Microprocessor Development
Dreams Come True!

On-Line Help menus,
Command Glossary,
and Word List.

Windows can be used
to view source files,
previous traces,

and more.

Symbol translation
or source code
line display.

Screen displays scroll off
into history buffer —
can be viewed later.

LD HL

Pop-up Mode
_—" Selection panel
called by soft key.

Disassembly of code

in memory can be
compared with trace in
adjacent window.

Symbolic deBug
register display.

_—

SP=18FE PC=0010

tep n) T (from n=22)

‘Context sensitive
prompt line.

NEW UniLab II": FOUR INSTRUMENTS IN ONE!

Here are all the development
tools you ever dreamed of integrated
into one PC-controlled system:
® An Advanced 48-Channel Bus

State Analyzer
® An 8/16-Bit Universal Emulator
® A Built-In EPROM Programmer
® An Input Stimulus Generator

The synergy of these instru-
ments that were designed together
to work together saves you time and
money. All Unil.ab II commands
and menus are seamlessly integrated
into a single, super-efficient working
environment.

ACTION COUPON
Send me info on UnilLab II and
your No-Risk 10-Day Evaluation!

Name: Title:
Company:
Address:
City:
State/ZIP:
Tel.: Ext.

UniLab IT"
Universal Development Laboratory

el Civedopmeni Laboricey.

Orion Instruments, Inc.

702 Marshall Street
Redwood City, California 94063

An Integrated Software
Environment, too!

Imagine being able to split your
screen and look at real-time program
traces and the source code that pro-
duced them at the same time! Then
go to the On-Line Help or pop-up
Mode Panels instantly.

If you see something on a trace
that doesn’t look like last time, you
can hold it in one window while
you scroll back through your pre-
vious displays.

If you set a breakpoint and
single-step, you can then go back to
using the analyzer without missing
a beat. You can even execute a DOS
batch file from UniLab to edit, as-
semble, and link, then automatically
load the new program and symbol
table. UniLab uses the full power of
the PC.

Find bugs fast with
Hardware-assisted
Debugging

The traditional way to look for
bugs is to single-step through sus-
pect parts of the code until you catch
it in the act. This requires a lot of
guessing and wasting time.

With UniLab’s built-in analyzer,
you eliminate the guesswork. Just de-
scribe the bug symptom as a trigger,
and let the UnilLab hardware search

for it as your program runs in real
time. UniLab will show you a trace
of the program steps leading up to
the symptom, almost like magic.

A friendly user interface

UniLab lets you use commands
or menus — or a mixture of both. An
on-line manual, soft-key help screens,
a glossary of commands and their
parameters, with full-screen writeups
are also at the ready.

Reconfigure for any 8 or
16-bit processor in seconds

Thanks to our unique approach
to emulation, changes between pro-
cessor types require only cable and
diskette changes. At last count, we
specifically support over 120 micro-
processors.

Bonus! The built-in EPROM
Programmer and Stimulus Genera-
tor are simply icing on the cake.

Affordable capability

How much does all this superior
capability cost? A lot less than our
less able competitors, and probably
a lot less than you expect. Our pro-
ducts are sold with a Money Back
Guarantee, and our crack team of
Applications Engineers is standing by
if you need help. Get the full story
on the amazing UniLab II and how it
can liberate your development pro-
jects, today.

CALL TOLL FREE: 1-800-245-8500
In California (415) 361-8883

Specifications UniLab II™ — Universal Development l_aboratory

Host Computer Interface

RS-232C cable, 19,200 or 9,600 baud, switch
selectable.

Diskette Formats
IBM PC 54", MS-DOS

In-Circuit Emulator

Download time: 1 second for 2K bytes
including 16-bit block error check.

195 ns maximum access time ROM emulation
memory standard. For use with microprocessor
clock rates up to 10 MHz.

150 ns optional high speed maximum access
time ROM emulation memory. For use with
microprocessors to 13 MHz.

32K x 8-bit or 16K x 16-bit standard.
Programmable by cable, program option.

Expandable to 128K bytes with optional plug-in
board.

20-bit enable address decoding.

Individual 2K segments can be selected in any
combination within 17-bit field.

Stand-alone operation possible as a ROM
emulator.

16-bit idle register loops target CPU allowing
loading of emulation RAM and resumption of
program execution.

Optional, target processor-specific software
gives full debug capability including register
and target memory display and change,
breakpoints, and single stepping.

Program loading software: from hex or binary
disk files, hex serial download, memory image,
ROM read.

Bus-State Analyzer

48-bit wide Trace Display and Memory.

48 data inputs. Two groups of 8 can be
separately clocked.

6 clock signal inputs. Gated to form one bus
clock:
Clock edge filter prevents re-trigger before
100 ns.
395 ns minimum bus cycle (10 MHz 68000).
297 ns with optional high-speed option.

Address demultiplexing latches included - also
used by emulator.

Analyzer Trigger

4 step sequential trigger.

RAM truth tables allow search for any function
of 8-bits at each 8-bit group, for each step.

8 truth tables per step X 4 steps = 32 @ 256-bit
tables. .

16-bit inside/outside range detection on address
lines.

4-bit segment enable gives 20-bit address
capability.

Pass Counter: wait up to 65,382 events or
cycles before 4th step.

Before/After/At Pass count trigger enable.

Delay Counter: wait up to 65,382 events or
cycles to stop trace.

Filter feature: Records only cycles which satisfy
trigger.

Oscilloscope sync output. (Sync on trigger).

Interrupt output: Interrupt target on trigger (if
enabled).

LED indicates searching for trigger. Stand-alone
operation possible while waiting for trigger.

Software Features

Menu or command driven with single context
for all four instruments:
® 48 Channel Bus State Analyzer
e |n-Circuit Emulator
® PROM Programmer
® Stimulus Generator

Extensible macro capability.

Cursor key control of text and trace display.

Pop-up mode switch panel.

Split screen displays, user definable.

On-line glossary.

Menu-driven shell displays equivalent command
lines.

40 user-definable soft function keys.

Bonus features: Calculator, ASCII table, IC
pinout library, memo message feature, direct
DOS access, EGA/ECD support (or use
monochrome display).

On-line assembler (for selected processors).

Software Options
Graphical Software Performance Measurement.

EPROMNM/EEPROM Programmer

Smart programming algorithm for high speed.

28-pin zero insertion force socket handles 24
and 28 pin devices.

Programs single supply EPROMs and
EEPROMs.

Programs 2716, TMS2516, 2532, 48016, 2732A,
2764/128, 27256/64A/128A, 27512 devices.

Optional module required for 27512.

Signal Inputs

TTL logic levels. (74ALS inputs)

.1 ma maximum loading includes emulator &
analyzer.

Signal Outputs

TTL logic levels (74LS244 outputs).

100 ohms forward terminating resistors on
Emulator data lines.

Reset output: open collector, 7406 thru 47
ohms.

Interrupt output: open collector, 7406, low true.

9 Stimulus outputs (at EPROM socket) (8255
NMOS outputs).

Physical Data

Size: 2.1 in. high X 13 in. wide X 7.8 in. deep.
(53 x 330 X 198 mm. H x W x D).

Weight: 4 Ibs. (1.8 Kg). 11 Ibs. (6Kg) shipping
weight.

Fits easily in a slim-line brief case.

Power

100 KHz switching supply built in.
110v +/— 10% 50/60 Hz input. 15 Watts
(standard), or 220v +/— 10% 50/60 Hz input.
15 Watts (optional).

Accessories Included

Users Manual

Reference Manual

Jumper wiring tool (3M)

40-pin IC clip

16-pin IC clip

RS-232 cable

Input stimulus cable

Component clip adaptor probes (2).

Accessory Options

Personality Paks for most popular
microprocessors:

ROM Emulator cable 8-bit, 24-pin version
unless otherwise specified.

Analyzer cable pre-configured for your target
processor.

Disassembler/Debugger Software
Includes single-step, symbolic entry and
display, target memory and register display/
change, program start/stop/branch, input/
output.

Programming Module for 27512.

Personality Paks are available for more than
120 of the most popular microprocessors
including: Intel, Motorola, Zilog, National,
Rockwell, NEC, RCA, Hitachi, AMD, Mostek,
and Signetics. Consult Orion’s Personality
Pak Portfolio for details.

UniLab is a trademark of Orion Instruments, Inc. 786

e

Volume Two
Reference Manual

Copyrlght 1984, 1985, 1986 by Orion Instruments, Redwood City, California
All rights reserved

EPROM Clamp

(Down to connect

EPROM in Socket)

ORION

Instruments

Universal Development Laboratory

EPROM PROGRAMMER

PIN

PMtE

wen || (OIITITIITY

vo

8/16 BIT IN-CIRCUIT EMULATOR 48 CHANNEL BUS STATE ANALYZER @ < ®
I [rooeprreniieeeiizeeiiiiifg
/
\ \ \
Power On Power Emulator (ROM) Analyzer Cable Analyzer EPROM Socket Programmin
LED On/Off Cable Connector Connector Trigger Output Trigger LED {Also used for Voltage for
Switch (C8-24/28, C16-24/28, (CAAB,...) {Strobes when trigger ality Stimulus Cable) EPROM Burne
C8-D, or C16-D) is met. Can be connected f ele' s"b‘“ EPROM {Vpp)
to oscilloscope to Modul
synchronize scope with
analyzer trigger.)
EPROM PROGRAMMER
Wit
PM1e |lg
226
24-pin Package is -
shifted all the way - .
to the left

24 Pin EPROM in Programming Socket

EPROM PROGRAMMER

s
{iHjoRt
PM18

ans
3532
0016

28 Pin EPROM in Programming Socket

Unilab Block DiEgrm

Input ==
Latches E=Inputs
& —— (48)
Mu1t1plexef —— (D0-D15.
AQ-A14
Trigger Si?;glie:?e Trace N o from
- Emulator
Trut’lt'lable Pass & Buffer Cable)
Delay Ram
Ram Counts
- "\
Host Z-30 CPU Eprom ——— Stimuli
Rom/Ram Programmer === Outputs
I /0 - —————
PIO / Timers . & ——— (Q)
Serial 1/0 Stimulus =
Generator)
_ _J
Idle
Register
Enable Emulation Data
. AAA i
Map Static 100 52 Lines
Ram Ram (16) (16)
4 p
Address E= Address
% Lines
Latch = (20)
L) (A15-A19
from
Analyzer
Cable)
ALE

Orion Instruments 1984

Table of Contents
UniLab Manual

VOLUME ONE
UniLab User's Guide

Introduction: Getting Acquainted
The UniLab Method page 1
Guide to the Documentation page v

Chapter One: Installing The Unilab

Equipment Requirements

Processor-specific Configuration

16-bit systems

Basic Information
ees The UnilLab ... Installation ... Test and Verification
ess Additional Documentation ... TroubleShooting

[N
[I
> W

Additional Useful Information 1-9
Quick Step-by-Step 1-11
Detailed Step-by-Step 1-12

1. Connect the Unilab to Host 1-13

Find the Correct Port ... Serial Port of AT ...
"Connect the Cable ... Turn on the UniLab ...
Trouble?
2. Software Installation 1-16
Install the Software
On a Hard Disk
On a Floppy Disk Drive
Reboot Your Computer ... Start Up the UniLab
Program ... Trouble?
3. Connect the Unilab to Target Board 1-25
Overview ... All About Cables ... Plug Cables into
UniLab Connectors ... Take PROM off Board ... Put
ROM Cable in ROM Socket ... Put
DIP Clip onto Microprocessor ... Attach Proper
Wires to the Clip ... Attach the RES- Wire ...
Attach the NMI- Wire
4, Verify Your Setup 1-40
Load a Sample Program ... Run the Progra ...
Compare to Sample Trace ... Play Around a Little
... How to Exit

Where to Go Next 1-46
Special Note: Operator and Macro Systems 1-47
Special Note: Display Characteristic Commands 1-48
Special Note: Alter the Baud Rate 1-48

UnilLab is a trademark of Orion Instruments, Inc.

March 25, 1987 Page i -- Contents --

Chapter Two: Guided Demonstration

Overview 2-1
Call Up the Software 2-3
Get the MAIN Menu 2-4
The Five-Step Demonstration:
Te Enable Memory 2-5
2. Load a Program 2-6
3. Examine the Program 2-7

Memory Dump
Disassemble from Memory
4, Use the Analyzer 2-9
Get the First Cycles of Program
Sample the Bus
Set a Trigger on an Address
5. Use the DEBUG 2-13
Set a Breakpoint to Establish Debug Control
Set Another Breakpoint
Single Step Through Code

End note 2-16

Chapter Three: Operation

Overview 3-2
1. Menu Mode _ 3-4
2. Command Mode 3-20
The Command Language 3-21

The Simple Trigger 3-23
Specify Delay Cycles 3-26
Describe the Trigger Bus Cycle 3-27

The Filter Trigger 3-30

‘The Qualifier Trigger 3-34
Trigger Specification Example 3-40

3. DOS and the UniLab 3-46
Command Tail 3-46
Batch Files 3-47
Command Tail and Macros 3-49

4, Special Features 3-50
Key Diagrams 3-54

The Use of Special Keys 3-59
Trace Display 3-59

Screen History 3-61

Windows 3-63
Disassembly from memory : 3-66

Change window size 3-68

Split screens and help displays 3-69

Command line editor 3-70

View textfiles 3-76

-- Contents -- Page ii

Chapter Four: Program Performance Analyzer (PPA)

1. Overview of the (PPA)
Basics
How to choose the correct mode
The three PPA modes
PPA command summary
PPA menu
The interactive screen
The PPA and symbolic labels
Saving histograms
2. Loading the Target Program into Memory
Basics
Run the program from emulation memory
Run the program from ROM on target board
3. Address-Domain Analyzer
Simple procedure
Address-domain histogram (AHIST)
Function keys
Example of AHIST test
4, Time-Domain Analyzer
Simple procedure
Time-domain histogram (THIST)
A useful analogy
Function keys
Example of THIST test
5. Multiple-Pass Address-Domain Analyzer
Simple procedure-
Multiple-pass histogram (MHIST)
Another analogy
Funtion keys
6. Troubleshooting
. Specifications

Chapter Five: On-Line Help
1. Command Reference

2. Alphabetical Lookup

. Reminders

. Function Keys

. Mode Panels

. Help Screens: By Category

[eX TN 1 B - ¥5]

INDEX for volume one

March 25, 1987 Page iii

-- Contents --

VOLUME TWO
UnilLab Reference Manual

The information in this
reference manual applies to both
the Unilab and the Optilab.

Chapter Six: The UniLab in Detail
Overview 6-2

1.

Interpret the Trace Display 6-5
What Each Column Means...Sample Traces Examined...
Move through Trace...Symbolic Names...Toggle
Display Options (Mode Panels)

Ready and Load Memory 6-29
Emulation ROM...Get Ready...Load Programs ...Save
Programs -

Examine and Alter Memory 6-43

Memory Access Complications...Display and
Modify...Disassemble...Assembler...Block Memory
Commands...Byte and Word Commands

Set up a Trigger (generate a trace) 6-64
Simple Example...NORMx Words...RESETting...General
Purpose Triggers...Real-life Examples...Limits...
Filtered Traces...Qualifying Events...Refine
Triggers

Save Information : 6-93
Screen History...Log File...Printer...Trace Save...
Symbol Table...Binary Image...SAVE-SYS

Breakpoints and the DEBUG 6-103
Establish Debug Control...Breakpoint Display...
Within the DEBUG...Exit from DEBUG...Disable

Program EPROMs 6-130
Personality Modules...Plugging In...Checksums
eeoVerify...16-bit...Standalone,..Macros

Generate Stimuli 6-140
How to do it

Special Keys 6-145
Funiction Keys...Cursor Keys

Mode Panels-- easy toggling of options 6-152

Analyzer panel...Display panel...Log panel

-- Contents -- Page iv

Chapter Seven: UniLab Command Reference
The Categories
The Commands

Chapter Eight: TroubleShooting
Overview
How to use this chapter

Solutions in Depth:

Addresses do not appear on bus in proper sequence, or
occasionally are incorreCt. « « o o o o o o o o o o o

Incorrect data fetched from MEmMOry. =« « o o o ¢ o « o o o

Emulation memory does not respond to fetches. . . .« « « &

Program hangs up on "Initializing Unilab. . . message

Program hangs on initialization some of the time, not all of

the time e o o o 8 e o
RS-232 error message: "RS-232 Error #xx" e e e s o o o @
STARTUP does not work -- never get to see trace, or see

trace filled with garbage . ¢ ¢ « ¢ ¢ o o o o o o &«
Error message: '"NO ANALYZER CLOCK" ¢ ¢ ¢ o o o o o o o &
Program runs, UniLab traces, but reads bad data from stack
Program runs and UniLab traces, but does not disassemble

PrOPETLY o o o o o o o o o s o o o o o o o s o o o o
Program runs, UniLab traces properly, but cannot set a

breakpoint-- gives a '"DEBUG Control not established"

message L] L] o L] . L] - L J . L] L] L] L] L] L J L] L] - - - L] L] L]
Program runs, UnilLab traces properly, but cannot set a

breakpoint-- hangs with red light next to Analyzer

socket on until key pressed. . « o o« o o o o o .
NMI does not work-- get "DEBUG control not establlshed" .
Bad input buffers on the UnilLab, as if an IC has been blown
Screen flickers when you use PgUp key to look at line

HiStOTY o ¢ o o o o o o o o o o a © o o o o s o o o o

APPENDICES:
Appendix A: UniLab Command and Feature List
Appendix B: Sources of Cross Assemblers
Appendix C: Cabling Chart
Appendix D: Custom Cables
Appendix E: UniLab II Specifications
Appendix F: Writing Macros
Appendix G: EPROMs and EEPROMs Supported
Appendix H: Microprocessor Support
Appendix I: System Messages
Appendix J: «BIN files and .TRC files

INDEX for both volumes

~N
o N

@ ™
NN

@ @

| o & ® ©
- = LI |
- O 00~ O b

@ o @
[|
— et D
~Nuow

1
iy
[0}

March 25, 1987 . Page v -- Contents --

Chapter Six:
The UniLab in Detail

Contents:

Overview 6-2

1. Interpret the Trace Display 6-5
What Each Column Means...Sample Traces Examined...
Move through Trace...Symbolic Names...Toggle
Display Options (Mode Panels)

2. Ready and Load Memory 6-29
Emulation ROM...Get Ready...Load Programs ...Save
Programs

3. Examine and Alter Memory 6-43

Memory Access Complications...Display and
Modify...Disassemble...Assembler...Block Memory
Commands...Byte and Word Commands

4. Set up a Trigger (generate a trace) 6-604
Simple Example...NORMx Words...RESETting...General
Purpose Triggers...Real-life Examples...Limits...
Filtered Traces...Qualifying Events...Refine
Triggers

5. Save Information 6-93
Screen History...Log File...Printer...Trace Save...
Symbol Table...Binary Image...SAVE-SYS

6. Breakpoints and the DEBUG » 6-103
Establish Debug Control...Breakpoint Display...
Within the DEBUG...Exit from DEBUG...Disable

7. Program EPROMS ‘ 6-130
Personality Modules...Plugging In...Checksums
...Verify...16-bit...Standalone...Macros

8. Generate Stimuli 6-140
How to do it

9. Special Keys 6-145
Function Keys...Cursor Keys

10. Mode Panels-- easy toggling of options 6-152

Analyzer panel...Display panel...Log panel

March 25, 1987 Page 6-1 -- In Detail --

Overview

This chapter covers the capabilities of the UniLab II in
detail. It's meant primarily as a reference chapter.

This overview discusses the topics covered by the chapter.
Review: What the UniLab does

The UniLab lets you look at the bus activity on your
microprocessor control board. The UnilLab captures a bus cycle in
its trace buffer whenever your microprocessor:

writes data to memory,

reads data from memory,

sends to a port,

reads from a port,

or fetches an opcode from ROM.

Capture bus activity

The Unilab can '"freeze" this trace buffer at any time, and
thus capture a record of bus activity. It then sends this record
to your host computer, where you can:

examine it, :

compare it to previous traces,
save it,

or print it.

Each line of the trace display includes the address and the
data that appeared on the bus. When you have your trace
disassembler enabled, you will see the assembly language
instructions that were fetched from ROM.

See: Section One: Interpret the Trace Display

Program memory

Before you can capture a trace of your program, you have to
load it into the UnilLab's emulation memory (except when you run
the program from a PROM chip-- see page 6-38).

See: Section Two: Ready and Load Memory.

Once you have the program in emulation ROM, you can look at
the program, and change it.

See: Section Three: Examine and Alter Memory.

-- In Detail -- 6-2

Capture the activity you need to see

You want to look at only a few of the millions of bus cycles
that happen each second. You tell the UniLab what cycles you
want to see by describing a "trigger event." The UnilLab watches
for that event on the bus.

See: Section Four: Set a Trigger (generate a trace).

Record what you did

You can save any trace, any section of memory, or the
current symbol table. You can also save the current state of the
UniLab software.

While you work with the UniLab, you can send all screen
displays to the screen and to a file or a printer or both. Or
you can choose a mode which logs on the printer only the commands
that access memory.

See: Section Five: Save Information.

Look at the Internal State of the Procéssor

You can set a breakpoint in your program, and then restart
the target board. The program will run to the breakpoint, then
show you the register display when it stops. Or you can use the
NMI command to achieve instantaneous DEBUG control.

After you have gained debug control you can:
continue to another breakpoint,
single step through your program,
examine and change RAM, emulation ROM, and internal
registers,
or leave debug control.

See: Section Six: Breakpoints and the DEBUG.

Save your code to silicon

Once you've completed testing your program, you can program
an EPROM or EEPROM with the UniLab. See Appendix G for a list of
PROMs that Orion supports.

See: Section Seven: Program EPROMs.

March 25, 1987 Page 6-3 ~- In Detail --

"Mock up" peripheral inputs

Sometimes you need to see how your microprocessor board
responds to an input from a peripheral device. The stimulus
generator of the Unilab allows you to produce any 8 bit signal
you want-- or toggle individual lines.

See: Section Eight: Generate Stimuli.

Make use of special features and shortcuts

The UniLab makes full use of the function keys of your
personal computer, including ALTered, SHIFTed, and CTRLed
function keys, and the keys of the numeric key pad.

Some of the function keys are pre-assigned to help screens
(see On-Line Help chapter) or to commands. The others are left
available for you to assign as you please.

See: Section Nine: Special keys.
See also the Special Features section of Chapter Three.

Function key 8 has a special effect-it gives you access to
the pop-up panels, where you can easily change many options,
including display and logging features.

See: Section Ten: Mode Panels.

Function key 2 also is special-- it splits the screen, gives
you the ability to look at different parts of your trace at the
same time, or to examine a textfile along with a breakpoint

display, or . . .

See: Special Features section of Chapter Three.

-- In Detail -- 6-4

1. Interpret the Trace Display

Introduction

This section covers the trace display-- the record of bus
activity that the UnilLab captures for you.

The trace examples show a Z80 processor and an Intel 8096
processor. :

Why you care about the trace display:

You want to find the bugs in your system. Bugs cause
undesirable behavior in your system, which you can track down by

looking at the record of bus activity on your board-- the trace
display.

Contents
1.1 Feature Summary 6-6
1.2 The Trace: What Each Column Means 6-8
1.3 Sample Traces Examined 6-10
1.4 Move through the Display 6-17
1.5 Symbolic Names in the Display 6-21
1.6 Toggle Display Options 6-28

March 25, 1987 Page 6-5 -- In Detail --

-- Interpret the Trace --

1.1 Feature Summary

While you examine a trace, you can turn these options on and

off to alter the display:

Option Mode Panel
Disassemble code Yes
Substitute symbolic names

for numbers Yes
Show CONTrol column Yes
Show MISCellaneous column Yes
Binary number base for MISC Yes
Fixed header Yes
Stop display after each screen Yes
Define symbolic names NO
Show source lines in trace NO

Mode panels:

1. ANALYZER modes
DISASSEMBLER
SYMBOLS

2. DISPLAY modes
MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

Commands
DASM DASM'

SYMB SYMB'
SHOWC SHOWC'
SHOWM SHOWM'
2 =MBASE

HDG ~ HDG'

PAGINATE PAGINATE'
IS SYMFILE SYMLOAD

SOURCE SOURCE'

Commands:
DASM DASM'
SYMB SYMB'

SHOWM SHOWM'
SHOWC SHOWC'
=MBASE

PAGINATE PAGINATE'

HDG HDG'

-- In Detail -- 6-6

-- Interpret the Trace --

You can look at any portion of a trace you want:

Feature Cursor key Command
Show trace from top HOME TT
Show next step of trace Down Arrow none
Show next page of trace PgDn TR
Show trace from step <n>

(resets default to n) none <n> TN
Show trace from step <n>, with no

effect upon the default none <n> TNT
Dump trace buffer from UniLab none TD

You can save and compare traces (details in Save
Information):

Feature Command
Save a trace to a file TSAVE <file name>
Compare last <n> cycles of saved trace to

current trace <n> TCOMP <file name>
Compare saved trace to result of current

trigger specification <count> SC <file name:>

March 25, 1987 Page 6-7 ~- In Detail --

-- Interpret the Trace --

1.2 iThe Trace: What Each Column Means

The header line of the display labels all but one of the
columns:

cy# CONT ADR DATA HDATA MISC

(unlabeled column)

Each column displays a different piece of information:

cy#

CONT

shows you what cycle you are looking at, relative to
the trigger event. The trigger event is always labeled
as cycle zero.

This column starts with an £ when you produce a
filtered display.

shows you what the UniLab sees on the control inputs,
and on the upper four bits of the address inputs.

The UniLab uses four of its inputs, labeled as
c7, Co6, C5, and C4

to determine whether the bus cycle is a fetch, read, or
write. The first digit of the CONT column shows those
four inputs as a hexadecimal digit. The disassembler
needs this information, but you can ignore it-- except
when you are trouble shooting the wiring of the
connection from your Unilab to your target board.

The second digit shows the four highest bits of
the 20 bit address inputs to the UniLab, labeled as

A19 through A16.

While working with most 8-bit processors, these
wires are not attached to anything, and so float high,
at logic level one. The Z80, 8085, and NSC-800
processors don't follow this general rule-- they have
one of these upper four wires connected to a processor
pin. See the explanation on page 6-13.

You can use the mode panel (hit function key 8) to
hide this column.

shows the first 16 bits of the address bus,
AQ0 through A15. See the Disassembler Note below.

The highest four bits, A16 to A19, appear as the
right-hand digit in the CONT column.

-- In Detail -- 6-8

-- Interpret the Trace --

DATA shows you what data was put on the bus. Depending on
the type of the cycle, that "data" is either a data
value or a machine language instruction. The data is 8
bits or 16, depending on the processor.

The center (unlabeled) column
shows the disassembled instructions. Data reads and
writes are also identified.

This column appears when you work with the
disassembler enabled, as you usually will.

HDATA shows you what values the UnilLab reads on D8 through
D15. This column only appears with 8 bit processors.

The UniLab doesn't use the full 16 bits of data
input when working with processors that have an 8 bit
wide external data bus. That makes these 8 inputs
available to you to gather more information about the
outputs of other chips or ports on your board.

MISC shows you what values the UniLab reads on MO through
M7, the MISCellaneous inputs. These wires are always
available for you to connect anywhere you want on your
board.

The number base is normally binary, but you can
change it with the mode panel (F8). You can also use
the mode panel to hide this column.

Disassembler note

With a processor-specific disassembler enabled, each line of
the trace shows a complete assembly language instruction, no
matter how many bytes it takes. On those lines that show an
instruction which takes more than one cycle to fetch from memory,
the cy# column contains the cycle number of the first fetch, and
the ADR column contains the address of the first byte of the
instruction (the first word on 16-bit processors).

The MISC and HDATA columns show only the state of those
inputs during the last cycle of the instruction. Use the mode
panel (F8) to turn off the disassembler if you want to see the
state of these inputs during every bus cycle.

March 25, 1987 Page 6-9 -- In Detail --

-- Interpret the Trace --

1.3 Sample Traces Examined

This section shows two sample traces and explains the first
few lines of both in detail.

The 8-bit processor example shows the Orion test program for
a 280 processor. The 16-bit processor example shows a trace of
the test program for the Intel 8096.

A trace of the test program for your processor appears in
the Target Application Note for your Disassembler/DEBUG software.

-- In Detail -- 6-10

-- Interpret the Trace --

An 8 bit processor: 280 trace

The following display shows a trace of the test program for
the 280 microprocessor. The test program was first loaded into
the UniLab from disk with LTARG, and then started up with
STARTUP. The STARTUP command captures a trace of the bus cycles
starting at the reset address-- for the Z80, address 0000.

cy# CONT ADR DATA HDATA MISC

B7 0000 310019 LD SP,1900 11111111 11111111

3 B7 0003 3E12 LD A,12 111711111 11111111
5 B7 0005 015634 LD BC, 3456 11111111 11111111
8 B7 0008 119A78 LD DE,789A 1111111 11111111
B B7 000B 21DEBC LD HL,BCDE 11111111 11111111
E B7 000E C5 PUSH BC 11111111 11111111
F D7 18FF 34 write 11111111 11111111
10 D7 18FE 56 write 11111111 11111111
11 B7 000F C1 POP BC 11111111 11111111
12 F7 18FE 56 read 11111111 11111111
13 F7 18FF 34 read 11111111 11111111
14 B7 0010 3C INC A 11111111 11111111
15 B7 0011 3C INC A 11111111 11111111
2B B7 0027 3C INC A 11111111 11111111
2C B7 0028 3C INC A 11111111 11111111
2D B7 0029 C30300 JP 3 11111111 11111111
30 B7 0003 3E12 LD A,12 11111111 11111111
This simple program is an infinite loop. It first

initializes several registers, *

starting with the stack pointer.

Then the program pushes a value on the stack and pops the
same value, to demonstrate the working stack. Notice the cycles
associated with memory reads and writes. These show you register
and memory locations, just when you most want to know them.

After that come a series of "increment register A"
instructions. The last command in the program, at address 29H,
is an unconditional jump back to address 3, so that the program
goes back to the second instruction.

* You must have a working stack for DEBUG commands to work.

March 25, 1987 Page 6-11 -- In Detail --

-- Interpret the Trace --
An examination of the first two lines
This section dissects the first two lines of the 280 trace.

For the sake of simplicity, the HDATA and MISC columns (which
were not attached to anything on the board) are not displayed.

cy#
0 B7 0000 310019 LD SP,1900
3 B7 0003 3E12 LD A,12

The first line of the display starts with cycle zero, which
means that this cycle was the "trigger event."

The UniLab trace buffer captured a 31 on bus cycle 0, 00 on
bus cycle 1, and 19 on cycle 2. These hexadecimal numbers were
then translated by the disassembler into LD SP,1900.

The second line is labeled as cycle three, which lets you
know that the Z80 microprocessor required three bus cycles to
read the first instruction from ROM.

CONT
0 B7 0000 310019 LD SP,1900
3 B7 0003 3E12 LD A,12

The CONTrol column shows two different types of information.
The high four bits of the byte (nibble) shows the control inputs,
C4 through C7. The low nibble shows the highest four bits of the
address inputs, A16 through A19. Both nibbles are important to
the proper functioning of the disassembler and emulation ROM.
You will only have to pay attention to this column if you suspect
that the wires carrying these signals are improperly connected.

The high nibble is used by the processor-specific
disassembler to distinguish between cycle types.

If the wires that carry the control signals have been
incorrectly connected, then the disassembler will not work
properly. The disassembler needs these control signals to
classify each bus cycle as a fetch or read or write.

The first two lines both show the microprocessor fetching an
instruction from ROM. With the 280, B in the control column
always indicates an instruction fetch, D marks the write cycles,
and F marks a read.

--— In Detail -- 6-12

-- Interpret the Trace --

CONT
0 BZ 0000 310019 LD sP,1900
3 B7 0003 3E12 LD A,12

The low nibble carries information that is used by the
emulation ROM. It is useful while troubleshooting, but otherwise
is only for the curious. If you are curious, read on.

If the value of this nibble matches the value set by =EMSEG
then the UniLab's emulation ROM will check whether the address is
enabled.

The emulation ROM will put data on the bus only when the low
16 bits of the address fall into an enabled range (EMENABLE) and
the number on inputs A16 through A19 match =EMSEG.

Every line of the Z80 test program display will have 7 as
the upper four bits of the address. Three of the address inputs
to the Unilab, A18, A17, and A16, are left to float high.

A19, however, is connected to the MREQ pin of the
microprocessor. This "active low" output of the z80 goes low
when the processor Memory is REQuired. The Z80 needs memory
access on all bus cycles, except when it writes to or reads from
a port.

Thus, these four inputs to the UnilLab are usually 0111,
which is hexadecimal 7. When the MREQ signal goes high, the 7
becomes F-- for example, when the 280 is addressing a port
address rather than memory.

If you have a different processor, your UnilLab's inputs will
be connected differently.

ADR
0 B7 0000 310019 LD SP,1900
3 B7 0003 3E12 LD A,12

The first line shows address 0000, the reset address for the
Z80. The Z80 starts executing code from this address whenever
it receives a reset signal. The second line shows address 0003,
since the first instruction occupies bytes at addresses 0, 1,
and 2.

March 25, 1987 Page 6-13 -- In Detail --

-- Interpret the Trace --

DATA
0 B7 0000 310019 LD SP,1900

The first byte of the first instruction is 31 hex, which
decodes as a command to load an immediate value into the stack
pointer. The stack pointer of the Z80 holds a 16 bit value.

DATA
0 B7 0000 310019 LD SP,1900

That immediate value is 1900. Notice that the two bytes
appear on the bus in reverse order, following the Intel
convention, rather than the one adopted by Motorola.

DATA
0 B7 0000 310019 LD SP,1900
3 B7 0003 3E12 LD A,12

The second instruction loads an immediate value into the A
register. This register of the Z80 only holds an eight bit
value.

N

DATA
0 B7 0000 310019 LD SP,1900
3 B7 0003 3E12 LD A,12

The whole instruction only takes up 2 bytes, since the Z80
only needs one byte of data for the A register.

~- In Detail -- 6-14

-- Interpret the Trace --

An 8096 trace-- 16-bit processor

The display below shows the trace of the test program for
the 8096. The trace is shown only to highlight the difference
between an 8-bit trace and a 16-bit trace.

Notice that there is no HDATA column in the trace, and that
instead the UniLab shows 16-bits of data for each bus cycle.

The 8096 has a full 16-bit external data bus. With each bus
cycle, the UniLab records a 16-bit word of either opcode or data.

A brief discussion of the trace appears on the following
page.

cy# CONT ADR DATA MISC
0 FF 2080 A1004118 LD SP, #4100 11111111
2 FF 2084 A100A01C LD AX, #A000 11111111
4 FF 2088 A100BO1E LD BX,#B000 11111111
6 FF 208C A100C020 LD CX, #C000 11111111
8 FF 2090 A100D022 LD DX, #D000 11111111
A FF 2094 CAil1C PUSH [AX] 11111111
C EF A000 A000 read 11111111
D CF 40FE A000 write ' 11111111
B FF 2096 CEIC POP [AX] 11111111
F EF 40FE A000 read 11111111
10 CF A000 A000 write 11111111
E FF 2098 071cC INC AX 11111111
11 FF 209A 071C INC AX 11111111
12 FF 209C 071C INC AX 11111111
13 FF 209E 071C INC AX 11111111
14 FF 20A0 071C INC AX 1M111111
15 FF 20A2 071C INC AX 11111111
16 FF 20A4 071C INC AX 11111111
17 FF 20A6 071C INC AX 11111111
18 FF 20A8 071C INC AX T"M111111
19 FF 20AA 071C INC AX 11111111
1A FF 20AC 071C INC AX 11111111
1B FF 20AE 071C INC AX 11111111
1C FF 20B0 E7ESFF LJMP 2098 11111111
1F FF 2098 071cC INC AX 11111111
20 FF 209A 071C INC AX 11111111

This simple program functions just about the same as the Z80
test program. Both are infinite loops that first initialize
several internal registers, next push and pop a value, and then
go through a series of "increment A" instructions.

The last command of the 8096 test program is a jump back to
the first "increment A" instruction.

March 25, 1987 Page 6-15 -- In Detail --

-- Interpret the Trace --

CONT
0 FF 2080 A1004118 LD SP,#4100

Remember that you can usually ignore the CONT column.
But if you want to pay attention to it, notice that for the 8096,
F marks a fetch, C marks a write and E marks a read cycle.

CONT
0 FF 2080 A1004118 LD SP, #4100

All four of the high address inputs to the UniLab,
A19 through A16, float high. They are not attached to anything
on the target board.

ADR
0 FF 2080 A1004118 LD SP, #4100

The reset address for the 8096 is 2080. Contrast this to
the 280, which has a reset address of 0000.

DATA

0 FF 2080 A1004118 LD SP,#4100
2 FF 2084 A100A01C LD AX,#A000
4 FF 2088 A100BO1E LD BX,#B000

The opcode A1 decodes as a load of an immediate value into
an internal register.

DATA
0 FF 2080 A1004118 LD SP, #4100
2 FF 2084 A100A01C LD AX, #A000
4 FF 2088 A100BO1E LD BX, #B000

The last byte of the 4 byte instruction tells the 8096 which
register to load the immediate value into.

DATA
0 FF 2080 A1004118 LD SP, #4100
2 FF 2084 A100A01C LD AX,#A000
4 FF 2088 A1T100BO1E LD BX, #B000

The two-byte immediate value appears on the bus as the
second and third bytes of the instruction. As with the Z80, the
bytes appear on the bus in reverse order.

-- In Detail -- 6-16

-- Interpret the Trace --

1.4 Moving through Your Trace Display

When the UniLab sends its trace buffer to the host machine,
the host displays it starting from either cycle 0 or whatever
cycle number was last set with <n> TN.

You will sometimes see everything you needed to know in the
first screenful of the trace.

But much of the time you will need to look at a different
part of the trace.

v A small but complete set of commands moves you through the
trace buffer.
Dumping the trace
Usually the UniLab will automatically dump the trace into
the host computer. But if the trace buffer in the UniLab does
not £fill (especially when producing aa filtered trace) then you
will need to manually dump the trace to the host, with TD.

Look at next line of trace

Use the Down Arrow key (number 2 on the numeric key pad) to
see the line of the trace that follows the '"current" line.

The current line is usually the last one that you displayed
on the screen. However, refer to the discussion of the history
mechanism on the second page following.

Look at the next screen of trace
Use the Pg Dn key (number 3 on the numeric key pad) to see

the next screenful of the trace, starting from the "current" line
(or use the command TR).

March 25, 1987 Page 6-17 -- In Detail --

-- Interpret the Trace --
Look at the trace, starting from cycle number <N>
Use one of the two commands: <n> TN or <n> TNT.

TN will also reset the default cycle number that T displays
from (normally -5).

Use TNT to look at a particular cycle of the trace, without
changing the default used by T.
To look at the trace starting from the top

The HOME key (number 7 on the numeric key pad) shows you the
trace from the top (or use the command TT).

-- In Detail -- 6-18

-- Interpret the Trace --
The trace and the "history" mechanism

Everything that goes by on the full screen or the lower
- window gets saved by the history mechanism of the UnilLab. This
handy feature allows you to review your past actions and past
traces.

The PgUp key (number 9 on the numeric key pad) shows you one
screen full of history.

The Up Arrow key (number 8 on the numeric key pad) shows you
one line of the history.

Cursor Keys and the Trace Buffer Display

Trace Display
Top of Buffer

Toggle between Trace Display
Upper & Lower Next Screen
WVindow
Trace Display Down One Line
Cursor Keys and the Screen History
Screen History
Previous Line
P
C;“\
H 11 Screen History
\:EEE/ F W Previous Page
' N
4
‘-
\. J/ N\ J/
4 TN
March 25, 1987 1 (2
\End) * y

-- Interpret the Trace --
The trace, the history, and the Down Arrow

The UniLab "remembers" the cycle number of the last line of
trace buffer you saw. Whenever you use one of the trace commands
that start displaying from the "current" cycle number
(Pghn, TR, or Down Arrow), the UniLab will normally start the
display from after that last line.

However, if you use the Up Arrow and PgUp keys to look at
the history of your session, you can end up with the cursor
sitting on a line of trace display. The UnilLab will temporarily
call that cycle the current cycle.

If you want to display the trace buffer starting from the
cycle that the cursor is on, then you don't need to worry. But if
instead you want to start displaying from the line of the trace
buffer that you last displayed, first press ENTER to get the
cursor to a blank line, and then use any display command or key.

-- In Detail -- 6-20

-- Interpret the Trace --

1.5 Symbolic Names in the Trace Display

Most people find it convenient to assign symbolic names to
numbers. For example, LOOP.START conveys more information than
address 2098. You will find your traces easier to read if you
have symbolic names assigned to important addresses, ports and
data.

You can load in the symbol table that your assembler
generated, and have the same symbolic names that your source
program assigned.

Or you can assign symbolic names one by one, using the IS
command to give names to numbers.

You should not use a symbol name that is identical to a
UniLab command. That would prevent you from using the command
because the new interpretation of the name takes precedence.

Entering SYMB' tells the Unilab to ignore the symbol
definitions.

March 25, 1987 Page 6-21 -- In Detail --

-- Interpret the Trace --
Choosing symbol file formats
Enter the SYMTYPE command to get the menu of predefined

symbol table formats:

SYMBOL FILE FORMAT MENU

F1 2500AD SOFTWARE

F2 2500AD SOFTWARE (ABBREVIATED)

F3 ALLEN ASHLEY

F4 INTEL DEVELOPMENT FORMAT

F5 MICROTEK FORMAT

F6 OTHER FIXED FORMAT

F7 MANX AZTEC C (value, variable_length_name)
F8 AVOCET (variable_length_name, wvalue)
F10 RETURN TO COMMAND MODE

At this point you can select the desired format from the menu.
If the format you require is not on the menu, see the subsection
on SYMFIX on page 6-27 and in Chapter Seven.

Enter SAVE-SYS to make the selection permanent. (You can
still change it again with SYMTYPE, then save the system again.)

If you don't use SAVE-SYS, the format you choose will only
be used during the current session with the UniLab.
Load symbol table from file
After choosing the symbol file format, use:
SYMFILE <filename>

to load symbols in from a file. You will be prompted for the
file name if you do not include it on the command line.

SYMFILE clears out the symbol table before loading the file.

You can load in several symbol files, by using SYMFILE+ to load
each additional file.

~-- In Detail -- 6-22

-- Interpret thé Trace --
Define individual symbols
A single symbol can be defined at any time with:
<n> IS <name> .
For example if you enter 1234 IS DELAYLOOP, then DELAYLOOP will
be displayed instead of the 1234, whenever 1234 occurs on the

trace display.

You can also use DELAYLOOP in trigger specs, or to set
breakpoints. For example:

DELAYLOOP AS

Toggle symbol translation on and off

To turn the symbol translation feature on for the trace
display with SYMB or the Mode Panel (function key 8). Use the
Mode Panel or SYMB' to turn the symbol translation off.

Note that enabling translation of the symbols will not
change anything unless you have some symbols defined.

You can greatly improve readability of a hex trace by
identifying the crucial subroutines and storage areas. If you
are programming in a high-level language you can identify the
run-time routines for improved readability.

Redefine a symbol
You can redefine a symbol at any time, simply by using with
‘IS to define it again (only the most recent definition will be

found). You cannot clear out only one symbol definition, but you
can forget an entire symbol table with CLRSYM.

Save a symbol table as a file
You can save an existing symbol table as a named file with

SYMSAVE, and reload a previously saved table from disk with
SYMLOAD.

March 25, 1987 Page 6-23 -- In Detail --

-- Interpret the Trace --
Setting the size of the symbol table

You can allocate up to hexadecimal 80 K (128K decimal) to
the symbol table.

The size of the symbol table is set by giving the command:
<hex # of Kbytes> =SYMBOLS

then saving the newly altered UniLab software with SAVE-SYS. You
must exit the program with BYE and start it again.

The size of the symbol table is allocated when the program
starts up, and cannot be changed on the fly.

Use the command ?FREE to find out how many bytes are

allocated to the symbol table and to the line history. That
display appears in decimal base, not hexadecimal.

-- In Detail -- ' 6-24

-~ Interpret the Trace --
Symbol example

The trace printout below shows a disassembled trace with
symbol translation.

First eight symbol names were entered by hand:

1900 IS Init.Stack
3 1Is Start.Loop

29 IS End.Loop

10 IS First.IncA
3456 IS Init.BC
789A IS INIT.DE
BCDE IS INIT.HL

28 IS LAST.INCA

And then F9 was pressed, to get a trace of the startup:

cyi# ADR DATA
0 0000 310019 LD SP,INIT.STACK
3 START.LOOP 0003 3E12 LD A,12
5 0005 015634 LD BC,INIT.BC
8 0008 119A78 LD DE,INIT.DE
B 000B 21DEBC LD HL,INIT.HL
E 000E C5 PUSH BC
F 18FF 34 write
10 18FE 56 write
11 000F C1 POP BC
12 18FE 56 read
13 18FF 34 read
14 FIRST.INCA 0010 -3C INC A
15 0011 3C INC A
2A 0026 3cC- INC A
2B 0027 3C INC A
2C LAST.INCA 0028 3C INC A
2D END.LOOP 0029 C30300 JP START.LOOP
30 START.LOOP 0003 3E12 LD A,12
32 0005 015634 LD BC,INIT.BC
35 0008 119A78 LD DE,INIT.DE
38 000B 21DEBC LD HL,INIT.HL
3B 000E C5 PUSH RBC

March 25, 1987 Page 6-25 -- In Detail --

-- Interpret the Trace --

After these symbols have been loaded in, you can set a
trigger or a breakpoint using the symbolic name:

LAST.INCA AS

The last example, below, shows breakpoint displays with
these same symbols defined:

RESET END.LOOP RB resetting

AF=2B28 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900

END.LOOP 0029 C30300 JP START.LOOP (next step) ok

SSTEP NMI

AF=2B28 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900

START .LOOP 0003 3E12 LD A,12 (next step) ok

N

AF=1228 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900
0005 015634 LD BC,INIT.BC (next step) ok

-- In Detail -- 6-26

-- Interpret the Trace --
Reading other symbol table file formats

If the format you need is not included in the SYMTYPE menu,
use SYMFIX to describe the format of other fixed length format
files.

Fixed length format

The SYMFIX command is used to define parameters for any
symbol file format which uses fixed length records. The 6
parameters for the SYMFIX command are as follows:

a = offset from start of record to start of name field.
b =1 if address is 4 ASCII digits or 0 if 16-bit binary.
c = offset from start of record to start of addr field.
d = 1 if binary address has most significant byte first.
e = pad characters used to fill between symbols.
f = record length in bytes

Examples

The format of the 2500AD global symbol table is:

0021 1 0 24 SYMFIX

The format for the ALLEN-ASHLEY symbol table is:

01 DO 21 12 SYMFIX

Variable length format

If YQu have a variable length format symbol file, use the
AVOCET choice in the menu if the format is NAME followed by
VALUE.

Use the MANX AZTEC C choice if the format is VALUE followed
by NAME.

March 25, 1987 Page 6-27 -- In Detail --

-- Interpret the Trace --

1.6 Toggling Display Options On and Off

You use the mode panel to alter the trace display options.
Press F8 to enter mode panel, which will appear in the upper
right hand corner of your screen. See section 10 of this chapter
for complete information on the mode panel options.

Depending on what you need, you can do everything from
displaying only machine code to displaying source code lines in
your trace.

These are the trace display options that you can toggle on
and off in the mode panel:

Display assembly language instructions in trace display
Substitute symbolic names for numbers

Show CONTrol column

Show MISCellaneous column

Binary number base for HDATA and MISC

Fixed header

Stop display after each screen

Show source lines in trace.

Mode panels in brief

Within the mode panel, use the up and down arrow keys to
move from one option to another. Press F8 repeatedly to rotate
through the three panels.

Press the right arrow key to toggle the current option.

Press F1 to get a brief help message for the current option.

Press END to exit from the mode panels.

See section 10 of this chapter for more information.

-- In Detail -- 6-28

2. Ready and Load Memory

Introduction

This section covers emulation memory--

how to tell the UnilLab what addresses to emulate,
how to load information into emulation ROM,
and how to save the data in emulation ROM.

The UnilLab controls your target processor by emulating
program memory. When the processor tries to fetch instructions
or data from an address that has been emulator enabled
(EMENABLE), the UnilLab's emulation ROM responds on the bus.

Remember that the UniLab replaces your ROM rather than your
microprocessor, and then watches the bus while the processor
runs.

Contents
2.1 Feature Summary 6-30
2.2 Emulation ROM 6-32
2.3 Get Ready 6-34
2.4 Load Programs 6-38
2.5 Save Programs . 6-42

March 25, 1987 Page 6-29 -- In Detail --

-- Loading Emulation ROM --

2.1 Feature Summary

Feature

Report Emulation STATus

Choose 64K Segment

Enable 2K blocks within
64K segment

Load from an Intel HEX
format file

Load from a binary file

Save a block of memory
to disk

Enable minimal memory and
load test program

Load from a ROM

-- In Detail --

Menu
Yes
Yes
Yes

Yes
Yes

Yes

Yes
Yes

Commands

ESTAT
<hex digit> =EMSEG

<addr> EMENABLE

HEXLOAD .
<from addr> <to addr> BINLOAD

<from> <to> BINSAVE

LTARG

Commands are
available (see below),
but use of the menus is
recommended

Commands:

ESTAT

<addr> EMENABLE
ALSO <addr> EMENABLE

=EMSEG

EMCLR

HEXLOAD
<from> <to> BINLOAD
<from> <to> BINSAVE
LTARG

<from> <to> RPROM
<from> <to> R2532
<from> <to> R2732A
<from> <to> RPROM
<from> <to> RPROM
<from> <to> RPROM
<from> <to> R27512

F1
F2
F3
F4
F5
F10

F1
F2
F3
F4
F10

M
F2
F3
F4
F5
F6
F7
F9

F10

-- Loading Emulation ROM --

Menus:

ENABLE PROGRAM MEMORY MENU

DISPLAY CURRENT STATUS OF EMULATION MEMORY
ENABLE ONE BLOCK OF EMULATION MEMORY
ADD ANOTHER BLOCK OF MEMORY
SET A16-A19 MEMORY SEGMENT BITS
DISABLE ALL EMULATION MEMORY
RETURN TO MAIN MENU

LOAD OR SAVE PROGRAM MENU

LOAD INTEL HEX FILE
LOAD BINARY OBJECT FILE
SAVE A BLOCK OF MEMORY TO DISK FILE
LOAD A SAMPLE PROGRAM
RETURN TO MAIN MENU

READ
READ
READ
READ
READ
READ
READ

PROM READER MENU

2716/48016 - use PM16

2532 - use PM16
2732 - use PM32
2764 - use PM64
27128 - use PM64 (PM56 for 271283)
27256 - use PM56
27512 - use PM512

Go to Prom Programmer Menu
RETURN TO MAIN MENU

See also Appendix G for more info on EPROMs,

March 25, 1987

Page 6-31 -- In Detail --

-- Loading Emulation ROM --

2.2 Emulation ROM ‘

You use the UniLab to watch the execution of a program on
your microprocessor board. Microprocessors usually run a program
that is loaded into ROM or RAM. While using the UniLab, you load
the program into emulation ROM.

32K or more of emulation memory

The standard UniLab contains 32K bytes of 195 ns static RAM
which functions as emulation ROM. An optional expansicn board
can expand this capacity up to 128K bytes. This RAM appears to
the target system as ROM, and cannot be altered by the target
microprocessor.

Cable Connections

Most of the data and address lines are connected by plugging
the emulator cable into a single PROM socket in the target
system, as explained in the Installation chapter (two sockets for
a 16 bit data bus).

Many ROMs can be emulated with one connection socket, but
the sockets of emulated ROM must be empty to prevent bus
contention.

Using the Emulator without the Analyzer

The analyzer cable must be hooked up for the emulator to
operate properly. In the unlikely event that you want to use the
emulation ROM without using the analyzer, you must still connect
the analyzer cable from the UnilLab to your board.

The UnilLab must see the full address bus to emulate

properly, and some of the address signals are picked up by the
analyzer cable.

-=- In Detail -- 6-32

-- Loading Emulation ROM --
20-bit addresses

Since the UniLab accepts a 20 bit address input, it can
handle target systems with up to 1 megabyte of active memory, or
even more if you connect chip select logic to the A19 input to
the UniLab.

Emulate throughout a 128K region

-Any combination of 2K byte memory segments can be enabled,
as long as they are all in the same 128K region. That is, you
can emulate 2K chunks scattered throughout the range C0000
through DFFFF, since that forms one 128K region.

However, you would not be able to emulate some memory within
the range 10000 to 1FFFF and other memory in the range 30000 to
3FFFF, since those two 64K segments are not contained within the
same 128K region.

The general rule-- all emulated memory must have the same
value for the upper three bits of the full 20 bit address. You
set this value with =EMSEG. You rarely need to change this
value.

Watch out

Since the 32K UniLab emulates 128K of address space in only
32K of physical RAM, each physical location represents four
emulation ROM addresses. This can cause problems if you are not
aware of it.

For example, the four addresses 00000, 08000, 10000 and
18000 all refer to the same physical memory location.

If you try to enable both 0 TO 7FF and 8000 TO 87FF, then
you will find that both sections of memory always contain the
same data. Those two ranges of emulation ROM both refer to the
same RAM locations in the 32K UniLab.

March 25, 1987 Page 6-33 -- In Detail --

-- Loading Emulation ROM --

2.3 Getting Ready. «

Before you can start working on your program, you have to
enable the emulation ROM and load your software into the UniLab's
emulation memory.

When you enable a section of memory, you are telling the
UniLab what addresses you want it to respond to.

The minimal memory necessary

The LTARG command enables a 2K section of memory and loads
in a simple test program (on some packages, such as the 8096, the
LTARG command enables several 2K sections). If you are in doubt
about what memory to enable for your processor, type in LTARG,
and note the values of =EMSEG and EMENABLE.

For example, the Z80 test program sets up the variables as:

LTARG
Emulator Memory Enable Status:
7 =EMSEG
0 TO 7FF EMENABLE

In general, you have to enable the reset address for your
processor. The only exception occurs when you want to analyze a
program running from ROM chips instead of emulated ROM.

The exception: Running a program from ROM chip

When you want to run a program entirely from ROM on your
target board you must first use EMCLR to clear emulation memory,
and then use the Mode Panel option SWI VECTOR (SoftWare Interrupt
VECTOR) or the command RSP' to disable the DEBUG.

If you don't disable the software interrupt vector under
these circumstances, then the UniLab will give you an error
message when you try to start the analyzer. When the DEBUG is
enabled, the UniLab writes information into the reserved area
when you start the analyzer. If the reserved area is not being
emulated, you will get the message 'Debug Control not
established."

You can use ROM chips for some of your program, and use
emulation memory for the rest of it.

No matter what else you do, you must always either emulate
the reserved area (see appendix H) or disable the DEBUG.

-- In Detail -- 6-34

-- Loading Emulation ROM --
The high four address bits

Address bits A16 to A19 are set with <hex number> =EMSEG,
where hex number is the desired digit for A19-A16. With this
command you tell the UnilLab which 64K segment of memory you want
to emulate, out of the possible 1 megabyte that a processor with
a 20 bit address bus can access.

The value of =EMSEG is initialized to the correct value.
You will probably never have to alter it.

The UnilLab uses =EMSEG to decide whether to put data on the
bus. When the processor tries to fetch information from ROM, the
UniLab first checks whether the upper four bits of its address
inputs match the value of =EMSEG.

If the UniLab finds that the upper four bits match, then it
checks whether the lower 16 bits of the address are enabled.

On many 8 bit processors these inputs just float high, so
that the =EMSEG value is usually F (1111 binary).

Emulating two 64K segments

You can emulate address in 128K, as long as the two 64K
segments are neighboring segments (that is, only A16 differs).
Use =EMSEG to set the values of A16 through A19 that the Unilab's
emulation ROM will respond to.

For example, 4 is 0100 in hexadecimal,
while 5 is 0101, so that you could give this enable
command:

4 =EMSEG 0 TO 7FF EMENABLE
ALSO 5 =EMSEG 1000 TO 17FF EMENABLE

March 25, 1987 Page 6-35 --— In Detail --

-- Loading Emulation ROM --
The other 16 bits

You can enable the UnilLab's memory 2K at a time. The memory
that you enable will be in the 64K segment that you last set with
=EMSEG.

You are telling the UnilLab what range of addresses on AQ
through A15 you want it to respond to.

To enable ROM from address 0 to 17FF you type:
0 TO 17FF EMENABLE
You could instead enable locations F800 to FFFF by entering:
F800 TO FFFF EMENABLE
The TO is necessary to indicate an address range. If you
enter <16 bit address> EMENABLE the single 2K segment which
includes that address will be enabled. For example,

1000 EMENABLE

will enable the 2K segment 0 to 17FF.

Enabling several areas

Each EMENABLE statement usually clears out the previous
settings. However, if you use ALSO you can have the UniLab
respond to both the previous setting and the new one.

For example, to enable 0 to 17FF and F800 to FFFF, you type:
0 TO 17FF EMENABLE ALSO F800 TO FFFF EMENABLE

Be careful when enabling several areas with a 32K UnilLab.
The 128K area within which you can enable 2K blocks gets mapped
onto the 32K of the UniLab. This means that 0000 addresses the
same memory location as 8000. 2000 refers to the same location
as A000.

Keeping track
Every time you issue the EMENABLE command, the system will
display the complete resulting memory enable status. If you want

to see this enable status display without changing enables, just
enter ESTAT.

—-- In Detail -- 6-36

-- Loading Emulation ROM --
Saving the settings

Once you have them set properly for a project, you will want
to can save the enable settings of emulation memory. The
contents of emulation memory can also be saved, with the BINSAVE
command.

You enter:
SAVE-SYS <filename>

after you enable the memory to save the current state of the
UniLab software, including the emulation memory settings.

From then on, when you start the program by typing in the
filename, the proper area of the Unilab's memory will already be
enabled.

/

March 25, 1987 Page 6-37 -- In Detail -~

-- Loading Emulation ROM =--

2.4 Load the Target Programs into Memory

You load in your program after you have enabled a section of
memory large enough to contain your program.

You can load opcodes into memory from a disk file, by hand,
from a ROM chip or from an Orion test program,

Load from disk files

The UnilLab software provides you with four different ways to
load a program from a file on disk. Depending on your assembler
or compiler, you will chose one of these methods.

1. If you compiled or assembled the code into a binary
file on a disk, then load it with

<from addr> <to addr> BINLOAD <filename>

The filenames usually end in .BIN, .COM, or .TSK. You will
be prompted for the file name if you do not include it on
the command line.

The program will be loaded starting at the address you
gave.

You save memory to a file with the BINSAVE command.

2. Read Intel-format HEX object files from a disk with
HEXLOAD <file name>.

You will be prompted for a file name if you do not include
it on the command line. The addresses will automatically be
converted to the correct ones for the host image of the
target program. This method is much slower than BINLOAD.

If your assembler will only make Intel Hex files, you
can still use the UniLab command BINSAVE to make a binary
format file. Just load the hex file the first time, and
then use

<from> <to> BINSAVE <filename>

to save the memory as a binary image. From then on you can
use

<from> <to> BINLOAD <filename>
to load the program into memory.

-- In Detail -- o 6-38

-- Loading Emulation ROM --

3. Download Intel hex format programs from another
computer system with HEXRCV, if your PC has two serial
ports. The sending computer must support the XON/XOFF
protocol.

After you type this command, your PC will accept hex
code through its second port until you press a key or the PC
receives an end of file message.

While this method is useful for interfacing with
existing systems, it makes more sense to use your personal
computer for program development and avoid the bottleneck of
program downloading. See Appendix B for a partial list of
assemblers and compilers for the personal computer.

4, If your assembler or compiler can assemble directly
into memory at a specified location other than the origin,
you can instruct it to leave the object code in some unused
area of host memory (C000 to E000 is free in most systems).

Then when you enter the Unilab program you can download
from your host's memory to the UnilLab's emulation ROM with

<fromadr> <toadr> <targadr> MLOADN.

Note that the first two addresses refer to RAM in your host
machine, the third address is in Unilab emulation ROM.

Hand enter Code

You can also hand enter a program, poking machine language
instructions into memory. We recommend this only to those
suffering from computer nostalgia.

You hand-enter a short program by using the memory patching
commands of the UniLab system. Type in <address> ORG, where the
address is the start of the target program, then enter <byte> M
or <word> MM for each byte or word of the program. See Section
Three of this chapter for more ways to alter and examine
emulation memory.

March 25, 1987 Page 6-39 ~-- In Detail --

-- Loading Emulation ROM --

Read a program from ROM

The Unilab software also allows you to read a program from
ROM. We support all of the most popular EPROMs-- see Appendix G:

EPROMs Supported.

Read a program from a ROM by first placing the chip into the

Unilab's programming socket.

Hit function key 10 to get the main

menu, and then function key 9 to get the PROM reader menu.

The PROM READER menu

use.

F1
F2
F3
F4
F5
Fé
F7
F9
F10

picture of chip in a socket....

PROM READER MENU

tells you which personality module to

READ 2716/48016 - use PM16

READ 2532
READ 2732
READ 2764
READ 27128
READ 27256
READ 27512

use
use
use
use
use
use

PM16

PM32 ~
PM64

PM64 (PM56 for 27128A)
PM56

PM512

Go to Prom Programmer Menu
RETURN TO MAIN MENU

Avoid leaving any PROM in the socket after you read it or

program it.

2764s and up will sometimes erase location zero when you

turn on the UniLab.

—- In Detail --

-- Loading Emulation ROM -~
Load the sample program

You can also load a simple test program, with LTARG (Load
TARGet memory).

LTARG enables emulation memory and loads a simple test
program. The Target Application Note for your Disassembler/DEBUG
software shows trace and breakpoint displays generated with the
LTARG test program.

March 25, 1987 Page 6-41 -— In Detail --

-- Loading Emulation ROM --

2.5 Saving Programs

You can save a program for later use with BINSAVE as
described below. There are at least five situations in which you
will want to save a program:

1)

2)

You have changed the program since you loaded it in, by
moving sections of memory or poking in an opcode.

You have loaded a program using HEXLOAD, and want to be
able to use BINLOAD instead.

You have loaded a program from a ROM.

You have "hand assembled" a program,

You want to make a macro that tests equipment by
loading and running a test program.

When you have completed your design, you can "save" a
program to ROM with the PROM programmer menu. See section 7.

Saving with BINSAVE

Any area of emulation memory can be saved to disk as a named

file.

Type in

<from address> <to address> BINSAVE <file name>.

If you leave off the filename, you will be prompted for it.

-- In Detail -- 6-42

3. Examine and Alter Memory

Introduction

After you load a program into emulation memory, you can
immediately run it. However, you often want to look at the
program first, to refresh your understanding of the code, or to
verify that you have loaded in the correct file.

And as you work on the program, you will want to look at
portions of your code, and perhaps alter it. You will often want
to disassemble from memory to help you decide where to set
triggers or breakpoints.

You can also examine and alter RAM (see subsection 3.2 and '
section 6).

Contents

3.1 Feature Summary 6-44
Most Common Features
- Byte and Word Oriented Features
Memory Access Menus

3.2 Memory Access Complications 6-46
3.3 Memory Display and Modify 6-50
3.4 Disassemble from Memory 6-52
3.5 Line-by-line Assembler 6-53
3.6 Variable Size Block Memory Commands 6-57

Fill

Move

Compare

Dump
3.7 Byte and Word Oriented Memory Commands 6-62

March 25, 1987 Page 6-43 ~- In Detail -~

-- Examine and Alter Memory --

3.1 Feature Summary

All memory access commands work both on emulated ROM and on
target RAM. However, you need DEBUG control to access RAM. See
section 3.2.

Summary of Most Common Commands

Feature Menu Command
Display and modify memory Yes <addr> MODIFY
Disassemble from Memory
Disassemble a range of memory Yes <start> <# of lines> DM
Disassemble into right hand window NO <start> DN
Assemble
Line-by-line assembler NO <addr> ASM
Assemble code from NO

FORTH file <addr> <from scr> <to scr> ASM-FILE
Block-oriented commands
Fill a range of memory with Yes

one byte value <start> <end> <byte> MFILL
Move a range of memory to a Yes

different place <start> <end> <new start> MMOVE
Compare two ranges of memory Yes

<start> <end> <comparison addr> MCOMP

pump a range of memory Yes <start> <end addr> MDUMP

Set context :
Addresses refer to RAM NO TRAM
Addresses refer to ROM (default) NO TRAM'

-~ In Detail -- 6-44

-- Examine and Alter Memory --

Byte and Word Oriented Memory Access Commands

Since the MODIFY command makes it very easy to alter memory
while you examine it, you will rarely have to use the commands on
this page. They will be most useful within macros, where MODIFY
is inappropriate.

Feature Menu Command

Display Memory

Look at one byte NO <addr> M?

Look at one word NO <addr> MM?

Alter Memory

Alter a single byte Yes <value> <addr> M!
Alter a single word Yes <value> <addr> MM!

Set up the address for subsequent NO

M and MM commands <addr> ORG
‘Store one byte and update ORG NO <byte> M
Store a word and update ORG NO <word> MM

Memory Access Menu

Command : Menu:

EXAMINE OR CHANGE PROGRAM MEMORY MENU

MODIFY F1 EXAMINE MEMORY, ALTER IF DESIRED

DM F2 DISASSEMBLE FROM MEMORY

M! F3 CHANGE ONE BYTE

MM! F4 CHANGE ONE WORD

MFILL F5 FILL A RANGE OF MEMORY WITH ONE VALUE
MMOVE F6 . MOVE AN AREA OF MEMORY

MCOMP F7 COMPARE TWO AREAS OF MEMORY

MDUMP F8 DUMP MEMORY

F10 RETURN TO MAIN MENU

March 25, 1987 Page 6-45 -- In Detail --

-- Examine and Alter Memory --

3.2 Memory Access Complications

Three factors can cause complications when you access memory
with UniLab commands:

1) When you access emulation ROM, you will cause the
program to stop.

2) You cannot access RAM unless you have establish
DEBUG control.

3) Some DDB packages require something more than a

16-bit address to distinguish between RAM and ROM,
With these software packages you will need to
switch context back and forth with two context
setting words, TRAM (for Target RAM) and

TRAM®' (for ROM).

Access to emulation ROM

When you read from or change emulation ROM, the UniLab has
to take control of the memory chips that emulate ROM. Unless,
you first

establish DEBUG control, or
use the command RES-,

your access to emulation ROM will cause your target program to
crash. These two approaches are explained on the following page.

Emulation ROM not available to target system

- Reading and writing emulation memory with UniLab commands
has the same effect as removing the ROM chips from the target
system circuitry. So it is not surprising that the target system
stops executing the program-- when it tries to fetch a byte of
opcode, your processor will see FFs (all the data lines float
high).

Generally, after you read or write emulation ROM, you must
restart the target program.

Sometimes, when the target processor gets bad data from
emulation memory, it will write into various addresses. These
random writes can overwrite battery backup RAM or send
instructions to port addresses that control peripheral devices.

-- In Detail --= - 6-46

-- Examine and Alter Memory --
Crash free access to emulation ROM ...
eoes wWith DEBUG control

While you have DEBUG control, your processor does not
attempt to access ROM. It is held in an "idle loop" by the
UniLab hardware.

