
0 
. '. 

BMULOGIC CROSS ASSEMBLER RBFBRBNCE MANUAL 

POl TBB 6500 FAMILY 

. i 

. ! 

.! 



First Edition (June 1984) 

No part of this publication may be reproduced by 
any means without prior written permission from 
Emulogic, Inc. Use of this document is restricted 
to customers of Emulogic, Inc., and its employees 
and agents. 

The information contained herein 
change without notice. Emulogic, 
responsibility for any errors that 
this document. 

is 
Inc., 

may 

subject to 
assumes no 
appear in 

Details and specifications concerning the use and 
operation of Emulogic equipment and software are 
included in various technical manuals available 
through local sales representatives. 

Copyright c 
reserved. 

1984 Emulogic, Inc. All rights 

Copyright c 1984 Digital Equipment Corporation. 
All rights reserved. Permission was obtained from 
Digital Equipment Corporation to reproduce material 
used in this document. 

EMULOGIC is a registered trademark of Emulogic, 
Inc. 

The following are registered trademarks of Digital 
Equipment Corporation: 

DEC RSX RT-11 MACRO 11 

PDP PDP-11 VAX VMS 

Printed in U.S.A. 

(> 



<) 

0 

PREFACE 

The Emulogic Cross Assembler Reference Manual contains detailed 
information on the following subjects: 

o Source program format 

o Symbols and expressions 

o The microprocessor instruction set 

o Cross Assembler directives 

o Macro directives 

A companion document, the Emulogic Cross Assembler User's Guide, 
tells you how to use the Cross Assembler, Linker and Librarian. 

Organization: 

Chapter 1 lists the features of the Cross Assembler and 
describes the two-pass assembly process. 

Chapter 2 describes the format to use in coding source 
programs. 

Chapter 3 lists the character set and describes the symbols, 
terms and expressions that form the elements of t~e Cross 
Assembler instructions. 

Chapter 4 is a brief introduction to relocation and linking. 
(For detailed information, see Chapter 3 of the Emulogic 
Cross Assembler User's Guide.) 

Chapter 5 contains the microprocessor's instruction set. 

Chapter 6 describes Cross Assembler directives. 

Chapter 7 describes macro directives. 

Appendix A lists ASCII characters and Radix-50 characters. 

iii 



Appendix B lists the Cross Assembler's special characters and 
directives. 

Appendix C contains error messages. 

iv 

c) 

() 

(J 



{) 

EMULOGIC CROSS ASSEMBLER REFERENCE MANUAL 

FOR THE 6500 FAMILY 

TABLE OF CONTENTS 

PREFACE ••••••••••••••••••••••••••••••••••••••••••••••••••••• iii 

CHAPTER 1 

1. 1 
1.2 
1. 3 

CHAPTER 2 

2. 1 
2.2 
2. 2. 1 
2.2.2 
2.2.3 
2.2.4 
2.3 

CHAPTER 3 

3. 1 
3. 1. 1 

3.1.2 
3. 1. 3 
3.2 
3. 2. 1 
3.2.2 
3.3 
3.4 
3.5 
3.6 
-3. 7 
3.8 

CHAPTER 4 

CHAPTER 5 

THE EMULOGIC CROSS ASSEMBLER •••••••••••••••••1-1 

INTRODUCTION 
ASSEMBLY PASS 
ASSEMBLY PASS 

••••••••••••••••••••••••••••••••• 1-1 
1 •••••••••••••••••••••••••••••• 1-2 
2 •••••••••••••••••••••••••••••• 1-3 

SOURCE PROGRAM FORMAT •••••••••••••••••••••••·2-1 

PROGRAMMING STANDARDS AND CONVENTIONS •••••••• 2-1 
STATEMENT FORMAT ••••••••••••••••••••••••••••·2-1 

Label Field •••••••••••••••••••••••••·2-2 
Operator Field ••••••••••••••••••••••·2-4 
Operand Field ••••••••••••••••••••••••2-4 
Comment Field ••••••••••••••••••••••••2-5 

FORMAT CONTROL ••••••••••••••••••••••••••••••·2-7 

SYMBOLS AND EXPRESSIONS ••••••••••••••••••••••3-1 

CHARACTER SET ••••••••••••••••••••••••••••••••3-1 
Separating and Delimiting 
Characters ••••••••••••••••••••••••••·3-4 
Illegal Characters ••••••••••••••••••·3-4 
Unary and Binary Operators ••••••••••• 3-5 

CROSS-ASSEMBLER SYMBOLS ••••••••••••••••••••••3-8 
Permanent Symbols •••••••·~•••••••••••3-8 
User-Defined and Macro Symbols ••••••• 3-8 

DIRECT ASSIGNMENT STATEMENTS ••••••••••••••••·3-11 
LOCAL SYMBOLS ••••••••••••••••••••••••••••••••3-13 
CURRENT LOCATION COUNTER ••••••••••••••••••••·3-15 
NUMBERS •••••••••••••••••••••••••••••••••••••·3-18 
TERMS ••••••••••••••••••••••••••••••••••••••••3-19 
EXPRESSIONS ••••••••••••••••••••••••••••••••••3-20 

RELOCATION AND LINKING ••••••••••••••••••••••·4-1 

THE 6500 FAMILY INSTRUCTION SET •••••••••••••·5-1 

v 



5.1 INTRODUCTION ••••••••••••••••••••••••••••••••·5-1 
5.2 PROGRAMMING NOTES •••••••••••••••••••••••••••·5-2 
5.3 
5.4 
5.5 

CHAPTER 6 

6. 1 
6. 1. 1 
6. 1. 2 
6. 1. 3 
6.1.4 
6. 1. 5 
6. 1. 6 
6.2 
6. 2. 1 
6.3 
6.3.1 
6.3.2 
6.3.3 
6.3.4 
6.3.5 
6.3.6 
6.3.7 
6.3.8 
6.4 
6.4.1 

6.4.1.1 
6.4.1.2 
6.5 
6.5.1 
6.5.2 
6.5.3 
6.6 
6.7 
6.7.1 
6.7.2 
6.8 
6.8.1 
6.9 
6.9.1 

6.9.2 

6.9.3 

REGISTERS •••••••••••••••••••••••••••••••••••·5-3 
6500 FAMILY INSTRUCTION SET •••••••••••••••••·5-4 
SAMPLE 6500 ASSEMBLY LISTING ••••••••••••••••·5-19 

GENERAL CROSS ASSEMBLER DIRECTIVES ••••••••••·6-1 

LISTING CONTROL DIRECTIVES ••••••••••••••••••·6-4 
.LIST and .NLIST Directives •••••••••·6-4 
.TITLE Directive •••••••••••••••••••••6-10 
.SBTTL Directive ••••••••••••••••••••·6-10 
.!DENT Directive ••••••••••••••••••••·6-12 
.PAGE Directive/Page Ejection •••••••• 6-13 
.REM Directive/Begin Remark Lines •••• 6-13 

FUNCTION DIRECTIVES ••••••••••••••••••••••••••6-14 
.ENABL and .DSABL Directives ••••••••·6-14 

DATA STORAGE DIRECTIVES ••••••••••••••••••••••6-18 
.BYTE Directive •••••••••••••••••••••·6-18 
.WORD Directive •••••••••••••••••••••·6-19 
.LONG Directive •••••••••••••••••••••·6-20 
ASCII Conversion Characters •••••••••• 6-21 
.ASCII Directive ••••••••••••••••••••·6-22 
.ASCIZ Directive ••••••••••••••••••••·6-25 
.RAD50 Directive ••••••••••••••••••••·6-26 
Temporary Radix-50 Control Operator •• 6-28 

RADIX AND NUMERIC CONTROL FACILITIES ••••••••• 6-29 
Radix Control and Unary Control 
Operators •••••••••••••••••••••••••••·6-29 
.RADIX Directive ••••••••••••••••••••·6-29 
Temporary Radix Control Operators •••• 6-30 

LOCATION COUNTER CONTROL DIRECTIVES •••••••••·6-32 
.EVEN Directive ••••••••••••••••••••••6-32 
.ODD Directive ••••••••••••••••••••••·6-33 
.BLKB, .BLKW and .BLKL Directives •••• 6-33 

TERMINATING DIRECTIVE: .END DIRECTIVE ••••••• 6-35. 
PROGRAM SECTIONING DIRECTIVES ••••••••••••••••6-36 

.PSECT Directive ••••••••••••••••••••·6-36 

.ASECT Directive •••••••••••••••••••••6-41 
SYMBOL CONTROL DIRECTIVES ••••••••••••••••••••6-42 

.GLOBL Directive ••••••••••••••••••••·6-42 
CONDITIONAL ASSEMBLY DIRECTIVES ••••••••••••••6-44 

Conditional Assembly Block 
Directives ••••••••••••••••••••••••••·6-44 
Subconditional Assembly Block 
Directives ••••••••••••••••••••••••••·6-48 
Immediate Conditional Assembly 
Directives ••••••••••••••••••••••••••·6-52 

vi 



(J 
CHAPTER 7 

7.1 
7. 1. 1 
7.1.2 
7.1.3 
7. 1. 4 
7.2 
7.3 

7. 3. 1 
7.3.2 

7.3.3 
7.3.4 

7.3.5 
7.3.6 
7.4 

7. 4. 1 

') 
7.4.2 
7.4.3 
7.5 
7.6 

7. 6. 1 
7.6.2 
7.7 
7.8 

APPENDIX A 

A.l 
A.2 

APPENDIX B 

B.l 
B.2 

APPENDIX C 

<) 

MACRO DIRECTIVES •••••••••••••••••••••••••••••7-1 

DEFINING MACROS •••••••••••••••••••••••••••••·7-1 
.MACRO Directive ••••••••••••••••••••·7-1 
.ENDM Directive •••••••••••••••••••••·7-2 
.MEXIT Directive •••••••••••••••••••••7-3 
MACRO Definition Formatting •••••••••• 7-4 

CALLING MACROS ••••••••••••••••••••••••••••••·7-5 
ARGUMENTS IN MACRO DEFINITIONS AND MACRO 
CALLS •••••••••••••••••••••••••••••••••••••••• 7-6 

Macro Ne s ting •••••••••••••••••••••••• 7- 7 
Passing Numeric Arguments as 
Symbols •••••••••••••••••••••••••••••• 7-8 
Number of Arguments in Macro Calls ••• 7-10 
Creating Local Symbols 
Automatically •••••••••••••••••••••••·7-11 
Keyword Arguments ••••••••••••••••••••7-12 
Concatenation of Macro Calls ••••••••• 7-13 

MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR and 
.NTYPE •• •• •••••••••••••••••••• ••• •••••••••••·7-15 

.NARG Directive •••••••••••••••••••••·7-15 

.NCHR Directive •••••••••••••••••••••·7-17 

.NTYPE Directive •••••••••••••••••••••7-19 
.ERROR AND .PRINT DIRECTIVES ••••••••••••••••·7-20 
INDEFINITE REPEAT BLOCK DIRECTIVES: .!RP and 
• IRPC •••••••••••••••••••••••••••••••••••••••• 7-22 

.IRP Directive •••••••••••••••••••••••7-22 

.IRPC Directive ••••••••••••••••••••••7-26 
REPEAT BLOCK DIRECTIVE: .REPT, .ENDR ••••••••·7-27 
MACRO LIBRARY DIRECTIVE: .MCALL •••••••••••••·7-28 

CROSS ASSEMBLER CHARACTER SETS ••••••••••••••·A-1 

ASCII CHARACTER SET ••••••••••••••••••••••••••A-1 
RADIX-50 CHARACTER SET •••••••••••••••••••••••A-5 

CROSS ASSEMBLER LANGUAGE AND DIRECTIVES •••••• B-1 

SPECIAL CHARACTERS •••••••••••••••••••••••••••B-1 
CROSS ASSEMBLER OPERATORS AND DIRECTIVES ••••• B-3 

ERROR MESSAGES ••••••••••••••••••••••••••••••·C-1 

vii 

'! 



