
BASIC-PLUS-2

RSX-11 MilAS

User's Guide
Order No. AA-01S7B-TC

September 1978

This manual describes the use of the BASIC-PLUS-2 Compiler on the
RSX- 11 M and lAS operating systems. The description includes compiler com
mands, linkage of object modules to produce an executable task , RMS Record
1/0 , and error messages.

BASIC-PLUS-2

RSX-11 MilAS

User's Guide
Order No. AA-0157B-TC

SUPERSESSION/UPDATE INFORMATION: This manual supersedes the manual of the same
name with the order number AA-01S7 A-TC.

OPERATING SYSTEM AND VERSION: RSX-11 M V3.1 and lAS V2.0

SOFTWARE VERSION: PDP- 11 BASIC-PLUS-2 V1 .S

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license .

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing
future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST- II
VAX
DECnet

DECsystem-l0
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
lAS

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-ll
TMS-ll
ITPS-I0
SBI

m g-

Contents
Page

Preface Ull

Chapter 1 BASIC-PLUS-2

1.1 BASIC- PLUS- 2 Compiler. 1-1
1.2 Commands . 1-1

1.2.1 IDENTIFY Command 1-3
1.2.2 NEW Command. 1-4
1.2.3 LIST Command . 1-4
1.2.4 APPEND Command . 1-5
1.2.5 DELETE Command . 1-6
1.2.6 SAVE Command. 1-7
l.2.7 COMPILE Command 1-8
1.2.8 BUILD Command . 1-10
1.2.9 LIBRARY Command. 1-13
l.2.10 OLD Command . 1-13
l.2.11 RENAME Command. 1-14
1.2.12 REPLACE Command 1-14
1.2.13 SCALE Command. 1-15
1.2.14 SHOW Command . 1-15
1.2.15 UNSA VE Command. 1-16
1.2.16 EXIT Command . 1-17

l.3 Editing BASIC- PLUS- 2 Programs . 1-17

1.3.1 Debugging. .- 1-18

1.3.1.1 BREAK and UNBREAK Commands 1-19
1.3.1.2 STEP Command. 1-21
1.3.1.3 PRINT and LET Commands. 1-22
1.3 .. 1.4 TRACE and UNTRACE Commands. 1-22
1.3.1.5 ERR Command 1-22
1.3.1.6 ERL Command 1-23
1.3.1.7 ERN$ Command. 1-23
1.3.1.8 RECOUNT Command 1-23
1.3.1.9 STATUS Command 1-24

1.4 BASIC- PLUS-2 Programs. 1-24

1.4.1 Source Lines. 1-25
1.4.2 Subprograms 1-26

1.4.2.1 Subprogram Linkage . 1-26
1.4.2.2 Subprogram Register Usage. 1-27
1.4.2.3 Subprogram Calls 1-27

l.4.3 BASIC-PLUS-2 Sample Program. 1-30

Chapter 2 Files

2.1 OPEN Statements 2-1
2.2 Special Case Files. 2-3

2.2.1 Virtual Files. 2-3
2.2 .2 Organization Undefined 2-5

2.2.2.1 FSP$ Function. 2-6

Chapter 3

Chapter 4

2.3 Int.roduction to RMS .

2.3.1 Sequential Fi les
2.3.2 Relative Files .
2.3.3 Indexed Files .

2.3.4
2.3.5

2.3.3.1 Primary and Alternate Key Record Access.

File Sharing.
RMS Memory Allocation.

2.4 Record Access Methods .

2.4.1 Sequential Access
2.4.2 Random Access

2.5 Record Format

2.5.1 Fixed-Length Records
2.5.2 Variable-Length Records.

2.6 Data Structure .

2.6.1 Blocks..
2.6.2 Buckets.

2.6.2 .1 Bucket Size

2.7 Record Mapping

BASIC-PLUS-2 on RSX-11 M

3.1 Compiler Invocation on RSX- 11M .
3.2 Task Builder Usage on RSX- 11M

3.2.1 Task Builder Options

3.3 Task Execution on RSX-11M . .
3.4 BASIC- PLUS-2/RSX-11M Notes

3.4.1 CHAIN Statement.
3.4.2 NAME AS Statement
3.4.3 SLEEP Statement .

BASIC-PLUS-2 on lAS

4.1 Compiler Invocation on lAS.
4.2 Task Builder Invocation on lAS . .

4.2.1
4.2.2
4.2.3

Link Command Line Input.
Qualifiers . . .
Link Options .

4.3 Task Execution on lAS
4.4 lAS Restrictions. . . .

Appendix A BASIC-PLUS-2 Language Elements

A.l Line and Data Format
A.2 Commands .
A.3 Statements.. ..
A.4 Functions.....
A.5 Reserved Keywords

iv

2-6

2-8
2-11
2-14

2-17

2-19
2-21

2-21

2-22
2-23

2-25

2-26
2-26

2-27

2-27
2-28

2-28

2-32

3-1
3-2

3-2

3-4
3-5

3-5
3-6
3-6

4-1
4-1

4-2
4-3
4-5

4-6
4-7

A-I
A-3
A-4
A-16
A-21

Appendix B Run-Time Error Codes and Messages

Appendix C Compile Time Error Messages

C.1 Traceback
C.2 Compile-Time Error Messages.

Appendix D ASCII Codes and Data Representation

D.1 ASCII Character Codes .
D.2 Radix-50 Character Set .
D.3 Integer Format .
DA Floating-Point Formats

DA.1 Real Format (2-Word Floating Point) .
DA.2 Double Precision Format (4-Word Floating Point) .

D.5 String and Array Format

D.5.1 Dynamic String Format
D.5.2 Array Format
D.5.3 Array Descriptor Word.

Index

Tables

1- 1 BASIC-PLUS-2 Commands.
1- 2 BASIC-PLUS- 2 BUILD and COMPILE Command Switches
2- 1 Comparison of File Organizations
2- 2 Allocation Algorithms.
2- 3 Access Methods.
2- 4 Relative File Default Bucket Size
2- 5 Indexed File Default Bucket Size
3-1 Task Builder Optioi1s .
4- 1 lAS Default File Types
4-2 Link Options .
A-I Arithmetic Operators
A-2 Logical Operators .
A-3 Relational Operators
A-4 Reserved Keyword List
B-1 ERR Values, Error Messages and Their Meanings.
D-1 ASCII Codes .
D-2 ASCII/Radix-50 Equivalents.
D-3 Array Descriptor Word

Figures

1-1 Argument List Format
1-2 CALL Statement .
1-3 CALL BY REF Statement.

C-2
.C-3

D-1
D-6
D-9
D-10

D-10
D-l1

D-l1

D-l1
D-12
D-13

1-2
1-3
2-7
2-21
2-22
2-30

· 2-31
· 3-3
· 4-2
· 4-5

A-20
A-20
A-21
A-21
B-1
D-1
D-8
D-13

1-27
1-28
1-29

960RSXALL

v

Preface

The BASIC-PLUS-2 RSX-llM/IAS User's Guide describes the features and
use of the BASIC-PLUS-2 Compiler on PDP-ll operating systems.

Chapter 1 describes the BASIC-PLUS-2 command format , debugging aids,
and the creation of source programs.

Chapter 2 contains information on RMS (Record Management Services) file
handling and Record I/O.

Chapter 3 explains the interface between the BASIC- PLUS- 2 Compiler and
operating systems that use the MCR command language. It also describes the
procedures used to create an executable task from a BASIC-PLUS- 2 source
program on these systems.

Chapter 4 explains the interface between the BASIC-PLUS-2 Compiler and
operating systems that use the DCL command language . It also describes t he
procedures used to create an executable task from a BASIC-PLUS-2 source
program on these systems.

The manual also contains appendixes that describe compatibility issues and
the Translator, the BASIC- PLUS-2 vocabulary, error messages and recovery
procedures, and data and character representations .

vii

Intended Audience

This manual is not a tutorial. You should be familiar with your operating
system and the BASIC-PLUS-2 language before reading this user's guide.
Information on the BASIC- PLUS-2 language can be found in the PDP-II
BASIC-PLUS- 2 Language Reference Manual. Information on system docu
mentation can be found in the Documentation Directory appropriate to your
system . In addition, specific sections of this manual refer to other documents
that provide information on the subject under discussion.

Documentation Conventions

um

Throughout this manual, symbols and other notation conventions are used to
represent keyboard characters, textual information, and otherwise ease the
exposition of material. The symbols and conventions used are explained
below:

lliITl The lliITl symbol represents a carnage return/line feed
combination.

The circumflex represents a control character. For exam
ple, . C indicates a (CTRl/C) . In some cases, a circumflex is
also used to indicate exponentiation.

RED Color-highlighted information in examples is typed by the
user.

"print"
and "type"

. BASIC

UPPER CASE
lower case

Ibracesl

[bracketsl

MCR

DCL

As these words are used in the text, the system prints and
the user types.

The term BASIC is used as a generic term for
BASIC- PLUS-2. Where this may cause confusion, the
practice is discontinued and the proper term is used.

In examples of format, information that you type as
shown appears in upper-case letters. Lower-case indicates
that the information is user dependent.

Braces indicate that, of several elements shown, one is
chosen.

Brackets indicate user options.

Monitor Console Routine; the command language used on
the RSX-llM operating system.

Digital Command Language; the command language used
on the lAS operating system.

oJ

Chapter 1
BASIC-PLUS-2

The BASIC-PLUS-2 Language Processor is composed of a Compiler and an
Object-Time SystemlLibrary. The OTSlLibrary is discussed in Section 1.2.9.
This chapter contains information on the BASIC-PLUS-2 Compiler. It de
scribes the syntax and use of BASIC commands, editing of programs, debug
ging aids, and the creation of source files .

1.1 BASIC-PLUS-2 Compiler

The BASIC-PLUS-2 Compiler produces an object module from your source
program . As you enter the source program, the compiler checks each program
line for syntax errors and returns an appropriate message when an error is
found . You can then correct the program (if necessary) and compile it. Pro
gram compilation results in an object module that is linked and executed at
the operating system command level. The creation and compilation of a
source program is detailed in the rest of this chapter. Chapters 3 and 4 discuss
the procedures used to link and run a BASIC-PLUS-2 task.

To invoke the BASIC-PLUS-2 Compiler, type a system-dependent command
as described in Chapters 3 and 4. If access to BASIC-PLUS-2 is successful,
BASIC prints an identification line (see Section 1.2.1) followed by a prompt.
This prompt indicates that the compiler is prepared to accept input. Note
that the system manager can optionally change the text of this prompt during
the installation of BASIC-PLUS-2; Basic2 is the default prompt and is used
throughout this manual.

1.2 Commands

Input to the compiler can be a BASIC command or a source program line.
BASIC source programs are described in Section 1.4 .. This section and the
subsections that follow describe the BASIC commands.

1-1

You use commands to perform various functions outside the context of pro
grams. That is, commands require no line numbers and you type them di
rectly to BASIC, along with any required arguments. Table 1-1 lists the
BASIC commands with brief explanations of their use. Succeeding sections
describe each command in detail. The commands listed in Table 1-1 can be
used individually or combined in a user-created indirect command file. The
command file allows you to execute a series of BASIC commands by means of
a single command file specification.

Table 1-1: BASIC-PLUS-2 Commands

Command Function

APPEND Merges the current source program with a previously saved program.

BUILD Creates a command file and an overlay description file from your source
program. These files are used to specify input to the task builder program.

COMPILE Translates a BASIC source program into an object module with a default file
type of .OBJ.

LOCI</sw Causes the switches you specify (sw) to be used as the default for succeeding
COMPILE commands. A LOCI< command with no arguments disables the
specified switches and returns to the BASIC default switch settings.

DELETE Erases a specified line or lines from a BASIC source program.

EXIT Clears memory, closes all files, and returns you to operating system command
level.

IDENTIFY Causes BASIC-PLUS- 2 to print an identification header.

LIBRARY Allows you to specify a BASIC- PLUS-2 resident library.

LIST Prints a copy of the current program or its specified lines.

NEW Clears memory for the creation of a new program.

OLD Clears memory and loads a specified existing program into memory.

RENAME Changes the name of the current program in memory.

REPLACE Stores the current program on the system default device and directory or a
specified device.

SA VE Copies and preserves a source program on the system default device and
directory Jr a specified device.

SCALE Controls the scale factor for double-precision (4-word i1oating-point) format.

UN SA VE Deletes a specified file.

1-2 BASIC-PLUS-2

Table 1-2: BASIC-PLUS-2 BUILD and COMPILE
Command Switches

Command/Switch Default Function

BUILD/DUMP /NODUMP Instructs the Run-Time System to produce a binary
dump of memory contents in the event of an abnormal
exit from a user program.

BUILD/EXTEND:n /N OEXTEND Increases program storage by a minimum of 17 words.

BUILD/M AP Installat ion Causes the Task Builder to create a memory allocation
Opt ion map file wi th a defaul t extension of .MAP.

BUILD/IND /NOIND Links in the code necessary to use RMS- ll Indexed fil e
organizat ion .

BUILD/REL /NOREL Links in the code necessary to use RMS- ll Relati ve
fil e organizat ion.

BUILD/SEQ /N OSEQ Links in the code necessary to use RMS-ll Sequent ial
file organization.

COMPILE/DEBUG /NODEB Translates a BASIC source program and enables t he
debugging aid.

COMPILE/DOUBLE Installat ion T1'3nslates a BASIC program and enables the double-
Option precision (4-word floating-point) math package.

COMPILE/MACRO /NOMAC Translates a BASIC source program into a MACRO
source file with a defaul t file extension of .MAC.

COMPILE/LINE Installation Translates a BASIC source program that uses internal
Option line headers for error processing.

BASIC command specifications can be abbreviated to a minimum of three
letters. For example, the COMPILE/DEBUG command can be abbreviated to
COM/DEB. Note that if the abbreviation NH is used with the LIST com
mand, NH must be appended to the command abbreviation, i.e., LISTNH.
The specific abbreviations for each command are given in the appropriate
subsection that follows .

1.2.1 IDENTIFY Command

The IDENTIFY command (IDE) prints a BASIC- PLUS-2 header. The
header consists of the BASIC- PLUS-2 name and version number. IDENTIFY
eliminates confusion as to which BASIC is currently in effect. That is, an
identifying header is printed in response to this command only when the
BASIC-PLUS-2 Compiler is present.

Consider the following example:

IDENTIF Y (!@
BASIC-PLUS-2 I,ll) 1 - 5 (l

BASIC-PLUS-2 1-3

Basic2
El: IT (ffi)

In this example, the current availability of BASIC-PLUS-2 is confirmed as a
result of typing the IDENTIFY command. After you type EXIT (see Section
1.2.15), BASIC-PLUS-2 is replaced by the operating system command level.
An IDENTIFY command to the operating system produces an error because
the command is not part of that system's command set. Note that the same
identification header is also printed when you first access BASIC-PLUS-2.

1.2.2 NEW Command

The NEW command reserves space for building programs by creating a tem
porary file. When you type NEW, any name and source code currently in the
compiler's buffer or in a temporary file are deleted. After you type the com
mand, BASIC prompts for the new program's name, as follows:

NEW (ffi)
NEW FILE NAME --

In response to this prompt, type any 1- to 6-character alphanumeric name.

You can also answer the NEW FILE NAME prompt with a carriage return, in
which case BASIC supplies the name NONAME by default.

You may avoid the prompt altogether by typing the desired name after typing
NEW. For example, if you type:

NEW PROGl (ffi)

BASIC assigns the name PROG1 to the program you create.

In all cases, NEW establishes space for the creation of source files, so the
default file type is .B2S. If you specify any other file type in the NEW com
mand, it is ignored.

1.2.3 LIST Command

The LIST command (LIS) prints a copy of the program that is currently in
memory. This copy is printed on the terminal output device. It shows the
program as it appears in memory with line numbers properly sequenced.

If you type:

LI ST (ffi)

the entire program is printed, along with a header that contains the program
name, the current time and date, and system information. To suppress this
header material and print a copy of the program alone, type :

LI STNH (ffi)

1-4 BASIC-PLUS-2

where NH specifies no header.

You can also specify the printing of specific program lines, instead of the
whole program, by means of the line number specification shown in the DE
LETE command (see Section 1.2.5). For example:

LIS T 30, 70 !BW

prints a copy of lines 30 and 70, with a header.

LI STN H 30-70 (ill)

prints a copy of lines 30 through 70, without the header.

1.2.4 APPEND Command

The APPEND command (APP) merges the contents of an existing BASIC
source program with a program currently in memory (i.e., at compiler com
mand level). To use APPEND, type:

APPEND (ill)

to which the BASIC Compiler prompts:

APPEND FILE NAME --

In response, type the name of a previously created BASIC source program
that you wish to merge with the current program. The compiler opens the
specified program as secondary input and reads it into memory. The contents
of the source program are then merged with, or appended to, the current
program, depending on the order of line numbers. If both programs contain
identical line numbers, the current program line is replaced by the appended
program line.

To suppress the APPEND FILE NAME prompt, type:

APPEND f i le s pec (ill)

where filespec is the file specification of the program to be appended.

If both programs you wish to merge are saved on a system device, one of them
must be brought into memory before the APPEND command is given. You
bring a saved program into memory with an OLD command (see Section
1.2.10).

If you do not specify a file name in the APPEND command prompt but type
only a carriage return, the compiler searches for a source program called
NONAME.B2S. If no file of that name is found (either specified or
NONAME), the following error message is printed:

?Can ' t find file or account

BASIC-PLUS-2 1-5

The APPEND command does not change the name of the program currently
ill memory.

The following example illustrates the use of the APPEND command. You
have built and saved two programs named API and AP2. These programs
appear as follows :

10 LET B=5
20 LE T C=2
30 LET A=B '"· C
40 PRINT A
50 END

API

35 LET D=A ·· C
40 PRINT AiD

AP2

If you use an OLD command to bring the program API into memory and then
issue an APPEND command for AP2, the result appears as follows :

OLD AP1 @)

Basic2

APPEND AP2 @)

Basic2

LISTNH @)

10 LET B=5
20 LET C=2
30 LET A=B·C
35 LET D=A··C
40 PRINT AiD
50 END

Note that the APPEND command does not change the name of the current
program. Also, line 40 of the program in memory is replaced by line 40 of the
appended program while the unique line 35 is merged sequentially.

1.2.5 DELETE Command

The DELETE command (DEL) removes a specified line or lines from the
program currently in memory (i.e ., at compiler command level).

To delete a program line, type the command followed by the desired line
number. To delete a series of lines, specify the line numbers, separated by
commas . To delete a consecutive group of lines, type the first and last line
number of the group, separated by a hyphen.

For example:

DELETE 50 l!!flJ

removes line 50 from the program.

DELETE 50. 80 l!!flJ

1-6 BASIC-PLUS-2

removes lines 50 and 80 from the program.

DELETE 50-80 ffi)

removes lines 50 through 80 from the program.

DELETE 50. GO. 90-110 ffi)

removes lines 50, 60, and 90 through 110 from the program .

If you do not specify a line in the DELETE command, no lines are removed
and an error message ('X,Illegal DELETE COlllllland) is returned. If you
specify a range of lines and one of the speci.fied lines does not exist, all of the
lines within that range are removed. For example, if you type DELETE 50- 80,
all of the lines equal to, or greater than, 50 and equal to, or less than, 80 are
erased. Line numbers must be specified in ascending order; if you type an
illegal line specification such as DELETE 80-50, the command is ignored and
an error message (? Bad 1 i n e n U III to e r p air) is returned.

1.2.6 SAVE Command

The SAVE command (SA V) preserves a completed source program by
transferring it from memory into a file. For example, if you have a program in
memory and type:

SAVE ffi)

the line numbers of the program are sequenced, and the program is stored on
the system default device in the default directory as source code under the
current program name with a .B2S file type. If you wish to specify a particular
storage device, directory, file type, version number, or program name, type:

SA',1E oj e I) : [n • n] f i 1 e s pee

where filespec is a file specification that contains the desired name and
device. If you have built an unnamed program, a SAVE command with no
specification stores the program as NONAME.B2S. Note that
BASIC-PLUS-2 permits a maximum 6-character name for programs in mem
ory. However, you can specify up to a 9-character file name in the SAVE
command. When you access a saved file that has a 6- to 9-character name
with an OLD command (see Section 1.2.10), BASIC truncates the name in
memory to six characters.

If you attempt to save a program that has the same file specification as one
already saved, the system ignores the command and prints an error message:

?File exists - RENAME/REPLACE

This error prevents an inadvertent deletion of an existing program. For an
explanation of RENAME and REPLACE see Sections 1.2.11 and 1.2.12.

BASIC-PLUS-2 1-7

1.2.7 COMPILE Command

The COMPILE command (COM) can only translate a program that is cur
rently in memory into object code. This command can be used in conjunction
with one or more of the following optional switches: /DEBUG, /DOUBLE,
/MACRO, and /LINE. Note that any switch may be turned off by using a NO
prefix, as in /NOLINE or /NOMACRO. A LOCK command is also available
that allows you to specify default switch settings. Table 1-2 lists the COM
PILE command switches and their default values.

When used alone, the COMPILE command translates the program into a
linkable object module and stores it in the system default device and directory.
The default file type, .OBJ, is appended to the program name. The program is
not executed; it is only compiled and saved. Programs compiled as object
modules must be linked by the BUILD command into a task image before
they can be executed. You construct a task image by using the BUILD com
mand together with appropriate switches and then using the task builder to
generate the executable task image.

If the program is currently in memory (i.e., at compiler command level) and
you type:

COMPILE !Bill

the current program is compiled and saved. An alternative use of this com
mand is to type:

CO MPILE filespec

where filespec is a file specification. This command compiles the current
program (which has been previously brought into memory by an OLD com
mand) under the specified name, which can include a directory, device, or
version number, and appends .OBJ to the name (if no other file type is
specified). To compile a source program that is not in memory, you must first
bring it into memory by means of an OLD command (see Section 1.2.10) and
then type COMPILE.

The COMPILE/DEBUG command (COM/DEB) translates the program into
object code and enables the use of the BASIC-PLUS-2 debugging aid. The
debugging aid is described in Section 1.3.1. Note that the program must be
compiled with the /DEBUG switch and linked by means of the task builder
before the BASIC debugging aid can be used. Note that, because the debug
ging aid is module-oriented, it does not allow the use of the debugger in a
module compiled without the /DEBUG switch.

The COMPILE/DOUBLE command (COM/DOU) translates the program
into object code and indicates that double-precision format (4-word) is used
for all floating-point operations. Note that an executable task cannot contain
both single- and double-precision format. That is, all modules in the task
must be the same format; mixed format causes a run-time error. Your system
manager selected either single- or double-precision at the system default when
BASIC-PLUS-2 was installed.

1-8 BASIC-PLUS-2

The COMPILE/MACRO command (COM/MAC) translates the program and
saves it only as a MACRO source file with a .MAC default file type. This file
can be listed to examine the compiler-generated code. It is generally used for
diagnostic purposes.

The COMPILE/NOLINE command (COM/NOLIN) translates the program
and reduces the memory requirements of the output program. The /NOLINE
switch is an installation option that disables program line headers in memory
and reduces program requirements by the following amounts:

• Two words per line

• Four words per function definition

• Two words per DIM statement

• Four words per FOR NEXT, WHILE, or UNTIL NEXT loop or clause

The /NOLINE switch cannot be used when the compiled program references
an ERL function, makes use of the debugging aid, or contains a RESUME
statement without a line number specification. When the /NOLINE switch is
enabled, the ERL value is set to O. Note that a RESUME statement without a
line number specification overrides the /NOLINE switch and causes a diag
nostic error message:

%RESUME overrides INOLINE

Also, a reference to the ERL function overrides the /NOLINE switch and
causes a diagnostic error message:

%ERL overrides INOLINE

In most cases, the switches described above can be combined in the COM
PILE command. For example:

COMPILE / OEBUG/OOUBLE/NOLINE

You can use the LOCK command to facilitate multiple program compilations.
That is, you can specify any legal combination of compiler switches to the
LOCK command, and these become the defaults for successive COMPILE
commands. This procedure avoids your having to respecify switches for each
compilation. The specified switches are disabled by a LOCK command with
no arguments . Note that a COMPILE command with no arguments creates
an object file by default.

Consider the following example:

LOCK INOLI NE (ffi)

B-asic2

OLD PROGl (ffi)

Basic2

BASIC-PLUS-2 1-9

COMPILE mJ

Bas i c2

OlO PROG 2 @)

Basi c 2

COMPILE ~

Basic2

lOCK @)

Basic2

OLD PROG3 @)

Bas i c2

COMPILE/MACRO @)

Bas i c2

In this example, three programs are brought into memory by OLD commands
(see Section 1.2.10) . The initial LOCK command sets the /NOLINE compiler
switch as the default. When you compile PROG 1 and PROG2, they become
object modules with /NOLINE enabled. Finally, the LOCK command with no
arguments disables all defaults (except those specified at installation) and
PROG3 is compiled as a MACRO file with no switches other than installation
option defaults in force . The result of these three compilations is as follows:

PROG1.0BJ (NOLINE enabled)
PROG2.0BJ (NOLINE enabled)
PROG3.MAC (no switches enabled)

1.2.8 BUILD Command

The BUILD command (BUI) accepts the names of one or more object modules
as input and creates an indirect command file with the default file type
.CMD. This file contains all of the task builder command input required to
create an executable task image file with a default file type of .TSK and an
optional memory allocation map with a default file type of .MAP. In addition
to the command file, the BUILD command generates an overlay description
language file (file type .ODL). You can edit the contents of this file to use
overlaid program segments. The procedure used to input the command file to
the task builder and to edit the BUILD command ODL file is described in
Chapters 3 and 4.

An object module is created from a BASIC source program by the COMPILE
command (see Section 1.2.7). You create object modules and link them by the
task builder for the following reasons:

1. To create an executable task - In order to create a task from your object
modules that is executable at the operating system level, you must use the
task builder to process the modules and link the required BASIC-PLUS- 2
library.

1-10 BASIC-PLUS-2

2. To produce an optional memory allocation map - The map is a file that
contains descriptions of program code, storage allocation, and global sym
bol definitions.

3. To link subprograms - User subprograms must be separately compiled as
object modules and selectively linked with your program to create a single
executable file.

4. To access RMS required code - I/O operations on virtual, sequential,
relative , or indexed files (see Chapter 2) require access to RMS library
modules . To link this code with modules that use these operations, you
must use the task builder.

The BUILD command generates all of the command input required by the
task builder system program. This input in'cludes a task and map file output
specification, the object module names, and the required BASIC-PLUS- 2
library (see Section 1.2.9). Because the BUILD command automatically cre
ates an indirect command file that contains all of this information, task
builder input can consist entirely of the indirect command file name. That is,
the task builder can link the object modules and output an executable task
image file and an optional map file from a single command file specification.
If you wish to link your program with special task builder options, you must
modify the BUILD command output as described in the RSX -11M Task
Builder Reference Manual and in Chapters 3 and 4 of this manual.

To use the BUILD command, type :

BUILD frlaintsublt s ub2t ••• / sl,1

where main represents the name of a program that was previously compiled as
an object module. This file name becomes the name of the indirect command
file with the .CMD default file type appended to it. Sub1 , sub2, etc. , represent
the names of one or more optional subprograms, separated by commas, that
have been separately compiled as object modules. Note that BUILD com
mand arguments are file specifications that can contain device, directory, and
version number specifications. You may specify up to eight modules in the
command line but they must all fit on a single line (i.e., the command line
cannot be continued). If any of the modules contain an OPEN statement, you
must append the appropriate switch(es) to the end of the command line . The
switches and their use are as follows :

/VIR

/SEQ

/REL

includes in the command file the RMS code required for
virtual array or block I/O operations. Note that this switch is
used when the program contains only virtual file operations.

includes in the command file the RMS code required for
sequential file operations.

includes in the command file the RMS code required for
relative file operations.

BASIC-PLUS-2 1-11

lIND includes in the command file the RMS code required for
indexed file operations.

IDUMP instructs the Run-Time System to produce a binary dump of
memory contents at the time of an abnormal exit if your
system has the Post Mortem Dump (PMD) program
installed.

IMAP produces a memory allocation map of the resulting program .

/EXTEND:n increases the program storage space by a minumim of n
words (where n is rounded up to the next multiple of 32) and
aligns the resulting extended program on a lK boundary .

You can use any combination of the above switches on the command line,
depending on the content of the modules . That is, if any modu le in the
command line creates or opens a virtual, sequential, relative, or indexed file,
the appropriate switch(es) must be appended. Because the code required for
virtual file operations is a subset of ISEQ, /REL, and lIND, the virtual file
switch may be omitted when using any other RMS switch. For information
on RMS file operations, refer to Chapter 2. You may use the /DUMP, IMAP,
and /EXTEND switches on the same line as any combination of the other
switches.

Consider the following:

BUILD MAIN ,SUBl ,SUB2 / REL @)

This command line results in an indirect command file (MAIN .CMD) and an
overlay description file (MAIN .ODL) . These files contain the object modules
MAIN.OBJ, SUB1.0BJ, and SUB2.0BJ, as well as the BASIC-PLUS- 2 li
brary specifications. In addition, the /REL switch generates instructions that
cause the code required for RMS relative file operations to be associated with
the task . To produce a linked task and map file, you must invoke the system
task builder and specify the command file as input. To specify MAIN.CMD
for example, type:

::· @MAIN @)

in response to your system's task builder prompt. Note that a BUILD com
mand file cannot be combined with any other task builder input.

Following successful task creation, your user directory contains an executable
task image file (MAIN .TSK) composed of the linked modules you specified as
input. Your directory may also contain a memory allocation map
(MAIN.MAP) . The file name for both the task image and map is the name of
the first module appearing as input in the BUILD command line. The actual
linking operation is handled by the task builder. For more information on the
task builder, refer to Chapters 3 and 4 of this manual and to the RSX-llM
Task Builder Reference Manual. If you use the BUILD/DUMP command, you
instruct the system to produce a dump of memory contents at the time of an
abnormal exit durin'g execution.

1-12 BASIC-PLUS-2

1.2.9 LIBRARY Command

You can optionally link to a user-created library, depending on the needs of
your program. You use the LIBRARY command (LIB) to indicate BASIC2 or
a user library. The command includes that library in the command file that is
generated by the BUILD command (see Section 1.2.8).

When linking to user libraries, you should be aware that BASIC-PLUS-2 is
supplied with a shareable resident library called BASIC2, which contains
many of the run-time support routines required for an executable task image
file. The reference to this shared library was specified by your system manager
during installation and is included in your task builder command file.

The BASIC2 shareable library is 8K words long and contains the following
run-time routines:

1. Math routines, which include library functions and arithmetic routines.

2. Routines to handle dynamic allocation of string storage and I/O buffers.

3. Routines to handle input/output operations.

4. Error handling routines to process errors in arithmetic, I/O, and system
operations.

To use the LIBRARY command, type:

lIBRARV @)

In response to the command, BASIC prompts for the name of the desired
shareable resident library. For example:

lIBRARY ~
Narlle[BASIC2]-- ~
ACCDunt[lB: [111]]-- fBrn

This example causes BASIC2 to be used in all succeeding BUILD commands.
If the LIBRARY command is successful, the BASIC2 prompt is printed. If you
follow this procedure with a BUILD command, the generated command file
contains the BASIC2 library as well as any specified object modules (see
Section 1.2.8). BASIC2 remains the BUILD command default library until
you replace it by means of another LIBRARY command or exit from
BASIC-PLUS-2.

1.2.10 OLD Command

The OLD command allows you to bring into memory a previously created and
saved source program. When you type:

BASIC replies:

OlO FILE NAME - -

BASIC-PLUS-2 1- 13

In answer to the prompt for a name, type the name of the program you wish to
access. This command causes the highest version of the specified file, with a
.B2S file type, to be read into memory and become the current program. The
program is now ready for processing (i.e ., editing, compiling, etc.).