This approach will work with any DDB software package. See
the DEBUG Control section of this chapter to learn more about how
to establish DEBUG control.

eee With RES"

Alternatively, you can use the command RES- to pull low and
hold low the output of the UniLab which resets the target
processor (labeled RES-). This will, with some target systems,
hold the target processor in a reset state. In this state the
target system does not execute any code, so you can read and
write to emulation memory without causing any harm.

The RES- output will stay low until you start the analyzer.

Of course, when you do start the analyzer, your target
system will start to execute the program from the reset vector
address, regardless of whether you have reset enabled or
disabled.

RES- will not work if your target system has a "one-shot" in
the reset circuit.

March 25, 1987 Page 6-47 -- In Detail --

-- Examine and Alter Memory --

Access to RAM

All the commands that read and write memory can perform
their work on any memory chips in your target system, as well as
on emulation ROM,

You can examine or alter target RAM (or non-emulated ROM)
with the DEBUG features of the UnilLab. You establish DEBUG
control with commands detailed in section 6 of this chapter.

If you do not have DEBUG control when you attempt to access
target system memory, the UnilLab can establish it for you, as
detailed below.

Access to RAM with automatic DEBUG control

If you try to read or write RAM when you do not have DEBUG
control, the UnilLab program will try to establish debug control
for you, by issuing an NMI (Non-Maskable interrupt) signal. You
will get two messages:

1) a "not enabled" message, informing you that you
are trying to access an address that the Unilab is
not emulating,

2) an "-nmi-," to let you know that the UniLab is
trying to gain DEBUG control.

The UniLab will then perform the action you requested, and
afterward allow your target program to resume execution.

If the attempt to gain DEBUG control fails, the UniLab will
either wait for you to press the carriage return, or give you the
message '"Debug Control not established."

You will find additional information on DEBUG control and
the NMI feature in section 6 of this chapter.

Access to RAM with manual DEBUG control

You will usually first gain DEBUG control yourself and then
perform the access to RAM.

You will still get the '"not enabled" message, to remind you
that you are working on RAM, not on emulated ROM.

-=- In Detail -- o 6-48

-- Examine and Alter Memory --

Distinquish between RAM and ROM

Many processors require more than a 16-bit address to
uniquely identify a memory address. Some of these have RAM and
ROM mapped onto the same memory space, while a growing number of
processors use a 20 or 24 bit address to address memory.

In either case, the same 16-bit physical address can be used
to refer to either a RAM address or a ROM address.

With these processors the UnilLab will, as a default, assume
that you are trying to access ROM. When you want to access RAM,
you will have to issue the command TRAM (Target RAM) before
giving a memory command.

After you are done with the RAM, you will want to issue the
command TRAM' to toggle back to working with emulation ROM. You
might run into problems with DEBUG control and with starting the
analyzer if you neglect to do this.

Processors with RAM and ROM in the Same Address Space

Some processors allow you to have RAM and ROM at the same
addresses at the same time, such as:

the 8051 family,
the 28 family,
and the 64180.

Processors that can address more than 64K of memory

A different set of processors, including the 68000 and the
8088/86 family, can address more than 64K of memory.

March 25, 1987 Page 6-49 -- In Detail -~-

-~ Examine and Alter Memory --

3.3 Memory Display and Modify

The new, screen oriented memory access command, MODIFY, will
make it easier for you to poke bytes into program and data memory
locations. This new feature replaces several of the older memory
commands.

MODIFY and DM give you more than enough power for almost all
of your memory display needs. And the combination of MODIFY and
ASM will be enough to satisfy most of your memory modification
needs. Other Unilab memory commands are available to do the few
jobs for which MODIFY, ASM, and DM are inappropriate.

Invoke Memory Modify
MODIFY uses most of the current window to display up to 100
hex bytes at a time ¢256 decimal). The window size determines

how much you see.

You invoke the command with a single parameter-- the address
from which to start:

<addr> MODIFY
The MODIFY display will then fill up the window. When you exit
normally from MODIFY, the previous window will be restored.
Examine Memory with Modify

Once you are within MODIFY, the cursor keys will be
reassigned, as indicated by the prompt line.

The Page Up and Page Dn keys bring new blocks of memory into
the modify screen. Any changes that you make to the old block
are saved before the new one is brought in.

You use the up and down arrows both to move around in the

the screen and to scroll memory onto the display screen 10 (hex)
bytes at a time.

-=- In Detail -- 6-50

-~ Examine and Alter Memory --
Alter Memory with Modify

You can use MODIFY to alter the value stored in any memory
address. Use the arrow keys to place the cursor on either the
hexadecimal digits or the ascii character, then type in the new
value.

The new value will be saved if you exit with the END key, or
if you use the cursor keys to scroll the altered location off the
screen. You can exit without saving your most recent changes by
pressing the ESC key instead.

As noted in the prompt line, you move the cursor from the
hexadecimal dump to the ASCII representation by holding down CTRL
and the Right Arrow keys at the same time. CTRL-Left Arrow moves
the cursor back to the hexadecimal dump area.

Non-emulated Memory and MODIFY

You examine and alter target system RAM with MODIFY, but
only if you are able to achieve DEBUG control. (See subsection
3.2 and section 6 of this chapter).

You will be dumped out of MODIFY with an error message if
you attempt to alter memory and the UniLab is unable to achieve
DEBUG control.

Hexadecimal ASCII
display display
:00 0123456789ABCDEF 0123456789ABCDEE\

C‘:’-r S or — 110 %:: :: :: :: :: :: :: :: :: ;: :: :: :: :: :: 'nill'ninu'llilfu'u:|||uiu'uiu'u;n
position 120 sumunnuuuunnuUnN LH O
130 nununnunnunuennn LU T T H T T
(L] {1] NG llllllllll!lII|IIIIIII|II[III|IIIIIIIIIII
(1111 LR RN R RINRIN RN NN "IIIIIIIIIIIIllIlllIllll[lllllllllllllll
(1111 nuwiennuURNUEUEBHN LB TR T]
nm nHunEIRIEBERIENN Hununmim N
mn nununinnuuNnENnun IllllllllllllllllllllllIllilllllllllllllll
(1111 nuununuurernuNY Hmnunnnuanammean
n wagunUuUUERRHUINN lIIIIIIIIIIIllIIIllIlllllﬂllllllllllllll
(L] nuunwannuuunuunn L L T TH T

to move BNEMfor Hex!Ascii [FE] =save R

March 25, 1987 Page 6-51 -- In Detail --

-- Examine and Alter Memory --

3.4 Disassemble from memory

Two commands allow you to disassemble from memory:

<addr> <# of lines> DM
<addr> DN

Both commands need to know what address you want to start
disassembly from.

DM also has a second parameter-- the number of lines of
disassembled code to display.

DN writes the disassembled instructions into a dedicated
window on the right hand side of the screen. It always
disassembles enough lines to fill the window, and so does not
need a second parameter,

Specify address that points to start of instruction

The disassembler will try to interpret the hexadecimal code
at the address you specify as the first byte of an opcode. If
that address is not the first byte of an instruction, you might
see some incorrectly decoded instructions.

Once the disassembler gets back "in sync," it will decode

properly.

Example: Good disassembly
0 7 DM
0000 310019 LD SP,1900
0003 3E12 LD A,12

0005 015634 LD BC, 3456
0008 119A78 LD DE,789A
000B 21DEBC LD HL,BCDE

0O00OE C5 PUSH BC

000F C1 POP BC
Example: "Out of Sync" disassembly

1 7 DM

0001 00 NOP

0002 19 ADD HL,DE
Back in sync ---> 0003 3E12 LD A,12

0005 015634 LD BC, 3456
0008 119A78 LD DE,789A
000B 21DEBC LD HL,BCDE
000E C5 PUSH BC
000F C1 POP BC

-- In Detail -- 6-52

-- Examine and Alter Memory --

3.5 Line-by-line Assembler

The processor specific line-by-line assemblers, ASM and
ASM-FILE, allow you to write assembly language patches to your
target program from within the UniLab program.

To invoke the assembler when you want to enter assembly
language instructions from the keyboard use

<addr> ASM.

You can also invoke the assembler on code that has already
been written into a FORTH file, with

<addr> <from screen #> <to screen #> ASM-FILE.

Assembler replaces previous opcodes

Both commands process assembly code instructions and write
machine language codes into memory. You overwrite-- and
therefore lose-- the data already in memory.

You can keep a record of the changes you have made by
turning on the LOG TO PRINT option in the mode panel (F8).
Choose the starting address

If you do not include the address, the assembler will start
from wherever the assembler last left off (or, if assembler has
not been used yet, the last address stored by the ORG command).
Conventions

The line-by-line assembler will only accept assembly
language instructions, not ORIGIN statements or EQU statements.
(You can use the UniLab command IS to define symbols.)

Only one instruction'per line.

A complete list of assembly language commands accepted by
the assembler appears in the Instruction Set section of the
Target Application Note for your DDB package.

The normal conventions of assembly language apply. For

example, there must be at least one space between an instruction
and its operands.

March 25, 1987 Page 6-53 -- In Detail --

-- Examine and Alter Memory --

Use of ASM

When you use ASM you can include an assembly language
instruction on the command line, and assemble only that one
instruction:

1200 ASM INC A

You can enter multiple lines if you do not include an
assembly language instruction on the command line:

1100 ASM

ASM will give you as a prompt the address to which it is
assembling, and wait for you to give it an instruction followed
by a carriage return. '

The assembler will prompt you with a new address each time
you enter an instruction (and put assembled code into memory)
until you feed a blank line (press return without entering an
instruction).

If you enter an instruction that is not recognized by the

assembler, it will type an error message and then prompt you with
the same address again.

-- In Detail -- 6-54

-- Examine and Alter Memory --

Use of ASM-FILE

Enter instructions from the MEMO pad section of FORTH file
If you only have a few lines of code, you can use the screen
that MEMO puts you into, and the two following (screens 1D
through 1F). See the command reference entry for MEMO to get a
few pointers on using the FORTH screen editor. You might also
want to look at Appendix F.
Put code in its own FORTH file
You will want to put the code into a file of its own if
you have many lines of code, or if you want a more convenient way
to archive the code. First, close the current file (UniLab.SCR)
with the command:
CLOSE
Then create a new file with:
OPEN-NEW <file name>
and give it a size with:
<# of screens> SCREENS
1K is allocated per screen. Always specify at least 2 screens
(numbered 0 and 1). NEVER try to assemble from screen zero.
Use the command:
<screen #> EDIT
to get into the file.

Only use OPEN-NEW when you want to create a new, blank file.
After that, when you open the file, use the command:

OPEN <file name>.

March 25, 1987 Page 6-55 -- In Detail --

-- Examine and Alter Memory --
Assemble code from FORTH screens

After you write and save the assembly language code, you
will use ASM-FILE to assemble the code stored in your new file.
For example, to assemble screens one through four into emulation
ROM, starting at address 1200:

1200 1 4 ASM-FILE

You can include comments on a screen by putting a semicolon
(3) on a line. The assembler will ignore everything after the
semicolon on that line. The semicolon must either be the first
character on the line, or be preceded by at least one space.

When you are done assembling, use the command UDL.SCR, which
closes your file and re-opens the UniLab.SCR file. If you don't
do this, then some of the on-line help facilities and error
messages will not work.

== In Detail -- 6-56

-- Examine and Alter Memory --

3.6 Variable Size Block Memory Cbmmands

Four UniLab memory commands operate on variable sized blocks
of memory-- perform on a range of memory that you specify with a
lower and upper address limit, rather than on a byte, word,
opcode or screenful at a time:

MFILL
MMOVE
MCOMP
MDUMP.

Common uses for block commands

You generally fill blocks only to test the target system--
put a long series of identical one-byte opcodes into memory.

You usually move blocks only for patching purpose-- push a
block of memory up or down to make room for an extra instruction
or series of instructions.

You will probably only compare blocks to find the
differences between two versions of a program, or to compare two
blocks of data memory.

There are many situations where you will want to dump out a
range of memory. However, you will usually use MODIFY rather
than MDUMP, since MODIFY allows you to alter the memory while
displaying it. MDUMP will be most useful when you only want to
display a small area of memory, or when you want to dump huge
block to the printer.

Limitations on block commands
The maximum MMOVE block size is 32K.

For all other commands, the maximum block size is 64K.

March 25, 1987 Page 6-57 -- In Detail --

-- Examine and Alter Memory --

Fill memory

You fill a range of memory with the MFILL command. It sets
every byte in the range to the same value:

<from address> <to address> <byte value> MFILL

Use MFILL to test a target system

This is a handy way to test the data and address lines of
your processor board:

1) Fill a range of emulation memory with the opcode
for NOOP, or other simple instruction, starting at
the reset address.

2) Start up the processor and capture a trace, using
the command STARTUP.

3) Examine the trace and verify that the address
lines and data lines work properly.

Example

To fill 80 bytes of emulation ROM with FA, starting at
address 00:

0 100 FA MFILL

~- In Detail -- 6-58

-- Examine and Alter Memory --

Move memory

You copy information from one range of memory to another
with:

<start address> <end address> <copy starting at address> MMOVE
You will want to do this to make room for extra instructions
when patching code, or to move large chunks of code or data for
other reasons.
Overlapping ranges
This command is smart enough to decide whether to start
moving from the front or the back when moving into an overlapping
range of addresses.
Example

To copy the code at 100 through 152 into 105 through 157:

100 152 105 MMOVE

To copy from 230 through 370, starting at 220:
230 370 220 MMOVE

Limitation

You cannot move more than 32K at a time.

March 25, 1987 Page 6-59 -- In Detail --

-- Examine and Alter Memory --

Comparing

This command compares two ranges of memory, and reports any
discrepancies it finds:

<start> <end addr> <comparison addr> MCOMP

MCOMP will start comparing from whatever address you
specify. It compares the range that you specify.

You will find this command especially useful for comparing
the contents of a PROM to the expected contents:

1) Put the expected contents in one range of memory,

2) . move the actual contents to another range (with
the PROM reader menu), and

3) use MCOMP to compare the two.

Example

Notice how, in this example, MCOMP starts finding bytes that
don't match after comparing five of them. It would continue to
compare bytes until it had compared the data at 120 (hex) to that
at 820 (hex)-- or you can terminate the display by hitting any
key.

105 120 805 MCOMP

Data is 16 at addr 0110 ..but is 5 at addr 0810
Data is 90 at addr 0112 ..but is 80 at addr 0812
Data is 27 at addr 0116 ..but is 23 at addr 0816

~= In Detail -- ' 6-60

-- Examine and Alter Memory --

Dumping

One command allows you to see the hexadecimal contents of a
range of memory:

<start> <end addr> MDUMP

MDUMP will start dumping from whatever address you specify,
showing 10 (hex) bytes of memory on each line. It always
displays a full line, so that the second address will get rounded
up, if necessary. The right-hand side of the display shows what
ASCII characters, if any, the hexadecimal codes correspond to.

0 14 MDUMP

0 31 00 19 3E 12 01 56 34 11 9A 78 21 DE BC C5 C1 Teea?eoaVdoox!loono
10 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C LK

March 25, 1987 Page 6-61 -- In Detail --

-- Examine and Alter Memory --

3.7 Byte and Word Oriented Memory Commands

Look at Memory

MODIFY always shows you a full screen display of memory-- so
you will sometimes prefer the byte and word display commands
since they display the hexadecimal number stored at a single
memory address.

Write to Memory
When you want to alter a few bytes of memory you will most

often use MODIFY-- but sometimes you will find it appropriate to
use one of the byte or word write commands.

Display a byte or word

You "peek" at memory with:

<addr> M?

<addr> MM?
The first command looks at a byte, the second at a 16-bit word.
Peeking example

13 M? 3C ok

C MM? BCDE ok

-- In Detail -- 6-62

-- Examine and Alter Memory --

Alter memory, by the byte and word

There are three ways to alter memory on a small scale:
poke bytes into specific addresses,
<byte> <addr> M!
poke words into specific addresses,
<word> <addr> MM!
set up an origin address, then store bytes
and words at sequential addresses.
<addr> ORG <byte> M <word> MM
Poking bytes
You poke bytes into specific addresses with:

<byte> <address> M!

Poking words

You poke words into specific addresses with:

<word> <address> MM!

If you have a disassembler, then the UniLab program knows Which
order to store bytes into memory.
Setting up an origin and storing bytes and words

You set up the origin address with:

<address> ORG
and then can store bytes and words with:
<byte> M
and

<word> MM

These commands store the value and increment the "origin'" address
(which is also used by ASM).

You will want to use this method whenever you need to store

several opcodes at sequential addresses, and do not want to use
the screen-oriented MODIFY.

March 25, 1987 Page 6-63 -- In Detail --

4, Set a Trigger
(Generate a Trace)

Introduction

This section tells you how to describe a bus state with the
UniLab command language. This information is also presented in
the Command Section of Chapter Three.

A properly executed trigger description will capture a trace
buffer which includes only the bus activity you want to see.

The power of the UniLab comes from this ability to capture
and display the program activity that you specify.

Contents
4.1 Feature Summary 6-65
4.2 Overview ' 6-69
4.3 A Simple Example 6-70
4.4 The NORMx Words 6-74
4.5 RESETting 6-76
4.6 General Purpose Triggers 6-77
4,7 ‘Real-life Examples 6-81
4.8 The Limits of Triggers 6-83
4.9 Filtered Traces 6-85
4.10 Qualifying Events 6-88
4.11 Stepwise Refinement 6-92

-= In Detail -- 6-64

4.1 Feature Summary

Pre-set Triggers

Feature

Start the target program and
show first cycles

Show what the program is doing
right now

Sample address lines, twice/second

Sample all lines, once each second

" March 25, 1987 Page 6-65

Menu
Yes
Yes

Yes
Yes

-- Set Trigger --

Command
STARTUP
NOW?

ADR?
SAMP

-— In Detail --

-- Set Trigger --

Tools for Building a Trigger
Feature Menu Command

Most commonly used trigger-- on a single address
Clear out previous trigger spec, and set one on a
single address. This command has the same effect as
NORMT <addr> ADR S, but requires a lot less typing.
NO <addr> AS

Clear out previous trigger spec, and setup for trigger to
appear.a..

.«s at top of trace buffer NO NORMT

«ee in the middle of trace buffer NO NORMM

«es at bottom of trace buffer NO NORMB

Specify a subsection of target system bus

Set trigger on (16-bit) address Yes ADR

Set trigger on (8-bit) CONTrol inputs NO CONT

Set trigger on (8-bit) data value Yes DATA

Set trigger on high byte of data NO HDATA

Set trigger on high byte of address NO HADR

Set trigger on low byte of address NO LADR

Set trigger on (8) MISCellaneous inputs NO MISC

Specify the value to search for on section of target bus
Specify a single value for ADR <16-bit value>
Specify a single value for any other input <byte>

Set trigger on Range of values Yes <vall> TO <val2>
Invert following Yes NOT

Add following trigger to current NO ALSO

Specify masked value for 8-bit channel NO
<mask byte> MASK <value>

Specify a 20 bit address NO <20-bit number>. ADR
Start searching for trigger specification
Startup Analyzer Yes S
Startup Analyzer, capture new trace that
starts where current trace ends NO S+

Reset the Target System when Analyzer starts
Don't restart target program when

Analyzer starts Yes RESET
Do restart target program when
Analyzer starts Yes RESET'

Change one of two variables, to specify a delay or repetitibn
Specify number of cycles to wait after trigger before freezing

the trace buffer (default: zero) NO <number> DCYCLES
Specify number of repetitions of trigger event ‘
(default of one) NO <number > DEVENTS

-~- In Detail -- 6-66

-- Set Trigger --

Filtered Traces

Clear out previous trigger and produce a trace showing only bus
cycles that match ...

..o trigger Yes ONLY
.ss.trigger and first cycle that follows NO 1AFTER
...trigger and two cycles that follow NO 2AFTER
...trigger and three cycles that follow NO 3AFTER
Qualifiers

You can specify up to three qualifier bus states. These
qualifiers must occur during sequential bus cycles to satisfy the
qualifying sequence. The trigger event does not need to
immediately follow.

Basic qualifier command
Add a qualifier to the current trigger NO AFTER <spec>

Change one of two variables, to specify a delay or repetition
Specify number of cycles to wait after qualifying

sequence (default of zero) NO <number> PCYCLES
Specify number of repetitions of qualifying sequence
(default of one) NO <number> PEVENTS

Advanced qualifier commands

You can also specify the number of qualifiers, then change
context before trigger spec commands to set the triggers and the
qualifiers.

Set between 0 and 3 qualifiers NO <number> QUALIFIERS
Change context for any trigger setting commands that follow
Change to trigger NO TRIG

Change to Qualifier One NO o1

Change to Qualifier Two NO Q2

Change to Qualifier Three NO Q3

March 25, 1987 Page 6-67 -- In Detail --

-- Set Trigger --

Command:
STARTUP F1
NOW? F2
NORMT <addr> ADR S F3
<from> <to> CYCLES? F4
SAMP F5
ADR? F6
RESET RESET' F7
F10
NORMT <addr> ADR S

Menu:

ANALYZER MENU

RESET AND TRACE FIRST CYCLES

TRACE IMMEDIATELY

TRACE FROM A SPECIFIC ADDRESS
COUNT CYCLES BETWEEN TWO ADDRESSES
SAMPLE THE BUS CONTINUOUSLY

SAMPLE ADDRESS ACTIVITY

TURN RESET OFF

RETURN TO MAIN MENU

ANALYZER TRIGGER MENU

F1 TRIGGER ON AN ADDRESS

NORMT <from> TO <to> ADR S F2 TRIGGER ON A RANGE OF
ADDRESSES

NORMT <f£> TO <t> ADR <byte> DATA S F3 TRIGGER ON A RANGE OF
ADDRESSES AND
A DATA VALUE

NORMT NOT <f> TO <t> ADR S F4 TRIGGER OUTSIDE A RANGE
ADDRESSES

ONLY NOT <f> TO <t> ADR AFTER <addr> ADR S

RESET RESET"

-- In Detail --

F5 FILTER, EXCLUDING A RANGE
OF ADDRESSES AFTER AN
ADDRESS

F6 TURN RESET OFF OR ON
(reset is now xxx)

F10 RETURN TO MAIN MENU

-- Set Trigger --

4.2 Overview

In this section of the Operations In Detail chapter, all the
examples show traces of a 280 program with display of the CONT
and MISC columns disabled.

The first subsection introduces triggers with a simple
example. The simplest trigger, and the most commonly used, is a
trigger on a program address.

The next two sections discuss two issues that arise when

writing triggers:
how to clear out the trigger spec,
and whether or not to reset the target processor.

The next part covers general purpose triggers. You can
trigger on sets of values and on ranges of values. You can tell
the analyzer to look at the control lines, the address lines, the
data lines, the miscellaneous inputs, or any combination of them.

The real-life examples show how you can put trigger specs
commands together to solve specific problems.

Filtered traces, introduced in the following part, allow you
to look at only the cycles that interest you. You use gqualifiers
to set up preconditions-- the trigger will not occur until after
the preconditions are met.

March 25, 1987 Page 6-69 -- In Detail --

-- Set Trigger --

4.3 A Simple Example

When you use the UniLab, you will most often want to look at
a trace of the bus activity that follows a certain instruction.

For example, if you have a jump instruction at address 29 of
your program and want to see the trace of what it does after it
jumps type in the command:

29 AS

After you hit a carriage return, the Unilab will start
searching for address 510 on the target system's bus. The first
time it sees that address, it will "trigger," and then freeze the
trace buffer 165 bus cycles later.

While your target program continues, the Unilab sends that
trace buffer to the host computer. The top of the trace fills
your screen, showing the five bus cycles that preceded address
510 (labeled -5 to -1), the trigger cycle (labeled 0), and some
of the cycles that follow.

Simple Z80 example

It's easy to understand the test program loaded into the
UniLab's memory by the LTARG command. Each DDB software package
loads a different processor-specific program, but they all do
about the same thing: initialize some registers, and then go
into an infinite loop.

Start of AP .
prograa Initialize

stack pointer
“ y_

[Initialize)
other ‘ y

registers
\ g

-

/ N
Increment the
A register
(many times

v

[Jump back
start of)

_progran
N y_

~-- In Detail -- 6-70

-- Set Trigger --

The program that you work on will, of course, be more
complicated. But no matter how complicated or simple your
program, you can always tell the UniLab to trigger when the some
particular address appears on the bus.

There is only one mildly interesting point in the test
program for the Z80. That is the unconditional jump at address
29, that jumps back to address 3.

Start of

4
progran Initialize

stack pointer
\ y

(Initialize)
other ‘ '

registers
\ W _

-

4 N
Increment the
A register
pany times

-

a8 N
Settrigger here ——— g ‘égll;tbzgk)

progran
. V,

March 25, 1987 Page 6-71 -~ In Detail --

-- Set Trigger --

To get a trace starting at that address, type in:

29 AS
AS will clear out any previous trigger spec, set a
trigger for an address of 29, and start the

analyzer.

Or, if you like to type more characters:
NORMT 29 ADR S
NORMT clears out all previous trigger specifications,
and tells the UniLab that you want the trigger
event at the Top of the trace.

29 ADR is the trigger specification

S starts the analyzer

Which results in the following display (with MISC, HDATA and

CONT columns removed for the sake of simplicity):
resetting
cyi# ADR DATA
-5 0024 3C INC A
-4 0025 3C INC A
-3 0026 3C INC A
-2 0027 3C INC A
-1 0028 3C INC A
0 0029 C30300 JP 3 ¢{-—-—<¢---- Here is the trigger
3 0003 3E12 LD A,12
5 0005 015634 LD BC, 3456
8 0008 119A78 LD DE, 789A
B 000B 21DEBC LD HL,BCDE
E 000E C5 PUSH BC
F 18FF 34 write
10 18FE 56 write
11 O00F C1 POP BC
12 18FE 56 read
13 18FF 34 read
14 0010 3C INC A
15 0011 3C INC A
16 0012 3C INC A
17 0013 3C INC A
18 0014 3C INC A

~= In Detail -- 6-72

-~ Set Trigger --

Cycle numbers

The analyzer found the trigger event, and then sent to the
host computer a record of bus activity starting nine cycles
before the trigger. The trigger event is labeled as cycle 0, the
cycles before it have negative numbers.

Explanation

The rest of the trace is fairly simple-- and very similar to
the display that results from STARTUP with the 280 test program.

- There are only two mysteries to clear up, before continuing
the discussion of trigger specifications:

1) why NORMT is important,

2) the meaning of the 'resetting" message
that appears just before the trigger
display

March 25, 1987 Page 6-73 o ~- In Detail --

-- Set Trigger --

4.4 The NORMx Words

The three NORMx commands, NORMT, NORMM, and NORMB, first
clear out all previous trigger settings. They wipe the slate
clean.

And then each one sets up the "display window" to show a
different time portion of the program's execution. The diagram
below shows the effect of each instruction on a program that,
rather boringly, executes instructions starting at address 0
without any jumps or calls or branches:

NORMB NORMT NORMM NORMT 128 ADR
128 ADR S 128 ADR S 128 ADR S 200 DCYCLES
0 0 0 0
cy# adr . . .
~A5 83) .)
. : cy# adr .
) ° _54 D3 :
. cy# adr o .
. 5 114 : .
RIGGER-->| 0 128 0 128 0 128 128 <-—-TRIGGER
__4.12C)))
) . 55 17D)
: A0 1C3 :)
. . . cy# adr
. . . 157 27F
-- In Detail -- 6-74

-- Set Trigger --

All four trigger specs are watching for the same event, and
all of them number the trigger cycle as cycle zero.

They vary only in the value of DCYCLES. The Delay CYCLES is
the number of cycles that the UniLab will let pass between when
it sees the trigger and when the buffer is frozen. If this wvalue
is small (as happens when you use NORMB), then most of the trace
buffer will show what happened before the trigger.

The fourth example shows how you can manually set the delay
count. Here the delay is so large that the trigger is not even
in the window. This example uses the NORMT command to clear out

the previous trigger spec, but then uses DCYCLES to change the
delay count.

Notice how the NORMx commands change the value of DCYCLES in
the following example:

NORMT
TSTAT

Analyzer Trigger Status:
RESET

AQ DCYCLES 0 QUALIFIERS

NORMM

TSTAT

Analyzer Trigger Status:
RESET

55 DCYCLES 0 QUALIFIERS

NORMB
TSTAT

Analyzer Trigger Status:
RESET

4 DCYCLES 0 QUALIFIERS

Summary

The first address you see on the trace display after you
start the analyzer with the S command depends on two things:

1) The trigger address you selected with ADR
2) The delay you selected with NORMT, NORMM,
NORMB, or DCYCLES.

March 25, 1987 Page 6-75 -~ In Detail --

-- Set Trigger --

4.5 RESETting-- Restarting the target program

Whenever you start the analyzer with S or AS, the analyzer
will either watch the program in progress or will start the
program over. In other words, you can choose whether or not to
reset the target processor.

The Unilab software gives the message "resetting" when you

start the analyzer with reset enabled. This message lets you
know that the UniLab has sent a reset signal to your processor.

Whenever you start up the analyzer with S, the UnilLab will
either
start watching the bus for the trigger spec RESET'
OR

send a reset strobe, then start watching the bus. RESET

Enable and disable reset
You can enable and disable resetting of the target processor
with the commands RESET and RESET', or with the mode panel
(function key 8).
Mode Panel:
1. ANALYZER modes
DISASSEMBLER on

SYMBOLS off
RESET enabled

Other commands that affect the state of reset

RESET is also enabled by STARTUP, while RB disables it.

-- In Detail -- 6-76

-- Set Trigger --

4.6 General Purpose Trigger Definitions

While the previous examples were limited to address triggers
for simplicity, the Unilab allows much more complex triggers to
be defined, using all 48 analyzer inputs.

Each of the groupings of inputs can be referred to using the
same descriptive name used to label it on the trace display:

CONT ADR DATA HDATA MISC
Each of these names labels one byte of the inputs into the
UniLab, except for ADR, which labels 2 bytes. LADR and HADR each
label one byte of the address inputs.
Just as we used

<16 bit value> ADR

to define a single address trigger, we can define triggers for
the other input bytes:

<8 bit wvalue> CONT to trigger on cycle type and on A19-A16.
<8 bit wvalue> DATA to trigger on the data byte.
<8 bit value> HDATA to trigger on the upper byte of data on

16-bit processors, or on anything you
like with an 8-bit processor.

<8 bit value> MISC to trigger on whatever signals you
connect the miscellaneous lines to
(usually target system inputs and
outputs).

March 25, 1987 Page 6-77 -~ In Detail --

-- Set Trigger --
Modifying the input group words

All of the input group words can be altered in several
different ways, by preceding them with keywords. You can also
combine several input group words, as detailed on the next page.

Trigger on a single value

enter a single number to trigger on a single value,
12 DATA

Trigger on any collection of values

Use ALSO to add to the trigger values for a given set of
inputs. 12 DATA ALSO 19 DATA

You can use ALSO a number of times, to add a number of items

to a set. 12 DATA ALSO 19 DATA ALSO FO DATA ALSO EO DATA
Trigger on a range of values

Enter a range separated by TO, to trigger on a range of

values. 12 TO 34 DATA
Trigger on anything except a value

Enter the command NOT to trigger on anything but the wvalue

that follows. NOT 10 DATA
Trigger on any thing outside a range of values

Use both NOT and TO to trigger outside of a range of values

NOT 10 TO 13 DATA

Trigger on a subset of the lines in an input group

Use the MASK command to ignore certain input lines while

watching for a given state on the other lines. The
following is identical to 10 TO 13 DATA:

FC MASK 10 DATA
since it triggers when data bit 4 is set to 1 and the all
the other data bits except 0 and 1 are reset to 0-- in other
words, on the values 10, 11, 12 and 13.

-~= In Detail -- 6-78

-- Set Trigger --

Or, in binary:
B# 11111100 MASK B# 00010000 DATA

Which tells the UniLab that we are only interested in the
values of the first six wires

1111 1100
and that on those wires we want to see the signals

0001 00
Since we don't care what the lowest two bits are, they can
be any value-- 00 or 01 or 10 or 11.

In other words, we will trigger on the values

0001 0000, 10
0001 0001, 11
0001 0010 and 12
0001 0011. 13

A Note on scope

These three keywords, NOT, TO, and MASK, only affect the
first input group word which follows.

For example:
NORMT NOT 12 DATA 400 ADR S

will trigger when the data is not 12 and the address is 400.

March 25, 1987 Page 6-79 -- In Detail --

-- Set Trigger --
Triggering on combinations

You can set a trigger on several different input bytes, and
the UniLab will search for a bus cycle that satisfies all the
conditions you describe. If you want to search for 12 on the
data lines AND for 100 on the address lines, all you have to do
is type in the command:

12 DATA 100 ADR

More on ALSO

However, when you declare a trigger for a group, you
automatically clear out the previous setting for that group,
unless you use ALSO.

If you want to search for 12 on the data lines or 15 on the
data lines, you have to use ALSO:

12 DATA ALSO 15 DATA
which tells the UnilLab to trigger on either 12 or 15.
If you had just entered
12 DATA 15 DATA
then the UniLab would watch the data lines for only one value--

15, the last number specified.

- When you make a new description for an input group without
ALSQ, you clear out the previous trigger for that group, without
affecting the other groups. For example, if you enter

NORM 123 ADR 45 DATA S

trigger will occur only when the data is 45 during a bus cycle
with 123 address. If you then enter

60 TO 71 DATA S
the analyzer will restart and trigger will occur when data is

between 60 and 71 during a bus cycle with 123 address. You have
altered the DATA specification, but not the ADR spec.

-~ In Detail -- 6-80

-- Set Trigger --

4.7 Real-life Examples:

Catching the program when it goes outside of program memory

One of the nastiest problems you encounter while checking
out hardware or software is when your program "blows up" and
begins executing data or garbage.

These errors not only are troublesome to recover from, but
the mistake that caused the blow up is almost impossible to find-
- until now. Trapping these problems is a pleasure with the
UniLab.

If, for example, your program is supposed to be limited to
addresses 0 to 1234, you can enter

RESET NORMB NOT 0 TO 1234 ADR S

The UniLab will reset the target system and wait for the target
program to access an address outside of the specified range. You
can then look back through the trace memory for the abnormal
operation which caused the program to "blow up."

Whether it is a hardware malfunction or a software bug you
will have trapped it effortlessly.

You can add FETCH to the above example, so that the UniLab

doesn't trigger on reads and writes outside of memory. Some
processors lack the fetch indicator.

Catching garbage values being written to a single memory location

Another common bug you encounter is when some location in
RAM gets accidentally overwritten.

For example, a variable called STRING_LEN gets written with
the length of a string. But when your program reads the value,
it isn't the same as the value written into it.

One way to catch this bug is to produce a filtered trace
that shows every access to this variable, and the cycles that
immediately follow the access. You can then examine the trace,
and find the region of the program that causes the overwrite:

2AFTER STRING_LEN ADR S
You can then trigger on the address of the bad instruction:
NORMM <address> ADR S

March 25, 1987 Page 6-81 -- In Detail --

-- Set Trigger --
Catching a stack overflow

You can set the UniLab to trigger when your stack grows too
large.

For example, a target board has ROM at locations 0 to 1FFF,
and RAM at 2000 to 3FFF. The program sets the stack pointer to
address 20FF in RAM. This means the stack can grow to FF bytes
before running into ROM. .

You can tell the UniLab to trigger when the program makes
reference to some address that the stack will write to when it
grows "too large'"-- whatever too large means to you.

Some might want to wait until the stack is about to run
into hardware limitations:

NORMB 2001 ADR S

Others will want to trigger wheﬁ the stack holds more than
2F bytes:

NORMB 20D0 ADR S

Either way, you get to see what the program was doing just
before the stack grew too large.
Catching bad data going into a string

You can use a combination of a range of data and a range of
addresses to catch the trace of a bug that causes an
inappropriate character to be written into a string.

Of course, you don't want to look at every access to the
memory locations-- you just want to see when the bad data comes
in.

Suppose the string sits at a location with the symbolic name
STRING1 and has a length of 50 (hex) characters. The string
should only contain characters between A (41 hex) and z (7A hex).

The instruction:

NORMM NOT 41 TO 7A DATA STRING1 TO STRING1 4F + ADR S
will cause the Unilab to trigger when any data outside the range

41 to 7A gets written to any of the 50 data locations starting at
STRING1.

-- In Detail -- 6-82

-- Set Trigger --

4.8 The Limits of Trigger Complexity

Since the UniLab trigger logic uses high' speed truth tables
instead of comparators, there is no limit to the complexity of
triggers within byte groups. For example:

12 DATA ALSO 34 DATA ALSO CO TO C5 DATA ALSO FF DATA
is perfectly acceptable.

Another way to state the same thing is by entering:

12 34 CO C1 C2 C3 C4 C5 FF 9 NDATA

Note that the 9 is the number of terms listed.

ALSO with ADR
You can run into problems with ADR, since that word actually
describes two bytes. If the high byte of several addresses that
you are using ALSO on don't match, you can produce unanticipated
cross products. For example:
1200 ADR ALSO 1535 ADR

would cause the UnilLab to trigger on either 1200 or 1535-- and
also on either 1235 or 1500

These cross products usually are not a problem, but you
should be aware of them.

March 25, 1987 Page 6-83 -- In Detail --

-- Set Trigger --
MASKing

You can also specify triggers with a MASK format. For
example,

80 MASK 0 DATA

requires the MSBit of the data bus to be 0, but doesn't care
about the other 7 bits. It is identical to entering 0 TO 7F DATA
or NOT 80 TO FF DATA. All three commands give the same result so
you should simply use the format that seems most natural to you.

Triggering on 20-bit addresses

If your system uses more than 16 bits for addressing, you
can set triggers on 5-digit hex addresses by ending the address
with a period. For example, 12345. ADR will actually set a
trigger on 1 in the right digit of the CONT column (which is
connected to address bits A16-A19) and 2345 on the ADR inputs.

-- In Detail -- 6-84

-- Set Trigger --

4.9 Filtered Traces

The UnilLab's trace buffer stores 170 48-bit samples of bus
activity. Other analyzers need gigantic trace buffers because
they lack the sophisticated triggering and filtering logic of the
UniLab.

Often the majority of bus cycles are not of interest-- for
example when most of the time is spent in a status loop or a
delay 1loop.

The sledgehammer solution:‘ have a huge trace buffer. Then
you get to look through that buffer, hunting for the relevant
information.

The UniLab approach: have the computer throw away the
boring parts of the program.

With the UniLab you never have to look through thousands of
uninteresting cycles. The Unilab will filter the trace, and
record only the cycles that interest you.

An introduction to ONLY

If you enter:
ONLY 1234 ADR S

the UniLab will record only cycles that address location 1234.
If the instruction at 1234 is the one that reads input samples,
you will end up with a trace recording of nothing but input
samples. Note that ONLY clears out the previous trigger spec--
much like NORMB.

Filter, excluding addresses

More practically, suppose that a boring status loop occupies
program memory from 1020 to 1060. You want to get a trace that
does not include the trace of the opcodes in those addresses.

The command is:
ONLY NOT 1020 TO 1060 ADR S

March 25, 1987 Page 6-85 -- In Detail --

-- Set Trigger --
Filter the trace, but don't start until AFTER . « &

You can make a filtered trace even more useful by setting up
a separate trigger that tells the UnilLab when to start checking
cycles against the filter specification. For example, the
program might not get interesting until after 30 gets written to
address 3000 of RAM:

ONLY NOT 1020 TO 1060 ADR AFTER 30 DATA 3000 ADR S

Further discussion of AFTER is deferred to the following sub-
section 4.10 on Qualifying Events.

The rest of the filter commands

ONLY is most useful when you want to exclude some type of
operation or some section of the program.

But when you filter to include cycles, you usually want to
see at least one cycle after the trigger.

For example, if you are looking at all the writes to RAMNM,
you can find out which section of the program performed the write
with

3AFTER WRITE S

which will show you every write along with the three cycles that
follow it.

2AFTER captures the two cycles that follow each trigger, and
1AFTER captures only one cycle after each trigger event. All of
these words clear out the previous trigger spec and then set up
for a filtered trigger spec.

Filtering and disassembly

Since filtering will produce a trace with partial opcodes,
the disassembler will not be able to interpret the sequence of
cycles properly. You will probably want to turn off the
disassembler when producing a filtered trace. Use DASM' or the
mode panel (F8).

Mode Panel:

1. ANALYZER modes
DISASSEMBLER on
SYMBOLS off
RESET enabled

~- In Detail -- 6-86

-- Set Trigger --
Filtering and the MISC inputs

The filtering logic of the UniLab does not look at the MISC
inputs. This lets you tell the Unilab to filter a trace while
waiting for a trigger condition to appear on the MISC inputs.

This is not the same as using AFTER with the filter
commands-- with AFTER you get a filtered trace starting at some
bus event. With the use of the MISC lines, you can get a trace
that shows the bus activity before some event.

For example, if you want a trace with the delay subroutine
at A0-BO removed, but you want to trigger on an active high error
signal, you connect the error signal to one of the MISC inputs
and enter:

ONLY NOT A0 TO BO ADR FF MISC

The filtered trace will exclude cycles accessing addresses A0 to

B0, but trigger will not occur until the error input goes true,
thus causing FF on the MISC inputs.

March 25, 1987 Page 6-87 ~-—- In Detail --

-- Set Trigger --

4.10 Qualifying Events

The Unilab can trigger on sequences of events, instead of
just when it sees a single trigger event. For example,

NORMT 78 DATA AFTER 56 DATA S

will not trigger until first 56 appears on the data bus and then,
anytime later, 78 appears.

The 56 is the qualifier, and 78 the trigger.

Up to three qualifiers

You can specify up to three sequential qualifying events.
Use AFTER when you want to start the description of the next
gqualifier. For example:

NORMT 10 DATA AFTER 250 ADR AFTER 300 ADR S

will trigger on 10 data, anytime after 300 is immediately
followed by 250 on the address bus.

The UniLab will not start to search for the trigger itself
until after it sees the qualifiers.

The qualifiers must appear on the bus without any
intervening bus cycles. If the sequence does not appear, then
the UniLab goes back to searching for the top-most qualifier.
However, once all the qualifiers have shown up, the trigger does
not have to occur immediately.

You can specify a minimum number of bus cycles after the
time the last qualifier is seen, before the Unilab starts looking
for the trigger. The default is 0 PCYCLES. Or, you can specify
a number of complete repetitions of the sequence of gualifiers.
The default is 1 PEVENTS.

See the flowchart on the next page, reproduced from section
three of Chapter Three. Turn to that section for more
explanation of the flow chart.

-- In Detail -- 6-88

March 25, 1987

-- Set Trigger --

[QuanﬂerLomcpreWouﬂydescnbedﬁf]
Start if
3 qualifiers <
A
No
4 4
Yes
Start if +
2 qualifiers ¢
N PN
N
=)
Yes P S
Start if
1 qualifier <
Re-entry if using
-~ Pass counter to
N count sequences of
o lifyi ts.
’ ’ ‘qua ifying eveAn s
J

Decrement the
Pass Counter

Pass
Counter
=07

Clock a cycle
into trace

Start search for trigger bus
cycle, as detailed on the flow

chart for Simple Trigger

Page 6-89

~- In Detail --

-- Set Trigger --
Triggering for a filtered trace

Qualifiers also allow you to set up a trigger that is
different from the filter specification. That way you can
produce a filtered trace that starts after the qualifiers:

ONLY NOT 200 TO 250 ADR AFTER 368 ADR S

This trigger specification will make a filtered trace that
excludes addresses 200 through 250. The UniLab will not start
making the filtered trace until it sees address 368 on the bus.

Triggering on sequential events

You can use qualifiers to trigger on a consecutive sequence.
Suppose there is a three byte conditional branch instruction
starting at address 1010, which will jump to address 250. Other
instructions also cause a jump to 250, but you are not interested
in those. You want to see what happened before the branch at
address 1010 is taken-- so you want to trigger when 250 follows
immediately after address 1012 (the address of the last byte of
the three byte opcode).

Using address 1012 as the qualifier and then 250 as the
trigger will not work, because the UnilLab would trigger on
address 250 even if it occurred hours after address 1012.
Instead, you want to have both addresses as gqualifiers, and no
trigger event:

NORMB AFTER 250 ADR AFTER 1012 ADR S
Watch out

Note that the qualifiers must always appear one immediately
after another on the target system bus:

NORMT AFTER 250 ADR AFTER 305 ADR S

In this example, the UniLab will look for address 250
immediately after address 305. If 250 does not appear on the
address bus immediately after 305, then the UniLab will go back
to searching for 300.

That particular trigger only makes sense if there is a jump,
call or conditional jump that could cause the next address to be
250 whose last byte is at 305,

-~ In Detail -- 6-90

-- Set Trigger --
Delay between qualifiers and trigger

Though the qualifiers must follow one after another, the
trigger can come anytime after the qualifiers.

In fact, you can specify a minimum length to the delay
between the qualifiers and the trigger. This is useful for
avoiding trigger immediately after the qualifiers are seen.

If you want to keep the trigger disabled for 200 cycles
after the qualifying sequence you can simply enter

200 PCYCLES

This is the pass count.

For example:

NORMB 10 DATA AFTER 250 ADR 200 PCYCLES S

tells the UnilLab to trigger when the data is ten. The UnilLab
will not start to search for data 10 until 200 bus cycles after
the address appears on the bus.
Repetition of the qualifying events

You can also specify to the UniLab that the sequence of
qualifying events be repeated. This is useful for looking at the

nth pass through a loop, or the nth call to some routine.

If you want the UnilLab to wait for 150 complete repetitions
of the qualifiers before starting to search for the trigger enter

150 PEVENTS
For example:
NORMT AFTER 1100 ADR 150 PEVENTS S

causes the UniLab to trigger after address 1100 has appeared on
the bus 150 times.

March 25, 1987 Page 6-91 -- In Detail --

-- Set Trigger --

4,11 Stepwise refinement

The UniLab allows you to build on existing trigger
definitions.

Trigger definitions can be gradually expanded in complexity
as you find limitations in your original idea. If you are trying
to see a subroutine at address 1200, that gets called from a
certain section of code, you might first enter

NORMB 1200 ADR S

only to find that the trace shows a call to the subroutine from a
section of the program that you are not interested in.

You can add a qualifier and restart the analyzer by entering
AFTER 5670 ADR S

This time the UniLab will search for 1200 only after address 5670
(an address in the desired calling routine) has been detected.

If you had thought of the need for a qualifier in the first
place, you could have entered

NORM 1200 ADR AFTER 5600 ADR S

This ability to polish trigger definitions makes your
interaction with the UniLab conversational. You ask questions
about what the system is doing and receive immediate answers --
all from the same keyboard you use to write and change the
programs.

~=- In Detail -- 6-92

5.

Introduction

Save Information

The UniLab software lets you save transcripts of your
sessions and screen images as DOS text files, and also lets you
save specific information as encoded DOS files.

Contents

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10

March 25, 1987

Feature Summary
Overview

Screen History

Save Record of Session to Text File 6-97

Save Record of Session to Printer 6-98

Save Only Memory Changes to Printer 6-98

Save Trace

Save Symbol Table

Save a Range of Memory

6-99
6-101

6-101

Save the State of UnilLab Software 6-102

Page 6-93

-- In Detail --

-- Saving Information --

5.1 Feature Summary

Features

Print out commands that alter memory
Send all screen display to DOS file
Print out everything

Save the current screen image

Save a trace to a file

Compare current trace to one saved as
a file

symbol table to a file

current state of UniLab program
program or data memory to a file

Save
Save
Save

Save a histogram setup as a file
Look at one line of '"screen history"
Look at one page of history
Mode Panel:
3. LOG modes
LOG TO PRINT
LOG TO FILE
PRINTER
-- In Detail --

Mode

Panel

Yes
Yes
Yes

NO
NO
NO
NO

NO
NO

<n>

Commands

LOG LOG'
TOFILE TOFILE'
PRINT PRINT'
SSAVE <file>
TSAVE <file>
TSAVE <file>

SYMSAVE <file>
SAVE-SYS <file>

<from> <to> BINSAVE <file>

NO
NO
NO

HSAVE <file>
Up Arrow key

PgUp key
Commands:
LOG LOG'

TOFILE TOFILE'
PRINT PRINT'

-~ Saving Information --

5.2 Overview

While using the UnilLab software, you can preserve any
information you want about your session.

The software always preserves a history of your screen. You
can save up to 60K in this history, which starts up every time
you begin a session with the UnilLab. After the history buffer
fills, you start losing the oldest information.

You can also turn on features that will save all screen
displays

to a text file TOFILE
or to your printer. PRINT
You can also log only memory changes to the printer. LOG
You can save the current screen image as a textfile. SSAVE

Other commands save, as encoded DOS files:

the current trace display, TSAVE
the current symbol table, SYMSAVE
any range of memory, BINSAVE
the state of the histogram (PPA), HSAVE
or the current state of the system. SAVE-SYS

March 25, 1987 Page 6-95 -- In Detail --

-- Saving Information --

5.3 Screen History

The screen history always preserves the last 20 to 60K of
screen display.

The information that scrolls off the top of either the the
full screen or the lower window gets saved.

You look at the history with the Up Arrow and Pg Up keys,
numbers 8 and 9 on the numeric key pad.

Screen History
Previous Line

Screen History
Previous Page

J

kPgDnj

Setting the size of screen history
The size of the history is set by giving the command:
<hex # of Kbytes> =HISTORY
then saving the newly altered UnilLab software with SAVE-SYS. You
must then exit the program with BYE and reenter it, since the
history buffer is allocated when the program starts up, and
cannot be changed on the fly.

The maximum number of kilobytes that you can allocate to
history is 3C (decimal 60K).

Use the command ?22FREE to find out how many bytes are

allocated to history and to symbols. That display appears in
decimal base.

~- In Detail -- 6-96

-~ Saving Information --

5.4 Save Record of Session to a Text File

You can save the record of a session with a text log file.
You can only save to one text file per session, but once you have
created a log file you can turn the logging on and off at will,
with the mode panel or with TOFILE and TOFILE':

Mode Panel:

3. LOG modes
LOG TO PRINT inactive
LOG TO FILE off
PRINTER off
NMI VECTOR active
SWI VECTOR active

Creating the log file
You cannot create the file from the mode panel-- you must
use the command
TOFILE <file name>
to create the file in the first place.

This command can be used as a "command tail" when you call
up the UniLab software from DOS:

A> ULZ80 TOFILE JUNE3

will call up the UniLab program with "june3" as the log file.

You can also name the log file from within the Unilab
program, with TOFILE <file name>.

You will not be able to turn on logging to a file until you
have named a file.,

March 25, 1987 Page 6-97 -- In Detail --

-- Saving Information --

5.5 Save Record of Session to a Printer

You can save all screen output to a printer with the Mode
Panel or with the PRINT and PRINT' commands.

Mode Panel:

3. LOG modes
LOG TO PRINT inactive
LOG TO FILE off
PRINTER off
NMI VECTOR active
SWI VECTOR active

5.6 Save Only Memory Changes to Printer

This feature helps make certain that you don't forget any
patches that you make to your program. It keeps a record on your
printer of all commands that alter memory.

You turn it on and off with the Mode Panel, or with the
commands LOG and LOG'.

Mode Panels:

3. LOG modes
LOG TO PRINT inactive
LOG TO FILE off
PRINTER off
NMI VECTOR active
SWI VECTOR active

-- In Detail -- 6-98

-- Saving Information --

5.7 Save and Compare Trace

You can save the trace as an encoded file, which can later
be retrieved with TSHOW or compared to the current trace with
TCOMP.

You save the current trace with the command:
TSAVE <file name>

This is very useful for production checkout of a system.
You can save the trace of a program on a known good system, and
then use TCOMP to compare the known good trace to the trace of
the hardware you want to check.

Comparing traces

Enter AA TCOMP <file name> to compare the last AA cycles of
the trace (which is the whole trace) currently in the trace
buffer with the trace previously saved as a file.

If the two traces are identical, the UnilLab will respond
with an "OK" message. Otherwise it will display 14 lines of the
trace on disk including the first non-matching bus cycle,
followed by the non-matching cycle in the current trace.

You can completely test a system with a few such trace
comparisons, using programs that exercise the hardware of the
system. The UnilLab's macro capability allows you to write a macro
which completely tests a system, automatically. (UniLabs are
given their final test at the factory with just such a macro.)

March 25, 1987 Page 6-99 -— In Detail --

-- Saving Information --
Example: Trace compare

This example shows the result of performing TCOMP on a

faulty trace produced by a Z80 board running the simple target

program (LTARG). One of the address lines of the board was
grounded, which pulled it low.

AA TCOMP TESTZ80.TRC

cy# CONT ADR DATA HDATA MISC
3 B7 0003 3E12 LD A,12 11111111 11111111
5 B7 0005 015634 LD BC,3456 11111111 11111111
8 B7 0008 119A78 LD DE,789A 11111111 11111111
B B7 000B 21DEBC LD HL,BCDE 11111111 11111111
E B7 000E C5 PUSH BC 11111111 11111111
F D7 18FF 34 write 11111111 11111111
10 D7 18FE 56 write 11111111 11111111
11 B7 000F C1 POP BC 11111111 11111111
12 F7 18FE 56 read 11111111 11111111
13 F7 18FF 34 read 111111171 11111111
14 B7 0010 3C INC A 1111111 11111111
15 B7 0011 3C INC A 111111 11111111
16 B7 0012 3C INC A 11111111 11111111

No Good! (Above is correct.) Was:

cy# CONT ADR DATA ' HDATA MISC
F D7 18DF 34 write 11111111 11111111

TCOMP reports a discrepancy to you by showing the relevant

section of the trace on disk, and then showing the non-match
line from the current trace.

You then have to perform a visual comparison of the two
cycles that don't match up.

ing

In this case, you can see that in cycle F of the trace on

disk, the Z80 wrote to address 18FF. In that same .cycle of
new trace, the 280 wrote to 18DF. Since the program is the
in both cases, the difference is in the hardware.

ADDRESS LINE: 7654 3210
FF hexadecimal is 1111 1111 binary,
while DF hexadecimal is 1101 1111 binary.

So, obviously, address line A5 has been accidentally
grounded.

-- In Detail -- 6-100

the
same

-- Saving Information --

5.8 Save Symbol Table as DOS File

You can save the symbol table as an encoded file, which can
later be retrieved with SYMLOAD.

You save the current symbol table with the command:

SYMSAVE <file name>

5.9 Save a Range of Memory as DOS file

You can save any range of emulation ROM as an encoded file,
which can later be retrieved with BINLOAD. You can use this
command to save the program you are working on.

You can also save from and load to RAM if you have first
established debug control. See section 6 on Breakpoints and The
DEBUG.,

You save a range of memory with the command:

<from address> <to address> BINSAVE <file name>

March 25, 1987 Page 6-101 -- In Detail -

' -~ Saving Information --

v5.10 Save the State of the UniLab Software

You can save the current state of the Unilab program to a
command file. This allows you to save the software with a
certain range of memory enabled, and with other variables set up
to your preference. Saving the system will also preserve the
current trace.

You can save to a file with the same name as the current
EXE file, or to a different one.

To save the current state of the system, use the command:
SAVE-SYS <file name>»

Unless you specify a different path, the file will get saved to
the Orion directory.

-- In Detail -- 6-102

6. Breakpoints and the DEBUG features

Introduction

The UniLab emulator includes special hardware that makes
possible virtually all of the traditional processor-pod
development system features. The basic UnilLab software includes
all of the processor-independent debug features.

Processor-specific software packages add more features, such
as the ability to change specific registers, or take advantage of
special functions of the processor.

Consult the Target Application Note for your

Disassembler/DEBUG software to get more information on DEBUG
features.

Contents

6.1 Feature Summary 6-104
6.2 Overview : 6-106
6.3 Establiéh Debug Control 6-109
6.4 Interpret the Breakpoint Display 6-114
6.5 Within the DEBUG 6-116
6.6 ‘ Exit from the DEBUG 6-126
6.7 Disable DEBUG-- How and Why 6-128

March 25, 1987 Page 6-103 -- In Detail --

-- The DEBUG features --
6.1 Feature Summary
Feature Menu Command

To enter DEBUG:
Establish debug control by setting a breakpoint

Yes RESET <addr> RB
Gain debug control immediately with a hardware interrupt
NO - NMI
Watch the bus for some trigger spec, then issue a hardware
interrupt. NO RI <trigger spec> SI

Within DEBUG:
All commands for reading and altering memory work on RAM.

Set breakpoint and let program run to the new breakpoint

Yes <addr> RB
Set breakpoint at next
code address Yes N
Show the "breakpoint display"
again NO R
Execute the next instruction-- use when single stepping for jumps
and branches. NO NMI
Alter Program Counter,
then resume to breakpoint Yes <New PC> <addr> GB
Set Multiple Breakpoints NO <addr> <bp #> SMBP
Clear one multiple breakpoint NO <bp #> RMBP
Clear all multiple breakpoints NO CLRMBP
Trigger style breakpoints
Set up a trigger for DEBUG NO RI <trigger spec>
Start program and gain debug control
when trigger seen on bus NO SI
To exit DEBUG:
Exit immediately-- set program
running again NO RZ
Alter Program Counter, then exit
from debug control NO <New PC> G
Alter Program Counter, then wait
for the analyzer to start NO {New PC> GW

Additional (target specific) DEBUG commands alter register
contents, output values to ports, etc.

-- In Detail -- 6-104

Command:

RESET <addr> RB
<addr> RB
N :
<New PC> <addr> GB
<New PC> G

Ay

March 25, 1987

1
F2
F3
F4
F5
F10

Menu:

DEBUG MENU
SET A BREAKPOINT
RESUME EXECUTION
EXECUTE THE NEXT
GO TO AN ADDRESS
GO. TO AN ADDRESS

-- The DEBUG features --

TO ESTABLISH DEBUG CONTROL
TO A BREAKPOINT

STEP (WON'T FOLLOW JUMPS)
WITH A BREAKPOINT SET

AND EXIT THE DEBUG

RETURN TO MAIN MENU

Page 6-105

-- In Detail --

-- The DEBUG features --

6.2 Overview

The DEBUG commands of the UniLab software provide you with
the tools traditionally associated with development systems.

DEBUG capabilities
The DEBUG features:

set single or multiple breakpoints,

interrupt the processor to gain immediate DEBUG
control,

single step through code,

read and alter internal registers, and

read and alter RAM.

The Unilab's powerful bus state analyzer replaces most of
the functions of the traditional debug tools. But when you have
tracked a bug down to a small segment of code, it is very useful
to be able to set a breakpoint and single step through the
program.

DEBUG characteristics

All Orion DEBUGs have certain common requirements and
characteristics. The specifics of each DEBUG are discussed in
the Target Application Note for the DDB software.

This page and the next two describe the common requirements.
This section of Chapter Six then goes on to describe the common
DEBUG commands.

Use of target system resources ‘

All Orion DEBUGs make use of some of your processor's
resources. All of them require a several byte '"reserved area" in
emulation ROM that you cannot put code into, and a larger
"overlay area" that you can use. These areas are movable. See
the next page.

All DEBUGs use your stack.

Most DEBUGs also make use of a trap vector or an internal
register of the target processor.

To support the NMI dependent commands, they use a hardware
interrupt vector.

. == In Detail -- 6-106

-~ The DEBUG features --

Movable reserved area

Both the reserved area and the overlay area are relocatable.
Use CTRL-F3 to see the current location. Use <addr> =0OVERLAY to
move them to a new starting address.

Do not put these areas too close to a 2K boundary. A good
rule of thumb-- if the overlay area is already close to a 2K
boundary, do not move it any closer. For example, if the default
location is 0FD8, do not move it to OFF0. However, 07D8 would be
fine.

You will run into problems if you do not enable the 2K block
that contains the reserved and overlay areas.

How the DEBUGs work

All DEBUGs work by downloading Orion software routines to
your emulation ROM (in the overlay area) and using your processor
to execute routines that display target registers, alter target
RAM, etc.

While you can put code into the overlay area, most of the
DEBUG routines will not work on that area of memory.

Required Code in User Program

All the routines that are downloaded to your processor
require a working stack. If your processor does not have a
default stack pointer, your target system code must initialize
the stack pointer. You cannot set a breakpoint in your code
until the stack pointer is initialized.

A few DEBUGs, such as that for the 8088 and 8086 processors,
require that your code initialize other resources, such as

interrupt vectors. Consult the Target Application Note for more
information.

Some DEBUGs require you to issue a UniLab command that tells
it what areas of RAM or ROM you want the DEBUG to use.

March 25, 1987 Page 6-107 -- In Detail --

-- The DEBUG features --
Connections

Each section of this chapter includes a diagram that shows
you how to connect your UniLab to your processor. The command
PINOUT shows a connection diagram on-line. Some software
packages that support more than one processor require different
cable connections for different processors.

Consult Appendix C to double-check your wiring.

Access to RAM, to internal registers, etc.

You cannot look at or alter RAM or internal registers until
you have first established debug control. You establish debug
control by setting a breakpoint (RESET <addr> RB) or by asserting
a non-maskable interrupt while your target program is running
(NMI).

For more information on debug control, check the entries for
NMI and RB in the command reference chapter, or read on.

-- In Detail -- 6-108

-- The DEBUG features --

6.3 Establish Debug Control

Most of the DEBUG commands will not work until after the
UnilLab's special DEBUG hardware has taken control of your
processor.

You can establish debug control with either a software
interrupt
RESET <addr> RB,

or with a hardware interrupt
NMI,
or with a trigger spec which will cause a hardware interrupt

RI <trigger spec> SI.

You cannot invoke the DEBUG until after your program
initializes the stack pointer. The DEBUG actually runs code on
your processor, and then uses the RETurn instruction to resume
execution of your program.

If the stack pointer is not initialized, you will not be
able to establish debug control at all, or will get an obviously
incorrect breakpoint-- for example, with all registers displayed
as FF.

DEBUG terminology

When your program reaches a breakpoint or you issue a
hardware interrupt, the UniLab will take control of your
processor. Your program stops executing. You have "established
DEBUG control."

Your processor is then held in an "idle loop."

When you use one of the DEBUG commands, the UniLab will
release your processor from the idle loop to execute a routine
that has been downloaded into the "overlay area."

Any code that you have in the overlay area gets saved before
the DEBUG routines are downloaded, and then restored.

The reserved area does not get saved and restored. This

area varies in size from one byte on some DDB packages to six
bytes at the most.

March 25, 1987 Page 6-109 -- In Detail --

-~- The DEBUG features --

Establish control with a software interrupt

To establish DEBUG control, you must enable reset of the
target system, then set a breakpoint at an opcode address.

RESET
<address> RB

The address you give must be the first address of an opcode.

In the fragment of Z80 code below, you could set a breakpoint at
any of the addresses that appear in the adr column. But you
would not be able to set a breakpoint on address 131 or 132, for
example.

Adr Opcode Instruction
012B 012C00 LD BC,2C

012E 7C LD A,H
012F BA CP D

0130 23801 JP NZ,138
0133 7D LD A,L
0134 BB CP E

0135 CA4201 JP Z,142
0138 7E LD A, (HL)

Use a trace display, or disassemble from memory (with DN or
DM) to determine where you can set breakpoints.

Example: Establish debug control with RB

In this example, we set a breakpoint on address 12F in the
7280 code fragment above. The transcript below shows the command,
followed by a "resetting" message, and then the "breakpoint
display."

The "resetting" message shows that the UniLab has issued a
restart strobe to the target board. When the processor reaches
the breakpoint address, the UniLab downloads a DEBUG routine to
the overlay area and then displays the values of the internal
registers.

RESET 12F RB resetting

AF=02A0 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00
012F BA CP D (next step) ok

-- In Detail -- o 6-110

-- The DEBUG features --

Establish control with a hardware interrupt

You can either issue a non-maskable interrupt manually,
NMI,

or you can set up the UniLab to issue the hardware interrupt when
a certain bus state is reached,

RI <trigger spec> SI.

Either way, the UniLab sends a signal to the hardware
interrupt pin of your processor, which immediately interrupts
your processor.

These commands will only work if the target system does not
need to make use of your processor's hardware interrupt pin. The
‘UniLab DEBUG makes use of the Non-Maskable Interrupt (NMI) pin.
If the processor does not have an NMI pin, the DEBUG uses the
maskable interrupt request (IRQ) pin of the target processor.

If your target system does make use of your processor's
hardware interrupt, you should disable the UniLab's NMI features.
See subsection 6.8, Disable DEBUG.

NMI for DEBUG control and for single-step

The "state-smart" NMI command will also single-step through
code, following program flow.

When you use NMI, the command first checks whether you have
your processor under DEBUG control. Then NMI will establish
DEBUG control if you don't have it, or will single-step the
processor if you do have it.

When NMI has to establish DEBUG control, it will print
"-nmi-" on the screen. When single-stepping, it works silently.

March 25, 1987 Page 6-111 ~-- In Detail --

-~ The DEBUG features --

RI and SI for trigger-style hardware interrupts

RI and SI produce a hardware interrupt which achieves DEBUG
control a cycle or two after the bus conditions appear.

You can use RI and SI either to establish debug control in
the first place, or to continue after you have already
established control.

RI clears out the old trigger spec and sets up for a
hardware interrupt trigger spec, and SI starts the analyzer.
Like this:

RI <trigger spec> SI

Qualifiers should not be used in the trigger spec. If you
do use them, the result will be that the gualifier and trigger
must occur one immediately after another.

Example: Trigger style breakpoints

The example shows the setting of two breakpoints using
analyzer style commands. Note that the breakpoint occurs one
cycle after the trigger event occurs. The code in which we are
setting breakpoints appears below, for convenience.

0005 015634 LD BC, 3456
0008 119A78 LD DE,789A
000B 21DEBC LD HL,BCDE

000E C5 PUSH BC
000F C1 POP BC
0010 3C INC A
0011 3C INC A

(eee. jump back to address 3 ...)

RI 10 ADR 3C DATA SI resetting
AF=1300 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=E5C1 IY=E5C1 SP=1900
0011 3C INC A (next step) ok

RI 18FF ADR AFTER 0OE ADR SI

AF=1228 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=E5C1 IY=E5C1 SP=18FE
000F Ci1 POP BC (next step) ok

-- In Detail -- 6-112

~- The DEBUG features --

Common DEBUG pitfalls

1. Watchdog Timer:
Your microprocessor stops executing your program when you are at
a breakpoint.

If you have a watchdog timer, it will then try to restart
your target board. The watchdog thinks that something has gone
wrong with your program.

You must disable the watchdog timer to use the DEBUG.

2. Stack Pointer:

The Orion overlay routines make use of your processor's stack.
You cannot set a breakpoint until after your program has
established a functional stack.

Most programs initialize the stack pointer as one of the
first few steps. Some processors have a default value for the
stack pointer, and so do not need to initialize the stack
pointer.

Check whether your stack is working properly if you cannot
establish DEBUG control, or if you are always getting obviously
bad data, such as all registers reported as value OFF.

3. Opcode Address:
You can only set a breakpoint on the first address of an
instruction, as explained earlier.

4, Reserved bytes and the Overlay Area:
Your program cannot make use of the reserved bytes, and you
cannot set a breakpoint in the overlay area.

The addresses of the reserved bytes and the overlay area
appear in Appendix H, or on-line when you press CTRL-F3. The
reserved area is between one and six bytes of ROM, and the
overlay area is the area of 30 to 70 bytes above the reserved
bytes.

Debug commands which refer to addresses in the overlay area
may produce strange results.