FIGURE 6-1 
6-2 
7-1 
7-2 
7-3 

TABLE 3-1 

3-2 
3-3 
3-4 
3-5 
6-1 
6-2 

6-3 

6-4 
6-5 
6-6 

6-7 

FIGURES 

Assembly Listing Table of Contents ••••••••••• 6-11 
Example of .ENABL and .DSABL Directives •••••• 6-17 
Example of .NARG Directive ••••••••••••••••••·7-16 
Example of .NCHR Directive •••••••••••••••••••7-18 
Example of .IRP and IRPC Directives •••••••••• 7-25 

TABLES 

Special Characters used in the Cross 
Assembler •••••••••••••••••••••••••••••••••••• 3-2 
Legal Separating Characters •••••••••••••••••·3-4 
Legal Argument Delimiters •••••••••••••••••••·3-5 
Legal Unary Operators •••••••••••••••••••••••·3-6 
Legal Binary Operators ••••••••••••••••••••••·3-7 
General Cross-Assembler Directives ••••••••••• 6-2 
Symbolic Arguments of Listing Control 
Directives ••••••••••••••••••••••••••••••••••·6-7 
Symbolic Arguments of Function Control 
Directives •••••••••••••••••••••••••••••••••••6-16 
Symbolic Arguments of .PSECT Directive ••••••• 6-37 
Program Section Default Value •••••••••••••••·6-41 
Legal Condition Tests for Conditional 
Assembly Directives ••••••••••••••••••••••••••6-46 
Subconditional Assembly Block Directives ••••• 6-49 

viii 

(_) 



() 

<) 

CBAPTIR 1 

Tll IKULOGIC CROSS ASSIKBLIR 

1.1 INTRODUCTION 

The Emulogic Cross Assembler assembles one or more ASCII source files 
containing assembler statements into a single relocatable binary 
object file. The output of the Cross Assembler consists of a binary 
object file and a file containing the table of contents, the assembly 
listing, and the symbol table list. An optional cross-reference 
listing of symbols and macros is also available. 

These are some of the features of the Cross Assembler: 

o Source and command string control of assembly functions, 

o Device and filename specifications for input and output 
files, 

o Error listing on command output device, 

o Alphabetized, formatted symbol table listing (with optional 
cross-reference listing of symbols), 

o Relocatable object modules, 

o Global symbols for linking object modules, 

o Conditional assembly directives, 

o Program sectioning directives, 

o User-defined macros and macro libraries, and 

o Extensive source and command string control of listing 
functions. 

1-1 



(' 

1.2 ASSEMBLY PASS 1 

During pass 1, the Cross Assembler locates and reads all required 
macros from libraries, builds symbol tables and program section 
tables for the program, and performs a rudimentary assembly of each 
source statement. 

In the first step of assembly pass 1, the Cross Assembler initializes 
all the impure data areas (areas containing both code and data) that 
will be used internally for the assembly process. These areas 
include all dynamic storage and buffer areas used as file storage 
regions. 

The Cross Assembler then calls a system subroutine which transfers a 
command line into memory. This command line contains the 
specifications of all files to be used during assembly. After 
scanning the command line for proper syntax, the Cross Assembler 
initializes the specified output files. These files are opened to 
determine if valid output file specifications have been passed in the 
command line. 

The Cross Assembler now initiates a routine which retrieves sourc( ~ 
lines from the input file. If no input file is open, as is the case~ 
at the beginning of assembly, the Cross Assembler opens the next 
input file specified in the command line and starts assembling the 
source statements. The Cross Assembler first determines the length 
of the instructions, then assembles them according to length as one 
word, two words, or three words. 

At the end of assembly pass 1, the Cross Assembler reopens the output 
files described above. Such information as the object module name, 
the program version number, and the global symbol directory (GSD) for 
each program section are output to the object file to be used later 
in linking the object modules. After writing out the GSD for a given 
program section, the Cross Assembler scans through the symbol tables 
to find all the global symbols that are bound to that particular 
program section. The Cross Assembler then writes out GSD records to 
the object file for these symbols. This process is done for each 
program section. 

1-2 



1.3 ASSEMBLY PASS 2 

On pass 2 the Cross Asse•bler writes the object records to the output 
file while generating both the assembly listing and the symbol table 
listing for the program. A cross-reference listing may also be 
generated. 

Basically, assembly pass 2 consists of the same steps performed in 
assembly pass 1, except that all source statements containing errors 
that the Cross Assembler detects are flagged with an error code as 
the assembly listing file is created. The object file that is 
created at the conclusion of pass 2 contains all the object records, 
together with relocation records that hold the information necessary 
for linking the object file. 

The information in the object file, when passed to the Linker, 
enables the global symbols in the object modules to be associated 
with absolute memory addresses, thereby forming an executable body of 
code. 

1-3 





~) 

0 

CBAPTll. 2 

IOUlCI PIOQIAH FOi.HAT 

2.1 PROGRAMMING STANDARDS AND CONVENTIONS 

Programming standards and conventions allow code written by a person 
(or group) to be easily understood by other people. These standards 
also make the program easier to 

Plan 
Comprehend 
Test 
Modify 
Convert 

The actual standard used must meet local user requirements. 

2.2 STATEMENT FORMAT 

A source program is composed of assembly-language statements. Each 
statement must be completed on one line. Although a line may contain 
132 characters (a longer line causes an error (L) in the assembly 
listing), a line of 80 characters is recommended because of 
constraints imposed by listing format and terminal line size. Blank 
lines, although legal, have no significance in the source program. 

A cross assembler statement may have as many as four fields. These 
fields are identified by their order within the statement and/or by 
the separating characters between the fields. The general format of 
the cross assembler statement is: 

[Label:] Operator Operand [ ;Comaent(s)] 

The label and comment fields are optional. The operator and operand 
fields are interdependent; in other words, when both fields are 
present in a source stateaent, each field is evaluated by the Cross 
Asseabler in the context of the other. 

A statement may contain an operator and no operand, but the reverse 
is not true. A statement containing an operand with no operator is 
illegal and is interpreted by the Cross Assembler during assembly as 
an implicit .WORD directive. 

2-1 



(· 

The Cross Assembler interprets and processes source program 
stateaents one by one. Each statement causes the Cross Assembler to 
either perform a specified assembly process or to generate one or 
more binary instructions or data words. 

2.2.1 Label Field 

A label is a user-defined symbol which is assigned the value of the 
current location counter and is entered into the user-defined symbol 
table. The current location counter is used by the Cross Assembler 
to assign memory addresses to the source program statements as they 
are encountered during the assembly process. Thus, a label is a 
means of symbolically referring to a specific statement. 

When a program section is absolute, the value of the current location 
counter is absolute; its value references an absolute virtual memory 
address (such as location 100). Similarly, when a program section is 
relocatable, the value of the current location counter is 
relocatable; a relocation bias calculated at link time is added to(. 
the apparent value of the current location counter to establish it ) 
effective absolute virtual address at execution time. (For a· 
discussion of program sections and their attributes, see Section 
6.7.) 

ROTE 

Examples in this document will use 
mnemonics for the LSI-11 chip. 

If present, a label muat be the first field in a source statement and 
must be terminated by a colon (:). For example, if the value of the 
current location counter is absolute 100, the statement: 

ABCD: HOV A,B 

(where ABCD is the label, HOV an LSI-11 chip-specific operator, and A 
and B chip-specific operands) assigns the value 100 to the label 
ABCD. If the location counter value were relocatable, the final 
value of ABCD would be lOO+K, where K represents the relocation bias 
of the program section, as calculated by the Linker at link time. 

More than one label may appea% within a single label 
label so specified is assigned the same address value. 
if the value of the current location counter is 100, 
labels in the following statement are each assigned the 

2-2 

field. Each 
For example, 

the multiple 
value 100: 



) 

r) 

r) 

ABC: $DD: A7.7: MOV A,B 

Multiple labels aay also appear on successive lines. 
the stateaents 

ABC: 
$DD: 
A7.7: MOV A,B 

For example, 

likewise cause the same value to be assigned to all three labels. 
This second method of assigning multiple labels is preferred because 
positioning the fields consistently within the source program makes 
the program easier to read (see Section 2.3). 

A double colon(::) defines the label as a global symbol. For 
exaaple, the statement 

ABCD:: MOV A,B 

establishes the label ABCD as a global symbol. The distingu~shing 

attribute of a global syabol is that it can be referenced from within 
an object module other than the module in which the symbol is defined 
or by independently assembled object modules. References to this 
label in other modules are resolved when the modules are linked as a 
composite executable image. 

The legal characters for defining labels are 

A through Z 
0 through 9 
• (Period) 
$ (Dollar Sign) 

Although a label may be any length, only the first six characters are 
significant and, therefore, must be unique among all the labels in 
the source program. If the first six characters in two or more 
labels are the same, the assembly listing will show an error code (M) 
signaling a aultiple definition. 

A symbol used as a label must not be redefined within the source 
program. If the symbol is redefined, a label with a multiple 
definition results, causing the Cross Assembler to generate an error 
code (M) in the assembly listing. Furthermore, any statement in the 
source program which references a multi-defined label generates an 
error code (D) in the assembly listing. 

2-3 



( 

2.2.2 Operator Field 

The operator field specifies 
consist of an instruction 
directive, or a macro call. 
types of operators. 

the action to be performed. It may 
mnemonic (op code), a cross assembler 

Chapters 6 and 7 describe these three 

When the operator is an instruction mnemonic, a machine instruction 
is generated and the Cross Assembler evaluates the addresses of the 
operands which follow. When the operator is a directive, the Cross 
Assembler performs certain control actions or processing operations 
during assembly of the source program. When the operator is a macro 
call, the Cross Assembler inserts the code generated by the macro 
expansion. 

Leading and trailing spaces or tabs in the operator field have no 
significance; such characters serve only to separate the operator 
field from the preceding and following fields. 

A space, tab, or any non-RADSO character terminates 
(Appendix A contains a table of Radix-SO characters). 
examples use an LSI-11 chip-specific operator, MOV : 

an 
The 

MOV A,B ;The space terminates the operator MOV. 

operator 
followint ·; 

MOV A,B ;The tab terminates the operator MOV. 

MOV!A,B ;The ! character terminates the operator MOV. 

Although the statements above are all equivalent in function, the 
second statement is the recommended form because it conforms to the 
Cross Assembler's coding conventions. 

2.2.3 Operand Field 

When the operator is an instruction mnemonic (op code), the operand 
field contains legal program variables that are to be 
evaluated/manipulated by the operator. The operand field may also 
supply arguaents to the Cross Asseabler's directives and macro calls, 
as described in Chapters 6 and 7, respectively. 

