
c

c

J

EMULOGIC RELOCATABLE MACRO
CROSS ASSEMBLER

MAN-1000-02

'~~~

Edition 2 (December 1982)

No part of this publication may be reproduced
by any means without prior written permission
from Emulogic, Inc. Use of this document is
restricted to customers of Emulogic, Inc., and
its employees and agents.

The information contained herein is subject to
change without notice. Emulogic, Inc., assumes
no responsibility for any errors that may appear
in this document.

Details and specifications concerning the use
and operation of Emulogic equipment and software
are included in various technical manuals available
through local sales representatives.

Copyright c 1982 Emulogic, Inc. All rights
reserved.

EMULOGIC is a registered trademark of Emulogic, Inc.

The following are registered trademarks of
Digital Equipment Cor~ation;

DEC VTlOO RT-11 MACRO 11

PDP PDP-11

Printed in U.S.A.

(;

c

(

c

PREFACE

This manual contains reference material and procedures
for developing programs to be run under the Emulogic
Relocatable Macro Cross Assembler. The Emulogic cross
assembler is a totally flexible and extremely powerful
software package. It enables you to use the full
capability of the PDP-11 MACR0-11 Assembler with the
mnemonic language of the microprocessor for which you
are writing the software. Assembler enhancements and
differences that you should be aware of are documented
herein.

The manual is intended to be used in conjunction with
the standard documentation set for the PDP-11 MACR0-11
and the microprocessor chip assembler manual. Prior
to reading this manual, you should become familiar with,
or have access to these documents: the PDP-11 MACR0-11
Language Reference Manual, RT-11 Programmer's Reference
Manual, RT-11 System User's Guide, RT-11 Software
Support Manual, PDP-11 Processor Handbooks, and the
microprocessor chip reference and user's manual.

This manual is organized as follows:

Chapter 1 introduces the Emulogic cross assembler and
describes the two-pass assembly process.

Chapter 2 describes extensions and modifications to
MACR0-11 character sets, directives, and formats.

Chapter 3 lists the components of the object module
produced by the assembler. It also summarizes the linking
process required to convert the object module into an
executable image.

Chapter 4 summarizes the operating procedures necessary
to run the assembler and the linker.

* * *
You should also refer to the chip supplement to this manual
that corresponds to your microprocessor. The supplement
contains the chip instruction set and specific assembler
information you will need to write software for your
microprocessor. Also included are sample output listings
from the cross assembler.

iii

c

(

(,

c

l

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION. • 1-1

First Assembly Pass ••••••••••••••••••••••••••••• 1-2
Second Assembly Pass •••••••••••••••••••••••••••• 1-2

CHAPTER 2 CROSS ASSEMBLER INSTRUCTION COMPONENTS ••••••• 2-1

Cross Assembler Character Set ••••••••••••••••••• 2-1
Permanent Symbols••••••••••••••••••••••••••••••• 2-2
Symbols For PDP-11 General Registers •••••••••••• 2-3
Assembler Directive Enhancements •••••••••••••••• 2-3

.RADIX Directive Enhancement •••••••••••••••• 2-3
Temporary Radix Control Operator
Enhancement •••••••••••••••••••••••••.••••••• 2-4

CHAPTER 3 RELOCATING AND LINKING THE PROGRAM ••••••••••• 3-1

CHAPTER 4 OPERATING PROCEDURES ••••••••••••••••••••••••• 4-1

Calling the Cross Assembler: •••••••••••••••••••• 4-1
Terminating the Cross Assembler ••••••••••••••••• 4-1
Entering Command Strings •••••••••••••••••••••••• 4-2
File Specification Options •••••••••••••••••••••• 4-4
Cross-Reference Table ••••••••••••••••••••••••••• 4-5
Calling the Linker •••••••••••••••••••••••••••••• 4-7
Terminating the Linker •••••••••••••••••••••••••• 4-9

v

LIST OF TABLES

2. 1 Special Characters Used In Emul og!c Source Programs.... 2-1

4.1 Cross Assembler Default Pile Specifications •••••••••••• 4-3

4.2 File Specification Options••••••••••••••••••••••••••••• 4-5

4.3 Cross-Reference Table /C Option Arguments •••••••••••••• 4-6

vi

L ___ - -"-~~~~~----~- -- --" -----~-~-~----------------~--- -

c

c

c

CHAPTER 1

INTRODUCTION

The development sequence for creating programs to run on the
ECL-3211 Microprocessor Emulation System involves five steps:

1. The character sets, symbols, terms, and expressions
composing the assembler language elements are incorporated
into standard assembler source program statements.