March 25, 1987 Page 6-113 -- In Detail --

~=- The DEBUG features --

6.4 Interpreting the Breakpoint Display

The breakpoint display varies from processor to processor,
but always contains the same two basic parts:

1) the register display, and
AF=02A0 (Si-a—pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00
2) the display of the next step.

012F BA CpP D (next step) ok

Register Display

You can see the breakpoint display again with the command R.

The register display varies from processor to processor, but
always includes the stack pointer (SP) and the flags register
(F), along with the standard internal registers.

AF=02A0 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00

Often the automatic display shows only some of internal
registers -- but each DDB package has commands that will allow
you to examine any internal registers or RAM while at a
breakpoint. '

All registers are displayed in hexadecimal, and a single
letter abbreviation for each flag bit is also displayed.

AF=02A0 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00

Notice how the flags display changes as the value stored in
the F register changes-- a capital letter indicates that the bit
is set high, a lowercase letter indicates that it is low:

AF=02A0 (Sz-a-pnc)

AF=0242 (sZ-a-pNc)

-- In Detail -- 6-114

-- The DEBUG features --

Next Step

The display of the next step shows you the address of the
opcode which will execute next (which is the same as the program
counter or instruction counter),

AF=02A0 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00
012F BA CP D (next step) ok

and the opcode stored at that address,

012F BA CP D (next step) ok

and the disassembled instruction that the processor is about
to execute:

012F BA CP D (next step) ok

March 25, 1987 Page 6-115 ~- In Detail --

-- The DEBUG features --

6.5 Within DEBUG

After you have established DEBUG control, you can:

run to another breakpoint,

single step,

follow jumps while single stepping,

change the program counter and then run to a bp,
set multiple breakpoints,

examine and alter internal registers,

examine and alter RAM or ROM,

and exit from DEBUG control.

You can also exit from the DEBUG, and start using analyzer
commands again.

While your processor is under DEBUG control you can safely
look at or change emulated ROM without crashing the program.

On some processors, you can also send data to a port, and
examine the contents of a port.

Missed breakpoints

You will lose DEBUG control if you use RB or GB to set a
breakpoint which your program never reaches.

When this occurs you can press any key and NMI will be
executed, regaining DEBUG control. Or, you can reset the
processor with RESET <addr> RB.

If you accidentally set a breakpoint in the middle of an

opcode (instead of at the start) your program might crash, and
will at the least have a corrupted opcode.

-- In Detail -- 6-116

~- The DEBUG features --

Run to another breakpoint

After establishing debug control, you can let the program
run to another breakpoint:

<address> RB

You must enable RESET to establish debug control, but must
leave it disabled when running to subsequent breakpoints. If you
re-enabled RESET each time before you used RB, your program would
start running again from the beginning, rather than continuing
from the breakpoint where it had last stopped.

In the transcript below, the RB command was used, with reset

enabled, to first establish debug control. RB automatically

disabled reset. RB was then used to run to a second and then a
third breakpoint.

RESET 14C RB resetting

AF=786A (sZ-a-pNc) BC=040E DE=0200 HL=1801 IX=FFFF IY=FDFF SP=1C00

014C 0B DEC BC (next step) ok

15E RB

AF=0044 (sZ-a-Pnc) BC=0086 DE=FFFE HL=0000 IX=FFFF IY=FDFF SP=1BFE
015E 39 ADD HL,SP (next step) ok

177 RB

AF=0044 (sZ-a-Pnc) BC=0086 DE=1BEE HL=0000 IX=FFFF IY=FDFF SP=1BF0
0177 C9 RET (next step) ok

March 25, 1987 Page 6-117 -~=- In Detail --

-- The DEBUG features --

Single-Step

After you have established debug control, you can step
through your program, one opcode at a time.

When you want to single-step through code you have your
choice of two UniLab commands. One, NMI, uses a hardware
interrupt to step through your code. This command will follow
all jumps, branches and calls, just as you would expect. The
other command, N, has a different but still highly useful mode of
action. See below for more information.

NMI single step

As explained in the section on establishing DEBUG control,
NMI is a "state-smart" command. It either establishes DEBUG
control for you, or single-steps the processor if you already
have DEBUG control.

N single step

N always sets a software breakpoint on the address just
after the "next step" instruction. N is not appropriate when you
want to single-step through a command that changes the program
counter-- such as a jump, call or branch. When you are, for
example, stopped at a CALL instruction, you can use N to set a
breakpoint that will not be reached until the program returns
from the CALL.

N will step through much of your code without a problem (and
without using the hardware interrupt).

'-= In Detail -- 6-118

-~ The DEBUG features --

Example: NMI and N

In this example N and NMI are used to single-step up to a
jump and then to follow the jump.

RESET 134 RB resetting

AF=7842 (sZ-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF I1IY=FDFF SP=1C00

0134 BB Cp E (next step) ok

N

AF=786A (sZ-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00
0135 CA4201 JP 2,142 (next step) ok

The program executes the jump to 142.

NMI
AF=786A (sZ-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00
0142 210018 LD HL,1800 (next step) ok

Example: N only

In the transcfipt below, we first establish debug control
with RB, and single-step through a series of stack and register
manipulations.

You can see the effects of the register manipulations in this
code. The registers that are about to change are in bold text,
and the ones that have just changed are underlined.

RESET 170 RB resetting
AF=0040 (sZ-a-pnc) BC=00DE DE=0002 HL=0F83 IX=FFFF IY=FDFF SP=1BEA

0170 EB EX DE,HL (next step) ok

N

AF=0040 (sZ-a-pnc) BC=00DE DE=0F83 HL=0002 IX=FFFF IY=FDFF SP=1BEA
0171 E1 POP HL (next step) ok

N

AF=0040 (sZ-a-pnc) BC=00DE DE=0F83 HL=1BEE IX=FFFF IY=FDFF SP=1BEC
0172 F9 LD SP,HL (next step) ok

N

AF=0040 (sZ2-a-pnc) BC=00DE DE=0F83 HL=1BEE IX=FFFF IY=FDFF SP=1BEE
0173 ¢C1 POP BC (next step) ok

N

AF=0040 (sZ-a-pnc) BC=0086 DE=0F83 HL=1BEE IX=FFFF IY=FDFF SP=1BF0
0174 EB EX DE,HL (next step) ok

March 25, 1987 Page 6-119 -- In Detail --

~-- The DEBUG features --

Change the program counter and then run to breakpoint

To resume the program at a different address than the one
you are stopped at, use

<New PC> <bp address> GB
This command takes two arguments. It puts the first value
into the program counter, and sets a breakpoint at the second
value. Then the UniLab releases the processor, so the program
starts at the new code address pointed to by the program counter.

Note that this can have some unexpected results-- you are
interfering with the program flow.

See the example on the next page.

-~ In Detail -- 6-120

-~ The DEBUG features --
Example: Change PC, then run to a breakpoint

First, while stopped at a breakpoint, reset the PC and set a
breakpoint on the very next opcode address.

RESET 160 RB resetting

AF=004C (sZ-a-Pnc) BC=0086 DE=1BFE HL=FFFE IX=FFFF I1Y=FDFF SP=1BFE

0160 39 . ADD HL,SP (next step) ok

170 171 GB

AF=004C (sZ-a-Pnc) BC=0086 DE=FFFE HL=1BFE IX=FFFF IY=FDFF SP=1BFE
0171 E1 POP HL _(next step) ok

Of course, you can set the breakpoint and the new PC to the
same address.

RESET 160 RB resetting

AF=004C (sZ-a-Pnc) BC=0086 DE=1BFE HL=FFFE IX=FFFF IY=FDFF SP=1BFE

0160 39 ADD HL,SP (next step) ok

171 171 GB ,

AF=004C (sZ-a-Pnc) BC=0086 DE=1BFE HL=FFFE IX=FFFF I1Y=FDFF SP=1BFE
0171 E1 POP HL (next step) ok

Notice the difference in the HL register when you actually
run the program to the next breakpoint, instead of changing the
PC. This is an example of the unexpected results that come from
interfering with program flow.

RESET 160 RB resetting

AF=004C (sZ-a-Pnc) BC=0086 DE=1BFE HL=FFFE IX=FFFF IY=FDFF SP=1BFE

0160 39 ADD HL,SP (next step) ok

171 RB

AF=0040 (sZz-a-pnc) BC=00DE DE=0000 HL=0002 IX=FFFF IY=FDFF SP=1BEA
0171 E1 POP HL (next step) ok

March 25, 1987 Page 6-121 -- In Detail --

-- The DEBUG features --

Set multiple breakpoints

Traditionally, multiple breakpoints are used when you do not
know where the program was going to go next. You would try to
"block all exits" by setting a breakpoint at every place the
program could go.

The UniLab's ability to show you program flow makes multiple
breakpoints obsolete. But, if you want to use them, here's how:

After establishing debug control, use
<address> <breakpoint #> SMBP
to set one of the eight numbered breakpoints.

You should set all but one of your breakpoints with SMBP, and
then use

<address> RB
OR
<New PC> <address> GB

to set the last breakpoint and set the processor running again.

Establish debug control
You can also use SMBP before a
RESET <addr> RB

to establish debug control in the first place.

Clear multiple breakpoints
If you want to clear out all multiple breakpoints, use

CLRMBP. The command <breakpoint #> RMBP will clear one of the
breakpoints.

~= In Detail -- 6-122

-- The DEBUG features --

Example: Set multiple breakpoints

The transcript below shows an example of the use of the SMBP
command while checking out the following code:

014D 79 LD A,C
014E BO OR B

014F C24A01 JP N2Z,14A
0152 €38000 JP 80

The problem to be solved: where does the program go after
executing the code at address 014E. It might jump back to 0143,
it might continue beyond that instruction and jump to 80. So you
have to set two breakpoints:

RESET 14E RB resetting

AF=0D6A (sZ-a-pNc) BC=040D DE=0200 HL=1801 IX=FFFF IY=FDFF SP=1C00

014E BO OR B (next step) ok

14A 1 SMBP

1 $014A 2 $---- 3 $---- 4 $---- 5 $~=--- 6 $-=-==- T $---=- 8 $----
10 RB ,

AF=0D08 (sz-a-pnc) BC=040D DE=0200 HL=1801 IX=FFFF IY=FDFF SP=1C00
014Aa 73 LD (HL),E (next step) ok

We find, not surprisingly, that the program jumps back to
address 014A. But to find out about how the program flows, you
will probably prefer to use the analyzer command <addr> AS
as illustrated below. The analyzer trace shows you what happens
each time the program reaches the code at 014E.

14E AS resetting

cy# CONT ADR DATA HDATA MISC
-1 B7 014D 79 LD A,C 11111111 11111117
0 B7 014E BO OR B 11111111 11111111
1 B7 014F C24A01 JP NZ,14A 1111111 11111111
4 B7 014A 73 LD (HL),E 11111111 11111111
5 D7 1801 00 write 11111111 11111111
6 B7 014B 23 INC HL 11111111 11111111
7 B7 014C 0B DEC BC 11111111 11111111
8 B7 014D 79 LD A,C 11111111 11111111
9 B7 014E BO OR B TM111111 11111111
A B7 014F C24A01 JP NZ,14A 11111111 11111111
D B7 014A 73 LD (HL),E 1111111 11111111
E D7 1802 00 write 11111111 11111111

March 25, 1987 Page 6-123 -- In Detail --

~-- The DEBUG features --

Examine and alter internal registers

The breakpoint display shows your internal registers. Of
course, this display varies from processor to processor.

You can display all registers again with R.
And you can alter them with commands that follow this
pattern:
<value> =Name_of_Register

The commands for altering registers are processor specific.
For example, the Z80 package includes:

=AF =BC =DE =HL =IX =IY
Check the glossary section in the Disassembler/DEBUG Target
Application Note for your processor, or press CTRL-F3.
Example: Alter the flags register

Notice how, in the example below, we change the flow of the
program by altering the "Zero" Flag.

R shows you the register display again-- very handy for
verification after you've changed a register.

After we alter the flag, we single step, and see that the
program takes the jump, because of the change to the flag.

RESET 12F RB resetting

AF=02A8 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00

012F BA CP D (next step) ok

N

AF=0242 (sZ-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00
0130 23801 JP NZ,138 (next step) ok

0202 =AF ok

R

AF=0202 (sz-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00
0130 C23801 JP NZ,138 (next step) ok

NMI .
AF=0202 (sz-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00
0138 7E LD A, (HL) {next step) ok

-- In Detail -- 6-124

-- The DEBUG features --

Examine and alter RAM

While stopped at a breakpoint, you can use all the memory
access commands to examine and alter either RAM or ROM.

If you have not established debug control, the UnilLab will
try to establish DEBUG control for you when you attempt to access
target RAM.

Remember that access to emulation ROM while the target
system is running will cause your target program to crash.

For details on the memory commands, see section 3: Examining
and Altering Memory.

March 25, 1987 Page 6-125 -- In Detail --

-- The DEBUG features --

6.7 Exit from DEBUG

There are four ways to exit from the DEBUG:

1) RZ immediately releases the program from debug control,
so that it starts running again,

2) <addr> G releases the processor from debug control
after changing the Program Counter,

3) <addr> GW changes the Program Counter, and then waits
until you restart the analyzer, before it releases the
processor,

4) or you can simply define a trigger spec, and start up
the analyzer.

If you exit from DEBUG control by starting up the analyzer
be sure to remember that the DEBUG has disabled reset. If you
want the program to start over from the beginning, you have to
enable automatic resetting with RESET or the mode panel (function
key 8).

You will definitely want to use NORMx to clear out the
special trigger specifications that the DEBUG commands use.

A simple alternative is to just use STARTUP, which clears

out the previous trigger and starts the program over from the
beginning.

Exit after a target system crash

If you crash the target system while you are in the DEBUG,
you will need to start the target program over from the
beginning.

~-= In Detail -- 6-126

-- The DEBUG features --

Examples: Exiting from the DEBUG

If you want to
of the program use:

watch the processor when it resumes execution

<New PC> GW
<analyzer trigger spec>

to change the program counter, and then wait for the analyzer to
start up. The analyzer trigger specification can appear on the
same line or on a separate line.

For example:
8 GW 05 AsS

cy# ADR DATA

-5 0027 3C

-4 0028 3C

-3 0029 C30300
0 0005 015634
3 0008 119A78
6 000B 21DEBC
9 000E C5

If you want to
without setting any

March 25, 1987

INC A

INC A

JP 5

LD BC, 3456
LD DE,789A
LD HL,BCDE
PUSH BC

release the processor and set it running,
analyzer trigger spec, use:

<New PC> G
or
RZ.

Page 6-127 -- In Detail --

-- The DEBUG features --

6.8 Disable the DEBUG: How and Why

Why

You might need to disable the DEBUG features if your target
needs the resources utilized by DEBUG, or if you want to look at
a program running in ROM chips.

Resources used

The Orion DEBUG software packages use between one and six
bytes of emulation ROM as a reserve area, and overlay code into
another 30 to 70 bytes.

In addition, the breakpoint command often needs exclusive
use of a software interrupt vector, and the NMI features always
require a hardware interrupt vector.

If your hardware does make use of your processor's hardware
interrupt, then you will want to disable the Unilab software's
use of that feature.

You can put your own code in the overlay area, but never in
the reserved area (CTRL-F3 tells you where the reserved area is
on your processor). If you disable the DEBUG, then you can make
use of these small areas of memory, and of the vectors used by
the DEBUG features.

Special note: running program in ROM chips

If you want to run a program from a ROM chip on your target
board, you must first clear out emulation memory enables with
EMCLR. This automatically disables the DEBUG. You will, of
course, still be able to use the analyzer and disassembler. If
you later re-enable emulation memory, you will need to manually
re-enable the DEBUG features.

-- In Detail -- 6-128

How
Disable NMI features only

Use either the Mode Panel option
NMIVEC'.

Whichever you use, the result is
features dependent upon it (RI,SI) no
of the DEBUG commands, such as RB and
Disable all DEBUG features

You turn off all DEBUG commands,
the mode panel option '"SWI VECTOR" or

Mode panel

3. LOG modes

-- The DEBUG features --

"NMI VECTOR" or the command

the same-- NMI and the
longer work, but the rest
GW, work fine.

including NMI, with either
the command RSP'.

LOG TO PRINT inactive

LOG TO FILE off
PRINTER off

NMI VECTOR active
SWI VECTOR active

March 25, 1987 Page 6-129 -- In Detail --

7. Program EPROMs

Introduction

You can do all your EPROM programming from the menu system.
The menus allow you to program any EPROM with just a few key
strokes. The menus also tell which personality module to use.

When your program is working perfectly under emulation, you
can use the EPROM programmer to copy it into virtually any
single-supply EPROM or EEPROM, directly from the emulation
memory. To program a 2716, for example, from target locations
800 to FFF, you just put an erased 2716 in the socket and choose
the appropriate menu option. You will be prompted for the
starting and ending addresses, then the ROM will be programmed.
Make certain the addresses you program from are enabled.

Erase check, programming, and verification will immediately
begin, and the LED to the right of the socket will light. The
light goes out when the PROM has been programmed (usually just a
few seconds).

Contents
7.1 Feature Summary 6-131
7.2 Personality Modules 6-132
7.3 Plug in EPROM 6-134
7.4 Program EPROM 6-136
7.5 Calculate Checksums 6-136
7.6 Verify Your PROM 6-137
7.7 EPROMs for 16-bit Processors 6-137
7.8 Program EPROM in Standalone Mode 6-138
7.9 Sample Macro for EPROM Production 6-139

-=- In Detail -- 6-130

7.1

Feature Summary

Though there are commands for burning programs into each
type of EPROM we support, we recommend that you use the EPROM

burning Menu whenever possible.
few keystrokes away, and include reminders about which PM
(personality module) you need for each EPROM.

macro.

-—- Program EPROMs

These menus are always just a

The only time you would really need the command rather than
the menu item,

is when you want to burn a EPROM from within a
See also Appendix G for information on EPROMs.

All the EPROM programming commands are covered by the menus:

Menu:

RETURN TO MAIN MENU

RETURN TO MAIN MENU

F1 PROGRAM A
F2 PROGRAM A
F3 PROGRAM A
F4 PROGRAM A
F5 PROGRAM A
F6 PROGRAM A
F7 PROGRAM A
F9 Next page
F10

F1 PROGRAM A
F2 PROGRAM A
F3 PROGRAM A
F4 PROGRAM A
F5 PROGRAM A
Fé6 PROGRAM A
F9 RETURN TO
F10

March 25, 1987

PROM PROGRAMMING MENU #1

2716
2532
2732A
2764A
27128A
27256A
27512

(use
(use
(use
(use
(use
{use
(use

of Prom Programming Menu

PROM PROGRAMMING MENU #2

27C16
48016
27C32
2764

27128
27256

(use
(use
(use
(use
(use
(use

PROM READER MENU

Command:
PM16 personality module) P2716
PM16 personality module) P2532
PM32 personality module) P2732A
PM64 personality module) P2764
PM56 for A version) P2764
PM56 personality module) P27256
PM512 personality module) P27512
PM16 personality module) PD2716
PM16 personality module) P48016
PM16 personality module) P27C32
PM64 personality module) PD2764
PM64 personality module) PD2764
PM56 personality module) PD27256

-- In Detail --

Page 6-131

-- Program EPROMs --

7.2 Personality Modules

Whether reading or burning an EPROM or EEPROM,; you must have
the correct Personality Module in the 16 pin socket just to the
left of the EPROM PROGRAMMER socket.

ORION Universal Development Laboratory

INSTRUMENTS

Personality Module /

Because control signals vary from one type of EPROM to
another, the Orion UnilLab needs the personality module to alter
the voltage and pin location of control signals. The change in
personality module makes it possible to program all the most
popular EPROMs.

ORION Universal Development Laboratory
INSTRUMENTS

-- In Detail -- 6-132

-- Program EPROMs --

See Appendix G for full information on EPROMs and
Personality Modules.

The UnilLab is shipped with:

For 21 volt EPROMs:
PM16 for programming 2716, 27C16 and 2532 EPROMs.
PM32 for programming 2732 and 2732A EPROMs.

PM64 for programming 2764, 27C64 and 27128 EPROMS.

For 12.5 volt EPROMs:
PM56 for programming 12.5 volt programmed EPROMs

such as 2764A, 27C64, 27128A, 27C128, and
27256,

You can also purchase:
PM512 for programming 12.5 volt 27512 EPROMs.

PM56-21 for programming 21 volt 27256 EPROMs.

March 25, 1987 Page 6-133 -- In Detail --

-- Program EPROMs --

7.3 Plug in PROM

ORION Universal Development Laboratory

INSTRUMENTS

818 BIT IN-CIRGUIT EMULATOR
BEE::::::.,.,.l:-l

UniLab Il ™

48 CHANNEL BUS STATE ANALYZER

| sizzsiiziiiiiiiiiiciiz e

EPROM Programming Socket /

Be sure to plug PROMs into the socket with the notch to the
right.

24-pin EPROMs should ’
be inserted into the socket
shifted as far to the left 24 Pin EPROM in Programming Socket
as possible:

UniLab Il ™
P , 28-pin EPROMs will
£ill up the whole
socket.

J

28 Pin EPROM in Programming Socket

-- In Detail -~ 6-134

-- Program EPROMs --

Never turn power on and off with a PROM in the socket-- this
could erase location 0. The same warning applies to changing the
personality module with the PROM in the socket.

In general, don't leave the PROM in the socket any longer
than necessary to read or program it.

The Unilab's smart programming algorithm guarantees a 4:1
margin on stored charge while taking a minimum amount of
programming time. An erase check is done before programming
starts and all locations are verified during programming.

March 25, 1987 Page 6-135 o -- In Detail --

-- Program EPROMs --

7.4 Program the EPROM

Make certain that you have enabled the range of memory from
which you wish to program. Use ESTAT if you want to check the
status of emulation memory.

With your EPROM in the programming socket, the correct
personality module in place, and your program residing in
emulation ROM, you are ready to program the EPROM.

Program with the menu

7

Get into one of the two PROM PROGRAMMING MENUs and press the
correct function key for your EPROM. You will be prompted for
the start and end addresses of the memory range that you wish to
program into the PROM.

Program with a command

If you wish, you can program your EPROM with a command
rather than the menu. All these commands need two parameters:

<start addr> <end addr> PROM-PROGRAMMING-COMMAND.
The list of commands for programming each type of EPROM appears

both in Appendix G and in the feature summary at the start of
this section.

7.5 Calculate Checksums

If you want to put checksums in your EPROMs, you should
calculate the checksum value before programming the EPROM, and
store that value in emulation ROM.

The CKSUM command computes the value for you. Enter:

adr toadr CKSUM

to calculate the sum.

Then use the MM! command to put the checksum in the desired
location before burning the PROM.

Be sure to have a known value (such as 0 or 1) in the

location you plan to put the checksum in (usually the top or
bottom of memory) before executing CKSUM.

-= In Detail -- 6-136

-- Program EPROMs --

7.6 Verify Your PROM

PROMs are verified during the programming process.
However, if you want to separately verify a PROM, you can

read it into another area of memory and use the MCOMP command to
compare to the original data.

7.7 Program PROMs for 16-bit Processors

When the 16-bit mode has been selected (by entering 16BIT)
the prom programmer will automatically select either all odd or
all even bytes, depending on the first address you specify.

1 TO FFF RPROM
or
1 TO FFF P2716
will thus read or write odd bytes only, while
0 TO FFE P2716
will write even bytes only.

The same rule applies when programming or reading using the
PROM menus (F9 under the menu system).

March 25, 1987 Page 6-137 -- In Detail --

-- Program EPROMs --

7.8 Standalone PROM Programming

Programming a large EPROM can take a significant amount of
time. You can use the standalone PROM programming ability of
the UniLab, and use your host computer for some other task while
the UniLab burns the EPROM.

To do this, you type the command STANDALONE and then either
type an EPROM programming command use one of the EPROM
programming menus to start the programming operation going.

This will cause the UniLab to do its work without needing to
be in contact with the host computer. You can exit the UniLab
program, even disconnect the UniLab from the host machine. When
the UnilLab is finished programming, the red light next to the
EPROM PROGRAMMING socket will go out.

You can then call up the UniLab software again, being
certain to press a key during the software initialization-- this
will disable the automatic initialization signal to the UniLab
hardware. Then use the command PROMMSG to get the message that
tells you the completion status of the programming operation.

If you initialized the UniLab since the STANDALONE command,
or you turn it off, you will lose the completion status message.

-- In Detail -- 6-138

-- Program EPROMs --

7.9 Sample Macro for Productioh of EPROMs

It can be tiring, when programming many identical EPROMs, to
keep typing in the same series of instructions to the menu.

Fortunately, you can make a simple macro that will take care
of the EPROM programming for you. For example, if you are
burning a 2764 with the code that starts at 0 and goes to 1300:

: BURN O 1300 P2764 ;

After that, all you have to do to program the ROM is type
BURN.

Appendix F tells you more about macros.

If you choose to not use the menus, check Appendix G to find
out more about what commands and PMs you'll need for each EPROM.

March 25, 1987 Page 6-139 -- In Detail --

-- Program EPROMs --

8. Generate Stimuli

Introduction

Often in system checkout it is useful to build a switch
panel to allow system inputs to be changed easily. The Unilab
stimulus outputs make this unnecessary by providing eight latched
output bits that are controlled from your keyboard.

Contents

8.1 Feature Summary 6-141

8.2 How to Do It 6-142

-- In Detail -- 6-140

-- Generate Inputs --

8.1 Feature Summary

Feature Menu Command

Generate a high signal on one wire Yes <wire #> SET

Generate a low signal on one wire Yes <wire #> RESET

Define bit pattern of all 8 wires Yes <hex byte>» STIMULUS
Command : Menu:

STIMULUS MENU

<wire #> SET F1 SET A STIMULUS BIT
<wire #> RESET F2 RESET A STIMULUS BIT
<hex byte> STIMULUS F3 DEFINE ALL 8 STIMULUS BITS
F10 RETURN TO MAIN MENU

March 25, 1987 Page 6-141 -- In Detail --

-- Generate Inputs -

8.2 How to Do It

The eight stimulus generator signals, asserted at the EPROM
programmer socket, can be individually set or reset from the
keyboard, set and reset as a group, or programmed to produce a
repeating pattern.

A ninth output (ST-) gives a 4-microsecond low pulse
whenever any of the other wires are changed.

Connecting Stimulus Cable

The stimulus cable actually plugs into the EPROM programming
socket and brings the signals out to .025" receptacles, like the
ones used on the analyzer cable. These output signals of the
UniLab can be plugged into wire wrap pins or DIP-CLIPs.

You can connect the signals to the inputs of your target
system, and use the stimulus generator as a 'control panel"
during system checkout.

ORION Universal Development Laboratory

INSTRUMENTS
816 BIT IN-CIRCUIT EMULATOR: 48 CHANNEL BUS STATE ANALYZER ‘ STIMULUS
N— ® CABLE
T | | e = o
J

Stimulus Cable in Programming Socket

-- In Detail -- 6-142

-- Generate Inputs --

Specify an 8 bit stimulus
You can specify the 8 bits of the stimulus signal with
<value> STIMULUS. For example, to make bits 7 and 2 high, while
all other bits are low, type in:
84 STIMULUS
The number 84 hex is, of course, 1000 0100 binary.
bit # 7654 3210

Change one bit at a time

You can also set or reset the bits individually with
<bit #> SET and <bit #> RES. For example,

1 SET
will set bit # 1 high.
You can also use these two commands to "pulse" target system
inputs. For example, to pulse an "active high" signal with

stimulus wire 3:
3 SET 3 RES

March 25, 1987 ‘ Page 6-143 -~ In Detail --

-- Generate Inputs --
Stimulus generator and macros

You can assign a convenient name to any stimulus configura-
tion by simply preceding the name with a colon, and ending the
definition with a semicolon. For example,

s START1 O SET 1 RES 3 RES ;
"will define a word START1, which causes the UniLab to perform
three operations: set stimulus #0 high, then set stimulus #1 low,
last set stimulus #3 low.
You could also define START this way:
s START2 01 STIMULUS ;
though this will have a slightly different effect than the first

definition-- it sets bit 0 high, bits 1 through 7 low, and it
does this all at the same moment.

The stimulus generator commands are very useful in test
programs. You can use the generator to change the inputs to the
target system in sequence, and then compare the resulting traces.
See Appendix F for more info on test macros.

-- In Detail -- 6-144

9. Special Keys

Introduction

The diagrams here are repeated from section Four of Chapter
Three. See that chapter for more information about cursor and
function keys.

Contents
9.1 Feature Summary 6-146
9.2 Function Keys 6-147
9.3 Cursor Keys 6-148

March 25, 1987 Page 6-145 -- In Detail --

-- Special Keys --

9.1 Feature Summary

When you are in command mode, some UniLab features can be
accessed through the function keys and cursor Kkeys.

In the UnilLab software, the cursor keys are always used by
themselves or with the Ctrl key. The function keys can be used
by themselves, or while you are holding down any one of: ‘

the ALT key,
the SHIFT key,
the CTRL key.

This means that you really have access to forty functicn keys.

Often used commands and help screens have been pre-assigned
to many of the 40 function keys. You can change the function
associated with any of the function keys.

You use the cursor keys with
the trace display,
the screen history,
the split screen,
the command line editor, and
textfiles.

Key locations on PC/AT keyboard
O0O00000000O iii[I L

0
0
0
0
0
0
0
0
0
0
0
J
=
S
0t

Function . Cursor
keys keys

-~ In Detail -- 6-146

-- Special Keys --

9.2 Function Keys

All the commands that you call up with the function keys can
also be executed by typing in the command-- but it is usually
more convenient to use the function key. The only time you would
need to use the command is within a macro definition.

See the commands assigned to the function keys

Function key one tells you the current assignments of the
function keys.

Hit function key one (F1) to find out what commands have
been assigned to the "bare'" function keys.

Hit F1 while holding down ALT to see the current assignments
of the ALTered function keys.

Hit F1 while holding down SHIFT to see the current
assignments of the SHIFTed function keys.

Hit F1 while holding down CTRL to get a display of the help
screens assigned to the CONTROLled function keys.

Change the commands assigned to the function keys

You can easily change the command that gets executed by any
function key. You use one of four commands to do this. All of
them take the same parameters:

<# of key> FKEY <command>

<# of key> ALT-FKEY <command>
<# of key> SHIFT-FKEY <command>
<# of key> CTRL-FKEY <command>

Any command that does not take parameters can be reassigned
to a function key-- including any macros that you write.

March 25, 1987 Page 6-147 : -- In Detail --

HELP with general instructions
for using glossary. Also
Function Key assignments.

Next Step - Execute next
instruction. Will not follow jumps §
or branches.

Restore window split to
Default sizes.

TSTAT - Display current
trigger spec.

STARTUP - Issue reset pulse
to target and trace first
cycles of target operation.

Help for using
on-line displays

Help for Debuggers

Help for Emulation
memory functions

Help for loading/
saving programs

Help for displaying/
altering memory

List Function Key }
assignments for Shift §

o

RES- - Pulls RES-
output line low, and
holds it low

List Function Key :
assignments for Alt R

SSAVE - Save the
screen image as
a text file

SPLIT mode - Enter /Exit split
screen mode,

NMI - Issue pulse on NMI- Tine to
target, to gain DEBUG control or

to single step through code. Function Key

——— assignments

when

MODE ~ Bring up pop-up mede
panels for changing display or
system modes. '

MENU - Enter /Exit menu mode.

held down

Help for using windows
Function Key

) assignments
Helg for simple analyzer when
triggers
More help for analyzer
triggers held down

Help for mode panel
switches

Help for trace display

MEMO - Bring up system editor

for use as custom memo pad Function Key

assignments
ASC - Show ASCII characters when
and hexadecimal code GDkeg
- - held down

WSIZE - Set new window split size

-

Function Key
assignments
—— when

)i

held down

Call up the Program
Performance Analyzer Menu

neo other key

-- Special Keys --

9.3 Cursor keys

¥ou use the cursor keys on the numeric key pad to move
through various displays. The functions of the keys changes as
you change the task you are working on.

This page and the two following summarize the dif
purposes of the cursor keys. ferent

Cursor Keys and the Screen History

Screen History
Previous Line

.-
(6 w
‘p -y

1) %)
End U (PeDn

Screen History
Previous Page

Trace Display
Top of Buffer

Toggle between Trace Dis

play
Upper & Lower Next Screen
WVindow

Trace Display Down One Line

-- Special Keys --

Cursor Keys and Textfiles

Up One Line

Beginning of File

Toggle between
Upper & Lower
WVindow

Next Page

Down One Line

Cursor Keys and the mode panel
(enter the mode panel with F8)

(- N '
7)(8 ? J
fome | J) PgUp
s -
L" J L J _ Mode select toggle
()
2
Exit Mode Panel G \ Next Mode Panel

~- In Detail -- 6-150

-- Special Keys --

Cursor Keys and split screen setup
(enter the setup screen with Shift-F8)

Move divider up

Move divider left

Move divider right

Save new divider, and
return to command mode

Move divider down

Cursor Keys and the command line editor
Press the cursor keys while holding down Ctrl key.

a:]

Al Move to start

Move to end of current line
of current line

March 25, 1987 Page 6-151 -- In Detail --

Introduction

10. Mode Panels

The mode panels, available at the press of a button (F8),
let you toggle features on and off without any need to remember

commands.

The Mode Panels are very simple to use, including on-line

help.

Contents
10.1
10.2
10.3
10.4

-- In Detail --

Feature Summary
Analyzer Modes
Display Modes

Log Modes

6-152

6-153
6-154
6-158

- 6-163

10.1 Feature Summary

-- Mode Panels --

Press F8 to get into the Mode Panels. Once you have a mode
panel on the screen, you can run through all of them, by hitting

F8 repeatedly.

Use the UpArrow and DownArrow keys to move around within
each mode panel, from option to option.

The RightArrow toggles the current option. Press F1 to get
help screen for the current option.

Press END to exit from the Mode Panels.

Exit Mode Panel

Equivalent
commands:

DASM DASM'
SYMB SYMB'
RESET RESET'

SHOWM SHOWM'

SHOWC SHOWC'
<value> =MBASE
PAGINATE PAGINATE'
HDG HDG'

LOG LOG'
TOFILE

PRINT PRINT'
NMIVEC NMIVEC'
RSP RSP'

March 25, 1987

9
) PgUp

Mode select toggle

Next llode Panel

Mode Panel:

1. ANALYZER modes
DISASSEMBLER
SYMBOLS
RESET

2. DISPLAY modes
MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

3. LOG modes
LOG TO PRINT
LOG TO FILE
PRINTER
NMI VECTOR
SWI VECTOR

Page 6-153 -- In Detail --

-- Mode Panels --

10.2 Analyzer Modes

Disassembler
Mode Panel: Command:
1. ANALYZER modes
DISASSEMBLER DASM DASM’
SYMBOLS :
RESET

What it does

When you don't want or don't need to see the assembly
language instructions that each opcode represents, you can turn
off the trace disassembler and then look at the same trace again.
The trace disassembler remains off until you enable it again.

When to use
You will need to disable the disassembler only when looking

at heavily filtered traces or when trying to solve a target board
hardware problen.

-=- In Detail -- 6-154

-- Mode Panels --
Example

The display below shows the first fourteen cycles of the Z80
test program, with the disassembler on and with the disassembler
off.

The LD A,12 instruction is underlined and the PUSH BC
instruction is highlighted in both traces. The disassembled
display has been extended so the cycle numbers in the two
displays match up.

DISASSEMBLER ON DISASSEMBLER OFF
cy# ADR DATA #+ cy# ADR DATA
0 0000 310019 LD SP,1900 ¥ 0 0000 31

+ 1 0001 00

+ 2 0002 19

3 0003 3E12 LD A,;12 + 3 0003 3E
+ 4 0004 12

5 0005 015634 LD BC, 3456 ¥ 5 0005 01
+ 6 0006 56

+ 7 0007 34

8 0008 119A78 LD DE,789Aa ¢ 8 0008 11

+ 9 0009 %A

+ A 000A 78

B 000B 21DEBC LD HL,BCDE # B 000B 21

+ C 000C DE

+ D 000D BC

E O000E C5 PUSH BC + E O00OE C5
F 18FF 34 write ¥ F 18FF 34
10 18FE 56 write + 10 18FE 56
11 000F C1 POP BC + 11 000F C1
12 18FE 56 read + 12 18FE 56
13 18FF 34 read + 13 18FF 34
14 0010 3C INC A + 14 0010 3C

March 25, 1987 Page 6-155 -- In Detail --

-~ Mode Panels --

Symbols
Mode Panel: Commands:
1. ANALYZER modes
DISASSEMBLER
SYMBOLS SYMB SYMB'
RESET

What it does

When symbols are enabled, the trace disassembler will search
the symbol table for the symbolic equivalent of any number. You
will also be able to use a symbol anywhere that you can use a
number.

You will need to use either SYMLOAD to load an ORION symbol
table format, or SYMFILE to load the symbol table produced by
your linker.

When to use
When you load a symbol table or define a symbol, symbol

translation gets turned on. However, you may want to turn symbol
translation off and see only the numeric values.

-~ In Detail -- 6-156

-- Mode Panels ~--

Reset
Mode Panel: Commands:
1. ANALYZER modes
DISASSEMBLER
SYMBOLS
RESET RESET RESET'

What it does

After reset is enabled, the UniLab will issue a reset strobe
to the target board whenever you use S§, AS, SI or RB.

STARTUP enables reset.

RB and NMI disable reset.

When to use

When generating a trace, enable reset when you want to start
the target program from the beginning.

When using RB, enable reset to gain DEBUG control. Keep it
disabled after that.

March 25, 1987 Page 6-157 -- In Detail --

-~ Mode Panels --

10.3 Display Modes

MISC column

Mode Panel: Commands:
2. DISPLAY modes
MISC COLUMN SHCOWM SHOWM'®

CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

What it does

Toggle this option on to display the eight miscellaneous
inputs (and, on an 8-bit data bus processor, the eight high data
inputs). Toggle off to hide these inputs.
When to use

When your MISC wires (MO through M7) are connected to

signals on your board, you will want to see the signals
displayed. Otherwise that display just clutters up the screen.

-- In Detail -- ' 6-158

-- Mode Panels --

CONTrol column

Mode Panel: Commands:
2. DISPLAY modes
MISC COLUMN
CONT COLUMN SHOWC SHOWC'
MISC # BASE
PAGINATE
FIXED HEADER

What it does

Toggle on to display the "control" column inputs. These
signals connect to the bus control pins and, in some cases, the
address pins of your microprocessor. Processors with a greater
than 16-bit external address bus will have the low nibble (bits 0
through 3) of the control column connected to bits 16 to 19 of
the address bus. -

When to use

When you are troubleshooting your target board, you will
need to see the CONT column.

Most of the time it simply clutters the screen-- unless you
need to routinely see the 20-bit address. Remember that the
control column data is always gathered, even when you choose not
to display it. '

March 25, 1987 Page 6-159 -- In Detail --

-~ Mode Panels --

MISCellaneous Number Base

Mode Panel: Command:
2. DISPLAY modes

MISC COLUMN

CONT COLUMN

MISC # BASE <n> =MBASE

PAGINATE

FIXED HEADER

What it does

Toggle this option to change the number base of the
miscellaneous column display. The default is binary display.

When to use

When you have the MISC inputs connected to a port or a

register, you will probably want to display that column in octal
or hexadecimal, rather than in binary.

This feature alters the display base of the HDATA column at
the same time.

-- In Detail -- 6-160

-- Mode Panels --
Paginate

Mode Panel: Commands:
2. DISPLAY modes

MISC COLUMN

CONT COLUMN

MISC # BASE

PAGINATE PAGINATE PAGINATE'

FIXED HEADER

What it does

Toggle this option off to see the entire trace display
scroll to the end without stopping. Toggle it on to have the
display stop after each screenful of display.

When to use

You usually want the display to stop after each screenful of‘
display. But sometimes, when you are sending data to a file or
a printer, you might want to have the whole trace scroll on by.

March 25, 1987 Page 6-161 -- In Detail --

-- Mode Panels --

Fixed Header

Mode Panel: Commands s
2. DISPLAY modes

MISC COLUMN

CONT COLUMN

MISC # BASE

PAGINATE

FIXED HEADER HDG HDG'

What it does

Toggle this on to have a fixed header on the trace display
in your lower display window. Toggle off to have the usual
header, which scrolls off the screen with the trace display.

When to use
The choice of fixed or scrolling header is a perscnal

aesthetic decision. Fixed headers speed up the display a little
bit. Use whichever you prefer.

-- In Detail -- 6-162

-- Mode Panels --

10.4 Log Modes

Log to Print

Mode Panel: Commands:
3. LOG modes

LOG TO PRINT LOG LOG'
LOG TO FILE

PRINTER

NMI VECTOR

SWI VECTOR

What it does

Memory writes are recorded on the printer when you toggle
this option on. Use option PRINTER to record everything on the
printer.

LOG TO PRINT will record all operations that change memory--
including the assembly language instructions that you give to the
line-by-line assembler. You will even record the UniLab writing
into the reserved area when you start the analyzer.

When to use
This option allows you to record all the experimental

changes you make while tracking down defects or modifying
algorithms in your software.

March 25, 1987 Page 6-163 -~ In Detail --

-~ Mode Panels --

Log to File

Mode Panel: Commands:
3. LOG modes

LOG TO PRINT .

LOG TO FILE TOFILE TOFILE'
PRINTER

NMI VECTOR

SWI VECTOR

What it does

Toggle on to resume logging of all screen output to a DOS
text file. You must use the command TOFILE <filename> to
create the file and start logging to it in the first place.

After the recording has been started, you can use this

option to suspend and then resume recording.

When to use

When you want a record of a UniLab session. Logging to a
file will slow down all output-- but much less than logging to a
printer. ‘

Logging to a file has other advantages over logging to a
printer. You can later review the file with the DOS command
sequence:

TYPE <filename> | MORE
You can edit the file with any text editor that handles or

"imports" text files. The file can always be printed later, in
the original or edited form.

~~ In Detail -- 6-164

-- Mode Panels --
Printer

Mode Panel: Commands:
3. LOG modes

LOG TO PRINT

LOG TO FILE

PRINTER PRINT PRINT'
NMI VECTOR

SWI VECTOR

What it does

Toggle this option on to send all screen output to your
printer. ,
When to use

Most useful when you want to immediately record a single

trace buffer, or a few breakpoint displays. Otherwise, logging
to a file will be a better option. See the previous page.

March 25, 1987 Page 6-165 -- In Detail --

-~ Mode Panels --

NMI vector

Mode Panel: Commands:
3. LOG modes
LOG TO PRINT
LOG TO FILE
PRINTER
NMI VECTOR NMIVEC NMIVEC'
SWI VECTOR -

What it does

Enables and disables the NMI features. The NMI features
make use of the hardware interrupt request feature of the target
processor-- either the non-maskable interrupt (NMI), or the
interrupt request (IRQ) if the processor lacks an NMI. You can
also disable all DEBUG features. See the next page.

With this option disabled, the following features will no
longer function:

NMI,
RI <trigger spec> SI,
and auto-DEBUG control for RAM read and write.

With this option enabled, the UnilLab will write into the
hardware interrupt vector location of your processor whenever you
start up the analyzer with reset enabled.

When to use

When the UniLab has the use of the hardware interrupt
vector, you can achieve DEBUG control at any time, with the NMI
command. See section 6 of this chapter for more information on
NMI.

However, you should toggle this option off if your target
hardware/software system uses the hardware interrupt of your
processor.

-=- In Detail -- 6-166

-- Mode Panels --

SW1 vector

Mode Panel: Commands:
3. LOG modes :
LOG TO PRINT
LOG TO FILE
PRINTER
NMI VECTOR
SWI VECTOR RSP RSP'

What it does

Toggle this option off to disable all the DEBUG features of
the UnilLab system. See section 6 of this chapter for information
on DEBUG features.

With this option disabled, you will not be able to set
breakpoints, single-step, alter registers, or read and write RAM,

With this option enabled, the UniLab will write into the
"reserved area" of your emulation memory every time you start up
the analyzer with reset enabled. Press CTRL-F3 to get the
current location of the movable reserved area for your processor-
specific DEBUG software.

When to use

Disable this option for completely transparent emulation.
You will still be able to set triggers, examine traces, read and
write emulation ROM, etc.

This option is disabled by EMCLR.

The explicit use of any DEBUG command, such as RB or NMI,
will automatically enable this option.

March 25, 1987 Page 6-167 -- In Detail --

Chapter Seven:
UniLab Command Reference

Contents
The Categories 7-
The Commands 7

Overview

This chapter contains the reference material for the Unilab
command language, a rich, flexible language that you use to work
on your microprocessor control board and software.

The brief first section of this chapter classifies the
commands as one of six types:

1. Beginner-- the minimal vocabulary you need to talk
to the software.

2. Common-- commands that you will quickly learn and
use often.

3. Advanced-- useful commands which might not be
necessary for your work.

4. Special key and mode panel-- commands that perform

~ the same function as one of the mode panel
switches or one of the function or cursor keys.

5. Rarely used-- commands that you will probably be
able to live without 98% of the time, but will
appreciate during the remaining 2%.

6. Macro only-- commands that are only available in a
macro system. See the MACRO and OPERATOR entries
for more information.

The second of the two sections makes up the bulk of this
chapter. It contains anywhere from a paragraph to a page or more
of reference material for each command. The first page of this
section explains the format of the entries, then the entries
follow.

Display the entry for a command by typing:
HELP <command>

Appendix A is an alphabetical listing of all commands.
Processor specific commands

Every disassembler/DEBUG software package includes commands
that are specific to that package. These words are not
documented in this chapter. To learn more about target-specific
words, consult the Target Application Note for your software
package.

March 25, 1987 Page 7-1 -- Command Reference --

The Categories

The Orion software provides you with access to commands that
let you:

set triggers on any input or combination of
inputs,

alter the display and logging features,

set breakpoints and alter registers.

You will be able to do most of your work with just a few
commands: the beginner and common words, with occasional use of
advanced words.

The Special Key and Mode Panel words are listed mainly to
help you find out more about the features that you would usually
call up with a function key. Of course you can, if you want to,
enter the command instead of using the special keys.

The rarely used commands are all very useful words, which
cause rarely needed effects. But when you do need to do anything
from see the binary equivalent of a hex number to filter only on
the control column values, you will find them helpful.

Lastly, the "macro only" commands are not available until
you use the command MACRO. The macro system also has access to
some of the internal variables of the Unilab control program.

Consult Appendix F and the UniLab Programmer's Guide for
more information.

The command MACRO converts the software into a macro system.

-- Command Reference -- Page 7-2

-- The Categories --

1. Beginner-- the minimum vocabulary you need to talk to the
software, and learn more with the on-line help.

On-Line Help
HELP MENU MESSAGE
PINOUT WORDS

Load the Simple Target Program
LTARG)

Predefined Trigger
STARTUP

Set Trigger on Address and Start Analyzer
AS

Exit the Program
BYE

Memory Enable
EMENABLE

Memory Reading
DN MODIFY

Status Enquiry
ESTAT TSTAT

DEBUG Words
N RB NMI

March 25, 1987 Page 7-3 -- Command Reference --

-- The Categories --

2. Common-- additional commands you will quickly learn and use

often.

Predefined Triggers

.

EVENTS?

NORMT

Clear Out Previous Trigger, Prepare for Filtered Trace

ADR? CYCLES?
NOW? SAMP
Clear Out Previous Trigger
NORMB NORMM
ONLY

Set Up Trigger Spec

ADR : ALSO
DATA NOT

(

ANY

TO

Set Up Trigger Spec-- Not supported on all processors
(Consult the Target Application Note.)

FETCH READ
Start Analyzer

S S+
Call DOsS DOS
Trace Display Commands
TCOMP ™D

TN TSAVE
DEBUG Commands

GW RI
TRAM TRAM'
Stimulus Generator Commands
RES SET
Memory Reading

DM MCOMP

Line-by-line assembler

ASM ASM-FILE
Memory Writing

MFILL M

MM MM!
Symbols

Is SYMFILE
SYMLOAD

Save Information

BINSAVE TOFILE
SSAVE SYMSAVE

Load Program From File
BINLOAD HEXLOAD
Examine Text File TEXTFILE
Initialize Instrument

-~ Command Reference --

Page 7-4

TMASK
TSHOW

SI

STIMULUS

M!
ORG

SYMLIST

SAVE-SYS
TSAVE

TX
INIT

-- The Categories --

3. Advanced words-- commands that you will sometimes find
useful, but can live without.

Create macro system MACRO
Summon menu of processors supported PATCH

On-Line Displays

CATALOG ASC

Program Performance Analyzer (optional feature)
AHIST HLOAD HSAVE
MHIST SOFT THIST
Trigger Commands

~CONT DCYCLES HADR
HDATA LADR MASK
MISC

Start the Analyzer Repeatedly SR
Filter the Trace

1AFTER 2AFTER 3AFTER
Define a Pre-Qualifier

AFTER

Trace Display Commands TNT
DEBUG Commands

=0OVERLAY G GB

RZ

Multiple Breakpoints

CLRMBP DMBP RMBP
SMBP

Symbols

CLRSYM SYMDEL SYMFILE+
SYMTYPE

Disable Emulation Memory EMCLR
Memory reading

M? MM? ‘ MDUMP
MMOVE RES-

Assign a Function to a Function Key

ALT-FKEY CTRL-FKEY FKEY
SHIFT-FKEY

Show Source File on Screen in Trace

MAPSYM MAPSYM+ SOURCE
SOURCE'

Display and Change RAM Allocated to Screen History and to Symbols
?FREE =HISTORY =SYMBOLS
Calculate a CheckSum CKSUM

March 25, 1987 Page 7-5 -- Command Reference --

-- The Categories --

4. Special key and mode panel words-- commands that perform the
same function as one of the mode panel switches, or the same

~

as the cursor keys or a function key.

Mode Panel Access

MODE

Mode Panel 1

DASM
SYMB
RESET

Mode Panel 2

SHOWM
SHOWC
=MBASE
PAGINATE
HDG

Mode Panel 3

LOG
TOFILE
PRINT
NMIVEC
RSP

Function Keys

ALT-FKEY?
FKEY?
SSAVE

Cursor Keys
TOP/BOT

DASM'
SYMB'
RESET'

SHOWM'
SHOWC'

PAGINATE'
HDG'

LOG"
TOFILE'
PRINT'
NMIVEC'
RSP’

CTRL-FKEY?
MEMO
WSIZE

~-- Command Reference --

Page 7-6

DEFW
SHIFT-FKEY?

-- The Categories --

S. Rarely used words-- commands that you will probably not
often use.

Trigger Commands

ASEG INT INT'
NDATA SC

Standalone Trigger Search

SST TS

PreQualifier Commands

INFINITE PCYCLES PEVENTS
Q1 Q2 Q3
QUALIFIERS TRIG

Filter Manipulation Commands

CONTROL FILTER HDAT
MISscC' NO

Emulation Memory Segment Enable =EMSEG
Temporary Number Base Change

B# B. D#

H>D

Special Display Characteristic Commands

CLEAR CLEAR' COLOR
SET-COLOR

Serial Port Setting

19.2K 9.6K AUX1
AUX2

Receive HEX format file from another system
HEXRCV

Symbol File Format SYMFIX
PROM Burning Mode

8BIT 16BIT

Loading from Host RAM MLOADN
Timing commands

=WAIT MS

128K UniLab Only-- bank switch between 64K banks
PAGEO PAGE1

Burn PROMs in Standalone Mode

STANDALONE PROMMSG

March 25, 1987 Page 7-7 -- Command Reference --

-- The Categories --

6. Macro only -- commands that are only available after you use
the configuration word MACRO.

In addition, other commands and variables are available to
the user of the macro system. See Appendix F and the UnilLab
Programmer's Guide for details.

Convert to an Operator system
MAKE-OPERATOR OPERATOR

Macro Definition

BPEX

-e

BPEX2

For use with auto-test systems
<TST>

-- Command Reference -- Page 7-8

THE UniLab COMMANDS

March 25, 1987 Page 7-9 -- Command Reference --

-~ The Commands --

Entry format

The First Line

The first item on the first line of each entry is the
command itself, always printed in bold capital letters. The rest
of the line always contains either the phrase '"no parameters" or
the command repeated along with its parameters.

The parameters always appear inside <pointy brackets>.

Some words will have a last entry on the first line, which
indicates that it belongs to some special category of commands.
There are four types of commands that are marked this way:

1) commands which correspond to a function key
(category four in the previous section) are marked
with the function key number.

2) commands in the rarely used category (category
five in the previous section) are marked "RARELY
USED."

3) commands only available in macro system (category
six in the previous section) are marked
"MACRO SYSs."

4) commands associated with the optional Program
Performance Analyzer are marked with "PPA."

The Definition

The first block of text tells you what the command does.

Usage

The next block of text tells you how and when you use the
command-- sometimes warning you that you only want to use the
word in extraordinary circumstances.
Example

Almost every command includes a section showing examples of
how to use the word.
Comments

This optional section includes warnings, historical notes,

and various other bits and pieces of information.

-- Command Reference -- Page 7-10

-- The Commands --

16BIT no parameters' RARELY USED

Selects 16-bit mode for memory emulation and for trace display
and for PROM burning and reading.

USAGE
You will probably not use this command. It sets up the
UniLab to work with processors that have a 16 bit data
bus. If you have purchased a disassembler, then either
this command or 8BIT has been "built-in" to your
software.

COMMENTS
16BIT is one word with no space after the 16. The
16BIT command changes both the signals put onto the
target system's bus by the UniLab and the way the
UniLab displays the trace display. That means you need
a 28 pin ROM emulation cable, or the 16 bit emulation
will not work.

The HL and LH commands determine the order in which the
trace displays the bytes. The byte order has already
been set for you by your UniLab DDB software.

19.2K no parameters RARELY USED

Changes bald rate of serial port to 19.2 K baud. This is the
default.

USAGE
Use after 9.6K to restore the default condition.

You must SAVE-SYS to make the change permanent.

March 25, 1987 Page 7-11 -- Command Reference --

-= The Commands --

1AFTER 1AFTER <trigger spec>

Clears out previous trigger spec and enables trace filtering.
Only the bus cycle that satisfies the trigger spec and one cycle
immediately after will be kept.

USAGE
The UniLab stores the trigger cycle and the one
immediately after, every time it sees conditions that
match the trigger specification. The "trigger status
display line" shows how many cycles have been stored
away L)

You have to use S to start the analyzer after setting
this trigger spec.

The UniLab automatically displays the trace after the
entire trace buffer has been filled.

The disassembler will not work properly on fragments of
code. The disassembler should be disabled with DASM'
while you are looking at the results of any of the
xAFTER commands.

CHECKING THE TRACE
If you want to see the trace before the buffer has been
completely filled, then press any key to stop the cycle
recording. Then type in TD to dump the trace, and
display part of it on the screen.

The trace buffer fills from the bottom, and each new
cycle pushes up the already recorded data. If you end
up with a partially filled buffer, then the cycles you
want to see are in the last part of the buffer.

EXAMPLES

1AFTER 1200 ADR S
shows only those cycles with adr =1200 and one
cycle following.

1AFTER 235 TO 560 ADR S
shows 2 consecutive cycles each time a cycle has
an address between 235 and 560.

(continued on next page)

-- Command Reference -- Page 7-12

-- The Commands --
(continued from previous page)

COMMENTS

Do not put a space between the number and AFTER.
1AFTER is a single word, not a word preceded by a
parameter. This command can be used when seeking the
cause of a memory cycle error. It will show the

- program address of the cycle after the one that caused
the memory access. =XAFTER initializes all trigger
features, so NORMx is unnecessary with these commands.

March 25, 1987 o Page 7-13 -~ Command Reference --

~= The Commands --

2AFTER 2AFTER <trigger spec>

Same as 1AFTER except that two cycles are kept immediately
following each trigger cycle.

USAGE
Enables a filtered trace that gives you a little more
information than 1AFTER does.

COMMENTS
See 1AFTER.

3AFTER 3AFTER <trigger spec>

Same as 1AFTER, except that the three cycles after the trigger
cycle get stored.

USAGE
Enables a filtered trace that gives you a little more
information than 2AFTER does.

COMMENTS
See 1AFTER. And notice that this filtered trace will
contain enough information to make a disassembled trace
sensible-- sometimes.

-- Command Reference -- Page 7-14

-~ The Commands --

8BIT no parameters RARELY USED

Selects 8-bit mode for trace display and memory emulation and for
PROM burning and reading.

USAGE .
You will probably not use this command. It sets up the
UnilLab to work with processors that make use of 8 bit
data. If you have purchased a disassembler, then
either this command or 16BIT has been "built-in" to
your software.

COMMENTS
Use the 24 pin ROM cable with this command. 8BIT is

one word, with no space between the number 8 and the
rest of the command.

9.6K no parameters RARELY USED

Changes baud rate of serial port to 9.6 K baud. The default is
19.2 K baud. v

USAGE
Use to lower the baud rate for communication to the
UniLab. Be certain to toggle the switch in the UnilLab
as well. The switch is inside the UniLab case, toward
the back of the board, next to the plug-in for the
connection to the host computer.

See also 19.2K, for restoring the default.

You must SAVE-SYS to make the change permanent.

March 25, 1987 Page 7-15 -- Command Reference --

-= The Commands --

H no parameters Macro Sys

The colon character starts a macro definition. The word that
follows the colon is the name of the macro.

USAGE
Once a macro has been defined, you can execute any
lengthy series of commands with a single word. See
Appendix F for further information. See also BPEX.

You will need to create a macro UniLab system (use the
command MACRO) before you can define a macro.

WHAT A MACRO IS
A macro is a command that you create out of previously
defined commands. For example,

: LOADUP 0 TO 3FFF BINLOAD A:MYPROG ;

creates a macro called LOADUP, which uses the
previously defined UniLab command BINLOAD.

LOADUP will always load from a file on drive A: called
myprog. You can see how this would be easier than
using BINLOAD every time you wanted to load this file.

HOW TO WRITE MACROS
A macro definition begins with a colon and ends with a
semicolon (;). The first word after the : is the name
of the macro, and all the other words are the
definition of it.

There must be at least one space between the colon and
the name of the macro, and at least one space between
the last word and the semicolon. Like this:

: NAME FIRSTWORD SECONDWORD VALUE THIRDWORD ;

FORTH
When you define a macro, you are actually making use of
the programming language FORTH. With this powerful
language you can define new words that make use of
conditional statements, looping, and more. The best
introduction to the language is Leo Brodie's Starting
FORTH.

{continued on next page)

-- Command Reference -- Page 7-16

-- The Commands --

(continued from previous page)

WHY MACROS

The example below defines a macro called READRAM.
After the new word has been defined, you would just
type in READRAM every time you want to set up the
trigger specification that shows only the cycles that
read from the address range 1000 to 1FFF. This will
save you a lot of keystrokes.

EXAMPLE

¢ READRAM ONLY READ 1000 TO 1FFF ADR S ;
defines a macro called READRAM.

COMMENTS

Whenever the word immediately following : is entered
the result is the same as if the rest of the words up
to ; were entered. After typing in the example above,
the word READRAM will have the same effect as entering
" ONLY READ 1000 TO 1FFF ADR S ." To preserve the

macro definition, you must SAVE-SYS before leaving the
Unilab program.

See also appendix F.

7 no parameters Macro Sys

Ends a macro definition started by : .

March 25, 1987 Page 7-17 -~ Command Reference --

-~ The Commands --

<TST> <value> ' <TST> ! Macro Sys

Setting this constant to 1 will turn off the output of some
messages and will leave on the stack many results which are,
normally, printed out.

- USAGE
Use during testing procedures, or for sophisticated
macros. When <TST> is set to one, such words as MM?
will leave their results on the stack, rather than
printing them out.

Remember to set <TST>» back to zero when you are
through.

EXAMPLE

: NEWMM? (addr--val) 1 ' <TST> ! MM? 0 ' <KTST> ! ;
This macro will act the same as MM?, except it
will leave the word value it finds on the stack
rather than printing it out.

-- Command Reference -- Page 7-18

~-- The Commands --

=BC <word> =BC

Changes the contents of the BC register to n.

USAGE
An example of the type of register control command
available with a DEBUG package. This command addresses
the Z-80 internal register BC. Consult the Target
Application Note for your processor-specific software.

EXAMPLE
1234 =BC '
puts 1234 in the BC register.
COMMENTS

You can use the register commands only after DEBUG has
gained control of your microprocessor. See NMI or RB
for more information on debug control.

This is a typical register changing instruction format.
A similar command is provided for each of the
processors internal registers (except SP). No space
appears between the = and the register name.

March 25, 1987 Page 7-19 -- Command Reference --

-~ The Commands --

<hex digit> =EMSEG RARELY USED

Sets A16-A19 context for subsequent EMENABLE statement(s).
Determines which 64K "bank" of memory the emulated ROM will be

ine.

YOU PROBABLY DON'T NEED TO BOTHER

This value must be set properly, or the UniLab will not
put the program opcodes onto the target system bus.
This variable is already set properly for each
disassembler/DEBUG software package.

WHY IT MIGHT MATTER

Though the upper 4 bits of our 20-bit address bus are
meaningful only with processors that can address more
than 64K of memory, =EMSEG must always be set.

On some microprocessors, those four lines are floating
high, on other mp's several of the lines are pulled
low.

HOW IT WORKS

This command only sets a variable. EMENABLE is the
command that actually enables memory.

4

WHEN IT MATTERS
The UniLab looks at the upper 4 bits of address (A16
through A19) during fetch and read cycles, to determine
whether your microprocessor wants to fetch an
instruction from emulation ROM. If the upper 4 bits
that the UniLab sees don't match the =EMSEG
specification, then the UniLab will not respond to the
mp's request.
Use ESTAT to see how this command effects the settings
of emulated memory.

EXAMPLES

7 =EMSEG .
sets A19 to 0 and A16, A17, and A18 to one.

(continued on next page)

~- Command Reference -- Page 7-20

-- The Commands --

(continued from previous page)

F =EMSEG 0 TO 1FFF EMENABLE
enables addresses F0000 to F1FFF.

E =EMSEG 0 EMENABLE ALSO F =EMSEG 0 EMENABLE
enables emulation of addresses
E0O000 - EO7FF and F0000 - FO7FF.

COMMENTS

The 4 most significant bits of the 20 bit UniLab enable
addressing are selected with =EMSEG so that subsequent
statements only refer to 16-bit addresses. EMENABLE
commands enable emulation memory in blocks of 2K.

A read or fetch command from the target microprocessor
will reference emulation memory only when the A16-A19
inputs agree with an =EMSEG statement and A11-A15
indicate an enabled 2K block of emulation ROM.

Inputs A16-A19, displayed on the trace display as the
right-hand digit of the CONT column, are the wvalues
seen by the emulation enable logic. If the inputs are
not connected then they will "float," and appear as all
1s (hex F).

=EMSEG itself has no effect on the Unilab until an

'EMENABLE or INIT sends the data to the UnilLab.

March 25,

1987 Page 7-21 -- Command Reference --

-~ The Commands --

=HISTORY <hex# of Kbytes> =HISTORY

Selects the size of the screen history saved during each session
with the Unilab.

USAGE
Allows you to change the amount of host RAM dedicated
to saving information that scrolls off the top of the

screen. The maximum is hexadecimal 3C Kbytes (decimal
60).

The new setting will not take effect until you SAVE-
SYS, exit from the UniLab software, and start it up
again.

Use ?FREE to find out how much is allocated right now.

WHY CHANGE
You might want to have a longer history, or you might
want to free up some of the host RAM for other
purposes.

EXAMPLE

3C =HISTORY
allocates the maximum space to the line history.

~-- Command Reference -- Page 7-22

-~ The Commands --

=MBASE

<{n> =MBASE F8

Selects number base for the trace display of the MISC inputs to
the Unilab, MO through M7.

USAGE

The miscellaneous inputs (MISC) to the UniLab usually
get displayed in binary format. This format allows you
to easily tell which MISC inputs are receiving a high
signal, and which are receiving a low.

This command also changes the number base for the HDATA
column for 8 bit processors.

However, you might have an application for these
inputs, such as reading the data from onboard RAM,
where a hex or decimal display would be more useful.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

The panel only toggles between binary and hex.

EXAMPLES
10 =MBASE
hexadecimal display, the most space efficient
8 =MBASE
selects octal display mode.
A =MBASE
selects decimal display mode.
2 =MBASE
returns to binary display mode.
COMMENTS

The MISC inputs can be connected to any signals you
like.

Notice that A, not 10, must be used to specify decimal
ten.

March 25,

1987 Page 7-23 -- Command Reference --

‘-~ The Commands --

=0OVERLAY <address> =0VERLAY

Changes the address of the area in emulation ROM used by the
ORION DEBUG software.

USAGE
When your software uses the memory reserved by the
ORION DEBUG software. This command changes the
location of both the overlay and the reserved area.
Use function key CTRL-F3 to find the current address of
the reserved and overlay area.

You can instead disable the DEBUG features for
completely transparent operation. See RSP'.

You must SAVE-SYS to make the change permanent.

EXAMPLES

2310 =OVERLAY
Moves the reserved area to start at 2310, and puts
the overlay area above there.

COMMENTS
The overlay area should not cross a 2K boundary. Be
careful when changing its location.

~-- Command Reference -- Page 7-24

-- The Commands --

=SYMBOLS <hex # of Kbytes>» =SYMBOLS

Selects the amount of space allowed for symbol tables within the
UniLab software.

USAGE
Allows you to change the amount of host RAM dedicated
to storing the symbol table. The maximum is hexadecimal
80 Kbytes (decimal 128).

The new setting will not take effect until you SAVE-
SYS, exit from the UnilLab software and start it up
again.

Use ?FREE to find out how much is allocated right now.

WHY CHANGE
You might want to have a larger symbol table, or you
might want to free up some of the host RAM for other
purposes.

EXAMPLE

80 =SYMBOLS
make the symbol table the maximum possible size.

March 25, 1987 Page 7-25 -- Command Reference --

-~ The Commands --

=WAIT <time> =WAIT

Changes the number of milliseconds that the UniLab software will
wait between resetting the processor and checking for the
processor clock.

USAGE

When you need a longer wait after reset. The default
value is 140 (hexadecimal).

You must SAVE-SYS to make the change permanent.

EXAMPLE
280 =WAIT
Sets the wait time to double the default wvalue.
2FREE ‘ no parameters

Displays the amount of host RAM allocated to the screen history
and to the symbol table. Also shows how much host RAM is
currently free.

USAGE
Find out how much you can increase the amount of space
dedicated to history or symbol table, or whether you
need to reduce it. See =HISTORY and =SYMBOLS.

-- Command Reference -- Page 7-26

-- The Commands --

ADR ' <word> ADR
<word> TO <word> ADR

Sets up the trigger specification for analyzer inputs A0 through

A15. (Sets trigger for A0 to A19 if five-digit address ends in a
period.)
USAGE

Determines which 16 bit addresses the analyzer will
trigger on. Can also trigger on 20-bit addresses.

With TO the trigger will occur on the address range
from ADR1 to ADR2.

If NOT precedes the value(s). of the address, the UnilLab
will trigger outside of the specified address or range
of addresses.

All previous entries to the address trigger spec are
erased unless you precede this spec with the word ALSO.

You can inadvertently produce 'cross products" when
making use of ALSO with ADR. See the fourth example
below.

EXAMPLES

NORMT 1023 ADR S
trigger on address 1023. NORMT causes the trigger
to appear at the Top of the trace.

NOT 120 TO 455 ADR S
trigger if address outside 120-455 range.

