implicitly), the USE procedure is
executed. The execution of an OPEN statement will fail for any of the
following reasons:

NOTE:

The value in parentheses after each of the following state
ments is the value that is placed in the FILE STATUS data
item, if one was specified for the file.

a. An OPEN statement executed for a file that is already opened for
exclusive access by another task. (91)

b. An OPEN statement executed for a device that has no available file
space. (95)

c. An OPEN statement executed for a file that shares buffer space with an
already opened file. (96)

d. An OPEN statement executed for a file that cannot be found on its
associated I/O device. (97)

5-70 Procedure Division

PERFORM

5.26 PERFORM Statement

Function

The PERFORM statement is used to transfer control explicitly to one or more
procedures and to return control implicitly whenever execution of the speci
fied procedure is complete.

General Format

Format 1

PERFORM procedure-name-l

Format 2

PERFORM procedure-name-l

Format 3

{
identifier-I}

TIMES
integer

PERFORM procedure-name-l

[{
THROUGH}

THRU

[{
THROUGH}

THRU
pro,odu,o-oam.-2]

[{
THROUGH}

THRU
pro"d",o-oam.-2] UNTIL ,00ditioo-1

(continued on next page)

Procedure Division 5-71

PERFORM
Continued

Format 4

PERFORM procedure-name-l [{
THROUGH}

p,ooodu,e-nam,-2]

r

VARYING {
identifier-2}

literal-l

THRU

{
identifier-3 }

FROM ~ndex-name-2

mdex-name-l

BY UNTIL condition-l {
identifier-4}

literal-2

l AF!ER
{

identifier-5 }
FROM

index-name-3

{
identifier-6 }
index-name-4

literal-3

[AFTER

BY

t identifier-7}
UNTIL condition-2

literal-4

tidentifier-8} {identifier-9}
FROM index-name-6

index-name-5 literal-5

{
identifier-10} J~
. UNTIL condition-3

hteral-6

Syntax Rules

1. Each identifier represents a numeric elementary item described in the
Data Division. In Format 2, identifier-l must be described as a numeric
integer.

2. Each literal r.epresents a numeric literal.

3. The words THRU and THROUGH are equivalent.

4. If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must be an
integer data item.

b. The literal in the associated FROM phrase must be a positive integer.

c. The literal in the associated BY phrase must be a non-zero integer.

5-72 Procedure Division

PERFORM
Continued

5. If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must be
an integer data item.

b. The identifier in: the associated BY phrase must be an integer data
item.

c. The literal in the associated BY phrase must be an integer.

6. Literal in the BY phrase must not be O.

7. Condition-I, condition-2, condition-3 can be any conditional expression
as described in Section 5.6, Conditional Expressions.

8. Where procedure-name-I and procedure-name-2 are both specified and
either is the name of a procedure in the declarative section of the program,
then both must be procedure-names in the same declarative section.

General Rules

1. The data items referenced by identifier-4, identifier"":7, and identifier-IO
must not have a zero value.

2. If an index-name is specified in the VARYING or AFTER phrase, and an
identifier is specified in the associated FROM phrase, then the data item
referenced by the identifier must have a positive value.

3. When the PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name-I (except as indi
cated in General Rules 6b, 6c, and 6d). This transfer of control occurs only
once for each execution of a PERFORM statement. Where a transfer of
control to the named procedure does take place, an implicit transfer of
control to the next executable statement following the PERFORM state
ment is established as follows:

a. If procedure-name-I is a paragraph-name and procedure-name-2 is
not specified, then the return is after the last statement of
procedure-name-I.

h. If procedure-name-I is a section-name and procedure-name-2 is not
specified, then the return is after the last statement of the last para
graph in procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph-name, then the
return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, then the
return is after the last statement of the last paragraph in the section.

Procedure Division 5-73

PERFORM
Continued

4. There is no necessary relationship between procedure-name-I and
procedure-name-2 except that a consecutive sequence of operations is to .
be executed beginning at the procedure named procedure-name-I and
ending with the execution of the procedure named procedure-name-2. In
particular, GO TO and PERFORM statements can occur between
procedure-name-I and the end of procedure-name-2. If there are two or
more logical paths to the return point, then procedure-name-2 can be the
name of a paragraph consisting of the EXIT statement to where all of these
paths must lead.

5. If control passes to these procedures other than by a PERFORM state
ment, control passes through the last statement of the procedure to the
next executable statement as if no PERFORM statement mentioned these
procedures.

6. The PERFORM statements operate as follows, with Rule 5 above applying
to all formats:

a. Format I is the basic PERFORM statement. A procedure referenced by
this type of PERFORM statement is executed once and control then
passes to the next executable statement following the PERFORM
statement.

b. Format 2 is the PERFORM ... TIMES. The procedures are performed
the number of times specified by integer-lor by the initial value of the
data item referenced by identifier-I for that execution. If, at the time of
execution of a PERFORM statement, the value of the data item refer
enced by identifier-I is equal to 0 or is negative, control passes to the
next executable statement following the PERFORM statement. Follow
ing the execution of the procedures the specified number of times,
control is transferred to the next executable statement following the
PERFORM statement.

During execution of the PERFORM statement, references to
identifier-I cannot alter the number of times the procedures are to be
executed from that which was indicated by the initial value of
identifier-I.

c. Format 3 is the PERFORM ... UNTIL. The specified procedures are
performed until the condition specified by the UNTIL phrase is true.
When the condition is true, control is transferred to the next executable
statement after the PERFORM statement. If the condition is true when
the PERFORM statement is entered, no transfer to procedure-name-l
takes place, and control is passed to the next executable statement
following the PERFORM statement.

5-74 Procedure Division

PERFORM
Continued

d. Format 4 is the PERFORM ... VARYING. This variation of the
PERFORM statement is used to augment the values referenced by one
or more identifiers or index-names in an orderly fashion during the
execution of a PERFORM statement. In the following discussion, every
reference to identifier as the object of the VARYING, AFTER and
FROM (current value) phrases also refers to index-names. When index
name appears in a VARYING and/or AFTER phrase, it is initialized
and subsequently augmented (as described below) according to the
rules of the SET statement. When index-name appears in the FROM,
VARYING or AFTER phrase, it is initialized according to the rules of
the SET statement; subsequent augmenta~ion is described below.

In Format 4, when one identifier is varied, identifier-2 is set to the
value of literal-lor the current value of identifier-3 at the point of
initial execution of the PERFORM statement; then, if the condition of
the UNTIL phrase is false, the sequence of procedures,
procedure-name-l through procedure-name-2, is executed once. The
value of identifier-2 is augmented by the specified increment or decre
ment value (the value of identifier-4 or literal-2) and condition-l is
evaluated again. The cycle continues until this condition is true, at
which point, control is transferred to the next executable statement
following the PERFORM statement. If condition-l is true at the begin
ning of execution of the PERFORM statement, control is transferred to
the next executable statement following the PERFORM statement.

The following flowchart shows the VARYING phrase of a PERFORM
statement having one condition:

Figure 5-1: V ARYING Phrase of PERFORM with One Condition

ENTRANCE

+
Set identifier-2 equal to

current FROM value

+
Condition-1 True

Exit

~ False

Execute procedure-name-1
TH RU procedure-name·2 ,
Augment identifier-2 with

current BY value

Procedure Division 5-75

PERFORM
Continued

In Format 4, when two identifiers are varied, identifier-2 and identi
fier-5 are set to the current value of identifier-3 and identifier-6,
respectively. After the identifiers have been set, condition-l is evaluat
ed; if true, control is transferred to the next executable statement; if
false, condition-2 is evaluated. If condition-2 is false,
procedure-name-l through procedure-name-2 are executed once, then
identifier-5 is augmented by identifier-7 or literal-4 and condition-2 is
evaluated again. This cycle of evaluation and augmentation continues
until this condition is true. When condition-2 is true, identifier-5 is set
to the value of literal-3 or the current value of identifier-6, identifier-2
is augmented by identifier-4 and condition-l is reevaluated. The
PERFORM statement is completed if condition-l is true; if not, the
cycles continue until condition-l is true.

During the execution of the procedures associated with the PERFORM
statement, any change to the VARYING variable (identifier-2 and
index-name-l), the BY variable (identifier-4), the AFTER variable
(identifier-5 and index-name-3), or the FROM variable (identifier-3
and index-name-2) will be taken into consideration and will affect the
operation of the PERFORM statement.

The following flowchart shows the VARYING phrase of a PERFORM
statement having two conditions:

Figure 5-2: V ARYING Phrase of PERFORM with Two
Conditions

ENTRANCE

+
Set identifier-2 and identifier-5

to current FROM values

t
Condition-1

True
Exit

~ False

Condition-2
True

+ False

Execute procedure-name-1 Set identifier-5 to its
TH RU procedure-name-2 current FROM value , t
Augment identifier-5 with Augment identifier-2 with

- current BY value current BY value

5-76 Procedure Division

PERFORM
Continued

At the termination of the PERFORM statement, identifier-5 contains
the current value of identifier-6. Identifier-2 has a value that exceeds
the last used setting by an increment or decrement value, unless condi
tion-I was true when the PERFORM statement was entered. Then,
identifier-2 contains the current value of identifier-3.

When two identifiers are varied, identifier-5 goes through a complete
cycle (FROM, BY, UNTIL) each time identifier-2 is varied.

For three identifiers, the mechanism is the same as for two identifiers
except that identifier-8 goes through a complete cycle each time that
identifier-5 is augmented by identifier-7 or literal-4, which in turn goes
through a complete cycle each time identifier-2 is varied.

The following flowchart shows the VARYING phrase of a PERFORM
statement having three conditions:

Figure 5-3: VARYING Phrase of PERFORM with Three
Conditions

ENTRANCE

t
Set identifier-2,

identifier-5, identifier-S
to current FROM values

t
Condition-'

True
Exit

l False

"'
True

,

Condition-2

I False

~ Condition-3
True

! False

Execute Set identifier-S Set identifier-5
procedure-name-' to its current to its current

THRU procedure-name-2 FROM value FROM value

!
'--

Augment identifier-S Augment identifier-5 Augment identifier-2
with current BY value with current BY value with current BY value

Procedure Division 5-77

PERFORM
Continued

After the completion of a Format 4 PERFORM statement, identifier-5
and identifier-8 contain the current value of identifier-6 and identi
fier-9, respectively. Identifier-2 has a value that exceeds its last used
setting by one increment or decrement value, unless condition-l is true
when the PERFORM statement is entered, in which case identifier-2
contains the current value of identifier-3. .

7. If a sequence of statements referred to by a PERFORM statement includes
another PERFORM statement, the sequence of procedures associated with
the included PERFORM must itself either be totally included in, or totally
excluded from, the logical sequence referred to by the first PERFORM.
Thus, an active PERFORM statement, whose execution point begins
within the range of another active PERFORM statement, must not allow
control to pass to the exit of the other active PERFORM statement; fur
thermore, two or more such active PERFORM statements cannot have a
common exit. See the illustrations below.

x PERFORM a THRU m

a

d PERFORM f THRU j

f

J

m---------......J

x PERFORM a THRU m"

a

f

m------+-__J

J

d PERFORM f THRU j

x PERFORM a THRU m

a ------------------~

d PERFORM f THRU j

h

m __________________ ...J

f

J

8. A PERFORM statement that appears in a section that is not in an inde
pendent segment can have within its range, in addition to any declarative
sections whose execution is caused within that range, only one of the fol
lowing:

a. Sections and/or paragraphs wholly contained in one or more non-inde
pendent segments.

b. Sections and/or paragraphs wholly contained in a single independent
segment.

5-78 Procedure Division

r

PERFORM
Continued

9. A PERFORM statement that appears in an independent segment can have
within its range, in addition to any declarative sections whose execution is
caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more non-inde
pendent segments.

b. Sections and/or paragraphs wholly contained in the same independent
segment as that PERFORM statement.

Procedure Division 5-79

READ (Sequential)

5.27 Read Statement (Sequential)

Function

The READ statement makes available the next logical record from a file.

General Format

READ file-name RECORD [INTO identifier] [; AT END imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The stor
age area associated with identifier and the record area associated with file
name must not be allocated to the same storage area.

2. The AT END phrase must be specified if no applicable USE procedure is
specified for file-name.

General Rules

1. The associated file must be open in the INPUT or 1-0 mode at the time
this statement is executed.

2. The record to be made available by the READ statement is determined as
follows:

a. If the current record pointer was positioned by the execution of the
OPEN statement, the record pointed to by the current record pointer is
made available.

b. If the current record pointer was positioned by the execution of a previ
ous READ statement, the current record pointer is updated to point to
the next existing record in the file and then that record is made
available.

3. The execution of the READ statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated.

4. Regardless of the method used to ove~lap access time with processing time,
the concept of the READ statement is unchanged because a record is
available to the object program prior to the execution of any statement
following the READ statement.

5. When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this
is equivalent to an implicit redefinition of the area. The contents of any
data items that lie beyond the range of the current data record are unde
fined at the completion of the execution of the READ statement.

5-80 Procedure Division

READ (Sequential)
Continued

6. If the INTO phrase is specified, the record being read is moved from the
record area to the area specified by identifier according to the rules speci
fied for the MOVE statement without the CORRESPONDING phrase.
The implied MOVE does not occur if the execution of the READ statement
was unsuccessful. Any subscripting or indexing associated with identifier is
evaluated after the record has been read and immediately before it is
moved to the data item.

7. When the INTO phrase is used, the record being read is available in both
the input record area and the data area associated with identifier.

8. If, at the time of execution of a READ statement, the position of the
current record pointer for that file is undefined, the execution of that
READ statement is unsuccessful. The FILE STATUS data item, if any,
associated with the file is set to one of the values detailed in General Rules
11 and 14.

9. If the end of a reel or unit is recognized during execution of a READ
statement and the logical end of the file has not been reached, the follow
ing operations are executed:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

d. The first data record of the new reel/unit is made available.

10. If a file described with the OPTIONAL clause is not present at the time
the file is opened, then, at the time of execution of the first READ state
ment for the file, the AT END condition occurs and the execution of the
READ statement is unsuccessful. The standard end-of-file procedures are
not performed. Execution of the program then proceeds as specified in
General Rule 11 a, b, and c.

11. If, at the time of the execution of a READ statement, no next logical record
exists in the file, the AT END condition occurs and the execution of the
READ statement is considered unsuccessful.

When the AT END condition is recognized, the following actions are taken
in the specified order:

a. The value 10 is placed into the FILE STATUS data item, if any, associ
ated with this file to indicate an AT END condition.

b. If the AT END phrase is specified in the statement causing the condi
tion, control is transferred to the AT END imperative-statement. Any
USE procedure specified for this file is not executed.

Procedure Division 5-81

READ (Sequential)
Continued

c. If the AT END phrase is not specified, then a USE procedure must be
specified, either explicitly or implicitly, for this file. That USE proce
dure is executed.

12. Following the unsuccessful execution of any READ statement, the con
tents of the associated record area and the position of the current record
pointer are undefined.

13. When the AT END condition has been recognized, a READ statement for
that file must not be executed without first executing a successful CLOSE
statement followed by the execution of a successful OPEN statement for
that file.

14. A Format 1 or Format 2 READ statement that fails for an undetermined
reason will cause the value 30 to be placed in the FILE STATUS data
item, if one was specified for the file.

5-82 Procedure Division

READ (Relative)

5.28 READ Statement (Relative)

Format 1

Function

For sequential access, the READ statement makes available the next logical
record from a file on a directory device. For random access, the READ state
ment makes available a specified record from a file on a directory device. For
dynamic access, two forms of the READ statement are available, allowing the
next logical record or a specified logical record to be made available.

General Format

READ file-name["iEXT]RECORD[INTO identifier][; AT END imperative-statement]

Format 2

READ file-name RECORD[INTO identifier] C INVALID KEY imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The stor
age area associated with identifier and the record area associated with file
name must not be allocated to the same storage area.

2. Format 1 must be used for all files in sequential access mode.

3. Format 1 with the NEXT phrase specified must be used for files in dy
namic access mode when records are to be retrieved sequentially.

4. Format 2 is used for files in random access mode or for files in dynamic
access mode when records are to be retrieved randomly.

5. The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

General Rules

1. The associated files must be open in the INPUT or 1-0 mode at the time
this statement is executed.

2. The record to be made available by a Format 1 READ statement is deter
mined by updating the current record pointer to point to the next existing
record in the file.

3. Regardless of the method used to overlap access time with processing time,
the concept of the READ statement is unchanged because a record is
available to the object program prior to the execution of any statement
following the READ statement.

Procedure Division 5-83

READ (Relative)
Continued

4. When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this
is equivalent to an implicit redefinition of the area. The contents of any
data items that lie beyond the range of the current data record are unde
fined at the completion of the execution of the READ statement.

5. If the INTO phrase is specified, the record being read is moved from the
record area to the area specified by identifier according to the rules speci
fied for the MOVE statement without the CORRESPONDING phrase.
The implied MOVE does not occur if the execution of the READ statement
was unsuccessful. Any subscripting or indexing associated with identifier is
evaluated after the record has been read and immediately before it is
moved to the data item.

6. When the INTO phrase is used, the record being read is available in both
the input record area and the data area associated with identifier.

7. If, at the time of execution of a Format 1 READ statement, the position of
the current record pointer for that file is undefined, the execution of that
READ statement is unsuccessful. The FILE STATUS data item, if any,
associated with the file is set to one of the values described in General
Rules 13, 14, and 15.

8. If, at the time of the execution of a Format 1 READ statement, no next
logical record exists in the file, the AT END condition occurs and the
execution of the READ statement is considered unsuccessful.

When the AT END condition is recognized, the following actions are taken
in the specified order:

a. The value 10 is placed into the FILE STATUS data item, if specified
for this file, to indicate an AT END condition.

b. If the AT END phrase is specified in the statement causing the condi
tion, control is transferred to the AT END imperative-statement. Any
USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be
specified, either explicitly or implicitly, for this file. That USE proce
dure is executed.

9. Following the unsuccessful execution of any READ statement, the con
tents of the associated record area and the position of the current record
pointer are undefined.

5-84 Procedure Division

READ (Relative)
Continued

10. When the AT END condition has been recognized, a Format 1 READ
statement for that file must not be executed without first executing one of
the following:

a. A successful CLOSE statement followed by the execution of a success
ful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

11. For a file for which dynamic access mode is specified, a Format 1 READ
statement with the NEXT phrase specified causes the next logical record
to be retrieved from the file (as described in General Rule 2).

12.1f the RELATIVE KEY clause is specified, the execution of a Format 1
READ statement updates the contents of the RELATIVE KEY data item
such that it contains the relative record number of the record made avail
able.