If you type only a carriage return in response to the prompt, BASIC searches
for a source program called NONAME.B2S. You can avoid the OLD FILE
NAME prompt by specifying the desired program with the OLD command, as
follows:

OLD filespec

where filespec is a file specification. If you specify a file specification that does
not exist, or if you do not specify a program and NONAME.B2S cannot be
found, BASIC returns an error message:

?Can ' t find file or account

When you type the OLD command, any source code currently in memory is
lost. Also, when BASIC reads in the specified file, it uses the first six charac
ters as the program name and performs a minimal check on the contents.

1.2.11 RENAME Command

The RENAME command (REN) changes the name of the program currently
in memory. For example, if you have a program in memory named PROGl
and you type:

RENAME PROG2

the name PROGl is erased from memory and replaced with the name PROG2.
If you type SAVE (see Section 1.2.6), the program is stored with the name
PROG2.

If you bring a saved program named PROG 1 into memory with an OLD
command and type:

RENAME PROG2

the program is named PROG2 in memory but retains the name PROG 1 on the
disk.

1.2.12 REPLACE Command

The REPLACE command (REP) updates a program on the system default
device or a specified device with one in memory. For example, if a program
named FILE needs modification, bring it into memory with an OLD com
mand, make the desired changes, then type:

REPLACE I!!@

1-14 BASIC-PLUS- 2

This procedure updates the contents of the original program named FILE
with the contents of the newly edited program.

You can also specify a new name, directory, device, or version number for the
edited program in the REPLACE command. For example:

REPLACE [SO.ZOJFILE1.BZS;Z

where FILE is the name of the program currently in memory, retains the old
version of FILE but also saves the edited version under the name FILEl.

The REPLACE command stores the program even if there is no program of
the same name on disk. That is, if the program named FILE is currently in
memory and there are no other programs with that name, REPLACE still
writes the program onto the default device and directory.

1.2.13 SCALE Command

The SCALE command (SCA) implements and controls the scaled arithmetic
features of BASIC-PLUS-2. You use SCALE to overcome accumulated
round-off and truncation in fractional computations performed when double
precision (4-word floating-point) format is enabled. SCALE allows you to
maintain the decimal accuracy of fractional computations to a given number
of places determined by the scale factor.

To specify a scale factor, type:

SCALE int

where int is a decimal integer in the range of 0 to 6 that represents the scale
factor. The command causes the specified scale factor to be used for succeed
ing compilations. The scale factor remains in effect until you exit from
BASIC-PLUS-2 or specify a new SCALE factor. Note that a SCALE com
mand with no factor specification causes BASIC to print the current scale
factor.

1.2.14 SHOW Command

The SHOW command allows you to display the current switch values on your
terminal. To use the SHOW command, type:

SHOW Q!!)

BASIC-PLUS-2 1-15

following a BASIC prompt. BASIC then prints the following lines on your
terminal with the appropriate values reported:

Libran is LB:[lt1JBASIC
TasK extend size 0
Scale factor = 0
S'A'itch settinss:

NO:MAP
NO:OUMP

:CHAIN
: LINE

Output:OBJ
Precision:Sinsle

NO:DEBUG
File ORGS:Terminal I/O only

The above example shows the default settings for BASIC-PLUS-2. This in
cludes the default values of options that can be determined at installation
time. Possible alternate values may consist of the following:

1. Library may be BASIC2 or user-supplied.

2. Task extend can be any integer.

3. Scale factor can be any integer from 0 to 6.

4. Switch settings can be on (:LINE) or off (NO:MAP).

5. Output can be OBJ or MAC.

6. Precision can be single or double.

7. File ORGs can be any combination of Virtual, Relative, Indexed, Sequen
tial, or Terminal-Format.

1.2.15 UNSAVE Command

The UNSA VE command (UNS) deletes a file from the disk. For example, if
you type:

U NS (BITJ

the file associated with the source program currently in memory is deleted
from your directory on the default device. If you type:

UNSAI,'E f i 1 e s p e c

the specified file, filespec, is deleted from the default device or specified
device whether or not it is currently in memory. This command is useful for
erasing unwanted files from ·the default device or other specified devices or
directories. Note that you may use UNSAVE to produce a hard copy listing of
the currently OLDed file by specifying the device as LP:.

The UNSA VE command causes BASIC to search for and delete a specified
source program. If the program is not found, BASIC prints an error message:

?Can't find file or account

1-16 BASIC-PLUS-2

To delete a compiled or non-source program, you must type the program's
name and file type. For example:

UNSAVE DK1:[2G,12JFILE.TSK

1.2.16 EXIT Command

The EXIT command (EXI) terminates access to BASIC-PLUS-2 and returns
you to the operating system command level. This command is the only means
of leaving BASIC-PLUS-2 that ensures proper closing of files and the imme
diate return of control to the operating system.

1.3 Editing BASIC-PLUS-2 Programs

There are a number of ways you can correct BASIC-PLUS-2 source programs.
These editing methods include deleting incorrect characters and retyping en
tire program lines. However, programs must be in memory before edits can be
made. That is, you edit a new program as it is entered, or a saved program
after it is brought into memory by an OLD command. You cannot edit a task
or an object module.

As you create new programs, you can erase misspelled words or incorrect
characters with the ~ (Delete) key and type corrections at the terminal.
(Note that ~ is labeled the RUBOUT key on some terminals.) This must be
done before you enter the line into memory with a carriage return. For exam
ple, to correct a misspelled PRINT statement:

10 PRAND

erase the incorrect characters with the ~ key and retype as follows:

10 PRAND\DNA\INT

Press the ~ key once for each character you wish to delete (these characters
usually print inside slashes on the terminal); then type the correct charac
ter(s) on the same line. Note that the ~ key erases characters one at a time
from right to left beginning with the last character typed. You can then type a
carriage return to enter the corrected line into memory.

To delete an entire line that has not been entered into memory (i.e., you have
not yet typed a carriage return), use tTRL/U). That is, you press the CONTROL
key and the U key simultaneously.

As you enter source lines into memory, the BASIC Compiler performs a syn
tax check. If BASIC detects an incorrect line, it prints the appropriate error
message following input (see Appendix C). However, BASIC saves source
program lines even with errors. To edit an incorrect line that has been entered
into the program currently in memory, retype a corrected version of the line.

BASIC- PLUS- 2 1-17

By typing the same line number followed by corrected text, you delete the old,
incorrect line from memory and automatically replace it with the new one.
Consider the following example:

10 LAD A=7\B=9\C=SRQ(1441 @ill
?Sn-,tax error

This incorrect line was entered into memory by the carriage return and an
error message was printed. If you type:

10 LET A=7\B=9\C=SQR(1441 @ill

the previous line 10 is erased from memory and replaced with the corrected
version.

You can also delete a line currently in memory by typing the line number with
no text. For example:

10 LET D=A+B**C

can be deleted from the source program by typing:

10 @ill

Also, you can use the DELETE command to perform the same function (see
Section 1.2.5).

1.3.1 Debugging

To help you locate any errors that may exist in your program, BASIC provides
a set of interactive debugging commands. These commands allow you to
check program operation and make corrections. The commands are BREAK,
UNBREAK, STEP, TRACE, UNTRACE, PRINT, LET, CONTINUE, ERR,
ERN$, ERL, STATUS, and RECOUNT. Their use is permitted only on pro
grams or subprograms that are compiled with the /DEBUG switch (see Sec
tion 1.2.7) and linked by means of the task builder. After you have debugged
the program and edited the source file to execute correctly, you can recompile
the program without the /DEBUG switch to disable these commands. Note
that the /DEBUG switch causes an increase in program memory require
ments, therefore, recompiling the program without /DEBUG acts to conserve
memory.

Note that when a program is composed of several subprograms, you do not
have to compile each subprogram with the /DEBUG switch. To debug a single
subprogram, the switch need only be enabled with that module.

When you run a program, execution stops the first time a module is entered
that has the /DEBUG switch enabled. After execution halts, the debugging
aid prints an identifying message:

DEBUG: pros na'Ile

1-18 BASIC-PLUS-2

where prog name is the name of the program or subprogram that was com
piled with the /DEBUG switch. The debugging aid also prints a prompt (#)
after the message as follows:

DEBUG: proS naMe

The prompt allows you to enter debugging aid commands. The debugging
commands allow you varying degrees of control over program execution as
explained in the following sections. If you enter a carriage return in response
to a debugger prompt, a STEP 1 is performed (see section 1.3.1.2). This
enables you to "single step through" a program by typing only carriage
returns. To reinitiate program execution and cause the specified command
action, type the CONTINUE (CON) command as follows:

DEBUG: proS naMe ®ill
BREAK 10 (!§)
CON ®ill

In this instance, the CON command reinitiates program execution as speci
fied by the BREAK command, i.e., the program runs until line number 10 is
executed. Note that the STEP command causes immediate execution of the
first encountered statement and does not require the CONTINUE command.

Following the successful execution of a debugging command, a message is
printed that identifies your current position in the program or subprogram.
This message has the form:

COlllllland AT LINE n [,nahle]

command is the last executed debugging command, i.e., BREAK, STEP,
TRACE, etc.

n is your current line number position in the program or subpro
gram.

name is the name of the currently executing subprogram. Note that
this name does not appear if you are currently executing the
main program.

After this message is printed, the # prompt is reissued.

To terminate the debugging process, type EXIT (see Section 1.2.16). This
command terminates the debugger and returns you to operating system com
mand level.

1.3.1.1 BREAK and UNBREAK Commands - You type the BREAK command
in response to a debugging aid prompt as follows:

BREAK arS

where arg is a command argument that causes a halt at a specified point in a
program or subprogram compiled with the /DEBUG switch. The halts that

BASIC- PLUS-2 1-19

are set by a BREAK command argument are called breakpoints and their
specification takes one of the following forms:

BREAK a command with no argument sets a breakpoint at each
program line number. Execution halts at each line number
and the # prompt is reissued.

BREAK n where n is a line number. Execution halts and the debug
ging prompt is issued whenever that line number is
encountered.

BREAK n; where n is a line number. The semicolon specifies that line
number n is a breakpoint only in the currently executing
program or subprogram.

BREAK n;name where n is a line number. The semicolon followed by a
module name (name) specifies that line number n is a
breakpoint only in the named program or subprogram.

You can specify a maximum of 10 breakpoints as arguments in the BREAK
command. When more than one argument is specified, they must be sepa
rated by a comma. For example:

BREAK 10, 300; 310;PROC, GO

This example causes execution to halt at the following points:

1. Line 10 whenever it is encountered in a /DEBUG enabled routine, regard-
less of whether it is the main program or a subprogram.

2. Line 300 in the currently executing module.

3. Line 310 in the module named PROC.

4. Line 60 whenever it is encountered.

If you specify more than 10 breakpoints, the excess are ignored and an error
message is printed:

?No rOOII!

To disable the breakpoints, use the UNBREAK command. This command
has the same general format as BREAK, that is:

UNBREAK a command with no arguments disables all break
points.

UNBREAK n disables the breakpoint set at line number n.

UNBREAK n; disables the breakpoint set at line number n in the
current program or subprogram.

UNBREAK n;name disables the breakpoint set at line number n in the
named module.

1-20 BASIC-PLUS-2

Note that, as in the BREAK command, you can specify a maximum of 10
breakpoints separated by commas in the UNBREAK command.

In addition to line number breakpoints, the BREAK command also allows you
to specify a halt on CALL statements, user-defined functions, and loops. The
BREAK arguments for these halts are CALL, DEF, and LOOP respectively,
and they set breakpoints as follows:

BREAK ON

CALL

DEF

LOOP

l ~~~Ll LOOP~
causes a halt in execution each time a CALL statement is exe
cuted to a subprogram that is compiled with the /DEBUG switch.
The break occurs immediately before the execution of the subpro
gram's first statement.

causes a halt in execution each time the program executes a user
defined function. The break occurs immediately before the execu
tion of the function, not at the declaration of the DEF statement.

causes a halt in execution each time a FOR, WHILE, or UNTIL
statement or modifier is encountered. Breaks occur after the loop
is initialized, immediately before execution of the loop body, and
after exit from the loop. For example, if you have a FOR loop that
is executed 10 times, you get 13 breaks.

Note that the BREAK ON command allows you to specify only one argument
and this command can be combined with other breaks. For example:

BREAK 45, ON CALL, 330;

This example causes execution to halt at the following points:

1. Line 45 whenever it is encountered in a /DEBUG enabled module, regard
less of whether it is the main program or a subprogram.

2. After a CALL to any subprogram compiled with the /DEBUG switch and
immediately before the execution of the subprogram's first statement.

3. Line 330 in the currently executing module.

1.3.1.2 STEP Command - The STEP command causes program execution to
proceed on a statement-by-statement basis. You type the command in re
sponse to the debugger prompt as follows:

STEP n

STEP a command with no arguments causes execution of the next state
ment in the current program or subprogram.

n specifies the number of statements to be executed.

As with other debugging commands, the STEP command has effect only on
programs or subprograms that are compiled with the /DEBUG switch. There-

BASIC- PLUS-2 1-21

fore, the statement executed by the STEP command is the first statement
encountered in a /DEBUG enabled module. Note that typing a carriage return
is equivalent to typing STEP 1.

The optional argument, n, must be a positive integer in the range of 1 to
32767.

1.3.1.3 PRINT and LET Commands - The PRINT and LET commands allow
you to examine and change the contents of variables in programs and subpro
grams that are compiled with the /DEBUG switch.

The PRINT command has the form:

PRINT Ilar

where var is the name of the variable whose content you wish to examine.
When this command is executed, the current content of the variable is print
ed. Note that you can specify only one variable as an argument in the PRINT
commands.

The LET command has the form:

LET l.Jar= l.Jalue

where var is the name of the variable whose content you wish to change. The
maximum length of a LET is 72 characters. The PRINT and LET debugging
commands allow constants or variables as arguments, however, they do not
allow expressions. The following are examples of legal LET commands:

LET AS(! ,JI)= BS(QI,Z) ~
LET II = A (II , II) ~

1.3.1.4 TRACE and UNTRACE Commands - The TRACE command allows
you to track the execution of a program or subprogram that is compiled with
the /DEBUG switch. You can examine the path of execution by means of line
numbers. You type the command in response to the debugger prompt as
follows:

TRACE

TRACE prints the line-number and module-name of each line as it is
executed. This command does not accept an argument.

You must enter a CONTINUE command to initialize the TRACE. It is advis
able that you enter a break at some point in your program; otherwise, it will
TRACE to the end of the program and EXIT. To disable the TRACE com
mand, type UNTRACE in response to the # prompt.

1.3.1.5 ERR Command - The ERR command allows you to display the error
number of the last trapped error. Type the command in response to the
debugger prompt as shown:

1-22 BASIC- PLUS-2

1* ERR

ERR is the command, without arguments, that returns the number of
the last error in the format:

ERR = nn

where nn is the decimal error number.

Refer to Appendix C for a list of errors and their numbers.

1.3.1.6 ERL Command - The ERL command allows you to display the line
number of the last trapped error. Type the command in response to the
debugger prompt as shown:

1* ERL

ERL is the command, without arguments, that displays the line
number of the last error in the format:

ERL = nn

where nn is the line number containing the error.

1.3.1.7 ERN$ Command - The ERN$ command allows you to display the
name of the module that contains the last trapped error. Note that ERN$ does
not return a value unless an error has occurred. Type the command in re
sponse to the debugger prompt as shown:

1* ERN$

ERN$ is the command name, without arguments, that returns the
name of module containing the last trapped error, in the for
mat:

ERN$ = mod nam

where mod nam is the six character module name.

1.3.1.8 RECOUNT Command - The RECOUNT (REC) command allows you
to display the number of characters that are provided for the preceding input
operation. Type the command in response to the debugger prompt as shown:

1* RECOUNT

RECOUNT is the command, without arguments, that returns the number of
characters returned by the last input statement in the format:

RECOUNT = nn

where nn is the number of characters, including terminators,
from the last input statement.

BASIC- PLUS- 2 1-23

1.3.1.9 STATUS Command - The STATUS (STA) command allows you to
display the status word containing characteristics of the last OPENed file.
Type the command in response to the debugger prompt as shown:

1* STATUS

STATUS is the command, without arguments, that returns a word con
taining the last opened file's characteristics in the format:

STATUS = nn

where nn is an additive form of the following:

1 - record-oriented device

2 - carriage-control device

4 - terminal

8 - multiple-directory device (disk)

16 - single-directory device

32 - sequential- and block-oriented device (magnetic tape)

1.4 BASIC-PLUS-2 Programs

A BASIC-PLUS-2 source program is composed of numbered lines that con
tain BASIC language elements as follows:

line-1Hllllber < tab> text (fl@

where the symbol ffim represents the RETURN key that generates a carriage
return/line feed terminator. In addition to a carriage return/line feed combi
nation, BASIC-PLUS-2 accepts an escape «(lli) key) as a line terminator.

A BASIC- PLUS-2line number must be a positive number in the range of 1 to
32767. If you type a line number that is outside the legal range, the number is
ignored and BASIC prints an error ll).essage:

?Illesal line number

A line number with no text is considered to be a line deletion (see Section 1.3).
Text with no line number (except for legal commands and continuation lines)
is ignored and BASIC prints an error message:

?What?

The BASIC Compiler checks each source program line for correct syntax,
returns a message for errors, and saves the line even if errors are found. The
lines are saved in ascending numeric order and are executed in the same
order.

BASIC-PLUS-2 programs do not require an END statement.

1-24 BASIC-PLUS-2

1.4.1 Source Lines

BASIC source lines can contain multiple statements on a single line. Howev
er, you must separate multiple statements with a backslash (\). For example:

10 LET A=5\5=7\C=9

BASIC source lines can also be continued over more than one line. You signify
continuation by typing the character "&" (ampersand) and a line terminator.
The following is a valid continued line:

10
\

LET A=5\5=7
C=A+5

&:

Because the ampersand signifies a continued line to the compiler, you cannot
use this character as the last non-blank character of a non-continued line.

You can place comments in BASIC source lines by using an exclamation point
separator (!). Comments in a line are printed when the program is listed, but
are ignored when the program executes. You can place a comment at any
point on the line as long as it is separated from any other element of the line
by the exclamation point separator (!).

Consider the following:

5 !THIS IS A LEGAL COMMENT
10 LET A=10 ISO IS THIS! \!LET 5=5
20 LET A=10 \5=5 !ANO THIS

Note that a comment separator cannot take the place of a statement separa
tor. That is, backslashes are always required on multi-statement lines. Also,
comments cannot be continued with an ampersand; each program line must
begin comments with an exclamation point. You can, however, include the
comment in a REM statement which, as with any statement, can be contin
ued.

BASIC accepts any character in text as long as it is part of the ASCII
character set. A table of the ASCII characters appears in Appendix D. Null
characters are ignored as meaningless; however, non-printing characters
(space, tab, etc.) are accepted in literal string constants. A warning message
is issued for non-printing characters that appear outside of string literals.
Also, the compiler treats lower-case alphabetics in line text as upper case,
but lower-case alphabetics in literal strings remain lower case.

BASIC accepts integers in the range of -32767 to +32767. The value of sub
script variables is in the range of 0 to +32767. Single precision (2-word)
floating-point values are rounded down to seven digits of accuracy and lie in
the range of .29 x lOA-38 to .17 x lOA39. Double precision (4- word) floating
point values are rounded down to 17 digits of accuracy and lie in the range of
.29 x lOA -38 to .17 x lOA 39. For more information on data representation, see
Appendix D.

BASIC-PLUS~2 1-25

1.4.2 Subprograms

BASIC-PLUS-2 allows you to write subprograms and insert them into OTS or
user libraries. These subprograms can be written in BASIC-PLUS-2 or in
MACRO assembly language. This section describes the subprogram calling
conventions and linkage. It also describes the creation of an assembly lan
guage subprogram; for information on writing BASIC- PLUS- 2 subprograms,
refer to the PDP-ll BASIC-PLUS-2 Language Reference Manual.

MACRO subprograms used with BASIC-PLUS-2 are subject to the following
restrictions:

1. MACRO subprograms cannot call BASIC-PLUS-2 subprograms.

2. Virtual arrays cannot be passed to MACRO subprograms.

3. MACRO subprograms that use RMS or FCS I/O cannot employ any LUN
or event flag used by the BASIC-PLUS-2 program, nor execute any opera
tion that alters the RMS dynamic space pool (i.e., $OPEN, $CONNECT,
$CLOSE, or $DISCONNECT).

4. MACRO subprograms cannot create or dynamically alter strings.

Note that if the MACRO subprogram requires a string, you must use
BASIC-PLUS-2 to create the string and define its size before the MACRO
subprogram uses it.

BASIC-PLUS-2 subprogram calls are subject to the following restrictions:

1. BASIC-PLUS-2 can call a BASIC-PLUS-2 subprogram with a CALL
statement. BASIC-PLUS-2 can call a MACRO subprogram with either a
CALL or CALL BY REF statement.

2. BASIC-PLUS-2 can call a MACRO subprogram that is also callable from
FORTRAN with a CALL BY REF statement.

3. BASIC-PLUS-2 cannot call a FORTRAN subprogram.

4. BASIC-PLUS-2 cannot be called by a MACRO or FORTRAN subpro
gram.

5. The maximum allowable number of arguments in a BASIC-PLUS-2 sub
program is eight.

6. BASIC- PLUS-2 can call system directives that are also callable from
FORTRAN.

1.4.2.1 Subprogram Linkage - BASIC-PLUS-2 programs call MACRO sub
programs with the following instruction:

JSR PC,rolJtine

where JSR is a Jump to Sub instruction and PC is the Program Counter.

The instruction used to return control from the subprogram to the calling
program is:

1-26 BASIC-PLUS-2

RTS PC

where RTS is the Return from Sub instruction.

Arguments are passed from BASIC-PLUS-2 programs to MACRO subpro
grams in the form of an argument list. When the MACRO subprogram starts,
register 5 (R5) contains the address of an argument list as shown in Figure
1-1.

Figure 1-1: Argument List Format

RG ,
UN DEFI NED I NUMBER OF ARG UMENTS

ADDRESS OF ARG UMENT 1
ADDRESS OF ARG UMENT 2

•
•
•

ADDRESS OF ARGUMENT n

1.4.2.2 Subprogram Register Usage - A MACRO subprogram that is called
by a BASIC-PLUS-2 program does not need to preserve any registers. However,
register 6 (SP) must point to the same location on entry to, and exit from,
the subprogram. That is, each "push" onto the stack must be matched by a
"pop" from the stack before the subprogram returns control to the
BASIC-PLUS-2 program.

1.4.2.3 Subprogram Calls - Arguments can be passed to a MACRO subpro
gram by means of either a CALL or CALL BY REF statement. These state
ments are used to pass integer, real (single precision), and double (double
precision) values, strings and arrays. The methods used to pass integer, real,
and double value arguments are the same for CALL and CALL BY REF.
However, these two statements differ in their method for passing string and
array arguments. Refer to Appendix D for a description of data formats.

In terms of the content of the argument list in R5, the passing mechanism is
as follows:

Integer The R5 argument list contains the address of the integer value.

Real The R5 argument list contains the address of the high-order word
for the single precision value.

Double The R5 argument list contains the address of the high-order word
for the double precision value.

String When CALL is used, the R5 argument list contains the address of a
2-word string header. The first word is the address of the first byte
in the string. The second word is the length of the string in bytes.

When CALL BY REF is used, the R5 argument list contains the
address of the first byte in the string; the string length is not avail
able .

BASIC-PLUS-2 1-27

Array When CALL is used, the R5 argument list contains the address of
the second word in the array header. The array header contains
subscript information and the address of the first byte of the array.

When CALL BY REF is used, the R5 argument list contains the
address of the first element in the array; the array header is not
available. Note that if an element of an array is specififed, the value
of that element is stored in a temporary variable. The address of the
temporary variable is passed when the statement is executed.

Consider Figures 1-2 and 1-3. These figures are examples of two MACRO
subprograms and illustrate the methods used to pass arguments to sub
programs. Figure 1-2 is an example of the use of the CALL statement.
Figure 1-3 is an example of the use of the CALL BY REF statement.

Figure 1-2: CALL Statement

• TITLE I NSRT

CALL INSRT(A$,B$,CI)

INPUTS: ARG1
ARG2
ARG3

ADDRESS OF A$ STRING HEADER
ADDRESS OF B$ STRING HEADER
ADDRESS OF C'X.

OUTPUTS:

EFFECTS:

I NSRT: :
CMPB
BNE
MOl)
MOl.)
MOl.)
BLE
ADD
CMP
BGT
MOl.)
MOl.)
DEC
ADD
MOl)
BEQ
MOl)

1 $: MOI)B
SOB
CLR
RETURN

ERRE){ : MOl)
RETURN
.END

1-28 BASIC-PLUS-2

C'X. o IF OPERATION WAS SUCCESSFUL
-1 IF OPERATION FAILED
UNCHANGED FROM CALL IF WRONG NUMBER OF ARGUMENTS
PASSED

THIS SUBPROGRAM OVERWRITES THE SUBSTRING B$ INTO THE
STRING A$ BEGINNING AT CHARACTER POSITION CI.
RETURNS 0 IN CI IF THE OPERATION WAS SUCCESSFUL.
RETURNS -1 IN CI IF THE OPERATION FAILED.

#3. ,@RS NUMBER OF ARGUMENTS
ERRD(
2(RS) ,RO RO = ADDRESS OF A$ STRING HEADER
lI(RS) ,R1 R1 = ADDRESS OF B$ STRING HEADER
@G(RS) ,R2 R2 = C'X.
ERRE){ BR TO ERROR IF C/.. <= 0
2(R1),R2 R2 = C/.. PLUS LENGTH OF B$
R2,2(RO) WILL B$ FIT INTO A$?
ERRD(BR TO ERROR IF B$ WON'T FIT INTO A$
@RO,RO RO ADDRESS OF A$
@G(RS),R2 R2 C/..
R2 R2 C'X. MINUS ONE
R2,RO RO ADDRESS IF A$ PLUS C/..
2(R1) ,R2 R2 LENGTH OF B$
ERRE){ BR TO ERROR IF LENGTH OF B$ 0
@R 1 ,R 1 R1 = ADDRESS OF B$
(R1)+ '(RO)+ INSERT A CHARACTER INTO A$ FROM B$
R2 ,1 $
@G(RS) SET CI TO 0 (OPERATION SUCCESSFUL)

#-l,@G(RS) SET C/.. TO -1 (OPERATION FAILED)

Figure 1-3: CALL BY REF Statement

• TITLE I NSRT

INPUTS:

OUTPUTS:

EFFECTS:

INSRT: :
CMPB
BNE
MOl)
BLE
ADD
CMP
BGT
MOl,'
MOl,'
DEC
ADD
MOl)
BEQ
MOl)

1$: MOI)B
SOB
CLR
RETURN

ERRD:: MOl)
RETURN
.END

CALL INSRT BY REF(A$.LEN(A$) .B$.LEN(B$) .C'X,)

ARG1
ARG2
ARG3
ARGli

ADDRESS OF A$
ADDRESS OF LENGTH OF A$
ADDRESS OF B$
ADDRESS OF LENGTH OF B$

ARGS ADDRESS OF CX

C/., n IF OPERATION WAS SUCCESSFUL
- 1 IF OPERATION FAILED
UNCHANGED FROM CALL IF WRONG NUMBER DF ARGUMENTS
PASSED

THIS SUBPROGRAM OVERWRITES THE SUBSTRING B$ INTO THE
STRING A$ BEGINNING AT CHARACTER POSITION CX.
RETURNS 0 IN CX IF THE OPERATION WAS SUCCESSFUL.
RETURNS -1 IN CX IF THE OPERATION FAILED.

#S •• RS NUMBER OF ARGUMENTS
ERRE:-:
@12(RS) .R2 R2 = C'X,
ERRE:-: BR TO ERROR IF C'X, <= 0
@10(RS) .R2 RZ = C/., PLUS LENGTH DF B$
R2.@1I(RS) WILL B$ FIT INTO A$?
ERRE:-: BR TO ERROR I F B$ WON'T FIT INTO A$
2(RS).RO RO ADDRESS OF A$
@12(RS) .RZ R2 CX
R2 R2 C/., MINUS ONE
R2.RO RO ADDRESS IF A$ PLUS C/.,
@10(RS) .R2 R2 LENGTH OF B$
ERRE:-: BR TO ERROR IF LENGTH OF B$ 0
G(RS) .R1 R1 = ADDRESS OF B$
(R1)+'(RO)+ INSERT A CHARACTER INTO A$ FROM B$
R2 .1 $
@lZ(RS) SET C/., TO I) (OPERATION SUCCESSFUL)

- 1.@12(RS) SET C/., TD -1 (OPERATION FAILED)

BASIC-PLUS-2 1- 29

1.4.3 BASIC-PLUS-2 Sample Program

The following example summarizes the building of BASIC source programs.

IDENTIFY I!@
BASIC-PLUS-2 VOl.50
Basic2

NEW I!§l
NEW FILE NAME-- SORT02 ®ill

Basic2

10
20
\

\

DIM SORT (lOO)
INPUT "NUMBER OF ENTRIES"; CNT t
IF CNTX <2X OR CNTI > 100X

THEN PRINT "LIMITS - 2 TO 100 "
GO TO 20

ELSE INPUT SORT (IX) FOR II=lX

! MAX NUMBER OF ELEMENTS ®m
!GET NUMBER OF ELEMENTS
!CHECK CORRECT NUMBER
! WRONG - I NFORM USER
!TRY AGAIN

T 0 C N T'X (iiti)
30 REM lI.(!jg)

BUB B L E S 0 R T Pt(liflJ
Pt(liflJ

CHECK EACH PAIR OF ELEMENTS Pt(liflJ
Pt(liflJ

IF IN WRONG OROER, SWITCH THEM Pt(liflJ
SORT.FLG IS SET TO FALSE (0) WHEN A SWITCH IS MADE Pt~
PASS OVER THE ENTIRE LIST UNTIL NO SWITCH IS MADE Pt(liflJ

Pt(liflJ
31 SORT.FLGX=1X !SET TO TRUE I NITIALL Y Pt®rn
\ WHILE SORT.FLGX<> OI !LOOP UNTIL SORT.FLG IS FALSE Pt®ill
\ SORT.FLGX=OX !SET TO FALSE BEFORE PASS Pt®rn
\ FOR IX=Q% TO CNTX-1X !LOOP THROUGH ENTIRE LIST Pt®rn
\ IF SORT (IX)< =SORT (I t +1t) !CHECK A PAIR Pt~

THEN SORT.FLGX= - 1t ! IF WRONG - FOR CE ANOTHE R PASS Pt®rn
\ T=SORT (IX) ! SWAP ELEMENTS Pt(liflJ
\ SORT (It) =SORT (IX+ a) Pt(liflJ
\ SORT(It+1t)= T Pt®rn
40 NEXT It ®rn
50 NEXT l!@
60 PRINT SO'RT(IX) , FOR U=lX TO CNTt ! PRINT ELEMENTS IN ORDER ®ill
32767 END l!@

SA VE l!@

Basic2

COMPILE l!@

Basic2

BUILD I!§l

Basic2

EX IT fi@
> TKB @SORT02 l!@

1-30 BASIC-PLUS-2

:> RUN SORT02 Qi@

NUMBER OF ENTRIES? 6 Qi@
? 0 @)
? -5.5 !iirn
? 10 !iirn
? 20 (iiflJ
? -5.6 (iiflJ
? - 100 (iiflJ

20 10 0 -5,5 -5.8 -100

The program shown above accepts up to 100 numbers as input, sorts them by
size, and prints them in descending order. The procedure used to enter, com
pile, build, and run the program is detailed below. The explanations are keyed
to the commands.