12345, ADR S
trigger on 20-bit address 12345. The 1 will
appear in right digit of the CONT column.

1200 ADR ALSO 8 ADR
sets the analyzer to trigger when the .
address is 1200 or 0008. Because of cross
products, will also trigger on address 0000 and
1208.

(continued on next page)

March 25, 1987 Page 7-27 -- Command Reference --

-- The Commands --
(continued from previous page)

COMMENTS
ALSO must be used with caution with ADR. Generally you
can use ALSO once, if the high-order byte of the
previous spec and the new one match. To do more than
that you should work with the two bytes of the address
separately using HADR and LADR.

AS is a convenient abbreviation for NORMT ADR S.
You can define a 20-bit address trigger by ending the

number in a period. See ASEG for another approach to
20-bit addresses.

ADR? no parameters

Displays random examples of the addresses seen on the bus--
approximately two every second.

USAGE
This command displays two of the addresses that appear
on the bus each second. A useful command for getting a
rough-grained idea of how the program behaves.

Terminate the display by pressing any key.

EXAMPLE
ADR?
This command is never used in combination with
anything else.
COMMENTS

Useful for monitoring program flow in a rough manner.
For example, it will be obvious to you if the target
program gets stuck in a loop. ADR? turns RESET mode off

- and sets up a trigger spec of its own. Be sure to use
NORMx at the start of the first trigger spec after
using this word.

-~ Command Reference -- Page 7-28

-- The Commands --

AFTER

AFTER <qualifier specification»>

Sets the stage for the description of a qualifying event.
Qualifying events are bus states that must be seen before the
analyzer starts to search for the trigger.

USAGE

When you have specified qualifying events, the UnilLab
will not recognize the trigger until after the
"qualifiers" have been seen.

You can set up to three qualifying events. Each
qualifier spec must start with AFTER.

All the qualifiers must appear on the bus one
immediately after another, without intervening bus
cycles. However, the trigger itself can appear anytime
after all the qualifiers have been satisfied.

You cannot use MISC inputs as qualifiers.

DELAYS AND REPETITIONS

March 25,

You can specify a minimum number of bus cycles after
the time the last qualifier is seen, before the UniLab
starts looking for the trigger. See PCYCLES. The
default is 0 PCYCLES. '

You can also specify a number of complete repetitions
of the sequence of qualifiers. See PEVENTS. The
default is 1 PEVENTS.

Qualifier 3 (--cemua-
!
(immediate) !
v

Qualifier 2 /

P

(if PEVENTS

(immediate) [greater
v than 1)
Qualifier 1 /'\

]
\ /4
(wait PCYCLES. !
Default is 0.) !
|

;

\ /4

I
!
|
|
v
|
|
|
|
|
|
v
|
|
|
!
G Gem fmm fme e Sem S P

Trigger

1987 Page 7-29 -- Command Reference -~

-~=- The Commands --
(continued from previous page)
EXAMPLES

NORMT 100 ADR AFTER 535 ADR S
will trigger on address 100 only after address 535
gets seen on the bus.

AFTER 3F DATA S
You can add a second qualifying event-- which must
occur earlier than the first. Now address 535
must be immediately preceded by data 3F hex before
UniLab will look for address 100 on the bus.

NORMT 100 ADR AFTER 535 ADR AFTER 3F DATA S
a single statement with the same result as the two
above.

NORMT AFTER NOT 345 ADR AFTER 344 ADR S
triggers if any address other than 345 follows
immediately after 344. By starting with AFTER we
are able to describe two events which must follow
one another without intervening bus cycles.

COMMENTS
Equivalent results can be obtained by using
<n> QUALIFIERS to set the number of qualifiers. The
four related commands TRIG, Q1, Q2, and Q3 can then be
used to set the various triggers. But AFTER is the
more natural way to do it.

You will find Q1, etc., handy when you want to '"change
context" to alter the description of an event that you
though you had completed.

-- Command Reference -- Page 7-30

-- The Commands --

AHIST

no parameters PPA

Address HISTogram invokes the optional Program Performance
Analyzer (PPA), which allows you to display the activity of your
target program in each of up to 15 user-specified address ranges.
See also MHIST and THIST.

USAGE

MENU

Allows you to examine the performance of your software.
You can find out where your program is spending most of
its time.

Press F10 to exit from this menu-driven feature,

You must (only once) issue the command SOFT to enable

this optional feature. SOFT performs a SAVE-SYS, and

then causes an exit to DOS. The next time you call up
the software, the PPA will be enabled.

DRIVEN

SAVE

You produce a histogram by first specifying the upper
and lower limits of each address "bin" that you want
displayed, then starting the display. :

When you give the command AHIST you get the histogram
screen with the cursor positioned at the first bin.

You can then start typing in the lower and upper limits
of each bin. Use return, tab or an arrow key after you
enter each number, to move to the next entry field.

Press function key 1 (F1) to start displaying the
histogram.

TO A FILE

You can save the setup of a histogram as a file with
the HSAVE <file>. Issue this command after you exit
from the histogram.

You load the histogram back in with HLOAD <file>. This
command also invokes the histogram.

EXAMPLE

"AHIST
This command is never used in combination with
anything else.

March 25,

1987 Page 7-31 -- Command Reference --

-= The Commands --

ALSO no parameters

Used with both EMENABLE and with trigger specification commands.
Prevents clearing of previous settings.

USAGE
The trigger spec commands, CONT, ADR, DATA, HDATA,
HADR, LADR and MISC, normally cause the UniLab to
trigger on the new conditions instead of the old
conditions. By using ALSO, you can instruct the UniLab
to trigger on the old conditions OR the new conditions.

The memory enable command, EMENABLE, normally enables
only the new settings of memory. By using ALSO, you
can enable both the o0ld range of memory and the new.

You have to use ALSO for each new setting that you
declare. See the second example below.

ALSO is not necessary when you want to trigger on
several different categories. The UnilLab will
automatically AND together the specifications in
different categories.

You can inadvertently produce "cross products'" when
making use of ALSO with ADR. See ADR. :

EXAMPLES

12 DATA ALSO 34 DATA
sets the analyzer to trigger on either 12 or 34
data (without the ALSO only 34 data would remain
set).

10 DATA ALSO 5 DATA ALSO 3 DATA 1200 ADR
sets the analyzer to trigger when the
data is 10 or 5 or 3 and the address is 1200.

0 TO 7FF EMENABLE ALSO 2000 TO 2FFF EMENABLE
enables two ranges of emulation ROM.

COMMENTS
Applies only to the first EMENABLE or trigger spec
command that follows.

-- Command Reference -- Page 7-32

-- The Commands --

ALT-FKEY <# of key> ALT-FKEY <command>
Assigns a command to an ALTered function key.

USAGE
Reassign the function keys on PCs and PC look-alikes.
Use ALT-FKEY? (or press F1 while holding down ALT) to
find the current assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

To make your reassignments permanent, use
SAVE-SYS.
EXAMPLE
2 ALT-FKEY WSIZE
assigns WSIZE to ALT-F2.

COMMENTS
To execute a string of commands, define a macro first

(using :) and then assign the macro to the function
key.

See also FKEY, CTRL-FKEY, and SHIFT-FKEY.

ALT-FKEY? no parameters ALT-F1
Displays the current assignments of the ALTered function keys.

USAGE
Whenever you want to be reminded what command will be

executed when you press a function key while holding
down the ALT key.

See ALT-FKEY to reassign the keys.

March 25, 1987 Page 7-33 -- Command Reference --

-- The Commands --

ANY ANY <input group>

Sets a trigger spec that will trigger on any value on the input
group.

USAGE
‘ Provides a way to "clear out" the trigger on any
selection of input groups. This can sometimes save you
the trouble of re-entering a trigger spec.

This command is most appropriate after you have entered
and used a trigger spec, but now want to use a broader
trigger spec.

EXAMPLE
ANY CONT
trigger when any value appears on the CONT input
lines. The rest of the trigger spec remains
unchanged.
COMMENTS
The macro definition of this command:
¢ ANY 0 TO FFFF ;

—-- Command Reference -- Page 7-34

-- The Commands --

AS <addr> AS

An abbreviation for NORMT ADR S.

USAGE
Defines an analyzer trigger spec, and starts the
analyzer working. The trigger event appears near the
top of the trace as cycle zero. A useful abbreviation-
- saves you key strokes. When entering the most common
trigger spec-- triggering on a code address.

Will not work on ranges of addresses (with TO) or with
NOT.

EXAMPLE
1234 AS

triggers when address is 1234

COMMENTS
The macro definition of this command:
¢+ AS NORMT ADR S ;

March 25, 1987 Page 7-35 -- Command Reference --

-=- The Commands --

ASC no parameters SHIFT-F4

Displays the handy reference ASCII table.

USAGE
Shows each character, along with its decimal and hex
value.
EXAMPLE
ASC
This command is never used in combination with
anything else,
COMMENTS

This is a bonus feature provided to save you the
trouble of hunting for a printed ASCII table.

-- Command Reference -- Page 7-36

~- The Commands --

ASEG

<hex digit> ASEG RARELY USED

Sets a trigger spec on address bits A16-A19. ASEG cannot be used

with NOT,

ALSO, or TO.

USAGE

Normally, you set a trigger address with ADR, either a
16 bit or 20-bit address. This command allows you to
set a trigger on the upper 4 bits of the 20 bit
address. See =EMSEG for a longer discussion of the
addressing scheme of the UniLab.

EXAMPLES

5 ASEG .
requires a hex value of 5 on A16-A19 for trigger.

COMMENTS

Normally useful only if you have over 64K of memory in
your target system. Even then, a better way to define
a trigger on a 5-digit address is just to enter the
5-digit address ending in a period followed by ADR.

The command "n ASEG" has the same effect as "F MASK n
CONT,"

March 25,

1987 Page 7-37 -- Command Reference --

-~ The Commands --

ASM <address> ASM <instruction»>
Invokes the processor-specific line-by-line assembler.

USAGE
Patch assembly language code to the given address in
emulation ROM. Allows you to overwrite locations in
the copy of your target program residing in the
UnilLab's emulation ROM, so that you can guickly fix
bugs when you find them. The assembler writes over
memory-- it does not insert instructions.

If you do not include the address, ASM will use the
current value stored by the ORG command.

ASSEMBLING MULTIPLE INSTRUCTIONS
If you do not include an assembly language instruction,
then ASM will give you as a prompt the address to which
it is assembling, and wait for you to give it an
instruction followed by a carriage return.

The assembler will continue to prompt you with an
address and patch assembled code into memory, until you
feed a blank line (press return on an empty line). '

CONVENTIONS
The line-by-line assembler will only accept assembly
language instructions, not ORIGIN statements or EQU
statements. (You should use the UniLab command IS to
define symbols.)

Only one instruction per line.

The normal conventions of assembly language apply. For
example, at least one space between the instruction and
the operands.

The Target Application Note contains a section listing
the instruction set recognized by the assembler.

(continued on next page)

-- Command Reference -- Page 7-38

-- The Commands --

(continued from previous page)

EXAMPLES

0 ASM LD sSP,3000
alters the first instruction of the LTARG program
of the 280 package.

100 AsSM
invokes the assembler, starting at address 100.
The assembler will prompt you with that same
address, and wait for you to enter an assembly
language instruction.

March 25, 1987 Page 7-39 -- Command Reference --

-- The Commands --

ASM-FILE <addr> <start screen> <end screen> ASM-FILE

Invokes a version of the line-by-line assembler that assembles
code contained on the screens of a FORTH file,

USAGE
A way to make large patches to your program, or to
write prototype code without leaving the UnilLab
environment-- or just to write a few lines that you
will want to be able to edit and re-enter.

ASM-FILE follows the same conventions as ASM.

You can include comments on a screen by putting a
semicolon (;) on a line. The assembler will ignore
everything after the semicolon on that line. The
semicolon must be the first character on the line, or
be preceded by at least one space.

FORTH FILES AND THE EDITOR
If you only have a few lines of code, you can use the
screen that MEMO puts you into, and the two following
(screens 1D through 1F). See the entry for MEMO to get
a few pointers on using the FORTH screen editor.

OPENING A NEW FILE
You will want to put the code into a file of its own if
you have many lines of code, or if you want a more
convenient way to archive the code. You must make a
MACRO system before you can use the file commands.

First close the current file (UniLab.SCR) with the
command CLOSE.

Next create a new file with OPEN-NEW <file name>, and
determine its size with <# of screens> SCREENS (1K
allocated per screen). Use the command <screen #> EDIT
to get into the file. Don't make use of screen zero.

You will then be able to use ASM-FILE to assemble the
code stored in your new file.

When you are done with assembling, use OPEN UNILAB.SCR
to close your file and re-open the UniLab.SCR file. If
you don't do this, then some of the on-line help
facilities and error messages will not work,

(continued on next page)

-- Command Reference -- Page 7-40

-- The Commands -~
(continued from previous page)
EXAMPLES

1200 1D 1F ASM-FILE
loads assembly code, starting at address 1200,
from screens 1D through 1F of the currently opened
FORTH file.

1 4 ASM-FILE
loads code from screens 1 through 4, starting at
the current value of ORG.

AUX1 no parameters RARELY USED

Tells the host computer to look for the UnilLab on serial port 1.
This is the normal default condition.

AUX2 no parameters RARELY USED

Tells the host computer to look for the UnilLab on serial port 2.

Only use this command if you have the UnilLab connected to serial
port 2.

March 25, 1987 Page 7-41 -- Command Reference --

-- The Commands --

B# B# <binary number> RARELY USED
Interprets the number following as a binary number.

USAGE
Useful when you want to input a number as a bkinary--
saves time with pencil and paper. Quick, what is the
hex value of a number with 1 at locations 0, 3, 7, 9
and 10? Let the computer do that work for you.

EXAMPLES

B# 0101010001001
has the same effect as entering 0A89H

NORMT B# 1111110 MISC S
will trigger when the MISC inputs are 11111110

COMMENTS :
Changes the base to binary, just for the next number.
Allows entering numbers in binary format, just as D#
allows decimal format.

B. <hex number> B. RARELY USED
Displays the hex number as a binary number.
USAGE
When you want to find out the binary equivalent of a
hex number, saves you time with pencil and paper.
EXAMPLE
A89 B.

displays the binary equivalent of A89, which is
0101010001001,

-- Command Reference -- Page 7-42

-~ The Commands --

BINLOAD

<from addr> <to addr> BINLOAD <filename>

Loads a binary file from disk into emulation memory. Prompts you
for the name of the file if you don't include it on the command

line.

USAGE

Starts loading a binary file into the from addr. Stops
loading at the to addr, or when end of file is reached.
The binary file should contain a program. Can be used
to load the product of a cross compiler into emulation
memory.

This command fully supports DOS pathnames.

You can save a program to a file with BINSAVE.

EXAMPLE

0 400 BINLOAD \ASM\MAIN.BIN
loads a binary DOS file, starting at location 0
and ending at location 400.

COMMENTS

Loads exact binary contents of file until DOS indicates
end of file, or the "to address" is reached. If you
don't know the ending address, you can just enter FFFF
as toadr and loading will stop on end-of-file.

As with all memory writing commands, don't write into
your stack area when loading into RAM.

Use with .COM,.BIN, or .TSK files. See HEXLOAD for
Intel Hex files.

The Orion software can load to target RAM as well. See
NMI and RB.

March 25,

1987 Page 7-43 -- Command Reference --

-~ The Commands --

BINSAVE <1st addr> <2nd addr> BINSAVE <file name>

Saves the specified section of memory as a file. Prompts you for
the file name if you do not include it.

USAGE
This command saves the program memory to disk. Saves
everything in memory between the first address and the
second address.

This command fully supports DOS pathnames.,

EXAMPLE

100 4FF BINSAVE
saves target locations: 100 - 4FF.

COMMENTS
Saves exact binary contents of a range of target memory
as a named file. This file can later be re-loaded with
the BINLOAD command.

Can save from target RAM as well. See NMI and RB.

-- Command Reference -- Page 7-44

-- The Commands --

BPEX BPEX <macro name> ! Macro Sys

Executes the specified macro at each breakpoint, after the
register display.

USAGE
Allows you to automatically execute any command or
group of commands, at every breakpoint. You must first
define a macro, or use one of the pre-defined Orion
command words.

BPEX will not accept a string of commands, only the
first word that follows. This means that only certain
commands are suitable-- those that require no
parameters. In the example below, we first write a
macro that requires no parameters, called SEE-RAM.
Notice that SEE-RAM makes a call to MDUMP, which does
require parameters.

See : for more info on macros.

TURN IT OFF
To turn off the automatic execution use BPEX NOOP.

EXAMPLES

: SEE-RAM 8000 8080 MDUMP ;
defines a macro called SEE-RAM which dumps out 80
memory locations.

BPEX SEE-RAM
executes your macro at every subsequent
breakpoint.

COMMENTS ‘
Available only with DEBUG packages. Useful if, for
example, you want to watch a memory window as you
single step through the program.

BPEX2 BPEX2 <macro name> Macro Sys

Execute a second macro at each breakpoint. See BPEX.

March 25, 1987 Page 7-45 -~ Command Reference --

-- The Commands --

BYE no parameters
Exits from UniLab program.

USAGE
To return to DOS. Use SAVE-SYS first, if you want to
save the current state of the system. '

Use DOS instead if you want to execute just a few DOS
commands and then return to the Unilab program.

EXAMPLE

BYE .
This command never used in combination with

anything else. P

CATALOG no parameters

Displays a directory of all the available pinouts-- the proper
cable hook-ups for each microprocessor.

USAGE
Once this word is entered, any of the listed pinouts
can be displayed on the screen.

This word "opens'" the pinout library. It closes again
as soon as you enter another command.

Until you use this command, the only pinout diagram
available is that of the mp you are using. You get
that with the command PINOUT.

-- Command Reference -- Page 7-46

~- The Commands --

CKSUM

Calculates
error-chec

USAGE

<from addr> <to addr> CKSUM

the checksum for a given range of memory. Useful for
king.

A good way to make a PROM easy to check for burn-in
errors, or corrupted locations. Allows you to record
the checksum of your program-- or better yet, make the
checksum equal to zero.

EXAMP

LE

800 FFF CKSUM
prints a 16-bit checksum for the data in addresses
800-FFF

NTS

COMME

You may want to patch the complement of this value into
your PROM. You can produce a PROM with a checksum of
zero, using the following method, which sacrifices only
two bytes.

First store zero where the checksum will be
(0O FFE MM! in the above example). Second, find the

checksum, using CKSUM. Lastly, patch in the complement
of the sum.

For example, if the sum is 1234, then use the command
-1234 FFE MM!. The resulting PROM will have a checksum
of 0.

March 25,

1987 Page 7-47 -- Command Reference --

-=- The Commands --

CLEAR no parameters RARELY USED

Clears the screen before performing a PgUp. Use with some of the
older color monitor cards, that will otherwise flicker when you
use PqgUp.

CLEAR' no parameters RARELY USED

The normal default condition-- the screen is not cleared before a
PgUp is executed. Use only to restore the default condition
after executing a CLEAR.

-- Command Reference -- Page 7-48

-- The Commands -~

CLRMBP no parameters
Clears all multiple breakpoints.

USAGE
Use to wipe the slate clean, and start out setting
multiple breakpoints again. SMBP sets the breakpoints.

EXAMPLE
CLRMBP
This command never used in combination with
anything else.
COMMENTS

Use to clear all the numbered breakpoints which you set
with SMBP and can clear one at a time with RMBP.

March 25, 1987 Page 7-49 -- Command Reference --

~= The Commands --

CLRSYM no parameters
Clears out the current symbol table.

USAGE
When you want to get rid of the symbols that you have
defined for your program. It's a good idea to first
save the symbols, just in case you decide you want
those symbols after all. See SYMSAVE.

The symbol table also gets cleared by SYMFILE and
SYMLOAD before they load in the new symbols. SYMFILE+
adds to the existing symbol table.

Unless you save the symbols, you cannot recover them
later. You could instead use SYMB', which turns off
the symbol table without erasing it.

EXAMPLE
CLRSYM
This command never used in combination with
anything else.
COMMENTS

You might want to clear out the table before loading in
a new one from a file. See SYMFILE and SYMLOAD.

-=- Command Reference -- Page 7-50

-- The Commands --

COLOR no parameters RARELY USED
Displays in color. Only has an effect with a color monitor.

USAGE
Turns on color display.

You have to save the system afterward, if you want the
UniLab program to start up with color display.

CHANGING COLORS
Use the UniLab command SET-COLOR, which shows you what
the new settings are as you change them.

You will have to save the system with SAVE-SYS if you
want to preserve the new colors.

EXAMPLES
COLOR

This command never used in combination with
anything else.

March 25, 1987 Page 7-51 -~ Command Reference --

-- The Commands --

COM1 no parameters

Enables dumb terminal emulation mode, using serial communications
port 1 of your personal computer. This is the port normally used
by the UnilLab.

USAGE
Allows you to use your PC as a dumb terminal while
within the UniLab software. Press the ESCape key to
exit.

COMMUNICATION SETTINGS
The default settings are:
300 baud
8 bits, 2 stop bits, no parity.

CHANGING SETTINGS
You can change these settings by changing the values
stored in two constants, BR2 (Baud Rate) and LCR2 (Line
Control Register: bits per character, etc.).

Put the value 60 into BR2 to change to 1200 baud:
60 ' BR2 !

You may miss characters at 1200 baud, due to the screen
scroll times. Put a 180 into BR2 to change back to

300 baud.
You can change to 7 bits, 2 stop bits with:
6 ' LCR2 !
TABLE OF SETTINGS
bits parity #stop bits value to store at LCR2
7 None 1 2
7 None 2 6
7 odd 1 A
7 odd 2 E
7 Even 1 1A
7 Even 2 1E
8 None 1 3
8 None 2 7
8 odd 1 B
8 odd 2 F
8 Even 1 1B
8 Even 2 1F

(continued on next page)

-- Command Reference -- Page 7-52

-- The Commands --

(continued from previous page)

To change to 5 or 6 bits per character look at the
information on the Line Control Register of the INS8250
in a reference manual on that chip, or in the Hardware
Technical Reference Manual for your computer.

COM2 no parameters

Enables dumb terminal emulation mode, using serial communications

port 2 of your personal computer. See the entry for COM1 for
details.

USAGE

Allows you to use your PC as a dumb terminal while
within the Unilab software., Press the ESCape key to
exit.

Change the communications settings the exact same way
that you do for COM1.

March 25, 1987 Page 7-53 -- Command Reference --

-- The Commands --

CONT <byte> CONT RARELY USED
<byte> TO <byte> CONT
<byte> MASK <byte> CONT

Sets up the analyzer trigger spec for the CONT inputs (control
lines C4 - C7, and A16 - A19). ‘

USAGE
The CONT input lines actually represent two different
types of information. The upper four bits represent
the processor cycle type. The lower four bits come
from the four highest address lines, A16 through A19.

When you precede it with one number, CONT causes the
UniLab to trigger when the inputs equal that number.
When you use TO the UniLab triggers on any value from m
to n. NOT causes the Unilab to trigger when the value
falls outside of the specified range or value.

You can use k MASK 1 to examine any subset of the 8
input lines. See Comments below for more details.

Unless you use ALSO the previous trigger spec gets
cleared out,
EXAMPLES

B# 00011111 CONT
reqguires C7-C5 = 0, C4 & A19-A16 = 1.

70 TO 7F CONT
requires C7=0 and C6-C4 = 1, A19-A16 any value.

F MASK 3 CONT
requires A19 & A18 = 0, A17 & A16 = 1, C7-C4 any
value. ~

(continued on next page)

-- Command Reference -- Page 7-54

-- The Commands --
(continued from previous page)

COMMENTS
The low four bits of the CONT lines refer to the
highest four bits of the address-- the same segment
address bits set by =EMSEG.

When you use the command k MASK 1 CONT, the value of k
determines which bits the UniLab will examine-- the
bits with a value of one. The 1 then indicates the
value those lines must have before trigger occurs.

For example, F0O MASK AF tells the UnilLab to only look
at the upper 4 bits of the CONT lines. The AF tells
the UniLab to trigger when bits 7 and 5 are high while
bits 6 and 4 are low. The UniLab will "not care" about
the value of the lower four bits.

March 25, 1987 Page 7-55 -~ Command Reference --

-- The Commands --

CONTROL no parameters RARELY USED

Used before FILTER to set up a filter spec based only on the CONT
inputs.

USAGE -- RARELY USED ‘
You will probably never use this command. Triggers on
the full specification, but filters based only on the 8
bits of the CONT inputs.

The filter mechanism of the UniLab gets turned on for
you by the xAFTER macros. Those commands set the
filter to MISC' FILTER, which allows you to set up a
trigger spec based on all inputs except for the
MISCellaneous wires.

See also HDAT, MISC', and NO.

THE CONT INPUTS
The upper four bits identify processor cycle type,
while the lower four bits identify the address bits
_A19-A16.

This command makes it possible to filter on cycle type'
and on memory segments.

EXAMPLE

NORMT CONTROL FILTER WRITE 1200 ADR A7 DEVENTS S
triggers on 1200 address, and then records only
writes. You have to use DEVENTS to get a trace
buffer full of the event you are filtering on.

-- Command Reference -- Page 7-56

-- The Commands --

CTRL-FKEY

<# of key> CTRL-FKEY <command>

Assigns a command to a function key pressed while the CTRL key is

held down.

USAGE

Reassign the function keys on PCs and PC look-alikes.
Use CTRL-FKEY? (or CTRL-F1) to find the current
assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

To make your reassignments permanent, use
SAVE-SYS.

EXAMPLE

5 CTRL-FKEY DOS
assigns DOS to CTRL-F5.

COMMENTS

To execute a string of commands, define a macro first

(using :) and then assign the macro to the function
key.

See also FKEY, ALT-FKEY, and SHIFT-FKEY.

CTRL-FKEY?

no parameters CTRL-F1

Displays the current assignments of the ConTroLled function keys.

USAGE

Whenever you want to be reminded what command will be
executed when you press a function key while holding
down the CTRL key.

See CTRL-FKEY to reassign the keys.

March 25,

1987 Page 7-57 -- Command Reference --

-= The Commands --

CYCLES? <from addr> <to addr> CYCLES?
Counts the number of bus cycles between two addresses.

USAGE
Can use to count the number of bus cycles in a loop, as
in the first example below, or the "distance" between
two addresses.

BUS CYCLE COUNT
Not the number of machine cycles, nor the number of
instructions fetched, but instead the number of reads
and writes that occur between one command and another.
The read could be instruction fetches, or could be data
fetches.

EXAMPLES

123 CYCLES?
counts cycles between two occurrences of the
address 123.

123 456 CYCLES?
counts cycles between address 123 and address 456.

12300. 12450. CYCLES?
counts cycles between address 12300 and address
12450.

COMMENTS
Useful for checking quickly whether a loop works as you
intended. CYCLES? makes its own trigger spec, so you
will have to start fresh on your trigger after using
this command. Use one of the NORMx commands to clear
out the trigger spec set by CYCLES?.

When specifying a five-digit address, the . which
designates a five-digit address must be used with both
addresses.

~- Command Reference -- Page 7-58

~-- The Commands --

D# D# <decimal number> RARELY USED

Treats the number that follows as a decimal value, rather than as
a hexadecimal, which is the default.,

USAGE
Saves you the trouble of converting the number by hand
or with a calculator.

EXAMPLES

D# 16 ADR
equivalent to entering "10 ADR".

D# 32 .
will display 20 (the hex equivalent of 32
decimal).

D# 135 B.
converts a number from decimal to binary.

D# 1000 MsS
will pause 1 second.

COMMENTS

See also B# for entering binary numbers.

March 25, 1987 Page 7-59 -~ Command Reference --

~~ The Commands --

DASM no parameters F8
Enables the trace disassembler.

USAGE
Turns on the translation of machine code into assembly

language mnemonics. You will usually want to keep this
on, only turning it off for special applications such
as XAFTER. To turn off the disassembler, use DASM'.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

EXAMPLE
DASM

selects disassembled mode for trace display.

COMMENTS
Works only if you have an optional disassembler

installed.

-- Command Reference -- Page 7-60

-- The Commands -~

DASM' no parameters F8
Disables the trace disassembler.
USAGE

Turns off the translation of hexadecimal machine codes
into assembly language mnemonics. See DASM above for
more details.
Typically you will use the MODE panel (function key 8)
when you want to change this feature.

EXAMPLE

DASM' selects hex mode for trace display.

March 25, 1987 Page 7-61 ~-- Command Reference --

~- The Commands --

DATA <byte> DATA
<byte> TO <byte> DATA
<byte> MASK <byte> DATA

Changes the analyzer trigger for the DATA inputs (DO to D7).

THE DATA INPUTS:
The UniLab gets both the address and the data from the
bus during each memory read and write. The "data" that
appears on the bus could be either a value or a machine
code instruction. See COMMENTS below for information
on triggering on a 16-bit data bus.

USAGE
The simplest use sets up a trigger for a single data
value. The UniLab will search for the byte value, and
trigger when it sees that hex number on the bus as
data. See the first example below.

RANGES OF DATA:
TO lets you set up a trigger on any data between two
byte values, inclusive. See the second example below.

NOT
NOT causes the UnilLab to trigger when the value falls
outside the specified range or value.

MASKING

You can use k MASK 1 DATA to examine any subset of the
8 data lines. The high bits of k mark which bits will
be examined, while the bit configuration of byte 1
indicates the values the lines must have for a trigger
to occur.

For example, 80 MASK FF DATA selects only the highest
data bit for examination (with binary wvalue 1000 0000).
The UniLab would trigger when this bit has a high
value. The instruction 80 MASK 80 DATA would have the
same effect.

(DATA continued on next page)

-- Command Reference -- Page 7-62

~- The Commands -~

(continued from previous page)
EXAMPLES

NORMT 12 DATA S

after clearing all previous settings with NORMT,

sets up a trigger for data input 12, and then uses
S to start the analyzer.

12 TO 34 DATA
requires data value between 12 and 34 hex.

FO MASK 30 DATA

sets a trigger based only on the four highest bits
of data. UniLab will look for a 3 on those lines.

23 DATA ALSO 45 DATA

sets a trigger on cycles where data is either 23
or 45 hex.

COMMENTS

The data inputs (D0-D7) are normally connected via the
emulator cable at the ROM socket. On 16-bit processors

DATA is only half of the data bus, while HDATA is the
other half.

If you need to use a large number of ALSO terms, then
see NDATA.

March 25, 1987 Page 7-63 -- Command Reference --

-~ The Commands --

DCYCLES <number of cycles> DCYCLES

Sets number of cycles the UniLab will continue to record after
the trigger.

USAGE
When the UnilLab sees the trigger event on the target
board, it consults the delay cycles wvariable to
determine how many more cycles to record. Each time a
new cycle enters the trace buffer you lose the oldest
recorded cycle., After the UniLab records the specified
number of cycles, it shows the trace buffer on the
screen.

WHY YOU DON'T NEED TO BOTHER
This command gets executed by a number of other
commands. NORMT, for example, sets the delay value to
AQ (160 decimal). That delay count puts the trigger
event near the top of the trace buffer, after the ten
cycles that came just before it.

WHY YOU MIGHT WANT TO
You might want to see the trace starting 260 cycles
after a known event-- perhaps you don't know where the
program ends up at that time. The DCYCLES command will
do the job perfectly.

EXAMPLE

104 DCYCLES
selects 104 (hex) delay cycles (260 decimal)

COMMENTS
NORMT, NORMM, and NORMB select A0, 55, and 4 DCYCLES
respectively. S+ increases the number of delay cycles
by A6, so you can see what happens after the end of the
current trace.

The maximum possible delay count is FFFF.

-- Command Reference -- Page 7-64

-- The Commands --

DEFW no parameters F5

Returns the window to the size last set with WSIZE, or to the
default if you have not changed the window size.

USAGE
The help screens readjust the window size, to make the
lower window as large as possible without overwriting
the information in the upper window. After you have
used a help screen, you might want to return the
DEFault Window size. Just press Function key 5.

SAVING A DEFAULT
You can use SAVE-SYS to save all the current settings
at any time.

EXAMPLES

DEFW
This command never used in combination with
anything else.

March 25, 1987 Page 7-65 -- Command Reference --

-- The Commands --

DM <start address> <count> DM

Disassembles <count> number of lines, starting at the given
address.

USAGE
A very useful tool for examination of memory. Allows

you to see what instructions are in emulation memory
and in RAM as well. See also DN.

Can give misleading results if you give an address that
is not the first address of an opcode, but even then
will generally come "into sync" after a few
instructions.

EXAMPLE
100 10 DM
disassembles 10 lines starting at address 100
COMMENTS

Normally disassembles from ROM. Works only if you have
an optional disassembler. Can disassemble from target
RAM as well. See NMI and RB.

DMBP no parameters
Displays the settings of all eight multiple breakpoints.

USAGE
When you forget the settings of your multiple
breakpoints. Automatically executed whenever you set
one of the 8 multiple breakpoints with SMBP,

EXAMPLES

DMBP

This command never used in combination with
anything else.

-- Command Reference -- Page 7-66

-- The Commands --

DN

<start address> DN

Disassembles from memory into the right-hand side of current

window.

Displays one instruction per line and fills the right

hand window.

USAGE

When you want to keep the disassembly from memory on
the screen while preforming other operations. This
command is similar to DM, except that it writes into a
portion of the screen that is only used for this
feature.

The disassembly produced by DN does not scroll off the
screen. You can get rid of it by using F2 to get out
rid of the split screen and then scrolling the screen
(or, if currently looking at an un-split screen, press
F2 twice).

EXAMPLES
20F0 DN
Fills the right side of the current window with
assembly language code, starting from address
20F0.
March 25, 1987 Page 7-67 -~ Command Reference --

-- The Commands --

DOS DOS <DOS command?>

Execute a DOS command from the Unilab program.
Or, use with no parameters to exit to DOS temporarily. Return to
UniLab program by typing EXIT.

USAGE
When you forget the name of the file where you stored
that program, or have any other reason to use the DOS
utilities. You can either execute a single command, or
you can go to DOS and execute a series of commands.

If you go to DOS, you can re-enter the UnilLab program.
Return to the Unilab program by typing EXIT at the DOS
prompt (A> or B> or C»>).

If you use BYE to exit the UniLab program, yocu have to
start it up again by typing ULxx at the DOS prompt.

EXAMPLES

DOS DIR /w
Executes the DOS command "DIR /w."

DOS
Allows you to execute any series of DOS commands,
then return to the UnilLab program.

DOS ASMB SOURCE.ASM OBJECT.BIN .

Assembles a new version of the program you are
working on.

-~ Command Reference -- Page 7-68

-- The Commands --

EMCLR no parameters

Tells the UniLab not to emulate ROM-- clears out the emulation
memory settings. '

USAGE
Commands the Unilab to not respond to any
microprocessor requests for data or instructions. Use
only when you want to run a program from on-board ROM.

This word also disables the DEBUG features. To turn
them on again for use with emulation ROM, use the SWI
VECTOR choice on the mode panel (F8) or RSP.

Instead of running the program from a chip, you can use
the PROM READER MENU (F9 from the MAIN MENU) to read a
program into emulation memory from most ROM chips.

EXAMPLE

EMCLR

This command never used in combination with
anything else.

March 25, 1987 Page 7-69 -- Command Reference --

~= The Commands --

EMENABLE <address> EMENABLE
<from address> TO <to address> EMENABLE

Enables emulation memory, needed before you can load in a
program. But first, set =EMSEG properly.

USAGE
With a single address, enables the 2K memory region
that includes the given address. =EMSEG just sets a
variable in the host's memory, while EMENABLE sends all
the information to the Unilab.

You can use SAVE-SYS to make the current settings
permanent.

ON RANGES OF ADDRESSES
TO enables the emulation memory from the beginning of
the 2K segment that includes the <from> address to the
end of the 2K segment that the <to> address is in.

CLEARING PREVIOUS SETTINGS
Unless you precede emulation statement with ALSO,
clears out previous EMENABLE statements.

WATCH OUT
When you try to emulate two separate ranges of memory,
you can accidentally overlay the two. For example,
with a 32K UnilLab, 0 and 8000 reference the same memory
location in the UniLab.

Of course, you can enable areas that do not overlap.

For example, 0 TO 3FFF and also C000 TO FFFF would not
conflict.

EXAMPLES
F =EMSEG O EMENABLE
enables target addresses 0-7FF with A16-19 all set
high.

0 TO 1FFF EMENABLE ALSO FFFF EMENABLE
enables 0-1FFF and F800-FFFF

F =EMSEG O EMENABLE ALSO E =EMSEG O EMENABLE
enables locations FOO00O - FO7FF and EOOQOQO - EO7FF

(continued on next page)

-~ Command Reference -- Page 7-70

- The Commands --

(continued from previous page)

COMMENTS

The Unilab's enable logic first compares the A16-A19
value from the most recent =EMSEG statement with the
present bus address. @ Address inputs A11-A15 then get
compared to an enable map, where each entry corresponds
to a 2K segment of memory. When both the segment and
the 2K block are enabled, the UniLab accepts the
address, and puts its data on the bus.

March 25, 1987 Page 7-71 ~-- Command Reference --

-- The Commands --

ESTAT no parameters
Tells you the current status of emulation memory.
USAGE
When you want to find out what range of addresses is
currently enabled.
EXAMPLES
ESTAT

This command never used in combination with
anything else.

-- Command Reference -- Page 7-72

-~ The Commands --

EVENTS? no parameters

Starts the analyzer and counts occurrences of the currently
defined trigger event.

USAGE
Useful for monitoring occurrences that you don't need a
trace of. An excellent way to see whether the program
does what it should. If the program messes up
spectacularly, or performs flawlessly, then this
command will show you that.

Otherwise, you're left in the dark.

EXAMPLES

NORMT 123 ADR EVENTS?
counts occurrences of address 123.

NORMT 123 ADR FF DATA EVENTS?
counts occurrences of data FF when the address is
123.

NORMT WRITE 78 TO FF DATA 1210 ADR EVENTS?
Counts the number of times a data value greater
than 78 gets written to location 1210.

COMMENTS
You can also count such things as error conditions or
system usage.

You can use this command if you want to sync a scope on
the UniLab's test point output.

March 25, 1987 Page 7-73 -- Command Reference --

-~-= The Commands --

FETCH no parameters

Tells the UniLab to look for trigger event only during fetch
cycles.

USAGE ,
To search for a particular opcode. After you give it
this command, the UniLab will not look for the trigger
event during reads or writes.

This command is not available on all processors.

This command is used as part of a trigger spec, as
shown in the examples below.

EXAMPLES

NORMT FETCH 120 ADR S

triggers when the program fetches from address
120.

NORMT FETCH NOT 0 TO 7FF ADR S
triggers if the program tries to fetch an
instruction from outside the 0 to 7FF range.

COMMENTS
This command, loaded with the disassembler, specifies a
range of CONT values corresponding to fetch cycles.

-~ Command Reference -- Page 7-74

-- The Commands --

FILTER ’ no parameters RARELY USED

Selects trace filtering mode, according to previous
word: CONTROL, HDAT, MISC' or NO.

WHY YOU DON'T NEED TO BOTHER
For most filtering of the trace, you will use commands
such as ONLY or xXAFTER. These words automatically
select the MISC' filtering mode for you. The NORMx
words turn off filtering.

You can use this command to set up a filter spec that
is different from your trigger spec. This is sometimes
a very useful thing to be able to do.

EXAMPLE

NORMT CONTROL FILTER READ 1200 ADR A7 DEVENTS S
triggers when the processor reads from address
1200-- then produces a filtered trace of the A7
(hex) read cycles that occur after that.

COMMENTS
You would want to bother when inventing your own
filtering command.

March 25, 1987 Page 7-75 -- Command Reference --

-= The Commands --

FKEY <# of key> FKEY <command>
Assigns a command to a function key.

USAGE
Reassign the function keys on PCs and PC look-alikes.
Use FKEY? (or F1) to find the current assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

You have to use "A" (hexadecimal) as the number to
assign a command to F10.

To make your reassignments permanent, use
SAVE-SYS.

EXAMPLE

2 FKEY STARTUP :
assigns STARTUP to the F9 key.

COMMENTS

If you find yourself performing some one action
repeatedly, you can save time by making it into a macro
and then assigning it to a function key. For example

s DUMP100 0 100 MDUMP ;

6 FKEY DUMP100
will allow you to dump locations 0 to 100 by pressing
function key 6.

See also ALT-FKEY, CTRL-FKEY, and SHIFT-FKEY.

-- Command Reference -- Page 7-76

-- The Commands --

FKEY? no parameters F1
Displays the current function key assignments.

USAGE

Whenever you want to be reminded what pressing a
function key will do for you.

See FKEY to reassign the keys.

EXAMPLES

FKEY?
This command never used in combination with
anything else.

March 25, 1987 Page 7-77 -~ Command Reference --

-= The Commands --

G <address> G

Goes to the indicated address. Exits DEBUG control, lets the
target run.

USAGE
After you have set a breakpoint, and want to release
debug control and let the target run. G is one of
several ways to do this.

G just gets the target board going. After that, you
can enter a trigger spec and restart the analyzer, or
you can use one of the "big picture" words: ADR?, SAMP,
or NOW?2.

You could instead use STARTUP to restart the analyzer
and the board at the same time. Or use NORMx followed
by a trigger specification and S, to restart the
analyzer and give you a trace of the event that you
describe. ’

EXAMPLE

1030 G
exits from debug control, and resumes the target
program at location 1030.

COMMENTS
Appropriate if you have a DEBUG package and have
established control by entering RESET adr RB, or NMI.
You can return to any point in the program you like,
but debug control will be lost.

Use GB if you wish to resume the program at an address
different from the one you are stopped at but with
another breakpoint set.

-- Command Reference -- Page 7-78

-- The Commands --

GB <addr to go to> <bpoint addr> GB

Goes to the first address, and starts executing code, with a
breakpoint set at the second address.

USAGE
When you want to move around the program without losing
debug control.

EXAMPLES
1200 330 GB
resumes the program at address 1200, with a
breakpoint set at 330.
COMMENTS

Available if you have an DEBUG package and have
established DEBUG control. See RB to establish DEBUG
control.

March 25, 1987 Page 7-79 -- Command Reference --

-~ The Commands --

GW <address> GW

Goes to the indicated address and waits until the analyzer is
started. Releases the target board from DEBUG control.

USAGE :
To continue the execution of the program, starting at
the given address, after a new trigger spec has been
defined. :

A rather specialized but very useful command.

EXAMPLE

1100 GH NORMT 1200 ADR S
Goes to address 1100 and waits for the analyzer to
be started. The trigger spec command sets the
analyzer to capture a trace showing the code at
address 1200.

-- Command Reference -- Page 7-80

-- The Commands --

H>D <hex number> H>D RARELY USED
Displays the decimal equivalent of a hex number.

USAGE
Shows you the decimal equivalent-- compare this with
D#, which allows you to enter a decimal number that
will then be used by the next command.

This word is similar to B. which shows you the binary
equivalent of a hex number.

EXAMPLE

10 H>D .
will cause "16" to be displayed.

333 133 - H>D
will display "512," which is the decimal
equivalent of 333 minus 133 (hex).

March 25, 1987 Page 7-81 -- Command Reference --

-~ The Commands --

HADR

< byte > HADR RARELY USED
< byte > TO < byte > HADR
< byte > MASK < byte > HADR

Changes the analyzer trigger for the high-order byte of the 16-
bit address (A8-A15).

THE ADDRESS INPUTS

You should normally use ADR to set 16 or 20 bits at
once, but there are limits to the use of ALSO in
combination with ADR.

The UniLab gets both the address and the data from the
bus during each bus cycle. The UniLab works with up to
20-bit addresses. You can change the trigger
specification of the least significant byte with LADR,
the second byte with this command, and the high four
bytes with CONT or ASEG.

USAGE

You can use this trigger spec command in the same way
you use DATA, CONT, etc.. However, the most frequent
use of this command is to set up a trigger spec on the
address lines that makes use of many calls to ALSO.

EXAMPLES

NORMT 12 HADR ALSO 34 LADR ALSO 10 LADR ALSO 5 LADR
sets up the analyzer to trigger on any of the
addresses 1234, 1210 or 1205.

COMMENTS

Makes it possible to treat the first two bytes of the
address separately. LADR is the lower half.

-- Command Reference -- Page 7-82

-- The Commands --

HDAT

HDAT FILTER RARELY USED

Used before FILTER to set up a filter spec based only on the high
byte of the DATA inputs (D8 - D15).

USAGE -- RARELY USED

You will probably never use this command. Triggers on
the full specification, but filters based only on the 8
bits D8 through D15.

The filter mechanism of the UniLab gets turned on for
you by the XAFTER macros. Those commands set the
filter to MISC' FILTER, which allows you to set up a
trigger spec based on all inputs except for the
MISCellaneous wires.

See also CONTROL, MISC and NO.

THE HIGH DATA INPUTS

These lines read from the high byte of the 16-bit data
path of 16-bit processors. On 8-bit processors, the
lines can be left to float, or be used to sense other
logic signals on your target board.

USAGE

Used to show only the cycles that meet your
description. While deciding whether to include the
current cycle in a filtered trace, the UniLab will
check only these 8 bits of the 48 inputs.

A good way to look at all the bus cycles that have some
specific data value as the upper byte of data.

EXAMPLE

NORMT HDAT FILTER 80 TO FF HDATA 3410 ADR A7 DEVENTS S
will give a trace showing only those cycles with
D15 high, starting with the bus cycle that has D15
high and address 3410. You have to use DEVENTS to
get a trace full of the event you are filtering
on.

March 25,

1987 Page 7-83 -- Command Reference --

-- The Commands --

HDATA

< byte > HDATA
< byte > TO < byte > HDATA
< byte > MASK < byte > HDATA

Changes the analyzer trigger for the high byte of 16-bit data
path (D8 through D15). Spare inputs on 8-bit processors.

THE DATA INPUTS

The UniLab gets both the address and the data from the
bus during each bus cycle. The "data" that appears on
the bus could be either a value or a machine code
instruction. On 8-bit processors the inputs D8 through
D15 can be hooked up to anything you like.

USAGE

The simplest use sets up a trigger for a single value
on the high order byte of the data inputs. The UniLab
will search for the byte value, and trigger when it
sees that hex number on the bus as data.

Note that just looking at the high order byte means the
UniLab doesn't care about the low order byte, and so it
actually searches for a range of values. See the first
example below.

To specify just one full 16 bit wide data value, you
must use both HDATA and DATA.

RANGES OF DATA

TO lets you set up a trigger on any data between two
byte values, inclusive. See the third example below.

NOT causes the UniLab to trigger when the value falls
outside the specified range or value.

MASKING

You can use <i> MASK <j> HDATA to examine any subset of
the 8 most significant data lines. The high bits of i
mark which bits will be examined, while the bit
configuration of byte j indicates the values the lines
must have for a trigger to occur.

For example, 01 MASK FF HDATA selects only data bit D8
for examination (with binary value 0000 0001). The
UniLab would trigger when this bit has a high value.
The instruction 01 MASK 01 HDATA would have the same
effect.

(HDATA continued on next page)

-- Command Reference -- Page 7-84

-- The Commands --
(continued from previous page)

EXAMPLES

NORMT 12 HDATA S
after clearing all previous settings with NORMT,
sets up a trigger for data input 12XX -- actually

1200 through 12FF-- then uses S to start the
analyzer.

12 HDATA 80 DATA
sets a trigger for only data 1280.

12 TO 34 HDATA

requires data value between 12XX and 34XX hex.
That is, 1200 through 34FF.

FO MASK 00 HDATA

sets a trigger based only on the four highest bits
of data. UniLab will look for a 0 on those lines.

12 TO 23 HDATA ALSO 45 HDATA

sets a trigger on cycles where the highest byte of
data is either 12 to 23, or 45 hex.

COMMENTS
You must use a special 16-bit cable with processors
that use a 16-bit data bus. That cable has two ROM
plugs-- one for the even byte, one for the odd byte.

If you need to use a large number of ALSO terms, then
see NDATA.

The HDATA inputs are named for their use in the 16BIT
mode. In the 8BIT mode they are displayed as a
separate column and can be used as for anything you
like just like the MISC inputs. On eight- bit systems

they are typically used to look at system inputs and
outputs.

March 25, 1987 | Page 7-85 -- Command Reference --

-= The Commands --

HDG no parameters F8

Has a fixed header for trace displays-- one that does not scroll
up with the rest of the trace.

USAGE
One of the display attributes. Usually you will toggle

this with the mode panel, function key 8.

HDG' no parameters F8

Makes a non-fixed header for trace displays-- one that scrolls
with the rest of the trace.

USAGE

One of the display attributes. Usually you will toggle
this with the mode panel, function key 8.

-- Command Reference -- Page 7-86

-- The Commands --

HELP : HELP <command> F1

Finds the reference information for a command or feature. With
no word, brings up the help screen, including soft-key prompt
line.

USAGE
Look up information on a command, in the abridged on-
line command reference. See also WORDS.

EXAMPLES

HELP
displays help screen.

HELP BYE
gives information on command "bye."

March 25, 1987 Page 7-87 -- Command Reference --

~~ The Commands --

HEXLOAD HEXLOAD <file name>

Loads an Intel HEX format object file into the UnilLab's emulation
memory. Prompts you for the file name if you don't include it.

USAGE
Load into emulation memory a program stored in Intel
HEX format. You can then run, debug and alter that
program as you would any other.

Binary format files are more compact and load two to
three times faster. You might want to direct your
assembler to produce binary format files, if it has
that capability. Or you can save your program memory
with BINSAVE to produce a binary format file.

Binary format files are loaded with BINLOAD.

Intel HEX format files contain the information about
where each opcode should be stored. Be certain to have
the proper sections of emulation memory enabled before
loading in the file. See EMENABLE.

LOADING INTO RAM
The UniLab will not load a file into RAM unless you
have first established debug control. To do that you
must first have a program already loaded into emulation

memory (LTARG for example) and then run to a breakpoint
with RESET <address> RB.

If DEBUG is not in control, attempts to load memory
that is not enabled will generate an "auto-breakpoint."
You will see "-nmi-" and then the "target address-not
enb" message. Enabled areas in the same file will be
loaded.

EXAMPLE

HEXLOAD MYPROG.HEX
load an Intel HEX format file called MYPROG.HEX.

(continued on next page)

-- Command Reference -- Page 7-88

-~ The Commands --

(continued from previous page)

COMMENTS
Only record types 0 to 3 are supported. Bytes 7 and 8
of each line of the file tell what record type that
line uses.

16-bit processor note: If the UnilLab detects a type 2
(extended address) record then address bits A16-A19
will be compared to the current =EMSEG and data will
not be loaded if it is intended for some segment other
than the current one. This will be indicated by a
"not enb" message for each invalid address. Enabled
addresses in the file will be properly loaded.

March 25, 1987 Page 7-89 ~-- Command Reference --

~~- The Commands --

HEXRCV | no parameters

Loads an Intel HEX file from another‘computer, via a second
serial port.

USAGE
The serial transmission must be done on a separate
serial channel with the UniLab connected to its normal
serial port. XON and XOFF characters are used to
start and stop the data transmission. Transmission is
normally done on COM2 on IBM PC's while the UniLab is
connected to COM1.

EXAMPLE

HEXRCV
loads a hex file serially

~- Command Reference -- Page 7-90

-- The Commands --

HLOAD HLOAD <filename> PPA

Loads from a file the data describing a histogram. This is used
only with the optional Program Performance Analyzer. You save
the information to a file with HSAVE.

USAGE
Loads into memory a PPA template or a run that you
previously had saved, then automatically calls up
AHIST, MHIST or THIST.

EXAMPLES
HLOAD AUG28.HST

load into memory the information in the file
AUG28.HST, that had been saved with HSAVE.

HSAVE HSAVE <filename> PPA

Saves to a file the data describing a histogram. This is used
only with the optional Program Performance Analyzer, after
exiting from THIST, MHIST or AHIST. You load the information
back into memory with HLOAD.

USAGE
Save in a file a Program Performance Analyzer template
or a run that you want to keep for future purposes.

This feature is handy when you are periodically running
a histogram of a program, and want to save the bin
settings. It can also be used to save a particular run
of the Program Performance Analyzer.

EXAMPLES

HSAVE AUG28.HST
save as a file the data that describes the last
histogram screen you saw before exiting from
either AHIST or THIST.

March 25, 1987 Page 7-91 -- Command Reference --

-- The Commands --

INFINITE

INFINITE PEVENTS RARELY USED

Used only before PEVENTS, instead of a count, to indicate that
the trigger event must immediately follow the qualifying events.

USAGE

Along with a trigger specification (see ADR, DATA,
READ, WRITE, etc.) and a qualifying event specification
(see AFTER or QUALIFIERS), when you are only interested
in the trigger event if it occurs 1mmed1ately after the
qualifying events.

BACKGRQUND

The default is for the UniLab to search for the
qualifying sequence only once. After the sequence has
been found once, it is discarded and the UniLab looks
for the trigger.

With PEVENTS and a normal count, the UniLab searches
for the qualifying events until it finds them the count
number of times. Then it discards the qualifiers, and
looks only for the trigger.

WHAT IT REALLY DOES
INFINITE causes the UniLab to search for the qualifying
sequence and then immediately look for the trigger
event. If the trigger event is not the very next
cycle, then the UniLab starts looking for the
qualifiers again.
EXAMPLE
123 ADR AFTER 345 ADR INFINITE PEVENTS
triggers if address 123 follows immediately after
address 345.
COMMENTS

Pretty obscure. But might be highly useful in certain
restricted situations.

Pressing any key stops the search.

-- Command Reference -- Page 7-92

-- The Commands --

INIT

no parameters

Sends an initialization message to the Unilab.

USAGE

To reset the UniLab after you are in the UniLab
program.,

When you start up the program, it tries to initialize
the instrument after the screen has been cleared and
the UniLab version number displayed. If you tap any
key after the screen is cleared, then the automatic
init will not occur. You will then have to use INIT
before you can send any commands to the instrument.

Also, if the UnilLab was not properly connected when you
called up the program, or if you turned off the UnilLab
at any time during the program, then the UniLab needs
to be initialized.

IF IT FREEZES

If the program stops after printing the

"Initializing UnilLab. . . .'" message, press the BREAK
key while holding down the CONTROL key. This breaks
you out of the initializing sequence. Make certain
that you have turned on the UniLab and connected it to

the host computer.

Try INIT again. If it still freezes up, check the
TroubleShooting chapter.

EXAMPLES
INIT
This command is never used in comblnatlon with
anything else.
COMMENTS

Initializes all of the mode bits, baud rate and
emulation enable map. Sent automatically after PROM
programmer operations to re-initialize the analyzer
modes.,

March 25,

1987 Page 7-93 -- Command Reference --

-= The Commands --

INT no parameters RARELY USED

Generates the NMI- interrupt output when trigger state reached.
The NMI- wire from the UniLab must be connected to either NMI or
IRQ circuit of processor.

USAGE-- RARE
Useful for causing the target system to execute an
interrupt routine when it goes into trigger search
state (i.e., after the "qualifier has been found).
Used to prevent damage to equipment by branching
control to a "soft shutdown" routine when some error
condition occurs.

You must write and install your own shutdown routine.

Orion DEBUG packages use this command internally. If
you want to make use of it, you must disable the NMI
feature of the Orion software with the Mode Fanel (F8)
or with NMIVEC'.

NORMx disables the INT mode.

EXAMPLES

NORMT INT AFTER 123 ADR S
will interrupt the target processor during the bus
cycle after address 123 is reached, then trigger
immediately. ‘

NORMT INT 12 DATA AFTER 345 ADR S
will interrupt during the bus cycle after address
345 occurs, then the analyzer will trigger when 12
data occurs.

COMMENTS
The interrupt occurs when the qualifying sequence is
complete, not on trigger event. This makes it possible
to trigger on something specific after the interrupt
occurs.,.

-~ Command Reference -- Page 7-94

-- The Commands --

INT'
Disables the INT mode.
USAGE

Rare.

COMMENTS
Not often used

no parameters

RARELY USED

since NORMx also disables the INT mode.

March 25, 1987

Page 7-95

-- Command Reference --

-~ The Commands =--

IS <value> IS <name>
Assigns a symbol name to an address or data value.

USAGE
To show mnemonic names of memory locations on traces.
If you already have an assembler generated symbol
table, you will prefer to use the symbol table features
of the UnilLab. See SYMFIX and SYMFILE.

You can use the IS command to add symbols after you
have loaded in a symbol table. IS turns on symbol
display mode.

EXAMPLE

1234 IS MREGISTER
gives 1234 the symbol name "MREGISTER"

COMMENTS
Used to manually create a symbol table or to add
symbols to an existing table.

Use SYMB to enable the symbol display on trace. See
also SYMB', SYMSAVE, CLRSYM, SYMLOAD, and SYMFILE.
Symbol translation will work with or without a
disassembler.

-- Command Reference -~-- Page 7-96

-- The Commands --

LADR <byte> LADR RARELY USED
<byte> TO <byte> LADR
<byte> MASK <byte> LADR

Sets the truth table for the low order byte of the address
(A0-A7) separately.

THE ADDRESS INPUTS
You should normally use ADR to set 16 or 20 bits at
once, but there are limits to the use of ALSO in
combination with ADR.

The Unilab gets both the address and the data from the
bus during each bus cycle. The UnilLab works with up to
20-bit addresses. You can change the trigger
specification of the least significant byte with this
command, the second byte with HADR and the high four
bytes with CONT or ASEG.

USAGE N
You can use this trigger spec command in the same way
you use DATA, CONT, etc.. However, the most frequent
use of this command is to set up a trigger spec on the
address lines that makes use of many calls to ALSO.

LADR is also useful for setting a trigger on a port
address of the Z80. The ports of the Z80 processor
have only one byte addresses-- and the 280 puts the
contents of the A register on the upper byte of the
address lines when it outputs to a port.

EXAMPLE

NORMT 12 HADR ALSO 34 LADR ALSO 10 LADR ALSO 5 LADR
sets up the analyzer to trigger on any of the
addresses 1234, 1210, or 1205.

COMMENTS
Makes it possible to treat the first two bytes of the
address separately. HADR is the upper half.

March 25, 1987 Page 7-97 -- Command Reference --

-= The Commands --

LOG no parameters F8
Enables automatic logging of target program patches on printer.
USAGE
Keeps a record of any program patches you make, but
other operations are not logged to the printer.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

LOG' no parameters F8
Disables logging of program patches to printer. See LOG above.
USAGE

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-- Command Reference -- Page 7-98

-- The Commands --

LP

no parameters

Goes around a loop once and stops.

USAGE

You must already have established debug control

(see RB), and be stopped at a breakpoint within a loop.
This command allows the program to run once around the
loop and stop at the current address, displaying the
registers as the UnilLab does for any breakpoint.

WATCH OUT

Will not work if the program counter register is
pointing above the first instruction or below the last
instruction in the loop. Only works when you are
within the loop. See the Target Application Note for
your processor for any additional restrictions.

EXAMPLES
LP
This command never used in combination with
anything else.
COMMENTS

Works by first saving the current breakpoint address,
executing N (a single step without following branches)
and then executing <saved_address> RB. Processors with
multiple byte breakpoint opcodes will execute N several
times.

March 25,

1987 Page 7-99 ~- Command Reference -~

-~ The Commands --

LTARG no parameters

Loads a simple target program into the UniLab's emulation memory.

USAGE
A good way to gain familiarity with the UniLab. Comes
packaged with the disassembler. This command enables
the proper section of emulation memory and loads a
simple program. You can then use the STARTUP command
to capture a trace of your target system executing the
simple program.

WATCH OUT: PROCESSORS WITH EXTERNAL STACKS
The LTARG program uses the memory map of the Orion
MicroTarget. If your target system does not have RAM
and ROM where the LTARG program needs them, then it
will not run on your board without some patching.

The Target Application Note for each DDB includes an
LTARG sample session.

EXAMPLE

LTARG
This command never used in combination with
anything else.

-- Command Reference -- Page 7-100

-- The Commands --

M <byte> M
Stores one byte in ROM or RAM and increments reference address.

USAGE
Used after an ORG statement (which sets up address), to
patch program memory. Can only be used to change RAM
after debug control has been established. See RB.

REMEMBERING CHANGES
LOG sends all memory access commands such as M to the
printer, saving a record of any changes you make.

EXAMPLES

3000 ORG 12 M
stores a 12 at 3000

150 ORG 5 M 10 M
stores 5 at location 150, 10 at 151

COMMENTS
Used for entering data tables, program patches, etc.
See also MM, MM!, and M!.

Will store to emulated memory if the address is
enabled, otherwise will store to target RAM. See NMI
and RB.

As with all memory writing commands, don't write into
your stack area when loading into RAM.

March 25, 1987 o Page 7-101 -- Command Reference --

-- The Commands --

M <byte> <address> M!
Stores a byte of data at the specified address.

USAGE
Used to patch program memory. Does not require a
previous ORG command-- instead requires an address as
the second parameter. See M, Can also be used to
change RAM, but only after debug control has been
established. See RB.

REMEMBERING CHANGES .
LOG sends all memory access commands, such as M!, to
the printer, saving a record of any changes you make.

EXAMPLES

12 3000 M!
stores a 12 at 3000.

5 150 M! 10 150 M!
stores 5 at location 150, 10 at 151.

COMMENTS
Used for entering small patches-- anything larger than
one byte can be done by one of the other memory patch

commands with fewer keystrokes. See also MM, MM!, and
M.

Will store to emulated memory if the address is
enabled, otherwise will attempt to store to target RAM.
See NMI and RB.

-- Command Reference -~-- Page 7-102

-- The Commands --

M? <address> M?
Displays the byte that is stored at the specified address.

USAGE
To find out what is stored at a single memory location,

either ROM or RAM. Use MM? for looking at words, and
MDUMP or DM for larger areas of memory.

EXAMPLES

1210 M2
displays the byte stored at 1210.

COMMENTS
If the address is EMENABLEd then emulation memory will

be displayed, otherwise the UniLab will use DEBUG
features to display target RAM contents. See NMI and

RB.

March 25, 1987 Page 7-103 -- Command Reference --

-= The Commands --

MACRO

no parameters

Switches the Unilab software to a macro system.

USAGE

Only necessary when you want to write macros or you
need access to the "internal" words of the UniLab
control program. For information on macros refer to
the glossary entry on : (colon), and Appendix F of this
manual. For information on internal commands and other
subjects, order the UniLab Programmer's Guide from
Orion.

Several otherwise unused files must be in the UniLab
directory when you request that the software switch to
macro system. Included on your distribution diskette
are the files necessary both for the operator system,
with a .OPR extension, and for the macro system, with a
-MCR extension. You should have one .OPR and one .MCR
file for every .EXE or .OVL file.

When you switch to macro system, the Unilab software
will search for a .MCR file whose name matches the
current .EXE file.

If you had previously saved the system to a different
name (using SAVE-SYS), you will have to rename the .MCR
so that it matches your executable file before you can
make a macro system.

You can save the UniLab software as a macro system
anytime after you use the command MACRO. SAVE-SYS will
save, to the new name you specify, a .EXE file and a
matching .MCR file.

In the operator system (see OPERATOR and MAKE-OPERATOR)
you have access only to the commands in the UniLab
glossary.

EXAMPLE

MACRO
Converts to macro system.

-- Command Reference -- Page 7-104

-- The Commands -~-

MAKE-OPERATOR MAKE-OPERATOR <filel1> <file2> Macro Sys

Use this command to create an operator system that has restricted
access to the UnilLab program, but also has access to the words
that you have defined.

USAGE
This command performs four actions:
1) save the macro system to the first name,
2) create a non-standard operator system,
3) save the new system to the second name, and
4) exit to DOS.

The new, non-standard operator system recognizes the
new commands that you have defined in your macro
system.

The standard operator system gives you access only to
the commands in the UniLab On-Line Glossary.

FILE NAMES
When you create an operator system with this command
your UniLab directory must contain the MAKE file from
your distribution diskette.

EXAMPLE

OPERATOR MACRO0Z80 TESTER
Saves a macro system with the name MACROZ80, then
creates an operator system and saves that software
to the name TESTER.EXE, with associated file
TESTER.OPR.

March 25, 1987 Page 7-105 -- Command Reference --

-~- The Commands --

MAPSYM

MAPSYM <filename>»

Reads from a .MAP file the information the UniLab needs to
provide high level language support. Clears out the symbol table
before loading the information. See also MAPSYM+.

USAGE

+MAP

Reads in from a .MAP file the information needed for
display of high-level language source files in the
trace. After you issue this command, each line of your
source code file will be displayed just before the
instructions that the line generated.

You can use SYMLIST to see the contents of the symbol
table after you load a .MAP file. You can save the
entire symbol table with SYMSAVE, and reload it later
with SYMLOAD.

You must have your source files in the current
directory, or they will not be found.

FILE FORMATS

You can use either a MicroSoft format .MAP file or an
ORION format file, described below. The MicroSoft .MAP
file contains a mixture of symbol and line number data.

The Orion format is much simpler, which makes it easier
to generate a .MAP file. It contains only line number
information.

ORION ,MAP FORMAT

The Orion format .MAP file is an ASCII file which
contains a series of file records, one for each source

file. You can have any number of file records per .MAP
file.

The first line of each record starts with the keyword
SOURCE, followed by a space and then the name of the
source file. The remainder of each file record
contains two numbers per line: the line number, then
the absolute 16 bit address of the code generated by
that source line.

A file record is terminated by a blank line. The .MAP
file is terminated by two blank lines. Every line of

the .MAP file must end in a carriage return and a line
feed (ASCII codes 0DH and OAH).

(continued on next page)

-- Command Reference -- Page 7-106

-~ The Commands --
(continued from previous page)

ORION .MAP FILE--EXAMPLE

The following is a simple example of a valid Orion
format .MAP file. This file describes the relationship
between source files and machine code for a simple C
program. The program was generated from two source
files. Notice that only some lines of the source file
generated code:

SOURCE SIMPLE1.C
2 0034
5 0040
6 0050

<blank line>»
SOURCE SIMPLE2.C

3 0055
5 0070
<blank line>»
<blank line>
DISABLE

You turn off the display of high level source files
with SOURCE'.

EXAMPLE A

MAPSYM TEST.MAP
loads into the symbol table the information in
.MAP file TEST.MAP. The source files themselves
are not opened until they are needed, while
looking at a trace display or at a dlsassembly
from memory.

MAPSYM+ MAPSYM+ <filename>

Same as MAPSYM, except that it does not clear the symbol table
before loading the .MAP file.

March 25, 1987 Page 7-107 -- Command Reference --

-- The Commands --

MASK <byte> MASK <byte>
Specifies a mask for the trigger spec that immediately follows.

USAGE

A modifier to ADR, CONT, DATA, HADR, HDATA, LADR, or
MISC.

The first byte describes which of eight wires to pay

attention to-- a one means pay attention, a zero means
don't care.

The second byte tells the UniLab what inputs to look
for on the wires that you care about. The UniLab
ignores the bits for the inputs that the first byte

told it to ignore. Thus 01 MASK 01 has the same affect
as 01 MASK FF.

EXAMPLES

NORMT 2 MASK 2 MISC S
will trigger if input M1 goes high.

NORMT B# 0010 MASK B# 0010 MISC S
has the same effect as the first example-- will
trigger if input M1 goes high.

NORMT 3 MASK 2 MISC S
requires inputs M1=1, MO=0 for trigger.