13. The execution of a Format 2 READ statement sets the current record
pointer to, and makes available, the record whose relative record number
is contained in the data item named in the RELATIVE KEY clause for the
file. An INVALID KEY condition can arise; the READ is considered un
successful and the following actions are taken:

a. If the record specified by the contents of the RELATIVE KEY data
item does not exist, the value 23 is placed in the FILE STATUS data
item, if any, associated with this file to indicate an unsuccessful READ
operation.

b. If the contents of the RELATIVE KEY data item do not lie within the
range of the key values corresponding to the allocated space for this
file, a boundary violation exists. The value 24 is plf}ced in the FILE
STATUS data item, if any, associated with the file to indicate an
unsuccessful READ operation.

c. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative
statement. Any USE procedure specified for this file is not executed.

d. If the INVALID KEY phrase is not specified, but a USE procedure is
specified, either explicitly or implicitly, for this file, that procedure is
executed.

When the INV ALID KEY condition occurs, execution of the input
output statement that recognized the condition is unsuccessful and the
file is not affected.

Procedure Division 5-85

READ (Relative)
Continued

14. A Format 1 or Format 2 READ statement issued to a file that is being
simultaneously accessed by another task can fail. The value 92 is placed
into the FILE STATUS data item, if one was specified for the file.

15. A Format 1 or Format 2 READ statement that fails for an undetermined
reason will cause the value 30 to be placed in the FILE STATUS data
item, if one was specified for the file.

5-86 Procedure Division

READ (Indexed)

5.29 READ Statement (Indexed)

Function

For sequential access, the READ statement makes available the next logical
record from a file. For random access, the READ statement makes available a
specified record from a mass storage file. For dynamic access, both sequential
and random access can be used to obtain the next logical record in a file.

General Format

Format 1

READ file-name [NEXTJRECORD[INTO identifier J

[; AT ~ imperative-statement J
Format 1

READ file-name RECORD [INTO identifier J

[; KEY IS data-name J

[; INVALID KEY imperative-statement J

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical
records of various sizes, which are indicated by their record descriptions.
The storage area associated with identifier and the storage area that is the
record area associated with file-name must not be the same.

2. Data-name must be the name of a data item specified as a record key
associated with file-name.

3. Data-name can be qualified.

4. Use Format 1 for all files in sequential access mode.

5. Use Format 1 with the NEXT phrase specified for files in dynamic access
mode when records are to be retrieved sequentially.

6. Use Format 2 for files in random access mode or for files in dynamic access
mode when records are to be retrieved randomly.

7. The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

Procedure Division 5-87

READ (Indexed)
Continued

General Rules

1. The associated file must be open in the INPUT or 1-0 mode at the time
this statement is executed.

2. The record to be made available by a Format 1 READ statement is deter
mined as follows:

a. The record pointed to by the current record pointer is made available,
provided that the current record pointer has been positioned by the
START or OPEN statement and the record is still accessible through
the path indicated by the current record pointer; if the record is no
longer accessible, which may have been caused by the deletion of the
record or a change in an alternate record key, the current record pointer
is updated to point to the next existing record within the established
key of reference. Then, that record is then made available.

b. If the current record pointer has been positioned by the execution of a
previous READ statement, the current record pointer is updated to
point to the next existing record in the file within the established key of
reference. Then, that record is made available.

3. Regardless of the method used to overlap access time with processing time,
the concept of the READ statement is unchanged in that a record is avail
able to the object program prior to the execution of any statement follow
ing the READ statement.

4. When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this
is equivalent to an implicit redefinition of the area. The contents of any
data items that lie beyond the range of the current data record are unde
fined at the completion of the execution of the READ statement.

5. If the INTO phrase is specified, the record being read is moved from the
record area to the area specified by identifier according to the rules speci
fied for the MOVE statement without the CORRESPONDING phrase.
The implied MOVE does not occur if the execution of the READ statement
was unsuccessful. Any subscripting or indexing associated with identifier is
evaluated after the record has been read and immediately before it is
moved to the data item.

6. When the INTO phrase is used, the record being read is available in both
the input record area and the data area associated with identifier.

7. If, at the time of execution of a Format 1 READ statement, the position of
current record pointer for that file is undefined, the execution of that
READ statement is unsuccessful. The FILE STATUS data item, if any,
associated with the file is set to one of the values described in General
Rules 15, 16, or 17.

5-88 Procedure Division

READ (Indexed)
Continued

8. If, at the time of the execution of a Format 1 READ statement, no next
logical record exists in the file, the AT END condition occurs, and the
execution of the READ statement is considered unsuccessful.

When the AT END condition is recognized, the following actions are taken
in the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an AT END condition.

b. If the AT END phrase is specified in the statement causing the condi
tion, control is transferred to the AT END imperative statement. Any
USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be
specified, either explicitly or implicitly, for this file, and that procedure
is executed.

9. Following the unsuccessful execution of any READ statement, the con
tents of the associated record area and the position of the current record
pointer are undefined. For indexed files the key or reference is also unde
fined.

10. When the AT END condition has been recognized, a Format 1 READ
statement for that file must not be executed without first executing one of
the following:

a. A successful CLOSE statement followed by the execution of a success
ful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

11. For a file for which dynamic access mode is specified, a Format 1 READ
statement with the NEXT phrase specified causes the next logical record
to be retrieved from that file as described in General Rule 2.

12. For an indexed file being sequentially accessed, records having the same
duplicate value in an alternate record key that is the key of reference are
made available in the same order in which they are released by execution
of WRITE statements or by execution of REWRITE statements that cre
ate such duplicate values.

Procedure Division 5-89

READ (Indexed)
Continued

13. If the KEY phrase is specified in a Format 2 READ statement for an
indexed file, data-name is established as the key of reference for this
retrieval. If the dynamic access mode is specified, this key of reference is
also used for retrievals by.any subsequent executions of Format 1 READ
statements for the file until a different key of reference is established for it.

14. If the KEY phrase is not specified in a Format 2 READ statement, the
prime record key is established as the key of reference for this retrieval. If
the dynamic access mode is specified, this key of reference is also used for
retrievals by any subsequent executions of Format 1 READ statements for
the file until a different key is established for the file.

15. Execution of a Format 2 READ statement causes the value of the key of
reference to be compared with the value contained in the corresponding
data item of the stored records in the file. When the first record having an
equal value is found, the current record pointer is positioned to this record,
making it available for processing. If no record containing the key value is
found, an INVALID KEY condition exists.

When the INVALID KEY condition is recognized, actions are taken in the
following order:

a. The value 23 is placed into the FILE STATUS data item (if specified
for this file) to indicate an INVALID KEY condition.

b. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative
statement. Any USE procedure specified for this file is not executed.

c. If the INVALID KEY phrase is not specified, but a USE procedure is
specified for this file, either explicitly or implicitly, that procedure is
executed.

When the INVALID KEY condition occurs, execution of the input
output statement that recognized the condition is unsuccessful, and the
file is not affected.

16. A Format 1 or Format 2 READ statement issued to a record that is being
simultaneously accessed by another task can fail. The value 92 is placed
into the FILE STATUS data item, if one was specified for the file.

17. A Format 1 or Format 2 READ statement that fails for an undetermined
reason will cause a value of 30 to be placed in the FILE STATUS data
item, if one was specified for the file.

5-90 Procedure Division

REWRITE (Sequential)

5.30 REWRITE Statement (Sequential)

Function

The REWRITE statement logically replaces a record existing in a file on a
directory device.

General Format

REWRITE record-name [FROM identifier]

Syntax Rules

1. Record-name and identifier must not refer to data that is allocated to the
same storage area; record-name can be qualified.

2. Record-name is the name of a logical record in the File Section of the Data
Division.

General Rules

1. The file associated with record-name must be a file on a directory device
and must be open in the 1-0 mode at the time of execution of this state
ment.

2. The last input-output statement executed for the associated file prior to
the execution of the REWRITE statement must have been a successfully
executed READ statement. The record that was accessed by the READ
statement is logically replaced. If the last input-output statement exe
cuted for the associated file was not a successfully executed READ state
ment, the REWRITE statement is not attempted, and the value 93 is
placed in the FILE STATUS data item, if any, associated with the file to
indicate an unsuccessful REWRITE operation. The data in the record area
is unaffected.

3. The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being
replaced.

4. The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area unless the associated
file is named in a SAME RECORD AREA clause, in which case the logical
record is available to the program as a record of other files appearing in the
same SAME RECORD AREA clause as the associated 1-0 file as well as to
the file associated with record-name.

Procedure Division 5-91

REWRITE (Sequential)
Continued

5. The execution of a REWRITE statement with the FROM phrase is equiva
lent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the
FROM phrase. The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of the
REWRITE statement.

6. The current record pointer is not affected by the execution of a REWRITE
statement.

7. A REWRITE statement that is unsuccessful for any reason will cause a 30
to be stored in the FILE STATUS data item, if one was specified for the
file.

5-92 Procedure Division

REWRITE (Relative)

5.31 REWRITE Statement (Relative)

Function

The REWRITE statement logically replaces a record existing in a file on a
directory device.

General Format

REWRITE record-name[FROM identifieaG INVALID KEY imperative-state menD

Syntax Rules

1. Record-name and identifier must not refer to data that is allocated to the
same storage area.

2. Record-name is the name of a logical record in the File Section of the Data
Division; record-name can be qualified.

3. The INVALID KEY phrase must not be specified for a REWRITE state
ment that references a file in sequential access mode.

4. The INVALID KEY phrase must be specified in the REWRITE statement
for files in the random or dynamic access mode for which an applicable
USE procedure is not specified.

General Rules

1. The file associated with record-name must be open in the 1-0 mode at the
time of execution of this statement.

2. For files in the sequential access mode, the last input-output statement
executed for the associated file prior to the execution of the REWRITE
statement must have been a successfully executed READ statement. The
record that was accessed by the READ statement is logically replaced. If
the last input-output statement executed for the associated file was not a
successfully executed READ statement, the REWRITE statement is not
attempted and the value 93 is placed in the FILE STATUS data item, if
any, associated with the file to indicate an unsuccessful REWRITE state
ment. The data in the current record area is unaffected.

3. The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being
replaced.

4. The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area unless the associated
file is named in a SAME RECORD AREA clause. In that case, the logical
record is available to the program as a record of other files appearing in the
same SAME RECORD AREA clause as the associated 1-0 file, as well as
to the file associated with record-name.

Procedure Division 5-93

REWRITE (Relative)
Continued

5. The execution of a REWRITE statement with the FROM phrase is equiva
lent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the
FROM phrase. The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of the
REWRITE statement.

6. The current record pointer is n9t affected by the execution of a REWRITE
statement.

7. For a file accessed in either random or dynamic access mode, the record
specified by the contents of the RELATIVE KEY data item associated
with the file is logically replaced. An INVALID KEY condition can arise;
the REWRITE is considered unsuccessful, the data in the current record
area is unaffected, and the following action is taken:

a. If the record specified by the contents of the RELATIVE KEY data
item does not exist, the value 23 is placed in the FILE STATUS data
item, if any, associated with this file to indicate an unsuccessful
REWRITE operation.

h. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative
statement. Any USE procedure specified for this file is not executed.

c. If the INVALID KEY phrase is not specified, hut a USE procedure is
specified, either explicitly or implicitly, for this file, that procedure is
executed.

8. A REWRITE statement attempting to replace a record that is being
simultaneously accessed hy another task will he unsuccessful. The FILE
STATUS data item, if one was specified for the file, is set to 92.

9. A REWRITE statement that is unsuccessful for an undetermined reason
causes a 30 to be stored in the FILE STATUS data item, if one was
specified for the file.

5-94 Procedure Division

REWRITE (Indexed)

5.32 REWRITE Statement (Indexed)

Function

The REWRITE statement logically replaces a record existing In a mass
storage file.

General Format

REWRITE record-name[FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to data that is allocated to the
same storage area.

2. Record-name is the name of a logical record in the File Section of the Data
Division and can be qualified.

3. The INVALID KEY phrase must be specified in the REWRITE statement
for files for which an applicable USE procedure is not specified.

General Rules

1. The file associated with record-name must be open in the 1-0 mode at the
time of execution of this statement.

2. For files in the sequential access mode, the last input-output statement
executed for the associated file prior to the execution of the REWRITE
statement must have been a successfully executed READ statement. The
record that was accessed by the READ statement is logically replaced. If
the last input-output statement executed for the associated file was not a
successfully executed READ statement, the REWRITE statement is not
attempted and the value 93 is placed in the FILE STATUS data item, if
any, associated with the file to indicate an unsuccessful REWRITE state
ment. The data in the current record area is unaffected.

3. The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being
replaced.

4. The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area unless the associated
file is named in a SAME RECORD AREA clause. In that case, the logical
record is available to the program as a record of other files appearing in the
same SAME RECORD AREA clause as the associated 1-0 file. It is also
available to the file associated with record-name.

Procedure Division 5-95

REWRITE (Indexed)
Continued

5. The execution of a REWRITE statement with the FROM phrase is equiva
lent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the
FROM phrase. The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of the
REWRITE statement.

6. -The current record pointer is not affected by the execution of a REWRITE
statement.

7. For a file in the sequential access mode, the record to be replaced is
specified by the value contained in the prime record key. When the
REWRITE statement is executed, the value contained in the prime record
key data item of the record to be replaced must be equal to the value of the
prime record key of the last record read from this file. If this relationship
does not occur, then an INVALID KEY condition exists.

When the INVALID KEY condition is recognized, actions are taken in the
following order:

a. The value 21 is placed into the FILE STATUS data item, if specified
for this file to indicate an INVALID KEY condition.

b. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative
statement. Any USE procedure specified for this file is not executed.

c. If the INVALID KEY phrase is not specified but a USE procedure is
specified, either explicitly or implicitly, for this file, that procedure is
executed.

When the INVALID KEY condition occurs, execution of the input
output statement that recognized the condition is unsuccessful and the
file is not affected.

8. For a file in either random or dynamic access mode, the record specified
by the contents of the prime record key data item associated with the file
is logically replaced. If the value contained in the prime record key does
not equal that of any record stored in the file, an INVALID KEY condition
exists. The value 23 is placed in the FILE STATUS data item, if one was
specified for the file. See General Rules 7b and c.

9. The contents of alternate record key data items of the record being rewrit
ten can differ from those in the record being replaced. The Record Man
agement Services utilize the contents of the record key data items during
the execution of the REWRITE statement to allow subsequent access of

5-96 Procedure Division

REWRITE (Indexed)
Continued

the record based upon any of the specified record keys. If the value con
tained in an alternate record key for which a DUPLICATE clause has not
been specified is equal to that of a record already stored in the file, the
INVALID KEY condition exists. The value 02 is placed in the FILE
STATUS data item if one was specified for the file. See General Rules
7b and c.

10. A REWRITE statement attempting to replace a record that is being simul
taneously accessed by another task will fail. The value 92 is placed into the
FILE STATUS data item if one was specified for the file.

11. A REWRITE statement that fails for an undetermined reason will cause
the value 30 to be placed in the FILE STATUS data item if one was
specified for the file.

Procedure Division 5-97

SEARCH

5.33 -SEARCH Statement

Format 1

Function

The SEARCH statement is used to search a table for a table element that
satisfies the specified condition and to adjust the associated index-name to
indicate that table element.

General Format

SEARCH id,ntifi,,-l [VARYING
,:dentifier-2 }]

~ mdex-name-I

[; AT END imperative-statement-I]

\ {imperative-statement-2}
; WHEN condition-I

NEXT SENTENCE

[
. . {imperative-statement-3}]

, WHEN conQltlOn-2 ...
NEXT SENTENCE

Format 2

SEARCH ALL identifier-I, [; AT END imperative-statement-l]

{
identifier-3 }

IS EQUAL TO literal-l
{IS = } arithmetic-expression-l data-name-l

; WHEN

condition-name-l

data-name-2
AND

{IS EQUAL TO }
IS =

condition-name-2

{ imperative~statement-2 }
NEXT SENTENCE

NOTE:

The required relational character = (equal sign) is not underlined to avoid
confusion with other symbols.

5-98 Procedure Division

Syntax Rules

SEARCH
Continued

1. In both Formats 1 and 2, identifier-l must not be subscripted or indexed,
but its description must contain an OCCURS clause and an INDEXED
BY clause. The description of identifier-l in Format 2 must also contain
the KEY IS phrase in its OCCURS clause.

2. Identifier-2, when specified, must be described as USAGE IS INDEX or as
a numeric elementary item without any positions to the right of the
assumed decimal point.

3. In Format 1, condition-I, condition-2, etc., can be any condition as
described in Section 5.6, Conditional Expressions.

4. In Format 2, all referenced condition-names must be defined as having
only a single value. The data-name associated with a condition-name must
appear in the KEY clause of identifier-1. Each data-name-l, data-name-2
may be qualified. Each data-name-l, data-name-2 must be indexed by
the first index-name associated with identifier-l along with other indexes
or literals as required, and must be referenced in the KEY clause of
identifier-I. Identifier-3, identifier-4, or identifiers specified in
arithmetic-expression-l, arithmetic-expression-2 must not be referenced
in the KEY clause of identifier-lor be indexed by the first index-name
associated with identifier-1.

In Format 2, when a data-name in the KEY clause of identifier-l is refer
enced, or when a condition-name associated with a data-name in the KEY
clause of identifier-l is referenced, all preceding data-names in the KEY
clause of identifier-l or their associated condition-names must also be
referenced.

General Rules

1. If Format 1 of the SEARCH is used, a serial search operation takes place,
starting with the current index setting.

a. If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-l contains a value that corresponds to an
occurrence number that is greater than the highest permissible occur- .
rence number for identifier-I, the SEARCH is terminated immediate
ly. The number of occurrences of identifier-I, the last of which is the
highest permissible, is discussed in the OCCURS clause. (See Section
4.3.5, OCCURS Clause.) Then, if the AT END phrase is specified,
imperative-statement-l is executed; if the AT END phrase is not speci
fied, control passes to the next executable sentence.

Procedure Division 5-99

SEARCH
Continued ,

b. If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-l contains a value that corresponds to an
occurrence number that is not greater than the highest permissible
occurrence number for identifier-l (the number of occurrences of
identifier-l, the last of which is the highest permissible is discussed in
the OCCURS clause; see Section 4.3.5, OCCURS Clause), the
SEARCH statement operates by evaluating the conditions in the order
that they are written, making use of the index settings, wherever speci
fied, to determine the occurrence of those items to be tested.

