
RSX-11 M/M-PLUS
and Micro/RSX
Executive Reference Manual
Order No. AA-FR95A-TC

(

c-

(-

(

(

RSX-11 M/M-PLUS
and Micro/RSX
Executive Reference Manual
Order No. AA-FR95A-TC

RSX-11 M Version 4.2
RSX-11 M-PLUS Version 3.0
Micro/RSX Version 3.0

digital equipment corporation · maynard, massachusetts

First Printing, May 1979
Revised, November 1981
Revised, December 1983

Revised, July 1985

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright 0 1979, 1981, 1983, 1985 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

,
The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital l!!quipment Corporation:

DEC DIBOL PDT
DEC/CMS EduSystem RSTS
DEC/MMS lAS RSX
DECnet MASSBUS UNIBUS
DECsystem-1O MicroPDP-ll VAX
DECSYSTEM-20 Micro/RSTS VMS
DECUS Micro/RSX VT
DECwriter PDP mD~DD~D

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and HawaII call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6215 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)'

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

'Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
PSG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

ZK2553

(

(

(

(

(

c

(

(

CONTENTS

Page

PREFACE ix

SUMMARY OF TECHNICAL CHANGES xi

CHAPTER 1

1.1
1.2
1.3
1.4
1. 4.1
1.4.1.1
1.4.1.2
1.4.1.3
1. 4. 2
1. 4. 3
1. 4. 4
1. 4. 5
1.5

1. 5.1
1. 5.2
1.5.2.1
1.5.2.2
1.5.2.3
1.5.2.4
1.5.2.5
1. 5. 3
1. 5. 4
1. 5. 5
1.6
1. 6.1
1. 6. 2
1.7
1.8

CHAPTER 2

2.1
2.2
2.2.1

2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4

USING SYSTEM DIRECTIVES

INTRODUCTION
DIRECTIVE PROCESSING
ERROR RETURNS ••••

• • • 1-1
• • • 1-2

• 1-3
USING THE DIRECTIVE MACROS • 1-4

Macro Name Conventions •
$ Form • •

• • 1-5
• • 1-5

$C Form • • • • • • • • • • • • • 1-6
$S Form • • • • •

DIR$ Macro •••••
• • 1-6

1-6
• 1-7 Optional Error-Routine Address • • • • • •

Symbolic Offsets • • • • • • • • • • 1-7
Examples of Macro Calls ••••••••

SUBROUTINES FOR FORTRAN AND OTHER HIGH-LEVEL
• 1-8

LANGUAGES • • • • • • • • • • • • • • 1-9
Supported High-Level Languages • • • • • •
Subroutine Usage • • • ••• • • • •

Optional Arguments ' •••••••••••••
Task Names • • • • • • • • • • • • • •
Integer Arguments for FORTRAN
GETADR Subroutine • • • • • • • •
ARGCHA Routine • • • • • • •

The Subroutine Calls • • • • •
Error Conditions • • • •••••••••
AST Service Routines • • • • • • • • •

TASK STATES • • • • • • • • • • • • • • • •
Task State Transitions • • • • • • •
Removing an Installed Task

THE GENERAL INFORMATION DIRECTIVE (RSX-llM-PLUS)
DIRECTIVE RESTRICTIONS FOR NON PRIVILEGED TASKS •

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT
SYNCHRONIZATION

SIGNIFICANT EVENTS •
EVENT FLAGS •••••• • • • • • •

Creating, Deleting, and Displaying
Event Flags on Micro/RSX

Group Global

1-10
1-10
1-10
1-11
1-11
1-12
1-12
1-13
1-18
1-19
1-21
1-21
1-23
1-23
1-24

2-1
2-2

2-4
• 2-5
• 2-5
• 2-6

SYSTEM TRAPS • • • • • • • • • • • •
Synchronous System Traps (SSTs)
SST Service Routines • • • • • •
Asynchronous System Traps (ASTs)
AST Service Routines • • • •

• • • 2-7
. 2-8

STOP-BIT SYNCHRONIZATION • • • • • 2-12

iii

CHAPTER 3

3.1
3.1.1
3.1. 2
3.1. 3
3.1. 4
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11
3.4.12
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.2
3.5.2.1
3.5.2.2
3.5.3
3.6
3.7
3.7.1
3.7.2
3.7.3
3.7.4

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.3
4.4
4.4.1
4.4.2
4.4.2.1
4.4.2.2

4.4.2.3

CHAPTER 5

5.1
5.1.1
5.1. 2
5.1. 3
5.1. 4
5.1. 5

CONTENTS

MEMORY MANAGEMENT DIRECTIVES

ADDRESSING CAPABILITIES OF A TASK • • • • • 3-1
Address Mapping •••• ••• • • ••• 3-2
Address Space • • • • • • • • • • •• 3-2.
Supervisor-Mode Addressing • • • • • 3-2
Mapping Structure of I- and D-Space Tasks ••• 3-3

VIRTUAL ADDRESS WINDOWS • • • • • • • • • • 3-3
REGIONS • • • • • • • • • • • • 3-4

Shared Regions • • • • • • 3-6
Attaching to Regions • 3-8
Region Protection • • • • • • • • • • 3-8

DIRECTIVE SUMMARY • • • • • • • 3-9
Create Region Directive (CRRG$) • 3-9
Attach Region Directive (ATRG$)· • • • • •• 3-9
Detach Region Directive (DTRG$) ••• 3-9
Create Address Window Directive (CRAW$) •••• 3-9
Eliminate Address Window Directive (ELAW$) ••• 3-9
Map Address Window Directive (MAP$) ••••• 3-10
Unmap Address Window Directive (UMAP$) 3-10
Send By Reference Directive (SREF$) • 3-10
Receive By Reference Directive (RREF$) • • •• 3-10
Receive By Reference or Stop Directive (RRST$) 3-10
Get Mapping Context Directive (GMCX$) •••• 3-10
Get Region Parameters Directive (GREG$) 3-10

USER DATA STRUCTURES • • • • • • .'. 3-11
Region Deffnition Block ••••• 3-11

Using Macros to Generate an RDB 3-13
Using FORTRAN to Generate an RDB 3-14

Window Definition Block ••••• 3-15
Using Macros to Generate a WDB • • 3-17
Using FORTRAN to Generate a WDB • • • • 3-18

Assigned Values or Settings •••••• 3-19
PRIVILEGED TASKS • •• ••••••••• 3-19
FAST MAPPING • • • • • • • • • • • • • 3-20

Using Fast Mapping • • • • • • • • • 3-20
MACRO-II Calling Sequence •••••••• 3-21
High-Level Language Interface •••••• 3-22
Status Returns • • • • • • .'. • • • • • 3-24

PARENT/OFFSPRING TASKING

OVERVIEW OF PARENT/OFFSPRING TASKING SUPPORT • • • 4-1
DIRECTIVE SUMMARY ••• • • • ". • • • •

Parent/Offspring Tasking Directives
Task Communication Directives

CONNECTING AND PASSING STATUS ••••
SPAWNING SYSTEM TASKS • • • • • • • • •

Spawning a Command Line Interpreter

• 4-1
• 4-1
• 4-3

• • • • 4-3
• 4-5
• 4-5

Spawning a Utility. • •••••••• • • 4-5
• 4-5 Spawning a Utility Under RSX-11M •••

Spawning a Utility Under RSX-11M-PLUS and
Micro/RSX • • • • • • • • • • • • • ••• 4-6
Passing Command Lines to Utilities •••••• 4-6

DIRECTIVE DESCRIPTIONS

DIRECTIVE CATEGORIES • • • • • • • •
Task Execution Control Directives

• • 5-1
• • • • 5-2

. 5-2 Task Status Control Directives •
Informational Directives •••
Event-Associated Directives ••••••
Trap-Associated Directives •••

iv

• • • 5-2
• • • • 5-3

• • • 5-3

(

CONTENTS

5.1. 6 1/0- and Intertask Communications-Related
Directives · · · · · · · · · · · · · · · · 5-4

5.1. 7 Memory Management Directives · · · · · · · · · · 5-4 (- 5.1. 8 Parent/Offspring Tasking Directives · · · 5-4
5.1. 9 RSX-11M-PLUS and Micro/RSX System Directives · · 5-5
5.1.10 CLI Support Directives · · · · · · · · · · 5-6
5.2 DIRECTIVE CONVENTIONS · · · · · · · 5-6
5.3 SYSTEM DIRECTIVE DESCRIPTIONS · 5-7
5.3.1 Abort Task · · · · · · · · · · · 5-8
5.3.2 Assign Channel · · · · · · 5-10
5.3.3 Alter Priori ty · · · · · · · · · · · 5-l3
5.3.4 Assign LUN · · · · · · · · · · 5-15
5.3.5 AST Service Exit ($S form recommended) · · · · 5-17
5.3.6 Attach Region · · · · · · · · · · · 5-19
5.3.7 Connect to Interrupt Vector · · · · · · · 5-21
5.3.8 Clear Event Flag · · · · · · · · · · 5-31
5.3.9 Create Logical Name · · · · · · · · · 5-32
5.3.10 Cancel Mark Time Requests · · · · 5-36
5.3.11 Connect . · · · · · · · 5-38
5.3.12 Checkpoint Common Region · · 5-41
5.3.l3 Create Address Window · · · · · · · · 5-43
5.3.14 Create Group

-
Global Event Flags · · · · · 5-48

(5.3.15 Create Region 5-50 · · · · · · · · · · · · · · 5.3.16 Create Virtual Terminal · · · · 5~54

5.3.17 Cancel Scheduled Initiation Requests · · · · · 5-60
5.3.18 Declare Significant Event ($S Form Recommended) 5-61
5.3.19 Delete Logical Name · · · · · · 5-62
5.3.20 Disable (or Inhibit). AST Recognition ($S Form

Recommended) · · · · · · · · · · · · · · · · · 5-64
5.3.21 Disable Checkpointing ($S Form Recommended) 5-66
5.3.22 Detach Region · · · · · · · · · · · 5-67
5.3.23 Eliminate Address Window · · · · · · 5-69
5.3.24 Eliminate Group Globa). Event Flags · · · · 5-71

(5.3.25 Eliminate Virtual Terminal · 5-73
5.3.26 Emit Status · · · · · · · · 5-75
5.3.27 Enable AST Recognition ($S Form Recommended) · 5-76
5.3.28 Enable Checkpointing ($S Form Recommended) 5-77
5.3.29 Exit If . · · · · · · · · · · · 5-78
5.3.30 Task Exit ($S Form Recommended) · · · · · · · 5-80
5.3.31 Exit with Status · · · · · · · · · · · · · · · 5-82
5.3.32 Extend Task · · · · · · · 5-84
5.3.33 Test for Specified System Feature 5-86
5.3.34 File Specification Scanner · · · · · 5-89
5.3.35 Get Command for Command Interpreter · · · · · 5-92

(5.3.36 Get Command Interpreter Information · · · · · 5-96
5.3.37 Get Default Directory · · · · 5-99
5.3.38 Get LUN Information · · · · · · · · · · 5-102
5.3.39 Get MCR Command Line · · · · · · · · · · 5-105
5.3.40 Get Mapping Context · · · · · · · · · · · 5-107
5.3.41 Get Partition Parameters · · · · · 5-ll0
5.3.42 Get Region Parameters · · · · · · 5-ll2
5.3.43 Get Sense Switches ($S Form Recommended) · 5-ll4
5.3.44 Get Time Parameters · · · · · 5-ll6
5.3.45 Get Task Parameters · · · · · · 5-ll8
5.3.46 Map Address Window · · · · · · · 5-121
5.3.47 Mark Time · · · · · · · · 5-124
5.3.48 Map Supervisor D-Space · · · · · · · · · 5-129
5.3.49 Move to/from User/Supervisor I/D-Space · · 5-l32
5.3.50 Parse FCS · · · · · · · · · · · · · · 5-134
5.3.51 Parse RMS · · · · · · · · · · · · 5-l38
5.3.52 Queue I/O Request · · · · · · · · 5-142
5.3.53 Queue I/O Request and Wait · · · · · · · 5-146
5.3.54 Receive Data or Stop · · · · · · · 5-148

C 5.3.55 Receive Data · · · · · · · · · · 5-150
5.3.56 Receive Data or Exit · · · · · · · · 5-152
5.3.57 Read All Event Flags · · · · · · · 5-155

v

5.3.58
5.3.59
5.3.60
5.3.61
5.3.62
5.3.63
5.3.64
5.3.65
5.3.66
5.3.67
5.3.68
5.3.69
5.3.70
5.3.71
5.3.72
5.3.73
5.3.74

5.3.75
5.3.76
5.3.77
5.3.78'
5.3.79
5.3.80
5.3.81
5.3.82
5.3.83
5.3.84
5.3.85
5.3.86
5.3.87
5.3.88
5.3.89
5.3.90
5.3.91
5.3.92
5.3.93
5.3.94
5.3.95
5.3.96
5.3.97

5.3.98
5.3.99
5.3.100
5.3.101
5.3.102
5.3.103
5.3.104
5.3.105

5.3.106
5.3.107

APPENDIX A

APPENDIX B

APPENDIX C

CONTENTS

Read Event Flag •• • . • • • • • • • • • 5-156
Read Extended Event Flags ••••••• • 5-157
Recursive Translation of Logical Name • 5-158
Remove Affinity ($S Form Recommended) • 5-161
Request and Pass Offspring Information • • • • 5-162
Request Task • • • • • • • • • • • • • •• 5-166
Receive By Reference • • • • • 5-169
Receive By Reference or Stop. • • • • • • 5-172
Resume Task •••••••• • •• ,5-175
Run Task. • • • • • • • • • • • •• 5-176
Specify Command Arrival AST ••••••••• 5-181
Supervisor Call ($S Form Recommended) • • 5-182
Set Command Line Interpreter • • 5-184
Send Data • • • • • • • • • • • • • 5-186
Set Default Directory • • • • • • • 5-188
Send, Request, and Connect • 5-191
Send Data Request and Pass Offspring Control
Block • • • • • • • 5-194
Set Event Flag • • • • • • 5-198
Specify Floating Point Processor Exception AST 5-199
Send Message • • • • • •••••••••• 5-201
Send Next Command • • • • • • 5-204
Specify Parity Error AST • • . • • 5-206
Suspend ($S Form Recommended) •• 5-208
Specify Power Recovery AST • • • 5-209
Spawn • • • • • • • • •• •• •• •• 5-211
Specify Receive Data AST • • • 5-221
Specify Requested Exit AST • 5-223
Send By Reference • • • • • • • • 5-227
Specify Receive-By-Reference AST ••••• 5-230
Set Affinity • • • • • • • • • •••• 5-232
Set System Time • • • • • • • • 5-234
Stop for' Logical OR of Event Flags 5-237
Stop ($S Form Recommended) • • 5-239
Stop for Single Event Flag • • • • 5-240
Specify SST Vector Table for Debugging Aid • • 5-241
Specify SST Vector Table for Task • 5-243
Switch State • • • • • • • • • •••• 5-245
Test for Specified Task Feature • • • • • • • 5-247
Translate Logical Name String 5-249
Unlock Group Global Event Flags ($S Form
Recommended) • • • • •
Unmap Address Window •
Unstop Task

• 5-252
• 5-253

• • 5-255
Variable Receive Data •••• • • • • 5- 2 56
Variable Receive Data or Stop
Variable Receive Data or Exit
Variable Send Data • • •
Variable Send, Request, and Connect
Wait for Significant Event ($S Form
Recommended) • • • • • • • •
Wait for ~ogica1 OR of Event Flags •
Wait for Single Event Flag •••••

• 5-258
5-260

• • 5-262
5-264

• 5-267
• 5-269

5-271

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

STANDARD ERROR CODES

DIRECTIVE IDENTIFICATION CODES

vi

------ -- ----

(

(

(

(

(

(

(

(

CONTENTS

RSX-ll SYSGEN SELECTION OF EXECUTIVE DIRECTIVES

Directive Parameter Block (DPB) Pointer on the
Stack
Directive Parameter Block (DPB) on the Stack •
Virtual Address Windows ••• • • • • • •
Region Definition Block •
Mapping Windows to Regions • • • • • •
Region Definition Block
Window Definition Block

• 1-4
1-4

• 3-5
• 3-6
• 3-7
3-12
3-16

FORTRAN Subroutines and Corresponding Macro Calls 1-13

vii

c

c

l

PREFACE

MANUAL OBJECTIVES

The RSX-11M/M-PLUS and Micro/RSX Executive Reference Manual describes
the system directives that allow experienced programmers who are
familiar with MACRO-11 or with high-level languages such as FORTRAN to
use the Executive services to control the ~xecution and interaction of
tasks.

INTENDED AUDIENCE

This manual is intended for software developers who are experienced
users of MACRO-11 or high-level languages for user-task generation.
~nformation contained in this manual is intended for reference only;
no attempt is made to describe the procedures involved in developing
user tasks beyond the detailed reference information normally required
for directive use. However, ·Chapters 1 through 4 do contain
information that will promote a better understanding of how directives
can be used effectively in the multitasking environment. Convenient
quick-reference material is included in appendixes for use by the more
advanced programmer.

STRUCTURE OF THIS MANUAL

~ Summary of Technical Changes provides experienced users
RSX-11M, RSX-11M-PLUS, and/or Micro/RSX operating systems with
summary of changes to the system software since the previous
of this manual.

of the
a quick
version

Chapter 1 defines system directives and describes their use in both
MACRO-11 and high-level language programs.

Chapter 2 defines significant events, event flags, system traps, and
stop-bit synchronization, and describes their relationship to system
directives.

Chapter 3 introduces the concept of extended logical address space
within the framework of memory management directives.

Chapter 4 introduces
including associated
communications.

the concept of parent/offspring tasking,
directives, generated data structures, and task

Chapter 5 begins with a short summary of all the directives, arranged
according to their functional categories. The summary is followed by
detailed descriptions of each directive. The directives are arranged
alphabetically according to macro call.

Appendix A contains directives arranged alphabetically according to
macro call. These abbreviated descriptions include only the directive
name, FORTRAN call, macro call, and parameters.

Appendix B lists the standard error codes returned by the Executive.

ix

PREFACE

Appendix C lists Directive Identification Codes for all directives,
using the same octal values that they have in the Directive Parameter
Block. A description of how the values are obtained is included.

Appendix D lists all of the directives, the operating systems where
the individual directives are available (RSX-llS, RSX-IIM, or
RSX-IIM-PLUS; Micro/RSX supports all of the directives), and the
system generation option required (if applicable) to obtain that
directive support.

ASSOCIATED MANUALS

Manuals that are prerequisite sources of information for readers of
this manual are: the Micro/RSX User's Guide or the RSX-IIM/M-PLUS and
Micro/RSX Task Builder Manual, and ~PDP-ll MACRO-II Language
Reference ManUal or any other reference manual or user's gUlde for the
appropriate high-level language.

CONVENTIONS USED IN THIS MANUAL

Whenever necessary, information that is applicable to a specific
operating system is clearly indicated in the text. In addition, for
ease of reference, those portions of text that do not apply to all of
the operating systems are indicated by background shading or by ink
color.

x

(

(

(

(

c

c

(

SUMMARY OF TECHNICAL CHANGES

This revision of the RSX-IIM/M-PLUS and Micro/RSX Executive Reference
Manual documents the changes and additions to the Executive for three
operating systems: RSX-IIM Version 4.2, RSX-IIM-PLUS Version 3.0, and
Micro/RSX Version 3.0.

The following directives are new to RSX-IIM, RSX-IIM-PLUS, and
Micro/RSX:

Receive by Reference or Stop
Test for Specified Task Feature

The following directive is new to RSX-IIM and RSX-IIM-PLUS:

Test for Specified System Feature

All directives that can
be used from FORTRAN
these other langu~ges

COBOL-8l.

be called from a high-level language can now
and from other high-level languages. Some of
are BASIC-PLUS-2, Pascal, DIBOL-83, and

xi

(

(

(

(

CHAPTER 1

USING SYSTEM DIRECTIVES

This chapter describes the use of system directives and the ways in
which they are processed. Some of the Executive services described in
this manual are optional features of the RSX-llS, RSX-llM, and
RSX-llM-PLUS operating systems, and may not be present in the system
you are currently using. (All Micro/RSX operating systems include the
same set of features.) The discussion of the system directives assumes
that all possible features are present in your system. For RSX-llS,
RSX-llM, and RSX-llM-PLUS systems, see the appropriate system
generation manual for a list of optional features.

1.1 INTRODUCTION

The process that occurs when a task requests the Executive to perform
an indicated operation is called a system directive. You use the
directives to control the execution and interaction of tasks. If you
are a MACRO-ll programmer, you usually issue directives in the form of
macros defined in the system macro library. If you are a FORTRAN or
other high-level language programmer, you issue system directives in
the form of calls to subroutines contained in the system object module
library.

System directives enable tasks to:

• Obtain task and system information

• Measure time intervals

• Perform I/O functions

• Spawn other tasks

• Communicate and synchronize with other tasks

• Manip~late a task's logical and virtual address space

• Suspend and resume execution

• Exit

Directives are implemented by the EMT 377 instruction. EMT 0 through
EMT 376 (or 375 for unmapped tasks and mapped privileged tasks) are
considered to be non-RSX EMT synchron6us system traps. These traps
cause the Executive to abort the task unless the task ha~ specified
that it wants to receive control when such traps occur.

If you are a MACRO-ll programmer, use the system directive macros
supplied in the system macro library for directive calls instead of
coding individual calls. That way, you need only reassemble the
program to incorporate any changes in the directive specifications.

1-1

USING SYSTEM DIRECTIVES

Sections 1.2, 1.3, and 1.6 are intended for all users. Section 1.4
specifically describes the use of macros, while Section 1.5 describes
the use of high-level language subroutine calls.

1.2 DIRECTIVE PROCESSING

Processing a system directive involves the following four steps:

1. The user task issues a directive with arguments that are used
only by the Executive. The directive code and parameters
that the task supplies to the system are known as the
Directive Parameter Block (DPB). The DPB can be either on
the user task's stack or in a user task's data section.

2. The Executive receives an EMT 377 generated by the directive
macro (or a DIR$ macro) or high-level language subroutine.

3. The Executive processes the directive.

(

4. The Executive returns directive status information to the.
task's Directive Status Word (DSW). (

Note that the Executive preserves all task registers when a task
issues a directive.

The user task issues an EMT 377 (generated by the directive) together
with the address of a DPB (or a DPB itself) on the top of the issuing
task's stack. When the stack contains a DPB address, the Executive
removes the address after processing the directive, and the DPB itself
remains unchanged. When the stack contains the actual DPB, the
Executive removes the DPB from the stack after processing the
directive.

The first word of each DPB contains a Directive Identification Code
(DIC) byte and a DPB size byte. The DIC indicates which directive is
to be performed and the size byte indicates the DPB length in words.
The DIC is in the low-order byte of the word and the size is in the
high-order byte.

The DIC is always an odd-numbered value. This allows the Executive to
determine whether the word on the top of the stack (before EMT 377 was
issued) was the address of the DPB (even-numbered value) or the first
word of the DPB . (odd-numbered value).

The Executive normally returns control to the instruction following
theEMT. Exceptions to this are directives that result in an exit
from the task that issued them and an asynchronous system trap (AST)
exit.

The Executive also clears or sets the Carry bit in the Processor
Status Word (PSW) to indicate acceptance or rejection, respectively,
of the directive. The DSW, addressed symbolically as $DSW1, is set to
indicate a more specific cause for acceptance or rejection of the
directive. The DSW usually has a value of +1 for acceptance and a
range of negative values for rejection (exceptions are success return
codes for the directives CLEF$, SETF$, and GPRT$, among others) • The
RSX-I1M/M-PLUS and Micro/RSX operating 'systems associate DSW values

1. The Task Builder resolves the address of $DSW. Users addressing
the DSW with a physical address are not guaranteed compatibility with
lAS, and may experience incompatibilities with future releases of the
RSX-11M/M-PLUS and Micro/RSX operating systems.

1-2

(

(

(

(

(

(

l

USING SYSTEM DIRECTIVES

with symbols, using mnemonics that report either successful completion
or the cause of an error (see Section 1.3). (The Instrument Society
of America (ISA) FORTRAN calls CALL WAIT and CALL START are exceptions
because ISA requires positive numeric error codes. The specific
return values ate listed with the description of each directive.)

In the case of successful Exit directives, the Executive does not
return control to the task. If an Exit directive fails, however,
control is returned to the task with an error status in the DSW.

On Exit, the Executive frees task resources as follows:

• Detaches all attached devices

• Flushes the AST queue and despecifies all specified ASTs

• Flushes the receive and receive-by-reference queues

• Flushes the clock queue for outstanding Mark Time requests for
the task

• Closes all open files (files open for write access are locked)

• Detaches all attached regions, except in the case of a fixed
task (where no detaching occurs)

• Runs down the task's I/O

• Deaccesses the group global even~ flags for the task's group

• Disconnects from interrupts

• Flushes all outstanding CLI command buffers for the task

• Breaks the connection with any offspring tasks

• Frees the task's memory if the task was not fixed

If the Executive rejects a directive, it usually does not clear or set
any specified event flag. Thus, the task may wait indefinitely if it
indiscriminately executes a Wait For directive corresponding to a
previously issued Ma~k Time directive that the Executive has rejected.
You should always ensure that a directive has completed successfully.

1.3 ERROR RETURNS

As stated above, the RSX-IIM/M-PLUS and Micro/RSX operating systems
associate the error codes with mnemonics that report the cause of the
error. In the text of this manual, the mnemonics are used
exclusively. The macro DRERR$, which is expanded in Appendix B,
provides a correspondence between each mnemonic and its numeric value.

Appendix B also gives the meaning of eaoh error code. In
each directive description in Chapter 5 contains
directive-related interpretations of the error codes.

1-3

addition,
specific,

USING SYSTEM DIRECTIVES

1.4 USING THE DIRECTIVE MACROS

If you are programming in MACRO-II, you must decide how to create the -
DPB before you issue a directive. The DPB may either be created on (
the stack at run time (see Section 1.4.1.3, which describes the $S
form) ,or created in a data section at assembly time (see Sections
1.4.1.1 and 1.4.1.2, which describe the $ form and $C form,
respectively). If parameters vary and the code must be reentrant, the
DPB must be created on the stack.

Figur~s 1-1 and 1-2 illustrate the alternative directives and also
show the relationship between the stack pointer and the DPB.

MOV #ADDR,-(SP)
EMT 377

SP ---1~~ I ADDRESS OF DPB

STACK
GROWTH

J

SIZE

DPB
ITEMS

I DIC

DPB

INCREASING
MEMORY
ADDRESSES

ZK-305-81

Figure 1-1 Directive Parameter Block (DPB) Pbinter on the Stack

MOV XX,-(SP)
PUSH REQUIRED
DPB ITEMS ON THE
STACK IN
REVERSE ORDER

MOV
,BYTE
EMT

(PC)+,-(SP)
DIC,SIZE
377

SP---1~~

DPB
'·ITEMS

SIZE I
STACK

GROWTH

j

DIC
INCREASING
MEMORY
ADDRESSES

ZK-306-81

Figure 1-2 Directive Parameter Block (DPB) on the Stack

1-4

(

(

(

(

c

c

(

(

USING SYSTEM DIRECTIVES

1.4.1 Macro Name Conventions

When you are progr'amming in MACRO-ll, you use system directives by
including directive macro calls in your programs. The macros for the
directives are contain~d in the System Macro Library
(LB: [l,l]RSXMAC.SML). The .MCALL assembler directive makes these

macros available to a program. The .MCALL arguments are the names of
all the macros used in the program. For example:

CALLING DIRECTIVES FROM THE SYSTEM MACRO LIBRARY
AND ISSUING THEM •

• MCALL MRKT$S,WTSE$S

Additional .MCALLs or code

MRKT$S
WT'SE$S

#1,#1,#2"ERR
#l

;MARK TIME FOR 1 SECOND
;WAIT FOR MARK TIME TO COMPLETE

Macro names consist of up to four letters, followed by a dollar sign
($) and, optionally, a C or an S. The optional letter or its absence
specifies which of three possible macro expansions you want to use.
The following sections explain these expansion forms.

1.4.1.1 $ Form - The $ form is useful for a directive operation that
is to be issued several times from different locations in a
non-reentrant program segment. The $ form is most useful when the
ditective is issued several times with varying parameters (one or more
but not all parameters change) or in a reentrant program section when
a directive is issued several times even though the DPB is not
modified. This form produces only the directive's DPB and must be
issued from a data section of the program. The code for actually
executing a directive in the $ form is produced by a special macro,
DIR$ (discussed in Section 1.4.2).

Because execution of the directive is separate from the creation of
the directive's DPB:

1. A $ form of a given directive needs to be issued only once
(to produce its OPB).

2. A DIR$ macro associated with a given directive can be issued
several times without incurring the cost of generating a DPB
each time it is issued.

3. It is easy to access and change the directive's parameters by
labeling the start of the DPB and using the offsets defined
by the directive.

When a program issues the $ form of a macro call, the parameters
required for DPB construction must be valid expressions for MACRO-ll
data storage instructions (such as .BYTE, .WORD, and .RAD50). You can
alter individual parameters in the DPB. You might do this if you want
to use the directive many times with varying parameters.

1-5

USING SYSTEM DIRECTIVES

1.4.1.2 $C Form - Use the $C form when a directive is to be issued
only once. The $C form eliminates the need to push the DPB (created
at assembly time) onto the stack at run time. Other parts of the
program, however, cannot access the DPB because the DPB address is
unknown. (Note, in the $C form macro expansion of Section 1.4.5, that
the new value of the assembler's location counter redefines the DPB
address $$$ each time an additional $C directive is issued.)

The $C form generates a DPB in a separate program section l called
$DPB$$. The DPB is first followed by a return to the user-specified
program section, then by an instruction to push the DPB address onto
the stack, and finally by an EMT 377. To ensure that the program
reenters the correct program section, you must specify the program
section name in the argument list immediately following the DPB
parameters. If the argument is not specified, the program reenters
the blank (unnamed) program section.

This form also accepts an optional final argument that specifies the
address of a routine to be called (by a JSR instruction) if an error
occurs during the execution of the directive (see Section 1.4.2).

When a program issues the $C form of a macro call, the parameters
required for DPB construction must be valid expressions for MACRO-ll
data storage instructions (such as .BYTE, .WORD, and .RAD50). (This
is not true for the program-section argument and the error-routine
argument, which are not part of the DPB.)

1.4.1.3 $S Form - Program segments that need to be reentrant should
use the $S form. Only the $S form produces the DPB at run time. The
other two forms produce the DPB at assembly time.

In this form, the macro produces code to push a DPB onto the stack,
followed by an EMT 377. In this case, the parameters must be valid
soutce operands for MOv-type instructions. For a two-word Radix-50
name parameter, the argument must be the address of a two-word block
of memory containing the name. Note that you should not use the stack
pointer (or any reference to the stack pointer) to address directive
parameters when the $S form is used. 2 (In the example in Section
1.4.1, the errot-routine argument ERR is a target address for a JSR
instruction; see Section 1.4.3.)

Note that in the $S form of
processed from tight to left.

MACRO$S,,(R4)+, (R4)+

the result may be obscure.

1.4.2 DIR$ Macro

the macro, the macro arguments are
Therefore, when using code of the form

The DIR$ macro allows you to execute a directive with a DPB predefined
by the $ form of a directive macro. This macro pushes the DPB address
onto the stack and issues an EMT 377 instruction.

1. Refer to the PDP-ll MACRO-ll Language Reference Manual for a
description of program sections.

2. Subroutine or macro calls can use the stack for temporary storage,
thereby destroying the positional relationship between SP and the
parameters.

1-6

(

(

(

(

(

(

(

c

(

USING SYSTEM DIRECTIVES

The DIR$ macro generates an Executive trap using a predefined DPB:

adr

err

1. 4. 3

Macro Call: DIR$ [adr] [,err]

The address of the DPB (optional). If specified, the
must be a valid source address for a MOV instruction.
address is not specified, the DPB or its address must be
stack.

address
If this
on the

The address of the error return (optional; see Section 1.4.3).
If this error return is not specified, an error simply sets the
Carry bit in the Processor Status Word.

NOTE

DIR$ is not a $ form macro and does not behave as
one. There are no variations in the spelling of
this macro. The DIR$ macro is not an Executive
directive, and DIR$C and DIR$S are not valid
macro calls.

Optional Error-Routine Address

The $C and $S forms of macro calls and the DIR$ macro can accept an
optional final argument. The argument must be a valid assembler
destination operand that specifies the address of a user error
routine. For example, the DIR$ macro

DIR$ #DPB,ERROR

generates the following code:

MOV
EMT
BCC
JSR

#DPB, - (SP)
377
• +6
PC,ERROR

Since the $ form of a directive macro does not generate any executable
dode, it does not accept an error-address argument.

1.4.4 Symbolic Offsets

Most system directive macro calls generate local symbolic offsets
describing the format of the DPB. The symbols are unique to each
directive, and each is assigned an index value corresponding to the
offset of a given DPB element.

Because the offsets are defined symbolically, you can refer to or
modify DPB elements without knowing the offset values. Symbolic
offsets also eliminate the need to rewrite programs if a future
release of the RSX-llM, RSX-llM-PLUS, or Micro/RSX operating system
change's a DPB specification.

All $ and $C forms of macros that generate DPBs longer than one word
generate local offsets. All informational directives (see Section
5.1.3), including the $S form, also generate local symbolic offsets
for the parameter block returned.

1-7

USING SYSTEM DIRECTIVES

If the program uses either the $ or $C form and has defined the symbol
$$$GLB (for example, $$$GLB=O), the macro generates the symbolic
offsets as global symbols and does not generate the DPB itself. The .
purpose of this facility is to enable the use of a DPB defined in a (
different module. The symbol $$$GLB has no effect on the expansion of
$S macros.

When using symbolic offsets, you should use the $ form of directives.

1.4.5 Examples of Macro Calls

The examples below show the expansions of the different macro call
forms.

1. The $ form generates only a DPB, in the current program
section.

MRKT$ l,5,2,MTRAP

generates the following code:

.BYTE

.WORD

.WORD

.WORD

.WORD

23. ,5
I
5
2
MTRAP

"MARK-TIME" DIC AND DPB SIZE
EVENT FLAG NUMBER
TIME INTERVAL MAGNITUDE
TIME INTERVAL UNIT (SECONDS)
AST ENTRY POINT

2. The $C form generates a DPB in program section DPB. and, in
the specified section, the code to issue the directive.

MRKT$C l,5,2,MTRAP,PROG1,ERR

generates the following code:

• PSECT
$$$=.
.BYTE
.WORD
.WORD
.WORD
.WORD
.PSECT
MOV
EMT
BCC
JSR

DPB •

23.,5
1
5
2
MTRAP
PROGl
#$$$,-(SP)
377
• +6
PC,ERR

; DEFINE TEMPORARY SYMBOL
"MARK-TIME" DIC AND DPB SIZE
EVENT FLAG NUMBER
TIME INTERVAL MAGNITUDE
TIME INTERVAL UNIT (SECONDS)
AST ENTRY POINT ADDRESS
RETURN TO THE ORIGINAL PSECT
PUSH DPB ADDRESS ONTO STACK
TRAP TO THE EXECUTIVE
BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

3.' The $S form generates code to push the DPB onto the stack and
to issue the directive ••

MRKT$S #1,#5,#2,R2,ERR

generates the following code:

MOV
MOV
MOV
MOV
MOV
.BYTE
EMT
BCC
JSR

R2,-(SP)
#2,-(SP)
#5,-(SP)
#l,-(SP)
(PC)+,-(SP)
23.,5
377
• +6
PC, ERR

, 1-8

PUSH AST ENTRY POINT,
TIME INTERVAL UNIT (SECONDS),
TIME INTERVAL MAGNITUDE,
EVENT FLAG NUMBER,
AND "MARK-TIME" DIC AND DPB SIZE
ONTO THE STACK
TRAP TO THE EXECUTIVE
BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

(

(

(

(

c-

c

(~

(

l

4.

USING SYSTEM DIRECTIVES

The DIR$ macro issues a directive that has a predefined DPB.

DIR$ Rl,(R3) ; DPB ALREADY DEFINED; ADDRESS IN Rl.

generates the following code:

MOV
EMT
BCC
JSR

Rl,-(SP)
377
.+4
PC, (R3)

PUSH DPB ADDRESS ONTO STACK
TRAP TO THE EXECUTIVE
BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

1.5 SUBROUTINES FOR FORTRAN AND OTHER HIGH-LEVEL LANGUAGES

The RSX-llM/M-PLUS and Micro/RSX operating systems provide an
extensive set of subroutines to perform system directive operations
for FORTRAN and other high-level languages, such as BASIC-PLUS-2 and
COBOL-8l.

The directive descriptions in Chapter 5 describe the high-level
language subroutine calls as well as the macro calls.

The high-level language subroutines fall into· three basic groups:

• Subroutines based on the Instrument Society of America (ISA)
Standard ISA 62.1. These subroutines are CALL WAIT and CALL
START, which are documented with the descriptions of the Mark
Time and Run directives, respectively.

• Subroutines designed to use and control specific process
control interface devices supplied by DIGITAL and supported by
the RSX-llM/M-PLUS and Micro/RSX operating systems.

• Subroutines for performing RSX-llM/M-PLUS and Micro/RSX system
directive operations. In general, one subroutine is available
for each directive. (Exceptions are the Mark Time and Run
directives. The description of Mark Time includes both CALL
MARK and CALL WAIT. The description of Run includes both CALL
RUN and CALL START.)

All the subroutines described in this manual can be called by FORTRAN
programs compiled by either the FORTRAN IV or FORTRAN-77 compiler, and
PDP-II BASIC-PLUS-2/RSX, PDP-II Pascal/RSX, PDP-II DIBOL-83/RSX, and
PDP-II COBOL-8l/RSX programs. See Section 1.5.1 for more information.

These subroutines can also be called from programs written in the
MACRO-II assembly language by using PDP-II FORTRAN calling sequence
conventions. These conventions are described in the RSX, VAX/VMS
FORTRAN IV User's Guide and in the PDP-II FORTRAN-77 User~uide.

Although the subroutines are supported for all the high-level
languages listed above, FORTRAN is used in the examples in this
chapter and in the descriptions of the directives in Chapter 5.
FORTRAN is also the only high-level Yanguage discussed in detail in
this section.

1-9

USING SYSTEM DIRECTIVES

1.S.1 Supported High-Level Languages

The subroutines support several PDP-II high-level languages. However, (.-
some of the supported languages have restrictions. This section lists
the supported languages and describes any restrictions that may apply.

FORTRAN IV Complete support. No restrictions.

FORTRAN-77 Complete support. No restrictions.

PDP-ll BASIC-PLUS-2/RSX Complete support. No restrictions.

PDP-ll Pascal/RSX Does not support null arguments, but
does allow external arguments.

PDP-ll DIBOL-83/RSX Complete support. No restrictions.

PDP-ll COBOL-8l/RSX Does not support null arguments, nor
does it allow external arguments.

Any language using the RS calling convention can call the routines.
Using the RS calling convention means that calls are made by means of
a JSR PC,xxx instruction with RS pointing to an argument list. The (-_
first word of the list is the number of arguments in the list. The
remaining words are successive arguments in the list.

If the language does not support EXTERNAL GLOBAL parameters, AST
routines cannot be used. If the language does not support null
arguments, special care must be taken with omitted parameters. See
Section 1.S.2.S.

1.S.2 Subroutine Usage

You call the high-level language subroutines by including the
appropriate CALL statement in the program. When the program is linked
to form a task, the Task Builder first checks to see whether each
specified subroutine is user-defined. If a subroutine is not
user-defined, the Task Builder automatically searches for it in the
system object module library. If the subroutine is located, it is
included in the linked task.

1.S.2.l Optional Arguments - Many of the subroutines described in
this manual have optional arguments. In the subroutine descriptions
associated with the directives, optional arguments are designated as
such by being enclosed in square brackets ([]). An argument of this
kind can be omitted if the comma that immediately follows it is
retained. If the argument (or string of optional arguments) comes
last, it can simply be omitted and no comma need end the argument
list. For example, the format of a call to SUB could be the
following:

CALL SUB (AA, [BB] , fCC] ,DD [, [EE] [,FF]])

1-10

(

(

(

"'-.

c

(

USING SYSTEM DIRECTIVES

In that event, you may omit the arguments BB, CC, EE, and FF in one of
the following ways:

• CALL SUB (AA",DD,,)

• CALL SUB (AA",DD)

In some cases, a subroutine will use a default value for an
unspecified optional argument. Such default values are noted in each
subroutine description in Chapter 5.

1.5.2.2 Task Names - In the subroutines, task names may be up to six
characters long. Characters permitted in a task name are the letters
A through Z, the numerals 0 through 9, and the special characters
dollar sign ($) and period (.). Task names are stored as Radix-50
code, which permits up to three characters from the ~et above to be
encoded in one PDP-ll word.

The subroutine calls require that a task name be defined as a two-word
variable or array that contains the task name as Radix-50 code. As an
example, for FORTRAN this variable may be any of the following:

• REAL

• INTEGER*4

• An INTEGER*2 array of 2 elements

The variable may be defined at program compilation time by a DATA
statement, which gives the real variable an initial value (a Radix-50
constant) •

For example, if a task name CCMFl is to be used in a system directive
call, the task name could be defined and used as follows:

DATA CCMF1/5RCCMF1/

CALL REQUES (CCMF1)

A program may define task names during execution by using the IRAD50
subroutine or the RAD50 function as described in the RSX, VAX/VMS
FORTRAN IV User's Guide or in the PDP-ll FORTRAN-77 User'slGUTde.

1.5.2.3 Integer Arguments for FORTRAN - All of the subroutines
described in this manual assume that integer arguments are
INTEGER*2-type arguments. Both the FORTRAN IV and FORTRAN-77 systems
normally treat an integer variable as one PDP-ll storage word,
provided that its value is within the range -32768 to +32767.
However, if you specify the /14 option switch when compiling a
program, ensure that all integer array arguments used in these
subroutines are explicitly specified as type INTEGER*2.

1-11

USING SYSTEM DIRECTIVES

1.5.2.4 GETADR Subroutine - Some subroutine calls include an argument
deScribed as an integer array. The integer array contains some values
that are the addresses of other var iables or arrays. The FORTRAN (--
language does not provide a means of assigning such an address as a
value, so you must use the GETADR subroutine described below.

Calling sequence:

CALL GETADR(ipm, [argl], [arg2] , ••• [argn])

ipm

An array of dimension n.

argl, ••• argn

Arguments whose addresses are to be inserted in ipm. Arguments
are inserted in the order specified. If a null argument is
specified, the corresponding entry in ipm is left unchanged.
When the argument is an array name, the address of the first
array element is inserted ,into ipm.

Example:

DIMENSION IBUF(80),tOSB(2),IPARAM(6)

CALL GETADR (IPARAM(l) ,IBUF(l))
IPARAM(2) =80
CALL QIO (IREAD,LUN,IEFLAG,;IOSB,IPARAM,IDSW)

In this example, CALL GETADR enables you to specify a buffer address
in the CALL QIO directive.

1.5.2.5 ARGCHA Routine - Some high-level languages do not accept null
parameters. To compensate for this, there is an alternate copy of the
$ARGCK routine in the syatem library. The alternate routine 1S part
of the ARGCHA module (SYSLIB/LB:ARGCHA). The routine treats any
subroutine parameters specified as -1 as null arguments.

The entry point in the ARGCHA module is deleted from the entry-point
table for the system library routines. To use the module, it must be
explicitly extracted when the task that wants to use it is built.

CAUTION

Specified parameter variables that are returned by the
Executive (for example, directive status) must be
reinitialized if there is any possibility that their
returned value may have been set to -1. For example,
the standard technique for recovering from low pool
(IE.UPN=-l) -- executing a Wait for Significant Event
directive and then reissuing the original directive -
will not work if the Directive Status Word is not
reinitialized.

1-12

(

(

(

(

c

c

(

USING SYSTEM DIRECTIVES

The alternate routine in the ARGCHA module cannot be used for AST
addresses. For calls omitting the AST parameter, use the "N" variant
of the call, such as CALL SPAWNN for the Spawn directive. Every call
with an AST parameter has an "N" variant that suppresses the
parameter. For more information, see Section 1.5.5.

1.5.3 The Subroutine Calls

Table 1-1 is a list of the FORTRAN subroutin~ calls (and corresponding
macro calls) associated with the system directives. See Chapter 5 for
detailed descriptions.

For some directives, notably Mark Time (CALL MARK), both the standard
FORTRAN IV subroutine call and the ISA standard call are provided.
Other directives, however, are not available to FORTRAN tasks (for
example, Specify Floating Point Exception AST [SFPA$] and Specify SST
Vector Table For Task [SVTK$]). .

Table 1-1
FORTRAN Subroutines and Corresponding Macro Calls

Directive

Abort Task

Al ter Pr i ori ty

Assign LUN

Attach Region

Cancel Scheduled
Initiation Requests

Cancel Mark
Time Requests

Clear Event Flag

Connect·

Create Address Window·

Macro Call FORTRAN Subroutine

ABRT$ CALL ABORT

ALTP$

ALUN$

ATRG$

CSRQ$

CMKT$

CLEF$

CNCT$

CRAW$

1-13

CALL ALTPRI

CALL ASNLUN

CALL ATRG

CALL CANALL

CALL CANMT

CALL CLREF

CALL CNCT
CALL CNCTN

CALL CRAW

(continued on next page)

;'..,: ..

USING SYSTEM DIRECTIVES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive

Create Group Global
Event Flags

Create Region

Declare Significant Event

Disable AST Recognition

Disable Checkpointing

Detach Region

Eliminate Address Window

El iminate Group Global
Event Flags

Emit Status

Enable AST Recognition

Enable Checkpointing

Exit If

Exit with Status

Extend Task

Test for Specified
System Feature

Get Command for
Command Interpreter

Get Command
Interpreter Information

Macro Call FORTRAN Subroutine

CRGF$ CALL CRGF

CRRG$ CALL CRRG

DECL$S CALL DECLAR

DSAR$S CALL DSASTR

DSCP$S CALL DISCKP

DTRG$ CALL DTRG

ELAW$ CALL ELAW

ELGF$ CALL ELGF

EMST$ CALL EMST

ENAR$S CALL ENASTR

ENCP$S CALL ENACKP

EXIF$ CALL EXITIF

EXST$ CALL EXST

EXTK$ CALL EXTTSK

FEAT$ CALL FEAT

GCCI$ CALL GTCMCI

GCII$ CALL GETCII

(continued on next page)

1-14

(

(

(

(

(

(

(

(

(-

USING SYSTEM DIRECTIVES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive

Get LUN Information

Get Mapping Context

Get MCR Command Line

Get Partition Parameters

Get Region Parameters

Get Sense Switches

Get Task Parameters

Get Time Parameters

Inhibit AST Recognition

Map Address Window'

Mark Time

Queue I/O Request

Queue I/O Request and Wait

Read All Event Flags

Receive By Reference

Macro Call

GLUN$

GMCX$

GMCR$

GPRT$

GREG$

GSSW$S

GTSK$

GTIM$

IHAR$S

MAP$

MRKT$

QIO$

QIOW$

RDAF$
RDXF$

RREF$

1-15

FORTRAN Subroutine

CALL GETLUN

CALL GMCX

CALL GETMCR

CALL GETPAR

CALL GET REG

CALL READSW
CALL SSWTCH

CALL GETTSK

CALL GETTIM

CALL INASTR

CALL MAP

CALL MARK
CALL WAIT (ISA Standard
call)

CALL QIO

CALL WTQIO

CALL READEF (only a
single, local, common,
or group global event
flag can be read by a
FORTRAN task)

CALL RREF

(continued on next page)

USING SYSTEM DIRECTIVES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive

Receive by Reference or Stop

Receive Data

Receive Data or Exit

Receive Data or Stop

Remove Affinity
(RSX-IIM-PLUS multiprocessor
systems only)

Request and Pass Offspring
Information

Request

Resume

Run

Send By Reference

Send Data

Send Data Request and Pass OCB

Send Message

Send Next Command

Send, Request, and Connect

Set Affinity
(RSX-llM-PLUS multiprocessor
systems only)

Set Command Line Interpreter

Set Event Flag

Set System Time

Spawn

Specify Power Recovery AST

Macro Call

RRST$

RCVD$

RCVX$

RCST$

RMAF$S

RPOI$

RQST$

RSUM$

RUN$

SREF$

SDAT$

SDRP$

SMSG$

SNXC$

SDRC$

STAF$

SCLI$

SETF$

STIM$

SPWN$

SPRA$

1-16

FORTRAN Subroutine

CALL RRST

CALL RECEIV

CALL RECOEX

CALL RCST

CALL RMAF

CALL RPOI

CALL REQUES

CALL RESUME

CALL RUN
CALL START (ISA
Standard call)

CALL SREF

CALL SEND

CALL SDRP

CALL SMSG

CALL SNXC

CALL SDRC
CALL SDRCN

CALL STAF

CALL SCLI

CALL SETEF

CALL SETTIM

CALL SPAWN
CALL SPAWNN

EXTERNAL SUBNAM
CALL PWRUP (SUBNAM)

(to establish an AST)
CALL PWRUP

(to remove an AST)

(continued on next page)

(

(

(-

(

(

c

(

(

(

(-

USING SYSTEM DIRECTIVES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive

Specify Requested Exit AST

Stop

Stop for Logical OR of
Event Flags

Stop for Single Event Flag

Suspend

Task Exit

Test for Specified
Task Feature

Unlock Group Global Event
Flags

Unmap Address Window '

Unstop

Wait for Single Event Flag

Wait for Logical OR of
Event Flags

wait for Significant Event

Macro Call

SREA$
SREX$

STOP$S

·STLO$

STSE$

SPND$S

EXIT$S

TFEA$

ULGF$S

UMAP$

USTP$

WTSE$

WTLO$

WSIG$S

1-17

FORTRAN Subroutine

CALL SREA
CALL SREX

CALL STOP

CALL STLOR
CALL STLORS

CALL STOPFR

CALL SUSPND

CALL EXIT

CALL TFEA

CALL ULGF

CALL UNMAP

CALL USTP

CALL WAITFR

CALL WFLOR
CALL WFLORS

CALL WFSNE

USING SYSTEM DIRECTIVES

NOTE

The following directives are not available as
subroutines:

Dire~tive

AST Service Exit

Connect to Interrupt Vector

Specify Command Arrival AST

Specify Floating Point
Exception AST

Specify Receive By Reference

Specify Receive Data AST

Specify SST Vector Table for
Debugging Aid

Specify SST Vector Table
for Tasks

Switch State

1.5.4 Error Conditions

AST

Macro Call

ASTX$S

CINT$

SCAA$

SFPA$

SRRA$

SRDA$

SVOB$

SVTK$

SWST$

FORTRAN

Each subroutine call includes an optional argument that specifies the
integer to receive the Directive Status Word (idsw). When you specify
this argument, the subroutine returns a value that indicates whether
the directive operation succeeded or failed. If the directive failed,
the value indicates the reason for the failure. The possible values
are the same as those returned to the Directive Status Word (DSW) in
MACRO-ll programs (see Appendix B), except for the two ISA calls, CALL
WAIT and CALL START. The ISA calls have positive numeric error codes.

1-18

(

(

(

(

(

c

(

(

USING SYSTEM DIRECTIVES

In addition~ two types of errors caused by incorrect use of the
high-level language subroutines result in a task terminating by means
of a breakpoint instruction (BPT). The instruction causes the task to
abort with a message such as:

Task "tsknam" terminated
Executive interface parameter error

(register dump)

RO contains the value that identifies the cause of the error. The
value can be one of the following:

100000

000001

Indicates that at least one necessary argument was
missing from a call to a system directive routine.

Indicates that an event flag number in a call to the
STLOR (Stop for Logical OR of Event Flags) routine or
to the WTFLOR (Wait for Logical OR of Event Flags)
routine was not in the range of 1 through 96 or that
not all of the event flags specified in the call were
in the same group of 16 event flags.

1.5.5 AST Service Routines

The following routines, which are callable by high-level languages,
provide support for ASTs in FORTRAN programs:

• CALL CNCT

Use great caution when coding an AST
following types of FORTRAN operations
state (although this list is specific to
languages will have similar restrictions):

routine in FORTRAN. The
may not be performed at AST
FORTRAN, other high-level

• FORTRAN I/O of any kind (including ENCODE
statements and internal file I/O)

and DECODE

•

FORTRAN I/O is not reentrant. Therefore, the information
in the impure data area may be destroyed.

Floating-point operations

The floating-point processor's context is not saved while
in AST state. Since the scientific subroutines use
floating-point operations, they may not be called at AST
state.

1-19

USING SYSTEM DIRECTIVES

• Traceback information in the generated code

Use of traceback corrupts the error recovery in the FORTRAN
run-time library. Any FORTRAN modules that will be called
at AST state must be compiled without traceback. See the
RSX, VAX/VMS FORTRAN IV User's Guide or the PDP-ll
FORTRAN-77 User's Guide for more information.

• Virtual array operations

Use of virtual arrays at AST state remaps the current array
such that any operations at non-AST state will be executed
incorrectly.

• Subprograms may not be shared between AST processing and
normal task processing.

• EXIT or STOP statements with files open

FORTRAN flushes the task's buffers, which could be in an
intermediate state. Therefore, data might be lost if any
output files are open when the EXIT or STOP statement is
executed.

You can EXIT or STOP at AST state if no output files are
open.

Since the message put out by STOP uses a different
mechanism from the normal FORTRAN I/O routines, the act of
putting out this message does not corrupt impure data in
the run-time system. Therefore, you can lssue a STOP
statement at AST state unless there are output files open.

Note also the following:

• Any execution-time error at AST state will corrupt the
program.

• Use extreme care if the
interface routine and
routine must be located
that are called at AST

FORTRAN task is overlaid. Both the
the actual code of the FORTRAN AST

in the root segment. Any routines
state must also be in the root segment.

If you do not want to use ASTs in your program, you can use
alternative versions of some of the calls listed at the beginning of
this section. The alternative calls use a module in the system
library routines called SPNUL that suppresses AST handling. The
alternative calls are:

CALL CNCTN
CALL CRVT
CALL SORCN
CALL SPAWNN
CALL VSRCN

If you do not want to use ASTs with any of the routines listed at the
beginning of this section, using the SPUNL routine is helpful because
it saves space. To use the routine, include the following in the
command line to the Task Builder:

LB: [l,ljSYSLIB/LB:SPNUL

1-20

r--
\

(

(

(

(

c

(

(

C

USING SYSTEM DIRECTIVES

1.6 TASK STATES

Many system directives cause a task to change from one state to
another. There are two basic task states in RSX-llM/M-PLUS and
Micro/RSX systems: dormant and active. The active state has three
substates: ready-to-run, blocked, and stopped.

The Executive recognizes the existence of a task only after it has
been successfully installed and has an entry in the System Task
Directory (STD). (Task installation is the process whereby a task is
made known to the system; see the RSX-llM/M-PLUS MCR Operations
Manual, the RSX-llM or RSX-llM-PLUS Command Language Manual, or the
Micro/RSX User's Guide.) Once a task has been installed, it is either
dormant or actlve.~se states are defined as follows:

• Dormant -- Immediately following the processing
DCL INSTALL command, a task is known to
dormant. A dormant task has an entry in the
request has been made to activate it.

of an MCR or
the system but

STD, but no

The three substates of an active task are as follows:

a.

b.

Ready-to-run -- A ready-to-run task competes with other
tasks for CPU time 'on the basis of priority. The highest
priority ready-to-run task obtains CPU time and thus
becomes the current task.

Blocked -- A blocked task is unable
time for synchronization reasons
resource is not available. Task
remains unchanged, allowing the task
space.

to compete for CPU
or because a needed
priority effectively
to compete for memory

c. Stopped -- A stopped task is unable to compete for CPU
time because of pending I/O completion, event flag(s) that
are not set, or because the task stopped itself. When
stopped, a task's priority effectively drops to zero and
the task can be checkpointed by any other task, regardless
of that task's priority. If an AST occurs for the stopped
task, its normal task priority is restored only for the
duration of the AST routine execution; once the AST is
completed, task priority returns to zero.

1.6.1 Task State Transitions

Dormant to Active - The following commands or directives cause the
Executive to activate a dormant task:

• A RUN$ directive

• A RQST$ directive

• A SPWN$ directive

• An SDRC$ directive

1-21

USING SYSTEM DIRECTIVES

• An RPOI$ directive

• An SDRP$ directive

• An MCR or DCL RUN command

Ready-to-Run to Blocked -- The following events cause an active,
ready-to-run task to become blocked:

• A SPND$ directive

• An unsatisfied Wait-for condition

• Checkpointing of a task out of memory by the Executive

Ready-to-Run to Stopped The following events cause an active,
ready-to-run task to become stopped:

• RCST

e

• An unsati~fied Stop-for condition

• An unsatisfied Wait-for condition while
outstanding buffered I/Ol

the task has

Blocked to Ready-to-Run -- The following events return a blocked task
to the ready-to-run state:

• A RSUM$ directive issued by another task

• An MCR RESUME command or a DCL CONTINUE command

• A Wait-for condition is satisfied

• The Executive reads a checkpointed task into memory

Stopped to Ready-to-Run -- The following events return a stopped task
to the ready-to-run state, depending upon how the task became stopped:

(

(

• ¥1~Ui~~;;~~~;~~~~;~tg~~;W~~~~~~~EP: i r:~~I!~ ~~!~~!!~~~~f~!!~!;~~~~~!'~' (
"'d'rrectrve';exec'u'n-on~;;oF'''wi th an MCR UNSTOP or DCL START

command.

• A Wait-for condition is satisfied for a task with outstanding
buffered I/O.

• A task stopped for one or more event flags becomes unstopped
when the specified event flag(s) become set.

1. Only in systems that support the checkpointing of tasks during
buffered I/O. An I/O request can be buffered only when the task is
checkpointable and when the region that I/O is being done to or from
is checkpointable.