Operands may be expressions or symbols, depending on the operator. 
Multiple expressions used in the operand field of a cross-assembler 
statement must be separated by a comma; multiple symbols similar1y 
used may be delimited by any legal separator (a comma, tab, and/al 
space). An operand should be preceded by an operator field; if ~ . 

2-4 



<) 

is not, the statement is treated by the Cross Assembler as an 
iaplicit .WORD directive. 

When the operator field contains an op code, associated operands are 
always expressions, as shown in the following statement: 

MOV RO,A+2(Rl) 

On the other hand, when the operator field contains a cross-assembler 
directive or a macro call, associated operands are normally symbols, 
as shown in the following statement: 

.MACRO ALPHA SYM1,SYM2 

Refer to the description of each cross-assembler directive (Chapter 
6) to determine the type and number of operands required in issuing 
the directive. 

The operand field is terminated by a semicolon when the field is 
followed by a comment. For example, in the following statement: 

LABEL: MOV A,B ;Comment field 

the tab between MOV and A terminates the operator field and defines 
the beginning of the operand field; a comma separates the operands A 
and B; and a semicolon terminates the operand field and defines the 
beginning of the comment field. When no comment field follows, the 
operand field is terminated by the end of the source line. 

2.2.4 Comment Field 

The comment field normally begins in column 33 and extends through 
the end of the line. This field is optional and may contain any 
ASCII characters except null, RUBOUT, carriage-return, line-feed, 
vertical-tab or form-feed. All other characters appearing in the 
coaaent field (even special characters reserved for use in the Cross 
Assembler) are checked only for ASCII legality and then included in 
the assembly listing as they appear in the source text. 

All comment fields must begin with a semicolon (;). When lengthy 
comments extend beyond the end of the source line (column 80), the 
comment may be resumed in a following line. Such a line must contain 
a leading semicolon, and it is suggested that the body of the comment 
be continued in the same columnar position in which the comment 
began. A comment line can also be included as an entirely separate 
line within the code body. 

2-5 



Comments do not affect assembly processing or 
However, comments are necessary in source 
analysis, debugging, or documentation purposes. 

2-6 

program 
listings 

<· 
execution. 
for later 

(__ 



() 

0 

2.3 FORMAT CONTROL 

Horizontal for•atting of the source prograa is controlled by the 
apace and tab characters. These characters have no effect on the 
assembly process unless they are eabedded within a symbol, number, or 
ASCII text string, or unless they are used as the operator field 
terminator. Thus, the space and tab characters can be used to 
provide an orderly and readable source program. 

A standard source line format is shown below: 

Label 
Operator 
Operands 
Comments 

- begins in column 1 
begins in column 9 

- begin in column 17 
- begin in column 33. 

These formatting conventions are not mandatory; free-fleld coding is 
permissible. However, note the increased readability after 
formatting in the example below. 

unformatted line: 

REGTST:BIT MASK,VALUE;COMPARES BITS IN OPERANDS. 

formatted line using the above column settings: 

REGTST: BIT MASK, VALUE ;Compares bits in operands. 

Page formatting and assembly listing considerations are discussed in 
Chapter 6 in the context of cross-assembler directives that may be 
specified to accomplish desired formatting operations. 

2-7 



(_~) 



<) 

CIAPTI& 3 

ITlllOLI AID IZPallSIORS 

This chapter describes the components of the Cross 
instructions: the character set, the conventions 
constructing symbols, and the use of numbers, operators, 
expressions. 

3.1 CHARACTER SET 

Assembler's 
observed in 

terms and 

The following characters are legal in 
programs: 

cross-assembler source 

1. The letters A through z. Both uppercase and lowercase 
letters are acceptable, although, upon input, lowercase 
letters are converted to uppercase (see Section 6.2.1, 
.ENABL LC). 

2. The digits 0 through 9. 

3. The characters "•" (period) and "$" (dollar sign). 

4. The special characters listed in Table 3-1 below. 

3-1 



Character 

.. . . 

-

--
(CTRL)I 

I 

@ 

{ 

) 

• 

< 

> 

Designation 

Colon 

Double colon 

Equal sign 

Double equal 
sign 

Tab 

Space 

Number sign 

At sign 

Left parenthesis 

Right parenthesis 

Period 

Comma 

Semicolon 

Left angle 
bracket 

Right angle 
bracket 

Function 

Label terminator. 

Label terminator; defines 
the label as a global 
label. 

Direct assignment operator 
and macro keyword 
indicator. 

Direct assignment operator; 
defines the symbol as a 
global symbol. 

Item or field terminator. 

Item or field terminator. 

** 

** 

** 

** 
Current location counter • 

Operand field separator. 

Comment field indicator. 

Initial argument or 
expression indicator. 

Terminal argument or 
expression indicator. 

TABLE 3-1: Special Characters Used in the Cross Assembler 

3-2 

( ) 

( l 



) 

() 

0 

+ 

* 

I 

& 

II 

, 

... 

\ 

Plus sign 

Minus sign 

Asterisk 

Slash 

Ampersand 

Exclamation point 

Double quote 

Single quote 

Up arrow or 
circumflex 

Backslash 

Left square 
bracket 

Right square 
bracket 

Arithaetic addition 
operator or ** 
Arithmetic subtraction 
operator or ** 
Arithmetic multiplication 
operator. 

Arithmetic division 
operator. 

Logical AND operator. 

Logical inclusive OR 
operator. 

Double ASCII character 
indicator 

Single ASCII character 
indicator; or concatenation 
indicator • 

Universal unary operator or 
argument indicator. 

Macro call numeric argument 
indicator. 

** 

** 
--------------------------------------------------------------

TABLE 3-1 (cont.): Special Characters Used in the Cross Assembler 

** Refer to chapter 5 of this manual for chip-specific syntax. 

3-3 



( 

3.1.1 Separating and Delimiting Characters 

Legal separating characters and legal argument delimiters are defined 
in Tables 3-2 and 3-3 respectively. 

---------------------------------------------------------------------
Character Definition Usage 

---------------------------------------------------------------------
Space One or more spaces 

and/or tabs 
A space is a legal separator 
between instruction fields 
and between symbolic 
arguments within the operand 
field. Spaces within 
expressions are ignored. 

, Comma A comma is a legal separator 
between symbolic arguments 
within the operand field. 
Multiple expressions used it 
the operand field must be 
separated by a comma. · 

TABLE 3-2: Legal Separating Characters 

3.1.2 Illegal Characters 

A character is illegal £or one of two reasons: 

1. If a character is not an element of the recognized 
cross-assembler character set, it is replaced in the 
listing by a question aark, and an error code (I) is 
printed in the assembly listing. The exception to this 
is an embedded null which, when detected, terminates the 
scan of the current line. 

2. If a legal crosa-asaeabler character is used in a source 
stateaent with illegal or questionable syntax, an error 
code (Q) is printed in the assembly listing. 

( ) 

3-4 



) 

~) 

) 

Character Definition Usage 

---------------------------------------------~-----------------------

< ••• > 

"'x ••• x 

Paired angle 
brackets 

Up-arrow (unary 
operator) con­
struction, where 
the up-arrow is 
followed by an 
argument that is 

I bracketed by any 
paired printing 
characters (x). 

Paired angle brackets may be 
used anywhere in a program 
to enclose ~n expression for 
treataent as a single term. 
Paired angle brackets are 
also used to enclose a macro 
argument, particularly when 
that argument contains 
separating characters 

This construction is 
equivalent in function to 
the paired angle brackets 
described above and is 
generally used only where 
the argument itself contains 
angle brackets. 

-----------------------------------------------------------------
TABLE 3-3: Legal Argument Delimiters 

3.1.3 Unary and Binary Operators 

Legal cross-assembler unary operators are described in Table 3-4. 
Unary operators are used· in connection with single terms (arguments 
or operands) to indicate an action to be performed on that term 
during assembly. Because a tera preceded ·by a unary operator is 
considered to contain that operator, a tera so specified can be used 
alone or as an element of an expression. 

3-5 



Unary 
Operator Explanation Example 

( 

Effect 

------------------------------------------------------------------
+ Plus sign 

Minus sign 

Up-arrow, uni­
versal unary 
operator 

+A 

-A 

'"'Dl27 

"'034 

"'HOB3 

'"'BllOOOlll 

"'RABC 

Produces the positive 
value of A. 

Produces the negative 
(2"'s complement) 
value of A. 

Interprets 127 as a 
decimal number 

Interprets 34 as an 
octal number. 

Interprets BJ as a 
hexadecimal number. 
If the first 
character 
after H is A-F, 
precede the first 
character with a 
zero. 

Interprets 11000111 
as a binary number. 

Evaluates ABC in 
Radix-50 form. 

( 

----------------------------------------------~------------------

TABLE 3-4: Legal Unary Operators 

Unary operators can be used adjacent to each other 
constructions involving multiple teraa, as shown below: 

-"'D50 
"'C"'Ol2 

(Equivalent to -<"'D50)) 
(Equivalent to "'C(A012)) 

or in 

Legal cross-assembler binary operators are described in Table 3-5. 
In contrast to unary operators, binary operators specify actions tl. 
be performed on multiple items or terms within an expression. _ 

3-6 



C) 

<) 

-----------------------------------------------------------------
Binary 
Operator Explanation Example 

----------------~------------------------------------------------

+ Addition 

Subtraction 

* Multiplication 

I Division 

& Logical AND 

Logical inclusive OR 

A+B 

A-B 

A*B (signed 16-bit 
product returned) 

A/B (signed 16-bit 
quotient 
returned) 

A&B 

A!B 

---------------------------------------------------------------~ 

TABLE 3-5: Legal Binary Operators 

All binary operators have equal priority. Terms enclosed by angle 
brackets are evaluated first, and remaining operations are performed 
from left to right, as shown in the examples below: 

• WORD 
• WORD 

1+2*3 
1+<2*3> 

3-7 

;Equals 9 • 
;Equals 7. 



( ~ 

I 

3.2 CROSS-ASSEMBLER SYMBOLS 

The Cross Assembler maintains a symbol table for each of the three 
symbol types that may be defined in a cross-assembler source program: 
the Permanent Symbol Table (PST), the User Symbol Table (UST), and 
the Macro Symbol Table (MST). The PST contains all the permanent 
symbols defined within (and thus automatically recognized by) the 
Cross Assembler and is part of the cross-assembler image. The UST 
(for user-defined symbols) and MST (for macro symbols) are 
constructed as the source program is assembled. 

3.2.1 Permanent Symbols 

Permanent symbols consist of the instruction mnemonics and 
cross-assembler directives (see chapters 5, 6 and 7 and Appendix B). 
These symbols are a permanent part of the cross-assembler image and 
need not be defined before being used in the operator field of a 
cross-assembler source statement. 

( 
3.2.2 User-Defined and Macro Symbols 

User-defined symbols are those symbols that are equated to a specific 
value through a direct assignment statement, that appear as labels, 
or that act as dummy arguments. These symbols are added to the User 
Symbol Table as they are encountered during assembly. 

Macro symbols are those symbols used as macro names. They are added 
to the Macro Symbol Table as they are encountered during assembly. 

The following rules govern the creation of user-defined and macro 
symbols: 

1. Symbols can be composed of alphanumeric characters, 
dollar signs ($), and periods (.) only. 

2. 

