
TUllllO
TECHNIX

SEE
INSIDE

FOR
SPECIAL

OFFER

THE BORLAND LANGUAGE JOURNAL • SEPTEMBER/OCTOBER 1988 • VOLUME ONE NUMBER SIX • $10.00

VM '311..LY3S

6SM "ON JJ lll~3d

GIVd
3'.:JV.lSOd YO
31.~)(1011

BUG HUNTING,
BORLAND STYLE

Integrated and
standalone
symbolic debugging

Turbo Pascal 5.0
and Turbo C 2.0

Introducing
Turbo Assembler

Definite clause
grammars in Turbo
Prolog

I
TURBO TECHNIX
The Borland Language Journal
September/October 1988
Volume 1 Number 6

r:.
Borland's new Turbo Assembler

FEATURES

TURBO PASCAL

12 Turbo Pascal 5.0: I Can See!
Jeff Duntemann

27 A Directory Search Engine
in Turbo Pascal
Neil Rubenking

38 The Return of Overlays
Bruce F. Webster

52
Turbo Debugger arrives to provide
multiple windows into your largest
and most difficult programming proj
ects. Advanced features such as 80386
virtual-86 partitions separate debugger
and debuggee to allow you to have
your full 640K of DOS memory-
and debug in it, too.

TURBOC

48 Bug Hunting, Borland Style
Jeff Duntemann

52 Turbo Debugger:
The View from Within
Michael Abrash

62 Turbo C 2.0: The Thrill
of the Hunt
Kent Porter

67 Floating Point:
The Second Wave
Roger Schlafly

74 A Directory Search Engine
in Turbo C
Jake Richter

TURBO PROLOG

80 Definite Clause Grammars
in Turbo Prolog
Barbara Clinger, Ph.D.

90 State Space
IJr. Robert Crawford

95 Taking to the Screen
Gaylim Wood

cleans up MASM's haphazard syntax
and command set, without sacrificing
compatibility with existing MASM
source code files.

12
Seeing a bug happen is by far the
greater part of fixing it. Turbo Pascal
5.0's Integrated Debugger lets you run
your program one step at a time and
inspect your data between each step.
Tum the lights on in your Pascal code
and watch those critters run!

TURBO BASIC

104 The Turbo Basic/ Assembler
Connection
David A Williams

110 Command Line Parameters
in Turbo Basic
Duke Kamstra

113 Getting In the LOOP
Tom Wrona

PROFESSIONAL TOOLS

120 Turbo Assembler: Civilizing
Machine Language
Tom Swan

126 Parsing PAL Strings
With MATCH
Bill Cusano

129 Capturing Directories
With Sprint
Bruce F. Webster

TURBO TECHNIX makes reasonable effons to assure the accuracy of articles and information published in the magazine. TURBO TECHNIX assumes no
responsibilicy, however, for damages due to errors or omissions, and specifically disclaims any implied warranty of merchant.ability or fitness for a particular
purpose. The liability, if any, of Borland, TURBO TECHNIX, or any of the conuibuting authors of TURBO TECHNIX, for damages relating to any error or
omission shall be limited to the price of a one-year subscription to the magazine and shall in no event include incidental, special, or consequential dam
ages of any kind, even if Borland or a contributing author has been advised of the likelihood of such damages occurring.

Trademarks: Turbo Pascal, Turbo Basic, Turbo C, Turbo Prowg, Turbo Assembler, Turbo Debugger, Turbo Toolbox, Turbo Tutor, Turbo Game Works, Turbo Lightning,
Lighining Word Wizard, SideKick, SuperKey, Eureka, Reflex, Quattro, Sprint, Paradox, and Borland are trademarks or registered trademarks of Borland International,
Inc. or its subsidiaries.

2 TURBO TECHNIX September/ October 1988

80
The first steps toward natural lan
guage comprehension involve the
analysis of a language's syntax-a
task Turbo Prolog is uniquely suited
to perform.

COLUMNS

4 BEGIN: The Zen Factor
Jeff Duntemann

136 Binary Engineering: Design
ing Data Structures, Part II
Bruce F. Webster

140 Language Connections:
Turbo Prolog 2.0 Meets
Turbo Assembler
Phillip Seyer

144 Tales from the Runtime:
Reading the Command Line
Bill Catchings and
Mark L. Van Name

160 Philippe's Turbo Talk

DEPARTMENTS

6 Dialog

150 Critique: Turbo Asynch Plus
Marty Franz

Critique: Turbo Professional
4.0 for Turbo Pascal
Rick Ryall

Critique: 386MAX
Jeff Duntemann

154 BookCase: C Programmer's
Guide to Serial Communications
Reviewed by Reid Collins

BookCase: Fi/,e Formats for
Popular PC Software
and More Fi/,e Formats for
Popular PC Software
Reviewed by Marty Franz

157 Turbo Resources

Cover: Th£ essence of debugging is simply
being able to see your code and data in
action. Far too many bugs hide behind
unwarranted assumptions and false inf er
ences, when one solid look into the whites
of their eyes would expose them for what
they are. Borland's new tools for debug
ging, the standalone Turbo Debugger and
the Integrated Debuggers built into the
latest releases of Turbo Pascal and Turbo
C, give you a close-up look inside the
closed universe of your latest program.
Cover photo by Bradley Ream.

TURBO TECHNIX

Publisher
John Hemsath

Editor in Chief
Jeff Duntemann

EDITORIAL

Managing Editor
Michael Tighe

Technical Editor
Michael A. Floyd

Copy Editor
Pamela Dillehay

Technical Consultants
Brad Silverberg
David Intersimone
Roger Schlafly
Gary Whizin
Pat Williams
Chris Williams
Duke Kamstra

DESIGN & PRODUCTION

Art Director
Karen Lucas

Art Assistant
Carol Angelo

Typesetting Manager
Walter Stauss

Typesetter/ System Supervisor
Jeffrey Schwertley

Typesetters
Ron Foster
Jeanie Maceri

Typesetting Traffic
Charlene McCormick

Photographer
Bradley Ream

ADMINISTRATION

Department Coordinator
Annette Fullerton

Purchasing
Brad Asmus

ADVERTISING
INFORMATION
(408) 438-9321

TURBO TECHNIX (ISSN-0893-827X) is published bimonthly by Borland Communications, a division of Borland International, Inc., 1800 Green Hills Road,
P.O. Box 660001 , Scotts Valley, CA 95066-0001. TURBO TECHNIX is a trademark of Borland International, Inc. Entire contents Copyright Ql988 Borland
International, Inc. All rights reserved. No pan of this publication may be reprinted or othe1wise reproduced without permission from the publisher. For a
statement of our permission policy for use of listings appearing in the magazine, send a self-addressed stamped envelope to Permissions, TURBO TECH
NIX, 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA 95066-0001. Editorial and business offices: TURBO TECHNIX, 1800 Green Hills Road, P.O.
Box 660001, Scous Valley, CA 95066-0001. Subscription rate is $49.95 per year; rate in Canada $60.00 per year, payable in U.S. funds. Single copy price is
$10.00. For subscription service write to Subscriber Services, TURBO TECHNIX, 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA 95066-0001.

September/ October 1988 TURBO TECHNIX 3

BEGIN
The zen factor

Jeff Duntemann

ichael Abrash has
coined a new verb to
describe what he does
for a living: He "zens"

86-family machine code. Yes, he
programs in assembler, but his
methods differ so markedly from
standard practice that he feels a
new word is called for.

How one "zens" is hard to de
scribe-though I'll try-but I'm
convinced that it works, having
seen an EGA-based graphics win
dowing interface that Michael
wrote where a moving window
doesn't "blank out" but retains its
contents, and moves smoothly
from top to bottom, without flicker
or any annoying refresh "swoop."

And oh, right, I forgot to tell
you: This was on a 4.77-mHz 8088
machine.

The aim of zen coding is to pro
duce the fastest, most compact ma
chine code possible. Following are
the principles Michael uses to
achieve this aim.

Love the machine. I was tempted
to say, "Know the machine," but
knowledge, while essential, isn't
the germ of the principle. Too of
ten we strive to know our hard
ware like we'd know an enemy,
just in order to avoid getting
trounced. The aim of zen coding
is to wrap the program closely
around the hardware so that every
element of the hardware works for
us, not against us. First of all, this
means grabbing every available
reference on PC hardware and
digesting it down to the status bit
level and even further whenever
you can. But more than that, it
means looking at the complexity
of the hardware as an opportunity

to fine-tune, and not as a tar pit to
die in.

Once you know the hardware,
use it. Write to the bare metal at
every opportunity. Portability goes
out the window because you're
writing for this machine-next
year you can begin the process
again for some other machine.
Nothing says this kind of develop
ment comes cheap.

Above all, love it. If you can't
quite shake the notion that this is
somehow playing dirty, you're not
cut out for zen coding.

Assume nothing. Optimizing by
dead reckoning-that is, by writ
ing a cycle count next to each in
struction, adding them up, and
then seeing what you can pull
out-doesn't work. It doesn't work
because instruction cycles aren't
the whole story. Every machine
has "cycle-stealers," including
memory wait states, video wait
states, and DMA refresh delays,
that skew the total in ways that are
nearly impossible to predict on
paper. Furthermore, once you fac
tor in the nondeterministic effects
of the filling and purging of the
prefetch queue, the paper chase
is simply over. You cannot know
how time-efficient a given solution
will be unless you go in and mea
sure the solution in action. Forget
how fast a snippet of code must
be-go in and see how fast it is.

Look at all possible solutions.
Some folks build mini-interpret
ers. Others optimize by giving

4 TURBO TECHNIX September/ October 1988

over subroutine calls and putting
repeated instances of the same
routine in one long sequence. Still
others will do anything to keep
values floating in registers. The
art of zen coding requires the
coder to keep an open mind and
have a feel for which solution is
right for the problem at hand.
Whether we realize it or not, we
often recast a problem in familiar
terms to conform to our familiar
solutions. Keeping things in reg
isters may help-but eliminating
subroutine calls by keeping code
inline may help more. If you don't
try, you can't know.

None of this is easy. Nor is the
above summary the final word:
Michael emphasizes the impor
tance of right-brain thinking to tie
it all together, and that may be the
toughest part of all. Still, I've per
suaded him to take a shot at de
scribing his methods in a book,
and with some luck, The 'Zen of As
sembler will appear next year.

One thing is clear: There
comes a point when conventional
methods in conventional lan
guages fail us. At that point the
only alternative is assembly lan
guage, where the programmer be
comes the code generator and the
rules get turned on their head.
Zen coding throws away the pre
cepts of breaking down a problem
into independent modules, and
demands that the programmer
embrace the problem as an or
ganic whole in the quest for a uni
fied, optimal solution. Not every
one can do it-but our very com
petitive industry will be very good
to those who can. •

Opinio ns expressed in this column are those
of the editor and do not necessarily reflect
the views of Borland International, Inc.

Blaise Passes
the Screen Test.

POWER SCREE
Best performance in a supporting role.
Because your time is more valuable then ever, Blaise Computing presents POWER SCREEN:"
the new high performance screen management system designed to support your own creative
programming efforts.

POWER SCREEN provides reliable, lightning fast data entry screens and
menus to create your own sophisticated window oriented applications.
It allows you to design screens exactly as you want them to appear in your
final application. Screens are efficiently stored in a file so they can be
used by your application or later modified without program code changes.
PAINT, the screen painter included with POWER SCREEN, has the
appearance and performance of the popular integrated programming
language environments. It lets you design and modify screens, and
define and format fields. All VGA, EGA and monochrome text modes,
attributes and colors are supported.
The POWER SCREEN Runtime Library allows you to construct
screens in memory, display screens in windows and read and write
data to fields within the screen. All screens and menus are window
oriented, so they can be stacked , removed or moved on the physical
screen. You can access screens field-by-field or a whole screen at a
time. POWER SCREEN takes care of field input editing, data and
range checking, and data formatting.

POWER SCREEN out-performs the runners-up with a dazzling
display of capabilities FEATURING:
+Virtual screens. Screens that can be larger than the physical
screen, with just a portion of the screen displayed within a window.
Write to any screen any time , even if it is not visible. Automatic
physical screen update.
+Context sensitive help. Create help text on a field-by-field basis
or for the entire screen with a window-oriented help facility.
+Intervention routines. Install them so your application gains
control when a field is entered , exited and between keystrokes.
+Range checking. Supported for all standard data types.
+Unlimited screens. Subject only to the amount of available
memory.
+Definable keys. Fully configurable field editing keys.

POWER SCREEN includes PAINT, the POWER SCREEN
Runtime Library, as well as other utilities for creating help
files and maintaining and documenting your screen data

base files. Language interfaces with source code are included
for C, Turbo Pascal 4.0 and QuickBASIC.

The package is accompanied by a fully-indexed comprehensive User Reference
describing POWER SCREEN procedures and utilities. Complete example programs
are supplied on the diskettes.

POWER SCREEN requires an IBM PC, XT, AT, PS/2 or close compatible and DOS 2.00
or later. To write POWER SCREEN applications , you need one of the supported com

pilers: Turbo C , Microsoft C (4.00 or later) , QuickC , Turbo Pascal (4.0 or later),
QuickBASIC (4.0 or later). Interfaces for all supported compilers are included
with POWER SCREEN.

Blaise Computing: We've passed the screen test so you
won't have to.

Complete price: $129.