1-22

(

(

(

USING SYSTEM DIRECTIVES

Active to Dormant -- The following events cause an active task to
become dormant:

• An EXIT$S, EXIF$, RCVX$,
~~~~~m~:f~~{g~?1;~~~ d i r ec t i ve , 
speclfles the exit option 

• An ABRT$ directive 

• An MCR or DCL ABORT command 

• A synchronous system trap (SST) for which a task has not 
specified a service routine 

Blocked to Stopped - The following event causes a task that is blocked 
due to an unsatisfied Wait-for condition to become stopped: 

• The task initiates buffered I/O at AST state and then exits 
from AST state. 

Stopped to Blocked - The following event causes a task that is stopped 
due to an unsatisfied Wait-for condition and outstanding buffered I/O 
to return to a blocked state: 

• Completion of all outstanding buffered I/O 

1.6.2 Removing an Installed Task 

You remove an installed task from the system by issuing the MCR or DCL 
REMOVE command from a privileged terminal. Refer to the 
RSX-IIM/IIM-PLUS MCR Operations Manual, the RSX-IIM or RSX-IIM-PLUS 
Command Language Manual, or the Micro/RSX User'~ Guide. 

1-23 



USING SYSTEM DIRECTIVES 

1.8 DIRECTIVE RESTRICTIONS FOR NONPRIVILEGED TASKS 

Nonpri vileged tasks cannot issue certain Executive directives, except (_~ 
as noted in the following list: 

Directive 

Abort Task 

Al ter Prior i ty 

Cancel Scheduled 
Initiation Requests 

Connect to Interrupt 
Vector 

Set Command Line 
Interpreter 

Macro Call 

ABRT$ 

ALTP$ 

CSRQ$ 

CINT$ 

SCLI$ 

1-24 

Comments 

In systems that support 
multiuser protection, a 
nonprivileged task can only 
abort tasks with the same 
TI: as the task issuing the 
directive. 

In systems that support 
multiuser protection, a 
nonprivileged task can only 
alter its own priority to 
values less than or equal to 
the task's installed 
priority. 

In systems that support 
multiuser protection, a 
nonprivileged task cannot 
issue this directive except 
f~r tasks with the same TI: 
as the issuing task. 

In mapped systems, a non
privileged task cannot issue 
this directive. 

A nonprivileged task 
issue this directive 
any circumstances. 

cannot 
under 

( 

( 

( 



( 

( 

( 

CHAPTER 2 

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

This chapter introduces the concept of significant events and 
describes the ways in which your code can make use of event flags, 
synchronous and asynchronous system traps, and stop-bit 
synchronization. 

2.1 SIGNIFICANT EVENTS 

A significant event is a change in system status that causes the 
Executive to reevaluate the eligibility of all active tasks to run. 
(For some significant events, specifically those in which the current 
task becomes ineligible to run, only those tasks of lower priority are 
examined.) A significant event is usually caused (either directly or 
indirectly) by a system directive issued from within a task. 
Significant events include the following: 

• An I/O completion 

• A task exit 

• The execution of a Send Data directive 

• The execution of a Send Data Request and Pass OCB directive 

• The execution of a Send, Request, and Connect directive 

• The execution of a Send By Reference, Receive By Reference, or 
Receive By Reference or Stop directive 

• The execution of an Alter Priority directive 

• The removal of an entry from the clock queue (for instance, 
resulting from the execution of a Mark Time directive or the 
issuance of a rescheduling request) 

• The execution of a Declare Significant Event directive 

• The execution of the round-robin scheduling algorithm at the 
end of a round-robin scheduling interval 

• The execution of an Exit, an Exit with Status, or an Emit 
Status directive 

2-1 



SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

2.2 EVENT FLAGS 

Event flags are a means by which tasks recognize specific events. 
(Tasks also use asynchronous system traps (ASTs) to recognize specific ( .. 
events. See Section 2.3.3.) In requesting a system operation (such as 
an I/O transfer), a task may associate an event flag with the 
completion of the operation. When the event occurs, the Executive 
sets the specified flag. Several examples later in this section 
describe how tasks can use event flags to coordinate task execution. 

Nlnety-six event flags are available to enable tasks to distinguish 
one event from another. Each event flag has a corresponding unique 
event flag number (EFN). Numbers 1 through 32 form a group of flags 
that are unique to each task and are set or cleared as a result of 
that task's operation. Numbers 33 through 64 form a second group of 
flags that are common to all tasks; hence their name "common flags." 
Common flags may be set or cleared as a result of any task's 
operation. The last eight flags in each group, local flags (25-32) 
and common flags (57-64), are reserved for use by the system. Numbers 
65 through 96 form the third group of flags, known as "group global 
event flags." You can use group global event flags in any application 
where common event flags are used except that, instead of applying to 
all tasks, group global event flags apply only to tasks running under C· 
UICs containing the group number specified when the flags were . 
created. Four directives (Create Group Global Event Flags, Eliminate 
Group Global Event Flags, Unlock Group Global Event Flags, and Read 
Extended Event Flags) provide the Executive support needed for imple-
menting group global event flags. 

Tasks can use the common or group global event flags for intertask 
communication, or use their own local event flags internally. They 
can set, clear, and test event flags by using the Set Event Flag, 
Clear Event Flag, and Read All Event Flags directives. (The Read All 
Event Flags directive will not return the group global event flags. C·. 
When these flags are in use, read all event flags using the Read . 
Extended Event Flags directive.) Be careful to coordinate the use of 
group global event flags between multiple applications. 

Examples 1 and 2 illustrate the use of common event flags (33-64) to 
synchronize task execution. Examples 3 and 4 illustrate the use 6f 
local flags (1-32). 

Example 1 

Task B clears common event flag 35 and then blocks itself by 
issuing a Wait-for directive that specifies common event flag 35. 

Subsequently, another task, Task A, specifies event flag 35 in a 
Set Event Flag directive to inform Task B that it may proceed. 
Task A then issues a Declare Significant Event directive to 
ensure that the Executive will schedule Task B. 

Example 2 

In order to synchronize the transmission of data between Tasks A 
and B, Task A specifies Task B and common event flag 42 in a Send 
Data directive. 

Task B has specified flag 42 in a Wait-for directive. When Task 
A's Send Data directive has caused the Executive to set flag 42 
and to cause a significant event, Task B proceeds and issues a 
Receive Data directive because its Wait-for condition has been 
satisfied. 

2-2 

( 

( 



( 

( 

c 

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

Example 3 

A task contains a Queue I/O Request directive and an associated 
Wait-for directive; both directives specify the same local event 
flag. When the task queues its I/O request, the Executive clears 
the local flag. If the requested I/O is incomplete when the task 
issues the Wait-for directive, the Executive blocks the task. 

When the requested I/O has been completed, the Executive sets the 
local flag and causes a significant event. The task then resumes 
its execution at the instruction that follows the Wait-for 
directive. Using the local event flag in this manner ensures 
that the task does not manipulate incoming data until the 
transfer is complete. 

Example 4 

A task specifies the same local event flag in a Mark Time and an 
associated Wait-for directive. When the Mark Time directive is 
issued, the Executive first clears the local flag and 
subsequently sets it when the indicated time interval has 
elapsed. 

If the task issues the Wait-for directive before the local flag 
has been set, the Executive blocks the task. The task resumes 
when the flag is set at the end of the proper time interval. If 
the flag has been set first, the directive is a no-op and the 
task is not blocked. 

Specifying an event flag does not mean that a Wait-for directive must 
be issued. Event-flag testing can be performed at any time. The 
purpose of a Wait-for directive is to stop task execution until an 
indicated event occurs. Hence, it is not necessary to issue a 
Wait-for directive immediately following a Queue I/O Request directive 
or a Mark Time directive. 

If a task issues a Wait-for directive that specifies an event flag 
that is already set, the blocking condition is immediately satisfied 
and the Execptive returns control to the task. 

Tasks can issue Stop-for directives as well as Wait-for directives. 
When this is done, an event-flag condition that is not satisfied 
results in the task's being stopped (instead of being blocked) until 
the event flag(s) are set. A task that is blocked still competes for 
memory resources at its running priority. A task that is stopped 
competes for memory resources at priority o. 

The simplest way to test a single event flag is to issue the Clear 
Event Flag or Set Event Flag directive. Both of these directives can 
cause the following return codes: 

IS.CLR - Flag was previously clear 

IS.SET - Flag was previously set 

For example, if a set common event flag indicates the completion of an 
operation, a task can issue the Clear Event Flag directive both to 
read the event flag and~ simultaneously, to reset it for the next 
operation. If the event flag was previously clear (the current 
operation was incomplete), the flag remains clear. 

2-3 



SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

c 

( 

( 

( 

2-4 



( 

( 

( 

( 

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

2.3 SYSTEM TRAPS 

System traps (also called software interrupts) are a means of 
transferring control to tasks to allow them to monitor and react to 
events. The Executive initiates system traps when certain events 
occur. The trap transfers control to the task associated with the 
event and gives the task the opportunity to service the event by 
entering a user-written routine. 

There are two kinds of system traps: 

• Synchronous system traps (SSTs) -- SSTs detect events directly 
associated with the execution of program instructions. They 
are synchronous because they always recur at the same point in 
the program when trap-causing instructions occur. For 
example, an illegal instruction causes an SST. 

• Asynchronous system traps (ASTs) -- ASTs detect events that 
occur asynchronously to the task's execution. That is, the 
task has no direct control over the precise time that the 
event -- and therefore the trap -- may occur. For example, 
the completion of an I/O transfer may cause an AST to occur. 

A task that uses the system-trap facility issues system directives 
that establish entry points for user-written service routines. Entry 
points for SSTs are specified in a single table. AST entry points are 
set by individual directives for each kind of AST. When a trap 
condition occurs, the task automatically enters the appropriate 
routine (if its entry point has been specified). 

2.3.1 Synchronous System Traps (SSTs) 

SSTs can detect the execution of: 

• Illegal instructions 

• Instructions with invalid addresses 

• Trap instructions (TRAP, EMT, lOT, BPT) 

• FIS floating-point exceptions (PDP-ll/40 processors only) 

You can set up an SST vector table that contains one entry per SST 
type. Each entry is the address of an SST routine that services a 
particular type of SST (a routine that services illegal instructions, 
for example). When an SST occurs, the Executive transfers control to 
the routine for that type of SST. If a corresponding routine is not 
specified in the table, the task is aborted. The SST routine enables 
you to process the failure and then return to the interrupted code. 
Note that if a debugging aid and a user's task both have an SST vector 
enabled for a given condition, the debugging-aid vector is referenced 
first to determine the service-routine address. 

2-5 



SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

SST routines must always be reentrant if there is a possibility that 
an SST can occur within the SST routine itself. Although the 
Executive initiates SSTs, the execution of the related service ( 
routines is indistinguishable from the task's normal execution. . 
Therefore, an AST or another SST can interrupt an SST routine. 

2.3.2 SST Service Routines 

The Executive initiates SST service routines by pushing the task's 
processor status (PS), program counter (PC), and trap-specific 
parameters onto the task's stack. After removing the trap-specific 
parameters, the service routine returns control to the task by issuing 
an RTl or RTT instruction. Note that the task's general-purpose 
registers RO-R5 and SP are not saved. If the SST routine makes use of 
them, it must save and restore them itself. 

To the Executive, SST-routine execution is indistinguishable from 
normal task execution, so all directive services are available to an 
SST routine. An SST routine can remove the interrupted PS and PC from 
the stack and transfer control anywhere in the task; the routine does 
not have to return control to the point of interruption. Note that 
any operations performed by the routine (such as the modification of 
registers or the DSW, or the setting or clearing of event flags) 
remain in effect when the routine eventually returns control to the 
task. 

A trap vector table within the task contains all the service-routine 
entry points. You can specify the SST vector table by means of the 
Specify SST Vector Table for Task directive or the Specify SST Vector 
for Debugging Aid directive. The trap vector table has the following 
format: 

Word Offset 

o S.COAD 

1 S.CSGF 

2 S.CBPT 

3 S.ClOT 

4 S.ClLl 

5 S.CEMT 

6 S.CTRP 

7 S.CFLT 

Associated 
Vector 

4 

250 

14 

20 

10 

30 

34 

244 

Trap 

Odd or nonexistent memory error 
(also, on some PDP-ll processors -
for example, the PDP 11/45 an 
illegal instruction traps here 
rather than through word 04) 

Memory protect violation 

T-bit trap or execution of a BPT 
instruction 

Execution of an lOT instruction 

Execution of a reserved instruction 

Execution 
instruction 

of a non-RSX 

Execution of a TRAP instruction 

EMT 

Synchronous floating-point exception 
(PDP-ll/40 processors only) 

A zero appearing in the table means that no entry point is specified. 

2-6 

( 

(. 

( 

( 



( 

( 

( 

( 

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

On RSX-11M and Micro/RSX systems, an odd address in the table causes 
another SST to occur when an SST tries to use that particular address 
as an entry point. If an SST occurs and an associated entry point is 
not specified in the table, the Executive aborts the task. 

Depending on the reason for the SST, the task's stack may also contain 
additional information, as follows: 

Memory protect violation (complete stack) 

SP+10 
SP+06 
SP+04 
SP+02 
SP+OO 

PS 
PC 
Memory protect status register (SRO)l 
Virtual PC of the faulting instruction (SR2)1 
Instruction backup register (SR1)1 

TRAP instruction or EMT other than 377 (and 376 in the case 
unmapped tasks and mapped privileged tasks) (complete stack) 

PS 
PC 

of 

SP+04 
SP+02 
SP+OO Instruction operand (low-order byte) multiplied by 2, 

non-sign-extended 

All items except the PS and PC must be removed from the stack before 
the SST service routine exits. 

2.3.3 Asynchronous System Traps (ASTs) 

The primary purpose of an AST is to inform the task that a certain 
event has occurred -- for example, the completion of an I/O operation. 
As soon as the task has serviced the event, it can return to the 
interrupted code. 

Some directives can specify both an event flag and an AST; with these 
directives, ASTs can be used as an alternative to event flags or the 
two can be used together. Therefore, you can specify the same AST 
routine for several directives, each with a different event flag. 
Thus, when the Executive passes control to the AST routine, the event 
flag can determine the action required. 

AST service routines must save and restore all registers used. If the 
registers are not restored. after an AST has occurred, the task's 
subsequent execution may be unpredictable. 

Although not able to distinguish execution of an SST routine from task 
execution, the Executive is aware that a task is executing an AST 
routine. An AST routine can be interrupted by an SST routine, but not 
by another AST routine. 

1. For details of SRO, SR1, and SR2, see the section on the memory 
management unit in the appropriate PDP-1l processor handbook. 

2-7 



SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

The following notes describe general characteristics and uses of ASTs: 

• If an AST occurs while the related task is executing, the task 
is interrupted so that the AST service routine can be 
executed. 

• If an AST occurs while another AST is being processed, the 
Executive queues the latest AST (First-In-First-Out, or FIFO). 
The task then processes the next AST in the queue when the 
current AST routine is complete (unless AST recognition was 
disabled by the AST service routine). 

• If a task is suspended or stopped when an associated AST 
occurs, the task remains suspended or stopped after the AST 
routine has been executed unless it is explicitly resumed or 
unstopped either by the AST service routine itself or by 
another task (the MCR RESUME or DCL CONTINUE command, for 
example) • 

( 

• If an AST occurs while the related task is waiting or stopped 
for an event flag to be set (a Wait-for or Stop-for 
directive), the task continues to wait after execution of the 
AST service routine unless the event flag is to be set when "( 
the AST exits. "" 

• If an AST occurs for a checkpointed task, the Executive queues 
the AST (FIFO), brings the task into memory, and then 
activates the AST when the task returns to memory. 

• The Executive allocates the necessary dynamic memory when an 
AST is specified. Thus, no AST condition lacks dynamic memory 
for data storage when it actually occurs. The AST reuses the 
storage allocated for I/O and Mark Time directives. 
Therefore, no aoditional dynamic storage is required. 

• Two directives, Disable AST Recognition and Enable AST 
Recognition, allow a program to queue ASTs for subsequent 
execution during critical sections of code. (A critical 
section might be one that accesses data bases also accessed by 
AST service routines, for example.) If ASTs occur while AST 
recognition is disabled, they are queued (FIFO) and then 
processed when AST recognition is enabled. 

2.3.4 AST Service Routines 

When an AST occurs, the Executive pushes the task's Wait-for mask 
word, the DSW, the PS, and the PC onto the task's stack. This 
information saves the state of the task so that "the AST service 
routine has access to all the available Executive services. The 
preserved Wait-for mask word allows the AST routines to establish the 
conditions necessary to unblock the waiting task. Depending on the 
reason for the AST, the stack may also contain additional parameters. 
Note that the task's general-purpose registers RO-R5 and SP are not 
saved. If the routine makes use of them, it must save and restore 
them itself. 

On RSX-IIM systems that support stop-bit synchronization or 
checkpointing during buffered I/O, and on all RSX-IIM-PLUS and 
Micro/RSX systems, the Wait-for mask word comes from the offset T.EFLM 
in the task's Task Control Block (TCB). On systems that do not 
support those features, the Wait-for mask word comes from the offset 
H.EFLM in the task's header. Its value and the event-flag range to 

2-8 

( 

(~ 



( 

( 

( 

( 

( 

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

which it corresponds depend on the last Wait-for or Stop-for directive 
issued by the task. For example, if the last such directive issued 
was Wait for Single Event Flag 42, the mask word has a value of 
1000(8) and the event flag range is from 33 to 48. Bit 0 of the mask 
word represents flag 33, bit 1 represents flag 34, and so on. 

The Wait-for mask word is meaningless if the task has not issued any 
type of Wait-for or Stop-for directive. 

Your code should not attempt to modify the Wait-for mask while in the 
AST routine. For example, putting a zero in the Wait-for mask results 
in an unclearable Wait-for state. 

After processing an AST, the task must remove the trap-dependent 
parameters from its stack. That is, everything from the top of the 
stack down to, but not including, the task's Directive Status Word 
must be removed. It must then issue an AST Service Exit directive 
with the stack set as indicated in the description of that directive 
(see Section 5.3). When the AST service routine exits, it returns 
control to one of two places: another AST or the original task. 

There are 14 variations on the format of the task's stack, as follows: 

• If a task needs to be notified when a Floating Point Processor 
exception trap occurs, it issues a Specify Floating Point 
Processor Exception AST directive. If the task specifies this 
directive, an AST will occur when a Floating Point Processor 
exception trap occurs. The stack will contain the following 
values: 

SP+l2 
SP+10 
SP+06 
SP+04 
SP+02 
SP+OO 

Event-flag mask word 
PS of task prior to AST 
PC of task prior to AST 
Task's Directive Status Word 
Floating exception code 
Floating exception address 

NOTE 

Refer to the appropriate processor handbook for a 
description of the FPU exception-code values. 

• If the task needs to be notified of power-failure recoveries, 
it issues a Specify Power Recovery AST directive. An AST will 
occur when the power is restored if the task is not 
checkpointed. The stack will contain the following values: 

SP+06 
SP+04 
SP+02 
SP+OO 

Event-flag mask word 
PS of task prior to AST 
PC of task prior to AST 
Task's Directive Status Word 

• If a task needs to be notified when it receives either a 
message or a reference to a common area, it issues either a 
Specify Receive Data AST or a Specify Receive By Reference AST 
directive. An AST will occur when the message or common 
reference is sent to the task. The stack will contain the 
following values: 

SP+06 Event-flag mask word 
SP+04 PS of task prior to AST 
SP+02 PC of task prior to AST 
SP+OO Task's Directive Status Word 

2-9 



SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

• When a task queues an I/O request and specifies an appropriate 
AST service entry point, an AST will occur upon completion of 
the I/O request. The task's stack will contain the following C· 
values: 

SP+lO 
SP+06 
SP+04 
SP+02 
SP+OO 

Event-flag mask word 
PS of task prior to AST 
PC of task prior to AST 
Task's Directive Status Word 
Address of I/O status block for I/O request (or 
zero if none was specified) 

• When a task issues a Mark Time directive and specifies an 
appropriate AST service entry point, an AST will occur when 
the indicated time interval has elapsed. The task's stack 
will contain the following values: 

SP+lO 
SP+06 
SP+04 
SP+02 
SP+OO 

Event-flag mask word 
PS of task prior to AST 
PC of task prior to AST 
Task's Directive Status Word 
Event flag number (or zero 
specified) 

if none was 

• An offspring task, connected by a Spawn, Connect, or Send, 
Request, and Connect directive, returns status to the 
connected (parent) task(s) upon exiting by the Exit AST. The 
parent task's stack contains the following values: 

• 

SP+lO 
SP+06 
SP+04 
SP+02 
SP+OO 

Event-flag mask word 
PS of task prior to AST 
PC of task prior to AST 
Task's Directive Status Word 
Address of exit status block 

If a command arrives 
routine is entered. 

for a CLI, the 
The stack contains: 

Command 

SP+IO 
SP+06 
SP+04 
SP+02 
SP+OO 

Event-flag mask word 
PS of- task prior to AST 
PC of task prior to AST 
Task's Directive Status Word 
Command-buffer address 

2-10 

Arrival AST 

( 

( 

c 



SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

( 

( 

( 

2-11 



SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

• If a task is aborted by a directive or a DCL or MCR command 
when the Specify Requested Exit AST is in effect, the abort 
AST is entered. The task's stack contains the following 
values: 

SP+06 
SP+04 
SP+02 
SP+OO 

Event-flag mask word 
PS of task prior to AST 
PC of task prior to AST 
Task '.s Directive Status Word 

• If a task is aborted by a directive or a DCL or MCR command 
when the Extended Specify Requested Exit AST is in effect, the 
abort AST is entered. The task's stack contains the following 
values: 

• 

SP+l2 
SP+lO 
SP+06 
SP+04 
SP+02 
SP+OO 

Event-flag mask word 
PS of task prior to AST 
PC of task prior to AST 
DSW of task prior to AST 
Trap-dependent parameter 
Number of bytes to add to SP to clean the stack 

If a task issues a QIO IO.ATA function to the full-duplex 
terminal driver, unsolicited terminal input will cause the AST 
service routine to be entered. Upon entry into the routine, 
the task's stack contains the following values: 

SP+lO 
SP+06 
SP+04 
SP+02 
SP+OO 

Event-flag mask word 
PS of task prior to AST 
PC of task prior to AST 
Task's Directive Status Word 
Unsolicited character in low byte; parameter 2 
in high byte 

2.4 STOP-BIT SYNCHRONIZATION 

Stop-bit synchronization allows tasks to be checkpointed during 
terminal (buffered) I/O or while waiting for an event to occur (for 
example, an event flag to become set or an Unstop directive to become 
issued). You can control synchronization between tasks by the setting 
of the task's Task Control Block (TCB) stop bit. 

When the task's stop bit is set, the task is blocked from further 
execution, its priority for memory allocation effectively drops to 
?ero, and it may be checkpointed by any other task in the system 
regardless of priority. If checkpointed, the task remains out of 
memory until its stop bit is cleared, at which time the task becomes 
unstopped, its normal priority for memory allocation becomes restored, 
and it is considered for memory allocation based on the restored 
priori ty. 

If the stopped task receives an AST, it becomes unstopped until it 
exits from the AST routine. Memory allocation for the task during the 
AST routine is based on the task's priority prlor to the stopped 
state. Note that a task cannot be stopped when an AST is in progress, 
but the AST routine can issue either an Unstop or Set Event Flag 
directive to reference the task. This causes it to remain unstopped 
after it issues the AST Service Exit directive. 

2-12 

( 

( 

( 



c 

( 

( 

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION 

There are three ways in which a nonprivileged task can become 
and three corresponding ways for it to become unstopped. 
method for stopping a task can be applied at one time. 

stopped 
Only one 

• A task is stopped whenever it is in a 
outstanding buffered I/O. A task 
buffered I/O is completed or when the 
satisfied. 

Wait-for state and has 
is unstopped when the 
wait-for condition is 

• You can stop a task for event flag(s) by issuing the Stop for 
Single Event Flag directive or the Stop for Logical OR of 
Event Flags directive. In this case, the task can be 
unstopped only by setting the specified event flag(s). 

• You can stop a task by issuing the Stop directive, the Receive 
Data or Stop directive, or the Get Command for Command 
Interpreter directive. In this case, the task can be 
unstopped only by issuing the unstop directive or the MCR 
UNSTOP or DCL START command. 

You cannot stop a task when an AST is in progress (AST state). Any 
directives that cause a task to become stopped are illegal at the AST 
state. 

When a task is stopped for any reason at the task state, it can still 
receive ASTs. If the task has been checkpointed, it becomes eligible 
for entry back into memory when an AST is queued for it. The task 
retains its normal priority in memory while it is at the AST state or 
has ASTs queued. Once it has exited the AST routine with no other 
ASTs queued, the task is again stopped and effectively has zero 
priority for memory allocation. 

You can use the following directives for stop-bit synchronization: 

• Stop -- This directive stops the issuing task and cannot be 
issued at the AST state. 

• 

• 

s rom 
any task if none is specified). If 

packet to be dequeued, the issuing task is 
directives cannot be issued at the AST state. 

Stop for Logical OR of Event Flags -- This 
issuing task until the specified flags in 
of local event flags become set. If any 
event flags are already set, the task does 
This directive cannot be issued at the AST 

directive stops the 
the specified group 
of the specified 

not become stopped. 
state. 

• stop for Single Event Flag -- This directive stops the issuing 
task until the indicated local event flag becomes set. If the 
specified event flag is already set, the task does not become 
stopped. This directive cannot be issued at the AST state. 

• Unstop -- This directive unstops a task that has become 
stopped by the Stop or the Receive Data or Stop directive. 

• Get Command for Command Interpreter -- This directive stops a 
CLI task when there is no command queued for it. The GC.CST 
option must be specified to force the task to stop. This 
directive cannot be issued at the AST state. 

2-13 





( 

( 

( 

( 

(-

CHAPTER 3 

MEMORY MANAGEMENT DIRECTIVES 

within the framework of memory management directives, this chapter 
discusses extended logical address space, regions, virtual address 
windows, and fast mapping. 

3.1 ADDRESSING CAPABILITIES OF A TASK 

Without the overlaying of tasks, a task cannot explicitly refer to a 
location with an address greater than 177777 (32K words). The l6-bit 
word size of the PDP-II imposes this restriction on a task's 
addressing capability. Overlaying a task means that it must first be 
divided into segments: a single root segment, which is always in 
memory, and any number of overlay segments, which can be loaded into 
memory as required. Unless a task uses the memory management 
directives described in this chapter, the combined size of the task 
segments concurrently in memory cannot exceed 32K words. 

When resident task segments cannot exceed a total of 32K words, a task 
requiring large amounts of data must access data that resides on disk. 
Data is disk-based not only because of limited memory space, but also 
because transmission of large amounts of data between tasks is only 
practical by means of disk. An overlaid task, or a task that needs to 
access or transfer large amounts of data, incurs a considerable amount 
of transfer activity, over and above that caused by the task's 
function. 

Task execution could obviously be faster if all or a greater portion 
of the task were resident in memory at run time. A group of memory 
management directives provide a task with this capability. The 
directives overcome the 32K-word addressing restriction by allowing 
the task to dynamically change the physical locations that are 
referred to by a given range of addresses. with these directives, a 
task can increase its execution speed by reducing its disk I/O 
requirements at the expense of increased physical memory requirements. 

3-1 



MEMORY MANAGEMENT DIRECTIVES 

3.1.1 Address Mapping 

In a mapped system, you do not need to know where a task resides in 
physical memory. Mapping, the process of associating task addresses 
with available physical memory, is transparent and is accomplished by 
the KTll memory management hardware. (See the appropriate PDP-ll 
processor handbook for a description of the KTll.) When a task 
references a location (virtual address), the KTll determines the 
physical address in memory. The memory management directives use the 
KTll to perform address mapping at a level that is visible to and 
controlled by you. 

3.1.2 Address Space 

The following concepts -- logical address space and virtual address 
space -- provide a basis for understanding the functions performed by 
the memory management directives: 

• Logical address space -- A task's logical address space is the 
total amount of physical memory to which the task has access 
rights. This includes various areas called· regions (see 
Section 3.3). Each region occupies a contiguous block of 
memory • 

• Virtual address space -- A task's virtual address space 
corresponds to the 32K-word address range imposed by the 
PDP-ll's 16-bit word length. The task can divide its virtual 
address space into segments called virtual address windows 
(see Section 3.2). 

If the capabilities supplied by the memory management directives were 
not available, a task's virtual address space and logical address 
space would directly correspond; a single virtual address would always 
point to the same logical location. Both types of address space would 
have a maximum size of 32K words. However, the ability of the memory 
management directives to assign or map a range of virtual addresses (a 
window) to different logical areas (regions) enables you to extend a 
task's logical address space beyond 32K words. 

3-2 

( 

( 

( 



( 

( 

c 

( 

MEMORY MANAGEMENT DIRECTIVES 

3.2 VIRTUAL ADDRESS WINDOWS 

In order to manipulate the mapping of virtual addresses to various 
logical areas, you must first divide a task's 32K words of virtual 
address space into segments. These segments are called virtual 
address windows. Each window encompasses a contiguous range of 
virtual addresses, which must begin on a 4K-word boundary (that is, 
the first address must be a multipl~ of 4K) •.. Thenumber of wingows 

!~~~~~¥~t~~~::~ "<'9!!~~:~~r*{~t~:;~r~~i~l~;~~;~i 
~w~ntl~W The size of each window can 
range from a minimum of 32 words to a maximum of 32K words. 

A task that includes directives to manipulate address windows 
dynamically must have window blocks set up in its task header. The 
Executive uses window blocks to identify and describe each currently 
existing window. You specify the required number of additional window 
blocks (the number used for windows created by the memory management 
directives) to be set up by the Task Builder when linking the task 
(see the RSX-llM/M-PLUS and Micro/RSX Task Builder Manual). The 
number of blocks that you specify should equal the maximum number of 
windows that will exist at anyone time when the task is running. 

3-3 



MEMORY MANAGEMENT DIRECTIVES 

Figure 3-1 shows the virtual address space of a task divided into four 
address windows (windows 0, 1, 2, and 3). The shaded areas indicate 
portions of the address space that are not included in any window (9K 
to 12K and 23K to 24K). Addresses that fall within the ranges 
corresponding to the shaded areas cannot be used. 

When a task uses memory management directives, the Executive views the 
relationship between the task's virtual and logical address space in 
terms of windows and regions. Unless a virtual address is part of an 
existing address window, reference to that address will cause an 
illegal address trap to occur. Similarly, a window can be mapped only 
to an area that is all or part of an existing region within the task's 
logical address space (see Section 3.3). 

Once a task has defined the necessary windows and regions, it can 
issue memory management directives to perform operations such as the 
following: 

• Map a window to all or part of a region 

• Unmap a window from one region in order to map it to another 
region 

• Unmap a window from one part of a region in order to map it to 
another part of the same region 

3.3 REGIONS 

A region is a portion of physical memory to which a task has (or 
potentially may have) access. The current window-to-region mapping 
context determines that part of a task's,logical address space that 
the task can access at one time. A task's logical address space can 
consist of various types of regions: 

• Task region -- A contiguous block of memory in which the task 
runs 

• Static common region -- An area, such as a global common area, 
defined by an operator at run time or at system-generation 
time 

NOTE 

3-4 

( 

(~ 

( 

( 



c 

( 

(~ 

l 

MEMORY MANAGEMENT DIRECTIVES 

• Dynamic region -- A region created dynamically at run time by 
issuing the memory management directives 

Tasks refer to a region by means of a region to the task 
task's static by the Executive. A region 10 from 0 to 23 refers 

attachment. Region 10 0 alw s refers to a task's 
~~~~i~~~~~~[~~~t1j;~~l~ 

Figure 3-2 shows a sample collection of regions that could make up a
task's logical address space at some given time. The header and root
segment are always part of the task region. Since a region occupies a
contiguous area of memory, each region is shown as a separate block.

Figure 3-3 illustrates a possible mapping relationship between the
windows and regions shown in Figures 3-1 and 3-2.

WINDOW 3

WINDOW 2

VIRTUAL
ADDRESS

SPACE

.------.-32K

3 (SK) 28K

illllIlTIaIITlmTI 24K

20K

2 (11K)

16K

12K

8K
WINDOW 1 1 (5K)

4K

WINDOW 0 0 (4K)

OK

D -virtual address
- window

mmrrn = unused virtual
UillilllI address space

ZK-307-81

Figure 3-1 Virtual Address Windows

'3-5

MEMORY MANAGEMENT DIRECTIVES

LOGICAL
ADDRESS

SPACE

ZK-30B-B1

Figure 3-2 Region Definition Block

3.3.1 Shared Regions

Address mapping not only extends a task's logical address space beyond
32K words, it also allows the space to extend to regions that have not
been linked to the task at task-build time. One result is an
increased potential for task interaction by mean. of shared regions.
For example, a task can create a dynamic region to accommodate large
amounts of data. Any number of tasks can then access that data by
mapping to the region. Another result is the ability of tasks to use
a greater number of common routines. Thus, tasks can map to required
routines at run time rather than linking to them at task-build time.

3-6

c

c

(

(

(

WINDOW 3

WINDOW 2

WINDOW 1

(
WINDOW 0

Legend:

MEMORY MANAGEMENT DIRECTIVES

VIRTUAL
ADDRESS
SPACE

32K

3 (8K) 28K

([Jill [[[llill ([J 24K

20K

2 (11 K)

16K
~--------~----~11K

12K

8K
1 (5K)

------- 4K

o (4K)

OK

D= virtual address
window .= unused virtual
address space

r'"7'9 .. ; ' "
~=

- pOinter to area
mapped by a window

LOGICAL
ADDRESS

SPACE

STATIC COMMON
REGION

TASK

mapped areas of
logical address space

unmapped portions of
logical address space

Figure 3-3 Mapping Windows to Regions

3-7

ZK-309-81

MEMORY MANAGEMENT DIRECTIVES

3.3.2 Attaching to Regions

Attaching is the process by which a region becomes part of a task's
logical address space. A task can map a region that is part of the
task's logical address space only. There are three ways to attach a
task to a region:

• All tasks are automatically attached to regions that are
linked to them at task-build time.

• A task can issue a directive to attach itself to a named
static common region or a named dynamic region.

• A task can request the Executive to attach another specified
task to any region within the logical address space of the
requesting task.

Attaching identifies a task as a user of a region and prevents the
system from deleting a region until all user tasks have been detached
from it. (It should be noted that fixed tasks do not automatically
become detached from regions upon exiting.)

NOTE

Each Send By Reference directive issued by a sending
task creates a new attachment descriptor for the
receiving task. However, multiple Send By Reference
directives referencing the same region require only
one attachment descriptor. After the receiving task
issues a series of Receive By Reference directives and
all pending data requests have been received, the task
should detach from the region in order to return the
attachment descriptors to pool.

3.3.3 Region Protection

A task cannot indiscriminately attach to any region. Each region has
a protection mask to prevent unauthorized access. The mask indicates
the types of access (read, write, extend, delete) allowed for each
category of user (system, owner, group, world). The Executive checks
that the requesting task's User Identification Code (UIC) allows it to
make the attempted access. The attempt fails if the protection mask
denies that task the access it wants.

3-8

(

(

(

(

(

(

(

l

MEMORY MANAGEMENT DIRECTIVES

To determine when tasks may add to their logical address space by
attaching regions, the following points must be considered (note that
all considerations presume there is no protection violation):

• Any task can attach to a named dynamic region, provided it
knows the name. In the case of an unnamed dynamic region, a
task can attach to the region only after receiving a Send By
Reference directive from the task that created the region.

•
e reference sent nc

w
The sending task
has itself.

task attaches
only those access

• Any task can map to a named static common region.

3.4 DIRECTIVE SUMMARY

This section briefly describes the function of each memory management
directive.

3.4.1 Create Region Directive (CRRG$)

The Create Region directive creates a dynamic region in a designated
system-controlled partition and optionally attaches the issuing task
to it.

3.4.2 Attach Region Directive (ATRG$)

The Attach Region directive attaches the issuing task to a static
common region or to a named dynamic region.

3.4.3 Detach Region Directive (DTRG$)

The Detach Region directive detaches the issuing task from a specified
region. Any of the task's address windows that are mapped to the
region are automatically unmapped.

3.4.4 Create Address Window Directive (CRAW$)

The Create Address Window directive creates an address window,
establishes its virtual address base and size, and optionally maps the
window. Any other windows that overlap with the zange of addresses of
the new window are first unmapped and then eliminated.

3.4.5 Eliminate Address Window Directive (ELAW$)

The Eliminate Address Window directive eliminates an existing address
window, unmapping it first if necessary.

3-9

MEMORY MANAGEMENT DIRECTIVES

3.4.6 Map Address Window Directive (MAP$)

The Map Address Window directive maps an existing window to
attached region. The mapping begins at a specified offset from
start of the region and goes to a specified length. If the window
already mapped elsewhere, the Executive unmaps it before carrying
the map assignment described in the directive.

3.4.7 Unmap Address Window Directive (UMAP$)

an
the
is

out

The Unmap Address Window directive unmaps a specified window. After
the window has been unmapped, its virtual address range cannot be
referenced until the task issues another mapping directive.

3.4.8 Send By Reference Directive (SREF$)

c

The Send By Reference directive inserts a packet containing a
reference to a region into the receive queue of a specified task. The
receiver task is automatically attached to the region referred to. ~

3.4.9 Receive By Reference Directive (RREF$)

The Receive By Reference directive requests the Executive to select
the next packet from the receive-by-reference queue of the issuing
task and make the information in the packet available to the task.
Optionally, the directive ,can map a window to the referenced region or
cause the task to exit if the queue does not contain a
receive-by-reference packet. ~

3.4.10 Receive By Reference or Stop Directive (RRST$)

The Receive By Reference or Stop directive requests the Executive to
select the next packet from the receive-by-reference queue of the
issuing task and make the information in the packet available to the
task. The directive can map a window to the referenced region or
cause the task to stop if the queue does not contain a receive-by-
reference packet. (

3.4.11 Get Mapping Context Directive (GMCX$)

The Get Mapping Context directive causes the Executive to return to
the issuing task a description of the current window-to-region mapping
assignments. The description is in a form that enables the user to
restore the mapping context through a series of Create Address Window
directives.

3.4.12 Get Region Parameters Directive (GREG$)

The Get Region Parameters directive causes the Executive to supply the
issuing task with information about either its task region (if no
region ID is given) or an explicitly specified region.

3-10

(

(

(

(

(

(

MEMORY MANAGEMENT DIRECTIVES

3.5 USER DATA STRUCTURES

Most memory management directives are individually capable of
performing a number of separate actions. For example, a single Create
Address Window directive can unmap and eliminate up to seven
conflicting address windows, create a new window, and map the new
window to a specified region. The complexity of the directives
requires a special means of communication between the user task and
the'Executive. The communication is achieved through data structures
that:

• Allow the task to specify which directive options it wants the
Executive to perform

• Permit the Executive to provide the task with details about
the outcome of the requested actions

There are two types of user data structures that correspond to the two
key elements (regions and address windows) manipulated by the
directives. The structures are called:

• The Region Definition Block (RDB)

• The Window Definition Block (WDB)

Every memory management directive, except Get Region Parameters, uses
one of these structures as its communications area between the task
and the Executive. Each directive issued includes in the Directive
Parameter Block (DPB) a pointer to the appropriate definition block.
Symbolic address offset values are assigned by the task, pointing to
locations within an RDB or a WDB. The task can change the contents of
these locations to define or modify the directive operation. After
the Executive has carried out the specified operation, it assigns
values to various locations within the block to describe the actions
taken and to provide the task with information useful for subsequent
operations.

3.5.1 Region Definition Block

Figure 3-4 illustrates the format of a Region Definition Block (RDB).
In addition to the symbolic offsets defined in the diagram, the region
status word R.GSTS contains defined bits that may be set or cleared by
the Executive or the task. (Undefined bits are reserved for future
expansion.) The bits and their definitions follow.

Bit

RS.CRR=IOOOOO

RS.UNM=40000

RS.MDL=200

Definition

Region was created successfully.

At least one window was unmapped on a detach.

Mark region for deletion on last detach.
When a region is created by means of a CRRG$
directive, it is normally marked for deletion
on the last detach. However, if RS.NDL is
set when the CRRG$ directive is executed, the
region is not marked for deletion.
Subsequent execution of a DTRG$ directive
with' RS.MDL set marks the region for
deletion.

3-11

Bit

RS.NDL=lOO

RS.ATT=40

RS.NEX=20

RS.DEL=lO

RS. EXT=4

RS.WRT=2

RS.RED=l

MEMORY MANAGEMENT DIRECTIVES

Definition

Created region is not to be marked for
deletion on last detach.

Attach to created region.

Created region is not extendable.

Delete access desired on attach.

Extend access desired on attach.

write access desired on attach.

Read access desired on attach.

These symbols are defined by the RDBDF$ macro, as described in Section
3.5.1.1.

The following memory management directives require a pointer to an
RDB:

Create Region (CRRG$)
Attach Region (ATRG$)
Detach Region (DTRG$)

When a task issues one of these directives, the Executive clears the
four high-order bits in the region status word of the appropriate RDB.
After completing the directive operation, the Executive sets the
RS.CRR or RS.UNM bit to indicate to the task what actions were taken.
The Executive never modifies the other bits.

Array Symbolic
Element Offset Block Format

irdb (1) R.GID REGION ID

irdb (2) R.GSIZ SIZE OF REGION (32W BLOCKS)

irdb (3)

R.GNAM - NAME OF REGION (RAD50)

irdb (4)

irdb (5)

R.GPAR - REGION'S MAIN PARTITION NAME (RAD50)

irdb (6)

irdb (7) R.GSTS REGION STATUS WORD

irdb (8) R.GPRO REGION PROTECTION WORD

Figure 3-4 Region Definition Block

3-12

-

-

Byte
Offset

o

2

4

6

10

12

14

16

ZK·310-81

(

c

(

(

(

(

(

MEMORY MANAGEMENT DIRECTIVES

3.5.1.1 Using Macros to Generate an RDB - RSX-IIM/M-PLUS and
Micro/RSX systems provide two macros, RDBDF$ and RDBBK$, to generate
and define an RDB. RDBDF$ defines the offsets and status word bits
for a region definition block; RDBBK$ then creates the actual region
definition block. The format of RDBDF$ is:

RDBDF$

Because RDBBK$ automatically invokes RDBDF$, you need only specify
RDBBK$ in a module that creates an RDB. The format of the call to
RDBBK$ is:

siz

nam

par

sts

pro

RDBBK$ siz,nam,par,sts,pro

The region size in 32-word blocks.

The region name (Radix-50).

The name (Radix-50) of the partition in which to create the
region.

The bit definitions of the region stat~s word.

This argument sets specified bits in the status word R.GSTS. The
argument normally has the following format:

<bitl[! ••• !bitn]>

bit

A defined bit to be set. See Section 3.5.1.

The region's default protection word.

The argument pro is an octal number. The 16-bit binary equivalent
specifies the region's default protection as follows:

Bi ts 15 12 11 8 7 4 3 a

WORLD GROUP OWNER SYSTEM

Each of these four categories has four bits, with
representing a type of access;

each bit

Bit 3 2 1 a

I DELETE E~TEND I WRITE I READ I
A bit value of a indicates that the specified type of access is to be
allowed. A bit value of 1 indicates that the specified type of access
is to be denied.

3-13

MEMORY MANAGEMENT DIRECTIVES

The macro call:

RDBBK$

expands to:

.WORD
• WORD
.RADSO
.RADSO
.WORD
.WORD
.WORD

102.,ALPHA,GEN,<RS.NDL!RS.ATT!RS.WRT!RS.RED),167000

a
102 •
/ALPHA/
/GEN/
a
RS.NDL!RS.ATT!RS.WRT!RS.RED
167000

If a Create Region directive pointed to the RDB defined by this
expanded macro call, the Executive would create a region 102(10)
32-word blocks in length, named ALPHA, in a partition named GEN. The
defined bits specified in the sts argument tell the Executive:

• Not to mark the region for deletion on the last detach

• To attach region ALPHA to the task issuing the directive macro
call

• To grant read and write access to the attached task

The protection word specified as 167000(8) assigns a default
protection mask to the region. The octal number, which has a binary
equivalent of 1110 1110 0000 0000, grants access as follows:

World
Group
Owner
System

(1110)
(1110)
(0000)
(0000)

Read access only
Read access only
All access
All access

If the Create Region directive is successful, the Executive returns to
the issuing task a region-ID value in the location accessed by
symbolic offset R.GID and sets the defined bit RS.CRR in the status
word R.GSTS.

3.S.1.2 Using FORTRAN to Generate an RDB - When programming in
FORTRAN, you must create an eight-word, single-precision integer array
as the RDB to be supplied in the subroutine calls, as follows:

CALL ATRG
CALL CRRG
CALL DTRG

(Attach Region directive)
(Create Region directive)
(Detach Region directive)

(See the PDP-II FORTRAN IV Language Reference Manual or the PDP-II
FORTRAN-77 Language Reference Manual for information on the creation
of arrays.) An RDB array has the following format:

Word

irdb(l)

irdb(2)

irdb(3)
irdb(4)

Contents

Region ID

Size of the region in 32-word blocks

Region name (two words in Radix-SO format)

3-14

(

c

(

(

(

(

(

Word

irdb(5)
irdb(6)

irdb(7)

irdb(8)

MEMORY MANAGEMENT DIRECTIVES

Contents

Name of the partition that contains the region
(two words in Radix-50 format)

Region status word (see the paragraph following
this list)

Region protection code

You can modify the region status word irdb(7) by setting or clearing
the appropriate bits. See the list in Section 3.5.1 that describes
the defined bits. The bit values are listed alongside the symbolic
offsets.

Note that Hollerith text strings can be converted to Radix-50 values
by calls to the FORTRAN library routine IRAD50. (See the appropriate
FORTRAN User's Guide.)

3.5.2 Window Definition Block

Figure 3-5 illustrates the format of a Window Definition Block (WDB).
The block consists of a number of symbolic address offsets to specific
WDB locations. One of the locations is the window status word W.NSTS,
which contains defined bits that can be set· or cleared by the
Executive or the task. (All undefined bits are reserved for future
expansion.) The bits and their definitions follow.

Bit

WS.CRW=lOOOOO

WS.UNM=40000

WS.ELW=20000

WS.RRF=lOOOO

WS.RES=2000

WS.64B=400

WS.MAP=200

Definition

Address window was created successfully.

At least one window was unmapped by a Create
Address Window, Map Address Window, or Unmap
Address Window directive.

At least one window was' eliminated by a
Create Address Window or Eliminate Address
Window directive.

Reference was received successfully.

Map only if resident.

Define the task's permitted alignment
boundaries: 0 for 256-word (512-byte)
alignment, 1 for 32-word (64-byte) alignment.

Window is to be mapped by a Create Address
Window, Receive By Reference, or Receive By
Reference or Stop directive.

3-15

MEMORY MANAGEMENT DIRECTIVES

Bit Defini tion

WS.RCX=lOO Exit if no references to receive.

WS.DEL=lO

WS.EXT=4

WS.WRT=2

WS.RED=l

Array
Element

iwdb (1)

iwdb (2)

iwdb (3)

iwdb (4)

Iwdb (5)

iwdb (6)

iwdb (7)

iwdb (8)

Symbolic
Offset

W.NID

W.NAPR

W.NBAS

W.NSIZ

W.NRID

W.NOFF

W.NLEN

W.NSTS

W.NSRB

Send with delete access.

Send with extend access.

Send with write access.
or

Map with write access.

Send with read access.

Block Format

BASE APR WINDOW ID

VIRTUAL BASE ADDRESS (BYTES).

WINDOW SIZE (32W BLOCKS)

REGION ID

OFFSET IN REGION (32W BLOCKS)

LENGTH TO MAP (32 BLOCKS)

WINDOW STATUS WORD

SEND/RECEIVE BUFFER ADDRESS (BYTES)

Figure 3-5 Window Definition Block

Byte
Offset

0

2

4

6

10

12

14

16

ZK-311-81

These symbols are defined by the WDBDF$ macro, as described in Section
3.5.2.1.

The following directives require a pointer to a WDB:

Create Address Window (CRAW$)
Eliminate Address Window (ELAW$)
Map Address Window (MAP$)
Unmap Address Window (UMAP$)
Send By Reference (SREF$)
Receive By Reference (RREF$)
Receive By Reference or Stop (RRST$)

3-16

(

(

(

(

(

(

c

(

MEMORY MANAGEMENT DIRECTIVES

When a task issues one of these directives, the Executive clears
four high-order bits in the window status word of the appropriate
After completing the directive operation, the Executive can then
any of these bits to tell the task what actions were taken.
Executive never modifies the other bits.

the
WDB.
set
The

3.5.2.1 Using Macros to Generate a WDB - RSX-llM/M-PLUS and Micro/RSX
systems provide two macros, WDBDF$ and WDBBK$, to generate and define
a WDB. WDBDF$ defines the offsets and status word bits for a window
definition block; WDBBK$ then creates the actual window definition
block. The format of WDBDF$ is:

WDBDF$

Because WDBBK$ automatically invokes WDBDF$,
WDBBK$ in a module that generates a WDB.
WDBBK$ is:

you need only specify
The format of the call to

apr

siz

rid

off

len

sts

srb

WDBBK$ apr,siz,rid,off,len,sts,srb

A number from 0 through 7 that specifies the window's base Active
Page Register (APR). The APR determines the 4K boundary on which
the window is to begin. APR 0 corresponds to virtual address 0,
APR 1 to 4K, APR 2 to SK, and so on.

The size of the window in 32-word blocks.

A region ID.

The offset within the region to be mapped, in 32-word blocks.

The length within the region to be mapped, in 32-word blocks
(defaults to the value of siz).

The bit definitions of the window status word.

This argument sets specified bits in the status word W.NSTS. The
argument normally has the following format:

<bitl[! ••• !bitn]>

bit

A defined bit to be set. See Section '3.5.2.

A send/receive buffer virtual address.

3-17

MEMORY MANAGEMENT DIRECTIVES

The macro call:

WDBBK$ 5,76.,0,50.,,<WS.64B!WS.MAP!WS.WRT>

expands to:

.BYTE

.WORD
• WORD
.WORD
• WORD
.WORD
.WORD
.WORD

0,5
o
76 •
o

(Window ID returned in low-order byte)
(Base virtual address returned here)

50 •
o
WS.64B!WS.MAP!WS.WRT
o

If a Create Address Window directive pointed to the WDB defined by the
macro call expanded above, the Executive would perform the following
actions:

• Create a window 76(10) blocks long beginning at APR 5 (virtual
address 20K or 120000 octal) and align the window on a 64-byte
boundary (WS.64B)

• Map the window with write access «WS.MAP!WS.WRT» to the
issuing task's task region (because the macro call specified 0
for the region ID)

• Start the map 50(10) blocks from the base of
map an area either equal to the length
decimal blocks) or to the length remaining
whichever is smaller (because the macro call
argument)

the region, and
of the window (76

in the region,
defaulted the len

• Return values to the symbolic W.NID (the window's ID) and
W.NBAS (the window's virtual base address)

3.5.2.2 Using FORTRAN to Generate a WDB - When programming in
FORTRAN, you must create an eight-word, single-precision integer array
as the WDB to be supplied in the subroutine calls, as follows:

CALL CRAW (Create Address Window directive)
CALL ELAW (Eliminate Address Window directive)
CALL MAP (Map Address Window directive)
CALL UNMAP (Unmap Address Window directive)
CALL SREF (Send By Reference directive)
CALL RREF (Receive By Reference directive)
CALL RRST (Receive By Reference or Stop directive)

(See the PDP-II FORTRAN IV Language Reference Manual or the PDP-II
FORTRAN-77 Language Reference Manual for information on the creatlon
of arrays.) A WDB array has the following format:

Word

iwdb(l)

iwdb(2)

iwdb (3)

iwdb(4)

Contents

Bits 0 through 7 contain the window ID; bits 8
through 15 contain the window's base APR

Base virtual address of the window

Size of the window in 32-word blocks

Region ID

3-18

(

(

(

(

(

c

c

(

Word

iwdb (5)

iwdb(6)

iwdb(7)

iwdb(8)

MEMORY MANAGEMENT DIRECTIVES

Contents

Offset length within the region at which map
begins, in 32-word blocks

Length mapped within the region in 32-word blocks

Window status word (see the paragraph following
this list)

Address of send/receive buffer

You can modify the window status word iwdb(7) by setting or clearing
the appropriate bits. See the list in Section 3.5.2 that describes
the defined bits. The bit values are listed alongside the symbolic
offsets.

Please note the following:

• For any directive other than Create Address Window, the
contents of bits 8 through 15 of iWdb(l) must normally be set
without destroying the value in bits 0 through 7.

• A call to GETADR (see Section 1.5.1.4) can be used to set up
the address of the send/receive buffer. For example:

CALL GETADR(IWDB""""IRCVB)

This call places the
8. The remaining
SREF, RREF, and RRST
routines, you do not

address of buffer IRCVB in array element
elements are unchanged. The subroutines
also set up this value. If you use these
need to use GETADR.

3.5.3 Assigned Values or Settings

The exact values or settings assigned to individual fields within the
RDB or the WDB vary according to each directive. Fields that are not
required as input can have any value when the directive is issued.
Chapter 5 describes which offsets and settings are relevant for each
memory management directive. The values assigned by the task are
called input parameters, whereas those assigned by the Executive are
called output parameters.

3.6 PRIVILEGED TASKS

When a privileged task maps to the Executive and the I/O page, the
system normally dedicates five or six APRs to this. mapping. A
privileged task can issue memory management directives to remap any
number of these APRs to regions. Take great care when using the
directives in this way because such remapping can cause obscure bugs
to occur. When a directive unmaps a window that formerly mapped the
Executive or the I/O page, the Executive restores the former mapping.

NOTE

Tasks should not remap APRO. If APRO is remapped,
information such as the DSW, overlay structures, or
language run-time systems will become inaccessible.

3-19

MEMORY MANAGEMENT DIRECTIVES

3.7 FAST MAPPING

The RSX-IIM-PLUS and Micro/RSX operating systems provide a special
addition to the memory management facilities called fast mapping. (-
Fast mapping provides a mechanism for executing a subset of the Map
directive at a greatly increased speed. For tasks that use this
subset, fast mapping can be as much as ten to thirty times faster than
the Map directive.

However, the fast-mapping facility has the following restrictions:

1. Only the offset to the map field (W.NOFF) and, optionally,
the length to the map field (W.NLEN) may be modified by the
fast-mapping facility.

2. The interface to the fast-mapping facility is designed for
speed, not for ease of programming. Debugging a task using
fast mapping may be more difficult than using the Map
directive. Specifically, protecting the operating system and
its data structures is the only validation of parameters that
is done. For example, specifying a random value for the
window ID may cause a random address window to be modified.

3. The interface uses the lOT instruction. Tasks use lOT
instructions for internal communications and other functions,
but tasks that use fast mapping cannot use the lOT
instruction for any purpose other than fast mapping.

4. The interface uses registers for passing arguments rather
than using a DPB (saving 200-300 instructions over the Map
directive). This means that the MACRO-II programmer must be
careful about register usage when using fast mapping.

5. Fast mapping increases the size of the task header, which (
means that fast mapping can be used only with tasks with
external headers. (Most tasks on RSX-IIM-PLUS systems have
external headers.)

These restrictions (particularly the first one in number 2) should not
deter the use of fast mapping in high-performance applications.
However, it is recommended that you first get the application running
with the Map directive, varying only the W.NOFF and W.NLEN fields, and
then replace the directive with fast mapping.

3.7.1 Using Fast Mapping

To use fast mapping, the task must first have an extended header to
include the fast-mapping extension area. This is achieved by using
the Task Builder fast map switch (see the RSX-IIM/M-PLUS and Micro/RSX
Task Builder Manual, the RSX-IIM-PLUS Command Language Manual, or the
MTCrO/RSX User's Guide) or by installing the task with the fast-map
ping option (see--the RSX-IIM/M-PLUS MCR Operations Manual, the
RSX-IIM-PLUS Command Language Manual, or the Micro/RSX User's Guide).

Before issuing a fast-mapping call, the task must create and map the
window by using the Create Address Window and Map directives or the
CRAW and MAP high-level language calls.

3-20

c

c

c

(

c

MEMORY MANAGEMENT DIRECTIVES

Three parameters are required for the fast-mapping call. The first
parameter is a window identifier, which is a function of the first APR
mapped by the window. (It is 10 octal times the W.NAPR field in the
WDB, plus 10d octal if the window is in user D-space; see the
following table.) The second parameter is the offset field to map and
the third parameter is the length of the window to map. The 10 and
offset fields are required; the length is optional. If the length is
to be specified, the high bit of the 10 field must be set. Thus, the
following values,are used for window IDs (all values are octal):

Starting APR number

User I-space 0
User I-space 1
User I-space 2
User I-space 3
User I-space 4
User I-space 5
User I-space 6
User I-space 7

User D-space 0
User D-space 1
User D-space 2
User D-space 3
User D-space 4
User D-space 5
User D-space 6
User D-space 7

10 if length not set

000000
000010
000020
000030
000040
000050
000060
000070

000100
000110
000120
000130
000140
000150
000160
000170

10 if length set

100000
100010
100020
100030
100040
100050
100060
100070

100100
100110
100120
100130
100140
100150
100i60
100170

The offset field is specified in 32-word blocks, the same as it would
be for the W.NOFF value in the Map directive. If the length-to-map
field is not specified, it is assumed to be the same as W.NSIZ. If it
is specified (high bit of window 10 set), then that length is mapped
unless the value is specified as zero. If it is zero, then either the
size (W.NSIZ) or the size of the region minus the offset field,
whichever is smaller, is used. This handling is identical to that for
W.NLEN in the Map directive.

Note 'that the speed of fast mapping is affected by the parameter
values. Not specifying the length-to-map field is the fastest form,
requlrlng about 25 instructions for a single APR window, plus a
mlnlmum of two additional instructions for each APR. Specifying a
fixed length is slower, and forcing the length calculation is slower
still. The fastest form is about thirty times the speed of the Map
directive, the slowest form about ten times that speed.

3.7.2 MACRO-II Calling Sequence

MACRO-II programs call the fast-mapping facility by placing the window
10 in register 0, the offset in register 1, and the length in register
2, and then issuing an lOT instruction. RO is returned as the status
(IS.SUC or IE.ALG) and R2 is returned as the length if it was
defaulted.

3-21

MEMORY MANAGEMENT DIRECTIVES

Examples:

• Changing only window offset field:

MOV
MOV

lOT
TST
BPL

#40,RO
#200,Rl

RO
GOOD

window starts in user-I APR 4
Offset = 4K words (200 32-word
blocks)
Issue fast map
Success?
If PL yes

• Changing window offset field, fixed length specified:

•

MOV

MOV

MOV
lOT
TST
BPL

Changing

MOV

MOV

CLR

lOT
TST
BPL

U001SO,RO

#100, Rl

#100, R2

RO
GOOD

window offset field,

U(}OlSO ,RO

#100,Rl

R2

RO
GOOD

3.7.3 High-Level Language Interface

Window starts in user-O APR 5
High bit set to indicate length
specified
Offset = 2K words (100 32-word
blocks)
Set length to map to 2K words
Issue fast map
Success?
If PL yes

defaulted length specified:

Window starts in user-D APR 5
High bit set to indicate length
specified
Offset = 2K words (100 32-word
blocks)
Force calculation to W.NSIZ or
remaining size of region
Issue fast map
Success?
If PL yes

(

C

(

High-level languages (FORTRAN-77 is used in the following examples)
call either the FMAP or FMAPL interface routines, specifying the three
parameters as previously described. Two of the variables are updated
to reflect the directive status and the length (if it was defaulted). (
All parameters should be specified as l6-bit integer values.

Unlike other high-level language routines, FMAP and FMAPL do not
validate parameters. Omitting a parameter or specifying a bad value
will probably cause a task SST to occur.

3-22

c

(-

(

MEMORY MANAGEMENT DIRECTIVES

Examples:

• Changing only window offset field:

INTEGER*2 WINDID , WINDOF

WINDID '40'0

WINDOF '200'0

CALL FMAP (WINDID , WINDOF

IF (WINDID .GT. 0

Force 16-bit
integer values

Set fast map
window ID for
user-I APR 4

Set offset to 4K
! words (200

32-word blocks)

Do fast map

If successful •••

• Changing window offset field, fixed length specified:

INTEGER*2 WINDID , WINDOF

INTEGER*2 WINDLN

WINDID = '100150'0

WINDOF '100'0

WINDLN '100'0

CALL FMAP (WINDID , WINDOF , WINDLN)

IF (WINDID .GT. 0

Force 16-bit
integer values

Set fast map
window ID for
user-D APR 5

Set offset to 2K
words (100
32-word blocks)

Set length to map
to 2K words

Do fast map

If successful

• Changing window offset field, defaulted length specified:

INTEGER*2 WINDID , WINDOF

INTEGER*2 WINDLN

WINDID = '100150'0

WINDOF '100'0

WINDLN '100'0

CALL FMAPL (WINDID , WINDOF , WINDLN)

IF (WINDID .GT. 0) •••

3-23

Force 16-bi t
integer values

Set fast map
window ID for
user-D APR 5

Set offset to 2K
words (100
32-word blocks)

Set length to map
to 2K words

Do fast map

If successful •••

MEMORY MANAGEMENT DIRECTIVES

3.7.4 Status Returns

There are two possible status returns from the fast-mapping call:

IS.SUC

IE.ALG

Operation successful.

The specified mapping parameters are illegal for the
region to which the target window is mapped. This
means that the sum of the offset and length fields is
greater than the accessible part of the window. This
may also imply that the specified window ID was not
valid.

There is no specific error code for an invalid window IO because the
Executive code that checks for invalid window-offset parameters also
traps invalid ID errors. The Executive clears bits 14 through 7 and 2
through 0 of the window IO before it is interpreted. Specifying
random values in the window IO may cause legitimate mapping changes.

3-24

(

(

(

(

(

(

(

(

(

CHAPTER 4

PARENT/OFFSPRING TASKING

4.1 OVERVIEW OF PARENT/OFFSPRING TASKING SUPPORT

Parent/offspring tasking has many real-time applications in
establishing and controlling complex interrelationships between tasks.
A parent task is one that starts or connects to another task, called
an offspring task. A major application for the parent-offspring task
relationship is batch processing (RSX-llM-PLUS and Micro/RSX operating
systems only): when running tasks, you can set up task relationships
and parameters on line to control the processing of a batch job (or
jobs) that run off line.

Starting (or activating) offspring tasks is called "spawning."
Spawning also includes the ability to establish task communications; a
parent task can be notified when an offspring task exits and can
receive status information from the offspring task. Status returned
from an offspring task to a parent task indicates successful
completion of the offspring task or identifies specific error
conditions.

4.2 DIRECTIVE SUMMARY

This section summarizes the directives for parent/offspring tasking
and intertask communication.

4.2.1 Parent/Offspring Tasking Directives

There are two classes of parent/offspring tasking directives:

• Spawning directives that create a connection between tasks

• Chaining directives that transfer a connection

The following directives can connect a parent task to an offspring
task:

• Spawn - This directive requests activation of, and connects
to, a specific offspring task.

4-1

PARENT/OFFSPRING TASKING

An offspring task spawned by a parent task has the following
three task functions that are not provided by the Request or
Run directives:

1. A spawned offspring task can be a command line interpreter
(CLI) •

3. A spawned offspring
information or exit
parent task or tasks.

task can return current status
status information to a connected

The Spawn directive includes the following options:

1. Queuing a command line for the offspring task (which may
be a command line interpreter)

2. the offspring task's TI: as a sical

3. For privileged or CLI tasks, designating any terminal as
the offspring TI:

• Connect - This directive establishes task communications for
synchronizing with the exit status or emit status issued by a
task that is already active.

• Send, Request, and Connect - This directive sends data to the
specified task, requests activation of the task if it is not
already active, and connects to the task.

The following directives allow one task to chain to another task:

• Request and Pass Offsprihg Information -- This directive
allows an offspring task to pass its parent connection to
another task, thus making the new task the offspring of the
original parent task. The RPOI$ directive offers all the
options of the Spawn directive.

• Send Data Request and Pass Offspring Control Block -- This
directive sends a data packet for a specified task, passes its
parent connection to that ~ask, and requests activation of the
task if it is not already active.

A parent task can conn~ct to more than one offspring task using the
Spawn and Connect directives, as appropriate. In addition, the parent
task can use the directives in any combination to make multiple
connections to offspring tasks.

An offspring task can be connected to multiple parent tasks. An
Offspring Control Block is produced (in addition to those already
present) each time a parent task connects to the offspring task.

4-2

(

(

(

(

(

c

(

(

PARENT/OFFSPRING TASKING

4.2.2 Task Communication Directives

The following directives in an offspring task return status to
connected parent tasks:

• Exit With Status - This directive in an offspring task causes
the offspring task to exit, passing status words to all
connected parent tasks (one or more) that have been previously
connected by a Spawn, Connect, or Send, Request, and Connect
directive. -3

• Emit Status - This directive causes the offspring task to pass
status words to either the specified connected task or to all
connected parent tasks if no task is explicitly specified.

When status is passed to tasks in this manner, the parent task(s) no
longer remains connected.

The following standard offspring-task status values can be returned to
parent tasks:

EX$WAR 0 Warning - task succeeded, but
irregularities are possible

EX$SUC 1 Success - results should be as expected

EX$ERR 2 Error - results are unlikely to be as
expected

EX$SEV 4 Severe error - one or more fatal errors
detected, or task aborted

These symbols are defined in the file DIRSYM.MAC. They become defined
locally when the EXST$ macro is invoked. However, the exit status may
be any l6-bit value.

4.3 CONNECTING AND PASSING STATUS

Offspring-task exit status can be returned to connected (parent)
task(s) by issuing the Exit with Status directive. Offspring tasks
can return status to one or more connected parent tasks at any time by
issuing the Emit Status directive. Note that only connected
parent-offspring tasks can pass status.

The means by which a task connects to another task are
indistinguishable once the connecting process is complete. For
example, Task A can become'connected to Task B in one of four ways:

• Task A spawned Task B when Task B was inactive.

• Task A connected to Task B when Task B was active.

• Task A issued a Send, Request, and Connect to Task B when Task
B was either active or inactive.

• Task A either spawned or connected to Task C, which then
chained to Task B by means of either an RPOI$ directive or an
SDRP$ directive.

4-3

PARENT/OFFSPRING TASKING

Regardless of the way in which Task A became connected to Task B, Task
B can pass status information back to Task A, set the event flag
specified by Task A, or cause the AST specified by Task A to occur in (--
any of the following ways (note that once offspring-task status is
returned to one or more parent tasks, the parent tasks become
disconnected) :

• Task B issues a normal (successful) exit directive.
receives a status of EX$SUC.

Task A

• Task B is aborted. Task A receives a severe error status of
EX$SEV.

• Task B issues an Exit with Status directive, returning status
to Task A upon completion of Task B.

• Task B issues an Emit Status directive specifying Task A. If
Task A is multiply connected .to Task B, the aCBs that contain
information about these multiple connections are stored in a
FIFa queue. The first aCB is used to determine which event
flag, AST address, and exit status block to use.

• Task B issues an Emit Status directive to all connected tasks
(no task name specified).

When a task has previously specified another task in a Spawn, Connect,
or Send, Request, and Connect directive and then exits, and if status
has not yet been returned, the aCB representing this connection
remains queued. However, the aCB is marked to indicate that the
parent task has exited. When this aCB is subsequently dequeued due to
an Emit Status directive, or any type of exit, no action is taken
because the parent task has exited. This procedure is followed to
help a multiply-connected task to remain synchronized when parent
tasks exit unexpectedly.

The following examples show directives being used for intertask
synchronization (the macro calls for the directives are given). Task
A is the parent task and Task B is the offspring task.

Task A

SPWN$

CNCT$

SDRC$

SDRC$,
USTP$

Task B

EXST$

EXST$

RCVX$,
EMST$

RCST$,
EMST$

Action

Task A spawns Task B. Upon Task B's completion,
Task B returns status to Task A.

Task A connects to active Task B. Upon Task B's
completion, Task B returns status to Task A.

Task A sends data to Task B, requests Task B if it
is presently not active, and connects to Task B.
Task B receives the data, does some processing
based on the data, returns status to Task A
(possibly setting an event flag or declaring an
AST) , and becomes disconnected from Task A.

Task A sends data to Task B, requests Task B if it
is presently not active, connects to Task B, and
unstops Task B. Task B becomes unstopped (if Task
B previously could not dequeue the data packet),
receives the data, does some processing based on
the data, and returns status to Task A (possibly
setting an event flag or declaring an AST).

4-4

c

(

(

(

(.

PARENT/OFFSPRING TASKING

Task A Task B Action

SDAT$,
USTP$

RCST$ Task A queues a data packet for Task B and unstops
Task B. Task B receives the data.

SPWN$ RPOI$
SDRP$

Task A spawns Task B. Task B chains to Task C by
issuing an RPOI$ or an SDRP$ directive. Task A is
now Task CiS parent. Task A is no longer
connected to Task B.

4.4 SPAWNING SYSTEM TASKS

One special use of the Spawn directive is to pass a command line to a
system task. You may use the Spawn directive to pass a command line
to a command line interpreter or to an installed utility.

4.4.1 Spawning a Command Line Interpreter

Command line interpreters can be broken into three classes: MCR, the
CLI that is active from TI: (for example, DCL), and all others.

• To pass a command line to MCR, use the MCR ••• task name.

• To pass a command line to the CLI that is currently active
from TI:, use the CLI ••• task name. You can determine which
CLI is active from your TI: by issuing the GCII$ directive.

• To pass a command to a specific CLI other than MCR or the CLI
active from TI:, simply use that CLI's task name in your Spawn
directive. The task name of DCL is ••• DCL. Check with your
system manager for the task names of any user-written CLls.

4.4.2 Spawning a Utility

utilities are generally installed under task names of the form ••• tsk.
You can pass commands to a utility in one of two ways. You can spawn
the utility directly, using the task name ••• tsk, or you can spawn MCR
and pass it a command line that begins with the three-character task
name.

4.4~2~ lS~il~I\ing atJtilityUnder RSX-llr.t:..iflYoJ . att~mpt.to.~f>~~ri .
••.• t:SK ... dil:;ectly.oriah RSX"'llM s,ys,tE3m.; .the· operationbehavesaf3

,,::~,fd,l~ows,: ~,~ ,;',:0 ;' ,<' ,", "'_,," ':'; ';" ,', ,,',,':-:"': "':;:~',":;:',

Ut.hattask. isnqtyet~cirve, the,F)~~huti~eWilrkct~.vateit,
... : :d::$:~:. ~.a:~. ~~ .;t1 :·aJ.""a~1 •.... ~¢t.i~e i .. ·.y,o>!rj.ip~~ri.·.·~rf~D~lve;
will'fail,i 'regardl~ss • of.wl1ichterrninal has activated. ,that:
task~

4-5

PARENT/OFFSPRING TASKING

If you pass MCR a command lin'e beginning with "tsk," MCR will:

• Attempt to activate the task ••• tsk

• If that task name is already active, MCR will attempt to
activate the task under the name tskTnn, where nn is the unit
number of your TI:.