If none of the conditions is satisfied, the index-name for identifier-l is
incremented to obtain reference to the next occurrence. The process is
then repeated using the new index-name settings unless the new value
of the index-name settings for identifier-l corresponds to a table ele
ment outside the permissible range of occurrence values. In that case,
the search terminates, as indicated in la.

If one of the conditions is satisfied upon evaluation, the search termi
nates immediately and the imperative-statement associated with that
condition is executed; the index-name remains set at the occurrence
that caused the condition to be satisfied.

2. In a Format 2 SEARCH, the results of the SEARCH ALL operation are
predictable only when the following conditions are met:

a. The data in the table is ordered in the same manner as described in the
ASCENDINGIDESCENDING KEY clause associated with the
description of identifier-I.

b. The contents of the key(s) referenced in the WHEN clause are
sufficient to identify a unique table element.

3. If Format 2 of the SEARCH is used, a nonserial search may take place; the
initial setting of the index-name for identifier-l is ignored, and its setting
is varied during the search operation, with the restriction that at no time is
it set to a value that exceeds the value which corresponds to the last
element of the table or that is less than the value that corresponds to the
first element of the table. (The User's Guide contains further information
on the SEARCH statement.) The length of the table is discussed in the
OCCURS clause. (See Section 4.3.5, OCCURS Clause.)

If any of the conditions specified in the WHEN clause cannot be satisfied
for any setting of the index within the permitted range, control is passed to
imperative-statement-l of the AT END phrase, when specified, or to the
next executable sentence when this phrase is not specified; in either case
the final setting of the index is not predictable.

If all the conditions can be satisfied, the index indicates an occurrence that
allows the conditions to be satisfied, and control passes to imperative
statement-2.

5-100 Procedure Division

SEARCH
Continued

4. Mter execution of imperative-statement-1, imperative-statement-2, or
imperative-statement-3 that does not terminate with a GO TO statement,
control passes to the next executable sentence.

5. In Format 2, the index-name that is used for the search operation is the
first (or only) index-name that appears in the INDEXED BY phrase of
identifier-l. Any other index-names for identifier-1 remain unchanged.

6. In Format 1, if the VARYING phrase is not used, the index-name that is
used for the search operation is the first (or only) index-name that appears
in the INDEXED BY phrase of identifier-l. Any other index-names for
identifier-1 remain unchanged.

7. In Format 1, if the VARYING index-name-1 phrase is specified, and
ifindex-name-1 appears in the INDEXED BY phrase of identifier-1,
that index-name is used for this search. If this is not the case, or if the
VARYING identifier-2 phrase is specified, the first (or only) i_ndex-name
given in the INDEXED BY phrase of identifier-1 is used for the search.
In addition, the following operations will occur:

a. If the VARYING index-name-1 phrase is used, and if index-name-1
appears in the INDEXED BY phrase of another table entry, the occur
rence number represented by index-name-1 is incremented by the same
amount as and at the same time as the occurrence number represented
by the index-name associated with identifier-1 is incremented.

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is an
index data item, then the data item referenced by identifier-2 is incre
mented by the same amount as and at the same time as the index
associated with identifier-1 is incremented. If identifier-2 is not an
index data item, the data item referenced by identifier-2 is incre
mented by the value one (1) at the same time as the index referenced
by the -index-name associated with identifier-1 is incremented.

8. If identifier-l is a data item subordinate to a data item that contains an
OCCURS clause (providing for a 2 or 3 dimensional table), an index-name
must be associated with each dimension of the table through the
INDEXED BY phrase of the. OCCURS clause. Only the setting of the
index-name associated with identifier-1 (and the data item identifier-2 or
index-name-1, if present) is modified by the execution of the SEARCH
statement. To search an entire 2 or 3 dimensional table, it is necessary to
execute a SEARCH statement several times. Prior to each execution of a
SEARCH statement, SET -statements must be executed whenever
index-names must be adjusted to appropriate settings.

A flowchart of the Format 1 SEARCH operation containing two WHEN
phrases follows:

Procedure Division 5-101

SEARCH
Continued

Figure 5-4: Format 1 SEARCH With Two WHEN Phrases

START

~
~ INDEX SETTING;

>
AT END" IMPERATIVE-

HIGHEST PERMISSIBLE
STATEMENT-l

OCCURRENCE NUMBER

'---

5-102

~~
CONDITION-l

TRUE IMPERATIVE-

STATEMENT-2

~ FALSE

* " TRUE IMPERATIVE-
CONDITION-2

STATEMENT-3

~ FALSE

INCREMENT INDEX-NAME
FOR IDENTIFIER-l

(INDEX-NAME-l
IF APPLICABLE)

~
*

INCREMENT
INDEX-NAME-l

(FOR A DIFFERENT
TABLE) OR

IDENTIFIER-2

* These operations are options included only when specified in the SEARCH statement.
** Each of these control transfers is to the next executable sentence unless the imperative

statement ends with a GO TO statement.

Procedure Division

SET

5.34 SET Statement

Function

The SET statement establishes a value in an index-name or index data-item.

General Format

Format 1

{
identifier-l [, identifier-2l ... }

SET
index-name-l [, index-name-2l ...

{
identifier-3 }

TO ~ndex-name-3

mteger-l

Format 2

{
UP BY } {identifier-4 }

SET index-name-4 [, index-name-5l ...

DOWN BY integer-2

Syntax Rules

1. All references to index-name-I, identifier-I, and index-name-4 apply
equally to index-name-2, identifier-2, and index-name-5, respectively.

2. Identifier-I and identifier-3 must name either an index data item or an
elementary item described as a numeric integer.

3. Identifier-4 must be described as an elementary numeric integer.

4. Integer-I and integer-2 can be signed. Integer-I must be positive.

General Rules

1. Index-names are considered related to a given table and are defined by
being specified in the INDEXED BY clause.

2. If index-name-3 is specified, the value of the index before the execution of
the SET statement must correspond to an occurrence number of an ele
ment in the associated table. This is guaranteed by the fact that the
compiler automatically initializes all index-names with a value corre
sponding to an occurrence number of one.

If index-name-4, index-name-5 is specified, the value of the index both
before and after the execution of the SET statement must correspond to an
occurrence number of an element in the associated table. If index-name-I,
index-name-2 is specified, the value of the index after the execution of the
SET statement must correspond to an occurrence number of an element in
the associated table.

Procedure Division 5-103

SET
Continued

3. In Format 1, the following steps occur:

a. Index-name-l is set to a value causing it to refer to the table element
that corresponds in occurrence number to the table element referenced
by index-name-3, identifier-3, or integer-I.

b. If identifier-I is an index data item, it can be set equal to the contents
of either the occurrence number portion of index-name-3 or to
identifier-3 where identifier-3 is also an index data item.

c. If identifier-I is not an index data item, it can be set only to an occur
rence number that corresponds to the value of index-name-3. Ne.ither
identifier-3 nor integer-I can be used in this case.

d. The process is repeated for index-name-2, identifier-2, etc., if specified.
Each time, the value of index-name-3 or identifier-3 is used as it was at
the beginning of the execution of the statement. Any subscripting or
indexing associated with identifier-I, etc., is evaluated immediately
before the value of the respective data item is changed.

4. In Format 2, the contents of index-name-4' are incremented (UP BY) or
decremented (DOWN BY) by a value that corresponds to the number of
occurrences represented by the value of literal-2 or identifier-4; thereafter,
the, process is repeated for index-name-5, etc. Each time, the value of
identifier-4 is used as it was at the beginning of the execution of the
statement.

5. Data in the following table represents the validity of various operand com
binations in the SET statement. References after a slash mark (for exam
ple, 13b) refer to the applicable general rule for the SET statement.

Table 5-7: Permissible Operand Combinations in the
SET Statement

Receiving Item

Sending Item Integer Data Item Index-Name Index Data Item

Integer Literal No/3c Valid/3a No/3b

Integer Data Item No/3c Valid/3a No/3b

Index-Name Valid/3c Valid/3a Valid/3b

Index Data Item No/3c Valid/3a Valid/3b

5-104 Procedure Division

START (Relative)

5.35 START Statement (Relative)

Function

The START statement logically positions a relative file for subsequent
sequential retrieval of records.

General Format

r IS EQUAL TO
IS =

IS GREATER THAN

START file-name KEY IS >
IS NOT LESS THAN

- IS NOT <

[; INVALID KEY imperative-statement]

NOTE:

-

data-name

-

The required relational characters> (greater than), < (less than), and =

(equal to) are not underlined to avoid confusion with other symbols such as
greater than or equal to.

Syntax Rules

1. File-name must be the name of a file with sequential or dynamic access.

2. The INVALID KEY phrase must be specified if no applicable USE
procedure is specified for file-name.

3. Data-name, if specified, must be the data item specified III the
RELATIVE KEY phrase of the associated file control entry.

General Rules

1. File-name must be open in the INPUT or 1-0 mode at the time of execu
tion of the START statement.

2. If the KEY phrase is not specified, the relational operator IS EQUAL TO
is implied.

3. The type of comparison specified by the relational operator in the KEY
phrase occurs between a key associated with a record in the file referenced
by file-name and the data item referenced by the RELATIVE KEY clause
associated with file-name.

Procedure Division 5-105

START (Relative)
-Continued

5-106

a. The current record pointer is positioned to the first logical record cur
rently existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an INVALID
KEY condition exists, the execution of the START statement is unsuc
cessful, and the position of the current record pointer is undefined. The
following action is taken:

(1) If the contents of the RELATIVE KEY data item are within the
range of the key values corresponding to the allocated space for this
file, the value 23 is placed in the FILE STATUS data item, if any,
associated with the file.

(2) If the INVALID KEY phrase is specified in the statement causing
the condition, control is transferred to the INVALID KEY impera
tive-statement. Any USE procedure specified for this file is not
executed.

(3) If the INVALID KEY phrase is not specified, but a USE procedure
is specified, either explicitly or implicitly, for this file, that proce
dure is executed.

When the INVALID KEY condition occurs, execution of the input-output
statement that recognized the condition is unsuccessful and the file is not
affected.

4. A START statement that repositions the current record pointer to a record
that is being simultaneously accessed by another task can fail. The FILE
STATUS data item, if one was specified for the file, is set to 92.

5. A START statement that is unsuccessful for an undetermined reason will
cause a 30 to be stored in the FILE STATUS data item, if one was speci
fied for the file.

Procedure Division

START (Indexed)

5.36 START Statement (Indexed)

Function

The START statement provides a basis for logical positioning within an in
dexed file, for subsequent sequential retrieval of records.

General Format

START file-name

r IS EQUAL TO
IS =

KEY IS GREATER THAN

IS >
IS NOT LESS THAN
IS NOT <

[; INVALID KEY imperative-statement]

NOTE:

-

data-name

-

The required relational characters >, <, and = are not underlined to avoid
confusion with other symbols such as greater than or equal to.

Syntax Rules

1. File-name must be the name of a file with sequential or dynamic access.

2. The INVALID KEY phrase must be specified if no applicable USE proce
dure is specified for file-name.

3. If file-name is the name of an indexed file, and if the KEY phrase is
specified, data-name can reference a data item specified as a record key
associated with file-name, or it can reference any data item of category
alphanumeric subordinate to the data-name of a data item specified as a
record key associated with file-name whose leftmost character position
corresponds to the leftmost character position of that record key data item.

General Rules

1. File-name must be open in the INPUT or I-a mode at the time that the
START statement is executed.

2. If the KEY phrase is not specified, the relational operator IS EQUAL TO
is implied.

3. The type of comparison specified by the relational operator in the KEY
phrase occurs between a key associated with a record in the file referenced
by file-name and a data item as specified in General Rule 6. If file-name

Procedure Division 5-107

START (Indexed)
Continued

5-108

references an indexed file and the operands are of unequal size, comparison
proceeds as though the longer one were truncated on the right such that its
length is equal to that of the shorter. All other nonnumeric comparison
rules apply.

a. The current record pointer is positioned to the first logical record cur
rently existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an INVALID
KEY condition exists. The execution ofthe START statement is unsuc
cessful, and the position of the current record pointer is undefined. The
FILE STATUS data item, if one was specified for the file, is set to 23.

4. If the KEY phrase is specified, the comparison described in General Rule 3
uses the data item referenced by data-name.

5. If the KEY phrase is not specified, the comparison described in General
Rule 3 uses the data item referenced in the RECORD KEY clause associ
ated with file-name.

6. Upon completion of the successful execution of the START statement, a
key of reference is established and used in subsequent Format 1 READ
statements as follows:

a. If the KEY phrase is not specified, the prime record key specified for
file-name becomes the key of reference.

b. If the KEY phrase is specified, and data-name is specified as a record
key for file-name, that record key becomes the key of reference.

c. If the KEY phrase is specified, and data-name is not specified as a
record key for file-name, the record key whose leftmost character posi
tion corresponds to the leftmost character position of the data item
specified by data-name becomes the key of reference.

7. If the execution of the START statement is not successful, the key of
reference is undefined.

8. A START statement that repositions the current record pointer to a record
that is being simultaneously accessed by another task can fail. The FILE
STATUS data item, if one was specified for the file, is set to 92.

9. A START statement that is -unsuccessful for an undetermined reason
causes a 30 to be stored in the FILE STATUS data item, if one was
specified for the file.

Proced ure Division

STOP

5.37 STOP Statement

Function

The STOP statement causes a permanent or temporary suspension of the
execution of the object program.

General Format

{RUN}
STOP

literal

Syntax Rules

1. The literal can be numeric or nonnumeric, or any figurative constant ex
cept ALL.

2. If the literal is numeric, then it must be an unsigned integer.

3. If a STOP RUN statement appears in a consecutive sequence of impera
tive-statements within a sentence, it must appear as the last statement in
that sequence.

General Rules

1. If the RUN phrase is used, the standard ending procedure is executed, and
object program execution is terminated.

2. If STOP literal is specified, the literal is displayed on the user's standard
display device. Control returns to the command language level without
terminating the image. Entering a VMS CONTINUE command causes
the image to resume at the next executable statement in sequence.

Interrupting program execution is discussed in the VAX/VMS Command
Language User's Guide.

Procedure Division 5-109

STRING

5.38 STRING Statement

5-110

Function

The STRING statement provides concatenation of the partial or complete
contents of two or more data items into a single data item.

General Format

STRING {
identifier-Ill' identifier-2]

literal-I f, literal-2

{
identifier-3}

... DELIMITED BY literal-3
SIZE

[
, {identifier-1[' identifier-5]

literal-4 , literal-5

{
identifier-6} ...]

... DELIMITED BY literal-6
SIZE

Syntax Rules

INTO identifier-7 [WITH POINTER identifier-8]

[; ON OVERFLOW imperative-statement]

1. Each literal can be any figurative constant without the optional word ALL.

2. All literals must be described as nonnumeric literals, and all identifiers,
except identifier-8, must be described implicitly or explicitly as USAGE
IS DISPLAY. .

3. Identifier-7 must represent an elementary alphanumeric data item with
out editing symbols or the JUSTIFIED clause.

4. Identifier-8 must represent an elementary numeric integer nata item of
sufficient size to contain a value equal to the size, plus 1, of the area
referenced by identifier-7. The symbol P cannot be used in the PICTURE
character-string of identifier-8.

5. Where identifier-I, identifier-2, ... , or identifier-6 is an elementary num
eric data item, it must be described as an integer without the symbol P in
its PICTURE character-string.

General Rules

1. All references to identifier-I, identifier-2, identifier-3, literal-I, literal-2,
literal-3 apply equally to identifier-4, identifier-5, identifier-6, literal-4,
literal-5 and literal-6, respectively, and all recursions thereof.

Procedure Division

STRING
Continued

2. Identifier-I, literal-I, identifier-2, literal-2 represent the sending items.
Identifier-7 represents the receiving item.

3. Literal-3, identifier-3, indicate the character(s) delimiting the move. If
the SIZE phrase is used, the complete data item defined by identifier-I,
literal-I, identifier-2, literal-2 is moved. When a figurative constant is
used as the delimiter, it stands for a single-character, nonnumeric literal.

4. When a figurative constant is specified as literal-I, literal-2, literal-3, it
refers to an implicit I-character data item whose USAGE IS DISPLAY.

5. When the STRING statement is executed, the transfer of data is governed
by the following rules:

a. Those characters from literal-I, literal-2, or from the contents of the
data item referenced by identifier-I, identifier-2 are transferred to the
contents of identifier-7 in accordance with the rules for alphanumeric
to alphanumeric moves, except that no space-filling will be provided.
(See Section 5.22, MOVE Statement).

b. If the DELIMITED phrase is specified without the SIZE phrase, the
contents of the data item referenced by identifier-I, identifier-2, or the
value of literal-I, literal-2, are transferred to the receiving data item in
the sequence specified in the STRING statement beginning with the
leftmost character and continuing from left to right until the end of the
data item is reached or until the character(s) specified by literal-3 or by
the contents of identifier-3 are encountered. The character(s) specified
by literal-3 or by the data item referenced by identifier-3 are not trans
ferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the entire
contents of literal-I, literal-2, or the contents of the data item refer
enced by identifier-I, identifier-2, are transferred, in the sequence
specified in the STRING statement, to the data item referenced by
identifier-7 until all data has been transferred or the end of the data
item referenced by identifier-7 has been reached.

6. If the POINTER phrase is specified, identifier-8 is explicitly available to
you, and you are responsible for setting its initial value. The initial value
must not be less than one.

7. If the POINTER phrase is not specified, General Rules 8 through 11 apply
as if the user had specified identifier-8 with an initial value of 1.

8. When characters are transferred to the data item referenced by identi
fier-7, the moves behave as though the characters were moved one at a
time from the source into the character position of the data item refer
enced by identifier-7 designated by the value associated with identifier-8,

Procedure Division 5-111

STRING
Continued

and then identifier-8 was increased by one prior to the move of the next
character. The value associated with identifier-8 is changed during execu
tion of the STRING statement only by the behavior specified above.

9. At the end of execution of the STRING statement, only the portion of the
data item referenced by identifier-7 that was referenced during the execu
tion of the STRING statement is changed. All other portions of the data
item referenced by identifier-7 will contain data that was present before
this execution of the STRING statement.

10.1f at any point at or after initialization of the STRING statement, but
before execution of the statement is completed, the value associated with
identifier-8 is either less than one or exceeds the number of character
positions in the data item referenced by identifier-7, no (further) data is
transferred to the data item referenced by identifier-7, and the imperative
statement in the ON OVERFLOW phrase is executed, if specified.

11. If the ON OVERFLOW phrase is not specified when the conditions de
scribed in General Rule 10 are encountered, control passes to the next
executable statement.