Blaise Computing has a full line of support products for both
Pascal and C. Call today for your free information packet.

~~~~~~~~~~~-
BLAISE COMPUTING INC. 
2560 Ninth Street. Suite 316 Berkeley. CA 94710 (415) 540-5441 

Turbo POWER TOOLS!!~. 
Screen , window. and menu ma 
including EGA and VGA support; 
memory control; ISRs; scheduled int 
tion code; and much more. For Turbo P86Cal. 

Turbo ASYNCH PLUS 
Interrupt driven support for up to four COM 
ports. 1/0 buffers up to 64K; XON/XOFF; 
hardware handshaking; up to 19.2K baud; 
modem control and XMODEM file transfer. 
For Tu'rbo Pascal. 

CTOOLSPLUS $129.00 
Windows; menus; ISRs; interven.tion code; 
screen handling and EGA 43-line text mode 
support; direct screen access; DOS file 
hand ling and more. Specifically designed for 
Microsoft C 5.0 and QuickC. 

C ASYNCH MANAGER $175.00 
Full featured interrupt driven support for up 
to four COM ports. 1/0 buffers up to 64K; 
XON/ XOFF; hardware handshaking; up to 
19.2K baud; modem control and XMODEM 
file transfer; For Microsoft C and Turbo C. 

Turbo C TOOLS $129.00 
Full spectrum of general service utility func
tions including: windows; menus; memory 
resident applications; interrupt service rou· 
tines; intervention code; and direct video 
access for fast screen handling. For Turbo C. 

KeyPilot $49.95 
"Super-batch" program. Create batch files 
which can invoke programs and provide input 
to them; run any program unauended; create 
demonstration programs; analyze keyboard 
usage. 

EXEC $95.00 
Program chaining executive. Chain one pro
gram from another in different languages; 
specify common data areas; less than 2K of 
overhead. 

RUNOFF $49.95 
Text formauer for all programmers. Written 
in Turbo Pascal: flexible printer control; user
defined variables; index generation; and a 
general macro facility. 

TO ORDER <;ALL TOLL FREE 
800-333-8087 



DIALOG 
Slander not Aristotle; remember the 
RESTART; and how tightly is Brure 
coupled to his parachute? 

Are we glowing in the dark? Or is 
the smoke pouring out of your 
ears? Errata or accolade? Bug or 
feature? Let us and your fellow 
readers know what's on your 
mind, and our editorial staff and 
authors will respond as best they 
can. Address letters to: 

DIALOG 
TURBO TECHNIX Magazine 

1800 Green Hills Road 
Scotts Valley, CA 95066-0001 

Letters become the property of 
TURBO TECHNIX and cannot 
be returned. We cannot answer all 
/,etters individually, but we will try 
to print a representative sampling 
of mail received. 

NOT PLATONIC 
I want to correct an historical er
ror on page 67 of your March / 
April, 1988 issue. Keith Weiskamp 
states that Plato is the "Father of 
Logic." Nonsense. Plato had the 
first comprehensive organized 
philosophic system, but logic was 
not one of its attributes. It was Pla
to's student, Aristotle, who was the 
true founder of logic (via his Prior 
and Posterior Analytics for the 
most part) . This is well known and 
easily verifiable by reading Plato 
versus Aristotle, whose philoso
phies are very much opposed for 
the most part. Plato touted the 
philosophy of "two worlds"; Aris
totle rejected this. Plato believed 
that all knowledge is innate, exist
ing in people at birth, which is 

hardly conducive to logic or anr 
logical theory of knowledge. Aris
totle completely rejected this as 
well, stating that all babies are 
born "tabula rasa," or like a blank 
slate, and acquire all knowledge 
after birth. Plato uses all sorts of 
illogical premises and arguments. 
Plato was basically a mystic and 
the founder of the idea of totali
tarianism, via The Republic. So 
don't ascribe logic, of all things, to 
Plato. Give credit where credit is 
due-to Aristotle. 

-Philip Oliver 
Indianapolis, IN 

We sincerely hope that the old chap 
will forgive us. 

-Jeff Duntemann 

SILICON NOSTALGIA 
First let me thank you for what is 
becoming a very excellent publi
cation. There is little in the micro
computer field today (other than 
the continuing quality of Byte) that 
offers genuine technical content 
instead of business chatter. 

However, at the risk of being 
accused of nit-picking, I must take 
issue with Jeff Duntemann's state
ment ("Exploring the Interrupt 
Vector Table," May/June, 1988) 
that "Until the development of the 
8086 and 8088, all interrupts were 
hardware interrupts." 

Evidently Mr. Duntemann has 
never programmed a Z80 or 8080 
chip. Both of these older proces
sors have a software interrupt ca
pability very similar to that of the 
8086/ 88 family, although they 
only have eight vectors in cont~ast 
to the 255 available on later chips. 
I will not make any statements 
crediting the 8080 as the first mi-

6 TURBO TECHNIX September/ October 1988 

croprocessor to offer this feature, 
since it may have existed even 
earlier. 

MS-DOS is not the first operat
ing system to take advantage of 
software interrupts, eith er. T hey 
were used at least as early as the 
CP/ M-80 operating system, and 
the LDOS/ LS-DOS operating sys
tems used on the Z80 made exten
sive use of software interrupts 
long before MS-DOS was intro
duced. 

Many writers today fall into the 
common trap of assuming that 
IBM, Intel, and Microsoft were in
novators who virtually invented 
microcomputers and operating 
systems. Th is simply isn't the case. 
They all adapted concepts and 
hardware that were already devel
oped and in use at that time. 

-Gary Lee Philipps 
Chicago, IL 

Nay, nay; I was there. Only just last 
week Mr. Byte snuck into the garage 
and lifted his leg on my cobwebbed 
IMSAI 8080 SI 00 box, which I can't 
sell or even give away. What passes 
for a software interrupt on the 8080 
is the mysterious RESTART instruc
tion, which I never used because none 
of my books etier bothered to explain 
what it was or how it worked. RE-
ST ART I was roughly equivaknt to 
an 8088 INT 1, except that RE
START 1 transferred control to a 
]MP instruction in a calculated loca
tion in low memory, rather than to an 
address contained in a vector table. 
8080 hardware interrupts worked in 
much the same way, so while it's true 

continued on page 8 



POWER SCREEN 
Multiple Screens •• . 

give you the big picture. 
--~~--
BLAISE COMPUTING INC. 

Presenting POWER SCREEN, a new 
high performance screen manage
ment system by Blaise Computing 
which provides everything you 
need to create lightning-fast win
dow oriented applications. 
Paint the screens exactly as you want 
them to appear in your final applica
tion. POWER SCREEN allows you to 
construct screens 

POWER SCREEN supports a variety of 
languages including Micra;oft C 5.0 
and QuickC, Turbo C, Turbo Pascal 4.0, 
and QuickBASIC. 

POWER SCREEN includes The Norton 
Guides Online Instant Access Program 
ready to use with our database of on
line help information. 

in memory, dis- .---------------------------------------
-Virtual screens! 
-Context sensitive help! 
-Total control over every keystroke during data entry. 
-Write to any screen any time, even if it is not visible. 
-Automatic physical screen update. 
-Range checking is supported for all standard data types. 
-Number of screens is limited only by the amount of 
available memory. 

-Detects which display adapter and monitor are used. 
-Fully configurable field editing keys. 
-Well documented source code. 
-No royalty payments. 

play screens in 
windows and 
read and write 
data to fields 
within the screen. 
All screens and 
menus are win
dow oriented, so 
they can be stack
ed, removed or 
moved about on 
the physical 
screen. You can 

.._ ____________________________________ __ 
access screens 
field-by-field, or a whole screen at a 
time. POWER SCREEN takes care of 
field input editing, data and range 
checking, and formatting of the data. 

POWER SCREEN has the appearance 
and performance of the popular in
tegiated programming language en
vironments. It helps you to design and 
modify screens, define fields and how 
they are formatted, specify range 
values and field output masks. All at
tnbutes and colors are supported in
cluding all VGA, EGA and 
monochrome text modes. 

More than just a axle generatoi; screen5 

are stored in a Rl:mtime Library that you 
can later access and modify without 
program axle changes. 

This package is accompanied by a fully
i n de x e d comprehensive User 
Reference manual descnbing POWER 
SCREEN procedures and utilities. 
Complete example progiams are sup
plied as well as utilities for creating help 
files and maintaining and document
ing your screen database files. 

POWER SCREEN requires an IBM PC, 
XT, AT, PS/ 2 or close companble and 
DOS 2.00 or latei: To write POWER 
SCREEN applications, you need one of 
the supported compilers: Turbo C, 
Microsoft C (4.00 or later), QuickC, 
Turbo PdScal (4.0orlater), QuickBASIC 
(4.0 or later). Interfaces for all sup
ported compilers are included with 
POWER SCREEN. 



DIALOG 

continued from page 6 

that RESTART acted like a software 
interrupt, nobody ever called it a soft
ware interrupt, and very few people 
ever made the connection. 

Flipping through the yellowing 
pages of 1978-vintage books on the 
8080 CPU and SJ 00 bus last night 
(I wire-wrapped my first machine in 
1976 and am by no means a newcom
er to this business) made me appreciate 
how much more we know about our 
hardware and our operating systems 
than we did ten years ago. The 8080 
and CPIM-80 were much more potent 
than we ever appreciated, because back 
then we were working almost blind. 
As I said in my January/ February ed
itorial, much of the power of the 8088 
and DOS stems from the depth of our 
understanding of them. Had I known 
what RESTART was in 1979, 1 
would have used it, and I would have 
explained to others how to use it, but 
the 8080 and CPIM vanished before 
the industry's understanding of them 
achieved the critical mass that the 
8088 and DOS enjoy today. 

-Jeff Duntemann 

MAKING TIME 
I read Mr. Ron Sires' feature "A 
Memory Resident Clock Utility," 
May/June, 1988, with great inter
est, since I write numerous 
memory-resident programs. Mr. 
Sires described a manual proce
dure for determining the size of 
a program. He did a compile with 
the map option set in order to de
termine the size of the 
CLOCKEXE program from the 
TLINK map. The value 1298H for 
_BSSEND was rounded up to 
1300H and then divided by 16 giv
ing the value 130H for the pro
gram size. This value was then 
used in his main() function in the 
keep(O, Ox0130) statement. This 
manual procedure could be re
placed with an automatic proce
dure by changing the original 
KEEP statement to the following: 

keepCO, 
((unsigned int)sbrk(0)+15)/16); 

Thus, if the size of the program 
changes, the second parameter to 
the keep function will automati
cally change to compensate. Note 
that the return value from the 
sbrk function is cast to an un
siggned int so that values greater 

than 7FFFH will be processed cor
rectly. The sbrk function is de
scribed in detail in the Turbo C 
R.eference Guide, page 44. 

-Alan Cohn 
Irvine, CA 

Neat hack, Alan. Thanks; I'd been 
looking for a way to do that. I've 
tested it in CLOCK. C and it works 
fine, and is a good general way to do 
the program-sizing job I described how 
to do manually. The only caution is 
that I've only tested it under the Tiny 
code model, and sbrk really doesn't 
make sense under any but the Tiny 
and Small code models, since it de
pends on there being only a single 
data segment in th£ program. 

-Ron Sires 

MAC SCENE 
Even though I do all of my pro
gramming on an Apple Mac+, I 
find all of the articles in TURBO 
TECHNIX help me to write better 
code. The best features of the 
Borland programming languages 
are that they are complete, up to 
date, similar in format and are 
thoroughly supported by good tu
torials specific to the languages. 
Tutorials like the Borland/ 
Osborne-McGraw Hill books are 
nonexistent for the Macintosh, 
and if there is anything that a be
ginner needs for the Macintosh, 
it's a good tutorial specific to the 
language. I do have Borland's 
Turbo Pascal Tutor for the Macin
tosh and it is complete but lacks 
the short programming examples 
that the Borland/ Osborne
McGraw Hill books use to help a 
programmer get started. (I realize 
that in a book as big and complex 
as the Turbo Pascal Tutor this is 
not possible.) 

I would like to see a Borland 
Turbo C and Turbo Basic, both 
supported by Borland/ Osborne
McGraw Hill tutorials, for the 
Macintosh. Following that, a 
TURBO TECHNIX for the Mac 
would be great. Is there any pos
sibility of that in the near future? 

-Robert Orthman 
Boulder, CO 

8 TURBO TECHNIX September/ October 1988 

Well, gee, given endless funds we can 
do almost anything-but software 
R & D and magazine publishing are 
two of the most expensive endeavors 
I can think of Borland's commitment 
to Macintosh developer tools is secure, 
and we can't be much more specific 
than that. As for a TURBO TECH
NIX for the Mac-that might be a 
long, long wait. In the meantime, you 
can't do much better than Mac Tutor, 
The Macintosh ProgrammingJournal 
(P.O. Box 400, Placentia, CA 
92670). They publish monthly at 
$30/year, with 86 pages per issue. 
Their motto is ''No fluff, " and they 
mean it, with the (minor) downside 
that they don't publish what we would 
consider Square One material. 

As for tutorial books, help is com
ing. The venerable Scott, Foresman & 
Company has concluded an agreement 
with Borland very similar to the one 
between Borland and Osborne
McGraw Hill, to copublish a series of 
books on Borland's Macintosh prod
ucts. All Mac products, including the 
business products, will be covered, 
and the books will begin to appear 
later this year. Watch for Complete 
Macintosh Turbo Pascal by Joseph 
Kelly as the first programming tuto
rial in the series. There will be more. 
If there were another two or three of 
me, I'd write one myself. 

-Jeff Duntemann 

AITER YOU, BRUCE 
Bruce Webster is an interesting 
man; I had the pleasure of jump
ing out of an airplane with him 
and a bunch of other distin
guished programmers on a fine 
sunny day at an altitude of about 
3000 feet. Bruce, of course, had 
impeccable taste. He wore an 
olive-drab parachute and used 
structured programming method
ology to enter and leave the air
plane: One way in, one way out. 

I eajoyed his "How Loosely Are 
You Coupled?" article in the May I 
June, 1988 issue. It coincides with 
my recent learning about the 
topic, which has been around for 
about ten years. Coupling (and 
the associated topic, "cohesion") 
will be, I predict, the next pro
gramming rage. 

continued on page JO 



in'de-pen'dent (in'di-pen'dent) 
adj. 1. not influenced by others in opinion, 
conduct, etc. 2. not affiliated; sovereign in 
authority. -n. (in'de-pen-dence) someone 
or something independent. 
FACT: 
Many major dealers specializing in programming 
tools for personal computers are legal affiliates of 
companies who also publish development software. 

FACT: 
Programmer's Connection is not a publisher and is 
not affiliated to any company 1hat has ever been in 
1he business of publishing software. 
When you come to Programmer's Connection, 
you'll find our knowledgeable, non-com
misioned salespeople and technical consult
ants will give you an unbiased look at the 
products we carry. 

List Ours 

386 products 
386 AMS/386 LINK by Ptlar UJp Software ........... New 495 389 
386 DEBUGGER by PtlarUJp Software ... . . . ... New 195 145 
Fox BASE +/386 by Fox Sol!ware .. .. New 595 399 
Microsoft Windows 386 by M1crosoff ... 195 129 
NOP C-386 byM1croway .. ............ New 595 529 
NOP FORTRAN-386 byM1croway .... . .. .... New 595 529 
Paradox 3B6 by Ansa/Borfand .. . ... New 895 639 

blaise products 
ASYNCH MANAGER Supports TurtJo C .. 175 135 
CTOOLSPLUS/5.0. 129 99 
Turbo ASYNCH PLUS/4.0. . 129 99 
Turbo C TOOLS ... 129 99 
Turbo POWER SCREEN . . . ............ New 129 99 
Turbo POWER TOOLS PLUS/4.0 . 129 99 

SoftCode 
by Software Bottling 

List $195 Ours $179 
SoftCode is a screen editor and program generator which makes 
use of language templates. You simply design a screen with the 
editor and SoftCode generates the code using templates You 
can use Software Bottling 's prewritten templates in C, BASIC. 
dBASE, and Pascal or write your own. The templates generate 
full data entry routines with file checking, list checking , range 
checking, calculated fields and more. 

borland products 
EUREKA Equat1onSolver .... 167 115 
Paradox 2.0byAnsa/Borfand ... 725 525 
Paradox 386 by Ansa/Borfand ... 895 639 
Paradox Network Pack byAnsa/Bomnd... 995 725 
Quattro: The Professional Spreadsheet ... 247 179 
Reflex: The Analyst.. 150 105 
Sidekick Plus... . 200 125 
Turbo Basic Compiler.... 100 68 
Turbo Basic Database Toolbox.. 100 68 
Turbo Basic Editor Toolbox... .. 100 68 
Turbo Basic Telecom Toolbox . 100 68 
Turbo C Compiler.. too 68 
Turbo Lightning .. 100 68 
Turbo Lightning and Lightning Word Wizard . . 150 105 
Turbo Pascal .. 100 68 
Turbo Pascal Database Toolbox .. 1 oo 68 
Turbo Pascal Developer's Toolkit .. 395 285 
Turbo Pascal Editor Toolbox... 100 68 
Turbo Pascal Gameworks Toolbox... 100 6B 
Turbo Pascal Graphix Toolbox.. . 100 68 
Turbo Pascal Numerical Methods Toolbox.. . 100 68 
Turbo Pascal Tutor .·.. 70 49 
Turbo Prolog Compiler ............. .......... New Version 150 115 
Turbo Prolog Toolbox ..... 100 6B 

Please join us in our Declaration of Indepen
dence. Call Programmer's Connection today 
and be sure to ask for your FREE subscription 
to the Connection, our 120 page comprehen
sive buyer's guide. It contains descriptions for 
over 750 products by more than 250 manufac
turers, and informative articles by leaders in 
the programming industry. 

CALL for Products Not Listed Here 

USA ........ 800-336-1166 
Canada ............................. .. ... ........ 800-225-1166 
Ohio & Alaska (Collect) .. .............. .. 216-494-3781 
International ........ .......................... 216-494-3781 
FAX ............................................... 216-494-5260 
TELEX .............................................. 9102406879 

Business Hours: 8·30 AM to 8:00 PM EST Monday tllrough Friday 
Prices, Availability, Terms and Conditions are subject to change. 

©Copyright 1988 Programmer's Connection Incorporated 

database management 
Clipper by Nantucket... 695 519 
dBASE Ill Plus by Ashton-Tate 695 439 
FoxBASE+ byFoxSoffware . 395 249 
FoxBASE +/3B6byFoxSoffware .. 595 399 
FrontRunner byAshton-Tate ........................... New 195 175 
Genifer byBytet 395 249 
HI-SCREEN XL bySOnwAY.. 149 129 
Magic PC by Aker . 199 179 
R:BASE for DOS byMicrorim . 725 539 

microsofl products 
Microsoft C Compiler 5 w/CodeView ... 450 299 
Microsoft COBOL Compiler w/Tools ....... New Version 900 659 
Microsoft FORTRAN Optimimg Comp .. 450 299 
Microsoft Macro Assembler.. . .. 150 105 
Microsoft Mouse All Varieties... CALL CALL 
Microsoft OS/2 Programmer's Toolkit .. 350 239 
Microsoft Pascal Compiler ... 300 199 
Microsoft QuickBASIC .. 99 69 
Microsoft QuickC 99 69 
Microsoft Windows .. 99 69 
MicrosoftWindows386... 195 129 
Microsoft Windows Development Kit .. 500 329 
Microsoft Word .. 450 299 
MicrosoftWorks ... 195 129 

Turbo Programmer 
by ASCII 

List $389 Ours $309 
Turbo Programmer/C 
List $499 Ours $399 

Turbo Programmer is an application development system 
designed to quickly and efficiently produce database applica
tions in Turbo Pascal or C. All you do is draw and paint your 
screens and tell Turbo Programmer how you want to retrieve your 
data. With Turbo Programmer you can create entire database 
application programs complete with b-tree indexes. context-sen
sitive help, and automatic programmer documentation. 

nostradamus products 
Instant Assistant .. . 100 89 
Instant Replay Ill .. . 150 129 
Turbo-Plus Supports TurtJo Pascal 4.0 ... 100 89 

peter norton products 
Advanced Norton Utilities .. 150 B9 
Norton Commander ... . 75 55 
Norton Editor ... 75 59 
Norton Guides Speedy /Jmguage . . 100 65 

ForOS/2 .. .. 150 109 
Norton Utilities .... 100 59 

software bottling products 
Flash-up ... 89 79 
Flash-up Developer's Toolbox... ... 49 47 

ORDERING INFORMATION 
FREE SHIPPING. Orders within the USA (lower 48 
states only) are shipped FREE via UPS Ground . Call 
for APO, FPO, PAL, and express shipping rates . 
NO CREDIT CARD CHARGE. VISA , MasterCard 
and Discover Card are accepted at no extra cost. 
Your card is charged when your order is shipped. 
Mail orders please include expiration date and 
authorized signature. 
NO COO OR PO FEE. COOs and Purchase Orders 
are accepted at no extra cost. No personal checks 
are accepted on COD orders. POs with net 30-day 
terms (with initial minimum order of $100) are 
avai lable to quali fied US accounts only. 
NO SALES TAX. Orders outside of Ohio are not 
charged sales tax . Ohio customers please add 5% 
Ohio tax or provide proof of tax-exemption. 
30-0AY GUARANTEE. Most of our products come 
with a 30-day documentation evaluation period or 
a 30-day return guarantee. Please note that some 
manufacturers restrict us from offering guarantees 
on their products. Cal l for more information. 
SOUND ADVICE. Our knowledgeable technical 
staff can answer technical questions , assist in 
comparing products and send you detailed product 
information tailored to your needs. 
INTERNATIONAL ORDERS. Shipping charges for 
International and Canadian orders are based on 
product weight. The standard rates used are 
published in the Fall 1988 issue of our Buyer's 
Guide. If you do not have a copy, please call or 
write for the exact cost. All payments must be 
made with US fun ds drawn on a US bank. Please 
include your telephone number when ordering by 
mail. Due to government regulations, we cannot 
ship to all countries. 
MAIL ORDERS. Please include your telephone .. --• 
number and complete street address on all mai l or-
ders. Be sure to specify computer, operating sys-
tem, diskette size, and any applicable compiler or 
hardware interface(s). Send mail orders to: 

Programmer 's Connection 
Order Processing Department 

7249 Whipple Ave NW 
North Canton , OH 44720 

Screen Sculptor Sllpports TurtJo Pas cat ... 125 109 
SoftCode SupportsBMandl.anguages .. ............. New 195 179 
Speed Screen .. 35 34 

turbo pascal utilities 
Btrieve /SAM File Mgr by Novell ... 
Overlay Manager by TurtJofbwer Soffware .... 
TOEBUG 4.0 by TurtJoPower Software .. 
Turbo Analyst by TurtJofbwer Soffware .. 
Turbo Professional 4.0 TurtJofbwer ... . 
Turbo Programmer by ASCII .... . 
TurboHALO by IMS/, Specify TurtJo C or Pascal ... 

other products 

245 184 
45 43 
45 43 
75 69 
99 89 

389 309 
95 75 

Brief Dy Solution Systems .. 195 CALL 
CBTREE byfeacock Systems ... 159 129 
Dan Bricklin 's Demo II by Soffware Garden... 195 179 
Epsilon EMACS-type Text Eddorbywgaru ' 195 149 
OPT-Tech Sort byOpt-TechDataProc... 149 129 
PolyAwk byfblytron ..... ................................ New 99 95 
PolyShell by fblytron 99 95 
ri sC Assembly Language by IMS/ ... 80 65 
Source Print by fbwer11ne Soffware .. 97 79 
Tree Diagrammer by fbwer1111e Software .. 77 65 
Turbo Programmer/CbyASCll ......................... New 499 399 

Established 1984 



DIALOG 
continued from page 8 

Coupling and cohesion were 
brought out of the closet by E. 
Yourdon and L. Constantine in 
their 1979 Prentice-Hall book 
Structured Design. A lot of pro-' 
grammers are just now talking 
about it in the magazines. There 
is an excellent summary of it in 
P J. Plauger's "Programming on 
Purpose" column in the January, 
1988 issue of Computer Language. 
(See also an interesting related let
ter to the editor, entitled "The 
Zen of Plauger," in the April, 1988 
issue.) 

There were a few things I 
wanted to touch on in Webster's 
article. First, there were two dis
turbing points mentioned. Dealing 
with global variables by passing 
them as parameters to a module 
does not reduce coupling. Global 
variables are global variables. No 
matter how you access them, the 
trouble remains the same: You're 
never quite sure how other mod
ules affect them, and you're never 
sure if what you're doing to them 
adversely affects some other 
module. 

The other point is that the sort 
routine of Listing 3 is not quite 
"completely" decoupled. The com
plexity of its interface requires the 
programmer to worry about how 
the routine does its job: It needs 
to know the number of bytes in 
each array element, as well as the 
number of elements. In addition 
coupling is raised with the impli~it 
assumptions that only numbers 
will be sorted, and that numbers 
will be in the array. A completely 
decoupled sort routine procedure 
header would look something like 
this: 
PROCEDURE Sort(VAR AnyStructure); 

I don't think Pascal can handle 
such a declaration, but from what 
I've read, C can do it with func
tion pointers. 

Thanks, Bruce, for some 
thought-provoking reading. I'm 
looking forward to the next in
stallment. 

-Bill Parker 
Culver City, CA 

I take issue with Bill's assertion that 
passing global variabl,es as param
eters, instead of modifying them di
rectly (based on scope), doesn't reduce 
coupling. One measure of coupling is 
the ability (or la,ck thereof) to pick up 
a routine from one program and drop 
it into another without modification; 
another is the ability to use the routine 
with various sets of parameters. Direct 
use of globals increases coupling in 
both of those respects. 

As for the sort routine-there's a 
distinction between coupling and 
generality (though the two are re
z:i,ted ). A sort routine that I can drop 
znto any program and use without 
having to add new global definitions 
(constants, types, variabl,es, other rou
tines) is loosely coupl,ed. This doesn't 
mean that it has to handl,e all sorting 
situations; I can have a routine that 
sorts only arrays of integers, and it 
can still be loosely coupl,ed if it meets 
the criteria above. 

Bill's exampl,e of a general sort rou
tine, though, is possibl,e in Turbo 
Pascal, which does allow untyped 
VAR parameters (all versions) and 
procedural parameters (version 5.0, 
though you can kludge them in earlier 
versions). You would need to pass the 
structure, the size of a given el,ement 
in bytes, the total number of el,ements 
in the structure, and a pointer to the 
function that compares any two el,e
ments and returns True if the first is 
l,ess than the second, False otherwise. 

And yes, it's true, I did jump out 
of a plane with Bill and the other 
charter members of the PMS Com
mando Team (and we won't discuss 
having my right boot momentarily en
tangl,ed in my suspension lines after 
the para,chute opened). What "Col
onel" Bill Parker fail,ed to mention is 
that he's the one who proposed the 
jump in the first pla,ce. We all wore 
custom T-shirts stating that this was 
the "1st Annual Idiot Programmers' 
Jump, " which would make Bill ... 
naw, it's too easy. Good to hear from 
you, Colonel. 

-Bruce Webster 

MANDELBROT MANIA 
Let me start off by saying that I 
enjoyed immensely Fred Robin
son's article, "Plotting the Mandel
brot Set With the BGI," in your 
May/June, 1988 issue. I enjoyed 
it not only because I am a Man
delbrot Set fan but also because it 

10 TURBO TECHNIX September/ October 1988 

illustrated very well the use of the 
BGI for making a program device 
independent. 

You may not be aware of it, but 
there are a lot of us out there who 
work with the Mandelbrot Set
some seriously and others like me 
who do it for fun. As a matter of 
fact, we have our own newsletter 
called Amygdala, which has a cir
culation of a few hundred copies 
and comes out about ten times a 
year. 

Amygdala is published by Rollo 
Silver, and costs $15 for ten issues. 
The address is: 

Amygdala 
P.O. Box 219 
San Cristobal, NM 87564 

I look forward to seeing more 
interesting articles in your publi
cation. 

-Hector Santos 
Los Angel,es, CA 

Fred's Mandelbrot Set articl,e gener
ated an astonishing volume of mail 
and CompuServe a,ctivity for some
thing most of us here considered a so
phisticated party game. Fred has re
written and greatly improved his 
Mandelbrot Set generator, and now 
makes it availabl,e as a shareware 
product. Those interested may obtain 
it directly from Fred for $15: 

Fred Robinson 
29766 Everett 
Southfield, MI 48076 

Another TURBO TECHNIX au
thor, Jon Shemitz, offers a very inno
vative Mandelbrot generator that 
plots a "sparse" image-setting only 
every fifth pixel and every fourth scan 
line-very quickly so that you can 
cancel the full plot if the image doesn't 
look interesting enough at first glance. 
The program, which also features 
mouse-based crosshair zooming, may 
be obtained directly from Jon for $25: 

Jon Shemitz 
Emerald City Software 
1805A Felt Street 
Santa Cruz, CA 95062 

Many thanks to Hector for bring
ing Amygdala to the readership's 
attention. • 

-Jeff Duntemann 



Now available in Turbo C,® Microsoft C,® 
JPI Modula 2,® and Logitech Modula 2.® 

Turbo Expert. Now it doesn't 
take a genius to plug into Expert Systems. 
For only $99.95, you can incorporate the power of a full-fledged Expert System into your TURBO PASCAL® programs. Seamlessly. Affordably. 
Finally. Actual Expert Systems, developed for simple use by any Turbo Pascal 4.0 programmer. 

Take a look at all the features you suddenly have available with this single Turbo Pascal 4.0 Unit: The ability to create large Expert 
Systems, or even link multiple Expert Systems together. A powerful backward-chaining inference engine. Easy flow of both data and program 
control between Turbo Expert and the other parts of your program, to provide Expert System analysis of any database, spreadsheet, file 
or data structure. The ability to add new rules in the middle of a consultation, so your Expert Systems can learn - really learn -and 
become even more intelligent. 

You also have the ability to create large rule bases and still have plenty of room left for your program, thanks to conservative memory 
use . You can link multiple rule bases, you'll be compatible with our Turbo Companion units, and you have available advanced features like 
date and time arithmetic, confidence factors, windowing, demons, agendas, blackboards, and more. 

Imagine a single "EXE" file containing your user interface and data handling, and a full Expert System. 
For a limited time, get a FREE copy of our Turbo SnapShot graphics package worth $79.95. We'll give one away with every copy of 

Turbo Expert sold between now and September 30. This package will let you capture graphics images from other programs '"ffWRR[ 
and use them in any Turbo Pascal program. Ju [ 

You can even convert images from any CGA or EGA format to any other. 
On top of all that, Turbo Snapshot has routines for graphic gauges and dials as well as mouse support. You'll have all 

you need for a sophisticated graphics front-end for your Expert Systems- free. 
Call for more information or to order, (317) 876-3042. Software Artistry Inc., 3500 Depauw Blvd., Suite 2021, Indianapolis, 

IN 46268. Include $5.00 for shipping and handling. 



TURBO PASCAL 5.0: 
I CAN SEE! 
When your Turbo Pascal program catches a hug, let the 
Borland Integrated Debugger help you with the diagnosis. 

Jeff Duntemann 

My initial reaction to Turbo Pascal 4.0 was 
summarized well in a single word: Wow! 
If I had to characterize my initial reaction 
to release 5.0, it would be a different but 
no less enthusiastic response: I can see! 

SQUARE oNE The better part of doing what you must 
is seeing what you're doing, and while you can work 
in the dark, you can work faster with the lights on. 
The whole thrust of 5.0 is to turn the lights on, via 
the Integrated Debugger. 

LET THERE BE LIGHT 
A Pascal program consists of code and data, and 
neither can be observed directly. Instead, you look to 
a program's effects: what it puts on the screen, what 
it prints to the printer. There are always inferences 
to be drawn, and if you draw the wrong inferences, 
you lose. 

The Integrated Debugger lets you look directly at 
both program execution and program data. The 
means is remarkably straightforward: With a pro
gram displayed in the editor window, a colored high
light bar (called the execution bar) covers the next 
statement to be executed. You press a function key. 
Bang! That statement executes, and the bar moves to 
the next statement. Press the function key again. 
Bang! The statement executes, and the bar moves yet 
another step forward. 

All the while, in a separate window beneath the 
edit window, one or more variable names appear be
side a display of their current values. After each 
statement is executed, the values of the displayed 
variables are rewritten to the screen. Thus, while the 
program runs, you can watch the ebb and flow of 
program data in the window, which is called the 
watch window. 

The synergy between the execution bar and the 
watch window cannot be overemphasized: You can 
now determine exactly when the value of a variable 
changes. Spotting "side effects," where a stretch of 
code modifies an apparently uninvolved variable, is 
now a snap. Place the corrupted variable in the 

12 TURBO TECHNIX September/ October 1988 

watch window, and then step through the code until 
the variable changes. What took hours to solve by in
ference now takes seconds-simply because you 
can see. 

INTEGRATED INSTRUMENTS 
The Integrated Debugger's tools fall into two 
categories: 

• Tools that control program execution; and 
• Tools that manage the display of data items. 

Let's look at execution control first. 
The Integrated Debugger offers the choice of two 

methods to control program execution: single
stepping and breakpoints. A breakpoint is a stop sign 
that can be erected anywhere in the source code file. 
Once the breakpoint is set, simply run the program. 
When execution reaches the breakpoint, the pro
gram pauses, but nothing is lost: The state of the pro
gram is retained, and the program can be started 
again as though it had never stopped. 

Singl.e-stepping is just that: The program executes 
one line of code, and then pauses. As with break
points, the pause is not destructive. Single-stepping 
your way through a program is logically equivalent 
to simply running the program without interruption. 

This is a good place to make an important distinc
tion: The Integrated Debugger is a line-oriented sys
tem. The execution bar highlights an entire line of 
source code, not a single Pascal statement. If a line 
contains more than one statement, all of the state
ments on that line are executed in one single step. 

Of course, much of the power of Pascal stems 
from its procedural nature, in which a number of 
statements are grouped together as a named proce
