
S I G N U M S Y S T E M S C O R P O R A T I O N

Flash Programming Plugin for Chameleon Debugger

User
Guide

Chameleon

series

C O P Y R I G H T N O T I C E

Copyright (c) 2016 by Signum Systems Corporation, an IAR Systems company. All rights are
reserved worldwide. No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or
otherwise, without the prior written permission of Signum Systems.

D I S C L A I M E R

Signum Systems makes no representations or warranties with respect to the contents hereof
and specifically disclaims any implied warranties of merchantability or fitness for any
particular purpose. Also, Signum Systems reserves the right to revise this publication and to
make changes from time to time in the content hereof without obligation of Signum Systems
to notify any person or organization of such revision or changes.

W A R R A N T Y

Signum Systems warrants to the original purchaser that this product is free of defects in
material and workmanship and performs to applicable published Signum Systems
specifications for a period of TWELVE MONTHS from the date of shipment. If defective,
the product must be returned to Signum Systems, prepaid, within the warranty period, and it
will be repaired or replaced (at our option) at no charge. Equipment or parts which have
been subject to misuse, abuse, alteration, neglect, accident, unauthorized installation or repair
are not covered by warranty. This warranty is in lieu of any other warranty expressed or
implied. IN NO EVENT SHALL SIGNUM SYSTEMS BE LIABLE FOR
CONSEQUENTIAL DAMAGES OF ANY KIND. It is up to the purchaser to determine
the reliability and suitability of this product for his particular application.

1 2 1 1 F L Y N N R D . , U N I T # 1 0 4
C A M A R I L L O , C A 9 3 0 1 2 , U . S . A.
P H O N E 8 0 5 • 3 8 3 • 3 6 8 2
W W W . S I G N U M . C O M

Chameleon

series
Purpose This document explains how to use the flash programming utility

built into the Signum Systems Chameleon Debugger software.

Installation
Chameleon Debugger is furnished with a flash programming plug-in. This plug-in is
installed by default, but can be uninstalled or reinstalled at any time if necessary. For
details, please refer to Chameleon User Manual.

Flash Programming Processes
The process of programming flash using the plug-in programmer consists of two
phases:

• configuring (setting the parameters of) the plug-in and

• executing proper plug-in commands.

! To program the flash memory on your target system:

Open the Flash Programmer plug-in dialog by selecting the Flash Programmer
option from the Tools menu. The Flash Programming dialog box appears
(Figure 1).

1

S I G N U M S Y S T E M
4 1 0

2

FIGURE 1 Running the flash programmer.

Configuring the Plug-In
Before it can program flash memory, the programmer needs to be configured. The
first and critical step in setting the necessary programmer parameters is selecting the
appropriate flash device.

! To choose the flash device

1. Choose the flash device programmer and set its parameters in the Flash Device
tab (Figure 2).

F L A S H P R O G R A M M I N G P L U G I N F O R C H A M E L E O N D E B U G G E R
U S E R G U I D E

3

FIGURE 2 Setting up the flash device and its programmer.

2. Select the flash device from the Flash Device drop-down list. A programmer
file associated with the current flash device appears in the Programmer
drop-down list. Use the Custom option (at the bottom of the Flash Device
list) to add new devices.

S I G N U M S Y S T E M
4 1 0

4

 3. If you are using a Custom device, select the Programmer file from the
Programmer drop-down list, or navigate to that file using the browse button
on the right.

4. Set the programmer parameters. Refer to your programmer�s documentation
for a description of the programmer options.

P A R A M -
E T E R

D E S C R I P T I O N

Base
Address

The start memory address of the flash.
Passes to the programmer the -b<base_addr> option.

RAM
Address

If the RAM Address field is enabled for editing, enter the
address of the RAM accessible to the plug-in. The
minimum amount of memory required is usually specified
in the Flash Device description. For instance, the �CFI
16-bit flash programmer (fits 64K RAM).�

Erase Flash erase control.
• Chip � erases the entire flash device.
• Range � erases all sectors containing the specified

range. Eg., to erase one sector at 0x100_0000, the
range can be set to 0x100_0000-0x100_0000.
Passes to the programmer the -e<addr>-<addr>
option.

• Auto � erases all sectors in the address range
calculated from the image file specified in the
Image Name text box (Figure 4).