5-112 Procedure Division

SUBTRACT

5.39 SUBTRACT Statement

Function

The SUBTRACT statement is used to subtract one, or the sum of two or
more, numeric data items from an item and to set the value of an item equal
to the results.

General Format

Format 1

{
identifier-I} [,identifier-2]

SUBTRACT
literal-I ,literal-2

[identifier-n [ROUNDED]]. ..

FROM identifier-m [ROUNDED]

[; ON SIZE ERROR imperative-statement]

Format 2

SUBTRACT ... FROM {
identifier-I} [,identifier-2] {identifier-m }

literal-I ,literal-2 literal-m

GIVING identifier-n [ROUNDED], [dentifier-o [ROUNDEDU

[; ON SIZE ERROR imperative-statement]

Format 3

{
CORRESPONDING}

SUBTRACT identifier-I FROM identifier-2 [ROUNDED]

CORR

[; ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item, except that:

a. In Format 2, each identifier following the word GIVING must refer to
either an elementary numeric item or an elementary numeric edited
item.

b. In Format 3, each identifier must refer to a group item.

2. Each literal must be a numeric literal.

Procedure Division 5-113

SUBTRACT
Continued

5-114

3. The composite of operands must not contain more than 18 digits. (See
Section 5.7.4, Arithm!'!tic Statements.)

a. In Format 1, the composite of operands is determined by using all of the
operands in a given statement.

b. In Format 2, the composite of operands is determined by using all of the
operands in a given statement excluding the data item that follows the
word GIVING.

c. In Format 3, the composite of operands is determined separately for
each pair of corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

1. In Format 1, all literals or identifiers preceding the word FROM are added
together, and this total is subtracted from the current value of
identifier-m, storing the result immediately into identifier-m, and
repeating this process respeCtively for each operand following identifier-m.

2. In Format 2, all literals or identifiers preceding the word FROM are added
together, the sum is subtracted from literal-m or identifier-m, and the
result of the subtraction is· stored as the new value of identifier-n,
identifier-o, etc.

3. If Format 3 is used, data items in identifier-l are subtracted from and
stored into corresponding data items in identifier-2.

4. The compiler insures that enough places are carried (unless an
intermediate result exceeds the 18-digit limitation) to avoid losing
significant digits during execution. "

Procedure Division

UNSTRING

5.40 UNSTRING Statement

Function

The UNSTRING statement causes contiglJ.ous data ih a sending field to be
separated and placed into multiple receiving fields.

General Format

UNSTRING identifier-l
--.,.

[
" {identifier-2}[,OR {identifier-3}]]

DELIMITED BY [ALL) [ALL).. ..
literal-l hteral-2

INTO identifier-4[DELIMITER IN identifier-5] [, COUNT IN identifier-6]

[, identifier-7 [,DELIMITER IN identifier-8] [; COUNT IN identifier-9]]

[WITH POINTER identifier-:10] [TALLYING IN identifier-H]

[; ON OVERFLOW imperative-statement]

Syntax Rules

1. Each literal must be a nonnumeric literal. In addition, each literal may be
any figurative constant without the optional word ALL.

2. Identifier-I, identifier-2, identifier-3, identifier-5, and identifier-8 must
be described, implicitly or explicitly, as an alphanumeric data item.

3. Identifier-4 and identifier-7 can be described as either alphabetic (except
that the symbol B cannot be used in the PICTURE character-string),
alphanumeric, or numeric (except that the symbol P cannot be used in the
PICTURE character-string), and must be described as USAGE IS
DISPLAY.

4. Identifier-6, identifier-9, identifier-10, and identifier-ll must be
described as elementary numeric integer data items (except that the
symbol P cannot be used in the PICTURE character-string).

5. No identifier can name a level 88 entry.

6. The DELIMITER IN phrase and the COUNT IN phrase can be specified
only if the DELIMITED BY phrase is specified.

General Rules

1. All references to identifier-2, literal-I, identifier-4, identifier-5 and
identifier-6 apply equally to identifier-3, literal-2, identifier-7,
identifier-8, and identifier-9, respectively, and all recursions thereof.

Procedure Division 5-115

UNSTRING
Continued

5-116

2. Identifier-1 represents the sending area.

3. Identifier-4 represents the data receiving area. Identifier-5 represents the
receiving area for delimiters.

4. Literal-lor the data item referenced by identifier-2 specifies a delimiter.

5. Identifier-6 represents the count of the number of characters within the
data item referenced by identifier-1 that were isolated by the delimiters
for the move to identifier-4. This value does not include a count of the
delimiter character(s).

6. The data item referenced by identifier-lO contains a value that indicates a
relative character position within the area defined by identifier-I.

7. The data item referenced by identifier-ll is a counter that records the
number of data items acted upon during the execution of an UNSTRING
statement.

8. When a figurative constant is used as the delimiter, it stands for a
I-character nonnumeric literal.

When the ALL phrase is specified, one occurrence, or two or more
contiguous occurrences of literal-1 (figurative constan..t or not) or the
contents of the data item referenced by identifier-2 are treated as if it were
only one occurrence, and this occurrence is moved to the receiving data
item according to the rules in General Rule 13d.

9. When any examination encounters two contiguous delimiters, the current
·receiving area is either space or zero filled according to the description of
the receiving area.

10. Literal-lor the contents of the data item referenced by identifier-2 can
contain any character in the computer character set.

11. Each literal-lor each data item referenced by identifier-2 represents one
delimiter. When a delimiter contains two or more characters, all of the
characters must be present in contiguous positions of the sending item and
in the order given to be recognized as a delimiter.

12. When two or more delimiters are specified in the DELIMITED BY phrase,
an OR condition exists between them. Each delimiter is compared to the
sending field. If a match occurs, the character(s) in the sending field is
considered to be a single delimiter. No character(s) in the sending field can
be considered a part of more than one delimiter.

Each delimiter is applied to the sending field in the sequence specified in
the UNSTRING statement.

13. When the UNSTRING statement is initiated, the current receiving area is
the data item referenced by identifier-4. Data is transferred from the data

Procedure Division

UNSTRING
Continued

item referenced by identifier-1 to the data item referenced by identifier-4
according to the following rules:

a. If the POINTER phrase is specified, the string of characters referenced
by identifier-1 is examined, beginning with the relative character
position indicated by the content of the data item referenced by
identifier-10. If the POINTER phrase is not specified, the string of
characters is examined, beginning with the leftmost character position.

b. If the DELIMITED BY phrase is specified, the examination proceeds
left to right until either a delimiter specified by the value of literal-lor
the data item referenced by identifier-2 is encountered. (See General
Rule 11.) If the DELIMITED BY phrase is not specified, the number of
characters examined is equal to the size of the current receiving area.
However, if the sign of the receiving item is defined as occupying a
separate character position, the number of characters examined is one
less than the size of the current receiving area.

If the end of the data item referenced by ideI1tifier-1 is encountered
before the delimiting condition is met, the examination terminates with
the last character examined.

c. The characters thus examined (excluding the delimiting character(s), if
any) are treated as an elementary alphanumeric data item and are
moved into the current receiving area according to the rules for the
MOVE statement. (See Section 5.22, MOVE Statement.)

d. If the DELIMITER IN phrase is specified, the delimiting character(s)
are treated as an elementary alphanumeric data item and are moved
into the data item referenced by identifier-5 according to the rules for
the MOVE statement. (See Section 5.22, MOVE Statement.) If the
delimiting condition is the end of the data item referenced by
identifier-1, then the data item referenced by identifier-5 is space
filled.

e. If the COUNT IN phrase is specified, a value equal to the number of
characters thus examined (excluding the delimiter character(s), if any)
is moved into the area referenced by identifier-6, according to the rules
for an elementary move.

r If the DELIMITED BY phrase is specified, the string of characters is
further examined, beginning with the first character to the right of the
delimiter. If the DELIMITED BY phrase is not specified, the string of
characters is further examined, beginning with the character to the
right of the last character transferred.

g. After data is transferred to the data item referenced by identifier-4, the
current receiving area is the data item referenced by identifier-7. The
behavior described in paragraph 13b through 13f is repeated until either
all the characters are exhausted in the data item referenced by
identifier-lor until there are no more receiving areas.

Procedure Division 5-117

UNSTRING
Continued

5-118

14. It is your responsibility to initialize the contents of the data items
associated with the POINTER phrase or the TALLYING phrase.

15. The contents of the data item referenced by identifier-lO will be
incremented by one for each character examined in the data item
referenced by identifier-I. When the execution of an UNSTRING
statement with a POINTER phrase is completed, the contents of the data
item referenced by identifier-IO will contain a value equal to the initial
value plus the number of characters examined in the data item referenced
by identifier-I.

16. When the execution of an UNSTRING statement with a TALLYING
phrase is completed, the contents. of the data item referenced by
identifier-ll contain a value equal to its initial value, plus the number of
data-receiving items acted upon.

17. Either of the following situations causes an overflow condition:

a. An UNSTRING is initiated, and the value ih the data item referenced
by identifier-IO is less than 1 or greater than the size of the data item
referenced by identifier-I.

b. If, during execution of an UNSTRING statement, all receiving areas
have been acted upon, and the data item referenced by identifier-l
contains characters that have not been examined.

18. When an overflow condition exists, the UNSTRING operation is
terminated. If an ON OVERFLOW phrase has been specified, the
imperative-statement included in the ON OVERFLOW phrase IS

executed. If the ON OVERFLOW phrase is not specified, control IS

transferred to the next executable statement.

19. The evaluation of subscripting and indexing for the identifiers IS as
follows:

a. Any subscripting or indexing associated with identifier-I, identifier-lO,
identifier-ll is evaluated only once, immediately before any data is
transferred as the result of the execution of the UNSTRING statement.

b. Any subscripting or indexing associated with identifier-2, identifier-3,
identifier-4, identifier-5, identifier-6 is evaluated immediately before
the transfer of data into the respective data item.

Procedure Division

USE

5.41 USE Statement

Function

The USE statement specifies procedures for input-output error handling that
supplement the standard procedures provided by the file system.

General Format

file-name-l ~ile-name-2] ...

USE AFTER STANDARD PROCEDURE ON OUTPUT {
EXCEPTION} INPUT

ERROR . 1-0
EXTEND

Syntax Rules

1. A USE statement, when present, must immediately follow a section
header in the declaratives section and must be followed by a period
followed by a space. The remainder of the section must consist of zero, one,
or more procedural paragraphs that define the procedures to be used.

2. The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

3. Appearance of a file-name in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

4. The words ERROR and EXCEPTION are synonymous and can be used
interchangeably.

5. The files implicitly or explicitly referenced in a USE statement need not
all have the same organization or access.

General Rules

1. The designated procedures are executed by the input-output system after
completing the standard input-output error routine or upon recognition of
the INVALID KEY or AT END condition when the INVALID KEY phrase
or AT END phrase has not been specified in the input-output statement.

2. After execution of a USE procedure, control is returned to the invoking
routine.

Procedure Division 5-119

~ .. "'1.

USE
Continued

5-120

3. Within a USE procedure, there must not be any reference to any non
declarative procedures. Conversely, in the non declarative portion there
must be no reference to procedure-names that appear in the declarative
portion, except that PERFORM statements can refer to a USE statement
or to the procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any statement
that would cause the execution of a USE procedure that had previously
been invoked and had not yet returned control to the invoking routine.

Procedure Division

WRITE (Sequential)

5.42 WRITE Statement (Sequential)

Function

The WRITE statement releases a logical record for an output file. It can also
be used for vertical positioning of lines within a logical page.

General Format

WRITE record-name [FROM

r{~BEFOREl l AFTER f
ADVANCING

Syntax Rules

{
END-OF-PAGEl

EOP f

identifier-I]

I{ ~dentifier-2} [LINE J 1
mteger LINES

[PAGE]

1. Record-name and identifier-l must not refer to data that is allocated to
the same storage area.

2. Record-name is the name of a logical record in the File Section of the Data
Division; record-name can be qualified.

3. When identifier-2 is used in the ADVANCING phrase, it must be the
name of an elementary integer data item.

4. Integer, or the value of the data item referenced by identifier-2, can be
zero.

5. If the END-OF-PAGE phrase is specified, the LINAGE clause must be
specified in the file-description-entry for the associated file.

6. The words END-OF-PAGE and EOP are equivalent.

General Rules

1. The associated file must be open in the OUTPUT or EXTEND mode at
the time of the execution of this statement.

2. The logical record released by the successful execution of the WRITE
statement is no longer available in the record area unless the associated
file is named in a SAME RECORD AREA clause. The logical record is also
available to the program as a record of other files referenced in the same
SAME RECORD AREA clause as the associated output file, as well as to
the file associated with record-name.

Procedure Division 5-121

WRITE (Sequential)
Continued

5-122

3. The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of:

a. The statement:

MOVE identifier-l TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE state
ment.

After execution of the WRITE statement is complete, the information in
the area referenced by identifier-1 is available, even though the informa
tion in the area referenced by record-name may not be.

4. The current record pointer is unaffected by the execution of a WRITE
statement.

5. The maximum record size for a file is established at the tine the file is
created and must not subsequently be changed.

6. The number of character positions on a mass storage device required to
store a logical record in a file can or cannot be equal to the number of
character positions defined by the logical description of that record in the
program.

7. The execution of the WRITE statement releases a logical record to the file
systems.

8. Both the ADVANCING phrase and the END-OF-PAGE phrase allow con
trol of the vertical positioning of each line on a representation of a printed
page. If the ADVANCING phrase is not used, automatic advancing will be
provided to act as if the user had specified AFTER ADVANCING 1 LINE.
If the ADVANCING phrase is used, advancing is provided as follows:

a. If identifier-2 is specified, the representation of the printed page is
advanced the number of lines equal to the current value associated with
identifier-2.

b. If integer is specified, the representation of the printed page is ad
vanced the number of lines equal to the value of integer.

c. If the BEFORE phrase is used, the line is presented before the repre
sentation of the printed page is advanced according to Rules a and b
above.

Procedure Division

WRITE (Sequential)
Continued

d. If the AFTER phrase is used, the line is presented after the representa
tion of the printed page is advanced according to Rules a and b above.

e. If PAGE is specified, the record is presented on the logical page before
or after (depending on the phrase used) the device is repositioned to the
next logical page. If the record to be written is associated with a file
whose file-description-entry contains a LINAGE clause, the reposition
ing is to the first line that can be written on the next logical page as
specified in the LINAGE clause. If the record to be written is associated
with a file whose file-description-entry does not contain a LINAGE
clause, the repositioning to the next logical page is accomplished in
accordance with the normal file system techniques. If page has no
meaning in conjunction with a specific device, then advancing will be
provided to act as if the user had specified BEFORE or AFTER (de
pending on the phrase used) ADVANCING 1 LINE.

9. If the logical end of the representation of the printed page is reached
during the execution of a WRITE statement with the END-OF-PAGE
phrase, the imperative-statement specified in the END-OF-PAGE phrase
is executed. The logical end is specified in the LINAGE clause associated
with record-name.

10. An end-of-page condition is reached whenever the execution of a given
WRITE statement with the END-OF-PAGE phrase causes printing or
spacing within the footing area of a page body. This occurs when the
execution of such a WRITE statement causes the LINAGE-COUNTER to
equal or exceed the value specified by integer-2 or the data item referenced
by data-name-2 of the LINAGE clause, if specified. In this case, the
WRITE statement is executed and then the imperative-statement in the
END-OF-PAGE phrase is executed.

An automatic page overflow condition is reached whenever the execution
of a given WRITE statement (with or without an END-OF-PAGE phrase)
cannot be fully accommodated within the current page body.

This occurs when a WRITE statement, if executed, would cause the
LINAGE-COUNTER to exceed the value specified by integer-lor the
data item referenced by data-name-1 of the LINAGE clause. In this case,
the record is presented on the logical page before or after (depending on the
phrase used) the device is repositioned to the first line that can be written
on the next logical page as specified in the LINAGE clause. The impera
tive-statement in the END-OF-PAGE clause, if specified, is executed af
ter the record is written and the device has been repositioned.

If integer-2 or data-name-2 of the LINAGE clause is not specified, no end
of-page condition distinct from the page overflow condition is detected. In
this case, the end-of-page condition and page overflow condition occur
sim ul taneously.

Procedure Division 5-123

WRITE (Sequential)
Continued

5-124

If integer-2 or data-name-2 of the LINAGE clause is specified, but the
execution of a given WRITE statement would cause LINAGE-COUNTER
to simultaneously exceed the value of both integer-2 (or the data item
referenced by data-name-2) and integer-l (or the data item referenced by
data-name-l), then the operation proceeds as if integer-2 (or data-name-2)
had not been specified.

11. When an attempt is made to write beyond the externally defined bounda
ries of a sequential file, the Record Management Services will attempt to
extend the space allocated to the file on the medium. If that attempt is
successful, the WRITE will be executed normally. If it is unsuccessful, an
exception condition exists and the contents of the record area are unaffect
ed. The following action takes place:

a. The value of the FILE STATUS data item, if any, of the associated file
is set to a value of 34 indicating a boundary violation.

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly
or implicitly specified for the file, that declarative procedure will then
be executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not expli
citly or implicitly specified for the file, the execution of the object
program is terminated.

12. After the recognition of an end-of-reel or an end-of-unit of an output file
that is contained on more than one physical reel/unit, the WRITE state
ment performs the following operations:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

13. A WRITE statement that is unsuccessful for an undetermined reason will
cause a 30 to be stored in the FILE STATUS data item, if one was speci
fied for the file.

Procedure Division

WRITE (Relative)

5.43 WRITE Statement (Relative)

Function

The WRITE statement releases a logical record for an output or input-output
file.

General Format

WRITE record -name [FRO M identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to data that is allocated to the
same storage area.

2. Record-name is the name of a logical record in the File Section of the Data
Division; record-name can be qualified.

3. The INVALID KEY phrase must be specified if an applicable USE proce
dure is not specified for the associated file.

General Rules

1. The associated file must be open in the OUTPUT or 1-0 mode at the time
of the execution of this statement.

2. The logical record released by the successful execution of the WRITE
statement is no longer available in the record area unless the associated
file is named in a SAME RECORD AREA clause. The logical record is also
available to the program as a record of other files referenced in the same
SAME RECORD AREA clause as the associated output file, as well as to
the file associated with record-name.

3. The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE state
ment.

After execution of the WRITE statement is complete, the information in
the area referenced by identifier is available, even though the information
in the area referenced by record-name may not be.

Procedure Division 5-125

WRITE (Relative)
Continued

5-126

4. The current record pointer is unaffected by the execution of a WRITE
statement.

5. The maximum record size for a file is established at the time the file is
created and must not subsequently be changed.