dure that's invoked as a single statement. Do you 
execute the whole procedure as though it were a sin
gle statement? Or do you enter the procedure and 
then execute its component statements individually? 

You do what you must. Turbo Pascal 5.0 lets you 
have it either way. Two separate commands control 
single-stepping: Step over (F8) and Trace into (F7). 



Step over treats a subprogram as an 
indivisible statement, executing it 
completely before pausing again. 
Trace into enters the subprogram 
and allows you to single-step the 
subprogram's statements as well. 
The two commands are inter
changeable (except for their ef
fects). You can merrily step along 
the main program, treating sub
programs as statements, until you 
reach a subprogram call that's 
been acting suspiciously. Then 
you can duck into the call and 
take a close look around. 

Breakpoints and single-stepping 
work very well together. In a 
larger program, you may have a 
strong hunch where a problem 
lies. Instead of tediously single-

• 
.. 

• • • • . . ... 
• 

stepping to that point, set a break
point shortly before the point 
where you expect the trouble be
gins, and then execute the pro
gram without pausing until that 
breakpoint is reached. From the 
breakpoint, carefully single-step 
until trouble happens. 

LOOKING FOR TROUBLE 
Trouble, when you see it, may be 
a bad branch or some other fail
ure of program control. More 
likely, trouble will mean that a 
variable is filled with the right 
stuff at the wrong time, or the 
wrong stuff at the right time, or 
the wrong stuff all the time. To 
spot that kind of trouble, variables 
as well as program code must be 
watched. The Integrated Debug
ger offers two mechanisms for 

this process: the watch window 
and the evaluation box. Both are 
ways of looking at the contents of 
program variables. The watch win
dow allows you to watch a variable 
continuously while the program 
runs. The evaluation box lets you 
take a quick peek at something at 
irregular intervals, and also lets 
you change the values of program 
variables when program execution 
is paused. 

The 5.0 watch window takes the 
place of the Turbo Pascal 4.0 out
put window on the screen when
ever debugging is enabled. One 
or more variables can be placed 
into the watch window, and the 
display of their values is updated 

continued on page 14 

September/ October 1988 TURBO TECHNIX 13 



TURBO PASCAL 5.0 
continued from page 13 

in the window every time program 
execution pauses for a breakpoint 
or after a single-step. 

Unlike the watch window, 
which always displays during de
bugging, the evaluation box ap
pears only when summoned. 
When the name of a variable is 
typed into the box, the variable's 
current value appears below its 
name. Alternatively, you can 
"point and shoot" by placing the 
cursor on a variable name and 
pressing Ctrl-F4; the variable 
name appears in the evaluation 
box automatically. Whole expres
sions may be "grabbed" from the 
edit buffer by placing the cursor 
at the start of an expression and 
then using the right arrow key to 
copy as much text as desired into 
the box. A new value for the vari
able can also be entered; this 
value is then loaded into the vari
able, ready for use when program 
execution restarts. 

Both the watch window and the 
evaluation box can display data in 
many different ways. Binary val
ues may be displayed as sequenc
es of bytes in decimal or hex. Rec
ords may be displayed with field 
labels or without. Pointers appear 
as pairs of segment and offset 
values. Dynamic variables are dis
played as dereferenced pointers. 
Sets are shown as set elements be
tween set constructor brackets, 
with closed intervals identified 
and displayed as such. Files, when 
displayed, indicate their current 
mode (OPEN, CLOSED, READ, or 
WRITE) and the physical file
name to which they have been as
signed. Arrays are displayed in the 
same format that array constants 
are defined. 

Furthermore, data may be dis
played in terms of simple vari
ables and expressions. The ex
pression may include literals, 
constants, variables, all legal 
Turbo Pascal operators, typecasts, 
and a limited suite of standard 
functions that include SizeOf, Abs, 
Chr, Ord, Succ, Pred, Length, 
Addr, CSeg, DSeg, Seg, Ofs, Ptr, 
SPtr, SSeg, IOResult, MemAvail, 
MaxAvail, Hi, Lo, and Swap. 

Examples of various ways to dis
play data in a watch window are 
shown in Figure 1. 

DISPLAY SWAPPING 
The process of watching code in 
the edit window, and watching 
variables in the watch window, 
doesn't leave any room on the 
screen for the operation of the 
program being examined. Given 
that most modern programs use 
the entire screen, it seemed inap
propriate to divide the screen yet 
another time for a run window. 
Instead, Turbo Pascal 5.0 uses a 
system called display swapping to 
share the screen between the two 
debugging windows and the appli
cation being debugged. 

During the debugging process, 
the Integrated Debugger ordinar
ily keeps control of the visible 
screen. A screen buffer for the ap
plication being debugged is main
tained in memory. This buffer is 
brought into view only when the 
application needs to write to the 
screen, and then only long 
enough for the write operation to 
take place. Then the altered 
screen is saved back out to mem
ory, and the Integrated Debugger 
takes control of the screen again. 
These steps happen very quickly, 
especially on fast 286 or 386 
machines. 

This feature , called smart display 
swapping, is the default mode. You 
can also specify that the applica
tion take over the display every 
time the application executes a 
statement, or that the application 
and the Debugger share the same 
screen. (This works acceptably 
well if the application does little 
or no screen I/O. If the Debugger 
screen is disrupted, the screen can 
be rewritten by a menu com
mand.) Turbo Pascal 5.0 can also 
circumvent the display problem by 
allowing dual-screen operation, 
with the Debugger on the mono
chrome screen and the applica
tion on the color screen. 

GOIN' ON A BUG HUNT 
Neil Rubenking was nice enough 
to share a bug he tangled with 
while developing his directory 
search engine (See "A Directory 
Search Engine in Turbo Pascal," 
p. 27 of this issue.) The bug would 
rear its ugly head during any use 
of the search engine, but let's 
track it down in the context of the 
Where program presented in 
Neil's article. 

14 TURBO TECHNIX September/ October 1988 

The bug came to light while 
testing WHERE.EXE in a directory 
that contained a number of files 
whose names included the string 
"ENGINE": ENGINE.PAS, EN
GINE2.PAS, and ENGINE3.PAS, 
plus .BAK and .TPU versions of 
the aforementioned files. When 
WHERE was invoked as WHERE 
E*.*, all of the engine files were 
correctly found and displayed. 
However, when WHERE was in
voked as WHERE ENGINE*.*, 
none of the files turned up. 
Hmmmm. 

The flawed copy of EN
GINE.PAS is shown in Listing 1. 
(The source code for WHERE.PAS 
is the same as that given in Listing 
3 of Neil's article.) You can down
load the buggy ENGINE.PAS from 
CompuServe if you want to follow 
along in real time-just don't mix 
up the buggy version with the 
working version from Neil's 
article! 

Prepare the application for de
bugging by loading WHERE.PAS 
into the editor, and entering a 
command line string of "EN
GINE*.*" through Options/ Pa
rameters. Be sure the source code 
for ENGINE.PAS is available to 
the Integrated Debugger. 

Now, we can look at anything 
we want to. So what do we look at? 
A hacker's hunch tells us that the 
file spec must be getting stepped 
on under certain circumstances, 
so a good place to start is to watch 
the file spec as it wends its way 
through program logic. Since 
Where passes the file spec to 
SearchEngine in a variable called 
template, let's take the first step of 
setting a watch on template 
through either Break/watch/ Add 
watch or its shortcut, Ctrl-F7. To 
avoid having to single-step 
through the procedure that vali
dates the command-line param
eters, let's set a breakpoint on 
Where's invocation of SearchEn
gine. To do so, move the cursor to 
the line that contains the call to 
SearchEngine, and toggle a break
point on by way of either Break/ 
watch/ Toggle breakpoint or its 
shortcut, Ctrl-F8. The line changes 
color. It's ready. 

Run the program by bringing 
down the Run menu and choos
ing the Run option. (In Turbo 
Pascal 5.0, Run is a menu, and all 

continued on page 16 



/~ 
You'LLLOVE 

THESE UTILITIES. 
I~ SAYWHAT?! 

'o ""\) fast screen 
~\S__, b generator 

TOPAZ. 
The breakthrough 
toolkit for 
Turbo Pascal 4.0 

It doesn't matter wh ich language you pro- Wi If you'd like to combine the raw power and 
gram in. With Saywhat, you can build beautiful E speed of Turbo Pascal with the simplicity and 
elaborate. colorful screens in elegance of dBASE. Topaz 

minutes! That's right Truly cur ARANTEE IT' is just what you 're looking 
fantastic screens for menus. I/"\.. • for. You see, Topaz (our 
data entry, data display, and brand new collection of 
help-panels that can all be displayed 0 n units for Turbo Pascal 4.0) was specially 
with as little as one l ine of code in any IRON CLAD Y created to let you enjoy the best of both 
language. Batch files. too. MONEY-BACK worlds. The result? You can create t ruly 

With Saywhat. what you see is GUARANTEE. dazzling applications in a very short 
If you aren't completely 

exactly what you get. And response time delighted with Saywhat or time. And no wonder. Topaz is a compre-
is snappy and crisp, the way you like it. Topaz, return them within hensivetoolkit ofdBASE-likecommands 
That means screens pop up instantly, 30 days fo r a prompt, and functions, designed to help you 
whenever and wherever you want them. ~friendly refund. " create outstanding, polished programs, 

Whether you 're a novice program- ~ ~ fast. Think of it With Topaz you can write 
merlongingforsimplicity,oraseasoned -~ Pascal code using SAYs and GETs, 
professional searching for higher produc- ,.1 PICTURE and RANGE clauses, then SELECT and USE 
tivity, you owe it to yourself to check out U..__ ~ \1 databases (real dBASE databases!). SKIP through 
Saywhat. For starters, it will let you build .J '- records. APPEND data. and lots more. 
your own elegant. moving-bar menus into ' \ ' In fact. we've emulated nearly one hundred actual 
any screen. (They work like magic in any J /J J dBASE commands and functions . and even added new 
application. with just one line of code!) !.;;::; lL commands and functions to enhance the dBASE 
You can also combine your screens into extremely syntax! All you have to do is declare Topaz's units in 
powerful screen libraries. And Saywhat's remarkable your source code and you 're up and ru nn ing! 
VIDPOP utility gives all languages running under PC/ The bottom line? Topaz makes wri t ing sophisti-
MS-DOS, a whole new set of flexible screen handling cated Pascal applications a snap. Data entry and data 
commands. Languages like dBASE. Pascal , BASIC. C. base applications come together with a minimum of 
Modula-2, FORTRAN. and COBOL. Saywhat works with code and they'll always be easy to read and maintain . 
all the dBASE compilers, tooi Topaz comes with a free code generator that auto-

With Saywhat we also include a bunch of terrific matically writes all the Pascal code you need to 
utilities, sample screens. sample programs. and out- maintain a dBASE file with full-screen editing. Plus 
standing technical support. all at no extra cost. (Com- outstanding technical support. at no extra cost. (Com-
prehensive manual included. Not copy protected No prehensive manual included. Not copy protected. No 
licensing fee. fully guaranteed) . $49.95 licensing fee, fully guaranteed) . $49.95 

ORDER NOW. YOU RISK NOTHING. Thousands of satisfied users have already ordered from us. Why not call toll-free, right 
now and put Saywhat and Topaz to the test yourself? They're fu lly guaranteed. You don't risk a penny. 

:-sP-EciAL uM"1T"Eo-=TIMf: OFFER! s;;-y - -~~;l~;,;-t-: ~~ - - - - - - - - - - - - - - - - - - - - - - - - - - -: 

J Saywhat?! and Topa~ together for _iust Saywhat71 your lightning-fast screen gener- Topaz, your programmer's toolkit for Turbo I 
I $85 ,(plus ~5 shipping & handl ing). ator. sosend _ _ cop ies ($49.95 each. pl us S5 Pascal 4.0. so send _ _ copies ($49 95 each. J 

I That S a savings of almost $15. shipp ing & hand ling! subject to your iron-clad plus $5 shipping& handli ng! subject to your iron- I 
I To order: Call toll-free money-back guarantee. clad money-back guarantee. I 
I 800 468 9273 D YES. I want to take advantage of your special offer! Send me __ copies of both Saywhat?! I 
I " " and Topaz at $85 per pair (plus $5 shipping & handli ng!. That 's a sav ings of al most $15. I 
I In California : 800-231-7849 NAME 1

1 I International : 415-571-5019 ADDRESS I 

I The Research Group CITY STATE ZIP I 
I 88 South Linden Ave. 0 Check enclosed 0 Ship CO.D. 0 Credit card I 
J South San Francisco, CA 94080 11 Exp date __ Signature ! 

T H E R E S E A R C H G R 0 U P 



TURBO PASCAL 5.0 
continued from page 14 

ofRun's options support debug
ging in various ways. The Run op
tion is the normal way to run a 
program under the Integrated En
vironment, whether you're debug
ging or not.) 

Execution pauses at the break
point. The watch window shows 
the current value of template: EN
GINE*.* (see Figure 2). So far, so 
good-or, so far, no bug. 

The light blue bar on the call to 
SearchEngineAll is the execution 
bar, which rests on the next state-

ment to be executed, not the state
ment that was just executed. At 
this point, we can either execute 
SearchEngineAll as a single state
ment by pressing Step over (F8) or 
else descend into SearchEngineAll 
and single-step SearchEngineAll's 
statements by pressing Trace into 
(F7). Since the problem obviously 
isn't located in the main body of 
Where, press F7 to duck into 
SearchEngineAII and have a look 
around. 

Nothing changes in the watch 
window. A quick look at the body 
of SearchEngineAll suggests that 
this routine is largely a frame for 
calling SearchEngine. In any 
event, nothing is done to the file 
spec within the body of Search-

16 TURBO TECHNIX September/ October 1988 

Figure 1. Watches on data items and 
expressions. Note the type casting of 
Byte fudd Z of a PointRecJD record 
onto a chara.cter value. 

Figure 2. The execution bar pauses at 
the breakpoint line. The contents of 
template, as seen in the watch win
dow, are still inta.ct. 

EngineAll, which suggests that the 
problem lies somewhere within 
SearchEngine. Before single
stepping, move up the source code 
and set a breakpoint at the first 
executable statement in the body 
of SearchEngine by moving the 
cursor to that statement and press
ing Ctrl-F8. Once the new break
point is set, press Ctrl-F9 to start 
things running again. 

The execution bar moves in
stantly to the first line of Search
Engine. template hasn't changed 
... but whoa, hold on: As an ac
tual parameter passed by value to 
SearchEngine, template isn't 

continued on page 22 
sidebar begins on page 20 





APPLICATION GENERATOR FOR TURBO PASCAL V4.0 AND TURBO C 

The simple and 
revolutionary 
new 4GL used 
to develop 
sophisticated 
relational database 
applications. 

YOU CAN'T BEAT THE POWER. 
DATABOSS DESIGNS. Databoss is revolutionary because it lets you design and paint data entry 
screens and datafile layouts, as well as menus and reports: DATABOSS then automatically generates the 
solid, structured Pascal or C source code that makes up your finished system. 
DATABOSS GENERATES. Databoss is a program generator that takes program definitions and produces 
TURBO C or TURBO PASCAL 4.0 source code. The definitions are created by pulldown-menu driven 
input screens. Code is generated for menus, file and record editing, file re-index and recovery, reports, 
and file reconfiguration. No coding is necessary for most purposes. 
DATABOSS IS UNIQUE. This unique Skeleton File system allows programmers to change the way 
DATABOSS generates code. This means that DATABOSS can be used for any application, no matter 
how complex or unusual. 
DATABOSS can be modified to suit the individual programmer's style and requirements. 

YOU CAN'T BEAT THE FRIENDLINESS. 
DATABOSS IS IDEAL for beginner programmers as it lets them create professional-level Database 
systems with little or no programming required. It also allows beginners to learn Pascal and C more 
quickly and easily for professional applications. 

YOU CAN'T BEAT THE SPEED. 
DATABOSS IS FAST Professional programmers will find that DATABOSS increases productivity by letting 
them concentrate on the more challenging aspects of their project. DATABOSS will quickly generate 
thousands of lines of complex, bug-free and easily modified source code that would take even 
professional programmers months of work. 

YOU CAN'T BEAT THE PRICE. 
DATABOSS is a true 4GL, providing more power to the user than dBASE or similar products. 
It is packaged specifically for ease of design and use. Which would you choose ... 
dBASE (database management) + Genifer (code generator) + Clipper (compiler) + R&R (relational 
report writer) = $1 ,500 PLUS. 
OR 
DATABOSS + Turbo Pascal V4.0 or Turbo C = LESS THAN $500. 

DATABOSS TOOLS 
_ A function library to enhance the power of DATABOSS. An ideal two-in-one 

Database Toolbox package for users of Turbo Pascal and Turbo C. An 
integrated, intelligent, high level interface to DOS for managing 
Files and Console input and output. Available as an 
independent package for $99. An invaluable 
adjunct to DATABOSS Application Generator 
for the more sophisticated programmer. 



DATABOSS COMPONENTS INCWDE THE FOU.OWING: 
MENU GENERATOR: THE M ST POWERFUL 

• Unlimrred menu nesting 
• Call internal DOS commands 

and external .EXE .COM and 
. BAT files with parameters 

• Include your own initialization 
and exit routines 

• Display date and time, copyright 
notice and menu heading 

• Nine security levels and 
modifiable password file 
with user 

SCREEN PAINTER: 
• Free form full screen editor 
• Draw lines and boxes -

full IBM extended character 
set displayed choice 

• Copy, move, insert, center 
text etc. 

• Color painting, foreground, 
intensity and background 
colors 

DATAFI, ............... 
FIELD DEFINITION: 

• Each field defined via a 
4GL template 

• Up to 16 related datafiles per 
application module 

• 16 index keys per datafile 
unique or duplicate 

• Up to 9 segments per index key 
• Allows multiple use of fields in 

key segments 
• Automatic datafile linking 
• Dynamic traceback of linked 

datafiles 
• Unlimited number of open files 
• Character input control via 

pictures 
• Any field default value allowed 
• Full field validation via 

BOOLEAN check either 
expression or function 

• User defined error messages 
• Compute and key expressions 
• Automatically generated 

re-indexing module 
• Automatically generated datafile 

reconfiguration module 

RELATIONAL REPORT 
GENERATOR EVER 
DEVISED 

• Design any type of report 
• Automatic structure definition 

for relational reports 
• A report element can be a field, 

text, function 
• Unlimited number of totals and 

subtotals 
• Send report elements to CON, 

LST, RS232, OSK individually 
or simultaneously 

• Paint and build report range 
selection screens to select 
specific data 

• Print multiple records across 
a page 

IMPEX QUERY BY 
EXAMPLE.MOJtUl,,E 

• Import external ASCII files into 
your DATABOSS database 
definitions 

• Query datafiles using point 
and select cursor movements 

• Select fields to be output 
and specify order 

• Impose conditions for data 
selection 

D Yes! I've seen enough! 
You CAN'T BEAT THE BOSSI 
Please send me DATABOSS 
APPLICATION GENERATOR 
at $399 D For Turbo Pascal 
V4.0, or D For Turbo C. 

D Yes! I've seen enough! 
You CAN'T BEAT THE BOSSI 
Please send me DATABOSS 
TOOLS at $99. 

D Yes! I want to know more 
about revolutionary, new 
DATABOSS! Please send me your 
CAN'T BEAT THE BOSS booklet. 

• Select existing index or create 
on the fly 

• Output to screen, disk or printer 

PROGRAMMERS r.AN 
CUSTOMIZE AND MAKE 
APPLICATIONS 
MORE eQWERFUL 

• Write your own functions, 
initialization and exit routines 
and include them in the 
function table 

• Customize a skeleton file and 
use this file at generation time 

GENERATE AND 
COMPILE USING 
TURBO PASr.AL 
V4.0 OR TURBO C 

• Generate 1000 lines of code 
in 10 seconds 

• Compile to produce fast 
executable object code 

• No runtime licence fees 
• We provide you with end user 

screen and printer installation 
modules to include in your menus 

• Provide the IM PEX query and 
import program to your end 
users on your menu 

-'°' c;u-rr 
SYSTEMS 
Rush coupon below to: 
TOP GUN SYSTEMS 
SUITE 199 
700 LARKSPUR LANDING CIRCLE 
LARKSPUR, CALIFORNIA 94939 
PHONE: (415) 461 -4040 
OR FOR ORDERS PHONE: 

(800) 323 7767 

Name: ______________ __ _ 

Company: _ ____ ___________ _ 

Street Address: ______________ _ 

City: ___ _ __ State: _____ Zip: ___ _ 

Check 
D enclosed. 

Charge D VISA 

to my .......... - D Ma•~Ca"' TT D. 
. =-Ai 

Account No. _ ____ Account Name ____ __ _ 

___________ Expiry Date: ____ _ 

Signature: ________________ _ 

Trademarks. dBase by AshtmTate. Clipper by Nantucket Corporation. R&R by Corcentnc Data Systems Ire DATABOSS by Top Gun Systems Turbo Pascal by Borland International 
Turbo C by Borland lnternauonal Ge~fer by Byte Corpo<at1on 

MC29 



THE EVOLUTION OF A SYSTEMS 
LANGUAGE 
Falling as they do in the 
shadow of Integrated Debug
ging, Turbo Pascal 5.0's other 
enhancements run the danger 
of being overlooked. This 
would be a mistake-5.0 would 
be a major upgrade even with
out its debugging power. 

Perhaps most important
overlays are back. Bruce Web
ster covers the new unit-based 
overlay system on page 38; it's 
much smarter and faster than 
the scheme in Turbo Pascal 3.0, 
especially if EMS memory is 
present in your system. 

EMS support has another 
wrinkle: The editor buffer is 
now placed in EMS memory if 
EMS memory is detected at 
runtime. This step frees up to 
64K of DOS memory for the In
tegrated Environment and for 
your application. 

Apart from overlays, units 
have been enhanced by permit
ting them to have private USFS 
statements in their IMPLE
MENTATION sections, thus 
allowing circular references 
among units to be resolved 
cleanly. The DOS unit contains 
new routines for parsing and 
reading the DOS environment, 
for reading and changing the 
state of the DOS verify flag, 
and for reading and changing 
the state of Ctrl-Break checking 
in DOS. PararnStr(O) returns 
the DOS Exec path. 

Neil Rubenking explores an
other 5.0 enhancement, proce
dural types, in "A Directory 
Search Engine in Turbo Pascal" 
on page 27 of this issue. 

Turbo Pascal 5.0 now aligns 
data items in the data segment 
and on the stack on machine 
word boundaries. (The heap is 
not affected.) This allows the 
CPU to fetch data from mem
ory as much as 20 percent fas
ter than before. A new com
piler directive, {$A+}, has been 

provided to enable or disable 
this feature, which may affect 
assembly language routines 
that make assumptions about 
data offsets from BP in the sub
program stack frame. 

FLOATING POINT 
EMULATION 
4.0 supported several IEEE nu
meric types: Single, Double, Ex
tended, and Comp. However, 
these types were supported only 
on machines that contain an 
87-family numeric coprocessor. 
Turbo Pascal 5.0 now emulates 
the math coprocessor when it's 
run on machines that don't 
have a math coprocessor, by us
ing the same system described 
by Roger Schlafly in "Floating 
Point in Turbo C," TURBO 
TECHNIX, January I F ebruary, 
1988. In brief, when an .EXE 
file generated by Turbo Pascal 
5.0 is run, the file tests for the 
presence of an 87, and then 
either uses the coprocessor di
rectly (for the fastest possible 
floating point support}, or else 
emulates the coprocessor at the 
cost of some performance. 

CONSTANT EXPRESSIONS 
In all previous versions of 
Turbo Pascal, a named constant 
could be defined only by equat
ing it to some literal value. De
fining a constant in terms of 
expressions that incorporate 
arithmetic operators and pre
viously defined constants is 
standard procedure in many 
languages, including assembler 
and C. Turbo Pascal 5.0 now al
lows constant expressions that 
contain previously defined con
stants, most arithmetical, logi
cal, bitwise and set operators, 
and a limited number of stan-

20 TURBO TECHNIX September/ October 1988 

dard functions including Size
Of, Length, Abs, Chr, Ord, 
Succ, Pred, Length, Hi, Lo, and 
Swap. 

The most important use of 
constant expressions is to 
create a "ripple down" effect 
that changes the values of 
many constants, based upon a 
single constant defined earlier 
in the program. A good exam
ple involves the many "magic 
numbers" sent out to UART 
control registers in telecom
munications applications. 
These numbers differ depend
ing upon which serial port is to 
be used. A set of constant ex
pressions based upon a port 
number allows the source code 
to be altered for a new serial 
port simply by changing a 
single constant definition: 

COMPORT = 1; C1=COM1: 2=COM2:} 
COMBASE = S2F8; 
PORTBASE = COHBASE OR 

(COMPORT SHL 8); 
THR = PORTBASE; 
RBR = PORTBASE; 
!ER = PORTBASE + 1; 
!IR = PORTBASE + 2; 
LCR = PORTBASE + 3; 

Here, all you have to do to 
change to serial port COM2 is 
redefine the constant COM
PORT to 2, and the change 
propagates through the rest of 
the constants automatically. 

BGI ENHANCEMENTS 
The Borland Graphics Inter
face has been considerably en
hanced for Turbo Pascal 5.0 
with the addition of several 
new drivers and many new pro
cedures and predefined con
stants. The IBM 8514 is now 
supported in its 640 X 480 and 
1024 X 768 modes, and the 
VGA driver suite includes sup
port for the 320 X 200 X 256 
color mode. The 8514 is fully 
supported by all BGI features 
(except that FloodFill does not 
work on 8514 graphics). Also, 
a new routine, SetRGBPalette, 



perlorms palette management 
for all 256-color modes on the 
8514 and the VGA; the earlier 
BGI palette routines don't work 
in 256-color mode. Another 
procedure, SetRGBColor, per
forms color management for 
256-color modes. 

A Sector procedure has been 
added to draw elliptical or cir
cular segments that may be 
filled using the scan converter. 
A separate new routine, Fill
Ellipse, draws full ellipses that 
are automatically filled with the 
current fill color and fill style. 

New mechanisms enable the 
registration of BGI fonts and 
drivers provided by non
Borland sources. InstallUser
Driver installs a third-party 
graphics driver into the BGI 
driver table. InstallUserFont 
perlorms the same function for 
third-party fonts. Other new 
BGI procedures and functions 
include GetMaxMode, which 
returns the maximum mode 
number for the loaded driver; 
GetModeName, which returns 
the name of a mode given its 
number; SetAspectRatio, which 
allows fine-tuning of X/Y ratios 
to correct for misaligned dis-

play screens; SetWriteMode, 
which specifies the binary op
eration (XOR or MOV) used in 
drawing straight lines; and Set
UserCharSize, which allows the 
width and height of stroked 
fonts to be varied. 

New predefined constants in
clude CurrentDriver, for calls 
that require a driver ID num
ber. 

TURBO DEBUGGER 
SUPPORT 
Turbo Pascal 5.0 fully supports 
Turbo Debugger for standalone 
symbolic debugging. In con
trast to 5.0's Integrated De
bugger, Turbo Debugger lets 
you follow the effects of your 
program through all levels of 
the underlying system includ
ing memory, stack, and ma
chine registers. All of the fea
tures described by Michael 
Abrash in "Turbo Debugger: 
The View From Within" (p. 52 
of this issue) may be used with 
Turbo Pascal 5.0 just as easily 
as with Turbo C 2.0. 

Figure 1 shows a Turbo De-

Figure 1. Turbo Debugger ru it 
might appear whi/,e tradng a 
Turbo Prucal 5. 0 program. The 
rusembly language equivalents of 
two Turbo Prucal statements are 
shown in the CPU viewer window. 

bugger screen as it might ap
pear while single-stepping a 
small program. The source 
code file is displayed in a mod
ule viewer window, while the 
generated machine code for 
each Turbo Pascal statement is 
shown with associated assembly 
language mnemonics in the 
CPU viewer window. The state 
of all machine registers and 
flags is updated after each 
statement is executed. A vari
able viewer window contains all 
variables visible in the current 
scope; any of these variables 
may be chosen for closer 
examination. 

ALL SYSTEMS GO 
With every new release since 
1983, Turbo Pascal has moved 
more and more toward a true 
systems-implementation lan
guage. I now consider it to be 
the functional equivalent of 
C- no part of the PC system is 
beyond its grasp. Turbo Pascal 
still puts the much-maligned 
safety railing between you and 
the cliff edge, but if you really 
want to walk over that cliff, it'll 
gently help you past the rail
ing-and then say . .. g'day. • 

- Jeff Duntemann 

September/ October 1988 TURBO TECHNIX 21 



' i le Edit Run (0111pi le ''pt ions Debug Ereaklllatch 
ldit· 

Lim: 69 Col 1 Insert Indent Evaluate Ctrl-F4 
CtrH'3 VAR ErrorCode : Byte) Call stack 

VAR ri nd function 
Integrated debugging On S : SearchRec; 

P PathStr; 
Ext : ExtStr; 

BEG IM 

------ Ci!.Il Shch -----~ 
SEARCHEHGIMEC' C :\engii1e*.' ,32,PTRC$704B,$ 
SEARCHEHGIMEALLC'C:\' ,'engine".*' ,32,PTRC ; 
UH ERE 

Mask := Mask + Ext; 
FindFirst(P + Mask, Attr, 
IF DosError <> 0 THEM 

BEG IM 
ErrorCode := DosError; 
Exit; 

END; 
UHILE DosError = 0 DO 

BEGIN 
Proc;(S, P); 

SJ; 

U<1 ti:h 

ll -He l tl•· -Si:roll 1-View t:dll 

TURBO PASCAL 5.0 

continued from page 16 

referenced from within Search
Engine. A watch was set-but on 
the wrong item. There's a lesson 
here: Keep things like scoping in 
mind while you debug, especially 
while you're learning the Inte
grated Debugger, and doubly es
pecially if you're just learning to 
program. 

At this level in the program, the 
file spec is held in a variable 
named Mask. A watch could be set 
on Mask, but the horse could al
ready be out of the barn. 

One way to check is to bring up 
the evaluation box and look at the 
current value of Mask. Place the 
cursor on Mask, press Ctrl-F4, and 
Enter. The evaluation box appears 
with Mask in the Evaluate field, 
and the current contents of Mask 
appear in the box's Result field 
(see Figure 3). 

Aha! Look closely at the file 
spec: "C:\ENGINE*.". The second 
asterisk is gone. As a result, DOS 
thinks that this file spec requires 
files that don't have any file exten
sion at all. Nothing in the direc
tory matches this file spec. 

Don't get too excited just yet. 
This is the bug's spoor; the bug it
self is still nowhere in sight. But 

22 TURBO TECHNIX September/ October 1988 

Figure 3. The evaluation box reveals 
a corrupted fi/,e spec in variab/,e 
Mask. The final asterisk has somehow 
disappeared. 

Figure 4. Display of the call stack 
shows that the fi/,e spec is corrupted 
some time after it's passed to 
SearchEngineAll, but before it's 
passed to SearchEngine. 

where to look now? Sadly, execu
tion can't be "backed up" a step at 
a time the way it can move for
ward. The wise thing to do here 
is to reset the program to its initial 
state by selecting the Run/ Pro
gram reset item, and then start 
again. This time, set a watch on 
the right item and begin to single
step a little earlier. 

Before we do so, however, let's 
use another feature of the Inte
grated Debugger, and take a quick 
look at the call stack. Select De
bug/ Call stack, or use its shortcut, 
Ctrl-F3. A box appears that con
tains a summary of the current 
state of subprogram nesting, in-

continued on page 26 





LISTING 1: ENGi NEB.PAS 

UNIT Engine; 

{SV·} 

( ** * *** ••••••••••• *** •••••• ********** ••• *** ••••••••••••••• ) 
(* SEARCH ENGINE *) 
(* Input Parameters: *) 
(* Mask The file specification to search for *) 
(* May contain wi ldcards *) 
(* Attr Fi le attribute to search for *) 

(* Pree Procedure to process each found file *) 
(* *) 

C * Ouput Parameters: *) 
(* ErrorCode : Contains the final error code. *) 
(* *) 

( •••• ************************* ****************************) 

( **********************) 
(**) INTERFACE (**) 
( ...................... ) 

USES DOS; 

TYPE ProcType : PROCEDURE (VAR s : SearchRec; 

PROCEDURE SearchEngine(Mask : PathStr; 
Attr Byte; 
Proc : ProcType; 

VAR ErrorCode : Byte); 

FUNCTION Goodlirectory(S : SearchRec) : Boolean; 
PROCEDURE ShrinkPath(VAR path PathStr); 
PROCEDURE ErrorMessage(ErrCode Byte); 
PROCEDURE SearchEngi neAl l (path PathStr; 

c••••••••••••••••••••••> 
(**) IMPLEMENTATION (**) 
c•••••••••••••••*******> 

VAR 
EngineMask 
EngineAttr 
EngineProc 
EngineCode 

NameStr; 
Byte; 
ProcType; 
Byte; 

Mask: NameStr; 
Attr Byte; 
Proc ProcType; 
VAR ErrorCode : Byte); 

PROCEDURE SearchEng i ne(Mask : PathStr; 
Attr : Byte; 
Proc : ProcType; 

VAR 
SearchRec; 
PathStr; 

Ext : ExtStr; 

VAR ErrorCode : Byte); 

{procedure FSplit(Path: PathStr; var Dir: DirStr; 
var Name : NameStr; var Ext: ExtStr);} 

BEGIN 
FSplit(Mask, P, Mask, Ext); 
Mask := Mask + Ext; 
Findfirst(P + Mask, Attr, S); 
IF DosError <> 0 THEN 

BEGIN 
ErrorCode := DosError; 
Exit; 

END; 
WHILE DosError : 0 DO 

BEGIN 
Proc(S, P); 
FindNext(S); 

END; 
IF DosError • 18 THEN ErrorCode :• 
ELSE ErrorCode : = DosError; 

END; 

PathStr); 

24 TURBO TECHNIX September/ October 1988 

FUNCTION Good'.lirectory(S : SearchRec) : Boolean; 
BEGIN 

Gooc[)irectory :=CS . name<> 1 • 1 ) AND 
cs.name <> ' •• I) ANO 
(S.Attr ANO Directory= Directory); 

END; 

PROCEDURE ShrinkPath(VAR path : PathStr); 
VAR P : Byte; 

OLJTITlY : NameStr; 
BEGIN 

FSpl it(path, path, Dunny, Dunny>; 
Dec(path [OJ>; 

END; 

{Sf+} PROCEDURE SearchOneDi r(VAR S : SearchRec; 
{Recursive procedure to search one di rec'tory) 

BEGIN 
IF Goodli rectory(S) THEN 

BEGIN 
p := p + s . name; 
SearchEngineCP + 1 \ 1 + EngineHask:, EngineAttr, 

EngineProc, EngineCode) ; 
SearchEngineCP + '\*.*', Directory OR Archive, 

SearchOneOi r, Engi neCode); 
END; 

END; 

PROCEDURE SearchEngineAll(path PathStr; 
Mask NameStr; 
Attr Byte; 
Pree ProcType; 
VAR ErrorCode : Byte); 

BEGIN 
(*Set up Unit global variables for use in 

recursive di rectory search procedure•) 
EngineMask : • Mask; 
EngineProc : = Proc; 
EngineAttr := Attr; 
SearchEngine(path + Mask, Attr, Proc, ErrorCode); 
SeerchEng i ne 

PathSt r); {SF-} 

(path+ 1 *.* 1
, Directory OR Attr, SearchOneOir, ErrorCode); 

ErrorCode := EngineCode; 
END; 

PROCEDURE ErrorMessage(ErrCode Byte); 
BEGIN 

CASE ErrCode OF 
0 {OK - - no error} 