• If both ••• tsk and tskTnn are already active, MCR will report
failure of your task.

If you spawn DCL with a command line beginning with ••• tsk, and DCL is
built with the fall-through capability, the command line is passed to
MCR, which treats it in the same manner as described above.

Unless you are certain that the, utility you want is not yet active in
the System" direct spawning o~ the utility offers a greater likeiihood
of failure than requesting the utility through MCR. For this reason,
it is recommended that on RSX-IIM systems you request utilities
through MCR.

4.4.2.3 Passing Command Lines to Utilities _. Even when you spawn a
utility directly, pass a command line to it that is exactly as you
would type it at the terminal or pass to MCR: include the
three-character task name followed by a space. This method maintains
compatibility with the format used by MCR to pass commands to
utilities. For more information, see the description of the GMCR$
directive in Chapter 5.

4-6

(

(

(

(

(

(

c

(

l

CHAPTER 5

DIRECTIVE DESCRIPTIONS

The directive descriptions consist of an explanation of the
directive's function and use, the names of the corresponding macro and
FORTRAN calls, the associated parameters, and the possible return
values of the Directive Status Word (DSW). The descriptions generally
show the $ form of the macro call (for instance, QIO$), although the
$C and $S forms are often also available. Where the $S form of a
macro requires less space and performs as fast as a DIR$ macro
(because of a small DPB) , it is recommended. For these macros, the
expansion for the $S form is shown rather than that for the $ form.

In addition to the directive macros themselves, you can use the DIR$
macro to execute a directive if the directive has a predefined DPB.
See Sections 1.4.1.1 and 1.4.2 for further details.

5.1 DIRECTIVE CATEGORIES

For ease of reference, the directive descriptions are presented
alphabetically in Section 5.3 according to the directive macro calls.
This section, however, groups the directives by function. The
directives are grouped into the following categories:

• Task execution control directives

• Task status control directives

• Informational directives

• Event-associated directives

• Trap-associated directives

• 1/0- and intertask communications-related directives

• Memory management directives

• Parent/offspring tasking directives

• Command line interpreter (CLI) support directives

5-1

DIRECTIVE DESCRIPTIONS

5.1.1 Task Execution Control Directives

The task execution control directives deal principally with starting (
and stopping tasks. Each of these directives (except Extend Task)
results in a .change of the task's state (unless the task is already in
the state being requested). These directives are:

Macro

ABRT$
CSRQ$
EXIT$S
EXTK$
RQST$
RSUM$
RUN$
SPND$S
SWST$

Directive Name

Abort Task
Cancel Scheduled Initiation Requests
Task Exit ($S form recommended)
Extend Task
Request Task
Resume Task
Run Task
Suspend ($S form recommended)
Swi tch State

5.1.2 Task Status Control Directives

Two task status control directives alter the checkpointab1e attribute
of a task. A third directive changes the running priority of an
active task. These directives are:

Macro

ALTP$
DSCP$S
ENCP$S

Directive Name

Alter Priority
Disable Checkpointing ($S form recommended)
Enable Checkpointing ($S form recommended)

5.1.3 Informational Directives

Several directives provide the issuing task with system information
and parameters such as: the time of day, the task parameters, the
console switch settings, and partition or region parameters. These
directives are:

Macro

FEAT$
GDIR$
GPRT$
GREG$
GSSW$S
GTIM$
GTSK$
TFEA$

Directive Name

Test for Specified System Feature
Get Default Directory
Get Partition Parameters
Get Region Parameters
Get Sense Switches ($S form recommended)
Get Time Parameters
Get Task Parameters
Test for Specified Task Feature

5-2

(

(

c

(

DIRECTIVE DESCRIPTIONS

5.1.4 Event-Associated Directives

The event and event-flag directives provide inter- and intra task
synchronization and signaling and the means to set the system time.
You must use these directives carefully because software faults
resulting from erroneous signaling and synchronization are often
obscure and difficult to isolate. The directives are:

Macro

CLEF$
CMKT$
CRGF$
DECL$S
ELGF$
EXIF$
MRKT$
RDAF$
RDXF$
SETF$
STIM$
STLO$
STOP$S
STSE$
ULGF$S
USTP$
WSIG$S
WTLO$
WTSE$

Directive Name

Clear Event Flag
Cancel Mark Time Requests
Create Group Global Event Flags
Declare Significant Event ($S form recommended)
Eliminate Group Global Event Flags
Exi t If
Mark Time
Read All Event Flags
Read Extended Event Flags
Set Event Flag
Set System Time
Stop for Logical OR of Event Flags
Stop ($S form recommended)
Stop for Single Event Flag
Unlock Group Global Event Flags ($S form recommended)
Unstop
wait for Significant Event ($S form recommended)
wait for Logical OR of Event Flags
Wait for Single Event Flag

5.1.5 Trap-Associated Directives

The trap-associated directives provide trap
transfer of control (software interrupts)
These directives are:

facilities that allow
to the executing tasks.

Macro

ASTX$S
DSAR$S
ENAR$S
IHAR$S
SCAA$
SFPA$
SPRA$
SRDA$
SREA$
SREX$
SRRA$
SVOB$
SVTK$

Directive Name

AST Service Exit ($S form recommended)
Disable AST Recognition ($S form recommended)
Enable AST Recognition ($S form recommended)
Inhibit AST Recognition ($S form recommended)
Specify Command Arrival AST
Specify Floating Point Processor Exception AST
Specify Power Recovery AST
Specify Receive Data AST
Specify Requested Exit AST
Specify Requested Exit AST (extended)
Specify Receive-By-Reference AST
Specify SST Vector Table for Debugging Aid
Specify SST Vector Table for Task

5-3

DIRECTIVE DESCRIPTIONS

5.1.6 1/0- and Intertask Communications-Related Directives

The 1/0- and intertask communications-related directives allow tasks
to access I/O devices at the driver interface level or interrupt
level, to communicate with other tasks in the system, and to retrieve
the MCR command line used to start the task. These directives are:

Macro

ALUN$
CINT$

. GLUN$
GMCR$
QIO$
QIOW$
RCST$
RCVD$
RCVX$
SDAT$
SMSG$

Directive Name

Assign LUN
Connect to Interrupt Vector
Get LUN Information
Get MCR Command Line
Queue I/O Request
Queue I/O Request and wait
Receive Data or Stop
Receive Data
Receive Data or Exit
Send Data
Send Message

5.1.7 Memory Management Directives

The memory management directives, allow a task to manipulate its
virtual and logical address space, and to set up and control
dynamically the window-to-region mapping assignments. The directives
also provide the means by which tasks can share and pass references to
data and routines. These directives are:

Macro

ATRG$
CRAW$
CRRG$
DTRG$
ELAW$
GMCX$
MAP$
RREF$
RRST$
SREF$
UMAP$

Directive Name

Attach Region
Create Address Window
Create Region
Detach Region
Eliminate Address Window
Get Mapping Context
Map Address Window
Receive By Reference
Receive By Reference or Stop
Send By Reference
Unmap Address Window

5.1.8 Parent/Offspring Tasking Directives

Parent/offspring tasking directives permit tasks to start other tasks
and to connect to other tasks in order to receive status information.
These directives are:

Macro

CNCT$
EMST$
EXST$
RPOI$
SDRC$
SDRP$
SPWN$

Directive Name

Connect
Emit Status
Exit with Status
Request and Pass Offspring Information
Send, Request, and Connect
Send Data Request and Pass OCB
Spawn

5-4

c

(

(

(

DIRECTIVE DESCRIPTIONS

c

(

(

l
5-5

DIRECTIVE DESCRIPTIONS

5.1.10 CLI Support Directives

The CLI support directives allow CLI tasks to get command lines,
request and pass offspring information, get command line interpreter (-
information, and set a specified CLI for a terminal. These directives
are:

Macro

GCCI$
GCII$
SCLI$

Directive Name

Get Command for Command Interpreter
Get Command Interpreter Information
Set Command Line Interpreter

5.2 DIRECTIVE CONVENTIONS

The following are conventions for using system directives:

1. In MACRO-ll programs, unless a number is followed by a
decimal point (.), the system assumes the number is octal.

In FORTRAN programs, use INTEGER*2 type unless the directive (-
description states otherwise. .

2. In MACRO-ll programs, task and partition names can be from
one through six characters in length, and should be
represented as two words in Radix-50 form.

In FORTRAN programs, specify task and partition names by a
variable of type REAL (single precision) that contains the
task or partition name in Radix-50 form. To establish
Radix-50 representation, either use the DATA statement at .
compile time, or use the IRAD50 subprogram or RAD50 function (
at run time. .

3. Device names are two characters long and are represented by
one word of ASCII code.

4. Some directive descriptions state that a certain parameter
must be provided even though the system ignores it. Such
parameters are included to maintain compatibility between the
RSX-llM, RSX-llM-PLUS, Micro/RSX, lAS, and RSX-llD operating
systems.

5. In the directive descriptions, square brackets ([]) enclose
optional parameters or arguments. To omit optional items,
either use an empty (null) field in the parameter list or
omit a trailing optional parameter.

6. Logical unit numbers (LUNs) can range from 1 through 255(10).

7. Event flag numbers range from 1
1 to 32(10) denote local flags.
common flags. Numbers 65 to 96
flags.

through 96(10). Numbers from
Numbers from 33 to 64 denote
denote group global event

Note that the Executive preserves all task registers when a task
issues a directive.

5-6

(

(

DIRECTIVE DESCRIPTIONS

5.3 SYSTEM DIRECTIVE DESCRIPTIONS

Each directive description includes most or all of the following
elements:

Name:

This describes the function of the directive.

FORTRAN Call:

This shows the FORTRAN subroutine call and
parameter.

Macro Call:

defines each

This shows the macro call, defines each parameter, and gives the
defaults for optional parameters in parentheses following the
definition of the parameter. Since zero is supplied for most
defaulted parameters, only nonzero default values are shown.
Parameters ignored by RSX-llM, RSX-llM-PLUS, and Micro/RSX
systems are required for compatibility with lAS and RSX-llD
systems.

Macro Expansion:

Most of the directive descriptions expand the
macro. Where the $S form is recommended for
expansion for that form is shown instead.
illustrates expansions for all three forms
macro.

Definition Block Parameters:

$ form of the
a directive, the
Section 1.4.5

and for the DIR$

Only the memory management directive descriptions include these
parameters. This section describes all the relevant input and
output parameters in the Region or Window Definition Block (see
Section 3.5).

Local Symbol Definitions:

Macro expansions usually generate local symbol definitions with
an assigned value equal to the byte offset from the start of the
DPB to the corresponding DPB element. This section lists these
symbols. The length in bytes of the element pointed to by the
symbol appears in parentheses following the symbol's description.
Thus,

A.BTTN Task name (4)

defines A.BTTN as pointing to a task name in the Abort Task DPB.
The task name has a length of four bytes.

DSW Return Code:

This section lists valid return codes
more information, see Appendix B,
directive error codes.

Notes:

for
which

the directive. For
lists the standard

The notes presented with SOme directive descriptions expand on
the function, use, and/or consequences of using the directives.
Always read the notes carefully.

5-7

DIRECTIVE DESCRIPTIONS

ABRT$

5.3.1 Abort Task

The Abort Task directive instructs the system to terminate the
execution of the indicated task. ABRT$ is intended for use as an
emergency or fault exit. ABRT$ displays a termination notification
based on the described condition, at one of the following terminals:

1. The terminal from which the aborted task was requested

2. The originating terminal of the task that requested the
aborted task

3. The operator's console (CO:) if the task was started
internally from another task by a Run directive, or by an MCR
or DCL RUN command that specified one or more time parameters

On systems without multiuser protection, a task may abort any task,
including itself. When a task is aborted, its state changes from
active to dormant. Therefore, to reactivate an aborted task, a task
or an operator must request it.

On systems that support multiuser protection, a task must be
privileged to issue the Abort Task directive (unless it is aborting a
task with the same TI:).

FORTRAN Call:

CALL ABORT (tsk[,idsj)

tsk Name (Radix-SO) of the task to be aborted

ids Directive status

Macro Call:

ABRT$ tsk

tsk Name (Radix-SO) of the task to be aborted

Macro Expansion:

ABRT$
.BYTE
.RAD50

ALPHA
83. ,3
/ALPHA/

iABRT$ MACRO DIC, DPB SIZE
iTASK "ALPHA"

Local Symbol Definitions:

A.BTTN

DSW Return Codes:

IS.SUC

IE. INS

IE.ACT

Task name (4)

Successful completion.

Task not installed.

Task not active.

5-8

3 WORDS

c

(

(-

(

(

(

(~

DIRECTIVE DESCRIPTIONS

IE. PRI Issuing task is not privileged (multiuser protection
systems only) •

IE.ADP Part of the DPB is out of the issuing task's address
space.

IE.SDP DIC or DPB size is invalid.

Notes:

1. When a task is aborted, the Executive frees all the task's
resources. In particular, the Executive:

• Detaches all attached devices

• Flushes the AST queue and despecifies all specified ASTs

• Flushes the receive and receive-by-reference queue

• Flushes the clock queue for outstanding Mark Time requests
for the task

• Closes all open files (files open for write access are
locked)

• Detaches all attached regions, except in the case of a
fixed task

• Runs down the task's I/O

• Deaccesses the group global event flags for the task's
group

• Disconnects from interrupts

• Flushes all outstanding CLI command buffers for the task

• Breaks the connection with any offspring tasks

• Returns a severe error status (EX$SEV) to the parent task
wh~n a connected task is aborted

• Frees the task's memory if the aborted task was not fixed

2. If the aborted task had a requested exit AST specified, the
task will receive that AST instead of being aborted. No
indication that this has occurred is returned to the task
that issued the abort request.

3. When the aborted task actually exits, the Executive declares
a significant event.

5-9

DIRECTIVE DESCRIPTIONS

c

(

(

5-10

DIRECTIVE DESCRIPTIONS

(

c

(

(

5-11

DIRECTIVE DESCRIPTIONS

(

c

(

(

5-12

(

(~

(

l

DIRECTIVE DESCRIPTIONS

5.3.3 Alter Priority

The Alter Priority directive instructs the system to
running priority of a specified active task to either a
indicated in the directive call or to the task's default
priority if the call does not specify a new priority.

ALTP$

change the
new priority

(installed)

The specified task must be installed and active. The Executive resets
the task's priority to its installed priority when the task exits.

If the directive call omits a task name, the Executive defaults to the
issuing task.

The Executive reorders any outstanding I/O requests for
the I/O queue and reallocates the task's partition.
reallocation may cause the task to be checkpointed.

the task in
The partition

On systems that support multiuser protection, a nonprivileged task can
issue ALTP$ only for itself, and only for a priority equal to or lower
than its installed priority. A privileged task can change the
priority of any task to any value less than 250(10).

FORTRAN Call:

CALL ALTPRI ([tsk] ,[ipri] [,ids])

tsk Active task name

ipri A one-word integer value equal to the new priority,
a number from 1 to 250(10)

ids Directive status

Macro Call:

ALTP$ [tsk] [,pri]

tsk Active task name

pri New priority, a number from 1 to 250(10)

Macro Expansion:

ALTP$
.BYTE
.RAD50
• WORD

ALPHA,75.
9. ,4
/ALPHA/
75 •

Local Symbol Definitions:

A.LTTN Task name (4)

A.LTPR Priority (2)

;ALTP$ MACRO DIC, DPB SIZE = 4 WORDS
;TASK ALPHA
;NEW PRIORITY

5-13

DSW Return Codes:

IS.SUC

IE. INS

IE.ACT

IE. PRI

IE.IPR

IE.RSU

IE.ADP

IE.SDP

DIRECTIVE DESCRIPTIONS

Successful completion.

Task not installed.

Task not active.

Issuing task is not privileged (multiuser protection
systems only).

Invalid priority.

Resource (the task's header) unavailable because task
is checkpointed with outstanding I/O.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-14

(

(

(

(

(

(

l

DIRECTIVE DESCRIPTIONS

ALUN$

5.3.4 Assign LUN

The Assign LUN directive instructs the system to qssign a physical
device unit to a logical unit number (LUN). It does not indicate that
the task has attached itself to the device.

The actual physical device assigned to the logical ~nit is dependent
on the logical assignment table (see the description of the ASSIGN
command in the RSX-llM/M-PLUS MCR Operations Manual, the RSX-llM or
RSX-llM-PLUS Command LanguageJManual, or the Micro/RSX User's Guide).
The Executive first searches the logical assignment table for a devlce
name match. If it finds a match, the Executive assigns the physical
de"vice unit associated with the matching entry to the logical unit.
Otherwise, the Executive searches the physical device tables and
assigns the actual physical device unit named to the logical unit. In
systems that support multiuser protection, the Executive does not
search the logical assignment table if the task has been installed
with the slave option.

When a task reassigns a LUN from one device to another, the Executive
cancels· all I/O requests for the issuing task in the previous device
queue.

FORTRAN Call:

CALL ASNLUN (lu~,dev,iunt[,ids])

lun Logical unit number

dev Device name (format: lA2)

iunt Device unit number

ids = Directive status

Macro Call:

ALUN$ lun,dev,unt

lun Logical unit number

dev Device name (two uppercase characters)

unt Device unit number

Macro Expansion:

ALUN$
.BYTE
.WORD
.ASCII
.WORD

7,TT,O
7,4
7
/TT/
o

;ASSIGN LOGICAL UNIT NUMBER
;ALUN$ MACRO DIC, DPB SIZE = 4 WORDS
;LOGICAL UNIT NUMBER 7
;DEVICE NAME IS TT (TERMINAL)
;DEVICE UNIT NUMBER = 0

Local Symbol Definitions:

A.LULU

A.LUNA

A.LUNU

Logical unit number (2)

Physical device name (2)

Physical device unit number (2)

5-15

DSW Return Codes:

IS.SUC

IE.LNL

IE. IDU

IE.ILU

IE.ADP

IE.SDP

Notes:

DIRECTIVE DESCRIPTIONS

Successful completion.

LUN use is interlocked (see Note 1).

Invalid device and/or unit.

Invalid logical unit number.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

1. A return code of IE.LNL indicates that the specified LUN
cannot be assigned as directed. Either the LUN is already
assigned to a device with a file open for that LUN or the LUN
is currently assigned to a device attached to the task, and
the directive attempted to change the LUN assignment. If a
task has a LUN assigned to a device and the task has attached (~~
the device, the LUN can be reassigned, provided that the task
has another LUN assign~d to the same device.

c

5-16

(

(

(

(

DIRECTIVE DESCRIPTIONS

ASTX$S

5.3.5 AST Service Exit ($S form recommended)

The AST Service Exit directive instructs the system to terminate
execution of an AST service routine.

If another AST is queued and ASTs are not disabled, then the Executive
immediately effects the next AST. Otherwi~e, the Executive restores
the task's pre-AST state. See the Notes.

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct
linking to system-trapping mechanisms. Therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

ASTX$S [err]

err = Error-routine address

Macro Expansion:

ASTX$S
MOV
.BYTE
EMT
'JSR

ERR
(PC) +, - (SP)
115.,1
377
PC,ERR

iPUSH DPB ONTO THE STACK
iASTX$S MACRO DIC, DPB SIZE = 1 WORD
iTRAP TO THE EXECUTIVE
iCALL ROUTINE "ERR" IF DIRECTIVE
iUNSUCCESSFUL

Local Symbol Definitions:

None

DSW Return Codes:

IS.SUC

IE.AST

IE.ADP

IE.SDP

Notes:

Successful completion.

Directive not issued from an AST service routine.

Part of the DPB or stack is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. A return to the. AST service routine occurs only if the
directive is rejected. Therefore, no Branch on Carry Clear
instruction is generated if an error-routine address is
given. (The return occurs only when the Carry bit is set.)

2. When an AST occurs, the Executive pushes, at minimum, the
following information onto the task's stack:'

SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
DSW of task prior to AST

5-17

DIRECTIVE DESCRIPTIONS

The task stack must be in this state when the AST Service
Exit directive is executed.

In addition to the data parameters, the Executive pushes (
supplemental information onto the task stack for certain ..
ASTs. For I/O completion, the stack contains the address of
the I/O status blocki for Mark Time, the stack contains the
Event Flag Numberi for a floating~point-processor exception,
the stack contains the exception code and address.

These AST parameters must be removed from the task's stack
prior to issuing an AST exit directive. The following
example shows how to remove AST parameters when a task uses
an AST routine on I/O completion.

Example:

EXAMPLE PROGRAM
i

LOCAL DATA

IOSB: .BLKW
BUFFER: .BLKW

2
30.

START OF MAIN PROGRAM

START:

iI/O STATUS DOUBLEWORD
i I/O BUFFER

iPROCESS DATA

QIOW$C IO.WVB,2,l"IOSB,ASTSER,<BUFFER,60.,40>

.
EXIT$S

AST SERVICE ROUTINE

ASTSER:

TST (SP)+

ASTX$S

iPROCESS AND WAIT

iEXIT TO EXECUTIVE

iPROCESS AST

iREMOVE ADDRESS OF I/O
i ••• STATUS BLOCK
iAST EX~T

3. The task can alter its return address by manipulating the
information on its stack prior to executing an AST exit
directive. For e~ample, to return to task state at an
address other than the pre-AST address indicated on the
stack, the task can simply replace the PC word on the stack.
This procedure may be useful in those cases in which error
conditions are discovered in the AST routine, but you should
use extreme caution when doing this alteration since AST
service routine problems are difficult to isolate.

4. Because this directive requires only a one-word DpB, using
the $S form of the macro is recommended. It requires less
space and executes with the same speed as the DIR$ macro.

5-:\.8

(

(

(

(

(

(

(

(

DIRECTIVE DESCRIPTIONS

ATRG$

5.3.6 Attach Region

The Attach Region directive attaches the issuing task to a static
common region or to a named dynamic region. (No other type of region
can be attached to the task by means of this directive.) The Executive
checks the desired access specified in the region status word against
the owner UIC and the protection word of the region. If there is no
protection violation, the Executive grants the desired access. If the
regi~n is successfully attached to the task, the Executive returns a
l6-bit region ID (in R.GID), which the task uses in subsequent mapping
directives.

You can also use the directive to determine the ID of a region already
attached to the task. In this case, the task specifies the name of
the attached region in R.GNAM and clears all four bits described below
in the region status word R.GSTS. When the Executive processes the
directive, it checks that the named region is attached. If the region
is attached to the issuing task, the Executive returns the region ID,
as well as the region size, for the task's first attachment to the
region. You may want to use the Attach Region directive in this way
to determine the region ID of a common block attached to the task at
task-build time.

FORTRAN Call:

CALL ATRG (irdb[,ids])

irdb = An eight-word integer array containing a
Definition Block (see Section 3.5.1.2)

Region

ids = Directive status

Macro Call:

ATRG$ rdb

rdb Region Definition Block address

Macro Expansion:

ATRG$
.BYTE
.'WORD

RDBADR
57. ,2
RDBADR

;ATRG$ MACRO DIC, DPB SIZE = 2 WORDS
;RDB ADDRESS

Region Definition Block Parameters:

Input parameters:

Array
Element

Offset

irdb(3) (4) R.GNAM

irdb(7) R.GSTS

Name of the region to be attached

Bi t settings 1 in the region status
word (specifying desired access to
the region):

1. If you are a FORTRAN programmer, refer to Section 3.5.1 to
determine the bit values represented by the symbolic names described.

5-19

DIRECTIVE DESCRIPTIONS

Bit Defini tion

RS.RED I if read access is
desired

RS.WRT I if write access is
desired

RS.EXT I if extend access is
desired

RS.DEL I if delete access is
desired

Clear all four bits to request the
region ID of the named region if it
is already attached to the issuing
task.

Output parameters:

irdb(l)

irdb(2)

R.GID

R.GSIZ

ID assigned to the region

Size in 32-word blocks
attached region

of the

Local Symbol Definition:

A.TRBA

DSW Return Codes:

IS.SUC

IE.UPN

IE.PRI

IE.NVR

IE.PNS

IE.ADP

IE.SDP

Region definition block address (2)

Successful completion.

An attachment descriptor cannot be allocated.

Privilege violation.

Invalid region ID.

Specified region name does not exist.

Part of the DPB or RDB is out of the issuing task's
address space.

DIC or DPB size is invalid.

5-20

c

(

(

(

(

(

(

(

(

(-

DIRECTIVE DESCRIPTIONS

CINT$

5.3.7 Connect to Interrupt Vector

The Connect to Interrupt Vector directive enables a task to process
hardware interrupts through a specified vector. The Interrupt Service
Routine (ISR) is included in the task's own space. In a mapped
system, the issuing task must be privileged.

The overhead entails the execution of about 10 instructions before
entry into the ISR and 10 instructions after exit from the ISR. The
Executive provides a mechanism for transfer of control from the ISR to
task-level code, using either an AST or a local event flag.

After a task has connected to an interrupt vector, it can process
interrupts on three different levels: interrupt, fork, and task. The
task level may be subdivided into AST level and non-AST level.

1.

2.

3.

Interrupt Level

When an interrupt occurs, control is transferred, with the
Interrupt Transfer Block (ITB) that has been allocated by the
CINT$ directive, to the Executive subroutine $INTSC. From
there, control goes to the ISR specified in the directive.

The ISR processes the interrupt and either dismisses the
interrupt directly or enters fork level through a call to the
Executive routine $FORK2.

Fork Level

The fork-level routine executes at priority 0, the lowest
processor priority, allowing interrupts and more
time-dependent tasks to be serviced promptly. If required,
the fork routine sets a local event flag for the task and/or
queues an AST to an AST routine specified in the directive.

Task Level

At task level, entered as the result of a local event flag dr
an AST, the task does final interrupt processing and has
access to Executive directive~.

Typically, the ISR does the minimal processing required for an
interrupt and .stores information for the fork routine or task-level
routine in a ring buffer. The fork routine is entered after a number
of interrupts have occurred as deemed necessary by the ISR and further
condenses the information. Finally, the fork routine wakes up the
task-level code for ultimate processing that requires access to
Executive directives. The fork level may, however, be a transient
stage from ISR to task-level code without doing any processing.

In a mapped system, a task must be built privileged to use the CINT$
directive. However, it is legal to use the /PR:O switch to the Task
Builder to have "unprivileged mapping," that is, up to 32K words of
virtual address space available. This precludes use of the Executive
subroutines from task-level code; however, the ISR and fork-level
routines are always mapped to the Executive when they are executed.
In any case, the Executive symbol table file (RSXllM.STB) should be
included as input to the Task Builder.

However, be aware that including the symbol definition (table) file
can cause references to system subroutines to be resolved from that
file instead of from the . system library. To avoid this problem,

5-21

DIRECTIVE DESCRIPTIONS

explicitly include the required library modules before specifying the
RSXllM.STB file. Specifying the ISS switch with the file causes the
Task Builder to resolve any symbols that are still undefined.
(Specifying the ISS switch is necessary because it prevents the Task
Builder from trying to use multiply defined symbols.)

As will be described later, in a mapped system, special considerations
apply to the mapping of the ISR, fork routine, and enable/disable
routine as well as all task data buffers accessed by these routines.

FORTRAN Call:

Not supported

Macro Call:

CINT$

vec

vec,base,isr,edir,pri,ast

Interrupt vector addressi must be in the range
through highest vector specified during
generation, and must be a multiple of 4

60 (8)
system

base = Virtual base address for kernel APR 5 mapping of the
ISR and enable/disable interrupt routines. This
address is automatically truncated to a 32(10)-word
boundary. The "base" argument is ignored in an
unmapped system.

isr = Virtual address of the ISR or 0 to disconnect from the
interrupt vector

edir = Virtual address of the
routine

enable/disable interrupt

pri Init.ial priority at which the ISR is to execute. This
is normally equal to the hard-wired interrup~ priority
and is expressed in the form n*40, where n is a number
in the range 0-7. This form puts the value in bits
5-7 of pri. It is recommended that you make use of
the symbols PR4, PR5, PR6, and PR7 for this purpose.
These are implemented by means of the macro HWDDF$
found in the file [l,l]EXEMC.MLB. Also, you should
take care to specify the correct value for this
parameter. An incorrect initial priority (for
example, specifying PR4 for a device that interrupts
at PR5) may result in a system crash.

ast = Virtual address of an AST routine to be entered after
the fork-level routine queues an AST

To disconnect from interrupts on a vector, the argument isr is set to
o and the arguments base, edir, psw, and ast are ignored.

Macro Expansion:

CINT$ 420,BADR,TADR,EDADR,PR5,ASTADR
.BYTE 129.,7 iCINT$ MACRO DIC, DPB SIZE = 7 WORDS
.WORD 420 iINTERRUPT VECTOR ADDRESS = 420
.WORD BADR iVIRTUAL BASE ADDRESS FOR KERNEL APR
.WORD IADR iVIRTUAL ADDRESS OF THE INTERRUPT

iSERVICE ROUTINE
.WORD EDADR iVIRTUAL ADDRESS OF THE INTERRUPT

iENABLE/DISABLE ROUTINE
.BYTE PR5,0 iINITIAL INTERRUPT SERVICE ROUTINE

iPRIORITY (LOW BYTE) • (HIGH BYTE = O.)
.WORD ASTADR iVIRTUAL ADDRESS OF AST ROUTINE

5-22

c

c

(

(

(

(

c_

(

(

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

C.INVE

C.INBA

C.INIS

C.INDI

C.INPS

C.INAS

Vector address (2)

Base address (2)

ISR address (2)

Enable/disable interrupt routine address (2)

Priority (1)

AST address (2)

DSW Return Codes:

IE.UPN An ITB could not be allocated (no pool space).

IE. ITS The function requested is "disconnect" and the task
is not the owner of the vector.

IE.PRI Issuing task is not privileged (not applicable in
unmapped system).

IE. RSU The specified vector is already in use.

IE.ILV The specified vector is illegal (lower than
higher than highest vector specified during
generation, or not a multiple of 4).

60 or
system

IE.MAP ISR or enable/disable interrupt routine is not within
4K words from the value (base address and 177700).

IE.ADP Part of the DPB is out of the issuing task's address
space.

IE.SDP DIC or DPB size is invalid.

Notes:

1. Checkpointable Tasks

The following points should be noted only for checkpointable
tasks:

When a task connects to an interrupt vector,
checkpointing of the task is automatically disabled.

When a task disconnects from a vector and is not
connected to any other vector, checkpointing of the task
is automatically enabled, regardless of its state before
the first connect or any change in state while the task
was connected. .

2. Mapping Consideratiqns

In an unmappeq system, the argument "base" is ignored and the
arguments "isr," "edir," and Hast" are physical addresses.

In a mapped system, the argument "base," after being
truncated to a 32(10)-word boundary, is the start of a
4K-word area mapped in kernel APR 5. All code and data in
the task that are used by the routines must fall within that
area or a fatal error will occur, probably resulting in a
system crash.

5-23

DIRECTIVE DESCRIPTIONS

Furthermore, the code and data must be either position
independent (refer to the PDP-II MACRO-II Language Reference
Manual for more information on position-independent code) or

. coded in such a way that the code can execute in APR 5
mapping. When the routines execute, the processor is in
kernel mode and the virtual address space includes all of the
Executive, the pool, and the I/O page.

References within the task image must be PC-relative or use a
special offset defined below. References outside the task
image must be absolute.

The following solutions are possible:

a. Write the ISR, enable/disable interrupt routines, and
data in position-independent code.

b. Include the code and
task-build it with
(PAR=ISR:120000:20000) ,
partition.

data in a common
absolute addresses

and ~ink the task to

partition,
in APR 5

the common

c. Build the task privileged with APR 5 mapping and use the
constant 120000 as argument "base" in the CINT$
directive.

d. When accessing locations within the task image in
immediate or absolute addressing mode, use the following
offset:

3. ISR

<120000-<base and 177700»

(In immediate mode, only relocatable addresses need to
use this offset.)

When the ISR is entered, R5 points to the fork block in the
Interrupt Transfer Block (ITB), and R4 is saved and free to
be used. Registers RO through R3 must be saved and restored
if used. If one ISR services multiple vectors, the
interrupting vector can be identified by the vector address,
which is stored at offset X.VEC in the ITB. The following
example loads the vector address into R4:

.MOV X.VEC-X.FORK(R5) ,R4

The ISR either dismisses the interrupt directly by an RTS PC
instruction or calls $FORK2 if the fork routine is to be
entered. When calling $FORK2~ R5 must point to the fork
block in the ITB ~nd the stack must be in the same state as
it was upon entry to the ISR. Note that the call must use
absolute addressing: CALL @#$FORK2.

5-24

(

(

(

(
4.

DIRECTIVE DESCRIPTIONS

Fork-Level Routine

The fork-level routine starts immediately after the call to
$FORK2. On entry, R4 and R5 are the same as when $FORK2 was
called. All registers are free to be used. The first
instruction of the fork routine must be CLR @R3, which
declares the fork block free.

The fork-level routine should be entered if servicing the
interrupt takes more than 500 microseconds. It must be
entered if an ASTis to be queued or an event flag is to be
set. (Fork level is discussed in greater detail in the
RSX-llM and RSX-IlM-PLUS Guide to Writing an I/O Driver
manuals.)

An AST is queued by calling the subroutine $QASTC.

Input: R5 pointer to fork block in the ITB

Output: If AST successfully queued, Carry bit = 0

If AST was not specified by CINT$, Carry
bit = 1

Registers altered: RO, RI, R2, and R3

An event flag is set by calling the subroutine $SETF.

Input: RO

R5

Event flag number

Task Control Block (TCB) address of task
for which flag is to be set. This is
usually, but not necessarily, the task that
has connected to the vector. This task's
TCB address is found at offset X.TCB in the
ITS.

Output: Specified event flag set

Registers altered: Rl and R2

Note that absolute addressing must be used when calling these
routines (and any other Executive subroutines) from fork
level:

CALL @#$QASTC

CALL @#$SETF

5. Enable/Disable Interrupt Routine

The purpose of the enable/disable interrupt routine, whose
address is included in the directive call, is to allow you to
have a routine automatically called in the following three
cases:

a. When the directive is successfully executed to connect to
an interrupt vector (argument isr nonzero). The routine
is called immediately before return to the task.

b. When the directive is successfully executed to disconnect
from an interrupt vector (argument isr=O).

c. When the task is aborted or exits with interrupt vectors
still connected~

5-25

DIRECTIVE DESCRIPTIONS

In case a, the routine is called with the Carry bit cleared;
in cases band c, with the Carry bit set. in all three
cases, R1 is a pointer to the Inte+rupt Transfer Block (ITB). (.
Registers RO, R2, and R3 are free to be used; other registers
must be returned unmodified. Return is accomplished by means
of an RTS PC instruction.

Typically, the routine dispatches to
depending on whether the Carry bit
routine sets interrupt enable and
necessary initialization; the other
and cleans up.

orieof two routines,
is cleared or set. One
performs any other

clears interrupt enable

Note that the ITB contains the vector address, in the event
that common code is used for multiple vectors.

6. AST Routine

The fork routine may queue an AST for the task through a call
to the Executive routine $QASTC as described above. When the
AST routine is entered (at task level), the top word of the
stack contains the vector address and must be popped off the
stack before AST exit (ASTX$S).

7. ITB Structure

The following offsets are defined relative to the start of
the ITB:

X.LNK

X.JSR

X.PSW

X. ISR

X.FORK

}c.REL

X.DSI

X. TCB

X.AST

X.VEC

X.VPC

X.LEN

Link word

Subroutine call to $INTSC

PSW for ISR (low-order byte)

ISR address (relocated)

Start of fork block

APR 5 relocation (mapped systems only)

Address 6f enable/disable interrupt routine
(relocated)

TCB address of owning task

Start of AST block

Vector address

Saved PC from vector

Length in bytes of ITB

The symbols X.LNK through X.TCB are defined locally by the
macro ITBDF$, which is included in the file [l,l]EXEMC.MLB.
All global symbols are defined globally by the file
[1,54]RSX11M.STB.

5-26

(

(.

(.

(

(

(

(

(

(-

------ ------

DIRECTIVE DESCRIPTIONS

The following programming example illustrates the use of the CINT$
directive:

.TITLE PUNTSK PUNCH ASCII TEXT ON PAPER TAPE PUNCH
;++

THIS TASK WILL PUNCH AN ASCII STRING TO THE PAPER TAPE PUNCH
USING THE CINT$ DIRECTIVE.

IT MUST BE BUILT USING THE /PR:O TASK BUILDER SWITCH.
NOTE THAT THIS METHOD ALLOWS A TASK TO BE- A FULL 32K
WORDS LONG. IF IT IS NECESSARY TO ACCESS THE I/O PAGE
IN OTHER THAN THE ENABLE/DISABLE ROUTINE OR THE ISR
THE TASK MUST BE LINKED TO A COMMON BLOCK COVERING
THE CORRECT PART OF THE I/O PAGE.

TASK BUILD COMMAND FILE:

PUNTSK/MM/PR:O/-FP,PUNTSK/-SP/MA=PUNTSK
[1,54]RSX11M.STB/SS
/
GBLDEF=$VECTR:74
GBLDEF=$DVCSR:177554
UNITS=l
ASG=TI:1
PAR=GEN:O:40000

IT IS POSSIBLE TO HAVE THIS TASK TYPE ON THE CONSOLE 'rERMINAL
IF THERE IS NO PAPER TAPE PUNCH AVAILABLE. TO DO THIS THE
VECTOR FOR THE CONSOLE OUTPUT MUST APPEAR TO BE UNUSED. THIS
MAY BE DONE BY (ON A TERMINAL OTHER THAN THE CONSOLEI) OPENING
THE VECTOR LOCATION (64) AND REPLACING ITS CONTENTS WITH
THE VALUE OF '$NSO' AS OBTAINED FROM A MAP OF THE SYSTEM. BE
SURE TO REMEMBER THE OLD VALUE OR YOUR CONSOLE WILL BE DEAD
UNTIL YOU REBOOT THE SYSTEM. NOW TASK BUILD USING THE FOLLOWING
COMMAND FILE:

PUNTTY/MM/PR:O,/-FP,PUNTTY/-SP/MA=PUNTSK
[1,54]RSX11M.STB/SS
/
GBLDEF=$VECTR:64
GBLDEF=$DVCSR:177564
UNITS=l
ASG=TI:1
PAR=GEN:O:40000

NOTE THAT IN THE ABOVE TWO TKB COMMAND FILES THE FOLLOWING
CHANGES MUST BE MADE IN ORDER TO RUN ON AN UNMAPPED SYSTEM:

1) /MM SHOULD BE CHANGED TO /-MM
2) 'PAR=GEN:O:40000' SHOULD BE CHANGED TO

'PAR=GEN:40000:40000'

IN ADDITION, PLACE A SEMICOLON IN FRONT OF THE SOURCE LINE
BELOW THAT DEFINES THE SYMBOL 'M$$MGE'.

;--
.MCALL CINT$, QIOW$, CLEF$S, WTSE$S, EXITS, DIR

;
; LOCAL SYMBOLS
;

LUN.TT
EFN.TT

1
1

;LUN FOR TERMINAL I/O
;EFN FOR TERMINAL I/O

5.,.27

LBL:

NAM:

CINT:

EFN.WF
M$$MGE
;++

; --

DIRECTIVE DESCRIPTIONS

2
o

;EFN TO WAIT FOR PUNCHING TO COMPLETE
;DEFINE THIS SYMBOL TO RUN ON MAPPED SYSTEM

MACRO TO GENERATE .AN ASCII STRING AND AQIO TO OUTPUT
THE STRING TO THE TERMINAL.

MESSG NAM,STRING

WHERE:

NAM IS THE NAME OF THE GENERATED QIO DPB
STRING IS THE ASCII STRING TO OUTPUT

.MACRO MESSG NAM,STRING,?LBL
$CHR=O
.IRPCX,(STRING)
$CHR= $CHR+ 1
.ENDR
.ENABL LSB
.ASCII /(STRING/
.EVEN
QIOW$ IO.WVB,LUN.TT,EFN.TT",,(LBL,$CHR,40)
.DSABL LSB '
.ENDM

MESSG
MESSG

HELLO,(CONNECT TO INTERRUPT TEST)
CINWRK,(CONNECT TO INTERRUPT WORKS--CHECK THE PAPER TAPE

CINT$ $VECTR,$BASE,$PNISR,$PNEDI,PR4

;CONNECT TO INTERRUPT
VECTOR=$VECTR
BASE.FOR.MAPPING=$BASE
ISR=$PNISR
ENB.DSABL.RTN=$PNEDI
PRIO=PR4

DISCON: CINT$ $VECTR,O,O ;DISCONNECT FROM INTERRUPT
VECTOR=74

;++

i--

ENTRY POINT TO THE PUNCH TASK. THE TASK WILL ANNOUNCE
ITSELF ON THE INITIATING TERMINAL, CONNECT TO THE
SPECIFIED VECTOR, OUTPUT THE ASCII STRING, AND THEN
OUTPUT A MESSAGE THAT IT WAS SUCCESSFUL. IF THE TASK
TERMINATES WITH AN I/O TRAP THE CONNECT-TO-INTERRUPT
DIRECTIVE FAILED, AND Rl WILL CONTAIN THE DSW RETURNED
IN ORDER TO DIAGNOSE THE ERROR.

$PUNTK: :DIR$
DIR$

#HELLO
#CINT

;ANNOUNCE THAT WE ARE HERE
;CONNECT TO THE PUNCH

ERR1:

BCS
WTSE$S
DIR$
DIR$
EXIT$S

MOV
MOV
IOT

ERRl
#EFN.WF
#DISCON
#CINWRK

#l,RO
$DSW,Rl

5-28

THIS CAN BE EITHER THE TERMINAL
OR THE PAPER TAPE PUNCH.

;IF CS THEN DIRECTIVE ERROR
;WAIT FOR PUNCH TO FINISH
;DISCONNECT FROM INTERRUPTS
;TELL USER THAT CINT WORKS

ERROR # 1
GET THE DSW TO SHOW THE CINT ERROR RETURN
DUMP REGISTERS

(

(
PUNCH

(

(

(

BASE:

(

(

;++

DIRECTIVE DESCRIPTIONS

;THIS IS THE BASE OF THE MAPPING USED
;BY THE EXECUTIVE WHEN MAPPING TO THE
;'DRIVER'. THIS MAPPING IS REQUIRED
;ONLY ON MAPPED SYSTEMS; UNMAPPED
;SYSTEMS DO NOT HAVE THIS PROBLEM.

; FOLLOWING IS THE ASCII STRING PUNCHED BY THIS TASK.
;--

PUNMSG:
.NLIST
.ASCIZ
.LIST
.EVEN

BEX
/ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%~&*()_+-=/<15><12

BEX

PUNPTR: .WORD 0 ;POINTER INTO PUNMSG FOR ISR
;TCB ADDRESS OF TASK TSKTCB: .WORD 0

PUNCSR: .WORD $DVCSR ;PAPER TAPE PUNCH CSR ADDRESS
;PAPER TAPE PUNCH BUFFER ADDRESS PUNBUF: .WORD $DVCSR+2

;++

;--

ENABLE/DISABLE ROUTINE.

THIS ROUTINE IS CALLED BY THE EXEC ON EITHER A CONNECT OR DISCONNECT
FROM INTERRUPT VECTOR REQUEST, OR WHEN THE TASK EXITS WITH INTERRUPT
VECTORS STILL CONNECTED.

ENTRY CONDITIONS:

C-CLEAR
C-SET

$TKTCB

ACTION:

THIS IS A SUCCESSFUL CONNECT.
THIS IS A DISCONNECT.

THE TCB ADDRESS OF THE CURRENTLY EXECUTING TASK (ME).

IF THE C-BIT IS SET WE MERELY DISABLE THE PUNCH AND RETURN. IF
THE C-BIT IS CLEAR WE WILL ENABLE THE PUNCH TO INTERRUPT. THIS
WILL IMMEDIATELY CAUSE AN INTERRUPT AND THE INTERRUPT SERVICE
ROUTINE WILL OUTPUT CHARACTERS TO THE PUNCH (ONE PER
INTERRUPT) UNTIL A ZERO BYTE IS OUTPUT. THE ISR WILL THEN FORK
AND SET THE LOCAL EVENT FLAG 'EFN.WF'. THIS WILL THEN CAUSE THE
TASK PORTION OF THIS TASK TO CONTINUE EXECUTING AND EVENTUALLY
EXIT.

$PNEDI: :BCS
MOV

20$;IF CS THEN DISCONNECT
@#$TKTCB,TSKTCB ;COPY TASK TCB ADDRESS FOR LATER

;SO WE CAN SET EFN •

• IF DF M$$MGE ;MAPPED SYSTEM?

MOV

.IFF

#PUNMSG+120000-<$BASE&177700>,PUNPTR ;RELOCATE ADDRESS
;TO APR 5 MAPPING, AND SET UP
;BUFFER POINTER

M$$MGE ;UNMAPPED SYSTEM?

MOV #PUNMSG,PUNPTR ;SET UP BUFFER POINTER

.ENDC

BIS #100,@PUNCSR ;ALLOW INTERRUPTS
RETURN

;WHEN WE ARE DONE PUNCHING

5-29

;++

;--

20$:

DIRECTIVE DESCRIPTIONS

BIC
RETURN

#100,@PUNCSR ;DISABLE INTERRUPTS

INTERRUPT SERVICE ROUTINE

THIS IS THE 'BARE-BONES' INTERRUPT SERVICE ROUTINE. THERE IS NO
ERROR CHECKING. THIS ROUTINE MERELY OUTPUTS THE NEXT CHARACTER
IN THE STRING. WHEN IT ENCOUNTERS THE ZERO BYTE AT THE END, IT
WILL CALL $FORK2. THIS CREATES A SYSTEM PROCESS AND WE THEN
SET THE LOCAL EVENT FLAG 'EFN.WF' TO WAKE UP THE TASK PART OF
THIS TASK.

INPUTS:

R5
R4

POINTS TO FORK BLOCK IN THE INTERRUPT TRANSFER BLOCK.
IS FREE TO USE.

$PNISR::MOVB
BEQ
MOVB
INC
RETURN

@PUNPTR,R4
20$
R4,@PUNBUF
PUNPTR

;GET THE NEXT CHARACTER IN THE BUFFER
;IF EQ THEN END OF STRING
;PUNCH THE CHARACTER
;MOVE THE POINTER
;RETURN TO INTERRUPT EXIT CODE

WE HAVE FINISHED PUNCHING THE STRING. DISABLE INTERRUPTS, FORK, AND
SET THE LOCAL EVENT FLAG.

20$: BIC
CALL
CLR

#100,@PUNCSR
@#$FORK2
(R3)

;DISABLE FURTHER INTERRUPTS
;CREATE SYSTEM PROCESS
;DECLARE THE FORK BLOCK FREE

IF IT IS DESIRABLE TO QUEUE AN AST FOR THE TASK, THERE ARE TWO
THINGS THAT MUST BE DONE:

1) AN AST ADDRESS MUST HAVE BEEN SPECIFIED IN THE CINT$
DIRECTIVE (THERE WAS NONE IN THIS CASE).

2) THE FOLLOWING CODE MUST BE EXECUTED:

CALL

NOTE - R5 POINTS TO THE FORK BLOCK WITHIN THE
INTERRUPT TRANSFER BLOCK (THIS IS SET
UP UPON RECEIPT OF THE INTERRUPT)

@#$QASTC ;QUEUE AN AST FOR THE TASK

IT IS POSSIBLE TO QUEUE AN AST AND SET AN EVENT FLAG.
HOWEVER, THIS TASK IS ONLY USING EVENT FLAGS, SO NOW
WE WILL SET THE EVENT FLAG.

;GET EFN NUMBER TO SET
;GET TASK TCB ADDRESS FOR $SETF

(

(

(

(
MOV
MOV
CALL
RETURN

/lEFN.WF,RO
TSKTCB,R5
@#$SETF ;SET THE LOCAL EVENT FLAG TO AWAKE TASK

;EXIT

.END $PUNTK

(

5-30

(

(

(

(

DIRECTIVE DESCRIPTIONS

CLEF$

5.3.8 Clear Event Flag

The Clear Event Flag directive instrubts the system to report an
indicated event flag's polarity and then clear the flag.

FORTRAN Call:

CALL CLREF (efn[,ids])

efn = Event flag number

ids = Directive status

Macro Call :

CLEF$ efn

efn Event flag number

Macro Expansion:

CLEF$
.BYTE
• WORD

52.
31. ,2
52 •

;CLEF$ MACRO DIC, DPB SIZE = 2 WORDS
;EVENT FLAG NUMBER 52

Local Symbol Definitions:

C.LEEF

DSW Return Codes:

IS.CLR

IS.SET

IE.IEF

IE.ADP

IE.SDP

Event flag number (2)

Successful completion; flag was already clear.

Successful completion; flag was set.'

Invalid event flag number (EFN<l, or EFN>96 if group
global event flags exist fot the task's group or
EFN>64 if not).

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-31

DIRECTIVE DESCRIPTIONS

(

(

(

(-

5-32

DIRECTIVE DESCRIPTIONS

(

c

(

(

5-33

DIRECTIVE DESCRIPTIONS

c

(

(

(

5-34

DIRECTIVE DESCRIPTIONS

c

c

(

(

.5-35

DIRECTIVE DESCRIPTIONS

CMKT$

5.3.10 Cancel Mark Time Requests

The Cancel Mark Time Requests directive instructs the system to cancel
a specific Mark Time Request or all Mark Time requests that have been
made by the issuing task.

FORTRAN Call:

CALL CANMT ([efn] [, ids])

efn Event flag number

ids Directive status

Macro Call:

CMKT$ [[efn] , [ast] , [err]]

efn Event flag number

ast = Mark time AST address

err Error-routine address

Macro Expansion:

CMKT$
.BYTE
• WORD
.WORD

52.,MRKAST,ERR
27.,3
52 •
MRKAST

iNOTE: THERE ARE TWO IGNORED ARGUMENTS
iCMKT$ MACRO DIC, DPB SIZE = 3 WORDS
iEVENT FLAG NUMBER 52
iADDRESS OF MARK TIME REQUEST AST ROUTINE

NOTE

The above example will cancel only the Mark Time
requests that were specified with efn 52 or the
AST address MRKAST. If no ast or efn parameters
are specified, all Mark Time requests issued by
the ~ask are canceled and the DPB size equals 1.

Local Symbol Definitions:

C.MKEF

C.MKAE

DSW Return Codes:

IS.SUC

IE.ADP

IE.SDP

Event flag number (2)

Mark Time Request AST routine address (2)

Successful completion.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-36

c

(

(

(

(

(-

(

DIRECTIVE DESCRIPTIONS

Notes:

1. If neither the efn nor ast parameters are specified, all Mark
Time Requests issued by the task are canceled. In addition,
the DPB size is one word. (When either the efn and/or ast
parameters are specified, the DPB size is three words.)

2. If both efn and ast parameters are specified (and nonzero),
only Mark Time Requests issued by the task specifying either
that event flag ,or AST address are canceled.

3. If only one efn or ast parameter is specified (and nonzero),
only Mark Time Requests issued by the task specifying the
event flag or AST address are canceled.

4. If the specified event flag is a group global, then the use
count for the event flag's group is run down when a Mark Time
request is canceled.

5-37

DIRECTIVE DESCRIPTIONS

CNCT$

5.3.11 Connect

The Connect directive synchronizes the task issuing the directive with
the exit or emit .statu~.of another task (offspring) that is already
active. Execution of this directive queues an Offspring Control Block
(OCB) to the offspring task and increments the issuing task's rundown
count (contained in the issuing task's Task Control Block). The
rundown count is maintained to indicate the combined total number of
tasks present 1 connected as offs tasks

ex en teo spr ng ex ts
tus with the address of the associated exit status block on

This directive cannot be issued to connect to command line
(CLI) tasks because it is illegal to connect to a CLI

s s
stack.

interpreter
task.

FORTRAN Call:

CALL CNCT (rtname, [iefn] , [iast] , [iesb] , [iparm] [, ids])

CALL CNCTN (rtname, [iefn] , [iast] , [iesb] , [iparm] [, ids])

rtname

iefn

iast

iesb

iparm

ids

Name (Radix-50) of the offspring task
connected

to be

Event flag to be set when the offspring task exits
or emits status

Name of an AST
offspring task
CALL CNCTN)

routine to be called when the
exits or emits status (ignored for

Name of an eight-word status block to be written
when the offspring task exits or emits status:

Word o Offspring-task exit status

Word 1 TKTN abort code

Words 2-7 Reserved

NOTE

The exit status block defaults to one word.
To use the eight-word exit status block, you
must specify the logical OR of the symbol
SP.WX8 and the event flag number in the iefn
parameter above.

Name of a word to receive the status block address
when an AST occurs

Integer to receive the Directive Status Word

5-38

(

(

(

(

(

C

(

(

l

DIRECTIVE DESCRiPTIONS

Macro Call:

CNCT$

tname

tname, [efn] , [east] , [esb]

= Name (Radix-50) of the offspring task
connected

to be

efn = The event flag to be cleared on issuance and set

east

when the offspring task exits or emits status

Address of an AST routine to be called when the
offspring task exits or emits status

esb = Addr~ss of an eight-word status block to be written
when the offspring task exits or emits status:

Word 0 Offspring-task exit status

Word 1 TKTN abort code

Words 2-7 Reserved

NOTE

The ~xit status block defaults to one word.
To use the eight-word exit status block, you
must specify the logical OR of the symbol
sp.wxa and the event flag number in the efn
parameter above.

Macro Expansion:

CNCT$
.BYTE
.RAD50
.BYTE
.BYTE
.WORD
.WORD

ALPHA,l,CONAST,STBUF
143.,6 ;CNCT$ MACRO DIC, DPB SIZE =
ALPHA ;OFFSPRING TASK NAME
1 ;EVENT FLAG NUMBER = 1
16. ;EXIT STATUS BLOCK CONSTANT
CONAST ;AST ROUTINE ADDRESS
STBUF ;EXIT STATUS BLOCK ADDRESS

6 WORDS

Local Symbol Definitions:

C.NCTN

C.NCEF

C.NCEA

C.NCES

DSW Return Codes:

IS.SUC

IE.UPN

IE. INS

IE.ACT

Task name (4)

Event flag (2)

AST routine address (2)

Exit status block address (2)

Successful completion.

Insufficient dynamic memory to allocate an Offspring
Control Block.

The specified task was a command line interpreter.

The specified task was not active.

5-39

DIRECTIVE DESCRIPTIONS

IE. IEF Invalid event flag number (EFN<O, or EFN>96 if group
global event flags exist for the task's group or
EFN>64 if not).

IE.ADP Part of the DPB or exit status block is not in the
issuing task's address space.

IE.SDP DIC or DPB size is invalid.

Notes:

1. If the specified event flag is group global, the use count
for the event flag's group is incremented to prevent
premature elimination of the event flags. The use count is
run down when:

• The connected task returns status.

• The issuing task exits before status is returned.

2. Do not change the virtual mapping of the exit status block
while the connection is in effect. Doing so may cause
obscure errors because the exit status block is always
returned to the virtual address specified regardless of the
physical address to which it is mapped.

5-40

c

c

(

(

DIRECTIVE DESCRIPTIONS

(CPCR$

c

(

5-41

DIRECTIVE DESCRIPTIONS

c

(

c

(

5-42

DIRECTIVE DESCRIPTIONS

(CRAWS

(

(

5.3.13 Create Address Window

The Create Address Window directive creates a new virtual address
window by allocating a window block from the header of the issuing
task and establishing its virtual address: base and size. (Space for
the window block has to be reserved at task-build time by means of the
WNDWS keyword. See the RSX-l1M/M~PLUS and, Micro/RSX Task Builder
Manual.) Execution of this directive unmaps and then eliminates any
eXIsting windows that overlap the specifi~d ran~e of virtual
addresses. If the window is created successfully, the Executive
returns an eight-bit window ID to the task.

The eight-bit window IDreturned to the task is a number from 1
,~!:~.~2h '" 15 (10) ~laf!etito1iQmlftlfl~1~l~~~~JI~~f~!~~~K!;:~lt{~~:~\ii~i~t~1\f~;Mttj'~~~~~ll
5~~d1j~{f!!1I1i, which is an index to the window block in the task's header.
The window block describes the created address window.

If WS.MAP in the window status word is set, the Executive proceeds to
map the window according to the Window Definition Block input
parameters.

A task can specify any length for the mapping assignment that is less
than or equal to both the window size specified when the window was
created, and the length remaining between the specified offset within
the region and the end of the region.

If W.NLEN is set to 0, the length defaults to either the window size
or the length remaining in the region, whichever is smaller. (Because
the Executive returns the actual length mapped as an output parameter,
the task must clear that offset before issuing the directive each time
it wants to default the length of the map.)

The values that can be assigned to W.NOFF depend on the setting of bit
WS.64B in the window status word:

• If WS.64B = 0, the offset specified in W.NOFF must represent a
multiple of 256 words (512 bytes). Because the value of
W.NOFF is expressed in units of 32-word blocks, the value must
be a multiple ~f 8.

• If WS.64B = 1, the task can align on 32-word boundaries; you
can therefore specify any offset within the region.

5-43

DIRECTIVE DESCRIPTIONS

NOTE

Applications dependent on 32-word or 64-byte
alignment (WS.64B = 1) may not be compatible
with future RSX emulators. To avoid future
incompatibility, you should write applications
adaptable to either alignment requirement.
The bit setting of WS.64B could be a parameter
chosen at assembly time (by means of a prefix
file), at task-build time (as input to the
GBLDEF option), or at run time (by means of
command input or by means of the G.TSSY field
returned from the GTSK$ directive).

FORTRAN Call:

CALL CRAW (iwdb[,ids)

iWdb An eight-word integer array containing a
Definition Block (see Section 3.5.2.2)

Window

ids Directive status

Macro Call:

CRAW$ wdb

wdb = Window Definition Block address

Macro Expansion:

CRAW$
.BYTE
.WORD

WDBADR
117.,2
WDBADR

;CRAW$ MACRO DIe, DPB SIZE
;WDB ADDRESS

2 WORDS

Window Definition Block Parameters:

Input parameters:

Array
Element

Offset

iwdb(l) , W.NAPR
bits 8-15

iwdb(3) W.NSIZ

iwdb(4) W.NRID

iwdb(5) W.NOFF

Base APR of the address window to be
created.

Desired size, in 32-word blocks, of
the address window.

ID of the region to which the new
window is to be mapped or 0 for task
region (to be specified only if
WS.MAP=l) •

Offset in 32-word blocks from the
start of the region at which the
window is to start mapping (to be
specified only if WS.MAP=l). Note
that if WS.64B in the window status
word equals 0, the value specified
must be a multiple of 8.

5-44

(

(

(

(

(

(-

DIRECTIVE DESCRIPTIONS

iwdb(6) W.NLEN

iwdb(7) W.NSTS

Output parameters:

iWdb (1) , W.NID
bits 0-7

iwdb(2) W.NBAS

iwdb(6) W.NLEN

iwdb(7) W.NSTS

Length in 32-word blocks to be
mapped, or 0 if the length is to
default to either the size of the
window or the space remaining in the
region, whichever is smaller (to be
specified only if WS.MAP=l) •

Bit settings l
word:

Bit

WS.MAP

WS.WRT

WS.64B

in the window status

Definition

1 if the new window is
to be mapped

1 if the mapping
assignment is to occur
with write access

o for 256-word (512-
byte) alignment or 1
for 32-word (64-byte)
alignment

ID assigned to the window

virtual address base of the new
window

Length, in 32-wordblocks, actually
mapped by the window

Bit settings 1 in the window status
word:

Bit

WS.CRW

WS.UNM

WS.ELW

WS.RRF

WS.NBP

WS.RES

Definition (if bit=l)

Address window was
created successfully.

At least one window was
unmapped.

At least one window was
el imina ted.

Reference was received
successfully.

Do not bypass the cache
(for RSX-1lM~PLUS mul
tiprocessor systems).

Map only if resident.

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-45

DIRECTIVE DESCRIPTIONS

WS.64B

WS.MAP

WS.RCX

WS.DEL

WS.EXT

WS.WRT

WS.RED

Define the task's per
mitted alignment bound
aries: 0 for 256-word
(5l2-byte) alignment or
1 for 32-word (64-byte)
alignment.

Window is to be mapped.

Exit if no references
to receive.

Send with delete
access.

Send with extend
access.

Send with write access
or map with write
access.

Send with read access.

Local Symbol Definitions:

C.RABA

DSW Return Codes:

IS.SUC

IE.HWR

IE.PRI

IE.NVR

IE.ALG

Window Definition Block address (2)

Successful completion.

Directive failed in mapping storage because region
has incurred a parity error.

Requested access denied at mapping stage.

Invalid region ID.

Task specified either an invalid base APR and window
size combination or an invalid region offset and
length combination in the mapping assignment, or
WS.64B = 0 and the value of W.NOFF is not a multiple
of 8.

5-46

c

(

(

(

(~

IE.WOV

(IE.AOP

IE.SOP

(

(

(

(

---- --- ---------------

DIRECTIVE DESCRIPTIONS

No window b~ocks available in task's header.

Part of the OPB or WOB is out of the issuing task's
address space.

OIC or DPB size is invalid.

5-47

DIRECTIVE DESCRIPTIONS

CRGF$

5.3.14 Create Group Global Event Flags

The Create Group Global Event Flags directive creates a Group Global
Event Flag Control Block (GFB) and links it into the GFB list. If a
GFB for the specified group is not present when the directive is
issued, the Executive creates the GFB data structure with all event
flags initialized to zero. If a GFB is present when the directive is
issued, the Executive uses the present GFB and the event flags are not
initialized. However, if the GFB is marked for deletion (bY a
previously issued Eliminate Group Global Event Flags directive), the
Executive clears the GS.DEL bit.

(

If the specified group code matches the group code of the issuing
~ask's protection UIC (H.CUIC+l), this directive increments the access
qount for the event flags. This locks the event flags so they cannot
be eliminated by another task that is sharing them. The issuing task (__
can explicitly unlock the event flags with an Unlock Group Global _
Event Flags directive or an Eliminate Group Global Event Flags
directive. The Executive automatically unlocks the event flags when
the task exits if necessary. Note that a task may not lock the event
flags more than rince in succession. Any attempt to lock event flags
that are already locked will return the IE.RSU error code.

FORTRAN Call:

CALL CRGF ([group] [, idsw])

group

idsw

Macro Call:

CRGF$

group

Group number for the flags to be created. Only
privileged tasks can specify group numbers other than
the issuing task's group UIC. If the UIC is not
specified, the task's protection UIC (H.CUIC+l) in
the task's header is used.

Integer to receive the Directive Status Word '

[group]

Group number for the flags to be created. Only
privileged tasks can specify group numbers other than
the issuing task's group UIC. If the UIC is not
specified, the task's protection UIC (H.CUIC+l) in
the task's header is used.

Macro Expansion:

CRGF$ 4
.BYTE
.WORD

157.,2
4

Local Symbol Definitions:

C.RGRP -- Group number (2)

iCRGF$ MACRO DIC, DPB SIZE = 2 WORDS
iGROUP 4 GLOBAL EVENT FLAGS

5-48

(

(

(

(

(

(

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

Note:

IS.SUC

IE.UPN

IE.PRI

IE.IUI

IE.RSU

IE.ADP

IE.SDP

Successful completion.

Insufficient dynamic storage.

Privilege violation.

Invalid group.

Event flags already exist or are already locked.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

A privileged task may specify group numbers other than the group
UIC of the issuing task. However, the task can lock the event
flags created for its own group only. This directive does not
return ~n error if it does not lock the event flags.

5-49

DIRECTIVE DESCRIPTIONS

CRRG$

5.3.15 Create Region

The Create Region directive creates a dynamic region in a
system-controlled partition and optionally attaches it to the issuing
task.

If RS.ATT is set in the region status word, the Executive attempts to
attach the task to the newly created region. If no region name has
been specified, your program must set RS.ATT (see the description of
the Attach Region dizective).

(

By default, the Executive automatically marks a dynamically created
region for deletion when the last task detaches from it. To override
this default condition, set RS.NDL in the region status word as an
input parameter. Be careful if you consider overriding the
delete-on-last-detach option. An error within a program can cause the (
system to lock by leaving no free space in a system-controlled
partition.

If the region is not given a name, the Executive ignores the state of
RS.NDL. All unnamed regions are deleted when the last task detaches
from them.

The Executive returns an error if there is not
accommodate the region in the sPecified partition.