6. The number of character positions on a storage medium required to store a
logical record in a file will be greater than the number of character posi
tions defined by the logical description of that record in the program.

7. The execution of the WRITE statement releases a logical record to Record
Management Services.

8. When a file is opened in the output mode, records can be placed into the
file by one of the following:

a. If the access mode is sequential, the WRITE statement will cause a
record to be released to the file control system. The first record will
have a relative record number of one, and subsequent records released
will have relative record numbers of2, 3, 4, If the RELATIVE KEY
data item has been specified in the file control entry for the associated
file, the relative record number of the record just released will be placed
into the RELATIVE KEY data item during execution of the WRITE
statement.

b. If the access mode is random or dynamic, prior to the execution of the
WRITE statement, the value of the RELATIVE KEY data item must
be initialized in the program with the relative record number to be
associated with the record in the record area. That record is then re
leased to Record Management Services by execution of the WRITE
statement.

9. When a file is opened in the 1-0 mode and the access mode is random or
dynamic, the WRITE statement allows records to be inserted in the associ
ated file. The value of the RELATIVE KEY data item must be initialized
by the program with the relative record number to be associated with the
record in the record area. Execution of a WRITE statement then causes
the contents of the record area to be released to the Record Management
Services.

10. An INVALID KEY condition can arise; the WRITE statement is unsuc
cessful, the contents of the record area are unaffected, and the following
actions take place.

a. If the access mode is sequential, a boundary violation can occur if the
WRITE statement attempted to write beyond the allocated space for
the file and the Record Management Services was unsuccessful in ob
taining additional space for the file. The value 24 is placed in the FILE
STATUS data item, if any, associated with the file.

Procedure Division

WRITE (Relative)
Continued

b. If the access mode is random or dynamic and the contents of the
RELATIVE KEY data item specifies a record which already exists in
the file, the value 22 is placed in the FILE STATUS data item, if any,
associated with the file.

c. If the access mode is random or dynamic and the contents of the
RELATIVE KEY data item do not lie in the range of key values
associated with the file, a boundary violation can occur if the Record
Management Services is unsuccessful in obtaining additional space for
the file. The value 24 is placed in the FILE STATUS data item, if any,
associated with the file.

11. A WRITE statement issued to a file that is being simultaneously accessed
by another task will be unsuccessful. The FILE STATUS data item, if one
was specified for the file, is set to 92.

12. A WRITE statement that is unsuccessful for an undetermined reason will
cause a 30 to be stored in the FILE STATUS data item, if one was
specified for the file.

Procedure Division 5-127

WRITE (Indexed)

5.44 WRITE Statement (Indexed)

5-128

Function

The WRITE statement releases a logical record for an output or input-output
file.

General Format

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to data that is allocated to the
same storage area.

2. Record-name is the name of a logical record in the File Section of the Data
Division.

3. The INVALID KEY phrase must be specified if an applicable USE
procedure is not specified for the associated file.

General Rules

1. The associated file must be open in the OUTPUT or 1-0 mode at the time
of the execution of this statement.

2. The logical record released by the execution of the WRITE statement is no
longer available in the record area unless the associated file is named in a
SAME RECORD AREA clause or the execution of the WRITE statement
is unsuccessful. The logical record is also available to the program as a
record of other files referenced in the same SAME RECORD AREA clause
as the associated output file, as well as to the file associated with record
name.

3. The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

Procedure Division

WRITE (Indexed)
Continued

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE state
ment.

After execution of the WRITE statement is complete, the information in
the area referenced by identifier is available, even though the information
in the area referenced by record-name may not be. (See General Rule 2).

4. The current record pointer is unaffected by the execution of a WRITE
statement.

5. The maximum record size for a file is established at the time the file is
created and must not subsequently be changed.

6. The number of character positions on a mass storage device required to
store a logical record in a file mayor may not be equal to the number of
character positions defined by the logical description of that record in the
program.

7. The execution of the WRITE statement releases a logical record to the
Record Management Services.

8. Execution of the WRITE statement causes the contents of the record area
to be released. The Record Management Services utilizes the content of
the record keys in such a way that subsequent access of the record may be
made based upon any of those specified record keys.

9. The value of the prime record key must be unique within the records in the
file.

10. The data item specified as the prime record key must be set by the
program to the desired value prior to the execution of the WRITE
statement.

11. If sequential access mode is specified for the file, records must be released
to the Record Management Services in ascending order of prime record key
values.

12.1f random or dynamic access mode is specified, records may be released to
the Record Management Services in any program-specified order. .

13. When the ALTERNATE RECORD KEY clause is specified in the file
control entry for an indexed file, the value of the alternate record key may
be non-unique only if the DUPLICATES phrase is specified for that data
item. In this case the Record Management Services provides storage of
records such that, when records are accessed sequentially, the order of
retrieval of those records is the order in which they were released to the
Record Management Services.

Procedure Division 5-129

WRITE (Indexed)
Continued

5-130

14. The INVALID KEY condition exists under the following circumstances:

NOTE:

The value in parentheses immediately following each
statement is the value that is placed in the FILE STATUS
data item, if one was specified for the file.

a. When sequential access mode is specified for a file opened in the output
mode and the value of the prime record key is not greater than the
value of the prime record key of the previous record, (21)

b. When the file is opened in the output or 1-0 mode and the value of the
prime record key is equal to the value of a prime record key of a record
already existing in the file, (22)

c. When the file is opened in the output or 1-0 mode and the value of an
alternate record key for which duplicates are not allowed equals the
corresponding data item of a record already existing in the file, (22)

d. When the device to which the file is assigned has no more space to
contain the new record, (24)

e. When an attempt is made to write a record that is being simultaneously
accessed by another task, (92)

f. When an unidentifiable error occurs. (30)

Procedure Division

Chapter 6
The Library Module

Function

The library module provides a capability for specifying text that is to be
copied from a library file. The COPY statement incorporates this text into a
COBOL source program.

General Format

COpy {text-name}

literal-3

[REPLACING

Syntax Rules

, {literal-It

word-I'

BY {literal-2 t

word-2 ,

1. Each text-name must be unique within the file directories available to the
compiler. (See Section 1.1.2.1, User-Defined Words.)

2. The COPY statement must be preceded by a space and terminated by the
separator period.

3. Word-lor word-2 may be any single COBOL word.

4. COpy statement may occur in the source program anywhere a character
string or a separator may occur except that a COpy statement must not
occur within a COpy statement.

5. Literal-3 is a non-numeric literal containing a file specification. The use of
text-name is equivalent to specifying "SYS$DISK:textname.LIB".

General Rules

1. When a COpy statement is specified, the library text associated with text
name is copied into the source program. The entire COPY statement is
logically replaced, beginning with the reserved word COPY and ending
with the punctuation character period, inclusive.

6-1

2. If the REPLACING phrase is not specified, the library text is copied
unchanged.

If the REPLACING phrase is specified, the library text is copied and each
properly matched occurrence of word-I and literal-I in the library text is
replaced by the corresponding word-2, or literal-2.

3. The comparison operation to determine text replacement occurs as follows:

Any separator comma, semicolon and/or space(s) preceding the leftmost
library text-word is copied into the source program. Starting with the
leftmost library text-word and the first word-I, or literal-I, that was speci
fied in the REPLACING phrase, the entire REPLACING phrase operand
that precedes the reserved word BY is compared to a library text-word.

Word-I, or literal-I, matches the library text if, and only if, the text-word
that forms word-I, or literal-I is equal, character for character, to the
library text-word.

If no match occurs, the comparison is repeated with each next successive
word-I, or literal-I, if any, in the REPLACING phrase until either a
match is found or there is no next successive REPLACING operand.

When all the REPLACING operands have been compared and no match
has occurred, the leftmost library text-word is copied into the source pro
gram. The next successive library text-word is then considered as the
leftmost library text-word, and the comparison cycle starts again with the
first word-I, or literal-I, specified in the REPLACING phrase.

Whenever a match occurs between wqrd-I, or literal-I, and the library
text, the corresponding word-2, or literal-2, is placed into the source pro
gram. The library text-word immediately following the rightmost text
word that participated in the match is then considered as the leftmost
library text-word. The comparison cycle starts again with the first word-I,
or literal-I specified in the REPLACING phrase.

The comparison operation continues until the rightmost text-word in the
library text has either participated in a match or been considered as a
leftmost library text-word and participated in a complete comparison
cycle.

4. Comment lines appearing in library text are copied unchanged into the
source program.

5. The text produced as a result of the complete processing of a COpy state
ment must not contain a COpy statement.

6. Library text must conform to the rules for COBOL reference format. A
program written in conventional reference format must COPY only library
files also written in conventional reference format. COPY statements ap
pearing in a file that was created using terminal format, can only refer to
library files that were created using the same format.

6-2 The Library Module

Appendix A
Reserved Words

The following is a list of reserved words taken from American National Stan
dard COBOL, with some additional words that represent this compiler's ex
tensions to the COBOL language. Words that are not reserved by the standard
are indicated by an asterisk. All of the following words are reserved by the
compiler and must not be used as user-defined words.

ACCEPT
ACCESS

* ACTUAL
ADD

* ADDRESS
ADVANCI~G
AFTER
ALL
ALPHABETIC
ALSO
ALTER
ALTERl'iATE
AND

* APPLY
ARE
AREA
AREAS
ASCENDING

* ASCII
ASSIGN
AT
AUTHOR

BEFORE
* BEGINNING
* BINARY

BLANK
BLOCK
BOTTOM
BY

CALL
CA~CEL

* CARD-PUNCH
* CARD-READER

CD
CF
CH

* CHANNEL
CHARACTER
CHARACTERS
CLOCK-UNITS
CLOSE
COBOL
CODE
CODE-SET
COLLATING
COLUMN
COMMA
COMMUNICATIO~

COMP
* COMP-l
* COMP-3
* COMP-6

COMPUTATIONAL
* COMPUTATIO~AL-l
* COMPUTATIONAL-3
* COMPUTATIONAL-6

COMPUTE
CO~FIGURA TION

* CONSOLE

CONTAI~S

CONTROL
CO~TROLS
coPy
CORR
CORRESPONDING
COUNT
CURRENCY

DATA
DATE
DATE-COMPILED
DATE-WRITTE~

DAY
DE
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-~AME

DEBUG-SUB-l
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING
DECIMAL-POINT
DECLARATIVES

* DECSYSTEM-IO
* DEFERRED

DELETE
DELIMITED
DELIMITER

A-I

* DENSITY GROUP MODE
DEPENDING MODULES
DEPTH HEADING MOVE
DESCENDING HIGH-VALUE MULTIPLE

* DESCRIPTOR HIGH-VALUES MULTIPLY
DESTINATION
DETAIL 1-0 NATIVE
DISABLE I-O-CONTROL NEGATIVE
DISPLAY *ID NEXT

* DISPLAY-6 IDENTIFICATION NO
* DISPLAY-7 IF NOT

DIVIDE IN * NOTE
DIVISION INDEX NUMBER
DOWN INDEXED NUMERIC
DUPLICATES INDICATE
DYNAMIC INITIAL OBJECT-COMPUTER

INITIATE OCCURS
* EBCDIC INPUT * ODD

EGI INPUT-OUTPUT OF
ELSE INSPECT OFF
EMI INSTALLATION OMITTED
ENABLE INTO ON
END INVALID OPEN

* ENDING IS OPTIONAL
END-OF-PAGE OR
ENTER JUST ORGANIZATION

* ENTRY JUSTIFIED OUTPUT
ENVIRONMENT OVERFLOW
EOP KEY
EQUAL * KEYS PAGE

* EQUALS PAGE-COUNTER
ERROR LABEL * PAPER-TAPE-PUNCH
ESI LAST * PAPER-TAPE-READER

* EVEN LEADING * PARITY
EVERY LEFT * PDP-lO

* EXAMINE LENGTH PERFORM
EXCEPTION LESS PF
EXIT LIMIT PH
EXTEND LIMITS PIC

LINAGE PICTURE
FD LINAGE-COUNTER PLUS
FILE LINE POINTER
FILE-CONTROL LINE-COUNTER POSITION

* FILE-LIMIT * LINE-PRINTER POSITIVE
* FILE-LIMITS LINES * PRINT-CONTROL

FILLER LINKAGE PRINTING
FINAL LOCK PROCEDURE
FIRST LOW-VALUE PROCEDURES
FOOTING LOW-VALUES PROCEED
FOR * PROCESSING

* FORTRAN * MACRO PROGRAM
* FORTRAN-IV * MAP4 PROGRAM-ID

FROM * MAP5
* MAP6 QUEUE

GENERATE * MAP7 QUOTE
GIVING * MAP8 QUOTES
GO MEMORY

* GO BACK MERGE RANDOM
GREATER MESSAGE RD

A-2 Reserved Words

READ SEND TIME
* READ-AHEAD SENTENCE TIMES

RECEIVE SEPARATE TO
RECORD SEQUENCE * TODAY

* RECORDING SEQUENTIAL TOP
RECORDS SET * TRACE
REDEFINES SIGN TRAILING
REEL SIZE TYPE

* REFERENCE SORT
REFERENCES SORT-MERGE UNIT
RELATIVE SOURCE * UNLOCK
RELEASE SOURCE-COMPUTER UNSTRING
REMAINDER SPACE UNTIL

* REMARKS SPACES UP
REMOVAL SPECIAL-NAMES UPON
RENAMES STANDARD USAGE
REPLACING STANDARD-l USE
REPORT START * USER-NUMBER
REPORTING STATUS USING
REPORTS STOP
RERUN STRING VALUE
RESERVE SUB-QUEUE-l VALUES
RESET SUB-QUEUE-2 VARYING
RETURN SUB-QUEUE-3
REVERSED SUBTRACT WHEN

REWIND SUM WITH

REWRITE SUPPRESS WORDS

RF * SWITCH WORKING-STORAGE

RH SYMBOLIC WRITE

RIGHT SYNC * WRITE-BEHIND

ROUNDED SYNCHRONIZED ZERO
RUN

ZEROES
TABLE ZEROS SAME * TALLY

SD TALLYING
SEARCH TAPE +

SECTION TERMINAL
* SECURITY TERMINATE
/ * SEEK TEXT
** SEGMENT THAN

SEGMENT -LIMIT THROUGH >
SELECT THRU <

Reserved Words A-3

Appendix B
Character Sets

The following table shows the characters of the computer character set
(ASCII) with each character's decimal and hexadecimal equivalent.

Characters belonging to set "C" constitute the COBOL character set. Set "L"
contains those characters that can appear in nonnumeric literals. The charac
ters in set "X" delimit lines of the source text.

B-1

Table B-1: C~aracterSets

Decimal Hex Character Set Decimal Hex Character Set

000 00 NUL L 032 20 space C L
001 01 SOH L 033 21 ! L
002 02 STX L 034 22 " C L
003 03 ETX L 035 23 # L
004 04 EaT L oa6 24 $ C L
005 05 ENQ L 0~~7 25 c· ,r L
006 06 ACK L oa8 26 & L
007 07 BEL L 039 27 , L

008 08 BS L 040 28 (C L
009 09 HT C 041 29) C L
010 OA LF X 042 2A * C L
011 OB VT X 043 2B + C L
012 OC FF X 044 2C , C L
013 OD CR X 045 2D - C L
014 OE SO L 046 2E C L
015 OF SI L 047 2F / C L

016 10 DLE L 048 30 0 C L
017 11 DC1 L 049 31 1 C L
018 12 DC2 L 050 32 2 C L
019 13 DC3 L 051 33 3 C L
020 14 DC4 L 052 34 4 C L
021 15 NAK L 053 35 5 C L
022 16 SYN L 054 36 6 C L
023 17 ETB L 055 37 7 C L

024 18 CAN L 056 38 8 C L
025 19 EM L 057 39 9 C L
026 1A SUB L 058 3A : L
027 1B ESC L 059 3B ; C L
028 1C FS L 060 3C < C L
029 1D GS L 061 3D = C L
030 IE RS L 062 3E > C L
031 IF US L 063 3F ? L

Characters belonging to set "C" constitute the COBOL character set. Set "L" contains those
characters that can appear in nonnumeric literals. The characters in set "X" delimit lines of the
source text.

B-2 Character Sets

Table B-1: Character Sets (continued)

Decimal Hex Character Set Decimal Hex Character Set

064 40 (ii, L 096 60 L
065 41 A C L 097 61 a L
066 42 B C L 098 62 b L
067 43 C C L 099 63 c L
068 44 D C L 100 64 d L
069 45 E C L 101 65 e L
070 46 F C L 102 66 f L
071 47 G C L 103 67 g L

072 48 H C L 104 68 h L
073 49 I C L 105 69 i L
074 4A J C L 106 6A j L
075 4B K C L 107 6B k L
076 4C L C L 108 6C I L
077 4D M C L 109 6D m L
078 4E N C L 110 6E n L
079 4F 0 C L 111 6F 0 L

080 50 P C L 112 70 p L
081 51 Q C L 113 71 q L
082 52 R C L 114 72 r L
083 53 S C L 115 73 s L
084 54 T C L 116 74 t L
085 55 U C L 117 75 u L
086 56 V C L 118 76 v L
087 57 W C L 119 77 w L

088 58 X C L 120 78 x L
089 59 Y C L 121 79 y L
090 5A Z C L 122 7A z L
091 5B [L 123 7B I L
092 5C \ L 124 7C I L
093 5D J L 125 7D I L
094 5E L 126 7E - L
095 5F - L 127 7F DEL L

Character Sets B-3

Appendix C
File Status Key Values

Table C-l: Sequential I/O File Status Key Values

Status Key
Code Meaning

00 No further information (successful).

10 End-of-file indicator detected.

30 Permanent error.

34 Permanent error (boundary error on WRITE statement).

91 File locked by another task.

93 REWRITE attempted without prior READ.

94 Improper operation attempted.

95 Allocation failure on OPEN (no file space on device).

96 No buffer space. Program tried to open a file that is sharing buffer space
(SAME AREA) with another file.

97 No such file. The file named in an OPEN statement was not found.

98 Close error. Error discovered while in the process of closing the file.

C-l

Table C-2: Relative and Indexed I/O File Status Key Values

Status Key
Code Meaning

00 No further information (successful).

02 A record written into an indexed file by a WRITE or REWRITE statement
contains at least one key value that was already present in another record.