2 WriteLn('File not found'); 
3 WriteLn( 'Path not found'>; 
5 Writeln('Access denied'); 
6 Writeln( 'Invel id handle'); 
8 Wr i teln( 1 Not enough memory 1 ) ; 

10: Writeln( 1 Invelid envirorment•); 
11 : WriteLn('lnvalid format'); 
18:; (OK - - ~rely 11 no more files 11 ) 

ELSE WriteLn('ERR~ #', ErrCode); 
END; 

END; 

END . 



If you think writing program code 
is a dirty business, we have something 
to help you clean up your act. 

It's called Matrix Layout. Layout 
Jets you create programs that do 
exactly what you want, quickly and 
easily-without writing a single line 
of code. Layout does it for you auto
matically, in your choice of Turbo 
Pascal, Turbo C, Microsoft C, Quick
Basic or Lattice C. And if you're not 
a programmer, you can even create 
programs that are ready-to-run. 

As the first true CASE (Com
puter Aided Software Engineering) 
development tool for the PC, Layout 
lets you write your programs simply 
by drawing an icon-based flow chart. 
They'll have windows, icons, menus, 
buttons, dialog boxes, and beautiful 
graphics and text. Like the Macintosh 
and the OS/2 Presentation Manager. 

And because Layout is so effi
cient, everything you create will 
work incredibly fast, even on stan
dard PC's with 256K and only one 
disk drive. To top it off, all your pro
grams will feature Layout's auto
matic mouse support, sophisticated 
Hypertext functions, and decision 
handling. 

The full Layout package also 

comes with three additional programs: 
Matrix Paint is a professional 

paint program that comes with a full 
palette of high-powered graphics 
tools, plus scanner support. And any 
picture or symbol that you draw or 

1. Draw a flow-chart. 
2. Matrix Layout creates 

the program code. 
3. Your program is complete. 

LAYOUT 

scan into Paint can be included in 
your program. 

Matrix Helpmaker allows you 
to include an electronic manual in all 
your programs. Context-sensitive help 
windows, a table of contents, index
ing, and the convenience of Hypertext 
functionality can now become a part 
of everything you create. 

Finally, Matrix Desktop gives 
you the ability to organize your files 
and disks in a very Macintosh-like 
easy to see, easy to use way. 

What's the cost? At just $149 .95 
for the entire package, Layout speaks 
in a language you'll Jove to hear. 
Especially with our free customer 
support, no copy protection , and a 
30-day, money-back guarantee. 

Video Tape Offer 
Our new demonstration video

tape graphically illustrates how the 
many features of Matrix Layout will 
make a difference in your life. Call 
1-800-533-5644 and order your VHS 
copy now ijust $9.95 for shipping 
and handling, credited against your 
purchase). In Massachussetts, call 
(617) 567-0037. 

Do it today. Because once you 
see what Layout can do for you, we 
think you'll swear by it. 

Matrix Software Technology Corporation• One Massachussetts Technology Center• Harborside Drive· Boston, MA 02128 • (617) 567-0037 
Matrix Software/ UK • Plymouth. England• 7%-363 •Matrix Software/ Belgium• Geldenaaksebaan 476 • 3030 Leuven • 016202064 

The following are registered and unregistered trddemarks of the companies listed: Matrix Layoul. Matrix Paint. Matrix Helpmaker. Matrix Desktop. 
Matrix Software Technology Corporation: Macintosh. Apple Computer. Inc.; OS/ 2 Presentation Mana~er. International Business Machines Corporation. 



TURBO PASCAL 5.0 
continued from page 22 

eluding the actual parameters 
passed to each currently active 
subprogram. Examine Figure 4. 

The call stack display shows 
that the program started at Where, 
called SearchEngineAll, and then 
called SearchEngine. But look 
closely at the actual parameters: 
The file spec was passed correctly 
to SearchEngineAII, but was al
ready corrupted by the time it was 
passed to SearchEngine. 

We assumed too much when we 
first descended into Search
EngineAII. Something in that very 
short and uncomplicated proce
dure corrupted the spec. Reset the 
program, reload WHERE.PAS us
ing the pick list, and start the pro
gram running again. The break
points are still there, and 
execution pauses at the call to 
SearchEngineAII. Trace into 
SearchEngineAll with a single 
press of F7, and take a more care
ful look around. 

What does the program do to 
Mask between the call to Search
EngineAII and the call to Search-

Engine? Nothing! The same pa
rameter, Mask, is passed through 
untouched. The call stack showed 
that the spec was passed intact 
down into SearchEngineAll. Look 
at Mask again by bringing up the 
evaluation box once more. 

ELEMENTARY, MY DEAR 
PASCAL 
Surprise! Mask is corrupted al
ready, to "ENGINE*.". If we had 
looked at Mask immediately upon 
entering SearchEngineAll, we 
could have avoided the trip on
ward into SearchEngine. However, 
we'd still be confronted by a mys
tery: The string "ENGINE*.*" is 
passed to SearchEngineAll, and 
the string "ENGINE*." comes out 
the other side. That's a subtle 
point, but it should suggest some
thing to you. Let's look at the 
types of the formal and actual pa
rameters here. 

The actual parameter, template, 
is type STRING, which is 255 
characters long. However, the for
mal parameter to which template 
is passed is type NameStr, which 
is a type defined within the DOS 
unit. If you look in the documen-

Printed graphics in ultra-high resolution using 
Turbo Pascal 4.0? Introducing ... 

GRAPHLINK™ 
The powerful printer software that gives you th e same 
control o ve r your printer that Turbo 's BGI graphi cs gives 
you over your scree n - in ultra-h igh resolution ' 

GRAPHLINK commands work exact ly like T urbo Pascal's BG I commands 
wherever possible, so you can qu ickly add µr inted graphics to 
your programs. No need to learn a whole new syntax ·you 
already know the commands' 

GRAPH LINK em ula tes every applicable BG I procedure and fu nc tion, including 
viewport and image -transfer rout ines. 

GRAPH LINK dynamical ly compresses images in conve ntional memory, so you 
can store an 8" x 10", 150 dpi image in as li t tle as ISO kB . 
Optio na ll y uses expanded memoryl 

GRAPHL1NK supports printe rs to thei r hi~hes t reso lutioff 
• HP LaserJet II to 300 dpi • Epson LQ series to 180 dpi 
• NE C and Toshiba 24 pin printe rs to 360 dpil 

Only $69 + $5 s/ h (PA residents add 6 % to total. ) 

Requires Turbo Pascal 4.0 Minimum 512 kB of memory recommended 
Satisfacnon guaranteed 01 you r money back within 30 c/avs 

VISITECH 
SOFTWARE 

05 3807 Ridgewood Court 

Pittsburgh , PA 15239 

412/733-4775 

26 TURBO TECHNIX September/ October 1988 

tation for the DOS unit, you'll find 
that NameStr is defined as 
STRING[8], and therefore is only 
eight characters long. 

The string "ENGINE*.*" is nine 
characters long. Mask literally isn't 
long enough to hold this string. 
Since strict type-checking for 
strings is disabled through the 
{$V-} compiler directive at the 
start of Where, the final asterisk 
is truncated off into oblivion with 
no one the wiser. 

The bug is that Mask is de
clared to be an inappropriate type. 
The solution is fairly simple: De
clare a new type in the Engine 
unit that is large enough to hold 
any file spec that doesn't also in
clude a path: 

TYPE 
FullNameStr = STRING[12]; 

Next, redeclare all parameters or 
variables that must contain a file 
spec as type FullNameStr. Now re
compile and test it out. 

It works. The bug is dead. Long 
live Turbo Pascal 5.0! 

SIGHT, FORESIGHT, AND 
HINDSIGHT 
Hindsight is always perfect, and 
also pe1fectly useless. Sure, this 
was an easy bug to spot-but only 
because we had the power to lift the 
hood and take a look. Logical de
duction almost never works on 
bugs like this, because we rarely 
remember to think of the match
ing of formal and actual param
eters as a real program action and 
not simply a formality. Sooner or 
later you'd spot it, but you'd prob
ably waste half an hour in the 
process. I've wasted far more time 
on far wimpier bugs, simply be
cause my mind gets locked into a 
set of assumptions that logic alone 
just won't crack. 

Debugging is a skill that takes 
some practice to develop. It re
quires that you study your chosen 
language and your machine. It re
quires that you keep an eye on 
your assumptions, especially the 
deadly one that insists that "noth
ing really happens between here 
and there." Remember that Turbo 
Pascal 5.0 still requires that you 
learn how to look-but now, at 
least, it lets you see. • 

Listings may be downloaded from 
Library 1 of CompuServe forum 
BPROGA, as PASBUG.ARC. 



A DIRECTORY SEARCH ENGINE 
IN TURBO PASCAL 
Turbo Pascal 5.0 allows you to build completely 
generalized routines by supporting the passing of procedures 
and hence program actions-as parameters. 

Neil Rubenking 

Whatever high-level language you use, 
eventually some of your programs will 
need the ability to search a disk directory. 
The machinery to do so is built into DOS, 
and Turbo Pascal 5.0's DOS unit provides 

wizARo FindFirst and Find.Next directory search 
procedures that use DOS's directory search func
tions. To support FindFirst and Find.Next, the DOS 
unit provides the SearchRec data type that models 
the DOS disk transfer area (DTA) as a Pascal record. 
Unit DOS also contains built-in constants for each of 
the DOS file attributes. These elements can be com
bined into a completely generalized file search "en
gine," placed into a unit, and then used for any pur
pose by any program that needs to search a directory 
or a directory tree. 

Engine (Listing 1) is the unit that contains the 
generalized file search engine. Engine contains two 
major procedures, SearchEngine and SearchEngine
All. SearchEngine searches a single directory for 
a file that matches a file specification and a file at
tribute byte. SearchEngineAll traverses an entire di
rectory tree or subtree during its search. Since the 
compiler and the DOS unit handle so much of the 
file search activity, the search engine unit can be 
quite compact. (For information about the theory 
behind DOS directory searching, see "A Directory 
Search Engine in Turbo C" on p. 75 of this issue. In 
this article, I cover the practical implementation of 
DOS directory searches in Turbo Pascal 5.0.) 

PROCEDURES AS PARAMETERS? 
Procedure SearchEngine takes four parameters. This 
procedure needs to know which file specification to 
seek, which attribute to match, and which procedure 
to call on every found file. SearchEngine then re
turns the final DOS error code returned by the DOS 
Find First and Find Next functions. 

If you're alert, you're probably wondering how the 
SearchEngine procedure could have a procedure as a 
parameter. Procedural types (and function types) are 
a new feature of Turbo Pascal 5.0. Conceptually, pro
cedural types allow you to think of program state-

ments as just another kind of data. You can pass pro
gram actions to a procedure just as easily as you can 
pass an integer or a string to a procedure. This 
makes the creation of certain kinds of general
purpose routines possible. These general-purpose 
routines are called "engines" because they provide 
some central service to a wide variety of different ap
plications, in the same fashion that a lawnmower en
gine can be taken from a lawnmower and used with
out modification to power a go-kart. 

A procedure type declaration looks very much like 
a procedure header minus the procedure's name. 
For example: 
TYPE 

P = Procedure(X : Integer; Ch : Char); 

Procedural type P matches any procedure that has 
parameters of the identical type and order of decla
ration. The names of the procedure and its param
eters aren't important, but the types of the parameters 
and their order must match exactly. This is best 
shown by example. Figure 1 contains a number of 
valid and invalid procedure declarations for proce
dural type P. Study them closely. 

A variable of some procedural type can be de
clared and assigned to a matching procedure, or a 
procedure name can be passed as an actual param
eter to another procedure. In either case, the proce
dure must follow the far calling convention. Force proce
dures to far calling conventions by bracketing their 
procedure headers between {$F+} and {$F-} com
piler directives. Don't forget that step, or your pro
gram will crash every time. 

Procedures that may act as procedural variables or 
parameters have other restrictions. These proce
dures must be declared at the global level; they may 
not be INLINE or INTERRUPT procedures; and 
they may not be standard procedures that reside in 
SYSTEM.TPU. However, procedures in Turbo Pascal 
standard units, such as DOS and Crt, may act as pro
cedural variables and parameters. 

continued on page 28 

September/ October 1988 TURBO TECHNIX 27 



SEARCH ENGINE 
continued from page 27 

Declaration of procedural type P : 

TYPE 
P = Procedure(X : Integer; Ch : Char); 

A valid procedure of type P : 

PROCEDURE Manny(! : Integer; MyChar : Char); 
Invalid procedures for type P: 

W is the wrong type: 
PROCEDURE Moe(w : Word; Letter : Char); 
X formal pann not VAR: 
PROCEDURE Jack(VAR I : Integer; Ch : Char); 
Wrong number of panns: 
PROCEDURE Bob(MyGrade : Char); 
Wrong order of panns: 
PROCEDURE Ray(NewCh : Char; K : Integer); 

Figure 1. Valid and invalid procedures for procedural type 
P. Note that the names of the procedures and their param
eters do not matter. The type and order of the declaration 
of parameters, and whether a parameter is passed by refer
ence (VAR) or by value, are the only things that matter. 

SearchEngine takes the parameter Proc, of type 
ProcType. Each of the example programs contains 
one or more procedures of this type. Within Search
Engine, a call to formal parameter Proc has exactly 
the same effect as a call to the procedure passed in 
Proc as the actual parameter. 

THE ENGINE 
ENGINE.PAS (Listing 1) contains the directory 
search unit. SearchEngine uses DOS unit procedures 
FindFirst and FindNext to find all matching files. 
Each time SearchEngine finds a matching file, it calls 
the user-specified procedure passed in procedural 
parameter Proc. Simple! SearchEngine also returns 
the final DOS error code. However, if SearchEngine 
finds at least one file during a search, it doesn't con
sider not finding additional files to be an error. 

Procedure SearchEngineAll searches the given 
path and all of its subdirectories for files that match 
the file specification. Passing a path that specifies a 
volume's root directory, such as "C:\," to SearchEn
gineAll tells the procedure to search the entire vo
lume. SearchEngineAll uses the file specification, at
tribute, and user-specified procedure to call Search
Engine in order to find and process all matching 
files in a given directory. SearchEngineAll then calls 
SearchEngine a second time. This time, however, 
SearchEngineAll searches for subdirectories by spec
ifying the directory attribute bit for the search. 
SearchEngineAll then uses procedure SearchOneDir, 
which is passed as a procedural parameter of type 
Proc, to process the subdirectories that have been 
found. 

Like SearchEngineAll, SearchOneDir makes two 
calls to the regular SearchEngine-one call matches 
files, and the other call searches for more directo
ries. Hence, SearchOneDir and SearchEngine form 
a recursive loop. At each level of nesting, SearchOne
Dir uses SearchEngine to look for any subdirectories. 
If SearchEngine finds any subdirectories, it calls 
SearchOneDir again. This process continues until all 

28 TURBO TECHNIX September/ October 1988 

of the subdirectories located beneath the initial path 
passed to SearchEngineAll have been processed. 
(For a discussion of recursion, see "Recursing with
out Cursing," TURBO TECHNIX,Julyl August, 1988.) 

Other handy routines for directory searches are 
included in ENGINE.PAS. Function Good.Directory 
returns True only if its SearchRec parameter refers 
to a file that has the directory attribute and is neither 
the current directory nor the parent directory (i.e., 
neither"." nor" .. "). ShrinkPath removes the last sub
directory from a path, using Turbo Pascal 5.0's new 
FSplit procedure. Procedure ErrorMessage then 
prints a message that's appropriate to the DOS error 
code passed to this procedure. These other routines 
are used in the example programs. 

INSTANT DISK UTILITIES 
The various routines in Engine let you write useful 
DOS disk utilities with very little additional code. Dir
Sum (Listing 2) shows just how tiny a program that 
uses the Engine unit can be. Small enough to fit on 
one 25-line screen, DirSum manages both to display 
the names of all of the files in the current directory 
and to tally their sizes into one total size value. How 
can DirSum be so small? Because all of the work 
happens elsewhere. DirSum passes procedure Write
It to SearchEngine, which causes the engine to write 
the name of every file that it finds. When DirSum 
has displayed the names of all of the files in the cur
rent directory, it then displays the total number of 
bytes of disk space that these files occupy. That's aw
fully easy, though. Let's give the search engine more 
of a challenge. 

WHERE.PAS (Listing 3) contains Where, a pro
gram to find files that match a file specification lo
cated anywhere on your disk. With SearchEngineAll, 
a task like this is almost ridiculously simple. Simply 
pass the path, file template, and file attribute to 
SearchEngineAll, along with the procedure for pro
cessing each found file . In this case, procedure 
ShowFile displays the full pathname of each found 
file and-as a bonus-updates a tally (as does Dir
Sum) of how much disk space the found files occupy. 
ShowFile uses standard output for its screen displays 
(note that the Crt unit is not named in the USES 
statement). A handy disk file of found files can be 
created by redirecting Where's output to a file. For 
example, the invocation WHERE*·* > AL
LFlLES.DIR creates a file named ALLFILES.DIR 
that lists the name of every file located anywhere on 
the current volume. 

DELBAK.PAS (Listing 4) contains program Del
Bak. DelBak performs a useful housecleaning task
it deletes all .BAK files on the current volume. If you 
haven't purged your .BAK file collection in a while, 
you may find that these files occupy tens or even 
hundreds of thousands of bytes of h ard disk space. 

DelBak is similar in structure to Where. Again, 
SearchEngineAll does all of the work. The file spec
ification is fixed as "*.BAK." The action procedure 
passed to SearchEngineAll is DelFile, which simply 
deletes the found file and notes how many bytes 
were saved. 

story continues on page 36 
listing begins on page 34 





... with our new 
What started 
modestly 
enough in 
November of 
1983 with the 
launch of our 
first program, 

Turbo Pascal®, became a revo
lution and it has been going like 
a rocket ever since. 

We've changed the way you 
program. We invented inte
grated environments with Turbo 
Pascal and we brought that to 
all our languages - to make you 
instantly at ease with our lan
guages. (No one else has even 
tried to do that for you.) Read 
these pages. You' ll see that the 
revolution continues. 

Newl Turbo 
Assembler/Debugger 

It's Assembler magic and a 
revolution in source-level 
Debugging . 

New Turbo Debugger 
debugs all sizes 

Noth ing is too big or too 
small , too simple or too compli
cated . Nothing. With EMS 
support, remote debugging, and 
386 virtual machine debugging, 
there's no limit to the size of 
program you can debug. In fact 
with 386 virtual machine mode, 
debugging takes zero, zip, nil, 
no bytes of conventional mem
ory. 

See what's happening 
Multiple overlapping windows 

let you look at code and data 
and work at any level - down to 
CPU or up to source level. You 
can see it all with multiple views 
of the program you're debug
ging : source code, variables, 
CPU registers, call stack, 
watches, breakpoints, memory 
dump, and more. And a new 
"session-logging" feature tracks 
and records your every move. 

TURBO 
~~™Bl~R/ 
D~BUGG~R 

TURBO 
ASSEMBlER/ 
DEBUGGER 

~(~Nh.q: 

tiB:;iq: 

l·t~;v 

=··ii()'tit•l 

--

We've brought "what 
if" to Debugging I 

Our breakpoints give you 
more control than anyone 
else's. Ordinary debuggers only 
get you to a stop, then they 
stop. With ours you control 
When they happen and What 
happens next. When our break
points are triggered you can 
simply stop, or you can print 
expressions, run code, send 
messages to the session log, or 
even evaluate an expression 
with user-defined function calls. 
You can control when these 
breakpoints occur because all 
our breakpoints are conditional. 
In plain and simple terms we've 
brought "what if" to debugging. 

Unique Data 
Debugging features 

Plain Vanilla debuggers can 
only give you code debugging. 
Our new Turbo Debugger gives 
you data debugging too . Now 
it's easy to find the data you 
want. You can browse through 
your data from the simplest 
byte to the hairiest data struc
ture, inspect arrays, and walk 
through linked lists. All by point 
and shoot. And once you've 
found the data you want, you 
can get all the information you 
want about it, and you can 
change it. 

Feature highlights 
Multiple overlapping views 
o Source 

o Watches 

o Variables 

o Breakpoints 

o Call Stack 

o CPU 

o Registers 

o Numeric Processor 



Debugger, Assembler, & .. • 

Shown here is Turbo Debugger in action. 

o Memory Dumps 

o Session Log 

o Files 

o User Screen 

Breakpoints 
o Can perform these actions: 

Stop, Print Expression, Run 
Code, Log Expression 

o Can break on arbitrary condi
tion, memory changed, pass 
count; attach to specific line 
of code, or apply continuously 

o Includes breakpoints, 
tracepoints, watchpoints, and 
conditional breakpoints 

Debug Any Program 
o Turbo Pascal, Turbo C, and 

Turbo Assembler 

o EMS support 

o 386 virtual machine debugging 

o Remote machine debugging 

o Supports CodeView®compati
ble executables 

Data Debugger 
o Follow pointers through linked 

lists 

o Browse through arrays and 
data structures 

o Variables view lets you see all 
defined data 

o Displays type and value infor
mation 

o Change data values 
Minimum system requirements: For the IBM 
PS/2 and the IBM family of personal com
puters and all 100% compatibles. PC DOS 
(MS DOS) 2.0 or later. 384K minimum. 

New Turbo 
Assembler® lets you 
write the tightest, 
fastest code 

Turbo Assembler is faster 
than other assemblers: not just 
by a little, but by factors . You 
can use it on your existing 
code; it's fully MASM compati
ble, 4.0, 5.0, and 5.1. 

You choose the level of com
patibility- even MASM can't do 
that. Turbo Assembler takes you 
beyond MASM, with significant 
new Assembly language exten
sions, more complete error 
checking, and full 386 support. 
Turbo Assembler is designed for 
easy interfacing with high-level 
languages like Turbo Pascal and 
Turbo C. (We use Turbo Assem
bler on Quattro®, our best
selling spreadsheet program; 
now you can write your own 
best-seller with Turbo Assem 
bler!) 

Turbo Assembler and Turbo 
Debugger are two of our secret 

1) MENU SYSTEM: Global and local menus 
let you easily control and configure your 
programming environment. 

2) VIEWS MENU: Multiple overlapping win
dows; 12 different views of the debugging 
session 

3) BREAKPOINT MENU: Powerful breakpoint 
capabi lities; you can set local or global 
breakpoints. Device driver for 80386 and 
hardware assist breakpoints. 

4) DATA MENU: Versatile data inspection fea
tures; walk through linked lists using point & 
shoot. 

5) MODULE VIEW: One or more module 
views show the multiple files that can make 
up a program. 

6) WATCH WINDOW: Watch variab les and 
expressions changes as you step through 
your code. 

7) LOG VIEW: Session log lets you keep 
track of your debug operations, contents of 
windows, and comments to annotate impor
tant points. 

weapons, now they can be 
yours. 

Feature highlights 
o Factors faster than other 

assemblers 

o Full MASM (4.0, 5.0, and 5.1) 
compatibility 

o Significant new assembly lan
guage extensions 

o Easy interfacing with high
level languages including 
Turbo C and Turbo Pascal 

Turbo Assembler/Debugger: 
only $149 .95 

For the IBM PS/ 2 and the IBM family of per
sonal computers and all 100% compatib les. 
PC DOS (MS DOS) 2.0 or later. 256K mini
mum. 

*Customer satisfaction is our main concern; 
if within 60 days of purchase this product 
does not perform in accordance with our 
claims, call our customer service department 
and we will arrange a refund . 

t Run on an IBM PS/2 Model 60. 

Prices and specifications subject to change 
without notice. 

All Borland products are trademarks or reg
istered trademarks of Borland International. 
Other brand and product names are trade
marks or registered trademarks of their 
respective holders. Copyright (c) 1988 
Borland International, Inc. Bl 1279 



... new Turbo C 2.0 
Newl Turbo C® 2.0 
With integrated 
source-level debugger 

Borland's revolutionary new 
Turbo C 2.0 is the one C com
piler that does it all; nothing is 
half done or not done at 
all- instead, your every pro
gramming need is met. (We 
wrote our best-selling word 
processor Sprint with Turbo C 
2.0; when you write with Turbo 
C 2.0, the word is "revolution
ary." 

At better than 16,000 lines a 
minutet, Turbo C 2.0 compiles 
your code 20-30% faster than its 
predecessor Turbo C 1.5 which 
was already faster than any other 
C compiler. 

Make bugs bug off 
Nice bugs are dead bugs, and 

Turbo C 2.0's integrated source
level debugger lets you find 
them and flatten them in a flash . 
You can set multiple breakpoints, 
watch variables and evaluate 
expressions - all from inside 
your integrated C environment. 

Turbo C 2.0 has the 
best of everything 
o Includes the compiler, editor, 

and debugger, all rolled into 
one 

o Integrated source-level 
debugger lets you step code, 
watch variables, and set break
points 

o Develop and debug produc
tion-quality code in all six 
memory models 

o Support for Turbo Assembler 
and Turbo Debugger 

o Make facility with automatic 
dependency checking 

o Graphics library with over 70 
graphics functions including 
multi-font graphics text 

Debugging in the Turbo environment: shown here an expression is be ing added to 
the Watch window in Turbo C. The Execution Bar highlights the next line the 
debugger w ill execute. 

o Faster than ever; compiles and 
links 20-30% faster than Turbo 
c 1.5 

o EMS support 
o Numerous levels of error 

checking with built-in Lint 

Turbo C 2.0: only $149.95 

Minimum system requirements: For the IBM 
PS/2* and IBM family of personal computers 
and all 100% compatibles. PC-DOS (MS-DOS) 
2.0 or later. 448K minimum (320K fo r the com
mand- line version). 

Turbo C2.0 
Professional 

Turbo C 2.0 plus both Turbo 
Assembler & Turbo Debugger: all 
three programs rolled into 
one - the one C package that has 
everything. A complete set of 
tools that caters to every level of 
programming expertise. 

Turbo C Professional: $250 

TURBO C 

....... I~ ······· I I· 

Newl Turbo Pascal® 
5.0 with integrated 
source-level debugger 

Turbo Pascal, the worldwide 
favorite with over a million cop
ies out there, just got even 
smarter. The best got better. 
Meet Version 5.0. In a word, it's 
revolutionary. 

Not only do you go code-rac
ing at more than 27,000 lines a 
minutet, you also now go into a 
sophisticated debugging envi
ronment - right at source-level. 
It's completely integrated and 
bullet-fast. 

Turbo Pascal's new integrated 
debugger takes you inside your 
code for fast fixes. You step, 

TURBOC 

.w..._ ... 

"'""" 

TURBO C I 



••• new Turbo Pascal 5.0! 

Shown here is the Eva luate/M od ify window of Turbo Pascal : look at expressions, 
exa mine structu red data types, cha nge variables on the fly. 

trace, set multiple breakpoints. 
You modify variables - as you 
debug-and watch full expres
sions at run time. 

Orbitwith Units 
Break your code into Units. 

Compiled units make everything 
go faster! Your separately com
piled Units car, be shared by 
multiple programs and linked in a 
flash with Turbo Pascal 's built-in 
Make utility and smart Linker. (We 
give you a powerful library of 
standard Units including the spec
tacular Borland Graphic Interface 
and our state-of-the-art overlay 
manager.) 

TURBO 
PASCAL 

...,,.,,..MM 

·~-......... , ""-· 

TU~ 
~CAl 

Debugging: The inside 
story 

Turbo Pascal 's new integrated 
source-level debugger takes you 
inside your code to fix errors fast. 
(Don't worry about errors, every
one makes them; but with the 
right debugger, this one, it's a fast 
fix.) 

Feature highlights 
o Includes the compiler, editor, 

and debugger, all rolled into 
one 

o Integrated source-level 
debugger lets you step code, 
watch variables, and set break
points 

o Support for Turbo Assembler & 
Turbo Debugger 

o Overlays, including EMS sup
port 

o IEEE standard floating point 
emulation 

o Smaller, tighter programs : 
Smart Linker strips both unused 
code and data 

o Procedural types, variables, and 
parameters 

o EMS support for editor 

Turbo Pascal 5.0 : only $149.95 

Minimum system requ irements: For the IBM 
PS/2* and IBM family of personal computers 
and all 100% compatibles. PC-DOS (M S-DOS) 
2.0 or later. 448K minimum (256K for the com
mand-line version). 

Turbo Pascal 
Professional 

Turbo Pascal 5.0 plus both 
Turbo Assembler & Turbo 
Debugger : all three programs 
rolled into one - the one Pascal 
package that has everyth ing. A 
complete set of tools that caters 
to every level of programming 
expertise. 

Turbo Pascal Professional: $250 

As you can see from all these 
brand new programs, the revolu
tion is alive and well. Borland 
continues to bring you the best 

For the dealer nearest you, 
call (800) 543-7543. 

BORLAND 



LISTING 1: ENGINE . PAS 

UNIT Eng i ne; 

{SV· } 

(*********************************************************) 
C* SEARCH ENGINE *) 
C* Input Parameters: *) 
(* Mask The file specification to search for *) 
(* May contain wi ldcards *) 
(* Attr Fi le attribute to search for *) 

(* Proc Procedure to process each found file *) 
(* *) 

(* OUput Parameters: *) 

(* ErrorCode : Contains the final error code . *> 
(* *) 
(*********************************************************) 

(**********************) 
(**) INTERFACE (**) 
( **********************) 

USES DOS ; 

TYPE 
ProcType = PROCEDURE (VAR S : SearchRec; PathStr); 
FullNameStr = STRINGC12J; 

PROCEDURE SearchEngine(Mask : PathStr; 
Attr Byte; 
Proc : ProcType; 

VAR ErrorCode : Byte); 

FUNCTION Goodli rectory(S : SearchRec) : Boolean; 
PROCEDURE ShrinkPath(VAR path PathStr); 
PROCEDURE ErrorHessage(ErrCode Byte); 
PROCEDURE SearchEngi neA l l (path PathStr; 

( ...................... ) 
(**) IMPLEMENTATION (**) 
( **********************) 

VAR 
EngineMas k 
EngineAttr 
EngineProc 
EngineCode 

Ful lNameStr; 
Byte; 
ProcType ; 
Byte ; 

Mask Fut lMameStr; 
Attr Byte; 
Proc ProcType; 
VAR ErrorCode : Byte) ; 

PROCEDURE Searc hEng i ne(Has k : PathStr; 
Attr : Byte; 
Proc : ProcType; 
VAR ErrorCode : Byte); 

VAR 
S SearchR ec; 
P PathStr; 
Ext : Extstr ; 

BEGIN 
FSplit(Mas k, P, Mas k, Ext); 
Mask := Ma sk + Ext; 
FindFirst(P +Mas k, Attr, S); 
IF Oos Error <> 0 THEN 

BEG! N 
ErrorCode :== Oos Error ; 
Exit; 

END; 

WHILE Oos Error 0 DO 
BEGIN 

Proc(S, P); 
finclljext(S); 

1/~~~Error = 18 THEN ErrorCode := 0 
ELSE ErrorCode := OosError; 

END; 

FUNCTION Goodl i rectory(S : SearchRec) Boolean; 
BEGIN 

Gooc;l)irectory : ==CS . name<> 1 • 1 ) AMO 
CS.name <> 1 • • 1 ) AMO 
(S.Attr AND Directory= Directory); 

ENO; 

PROCEDURE ShrinkPath(VAR path : PathStr); 
VAR P : Byte; 

Ot.mny : NameStr; 
BEGIN 

FSplit(path, path, Ot.mny, Ot.mnyJ; 
Oec(path [OJ J; 

ENO; 

{Sf+} PROCEDURE SearchOneDir(VAR s : SearchR ec ; 
{Recurs ive procedure to search one di rectory} 

BEGIN 
IF Goodlirectory(S) THEN 

BEGIN 

PathSt r ); {SF · } 

34 TURBO TECHNIX September/ October 1988 

P :== P + S.name; 
SearchEngine(P + 1 \ 1 + EngineMask, EngineAttr, 

EngineProc, EngineCode); 
SearchEngineCP + 1 \*.*', Directory OR Archive, 

SearchOneOir, EngineCode); 
END; 

END; 

PROCEDURE SearchEng ineA l l (path PathStr; 
Mask Ful lNameStr; 
Attr Byte; 
Proc Proclype; 
VAR ErrorCode : Byte); 

BEGIN 
(*Set up Unit global variables for use in 

recursive di rectory search procedure*) 
EngineMask :== Mask; 
EngineProc := Proc; 
EngineAttr := Attr; 
SearchEngineCpath +Mask, Attr, Proc, ErrorCode); 
SearchEngine 
(path+ 1

• . •
1

, Directory OR Attr, SearchOneOir, ErrorCode); 
ErrorCode : ::: EngineCode; 

ENO; 

PROCEDURE ErrorMessage(ErrCode Byte); 
BEGIN 

CASE ErrCode OF 
0 {OK • • no error} 
2 Writeln( 1 File not found•); 
3 llriteLn( 'Path not found'); 
5 Writeln( 1 Access denied'); 
6 llriteLn('lnvalid handle'); 
8 Writeln( 'Mot enough memory• l; 
10 Writeln( 1 Jnvalid envirorment 1 ); 

11 : Writeln( 1 Jnvalid format'); 
18 : ; {OK - - rnerely 11 no more files 0 } 

ELSE llr i teLn( 'ERROR #', ErrCode); 
END; 

END; 

ENO . 

LISTING 2: OIRSIM.PAS 

{SR·,S+,l+,O+,F·,V·,B·,N·,L+} 
<SH 2048,0,0 } 
PROCRAH 0 i rSun; 

(********************************************************) 
(* Uses SearchEngine to write the names of all fi Les *) 
c• in the current directory and display the total disk *) 
(* space that they occupy. *) 

(********************************************************) 
USES OOS,ENGINE; 

VAR 
Tenplate 
Errorcode 
Total 

PathStr; 
Byte; 
Long Int; 

{SF+} PROCEDURE Writelt(VAR S : SearchRec; P : PathStr); {SF · } 
BEGIN WriteLn(S.name); Total := Total + S.Size END; 

BEGIN 
Total := O; 
GetOir(O, Tenplate); 
IF Length(Tenplate) = 3 THEN Oec(Tenplate[OJ ); 
CAvoid ending up with "C:\\*.*"!} 
T~late := Teq:>late + 1 \*.* 1

; 

SearchEngineCTen..,l ate, AnyF i le, Wri telt, ErrorCode); 
IF ErrorCode <> O THEN ErrorHessage(ErrorCode) ELSE 

Writeln( 'Total size of displayed fi Les: 1 , Total : 8); 
END. 

LISTING 3: WHERE.PAS 

{SR · ,S+,l+,O+,F·,V-,B·,N-,L+} 
<SH S4000,0,0} 
PROGRAM where; 

(***********************************·····················) 
(* Uses SearchEngine to find and display matching files *) 
(*in any sl.bdirectory and total their sizes (e.g., to *) 
(*find all Pascal files, execute WHERE *.PAS). *J 

(********************************************************) 
USES OOS,Engine; 

VAR 
tenplate, path 
ErrCode 
Tot el 

STR I NG; 
Byte; 
Long Int; 

(SF+} PROCEDURE Showf i le(VA~ 
BEGIN 

WriteLn(path + S.Name); 
Total : = Total + S.Size 

END; 

SearchRec; path PathStr); {SF · } 



Sophisticated User Interfaces in Minutes! 

Windows for data-entry (with full-featured editing), context-sensitive help, Lotus-style menus, pop
up menus, and pull-down menu systems. Overlay them. Scroll within them. 