Command Explanation

IDE N T I F Y The IDENTIFY command (see Section 1.2.1)
prints a BASIC-PLUS-2 header.

NEW The NEW command (see Section 1.2.2) clears
NEW F I LEN A M E - - 5 D R T 02 a space in the temporary buffer for creation of

the source program. When you type NEW,
any source code in the buffer is lost. When you
type SORT02 in reply to the prompt (NEW
FILE NAME--) , you assign the name
SORT02 to your program.

Bas i c 2 Basic2 is printed by BASIC to indicate that
the compiler is prepared to accept input. It
also indicates that the previous command
(NEW) has been successfully executed.

5 At,) E SA VE (see Section 1.2.6) copies and preserves
the program on the system default device. The
program now resides on the system as a source
program (file type .B2S) named SORT02.

CDM PILE The COMPILE command (see Section 1.2.7)
translates the program into an object module.
The default file type, .OBJ, is appended to the
program name.

BUILD The BUILD command (see Section 1.2.8) cre
ates a command file composed of the specified
object module as well as the command input
required by the task builder.

BASIC-PLUS-2 1-31

D(I T

TKB

RUN

1-32 BASIC-PLUS-2

The EXIT command (see Section 1.2.16) ter
minates access to BASIC-PLUS-2 and re
turns you to operating system command level.
To create an executable task, invoke the sys
tem task builder and specify @SORT02 on the
command line.

The TKB command invokes the Task Builder
system program. Specifying @SORT02 pro
vides the Task Builder with the indirect com
mand file it uses to create an executable task.

The RUN command causes the program to be
executed. As part of the execution, you are
prompted for "Number of entries II and by a "?"
for each number you enter.

Chapter 2
Files

You can perform efficient input/output operations on large amounts of related
data by collecting that data into files. Record Management Services (RMS)
can increase this efficiency by allowing you to organize a file into manageable
units of data called records. For example, a company may wish to document
an inventory of its capital equipment. A file that contains data on all equip
ment is created for this purpose. This data is organized into individually
accessible records, each of which describes a particular item.

BASIC-PLUS-2 allows you to create block I/O or record I/O files. RMS is the
vehicle for creating and accessing record files. This chapter describes block
I/O, the use of RMS, the file organizations available under RMS, and the
operations allowed on each type of organization .

For additional information on the BASIC- PLUS-2 syntax used to create and
manipulate files, refer to the PDP-ll BASIC-PLUS-2 Language Reference
Manual.

NOTE:

This chapter is a minimal discussion of file handling using
BASIC-PLUS-2, designed to enable you to get an application
running. If you want more information, refer to appropriate
documentation.

2.1 OPEN Statements

The manner in which data are stored in a file is determined by the organiza
tion that you specify in the OPEN statement. The organization, in turn,
determines the operations and access methods that you can use on the file.

2-1

2-2 Files

BASIC allows you to choose one of four types of organizations when creating
files; virtual , sequential, relative, or indexed. When you create a file, the
organization must be the first file attribute specified in the OPEN statement
as follows:

OPEN filename IJ{ FOR OUTPUT}U AS FILE [#)num-exp
~ FOR INPUT U

,[ORGANIZATION) VIRTUAL
UNDEFINED
SEQUENTIAL
RELATIVE
INDEXED

[,attributes)

filename
is a file specification.

FOR OUTPUT
indicates the creation of a new file .

FOR INPUT
indicates accessing an existing file.

AS FILE #num-exp
associates the file with a channel number in the range of 1 to 12.

,ORGANIZATION
is an optional keyword preceded by a comma and followed by a required
keyword that represents one of the five types of organization.

, attributes
are file characteristics that you define in the OPEN statement. Attributes
differ for each file organization and their specification is described in the
appropriate section.

The organization you specify when the file is created is permanently assigned
to the file. When any existing file is opened for processing, you must respecify
the organization. An organization specification that does not match the initial
file assignment results in an error (i.e., ?File attributes not
(Ilatched).

If you fail to include the appropriate BUILD command switches (/SEQ, /IND,
/REL, and/or NIR), you will receive an error message at file open time:

?Illesal operation at line n

The organization you choose depends on the access methods and operations
that you wish to perform on the file. A comparison of these organizations may
be helpful in making this choice.

Virtual files can contain either user-defined blocks or one or more virtual
arrays. This file organization permits block I/O operations, but it does not
allow record operations. Virtual files are allowed only on random-access
devices.

Sequential files contain records that are stored in series. You cannot access
one record without successfully accessing all preceding records. Sequential
files are allowed on disk, ANSI-formatted magnetic tape, or unit record de
vices such as line printers and terminals. If you do not specify a file organiza
tion in an OPEN statement, the default organization is terminal-format
which is a subset of sequential files.

Relative files contain records that are stored in numbered locations of a fixed
size. You can access a record sequentially or by number . Relative files are
allowed only on disk media.

Indexed files contain records that are associated with individual key values
within each record. You can access a record sequentially or by reference to a
key. Indexed files are allowed only on disk media on a system with RMS- llK
installed.

Files opened as undefined must first exist with a defined organization. The
undefined organization allows you to open a file with READ access only to
ascertain a file's organization so that you can subsequently re-open the file
using the correct attributes.

2.2 Special Case Files

2.2.1 Virtual Files

The virtual file organization specifies a block-structured file. Input and out
put operations are performed by means of RMS block I/O (see Section 2.5.1).
Virtual files can contain data organized as elements in an array which is fully
compatible with BASIC-PLUS virtual arrays. When the file contains virtual
arrays, it must be dimensioned with a DIM # statement. This statement is
described in the PDP-ll BASIC-PLUS-2 Language Reference Manual .

If your program accesses virtual files, you must use the BUILD/VIR command
to include the required supporting code.

The OPEN statement used to specify a virtual file allows you to assign the
following attributes:

,[ORGANIZATION) VIRTUAL

C
ACCESS DREAD }]

MODIFY
WRITE

[

ALLOW u~~~ }]
MODIFY
WRITE

Files 2-3

2-4 Files

[,MAP <map-name»

[,FILESIZE <num-exp»

[,CONTIGUOUS]

[,RECORDSIZE <num-exp >]

[,TEMPORARY]

,ORGANIZATION VIRTUAL
specifies the creation or access of a virtual file and allows the use of block
I/O. The ORGANIZATION keyword is optional.

,ACCESS
specifies the operations that you will perform on the file. MODIFY is the
default. Refer to Section 2.3.4.

,ALLOW
specifies the operations that you will permit other programs to perform on
the file. READ is the default. Refer to Section 2.3.4.

,MAP
references a MAP statement and can be used to define record size (see
Section 2.7). Note that MAP must not be used with a file that contains
arrays .

,FILESIZE
preallocates space for a file whose length is defined in terms of a number of
disk blocks. The default is pack dependent.

,CONTIGUOUS
specifies that the contents of the file are contiguous on disk devices. The
default is non-contiguous.

,RECORDSIZE
defines the maximum size of data biocks in the file . The default size is 512
bytes; the maximum is 65535 bytes. Refer to Section 2.7.

,TEMPORARY
creates a temporary file that is deleted when you close the file. The default
is non-temporary.

When you specify a RECORDSIZE that exceeds the default minimum of 512
bytes for a file that contains virtual arrays, the specification should be a
multiple of 518. During I/O operations on virtual arrays, blocks are read in by
the program .as required. If sufficient record size is not available to contain the
accessed blocks, space is obtained by writing the first block that was read .

Note that the virtual organization allows block I/O file operations, but it
disallows RMS record operations.

You can specify file attributes in the OPEN statement in any order. Consider
the following example:
130 OPEN "I.lATSTLI.TMP" FOR OUTPUT AS FILE #2 !'.,

,ORGANI ZATION VIRTUAL,ACCESS MODIFY &
,ALLOW NONE

This OPEN statement creates a new file named VATST4.TMP. The file is
assigned to channel 2 and is defined as a virtual file. The OPEN statement
also sets the ACCESS status to MODIFY and the ALLOW status to NONE.
Note that ALLOW NONE is the equivalent of ALLOW READ (see Section
2.2.4).

2.2.2 Organization Undefined

The undefined organization lets you open a file for input only. You do not
have to know all of the file's attributes beforehand. The use of the ORGANI
ZATION UNDEFINED statement is recommended for advanced pro
grammers only. It allows you to write general purpose programs that access
files whose attributes are not known in advance. You can also use this OPEN
statement to discern the attributes of a file so that you can subsequently re
OPEN it by specifying the correct file descriptors. Note that you cannot
create a file with ORGANIZATION UNDEFINED.

The OPEN statement used to specify an undefined file access allows you to
specify the following attributes:

OPEN filename FOR INPUT AS FILE [#]num-exp

,[ORGANIZATION] UNDEFINED

[,ACCESS READ]

[

,ALLOW {~~~~ }~
MODIFY
WRITE

[,MAP <map-name>]

[,RECORDSIZE <num-exp>]

,ORGANIZATION UNDEFINED
specifies the access of the file specified in the OPEN statement for input
only. The ORGANIZATION keyword is optional.

,ACCESS
specifies the operations that the current user will perform on the file.
READ is the only permissable access method.

,ALLOW
specifies the operations that the current user will permit other programs to
perform on the file. READ is the default.

,MAP
references a MAP statement and can be used to define record size. Note
that MAP cannot be used with a file that contains arrays.

,RECORDSIZE
defines the maximum size of data blocks in the file. The default size is 512
bytes. Refer to Section 2.7.

Files 2-5

You can specify file attributes in the OPEN statement in any order . Consider
the following example:

1:30 OPEN "l.JATS T5.H1P" FOR INPUT AS FILE #3 (,
, ORG ANIZATION UND EF IN ED, ACCESS READ, ALLOW NON E &
.t·1AP t·1 AP3

Please note that when you use ORGANIZATION UNDEFINED, you must
include all possible organizational types accessed by the program, I.e. ,
BUILD/IND/REL/SEQ.

2.2.2.1 FSP$ Function - The function FSP$ returns the file organization data
for an opened file. This function is intended for use with files OPENed as
ORGANIZATION UNDEFINED. The syntax ofthe FSP$ function is as follows:

X$ =FSP$(channel-numberl

Consider the following example:

10 MAP (AI A$=32
20 MAP (AI A%=(151
30 OPEN "FIL . DAT" FOR INPUT AS FILE #1 (,

,ORGAN IZATION UNDEFINED, ACCESS READ
40 A$= FSP$(1·X.1
50 REM A%(O%I = FILE CHARACTERISTICS

FSP$ returns the following values:

• A%(O) returns file characteristics in the form:

High byte is the RMS Organization (ORG) field
Low byte is the RMS record format (RFM) field

• A%(l) returns the RMS maximum record (MRS) field.

• A %(2) and A %(3) return the RMS allocation quantity (ALQ) field.

• A%(4) and A%(5) return the RMS bucketsize (BKS) field for disk files or
the RMS blocksize (BLS) field for magnetic tape files.

• A %(6) returns the number of keys.

• A%(7) returns the RMS maximum record number (MRN) if the file is a
relative file.

• A%(8) and A%(9) return the current block/record number.

Refer to theIAS/RSX-llM RMS-ll MACRO Programmer's Reference Manual
for detailed descriptions of the RMS fields returned by FSP$.

2.3 Introduction to RMS

2-6 Files

Record Management Services (RMS) is a set of library routines. These
routines effect the transmission of data between files and BASIC programs.
Files are composed of records that act as the storage media for a related
collection of data.

RMS ensures that every record written into a file can be subsequently re
trieved and passed to a program. You determine the size and content of data
in the record, the organization of records in the file , and the method used to
access the records. You make these determinations by means of statements
written in the BASIC language, either through the attributes you specify for
new files in the OPEN statement or through the operations you perform on
existing files.

To maintain an efficient relationship between RMS and the programs you
write, you must have a general understanding of RMS files. This chapter
describes the components of RMS files. The chapter is divided into five parts,
as follows:

1. File organization - RMS files contain records that are organized in one of
three fashions: sequential, relative, or indexed. You select one of these
organizations and assign it to a file by means of the ORGANIZATION
clause in the OPEN statement.

2. Record access - Record access represents the methods you can use to store
and retrieve records. RMS provides two access methods: sequential and
random. The organization of the file and the syntax of the individual
record operation determine which of these is used.

3. Record format - RMS files can contain fixed-length, variable-length or
ASCII stream-format records.

4. Data structure - Data items are maintained in records, which are con
tained in storage structures called blocks and buckets. RMS provides you
with a means of controlling the size of these structures.

5. Record mapping - Mapping provides you with a means of directing the
assignment of data in the record. It also allows you to identify certain data
elements as access keys for records in indexed files.

Table 2-1 illustrates the record access methods and operation types allowed
on each file organization.

Table 2-1: Comparison of File Organizations

File Organizations

Access and Operations Sequential Relative Indexed

Sequential access y Y Y

Random access N y y
(by rec no .) (by key)

Record replacement Y Y Y

Record insertion Y Y Y
(at end of file only)

Record deletion N Y Y

The following subsections describe each file organization in detail.

Files 2-7

2-8 Files

2.3.1 Sequential Files

The sequential file organization is the default and specifies a file that can
contain records of varying lengths and can be stored on disk, ANSI-formatted
magnetic tape, or a unit record device.

If your program accesses sequential files, you must use the BUILD/SEQ com
mand to include the required supporting code.

The OPEN statement format used to create and access a sequential file allows
you to specify the following attributes:

,[ORGANIZATION] SEQUENTIAL[{FIXED jJ
VARIABLE
STREAM

,ACCESS READ
MODIFY
WRITE
SCRATCH
APPEND

[

ALLOW {~~~~ }]
MODIFY
WRITE

[,MAP <map-name>]

[,RECORDSIZE <num-exp >]

[,NOSPAN]

[,SPAN]

[,FILESIZE <num-exp >]

[,BLOCKSIZE <num-exp >]

[,CONTIGUOUS]

[,NOREWIND]

[,TEMPORARY]

,ORGANIZATION SEQUENTIAL
specifies the creation or access of a sequential file. The ORGANIZATION
keyword is optional.

FIXED
VARIABLE
STREAM

one of these three attributes is used to specify the format of records within
the file. FIXED indicates fixed -length records. VARIABLE is the default
and indicates variable-length records. STREAM indicates ASCII-stream

records and is only permitted on disk files. Files that perform terminal
input and output operations must be opened with ORGANIZATION
SEQUENTIAL STREAM. Rec'ords for these terminal-format files cannot
exceed 132 characters and include a carriage-return/line-feed combination
as a line terminator.

,ACCESS
specifies the operations that you will perform on the file. MODIFY is the
default. Refer to Section 2.3.4.

,ALLOW
specifies the operations that you will permit other programs to perform on
the file . READ is the default. Note that you cannot specify an ALLOW
attribute if the ACCESS designation is SCRATCH. Refer to Section 2.3.4.

,MAP
references a MAP statement that can be used to define record size. Refer to
Section 2.7.

,RECORDSIZE
defines the maximum size of records within the file. Note that you must
specify record size with either a MAP or RECORDSIZE specification in
the OPEN statement. The largest record size permitted is 65535 bytes.
Refer to Section 2.7.

,NOSPAN
,SPAN

SPAN is the default and allows records to cross block boundaries. Refer to
Section 2.6.1.

,FILESIZE
preallocates space for a file whose length is defined in terms of a number of
disk blocks. The default is determined by the extend option of the
MOUNT command.

,BLOCKSIZE
specifies the number of records contained in a block on magnetic tape . The
default is 512 bytes long. Refer to Section 2.6.1.

,CONTIGUOUS
specifies that the contents of the file are contiguous on disk devices. The
default is logically continguous.

,NOREWIND
overrides the default rewind action on magnetic tape. The default is to
rewind to the beginning of the tape on OPEN or CLOSE operations;
NOREWIND causes the pointer to remain at the end of the last accessed
tape position.

,TEMPORARY
creates a temporary file that is deleted when you close the file. Default is
non-temporary.

Files 2-9

2-10 Files

Note that you can specify file attributes in any order. Consider the following
example:

10 OPEN "Rt1SEQ1.FI>(" FOR OUTPUT AS FIL E #3 1'"
, ORGAN IZ ATION SEQUENTIAL VARI ABLE , ACC ESS &
t10DIF Y, t1AP t1AP1, NO S PA N

This OPEN statement creates a new file named RMSEQ1.FIX and assigns it
to channel 3. The organization is sequential, the record format is defined as
variable, and the ACCESS attribute is set to MODIFY (the ALLOW attribute
defaults to READ).

The OPEN statement also contains a map attribute that references a MAP
statement named MAPl. The MAP statement, which must appear in the
same program, defines the content of records in the file (see Section 2.7) . The
NOSPAN attribute overrides the SPAN default and prohibits records from
crossing block boundaries (see Section 2.6).

A sequentially organized file maintains a strict relationship among the records
on the file. The file is structured such that the location of any particular
record is fixed in relationship to the preceding and succeeding records. The
serial arrangement of the records is determined by the order in which they are
written and is permanent.

Because of this serial order, access to any record in the file begins with the
next record and continues with each succeeding one until the desired record is
reached. For example, to read the 12th record in the file, the BASIC program
first must open the file, then successfully read records 1 through 11, and
finally read 12. After reading record 12, the program can read all succeeding
records (in serial order) but it cannot read a preceding record without return
ing to the beginning of the file.

Sequential files allow the following operations:

GET (read)
PUT (write)
UPDATE
FIND
SCRATCH
RESTORE

Sequential organization Imposes the following restrictions on these file
operations:

1. GET and FIND operations can be performed only in sequential order.

2. PUT operations can be performed only at the end of the file. Note that to
open an existing sequential file on disk and add records at the end of the
file, you must specify ACCESS APPEND in the OPEN statement.

3. UPDATE operations are only allowed on sequential files that reside on
disk media. Also, UPDATE requires that the target and updated records
be the same length and that the target record be successfully located by a
GET or FIND before the UPDATE is made.

4. SCRATCH operations erase the contents of the file beginning at the
program's current record position up to the end of the file. The current
record position becomes the end of the file. Exclusive file access is required
for SCRATCH operations. If you want to erase an entire line, you must
precede the SCRATCH operation with a RESTORE operation followed by
a GET or FIND operation.

5. RESTORE operations set the program at the beginning of the file but do
not erase the file's content.

2.3.2 Relative Files

When you specify relative file organization, RMS builds a file in which re
cords are assigned to numbered positions. Access to these records is based on
the numbered position that they occupy in the file.

If your program accesses relative files, you must use the BUILD/REL com
mand to include the required supporting code.

The OPEN statement used to create or access a relative file allows you to
specify the following attributes:

,[ORGANIZATION) RELATIVE ftFIXED }ll
[J VARIABLE !J

[
ACCESS J ~~~F~]

L~RITE

[

ALLOW {~~~ }]
MODIFY
WRITE

[,MAP <map-name»

[,RECORDSIZE <num-exp»

[,CONTIGUOUS)

[,BUCKETSIZE <num-exp»

[,FILESIZE <num-exp»

[,TEMPORARY)

[,BUFFER <num-exp»

[,CONNECT <num-exp»

,ORGANIZATION RELATIVE
specifies the creation or access of a relative file. The ORGANIZATION
keyword is optional.

Files 2-11

2-12 Files

FIXED
VARIABLE

specifies the format of records within the file. FIXED indicates fixed
length records. VARIABLE is the default and indicates variable-length
records. Refer to Section 2.5.

,ACCESS
specifies the operations that you will perform on the file. MODIFY is the
default. Refer to Section 2.3.4.

,ALLOW
specifies the operations that you will permit other programs to perform on
the file. READ is the default. Refer to Section 2.2.4.

,MAP
references a MAP statement and can be used to define record size. Refer to
Section 2.6.

,RECORDSIZE
defines the maximum size of records in the file. Note that you must specify
a record size with either the MAP or RECORDSIZE attribute in the OPEN
statement. Refer to Section 2.6.

,CONTIGUOUS
specifies that the contents of the file are contiguous on disk devices. The
default is non-contiguous.

,BUCKETSIZE
specifies the size of a bucket in terms of the number of records. The default
is 32. Refer to Section 2.6.2.

,FILESIZE
allocates space for a file whose length is defined in terms of a number of
disk blocks. The default is pack dependent.

,TEMPORARY
creates a temporary file that is deleted when you. close the file. The default
is non-temporary.

,BUFFER
specifies the number of buckets maintained in memory. The default is 1.

,CONNECT
performs multi-stream connect to the base file that is open on the channel
specified. Refer to the RMS-ll User 's Guide.

Consider the following example:

10 OPEN OIRMS!l.J)<.FO(OI FOR OUTPUT AS FILE #3 r"
,ORGANIZATION RELATIVE FIXED, ACCESS &
MODIFY, ALLOW NONE, MAP MAPl

This OPEN statement creates a new file named RMSIVX.FIX and assigns it
to channel 3. The organization is relative, the record format is fixed, the

ACCESS attribute is set to MODIFY, and ALLOW is NONE. Note that a
NONE specification in the ALLOW attribute is equivalent to READ (see
Section 2.3.4). The OPEN statement also contains a map attribute that refer
ences a MAP statement named MAP1. The MAP statement, which must
appear in the same program, defines the content of records in the file (see
Section 2.7). Because the file contains fixed-length records , the MAP attrib
ute defines the size of each record in the file .

RMS structures a relative file into a series of record positions. All positions are
the same size and each can contain a single record. RMS considers the first
record position in the file to be number one and sequentially numbers each
succeeding position. When you write or read records on the file , you can
designate a number for the desired record. This number represents the
record's position relative to the beginning of the file. The record/position
number is unique in the file and can therefore be used to specify location (in a
PUT operation) or a record (in a GET operation). For example, record #1
occupies file position #1, record #2 occupies position #2, etc. A record number
is not required for sequential GET, FIND, and PUT operations.

Unlike sequential files , relative files are allowed only on disk devices. However,
relative files do have advantages over sequential files.

First, though both organizations arrange records in serial order, BASIC pro
grams can access relative file records by means of a known position number.
This allows you to access records randomly (i.e., GET #2, RECORD 5S'i'; GET
#2, RECORD 20%; GET #2, RECORD 13%, etc.) in addition to proceeding in
strict serial order.

Second, each relative file record position does not have to contain a record.
Each position contains the same amount of space but this space can be empty.
Also, empty record positions can appear anywhere in the file . Note that
sequential GET and FIND operations that do not specify a record number
locate the next occupied position and bypass empty positions.

BASIC allows the following operations on relative files:

GET (read)
PUT (write)
UPDATE
DELETE
FIND
RESTORE

The relative file organization Imposes the following restrictions on record
operations:

1. GET or PUT operations can use a specified number to select a record or
position in the file . This selection method is similar to BASIC's use of a
subscript to select an item from an array. Record/position numbers allow
you to perform GET and PUT operations in random order and, therefore,
access a record at any point in the file. In addition, new records can be
inserted into the empty positions of existing files. Note that a PUT opera
tion can be performed only on an empty position or at the end ofthe file.

Files 2-13

2-14 Files

2. FIND operations can also use a specified number to locate a record or
position in the file. UPDATE and DELETE operations require a previ
ously successful GET or FIND.

3. DELETE and UPDATE operations do not allow a record number specifi
cation. Because a successful GET or FIND must be done before a record is
erased (DELETE) or replaced (UPDATE), the record number is already
known. Note that this also restricts DELETE and UPDATE operations to
existing records .

4. RESTORE operations set the program at the beginning of the file without
disturbing the data. Note that a SCRATCH operation is not allowed on
relative files.

2.3.3 Indexed Files

Indexed files require the presence of RMS-llK on the system.

If your program accesses indexed files, you must use the BUILD/IND com
mand to include the required supporting code.

The OPEN statement used to create or access an indexed file allows you to
specify the following attributes:

,[ORGANIZATION] INDEXED ~{FIXED }]
~ VARIABLE

[

ACCESS DREAD }]
WRITE
MODIFY

[

ALLOW {~~~ }]
WRITE
MODIFY

[,MAP <map-name>]

[,RECORDSIZE <num-exp>]

[,CONTIGUOUS]

[,BUCKETSIZE <num-exp>]

[,FILESIZE <num-exp>]

[,CONNECT <num-exp>]

[,BUFFER <num-exp>]

[,TEMPORARY]

,PRIMARY[KEY] <name> [DUPLICATES]

[,ALTERNATE[KEY] <name>

[NODUPLICATES NOCHANGES]

[DUPLICATES CHANGES]

,ORGANIZATION INDEXED
specifies the creation or access of an indexed file. The ORGANIZATION
keyword is optional.

FIXED
VARIABLE

one of these two attributes is used to specify the format of records within
the file. FIXED indicates fixed-length records. VARIABLE is the default
and indicates variable-length records. Refer to Section 2.5.

,ACCESS
specifies the operations you will perform on the file. MODIFY IS the
default. Refer to Section 2.3.4.

,ALLOW
specifies the operations that you will permit other programs to perform on
the file. READ is the default. Refer to Section 2.3.4.

,MAP
references a MAP statement and must be used to define record key posi
tions. Refer to Section 2.7.

,RECORDSIZE
defines the maximum size of records in the file. Note that you must specify
a record size with either a MAP or RECORDSIZE specification in the
OPEN statement. Refer to Section 2.7. The largest record size allowed is
65565 bytes.

,CONTIGUOUS
specifies that the contents of the file are contiguous on disk devices. The
default is logically contiguous.

,BUCKETSIZE
specifies the size of a bucket in terms of the number of records. Refer to
Section 2.6.2. The default is 1 record.

,FILESIZE
preallocates space for a file whose length is defined in terms of a number of
disk blocks. The default is determined by the extend option of the
MOUNT command.

,CONNECT
performs multi-stream connect to the base file that is open on the channel
specified. Refer to the RMS documentation.

,BUFFER
specifies the number of buckets maintained in memory. The default is 1.

,TEMPORARY
creates a temporary file that is deleted when you close the file. The default
is non-temporary.

Files 2-15

2-16 Files

,PRIMARY
defines the primary key for a particular record. This attribute is required .
Refer to Section 2.2.3.1.

,ALTERNATE
allows you to define up to 254 alternate keys. This attribute is optional.
Refer to Section 2.2.3.1.

NODUPLICATES
DUPLICATES

specifies the use of a duplicate key in the file. NODUPLICATES is the
default. Refer to Section 2.2.3.1.

NOCHANGES
CHANGES

specifies the use of a key field change in the file. NOCHANGES is the
default. Refer to Section 2.2.3.1.

Consider the following example:

5 MA P (MAP1) NAME$ =30 %,ID %, HRWAGE,FILL , F I LL %, FILL $
10 OPEN "RM S I)-(I.J.I)AR" FOR OUTPUT AS FILE #3 1'\,

, ORGA NIZATION INDE XED VARIABLE, ACCESS &
MODI FY , ALLOW NONE, MAP MAPl &
,PRIMARY NAME$

This OPEN statement (line 10) creates a new file named RMSIXV.VAR and
assigns it to channel 3. The organization is indexed, the record format is
variable, the ACCESS attribute is set to MODIFY, and ALLOW is NONE.
Note that a NONE specification in the ALLOW attribute is equivalent to
READ (see Section 2.2.4).

The OPEN statement also contains a map attribute that references a MAP
statement named MAP1. The MAP statement (line 5) defines the content of
records in the file (see Section 2.6). Because this is an indexed file, the MAP
statement is also used to define the size and location of key fields in the
record. The PRIMARY attribute associates the primary index key w.ith
NAME$, which is defined in the MAP statement on line 5.

The location of records in an indexed file, unlike the record location in sequen
tial or relative files, is completely under the control of RMS. You control
sequential and relative record location at input by performing an end-of-file
PUT operation (for sequential) or by specifying a position number (for rela
tive). The placement of indexed file records, however, is governed by the
presence of keys in the record . RMS uses these keys to determine record
location, a process that is transparent to you.

A key is a data field that exists in every record. A data field is one of the many
discrete pieces of information that compose records. For example, an individ
ual employee record in a company personnel file is usually composed of data
fields such as the employee's name, address, social security number, and
department. You can designate one or more of these data fields as a key for
accessing the whole record.

The position and length of each key data field in a record is identical for each
record in the file; only the content can differ. For example, all employee
records in a personnel file reserve the same amount of space at the same
position for the employee name data field; only the name itself will differ for
each record. When you create an indexed file, you designate the length and
position of the data fields RMS will use as keys . Once a specific data field has
been selected as an RMS key, your BASIC program can use the key to access
the record.

Indexed files require that at least one key, called the primary key, be associ
ated with every record. When you create the file, you use a MAP statement to
define the primary key in terms of its position and length in the record. To
access the record, you provide the BASIC program with a key number of 1
(meaning the primary key) and a key value. RMS locates the record with that
value in its primary key field.

In addition to a primary key specification for each record in an indexed file ,
you can optionally define up to 254 alternate keys for a record. Alternate keys
represent secondary data fields and are defined in the same manner as a
primary key. Your program can also use these alternate keys to identify and
retrieve records. Alternate keys are numbered (first alternate, second alter
nate, etc.) according to their order of appearance in the OPEN statement.

As with relative files, indexed files are allowed only on disk devices. The
operations allowed on indexed files are:

GET (read)
PUT (write)
UPDATE
DELETE
FIND
RESTORE

GET, FIND, and RESTORE operations can require a key of reference specifi
cation. That is, when records contain alternate or primary keys, you must
indicate to RMS which key field to search. UPDATE, PUT, and DELETE
operations do not require a key of reference specification.

GET operations can be performed randomly or sequentially. When you per
form a series of sequential GET, FIND, or RESTORE operations, a key num
ber specification is required for the initial operation and it remains in effect
until changed by another explicit specification.

2.3.3.1 Primary and Alternate Key Record Access - Access to records in an
indexed file is based on key specifications that appear in your program. That
is, each record in the file contains one or more data fields that RMS recognizes
as keys.

RMS allows you to have duplicate primary and alternate keys if you specify
DUPLICATES in the OPEN statement. That is, more than one record is
allowed to contain the same value in the data field that composes the key .
Such records are said to have the same record identifier. For example; a

Files 2-17

2-18 Files

personnel file may contain many records that have the same value in the field
defined as "Department." If you do not specify DUPLICATES in the OPEN
statement, RMS rejects any attempt to write a record that contains key data
field values already present in another record of the same file.

RMS also allows you to change alternate key values during update if you
specify CHANGES in the OPEN statement. That is, you are allowed to read a
record from the file, modify a particular alternate key data field within the
record , then write the record back to the file. If you do not specify CHANGES
in the OPEN statement, RMS rejects any attempt to write a record contain
ing a modified key value. Note that primary keys are not allowed to change.

Note that you cannot specify CHANGES without also specifying DUPLI
CATES.

To randomly access records in an indexed file, you must specify the key of
reference. That is, you must specify the desired key name that refers to de
fined values in a MAP statement. A record operation key specification has the
following format:

GET #0""'-") no., KEY ,"""H"~~",.e,,
where #num-exp is a number that specifies the key of reference (0 is the
primary key, 1 is the first alternate, etc.). The str-exp is a quoted character
string or string variable that represents the content of the data field. GET and
FIND operations allow you to specify an exact key, approximate key, or gen
eric key. To specify an exact or approximate key, you use EQ for exact key,
GT for an approximate key that is greater than the string expression, or GE
for an approximate key that is the same or greater than the string expression.

An exact key specification requires that you specify the complete key field
identifier in the program statement as follows :

GET #channel no. ,KEY #num-exp EQ str-exp

An approximate key specification allows you to access a record based on a
specified relationship. That is, you can specify a search for a record that is
equal to (EQ), or greater than or equal to (GE), or greater than (GT) the
record key. For example, the format:

FIND #channel no . ,KEY #num-exp GE str-exp

causes RMS to search for a record whose key value is equal to that specified
by the string expression. If RMS determines that the specified record key does
not exist in the table, it searches for the next highest value in that key index
table.