10 End-of-file indicator detected.

21 Sequence error on primary key during the execution of a WRITE or REWRITE
statement.

22 Duplicate key error.

23 No such record.

24 Boundary error on WRITE statement.

30 Permanent error.

91 File locked by another task.

92 Record locked by another task.

93 REWRITE or DELETE attempted without prior READ.

94 Improper operation attempted.

95 Allocation failure (no file space on device).

96 No buffer space. Program tried to open a file that is sharing buffer space
(SAME AREA) with another file.

97 No such file. The file named in an OPEN statement was not found.

98 Close error. Error discovered while in the process of closing a file.

C-2 File Status Key Values

Glossary

Abbreviated Combined Relation Condition

The combined condition that results from the explicit omission of a common subject
or a common subject and common relational operator in a consecutive sequence of
relation conditions.

Abnormal Termination

The premature end of execution of a program due to the detection by the operating
system of a situation that prevents further successful operation of that program.

Access Mode

How records are to be operated upon in a file. The COBOL access modes are
SEQUENTIAL, RANDOM, and DYNAMIC.

Actual Decimal Point

The physical representation, using a period (.) or comma (,), of the decimal point
position in a data item. (See also Assumed Decimal Point.)

Alphabet-Name

A user-defined word that assigns a name to a specific character set and/or collating
sequence in the SPECIAL-NAMES paragraph of the Environment Division.

Alphabetic Character

A character from the following set of characters A-Z and the space. (See also Al
phanumeric Character, Numeric Character.)

Alphanumeric Character

Any character in the computer character set. (See also Alphabetic Character and
Numeric Character.)

Alphanumeric Literal

(See Nonnumeric Literal.)

Glossary-l

Alternate Record Key

A key, other than the prime record key, whose contents identify a record in an
indexed file.

Arithmetic Expression

An identifier of a numeric elementary item, a numeric literal, such identifiers and
literals separated by arithmetic operators, two arithmetic expressions separated by
an arithmetic operator, or an arithmetic expression enclosed in parentheses.

Arithmetic Operation

The process started by the execution of an arithmetic statement or the evaluation of
an arithmetic expression that results in a mathematically correct .solution to that
expression, using the arguments presented.

Arithmetic Operator

A single character or a fixed 2-character combination of the character(s) that belong
to the following set:

Character

+

*
/
**

Meaning

Addition
Subtraction
Multiplication
Division
Exponentiation

Ascending Key

A key upon whose values data is ordered, starting with the lowest key value and going
to the highest key value in accordance with the rules for comparing data items.

Assumed Decimal Point

A decimal point position that is not an actual character in the data item. The
assumed decimal point has logical meaning but no physical representation. (See also
Actual Decimal Point.)

AT END Condition

Bit

A condition that results during:

~. The execution of a READ statement for a sequentially accessed file when no next
logical record exists for the file or when an optional file is not present.

2. The execution of a SEARCH statement when the search operation terminates
without satisfying the condition specified in any of the associated WHEN phrases.

The smallest unit in a computer storage structure capable of expressing two distinct
alternatives.

Glossary-2

Block

A physical unit of data normally composed of one or more logical records. For mass
storage files, a block can contain a portion of a logical record. Block size has no direct
relationship to the file size within which the block is contained or to the size of the
logical record(s) that are either contained within the block or that overlap the block.
The term is synonymous with Physical Record.

Bottom Margin

An empty area that follows the page body.

Byte

Synonymous with Character Position.

Called Program

A program that is the object of a CALL statement. It is combined with the calling
program to produce a run unit.

Calling program

A program that executes a CALL to another program.

Character

The basic; indivisible unit of the COBOL language.

Character Data Item

A data item consisting entirely of Standard Data Format characters.

Character Position

The amount of physical storage required to store a single Standard, Data Format
character whose usage is DISPLAY.

Character-String

A character, or a sequence of contiguous characters, forming a COBOL word, a
literal, a PICTURE character-string, or a comment-entry.

Class Condition

The proposition, for which a truth value can be determined, that the content of an
item is wholly alphabetic or wholly numeric.

Clause

An ordered set of consecutive COBOL character-strings whose purpose is to specify
an entry attribute.

GlossarY-3

COBOL Character Set

The set of characters that combine to form COBOL character-strings and separators.
The COBOL character set is listed in Appendix B. (See also Computer Character
Set.)

COBOL Word

(See Word.)

Collating Sequence

The sequence in which the characters acceptable to a computer are ordered for
purposes of sorting, merging, and comparing.

Column

A character position in a print line. The columns are numbered from 1, by 1, starting
at the leftmost character position of the print line and extending to the rightmost
position of the print line.

Combined Condition

A condition resulting from the connection of two or more conditions with the AND or
OR logical operator.

Comment-Entry

An entry in the Identification Division that can be any combination of characters
from the computer character set.

Comment Line

A source program line with an asterisk in the indicator area of the line. Areas A and B
can contain any characters from the computer character set. The comment line
serves only for program documentation. A special form of comment line causes page
ejection prior to printing the comment; it is identified by a stroke (/) in the indicator
area of the line.

Compile Time

The time at which a COBOL source program is translated by a COBOL compiler into
a COBOL object program.

Compiler

A program that translates a source program into an object program.

Compiler-Directing Statement

A statement beginning with a compiler-directing verb that causes the compiler to
take a specific action during compilation.

Glossary-4

Complex Condition

A condition in which one or more logical operators act upon one or more conditions.
(See Negated Simple Condition; Combined Condition; Negated Combined Condi
tion.)

Computer Character Set

The set of all characters that can be represented or stored in the computer. As used in
this manual, the set sometimes excludes the source program line delimiters. The
computer character set is listed in Appendix B. (See also COBOL Character Set.)

Computer-Name

A system-name that identifies the computer on which the program is to be compiled
or run.

Concurrent Run Unit

A run unit, other than the current run unit, that has been initiated but not termi
nated during the time in which the current run unit has been initiated but not
terminated.

Condition

A program status at execution time for which a truth value can be determined. Where
the term "condition" (condition-I, condition-2, ...) appears in these language specifi
cations in or in reference to a general format, it is a conditional expression for which a
truth value can be determined. It consists of either: (1) a simple condition optionally
parenthesized, or (2) a combined condition consisting of simple conditions, logical
operators, and parentheses.

Condition-Name

Either a user-defined word that assigns a name to a subset of values that a condi
tional variable can assume or a user-defined word assigned to a status of a switch or
device. When "condition-name" is used in the general formats, it represents a unique
data item reference consisting of a syntactically correct combination of a condition
name and qualifiers, subscripts, and indexes, as required for uniqueness of reference.

Condition-Name Condition

The proposition, for which a truth value can be determined, that the value of a
conditional variable is a member of the value set attributed to a condition-name
associated with the conditional variable.

Conditional Expression

A simple condition or a complex condition specified in an IF, PERFORM, or
SEARCH statement. (See Simple Condition and Complex Condition.)

Glossary-5

Conditional Statement

A statement specifying that the truth value of a condition is to be determined and
that the subsequent action of the object program depends upon the truth value.

Conditional Variable

A data item whose value(s) has a condition-name assigned to it.

CONFIGURATION SECTION

A section of the Environment Division that describes overall specifications for source
and object computers.

Connective

A reserved word that:

1. Associates a data-name, paragraph-name, condition-name or text-name with its
qualifier.

2. Links two or more operands written in a series.

3. Forms conditions (logical connectives). (See Logical Operator.)

Counter

A data item used to store numbers or number representations in away that permits
them to be increased or decreased by the value of another number, or to be changed
or reset to zero or to an arbitrary positive or negative value.

Currency Sign

The $ character in the COBOL character set.

Currency Symbol

The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph. If no CURRENCY SIGN clause is present in a COBOL source program,
the currency symbol is identical to the currency sign.

Current Record

The record available in the record area associated with the file.

Data Clause

A clause in a data-description-entry in the Data Division of a COBOL program.

Data-Description-Entry

An entry in the Data Division of a COBOL program that is composed of a level
number followed by a data-name, if required, and by a set of data clauses, as
required.

Glossary-6

Data Item

A unit of data (excluding literals) defined by the COBOL program.

Data-Name

A user-defined word that names a data item described in a data-description-entry.
When used in the general formats, data-name represents a word that must not be
reference-modified, subscripted, indexed, or qualified unless specifically permitted
by the rules of the format.

Declarative-Sentence

A compiler-directing sentence consisting of a single USE statement terminated by
the separator period.

Declaratives

A set of one or more special-purpose sections written at the beginning of the Proce
dure Division, the first of which is preceded by the key word DECLARATIVES and
the last of which is followed by the key words END DECLARATIVES. A declarative
is composed of a section header followed by a USE compiler-directing sentence,
followed by a set of zero, one, or more associated paragraphs.

De-edit

The logical removal of all editing characters from a numeric edited data item to
determine its unedited numeric value.

Delimiter

A character, or a sequence of contiguous characters, that identifies the end of a string
of characters and separates that string from the following string of characters. A
delimiter is not part of the string of characters that it delimits.

Descending Key

A key upon whose values data are ordered, in accordance with the rules for comparing
data items, starting with the highest value of the key down to the lowest value of the
key.

Digit Position

The amount of physical storage required to store a single digit. The amount can vary,
depending on the usage specified in the data-description-entry that defines the data
item. If the data-description-entry specifies that usage is DISPLAY, then a digit
position is synonymous with a character position.

Glossary-7

Division

A collection of zero, one, or more sections or paragraphs, called the division body,
that are formed and combined in accordance with a specific set of rules. Each divi
sion consists of the division header and the related division body. There are four
divisions in a COBOL program:

IDENTIFICATION
ENVIRONMENT
DATA
PROCEDURE

Division Header

A combination of words, followed by a separator period, that indicates the beginning
of a division. The division headers in a COBOL program are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION [USING [data-name-ll '" 1 .

Dynamic Access

An access mode in which specific logical records can be obtained from or placed into a
mass storage file in a non-sequential manner and obtained from a file in a sequential
manner during the scope of the same OPEN statement. (See Random Access;
Sequential Access.)

Editing Character

A single character or a fixed 2-character combination belonging to the following set:

B space
o zero
+ plus

mmus
CR credit
DB debit

Elementary Item

z
*
$

/

zero suppress
check protect
currency sign
comma (decimal point)
period (decimal point)
stroke (virgule, slash)

A data item that is described as not being further logically subdivided.

Empty Set

A set containing no member records.

End of Procedure Division

The physical position of a COBOL source program after which no further procedures
appear.

Glossary-8

Entry

Any descriptive set of consecutive clauses terminated by a separator period and
written in the Identification Division, Environment Division, or Data Division of a
COBOL program.

Environment Clause

A clause that appears as part of an Environment Division entry.

Execution Time

(See Object Time.)

Extend Mode

The state of a file after execution of an OPEN statement, with the EXTEND phrase
specified for that file, and before the execution of a CLOSE statement without the
REEL or UNIT phrase for that file.

External Switch

A hardware or software device used to indicate that one of two alternate states exist.

Figurative Constant

A compiler-generated value referenced by using certain reserved words.

File

A collection of records.

File Clause

A clause that appears as part of a File Description (FD) entry in the Data Division of
a COBOL program.

FILE-CONTROL

The name of an Environment Division paragraph where the data files for a given
source program are declared.

File-Description-Entry

An entry in the File Section of the Data Division composed of the level indicator FD,
followed by a file-name, and then followed by a set of file clauses as required.

File-Name

A user-defined word that names a file described in a file-description-entry within the
File Section of the Data Division.

File Organization

The permanent logical file structure established when a file is created.

Glossary-9

FILE SECTION

The section of the Data Division that contains file-description-entries and their asso
ciated record descriptions.

Fixed-Length Record

A record associated with a file whose file-description-entry requires that all records
contain the same number of character positions.

Footing Area

The position of the page body next to the bottom margin.

Format

A specific arrangement of a set of data.

Group Item

A data item that is composed of subordinate data items.

High-Order End

The leftmost character of a string of characters.

I-O-CONTROL

The name of an Environment Division paragraph in which object program require
ments for specific input-output techniques, rerun points, sharing of same areas by
several data files, and multiple file storage on a single input-output device are speci
fied.

1-0 Mode

The state of a file after execution of an OPEN statement, with the 1-0 phrase
specified for that file, and before the execution of a CLOSE statement without the
REEL or UNIT phrase for that file.

Identifier

A syntactically correct combination of a data-name, reference modifier and quali
fiers, subscripts and indexes, as required for uniqueness of reference, that names a
data item. The rules for "identifier" associated with the general formats may, howev
er, specifically prohibit reference modification, qualification, subscripting, or index
ing.

Imperative-Statement

A statement that begins with an imperative verb and specifies an unconditional
action to be taken. An imperative-statement can consist of a sequence of imperative
statements.

Glossary-lO

Index

A computer storage area or register, whose contents represent the identification of a
particular element in a table.

Index Data Item

A data item in which the values associated with an index-name can be stored.

Index-Name

A user-defined word that names an index associated with a specific table.

Indexed Data-Name

An identifier that is composed of a data-name, followed by one or more index-names
enclosed in parentheses.

I ndexed File

A file with indexed organization.

Indexed Organization

The permanent logical file structure in which each record is identified by the value of
one or more keys within that record.

Input File

A file that is opened in the input mode.

Input Mode

The state of a file after execution of an OPEN statement with the INPUT phrase
specified for that file and before the execution of a CLOSE statement without the file
REEL or UNIT phrase.

Input-Output File

A file that is opened in the 1-0 mode.

INPUT-OUTPUT SECTION

The section of the Environment Division that names the files and the external media
required by an object program and which provides information required for transmis
sion and handling of data during execution of the object program.

Integer

A numeric literal or a numeric data item that does not include any character posi
tions to the right of the assumed decimal point. Where the term appears in general
formats, it must not be a numeric data item, must not be signed, and must not be
zero unless explicitly allowed by the rules of the format.

Glossary-II

Intermediate Data Item·

A signed numeric data item that contains the results developed during an arithmetic
operation before the final result is moved to the resultant-identifier, if any.

INVALID KEY Condition

Key

At object time, a condition caused when the specific value of the key associated with
an indexed or relative file is determined to be invalid.

A data item which identifies the location of a record, or a set of data items which
serve to identify the ordering of data.

Key of Reference

The prime or alternate key currently used to access records in an indexed file.

Key Word

A reserved word needed when the format in which the word appears is used in a
source program.

Level Indicator

Two alphabetic characters that identify a specific type of file or a position in a
hierarchy.

Level-Number

A user-defined word, expressed as a 1 or 2 digit number, which indicates the
hierarchical position of a data item or the special properties of a data-description
entry. Level-numbers in the range 1 through 49 indicate the position of a data item in
the hierarchical structure of a logical record. Level-numbers in the range 1 through 9
may be written either as a single digit or as a zero followed by a significant digit.
Level-numbers 66, 77 and 88 identify special properties of a data-description-entry.

Library

A file containing library text that can be included in a COBOL source program by the
COPY verb.

Library-Name

A user-defined word naming a COBOL library for compiler use in a given source
program compilation.

Library Text

A sequence of character-strings and/or separators in a COBOL library.

Glossary-12

LINAGE-COUNTER

A special register whose value points to the current position in the page body.

Line

A division of a page representing one row of horizontal character positions.

LINKAGE SECTION

Literal

The section in the Data Division of the called program that describes data items
available from the calling program. These items may be referred to by the calling and
the called program.

A character-string whose value is implied by the ordered set of characters comprising
the string.

Logical Operator

One of the reserved words AND, OR, or NOT. In the formation of a condition, AND
or OR (or both) can be used as logical connectives. NOT can be used for logical
negation.

Logical Page

A conceptual entity consisting of the top margin, the page body, and the bottom
margin.

Logical Record

The most inclusive data item. The level-number for a record is 01. A record may be
either an elementary item or a group item.

Low-Order End

The rightmost character of a string of characters.

Mass Storage

A storage medium where data can be organized and maintained in a sequential and
nonsequential manner.

Mass Storage File

A collection of records assigned to a mass storage medium.

Mnemonic-Name

A user-defined word associated in the Environment Division with a specific
implementor-name.

Glossary-13

Native Character Set

The character set associated with the computer specified in the OBJECT
COMPUTER paragraph.

Native Collating Sequence

The collating sequence associated with the computer specified In the OBJECT
COMPUTER paragraph.

Negated Combined Condition

The NOT logical operator immediately followed by a parenthetical combined
condition.

Negated Simple Condition

The NOT logical operator immediately followed by a simple condition.

Next Executable Sentence

The next sentence to which control will be transferred after execution of the current
statement is complete.

Next Executable Statement

The next statement to which control will be transferred after execution of the current
statement is complete.

Next Record

The record which logically follows the current file record.

Next Record Pointer

A conceptual entity that either points to the next logical record, indicates the AT END
condition, or is set to indicate that no valid next record has been established.

Nonnumeric Item

A data item whose description permits its contents to be composed of any
combination of characters taken from the computer character set. Certain categories
of nonnumeric items may be formed from more restricted character sets.

Nonnumeric Literal

A literal bounded by quotation marks. The string of characters can include any
character in the computer character set (except certain source program line
delimiters), some or all of which may be represented by a symbolic-character-string.

Numeric Character

A character that belongs to the set of digits 0 through 9.

Glossary-14

Numeric Item

A data item whose description restricts its contents to a value represented by
characters chosen from the digits 0 through 9; if signed, the item can also contain a +,
-, or some other representation of an operational sign.

Numeric Literal

A literal composed of one or more numeric characters that may contain a decimal
point, an algebraic sign, or both. The decimal point must not be the rightmost
character. The algebraic sign, if present, must be the leftmost character.

OBJECT-COMPUTER

The name of an Environment Division paragraph that describes the computer
environment in which the object program is executed.

Object Program

A set or group of executable machine language instructions and other material
designed to interact with data to provide problem solutions. In this context, an object
program is generally the machine language result of the operation of a COBOL
compiler on a source program. Where there is no danger of ambiguity, the word
"program" alone may be used in place of the phrase "object program".

Object Time

When an object program is executed.

Open Mode

The condition of a file between the time an OPEN statement is issued and the time a
CLOSE statement is executed.

Operand

The general definition of operand is a component which is operated upon. In this
manual, however, any lower-case word(s) that appears in a statement or entry format
may be considered an operand and, as such, is an implied reference to the data
indicated by the operand.

Operational Sign

An algebraic sign associated with a numeric data item or a numeric literal to indicate
whether its value is positive or negative.

Optional Word

A reserved word included in a specific format solely to improve the readability of the
language. Its presence is optional to the user when the format in which the word
appears is used in a source program.

Output File

A file that is opened in the output mode or extend mode.

Glossary-15

Output Mode

The state of a file after an OPEN statement is executed with the OUTPUT or
EXTEND phrase specified for that file and before the execution of a CLOSE
statement without the REEL or UNIT phrase for that file.