Watchdog A sequence of operations of writing to the watchdog
register that �kicks the dog.�

• Address � watchdog register address.
• Value Sequence � coma-separated list of values to

be written to the watchdog register to �kick the
dog.� Passes to the programmer the
-w<addr>:<value1>,<addr>:<value2>, �

F L A S H P R O G R A M M I N G P L U G I N F O R C H A M E L E O N D E B U G G E R
U S E R G U I D E

5

P A R A M -
E T E R

D E S C R I P T I O N

option.
Startup/
Cleanup
Macros

The startup macro prepares the processor for flash
programming. This usually consists in configuring the
flash and RAM memories where the programmer is to be
loaded, disabling interrupts as well as enabling and
configuring semi-hosting. The cleanup macro can be used
to reverse the changes made by the startup macro. A
subroutine in the target startup macro can be used instead
of a macro file when preceded by the @ character:
@yourSubroutineName.

Verbose Generates extended debugging information from the
programmer for troubleshooting purposes. Passes to the
programmer the �v option.

Options Text field for entering special purpose programmer
options not found on the Flash Device tab. As of this
writing, the following options are supported:

• -f<clk> � System clock frequency.
! CCLK in kHz for the Philips LPC2xxx

programmer.
! HCLK in MHz for the TI TMS570 internal

flash programmer.
• -p<mode> � Flash device dependent option. For:

! Mitsubishi flash devices used by the CFI
programmers�sets the value of the
protection pin (0 or 1).

! Philips LPC2xxx/LPC17xx internal flash�If
<mode> is greater than zero, the
programmer calculates and programs a valid
User Program Signature at the reserved
ARM interrupt vector location (0x14 in

S I G N U M S Y S T E M
4 1 0

6

LPC2xxx or 0x1C in LPC17xx).
• -i<device name> � Forces device identification. Use

when the device cannot be identified uniquely.
! TI TMS470R1 internal flash programmer�Use

when the DEV[11...0] register does not
uniquely identify your device. Example:
-iTMS470R1A256.

! ST Microelectronics STR71x internal flash
programmer � Used obligatorily. Requires a
complete part number (-iSTR712FR2T6) or
flash type code (-i0 stands for 64K flash, -i1
for 128K flash, and �i2 for 256K flash).

! Philips LPC2xxx/LPC17xx internal flash programmer
� Use when the programmer does not
recognize the device automatically. Example:
-iLPC2212 or �iLPC1751.

! Analog Devices ADuC70xx internal flash programmer
� Use to specify the silicon revision (F to Z).
Forces the use of the mass-erase flash
function to erase the entire chip. Without it,
the chip is erased sector-by-sector. (Note
that silicon versions earlier than F do not
support the mass erase functionality.)

• -c<mode> � Used to check or calculate parity or
ECC bits. Available modes:
! -ceven � even parity bits used.
! -codd � odd parity bits used.
! -cecc � ECC code used.

• -ma<mask> � Command address mask for the CFI
programmer. Example: -ma0x7FF

• -md<mask> � Command data mask for the CFI
programmer. Example: -md0xFF

F L A S H P R O G R A M M I N G P L U G I N F O R C H A M E L E O N D E B U G G E R
U S E R G U I D E

7

Options for the internal flash F05 in the TI
TMS470R1x devices�recommended for production
purposes only.
• -k<key0>,<key1>,<key2>,<key3> � Level 2 security key

used to unlock the Flash for writing. The key is
required if the flash has been protected with
values other then all Fs. If trailing keys are
omitted, the last specified key is used (at least one
key is required). Example:
-k0x11223344,0x55667788 is equal to
-k0x11223344,0x55667788,0x55667788,0x556677
88.

• -knew<key0>,<key1>,<key2>,<key3> � New level 2
security key to be set after programming. Written
to the device as a new security key. View the Log
tab to verify the new keys.

• -kcode � New level 2 security key taken from the
code at address 0x1FF0-0x1FFF.

For example, �-f17400 �p1� in the Options field would
pass the programmer a clock frequency of 17.4 MHz and
instruct it to update the code signature at address 0x14.

Query
Device

Button for querying the type of the memory device at the
base address.