FORTRAN Call:

CALL CRRG (irdb[,ids])

enough space
See the Notes.

to

irdb An eight-word integer array containing a Region
Definition Block (see Section 3.5.1.2) -

ids = Directive status

Macro Call:

CRRG$ rdb

rdb = Region Definition Block address

Macro Expansion:

CRRG$
.BYTE
.WORD

RDBADR
55. ,2
RDBADR

;CRRG$ MACRO DIC, DPB SIZE = 2 WORDS
;RDl3 ADDRESS

5-50

(

(

(

(

(

(

(

l

DIRECTIVE DESCRIPTIONS

Region Definition Block Parameters:

Input parameters:

Array
Element

irdb(2)

Offset

R.GSIZ

irdb(3) (4) R.GNAM

irdb(5) (6) R.GPAR

irdb(7) R.GSTS

irdb (8) R.GPRO

Size, in 32-word blocks, of the
region to be created

Name of the region to be created or
o for no name

Name of the system-controlled
partition in which the region is to
be allocated or 0 for the partition
in which the task is running

Bit settings l in the region status
word:

Bit

RS.CRR

RS.UNM

RS.MDL

RS.NDL

RS.ATT

RS.NEX

RS.RED

RS .WRT

RS.EXT

RS.DEL

Definition (if bit=l)

Region was created suc
cessfully.

At least one window was
unmapped on a detach.

Mark region for dele
tion on last detach.

The region should
be deleted on
detach.

not
last

Created region should
be attached.

Created region is not
extendable.

Read access is desired
on attach.

write access is desired
on attach.

Extend access is
desired on attach.

Delete access is
desired on attach.

Protection word for
(DEWR,DEWR,DEWR,DEWR)

the region

1. If you are a FORTRAN programmer, refer to Section 3.5.1 to define
the bit values represented by the symbolic names described.

5-51

DIRECTIVE DESCRIPTIONS

Output parameters:

irdb(l) R.GID

irdb(2) R.GSIZ

irdb (7) R.GSTS

Local Symbol Definitions:

10 assigned to the created region
(returned if RS.ATT=l)

Size in
attached
RS.ATT=l)

32-word blocks of
region (returned

the
if

Bit settings l in the region status
word:

Bit

RS.CRR

Definition

1 if the region was
created successfully

C.RRBA Region Definition Block address (2)

(

DSW Return Codes: (_

IS.SUC Successful completion.

IE.UPN A Partition Control Block (PCB) or an attachment
descriptor could not be allocated, or the partition
was not large enough to accommodate the region, or
there is currently not enough continuous space in the
partition to accommodate the region.

IE.PRI

IE.PNS

IE.ADP

IE.SDP

Notes:

Attach failed because desired access was not allowed.

Specified partition in which the
allocated does not exist, or
specified and RS.ATT = O.

region was to be
no region name was

Part of the DPB or RDB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. The Executive does not return an error if the named region
already exists. In this case, the E~ecutive clears the
RS.CRR bit in the status word R.GSTS. If RS.ATT has been
set, the Executive attempts to attach the already existing
named region to the issuing task.

(

(

1. If you are a FORTRAN programmer, refer to Section 3.5.1 to define ~
the bit values represented by the symbolic names described.

5-52

(

(

(

l

DIRECTIVE DESCRIPTIONS

2. The protection word (see R.GPRO above) has the same format as
that of the file system protection word. There are four
categories and the access for each category is coded into
four bits. From low order to high order, the categories
follow this order: system, owner, group, world. The access
code bits within each category are arranged (from low order
to high order) as follows: read, write, extend, delete. A
bit that is set indicates that the corresponding access is
denied.

The issuing task's UIC is the created region's owner UIC.

In order to prevent the creation of common blocks that are
not easily deleted, the system and owner categories are
always forced to have delete access, regardless of the value
actually specified in the protection word.

5-53

DIRECTIVE DESCRIPTIONS

c

(

(

(

5-55

DIRECTIVE DESCRIPTIONS

c

(

(

(

5-56

DIRECTIVE DESCRIPTIONS

(

(

(

(

(

5-57

DIRECTIVE DESCRIPTIONS

c

(

(-

5-58

DIRECTIVE DESCRIPTIONS

(

(

(~

(

(

5-59

DIRECTIVE DESCRIPTIONS

CSRQ$

5.3.17 Cancel Scheduled Initiation Requests

The Cancel Scheduled Initiation Requests directive instructs the
system to cancel all time-synchronized initiation requests for a
specified task, regardless of the source of each request. These
requests result from a Run directive or from any of the
time-synchronized variations of the MCR or DCL RUN commands.

In a multiuser protection system, a nonprivileged task can cancel
scheduled initiation requests only for a task with the same TI:.

FORTRAN Call:

CALL CANALL (tsk[,ids)

tsk Task name

ids Directive status

Macro Call:

CSRQ$ tsk

tsk = Scheduled (target) task name

Macro Expansion:

CSRQ$
.BYTE
.RAD50

ALPHA
25. ,3
/ALPHA/

iCSRQ$ MACRO DIC, DPB SIZE = 3 WORDS
iTASK "ALPHA"

Local Symbol Definitions:

C.SRTN Target task name (4)

DSW Return Codes:

Note:

IS.SUC

IE.INS

IE.PRI

IE.ADP

IE.SDP

Successful completion.

Task is not installed.

The issuing task is not privileged and is
to cancel requests made by another task.

attempting

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

If you specify an error-routine address when using the $C or $S
macro form, you must include a null argument for compatibility
with RSX-lID systems. For example:

CSRQ$S #TNAME"ERR iCANCEL REQUESTS FOR "ALPHA"

TNAME: .RAD50 /ALPHA/

5-60

(

(

(

(

(

(

(

(

(

DIRECTIVE DESCRIPTIONS

DECL$S

5.3.18 Declare Significant Event ($S Form Recommended)

The Declare Significant Event directive instructs the system to
declare a significant event.

Declaration of a significant event causes the Executive to scan the
Active Task List from the beginning, searching for the highest
priority task that is ready to run. Use this directive with
discretion to avoid excessive scanning overhead.

FORTRAN Call:

CALL DECLAR ([,ids])

ids DirectiNe status

Macro Call:

DECL$S [,err]

err Error-routine address

Macro Expansion:

DECL$S
MOV
.BYTE
EMT
BCC
JSR

,ERR
(PC)+,-(SP)
35. ,1
377
• +6
PC,ERR

iNOTE: THERE IS ONE IGNORED ARGUMENT
iPUSH DPB ONTO THE STACK
iDECL$S MACRO DIC, DPB SIZE = 1 WORD
iTRAP TO THE EXECUTIVE
iBRANCH IF DIRECTIVE SUCCESSFUL
iOTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:

None

DSW Return Codes:

Note:

IS.SUC

IE.ADP

IE.SDP

Successful completion.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

Because this directive requires only a one-word DPB, using the $S
form of the macro is recommended. It requires less space and
executes with the same speed as the DIR$ macro.

5-61

c

(

(

5-62

DIRECTIVE DESCRIPTIONS

(

(

(

c

l
5-63

DIRECTIVE DESCRIPTIONS

DSAR$S
or

IHAR$S

5.3.20 Disable (or Inhibit) AST Recognition ($S Form Recommended)

The Disable (or Inhibit) AST Recognition directive instructs the
system to disable recognition of ASTs for the issuing task. The ASTs
are queued as they occur and are effected when the task reenables AST
recognition. There is an implied disable AST recognition directive
whenever an AST service routine is executing. When a task's execution
is started, AST recognition is enabled. See the Notes.

FORTRAN Call:

Macro

CALL DSASTR [(ids)]
or

tALL INASTR [(ids)]

ids Directive

Call:

DSAR$S [err]
or

IHAR$S [err]

status

err Error-routine address

Macro Expansion:

DSAR$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC) +, - (SP)
99.,1
377
• +6
PC,ERR

Local Symbol DefinitionS:

None

;PUSH DPB ONTO THE STACK
;DSAR$S/IHAR$S MACRO DIC, DPB SIZE = 1 WORD
;TRAP TO THE EXECUTIVE
;BRANCH iF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR'I

(

DSW Return Codes: (

IS.SUC Successful completion.

IE. ITS AST recognition is already disabled.

IE.ADP

IE.SDP

Notes:

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

1. This directive disables only the recognition of ASTs; the
Executive still queues the ASTs. They are queued FIFO and
will occur in that order when the task reenables AST
recognition.

5-64

(

(

(

DIRECTIVE DESCRIPTIONS

2. The FORTRAN calls, DSASTR (or INASTR) and ENASTR exist solely
to control the possible jump to the PWRUP (power-up) routine.
FORTRAN is not designed to link to a system's trapping
mechanism. The PWRUP routine is strictly controlled by the
system, which both accepts the trap and subsequently
dismisses it. The FORTRAN program is notified by a jump to
PWRUP, but must use DSASTR (or INASTR) and ENASTR to ensure
the integrity of FORTRAN data structures (most importantly,
the stack) during power-up processing.

3. Because this directive requires only a one-word DPB, using
the $S form of the macro is recommended. It requires less
space and executes with the same speed as that of the DIR$
macro.

5-65

DIRECTIVE DESCRIPTIONS

DSCP$S

5.3.21 Disable Checkpointing ($S Form Recommended)

The Disable Checkpointing directive instructs the system to disable
the checkpointability of a task that has been installed as a
checkpointable task. Only the affected task can issue this directive.
A task cannot disable the ability of another task to be checkpointed.

FORTRAN Call:

CALL DISCKP [(ids)]

ids Directive status

Macro Call:

DSCP$S [err]

err Error-routine address

Macro Expansion:

DSCP$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC) +, ~ (S P)
95. ,1
377
• +6
PC,ERR

;PUSH DPB ONTO THE STACK
;DSCP$S MACRO DIC, DPB SIZE = 1 WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:

None

DSW Return Codes:

IS.SUC

IE.ITS

IE.CKP

IE.ADP

IE.SDP

Notes:

Successful completion.

Task checkpointing is already disabled.

Issuing task is not checkpointable.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

1. When a checkpointable task's execution is started,
checkpointing is enabled (that is, the task can be
checkpointed) •

2. Because this directive requires only a one-word DPB, using
the $S form of the macro is recommended. It requires less
space and executes with the same speed as that of the DIR$
macro.

5-66

c

(

(

(

(

(

DIRECTIVE DESCRIPTIONS

DTRG$

5.3.22 Detach Region

The Detach Region directive detaches the issuing task from a
specified, previously attached region. Any of the task's windows that
are currently mapped to the region are automatically unmapped.

If RS .MDL is
issued, the
task must be
deletion.

set in the region status word when the directive is
task marks the region for deletion on the last detach. A
attached with delete access to mark a region for

FORTRAN Call:

CALL DTRG (irdb[,ids])

irdb An eight-word integer array containing a Region
Definition Block (see Section 3.5.1.2)

ids Directive status

Macro Call:

DTRG$ rdb

rdb Region Definition Block address

Macro Expansion:

DTRG$
.BYTE
.WORD

RDBADR
59. ,2
RDBADR

iDTRG$ MACRO DIC, DPB SIZE = 2 WORDS
iRDB ADDRESS

Region Definition Block Parameters:

Input parameters:

Array
Element

irdb(l)

irdb (7)

Offset

R.GID

R.GSTS

ID of the region to be detached

Bit settings1 in the region status
word:

Bit

RS.MDL

Definition

1 if the region should
be marked for deletion
when the last task
detaches from it

1. If you are a FORTRAN programmer, refer to Section 3.5.1 to
determine the bit values represented by the symbolic names described.

5-67

DIRECTIVE DESCRIPTIONS

Output parameters:

irdb(7) R.GSTS Bit settingsl in the region
word:

status

Bit

RS.UNM

Defini tion

1 if any windows were
unmapped

Local Symbol Definitions:

D.TRBA

DSW Return Codes:

IS.SUC

IE.PRI

IE.NVR

IE.ADP

IE.SDP

Region Definition Block address (2)

Successful completion.

The task, which is not attached with delete access,
has attempted to mark the region for deletion on the
last detach or the task has outstanding

The task specified an invalid region ID or attempted
to detach region 0 (its own task region) •

Part of the DPD or RDB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. If you are a FORTRAN programmer, refer to Section 3.5.1 to
determine the bit values represented by the symbolic names described.

5-68

(

e-

(

(

(

(

(~

c

DIRECTIVE DESCRIPTIONS

5.3.23 Eliminate Address Window

The Eliminate Address Window directive deletes
window, unmapping it first if necessary.
eliminated window's ID is invalid.

FORTRAN Call:

CALL ELAW (iwdb[,ids])

ELAW$

an existing address
Subsequent use of the

iwdb An eight-word integer array containing a
Definition Block (see Section 3.5.2.2)

Window

ids Directive status

Macro Call:

ELAW$ wdb

wdb Window Definition Block address

Macro Expansion:

ELAW$
.BYTE
.WORD

WDBADR
119. ,2
WDBADR

iELAW$ MACRO DIC, DPB SIZE
iWDB ADDRESS

2 WORDS

Window Definition Block Parameters:

Input parameters:

Array
Element

iwdb(l)
bits 0-7

Offset

W.NID

Output parameters:

iwdb(7) W.NSTS

Local Symbol Definitions:

ID of the address window to be
eliminated

Bit settings l in the window status
word:

Bit

WS.ELW

WS.UNM

Definition

1 if the address window
was eliminated success
fully

1 if the address window
was unmapped

E.LABA Window Definition Block address (2)

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5.,..69

bsw Return Codes:

IS.SUC

IE.NVW

IE.ADP

IE.SDP

DIRECTIVE DESCRIPTIONS

Successful completion.

Invalid address window 10.

Part of the DPB or WDB is out of the issuing task's
address space.

DIC or DPB size is invalid.

5-70

c

(

(

(

(

c

(

l

DIRECTIVE DESCRIPTIONS

ELGF$

5.3.24 Eliminate Group Global Event Flags

The Eliminate Group Global Event Flags directive marks group global
event flags for deletion. If no tasks in this group are using the
group global event flags (the use count for this group maintained by
the Executive in G.CNT is 0), the Group Global Event Flags Control
Block (GFB) is immediately unlinked and deallocated. If tasks are
using flags in this group, the Executive marks the flags for deletion
(GS.DEL is set to 1) and the GFB is eliminated when no remaining tasks
are using the flags in this group. However, if a Create Group Global
Event Flags directive is issued before the flags are eliminated, the
Executive clears GS.DEL.

If the specified group code matches the group code of the issuing
task's protection UIC and the event flags are locked by this task (by
a previous Create Group Global Event Flags directive), this directive
unlocks the event flags by decrementing the access count. Note that a
task may not unlock the event flags more than once in succession. Any
attempt to unlock event flags that are already unlocked will return
the IE.RSU error code.

FORTRAN Call:

CALL ELGF ([group] [,idsw])

group

idsw

Macro Call:

Group number of flags to be eliminated. Only
privileged tasks can specify group numbers other than
the issuing task's group UIC. If the UIC is not
specified, the task's protection UIC (H.CUIC+l) in
the task's header is used.

= Integer to receive the Directive Status Word

ELGF$ [group]

group = Group number of flags to be eliminated. Only
privileged tasks can specify group numbers other than
the issuing task's group UIC. If the UIC is not
specified, the task's protection UIC (H.CUIC+l) in
the task's header is used.

Macro Expansion:

ELGF$
.BYTE
.WORD

303
159. ,2
303

iELGF$ MACRO DIC, DPB SIZE = 2 WORDS
iGROUP NUMBER 303 FLAGS

5-71

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

E.LGRP -- Group number (2)

DSW Return Codes: ~
IS.SUC

IE.PRI

IE.IUI

IE.IEF

IE.RSU

IE.ADP

Successful completion.

Privilege violation.

Invalid group (group>377 octal).

Group is not found.

Event flags are already marked for deletion.

Part of the DPB is out of the issuing task's address
space.

IE.SDP -- DIC or DPB size is invalid.

5-72

(

(

(

(

DIRECTIVE DESCRIPTIONS

c

c

(

(

5-73

DIRECTIVE DESCRIPTIONS

(

(

(

(

(-

5-74

(

(

(-

(

DIRECTIVE DESCRIPTIONS

EMST$

5.3.26 Emit Status

The Emit Status directive returns the specified 16-bit quantity to the
specified connected task. It possibly sets an event flag or declares
an AST if previously specified by the connected task in a Send,
Request, and Connect, a Spawn, or a Connect directive. If the
specified task is multiply connected to the task issuing this
directive, the first (oldest) Offspring Control Block (OCB) in the
queue is used to return status. If no task name is specified, this
action is taken for all tasks that are connected to the issuing task
at that time. In any case, whenever status is emitted to one or more
tasks, those tasks no longer remain connected to the task issuing the
Emit Status directive.

FORTRAN Call:

CALL EMST ([rtname] ,status[,idsw])

rtname

status

idsw

Macro Call:

EMST$

tname

status

Name of a task connected to the issuing task to
which the suatus is to be emitted

A 16-bit quantity to be returned to the connected
task

Integer to receive the Directive Status Word

[tname] ,status

Name of a task connected to the issuing task to
which the status is to be emitted

A 16-bit quantity to be returned to the connected
task

Macro Expansion:

EMST$
.BYTE
.RAD50
.WORD

ALPHA,STWD
147. ,4
ALPHA
STWD

;EMST$ MACRO DIC, DPB SIZE = 4 WORDS
;NAME OF CONNECTED TASK TO RECEIVE STATUs
;VALUE OF STATUS TO BE RETURNED

Local Symbol Definitions:

E.MSTN

E.MSST

DSW Return Codes:

IS.SUC

IE.ITS

IE.ADP

IE.SDP

Task name (4)

Status to be returned (2)

Successful completion.

The specified task is not connected to the issuing
task.

Part of the DPB is out of the issuing task's addres~
space.

DIC or DPB size is invalid.

5-75

DIRECTIVE DESCRIPTIONS

ENAR$S

5.3.27 Enable AST Recognition ($S Form Recommended)

The Enable AST Recognition directive instructs the
ASTs for the issuing tasK; that is, the directive
AST Recognition directive. ASTs that were queued
was disabled are effected at issuance. When a
started, AST recognition is enabled.

system to recognize
nullifies a Disable
while recognition

task's execution is

FORTRAN Call:

CALL ENASTR [(ids)]

ids Directive status

Macro Call:

ENAR$S [err]

err = Error-routine address

Macro Expansion:

;PUSH DPB ONTO THE STACK
ENAR$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC)+,-(SP)
101.,1
377

;ENAR$S MACRO DIC, DPB SIZE = 1 WORD
;TRAP TO THE EXECUTIVE

• +6
PC,ERR

;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, C1\LL ROUTINE "ERR"

Local Symbol Definitions:

None

DSW Return Codes:

IS.SUC Successful completion.

IE. ITS AST recognition is not disabled.

IE.ADP Part of the DPB is out of the issuing task's
space.

address

IE.SDP DIC or DPB size is invalid.

Notes:

1. Because this directive requires only a one-word DPB, using
the $S form. of the macro is recommended. It requires less
space and executes with the same speed as that of the DIR$
macro.

2. The FORTRAN calls DSASTR (or INASTR) and ENASTR exist solely
to control the jump to the PWRUP (power-up) routine. FORTRAN

. is not designed to link to a system's trapping mechanism.
The PWRUP routine is strictly controlled by the system. It
is the system that both accepts the trap and subsequently
dismisses it. The FORTRAN program is notified by a jump to
PWRUP, but must use DSASTR (or INASTR) and ENASTR to ensure
the integrity of FORTRAN data structures (most importantly,
the stack) during power-up processing.

5-76

(

(

(

(

(

(

c

(

(

DIRECTIVE DESCRIPTIONS

ENCP$S

5.3.28 Enable Checkpointing ($S Form Recommended)

The Enable Checkpointing directive instructs the system to make the
issuing task checkpointable after its checkpointability has been
disabled; that is, the directive nullifies a DSCP$S dir~ctive. This
directive cannot be used to enable checkpointing of a task that was
built noncheckpointable.

FORTRAN Call:

CALL ENACKP [(ids)]

ids = Directive status

Macro Call:

ENCP$S [err]

err = Error-routine address

Macro Expansion:

ENCP$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC) +, - (SP)
97.,1
377
.+6
PC,ERR

;PUSH DPB ONTO THE STACK
;ENCP$S MACRO DIC, DPB SIZE = 1 WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:

None

DSW Return Codes:

Note:

IS.SUC

IE.ITS

IE.ADP

IE.SDP

Successful completion.

Checkpointing is not disabled or task is connected to
an interrupt vector.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

Because this directive requires only a one-word DPB, using the $S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIR$ macro.

5-77

DIRECTIVE DESCRIPTIONS

EXIF$

5.3.29 Exit If

The Exit If directive instructs the system to terminate the execution
of the issuing task only if an indicated event flag is not set. The
Executive returns control to the issuing task if the specified event
flag is set. See the Notes.

FORTRAN Call:

CALL EXITIF (efn[,ids))

efn Event flag number

ids Directive status

Macro Call:

EXIF$ efn

efn Event flag number

Macro Expansion:

EXIF$
.BYTE
• WORD

52.
53. ,2
52 •

Local Symbol Definitions:

;EXIF$ MACRO DIC, DPB SIZE
;EVENT FLAG NUMBER 52

E.XFEF Event flag number (2)

DSW Return Codes:

IS.SET Indicated EFN set; task did not exit.

2 WORDS

IE.IEF Invalid event flag number (EFN<l, or EFN>96 if group
global event flags exist for the task's group or
EFN>64 if not).

IE.ADP Part of the DPB is out of the issuing task's address
space.

IE.SDP DIC or DPB size is invalid.

Notes:

1. The Exit If directive is useful in avoiding a possible race
condition that can occur between two tasks communicating by
means of the Send and Receive directives. The race condition
occurs when one task executes a Receive directive and finds
its receive queue empty, but before the task can exit, the
other task sends it a message. The message is lost because
the Executive flushed the receiver task's receive queue when
it decided to exit. This condition can be avoided if the
sending task specifies a common event flag in the Send
directive and the receiving task executes an Exit If
directive specifying the same common event flag. If the
event flag is set, the Exit If directive will return control
to the issuing task, signaling that something has been sent.

5-78

c

(

(

c

c

(

DIRECTIVE DESCRIP~IONS

2. A FORTRAN program that issues the Exit If call must first
close all files by issuing CLOSE calls. See the RSX, VAX/VMS
FORTRAN IV User's Guide or the PDP-ll FORTRAN-77 user's Guide
for instructions on how to ensure that such files are closed
properly if the task exits. To avoid the time overhead
involved in the closing and reopening of files, the task
should first issue the appropriate test or clear event flag
directive. If the Directive Status Word indicates that the
flag WaS not set, then the ta9k can close all files and issue
the call to Exit If.

3. On e~it, the Executive frees task resources. In particular,
the Executive;

• Detaches all attached devices

• Flushes the AST queue and despecifies all specified
ASTs

• Flushes the receive and receive-by-reference queues

• Flushes the clock queue for any outstanding Mark Time
requests for the task

• Closes all open files (files open for write access
are locked)

• Detaches all attached regions, except in the case of
a fixed task

• Runs down the task's I/O

• Deaccesses the group ~lobal event flags for the
task's group

• Disconnects from interrupts

• Flushes all outstanding CLI command buffers for the
task

• Breaks the connection with any offspring tasks

~ Returns a success status (EX$SUC) to any parent tasks

• Frees the task's memory if the exiting task was not
fixed

4. ·If the task exits, the Executive declares a significant
event.

5-79

DIRECTIVE DESCRIPTIONS

EXIT$S

5.3.30 Task Exit ($S Form Recommended)

The Task Exit directive instructs the system to terminate the
execution of the issuing task.

FORTRAN Call:

CALL EXIT (istat)

istat A16-bit quantity to be returned to the parent task

See Note 5.

Macro Call:

EXIT$S [err]

err = Error-routine address

Macro Expansion:

EXIT$S
MOV
.BYTE
EMT
JSR

ERR
(PC)+,-(SP)
51.,1
377
PC,ERR

Local Symbol Definitions:

None

DSW Return Codes:

;PUSH DPB ONTO THE STACK
;EXIT$S MACRO DIC, DPB SIZE
;TRAP TO THE EXECUTIVE
;CALL ROUTINE "ERR"

1 WORD

IE.ADP Part of the DPB is out of the issuing task's address
space.

IE.SDP DIC or DPB size is invalid.

Notes:

1. A return to the task occurs only if the directive is
rejected. Therefore, no Br;mch on Carry Clear instruction is
generated if an error-routine address is given because the
return occurs only with Carry set.

2. Exit causes a significant event to be declared.

3. On exit, the Executive frees task resources. In particular,
the Executive;

• Detaches all attached devices

• Flushes the AST queue and despecifies all specified
ASTs

• Flushes the receive and receive-by-reference queues

• Flushes the clock queue for any outstanding Mark Time
requests for the task

5-80

(

(

(

(

(

c

(

4.

DIRECTIVE DESCRIPTIONS

• Closes all open files (files open for write access
are locked)

• Detaches all attached regions, except in the case of
a fixed task

• Runs down the task's I/O

• Deaccesses the group global event flags for the
task's group

• Disconnects from interrupts

• Flushes all outstanding CLI command buffers for the
task

• Breaks the connection with any offspring tasks

• Returns a success status (EX$SUC) to any parent tasks

• Frees the task's memory if the exiting task was not
fixed

Because this directive requires only a one-word DPB, the $S
form of the macro is. recommended. It requires less space and
executes with the same speed as that of the DIR$ macro.

5. You can terminate FORTRAN tasks with the STOP statement or
with CALL EXIT. CALL EXIT is a FORTRAN OTS routine that
closes open files and performs other cleanup before it issues
an EXIT$S directive (or a CALL EXST (istat) call in
FORTRAN-77). FORTRAN tasks that terminate with the STOP
statement result in a message displayed on the task's TI:.
This message includes the task name (as it appears in the
Active Task List), the statement causing the task to stop,
and an optional character string specified in the STOP
statement. Tasks that terminate with CALL EXIT do not
display a termination message. For example, a FORTRAN task
containing the following statement:

20 STOP 'THIS FORTRAN TASK'

exits with the following message displayed on the task's
(TT37 in this example):

TT37 -- STOP THIS FORTRAN TASK

5-81

TI:

DIRECTIVE DESCRIPTIONS

EXST$

5.3.31 Exit with Status

The Exit with Status directive causes the issuing task to exit,
passing a l6-bit status back to all connected tasks (by the Spawn,
Connect, or Send, Request, and Connect directive). If the issuing
task has no connected tasks, then the directive simply performs a Task
Exit. No format of the status word is enforced by the Executive;
format conventions are a function of the cooperation between parent
and offspring tasks. However, if an offspring task aborts for any
reason, a status of EX$SEV is returned to the parent task. .

~~~~~~~f:w~~~~~~~~~:~~~··~~~~ 
Furthermore, if a task performs a 

normal exit with other tasks connected to it, a status of EX$SUC 
(successful completion) is returned to all connected tasks. 

FORTRAN Call: 

CALL EXST (istat) 

istat A l6-bit quantity to be returned to the parent task 

Macro Call: 

EXST$ status 

status A l6-bit quantity to be returned to the parent task 

Macro Expansion: 

EXST$ 
.BYTE 
.WORD 

STWD 
29. ,2 
STWD 

;EXST$ MACRO DIC, DPB SIZE = 2 WORDS 
;VALUE OF STATUS TO BE RETURNED 

Local Symbol Definitions: 

E.XSTS Value of status to be returned (2) 

DSW Return Codes: 

No status is returned if the directive is successfully completed 
because the directive causes the issuing task to exit. 

IE.ADP 

IE. SDP 

Notes: 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

1. On exit, the Executive frees a task's resources. In 
particular, the Executive: 

• Detaches all attached devices 

• Flushes the AST queue and despecifies all specified 
ASTs 

• Flushes the receive and receive-by-reference queues 

5-82 

( 

( 

( 

( 

( 



( 

c-

( 

DIRECTIVE DESCRIPTIONS 

• Flushes the clock queue for any outstanding Mark Time 
requests for the task 

• Closes all open files (files open for write access 
are locked) 

• Detaches all attached regions, except in the case of 
a fixed task 

• Runs down the task's I/O 

• Deaccesses the group global event flags for the 
task's group 

• Disconnects from interrupts 

• Flushes all outstanding CLI command buffers for the 
task 

• Breaks the connection with any offspring tasks 

• Returns the specified exit status to any parent tasks 

• Frees the task's memory if the exiting task was not 
fixed 

2. If the task exits, the Executive declares a significant 
event. 

5-83 



DIRECTIVE DESCRIPTIONS 

EXTK$ 

5.3.32 Extend Task 

The Extend Task directive instructs the system to modify the size of 
the issuing task by a positive or negative increment of 32-word 
blocks. If the directive does not specify an increment value or 
specifies an increment value of zero, the Executive makes the issuing 
task's size equal to its installed size. The issuing task must be 
running in a system-controlled partition and cannot have any 
outstanding I/O when it issues the directive. The task must also be 
checkpointable to increase its size; if necessary, the Executive 
checkpoints the task and then returns the task to memory with its size 
modified as directed. 

In a system that supports the memory management directives, the 
Executive does not change any current mapping assignments if the task 
has memory-resident overlays. However, if the task does not have 
memory-resident overlays, the Executive attempts to modify, by the 
specified number of 32-word blocks, the mapping of the task to its c-.· 
task region. 

If the issuing task is checkpointable but has no preallocated 
checkpoint space available, a positive increment may require dynamic 
memory and extra space in a checkpoint file sufficient to contain the 
task. 

There are several constraints on the size to which a task can extend 
itself using the Extend Task directive: 

• No task can extend itself beyond the maximum size set by the (. 
MCR SET /MAXEXT or the DCL SET EXTENSION LIMIT command or the 
size of the partition in which it is -running. (See the 
RSX-llM/M-PLUS MCR Operations Manual, the RSX-llM or 
RSX-llM-PLUS Command Language Manual, or the Micro/RSX User's 
Guide.) 

• A task that does not have memory-resident overlays cannot 
extend itself beyond 32K minus 32 words. 

• A task that has preallocated checkpoint space in its task 
image file cannot extend itself beyond its installed size. 

• A task that has memory-resident overlays cannot reduce its' 
size below the highest window in the task partition. 

FORTRAN Call: 

CALL EXTTSK ([inc] [,ids]) 

inc A positive or negative number equal to the number of 
32-word blocks by which the task size is to be extended 
or reduced 

ids Directive status 

5-84 

( 



c 

( 

(~ 

( 

(-

Macro Call: 

EXTK$ 

inc 

DIRECTIVE DESCRIPTIONS 

[inc] 

A positive or negative number equal to the number of 
32-word blocks by which the task size is to be extended 
or reduced 

Macro Expansion: 

EXTK$ 
.BYTE 
.WORD 

.WORD 

40 
89. ,3 
40 

o 

iEXTK$ MACRO DIC, DPB SIZE = 3 WORDS 
iEXTEND INCREMENT, 40(8) BLOCKS (lK 
iWORDS) 
iRESERVED WORD 

Local Symbol Definitions: 

E.XTIN 

DSW Return Codes: 

IS.SUC 

IE.UPN 

IE.ITS 

IE.ALG 

IE. lOP 

IE.CKP 

IE.NSW 

IE.ADP 

IE.SDP 

Extend increment (2) 

Successful completion. 

Insufficient dynamic memory or insufficient space in 
a checkpoint file. 

The issuing task is not running in a 
controlled partition. 

system-

The issuing task attempted to reduce its size to less 
than the size of its task header, or the task tried 
to increase its size beyond 32K words or beyond the 
maximum set by the MCR SET /MAXEXT or DCL SET 
EXTENSION LIMIT command, or the task tried to 
increase its size to the extent that one virtual 
address window would overlap another, or the task has 
memory-resident overlays and it attempted to reduce 
its size below the highest window mapped to the task 
partition. 

I/O is in progress for this task partition. 

The issuing task is not checkpointable and specified 
a positive integer. 

The task attempted to extend itself to larger than 
the installed size (when checkpoint space is 
allocated in the task). 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

5-85 



DIRECTIVE DESCRIPTIONS 

FEAT$ 

5.3.33 Test for Specified System Feature 

The Test for Specified System Feature directive tests for the presence 
of a specific system software or hardware option, such as 
floating-point support or the presence of the Commercial Instruction 
Set. 

FORTRAN Call: 

CALL FEAT (isym,idsw) 

isym Symbol for the specified system feature 

idsw Integer to receive the Directive Status Word 

Macro Call: 

FEAT$ sym 

sym Symbol for the specified system feature 

Symbol Value 

FE$EXT 1 
FE$MUP 2 
FE$EXV 3 
FE$DRV 4 
FE$PLA 5 
FE$CAL 6 
FE$PKT 7 
FE$EXP 8. 
FE$LSI 9. 
FE$OFF 10. 
FE$FDT ll. 
FE$X25 12. 
FE$DYM 13. 
FE$CEX 14. 
FE$MXT 15. 
FE$NLG 16. 
FE$DAS 17. 
FE$LIB 18. 
FE$MP 19. 
FE$EVT 20. 
FE$ACN 2l. 
FE$SDW 22. 
FE$POL 23. 
FE$WND 24. 
FE$DPR 25. 
FE$IRR 26. 
FE$GGF 27. 
FE$RAS 28. 
FE$AHR 29. 
FE$RBN 30. 

Table 5-1 
System Feature Symbols 

Meaning 

22-BIT EXTENDED MEMORY SUPPORT (BIT 1) 
MULTIUSER PROTECTION SUPPORT 
EXECUTIVE IS SUPPORTED TO 20K WORDS 
LOADABLE DRIVER SUPPORT 
PLAS SUPPORT 
DYNAMIC CHECKPOINT SPACE ALLOCATION 
PREALLOCATION OF I/O PACKETS 
EXTEND TASK DIRECTIVE SUPPORT 
PROCESSOR IS AN LSI-ll 
PARENT/OFFSPRING TASKING SUPPORT 
FULL-DUPLEX TERMINAL DRIVER SUPPORT 
X.25 CEX IS LOADED 
DYNAMIC MEMORY ALLOCATION SUPPORTED 
COM EXEC IS LOADED 
MCR EXIT AFTER EACH COMMAND MODE 
LOGINS DISABLED - MULTIUSER SUPPORT 
KERNEL DATA SPACE SUPPORTED (BIT 17.) 
SUPERVISOR-MODE LIBRARIES SUPPORT 
SYSTEM SUPPORTS MULTIPROCESSING 
SYSTEM SUPPORTS EVENT TRACE FEATURE 
SYSTEM SUPPORTS CPU ACCOUNTING 
SYSTEM SUPPORTS SHADOW RECORDING 
SYSTEM SUPPORTS SECONDARY POOLS 
SYSTEM SUPPORTS SECONDARY POOL FILE WINDOWS 
SYSTEM HAS A SEPARATE DIRECTIVE PARTITION 
INSTALL, RUN, AND REMOVE SUPPORT 
GROUP GLOBAL EVENT FLAG SUPPORT 
RECEIVE/SEND DATA PACKET SUPPORT 
ALTERNATE HEADER REFRESH AREA SUPPORT 
ROUND ROBIN SCHEDULING SUPPORT 

(continued on next page) 

5-86 

( 

( 

( 



( 

( 

( 

( 

Symbol 

FE$SWP 
FE$STP 
FE$CRA 
FE$XCR 
FE$EIS 
FE$STM 
FE$UDS 
FE$PRO 
FE$XHR 
FE$AST 
FE$l1S 
FE$CLI 
FE$TCM 
FE$PMN 
FE$WAT 
FE$RLK 
FE$SHF 
FE$CXD 
FE$XT 
FE$ERL 
FE$PTY 
FE$DVN 
FE$LCD 
FE$NIM 
FE$CHE 
FE$LOG 
FE$NAM 
FE$FMP 
FE$DCL 
FE$DDS 
FE$ACD 
HF$UBM 
HF$EIS 
HF$QB 
HF$DSP 
HF$CIS 
HF$FPP 
HF$NVR 
HF$INV 
HF$CLK 
HF$ITF 
HF$PRO 
HF$BRG 

Value 

3l. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 

, 39. 
40. 
4l. 
42. 
43. 
44. 
45. 
46. 
47. 
49. 
50. 
5l. 
52. 
53. 
54. 
55. 
56. 
57. 
58. 
59. 
60. 
6l. 
62. 
-l. 
-2. 
-3. 
-4. 
-8. 

-16. 
-17. 
-18. 
-19. 
-20. 
-2l. 
-32. 

Macro Expansion: 

FEAT$ 
.BYTE 
.WORD 

FE$DVN 
177.,2 
FE$DVN 

DIRECTIVE DESCRIPTIONS 

Table 5-1 (Cont.) 
System Feature Symbols 

Meaning 

EXECUTIVE LEVEL DISK SWAPPING SUPPORT 
EVENT FLAG MASK IS IN THE TCB (l=YES) 
SYSTEM SPONTANEOUSLY CRASHED (l=YES) (BIT 33.) 
SYSTEM CRASHED FROM XDT (l=YES) 
SYSTEM REQUIRES EXTENDED INSTRUCTION SET 
SYSTEM HAS SET SYSTEM TIME DIRECTIVE 
SYSTEM SUPPORTS USER DATA SPACE 
SYSTEM SUPPORTS SECONDARY POOL PROTOTYPE TCBS 
SYSTEM SUPPORTS EXTERNAL TASK HEADERS 
SYSTEM HAS AST SUPPORT 
RSX-l1S SYSTEM 
SYSTEM SUPPORTS MULTIPLE CLIS 
SYSTEM HAS SEPARATE TERMINAL DRIVER POOL 
SYSTEM SUPPORTS POOL MONITORING 
SYSTEM HAS WATCHDOG TIMER SUPPORT 
SYSTEM SUPPORTS RMS RECORD LOCKING 
SYSTEM SUPPORTS SHUFFLER TASK 
COMM EXEC IS DEALLOCATED (NON-I/D ONLY) (BIT 49.) 
SYSTEM IS A P/OS SYSTEM (l=YES) 
SYSTEM SUPPORTS ERROR LOGGING 
SYSTEM SUPPORTS PARITY MEMORY 
SYSTEM SUPPORTS DECIMAL VERSION NUMBERS 
SYSTEM SUPPORTS LOADABLE CRASH DRIVERS 
SYSTEM SUPPORTS DELETED FIXED TASK IMAGES 
SYSTEM SUPPORTS DISK DATA CACHING 
SYSTEM SUPPORTS EXTENDED LOGICAL NAMES 
SYSTEM SUPPORTS NAMED DIRECTORIES 
SYSTEM SUPPORTS FAST MAP DIRECTIVE 
DCL IS DEFAULT CLI 
NAMED DIRECTORY MODE IS DEFAULT 
SYSTEM SUPPORTS ACDs 
PROCESSOR HAS UNIBUS MAP (l=YES) (BIT 1) 
PROCESSOR HAS EXTENDED INSTRUCTION SET 
PROCESSOR HAS A Q-BUS BACKPLANE 
PROCESSOR SUPPORTS SEPARATE I/D SPACE 
PROCESSOR SUPPORTS COMMERCIAL INSTRUCTION SET 
PROCESSOR HAS NO FLOATING-POINT UNIT (l=YES) 
PRO-300 NONVOLATILE RAM PRESENT (l=YES) (BIT 17.) 
NONVOLATILE RAM PRESENT (l=YES) 
PRO-300 CLOCK IS PRESENT 
INVALID TIME FORMAT IN NONVOLATILE RAM 
HARDWARE SYSTEM IS A PRO-3XX 
PRO-300 BRIDGE MODULE PRESENT 

;FEAT$ MACRO DIC, DPB SIZE 
;FEATURE IDENTIFIER 

2 WORDS 

Local Symbol Definitions: 

F.EAF Feature identifier (2) 

5-87 



DIRECTIVE DESCRIPTIONS 

DSW Return Codes: 

IS.CLR Successful completion; feature not present. 

IS.SET Successful completion; feature present. ( 

IE.ADP Part of the DPB is out of the issuing task's address 
space. 

IE.SDP DIC or DPB size is invalid. 

c 

( 

( 

5-88 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

5-89 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

( 

5-90 



DIRECTIVE DESCRIPTIONS 

( 

(~\ 

( 

5-91 



DIRECTIVE DESCRIPTIONS 

GCCI$ 

5.3.35 Get Command for Command Interpreter 

The Get Command for Command Interpreter directive instructs the system 
to retrieve a command buffer for a Command Line Interpreter (CLI) task 
and copy it to a buffer in the task's address space. Information 
about the issuing terminal can also be returned to the CLI task. 

The directive can also return a message from the system to the CLI 
instead of a command if the CLI has been initialized with this 
capability. The offsets G.CCDV and G.CCUN indicate whether a system 
message has been returned. See the RSX-llM/M-PLUS System Management 
Guide or the Micro/RSX System Manager's Guide for more information. 

Only CLI tasks can issue this directive. 

FORTRAN Call: 

CALL GTCMCI (icbf,icbfl, [iibuf], [iibfl], [iaddr], [incp] [,idsw]) 

icbf = Name of a byte array to receive the command 

icbfl = Integer containing the size of the icbf array in bytes 

iibuf 

iibfl 

iaddr 

incp 

idsw 

Name of an integer array to receive the optional 
information buffer 

Name of an integer containing the length of the 
optional information buffer. If you specify a length 
shorter than the information buffer, as much 
information as will fit in the specified length is 
returned. 

Name of an integer that contains the address in pool of 
the command desired. (This address was obtained by a 
previous call to GTCMCI with GC.CND specified.) 

Name of an integer containing a bit mask indicating the 
action to take if there is no command queued: 

Octal 
Bit Value Definition 

GC.CCS 000 Return with Carry set (default) • 

GC.CEX 001 Force CLI to exit instead of 
returning. 

GC.CST 002 Force CLI to stop instead of 
returning. 

GC.CND 200 Copy command into buffer, but do not 
dequeue it from the list. 

You must specify these as decimal values in your 
FORTRAN program. 

Integer to receive the Directive Status Word 

5-92 

( 

( 

( 

( 



c 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

Macro Call: 

GCCI$ cbuf,cbfl, [ibuf], [ibfl], [addr], [ncp] 

cbuf 

cbfl 

ibuf 

ibfl 

addr 

ncp 

Address of buffer to receive command string 

Length of buffer; maximum buffer size is 

Address of buffer to receive information on the issuing 
terminal 

Length of buffer to receive information 

= Address of command. 

= 

This address is returned in G.CCCA of the information 
buffer if GC.CND is specified in t~e ncp argument. If 
this argument is nonzero, then only the command with 
the address specified by this argument is copied and/or 
dequeued. Note that this address is filled in only if 
the command is not dequeued. 

Action to 

Bit 

GC.CCS 

GC.CEX 

GC.CST 

GC.CND 

take if no command buffer present: 

Octal 
Value Definition 

000 Return with Carry set (default) • 

001 Force CLI to exit instead 
returning. 

002 Force CLI to stop instead 
returning. 

200 Copy command into buffer, but do 
dequeue it from the list. 

NOTE 

GC.CND can be supplied with one of 
the other options, for example, 
GC.CND!GC.CEX. 

of 

of 

not 

Command Buffer Format: 

G.CCDV 

G.CCUN 

G.CCCT 

G.CCCL 

G.CCTC 

G.CCFL 

If set, the 
termi na 1; if 
been returned 

ASCII device name of the issuing 
cleared, a message from the system has 

(2) . 

Octal unit number of the issuing terminal or the code 
, identifying the system message (1) 

Number of characters (1) 

Number of characters in command line (2) 

Terminator (1) 

Flags (1) 

5-93 



G.CCBF 

DIRECTIVE DESCRIPTIONS 

The values returned in the flag byte G.CCFL are: 

Flag Value 

GC.CNL 1 
GC.CTE = 2 
GC.CTC = 100 

Definition 

Null command line 
Prompt from a task exit 
Control-C notification packet 

Information Buffer Format: 

The format of the information buffer in the CLI address task 
space is as follows: 

G.CCW2 

G.CCPT 

G.CCOA 

G. CCPU 

G.CCCU 

G.CCCA 

Macro Expansion: 

U.CW2 of issuing terminal (2) 

Name of parent task (if any) (4) 

Address of Offspring Control Block from parent 
(2) 

Protection UIC of 
(2); otherwise, 
terminal 

issuing task (if possible) 
protection UIC of issuing 

Default UFD of issuing task (if possible) (2); 
otherwise, default UFD of issuing terminal 

Address of command, if not dequeued (2) 

GCCI$ 
.BYTE 
.BYTE 
.BYTE 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 

CBUF,CBFL,IBUF,IBFL,ADDR,NCP 
127.,7. ;GCCI$ MACRO DIC, DPB SIZE = 7 WORDS 

COMMAND QUEUED NCP ;ACTION TO TAKE IF NO 
a 
ADDR 
CBUF 
CBFL 
IBUF 
IBFL 

;ADDRESS OF COMMAND 
;COMMAND BUFFER ADDRESS 
;COMMAND BUFFER LENGTH 
;INFORMATION BUFFER ADDRESS 
;INFORMATION BUFFER LENGTH 

Local Symbol Definitions: 

G.CCNC Action if no command queued (2) 

G.CCAD Address of command to be returned (2) 

G.CCBA Address of command buffer (2) 

G.CCBL Length of task's command buffer (2) 

G.CCIA Address of optional information buffer (2) 

G.CCIL Length of optional information buffer (2) 

5-94 

( 

c 

( 

( 

( 



( 

( 

( 

DSW Return Codes: 

IE.AST 

IE.PRI 

IE.RSU 

IE. ITS 

IS.CLR 

IE.AOP 

IE.SOP 

Notes: 

DIRECTIVE DESCRIPTIONS 

The stop-on-no-command option was set 
directive was issued from AST state. 

Task is not a CLI. 

and the 

The issuing task has a group global context active 
and the next command to be received would have caused 
the task's protection group to change. 

No command was queued for the CLI and the directive 
was issued with the return-with-Carry-set option. 

Returned with Carry clear when the CLI was unstopped 
due to command arrival, after having been stopped by 
a GCII$ with the stop-on-no-command-option set. 

OPB, send buffer, or information buffer was outside 
the task's address space, or the information buffer 
was shorter than nine bytes. 

OIC and OPB size is invalid. 

1. The number of characters returned (G.CCCT) could be less than 
the number of characters in the command (G.CCCL) if the 
length of the command buffer in the task, as specified by the 
cbfl argument, is smaller than the actual command line. If 
there is sufficient room, a carriage return is placed at the 
end of the command line returned at G.CCBF in the command 
buffer inside the task to ease parsing. 

2. If a command is returned successfully, the protection and 
default UICs for the issuing task are changed by this 
directive to match those of the originating task (if 
possible) or terminal. These values are returned in words 
G.CCPU and G.CCCU of the optional information buffer. If 
named directories are supported, the task context block 
pointer is changed to match the task context block pointer of 
the originating task (if possible) or to match the terminal 
context block pointer of the originating terminal. Note that 
the context block contains the default directory string. 

5-95 



DIRECTIVE DESCRIPTIONS 

GCII$ 

5.3.36 Get Command Interpreter Information 

The Get Command Interpreter Information directive instructs the system 
to fill a buffer with information about a specified CLI or the CLI 
associated with a given terminal. A task must be privileged in order 
to issue this directive for any terminal other than its own TI: or 
for a CLI to which its TI: is not set. 

FORTRAN Call: 

CALL GETCU (ibuf,ibfl, [icli], [idev], [iunit] [,ids]) 

ibuf 

ibfl 

icli 

idev 

iunit 

ids 

Macro Call: 

Name of an integer array to receive the CLI 
information 

Length in bytes of the integer array to receive the 
CLI information 

Name of a two-word array element containing the 
Radix-50 name of the CLI 

Name of an integer containing the ASCII name of the 
terminal (must be the name of a physical device; 
default = TI:) 

Name of an integer containing the octal unit number 
of the terminal 

Directive status 

GCII$ buf,bufl, [eli], [dev], [unit] 

buf = Address of buffer to receive information 

bufl 

cli 

dev 

unit 

Length of information buffer 

Name in Radix-50 of the CLI on which information is 
requested 

ASCII name of terminal whose CLI should be used 
(must be the name of a physical device; default 

Octal unit number of the terminal 

TI:) 

Information Buffer Format: 

G.CICL 

G.CICS 

Name of CLI (4) 

Bit settings in the CLI status word (2): 

Bit 

CP.NUL 

CP.MSG 

CP.LGO 

Value Definition 

1 Pass empty command lines tp CLI. 

2 CLI wants system messages. 

4 CLI wants commands from logged-out 
terminals. 

5-96 

( 

c 

( 

( 



( 

( 

( 

( 

( 

G.CITK 

G.CIW2 

G.CIPU 

G.CICU 

G.CIDP 

DIRECTIVE DESCRIPTIONS 

Bit 

CP.DSB 

CP.PRV 

CP.SGL 

CPo NIO 

CP.RST 

CP.EXT 

CP.CTC 

Value Definition 

10 CLI is disabled (note that MCR 
does not check this bit). 

20 You must be privileged to set 
terminal to this CLI. 

40 Do not handle continuations 

100 MCR ••• , HEL, BYE do no I/O to 
terminal. HEL and BYE also do not 
set CLI, and so forth. 

200 

400 

2000 

Restricted accessi only this CLI 
task can set a terminal to this 
CLIo 

Pass task exit prompt requests to 
CLIo 

Pass Control-C notification 
packets. 

Name of task serving as CLI (4) 

Terminal's U.CW2 (2) 

Terminal's protection UlC (2) 

Terminal's current UIC (2) 

CLI default prompt string (16-word block; first byte 
is length of string) 

Macro Expansion: 

GCII$ 
.BYTE 
.WORD 
.WORD 
.RAD50 
.ASCII 
.WORD 

buf,bufl,cli,dev,unit 
173.,7 iDIC =173(10), DPB SIZE 
buf iADDRESS OF BUFFER 
bufl iLENGTH OF BUFFER 
/cli/ iRADIX-50 NAME OF CLI 
/dev/ iASCII NAME OF TERMINAL 
unit iTERMINAL UNIT NUMBER 

Local Symbol Definitions: 

G.CIBF Address of buffer (2) 

G.CIBL Length of buffer (2) 

G.CICN Radix-50 name of CLI (4) 

G.CIDV ASCII name of terminal (2) 

G.CIUN Unit number of terminal (1) 

5-97 

7 WORDS 



DSW Return Codes: 

IE.MAP 

IE. INS 

IE. IOU 

IE. PRI 

IE.ADP 

IE.SDP 

Notes: 

DIRECTIVE DESCRIPTIONS 

Both a terminal and a CLI were specified. 

Specified CLI does not exist. 

Specified device was not a terminal or does not 
exist. 

Nonpr i vileged task attempted to get information on a 
CLI other than its own. 

Part of the DPB or buffet was out of the issuing 
task's address space. 

DIC or DPB size is invalid. 

1. If the buffer is not long enough to contain all the 
information, the data that does not fit will not be supplied. 
No indication of this is returned to the issuing task. The 
buffer is filled from left to right. 

2. You may not specify both a CLI and a terminal. If the cli 
argument is present, the dev and unit arguments must be zero. 

* 

5-98 

c 

( 

( 

( 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

5-99 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

5-100 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

( 

5-101 



DIRECTIVE DESCRIPTIONS 

GLUN$ 

5.3.38 Get LUN Information 

The Get LUN Information directive instructs the system to fill a 
six-word buffer with information about a physical device unit to which 
a LUN is assigned. If requests to the physical device unit have been 
redirected to another unit, the information returned will describe the 
effective assignment. 

FORTRAN Call: 

CALL GETLUN (lun,dat[,ids]) 

lun Logical unit number 

dat = A six-word integer array to receive the LUN information 

ids Directive status 

Macro Call: 

GLUN$ lun,buf 

lun = Logical unit number 

buf Address of a six-word buffer that will receive the LUN 
information 

Buffer Format: 

Word 0 

Word 1 

Word 2 

Name of assigned device 

Unit number of assigned device and flags byte (flags 
byte equals 200 if the device driver is resident or 
o if the driver is not loaded) 

First device-characteristics word: 

Bit 0 

Bit 1 

Bit 2 

Bit 3 

Bit 4 

Bit 5 

Record-oriented device 
(DV.REC,l=yes) [FD.REC]l 

Carriage-control device 
(DV.CCL,l=yes) [lm.CCL] 

Terminal device (DV.TTY,l=yes) [FD.TTY] 

Directory (file-structured) 
device (DV.DIR,l=yes) [FD.DIR] 

Single-directory device 
(DV.SDI,l=yes) [FD.SDI] 

Sequential device (DV.SQD,l=yes) [FD.SQD] 

( 

( 

( 

1. Bits with associated symbols defined in FCS have the symbols shown 
in square brackets. These symbols can be defined for use by a task by ( 
means of the FCSBT$ macro. See the RSX-llM/M-PLUS and Micro/RSX I/O 
Operations Reference Manual. ---

5-102 



( 

c_ 

( 

( 

Word 3 

Word 4 

Word 5 

Bit 6 

Bit 7 

Bit 8 

Bit 9 

Bit 10 

Bit 11 

Bit 12 

Bit 13 

DIRECTIVE DESCRIPTIONS 

Mass storage device (DV.MSD,l=ye.s) 

User-mode diagnostics supported (DV.UMD,l=yes) 

Device supports extended 22-bit UNIBUS 
controller (DV.EXT,DV.MBC,l=yes) 

Unit software write-locked (DV.SWL,l=yes) 

Input spooled device (DV.ISP,l=yes) 

Output spooled device (DV.OSP,l=yes) 

Pseudo device (DV.PSE,l=yes) 

Device mountable as a 
channel (DV.COM,l=yes) 

communications 

Bit 14 -- Device mountable as a Files-Il device 
(DV .Fll, l=yes) 

Bi t 15 Device mountable (DV.MNT,l=yes) 

Second device-characteristics word 

Third device~characteristics word (words 3 and 4 are 
device-driver-specific) 

Fourth device-characteristics word (normally 
buffer-size as specified in the MCR SET /BUF or DCL 
SET TERM/WIDTH command) 

Macro Expansion: 

GLUN$ 
.BYTE 
.WORD 
.WORD 

7,LUNBUF 
5,3 
7 
LUNBUF 

;GLUN$ MACRO DIC, DPB SIZE 
;LOGICAL UNIT NUMBER 7 
;ADDRESS OF 6-WORD BUFFER 

Local Symbol Definitions: 

G.LULU Logical unit number (2) 

G.LUBA Buffer address (2) 

The following offsets are assigned relative to the start 
information buffer: 

G.LUNA Device name (2) 

G.LUNU Device unit number (1) 

G.LUFB Flags byte (1) 

G.LUCW Four device-characteristics words (8) 

5-103 

3 WORDS 

of the LUN 



DSW Return Codes: 

IS.SUC 

IE.ULN 

IE.ILU 

IE.ADP 

IE.SOP 

DIRECTIVE DESCRIPTIONS 

Successful completion. 

Unassigned LUN. 

Invalid logical unit number. 

Part of the OPB or buffer is out of the issuing 
taskis address space. 

OIC or OPB size is invalid. 

5-104 

( 

( 

( 

( 



c 

c 

( 

( 

DIRECTIVE DESCRIPTIONS 

GMCR$ 

5.3.39 Get MCR Command Line 

The Get MCR Command Line directive instructs the system to transfer an 
BO-byte command line to the issuing task. 

When a task is installed with a task name of " ••• tsk" or "tskTn," 
where "tsk" consists of three alphanumeric characters and n is an 
octal terminal number, the MCR dispatcher requests the task's 
execution when you issue the following command from terminal number n: 

>tsk command-line 

A task invoked in this manner must execute a call to Get MCR Command 
Line, which results in the entire "command line" following the prompt 
being placed in an BO-byte command-line buffer. (The MCR dispatcher 
is described in the RSX-11M/M-PLUS MCR Operations Manual.) 

FORTRAN Ca 11 : 

CALL GETMCR (buf[,ids]) 

buf An BO-byte array to receive the command line 

ids Directive status 

Macro Call: 

GMCR$ 

Macro Expansion: 

GMCR$ 
.BYTE 
• BLKW 

127.,4l. 
40 • 

;GMCR$ MACRO DIC, DPB SIZE = 41(10) WORDS 
;BO(10)-CHARACTER MCR COMMAND LINE BUFFER 

Local Symbol Definitions: 

G.MCRB 

DSW Return Codes: 

+n 

IE.AST 

IE.ADP 

IE.SDP 

MCR line buffer (80) 

Successful completion; n is the number of data bytes 
transferred (excluding the termination character). 
The termination character is, however, in the buffer. 
(If the command line came from a task being spawned, 
the termination character is the ESC key (33).) 

No MCR command line exists for the issuing task; that 
is, the task was not requested by a command line as 
follows: 

>tsk command-string 

or the task has already issued the Get MCR Command 
Line directive. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

5-105 



DIRECTIVE DESCRIPTIONS 

Notes: 

1. The GMCR$S form of the macro is not supplied because the DPB 
receives the actual command line. 

2. The CLI dispatcher processes all lines to: 

• Convert tabs to a single space 

• Convert multiple spaces to a single space 

• Convert lowercase characters to uppercase 

• Remove comments between exclamation points 

• Remove all trailing blanks 

The terminator «RET> or <ESC» is the last character in the 
line. 

5-106 

c 

( 

( 

( 



( 

c 

( 

( 

----------

DIRECTIVE DESCRIPTIONS 

GMCX$ 

5.3.40 Get Mapping Context 

The Get Mapping Context directive causes the Executive to return a 
description of the current window-to-region mapping assignments. The 
returned description is in a form that enables you to restore the 
mapping context through a series of Create Address Window directives. 
The macro argument specifies the address of a vector that contains one 
Window Definition Block (WDB) for each window block allocated in the 
task's header, plus a terminator word. 

For each window block in the task's header, the Executive sets up a 
WDB in the vector as follows: 

1. If the window block is unused (that is, if it does not 
correspond to an existing address window), the Executive does 
not record any information about that block in a WDB. 
Instead, the Executive uses the WDB to record information 
about the first block encountered that corresponds to an 
existing window. In this way, unused window blocks are 
ignored in the mapping context description returned by the 
Executive. 

2. If a window block describes an existing unmapped address 
window, the Executive fills in the offsets W.NID, W.NAPR, 
W.NBAS, and W.NSIZ with information sufficient to re-create 
the window. The window status word W.NSTS is cleared. 

3. If a window block describes an existing mapped window, the 
Executive fills in the offsets W.NAPR, W.NBAS, W.NSIZ, 
W.NRID, W.NOFF, W.NLEN, and W.NSTS with information 
sufficient to create and map the address window. WS.MAP is 
set in the status word (W.NSTS) and, if the window is mapped 
with write access, the bit WS.WRT is set as well. 

Note that in no case does the Executive modify W.NSRB. 

The terminator word, which follows the last WDB filled in, is a word 
equal to the negative of the total number of window blocks in the 
task's header. It is thereby possible to issue a TST or TSTB 
instruction to detect the last WDB used in the vector. The 
terminating word can also be used to determine the number of window 
blocks built into the task's header. 

When Create Address Window directives are used to restore the mapping 
context, there is no guarantee that the same address window IDs will 
be used. You must therefore be careful to use the latest window IDs 
returned from the Create Address Window directives. 

FORTRAN Call: 

CALL GMCX (imcx[,ids]) 

imcx An integer array to receive the mapping context. The 
size of the array is 8*n+l, where n is the number of 
window blocks in the task's header. 

ids Directive status 

5-107 



DIRECTIVE DESCRIPTIONS 

Macro Call: 

GMCX$ wvec 

wvec The address of a vector of n Window Definition Blocks, 
followed by a terminator word; n is the number of 
window blocks in the task's header 

Macro Expansion: 

GMCX$ 
.BYTE 
.WORD 

VECADR 
113. ,2 
VECADR 

;GMCX$ MACRO DIC, DPB SIZE = 2 WORDS 
;WDB VECTOR ADDRESS 

Window Definition Block Parameters: 

Input parameters: 

None 

Output parameters: 

Array Offset 
Element 

iwdb (1) W.NID ID of address window 
bits 0-7 

iwdb(l) W.NAPR Base APR of the window 
bits 8-lS 

iwdb(2) W.NBAS Base virtual address of the window 

iwdb(3) W.NSIZ Size, in 32-word blocks, of the C.-_ 
window 

iwdb(4) W. NRID 

iwdb(S) W.NOFF 

iwdb(6) W.NLEN 

iwdb(7) W.NSTS 

ID of the mapped region or, if the 
window is unmapped, no change 

Offset, in 32-word blocks, from the 
start of the region at which mapping 
begins or, if the window is 
unmapped, no change 

Length, in 32-word blocks, of the 
area currently mapped within the 
region or, if the window is 
unmapped, no change 

Bit settings l in the window status 
word (all 0 if the window is not 
mapped) : 

Bit 

WS.MAP 

Definition 

1 if the window 
mapped 

is 

1. If you are a FORTRAN programmer, refer to section 3.S.2 to 
determine the bit values represented by the symbolic names described. 

S-108 

( 

( 



( 

( 

( 

DIRECTIVE DESCRIPTIONS 

Bit 

WS.WRT 

WS.SIS 

WS.UDS 

WS.NBP 

WS.RCX 

Definition 

1 if 
mapped 
access 

the window is 
with write 

1 if the window is 
mapped in supervisor
mode instruction space 

1 if the 
mapped in 
data space 

window is 
user-mode 

1 if the window was 
created with cache 
bypass disabled (on 
RSX-llM-PLUS multipro
cessor systems only) 

1 if cache bypass has 
been enabled for the 
current mapping of the 
window (on RSX-llM-PLUS 
multiprocessor systems 
only) 

Note that the length mapped (W.NLEN) can be less than the 
size of the window (W.NSIZ) if the area from W.NOFF to the 
end of the partition is smaller than the window size. 

Local Symbol Definitions: 

G.MCVA Address of the vector (wvec) containing the Window 
Definition Blocks and terminator word (2) 

DSW Return Codes: 

Note: 

IS.SUC Successful completion. 

IE.ADP Address check of the DPB or the vector (wvec) failed. 

IE.SDP DIC or DPB size is invalid. 

Due to the use of WS.RCX to indicate cache-bypass state, you may 
need to do additional manipulation of the WDB before you issue a 
CRAW$ or MAP$ directive (on RSX-llM-PLUS multiprocessor systems 
only). 

5-109 



DIRECTIVE DESCRIPTIONS 

GPRT$ 

5.3.41 Get Partition Parameters 

The Get Partition Parameters directive instructs the system to fill an 
indicated three-word buffer with partition parameters. If a partition 
is not specified, the partition of the issuing task is assumed. 

FORTRAN Call: 

CALL GETPAR ([prt] ,buf[,ids]) 

prt Partition name 

buf A three-word integer array to receive the partition 
parameters 

ids Directive status 

Macro Call: 

GPRT$ [prt] ,buf 

prt Partition name 

buf Address of a three-word buffer 

Buffer Format: 

Word 0 

Word 1 

Word 2 

Partition physical base address expressed as a 
multiple of 32 words. (Partitions are always 
a1 igned on 32-word boundar ies.) Therefore, a 
partition starting at 40000(8) will have 400(8) 
returned in this word. 

Partition size expressed as a multiple of 32 words. 

Partition flags word. This word is returned equal 
to 0 to indicate a system-controlled partition or 
equal to 1 to indicate a user-controlled partition. 

Macro Expansion: 

GPRT$ 
.BYTE 
.RAD50 
.WORD 

ALPHA,DATBUF 
65. ,4 
/ALPHA/ 
DATBUF 

;GPRT$ DIC, DPB SIZE = 4 WORDS 
;PARTITION "ALPHA" 
;ADDRESS OF 3-WORD BUFFER 

Local Symbol Definitions: 

G.PRPN Partition name (4) 

G.PRBA Buffer address (2) 

5-110 

( 

( 

( 

( 



( 

c 

c 

DIRECTIVE DESCRIPTIONS 

The following offsets are assigned relative to the start of the 
partition parameters buffer: 

G.PRPB 

G.PRPS 

DSW Return Codes: 

Partition physical base address expressed as an 
absolute 32-word block number (2) 

Partition size expressed as a multiple of 32-word 
blocks (2) 

Partition flags word (2) 

Successful completion is indicated by a cleared Carry bit and the 
starting address of the partition is returned in the DSW. In 
unmapped systems, the address is physical. In mapped systems, 
the returned address is virtual and is always zero if it is not 
the task partition. Unsuccessful completion is indicated by a 
set Carry bit and one of the following codes in the DSW: 

IE. INS 

IE.ADP 

IE.SDP 

Notes: 

Specified partition not in system. 

Part of the DPB or buffer is out of the issuing 
task's address space. 

DIe or OPB size is invalid. 

1. For Executives that support the memory management directives, 
a variation of this directive exists called Get Region 
Parameters. When the first word of the two-word partition 
name is 0, the Executive interprets the second word of the 
partition name as a region 10. If the two-word name is 0,0, 
it refers to the task region of the issuing task. 

2. Omission of the partition-name argument returns parameters 
for the issuing task's unnamed subpartition, not for the 
system-controlled partition. 

5-111 



DIRECTIVE DESCRIPTIONS 

GREG$ 

5.3.42 Get Region Parameters 

The Get Region'Parameters directive instructs the Executive to fill an 
indicated three-word buffer with region parameters. If a region is 
not specified, the task region of the issuing task is assumed. 

This directive 
directive for 
directives. 

is a variation of 
Executives that 

the Get Partition 
support the memory 

Parameters 
management 

FORTRAN Ca 11 : 

CALL GET REG ([rid] ,buf[,ids]) 

rid Region id 

buf A three-word integer array to receive the region param-
eters 

ids Directive status 

Macro Cail : 

GREG$ [rid] ,buf 

rid Region id 

buf Address of a three-word buffer 

Buffer Format: 

Word 0 

Word I 

Word 2 

Region base address expressed as a multiple of 32 
words. (Regions are always aligned on 12-word 
boundaries.) Thus, a region starting at 1000(8) will 
have 10(8) returned in this word. 

Region size expressed as a multiple of 32 words. 

Region flags word. This word is returned equal to 0 
if the region resides in a system-controlled 
partition or equal to I if the region resides in a 
user-controlled partition. 

Macro Expansion: 

GREG$ 
.BYTE 
.WORD 

.WORD 

.WORD 

RID,DATBUF 
65. ,4 
o 

RID 
DATBUF 

iGREG$ MACRO DIC, DPB SIZE = 4 WORDS 
iWORD THAT DISTINGUISHES GREG$ 
iFROM GPRT$ 
iREGION ID 
iADDRESS OF 3-WORD BUFFER 

Local Symbol Definitions: 

G.RGID 

G.RGBA 

Region ID (2) 

Buffer address (2) 

5-112 

C-\ 

( 

( 

( 

( 



(~ 

C 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

The following offsets are assigned relative to the start of the region 
parameters buffer: 

G.RGRB 

G.RGRS 

G.RGFW 

DSW Return Codes: 

Region base address expressed as an absolute 32-word 
block number (2) 

Region 
blocks 

size 
(2) 

expressed 

Region flags word (2) 

as a multiple of 32-word 

Successful completion is indicated by a cleared Carry bit and the 
starting address of the region is returned in the DSW. In 
unmapped systems, the returned address is physical. In mapped 
systems, the returned address is virtual and is always zero if it 
is not the task region. Unsuccessful completion is indicated by 
a set Carry bit and one of the following codes in the DSW: 

IE.NVR Invalid region ID. 

IE.ADP Part of the DPB or buffer is out of the issuing 
task's address space~ 

IE .SDP DIC or DPB size is invalid. 

5-113 



DIRECTIVE DESCRIPTIONS 

GSSW$S 

5.3.43 Get Sense switches ($S Form Recommended) 

The Get Sense Switches directive instructs the system to obtain the 
contents of the console switch register and store it in the issuing 
task's Directive Status Word. 

FORTRAN Call: 

CALL READSW (isw) 

isw Integer to receive the console switch settings 

The following FORTRAN call allows a program to read the state of a 
single switch: 

CALL SSWTCH (ibt,ist) 

ibt The switch to be tested (0 to 15) 

ist Test results where: 

1 switch on 

2 switch off 

Macro Call: 

GSSW$S [err] 

err Error-routine address 

Macro Expansion: 

GSSW$S 
MOV 
.BYTE 
EMT 
BCC 
JSR 

ERR 
(PC) +, - (SP) 
125.,1 
377 
• +6 
PC, ERR 

Local Symbol Definitions: 

None 

DSW Return Codes: 

;PUSH DPB ONTO THE STACK 
;GSSW$S MACRO DIC, DPB SIZE = 1 WORD 
;TRAP TO THE EXECUTIVE 
;BRANCH IF DIRECTIVE SUCCESSFUL 
;OTHERWISE, CALL ROUTINE "ERR" 

Successful completion is indicated by a cleared Carry bit and the 
contents of the console switch register are returned in the DSW. 
Unsuccessful completion is indicated by a set Carry bit and one 
of the following codes in the DSW: 

IE.ADP 

IE.SDP 

Part of the 
address space. 

DPB is out of the issuing task's 

DIC or DPB size is invalid. 

5-114 

( 

( 

( 

( 

c) 



( 

( 

( 

( 

( 

Notes: 

1. 

--_.---------------

DIRECTIVE DESCRIPTIONS 

Because this directive requires only a one-word DPB, using 
the $S form of the macro is recommended. It requires less 
space and executes with the same speed as that of the DIR$ 
macro. 

2. On RSX-IIM-PLUS multiprocessor systems, the value returned is 
that of the virtual switch register maintained by the MeR SWR 
command. 

5-115 



DIRECTIVE DESCRIPTIONS 

GTIM$ 

5.3.44 Get Time Parameters 

The Get Time Parameters directive instructs the 
indicated eight-word buffer with the current 
time parameters are delivered as binary numbers. 
decimal) are shown in the table below. 

FORTRAN Ca 11 : 

CALL GETTIM (ibfp[,ids]) 

ibfp An eight-word integer array 

ids Directive status 

Macro Call: 

GTIM$ buf 

buf = Address of an eight-word buffer 

Buffer Format: 

Word 0 Year (since 1900) 

Word 1 Month (1-12) 

Word 2 Day (1-31) 

Word 3 Hour (0-23) 

Word 4 Minute (0-59 ) 

Word 5 Second (0-59) 

system to fill an 
time parameters. All 

The value ranges (in 

Word 6 Tick of second (depends on the frequency of the 
clock) 

Word 7 Ticks per 
clock) 

Macro Expansion: 

GTIM$ 
.BYTE 
.WORD 

DATBUF 
61. ,2 
DATBUF 

Local Symbol Definitions: 

second (depends on the frequency of the 

;GTIM$ DIC, DPB SIZE = 2 WORDS 
;ADDRESS OF 8 (lO)-WORD BUFFER 

G.TIBA Buffer address (2) 

The following offsets are assigned relative to the start of the time
parameters buffer: 

G.TIYR 

G.TIMO 

G. TIDA 

G.TIHR 

Year (2) 

Month (2) 

Day (2) 

Hour (2) 

5-116 

( 

( 

( 

( 

( 



( 

( 

( 

DIRECTIVE DESCRIPTIONS 

G.TIMI Minute (2) 

G.TISC Second (2) 

G.TICT Clock tick of second (2) 

G.TICP Clock ticks per second (2) 

DSW Return Codes: 

Note: 

IS.SUC 

IE.ADP 

IE.SDP 

Successful completion. 

Part of the DPB or buffer is out of the issuing 
task's address space. 

DIC or DPB size is invalid. 

The format of the time buffer is compatible with that of the 
buffers used with the Set System Time directive (STIM$). 

5-117 



DIRECTIVE DESCRIPTIONS 

GTSK$ 

5.3.45 Get Task Parameters 

The Get Task Parameters directive instructs the system to fill an 
indicated 18-word buffer with parameters relating to the issuing task. 

FORTRAN Call: 

CALL GETTSK (buf[,ids]) 

buf = An 18-word integer array to receive the task parameters 

ids Directive status 

Macro Call: 

GTSK$ buf 

buf Address of an 18-word buffer 

Buffer Format: 

Word 0 

Word 1 

Word 2 

Word 3 

Word 4 

Word 5 

Word 6 

Word 7 

Word 10 

Word 12 

Word 13 

Issuing task's name (first half) in Radix-50 

Issuing task's name (second half) in Radix-50 

Partition name (first half) in Radix-50 

Partition name (second half) in Radix-50 

Undefined in RSX-IIM/M-PLUS and Micro/RSX systems 
(this word exists for compatibility with RSX-IID and 
lAS systems) 

Undefined in RSX-IIM/M-PLUS and Micro/RSX systems 
(this word exists for compatibility with RSX-IID and 
lAS systems) 

Run pr i ori ty 

User Identification Code (UIC) of issuing task (in a 
multiuser protection system, the task's default 
UIC)l 

Number of logical I/O units (LUNs) 

Undefined in RSX-IIM/M-PLUS and Micro/RSX systems 
(this word exists for compatibility with RSX-IID and 
lAS systems) 

(Address of task SST vector tables)2 

1. See note in RQST$ description on contents of words 07 and 17. 

2. Words 13 and 14 will contain valid data if word 14 is not zero. If 
word 14 is zero, the contents of word 13 are meaningless. 

5-118 

c 

( 

( 

( 



( 

( 

( 

( 

Word 14 

Word 15 

Word 16 

Word 17 

DIRECTIVE DESCRIPTIONS 

(Size of task SST vector table in words) 1 

Size (in bytes) either of task's address window 0 in 
mapped systems or of task's partition in unmapped 
system (equivalent to partition size) 

System on which task is running: 

o for RSX-llD 
1 for RSX-11M 
2 for RSX-llS 
3 for lAS 
4 for RSTS 
5 for VAX/VMS 
6 for RSX-llM-PLUS and Micro/RSX 
7 for RT-ll Single Job Monitor 

10 for RT-ll Foreground/Background and Extended 
Memory Monitor 

11 for P lOS 

Protection UIC (in multiuser sY$tem, the login UIC)2 

Macro Expansion: 

GTSK$ 
.BYTE 
.WORD 

DATBUF 
63. ,2 
DATBUF 

;GTSK$ DIC, DPB = 2 WORDS 
;ADDRESS OF l8-WORD BUFFER 

Local Symbol Definitions: 

G.TSBA Buffer address (2) 

The following offsets are assigned relative to the task-parameters 
buffer: 

G.TSTN Task name (4) 

G.TSPN Partition name (4) 

G.TSPR Priori ty (2) 

G.TSGC UIC group code (1) 

G.TSPC UIC member code (1) 

G.TSNL Number of logical units (2) 

G.TSVA Task's SST vector address (2) 

G.TSVL Ta~k's SST vector length in words (2) 

G.TSTS Task size (2) 

G.TSSY System on which task is running (2) 

G.TSDU Protection UIC (2) 

1. Words 13 and 14 will contain valid data if word 14 is not zero. If 
word 14 is zero, the contents of word 13 are meaningless. 

2. See note in RQST$ description on contents of words 07 and 17. 

5-119 



DSW Return Codes: 

IS.SUC 

IE.ADP 

IE.SDP 

DIRECTIVE DESCRIPTIONS 

Successful completion. 

Part of the DPB or buffer is out of the issuing 
task's address space. 

DIC or DPB size is invalid. 

5-120 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

MAP$ 

5.3.46 Map Address Window 

The Map Address Window directive maps an existing window to an 
attached region. The mapping begins at a specified offset from the 
start of the region. If the window is already mapped elsewhere, the 
Executive unmaps it before carrying out the mapping assignment 
described in the directive. 

For the mapping assignment, a task can specify any length that is less 
than or equal to both: 

• The window size specified when the window was created 

• The length remaining between the specified offset within the 
region and the end of the region 

A task must be attached with write access to a region in order to map 
to it with write access. To map to a region with read-only access, 
the task must be attached with either read or write access. 

If W.NLEN is set to 0, the length defaults to either the window size 
or the length remaining in the region, whichever is smaller. (Since 
the Executive returns the actual length mapped as an output parameter, 
the task must clear that parameter in the WDB before issuing the 
directive each time it wants to default the length of the map.) 

The values that can be assigned to W.NOFF depend on the setting of bit 
WS.64B in the window status word (W.NSTS): 

• If WS.64B = 0, the offset specified in W.NOFF must represent a 
multiple of 256 words (512 bytes). Because the value of 
W.NOFF is expressed in units of 32-word blocks, the value must 
be a multiple of 8. 

• If WS.64B = 1, the task can align on 32-word boundaries; you 
can therefore specify any offset within the region. 

FORTRAN Call: 

NOTE 

Applications dependent on 32-word or 64-byte 
alignment (WS.64B = 1) may not be compatible 
with future implementations of RSX emulators. 
Therefore, you should write applications 
adaptable to either alignment requirement. 
The bit setting of WS.64B could be a parameter 
chosen at assembly time (by means of a pre~ix 
file), at task-build time (as input to the 
GBLDEF option), or at run time (by ~eans of 
command input or by means of the G.TSSY field 
returned from the GTSK$ directive). 

CALL MAP (iwdb[,ids]) 

iwdb = An eight-word integer array containing a 
Definition Block (see Section 3.5.2.2) 

ids Directive status 

5-121 

window 



DIRECTIVE DESCRIPTIONS 

Macro Call: 

MAP$ wdb 

wdb Window Definition Block address 

Macro Expansion: 

MAP$ 
.BYTE 
• WORD 

WDBADR 
121. ,2 
WDBADR 

iMAP$ MACRO DIC, DPB SIZE 
iWDB ADDRESS . 

2 WORDS 

Window Definition Block Parameters: 

Input parameters: 

Array 
Element 

iWdb(l) 
bits 0-7 

iwdb(4) 

iwdb(5) 

iwdb(6) 

iwdb (7) 

Offset 

W.NID 

W.NRID 

W.NOFF 

W.NLEN 

W.NSTS 

ID of the window to be mapped. 

ID of the region to which the window 
is to be mapped or 0 if the task 
region is ~o be mapped. 

Offset, in 32-word blocks, within 
the region at which mapping is to 
begin. Note that if WS.64B in the 
window status word equals 0, the 
value specified must be a multiple 
of 8. 

Length, in 32-word blocks, within 
the region to be mapped, or 0 if the 
length is to default to either the 
size of the window or the space 
remaining in the region from the 
specified offset, whichever is 
smaller. 

Bit settings 1 ,in the window status 
word: 

Bit 

WS.WRT 

WS.64B 

Definition 

1 if write access is 
desired 

o for 256-word (512-
byte) alignment or 1 
for 32-word (64-byte) 
alignment 

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to 
determine the bit values represented by the symbolic names described. 

5-122 

( 

( 

(-

( 



( 

( 

( 

DIRECTIVE DESCRIPTIONS 

Output parameters: 

iwdb(6) W.NLEN 

iwdb(7) W.NSTS 

Length of the area within the region 
actually mapped by the window 

Bit settings 1 in the window status 
word: 

Bit 

WS.UNM 

Definition 

1 if the window was 
unmapped first 

Local Symbol Definitions: 

M.APBA 

DSW Return Codes: 

IS.SUC 

IE.PRI 

IE.NVR 

IE.NVW 

IE.ALG 

IE.ADP 

IE.SDP 

Window Definition Block address (2) 

Successful completion. 

Privilege violation. 

Invalid region ID. 

Invalid address window ID. 

Task specified 
combination 
parameters, or 
not a multiple 

an invalid 
in the 
WS.64B = 0 
of 8. 

region offset and length 
Window Definition Block 
and the value of W.NOFF is 

Part of the DPB or WDB is out of the issuing task's 
address space. 

DIC or DPB size is invalid. 

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to 
determine the bit values represented by the symbolic names described. 

5-123 



DIRECTIVE DESCRIPTIONS 

MRKT$ 

5.3.47 Mark Time 

The Mark Time directive instructs the system to declare a significant 
event after an indicated time interval. The interval begins when the 
task issues the directive; however, task execution continues during 
the interval. If an event flag is specified, the flag is cleared when 
the directive is issued and set when the significant event occurs. If 
an AST entry-point address is specified, an AST (see Section 2.3.3) 
occurs at the time of the significant event. When the AST occurs, the 
task's PS, PC, directive status, Wait-for mask words, and the event 
flag number specified ,in the directive are pushed onto the issuing 
task's stack. If neither an event flag number nor an AST service 
entry point is specified, the significant event still occurs after the 
indicated time interval. See the Notes. 

FORTRAN Calls: 

CALL MARK (efn,tmg,tnt[,ids]) 

efn Event flag number 

tmg Time interval magnitude (see Note 5) 

tnt Time interval unit (see Note 5) 

ids Directive status 

The ISA standard call for delaying a task for a specified time 
interval is also provided: 

CALL WAIT (tmg,tnt[,ids]) 

tmg = Time interval magnitude (see Note 5) 

tnt Time interval unit (see Note 5) 

ids Directive status 

Macro Call: 

Macro 

MRKT$ [efn] ,tmg ,tnt [,ast] 

efn .- Event flag number 

tmg Time interval magnitude (see Note 5) 

tnt Time interval unit (see Note 5) 

ast AST entry-point address 

Expansion: 

MRKT$ 
.BYTE 
.WORD 
.WORD 
.WORD 
.WORD 

52.,30.,2,MRKAST 
23.,5 ;MRKT$ MACRO DIC, DPB SIZE = 5 WORDS 
52. ;EVENT FLAG NUMBER 52 
30. ;TIME MAGNITUDE=30(10) 
2 ;TIME UNIT=SECONDS 
MRKAST ;ADDRESS OF MARK TIME AST ROUTINE 

5-124 

( 

( 

( 

( 



( 

(~ 

( 

DIRECTIVE DESCRIPTIONS 

Local Symbol Definitions: 

DSW 

M.KTEF Event flag (2) 

M.KTMG Time magnitude (2) 

M.KTUN Time unit (2) 

M.KTAE AST entry-point address (2 ) 

Return Codes: 

For CALL MARK and MRKT$: 

IS.SUC Successful completion. 

IE.UPN Insufficient dynamic memory. 

IE.ITI Invalid time parameter. 

IE.IEF Invalid event flag number (EFN<O, or EFN>96 if 
group global event flags exist for the task's 
group or EFN>64 if not). 

IE.ADP Part of the DPB is out of the issuing task's 
address space. 

IE.SDP DIC or DPB size is invalid. 

For CALL WAIT: 

RSX-llM/M-PLUS and Micro/RSX systems provide the 
positive error codes to be returned for ISA calls: 

1 Successful completion 

2 Insufficient dynamic storage 

3 Specified task not installed 

94 Invalid time parameters 

98 Invalid event flag number 

99 Part of DPB out of task's range 

100 DIC or DPB size invalid 

5-l25 

following 



DIRECTIVE DESCRIPTIONS 

Notes: 

1. Mark Time requires dynamic memory for the clock queue entry. 

2. If an AST entry-point address is specified, the AST service 
routine is entered with the task's stack in the following 
state: 

SP+I0 - Event-flag mask word 1 
SP+06 - PS of task prior to AST 
SP+04 - PC of task prior to AST 
SP+02 - DSW of task prior to AST 
SP+OO - Event flag number or zero (if none was 

specified in the Mark Time directive) 

The event flag number must be removed from the task's stack 
before an AST Service Exit directive is executed. 

3. If the directive is rejected, the specified event flag is not 
guaranteed to be cleared or set. Consequently, if the task 
indiscriminately executes a Wait-for directive and the Mark 
Time directive is rejected, the task may wait indefinitely. 
Care should always be taken to ensure that the directive was 
completed successfully. 

4. If a task issues a Mark Time directive that specifies a 
common or group global event flag and then exits before the 
indicated time has elapsed, the event flag is not set. 

1. The event-flag mask word preserves the Wait-for conditions of a 
task prior to AST entry. A task can, after an AST, return to a 
Wait-for state. Because these flags and the other stack data are in 
the user task, they can be modified. Such modification is strongly 
discouraged, however, since the task can easily fault on obscure 
conditions. For example, clearing the mask word results in a 
permanent Wait-for state. 

5-126 

( 

( 

( 

( 

( 



c 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

5. The Executive returns the code IE.ITI (or 94) in the 
Directive Status Word if the directive specifies an invalid 
time parameter. The time parameter consists of two 
components: the time interval magnitude and the time 
interval unit, represented by the arguments tmg and tnt, 
respectively. 

A legal magnitude value (tmg) is related 
assigned to the time interval unit (tnt). 
are encoded as follows: 

to the value 
The unit values 

For an ISA FORTRAN call (CALL WAIT): 

o 

1 

Ticks. A tick occurs for 
interrupt and is dependent 
clock installed in the system. 

each clock 
on the type of 

For a line-frequency clock, the tick rate is 
either 50 or 60 per second, corresponding to 
the power-line frequency. 

For a programmable clock, a maximum of 1000 
ticks per second is available (the exact rate 
is determined at system-generation time). 

Milliseconds. The subroutine converts the 
specified magnitude to the equivalent number 
of system clock ticks. On systems with 
line-frequency clocks, millisecond Mark Time 
requests can only be approximations. 

For all other FORTRAN and macro calls: 

1 = Ticks. See definition of ticks above. 

For both types of FORTRAN calls and all macro calls: 

2 Seconds 

3 Minutes 

4 Hours 

The magnitude (tmg) is the number of units to be clocked. 
The following list describes the magnitude values that are 
valid for each type of unit. In no case can the value of tmg 
exceed 24 hours. The list applies to both FORTRAN and macro 
calls. 

If tnt = 0, 1, or 2, tmg can be any positive value with 
a maximum of 15 bits. 

If tnt = 3, tmg can have a maximum value of 1440(10). 

If tnt 4, tmg can have a maximum value of 24(10). 

5-127 



---- ------- ---

DIRECTIVE DESCRIPTIONS 

6. If the specified event flag is group global, the use count 
for the event flag's group is incremented to prevent 
premature elimination of event flags. The use count is run 
down when: 

• The Mark Time event occurs. 

• The Mark Time event is canceled. 

• The issuing task exits with the Mark Time event still 
on the clock queue. 

7. The minimum time interval is one tick. If you specify a time 
interval of zero, it will be converted to one tick. 

5-128 

( 

( 

( 

( 

( 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

( 

5-129 



--- ~~ -~----

DIRECTIVE DESCRIPTIONS 

( 

( 

c 

5-130 



DIRECTIVE DESCRIPTIONS 

c 

( 

( 

5-131 



DIRECTIVE DESCRIPTIONS 

c 

( 

( 

( 

5-132 



DIRECTIVE DESCRIPTIONS 

( 

c 

( 

5-133 



DIRECTIVE DESCRIPTIONS 

c 

( 

( 

5-134 



DIRECTIVE DESCRIPTIONS 

c 

( 

( 

c 

( 

5-135 



DIRECTIVE DESCRIPTIONS 

c 

( 

( 

5-136 



DIRECTIVE DESCRIPTIONS 

c 

c 

( 

( 

5-137 



DIRECTIVE DESCRIPTIONS 

( 

( 

5-138 



DIRECTIVE DESCRIPTIONS 

c 

( 

( 

5-139 



DIRECTIVE DESCRIPTIONS 

( 

c 

(\ 

C' 

( 

5-140 



DIRECTIVE DESCRIPTIONS 

( 

c 

( 

( 

( 

5-141 



DIRECTIVE DESCRIPTIONS 

QIO$ 

5.3.52' Queue I/O Request 

The Queue I/O Request directive instructs the system to place an I/O 
request for an indicated physical device unit into a queue of 
priority-ordered requests for that device unit. The physical device 
unit is specified as a logical unit number (LUN) assigned to the 
device. 

The Executive declares a significant event when the I/O transfer 
completes. If the directive call specifies an event flag, the 
Executive clears 'the flag when the request is queued and sets the flag 
when the significant event occurs. 

The I/O status block is also cleared when the request is queued and is 
set to the final I/O status when the I/O request is complete. If an 
AST service routine entry-polnt address is specified, the AST occu~s 
upon I/O completion, and the task's Wait-for mask word, PS, PC, DSW, 
and the address of the I/O status block are pushed onto the task's 
stack. 

The description below deals solely 
device-dependent information can 
Drivers Reference Manual or the 
Manual. See the Notes. 

FORTRAN Call: 

with the Executive directive. The 
be found in the RSX-llM/M-PLUS I/O 
Micro/RSX I/O Drivers Reference 

CALL QIO (fnc,lun, [efn], [pri], [isb], [prl] [,ids]) 

fnc I/O function codel 

lun = Logical unit number 

efn = Event flag number 

pri Priority (ignored, but parameter must be present in 
call) 

isb 

prl 

A two-word integer array to receive final I/O status 

A six-word integer array containing device-dependent 
parameters to be placed in parameter words 1 through 6 
of the DPB. Fill in this array by using the GETADR 
routine (see Section 1.5.1.4). 

ids Directive status 

Macro Call: 

QIO$ fnc,lun, [efn] , [pri], [isb], [ast], [prl] 

fnc I/O function code l 

lun Logical unit number 

1. I/O function code definitions are included in the RSX-llM/M-PLUS 
I/O Drivers Reference Manual and the Micro/RSX I/Q. Drivers Reference 
Manual. 

5-142 

( 

( 

( 

( 



c 

( 

(I 

( 

DIRECTIVE DESCRIPTIONS 

efn = Event flag number 

pri Priority (ignored, but Q.IOPR byte must be present in 
DPB) 

isb Address of I/O status block 

ast Address of entry point of AST service routine 

prl Parameter list of the form <Pl, ••• P6> 

Macro Expansion: 

QIO$ 
.BYTE 
.WORD 
.WORD 
.BYTE 
.WORD 
.WORD 
.WORD 
• WORD 
• WORD 
• WORD 
• WORD 
.WORD 

IO.RVB,7,52."IOSTAT,IOAST,<IOBUFR,512.> 
1,12. ;QIO$ MACRO DIC, DPB SIZE = 12(10) WORDS 
IO.RVB ;FUNCTION=READ VIRTUAL BLOCK 
7 ;LOGICAL UNIT NUMBER 7 
52.,0 ;EFN 52., PRIORITY IGNORED 
IOSTAT ;ADDRESS OF 2-WORD I/O STATUS BLOCK 
IOAST ;ADDRESS OF I/O AST ROUTINE 
IOBUFR ;ADDRESS OF DATA BUFFER 
512. ;BYTE COUNT=512 • 
a ;ADDITIONAL PARAMETERS ••• 
a ; ..• NOT USED IN ••• 
a ; ..• THIS PARTICULAR ••• 
a ; ••• INVOCATION OF QUEUE I/O 

Local Symbol Definitions: 

Q.IOFN 

Q.IOLU 

Q.IOEF 

Q.IOPR 

Q.IOSB 

Q.IOAE 

Q.IOPL 

DSW Return Codes: 

IS.SUC 

IE. UPN 

IE.ULN 

IE.HWR 

IE.PRI 

IE.ILU 

IE.IEF 

I/O function code (2) 

Logical unit number (2) 

Event flag number (1) 

priority (1) 

Address of I/O status block (2) 

Address of I/O-done AST entry point (2) 

Parameter list (six words) (12) 

Successful completion. 

Insufficient dynamic memory. 

Unassigned LUN. 

Device driver not loaded. 

Task other than despooler attempted a write-logical
block operation. 

Invalid LUN. 

Invalid event flag number (EFN<O, or EFN>~6 if group 
global event flags exist for the task's group or 
EFN>64 if not). 

5-143 



IE.ADP 

DIRECTIVE DESCRIPTIONS 

Part of the DPB or I/O status block is out of the 
issuing task's address space. 

IE.SDP DIC or DPB size is invalid. 

Notes: 

1. If the directive call specifies an AST entry-point address, 
the task enters the AST service routine with its stack in the 
following state: 

SP+IO - Event-flag mask word 
SP+06 - PS of task prior to AST 
SP+04 - PC of task prior to AST 
SP+02 - DSW of task prior to AST 
SP+OO - Address of I/O status block, or zero if none 

was specified in the QIO directive 

The address of the I/O status block, which is a 
trap-dependent parameter, must be removed from the task's 
stack before an AST Service Exit directive is executed. 

( 

2. If the directive is rejected, the specified event flag is not (--
guaranteed to be cleared or set. Consequently, if the task 
indiscriminately executes a Wait-for or Stop-for directive 

3. 

and the QIO directive is rejected, the task may wait 
indefinitely. Care should always be taken to ensure that the 
directive was completed successfully. 

following reasons: 

• If the QIO directive results in a data transfer, the ( 
data transfers directly to or from the user-specified 
buffer. 

• If an I/O status block address 
directive status is returned 
status block. 

is specified, the 
directly to the I/O 

The Executive waits until a task has no outstanding I/O 
before initiating checkpointing in all cases except the one 
described below. 

On systems that support buffered I/O, drivers that buffer I/O ( 
check for the following conditions for a task: 

• That the task is checkpointable 

• That checkpointing is enabled 

If these conditions are met, the driver and/or the Executive 
buffers the I/O request ipternally and the task is 
checkpointable with this outstanding I/O. ,If the task also 
entered a wait-for state when the I/O was issued (see the 
QIOW$ directive) or subsequently enters a Wait-for state, the 
task is stopped. Any competing task waiting to be loaded 
into the partition can checkpoint the stopped task, 
regardless of priority. If the stopped task is checkpointed, 
the Executive does not bring it back into memory until the 
stopped state is terminated by completion of buffered I/O or 
satisfaction of the Wait-for condition. 

Not all drivers buffer I/O requests. The terminal driver is (_ 
an example of one that does. 

5-144 



4. 

c 
5. 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

If the specified event flag is group global, the use count 
for the event flag's group is incremented to prevent 
premature elimination of the event flags. The use count is 
run down when: 

• The I/O is completed. 

• The I/O is killed by reassigning the specified LUN 
with the ALUN$ directive. 

• The I/O is killed by issuing the IO.KIL function for 
the specified LUN. 

• The task exits before I/O is completed. 

5-145 



DIRECTIVE DESCRIPTIONS 

QIOW$ 

5.3.53 Queue I/O Request and wait 

The Queue I/O Request and Wait directive is identical to the Queue I/O 
Request directive in all but one aspect: when the Wait variation of 
the directive specifies an event flag, the Executive automatically 
effects a Wait for Single Event Flag directive. 

Consult the description of the" Queue I/O Request directive for a 
definition of the parameters, the local symbol definitions, the DSW 
return codes, and explanatory notes. 

FORTRAN Call: 

CALL WTQIO (fnc,lun,efn, [pri] , [isb], [prl] [,ids]) 

Macro 

fnc I/O function code l 

lun Logical unit number 

efn Event flag number 

pri Priority (ignored, but parameter must be present in 
call) 

isb A two-word integer array to receive final I/O status 

prl 

ids 

Call : 

QIOW$ 

fnc 

lun 

efn 

pri 

isb 

ast 

prl 

A six-word integer array containing device-dependent 
parameters to be placed in parameter words 1 through 6 
of the DPB 

Directive status 

fnc, lun, [efn] , [pri] , [isb] , last] [,prl] 

I/O function code l 

Logical unit number 

Event flag number 

= Priority (ignored, but Q.IOPR byte must be present in 
DPB) 

Address of I/O status block 

Address of entry point of AST service routine 

Parameter list of the form <Pl, ••• P6> 

1. I/O function codes are defined in the RSX-llM/M-PLUS I/O Drivers 
Reference Manual and the Micro/RSX I/O Drivers Reference Manual. 

5-146 

( 

( 

c 

c 



DIRECTIVE DESCRIPTIONS 

Macro Expansion: 

QIOW$ IO.RVB,7,52."IOSTAT,IOAST,<IOBUFR,512.> -
( .BYTE 

.WORD 

.WORD 

3,12. ;QIOW$ MACRO DIC, DPB SIZE 12(10) WORDS 
IO.RVB ;FUNCTION=READ VIRTUAL BLOCK 
7 ;LOGICAL UNIT NUMBER 7 

.BYTE 52.,0 ;EFN 52., PRIORITY IGNORED 

.WORD IOSTAT ;ADDRESS OF 2-WORD I/O STATUS BLOCK 

.WORD IOAST ;ADDRESS OF I/O AST ROUTINE 

.WORD IOBUFR ;ADDRESS OF DATA BUFFER 
• WORD 512. ;BYTE COUNT=512 • 
• WORD a ;ADDITIONAL PARAMETERS ••• 
• WORD a ; ••• NOT USED IN ••• 
• WORD a ; ••• THIS PARTICULAR ••• 
.WORD a ; •.• INVOCATION OF QUEUE I/O 

( 

( 

5-147 



DIRECTIVE DESCRIPTIONS 

RCST$ 

5.3.54 Receive Data or Stop 

The Receive Data or Stop dir~ctive instructs the system to dequeue a 
13-word data block for the issuing task. The data block was queued 
for the task with a Send Data Directive or a Send, Request, and 
Connect directive. 

A two-word task name of the sender (in Radix-50 format) and the 
13-word data block are returned in an indicated IS-word buffer. The 
task name is contained in the first two words of the buffer. 

If no data has been sent, the issuing task is stopped. In this case, 
the sender task is expected to issue an unstop directive after sending 
data. A success status code of IS.SUC indicates that a packet has 
been received. A success status code of IS.SET indicates that the 
task was stopped and has been unstopped. The directive must be 
reissued to retrieve the packet. 

( 

When a slave task issues the Receive Data or Stop directive, it ~_ 
assumes the UIC (if it has no outstanding group global event flag 
context) and TI: of the task that sent the data. 

FORTRAN Call: 

CALL RCST ([rtname] ,ibuf[,idsw]) 

rtname 

ibuf 

idsw 

Macro Call: 

RCST$ 

tname 

buf 

Sender task name (if not specified, data may be 
received from any task) 

Address of a IS-word buffer to receive the sender 
task name and data 

= Integer to receive the Directive Status Word 

[tname] ,~uf 

Sender task name (if not specified, data may be 
received from any task) 

Address of a IS-word buffer to receive the sender 
task name and data 

Macro Expansion: 

RCST$ 
.BYTE 
.RAD50 
.WORD 

ALPHA, TSKBUF 
139.,4 
ALPHA 
TSKBUF 

iRCST$ MACRO DIC, DPB SIZE 
iDATA SENDER TASK NAME 
iBUFFER ADDRESS 

Local Symbol Definitions: 

R.CSTN 

R.CSBF 

Task name (4) 

Buffer address (2) 

5-148 

4 WORDS 

( 

( 

( 



DSW Return Codes: 

IS.SUC c IS.SET 

IE.RSU 

IE.AST 

IE.ADP 

IE.SDP 

c 

( 

DIRECTIVE DESCRIPTIONS 

Successful completion. 

No data was received and th~ task was stopped. (Note 
that the task must be unstopped before it can see 
this status.) 

The issuing task is a slave task with a group global 
context active, and the next packet received would 
have changed the task's group number. 

The issuing task is at AST state. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

5-149 



DIRECTIVE DESCRIPTIONS 

RCVD$ 

S.3.SS Receive Data 

The Receive Data directive instructs the system to dequeue a 13-word 
data block for the issuing task. The data block has been queued 
(FIFO) for the task by a Send Data directive. 

A two-word task name of the sender (in Radix-SO format) and the 
13-word data block are returned in an indicated lS-word buffer. The 
task name is contained in the first two words of the buffer. 

When a slave task issues the Receive Data directive, it assumes the 
UIC (if it has no outstanding group global event flag context) and TI: 
of the task that sent the data. 

FORTRAN Call: 

CALL RECEIV ([tsk) ,buf["ids) 

tsk = Sender task name (if not specified, data may be 
received from any task) 

buf A lS-word integer array for received data 

ids Directive status 

Macro Call: 

RCVD$ [tsk) ,buf 

tsk = Sender task name (if not specified, data may 
received from any task) 

buf = Address of a lS-word buffer 

Macro Expansion: 

RCVD$ 
.BYTE 
.RADSO 
.WORD 

ALPHA,DATBUF 
7S.,4 
/ALPHA/ 
DATBUF 

;TASK NAME AND BUFFER ADDRESS 
;RCVD$ MACRO DIC, DPB SIZE = 4 WORDS 
;SENDER TASK NAME 
;ADDRESS OF lS(lO)-WORD BUFFER 

Local Symbol Definitions: 

R.VDTN Sender task name (4) 

R.VDBA Buffer address (2) 

S-lSO 

be 

c 

c 

( 

( 



( 

c 

DSW Return Codes: 

IS.SUC 

IE. ITS 

IE.RSU 

IE.ADP 

IE.SDP 

Notes: 

DIRECTIVE DESCRIPTIONS 

Successful completion. 

No data currently queued. 

The issuing task is a slave task with a group global 
context active, and the next packet to be received 
would have changed the task's group number. 

Part of the DPB or buffer is out of the issuing 
task's address space. 

DIC or DPB size is invalid. 

2. If the sending task specifies a common or group global event 