3. 

The first character of a symbol must be an alphanumeric 
(except in the case of local symbols--see Section 3.4). 

The first six characters of a symbol must be unique. A 
symbol can be written with more than six ·legal 
characters, but the seventh and subsequent characters are 
checked only for ASCII legality and are not otherwise 
evaluated or recognized by the Cross Assembler. l 

3-8 



(_) 

4. Spaces, tabs, and illegal characters must not be embedded 
within a symbol. The legal cross-assembler character set 
is defined in Section 3.1. 

The value of a symbol depends upon its use in the program. A symbol 
in the operator field may be any one of the three symbol types 
described above: permanent, user-defined, or macro. To determine 
the value of an operator-field symbol, the Cross Assembler searches 
the symbol tables in the following order: 

1. Macro Symbol Table 

2. Permanent Symbol Table 

3. User-Defined Symbol Table 

This search order allows permanent 
symbols. But the user must keep 
search for symbols is performed 
interpretation of the symbol~s use. 

symbols to be used as macro 
in mind the sequence in which the 
in order to avoid incorrect 

When a symbol appears in the operand field, the search order is: 

1. User-Defined Symbol Table 

2. Permanent Symbol Table 

Depending on their use in the source program, 
have either a local (internal) attribute 
attribute. 

user-defined symbols 
or a global (external) 

Normally, the Cross Assembler treats all user-defined symbols as 
local; that is, their definition is limited to the module in which 
they appear. However, symbols can be explicitly declared to be 
global symbols through one of three methods: 

1. Use of the .GLOBL directive (see Section 6.8.1). 

2. Use of the double colon(::) in defining a label. 

3. Use of the double equal sign (••). 

All symbols within a module that remain undefined at the end of 
assembly are treated as default global references if the .ENABLE 
directive has been used. 

3-9 



BOTI 

At the end of assembly, statements 
containing undefined symbols are 
flagged with an error code (U) in 
the assembly listing. 

Global symbols provide linkages between independently assembled 
object modules within the task image. A global symbol defined as a 
label, for example, may serve as an entry-point address to another 
section of code within the image. Such symbols are referenced from 
other source modules in order to transfer control throughout 
execution. These global symbols are resolved at link time, ensuring 
that the resulting image is a logically coherent and complete body of 
code. 

( 

(_/I 

3-10 



() 

3.3 DIRECT ASSIGNMENT STATEMENTS 

The general format for a direct assignment statement is: 

where: 

symbol•expreseion 
or 

symbol••expreeeion 

expression can have only one level of forward 
reference (see 5. below). 

- cannot contain an undefined global 
reference. 

The direct assignment statements above allow the user to equate a 
symbol with a specific value. After the symbol has been defined, it 
is entered into the User-Defined Symbol Table. If the general format 
is used (• or ••), the value of the symbol may be changed in 
subsequent direct assignment statements. 

A direct assignment statement embodying the double equal (••) sign, 
as shown above, defines the symbol as global (see Section 6.8.1). 

The following examples illustrate the coding of direct assignment 
statements. 

Example 1 : 

A•lO 

B••30 

A•15 

Example 2 

C: 
D•. 
E: MOV #1,ABLE 

;Direct assignment 

;Global assignment 

;Legal reassignment 

;The symbol D is equated to 
;".", and the labels C and E 
;are assigned a value that 
;is equal to the address 
;of the MOV instruction. 

The code in the second example above would not normally be used and 
is shown only to illustrate the performance of the Cross Assembler in 
such situations. Refer to section 3.5 for a description of the 
period (.) as the current location counter symbol. 

3-11 



( 

The following conveptions apply to the coding of direct assignment 
statements: 

1. An equal sign (•) or double equal sign (••) must separate 
the symbol from the expression defining the symbol's 
value. Spaces preceding and/or following the direct 
assignment operators, although permissible, have no 
significance in the resulting value. 

2. The symbol being assigned in a direct 
statement is placed in the label field. 

assignment 

3. Only one symbol can be defined in a single direct 
assignment statement. 

4. A direct assignment statement may be followed only by a 
comment field. 

5. Only one level of forward referencing is allowed. The 
following example would cause an error code (U) in the 
assembly listing on the line containing the illegal 
forward reference: h 

X•Y (Illegal forward reference) 

Y=Z (Legal forward reference) 

z-1 

Although one level of forward referencing is allowed for local 
symbols, no forward referencing is allowed for global symbols. In 
other words, the expres•ion being assigned to a global symbol can 
contain only previously defined symbols. A forward reference in a 
direct assignment statement defining a global symbol will cause an 
error code (A) to be generated in the assembly "listing. 

l . _J 

3-12 



3.4 LOCAL SYMBOLS 

Local ayabols are apecially foraatted ayabols used as labels within a 
block of coding that has been deliaited as a Local Syabol Block 
(LSB). Local syabols are of the fora n$, where n is a decimal 
integer from 1 to 65535, inclusive. Exaaples of local symbols are: 

1$ 
27$ 
59$ 
104$ 

A local symbol block is delimited in one of three ways: 

1. The range of a local symbol block usually consists of 
those statements between two normally constructed 
symbolic labels. Note that a statement of the form: 

2. 

ALPHA•EXPRESSION 

is a direct assignment statement (see Section 3.3) but 
does not create a label and thus does not delimit the 
range of a local symbol block. 

The range of a local symbol block is normally terminated 
upon encountering a .PSECT or .ASECT directive in the 
source program. 

3. The range of a local symbol block is delimited through 
cross-assembler directives, as follows: 

Starting delimiter: .ENABL LSB 

Ending delimiter: .ENABL LSB 

or 

one of the following: 

Symbolic label (See Section 2.2.1) 
.PSECT (see Section 6.7.1) 
.ASECT (see Section 6.7.2) 

encountered after a .DSABL LSB (see 
Section 6.2.1). 

_) Local symbols provide a convenient means of generating labels for 

3-13 



branch instructions and other such references within local symbol 
blocks. Using local symbols reduces the possibility of symbols with 
multiple definitions appearing within a user program. In addition, 
the uae of local symbols differentiates entry-point labels from local 
labels, since local symbols cannot be referenced from outside their 
respective local symbol blocks. Thus, local symbols of the same name 
can appear in other local symbol blocks without conflict. Local 
symbols do not appear in cross-reference listings and require less 
symbol table space than other types of symbols. Their use is 
recommended. 

When defining local symbols, use the range from 1$ to 29999$ first. 
Local symbols within the range 30000$ through 65535$, inclusive, can 
be generated automatically as a feature of the Cross Assembler. Such 
local symbols are useful in the expansion of macros during assembly 
(see Section 7.3.4). 

Be sure to avoid multiple definitions of local symbols within the 
same local symbol block. For example, if the local symbol 10$ is 
defined two or more times within the same local symbol block, each 
symbol represents a different address value. Such a multi-define{d_ 
symbol causes an error code (P) to be generated in the assembl 
listing. 

3-14 



() 

C) 

3.5 CURRENT LOCATION COUNTER 

The period (.) 
used in the 
the address of 
operand field 
address of the 

SAL•O 

is the symbol for the current location counter. When 
operand field of an instruction, the period represents 
the first word of the instruction. When used in the 
of a cross-assembler directive, it represents the 

current byte or word, as shown in the example below. 

.WORD 1234,.+4,SAL ;The operand .+4 in the .WORD 
;directive represents a value 
;that is stored as the second 
;of three words during 
;assembly. 

Assume that the current value of the location counter is 500. During 
assembly, the Cross Assembler reserves storage in response to the 
.WORD directive (see Section 6.3.2), beginning with location 500. 
The operands accompanying the .WORD directive determine the values so 
stored. The value 1234 is thus stored in location 500. The value 
represented by .+4 is stored in location 502; this value is derived 
as the current value of the location counter (which is now 502), plus 
the absolute value 4, thereby depositing the value 506 in location 
502. Finally, the value of SAL, previously equated to O, is 
deposited in location 504. Figure 3-1 illustrates the result of the 
example. 

LOCATION CONTENTS 

500 1234 

502 506 

504 0 

Figure 3-1: Sample Assembly Results 

At the beginning of each assembly pass, the Cross Assembler resets 
the location counter. Normally, consecutive memory locations are 
assigned to each byte of object data generated. However, the value 
of the location counter can be changed through a direct assignment 
statement of the following form: 

.•expression 

The current location counter symbol (.) is either absolute or 

3-15 



( 

relocatable, depending on the attribute of the current program 
section. 

The attribute of the current location counter can be changed only 
through the program sectioning directives (.PSECT and .ASECT), as 
described in Section 6.7. Therefore, assigning to the counter an 
expression having an attribute different than that of the current 
program section will generate an error code (A) in the assembly 
listing. 

Furthermore, an expression assigned to the counter may not contain a 
forward reference (a reference to a symbol that is not previously 
defined). The user must also be sure that the expression assigned 
will not force the counter into another program section, even if both 
sections involved have the same relocatability. Either of these 
conditions causes the Cross Assembler to generate incorrect object 
file code, and may cause statements following the error to be flagged 
with an error code (P) in the assembly listing. 

The following coding illustrates the use of the current location 
counter: 

.•500 

FIRST: 

.=520 

SECOND: 

.-.+20 

THIRD: 

.RADIX 16 

.ASECT 

MOV 

MOV 

• PSECT 

.WORD 

.+10,COUNT 

.,INDEX 

0 

3-16 

;Set location counter to 
;absolute 500(hex). 

( 

;The label "FIRST" has the value 
;500(hex). 
;.+IO equals 510(hex). The 
;contents of the location 
;510(hex) will be deposited 
in the location "COUNT". 
The assembly location counter 
now has a value of 
absolute ·s20(hex). 
The label "SECOND" has the 
value 520(hex). 

,The contents of location 
;520(hex), that is, the binary 
;code for the instruction 
;itself, will be deposited in 
;the location "INDEX" • 

;Set location counter to 
;relocatable 20 of the 
;unnamed program section. 
;The label "THIRD" has the 
;value of relocatable 20. 



0 

0 

0 

Storage areas may be reserved in the program by advancing the 
location counter. For example, if the current value of the location 
counter is 1000, each of the following stateaents: 

.-.+40 

or 

.BLKB 40 

or 

.BLKW 20 

or 
.BLKL 10 (supported only for cross assemblers 

having 32-bit data) 

reserves 40 bytes of storage space in the source program. The .BLKB, 
.BLKW, and .BLKL directives, however, are the preferred ways to 
reserve storage space (see Section 6.5.3). 

3-17 

i 
i 

. I 
I 

i 



( ) 

3.6 NUMBERS 

The Cross Assembler assumes that all numbers in the source program 
are to be interpreted in octal radix, unless otherwise specified. 
This default radix can be altered with the .RADIX directive (see 
Section 6.4.1.1). Also, individual numbers can be designated as 
decimal, binary, octal, or hexadecimal numbers through temporary 
radix control operators (see Section 6.4.1.2). 

For every statement in the source program that contains a digit that 
is not in the current radix, an error code (N) is generated in the 
assembly listing. However, the Cross Assembler continues with the 
scan of the statement and evaluates each such number encountered as a 
decimal value. 

Negative numbers must be preceded by a minus sign; the Cross 
Assembler translates such numbers into two's complement form. 
Positive numbers may (but need not) be preceded by a plus sign. 