A generic search accesses a record based on an initial portion of the record's
key field. This search is automatically initiated when you specify a key data
field (str-exp) that contains fewer characters than are defined for that key in
the file. A generic search causes RMS to return the first record whose key
value begins with the specified characters.

When you specify search keys you must pay strict attention to the length and
justification of the string fields. BASIC-PLUS-2, by default, left justifies and
optionally either blank pads or truncates these fields. Common or Map fields
have a specified, fixed length. Input fields are left-justified but not padded.

When you institute a key search, RMS searches for a match based on the
number of characters you specify. However, if you use the map field,
BASIC-PLUS-2 pads the key you specify with blanks so that it matches the
length of the field specified in the map .

To illustrate generic key access, assume that you have a personnel file. Each
record in this file contains a data field composed of a 9-character social
security number. These numbers have been defined in terms of record posi
tion and length in a MAP statement and have been assigned to the variable
SSN$. This definition takes place before any record operation . Also, in the
OPEN statement, you have defined SSN$ as the primary key.

Consider the following GET statement:

GET *I 1 'X. , KEY *lO'X, EQ "013"

#1 % is a channel number that identifies the file.

#0% is the key of reference. Because 0% is the primary key, the key index
SSN$ is searched .

"013" is a string expression that represents the first three characters of the
data field associated with SSN$.

This GET statement causes RMS to search the key index represented by
SSN$. RMS returns the first record in that index with a data field of 01 3 at
the defined position and length.

2.3.4 File Sharing

With the exception of sequential files on non-disk devices, all files are capable
of being shared by any number of programs. Sequential files on non-disk
devices can be read or written only by a single program. Sequential files on
disk devices can be shared by multiple readers, but allow only a single pro
gram. Relative and indexed files can be shared by multiple programs.

While the organization of the file determines the sharing capability, the type
of sharing that actually occurs at run time is determined by the specifications
you make in the OPEN statement.

The ALLOW attribute in the OPEN statement is used to specify the types of
operations that you will permit other programs to perform on the file while
you have it open. With the ALLOW attribute, you can control the sharing of
the file. The specifications you can make in the ALLOW attribute, and the
operations they permit other users to perform, are as follows:

Files 2-19

2-20 Files

READ allows GET and FIND operations on the records in the file.

WRITE allows PUT operations on the records in the file.

MODIFY allows GET, FIND, PUT, and UPDATE operations on records in
sequential, relative, and indexed files; additionally, it allows DE
LETE operations on records in relative and indexed files.

NONE is the equivalent of READ.

The ACCESS attribute in the OPEN statement is used to specify the record
operations that you will perform on the file. The specifications you can make
in the ACCESS attribute, and the operations they refer to, are as follows:

READ specifies GET and FIND operations on the records in the file.

WRITE specifies PUT operations on the records in the file.

MODIFY specifies GET, FIND, PUT, and UPDATE operations on records
in sequential, relative, and indexed files; it also specifies DE
LETE operations on records in relative and indexed files.

SCRATCH specifies GET, FIND, PUT, UPDATE, and SCRATCH opera
tions on records in sequential files that reside on disk.

APPEND specifies PUT operations at the end of a sequential file that re
sides on disk.

Operations on the virtual file organization should not be shared. If another
program attempts to modify a block that is already open, the block is changed
in the second program's buffer but not on the disk. When the second program
closes the file or attempts another block operation, the data from the first
program is overwritten and lost.

Note that FIND and GET operations on relative and indexed files cause the
bucket that contains the accessed record to be inaccessible to other programs.
This process is called locking and it ensures that the modifications that you
make to a record are not interfered with by another program. The lock re
mains in effect until you specify a PUT, DELETE, UPDATE, or another GET
or FIND operation. Note that if the second GET or FIND operation accesses
the same bucket, the lock is reenabled. (For information on buckets, refer to
Section 2.5.)

You can explicitly unlock the bucket that was locked by your program by
specifying an UNLOCK statement. For example:

70 UNLOCK # 1 /..

causes the records contained in the file on channell % to remain accessible to
other programs.

If another program attempts an operation on a locked bucket, the operation
fails and an error message is printed:

?Record / bucKet locKed

Note that a lock is made on a bucket and not on the individual record.
Therefore, more than one record can be locked at the same time.

2.3.5 RMS Memory Allocation

The use of RMS-structured files in a BASIC-PLUS-2 program causes the
compiler to allocate space in memory to the needs of that program. Static
space for code is initially allocated when a file organization is specified in the
BUILD command (see Section 1.2.8). Additional space is allocated at run
time for each channel that the program opens.

The space that is initially allocated when a file organization is specified is
system dependent. However, the static space that is dynamically allocated to
each open file in the program is determined by the algorithms contained in
Table 2-2. Note that this space is deallocated when the file is closed.

Table 2-2: Allocation Algorithms

File Type Allocated Space

Sequential files 73G bytes
+ the record length

Relative files 224 bytes
+ the bucket size (in bytes)
+ the record length

Indexed files 264 bytes
+ 2 * the bucket size (in bytes)
+ the number of keys * 104
+ 2 * the maximum key size
+ the record length

You can reduce your program overhead for task extension by pre-determining
the number of bytes the program needs for simultaneously opened files and
using that number in the BUILD/EXTEND:n command.

2.4 Record Access Methods

The methods that you use to store or retrieve records in a file are determined
by the file's organization. The organization of a file is fixed at the time you
create it, but, depending on the access allowed, a specified access method can
change each time the file is opened for program execution. In some cases, you
can vary the access to records during program execution.

RMS allows you two types of record access: sequential and random. If you use
sequential access, records are accessed in serial order as established by the file

Files 2-21

2-22 Files

organization. If you use random access, record operations can take place at
any point in the file .

Table 2-3 shows the relationship between file organization and record access.

Table 2-3: Access Methods

Access Methods
File Organization Sequential Random

Sequential yes no
Relative yes yes
Indexed yes yes

The following subsections discuss each type of record access .

2.4.1 Sequential Access

All RMS file organizations allow you to access records sequentially. Sequen
tial record access is employed when you issue a series of requests for the next
record. RMS interprets these sequential operations within the context of the
file organization . That is, record operations are performed in terms of a
predecessor-successor record relationship. RMS assumes that for each suc
cessfully accessed record (except the last) there is a succeeding record some
where in the file .

The sequential file organization allows only sequential access. In these files,
the predecessor-successor relationship is physical (i.e., each record, except the
last, is physically adjacent to the next record). A record in a sequential file
can be processed only after each preceding record has been successfully
accessed. Similarly, once a record is processed, the program must be reposi
tioned to the beginning of the file before preceding records can be accessed. A
RESTORE operation, or reopening the file, positions the program at the be
ginning of the file.

In terms of operations, a PUT requires that the program be positioned at the
end of the file (i.e., immediately following the last record). An existing
sequential file on disk can be opened at the end-of-file position if you specify
ACCESS/APPEND in the OPEN statement. A FIND operation moves the
program to the next sequential record position. Therefore, a series of FIND
operations can be used to locate the end of the file (i.e., an unsuccessful FIND
indicates end-of-file).

UPDATE operations on sequential files require a successful GET or FIND
operation to move the program to the desired record before the UPDATE is
specified . A GET causes the program to locate the next record and perform
the GET operation. A succeeding GET or FIND operation moves the program
to the next record.

The relative file organization allows sequential access as established by the
contents of record positions. Relative files allow empty record positions that
can be caused by a record deletion or by a program that purposely leaves the
positions empty. RMS maintains the predecessor-successor relationship
through its ability to recognize empty or occupied record positions.

Sequential PUT operations on relative files are used when you create a new
file or append records to an existing file because RMS requires that new
records be written in empty positions. That is, a sequential PUT operation
causes RMS to place a record in a location whose position number is one
higher than the previous operation. If the position is occupied, the operation
fails. A GET or FIND operation causes the program to locate the next existing
record in position number order. In addition, the GET operation reads the
located record. The program remains at this location until another operation
is specified. DELETE and UPDATE operations require that a FIND opera
tion position the program at the desired location.

The indexed file organization also supports sequential access. In indexed files,
the predecessor-successor relationship exists among the entries in the index.
RMS sequentially accesses records on behalf of the program by moving
through a specified index table in serial fashion. The records are retrieved in
the same order that key values appear in the table.

PUT operations on indexed files write the record and place its key value in the
appropriate index. On GET operations, the pointer for the specified key of
reference locates the first record associated with that index and makes it
available to the program. The next GET updates the pointer to the record
whose key appears next in that index and accesses the record. FIND opera
tions perform in the same manner but without reading the record. UPDATE
and DELETE operations require a prior, successful GET or FIND.

2.4.2 Random Access

Random access allows the BASIC program, rather than file organization, to
control the order of record access. The program identifies each record of inter
est in each operation requested of RMS. This procedure allows you to access
records in any order at any point in the file.

Random access is not permitted on sequential files because of the strict
predecessor-successor relationship maintained among records. Relative and
indexed files do allow random access.

Programs employ random access on relative files through the specification of a
particular record number. RMS interprets the number as representing a
record position in the file . If the operation is a GET or FIND and no record
exists in the specified location, RMS returns an error (,y', R e cor d not
f 0 IJ n d). If the operation is a PUT and a record already exists in the specified
location, RMS also returns an error ('Y., R e cor d a 1 rea dye xis t 5).

Note that DELETE and UPDATE operations do not allow record identity
specifications. A prior GET or FIND is required. Also, random access imposes
no restriction on the order of operations. For example, you can specify a series
of GET operations on a relative file in any order (record number 3, record
number 9, record number 5, etc.).

Programs initiate random access on indexed files by means of a key specifica
tion. You specify a number and key value in a manner determined by the
desired operation. For all operations, the specified key value indicates the

Files 2-23

2-24 Files

contents of a record data field and the number identifies the index that RMS
uses to locate that record.

On GET or FIND operations, a specification indicating the content of the
desired key field is required. RMS searches the key index table indicated by
the specification, finds the desired key value (if present), reads the record
pointed to by the index, and passes the record to the program.

PUT operations do not allow an explicit key specification because RMS uses
the record's data to interpret the new record in terms of content, position, and
length of key data fields.

Indexed files allow you to specify key values in three ways: exact key, approxi
mate key , and generic key. You specify an exact key by including the entire
content of the desired field in the operation. You specify an approximate key
in your program by indicating that the desired record 's key field can be equal
to, or greater than, the specified key. You specify a generic key in the program
by indicating an initial portion of a key field. These three methods are de
scribed in Section 2.2.3.1.

Consider the following example:

5
10
20

30
40
\
\
\
\

ON ERROR GO TO 19000
MAP (POATAI. NAME$=30l,ID$=G l ,JOBDES$ =20
OPEN "PFILE . DAT" FOR OUTPUT AS FILE Itl'X,

, ORG ANIZATION INDE XED FIXED,ACCESS MODIF Y
, ALLOW NONE,MAP PDATA
,PRIMARY NAME$,A LTERNATE ID$

INPUT "NAt1E" iNAt1E$
IF NA ME$=" " THEN 50 ELSE

INPUT "ID "iID$
INPUT "JOBDES "iJOBDES$
PUT It 1 'X,
GO TO 30

50 CLO SE It 1 'X,
GO

70
\
80
90

\
\

OPEN "PFILE.DAT" FOR INPUT AS FILE It 1 'X,
, ORGANIZATION INDEXED FIXED,ACCESS READ
,ALLOW NONE,MAP PDATA
, PRIMARY NAME$,ALTERNATE ID$

GE T It 1 'X,
PRINT NAMEiIDiJOBDES$
INPUT "ID "iIDENTS
IF IDENT$=" " THEN 210 ELSE

GET Itll,KEY Itll EQ IDENT$
PRINT ID$iNAME$iJOBDES$
GO TO 80

19000 PRINT "ERROR"iERR, " AT LINE"iERL
32 7G7 CLOSE Itll \ END

This program creates an indexed file, accepts record data from the terminal,
and closes the file. The file is then reopened and its records are accessed with
sequential and random GET operations. The program is composed of the
following lines:

Lines 5 and 19000 are an error handling routine.

Line 10 is a MAP statement that defines a primary .and two
alternate keys in terms of their size and location in the
record.

Line 20

Lines 30 and 40

Line 50

Line 60

Line 70

Line 80

Line 90

Line 32767

is an OPEN statement that creates an indexed file, iden
tifies the pr~mary and alternate keys, and references the
MAP statement that defines those keys.

accept record data from you by means of an INPUT
statement. The PUT statement writes the data to the
file and the MAP statement variables format the data in
the record.

closes the file.

reopens the file. Note that the file attributes are respeci
fied in the OPEN statement.

is a GET statement that accesses the first record
(sequential access) and prints it.

is an INPUT statement that requests an alternate key.

is a GET statement that accesses a record based on the
alternate key you specify in response to line 80. This is a
random operation. Line 90 also prints the record.

closes the file.

The capability to shift from random to sequential access (or vice versa) is only
allowed on relative and indexed file organizations. Sequential file organiza
tion does not support random access. There is no restriction on the number of
shifts that can be made while processing a file.

As an example, consider a program that randomly accesses a file and then
dynamically shifts to sequential access. RMS considers the currently accessed
record (by the random operation) as the predecessor record when the shift is
made to sequential access .

Relative and indexed file organizations impose their own restrictions on the
sequence of operations. For example, a GET operation always shifts the pro
gram to the specified record. If you follow a series of sequential GET opera
tions with a random PUT, the program remains at the location of the last
GET. A sequential GET after the random PUT will resume at the point of the
previous GET operation.

2.5 Record Format

RMS is indifferent to the logical content of records, but it does require that
you specify the record format. Record format determines the manner in which
RMS stores records in the file. The format is specified when the file is created
and is permanently assigned to each record read into that file.

BASIC allows you to specify one of two formats. These are:

FIXED the file contains records of equal and fixed length .

VARIABLE the file may contain records of different lengths.

Files 2-25

2-26 Files

The file organization determines which of the formats you can select.

The record format must be specified when the file is ci·eated. You specify
record format in the BASIC program as part of the organization clause, as
follows:

OPEN filename [FOR OUTPUT] AS FILE [#)num-exp
,[ORGANIZATION) ~SEQUENTIAJI{FIXED }l

RELATIVE lJ VARIABLE [J
INDEXED

Variable format is the default for sequential, indexed, and relative organiza
tions and record length is indicated by a count field appended to each record.

The following subsections discuss each record format in detail.

2.5.1 Fixed-Length Records

Fixed length describes a file condition in which records are of equal and
nonvarying length. Under fixed-length format, each record in a file occupies
an identical amount of space.

You specify the length of records in the BASIC program when the file is
created . The length, in bytes, can be explicitly stated in the RECORDSIZE
clause or implicitly defined by a map reference in the MAP clause. RMS
stores and maintains the record length specification in the, file description
header. When a program requests a record from the file , the desired record is
passed to the program within the length restrictions defined for that file.

Fixed-length format is optional for sequential, relative, and indexed files.
Relative files, however, store records in fixed-length positions, regardless of
the format specification. That is, RMS stores relative file records in locations
that are each equal to the maximum record size specified when the file was
created. This condition is true whether the format is fixed or variable. For
example, when you create a relative file, a record position space is allocated
that is equal to the largest record described for that file. RMS stores the size
in the file header. A program request for a relative file record is performed
within the specified amount of space.

2.5.2 Variable-Length Records

Variable-length describes a file condition in which the length of each record is
allowed to differ. Variable format is the default for sequential, relative, and
indexed file organizations.

When variable-length format is used, you must specify the length of the file's
longest record in the RECORDSIZE clause or with a map reference in the
MAP clause.

Because record retrieval operations require a record size, RMS prefixes a
count field to each record as it is written to the file. The count field identifies
individual record size in bytes to RMS but is transparent to the BASIC
program. When a program requests a record, RMS releases a record whose
length is that specified by the count field.

There are two types of count fields, depending on the device you use to
contain the file. Records in files residing on disk devices contain a I- word
(2- byte) binary count field that precedes the data portion of the record. This
count field is aligned on a word boundary. The length indicated by the count
field does not include the count field itself.

Records in files residing on ANSI magnetic tape (sequential files only) contain
a 4-character decimal count field that precedes the data portion of the record.
The size indicated by the field includes the field itself. In the context of ANSI
tapes, this record format is known as D format.

Relative files are an exception in that variable format is allowed but record
position length is fixed. The length of each record position is defined by the
size of the largest record. A count field prefixes each record, but these records
need not fill an entire record position.

When you create relative or indexed files with variable format, you must
define the record size as a non-zero specification that represents the size of the
largest record. Note that a record is never allowed to exceed the RMS maxi
mum of 16,383 bytes.

2.6 Data Structure

Data structure is a term that describes the storage of a file on a particular
medium. When you create a file, RMS uses certain data storage structures to
allocate and maintain the records that compose that file. These structures are
blocks and buckets.

A block is a physical storage structure . that can contain a partial record, one
full record, or more than one record. The size of a block on disk devices is fixed
at 512 bytes. The size of a block on magnetic tape can be defined in your
program. Because sequential is the only file organization allowed on magnetic
tape, the size of a block is a consideration only when creating sequential files
on magnetic tape. This consideration is discussed in Section 2.5.1.

A bucket is a logical data structure that is composed of blocks. Buckets are
used for relative and indexed files on disk devices and RMS allows you to
establish the size of a bucket in terms of an integral number of blocks. Buck
ets are described in Section 2.5.2.

2.6.1 Blocks

The records that your program writes to a file are contained on blocks. The
size of these records determines whether a block contains a partial record, one
full record, or more than one record. RMS considers each block within a file as
a contiguous array of data. When you write a record that is larger than one
block, RMS allocates successive blocks sufficient to contain the entire record.
The procedure whereby records cross block boundaries is called spanning.

The length of a block on disk devices is fixed at 512 bytes. This size is set by
the hardware and cannot be altered. The length of a block on magnetic tape is
defined as the length of data that the program writes between two inter-record

Files 2-27

2-28 Files

gaps. With ANSI-formatted tapes, you can specify this size in the BLOCK
SIZE clause as a positive integer that represents the number of records. The
range of this integer is from a minimum of 18 bytes to a maximum determined
by program buffer requirements.

The BLOCKSIZE clause appears in the OPEN statement that is used to
create sequential files on magnetic tape. The BLOCKSIZE specification de
fines block length in terms of the number of records and permanently assigns
it to the file. Consider the following:

OPEN filename [FOR OUTPUT] AS FILE [#]num-exp
,[ORGANIZATION] SEQUENTIAL
,RECORDSIZE num-exp
,BLOCKSIZE num-exp

RECORDSIZE
defines the size of the largest record in the file.

BLOCKSIZE
defines the size of a block in number of records. The default for disk
devices is 512 bytes.

2.6.2 Buckets

A bucket is a logical storage structure that RMS uses to build and maintain
files on disk devices. A bucket is composed of an integral number of blocks in
the range of 1 to 31. Bucket size is defined in terms of the number of records it
contains and this number can be defaulted to one record or specified in your
program.

Because relative and indexed files are allowed only on disk media, the length
of a block for these files is set at 512 bytes. This size cannot be altered in your
program. A bucket, however, is a logical structure and its size can be tailored
to program requirements.

Unlike blocks, a bucket cannot contain a partial record. That is, RMS does
not allow records to span bucket boundaries. Therefore, when you specify a
bucket size in your program, you must consider the size of the largest record in
the file. If a default bucket size is used, BASIC makes this consideration
automatically.

In addition to your file's records, buckets contain internal information that is
maintained and understood only by RMS.

There are two methods you can use to establish the number of blocks in a
bucket. The first is to use the BASIC default. The second method involves a
specification of the number of records yo~ desire in each bucket. BASIC
calculates a default based on the number of records you specify. These two
variations on default sizes are discussed in Section 2.5.2.1.

2.6.2.1 Bucket Size - The default bucket size assigned to relative and in
dexed files is designed to make the bucket size as small as possible. The

default size minimizes memory buffer space requirements but also decreases
the speed of I/O operations.

A default bucket size is selected by BASIC on the basis of information that
you provide when the file is created . If you do not define the BUCKETSIZE
clause in the OPEN statement, BASIC assumes that there is only one record
in the bucket, calculates a size, and assigns the required number of blocks. If
you define BUCKETSIZE and specify the number of records (when more than
one is desired in each bucket), BASIC uses a different formula to arrive at the
necessary number of blocks. BASIC also considers file organization and record
format when determining default bucket size. These considerations are shown
in the following formulas and tables. Note that record size can alternately be
defined by a map reference.

The BASIC syntax used to create a file in which BASIC completely controls
bucket size is as follows:

OPEN filename [FOR OUTPUT] AS FILE [#]num-exp
,[ORGANIZATION] {RELATIVEl.[FIXED }]

INDEXED J VARIABLE
,RECORDSIZE num-exp

The BASIC syntax used to create a file in which you state the number of
records desired in the bucket is as follows:

OPEN filename [FOR OUTPUT] AS FILE [#]num-exp
,[ORGANIZATION] {RELATIVE}frFIXED }]

INDEXED Ll.VARIABLE
,RECORDSIZE num-exp
,BUCKETSIZE num-exp

where the BUCKETSIZE specification is the number of records expressed as
a positive integer.

The default bucket size for relative files is derived from the following formu~
las:

• Fixed-length records with no BUCKETSIZE specification,

Bnum={1+Rlen)/512

• Fixed-length records with BUCKETSIZE specified,

Bnum= {{l+Rlen) * Rnum)/512

• Variable-length records with no BUCKETSIZE specification,

Bnum={3+ Rmax)/512

• Va'fiable-Iength records with BUCKETSIZE specified,

Bnum={{3+Rmax) * Rnum)/512

Files 2-29

2-30 Files

Bnum is the number of blocks per bucket in a range of 1 to 31 blocks. The
bucket size is rounded up to the next highest integer, where required.

Rlen is the length in bytes of the file's fixed-length records as defined in
the RECORDSIZE clause.

Rmax is the length in bytes of the largest variable-length record in the file
as defined in the RECORDSIZE clause.

Rnum is the number of records that you desire in each bucket as defined in
the BUCKETSIZE clause.

1 represents the existence byte that RMS uses to determine the pres
ence or absence of records in the file.

3 represents the existence byte plus two bytes that indicate the count
field.

Table 2-4 shows a partial list of the default bucket sizes selected by BASIC
when the number of records is undefined (i.e., the bucket contains only one
record) .

Table 2-4: Relative File Default Bucket Size

Bnum Rlen Rmax

1 1-511 1-509
2 512-1023 510-1021
3 1024- 1535 1022- 1533
4 1536- 2047 1534-2045
5 2048-2559 2046-2557
6 2560-3071 2558-3069
7 3072-3583 3070-3581
8 3584-4095 3582-4093
9 4096-4607 4094-4605

10 4608- 5119 4606- 5117
11 5120-5631 5118-5629
12 5632- 6143 5630-6141
13 6144- 6655 6142-6653
14 6656-7167 6654-7165
15 7168-7679 7166-7677

The default bucket size for indexed files is derived from the following formu
las:

• Fixed-length records with no BUCKETSIZE specification,

Bnum=(22+Rlen)/512

• Fixed-length records with BUCKETSIZE specified,

Bnum=((7+Rlen) * Rnum)+15/512

• Variable-length records with no BUCKETSIZE specification,

Bnum=(24+ Rmax)/512

• Variable-length records with BUCKETSIZE specified,

Bnum=((9+Rmax) * Rnum)+15/512

Bnum is the number of blocks per bucket in a range of 1 to 31 blocks. The
bucket size is rounded up to the next highest integer, where required.

Rlen is the length in bytes of the file's fixed-length records as defined in
the RECORDSIZE clause.

Rmax is the length in bytes of the largest variable-length record in the file
as defined in the RECORDSIZE clause.

Rnum is the number of records you desire in each bucket as defined in the
BUCKETSIZE clause.

22 is a 15-byte RMS bucket overhead plus 7 bytes for the fixed-format
record header length. (Note that when BUCKETSIZE is defined, 7
bytes are allotted to each record in the bucket and 15 bytes to the
bucket as a whole.)

24 is a 15-byte RMS bucket overhead plus 9 bytes for the variable
format record header length. (Note that when BUCKETSIZE is
defined, 9 bytes are allotted to each record in the bucket and 15
bytes to the bucket as a whole.)

Table 2-5 shows a partial list of the default bucket sizes selected by BASIC
when the number of records is undefined (i.e., the bucket contains only one
record).

Table 2-5: Indexed File Default Bucket Size

Bnum Rlen Rmax

1 1- 490 1-488
2 491-1002 489- 1000
3 1003-1514 1001-1512
4 1515-2026 1513-2024
5 2027":2538 2025-2536
6 2539-3050 2537-3048
7 3051- 3562 3049-3560
8 3563-4074 3561-4072
9 4075-4586 4073-4584

10 4587-5098 4585-5096
11 5099-5610 5097-5608
12 5611-6122 5609-6120
13 6123-6634 6121-6632
14 6635- 7146 6633-7144
15 7147-7658 7145-7656

When you specify a bucket size for files in your program, you should keep in
mind the space versus speed considerations involved. That is, a large bucket
size increases the speed of file processing but also increases the memory space
required for buffer allocation. Likewise, a small bucket size minimizes buffer
requirem~nts and also decreases the speed of operations. For example, a large
bucket size contains a greater amount of the file in each bucket. When an I/O
operation accesses a bucket, this greater amount of file is made available for
processing. However, a like amount of buffer space is required to contain the
file.

Files 2-31

2.7 Record Mapping

2-32 Files

NOTE:

Because a RECORDSIZE specification overrides a MAP, it is
possible to define a record size that is larger than the MAP and
cause a record operation to overwrite mapped areas. A fatal
error results if you specify a RECORDSIZE that is larger than
a previously defined MAP statement for the same file.

When you initiate a record operation, such as a PUT or UPDATE, the record
appears to move directly to your program from the file or to the file from your
program. RMS transports these records from or to blocks or buckets, depend
ing on the organization of the file (see Section 2.5).

RMS, however, does not directly transfer records between programs and files.
Transparent to you, RMS reads or writes records into internal memory areas
called buffers. Buffers, therefore, are an intermediate step between files and
programs. The unit of transfer between the file and the buffer is the storage
structure (i.e., a block or bucket). The unit of transfer between the program
and the buffer is a record.

During record operations, RMS controls the content of buffers. However, the
program determines the allocation of buffer space and the content of the
records in those buffers through record mapping.

The buffer is a data storage location whose size and content can be described
in an optional MAP statement. The MAP statement acts as a template for the
placement of data in a record. That is, it generates a PSECT of the same
name with a length equal to the sum of the MAP elements. The MAP clause
in the OPEN statement references the MAP statement and associates it with
a particular file.

The MAP statement appears in your program as follows:

MAP (Map-naMe) eleMent-list

The MAP name is enclosed by parentheses and represents the buffer name. It
cannot be a BASIC-PLUS-2 reserved word. It provides RMS and the program
with a vehicle for associating record operations with a buffer in the OPEN
statement. The element list is composed of variables that represent the data.
The list also defines how that data is to be placed in the record.

More than one MAP statement can exist with the same name. If this is the
case, the variables in the element-list must be contained in the same position
in each map. In addition, MAP statements can appear before or after the
OPEN statement.

Because the MAP statement defines the data content of the record, it also
acts to define the position and length of indexed file keys. Both the primary
and alternate KEY clauses in an indexed file OPEN statement refer to ele-

ments in a MAP statement when key values are specified. Note that once a
key field has been defined, by means of a KEY specification and a map
reference, it is not allowed to change.

The MAP clause that associates a defining MAP statement with a particular
file appears in the OPEN statement as follows:

OPEN filename [FOR OUTPUT] AS FILE [#]num-exp

,[ORGANIZATION] ~SEQUENTIAJrJ{FIXED }D
RELATIVE ~ VARIABLE
INDEXED

,MAP map-name

The map-name in the MAP clause is associated with the file while the file is
open.

If you use the MAP clause, the allocated buffer space is the MAP. However, if
you use RECORDSIZE to define the length of records, buffer space is allo
cated from the program's dynamic free space. Consider the following example:

10 PRINT " SEQUENTIAL MAP TEST WITH FI)(ED LENGTH RECORDS"
20 OPEN "RMSSEQ,FIX" FOR OUTPUT AS FILE #1% &

,ORGANIZATION SEQUENTIAL FIXED,ACCESS &

30
40
\
50
\
GO

MODIFY,MAP MAPl
MAP (MAP1) NAME$=30%,IDNUM%,JOBCLASS$=8%
INPUT "NAME "iNAME$
IF NAME$= "END" THEN 100
INPUT" ID NUMBER" i IDNUM'X,
INPUT "JOB CLASS"iJOBCLASS$
PUT #1% \GO TO 40

100 CLOSE #1% \END

This program creates a sequential file with fixed-length records . The maxi
mum record size is 41 bytes and the length of the record's content is defined in
a map reference. The map reference is contained in line 20. Line 30 contains
the defining MAP statement referred to in line 20.

Because the MAP statement defines the length of data in the record, it should
be used in the OPEN statement to define the size of records. In addition, a
map reference and a RECORDSIZE specification should not appear in the
same OPEN statement. Note that when both a map reference and a RE
CORDSIZE specification are used, the RECORDSIZE specification takes
precedence.

Files 2-33

Chapter 3
BASIC-PLUS-2 on RSX-11 M

This chapter describes the interface between the BASIC-PLUS-2 compiler
and operating systems that use the MCR command language. The description
includes compiler invocation, linkage of object modules to produce an execut
able task, and task execution. The operating system specific information in
this chapter is a summary only. You are expected to be familiar with the
operating system and with the information found in the documentation that is
specific to your application.

3.1 Compiler Invocation on RSX-11 M

To invoke the BASIC-PLUS-2 Compiler on systems with an RSX command
interface, type the following command in response to your system prompt:

RUN $6ASIC2 @'J

If compiler invocation is successful, BASIC-PLUS-2 prints an identifying line
(see Section 1.2.1). With the compiler invoked, you can create a BASIC source
program and object modules as described in Chapter 1. Note that an option in
the installation procedures allows the system manager to change the
BASIC-PLUS-2 invocation command, as follows:

::- 6P2 @'J

3-1

3.2 Task Builder Usage on RSX-11 M

The Task Builder is a system program that is used to process one or more
object modules into a single, executable file in task image format. Refer to the
RSX-llM Task Builder Reference Manual for information about using the
Task Builder program.

An object module is a user program that has been compiled with the BASIC
command COMPILE (see Section 1.2.7). Programs created as object modules
have the .OBJ file type appended to the file name by default. They can be
executed only after being processed by the task builder.

The task builder accepts object code as input, resolves any switches or options
you have specified in the command line, and outputs code in executable task
image format.

The BASIC-PLUS-2 compiler generates both Overlay Description Language
(ODL) files and indirect Task Builder command files that are based upon the
BUILD command. These files are sufficient for single segment tasks . You
must reconstruct the ODL file if you overlay the user segment, as described in
the RSX-llM Task Builder Reference Manual.

The BASIC Compiler BUILD command (see Section 1.2.8) offers you a sim
plified procedure for specifying task builder input. The BUILD command
accepts object module names in its command line and produces a command
file. This file contains all of the required task builder command input. For
example:

BUILD ~lDD1, MOD 2 , MOD3 / MAP IBru

generates a command file named MOD1.CMD. When this file is typed in
response to the task builder prompt:

TKB > @MODl IBru

the task builder generates a task image file (MOD1.TSK) and a map
(MOD1.MAP). Note that if you desire task builder options you must edit the
command file generated by the BUILD command.

3.2.1 Task Builder Options

The options are specified as input to the task builder and define the charac
teristics of the task image. The options take the form of a keyword followed by
an equal sign and an argument. The argument assigned to the option is
dependent on the desired characteristic. This section summarizes the options
that are most useful to BASIC programmers. For a complete description of
task builder options, refer to the Task Builder Reference Manual appropriate
to your system.