flag in the Send Data directive, the receiving task may use 
that event flag for synchronization. However, between the 
time that the receiver issues this directive and the time the 
receive~ issues its next instruction, the sender can send 
data and set the event flag. If the next instruction is an 
Exit directive, any data sent during this time will be lost 
because the Executive flushes the task's receive list as part 
of exit processing. Therefore, use the Exit If directive or 
the Receive Data or Exit directive in order to avoid the race 
condition. 

5-151 



DIRECTIVE DESCRIPTIONS 

RCVX$ 

S.3.S6 Receive Data or Exit 

The Receive Data or Exit directive instructs the system to dequeue a 
l3-word data block for the issuing task. The data block has been 
queued (FIFO) for the task by a Send Data directive. 

A two-word task name of the sender (in Radix-SO format) and the 
l3-word data block are returned in an indicated lS-word buffer. The 
task name is contained in the first two words of the buffer. 

If no data has been sent, a task exit 
loss of send packets, you should not 
of any outstanding I/O or open files. 
responsibility. 

occurs. To prevent the possible 
rely on I/O rundown to take care 

The task should assume this 

When a slave task issues the Receive Data or Exit directive, it 

( 

assumes the UIC (if it has no outstanding group global event flag C· 
context) and TI: of the task that sent the data. See the Notes. 

FORTRAN Call: 

CALL RECOEX ( [tsk] ,buf [,' ids] ) 

tsk Sender task name (if not specified, data may 
received from any task) 

buf A lS-word integer array for received data 

ids Directive status 

Macro Call: 

RCVX$ [tsk] ,buf 

tsk Sender task name (if not specified, data may 
received from any task) 

buf Address of a lS-word buffer 

Macro Expansion: 

iTASK NAME AND BUFFER ADDRESS RCVX$ 
.BYTE 
.RADSO 
.WORD 

ALPHA,DATBUF 
77. ,4 
/ALPHA/ 
DATBUF 

iRCVX$ MACRO DIC, DPB SIZE = 4 WORDS 
iSENDER TASK NAME 
iADDRESS OF lS(lO)-WORD BUFFER 

Local Symbol Definitions: 

R.VXTN Sender task name (4) 

R.VXBA Buffer address (2) 

S-lS2 

be 

( 

be 

( 

( 



( 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

DSW Return Codes: 

IS.SUC Successful completion. 

IE.RSU The issuing task is a slave task with a group global 
context active, and the next packet to be received 
would have changed the task's group number. 

IE.ADP Part of the DPB or buffer is out of the issuing 
task's address space. 

IE.SDP DIC or DPB size is invalid. 

Notes: 

1. A FORTRAN program that issues the RECOEX call must first 
close all files by issuing CLOSE calls. See the RSX, VAX/VMS 
FORTRAN IV User's Guide or the PDP-II FORTRAN-77 User's Guide 
for instructions concerning how to ensure that such files are 
closed properly if the task exits. 

To avoid the time overhead involved in the closing and 
reopening of files, the task should first issue the RECEIV 
call. If the directive status indicates that no data was 
received, then the task can close all files and issue the 
call to RECOEX. The following example illustrates the same 
overhead saving in MACRO-II: 

RCVBUF: • BLKW 

START: RCVX$C 
CALL 

PROC: 

Process 

RCVD$C 
BCC 
CALL 

JMP 

15 . 

,RCVBUF 
OPEN 

packet 

,RCVBUF 
PROC 
CLOSE 

START 

of data 

Receive buffer 

Attempt to receive message 
Call user subroutine to open files 

Attempt to receive another message 
If CC successful receive 
Call user subroutine to close files 
and prepare for possible task exit 
Make one last attempt at receiving 

2. If no data has been sent that is, if no Send Data 
directive has been issued the task exits. Send packets 
may be lost if a task exits with outstanding I/O or open 
files (see third paragraph of directive description). 

3. The Receive Data or Exit directive is useful in avoiding a 
possible race condition that can occur between two tasks 
communicating by the Send and Receive directives. The race 
condition occurs when one task executes a Receive directive 
and finds its receive queue empty, but before the task can 
exit, the other task sends it a message. The message is lost 
because the Executive flushes the receiver task's receive 
queue when it exits. This condition can be avoided by the 
receiving task's executing a Receive Data or Exit directive. 
If the receive queue is found to be empty, a task exit occurs 
before the other task can send any data. Thus, no loss of 
data can occur. 

5-153 



DIRECTIVE DESCRIPTIONS 

4. On exit, the Executive frees task resources. In particular, 
the Executive: 

• Detaches all attached devices 

• Flushes the AST queue and despecifies all specified 
ASTs 

• Flushes the receive and receive-by-reference queues 

• Flushes the clock queue for outstanding Mark Time 
requests for the task 

• Closes all open files (files open for write access 
are locked) 

• Detaches all attached regions, except in the case of 
a fixed task 

• Runs down the task's I/O 

• Deaccesses the group global event flags for the 
task's group 

• Disconnects from interrupts 

• Flushes all outstanding CLI command buffers for the 
task 

• Returns a success status (EX$SUC) to any parent tasks 

• Breaks the connection with any offspring tasks 

• Frees the task's memory if the exiting task was not 
fixed 

5. If the task exits, the Executive declares a significant 
event. 

5-154 

( 

( 

( 

( 



c 

( 

(-

DIRECTIVE DESCRIPTIONS 

RDAF$ 

5.3.57 Read All Event Flags 

The Read All Event Flags directive instructs the system to read all 64 
event flags for the issuing task and record their polarity in a 64-bit 
(four-word) buffer. 

NOTE 

This directive does not return group global event 
flags (event flags 65-96). 

FORTRAN Call: 

A FORTRAN task can read only one event flag. The call is: 

CALL READEF (efn[,ids]) 

efn Event flag number 

ids Directive status 

The Executive returns the status codes IS.SET (+02) and IS.CLR 
(00) for FORTRAN calls in order to report event-flag polarity. 

Macro Call: 

RDAF$ buf 

buf Address of a four-word buffer 

Buffer Format: 

Word 0 Task 

Word 1 Task 

Word 2 Task 

Word 3 Task 

Macro Expansion: 

RDAF$ 
.BYTE 
.WORP 

FLGBUF 
39.,2 
FLGBUF 

local 

local 

common 

common 

Local Symbol Definitions: 

flags 1-16 

flags 17-32 

flags 33-48 

flags 49-64 

;RDAF$ MACRO DIC, DPB SIZE 
;ADDRESS OF 4-WORD BUFFER 

R.DABA Buffer address (2) 

DSW Return Codes: 

IS.SUC Successful completion. 

2 WORDS 

IE.ADP Part of the DPB or buffer is out of the issuing 
task's address space. 

IE.SDP DIC or DPB size is invalid. 

5-155 



DIRECTIVE DESCRIPTIONS 

( 

c 

( 

( 

5-156 . 



( 

( 

DIRECTIVE DESCRIPTIONS 

RDXF$ 

5.3.59 Read Extended Event Flags 

The Read Extended Event Flags directive instructs the system to read 
all local, common, and group global event flags for the issuing task 
and record their polarity in a 96-bit (six-word) buffer. 

FORTRAN Call: 

A FORTRAN task can read only one event flag. The call is: 

CALL READEF (efn[,ids]) 

efn = Event flag number 

ids = Directive status 

The Executive returns the status codes IS.SET (+02) and IS.CLR 
(00) for FORTRAN calls in order to report event-flag polarity. 

Macro Call: 

RDXF$ buf 

buf = Address of a six-word buffer 

Buffer Format: 

Word 0 Task 

Word 1 Task 

Word 2 Task 

Word 3 Task 

Word 4 Task 

Word 5 Task 

Macro Expansion: 

RDXF$ 
.BYTE 
.WORD 

FLGBUF 
39. ,3 
FLGBUF 

local 

local 

common 

common 

group 

group 

Local Symbol Definitions: 

flags 1-16 

flags 17-32 

flags 33-48 

flags 49-64 

global flags 65-80 

global flags 81-96 

iRDXF$ MACRO DIC, DPB SIZE 
iADDRESS OF 6-WORD BUFFER 

R.DABA Buffer address (2) 

DSW Return Codes: 

IS.SUC Successful completion. 

3 WORDS 

IS.CLR Group global event flags do not exist. Words 4 and 5 
of the buffer contain zero. 

IE.ADP 

IE.SDP 

Part of the DPB or buffer is out of the issuing 
task's address space. 

DIC or DPB size is invalid. 

5-157 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

( 

5-158 



DIRECTIVE DESCRIPTIONS 

c 

( 

( 

5-159 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

( 

( 

5-160 



( 

c 

( 

c-

c_ 

DIRECTIVE DESCRIPTIONS 

5.3.61 Remove Affinity ($S Form Recommended) 

(RSX-IIM-PLUS multiprocessor systems only.) 
directive removes the task's CPU affinity 
established by issuing a Set Affinity directive. 
$S form is available for this directive. 

FORTRAN Ca 11 : 

CALL RMAF [( idsw) 1 

RMAF$S 

The Remove Affinity 
that was· previously 
Note that only the 

idsw Integer to receive the Directive Status Word 

Macro Call: 

RMAF$S 

Macro Expansion: 

RMAF$S 
MOV 
.BYTE 
EMT 

( PC ) + , - (S P ) 
163.,1 
377 

iPUSH DPB ONTO THE STACK 
iRMAF$S MACRO DIC, DPB SIZE = 1 WORD 
iTRAP TO EXECUTIVE 

Local Symbol Definitions: 

None 

DSW Return Codes: 

Note: 

IS.SUC 

IE.ITS 

IE.ADP 

IE .SDP 

Successful completion. 

Task installed with affinity. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

A task that is installed with task affinity must not issue this 
directive. Any attempt to do so results in an IE.ITS error 
returned. 

5-161 



DIRECTIVE DESCRIPTIONS 

RPOI$ 

5.3.62 Request and Pass Offspring Information 

The Request and Pass Offspring Information directive instructs the 
system to request the specified task and to chain to it by passing any 
or all of the parent connections from the issuing task to the 
requested task. Optionally, the directive can pass a command line to 
the requested task. Only a privileged or CLI task may specify the UIC 
and TI: of the requested task. 

FORTRAN Call: 

CALL RPOI (tname, [iugc], [iumc], [iparen], [ibuf], [ibfl], [isc], 
[idnam] , [iuni t] , [i task] , [ocbad] [, idsw]) 

tname 

iugc 

iumc 

iparen 

ibuf 

Name of an array containing the actual name (in 
Radix-50) of the task to be requested and optionally 
chained to. 

= Name of an integer containing the group code number 
for the UIC of the requested target chain task. 

Name of an integer containing the member code number 
for the UIC of the requested target chain task. 

Name of an array (or 1*4 integer) containing the 
Radix-50 hame of the parent task. This is returned 
in the information buffer of the GTCMCI subroutine. 

Name of an array containing the command line text for 
the chained task. 

ibfl Name of an integer containing the number of bytes in 
the command in the ibuf array. 

isc = Flag byte controlling the actions of this directive 
request when executed. The bit definitions of this 
byte (only the low-order byte of the integer 
specified in the call is ever used) are as follows: 

RP.OEX = 128. Force this task to exit on 
successful execution of the RPOI$ 
directive. 

RP.OAL 1 

RP.ONX = 2 

Pass all of this task's 
connections to the requested 
task (default is pass none). 

NOTE 

You cannot pass all 
connections if the target 
task is a CLI task. 

Pass the first eonnection 
in the queue, if there is one. 

idnam = Name of an integer containing the ASCII name of the 
requested task's TI: (must be the name of a physical 
device) 

5-162 

( 

( 

( 

( 



( 

( 

( 

iunit 

itask 

DIRECTIVE DESCRIPTIONS 

Name of an integer containing the unit number of the 
requested task's TI: 

Name of an array containing the Radix-50 name the 
requested task is to run under. 

For all systems, the requested task (specified in the 
tname parameter) must be installed in the ••• tsk 
format. 

ocbad = Name of an integer containing the pool address of the 
parent OCB. This value may be obtained only in the 
information buffer of the GTCMCI subroutine, which 
only a CLI can issue. Therefore, only a CLI can 
specify this argument. 

idsw = Name of an integer to receive the Directive Status 
Word 

Macro Call: 

RPOI$ tname", [ugc] , [umc] , [parent] , [bufadr] , [buflen] , [sc] , 
[dnam], [uni t] , [task] , [ocbad] 

tname Name of the task to be chained to 

ugc 

umc 

parent 

bufadr 

buflen 

sc 

Group code for the UIC of the requested task 

Member code for the UIC of the requested task 

Name of issuing task's parent task whose connection 
is to be passed 

Address of buffer to be given to the requested task 

Length of buffer to be given to the requested task 

Flag bits 
directive. 

RP.OEX 

RP.OAL 

controlling the execution of this 
The flag bits are defined as follows: 

(200) Force issuing task to exit. 

(1) Pass all connections (default is 
pass none). 

NOTE 

You cannot pass all 
connections if the target 
task is a CLI task. 

RP.ONX -- (2) Pass the first connection in the 
queue, if there is one. 

5-163 



dnam = 

unit 

task 

ocbad 

DIRECTIVE DESCRIPTIONS 

ASCII name for TI: (must be the name of a physical 
device) 

Unit number of task TI: 

Radix-SO name that the requested task is to run 
under. 

For all systems, the requested task (specified in the 
tname parameter) must be installed in the ••• tsk 
format. 

Address of OCB to pass (CLls only) 

Local Symbol Definitions: 

R.POTK Radix-50 name of the task to be chained to (4) 

R.POUM UIC member code (1) 

R.POUG UIC group code (1) 

R.POPT Name of parent whose OCB should be passed (4) 

R.POOA Address of OCB to pass (CLls only) (2) 

R.POBF Address of command buffer (2) 

R.POBL Length of command (2) 

R.POUN Uni t number of task TI: (1) 

R.POSC Flags byte (1) 

R.PODV ASCI I device name for TI: (2) 

R.POTN Radix-SO name of task to be started (4) 

Macro Expansion: 

RPOI$ 
.BYTE 
.RADSO 
.BLKW 
.BYTE 
.BYTE 
.RADSO 
.WORD 
.WORD 
.WORD 
.BYTE 
.BYTE 

.ASCII 

.RADSO 

. tname",ugc,umc,ptsk,buf,buflen,sc,dev,unit,task,ocbad 
11.,16. iRPOI$ MACRO DIC, DPB SIZE = 16(10) WORDS 
/tname/ iNAME OF TASK TO CHAIN TO 
3 iRESERVED 
umc iUIC MEMBER CODE 
ugc iUIC GROUP CODE 
/ptsk/ :NAME OF TASK WHOSE OCB SHOULD BE PASSED 
ocbad iADDRESS OF OCB 
buf iADDRESS OF BUFFER TO SEND 
buflen iLENGTH OF BUFFER 
unit iUNIT NUMBER OF TI: DEVICE 
sc iPASS BUFFER AS SEND PACKET OR COMMAND 

/dev/ 
/task/ 

iCODE 
iASCII NAME OF TI: OF REQUESTED TASK 
iNAME THAT REQUESTED TASK IS TO RUN UNDER 

S-164 

( 

( 

( 



DSW Return Codes: 

IE.UPN 

( 
IE. INS 

IE.ACT 

IE. ITS 

IE.NVR 

(-
IE.ALG 

IE.PNS 

( IE.ADP 

IE.SDP 

( 

DIRECTIVE DESCRIPTIONS 

There was insufficient dynamic memory to allocate an 
Offspring Control Block, command-line buffer, Task 
Control Block, or Partition Control Block. 

The specified task was not installed, or it was a CLI 
but no command line was specified. 

The specified task was already active and it was not 
a command line interpreter. 

A task that is not a CLI specified a CLI-only 
parameter or specified passing all connections to a 
CLIo 

There is no Offspring Control Block 
specified parent task. 

from the 

A CLI specified a parent name and an Offspring 
Control Block address that did not describe the same 
connection, or either a parent name or an Offspring 
Control Block address was specified and the pass-all
connections tlag or the pass-next-connection flag was 
set. 

The Task Control Block cannot be created in the same 
partition as its prototype. 

Part of the DPB, exit status block, or command line 
is out of the issuing task's address space. 

DIC or DPB size is invalid. 

5-165 



DIRECTIVE DESCRIPTIONS 

RQST$ 

5.3.63 Request Task 

The Request Task directive instructs the system to activate a task. 
The task is activated and subsequently runs contingent upon priority 
and memory availability. The Request Task directive is the basic 
mechanism used by running tasks to initiate other installed (dormant) 
tasks. The Request Task directive is a frequently used subset of the 
Run directive. See the Notes. 

FORTRAN Call: 

CALL REQUES (tsk, [opt] [, ids] ) 

tsk Task name 

opt = A four-word integer array: 

ids 

Macro Call: 

RQST$ 

tsk 

prt 

pri 

ugc 

umc 

opt (1) Partition name, first half (ignored, 
but must be present) 

opt(2) = Partition name, second half (ignored, 
but must be present) 

opt(3) Priority (ignored, but must be present) 

opt(4) User Identification Code 

Directive status 

tsk, [prt] , [pri] [,ugc ,umc] 

Task name 

Partition name (ignored, but must be present) 

Priority (ignored, but must be present) 

UIC group code 

UIC member code 

Macro Expansion: 

RQST$ 
.BYTE 
.RAD50 
.WORD 
.WORD 
.BYTE 

ALPHA",20,10 
11. , 7 
/ALPHA/ 
0,0 
o 
10,20 

;RQST$ MACRO DIC, DPB SIZE = 7 WORDS 
;TASK "ALPHA" 
;PARTITION IGNORED 
;PRIORITY IGNORED 
;UIC UNDER WHICH TO RUN TASK 

5-166 

c 

( 

( 

( 

( 



c 

( 

( 

l 

DIRECTIVE DESCRIPTIONS 

Local Symbol Definitions: 

R.QSTN 

R.QSPN 

R.QSPR 

R.QSGC 

R.QSPC 

DSW Return Codes: 

IS.SUC 

IE.UPN 

IE. INS 

IE.ACT 

IE.ADP 

IE.SDP 

Notes: 

Task name (4) 

Partition name (4) 

Priority (2) 

UIC group (1) 

UIC member (1) 

Successful completion. 

Insufficient dynamic memory. 

Task is not installed. 

Task is already active. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

1. The requested task must be installed in the system. 

2. If the partition in which a requested task is to run is 
already occupied, the Executive places the task in a queue of 
tasks waiting for that partition. The requested task then 
runs, depending on priority and resource availability, when 
the partition is free. Another possibility is that 
checkpointing may occur. If the current occupant(s)of the 
partition are checkpointable, have checkpointing enabled, and 
are of lower priority than the requested task, they are 
written to disk when their current outstanding I/O completes; 
the requested task is then read into the partition. 

3. Successful completion means that the task has been declared 
active, not that the task is actually running. 

4. The requested task acquires the same TI: terminal assignment 
as that of the requesting task. 

5. The requested task always runs at the priority specified in 
its task header. 

6. A task that executes in a system-controlled partition 
requires dynamic memory for the Partition Control Block used 
to describe its memory requirements. 

5-167 



8. 

DIRECTIVE DESCRIPTIONS 

On systems that support multiuser protection, each active 
task has two UICs: a protection UIC and a default UIC. 
These are both returned when a task issues a Get Task 
Parameters directive (GTSK$) • The UICs are used in the 
following ways: 

• The protection UIC determines the task's access 
rights for opening files and attaching to regions. 
When a task attempts to open a file, the system 
compares the task's protection UIC against the 
protection mask of the specified UFD. The comparison 
determines whether the task is to be considered for 
system, owner, group, or world access. 

• The default UIC is used by the File Control Services 
to determine the default UFD when a file-open 

does not a directory 

On multiuser protection systems, each terminal also has a 
protection UIC and a default UIC. If a terminal is 
nonprivileged, the protection UIC is the login UIC and the 
default UIC is the UIC specified in the last SET IUIC command 
issued. If no SET IUIC command has been issued, the default 
UIC is equal to the login UIC. If the terminal is 
privileged, both the protection and the default UICs are 
equal either to the UIC specified in the last SET IUIC 
command or to the login UIC if a SET IUIC command has not 
been issued. 

The system establishes a task's UICs when the task is 
activated. In general, when the MCR dispatcher or the MCR or 
DCL RUN command activates a task, the task assumes the 
protection and default UICs of the issuing terminal. 
However, if you specify the IUIC keyword to the MCR or DCL 
INSTALL or RUN command, the specified UIC becomes the default 
UIC for the activated task; and if the issuing terminal is 
privileged, the specified UIC becomes the activated task's 
protection UIC as well. 

The system establishes UICs in the same manner when one task 
issues a Request directive to activate another task. The 
protection and default UICs of the issuing task generally 
become the corresponding UICs of the requested task. 
However, if a nonprivileged task specifies a UIC in a Request 
directive, the specified UIC becomes only the default UIC for 
the requested task. If a privileged task specifies a UIC in 
a Request directive, the specified UIC becomes both the 
protection and default UIC for the requested task. 

9. On RSX-IIM-PLUS systems, if you are using named directory 
support, the requested task acquires the same default 
directory string as that of the requesting task. This string 
is used by the File Control Services (FCS) when a file-open 
operation does not specify a directory. 

5-168 

(-

( 

( 



c 

c 

( 

DIRECTIVE DESCRIPTIONS 

RREF$ 

5.3.64 Receive By Reference 

The Receive By Reference directive requests the Executive to dequeue 
the next packet in the receive-by-reference queue of the issuing 
(receiver) task. Optionally, the task will exit if there are no 
packets in the queue. The directive may also specify that the 
Executive proceed to map the region referred to. 

If successful, the directive declares a significant event. 

Each reference in the task's receive-by-reference queue represents a 
separate attachment to a region. If a task has multiple references to 
a given region, it is attached to that region the corresponding number 
of times. Because region attachment requires system dynamic memory, 
the receiver task should detach from any region that it was already 
attached to in order to prevent depletion of the memory pool. That 
is, the task needs to be attached to a given region only once. 

If the Executive does not find a packet in the queue and the task has 
set WS.RCX in the window status word (W.NSTS), the task exits. If 
WS.RCX is not set, the Executive returns the DSW code IE. ITS. 

If the Executive finds a packet, it writes the information provided to 
the corresponding words in the Window Definition Block. This 
information provides sufficient information to map the reference, 
according to the sender task's specifications, with a previously 
created address window. 

If the address of a lO-word receive buffer has been specified (W.NSRB 
in the Window Definition Block), then the sender task name and the 
eight additional words passed by the sender task (if any) are placed 
in the specified buffer. If the sender task did not pass on any 
additional information, the Executive writes in the sender task name 
and eight words of zero. 

If the WS.MAP bit in the window status word has been set to 1, the 
Executive transfers control to the Map Address Window directive to 
attempt to map the reference. 

When a task that has unreceived packets in its receive-by-reference 
queue exits or is removed, the Executive removes the packets from the 
queue and deal locates them. Any related flags are not set. 

FORTRAN Call: 

CALL RREF (iwdb,[isrb] [,ids]) 

iwdb An eight-word integer array containing 
Definition Block (see Section 3.5.2.2) 

a Window 

isrb A lO-word integer array to be used 
buffer. If the call omits this 
contents of iwdb(8) are unchanged. 

ids Directive status 

5-169 

as the receive 
parameter, the 



DIRECTIVE DESCRIPTIONS 

Macro Call: 

RREF$ wdb 

wdb Window Definition Block address 

Macro Expansion: 

RREF$ 
.BYTE 
.WORD 

WDBADR 
81. ,2 
WDBADR 

;RREF$ MACRO DIC, DPB SIZE 
;WDB ADDRESS 

2 WORDS 

Window Definition Block Parameters: 

Input parameters: 

Array 
Element 

iwdb{l) 
bi ts 0-7 

iwdb(7) 

iwdb (8) 

Offset 

W.NID 

W.NSTS 

W.NSRB 

Output parameters: 

iwbd(4) W.NRID 

iwdb(5) W.NOFF 

iwdb (6) W.NLEN 

ID of an existing window if region 
is to be mapped 

Bit settings l in the window status 
word: 

Bit 

WS.MAP 

WS.RCX 

Definition 

1 if received reference 
is to be mapped 

1 if task exit desired 
when no packet is found 
in the queue 

Optional address of a 10-word buffer 
to contain the sender task name and 
additional information 

Region ID (pointer to attachment 
description) 

Offset word specified by sender task 

Length word specified by sender task 

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to 
determine the bit values represented by the symbolic names described. 

5-170 

( 

( 

( 

( 



( 

iwdb (7) 

DIRECTIVE DESCRIPTIONS 

W.NSTS Bit settings 1 in the window status 
word: 

Bit Definition 

WS.RED 1 if attached with read 
access 

WS.WRT .1 if attached with 
write access 

WS.EXT 1 if attached with 
extend access 

WS.DEL 1 if attached with 
delete access 

WS.RRF 1 if receive was 
successful 

The Executive clears the remaining 
bits. 

Local Symbol Definitions: 

R.REBA 

DSW Return Codes: 

IS.SUC 

IE.ITS 

IE.AOP 

IE.SDP 

Window Definition Block address (2) 

Successful completion. 

No packet found in the receive-by-reference queue. 

Address check of the DPB, WOB, or the receive buffer 
(W.NSRB) failed. 

DIC or OPB size is invalid. 

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to 
determine the bit values represented by the symbolic names described. 

5-171 



DIRECTIVE DESCRIPTIONS 

RRST$ 

5.3.65 Receive By Reference or Stop 

The Receive By Reference or Stop directive requests the Executive to 
dequeue the next packet in the receive-by-reference queue of the 
issuing (receiver) task. The task will stop if there are no packets 
in the queue. The directive may also specify that the Executive 
proceed to map the region referred to. 

If successful, the directive declares a significant event. 

Each reference in the task's receive-by-reference queue represents a 
separate attachment to a region. If a task has multiple references to 
a given region, it is attached to that region the corresponding number 
of times. Because region attachment requires system dynamic memory, 
the receiver task should detach from any region that it was already 
attached to in order to prevent depletion of the memory pool. That 
is, the task needs to be attached to a given region only once. 

If the Executive finds a packet, it writes the information provided to 
the corresponding words in the Window Definition Block. This 
information provides sufficient information to map the reference, 
according to the sender task's specifications, with a previously 
created address window. 

If the address of a 10-word receive buffer has been specified (W.NSRB 
in the Window Definition Block), then the sender task name and the 
eight additional words passed by the sender task (if any) are placed 
in the specified buffer. If the sender task did not pass on any 
additional information, the Executive writes in the sender task name 
and eight words of zero. 

If the WS.MAP bit in the window status word has been set to 1, the 
Executive transfers control to the Map Address Window directive to 
attempt to map the reference. 

When a task that has unreceived packets in its receive-by-reference 
queue exits or is removed, the Executive removes the packets from the 
queue and dea110cates them. Any related flags are not set. 

FORTRAN Call: 

CALL RRST (iwdb, [isrb] [,ids]) 

iwdb An eight-word integer array containing 
Definition Block (see section 3.5.2.2) 

a Window 

isrb = A 10-word integer array to be used 
buffer. If the call omits this 
contents of iwdb(8) are unchanged. 

ids = Directive status 

Macro Call: 

RRST$ wdb 

wdb Window Definition Block address 

5-172 

as the receive 
parameter, the 

c 

c 

( 

( 



( 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

Macro Expansion: 

RRST$ 
.BYTE 
.WORD 

WDBADR 
213.,2 
WDBADR 

iRRST$ MACRO DIC, DPB SIZE = 2 WORDS 
iWDB ADDRESS 

Window Definition Block Parameters: 

Input parameters: 

Array 
Element 

iwdb(l) 
bits 0-7 

iwdb(7) 

iwdb (8) 

Offset 

W.NID 

W.NSTS 

W.NSRB 

Output parameters: 

iwbd(4) 

iwdb(5) 

iwdb (6) 

iwdb(7) 

W.NRID 

W.NOFF 

W.NLEN 

W.NSTS 

ID of an existing window if region 
is to be mapped 

Bit setting l in the window status 
word: 

Bit 

WS.MAP 

Definition 

1 if received reference 
is to be mapped 

Optional address of a 10-word buffer' 
to contain the sender task name and 
additional information 

Region ID (pointer to attachment 
description) 

Offset word specified by sender task 

Length word specified by sender task 

Bit settingsl in the window status 
word: 

Bit Definition 

WS.RED 1 if attached with read 
access 

WS.WRT 1 if attached with 
write access 

WS.EXT 1 if attached with 
extend access 

WS.DEL 1 if attached with 
delete access 

WS.RRF 1 if receive was 
successful 

The Executive clears the remaining bits. 

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to 
determine the bit values represented by the symbolic names described. 

5-173 



DIRECTIVE DESCRIPTIONS 

Local Symbol Definitions: 

R.RSBA Window Definition Block address (2) 

DSW Return Codes: 

IS.SUC 

IE.ADP 

IE.SDP 

Successful completion. 

Address check of the DPB, WDB, or the receive buffer 
(W. NSRB) fai led. 

DIC or DPB size is invalid. 

5-174 

c 

( 

c 



c 

c 

( 

DIRECTIVE DESCRIPTIONS 

RSUM$ 

5.3.66 Resume Task 

The Resume Task directive instructs the system to resume the execution 
of a task that has issued a Suspend directive. 

FORTRAN Call: 

CALL RESUME (tsk[,ids]) 

tsk Task name 

ids Directive status 

Macro Call: 

RSUM$ tsk 

tsk Task name 

Macro Expansion: 

RSUM$ 
.BYTE 
.RAD50 

ALPHA 
47. ,3 
/ALPHA/ 

Local Symbol Definitions: 

;RSUM$ MACRO DIC, DPB SIZE 
;TASK "ALPHA" 

R.SUTN Task name (4) 

DSW Return Codes: 

IS.SUC Successful completion. 

IE. INS Task is not installed. 

IE.ACT Task. is not active. 

IE. ITS Task is not suspended. 

3 WORDS 

IE.ADP Part of the DPB is out of the issuing task's address 
space. 

IE.SDP DIC or DPB size is invalid. 

5-175 



DIRECTIVE DESCRIPTIONS 

RUN$ 

5.3.67 Run Task 

The Run Task directive causes a task to be requested at a specified 
future time and, optionally, to be requested periodically. The 
schedule time is specified in terms of delta time from issuance. If 
the smg, rmg, and rnt parameters are omitted, the Run directive is the 
same as the Request directive, except that: 

1. Run causes the task to become active one clock tick after the 
directive is issued. 

2. The system always sets the TI: device for the requested task 
to CO:. 

See the Notes. 

FORTRAN Call: 

CALL RUN (tsk, [opt] ,smg,snt, [rmg] , [rnt] [,ids]) 

tsk = Task name 

opt A four-word integer array: 

opt(l) = Partition name, first half (ignored, 
but must be present) 

opt(2) = Partition name, second half (ignored, 
but must be present) 

opt(3) = Priority (ignored, but must be present) 

opt(4) = User Identification Code 

smg Schedule delta magnitude 

snt Schedule delta unit (either 1, 2, 3, or 4) 

rmg = Reschedule interval magnitude 

rnt Reschedule interval unit 

ids Directive status 

The ISA standard call for initiating a task is also provided: 

CALL START(tsk,smg,snt[,ids]) 

tsk Task name 

smg = Schedule delta magnitude 

snt Schedule delta unit (either 0, 1, 2, 3, or 4) 

ids Directive status 

5-176 

c 

( 

c 

( 



( 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

Macro Call: 

RUN$ tsk, [prt], [pri], [ugc], [umc] ,smg,snt[,rmg,rnt] 

tsk Task name 

prt Partition name (ignored, but must be present) 

pri Priority (ignored, but must be present) 

ugc UIC group code 

umc UIC member code 

smg Schedule delta magnitude 

snt Schedule delta unit (either 1, 2, 3, or 4) 

rmg Reschedule interval magnitude 

rnt Reschedule interval unit 

Macro Expansion: 

RUN$ 
.BYTE 
.RAD50 
.WORD 
.WORD 
.BYTE 
.WORD 
.WORD 
.WORD 
.WORD 

ALPHA",20,10,20.,3,10.,3 
17.,11. ;RUN$ MACRO DIC, DPB SIZE 11(10) WORDS 
/ALPHA/ ;TASK "ALPHA" 
0,0 ;PARTITION IGNORED 
o ;PRIORITY IGNORED 
10,20 ;UIC TO RUN TASK UNDER 
20. ;SCHEDULE MAGNITUDE=20(10) 
3 ;SCHEDULE DELTA TIME UNIT=MINUTE (=3) 
10. ;RESCHEDULE INTERVAL MAGNITUDE=10(10) 
3 ;RESCHEDULE INTERVAL UNIT=MINUTE (=3) 

Local Symbol Definitions: 

R.UNTN Task name (4 ) 

R.UNPN Parti tion name (4) 

R.UNPR Priority (2) 

R.UNGC UIC group code (1) 

R.UNPC UIC member' code (1 ) 

R.UNSM Schedule magnitude (2) 

R.UNSU Schedule unit (2) 

R.UNRM Reschedule magnitude (2) 

R.UNRU Reschedule unit (2 ) 

DSW Return Codes: 

For CALL RUN and RUN$: 

IS.SUC Successful completion. 

IE. UPN Insufficient dynamic memory. 

IE.ACT Multiuser task name specified. 

5-177 



IE .·INS 

IE.PRI 

IE.ITI 

IE.ADP 

IE.SDP 

DIRECTIVE DESCRIPTIONS 

Task is not installed. 

Nonprivileged task specified a UIC other than 
its own. 

Invalid time parameter. 

Part of the DPB is out of the issuing task's 
address space. 

DIC or DPB size is invalid. 

For CALL START: 

Notes: 

RSX-llM/M-PLUS and Micro/RSX systems provide the following 
positive error codes to be returned for ISA calls: 

2 Insufficient dynamic storage. 

3 Specified task not installed. 

94 Invalid time parameter. 

98 Invalid event flag number. 

99 Part of DPB is out of task's address space. 

100 DIC or DPB size is invalid. 

1. On multiuser protection systems, a nonprivileged task cannot 

( 

( 

specify a UIC that is not equal to its own protection UIC. A (. 
privileged task can specify any UIC. 

3. The target task must be installed in the system. 

4. If there is not enough room in the partition in which a (-
requested task is to run, the Executive places the task in a 
queue of tasks waiting for that partition. The requested 
task will then run, depending on priority and resourc~ 
availability, when the partition is. free. Another 
possibility is that checkpointing will occur. If the current 
occupant(s) of the partition are checkpointable, have 
checkpointing enabled, are of lower priority than the 
requested task, or are stopped for terminal input, they will 
be written to disk when their current outstanding I/O 
completes. The requested task will then be read into the 
partition. 

5. Successful completion means the task has been made active. 
It does not mean that the task is actually running. 

5-178 



( 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

6. Time Intervals 

7. 

The Executive returns the code IE.ITI 
directive specifies an invalid time 
parameter consists of two components: 
magnitude and the time interval unit. 

in the DSW 
parameter. 
the time 

if the 
A time 

interval 

A legal magnitude value (smg or rmg) is related to the value 
assigned to the time interval unit snt or rnt. The unit 
values are encoded as follows: 

For an ISA FORTRAN call (CALL START): 

o = 

1 

Ticks -- A tick occurs for 
interrupt and is dependent 
clock installed in the system. 

each clock 
on the type of 

For a line-frequency clock, the tick rate is 
either 50 or 60 per second, corresponding to 
the power-line frequency. 

For a programmable clock, a maximum of 1000 
ticks per second is available. (The exact 
rate is determined during system generation.) 

Milliseconds -- The subroutine converts the 
specified magnitude to the equivalent number 
of system clock ticks. 

For all other FORTRAN and all macro calls: 

1 Ticks -- See definition of ticks above. 

For both types of FORTRAN calls and all macro calls: 

2 Seconds 

3 Minutes 

4 Hours 

The magnitude is the number of units to be clocked. The 
following list describes the magnitude values that are valid 
for each type of unit. In no case can the magnitude exceed 
24 hours. The list applies to both FORTRAN and macro calls. 

If unit = 0, 1, or 2, the magnitude can be any positive 
value with a maximum of 15 bits. 

If unit = 3, the magnitude can have a maximum value of 
1440 (lO) • 

If unit = 4, the magnitude can have a maximum value of 
24 (lO) • 

The schedule delta time is the difference in time from 
issuance of the RUN$ directive to the time the task is 
run. This time may be specified in the range from one 
tick to 24 hours. 

the 
to be 
clock 

5-179 



DIRECTIVE DESCRIPTIONS 

8. The reschedule interval is the difference in time from task 
initiation to the time the task is to be reinitiated. If 
this time interval elapses and the task is still active, no 
reinitiation request is issued. However, a new reschedule ( 
interval is started. The Executive will continually try to 
start a task, wait for the specified time interval, and then 
restart the task. This process continues until a CSRQ$ 
(Cancel Scheduled Initiation Requests) directive or an MCR or 
DCL CANCEL command is issued. 

9. Run requires dynamic memory for the clock-queue entry used to 
start the task after the specified delta time. If the task 
is to run in a system-controlled partition, further dynamic 
memory is required for the task's dynamically allocated 
Partition Control Block (PCB). 

10. If optional rescheduling is not desired, then the macro call 
should omit the arguments rmg and rnt. 

5-180 

( 

( 

( 

( 



( 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

SCAA$ 

5.3.68 Specify Command Arrival AST 

The Specify Command Arrival AST directive instructs the system to 
enable or disable command arrival ASTs for the issuing CLI task. If 
command arrival ASTs are enabled, the Executive transfers control to a 
specified address when commands have been queued to the CLI. 

Only CLI tasks can use this AST. 

The format of the stack when the AST routine is entered is as follows: 

SP+IO - Zero since no event flags are involved 
SP+06 - PS of task prior to AST 
SP+04 - PC of task prior to AST 
SP+02 - DSW of task prior to AST 
SP+OO - Address of command buffer just queued 

The AST routine must remove the command buffer address from the stack 
before issuing an ASTX$ directive. 

The command buffer address may be used when issuing a GCCI$ directive. 

FORTRAN Call: 

Not supported 

Macro Call: 

SCAA$ Cast] 

ast = AST service-routine entry point. Omitting this parameter 
disables command arrival ASTs for the issuing task until 
the directive is respecified. 

Macro Expansion: 

SCAA$ 
.BYTE 
.WORD 

ast 
173.,2 
ast 

iSCAA$ MACRO DIC, DPB SIZE 
;ADDRESS OF AST ROUTINE 

Local Symbol Definitions: 

S.CAAE Address of AST routine (2) 

DSW Return Codes: 

IE. ITS ASTs are already not desired. 

IE.AST Directive issued from AST state. 

IE.PRV Issuing task is not a CLI. 

IE.UPN Insufficient dynamic memory. 

2 WORDS 

IE.ADP Part of the DPB is out of the issuing task's address 
space. 

IE.SDP DIC or DPB size is invalid. 

5-181 



DIRECTIVE DESCRIPTIONS 

c 

( 

( 

(-

( 

5-182 



DIRECTIVE DESCRIPTIONS 

c 

( 

( 

5-183 



DIRECTIVE DESCRIPTIONS 

SCLI$ 

5.3.70 Set Command Line Interpreter 

The Set Command Line Interpreter directive instructs the system to set 
up the specified CLI as the CLI for the indicated terminal. The 
issuing task must be privileged or a CLI. 

If the restricted access flag (CP.RST) in the CLI status word is set, 
tne issuing CLI task is the only CLI task that can set a terminal to 
that CLI. 

FORTRAN Call: 

CALL SETCLI (icl i, idev, i uni t [, ids] ) 

icli Name of a two-word array element containing the name 
of the CLI the terminal is to be set to 

idev 

iunit 

Name of an integer containing the ASCII name of the 
terminal to be set (default = TI:) 

Name of an integer containing the unit number of the 
terminal 

ids = Directive status 

Macro Call: 

SCLI $ cl i, [dey] , [uni t] 

cli Name of the CLI the terminal is to be set to 

dey = ASCII name of the terminal to be set (default TI:) 

unit = Unit number of terminal 

Local Symbol Definitions: 

S .CIDV ASCII name of bhe terminal whose CLI is to be set 

( 

( 

( 

S .CIUN Octal unit number of terminal ( 

S.CICN Radix-50 name of the CLI that the terminal is to be 
set to 

Macro Expansion: 

SCLI$ 
.BYTE 
.ASCII 
.WORD 
.RAD50 

cli,dev,unit 
173.,5 
Idevl 
unit 
Iclil 

;SCLI$ MACRO DIC, DPB SIZE = 5 WORDS 
;ASCII NAME OF TERMINAL TO BE SET 
;UNIT NUMBER 
;CLI NAME 

5-184 



DSW Return Codes: 

IE.PRI 

( 
IE.IDU 

IE.INS 

IE. UPN 

IE.ADP 

IE.SDP 

DIRECTIVE DESCRIPTIONS 

Task not privileged or not a CLI. If CP.RST was set, 
task was not the CLI itself. 

Device not a terminal or does not exist. 

Specified CLI does not exist. 

Insufficient dynamic memory. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB length is invalid. 

5-185 



DIRECTIVE DESCRIPTIONS 

SDAT$ 

5.3.71 Send Data 

The Send Data directive instructs the system to declare a significant 
event and to queue (FIFO) a 13-word block of data for a task to 
receive. 

NOTE 

When a local event flag is specified, the flag is set 
for the sending task. 

When a common event flag is specified, the flag is set 
for all tasks. 

When a group global event flag is specified, the flag 
is set for all tasks within the specified group. 

For all event flags, a significant event is always 
declared. 

FORTRAN Call: 

CALL SEND (tsk,buf, [efn] [,ids]) 

tsk Task name 

buf A 13-word integer array of data to be sent 

efn Event flag number 

ids = Directive status 

Macro Call: 

SDAT$ tsk ,buf [,efn] 

tsk = Task name 

buf = Address of a 13-word data buffer 

efn = Event flag number 

Macro Expansion: 

SDAT$ 
.BYTE 
.RAD50 
.WORD 
• WORD 

ALPHA,DATBUF,52. 
71. ,5 
/ALPHA/ 
DATBUF 
52 • 

;SDAT$ MACRO DIC, DPB SIZE = 5 WORDS 
;RECEIVER TASK NAME 
;ADDRESS OF 13 (10)-WORD BUFFER 
;EVENT FLAG NUMBER 52 

Local Symbol Definitions: 

S.DATN 

S.DABA 

S.DAEF 

Task name (4) 

Buffer address (2) 

Event flag number (2) 

5-186 

( 

( 

( 

( 

l 



( 

( 

( 

DSW Return Codes: 

IS.SUC 

IE. INS 

IE.UPN 

IE. IEF 

IE.ADP 

IE.SDP 

Notes: 

DIRECTIVE DESCRIPTIONS 

Successful completion. 

Receiver task is not installed. 

Insufficient dynamic memory. 

Invalid event flag number (EFN<O, or EFN>96 if group 
global event flags exist for the task's group or 
EFN>64 if not). 

Part of the DPB or data block is out of the issuing 
task's address space. 

DIC or DPB size is invalid. 

1. Send Data requires dynamic memory. 

2. If the directive specifies a local event flag, the flag is 
local to the sender (issuing) task. RSX-IIM/M-PLUS and 
Micro/RSX systems do not allow one task to set or clear a 
flag that is local to another task. 

Normally, the event flag is used to trigger the receiver task 
into some action. For this purpose, the event flag must be 
common (33 through 64) or group global (65 through 96) rather 
than local. (Refer to the descriptions of the Receive Data 
directive and the Exit If directive.) 

5-187 



DIRECTIVE DESCRIPTIONS 

c' 

c 

( 

( 

5-188 



DIRECTIVE DESCRIPTIONS 

c 

( 

( 

( 

5-189 



DIRECTIVE DESCRIPTIONS 

( 

c 

( 

l 
5-190 



( 

( 

( 

--

( 

( 

DIRECTIVE DESCRIPTIONS 

SDRC$ 

5.3.73 Send, Request, and Connect 

The Send, Request, and Connect directive performs a Send Data to the 
specified task, requests the task if it is not already active, and 
then connects to the task. The receiver task normally returns status 

·by an Emit Status or Exit with Status directive. 

FORTRAN Ca 11 : 

CALL SDRC (rtname,ibuf, [iefn], [iast], [iesb], [iparm] [,idsw]) 

CALL SDRCN (rtname,ibuf, [iefn], [iast], [iesb], [iparm] [,idsw]) 

rtname 

ibuf 

iefn 

iast 

iesb 

iparm 

idsw 

Macro Call: 

SDRC$ 

tname 

buf 

efn 

Target task name of the offspring task to be 
connected 

Name of a 13-word send buffer 

Event flag to be set when the offspring task exits 
or emits status 

Name of an AST 
offspring task 
CALL SDRCN) 

routine to be called when the 
exits or emits status (ignored for 

= Name of an eight-word status block to be written 
when the offspring task exits or emits status: 

Word o Offspring-task exit status 

Word 1 TKTN abort code 

words 2-7 Reserved 

NOTE 

The exit status block defaults to one word. 
To use the eight-word exit status block, you 
must specify the logical OR of the symbol 
sp.wxa and the event flag number in the iefn 
parameter above. 

Name of a word to receive the status block address 
when an AST occurs 

Integer to receive the Directive Status Word 

tname,buf, [efn] , [east] , [esb] 

Target task name of the offspring task to be 
connected 

Address of a 13-word send buffer 

The event flag to be cleared on issuance and set 
when the offspring task exits or emits status 

5-191 



east 

esb 

DIRECTIVE DESCRIPTIONS 

Address of an AST routine to be called when the 
offspring task exits or emits status 

Address of an eight-word status block to be written 
when the offspring task exits or emits status: 

Word o Offspring-task exit status 

Word 1 TKTN abort code 

Words 2-7 Reserved 

NOTE 

The exit status block defaults to one word. 
To use the eight-word exit status block, you 
must specify the logical OR of the symbol 
SP.WX8 and the event flag number in the efn 
parameter above. 

Macro Expansion: 

SDRC$ 
.BYTE 
.RAD50 
.WORD 
.WORD 
.WORD 
.WORD 

ALPHA,BUFFR,2,SDRCTR,STBLK 
141.,7 ;SDRC$ MACRO DIC, DPB SIZE 
ALPHA ;TARGET TASK NAME 
BUFFR ;SEND BUFFER ADDRESS 
2 ;EVENT FLAG NUMBER = 2 
SDRCTR ;ADDRESS OF AST ROUTINE 
STBLK ;ADDRESS OF STATUS BLOCK 

7 WORDS 

Local Symbol Definitions: 

S.DRTN Task name (4) 

S.DRBF Buffer address (2) 

S.DREF Event flag (2) 

S.DREA AST routine address (2) 

S.DRES Status block address (2) 

DSW Return Codes: 

IS.SUC Successful completion. 

IE.UPN 

IE. INS 

IE.IEF 

IE.ADP 

IE.SDP 

There was insufficient dynamic memory to allocate a 
send packet, Offspring Control Block, 

or 
PartItIon Control Block • 

. The specified task is an ACP or has the no-send 
attribute. 

An invalid event flag number was specified (EFN<O, or 
EFN>96 if group global event flags exist for the task 
or EFN>64 if not). 

Part of the DPB or exit status block is not in the 
issuing task's address space. 

DIC or DPB size is invalid. 

5-192 

( 

(~ 

( 

( 



c 

( 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

Notes: 

1. If the specified event flag is group global, the use count 
for the event flag's group is incremented to prevent 
premature elimination of the event flags. The use count is 
run down when: 

• Status is returned from the connected task • 

• The issuing. task exits before status is returned. 

2. The virtual mapping of the exit status block should not be 
changed while the connection is in effect. Doing so may 
result in obscure errors. 

3. If the directive is rejected, the state of the specified 
event flag is indeterminate. 

5-193 



DIRECTIVE DESCRIPTIONS 

SDRP$ 

5.3.74 Send Data Request and Pass Offspring Control Block 

The Send Data Request and Pass Offspring Control 
instructs the system to send a send-data packet 
task, chain to the requested task, and request it if 
active. 

Block directive 
for the specified 
it is not already 

FORTRAN Call: 

CALL SDRP(task,ibuf, [ibfl] , [iefn], [iflag], [iparen], [iocbad] 
[ ,idsw] ) 

task 

, ibuf 

ibfl 

iefn 

iflag 

iparen = 

Name of an array (REAL,INTEGER,I*4) containing the 
Radix-50 name of the target task 

Name of an integer array containing the data to be 
sent 

integer containing the number of words 
the array to 

Name of an integer containing the number of the event 
flag that is to be set when this directive is 
executed successfully 

Name of an integer containing the flag 
controlling the ,execution of this directive. 
are defined as follows: 

SD.REX = 128. Force this task to exit upon 
successful execution of 
this directive. 

SD.RAL = 1 Pass all connections to the 

bits 
They 

requested task (default is pass 
none) • If you specify this 
flag, do not specify the parent 
task name. 

NOTE 

The target task may not be 
a CLI task. 

SD.RNX = 2 Pass the first connection 
in the queue, if there is one, 
to the requested task. If 
you specify this flag, do not 
specify the parent task name. 

Name of an array containing the Radix-50 name of the 
parent task whose connection should be passed to the 
target task. The name of the parent task was 
returned in the information buffer of the GTCMCI 
subroutine. 

5-194 

c 

( 



( 

( 

( 

( 

iocbad 

idsw 

Macro Call: 

DIRECTIVE DESCRIPTIONS 

Name of an integer containing the pool address of the 
OCB to pass. This value was returned in the 
information buffer of the GTCMCI subroutine. Only 
CLI tasks may specify this parameter. 

Name of an integer to receive the contents of the 
Directive Status Word 

SDRP$ task,bufadr,[buflen], [efn] ,[flag], [parent], [ocbad] 

task = Name of the task to be chained to 

bufadr 

buflen 

efn 

flag 

parent 

ocbad 

Macro Expansion: 

Address of buffer to be given to the requested task 

Length of buffer to be given to the requested task 

Event flag number 

Flag bits 
directive. 

SD.REX 

controlling the execution of this 
The flag bits are defined as follows: 

= (200) Force this 
successful 
directive. 

task to exit upon 
completion of this 

SD.RAL = (1) Pass all connections to the 
requested task (default is pass 
none). If you specify this flag, 
do not specify the parent task 
name. 

SD.RNX 

NOTE 

The target task may not be 
a CLI task. 

(2) Pass the first connection in the 
queue, if there is one, to the 
requested task. If you specify 
this flag, do not specify the 
parent task name. 

Name of issuing task's parent task whose connection 
is to be passed. If not specified, all connections 
or no connections are passed, depending on the flag 
bit. 

Address of OCB to pass (CLI tasks only) 

SDRP$ TASK,BUFADR, [BUFLEN] ,[EFN],[FLAG] ,[PARENT] , [OCBAD] 
.BYTE 141.,9. ;SDRP$ MACRO DIC, DPB SIZE = 9(10) WORDS 
.RAD50 /TASK/ ;TASK NAME IN RADIX-50 
.WORD BUFADR ;BUFFER ADDRESS 
.BYTE EFN,FLAG ;EVENT FLAG, FLAGS BYTE 
.WORD BUFLEN ;BUFFER LENGTH 
.RAD50 /PARENT/ ;PARENT TASK NAME 
.WORD OCBAD ;ADDRESS OF OCB 

5-195 



DIRECTIVE DESCRIPTIONS 

Local Symbol Definitions: 

S.DRTK 

S.DRAD 

S.DREF 

S.DRFL 

S.DRBL 

S.DRPT 

S.DROA 

DSW Return Codes: 

IE. ITS 

IE.NVR 

IE.ALG 

IE. IBS 

IE.UPN 

Radix-50 name of task to be chained to 

Send data buffer address 

Event flag 

Flag bits (see above) 

Name of parent whose OCB should be passed 

Address of OCB to pass (CLls only) 

A task that is not a CLI specified a CLI-only 
parameter or attempted to pass all connections to a 
CLIo 

No Offspring Control Block from specified parent. 

A CLI specified a parent name and an Offspring 
Control Block address that did not describe the same 
connection, or either a parent name or an OCB address 
was specified and the pass-alI-connections flag was 
set. 

There was insufficient dynamic memory to allocate a 
send packet, Offspring Control Bloc 

~1\l~Q1~;l!~ir\~i},1~!~~~~~~~!ifYI1!~~~u'e~ft~Mf~:. or 
Partition Control Block. 

IE. INS 

IE.IEF 

IE.ADP 

IE.SDP 

The specified task is an ACP or has the no-send 
attribute. 

An invalid event flag number was specified (EFN<O, or 
EFN>96 if group global event flags exist or EFN>64 if 
not) • 

Part of the DPB or exit status block is out of the 
issuing task's address space. 

DIC or DPB size is invalid. 

5-196 

( 

( 

( 



( 

c 

( 

( 

DIRECTIVE DESCRIPTIONS 

Notes: 

1. If the directive is rejected, the state of the specified 
event flag is indeterminate. 

2. If the specified event flag is group global, the use count 
for the event flag's group is incremented to prevent 
premature elimination of the event flags. The use count is 
run down when: 

• Status is returned from the connected tasks. 

• The issuing task exits before status is returned. 

5-197 



DIRECTIVE DESCRIPTIONS 

SETF$ 

5.3.75 Set Event Flag 

The Set Event Flag directive instructs the system to set an indicated 
event flag, reporting the flag's polarity before setting. 

FORTRAN Call: 

CALL SETEF (efn[,ids]) 

efn = Event flag number 

ids Directive status 

Macro Call: 

SETF$ efn 

efn Event flag number 

Macro Expansion: 

SETF$ 
.BYTE 
• WORD 

52. 
33. ,2 
52 • 

Local Symbol Definitions: 

;SETF$ MACRO DIC, DPB SIZE 
;EVENT FLAG NUMBER 52 

S.ETEF Event flag number (2) 

DSW Return Codes: 

IS.CLR Flag was clear. 

IS.SET Flag was already set. 

2 WORDS 

IE.IEF Invalid event flag number (EFN<l, or EFN>96 if group 
global event flags exist for the task's group or 
EFN>64 if not). 

Note: 

IE.ADP 

IE.SDP 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

Set Event Flag does not declare a significant event. 
sets the specified flag. 

It merely 

5-198 

( 

c 



( 

c 

c 

( 

( 

DIRECTIVE DESCRIPTIONS 

SFPA$ 

5.3.76 Specify Floating Point Processor Exception AST 

The Specify Floating Point Processor Exception AST directive instructs 
the system to record one of the following cases: 

• Floating Point Processor exception ASTs for the issuing task 
are desired, and the Executive is to transfer control to a 
specified address when such an AST occurs for the task. 

• Floating Point Processor exception ASTs for the issuing task 
are no longer desired. 

When an AST service-routine entry-point address is specified, future 
Floating Point Processor exception ASTs will occur for the issuing 
task and control will be transferred to the indicated location at the 
time of the AST's occurrence. When ah AST service entry-point address 
is not specified, future Floating Point Processor exception ASTs will 
not occur until the task issues a directive that specifies an AST 
entry point. See the Notes. 

FORTRAN Call: 

Not supported 

Macro Call: 

SFPA$ [ast] 

ast AST service-routine entry-point address 

Macro Expansion: 

SFPA$ 
.BYTE 
.WORD 

FLTAST 
111.,2 
FLTAST 

;SFPA$ MACRO DIC, DPB SIZE = 2 WORDS 
;ADDRESS OF FLOATING-POINT AST 

Local Symbol Definitions: 

S.FPAE 

DSW Return Codes: 

IS.SUC 

IE.UPN 

IE. ITS 

IE.AST 

IE.ADP 

IE.SDP 

AST entry address (2) 

Successful completion. 

Insufficient dynamic memory. 

AST entry-point address is already unspecified or 
task was built without floating-point support (FP 
switch not specified in Task Builder .TSK file 
specification) • 

Directive was issued from an AST service routine or 
ASTs are disabled. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

5-199 



DIRECTIVE DESCRIPTIONS 

Notes: 

1. A Specify Floating Point Processor Exception AST requires 
dynamic memory. ~ 

2. The Executive queues Floating Point Processor exception ASTs 
when a Floating Point Processor exception trap occurs for the 
task. No future ASTs of this kind will be queued for the 
task until the first one queued has actually been effected 
(that is, terminated by an ASTX$ directive). 

3. The Floating Point Processor exception AST service routine is 
entered with the task stack in the following state: 

SP+12 - Event-flag mask word 
SP+10 - PS of task prior to AST 
SP+06 - PC of task prior to AST 
SP+04 - DSW of task prior to AST 
SP+02 - Floating exception code 
SP+OO - Floating exception address 

The task must remove the floating-exception code and address 
from the task's stack before an AST Service Exit directive is ( 
executed. 

4. This directive cannot be issued either from an AST service 
routine or when ASTs are disabled. 

5. This directive applies only to the Floating Point Processor. 

5-200 

c 

( 

( 



( 

( 

( 

DIRECTIVE DESCRIPTIONS 

SMSG$ 

5.3.77 Send Message 

The Send Message directive instructs the system to create and send a 
formatted data packet to a system-defined target task. The only valid 
target for the Send Message directive is the Erior Logger, and the 
formatted data packet must be an error-log packet. The task that 
issues the SMSG$ directive must be privileged. The valid 
system-defined target identifier and its code are: 

TARGET 
IDENTIFIER 

CODE 

Error Logging SM.SER 

FORTRAN Call: 

CALL SMSG (itgt,ibuf,ibufl,iprm,iprml,ids) 

itgt The name of the integer containing the target object 
(currently, only SM.SER is defined) 

ibuf The name of an integer array containing the qata to 
be inserted into the formatted data packet 

ibufl The name of an integer containing the length of the 
ibuf array 

iprm The name of an , integer array containing any 
additional parameters 

iprml = The name of an integer containing the number of 
parameters in the iprm array 

ids 

Macro Call: 

The name of an optional integer to receive the 
directive status 

SMSG$ tgt,buf,len,<pri, ••• ,prn> 

tgt 

buf 

len 

Target identifier 

= Address of the optional data buffer 

Length in bytes of the optional data buffer 

pri, ••• ,prn = Target-specific 
parameter list: 

(for the Error Logger) 

SMSG$ SM.SER,buf,len,<typ,sub,lun,msk> 

typ = Error Logger packet type code 

sub Error Logger packet subtype code 

lun Logical unit number of the device 

msk Control mask word 

5-201 



DIRECTIVE DESCRIPTIONS 

The directive creates an error-log packet of the specified type and 
subtype codes. If you specify a LUN, the directive also records 
information about the device to which the LUN refers. The control ( 
mask word sets flags to zero I/O and error counts on the device 
specified, as shown below: 

Control-mask-word flag: 

SM.ZER Zeroes device I/O and error counts for device 
specified by LUN 

The directive also creates the following subpackets and places them in 
the error-log packet in the order listed below: 

1. Header subpacket -, The header subpacket, which 
type and subtype codes, the time stamp, 
identification, is always recorded. 

contains the 
and the system 

2. Task subpacket - The task subpacket, which identifies the 
task that issued the directive, is always recorded. 

3. Device subpacket - The device subpacket, which identifies the (-
device, is recorded if the directive specifies a LUN 
argument. 

4. Data subpacket - The data subpacket is recorded if the 
directive specifies an address and length of an optional data 
buffer ~ 

Macro Expansion (with Error Logger target): 

SMSG$ 
.BYTE 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 

Local Symbol 

S.MTGT' 

S.MDBA 

S.MDBL 

S.MPRL 

SM.SER,DATBUF,DATLEN,<PR1,PR2,PR3,PR4> 
171.,8. ;SMSG$ MACRO DIC, DPB SIZE = 8(10) WORDS 
SM.SER ;TARGET IDENTIFIER - ERROR LOGGING 
DATBUF ;DATA BUFFER ADDRESS 
DATLEN ;DATA BUFFER LENGTH 
PRl ; PARAMETER 1 
PR2 ; PARAMETER 2 
PR3 ; PARAMETER 3 
PR4 ; PARAMETER 4 

Defini tions: 

Target identifier (2) 

Buffer address (2 ) 

Buffer length (2) 

Parameter list 

5-202 

( 

( 



DSW Return Codes: 

IS.SUC 

( IE. ILU 

IE.ULN 

IE.UPN 

IE. INS 

IE. ITS 

IE.ADP 

IE.SDP 

( 

DIRECTIVE DESCRIPTIONS 

Successful completion. 

Invalid LUN (error-log target only). 

Specified LUN is not assigned to a mass storage 
device. 

Insufficient dynamic memory. 

Target task is not installed. 

Invalid target identifier or invalid control mask. 

Part of the DPB or data buffer is out of the issuing 
task's address space. 

DIC or DPB size is invalid. 

5-203 



DIRECTIVE DESCRIPTIONS 

( 

c 

( 

( 

( 

5-204 



DIRECTIVE DESCRIPTIONS 

( 

c 

( 

( 

5-205 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

( 

5-206 



DIRECTIVE DESCRIPTIONS 

c 

( 

5-207 



DIRECTIVE DESCRIPTIONS 

SPND$S 

5.3.80 Suspend ($S Form Recommended) 

The Suspend directive instructs the system to suspend the execution of 
the issuing task. A task can suspend only itself, not another task. 
The task can be restarted either by a Resume directive, or by an MCR 
RESUME or DCL CONTI'NUE command. 

FORTRAN Call: 

CALL SUSPND [ ( ids) ] 

ids Directive status 

Macro Call: 

SPND$S [err] 

err Error-routine address 

Macro Expansion: 

SPND$S 
MOV 
.BYTE 
EMT 
BCC 
JSR 

ERR 
(PC) +, - (SP) 
45.,1 
377 
• +6 
PC, ERR 

;PUSH DPB ONTO THE STACK 
;SPND$S MACRO DIC, DPB SIZE = 1 WORD 
;TRAP TO THE EXECUTIVE 
;BRANCH IF DIRECTIVE SUCCESSFUL 
;OTHERWISE, CALL ROUTINE "ERR" 

Local Symbol Definitions: 

None 

DSW Return Codes: 

IS.SPD 

IE.ADP 

IE.SDP 

Notes: 

Successful completion (task was suspended). 

Part of the DPB is out of the i~suing task's address 
space. 

DIC or DPB size is invalid. 

1. A suspended task retains control of the system resource~ 
allocated to it. The Executive makes no attempt to free 
these resources until a task exits. 

2. A suspended task is eligible for checkpointing unless it is 
fixed or declared to be noncheckpointable. 

3. Because this directive requires only a one-word DPB, the $S 
form of the macro is recommended. It requires less space and 
executes with the same speed as that of the DIR$ macro. 

5-208 

( 

( 

( 

( 



( 

( 

( 

l 

DIRECTIVE DESCRIPTIONS 

SPRA$ 

5.3.81 Specify Power Recovery AST 

The Specify Power Recovery AST directive instructs the system to 
record one of the following cases: 

1. Power recovery ASTs for the issuing task are desired and 
control is to be transferred when a powerfail recovery AST 
occurs. 

2. Power recovery ASTs for the issuing task are no longer 
desired. 

When an AST service-routine entry-point address is specified, future 
power recovery ASTs will occur for the issuing task and control will 
be transferred to the indicated location at the time of the AST's 
occurrence. When an AST service entry-point address is not specified, 
future power recovery ASTs will not occur until an AST entry point is 
again specified. See the Notes. 

FORTRAN Call: 

To establish an AST: 

EXTERNAL sub 
CALL PWRUP (sub) 

sub = Name of a subroutine to be executed upon 
recovery. The PWRUP subroutine will effect a 

power 

CALL sub (no arguments) 

The subroutine is called as 
recovery AST, and therefore 
critical points by using DSASTR 
subroutine calls. 

To remove an AST: 

CALL PWRUP 

Macro Call: 

SPRA$ [ast] 

a result of a power 
may be controlled at 
(or INASTR) and ENASTR 

ast AST service-routine entry-point address 

Macro Expansion: 

SPRA$ 
.BYTE 
.WORD 

PWRAST 
109. ,2 
PWRAST 

Local Sym~ol Definitions: 

iSPRA$ MACRO DIC, DPB SIZE = 2 WORDS 
iADDRESS OF POWER RECOVERY AST 

S.PRAE AST entry address (2) 

5-209 



DIRECTIVE DESCRIPTIONS 

DSW Return Codes: 

IS.SUC Successful completion. 

IE.UPN Insufficient dynamic memory. 

IE. ITS AST entry-point address is already unspecified. 

IE.AST Directive was issued from an AST service routine or 
ASTs are disabled. 

IE.ADP Part of the DPB is out of the issuing task's address 
space. 

IE.SDP DIC or DPB size is invalid. 

Notes: 

1. The specify Power Recovery AST directive requires dynamic 
memory. 

2. The Executive queues power recovery ASTs when the power-up 
interrupt occurs following a power failure. No future 
powerfail ASTs will be queued for the task until the first 
one queued has been effected. 

3. The task enters the powerfail AST service routine with the 
task stack in the following state: 

SP+06 - Event-flag mask word 
SP+04 - PS of task prior to AST 
SP+02 - PC of task prior to AST 
SP+OO - DSW of task prior to AST 

No trap-dependent parameters accompany a power recovery AST. 
Therefore, the AST Service Exit directive can be executed 
with the stack in the same state as when the AST was entered. 

4. This directive cannot be issued either from an AST service 
routine or when ASTs are disabled. 

5. Refer to Chapter 1 for a list of the restrictions on 
operations that may be performed in a FORTRAN AST routine. 

5-210 

( 

( 

( 



( 

c 

( 

DIRECTIVE DESCRIPTIONS 

SPWN$ 

5.3.82 Spawn 

The directive requests a specified task 
a command line l and establishi 

, or a physical ter nal. 

for execution, 
the task's TI: as 

When this 'directive is issued, an Offspring Control Block (OCB) is 
queued to the offspring TCB and a rundown count is incremented in the 
parent task's TCB. The rundown count is used to inform the Executive 
that the task is a parent task and has one or more offspring tasks and 
virtual terminal(s); clean up is necessary if a parent task exits with 
active offspring tasks. The rundown count is decremented when the 
spawned task exits. The OCB contains the TCB address as well as 
sufficient information to effect all of the specified exit events when 
the offspring task exits. 

If a command line is specified, it is buffered in the Executive pool 
and queued for the offspring task for subsequent retrieval by the 
offspring task with the Get MCR Command Line directive. The maximum 
command line 

If an AST address is specified, an exit AST routine is effected when 
the spawned task exits with the address of the task's exit status 
block on the stack. The AST routine must remove this word from the 
stack before issuing the AST Service Exit directive. 

Special action is taken if the task being spawned is a command line 
interpreter (CLI), such as MCR or DCL. In this case, a command line 
must be specified, and both the OCB and the command line are queued 
for the interpreter task. MCR and DCL either handle commands directly 
or dispatch them to another task. In the case of direct execution of 
the command, the OCB may be used to immediately effect the proper exit 
conditions and return exit status by an Executive routine. If~CR or 
DCL dispatch another task, they simply move the OCB from their own OCB 
queue directly to the OCB queue'of the dispatched task. They also 
queue the command line for the dispatched task as usual. At this 
point, the situation is exactly the same as if the SPWN$ directive had 
specified the dispatched task directly. No exit conditions occur 
until the dispatched task exits. 

FORTRAN Call: 

CALL SPAWN (rtname, [iugc] , [iumc] , [iefn] , [iast] , [iesb] , [iparm] , 
[icmlin, icmlen], [iunit], [dnam] [, idsw]) 

CALL SPAWNN (rtname, [iugc] , [iumc] , [iefn] , [iast] , [iesb] , [iparm] , 
[icmlin,icmlen], [iunit], [dnam] [,idsw]) 

rtname = Name (Radix-50) of the offspring task to be spawned 

iugc Group code number for the UIC of the offspring task 

iumc Member code number for the UIC of the offspring task 

1. Command line processing is not available for RSX-llS tasks. 

5-211 



iefn 

iast 

iesb 

iparm 

icmlin 

icmlen 

iunit 

dnam 

idsw 

Macro Call: 

SPWN$ 

tname 

ugc 

umc 

DIRECTIVE DESCRIPTIONS 

= Event flag to be set when the offspring task exits 
or emits status 

Name of an AST 
offspring task 
CALL SPAWNN) 

routine to be called when the 
exits or emits status (ignored for 

= Name of an eight-word status block to be written 
when the offspring task exits or emits status: 

= 

Word a Offspring-task exit status 

Word 1 TKTN abort code 

Words 2-7 Reserved 

NOTE 

The exit status block defaults to one word. 
To use the eight-word exit status block, you 
must specify the logical OR of the symbol 
sP.wxa and the event flag number in the iefn 
parameter above. 

Name of a word to receive the status block address 
when the AST occurs 

Name of a command line to be queued for the 
offspring task 

of to be used as the TI: for 

s spec er, 
of the issuing task is propagated. A task must 

be a privileged task or must be a CLI task in order 
to specify a TI: other than the parent task's ~I: 

name mnemonic (must be the name of a physical 

Integer to receive the Directive Status Word 

tname", [ugc] ,[umc] ,[efn] ,[east] ,[esb] ,[cmdlin,cmdlen] , 
[unum] , [dnam] 

= Name (Radix-50) of the offspring task to be spawned 

Group code number for the UIC of the offspring task 

= Member code number for the UIC of the offspring task 

5-212 

( 

( 

( 

( 

( 



c 

( 

( 

( 

efn 

east 

DIRECTIVE DESCRIPTIONS 

The event flag to be cleared on issuance and set 
when the offspring task exits or emits status 

= Address of an AST routine to be called when the 
offspring task exits or emits status 

esb = Address of an eight-word status block to be written 
when the offspring task exits or emits status: 

Word o Offspring-task exit status 

Word 1 TKTN abort code 

Words 2-7 Reserved 

NOTE 

The exit status block defaults to one word. 
To use the eight-word exit status block, you 