A number containing more than 16 significant bits (greater than FFF}-) 
(hex)) is truncated from the left and flagged with an error code (T~ 
in the assembly listing (except for cross assemblers supporting 
32-bit data). 

Numbers are always considered to be absolute values; 
are never relocatable. 

3-18 

therefore, they 

( J 



3.7 TERMS 

A term is a component of an expression and aay be one of the 
following: 

1. A number, as defined in Section 3.6. 

2. A symbol, as defined in Section 3.2. 
evaluated as follows: 

Symbols are 

A. A period (.) specified in an expression causes the 
value of the current location counter to be used. 

B. A defined symbol is located in
1 

the User-Defined 
Symbol Table (UST) and its value is used. 

C. A permanent symbol's basic value is used. 

D. An undefined symbol is assigned a value of zero 
and inserted in the User-Defined Symbol Table as 
an undefined default global reference. If the 
.DSABL GBL directive (see Section 6.2.1) is in 
effect, the automatic global reference default 
function of the Cross Assembler is inhibited, and 
the statement containing the undefined symbol is 
flagged with an error code (U) in the assembly 
listing. 

3. A single quote followed by· a single ASCII character, or a 
double quote followed by two ASCII characters. This type 
of expression construction is explained in detail in 
Section 6.l.3. 

4. An expression enclosed in angle brackets (<>). Any 
expression so enclosed is evaluated and reduced to a 
single term before the remainder of the expression in 
which it appears is evaluated. Angle brackets, for 
example, may be used to alter the left-to-right 
evaluation of expressions (as in A*B+C versus A*<B+C>), 
or to apply a unary operator to an entire expression (as 
in -<A+B)). 

5. A unary operator followed by a symbol or number. 

3-19 



( 

3.8 EXPRESSIONS 

Expressions are combinations of terms joined together by binary 
operators (see Table 3-5). The evaluation of an expression includes 
the deteraination of its attributes. A resultant expression value 
may be any one of three types (as described later in this section): 
relocatable, absolute or external. 

Expressions are evaluated from left to right with no operator 
hierarchy rules, except that unary operators take precedence over 
binary operators. A term preceded by a unary operator is considered 
to contain that operator. (Terms are evaluated, where necessary, 
before their use in expressions.) Multiple unary operators are valid 
and are treated as follows: 

-+-A 

is equivalent to: 

-<+<-A>> 

ROTE 

The maximum depth of an expression is 
governed by the Cross Assembler's 
expression stack space. If an 
expression exceeds the Cross 
Assembler's maximum expression depth, 
the statement is marked with an (E) 
error, and processing continues. 

( 

A missing term, expression, or external symbol is interpreted as a 
zero. A missing or illegal operator terminates the expression 
analysis, causing error codes (A) and/or (Q), to be generated in the 
assembly listing, depending on the context of the expression itself. 
For example, the expression: 

A + B 177777 

is evaluated as 

A + B 

because the first non-blank character following the symbol B is not a 
legal binary operator, an expression separator (a comma), or a[ 
operand field terminator (a semicolon or the end of the source line) J 

3-20 



BOTI 

Spaces within expressions can serve as 
delimiters only between symbols. In 
other words, the expressions 

A + B 

and 

A+B 

are the same, but the symbols 

Bl7 

and 

B 17 

are different because B 17 is not a 
single symbol. 

At assembly time the value of an external (global) expression is 
equal to the value of the absolute part of that expression. For 
example, the expression EXTERN+A, where "EXTERN" is an external 
symbol, has a value at assembly time that is equal to the value of 
the internal (local) symbol A. When evaluated at link time, however, 
this expression takes on the resolved value of the symbol EXTERN, 
plus the value of symbol A. 

Expressions, when evaluated by the Cross Assembler, 
types: relocatable, absolute or external. 
distinctions are important: 

are one 
The 

of three 
following 

1. An expression is relocatable if its value is fixed 
relative to the base address of the relocatable program 
section in which it appears; it will have an offset 
value added at link time. Teras that contain labels 
defined in relocatable program sections will have a 
relocatable value; similarly, a period (.) in a 
relocatable program section, representing the value of 
the current location counter, will also have a 
relocatable value. 

2. An expression is absolute if its value is fixed. An 
expression whose terms are numbers and ASCII conversion 

3-21 

., 
' 



(' 

characters will reduce to an absolute value. A 
relocatable expression or term minus a relocatable term, 
where both eleaents being evaluated belong to the same 
program section, is an absolute expression. This is 
because every term in a program section has the same 
relocation bias. When one term is subtracted from 
another, the resulting bias is zero. The Cross Assembler 
can then treat the expression as absolute and reduce it 
to a single term upon completion of the expression scan. 
Terms that contain labels defined in an absolute section 
will also have an absolute value. 

3. An expression is external (or global) if it contains a 
single global reference (plus or minus an absolute 
expression value) that is not defined within the current 
program. Thus, an external expression is only partially 
defined following assembly and must be resolved at link 
time. 

The evaluation of relocatable and external expressions is 
at link time. 

3-22 

completed~ ( . 

( 



CBAPTIR 4 

a&LOCATIOI AJID LI•XIIG 

The output of the Cross Assembler is an object aodule composed of 
relocatable machine language code, relocation information, and a 
corresponding global syabol table list that defines the use of 
symbols within the program. To form an executable program, the 
object module must be processed by the Emulogic Linker, ELINKx (where 
x is 2, 3, 4 or 6 depending upon your particular microprocessor; see 
Table 3-3 in section 3.6 of your Emulogic Cross Assembler User's 
Guide). 

ELINKx produces an executable load module with all locations resolved 
as absolute locations. This absolute load file in LDA format (or XDA 
format for the Z8000 and 68000 microprocessors) is the only loadable 
file format produced by Emulogic's Linker. 

To allow the value of an expression to be fixed at link time, the 
Cross Assembler outputs certain instructions in the object file, 
together with other required parameters. For relocatable expressions 
in the object module, the base of the associated relocatable program 
section is added to the value of the relocatable expression provided 
by the Cross Assembler. For external expression values, the value of 
the external term in the expression (since the external symbol must 
be defined in one of the other object modules being linked together) 
is determined and then added to the absolute portion of the external 
expression, as provided by the Cross Assembler. 

All instructions that r~quire modification at link time are flagged 
in the assembly listing, as illustrated in the example below. The 
apostrophe (') following the octal expansion of the instruction 
indicates that simple relocation is required; ·the letter G indicates 
that the value of an external symbol must be added to the absolute 
portion of an expression. 

EXAMPLE: 

005065 
000040' 

005065 
OOOOOOG 

CLR 

CLR 

RELOC 

EXTERN 

4-1 

;Assuming that the value of the 
;symbol "RELOC", 40, is 
;relocatable, the relocation 
;bias will be added to this 
;value. 

;The value of the symbol "EXTERN" 
;is assembled as zero and is 



005065 
000006G 

CLR EXTERN+6 

;resolved at link time. 

;The value of the symbol "EXTERN" 
;is resolved at link time 
;and added to the absolute 
portion (+6) of the expression. 

( 

For directions on using the Linker, refer to Chapter 3 in the 
Eaulogic Cross Assembler User's Guide. 

( 

4-2 



{) 

CHAPTER 5 

TIE 6500 FAMILY IRST&UCTION SET 

5.1 INTRODUCTION 

This chapter provides information for writing software programs to 
run on the 6500 family of microprocessors. The chapter contains 

o programming notes, 

o a summary of the 6500 instruction set, and 

o a sample Emulogic 6500 Cross Assembler output listing. 

ROTE 

You are expected to have some 
familiarity with the 6500 family of 
microprocessors and to have access to 
the chip manufacturer's manuals or 
equivalent documentation. This chapter 
is not a tutorial on programming the 
6500 family, nor should it serve as 
your only reference. 

5-1 



5.2 PROGRAMMING NOTES 

1. The Emulogic 6500 Cross Assembler lets you reference the low or 
high byte of a word. Examples: 

LDA TAG(L) 
ORA TAG(H) 

2. You are allowed to force absolute and absolute indexed addressing 
modes for certain instructions. Examples: 

AND TAG(A) 
AND TAG(A),X 

3. You can force zero page and zero page indexed addressing modes 
for certain instructions. Examples: 

LDY TAG(Z) 
LDY TAG(Z),Y 

( 

4. If address zero is referenced, the instruction will be assembled 
with the extended addressing mode instead of the direct addressing ( .. ) 
mode. To have the instruction assemble address zero as a single 
byte, you must use the force-zero-page syntax. 

5. Addressing references in zero page must be predefined. 

6. Avoid using complex forward references because they may result in 
phasing errors. When a complex forward reference is made, however, 
it can be forced absolute to avoid a phasing error. Example: 

LDX TAG+3(A) 

(TAG is a forward reference.) 

5-2 

( 



'.) 

.) 

5.3 REGISTERS 

16-BIT REGISTER 

PC - Program Counter 

8-BIT REGISTERS 

A - Accumulator 
x - Ind·ex 
y - Index 

STATUS REGISTER 

bits: 7 6 5 
flags: N v 

N • Negative 
V • Overflow 
B • Break 

4 
B 

3 
D 

D • Decimal mode 

2 
I 

1 
z 

I • Interrupt disable 
Z • Zero 
C • Carry 

0 
c 

5-3 



5.4 6500 FAMILY INSTRUCTION SET 

Instruction operands are represented as follows: 

Operand 

ii 
nn 

aa 
aaaa 
x 
y 
A 
OPER 

ZPAGE 
(L) 
(H) 
(A) 
(Z) 

Meaning 

Immediate operand (8 bit) 
Immediate operand (16 bit) 
8-bit relative branch address 
8-bit address variable (zero page) 
16-bit absolute address 
X index register 
Y index register 
Accumulator 
Operand (absolute and absolute 

indexed addressing modes) 
Zero page 
Low-order byte 
High-order byte 
Force absolute 
Force zero page 

TAG = absolute, global, or relocatable reference 

MNEMONIC OPERANDS DESCRIPTION EXAMPLE 

--------------------------------------------------------------------
ADC #ii Add immediate to accumulator ADC ·1120 

with carry 

ADC aa Add memory to accumulator ADC 3F 
with carry 

ADC aaaa Add memory to accumulator ADC OFFF 
with carry 

ADC aa,x Add memory indexed to accumu- ADC 3,X 
lat or with carry 

ADC aaaa,x Add memory indexed to accumu- ADC TAG,X 
la tor with carry 

ADC aaaa,y Add memory indexed to accumu- ADC 245,Y 
lat or with carry 

5-4 

( 

( 



() 

ADC (aa,x) Add memory indexed indirect ADC (4,X) 
to accumulator with carry 

ADC (aa),y Add memory indirect indexed ADC (7) 'y 
to accumulator with carry 

ADC #nn(L) Add with carry the low-order ADC #TAG(L) 
byte of the immediate data to 
the accumulator 

ADC #nn(H) Add with carry the high-order ADC #TAG(H) 
byte of the immediate data to 
the accumulator 

ADC OPER Add with carry memory to ADC TAG(A) 
accumulator 

ADC OPER,X Add with carry memory to ADC TAG(A),X 
accumulator indexed by x 

ADC OPER,Y Add with carry memory to ADC TAG(A),Y 

C) accumulator indexed by Y 

ADC ZPAGE Add with carry memory to ADC TAG(Z) 
accumulator 

ADC ZPAGE,X Add with carry memory to ADC TAG(Z),X 
accumulator indexed by x 

AND #ii AND immediate with accumulator AND 11125. 