COMMENTS
MASK cannot be used with TO, NOT, ALSO

-- Command Reference -- Page 7-108

-- The Commands --

MCOMP <start addr> <end addr> <comp addr> MCOMP
Compares two areas of memory and indicates discrepancies.

USAGE
Compares the two areas of memory, and gives you a
message about each discrepancy. Press any key to
abort. For example:

110 117 810 MCOMP
Data is 16 at addr 0110 ..but is 5 at addr 0810
Data is 90 at addr 0112 ..but is 80 at addr 0812
Data is 27 at addr 0116 ..but is 23 at addr 0816

You only need to enter three addresses-- the starting
and ending address of the first block of memory, and
the starting address of the second.

VERIFYING ROMS
If you want to compare a ROM to a program on disk,
first load the program using BINLOAD or HEXLOAD. After
that use the PROM READER MENU to read from the PROM
into a different memory area.

You can then use MCOMP to compare the two target areas.

EXAMPLE

100 300 800 MCOMP
compares data at target addresses 100-300 to the
data at 800-A00.

COMMENTS ‘
Works on either emulated ROM or target RAM. See NMI
and RB.

March 25, 1987 Page 7-109 -- Command Reference --

-= The Commands --

MDUMP <from addr> <to addr> MDUMP
Display the contents of an area of memory.

USAGE
Allows you to look at any block of memory. For example:

121 131 MDUMP

121 F3 31 00 1C 21 78 02 11 78 02 01 2C 00 7C BA C2 eleelXeeXeope oo
131 38 01 7D BB CA 42 01 7E 12 23 13 0B 79 BO C2 38 8eeeBe offeeyes8

Press any key to freeze scrolling of display. Press
any key again to continue scrolling. While scrolling
is stopped, press any key twice quickly to stop.

EXAMPLE

1234 1334 MDUMP

displays the contents of locations 1234 to 1334
in hex and ASCII. A

COMMENTS

As with all M commands, display will be from emulation
memory if the address has been EMENABLEd, otherwise

DEBUG features will display target RAM memory. See NMI
and RB.

-- Command Reference -- Page 7-110

-- The Commands --

| MEMO no parameters SHIFT-F2
Displays and allows editing of the on-line memo pad.

USAGE
A handy way to write notes to yourself. Pressing
CONTROL and Z at the same time toggles the on-line
editor help screen on and off. This screen shows you
the ESCape key sequences and ConTRoL key combinations
that you use with the editor. See COMMENTS below.

You exit the full screen editor with ESCAPE followed by
F if you want to save the changed memo pad. ESCAPE
followed by ESCAPE allows you to leave the memo pad
without saving your changes.

EXAMPLE
MEMO
This command never used in combination with
anything else.
COMMENTS

This command works only when the EDITxx.VIR file is
present in the same directory as the UniLab program.

The powerful editor allows you to write complicated
macros and enable them at will. If you want to use
this feature to the fullest, order the PADS manual from
Mountain View Press
PO Box 4656
Mountain View, CA 94040

(continued on next page)

March 25, 1987 Page 7-111 -- Command Reference --

-- The Commands --
(continued from previous page)
EDITOR HELP (repeated on-line):

Press SHIFT-F2 to get the editor.
Once in the editor, press CTRL-Z to get the on-line help.

Press WHILE HOLDING DOWN THE CONTROL KEY:

CURSOR CONTROL:

S=Left D=Right

E=Up X=Down Q=Home

F=Rtab I=Ltab

F=Forwd A=Bkwrd

CHARACTER CONTROL: LINE CONTROL:
Del=Delete char K=Kill 1line
J=Jerk-->buffer G=Gobble-->buffer
C=Chars<--buffer Y=Copy-->buffer
V=Insert chars L=Line<--buffer
P=Pullup words N=New lines

Press THE ESCAPE KEY AND FOLLOW WITH:

ESC=Esc no update F=Updat & Fin edit
W=Word for search B=Updat & Back scr
S=Search screens N=Update & Nxt scr
U=Update now L=Update & Load
R=Restore screen

-- Command Reference -- Page 7-112

-- The Commands --

MENU no parameters F10
Selects the menu-driven mode.

USAGE
The menu- driven mode helps first time users by
allowing you to use the Unilab simply by choosing from
list of options. This command, whether typed in or
picked with function key 10, reassigns the function
keys and shows the menu on the screen. The command
line that you would use gets displayed as it is
executed, so you can learn how to enter the command
directly.

While using the menu, you can also type commands
directly.

Menu mode also comes in handy when you have forgotten a
command.

All PROM programming commands are available under the
PROM menu.

Pressing F10 again from the main menu gets you out of
menu mode.

EXAMPLE

MENU

This command never used in combination with
anything else.

MESSAGE no parameters

Gives a screenful of information on the most recent updates and
additions to the UnilLab software.

USAGE

Make certain that you know all the capabilities of the
UniLab software.

March 25, 1987 Page 7-113 -~ Command Reference --

-- The Commands =--

MFILL <from addr> <to addr> <byte> MFILL
Fills every location in an area of memory with the same byte.

USAGE
A good way to check that memory address and data lines
connect properly on the target board. You can fill an
area of memory, and then examine it with MDUMP.

One way to find out what is happening on your board
when LTARG test program will not run: £ill a block of
memory with NOOP instructions, starting at the reset
address, and then use STARTUP. You should see a trace
of consecutive addresses.

Also a heavy-handed way to push a byte into memory.
See also MM, M, MM!, and M!, for more elegant ways to
manipulate memory.

EXAMPLE

1200 1300 20 MFILL
fills locations 1200-1300 with the wvalue 20 hex.

COMMENTS

As with all memory writing commands, don't write into
your stack area when loading into RAM.

~- Command Reference -- Page 7-114

-- The Commands --

MHIST

no parameters PPA

Multiple-Pass HISTogram invokes the optional Program Performance
Analyzer (PPA), which allows you to display the execution time of
your target program in each of up to 15 user-specified address
ranges. See also THIST and AHIST.

USAGE

MENU

Allows you to examine the performance of your software.
You can find out where your program is spending most of
its time.

Press F10 to exit from this menu-driven feature;

You must (only once) issue the command SOFT to enable
this optional feature. SOFT performs a SAVE-SYS, and
then causes an exit to DOS. The next time you call up
the software, the PPA will be enabled.

DRIVEN

SAVE

You produce a histogram by first specifying the upper
and lower limits of each address "bin" that you want
displayed, then starting the gathering of data.

When you give the command MHIST you get the chart
screen with the cursor positioned at the first bin.

You can then start typing in the lower and upper limits
of each bin. Use return, tab or an arrow key after you
enter each number, to move to the next entry field.

Press function key 1 (F1) or ALT-F1 to start displaying
the histogram.

TO A FILE

You can save the setup of a histogram as a file with
the HSAVE <file>. Issue this command after you exit
from the histogram.

You load the histogram back in with HLOAD <file>. This
command also invokes the histogram.

EXAMPLE

MHIST
This command is never used in combination with
anything else.

March 25, 1987 Page 7-115 -- Command Reference --

-~ The Commands --

MISC <byte> MISC
<byte> TO <byte> MISC
<byte> MASK <byte> MISC
Changes the analyzer trigger for the miscellaneous inputs.

THE MISCELLANEOUS INPUTS
The UniLab's 48-bit-wide trace buffer has room for 8
more bits than are used for data, address, and control
lines. These eight input lines are available to you,
for sensing anything on the target board that you want
to know about, or that you want the UniLab to trigger
on.

For example, you might hook them up to an output port,
to trigger when a particular bit configuration gets
asserted on that port.

The qualifier and filter specifications always ignore
the MISC inputs.

USAGE
The simplest use sets up a trigger for a single value
on miscellaneous inputs. The UniLab will search for
the byte value, and trigger when it sees that hex
number on the lines. See the first example below.

RANGES
TO lets you set up a trigger on any input between two
byte values, inclusive. See the second example below.
NOT

NOT causes the Unilab to trigger when the value falls
outside the specified range or value.

MASKING
You can use k MASK 1 MISC to examine any subset of the
8 miscellaneous lines. This is particularly handy when
you only have one or two of the MISC inputs connected
to your board. You don't care about the logic level of
the other 6 lines, since they don't mean anything.

The high bits of k mark which bits will be examined,

while the bit configuration of byte 1 indicates the
values the lines must have for a trigger to occur.

(continued on next paée)

-- Command Reference -- Page 7-116

~- The Commands --
(continued from previous page)

For example, 03 MASK FF MISC selects only bits MO and
M1 for examination (with binary value 0000 0011). The

UniLab would trigger when both these bits have a high

value. The instruction 03 MASK 03 MISC would have the
same effect.

WITH TRACING
All trace filtering modes and qualifiers ignore the
MISC inputs. Since they still effect triggering, this
makes the MISC inputs particularly useful as trigger
inputs for filtered traces,

EXAMPLES

NORMT 12 MISC S
after clearing all previous settings with NORMT,
sets up a trigger for miscellaneous input 12, then
uses S to start the analyzer.

12 TO 34 MISC
requires miscellaneous input value between 12 and
34 hex.

FO MASK 00 MISC .
sets a trigger based only on the four highest
bits. The UnilLab will look for a 0 on those lines.

23 MISC ALSO 45 MIsSC
sets a trigger on cycles where the misc input is
either 23 or 45 hex.

COMMENTS
The MISC inputs can be connected to anything you like.
They are often used to look at system input and output
ports.

March 25, 1987 Page 7-117 - CommandvReference -

-~ The Commands --

MISsc' MISC' FILTER RARELY USED

Used only before FILTER to enable trace filtering on all inputs
except the MISCellaneous wires(MO to M7). NORMx turns this mode
off.

WHY YOU DON'T NEED TO BOTHER
Because this is taken care of for you by ONLY and by
xAFTER, so it is unlikely that you will need to use
this command.

See also CONTROL, HDAT, and NO.

EXAMPLE

MISC' FILTER
enables filtering on all except M0-M7 inputs.

-- Command Reference -- Page 7-118

-- The Commands --

MLOADN <start> <end> <targ addr> MLOADN RARELY USED

Moves a block of memory from the memory of the host to the target
memory.

USAGE
Allows you to assemble or load a program into host
memory, and then move it to Unilab emulation ROM or
target RAM.

Most people will prefer to assemble into a file, and
then load from the file into UniLab emulation memory.

FREE MEMORY
The host memory area that is available generally starts
right above C000. PAD 100 + U. displays the first free
address. SO U. shows you the upper limit of the unused
memory.

EXAMPLE

C000 C800 0 MLOADN
moves data at C000-C800 in the host computer to
target locations 0-800. ‘

COMMENTS
You must have emulation memory enabled to load the
program into ROM (see EMENABLE).

March 25, 1987 - Page 7-119 -- Command Reference --

-- The Commands --

MM <word> MM
Stores one 16-bit word in ROM or RAM and increments reference
address.

USAGE

Used after an ORG statement (which sets up address), to
patch program memory. Can only be used to change RAM
after debug control has been established. See RB.

REMEMBERING CHANGES
LOG sends all memory access commands such as MM to the
printer, saving a record of any changes you make.

EXAMPLES

3000 ORG 1210 MM
stores 1210 at 3000.

150 ORG 5000 MM 7001 MM
stores 5000 at location 150, 7001 at 152.

COMMENTS
Used for entering data tables, program patches, etc.
See also M, MM!, and M!.

Will store to emulated memory if the address is
enabled, otherwise will store to target RAM. See NMI
and RB.

As with all memory writing commands, don't write into
your stack area when loading into RAM.

If you have a disassembler the byte order is set
correctly, otherwise you can set it with HL or LH.

-- Command Reference -- Page 7-120

-- The Commands -

MM! <word> <address> MM!
Stores a 16-bit word of data at the specified address.

USAGE

Used to patch program memory. Does not require a
previous ORG command-- instead requires an address as

- the second parameter. See MM. Can also be used to
change RAM, but only after debug control has been
established. See RB.

REMEMBERING CHANGES
LOG sends all memory access commands, such as MM!, to
the printer, saving a record of any changes you make.

EXAMPLES

1200 3000 MM!
stores a 1200 at 3000

5000 150 MM! 1000 152 MM!
stores 5000 at location 151, 1000 at 153.

COMMENTS

Used for entering small patches-- anything larger than
one word can be done by one of the other memory patch
commands with fewer keystrokes. See MM and M.

Will store to emulated memory if the address is
enabled, otherwise will attempt to store to target RAM.

As with all memory writing commands, don't write into
your stack area when loading into RAM.

If you have a disassembler the byte order is set
correctly, otherwise you can set it with HL or LH.

March 25, 1987 Page 7-121 ~- Command Reference --

-~ The Commands --

MM? <address> MM?
Displays the 16-bit word that is stored at the specified address.

USAGE
To find out what is stored at a single memory location,
either ROM or RAM. Use M? to look at bytes and MDUMP
or DM for larger areas of memory.

EXAMPLE
1210 MM?
displays the word stored at 1210.
COMMENTS

If the address is EMENABLEd, then emulation memory will
be displayed. Otherwise the UniLab will use DEBUG
features to display target RAM contents. See NMI and
RB.

If you have a disassembler, the byte order is set
correctly, otherwise you can set it with HL or LH.

-- Command Reference -- Page 7-122

-- The Commands --

MMOVE <start addr> <end addr> <dest> MMOVE

Moves a block of memory from one area to another in the target
memory space.

USAGE

Good way to make a little more room when you need to
patch some extra code into a program.

You can also use it to relocate a relocatable code
module.

SMART MOVER

Automatically chooses the order of moving, to prevent
overwriting caused by moving from one area to an area
that overlaps. Starts moving from either the beginning
or the end of the area to be moved, as necessary. See
the two examples below.

EXAMPLES

1000 2000 1005 MMOVE

moves the data in locations 1000-2000 up 5 places.
Starts moving from the end.

200 300 125 MMOVE

moves the data in 200-300 down 75 spaces. Starts
moving from the beginning.

COMMENTS

Make certain that the code you moved is relocatable.
If it is not, you might have to patch some of the
absolute address references. 1In general, exercise
caution, and use DM on the moved memory, to see if the
instructions still do what you want them to do.

As with all memory writing commands, don't write into
your stack area when loading into RAM.

March 25, 1987 Page 7-123 -- Command Reference --

~-- The Commands --

MODE no parameters F8

Gives you the mode panels, which allow you to change mode of
display, disable and enable the DEBUG, etc.

USAGE
Press function key 8 (F8) once to get the first mode
panel, which contains the analyzer mode switches. Press
F8 again to get the second panel that contains the
trace display mode switches. The third panel contains
the log mode switches and debug disable switches.

MOVING AROQUND
To get from one panel to another, press F8 repeatedly,
or use PgDhn key. Use the END key to exit from mode
setting.

Once you are in a pop-up panel, you can move around,
selecting different features, with the up arrow and
down arrow keys. The right arrow key toggles the
feature on and off.

WHAT THEY ALL DO
See the Special Functions section of the manual for the.
complete story.

You can also check the listings in the glossary for
each feature:

Panel One DASM SYMB RESET
Panel Two SHOWM SHOWC =MBASE PAGINATE HDG
Panel Three LOG TOFILE PRINT NMIVEC RSP
EXAMPLE

MODE

This command never used in combination with
anything else.

-~ Command Reference -- Page 7-124

-~ The Commands --

MODIFY <addr> MODIFY

Dumps a screenful of memory, in a format similar to MDUMP, but
also puts the cursor on the first location and lets you alter any
location by overwriting the old value with a new one.

USAGE
The best way to display and alter memory. The
interactive screen display shows you the value in each
location and lets you alter any value.

You can alter any location by typing in a new
hexadecimal value or by moving to the ASCII area and
typing a character.

Press the End key to exit from MODIFY.

MOVING ARQUND
The cursor keys move the cursor around on the screen.
If you try to move up or down off the screen with an
arrow key, one new line of memory will be bought onto
the screen.

PgUp moves up one screenful, PgDn moves down one.

Use Ctrl-Right Arrow to move from the hexadecimal dump
area to the ASCII. Ctrl-Left Arrow moves the cursor
back.

EXAMPLE

20 MODIFY
Displays a screenful of memory, starting at
address 20. The cursor keys will be reassigned as
described above (and on the prompt line) until you
press either End to save changes and exit, or Esc
to exit without saving changes.

March 25, 1987 Page 7-125 -- Command Reference --

~= The Commands --

MS <count> MS RARELY USED
Pauses for count number of milliseconds.

USAGE
In test programs where you need a pause.

400 (hexadecimal) milliseconds is one second.

EXAMPLE

800 MsS
pauses for 2 seconds (800 hex ms)

-- Command Reference -- Page 7-126

-- The Commands -

N

no parameters

Resumes program, with a breakpoint set to the address after the
next instruction.

USAGE

FALL

While stopped at a breakpoint, when you want to execute
only the next instruction pointed to by the Program
Counter. However, you will "fall through" loops and
branches.

This "falling through'" is often very useful. For
example, if the PC is pointing at a subroutine call, N
will show you the state of the processor when it
returns from the call.

Use NMI to follow the execution of loops and branches.

THROUGH LOOPS

When you single-step through a program, you will
usually not want to bother going through loops the same
number of times that the microprocessor does. This
command allows you to go through a loop just once.

HOW _IT WORKS

This command uses RB to set a breakpoint at the address
just after the disassembled instruction that the PC
points to. So the program runs until it reaches that
address.

WATCH OUT

If the program never reaches the address of the
breakpoint, then the program will run without stopping.
For example, if the program contains an infinite loop,
and you will not want to use N on the last command in
the loop (the jump back up to the top). The program
never reaches the code that follows that last jump.

COMMENTS

Available only after DEBUG control has been
established.

March 25, 1987 Page 7-127 -- Command Reference --

-~ The Commands --

NDATA <byte #1> <byte #2> . . . <byte #N> <N> NDATA
Sets N different bytes as trigger events for the analyzer.

USAGE
A quick way to set triggers on many different data
codes that do not fall into ranges. Easier than using
ALSO again and again, as in:
18 DATA ALSO 32 DATA ALSO 36 DATA ALSO 47 DATA.

RANGES OF DATA _
If the data does fall into ranges, then you can use TO
instead. For example, 12 TO 25 DATA sets the analyzer
looking for any data between twelve and 25, inclusive.

EXAMPLE

18 32 36 47 4 NDATA
Does the same thing as the ALSO example in the
text above.

COMMENTS
Really the same as "ORing" together the terms with
ALSO. Any number of terms can be listed, but be sure
to get the count correct.

You can use ALSO in combination with this command to
add a range of values.

-- Command Reference -- Page 7-128

-- The Commands --

NMI ' no parameters F4

Either establishes DEBUG control immediately or, if you already
have DEBUG control, executes a single instruction.

USAGE
Now supported on all DEBUG software packages. Uses
either the non-maskable interrupt pin (NMI) or the
interrupt request pin (IRQ) of the target processor.

Allows you to establish debug control on a program that
is currently running. See also RB and RI.

AUTO-BREAKPOINT
You can now read or write RAM and I/0 without first
gaining DEBUG control-- the UniLab will automatically
do it for you. When you try to read RAM while a
program is running, the UniLab will issue an NMI
signal, gain DEBUG control, perform the requested
function and then allow the program to resume.

SINGLE-STEPPING
After you have established DEBUG control, the NMI
command allows you to execute one instruction, no
matter what that instruction is. See also N.

NMI is especially useful for following jumps and
branches-- instructions that N cannot follow.

DISABLE
If your target board makes use of the non-maskable
interrupt (or IRQ) feature of your processor, or you
wish to disable NMI for any other reason, use the Mode
Panel (F8) or NMIVEC'.

Disabling the DEBUG features (Mode panel choice "SWI
VECTOR" or command RSP') also disables NMI.

COMMENTS
The hardware interrupt feature is also utilized by SI.
Disabling NMI also disables that feature.

March 25, 1987 Page 7-129 -- Command Reference --

-= The Commands --

NMIVEC

no parameters F8

Enables the Non-Maskable Interrupt vector installation.

USAGE

This command re-enables the UniLab's ability to perform
NMI. You only want to disable this feature when you
want more transparent operation and don't need to use
all DEBUG features. See RSP' for complete
transparency.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

NMIVEC'

no parameters F8

Disables the Non-Maskable Interrupt vector installation.

USAGE

WHEN

This command disables the UniLab's ability to perform
NMI.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

The DEBUG features include the ability to send either a
non-maskable interrupt (NMI) or an interrupt request
(IRQ) to the microprocessor. Orion software packages
use this feature to gain DEBUG control over your
processor at any time.

YOU WILL WANT TO DISABLE NMI

When your system makes use of the NMI or IRQ, and you
want to preserve that ability while testing the system.

COMMENTS

Either the panel toggle or NMIVEC re-enables the vector
installation.

-- Command Reference -~- Page 7-130

~- The Commands --

NO NO FILTER RARELY USED
Used before FILTER to disable the filter.

USAGE -- RARELY USED
You will probably never use this command. Used only

when you want to turn the filter off while preserving
the current trigger spec.

The filter mechanism of the Unilab gets turned on for
you by the xAFTER macros. Those commands set the
filter to MISC' FILTER, which allows you to set up a
trigger spec based on all inputs except for the
MISCellaneous wires.

See also CONTROL, HDAT and MISC'.

EXAMPLE

NO FILTER

turns off the filtering of bus cycles, but leaves
the rest of the trigger spec untouched.

March 25, 1987 Page 7-131 -- Command Reference --

~= The Commands --

NORMB no parameters

Clears out (NORMalizes) all trigger descriptions and sets the
trigger event near Bottom of trace buffer.

USAGE
To start a new trigger definition when you want to see
the events that led up to the trigger.

Use TSTAT to look at how this command changes the
DCYCLES setting.

When you want to start from scratch with a new trigger
description, always begin with one of the variations of
NORM. The three commands, NORMB, NORMM, and NORMT,
vary only in where within the trace buffer they place
the trigger event-- at the bottom, in the middle or at
the top.

TO SEE WHAT HAPPENS NEXT
S+ restarts the target board with the same trigger
specification, but with 170 (decimal) added to the
delay cycle count, so that you can see what happened
after the current trace window.

HOW THEY WORK
The commands clear out the truth tables the analyzer
used to search for the trigger event, and set the
number of delay cycles that the analyzer will wait
between seeing the trigger and freezing the buffer.
See DCYCLES for more information about delay cycles.

EXAMPLES

NORMB
Sets 4 delay cycles

NORMB NOT 0 TO 1000 ADR S
will show what happened before the address went
outside of the 0-1000 range.

COMMENTS
NORMB should be used where you want to know what
happened before the trigger.

-- Command Reference -- Page 7-132

-- The Commands --

NORMM no parameters

Clears out (NORMalizes) all trigger descriptions and sets the
trigger event at Middle of trace buffer.

USAGE
To start a new trigger definition when you want to see
the events that led up to the trigger, and also see
what followed.

You will find it very useful when you want to see the
complete context within which the trigger occurred.

Use TSTAT to look at how this command changes the
DCYCLES setting.

See NORMB for more details.

EXAMPLE

NORMM .
sets delay cycles to 85 (decimal).

March 25, 1987 Page 7-133 -- Command Reference --

-- The Commands --

NORMT no parameters

Clears out (NORMalizes) all trigger descriptions and sets the
trigger event near Top of trace buffer.

USAGE
To start a new trigger definition when you want to see
the events that followed the trigger.

Use TSTAT to look at how this command changes the
DCYCLES setting.

See NORMB for more details.

EXAMPLE

NORMT
sets delay cycles to 165 (decimal).

-- Command Reference -- Page 7-134

-- The Commands --

NOT NOT <trigger description>

The trigger description gets interpreted as a description of when
not to trigger.

USAGE
To tell the analyzer to trigger when some byte of the
48~-channel input bus goes outside of a certain range or
value. Most commonly used to trap bad data or a bad
address.

EXAMPLES

NORMT NOT 00 TO 4FF ADR S
triggers if the address goes outside the 00 to 4FF
range.

ONLY 127 ADR NOT 12 DATA S
shows only cycles where the data at 127 address is
not 12,

NORMM NOT 12 DATA ALSO NOT 34 TO 56 DATA S
triggers when the data is not either 12 nor
between 34 and 56.

COMMENTS
Sets a flag for the next trigger word (ADR, CONT, DATA,
HADR, HDATA, LADR, and MISC).

Except when used with ALSO, the NOT command causes the
truth table to be cleared to all 1's. Then 0's get
written into the specified areas. This is the opposite
of what happens without NOT.

With ALSO, the NOT command does not clear out the truth
table first.

March 25, 1987 Page 7-135 -- Command Reference --

-= The Commands --

NOW? no parameters
Shows you what is happening on the target board right now.
USAGE

To see the code the microprocessor executes during the
next 170 bus cycles.

EXAMPLES
NOW?
This command never used in combination with
anything else.
COMMENTS

This command is a simple macro that turns off the
RESET, so that it does not restart the target board,
then sets its own trigger and captures a trace.

-- Command Reference -- Page 7-136

-- The Commands --

ONLY ONLY < trigger description »

Gives you a trace buffer filled only with cycles that match your
description.

USAGE
Clears out the previous trigger spec and enables trace
filtering. Only the bus cycles that contain the
trigger cycle will be recorded.

Use this command when you want to see on the trace only
the cycle described in the trigger specification. For

example, only the read cycles, or only the command at
address 0100,

ELIMINATE BORING LOOPS
This command is especially useful for filtering out
status and timing loops that hog the trace space. See
the second example below.

Notice that when filtering you have to use AFTER if you
want to start the trace at some particular point in the
program.

ONLY AND THE DISASSEMBLER
You will sometimes want to turn off the disassembler
while using this feature. Disassembling partial
instructions will give confusing results. Either the
mode panel (F8) or DASM' turns off the disassembler.

EXAMPLES

ONLY READ
searches for and records only the read cycles.

ONLY NOT 120 TO 135 ADR AFTER 750 ADR S
produces a trace starting at address 750, excludes
from the trace the routine at addresses 120
through 135,

ONLY 0100 ADR
records only the cycle executed at address 0100.

(continued on next page)

March 25, 1987 Page 7-137 -- Command Reference --

-- The Commands --

(continued from previous page)

COMMENTS

The analyzer will run until the trace buffer is full
while keeping you informed of the number of spaces
remaining. You can stop the analyzer at anytime by
pressing a key. Then enter TD to see what you have
captured in the trace buffer.

-- Command Reference -- Page 7-138

-- The Commands --

OPERATOR no parameters Macro Sys
Switches the UniLab software back to operator level.

USAGE
Your UnilLab software was an operator system when you
received it. You use this command after you have
created a macro system with the command MACRO and now
wish to return to the operator system.

The operator system you create with this command will
not recognize any words you defined while in the macro
system. See MAKE-OPERATOR to find out how to make an
operator system that recognizes your macros.

The operator system gives you access only to the
commands in the UniLab On-Line Glossary. The operator
system has less power than the macro system, but
contains enough power for all of your usual work with
the UniLab.

"FILE NAMES
If you request that the software switch back to
operator system, your UniLab directory must contain a
+OPR file which matches the name of your current .EXE
file.

When you save a macro system you specify a new name
that gets used for both the .EXE and the .MCR files.

If that name was different from the original file name,
you will now have to rename your original .OPR file
before you can return to an operator system.

Use the DOS command COPY to make a copy of your .OPR
file which has the same name as your current .EXE file.

Of course, if you had saved the macro system to a new
name, then you could call the o0ld standard operator
software from DOS, rather than switching to a new
standard operator system. See MAKE-OPERATOR to create
a non-standard operator system.

EXAMPLE

OPERATOR
Converts software back to operator system.

March 25, 1987 Page 7-139 -- Command Reference --

-- The Commands --

ORG <address> ORG

Sets the origin (address at which you will start to poke new
values into memory) for subsequent M and MM commands.

USAGE ,
To change the information stored in several sequential
bytes of program or data memory.

You can alter emulation ROM at any time. If you keep
NMI enabled, you can alter RAM at any time, since the
Orion software will automatically gain DEBUG control,
read the RAM and then resume execution of the target

program.

If you disable NMI (see NMIVEC'), then you will need to

run to a breakpoint before reading from RAM. See RB.
EXAMPLES

101 ORG 12 M 3410 MM

stores 12 to location 101 and 3410 to locations
102 & 103,

COMMENTS
Useful for entering program patches.

See also M! and MM!,

-- Command Reference -- Page 7-140

-- The Commands --

PAGEO no parameters

Only for UniLabs with 128K of memory. Selects the bottom 64K
page of emulation memory.

USAGE
Addresses that are four hex digits long (16 bit binary
numbers) cover a 64K memory space, but your UniLab has

128K memory space. You must establish a context for
the addresses to follow.

This command sets the offset to 0000, while PAGE1 sets
the offset to 10000. Thus, address 1300 after PAGEO
refers to location 1300. Address 1300 after PAGE1
means location 11300.

EXAMPLE

PAGEO

This command never used in combination with
anything else. :

PAGE1 no parameters

Only for UniLabs with 128K of memory. Selects the top 64K page
of emulation memory.

USAGE
See PAGEO above.

Address 1300 after PAGE1 means location 11300.

EXAMPLE

PAGE1

This command never used in combination with
anything else.

March 25, 1987 Page 7-141 -~ Command Reference --

-~ The Commands --

PAGINATE " no parameters F8
Enables pagination of trace display.

USAGE

The default condition. The trace stops after each
screenful.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

You can turn this off with the pop-up panel, or with
PAGINATE'.

COMMENTS

If you press any key while display is scrolling, trace
display will stop.

PAGINATE' no parameters F8
Disables pagination of trace display.

USAGE
The trace display will scroll by continuously. Not
very useful, unless you want to save an entire trace to
a disk file. See PAGINATE above.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-- Command Reference -- Page 7-142

~-- The Commands --

PATCH no parameters

Redisplays the menu of processors supported by the current DDB
software.

USAGE
Use when you make an error choosing your processor from
the menu, or if you want to try a different
configuration.

EXAMPLES
PATCH

This command never used in combination with
anything else.

March 25, 1987 Page 7-143 ~~ Command Reference --

-~ The Commands --

PCYCLES <count> PCYCLES

Sets the number of bus cycles that the analyzer waits between
seeing the last qualifier and starting to search for the trigger
event.

USAGE
The default is zero. Usually you will want the
analyzer to start its search for the trigger event
immediately after the qualifiers.

However, you will sometimes want the UniLab to wait
some number of cycles after the qualifiers, before it
looks for the trigger.

For example, you know that the program jumps to address
1000 from address 235. What you can't understand is
why the code at address 1000 is being executed again,
later on. So you do not want the UniLab to search for
address 1000 until some time has passed since it saw
address 235.

EXAMPLES

NORMB 1000 ADR 10 PCYCLES AFTER 235 ADR S
triggers if 1000 occurs 10 or more cycles after
address 235.

COMMENTS
A pass cycle count can be used to hold off the search
for a trigger, for whatever reason.

If there are several qualifiers the pass count starts
after the complete sequential qualifier sequence has
occurred.

-- Command Reference -- Page 7-144

-- The Commands --

PEVENTS <n> PEVENTS

Sets the number of times the UniLab will want to see the
gqualifying events before starting to search for the trigger
event.

USAGE
The default value is one-- the UniLab will start to

search for the trigger as soon as it has seen the
qualifying event once.

You would use PEVENTS when you don't want to search for.
the trigger until the qualifiers have been seen a
number of times. Useful for catching a trace after the
nth iteration of a sequence.

This‘command is different from PCYCLES, which delays
searching for the trigger an absolute number of bus
cycles after the qualifiers have been seen.

EXAMPLES

NORMT 12 DATA 4 PEVENTS AFTER 30 DATA S
searches for 12 data anytime after 30 data has
been seen four times

NORMT 100 PEVENTS AFTER 123 ADR S

triggers as soon as address 123 has occurred 100
times.

March 25, 1987 Page 7-145 -- Command Reference --

-~ The Commands --

PINOUT no parameters
/
Displays pinout of target processor.
USAGE

A handy reference showing signal names and analyzer
cable cconnections versus pin numbers.

EXAMPLE
PINOUT

This command never used in combination with
anything else.

-- Command Reference -- Page 7-146

-- The Commands --

PRINT no parameters F8
Logs all screen output to the printer.

USAGE
Normally you will use the MODE panel (function key 8)
when you want to change this feature.

PRINT' no parameters F8
Turns off logging all screen output to printer.

USAGE
Normally you will use the MODE panel (function key 8)
when you want to change this feature.

PROMMSG no parameters

Use after a STANDALONE EPROM programming command, to display
completion message.

USAGE
You use STANDALONE when you want to make use of your
host computer while the UniLab is programming an EPROM,
After the programming light goes out, you can use
PROMMSG to check the outcome of the programming
operation.

March 25, 1987 Page 7-147 -~ Command Reference --

-- The Commands --

o1 Q1 <trigger spec> RARELY USED

Selects the event description (trigger spec) that follows as
gqualifier one.
See QUALIFIERS.

USAGE
When you don't want to use AFTER, which you will find
to be a more natural way to set gualifiers.

You will rarely use this, since AFTER automatically
increments the context from TRIG to Q1 to Q2 to Q3 each

" time it is used. You will find these words handy when
you want to change your mind about one of the
qualifying steps without entering the entire definition
again.

EXAMPLES

Q1 15 LADR _
Changes qualifier number one, so that the UniLab
looks for 15 on the low byte of the address lines.

Q1 ALSO 28 LADR
Alters qualifier one, so that the UniLab accepts
either 15 or 28 on the low byte of the address.

Q2 Q2 <trigger spec> RARELY USED

Selects the event description that follows as qualifier number
two. See Q1 for details.

03 Q3 <trigger spec> RARELY USED

Selects the event description that follows as qualifier number
two. See Q1 for details.

-- Command Reference -- Page 7-148

-- The Commands --

QUALIFIERS <1, 2, or 3> QUALIFIERS RARELY USED
Selects the number of qualifying events.

USAGE
Allows you to reduce the number of qualifying events.
Usually you'll use AFTER to set qualifiers, and would
use this command only to reduce the number of
qualifiers if you change your mind.

When there are qualifiers, the UnilLab searches for the
qualifying events before it looks for the trigger.

You will probably prefer to use AFTER, rather than this
command.

THE ORDER OF QUALIFIERS
If you have defined three qualifiers, the UnilLab looks
first for Q3, then for Q2 and lastly for Q1. It must
see the qualifying events one immediately after the
other. If it does not see one of them, it starts
searching for Q3 again.

Of course, if there are only two qualifiers, then the
UniLab looks for Q2 and Q1.

AFTER THE QUALIFIERS
Unless PEVENTS or PCYCLES has been set, the UniLab will
immediately start searching for the trigger after it
finds the last qualifier. OF course, the trigger event
does not have to follow immediately after the last
qualifier.

EXAMPLE

2 QUALIFIERS S
changes the number of qualifiers, so that the
third one is ignored.

March 25, 1987 Page 7-149 -- Command Reference -~

-- The Commands --

RB <address> RB

Resumes executing program, with a breakpoint set at indicated
address. Must be used with RESET to establish debug control.

USAGE
The first breakpoint must be in emulated ROM, and come
after the stack pointer has been initialized. If your
program does not initialize the stack pointer, then you
cannot set a breakpoint. However, setting up the stack
pointer usually only takes three or four bytes.

You can also use NMI or RI and SI to establish debug
control.

MISSED BREAKPOINTS
If the breakpoint is not reached, then the program will
continue to run until you press any key. You must then
use RESET <address> RB to gain debug control. You can
only set a breakpoint on the address of the first byte
of an instruction.

After a missed breakpoint the UnilLab will try to
achieve debug control by asserting NMI.

Make certain that the address you try to set a
breakpoint on gets executed by the program-- set an
analyzer trigger on the same address with

NORMT <address> AS.

And make sure that your program does initialize the
stack pointer to point at RAM. DEBUG uses the stack to
save the state of your system.
EXAMPLES
RESET 123 RB
enables reset, and then restarts the target system

with a breakpoint set at address 123

(continued on next page)

-- Command Reference -- Page 7-150

-- The Commands --
(continued from previous page)

1007 RB
without restarting the target system, run the
program with a breakpoint set at address 1007.

COMMENTS
The second example above will work only if you have
already established DEBUG control.

The first example will establish DEBUG control, as will
an NMI command. RESET does not restart your target
board-- it enables the '"reset" flag, so that the S or
RB which follows restarts the target.

March 25, 1987 Page 7-151 -- Command Reference --

~= The Commands --

READ no parameters
Narrows the trigger specification to read cycles only.

USAGE
Instructs the UniLab to trigger only on read cycles.
Handy when you want to trigger on data memory values,
not program memory opcodes. Or, when you want to
trigger on reads rather than writes to some address

range.

On some disassembler packages, FETCH instructs the
UniLab to trigger only on fetches from program memory.

EXAMPLES

READ 13 DATA
sets up to trigger when microprocessor reads a 13.

NORMT READ 1000 TO 2000 ADR S
triggers when processor reads any data from
address range 1000H to 2000H.

COMMENTS
A simple macro which specifies a range of CONT input
values. This command, like WRITE and FETCH, gets
defined for a particular processor by the optional
disassembler.

-- Command Reference -- Page 7-152

-- The Commands -~-

RES ' <n> RES

Clears bit n of the stimulus generator output. The number, of
course, must be between 0 and 7.

USAGE ,
Simulates a peripheral input going from voltage high to
voltage low. The stimulus generator allows you to test
how your system responds to digital signals on certain
lines.

EXAMPLES

2 RES
resets output S2.

1 SET 1 RES
pulses output S1.

COMMENTS
Used to reset individual bits of the 8 stimulus

outputs. See also SET and STIMULUS.

March 25, 1987 Page 7-153 -- Command Reference --

-— The Commands --

RES-

RES- <memory command?> SHIFT-F9

Pulls the RES- output of the UniLab low and holds it low until
the analyzer is started. This is one way to prevent your target
processor from having problems when you read or write emulation

memory.

USAGE

You can use this command with some target systems to
hold the target processor in a reset state, before you
access emulation memory. Otherwise, while ycu access
emulation memory the target microprocessor will see
only FFs when it tries to fetch from emulation memory
(that is, all the data lines high). Some processors
will quietly vector to an error-handling address when
this happens, but other processors might '"go south,"”
taking peripheral devices and battery backup RAM with
them when they go.

RES- will cause your target processor to reset,
regardless of whether you have reset enabled or
disabled.

RES- will not work if your target system has a "one-
shot" in the reset circuit.

ALTERNATE SOLUTION

There is a more general solution to the same problem:
establish DEBUG control before you access emulation
memory. That way, your processor will be held in the
idle loop while you access emulation ROM.

EXAMPLES

RES- 10 DN
pulls the reset line low and then disassembles
from memory, starting at address 10. Reset will
stay low until the next time you start the
analyzer.

RES- 500 AsSM
pulls the reset line low, then invokes the
assembler, starting at address 500.

-- Command Reference -- Page 7-154

-- The Commands --

RESET no parameters F8

Selects automatic reset mode, which resets the target system when
you next start the analyzer.

USAGE 4
Along with RESET', allows you to choose whether to
restart the target board when you start searching for a
trigger, or just watch a program already in operation.

To gain DEBUG control with RB you must enable reset.
Always type RESET <address> RB to be sure.

Automatic reset gets turned on by STARTUP, and gets
turned off by NOW, ADR?, SAMP, and RB. The status of
reset is not affected by NORMx.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

EXAMPLE

RESET
selects auto-reset

RESET' no parameters F8
Turns off the automatic reset mode. See RESET above.
USAGE

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

March 25, 1987 Page 7-155 -- Command Reference --

-- The Commands ~--

RI RI <trigger spec> SI
Allows you to gain DEBUG control on any bus condition.

USAGE

. To gain debug control on a data value, or a control
column value, or a range of address values. Always
used in combination with SI. RI marks the beginning of
the trigger specification, SI marks the end,

When the bus state you specify occurs this
sophisticated feature asserts an NMI signal.
Generally, it takes one or two instructions cycles to

gain debug control.

EXAMPLES

RI 450 TO 470 ADR SI
Will achieve DEBUG control after any address in
the range 450 to 470 appears on the bus,

RI WRITE 34 DATA SI
Will achieve DEBUG control after the value 34 is

written into RAM.

-~ Command Reference -- Page 7-156

-- The Commands --

RMBP <break point #> RMBP

Resets (clears) one of the multiple breakpoints and displays new
status of the multiple breakpoints.

USAGE

When you want to get rid of one of the breakpoints that
you set with SMBP.

See also CLRMBP, which clears out all the multiple
breakpoints.

EXAMPLE

3 RMBP
clears multiple breakpoint number 3.

COMMENTS
Multiple breakpoints are used with to break on more
than one address. There are 8 multiple breakpoints
available in addition to the standard (unnumbered)
breakpoint set by RB or GB.

March 25, 1987 Page 7-157 -- Command Reference --

«-= The Commands --

RSP no parameters F8
Re-enables DEBUG, after it has been disabled by RSP' or EMCLR.

USAGE
Only when you have turned off the DEBUG features, and
now want to be able to use it again. Not the same as
establishing debug control, which you do with NMI or
RB. However, if you have disabled the DEBUG, then you
cannot use either of those commands.

Normally you will use the MODE panel (function key 8)
when you want to enable or disable this feature.

RSP’ no parameters F8
Turns off DEBUG features.

USAGE
Enables complete transparency-- no emulation memory is
affected by the UnilLab operation.

DEBUG is disabled for you by EMCLR.

RESERVED AREA
Allows you to use for your program the areas that Orion
otherwise reserves for DEBUG vectors and overlays.
Press CTRL-F3 to get a help screen that includes
information telling you where the reserved bytes are
for your processor.

MODE PANEL
You will not be able to use the DEBUG features until
you turn them on again from the MODE panel, or with
RSP.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-- Command Reference -- Page 7-158

-- The Commands --

RZ _ no parameters

Resume program from breakpoint, without any breakpoints set.
Debug control will be lost.

USAGE

When you want to run the program starting from the
current address.

A handy command for exiting from DEBUG control.
However, a better command is GW which waits until you
start the analyzer, so that you can start the program
from the breakpoint with a trigger set.

EXAMPLE

RZ
Continues the program after a breakpoint.

COMMENTS

Don't try to specify a trigger event before RZ-- it
will not work.

March 25, 1987 Page 7-159 -- Command Reference --

~= The Commands --

S no parameters

Starts the bus state analyzer. Resets the target system if
automatic RESET is enabled.

USAGE ,
You do not need to start the analyzer on the same line
as the command that sets up the trigger event
specification, though that is the usual practice.
S is a separate command that gets the analyzer going
with whatever spec you created already in place.

You can use TSTAT to see what the trigger has been set
up to (Trigger STATus).

EXAMPLES

S
Starts the analyzer, with whatever trigger was
last defined.

NORMT RESET 123 ADR S
clears out the trigger spec, turns on auto-reset,
and then sets it to address = 123 before starting
the analyzer (and restarting the target board).

-- Command Reference -- - Page 7-160

-- The Commands --

S+ no parameters

Identical to S, except that it increases the delay cycle count
by A6 counts.

USAGE
Handiest when you find that your current trace just
starts getting interesting at the end. S+ by itself
will trigger on the same event, but with a new trace
window that starts 3 cycles before the end of the
previous one.

You should use this when your trigger spec is an event
that gets regularly repeated during the program, or
with RESET enabled. All S+ does is change the value of
DCYCLES and then start the analyzer again.

So if your trigger spec only happens once in the
program, and RESET is disabled, then the Unilab will be
searching a program in progress for an event that has
already occurred.

EXAMPLE

S+
restarts the analyzer with an increased delay
setting.

March 25, 1987 Page 7-161 -- Command Reference --

-= The Commands --

SAMP no parameters

Samples the 48 input lines several times a second, and displays
them until any key is pressed.

USAGE
A good way to get a vague idea of what is going on. It
will be clear to you that the program has been stuck in
an infinite loop, or that it has gone far astray. But
you will not be able to tell much, as you only see one
cycle out of every several thousand.

DISASSEMBLY
You will probably want to turn off the disassembler,
with the Mode Panel (F8) or DASM'. When the
disassembler is enabled the isolated cycles will
probably be disassembled incorrectly.

EXAMPLE
SAMP
This command never used in combination with
anything else.
COMMENTS

Useful when you are trying to connect analyzer inputs
to something and you want to continuously monitor their
state. Similar to 1 SR but it runs faster. Gives more
detail on program execution than ADR?. Don't forget to
start from scratch on trigger specs after using SAMP,
because it defines its own trigger.

It also turns off the RESET.

-- CQmmand Reference -- Page 7-162

! ’ -- The Commands =--

SAVE-SYS SAVE-SYS <file name>

Saves the entire UniLab system program in its present state as a
named DOS file. Prompts you for file name if you do not include
it on command line.

USAGE
To save a version of the system with new macros, or
with default drives changed. Or, just to save the
current emulator enable values, the current trace, and
the trigger definition.

Warning-- does not save the symbol table. Do that with
SYMSAVE command.

EXAMPLE

SAVE-SYS B:NEWUL
Saves the system to a new file on the B: drive.

COMMENTS
The target program, which is in the UniLab itself, is
not saved by this command. Use BINSAVE.

This command automatically makes the "file extension"
- COM,

Since the entire program image is saved including any
unintentional damage to the program, always keep backup
copies.

March 25, 1987 Page 7-163 -- Command Reference --

~~ The Commands --

SC <count> SC <file name>

Starts the analyzer and waits the specified maximum number of
milliseconds for trigger. When trigger occurs, the trace gets
compared to a previously saved trace.

USAGE
Very useful when writing test programs that compare the
trace to a known good trace that you have stored away.
Save traces with the TSAVE command. If a trace does
not match, the host computer beeps and displays both a
section of the previous trace and the first bad step of
the new trace.

HARDWARE CHECKOUT
Probably most useful for hardware checkout. To get a
vague idea of the capabilities, save a trace right now
(TSAVE test). Then pull the RAM off your target board
and execute the command below. Don't change your
trigger spec between saving the good trace and getting
the new one. See Appendix F for examples.

EXAMPLE

test 400 sC
Starts the analyzer board with a 400H ms trigger
time limit (1 sec.) and compares the trace to the
one saved in file "test."

COMMENTS
If the time limit passes with no trigger, the host
displays a '"NO TRIGGER'" message and beeps.

-- Command Reference -- Page 7-164

-- The Commands --

SET <n> SET

Sets bit n of the stimulus generator output. The number, of
course, must be between 0 and 7.

USAGE
Simulates a peripheral input going from voltage low to
voltage high. The stimulus generator allows you to test

how your system responds to digital signals on certain
lines.

EXAMPLES

7 SET
sets stimulus output 7.

1 SET 1 RES
pulses output S1.

COMMENTS _
Used to set individual bits of the 8 stimulus outputs.
See also RES and STIMULUS.

SET-COLOR no parameters
Change the display colors for a color monitor.

USAGE
After you have issued the command COLOR to inform the
UniLab software that you have a color monitor, you can
change the display colors with this command.

You use the cursor keys to choose different colors, and
see them displayed as you choose. Press the END key on
the numeric key pad when you have completed your
choices. You will need to save the system with
SAVE-SYS if you want the colors to be permanent.

March 25, 1987 Page 7-165 - -- Command Reference --

-- The Commands --

SET-GRAPH-COLOR no parameters PPA

Change the display colors of the graph generated by the optional
Program Performance Analyzer option (AHIST and THIST). This is
only appropriate for a color monitor.

USAGE
After you have issued the command COLOR to inform the
UniLab software that you have a color monitor, you can
change the display colors of the histogram portion of
the AHIST and THIST display screens with this command.

You use the cursor keys to choose different colors, and
see them displayed as you choose. Press the END key on
the numeric key pad when you have completed your
choices. You will need to save the system with
SAVE-SYS if you want the colors to be permanent.

-- Command Reference -- Page 7-166

-- The Commands ---

SHIFT-FKEY <# of key> SHIFT-FKEY <command>

Assigns a command to a function key pressed while the SHIFT key
is held down. ‘

USAGE
Reassign the function keys on PCs and PC look-alikes.
Use SHIFT-FKEY? (or SHIFT-F1) to find the current
assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

To make ybur reassignments permanent, use
SAVE-SYS.
EXAMPLE
6 SHIFT-FKEY TSTAT
assigns TSTAT to SHIFT-F6 .

COMMENTS

To execute a string of commands, define a macro first
(using :) and then assign the macro to the function
key.

See also FKEY, CTRL-FKEY, and ALT-FKEY.

SHIFT-FKEY? no parameters SHIFT-F1
Displays the current assignments of the SHIFTed function keys.

USAGE
Whenever you want to be reminded what command will be
executed when you press a function key while holding
down the shift key.

See SHIFT-FKEY to reassign the keys.

March 25, 1987 Page 7-167 -- Command Reference --

-- The Commands --

SHOWC no parameters F8

Shows the control lines on the trace display (the default
condition).

USAGE
Turn on display of the control lines, C7 through C4, as
well as the high four bits of the address bus, A19
through A16.

Normally you will use the MODE panel {(function key 8)
when you want to change this feature.

SHOWC' _ no parameters F8
Turns off display of the control lines on the trace display.

USAGE _
Turn off display of the control lines, C7 through C4,
as well as the high four bits of the address bus, A19
through A16.

Though the UniLab must always monitor these wires, and
sometimes they give you vital information (such as that
you have the wires hooked up wrong), usually you don't
need to see them.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-~ Command Reference -- Page 7-168

-- The Commands --

SHOWM no parameters F8

Shows the miscellaneous lines and the HDATA lines on the trace
display (the default condition).

USAGE
Turn back on display of the miscellaneous lines and the
high data lines (on 8 bit processors).

You will want to see these lines when you have them
hooked up to your board. Otherwise, you can ignore
them.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

SHOWM' , no parameters F8

Hides the miscellaneous lines and the HDATA lines on the trace
display (the default condition).

USAGE
Turn off display of the miscellaneous lines and the
high data lines (on 8-bit processors).

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

March 25, 1987 | Page 7-169 -- Command Reference --

-=~ The Commands --

51 RI <trigger spec> SI
Allows you to gain DEBUG control on any bus condition.
USAGE

Always used in combination with RI. Please consult the
reference section on RI,

SMBP <addr> <breakpoint #> SMBP
Sets one of the 8 multiple breakpoints at the given address.

USAGE
Allows setting of up to 8 breakpoints, in addition to
the unnumbered breakpoint that is set by RB or GB. The
status of all 8 breakpoints gets displayed each time
you set or clear one.

You must already have debug control before you issue
this command.

To use multiple breakpoints, set all but one of your
breakpoints with this command, and then use RB or GB to
get the target program going again.

EXAMPLES

123 4 SMBP
sets a breakpoint #4 at address 123.

250 RB
sets a breakpoint at 250 and starts the target
program going again.

COMMENTS
See also N, CLRMBP, RMBP.

Before using multiple breakpoints, you should examine
the possibility of using the more powerful capabilities
of the analyzer to do the same thing.

-- Command Reference -- Page 7-170

-- The Commands --

SOFT SOFT <filename> PPA

Enables the optional Program Performance Analyzer for the new
command file that it creates. Need by used only once. Prompts
you for the filename if you do not include it on the command
line.

USAGE
Reconfigures your software, so that you can use the
Program Performance Analyzer commands AHIST, MHIST,
THIST, HSAVE, HLOAD, and SET-GRAPH-COLOR.

Do not use SOFT until after you have copied the
HISTxxXx.OVL file into your ORION directory.

EXAMPLE

SOFT ppaZz80
Creates a new .EXE file, PPAZ80, which will
recognize the Program Performance Analyzer
commands.

March 25, 1987 Page 7-171 -- Command Reference --

== The Commands --

SOURCE No parameters

Re-enables the display of source code interleaved with
disassembly of machine code. SOURCE is automatically enabled
when you load a .MAP file in with MAPSYM.

USAGE
It is necessary to use this command only after you have
disabled the high-level support feature with SOURCE'.

ABOUT HIGH-LEVEL SUPPORT
Orion high level support shows you the line of your
source code which generated your assembly code. To use
this feature, you must load your .MAP file with MAPSYM
and have the relevant source files in the current
directory.

See MAPSYM for more information.

SOURCE" no parameters

Turns. of£ the display\of source code. See SOURCE.

-- Command Reference -- Page 7-172

-- The Commands --

SPLIT no parameters F2
Toggles split screen mode on and off.

USAGE
Gives you the ability to compare traces, or parts of
the same trace. You can also compare a trace to the
assembly code (DN), or to your source text file
(TEXTFILE).

WHAT WINDOWS ARE FOR
The right quadrants are reserved for the output of DN,
and for the pop-up panels (MODE). TEXTFILE only works
in the top window. Help screens are always shown in
the top window.

MOVING AROUND
The END key moves you from one window to the other.

HISTORY
The history mechanism, which saves a record of what has
happened during your session with the UniLab, only
records information off of the bottom screen.

EXAMPLES

SPLIT
This command never used in combination with
anything else.

March 25, 1987 Page 7-173 -- Command Reference --

-~ The Commands --

SR <n> SR

ReStarts the analyzer Repeatedly. Displays n lines each time
trigger occurs.

USAGE
Very useful for logging things repeatedly. You should
first set up the trigger and starting point of the
display with S and TN.

STOPPING
You start the infinite loop by entering SR. You break
out by pressing any key.

HARD COPY
Use the Mode Panel (F8) or PRINT to log your output to
the printer. The Mode panel also contains a feature
that allows you to log to a file. See TOFILE.

RESETTING OR INTERRUPTING THE TARGET
If you use RESET, then the target system will be reset
each time the analyzer starts.

WHEN TO USE SOMETHING ELSE
If the events you want to see occur more often than
once per second and you want to see them in sequence,
you can use XAFTER along with A9 SR to log bursts of
the events in filtered format.

EXAMPLES

20 SR
Repeatedly displays twenty lines of trace buffer,
starting the analyzer again after each display.

-~ Command Reference -- Page 7-174

-~- The Commands --

SSAVE SSAVE <filename> ALT-F9

Saves the screen image as a DOS text file.

USAGE
Save the image of a graph generated by the Program
Performance Analyzer option, or save any other screen
image that you want.
EXAMPLE
SSAVE nice.scr
Saves the current screen as a file, nice.scr.
SST <trigger spec> SST

Starts the analyzer in the standalone mode.

USAGE
Set the analyzer looking for a bug that you think will
take a while to find. After you issue this command,
you can disconnect the Unilab from your host, or you
can keep it plugged in but exit from the UniLab program
(BYE).

Either way, the LED on the UniLab goes out when it
finds the trigger. You then plug in the UniLab again,
call up the UniLab program, and enter TS to display the
trace.

EXAMPLE
NORMB 1200 TO 1300 ADR WRITE 3F TO FF DATA SST

Searches for this trigger in standalone mode.

COMMENTS ‘
Handy when you want to search for an obscure bug
without tying up the host computer.

March 25, 1987 Page 7-175 -- Command Reference --

-- The Commands --

SSTEP no longer available

The functionality of this command is now assigned to the new
"smart" NMI. NMI now achieves DEBUG control for you, or executes
one instruction if you already have DEBUG control. See also N.

STANDALONE STANDALONE <prom programming command>

Selects the standalone mode for the EPROM programming command
that follows.

USAGE
Allows you to use the host computer for something else
while the UniLab programs an EPROM. Especially handy
when programming large EPROMs.

You can type in STANDALONE and press return, then use
the PROM programming menu to program the EPROM.

When the LED next to the PROM programming socket goes
out, the command has been completed. You can then
enter PROMMSG to get the completion status message.
The UniLab must remain connected to the host computer,
or you will not be able to get the message.

EXAMPLES

STANDALONE
use this command and then make use of the
convenient PROM programming menu to burn an EPROM
in standalone mode.

STANDALONE 0 TO 1FFF P2764
you can also use STANDALONE along with a PROM
burning command, if you know the commands.

-- Command Reference -- Page 7-176

-- The Commands --

STARTUP

no parameters F9

Restarts the target system and gives a trace of the first 170
cycles of target system operation.

USAGE

Very useful mode at the first stages of system
checkout. Allows you to check out the first few
instructions, make certain that they execute properly.

. The RES- wire from the analyzer cable must be properly

connected to the target system, or the UniLab will not
be able to reset the target processor. See the
Installation chapter of the User Manual.

The very first cycle (cycle 0) is particularly
important because if correct data is not fetched (often
due to the address not being properly EMENABLEd), then
the program will immediately "blow up."

MULTIPLE RESET

Some systems with simple R-C reset circuits (no
hysteresis) will appear to reset intermittently many
times before they finally settle down to stable
operation. This is a nuisance if you want to look at a
trace early in the program, but you will be able to see
the program when it does finally settle down.

If your system does this, you might want to consider
putting a logic element-- such as two Schmitt triggers
in a row (part number LS14)-- into your reset circuit.
That way your system will always get a good strong
reset signal.

EXAMPLES
STARTUP
This command never used in combination with
anything else.
COMMENTS

This is a target specific macro that usually looks for
the reset vector address on the bus. If that address
does not show up, system will wait forever. Or if a
HALT instruction is fetched, will give a '"NO ANALYZER
CLOCK" message. See TroubleShooting chapter.

March 25,

1987 : Page 7-177 -- Command Reference --

-~ The Commands --

STIMULUS <byte> STIMULUS

Changes the 8 stimulus outputs (S0-S7) to correspond to the
specified byte. Also pulses the ST- output.

EXAMPLE

10 STIMULUS
makes all stimulus outputs zero, except S4

COMMENTS

Useful for changing all stimulus outputs at once. Use
SET or RES to set and reset individual signals. The
stimulus outputs originate in the PROM socket on the
front of the UniLab and are normally connected by the
stimulus cable provided with your system. The stimulus
signals are usually used to provide test inputs for the
target system.

~-- Command Reference -- Page 7-178

-- The Commands --

SYMB no parameters F8
Enables the symbol translation feature.

USAGE
Turns symbol translation back on, after it has been
disabled with SYMB'. Symbols make the trace more
readable, by allowing you to replace data and addresses
with symbolic names.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

Symbols are entered by using IS or SYMFILE, elther,of
which will turn on symbol translation.

SYMB' no parameters F8
Disables the symbol translation feature.

USAGE
To turn symbol translation off without clearing out the
symbol table. See CLRSYM if you want to clear out the
table.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

March 25, 1987 Page 7-179 -- Command Reference --

~-=- The Commands --

SYMDEL <number> SYMDEL
Allows you to remove one symbol from the current symbol table.

USAGE
Use SYMLIST first to get a list of all the symbols in
order of increasing value. This list of symbols is
numbered. You delete a symbol by using its number, not
its value.

EXAMPLE
5 SYMDEL

Deletes the fifth symbol in the list that SYMLIST
shows you.

-- Command Reference -- Page 7-180

~- The Commands --

SYMFILE SYMFILE <file name>»

Loads a symbol table file produced by a cross assembler . Prompts
for a file name if you don't include it on command line.

USAGE
Capable of loading symbol tables in almost any format.
The first time you use it, SYMFILE presents you with a
menu of predefined formats. You can choose one of
those, and then save the system with SAVE-SYS to make
that the default format.

You can change the default format with SYMTYPE.

Formats not on the menu can be defined using SYMFIX for
fixed length files. Variable length files only come in
two formats: name and then value, or value and then
name.

The AVOCET format on the menu is for symbol files that
are name, then value.

The MANX format on the menu is for symbol files that
are value, then name.

The MICROTEK format refers to "MicroTek/New Micro,"
not to "Microtec Research."

EXAMPLES
SYMFILE C:\ASM\OUT.SYM

Loads into the UniLab a symbol file created by an
assembler.

March 25, 1987 Page 7-181 -- Command Reference --

-~ The Commands --

SYMFILE+ SYMFILE+ <file name>»
Appends the contents of a symbol file to the symbol table.

USAGE
Provides a way of adding to a symbol table that already
exists. SYMFILE, on the other hand, automatically
clears the existing symbol table.

SYMFILE+ allows you to combine several symbol tables.

See also CLRSYM,

EXAMPLES

SYMFILE+ A:EXTRA.SYM
Adds to the symbol table the symbols stored in a
file on the A drive.

-- Command Reference -- Page 7-182

-- The Commands --

SYMFIX <a> <c> <d> <e> <f> SYMFIX

Defines symbol file parameters for formats that use fixed length
records.

USAGE
Use this word to define your own SYMFILE format for
fixed length records, if none of the predefined formats
available on the SYMFILE menu suit your purposes.
There are only two types of variable length record
formats (value then name or name then value) and both
appear in the menu.

The definitions of the 6 parameters:

a = offset from start of record to start of name field.
b =1 if address is 4 ASCII digits or 0 if 16-bit
- binary.
c = address field offset from start of record.
d = 1 if binary address has most significant byte
first.
e = pad characters used to fill between symbols.
f = record length.
EXAMPLES

0 0B1 0 E SYMFIX
defines the format for 2500AD abbreviated symbol
table files. These tables follow the format:
ten bytes for the symbol name,
two bytes for the symbol value,
two pad bytes.

March 25, 1987 Page 7-183 ~- Command Reference --

-~ The Commands --

SYMLIST no parameters

Shows you a numerically ordered list of all currently defined
symbols.

USAGE
To verify that your symbol file has successfully loaded
in, or to remind yourself which symbols you have
defined with IS.

This command also gives you the information that you
need to selectively delete symbols. See SYMDEL.
EXAMPLE

SYMLIST
Lists all the current symbols.

-- Command Reference -- Page 7-184

-- The Commands =-~-

SYMLOAD SYMLOAD <file name>»

Loads a UnilLab format symbol table file from the disk. Prompts
for you for file name if you don't include it on command line.

USAGE
Loads up a symbol table that was saved with SYMSAVE.

These files are variable length, allowing symbols up to
255 characters long.

Warning: not compatible with symbol tables saved with
pre-version 3.0 SYMSAVE.

EXAMPLE

SYMLOAD B:oldsyms
Loads into the UnlLab a symbol table file from the
B drive.

SYMSAVE SYMSAVE <file name>

Saves the symbol table as a named DOS file. Prompts for file
name.

USAGE
This command saves only the symbol table, which you
will be able to load in later with SYMLOAD.

Use SAVE-SYS to save the entire system.

EXAMPLE

SYMSAVE july3.sym
Saves the current symbol table to a file called
july3.sym.

March 25, 1987 Page 7-185 -- Command Reference --

-~ The Commands --

SYMTYPE
Re-defines

USAGE

no parameters

the file format assumed by the SYMFILE command.

Presents you with the symbol table format menu. This
allows you to choose a different format after you have
chosen one with SYMFILE.

The first time you use the SYMFILE command you are
presented with a menu of formats. Once you have chosen
a format, SYMFILE executes immediately, using the
selected format. SYMTYPE allows you to alter your
choice of format.

See also SYMFIX.

The MICROTEK format in the menu refers to "MicroTek/New
Micro," not to "Microtec Research."

EXAMP

LE

SYMTYPE
This command never used in combination with
anything else.

-- Command Reference -- Page 7-186

-~- The Commands ~--

T no parameters

Displays the trace from its current starting point until any key
is pressed.

EXAMPLE

T
displays the trace.

COMMENTS

The current starting point for the trace display is

defined by the most recent TN command. (STARTUP
usually sets it to -4.)

If the starting cycle # is not actually in the trace
buffer, the trace is started 4 lines from the closest
cycle number which is in the trace buffer.

March 25, 1987 Page 7-187 -- Command Reference --

~- The Commands --

TCOMP <n> TCOMP <file name>

Compares the present trace buffer to a previously stored trace in
the named file. Compares the last <n> cycles. Aborts and
indicates error if any bit fails to compare.

USAGE
Very useful for writing automatic system test programs.
Use the value AA to compare the entire trace.

Use TSAVE to save the trace of a good system. You can
then use that saved trace to test other systems.

If TCOMP finds a difference between the current trace
and the one in the file, it will display 9 lines of the
stored trace and the first bad line in the trace of the
system under test. '

You can use TMASK to tell TCOMP to ignore one or more
of the columns in the trace display. See TMASK for
details.

You can also use SC to compare traces.

EXAMPLE

AA TCOMP march.2
compares the entire trace to the one stored as
file "march.2."

COMMENTS
If you want to compare only part of the trace, use a
smaller number. TCOMP will then skip over the first
part of the file. This is useful for skipping over the
already known discrepancies between two traces.

If TCOMP behaves in a confusing manner, try using it
with the disassembler disabled (DASM' or use the mode
panel, F8).

-- Command Reference -- Page 7-188

-- The Commands --

D no parameters

Stops the analyzer and displays the current contents of the trace
buffer.

USAGE .
To see what is going on, when trigger has not occurred,
or when you are producing a filtered trace that you do
not think will fill up the trace buffer. Normally the
trace is automatically uploaded to the host when
trigger occurs.

TD skips over the first cycle in the buffer, and any
other empty space (all 1's) at the top of the buffer.

EXAMPLE
TD
This command never used in combination with
anything else.
COMMENTS

Since the buffer is filled with 1's before the analyzer
is started, a partially filled filtered trace buffer
will have good data only near the end. TD
automatically skips over the empty space.

March 25, 1987 Page 7-189 -- Command Reference --

~= The Commands --

TEXTFILE TEXTFILE <filename>

Allows you to look over a text file from within the UniLab
program.

USAGE
TEXTFILE only works from the upper window. It will
take a few seconds to analyze the file, and then will
show you the first window full of text.

This feature is useful for looking at your source code
while you debug it-- this could replace hard copy
listings.

MOVING ARQUND THE FILE
Use the PgDn key or the Down Arrow to see more of the
text. The PgUp key scrolls the screen back, the Up
Arrow moves you up one line. Use <line#> TX to move to
a specific line number in the file.

The HOME key takes you back up to the top. The END key
just toggles you to the lower window.

WATCH OUT
You can't alter the file in any way-- only look it
over.

EXAMPLE
TEXTFILE \memo\projecti

Opens the DOS file projectl, in a directory called
memo.

-- Command Reference -- Page 7-190

-- The Commands --

THIST

no parameters PPA

Time HISTogram invokes the optional Program Performance Analyzer
(PPA) that allows you to display how often the elapsed time
between two addresses falls into each of up to 15 user-specified
time periods. See also AHIST and MHIST.

USAGE

MENU

Allows you to examine the performance of your software.
You can find out how the elapsed time between any two
addresses changes, as different conditional jumps or
branches are taken.

To get interesting and useful results, you will
probably want to measure the time between two addresses
in your main loop.

Press F10 to exit from this command.

You must (only once) issue the command SOFT to enable
this optional feature. SOFT performs a SAVE-SYS, and
then causes an exit to DOS. The next time you call up
the software, the PPA will be enabled.

DRIVEN

SAVE

You produce a histogram by first specifying the upper
and lower limits of each time "bin" that you want
displayed (F9), then starting the display (F1).

When you give the command THIST, you get the histogram
screen with the cursor positioned at the first bin.

You can then start typing in the lower and upper limits
of each bin. Use return, tab, or an arrow key after
you enter each number, to move to the next entry field.

Press function key 1 (F1) to start displaying the
histogram.

TO A FILE

You can save the setup of a histogram as a file with
the HSAVE <file>. Issue this command after you exit
from the histogram.

You load the histogram back in with HLOAD <file>. This
command also invokes the histogram.

March 25,

1987 Page 7-191 -~ Command Reference --

-- The Commands --

TMASK <byte value> TMASK
Set up a mask which tells TCOMP which columns to compare.

USAGE
The lower six bits of the byte value tell TCOMP which
groupings of the trace display to use when comparing
traces. The default is 3F (00111111 binary) which
tells TCOMP to check all columns.