• If a Common Flash Interface (CFI) compliant
flash device is found, the size of the flash, the
number and sizes of the sectors, and the
programmer-recommended name are displayed.
(The flash log files described in the Flash
Programming Log section provide more information
about the device). The Memory Device

S I G N U M S Y S T E M
4 1 0

8

Information dialog box appears, allowing you to
set selected parameters to the values returned by
the query (Figure 3).

• If a non-CFI compliant device or RAM is found, a

message informing you that ROM or RAM,
respectively, has been found appears.

FIGURE 3 Flash query using the Query Device button. The results can be used to configure the
programmer automatically.

Flash Erasing, Programming and Verification
! To program the flash, verify the programming, or erase the flash

1. Set up the flash programming parameters in the Flash Image tab. Choose the
image file type in the File Type drop-down list box. Then enter the flash
image file name in the Image Name box, or browse for the file. You may
need to enter the loading address offset in the Address Offset text box. This
offset specifies the loading address for binary files or the offset added to the
loading addresses in HEX, SREC and linker output files.

F L A S H P R O G R A M M I N G P L U G I N F O R C H A M E L E O N D E B U G G E R
U S E R G U I D E

9

FIGURE 4 Selecting the flash image parameters and programming operations.

2. Program, Verify, Erase or Abort. This step depends on the intended operation.
Some of these operations may require selecting additional options before
you press the appropriate operation button.

Select the Close After Programming option to close the flash programming
plug-in after successful programming or erasing.

PROGRAM BUTTON
Normally, programming the flash device requires earlier erasing the flash
memory. Also, it is advisable that you verify the contents of the programmed
flash. These two operations are controlled by the following options:

Erase Before Programming Instructs the programmer to erase the entire
flash memory prior to uploading data to the
device when the Program button is pressed.
When uploading multiple files to the flash,

S I G N U M S Y S T E M
4 1 0

10

deselect Erase Before Programming, and use
the Erase button to clear the entire flash only
before programming the first file.

Verify While Programming Instructs the programmer to perform its own
programming verification. (This verification is
not to be confused with the verification
triggered by the Verify button, which is
performed by the flash programming plug-in.
See the VERIFY BUTTON section further in
the text.)

Finally, press the Program button. Flash programming commences and the
Status text box starts displaying progress report messages.

F L A S H P R O G R A M M I N G P L U G I N F O R C H A M E L E O N D E B U G G E R
U S E R G U I D E

11

FIGURE 5 Programming operation under way. The status is displayed at the top of the dialog
box.

VERIFY BUTTON
The Verify button is used to compare the data in a flash image file with the data
read from the flash memory. (Please make sure that the Image Name and
Address Offset are set appropriately before you press the Verify button.)

Since this verification is performed by the plug-in, and not by the programmer,
the Flash Device does not need to be specified. Verification performed using the
Verify button is possible only if the entire flash memory to be verified can be
read by the plug-in.

ERASE BUTTON
This button clears the entire flash memory. Make sure that the currently selected
flash device is the same as the one used for programming. No other parameter is
required.

S I G N U M S Y S T E M
4 1 0

12

ABORT BUTTON
To terminate the programming,
verification or erasing operation, press
the Abort button.

Note: Some flash devices do not allow the
erase process to be interrupted.

Utility Functions
The flash programming plug-in provides two functions frequently used in
connection with flash programming: Save and Blank Check. To execute these
functions, select the Utilities tab.

FIGURE 6 The handy Save and Blank Check functions are accessible via the Utilities tab.

SAVE
The Save function saves the flash memory within a given address range in a binary
data file. It is equivalent to the debugger�s SAVE BIN command. Recall that
debugger commands can be executed in the Chameleon Command window. Since
the Save function is not limited to flash memory only, you can use it to store

F L A S H P R O G R A M M I N G P L U G I N F O R C H A M E L E O N D E B U G G E R
U S E R G U I D E

13

 memory blocks of any type. The Save function does not depend on any of the
parameters set in the Flash Image or Flash Device tabs.

! To save a memory range to a file

1. Enter the memory range start and end addresses in the From and To text boxes,
respectively.

2. Press the Save button. A file open dialog box appears.

3. Enter the file name, or browse for the binary file, in which the memory range
data is to be saved.

BLANK CHECK
The Blank Check function is used to check if all the bits in the specified memory
range are set to 1s. As flash memory is erased by setting its bits to 1s, the function
verifies that the flash has been erased. The Blank Check function does not depend
on any of the parameters set in tabs the Flash Image or Flash Device tabs.