Users and critics say it all!. .. 

" ... the best I've used ... The code that it generates is excellent, with every feature you 
could conceivably desire . ... if you have problems, they give excellent technical advice 
over the phone . ... It saves time, is flexible and produces screens which are state of the 
art. " Sally Stott, Software Developer 

" ... the best screen generator on the market." George Kwascha, TUG Lines, Nov/ Dt:e 87 

" ... the Cadillac of prototyping tools for Turbo Pascal. ... Unlike the others, turboMAGIC 
is extremely flexible . ... [it} clearly offers the greatest variety of options." 

Jim Powell, Computer Language, Jun 87 

"Fast automatic updating of dependent fields adds flair to your input screens. . .. 
turboMAGIC will be a blessing for programmers who would rather not write the user 
interface for every program. " Neil Rubenking, PC Magazine, 24 Feb 87 

"!was impressed with the turboMAGIC package .... the procedures created by turbo MA G!C 
are well commented and easy to add to your own code." 

Kathleen Williams, Turbo Tech Report, May/ Jun 87 

" ... definitely a recommended program for any Turbo Pascal programmer, novice or expert." 
Terry Lovegrove, Library Hi Tech News, Oct 87 

ORDER your Magic TODAY! Only $199. 

CALL TOLL FREE 800-225-3165 or 205-342-7026 

sophisticated 
software 
m 

6586 Old Shell Road, Mobile, AL 36608 
Requires 5 l 2K IBM PC compatible and Turbo Pascal 4.0. 30-Day Money Back Guarantee. Foreign orders add $15. 



SEARCH ENGINE 
continued from page 28 

TWO LITTLE ENGINES 
Keep the compiled ENGINE.TPU handy; you'll find 
yourself thinking of new ways to use it all the time. 
When you need to search for files within a single di
rectory, use SearchEngine. For searches that traverse 
a tree or a subtree, use SearchEngineAll. 

Unit Engine illustrates an important principle of 
software development: The more general a tool, the 
more different problems it solves, and the more time 
that it saves you. Turbo Pascal 5.0's procedural types 
make possible the creation of truly general tools 
whose tasks can be specified at runtime. Other "en
gines" suggest themselves, such as a graphics func
tion plot engine that receives a function to plot via a 
function parameter, or a general-purpose sort unit 
that takes a function that specifies which of two data 
items is considered greater than the other on some 
sort sequence. Once you start thinking of program 
statements as just another kind of data, these kinds 
of solutions will seem the natural way to do business 
in a system-level language such as Turbo Pascal 5.0. • 

Neil Rubenking is a professional Pascal programmer and 
writer. He is a contributing editor for PC Magazine, and 
can be found daily on Borland 's CompuSeroe forums an
swering Turbo Pascal questions. 

Listings may be downloaded from Library I of Compu
Seroe forum BPROGA, as PASENG.ARC. 

"The cost involved, in writing one 
of these geometric routines, is more than 
the price of the TurboGeometry Library." 

TurboG 

Are you programming or planning to program CAD/ CAM 
or graphics applications? Many hours, even days, can be 
spent in writing and debugging geometric routines. 
TurboGeometry Library can relieve you of those time 
consuming tasks that are part and parcel of every 
CAD/ CAM or graphics program. There are over 150 
routines in the library, supported by example programs 
and a 400 page manual. The source code is included. 30 
day guarantee. Need IBMPC or Compatible, Turbo Pascal 
4 .0, Turbo C, or MSC. $149.95 plus $5.00 S&H in US. 
VISA, MasterCard, Check, PO, MO. No COD's Send for 
additional information or call 214-423-7288. 

Disk Software. Inc .• 2116 E. Arapaho #487 
Richardson, Texas USA 75081 

"In CAD/CAM or graphics, it all comes down 
to using geometry" 

36 TURBO TECHNIX September/ October 1988 

PROCEDURE Validate; 
{Validate the conrnand line parameter} 

VAR P : Byte; 
Ext : Extstr; 

BEGIN 
IF Paremcount <> , THEN 

BEGIN 
llr i teLn( 'SYNTAX: "llHERE [pathJfi lespec'" l; 
Halt; 

ENO · 
FSpl it(ParamStr(1), path, t""'late, Ext); 
IF Length(path) = 2 THEN path :=path+'\'; 
t""'late := t"'lllate + Ext; 
(*IF no path specified, search from root of 

current volune*) 
IF path = '' THEN 

BEGIN 
GetDir(O, path); 
IF Length(path) = 2 THEN path : = path+ '\' 
ELSE path [OJ := #3; 

END; 
END; 

BEGIN 
Total : = O; 
Validate; 
llri teLn 
( 1 Searchingfor 111 teft1)late 111 ;norbelow 111 path"")• 
SearchEngineAl l(paih, ten-plaie, Archive, ShowFi le, Er~Code); 
llriteln 
('These files occupy ',Total : 8,' bytes of disk space.') 

END. 

LISTING 4: DELBAK.PAS 

{SR· ,S+, l+,D+,F· ,V· ,B- ,N- ,L+ > 
{SM $4D00,0,D} 
PROGRAM DelBak; 

( ********************************************************) 
(*Uses SearchEngine to find and delete all *.BAK files*) 
(* ;n any subdirectory in the current volune. *) 
( ********************************************************) 

USES DOS,Engine; 

VAR 
path : PathStr; 
ErrCode : Byte; 
Nurber : Integer; 
Size : Longlnt; 

{SF+} PROCEDURE DelFile(VAR S : SearchRec; path : PathStr); {SF-} 
VAR F : FILE; 
BEGIN 

lnc(Size, S.Size); 
Assign(F. path + S.name); 
Erase(F); 
Jnc(Nllltlerl; 

END; 

PROCEDURE Initialize; 
BEGIN 

Nllltler := O; 
Size := O; 
GetDir(O, path); 
IF Length(path) = 2 THEN path :=path + '\' 
ELSE path [OJ := #3; 
Writeln('Going to delete All *.BAK files ;n the current volune.'>; 
Writeln( 'Press <Return> to proceed, ~ Break to stop. 1 ); 

ReadLn; 
END; 

BEGIN 
Initialize; 
SearchEngineAl l(path , '* .bak'. Anyfile, Delfi le, ErrCodel; 
llriteLn 
('Erased 1 ,Nutber, 1 *.BAK files for a saving of •,size,• bytes'>; 

END. 



With Our New User Interface Manager 

The most important part of your program 
is the user interface ... . Getting that face 
right used to be the hardest part of appli
cation development. Not any more. 

Introducing Facelt~· Creating menus 
has never been easier with this new state-of-

More Than Just A Pretty Face. 
Facelt faces are powerful and flexible. Use 
them to design front-ends, build context
sensitive online help systems or for pro
totyping. Facelt menus can return to 

the-art user interface manager. Facelt's totally Build this interface instantly Simply display the 

your program the highlighted item, the 
name of the menu and the number of 
the item selected or a return string from 
another menu. 

different approach to menu creation gives top level menu. Then interactively link the other 
you perfect faces every time. You simply supply menus together, automatically 

the data and Facelt does the rest. It creates the face you need
pop-ups, pull-downs, horizontal menus, help windows, dialog 
boxes or multiple column menus, automatically, based on the data 
you provide. And don't worry if your files contain lots of text, Facelt 
has built-in virtual windowing and scrolling capabilities. 

How Facelt Works. 
1. Define the contents of your menus using any editor or import 
the data directly from a .DBF file. 
2. Then Facelt, using this data, designs the interface you want. 
3. Use the interface as is. Or, go into the interactive mode to change 
it on the screen. Take total control over menu customization. Change 

Borland 

Microsoft .DBF file 

dBASE 

Pull-down 

window shapes, 
border styles 
and color every 

Help Window element of the 
Horizontal 

~---Grid 

menu right 
down to the 
individual 
menu item. 

4. You're done. The Facelt faces are ready to be called directly 
from your program. 

Laying Out Different Menuing Systems Now Takes 
Minutes. Using a new technology called "dynamic menuing;· 
you get a complete menuing system in minutes. Facelt automat
ically draws the boxes, puts the data into the menus, links them 
together, positions them, handles all cursor control, saves and 
restores the screen and provides mouse support. Create menus by 
specifying any or all records or line numbers. Plus, because all 
Facelt faces are live menus and not static, you can customize or 
totally redesign them right there on the screen. Tum a pull
down into a Lotus® style menu in seconds without any coding 
or compiling! 

Face It" 
and put your best face forward. 

Only $99 
Call Today 212-787-6633 

Black & White International, Inc. 
PO. Box 21108 

New York, NY 10129 

Facell Features: Scrolling menus with scroll lrJrs, he-J.ders and footers. onscreen WYS IWYG menu customization. hi ll 
color support. separators/blank items, initial chamcter selection, item/ menu level help, default/ manual placement. 
unavailahle items, retum strings, runtime module uses on ly 19K. Supports: The IBM• PC, XT, AT PS/2• and true 
compatibles, EMS :n and above, 4) line EGA mode, 50 line VGA mode, 40 column mode, Microsoft mouse 
compatible. Requires DOS 2.1 or higher. Not copy protected. 

Facell is a trademark of Black & White lntemational, Inc. Other brand and product names are trademarks or 
registered trademarks of their respective holders. 



THE RETURN OF 
OVERLAYS 
Turbo Pascal 5 .0 uses disk storage 
and EMS to run your biggest program 
in as little memory as possible. 

Bruce F. Webster 

Overlays vanished in version 4.0 of Turbo 
Pascal because the internal changes to 
memory allocation made support of the 
old 3.0-style overlays impossible. With the 
advent of Turbo Pascal 5.0, however, a 

SQUARE ONE new and much better implementation of 
overlays has now appeared. In this article, we'll take 
a close look at how the 5.0-style overlays work, and 
the ways that you can use them. 

THE MEMORY GAME 
People who first met Turbo Pascal with version 4.0 
may well be asking, "What are overlays anyway, and 
why would I want to use them?" Let's take the sec
ond part of the question first. When a Turbo Pascal 
program is run, the main program and all of the 
units that it uses are loaded into memory. The main 
program and each unit occupy separate code segments 
that can each be up to 64K in size. All declared vari
ables are created in memory within a single data seg
ment, which also has a 64K size limit. In addition, a 
program stack is allocated; its size is determined 
either by the O ptions/ Compiler/ Memory Size/ Stack 
command or by the $M compiler directive in the 
main program. Finally, any remaining memory can 
be allocated to the heap through $M; this is the loca
tion in memory where any dynamic variables (which 
are created using the New or GetMem procedures) 
are allocated. Of course, a certain amount of mem
ory is already occupied by DOS, any memory
resident programs you might have already loaded, 
and (if the programs are running under the Turbo 
Pascal Integrated Environment) by Turbo Pascal 
itself. 

Although this may seem like a lot to have in mem
ory all at once, most of the time there is memory 
room to spare. However, you can run out of available 
memory: 

• If your program becomes very large; 
• If you need to dynamically allocate large data 

structures; or 
• If you have other programs loaded at the same 

time. 

38 TURBO TECHNIX September/ October 1988 

If your computer doesn't have a lot of memory, your 
program may not load; if it does load, it may halt 
prematurely with a memory allocation error. 

A solution to this problem is to break your pro
gram up into relatively independent chunks, and 
then load those chunks into memory as they are 
needed. Once a given chunk is no longer needed, 
the memory that it formerly occupied can be reused 
for a different chunk. 

This brings us back to the first part of the earlier 
question, "What are overlays?" Basically, overlays are 
those "chunks" I've been talking about. More specif
ically, overlays are separately compiled Turbo Pascal 
units that are loaded into memory as they are need
ed, and then removed from memory until they are 
required again. This process is handled for you in a 
painless and generally invisible way-you simply tell 
Turbo Pascal which units are to be used as overlays, 
and then perform a few other preparations. (For 
more information about units in general, see "Get
ting to Know Units," TURBO TECHNIX, November/ 
December, 1987.) 

HOW OVERLAYS WOR K 
When you compile a program that uses overlays, all 
of the executable code for the overlay units (the units 
that are designated as overlays) is written to an over
lay fi/,e rather than to the usual .EXE file. The overlay 
file has the same filename as the .EXE fi le, with the 
extension .OVR instead of .EXE. 

At the same time, a unit known as the "overlay 
manager" is linked into your program. The overlay 
manager determines which overlay unit or units 
should be in memory at any given moment, and 
loads them in from the overlay file as needed. 

When a program that uses overlays is run, the 
main program, the overlay manager, and all non
overlaid units are loaded into memory where they 
remain while the program executes. The data seg
ment and the stack are also created and used in the 
same manner as with a nonoverlaid application. 

continued on page 40 



.~Lahey Computer Systems, Inc. 
~~- Sets - New FORTRAN Standard! 

Introducing the latest addition to our line of PC FORTRAN Language Systems
Lahey Personal FORTRAN 77 Version 2.0 

What You Get When 
You Purchase 
Lahey Personal 
FORTRAN: 
Lahey Experience. 
We are experts in designing 
and implementing FORTRAN 
Language Systems. Lahey 
has been producing 
mainframe implementations 
since 1967 and PC 
FORTRANs (F77L) since 1984. 
In fact, F77L was named the 
" EDllDR'S CHOICE" among PC 
FORTRANs by PC Magazine. This 20-
year span of specialization has been 
incorporated into the design of our 
revolutionary Lahey Personal FORTRAN 77. 

LAHEY SLASHES COMPILATION TIME. 
Compilation times (in seconds) for Whetstone Prograrvi (WHETS3H .FOR) 

0 
Test conducted on IBM AT runnmg al 6MnL w1m 80287 

--=La::.:h.:::Je t__:_:::"''=~"::::''.:..:FO=AT=AA=N '=' .:.::'""=''°".:..:'=o f::::"'::...l ---11.57 

C~M~icr:Q!os~o[ft ==~'~0RT~A~AN~ve~"~""~'"~fs~1so~1 ••••••••• 54.08 

Ryan McFarland FORTRAN VersK>n 2 11 (S59SJ 

Customer Support: 
Our philosophy is that customer relationships begin, rather than end, at the 
point of sale. Services include free technical support, electronic bulletin board 
for fast service and information access, and newsletters to keep you up to 
date on our latest developments. 

Purchasing the Lahey Personal FORTRAN 77 gives you software designed 
by FORTRAN experts, a feature-loaded product with industry-leading 
compilation speed, and quality technical support; all for $95. 

International Representatives: Australia: Comp. Transitions, Tel. (03)5372786 • Canada: Barry Mooney & Assoc., 
Tel. (902)6652941 • Denmark: Ravenholm Computing, Tel. (02)887249 • England: Grey Matter Ltd., Tel. (0364)53499 
• Holland: Lemax Co. B.V. (02968)4210 • Japan: Microsoftware Inc., Tel. (03)813822 • Norway: Polysoft A.S. 
(03)892240 • Switzerland: DST Comp. Services, Tel. (022)989188 

MS-DOS & MS FORTRAN are trademarks of Microsoft Corporation . 

We have a complete line of PC FORTRAN Language Systems. 
For developing or porting programs there is no substitute for a Lahey. 

Lahey Personal .. .... So much for so little $95 

F77L .. .. ............... " Editor's Choice" PC Magazine $477 

F77L-EM/16 .. .. ...... Ability to write programs as large as 15 MB $695 

F77L-EM/32 .. ...... . New 32-bit-Programs up to 4GB on 80386 $895 

CALL FOR MORE INFORMATION 

Feature Loaded: 
• Full implementation of the 

ANSI X3.9-1978 FORTRAN 
Standard 

• Fast Compilation (see chart) 
• Popular Language 

Extensions highlighted in the 
manual 

• Source On-Line Debugger 
• English Diagnostics and 

Warning Messages 
• LOGICAL'.'1 , LOGICAL*4 
• INTEGER*2, INTEGER*4 
• REAL'.'4, REAL*S, and 

DOUBLE PRECISION 
• COMPLEX*S, COMPLEX*16 
• Recursion 
• 31-Character Names 
• Trailing Comments 
• Cross Reference and Source 

Listings 
• 64 KB Generated Code 
• 64 KB Stack Storage 
• 64 KB Commons, Constants 

and Saved Local Data 
• Math coprocessor emulation 

runs with or without a 
math coprocessor chip 

• 400-Page User Manual 
SYSTEM REQUIREMENTS: 

256K Ram MS-DOS (2.0 or later) 

s95 
Lahey is setting the 

PC FORTRAN Standard. 
TO ORDER 

1-800·548·4 778 
(specify disk size) 

Lahey Computer Systems, Inc. 
PO. Box 6091 

Incline Village, NV 89450 
Telephone: (702) 831-2500 

TELEX: 9102401256 
FAX: (702) 831-8123 



OVERLAYS WITH 5.0 
continued from page 38 

When a program that uses over
lays is run, however, part of the 
heap is taken away and set aside 
as the overl,ay buffer. By default, 
this buffer is just big enough to 
hold the largest overlay unit; how
ever, you can specify a larger 
buffer to improve performance 
during unit loading. The overlay 
manager then loads as many units 
as possible into the overlay buffer. 

When a routine in an overlay 
unit is called, the overlay manager 
checks if that unit is already in 
memory. If the unit is not in mem
ory, the overlay manager loads the 
requested unit from the overlay 
file into the overlay buffer, and re
moves other units from the buffer 
as needed. If the manager has a 
choice of units to swap out, it's 
"smart" enough to remove the 
unit that was least recently called, 
based upon the assumption that 

the other units in the buffer are 
more likely to be called. This pro
cess is performed automatically, 
without any specific load or un
load requests from your program. 

The net benefit is that a large 
program can run in a limited 
memory space. While the costs are 
four-fold, they can be minimized 
by some attention to detail. First, 
your program may need to be re
structured in order to make it fea
sible to use certain units as over
lays. (This step may actually im
prove your overall program 
design.) Second, a disk access oc
curs each time a unit is loaded 
from disk into memory. These 
disk accesses can be minimized by 
either increasing the size of the 
overlay buffer, or (if your com
puter has expanded memory) by 
instructing the overlay manager to 
load the overlay file (not the over
lay buffer) into expanded mem
ory. Third, the overlay scheme re-

Beat the Deadlines and 
thrill them with Performance!! 

Now there is a better, more productive way to create programs 
that relieves your implementation worries and frees your mind, 
so conquering your next big project becomes child's play! 
Whether you program in Turbo Pascal or Turbo C, we've got 
you covered. Introducing The Developer's Library Series - not 
just a collection of handy routines like most libraries, but a 
complete programming environment. Both libraries are 
compatible, which makes switching from one language to 
another a snap. 

Turbo C or Turbo Pascal 
Developer's Libraries 

Over 120 routines in each library for development of commer
cial software. Includes routines for: networks, multi-user file 
management, menuing, utilities, sample applications,and much 
more. Complete with 450 page text from Howard W. Sams 
Publishing and source code on diskette for IBM PC. 

Only $6995 each 

New ! The Floppy Librarian 
A must for anyone with lots of floppy disks to manage! 

Maintains physical locations of floppy disks, lists files stored on 
any and all disks, tracks file changes and backups and more! 

Stop asking, "Where is it?"! 

Order Now! Only $29~ For IBM PC's & Compatibles 

Perpetual Data Systems, Inc. 

63 Keystone Ave. Suite 206 

Reno, Nevada 89503 

(702) 348-8600 

40 TURBO TECHNIX September/ October 1988 

quires that far calls be used 
throughout all procedure call 
chains that extend into an overlay. 
It also exacts an additional perfor
mance penalty when string literals 
and set constants are passed as 
parameters. Fourth, when floating 
point emulation is used, the inter
rupt vector "backpatching" 
scheme is reinitialized each time 
an overlay is loaded into memory. 
A small performance overhead oc
curs when the overlay's floating 
point code is executed for the first 
time. 

GET READY TO OVERLAY 
Several steps are necessary in 
order to use overlays. 

Units first. The program must first 
be structured to make overlays 
possible. Since only complete 
units can be treated as overlays, 
all sections that are to be overlaid 
must be broken out and put into 
units (if they're not in units al
ready). Overlaid units should be 
relatively independent-they 
should call one another's routines 
as little as possible, but preferably, 
not at all. If one overlay calls rou
tines in another overlay, disk 
"thrashing" may occur-where a 
distraught overlay manager loads 
one overlay and then another in 
rapid succession-bringing pro
gram performance to its knees. 

The Overlay Unit. The main pro
gram must use the Overlay unit, 
which is part of the TURBO.TPL 
library. Overlay contains the over
lay manager and provides several 
routines that allow the program to 
communicate with the overlay 
manager. Also, the unit name 
Overlay must appear in the USF.S 
clause before the names of any of 
the overlaid units. Preferably, 
Overlay should be the first unit 
named. 

Compiler directives. Each unit 
that will be used as an overlay unit 
must be named in its own {$0} 
compiler directive. These direc
tives appear in the main program 
after the USF.S clause, but before 
anything else. The format is 
simply {$0 <unitname>}, where 

continued on page 42 



Mainframe Power for your PC! 
If you need or are accustomed to the 

throughput of a 32-bit mini, induding any of 
DEC's VAX series, MicroWay has great news 
for you. The combination of our NOP compilers 
and our mW1167 numeric coprocessor gives 
your 386 PC, VAX speed!.Jf you don't own a 
386 PC, we provide a number of economical 
PC and AT upgrade paths. 

Many of our NOP Fortran-386 users are 
reporting turn around times that are two to six 
times faster than their VAX. The exact times 
are a function of the VAX processor being used, 
the speed of the 386, the number of users being 
served by the VAX, and the coprocessor being 
used with the 386. There are currently over 400 
developers using our NOP tools to port 32-bit 
applications. To help the 386/1167 engineering 
standard emerge, MicroWay is co-marketing 
several mainframe applications that have been 
ported by our customers. In addition, this ad in-

32-Bit Compilers and Tools 

NOP Fortran-386™ and NOP C-386™ Com
pilers generate globally optimized mainframe 
quality code and run in 386 protected mode 
under Pharlap extended MS-DOS, UNIX, or 
XENIX. The memory model employed uses 2 
segments, each of which can be up to 4 
gigabytes in length. They generate code for the 
80287, 80387, or mW1167. Both compilers in
clude high speed EGA graphics extensions 
written in C that perform BASIC-like screen 
operations . ..... . .... . ........ $595 each 

• NOP Fortran-386™ Full implementation of 
FORTRAN-77 with Berkeley 4.2, VAXNMS 
and Fortran-66 extensions. 

•NOP C-386™ Full implementation of AT& Ts 
PCC with Microsoft and ANSI extensions. 

NOP Package Pricing : 
387FastPAK-16: NOP Compiler, PharLap, 
and 80387-16 Coprocessor . . .... . $1299 

1167FastPAK-16: NOP Compiler, PharLap, 
and mW1167-16 Coprocessor ..... $1695 

NOPWlndowsTM_NDPWindowsincludes80 
functions that let you create, store, and recall 
menus and windows. It works with NOP C-386 
and drives all the popular graphics adapters. 
Library .... . $125, C Source .. ... $250 

NOP Plot™ - Calcomp compatible plot pack
age that is callable from NOP Fortran . It in
cludes drivers for the most popular plotters and 
printers and works with CGA, Hercules, EGA 
and VGA ......... . .. . . . .... . .... $325 

NOP/FFT™ - Includes 40 fast running, hand 
coded algorithms for single and double dimen
sioned FFTs which take advantage of the 32-
bit addressing of the 386 or your hard disk. Call
able from NOP Fortran or NOP Cwith 1167and 
387support ..... .. ................ $250 
387FFT for 16-bit compilers . ......... . . $250 

387BASIC™ - A 16-bit Microsoft compatible 
Basic Compiler that generates the smallest 
.EXE files and the fastest running numeric code 
on the market. .... . .. . . . ... . .... . .. $249 

Micro nay 

Dr. Robert Atwell, a leading defense scientist, 
calculates that NDP Fortran-386 is currently 
saving him $12,000 per month in rentals of 
VAX hardware and software while doubling 

his productivity! 

Fred Ziegler of Aspen Tech in Cambridge, 
Mass. reports ·1ported900,000 lines of 

Fortran source in two weeks without a single 
problem!" AspenTech's Chemical Modeling 
System is in use on mainframes worldwide 

and is probably the largest application to ever 
run on an Intel processor. 

Dr. Jerry Ginsberg of Georgia Tech reports 
"My problems run a factor of six faster using 
NDP Fortran-386 on an mW1167 equipped 

386120 than they do on my MicroVAX II. · 

MicroWay® 
80386 Support 

Parallel Processing 

Monoputer™ 
The world's most popular Transputer develop
ment product runs all MicroWay Transputer 
software using either a T 414 or TSOO. The TSOO 
processor has built-in numerics and provides 
performance comparable to an 80386 running 
at20 MHz with an mW1167. The new 3L Paral
lel C and Fortran Compilers makes this an 
especially attractive porting environment. Can 
be upgraded to 2 megabytes. 
Monoputer with T 414 (0 MB) ... . .... $995 
Monoputer with TSOO (0 MB) .. . .... $1495 

Quadputer™ 
This board for the XT, AT, or 386 can be pur
chased with 2, 3 or 4 Transputers and 1, 4 or 8 
megabytes of memory per Transputer. Two or 
more Quadputers can be linked together to 
build networks with mainframe power which 
use up to 36 Transputers. One customer's real
time financial application has gone from 8 
hours on a mainframe to 16 minutes on a sys
tem containing five Quadputers .... from $3495 

Transputer Compilers and Applications 
MicroWay and 3L offer Parallel languages for 
the Monoputer and Quadputer. 
MicroWay Parallel C .. . ........ . ... $595 
MicroWay Occam2 ...... . .. . .... . . $495 
3L Parallel C . . ... . . . . . . . ..... . . . . $895 
3L Parallel Fortran .. ... .... . ..... . $895 
µField - A specialty finite element analysis 
package targeted at Transputer networks. 
Ideally suited to take advantage of the 6 
Megaflop speed of the Quadputer. . .... $1600 

Call (508) 746-7341 tor our 
tree catalog! 

traduces the first of many utilities that will ease 
the porting of your favorite in-house programs. 
These include tools like NOP-Plot, which 
provides CalComp compatible screen and 
printer graphics, and NOP Windows. 

MicroWay has mW1167 boards in stock that 
run on the Compaq 386/20, IBM PS2/80, 
Tandy4000, AT&T6386, Acer386/20, Everex 
Step 386/16(20) , H.P. Vectra RS/16(20) and 
others. We now have a new board for the Com
paq 386/20 which combines an 1167 with VGA 
support that is register compatible with IBM -
the "SlotSaver•. It features an extended 
800x600 high res mode that is ideal for 386 
workstations. 

Finally, we still offer the 16-bit software and 
hardware which made us famous. If you own a 
PC or AT and are looking for the best 
8087/80287 support on the market, call (508) 
746-7341 and we'll send you our full catalog . 

=·=·=·=·:·:·:·:·:·:·:·:·: .·.;.·-:-:-:-:·:·:·:·:·:-:-:-:-:-:-:-:-:-:-:-:-:.:-:-:.:-:-:.:·:·:·:·:·:·:·:·:·:-:-: ;:; ::::;:;:;:;:;:::·:-:-·-·.·· · 

Numeric Coprocessors 

mW1167™ - Built at MicroWay using Weitek 
components and an 80387 socket. 
mW1167-16 .... . . . . . .......... . . $995 
mW1167-20 . . .. . . .. .. . ..... . . . . $1595 
mW1167/VGA-20 "SlotSaver· .... . . $1995 
8087 . . . . . . . ....... . ...... . . . .. . . $99 
8087-2 . . .............. .. . . . .. .. $154 
80287-8 . .. ............. . . . ..... $239 
80287-10 . . ... . . . ... ... ......... $295 
80387-16 . . . . .... . . .. . .... . . . .. . $475 
80387-20 . . ....... . . . . .. .. . . . .. . $725 
287Turbo-12 (for AT compatibles) ... . $450 
DRAM ... . .. . .. . . . . . .. ... ..... . CALL 
(All of our Intel coprocessors include 87Test.) 

PC and AT Accelerators 
Micro Way builds a number of 8086 and 80286-
based PC accelerators that are backed up by 
the best customer support in the industry. 
Number Smasher™ (8087 & 512K) .. $499 
FastCACHE-286/9 MHz . ... . .... . .. $299 
FastCACHE-286/12 MHz .. .. ... . ... $399 
SuperCACHE-286/12 MHz ... . . . .. . $499 
Intel Inboard™ PC (1 MB) ..... . .. . . $950 

Intelligent Serial Controllers 
Micro Way's AT 4 TM , ATS™, and AT16™ are the 
fastest 80186-based intelligent serial control
lers on the market. They come with drivers for 
UNIX, XENIX, and PC MOS. 
AT4 ... $795 ATS ... $995 AT16 ... $1295 

32-Bit Applications 
COSMOS-M/386 - SRAC's finite element 
package for the 80386 with an 80387 or 
mW1167 provides mainframe speed and 
capacity. Turn around times rival the VAX 8650 
and are 6 to 15 times that of an AT: from $995 

PST AT-386- This mainframe statistics pack
age has been used by government and in
dustry for 20 years. The full version was ported. 
Requires 4 to 6 megabytes of memory: $1495 

NOP/NAG™ - Features a library of 800 en
gineering and scientific numerical algorithms. 
Callable from NOP Fortran ...... . . . . .. . $895 

The World Leader in PC Numerics 
P.O. Box 79, Kingston. MA 02364 USA (508) 746-7341 
32 High St .. Kingston-Upon-Thames. U.K. . 01-541 -5466 

St. Leonards, NSW. Australia 02-439-8400 



OVERLAYS 

continued from page 40 

unitname is the unit's name as it 
appears in the USES clause. 

Also, an {$0+} compiler direc
tive must be placed within each 
overlaid unit in order to show to 
the linker that the unit is to be 
treated as an overlay. 

Far calls. The main program and 
all units should be compiled with 
the Options/ Compile/ Force far 
calls toggle set to On, or with the 
{$F+} directive present in each 
file. Far calls must be used with all 
of the routines that call the rou
tines in overlaid units, with all of 
the routines that call those rou
tines, and so on, back to the main 
body of the program. The safest 
way to enforce this requirement 
is simply to use far calls through
out the entire program. 

The .OVR filename. The main 
program must tell the overlay 
manager the filename of the 
.OVR overlay file by calling Ovr-

{$F+} 
program Ship; 
uses 

Overlay, Graph, MainLib, Gamelnit, 
Navigation, Combat, Repair, Survey; 

($0 Gamelnit} 
($0 Navigation} 
($0 Combat} 
($0 Repair} 
($0 Survey} 

var 

Init (one of the routines in the 
Overlay unit) with the appropriate 
filename in Ovrlnit's string pa
rameter. The OvrResult variable 
in the Overlay unit is set to the re
sult code; this step allows the pro
gram to detect errors and then 
gracefully exit if the overlay man
ager cannot read or otherwise 
handle the overlay file whose 
name was passed to Ovrlnit. 
Other routines in the Overlay unit 
allow the program to query the 
current size of the overlay buffer, 
increase the buffer's size, and ask 
the overlay manager to attempt to 
load the overlay file into expand
ed memory. These more advanced 
routines are well-covered in the 
Turbo Pascal Owner's Handbook, so 
I won't discuss them here. 

Now compile! After taking all of 
these steps, simply compile the en
tire program to disk. You may 
want to use the Compile/ Build 
command to make sure that all 
units are recompiled. The compil-

GameState : States; { type defined in Mainlib} 

procedure SetupOverlays; 
begin 

Ovrlnit('SHIP.OVR'); 
if OvrResult <> 0 then begin 
~riteln('Overlay error: ',OvrResult); 
Halt(1) 

end 
end; { of proc SetupOverlays } 

begin 
SetupOverlays; 
Initialize; { in Gamelnit } 
repeat 

case GameState of 
atHelm OoNavigation; { in Navigation } 
inCockpit DoCombat; { in Combat } 
inPanels : DoRepair; { in Repair } 
atStation : DoSurvey { in Survey } 

end 
until GameState = endGame; 
SaveGame 

end. { of prog Ship } 
{ in Gamelnit } 

Figure 1: The skeleton of a starship simulation game, which pUices each of t!UJ 
several distinct functions of starship operation into a separate overlay. 

42 TURBO TECHNIX September/ October 1988 

er's output (as mentioned earlier) 
consists of two files: an .EXE file, 
which contains the main program, 
the overlay manager, and all non
overlaid units; and an .OVR file, 
which contains the code for the 
overlaid units. 

STARSHIP SIMULATION-AN 
EXAMPLE 
Obviously, I don't have enough 
space here to list an actual pro
gram that is large enough to re
quire overlays, but I can show you 
a (somewhat contrived) example. 

Suppose you want to write a 
starship simulation to handle four 
major functions: navigation, com
bat, repair, and surveying. Since 
each function is independent of 
the others, your program can use 
four major overlays. In addition, 
the code that initializes the entire 
simulation and cleans things up 
afterwards might make a fifth 
overlay. 

Figure 1 shows how the main 
body of such a program might 
look. This program uses the 
Graph unit, as well as the user
defined (and nonoverlaid) unit 
MainLib, which contains any 
global types, variables, and sub
programs. 

When the main program exe
cutes, it first calls the local routine 
SetupOverlays. This procedure 
then calls Ovrlnit, and passes 
Overlnit the name of the overlay 
file, SHIP.OVR. If an error occurs, 
the entire program halts with an 
error message. 

The Initialize procedure is 
stored in the Gamelnit overlay 
unit. When Initialize is called, the 
Gamelnit unit is loaded into the 
overlay buffer. The program then 
enters a loop and calls a proce
dure in one of the other four 
overlay units; the current value of 
GameState determines which pro
cedure is called. When a proce
dure is called, its unit is loaded 
into the overlay buffer, and any 
unit that is currently residing 
there is overwritten. When the 
game is finished, the Gamelnit 
overlay is loaded again so that 
SaveGame can be called. 

continued on page 46 



Yes Yes No 

Powerful high level macro language Yes Yes No 

Full UNDO Yes Yes No 

Visual marking of blocks Yes Yes Yes 

Line, stream and column blocks Yes Yes No 

Automatic file save Yes Yes No 

Online help Extensive Limited Limited 

Choice of keystroke commands or 
menu system Yes No No 

Function Key assignments labeled 
on screen (may be disabled) Yes No No 

Word processing functions Extensive Limited Limited 

Complete OOS shell Yes No No 

Pop-up Programmer's Calculator and 
ASCII Table Yes No No 

Unlimited 'Off the Cuff' 
keystroke macros Yes No No 

Allocates all available memory to 
compiler when run from within editor Yes No No 

Intelligent indenting, template editing 
and brace/parenthesis/block 
matching and checking for C, 
PASCAL, BASIC and MOOULA-2 Yes COnly No 

Flexible condensed mode display Yes No Yes 

Yes 

Yes Italian 

No No 

Looks 
No Good 

Use 
No Knife 

No No 

Limited 

Menu 
Yes Available 

No No 

Extra Cost Difficult 

Deep 
No Dish 

No ASCII No 

Yes 

Lots 
No of bytes 

Limited 

No 

multi-Edit us. 

With EVERYTHING! 
Is your editor OUT TO LUNCH? 