Used when comparing traces to filter out erroneous

error messages-- due, for example, to different wiring
of the MISC lines.

MASK VALUES

Each of the six bits corresponds to one of the

groupings. If the bit is one, then TCOMP will include
that grouping:

BINARY GROUPING HEXADECIMAL
0000 0001 LADR 1
0000 0010 HADR 2
0000 0100 CONT 4
0000 1000 DATA 8
0001 0000 HDATA 10
0010 0000 MISC 20

~- Command Reference -- Page 7-192

~- The Commands --

TN <n> TN

Displays the trace buffer, starting at cycle n. Sets the
starting point for future trace displays.

USAGE :
For random access to the trace buffer, when you also
want to reset the starting point used by T. To access
the buffer without changing the default value of the
point where the display starts, use TNT.

EXAMPLE
12 TN
Displays the trace, starting 12 cycles after the
trigger. The rest of the traces this session will
also be initially displayed starting 12 cycles
after the trigger.
COMMENTS

You will usually want to use TNT. Use TN when you
think that you will want to display from the same point
on future trace displays.

TNT <n> TNT
Displays the trace buffer, starting at cycle n,

USAGE
Allows you to immediately look at any point in the
trace buffer. TN does the same thing, but also changes
the default trace starting point used by T. The
default trace starting point is set to -5, until you
change it. ’

EXAMPLE
-7 TN

displays the trace starting 7 cycles before the
trigger.

March 25, 1987 Page 7-193 -- Command Reference --

-= The Commands =--

TO <number> TO <number» <command?>

Sets a flag that indicates that a range of numbers is being
entered.

USAGE
Used with all of the trigger event description commands
to define a trigger on a range of numbers. See ADR,
CONT, DATA, HADR, HDATA, LADR, and MISC.

EXAMPLE

12 TO 34 DATA
Tells the analyzer to look for any data on the
range 12 to 34 on the data inputs.

COMMENTS
In the example above omitting the TO would result in a
trigger spec that would accept only data = 34.

-- Command Reference -- Page 7-194

-- The Commands --

TOFILE TOFILE <filename>» F8

Use to start sending screen output to a DOS textfile as well as
to screen.

USAGE
Use for toggling on the logging of information to a
file. You can include that command on the DOS command
line as a "command tail." For example:

C> ULZ80 TOFILE A:JUNE7.LOG
The usual DOS rules for naming files apply.

You will be prompted for the file name if you do not
include it.

Turn off logging to the file with TOFILE'.

You can use the MODE panel (function key 8) to toggle
logging to a file on and off, but you have to use the
command to open the file in the first place.

COMMENTS
Files produced in this way can then be edited with a
word processor, or shown on the screen using the DOS
command: TYPE file name.

TOFILE' no parameters F8

Use to stop sending screen output to DOS textfile as well as to
screen.

USAGE
Use for toggling off the logging of information to a
file.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

March 25}11987 Page 7-195 -- Command Reference --

-- The Commands --

TOP/BOT no parameters END key

Moves you from top window to bottom, or from bottom window to
top.

USAGE
You will usually want to just use the END key, which is
the number one key of the numeric key pad.

Only active when the screen has been split with SPLIT
(function key 2). See that word for details about
windows.

EXAMPLE
TOP/BOT

This command never used in combination with
anything else.

-- Command Reference -- Page 7-196

-- The Commands --

TRAM no parameters

Turns off a flag, so that subsequent memory reference commands
refer to RAM rather than ROM. Necessary only with processors
that allow ROM and RAM to occupy the same address space, or that
address more than one 64K segment of memory.

USAGE

Only needed when you want to refer to RAM that occupies
the same 16 bit address space as ROM-- for example,
with the 68000 microprocessor.

The flag stays reset until you use the command TRAM'.

EXAMPLE

TRAM 0 F MDUMP
Dumps the contents of RAM, from address 0 to F.

COMMENTS
This command can sometimes get you into trouble-- if
you use RB after TRAM' you will be setting a breakpoint
in RAM. Which is fine if you meant to set a breakpoint
in RAM, but disastrous if you meant to set the
breakpoint in ROM.

TRAM' no parameters

The default condition-- turns on a flag, so that subsequent
memory reference commands refer to ROM rather than RAM.
Necessary only after TRAM, or similar processor-specific
commands.

USAGE
Only needed after you use TRAM.

EXAMPLE

TRAM' 30 3F MDUMP
Dumps the contents of ROM, from address 30 to 3F.

March 25, 1987 o Page 7-197 -- Command Reference --

-- The Commands --

TRIG TRIG <event description»
The event description that follows will be a trigger event.

USAGE
As opposed to Q1, Q2, and Q3, which tell the analyzer
that the following description is a qualifying event.
Useful if you want to alter the trigger event without
altering the qualifiers.

EXAMPLE

TRIG 123 ADR
searches for 123 on the address lines.

COMMENTS
Used to select the TRIG truth table context again after
AFTER, Q1, Q2, or Q3 has caused another truth table to
be selected. Useful if you want to change your mind
about the trigger step after you have just defined a
qualifier. The 4 truth tables are Q3, Q2, Q1, and
TRIG.

-- Command Reference -- Page 7-198

-- The Commands --

TS

no parameters

Displays trace after standalone mode trigger.

USAGE

To retrieve the trace from the UniLab's trace buffer,
after you start the analyzer in standalone mode with
SST.

When you use SST to start the analyzer, you can
disconnect your host computer from the UniLab and run
other programs on the computer. When the analyzer sees
the trigger, the light next to the analyzer goes out.
You can retrieve the trace at anytime after that.

To retrieve the trace you must start up the Unilab
program while the Unilab is disconnected from the host,
Use CONTROL - BREAK to break out of the Initializing
UniLab... message. Then reconnect the UniLab and issue
the TS command.

EXAMPLE
TS
This command never used in combination with
anything else.
COMMENTS

TS begins by sending a '"wake-up" code to the Unilab.
Since this does not fit into the normal UniLab v
communications protocol, don't enter TS unless you have
previously entered SST. If you do, the system will
hang.

March 25,

1987 _ Page 7-199 ~- Command Reference -~

-- The Commands --

TSAVE TSAVE <filename>
Saves the current trace buffer as a file.
USAGE
A good way to save information about a trace for later
review with TSHOW or for automatic comparison to
another trace with TCOMP or SC.
EXAMPLE

TSAVE good.trc
saves current trace as a file called good.trc.

-- Command Reference -- Page 7-200

-- The

Commands --

TSHOW TSHOW <file name>
Displays a previously saved trace.

USAGE ‘
‘A useful way to examine traces saved while
field, or by an automatic testing program.
the trace in the first place.

in the
TSAVE saves

TCOMP will compare the present trace to the numbered
trace, and let you know if they differ. That will
probably, most of the time, serve your purposes better

than looking over a trace.

EXAMPLES

TSHOW good.trc

Displays the trace saved by TSAVE into a file

called good.trc .

COMMENTS -

If you are tracking down a problem you can save
interesting traces as you go so that you can look at
them again later or even print them out (by using

control-P to turn on the printer).

After you use TSHOW the trace image in the host
contains the recalled trace, so you can use T, TN, or

TNT to view it from various points.

When you want to load the UniLab's trace buffer back
into the host, enter TD. Since TSHOW changes the
setting of DCYCLES, the cycle numbers will be incorrect
unless the changed delay setting is the same as the

previous one.

March 25, 1987 Page 7-201 -- Command Reference --

~- The Commands --

TSTAT no parameters F7

Displays the complete status of the current trigger specification
including qualifiers, delay and pass counts filtering, and auto
reset,

USAGE
A good way to determine what the current settings are.
Also a good way to check on how the UniLab interprets
your trigger specifications.

EXAMPLE
TSTAT

This command never used in combination with
anything else,

X <line #> TX

Use with an open textfile to move to the specified line number of
the file.

USAGE
A good way to quickly move around a textfile. See
TEXTFILE.

EXAMPLE

300 TX
Moves to line 300 of the current open textfile.

-- Command Reference -- Page 7-202

~- The Commands --

WORDS WORDS <command>

Displays an alphabetical listing of the Unilab's commands,

starting with the command or characters you include on the
command line.

USAGE

To remind you of the names of some UnilLab commands.
Press any key to stop the listing.

EXAMPLE

WORDS INIT
shows a list of commands, starting with INIT.

WSIZE no parameters SHIFT-F8

Allows you to redefine the size of the windows.

USAGE

Once you enter this command, only the cursor keys are
active. Use the "END" key (numeric pad key 1) to exit.

Use whenever you want to set the window size to
something other than the standard setup.

EXAMPLE
WSIZE
This command never used in combination with
anything else.
March 25, 1987 Page 7-203 -- Command Reference --

Chapter Eight:
TroubleShooting

Contents

Overview

How to use this chapter
Solutions in Depth:

Addresses do not appear on bus in proper sequence, or
occasionally are incorreCt. « « « e o o o o o o « o
Incorrect data fetched from memory. . « ¢ o o o o o o o
Emulation memory does not respond to fetches.
Program hangs up on "Initializing UniLab. . . " message .
Program hangs on initialization some of the time, not all of
the time . . ¢« & ¢ ¢« ¢ ¢ & & & e o o o s o o o
RS-232 error message: '"RS-232 Error #XX" e o s e o o o o
STARTUP does not work -- never get to see trace, or see
trace filled with garbage . ¢« « ¢ o« ¢ e o ¢ o o o &
Error message: ''NO ANALYZER CLOCK" .« &+ ¢ ¢ o ¢ o « o o
Program runs, UniLab traces, but reads bad data from stack
Program runs and UniLab traces, but does not disassemble
ProPerly « o « o o o o o 5 o o o s o o s o o o o o o
Program runs, UniLab traces properly, but cannot set a
breakpoint-- gives a "DEBUG Control not established"
MESSATUE o o o o o o o o o o o o o o o o o o s o o o
Program runs, UniLab traces properly, but cannot set a
breakpoint-- hangs with red light next to Analyzer
socket on until key pressed. . ¢« .« ¢ o« ¢ o & . e
NMI does not work-- get "DEBUG control not establlshed" .
Bad input buffers on the UniLab, as if an IC has been blown
Screen flickers when you use PgUp key to look at line
Ristory o« o ¢ o o o o o o o o o s o o o o o o o o o

8-20
8-21
8-22

8-23

March 25, 1987 Page 8-1 -~ TroubleShooting --

Overview

We designed this chapter to help you get the LTARG sample
program running on your target board with the UniLab. The use of
a standard program makes it much easier to pinpoint and solve any
problem that you have.

A sample trace of the LTARG for your processor can be found
in the Target Application Note for your Disassembler/DEBUG and,
in many cases, on your distribution diskette as well.k

Back to Basics

If you have a problem while running your own target program,
we recommend that you first go back to the LTARG program. Check
whether your target system and your Unilab system function
properly while your hardware runs that simple program.

Most of the time you will be able to solve the problem while
working with the LTARG program,

How to use this chapter

Symptoms

Find the symptom on the previous page that most nearly
matches your problem. Then turn to the page that covers that
symptom, to find the solution.

When the UniLab does not work properly with your target
system, be certain to check whether the target board has a
problem. See the first entry in Solutions.

Sub-systems of the UniLab
If the problem is with the UnilLab, you can usually trace

your problem to only one of the four functional subsystems of the
UniLab. These four systems handle:

1) communications between UnilLab and the host
computer,
2) emulation of target ROM,

3) analysis of target board program, setting triggers
and capturing traces,

4) DEBUG features, such as setting breakpoints in
target board program, single stepping, using MDUMP on
RAM, etc.

The above list forms a hierarchy of dependence. That is,
the other three subsystems all depend on the communications
subsystem-- if it does not work, then the other three will work

-~ TroubleShooting -- Page 8-2

erratically, or not work at all.

And, further down the hierarchy, if your trace is not
correct, then you will not be able to set a breakpoint.

First things first

Similarly, always give the greatest emphasis to the first
thing that goes wrong. For example, if the trace shows that your
target board starts to execute at the wrong address, then you
should ignore the rest of the trace.

You've already found the vital information-- the first

opcode address is wrong, which indicates a bad address line on
the target board.

When to call

If you cannot get the LTARG program to run, or you cannot
figure out where the problem lies, then the next step is Orion
Technical Support. Call (415) 361-8883 for assistance.

March 25, 1987 Page 8-3 -- TroubleShooting --

Solutions

in Depth

Addresses

do not appear on bus in proper sequence, Or

occasionally are incorrect.
Quick Check:

WHY

WHAT

-~ UniLab emulator and analyzer cables properly
connected to target? Double-check against the diagram
in your Target Application Note.

-- Bus short or cross-connection on the target? See
below.

-- UniLab input buffers working properly? See below.

If the trace buffer shows bad addresses or bad data,
then the problem might be caused by
the target system bus, or ‘
the cables that carry the bus signals to the
UniLab, or
the input buffers in the UniLab that receive those
signals.
It is easy to set up a simple test of all three of
these possible causes. The first step is to find the
problem bit. Then you can find out whether the target,
the cable, or the UniLab is to blame.

TO DO

Find the problem: lower address bit(s). Fill emulation
ROM with NOOP instructions, and first look at a STARTUP
trace (you might also need to put an appropriate
address in your processor's reset vector). If the
problem is with the lower address bits, or with an
upper address bit stuck high, it will be obvious in
this trace.

For example, if address line A4 is shorted to ground,
then you will get this sequence of addresses:

Binary Hexadecimal

00001110 OE

00001111 OF

00000000 00 (should be 10)
00000001 01 (should be 11)

Obviously, A4 is the problem bit, though there might be
another one as well-- for example, A4 might be shorted
to another bus signal rather than to ground. You can
check for this possibility by seeing if A4 ever goes
high., Set a trigger spec that looks only for a high
signal on that trace:

NORMM 10 MASK 10 LADR S.

-- TroubleShooting -- Page 8-4

March 25,

-- Solutions in Depth --

Find the problem: upper address bit(s). If the problem
is with the upper address bits, you might have to go
through one of two slightly different procedures.

One possibility is to get a separate trace of each
upper address bit as it makes the transition from zero
to one. For example, to see A12 go high, set a
trigger on address OFFF (FFF AS). The cycle after the
trigger cycle should show address 1000.

A more elegant solution is to capture in one or two
traces all the transitions of the upper address bits.
You do this with a series of jump instructions (use the
line-by-line assembler, ASM). Jump to just before the
transition, and then right after the transition, jump
to just before the next one. For example, jump to
address FFF, and then from address 1001 jump to 1FFF.

Find the cause of the problem. Once you've found the
problem bit, you should first check the target board
for a short. Turn off power to the target, and remove
the cables that connect it to the UniLab. Use an
ohmmeter to check for continuity between the problem
bit and the ground or the source voltage (or the other
trace that it seems to be shorted to).

If you find no problem on the target system, connect
the UnilLab cables to the target, but not to the Unilab.
Use the ohmmeter again to check for a short. Check the
UniLab cables by themselves-- perhaps the problem
signal is simply not getting through to the Unilab, or
is shorted to an adjacent wire in the cable.

If you can find no evidence of a short, connect the
target system to the UniLab, power up the target, and
check the UniLab input buffer. First force the problem
bit to a voltage opposite to the one it is "stuck" at
(only do this after you are certain that the trace is
not shorted to the ground or the source voltage). Then
use STARTUP to capture a trace.

If the problem bit is still stuck at the wrong voltage,
you have a problem with the UniLab input buffers. Turn
to page on "Bad input buffers" in this chapter.

But if the bit shows up at the voltage you are forcing
it to, then you probably have a short between the
"problem" bit and some other address or data line trace
on the target system. Examine the trace to see if some
other bit is also showing up at the new signal level.

1987 Page 8-5 -~ TroubleShooting --

-=- Solutions in Depth --

Incorrect data fetched from memory.
Quick Check:

WHY

WHAT

-- Bus contention between emulation ROM and target
system RAM or ROM chips? Check the memory map of your
target system. If a target system chip and the
emulation ROM try to put data on the bus at the same
time, the trace buffer will see mangled data.

-- Are you actually fetching from emulation ROM? See
the next page.

-- UniLab emulator and analyzer cables properly
connected to target? Double-check against the diagram
in your Target Application Note.

-- Bus short or cross-connection on the target? UnilLab
input buffers working properly? To find the problem
data bit, you follow the procedure below. Then turn to
the previous page to find the cause of the problem bit.

As explained in the two previous pages, if the trace
buffer shows bad addresses or bad data, then the
problem might be caused by
the target system bus, or
the cables that carry the bus signals to the
UniLab, or
the input buffers in the UniLab that receive those
signals.

TO DO

Find the problem: data bits. Put 0000 and FFFF into
the first two words fetched from emulation ROM. If any
of the data lines are shorted to either ground or
source voltage, this simple test will show the culprit.

If data lines are shorted to each other, or to some
other signal on the bus, you might have to put a number
of different values into emulation ROM and check the
outcome. For example, check adjacent data lines by
putting into emulation ROM one of the data words that
have alternating bits:

Binary Hexadecimal
01010101 55
10101010 AA

-- TroubleShooting -- Page 8-6

-- Solutions in Depth --

Emulation memory does not respond to fetches.
Quick Check:

WHY

WHAT

~- Is the 16-bit address enabled? Use ESTAT to check
the EMENABLE settings.

-- Do the upper four bits of the 20-bit address match
the enabled segment? Use ESTAT, and compare the low
four bits of the CONT column to the =EMSEG setting.

-~ If the full 20-bit address matches, does the
emulation ROM see an output enable signal? See below.

The active low OEE- (Output Enable for Emulator, pin 42
on the analyzer connector of the UniLab) signal is
derived by the UniLab circuitry from signals on the
target board. The signals used vary slightly from
processor to processor. If the emulation ROM does not
get an OEE- signal, then it will not respond to a
fetch.

The OEE- signal is jumpered at the Analyzer cable
connection to the UniLab. You should check this jumper
if you are having problems.

Depending on the target hardware design, the signal the
UniLab picks up at a ROM socket might not be the signal
the UniLab expects.

TO_DO

March 25,

OEE- jumper? Check your Target Application Note for
the diagram of the jumpering of your analyzer cable.
First make a visual inspection of the jumper to OEE-.
If it looks okay, use an ohmmeter to check the
electrical connection.

Wrong signals at ROM socket? When you connect to the
target system with a separate ROM plug (instead of an
Emulation Module), you can sometimes run into problems
with OEE-.

Some target systems have a CS- (chip select) signal
going to the OE- (output enable) input of each ROM. If
the UniLab emulation cable is plugged into one socket
but also emulating the ROM in another socket, this can
cause problems.

If this turns out to be the problem, you might have to
route a system OE- signal (rather than a chip-specific
one) to the ROM socket, or order a "direct emulation
cable" from Orion to pick up that signal. In some
cases you can ground the OE- input.

1987 Page 8-7 -- TroubleShooting --

-~ Solutions in Depth --

Program hangs up on "Initializing UniLab. . . " message
First, press CTRL-BRK to get out of the initialization
routine.

Quick Check:
-- UniLab plugged in and turned on? Turn it on, enter
INIT, and try again.
== UniLab connected to COM1? See below.
-- Do you have two serial ports? If so,is the second
one properly "jumpered" as COM2? See page 8-12.
-- Is your serial port set up to work with a printer?
See below.

WHY

"~ If the system freezes right after "Initializing
UniLab..." is displayed, it means that the program is
waiting to receive a character from the UniLab. You can
unlock the program by pressing the CONTROL and BREAK
keys at the same time.

It might be that the UniLab simply has not been hooked
up to the correct port.

Or, the UniLab might be on the correct port, but the
computer is expecting to communicate over the wrong
pin. The UniLab looks like Data Communications
Equipment (DCE) to the host computer. That is, the
UniLab expects to receive data on line 2 and send it on
line 3 of the RS-232 connection.

WHAT TO DO
Check that the UniLab has been plugged into the correct
DB-25 pin connector on your computer. If you have two
25 pin sockets on your computer, you should unlock the
program with CONTROL-BREAK and move the UniLab cable to
the second socket. Then use the INIT command to
initialize the Unilab.

DB-25 Connector

i 2 34 5 6 7 8 9 10 1112 13
Kooooooooooooo]

000000000000
14 15 16 17 18 19 20 21 22 23 24 25

If that does not work, use AUX2 to reconfigure your
software, so that it expects the UniLab to be connected

-=- TroubleShooting -- Page 8-8

-~ Solutions in Depth --

to communications port 2. Again, try to initialize
with the UniLab on each of the two serial ports.

If that doesn't work, check that the connector on the
outside of your computer has actually been connected to
the circuitry inside.

The jumpers on the serial board must be configured for
operation with a modem or other DCE (Data
Communications Equipment), rather than for operation
with a printer or other DTE (Data Terminal Equipment).
All serial port boards have jumpers that allow you to
change the port to connect to a DTE or a DCE.

Only if you want to keep the port configured for a DTE,
you should make or buy a standard "null modem"
connector, or the non-standard null modem shown here.

o (N o (N
-0 0 -0 In
~ Ol o Oln
-~ |0 o § - o x
-0 -]0
O|R ol
©l0 °lo
~| - ol ~| - ol
o|O o o0 ol=
@© Illlﬂl |l‘\‘ll|||l!lll|||I|||I|l|||l|||ll||llﬂn|l "O g
______ ~N
"~ | &0 o|?
O | Quin ug;mmlmmmmluumulmlmu w® ole
n Ouuﬁ% u'TLTmuumumlmn|||||m|muu|| 1)) :
< Ouuﬂl uTmandnmmnmmsgnfu® g ;
M ——
O|n

Cable Configuration for
Connection between
UniLab and DTE serial port

(Or use standard null modem)

March 25, 1987 Page 8-9 -- TroubleShooting --

-- Solutions in Depth --

Program hangs on initialization some of the time, not all of the
time ‘
Quick Check:
-- Are your cables poorly connected? Check the
UniLab-to-host RS-232 cable, and see page 8-8.
-- Are you running a background task, or a program that
tries to write to the screen? See below.
-- Does your AUTOEXEC.BAT file set up a background task
when you turn on the computer? See below.

WHY
Your real-time clock interrupt might cause RS-232
problems. The UniLab software can miss characters if
too much time is going to process interrupts. One
common cause of such problems is on-screen clock
display utilities from programs such as Side-kick. If
the clock interrupt routine does anything
time-consuming, like writing to the screen, it can
affect communications with the UnilLlab.

WHAT TO DO
Do not run desk accessories or background tasks such as
a print spooler, on-screen clock display, alarm clocks,
or multitasking, if you find that they affect the
communications with the UnilLab.

Take a look at your autoexec file, with the DOS command
TYPE AUTOEXEC.BAT, to see if a background task has been
set up to start automatically.

~-- TroubleShooting -- Page 8-10

-- Solutions in Depth --

RS-232 error message: "RS-232 Error #XX"
Quick Check: '

WHY

WHAT

-- Poorly connected cable? Check the UniLab to host
cable and see page 8-8.

-- Running a background task or desk accessory program?
See previous page.

-- Two serial ports on your computer? Are they
configured to two different addresses? See below.

-- Need to examine the RS-232 port of computer? See
below.

The program running on your host sees incorrect data
coming back when it tries to talk to the UniLab. The
hex number following the # sign indicates what the
error is.

All RS-232 messages are checked with a 16-bit checksum
and acknowledged with a single ACK (06) byte. Errors
are signaled with other single-character responses as
follows:

9B Timeout error

Al Overrun or framing error
69,70,75, 7C Checksum error

2D Length error

54 Load address error.

Other error codes indicate that the host is not
receiving the UniLab transmissions correctly. For
example, a 9600-baud host will usually get error CC or
FC from a 19,200-baud UniLab, while a 19,200 baud host
connected to a 9600-baud UniLab will usually get error
9E or FE.

TO DO

March 25,

If you have two ports that might be "jumpered" to the
same address, open up your computer and look at the
boards that connect to the DB-25 connections on your
computer. One or both boards should have a group of
eight pins, as shown on the next page. This set of
jumpers is different from the set that determines
whether your port tries to talk to a DTE or a DCE,
which are explained on page 8-9.

1987 Page 8-11 -- TroubleShooting --

-- Solutions in Depth --

Typical pin arrangement on
Serial port board

When the pins are jumpered as shown, then the port will
be COM1. If the pins labeled 2 are joined, then the

port will be COM2. If both ports are trying to be the
same port, then you will have a bus contention problem.

To run a diagnostic test on your RS-232 port, first
disconnect the UnilLab from the host. Try sending single
characters from within the UnilLab program. You will
have to jumper pins 2 and 3 on the DB-25 connector of
your computer. Then type INITRS232 to get the port
ready. 30 SEND will then send out a 30 on the serial
port. Since pins 2 and 3 are jumpered together, the
same port should receive a 30. Type

RCV . to see what was received.

Try sending other numbers as well. If the port works
fine, then you should suspect that pins two and three
are reversed on that port. You can take care of this
by putting in a null modem that switches pin 2 to pin 3
and pin 3 to pin 2. Pin 7 carries ground, and no other
connections are necessary. See diagram below.

Another way to check the port. Put an oscilloscope on
pin 2 of the DB-25 connector, and then follow the
procedure above for sending characters. You will see
on the oscilloscope whether or not signals are being
sent on pin 2.

-- TroubleShooting -- Page 8-12

== Solutions in Depth --

STARTUP does not work -- never get to see trace, or see trace
filled with garbage
Quick check:

WHY

-- Unilab turned on and initialized? Turn it on now,
then issue command INIT.

-- LTARG has been loaded? 1Issue the command LTARG.

-- RES- wire not connected properly? See below and
explanation in section 3 of Chapter One.

-- Are address lines properly hooked up? See below.

~- Error message: '"NO ANALYZER CLOCK" ? See page 8-15.

-- Do you have an 8051 family processor? These require
a positive going reset signal. See your Dis-
assembler/DEBUG Target Application Note, or
Section 3 of Chapter One.

STARTUP watches for the reset address on the bus, and
then lets the trace buffer fill up before freezing the
trace. The trace buffer will never be displayed on the
screen if a proper reset never occurs, or if the lines
the UnilLab uses to sense the address have not been
hooked up properly.

WHAT TO DO

March 25,

Check the reset wire. First check it visually-- make
certain that it has been connected to the Resistor-
Capacitor circuit, that in turn drives the logic gate
which drives the reset pin or your microprocessor. See
below. Then check at the reset pin of the processor,
with a logic probe or oscilloscope, to make certain the
chip gets a good reset signal from STARTUP.

+5Y

4.7 K ohms

LS14

T>o—> To Reset Pin of
8051 Family processor

Connect RES- wire
from UniLab here

Typical Reset Circuit necessary
for 8051 family processor

1987 Page 8-13 -- TroubleShooting --

-- Solutions in Depth --

Check the address lines.

Make certain that the ROM
cable makes a good connection in the socket on your
board, and that the extra address lines, if any,
connect to the DIP clip at the proper pins.
Connect RES- wire

from UniLab here

\V4
. 191 cLk
CLK
+S 8086
8284A PROCESSOR
CLOCK GEN.
RESET|-2 21 ¥ RESET
10KQ out IN
\
/11 o
+
=L 33uF

Typical "power on reset circuit” for
Intel microprocessor, showing cpnnection
of RES-line from Unilab |

+5Y

15K
1N914
Connect RES- wire

Lol
from UniLab here —> {>c

@oe To RESET PIN

of Microprocessor
I47 HF

Typical

"power on reset circuit” for
780 microprocessor, showing connection

of RES- line from Unilab

-- Solutions in Depth --

Error message: "NO ANALYZER CLOCK"
Quick check:
-- Power supply connected to target, and power on?
-- Do you have the correct analyzer cable? Use PINOUT,
and compare the identifying letter (A, B, etc.) to the
letter on your analyzer cable.
-~ Bad timing wire connections? See below.
-- RES- wire not connected properly? See pages 8-13
and Section 3 of Chapter One.
-- Target system has gone to sleep? See below.

WHY
Usually the result of a bad target board or a bad
connection-- the UniLab does not sense the control
signals from the microprocessor, which tell it when the
bus contains valid data and when it holds a valid
address. If the power is not on, or the processor is
doing nothing because it has not seen a reset, then
there will be no clock.

The same symptom will result if the target system
receives a command to wait or stop. This could happen
if there is a bad data or address line, or if the
target board does not restart because of an improperly
connected reset signal.

WHAT TO DO
Bad timing wires. Double-check all the inputs to the
UniLab that sense the timing signals. These are K1-,
K2-, RD-, and WR-. Check these signals with an
oscilloscope, to make certain that they are active.

You can also check the derived signal, TCY', at pin 35
on the analyzer connector of the Unilab.

RD- _—_g§>_% TO ANALYZER CLOCK
WR-

CLOCK LOGIC FOR MOTOROLA
PROCESSORS

March 25, 1987 Page 8-15 -- TroubleShooting --

-= Solutions in Depth --

Target system asleep. Hit any key to stop the search
for trigger, and then use the command TD to dump the
trace. Look at the bottom of the trace, and see if the
processor executed a halt command.

If it did, then check the address of the code that told
the processor to stop. Is that an address that the
processor should reach? If you use DM to disassemble
from memory, is the opcode commanding a halt actually
there?

If the program should not get to the code address
where it reads the halt, check the RES- wire. See two
pages back. You should also check the address lines.

If the address is correct but the data is wrong,
check the data lines.

WR-

Kt- —
K2- —©

CLOCK LOGIC FOR INTEL
PROCESSORS

TO ANALYZER CLOCK

-- TroubleShooting -- Page 8-16

-- Solutions in Depth --

Program runs, UniLab traces, but reads bad data from stack
Quick Check:
-- Stack pointer not pointing at correct
location? See below.
-- RAM chip bad? See below.

WHY

" The test boards that we use at Orion have RAM at some
location in the memory map. The program loaded into
emulation memory by the LTARG command was developed for
our test boards.

But you might very well not have RAM at the address
range where the Orion boards have RAM.

WHAT TO DO ‘
To determine whether the stack pointer is okay, look at
the first few lines of the trace, where the stack
pointer gets initialized. Check the value of the stack
against the addresses on your board that are occupied
by RAM. Remember that the stack grows by decrementing
the pointer,

If the stack pointer needs a different value, use the
UniLab command <word> <addr> MM!. You use that
command to change the program memory. It pokes a new
16 bit word into emulation ROM. Or use the line-by-
line assembler, ASM, to change the instruction.

You will want to change the address field of the
instruction that initializes the stack pointer. You
should patch the program, so that the 16- bit address
of the stack pointer points to RAM.

If the stack pointer points to RAM, but you still get
bad values off the stack, you should suspect that you
have a bad RAM chip. Try swapping in a new chip. If
the bad values continue, then start checking your data
and address line connections, both between the board
and UniLab, and on the board.

March 25, 1987 Page 8-17 -~ TroubleShooting --

-- Solutions in Depth --

Program runs and UniLab traces, but does not disassemble properly
Quick check:)
-- First address of trace is not reset address? You
might have an improperly connected reset wire.
See page 8-13.
-- No disassembly at all? See below.
-- Clock speed of target board too high? See below.
-- CONT column correct? See below.
-- Correct disassembler for microprocessor? See below.
-- Correct cable for microprocessor? Double-check it.
-- Cable wired to DIP CLIP correctly? See below.
WHY
The UniLab listens to the bus, and interprets each 8-
bit value it sees as opcode, data, or address,
depending on the control signals it reads from the
microprocessor. It then tries to disassemble the
commands it sees, based on the disassembly table.

If you don't have all the wires connected properly, or
you have the wrong disassembler, or you don't have the
disassembler turned on, then you will not see what you
expect.

WHAT TO DO
If the first address of the trace is wrong, then there
is no point in looking at anything else, The only
thing that matters is the first wrong step. Look at
page 8-13.

If you think that you need to enable disassembler, just
type in the command DASM.

If the target system clock is too fast for the UnilLab,
then some bus cycles will be skipped. Check for
missing addresses in the fetch stream.

If the left digit of the CONT column is different from
the sample trace, then the UniLab software does not
know whether each bus cycle is a read, a write, or a
fetch. That digit is generated by K1-, K2-, RD-, and
WR-.

If you don't have the proper disassembler for your
processor, then it's a surprise that you have gotten
this far. Type the UniLab command PINOUT to find out
what processor your software thinks it supports.

To check that you connected to the DIP clip correctly,
look at the connection diagram which appears in each
DDB Target Application Note.

-- TroubleShooting -- Page 8-18

-- Solutions in Depth --

Program runs, UniLab traces properly, but cannot set a
breakpoint-- gives a "DEBUG Control not established" message
Quick Check:
-- Are you trying to set a breakpoint at address 0?
This is not allowed-- try another address.
-- Does the analyzer work correctly? See below.
-- Does the emulator work correctly? See below.
-- Stack pointer points to RAM? See below and
page 8-17.
-- Breakpoint set in code after stack pointer
initialized? See below.
WHY

The UniLab sets breakpoints by preserving the byte at
the address you specify, and inserting an absolute jump
instruction, or a software interrupt. When the target
system reaches that code, control gets passed to our
idle register. The idle register asserts a jump
instruction on the bus, which causes the processor to
jump to the beginning of the jump instruction. The
idle register thus holds the processor in an infinite
loop. :

Meanwhile, the UnilLab software uses "an overlay area"
in ROM, putting a routine there to save and read the
state of the processor. (HO tells you where the
overlay area is for your processor.) The idle register
then changes, to assert a jump to the overlay area,
which ends in a jump back to the idle register.

All this swapping of control requires that the
functions of the analyzer and emulator already work
properly, and that the stack pointer points to
functioning RAM.

WHAT TO DO
If either the analyzer or emulator does not work
properly, then you must get those functioning before
you try to set a breakpoint. Especially, read/write
cycles must be properly identified-- which means that
the disassembler must be working.
On processors with an external stack, if the stack
pointer does not point to a good RAM chip, then you
will not be able to set a breakpoint. Look at the
trace that results from STARTUP, paying special
attention to the POPs off the stack. Does the same
data you push on the stack come back off it? If not,
turn to page 8-17.
You must not set a breakpoint until after the stack
pointer has been initialized. Try setting the
breakpoint at the example address shown in the Target
Application Note for your DDB software.

March 25, 1987 Page 8-19 -- TroubleShooting --

-=- Solutions in Depth --

Program runs, UniLab traces properly, but cannot set a
breakpoint-- hangs with red light next to Analyzer socket on

until key

pressed.

Quick Check:

WHY

WHAT

-- Can you set a trigger on the breakpoint
address? (That is, does program actually reach
that address?) See below.

The UniLab sets a breakpoint at the address that you
specify. It sets the break point by swapping in a
special code at that address.

When the microprocessor hits that code, it behaves like
a train sent onto a siding in the train yard. But if
you don't specify the address of the first byte of an
opcode, then the microprocessor gets derailed.

TO_DO

Are you setting a breakpoint at the start of an opcode?
Double-check this by setting a trigger on the address
at which you are trying to set a breakpoint. The
UniLab command is NORMT <{address> AS. If you cannot
set a trigger on the address, then that address is not
the start of an opcode. Try a byte or two in either
direction.

-- TroubleShooting -- Page 8-20

-- Solutions in Depth --.

NMI does not work-- get "DEBUG control not established"
Quick Check:

WHY

WHAT

-- Does RESET <addr> RB work? Check this before you
try to use NMI. See previous two pages.

-- Intermittent problem, after working for a while.
See below.

-- RB consistently works, but NMI doesn't. See below.

The NMI command sends a hardware interrupt signal to
the target processor. For this feature to work, you
need to have the NMI- wire from-the UniLab properly
connected to the target system. Some processors lack a
non maskable interrupt and so the NMI- signal from the
UniLab gets connected to an IRQ (interrupt request)
pin.

TO_ DO

March 25,

Intermittent problem. If the NMI stops working in the
middle of a DEBUG session, it is possible that the
UniLab has lost DEBUG control, but the host software
doesn't realize it. Try using the command IDLE' and
then NMI.

NMI doesn't work. First try it with the LTARG programn.
Some processors need to have some interrupt control
registers set up for the NMI. NMI won't work unless
you put the commands to set up those registers into
your target software.

If NMI does not work with LTARG, then check the
connection of the NMI- wire to the target. If that
seems correct, use an oscilloscope to look at the NMI-
signal. Does it go low when you issue the NMI command?
Does the signal reach the processor pin? -

You might also want to make certain that the processor
responds to an NMI- signal properly. Use Ctrl-F3 to
get the address of the reserved ares, and set a trigger
on it with RESET NORMM <addr> ADR 8. Then use a wire
to momentarily connect the NMI (or IRQ) pin of the
processor to ground (or to the source voltage if active
high NMI). This should cause the processor to go to
the hardware interrupt vector and then from there to
the reserved area.

Look at the trace to see what happened. If the UniLab

does not trigger, look up the hardware interrupt vector
address and set a trigger on that address.

1987 Page 8-21 -- TroubleShooting --

-- Solutions in Depth -~

Bad input

buffers on the UniLab, as if an IC has been blown

Quick check:

WHY

WHAT

-- Does the UniLab mysteriously show bad data coming
in? Do some inputs always show up as high or as
low, even if you apply a different voltage
directly to the UniLab input? See below.

If you blow one of the input buffers-- by frying it
with a high voltage, or through some other mishap--
then the IC will be damaged.

All ICs with external inputs are socketed, so they can
easily be replaced.

TO DO

Make certain that you know what the problem is.
Connect the suspicious input to ground, and then
capture a trace. Connect the input to +5 voltage, and
capture a trace. Inspect both traces to determine
whether or not the input responds to the actual state
of the circuit that it is meant to measure.

If you have a blown IC. Either send it to Orion for
repair work, or replace the ICs yourself. All the
Orion chips are standard pieces. All chips with
external inputs are socketed for easy replacement.

Inputs: Chip # on board: Input Group:
AQ-A7 U14 LADR
A8-A15 U15 HADR
D0-D7 U9 DATA
D8-D15 U8 HDATA
MO-M7 u7 MISC
C4-C7 U6 CONT

-- TroubleShooting -- Page 8-22

-- Solutions in Depth --

Screen flickers when you use PgUp key to look at line history
Quick check:
-=- Issue the command CLEAR. Then use
SAVE-SYS to save the altered system.

March 25, 1987 Page 8-23 -- TroubleShooting --

LIST OF APPENDICES

Appendix A: UniLab Command and Feature List

Appendix B: Sources of Cross Assemblers and C Compilers
Appendix C: Cabling Chart

Appendix D: Custom Cables

vAppendix E: UnilLab II Specifications

Appendix F: Writing Macros

Appendix G: EPROMs and EEPROMs Supported

Appendix H: Microprocessor Support

Appendix I: System Messages

Appendix J: «BIN Files and .TRC Files

Appendix A

UniLab Command and Feature List
This alphabetical list of the UniLab

commands includes the page number of its

entry in Chapter Seven.

IO NOS~NO0OONONITNWOS
—errrr e NANNANNNN
LI T R R R R R RO N N RO N NN N S NN R N N N S SN DN I R A R R S R SR D A A B B R R B

L] L L4 L . [] L) L] L]] . L] e . . ° . ° L] [] L] [] [] L] .] L] [[L] L] .]] L] . L . L

? (] [] L] o L L [] .] L] L] . . L] [] L] (] L L] L] * L]] L]] L] L] L J L] [] [] L] [] ° L] * L []

O

* 8 @ o o s e o o o e DN e ¢ s s e & eI DM e o+ ¢ o[1] o o & o e o o e o

s 3 es) = (D) 1©]

MR o o o o e DO IO . e NN o e & o o ¢ s e s> o [Ne)
HMER A PDEKAOEBRR o B =] o< N Jd=m
HNBHBBHNM ¢« o NOBRSHNKD &HWNO 1| O =N+ o JUIXX LD
N ey HW NUOSHS>CHEEBHEHOEERE>DY UM 5 XX ZZEOHORABH0R
WL LM FEARMZDONENAARITASHZNNNNND D3R oHHMMA MM
—e—NMOMNeoonv 1 U I I LI LI OMMMMMUOU

-- Appendix A --

Page A-1

1987

March 25,

-— Command List --

CLEAR'

CLRMBP

CLRSYM .

> ®

COLOR
comMi

COM2

»

CONT .

®

CONTROL

CTRL-FKEY

CTRL-FKEY?
CYCLES?
D#

-

DASM .
DASM'

L2

DATA .

DCYCLES
DEFW .
DM .

DMBP
DN

DOS

EMCLR

EMENABLE

E

- ®

iSTAT
iVENTS
FETCH

E

?

o]

FILTER
FKEY

FKEY?
G

GB

L

GW .

H>D

HADR .
HDAT

HDATA
HDG

HDG'

HELP .
HEXI.OAD

°

HEXRCV .,
HLOAD
HSAVE

INFINITE
INIT
INT

INT'
IS

LADR
LOG

Page A-2

-- Appendix A --

-- Command List --

e « 7-98
7-99
.7-100
.7-101
.7"‘1 02
.7-103

@

LOG'
LP

LTARG
M

[o

M?

MAPSYM

MAPSYM+
MASK .

O MM NOD
Ll e
= T oo

(o))
—
p—

NSNS

MCOMP
MDUMP

-

L

MEMO .
MENU

.

MESSAGE
MFILL

.
L]
-
.
®

MHIST
MISC
MISC'

MLOADN
MM

1.
(o]
-
!
~

MM!
MM?

.7-122

«7-123
.7-124

«7-125
e 7-127

MMOVE

MODE .

MODIFY .

MS
N

NDATA
NMI

NMIVEC .
NMIVEC'

NO

.7-132
.7-133
.7-134
.7-135
.7-136
.7-137
.7-140
<7141
.7-141

NORMB

NORMM
NORMT
NOT

NOW?

ONLY .
ORG

PAGEO
PAGE1

PAGINATE
PAGINATE'

PATCH

L2

PCYCLES
PEVENTS
PINOUT
PRINT

«7-145

.7-146
.7-147

. 7-147
«7-147

PRINT'

PROMMSG

Page A-3 -~ Appendix A --

1987

March 25,.

-~ Command List --

Q1

e L3 »]
© - L ©

Q2
Q3

QUALIFIERS

RB .

READ .
RES

RES-

RESET

RESET'
RI

RMBP
RSP

RSP'
RZ

® 6 o 8 9 6 & 8 @ 9 o & O T 0 0 8 8 B O ° 8 ° 0 ° e 0 0 9 0 ° & o v 0
@ ® © e 8 ¢ 8 o & 0O 6 e & & e 9 S © ® 8 9 & B S & 5 9 O s o s s 2 0
¢ o @ & 6 © 6 6 0 © ® 9 9 9 & 6 B S 0 e 6 5 & 0 ° *t 8 2 0 O O ° 0 o o
® o e o = o o ® © ¢ & © e © 9 9 e ® 8 e & e ¢ ® o © & 0 e 0o et o O o
~
(] e o o 0 [] .O L . L] [] s @ [] ¢ o s o 2 L] L L I L I e @ e o o o o L[] L]
=
e o o o 0o o ¢ o e 8 0 6 0 6 6 8 © 0 e o e o & & 6 o 8 9 * 0 o *
O Qe
e o o o o o I D4 o ¢ o 0 o 8 o & 0 2 o o 1] s e e & o e e o s 0
neniiii] bt
o o o) ¢ e OMNMN, & o o o o e o @ s o o (O) o o o + o
>~ 3 <Gy - (= aTR=)] cajgea] SRR
¢ s o) e s OM I I - - o o s[O][] o o <D ¢« dAaAXung>
i VOUERBERUDULEZ= V0D B pmABHD - HAHHHHOS
o e[o I T RS +v M o> HZ20000GLdd4d0
M"v HEHEHHOOOO MDD }ABHBECAKHESESSES == =223
+ SO NEOEODEHNDHS0O0OOMUWUUWEHEEMX XXMM HMM
ORORORGROROROEORGRORORORGROROROROEGREOROROGROROROROROROROROROROBORORG RO

Page A-4

~-- Appendix A --

~- Command List --

.7-186
«7-187
.7-188
.7-189
«7-190
«7-191
07_1 92
«7-193
«7-193
«7-194
«7-195
«7-195
.7-196
e7-197
«7-197
.7-198
«7-199
«7-200
«7-201
. 7-202
«7-202
«7-203
«7-203

L

. L

SYMTYPE

T

L] -

TCOMP
TD

°

TEXTFILE
THIST
TMASK
TN

TNT

TO

L]

TOFILE

TOFILE'

TOP/BOT
TRAM
TRAM'
TRIG

TS

L) L]

TSAVE
TSHOW
TSTAT
TX

L

WORDS

WSIZE

Page A-5 -- Appendix A --

1987

March 25,

Appendix B:
Sources of Cross Assemblers and C Compilers

The UniLab software is designed to work with any assembler
or compiler. The only thing the UnilLab needs is the object code
in either binary format or INTEL hex format.

Even this hurdle can be overcome with one of the various
conversion programs on the market. For example, Avocet has a
product which converts Motorola S-records into binary format.
See the Vendor listing for Avocet below.

As a service to our users we have compiled the following
list of inexpensive cross assemblers and compilers. The two
character appreviations indicate the sources listed on the
following pages. We would appreciate any user feedback so that we
can keep this list current.

ASSEMBLER COMPILER
PROCESSOR SUPPLIERS SUPPLIERS
1802/5 25 AV MI WE AA EN RE SD UW
6301 25 AV CY EN LO RE UW IT AR
6305 AV MT RE
6502 25 AV LO MI EN RE SD MX
6800/2/8 25 AA AV MI DM EN LO QU RE SD UW
6801/3 25 AA AV DM EN LO MI RE SD UW AR IT
6805 25 AV DM EN LO MI RE SD UW IT
6809 25 AV DM EN LO MI RE SD UW IT
68000 25 AV EN LO QU RE SD UN UW MX IT MT LA UW
68HC11 AV CY LO RE SD UW AR IT
NSC800 25 EN RE MT
8048-50/41 25 AA AV CY LO MI RE SD UN
8051/31 25 AA AV CY LO MI RE SD UN US UW AR MC
8080 EN LO UN
8085 25 AA AV CY EN LO MI RE SD UW MT
8086/8 25 AV CY EN SD SP SW UN UW MX MS MT LA
8096 25 AA AV CY LO UN
Z-8 25 AV AA CY EN LO RE SD UW
Z-80 64180 25 AV AA EN LO MT RE SD US UW MX KY LA
Z-8000 25 EN RE UN

Vendor List begins on next page.

March 25, 1987 Page B-1 -- Appendix B --

VENDORS

NOTE:

All prices are approximate. Contact the vendor

directly for latest information. This listing is a service to
our customers, and does not constitute a recommendation.

25

AA

AR

AV

) 4

DM

EN

FA

2500AD Software Inc.

17200 East Ohio Dr.

Aurora, CO 80017, (303) 369-5001.
Eight-bit versions are $199.50, 16-bit are $299. They
include recursive macros, nested conditional assembly,
listing control, and a linker.

Allen Ashley

395 Sierra Madre Villa

Pasadena, CA 91107, (818) 793-5748.
Resident editing capability, assemble to memory. $150.
Macro/relocatable versions also available for $250.

Archimedes, (415) 771-3303. C cross compiler for 8051. §$851.

Avocet Systems Inc.

120 Union Street

PO Box 490

Rockport, ME 04856 (800) 448-8500.
$200 for CP/M-80 or MS-DOS versions. $500 for the NEC
7500 and 68000.
HEXTRAN converts Motorola S-records to binary format.
$250.

Cybernetic Micro Systems
P.0O. Box 3000
San Gregorio, CA 94074, (415) 726-3000.
Conditionals, Macros. $295. Written in 8088 assembler.

Decision MicroSystems Co.
Box 120783
Nashville, TN 37212, (615) 320-7221. $210.

Enertec Inc.
19 Jenkins Ave.
Lansdale, PA 19446, (215) 362 0966. $250 and up.

Farbware
1329 Gregory
Wilmette, IL 60091.
Structured macro assembler $200.

-- Appendix B -- Page B-2

IT

KY

LA

LO

MC

MI

MS

NOTE:

Introl, (414) 276-2937.
C cross compiler for 6801, 6301, 6805, 6809, 68HC11,
68000, 68020. $1950.

KYSO, (503) 389-3452.
C cross compiler for Z80.

Lattice, (312) 858-7950.
C cross compiler for 68000, 8088, Z80. $500.

Logical Systems

6184 Teall Station

Syracuse, NY 13217 (315) 457-9416
Cross-assemblers for a variety of processors.

MicroComputer Control, (609) 466-1751.
- C cross compiler for 8051. $1495.

Midwest Micro-DelTek, Inc.

5930 Brooklyn Blwvd.

Brooklyn Center, MN 55429, (612) 560-6530.
Limited macros, cross reference, conditionals, 1K of
object/minute. $300.

MicroSoft

10700 Northup Way

Bellevue, WA 98004. C compiler for 8086, 8088. $495.

As of release 4.0 of their software, MicroSoft does not make
ROMable code directly. You can purchase utilities which are
supposed to make the output of the MicroSoft compiler into
ROMable code.

Microtec Research is not the same as "Microtek." The

MicroTek symbol table format refered to in the SYMTYPE menu is
compatible with the "MicroTek/New Micro" products.

MT

NM

Microtec Research

Box 60337

Santa Clara, CA 94088, (408) 733-2919.
C cross compiler for 68000, 68008, 68010, 68020. $1750.
C cross compiler for 8085, 280, 64180, 8088, 8086,
80188. $1550.

MicroTek/New Micro
Supports a wide variety of processors. Call for latest
product availability. (213) 538-5369.

March 25, 1987 Page B-3 -- Appendix B --

MX

PC

QU

RD

RE

*SD

SE

SW

UN

Us

Manx Software Systems

One Industrial Way

Eatontown, NJ 07724, (800) 221-0440.
C cross compiler for 8086, 68000, 8080, 280,
$750.

Program Concepts Inc.
P.O. Box 8164
Charlottsville, VA 22901, (804) 978-1850. $595.

Quelo
843 NW 54 th St.
Seattle, WA 98107, (206) 784-8018.

Macros, conditionals, linker, cross ref, in C,

RD Software
1290 Monument St.
Pacific Palisades, CA 90272, (213) 459-8119.

6502.

$300.

This is based on one that appeared in Dr. Dobb's

Journal in June 1981 and April 1982. $200.

Relational Memory Systems
PO Box 6719
San Jose, CA 95150, (408) 265-5411.
Three different prices:
Macro assembler, non-relocatable. $139.

Relocatable code for 8-bit systems. $395.

Relocatable code for 16-bit systems. $495.

Software Development Systems

3110 Woodcreek Dr.

Downers Grove, IL 60515, (312) 971-8170. $295
Relocatable code, macros.

Seattle Computer Products, Inc.
1114 Industry Dr.
Seattle, WA 98188, (206) 575-1830. $95.

Speedware
9719 Lincoln Village Drive, Ste. 303
Sacramento, CA 95827, (916) 361-8664. $99.

With resident editor similar to Turbo-Pascal.

in 8088 assembly language for speed.

Unidot Inc.
602 Park Point Dr. #225
Golden, CO 80401, (303) 526-9263.

U.S. Software Corp.
5470 NW Innisbrook Pl.
Portland, OR 97229, (503) 645-5043.

-- Appendix B -- Page B-4

Written

UW UniWare
Software Development Systems
3110 Woodcreek Dr.
Downers Grove, IL 60515, (312) 971-8170.
8 and 16-bit cross-assemblers, $295.
C cross-compiler for 68000, $595.

WE Westico .
25 Vanzant St.
Norwalk, CT 06885, (203) 853-6880. $225 Macro, $225 Linker.

WW Western Wares
Box C,
Norwood, CO 81423, (303) 327-4898. $395.

All of the Intel Series III MDS software can be run on the
IBM PC with the UDI package from Real-Time Computer Science
Corp., P.O. Box 3000-886, Camarillo, CA 93011, (805) 482-0333
($500), or the ACCESS package from Genesis Microsystems, 196
Castro St., Mountain View, CA 94041, (415) 964-9001.

March 25, 1987 Page B-5 -- Appendix B --

PROCESSOR:
CABLE

Cable
wires:
A11
Al12
A13
Al4
A15
*RES -
*ANMI -
" GND
RD-
WR-
K1-
K2-
ALE
Cc7
C6
C5
C4
A19
A18
A17
A16
AQ

+ at the
* RES-
RES-

Both

Appendix C:
Cabling Chart

1. Non-Piggyback chips C-1
2. Piggyback chips c-7
1802 | 16032 | 6301X0+| 6303R | 6303Xx | 6502 | 6800 |
g c b b b b b
12 26 26 38 20 20
11 25 25 37 22 22
10 24 24 36 23 23
9 23 23 35 24 24
8 22 22 34 25 25
3 34 6 6 6 40 40
36 45 4 4 8 6 6
20 25 1 1 1 1 21
7 33 40 40 64 39 37
35 5
33 37
5 40 38 38 61 34 34
6 41 60 7
42 63
43 62
4
5
6 ,
7
2

)

end of the processor name indicates expanded mode or max
mode

and NMI- are open collector outputs. Often they cannot be
connected directly to the processor.

usually needs to be connected to the capacitor on the reset
circuit that drives the processor pin.

NMI- and RES- sometimes connect to processor pin through an

inverting circuit, as indicated by inv.

March 25,

1987 Page C-1 -- Appendix C --

6805E2
PROCESSOR: 68000 | 68008 | 6801+ | 6802] 6805E3 | 6809E |

CABLE P P b b b b
Cable
_wires:
A1 39 9 26 20 16 19
A12 40 10 25 22 15 20
A13 41 11 24 23 gnd 21
Al14 42 12 23 24 gnd 22
A15 43 14 22 25 gnd 23
*RES-~- 18 37 6 40 1 37
*NMI- 23 42 4 6 2 2
GND 53 15 1 21 20 1
RD- 14 13 40 37 4 34
WR- 5
K1- 10 31 :
K2- 6 28
ALE
c7 9 30 38 34 5 5
) 26 43 7 3 32
C5 27 44 38
c4 28 45 36
A19 47 19
A18 46 18
A17 45 17
A16 44 16
A0Q 7 46
+ at the end of the processor name indicates expanded mode or max
mode
* RES- and NMI- are open collector outputs. Often they cannot

be connected directly to the processor.

RES~- usually needs to be connected to the capacitor on the
reset circuit that drives the processor pin.

Both NMI- and RES- sometimes connect to processor pin through
an inverting circuit, as indicated by inv.

-- Appendix C -- Page C-2

PROCESSOR: 68HC11 | 80186 | 80188 | 80286 | 8031+ |

CABLE b a a i t
Cable
wires:
Al1 13 10 10 20 24
A12 12 7 7 19 25
A13 11 5 5 18 26
Al4 10 3 3 17 27
A15 9 1 1 16 28
*RES- 39 24 24 24 inv9
*NMI- 40 inv46 inv46 invdo 12
GND 26 26 9 20
RD- 27 62 62 (11) 29
WR- 63 63 (9) 16
K1- 40 40 (17) 17
K2- 39 39 inv(16) 31
ALE 61 61 (5) 30
Cc7 " 28 54 54 67
Cé6 25 53 53 4
C5 52 52 5
Cc4 66
A19 65 65 12
A18 66 66 13
Al17 67 67 14
Al6 68 68 15
A0 17 34

+ at the end of the processor name indicates expanded mode or max
mode
() indicates a bus controller pin
inv connect to processor pin through an inverting circuit
* RES- and NMI- are open collector outputs. Often they cannot
be connected directly to the processor.
RES- usually needs to be connected to the capacitor on the
reset circuit that drives the processor pin.
Both NMI- and RES- sometimes connect to processor pin through
an inverting circuit, as indicated by inv.

March 25, 1987 Page C-3 -- Appendix C --

PROCESSOR: 8048+ | 8080 | 8085 | 8086 | 8086+ |

CABLE e h a a 1
Cable
wires:
A11 24 40 24 5 5
A12 gnd 37 25 4 4
A13 gnd 38 26 3 3
Al4 gnd 39 27 2 2
Al15 gnd 36 28 39 39
*RES- 4 12 36 21 21
*NMI- 6 invé inv17 inv17
GND 20 2 20 20 20
RD- 18 32 32 (11)
WR~ 10 31 29 { 9)
K1- 8 { 1} 1M1 27 (1)
K2- gnd { 6} 3 24 (4)
ALE 17 30 25 (5)
Cc7 4 34 28 28
Ccé6 3 27
C5 9 29 26
Cc4 10 33
A19 35 35
A18 36 36
A17 : 37 37
Al6 ‘ 38 38
AQ 16 16

+ at the end of the processor name indicates expanded mode or max
mode
() indicates a bus controller pin
{ } indicates a clock controller pin
inv connect to processor pin through an inverting circuit
* RES- and NMI- are open collector outputs. Often they cannot
be connected directly to the processor.
RES- usually needs to be connected to the capacitor on the
reset circuit that drives the processor pin.
Both NMI- and RES- sometimes connect to processor pin through
an inverting circuit, as indicated by inv.

-- Appendix C -- Page C-4

PROCESSOR:
CABLE

Cable
wires:
A11
A12
A13
Al4
Al15
*RES-~
*¥NMI-
GND
RD-
WR-
K1-
K2-
ALE
Cc7
- Cé6
C5
c4
A19
A18
A17
Al16
A0

+ at the

() indica

inv conne

latch

* RES-
RES-

Both

March 25,

8088 | 8088+ | 8096 | HD64180 | NSC800 |
a 1 r e g
5 5 24 4
4 4 latch30 25 5
3 3 latch31 26 6
2 2 latch32 27 7

39 39 latch33 28 8

21 21 62 7 33
inv17 invi17 inv7 8 21

20 20 42 1 20

32 (11) 17 63 32

29 (9) 38 62 31

27 (16) 9 61 26

24 (4) 58 37

25 (5) 16 30

28 28 /

27 -
34 26 29
15 27

35 35 59 34

36 36 31

37 37 30

38 38 29

16 latchi18

end of the processor name indicates expanded mode or max
mode

tes a bus controller pin

ct to processor pin through an inverting circuit

attach the UniLab wires to the outputs of the latches,
not directly to the processor pin.

and NMI- are open collector outputs. Often they cannot
be connected directly to the processor.

usually needs to be connected to the capacitor on the
reset circuit that drives the processor pin.
NMI- and RES- sometimes connect to processor pin through
an inverting circuit, as indicated by inv.

1987 - Page C-5 -~ Appendix C --

(8800) (8681/82) (8400)

PROCESSOR: SUPER 8 | z-8+ | 2Z-80 | 28001 | 28002 |
CABLE d d e c C
Cable
wires:
A11 45 16 1 4 3
Al12 44 17 2 5 4
a13 43 18 3 6 5
Al4 42 19 4 10 9
Al15 41 20 5 9 8
*RES- 30 6 26 16 14
*NMI - 23 25 17 15 13
GND 34 11 29 36 31
RD- 37 8 21 19 17
WR- 22
K1- 27
K2- 20
ALE 34 29
c7 31 7 30 25
(ol 20 18
c5 21 19
c4 23 20
A19 19
A18 .
A17
A16
A0 1 40

* RES- and NMI- are open collector outputs. Connect only to
appropriate points. (NMI- needed only for certain DEBUG
operations) :

* RES- and NMI- are open collector outputs. Often they cannot

be

connected directly to the processor.
RES- usually needs to be connected to the capacitor on the
reset circuit that drives the processor pin.
Both NMI- and RES- sometimes connect to processor pin through
an inverting circuit, as indicated by inv.

-- Appendix C -- Page C-6

PROCESSOR:
CABLE

Cable

wires:
Al1
A12
A13
A14
A15
*RES-
*NMI -~
GND
RD-
WR-
K1-
K2-
ALE
c7
(o3

* RES- a

inv conne

rom A1l c

* RES-
be
RES-
reset
Both
an
RES-
RES-

Both

March 25,

2. Pigyback Chips

| HD63PO1 | 65/11EB | 65F11Q | 65/41EB| 68P01 |
n k k k n
rom rom 9 rom rom
join join 8 join join
together| together 60 together | together
A12-A15 A12-A15 61 A12-A15 A12-A15
7
6 20 6 20 6
4 22 23 22 4
40 21 44 40 40
1 3 45 3 1
40

nd NMI- are open collector outputs. Connect only to

appropriate points. (NMI- needed only for certain DEBUG

operations)

ct to processor pin through an inverting circuit

onnects through the ROM plug '

and NMI- are open collector outputs. Often they cannot

connected directly to the processor.

usually needs to be connected to the capacitor on the
circuit that drives the processor pin.

NMI- and RES- sometimes connect to processor pin through

inverting circuit, as indicated by inv.

and NMI- are open collector outputs. Often they cannot

be connected directly to the processor.

usually needs to be connected to the capacitor on the

reset circuit that drives the processor pin.

NMI- and RES- sometimes connect to processor pin through

an inverting circuit, as indicated by inv.

1987 Page C-7 -- Appendix C --

(8613/03)

PROCESSOR: | 68P05vV07 | 80C51vs | 87p50 | z8
CABLE m t f e
Cable
_wires:
Al1 rom rom rom rom
Al12 gnd gnd gnd gnd
A13 gnd gnd gnd gnd
Al4 gnd gnd gnd gnd
A15 gnd gnd gnd gnd
*RES- 2 inv9 4 6
*NMI- 3 12 6 25
GND 1 20 11
RD- 9
WR- i 10
K1- gnd 8
K2- 30 gnd
ALE 30
c7 7
Cé6

inv connect to processor pin through an inverting circuit
rom Al1 connects through the ROM plug
gnd ground these address lines
* RES- and NMI- are open collector outputs. Often they cannot
be connected directly to the processor.
RES- usually needs to be connected to the capacitor on the
reset circuit that drives the processor pin.
Both NMI- and RES- sometimes connect to processor pin through
an inverting circuit, as indicated by inv.

-- Appendix C -- Page C-8

Appendix D:
Custom Cables

How Cables Work

Problems with Decoded OE- Signals
Customizing Cables

Analyzer Connector Signals
Analyzer Cable Design

The ROM Cable

ROM Connector Signals

UniLab Circuitry

Analyzer Cable Schematics

UUUU?UUUU
== S OUT s W=

N-O

How Cables Work

The Sockets

The two 50-pin connectors on the front of the UnilLab bring
out extra signals so that operation of the instrument can be
easily altered to meet the needs of different processors.

Since clocking logic requirements vary from one processor
family to another, jumpers on the connector are used to make some
interconnections.

Altering Standard Cables

Standard ribbon cables are provided that will work for most
systems. In some cases, these cables must be reconfigured for
proper operation with your system.

Since the connections are all made by the same
insulation-displacement "U" contacts used in '"Scotchflex" and
"Quick-Connect" prototyping systems, they can easily be changed.
A special wire-insertion tool is included with your UnilLab for
this purpose.

The Analyzer Cable

The analyzer is internally connected to all of the signals
on the ROM cable. Any additional signals required for full
monitoring of bus operations are picked up by connecting patch
wires on the analyzer cable to your processor pins. This is
usually done with a 40-pin Dip-Clip. The wires can also be
plugged in to .025" wire wrap pins.

July 16, 1986 Page D-1 -- Appendix D --

Your UniLab comes with an analyzer cable that is configured
for the processor of your choice. You can alter your cable to
support other processor families, or purchase additional cables.

Problems with Decoded OE- Signals

Most of the analyzer cable configurations (all except B, H,
M, & N-- see the diagrams at the end of this appendix) assume
that you have a memory enable signal connected to the OE- pin of
the ROM socket into which the emulator cable is plugged. the OE-
pin is pin 20 of the 24-pin ROM, pin 22 of the 28-pin ROM.

If you have address decoding in this signal, or if this pin
is simply grounded, there may be problems.

The problem is that this signal is used as a low true master
enable for the emulator's tri-state data bus outputs. This
signal is necessary in systems that multiplex addresses over the
data bus to prevent the UniLab from getting on the bus while
addresses are being multiplexed.

Most of the cable designs connect this input to the OE-
signal on the ROM socket with a jumper between pins 42 and 39 on
the analyzer connector. (The OE- signal is passed inside the
UniLab from the ROM cable to pin 39 of the analyzer connector.)

If your target system has a ground or address decoding on
the OE- pin of the ROM socket, you may have to separately connect
pin 42 of the analyzer cable to an appropriate memory enable
signal. On Intel bus controllers this signal is called MEMR-.
Note that this signal also prevents the UniLab from getting on
the bus during I/0 cycles.

The problem with address decoding in the OE- signal is that

the UniLab will then be unable to emulate memory for other ROM
sockets. _

-- Appendix D -- Page D-2

Customizing Cables

Two special tools are included with the UniLab so that you
can easily modify the cables supplied. The first tool is
actually a # 16 wire brad with a piece of shrink tubing on it.
You can use it to open the connector by poking it into the space
at the end of the connector as shown below:

-1 PUSH NAIL POINT
INTO THIS ROLE

EACH END
D D WHILE HOLDING
O]

CONINECTOR B0DY

O |«
L=l il

Carefully release each end of the connector before you try to
remove the cover. Don't try to remove the cover without the nail
or you may break the plastic tabs!

" Wires can be disconnected by simply pulling them out of the
wedge in the connecting pin with small needle-nose pliers. A
special tool is included with your UniLab for pushing wires into
the connecting wedges (it looks like a tiny baseball bat). Note
that these connections are identical to the ones used on "Quick
Connect" , "Speedwire", and "Scotchflex" prototyping boards. The
drawing below shows the proper way to use the tool.

You can use #26-30 solid or stranded wire for making
connections. Wire-wrap wire works nicely. If you are jumpering
a probe wire across to a second pin (as on pins 21-22 in fig e),
hold the wire in place with your thumb while you use a small
needle-nosed plier to put the necessary "jog" in the wire before
you use the insertion tool.

If you are working with several different families of
processors which require different jumper options, you should
probably buy additional analyzer cables so you don't have to
change jumpers whenever you change processor family.

July 16, 1986 Page D-3 -- Appendix D --

Analyzer Connector Signals

PIN# SIGNAL REMARKS
1 M7 MISC analyzer byte input.
2 M6 "
3 M5 "
4 M4 "
5 M3 "
6 M2 "
7 M1 "
8 MO "
9 GND Signal ground.
10 A19E Msb emulator address inputs. Page select only
11 A18E "
12 A17E "
13 A16E Msb emulator address input. To enable RAM.
14 +5V Not used. Could power external circuits.
15 RDD Emul enab. Can use to disable processor RD'.
16 RES- Target reset. Open 7406 collector + 47 ohms.
17 NMI- Interrupt. Open 7406 collector.
18 GND Return for RES-.
19 K2- Clock input. ITCY' = MTCY + (K1' and K2')
20 Cc7 Control input. Normally used for R/W,I/O,etc
21 K1- Clock input. ITCY' = MTCY + (K1' and K2')
22 Cé Control input. Normally used for R/W,I/O,etc
23 WR- Clock input. MTCY = RD' + WR'
24 C5 Control input. Normally used for R/W,I/O,etc
25 RD- Clock input. MTCY = RD' + WR'
26 c4 Control input. Normally used for R/W,I/O,etc
27 A15E Msb emulator address input.
28 ALE Address Latch Enable for AO0-A19.
29 INVI Uncommitted inverter input.
30 INVO Uncommitted inverter output.
31 DTCY TCY clock delayed 100 ns,
32 CCcK' CONTROL byte input register clock (+ edge).
33 HACK' HADRess byte input register clock.
34 MCK' MISC byte input register clock. ,
35 TCY' LADR,DATA,& HData input register clock.
36 ITCY' Intel clock output. Jumper to TCY,CKs above.
37 MTCY' Motorola clock output. Jumper to TCY,CKs.
38 ALE' Inverter output from pin 28 input.
39 OE' Output Enable' signal from ROM socket.
40 IDLE' Not Used. Low when IDLE loop active. DMA?
41 CE' Chip Enable' signal from ROM socket.
42 OEE' Emulator Output Enable' (unlatched).
43 C3 CONTROL inputs. Normally A16-A19 from below.
44 c2 "
45 C1 "
46 co "
47 A19S8 Latched emulator address signal (A19E).
48 A18S "
49 A17S "
50 A16S "

-- Appendix D -- Page D-4

Analyzer Cable Design

You can design your own cables for new processor types by
copying and combining the techniques used in the cables shown in
figure 7.1. The signal list for the analyzer connector
immediately preceding this section should assist you further.
While most of those signals are self explanatory, the analyzer
input register clocking deserves some explanation. The analyzer
logic and 3 of the 6 analyzer input bytes are clocked by the +
edge of TCY' (pin 35). The other 3 input bytes (pins 32-34) are
usually jumpered to this clock, but can be connected separately
to clock their inputs at other parts of the clock cycle.