AND aa AND memory with accumulator AND 10 

AND aaaa AND memory with accumulator AND 258 

AND aa,x AND memory indexed with AND 5A,X 
accumulator 

AND aaaa,x AND memory indexed with AND 300,X 
accumulator 

AND aaaa,y AND memory indexed with AND TAG,Y 
accumulator 

AND (aa,x) AND memory indexed indirect AND (OFE,X) 
with accumulator 

() AND (aa),y AND memory indirect indexed AND (25),Y 

5-5 



( 

with accumulator 

AND #nn(L) Logical AND the low-order byte AND llTAG(L) 
of the immediate data and the 
accumulator 

AND #nn(H) Logical AND the high-order byte AND #TAG(H) 
of the immediate data and the 
accumulator 

AND OPER Logical AND memory with AND TAG(A) 
accumulator 

AND OPER,X Logical AND memory with AND TAG(A),X 
accumulator indexed by x 

AND OPER,Y Logical AND memory with AND TAG(A),Y 
accumulator indexed by y 

AND ZPAGE Logical AND memory with AND TAG(Z) 
accumulator 

( ' 
AND ZPAGE,X Logical AND memory with AND TAG(Z),X 

accumulator indexed by x 

ASL A Shift left accumulator one bit ASL A 

ASL aa Shift left memory one bit ASL 3B 

ASL aaaa Shift left memory one bit ASL TAG 

ASL aa,x Shift left memory indexed one ASL OA4,X 
bit 

ASL aaaa,x Shift left memory indexed one ASL 1452,X 
bit 

ASL OPER Shift left one bit (memory or ASL TAG(A) 
accumulator) 

ASL OPER,X Shift left one bit (memory or ASL TAG(A),X 
accumulator) indexed by X 

ASL ZPAGE Shift left one bit (memory or ASL TAG(Z) 
accumulator) 

ASL ZPAGE,X Shift left one bit (memory or ASL TAG(Z),X ( accumulator) indexed by x } 

5-6 

------~--~----------- -----------------· 



.) 

BCC Branch on carry clear BCC 12 

BCS ...... Branch on carry set BCS TAG 

BEQ Branch on result zero BEQ 34 

BIT aa Test bits in memory with BIT OFF 
accumulator 

BIT aaaa Test bits in memory with BIT 257 
accumulator 

BIT OPER Test bits in memory with BIT TAG(A) 
accumulator 

BIT ZPAGE Test bits in memory with BIT TAG(Z) 
accumulator 

BMI Branch on result minus BMI OA 

BNE Branch on result not zero BNE 2E 

) BPL Branch on result plus BPL TAGl 

BRK Force break BRK 

BVC Branch on overflow clear BVC 24 

BVS Branch on overflow set BVS OAB 

CLC Clear carry flag CLC 

CLD Clear decimal load CLD 

CLI Clear interrupt disable bit. CLI 

CLV Clear overflow flag CLV 

CMP #ii Compare immediate to accumu- CMP 1250. 
la tor 

CMP aa Compare memory to accumulator CMP 86 

CMP aaaa Compare memory to accumulator CMP 257 

CMP aa,x Compare memory indexed to CMP 4,X 

·_) 
accumulator 

5-7 



( 

CMP aaaa,x Compare memory indexed to CMP OFFFF,X 
accumulator 

CMP aaaa,y Compare memory indexed to CMP TAG,Y 
accumulator 

CMP (aa,x) Compare memory indexed CMP (25,X) 
indirect to accumulator 

CMP (aa),y Compare memory indirect CMP (6F),Y 
indexed to accumulator 

CMP #nn(L) Compare the low-order byte CMP llTAG(L) 
of the immediate data with 
the accumulator 

CMP #nn(H) Compare the high-order byte CMP #TAG(H) 
of the immediate data with 
the accumulator 

CMP OPER Compare memory with accumulator CMP TAG(A) 

( 
CMP OPER,X Compare memory with accumulator CMP TAG(A), X 

indexed by x 

CMP OPER,Y Compare memory with accumulator CMP TAG(A),Y 
indexed by y 

CMP ZPAGE Comp ate memory with accumulator CMP TAG(Z) 

CMP ZPAGE,X Compare memory with accumulator CMP TAG(Z),X 
indexed by x 

CPX Iii i Comp are immediate and index X CPX ti 7 7 

CPX aa Compare memory and index x CPX 45 

CPX aaaa Compare memory and index x CPX 284 

CPX #nn(L) Compare the low-order byte CPX #TAG(L) 
of the immediate data with 
Index X 

CPX #nn(H) Compare the high-order byte CPX #TAG(H) 
of the immediate data with 
Index X 

CPX OPER Compare memory and index X CPX TAG(A) (_ 

5-8 



CPX ZPAGE Compare memory and index X CPX TAG(Z) 

CPY #ii Compare immediate and index y CPY #2 

CPY aa Compare memory and index y CPY 7F 

CPY aaaa Compare memory and index y CPY OFFA 

CPY #nn(L) Comp are the low-order byte CPY #TAG(L) 
of the immediate data with 
Index Y 

CPY #nn(H) Compare the high-order byte CPY llTAG(H) 
of the immediate data with 
Index Y 

CPY OPER Compare memory and index y CPY TAG(A) 

CPY ZPAGE Compare memory and index y CPY TAG(Z) 

DEC aa Decrement memory by one DEC 80 

-) 
DEC aaaa Decrement memory by one DEC TAG 

DEC aa,x Decrement memory indexed by DEC 7F,X 
one 

DEC aaaa,x Decrement memory indexed by DEC 3FA,X 
one 

DEC OPER Decrement memory by one DEC TAG(A) 

DEC OPER,X Decrement memory by one DEC TAG(A),X 
indexed by x 

DEC ZPAGE Decrement memory by one DEC TAG(Z) 

DEC ZPAGE,X Decrement memory by one DEC TAG(Z),X 
indexed by x 

DEX Decrement index x by one DEX 

DEY Decrement index y by one DEY 

EOR #ii Exclusive OR immediate with EOR 119 
accumulator 

) EOR aa Exclusive OR memory with EOR OF7 

5-9 



EOR aaaa 

EOR aa,x 

EOR aaaa,x 

EOR aaaa,y 

EOR (aa,x) 

EOR (aa),y 

EOR lnn(L) 

EOR #nn(H) 

EOR OPER 

EOR OPER,X 

EOR OPER,Y 

EOR ZPAGE 

EOR ZPAGE,X 

INC aa 

INC aaaa 

INC aa,x 

accumulator 

Exclusive OR memory with 
accumulator 

Exclusive OR memory indexed 
with accumulator 

Exclusive OR memory indexed 
with accumulator 

Exclusive OR memory indexed 
with accumulator 

Exclusive OR memory indexed 
indirect with accumulator 

Exclusive OR memory indirect 
indexed with accumulator 

Exclusive OR the low-order byte 
of the immediate data and the 
accumulator 

EOR 100 

EOR 25,X 

EOR TAG,X 

EOR 200,Y 

EOR (5,X) 

EOR (OFF),Y 

EOR #TAG(L) 

Exclusive OR the high-order byte EOR #TAG(H) 
of the immediate data and th• 
accumulator 

Exclusive OR memory with 
accumulator 

Exclusive OR memory with 
accumulator indexed by X 

Exclusive OR memory with 
accumulator indexed by Y 

Exclusive OR memory with 
accumulator 

Exclusive OR memory with 
accumulator indexed by X 

Increment memory by one 

Increment memory by one 

Increment memory indexed by one 

5-10 

EOR TAG(A) 

EOR TAG(A),X 

EOR TAG(A),Y 

EOR TAG(Z) 

EOR TAG(Z),X 

INC 88 

INC 986 

INC 35,X 

( 

( 



) 

INC aaaa,x Increment memory indexed by one INC 458,X 

INC OPER Increment memory by one INC TAG(A) 

INC OPER,X Increment memory by one indexed INC TAG(A) ,X 
by x 

INC ZPAGE Increment memory by one INC TAG(Z) 

INC ZPAGE,X Increment memory by one indexed INC TAG(Z),X 
by x 

INX Increment index x by one INX 

INY Increment index y by one INY 

JMP aaaa Jump to new location JMP 6 

JMP (aaaa) Jump to new location indirect JMP (TAG) 

JMP OPER Jump to new location JMP TAG(A) 

J JSR aaaa Jump to new location saving JSR 101 
return address 

JSR OPER Jump to new location saving JSR TAG(A) 
return address 

LDA #ii Load accumulator with immediate LDA #55 

LDA aa Load accumulator with memory LDA 99 

LDA aaaa Load accumulator with memory LDA 105 

LDA aa,x Load accumulator with memory LDA OFF ,X 
indexed 

LDA aaaa,x Load accumulator with memory LDA TAG,X 
indexed 

LDA aaaa,y Load accumulator with memory LDA 3FF,Y 
indexed 

LDA (aa,x) Load accumulator with memory LDA (ODD,X) 
indexed indirect 

() LDA (aa),y Load accumulator with memory LDA (55),Y 
indirect indexed 

5-11 



( 

LDA #nn(L) Load the accumulator with the LDA ITAG(L) 
low-order byte of the immediate 
data 

LDA #nn(H) Load the accumulator with the LDA #TAG(H) 
high-order byte of the immediate 
data 

LDA OPER Load the accumulator with memory LDA TAG(A) 

LDA OPER,X Load the accumulator with memory LDA TAG(A),X 
indexed by x 

LDA OPER,Y Load the accumulator with memory LDA TAG(A),Y 
indexed by Y 

LDA ZPAGE Load the accumulator with memory LDA TAG(Z) 

LDA ZPAGE,X Load the accumulator with memory LDA TAG(Z),X 
indexed by x 

LDX #ii Load index x with immediate data LDX 11123. (' 
LDX aa Load index x with memory LDX 25 

LDX aaaa Load index x with memory LDX 100 

LDX aa,y Load index x with memory indexed LDX OAB, Y 

LDX aaaa,y Load index x with memory indexed LDX 105,Y 

LDX /Inn( L) Load Index x with the low-order LDX llTAG(L) 
byte of the immediate data 

LDX #nn(H) Load Index X with the high-order LDX ITAG(H) 
byte of the immediate data 

LDX OPER Load Index x with memory LDX TAG(A) 

LDX OPER,Y Load Index x with memory indexed LDX TAG(A),Y 
by y 

LDX ZPAGE Load Index x with memory LDX TAG(Z) 

LDX ZPAGE,Y Load Index x with memory indexed LDX TAG(Z),Y 
by y 

LDY Iii i Load index Y with immediate data LDY #34 l 

5-12 



LDY aa Load index y with memory LDY OFA 

LDY aaaa Load index y with memory LDY 555 

LDY aa,x Load index y with memory indexed LDY 2,X 

LDY aaaa,x Load index y with memory indexed LDY 4F5,X 

LDY #nn(L) Load Index y with the low-order LDY ITAG(L) 
byte of the immediate data 

LDY #nn(H) Load Index Y with the high-order LDY /ITAG(H) 
byte of the immediate data 

LDY OPER Load Index y with memory LDY TAG(A) 

LDY OPER,X Load Index y with memory indexed LDY TAG(A),X 
by x 

LDY ZPAGE Load Index y with memory LDY TAG(Z) 

) LDY ZPAGE,X Load Index y with memory indexed LDY TAG(Z),X 
by x 

LSR A Shift right accumulator one bit LSR A 

LSR aa Shift right memory one bit LSR 55 

LSR aaaa Shift right memory one bit LSR 375 

LSR aa,x Shift right memory indexed one LSR 41,X 
bit 

LSR aaaa,x Shift right memory indexed one LSR TAG,X 
bit 

LSR OPER Shift right one bit LSR TAG(A) 

LSR OPER,X Shift right one bit indexed by X LSR TAG(A),X 

LSR ZPAGE Shift right one bit LSR TAG(Z) 

LSR ZPAGE,X Shift right one bit with memory LSR TAG(Z),X 
indexed by X 

NOP No operation NOP 

) ORA #ii OR immediate with accumulator ORA 11154. 