3-2 BASIC-PLUS-2 on RSX-llM

Table 3-1 lists the option keywords and their meanings.

Table 3-1: Task Builder Options

Keyword Meaning

ASe Declares device assignments to logical units

EXITSK Extends the amount of memory allocated to a task

LIBR Associates task with shareable library

UNITS Declares the maximum number of logica l units

The ASG option assigns a specified physical device to one or more logical
units.

The ASG option has the form:

ASG = device name:unit 1: ••• unit n

device name is a 2-character alphabetic device name followed by an
optional 1- or 2-digit device unit number.

unit is a decimal integer that indicates the logical unit number.

The default is ASG = SYO:1:2:3:4,TI:5,CL:6

Note that there is a direct correspondence between BASIC-PLUS-2 channel
numbers and operating system logical unit numbers (LUNs). BASIC-PLUS-2
requires LUN 13 for the user terminal and LUN 14 for a work unit, therefore,
you must specify 14 units and assign unit 13 to your terminal. When the
UNITS option and ASG are part of the same input specification, UNITS
must precede ASG.

The UNITS option specifies the number of logical units used by the task and
reserves sufficient space for the number of specified units in the task's header.
The number of logical units assigned by default is 6 and the maximum num
ber that can be used in a BASIC-PLUS-2 task is 14.

The UNITS option has the form:

UNITS = max-units

where max-units is a decimal integer in the range of 0 to 14.

The EXTTSK option extends the amount of memory that is initially allo
cated to a task. The option causes additional memory allocation when the
task is loaded.

The EXTTSK option has the form:

E:nTSK = lens'th

BASIC-PLUS-2 on RSX-llM 3-3

where length is a decimal number that specifies in words the increase in task
memory allocation. Note that the task itself attempts to expand as required.
If you attempt to extend memory allocation beyond the system partition size
or the resident library maximum allocation (i.e., 16K words), a fatal error is
returned at run time (?Not enous'h a!.!ai lable rrlerTIOry).

The EXTTSK option can be used to preallocate space for string manipulation
and I/O buffers. BASIC-PLUS-2 normally uses the minimum required space.
Therefore, the use of EXTTSK can provide additional space and cause some
increase in the speed of program execution by decreasing the number of task
extends. Refer to Table 2-2 for the formulas that determine initial space
allocation estimates.

The LIBR option associates the task with a specific resident shareable library
in memory. BASIC-PLUS-2 programs can use the optional BASIC2library or
a user-created library. If you use LIBR to access an optional library, the task
builder includes the symbol definition file of the specified library in the input
file. For example, if you specify BASIC2, the task image is associated with the
BASIC2 resident library and BASIC2.STB (located in account [1,1]) is in
cluded in the input file.

The LIBR option has the form:

LIBR = library:RD

where library is a specified resident shareable library and RO is read-only
access.

Note that if you wish to specify BASIC2 or a user-created library in the
BUILD command output, you must use the LIBRARY command (see Section
1.2.9). You must edit the Task Builder indirect command file if you include
multiple shared libraries.

3.3 Task Execution on RSX-11 M Systems

The task builder outputs executable code that can be invoked and executed at
operating system level. The sequence of events leading up to task execution is
as follows:

1. Creating one or more object modules by means of the BASIC command
COMPILE.

2. Specifying the object modules, along with any desired switches and
options, as input to the task builder, or using BUILD to create a command
file that contains task builder command input.

3. Obtaining task builder output of executable code (task image) and a map
file if desired.

4. Issuing the appropriate system command to execute the created task.

As examples of the procedures you might use to build an executable task,
consider the following series of commands.

3-4 BASIC-PLUS-2 on RSX-llM

Input consists of two object modules (MYPRGl and MYPRG2), and a
BASIC2 library.

OLD MYPRGl !i!m

Basic2

COM !Bill

Basic2

OLD MYPRG2 !Bill

Basic2

COM !Bill

Basic2

BUIL D MYPRG1, MYPRGZ/IND !Bill

Basic2

>TKB @MYPRGl !Bill

In this command series, BUILD is used to create a command file
(MYPRGl.CMD) composed of a previously compiled object module. The
command file contains all of the libraries and options required as input to the
task builder as well as the BASIC switch (lIND) required to enable the use of
RMS indexed I/O. The command file is used as input to the task builder
prompt and the result is an optional map file and an executable task. The use
of an RMS switch UVIR, /SEQ, /REL, or lIND) causes the BUILD command
to change the generated .ODL file as required for RMS I/O. These changes are
made automatically when the appropriate switch is appended to the BUILD
command. Consider the following example of MYPRGl.ODL:

.ROOT BIROT4-USER,RMS
USER:.FCTR MYPRGI-MYPRG2-LIBR
LIBR : .FCTR [1 tlJBASIC2/LB
RMS: .FCTR BI0047
@SY : [1 ,1 J BAS I C4

.END

3.4 BASIC-PLUS-2/RSX-11 M Notes
The adaptation of BASIC-PLUS-2 to different operating system environ
ments causes differences in the implementation of certain BASIC features.
The following sections describe those areas of difference that apply to opera
ting systems with the MCR command interface.

3.4.1 CHAIN Statement

The BASIC-PLUS-2 CHAIN statement allows a line number specification
that permits you to initiate chaining at a specified point in the program.
However, the RSX-llM operating system requires that a chain begin at the
first line of the program. Thus, the BASIC-PLUS-2 syntax:

BASIC-PLUS-2 on RSX-llM 3-5

CHAIN file-exp[LINE nUM-exp]

is not permitted on RSX-llM. For RSX systems, the syntax is as follows:

CHAIN "tasf~ nallle"

where task name is the name of a previously installed task. Also,
BASIC-PLUS-2 on RSX-llM accepts only the first six characters of the task
name in the statement line.

3.4.2 NAME AS Statement

The BASIC-PLUS-2 NAME AS statement permits you to renam~ an existing
file. The statement has the following format:

NAME strins 1 AS strins 2

where string 1 is the file specification of the target file and string 2 is the new
file specification.

On RSX-llM systems, the NAME AS statement is subject to the following
restrictions:

1. You must have write access to the directory of the target file.

2. The files specified in the statement line must reside on the same physical
device and have the same User Identification Code (UIC).

3. The PSECT $$FSR2 must be in the root segment of the task. This can be
done by reworking the ODL file to force $$FSR2 into the root, or by
including the "NAME AS" in the root. If it is necessary for other sub
routines to rename files, they should call the one in the root segment.

The NAME AS statement does not alter the contents of a file. It renames the
first specified file to that of the second file without changing the version
number. Since the NAME AS statement alters the file name, you must in
c'lude a file organization switch in the BUILD command. Also, if the target of
the statement is an open file, the new name does not take effect until the file
is closed.

3.4.3 SLEEP Statement

The BASIC-PLUS-2 SLEEP statement suspends program execution for a
specified amount of time. The statement has the format:

SLEEP lHIII1-exp

where num-exp is the number of seconds that execution is suspended.

On RSX-llM systems, you may enable CONTROL C trapping for the job
prior to issuing the SLEEP statement. Then, if you wish to prematurely
reactivate a job, the CTRL/C system function can be utilized.

3-6 BASIC-PLUS-2 on RSX-llM

Chapter 4
BASIC-PLUS-2 on lAS

This chapter describes the interface between the BASIC-PLUS-2 compiler
and lAS operating systems that use the DCL command language. The
description includes compiler invocation, linkage of object modules to pro
duce an executable task, and task execution. The operating system specific
information in this chapter is a summary only. You are expected to be famil
iar with the operating system and with the information found in the documen
tation that is specific to your application.

4.1 Compiler Invocation on lAS

To invoke the BASIC-PLUS-2 Compiler on systems with a DCL command
interface, type the following command in response to your system prompt:

BASIC2 ffi)

If compiler invocation is successful, BASIC-PLUS-2 prints an identifying line
(see Section 1.2.1). With the compiler invoked, you can create a BASIC source
program and object modules as described in Chapter 1.

4.2 Task Builder Invocation on lAS

The task builder is a system program that is used to process one or more
object modules into a single, executable file in task image format.

An object module is a user program that has been compiled with the BASIC
command COMPILE (see Section 1.2.7) . Programs created as object. modules
have the .OBJ file type appended to the file name by default. They can be
executed only after you process them by means of the task builder. The task
builder accepts the object code, resolves any references to BASIC library
modules, and outputs code in executable task image format.

To invoke the task builder on systems with a DCL command interface, type
the following command:

PDS >@input

where input can be a command file that was generated with the BUILD
command (see Section 1.2.8) or a LINK command line. These two specifica
tions are discussed in Section 4.2.1.

4-1

4.2.1 Link Command Line Input

In the LINK command line you can specify qualifiers and files in the following
format:

LIN K [! 9ualifiersJ file s pec 1 [,filespe c 2 ••• J

qualifiers are one or more specifications that modify task builder output
as described in Section 4.2.2.

filespec are one or more object modules with a file specification and an
.OBJ file type. Each specified object module is separated by
commas.

After you type the command line, the task builder builds the task image,
outputs a task image file and a map (if these files are requested), and resolves
any specified qualifiers .

The BASIC Compiler command BUILD (see Section 1.2.8) offers you a sim
plified procedure for specifying task builder input. The BUILD command
accepts object module names in the command line and produces a command
file. This file contains all of the required task builder input. For example:

BUILD t10Dl , t10D2, MOD3

generates a command file named MOD1.CMD. To invoke the task builder
and input this file, type the following command:

PDS >@MODl 00)

This command line results in a task image file (MOD1.TSK) and a storage
map file (MOD1.MAP). Note that you cannot use the unmodified output of
the BUILD command when you desire to qualify task builder output or spec
ify options (see Section 4.2.2). In these cases, you must specify the complete
LINK command line or use an editor to modify the BUILD command file.

The files that are processed by the task builder are assigned file types by
default. Table 4-1 lists these file types and the applicable file .

Table 4-1: lAS Default File Types

File Type File

.TSK Task image file

.MAP Memory Allocation map

.OBJ Input object module

.OLB Library file

.ODL Overlay description file

.CMD Command file

4-2 BASIC-PLUS-2 on lAS

Input to the task builder consists of one or more object modules, any required
libraries , optional qualifiers, and options.

The object modules can be input as file specifications or the file names alone.
When you type the complete file specification, the task builder assigns any
specified UIC number, device, and file type to the task image. If you specify
the file names alone, the system defaults are used.

The qualifiers and options also have default settings. In most cases, you can
override these by specifying the desired setting in the command line. The
qualifiers and options, their defaults, and functions , are summarized in Sec
tion 4.2.2. For additional information on these specifications, refer to the Task
Builder Reference Manual appropriate to your system.

4.2.2 Qualifiers

The specification of a qualifier follows the LINK command and is preceded by
a slash, as follows:

LI NK/ 9 ualifi e r

No specification is required when the qualifier is the default, however, you can
precede the qualifier with NO to negate its effect. For example:

1 9ua lif ier specifies action

It~ 09 u a l i fi e r negates the action

This section summarizes the qualifiers that you can specify to the task builder.
The section describes the action caused by the qualifier, the file it applies to,
and its default. The qualifiers described here are those that would be most
useful to the BASIC programmer; for information on the full set of qualifiers
refer to the Task Builder Reference Manual appropriate to your system.

The /TASK qualifier causes the task builder to generate a task image file and
has the following format:

/ [NOJTASK[: fi l e s pecJ

/TASK is the default. If you specify /NOTASK, the task builder does not
construct an executable task image file. The task builder does, however, check
the input for errors and print appropriate diagnostic error messages. Filespec
represents a file specification and allows you to assign a name to the generated
task image file. If you omit filespec, the task builder assigns the name of the
leftmost input file as the task name. The task image file type is .TSK by
default.

BASIC-PLUS-2 on lAS 4-3

The /MAP qualifier causes the task builder to generate a memory allocation
map and has the following format:

/ [NO]MAP[:filespec]

/NOMAP is the default. Filespec represents a file specification and allows you
to assign a name to the map file with a .MAP default file type. If you do not
specify a file name and a map is requested, the task builder assigns the name
of the leftmost input file.

The /SYMBOLS qualifier causes the task builder to generate a symbol table
file and has the following format: /[NO)SYMBOLS[:filespec) /NOSYMBOLS
is the default. Filespec represents a file specification and allows you to assign
a file name to the symbol table file with an .STB default file type. If you do
not specify a file name and an .STB file is requested, the task builder assigns
the name of the leftmost input file.

The /OPTIONS qualifier causes the task builder to solicit task options. The
format of this qualifier is as follows:

/ [NO]OPTIONS

/NOOPTIONS is the default. The options and their effect on the linked task
are described in Section 4.2.3.

The /OVERLAY qualifier causes the task builder to create a task image based
on a defined overlay structure . The format of this qualifier is as follows:

/ [NO]OVERLAY:filespec

/NOOVERLAY is the default. If you specify /OVERLAY, the overlay struc
ture must be defined in a specified .ODL file (filespec) . Because input files are
described in the overlay structure and are included in the .ODL file, input file
specifications (.OBJ files) cannot be included in the LINK command line .
Refer to Section 3.3 for a description of overlays and the creation of .ODL
files.

The /LIBRARY qualifier is appended to input files that contain object module
libraries and has the following format:

LINK[/ 9ualifiers] filespecl/LIBRARY

where {ilespec1 is an input object module with an .OLB default file type that
references a BASIC library. /NOLIBRARY is the default. Refer to Section
1.2.9 for a description of BASIC libraries.

Consider the following example:

LINK/MAP t10Dl, t'10DZ, MOD3, BASICZ / LIBRAR Y

This command line links the object modules MODI, MOD2, and MOD3 into
an executable task named MOD1.TSK. BASIC2 is identified as a library by

4-4 BASIC- PLUS-2 on lAS

the !LIBR~RY qualifier . The /MAP qualifier causes the task builder to gen
erate a memory allocation map file named MOD1.MAP.

4.2.3 Link Options

When you specify the /OPTIONS qualifier in the LINK command line , the
task builder expects one or more option specifications to appear on the follow
ing line. You specify options in the form of a keyword followed by an equal
sign and an argument. The argument assigned to the option is dependent on
the desired task characteristic. This section summarizes the options that are
most useful to BASIC programmers. For a complete description of options,
refer to the Task Builder Reference Manual appropriate to your system .

Table 4-2 lists the option keywords and their meanings .

Table 4-2: LINK Options

I(eyword Meaning

NASG Declares device assignments to logical units.

EXTISK Ext ends the a mount. of memory a llocated to a task.

UN ITS Declares the max imum number of unit s.

The ASG option assigns a specified physical device to one or more logical
units.

The ASG option has the form:

ASG = d ev i ce naMe :unit l : ••• unit n

device name is a 2- character alphabetic device name followed by an
optional 1- or 2-digit device unit number.

unit is a decimal integer that indicates the logical unit number .

The default is ASG=SYO:1:2:3:4:,TI:5,CL:6

Note that there is a direct correspondence between BASIC- PLUS- 2 channel
numbers and operating system logical unit numbers (LUNs). BASIC- PLUS- 2
requires LUN 13 for the user terminal and LUN 14 for a work unit, therefore,
you must specify 14 units and assign unit 13 to your terminal. If your program
requires the use of units (channels) five and six, you must override the ASG
default with an explicit ASG specification.

Also, when the UNITS option and ASG are both given as options, UNITS
must precede ASG.

The UNITS option specifies the number of logical units used by the task and
reserves sufficient space for the number of specified units . The number of

BASIC-PLUS-2 on lAS 4-5

logical units assigned by default is 4 and the maximum number that you can
specify in the option is 14.

The UNITS option has the form :

UNIT S = ma x- unit s

where max-units is a decimal integer in the range of 0 to 14.

The EXTTSK option extends the amount of memory that is initially allo
cated to a task. The option causes additional memory allocation when the
task is loaded. The EXTTSK option has the form:

E :nTSK = l e nsth

where length is a decimal number that specifies in words the increase in task
memory allocation. Note that the task itself attempts to expand as required.
If you attempt to extend memory allocation beyond the system partition size
or the resident library maximum allocation (16K words), a fatal error is re
turned at run time (? t'-l 0 ten 0 U s" h a I,! ail a b 1 e IT) e IT) 0 r '/).

The EXTISK option can be used to pre-allocate space for string manipula
tion and I/O buffers. BASIC-PLUS-2 normally uses the minimum required
space. Therefore, the use of EXTTSK can provide additional space and cause
some increase in the speed of program execution.

4.3 Task Execution on lAS

The task builder outputs executable code that can be invoked and executed at
operating system level. The sequence of events leading up to task execution is
as follows:

1. Creating one or more object modules by means of the BASIC command
COMPILE.

2. Specifying the object modules, along with any desired qualifiers and
options, as input to the task builder, or using the BUILD command to
create a command file that contains all of the required task builder input.

3. Obtaining task builder output of executable code (task image) and a map
file if desired.

4. Issuing the appropriate system command to execute the created task.

As examples of the procedures you might use to build an executable task,
consider the following series of commands:

LINK / t1AP t1YPROG1 . t·1 YPROG2 . [1 t1 JBASIC2/LIBRARY

This command causes the output of a task image (MYPROG1.TSK) and a
memory allocation map file (MYPROG1.MAP). Input consists of a MAP
qualifier, two object modules (MYPROGI and MYPROG2), and. a

4-6 BASIC-PLUS-2 on lAS

BASIC-PLUS-2 library (BASIC2) . The library specification contains the
directory under which t he library is stored, the library file specification, and
the LIBRARY qualifil'r.

OLD NONAt1E IR@

Basic2

CO~1 IflITJ

Basic2

BUILD l IND IRHJ

Basic2

E){ IT IflITJ

PD S >@NONAt1E IRET)

In this command series, BUILD is used to create a command file
(NONAME.CMD) composed of a previously compiled object module. The
command file contains all of t.he libraries and options that are required input
to the task builder as well as the BASIC switch (lIND) that enables the use of
RMS indexed I/O. The command file is used as input to the task builder and
results in a map file and an executable task (NONAME.MAP and
NONAME.TSK).

The use of an RMS swit ch (/VIR, /SEQ, /REL, or lIND) causes the BUILD
command to change t he generated .ODL file as required for RMS I/O. These
changes are made automat ically when the appropriate switch is appended to
the BUILD command. Consider the following example of NONAME.ODL:

. ROOT BIROT4 - USER ,R MS
USER:.FCTR NONAME - LIBR
LIBR : . FC TR [1 dJB ASI C2 / L B
RMS : . FCTR BI0047
@SY:[1.1J BASIC4

.END

4.4 lAS Restrictions

The use of BASIC-PLUS-2 on lAS operating systems is subject to the follow
ing restrictions:

1. You cannot use Control-C trapping in BASIC-PLUS-2 running on lAS
V3.0. If you type (CTRL/ C), the system does not take any action. This does
allow programs that utilize Control-C trapping on other operating systems
to run on lAS.

2. If you use the BASIC- PLUS-2 CHAIN statement, lAS implements it as
an RQST system directive. Therefore, in order to use the CHAIN state
ment in BASIC-PLUS- 2 programs, contact your System Manager to
obtain the privileges and instructions necessary for RQST$ macro and
real-time usage.

BASIC-PLUS-2 on lAS 4-7

Appendix A
BASIC-PLUS-2 Language Elements

This appendix summarizes the BASIC-PLUS-2 commands, statements, oper
ators, and functions that are supported on PDP-ll operating systems. If you
desire more information on the language elements, refer to the PDP-II
BASIC-PLUS-2 Language Reference Manual.

The documentation conventions used in examples of usage are as follows:

KEYWORD Words in upper case indicate BASIC-PLUS-2 vocabulary
that you type as shown.

data Words in lower case indicate variable information that you
supply.

[1 Square brackets indicate optional information.

I I Braces indicate that, of several elements, one must be selected.

A.1 Line and Data Format

BASIC- PLUS- 2 program lines are composed of the following elements:

1. Line Numbers

Program lines require line numbers except where the line is a continuation.
BASIC-PLUS-2 line numbers are positive numbers in the range of 1 to
32767. A number outside of this range generates an error. A fractional line
number or a line number with a percent sign appended to it generates an
error during compilation. Leading zeroes have no effect; leading spaces are
allowed.

2. Comments

Comments begin with an exclamation point (!) and end with another
exclamation point or a line terminator. You can insert comments before,
within, or between statements and, in these cases, the comments are del
imited on both sides by exclamation points. Comments are listed with the
program but have no effect on execution speed or size.

3. Statement Separator

You must separate each statement on a multi-statement line with a ba~k
slash statement separator (\).

A-I

4. Continuation

Program lines are continued to the next line when you type an ampersand
(&) followed by a line terminator. Note that this usage disallows the
appearance of a non-continuation ampersand as the last character of a line
(except for those in string literals).

5. Line Length

BASIC-PLUS-2 places no restriction on the length of a logical program
line. A physical line is limited to 255 characters, but you can use continua
tions to logically extend the line.

6. Line Terminator

You can terminate program lines with a carriage return/line feed combina
tion or an escape (ESC key).

BASIC-PLUS-2 program lines can contain the following elements:

1. Character Set

BASIC-PLUS-2 accepts the full ASCII character set as described in
Appendix D. Null characters are ignored; non-printing, non-control char
acters are accepted in string literals but are ignored outside of strings and
generate warnings. BASIC converts all lower-case alphabetics to upper
case (except for those in string literals).

2. Operators

BASIC-PLUS-2 accepts arithmetic, relational, and logical operators.
Tables A-1 through A-3 illustrate these operators and their use.

3. Constants

BASIC-PLUS-2 accepts three types of constants: floating-point, string,
and integer. Floating-point constants are numbers in the range of
10E-38<n<10E38 (where n is the constant). Integer constants are also
decimal numbers in the range of -32767 to +32767 but are terminated with
a percent sign. String constants are alphanumeric characters delimited by
single or double quotation marks. The quotation marks must be a matched
set and must appear on both sides of the constant. Quoted strings can
contain from 0 to 255 characters.

4. Variables

BASIC-PLUS-2 accepts three types of variables: floating-point, string,
and integer. Floating-point variables consist of a single letter followed by
up to 29 optional letters, digits, and periods. Integer variables also consist
of a single letter optionally followed by up to 29 letters, digits, and periods
and terminated by a percent sign. If a percent sign is not specified, the
variable is considered floating-point. String variables consist of a single
letter optionally followed by up to 29 letters, digits, and periods and termi
nated by a dollar sign.

A-2 BASIC-PLUS-2 Language Elements

You can use any alphanumeric combination for a variable name with the
exception of keywords (that is, words that are part of the BASIC
language). Keywords are reserved and their use as variable names will
produce an error during compilation (see Section A.5).

You designate an array by specifying a floating-point, integer, or string
variable followed by subscripts in parentheses. Subscripts are in the range
of 0 to 32767 and a maximum of two can be specified. One subscript
indicates a i-dimensional array; two subscripts separated by commas in
dicate a 2-dimensional array. Subscripts can be integers or expressions,
but non-integer subscripts are truncated to an integer value.

Variables are initialized to 0 or a null string at the start of program execu
tion. However, it is recommended that you explicitly initialize all program
variables as desired. Note that variables in COMMON, MAP statements,
and virtual arrays are not zeroed.

5. Expressions

An expression can consist of constants, variables, or functions separated by
an operator.

6. Functions

Functions are listed in Section A.4. The general format of a function is a
multi-character name followed by optional parentheses. The parentheses
contain one to eight function arguments separated by commas. A null
argument is not allowed. User-defined functions follow this general format
except that the function name begins with FN followed by 1 to 30 letters,
digits, or periods. A percent sign or dollar sign terminator is also allowed
for integer and string functions, respectively.

A.2 Commands

Commands allow you to perform certain operations on the program and do not
require a line number. You type them directly to BASIC along with any legal
arguments.

The following is a brief description of the BASIC commands, their format,
and use. For a more detailed explanation, refer to Chapter 1 of this manual.

Command Format

APPEND filespec

BUILD filespec/sw

COMPILE filespec/sw

Use

Merges a previously saved source program
(filespec) with one in memory.

Produces a command file from specified object
modules and uses certain switches. This file con
tains all of the task builder command input
required to create a task image.

Translates the current program. This command
can be combined with certain switches. If a file
name is specified, the program is compiled under
that name.

BASIC-PLUS-2 Language Elements A-3

DELETE line number(s} Erases specified lines from the current program.

EXIT Terminates access to the BASIC-PLUS-2 Com
piler and returns you to you private default run
time system.

IDENTIFY Prints a header that identifies the
BASIC-PLUS-2 Compiler.

LIBRARY Allows you to specify a BASIC-PLUS-2 resident
library.

LIST[NH]line number(s} Prints a copy of all or part of the current
program.

LOCK/sw

NEW filename

OLD filename

RENAME filename

REPLACE filespec

SAVE filespec

SCALE val

SHOW

UN SA VE filespec

A.3 Statements

CALL

Sets BUILD and COMPILE switch specifications
as defaults.

Clears your directory area for the creation of a
program. If you specify a file name, the new pro
gram is assigned that name.

Brings a program from disk into memory.

Changes the name of the current program to the
specified name.

Saves the current program by overriding any file
with that name.

Stores the current program as source code. The
program is saved under the current name unless
another is specified.

Sets the scale factor to a designated value or
prints the current value if none is specified. The
range of val is 0 to 6.

Prints the current switch values on the terminal.

Deletes a specified file.

CALL name [(actual arguments))
200 CALL SUBI (A,B)

The CALL statement transfers control to a specified subprogram, transfers
parameters, and saves the state of the calling program. Parameters contained
in the argument list must agree in type and number with the corresponding
SUB statement.

CHAIN

CHAIN string
15 CHAIN "SEE"

A-4 BASIC-PLUS-2 Language Elements

The CHAIN statement passes control to a specified, previously installed
program.

CHANGE
CHANGE list TO string-variable

or
CHANGE string-expression TO list
25 CHANGE AX TO A$

The CHANGE statement converts a list of integers (real numbers are trun
cated) into a string of characters and vice versa. The length of the string is
determined by the value found in element 0 of the list.

CLOSE
CLOSE 1#) expression(s}
150 CLOSE #6,8

The CLOSE statement terminates I/O to a device and writes all active buff
ers. The number sign is optional.

COMMON
COM I(name)) list
50 COM (TEST) A,B,C

The COM, or COMMON statement allows you to establish a named storage
area that can be shared by 2 or more subprograms. The common area name
must be 1 to 6 characters.

DATA
DATA constant(s}
50 DATA lI.3, "ABC", 18, lI2

The DATA statement allows you to provide a pool of information that is
accessible to the program by means of a READ statement. A DATA statement
must be the only statement on the line and, when you specify more than one
item, you must separate them with commas. DATA statements cannot have
comments.

DEF
DEF (single-line)

DEF FNa l(bl,b2,b3, ... b8))=expression
10 DEF FNX (A,B)=A*B

The DEF statement establishes a user-defined function. The function name
can be any legal variable name and must begin with FN. The variable type

BASIC-PLUS-2 Language Elements A-5

determines the function type. The optional arguments represent dummy
parameters and cannot contain array elements. The function definition can
refer to any of the dummy parameters or to other program variables but the
definition cannot be recursive . Single-line user-defined functions are local to
the main program or subprogram in which they are contained.

DEF (multi-line)

DEF FNa l(bJ,b2,b3, ... b8))
10 DEF FNX (A,B)

The multi-line DEF establishes user-defined functions and allows you to in
clude other statements in the body of the function. The function name can be
any variable name preceded by FN. Any statement can appear in a function
except SUB, SUBEND, RETURN or another DEF. The DATA and DIM
statements are not local to the function definition. A GOTO, GOSUB,
ONGOTO, or ONGOSUB transfer outside the function is not allowed. The
function definition must end with an FNEND statement.

DELETE

DELETE # <num-exp>
GO DELETE #S·X.

The DELETE operation is used on relative and indexed files only. The opera
tion erases an existing record from the file.

DIMENSION

DIM subscripted variable(s)
30 DIM B(2,3)

The DIM statement reserves storage for arrays. The size of the reserved stor
age is determined by the subscripts, (constant). A maximum of2 subscripts is
permitted and, when 2 are used, must be separated by a comma.

DIM #

DIM # expression, array {($) }I=integer)
(%)

SO DIM #2, A(IOt1S), B(SO)

This statement allocates space for the specified arrays on the file associated
with the logical number 2. Storage is allocated at the beginning of the file
such that the rightmost subscript varies the fastest. The default string storage
length is 16 bytes and the space is preallocated.

A-6 BASIC-PLUS-2 Language Elements

END

END
100 END

The END statement terminates program execution and closes all files. END
must be the last statement in the program.

FIND

FIND # <num-exp> [,RECORD <num-exp »

(,KEY #<num-exp> {~~}string expl

50 FIND #7%. RECORD 25

The FIND operation causes a RECORD search in the specified file. For
sequential files, the FIND starts at the beginning of the file and locates each
successor record for each FIND operation. Relative files allow the specifica
tion of a record number. Indexed files allow the specification of a key or a
sequential search through the key table. The RECORD and KEY specifica
tions are restricted to relative and indexed files, respectively.

FNEND

FNEND
40 FNEND

The FNEND statement causes an exit from a user-defined function and sig
nals the function's logical and physical end.

FNEXIT

FNEXIT
70 FND(IT

The FNEXIT statement is equivalent to a GOTO, where the destination is
the FNEND statement for the current multi-line DEF. FNEXIT is legal only
inside a multi-line DEF.

FOR
FOR uariable=<num-expl > TO <num-exp2> [STEP <num-exp3»
25 FOR 1=1 TO 5 STEP 2

The FOR statement initiates and controls a loop. A simple numeric variable
must be used after the FOR, and the same variable must appear in the
required NEXT statement. The first numeric expression is the initial loop
value; the second expression is the terminating loop value. The optional
STEP expression is the loop increment; +1 is the default. Transfer into an
un initialized loop is illegal.

BASIC-PLUS-2 Language Elements A-7

FOR (conditional)

FOR variable=<num-expl >[STEP <num-exp2» rwHILE conditionaTl

[yNTIL exp J
80 FOR 1=1 UNTIL 1) 10

The conditional FOR statement duplicates the previous FOR statement ex
cept that loop termination is determined by a false expression in the WHILE
clause or a t rue expression in the UNTIL clause.

GET

GET # <num-exp> I,KEY # <num-exp> ~~}string-eXPI
[,RECORD <num-exp »

50 GET #51.,

The GET operation reads a record from a specified file into a buffer. On
sequential files, GET operations are performed on succeeding records starting
at the beginning of the file. Relative and Block I/O files allow the specification
of a record number, and indexed files allow the specification of a key name.

GOSUB
GOSUB line number
25 GOSUB 120

The GOSUB statement transfers control to a subroutine that begins at a
specified line number.

GOTO
GOTO line number
40 GOTO 85

The GOTO statement unconditionally transfers control to a specified line
number.

IF

IF <conditional-exp> THEN <statements> ELSE <statements>
25 IF A=O THEN PRINT "A EQUALS 0"

The various forms of the IF statement allow branches in the program. The IF
statement can also cause execution of statements except the following:

DIM, REM, DATA, END, DEF, FNEND and SUB.

INPUT
INPUT ["string constant",) variable(s)
25 I NPUT AlB ,C'X,

A- 8 BASIC-PLUS- 2 Language Elements

The INPUT statement allows you to type in data to the program from the
terminal. The program requests data by printing your optional string constant
and a question mark on the terminal and then waiting for you to respond.

INPUT #
INPUT # expression, variable(s)
25 INPUT #6 %, A,B,C

The INPUT # statement acts very much as the INPUT statement. However,
the INPUT # statement requests data from a terminal-format file rather than
from you.