The diagram below shows the UniLab clocking logic:

’ N
C P ,
oons
DTCY :3! *: ELAY
- . TO ANALYZER CLOCK AND

TCY 35 ¢ E HDATA, DATA, AND LADR LATCHES
ITCY-~ ,
RD-
WR-
"gCY o 74503

]]
Ki- 2] 4%

1 ¢

The usual source of TCY' is ITCY' for Intel-type processors,
or MTCY' for Motorola-types. MTCY' goes low whenever both RD-
and WR- are high. By connecting these inputs to Motorola's E and
VMA signals, the analyzer will be clocked on the falling edge of
E if VMA is true. ITCY' goes low whenever RD- or WR- go low, or
both K1- and K2- go low. Clocking in this case occurs at the end
of the WR- or RD- pulse. DTCY is an inverted and 100 ns delayed
version of TCY'. By using this signal to clock the CONTROL
input register (CCK') the source of the clock (eg WR-) can be
captured reliably as an analyzer input.

The ALE input (pin 28) controls transparent latches on the
A0-A19 inputs to the emulator. The outputs of these latches are
internally connected to the emulator and analyzer inputs, so
clocking of the analyzer's address byte inputs can occur any time
after they are stable. An inverted version of ALE is brought out
on pin 38 so that inputs can be clocked by the end of ALE. An
uncommitted inverter is also provided at pins 29-30 for
processors, like the 28000 & 16032, which use a low-true ALE
signal.

July 16, 1986 Page D-5 -~ Appendix D --

signal.

The emulator output is enabled whenever the OE' signal on
the ROM socket goes low and the 20 address bits satisfy the
=EMSEG and EMENABLE statements which have been made. It is
assumed that address decoding is done in the standard way using
the CE' input to the ROM with OE' as a general memory enable. It
is possible that some systems will make use of the OE' signal for
address decoding. If this is the case, and you want to emulate
several ROMs, you will have to change the jumpering to pin 42 to
connect it to a more general enable' signal (such as MRDC' on
Intel systems).

If there are I/0 ports in the system which may have
addresses which fall within the emulated address range, you must
be sure that this enable excludes I/0 operations. If no such
signal exists, you can use an unused address input. For example,
if the A19 input is connected to an IO/M' signal, and you specify
7 =EMSEG, the emulation memory will only be enabled when A19 goes
low (memory cycles). Remember that =EMSEG acts as a modifier for
all EMENABLE statements which follow, so if =EMSEG is changed the
EMENABLEs must also be restated.

The descriptions which follow refer to the analyzer cables
whose schematics appear at the end of this chapter.

(a.) Intel 8085, 8088-min mode, 80186, 80188, NSC--800: The
CONTROL byte input register clock (pin 32) is isolated from the
other input clocks and connected to ALE' (pin 38). This causes
S0-2 to be clocked at the end of the ALE signal. All other input
clocks (pins 33-36) are jumpered to ITCY' (pin 36), so that
clocking will occur at the end of a low pulse on RD' or WR' or
INTA'(K1-). Since K2- must be held low, it is connected to RES
OUT on the 8085. C6 is internally connected to K1- to identify
interrupt cycles.

To provide fewer cable variations, the 16-bit Intel _
processors all use the K1- & K2- inputs to derive a read and INTA
.clock by gating DT/R' and DEN' together. The write clock for the
expanded mode can then come from either IOWC' or MWTC' at the bus
controller. Note also that K1- is jumpered to C6 at the cable
connector so that (DT/R') can be used both as a clock and an
analyzer input without two separate connecting wires. A0 need be
connected only if you have a 16-bit processor, as it is connected
directly by the 8-bit ROM cable.

(b.) Motorola 6800, 6801/3, 6802/8, 6805E2, 6809: The
UniLab address latch enable and CCK' pin are jumpered to the
inverted DTCY signal so that control signals and addresses will
be latched 100 ns after the rise of the E clock signal. This
prevents trouble from the extremely short hold time of the
address signals. Also note that the analyzer is clocked by the
MTCY signal on the fall of E.

-- Appendix D -- Page D-6

(c.) National 32016, Zilog Z8001, Z8002: The ALE signal is
inverted, using the uncommitted inverter on pins 29 & 30. The
control signals are latched at the end of the address strobe.

(d.) Motorola 68000, 68008, TI 9900, 99000, Z-8 romless,
Intel 8085: A very simple configuration with all analyzer inputs
clocked by ITCY.

(e.) Zilog 2-80, Z-8 piggyback, Intel 8051, 8031: WR', M1',
and IORQ' are all used for clocking and captured by the analyzer
to identify the cycle type. C5, C6, & C7 are therefore jumpered
to WR-, K1-, & K2- so that a single probe can be used to make
both connections. All analyzer inputs are clocked by DTCY so
that the source of the clock will be captured. The address
latches are enabled by DTCY' to prevent trouble from the short
address hold time on Z-80A' B' & C' instruction fetches.

For the Z-80 only, A19 is connected to MREQ' so that OE' on
the ROM socket needn't include an I/O term. Because of this you
must use "7 =EMSEG" to get enable only when this signal is low.

(£.) Universal ROM-clocked: The OE' signal at the ROM is
jumpered directly to the (RD-) clock input. C5 is jumpered to
WR- and C6 is jumpered to K1- so that if a clock signal is
connected to either of these leads, the signal will be captured
by the analyzer without a separate connection. To reliably
capture that input, the CONTROL byte input clock (CCK) is
connected to DTCY. The address latch enable is connected to DTCY
through the uncommitted inverter to prevent trouble from short
address hold times. Since CE' at the ROM socket is connected to
A16, you must use "E =EMSEG" to get enable when this signal goes
low. You can make the UniLab ignore this signal by entering "F
=EMSEG" then the EMENABLE statement, then "ALSO E =EMSEG" then
repeat the EMENABLE statement.

(g.) RCA 1802: The TPB signal is used to clock the control
inputs while the analyzer is clocked by MRD or MWR. Since the
UniLab address latches cannot be separated, the MSB addresses
must be connected to the target address latch outputs.

(h.) Intel 8080: The @2TTL clock signal is taken from pin 6
of the 8224 clock generator. The DBIN' signal is inverted and
connected to Ki1-. The analyzer clock function is thus ¢2.DBIN +
WR. The MEMWR- signal at the 8228 bus controller is used as an
emulator enable. I/OW-, MEMR-, MEMW-, and INTA- are connected to
C7 thru C4 so that the left digit of the analyzer control column
will identify the cycle types as follows: F=I/OR, B=MEMR, D=MEMW,
E=INTA, 7=I/OW.

(i.) Intel 80286: The ALE signal from the 82288 is jumpered
to the CONTROL clock input so that SO and S1 will be captured.

July 16, 1986 Page D-7 -- Appendix D --

(k.) Rockwell 65/11 piggyback: Connects C7 to OE' which is
R'/W, inverts CE and connects it to A15. Al15 can be jumpered at
the end of the cable to A12-14 for true address display.

(1.) Intel 8088/8086 max mode: Identical to cable A except
that the uncommitted inverter is used to invert DEN signal. This
inverter output is jumpered to the K1- input. Connect the DEN
wire to pin 16 of the 8288 bus controller. A0 need be connected
only if you have a 16-bit processor, as it is connected directly
by the 8-bit ROM cable.

(m.) 6805 piggyback: Since no bus clock signal is provided
by the processor, a circuit board is provided that derives clock
from the signal at the crystal. This circuit includes a 74HCT74
CMOS divide-by-4 counter, which is reset whenever a transition
occurs on the A0 signal. This reset ensures that the analyzer
clock will be in sync with the internal processor clock.

(n.) 6801 piggyback, 6301: Identical to cable K except that
the clock polarity is reversed.

(p.) 68000, 68008: Identical to cable D except that the
OEE' input is grounded so that emulation will be enabled when
either half of the data bus is read.

Note that some of these diagrams are untested and are
provided only to help you get started. If you find any errors,
please report them to us so that others can benefit from your
discovery.

Also note that, since +5 volts is available at the
connector, it is possible to make cables with logic gates on them
if necessary. If you want to make a more conventional
processor-specific emulator plug that plugs strictly into the
processor socket in the target system, the RDD signal on pin 15
can be used with an OR gate to disable the RD- strobe at the
processor when the emulation memory is active. This makes it
unnecessary to unplug any ROMs that are being emulated, so all
UniLab connections from both connectors could be made directly to
a piggy-back processor with all signals except the RD' strobe
directly connected. Of course this sacrifices universality and
some transparency, but it might be more convenient in some
situations.

-- Appendix D -- Page D-8

The ROM Cable

There are 4 types of standard ROM cables:
C8-24. For 8-bit processors and 24-pin PROMs (2716,2732).
C8-28. For 8-bit processors and 28-pin PROMs (2764,128,256).
C16-24. For 16-bit processors and 24-pin PROMS.
C16-28. For 16-bit processors and 28-bit PROMS.

The C8-24 has an A11 pin, which can be left plugged into the
A11 receptacle on the ROM cable if you are using 2732s or 32K
ROMs. If you are using 16K ROMs, the receptacle must be plugged
into the proper pin on the DIP clip to pick up the A11 signal at
the processor. Other MSB address signals are likewise connected
to the processor. Pin numbers for making these connections to
the major processors are shown in the table in the previous
section. Note that 24-pin cables will work fine in 28-pin ROM
sockets if they are plugged in leaving the pin 1 & 2 end of the
socket open. Extra address signals are simply picked up at the
processor.

To minimize interconnections and signal loading, the
analyzer data and address connections are taken from the ROM
cable also. If your system has a unidirectional buffer between
the ROM socket and the processor, these connections will not show
data during write cycles. You can correct this condition by
cutting the jumper ribbon cable on your ROM cable and installing
a separate ribbon cable to the analyzer inputs on pins 35-42
(also 27-34 for 16-bit). You can order a cable that makes all
connections at the processor by just ordering a C8-D or C16-D.

Note that all ROMs that are simulated must be removed from
their socket to prevent bus contention. The ROM cable plugs into
only one of the sockets-- except in the case of 16-bit systems,
where there must be a second ROM plug in one of the
most-significant-byte ROMs. 1In 8-bit systems the
most-significant data bits are brought out in a separate cable,
so they can be used as extra general-purpose analyzer inputs.

July 16, 1986 Page D-9 -- Appendix D --

ROM Connector Signals

PIN# SIGNAL

1 A14E
2 A12E
3 A13E
4 A7E
5 A8E
6 _K6E
7 A9E
8 AS5E
9 A11E
10 A4E
11 OE'
12 A3E
13 A10E
14 A2E
15 CE'
16 A1E
17 AQE
18 GND
19 D7E
20 D6E
21 DOE
22 D5E
23 D1E
24 D4E
25 D2E
26 D3E
27 D11E
28 D10E
29 D12E
30 D9E
31 D13E
32 D8E
33 D14E
34 D15E
35 D7A
36 D6A
37 DOA
38 D5A
39 D1A
40 D4A
41 D2A
42 D3A
43 D15A
44 D14A
45 D8A
46 D13A
47 D9A
48 D12A
49 D10A
50 D11A

-- Appendix D =--

REMARKS

Direct connect on 256K ROMs. (lower left pin)

Direct on 64K or larger ROMs.
Direct on 128K or larger ROMs.
Emulator address inputs.

n

Direct on 32K or larger ROMs
Emulator address input.

To pin 39 on analyzer connector
ﬁmulator address input.

To pin 41 on analyzer connector
Emulator address inputs.
11

(for jumpering)

(for jumpering)

Signal ground. Shields adr inputs from data out.
Emulator data output. (odd addresses)
11

" Note: MSB and LSB are

Page D-10

swapped for Intel

convention. e.g. D8
above is really DO, etc.

UniLab Circuitry

This page shows part of the internal schematics of the
UniLab-- the input circuitry. The combination of this schematic
and the diagrams that follow, showing the internal jumpers of all

our standard cables, should give you enough information to
customize a cable.

o—Mr—{8
2 =-Me——7 y7
—M5—13 misc
4 o—Mé—{17
—MZ—d{13(MOA-
5 e—M2——{14 M7A)
i t—-iq18
gse—Mo—44 11
10— A12 3 2
. Al8 5
120 A1 6
. A16. 273 8
14 o—A1SY DD 213575- 3 us OE’
16 ..st_,ii'i,‘l}?q‘i‘g A19E) (ROM)
Tl g = B
20 4 4
K c7 | 8 uis {ifF—
fi,,'c"f 17 us 18—
9 -
24 ec5— 556 1§ CONT v 25)15 —
R u4 13 (COA- N3] A9
26 oC4 18 C7A) 2 (ROM)
—AlS 4 Lk
28 oAL %@ 11 —
o—iNV b U4 8 20
30 3{;(1 1_2'1 U1, -
U4 11817 819 7
\ 8 a—
32 000 NoT uzt:" 8=
o—+aACk—_| | L ut4 I
34 o-MCK (AE- {1 7p—
o—TCY ASE) 14—
36 o—{TCY ASIT3 At
——MTCH: —or ANALOIR 0| ®om
38 e—ALE—]
- [—oLe’ __31
40 @ l_cg' Q”
S0 &-——r—‘D— ® 2 dom
2o zvs3 IDATA
44 o—C2 g::
——Ct U9 3=
46 —C0O \ (DosS- =
o———A193 07$)1 4 p—
48 e—A18S 18—
——-A17S n__d—
S0 e—A16S - (ROM)
[HDATA]
Internal Circuitry us 1_3,:'
of UDL (D8S- 1 Zp—e
D155)14p—
o=

(ROM)

-3 ——]

-nz—:L-q
) _‘H
—GHD ——

A9 —ij
ae—l o
Ar7—1

A6 I
b
-Rm—

-aes—'j-—-ll
e —

e —
«2 4!
c? —i
Ki——4 24
s+
-ia——44

-cs——
-RO 14 2
-c4——35—y
As—4 2

...
[l)

2,

>

-l
-

i

é.L wl ul wl

CABLE _I

80286
FOR (wi82188)

[

I
-[u.

KEY

i
[

]
Q
Lf

2
]
L

g
-
oL
P

L

(=]

(e

]
wld
O O

rXY
—— N 0o

oL -::,L wl wl

N

CABLE _L___

8086 mar mede

FOR 65/\t P-Back FOR 8088 masr mode

<

N

]
i

T

=

o

<
. .
—Y_~lole

N

ol vl olol=

CABLE _™

©805 P-Back

FOR (wicix.ckt)

KEY

»
=

KEY

(&)
N
S A e e TN
ol vl vl ol

CABLE _N

©80) P-Back

FOR c¢301, cuos

-m—
~H8
B:—
~n4

-3 o
-n2 _i’———i
-ny—r
—m—-—_—’ﬂ ﬁ'
A9 —
Al L I
i
ﬂ 1
~+5U ¥ y
o —
-nss-——i——i“
Ny ——
'G"D——"J_T'*l
-K2 .

“c? S—i
K1 H %

“C4——3I5—j
=
e A -
w1y 2
4o 29
-DTCY [
B L

o
N

SJ_ wliolewl -0

CABLE _P

8000,

FOR _¢800%

J3,

2
T
,

-
|

-['*.Lf.l. I.!. .[’.L I.LI..L L

g2
I
.LI‘.L

[
=
~

g
J
.
[X)

.
=
-

q
o
J‘

i

»
~

.L.?.’

i

il
Ll

L
77

ST O
”-
o

e

-~
CJ

>

—— VL~ O

Vol

-

vl vl oloT

CABLE _&

CABLE _R___

FOR nscea — pOR _80%¢

(this page intentionally blank)

July 16, 1986 Page D-13 -- Appendix D --

—H3——4+
=H2 —
~H—
-no-——_‘——i
—GhD——
M "
A1
A17 —,
Al6—
451—_’3——-1'
-HDD_.
s —f,
il ——
-sm—i—,-ll
K2
1,
o
€6 ‘:'
— xey
os—2—. 1,0
“RO ++ 2
" -C4 1,
s = T
<Nk p 2
o . 29 ;3
-DTCY po-

CABLE _A

8085, 8oie,

80188, 80BG min,

FOR _80%8 min_

“%

-n?

-Hns

-4 "
-n3
g
_m____‘-‘;..‘
—GHND ~—ri
Alg——pg—j
AB——t4 i
A—_ly
A16 4
-.su—_‘Lil
-RDD_—
=
T
K2

c?

3 — P 2
-cs ,;__._!
“UA—14
-c5—33+—
-m 2
-c, 5—'2
A=
-1 r }—28
-vo 29 53
-pTCY .
-ccK* :l\'
HACK® —

.
LA
[*)

- 8 -

CADBLE
ReS/IQ
$800,6002,

FOR 6809, @502

3
g

CEFTET

-

»

g
i

g5d
il
L]

géizd
Al
Nl

oI 3>

9900,99000,
FOR ___ %"

[l
m
oy

e

ol ~1 uq_Lu_L..__Lvo__v_.u;]
YT aT 2T oT &T

(2]
~
N P e e TP oy

i i i nad gl

CABLE _F

8048/35/39/

40/49/s0
FOR ¢rom Clocked)

CABLE _G

FOR

1802

-h3—t
—h2—7p—f
b 11] 2]
—H@ —— i
—GHo—14
Ag——P i
A18- H !
A7 L 4,
Al
+5V. 1—-{‘
-AD0——4 1
-nss—f’—li
“NHp—]
L+ 1
K2
7 ot
Ki— H 2
-cs t
1R --;'
'}
S—HE ™
a5 3
::4:3 y 2
-ALE—] |27 L

oL
bHE
r/

4
%

Y

AE® 3?
o€’ K b
IoLes 39 A
CE* [
OEE* 41
ca 4 4
c2 ;L
¢l 3
co ”
ates |1
Al8S

arrs 4
R1GS
CABLE _H

FOR 8080

Appendix E:
UniLab II Specifications

Host Computer Interface

RS-232C connector, 19,200 or 9,600 baud,
switch selectable.

Diskette Formats

IBM PC 5 1/4", MS-DOS

Emulator

Download time: 1 second for 2K bytes, including 16-bit block

error check.

195 ns max access time ROM emulation. (145 ns optional)

ROM size: 32K x 8-bit or 16K x 16-bit standard. Programmable by
cable, program option. Expandable to 128K bytes with
optional plug-in board.

20-bit enable address decoding.

Individual 2K segments can be selected in any combination

within 128K blocks.

Stand-alone operation possible as a ROM emulator.

16-bit Idle register loops target CPU, allows loading of

emulation RAM and resumption of program execution.

Program loading software: from hex or binary disk files, hex

serial download, memory image, ROM read.

Optional processor specific software gives full DEBUG capability

including register and target memory display and change,
breakpoints, and single-stepping.

Bus-State Analyzer

48-bit wide Trace Display and Memory.

48 data inputs. Two groups of 8 can be separately clocked.

6 clock signal inputs. Gated to form one bus clock:
Clock edge filter prevents re-trigger before 100 ns.
395 ns minimum bus cycle (10 MHz 68000).
297 ns with optional high-speed option.

Address demultiplexing latches included-- also used by
emulator.

8 or 16 inputs available for custom connection to additional
target board circuitry.

March 25, 1987 Page E-1 -- Appendix E --

Analyzer Trigger

4-step sequential trigger.
RAM truth tables allow search for any function of 8 bits at

each of six 8-bit groups, for each of four trigger steps.

8 truth tables x 4 steps = thirty-two 256-bit tables.
16-bit inside/outside range detection on address lines.
4-bit segment enable gives 20-bit address capability.

20-bit single address detection, 16-bit range detection in

any 4-bit segment.

Pass Counter: wait up to 65,382 events or cycles before 4th
step.

Before/After/At Pass count trigger enable.

Delay Counter: wait up to 65,382 events or cycles to stop
trace.

Filter feature: Records only cycles that satisfy trigger.

Oscilloscope sync output: Sync on trigger.

Interrupt output: Interrupt target on trigger, if enabled.

LED indicates searching for trigger. Stand-alone
operation possible while waiting for trigger.

Software Features

Menu or command driven with single context for all four
instruments:
48-Channel Bus State Analyzer
In-Circuit Emulator
PROM Programmer
Stimulus Generator
Extensible macro capability.
Cursor key control of text and trace display.
Pop-up mode switch panel.
Split screen displays, user-definable.
On-line glossary.
Menu-driven shell displays equivalent command lines.
40 user-definable soft-keys.
Line-by-line assembler.
Bonus features: Calculator, ASCII table, IC pinout library,
message feature, direct DOS access, EGA/ECD support.

Software Options

Program Performance Analyzer Option.

-- Appendix E -- Page E-2

memo

EPROM/EEPROM Programmer

Smart programming algorithm for high speed.

28-pin Textool zero insertion force socket handles 24 and
28 pin devices.

Programs single supply EPROMs and EEPROMs.

See Appendix G. Programs 2716, TMS2516, 2532, 48016, 2732A,
2764/128, 27256/64A/128A, 27512.

Signal Inputs

TTL logic levels (74ALS inputs).
0.1 ma maximum loading includes emulator & analyzer.

Signal Outputs

TTL logic levels (74LS244 outputs).
100 ohms forward terminating resistors on Emulator data
lines. ‘

Reset output (RES-): open collector, 7406 thru 47 ohms.
Interrupt output (NMI-): open collector, 7406, low true.
9 Stimulus outputs (at EPROM socket): 8255 NMOS outputs.

Physical

Size: 2.1" hi x 13" wide x 7.8" deep.
Weight: 4 lbs. (1.8 kg.)

Shipping Weight: 11 lbs. (5 kg.)

Fits easily in a slim-line brief case.

Power
100 kHz switching supply built in.

110V + 10% 50/60 Hz 15 watts (standard)
220V + 10% 50/60 Hz 15 watts (optional)

March 25, 1987 Page E-3 -- Appendix

Accessories Included

User's Guide.

Reference Manual.

40-pin IC clip.

16-pin IC clip.

Input stimulus cable.

Component clip adaptor probes (2).
Jumper wiring tool.

Accessory Options

Personality Paks for most popular microprocessors include:
Connection hardware. See below.
Disassembler/DEBUG Software (DDB-xxx).

Connection hardware included in the Personality Pak consists of

either:
ROM Emulator cable. 8-bit, 24-pin version unless
otherwise specified (C8-24). Analyzer cable pre-
configured for your target processor.

or:

Emulation Module. Replaces processor on the target
board.
Some Personality Paks also include a MicroTarget, an expandable
target board.

Check with your Orion Sales Representative for current product
availability.

ROM Cable options:

8-bit, 24-pin ROM emulator cable C8-24
8-bit, 28-pin ROM emulator cable C8-28
8-bit, direct connect emulator cable Cc8-D

16-bit, 2 x 24-pin ROM emulator cable Cl16-24
16-bit, 2 x 28-pin ROM emulator cable C16-28
16-bit, direct connect emulator cable C16-D

RAM Expansion options:
32K emulation RAM expansion board (64K total) EB-32
96K emulation RAM expansion board (128K total) EB-96

-- Appendix E -- Page E-4

Appendix F':
Macros

Introduction

Macros allow you to combine several UniLab commands and give
that combination of commands a new name. This is the simplest
sort of macro you can make-- really more like a convenient
abbreviation than like a real program.

The macro language included with the UniLab does
have control structures that allow you to write more complicated
macros. These structures are fully explained in several books
(see page F-6). However, you don't need to understand and use
the control structures to write useful macros.

For information on the UniLab program itself, order the
UniLab Programmer's Guide from Orion.

Contents

How to Write a Macro

Write Macros on FORTH Screens
Write Test Programs

Control Scructures

For the Experienced

How to Write a Macro

A macro definition begins with a colon (:) and ends with a
semi-colon (;). These marks will not be recognized by the UnilLab
software until after you use the command EXPERT.

The first word after the colon is the name of the macro--
the new abbreviation. All the other words are the commands that
the new abbreviation stands for. For example,

: D10 DUP 10 + MDUMP ;
creates a macro called D10, as in Dump 10 memory locations. This
new word takes one argument, the starting address of the range
that you want to dump. That address gets copied by DUP and then
has 10 (hexadecimal) added to it. The macro then calls MDUMP on
the address range.

Thus, if you were to type in:

342 D10
then you would get a dump of addresses 342 through 352.

March 25, 1987 Page F-1 ~- Appendix F --

Write Macros on FORTH Screens

The easiest way to test and alter macros is to write them in
files with the screen editor, and then load the macro from the
file.

The UniLab software normally holds open the file UniLab.SCR.
Three screens of this file are available for you. Type MEMO to
get into the first of those three screens.

After you type MEMO, press CTRL-Z to see the on-line prompts
for the screen editor.

You exit from the screen editor by pressing the ESCape key
twice in a row, or press ESCape followed by F to save any changes
you made to the screen.

Don't use any UniLab.SCR screens besides those three, or you
will overwrite help screens and error messages.

Load macros from a screen

You can enter your macro onto the screen, and then use
ESCape followed by L to load the contents of the screen. If you
keep your macros on screens, you can easily alter or update them
as the need arises.

Create your own FORTH file for use with macros

After you work with macros a while, you will want to put
them into a separate file. First, close the current file
(UniLab.SCR) with the command:

CLOSE

Then create a new file with:

OPEN-NEW <file name>
and give it a size with:

<# of screens>» SCREENS

1K is allocated per screen. Always specify at least 2 screens
{numbered 0 and 1). NEVER put a macro into screen zeroc.

Only use OPEN-NEW when you want to create a new, blank file.
After that, when you open the file, use the command:

OPEN <file name>.

-- Appendix F -- Page F-2

Use the command:
<screen #> EDIT

to get into the file. This invokes the same editor used with the
memo pad.

When you are done, use the command UDL.SCR to close your
file and re-open the UniLab.SCR file. 1If you don't do this, then
some of the on-line help facilities and error messages will not
work.

March 25, 1987 Page F-3 -- Appendix F --

Write Test Programs

You can use the macro capability of your UniLab system to
write automatic test programs. In this section we will present
some specific examples, which you can easily adapt to your
specific needs. '

A good starting test for a new system is to just let it
execute no-op instructions. If the address bus has any shorts in
it, will show as a departure from the normal address count
sequence.

For example, let's assume a Z-80 or 8080 system with memory
locations O to 7FF enabled. You can load the OO0 no-op opcode
into all enabled memory by just entering O 7FF O MFILL. Now if
you enter STARTUP, you should get a trace showing the first A6
addresses. By saving this trace with TSAVE and comparing it to
the trace of an untested system, you can automate system
checkout.

STARTUP and S are not suitable for use in automated test
macros, since they cause the trace to be displayed till a key is
pressed, another command must be used to start the analyzer
without displaying the trace. That command is

<n> 8C <file name>

will start the analyzer, wait n milliseconds, then compare the
trace to a trace previously saved by TSAVE. It is very useful
for automatic test sequences.

For instance, you enter
: TEST1 O 7FF O MFILL NORM A6 DCYCLES RESET O SC A:\Test.TRC ;
to define a startup test. This macro will fill the first 7FF
memory locations with zeros-- no-op instructions-- then start the
analyzer and compare the result to a trace that was saved as a
file on drive A: using TSAVE.

A technician can then test the system by typing in TEST1.
The UniLab system will reply with an OK message if the trace
agrees with the one stored on the disk.

To define a test that will examine later addresses, you can
enter

: TEST2 6FF ADR S O SC A:\TEST2.TRC ;

Of course, you will have to use TSAVE to save a reference trace.

-- Appendix F -- Page F-4

If both tests work properly, we can combine them into a
single test by entering:

: TEST ." Test 1:" TEST1 " Test 2:" TEST2 ;

This defines a new word TEST that will execute the 2 tests in
sequence, identify the tests, and display an OK message if they
pass. (Note that ." message" in a macro definition will print
"message"). If either test fails, the program will automatically
abort with the normal TCOMP fault display showing the faulty
cycle and what it should have been.

Including messages in macros

If you want the operator to press a key, just put in a
message to that effect by starting with ." and ending the message
with " as we did above.

You can then use the command KEY to wait for a keystroke.
This word also leaves the ASCII code for the key on the stack.
You can either get rid of it with DROP or use it as you wish.
For example, you could use it to determine the next step to be
taken:

¢ SIMPLE-TEST
." This is a simple test " CR
." Do you wish to continue ?(y/n) " KEY
ASCII y = IF REAL-TEST THEN

L] " Bye 2

This new word, SIMPLE-TEST, will execute the word REAL-TEST
if the user enters in a "y." Otherwise, it will fall through and
print out the closing " Bye."

Removing faulty definitions

If you define a test that doesn't work, you can erase the
definition from memory by entering:

FORGET <macro name>

FORGET will also forget any words that have been defined since
the macro that you want to forget. For instance, FORGET TEST2
will forget TEST2 and any other words you have defined since
TEST2. (You thus forget a whole sequence of words. Enter VLIST
for a list of words defined-- last word first.)

March 25, 1987 Page F-5 -- Appendix F --

Control Structures

Your system's macro capability as described so far is really
just the tip of the iceberg.

A complete FORTH system is resident within the UniLab
software. This language includes constructs such as DO ... LOOP,
IF .. THEN ...ELSE, and BEGIN ... UNTIL, so you can define macro
words that are much more complex than the simple examples we have
covered.

If you want to learn more about FORTH, the best book by far
is Starting FORTH, by Leo Brodie.

If you want to contact other FORTH users, try going through:

The FORTH Interest Group
P.O. Box 1105

San Carlos, CA 94070
(415) 962-8653

They have monthly meetings in many locations and publish an
excellent journal called FORTH Dimensions.

The UniLab software was all developed using the MVP-FORTH
PADS (Professional Application Development System). This
package, and many other FORTH books and programs, is available
from

Mountain View Press Inc.
P.O. Box 4656

Mountain View, CA 94040
(415) 961-4103

The public-domain portion of that system (which is a
modified 1979-Standard FORTH system) is included with your
UniLab. Excellent documentation for that system is included in a
book by Glen Hayden called All About FORTH, which is a complete
glossary of the FORTH words.

If you plan to use the FORTH capabilities, you should buy
the manual for the PADS FORTH system. It is available from

FORTHKIT
240 Prince Ave.
Los Gatos, CA 95030

The manual includes source screens and documentation for
many nice utilities included with the system.

You should also request from Orion the Orion Programmer's
Guide (available in July 1986).

-- Appendix F -- Page F-6

For the Experienced

If you already know FORTH, the rest of this section will
point out a few useful details for you. If not, you can skip the
rest of this section. It is not necessary to learn FORTH to use
the UnilLab.

Redefinitions

Three standard FORTH words have been redefined in the UniLab
system: NOT is used in trigger definitions so the synonym O=
must be used: also OUT is redefined to TOUT. CFA has been
redefined as CFADR to prevent conflicts with the hex number.
Another difference to bear in mind is that the default number
base in the UniLab system is Hex, while decimal is usually used
in book examples.

Editor

There is a complete FORTH editor resident in your; system,
which can be used for writing FORTH programs, then compiling them
from the screens by using the n LOAD command (or escape L). See
MEMO in the Command Reference chapter for a little more
information on the use of the editor.

The editor is a very fast full-screen editor designed for use
with FORTH screens. To use it you enter

<n> EDIT
(where n is a numbered 1K block) at any time when the Unilab
program is running. A summary of all the editor commands will be
displayed if you enter control Z.

Normally, UnilLab help screens file 1s open so that is what
you will see, but if you use

OPEN <file name>
you can edit or examine any file in 1K pieces.

{

March 25, 1987 Page F-7 ~-- Appendix F --

Assembler

There is also a complete, reverse polish, assembler for your
host processor. We include it because it doesn't take up much
space and it is useful if you want to use your system to write
FORTH programs. Refer to the books listed above for more
details.

The assembler is a complete (FORTH) 8086 assembler. It is
loaded automatically whenever you enter CODE. This version was
adapted for MVP FORTH by Tom Wempe from Ray Duncan's version
published in Dr. Dobb‘'s Journal, Number 64, Feb. 1982.

Decompiler

Your Unilab software also includes a simple decompiler. This
is useful if you want to understand the functioning of any of the
UniLab or FORTH words or recall one of your own word definitions.
To use it enter

' <word> XX

where <word> is any word in the system. The decompiler will print
the address, contents, and name of each word in the definition in
sequence each time you enter XX.

For numbers it will print "LIT" and then the number in the
next line with garbage in the 3rd column. Messages defined with
"."" will give garbage in the name column. Also headerless words
will show junk in the name column. It's crude but amazingly
effective for a definition that only occupies 12 bytes of object
code!

-- Appendix F -- Page F-8

Virtual files (.VIR)

The UniLab diskette includes three .VIR files: EDIT.VIR,
ASM.VIR, and UTIL.VIR. These files are not needed to run the
UniLab but you may find them useful for other work. The EDIT.VIR
file is required to use the MEMO pad.

Some other virtual files are also used by the UniLab
software. ULxxx.VIR contains trace routines and other material
essential for the UniLab system to run.

MENxxx.VIR contains the menu overlay, the mode panels, and
the symbol conversion menu. L1Bxxx.VIR and L2Bxxx.VIR contain
the pinout libraries.

The names of these files will usually be coded with the
version number, for example: UL32.VIR, MEN32.VIR, and L1B32.VIR
for version 3.20. These version numbers must match the version
number of the UniLab software or the system will crash.

The utilities are loaded from UTILxxx.VIR when needed by
words like start end TRIADS or from to copyto COPYSCRNS. All of
these commands are described in the documentation for the
Mountain View Press PADS FORTH system.

March 25, 1987 Page F-9 -- Appendix F --

Appendix G:
EPROMs and EEPROMs Supported

Command
To Read To Program
RPROM P2716
RPROM PD2716
RPROM P2532 *
RPROM P2532 *
R2732 P2732A
R2732 P2732A
R2732 P27C32
R2732 P27C32 ¥*
RPROM PD2764
RPROM P2764
RPROM P2764
RPROM P2764
RPROM P2764
RPROM PD2764
RPROM P2764
R27256 P27256 ¥**
R27256 P27256 *%%
R27256 P27256 ***
R27512 P27512 (8BIT mode needs 64K UniLab

16BIT mode nees 128K)

RPROM P48016
RPROM P48016

Personality modules 56-21 and 512 are optional equipment.
Limited support only for 4816, 48016, and 2732A.

Part

Number PM Vpp

EPROMs

2716 16

27C16 16

2532 16
TMS2532 16

2732 32 21

2732ab 32 21

27C32 32 21

27C32 32 25

2764 64 21

2764A 56 12.5
TMS2764A 64 21

27C64 64 21

27C64 56 12.5

27128 64 21

27128A 56 12.5

27256 56 12.5

27256 56-21a 21

27C256C 56 12.5

27512 5122 12.5

EEPROMs

4816b 16

48016b 16

NOTES:

a

b

C

*

*kk¥k

March

We do not support the Fujitsu MBM 27C256.

The 2532 EPROM does not support the 16-bit mode of
programming.
Must cut pin 8 off of PM-32 for the 25-volt part.

You need a 64K UnilLab to use 16BIT mode with the 27256

PROM,

25, 1987

Page G-

1 -- Appendix G --

Appendix H:
Microprocessor Support

The Orion UnilLab can be used with almost every
microprocessor on the market. Consult the price list or your
Orion Sales Representative for the latest information.

Personality Paks are now available, which include all of the
hardware and software you need to adapt the Unilab to a
particular processor.

As the Orion product line grows, we will continue to support
more processors with cabling and software. Contact your Orion
Sales Representative for the latest information.

3.20 DEBUG Update:

All packages, except for Z8000, come with a line-by-line
assembler.

All overlay and reserved areas are movable.

All software packages (except 1802) support the NMI
features, some through the use of IRQ pin of the processor.

All software packages which support multiple processors
provide you with a "patch menu." The is menu is presented to you
when you call up the UnilLab software, and is also available
with the command PATCH.

March 25, 1987 Page H-1 -- Appendix H --

Appendix I:
System Messages

Contents:

1. ERROR AND STATUS MESSAGES
2. PARAMETER ENTRY MESSAGES
3. MENU MESSAGES

1. ERROR AND STATUS MESSAGES

<number> ? - PROM programmer error. Usuélly this means an RS-232
error.

...enter INIT - The UniLab needs to be initialized with the host
computer. You should enter INIT, then proceed.

Address entry error. Needs 'address-start address-end' command.
- Insufficient parameters given to a command.

bad table file - Your assembler table file has been corrupted
(the file called xxx.TBL). Try copying it from the distribution
diskette again. '

beyond blkmax - DOS tried to read a forth screen file beyond the
limit set in the variable BLKMAX. This is mainly protection
against accessing files on a hard disk as forth blocks.

beyond eof - DOS tried to read a file beyond its end of file.

boundaries for bins overlap - An error message from the
histogram producer (AHIST or THIST). The program will not
produce a histogram until this error is fixed. It occurs if any
two ranges of addresses or times share a region. For example,
1000 - 2000 and 1500 - 2500
or even just
1000 - 2000 and 2000 - 3000.

bytes truncated, beyond 64K memory boundary. - A load was
attempted that tried to load data beyond FFFF.

March 25, 1987 Page I-1 -- Appendix I --

Can't Call DOS - Attempt to call DOS failed, probably because you
are in the menu mode. If COMMAND.COM is not on your root
directory, you will get this message.

Can also result from having the setting of files= in your
CONFIG.SYS file too small. See the Installation chapter.

Can't find GLOSS.ORI - The file GLOSS.ORI has to be in the
directory pointed to by the DOS environment string GLOSSARY in
order to use LOOKUP and WORDS. See the Installation chapter.

Can't find GLOSS.TXT - The file GLOSS.TXT has to be in the
directory pointed to by the DOS environment string GLOSSARY in
order to use LOOKUP and WORDS. See the Installation chapter.

Can't find GNAMES.ORI - The file GNAMES.ORI has to be in the
directory pointed to by the DOS environment string GLOSSARY in
order to use LOOKUP and WORDS. See the Installation chapter.

Can't find <file name> - File could not be located on the disk
or directory. Often caused by not having the proper values
assigned to ORION and GLOSSARY. See the Installation chapter,
Software Installation.

Can also be caused by renaming the UniLab software (with
SAVE-SYS) and then trying to create a macro or operator system.
The software will not be able to find a .MCR or .OPR file with
the appropriate name. You will need to either rename the file
from DOS, or save the system again to the old name.

Can't open overlay. - Your .EXE file and your .OVL file do not
match up. Probably you have the executable file from one version
of the UniLab software and the overlay file left over on your
disk from an older version.

Can't R/W non-emulated address without working DEBUG control! -
An attempt to access non-emulated memory failed, because the
UniLab was unable to establish DEBUG control. You should
establish DEBUG control manually, then try again to read and
alter target system RAM as well as emulation ROM.

Can't use ALSO to add another ADR range. - The range trigger
specs for the UniLab can get very complicated. The low- and
high- order addresses are not intrinsically linked in the truth
tables. Multiple ranges would probably yield a lot of triggers
that would be combinations of wrong high and low address. For
this reason, multiple ranges are not allowed.

-- Appendix I -- Page I-2

compile only - See All About FORTH (see also Appendix F, page 5).

gonditionals not paired - See All About FORTH (see page F-S).

Data is <data> at addr <adr> ..but is <data> at addr <comp adr>-
Displayed when MCOMP is used and the memory does not match up.

DEBUG control not established - ,

You have tried a command which requires DEBUG control, or an
attempt to establish DEBUG control has just failed.

If this happens every time you try to get DEBUG control, you
should turn to the TroubleShooting chapter.

definition not finished - See All About FORTH.

Disk full - The disk cannot hold any more files-- use a fresh
diskette, or remove some files that are no longer needed.

diskerr # n - There is something wrong with a DOS disk operation.
Consult your DOS manual for the error number's meaning.

divide overflow - Arithmetic error caused by dividing a number by
Zero. |

eadr ng - End Address Error. An error in an internal command sent
to the UnilLab. Usually caused by an RS-232 error or a general
system failure.

empty stack - The operating system is trying to use a number on
the FORTH stack, and the FORTH stack is empty.

Emulator Memory Enable Status - A message displayed before the
status of emulation ROM is displayed.

End of DOS file reached before formatted end-of-file. - Your
Intel hex format file being loaded by HEXLOAD contains bad data,
or lacks the checksum at the end.

end of text file - The end of the file being displayed by
TEXTFILE has been reached.

March 25, 1987 Page I-3 -- Appendix I --

End of Trace Buffer - The display has come to the end of the
trace buffer. Use TT to start from the top, or <n> TNT to start
from cycle number n.

Enter <parameter description> - A menu prompt, describing to you
the number(s) required by that menu item. See Section 3 of this
appendix.

Eprom programmed and verified, finished... - A status message
from the EPROM programmer. Everything is fine.

Eprom VERIFY Error !!! - A status message indicating that there
has been a problem while programming your EPROM.

file access error - The on-line assembler encountered a problem
while trying to read or write or close a file. The most likely
cause: you do not have the .TBL file in the correct directory.
It should be in the directory pointed to by the DOS environment
string ORION (SET ORION=2???). See the Installation chapter.

File Name? --- Prompt requesting the name of the file to be
opened or saved. This only appears if you do not include the
file name in the same line as the command to open or save the
file.

full-stack - Internal stack is overflowing. If this occurs, it
might be that there is not enough room in the system. Possible
cause: many user macros.

Hardware errors in Emulation Memory - While attempting to
determine the memory size of your UnilLab's emulation memory, the
software has detected a hardware fault in the UnilLab.

Hit any key to return to menu - If a menu operation uses the
entire screen, the menu selections will be overwritten. This
message will be displayed, letting the user return to the menu
display.

in protected dictionary - You cannot FORGET words that are in the
protected dictionary. See All About FORTH.

-- Appendix I -- Page I-4

Initialization request refused - a check of the Unilab's PROM has
found that it is not an Orion Instruments product.

Initializing UniLab - The host is sending an initializing command
to the UniLab, and will wait for it to be acknowledged. If it
does not get acknowledged, the host will wait forever. Hit CTRL-
BREAK to get keyboard control again. See the TroubleShooting
chapter.

Initializing UniLab Hardware errors in Emulation Memory - while
attempting to determine the memory size of your UniLab's
emulation memory, the software has detected a hardware fault in
the Unilab.

input > 255 - see All About FORTH.

input stream exhausted - see All About FORTH.

Invalid number - an error message from the histogram producer
(AHIST or THIST). You produce this error if you try to enter a
value that is not a number in the base you are using. For
example, FF is not a number in decimal. You will not be able to
produce a histogram until you correct the mistake.

Invalid start and stop address for THIST - an error message
from the histogram producer THIST. This error tells you that one
of the two addresses that you gave to THIST is missing or is not
a number in the base you are using.

isn't unique - the word used as a macro name is already used.
This won't hurt anything except you can no longer use the
previous word.

ladr ng - Load Address Error. An error in an internal command
sent to the UnilLab. Usually caused by an RS-232 error or a
general system failure.

len ng - Length of data transmitted is bad. An error in an
internal command sent to the UniLab. Usually caused by an RS-232
error or a general system failure,

loading only - see All About FORTH.

March 25, 1987 Page I-5 -- Appendix I --

Lowbound is larger than highbound - an error message from the
histogram producer (AHIST or THIST). This error occurs if a bin
has a starting value that is higher than the ending value. You
cannot make a histogram until you fix this error.

max 3 qualifiers - You cannot enter more than three qualifiers
with the AFTER command.

MISC inputs cannot be used in qualifier or filter specs. - The
MISC lines are excluded from being used in an AFTER or an ONLY
trigger specification.

needs <number> parameters - The command needs more parameters
than were given. Consult the glossary to see what commands the
word needs.

No Analyzer Clock - The UniLab is not receiving a clock signal.
All clocking is through the RD-, WR-, K1-, and K2- lines to the
UniLab (except for the F cable, which gets clock from the
piggyback rom socket).

The processor might be stopped, or these four lines might not be
correctly connected. It is also possible that the UniLab
software is not waiting long enough before checking for the
analyzer clock. Use <value> =WAIT to increase the amount of
time that the UniLab will let pass. The default value is 140.

no drive - The disk drive you tried to access does not exist.
Usually received if you enter a command such as
BINLOAD B:myprog.bin when you have no drive B.

No Good! (Above is correct.) Was: - Message produced by TCOMP
when it detects a difference between the trace on the diskette
(which it assumes is correct) and the trace that has just been
made, which is sitting in host memory.

No Memory Enabled - No emulation memory is set up to be selected
as ROM for the target board. This is not an error.

no room - Dictionary is full and won't hold any more macros. Use
FORGET to forget unused macros before adding new ones.

no room for <heads or bodies> - Dictionary is full and will not
hold any more macros.

-- Appendix I -- o Page I-6

no trigger! - Only shows on a compare trace with the SC command.
This means that the trigger spec was not reached within the time
you specified.

Not a DOS text file - TEXTFILE is trying to read in a file that
is not a DOS text file.

Not available in menu mode - Some commands are restricted when
using menus, such as calling up the HELP displays. These would
overwrite the menu if they were permitted.

Not done till delay count = - The Unilab is waiting for enough
events to fill up its trace buffer. If too few bus cycles occur,
or if filtering is being used, this message will be generated.

You can wait, or you can hit any key to break out of this state.
You will then need to type TD (Trace buffer Dump) to see the
filtered cycles or the cycles before the clock was stopped in the
buffer. Note that the cycles will appear at the end of the trace
buffer, while there will still be left-over garbage toward the
beginning of the trace.

Not emulation memory - same as 'not enb."

not enb. - Emulation memory is not enabled for this data
transfer-- not an error message, but a reminder that the address
you are referencing is not enabled (for example, target system
RAM).

Not enough bins available - An error message from the histogram
producer (AHIST or THIST). This error occurs if you try to allot
more than 15 bins using the Subdivide key (F3). This can occur
if you already have several bins alloted and then try to
subdivide one of them among all the bins.

not enough memory - Either the MACRO command can't get enough RAM
to create a macro system, or the on-line assembler (ASM or
ASM-FILE) can't allocate enough RAM to read in the table file.
Use ?FREE to check on the amount of free RAM available, and then
use either =HISTORY or =SYMBOLS to reduce the amount of RAM
dedicated to those two space hogs. You will have to SAVE-SYS and
then restart the UniLab software before the new settings will
take effect. Look up the appropriate entries in the Command
Reference chapter.

March 25, 1987 Page I-7 -- Appendix I --

not found - Word used in macro definition does not exist. Check
spelling. Note that macros may use other macros, but each word
in a macro must be already defined.

Also used to let you know that the file was not found by SYMLOAD,
or that the file was not the right type.

not in dictionary - HELP cannot find the word in the UnilLab
glossary.

not recognized - Command or word not available. This is usually
a misspelled word. If it is a known word that should exist, type
BYE to exit the system.

ODD or EVEN ? - A prompt to tell the user that either the address
range must be given (with an implicit odd or even start address)
or the command ODD or EVEN must be used when reading or
programming a 27512 in the 16-bit mode.

ok - Word returned by the UniLab system software every time it
accepts a command.

OK - returned by the software when in a macro system.

out of bounds - Stack underflow-- a catastrophic error. If it

occurs, exit system and re-boot. Do not SAVE-SYS.

parse error - The on-line assembler does not recognize your
assembly language command.

rcv sum ng!! - An error occurred when a HEXFILE was being
received. This is usually an indication of an RS-232 problem.

Reading.... - Message displayed when reading a 27512 prom, since
it takes a few minutes.

reading text...please wait - TEXTFILE reads in a file to the
UniLab program and analyzes it for the number of lines. While it
is creating a line index, this message is printed out.

-- Appendix I -- Page I-8

Requires <parameter description> - A parameter entry error
nessage. Indicates that the wrong number of parameters was given
to a command. See Section 2 of this appendix.

resetting - The analyzer has been started, and the reset line
toggled low then high again, to reset the target processor. Look
at, chapter 6, Section 4.5.

RS232 err # n «sesenter INIT - The RS-232 communication between
the host and the UnilLab is not functioning properly. Check the

cable hookup. If you have changed baud rate, make sure that the
software setting corresponds to the switch setting in the UniLab.

STANDALONE mode.... Use PROMMSG later to communicate with UniLab
after EPROM is programmed. - Status message after issuing a prom
programming command in STANDALONE mode. Do not re-initialize the
UniLab after a standalone PROM programming, or you will lose the
status message.

Symbol table full - the memory allocated for symbol tables has
been filled. Use ?FREE to find out how much memory has been
allocated to symbols and to screen history.

Use <# Kbytes> =SYMB to change the size of memory allocated for
symbols. You will need to SAVE-SYS, exit to DOS and then come
start up the Unilab software again.

target adr (not EMENABLED) - This is usually not an error
message. It is a notice that you are addressing a memory location
that you have not enabled. Either you have made a mistake, or
you are purposely addressing RAM on your target board rather than
emulation ROM. A read or write to target memory is only possible
after you have established debug control.

This message is always printed out as a reminder that the DEBUG
is performing the memory read or write, and that this is not a
simple transfer of data between the host and Unilab.

The command is: <command> - This is a menu display to show the
user what the associated command would be if entered as a command
rather than as a menu choice.

This Eprom does not seem to be erased!!! - An error message when
you try to program an EPROM that is not blank.

March 25, 1987 Page I-9 -- Appendix I --

TO address is smaller than FROM address. - A command was given
which has mismatched parameters-- the second number is too small.

Too many files - Not enough files have been allocated, so you
cannot open another. This can be changed by changing the
CONFIG.SYS file in your root directory to contain the line
FILES=16. See the Imnstallation chapter.

unloadable - See All About FORTH.

Unsupported record type. Types 0, 2, & 3 only are supported. -
The Intel hex format file that you are trying to load with
HEXLOAD is of the wrong record type. Bytes 7 and 8 of each line
of the file tell what record type the line uses.

Wrong UNILAB.SCR file - The file named UNILAB.SCR on the disk is
not the correct version for the ULxxx.EXE file. Make sure that
you copied everything from the master diskette.

Wrong <file name> - The .MCR or .OPR file does not match the
current .EXE file.

-- Appendix I -- Page I-10

2. PARAMETER ENTRY ERRORS

These messages result when you call a command without giving

it the proper number of parameters.

You can enter any command

name without the parameters, and get a prompt that tells you what
the command requires.

Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires

Requires

March 25,

a Goto-Address, and the next Breakpoint-Address
the From-Address, and the To-Address

a Number-of-Lines

the From-Address, the To-Address, and a Value
Source-From, Source-To, and Destination addresses(1)
the Start-Address and the #-of-lines

an Address

a Word (16 bit) Value

a Cycle#

a Byte (8 bit) Value

an Address or Range (Address1 TO Address2)

the Cycle#

a Block-Number

a Value and a Destination-Address

an Address and a Block-Number

a Nibble (4 bit) Vvalue

'host-address target-address #bytes'

1987 Page I-11 -~ Appendix I --

3. MENU MESSAGES

These messages are generated by entries in the menu, to let
you know what values that menu item needs. When you get one of
these messages, enter the value requested.

Enter the Starting target address:
Enter the Ending target address:

Enter the Target address:
Enter the First value:
Enter the Last value:
Enter the Value:

Enter the Bit# (0-7):

Enter the desired hex output code (0-FF)

Enter the Trigger address:

Enter the Source address:

Enter the Destination address:

Enter the number of lines to disassemble (default=5):
Enter the starting address of the first block to compare:
Enter the starting address of the second block:

Enter the breakpoint address in emulation memory:
Enter address to continue execution:

Enter next breakpoint address:

Hit key for next debug function (from above):

-- Appendix I -- Page I-12

Appendix J:
-BIN Files and .TRC Files

Overview

Your distribution diskette includes one or more .BIN files,
the binary image of the simple target program for your
microprocessor. That file is described in Chapter Three: The
Guided Demo.

The chart in this appendix tells you which file to load into
memory, and where to load it.

With some packages, we distribute a .TRC file to test your
cable connection to your processor, as described in section 4 of
the Installation instructions of Chapter Two. This appendix
includes the name of the .TRC file, for those processor packages
that include demonstration traces

Patches and 3.20 Software Update:

All software packages which support multiple processors now
provide you with a "patch menu." The is menu is presented to you
when you call up the UniLab software, and is also available
through the command PATCH. Thus, the "patch word" is always
PATCH.

.BIN files

You can load the sample program into memory with the command
LTARG, which also takes care of enabling memory and any other
needed details.

However, loading the .BIN file from disk gives you
familiarity with the procedure you will have to follow when you
load your own program from disk.

Before using BINLOAD

With most processors, the only preparation you need is

- enabling the 2K segment into which you will load the binary file.
For example, to load the binary file test65 into emulation memory
for the 6502:

FF00 EMENABLE
FFO00 FFFF BINLOAD testé65

With some processors, you might have to enable more than 2K

March 25, 1987 Page J-1 -- Appendix J --

of memory, or set the value of some variables. These exceptions
are noted in the following chart.

The <to address> argument of BINLOAD

BINLOAD needs two arguments in addition to the file name:
the <from address> and the <to address>. These addresses tell
BINLOAD where to start loading the file, and when to stop.

Of course, if BINLOAD reaches the end of the binary file
before it reaches the <to address>, then it will stop loading.

You should always give as the <to address>» the highest
address in emulation memory. Though the sample programs are
small, the reset vector is often at the top of memory, pointing
at an address closer to the bottom of memory.

+.TRC files

In general, you use the trace file to verify that you have
the proper connections between your UnilLab and target board.

Comparing your trace to the one on diskette

Load the sample program, either from the .BIN file or with
LTARG, and use STARTUP to generate a trace. Then use: ‘

AA TCOMP <trace file name>»

to compare your entire trace to the trace on diskette.

You can also use:

TSHOW <trace file name>

to look at the trace that is stored on diskette.
Comparing partial traces

Sometimes the difference between the standard trace file and
your trace will be trivial. For example, some simple target
programs contain instructions that read RAM locations which have
not been initialized-- and so the value stored in that location
will vary.

The UniLab software stops checking the traces after it finds
the first difference., If you want to compare your trace starting

after the trivial difference, then you will use the TCOMP command
with a different parameter:

<number of cycles to compare> TCOMP <trace file name>

-- Appendix J -- Page J-2

Note that the number of cycles is a count starting from the
end of the trace buffer.

You can also use TMASK to specify that only certain columns
of the trace should be compared. Consult the TMASK entry in the
Command Reference chapter.

N/A
Trace files are not available (n/a) for all processors.

Chart of .BIN and .TRC files

Load in
«BIN starting at .TRC
Processor file address file
DDB-48 8048 family TESTA48 00 DEMO48
members in expanded mode
DDB-51 8051 family TEST51 00 DEMO51
members in expanded mode
NOTE: You must also enable F800 to FFFF for the
overlay area.
DDB-51P 8051P, 80C51P TEST51P 00 DEMO51P
NOTE: You must also enable 800 to FFF for the
overlay area.
DDB-611 68HC11 TEST611 FFOO DEMO611
DDB-63 6303R TEST63 FFOO DEMO6 3R
6303X TEST63 FFOO DEMO63X
(obsolete) 63P01 TEST63 FF00 DEMO63P
DDB-65 6502 or 65C02 TEST65 FFO0O DEMO65
DDB-65P R65/11EB TEST65P FFO0O DEMO65ER
R65/41 TEST65P FF00 DEMO6541
R6511Q TEST65P FFO0O DEMORG65Q
DDB-68 6800 or 6808 TEST68 F800 DEMO68
DDB-681 6801 TEST681 F800 DEMO681
6803 TEST681 F800 DEMO681
piggyback TEST681 F800 n/a
DDB-682 6802 TEST682 F800 DEM0O682
DDB-685 6805E2 TEST685 1F00 n/a
HD6305 TEST685 1F00 n/a
piggyback chips TEST685P F0O DEMO685P
6805E3 TES685E3 FFO0O0 n/a

March 25, 1987 Page J-3 -- Appendix J --

DDB-688
DDB-689
DDB-68K

DDB-85

DDB-86

DDB-88

DDB-96

DDB-HD64
DDB-SC8

DDB-S8

Load in

-- Appendix J --

«BIN starting at . TRC
Processox file address file
68008 TEST688 00 DEMO688
6809E TEST689 FFO0O DEMO0O689
- 68000 TEST68K 00 DEMO68K
8085 TEST85 00 DEMO085
8080 TEST85 00 n/a
8086 min TEST86MI F800 DEMO86MI
8086+ TEST86MA F800 n/a
80186 TEST186 F800 n/a
80286 TEST286 F800 n/a
NOTE: With all members of the 8086 family, you
should use SEG' before loading into emulation
memory with BINLOAD. After loading, you can
turn back on the interpretation of addresses
as offsets from segments, with SEG.
8088 min TEST88MI F800 DEMO88MI
8088+ TEST88MA F800 n/a
80188 TEST188 F800 DEMO188
NOTE: With all members of the 8088 family, you
should use SEG' before loading into emulation
memory with BINLOAD. After loading, you can
again turn on interpretation of addresses as
offsets from segments, with SEG.
8094, 80095,
8096, 8097 TEST96 2080 DEMO96
NOTE: You must enable the entire area 0 to 2FFF,
for the overlay area.
HD64180 TESTHD64 00 DEMOHD6 4
NSC-800 TESTSCS8 00 DEMOSCS8
ROMless members of the super 8 family
TESTS8 20 DEMOSS8
Page J-4

Load in

.BIN starting at . TRC
Processor ‘ file address file
DDB-28 z8 TESTZ8 0ocC n/a
piggyback TESTZ8P ocC DEMOZ8P
NOTE: You must enable 00 through FFF.

NOTE #2: Assumes you have pulldown resistors on the
upper address lines. If you have pullup
resistors, then ALSO FFOC EMENABLE and then
0C FF FFOC MMOVE.

DDB-280 Z80 TESTZ80 00 DEMOZ80
NSC-800 TESTZ80 00 DEMONSCS8
HD64180 TESTZ80 00 DEMOHD6 4

DDB-Z8K 28001, z8003

These two processors need two values initialized:
0 =ROM.SEGMENT
0 =RAM.SEGMENT

TESTZ81 00 n/a
Zz8002, z8004 TESTZ82 00 n/a
DIS-18 1802 family TEST18 00 DEMO18

March 25, 1987 Page J-5 -- Appendix J --

FULL INDEX

This index covers all chapters in
both volumes. The index at the end of
Volume I covers only that first volume.

Neither index covers the appendices.

.BIN file ® & ® e o e e ® o e e o 2 2—7
EXE o ¢ 4 o o o o o o o o o o o o o 1=-21
.MCR [} L} . . [} . . . L) . L] 1—21
-OPR e o e e e & e s & e o o & e * » 1-21
.SCR e 3 L] L] ° L] ® 1—21
VIR ¢ ¢ ¢ o o o o o o ¢ o o o o o » 1=21

: L] . L] . L] L]] L] L3] . L] L] 7“16

; L] L . L) [L) . [[. L] . . L) . [® 7-17

?free . . . 3-62' 6-24, 6-96' 7-5' 7-22,
7-25, 7-26

<TST) . . . L] . . . L] .] L] L] L] L] - 7_18

=BC e« o . . 3 O .

. - [[. .] . 7-19
=EMSEG 3 . 2-6' 3_9,

5-13, 6-31, 6-35,
7-20, 7-21, 7-70

USE « o o o o o o o o o o o« o o 6-13
=history . . 3-62, 6-96, 7-5, 7-22, 7-26

=MBASE

. . L] . - L) . L] . L] 7-23
=OVERLAY « « ¢« ¢« ¢« ¢« o o« &« « 6-107, 7-24
=SYMBOLS ©6-24, 7-5, 7-25, 7-26
SWAIT & o o o c o o o o o o« o o o o 1-26

\ORION L] 3 . L] . .] . [. L) e - . - 1-17

16-Dit ¢ ¢ o o o o o o o o o o o o o 1=31
data bus . . « « « 1-3, 7-62, 7-85
EProMS .« o« o « o o o« o o o o 6-137
installation =« « « ¢« o & o & o 1=7
sample trace . o« « ¢« o« o « « « 6=15
16BIT - L] - L] L] L] L L] L] L] L] L] L] L] L] 7—11
1802 o o o o o ¢ o o o o o o« o o« o« 6-123
19.2K L] L] L] * L] L] L] L] . L] L] L] L] L] . 7-11
TAFTER « ¢« ¢« « « « 5-14, 6-67, 6-86, 7-5,
7-12-7014

March 25, 1987 Page 1 -- Index --

20-bit addresses .
24-pin Plug

[L) » . ° . L] . ° 6"33

in 28-pin Socket o 1=30
ZSOOAD ° ® [. [) 3 [- » [) L] . -) . 6-22
2AFTER . . 3-33, 5-14, 6-67, 6-81, 6-86,
7-5, 7-14
32K UniLab . 3 . 3 . ° » 6-33' 6’36' 7“'70
limitations « o« « 2 « o « o« « o« 6-33
WAYXNing o« o o o = o o « o« » o o« 6-33
3AFTER « « . 3-33, 5-14, 6-67, 6-86, 7-5,
7-14
48 CHANNEL BUS STATE ANALYZER . . « 1-26
68000 .+ ¢« o o o o o » o o« o 6-49, 7-197
8/16 BIT IN~-CIRCUIT EMULATOR . . . « 1-26
8051 v« ¢« ¢« « ¢« & « 1-35, 2-5, 6-49, 8-13
and reset « « o « o o o o « o o 8-13
reset ¢« ¢ o o o s e« o ¢ o s« o o 1=-35
8086/88 family « « « « 1-39, 6-49, 6-107
NMI - . 3 3 L) L3 [- L) [3 [- - © 1-39
8096 « « . «» 6-5, 6-10, 6-15, 6-16, 6-34
8BIT =« « ¢« ¢ o« o« &« 1-7, 7-11, 7-15, 7-85
9 pin serial port . « ¢« « ¢ &« o o o 1-14
9eBK ¢ o o o o o = e o o« o o o » o o 1-15
adapter
9 to 25 Pin 4« ¢ ¢ o o o o &« o « 1-9
Address
PPA & ¢ o o o o o o o o o » o o 4-3
Address lines
teSt ° 3 L3 ° 3 L3 . . ® ° ® . ° 6"58
address problems « « o « o o o o o o 8-4
Addresses
for triggers . « ¢« ¢ ¢ o o o o 2-3
adr .+ . . « 3-27, 6-8, 6-70, 6-77, 7-27
ADR? « + . « 3-12, 6-65, 6-68, 7-4, 7-28,
7-78, 7-155, 7-162
AFTER &« o o o o ¢ o o« s o o« o 3-34, 7-29
-- Index -- Page 2

AHIST . o« o o o
16/20 bit
address bus
bin limits
bins . . .
definition
false results
function keys
problem . . .
procedure . .
specifications
start
swamping . . .
symbol conventio
symbolic labels
symbols
trigger spec

ALLEN ASHLEY . . .

ALSO ¢ ¢ o o o o o
and EMENABLE

ALT~-FKEY e o o o

ALT-FKEY? . . .+ &

alter
internal registers . . .
program flow . .« « . . .
YAM o o o o o o o o o o o

Alter memory ,
with modify « . . .

analysis
non-intrusive . . .

Analyzer . . . ii, 1-10,

7-31, 7-1
cable « + « ¢ o+ . .
menu . « « o 2-11 t

L] L] [] . L) L]

L[] L[] L[] [] L J . L] . * . L] L[] []

S

[) . L] L] [] L] . L]] . L L[] [] L] [] [] . .

Xe]

s w []) L[] L] . L] L] [] L] [] L] [] L] * L] L] [] L]

w

L[] [] . . [] L] L[] L[] s L] L L []] LJ L] . * L] ¢ L] L]
L]

wn N
I
(62}

¢ wm =3 e e ¢ [N ~

oUW

trigger status

USE o o o o o &
ANALYZER TRIGGER MENU
ANY . .
AS . . .
ASC . .
ASCITI .

2-13, 3-12 2

* - L] L] L] L]

2-8, 6-27,
7-106, 7-
COAES o« o o o o o

ASEG e & » o o o ¢ o e .
ASM . 1-44, 6-53, 6-54, 7-4,
ASM-FILE . . 6-44, 6-53, 6-55,

-
L] .
- -
. .