must specify the logical OR of the symbol 
SP.WX8 and the event flag number in the efn 
parameter above. 

cmdlin = Address of a command line to be queued for the 
offspring task 

cmdlen = 

unum 

dnam 

s spec r, 
of the issuing task is propagated. A task must 

be a privileged task or must be a CLI task in order 
to specify a TI: other than the parent task's TI:. 

Macro Expansion: 

SPWN$ 
• BYTE 
.RAD50 
.BLKW 
.BYTE 
.BYTE 
• BYTE 
.WORD 
.WORD 

ALPHA",3,7,1,ASTRUT,STBLK,CMDLIN,72.,2 
11.,13 • 
ALPHA 
3 
7,3 
1 
16 • 
ASTRUT 
STBLK 
CMDLIN 
72. 

;SPWN$ MACRO DIC, DPB SIZE 
;NAME OF TASK TO BE SPAWNED 
; RESERVED 
;UMC = 7, UGC = 3 
;EVENT FLAG NUMBER = 1 
;EXIT STATUS BLOCK CONSTANT 
;AST ROUTINE ADDRESS 
;EXIT STATUS BLOCK ADDRESS 
;ADDRESS OF COMMAND LINE 
;COMMAND LINE LENGTH = 72 10 

5-213 

13 (10) WORDS 



DIRECTIVE DESCRIPTIONS 

Local Symbol Definitions: 

S.PWTN 

S.PWXX 

S.PWUM 

S.PWUG 

S.PWEF 

S.PWEA 

S.PWES 

S.PWCA 

S.PWCL 

S.PWVT 

S.PWDN 

DSW Return Codes: 

IS.SUC 

IE. INS 

IE.ACT 

IE.PRI 

IE.IEF 

Task name (4) 

Reserved (6) 

User member code (1) 

User group code (1) 

Event flag number (2) 

Exit AST routine address (2) 

Exit status block address (2 ) 

Command line address (2) 

Command line length (2) 

Terminal unit number (2) 

Device name (2) 

Successful completion. 

was insufficient dynamic memory to allocat 
Control Bl c line buffer 

,'or Part on Control Block. 

The specified task was not installed, or it was a 
command line- interpreter but no command line was 
specified. 

The specified task was already active and it was not 
a command line interpreter. 

Nonprivileged t~sk attempted to specify an offspring 
task's TI: to be different from its own. 

Invalid event flag number (EFN<O, or EFN>96 if group 
global event flags exist for the task's group or 
EFN>64 if not). 

5-214 

( 

( 

( 

( 

( 



c 

c 

( 

C 

( 

DIRECTIVE DESCRIPTIONS 

IE.ADP Part of the DPB, exit status block, or command line 
is out of the issuing task's address space, or the 
command line is too long. 

IE.SDP DIC or DPB size is invalid. 

Notes: 

1. If the UIC is defaulted and the offspring task is not a 
command line interpreter (CLI), that task is requested to run 
under the UIC of the parent task. If the UIC is defaulted, 
the offspring task is a eLI, and the CLI passes the specified 
command line to a dispatched task, the dispatched task will 
run under the UIC of its TI: terminal. See the notes for 
the Request Task (RQST$) directive for more information about 
task UICs.· 

2. If the specified event flag i~ group global, then the use 
count for the event flag's group is incremented to prevent 
premature elimination of event flags. The use count is run 
down when: 

• Status is returned from the spawned task. 

• The issuing task exits before status is returned. 

3. The virtual mapping of the exit status block should not be 
changed while the connection is in effect. Doing so may 
cause obscure errors. 

4. The types of operations that 
perform are extremely limited. 
a list of the restrictions. 

a FORTRAN AST routine may 
Please refer to Chapter 1 for 

The following program illustrates the 
SPAWN routine and the mechanism for 
program: 

use of the FORTRAN-callable 
handling ASTs from a FORTRAN 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

P RO G RAM S P WAS T 

This program illustrates the use of the FORTRAN-callable 
SPAWN routine and the use of a FORTRAN subprogram at AST state. 
This example keeps "ITMAX" tasks active at any point in time 
without having several copies of each utility installed under 
different names. The input file consists of single line commands 
of up to 45 characters in length which invoke tasks in the system 
library UIC. The first three characters of the input command line 
are the name of the task to be invoked (ie, MAC). The output file 
consists of a log file containing the command lines and the exit status 
of the program invoked. 

The above is accomplished as follows: 

A command is read from the input file "CMDFIL.CMD" which has the 
form "NAM COMMAND", where NAM is the name of the task and COMMAND is the 
command to be passed to this task. This input command line is transformed 
into an MCR RUN command line such as 

RUN $MAC/TASK=TSKnn/EST=NO/CMD= "c.ommand" 
where nn is a number assigned by this task so that the target task name 
is both known and unique. The MCR dispatcher (MCR ••• ) is spawned with this 
transformed command line, which in turn causes the MCR ••• task to dispatch 
a copy of ••• MCR under the name MCRTnn to execute this command. When 
this copy of ••• MCR exits, an exit AST is serviced by this task which 
issues a "CONNECT" to the target task TSKnn. This method introduces a timing 
window ~uch that the target task could exit before the CONNECT is made. In 

5-215 



DIRECTIVE DESCRIPTIONS 

C this case, an error message is written to the log file indicating that 
C exit status could not be returned due to a connect failure. 
C 
C This nonprivileged FORTRAN IV-PLUS program is compiled and 
C built as follows: 
C 
C MCR>F4P SPWAST,SPWAST/-SP=SPWAST 
C MCR>TKB SPWAST/FP,SPWAST=SPWAST,LB: [1,ljF4POTS/LB 
C 
C 
C Define data structures 
C 
C 
C 
C 
C 

The following variables are kept on a per active "invoked task" basis. 
For lack of a better name, each respective entry is called a task 
information block. 

C IESTAT(B,XXX) 
C 

IEXSAD(XXX) ISTAT(XXX) ICMDLN(45,XXX) 

C 

C 

C 

PARAMETER ITMAX=3 

COMMON /KOM1/IESTAT(B,ITMAX),IEXSAD(ITMAX),ISTAT(ITMAX) , IPARM,RTNAME (2) 
COMMON /KOM2/THISTK(16) 
COMMON /COMMAN/ICMDLN(45,ITMAX) 

INTEGER IESTAT 
INTEGER I EXSAD 
INTEGER ISTAT 

INTEGER IPARM 
INTEGER RTNAME 

INTEGER THISTK 
BYTE ICMDLN 

!exit status array for each task 
!array containing the address of each task's iestat 
!array containing the status (active vs free) of 
each task information block 

!contains'address of IESTAT at AST state 
!contains the Radix-50 name of the target task to be 
!connected to at AST state 

!saved input command line per task 

C Local input buffer variables 
C 

C 

DIMENSION INPCOM(3) 
DIMENSION INPBUF(45) 
EQUIVALENCE (INPBUF(l),INPCOM(l» 

BYTE INPBUF 
BYTE INPCOM 

! INPUT BUFFER 
!COMPONENT NAME FIELD OF INPBUF 

C Local variables for SPAWN call 
C 

EXTERNAL EXTAST 

DIMENSION CMDLIN(79) 

BYTE CMDLIN 
INTEGER*4 DSPNAM 

!define the name of the AST routine externally 

!maximum command line passed to is 79(10) bytes 

tactual command line passed to MCR ••• 
!variable containing Radix-50 task name of MCR ••• 

DATA DSPNAM/6RMCR ••• /!fill in name of ••• MCR at compile time 
C 
C Local control variables 
C 

C 

INTEGER ITCNT 
LOGICAL EOF 

C Misc. local variables 
C 

INTEGER IDSW 
C 

!count of number of free task information blocks 
Iflag indicating EOF detected on command input fi~e 

!integer to contain directive status 

5-216 

( 

c 

( 



( 

( 

( 

( 

l 

DIRECTIVE DESCRIPTIONS 

C Open files 
C 

OPEN (UNIT=l,TYPE='OLD' ,READONLY,NAME='CMDFIL.CMD') 
OPEN (UNIT=2,TYPE='NEW',CARRIAGECONTROL='FORTRAN' ,NAME='CMDFIL.LOG') 

C 
C Initialize Variables 
C 

C 
C 

ITCNT=ITMAX+l 
EOF=.FALSE. 

Iset current count of available task information blocks 
!reset EOF flag 

CALL IRAD50(3,'TSK' ,RTNAME(l)) 
CALL GETTSK(THISTK(l)) 

!setup first half of target task name 
!determine this task's name so that 
STOPing and 'UNSTOPing may be done 

C Initialize the IEXSAD array such that.each entry contains the address 
C of the exit status block that has the corresponding index. This is 
C necessary so that the correct exit status block may be determined at AST 
C state. 
C 

5 

C 
C 
C 
C 

10 

15 

16 

20 
30 

C 

C 

Read a 
block. 

DO 5 I=l, ITMAX 
CALL GETADR(IEXSAD(I) ,IESTAT(l,I)) 
CONTINUE 

command line from the input file and initialize a free task information 

READ (1,900,END=30)I,INPBUF 
ITCNT=ITCNT-l 
DO 20 K=l, ITMAX 
IF (ISTAT(K) .NE. 0) GOTO 20 
ISTAT(K)=l !ELSE 
DO 15 J=l,I !save 
ICMDLN(J,K)=INPBUF(J) 
CONTINUE 

Iread input command line 
lone less free block 
!search for the free block 
!IF NE, block is in use 

found one, mark it in use 
command line for output later 

DO 16 J=I+l,45 
ICMDLN(J,~)="40 
CONTINUE 

Ipad saved command line with spaces 

GO TO 40 
CONTINUE 
EOF=.TRUE. 
GO TO 55 

!exit search loop 

! set EOF flag 
!continue to log exit status of what's currently 
!active 

C Const,ruct the actual command line' specified in the SPAWN call 
C 
C 
C 

40 
710 

Write saved command line to TI: so that any MCR RUN error messages 
have context. 

WRITE(5,710) (ICMDLN(J,K) ,J=1,45) 
FORMAT (IX, 45Al) 

ENCODE(I+35,800,CMDLIN)INPCOM,K, (INPBUF(J) ,J=l,I) 
800 FORMAT ( 'RUN $', 3Al, '!TASK=TSK' , II, '!EST=NO!CMD='" , 45Al) 

CMDLIN(I+32)="42 !add terminating quote 
CMDLIN(I+33)="15 land terminator 

C 
C Spawn MCR ••• with the command line such as: 
C 
C RUN $MAC!TASK=TSKl!EST=NO!CMD="MAC TESTl=TESTl" 
C 
C At this point, the second half of the Radix-50 target task name is calculated 
C so that the first exit AST may issue a connect after ••• MCR exits. 

5-217 



DIRECTIVE DESCRIPTIONS 

RTNAME(2)=40*40*(30+K) Icalculate second half of Radix-50 task name 

C Spawn the MCR dispatcher with the constructed command line. The dispatcher 
C will then spawn a copy of ••• MCR which will in turn process the RUN command. 

45 CALL SPAWN(DSPNAM",1,EXTAST,IESTAT(1,K),IPARM,CMDLIN,I+33,O"IDSW) 

C An error could be received from the SPAWN call. This could be due to a 
C variety of reasons, such as the task file specified was not found or there 
C was insufficient system resources at the time the Executive directive 
C was issued. Only the IE.RSU errors will be recovered by waiting for 
C a significant event and reissuing the call to SPAWN. 

IF (IDSW+l) 50,52,54 !check directive status returned 
C 
C Spawn error 
C 
50 IESTAT(1,K)=5 

IESTAT(2,K)=IDSW 
ISTAT(K)=3 

!if mi, uncorrectable error mark status 
Isave directive status returned for log 
!indicate status present 

GOTO 60 !go write error to log file and clean up 
C 
C 
C 
52 

C 

Spawn error due to insufficient resources 

CALL WFSNE 
GOTO 45 

!wait for significant event 
!reissue SPAWN 

C Spawn successful, wait till ••• MCR exits and first AST has been serviced. 
C 
54 CALL WAITFR(l) !wait for ••• MCR to exit 
C 
C Do not STOP if connect failed, just process task info block and continue. 
C 

C 
C 

IF(IESTAT(l,K) .EQ. 6) GOTO 60 lexit status code of 6 indicates 
connect failure 

C At this point, a check is made to determine whether this task has 
C completed its quest. If there is no more input and all task information 
C blocks are free, then exit processing will be performed. 
C 
55 
C 
C 
C 
C 
C 
C 

C 

IF(EOF .AND. (ITCNT .EQ. ITMAX+l» GOTO 500 

Next, if all the task information blocks are being used or if there 
is no more input to process, this task is stopped so as to lower its 
priority effectively to zero. This task will once again wake up when 
the connect AST unstops this task. 

IF(ITCNT .EQ. 1 .OR. (EOF» CALL STOP 

C Scan all the task information blocks to process task information blocks 
C now waiting for clean up and log-file processing. 
C 

60 DO 70 K=l,ITMAX Isearch task information blocks for 
C the task(s) that exited 

IF (ISTAT(K) .NE. 3) GOTO 70 !if eq, then offspring task connect 
C has not occurred for this task 

WRITE (2,901). (ICMDLN(J,K),J=1,45) Iwrite cmdlin to log file 
GOTO (62,63,64,61,65,66,67), (IESTAT(l,K) .AND. "377)+1 Idecode exit 

61 WRITE (2,902) (IESTAT(l,K) .AND. "377) lunknown exit status 
GOTO 68 

62 WRITE (2,903) IEX$WAR -- warning 
C lor none returned 

63 
GO TO 68 
WRITE (2,904) 
GOTO 68 

IEX$SUC -- success 

5-218 

AST 

status 

c 

c 

( 

( 



( 

( 

( 

64 

65 

66 

67 
68 

70 

DIRECTIVE DESCRIPTIONS 

WRITE (2,905) 
GOTO 68 
WRITE (2,906) 
GOTO 68 
WRITE (2,907)IESTAT(2,K) 
GOTO 68 
WRITE (2,908)IESTAT(2,K) 
ISTAT(K)=O 

IESTAT (1, K) =0 
ITCNT=ITCNT+l 
CONTINUE 
GOTO 10 

!EX$ERR error 

!EX$SEV severe error 

!internal -- SPAWN failure 

!internal -- CONNECT failure 
!free up task information block 
!initialize exit status 

.!adjust free task info block count 

900 FORMAT (Q,45Al) 
901 FORMAT('$' ,45Al) 
902 FORMAT('+','Unknown exit status =',13) 
903 FORMAT('+','« Warning') 
904 FORMAT('+' ,'« Success') 
905 FORMAT('+','« Error') 
906 FORMAT('+' ,'« Severe error') 
907 FORMAT('+' ,'« Spawn error, DSW =',13) 
908 FORMAT ('+' ,'« Connect error, DSW =',13) 

C 
C Exit cleanly by closing all files 
C 
500 CLOSE (UNIT=l) 

CLOSE (UNIT=2) 
CALL EXIT 

!close input file on LUN 1 
!close output file on LUN 2 
!exit 

C 

C 

C 
C 
C 
C 
C 

10 

20 
C 

END 

SUB R 0 UTI N E EXT A S T 

PARAMETER ITMAX=3 
COMMON /KOM1/IESTAT(8,ITMAX),IEXSAD(ITMAX),ISTAT(ITMAX) ,IPARM,RTNAME(2) 
COMMON /KOM2/THISTK(16) 

INTEGER IESTAT 
INTEGER IEXSAD 
INTEGER ISTAT 

INTEGER IPARM 
INTEGER RTNAME 

INTEGER THISTK 

EXTERNAL TSKEXT 

!exit status array for each task 
!array containing the address of each task's IESTAT 
!array containing the status (active vs free) of 
leach task information block 
!contains address of IESTAT at AST state 
!contains the Radix-50 name of the target task to be 
!connected to at AST state 

Using IPARM, which contains the address of the exit status block array, 
find the task information block by comparing this with the address of each 
exit status block array (contained in IEXSAD). 

DO 10 l=l,ITMAX 
IF (IEXSAD(I) .EQ. 
CONTINUE 
GOTO 30 
ISTAT(I)=2 

IPARM) GOTO 20 !found the task info block 

!indicate ••• MCR has exited 

C Try to connect to the target task: 
C 

CALL CNCT(RTNAME(1),2,TSKEXT,IESTAT(1,1) ,IPARM,IDSW) 
IF{IDSW .EQ. 1) GOTO 30 !if EQ, then successful connect 
IESTAT(1,I)=6 !else pass connect failed status 

5-219 



30 

DIRECTIVE DESCRIPTIONS 

IESTAT(2,I)=IDSW 
ISTAT(I)=3 
RETURN 

END 

SUB R 0 UTI N E 

PARAMETER ITMAX=3 

T S K EXT 

!mark task information block as done 
!return from AST state (returns 
Ito internal AST handler) 

COMMON /KOMI/IESTAT(8,ITMAX) ,IEXSAD(ITMAX) ,ISTAT(ITMAX) , IPARM,RTNAME (2) 
COMMON /KOM2/THISTK(16) 
INTEGER IESTAT !exit status array for each task 
INTEGER IEXSAD larray containing the address of each task's IESTAT 
INTEGER ISTAT larray containing the status (active vs free) of 

C leach task information block 
INTEGER IPARM Icontains address of IESTAT at AST state 
INTEGER RTNAME !contains the Radix-50 name of the target task to be 

C Iconnected to at AST state 
INTEGER THISTK !this task's name (so that an UNSTOP may be performed) 

C 
C Find exit status block: 
C 

10 

20 

30 

DO 10 I=l,ITMAX 
IF (IEXSAD (I) .EQ. 
CONTINUE 
GOTO 30 
ISTAT(I)=3 
CALL USTP(THISTK) 
RETURN 

END 

IPARM) GOTO 20 !found the task information block 

5-220 

!indicate AST has been serviced 
!UNSTOP this task 
Ireturn from AST state (returns 
Ito internal AST handler) 

c 

( 

( 

( 

( 



( 

c 

(-

( 

DIRECTIVE DESCRIPTIONS 

SRDA$ 

5.3.83 Specify Receive Data AST 

The Specify Receive Data AST directive instructs the system to record 
one of the following cases: 

• Receive data ASTs for the issuing task are desired, and the 
Executive transfers control to a specified address when data 
has been placed in the task's receive queue 

• Receive data ASTs for the issuing task are no longer desired 

When the 
receive 
has been 
transfer 

directive 
data ASTs 
placed in 
control to 

specifies an AST service-routine entry point, 
for the task will subsequently occur whenever data 
the task's receive queue; the Executive will 
the specified address. 

When the directive omits an entry-point address, the Executive 
disables receive data ASTs for the issuing task. Receive data ASTs 
will not occur until the task issues another Specify Receive Data AST 
directive that specifies an entry-point address. See the Notes. 

FORTRAN Call: 

Neither the FORTRAN language nor the ISA standard permits direct 
linking to system-trapping mechanisms. Therefore, this directive 
is not available to FORTRAN tasks. 

Macro Call: 

SRDA$ fast] 

ast AST service-routine entry-point address 

Macro Expansion: 

SRDA$ 
.BYTE 
.WORD 

RECAST 
107. ,2 
RECAST 

;SRDA$ MACRO DIC, DPB SIZE 
;ADDRESS OF RECEIVE AST 

2 WORDS 

Local Symbol Definitions: 

S.RDAE 

DSW Return Codes: 

IS.SUC 

IE.UPN 

IE. ITS 

IE.AST 

IE.ADP 

IE.SDP 

AST entry address (2) 

Successful completion. 

Insufficient dynamic memory. 

AST entry-point address is already unspecified. 

Directive was issued from an AST service rputine or 
ASTs are disabled. 

Part of the DPB is out of the issuing task's address 
space. 

DIG or DPB size is invalid. 

5-221 



DIRECTIVE DESCRIPTIONS 

Notes: 

1. The Specify Receive Data AST directive requires dynamic 
memory. 

2. The Executive queues receive data ASTs when a message is sent 
to the task. No future receive data ASTs will be queued for 
the task until the first one queued has been effected. 

3. The task enters the receive data AST service routine with the 
task stack in the following state: 

SP+06 - Event-flag mask word 
SP+04 - PS of task prior to AST 
SP+02 - PC of task prior'to AST 
SP+OO - DSW of task prior to AST 

No trap-dependent parameters accompany a ,receive data AST. 
Therefore, the AST Service Exit directive must be executed 
with the stack in the same state as when the AST was 
effected. 

4. This directive cannot be issued either from an AST service 
routine or when ASTs are disabled. 

5-222 

( 

( 

( 

c 

( 



c 

( 

( 

DtRECTIVE DESCRIPTtONS 

5.3.84 Specify Requested Exit AST 

SREA$ 
SREX$ 

The Specify Requested Exit AST directive allows the task issuing the 
directive to specify the AST service routine to be entered if an 
attempt is made to abort the task by a directive or MCR or DCL ABORT 
command. This allows a task to enter a routine for cleanup instead of 
abruptly aborting. 

If an AST address is not specified, any previously specified exit AST 
is canceled. 

Privileged tasks enter the specified AST routine each time an abort is 
issued. However, subsequent exit ASTs will not be queued until the 
first exit AST has occurred. 

Nonprivileged tasks enter the specified AST routine only once. 
Subsequent attempts to abort the task will actually abort the task. 

SREX$ is the preferred form of this directive. 
explained in Notes 1 and 2. 

The differences are 

FORTRAN Calls: 

CALL SREA (ast[,idsw]) 

ast = Name of the externally declared AST subroutine 

idsw Name of an optional integer to receive the Directive 
Status Word 

CALL SREX (ast,ipblk,ipblkl, [dummy] [,idsw]) 

ast Name of the externally declared AST subroutine 

ipblk Name of an integer array 
trap-dependent parameters 

to receive the 

ipblkl = Number of parameters to be returned into the ipblk 
array 

dummy 

idsw 

Macro Calls: 

Reserved for future use 

Name of an optional integer to receive the Directive 
Status Word 

SREA$ [ast] 

SREX$ [ast] [,dummy] 

ast AST service-routine entry-point address 

dummy Reserved for future use 

5-223 



DIRECTIVE DESCRIPTIONS 

Macro Expansions: 

SREA$ 
.BYTE 
.WORD 

SREX$ 
.BYTE 
.WORD 
.WORD 

REQAST 
167.,2 
REQAST 

REQAST 
167.,3 
REQAST 
0 

iSREA$ MACRO DIC, DPB SIZE = 2 WORDS 
iEXIT AST ROUTINE ADDRESS 

iSREX$ MACRO DIC, DPB SIZE = 3 WORDS 
iEXIT AST ROUTINE ADDRESS 
iRESERVED FOR FUTURE USE 

NOTE 

The DPB length for the SREA$ form of the 
directive is two words. For the SREX$ form of 
the directive, it is three words. 

Local Symbol Definitions: 

S.REAE Exit AST routine address (2) 

DSW Return Codes: 

IS.SUC Successful completion. 

IE.UPN 

IE.AST 

Insufficient dynamic storage. 

Directive was issued from an AST service routine or 
ASTs are disabled. 

IE.ITS ASTs already not desired, or nonprivileged task 
attempted to respecify or cancel the AST after one 
had already occurred. 

IE.ADP Part of the DPB is out of the issuing task's address 
space. 

IE.SDP DIC or DPB size is invalid. 

Notes: 

1. The SREX$ form of the directive is recommended for tasks that 
wish to handle all privileged and nonprivileged abortion 
attempts that do not violate multiuser protection checks. 
The issuing task can use the information ret~rned on the 
stack for this version of the directive to decide how to 
handle the abortion attempt. 

After specifying a requested exit AST using the SREX$ form of 
the directive, the issuing task will enter the AST service 
routine if any attempt is made to abort the task. On systems 
with multiuser protection, nonprivileged abortion attempts 
must originate from the same TI: as that of the iss'uing 
task. 

When the AST service routine is entered and the AST has been 
specified using the SREX$ version of the directive, the 
task's stack is in the following state: 

SP+12 - Event-flag mask word 
SP+IO - PS of task prior to AST 
SP+06 - PC of task prior to AST 
SP+04 - DSW of task prior to AST 
SP+02 - Trap-dependent parameter 
SP+OO - Number of bytes to add to SP to clean stack (4) 

5-224 

( 

( 

(~ 

c-

( 



c 

2. 

c 

( 

DIRECTIVE DESCRIPTIONS 

The trap-dependent parameter is formatted as follows: 

Bit 0 0 if the abortion attempt was privileged. 
1 if the abortion attempt was nonprivileged. 

Bit 1 0 if the ABRT$ directive was issued. 
= 1 if the MeR or DeL ABORT command was used. 

Bits 2-15 are reserved for future use. 

The task must remove the trap-dependent parameters from· the 
stack before an AST Service Exit directive is executed. The 
recommended method is to add the value stored in SP+OO to SP. 
This is also the only recommended way to access the 
non-trap-dependent parameters on the stack. 

The SREA$ form of the directive is recommended for privileged 
tasks that do not want abortion attempts from a nonprivileged 
user's MeR or DeL ABORT command to be allowed. and do not 
otherwise care about the nature of the abortion attempt. It 
is also recommended for any nonprivileged tasks that simply 
do not care about the nature of the abortion attempt. 

After specifying a requested exit AST using the SREA$ form of 
the directive, privileged tasks will enter the AST service 
routine if any of the following abortion attempts are made: 

• Any privileged ABRT$ directive or privileged MeR or 
DeL ABORT command 

• Any nonprivileged ABRT$ directive from the same TI: 
on systems with multiuser protection 

Nonprivileged tasks will enter the AST service routine for 
all of. the abortion attempts listed above, plus the 
following: 

• Any nonprivileged MeR or DeL ABORT command from the 
same TI: on systems with multiuser protection 

When the AST service routine is entered, the task's stack is 
in the 'following state: 

SP+06 - Event-flag mask word 
SP+04 - PS of task prior to AST 
SP+02 - pe of task prior to AST 
SP+OO - DSW of task prior to AST 

No trap-dependent parameters accompany an AST specified by 
SREA$. Therefore, the AST Service Exit directive can be 
executed with the stack in the same state as when the AST was 
entered. 

5-225 



DIRECTIVE DESCRIPTIONS 

3. The event-flag mask word at the bottom of the stack preserves 
the Wait-for conditions of a task prior to AST entry. A task 
can, after an AST, return to a Wait-for state. Because these 
flags ahd other stack data are in the user task, they can be ( 
modified. However, modifying the stack data may cause 
unpredictable results. Therefore, such modification is not 
recommended. 

4. 

5. 

If an SREX$ requested exit AST is not specified for 
it is impossible to abort a privileged task 
nonprivileged terminal using either MCR or DCL on 
with multiuser protection. 

a task, 
from a 
systems 

The two forms of this directive should not 
same code since the stack format and 
parameters differ. Any mismatch between 
directive and the AST routine will 
results. 

be 
the 
the 

have 

mixed in the 
trap-dependent 
form of the 
unpredictable 

6. Please see Chapter 1 for a list of restrictions on operations 
that can be performed in a FORTRAN AST routine. 

5-226 

( 

( 



( 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

SREF$ 

5.3.85 Send By Reference 

The Send By Reference directive inserts a packet containing a 
reference to a region into the receive-by-reference queue of a 
specified (receiver) task. The Executive automatically attaches the 
receiver task for each Send By Reference directive issued by the task 
to the specified region (the region identified in W.NRID of the Window 
Definition Block). The attachment occurs even if the receiver task is 
alrea attached to the r 

e success 
to occur. 

The send packet contains: 

• A pointer to the created attachment descriptor, which becomes 
the region ID to be used by the receiver task 

• The offset and length words specified in W.NOFF and W.NLEN of 
the Window Definition Block (which the Executive passes 
without checking) 

• The receiver task's permitted access to the region, contained 
in the window status word W.NSTS 

• The sender task name 

• Optionally, the address of an eight-word buffer that contains 
additional information (if the packet does not include a 
buffer address, the Executive sends eight words of zero) 

The receiver task automatically has access to the entire region as 
specified in W.NSTS. The sender task must be attached to the region 
with at least the same types of access. By setting all the bits in 
W.NSTS to zero, the receiver task can default the permitted access to 
that of the sender task. 

If the directive specifies an event flag, the Executive sets the flag 
in the sender task when the receiver task acknowledges the 
reference -- by issuing the Receive By Reference or the Receive By 
Reference or Stop directive. When the sender task exits, the system 
searches for any unreceived references that specify event flags and 
prevents any invalid attempts to set the flags. The references 
themselves remain in the receiver task's receive-by-reference queues. 

FORTRAN Call: 

CALL SREF (tsk, [efn] ,iwdb~ [isrb] [,ids]) 

tsk A single-precision, floating-point variable containing 
the name of the receiving task in Radix-50 format 

efn Event flag number 

iwdb = An eight-word integer array containing a 
Definition Block (see Section 3.5.2.2) 

5-227 

Window 



isrb 

DIRECTIVE DESCRIPTIONS 

An eight-word integer array containing 
information (if specified, the address 
placed in iwdb(8); if isrb is omitted, the 
iwdb(8) remain unchanged) 

ids Directive status 

Macro Call: 

SREF$ task ,wdb [,efn] 

task = Name of the receiver task 

wdb Window Definition Block address 

efn Event flag number 

Macro Expansion: 

ALPHA,WDBADR,48. 

additional 
of isrb is 

contents of 

SREF$ 
.BYTE 
.RAD50 
.WORD 
.WORD 

69.,5 ;SREF$ MACRO DIC, DPB SIZE = 5 WORDS 
/ALPHA/ ;RECEIVER TASK NAME 
48. ;EVENT FLAG NUMBER 
WDBADR ;WDB ADDRESS 

Window Definition Block Parameters: 

Input parameters: 

Array 
Element 

iwdb(4) 

Offset 

W.NRID 10 of the 
reference. 

region to be sent by 

iwdb(5) W.NOFF Offset word, passed without checking 

iwdb(6) W.NLEN 

iwdb(7) W.NSTS 

iwdb(8) W.NSRB --

Length word, passed without checking 

Bit settings1 in window status word 
(the receiver task's permitted 
access) : 

Bit Definition 

WS.RED I if read 
permitted 

WS.WRT 1 if write 
permitted 

WS.EXT I if extend 
permitted 

WS.DEL I if delete 
permitted 

Optional address of an 
buffer containing 
information 

access is 

access i~ 

access is 

access is 

eight-word 
additional 

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to 
determine the bit values represented by the symbolic names described. 

5-228 

( 

( 

( 

( 

( 



( 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

Output parameters: 

None 

Local Symbol Definitions: 

S.RETN Receiver task name (4) 

S.REBA· Window Definition Block base address (2) 

S.REEF Event flag number (2) 

DSW Return Codes: 

IS.SUC 

IE.UPN 

IE. INS 

IE.PRI 

IE.NVR 

IE.IEF 

IE.ADP 

IE.SDP 

Notes: 

Successful completion. 

A send packet or an attachment descriptor could not 
be allocated. 

The sender task attempted to send a reference to an 
Ancillary Control Processor (ACP) task, or task not 
installed. 

Specified access not allowed to sender task itself. 

Invalid region 10. 

Invalid event flag number (EFN<O, or EFN>96 if group 
global event flags exist for the task or EFN>64 if 
not) • 

The address check of the DPB, the WDB, or the send 
buffer failed. 

DIC or DPB size is invalid. 

1. For your convenience, the ordering of the SREF$ macro 
arguments does not directly correspond to the format of the 
DPB. The arguments have been arranged so that the optional 
argument (efn) is at the end of the macro call. This 
arrangement is also compatible with the SDAT$ macro. 

2. Because region attachment requires system dynamic memory, the 
receiver task should detach from any region to which it was 
already attached in order to prevent depletion of the memory 
pool. That is, the task needs to be attached to a given 
region only once. 

3. If the specified event flag is group global, then the use 
count for the event flag's group i~ incremented to prevent 
premature elimination of the event flags. The use count is 
run down whem: 

• The packet is received. 

• The issuing task exits before the packet is received. 

5-229 



DIRECTIVE DESCRIPTIONS 

SRRA$ 

5.3.86 Specify Receive-By-Reference AST 

The Specify Receive-By-Reference AST directive instructs the system to 
record one of the following cases: 

• Receive-by-reference ASTs for the issuing task are desired, 
and the Executive transfers control to a specified address 
when such an AST occurs. 

• Receive-by-reference ASTs for the issuing task are no longer 
desired. 

When the directive specifies an AST service-routine entry point, 
receive-by-reference ASTs for the task will occur. The Executive will 
transfer control to the specified address. 

When the directive omits an entry-point address, the Executive stops 
the occurrence of receive-by-reference ASTs for the issuing task. 
Receive-by-reference ASTs will not occur until the task issues another 
Specify Receive-By-Reference AST directive that specifies an entry
point address. See the Notes. 

FORTRAN Call: 

Neither the FORTRAN language nor the ISA standard permits direct 
linking to system-trapping mechanisms. Therefore, this directive 
is not available to FORTRAN tasks. 

Macro Call: 

SRRA$ [ast] 

ast AST service-routine entry-point address (0) 

Macro Expansion: 

SRRA$ 
.BYTE 
.WORD 

RECAST 
21. ,2 
RECAST 

;SRRA$ MACRO DIC, DPB SIZE 
;ADDRESS OF RECEIVE AST 

2 WORDS 

Local Symbol Definitions: 

S.RRAE 

DSW Return Codes: 

IS.SUC 

IE.UPN 

IE. ITS 

IE.AST 

IE.ADP 

IE.SDP 

AST entry address (2) 

Successful completion. 

Insuffici~nt dynamic memory. 

AST entry-point address is already unspecified. 

Directive was issued from an AST service routine or 
ASTS are disabled. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

5-230 

( 

( 

( 



( 

( 

( 

DIRECTIVE DESCRIPTIONS 

Notes: 

1. The Specify Receive-By-Reference AST directive 
dynamic memory. 

requires 

2. The Executive queues receive-by-reference ASTs when a message 
is sent to the task. Future receive-by-reference ASTs will 
not be queued for the task until the first one queued has 
been effected. 

3. The task enters the receive-by-reference AST service routine 
with the task stack in the following state: 

SP+06 - Event-flag mask word 
SP+04 - PS of task prior to AST 
SP+02 - PC of task prior to AST 
SP+OO - DSW of task prior to AST 

No trap-dependent 
AST • Therefore , 
executed with the 
effected. 

parameters accompany a receive-by-reference 
the AST Service Exit directive must be 

stack in the same state as when the AST was 

4. This directive cannot be issued either from an AST service 
routine or when ASTs are disabled. 

5-231 



DIRECTIVE DESCRI~TIONS 

STAF$ 

5.3.87 Set Affinity 

(RSX-IIM-PLUS multiprocessor systems only.) The Set Affinity 
directive can be issued by a task to select which CPU and UNIBUS 
runes) to use during task execution. 

Task CPU/UNIBUS affinity enables a task to select which CPU and UNIBUS 
runes) to use for task. execution when running on PDP-ll multiprocessor 
systems. Youmust be completely aware of the particular system 
hardware configuration in which the task will be executed before using 
these directives. 

Task CPU/UNIBUS affinity can be established at three possible times: 

1. When the task is installed 

2. When the task is mapped into a device partition (which must 
have CPU/UNIBUS run affinity previously established) 

3. When set by the Set Affinity directive 

an affinity mask word 
in the word is set to 
One or more of 12 

When issued, the Set Affinity directive produces 
that defines task CPU/UNIBUS affinity. One bit 
select orie CPU on which the task will be run. 
additional bits can be set to select one 
peripheral device use during task execution. 

or more UNIBUS runs for 

Two directives support task affinity, as follows: 

• Set Affinity - This directive accepts parameters that define 
the CPU and UNIBUS run mask for task execution. At assembly 
time, a one-word mask is created consisting of the logical OR 
of all the parameters. 

• Remove Affinity - This directive removes task CPU/UNIBUS 
affinity previously established by a Set Affinity directive. 

A one-word CPU/UNIBUS affinity mask defines directive parameters. 
Parameters enable specification of one of. four (maximum) CPU~ and one 
or more of twelve (maximum) UNIBUS runs. The affinity mask word 
consists of the logical OR of all the parameters. Only one parameter 
(cp or ub) is required. Directive parameters are assembled to produce 
the mask-word bit values shown as follows: 

Directive AsSembled 
Parameter Mask-Word Function Bit Value 

CPA Select CPU "A" 1 
CPB Select CPU "B" 2 
CPC Select CPU "c" 4 
CPO Select CPU "0" 10 
UBE Select UNIBUS run "E" 20 
UBF Select UNIBUS run "F" 40 
UBH Select UNIBUS run "H" 100 
UBJ Select UNIBUS run "J" 200 
UBK Select UNIBUS run "K" 400 
UBL Select UNIBUS run "L" 1000 
UBM Select UNIBUS run "M" 2000 
UBN Select UNIBUS run "N" 4000 
UBP Select UNIBUS run "P" 10000 

5-232 

( 

( 

( 

( 

( 



( 

( 

l 

UBR 
UBS 
UBT 

FORTRAN Call: 

DIRECTIVE DESCRIPTIONS 

Select UNIBUS run "R" 
Select UNIBUS run "S" 
Select UNIBUS run "T" 

20000 
40000 

100000 

CALL STAF (iaff[,idsw]) 

iaff 

idsw 

Macro Call: 

STAF$ 

cp 

ub 

Affinity mask word 

Iriteger to receive the Directive Status Word 

[ cp ! ub ! ub ••• ] 

CPU selected (A through 0, as previously listed) 

UNIBUS run(s) selected (E through T, as previously 
listed) 

Macro Expansion: 

STAF$ 
.BYTE 
.WORD 

CPB!UBF!UBJ 
161. ,2 
242 

;STAF$ MACRO DIC, DPB SIZE = 2 WORDS 
;AFFINITY MASK WORD ('OR' OF PARAMETERS) 

Local Symbol Defini tions: 

S.AFAF 

DSW Return Codes: 

IS.SUC 

IE.ITS 

IE.ADP 

IE.SDP 

Notes: 

Affinity mask word (2) 

Successful completion. 

Task installed with affinity. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

1. A task that is installed with task affinity must not issue 
this directive. Any attempt to do so results in an IE.ITS 
error returned. 

2. If this directive is issued with pa~ameters that prevent the 
task from running, an IE.ITS error is returned. 

5-233 



DIRECTIVE DESCRIPTIONS 

STIM$ 

5.3.88 Set System Time 

The Set System Time directive instructs the system to set the system's 
internal time to the specified time parameters. Optionally, the Set 
System Time directive returns the system's current internal time to 
the issuing task before setting it to the specified values. 

All time parameters must be specified as binary numbers. 

A task must be privileged to issue this directive. 

Changing the system time does not affect the time-based entries in the 
clock queue. Although the actual system time changes, the time 
interval after which a time-based entry is to be dequeued remains the 
same. This behavior allows the proper time-synchronization of events 
to be maintained. 

For example, if a task is scheduled to run one hour from the current C· 
time, it will still run after this interval even though the time might . 
be changed from 11:27 to 11:37. The display of the entry in the clock 
queue (MCR CLQ or DCL SHOW CLOCK QUEUE) shows the new time at which 
the task will run. -

FORTRAN Call: 

CALL SETTIM (ibufn[,ibufp[,ids]]) 

buffer 
ibufn = An eight-word integer array -- new time-specification (. 

ibufp = An eight-word integer array -- previous time buffer 

ids Directive status 

Macro Call: 

STIM$ bufn,[bufp] 

bufn 

bufp 

Buffer Format: 

Word 0 

Word 1 

Word 2 

Word 3 

Word 4 

Word 5 

Address of new eight-word time-specification buffer 

= Address of an eight-word buffer to receive the 
previous system time parameters 

Year (since 1900) 

Month (1-12) 

Day (l-n, where n is the highest day possible for the 
given month and year) 

Hour (0-23) 

Minute (0-59) 

Second (0-59) 

5-234 

( 

( 



( 

c 

( 

( 

Word 6 

Word 7 

DIRECTIVE DESCRIPTIONS 

Tick of second (O-n, where n is the frequency of the 
system clock minus one); if the next parameter (ticks 
per second) is defaulted, this parameter is ignored 

Ticks per second (must be defaulted or must match the 
frequency of the system clock); this parameter is 
used to verify the ,intended granularity of the "tick 
of second" parameter 

NOTE 

If any of the specified new time parameters 
are defaul ted (equal to -1) , the 
corresponding previous system time parameters 
will remain unchanged and will be substituted 
for the defaulted parameters during argument 
validation. 

Macro Expansion: 

STIM$ 
.BYTE 
.WORD 
.WORD 

NEWTIM,OLDTIM 
61. ,3 
NEWTIM 
OLDTIM 

;STIM$ DIC, DPB SIZE 3 WORDS 
;ADDRESS OF 8 (lO)-WORD INPUT BUFFER 
;ADDRESS OF 8 (lO)-WORD OUTPUT BUFFER 

Local Symbol Definitions: 

S.TIBA Input buffer address (2) 

S.TIBO Output buffer address (2) 

The following offsets are assigned relative to the start of each 
parameters buffer: 

time 

S.TIYR 

S.TIMO 

S.TIDA 

S.TIHR 

S.TIMI 

S.TISC 

S.TICT 

S.TICP 

DSW Return codes: 

IS.SUC 

IE.PRI 

IE.ITI 

Year (2) 

Month (2) 

Day (2) 

Hour (2) 

Minute (2) 

Second (2) 

Clock tick of second (2) 

Clock ticks per second (2) 

Successful completion. 

The issuing task is not privileged. 

One of the specified time parameters is out of range, 
or both the tick~of-second parameter and the 
ticks-per-second parameter were specified and the 
ticks-per-second parameter does not match the 
system's clock frequency. The system time at the 
moment the directive is issued (returned in the 
second buffer) can be useful in determining the cause 
of the fault if any of the specified time parameters 
were defaulted. 

5-235 



IE.ADP 

IE.SDP 

Notes: 

DIRECTIVE DESCRIPTIONS 

Part of the DPB or one of the buffers is out of the 
issuing task's address space. 

DIC or DPB size is invalid. 

1. Execution of this directive generates an error-log packet and 
sends it to the Error Logger. 

3. The highest clock frequency supported by the operating system 
is 1000 Hz for a programmable clock. Note that as the clock 
frequency approaches this value, the maximum resolution for 
this directive becomes more time-critical. The accuracy of 
this directive depends upon the elapsed time be~ween the 
moment that a new system time is specified and the time that 
the directive actually traps to the Executive. 

( 

4. The buffers used in this directive are compatible with those (--
of the Get Time Parameters (GTIM$) directive. . 

5. The second buffer (previous time) is filled in only if the 
directive was successfully executed or if it was rejected 
with an error code of IE.ITI. 

5-236 

( 

( 

( 



c 

( 

(-

DIRECTIVE DESCRIPTIONS 

STLO$ 

5.3.89 Stop for Logical OR of Event Flags 

The Stop for Logical OR of Event Flags directive instructs the system 
to stop the issuing task until the Executive sets one or more of the 
indicated event flags from one of the following groups: 

GR 0 Local flags 1-16 

GR 1 Local flags 17-32 

GR 2 Common flags 33-48 

GR 3 Common flags 49-64 

GR 4 Group global flags 65-80 

GR 5 Group global flags 81-96 

The task does not stop itself if any of the 
already set when the task issues the directive. 
be issued at AST state. See Notes below. 

indicated flags are 
This directive cannot 

A task that is stopped for one or more event flags can become 
unstopped only by setting the specified event flag.. It cannot become 
unstopped with the unstop directive or with th~ MCR UNSTOP or DeL 
START command. 

FORTRAN Call: 

CALL STLOR (ef1,ef2,ef3 ••• ,efn) 

CALL STLORS (idsw,ef1,ef2,ef3 ••• ,efn) 

idsw = Integer to receive the Directive Status Word 

efl. •• efn List of event flag numbers 

Macro Call: 

STLO$ grp, msk 

grp Desired group of event flags 

msk A 16-bit mask word 

Macro Expansion: 

STLO$ 
.BYTE 
.WORD 
.WORD 

1,47 
137.,3 
1 
47 

Local Symbol Definitions: 

iSTLO$ MACRO DIC, DPB SIZE = 3 WORDS 
iGROUP 1 FLAGS (FLAGS 17-32) 
iMASK WORD = 47 (FLAGS 17, 18, 19, 22) 

S.TLGR 

S.TLMS 

Group flags (2) 

Mask word (2) 

5-237 



DIRECTIVE DESCRIPTIONS 

DSW Return Codes: 

IS.SUC 

IE.AST 

IE.IEF 

IE.ADP 

IE.SDP 

Notes: 

Successful completion. 

The issuing task is at AST state. 

An event flag group other than 0 through 5 was 
specified, or the event-flag mask word is zero. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

1. There is a one-to-one correspondence between bits in the mask 
word and the event flags in the specified group. That is; if 
group 1 were specified (as in the above macro expansion 
example), bit 0 in the mask word would correspond to event 
flag 17, bit 1 to event flag 18, and so forth. 

2. The Executive does not arbitrarily clear event flags when 
Stop for Logical OR of Event Flags conditions are .met. Some 
directives (Queue I/O Request, for example) implicitly clear 
a flag. Otherwise, they must be explicitly cleared by a 
Clear Event Flag directive. 

3. The argument list specified in the FORTRAN or other 
high-level language call must contain only those event flag 
numbers that lie within one event Flag group. If event flag 
numbers are specified that lie within more than one event 
flag group or if an invalid event flag is specified, a task 
abort is generated with an error code in a register (see 
Section 1.5.3). 

4. Tasks stopped for event flag conditions cannot be unstopped 
by issuing the unstop directive; tasks stopped in this manner 
can be unstopped only by meeting other event flag conditions. 

5. The grp operand must always be of the form n regardless of 
the macro form used. In almost all other macro calls, 
numeric or address values for $S form macros have the form: 

6. 

#n 

For STLO$S, this form of the grp argument would be: 

n 

If the specified event 
group's use count is 
elimination of the event 
when: 

flag group is group global, the 
incremented to prevent premature 

flags. The use count is run down 

• The Stop-for condition is satisfied. 

• The issuing task exits before the Stop-for condition 
is satisfied. 

5-238 

( 

( 

( 

( 

( 



( 

( 

c-

DIRECTIVE DESCRIPTIONS 

STOP$S 

5.3.90 Stop ($S Form Recommended) 

The Stop directive stops the issuing task. This directive cannot be 
issued at AST state. A task stopped in this manner can be unstopped 
only by another task issuing an Unstop directive directed to the task, 
the task issuing an Unstop directive at AST state, or with the MCR 
UNSTOP or DCL START command. 

FORTRAN Call: 

CALL STOP ([idsw) 

idsw Integer to receive the Directive Status Word 

Macro Call: 

pTOP$S 

Macro Expansion: 

STOP$S 
MOV 
.BYTE 
EMT 

(PC) +, - (SP) 
131.,1 

iPUSH DPB ONTO THE STACK 
iSTOP$ MACRO DIC, DPB SIZE = 1 WORD 
iTRAP TO THE EXECUTIVE 377 

Local Symbol Definitions: 

None 

DSW Return Codes: 

IS.SET 

IE.AST 

IE.ADP 

IE.SDP 

Successful completion. 

The issuing task is at AST state. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

5-239 



DIRECTIVE DESCRIPTIONS 

STSE$ 

5.3.91 Stop for Single Event Flag 

The Stop for Single Event Flag directive instructs the system to stop 
the issuing task until the specified event flag is set. If the flag 
is set at issuance, the task is not stopped. This directive cannot be 
issued at AST state. 

A task.that is stopped for one or more event flags can 
unstopped only by setting the specified event flag. It cannot 
unstopped by the unstop directive or by the MCR UNSTOP or DCL 
command. 

become 
become 

START 

FORTRAN Call: 

CALL STOPFR (iefn[,idsw]) 

iefn = Event flag number 

idsw Integer to receive the Directive Status Word 

Macro Call : 

STSE$ efn 

efn = Event flag number 

Macro Expansion: 

STSE$ 
~BYTE 
.WORD 

7 
135. ,2 
7 

;STSE$ MACRO DIC, DPB SIZE 2 WORDS 
;LOCAL EVENT FLAG NUMBER = 7 

Local Symbol Definitions: 

S.TSEF Event flag number (2) 

DSW Return Codes: 

Note: 

IS.SUC 

IE.AST 

IE.IEF 

IE.ADP 

IE.SDP 

Successful completion. 

The issuing task is at AST state. 

Invalid event flag number (EFN<l, or EFN>96 if group 
global event flags exist for the task's group or 
EFN>64 if not). 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size)s invalid. 

If the specified event flag is group global, the use count for 
the event flag's group is incremented to prevent premature 
elimination of event flags. The use count is run down when: 

• The Stop-for condition is satisfied • 

• The issuing task exits before the Stop-for condition is 
satisfied. 

5-240 

( 

(-

( 



( 

( 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

SVDB$ 

5.3.92 Specify SST Vector Table for Debugging Aid 

The Specify SST Vector Table for Debugging Aid directive instructs the 
system to record the address of a table of SST service-routine entry 
points for use by an intratask debugging aid (ODT, for example). 

To deassign the vector table, omit the parameters adr and len from the 
macro call. 

Whenever an SST service-routine entry is specified in both the table 
used by the task and the table used by a debugging aid, the trap 
occurs for the debugging aid, not for the task. 

FORTRAN Call: 

Neither the FORTRAN language nor the ISA standard permits direct 
linking to system-trapping mechanisms. Therefore, this directive 
is not available to FORTRAN tasks. 

Macro Call: 

SVDB$ [ad r 1 [, len 1 

adr Address of the SST vector table 

len Length of (that is, number of entries in) the table in 
words 

The vector table has the following format: 

Word 0 Odd address of nonexistent memory error 

Word 1 Memory protect violation 

Word 2 T-bit trap or execution of a BPT instruction 

Word 3 Execution of an lOT instruction 

Word 4 Execution of a reserved instruction 

Word 5 Execution of a non-RSX EMT instruction 

Word 6 Execution of a TRAP instruction 

Word 7 PDP-ll/40 floating-point exception 

A zero entry in the table indicates that the task does not want 
to process the corresponding SST. 

Macro Expansion: 

SVDB$ 
.BYTE 
.WORD 
.WO~D 

SSTTBL,4 
103. ,3 
SSTTBL 
4 

iSVDB$ MACRO DIC, DPB SIZE = 3 WORDS 
;ADDRESS OF SST TABLE 
;SST TABLE LENGTH = 4 WORDS 

5-241 



~--~~--~---

DIRECTIVE DESCRIPTIONS 

Local Symbol Definitions: 

S.VDTA 

S.VDTL 

DSN Return Codes: 

IS.SUC 

IE.ADP 

IE.SDP 

Table address (2) 

Table length (2) 

Successful completion. 

Part'of the DPB or table is out of the issuing task's 
address space. 

DIC or DPB size is invalid. 

5-242 

( 

( 

( 



( 

c 

(-

DIRECTIVE DESCRIPTIONS 

SVTK$ 

5.3.93 Specify SST Vector Table for Task 

The Specify SST Vector Table for Task directive instructs the system 
to record the address of a table of SST service-routine entry points 
for use by the issuing task. 

To deassign the vector table, omit the parameters adr and len from the 
macro call. 

Whenever an SST service-routine entry is specified in both the table 
used by the task and the table used by a debugging aid, the trap 
occurs for the debugging aid, not for the task. 

FORTRAN Call: 

Neither the FORTRAN language nor the ISA standard permits direct 
linking to system-trapping mechanism. Therefore, this directive 
is not available to FORTRAN tasks. 

Macro Call: 

SVTK$ [adr] [, len] 

adr Address of the SST vector table 

len Length of (that is, number of entries in) the table in 
words 

The vector table has the following format: 

Word 0 Odd address of nonexistent memory error 

Word I Memory protect violation 

Word 2 T-bit trap or execution of a BPT instruction 

Word 3 Execution of an lOT instruction 

Word 4 Execution of a reserved instruction 

Word 5 Execution of a non-RSX EMT instruction 

Word 6 Execution of a TRAP instruction 

Word 7 PDP-ll/40 floating-point exception 

A zero entry in the table indicates that the task does not want 
to process the corresponding SST. 

Macro Expansion: 

SVTK$ 
.BYTE 
.WORD 
.WORD 

SSTTBL,4 
105.,3 
SSTTBL 
4 

iSVTK$ MACRO DIC, DPB SIZE = 3 WORDS 
iADDRESS OF SST TABLE 
iSET TABLE LENGTH = 4 WORDS 

5-243 



DIRE;CTIVE DESCRIPTIONS 

Local Symbol Definitions: 

S.VTTA 

S.VTTL 

DSW Return Codes: 

IS~SUC 

IE.ADP 

IE.SDP 

Table address (2) 

Table length (2) 

Successful completion. 

Part of the DPB or table is out of the issuing task's 
address space. 

DIe or DPB size is invalid. 

5-244 

---- ---_ ... -. 

( 

c 

( 

( 

( 



c 

c-

( 

( 

DIRECTIVE DESCRIPTIONS 

SWST$ 

5.3.94 Switch State 

The Switch State directive makes it possible for a privileged task 
which is not itself mapped to the Executive to map subroutines that 
require access to'the Executive. For information on mapping the 
subroutines, see Notes 3 and 5 for the description of the CINT$ 
(Connect to Interrupt) directive. 

The directive maps the subroutine through APR5 (that is, it uses 
virtual addresses 120000 through 137777 octal). Therefore, the 
subroutine, and all data in the task referenced by the subroutine, 
must fall within the limits of 4K words of the base virtual address 
specified in the directive. The subroutine itself is executed as part 
of the SWST$ directive and is, therefore, in system state during its 
execution. Local data references must also be within the 4K-word 
limi t. 

FORTRAN Call: 

Not supported 

Macro Call: 

SWST$ base,addr 

base = The base virtual address within the task for mapping the 
subroutine through APR5 

addr Virtual address of the subroutine to be executed in 
system state by the directive 

Macro Expansion: 

SWST$ 
.BYTE 
.WORD 

.WORD 

BASE,ADDR 
175.,3 
BASE 

ADDR 

;SWST$ MACRO DIC, DPB SIZE = 3 WORDS 
;BASE VIRTUAL ADDRESS FOR MAPPING THE 
;SUBROUTINE THROUGH APR5 
;VIRTUAL ADDRESS OF THE SUBROUTINE 
;EXECUTED AT SYSTEM STATE 

Local Symbol Definitions: 

S.WBAS -- Base virtual address for mapping the subroutine through 
APR5 

S.WADD -- virtual address of the subroutine executed at system 
state 

DSW Return Codes: 

IS.SUC 

IE. PRI 

IE.MAP 

Successful completion of service. 

The issuing task is not privileged. 

The specified system-state routine is more than 4K 
words from the specified base. 

5-245 



DIRECTIVE DESCRIPTIONS 

IE.ADP -- Part of the DPB is out of the issuing task's address 
space. 

IE.SDP DIC nr DPB size is invalid. 

Notes: 

1. User-mode register contents are preserved across the 
execution of the kernel-mode subroutine. Contents of the 
user-mode registers are passed into the kernel-mode 
registers. Contents of the kernel-mode registers are 
discarded when the subroutine has completed execution. 

2. User-mode registers appear 
offsets during execution 
kernel mode: 

User-mode RO at S.WSRO 
User-mode R1 at S.WSR1 
User-mode R2 at S.WSR2 
User-mode R3 at S.WSR3 
User-mode R4 at S.WSR4 
User-mode R5 at S.WSR5 

at 
of 

the 
the 

following octal stack 
specified subroutine in 

(=2) offset on kernel stack 
(=4) offset on kernel stack 
(=6) offset on kernel stack 
(=10) offset on kernel stack 
(=12 ) offset on kernel stack 
(=14) offset on kernel stack 

If you want to return any register values to the user-mode 
registers, you must store the desired values on the stack 
using the above offsets. 

These offset values become valid when the subroutine is 
called, and remain valid as long as the stack pointer is not 
changed. Once the stack pointer changes, the offset values 
become invalid. 

3. Virtual address values passed to system state in a register 
must be realigned through kernel APR5. For example, if R5 
contains address n and the base virtual address in the DPB is 
1000(8), the value in R5 must be aligned using the formula: 

n+120000+base virtual address 

Therefore, the resulting value is n+121000. 

4. The system-state subroutine should exit by issuing a return 
instruction. This causes a successful directive status to be 
returned as the directive is terminated. 

CAUTION 

Keep in mind that the memory management unit 
rounds the base address to the nearest 
32-word boundary. 

5-246 

( 

( 

( 

( 



( 

( 

c. 

( 

( 

.- ---~-.----------------~ 

DIRECTIVE DESCRIPTIONS 

TFEA$ 

5.3.95 Test for Specified Task Feature 

The Test for Specified Task Feature directive tests for the presence 
of a specific task software option, such as fast-mapping support or 
privilege status. 

FORTRAN Call: 

CALL TFEA (isym,idsw) 

isym Symbol for the specified task feature 

idsw Integer to receive the Directive Status Word 

Macro Call: 

TFEA$ sym 

sym Symbol for the specified task feature 

Symbol Value 

T2$WFR 1 
T2$WFA 2 
T2$SPN 3 
T2$SPA 4 
T2$STP 5 
T2$STA 6 
T2$ABO 7 
AT2$AFF 9. 
T2$SIO 10. 
T2$SEF 12. 
T2$REX 13. 
T2$CHK 14. 
'i'2$DST 15. 
T2$AST 16. 
T3$GFL 17. 
T3$SWS 18. 
T3$CMD 19. 
T3$MPC 20. 
T3$NET 2l. 
T3$ROV 22. 
T3$CAL 23. 
T3$NSD 24. 
T3$RST 25. 
T3$CLI 26. 
T3$SLV 27. 
T3$MCR 28. 
T3$PRV 29. 
T3$REM 30. 
T3$PMD 3l. 
T3$ACP 32. 
T4$SNC 33. 

Table 5-2 
Task Feature Symbols 

Meaning 

TASK IN WAIT-FOR STATE (l=YES) 
SAVED T2$WFR ON AST IN PROGRESS 
TASK SUSPENDED (l=YES) 
SAVED T2$SPN ON AST IN PROGRESS 
TASK STOPPED (l=YES) 
SAVED T2$SPN [STP?] ON AST IN PROGRESS 
TASK MARKED FOR ABORT (l=YES) 
TASK IS INSTALLED WITH AFFINITY 
TASK STOPPED FOR BUFFERED I/O 
TASK STOPPED FOR EVENT FLAG(S) (l=YES) 
REQUESTED EXIT AST SPECIFIED 
TASK NOT CHECKPOINTABLE (l=YES) 
AST RECOGNITION DISABLED (l=YES) 
AST IN PROGRESS (l=YES) 
GROUP GLOBAL EVENT FLAG LOCK 
RESERVED FOR USE BY SOFTWARE SERVICES 
TASK IS EXECUTING A CLI COMMAND 
MAPPING CHANGE WITH OUTSTANDING I/O 
NETWORK PROTOCOL LEVEL 
TASK HAS RESIDENT OVERLAYS 
TASK HAS CHECKPOINT SPACE IN IMAGE 
TASK DOES NOT ALLOW SEND DATA 
TASK IS RESTRICTED (l=YES) 
TASK IS A COMMAND LINE INTERPRETER 
TASK IS A SLAVE TASK (l=YES) 
TASK REQUESTED AS EXTERNAL MCR FUNCTION 
TASK IS PRIVILEGED (l=YES) 
REMOVE TASK ON EXIT (l=YES) 
DUMP TASK ON SYNCHRONOUS ABORT (O=YES) 
ANCILLARY CONTROL PROCESSOR (l=YES) 
TASK USES COMMONS FOR SYNCHRONIZATION 

(continued on next page) 

5-247 



Symbol Value 

T4$DSP 34. 
T4$PRV 35. 

T4$PRO 36. 
T4$LDD 37. 
T4$MUT 38. 
T4$CTC 39. 
T4$FMP 40. 

DIRECTIVE DESCRIPTIONS 

Table 5-2 (Cont.) 
Task Feature Symbols 

Meaning 

TASK WAS BUILT FOR USER I/D SPACE 
TASK WAS PRIVILEGED, BUT HAS CLEARED T3.PRV 
WITH GIN$ (MAY BE RESENT WITH GIN$ IF T4$PRV 
TCB IS (OR SHOULD BE) A PROTOTYPE 
TASK'S LOAD DEVICE HAS BEEN DISMOUNTED 
TASK IS A MULTIUSER TASK 
TASK HAS BEEN PROCESSED BY GIN$ AC ABORT 
TASK HAS FAST MAPPING HEADER EXTEN$ION 

SET) 

Macro Expansion: 

TFEA$ 
.BYTE 
.WORD 

T4$FMP 
209. ,2 
T4$FMP 

;TFEA$ MACRO DIC, DPB SIZE 
;FEATURE IDENTIFIER 

2 WORDS 

Local Symbol Definitions: 

F.TEAF 

DSW Return Codes: 

IS.CLR 

IS.SET 

IE.ADP 

IE.SDP 

Feature identifier (2) 

Successful completion; feature not present. 

Successful completion; feature present. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

5-248 

c 

c 

( 

( 

( 



DIRECTIVE DESCRIPTIONS 

C
· \, 

) 

( \ 

5-249 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

c 

5-250 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

( 

( 

5-251 



DIRECTIVE DESCRIPTIONS 

ULGF$S 

5.3.97 Unlock Group Global Event Flags ($S Form Recommended) 

The Unlock Group Global Event Flags directive instructs the Executive 
to decrement the use count of the group global event flags for the 
issuing task's protection group UIC (H.CUIC+1). This unlocks flags 
that were locked by the Create Group Global Event Flags directive. 

A task may unlock the event flags only once before locking them again. 

The group global event flags are eliminated if the 
conditions are satisfied: 

following 

• The use count in the group global event flag control block 
(GFB) is zero after this directive is issued. 

• The GFB is marked for deletion. 

FORTRAN Call: 

CALL ULGF ([ids]) 

ids = Directive status 

Macro Call: 

ULGF$S [err] 

err = Error-routine address 

Macro Expansion: 

ERR 
;PUSH DPB ONTO THE STACK 

ULGF$S 
MOV 
.BYTE 
EMT 
BCC 
JSR 

(PC) +, - (SP) 
159.,1 
377 

;ULGF$S MACRO DIC, DPB SIZE = 1 WORD 
;TRAP TO THE EXECUTIVE 

.+6 
PC, ERR 

Local Symbol Definitions: 

None 

DSW Return Codes: 

IS.SUC Successful 

IE.RSU Event flags 

IE.ADP Part of the 
space. 

IE.SDP DIC or DPB 

;BRANCH IF DIRECTIVE SUCCESSFUL 
;OTHERWISE, CALL ROUTINE "ERR" 

completion. 

already unlocked from the issuing 

DPB is out of the issuing task's 

size is inva1 id. 

5-252 

task. 

address 

c 

( 

( 

( 

( 



c 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

UMAP$ 

5.3.98 Unmap Address Window 

The Unmap Address Window directive unmaps a specified window. After 
the window has been unmapped, references to the corresponding virtual 
addresses are invalid and cause a processor trap to occur. 

FORTRAN Call: 

CALL UNMAP (iwdb[,ids]) 

iwdb An eight-word integer array containing a 
Definition Block (see Section 3.5.2.2) 

Window 

ids Directive status 

Macro Call: 

UMAP$ wdb 

wdb = Window Definition Block address 

Macro Expansion: 

UMAP$ 
.BYTE 
.WORD 

WDBADR 
123. ,2 
WDBADR 

;UMAP$ MACRO DIC, DPB SIZE = 2 WORDS 
;WDB ADDRESS 

Window Definition Block Parameters: 

Input parameters: 

Array 
Element 

iwdb(l) 
bits 0-7 

Offset 

W.NID 

Output parameters: 

Array 
Element 

iwdb(7) 

Offset 

W.NSTS 

Local Symbol Definitions: 

ID of the window to be unmapped 

Bit settings l in the window status 
word: 

Bit 

WS.UNM 

Definition 

1 if the window was 
unmapped successfully 

U.MABA Window Definition Block address (2) 

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to 
determine the bit values represented by the symbolic names described. 

5-253 



DSW Return Codes: 

IS.SUC 

IE. ITS 

IE.NVW 

IE.ADP 

IE.SDP 

DIRECTIVE DESCRIPTIONS 

Successful completion. 

The specified address window is not mapped. 

Invalid address window ID. 

DPB or WDB out of range. 

DIC or DPB size is invalid. 

5-254 

( 

( 

( 

( 

( 



c 

( 

( 

( 

DIRECTIVE DESCRIPTIONS 

USTP$ 

5.3.99 unstop Task 

The unstop Task directive unstops the specified task that has stopped 
itself by either the Stop or the Receive Data Qr Stop directive. It 
does not unstop tasks stopped for event flag(s) or tasks stopped for 
buffered I/O. If the Unstop directive is issued to a task previously 
stopped by means of the Stop or R~ceive or Stop directive while at 
task state and the task is presently at AST state, the task becomes 
unstopped only when it returns to task state. 

It is considered the responsibility of the unstopped task to determine 
if it has been unstopped validly. 

The unstop directive does not cause a significant event. 

FORTRAN Call: 

CALL USTP ([ rtname] [, ids] ) 

rtname Name of the task to be unstopped (if not specified, 
CALL USTP will use the issuing task as its default) 

ids = Integer to receive directive status information 

Macro Call: 

USTP$ 

tname 

[tname] 

Name of the task to be unstopped (if not specified, 
USTP$ will use the issuing task as its default) 

Macro Expansion: 

USTP$ 
.BYTE 
.RAD50 

ALPHA 
133. ,3 
/ALPHA/ 

;USTP$ MACRO DIC, DPB SIZE = 3 WORDS 
;NAME OF TASK TO BE UNSTOPPED 

Local Symbol Definitions: 

U.STTN 

DSW Return Codes: 

IS.SUC 

IE. INS 

IE.ACT 

IE.ITS 

IE.ADP 

IE.SDP 

Task name (4) 

Successful completion. 

The specified task is not installed in the system. 

The specified task is not active. 

The specified task is not stopped, or it is stopped 
for event flag(s) or buffered I/O. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

5-255 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

( 

(-

5-256 



DIRECTIVE DESCRIPTIONS 

c 

( 

( 

( 

5-257 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

( 

5-258 



DIRECTIVE DESCRIPTIONS 

c 

c 

( 

5-259 



DIRECTIVE DESCRIPTIo.NS 

( 

( 

( 

( 

( 

5-260 



DIRECTIVE DESCRIPTIONS 

c 

c-

(-

5-261 



DIRECTIVE DESCRIPTIONS 

c-

c 

( 

( 

5-262 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

5-263 



DIRECTIVE DESCRIPTIONS 

5-264 



DIRECrIVE DESCRIPTIONS 

c 

( 

( 

5-265 



DIRECTIVE DESCRIPTIONS 

( 

( 

( 

( 

( 

5-266 



( 

( 

l' 

DIRECTIVE DESCRIPTIONS 

WSIG$S 

5.3.105 Wait for Significant Event ($S Form Recommended) 

The Wait for Significant Event di~ective is used to suspend the 
execution of the issuing task until the next significant event occurs. 
It is an especially effective way to block a task that cannot continue 
because of a lack of dynamic memory since significant events occurring 
throughout the system often result in the release of dynamic memory. 
The execution of a Wait for Significant Event directive does not 
itself constitute a significant event. 

FORTRAN Call: 

CALL WFSNE 

Macro Call: 

WSIG$S [err] 

err Error-routine address 

Macro Expansion: 

WSIG$S 
MOV 
.BYTE 
EMT 
BCC 
JSR 

ERR 
(PC)+,-(SP) 
49.,1 
377 
.+6 
PC, ERR 

;PUSH DPB ONTO THE STACK 
;WSIG$S MACRO DIC, DPB SIZE = 1 WORD 
;TRAP TO THE EXECUTIVE 
;BRANCH IF DIRECTIVE SUCCESSFUL 
;OTHERWISE, CALL ROUTINE "ERR" 

Local Symbol Definitions: 

None 

DSW Return Codes: 

IS.SUC 

IE.ADP 

IE.SDP 

Notes: 

Successful completion. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

1. If a directive is rejected for lack of dynamic memory, this 
directive is the only technique available for blocking task 
execution until dynamic memory may again be available. 

2. The wait state induced by this directive is satisfied by the 
first significant event to occur after the directive has been 
issued. T~e significant event that occurs mayor may not be 
related to the issuing task. 

5-267 



DIRECTIVE DESCRIPTIONS 

3. Because this directive requires only a one-word DPB, using 
the $S form of the macro is recommended. It requires less 
space and executes with the same speed as that of the DIR$ 
macro. 

4. Significant events include the following: 

• I/O completion 

• Task exit 

• Execution of a Send Data directive 

• Execution of a Send Data Request and Pass OCB 
directive 

• Execution of a Send, Request, and Connect directive 

• Execution of a Send By Reference, Receive By 
Reference, or Receive By Reference or Stop directive 

• Execution of an Alter Priority directive 

• Removal of an entry from the clock queue (for 
instance, resulting from the execution of a Mark Time 
directive or the issuance of a rescheduling request) 

• Execution of a Declare Significant Event directive 

• Execution of the round-robin scheduling algorithm at 
the end of a round-robin scheduling interval 

( 

( 

• Execution of an Exit, Exit with Status, or Emit 
Status directive ( 

( 

5-268 



( 

( 

( 

c 

DIRECTIVE DESCRIPTIONS 

WTLO$ 

5.3.106 wait for Logical OR of Event Flags 

The Wait for Logical OR of Event Flags directive instructs the system 
to block the execution of the issuing task until the Executive sets 

of the indicated event flags from one of the following one or more 
groups: 

GR 0 Local flags 1-16 

GR 1 Local flags 17-32 

GR 2 Common flags 33-48 

GR 3 Common flags 49-64 

GR 4 Group global flags 65-80 

GR 5 Group global flags 81-96 

The task does not block itself if any of the 
already set when the task issues the directive. 

FORTRAN Call: 

CALL WFLOR (ef1,ef2,ef3 ••• ,efn) 

CALL WFLORS (idsw,ef1,ef2,ef3 ••• ,efn) 

indicated flags are 
See the Notes. 

idsw Integer to receive the Directive Status Word 

ef1 ••• efn = List of event flag numbers 

Macro Call: 

WTLO$ grp,msk 

grp Desired group of event flags 

msk A 16-bit flag mask word 

Macro Expansion: 

WTLO$ 
.BYTE 
.WORD 
.WORD 

2,160003 
43. ,3 
2 
160003 

Local Symbol Definitions: 

None 

iWTLO$ MACRO DIC, DPB SIZE = 3 WORDS 
iFLAGS SET NUMBER 2 (FLAGS 33:48) 
iEVENT FLAGS 33, 34, 46, 47, AND 48 

5-269 



DSW Return Codes: 

IS.SUC 

IE.IEF 

IE.ADP 

IE.SDP 

Notes: 

DIRECTIVE DESCRIPTIONS 

Successful completion. 

No event flag specified in the mask word or flag 
group indicator other than 0, 1, 2, 3, 4, or 5. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

1. There is a one-to-one correspondence between bits in the mask 
word and the event flags in the specified group. That is, if 
group 1 were specified, then bit 0 in the mask word would 
correspond to event flag 17, bit 1 to event flag 18, and so 
forth. 

c 

2. The Executive does not arbitrarily clear event flags when 
Wait-for conditions are met. Some directives (Queue I/O 
Request, for example) implicitly clear a flag. Otherwise, ( 
they must be explicitly cleared by a Clear Event Flag __ 
directive. 

3. The grp operand must always be of the form n regardless of 
the macro form used. In almost all other macro calls, 
numeric or address values for $S form macros have the form: 

#n 

For WTLO$S, this form of the grp argument would be: 

n 

4. The argument list specified in the FORTRAN or other 
high-level language call must contain only those event flag 
numbers that lie within one event flag group. If event flag 
numbers are specified that lie within more than one event 
flag group or if an invalid event flag is specified, a task 
abort is generated with an error code in a register (see 
Section 1. 5. 3). 

( 

5. If the issuing task has outstanding buffered I/O when it (_ 
enters the Wait-for state, it will be stopped. When the task -
is in a stopped state, it can be checkpointed by any other 
task regardless of priority. The task is unstopped when: 

• The outstanding buffered I/O completes. 

• The Wait-for condition is satisfied. 

6. If the specified group of event flags is group global, the 
group's use count is incremented to prevent premature 
elimination of the event flags. The use count is run down 
when: 

• The Wait-for condition is satisfied. 

• The issuing task exits before the Wait-for condition 
is satisfied. 

5-270 



( 

( 

( 

DIRECTIVE DESCRIPTIONS 

WTSE$ 

5.3.107 wait for Single Event Flag 

The Wait for Single Event Flag directive instructs the system to block 
the execution of the issuing task until the indicated event flag is 
set. If the flag is set at issuance, task execution is not blocked. 

FORTRAN Call: 

CALL WAITFR (efn[,ids]) 

efn Event flag number 

ids Directive status 

Macro Call: 

WTSE$ efn 

efn Event flag number 

Macro Expansion: 

WTSE$ 
.BYTE 
• WORD 

52. 
41. ,2 
52 • 

Local Symbol Definitions: 

;WTSE$ MACRO DIC, DPB SIZE 
;EVENT FLAG NUMBER 52 

W.TSEF Event flag number (2) 

DSW Return Codes: 

IS.SUC Successful completion. 

2 WORDS 

IE.IEF Invalid event flag number (EFN<l, or EFN>96 if group 
global event flags exist for the task's group or 
EFN>64 if not). 

IE.ADP 

IE.SDP 

Notes: 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