:. • Does it handle ALL OF YOUR NEEDS? 
• Is it flexible, programmable and reconfigurable? 
•MOST IMPORTANTLY, is it EASY TO USE? 

OR WOULD YOU RATHER BE EATING PIZZA? 

Only MULTI-EDIT tastes this good! 
Fully automatic Windowing and Virtual Memory 

Edit multiple files regardless of physical memory size 
Easy cut-and-past between files 
View different parts of the same file 

Power1ul, EASY-TO-READ high-level macro language 
Standard language syntax 
Full access to ALL Editor functions 

Language-specific macros for C, PASCAL, BASIC 
and MODULA-2 

Smart Indenting 
Smart brace/parenthesis/block checking 
Template editing 
More languages on the way 

Terrific word-processing features for all your 
documentation needs 

Intelligent word-wrap 
Automatic pagination 
Full print formatting with justification, bold type, underlining 
and centering 

Flexible line drawing 
Even a table of contents generator 

Compile within the editor 
Automatically positions cursor at errors 
Allocates all available memory to compiler 

Complete DOS Shell. 
Scrollable directory listing 
Copy, Delete and Load multiple files with one command 
Background file printing 

Regular expression search and translate 
Condensed Mode display, for easy viewing of your 

program structure 
Pop-up FULL-FUNCTION Programmer's Calculator 

and ASCII chart 

and MOST IMPORTANT, 
the BEST USER-INTERFACE ON THE MARKET! 

Get our FULLY FUncnonAL DEMO CODU for onlu ¥ p:p..te! 
Extensive context-sensitive help 
Choice of full menu system or logical function key layout 
Function keys are always labeled on screen 

To Order, Call 24 hours a day: 
1-800-221-9280 Ext. 951 

In Arizona: 1-602-968-1945 
Credit Card and COD orders accepted . 

American 
CybC'rnetics 

1228 N. Stadem Dr. 
Tempe, AZ 85281 

Req uires IBM/ PC/ XT/ AT/ PS2 or full compatible, 256K RAM, PC/ MS-DOS 2.0 or later. 
Multi-Edi t and American Cybernetics are trademarks of American Cybernetics. BRIEF 
is a trademark of Underware, Inc. Norton Editor is a trademark of Peter Norton 
Computing, Inc. Vedit is a registered trademark of CompuView Products Inc. Copy
right 1987 by American Cybernetics. 

(no guessing required !) 
Keyboard may be easily reconfigured and re-labeled 
Extensive mouse support 
Easy, automatic recording and playback of keystrokes 
Anchovies easily removed 

MULTI-EDIT COMBINES POWER WITH 
EASE OF USE LIKE NO OTHER EDITOR 

ON THE MARKET TODAY. 



TURN UP THE POWER. • 

Add power to your Turbo language pro
grams with the Borland Turbo Toolboxes." 
They provide you with source code and 
routines to be added into your programs 
so you don't have to reinvent the wheel. 
And you don't pay royalties on your own 
compiled programs that include the Tool 
boxes' routines. 

TURBO C® 
TURBO C 2.0 RUNTIME LIBRARY 
SOURCE CODE 
An indispensible tool for serious Turbo C 
programmers! The Runtime Library Source 
Code lets you get even more out of Turbo 
C's flexibility and control , with a library of 
more than 350 functions you can custom
ize or use as is in your Turbo C programs. 
You get the source for the standard C 
library, math library and batch files to help 
with recompiling and rebuilding the 
libraries.* 

TURBO PASCAL® 
TURBO PASCAL 5.0 RUNTIME 
LIBRARY SOURCE CODE 
Modify the runtime library source code or 
use it as is. You get the assembly language 
and Pascal source to the System, Dos, Crt, 
Printer, and Turbo3 units. Comes with a 
batch file to help with recompiling and 
rebuilding TURBO.TPL.* 

TURBO PASCAL DATABASE 
TOOLBOX 
With the Turbo Pascal Database Toolbox 
you can build your own powerful, pro
fessional-qual ity database programs. 
Included is a free sample database with 
source code and two powerful problem
solving modules. 
Turbo AccessTI• quickly locates. inserts, 
or deletes records in a database using B+ 
trees- the fastest method for finding and 
retrieving database information. 
Turbo Sort• .. uses the Quicksort method 
to sort data on single items or on multiple 
keys. Features virtual memory management 
for sorting large data files. 

Al Borland prOducts atl trademarks or registered trademarks ol 8orllnd lnttrn11ional , Inc. 
Qthefbrand1ndl)fod11Ctn1mnarelfadem1rksollhllfrtspec1ivtholdtf1. Copyr\ght•l988 
Bor11ndlntern1tional,lne. Bl12802C 

TURBO PASCAL NUMERICAL 
METHODS TOOLBOX 
Turbo Pascal Numerical Methods Toolbox 
implements the latest high-level mathemat
ical methods to solve common scientific 
and engineering problems. Fast. Every time 
you need to calculate an integral, work with 
Fourier Transforms, or incorporate any of 
the classical numerical analysis tools into 
your programs, you don't have to reinvent 
the wheel. It's a complete collection of 
Turbo Pascal routines and programs that 
gives you applied state-of-the-art math 
tools. Includes two graphics demo pro
grams to give you the picture along with 
the numbers. Comes with complete 
source code. 

TURBO PASCAL TUTOR 
Turbo Pascal Tutor is everything you need 
to start programming in Turbo Pascal. It 
consists of a manual that takes you from 
the basics up to the most advanced tricks, 
and a disk containing sample programs as 
well as learning exercises. 
It comes with thousands of lines of com
mented source code on disk, ready for you 
to compile and run. Files include all the 
sample programs from the manual as well 
as several advanced examples dealing with 
window management, binary trees. and 
real-time animation. 

System requirements: All Turbo Toolboxes for the IBM PS/2~ and 
the IBM" family of personal computers and all 100% compatibles. 
PC-DOS (MS-DOS") 2.0 or later. Turbo C Runtime library Source 
Code requires Turbo C 1.5 or later. Turbo Pascal Toolboxes require 
Turbo Pascal 4.0 or later and 256K RAM. Turbo Prolog Toolbox 
requires Turbo Prolog 1.1 or later and 384K RAM. Turbo Basic 
Toolboxes require Turbo Basic 1.0 or later and 640K RAM. 

'Does not include source for graphics or floating point emulator. 

TURBO PASCAL EDITOR TOOLBOX 
Turbo Pascal Editor Toolbox gives you 
three different text editors. You get the 
code, the manual, and the know-how. We 
provide all the editing routines. You plug in 
the features you want. 
MicroStar™: A full-blown text editor with 
a complete pull-down menu user interface. 
FirstEd™: A complete editor equipped 
with block commands, windows, and 
memory-mapped screen routines. 
Binary Editor: Written in assembly lan
guage, a 13K "black box" that you can 
easily incorporate into your programs. 

TURBO PASCAL GRAPHIX 
TOOLBOX 
Turbo Pascal Graphix Toolbox is a collec
tion of tools that will get you right into the 
fascinating world of high-resolution mono
chrome business graphics, including gra
phics window management. Draw both 
simple and complex graphics. Store and 
restore graphic images to and from disk. 

TURBO PASCAL GAMEWORKS 
Explore the world of state-of-the-art com
puter games with Turbo Pascal Game
Works. Using easy-to-understand example 
games, it teaches you theory and tech
niques to quickly create your own com
puter games. Comes with three ready-to 
play games: Turbo Chess .~ Turbo Bridge .~ 
Turbo Go-Moku .~ 

• 



WITH TURBO TOOLBOXES! 
~ 

TURBO PROLOG® 
TURBO PROLOG TOOLBOX IS 
SIX TOOLBOXES IN ONE 
More than 80 tools and 8,000 lines of 
source code help you build your own 
Turbo Prolog applications. Includes tool
boxes for menus, screen and report 
layouts, business graphics, communica
tions, file-transfer capabilities, parser 
generators, and more! 

TURBO BASIC® 
TURBO BASIC DATABASE TOOLBOX 
With the Turbo Basic Database Toolbox you 
can build your own powerful, professional
quality database programs. Includes 
Trainer, a demonstration program that gra
phically displays how B+ trees work and a 
tree sample database with source code. 
The Toolbox enhances your programming 
with 2 problem-solving modules: 
Turbo Access quickly locates, inserts, or 
deletes records in a database using B+ 
trees- the fastest method for finding and 
retrieving database information. 
Turbo Sort uses the Quicksort method to 
sort data on single items or on multiple 
keys. 

TURBO BASICe EDITOR TOOLBOX 
Turbo Basic Editor Toolbox will help you 
build your own superfast editor to incorpo
rate into your Turbo Basic programs. We 
provide all the editing routines. You plug in 
the features you want! We 've included two 
sample editors with complete source code. 

MicroStar: A full-blown text editor with a 
pull-down menu user interface and all the 
standard features you'd expect in any word 
processor. 
FirstEd: A complete editor with windows, 
block commands, and memory-mapped 
screen routines, all ready to include in 
your programs. 

To order, r.all 
(800) 543-7543 

INTERNATIONAL 

YES! I want the Borland Turbo Toolboxes• indicated below! 
To order, simply complete this coupon, or call (800) 543-7543 and have your credit card number and the 
code ATIO ready to give to the operator. Mail coupon to: Borland International, 1800 Green Hills Road, P.O. 
Box 660001, Scotts Valley, CA 95066-0001 

0 Turbo C Runtime Library 
0 Turbo Pascal Runtime Library 
0 Turbo Pascal Gameworks 
0 Turbo Pascal Tutor 
0 Turbo Pascal Editor Toolbox 
O Turbo Pascal Numerical Methods Toolbox 

0 Turbo Pascal Database Toolbox 
D Turbo Pascal Graphix Toolbox 
0 Turbo Prolog Toolbox 
D Turbo Basic Editor Toolbox 
O Turbo Basic Database Toolbox 

Turbo C and Turbo Pascal Runtime Libraries each $150 X Qty. __ = ---
Toolboxes $99.95 each x Qty. __ = ---

CA and MA residents add appropriate sales tax 
Shipping 

Total 
Diskette size: O 51,4• O 31h" 

Payment: 0 Visa 0 MC 0 Check 0 Money Order 
Name _______________________ _ 

Shipping Address--------------------

City, State, Zip----------------------
Phone _______________________ _ 

Credit Card # 

Expiration Date___ _ __ 

Otiside US maltepojll'OOl bybanl< draft payable'1US dollars ..... on aU S ""* COOs llldPWcllaseOlderswillnol be acctpled 



OVERLAYS WITH 5.0 
continued from page 42 

DEBUGGING SUPPORT 
The Turbo Pascal 5.0 Integrated 
Debugger fully supports overlays. 
You can single-step through calls 
to routines in overlay units, and 
those units will be loaded into and 
out of memory as needed. Again, 
this process is handled automat
ically and invisibly (except, of 
course, for the disk access that oc
curs as units are loaded into mem
ory) . You can set breakpoints 
within overlay units, use the Call 
Stack and Find Functions com
mands, and otherwise treat these 
units just like nonoverlaid units. 

Overlays can be a great help 
when debugging very large pro
grams. If kept fully intact, such 
programs may be too big to run in 
memory under Turbo Pascal. By 
breaking a very large program 
into overlays, the program may be 
made small enough to run under 
the Integrated Environment
which places the services of the 
Integrated Debugger at your 
disposal. 

REMEMBER 
A number of things should be 
kept in mind when using overlays. 
First, make sure that Ovrlnit is 
called before calls are made to 
any of the routines in overlay 

Write Better 
Turbo 4.0 Programs ... 

Or lbur Money Back 
You'll write better Turbo Pascal 4.0 programs easier and faster 

using the powerful analytical tools of Turbo Analyst 4.0~ 
You get • Pascal Formatter • Cross Referencer • Program 
Indexer • Program Lister • Execution Profiler, 
and more. Includes complete source code. 

Turbo Analyst 4.0 is the successor to the 
acclaimed TurboPower Utilities: 
"If you own Turbo Pascal you should own the Turbo 
Power Programmers Utilities, that's all there is to it." 

Bruce Webster, BYTE Magazine, Feb. 1986 

Turbo Analyst 4.0 is only $75. 

A Library of Essential Routines 
Turbo Professional 4.0 is a library of more than 400 state-of-the-art 

routines optimized for Turbo Pascal 4.0. It includes complete 
source code, comprehensive documentation, and demo 

programs that are powerful and useful. Includes 
• TSR management • Menu, window, and data 

entry routines • BCD • Large arrays, and more. 

Turbo Professional 4.0 is only $99. 
Call toll-free for credit card orders. 

1-800-538-8157 ext. 830 (1-800-672-3470 ext. 830 in CA) 

Satisfaction guaranteed or your money back within 30 days. 

Fast Response Series: 
• T-DebugPLUS 4.0-Symbolic 
run-time debugger for Turbo 4.0, 
only $45. ($90 with source code) 
• Overlay Manager 4.0- Use over
lays and chain in Turbo 4.0, only $45. 
Call for upgrade infonnation. 

Turbo Pascal 4.0 is required. 
Owners ofTurboPower Utilities w/o 
source may upgrade for $40, w/source, 
$25. Include your serial number. For 
other infonnation cal l 408-438-8608. 
Shipping & taxes prepaid in U.S. & 
Canada. Elsewhere add $12 per item. 

46 TURBO TECHNIX September/ October 1988 

TurboPower Software 
P. 0. Box 66747 

Scotts Valley, CA 95066-0747 

units. To be safe, call Ovrlnit 
either at the start of the main 
body of the program, or (as de
scribed below) in the initialization 
code of a nonoverlaid unit. 

Avoid having initialization code 
in the overlay units. If such code 
is necessary, then ensure that 
Ovrlnit has been called before 
those units are initialized. The 
only way to do this is to put the 
call to Ovrlnit into the initializa
tion section of a nonoverlaid unit 
that appears in the USFS clause 
prior to any overlaid unit. 

Be sure to call Ovrlnit before 
anything is allocated on the heap. 
Unless the heap is completely un
touched, Ovrlnit won't function 
correctly when called. 

Make sure that Overlay appears 
in the USFS clause before any of 
the overlaid units. The safest 
solution is to put Overlay first. 

Also, make sure that all units, as 
well as the main program, are 
compiled with the {$F+} directive 
present, or (equivalently) with the 
Options/ Compiler/ Force far calls 
toggle set to On. 

Finally, the DOS unit is the only 
one of the standard units shipped 
with Turbo Pascal that may be 
overlaid-and putting DOS out as 
an overlay is not a good idea. Any 
of your own units that contains in
terrupt handlers also may not be 
overlaid. 

CONQUER SPACE 
In order to write good programs, 
the needs of the program specifi
cation must be balanced against 
available DOS memory, expanded 
memory, and disk storage re
sources. The size of Turbo Pascal 
4.0 programs is limited to avail
able DOS memory space. Turbo 
Pascal 5.0's overlays feature raises 
that size limit well beyond the 
megabyte point. How far you can 
take the size of a single program 
depends upon how efficiently you 
use data space and symbol table 
space. With some care in design, 
your programs can (in most cases) 
be as large as they need to be. • 

Bruce Webster is a computer merce
nary living in California. He can be 
reached via MCI MAIL (as Bruce 
Webster) or on BIX (as bwebster). 



NEW! 

NEW! 

LESS! 

NEW! 
NEW! 

NEW! 

NEW! 
NEW! 

NEW! 

NEW! 

NEW! 

NEW! 
NEW! 

C CODE FOR THE PC 
source code, of course 

MS-DOS File Compatibility Package (create, read, & write MS-DOS file systems on non-MS-DOS computers) 
Bluestreak Plus Communications (two ports, programmer's interface, terminal emulation) 
PforC or PforCe++ (COM, database, windows, lile, user interface, DOS & CR1) ..... 
CQL Query System (SQL retrievals plus windows) . . . . . . . . . . . . . . . . . . . 
GraphiC 4.1 (high-resolution, DISSPLA-style scientific plots in color & hardcopy) . . . . . 
Barcode Generator (specify Code 39 (alphanumeric), Interleaved 2 of 5 (numeric), or UPC) 
Vmem/C (virtual memory manager; least -recently used pager; dynamic expansion of swap file) 
PC Curses (Aspen, Software, System V compatible, extensive documentation) . . 
Greenleaf Data Windows (windows, menus, data entry, interactive form design) .. 
Vitamin C (MacWindows) . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Greenleaf Communications Library (interrupt mode, modem control, XON-XOFF) ... 
TurboTEX (TRIP cer1ified; HP, PS, dot drivers; CM fonts; LaTEX) . . . . . . . . . . 
Essential resident C (TSRify C programs, DOS shared libraries) . . . . . . . . . . . 
Greenleaf Functions (2% useful C functions, all DOS services) . . . . . . . . . . . . 
Essential C Utility Library (400 useful C functions) . . . . . . . . . . . . . .... 
Essential Communications Library (C functions for RS-232-based communication systems) .... . 
WKS Library Version 2.0 (C program interface to Lotus 1-2-3, dBase, Superca!c 4, Quatro, & Clipper) 
OS/88 (U .. x-like operating system, many tools, cross-development from MS-DOS) . . . . . . . . 
ME Version 2.0 (programmer's editor with C-like macro language by Magma Software; Version 1.31 still $75) 
Turbo G Graphics Library (all popular adapters, hidden line removal) ................ . 
PC Curses Package (full Berkeley 4.3, menu and data entry examples) . 
CBTree (B+tree ISAM driver, multiple variable-length keys) 
Minix Operating System (U .. x-like operating system, includes manual) 
PC/IP (CMU/MIT TCP/IP implementation for PCs) . . . . . . . . 
B-Tree Library & ISAM Driver (file system utilities by Softfocus) . . . 
The Proliler (program execution profile tool) . . . . . . . . . . . 
Entelekon C Function Library (screen , graphics, keyboard, string, printer, etc.) 
Entelekon Power \Vindows (menus, overlays, messages, alarms, tile handling, etc.) 
TurboGeometry (library of routines for computational geometry) . . . . . . . 
QC88 C compiler (ASM output, small model, no longs, lloats or bit fields , 80+ function library) 
Wendin Operating System Construction Kit or PCNX, PCVMS 0 /S Shells . 
C Windows Toolkit (pop-up, pull-down, spreadsheet, CGA/EGA/Hercules) 
JATE Async Terminal Emulator (includes tile transfer and menu subsystem) 
MultiDOS Plus (DOS-based multitasking, inter1ask messaging, semaphores) 
WKS Library Version 1.03 (C program interface to Lotus 1-2-3 program & tiles) 
Professional C \Vindows (lean & mean window and keyboard handler) . 
Ip (flexible printer driver; most popular printers suppor1ed) 
Quincy (interactive C interpreter) . . . . . . . . . . . . 
EZ..ASM (assembly language macros bridging C and MASM) 
?Tree (parse tree management) . . . . . . . . . . . . . 
Microfirn1 Toolkit (28 Unixesque utilities for MS-DOS) . . . . 
XT I3IOS Kit (roll your own BIOS with this complete set of basic input/output functions for XTs) 
HELP! (pop-up help system builder) . . . . . . . . . . . . . . . . . . . . 
Multi-User BBS (chat, mail, menus, sysop displays; uses Galacticomm modem card) 
Make (macros, all languages, built-in rules) . . . . . . . . . . . . . . . . 
Vector-to-Raster Conversion (stroke letters & Tektronix 4010 codes to bitmaps) . 
Coder's Prolog (inference engine for use with C programs) 
Virtual Memory System (least recently used swapping) 
C-Notes (pop-up help for C programmers ... add your own notes) 
Biggerstalf's System Tools (multi-tasking window manager kit) 
PC-XI NU (Comer's XINU operating system for PC) ..... 
CLIPS (rule-based expert system generator, Version 4.1) 
Tiny Curses (Berkeley curses package) . . . . . . . . . . . 
TELE Kernel or TELE Windows (Ken Berry's multi-tasking kernel & window package) 
SP (spelling checker with dictionary and maintenance tools) . . . . . . . 
Clisp (Lisp interpreter with extensive internals documentation) . . .. . . 
Translate Rules to C (YACC-like function generator for rule-based systems) 
6-Pack of Editors (sLx public domain editors for use, study & hacking) 
Crunch Pack (14 file compression & e.xpansion programs) . 
ICON (string and list processing language, Version 7) . . . . . . . 
FLEX (fast lexical analyzer generator; new, improved LEX) . . . . 
LEX (le.xical analyzer generator; an oldie but a goodie) . . . . . . 
Bison & PREP (YACC workalike parser generator & attribute grammar preprocessor) . 
AutoTrace (program tracer and memory trasher catcher) .... 
Arrays for C (macro package to ease handling of arrays) . . . . . 
OOPS (collection of handy c++ classes by Keith Gorlen of NIH) 
C Compiler Tor1ure Test (checks a C compiler against K & R) 
Benchmark Package (C compiler, PC hardware, and UnLx system) 
TN3270 (remote login to IBM VM/CMS as a 3270 terminal on a 3274 controller) 
A68 (68000 cross-assembler) . . . . . . . . . . . 
List-Pac (C functions for lists, stacks, and queues) 
XLT Macro Processor (general purpose te.xt translator) 
C/reativity (Eliza-based notetaker) . . . . . . . . . 
Data 
WordCruncher (text retrieval & document analysis program) . 
DNA Sequences (GenBank 52.0 including fast similarity search program) 
Protein Sequences (5,415 sequences, 1,302,966 residuals, with similarity search program) 
Webster's Second Dictionary (234,932 words) . . . . . . . . . . . . . . . . . . . . . 
U. S. Cities (names & lo ngitude/la titude of 32,000 U.S. cities and 6,000 state boundary points) . 
The World Digitized (100,000 longitude/latitude of world country boundaries) 
KST Fonts (13,200 characters in 139 mLxed fonts: specify TEX or bitmap format) 
USNO Floppy Almanac (l1igh-precision moon, sun, planet & star positions) 
NBS Hershey Fonts (1,377 stroke characters in 14 fonts) . 
U. S. Map (15,701 points of state boundaries) . . . . . . . ... 

The Austin Code Works 
11100 Leaf wood Lane acw!info @uunet .1tu.net 
Austin, Texas 78750- 34 09 USA 
Free surface shipping on prepaid orders For delivery in Texas add 7% 

$500 
$400 
$345 
$325 
$325 
$300 
$250 
$250 
$220 
$200 
$175 
$170 
$165 
$160 
$160 
$160 
$155 
$150 
$140 
$135 
$120 
$115 
$105 
$100 
$100 
$100 
$100 
$100 

$90 
$90 
$80 
$80 
$80 
$80 
$80 
$70 
$65 
$60 
$60 
$60 
$50 
$50 
$50 
$50 
$50 
$50 
$45 
$40 
$40 
$40 
$35 
$35 
$35 
$30 
$30 
$30 
$30 
$30 
$30 
$25 
$25 
$25 
$25 
$25 
$25 
$20 
$20 
$20 
$20 
$20 
$20 
$20 
$15 

$275 
$150 

$60 
$60 
$35 
$30 
$30 
$20 
$15 
$15 

Voice : (512) 258-0785 
BBS: (512) 258-8831 
FAX: (512) 258-1342 
MasterCard/VISA 



i BUG HUNTING, 
~ BORLAND STYLE 

Jeff Duntemann 

ack in 1976, I wire-wrapped a 
computer that was based on a cir
cuit diagram in Popular Electronics. 
My new computer used the 

CDP1802 CPU, which had a single-line se
rial output that could be set to one or to 
zero; I connected the line to an LED. A sin
gle instruction brought the line high, and 
another instruction brought it low again. In
put to the machine was a row of eight toggle 
switches; output was a two-digit hexadecimal 
display. To test the machine, I toggled in the 
single-byte opcode that should have turned 
the LED on by bringing the serial line high. 
Nothing happened. I triple-checked the op
code (but seriously, how many ways are 
there to toggle in 7BH?) The hex display 
read 7B. The toggle switches were set to 
0111 1011. The LED stayed off. 

I assumed the CPU was bad, until I 
swapped it into a friend's similar machine 
and found out that my CPU worked fine. I 
swapped all the ICs. I checked all the wir
ing. The machine appeared to be in perfect 
condition-yet it wouldn't run a one-byte 
program. Time and lots of Mountain Dew 
uncovered the following problems: 

1. By mistake, I had wired the toggle 
switches upside down; in other words, a 
switch whose bat handle was high (indi
cating a binary 1) was actually putting out 
a binary 0. 

2. By mistake, I had socketed an octal inver
ter, rather than an octal driver, between 
the toggle switches and the hex display. 

48 TURBO TECHNIX September/ October 1988 

What this means is that the toggle 
switches were putting out an inverted byte, 
but that the inverting drivers that fed the 
hex display reinverted the inverted byte 
from the toggle switches, making the byte 
look normal again. The switches said 7BH. 
The displays said 7BH. But the machine 
was actually receiving an 84H byte, which 
did something harmless but incorrect. It was 
an accidental but diabolical partnership be
tween two otherwise obvious screwups that 
hid one another perfectly for several weeks. 

We don't wire-wrap our machines any
more, thank God, so hardware bugs like this 
have pretty much become extinct. But bugs 
will always be with us, and my 1976 expe
rience says something absolutely basic 
about debugging: Inspection is not enough. 
You can fix some bugs by staring at your 
code after a good night's sleep. You can fix 
a few more by pulling procedures out of a 
program piecemeal and plugging them into 
proven programs to get a second opinion. 
But even when all of the parts check out 
separately, the little devils often refuse to 
cooperate in peculiar ways when reassem
bled, no matter how carefully. 

LIFTING THE LID 
There's no way around it: You have to lift 
the lid, go in there, and see what's happen
ing. Assume nothing. Watch every statement 
execute. Look at every variable at every step 
of the way. If you fail to do this, you'll miss 
something, and the something you'll miss 
will be the one thing you've been looking 
for for weeks. 



The process of opening up the closed universe of 
a computer program for examination requires spe
cial tools. We call these tools debuggers, and commer
cial software development would be impossible with
out them. How debuggers work is the blackest of 
black arts, but what they do falls into two broad 
categories: 

1. Debuggers stop and start program execution on 
command without losing the current state of the 
program. A program can be paused at a preset 
point in the code (called a breakpoint), or it can be 
made to pause after each program step. (This pro
cess is called singl,e-stepping or tracing.) Tracing a 
program allows you to see "what it's doing in 
there." Breakpoints offer a chance to examine the 
effects of the program statements on program 
variables in medias res. 

2. Debuggers let us examine and change the values 
of program data items. At the lowest level, this in
cludes CPU registers, memory, and 110 ports. 
Some advanced debuggers (called symbolic debug
gers) have the ability to relate memory, and occa
sionally machine registers, to program identifiers 
such as variable names. 

POINTS OF VIEW 
Even with respect to the way that they execute those 
two missions, debuggers are a pretty diverse lot. Ev
ery debugger falls into one of three categories that 
turn on the way the debugger (and, hence, you the 
programmer) view the program under examination. 
This matter of point of view is critical. There are two 
points of view from which to examine a computer 
program: the machine's point of view, and the pro
grammer's point of view. 

The machine sees the program as a series of ex
ecutable binary instructions in memory, which are 
located alongside other memory locations that are 
set aside to store binary data. The machine's view 
also includes a set of values in machine registers that 
continually change as the program executes. In ad
dition, there may be I/O ports that transfer data to 
and from the outside world. 

Since the invention of high-level languages, such 
as C and Pascal, the programmer has had quite a dif
ferent view of a program. A high-level language 
groups incomprehensible machine instructions to
gether into higher-level program statements that are 
more easily read, remembered, and understood. The 
language also partitions data storage memory into 
named chunks that reflect familiar concepts in the 
human culture: yes/ no answers, numbers, charac
ters, values that are grouped into indexed arrays or 
named records, and so forth. The state of machine 
registers is usually hidden from the programmer's 
view, except in rare circumstances. 

You can think of a program as a structure printed 
on a piece of paper that is suspended in space be
tween the programmer (above) and the machine 
(below). To the programmer, who looks down on the 
program from above, the structure appears to be 
made up of program statements and named vari
ables. The machine, which looks up at the program 
from below, sees a conglomeration of memory loca
tions that contain either machine instructions or bi-

continued on page 50 

September/ October 1988 TURBO TECHNIX 49 



BUG HUNTING 
continued from page 49 

nary data, plus a scattering of ever-changing regis
ters. Two different views of exactly the same pro
gram. 

Debuggers are classified based upon whose view 
they take. High-/,evel debuggers look over the pro
grammer's shoulder, and understand and display 
program statements and variables. They cannot dis
play memory locations, machine instructions or ma
chine. re~sters. L_ow-/,evel debuggers can step ~hrough 
machme mstrucuons and display blocks of memory. 
However, these dubuggers are ignorant of high-level 
languages, and have no knowledge of program state
ments or variables. Full symbolic debuggers sit on the 
fence between the two worlds, embracing both of 
them. On the one hand, these debuggers understand 
high-level languages-they can step through a C or 
Pascal program line by line, displaying the contents 
of program variables as they go. On the other hand 
full symbolic debuggers can also show the machine;s 
view of memory, instruction opcodes, and machine 
registers. Best of all, these debuggers can show the 
synergy between the two views of a program-vari
ables that are loaded into machine registers; pro
gram statements that display beside their equivalent 
machine instructions; and data that moves among 
variables, registers, and 1/0 ports. 
~he .classic low-level debugger is DOS DEBUG, 

which 1s included with every copy of DOS. Inter-

EASY FAST PROFESSIONAL 
DATA ENTRY 

WINDOWS 
MENUS 

HELP 

Lattice c 

QuickC 

Instant C 

GW Basic Basic 86 BASICA 

Quick Basic Turbo C 

MS Cobol MSC Turbo Basic 

If you are serious about programming 

PLEASE try HI-SCREEN XL! 

$149 HI-SCREEN XL™ 
only 

Multilanguage support C Basic dBXL Clipper 

No Royalties 

30-day risk free 

Mark Williams C 

RM-Fortran 

Microfocus Cobol 

MSMASM 

RM-Cobol Fox Base 

Realia Cobol Turbo Pascal 

Call now for demo and information: 

1-800-338-2852 
in CA: (415) 397-4666 

dBase II, Ill, and Ill+ Turbo Prolog 

MS Pascal MS Fortran MS Basic 

"You may like other screen management tools , 
but you will love HI-SCREEN XL." 

Softway, Inc. , 500 Sutter St .. Suite 222 , San Francisco , CA 94102 

50 TURBO TECHNIX September/ October 1988 

preted BASICA, with its TRON and TROFF state
~ents and BREAK/ CONTINUE feature, is part 
high-level debugger. Full symbolic debuggers include 
SYMDEB, Periscope, and CodeView. 

Up un~l now,. the Borland line has been missing 
an entry m the important category of debugging. But 
now, as the cover theme of this issue of TURBO 
TECHNIX indicates, we're introducing three differ
ent debuggers that capably fill the vacuum. 

INTEGRATED DEBUGGING 
Both Turbo Pascal 5.0 and Turbo C 2.0 contain high
level debuggers that are intimately intertwined with 
both languages' Interactive Development Environ
ments. We call these new debuggers the Borland In
tegrated Debuggers, because they're always beside the 
compiler, ready to go, while you're putting your pro
grams together. I offer a close look at Turbo Pascal 
5.0's Integrated Debugger on page 12 of this issue; 
Kent Porter leads a tour through Turbo C 2.0 and its 
Integrated Debugger on page 62. 

The Borland Integrated Debuggers handle most 
program development, especially with respect to 
small programs and programs that don't perform a 
lot of black magic. On the other hand, the larger 
and the more ambitious your programs become, the 
greater the chances that you'll concoct a bug that is 
beyo~d the grasp of the Integrated Debuggers. The 
pursmt of system-level code crickets requires the 
synergy of a full symbolic debugger-and now you 
can tum to Turbo Debugger. (If that won't find 'em 
yo.u'd better go have a look at your toggle switches.) 
Michael Abrash shows you around the multi-win
dowed mechanisms of Turbo Debugger on page 52 
of this issue. 

Turbo Pascal 5.0 contains a few other surprises as 
well. Overlays are back, as Bruce Webster describes 
on page 38. Procedural types (long a part of Modula 
2) are now part of Turbo Pascal, and Neil Ruben king 
uses them to create a generalized file search engine 
on page 27. Turbo C's floating point support has 
seen a few enhancements, as Roger Schlafty points 
out on page 67 in the sequel to his January/ Febru
ary, 1988 cover article, "Floating Point in Turbo C." 

Finally, Borland has released Turbo Assembler as 
a comp~nion ~r~duct that ships with Turbo Debug
ger. While retammg full compatibility with MASM 
5.x, Turbo Assembler also offers Ideal mode which 
is a new and more comprehensible syntax f~r assem
bly language, plus 286/ 386 support. Tom Swan intro
duces Turbo Assembler's features, including the new 
Ideal mode syntax, on page 120. 

The more power you have, the more ways there 
are to go wrong. In future issues of TURBO TECH
NIX, we'll pursue our ongoing mission of putting 
useful programming techniques in your hands. At 
the same time, we'll provide more information about 
fixing things that don't work the first time out. Re
member: Assume nothing. Examine everything. And al
ways use the best tools that you can bring to bear on 
the problem. • 





g TURBO DEBUGGER: THE VIEW 
~ FROM WITHIN 

Borland's new Turbo Debugger adds unprecedented 
symbolic debugging power to Turbo C and Turbo Pascal. 

Michael Abrash 

Long ago, I made a comfortable living 
writing video games for the PC. Whenever 

.. 

I ran into a bug, I had no choice but to 
fire up DEBUG, the debugger IBM then 
provided free with DOS. DEBUG wasn't 

r RoGRAMMER much of a debugger, since it had just one 
kind of breakpoint, couldn't display data structures, 
and could only debug at the assembly language level. 
In fact, the only thing DEBUG had going for it was 
that it was better than the alternative, which was 
nothing. 

As you'll read elsewhere in this issue, Borland has 
closed the debugging gap in a big way by adding in
tegrated debugging to both Turbo Pascal (p. 12) and 
Turbo C (p. 48). Still, because each of the integrated 
debuggers has to squeeze into memory along with 
an editor, a compiler, a linker, and a user program, 
the integrated debuggers are inescapably less pow
erful than standalone debuggers. Certain debugging 
problems, such as runaway pointers, complex error 
conditions, debugging of assembler code, and the 
like, absolutely require a state-of-the-art symbolic de
bugger. Unfortunately, advanced debuggers tend to 
be difficult to use, and are generally more suited to 
debugging assembly language than Pascal or C pro
grams. The ideal debugger would not only be state
of-the-art in terms of sheer power, but also would be 
as easy to use for high-level languages as for 
assembler. 

Borland's new Turbo Debugger fits that descrip
tion to a T. Equally at home with Turbo Pascal, Turbo 
C, or Turbo Assembler programs, Turbo Debugger 
offers an intuitive interface and a suite of debugging 
features that take software-only debugging to the lim
its of possibility. On 386-equipped systems, Turbo 