2. The source program statements are written into a file
using one of the RT-11 editors to form an ASCII source file.

3. The Emulogic Relocatable Macro Cross Assembler assembles
one or more ASCII source files into a single relocatable
binary object file. It places object records in PDP-11
MACR0-11 object file format compatible with the RT-11
operating system. Assembler directives and macro directives
control source statement processing during this assembly
procedure.

4. Object modules are processed by the linker. The values of
relocatable or external symbols are converted to absolute
(LDA) format, and an executable load module is produced.

5. Finally, the executable image is loaded into memory and
executed under the ECL-3211 emulation system.

Besides the binary object file, the assembler produces a
file containing the table of contents, the assembly listing,
the symbol table, and an optional cross reference table of
symbols and macros. Additional features provided by the
cross assembler include:

Source and command string control of assembly and
listing functions

Device and filename specifications for input and
output files

Error listing on command output device

Alphabetized, formatted symbol table listing

Global symbols for linking object modules

Conditional assembly directives

Program sectioning directives

User-defined macros and macro libraries

Comprehensive system macro library

1-1

The cross assembler makes two passes during the assembly
process.

FIRST ASSEMBLY PASS

During the first pass, the cross assembler locates and reads
all required macros from the libraries, builds symbol tables
and program section tables, and performs a partial assembly
of each source statement.

The assembler first initializes all impure data areas (i.e.,
areas containing both code and data) that will be used
internally for the assembly process. These areas include all
dynamic storage and buffer areas used as file storage
regions.

The assembler then calls a system subroutine that transfers
a command line into memory. This command line, entered by
the user, specifies all files to be used during assembly.
After scanning the command line for proper syntax, the
assembler initializes the specified output files, and opens
them to determine whether valid output file specifications
have been given in the command line.

Then, the assembler initializes a routine that retrieves
source lines from the input file. If no input file is
currently open, as is the case at the beginning of assembly,
the assembler opens the next input file specified in the
comm.and line and determines the length of the instructions.
It then starts assembling the source statements according to
1 ength.

At the end of the first assembly pass, the assembler reopens
the output files. Such information as the object module
name, program version number, and global symbol directory
for each program section are written to the object. file to
be used later in linking the object modules. After producing
the global symbol directory for a given program section, the
assembler scans through the symbols tables to find all
global symbols that are bound to that program section, and
writes the directory records to the object file for these
symbols. This process is repeated for each program section.

SECOND ASSEMBLY PASS
---------------~----

During t~ aecond pan, the cro&s assembler writes the object
records to the output file while generating both the assembly
listing and the symbol table listing for the program. An
optional cross-reference listing may be produced at this time
as well.

1-2

(:

(_)

('

The assembler performs the same functions in this pass as in
the first pass with the exception that all source statements
containing assembler-detected errors are flagged with an error
code as the assembly listing file is created.

The resultant object file contains all the object records,
and also includes the relocation records that specify
information necessary to later link the object file. The
information in the object file, when passed to the task
builder or linker, enables the global symbols in the object
modules to be associated with absolute or virtual memory
addresses, thereby forming an executable body of code.

1-3

('1

-~

(;

(:

CHAPTER 2

CROSS ASSEMBLER INSTRUCTION COMPONENTS

Source programs are composed of assembly language statements
that incorporate the language elements and conform to the
format and syntactical conventions of the PDP-II MACRO-II
Assembler. (Refer to the PDP-II MACRO-II Language Reference
Manual and the RT-II Programmer's Reference Manual.)

This chapter describes the instruction components of the
Emulogic cross assembler and notes the enhancements that
have been added.

CROSS ASSEMBLER CHARACTER SET

The Emulogic cross assembler accepts the following
characters in its source statements:

* The upper- and lower-case letters A through z. Lower-case
letters are converted to upper-case letters on input.