5-13 



ORA aa 

ORA aaaa 

ORA aa,x 

ORA aaaa,x 

ORA aaaa,y 

ORA (aa,x) 

ORA (aa),y 

ORA fin n ( L) 

ORA #nn(H) 

ORA OPER 

ORA OPER,X 

ORA OPER,Y 

ORA ZPAGE 

ORA ZPAGE,X 

PHA 

PHP 

PLA 

OR memory with accumulator ORA OFl 

OR memory with accumulator ORA TAGl 

OR memory indexed with accu- ORA 56,X 
mulator 

OR memory indexed with accu- ORA 678,X 
mulator 

OR memory indexed with accu- ORA 34,Y 
mu la tor 

OR memory indexed indirect with ORA (45,X) 
accumulator 

OR memory indirect indexed with ORA (77),Y 
accumulator 

Logical OR the low-order byte of ORA #TAG(L) 
the immediate data with the 
accumulator 

Logical OR the high-order byte of ORA #TAG(H) 
the immediate data with the 
accumulator 

Logical OR memory with 
accumulator 

Logical OR memory with 
accumulator indexed by X 

Logical OR memory with 
accumulator indexed by Y 

Logical OR memory with 
accumulator 

Logical OR memory with 
accumulator indexed by X 

Push accumulator on stack 

Push processor status on stack 

Pull accumulator from stack 

5-14 

ORA TAG(A) 

ORA TAG(A) ,X 

ORA TAG(A),Y 

ORA TAG(Z) 

ORA TAG(Z),X 

PHA 

PHP 

PLA 

( 

( 



PLP Pull processor status from stack PLP 

ROL A Rotate left accumulator one bit ROL A 

ROL aa Rotate left memory one bit ROL 23 

ROL aaaa Rotate left memory one bit ROL OFFF 

ROL aa,x Rotate left memory indexed one ROL 34,X 
bit 

ROL aaaa,x Rotate left memory indexed one ROL TAG,X 
bit 

ROL OPER Rotate one bit left ROL TAG(A) 

ROL OPER,X Rotate one bit left indexed by x ROL TAG(A) ,X 

ROL ZPAGE Rotate one bit left ROL TAG(Z) 

ROL ZPAGE,X Rotate one bit left indexed by x ROL TAG(Z),X 

1') 
ROR A Rotate right accumulator one ROR A 

bit 

ROR aa Rotate right memory one bit ROR 63 

ROR aaaa Rotate right memory one bit ROR 1627 

ROR aa,x Rotate right memory indexed one ROR 3,X 
bit 

ROR aaaa,x Rotate right memory indexed one ROR OCA4,X 
bit 

ROR OPER Rotate one bit right ROR TAG(A) 

ROR OPER,X Rotate one bit right indexed ROR TAG(A),X 
by x 

ROR ZPAGE Rotate one bit right ROR TAG(Z) 

ROR ZPAGE,X Rotate one bit bit right indexed ROR TAG(Z),X 
by x 

RTI Return from interrupt RTI 

\) RTS Return from subroutine RTS 

5-15 



SBC #ii 

SBC aa 

SBC aaaa 

SBC aa,x 

SBC aaaa,x 

SBC aaaa,y 

SBC (aa,x) 

SBC (aa),y 

SBC #nn(L) 

SBC #nn(H) 

SBC OPER 

SBC OPER,X 

SBC OPER,Y 

SBC ZPAGE 

SBC ZPAGE,X 

SEC 

Subtract immediate from 
accumulator with borrow 

Subtract memory from 
accumulator with borrow 

Subtract memory from 
accumulator with borrow 

Subtract memory indexed from 
accumulator with borrow 

Subtract memory indexed from 
accumulator with borrow 

Subtract memory indexed from 
accumulator with borrow 

Subtract memory indexed indirect 
from accumulator with borrow 

( 

SBC #OFF 

SBC 65. 

SBC 250 

SBC OED,X 

SBC 1000,X 

SBC 8219,Y 

SBC (88,X) 

Subtract memory indirect indexed 
from accumulator with borrow 

SBC (ODC),Y _ ( 

Subtract the low-order byte of 
the immediate data from the 
accumulator with borrow 

Subtract the high-order byte of 
the immediate data from the 
accumulator with borrow 

SBC llTAG( L) 

SBC llTAG(H) 

Subtract memory from accumulator SBC TAG(A) 
with borrow 

Subtract memory from accumulator SBC TAG(A),X 
with borrow indexed by X 

Subtract memory from accumulator SBC TAG(A),Y 
with borrow indexed by Y 

Subtract memory from accumulator SBC TAG(Z) 
with borrow 

Subtract memory from accumulator SBC TAG(Z),X 
with borrow indexed by X 

Set carry flag SEC 

5-16 

(_ 



() 

SED Set decimal mode SED 

SE! Set interrupt disable status SEI 

STA aa Store accumulator in memory STA 2 

STA aaaa Store accumulator in memory STA 258 

STA aa,x Store accumulator in memory STA OBA,X 
indexed 

STA aaaa,x Store accumulator in memory STA TAG,X 
indexed 

STA aaaa,y Store accumulator in memory STA 56,Y 
indexed 

STA (aa,x) Store accumulator in memory STA (65,X) 
indexed indirect 

STA (aa),y Store accumulator in memory STA (52),Y 

<) indirect indexed 

STA OPER Store accumulator in memory STA TAG(A) 

STA OPER,X Store accumulator in memory STA TAG(A),X 
indexed by X 

STA OPER,Y Store accumulator in memory STA TAG(A),Y 
indexed by y 

STA ZPAGE Store accumulator in memory STA TAG(Z) 

STA ZPAGE,X Store accumulator in memory STA TAG(Z),X 
indexed by x 

STX aa Store index x in memory STX OFF 

STX aaaa Store index x in memory STX TAGl 

STX aa,y Store index x in memory indexed STX 79,Y 

STX OPER Store index x in memory STX TAG(A) 

STX ZPAGE Store index x in memory STX TAG(Z) 

() STX ZPAGE,Y Store index x in memory indexed STX TAG(Z),Y 
by y 

5-17 



( 

STY aa Store index y in memory STY 45 

STY aaaa Store index y in memory STY 376 

STY aa,x Store index y in memory indexed STY 12,X 

STY OPER Store index y in memory STY TAG(A) 

STY ZPAGE Store index y in memory STY TAG(Z) 

STY ZPAGE,X Store index y in memory indexed STY TAG(Z),X 
by x 

TAX Transfer accumulator to index x TAX 

TAY Transfer accumulator to index y TAY 

TSX Transfer stack pointer to TSX 
index x 

TXA Transfer index x to accumulator TXA 

TXS Transfer index x to stack TXS ( 
pointer 

TYA Transfer index y to accumulator TYA 

--------------------------------------------------------------------------

() 

5-18 



SW44P #¥. 

5.5 SAMPLE 6500 ASSEMBLY LISTING 

• MAIN. X6500 Vl. 09 16-MAY-84 

1 0010 .RADIX 16 
2 0000 .ASECT 
3 
4 DIRECT ASSIGNMENT OF LABELS 
5 
6 0032 PC•32 
7 003B SEMl•3B 
8 EC18 DE1•0EC18 
9 EA84 PACK•OEA84 

10 EB9E PHXY•OEB9E 
1 1 EBAC PLXY•OEBAC • 12 F2El COLO•OF2El 
13 F321 COLl•OF321 
14 F361 COL2•0F361 
15 F3Al · COL3•0F3Al 
16 F3El COL4•0F3El 

() 17 A808 T2L•OA808 
18 oooc MOTON•OC 
19 OOOE MOTOFF•OE 
20 AOOO DRB•OAOOO 
21 AOOl DRA•OAOOl 
22 A002 DDRB•OA002 
23 A003 DDRA•OA003 
24 A004 TlL•OA004 
25 A005 TlCH•OAOOS 
26 A007 TlH•OA007 
27 AOOB ACR•OAOOB 
28 AOOC PCR•OAOOC 
29 AOOD IFR•OAOOD 
30 0190 .•190 
31 0190 00 SAVA: .BYTE 
32 0191 00 EQFL: .BYTE 
33 0192 00 CRFL: .BYTE 
34 0193 00 PBPTR: .BYTE 
35 0194 00 PBUF: .BYTE 
36 0200 .-200 
37 
38 ENTRY & INITIALIZATION 
39 
40 0200 08 PRINT: PHP ;SAVE PROCESSOR STATUS 
41 0201 78 SEI ;DIS. INTERRUPT DURING PRT 

0 
42 0202 A9 DO LDA #ODO 
43 0204 SD 04 AO STA TlL 

5-19 



( 

44 0207 A9 oc LDA #MOTON 
45 0209 8D oc AO STA PCR ;START MOTOR 
46 020C 2C 00 AO PRl: BIT DRB ;TEST LIMIT SWITCHES 
47 020F 50 53 BVC RMAR 
48 0211 30 F9 BMI PRl 
49 
50 LEFT TO RIGHT PRINT 
51 . 

t 

52 0213 20 CF 02 LMAR: JSR DEBDEL ;DEBOUNCE DELAY 
53 0216 AO 00 LDY #0 
54 0218 2C 00 AO LMl: BIT DRB 
55 021B 10 FB BPL LMl ;WAIT TO CLEAR MARGIN 
56 021D A9 01 LDA 11 l 
57 021F 8D 05 AO STA Tl CH ;START DOT RIMER(200) 
58 0222 B9 94 01 LM2: LDA PBUF,Y ;LOAD WITH CHARACTER 
59 0225 29 3F AND II 3F 
60 0227 AA TAX 
61 0228 A9 20 LDA #20 
62 022A 99 94 01 STA PBUF,Y ;REPLACE WITH BLANK 
63 022D BD El F2 LDA COLO,X 
64 0230 20 A6 02 JSR OUTDOT ;OUTPUT COLUMN 0 
65 0233 BD 21 F3 LDA COLl,X ( 66 0236 20 A6 02 JSR OUTDOT ;OUTPUT COLUMN 1 
67 0239 BD 61 F3 LDA COL2,X 
68 023C 20 A6 02 JSR OUTDOT ;OUTPUT COLUMN 2 
69 023F BD Al F3 LDA COL3,X 
70 0242 20 A6 02 JSR OUTDOT ;OUTPUT COLUMN 3 
71 0245 BD El F3 LDA COL4,X 
72 0248 20 A6 02 JSR OUTDOT ;OUTPUT COLUMN 4 
73 024B A9 00 LDA 110 ;INSERT 1 SPACE BETWEEN CHAR 
74 024D 20 A6 02 JSR OUTDOT 
75 0250 cs INY 
76 0251 co 48 CPY # 7 2. ;END OF LINE? 
77 0253 90 CD 
78 