L4

- O
¢ o | s Ve s s WO e —

owm

Assembler . . . « 4 4 ¢ o o .
AT -
serial port . «
AUTOEXEC.BAT . ¢ ¢ o o o o « &

floppy systems

March 25, 1987

|
Do
€2 B o o]
® 8 W e @ e & 8 9 ° & 8 8 6 &6 wm e w @

DNo s o o o o ¢ ¢ @ o ¢ » N

o OVe e & e o ¢ ¢ s ¢ s o s o Ne N
[te)

]
s (Do
o

L]

6-147,

~
i

(o))
-

1-17,

Page 3

7-36
7-36,
7-183

7-36

7-37

7-39

7-4,

7-41

6-53

-- Index --

AUX L] ° ° o . . ° o . © . 0 ° . . . 8—8
AUXT @« o o o o s o o o o o o o o « o 1-41
AUXZ . . ° * . [° ° . L [} . [7-41 ’ 8-8
AVOCET © . » . . L . ° L e ° . . © . 6"22
AZTEC ¢ o o o« o o o o o o o o o o o 6=22

B. e e o s e s e o s o o o 1-42, 7-110
B# ° © L] » . 3 . L] L] [© [] [3 . L] 7‘42
Background task . . « . . . o 8-10, 8-11
Background tasks
e o s o o o s & o s s o o o o 1=-23
Bad data
from stack .« ¢« ¢« o o o o o o o 8=17
SEACK &« « o o o o o o o o o o o 1-44
Bad Range - can't subdivid e o« o « 4-58
Bad timing wires
and NO ANALYZER CLOCK . . « « « 8-15
Bad Trace « « o « o o o o o o o « o 1-44
base

specifying . .« ¢ & o o o o o o 3=22
Batch fileS =« o ¢ o o o o« o o o o o« Vii
COMPlEX « o o o« o o o o » o o o 3-48
Simple « o o o o o o o o o o o 3-47
Baud rate
19,200 & o o« o o s o o o o o o 1=9
BINLOAD « o« o o« 2-7, 3-10, 6-31, 7-43
binsave . « « « « « « s 3-10, 6-42, 7-44
Bootable diskette . + ¢« ¢ « ¢ « o o 1-18
Boundaries for bins overlap . .« . . 4-58
BPEX c o o o s o s o s o e s s e o 1-45
BPEX2 L] - L] L] L] L] L] ® L] L] L J L] L] L] - 7-45
Breakpoint
address Zero0 . « o« o o o o o o 8=-19
display « « « o o o o « « o o 6-=114
Setting « o o o o o o s o o o - 2=-14
Breakpoint display . . . 1-6, 2-15, 6-1,
6-4, 6-104, 6-110, 6-114, 6-124
example « « ¢ « ¢ o o o o o o 6-114
breakpoints . « « « o o« o« o « « o 6-103
multiple . ¢« ¢ o« ¢ o o o « o 6=-122
trigger style « « ¢« o ¢« ¢« « . 6-112

buffer

S1ZE o o o o o o o o o o o » o 3-62
BUFfErsS =« « o o o o o o s o« o o o o« 1-17
Bus

contention .+ « « o o o o o o o 1=29
problems . « ¢ « o o o o s o o o iV
sample .« ¢ ¢ ¢ o o o s e s o o 2-12
Bus activity o « « « o o o o o o o o« 6=2
Bus state analyzZer . « « « « ¢ o o o o ii
BYE o ¢ o« « o o « 1-11, 1-45, 5-2, 7-46

-- Index -- ; Page 4

Cable connection « « « « o o o o« & » 8-7
diagram [) [[) ® . -) - [6_1 08
Cable diagrams

ON-1ine . o« o o o o o o o o o« » 1-46
CABLES L] [L) [] [L]) [) 3 [) . [[] - 1-26
Can't create fil e o e o o o o o + 4-58
CATALOG o « o s o o » o o s s o o« o 1-46
CheCkSUMS =« o o o « ¢ ¢« « o« ¢ « « 6-136
Chips

in UniLab « 4+ ¢« « ¢ « o « o« « o 8-22
CHKDSK @« o « o o o s o o o o o o o @ 1-2

and host ram . « ¢« « o « « « » 1=2
CHKSUM - -] 3 L) [) - [. . - - 3 . » 7-47
Circuit

open collector . . 1-27, 1-34, 1-37
CLEAR &« o 2 o 2 o o o o o« o« o 1-48, 7-48
clear emulation memory « « « « « « 2 6-34
CLEAR' & ¢ &4 ¢ o o o o o o o o o« o » 7-48
Clock

INPUES =+ o o o o o o o o o « & 1-10
Clock interrupt . « ¢« ¢« ¢« « « o« o« » 8-10
CLRMBP &« o o o o o o o e o s o o o » 1-49
CLRSYM 4 « e o o s s o o o o« o « o & 1-50
COLOR 2 2 o o o s » o o o « o« 1-48, 7-51

column .

headings .+ ¢« ¢« « ¢ o ¢« o« « « » 5-8
COMT & o o « o o« o 1-14, 7-52, 8-8, 8-12
COM2 & v o« o o o o o o s o o &« o o » 71-53
command

edit and reissue 3-73
format . ¢« 4 ¢ 4 ¢ o o o o o o 1-10
Ye-issuing .« « o o o o o o o 3=-71
Command file . « « « « 1-21, 6-102, 7-171
command language « o« « « o o « o ¢ « 3=-21
unilab .« ¢« ¢ ¢ ¢ ¢ ¢ o o o o o T1-1
command line editor 3-70, 3-73

command mode . . . 1-45, 2-5, 2-9, 2-18,
3-20, 5-5, 6-22, 6-146
entering . o« ¢ ¢« o o o o « o o 3=-21
Command Reference
on-line . .
command tail .
TOFILE .
Commands . «
advanced
Beginner
common .
rare . .
communication
unilab and host
unilab to target . . .

L] [] L[] L[] L] . L]
L] [] [] [] L] [] L]
[]] L [] L[] [] L[] L[]
L] L] L] L] L] L] L[] L]
* L] . L] L] L] L L]
L] L] L] L L] L] L] .
L] . L] L] L] * [] .
L] * L] L] L] . L] L
L[] [] [] [] e L] L] L]
‘e L[] L[] L[] L] * [] .
[] * L] L L] L] * L]
w
|
N

L] L[]
- e
|
-
o

- L]
P

March 25, 1987 Page 5 ~-- Index --

compare :
trace « ¢ ¢ o ¢« o« o« o« o 6-99, 7-192
Complications _

Reset and NMI +« o ¢ o o « o o« o 1-27
CONFIG.SYS v ¢ ¢ o o o o« 1-11, 1-17-1019
Connect

UnilLab to host . ¢ ¢« ¢ &« ¢ ¢ « 1-13
connection e« o s s o o o « 1-26, 6-108
additional . ¢« ¢ ¢« o ¢ o o o o 1=7
detailed step-by-step « ¢« « « .« 1-12
diagram « « o o o o o o o o = « 1-26

DIP CLIP .« « « « o « « o« 1-32, 1-33

NMI_ 3 3 . L3 . . - - L) [* [. 1"37
quick step-by-step . . ¢« . o o 1-11

RES" 3 . 3 ® . L] ° [) L] - . L] - 1-34

ROM cable ¢« ¢ ¢ o« o « o« « « « « 1-30
UnilLab to host . . « « . 1-11, 1-13
UnilLab to target 1-11, 1-25
Verify . « o« « « « « o o 1-40, 1-43

CONT « « « « 3-27, 5-13, 6-8, 6-16, 6-77,
7-34, 7-54, 7-192, 8-22

CONT columil =« « « o « o o« o« « o « o 8-18
CONTROL &« ¢ « o o = o s s o o o o o 1-56
CONTROL-BREAK &« o ¢ o o 2 ¢ o o o =« 8-8
Controls v o« o o o o o« » o o o o« o « 1-4
COPY @ o ¢ o o o s o o o o s o o o o« 3=-47
COPY CON o v o o o o o o o o o o » « 3-47
CTIJ-FKEY ° . [. [. © L] ° L] . . ® - 7‘57
CTL-FKEY? L3 . -] L] [L] [] [) . [L] L3 7-57
CTRL~BREAK ¢ ¢ « s o « s o o« » 1-13, 1-15
CUrSOYr KEY &« « « o o o » o o s o« » 6-149
and mode panel .+ &+ +« « ¢ « « o« 3=-57

and screen history . . « « « « 3-56

and text files . & o o o o o o 3=77

and textfiles [. » . . [. 3 . 3-57

and trace buffer . . « « « « « 3-56
assignment . . . 4 ¢ o o o o o 3=-52

CY# o o o« « o « « 6-8, 6-12, 6-25, 6-127
Cycle numbers . « « « o o o o o« o« « 6=73
CYCLES? &+ ¢ « « « o « » 3-12, 6-68, 7-58

D¥ « ¢ « « « « Vi, 7-7, 7-42, 7-59, 7-81
DASM L] . - L] L4 ® . . . 7"60’ 8-18
DASM' & & ¢ o o « o o 2 o o o = « o 1-61
data « « « o« 3-13, 3-27, 6-9, 6-77, 7-62
bad fetches « « « 2 ¢« ¢« o « « « 8-6

Data bus . . 1-3, 6-9, 6-15, 6-32, 6-84,
6-88, 6-158, 7-11, 7-62, 7-63,

7-85
16-bit o ¢ ¢ ¢ o o o o o o » o 1=3

Data lines
test . ° . - . L] ° e 6—58

-~- Index -- Page 6

DB-25 connector
DCE [] L] [] - L] L] L] L] [] .. [] L]
DCYCLES . . 3-26, 6-66, 6-74

. .1-14' 8"8
4
7-64, 7-132 to 134, 7-161, 7-201

. 8-8, 8-9

6-75, 7-5,
DDB

definition . . ¢ ¢ ¢ ¢ ¢« ¢« o o &« V
DEBUG L] L] L] L] L L] L] * L] L] L] L) L] L] 6-107
definition . ¢« ¢« ¢« 4« 2o ¢ ¢ o a & V
disable . « ¢« ¢« « « . . 6-34, 6-128
exiting « ¢ ¢ o ¢ o « ¢« o o« o 6-126
explained « « ¢« « ¢« ¢« &+ &+ ¢« « o 8-19
necessities « ¢« « ¢« ¢« ¢ « o« o 6-107
OVerview .« « o« « ¢« o« o« ¢« « « 6=106
Sstack « ¢« ¢ ¢ o o o o o o s o o 6-11
terminology « « ¢« ¢« &« « « « o« 6-109
through hardware interrupt . 6-111
through software interrupt . 6-110
troubles . . ¢« ¢« ¢ 4 ¢ 4 o « 6-113
Debug Control . . . ¢« o o« ¢ &« o« o« » 2-14
' and RAM . ¢ &« o« ¢ o« o o« o« « o« o 6-46
definition . ¢« ¢ « ¢ ¢ ¢ ¢« &« o o« V
establish . . « « ¢« &« ¢+ ¢« « « 6-109
establishing 6-109
example +« « ¢« ¢ ¢ ¢ ¢ o &« « « 6-110
Debug Control not established . . 6-34,
6-48, 8-19, 8-21
and RAM o ¢ o ¢ « o s « » » o o 6-48
debug menu . . . 2-14 to 16, 3-14, 6-105
define symbols 5-7, 6-53, 7-38
DEFW L] L] * L] L] L] L] L] - L] L] L] L] L] * L] 7—65
delay cyCles « « o« o o o o o o« o« o o 3-26

Demo program
.BIN [] L] L] L] L] L] L] - L] L] L] L) L] 2-7
Desk accessOriesS « « o o o o« « « « o 8-10
Desk AQCCESSOYY o o « o o o o o o o« o 8=11
Development system . . ¢« ¢« « o o « o o 1
devents =« ¢ o ¢ o o o o o o o o s o 3-33
DIP clip e o o o o o o o o o 1-26, 1-32
Connection . « o« ¢ o o o « « o 1=-32

disable
debug L) L) L) [[6-1 03,

(o)}
1
-
-
-
-
o))
]
ary
N
[o9]

emulation memory . « « o « o o 3-9
NMI . . . 6-129, 7-129, 7-130, 7-140
Disassemble . ¢« ¢ ¢« » o « « &« 2-9, 6-52
and filtering « « ¢« ¢« o« « « « o 6-86
emulation MEMOTY &« + o o« o o« o 2-9
from memory « « « « o o o o o o 6=52
improper .+ ¢ « « « o « o « « o 8-18
in dedicated window « « « « « » 3-66
DISASSEMBLER &« o 2 « e o « s« o« « « 6-154
NOEE & o 4 o o o o o o o o & o 6=9

March 25, 1987 Page 7

-- Index -~

Disassemblers
location
Disconnect
unilab from host
Disk full
Display
memory
Display Options
DM

L] o

watch out

DMBP
DN .
Documentation

guide

L] L] L] - L] L]

LWe o (Ne o

. 3-46, 3-47,
serial communications
version .
DOS command .
5-9,

DOSs

- . *

, 1-21,
7-68,

. - 1-19
6-164'

CHKDSK
MORE
TYPE
VER

DTE
Dumb

* L[] [] L] [] . L]
L] L L] L L] e L]
. ® L] L] . L] L]
. ° []] [] [] L]

terminal
PC .

editor
command line

L

Y
e o 8 0 N} e

PN
G e 8 2 N\We

EMCLR .
EMENABLE . .
and ALSO .
Enmulation memory
and fetches
Emulation Module

L] . L[] L[] L] L]
s & e ¢ o

-

» s o o [N e s o o |

Emulation ROM
128K .
access to
clear .
compare
crash-free a
disassemble
enable .
explanation
overlap .
read
status
warning .
write

-

L3
[] L)
.
- .
-

C

1]

~
—_

Ne ¢ Oe¢ 2 ¢ s 8 o o s o
w

. e - L] [] L[] * L] L] (] []

L] L -

-

| & 8 <Js& s & ¢ o o o o o

—_
—a e
o

~ ¢ o o o o o o (Do o o o

~

s o o s 2 o 3 (s o o s o

~

l

-

e o

-~

-- Index --

L] L[] L] - W= L]

Emulator « ¢ o ¢ o o o o « o ¢ o o o 1-10
cable e« o o« o o o 1-25
cable 1nstallat10n B

Enable memory . ¢« « « o o o« o« o« 2=-2, 2-5
menu 3 - - . . . L] . [] L3 * 3 ® 2-6

enable program memory menu . . 3-9, 6-31

Engineering Technical Notes . . « o o Vi
information on . ¢« « 4 ¢ . . o Viii

EPROM ¢ 4 o o o o s o« ¢ o o o o o o« 3=-17

EPROM programmer . « « « « « o iV, 6-130

EPROM PROGRAMMER SOCKET ¢ o« « o« o o 3-17

eproms :
16-bit .+« &« &« o «
programming
Error messages . « « o
See also Appendix I.
NG! L] L] L] . L] L] L] L]
NO ANALYZER CLOCK .
RS-232 Error #xx .
Establish
debug control . . ¢« ¢« « « « o« 6-109
Establish debug control . . 5-12, 6-105
ESTAT . . 5-13, 6-30, 6-31, 6-36, 6-136,
7-3, 7-20, 7-72, 8-7
EVENTS? &« o « o o o o o o o o [1-4, 7-73
Examine
memory . - . . L3 L] . [3 3 - 2-9
EXAMINE OR CHANGE PROGRAM MEMORY
MENU o « o« o« & . - 3-11, 6-45
EXit o ¢« o o o o o o o @ 1 11 1-45, 7-46
Exit from debug . . . 6-1, 6 -116, 6-126
External logic gate .« ¢« ¢ o ¢ o o o 1=27

£
cycle number . . . ¢« ¢« ¢« ¢ o o 6-8
F8 4 o o o o o o o e o o o « o o« o o b=3
fetech ¢ &« ¢« ¢« ¢ ¢ &« « « 3-13, 6-81, 7-74
bad data LY .] [L] L3] 3 ° ® 'y 8-6
File
NAMES & e o o » s s o o« o o o o 1-4
File not found « ¢« ¢« ¢« &« « ¢ ¢« « « o 4-58
FileS &« o o o o o o s o o o o o o o 1=-17
teXt [[. L] L3 . L] 3 L3 [L] . ° 3"'76
FILTER . « « « « 7-75, 7-83, 7-118, 7-131
additional capabilities . . . o 3-33
example « o ¢ o« ¢ o s o o o ¢ o 3=-32
examples . . ¢ ¢ ¢ ¢ ¢ o o o o 3-43
primitives .+ ¢« ¢ « ¢ ¢ o o« o o 3-33
Erigger « o o o o s o o o« o o o 3=-30
Filtered
Eraces . o o o o o s o o o s« o 6=-85

Filtered TraceS . - . - . L] L) . . . 6-67

March 25, 1987 Page 9

-- Index --

Filtering
and disassembly . <« .« « « o o 6-86
FIXED HEADER . . . 5-8, 6-6, 6-28, 6-153,
6-158-6162, 7-86
FKEY e o o e o 1=33, 7-57, 7-76, 7-167
FKEY? &« o o o o o o o o o o o o o o 1=77
Flicke€r o o o o o o o o o s o o o « 1-48
floppy disk

installation . « « o o « « « « 1-18
flowchart « « ¢« ¢« « « « « « o 6-88, 6-89
of qualifiers . « « o« « o o« o « 3=-35
qualifiers . « o« « ¢ o « « o o 6-89
simple trigger . e o o« s o o 3-24
trigger with fllter e s o s o o 3-31
trigger with qualifiers 3-39
Footer
trace display « « ¢« « « ¢ « « o+ 7-86
FORTH &« o o o o o o« o« « o« o « 1=16, 7-45
file » . [3 L] - L3 - L) L3 * [] L] 6“55
FORTH SCr€ensS . « » « o « o o o« o o 6=55
Freeze-up =« « « o o o o« « o o« 1=-13, 1-15
Function keys =« « « « « o « « 5-5, 6-147
AHIST . [. .] ° [} . [[. 3 3 4‘31
and PPA . 3 . . - © [® - . - 3 4—31
assignment .« . « o ¢ ¢ o o o ¢ 3=51
diagram « « o o« o o o o o o o o 3=-54
MHIST o « o o o o« o s o o o o o 4-54
set « « « . 7-33, 7-57, 7-77, 7-167
THIST o o o o o o o o o o o » o 4-42
G o « o o s o o o o o s o o o o o o 1-78
Garbage
EXrace +« o« o ¢ o o o o o o o o« o« 8=13
GB &« o« o o« . 3-14, 6-105, 6-121, 7-79
Getting Ready c e o s s o s o s e o 6-34
GloSSary « « « o« « o « o 1-11, 1-17, 1-18
Glossary diskette .« &« ¢« o« o « o « o 1-4
Guided demMO o« « o « o o o o s o o o 2=2
OVEXView .« o o o o o o o o o o 2=2
GW . . . 6-104, 6-126, 6-127, 6-129, 7-4,
- 7-80, 7-159

H)D - .) . 3 L) . - - L) . ° . - L3 L) 7-81
HADR e o o s s s s« o 1-82, 7-97, 7-192
Halt . 3 . » - 3 ° L3 - - L) ° [) ° . - 8-16
hang up ‘
e o o o o o o s s o & o 1-13, 1-23

Hangs

on initialization .« « « « « . . 8-8
hard disk

installation .« « « o « o 1-16, 1-17

-- Index -- Page 10

hardware

addressing problems . « « « « . 8-4
diagnostics « « &« ¢ ¢ o« o o iv, 8-2
troubleshooting « « ¢« ¢ ¢« ¢« « « 8-3
Unilab .« o« ¢ o o« o o« ¢ ¢« o« o« « 1-4
hardware diagnostics « « ¢« « ¢« « « « 8-12

hardware troubleshooting
unilab 3 - . [L3 [[*) [) L] 8—22
HDAT . L) . [. - . [- . L] . () . . ® 7-83
HDATA . . . 3-27, 6-8, 6-9, 6-11, 6-77,
6-100, 6-123, 7-84, 7-85, 7-192
HDG . ¢« ¢« o« o« « « 5-8, 6-6, 6-162, 7-86
HDG' e o o o o s o o o« o« o s« b-8, 7-86
Header

trace display « « o« o« ¢ ¢ « o« o 7-86

HELP ¢« ¢« « o o ¢ « o o« o o« 5=-2, 5-3, 7-87
on-line . + ¢« o ¢« « o« o« « « 5-1, 5-3

HEXLOAD , . 3-10, 5-14, 6-31, 6-38, 7-88

HEXRCV L3 . - . . . 6-39’ 7-90

Histograms . . . 6-94, 6-95, 7-31, 7-91,

, 7-115, 7-166, 7-191
See also PPA.

History =« ¢ o« o« o o ¢« o« o « « 5-15, 6-96
and trace « « « « o o o o« + o « 6-19
SCreeIN « o o o o o o« s o » o & 3-61
space alloted ¢« ¢« ¢ ¢ ¢ o o o« o 7-22

History mechanism . ¢« ¢« « « ¢ o « « 6-19

HLoap . . 4-12, 7-5, 7-31, 7-91, 7-115,

7-171, 7-191

Hookup
Testing o« o« o o o o « o o « s« o 1=6
verification . . ¢« ¢ ¢« ¢« ¢ « « 1-6

HOSt . [] . L] . . 3 . 3 . . . L3 * ® 8_11

Host computer . . « ¢« ¢« ¢ &« « o« 1=2, 1-9

HOST RAM ‘

Requirements . ¢« ¢« ¢« o « o o « 1-=2

HSAVE . . . 4-12, 6-94, 6-95, 7-5, 7-31,

7-91, 7-115, 7-171, 7-191

INFINITE . . 6-11, 6-15, 6-70, 7-7, 7-92,
7-127, 7-162, 7-174, 8-19
INIT . [. 1"15' 1"23' 7’93’ 7-203’ 8-8,

8-13
Initialize
stack pointer . . . ¢ ¢ & o . . 8-17
Initializing . « ¢« « « - 1-4, 1-15, 1-21
Trouble L] L] [2 L] L) L] * L] [] L] L] L] 1 —23
Initializing Unilab . « « « « « « « 8-8
Initializing UnilLab. . .
problems . . 4« ¢« « ¢ ¢ « « o o 8-8
INITRS232 e e o o e o s o e e+ e o & B8-12

March 25, 1987 Page 11

-- Index --

INPUEL ¢ ¢ & o o = o o o s o o o o o 1=10
gIOUPINGS o = o o o o o o o o o 3=27
simulation . . ¢ ¢« ¢« « ¢« « o 6-140

Input buffers
unilab [. ® L) L[] [» . L] L] [. 8‘22

Inputs
simulating . ¢ ¢« ¢ ¢ o o o o o o iV
INSTALL &« ¢ o « 2 o o o « o« 1=-11, 1-17
INSTALL.BAT . o » ¢ o & 1-4, 1-16, 1=-17
Installation « ¢« o« o« ¢« o« ¢ « o 1-5, 1-11
detailed step-by-step . « « . o 1-12
floppy disk systems . « « « « & 1-11
hard disk systems « « ¢« ¢« « « o 1=11
on a hard disk .+ ¢« ¢« & ¢ o o o 1=17
OVEIVIEW 4+ « o o s o o o o o« o« 1=5
quick step-by-step .+ . ¢« o . o 1=-11
software . « o« o « o o o o o« o 1=16
trouble + + ¢ « ¢ ¢ o o« o o o o 1=15
INT &« o« « o « » o« o s o o o o 1-38, 7-94
INT' @ ¢« ¢ o o o o o o o« o o o« o o o 1=95
INTEL
HEX format . « ¢« ¢« ¢« ¢« o « « o« 7-88

reset o . L] L3 L[] . L] - . . . [] ° 1-34
INTEL DEVELOPMENT FORMAT . . « « o o 6-22
Internal registers

ACCESS ¢ o o o s ¢ o o o « o 6-108

altering .« « o« o « o o o o o« 6-124
Internal state « ¢« ¢« ¢« ¢ ¢ o o ¢ o o iii
Introduction « « « o o o« o 2 o « o « & 1
Invalid or missing number 4-58
Invalid start and stop address . . . 4-59
IRQ &« ¢ ¢ o o o o o o« « 1-10, 1-38, 8-21

IS L] L] . o - . L] . L] . 6‘23, 7—96

keys
SpeCial o L) - . L) [} . . L] [. [3‘59

LADR e o » o o o o o 1-82, 7-97, 7-192
Language

FORTH L] . ° e o . e L] . . 7-16' 7—45
LEAVe ¢ o« o o o o o o o o« o o 1-45, 7-46

debug control e o« « 6-126
Limitations

32K UniLab . . .
Line history . « « . =«

size .+ ¢« o o o o
Line-by-line Assembler

e o o o o o 6=-33
6-24, 7-22, 8-23
° . . L ° . 6—96
e o o o o o 6-53

L] ° L] ®

-- Index -- Page 12

Load

binary .« ¢« ¢ ¢ o« ¢ ¢ o o o o« o 7-43
from disk « « ¢« ¢« ¢« ¢ ¢ o « o« o 6-38
heXfile . . L] - .] 3 L] . [y [L3 7—88
histogram . . ¢« ¢« ¢« o« o o« o« o 7=-191
Program « « o o o s o o o o o« o 6-38
sample program . « « « o o« « o 6-41
symbols . ¢« ¢« ¢« « « « « 6-22, 7-185
target programs .« « « « o ¢ o« o« 6-38
Erace o« o« o« o o o o o o o o o 1=-201
lOad binary *« ® @ ® o & o o o 2-7' 6-31
LOAD OR SAVE PROGRAM MENU . . 3-10, 6-31
load Program « o« o « o s o o o o o «» 1-4
into MEMOrY « o o o o o o o o o« 2=7
load symbols . . e e o o o s e o o 6=-22
LOG 3 L] [L] L] . [[. [. [. o . 7"98

LOG TO FILE . . . 5-9, 6-94, 6-97, 6-98,
6-129, 6-153, 6-163-6167
LOG TO PRINT . . . 5-9, 6-53, 6-94, 6-97,
6-98, 6-129, 6-153, 6-163, 6-164,
6-165-6167

LOG' e o o 5 82 o o o o o s o o o s o 1-98
Lowbound is larger than highbound . 4-59
LP 4 2« o o o o o o o o & e o e e e 7-99
LTARG . . 1-40, 3-10, 6-11, 6-34, 6-41,
7-100, 8-2, 8-13

flOW Chart . L] 6-70

M . . . - L] . . . 7"101
M o o o & e 3-11, 7-102
M?2 & .+ . . .« o e e o o« « 7-103
macro . . 3-49, 7-16, 7-45, 7-104

. L]
L] . - L] L] L
L .
.

example « ¢« o« ¢ ¢ o o e o« o 6-139
making permanent . . e o o« o 3-49
Macro mode .« « o« o o o o & e o o o 1-47
Macro system
files o ¢ o o ¢ o 4 e e e e & o 1=21
Main menu . « « « « « « o 1-45, 2-5, 3-8
MAKE-OPERATOR . 1-47, 7-8, 7-104, 7-105,
7-139

MANX o o o ¢ o ¢ o o o o o o o ¢ o« o 6=-22
MAPSYI"I L] L] 7—1 06
MAPSYM+ o o o o o o o o o o o« o o 1=-107
MASK . .« 6-66, 7-54, 7-62, 7-82, 7-84,

7-97, 7-108, 7-116

McomMP . . 3-11, 6-44, 6-45, 6-57, 6-60,
6-137, 7-4, 7-109
mpumMp . . . 2-8, 3-11, 5-15, 6-45, 6-61,
7-45, 7-76, 7-110
MEMO . [} . . . L} L} L . . - . . L} 7"111

March 25, 1987 Page 13

-- Index --

Memory . .
Access Complications
block moves
comparison .
Crash free access
display . .
Display and Modify
distinguishing ram and rom
dump .
emulating two 64K segments
emulation .
ENABLING -
enabling emulation .
Enabling several areas
Examine and Alter
Feature Summary .
£fill .
minimum necessary
modify .
saving enable status

Memory organization
Intel model .
Motorola model

- - . . - L] L) L]

L] L[] L] .

e
-
L]
[
-
[] -
-

- - L] o - - L] L] . L]

®© . - » . L]

[] L] L] L[] L L[] L] L] L]
L] * L] [] L] L[] L[] * L] L[] L L] L] L] L] (] . . []

MENU .
command map .

conceptual map
map .
mode

Menu

special functions .
system
guided demo .
use
MESSAGE
MFILL
MHIST

Menu

1-21,

6 6

I W

¢ & o & o o 8 o ¢ & 2 & b = Do

N~

16/20 bits
and stimulus
assumptions .
Chart and Grap
definition .
function keys
manual loop .
problem . .
procedure . .
specifications
start .
timed loop .
timed-loop start
understanding .
valid results

{(e]

o

- ° ® ™ W= L[] . ¢ = L] » = L] L] °

e ¢ — | & s o e ¢ e o

* s 8 o & Te o o o (W] e

e o © Jhe e June o s o

. L2 L] L

[I
(@R o]

s o N

. [] L] L L] L] L] L[] o [] L] [] [) L] L[]

o
|
(o0]

-= Index --

6-50
6-46
6-57
6-60
6-47
6-50
6-50
6-49
6-61
6-35

1-9

2-6

2-5
6-36
6-43
6-44
6-58
6-34

[84]
o

[e) o)}
I

w

~

* L] . L] L] L] L] L] L[] L] [] L] [] L] L L] ® [] L[] L]

~i
!
P =

OO0l
B ws » O WwWww

NSO =

«
NN
a1
| =W W= = DWW =t -

Ul = = = |
ol w=-—=WU

4-8

MicroTarget . « «

definition . « « ¢ « &
MICROTEK o « o o s o o o o o
misc « « « o 3-27, 5-8, 6-9,
base o ¢ ¢« ¢ « o o =
MISC # BASE . « o« « « « 5-8,
MISC COLUMN .+ « « « « « 5-8,
mIisc' . . 7-7, 7-56, 7-75,
Miscellaneous . « « &« « « «
Miscellaneous input lines
MLOADN « « « « « o« 5-14, 6-39
MM ¢ ¢ o o o e o o o o o o =
MM! L] L] L] [] [] * 1 —44, 3_1 2 '
MM? - - L] * L] L] [] L] L] L] L L]
MMOVE .+ o ¢ o o o o o o o @
limitations « « « « « &
MODE . o L] L] L] L] L] L] - L] L 3 L
CONT COLUMN ¢ o o o o o
DISASSEMBLER .+ o « o &
FIXED HEADER . o« o o o
LOG TO FILE « ¢ o o o
LOG TO PRINT =+ o« o o @
MISC # BASE « « o o o o
MISC COLUMN o+ ¢ o o o &
NMI VECTOR ¢ o ¢ o o o
PAGINATE =+ o o o o o o
PRINTER & o o o o o o o
RESET * L] . L] L] * L] L] L]
SWI VECTOR & o o o »
SYMBOLS « « ¢« « » b5-7,
Mode panels . « ¢« ¢« « « 5-3,
help « ¢ ¢ o o o o o
in brief . . ¢« « ¢ & .
Modify . . 3-11, 6-45, 6-50,
6-63
MEMOYY o o o o o o o o
MORE

DOS command .
move through trace
MS ¢ ¢ o o o ¢ o
MS-DOS &« o « o » o
Multiple pass

PPA L] * L] L] L]

N L] L] [] - [] - L]

single step
NDATA . o« o o
NG!] - [] L] L] *

March 25, 1987

] . L] L]

1-3
L L L] L] L] V

6-22

6-77, 7-116
. [} . . 5-8
6-6, 6-153,
6-158-6162
6-6, 6-153,
6-158-6162
7-83, 7-118,
7-131

e o o« o 1-10
1-10
7-119
7-120
8-17
7-122
7-123
6-59
7-124
6-159
6-154
6-162

e 1-7,
7-121,

6-45,

[
~N Qe
- 0w

auinntuouuutUuiUle o
| I
L B B T B B

O) ¢ [] L] L] . * » . L] . * L] L] L]

Ul
I = WUne

L]
=0 i

¢ LNOVOs WOWD®WYWOD
- W™ 0w

.

| o o
.
L]

¢
(o))}
~
i
w
~

L] L 4 . L]
L] L] L .

s o o
~J
L}
—_
[\%)
(o)}

-- Index -=~

NMI . . . 1-26, 1-27,
8086/88 family .
and 8-86/88 . . .
and debug
breakpoints . . .
disable « « . . .
disable/enable .
disabling
NMI VECTOR o e 5-9,
NMI-
circuit « « . <« .
connection . . .
NMIVEC . . 1-38, 5-3,
NMIVEC' . 5-3, 5-9, 6-
7-6, 7-94, 7
NO [] [] - L] L] L] L] ® L] L]

NO ANALYZER CLOCK .
Non-Intrusive Analysis
NORMB

NORMM &+ o « « « o o @
NORMT @ o o ¢ o o o o
NORMX &« o o o o o o @
NOT & o o o o o o o o«
SCOPE 2 v o s o o
not enabled
not enb . . ¢ « & « .
Not enough bins availab

not recognized .
notation
conventions
NOW? e o o s o o o @
Numeric key pad . 2-1
6-96, 6-149, 7

Object file .
binary format .
INTEL hex format

OEE‘ .

On-Line
help .

on-line assembler
and files .
use .

On-line documentation

On-Line Help . 5-11,
Only 3 ° ° - 3-30' 3"33
6-86,

Open collector .

-- Index --

1-37’ 3-11'
7-129,

3-14,
8-21
1-39
1-39

6-111
8-21

6-166

7-130
. 1-38
6-129,

63-6167

Nas s & 3 & & @
(o)W |
\Oe ¢ o & 3 o o

o

-
Jls ¢ & o & ¢ ¢ o
w
. OVe & 8 o & o o
i
ANAWYWs 2 ¢ e ¢ o @
-—w o ¢ o ¢ s o

1-26
« 1-37
7-124,
7-130
6-166,
7-140
7-131
8-15
. ii
7-132
7-133
7-134
6-74
7-135
6-78
7-88
7-89
4-59
6-54

5- ’
129,
-129

r
) .
.

6-153,
7—1 30,

9
9
2

3-26,
3-26,
3-26,

6-74,
6-74,
6-74,
5-13,
3-13,

6-48,
7"88,

e

3-22

1

4

« 5-3
1

’
16

e o o (W A=

e o o

- . [L

7-87’
5—3' 5-14’

7-8’ 7-117’
1-27, 1-34,

6-85,
7-137
1-37

4

Page 16

OPERATOR « ¢ o o o o o o o o o o o« 7-139
ORG . . . 5-3, 6-63, 7-101, 7-120, 7-140
ORION 4 ¢ o o o o o o s o o o 1-17, 1-18
Outputs
unilab .

Overlay . [) 3 [L3 [L) [L3 L] L) [o 6—107
Overlay area 6-106, 6-107, 6-109, 6-110,
6-113, 6-128, 7-24, 8-19

disable 3 3 . L) . . L] - L)] L) 7‘158
enable » [. (] [) ° [[(] L) 7-158
relocate . ¢« ¢ o o ¢ ¢ o o« o 6-107
PAGEO [. . L] 5“3' 7-141
PAGET 4 o o o o o o o o o o o o « 71-141
PAGINATE . « « « « 5-3, 5-8, 6-6, 6-153,
6-158-6162, 7-6, 7-124, 7-142

PAGINATE' 5-3, 5-8, 6-6, 6-153,
6-161, 7-6, 7-142

Parallel interface . ¢« ¢ ¢ ¢ o « « « 1=-10
PATCH . . . 1-43, 1-44, 7-5, 7-38, 7-47,
7-101, 7-102, 7-120, 7-12t1, 7-123,

7-143, 8-17

stack pointer4 o . . 8-17

PC

dumb terminal . . . « ¢« ¢« « « o 7=-52
PC compatible . ¢ ¢ ¢« o« o« o o o « « 1=2
pcycles 3-38, 5-3, 6-91, 7-144
Performance Analysis

PPA . o o ¢ o o s o o s o o« o o« 4-1
Personality modules . 6-1, 6-132, 6-133
Personality Pak . . 1-3, 1-7, 1-9, 1-25
pevents . 3-33, 3-38, 6-91, 7-92, 7-145
PgDn ® e e 8 o e o e e o & o 5-2, 5-15
PgUp « . . 1-48, 5-15, 6-19, 6-20, 6-94,

7-48, 7-125, 7-190, 8-23

flicker ¢ o« o o o o o o o o o« « 1-48

history « « o« ¢ o o o o ¢ o o « 6-19
pINnovuT . . 1-11, 1-26, 1-33, 3-16, 6-108,

7-3, 7-46, 7-146, 8-15, 8-18

catalog o o ¢ o o« o o o o o o o 1-46
PM e o o e o s o s s s e s s o o 6-131
Power

target o o e o o e e e o o o « 1=11
unilab . L . L . L] . . - . ° © 1-11
Power supply 8-15

L]
»
L]
*
L]
L]
L
L]
L]
L]
]
L]

March 25, 1987 Page 17

-- Index --

PPA . « o ¢
7-10, 7-31, 7-91,

accuracy .« » o
Address .« « s o
bin « ¢« ¢ « + &
clear all dat
clear counts
definition .
delete . . .
enable memory .
error messages
exit o « o o .
function keys .
graph « « o « &
installation . .
interactive screen
load target program
MENU o « o o o ¢
mode o« o o o o
modes o « o o &
Multiple pass .
names/addresses
naming . « o .
print « « +« « . .
ready target progr
reload . . .
SAVE . o o
SOFT .+ « « &
subdivide . .
symbols . . .
target program
Time .+ o o o &
title » ¢« ¢« « &
trouble shooting

PPAKS &« o o o o o o &

PRINT o ¢ o o o o o o

PRINT' c v e s s s

printing
SCTEeEN =« o o o o o &

Processor
internal state

program
execution time’' . . .
Performance Analysis
profile . &« ¢« ¢ o« o

Program EPROMS . ¢ « « o o

Program Performance Analyzer

7-5, 7-10, 7-31,
7-166, 7-171,

Programmer's Guide

information on

[] L] []
L] . [] . [[] [] [2 L] . L] L[]

m

. -

e 8 s o o 9
e o & ¢ o o o o o s s fDes s s s 2 e o

(8]
1
w

- . e L] . L] L[] o L] e & L) L] L L[] L] L . L] ® L] L] . ° . . ® L[] L] . L] (] [] L] L]

-- Index --

7-115'
7-171,

] . () L[] L] L] L] L] L] L] [] L] * [] [] L] L] [] L] []] L[]] L)

CVe e o ¢ o o o oo

8 0 ~J~Je s oo o o

~

|
i3 w

e o =3\Oe O\s s o

[] L] L] L] L] . . L] L] L] o L] L] L] L[] L] L] L] L] L] llh. [] [] []

- e * [] L] L] L[]

)]

e =38 6 6 8 & @ 6 & & 0 8 e o & ¢ s o s & & We s o

U |
s o Nim o (We o o

Ule o o o o o

e » o v, 4-1 tO 61,

-

KN

° L[] . [] e ~ L]

-

-

~

6-95,
7-166,
7-191

4-3
4-3

4-19

4-32

4-32

. v

4-31

OO WN W

o
I

!
NN WIL T
o -0

L] [] [] L] L] L] L] [] L L * . L L] L] L] L] L] * e = [] [] [] L]

L SN S
11
N
(o]

7-115
4-31
4-19
4-21

4-3
4-32
4-56

1-3

7-147

7-147

« iii

. 4-5
6-130
. vii,
7-115,
7-191

. viii

Page 18

Programs

saving . . .
PROM - L] L] L 4 - L] L]

commands . .
PROM programmer .
PROM programming

MENU o o o o o o o o
PROM PROGRAMMING MENU 3
PROM PROGRAMMING MENU #1 .
PROM PROGRAMMING MENU #2 .
PROM READER MENU 3-
PROMMSG 4+ ¢ o o o o o o o

L] L] L] .
L[] L] L] L
. . L] L]
. . L] [
L] L] L] L]

’

[}
-
s e o (D¢

Q1 . - [[[. . [[. .)]
Q2 . [. L3 . [. . [- . - .
Q3] . . [.) [- .
qualifier :
additional capabilities
additional commands . .
trigger « ¢ « ¢ ¢ o o o
trigger example . . « .
with filters example .
QUALIFIERS . . . 3-37, 6-67,
Qualifying Events
QUILt &« o o ¢ o o o o o o o &
RAM

. 6-42
. 1-29
. 6-30
6-130

L} . [} 6"1 31
3-19, 6-131
. 6-1 31

« 6-131

7' 6-31' 6—40

. 7-147

3-37, 7-148
3-37, 7-148
3-37, 7-148

. 3-38
. 3-37
. 3-36
. 3-44
. 3-45
6-88, 7-149

L[] L * L] .
L] L L] L L

L] L] [L] 6-88
. . ° [7-46

access . . 1-37, 6-48, 6-108, 6-146
alter &« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o « 6=-125
and Debug control . « « « « . . 6-46
and ROM--confusion . . « + « « 6-49
COMPAYE « o » o o s o« o o o« o« 1-109
disassemble « « ¢« ¢ « « o 7-66, 7-67
display « « o o o o o o« o« o &« « 6=-50
modify . « ¢« o« « « « « » 6-50, 6-51
read . « « o« o« 7-=-103, 7-110, 7-122
SPECIfY o« o« o o o ¢ o o o o o « 6-49
WaArning « o« o« o o o o o o o o o 6-48
write . 7-101, 7-102, 7-114, 7-120,
7-121
RB v« ¢ ¢« ¢« o o« » 2-14, 2-15, 3-14, 7-150
and RESET . ¢« ¢« ¢« o o o o « o« 6=-117

RC network
e o o o s o s s s s s o o o o 1-34
Rcv . L] L] - L] L] L] L] L] L L] - L3 . L] L] 8-12
read ¢« « 4 o o + o o o 3-13, 6-40, 7-152
Emulation ROM . « « « « « « « « 6-46
EPROM @ o o o o o o o o s o o « 6-40
RAM + o ¢ ¢ o o o« o« o o o o« « o 6-48
read RAM o o o o o o o o o o o o« o« 1-129
Reboot « ¢« « . 1-1, 1-11, 1-16-1018, 1-20

March 25, 1987

-- Index --

Record
UnilLab session . « ¢« « « « « ©6-164
Reference Manual « ¢« o « o o o o o« o o Vi
information on . .+ ¢« « o o « o Vii
Relocatable

overlay area . « « « « » o » 6-107
reserved Aarea « « o « « » o » 6-107
RES . . 3-15, 6-47, 6-144, 7-153, 7-165
RES- « ¢ o« &« 1-1, 1-5, 1-10, 1-11, 1-25,
1-26, 1-34, 1-44, 6-46, 6-47,
7-5, 7-154, 7-177, 8-13, 8-15,
8-16
Circuit o« o o ¢ o o o o o o« o« o 1-26
connection . ¢ o o o o o « o « 1-34
Reserved area . « « « « « o 6-106, 6-107
=OVERLAY . ¢« o o e o o o o o 6-107
location =« « ¢« ¢ o o o o » « 6-128
relocate .« ¢« ¢ ¢ o o o « « o 6-107
reserved .+ . « o« s o & o o o o 1ii
Reset . . 1-10, 1-34, 3-13, 3-14, 6-76,
: 7-155
B051T o o o o o e o o o o o o o« 1-35
and 8-51 .+ & ¢« e ¢ o ¢ o« o o « 1=35
and RB .+ « « « s o o o« o« « » 6-117
disabling « « ¢« « « o o « « « « 6-76
enabling .« o« ¢« ¢ « o « o o o« o 6-76
INTEL « o o o o o o o o o s » « 1=34
Z80 4o « o o o o o 2 o o s s o » 1-36
Reset address . « ¢ « « « » « 8-13, 8-18
reset circuit . 1-11, 1-26, 1-34, 1-36,
6-47, 7-154, 7-177
Reset Wire « o« ¢« o« o o o o o o « o o 1=27
RESET' « ¢« ¢« « o« « 3-13, 5-7, 6-68, 7-155
resetting. « o« ¢« ¢ o o o o o o o o o 6-76
TESOULCES =+ o o« « o s s o o o« s o «» 6-34
NMI ¢ o« o o o o o e o s o o o o 5-9
ProCeSSOY « « o o« o o o o o o o 1iii
Software interrupt 5-9
target system . . « «. ¢« « . o 6-106
RI . 1-37, 6-104, 6-109, 6-111, 6-112,
6-166, 7-156, 7-170
RMBP . . 6-104, 6-122, 7-5, 7-49, 7-157,
7-170

ROM
and RAM--confusion . « « « o o 6-49
cable connection . . ¢ ¢« o o o 1-30
diSplaY 3 [3 L) - . ° L] . . o 3 6-50
emulation ¢« « ¢ ¢« ¢ o o o ¢ « o 1-9
MOAify o o o« o o o o o o o« » o« 6=-50
reading « « « ¢ o o o o s+ o o« o 6-40
socket .+ ¢« 4 ¢« o o o o « 1-11, 1-26
SPECLEY ¢ o o« o 4 + o o o o« o o 6-49

-- Index -- Page 20

ROM cable . 1-1, 1-25, 1-30, 7-15, 8-14
ROM chip « ¢« ¢« « « « « 6-34, 6-38, 6-128
Aanalyze o« o o« 2 o« o ¢ o o o & o 1=29
ROM emulation . « ¢« ¢ o o « ¢ « « o« 7=-11
RS"232 . . 03] . - L) L)] [[) L] *] . 1‘9
RS-232 €rror . « « o« « o o o o« 4-57, 4-59
RS-232 error #XX « o« o« o« o « o« 1-23, 8-11
RS-232 error messages
e o o s o s s s e & s s o o o 8-11
RSP . . 5-9, 6-34, 6-129, 6-153, 6-167,
7-6, 7-24, 7-69, 7-124, 7-129,
7-130, 7-158
RSP' . . 5-9, 6-34, 6-129, 6-153, 6-167,
7-6, 7-24, 7-129, 7-130, 7-158
RZ L) [[L3 * L] [. L3 [- L3 L3 L) L3 3 7-159
S & ¢ o o o o o ¢ s e e o « 3=-25, 7-160
S+ . 5-13, 5-14, 6-66, 7-4, 7-64, 7-132,
7-161
SAMP e e o « o« 2-12, 3-12, 6-68, 7-162
Sample program
e o o o o o o s o 1-40, 1-47, 6-11
loading « &« ¢ ¢ ¢ o « « o 1-41, 6-41
Sample SESSION + « o o o ¢ o o o o o 2=2
SAVE ¢ o ¢ o o o 2 2 o o s s o o « o 6-93
and compare trace « . ¢« « o« o » 6-99
binary .« o« o o« ¢ o o o« o o o » 71-44
feature summary . + 6-94
histogram . « ¢« ¢« ¢« o« ¢« « « « 7=-191
history « « ¢ ¢ o ¢« ¢« ¢« ¢« o« « «» 6-96
memory changes to printer . . . 6-98
PPA . ° . [L] L] L] . * . L] 3 . 3 4"20
PrOgramS « o « o o o s o o o o b-42
range of memory . « « « « « o 6-101
SCreeN o« « o o s o o » o s« o« o« b5=-9
symbol table . . ¢« « « « « o 6-101
symbols . « ¢« ¢« ¢« « « « 6-101, 7-185
system . .+ . . o 6-37, 6-102, 7-163
to printer . . . 6-98, 7-98, 7-147
trace « ¢« . ¢ ¢ ¢ . . . 6-99, 7-200
transcript . . « 6-97, 7-195
unilab session to file 6-97
unilab session to printer . . . 6-98
unilab state 6-102
save-sys . . 3-9, 3-49, 3-62, 6-37, 6-94,
6-102, 7-163
sC e o o o o s o 2 e o s o o 6-7, 7-164
Scope
NOT and TO « « o « o « o o« « « 6-78
Screen
scrolling « ¢« « ¢ « « « « « o« o« 5-8
screen flicker . . . ¢« . « . . 1-48, 8-23
fixX o ¢ o o o o o o o o o 1-48, 7-48

March 25, 1987

Page 21

-- Index --

screen history . . 3-61, 6-1, 6-94, 6-96,
6-146, 7-5, 7-22, 7-26

changing size « « « « « « « « « 6-96

S1ZE@ o 4 « o o o s o o ¢« o o o 6-96

SEND ¢ « o o o o o e ¢ o s ¢« o a o« o 8-12
Serial interface .« « ¢ ¢ ¢« ¢ ¢ ¢ o o 1=9
Serial port . .« ¢« o« « « « 1-5, 1-9, 1-14
9 pPin &« v« ¢« ¢ o o o o e o« 1-9, 1-14

AT . . » ® ¢ e 1"9' 1"14
ChOOSE 4 o o« o o o s o o o o o 1-41

Of AT . » - . [L) L) L] L)] - o ° 1-2

SET . 6-105, 6-141, 6-143, 6-144, 7-18,
7-70, 7-153, 7-165

set breakpoint « « « ¢ « ¢« ¢« + . o 6-104
Set GLOSSARY e © © e o & o o o 1-17, 1-18
Sett ORION .« &2 ¢ o o o « 1-17, 1-18, 1-20
SET-COLOR =« ¢ o o o o o o o 1-48, 7-165
SET-GRAPH-COLOR ¢ &« « o o o o o o 7-166
SHIFT-FKEY . « « « 6-147, 7-5, 7-6, 7-33,

I
7-57, 7-76, 7-167
SHIFT-FKEY? e e s e o s &« o o 1-6, 7-167
shorts
address lines « « o« « o« « o« «» o 8-4
SHOWC . . 5-8, 6-6, 6-159, 7-124, 7-168
sHowc' . . . 5-8, 6-6, 6-153, 6-159, 7-6,
7-168
SHOWM . . 5-8, 6-6, 6-158, 7-124, 7-169
SHOWM' . . . 5-8, 6-6, 6-153, 6-158, 7-6,
7-169
ST « « ¢« « « o 1-37, 6-112, 7-156, 7-170
Side-Kick =« ¢ ¢ « © o o o o s o « « 8-10
simulate

inputs « o 1V

single step 2-2, 2-5, 2-14-2016,
5-12, 6-3, 6-106, 6-111, 6-116, 6-118,
6-124, 7-45, 7-99

Size
line history
symbol table
SMBP e o o o o
SOFT & o o o o o o«
Soft-keys
Software

&« < « . . 6-96
c e e . . 6-24
. 6-123, 7-170
, 7-115, 7-171
&« « « « . 5-5

e ~Je o
I

s e o &
—

installation . « « ¢« « o 1-11, 1-16
Unilab .« ¢« o« s « « o « o o o o 1-4
Software installation . . . « 1-11, 1-16
Software interrupt . « + ¢ ¢« « o« « o 8-19
SOFTWARE INTERRUPT VECTOR . . iii, 6-34,
6-128

SOURCE e« o o o s o s e o o & 6-6, 7-172
Source file . . « « . 7-5, 7-106, 7-107
VieWw o « o o o o o o o o o « 1=190

-- Index -- Page 22

SOURCE' . ¢ ¢ ¢« o ¢ o o & « 7=-107, 7-172
Special features « « . 3-3, 3-50
special keysS o« o o ¢ o o o o o o« o o« 3-59
SPLIT &« o « o o o o « 5=-12, 7-173, 7-196
split screen
and help .« ¢« ¢« « o o « o o« « o« 3-69
on and off . . ¢ ¢ ¢« ¢ ¢ &« o« o 3-65
SR . L] L] L] L] - L] L] L] L] . L] * - - » 7—174
SSAVE . ¢ o o o o o o o o o« 4-12, 7-175
SST &« o« o « o o o o o« 1-7, 7-175, 7-199
SSTEP o o o o o o o o o o o o o« o« 1-176
Stack
and debug « « « o o o o o o« o o« 6-11
bad data . ¢ ¢ ¢ ¢ o o ¢ o o o 1-44
debugger .« « ¢« o« o ¢ « o « « « 6=-11
WOXKINg « o o o o o o o o o o o iii
Stack overflow
trigger example . .« « « « « o . 6-82
Stack pointer 1-44, 6-107, 6-114, 8-17,
8-19
and bad ram « « ¢ « ¢ ¢ o « « o 8=-17
and debug « o« ¢« 4 ¢ ¢ o« o « o 6-113
changing . « ¢« ¢« ¢« o o o o« « o 1-44
MOVING 4« o o « o o o o o o « o« 8=17
patch « & ¢« ¢ 4 & & ¢ &« o o o o« 8-17
STANDALONE e o o o s o o o e e ® 7-176
STARTUP . 2-11, 3-12, 6-68, 7-76, 7-177,
8-13
sTIMULUS &« . « iv, 2-5, 3-15, 4-50, 6-4,
6-140-6144, 7-4, 7-153, 7-165,

7-178
generation . . . &« ¢« o« o « o 6-140
MHIST o o ¢ o o o o o o o o o« o« 4-50
Stimulus generator 1iv, 2-5, 6-4,
6-142, 6-144, 7-4, 7-153, 7-165
STIMULUS MENU 4+ 2 o ¢ o« « o« o o « » 3-15
SWI VECTOR . « . . 1-29, 5-9, 6-34, 6-97,
6-98, 6-129, 6-153, 6-163, 6-164,
6-165-6167, 7-69, 7-129
SYMB e« « 5-7, 6-6, 6-156, 7-124, 7-179
symB' . . . 5-7, 6-6, 6-21, 6-23, 6-153,
6-156, 7-6, 7-50, 7-96, 7-179

Symbol
example
symbol file formats

. « o o« o 6-25
symbol files . « « « .

e o o o o 6=22
. 6-22, 7-181
e o o o o 6=-27
e o o o o 6=27

fixed format .
variable format

March 25, 1987 Page 23 -- Index --

Symbol table
and PPA . .
file loading
other formats
saving .
symbolic support .
SYMBOLS .
and breakpoint
and triggers
breakpoints
clear .
clearing
define .
defining individua
enable/disable
example .
files .
in trace
redefining
saving
space
trace
SYMDEL .
SYMFILE
SYMFILE+
SYMFIX
SYMLIST
SYMLOAD

L[] . L] * L] L] [) L[] L[] L] []

e o ¢ o o [o e ¢ o o o

[

N

WWe ¢ ~JO1s ¢ ¢ o 5 ¢ Ne s Rl o o o o ¢ 0 2 o s o 2 o

alloted
display

iU
e 8 NI | o o o o & o o o
[|
e ¢ (JICY® s & 9 0 &8 % & 5 ¢ ¢ o & 0+ b+ o 2 s s o+ 0 >

[NSIEN]

Nl e v w0 00 0 e O\ e (e ¢ & & 6 o8 ¥ ¥ B 3

. 7
-4

(o))
N

e o o e o
1
Cre ¢ OV

5
7

O~
-

.
3
.
.
r
14

Symptom
describing .« . - .
SYMSAVE 6-23, 6-94, 6-95,
7-50, 7-96, 7-106,
6-22, 6-27, 7-5

SYMTYPE

14

T .
Target .
clock speed . .
Target Application Note
information on
Target board

L] L) L] L L]
L] L] L) L] L]

connections
target hardware
resetting .
Target memory
Target program
and PPA .
Target system
asleep . .
Trouble with

-- Index --

8 e 8 8 8 e ~Jo o e o e e s O\e o s o o

7
7

~J e

. (82}
DN)e ¢ o e o CYo o o o o

O e

7

e o &6 % 8 8 3¢ =2 OVe ¢ 8 ¢ ¢ e o5 e o &

. ii
7-4,
7-185
7-186

6-101,
"163'
-181,

7-187
1-9
8-18
. Vi
viii

1-9
1-25

6-76
7-123

{-N

TCOMP ¢ ¢ o o o o 1=

mask columns .
TCY . - L] L] L] L] L] L]
TD ¢ o« « . .
Technical Support .
Terminal

emulation
Terminology

DEBUG « o o o o @
Test

Program . « o« o o

« 7-192
. 8-15
7-189

) . 8-3

6-

L] [] L] L Y
L] L L] L]

L] ® L

L] [. . . L] . 7_52
. 6-109

. . [. ° . . 1"6

target system lines o 6-58

Test Procedure
Hookup . « « « &«
Text file
review . . .
textfile « « ¢« «
THIST e o o s o o
ADR bounds .
and FETCH . .
bins .+« « « &
Code Range start
COUNT & o ¢ o o &
definition . .
Entry-Exit start
function keys .
mean run time .
problem

L] L] L L] L]]
. [] . L] . L]

procedure . .

set limits .

specifications

time scale . .

understanding .
Time

PPA . ., .

time histogram
TMASK 4 o« o o o o o
TN - L] L] ® L] - L] L) .
TNT . « « - 6-7, 6-18
TO - L] L] L] - L] - L]
7-186, 7- 187,
SCOPE e o o s o o
TOFILE . 5-9, 6-94,

TOFILE' . - 5-9’ 6"94
Toolkit .+ ¢« « o « .+ &

TOOLKIT MENU . « « o« &
TOP/BOTTOM & o « o o o

March 25, 1987

w
|
~

® & 8 ¢ e & ¢ 5 o o o s ° s 0 0 o
. - ® o o o o 0 & o ¢ s & & o s &
e o o o 0 & 6 0 s o s e s o o s e o
® o o 8 o ¢ 8 & s 8 0 s e 8 0
e o o ¢ o & ¢ ¢ N o DNe o o o
e o o 85 o & 3 -'—lo . Lo e o o (N e

-
® o & o 8 8 ¢ 6 % e 6 N o o o
1Y
|
w
(Vo)

-
I 0,

» ~J -
i
\l‘ =Wl
O b O =

, 7-194, 8-22

.« « .« . 6-78
6-164, 7-124,

7-195

, 6-97, 6-164, 7-6,

7-195

G« e e e e e . 2-5

e e e e o . . 3-16

L] L] L] L] L] * 7—196

¢ (Ws & (Ule o o
~
1
-
(o]
w
-

6-9

Page 25

-- Index --

Trace

advanced .« ¢ o © o o o o o o o 2=-17
and symbols « « ¢ o o o « o o o 6-21
Dad ¢« e o« ¢ « o o s s s = o o« e 1-44
COIUMNS ¢ « 2 o « s o o« o o« o o« 6-8
COMPATYE o o o« s o » o o o o o o 6-99
COMPAring o« « o o o o o o o o » 6=7
AUP < o © « o« =« s s« o o « o o 6=-17
features o « o« o« « « ¢« o « o &« 6-6
filtered . ¢« ¢ o« ¢ o « o o« o« o« 6-67
from line number "x" 6-18
history « « ¢« ¢« « &« ¢« « « 3-62, 6-19
moving about . « « ¢ ¢ o o o o 6-17
samples examined . . « « » o o 6=-10
VieWing o . . 3 . . [L) L] L] L] . 6—18
Trace buffer « « o« « « ¢« « « « 6-2, 6-66
dump .« o ¢ o o o o s o o « o 7-189
trace compare . « « o« o « o « 1=-6, 6-100
trace display « « « « « « « « 3-59, 6-5
16 bit data =« ¢« ¢« ¢ ¢« ¢ ¢ =« « « 6-16
ADR . . . ° L * e . o . . 6—8' 6-13
COMPATE « o o o « o o o o o o 71-188
CONT . « ¢« « « « « 6-8, 6-12, 6-13
CY# . . L L . ® L . * 3 . 6"8, 6-12
DATA . L3 o . . ° L] . . . 6-9’ 6“14
disassemble « « « o ¢ o« « o « o 6-9
f @ ¢ o ¢« o o o o s o o o o o« « 6-8
file o« o ¢ o« ¢ « o o o 7=-200, 7-201
HDATA o 2 o o o o o o s o o o & 6-9
header . o« o o o « o« « o o« o« o« 1-86
interpreting . .« + ¢ o « < o « 6-5
MISC L] L] - L] L] L] L] - L] L] L] L] - 6—9
modes . » . ® e 'Q - . .) .] . 6"28
move through . . 6-17, 7-187, 7-193
SAVE 4 o o o o s o o o « o o 1-200

Traces

filtered . o« ¢ « o« ¢ « o o« « o« 6-85
TRAM o o o o s o o o« o 2 o o o o o 1-197
TRAM' - - - 3 ® » . L) » e ' ® o [- 7"197
Transcript

SAVE ¢ o 5 o s o s o s o o 1-195
trig « o o« ¢ o ¢ o ¢ o & o« o 3-37, 7-198

-- Index -- Page 26

Trigger .« « « +»
address .+ o o
addresses . .
advanced . .

and miscellan

‘o @

[} [
-
-

definition
examples .
features .
filter . . .
filter example . .
general definitions
limits of complexity
multiple input groups
on 2--bit addresses .
ONn @ TANGEe o o o o =«
on a single value . . .
on any of several values
on multiple input groups
one input group example .
qualifier . « o o« « + &
simple .« &« ¢ ¢ ¢ ¢ o @
simple example . . 3-25
specification examples
Stepwise refinement .
wait status line .
warning
Trigger event . . « «
trigger menu « « « o o .
Trigger specs
examples .
filtered .
qualifiers
refinement
simple . .
status . .
Triggering
and sequential events
delay between qualifiers and
trigger . . . « . &
for filtered trace . . .
TROUBLESHOOTING 4 4 o o o o o
debugger . ¢ ¢« ¢ ¢ o o o

L
L]

L
eou
L]

L]

-

s s o o (N e o o

[}
o o 8 o e W o & NI s & & o)S ¢ & 6 o o & & =

® o o o (e o
[N
¢ ¢ o 8 2 0 Te o o o
0
¢ o o o €6 o o s e s [
e o & o o o o o 5 o & ¢ & o 9

We 8 o (We o ¢ ¢ ¢ (Jo ¢ o o 8 s ¢ s N

e o o o ¢ e w ® @
s 0 8 s (e
I |

. L] L] L]
® o o ¢

6“85'

. . L] - . -

guide to doccumentation

PPA ¢ 4o ¢ o o o o o o o«
TS o o o o o o o. ¢ o o o o @ .
TSAVE - . L L] L} L] 6—7' 6'94’ 6-99
TSHOW o o ¢ o o o o o o o o o o o
tstat . . 3-25, 3-32, 3-33, 3-36
TTL

TX - L] L] . L] L] . [] ° L] .

March 25, 1987 Page

w

N

(0¢]

N s)
T e W & % 8 % % # W P & P W S ® & B 6 wm 8 S & @ O & @ 8 =

)]
I
w

7"'12'
6-88, 7-29,

2-3
2-17
3-29
. v
6-81
6-65
3-30
3-43
6-77
6-83
3-42
6-84
3-28
6-78
3-29
3-29
3-41
3-36
3-23
6-70
3-40
6-92
3-23
6-90
6-12
6-68

. 6-81
7-137
7-149

.« 6-92

.« 6-72
7-202

.« 6-90

. 6-91
.« 6-90
. 8-1
6-113
-« 1-8
o 4-56
7-199
7-200
7-201
6-75,
7-202

. 1=27
7-202

27

-- Index --

TYPE L) ° L) [. . » L] - [. [. [[e 8—10
DOS command . . L] L] o] 4-20' 6‘164

Unilab e o o o i, 1-9, 1-10, 1-22, 2-4,
5-8, 6-7, 6-20

input buffers . « ¢ « ¢ o « . o 8=22
internal ICS =« « « « o« o o o o 8=22
Unilab Programmer's Guide 7-104

UniLab Reference Manual
information on .« « « ¢ ¢ ¢ o o 1-7
UnilLab session

record - ° L] ° [L] o L] . L) . 6‘164
Up Arrow L . - . L3 . L] L) * L [L] . 5-15
User Manual .« « ¢ « o ¢« o o o s « o o Vi
information on « . . . Vii
VER ° . . L) L) e [. . ®© [. . . ° . 1—2

Version . » L) L] [. 1-2
VOltage L] » - . . ° - [L) L] L] . - . 1-11

WatCh program . [[. L] - - . 2_5' 2-10
STARTUP [} - . L . ° - . . . © L) 2‘11

Watchdog Timer « « « « o o o o « » 6-113
window
disassembly « +« = « o ¢« o« o« o « 3-66
windows . . ¢« . « o . 3-63, 7-173, 7-196
and help =« « o o « o« o o s o o 3-69
change size « o« « o « o« o« o« « 1-203
changing size « « o« « « o« « « o« 3-68
moving between . . ¢« ¢« o« o o o 3-64
Size 3 [[] L3 L] ° ° - - - - - 3 7—65
WORDS &« o o » o o« « » 5-3, 7-112, 7-203
Workstation =« « o o « o o 2 o o o o o 1
WEit€ & o o o o o o o s o o o » o o 3-13
Emulation ROM « « & &« o « ¢ « o« 6-46
RAM L} L] . . [. [- L) L]] . - 3 6-48
write to emulation memory . « « o o 6-47
WSIZE &« « o o o o o« s s o« o o o« o 1-203

z80
reset [} . © L) . » L) L) . ° . . ° 1-36

-- Index -- Page 28

	000001
	000002
	00001
	00002
	00003
	0001
	0002
	0003
	0004
	0005
	6-001
	6-002
	6-003
	6-004
	6-005
	6-006
	6-007
	6-008
	6-009
	6-010
	6-011
	6-012
	6-013
	6-014
	6-015
	6-016
	6-017
	6-018
	6-019
	6-020
	6-021
	6-022
	6-023
	6-024
	6-025
	6-026
	6-027
	6-028
	6-029
	6-030
	6-031
	6-032
	6-033
	6-034
	6-035
	6-036
	6-037
	6-038
	6-039
	6-040
	6-041
	6-042
	6-043
	6-044
	6-045
	6-046
	6-047
	6-048
	6-049
	6-050
	6-051
	6-052
	6-053
	6-054
	6-055
	6-056
	6-057
	6-058
	6-059
	6-060
	6-061
	6-062
	6-063
	6-064
	6-065
	6-066
	6-067
	6-068
	6-069
	6-070
	6-071
	6-072
	6-073
	6-074
	6-075
	6-076
	6-077
	6-078
	6-079
	6-080
	6-081
	6-082
	6-083
	6-084
	6-085
	6-086
	6-087
	6-088
	6-089
	6-090
	6-091
	6-092
	6-093
	6-094
	6-095
	6-096
	6-097
	6-098
	6-099
	6-100
	6-101
	6-102
	6-103
	6-104
	6-105
	6-106
	6-107
	6-108
	6-109
	6-110
	6-111
	6-112
	6-113
	6-114
	6-115
	6-116
	6-117
	6-118
	6-119
	6-120
	6-121
	6-122
	6-123
	6-124
	6-125
	6-126
	6-127
	6-128
	6-129
	6-130
	6-131
	6-132
	6-133
	6-134
	6-135
	6-136
	6-137
	6-138
	6-139
	6-140
	6-141
	6-142
	6-143
	6-144
	6-145
	6-146
	6-147
	6-148
	6-149
	6-150
	6-151
	6-152
	6-153
	6-154
	6-155
	6-156
	6-157
	6-158
	6-159
	6-160
	6-161
	6-162
	6-163
	6-164
	6-165
	6-166
	6-167
	7-001
	7-002
	7-003
	7-004
	7-005
	7-006
	7-007
	7-008
	7-009
	7-010
	7-011
	7-012
	7-013
	7-014
	7-015
	7-016
	7-017
	7-018
	7-019
	7-020
	7-021
	7-022
	7-023
	7-024
	7-025
	7-026
	7-027
	7-028
	7-029
	7-030
	7-031
	7-032
	7-033
	7-034
	7-035
	7-036
	7-037
	7-038
	7-039
	7-040
	7-041
	7-042
	7-043
	7-044
	7-045
	7-046
	7-047
	7-048
	7-049
	7-050
	7-051
	7-052
	7-053
	7-054
	7-055
	7-056
	7-057
	7-058
	7-059
	7-060
	7-061
	7-062
	7-063
	7-064
	7-065
	7-066
	7-067
	7-068
	7-069
	7-070
	7-071
	7-072
	7-073
	7-074
	7-075
	7-076
	7-077
	7-078
	7-079
	7-080
	7-081
	7-082
	7-083
	7-084
	7-085
	7-086
	7-087
	7-088
	7-089
	7-090
	7-091
	7-092
	7-093
	7-094
	7-095
	7-096
	7-097
	7-098
	7-099
	7-100
	7-101
	7-102
	7-103
	7-104
	7-105
	7-106
	7-107
	7-108
	7-109
	7-110
	7-111
	7-112
	7-113
	7-114
	7-115
	7-116
	7-117
	7-118
	7-119
	7-120
	7-121
	7-122
	7-123
	7-124
	7-125
	7-126
	7-127
	7-128
	7-129
	7-130
	7-131
	7-132
	7-133
	7-134
	7-135
	7-136
	7-137
	7-138
	7-139
	7-140
	7-141
	7-142
	7-143
	7-144
	7-145
	7-146
	7-147
	7-148
	7-149
	7-150
	7-151
	7-152
	7-153
	7-154
	7-155
	7-156
	7-157
	7-158
	7-159
	7-160
	7-161
	7-162
	7-163
	7-164
	7-165
	7-166
	7-167
	7-168
	7-169
	7-170
	7-171
	7-172
	7-173
	7-174
	7-175
	7-176
	7-177
	7-178
	7-179
	7-180
	7-181
	7-182
	7-183
	7-184
	7-185
	7-186
	7-187
	7-188
	7-189
	7-190
	7-191
	7-192
	7-193
	7-194
	7-195
	7-196
	7-197
	7-198
	7-199
	7-200
	7-201
	7-202
	7-203
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	G-01
	H-01
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	J-01
	J-02
	J-03
	J-04
	J-05
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	index-20
	index-21
	index-22
	index-23
	index-24
	index-25
	index-26
	index-27
	index-28