Padding Character

Page

An alphanumeric character that fills the unused character positions in a physical
record.

A vertical division of a report representing a physical separation of report data, the
separation being based on internal reporting requirements and/or external
characteristics of the reporting medium.

Page Body

That part of the logical page where lines can be written and/or spaced.

Page Footing

The logical end of a report page.

Page Heading

The logical beginning of a report page.

Paragraph

In the Procedure Division. a paragraph-name followed b~· a separator period and by
zero, one, or more entries. In the Identification and Environment Divisions, a
paragraph header followed by zero, one. or more entries.

Paragraph Header
A reserved word followed by the separator period that indicates the beginning of a
paragraph in the Identification and Environment Divisions. The permissible
paragraph headers are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DA TE-WRITTEN.
DATE-COMPILED.
SECURITY.

In the Environment Division:

Glossary-i6

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

Paragraph-Name

A user-defined word that identifies and begins a paragraph in the Procedure Division.

Phrase

An ordered set of one or more consecutive COBOL character-strings that forms a
portion of a COBOL procedural statement or of a COBOL clause.

Physical Record

(See Block.)

Prime Record Key

A key whose contents uniquely identify a record in an indexed file.

Procedure

A paragraph or group of logically successive paragraphs, or a section or group of
logically successive sections, in the Procedure Division.

Procedure-Name

A user-defined word used to name a paragraph or section in the Procedure Division.
It consists of a paragraph-name (which can be qualified) or a section-name.

Program-Name

A user-defined word that identifies a COBOL source program.

Pseudo-file-Name

A user-defined word that names a file residing on a multiple file tape for which no
file-description-entry is specified.

Punctuation Character

A character that belongs to the following set:

Character Meaning

comma
semicolon
colon
period (full stop)
quotation mark
left parenthesis
right parenthesis
space
equal sign

Glossary-17

Qualified Data-Name

An identifier composed of a data-name followed by one or more sets of the
connectives OF and IN followed by a data-name qualifier.

Qualifier

1. A data-name which is used in a reference with another data-name at a lower level
in the same hierarchy.

2. A section-name which is used in a reference with a paragraph-name specified in
that section.

3. A library-name which is used in a reference with a text-name associated with that
library.

Random Access

An access mode in which the program-specified value of a key data item identifies the
logical record that is obtained from, deleted from or placed into a relative or indexed
file.

Record

(See Logical Record.)

Record Area

A storage area allocated to process the record described in a record-description-entry
in the File Section of the Data Division.

Record Description

(See Record-Description-Entry.)

Record-Description-Entry

The total set of data-description-entries associated with a particular record.

Record Key

A key, either the prime record key or an alternate record key, whose contents identify
a record within an indexed file.

Record-Name

A user-defined word that names a record described in a record-description-entry in
the Data Division of a COBOL program.

Record Type

The collection of records described by a record-description-entry.

Glossary-IS

Reference Format

A format that provides a standard method for describing COBOL source programs.

Relation

(See Relational Operator.)

Relation Character

A character that belongs to the following set:

Character

>
<

Relation Condition

Meaning

greater than
less than
equal to

The proposition, for which a truth value can be determined, that the value of an
arithmetic expression or data item has a specific relationship to the value of another
arithmetic expression or data item. (See Relational Operator.)

Relational Operator

A reserved word, a relation character, a group of consecutive reserved words, or a
group of consecutive reserved words and relation characters used in the construction
of a relation condition. The permissible operators and their meanings are:

Relative File

Relational Operator

IS [NOT) GREATER THAN
IS [NOT) >
IS [NOT) LESS THAN
IS [NOT) <
IS [NOT) EQUAL TO
IS [NOT) =

A file with relative organization.

Relative Key

Meaning

Greater than or not greater than

Less than or not less than

Equal to or not equal to

A key whose contents identify a logical record in a relative file.

Relative Organization

The permanent logical file structure in which each record is uniquely identified by an
integer value greater than zero, which specifies the logical ordinal position of the
record in the file.

Glossary-19

Repeating Group

A group data item whose description contains an OCCURS clause or a group data
item subordinate to a data item whose description contains an OCCURS clause.

Reserved Word

A COBOL word that has special meaning to the compiler; a reserved word must not
appear in a program as a user-defined word or system-name.

Resultant-Identifier

A user-defined data item that is to contain the result of an arithmetic operation.

Section

A set of zero, one, or more paragraphs or entries, called a section body, the first of
which is preceded by a section header. Each section consists of the section header and
the related section body.-

Section Header

A combination of words followed by a separator period. It indicates the beginning of a
section in the Environment, Data, and Procedure Divisions.

In the Environment and Data Divisions, a section header is composed of reserved
words followed by a separator period. The permissible section headers are:

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division: .

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a section header is composed of a section-name, followed
by the reserved word SECTION, followed by a segment-number (optional), followed
by a separator period.

Section-Name

A user-defined word that names a section in the Procedure Division.

Segment-Number

A user-defined word that classifies sections in the Procedure Division for purposes of
segmentation. Segment-numbers can contain only the characters "0", "1", ... , "9". A
segment-number can be expressed either as a 1 or 2 digit number.

Sentence

A sequence of one or more statements, the last of which is terminated by a separator
period.

Glossary-20

Separator

A character or two contiguous characters used to delimit character strings.

Sequential Access

An access mode in which logical records are obtained from or placed into a file in a
consecutive predecessor-to-successor logical record sequence determined by the order
of records in the file.

Sequential File

A file with sequential organization.

Sequential Organization

The permanent logical file structure in which a record is identified by a predecessor
successor relationship established when the record is placed into the file.

Sign Condition

The proposition, for which a truth value can be determined, that the algebraic value
of a data item or an arithmetic expression is either less than, greater than, or equal to
zero.

Simple Condition

Any single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status condition
sign condition
(simple-condition)

SOURCE-COMPUTER

The name of an Environment Division paragraph that describes the computer
environment in which the program is to be compiled.

Source Program

Although it is recognized that a source program may be represented by other forms
and symbols, in this manual it always refers to a syntactically correct set of COBOL
statements. A COBOL source program begins with an Identification Division and
terminates with the end of the Procedure Division. In contexts where there is no
danger of ambiguity, the word "program" by itself may be used in place of the phrase
"source program".

Glossary-21

Special Character

A character that belongs to the following set:

Character

+

*
/

$

(
)

>
<

%
&

?

@

Special-Character Word

Meaning

plus sign
minus sign
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol
exclamation point
number sign
percent
ampersand
apostrophe
colon
question mark
commercial at

A reserved word that is an arithmetic operator or a relation character.

SPECIAL-NAMES

The name of an Environment Division paragraph in which hardware devices are
related to user-specified mnemonic-names.

Special Registers

Certain compiler-generated storage areas whose primary use is to store information
produced in conjunction with the use of specific COBOL features.

Standard Data Format

The concept used in describing data in a COBOL Data Division under which the
characteristics or properties of the data are expressed in a form oriented to the
appearance of the data on a printed page rather than a form oriented to the manner
in which the data is stored internally in the computer or on a particular external
medium.

Glossary-22

Statement

A syntactically valid combination of words and symbols, beginning with a verb,
written in the Procedure Division.

Subprogram

(See Called Program.)

Subscript

An integer whose value identifies a particular element in a table.

Subscripted Data-Name

An identifier that is composed of a data-name followed by one or more subscripts
enclosed in parentheses.

Switch-Status Condition

The proposition, for which a truth value can be determined, that a specified switch,
capable of being set to an ON or OFF status, has been set to a specific status.

Symbolic-Character

A group offrom one (1) to thirty (30) characters combined from the letters A through Z
and the numbers 1 through 9, used in a nonnumeric literal to represent a specific
character in a particular character set.

Symbolic-Character-String

A symbolic-character or a group of symbolic-characters that appears within a
nonnumeric literal enclosed in quotation marks and separated from each other by
either the separator comma or space. Each symbolic-character represents a character
within a given character set.

System-Name

Table

A COBOL word used to communicate with the operating environment.

A set of logically consecutive items of data defined in the Data Division of a COBOL
program by means of the OCCURS clause.

Table Element

A data item that belongs to the set of repeated items comprising a table.

Text-Name

A user-defined word that identifies library text.

Glossary-23

Text-Word

Any character-string or separator, except space, in a COBOL library.

Top Margin

An empty area that precedes the page body.

Truth Value

The representation of the result of the evaluation of a condition in terms of one of two
values: True or False.

Unary Operator

A plus (+) or a minus (-) sign that precedes a variable or a left parenthesis in an
arithmetic expression and that has the effect of multiplying the expression by +1 or
-1, respectively.

Unsuccessful Execution

The attempted execution of a statement that does not result in the execution of all
the operations specified by that statement. The unsuccessful execution of a
statement does not affect any data referenced by that statement, but may affect
status indicators.

User-Defined Word

A COBOL word that must be supplied by the user to satisfy the format of a clause or
statement.

Variable

A data item whose value may be changed by execution of the object program. A
variable used in an arithmetic expression must be a numeric elementary item.

Variable-Length Record

A record associated with a file whose file-description-entry permits records to contain
a varying number of character positions.

Variable-Occurrence Data Item

Verb

A variable-occurrence data item is a table element that is repeated a variable number
of times. Such an item must contain a Format 2 OCCURS clause in its data
description-entry or be subordinate to such an item.

A word that expresses an action to be taken by a COBOL compiler or object program.

Glossary-24

Word

A syntactically correct character-string of not more than 30 characters. A user
defined word, system-name, or reserved word.

WORKING-STORAGE SECTION

The section of the Data Division that describes working-storage data items and
constants composed either of noncontiguous items or working-storage records or both.

Glossary-25

Index
Boldface page numbers indicate primary entries.

Abbreviated combined condition, 5-21
ACCEPT, 5-5, 5-6, 5-27, 5-28, 5-109
ACCESS MODE, 3-8, 3-9
Access mode, 3-6

dynamic, 3-7
random, 3-7
sequential, 3-7

ADD, 5-5, 5-6, 5-25, 5-29, 5-30
Addition, 5-13
ADVANCING, 3-15,5-121, 5-122, 5-123
AFTER, 5-73, 5-75
Algebraic sign, 4-17
Alignment, 4-44

standard rules, 4-18
ALL,I-3
Alphabet-name, 3-4, 3-5, 4-7
ALPHABETIC, 5-18
Alphabetic PICTURE, 4-29
Alphanumeric

category, 1-5
comparison, 5-16
edited PICTURE, 4-30
literal, 1-5, B-1
PICTURE,4-30

ALTER, 5-5, 5-6, 5-31, 5-48
ALTERNATE RECORD KEY, 3-9, 3-13,

5-129
AND, 1-3, 5-19, 5-20, 5-22
AND NOT, 1-3
APPLY, 3-14, 3-15
Area

Area A, 1-8, 1-10
Area B, 1-8, 1-10
comment indicator, 1-7, 1':'8
continuation indicator, 1-7, 1-8
footing, 4-11
identification field, 1-8
sequence number, 1-7

Arithmetic
expression, 5-12
operator, 1-4, 5-13
statement, 5-5, 5-25

ASCENDING KEY, 5-100
ASCII character set, B-1
ASSIGN, 3-8, 3-9, 3-10
Assumed decimal point, 4-18
AT END, 5-81, 5-82, 5-83, 5-84, 5-87,

5-89, 5-119

Attribute
explicit, 5-12
implicit, 5-12

AUTHOR, 1-11, 2-1

Binary item, 4-18, 4-47
Blank lines, 1-9
BLANK WHEN ZERO, 4-19, 4-21, 4-22,

4-29
BLOCK CONTAINS, 4-4, 4-5, 4-6
Block size, 4-5, 4-6
Body, page, 4-11
Brace, 1-6
Bracket, 1-6
BY DESCRIPTOR, 5-32
BY REFERENCE, 5-32
BY VALUE, 5-32
Byte, fill, 4-45

CALL, 5-2, 5-3, 5-6, 5-32, 5-33
Called program, 4-3, 5-32, 5-47
Calling program, 5-32, 5-47
CARD-READER,3-4
Category, 4-17, 4-29, 4-33

alphanumeric, 1-5
Character, 1-1, 1-2

representation, numeric, 4-17
sign, 1-4
special, 1-2

Character set, B-1
ASCII, B-1
COBOL, 1-1, 1-2, B-1
computer, 1-2, B-1

Character-string, 1-1, 1-2
Class, 4-17

condition, 5-18
Clause, 1-1
CLOSE, 5-5, 5-6

(indexed and relative), 5-39
(sequential), 5-34, 5-35, 5-36, 5-37, .

5-38
COBOL

character set, 1-1, 1-2, B-1
language elements, 1-1
word, 1-1, 1-2

CODE-SET, 3-5, 4-4, 4-7
Combined condition, 5-20
Comma, 1-3, 1-5, 1-6

Index-l

Comment
indicator area, 1-7, 1-8
lines, 1-9

Comment-entry, 2-1
Common phrases, 5-23
Comparison

alphanumeric, 5-16
index data item, 5-17
index-name, 5-17
numeric, 5-16

Compilation date, 2-3
Compiler-directing

sentence, 5-4
statement, 5-4, 5-6

Complex condition, 5-19
COMPUTATIONAL, 4-46, 4-47, 4-48
COMPUTATIONAL-3, 4-46, 4-47, 4-48
COMPUTE, 5-5, 5-6, 5-25, 5-40
Computer character set, 1-2, B-1
Condition
. abbreviated combined, 5-21
class, 5-18
combined, 5-20
complex, 5-19
condition-name, 5-18
evaluation rules, 5-22
negated combined, 5-20
negated simple, 5-20
relation, 5-15, 5-21
sign, 5-19
simple, 5-15
switch-status, 5-19

Condition-name, 1-2, 4-20, 4-25
condition, 5-18
qualification, 5-10
rules, 4-50

Conditional
expression, 5-14
sentence, 5-4
statement, 5-4, 5-6
variable, 5-18

CONFIGURATION SECTION, 1-11, 3-1, 3-2
Connective, 1-3

logical, 1-3
qualifier, 1-3
series, 1-3

CONSOLE, 3-4
Constant, figurative, 1-3, 1-4. See also Literal
Continuation

indicator area, 1-7, 1-8
of lines, 1-8

COPY, 5-6, 6-1, 6-2
CORRESPONDING, 5-24, 5-30, 5-58,

5-114

Index-2

COUNT IN, 5-115, 5-117
CURRENCY SIGN, 3-4, 3-5

Data
classes of, 4-17
incompatible, 5-26
movement statement, 5-6

Data description, 4-19
concepts, 4-15
entry, 1-12

Data-description-entry, 4-2
DATA DIVISION, 1-10, 4-1
Data Division, 4-1

entry, 1-12
Data-name, 1-2, 4-23
DATA RECORDS, 4-4, 4-8
DATE, 5-27, 5-28
DATE-COMPILED, 1-11, 2-:1, 2-3
DATE-WRI'ITEN, 1-11,2-1
Date, compilation, 2-3
DAY, 5-27, 5-28
Decimal point, 1-4

assumed, 4-18
DECIMAL-POINT, 3-4, 3-5
DECLARATIVES, 1-11, 1-12, 5-1, 5-3
Declaratives, 1-12, 5-1, 5-119, 5-120
DELETE, 5-5, 5-6, 5-41, 5-42, 5-69
DELIMITED BY, 5-111, 5-115,5-116, 5-117
DELIMITER IN, 5-115, 5-117
Delimiter, source line, B-1
DESCENDING KEY, 5-100
DESCRIPTOR, 5-32
Direct indexing, 5-9
DISPLAY, 4-46, 4-48, 5-5, 5-6, 5-43
DISPLAY -6, 4-46
DISPLAY-7,4-46
DIVIDE, 5-5, 5-6, 5-25, 5-44, 5-45,

5-46
Division, 1-1, 5-13

Data, 4-1
Environment, 3-1
header, 1-10, 1-11
Identification, 2-1
Procedure, 5-1

DOWN BY, 5-104
DUPLICATES, 3-9, 3-13, 5-97, 5-129
Dynamic access mode, 3-7

Editing, 4-33. See also PICTURE
fixed insertion, 4-33, 4-34
floating insertion, 4-33, 4-35
sign, 4-17
simple insertion, 4-33, 4-34
special insertion, 4-33, 4-34
zero suppression, 4-29, 4-33, 4-35, 4-36

Elementary item, 4-16
Ellipsis, 1-7
ELSE,5-49
END DECLARATIVES, 1-12,5-1,5-3
END-OF-PAGE, 5-121, 5-123
End, Procedure Division, 5-1
Ending statement, 5-6
Entry, 1-1

data description, 1-12
Data Division, 1-12
point, 2-2

ENVIRONMENT DIVISION, 1-10,3-1
Environment Division, 3-1
EOP, 5-121
EQUAL, 5-15, 5-22
ERROR, 5-119
EXCEPTION,5-119
Execution, order of, 5-2
EXIT, 5-5, 5-6, 5-47, 5-74
EXIT PROGRAM, 5-47
Explicit

attribute, 5-12
reference, 5-11
synchronization, 4-44

Exponent, non-integer, 5-13, 5-40
Exponentiation, 5-13, 5-40
Expression

arithmetic, 5-12
conditional, 5-14

EXTEND, 5-64, 5-66

FD, 1-12, 4-2, 4-4, 4-25,4-39
Figurative constant, 1-3, 1-4. See also Literal

numeric, 1-4
File

description, 4-4
indexed, 3-6, 3-12, 5-39, 5-41, 5-68,

5-87, 5-95, 5-107, 5-128, C-2
organization, 3-6, 3-7
physical aspects, 4-15
relative, 3-6, 3-12, 5-39, 5-41, 5-68,

5-83, 5-93, 5-105, 5-125, C-2
sequential, 3-6, 3-12, 5-34, 5-64, 5-80,

5-91, 5-121, C-1
specification, 4-14

File areas, sharing, 3-14
FILE-CONTROL, 1-12, 3-1, 3-8, 3-9,

3-10, 3-11, 3-12, 3-13
File-description-entry, 4-1, 4-2
File-name, 1-2
FILE SECTION, 1-11, 4-1, 4-2
FILE STATUS, 3-8, 3-9, 3-10, 3-11,

5-38, 5-39, 5-41, 5-42, 5-67, 5-70,
5-80, 5-81, 5-82, 5-84, 5-86, 5-88,

FILE STATUS, (cont.)
5-89, 5-90, 5-91, 5-92, 5-93, 5-95,
5-96, 5-97, 5-106, 5-108, 5-124, 5-126,
5-127, 5-130, C-1