BCC LM2 ;IF NOT, GET MORE CHARACTERS 

79 . EXIT ROUTINE t 

80 
81 0255 A9 FF PRXIT: LDA #OFF 
82 0257 8D 08 AB STA T2L 
83 025A 20 18 EC JSR DEl 
84 025D A9 OE LDA #MOTOFF 
85 025F 8D oc AO STA PCR ;MOTOR OFF 
86 0262 28 PLP ;RESTORE PROCESSOR STATUS 
87 0263 60 RTS 
88 
89 RIGHT TO LEFT PRINT 
90 
91 0264 20 CF 02 RMAR: JSR DEBDEL (_j 

5-20 



92 0267 AO 47 LDY #71. ;RIGHT BUFFER LIMIT 
93 0269 2C 00 AO RMI: BIT DRB 
94 026C 50 FB BVC RMI 
95 026E A9 01 LDA #1 
96 0270 8D 05 AO STA Tl CH 
97 0273 B9 94 01 RM2: LDA PBUF,Y 
98 0276 29 3F AND #3F 
99 0278 AA TAX 

100 0279 A9 20 LDA 120 
101 027B 99 94 01 STA PBUF,Y 
102 027E BD El F3 LDA COL4,X 
103 0281 20 A6 02 JSR OUTDOT 
104 02S4 BD Al F3 LDA COLJ,X 
105 02S7 20 A6 02 JSR OUT DOT 
106 02SA BD 61 F3 LDA COL2,X 
107 02SD 20 A6 02 JSR OUT DOT 
lOS 0290 BD 21 F3 LDA COLl,X 
109 0293 20 A6 02 JSR OUTDOT 
110 0296 BD El F2 LDA COLO,X 
111 0299 20 A6 02 JSR OUTDOT 
112 029C A9 00 LDA 10 

r') 113 029E 20 A6 02 JSR OUTDOT 
114 02Al SS DEY 
115 02A2 10 CF BPL RM2 
116 02A4 30 AF BMI PRXIT 
117 
118 HERE TO OUTPUT 1 COLUMN OF DOTS 
119 
120 02A6 49 FF OUTDOT: EOR #OFF ;INVERT FOR OUTPUT 
121 02AS 2C OD AO ODl: BIT IFR 
122 02AB 50 FB BVC ODl ;WAIT FOR INTER-DOT TIMEOUT 
123 02AD SD 01 AO STA DRA ;OUTPUT DOTS 
124 02BO A9 05 LDA 15 
125 02B2 SD 07 AO STA TlH ;LOAD INTER-DOT TIME 
126 0285 A9 S6 LDA #S6 
127 02B7 8D 04 AO STA TlL 
128 02BA A9 FF LDA #OFF 
129 02BC 2C OD AO OD2: BIT IFR 
130 02BF 50 FB BVC OD2 ;WAIT FOR DOT TIMEOUT 
131 02Cl 8D 01 AO STA DRA ;OFF 
132 02C4 A9 01 LDA II 
133 02C6 8D 07 AO STA TlH 
134 02C9 A9 DO LDA #ODO 
135 02CB 8D 04 AO STA TlL 
136 02CE 60 RTS 
137 

) 
138 DELAY ROUTINE 
139 

5-21 



( 

140 02CF A9 10 DEBDEL: LDA II 1 O ;DEBOUNCE DELAY 
141 02Dl 8D 08 A8 STA T2L 
142 02D4 A9 27 LDA 1127 
143 02D6 4C 18 EC JMP DEl 
144 
145 INITIALIZATION ROUTINE 
146 
147 02D9 A9 47 DRI: LDA #71. 
148 02DB A9 20 LDA 1120 
149 02DD 9D 94 01 DRil: STA PBUF,X ;CLEAR BUFFER 
150 02EO CA DEX 
151 02El 10 FA BPL DRil 
152 02E3 A9 00 LDA 110 
153 02E5 8D 93 01 STA PBPTR 
154 02ES 8D 92 01 STA CRFL 
155 02EB 8D 91 01 STA EQFL 
156 02EE SE 01 AO STX DRA 
157 02Fl SE 03 AO STX DDRA 
158 02F4 A9 40 LDA #40 
159 02F6 SD OB AO STA ACR ;Tl FREE RUN 
160 02F9 60 RTS 
161 ( 162 DRIVER ROUTINE 
163 
164 02FA 90 DD DRIVER: BCC DRI ;CHECK FOR INITIALIZATION 
165 02FC 68 PLA ;GET CHAR TO BE PRINTED 
166 02FD 20 9E EB JSR PHXY 
167 0300 SD 90 01 STA SAVA 
16S '0303 29 7F AND #7F 
169 0305 C9 OD CMP llOD ;CARRIAGE RETURN? 
170 0307 DO OE BNE DRl 
171 0309 OE 92 01 ASL CRFL ;YES 
172 030C 90 03 BCC CRl ;FLAG SET? 
173 030E 20 7A 03 JSR PLINE ;YES,PRINT LINE 
174 0311 3S CR!: SEC ;SET C!\.RRY FLAG 
175 0312 6E 92 01 ROR CRFL ;SET CARRIAGE RETURN FLAG 
176 0315 DO 36 BNE DRXIT 
177 0317 C9 3D DRl: CMP #3D ;IS THERE AN " • "? 
178 0319 DO IA BNE DR3 
179 031B OE 92 01 ASL CRFL ;YES 
180 031E 90 OE BCC DR2 
181 0320 20 00 02 JSR PRINT ;PRINT LINE 
1S2 0323 A9 00 LDA #0 
1S3 0325 SD 93 01 STA PBPTR ;ZERO BUFFER POINTER 
184 032S 38 SEC 
185 0329 6E 91 01 ROR EQFL ;SET EQUAL FLAG 
186 032C DO IF BNE DRXIT 

(_ 1S7 032E OE 91 01 DR2: ASL EQFL ;CRFL NOT SET, TEST EQFL 

5-22 



) 

188 0331 90 35 BCC STUFF ;PUT "•" IN BUFFER IF lST 
189 0333 BO 18 BCS DRXIT ;IGNORE IF SECOND 
190 0335 C5 3B DR3: CMP SEMI ;SEMICOLON? 
191 0337 DO lB BNE DRS 
192 0339 OE 92 01 ASL CRFL ;YES 
193 033C AE 93 01 LDX PBPTR 
194 033F EO oc CPX #12. ;START OF LINE? 
195 0341 FO 25 BEQ STUFF 
196 0343 A2 lE DR4: LDX #30. ;NO 
197 0345 EC 93 01 CPX PBPTR ;TAB TO COLUMN 30 
198 034S 90 03 BCC DRXIT 
199 034A SE 93 01 STX PBPTR 
200 034D 20 AC EB DRXIT: JSR PLXY 
201 03SO AD 90 01 LDA SAVA 
202 03S3 60 RTS 
203 03S4 OE 92 01 DRS: ASL CRFL ;NOT CARRIAGE RETURN, = or . 

' 
204 03S7 90 OF BCC STUFF ;LOAD 
20S 03S9 A2 oc LDX # 12. 
206 03SB EC 93 01 CPX PBPTR ;CHECK FOR BEYOND COLUMN 12 
207 03SE 90 OS BCC DR6 
208 0360 8E 93 01 STX PBPTR ;TAB TO COLUMN 12 

) 209 0363 BO 03 BCS STUFF ;LOAD 
210 036S 20 7A 03 DR6: JSR PLINE ;PRINT LINE 
211 036S AD 90 01 STUFF: LDA SAVA ;GET CHARACTER 
212 036B AE 93 01 LDX PBPTR ;GET BUFFER POINTER 
213 036E EO 4S CPX 117 2. ;CHECK FOR FULL 
214 0370 BO DB BCS DRXIT 
21S 0372 9D 94 01 STA PBUF,X ;NO, PUT CHAR. IN BUFFER 
216 037 s EE 93 01 INC PBPTR ;INCREMENT FOR ANOTHER 
217 0378 DO D3 BNE DRXIT 
218 037A 20 00 02 PLINE: JSR PRINT 
219 037D A2 00 LDX 110 
220 037F AS 33 LDA PC+l ;PC UPPER 
221 03Sl 20 8F 03 JSR CONVT 
222 0384 AS 32 LDA PC ;PC LOWER 
223 0386 20 SF 03 JSR CONVT 
224 0389 A9 oc LDA I 12. 
22S 038B SE 93 01 STX PBPTR ;SET COLUMN POINTER 
226 038E 60 RTS 
227 
228 HEX TO ASCII CONVERSION AND LOAD 
229 038F 48 CONVT: PHA 
230 0390 4A LSR A 
231 0391 4A LSR A 
232 0392 4A LSR A 
233 0393 4A LSR A 

,) 
234 0394 20 9A 03 JSR CONV 
23S 0397 68 PLA 

5-23 



( 

236 0398 29 OF AND #OF 
237 039A 18 CONV: CLC ;CLEAR CARRY FLAG 
238 039B 69 30 ADC #30 
239 039D C9 3A CMP #3A 
240 039F 90 02 BCC CONVl 
241 03Al 69 06 ADC #6 
242 03A3 9D 94 01 CONVI: STA PBUF,X 
243 03A6 E8 INX 
244 03A7 60 RTS 
245 0001 .END 

( 

(_, 

5-24 



0 

.MAIN. X6500 Vl.09 16-MAY-84 
SYMBOL TABLE 

ACR • AOOB DDRB • A002 DR4 0343 OUTDOT 02A6 PRl 020C 
COLO • F2El DEBDEL 02CF DRS 0354 PACK • EA84 RMAR 0264 
COLl • F321 DEl • EC18 DR6 0365 PBPTR 0193 RMl 0269 
COL2 • F361 DRA • AOOl EQFL 0191 PBUF 0194 RM2 0273 
COL3 • F3Al DRB • AOOO IFR• AOOD PC - 0032 SAVA 0190 
COL4 • F3El DRI 02D9 LMAR 0213 PCR • AOOC SEMI• 003B 
CONV 039A DRIVER 02FA LMl 0218 PHXY • EB9E STUFF 0368 
CONVT 038F DRil 02DD LM2 0222 PLINE 037A Tl CH• A005 
CONVl 03A3 DRXIT 034D MOTOFF•OOOE PLXY '"' EBAC TlH • A007 
CRFL 0192 DRl 0317 MOTON•OOOC PRINT 0200 TlL = A004 
CRl 0311 DR2 032E ODl 02A8 PRXIT 0255 T2L • A808 
DDRA • A003 DR3 0335 OD2 02BC 

• ABS. 03A8 00 
0000 01 

ERRORS DETECTED: 0 

VIRTUAL MEMORY USED: 288 WORDS ( 2 PAGES) 

0 DYNAMIC MEMORY AVAILABLE FOR 74 PAGES 
,DYl:TST65•DYl:TST65 

5-25 



() 

() 

(_
' ·, 

, I 

/~ 