Debugger can put the advanced capabilities of the 
80386 CPU to work to provide limited hardware as
sistance in terms of hardware breakpoints. Another 
386-based debugging breakthrough allows the de
bugger to run in 386 protected mode and the appli
cation being debugged to occupy a separate virtual-
86 partition. This means that your application can be 
as large as necessary without crowding the Debugger 

52 TURBO TECHNIX September/ October 1988 

out of DOS memory. Furthermore, the application 
can reside at the same addresses that it will occupy 
on its target system. 

Let's take a closer look at Turbo Debugger, and ex
plore the situations when you might wam to step up 
to Turbo Debugger from your Turbo language's in
tegrated debugging. 

ADVANCED DEBUGGING FEATURES 
At heart, there's only one question to ask about a de
bugger: "How well does it let me catch error condi
tions in my programs?" The key to catching error 
conditions is breakpoint capability-and Turbo De
bugger is extremely powerful in this area. 

Breakpoint capability normally refers to the ability 
to instruct a program to stop for examination when 
a certain line of the program is reached. Turbo De
bugger has all of the standard breakpoint features. 
A breakpoint can be set simply by pressing the F2 
function key on the line where you want the break 
to occur, or a break address can be specified by way 
of the Breakpoints menu. A program can also be 
executed either one source code line or one assem
bly language instruction at a time, and can either 
step over or trace into subroutines. Alternately, you 
can just sit back and watch your PC screen change as 
Turbo Debugger runs a program line-by-line at a re
duced speed. You can have Turbo Debugger run to 
a certain line by pressing F4 on that line; to run 
Turbo Debugger to the end of a function, simply 
press Alt-F8. 

These are fairly standard debugger breakpoint ca
pabilities-and Turbo Debugger goes even further. 

Turbo Debugger lets you stop a program either 
when a memory location is changed, or when an ex
pression becomes true. (By the way, expressions can 
be evaluated in the notation of the language of your 
choice-Pascal, C, or assembler-at any time, and 
these expressions can even contain functions.) 
What's more, you can select the number of times that 
a breakpoint condition must occur before it causes 
a break, so that you don 't have to wait through 100 

continued on page 54 





THE VIEW FROM WITHIN 
continued from page 52 

iterations of a loop if the case you're interested in 
occurs during the lOlst pass. Alternatively, Turbo De
bugger can record occurrences of a given breakpoint 
in its ongoing log; later, you can refer back to the log 
to see how the current state was reached. You can 
also record comments and data dumps into the log, 
and can record the log to disk. Perhaps most remark
ably, you can instruct Turbo Debugger to execute the 
expression of your choice at a given breakpoint; 
since such expressions can modify variables, this 
gives you a way to temporarily patch a line of code 
into a program without leaving-or even restarting
a debugging session. As I'll show later, these sophis
ticated data breakpoints let you catch bugs that might 
otherwise take hours to find. 

There's a price to be paid when the more sophis
ticated breakpoints are used. Programs run more 
slowly when a changed memory location breakpoint 
is active, for example, since Turbo Debugger must 
stop after each line to see whether the breakpoint 
condition has been met. To speed things up, Turbo 
Debugger offers an option that combines code and 
data breakpoints. You can specify that a given data 
breakpoint should only be checked when a given 
line is executed; if you know where but not when a 
bug occurs, you can quickly reach that point with a 
combined code and data breakpoint. 

To facilitate the use of hardware breakpoints, 
Turbo Debugger contains a device-driver interface 
that allows it to work with third-party hardware de
bugger products from vendors such as Atron and 
Periscope. The first such Turbo Debugger-compatible 
product has already appeared, in the form of Purart's 
Trapper board (see accompanying sidebar). A device 
driver is shipped with Turbo Debugger that allows 
the use of the 386 CPU's built-in hardware debug
ging features without additional hardware. 

THE USER INTERFACE 
While breakpoints are a prominent feature of any 
debugger, the user interface makes the power of a 
debugger readily available. Turbo Debugger expands 
upon the familiar Borland windowing interface in a 
number of ways. 

Look at the context. For starters, Turbo Debugger is 
highly context-sensitive. Help is context-sensitive. 
Local variables are popped up for inspection from a 
default scope that is determined by the cursor's loca
tion in the source code. The default language con
vention by which expressions are evaluated depends 
upon the type of source module being debugged. If 
Turbo Debugger thinks you're looking at a string, it 
displays that data as text; otherwise, the data is dis
played as hex bytes. Default responses to prompts 
are based on the text located below the cursor. In 
many cases, text can be highlighted on the screen 
and then can serve as the response to a prompt; this 
saves considerable typing. 

54 TURBO TECHNIX September/ October 1988 

Open a window. Turbo Debugger's basic screen con
sists of any number of windows, with pull-down 
menus on the menu bar at the top of the screen. At 
your option, windows may overlap to any degree or 
not at all. Figure 1 shows a Turbo Debugger screen 
that contains three windows and a pull-down menu. 
You can readily rearrange, resize, and move between 
the windows with either hotkeys or menu com
mands. Window configurations can be saved to disk 
and reloaded later. In addition, Turbo Debugger al
lows you to undo the last window close, so you can 
quickly recover if you close a window and then de
cide you need that window after all. 

Local menus. Each type of window has a specific 
purpose. There are windows for viewing source 
code, viewing the CPU state, inspecting data struc
tures, watching variable values, dumping memory, 
and more. Consequently, different actions are ap
propriate to different types of windows. Rather than 
try to cram the commands for all of the windows 
onto the single menu bar at the top of the screen, 
Borland instead chose to implement local menus. A 
local menu is a popup menu specific to the window 
that is currently active. The local menu for the cur
rent window can be popped up at any time by press
ing Alt-FlO. Figure 2 shows the local menu for the 
module viewer window. 

Hotkeys and other tricks. As usual, Borland has pro
vided hotkeys as a quick way to select many menu 
items. To help you remember the many hotkeys, the 
bottom line of the screen (known as the help line) 
shows the available hotkeys at any given time. If you 
hold the Alt key down, the help line shows the Alt 
hotkeys. Hold down the Ctrl key, and the Ctr! hot
keys are displayed. The Ctr! hotkeys are also hotkeys 
into the current local menu, so holding down Ctr! is 
a good way to see the local menu commands that are 
available at any time. 

The Turbo Debugger interface provides other 
handy features. For instance, it maintains history lists 
of your responses to prompts. When a given prompt 
is issued, your recent choices are displayed as well; 
you can save considerable typing by reusing or mod
ifying one of your earlier choices. 

As another convenience, whenever Turbo De
bugger presents an alphabetized list (such as the list 
of global variables in the variables viewer window), 
you can start typing the name of any item in that list. 
As you press each key, Turbo Debugger instantly dis
plays the next item in the list that matches the key
strokes you've entered so far. This is quite handy if 
you use hundreds of variables and can't remember 
all of the letters in a given variable. 

THE VIEW FROM WITHIN 
As you can see, Turbo Debugger's user interface is 
designed to let you work as efficiently as possible
but what does it actually let you do? Briefly put, the 
interface offers very flexible ways to view and modify 
code and data within an executing program. 



F J - He I 1· • - Abort 

' ll"1l' pane to log 
; estore standard 
creen repa int 

TextBlock • ds:81EF 
(1x582) 

<llxtU 

Pick a level. You can view code at either the source 
code or assembly language level. If you view code at 
the source code level (in a module viewer window), 
you don't need to see individual instructions, regis
ters, or flags unless you want to. At this level, code 
can be single-stepped a source-level statement at a 
time. If you view code at the assembly language level 
(in a CPU viewer window), you can see every detail of 
the program as it executes. Here, code can be single
stepped an instruction at a time. As an alternative to 
viewing code with either method individually, both 
module and CPU viewer windows can be displayed 
simultaneously so that you can watch code execute 
at both levels. 

Figure 1. Turbo Debugger's window
ing user interface. Each function oc
cupies a separate window. The win
dows may overlap or not, as desired. 

Figure 2. The local menu of a module 
viewer window. 

Any or all of the source modules in a program can 
be viewed at any time. You can search the source 
code for a text string, just as you would search for a 
text string in a text editor. 
Follow the trail. The stack viewer window shows the 
function calling trail that led to your current location 
in the program. You can move to any function in the 
stack viewer window and see that function's local 
variables and actual parameters. 

Code can be assembled directly into the program 
for patching purposes, although those changes are 
only made to the program in memory. Such changes 
are lost as soon as the debugging session is ended, 
or the program is reloaded. 

continued on page 56 

September/ October 1988 TURBO TECHNIX 55 



THE VIEW FROM WITHIN 
continued from page 55 

Show me your data. Now we come to viewing data. 
The dump viewer window lets you display any area of 
memory in hex and ASCII. You can specify the area 
of memory to dump with any expression that re
solves to a memory address. You can modify memory 
while you view it in either hex or ASCII. Hex values 
can be displayed in a variety of formats, including 
bytes, words, longs, and IEEE floats, and can be fol
lowed as pointers via local menu commands. 

Expressions can be evaluated at any time, and the 
format in which the result displays can be controlled. 
Expressions can modify variables directly by assign
ing values to them. In many cases, an expression can 
generate a value that is stored into memory. 

WATCHES AND INSPECTORS 
Turbo Debugger also understands variables at the 
source code level-and that's where the real power 
of Turbo Debugger's data access features becomes 
apparent. Turbo Debugger not only knows about lo
cal variables (automatic and static) and global vari
ables, but also knows about data types, pointers, ar
rays, structures, and unions. Named variables are 
automatically displayed according to their original 
source code data types in either the watches viewer 
window or the data inspector window. 

The watches viewer window, which normally occu
pies the bottom of the screen, is the standard way to 
keep an eye on the values of selected variables dur
ing program execution. This window lets you select 
one or more variables for display. (Actually, any ex
pression that resolves to a value may be displayed.) 
Structures and arrays can also be displayed. In addi
tion, any memory location displayed in the watches 
viewer window can be modified. 

Data inspector windows are something else alto
gether. These windows not only show the source 
form of variables, but can also readily follow point
ers, scroll through arrays, display nested structures, 
and the like. Where watches viewer windows are use
ful for posting the values of several variables, data 
inspector windows are ideal for delving into the de
tails of a specific variable or data structure. If the cur
sor is located on the name of an array, pressing 
Ctrl-I pops up a data inspector window for that array 
on the spot. If the cursor is located on the name of 
a pointer, an inspector can be popped up to show 
that pointer's referent, and another data inspector 
window can even be popped up from the first inspec
tor to show additional information about the refer
ent. Data inspector windows can be chained to fol
low a linked list of pointers, or to examine an array 
of structures or a structure that contains arrays. 

The data addressed by any expression that re
solves to an address can be inspected, and type-

56 TURBO TECHNIX September/ October 1988 

casting can be performed on any such expression. 
Variables that appear in the module and watches 
viewer windows can be inspected simply by pressing 
Ctrl-1. Variables in a data inspector window can be 
modified. Functions, local variables, and passed pa
rameters can even be inspected by selecting them 
directly from the source code in a module viewer 
window. 

More than any other feature, the data structures in 
modern programming languages set these languages 
apart from their predecessors. With data inspector 
windows, Turbo Debugger puts data structures at 
your fingertips. 

THE DEATH OF HEISENBERG 
Turbo Debugger offers a number of advanced fea
tures that let you take on debugging problems that 
go beyond the merely difficult to the brutal. One 
such problem is the debugging of very large pro
grams. The difficulty here is that a large program, a 
debugger, and the information that the debugger 
needs to maintain about the program often can't all 
fit into the 640K DOS address space at the same 
time. Turbo Debugger provides three different solu
tions to this problem. 

EMS storage. First of all, Turbo Debugger can store 
the table of information about a program's symbols 
in EMS memory (if EMS memory is present), thereby 
freeing the DOS memory that the table normally oc
cupies and making that DOS memory available to 
the program being debugged. Furthermore, EMS 
memory can be shared between Turbo Debugger 
and the application being tested. 

Separate but linked. Second, if two computers are 
available during development, Turbo Debugger can 
be moved away from the target application to run on 
another PC altogether, with debugging control taking 
place over a serial link between the two machines. In 
this configuration, Turbo Debugger needs only about 
lOK RAM on the target computer. This leaves plenty 
of memory for the application. 

Virtual-86 partitions. Turbo Debugger's third solu
tion to the problem of debugging large applications 
is particularly exciting. Turbo Debugger can take ad
vantage of the virtual-86 feature of the 80386 and 
split memory into a virtual-86 partition for your ap
plication being debugged and a 386 protected mode 
partition for Turbo Debugger. This arrangement car
ries two benefits: First, any program that runs on a 
PC system can be debugged, no matter how large the 
program is. Second, the program being debugged 
loads at exactly the same memory location in the vir
tual PC as the program would in a standard PC if 
that program weren't being debugged, and the nor
mal amount of memory is available in the PC for the 
program to use. As a result, in 80386 mode Turbo 
Debugger eliminates the interference with the target 
program that other debuggers inevitably introduce. 
This interference is sometimes called the "Heisen
berg effect," after the famous physicist who demon
strated that it's impossible to observe subatomic 
interactions without altering them. With the combi-



nation of Turbo Debugger and a 386, it's possible to 
obsenre a program's inner workings without the ob
senrer getting in the way. 

SCREENS AND KEYS 
Another problem that arises during the debugging 
process is that both the debugger and the target ap
plication want to use the entire screen display. Turbo 
Debugger offers a number of screen-handling solu
tions. The debugger can switch between the user 
screen and the debugger screen, use a second dis
play, use the extra text pages of color adapters, or 
turn off user display updating altogether. If none of 
these options is ideal for a particular program, the 
two-machine remote debugging approach described 
earlier, which solves all display-related problems, can 
be used. 

Turbo Debugger allows the text editor of your 
choice to be invoked directly from the debugging en
vironment. You can then return to the debugger and 
make changes to programs (or to data files) the in
stant you recognize a bug. Similarly, files can be 
viewed and modified directly from a fil,e viewer 
window. 

Keystroke sequences can be assigned to keys, and 
those keys can then be used instead of lengthy hand
typed command sequences. These keyboard macros 
are useful for quickly returning to a specific place in 
a program; once the key sequence that gets you to a 
given point is recorded, you can return to that point 
at any time with a single keystroke. 

Turbo Debugger can disassemble all 8086, 80286, 
80386, 8087, 80287, and 80387 instructions, both real
and protected-mode. It can also assemble all 8086, 
80286, 8087, 80287, and 80387 instructions, plus most 
80386 instructions. Turbo Debugger provides full 
support and a special window for the 87-family nu
meric coprocessor. 

Turbo Debugger is, as you'd expect, designed to 
complement the latest generation of Turbo lan
guages: Turbo C 2.0, Turbo Pascal 5.0, and Turbo As
sembler 1.0. The current releases of Turbo Basic and 
Turbo Prolog are not supported, but future releases 
will be supported. If you use a compiler or assembler 
from another vendor, you may still be able to use 
Turbo Debugger, since it also supports programs 
compiled for use with Microsoft's Code View de
bugger through a conversion utility. In addition, you 
can always debug any program at the assembler level 
with Turbo Debugger, regardless of the language 
with which the program was created. 

WHEN DO YOU NEED TURBO DEBUGGER? 
Now that you have an idea of what Turbo Debugger 
can do, the next question is when you might need to 
move up from integrated debugging with your favor
ite Turbo language to Turbo Debugger. 

More and better. Turbo Debugger can help when you 
feel that you need more sophisticated breakpoints, 
or better display of data structures, than integrated 
debugging offers. For example, if a given flag is set 

to an incorrect value every 50 times that a function 
is called, you'd be much better off having Turbo De
bugger break on the incorrect value, rather than 
break on the function 50 times in the integrated de
bugger so that you have to manually check the value 
of the flag each time. 

Similarly, if you're having problems with nested 
structures, structures of arrays, or complex pointers, 
Turbo Debugger is the way to go. The data inspector 
windows of Turbo Debugger are simply the best tool 
around for examining complex data structures. 

Low-level action. Turbo Debugger becomes abso
lutely necessary when you need to obsenre low-level 
machine functions in action. Integrated debugging 
is confined to entities that are defined by and under
stood by the high-level language that this debugging 
serves: constants, variables, and high-level language 
statements. If your program directly accesses DOS 
functions, BIOS functions, BIOS variables, interrupt 
vectors, display memory, or 110 ports; if you need to 
access memory directly from the debugger or need 
to know the actual addresses of variables; or if you're 

continued on page 58 

PURART'S TRAPPER 
BOARD 
Turbo Debugger's 386 hardware debug support 
proved to be so compelling during testing that a 
hardware manufacturer has designed and is now 
offering a low-cost support board for non-386 sys
tems. Trapper provides a single hardware break
point that may be set to trigger on one contiguous 
range of memory or I/O addresses. The trigger 
may be set to occur either when any address 
within the range is accessed, or when any address 
outside of the range is accessed. Trapper can be set 
to recognize read accesses, write accesses, or both. 
Thus, Trapper could trap intended writes to a 
buffer that "miss" the buffer somehow, or it could 
trap unintended writes to a DTA or to the inter
rupt vector jump table. The board can also distin
guish between data and instruction access, thus al
lowing (among other things) for breakpoints to be 
set in ROM. 

Trapper does not contain protected RAM in the 
fashion of Periscope Corporation's Submarine 
board, nor is it intended to compete with high
end hardware debug products such as those from 
Periscope and Atron. The idea is to give 8088 and 
286 programmers some of the same hardware as
sistance that 386 users can tap from the CPU itself. 

Trapper was designed by Purart, Inc., of Hamp
ton Falls, New Hampshire, and will sell for 
$149.95. For more information, contact: 

ImageSoft 
6-57 158 TH Street 
Beechhurst, NY 11357 
(718) 746-9069 

-Michael Abrash 

September/ October 1988 TURBO TECHNIX 57 



LISTING 1: OEMO.C 

/* 
* Turbo C 2.0 program for use in e Saf?1)le Turbo Debugger 
* debugging session. The bug : The Text array in the 
* TextBloclc structure does not include space for the 
* terminating zero byte . The solution: Dimension the 
* Text array to (BUFFER LENGTH + 1) characters in length. 
* -
* By Michael Abrash 6/18/88 
*/ 

#include <stdio.h> 
#include <al loc . h> 

/* Nl.l!ber of characters buffered per text block. */ 
#define BUFFER_LENGTH 20 

/* Structure we• l l use to store text in. These structures 
are cooi>ined into a singly linked list, with one 
structure per al located memory buffer. */ 

struct TextBlock { 
char Text [BUFFER_LENGTHJ; 
struct TextBloclc *NextTextBloclc; 

}; 

/* text buffer *I 
/* pointer to next 

text block */ 

main() 
{ 

int c; /* tefll>Orary storage for a character */ 
int Done = O; /* set to 1 when all text is buffered */ 
int TextCount; /* location in the current text buffer */ 
struct TextBlock *FirstTextBlock; 

/* Point s to the text block that 
starts the linked chain. */ 

struct TextBloclc *CurrentTextBloclc; 
/* point s to the current text block */ 

struct TextBlock *NewTextBlock; 
/* points to the next text block */ 

/* Get the initial text block */ 
if ( !(FirstTextBlock = CurrentTextBlock = 

malloc(sizeof(struct TextBlock))) ) ( 
/* We couldn't get any memory * / 
printf( 11 0Ut of memory\n"); 
exit(1 >; 

/* Buffer the text the user types, al locating memory as 
it•s needed*/ 

TextCount = O; 
while ( !Done ) < 

/* Get the next character * / 
c = getchar(); 
if ( c == EOF ) ( 

/* It 1 s the end of the f i le , so we' re done *I 
/* Put a zero at the end of the current buffer, 

making it a string */ 
CurrentTextBlock->Text [TextCountJ = O; 
/* Mark that this is the last text block in the 

linked list */ 
CurrentTextBlock->NextTextBlock = O; 
/* lle've gotten all the text */ 
Done = 1; 

} else { 
/* Buffer the character */ 
CurrentTextBlock->Text [TextCount++J = toupper(c); 
if ( TextCount >= BUFFER LENGTH ) { 

I* This buffer ' s full~ so al locate another 
text block */ 

if ( I (NewTextBlock = 
CurrentTextB lock - >NextTextB lock = 
mal loc(sizeof(struct TextBlock))) ) ( 
/* lie couldn't get any more men•iry */ 
printf( 11().Jt of mnemory\n"); 
exit(1l; 

/* Put a zero at the end of the current buffer, 
Nking it a string */ 

CurrentTextBlock->Text [TextCountJ = O; 
/* Start buffering at the begiming of this 

text block's text buffer */ 
TextCount = O; 
/*Make the newly allocated text block the 

current text block */ 
CurrentTextBlock = NewTextBlock; 

/* Print out the uppercase result, starting with the 
text stored in the first text block and continuing 
until the last text block (the text block with a 
null link) has been displayed */ 

CurrentTextBlock = FirstTextBlock; 
do { 

pri ntf c11ts 11
, CurrentTextBloclc - >Text); 

CurrentTextBlock = CurrentTextB lock->NextTextBlock; 
) wtd le ( Curr~tTextBLoclc >; 

58 TURBO TECHNIX September/ October 1988 

THE VIEW FROM WITHIN 
continued from page 57 

interested in the actual assembly language code gen
erated by Turbo Pascal or Turbo C, you need Turbo 
Debugger. 

A SAMPLE SESSION 
In this section, I'll show how Turbo Debugger lets 
you catch a subtle bug that could be infuriating to 
find when using a less-capable debugger. Listing 1 
shows a Turbo C program that stores any amount of 
typed text (converted to uppercase) in a linked list of 
structures, which are allocated on the fly as they're 
needed. When all of the text is entered, the program 
prints the uppercase text. The task is simple enough, 
but a bug turns up when the program is run and the 
following lines are typed in: 

First line 
Second line 
Third line 
Fourth line 
Fifth line 
Sixth line 
·z 
When these lines are entered, the text shown in Fig
ure 3 results. 

Clearly, something is wrong-but where? To get a 
handle on the problem, load the program into Turbo 
Debugger and move the cursor to the following line, 
located just before the final do loop: 

CurrentTextBlock = FirstTextBlock 

Pressing F4 at this point instructs Turbo Debugger to 
execute the program to this line and then to stop. Af
ter the six lines of text are entered, Turbo Debugger 
breaks at the selected line and brings up the debug
ging interface. At this point, all of the entered text is 
supposed to have been stored in a linked list of 
TextBlock structures. 

Here, data inspector windows can be used to great 
advantage. To create a data inspector window, press 
Ctrl-1 with the cursor positioned over any occurrence 
of FirstTextBlock in the module viewer window. The 
window that appears shows the first TextBlock struc
ture, which contains the first 20 text characters and 
a pointer. This structure looks fine, so move the cur
sor to the NextTextBlock field of the structure and 
press Ctrl-1 again to pop up another inspector that 
follows the link to the next block. The result is 
shown in Figure 4. 

Figure 4 makes it plain that something is wrong with 
the location to which the NextTextBlock field of 
FirstTextBlock points. The data inspector windows 
show clearly that the block of data to which the first 
link points does not contain the correct text. Two ex
planations are possible: at some point in the pro
gram, either the second TextBlock structure is filled 
with garbage, or else the NextTextBlock field of 
FirstTextBlock is set to point somewhere other than 
to the second TextBlock structure. 

Turbo Debugger lets you check both cases simul
taneously. First, set the program back to the start by 
selecting Program Reset from the Run menu. Then 



E>deMo 
Firs t Ii ne 
Second Ii ne 
Thi rd Ii ne 
Fourth Ii ne 
Fifth I ine 
Sixth I ine 
•z 
FIRST LINE 
SECOND LI iigVU"i ~ 

Figure 3. The bug's tellta/,e. Bugs 
have an affinity for "garbage" in pro
grams, much as they do in real life. 

1 1~1 0J11U"imLLi>30fOfO:t. &o.,ofi P &o.,ii~v,-vv 6uaiifll_ "VJL'1(i&OM"i_&<;11•G1u•3~•11GJeF 
iiN&fi /Vi•F••t~Jlp vtOf Piin 
vL i" 0583 L 1 uU"i ~vw·.- 't"iw&"i\ 
"i ot i" D• ; ilrV 4Wii~ 
VLVVH tV "ill"iT++rPii88%4VV_ 'luU"imVW"i't"iwai"\ 
"io•G t'YD•:ilrV 4WiiR 
VL VV5. ffi il"iT++rPii~ 8%4VV583L_· 1uU"imV"i't"iw&"iDt•t8q'luU"imV"i a)8q1 Gl3 Lps vt/IOTI" .... I 
2VV G Lu, "i ~ii rg1 .. l 
«•E•~· P"i ~«•EtPL5!!"i IKfilfilS"i'tX•G•"it"i'C 

E>-

Figure 4. Using inspectors to trace 
pointer referents. 

,.2-Bkpt f 3-Close F4 -Here FS-Zoon Ft. -Next f7 -Trnce ra-Step F'i-Run FHl-Menu 

move the cursor to the second occurrence of 
CurrentTextBlock->Text[TextCount] = 0 and press 
F4; this step runs the program up to the point at 
which FirstTextBlock->NextTextBlock is set. After 
the following text is typed in, the breakpoint is 
reached, and the debugger interface comes up: 

First line 
Second line 

Now, put a watch on FirstTextBlock-> Next
TextBlock by selecting Watch ... from the Data menu 
and entering the following: 

FirstTextBlock->NextTextBlock 

The watch shows that the next text block is at offset 
8C6H. Use the Changed memory global. .. selection 
in the Breakpoints menu to instruct Turbo Debugger 
to stop whenever the value of the FirstText-

Block-> NextTextBlock field is changed. Now, if any 
line in the program modifies the pointer to the sec
ond text block at any time, Turbo Debugger breaks 
back to the user interface, so there's no way that the 
link to the second block can possibly be trashed 
without you knowing about it. 

The other possible cause of the problem is trash
ing of the text in the second text block. To check this 
possibility, put a breakpoint at the line that stores 
each character: 

CurrentTextBlock->Text[TextCount++J = toupper(c) 

To do so, move the cursor to that line, and press F2. 
This step allows you to ensure that the correct char-

continued on page 60 

September/ October 1988 TURBO TECHNIX 59 



TextCount int 28 C0x14) 
FirstTextBiock->llextTextBiock struct TextBlock * ds:88811 

Figure 5. The problem 's solution. 
TextCount points past the end of the 
Text array. A zero has been written 
over the first byte of the next variab/,e 
in memory, which is part of pointer 
NextTextBlock. The corrupted pointer 
points to a random location, where 
garbage lives. 

f t:-Bkpt f ;-(lose F-1-Here F5-ZooM F6-Next F7-Trace F8-Step F9-Run f Hl-Menu 

THE VIEW FROM WITHIN 

continued from page 59 

acters are being stored to their proper location. 
<?~c~ you've verified that the block is filled properly 
(1f It 1s), you can set a breakpoint on any modifica
tion of the first character of the Text field of the sec
ond TextBlock structure in order to catch any state
ment that might be trashing that block. 

We're ready to catch the bug. Run the program by 
pressing F9, then sit back and watch the results 
come in. 

In this case, you won't have to wait long. The pro
gram breaks on the very next line: 

TextCount = 0 

This means that the following line changed 
FirstTextBlock->NextTextBlock: 

CurrentTextBlock->Text[TextCountl = O 

T_he watches viewer window agrees, reporting that 
FrrstTextBlock->NextTextBlock has changed to 
800H. 

How could this possibly have happened? Veteran 
programmers will spot the problem right away: Text
Count points past the end of the Text array, so that 
the final zero is stored right over the variable that re
sides immediately after Text; this variable just hap
pens to be NextTextBlock. Since the lower byte of 
NextTextBlock is forced to zero, NextTextBlock 
now points not to the next text block, but rather to 
some random area of memory. Thus, the link be
tween the text blocks is broken. The fix is a simple 
matter of dimensioning the Text array to BUF
FER_LENGTH+ 1 characters in size. 

Let's examine how to narrow the cause of the bug 
further (as we would have needed to do in this ex
ample if we hadn't immediately recognized the na
ture of the problem). Bring up a watch on Text-

60 TURBO TECHNIX September/ October 1988 

Count (which reveals that TextCount is 20 at this 
point in the program), and then bring up an inspec
tor on FirstTextBlock->Text and scroll to the end of 
the Text array (at this point, the data inspector win
dow appears as shown in Figure 5). The inspector 
shows that Text is only 20 characters long, and won't 
let you scroll past element 19; at the same time, the 
watches viewer window shows that TextCount is 20. 
To go further still, we could create two dump viewer 
windows to dump the memory at both 
FirstTextBlock->Text[TextCount] and 
FirstTextBlock->NextTextBlock; these windows 
would show that both variables refer to the same 
address. That should narrow it down enough for 
anyone! 

WINDOWS WITH A VIEW 
The ability to see what happens within a program is 
by far the largest part of finding any bug. Turbo De
bugge.r offe:s the power to watch every part of a pro
gram m action, from the high-level statements of the 
host language through the binary representations of 
~arge data structures, down to the bare machine reg-
1st~rs and memory locations. In a program, many 
thmgs happen at once-Turbo Debugger's win
dowed architecture lets you keep an eye on them all. 
It makes good use of any machine's resources but 
it's especially powerful when paired with the S0386 
CPU. 

. Turbo Debugger makes large-scale development 
with the Turbo languages easier and faster than ever 
before. The view is the power-look into it. • 

Michael Abrash is a senior software engineer at Orion 
Instruments, in Redwood City, California. 

Listings may be downloaded from Library 1 of Compu
Serve forum BPROGB, as DBDEMO.ARC. 



A Deal You Can't Refuse ... 100 Functions. 20 Disks, Free Software 

Entelekon 's 

C Business Library 
or C STARTER PACKAGE 

FREE* FREE* 
TURBO C<"1 

Borland 
or 

FREE* 
QUICKC™ or C MATH TOOL BOX 

Microsoft 89 advanced 
math/stat functions 

*OR FREE REFUND if you already own one, see special offer (limited time) 

What You Get With Entelekon Libraries 
r )J AC COMPILER without a good add-on library is like a PC without a keyboard . .. 

it won 't do what you want it to do! 
...,,..f.I c GAIN C POWER Add capabilities your compiler library does NOT have. e. a.: 

s New! Owick Menuing-full 1-2-3 like menus & more 
s Flexible powerful windowing + new Qwick windows 
- Powerful cursor. video and attribute control 

s- New' Owick Data Entry with dialog boxes 
1111;; Formatted, fully validated data entry 
1111;; Display default field values 

- Time and date arithmetic 1111;; Calculator style entry option 
ia;. Sample code and working examples 1111:: 700 functions you need 

SAVE TIME, TIME, TIME: man-years on development, calendar months on schedule' 

SAVE MONEY: Lowest Cost, Highest Quality Library/Windows Available! 

f( 
r--. 
r~( 
...-.i SMALLER PROGRAM SIZE: your application program can be up to 50% smaller! 

.!-A ~ c - EASY for beginners! POWERFUL for professionals' o>0"~<>{si 

...- l,1 INSTANT INSTALLATION UTILITY included! ~:;;;,.,;c"" c;.s-~-
C ~<"' '\'& "<> ~< 
...- <-,·1 SUPERB DOCUMENTATION: time saving, helpful, clear, complete, instructive. <><"'.,:'%~ o-cto" 
C I 0~4~~~ 
...-.:,_. BUSINESS USERS: FREE 3 machine site license (C Library & Power Windows). '5'-t-"',..~ <¥?.< c " ... k_"/J;,.J' 0-? 

r~: FULL SOURCE CODE included! NO ROYALTIES on products you develop. ""<t.,.~<"' 
p-z1 FREE UTILITY: To convert Turbo Pascal code to C code. 

SAVE MONEY! SAVE TIME! DON'T WAIT! ORDER NOW! 
SATISFACTION GUARANTEED 

POWER WINDOWS'" 
MOST POWERFUL YET 

POP-UP/PULL DOWN/OVERLAP 
Menus/Overlays 

Messages/Alarms 
ZAP ON/OFF SCREEN 

FILE-WINDOW MANAGEMENT 
Horizontal & Vertical Scrolling 
Word Wrap & Line Insertion 