* The digits 0 through 9.

* A period (.) and a dollar sign ($) are reserved for use as
PDP-II system program symbols.

* The special characters listed in Table 2.1. While the
normal function of these characters is as stated in the
table, some of the functions may change depending on the
microprocessor chip used. Refer to the chip supplement to
this manual corresponding to your microprocessor for a
description of any exceptions.

Table 2.I Special Characters Used in Emulogic Source Programs

Character

.. . .

-
==

Designation

Colon

Double col on

Equal sign

Double equal sign

2-1

Function

Label terminator

Label terminator; defines the
label as a global label

Direct as-signment &perato-r and
macro keyword indicator

Direct assignmeµt operator;
defines the symbol as a
global symbol

Table 2.1 Special Characters Used in Emulogic Source Programs (Contd.)

Character Designation Function

--

<

>

+

*

I

&

, ,

\

Tab

Space

Period

Comma

Semicolon

Left angle
bracket

Right angle
bracket

Plus sign

Minus sign

Asterisk

Slash

Ampersand

Exclamation point

Double quote

Single quote

Up arrow or
circumflex

Backslash

PERMANENT SYMBOLS
------------~~~~~

Item or field terminator

Item or field terminator

Current location counter

Operand field separator

Col!llBent field indicator

Initial argument or expression
indicator

Terminal argument or expression
indicator

Arithmetic addition operator

Arithmetic subtraction operator

Arithmetic multiplication
operator

Arithmetic division operator

Logical AND operator

Logical inclusive OR operator

Double ASCII character indicator

Single ASCII character or
concatenation indicator

Universal unary operator or
argument indicator

Macro call numeric argument
indicator

Permanent symbols used by the cross assembler consist of
the instruction mnemonics of the particular microprocessor
for which the assembler was designed. For example, the
permanent symbol table used by the Z80 cross assembler
consists of the Zilog instruction mnemonics for the Z80

2-2

(

(_

[;

('

microprocessor. Because these symbols are a permanent part
of the assembler image, they are not defined prior to being
used in the operator field of a cross assembler statement.

When using a permanent symbol as a term of an expression,
always specify its basic value. Do not substitute a zero for
this value because zero changes the addressing mode.

The instruction sets for individual microprocessor chips are
listed in corresponding chip supplements to this manual.

SYMBOLS FOR PDP-11 GENERAL REGISTERS

Symbols that designate the eight general registers of the
PDP-11 processor are not used in cross assembler source
statements. Likewise, expressions that refer to these
general registers, specify register contents, or refer to
the address mode should not be used in the source program.
References to address modes in PDP-11 or RT-11 documentation
are not applicable to the cross assembler.

ASSEMBLER DIRECTIVE ENHANCEMENTS

The ECL-3211 Cross Assembler uses all MACR0-11 macro
directives and assembler directives. It also provides
radix directive and radix control operator enhancements,
as follows •

• RADIX Directive Enhancement

Although numbers used in a source program are initially
considered to have octal values, the .RADIX directive allows
you to specify alternate values throughout the entire
program or specific portions of the program. The radix
directive has the form:

.RADIX n

where: n is one of two radices: 8 or 16. If argument n is
not specified, the default octal radix is assumed.
Argument n is always read as a decimal value. Any
value other than null or one of the two acceptable
radices causes an error code (A) in the assembly
listing.

A radix directive remains in effect until another directive
is specified, as shown by the following example:

.RADIX 16

.RADIX

Begins a section of code having a
hexadecimal radix

Reverts to octal radix

When radix 16 is in effect, any numeric value whose first
character is A-F must be preceded by a zero. For example,
OD3 would be valid, but DJ would cause an error.

Temporary Radix Control Operator Enhancement

Once you have specified the default octal radix or the
hexidecimal radix for a section of code, you may find
that an alternate radix is more convenient or desirable.