INPUT LINE and LINPUT

INPUT LINE [lI string constant ll ,] string variable(s)

LINPUT [lI string constant ll ,] string variable(s)
15 INPUT LINE A$, B$

The INPUT LINE statement allows a character string to be input to a speci
fied variable. The line terminator is included in the string with INPUT LINE
but discarded with LINPUT. The optional string constant is printed before a
question mark prompt for data.

INPUT LINE # and LINPUT #
INPUT LINE # expression, string variable(s)

LINPUT # expression, string variable(s)
10 INPUT LINE # 4%, A$, B$

The INPUT LINE # and LINPUT # statements read strings without editing
from a terminal-format file.

KILL

KILL string expression
10 KILL "SALARY.DAT"

The KILL statement deletes a file from storage.

LET

LET variable(s)=expression
10 LET A=65

The LET statement assigns constants and expressions to variables. The key
word LET is optional.

LINPUT

See INPUT LINE

BASIC-PLUS-2 Language Elements A- 9

LINPUT #
See INPUT LINE #

LSET

LSET string variable(s) = string expression
10 LSET A$,B$ = X$+Y$

The LSET statement assigns string expressions to string variables. The data
is left-justified and the length is not changed.

MAP

MAP (name) element(s)
10 MAP (BUFF1) A%, B$, C

The MAP statement associates a named buffer with a file. Specified data in
the element list is moved from the file to the buffer on a GET and from the
buffer to the file on a PUT.

MAT INPUT

MAT INPUT array(s)
50 MAT INPUT A

The MAT INPUT statement allows element values to be entered in an array.
Input is read from the terminal. Elements are stored in row order as they are
typed.

MAT PRINT

MAT PRINT array(s)
120 MAT PRINT A;

The MAT PRINT statement outputs each element of a specified array.

MAT READ

MAT READ array(s)
50 MAT READ B,C

The MAT READ statement reads the values into elements of a l
or 2-dimensional array from a DATA statement.

MOVE

MOVE ~~OM}file exp, I/O list

15 MOI.JE TO #5, A$, B, C(), FILL/,',

The MOVE statement moves data in a record to or from the variables you
specify in the I/O list.

A-lO BASIC-PLUS-2 Language Elements

NAME AS

NAME string 1 AS string2
15 NAME "MONEY" AS "ACCNTS"

The NAME AS statement renames a file without changing the contents of the
file.

NEXT

NEXT variable
15 NDn I

The NEXT statement terminates a FOR, WHILE, or UNTIL loop. The varia
ble must correspond with the variable in the initial FOR statement. Nested
loops cannot cross each other.

ONERROR fao TO }
LGO BACK

ONERROR GOTO line number

ONERROR GO BACK
25 ONERROR GOTO 50

30 ON ERROR GO BACK

The ONERROR GOTO statement allows the program to transfer control to
an error-handling routine. The ONERROR GO BACK statement allows a
subprogram containing an error to return to the program that called it for
error handling.

ON GOSUB

ON <num-exp> GOSUB line number(s)
50 ON A+B GOSUB 80, 85, 100

The ON GOSUB statement is used to conditionally transfer control to one of
several subroutines or to one of several entry points into one or more
subroutines.

ON GOTO

ON <num-exp> GOTO line number(s)
20 ON J% GOTO 85. 80. 85. 100

The ON GOTO statement allows the program to transfer control to one of
several different places in the program depending on the value of num-exp.

BASIC-PLUS-2 Language Elements A-ll

OPEN

OPEN filename exp IFOR INPUT l AS FILE [#] expression
LEOR OUTPU]j

, [ORGANIZATION]

READ
,ACCESS WRITE

SEQUENTIA
RELATIVE
INDEXED
UNDEFINED
VIRTUAL

MODIFY
SCRATCH
APPEND

[
ALLOW {~~~ }]