! To verify that a memory range has been erased

1. Select the desired memory address range in the Address Range group.

2. Press the Blank Check button.

Flash Programming Log
The flash programming plug-in creates a log of flash programming activity. You can
control the amount and type of information stored, save, copy and clear the log
using the controls found in the Log tab.

S I G N U M S Y S T E M
4 1 0

14

FIGURE 7 The flash programming log window.

LOG LEVEL
The log content can be filtered in several ways. Use the Log Level drop-down list to
select the filtering criteria that fit your needs best. The available levels are listed below
in increasing order of comprehensiveness.

Errors Only The log records only error messages.

Normal In addition to Errors Only level messages, the log records
commands (Erase, Program, Save, Bank Check, etc.) along with
their parameters.

F L A S H P R O G R A M M I N G P L U G I N F O R C H A M E L E O N D E B U G G E R
U S E R G U I D E

15

 User's Log In addition to Normal level messages, the log records messages

from the programmer execution on the target board. The
programmer�s messages are prefixed by the target name. For
example, a message from the STapollo target may look like this:
�STapollo: Erasing the flash . . .�

Calls Except Data Access In addition to User�s Log level messages, the log records
requests from the programmer code to the flash programming plug-
in, with the exception of those relating to flash image data.

All Calls In addition to Calls Except Data Access level messages, the log
records those requests from the programmer to the plug-in that
relate to the flash image.

All Calls and Data In addition to All Calls level messages, the log records the flash
image data passed from the plug-in to the programmer.

The Normal log level is designed to help you keep track of the performed operation,
allowing you to verify the data used to program the flash, destination addresses, and
the like.

The User�s Log and higher levels are designed to troubleshoot the programming
process or debug the programmer code. These levels degrade programming
performance considerably, and therefore are not recommended to be used routinely.

SAVE
! To save the current log

1. Click the Save button. The Save As dialog appears.

2. Enter the name of the log file, or browse for the existing file.

3. Press OK to save the log to the file.

S I G N U M S Y S T E M
4 1 0

16

 COPY TO CLIPBOARD
The Copy To Clipboard button copies the entire current log to the MS Windows
clipboard.

CLEAR
The Clear button erases the current log from the flash programming log window.

Flash Programming using Macros

Setting Plug-In Parameters for Flash Programming with Macros
Perhaps the easiest way to create a macro that configures the plug-in is to set the
parameters via the plug-in GUI interface, as described earlier in the Configuring the
Plug-In section, and then to save the configuration commands to a file by pressing the
Save Config button (Figure 2).

Plug-in Configuration Macrofile Example
plugin paramset FlashImage.EraseBeforeProgramming=1
plugin paramset FlashImage.VerifyWhileProgramming=1
plugin paramset FlashImage.AddressOffset=0
plugin paramset FlashImage.FileType=0
plugin paramset
FlashImage.ImageName="D:\Alpha\AT91EB40A\Flash\demo.elf"
plugin paramset FlashDevice.FlashDevice="LPC2xxx internal
flash programmer"
plugin paramset
FlashDevice.Programmer="D:\Chameleon\Plugin\Flash\ARM\LPC2xx
x\LPC2xxx.elf"
plugin paramset FlashDevice.StartupMacro="D:\ Chameleon
\Arm\TestFlashStartup.mac"
plugin paramset FlashDevice.CleanupMacro="D:\ Chameleon
\Arm\TestFlashCleanup.mac"
plugin paramset FlashDevice.Options="-f17400"
plugin paramset FlashDevice.BaseAddress="0x100_0000"
plugin paramset FlashDevice.Erase.From="0x100_0000"
plugin paramset FlashDevice.Erase.To="0x11F_FFFF"

F L A S H P R O G R A M M I N G P L U G I N F O R C H A M E L E O N D E B U G G E R
U S E R G U I D E

17

plugin paramset FlashDevice.Watchdog.Address="0x8001_00C0"
plugin paramset FlashDevice.Watchdog.ValueSequence="1,0"
plugin paramset FlashDevice.Verbose=1
plugin paramset FlashDevice.Erase.Chip=0
plugin paramset FlashDevice.Erase.Range=1
plugin paramset Utilities.AddressRange.From=0x0100_0000
plugin paramset Utilities.AddressRange.To=0x011F_FFFF
plugin paramset
Utilities.Save.FileName="D:\Alpha\EB40A\EB40A.bin"
plugin paramset Log.LogLevel=1