There are four unary operators that allow you to temporarily
declare an alternate radix for a single term, as shown by
the following :

""Bn where n is evaluated as a binary number
""On where n is evaluated as an octal number
""Dn where n is evaluated as a decimal number
""Rn where n is evaluated as a hexadecimal

number; if the first character of n
is A-F, precede n with a zero

Temporary radix control operators can be used at any time
regardless of the radix in effect or other radix declarations
within the program. Because the unary operator affects only
the term immediately following it, it can be used anywhere
a numeric value is legal. The term or expression associated
with the operator is evaluated during assembly as a 16-bit
entity. The following are examples of temporary radix
control operators:

""B00001101
""037
""D452
""HOE2

Binary radix
Octal radix
Decimal radix
Hexadecimal radix

2-4

(

c

Ci

c

('

c

CHAPTER 3

RELOCATING AND LINKING THE PROGRAM

The output of the cross assembler is an object module
composed of relocatable machine language code, relocation
information, and a corresponding global symbol table that
defines the use of symbols within the program. To form an
executable program, the object module must be processed by
the Emulogic linker.

NOTE: The standard Emulogic linker is ELINK2.
However, some microprocessors require use of
a modified version of this linker. Refer to the
corresponding Chip Supplement to this manual for
a description of any differences in linking your
object modules. This manual describes the features
and operation of the standard linker, ELINK2.

ELINK2 produces an executable load module with all locations
resolved as absolute locations. This absolute load file (DEC
LOA format) is the only loadable file format produced by
ELINK.2. With this exception, the linker operates the same as
the RT-11 linker.

To allow the value of an expression to be fixed at link
time, the cross assembler produces object file instructions
and other required parameters. For relocatable expressions
in the object module, the base of the associated relocatable
program section is added to the value of the relocatable
expression provided by the cross assembler. For external
expression values, the value of the external term in the
expression is determined and added to the absolute portion
of the external expression as provided by the assembler.

All instructions requiring modification at link time are
flagged in the assembly listing, as shown in the examples
below. The apostrophe (') following the octal expansion of
the instruction indicates that relocation is required. The
1 etter "G" indicates that the value of an external symbol must
be added to the absolute portion of an expression.

005065 CLR
000040'

005065 CLR
OOOOOOG

005065 CLR
OOOOOOG

RELOC

EXTERN

EXTERN+6

Assuming that the value of the
symbol RELOC, 40, is relocatable,
the relocation bias will be added
to this value. (See Note 1)

The value of the symbol EXTERN
is assembled as zero and is
resolved at link time.

The value of the symbol EXTERN
is resolved at link time and
added to the absolute portion
(+6) of the expression. (See Note 1)

3-1

NOTE 1: Use of complex forward references with chips
that optimize may cause phasing errors. Refer
to the corresponding chip supplement for
specific information.

For a complete discussion of the linker, refer to the RT-11
System User's Guide (Section 11, Linker). For a complete
discussion of the .LDA file, refer to the RT-11 Software
Support Manual (Section 8, "File Formats").

3-2

(\

c

c

CHAPTER 4

OPERATING PROCEDURES

This section of the manual provides supplementary operating
procedures for running Emulogic's cross assembler and linker
under the RT-II operating system. A complete presentation of
operating procedures, error messages, and corrective action
is found in the RT-II System User's Guide, and the PDP-II
MACRO-II Language Reference Manual. Additional reference
material can be found in the RT-II Software Support Manual.

CALLING THE CROSS ASSEMBLER

To call the cross assembler from the system device, respond
to the system prompt (a dot printed by the keyboard monitor)
by typing:

where:

Example:

.RUN Xname(cr)

Xname designates the assembler program for a
specific microprocessor chip

(er) carriage return

.RUN X68000(cr)

Invokes the 68000 cross assembler.

The cross assembler will respond with an asterisk (*)
prompt. At this point, the assembler is ready to accept
command string input and to perform an assembly. Everything
typed to the left of the equal (=) sign is output;
everything typed to the right of the = sign is input to the
assembler. For example,

*TEST68.0BJ•TEST68.MSR(cr)

This produces an output object file TEST68.0BJ from source
file TEST68.MSR.

*TEST68.0BJ,TEST68.LST•TEST68.MSR(cr)

This produces an output object file, TEST68.0BJ, and an
output listing file, TEST68.LST, from source file
TEST68.MSR. Refer to ~n1:er'tng ComfiU1l'ld S"t"t''ings."