1. If the issuing task has outstanding buffered I/O when it 
enters the Wait-for state, it will be stopped. When the task 
is in a stopped state, it can be checkpointed by any other 
task regardless of priority. The task is unstopped when: 

• The outstanding buffered I/O completes. 

• The wait-for condition is satisfied. 

5-271 



DIRECTIVE DESCRIPTIONS 

2. If the specified event flag is group global, the group's use 
count is incremented to prevent premature elimination of 
~vent flags. The use count is run down when: 

• The Wait-for condition is satisfied. ~ 
• The issuing task exits before the Wait-for condition 

is satisfied. 

3. Please be aware of the following situation: 

If you have more than one task waiting fo~ the same 
event flag and the task with the highest priority clears 
the event flag first, the remaining tasks will not be 
able to resume execution. This behavior is inherent in 
the way tasks execute by priority. (See Section 1.9.) 

5-272 

c 

( 

( 

( 



( 

( 

( 

( 

APPENDIX A 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Abort Task 

FORTRAN Call: 

CALL ABORT (tsk[,ids]) 

tsk Name (Radix-50) of the task to be aborted 

ids 

Macro Call: 

ABRT$ 

tsk 

Directive status 

tsk 

Name (Radix-50) of the task to be aborted 

A-I 

ABRT$ 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

( 

Alte~ Priority ALTP$ 

( FORTRAN Call: 

CALL ALTPRI ([tsk] ,[ipri] [,ids]) 

tsk Active task name 

ipri = A one-word integer value equal to the new priority, 
from 1 to 250(10) 

ids Directive status 

( Macro Call: 

ALTP$ [tsk] [,pri] 

tsk Active task name 

pri New priority, from 1 to 250(10) 

( 

A-2 



c 

c 

( 

( 

------- ~-- ~-----

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Assign LUN 

FORTRAN Call: 

CALL ASNLUN (lun,dev,unt[,ids]) 

lun Logical unit number 

dev Device name (format: lA2) 

unt Device unit number 

ids Directive status 

Macro Call: 

ALUN$ lun,dev,unt 

lun = Logical unit number 

dev Device name (two uppercase characters) 

unt Device unit number 

AST Service Exit ($S form recommended) 

FORTRAN Call: 

ALUN$ 

ASTX$S 

Neither the FORTRAN language nor the ISA standard permits direct 
linking to system-trapping mechanisms. Therefore, this directive 
is not available to FORTRAN tasks. 

Macro Call: 

ASTX$S [err] 

err = Error-routine address 

Attach Region 

FORTRAN Call: 

CALL ATRG (irdb[,ids]) 

irdb = An eight-word integer array containing 
Definition Block (see Section 3.5.1.2) 

ids Directive status 

Macro Call: 

ATRG$ rdb 

rdb = Region Definition Block address 

A-3 

ATRG$ 

a Region 



~----~-------------

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Connect to Interrupt Vector CINT$ 

FORTRAN Call: 

Not supported 

Macro Call: 

CINT$ vec,base,isr,edir,pri,ast 

vec Interrupt vector address; must be in the range 60(8) to 
highest vector specified during system ~eneration, 
inclusive, and must be a multiple of 4 

base Virtual base address for kernel APR 5 mapping of the 
ISR and enable/disable interrupt routInes 

isr Virtual address of the ISR or 0 to disconnect from the 
interrupt vector 

edir Virtual address of the enable/disable interrupt routine 

pri Initial priority at which the ISR is to execute 

ast Virtual address of an AST routine to be entered after 
the fork-level routine queues an AST 

Clear Event Flag CLEF$ 

FORTRAN Call: 

CALL CLREF (efn[,ids) 

efn Event flag number 

ids Directive status 

Macro Call: 

CLEF$ efn 

efn Event flag number 

A-4 

( 

( 

( 

( 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

( 

( 

( 

( 

A-5 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Cancel Mark Time Requests CMKT$ 

FORTRAN Call: 

CALL CANMT ([efn] [,ids]) 

efn = Event flag number 

ids = Directive status 

Macro Call : 

CMKT$ [[efn] , [ast] , [err]] 

efn Event flag number 

ast Mark time AST address 

err Error-routine address 

Connect CNCT$ 

FORTRAN Call: 

CALL CNCT (rtname, [iefn], [iast], [iesb], [iparm] [,ids]) 

CALL CNCTN (rtname, [iefn], [iast], [iesb], [iparm] [,ids]) 

rtname 

iefn 

iast 

iesb 

iparm = 

ids 

Name (Radix-50) of the offspring task 
connected 

to be 

Event flag to be set when the offspring task exits 
or emits status 

Name of an AST 
offspring task 
CALL CNCTN) 

routine to be called when the 
exits or emits status (ignored for 

Name of an eight-word status block to be written 
when the offspring task exits or emits status: 

Word a Offspring-task exit status 

Word 1 TKTN abort code 

Words 2-7 Reserved 

Name of a word to receive the status block address 
when an AST occurs 

Integer to receive the Directive Status Word 

A-6 

( 

--

C 

( 

( 



( 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Macro Call: 

CNCT$ tname, [efn] ,[east] ,[esb] 

tname Name (Radix-50) of the offspring task 
connected 

to be 

efn The event flag to be cleared on issuance and set 
when the offspring task exits or emits status 

east = Address of an AST routine to be called when the 
offspring task exits or emits status 

esb Address of an eight-word status block to be written 
when the offspring task exits or emits status: 

Word o Offspring-task exit status 

Word 1 TKTN abort code 

Words 2-7 Reserved 

Create Address Window 

FORTRAN Call: 

CALL CRAW (iwdb[,ids]) 

iwdb = An eight-word integer array containing 
Definition Block (see Section 3.5.2.2) 

ids Directive status 

Macro Call: 

CRAWS wdb 

wdb Window Definition Block address 

A-7 

CRAWS 

a Window 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Create Group Global Event Flags CRGF$ 

FORTRAN Call: 

CALL CRGF ([ group] [, ids] ) 

group 

ids 

Macro Call: 

CRGF$ 

group 

Create Region 

FORTRAN Call: 

Group number for the flags to be created. Only 
privileged tasks can specify group numbers other than 
the issuing task's group UIC. If the UIC is not 
specified, the task's protection UIC (H.CUIC+I) in 
the task's header is used. 

Integer to receive the Directive Status Word 

[group] 

Group number for the flags to be created. Only 
privileged tasks can specify group numbers other than 
the issuing task's group UIC. If the UIC is not 
specified, the task's protection UIC (H.CUIC+l) in 
the task's header is used. 

CRRG$ 

CALL CRRG (irdb[,ids]) 

irdb = An eight-word integer array containing 
Definition Block (see Section 3.5.1.2) 

ids Directive status 

Macro Call: 

CRRG$ rdb 

rdb Region Definition Block address 

A-8 

a Region 

c 

c 

( 

( 

( 



c 

( 

( 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Cancel Scheduled Initiation Requests 

FORTRAN Ca 11 : 

CALL CANALL (tsk[,ids]) 

tsk Task name 

ids Directive status 

Macro Call: 

CSRQ$ tsk 

tsk Scheduled (target) t~sk name 

Declare Significant Event ($S form recommended) 

FORTRAN Ca 11 : 

CALL DECLAR ([,ids]) 

ids Directive status 

Macro Call: 

DECL$S [,err] 

err Error-routine address 

A-9 

CSRQ$ 

DECL$S 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

( 

( 

( 

l 
A-10 



( 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Disable AST Recognition ($S form recommended) 

FORTRAN Call: 

CALL DSASTR [(ids)] 

ids Directive status 

Macro Call: 

DSAR$S [err] 

err = Error-routine address 

Disable Checkpointing ($S form recommended) 

FORTRAN Call: 

CALL DISCKP [(ids)] 

ids Directive status 

Macro Call : 

DSCP$S [err] 

err Error-routine address 

Detach Region 

FORTRAN Ca 11 : 

CALL DTRG (irdb[,ids]) 

irdb = An eight-word integer array containing 
Definition Block (see Section 3.5.1.2) 

ids = Directive status 

Macro Call: 

DTRG$ rdb 

rdb Region Definition Block address 

Eliminate Address Window 

FORTRAN Call: 

CALL ELAW (iwdb[,ids]) 

a 

DSAR$S 

DSCP$S 

DTRG$ 

Region 

ELAW$ 

iwdb = An eight-word integer array containing a Window 
Definition Block (see Section 3.5.2.2) 

ids Directive status 

Macro Call: 

ELAW$ wdb 

wdb = Window Definition Block address 

A-ll 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Eliminate Group Global Event Flags ELGF$ 

FORTRAN Call: 

CALL ELGF ([ group] [, ids] ) 

group = Group number of flags to be eliminated. Only 
privileged tasks can specify group numbers other than 
the issuing task's group UIC. If the UIC is not 
specified, the task's protection UIC (H.CUIC+l) in 
the task's header is used. 

ids Integer to receive the Directive Status Word 

Macro Call: 

ELGF$ [group] 

group = Group number of flags to be eliminated. Only 
privileged tasks can specify group numbers other than 
the issuing task's group UIC. If the UIC is not 

( 

specified, the task's protection UIC (H.CUIC+l) in (. 
the task's header is used. ._ 

Emit Status EMST$ 

FORTRAN Call: 

CALL EMST ([rtname] ,status[,ids]) 

rtname 

status 

Name of a task connected to the issuing task to 
which the status is to be emitted 

A 16-bit quantity to be returned to the connected 
task 

ids = Integer to receive the Directive Status Word 

A-12 

( 

( 



( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Macro Call: 

EMST$ [tname] ,status 

tname Name of a task connected to the issuing task to 
which the status is to be emitted 

status A l6-bit quantity to be returned to the connected 
task 

Enable AST Recognition ($S form recommended) ENAR$S 

FORTRAN Call: 

CALL ENASTR [(ids)] 

ids = Directive status 

Macro Call: 

ENAR$S [err] 

err = Error-routine address 

Enable Checkpointing ($S form recommended) ENCP$S 

FORTRAN Call: 

CALL ENACKP [(ids)] 

ids Directive status 

Macro Call: 

ENCP$S [err] 

err = Error-routine address 

Exit If EXIF$ 

FORTRAN Call: 

CALL EXITIF (efn[,ids]) 

efn Event flag number 

ids = Directive status 

Macro Call: 

EXIF$ efn 

efn Event flag number 

A-13 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Task Exit ($5 form recommended) EXIT$S 

FORTRAN Call: 

CALL EXIT (istat) 

istat A 16-bit quantity to be returned to the parent task 

Macro Call: 

EXIT$S [err] 

err Error-routine address 

Exit with Status EXST$ 

FORTRAN Call: 

CALL EXST (istat) 

istat A 16-bit quantity to be returned to the parent task 

Macro Call: 

EXST$ status 

status A 16-bit quantity to be returned to the parent task 

Extend Task EXTK$ 

FORTRAN Call: 

CALL EXTTSK ([inc][,ids]) 

inc = A positive or negative number ~qual to the number of 
32-word blocks by which the task size is to be extended 
or reduced 

ids Directive status 

Macro Call: 

EXTK$ [ inc] 

inc A positive or negative number equal to the number of 
32-word blocks by which the task is to be extended or 
reduced 

Test for Specified System Feature FEAT$ 

FORTRAN Call: 

CALL FEAT (isym [, ids] >. 

isym Symbol for the specified system feature 

id~ = Directive status 

Macro Call: 

FEAT$ sym 

sym = Symbol for the specified system feature 

A-14 

c-

( 

( 

( 

( 



c 

( 

( 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Get Command for Command Interpreter GCCI$ 

FORTRAN Call: 

CALL GTCMCI (icbf,icbfl, [iibuf], [iibfl], [iaddr], [incp] [,ids]) 

icbf = Name of a byte array to receive the command 

icbfl Integer containing the size of the icbf array in bytes 

iibuf = Name of an integer array to receive the optional 
information buffer 

iibfl 

iaddr 

Name of an integer 
optional information 
shorter than the 
information as will 
returned. 

containing the length of the 
buffer. If you specify a length 

information buffer, as much 
fit in the specified length is 

Name of an integer that contains the address in pool of 
the command desired. (This address was obtained by a 
previous call to GTCMCI with GC.CND specified.) 

A-IS 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

incp 

ids 

Macro Call: 

Name of an integer containing a value indicating the 
action to take ·if there is no command queued: 

GC.CCS (000) Return with Carry set (default) 

GC.CEX (001 ) Force CLI to exit instead of 
returning 

GC.CST (002 ) Force CLI to stop instead of 
returning 

GC.CND (200 ) -- Copy command into buffer, but do not 
dequeue it from the list 

Integer to receive the Directive Status Word 

GCCI$ cbuf,cbfl, [ibuf], [ibfl], [addr], [ncp] 

cbuf = Address of buffer to receive command string 

cbfl Length of buffer; .for 
<~S:X~11f1j 

ibuf Address of buffer to receive information on the issuing 
terminal 

ibfl = Length of buffer to receive information 

addr Address of command 

ncp Action to take if no command buffer is present: 

GC.CCS (000 ) Return with Carry set (default) 

GC.CEX (001) Force CLI to exit instead of 
returning 

GC.CST (002 ) Force CLI to stop instead of 
returning 

GC.CND (200 ) -- Copy command into buffer, but do not 
dequeue it from the list 

Get Command Interpreter Information GCII$ 

FORTRAN Ca11: 

CALL GETCII (ibuf,ibfl, [icli], [idev], [iunit] [,ids]) 

ibuf = Name of an integer array to receive the CLI i~formation 

ibfl Length in bytes of the integer array to receive the CLI 
information 

icli 

idev 

iunit 

Name of a two-word array element containing 
Radix-50 name of the CLI 

the 

Name of an integer containing the ASCII name of ~he 
terminal (default = TI:) 

Name of an integer containing the octal unit number of 
the terminal 

ids Directive status 

A-16 

( 

( 

( 

( 

( 



c 

( 

( 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Macro Call: 

GCII$ buf,bufl,cli, [dev], [unit] 

buf Address of buffer to receive information 

bufl = Length of information buffer 

cli Name (Radix-50) of the CLI on which information is 
requested 

dev ASCII name of terminal whose CLI should be used 
(defaul t = TI:) 

unit Octal unit number of terminal 

A-17 



----~ -- ~----

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Get LUN Information GLUN$ 

·FORTRAN Call: 

CALL GETLUN (lun,dat[,ids) 

lun Logical unit number 

dat A six-word integer array to receive LUN information 

ids = Directive status 

Macro Call: 

GLUN$ lun,buf 

lun Logical unit number 

buf Address of a six-word buffer that will receive the LUN 
information 

Get MCR Command Line 

FORTRAN Call: 

CALL GETMCR (buf[,ids) 

buf An 80-bytearray to receive the command line 

ids Directive status 

Macro Call: 

GMCR$ 

Get Mapping Context 

FORTRAN Call: 

CALL GMCX (imcx [ , ids) ). 

GMCR$ 

GMCX$ 

imcx = An integer array to receive the mapping context. The 
size of the array is 8*n+l, where n is the number of 
window blocks in task's header 

ids = Directive status 

Macro Call: 

GMCX$ wvec 

wvec The address of a vector of n Window Definition Blocks, 
followed by a terminator word; n is the number of 
window blocks in the task's header 

A-18 

( 

( 

( 

( 

( 



( 

c 

( 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Get Partition Parameters GPRT$ 

FORTRAN Call: 

CALL GETPAR ([prt] ,buf[,ids]) 

prt = Partition name 

buf A three-word integer array to receive the partition 
parameters 

ids Directive status 

Macro Call: 

GPRT$ [prt] ,buf 

prt Partition name 

buf Address of a three-word buffer 

Get Region Parameters GREG$ 

FORTRAN Call: 

CALL GETREG ([rid] ,buf[,ids]) 

rid = Region id 

buf A three-word integer array to receive the region 
parameters 

ids Directive status 

Macro Call: 

GREG$ [rid] ,buf 

rid = Region id 

buf Address of a three-word buffer 

Get Sense Switches ($S form recommended) GSSW$S 

FORTRAN Call: 

CALL READSW (isw) 

isw Integer to receive the console switch settings 

The following FORTRAN call allows a program to read the state of a 
single switch: 

CALL SWITCH (ibt,ist) 

ibt The switch to be tested (0 to 15) 

ist Test results where: 

1 switch on 

2 switch off 

A-19 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Macro Call: 

GSSW$S [err] 

err Error-routine address 

Get Time Parameters GTIM$ 

FORTRAN Call: 

CALL GETTIM (ibfp[,ids]) 

ibfp = An eight-word integer array 

ids Directive status 

Macro Call: 

GTIM$ buf 

buf = Address of an eight-word buffer 

Get Task Parameters . GTSK$ 

FORTRAN Call: 

CALL GETTSK (buf[,ids]) 

buf An la-word integer array to receive the task parameters 

ids Directive status 

Macro Call: 

GTSK$ buf 

buf Address of an la-word buffer 

Inhibit AST Recognition ($S form recommended) 

FORTRAN Call: 

CALL INASTR [(ids)] 

ids Directive status 

Macro Call: 

IHAR$S [err] 

err = Error-routine address 

Map Address Window 

FORTRAN Call: 

CALL MAP (iwdb[,ids]) 

iWdb An eight-word integer array containing 
Definition Block (see Section 3.5.2.2) 

ids Directive status 

A-20 

IHAR$S 

MAP$ 

a Window 

(. 

( 



( 

c 

( 

( 

~ .... -~~------

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Macro Call: 

MAP$ wdb 

wdb Window Definition Block address 

Mark Time MRKT$ 

FORTRAN Call: 

CALL MARK (efn,tmg,tnt[,ids]) 

efn = Event flag number 

tmg Time interval magnitude 

tnt Time interval unit 

ids Directive status 

The ISA standard call for delaying a task for a specified time 
interval is also provided: 

CALL WAIT (tmg,tnt,ids) 

tmg Time interval magnitude 

tnt = Time interval unit 

ids = Directive status 

Macro Call: 

MRKT$ [efn] ,tmg,tnt[,ast] 

ef'n Event flag number 

tmg Time interval magnitude 

tnt Time interval unit 

ast AST entry-point address 

A-21 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

( 

( 

( 

( 

A-22 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

( 

( 

( 

( 

A-23 



.--. --.-------- ._--

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

c 

( 

( 

( 

(, 

A-24 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

( 

( 

( 

A-25 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

c-' 

( 

( 

A-26 



( 

c 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Queue I/O Request 

FORTRAN Call: 

QIO$ 

CALL QIO (fnc,lun, [efn], [pri], [isb], [prl] [,ids]) 

Macro 

fnc I/O function code 

lun Logical unit number 

efn Event flag number 

pri = Priority (ignored, but parameter must be present in 
call) 

isb A two-word integer array to receive final I/O status 

prl 

ids 

Call: 

QIO$ 

fnc 

lun 

efn 

pri 

isb 

ast 

prl 

A six-word integer array containing device-dependent 
parameters to be placed in parameter words 1 through 6 
of the DPB. Fill in this array by using the GETADR 
routine (see Section 1.5.1.4). 

Directive status 

fnc,lun, [efn] , [pri] , [isb], Cast] , [prl] 

I/O function code 

Logical unit number 

Event flag number 

Priority (ignored, but Q.IOPR byte must be present in 
DPB) 

Address of I/O status block 

= Address of AST service-routine entry point 

Parameter list of the form <Pl, ••• P6> 

Queue I/O Request and wait QIOW$ 

FORTRAN Call: 

CALL WTQIO (fnc,lun,efn, [pri] , [isb], [prl] [,ids]) 

fnc = 
lun = 
efn 

pri 

isb = 

prl 

ids = 

I/O function code 

Logical unit number 

Event flag number 

Priority (ignored, but parameter must be present in 
call) 

A two-word integer array to receive final I/O status 

A six-word integer array containing device-dependent 
parameters to be placed in parameter words 1 through 6 
of the DPB 

Directive status 

A-27 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Macro Call: 

QIOW$ fnc,lun, [efn], [pri], [isb], [ast] [,prl] 

fnc I/O function code 

lun Logical unit number 

efn Event flag number 

pri = Priority (ignored, but Q.IOPR byte must be present in 
DPB) 

isb Address of I/O status block 

ast = Address of AST service-routine entry point 

prl Parameter list of the form <PI, ••• P6> 

Receive Data or Stop RCST$ 

FORTRAN Call: 

CALL RCST ([rtname] ,ibuf[,ids]) 

rtname 

ibuf 

ids 

Macro Call: 

RCST$ 

tname 

buf 

Sender task name (if not specified, data may be 
received from any task) 

Address of a IS-word buffer to receive the sender 
task name and data 

Integer to receive the Directive Status Word 

[tname] ,buf 

Sender task name (if not specified, data may be 
received from any task) 

Address of a IS-word buffer to receive the sender 
task name and data 

Receive Data RCVD$ 

FORTRAN Call: 

CALL RECEIV ([tsk] ,buf["ids]) 

tsk Sender task name (if not specified, data may be 
received from any task) 

buf = A IS-word· integer array for received data 

ids Directive status 

Macro Call : 

RCVD$ [tsk] ,buf 

tsk = Sender task name (if not specified, data may be 
received from any task) 

buf Address of a IS-word buffer 

A-28 

( 

( 

( 

( 

(-



-------._ .. _-----

c 

( 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Receive Data or Exit RCVX$ 

FORTRAN Call: 

CALL RECOEX ([tsk] ,buf["ids]) 

tsk Sender task name (if not specified, data may be 
received from any task) 

buf A 15-word integer array for received data 

ids = Directive status 

Macro Call: 

RCVX$ [tsk] ,buf 

tsk Sender task name (if not specified, data may be 
received from any task) 

buf Address of a 15-word buffer 

Read All Event Flags RDAF$ 

FORTRAN Call: 

A FORTRAN task can read only one event flag. The call is: 

CALL READEF (efn[,ids]) 

efn Event flag number 

ids = Directive status 

The Executive returns the status codes IS.SET (+02) and IS.CLR 
(00) for FORTRAN calls in order to report event-flag polarity. 

Macro Call: 

RDAF$ buf 

buf Address of a four-word buffer 

A-29 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Read Extended Event Flags RDXF$ 

FORTRAN Call: 

A FORTRAN task can read only one event flag. The call is: 

CALL READEF (efn[,ids]) 

efn Event flag number 

ids Directive status 

The Executive returns the status codes IS.SET (+02) and IS.CLR 
(00) for FORTRAN calls in order to report event-flag polarity. 

Macro Call: 

RDXF$ buf 

buf Address of a six-word buffer 

A-3~ 

c 

c 

( 

( 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

c 

( 

( 

c 

A-31 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Remove Affinity (RSX-11M-PLUS multiprocessor; 
$S form recommended) 

RMAF$S 

FORTRAN Call: 

CALL RMAF [(ids)] 

ids = Integer to receive the Directive Status Word 

Macro Call: 

RMAF$S 

Request and Pass Offspring Information RPOI$ 

FORTRAN Call: 

CALL RPOI 

tname 

iugc 

iumc 

(tname, [iugc], [iumc], [iparen], [ibuf], [ibfl], [isc], 
[idnam], [iunit], [itask], [ocbad] [, ids]) 

= Name of an 
Radix-50) 
chained to 

array containing the actual name (in 
of the task to be requested and optionally 

Name of an integer containing the group code number 
for the UIC of the requested target chain task 

Name of an integer containing the member code number 
for the UIC o~ the requested target chain task 

iparen Name of ~n array (or 1-4 integer) containing the 
Radix-50 name of the parent task. This is returned 
in the information buffer of the GTCMCI subroutine. 

ibuf = Name of an array containing the command line text for 
the chained· task 

ibfl Name of an integer containing the number of bytes in 
the command in the ibuf array 

isc 

idnam 

iunit 

Flag byte controlling the actions of this directive 
request when executed. The bit definitions of this 
byte (only the low-order byte of the integer 
specified in the call is ever used) are as follows: 

RP.OEX = 128. Force this task to 
successful execution of 
directive. 

exit on 
the RPOI$ 

RP.OAL = 1 

RP.ONX 2 

Pass all of this task's 
to the requested task. 
is none.) 

connections 
(The default 

Pass the first connection in the 
queue, if there is one. 

Name of an integer containing the ASCII name of the 
requested task's TI: (must be the name of a physical 
device) 

Name of an integer containing the unit number of the 
requested task's TI: 

A-32 

( 

( 

( 



c 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

itask 

ocbad 

ids 

Macro Call: 

Name of an array containing the Radix-50 name the 
requested.task is to run under. 

For all systems, the requested task (specified in the 
tname parameter) must be installed in the ••• tsk 
format. 

= Name of an integer containing the internal pool 
address of the parent OCB. This value may be 
obtained only in the information buffer of the GTCMCI 
subroutine, which only a CLI can issue; therefore, 
only ~ CLI can specify this argument. 

= Integer to receive the Directive Status Word 

RPOI$ tname"" [ugc] , [umc] , [parent] , [bufadr] , [buflen] , [sc] , 
[dnam] , [uni t] , [task] , [ocbad] 

tname 

ugc 

umc 

parent 

bufadr 

buflen 

sc 

dnam 

unit 

task 

ocbad 

= 

= 

= 

= 

Name of task to be chained to 

Group· code for the Ule of the requested task 

Member code for the UIC of the requested task 

Name of issuing task's parent task whose connection 
is to be passed 

Address of buffer to be given to the requested task 

Length of buffer to be given to the requested task 

Flag bits: 

RP.OEX 
RP.OAL 
RP.ONX 

(200 ) 
(1) 
(2) 

ASCII name for TI: 
device) 

Force issuing task to exit 
Pass all connections (de£ault is none) 
Pass the first connection in th€ queue, 
if there is one. 

(must be the name of a physical 

Unit number of task's TI: 

Radix-50 name of task to be started. 

For all systems, the requested task (specified in the 
tname parameter) must be installed in the ••• tsk 
format. 

= Address of OCB to pass (CLls only) 

A-33 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Request Task RQST$ 

FORTRAN Call: 

CALL REQUES (tsk, [opt] [,ids]) 

tsk Task name 

opt = A four-word integer array: 

opt(l) = Partition name, first half (ignored, but 
must be present) 

opt,(2 ) Partiti~n name, second half (ignored, but 
must·. be present) 

opt(3) = Priority (ignored, but must be present) 

opt (4) User Identification Code 

ids Directive status 

Macro Call: 

RQST$ tsk,[prt],[pri] [,ugc,umc] 

tsk Task name 

prt Partition name (ignored, but must be present) 

pri Priority (ignored, but must be present) 

ugc UIC group code 

umc UIC member code 

Receive By Reference 

FORTRAN Call: 

CALL RREF (iwdb,[isrb] [,ids]) 

iwdb = An eight-word integer array containing 
Definition Block (see Section 3.5.2.2) 

RREF$ 

a Window 

isrb A lO-word integer array to be used as the receive 
buffer. If the call omits this parameter, the contents 
of iwdb(8) are unchanged. 

ids Directive status 

Macro Call: 

RREF$ wdb 

wdb Window Definition Block address 

A-34 

( 

( 

( 

( 



( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Receive By Reference or Stop 

FORTRAN Call: 

CALL RRST (iwdb, [isrb] [,ids]) 

iwdb An eight-word integer array containing 
Definition Block 

a 

RRST$ 

window 

isrb A lO-word integer array to be used 
buffer. If the call omits this 

as the receive 
parameter, the 

contents of iwdb(8) are unchanged. 

ids Directive status 

Macro Call: 

RRST$ wdb 

wdb = Window Definition Block address 

Resume Task RSUM$ 

FORTRAN Call: 

CALL RESUME (tsk[,ids]) 

tsk = Task name 

ids = Directive status 

Macro Call: 

RSUM$ tsk 

tsk Task name 

Run Task RUN$ 

FORTRAN Call: 

CALL RUN (tsk,[opt],smg,snt,[rmg],[rnt] [,ids]) 

tsk Task name 

opt A four-word integer array: 

opt (1) = Partition name, first half (ignored, but 
must be present) 

opt(2) = Partition name, second half (ignored, but 
must be present) 

opt (3) Priority (ignored, but must be present) 

opt(4) = User Identification Code 

A-35 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

smg Schedule delta magnitude 

snt Schedule delta unit (either 1, 2, 3, or 4) 

rmg Reschedule interval magnitude 

rnt Reschedule interval unit 

ids Directive status 

The ISA standard call for initiating a task is also provided: 

CALL START (tsk,smg,snt[,ids]) 

tsk Task name 

smg Schedule delta magnitude 

snt Schedule delta unit (either 0, 1, 2, 3, or 4) 

ids Directive status 

Macro Call : 

RUN$ tsk, [prt] , [pr i] , [ugc] , [umc] , smg , sn t [ , rmg , rnt] 

tsk Task name 

prt Partition name (ignored, but must be present) 

pri = Priority (ignored, but must be present) 

ugc UlC group code 

umc = UlC member code 

smg Schedule delta magnitude 

snt = Schedule delta unit (either 1, 2, 3, or 4) 

rmg Reschedule interval magnitude 

rnt Reschedule interval unit 

Specify Command Arrival AST SCAA$ 

FORTRAN Call: 

Not supported 

Macro Call: 

SCAA$ [ast] 

ast AST service-routine entry point. Omitting this 
parameter disables command arrival ASTs for the issuing 
task until the directive is respecified. 

A-36 

( 

c 

( 

( 

( 



( 

c 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Set Command Line Interpreter SCLI$ 

FORTRAN Call: 

CALL SETCL I (icli, idev , i un it [ , ids] ) 

icli Name of a two-word array element containing the name of 
the CLI to which the terminal is to be set 

idev Name of an integer containing the ASCII name of the 
terminal to be set (default = TI:) 

iunit Name of an integer containing the unit number of the 
terminal 

ids Directive status 

Macro Call: 

SCLI$ cli, [dev] ,[unit] 

cli Name of the CLI to which the terminal is to be set 

dev ASCII name of the terminal to be set (default = TI:) 

unit Unit number of the terminal 

Send Data SDAT$ 

FORTRAN Call: 

CALL SEND (tsk,buf, [efn] [,ids]) 

tsk Task name 

buf = A l3-word integer array of data to be sent 

efn Event flag number 

ids = Directive status 

A-37 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Macro Call: 

SDAT$ tsk,buf[,efn] 

tsk Task name ( 
buf Address of a 13-word data buffer 

efn Event flag number 

( 

( 

( 

A-38 



( 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Send, Request, and Connect SDRC$ 

FORTRAN Call: 

CALL SDRC 

CALL SDRCN 

rtname = 

ibuf = 

iefn = 

iast 

iesb 

iparm 

ids 

Macro Call: 

(rtname,ibuf, [iefn], [iast], [iesb], [iparm] [,ids]) 

(rtname, ibuf, [iefn], [iast], [iesb], [iparm] [,ids]) 

Target task name of the offspring task to be 
connected 

Name of a l3-word send buffer 

Event flag to be set when the offspring task exits 
or emits status 

Name of an AST 
offspring task 
CALL SDRCN) 

routine to be called when the 
exits or emits status (ignored for 

Name of an eight-word status block to be written 
when the offspring task exits or emits status: 

Word o Offspring-task exit status 

Word 1 TKTN abort code 

Words 2-7 Reserved 

Name of a word to receive the status block address 
when an AST occurs 

Integer to receive the Directive status Word 

SDRC$ tname,buf, [efn] ,[east] ,[esb] 

tname 

buf 

efn 

east 

Target task name of the offspring task to 
connected 

Address of a l3-word send buffer 

be 

The event flag to be cleared on issuance and when the 
offspring task exits or emits status 

Address of an AST routine to be called when the 
offspring task exits or emits status 

esb Address of an eight-word status block to be written 
when the offspring task exits or emits status: 

Word o Offspring-task exit status 

Word 1 TKTN abort code 

Words 2-7 Reserved 

A-39 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Send Data Request and Pass Offspring Control Block SDRP$ 

FORTRAN Call: 

CALL SDRP (task,ibuf, [ibfl] , [iefn], [iflag], [iparen], 
[iocbad] [, ids] ) 

task 

ibuf 

ibfl 

Name of an array (REAL, INTEGER, 1*4) containing the 
Radix-50 name of the target task . 

= Name of an integer array containing data to be sent 

= of an of words 

iefn Name of an integer containing the number of the event 
flag to be set when this directive is executed 
successfully 

iflag = Name of an integer containing the flag bits 
controlling the execution of this directive. They are 
defined as follows: 

iparen 

iocbad 

SD.REX = 128. 

SD.RAL 1 

SD.RNX 2 

Force this 
successful 
directive 

task to exit 
execution of 

upon 
this 

Pass all connections to the 
requested task (default is pass 
none); if you specify this flag, do 
not specify the parent task name 

Pass the first connection in the 
queue, if there is one, to the 
requested task; if you specify this 
flag, do not specify the parent 
task name 

Name of an array containing the Radix-50 name of the 
parent task whose connection should be passed to the 
target task. The name of the parent task was returned 
in the ·information buffer of the GTCMCI subroutine. 

Name of an integer containing the pool address of 
OCB to pass. This value was returned in 
information buffer of the GTCMCI subroutine. Only 
tasks may specify this parameter. 

the 
the 
CLI 

ids = Name of an integer to receive the contents of the 
Directive Status Word 

Macro Call: 

SDRP$ task ,bufadr, [buflen] , [efn] , [flag] , [parent] , [ocbad] 

task Name of task to be chained to 

bufadr Address of buffer to be given to the requested task 

buflen = Length of buffer to be given to the requested task 

A-40 

( 

( 

( 



( 

( 

( 

( 

--------.----- --

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

efn Event flag number 

flag Flag bits controlling the execution of this directive 
(see iflag, above, for the definitions of the bits) 

parent Name of issuing task's parent task whose connection is 
to be passed. If not specified, all connections or no 
connections are passed, depending on the flag bit. 

ocbad Address of OCB to pass (CLls only) 

Set Event Flag SETF$ 

FORTRAN Call: 

CALL SETEF (efn[,ids]) 

efn Event flag number 

ids Directive status 

Macro Call: 

SETF$ efn 

efn Event flag number 

Specify Floating Point Processor Exception AST SFPA$ 

FORTRAN Call: 

Not supported 

Macro Call: 

SFPA$ last] 

ast AST service-routine entry-point address 

Send Message SMSG$ 

FORTRAN Call: 

CALL SMSG (itgt,ibuf,ibufl,iprm,iprml,ids) 

itgt 

ibuf 

ibufl 

iprm 

iprml 

ids 

Name of an integer containing the target 
(currently, only SM.SER is defined) 

object 

Name of an integer array containing the data to be 
inserted into the formatted data packet 

Name of an integer containing the length of the ibuf 
array 

Name of an integer array containing any additional 
parameters 

Name of an integer containing the number of parameters 
in the iprm array 

Name of an optional integer to receive the directive 
status 

A-41 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Macro Call: 

SMSG$ tgt,buf,len,<pri, ••• ,prn> 

tgt 

buf 

Target identifier 

Address of an optional data buffer 

len Length in bytes of the optional data buffer 

pri, ••• ,prn = Target-specific 
parameter list: 

(for the Error Logger) 

SMSG$ SM.SER,buf,len,<typ,sub,lun,mask> 

typ Error Logger packet code 

sub Error Logger packet subtype code 

lun = Logical unit number of the device 

msk Control mask word 

A-42 

( ) 

c 

( 



----- ---------

c 

( 

(\ 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Suspend ($S form recommended) 

FORTRAN Call: 

CALL SUSPND [ (ids) ] 

ids = Directive status 

Macro Call: 

SPND$S [err] 

err Error-routine address 

Specify Power Recovery AST 

FORTRAN Call: 

To establish an AST: 

EXTERNAL sub 
CALL PWRUP (sub) 

sub Name of 
recovery. 

a subroutine to be executed upon 
The PWRUP subroutine will effect a 

CALL sub (no arguments) 

SPND$S 

SPRA$ 

power 

The subroutine is called as 
recovery AST, and therefore 
critical points through the use 
and ENASTR subroutine calls. 

a result of a power 
may be controlled at 
of DSASTR (or INASTR) 

TO remove an AST: 

CALL PWRUP 

Macro Call: 

SPRA$ [ast] 

ast AST service-routine entry-point address 

Spawn SPWN$ 

FORTRAN Call: 

CALL SPAWN (rtname, [iugc], [iumc], [iefn], [iast], [iesb], [iparm], 
[icmlin,icmlen], [iunit], [dnam] [,ids]) 

CALL SPAWNN (rtname, [iugc] , [iumc] , [iefn] , [iast] , [iesb] , [iparm] , -
[icmlin,icmlen], [iunit], [dnam] [,ids]) 

rtname 

iugc 

iumc 

iefn 

Name (Radix-50) of the offspring task to be spawned 

Group code number for the UIC of the offspring task 

Member code number for-the UIC of the offspring task 

Event flag to be set when the offspring task exits 
or emits status 

A-43 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

iast 

iesb 

iparm = 

icmlin 

icmlen = 

iunit 

dnam 

ids 

Macro Call: 

Name of an AST 
offspring task 
CALL SPAWNN) 

routine to be called when the 
exits or emits status (ignored for 

Name of an eight-word status block to be written 
when the offspring task exits or emits status: 

Word a Offspring-task exit status 

Word 1 TKTN abort code 

Words 2-7 Reserved 

Name of a word to receive the 
when the AST occurs 

Name of a command line 
offspring task 

Length of the command line; 

s spec 
is propagated. A task 

task or a CLI task in order 
than the parent task's TI:. 

to 

status 

be 

block address 

queued for the 

a 
e ssuing 

pri vileged 
TI: other 

Integer to receive the Directive Status Word 

SPWN$ tname", [ugc] ,[umc] ,[efn] ,[east] ,[esb] ,[cmdlin,cmdlen] 
, [unum] , [dnam] 

tname Name (Radix-50) of the offspring task to be spawned 

ugc 

umc 

efn 

east 

esb 

Group code number for the UIC of the offspring task 

Member code number for the UIC of the offspring task 

The event flag to be cleared on issuance and set 
when the offspring task exits or emits status 

= Address of an AST routine to be called when the 
offspring task exits or emits status 

Address of an eight-word status block to be written 
when the offspring task exits or emits status: 

Word a Offspring-task exit status 

Word 1 TKTN abort code 

Words 2-7 Reserved 

A-44 

c-

( 

( 

( 



( 

c 

( 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

cmdlin 

cmdlen 

unum = 

dnam = 

Address of 
offspring 

Length 

task 
task 
than 

of 

Specify Receive Data AST 

FORTRAN Call: 

a command 
task 

the command 
i~H-, 

line to be queued 

line; 

to be used as the 

e 
task must be a 
order to specify a 
TI: • 

for the 

TI: for 

a 
ssuing 

privileged 
TI: other 

SRDA$ 

Neither the FORTRAN language nor the ISA standard permits direct 
linking to system-trapping mechanisms. Therefore, this directive 
is not available to FORTRAN tasks. 

Macro Call: 

SRDA$ [ast] 

ast = AST service-routine entry-point address 

Specify Requested Exit AST 

FORTRAN Call: 

CALL SREA (ast[,ids]) 

ast Name of the externally declared AST subroutine 

SREA$ 
SREX$ 

ids Name of an optional integer to receive the Directive 
Status Word 

CALL SREX (ast, ipblk, ipblkl, [dummy] [, ids] ) 

ast Name of the externally declared AST subroutine 

ipblk 

ipblkl 

dummy 

ids 

Name of an integer array 
trap-dependent parameters 

to receive the 

Number of parameters to be returned into the ipblk 
array 

Reserved for future use 

= Name of an optional integer to receive the Directive 
status Word 

A-45 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Macro Call: 

SREA$ [ast] 

SREX$ Cast] [,dummy] 

ast AST service-routine entry-point address 

dummy = Reserved for future use 

Send By Reference SREF$ 

FORTRAN Call: 

CALL SREF (tsk, [efn] ,iwdb, [isrb] [,ids]) 

tsk A single-precision, floating-point variable containing 
the name of the receiving task in Radix-50 format 

efn Event flag number 

iWdb An eight-word integer array containing 
Definition Block (see Section 3.5.2.2) 

a Window 

isrb An eight-word integer array containing additional 
information (if specified, the address of isrb is 
placed in iWdb(8); if isrb is omitted, the contents of 
iwdb(8) remain unchanged) 

ids Directive status 

Macro Call: 

SREF$ task,wdb[,efn] 

task = Name of the receiver task 

wdb Window Definition Block address 

efn Event flag number 

Specify Receive-By-Reference AST SRRA$ 

FORTRAN Call: 

Neither the FORTRAN language nor the ISA standard permits direct 
linking to system-trapping mechanisms. Therefore, this directive 
is not available to FORTRAN tasks. 

Macro Call: 

SRRA$ Cast] 

ast AST service-routine entry-point address (0) 

A-46 

( 

( 

( 



( 

l 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Set Affinity (RSX-llM-PLUS multiprocessor) 

FORTRAN Call: 

CALL STAF (iaff[,ids]) 

iaff Affinity mask word 

ids Integer to receive the Directive Status Word 

Macro Call: 

STAF$ [cp!ub!ub ••• ] 

cp = CPU selected (A through D) 

ub UNIBUS runes) selected (E through T) 

Set System Time 

FORTRAN Call: 

CALL SETTIM (ibufn[,ibufp] [,ids]) 

STAF$ 

STIM$ 

ibufn = An eight-word integer array -- new time specification 
buffer 

ibufp An eight-word integer array -- previous time buffer 

ids = Directive status 

Macro Call: 

STIM$ bufn,[bufp] 

bufn Address of the new eight-word time-specification buffer 

bufp = Address of the eight-word buffer to receive the 
previous system time parameters 

Stop for Logical OR of Event Flags 

FORTRAN Call: 

CALL STLOR (efl,ef2,ef3 ••• ,efn) 

CALL STLORS (idsw,efl,ef2,ef3 ••• ,efn) 

idsw = Integer to receive the Directive Status Word 

efl. •• efn List of event flag numbers 

Macro Call: 

STLO$ 

grp 

msk 

grp, msk 

Desired group of event flags 

A l6-bit mask word 

A-47 

STLO$ 



-----~. --.~-~ 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Stop ($S form recommended) 

FORTRAN Call: 

CALL STOP ([ids]) 

ids Integer to receive the Directive Status Word 

Macro Call: 

STOP$S 

Stop for Single Event Flag 

FORTRAN Call: 

CALL STOPFR (iefn[,ids]) 

iefn Event flag number 

ids Integer to receive the Directive Status Word 

Macro Call: 

STSE$ efn 

efn Event flag number 

Specify SST Vector Table for Debugging Aid 

FORTRAN Call: 

STOP$S 

STSE$ 

SVDB$ 

Neither the FORTRAN language nor the ISA standard permits direct 
linking to system-trapping mechanisms. Therefore, this directive 
is not available to FORTRAN tasks. 

Macro Call: 

SVDB$ [adr] [,len] 

adr Address of the SST vector table 

len Length of (that is, number of entries in) the table in 
words 

Specify SST Vector Table for Task SVTK$ 

FORTRAN Call: 

Neither the FORTRAN language nor the ISA standard permits direct 
linking to system-trapping mechanisms. Therefore, this directive 
is not available to FORTRAN tasks. 

Macro Call: 

SVTK$ [adr] [,len] 

adr Address of the SST vector table 

len Length of (that is, number of entries in) the table in 
words 

A-48 

( 

c 

( 



c 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Switch State 

FORTRAN Call: 

Not supported 

Macro Call: 

SWST$ base,addr 

SWST$ 

base = The base virtual address within the task for mapping 
the subroutine through APR5 

addr Virtual address of the subroutine to be executed in 
system state by the directive 

Test for Specified Task Feature TFEA$ 

FORTRAN Call: 

CALL TFEA (isym,idsw) 

isym = Symbol for the specified task feature 

idsw Integer to receive the Directive Status Word 

Macro Call: 

TFEA$ sym 

sym Symbol for the specified task feature 

A-49 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

( 

( 

( 

A-50 



------ ~~~---~ 

( 

( 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Unlock Group Global Event Flags ($S form recommended) 

FORTRAN Call: 

CALL ULGF ([ids]) 

ids = Directive status 
'. 

Macro Call: 

ULGF$S [err] 

err = Error-routine address 

Unmap Address Window 

FORTRAN Cal1: 

CALL UNMAP (iwdb [ , ids 1 ) 

iwdb An eight-word integer array containing 
Definition Block (see Section 3.5.2.2) 

ids Directive status 

Macro Call: 

UMAP$ wdb 

wdb = Window Definition Block address 

unstop Task 

FORTRAN Call: 

CALL USTP ([ rtname] [, ids] ) 

a 

ULGF$S 

UMAP$ 

Window 

USTP$ 

rtname Name of the task to be unstopped (if not specified, 
CALL USTP will use the issuing task as its default) 

ids 

Macro Call: 

USTP$ 

tname 

Integer to receive directive status information 

[tname] 

Name of the task to be unstopped (if not specified, 
USTP$ will use the issuing task as its default) 

A-51 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

( 

( 

( 

A-52 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

( 

( 

A-53 



DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

c 

(-

( 

c 

( 

A-54 



c 

( 

l 

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL 

Wait for Significant Event ($S form recommended) 

FORTRAN Ca 11 : 

CALL WFSNE 

Macro Call: 

WSIG$S [err] 

err = Error-routine address 

wait for Logical OR of Event Flags 

FORTRAN Call: 

CALL WFLOR (efl,ef2,ef3 ••• ,efn) 

CALL WFLORS (idsw,efl,ef2,ef3 ••• ,efn) 

idsw Integer to receive the Directive Status Word 

WSIG$S 

WTLO$ 

efl ••• efn = List of event flag numbers taken as the set of 
flags to be specified in the directive 

Macro Call: 

WTLO$ grp,msk 

grp Desired group of event flags 

msk A l6-bit flag mask word 

Wait for Single Event Flag WTSE$ 

FORTRAN Call: 

CALL WAITFR (efn[,ids]) 

efn Event flag number 

ids Directive status 

Macro Call: 

WTSE$ efn 

efn Event flag number 

A-55 





( 

c 

( 

( 

( 

APPENDIX B 

STANDARD ERROR CODE~ 

The symbols listed below are associated with the directive status 
codes returned by the RSX-llM/M-PLUS and Micro/RSX Executive. They 
are determined (by default) at task-build time. To include these in a 
MACRO-ll program, use the following two lines of code: 

.MCALL DRERR$ 
DRERR$ 

STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE STATUS 
WORD 

IS.CLR +00 
IS.SUC +01 
IS.SET +02 

IE.UPN 
IE. INS 
IE.PTS 
IE.UNS 
IE.ULN 
IE.HWR 
IE.ACT 
IE. ITS 
IE.FIX 
IE.CKP 
IE.TCH 
IE.RBS 
IE.PRI 
IE.RSU 
IE.NSW 
IE~ILV 
IE.ITN 
IE.LNF 

IE.AST 
IE.MAP 
IE.IOP 
IE.ALG 
IE.WOV 
IE.NVR 
IE.NVW 
IE.ITP 
IE. ISS 
IE.LNL 
IE. IUI 
IE. IDU 

-01. 
-02. 
-03. 
-04. 
-05. 
-06. 
-07. 
-08. 
-09. 
-10. 
-11. 
-15. 
-16. 
-17. 
-18. 
-19. 
-20. 
-21. 

-80. 
-81. 
-83. 
-84. 
-85. 
-86. 
-87. 
-88. 
-89. 
-90. 
-91. 
-92. 

EVENT FLAG WAS CLEAR 
OPERATION COMPLETE, SUCCESS 
EVENT FLAG WAS SET 

INSUFFICIENT DYNAMIC STORAGE 
SPECIFIED TASK NOT INSTALLED 
PARTITION TOO SMALL FOR TASK 
INSUFFICIENT DYNAMIC STORAGE FOR SEND 
UNASSIGNED LUN 
DEVICE HANDLER NOT RESIDENT 
TASK NOT ACTIVE 
DIRECTIVE INCONSISTENT WITH TASK STATE 
TASK AL~EADY FIXED/UNFIXED 
ISSUING TASK NOT CHECKPOINTABLE 
TASK IS CHECKPOINTABLE 
RECEIVE BUFFER IS TOO SMALL 
PRIVILEGE VIOLATION 
RESOURCE IN USE 
NO SWAP SPACE AVAILABLE 
ILLEGAL VECTOR SPECIFIED 
INVALID TABLE NUMBER 
LOGICAL NAME NOT FOUND 

DIRECTIVE ISSUED/NOT ISSUED 
ILLEGAL MAPPING SPECIFIED 
WINDOW HAS I/O IN PROGRESS 
ALIGNMENT ERROR 

FROM l\ST 

ADDRESS WINDOW ALLOCATION OVERFLOW 
INVALID REGION ID 
INVALID ADDRESS WINDOW 10 
INVALID TI PARAMETER 
INVALID SEND BUFFER SIZE (>255. ) 
LUN LOCKED IN USE 
INVALID UIC 
INVALID DEVICE OR UNIT 

B-1 



---~ ~~--- ~-----

STANDARD ERROR CODES 

IE.ITI -93. INVALID TIME PARAMETERS 
IE.PNS -94. PARTITION/REGION NOT IN SYSTEM 
IE.IPR -95. INVALID PRIORITY (>250. ) 
IE.ILU -96. INVALID LUN ( IE.IEF -97. INVALID EVENT FLAG NUMBER (>64. ) 
IE.ADP -98. PART OF DPB OUT OF USER'S SPACE 
IE.SDP -99. DIC OR DPB SIZE INVALID 

( 

( 

( 

B-2 



( 

l 

( 

APPENDIX C 

DIRECTIVE IDENTIFICATION CODES 

Directive Identification Codes (DICs) are used to identify each 
directive. The DIC appears in the low byte of the first (or only) 
word in the Directive Parameter Block (DPB). The DPB length (in 
words) appears in the high byte of the first DPB word. Thus, both 
bytes make up the word format shown below: 

First Word 
in DPB 

DPB Length 

(high byte) 

DIG 

(low byte) 

ZK-312-81 

The remainder of this appendix contains a listing of directives 
arranged in numerical sequence, according to the octal value for the 
first DPB word. In addition, the DIC and DPB lengths are included as 
decimal values as they appear in Chapter 5. 

This list can be used as a software debugging aid to quickly identify 
directives based on the octal value of the first word in a DPB. An 
example for the SDAT$ directive is provided below, illustrating the 
manner in which the octal value is obtained: 

First Word 
in DPB 5(10} 71(10} 

Octal Byte ~ ~ 
Values 5(8) 107(8} 

Binary Word 
t t 

Value 
101 01 000 111 

---- '-../ --Octal Word 
Value 

2507 (=SDAT$) 

ZK-313-81 

C-l 





c 

( 

( 

( 

Octal Value For 
DPB First Word 

07 
2011 
2101 
2113 
2115 
2213 
2223 
2313 
2427 
2505 
2507 

3 
10013 
24577 

DIRECTIVE IDENTIFICATION CODES 

Directive 
(Macro Call) 

ALTP$ 
GPRT$ or GREG$ 
RCVD$ 
RCVX$ 
RCST$ 
EMST$ 
MVTS$ 
MRKT$ 
SREF$ 
SDAT 

Decimal 
DIC 

C-3 

143. 

9. 
65. 
75. 
77. 

139. 
14 7. 
203. 

23. 
69. 
71. 

Values For 
DPB Length 

3. 

3. 

4. 
4. 
4. 
4. 
4. 
4. 
4. 
5. 
5. 

7. 
7. 
7. 
7. 





( 

( 

( 

APPENDIX 0 

. RSX-11 SYSGEN SELECTION OF EXECUTIVE DIRECTIVES 

The following list contains all of the Executive directive macro calls 
described in this manual and the means of selecting them at 
system-generation time~ Those directives not available for specific 
RSX-11 systems are noted as N/A. Directives that are system 
generation options are noted as O. The number in parentheses' after 
the 0 refers to the system generation options at the end of the list. 
Directives that are standard (not system generation options) are 
indicated by an asterisk (*). 

Directive 
Macro 
CaU 

ENAR$S 
ENCP$S 
EXIF$ 
EXIT$S 
EXST$ 
EXTK$ 

RSX-US 

* 

* 
o (2) 
o (3) 
o (1) 

* 

* 

o (2) 
N/A 
'/< 

* o (4) 
o (1) 

* 

0-1 

System Type 

RSX-UM 

* 
o 
* 
o (2) 
o (3) 
o (1) 

* 

* 

o (2) 
o (7) 

* 
* o (4) 
o (1) 

* 

RSX-11M-PLUS 

* 

* 
* 
* 
* 
* 

* 

* 
* 

* 

* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 



Directive 
Macro 
Call 

GLUN$ 
GMCR$ 
GMCX$ 
GPRT$ 
GREG$ 
GSSW$S 
GTIM$ 
GTSK$ 

QIO$ 
QIOW$ 

RPOI$ 
RQST$ 
RREF$ 
RRST$ 
RSUM$ 
RUN$ 

SPND$S 
SPRA$ 
SPWN$ 
SRDA$ 
SREA$ 
SREF$ 
SREX$ 
SRRA$ 
SRRC$ 
STAF$ 
STIM$ 
STLO$ 
STOP$S 
STSE$ 
SVDB$ 

RSX-ll SYSGEN SELECTION OF EXECUTIVE DIRECTIVES 

System Type 

RSX-llS RSX-llM RSX-llM-PLUS 

* * * 
(\ 

N/A * * 
0 (3) 0 (3) * 
0 (1 ) 0 (1 ) * 
0 (3) 0 (3) * 
0 (1 ) 0 (1 ) * 
* * * 
0 (1 ) 0 (1 ) * 
0 (3) 0 (3 ) * 
* * * 

0 (16 ) 

* * * 
* * * 

0 (14) (14) * 
0 (14) (14) * ( * * * 

* 

0 (1,4) 0 (1,4) * 
* * * 
0 (1,3) 0 (1,3) * 
0 (1,3) 0 (1,3) * 
* * * 
* * * ( \ 

() 0 

0 

* 
, ) 

N/A 0 (14,15) * 
* * * 

(2,10) 0 (10) 

( 
0 (2,11) 0 (2,11) * 
0 (4) 0 (4) * 
0 (2,14 ) 0 (2,14 ) * 
0 (1,2) 0 (1,2) * 
0 (1,3) 0 (1,3) * 
0 (1,2) 0 (1,2) * 
0 (1,2,3) 0 (1,2,3) * 
N/A N/A * 
N/A N/A 0 (8 ) 
0 (1) 0 (1) * 
0 (13) 0 (13) * 
0 (13 ) 0 (13) * 
0 (13) 0 (13) *" 
* * * 

(-

D-2 



RSX-ll SYSGEN SELECTION OF EXECUTIVE DIRECTIVES 

Directive System Type 
Macro 

( 
Call RSX-llS RSx-llM RSX-llM-PLUS 

SVTK$ * * * 
SWST$ * * * 
TFEA$ * * * 

" 

* 
* 

* * * 
* * * 

System Generation Options: 

C- 1. Specific Executive directive support 

2. AST support 

3. Memory management directives 

4. Parent/offspring tasking suppo.rt 

5. Group global event flag support 

( 7. Checkpointing support 

8. Multiprocessor support 

10. Floating Point Processor support 

11. Powerfail recovery support 

( 12. Error Logging support 

13. Stop-bit synchronization support 

14. Send/receive support 

15. Alternate CLI support 

17. Extended logical name support 

D-3 



(; 

( 

(\ 

( .i 

(- \ 



c ) 

( 

( 

INDEX 

Abort Task directive, 5-8 
ABRT$ directive, 5-8 
ACHN$ directive, 5-10 
Active Page Register 

See APR 
Address mapping, 3-2 
Address space 

logical, 3-2 
virtual, 3-2 

Address window 
creating, 5-43 
deleting, 5-69 
mapping to region, 5-121 
unmapping, 5-253 
virtual, 3-3 

Alter Priority directive, 5-13 
ALTP$ directive, 5-13 
ALUN$ directive, 5-15 
APR 

changing mapping, 5-129 
getting information, 5-129 

ARGCHA routine, 1-12 
Assign Channel directive, 5-10 
Assign LUN directive, 5-15 
AST, 2-5, 2-7 

disabling recognition, 5-64 
enabling recognition, 5-76 
service routine, 2~8 

FORTRAN, 1-19 
specifying, 5-206 
terminating, 5-17 

specifying 
Floating Point Processor 

exception, 5-199 
for CLI, 5-181 
power recovery, 5-209 
receive data, 5-221 
receive-by-reference, 5-230 
requested exit, 5-223 

AST Service Exit directive, 5-17 
ASTX$S directive, 5-17 
Asynchronous System Trap 

See AST 
ATRG$ directive, 5-19 
Attach Region directive, 5-19 

$C macro form, 1-6 
processing errors, 1-7 

CALL ABORT, 5-8 
CALL ACHN, 5-10 
CALL ALTPRI, 5-13 

CALL ASNLUN, 5-15 
CALL ATRG, 5-19 
CALL CANALL, 5-60 
CALL CANMT, 5-36 
CALL CLREF, 5-31 
CALL CNCT, 5-38 
CALL CNCTN, 5-38 
CALL CPCR, 5-41 
CALL CRAW, 5-44 
CALL CRELOG, 5-32 
CALL CRELON, 5-32 
CALL CRGF, 5-48 
CALL CRRG, 5-50 
CALL CRVT, 5-58 
CALL DECLAR, 5-61 
CALL DELLOG, 5-62 
CALL DELLON, 5-62 
CALL DISCKP, 5-66 
CALL DSASTR, 5-64 
CALL DTRG, 5-67 
CALL ELAW, 5-69 
CALL ELGF, 5-71 
CALL ELVT, 5-73 
CALL EMST, 5-75 
CALL ENACKP, 5-77 
CALL ENASTR, 5-76 
CALL EXIT, 5-81 
CALL EXITIF, 5-78 
CALL EXST, 5-82 
CALL EXTTSK, 5-84 
CALL FEAT, 5-86 
CALL FSSFSS, 5-89 
CALL GETCII, 5-96 
CALL GETDDS, 5-99 
CALL GETLUN, 5-102 
CALL GETMCR, 5-105 
CALL GETPAR, 5-110 
CALL GETREG, 5-112 
CALL GETTIM, 5-116 
CALL GETTSK, 5-118 
CALL GMCX, 5-107 
CALL GTCMCI, 5-92 
CALL INASTR, 5-64 
CALL MAP, 5-121 
CALL MARK, 5-124 
CALL PRSFCS, 5-134 
CALL PRSRMS, 5-138 
CALL PWRUP, 5-209 
CALL QIO, 5-142 
CALL RCST, 5-148 
CALL RCTLOG, 5-158 

Index-l 



CALL RCTLON, 5-158 
CALL READEF, 5-155, 5-156, 5-157 
CALL READSW, 5-114 
CALL RECEIV, 5-150 
CALL RECOEX, 5-152 
CALL REQUES, 5-166 
CALL RESUME, 5-175 
CALL RMAF, 5-161 
CALL RPOI, 5-162 
CALL RREF, 5-169 
CALL RRST, 5-172 
CALL RUN, 5-176 
CALL SDRC, 5-191 
CALL SDRCN, 5-191 
CALL SDRP, 5-194 
CALL SEND, 5-186 
CALL SETCLI, 5-184 
CALL SETDDS, 5-188 
CALL SETEF, 5-198 
CALL SETTIM, 5-234 
CALL SMSG, 5-201 
CALL SNXC, 5-204 
CALL SPAWN, 5-211 
CALL SPAWNN, 5-211 
CALL SREA, 5-223 
CALL SREF, 5-227 
CALL SREX, 5-223 
CALL STAF, 5-233 
CALL START, 5-176 
CALL STLOR, 5-237 
CALL STLORS, 5-237 
CALL STOP, 5-239 
CALL STOPFR, 5-240 
CALL SUSPND, 5-208 
CALL TFEA, 5-247 
CALL TRALOG, 5-249 
CALL TRALON, 5-249 
CALL ULGF, 5-252 
CALL UNMAP, 5-253 
CALL USTP, 5-255 
CALL VRCD, 5-256 
CALL VRCS, 5-258 
CALL VRCX, 5-260 
CALL VSDA, 5-262 
CALL VSRC, 5-264 
CALL VSRCN, 5-264 
CALL WAIT, 5-124 
CALL WAITFR, 5-271 
CALL WFLOR, 5-269 
CALL WFLORS, 5-269 
CALL WFSNE, 5-267 
CALL WTQIO, 5-146 
Cancel Mark Time Requests 

directive, 5-36 

INDEX 

Cancel Scheduled Initiation 
Requests directive, 5-60 

Checkpoint Common Region 
directive, 5-41 

CINT$, 5-21 
Clear Event Flag directive, 5-31 
CLEF$ directive, 5-31 
CLI 

getting information, 5-96 
receiving system message, 5-92 
retrieving command buffer, 5-92 
setting up, 5-184 
spawning, 4-5 
specifying ASTs, 5-181 

CLOG$ directive, 5-32 
CLON$ directive, 5-32 
CMKT$ directive, 5-36 
CNCT$ directive, 5-38 
Command Line Interpreter 

See CLI 
Common event flag, 2-2 

reading, 5-157 
Common region 

checkpointing, 5-41 
Connect directive, 5-38 
Connect to Interrupt Vector 

directive, 5-21 
Console switch register 

obtaining contents, 5-114 
Context block, 5-100, 5-189 
CPCR$ directive, 5-41 
CPU affini ty 

removing, 5-161 
setting, 5-232 

CRAW$ directive, 5-44 
Create Address Window directive, 

5-43 
Create Group Global Event Flags 

directi ve, 5-48 
Create Logical Name directive, 

5-32 
Create Region directive, 5-50 
Create Virtual Terminal directive, 

5-54 
CRGF$ directive, 5-48 
CRRG$ directive, 5-50 
CRVT$ directive, 5-58 
CSRQ$ directive, 5-60 

Data 
sending to task, 5-191, 5-264 

Data block 
dequeuing, 5-148, 5-150, 5-152, 

5-256, 5-258, 5-260 
queuing, 5-186, 5-262 

Index-2 

( 

( 

C~ 

( 



c 

c 

( 

INDEX 

Data packet 
sending, 5-201 

Data space, 3-1 
mapping, 3-3 
moving data, 5-132 

Data structure 
memory management directive, 

3-11 
DDS 

See Default directory string 
DECL$S directive, 5-61 
Declare Significant Event 

directive, 5-61 
Default directory string, 5-100, 

5-189 
retrieving, 5-99 
setting, 5-188 

Delete Logical Name directive, 
5-62 

Detach Region directive, 5-67 
Device 

getting information, 5-102 
queuing I/O request, 5-142, 

5-146 
DIC, 1-2 

list, C-1 
DIR$ macro, 1-6 
Directive 

conventions, 5-6 
DIC list, C-l 
macros, 1-4 

$C form, 1-6 
$ form, 1-5 
naming conventions, 1-5 
$S form, 1-6 

memory management, 3-1 
data structures, 3-11 
summary, 3-9 

processing, 1-2 
rejecting, 1-2 
summary, A-I 

Directive Identification Code 
See DIC 

Directive Parameter Block 
See DPB 

Directive status code 
list, B-l

Directive Status Word 
See DSW 

DIRSYM.MAC, 4-3 
Disable AST Recognition directive, 

5-64 
Disable Checkpointing directive, 

5-66 
DLOG$ directive, 5-62 

DLON$ directive, 5-62 
DPB, 1-2 
$DPB$$, 1-6 
DRGIN.MAC, 1-23 
DSAR$S directive, 5-64 
DSCP$S directive, 5-66 
$DSW, 1-2 
DSW, 1-2 
DTRG$ directive, 5-67 
Dynamic region, 3-5 

creating, 5-50 

ELAW$ directive, 5-69 
ELGF$ directive, 5-71 
Eliminate Address Window 

directive, 5-69 
Eliminate Group Global Event 

Flags directive, 5-71 
Eliminate virtual Terminal 

directive, 5-73 
ELVT$ directive, 5-73 
Emit Status directive, 5-75 
EMST$ directive, 5-75 
EMT 377 instruction, 1-1 
Enable AST Recognition directive, 

5-76 
Enable Checkpointing directive, 

5-77 
ENAR$S directive, 5-76 
ENCP$S directive, 5-77 
Error Logger, 5-201 
Error return, 1-3 
Event flag, 2-2 

clearing polarity, 5-31 
common, 2-2 
group global, 2-2 

creating, 5-48 
on Micro/RSX, 2-4 

decrementing use count, 5-252 
deleting, 5-71 

on Micro/RSX, 2-4 
displaying on Micro/RSX, 2-4 
eliminating, 5-252 

reading, 5-155, 5-157 
setting, 5-198 
testing, 2-3, 5-156 

Executive-level dispatching, 5-5 
EXIF$ directive, 5-78 
Exit If directive, 5-78 
Exit with Status directive, 5-82 
EXIT$S directive, 5-80 
EXST$ directive, 5-82 
Extend Task directive, 5-84 
EXTK$ directive, 5-84 

Index-3 



Fast mapping, 3-20 
high-level language, 3-22 
MACRO-ll, 3-21 
status returns, 3-24 

FCS string 
processing, 5-134 

FEAT$ directive, 5-S6 
File Control Services 

See FCS 
File specification 

processing, 5-10 
scanning, 5-89 

File Specification Scanner 
directive,5-S9 

FORTRAN 
AST service routine, 1-19 

FORTRAN subroutine 
integer arguments, 1-11 
list, 1-13 
unavailable, 1-18 

FSS$ directive, 5-89 

GCCI$ directive, 5-93 
GCII$ directive, 5-96 
GDIR$ directive, 5-99 
General Information Directive, 

1-23 
Get Command for Command 

Interpreter directive, 5-92 
Get Command Interpreter 

Information directive, 5-96 
Get Default Directory directive, 

5-99 
Get LUN Information directive, 

5-102 
Get Mapping Context directive, 

5-107 
Get MCR Command Line directive, 

5-105 
Get Partition Parameters 

directive, 5-110 
Get Region Parameters directive, 

5-112 
Get Sense Switches directive, 

5-114 
Get Task Parameters directive, 

5-11S 
Get Time Parameters directive, 

5-116 
GETADR subroutine, 1-12 
GFB, 5-4S, 5-71, 5-252 
$$$GLB, l-S 
GLUN$ directive, 5-102 
GMCR$ directive, 5-105 
GMCX$ directive, 5-108 

INDEX 

GPRT$ directive, 5-110 
GREG$ directive, 5-112 
Group global event flag, 2-2 

creating, 5-48 
on Micro/RSX, 2-4 

decrementing use count, 5-252 
deleting, 5-71 

on Micro/RSX, 2-4 
displaying on Micro/RSX, 2-4 
eliminating, 5-252 
reading, 5-157 

Group Global Event Flag Control 
Block 

See GFB 
GSSW$S directive, 5-114 
GTIM$directive, 5-116 
GTSK$ directive, 5-118 

Hardware interrupt 
processing, 5-21 

High-level language 
restrictions, 1-10 
subroutine, 1-9 

error conditions, l-lS 
optional arguments, 1-10 
specifying task names, 1-11 

supported, 1-10 

I/O request 
queuing, 5-142, 5-146 

IHAR$S directive, 5-64 
Inhibit AST Recognition directive, 

5-64 
Instruction space, 3-1 

mapping, 3-3 
moving data, 5-132 

Interrupt Service Routine 
See ISR 

ISR, 5-21 

Local event flag 
reading, 5-157 

Logical name 
creating, 5-32 
deleting, 5-62 
translating, 5-249 

iteratively, 5-158 
Logical unit number 

See LUN 
LUN 

assigning, 5-10, 5-15 

$ macro form, 1-5 
Map Address Window directive, 

5-121 

Index-4 

( 

( 



( 

( 

( 

(-

INDEX 

Map Supervisor D-Space directive, 
5-129 

MAP$ directive, 5-122 
Mapping, 3-2 

data space, 3-3 
instruction space, 3-3 
privileged tasks, 3-19 
window-to-region 

returning current assignment, 
5-107 

Mark Time directive, 5-124 
Mark time request 

canceling, 5-36 
.MCALL assembler directive, 1-5 
Memory management 

directi ves, 3-1 
data structures, 3-11 
summary, 3-9 

Move to/from User/Supervisor 
I/D-Space directive, 5-132 

MRKT$ directive, 5-124 
MSDS$ directive, 5-130 
MVTS$ directive, 5-132 

Parent/offspring tasking, 4-1 
chaining, 4-2, 5-162, 5-194 
connecting, 4-1, 5-264 
directives, 4-1 
requesting task, 5-211, 5-264 
returning status, 4-3 
sending data, 5-264 
sending send-data packet, 5-194 
spawning, 4-1, 4-5 
synchronizing, 5-38 

Parse block 
format, 5-90 
returning, 5-89, 5-134, 5-138 

Parse FCS directive, 5-134 
Parse RMS directive, 5-138 
Partition 

getting parameters, 5-110 
PFCS$ directive, 5-134 
PRMS$ directive, 5-138 
Processor Status Word 

See PSW 
PSW, 1-2 

QIO$ directive, 5-142 
QIOW$ directive, 5-146 
Queue I/O Request and Wait 

directive, 5-146 
Queue I/O Request directive, 

5-142 

RCST$ directive, 5-148 

RCVD$ directive, 5-150 
RCVX$ directive, 5-152 
RDAF$ directive, 5-155 
RDB, 3-11 

assigning values, 3-19 
forma t,. 3-11 
generating, 3-13, 3-14 

RDBBK$, 3-13 
RDBDF$, 3-13 
RDEF$ directive, 5-156 
RDXF$ directive, 5-157 
Read All Event Flags directive, 

5-155 
Read Event Flag directive, 5-156 
Read Extended Event Flags 

directive, 5-157 
Receive By Reference directive, 

5-169 
Receive By Reference or Stop 

directive, 5-172 
Receive Data directive, 5-150 
Receive Data or Exit directive, 

5-152 
Receive Data or Stop directive, 

5-148 
Receive-by-reference queue packet 

dequeuing, 5-169, 5-172 
inserting, 5-227 

Recursive Translation of Logical 
Name directive, 5-158 

Region, 3-4 
attaching, 3-8, 5-19 
detaching, 5-67 
dynamic, 3-5 

creating, 5-50 
getting parametersi 5-112 
protecting, 3-8 
shareable, 3-5 
shared, 3-6 
static common, 3-4 
task, 3-4 

Region Definition Block 
See RDB 

Region ID, 3-5 
determining, 5-19 

Remove Affinity directive, 5-161 
Request and Pass Offspring 

Information directive, 5-162 
Request Task directive, 5-166 
Resume Task directive, 5-175 
RLOG$ directive, 5-158 
RLON$ directive, 5-158 
RMAF$S directive, 5-161 
RMS-11 string 

processing, 5-138 

Index-5 



RPOI$ directive, 5-163 
RQST$ directive, 5-166 
RREF$ directive, 5-169 
RRST$ directive, 5-172 
RSUM$ directive, 5-175 
RSXMAC.SML, 1-5 
Run Task directive, 5-176 
RUN$ directive, 5-177 

$S macro form, 1-6 
processing errors, 1-7 

SCAA$ directive, 5-181 
SCAL$S directive, 5-182 
SCLI$ directive, 5-184 
SDAT$ directive, 5-186 
SDIR$ directive, 5-188 
SDRC$ directive, 5-191 
SDRP$ directive, 5-195 
Send By Reference directive, 

5-227 
Send Data directive, 5-186 
Send Data Request and Pass 

Offspring Control Block 
directive, 5-194 

Send Message directive, 5-201 
Send Next Command directive, 

5-204 
Send, Request, and Connect 

directive, 5-191 
Set Affinity directive, 5-232 
Set Command Line Interpreter 

directive, 5-184 
Set Default Directory directive, 

5-188 
Set Event Flag directive, 5-198 
Set System Time directive, 5-234 
SETF$ directive, 5-198 
SFPA$ directive, 5-199 
Shareable region, 3-5 
Shared region, 3-6 
Significant event, 2-1 

declaring, 5-61, 5-124, 5-186 
list, 2-1 

SMSG$ directive, 5-201 
SNXC$ directive, 5-204 
Spawn directive, 5-211 
Spawning, 4-5 
SPEA$ directive, 5-206 
Specify Command Arrival AST 

directive, 5-181 
Specify Floating Point Processor 

Exception AST directive, 
5-199 

Specify Parity Error AST 
directive, 5-206 

INDEX 

Specify Power Recovery AST 
directive, 5-209 

Specify Receive Data AST 
directive, 5-221 

Specify Receive-By-Reference AST 
directive, 5-230 

Specify Requested Exit AST 
directive, 5-223 

Specify SST Vector Table for 
Debugging Aid directive, 
5-241 

Specify SST Vector Table for Task 
directive, 5-243 

SPND$S directive, 5-208 
SPRA$ directive, 5-209 
SPWN$ directive, 5-211 
SRDA$ diredt{ve, 5-221 
SREA$ directive, 5-223 
SREF$ directive, 5-228 
SREX$ directive, 5-223 
SRRA$ directive, 5-230 
SST, 2-5 

service routine, 2-6 
specifying, 5-241, 5-243 

STAF$ directive, 5-233 
Static common region, 3-4 
STIM$ directive, 5-234 
STLO$ directive, 5-237 
Stop directive, 5-239 
stop for Logical OR of Event 

Flags directive, 5-237 
Stop for Single Event Flag 

directive, 5-240 
STOP$S directive, 5-239 
Stop-bit synchronization, 2-12 

directives, 2-13 
STSE$ directive, 5-240 
Subroutine 

high-level language, 1-9 
error conditions, 1-18 
optional arguments, 1-10 
specifying task names, 1-11 

Supervisor Call directive, 5-182 
Supervisor mode 

library routine, 3-1 
calling, 5-182 

Suspend directive, 5-208 
SVDB$ directive, 5-241 
SVTK$ directive, 5-243 
Switch State directive, 5-245 
SWST$ directive, 5-245 
Symbolic offset, 1-7 

,Synchronous System Trap 
See SST 

Index-6 

( 

( 

( 

( 

( 



( 

c 

( 

( 

INDEX 

System 
option 

feature symbols, 5-86 
testing, 5-86 

task 
spawning, 4-5 

time 
setting, 5-234 

trap, 2-5 
System Macro Library, 1-5 

Task 
aborting, 5-8, 5-223 
activating, 5-166 
addressing, 3-1 
blocking, 5-269, 5-271 
canceling time-synchronized 

requests, 5-60 
chaining, 4-2, 5-194 
changing 

priority, 5-13 
size, 5-84 
state, 1-21, 1-23 

checkpointabi1ity 
disabling, 5-66 
enabling, 5-77 

connecting, 4-1, 5-191, 5-264 
CPU affinity 

removing, 5-161 
debugging, 5-241 
delaying, 5-124 
detaching from region, 5-67 
exiting with status, 5-82 
getting parameters, 5-118 
installed 

removing, 1-23 
nonprivi1eged 

directive restrictions, 1-24 
offspring, 4-1 
overlaying, 3-1 
parent, 4-1 
privileged 

mapping, 3-19, 5-245 
receiving next CLI command, 

5-204 
requesting, 5-166, 5-191, 5-194, 

5-211, 5-264 
resuming, 5-175 
returning status, 4-3, 5-75 
running, 5-176 
spawning, 4-1, 4-5 
stopping, 5-237, 5-239, 5-240 
suspending, 5-208, 5-267, 5-269, 

5-271 
terminating, 5-78, 5-80 

Task (Cont.) 
transferring command line, 

5-105 
unstopping, 5-255 

Task Exit directive, 5-80 
Task option 

list, 5-247 
testing, 5-247 

Task region, 3-4 
Terminal 

virtual 
creating, 5-54 
dea11ocating, 5-73 

Test for Specified System Feature 
directi ve, 5-86 

Test for Specified Task Feature 
directive, 5-247 

TFEA$ directive, 5-247 
Time 

getting parameters, 5-116 
setting, 5-234 

TLOG$ directive, 5-249 
TLON$ directive, 5-249 
Translate Logical Name String 

directive, 5-249 

ULGF$S directive, 5-252 
UMAP$ directive, 5-253 
Unlock Group Global Event Flags 

directive, 5-252 
Unmap Address Window directive, 

5-253 
Unstop Task directive, 5-255 
USTP$ directive, 5-255 
uti 1i ty 

spawning, 4-5 

variable Receive Data directive, 
5-256 

Variable Receive Data or Exit 
directive, 5-260 

Variable Receive Data or Stop 
directive, 5-258 

Variable Send Data directive, 
5-262 

Variable Send, Request, and 
Connect directive, 5-264 

virtual terminal 
creating, 5-54 
dea11ocating, 5-73 

VRCD$ directive, 5-256 
VRCS$ directive, 5-258 
VRCX$ directive, 5-260 
VSDA$ directive, 5-262 
VSRC$ directive, 5-264 

Index-7 





( 

( 

c_: 

( ) 

RSX-llM/M-PLUS and MicrolRSX 
Executive Reference Manual 

AA-FR95A-TC 

READER'S COMMENTS 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the 
company's discretion. If you require a written reply and are eligible to receive one under Software 
Performance Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent. 

o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Other (please specify) 

Name ________________________________________________ Date ______________________________ ___ 

Organization 

Street 

City _____________________ _ State ______ Zip Code ______ _ 

or Country 



- - Do Not Tear· Fold Here and Tape 

II1111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SSG PUBLICATIONS ZK1-3/J35 
DIGITAL EQUIPMENT CORPORATION 
110 SPIT BROOK ROAD 
NASHUA, NEW HAMPSHIRE 03062-2698 

-I 

r---
N

-
o 

-Po-s-ta-ge--' ( \ 

Necessary I 
if Mai led in the 
United States 

I --c 
1 

1 

I 
I 
I 

~ 
- - - Do Not Tear· Fold Here - - - - - - - - - - - - - - - - - - - - - -I 

I 





Printed in U.S.A. 