WRITE
MODIFY

[,MAP <mapname>]
[,RECORDSIZE <num-exp >]
[,BLOCKSIZE <num-exp>]
[,FILESIZE <num-exp>]
[,SPAN] [,NOSPAN]
[,CONTIGUOUS]
[,TEMPORARY]
[,BUCKETSIZE <num-exp >]
[,CONNECT <num-exp>]
[, CLUSTERSIZE <num-exp >]
[,BUFFERSIZE <num-exp>]

~~~R~~BLE1J 
~TREAM J 

,PRIMARY [KEY] <name> [DUPLICATES] 
[NODUPLICATES NOCHANGES] 

[,ALTERNATE [KEY] <name>] [DUPLICATES CHANGES] 
[NODUPLICATES NOCHANGES] 

10 OPEN "FIL4,OAT" FOR INPUT AS FILE #4% 

The OPEN statement enables you to create a new file or access an existing 
file. 

PRINT 

PRINT [expression(s)] 

30 PRINT A+B 

The PRINT statement causes the data you specify to be output on the termi
nal. The expression list can be expressions, variables, or quoted strings sepa
rated by a comma or a semicolon. Commas cause output to terminal print 
zones; semicolons supress spacing between elememts. 

A-12 BASIC- PLUS-2 Language Elements 



PRINT # 
PRINT # expression, list 
G5 PRINT # G%, A, B+C 

The PRINT # statement writes data into the specified terminal-format file. 

PRINT USING 

PRINT [# -expression] USING string, list 
10 PRINT USING " ** ##. ##", A,B,C 

The PRINT USING statement causes output to be printed in a specified 
format. The optional expression indicates the channel number of the file in 
which to print the list. 

PUT 

~KEY # exp ~~ stroeX

J PUT # <num-exp> ,RECORD <nu~exp> 
,COUNT <num-exp> 

25 PUT #7%, RECORD 15 % 

The PUT statement writes a record from a buffer to a specified file. The 
RECORD clause is used for relative or Block I/O files. Sequential files allow 
PUT operations only at the end of the file. The COUNT clause can redefine 
the size of the record. 

RANDOMIZE 

RANDOMIZE 
10 RANDOMIZE 

The RANDOMIZE statement changes the starting point of the RND function 
to a new unpredictable location. 

READ 

READ uariable(s) 
75 READ A,B%,C$, 0(5) 

The READ statement directs BASIC to read from a list of values built into a 
data block by a DATA statement. 

REM 

REM comment 

30 REM this is a COMMent 

The REM statement contains user written comments and has no effect on 
program execution. 

BASIC- PLUS- 2 Language Elements A-13 



RESTORE 1#1 

RESTORE [(# <num-exp>l I,KEY#<num-exp>ll 
30 RESTORE #3 

The RESTORE # statement with the KEY clause resets an indexed file to the 
beginning of the key specified. The RESTORE # statement without the KEY 
clause resets the specified file to the first record in the file. RESTORE with
out a file expression restores the data in a DATA statement. 

RESUME 
RESUME [line numberl 
50 RESUME 35 

The RESUME statement is the last statement in an error-handling 
subroutine. If no line number is specified, control is shifted back to the point 
of error generation. If a line number is specified, control is shifted to that line. 

RETURN 
RETURN 
GO RETURN 

The RETURN statement is the last statement in a subroutine. It shifts con
trol to the statement following the last executed GOSUB statement. 

RSET 
RSET string uariable(s) = string expression 
10 RSET A$,B$,=X$+Y$ 

The RSET statement assigns new values to string variables. The new data is 
right justified and the length is unchanged. 

SCRATCH 
SCRATCH # file-exp 
25 SCRATCH #G 

The SCRATCH statement allows you to truncate a sequential file. 
SCRATCH can only be used if the file was OPENed with ACCESS 
SCRATCH. 

STOP 
STOP 
110 STOP 

The STOP statement causes a halt in program execution. Files are not closed 
and a message indicating the location of the halt is printed. 

A-14 BASIC-PLUS- 2 Language Elements 



SUB 

SUB name [(dummy argument(s)l 
40 SUB TEST (A,B%) 

THE SUB statement marks the beginning of a subprogram and defines the 
type and number of subprogram parameters. 

SUB END 

SUBEND 
25 SUBEND 

The SUBEND statement marks the end of the subprogram and returns con
trol to the calling program. It must appear at the end of all subprograms. 

SUBEXIT 

SUBEXIT 
888 SUBD(IT 

The SUBEXIT statement is equivalent to a GOTO, where the destination is 
the SUBEND statement in the current subprogram. SUBEXIT is legal only in 
a subprogram. 

UNTIL 

UNTIL <conditional-exp> 
50 UNTIL 1=0 

The UNTIL statement sets up a loop that must have a corresponding NEXT 
statement. The loop executes until the expression is true. 

UPDATE 

UPDATE # <num-exp>[,COUNT expl 
50 UPDATE #1 

The UPDATE statement changes an existing record in the file. On sequential 
files the new record size as defined in the MAP or COUNT clause, must be the 
same as the record it replaces. An UPDATE must be preceded by a successful 
GET or FIND. 

WHILE 

WHILE <conditional-exp> 
75 WH I LE A'X,( 10'1., 

The WHILE statement sets up a loop that must have a NEXT statement. 
The conditional expression is evaluated before each loop iteration. If the ex
pression is true, BASIC executes the statements in the loop. If the expression 
is false, BASIC executes the statements following the NEXT statement. 

BASIC-PLUS-2 Language Elements A-15 



A.4 Functions 

Function 

ABS(x) 

ASCII(x$) 

ATN(x) 

BUFSIZ(n%) 

CCPOS(n%) 

CHR$(x%) 

COMP%(x$,y$) 

COS(s) 

CTRLC 

CVT$$ 

DATE$(O%) 

DATE$(x%) 

Usage 

returns the absolute value of x. 

returns the decimal ASCII value of the first charac
ter of a specified string. 

returns the arctangent of x in radians. 

In certain applications, it is important for a program 
to determine the buffer size of an open channel, par
ticularly if the OPEN statement spcifies a logical 
device name. Your program can execute the integer 
function BUFSIZ to extract this information. The 
BUFSIZ function returns an integer value, which is 
the size of the buffer in bytes. If the channel is 
closed, BUFSIZ equals O. 

The format of the BUFSIZ function is: 

BUFSIZ(N%) 

where N % equals the channel number. 

Returns the current position on the output line for 
the given channel number. The format of the 
CCPOS function is: 

CCPOS(N%) 

where N % is the I/O channel number. N % may 
range from 0 to 14. CCPOS(O%) returns the position 
for your terminal. 

returns the character equivalent of the ASCII value 
x%. 

returns the following: 

Value Returned 

1 
o 

-1 

returns the cosine of x. 

Relationship of x$ to y$ 

greater than 
equal to 
less than 

CTRLC enables CTRL/C trapping. 

See EDIT$. 

returns the current date in the form dd-mmm-yy. 

returns the date in the form dd-mmm-yy according 
to the formula: 

x%= 1000 * (years since 1970) + (Julian day of the year) 

A-16 BASIC-PLUS-2 Language Elements 



DET 

DIF$(x$,y$) 

ECHO(n%) 

EDIT$(string,n%) 

ERL 

ERN$ 

ERR 

ERT$(n%) 

EXP(x) 

FIX(x) 

FORMAT$(B$,A) 
(A,B$) 

FSP$(N%) 

FSS$(A$,B%) 

INSTR(z%,x$,y$) 

INT(x) 

LEFT$(x$,y%) 

LEN(x$) 

LOG(x) 

LOG10(x) 

returns the determinant of a matrix. 

subtracts y$ from x$ and returns the difference. 

ECHO enables terminal echo of characters sent to 
the system from your terminal. 

converts the string to an integer. 

returns the line number on which an error occurred. 

returns the name of the subprogram in which an 
error occurred. 

returns the error code (see Appendix C). 

The ERT$ function returns the text error message 
associated with a given value of N %. N % equals the 
error code for the current error. (See Appendix C.) 

returns the value of eAx where e = 2.71828, the base 
of natural logarithms. 

returns the value of x truncated to an integer. 

returns the numeric variable formatted according to 
the contents of the associated string. The formatting 
rules are the same as for PRINT USING. 

returns the string that describes the file that is open 
on a given channel. N % is the channel number. 

performs a filename string scan on A$ starting at 
position B %. 

returns the position of substring y$ in the main 
string x$ starting at position z%. 

returns the integral part of x. (lNT(x) returns the 
same value as FIX(x) for equal values of x, but 
INT(x) does not change x.) 

returns a substring of x$ beginning at the leftmost 
position for a total length of y % characters. 

returns the number of characters in x$. 

returns the natural logarithm of x. In the following 
formula where: 

then 

In y = log(e) y = x 

returns the common logarithm of x. Common logar
ithms differ from natural logarithms in that the base 
of common logarithms is 10, as opposed to 2.71828 
for natural logarithms. 

BASIC-PLUS-2 Language Elements A-17 



MID$(string,nl %,n2%) returns a substring n2% characters long starting at 
position nl% of string. 

NOECHO(N%) 

NUM 

NUM2 

NUM$(n%) 

NUM1$(n%) 

PI 

PLACE$(x$,n%) 

POS(x$,y$,z%) 

PROD$(x$,y$,n%) 

QUO$(x$,y$,n%) 

RAD$(x%) 

RCTRLC 

RCTRLO(N%) 

RECOUNT 

RIGHT$(x$,y%) 

RND 

disables terminal echo. 

is the number of columns you enter in a matrix. 

is the number of elements in the last column of a 
matrix. 

returns n% as PRINT would write it. 

returns n% as PRINT would write it, but without 
spaces or E format. 

returns a constant value: 3.14159. 

returns x$ with precision according to n%. 

returns the position of substring y$ in that portion of 
the main string x$ that extends from position z% to 
the end of the main string. See also INSTR. 

returns the product of x$ and y$ with precision 
according to n %. 

divides x$ by y$ and returns the quotient with 
precision according to n %. 

converts the integer x% to its RADIX-50 equivalent. 

disables CTRL/C trapping. 

cancels the effect of typing CTRL/O on channel N %. 
See your system of user's guide for a description of 
the effect of CTRL/O on your system. 

A GET or INPUT operation can transfer a variable 
number of bytes of data. This occurs when you re 
doing input from a device such as a terminal or mag
tape or from a file with variable records. The system 
variable RECOUNT allows you to determine how 
much data was actually read. RECOUNT contains 
the number of characters read after each input 
operation. 

RECOUNT is set by every input operation on any 
channel, including channel 0 (your terminal). For 
this reason, if you need to know the value of 
RECOUNT for testing, you should copy it immedi
ately after you execute a GET statement. Note that 
if an error occurs during the GET operation, 
RECOUNT is not properly set. 

returns a substring of x$ that extends from the yth 
character to the end of the string. 

returns a real random number between 0 and 1. 

A-i8 BASIC-PLUS-2 Language Elements 



SEG$(x$,y%,Z%) 

SGN(x) 

SIN(x) 

SPACE$(x) 

SQR(x) 

STATUS 

STR$(x) 

STRING$(x %,y%) 

SUM$(x$,y$) 

TAB(x) 

TAN(x) 

TIME$(x %) 

TIME$(O%) 

TIME(O) 

VAL(x$) 

XLATE(A$,B$) 

returns the substring of x$ that extend from the yth 
character to the zth character (compare with 
RIGHT). 

returns: 

1 if x is: 
o 

-1 

positive 
zero 
negative 

returns the sine of x in radians. 

produces and returns a string of x spaces. 

returns the square root of x; also SQRT(x). 

The variable STATUS contains information about 
the last channel on which your program executed an 
OPEN statement. STATUS is a 16-bit word. Your 
proram can test each bit to determine the status of 
the channel. See your User's Guide to determine the 
interpretation of each bit. 

returns the value of an expression without the lead
ing and trailing blanks (see also NUM$(x)). 

creates and returns a string x% characters long that 
represents the ASCII value of y %. (See also ASCII.) 

returns the sum of x$ and y$. 

moves the print head to the xth position. 

returns the tangent of x in radians. 

returns the time x minutes before midnight. 

returns the present time. 

returns the clock time in seconds since midnight. 

computes the numeric value of the numeric string 
x$; x$ must be acceptable numeric input. 

translates a string to another using a translation 
table, B$. 

BASIC-PLUS-2 Language Elements A-19 



Table A-I: Arithmetic Operators 

Operator Use Meaning 

A or ** 5A 2 or 5**2 exponentiation 

* A*B multiplication 

/ AlB division 

+ A+B addition, 
unary plus, 
string concatenation 

- A- B subtraction, 
unary minus 

Table A-2: Logical Operators 

Operator Use Meaning 

NOT NOTA logical negative of A 

AND A AND B logical product of A and B 

OR A ORB logical sum of A and B 

XOR A XORB logical exclusive OR of A and B 

EQV AEQVB A is logically equivalent to B 

IMP A IMP B logical implication of A and B 

A-20 BASIC- PLUS-2 Language Elements 



Table A-3: Relational Operators 

Operator Use Meaning 

= A=B A is equal to B 

< A<B A is less than B 

> A>B A is greater than B 

<= or = < A<=B A is less than or equal to B 

>= or => A>=B A is greater than or equal to B 

<> or >< A<>B A is not equal to B 

-- A==B A is approximately equal to B 

Note that A is approximately equal to B (A==B) if the difference between A 
and B is less than 10" (-6). If A$ and B$ are strings, the relation (==) is true if 
the contents of A$ and B$ are the same in length and composition. 

A.S Reserved Keywords 

BASIC-PLUS-2 statements, function names, and record attribute specifica
tions are reserved. That is, the language keywords cannot be used for variable 
names. Table A-4 lists all of the BASIC-PLUS-2 language elements that are 
reserved. If you attempt to use one of the listed words as the name of a 
variable, external subroutine, MAP, or COMMON area, an error is returned. 
You can, however, use a variation on the reserved keyword. For example, IF$, 
AND%, and DIM$ are allowed. Note that the use of a period in the second or 
third character position of the variable name permits a faster program compi
lation because the compiler is not required to perform a keyword table search. 

Table A-4: Reserved Keyword List 

ABORT* EQ MID SIN 

ABS EQV MID$ SLEEP 

ABS% ERL MOD* SO 

ACCESS ERN$ MOD%* SP 

ACCESS%* ERR MODE SPACE$ 

ALL* ERROR MODIFY SPAN 

ALIGNED * ERT$ MOVE SQR 

(Continued on next page) 

BASIC-PLUS-2 Language Elements A-21 



Table A-4: Reserved Keyword List (Cont.) 

ALLOW ESC MSGMAP*** SQRT* 

ALTERNATE EXP NAME STATUS 

AND EXTEND* NEXT STEP 

APPEND FF NOCHANGES STOP 

AS FIELD NODATA* STR$ 

ASCII FILE NODUPLICATES STREAM 

ATN FILESIZE NOECHO STRING$ 

ATN2* FILL NONE SUB 

BACK FILL$ NOPAGE* SUBEND 

BEL FILL% NOQUOTE* SUBEXIT 

BIN$* FIND NOREWIND SUM$ 

BINARY* FIX NOSPAN SWAP% 

BIT* FIXED NOT SYS** 

BLOCK FNEND NOTAPE* TAB 

BLOCKSIZE FNEXIT NUL$ TAN 

BROADCAST* FOR NUM TAPE 

BS FORCEIN* NUM$ TASK 

BUCKETSIZE FORMAT$ NUMl$ TEMPORARY 

BUFFER FREE*** NUM2 TERMINAL* 

BUFFERSIZE* FROM OCT$* THEN 

BUFSIZ FSP$ ON TIM* 

BY FSS$ ONECHR TIME 

CALL GE ONENDFILE* TIME$ 

CCPOS GET ONERROR TO 

CHAIN GO OPEN TRM$ 

CHANGE GOSUB OR TRN 

CHANGES GOTO ORGANIZATION TST*** 

CHR$ GT OUTPUT TSTEND*** 

CLK$* HANGUP* PAGE* TYP* 

CLOSE HT PEEK** TYPE* 

CLUSTERSIZE** IDN PI TYPE$* 

COM IF PLACE$ UNALIGNED* 

COMMON IFEND* POS UNDEFINED 

COMP% IFMORE* POS%* UNLESS 

CON IMAGE* PPS%* UNLOCK 

CONNECT IMP PRIMARY UNTIL 

CONTIGUOUS INDEXED PRINT UPDATE 

(Continued on next page) 

A-22 BASIC-PLUS-2 Language Elements 



Table A-4: Reserved Keyword List (Cont.) 

cos INIMAGE* PROD$ USEAGE* 

COT* INPUT PUT USEAGE$* 

COUNT INSTR QUO$ USING 

CR INT QUOTE* USR* 

CTRLC INV RAD$ USR$* 

CVT$$ INVALID* RANDOM VAL 

CVT$% KEY RANDOMIZE VAL% 

CVT$F KILL RCTRLC VARIABLE 

CVT%$ LEFT RCTRLO VIRTUAL 

CVTF$ LEFT$ READ VPS%* 

DAT* LEN RECORD VT 

DAT$* LET RECORDSIZE WAIT 

DATA LF RECOUNT WHILE 

DATE$ LINE REF WINDOWSIZE*** 

DEF LINO* RELATIVE WITH* 

DEL* LINPUT REM WRITE 

DELETE LOC* RESET WRKMAP*** 

DELIMIT * LOCK*** RESTORE XLATE 

DENSITY* LOF* RESUME XOR 

DET LOG RETURN ZER 

DIF$ LOGIO RIGHT .ABORT 

DIM LSA* RIGHT$ .DEFINE 

DIMENSION LSET RND .ENDC* 

DOUBLEBUF* MAGTAPE RSET .IF* 

DUPLICATES MAP SCRATCH .IFDF* 

ECHO MAR* SEG$ .IFF* 

EDIT$ MAR%* SEQUENTIAL .IFNDF* 

ELSE MARGIN* SGN 

END MAT SI 

* - Reserved word, included for compatibility with DECSystem 20 
** - Supported on RSTS/E only 

*** - Supported on TRAX-ll only 
**** - Supported on non RSTS/E only 

BASIC-PLUS-2 Language Elements A-23 





Appendix B 
Run-Time Error Codes and Messages 

Table B-1 contains values of ERR that appear most commonly on your sys
tem at execution time, RMS-specific errors have values of ERR ranging from 
128 to the end of the table, Refer to the User's Guide for the meanings of error 
messages that do not appear in this table, 

The question mark (?) or percent sign (%) that precedes each message printed 
indicates whether the error is fatal or a warning, respectively, 

Table B-1: ERR Values, Error Messages, and Their Meanings 

ERR Message Printed Meaning 

1 ?BAD DIRECTDRY FDR DEI,'ICE The directory the device referenced is in 
an unreadable format. 

2 ? ILLEGAL FILE NAME The filename specified is not acceptable. 
It contains embedded blanks or unaccept-
able characters. 

3 ?ACCOUNT OR DEVICE IN USE The specified operation cannot be per-
formed because the file has already been 
opened by someone else. This message 
has a general "file in use" meaning. 

4 ?NO ROOM FOR USER ON DEI,' I CE Storage space allowed for the current user 
on the device specified has been used or 
the device as a whole is too full to accept 
further data. 

5 ?CAN 'T FIND FILE OR ACCOUNT The file specified or current user account 
numbers were not found on the device 
specified. This message has a general "not 
here" meaning. 

(continued on next page) 

B-1 



Table B-1: ERR Values, Error Messages, and Their Meanings (Cont.) 
ERR Message Printed 

6 ?NOT A I,IAUD DEI,IICE 

7 ? I /0 CHANNEL ALREADY OPEN 

8 ?DEI,Il CE NOT A 1,1 A I LABLE 

9 ? I/O CHANNEL NOT 0 PEN 

10 ?PROTECTION I,IlOLATION 

11 ?END OF FILE ON DEI,IICE 

12 ?FATAL SYSTEM I/O FA I LURE 

13 ?USER DATA ERROR ON DEI,I I CE 

14 ?DEI,I I CE HUNG OR WR I TE LOCKED 

15 ?KEYBDARD WA I T D:HAUSTED 

16 ?NAME OR ACCOUNT NOW E)( I STS 

17 ?TOO MANY OPEN FILES ON UN IT 

28 ?PROGRAMMABLE "' C TRAP 

29 ?CORRUPTED FILE STRUCTURE 

30 ?DEI,IlCE NOT FILE-STRUCTURED 

B-2 Run-Time Error Codes and Messages 

Meaning 

Attempt to use an illegal or non-existent 
device . 

An attempt was made to open one of the 
I/O channels which had already been 
opened by the program. 

The device requested IS currently 
reserved by another user. 

Attempt to perform I/O on one of the 
channels that has not been previously 
opened in the program. 

The current user is not allowed to perform 
the requested operation on the specified 
file. Input may have been requested from 
an output-only device or vice versa. This 
message has a general "can't do that" 
meaning. 

Attempt to perform input beyond the end 
of a data file. 

An I/O error has occurred on the system 
level. The user has no guarantee that the 
last operation has been performed. 

One or more characters may have been 
transmitted incorrectly due to a parity 
error, bad punch combination on a card, 
or similar error. 

Check hardware condition of device 
requested. Possible causes of this error 
include a line printer out of paper or high
speed reader being off-line. 

Time requested by WAIT statement has 
been exhausted with no input received 
from the specified keyboard. 

An attempt was made to rename a file 
with the name of a file which already 
exists. 

Only one open DECtape output file is 
permitted per DEC tape drive. Only one 
open file per magtape drive is permitted. 

ON ERROR-GOTO subroutine was 
entered through a program trapped by 
means of Control/C. 

Fatal error in CLEAN operation. 

An attempt is made to access a device, 
other than a disk as a file-structured 
device. This error occurs, for example, 
when the user attempts to gain a direc
tory listing of a non-directory device. 

(continued on next page) 



Table B-1: ERR Values, Error Messages, and Their Meanings (Cont.) 

ERR Message Printed 

31 ?ILLEGAL BYTE COUNT FOR I/O 

33 ?UN I BUS TIMEOUT FATAL TRA P 

35 ?MEMoRY MANAGEMENT I.' I oLAT I ON 

42 ?I) I RTUAL BUFFER TOO LARGE 

43 ?I) I RTUAL ARRAY NOT ON 0 I SK 

44 ?MATR 1)( OR ARRAY TOO BIG 

45 ?I.'IRTUAL ARRAY NOT YET OPEN 

46 ? I LLEGAL I/O CHANNEL 

47 ?L I NE TOO LONG 

48 /.,FLoATING POINT ERROR 

49 'X, ARGUMENT TOO LARGE IN E){P 

50 'X,oATA FORMAT ERROR 

51 'X, I NTEGER ERROR 

52 'X, I LLEGAL NUMBER 

53 /., I LLEGAL ARGUMENT I N LOG 

Meaning 

The buffer size specified in the RECORD
SIZE option of the OPEN statement does 
not match t he I/O attempted. 

This hardware error occurs when an 
attempt is made to address non-existent 
memory or an odd address using the 
PEEK function. An occurrence of this 
error in any other case is cause for an SPR. 

This hardware error occurs when an ille
gal Monitor address is specified using the 
PEEK function. An occurrence of this 
error m situations other than using 
PEEK is cause for an SPR. 

Virtual memory buffers must be at least 
512 bytes long. 

A non-disk device is open on the chan
nel upon which the virtual array is 
referenced. 

In-core array size is too large. 

An attempt was made to use a virtual 
array before opening the corresponding 
disk file. 

Attempt was made to open a file on an 
I/O channel outside the range of legal 
channel. 

Attempt to input a line longer than the 
buffer. 

Floating point overflow or underflow. If 
no transfer is made to an error handling 
routine, a 0 is returned as the floating
point value for underflow and the maxi
mum positive number for overflow. 

Value is outside of legal range. 

The input data is floating point, but 
the INPUT or READ statement specifies 
integer input. 

Attempt to use a number as an integer 
when that number is outside the allow
able integer range . If no transfer is made 
to an error handling routine, a 0 IS 

returned as the integer value. 

Improperly formed input. For example, 
"1..2" is an improperly formed number. 

Negative or zero argument to log func
tion. Value returned is the argument as 
passed to the function. 

(continued on next page) 

Run-Time Error Codes and Messages B-3 



Table B-1: ERR Values, Error Messages, and Their Meanings (Cont.) 
ERR Message Printed 

54 'X, I MAG I NARY SQUARE ROOTS 

55 ?SUBSCR I PT OUT OF RANGE 

56 ?CAN I T I Nl.JERT MATR 1)-( 

57 ?OUT OF DATA 

58 ?ON STATEMENT OUT OF RANGE 

59 ?NOT ENOUGH DATA IN RECORD 

60 ?INTEGER Ol.JERFLOW, FOR LOOP 

61 'X,DIl.'ISION BY I) 

62 ?NO RUN-TIME SYSTEM 

63 ?F I ELD OVERFLOWS BUFFER 

64 ?NOT A RANDOM ACCESS DEl.lI CE 

65 ?ILLEGAL MAGTAPE USAGE 

67 ?ILLEGAL SWITCH USAGE 

71 ?STATEMENT NOT FOUND 

72 ?RETURN WITHOUT GOSUB 

73 ?FNENO WITHOUT FUNCT I ON CALL 

B-4 Run-Time Error Codes and Messages 

Meaning 

Attempt to take square root of a number 
less than O. If no transfer is made to an 
error handling routine, the value returned 
is the square root of the absolute value of 
the argument. 

Attempt to reference an array element 
larger than the maximum specified. 

Attempt to invert a singular matrix. 

A READ requested additional data from 
an exhausted DATA list . 

The index value in an ON GOTO or ON 
GOSUB statement IS less than 1 or 
greater than the number of line numbers 
in the list. 

An INPUT statement did not find enough 
data in one line to satisfy all the specified 
variables. 

The integer index III a FOR loop 
attempted to go beyond implementation 
defined limits. 

Attempt by the user program to divide 
some quantity by O. If no transfer is made 
to an error handling routine, the largest 
positive number is returned as the result. 

The run-time system referenced has not 
been added to the system list of run-time 
systems. 

Attempt to use FIELD to allocate more 
space than exists in the specified buffer. 

Random I/O was attempted on a non
random access device. Use another device, 
if possible. 

Improper use of MAGTAPE function. See 
RSX-llM Programming Manual for 
details. 

The switch operation or specification is 
illegal. 

An attempt was made to CHAIN into a 
program at a nonexistent line number. 

RETURN statement encountered in user 
program without a previous GOSUB 
statement having been executed. 

An FNEND statement was encountered 
in the user program without a previous 
DEF statement having been executed. 

(continued on next page) 



Table B-1: ERR Values, Error Messages, and Their Meanings (Cont.) 
ERR Message Printed 

88 ?ARGUMENTS DON I T MATCH 

89 ?TOO MANY ARGUMENTS 

97 ?TOO FEW ARGUMENTS 

103 ?PROGRAM LOST - SORRY 

104 ?RESUME AND NO ERROR 

105 ?RED I MENS I ONED ARRAY 

116 ?PR INT -USI NG FORMAT ERROR 

125 ? WRONG MATH PACKAGE 

126 ?MA)UMUM MEMORY D(CEEDED 

127 'X,SCALE FACTOR INTERLOCK 

128 ?TAPE RECORDS NOT ANSI 

130 'X,KEY NOT CHANGEABLE 

Meaning 

Arguments in a function call do not 
match, in number or in type, the argu
ments defined for the function. 

A user-defined function may have up to 
five arguments. 

The function has been called with a num
ber of arguments not equal to the number 
defined for the function. 

A fatal system error has occurred which 
caused the user program to be lost. This 
error can indicate hardware problems or 
use of an improperly compiled program. 
Consult your system manager or the dis
cussion of such errors in the RSX-llM 
System Manager 's Guide. 

A RESUME statement was encountered 
where no error had occurred to cause a 
transfer into an error handling routine via 
the ON ERROR GO TO statement. 
Usage of an array or matrix within the 
user program has caused BASIC-PLUS-2 
to redimension the array implicitly. 

An error was made during the construc
tion of the string used to supply the 
output format in a PRINT-USING 
statement. 
Subprogram was compiled with either the 
2-word or 4-word math package and an 
attempt is made to run the subprogram 
with a main program having the opposite 
math package. Recompile the sub
program using the math package of the 
main program with which it will be run. 

Program attempts to expand itself 
beyond limits set by swap maximum or 
run-time system maximum. This can be 
caused by too many open I/O channels or 
too much string activity. 

Subprogram was compiled with a differ
ent scale factor from main program with 
which it is running. Recompile the sub
program with the scale factor used by the 
main program. 

A GET was attempted on variable length 
records from a file on magtape. The 
records must be in ANSI D format. 

An UPDATE was attempted on an 
indexed file. The replacement record 
may not contain key fields that du'plicate 
another record's key fields. Specify 
CHANGES in the OPEN for this key. 

(continued on next page) 

Run-Time Error Codes and Messages B-5 



Table B-1: ERR Values, Error Messages, and Their Meanings (Cont.) 
ERR Message Printed 

131 'X,NO CURRENT RECORD 

132 ?RECORD HAS BEEN DELETED 

133 ? I LLEGAL USAGE FOR DEI.JI CE 

134 'X,DUPLI CATE KEY DETECTED 

135 ? I LLEGAL USAGE 

136 ? I LLEGAL DR I LLOG I CAL ACCESS 

137 ?ILLEGAL KEY ATTRIBUTE 

138 'X,FILE IS LOCKED 

140 ? I NOD: NOT I N IT I ALI ZED 

B-6 Run-Time Error Codes and Messages 

Meaning 

A previous GET or FIND is missing or 
was unsuccessful. This PUT or UPDATE 
therefore fails, 

A record previously located by its Records 
File Address (RFA) has been deleted. 

The requested operation cannot be per
formed because: 

1. The device specification contains 
illegal syntax. 

2. The specified device does not exist on 
this system. 

3. The specified device is inappropriate 
for the requested operation (e.g., mag
tape for an indexed file). 

A PUT operation was attempted with one 
or more duplicate key fields in an indexed 
file where duplicate key values were not . 
permitted at file creation time. 

An OPEN was attempted on a file of 
undeclared organization or the specfied 
record operation was not stated in the 
ACCESS clause. 

The requested access IS impossible 
because: 

1. The attempted record operation and 
the ACCESS clause 111 the OPEN 
statement are incompatible. 

2. The ACCESS clause is incorrect for 
the organization of this file. 

3. READ or APPEND was specified at file 
creation time. Change the ACCESS 
clause. 

An illegal combination of key character
istics has occurred. Check the OPEN 
statement of this file for either of the 
following: 

NODUPLICATES and CHANGES 

CHANGES without DUPLICATES 

This file has been locked by another user 
or by the system in a program that does 
not allow shared access. 

A GET or FIND was attempted on an 
empty file. 

(continued on next page) 



Table B-1: ERR Values, Error Messages, and Their Meanings (Cont.) 
ERR Message Printed 

141 ? ILLEGAL 0 PERAT I ON 

142 ? I LLEGAL RECORD DN FILE 

143 'X.BAD RECORD I DENT! F I ER 

144 'X. I NI.JALI D KEY OF REFERENCE 

145 'X.KEY SIZE TOO LARGE 

146 ?T APE NOT ANS I LABELLED 

Meaning 

The requested operation IS illegal 
because: 

1. DELETE is impossible on a sequential 
file . 

2. UPDATE is impossible on a magtape 
file. 

3. Block I/O is impossible on an RMS 
file. (Block I/O requires VIRTUAL 
organization.) 

4. RMS I/O is impossible on a block I/O 
structured file. (RMS I/O requires 
sequential, relative, or indexed organi
zation.) 

The count field record in the file IS 

invalid. 

The requested operation cannot be per
formed because: 

1. Random access operations cannot be 
performed with a zero or negative 
record number specification. 

2. A GET or FIND on an indexed file 
cannot contain a null key value. 

A GET, FIND, or RESTORE was 
attempted with an invalid key of refer
ence value. 

The key length on a GET or FIND is 
either zero or larger than the key length 
defined for the target record . 

BASIC supports only ANSI-labelled 
magtape. 

147 ·X.RECORO NUMBER E:-:CEEDS MM( I MUM Either the maximum record number at 

148 ?BAD RECORDSIZE I,JALUE ON OPEN 

149 ?NOT AT END OF FILE 

150 ?NO PRIMARY KEY SPECIFIED 

file creation is negative or the specified 
record number exceeds the maximum 
specified for this file . 

The value in the RECORDSIZE clause in 
the OPEN statement is zero. 

A sequential file must be at end of file 
before a PUT is attempted. (This error 
may also occur when an existing file is 
opened for WRITE access.) 

An indexed file cannot be created without 
a primary key. 

151 ?KEY FIELD BEYOND END OF RECORD The position given for the key field 
exceeds the maximum size of the record. 

153 ·X.RECORD ALREADY D( I STS An attempted random access PUT on 
a relative file has encountered a pre
existing record. 

(continued on next page) 

Run-Time Error Codes and Messages B-7 



Table B-1: ERR Values, Error Messages, and Their Meanings (Cont.) 
ERR Message Printed 

154 'X,RECORO/BUCKET LOCKED 

155 'X,RECORD NOT FOUND 

156 'X,S I ZE OF RECORD I NI.JAL I D 

157 'X,RECORD ON FILE TOO BIG 

158 'X,PR IMARY KEY OUT OF SEQUENCE 

159 ?KEY LARGER THAN RECORD 

160 ?FILE ATTRIBUTES NOT MATCHED 

161 ?MOI.JE OI.JERFLOWS BUFFER 

Meaning 

The target bucket has been locked by 
another program. 

A random access GET or FIND was 
attempted on a nonexistent record 
(either never written or previously 
deleted). 

The COUNT specification is invalid 
because: 

1. COUNT equals zero . 

2. COUNT exceeds the maximum size of 
the record . 

3. COUNT conflicts with the actual size 
of the current record during a sequen
tial file UPDATE on disk. 

4. COUNT does not equal the maximum 
record size for fixed format records. 

The record accessed is larger than the 
input buffer. 

The key value of this record is less than 
the key value of the previous record in a 
sequential access PUT on an indexed file. 

The key specification exceeds the maxi
mum record size. 

The following attributes in the OPEN 
statement do not match the correspond
ing attributes of the target file: 

ORGANIZATION 
BUCKETSIZE 
BLOCKSIZE 
RECORDSIZE 
record format 
number, position, and length of indexed 
file keys 

The combined length of the elements in 
the MOVE statement I/O list exceeds the 
RECORDSIZE defined for the file . (This 
error occurs when an attempt is made to 
MOVE data to the output buffer.) 

164 ?TERMINAL FORMAT FILE REQUIREO The PRINT and INPUT statements 

165 ?CANNOT POS I T I ON TO EOF 

require a terminal format file. 

The operating system could not find the 
end of a sequential file that was opened 
for APPEND access. The file may be 
corrupted. 

166 'X.NEGAT II)E FILL OR STR I NG LENGTH The FILL elements in a MOVE state-

B-8 Run-Time Error Codes and Messages 

ment I/O list is less than zero. Reformat 
the I/O list. 

(continued on next page) 



Table B-1: ERR Values, Error Messages, and Their Meanings (Cont.) 

ERR Message Printed 

167 ? I LLEGAL RECORD FORMAT 

168 ?ILLEGAL ALLOW CLAUSE 

170 '1., I NO E)( 0 P TI M I Z A TID N ERR 0 R 

171 ?RRI,I ERROR 

173 ?INI,IALID RFA FIELD 

238 ? A R RAY S MUS T B E SAM E DIM ENS ION 

239 ?ARRAYS MUST BE SQUARE 

243 ?CHA I N TO NOND: I STENT LINE NO. 

244 '1"D:PONENT I AT I ON ERROR 

250 ?NOT IMPLEMENTED 

251 ?RECURS II,IE SUB ROUT I NE CALL 

Meaning 

The record given is illegal for the organi
zation or operating system on which this 
file resides, The existence of embedded 
carriage control characters In variable 
length records can cause this error, 

The value specified for the ALLOW 
clause is illegal for the type of organiza
tion or for the operating system on which 
the file resides , 

During a PUT or UPDATE operation on 
an indexed file, the record was success
fully written, The record can later be 
retrieved, but RMS- ll was unable to 
optimize the structure of the index at the 
time the record was inserted, Several 
indirections will therefore occur on 
retrieval, slowing the process. 

During a PUT or UPDATE operation on 
an indexed file, the record was success
fully written. RMS-ll was unable to up
date one or more Record Retrieval Vectors 
(RRVs) and the records associated with 
those RRVs cannot be retrieved later using 
alternate indices on RF A addressing 
mode . The best solution is to delete the 
records involved and reinsert them. 

The value specified as the RF A to an 
RMS routine is incorrect or beyond the 
bounds of the field. 

A matrix addition or subtraction opera
tion was attempted on arrays of different 
dimensions. 

Matrix multiplication was attempted on 
non-square array(s) . 

The line number in the CHAIN state
ment does not exist. If the program was 
compiled with the /NOLINE switch, 
recompile without that switch. 

The attempted exponentiation is illegal. 
The result of this operation is set to zero 
and the program continues. Be sure that 
the size of the exponent is not too large or 
too small for your system. 

Some enhancement to the kernel 
BASIC-PLUS- 2 language is not imple
mented on this operating system. 

A subroutine is attempting to call itself, 
either directly or indirectly. Examine the 
flow of control from the first call to the 
point at which this error occurs. 

Run-Time Error Codes and Messages B-9 





Appendix C 
Compile Time Error Messages 

BASIC-PLUS-2 prints a diagnostic message when it detects an error. These 
messages contain information on the type of error and, where possible, the 
program line that generated the error. The message indicates error location by 
including the phrase: 

AT LINE xxx 

following the error type . The value of xxx is the program line nllmber where 
the error is located. Note that error location will not appear in the message if 
the program is compiled with the /NOLINE switch. 

The BASIC- PLUS-2 compile-time error messages (see Section C.2) contain 
additional location information. That is, the error type is followed by a phrase 
that indicates the erroneous statement as well as the line number. These 
messages have the form: 

Mes s aSe AT LINE xxx IN STATEMENT y 

where y is a number that identifies a particular statement on line xxx. Note 
that the statement number appears during the initial error detection. 

The printed error messages are preceded, in most cases, by either a question 
mark (?) or a percent sign (%). A question mark indicates a fatal error; 
compilation continues, but no output is produced. A percent sign indicates a 
warning message; execution can continue, but the result is unpredictable. If 
neither symbol is present, the message is for information only. 

Section C.2 contains the BASIC- PLUS-2 error messages printed during com
pilation. Included with each error message is an explanation and a general 
recovery procedure. The explanation indicates the general reason for the 
error's occurrence and also shows the error's severity (i.e., fatal , warning, or 
information) . 

C-l 



C.1 Traceback 

BASIC-PLUS-2 provides a traceback mechanism that traces the path of 
program execution when an error occurs in a function or subroutine. Trace
back takes effect only if error trapping is not enabled. When a fatal error 
occurs in a function or subroutine, the error message is printed. The message 
is followed by text that describes the execution path of the program beginning 
at the point of the error back to the initial call in the main routine. Note that 
Traceback does not describe a path across chained routines. The Traceback 
text describes the routine name that was called and the line number and 
routine name that initiated the call. If a routine is compiled with the 
/NOLINE switch, line number 0 is used in .the text. 

Consider the following example that lists three routines. When the routines 
are run and an error detected, the Traceback text is printed: 

MAIN.B2S 

100 PRINT "LINE 100" 
200 GOSUB 1000 
300 PRINT "LINE 300" 
1I00 GO TO 327G7 
1000 A'X,=FNS'X, (3'X,) 

1100 RETURN 
1200 OEF FNS'X. (E'X,) 
1210 CALL SUBR (E'X, ) 
1220 FNS'X,=E'X,+ 1 'X, 
1230 FNENO 
327G7 END 

SUBR.B2S 

1000 SUB SUBR (D'X. ) 

1100 PRINT "LINE 1100 IN SUBR" 
1200 GOSUB 2000 
1300 PRINT "LINE 1300 IN SUBR" 
11100 GO TO 327G7 
2000 A=FNZ'X, 
2200 RETURN 
3000 DEF FNZ'X, 
3100 CALL SUBR2 (33'X,) 

3200 FNEND 
327G7 SUBEND 

SUBR2.B2S 

10 SUB SUBR2(IZ) 
110 PRINT "LINE 110 IN SUBR2" 
123 GOSUB GGG 
200 GO TO 327G7 
GGG E=FNE 
GG7 RETURN 
GG8 GO TO 327G7 
2000 DEF FNE 
2050 LET A'X,=O 

C-2 Compile Time Error Messages 



2100 FNE=1/A% !NOTE THAT THIS LINE ALWAYS PRODUCES AN ERROR 
2200 FNENO 
327G7 SUBENO 

When these routines are executed, the output appears as follows: 

LINE 100 
LINE 1100 IN SUBR 
LINE 110 IN SUBR2 
'X,Oil)ision b}' 0 at line 2100 in "SUBR2" 
FUNCTION called at line GGG in "SUBR2 " 
GOSUB called at line 123 in "SUBR2 " 
"SUBR2 " called at line 0 in "SUBR " 
FUNCTION called at line 0 in "SUBR " 
GOSUB called at line 0 in "SUBR " 
"SUBR " called at line 1210 in "MAIN" 
FUNCTION called at line 1000 in "MAIN" 
GOSUB called at line 200 in "MAIN" 

Basic2 

Note that the routine SUBR is compiled with the /NOLINE switch enabled. 

C.2 Compile-Time Error Messages 

The following alphabetized list describes the error messages that 
BASIC-PLUS-2 returns during compilation. The description includes the 
general cause of the error and the steps that you can take to recover from it. 
The severity of the error is also noted. 

FATAL - The function call arguments differ in quantity or type from those 
defined for the function. Check the function definition. Change the arguments 
or definition to conform. 

? ArgUMents don't Match in (x) at line n 

FATAL - The argument that you supplied in a user-defined function call 
does not match the dummy argument defined in the DEF statement. In this 
message, x is the user-defined function name and n is the line number of the 
call. The argument inconsistency can be in terms of type (i.e., string and 
numeric) or number of arguments. Examine the program and ensure that 
function arguments agree with those defined in the DEF statement. 

% CALL/SUB forces OBJ output 

WARNING - An attempt is made to compile a program that contains a 
CALL or SUB statement into a task image file. Programs that contain these 
statements must be compiled as object modules and linked by the Task 
Builder. The compiler automatically generates an object module when it 
encounters a CALL or SUB statement in the program. 

Compile Time Error Messages C-3 



% /DEB forces OBJ output 

WARNING - An attempt is made to compile a program to task image format 
which contains the /DEBUG switch. The /DEBUG option requires the pro
duction of an object module on systems that do not support floating-point 
processors. 

% ERL overrides /NOLINE 

WARNING - An error routine that requires an ERL variable is contained in 
a program that is compiled with the /NOLINE switch. The /NOLINE switch 
is nullified. 

?? Error n at line M in x, cOMPilinS line p 

FATAL - In this message, n represents the value of the ERR variable, m is 
the line number where the error originated, x is the name of the module that 
contains the error, and p is the currently compiling program line. This error 
causes the loss of your program, an exit from BASIC, and a return to opera
ting system command level (this degree of severity is indicated by the double 
question mark). It is a compiler error and should not occur. In the event that 
it does, use a Software Performance Report to report the error to DIGITAL 
and include a copy of the source program. 

? Expression too cOMPlex at line n 

FATAL - The compiler encounters an expression that is too complex to com
pile. In this message, n is the line number that contains the expression. 
Rewrite the expression as two or more assignment statements and retry the 
compilation. This error should never occur. 

? FNEND without DEF 

FATAL - The compiler encounters an FNEND statement without first 
encountering a DEF statement. Ensure that the desired function is 
defined before the FNEND statement in the program. 

? Illesal character 

FATAL - An attempt is made to compile a program line that contains illegal 
or incorrect characters. Examine the program line for correct usage of the 
BASIC-PLUS-2 character set. 

? Illesal COM/MAP/SUB naMe 

FATAL - A MAP, COMMON, or subprogram name exceeds six characters or 