Fill byte, 4-45
FILLER, 4-19, 4-20, 4-23
Fixed insertion editing, 4-33, 4-34
Floating insertion editing, 4-33, 4-35
Footing area, 4-11
Forma.t

general, 1-13
punctuation, 1-6

Function, 1-13
Function result, 5-32

General
format, 1-13
rules, 1-13

GIVING, 5-29, 5-30, 5-32, 5-45, 5-62,
5-113, -5-114

GO TO, 5-5, 5-6, 5-48
GREATER, 5-15, 5-22
Group item, 4-16

Header
division, 1-10, 1-11
paragraph, 1-11, 1-12
Procedure Division, 5-2.
section, 1-11, 5-1

HIGH-VALUE, HIGH-VALUES, 1-3
Horizontal tab, 1-6, 1-9

I-a, 5-64, 5-66, 5-68, 5-69
I-a-CONTROL, 1-12,3-1,3-14, 3-15
Identification

Division, 2-1
field, 1-8

IDENTIFICATION DIVISION, 1-10, 2-1
Identifier, 5-2, 5-10
IF, 5-6, 5-14, 5-49, 5-50
Imperative statement, 5-5
Implicit

attribute, 5-12
redefinition, 4-25, 4-39
reference, 5-11
synchronization, 4-44, 4-45

IN, 1-3, 5-7, 5-10
Incompatible data, 5-26
INDEX, 4-46, 5-99
Index, 4-3, 4-26, 5-9, 5-103

data item, 4-47, 4-48, 5-9
data item comparison, 5-17

Index-name, 1-2, 5-9, 5-73, 5-75
comparison, 5-17

INDEXED BY, 4-26, 5-99, 5-101, 5-103 /

Index-3

Indexed file, 3-6, 3-12, 5-39, 5-41, 5-68,
5-87, 5-95, 5-107, 5-128, C-2

Indexing, 5-9, 5-10
direct, 5-9
relative, 5-9

Indicator, level, 1-12, 4-2, 5-7
Initial values, 4-3, 4-49
INPUT, 5-64, 5-65, 5-66, 5-68, 5-69
INPUT-OUTPUT SECTION, 1-11,3-1,3-6
Input-output statement, 5-6
INSPECT, 5-5, 5-6, 5-51, 5-52, 5-53,

5-54, 5-55, 5-56, 5-57
INSTALLATION, 1-11, 2-1
INVALID KEY, 5-41, 5-83, 5-85, 5-87, 5-90,

5-93, 5-95, 5-96, 5-105, 5-106, 5-107,
5-119, 5-125, 5-126, 5-128, 5-130

Item
binary, 4-18, 4-47
elementary, 4-16
group, 4-16

JUSTIFIED, 4-19, 4-21, 4-24

KEY, 5-90, 5-99, 5-100, 5-105, 5-107,
5-108

KEY IS, 5-87
Key word, 1-2

Label checking, ~66
LABEL RECORDS, 4-4, 4-9
Language

elements, COBOL, 1-1
organization, 1-10

LESS, 5-15, 5-22
Level indicator, 1-12, 4-2, 5-7
Level-number, 1-2, 1-12, 4~16, 4-19,

4-25,5-7
Level-number 01, 4-25
Level-number 66, 4-25, 4-40
Level-nu~ber 77, 4-25
Level-number 88, 4-25
Levels, 4-16
Library module, 6-1
LINAGE, 3-15, 4-4, 4-10, 4-11, 4-12,

5-121, 5-123
LINAGE-COUNTER, 1-3, 4-11, 4-12, 5-123
LINE-PRINTER, 3-4
Lines

blank, 1-9
comment, 1-9
continuation, 1-8
short, 1-9

LINKAGE SECTION, 1-11, 4-1, 4-3

Index-4

Literal, 1-4. See also Figurative constant
alphanumeric, 1-5
nonnumeric. See Literal, alphanumeric
numeric, 1-4

LOCK, 5-36, 5-39
Logical

connective, 1-3
operator, 5-20
page, 4-10
record, 4-15

LOW-VALUE, LOW-VALUES, 1-3

Memory word, 4-44
Meta-language elements, 1-6, 1-7
Mnemonic-name, 1-2, 3-4, 5-27, 5-43
MOVE, 5-5, 5-6, 5-58, 5-59, 5-60,

5-61
MULTIPLE FILE, 3-14, 3-15
Multiple results, 5-25
Multiplication, 5-13
MULTIPLY, 5-5, 5-6, 5-25, 5-62, 5-63

Negated
combined condition, 5-20
simple condition, 5-20

NEGATIVE,5-19
NEXT SENTENCE, 5-49
NO ADVANCING, 5-43
NO REWIND, 5-37, 5-65, 5-66
Non-integer exponent, 5-13
Noncontiguous working-storage, 4-2, 4-25
Nonnumeric literal. See Alphanumeric literal
NOT, 5-15, 5-18, 5-19, 5-20, 5-22
NUMERIC, 5-18
Numeric

character representation, 4-17
comparison, 5-16
edited PICTURE, 4-30
literal, 1-4
PICTURE, 4-29

OBJECT-COMPUTER, 1-12, 3-1, 3-3
OCCURS, 4-19, 4-26, 4-27, 4-28, 5-99,

5-100, 5-101
OF, 1-3, 5-7, 5-10
OFF STATUS, 3-4, 3-5
ON OVERFLOW, 5-112, 5-118
ON STATUS, 3-4, 3-5
OPEN, 5-5,5-6

(indexed and relative), 5-68, 5-69,
5-70

(sequential), 5-64, 5-65, 5-66, 5-67
Operands, overlapping, 5-26
Operational sign, 4-17

Operator
arithmetic, 1-4, 5-13
logical, 5-20
relational, 5-15, 5-16

OPTIONAL, 3-8, 3-9, 5-37, 5-65, 5-81
Optional word, 1-3
OR, 1-3, 5-19, 5-20, 5-22
OR NOT, 1-3
ORGANIZATION, 3-8, 3-9, 3-10
Organization

file, 3-6, 3-7
language, 1-10

OUTPUT, 5-64, 5-65, 5-66, 5-68, 5-69
OVERFLOW, 5-112, 5-118
Overlapping operands, 5-26

Page
body, 4-11
logical, 4-10

PAPER-TAPE-PUNCH, 3-4
PAPER-TAPE-READER, 3-4
Paragraph, 1-1, 1-11, 5-2

header, 1-11, 1-12
Paragraph-name, 1-2, 1-11, 1-12, 5-1, 5-2
Parel}.thesis, 1-5, 1-6, 5-13, 5-14
PERFORM, 5-5, 5-6, 5-14, 5-71, 5-72,

5-73, 5-74, 5-75, 5-76, 5-77, 5-78,
5-79, 5-120

Period, 1-6
Phrases, common, 5-23
Physical aspects of a file, 4-15
Physical record, 4-15
PICTURE, 4-19, 4-20, 4-21, 4-29, 4-30,

4-31, 4-32, 4-33, 4-34, 4-35, 4-36,
4-37, 4-46. See also Editing

alphabetic, 4-29
alphanumeric, 4-30
alphanumeric edited, 4-30
numeric, 4-29
numeric edited, 4-30
precedence rules, 4-36, 4-37
symbol, 4-31

POINTER, 5-111, 5-117, 5-118
POSITION,3-15
POSITIVE, 5-19
Precedence rules, PICTURE, 4-36, 4-37
PRINT-CONTROL, 3-14, 3-15
Procedure, 5-1
Procedure branching statement, 5-6
PROCEDURE DIVISION, 1-10, 5-1
Procedure Division, 5-1

body, 5-3
end of, 5-1
header, 5-2

Procedure-name, 5-1
Program

called, 4-3, 5-32, 5-47
calling, 5-32, 5-47

PROGRAM COLLATING SEQUENCE, 3-5
PROGRAM-ID, 1-11, 2-1, 2-2, 5-32
Program-name, 1-2, 2-2
Punctuation, format, 1-6

Qualification, 5-7, 5-8, 5-10
condition-name, 5-10

Qualifier, 5-7, 5-8
connective, 1-3

Quotation mark, 1-4, 1-5, 1-6
QUOTE, QUOTES, 1-3

Random access mode, 3-7
READ, 5-5, 5-6, 5-69

(indexed), 5-87, 5-88, 5-89, 5-90
(relative), 5-83, 5-84, 5-85, 5-86
(sequential), 5-80, 5-81, 5-82

READ NEXT, 5-69, 5-85
Record, 4-15

areas, sharing, 3-14
concepts, 4-15
description, 4-15
logical, 4-15
physical, 4-15
size, 4-13
working-storage, 4-2

RECORD CONTAINS, 4-4, 4-13
Record-description-entry, 4-1, 4-2
RECORD KEY, 3-9, 3-13, 5-108
Record-name, 1-2
REDEFINES, 4-19, 4-20, 4-38, 4-39
Redefinition, 4-38, 4-39

implicit, 4-25, 4-39
REEL, 5-34, 5-37, 5-65
REFERENCE, 5-32
Reference

explicit, 5-11
implicit, 5-11
uniqueness of, 5-6

REFORMAT utility, 1-7
Register, special, 1-3
Relation condition, 5-15, 5-21
Relational operator, 5-15, 5-16
Relative

file, 3-6, 3-12, 5-39, 5-41, 5-68, 5-83,
5-93, 5-105, 5-125, C-2

indexing, 5-9
RELATIVE KEY, 3-8, 3-10, 3-12, 5-42,

5-85, 5-126, 5-127
REMAINDER, 5-45, 5-46
REMOVAL, 5-37

Index-5

RENAMES, 4-20, 4-25, 4-40, 4-41
REPLACING, 5-53, 5-54, 5-55, 5-56, 5-57
RESERVE, 3-8, 3-9, 3-12
Reserved word, 1-2, A-I
Result, function, 5-32
REWRITE, 5-5, 5-6, 5-69

(indexed), 5-95, 5-96, 5-97
(relative), 5-93, 5-94
(sequential), 5-91, 5-92

ROUNDED, 5-23, 5-40, 5-45, 5-62,
5-114

Rules
condition evaluation, 5-22
condition-name, 4-50
general, 1-13
PICTURE precedence, 4-36, 4-37
standard alignment, 4-18
syntax, 1-13

SAME, 3-14, 5-91, 5-93, 5-95, 5-121
SAME AREA, 3-14
SAME RECORD AREA, 3-14, 5-91, 5-93,

5-95, 5-121
.... SEARCH, 5-6, 5-14, 5-98, 5-99, 5-100,

5-101, 5-102
. Search, serial, 5-99
Section, 1-1, 5-1

header, 1-11, 5-1
Section-name, 1-2, 5-1
SECURITY, 1-11, 2-1
Segment-number, 1-2, 1-11
SELECT, 3-8, 3-9,' 3-10, 3-11, 3-12,

3-13
Semicolon, 1-3, 1-5, 1-6
Sentence, 1-1, 5-2, 5-3, 5-4

compiler-directing, 5-4
conditional, 5-4

SEP ARATE CHARACTER, 4-42, 4-43
Separator, 1-2, 1-5

comma, 1-5
horizontal tab, 1-6
parenthesis, 1-6
quotation mark, 1-6
semicolon, 1-5
space, 1-5

SEQUENCE, 3-5
Sequence number area, 1-7
Sequential

access mode, 3-7
file, 3-6, 3-12, 5-34, 5-64, 5-80, 5-91,

5-121, C-l
Serial search, 5-99
Series connective, 1-3
SET, 5-5, 5-6, 5-101, 5-103, 5-104

Index-6

Sharing
file areas, 3-14
record areas, 3-14

Short lines, 1-9
SIGN, 4-17, 4-19, 4-42, 4-43
Sign

algebraic, 4-17
character, 1-4
condition, 5-19
editing, 4-17
operational, 4-17

Sign-control symbol, 4-34
Simple

condition, 5-15 .
insertion editing, 4-33, 4-34

SIZE, 5-111
Size

block, 4-5, 4-6
record, 4-13

SIZE ERROR, 5-24, 5-40, 5-45, 5-46,
5-62

SOURCE-COMPUTER, 1-12, 3-1, 3-2
Source line delimiter, B-1
Source reference format, 1-7
SPACE, SPACES, 1-3
Special

character, 1-2
insertion editing, 4-33, 4-34
register, 1-3

Special-character word, 1-4
SPECIAL-NAMES, 1-12, 3-1, 3-4, 3-5,

5-19, 5-27
Specification, file, 4-14
Standard alignment rules, 4-18
START, 5-5, 5-6, 5-69

(indexed), 5-107, 5-108
(relative), 5-105, 5-106

Statement, 1-1, 5-2, 5-3, 5-4
arithmetic, 5-5, 5-25
categories, 5-5, 5-6
compiler-directing, 5-4, 5-6
conditional, 5-4, 5-6
data movement, 5-6
ending, 5-6
imperative, 5-5
input-output, 5-6
procedure branching, 5-6
table-handling, 5-6

Status
key 1, 3-10, 3-11
key 2, 3-11

STOP, 5-5, 5-6, 5-109
STOP literal, 5-109
STOP RUN, 5-37, 5-109

STRING, 5-5, 5-6, 5-110, 5-111, 5-112
Subscript, 4-27, 5-8, 5-9, 5-10
SUBTRACT, 5-5, 5-6, 5-113, 5-114
Subtraction, 5-13
SWITCH, 3-4, 3-5
Switch-status condition, 5-19
Symbol

PICTURE, 4-31
sign-control, 4-34

Synchronization
explicit, 4-44
implicit, 4-44, 4-45

SYNCHRONIZED, 4-19, 4-21, 4-44, 4-45
Syntax rules, 1-13

Tab, 1-6, 1-9
Table-handling statement, 5-6
Tables, defiJ?ing, 4-27
TALLYING, 5-53, 5-54, 5-55, 5-56, 5-57
Terminal reference format, 1-10
Text-name, 1-2, 6-1
TIME, 5-27, 5-28
Truth value, 5-22

Underline, 1-6
Uniqueness of reference, 5-6
UNIT, 5-34, 5-37, 5-65
UNSTRING, 5-5, 5-6, 5-115, 5-116,

5-117, 5-118
UNTIL,5-74
UP BY, 5-104
UPON,5-43
USAGE, 4-19, 4-46, 4-47, 4-48
USE, 5-6, 5-41, 5-119, 5-120, 5-124

User-defined word, 1-2
USING, 4-3, 5-2, 5-3, 5-32

VALUE, 4-3, 4-19, 4-39, 4-49, 4-50,
4-51,5-32

VALUE OF ID, 3-10, 4-4, 4-14
Value, truth, 5-22
Values, initial, 4-3, 4-49
VARYING, 5-72, 5-73, 5-75, 5-76, 5-77,

5-101

WHEN, 5-100,'5-101, 5-102
Word,l-l

COBOL, 1-1, 1-2
key, 1-2
memory, 4-44
optional, 1-3
reserved, 1-2, A-I
special-character, 1-4
user-defined, 1-2

Working-storage
noncontiguous, 4-2, 4-25
records, 4-2

WORKING-STORAGE SECTION, 1-11,4-1,
4-2,4-3

WRITE, 5-5, 5-6, 5-69
(indexed), 5-128, 5-129, 5-130
(relative), 5-125, 5-126, 5-127
(sequential), 5-121, 5-122, 5-123,

5-124

ZERO, 5-19
Zero suppression editing, 4-29, 4-33,

4-35,4-36
ZERO, ZEROS, ZEROES, 1-3

Index-7

READER'S COMMENTS

VAX-ll COBOL-74 Language
Reference Manual
AA-C985A-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you fmd this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you fmd errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify) ________________________ _

Name Date _______________________________ ___

Or~nization---

Street ____________________________________ _

City ___ _ State ______ Zip Code _______ _

or
Country

- - - -Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - -

mamaDla IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1-2/H3

DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK N.H. 03054

I

I
I
I
I

- ---1

No Postage

Necessary
if Mailed in the

United States

- Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - -

I
I -,

	A001
	A002
	A003
	A004
	A005
	A006
	A007
	A008
	A009
	A010
	A011
	A012
	A013
	A014
	A015
	A016
	A017
	A018
	A019
	A020
	A021
	A022
	A023
	A024
	A025
	A026
	A027
	A028
	A029
	A030
	A031
	A032
	A033
	A034
	A035
	A036
	A037
	A038
	A039
	A040
	A041
	A042
	A043
	A044
	A045
	A046
	A047
	A048
	A049
	A050
	A051
	A052
	A053
	A054
	A055
	A056
	A057
	A058
	A059
	A060
	A061
	A062
	A063
	A064
	A065
	A066
	A067
	A068
	A069
	A070
	A071
	A072
	A073
	A074
	A075
	A076
	A077
	A078
	A079
	A080
	A081
	A082
	A083
	A084
	A085
	A086
	A087
	A088
	A089
	A090
	A091
	A092
	A093
	A094
	A095
	A096
	A097
	A098
	A099
	A100
	A101
	A102
	A103
	A104
	A105
	A106
	A107
	A108
	A109
	A110
	A111
	A112
	A113
	A114
	A115
	A116
	A117
	A118
	A119
	A120
	A121
	A122
	A123
	A124
	A125
	A126
	A127
	A128
	A129
	A130
	A131
	A132
	A133
	A134
	A135
	A136
	A137
	A138
	A139
	A140
	A141
	A142
	A143
	A144
	A145
	A146
	A147
	A148
	A149
	A150
	A151
	A152
	A153
	A154
	A155
	A156
	A157
	A158
	A159
	A160
	A161
	A162
	A163
	A164
	A165
	A166
	A167
	A168
	A169
	A170
	A171
	A172
	A173
	A174
	A175
	A176
	A177
	A178
	A179
	A180
	A181
	A182
	A183
	A184
	A185
	A186
	A187
	A188
	A189
	A190
	A191
	A192
	A193
	A194
	A195
	A196
	A197
	A198
	A199
	A200
	A201
	A202
	A203
	A204
	A205
	A206
	A207
	A208
	A209
	A210
	A211
	A212
	A213
	A214
	A215
	A216
	A217
	A218
	A219
	A220
	A221
	A222
	A223
	A224
	A225
	A226
	A227
	A228
	A229
	A230
	A231
	A232
	A233
	A234
	A235
	A236
	A237
	A238
	A239
	A240
	A241
	A242
	A243
	A244
	A245
	A246
	A247
	A248
	A249
	A250
	A251
	A252
	A253
	A254
	A255
	A256
	A257
	A258
	A259
	A260
	A261
	A262
	A263
	A264
	A265
	A266
	A267
	A268
	A269
	A270
	A271
	A272
	A273
	A274
	A275
	A276
	A277
	A278