TERMINATING THE CROSS ASSEMBLER

The cross assembler can be terminated at any time by typing
AC (Control C) from the keyboard. This is done by pressing

4-I

the 'CTRL' key and the 'C' key simultaneously. A AC will be
echoed on the console screen.

1. If you invoked the cross assembler and received the asterisk
prompt but have not yet entered the command string, you can
terminate the cross assembler by typing AC. For example,

.RUN X68000<cr)
*AC

System returns to the system monitor prompt.

2. If you have completed command string input and started
an assembly, you can halt the assembly process at any
time by typing Ac~c •

• RUN X68000<cr)
*TEST68.0BJ,TEST68.LST•TEST68.MSR(cr)
ACAC

System returns to the system monitor prompt.

3. When assembly has been completed, the system displays the
asterisk prompt. To return to RT-11, just enter Ac.

ENTERING COMMAND STRINGS

When the system displays the assembler prompt (*), it is
waiting for you to enter a command string consisting of:

1. Output file specifications

2. An equals sign

3. Input file specifications

Type the command string using the following format and
syntax:

(object_file),(list_file)/s:arg•sourcel (, ••• ,source6)/s:arg

where:
object _file is the file specification of the binary object file

to be produced by the cross assembler. The device
for this file should not be TT or LP.

list file is the file a.pacification for tbe a....Oly anci
symbol listing to be produced by the cross assembler

/s:arg is a set of file specification options and arguments
(See "File Specification Options")

sourcel specifies the input source file. You can
specify up to six source files (, ••• ,source6).

4-2

(

(1

()

Note: The parentheses in this format only
indicate that the field is optional; the programmer
should not actually enter the parentheses.

All output file specifications are optional. The system
does not produce an output file unless the command string
contains a specification for that file.

The system determines the file type of an output file speci­
fication by its position in the string, as determined by the
number of commas in the string. For example, to omit the
object file, you must begin the command string with a comma.
A comma is not required after the final output file speci­
fication in the command string.

The following command string produces a listing but no
binary object file. By including the /C option, cross
reference tables will be included in the listing.

*,LP:/C=source_file_specification(cr)

If you enter a filename without an extension, the system
assumes the default extension. For example, if the command
string is entered as

*BETA,BETA=BETA(cr>

C::..' the cross assembler processes this as

*BETA.OBJ,BETA.LST=BETA.MSR(cr)

Table 4.1 lists the default values for each file specification.

c

Table 4.1 Cross Ass em bl er Default File Specifications

File Default Device

Object DK:

Listing Same as object file

Source! DK:

Source2 thru Same as preceding
source6 source file

System macro System device SY:
library

User macro DK: if first file;
1 ibrary otherwise, same as

for preceding source
file

4-3

Default
File Name

Must specify

Must specify

Must specify

Must specify

Cross Ass em bl er
name (e.g., X68UOO)

Must specify

Default
File Type

.OBJ

.LST

.MSR

.MSR

.SML

.MSR

i

l

The following examples illustrate command strings typically given to
the cross assembler.

*DK:SUM.OBJ,LP:=DK:SUM.MSR(cr)

Assembles source file SUM.MSR to generate object file
SUM.OBJ. The assembly listing goes directly to the printer.

*,DK:SUM.LST•DK:SUM.MSR(cr)

Assembles source file SUM.MSR and generates a listing file
SUM.LST. No object file is created. As illustrated here, the
system does not produce an output file unless the command
string contains a specification for that file. The system
determines the file type of an output file by its position
in the command string. The comma is used in place of the
file that is to be omitted.

*,LP:/C=DK:SUM.MSR,SRC.MSR(cr)

Assembles source files SUM.MSR and SRC.MSR and produces a
listing on the printer that includes a cross-reference
table. No binary object file is generated.

The following command string example specifies an assembly
that uses source file SRC.MSR and user macro library
LIBR.MSR as input to produce an object file BINF.OBJ and a
listing. The listing goes directly to the line printer.

*DK:BINF.OBJ,LP:=DK:SRC.MSR,LIBR.MSR(cr)

Some assemblies require more symbol table space than
available memory can provide. When this occurs, the system
automatically creates a temporary work file, WRK.TMP, to
provide extended symbol table space.