contains illegal non-alphanumeric characters. Correct the program line. 

C-4 Compile Time Error Messages 



? IlleYal DELETE command 

WARNING - An attempt is made to use the DELETE command with no line 
number argument. The DELETE command requires a specified line number. 
No lines are deleted from the program. 

? IlleYal dummy arYument 

FATAL - There are two occurrences that can cause this error. 

1. The same variable appears more than once in a SUB statement argument 
list. 

2. A DEF statement argument is also used as a parameter in a SUB 
statement. 

? IlleYal FILL specification 

FATAL - An attempt is made to include a length statement in an integer or 
floating-point FILL or FILL% specification. That is, a MAP or MOVE state
ment that contains a FILL or FILL% specification allocates a specific amount 
of space. If you attempt to specify a length in the program (e.g., 
FILL%=10%), an error results. To allocate additional space, you must specify 
a FILL specification argument in the MAP or MOVE statement; for example, 
FILL%(5%). Note that the FILL$ specification does allow you to define a 
length in number of characters. 

? IlleYal FN redefinition 

FATAL - An attempt is made to redefine a function. A function can be 
defined only once in a program. Use a different function name for each func
tion definition. 

? IlleYal loop nestinY 

FATAL - The program contains nested loops that overlap each other. Exam
ine the program logic and ensure that all nested loops are properly initialized 
and terminated. 

? IlleYal MAP statement 

FATAL - The compiler encounters a MAP statement that does not contain a 
legal map name. Ensure that a 1- to 6-character name enclosed in 
parentheses is used to label the map. 

? IlleYal mode mixiny 

FATAL - An attempt is made to mix string and numeric operations. Ensure 
that the program does not contain incompatible data operations. 

Compile Time Error Messages C-5 



'X, Illegal nurrlber 

WARNING - This error is caused by integer overflow or underflow or by 
floating-point overflow. Ensure that the specified numbers are within the 
legal range of +32767 to -32767 for integers and lE38 to lE-38 for floating
point. 

? Illegal relative operator 

FATAL - This message indicates a compiler error and should not occur. In 
the event that it does, use a Software Performance Report to report the error 
to DIGITAL and include all pertinent output. 

? Illegal string operator 

FATAL - An incorrect string operator is detected in the program. For exam
ple, A$=B$-C$ can cause this error. Examine the program for correct string 
operations. 

? Illesal subscript 

FATAL - A DIM statement or array reference contains a subscript in illegal 
format (e.g., DIM A(A$» . Use a subscript of the correct data type . 

% Incon s istent function usaSe in (xl at line n 

WARNING - A user-defined function that contains an integer dummy argu
ment is supplied with a floating-point argument in the function call. In this 
message, x is the user-defined function name and n is the line number of the 
call. The floating-point argument is truncated to an integer value and the 
compilation continues. 

? Inconsistent subscript usaSe 

FATAL - This error occurs when the same subscripted variable name 
appears with both 1 and 2 subscripts. Change the name of one of the 
arrays. Ensure that subscripted variables retain the same dimensions throughout 
the program. 

? LoSical op~ration on non-inteser 9uantity 

FATAL - The program contains an incorrect data type in a logical operation 
(e.g., A%=B AND C%,. Use integer data types in logical operations. 

% Loop will n ot execute at line n stateMent M 

WARNING - The program contains a FOR/NEXT loop whose parameters 
are constants. The compiler evaluates the parameters, and if the resulting 

C-6 Compile Time Error Messages 



loop is unexecutable, prints the above message. The program compiles cor
rectly, but with a branch around the loop at the line and statement contained 
in the message. 

% MAT INV forces OBJ output 

WARNING - An attempt is made to compile a program that contains a 
MATRIX INVERSION statement into a task image file. Programs that con
tain this statement must be compiled as object modules and linked by the 
Task Builder. The compiler automatically generates an object module when it 
encounters a MATRIX INVERSION statement. 

? Missins FNENO 

FATAL - The compiler encounters a multi-line DEF statement without a 
corresponding FNEND. Ensure that multi-line function definitions are termi
nated with an FNEND statement. 

? Missins SUBENO 

FATAL - The compiler encounters a subprogram that does not contain a 
corresponding SUBEND statement. Ensure that the subprogram is properly 
terminated. 

? Multiply allocated variable 

FATAL - A program variable is assigned conflicting values or is inconsis
tently used in a statement. For example, COM A,B,A, where the variable A is 
assigned to COMMON twice, can cause this error. 

? MultiplY defined SUB or recursive CALL 

FATAL - An attempt is made to compile a subprogram that contains an 
illegal call to itself. Ensure that subprograms do not call themselves. 

? NEXT without FOR 

FATAL - The compiler encounters a NEXT statement without first 
encountering a corresponding FOR statement. A loop must be initialized with 
a FOR statement. 

? NEXT without WHILE/UNTIL 

FATAL - The program encounters an uninitialized conditional loop. Exam
ine the program and ensure that each conditional loop NEXT statement 
corresponds to a prior WHILE or UNTIL statement. 

Compile Time Error Messages C-7 



? Pro~ram overflows 

FATAL - An attempt is made to compile a program that exceeds the allow
able memory space. Recompile the program as separate object modules. 

% RESUME overrides INOLINE 

WARNING - A program, compiled with the /NOLINE switch, encounters a 
RESUME statement without a line number argument. The /NOLINE switch 
is nullified. The program compiles with /LINE in effect. The RESUME will 
work properly. 

?? StacK error in XI compilin~ line n 

FATAL - In this message, x is the name of the compiler module in which the 
error occurred and n is the currently compiling line number. This error causes 
an exit from BASIC, a return to operating system command level, and no code 
is output (this degree of severity is indicated by the double question marks). It 
is a compiler error and should not occur. In the event that it does, use a 
Software Performance Report to report the error to DIGITAL and include 
your source file. 

? Strin~ array in CALL BY REF 

FATAL - An attempt is made to use a string array argument in a CALL BY 
REF statement. CALL BY REF does not accept a string array argument. Use 
the CALL statement. 

? SUBENO without SUB 

FATAL - The compiler encounters a SUBEND statement without first 
encountering a SUB statement. Examine the program and ensure that a sub
program starts with a SUB statement and ends with a SUBEND statement. 

? SYntax error 

FATAL - A program line contains illegal syntax or illegal format. Correct the 
program line to conform with BASIC-PLUS-2 syntax. 

? Thread X not in run-time sYstem at line n 

FATAL - The compiler encounters a reference to an object-time system 
module (thread) that is not present in the current operating system. In this 
message, x is the thread name and n is the program line that originated the 
call. This error should not occur with the system supplied by DIGITAL. 
In the event that it does, use a Software Performance Report to report the 
error to DIGITAL and include your source file. 

? Too few ar~uments 

FATAL - An attempt is made to call a function with fewer arguments than 
are defined for that function. Ensure that the number of arguments given in 
the function call agree with the function requirements. 

C-8 Compile Time Error Messages 



? Too many arSuments 

FATAL - This error occurs when a function call contains too many argu
ments. Ensure that the function arguments agree with the function limits. 

% UnaliSned COM or MAP variable x in (yl 

WARNING - The compiler encounters a numeric variable definition in 
a COMMON or MAP statement where the variable falls on an odd address. 
In this message, x is the variable name and y is the MAP or COMMON 
name. A string, composed of an odd number of characters, that precedes the 
numeric variable can cause the variable to fall on an odd address. The compiler 
aligns the variable to the next highest word boundary and continues with the 
compilation. 

? Undefined function (xl called at line n 

FATAL - The compiler encounters a user-defined function that is not 
defined with a corresponding DEF statement. In this message, x is the user
defined function name and n is the line number of the call. Examine the 
program and ensure that all user-defined functions are defined with an associ
ated DEF statement. 

% Undefined line number n 

WARNING - The compiler encounters a control statement that directs the 
program to a nonexistent line (represented by n). The program statement is 
compiled. The next highest line number to the one specified is assumed to be 
the control destination. 

% Undefined MAP (xl in OPEN at line n 

WARNING - The compiler encounters a MAP clause in the OPEN state
ment that references a nonexistent map name. In this message, x is the name 
of the undefined map in the MAP clause and n is the OPEN statement line 
number. Each map reference in an OPEN statement must be associated with 
a defined MAP statement. The compiler ignores the MAP clause in the OPEN 
statement and continues the compilation. 

? Unmapped variable x in key clause at line n 

FATAL - The compiler encounters an indexed file key definition clause con
taining a reference to a variable that is not defined in a MAP statement. That 
is, a key must be defined in terms of its position and length in the record 
before it can be referenced in an OPEN statement KEY clause. The mecha
nism used to define a record key is the MAP statement. In this message, x is 
the name of the unmapped variable and n is the program line that contains 
the OPEN statement. 

Compile Time Error Messages C-9 



? UnterMinated strind 

FATAL - A string that is not enclosed by single or double quotation marks or 
is inconsistently terminated causes this error. That is, "ABC and "ABC ' are 
both illegal; a properly terminated string would be as follows, "ABC" or 
'ABC'. 

? Variable or function naMe too land 

FATAL - A variable name exceeds 30 characters (excluding a percent or 
dollar sign). A function name exceeds 30 characters (excluding FN and a 
percent or dollar sign). Either of these two occurrences can· cause this error. 

C-IO Compile Time Error Messages 



Appendix D 
ASCII Codes and Data Representation 

0.1 ASCII Character Codes 

Table D-l: ASCII Codes 

7-BIT 
DECIMAL OCTAL 

CODE CODE CHARACTER REMARKS 

0 000 NUL Null, tape feed , shift, "P 

1 001 SOH Start of heading, start of message, "A 

2 002 STX Start of text, end of address, "B 

3 003 ETX End of text, end of message, "C 

4 004 EOT End of transmission, shuts off TWX machine, "D 

5 005 ENQ Enquiry, WRU, "E 

6 006 ACK Acknowledge, RU, "F 

7 007 BEL Bell , "G 

8 010 BS Backspace, format effector, "H 

9 011 HT Horizontal tab, "I 

10 012 LF Line feed, "J 

11 013 VT Vertical tab, "K 

12 014 FF Form feed, page, "L 

13 015 CR Carriage return , "M 

14 016 SO Shift out, "N 

15 017 SI Shift in, "0 

16 020 DLE Data link escape, "P 

(continued on next page) 

D-l 



Table D-l: ASCII Codes (Cont.) 

7-BIT 
DECIMAL OCTAL 

CODE CODE CHARACTER REMARKS 

17 021 DC1 Device control 1, ' Q 

18 022 DC2 Device control 2, ' R 

19 023 DC3 Device control 3, 'S 

20 024 DC4 Device control 4, ' T 

21 025 NAK Negative acknowledge, ERR, ' U 

22 026 SYN Synchronous idle, ' V 

23 027 ETB End-of-transmission block, logical end of medium, 
' W 

24 030 CAN Cancel, ' X 

25 031 EM End of medium, ' Y 

26 032 SUB Substitute, ' z 

27 033 ESC Escape, prefix, shift, ' K 

28 034 FS File separator, shift, ' L 

29 035 GS Group separator, shift, ' M 

30 036 RS Record separator, shift , ' N 

31 037 PS Unit separator, shift, ' 0 

32 040 SP Space 

33 041 ! Exclamation point 

34 042 " Double quotation mark 

35 043 # Number sign 

36 044 $ Dollar sign 

37 045 % Percent sign 

38 046 & Ampersand 

39 047 Apostrophe 

40 050 ( Left parenthesis 

41 051 ) Right parenthesis 

(continued on next page) 

D-2 ASCII Codes and Data Representation 



Table D-l: ASCII Codes (Cont. ) 

7-BIT 
DECIMAL OCTAL 

CODE CODE CHARACTER REMARKS 

42 052 * Asterisk 

43 053 + Plus sign 

44 054 , Comma 

45 055 - Minus sign, hyphen 

46 056 Period, dot 

47 057 / Slash, statement separator 

48 060 0 Zero 

49 061 1 One 

50 062 2 Two 

51 063 3 Three 

52 064 4 Four 

53 065 5 Five 

54 066 6 Six 

55 067 7 Seven 

56 070 8 Eight 

57 071 9 Nine 

58 072 : Colon 

59 073 ; Semicolon 

60 074 < Left angle bracket 

61 075 = Equal sign 

62 076 > Right angle bracket 

63 077 ? Question mark 

64 100 @ At sign 

65 101 A Upper-case A 

66 102 B Upper-case B 

(continued on next page) 

Ascn Codes and Data Representat ion D-3 



Table D-l: ASCII Codes (Cont.) 

7-BIT 
DECIMAL OCTAL 

CODE CODE CHARACTER REMARKS 

67 103 C Upper-case C 

68 104 D Upper-case D 

69 105 E Upper-case E 

70 106 F Upper-case F 

71 107 G Upper-case G 

72 110 H Upper-case H 

73 111 I Upper-case I 

74 112 J Upper-case J 

75 113 K Upper-case K 

76 114 L Upper-case L 

77 115 M Upper-case M 

78 116 N Upper-case N 

79 117 0 Upper-case 0 

80 120 P Upper-case P 

81 121 Q Upper-case Q 

82 122 R Upper-case R 

83 123 S Upper-case S 

84 124 T Upper-case T 

85 125 U Upper-case U 

86 126 V Upper-case V 

87 127 W Upper-case W 

88 130 X Upper-case X 

89 131 Y Upper-case Y 

90 132 Z Upper-case Z 

91 133 [ Left bracket, shift K 

(continued on next page) 

D-4 ASCII Codes and Data Representation 



Table D-l: ASCII Codes (Cont. ) 

7-BIT 
DECIMAL OCTAL 

CODE CODE CHARACTER REMARKS 

92 134 \ Backslash, shift L 

93 135 J Right bracket, shift M 

94 136 . 
Caret, circumflex 

95 137 - Underscore 

96 140 Accent, grave 

97 141 a Lower-case a 

98 142 b Lower-case b 

99 143 c Lower-case c 

100 144 d Lower-case d 

101 145 e Lower-case e 

102 146 f Lower-case f 

103 147 g Lower-case g 

104 150 h Lower-case h 

105 151 i Lower-case i 

106 152 j Lower-case j 

107 153 k Lower-case k 

108 154 I Lower-case I 

109 155 m Lower-case m 

110 156 n Lower-case n 

111 157 0 Lower-case 0 

112 160 P Lower-case p 

113 161 q Lower-case q 

114 162 r Lower-case r 

115 163 s Lower-case s 

116 164 t Lower-case t 

(continued on next page) 

ASCII Codes and Data Representation D-5 



Table D-1: ASCII Codes (Cont.) 

7-BIT 
DECIMAL OCTAL 

CODE CODE CHARACTER REMARKS 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

165 u Lower-case u 

166 v Lower-case v 

167 w Lower-case w 

170 x Lower-case x 

171 Y Lower-case y 

172 z Lower-case z 

173 I Left brace 

174 I Vertical line 

175 I Right brace 

176 - Tilde 

177 DEL Delete, rubout 

NOTE: 

1. Teleprinters manufactured by Teletype Corporation, 
Skokie, Illinois, have used codes 175 (AL T) and 176 for 
ESC. Programs may forgo the use of 175 and 176 in order to 
use these codes as ESC on older teleprinters. 

2. ASCII is a 7-bit character code with an optional odd parity 
bit (200) added for many devices. Programs normally use 
just seven bits internally; the 200 bit is either stripped or 
added so the program will operate with either parity or non
parity generating devices. 

ISO Recommendation R646 and CCIT!' Recommendation 
V.3 (International Alphabet No.5) is identical to ASCII 
except that number sign (043) is represented as # instead of 
£ and certain characters are reserved for national use. 

0.2 Radix-50 Character Set 

Many operating system specifications, such as file and program segment 
names, are stored in Radix-50 format. This format allows 3 characters of data 
to be stored as a 2-byte integer (one 16-bit word). The RAD$O function 
converts a Radix-50 word to its 3-character representation. 

D-6 ASCII Codes and Data Representation 



The complete set of characters capable of being represented in Radix-50 
format, their ASCII octal equivalents, and the Radix-50 value by which each 
character is represented are as follows: 

ASCII Octal Radix-50 
Character Equivalent Octal Equivalent 

space 40 0 

A-Z 101-132 1-32 

$ 44 33 

56 34 

unused 35 

0-9 60-71 36- 47 

The value of a character in its 2-byte Radix-50 representation depends on its 
position. To obtain the octal value of the character in the Radix-50 represen
tation, you must multiply its Radix-50 octal equivalent by the appropriate 
power of 50( octal). To gain the full value of the Radix-50 representation of a 
3-character string, the values of the 3 characters must be summed. For exam
ple, the maximum Radix-50 value (representing the character string 999) is as 
follows: 

Table D-2 provides a convenient means of translating between the ASCII 
character set and its Radix-50 equivalents based on position within a string. 

A 3-character string is stored left to right in the Radix-50 word. For example, 
given the ASCII string X2B, the Radix-50 representation is computed as 
follows. 

x = 113000(octal) 
2 = 002400( octal) 
B = 000002(octal) 
X2B = 115402(octal) 

Note that addition is done in octal. 

To represent a 3-character string in Radix-50 format, the first character of a 
string (or a single character) is placed in the leftmost position of the Radix-50 
word. Thus, for the character X, its representation 30(octal) is multiplied by 
50 A 2 to give 113000(octal), the value shown in Table D-2 for X when it is the 
first character. The second character in a string is stored in the next position 
to the right. For the character 2 (in the second position), its representation 
40(octal) is multiplied by 50 A 1 to give 002400, the value shown in Table D-2 
for 2 when it is the second character. The third character in a 3-character 

ASCII Codes and Data Representation D-7 



string is stored in the rightmost position. For the character B (in the third 
position), its representation is multiplied by 50 A O (which is 1) to give 000002, 
the value shown in Table D-2 for B when it is the third character. The full 
octal value of the Radix-50 word is finally gained by adding the value of each 
character by its position in the string. 

Table D-2: ASCII/Radix- 50 Equivalents 

First 
or Single Second Third 
Character Character Character 

space 000000 space 000000 space 000000 

A 003100 A 000050 A 000001 

B 006200 B 000120 B 000002 

C 011300 C 000170 C 000003 

D 014400 D 000240 D 000004 

E 017500 E 000310 E 000005 

F 022600 F 000360 F 000006 

G 025700 G 000430 G 000007 

H 031000 H 000500 H 000010 

1034100 1000550 1000011 

J 037200 J 000620 J 000012 

K 042300 K 000670 K 000013 

L 045400 L 000740 L 000014 

M 050500 M 001010 M 000015 

N 053600 N 001060 N 000016 

o 056700 0001130 0000017 

P 062000 P 001200 P 000020 

Q 065100 Q 001250 Q 000021 

R 070200 R 001320 R 000022 

S 073300 S 001370 S 000023 

T 076400 T 001440 T 000024 

(continued on next page) 

D-8 ASCII Codes and Data Representation 



Table D-2: ASCII/Radix-50 Equivalents (Cont.) 

First 
or Single Second 
Character Character 

U 101500 U 001510 

V 104600 V 001560 

W 107700 W 001630 

X 113000 X 001700 

Y 116100 Y 001750 

Z 121200 Z 002020 

$ 124300 $ 002070 

. 127400 . 002140 

unused 132500 unused 002210 

0135600 

1 140700 

2 144000 

3 147100 

4 152200 

5 155300 

6 160400 

7 163500 

8 166600 

9171700 

0.3 Integer Format 
Sign 

15 14 

0002260 

1002330 

2002400 

3002450 

4002520 

5002570 

6002640 

7 002710 

8002760 

9003030 

Third 
Character 

U 000025 

V 000026 

W 000027 

X 000030 

Y 000031 

Z 000032 

$ 000033 

. 000034 

unused 000035 

0000036 

1 000037 

2000040 

3000041 

4000042 

5000043 

6000044 

7000045 

8000046 

9000047 

Binary number 

o 
Integers are stored in a 2's complement representation. Integer constants must 
lie in the range -32767 to +32767. For example: 

+22 = 000026(octal) 
-7 = 177771(octal) 

ASCII Codes and Data Representation D-9 



0.4 Floating-Point Formats 

The exponent for both 2-word and 4-word floating-point formats is stored in 
excess 128 (200( octal)) notation. Binary exponents from -128 to + 127 are 
represented by the binary equivalents of 0 through 255 (0 through 377 (octal)). 
Fractions are represented in sign-magnitude notation with the binary radix 
point to the left. Numbers are assumed to be normalized and, because of 
redundancy, the most significant bit is not stored (this is called hidden bit 
normalization). This bit is assumed to be a 1 unless the exponent is 0 (corre
sponding to 2-128) in which case it is assumed to be O. The value 0 is repre
sented by two or four words of Os. For example, +1.0 would be represented by: 

40200 
o 

in the 2-word format, or: 

40200 
o 
o 
o 

in the 4-word format. -5 would be: 

140640 
o 

in the 2-word format, or: 

140640 
o 
o 
o 

in the 4-word format. 

0.4.1 Real Format (2- Word Floating-Point) 

Sign 

word 1: 

word 2: 

15 

Binary excess 
12B exponent 

7 6 

Low-order mantissa 

High-order 
mantissa 

o 

Because the high-order bit of the mantissa is always 1, it is discarded, giving 
an effective precision of 24 bits (or approximately 7 digits of accuracy) . The 
magnitude range lies between approximately .29 X 10" -38 and .17 X 10"39. 

D-10 ASCII Codes and Data Representation 



0.4.2 Double-Precision Format (4-Word Floating-Point) 

Sign 

word 1: 
Binary excess High-order 
128 exponent mantissa 

7 6 0 

word 2: I Low-order mantissa 
15 0 

word 3: I Lower-order mantissa 
15 0 

word 4: Lowest-order mantissa 

15 0 

The effective precision is 56 bits (or approximately 17 decimal digits of accu
racy). The magnitude range lies between .29 X 10~ -38 and .17 X 10 ~ 39. 

0.5 String and Array Format 

0.5.1 Dynamic String Format 

code FPTR 

LEN 

STRING HEADER BPTR 

STRING 

The code for dynamic strings contains a 2-word string header. The first word 
is a forward pointer (FPTR) that points to the first byte of the string. The 
second word represents the length (LEN) of the string in bytes. Following the 
data in the string and aligned on the next higher word boundary is a word that 
points back to the free pointer. This word is internally specific and should not 
be accessed. 

ASCII Codes and Data Representation D-ll 



D-12 

0.5.2 Array Format 

Arrays in Memory: 

~ 

code 

ADW / ----. subscript 1 (lim+l) A 
R 

PTR R 
A 
Y 

ma x. no. of elements 

L.-

One· Dimensional 
Array Descriptor 

Virtual Arrays: 

ADW 

code---'" subscript l(1im+l) 
~----~--~--~~ 

block offset 

block number 

max. no. of e lements 

One-Dimensional 
Array Descriptor 

code ----. 

code 

ADW 

subscript 2(lim+l) 

subscript 1 (Iim+l) 

PTR 

max . no . of el ements 

Two-Dimensional 
Array Descriptor 

ADW 

subscript 2(1im+l) 

subscript 1 (Iim+l) 

block offset 

block number 

max. no. of elements 

Two-Dimensional 
Array Descriptor 

I/~ 
A 
Y 

'---

ADW is the Array Descriptor Word and is explained in Section D.5.3. 
Subscript is a word that represents the limits defined by the array subscripts 
plus 1. 

The offset into the block and the block number specify the starting position of 
the array in the file. Block number represents the block that contains the first 
element of the array (block 1 is the first block of the file, block 2 is the second, 
etc.). The offset is the offset of the first element of the array in bytes from the 
beginning of the block that is referenced in block number (byte 0 is the first 
byte in the block) . For example, the first array in a file is represented as block 
number 1 and the offset is into block 0 in the array descriptor. 

The maximum number of elements is only present in the array descriptor 
when the array is redimensioned or when the array is used as a subroutine 
argument. The number of elements is stored as a double-precision integer. 

With the exception of dynamic string arrays, the pointer (PTR) points to the 
array elements. For dynamic string arrays, PTR points to a list of string 
headers as follows: 

ASCII Codes and Data Representation 



PTR 

FPTR element 0 
LEN element 0 

FPTR element 1 
LEN element 1 

FPTR element 2 
LEN element 2 

0.5.3 Array Descriptor Word 

Table D-3: Array Descriptor Word 

Bits 

Array Type 15 14 13 12 111 10 9 8 

Numeric Memory 0 L 0 S T 0 0 

Numeric Virtual 0 0 1 S T 0 0 

String Memory 1 0 0 S 01 0 0 0 

String Common 1 1 0 S Element 

String Virtual 1 0 1 S LOG 2 (Len) 

T - Data Type 

Free Space 

7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 

Channel Number 

0 0 0 0 0 0 0 0 

Length in bytes 

Channel Number 

S - Number of subscripts minus 1 (0 is one-dimensional, 1 is two-dimensional) 
L - Location (memory or common) 

ASCII Codes and Data Representation D-13 



The array descriptor word (ADW) is a 16-bit word as represented in Table 
D-3. Each type of array causes the bits to be set in an individual manner as 
follows: 

Numeric memory Bits 0 through 9 are set to O. Bits 10 and 11 set the data 
type (i.e., 00 for integer, 01 for floating point, 10 for 
double precision). Bit 12 sets the number of subscripts 
minus 1. Bit 13 is set to o. Bit 14 is set to 0 if the array 
is in memory; 1 if the array is in common. Bit 15 is 
set to O. 

Numeric virtual Bits 0 through 7 represent the channel number. Bits 8 
and 9 are set to O. Bits 10 and 11 set the data type. Bit 12 
sets the number of subscripts minus 1. Bit 13 is set to 1. 
Bits 14 and 15 are set to O. 

String memory Bits 0 through 11 are set to O. Bit 12 sets the number of 
subscripts minus 1. Bits 13 and 14 are set to O. Bit 15 is 
set to 1. 

String common Bits 0 through 11 represent the element length in bytes. 
Bit 12 sets the number of subscripts minus 1. Bit 13 is set 
to O. Bits 14 and 15 are set to 1. 

String virtual Bits 0 through 7 represent the channel number. Bits 8 
through 11 represent LOG2 (i.e ., the string length). Bit 
12 sets the number of subscripts minus 1. Bit 13 is set 
to 1. Bit 14 is set to O. Bit 15 is set to 1. 

D-14 ASCII Codes and Data Representation 



Index 

.B2S file type, 1-4, 1-7 

.CMD file type, 1-10 

.MAC file type, 1-9 

.MAP file type, 1- 10 

.OBJ file type, 1- 8 

.TSK File type, 1-10 

/LIBRARY qualifier, 4-4 to 4- 5 
/MAP qualifier, 4- 4 
/OPTIONS qualifier, 4-4, 4-5 
/OVERLAY qualifier, 4-4 
/SYMBOLS qualifier, 4-4 
/TASK qualifier, 4-3 

00) symbol, 1- 24 

Abbreviating commands, 1- 3 
ACCESS attribute, 

usage, 2-20 
Accessing record files , 2-1 
Accessing RMS, 1- 11, 1-12 
Allocating memory, 

RMS, 2- 21 
ALLOW attribute, 

usage, 2-19 
Alternate key, 2-17 
Alternate switch values, 1-16 
Ampersand (&) usage, 1-25 
APPEND command, 1-5 to 1-6 

example, 1-6 
Approximate key specification, 2- 18 
Arithmetic operators, A-20 
Array format , D- 12 
Array descriptor word, D-13 
Arrays, 

virtual , 2- 3 
ASCII character set, 1-25 
ASCII character codes, D- 1 to D-6 
ASG option, 3-3, 4-5 
Attributes, 

Indexed file, 2-14 to 2-16 
Organization Undefined, 2-5 
Relative file, 2-11 to 2- 12 
Sequential files, 2-8 to 2-9 
Virtual files , 2-3 to 2-4 

Backslash (\ ) usage, 1-25 
BASIC indentification line, 1-1 
BASIC-PLUS-2, 

compiler, 1-1 
commands, 1-2 to 1-17, A-3 to A-4 

listed, 1- 2 to 1-3 

BASIC-PLUS-2 (Cont.) 
functions, A- 16 to A-19 
invoking, 

on lAS, 4-1 
on RSX- 11M, 3-1 

programs, 1-24 
restrictions, 

lAS, 4-7 
RSX-11M, 3-5 to 3-6 

statements, A-4 to A-15 
subprogram restrictions, 1- 26 
terminating, 1- 17 

Basic2 prompt, 1- 1 
BASIC2 library, 1-13 
BASIC2 shareable library, 1-13 
Block I/O, 2-1, 2-3 
Block I/O operations, 2-4 
Block length, 2-27 
Blocks, 2-27 to 2- 28 
BLOCKSIZE clause, 2-28 
BREAK command, 

debugging, 1-19 
BREAK ON command, 

debugging, 1-21 
Breakpoints, 

disabling, 1-20 
maximum number, 1-20 
setting, 1- 20, 1-21 

Bringing programs into memory, 1-13 
Bucket size, 

default, 2-28 to 2-31 
Bucket size considerations, 2-31 
Buckets, 2-27, 2- 28 to 2-31 
Buckets, 

locking, 2-20 
unlocking, 2-20 

Buffers, 2-32 

BUILD command, 1-8, 1-10, 1-10 to 1- 12, 
3-2, 3-5, 4-1, 4-2 

switches, 1- 11 to 1-12, 2-2, 2-6 
listed, 1-3 

BUILD/DUMP command, 1-12 
BUILD/EXTEND:n command, 1-12,2-21 
BUILD/IND command, 1-12, 2-14 
BUILD/MAP command, 1- 12 
BUILD/REL command, 1- 11, 2-11 
BUILD/SEQ command, 1- 11, 2-8 
BUILDNIR command, 1-11, 2-3 

Index-l 



CALL BY REF statement, 1-27 to 1-29 
CALL statement, 1-27 to 1-28 
Calling subprograms, 1-26, 1-27 
Carriage return usage, 1-24 
Carriage return, 

debug usage, 1-19, 1-22 
CHAIN statement, 3-5 to 3-6, 4-7 
CHANGES clause, 2-18 
Changing key values, 2-18 
Changing program names, 1-14 
Changing variables, 1-22 
Character set, 

ASCII, D-1 to D-6 
BASIC-PLUS-2, A-2 
Radix-50, D-6 to D-9 

Command abbreviations, 1-3 
Command file, 

creating, 1-10 
Command list, 

debugging, 1-18 
Command, 

APPEND, 1-5 to 1-6 
BUILD, 1-8, 1-10 to 1-12, 3-2, 4-1, 4-2 
COMPILE, 1-8 to 1-10, 3-2 
COMPILE/DEBUG, 1-8 
COMPILE/DOUBLE,1-8 
COMPILE/MACRO, 1-9 
COMPILE/NOLINE, 1-9 
DELETE, 1-6 to 1-7 
EXIT, 1-17 
IDENTIFY, 1-3 to 1-4 
LIBRARY, 1-13, 3-4 
LIST, 1-4 to 1-5 
LOCK, 1-8, 1-9 
NEW, 1-4 
OLD, 1-13 to 1-14 
RENAME, 1-14 
REPLACE, 1-14 to 1-15 
SAVE,1-7 
SCALE,1-15 
SHOW, 1-15 to 1-16 
UNSAVE, 1-16 to 1-17 

Commands, 
BASIC, 1-2 to 1-17 
BASIC, listed, 1-2 to 1-3 
BASIC-PLUS-2, A-3 to A-4 

Comment separator, 1-25 
Comments, 1-25, A-I 
COMPILE command, 1-8 to 1-10, 3-2 
COMPILE command switches, 1-8 

listed, 1-3 
Compile-time error messages, C-1 to C-lO 
COMPILE/DEBUG command, 1-8 
COMPILE/DOUBLE command, 1-8 

Index-2 

COMPILE/MACRO command, 1-9 
COMPILE/NOLINE command, 1-9 
Compiler input, 1-1 
Compiling source programs, 1-1 
Constants, A-2 
Continuation characters, A-2 
CONTINUE command, 

debugging, 1-19, 1-22 
Control/C restriction, 4-7 
ControllU usage, 1-17 
Controling scaled arithmetic, 1-15 
Count fields, 2-27 
Creating executable task, 1-10 
Creating executable tasks, 3-4 to 3-5 
Creating executable tasks on lAS, 4-6 to 4-7 
Creating indirect command file, 1-10 
Creating record files, 2-1 
Creating source programs, 1-1 
Creating task image, 1-10 
Creating temporary files, 1-4 

Data field, 2-16 
Data structure, 2-27 to 2-31 
Debugger, 

commands listed, 1-18 
enabling, 1-8 
prompt, 1-19 
terminating, 1-19 
usage, 1-18 

Debugging programs, 1-18 to 1-24 
Debugging subprograms, 1-18 
Default bucket size, 2-28 to 2-31 
Default bucket size, 

relative file, 2-30 
indexed file, 2-31 

Default Basic2 prompt, 1-1 
Default file name, 1-4, 1-14 
Default file type, 1-4 

.B2S, 1-7 

.CMD,l-lO 

.MAC, 1-9 

.MAP, 1-10 

.OBJ, 1-8 

.TSK,1-10 
Default file types, 

lAS, 4-2 
Defining key fields, 2-16 
DELETE command, 1-6 to 1-7 
Delete key, 1-17 
Deleting files, 1-16 
Deleting lines, 1-24 
Deleting program lines, 1-6 to 1-7 
Deleting programs, 1-16 
Determining file organization, 2-6 
Disabling breakpoints, 1-20 



Disabling TRACE command, 1-22 
Displaying error line, 1-23 
Displaying error module, 1-23 
Displaying error numbers, 1-22 
Displaying programs, 1-4 
Displaying switch values, 1-15 to 1-16 
Double precision arithmetic, 1-15 
DUPLICATES clause, 

usage, 2-17 to 2-18 

Editing BASIC programs, 1-17 to 1-18 
Editing indirect command files, 3-41 
Editing procedures, 1-17 
Enabling the debugger, 1-8 
END statement, 1-24 
ERL function, 1-9 
ERL command, 

debugging, 1-23 
ERN$ command, 

debugging, 1-23 
ERR command, 

debugging, 1-22 to 1-23 
Error codes, 

run-time, B-1 to B-9 
Error line, 

displaying, 1-23 
Error messages, 

run-time, B-1 to B-9 
compile-time, C-1 to C-10 

Error module, 
displaying, 1-23 

Error number display, 1-22 
Error traceback, C-2 to C-3 
Escape key, 1-24 
Exact key specification, 2-18 
Examining variables, 1-22 
Exclamation point (!) usage, 1-25 
Executable task, 

creating, 1-10, 3-4 to 3-5 
creating on lAS, 4-6 to 4-7 

EXIT command, 1-17 
Expressions, A-3 
EXTTSK option, 3-3, 4-6 

File organizations, 2-1 to 2-33 
comparison, 2-7 
determining, 2-6 
listed, 2-2 

File sharing, 2-19 to 2-21 
restrictions, 2-19 

File name, 
default, 1-4 

File type, 
default, 1-4 
.B2S, 1-7 

FILE TYPE (Cont.) 
.CMD,1-10 
.MAC, 1-9 
.MAP, 1-10 
.OBJ, 1-8 
.TSK,l-lO 

File types, 
lAS default, 4-2 

Files, 
creating temporary, 1-4 
deleting, 1-16 
terminal format, 2-9 

Fixed length records, 2-8, 2-12, 2-25, 2-26 
Floating point format, D-10 to D-l1 
FSP$ function, 2-6 
Functions, A-3 

BASIC-PLUS-2, A-16 to A-19 

Generic search, 2-18 to 2-19 

lAS, 
creating executable tasks on, 4-6 to 4-7 
default file types, 4-2 
invoking BASIC-PLUS-2, 4-1 
qualifiers, 4-3 to 4-6 
restrictions, 4-7 
task builder usage, 4-1 to 4-6 

Identification header, 1-4 
RSX-l1M, 3-1 

IDENTIFY command, 1-3 to 1-4 
Indexed files, 2-3, 2-14 to 2-19 

attributes, 2-14 to 2-16 
default bucket size, ?-31 
operations, 2-17 

Indirect command file, 1-11 
creating, 1-10 
editing, 3-4 

Integer range, 1-25 
Integer format, D-9 
Invoking BASIC-PLUS-2 

on lAS, 4-1 
on RSX-l1M, 3-1 

Key field definition, 2-16 
Key data field 2-17, 2-17 
Key record access, 2-17 to 2-19 
Key specification, 

generic, 2-18 
approximate, 2-18 
exact, 2-18 

Key values, 
changing, 2-18 

Keywords, 
reserved, A-21 to A-23 

LET command, 
debugging, 1-22 

Index-3 



LIBR option, 3-4 
LIBRARY command, 1- 13, 3-4 
Line continuations, 1- 25 
Line length, A- 2 
Line numbers, 1-24, A-I 
Line terminators, 1-24, A- 2 
LINK command lines, 4-1, 4-2 to 4- 3 

options, 4- 5 to 4- 6 
Linkable object module, 1- 8 
Linking subprograms, 1-26 to 1- 27, 1-11 
LIST command, 1-4 to 1-5 
LOCK command, 1-8, 1-9 
Locking buckets, 2-20 
Logical operators, A-20 
Logical unit numbers (LUN's), 3- 3, 4-5 

MACRO source file, 1-9 
MACRO subprogram restrictions, 1-26 
MACRO subprogram usage, 1-26 
MAP statement, 2- 10, 2-13, 2-16, 2-32 
MAP clause, 2-26 
Maximum record length, 2- 27 
Memory allocation map, 1- 10 

producing, 1- 11 
Memory requirements, 

reducing, 1- 9 
Merging programs, 1-5 
Multi-statement lines, 1-25 
Multiple MAP statements, 2-32 

NAME AS statement, 3-6 
NEW command, 1-4 
NO switch prefix, 1-8 
NONAME file, 1- 4 
NONAME file name, 1- 14 
Numeric accuracy, 1-25 

Object code, 1- 8 
Object module, 1- 1 

linkable, 1- 8 
ODL (Overlay description file), 1- 10 
OLD command, 1-13 to 1-14 
OPEN statements, 2-1 to 2-21 
Operations, 

indexed file, 2- 17 
relative files , 2-13 
sequential file, 2-10 

Operators, A-2 
Operators, 

arithmetic, A-20 
logical, A-20 
relational, A-21 

ORGANIZATION keyword, 2-2 
ORGANIZATION INDEXED, 2- 14 to 2-19 
ORGANIZATION RELATIVE, 2- 11 to 2- 12 
ORGANIZATION SEQUENTAIL, 2-8 to 2- 11 

Index-4 

ORGANIZATION UNDEFINED, 2-5 to 2-6 
attributes, 2- 5 
restrictions, 2- 5 

ORGANIZATION VIRTUAL, 2-3 to 2-5 
Organizing files, 2-1 to 2-33 
Overlay description file (ODL), 1-10 

Preserving programs, 1-7 
Primary key, 2-17 
PRINT command, 

debugging, 1-22 
Producing memory allocation map, 1-11 
Program lines, 

deleting, 1-6 to 1-7 
Program execution, 

tracking, 1-22 
Program, 

sample, 1-30 to 1-32 
Programs, 

bringing into memory, 1-13 
changing names, 1-14 
creating, 1-8 
debugging, 1-18 to 1-24 
deleting, 1-6, 1- 16 
displaying, 1-4 
editing, 1-17 to 1-18 
merging, 1-5 
preserving, 1-7 
translating, 1-8 
updating, 1- 14 

Radix-50 character set, D-6 to D-9 
Random record access, 2-13, 2-18, 2-21, 
2-23 to 2- 25 

restrictions, 2-23 
Record access methods, 2-21 to 2-25 
Record access, 

random, 2-13, 2-18, 2- 21, 2-23 to 2-25 
sequential, 2-21 to 2- 23 
shifting, 2-25 

Record files, 
creating, 2-1 
accessing, 2-1 

Record format, 2- 25 to 2- 27 
sequential files, 2-8 to 2-9 

Record I/O , 2-1 
Record length, 

maximum, 2- 27 
Record Management Services (RMS) , 
2-6 to 2- 21 
Record mapping, 2-32 to 2-33 

restrictions, 2-32 
Record operations, 2-4 
Record position, 

relative file, 2-13 



RECORDSIZE clause, 2-26 
restrictions, 2-33 

RECOUNT command, 
debugging, 1-23 

Reducing memory requirements, 1-9 
Relational operators, A-21 
Relative files, 2-3, 2-11 to 2-14 

attributes, 2-11 to 2-12 
default bucket size, 2-30 
operations, 2-13 
record positions, 2-13 
restrictions, 2- 13 to 2-14 

REM statement, 1-25 
Removing programs, 1-6 
RENAME command, 1-14 
REPLACE command, 1- 14 to 1-15 
Reserved keywords, A-21 to A-23 
Restrictions, 

BASIC-PLUS-2 lAS, 4-7 
BASIC-PLUS-2 RSX-11M, 3-5 to 3-6 
relative file, 2-13 to 2-14 
sequential file, 2-10 

RESUME statement, 1-9 
RMS (Record Management Services), 
2-6 to 2-21 

accessing, 1-11, 1-12 
block I/O, 2-3 
data structure, 2-7 
file organization, 2-7 
memory allocation, 2-21 
operations, 2-4 
record access, 2-7 
record format, 2-7 
record mapping, 2-7 
record operations, 2-4 
usage, 2-7 

RSX-11M, 
BASIC-PLUS-2 restrictions, 3-5 to 3-6 
identification header, 3-1 
invoking BASIC-PLUS-2, 3-1 
Task Builder usage, 3-2 to 3-4, 

Run-Time error codes, B-1 to B-9 
Run-Time error messages, B-1 to B-9 

Sample BASIC-PLUS-2 program, 1-30 to 1-32 
SAVE command, 1-7 
SCALE command, 1-15 
Scaled arithmetic, 

controlUng, 1-15 
Sequential files, 2-3, 2-8 to 2-11 

attributes, 2-8 to 2-9 
operations, 2-10 
restrictions, 2-10 

Sequential record access, 2-21, 2-22 to 2-23 
Setting breakpoints, 1-20, 1-21 

Shareable resident library, 1-13 
Shifting record access, 2-25 
SHOW command, 1-15 to 1-16 
Single precision arithmetic, 1- 15 
SLEEP statement, 3-6 
Source code, 1-7 
Source file, 

MACRO, 1-9 
Source lines, 1-25 
Source programs, 1-1 

compiling, 1-1 
creating, 1-1 

Statement separators, A-1 
Statements, 

BASIC-PLUS-2, A-4 to A-15 
STATUS command, 

debugging, 1-24 
STEP command, 

debugging, 1-21 
Stream records, 2-8 to 2-9 
String format, D-11 
Subprograms, 1-26 

calling, 1-27 to 1-28 
debugging, 1-18 
linking, 1-11, 1-26 to 1-27 
restrictions, 

BASIC, 1-26 
MACRO,1-26 

Subprogram argument list, 1-27 
Subprogram calls, 1-27 to 1-29 
Subprogram register usage, 1-27 
Subscript variables, 1-25 
Switch combinations, 1-9 
Switch prefix, 

/NO, 1-8 
Switch values, 

alternate, 1-16 
displaying, 1-15 to 1-16 

Switches, 
COMPILE command, 1-8 
BUILD command, 1-11 to 1-12, 2-2, 2-6 

Syntax check, 1-17, 1-24 
Syntax errors, 1-1 

Task Builder, 
creation, 1-10 
input, 1-10, 3-2, 4-3 
operation, 1-11 
options, 

RSX-11M, 3-2 to 3-4 
output, 3-2 
usage, 

lAS, 4-1 to 4-6 
RSX-11M, 3-2 to 3-4 

Terminal format files, 2-9 

Index-5 



Terminating BASIC-PLUS-2, 1-17 
Terminating the debugger, 1-19 
TRACE command, 

debugging, 1-22 to 1- 23 
disabling, 1-22 

Traceback, 
error, C-2 to C-3 

Tracking program execution, 1-22 
Translating programs, 1-8 

UN BREAK command, 
debugging, 1-20 

Undefined files, 2-3 
UNITS option, 3-3, 4- 5 
UNLOCK statement, 2-20 
Unlocking buckets, 2-20 

Index-6 

UN SAVE command, 1-16 to 1-17 
UNTRACE command, 

debugging, 1-22 
Updating programs, 1-14 

Variable length records, 2-8, 2-12, 2-25, 
2-26 to 2- 27 
Variables, A-2 

changing, 1-22 
examining, 1-22 

Version number display, 1- 3 
Virtual arrays, 2-3 
Virtual files, 2- 3 to 2-5 

attributes, 2-3 to 2-4 
restrictions, 2-4 



READER'S COMMENTS 

BASIC-PLUS-2 
RSX-llM/IAS 
User's Guide 
AA-01S7B-TC 

NOTE: This form is for document comments only . DIGITAL will use comments submitted on this form at the 
company's discretion. If you require a written reply and are eligible to receive one under Software 
Performance Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent. 

Assembly language programmer 
Higher-level language programmer 
Occasional programmer (experienced) 
User with little programming experience 
Student programmer 

D 
D 
D 
D 
D 
D Other (please specify) __________________________ _ 

Name ______________________________________ Date ____________________________________ __ 

Orgaruzation __________________________________________________________________________ __ 

Street ______________________________________________________________________________ ___ 

City __________________ __ State ___________ Zip Code _____________ _ 

or 
Country 



.---------------------------------------------------------------------Fold lIere-----------------------------------------------------------------------------

.-------------------------------------------------------- Do Not Tear· Fold lIere and Staple ----------------------------------------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Software Documentation 
146 Main Street ML 5·5/E39 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD. MASS. 





digital equipment corporation 

Printed in U.S.A. 


	AA-0157B-TC BASIC-PLUS-2 RSX-11M&IAS User's Guide (front)
	Blank 'Letter' page (300dpi)
	A001
	A002
	A003
	A004
	A005
	A006
	A007
	A008
	A009
	A010
	A011
	A012
	A013
	A014
	A015
	A016
	A017
	A018
	A019
	A020
	A021
	A022
	A023
	A024
	A025
	A026
	A027
	A028
	A029
	A030
	A031
	A032
	A033
	A034
	A035
	A036
	A037
	A038
	A039
	A040
	A041
	A042
	A043
	A044
	A045
	A046
	A047
	A048
	A049
	A050
	A051
	A052
	A053
	A054
	A055
	A056
	A057
	A058
	A059
	A060
	A061
	A062
	A063
	A064
	A065
	A066
	A067
	A068
	A069
	A070
	A071
	A072
	A073
	A074
	A075
	A076
	A077
	A078
	A079
	A080
	A081
	A082
	A083
	A084
	A085
	A086
	A087
	A088
	A089
	A090
	A091
	A092
	A093
	A094
	A095
	A096
	A097
	A098
	A099
	A100
	A101
	A102
	A103
	A104
	A105
	A106
	A107
	A108
	A109
	A110
	A111
	A112
	A113
	A114
	A115
	A116
	A117
	A118
	A119
	A120
	A121
	A122
	A123
	A124
	A125
	A126
	A127
	A128
	A129
	A130
	A131
	A132
	A133
	A134
	A135
	A136
	A137
	A138
	A139
	A140
	A141
	A142
	A143
	A144
	A145
	A146
	A147
	A148
	A149
	A150
	A151
	A152
	A153
	A154
	Blank 'Letter' page (300dpi)
	PDP-11 Manual (rear) (300dpi)