For added flexibility, absolute file pathnames may be converted into relative paths
with the use of the $ character. The plug-in treats the $ as representing the path to
the debugger installation directory. Thus, for example, it is possible to use in a macro
file statements like this:

plugin paramset
FlashDevice.StartupMacro="$\Arm\TestFlashStartup.mac"
plugin paramset
FlashDevice.CleanupMacro="$\Arm\TestFlashCleanup.mac"

Plug-In Commands for Flash Programming with Macros
In a macro file, all plug-in programmer commands�PROGRAM, ERASE and
VERIFY�must be preceded by the keyword �flash,� for example:

flash program
flash erase

Plug-in programmer commands are case-insensitive.

Putting it Together
Commands that configure the programmer and commands operating on flash
memory can be combined together to fully automate the process of flash
programming. An example of a complete macro file that first erases and then
programs flash is shown below.

; flash.mac � program my demo program into the flash

S I G N U M S Y S T E M
4 1 0

18

plugin paramset FlashDevice.FlashDevice="LPC2xxx internal
flash programmer"
plugin paramset
FlashDevice.Programmer="D:\Chameleon\Plugin\Flash\ARM\LPC2xx
x\LPC2xxx.elf"
plugin paramset FlashDevice.StartupMacro=" "
plugin paramset FlashDevice.CleanupMacro=" "
plugin paramset FlashDevice.BaseAddress="0x100_0000"
plugin paramset FlashDevice.Erase.Chip=1

flash erase

plugin paramset FlashImage.EraseBeforeProgramming=0
plugin paramset FlashImage.VerifyWhileProgramming=0
plugin paramset FlashImage.FileType=0 ; 0-linker file, 1-
HEX, 2-binary, 3-SREC
plugin paramset
FlashImage.ImageName="D:\Alpha\AT91EB40A\Flash\demo.elf"
plugin paramset FlashImage.AddressOffset=0

flash program
flash verify

; End of flash.mac

19

Appendix
Using the flash programmer with selected evaluation boards

Sharp KEV75401 Evaluation Board
This target board is equipped with the LH28F320BFE flash device.

! To enable the board for flash programming, set the jumpers as follows:

J U M P E R S E T T I N G F U N C T I O N
JP19 Opened Flash boot block not protected
JP20 Opened Bus width 16 bit
JP27 Closed Flash write protection disabled

! To select a flash memory address, set the jumpers as follows:

J U M P E R S E T T I N G F U N C T I O N
JP21
JP22

2 � 3
1 � 2

Flash is selected by CS0 and
located at address 0x40000000.

JP21
JP22

1 � 2
2 � 3

Flash is selected by CS1 and
located at address 0x44000000.

• When the flash is selected by CS0, select the �Sharp KEV75401 with the

LH28F320BFE flash with CS0� programmer in the Flash Device tab. (See
the Configuring the Plug-In section.)

• Otherwise, select �Sharp KEV75401 with the LH28F320BFE flash with
CS1.�

! To refine flash programming, set the following Options in the Flash Device tab
(Figure 2):

S I G N U M S Y S T E M S

20

O P T I O N S Y N TA X F U N C T I O N
-b<flash-base-address> Sets the flash base address
-e<start_addr>[-<end_addr>] Erases the sectors in the

specified address range
-v Turns the verbose mode on

for troubleshooting
purposes

For example,

-b0x4000_0000 �e0x4000_0000-0x4000_FFFF �v

defines the flash base address as 0x4000_0000, instructs the programmer to
erase the flash memory between address 0x4000_0000 through 0x4000_FFFF,
and enables the verbose mode of the programmer.

UG-B-Cham-FlashProgPlugin 11.24.08.17.06 410

	Installation
	Flash Programming Processes
	Configuring the Plug-In
	Flash Erasing, Programming and Verification
	Utility Functions
	Flash Programming Log
	Flash Programming using Macros

	Appendix
	Sharp KEV75401 Evaluation Board