The default device for WRK.TMP is DK:. To cause the system
to assign a different device, enter the command

.ASSIGN dev: WF(cr)

where: dev: is the file-structured device that will hold WRK.TMP

FILE SPECIFICATION OPTIONS

When you assemble your source files, you may want to
override certain MACRO directives in the source programs.
You may also need to direct the cross assembler in handling
specific files during the assembly. Table 4. 2 lists the
various options (i.e., /s:arg) you may use when entering
file specifications in the command string.

4-4

c

(_

(

('

Table 4.2 File Specification Options

Option

/L:arg
/N:arg

/E:arg
/D:arg

/M

/C:arg

/P: 1

/P:2

Usage

Listing Control Switches. These options
accept ASCII switch values (arg) which are
equivalent in function and name to the
argwnents of the .LIST and .NLIST MACR0-11
directives specified in the source program.
This switch overrides the arguments for
these directives and remains in effect
throughout assembly.

Function Control Switches. These options
accept ASCII switch values (arg) that are
equivalent in function and name to arguments
of the .ENABL and .DSABL directives specified
in the source program. This switch overrides
the argwnents for these directives and remains
in effect throughout assembly.

Indicates input file is MACRO library file.
If two or more macro libraries that contain
definitions of the same macro name are
included in the command string, the macro
library that appears leftmost in the command
string takes precedence.

Controls contents of cross-reference listing
(See Table 4. 3)

Assembles the associated file during
assembly pass 1 only.

Assembles the associated file during
assembly pass 2 only.

NOTE: /M and /P switches affect only the source file with
which they are specified. The other options affect the
entire command string.

CROSS-REFERENCE TABLE

A cross-reference table (CREF) lists all symbols, or a
subset of the symbols, in a source program and identifies
the statements that define and use symbols. The cross­
reference listing is obtained at assembly time, if
requested, and is output in the assembly .LST file.

A complete CREF listing contains the following five
sections:

4-5

1. A cross-reference of program symbols: labels used
in the program and symbols followed by an operator.

2. A cross-reference of MACRO symbols: those symbols
defined by .MACRO and .MCALL directives.

3. A cross-reference of permanent symbols: all
operation mnemonics and assembler directives.

4. A cross-reference of program sections: the names
specified as operands of .CSECT or .PSECT directives.

5. A cross-reference of errors: all flagged errors from
the assembly grouped by error type.

Any or all of these sections are included in the cross­
reference listing by specifying the appropriate arguments
with the /C:arg option.

Table 4.3 Cross-Reference Table /C Option Arguments

Argument CREF Section

s User-defined symbols

M MACRO symbolic names

p Permanent symbols including
instructions and directives

c Control and program

E Error code grouping

NOTE: Specifying /C with no arguments is
equivalent to specifying /C:S:M:E.

sections

To obtain a cross reference table at assembly time, include
the /C:arg option in the command string. The table will be
generated in the assembly listing file (.LST). The /C:arg
option may be included at any point in the command string,
after the first output file. Consider the following command
strings:

*TEST.OBJ/C,TEST.LST•TEST.MSR

or

*TEST.OBJ,TEST.LST/C•TEST.MSR

or

*TEST.OBJ,TEST.LST•TEST.MSR/C

4-6

('

c

Any one of these command strings produces a cross reference
(table and includes it in the TEST.LST output file.

c

When you request a cross-reference listing, the system automatically
generates a temporary file on device DK:. If a device other than
DK: is required to contain the temporary CREF file, you can
assign an alternate device for CREF.TMP by entering the command

.ASSIGN dev:CF(cr)

prior to invoking the cross assembler.

For additional information on cross-reference tables, refer
to the PDP-11 MACR0-11 Language Reference Manual (Section
9), and to the RT-11 System User's Guide (Sections 10.4.3
through 10.4.4.2).

CALLING THE LINKER

As mentioned earlier in this manual, ELINK2 is the standard
Emulogic linker. It processes cross assembler object modules
and produces executable absolute load modules (with the .LOA
extension). (Refer to the Chip Supplement corresponding to
your target chip to ensure that your object code can be
processed by ELINK2.)

ELINK2 operates the same as the RT-11 linker LINK, except
for the following:

*

*

*

*
*

*

The .SAV file is not created,

An .LOA file is created,

The linker /L option is selected by default to
produce a formatted binary output file,

The linker option /B:n defaults to n=O,

The output load map is produced in hexadecimal
notation, and

The /Q option allows the user to specify the base
address of up to 127 (decimal) named PSECTs.

To call the linker from the system device, respond to the
system prompt (.) by typing:

.RUN ELINK2(cr)

When the linker responds with an asterisk (*),it is ready to
accept the command string.

4-7

Enter the command string in this format:

(load_file),(load_map},(sym_table)•object_l/options(, ••• ,object_n/options)

where:

load file = output load module in .LDA format

load_map = output load map

sym_table • output symbol definition file

object_! • input object module, library file,
or symbol table created in a previous link.
The user may enter more than one input file
(, ••• ,object_n/options)

Note: The parentheses in this format only
indicate that the field is optional; the programmer
should not actually enter the parentheses.

All output file specifications are optional. The system
does not produce a specific output file unless ~he command
string contains a specification for that file.

The system determines the file type of an output file speci­
fication by its position in the string, as determined by the
number of commas in the string. For example, to omit the
load module, begin the command string with a comma. A comma
is not required after the final output file specification·
in the command string.

If you enter a file name without an extension, the linker
assumes the default extension:

.LOA output load module

.MAP output load map

.STB output symbol table file

.OBJ input file

To create a load module, load map, and symbol table file from
object file TEST.OBJ, you could enter the command string as

*TEST.LDA,TEST.MAP,TEST.STB=TEST.OBJ<cr)

or

*TEST,TEST,TEST•TEST<cr)

If you invoke the linker with the /Q option, you can specify
the absolute base address for different named PSECTs. The
syntax for this option is

/Q:n

4-8

C:

('

(

where "n" is the number of PSECTs whose base addresses will
be defined by the operator. "n" is a number between l and
177 octal (or 127. decimal). The default value is 8.
decimal. By controlling this value, the operator can
allocate an appropriate amount of space for the /Q table,
thereby providing more space for the symbol table.

If the /Q option is excluded from the command line, all
PSECTs are concatenated in the order of entry.

The linker responds to the /Q option with the prompt

*LOAD SECTION:ADDRESS?

At this point, you should enter the name of the PSECT and
the base address (hexadecimal) at which you want to load the
data, and then a carriage return.

Note: Do not enter a space before the PSECT
name, or the linker will respond with the
error message

?LINK-W-load section NOT FOUND

For example, suppose that you enter the previous command
line with the /Q option, as

*TEST,TEST,TEST=TEST/Q:S<cr>

The linker will ask you to name five PSECTs and to specify
their base addresses:

*LOAD SECTION:ADDRESS?
*LOAD SECTION:ADDRESS?
*LOAD SECTION:ADDRESS?
*LOAD SECTION:ADDRESS?
*LOAD SECTION:ADDRESS?

BASSl:lOOO<cr>
RELEF:l4CO(cr>
BRAL:20SO<cr>
CREDL:3SOO<cr>
ORON: SASO<cr>

These entries specify five program sections (BASSl, RELEF,
BRAL, CREDL, and ORON) and the corresponding base addresses
(in hex).

If you enter a carriage return in response to the /Q prompt,
the linker discontinues its prompting and begins the linking
process.

TERMINATING THE LINKER

The linker can be terminated at any time using the same
procedure as when terminating the assembler, using the
Ac (Control C).

4-9

1. If you invoked the linker and received the asterisk
prompt but have not yet entered the command string, you can
terminate the linker by typing AC. For example,

.RUN ELINK2<cr)
*AC

System returns to the system monitor prompt.

2. If you have completed command string input and started
the linking process, you can halt the linker at any
time by typing ACAC •

• RUN ELINK2<cr)
*TEST.LDA,TEST.MAP,TEST.STB•TEST.OBJ(cr)
ACAC

System returns to the system monitor prompt.

3. When the linker has completed processing, the system
displays the asterisk prompt. To return to RT-11,
just enter AC.

For a complete description of the linker, refer to the RT-11
System User's Guide. (Section 11, Linker).

4-10

c

c