Cursor/Attributes/Borders 

Full source code $159.95 

,,. SPECIAL OFFER 
Free Turbo C or QuickC or C Math 
Tool Box with purchase of C Starter 
Package or C Business Library. Even 
if you already own Turbo C or QuickC 
or C Math Tool Box, we will refund 
up to the full purchase price of one 
of these packages with the pur
chase of C Starter Package or C 
Business Library. 

(Direct from Entelekon only) 

C FUNCTION LIBRARY 
BEST YOU CAN GET 

OVER 500 FUNCTIONS 
FULLY TESTED 

BETTER FUNCTIONS 
Full source code $159 95 

C BUSINESS LIBRARY 
INCLUDES C FUNCTION LIBRARY, POWER 
WINDOWS. SUPERFONTS FOR C. B-TREE 
LIBRARY. ISAM 

ALL for ............... . .. $299.95 
(A $500.00 VALUE) 

CALL (713) 468-4412 

B-TREE LIBRARY & ISAM 
DRIVER 

POWERFUL DATA MANAGER 
FAST! EASY TO USE! 

16. 7 MILLION RECORDS/FILE 
16. 7 MILLION KEYS/FILE 

FixedNariable length records. 
Full source. No royalties $129 95 
Multi·User option available 

C STARTER PACKAGE 
INCLUDES C FUNCTION LIBRARY. POWER 
WINDOWS, SUPERFONTS FOR C 

ALL for ... .. .. . ......... . $199.95 
(A $370.00 VALUE) 

Entelekori 
SINCE 1982 

12118 Kimberley. Houston. TX 77024 71 3-468-44 12 VISA·MASTERCARD·CHECK-COD 



i TURBO C 2.0: THE THRILL 
~ OF THE HUNT 

Turbo C 2.0 goes one better with integrated debugging! 

Kent Porter 

Turbo C has always offered a great "bang 
for the buck." The initial release of Turbo 
C provided over 350 library functions, an 

• 
integrated development environment, 
and a variety of utilities to aid in program 

SQUAREONE development. Turbo C 1.5 (introduced last 
winter) took a giant step forward with the addition of 
the BGI graphics library. Now, Turbo C 2.0 is here
and with the improvements to the toolset, including 
integrated debugging, the language takes another 
quantum leap. 

Since Turbo C's debugging features have garnered 
so much interest, this article deals primarily with the 
Integrated Debugger. First, however, let's take a 
quick tour of all of the enhancements in Turbo C 2.0. 

MEET THE NEW TURBO C 
For convenience, I've grouped Turbo C's new and 
expanded features into three categories. 

Language Enhancements. 

• Floating point emulation is faster. 
• Long doubles are now supported for greater nu

meric precision. 
• The obsolete ssignal and gsignal functions (which 

are leftovers from Unix System III) have been 
dropped in favor of signal and raise. This change 
improves compatibility with Unix System V. 

Expanded Utilities. 

• Turbo C 2.0 contains a new .OBJ file cross
reference utility. 

• TLINK now generates .COM files from programs 
that are compiled in the Tiny model. 

• MAKE supports autodependencies. 
New Tools of the Trade. 
• Compiles and links are 10-20 percent faster. 

• The Turbo C editor can use EMS for the edit 
buffer. This can save up to 64K of memory for 
compiling and running the program. 

62 TURBO TECHNIX September/ October 1988 

LISTING 1: FACTORL.C 

/* FACTORL . C: COIT!)Utes factorial of a keyed l"U!ber *I 
/* Repeats lilt i l user enters 0 * / 

#include <stdio.h> 

main O 
( 

int value, atoiO ; 
long fact(); 
char input [6]; 

do ( 
printf ( 11 \nValue? 11 ); 

gets (input); 
value = atoi (input); 
if (value > 0) 

printf C"\nFactoriel = Xld\n", feet (value)); 
else 

puts ( 11 \nCannot take factodal of negative nt.1Tber\n 11 >; 
} while (value); 

long feet (int val) 
( 

long result = O; 

if (val) 
result= val *fact (val · 1); 

return (result>; 



• Wildcards can be expanded on 
the application program's com
mand line. 

• The integrated environment 
takes advantage of dual mon
itors. 

• The editor supports unindent, 
block indent/ unindent, and 
optimal fill. 

• And, of course, Turbo C 2.0 
offers interactive debugging. 

The most apparent changes are 
in the integrated environment. 
The menu bar across the top of 
the screen is a little more crowded 
by the addition of a Break/ watch 
selection. Every selection (except 
Edit) now has an associated pull
down menu for greater control 
over various aspects of the envi
ronment and the programming/ 
debugging session (more on this 
presently). 

Overall, the environment
while more comprehensive and 
flexible-retains the same general 
look and feel of Turbo C's pre
vious generations. Unlike the tran
sition from Turbo Pascal 3.0 to 4.0, 
there's no "culture shock" in mov
ing to Turbo C 2.0. But there is 
plenty to learn, so let's take a look. 

INTEGRATED DEBUGGING 
It's tempting to say that Turbo C 
2.0 has added a debugger, but the 
fairer statement is that debugging 
has been integrated into the 
Turbo C environment. Unlike 
most debugging packages, Turbo 

C's Debugger is not a standalone 
utility. Rather, it's an integral part 
of the environment, seamlessly 
folded into the process of writing, 
making, and testing programs. 

During a debugging session, for 
example, you can edit and remake 
the source code to fix errors, then 
resume the debugging process. 
The recompile doesn't lose track 
of breakpoints and watches that 
were set earlier; they remain in ef
fect even if source code is added 
or removed. This allows you to 
work out the bugs systematically, 
without disrupting the natural 
workflow. 

The power of the C language 
has its price: no matter how 
skilled the programmer, it's almost 
impossible to write a C program 
that runs right the first time. The 
language's flexibility and some
times obscure syntax encourage 
new techniques, and this experi
mentation inevitably introduces 
bugs. Therefore, Turbo C and in
tegrated debugging go hand-in
glove. 

THE HUNT 
To see how a debugging session 
proceeds, let's develop and debug 
a simple program to compute the 
factorial of a number. To refresh 
your memory (in case your alge
bra has gotten rusty) , a factorial is 
the series product of a value. For 
example, the factorial of 5 (written 
5! in mathematical notation) is 
computed as 1 X 2 X 3 X 4 X 5, 
which equals 120. 

FACTORL.C (Listing 1) has a 
loop in main that repeatedly asks 
for a value and prints the value's 
factorial until the user types 0. 
FACTORL uses the recursive 
function fact to solve for the fac
torial. The program as listed con
tains a bug; we'll hunt the bug 
down in order to examine a few 
of the Debugger's features. 

The process of editing and 
making a program in the develop
ment environment has not 
changed from Turbo C 1.5. The 
process of running the program, 
however, is a little different. The 
Alt-R command now produces a 
menu that includes some debug
ger controls. You can circumvent 
the menu and run the program by 
using the new hotkey, Ctrl-F9. 

When the program is run, it re
turns 0 as the factorial of any 
number. Thus, the fact function 
appears to contain a bug. 

To prepare a program for de
bugging, an environmental con
dition must be set: toggle Source 
debugging (located on Turbo C 
2.0's revised Debug menu) to On 
(see Figure 1). Also, since you're 
dealing with a recursive function, 
you might want to check the call 
stack to make sure that the recur
sion is working properly. To do so, 
set Standard stack frame On from 
the Options/ Compiler/ Code gen
eration menu. Now, remake the 
program and you're ready to go. 

continued on page 64 

September/ October 1988 TURBO TECHNIX 63 



THE HUNT 
continued from page 63 

THE PROBLEM 
The program runs normally until 
the fact function is called from 
within print£ At that point, stop 
the program and observe what's 
going on. Set an automatic stop 
(called a breakpoint) by moving the 
cursor to the statement if(value) 
and pressing Ctrl-F8. (As an alter
native approach, select Toggle 
breakpoint from the Break/ watch 
menu.) Notice that the source line 
is highlighted to indicate that it's 
a breakpoint. Now, run the pro
gram. 

The new "smart screen" option, 
which is on by default, automat
ically swaps between the edit 
screen and the program display. 
Whenever screen 110 occurs, the 
program display appears. Conse
quently, the program runs nor
mally and asks for and receives 
values until it hits the breakpoint. 
The edit screen then reappears. 
A bar, called the execution bar, 
highlights the source line where 
the program stopped. 

One way to proceed is to single
step, executing one line at a time, 
and watch what happens. The 
Turbo C 2.0 Debugger has two 
single-step hot keys. F7 activates 
Trace, which single-steps through 
all function calls. F8 activates Step, 

64 TURBO TECHNIX September/ October 1988 

Figure 1. Examining the call stack. 

Figure 2. The evaluation window. 

which "steps over" functions, exe
cuting them but not tracing their 
execution. In this case, since the 
bug is probably in the function, 
select F7. 

However, there's an easier way 
to locate the source of the prob
lem. Whatever the value you 
keyed, fact calls itself that number 
of times before it encounters the 
return statement. You can save a 
lot of single-stepping by setting a 
temporary breakpoint at the re
turn. To do so, position the cursor 
on the return statement, then se
lect Go to cursor from the Run 
menu. The program halts when it 
reaches the line where the cursor 
is positioned. 

Now you can examine the state 



of affairs. First, check the call 
stack to see if recursion is working 
correctly (select Call stack on the 
Debug menu). Assuming that the 
keyed value is 3, this produces the 
display shown in Figure 1. Note 
that each invocation of fact is 
passed an argument that is one 
less than its predecessor. This is 
as it should be. So where's the 
bug? 

The program consistently re
ports 0 as the factorial. Examine 
the argument of return to see 
what the fact function is return
ing. To do so, place the cursor on 
result, then press Ctrl-F4 (or select 
Evaluate from the Debug menu). 

Ctrl-F4 pops up the expression 
evaluation window shown in Fig
ure 2. A number of things can be 
done in this window, such as typ
ing expressions using C syntax 
and viewing the results, or chang
ing the value of a variable. In this 
case, you simply want to see re
sult's value. The Debugger copies 
the variable name from the cursor 
position into the evaluate field. 
Press Enter and the value appears 
in the middle box. The value that 
displays is zero, which explains 
why the program returns incorrect 
results. 

THINKING IT THROUGH 
A debugger is a tool for interac
tively controlling and watching 
the execution of a program, and 
for examining the program's in
ternal conditions. The debugger 
can tell you what's happening, but 
it can't think for you. The ques
tion is, "Why is the value returned 
in result equal to 0?" To find the 
answer, you have to inspect the al
gorithm that yields this value. 

In the fact function, result is 
initialized to 0. Then, if the argu
ment has a nonzero value, result 
is assigned the value of the ex
pression, which triggers a recur
sive call. When the passed argu
ment reaches 0, the if statement 
fails and the return statement 
sends back the original value of 
result (0). This value becomes one 
of the multipliers in the factorial 
series: 
0 x 1 x 2 x 3 x •• x N 

Zero times anything else is zero. 
Consequently, the bug is the result 
of flawed logic; result should be 
initialized to 1 so that the function 
cannot return 0. 

To fix the program, change the 
initializer, remake FACTORL, and 
test the program again. This time 
the program returns the correct 
answer, and the bug is fixed. 

STICKY BREAKPOINTS 
An interesting thing happens 
when you remake a program that 
contains set breakpoints; the 
breakpoints are retained, even if 
source lines are added or re
moved. The Turbo C 2.0 Debugger 
tracks the physical source lines 
that have breakpoints. When a 
program is complex and buggy, 
this automatic tracking process 
saves you the hassle of reestab
lishing breakpoints every time you 
fix and retry. These "sticky break
points" are one of the great ad
vantages of having the Debugger 
integrated into the editing envi
ronment, rather than designed as 
a separate utility. 

WATCHING VARIABLES 
Another feature of the Turbo C 
2.0 Debugger is the ability to 
watch one or more variables in a 
window while the program exe
cutes. This is particularly valuable 
when a loop counter goes berserk, 
or when some variable appears to 
have been corrupted for reasons 
unknown. The easiest way to set 
watches on variables is to position 
the cursor on some occurrence of 
the variable to be watched. For 
each variable, press Ctrl-F7 (or use 
the Add watch selection in the 
Break/ watch menu). The watch 
window appears at the bottom of 
the display, similar to the error I 
warning message window that ap
pears during compiles. Also, F5 
can be used to toggle between full 
(zoomed) and split-screen mode, 
and F6 switches between full
screen edit and watch windows. In 
split-screen mode, the watch win
dow grows upward dynamically to 
accommodate the number of 
watched variables. 

Local variables are visible only 
while control resides within the 
routine that owns them. There
fore, as execution proceeds from 
one routine to another, the auto 
variables located outside of the 
current routine become unde
fined. The watch window only 
shows values for the variables that 
it sees. (This explains the "Unde-

continued on page 66 

THE WINDOW BOX 
A windowing toolbox for 
C programmers. 

Enhance the beauty of your C applications 
with THE WINDOW BOX. 

ADD SOME PIZAZZ! 
THE WINDOW BOX lets you ELECTRIFY 
your programs with pop-up windows. pull
down menus with highlight bar selection, and 
context sensitive help . Watch your screen go 
blank when your program is idle. Assign 
functions to the function keys. Much more' 

ADD SOME POWER! 
Read many fields with one operation . Data 
entry windows offer many formats, com
plete cursor navigation, and let you tie veri
fication functions to any field . Use scrolling 
and text-editing windows, too. Print a 
window, not necessarily the whole screen. 
(Super for mailing labels!) Much more' 

FAST AND COMPATIBLE! 
Stores directly in video RAM . If your 
environment prohibits this, we can store in 
the alternate display pages, or use DOS ca:ls 
exclusively. 

SOURCE CODE PROVIDED! 
Contains no assembler code' Only standard 
C code. See how things work . Change how 
things work . Compatible with all major C 
compilers. Requires MS-DOS/ PC-DOS. 

REASONABLE PRICE! 
And no royalties. Only $49.50 including 
shipping and tax . Including source code' 
Overseas add $5 and we will Air Mail. US add 
$10 and we will overnight. 
SATISFACTION GUARANTEED, or return in 
30 days for a full refund . 

Mastercard/Visa Call 412-487-4282. 
Or. send checks (U .S. funds) to: 

Vertical Horizons Software 
113 Lingay Drive 
Glemshaw. PA 15116 

September/October 1988 TURBO TECHNIX 65 



THE HUNT 
continued from page 65 

fined symbol" message associated 
with value in Figure 3. The execu
tion bar shows that control is cur
rently in fact; value, however, is 
local to main.) Global variables 
are, of course, visible from any
where in the program. 

The Break/watch menu pro
vides options for changing and 
deleting watches, as well as for 
removing all watches at the same 
time. Similar capabilities are avail
able for controlling breakpoints. 

If you want to watch certain ele
ments within an array, you can 
use a watch editor feature called 
repeat counts. For example, to 
watch elements 4 through 8 of an 
array called num, specify the ele
ments as the following: 
nun[4] ,5 

This statement tells the Debugger 
to watch the five elements of num 
starting at subscript 4. The watch ' 
window then contains individual 
entries for each element, building 
upward from num[ 4]. 

If you're working with a large 
application that involves many 
source modules, you can qualify 
variable names from other mod
ules in order to watch their values. 
This is true even if the variable 
comes from a module outside of 
the module you're currently de
bugging, and the variable is local 
to a specific function . The general 
form of the syntax for the watch 
editor is: 

.module.function.variable 

The module must be made with 
the debugging options on. How
ever, the module doesn't have to 
be in the editing environment in 
order to watch its indicated vari
able while the program runs. 

SMART SCREEN SWITCHING 
With many debuggers, the process 
of debugging graphics applica
tions is often tricky (and some
times impossible)-but not with 
the Debugger in Turbo C 2.0. The 
Turbo C 2.0 Debugger operates in 
text mode, while the program dis
play is in graphics mode. The 
smart screen management buiil 
into the Debugger lets you switch 
back and forth readily. The pro
gram display can be viewed at any 
time, regardless of its mode, by 
pressing Alt-F5. Pressing any key 
returns you to the edit/ debug 
screen. 

BAILING OUT 
You may be wondering what 
happens if your program hangs the 
system. If your program is running 
under the debugging environment, 
you can usually (but not always) es
cape by pressing Ctrl-Break, which 
returns you to the edit/ debug 
mode. The Program reset option 
from the Run menu (or Ctrl-F2) re
initializes the program as if it had 
never been run before. With this 
option, you can start over and uti
lize breakpoints, watches, and other 
Debugger tools to pinpoint the 
problem. 

66 TURBO TECHNIX September/ October 1988 

Figure 3. The watch window. 

Once you've perfected your pro
gram by using the Integrated De
bugger, simply turn off the envi
ronment's debugging option and 
recompile. The debugging options 
insert some additional informa
tion into the end of the .EXE file· 
the final application will run with 
this debug information still in 
place, but the .EXE file size will be 
smaller without it. This is in con
trast to some debuggers that place 
int calls in your code, forcing you 
to remove the debug information 
before running the final appli
cation. 

THE VELVET GLOVE 
The essence of Turbo C 2.0 lies in 
its enhancements to the toolset
primarily in its addition of a pow
erful Integrated Debugger that lets 
you test, fix, remake, and retest 
until your program works like it's 
supposed to. Almost by definition, 
C is a language that encourages 
both extraordinary power and its 
accompanying bugs. Turbo C 2.0 
fits integrated debugging over the 
hand of C like a velvet glove-and 
hurdles the last obstacle to true 
programmer productivity. • 

Kent Porter is a frequent contributor 
to TURBO TECHNIX. His next 
book, Stretching Turbo C, is due to 
be re/,eased this fall. 

Listings may be downloaded from 
Library 1 of CompuServe forum 
BPROGB, as FACTRL.ARC. 



FLOATING POINT: 
THE SECOND WAVE 
When a number isn't exactly a number, 
Turbo C 2.0 can handle it. 

Roger Schlajly 

Turbo C is very good at handling 
numbers that represent quantities in the 
real world, as I explained in "Floating 
Point in Turbo C," TURBO TECHNIX, 
January/ February, 1988. Turbo C 2.0 now 

wiZARo enhances floating point support with bet-
ter precision, better exception handling, and a 
means of dealing with numbers that aren't exactly 
numbers. 

Turbo C 2.0 fully supports the IEEE standard for 
computer arithmetic (IEEE standards 754 and 854) 
when used with an 8087 math coprocessor. (If an 
8087 is not present and emulation must be used in
stead, certain exceptions exist that are primarily re
lated to denormals, as explained in my earlier article 
on floating point.) 

GREATER PRECISION 
There is a very long road in California called El 
Camino Real. Near Silicon Valley, FORTRAN pro
grammers call it El Camino DOUBLE PRECISION. 
Lisp programmers, who claim it originally extended 
all the way to Mexico City, call it El Camino Bignum. 
Turbo Pascal programmers call it El Camino Extend
ed. Turbo C programmers can now call it El Camino 
long double, in honor of Turbo C's new data type, 
which is called the "long double." This type was 
created by the ANSI C committee (X3Jll) to accom
modate the IEEE extended precision. Quite simply, 
long doub/,es are very long reals. 

Turbo C 1.0 and 1.5 actually allowed the long 
double syntax, but long doubles were identical to 
doubles. In Turbo C 2.0, the long double is a 10-byte 
data type, whereas floats and doubles are 4 and 8 
bytes in size, respectively (as in earlier releases of 
Turbo C). Turbo C automatically performs conver
sions among these types. 

Long doubles are just as fast as floats and doubles. 
The only penalty is the additional data space re
quired by long doubles. The following examples 
show the usefulness of long doubles. 

Increased precision. Suppose you want to take the 
sum of some number of real values in a vector. Such 
calculations are prone to roundoff error, which is 
why numerical analysts use tricks to carefully reorder 
the numbers in order to minimize the loss in preci
sion. A simpler alternative is to use long double pre
cision to compute the sum, as shown in the following 
example: 
double vect sum(int n, double x[J) 
{ -

} 

int i; 
long double sum = O; 
for Ci = O; i < n; ++i) 

sum+= x[iJ; 
return sum; 

A voiding overflow and underflow. Turbo C has a hy
pot() library function, which returns the hypotenuse 
of the right triangle given the two remaining sides. 
This function is quite useful in calculating the modu
lus of complex numbers, in polar coordinate conver
sions, and in many other situations. If you were to 
create such a function, you would probably write it as 
follows: 

#include <math.h> 
double hypot (double x, double y) 
{ 

return sqrt Cx*x + y*y); 
} 

The trouble with defining hypot() in this way is 
that it's susceptible to underflow or overflow of inter
mediate results. For example, ifx = 3e200 and 
y = 4e200, then hypot() overflows even though the 
correct answer is 5e200, which is nowhere near the 
overflow threshold of l.8e308. Worse yet, hypot(3e-
200,4e-200) underflows and returns 0, when it should 
return Se-200. (This is worse because underflows are 
ignored by Turbo C Runtime code, and you'll have 
no idea that the function underwent a complete loss 
of precision unless you explicitly check for under
flows.) 

Now, examine the following hypot() function: 

continued on page 68 

September/ October 1988 TURBO TECHNIX 67 



FLOATING POINT 
continued from page 67 

double hypot (double x, double y) 
{ 

long double z = x*x + y*y; 
asm FLO tbyte ptr z 
asm FSQRT 
} 

This hypot() function is similar to 
the hypot() function included with 
Turbo C, except that the Turbo C 
library function calls matherr() if 
an overflow or underflow occurs 
in the result (i.e., if the resulting 
long double is outside the limits 
allowed for doubles). Thus, the 
hypot() function shown above 
avoids the difficulties that occur 
with overflows and underflows. 

Some inline assembler was used 
here because the Turbo C sqrt() 
function requires a double argu
ment, rather than a long double 
argument. The 8087 operation 
FSQRT, however, returns a result 
of any desired floating point type. 
The process of returning a long 
double is the same as that of re
turning a double or a float, and 
the 8087 supports all three types. 
The results are returned on top of 
the 8087 stack, and the 8087 chip 
automatically performs the re
quired conversion when a num
ber is unloaded from the 8087 
stack. 

READING AND PRINTING 
LONG DOUBLES 
Long doubles can be read with 
scanf() or printed with printf() by 
using the L modifier for the usual 
floating point conversion specifi
ers. For example, the following 
code reads rr from a string and 
prints it to 18 decimals: 

#include <math.h> 
#include <stdio.h> 
#define STRINGIZE(p) #p 
long double pi; 
sscanf(STRINGIZE(M Pl), 11%Lf 11 ,&pi); 
printf("pi = %21.1Blf\n",pi); 

PASSING PARAMETERS 
The choice of using three floating 
point data types complicates pa
rameter passing conventions, and 
makes it all the more likely that a 
function will be called with the 
wrong type parameter. I recom
mend using ANSI C prototypes. 
Be extra careful with functions 

that cannot be adequately proto
typed, such as printf(). 

When passing a floating point 
expression without a prototvpe, 
Turbo C passes either a double or 
a long double, depending upon 
the longest type in the expression. 
ANSI C stipulates that the L suffix 
can be added in order to tell the 
compiler to consider a constant to 
be a long double. This step is 
demonstrated in the following 
example: 

printf("double constant = %g\n", 
3.2); 

printf("long double constant = 
%Lg\n11 ,3.2L); 

Some ANSI C compilers may also 
require the L suffix in order to 
achieve full accuracy in situations 
such as the following: 

long double x, y; 
y = 3.2L * x; 

With Turbo C, however, an L is su
perfluous in this situation. Turbo 
C automatically stores such con
stants to long double precision. 

PRECISION LOSS 
Let's consider a simple example 
of an appropriate use of high pre
cision. Suppose you want to com
pute 1 / 3 to the power of n for var
ious positive integers n, and the 
answer must be accurate to about 
three decimal digits. Several av
enues of approach are possible: 

• Method 1. Call the Turbo C 
library function pow(3,-n). 

• Method 2. Recursively calculate 
x[n] = 3 ·n: 

x [0] = 1 

x[n] = x[n-1] / 3 for n > 0 

• Method 3. Recursively calculate 
x[n] = 3·n: 

x [O] 

xm 1./3 
X[n] = 

(31 * x[n-11 - 10 * x[n-2]) I 3 
for n > 1 

Method 1 is both the most ac
curate and the preferred method. 
It should yield a result that is ac
curate to full double precision. 

Method 2 is the most straight
forward approach if no library 
function is available. While meth
od 2 is quite accurate for small 
values of n, each operation causes 
a roundoff error. Still, roundoff 
errors tend to average out, and 
two or three significant digits are 

68 TURBO TECHNIX September/ October 1988 

lost only when n gets to be about 
600 (which is near the range limits 
for double precision anyway). 
Computing the powers with long 
double precision is a reasonable 
approach, and provides the reas
surance that the answer is as ac
curate as double precision allows. 

Method 3 is a rather silly way to 
compute powers, but it's mathe
matically correct and similar to 
the methods that are frequently 
encountered in practice. Unfortu
nately, this method is almost com
pletely useless. In single precision, 
it delivers an answer that is accu
rate to three digits only if n <= 4. 
Larger values cause the method to 
yield garbage. Method 3 returns 
answers for some higher values of 
n by using high precision, but the 
gain is minimal. Double precision 
only works for n <= 10, and long 
double precision only delivers 
three-digit accuracy when 
n <= 12. 

The lesson here is that most 
good numerical algorithms are 
stable with respect to roundoff er
ror, and that they deliver much 
more precision than could ever be 
used anyway. Poor numerical al
gorithms can lose so much preci
sion that they're often useless, 
even when plenty of precision is 
available in the variables. 

DEALING WITH THE 
INFINITE 
The enemies of numerical ana
lysts are roundoff error, overflow, 
underflow, and division by zero. 
All of these situations involve nu
meric values that cannot be fully 
expressed in a finite number of 
bits. These anomalous values can 
infiltrate your program and create 
havoc. The usual countermeasure 
used by Turbo C and other C com
pilers is a form of Mutual Assured 
Destruction (MAD). If you give 
Turbo C a floating point expres
sion that blows up, it retaliates by 
nuking your program, which 
abruptly terminates with a mes
sage such as: 
Floating point error: Overflow. 

The alternative is to negotiate 
your own INF treaty. The idea is 
to come to terms with the infinite, 
and learn to live with it. 



The numbers won't get out of 
control as long as the 8087 control 
word is set properly. The control 
word can be set to mask numeric 
exceptions via a call to _control-
87() as follows: 

#include <f loat.h> 
control87CMCW EM-EM DENORMAL, 

- MCW=EM); -

The second argument is the mask 
that tells _control87() which bits 
are being changed in the 8087 
control word. The first argument 
specifies the new bit values that 
correspond to the exceptions that 
are to be masked. The invocation 
shown above masks all of the ex
ceptions except the denormal ex
ception. Denormal exceptions are 
largely harmless, because the 
Turbo C 2.0 Runtime Library con
tains a denormal exception han
dler. 

The creation of denormals can 
be regarded as mildly criminal be
havior on the part of the 8087 
chip. In dealing with denormals, 
the 8087 tries to get something for 
nothing. A denormal is a number 
so small that it should be zero, but 
the 8087 gives the number a pro
bationary nonzero status. This 
petty offense probably won't 
bother your program. However, 
an annoying feature of the 8087 
chip is that it doesn't have much 
of a rehabilitation program for de
normals. If a denormal value in
creases beyond a certain point, 
the denormal can reenter the 
range of the normals-in doing 
so, however, the value does not 
become normal. Instead, it be
comes unnormal. Unnormals are 
like convicted felons who have 
not been rehabilitated. They are 
not normal, they corrupt whatever 
values they touch, and they can
not even be stored in float or 
double formaL You don't want 
these animals in your neighbor
hood. 

Fortunately, Turbo C 2.0 goes 
the 8087 one better with a denor
mal exception handler that nor
malizes denormals before they 
mutate into unnormals. Turbo C 
normalizes denormals automati
cally when the denormal excep
tion is left unmasked. Note that if 
an 80386 machine has an 80387, 

it doesn't matter whether the de
normal exception is masked or 
not. The 80387 has a built-in nor
malizer, and doesn't generate un
normals at all. 

THREE NEW "NUMBERS" 
All of the other exceptions may be 
safely masked (and, in fact, that 
approach may be preferred for 
bulletproof programs). With de
normals properly normalized, the 
IEEE standard allows every arith
metic operation to have a defined 
result. The standard accomplishes 

this end by adding the following 
three new numbers: 
+INF plus infinity 
-INF minus infinity 
NAN not-a-number 

Two infinities. Having two infin
ities is new to Turbo C 2.0. Early 
drafts of the IEEE standard called 
for two infinity modes-"projec
tive" and "affine." While the 8087 
supports both, it defaults to pro
jective infinity; Turbo C 1.0 and 
1.5 only supported projective in-

continued on page 70 

C-Index™ for Turbo C® 

Database Toolkit 
Your Turbo C programs will really fly with fast C-Index access. C-lndex is ready
to-use with Turbo C, right out of the box. No need to compile or change the source 
code. Nine simple function calls give you the power of fast B +Tree indexing and 
automatic variable-length records. C-Index makes programming easy with a friendly 
Application Program Interface. The excellent documentation includes extensive 
examples and an interactive tutorial program. Order now and we will send you a 
free database application , along with five additional utilities and fully commented 
source code for everything . 

C-Index is the database toolkit that has been successfully used in commercial 
applications for the mass market, such as Prime Time. C-Index is the library of 
choice for major financial institutions that have used it for sensitive monetary 
transfers. Wayne Ratliff, authorof dBase II and dBase III , thought C-lndex was so 
" terrific" that he uses it as the foundation for his new Emerald Bay database system. 
Just link C-Index into your programs and you can be a database superstar too. 

Every day thousands of people depend on C-lndex to manage their data. Once you 
discover the speed and power of C-Index, you won't write a program without it. 

• Fast B +Tree Indexing • Variable Length Records 

• Single and Multi -user Access • Complete Random and Sequential Acce!.s 

•Works with any standard MSDOS LAN • Data and Indexes in same file 

• 170 page manual • Multiple Record Formats per file 

• Proven Re liab ility • No Application Royalties 

"I heartily recommend this package." 
Dr. Dobbs Ernmining Room , June '88 

C-Index™ for Turbo C® 
Single/Multi-User version with complete source code. 

Order now at this introductory price and 
receive the free database application . 

$99 
Trio Systems 213/394-0796 
2210 Wilshire Bl. Suite 289 Santa Monica , CA 90403 

September/ October 1988 TURBO TECHNIX 69 



FLOATING POINT 

continued from page 69 

finity. However, projective infinity 
was dropped from the standard 
and is now obsolete. In keeping 
with the new IEEE standard, the 
80387 supports only affine infinity, 
as does the Turbo C 2.0 8087 em
ulator. Only affine infinity will be 
discussed in this article. If you are 
still using Turbo C 1.0 or 1.5 with 
an 8087 or 80287, you can select 
affine infinity by calling _control-
87(), as shown in the following 
code: 
#include <float.h> 
_control87(1C_AFFINE,MCW_IC); 

Hello, NAN. NAN is even strang
er, and its name is something of 
an oxymoron. NAN isn't really a 
number (as its name implies), but 
it has a legitimate representation 
in each of the floating point for
mats. Actually, there are many 
such representa,ble NANs, but the 
8087 generates only one, and that 
NAN will suffice for this discus
sion. 

Any arithmetic operation on 
floating point numbers results in 
either a traditional floating point 
number or else one of these three 
special numbers. Overflows be
come infinities just as underflows 
become zero, as shown in the fol
lowing example: 

double x = 1e-200 * 1e-200; 

returns x = 0 

double x = 1e+200 * 1e+200; 

returns x = +INF 

double x = - 1e+200 * 1e+200; 

returns x = -INF 

If an operation is mathemati
cally undefined (such as 0/ 0) , the 
result is NAN. One of the less ob
vious cases is that 110 = +INF. 
Mathematicians will tell you that 
110 is just as likely to yield -INF as 
+INF. Having 110 yield +INF is 
rationalized because 0 really con
sists of two numbers: +O and -0. 
While the difference between the 
two numbers isn't obvious because 
both zeros are numerically equal, 
there is a subtle difference be
tween +O and -0 that is shown in 
the following relationship: 
(+0 == -0) 

Essentially, you have to divide by 
0 in order to see which zero is 
present. The rule is 11+0 = 
+INF, and 11-0 =-INF. 

The 8087 and 80287 (but not 
the 80387) support pseudozeros, 
which can occur when unnormals 
multiply and the product gets too 
close to (true) zero. Pseudozeros 
are also equal to zero, but they re
tain the taint of the unnormals 
that produced them. With the 
Turbo C 2.0 denormal handler 
preventing unnormals from occur
ring, pseudozeros shouldn't ap
pear either. 

Arithmetic can also be per
formed on these special numbers, 
as the following example demon
strates: 
+INF + 5 = +INF 
1/+INF = +O 
+INF/+INF = NAN 
5 * NAN = NAN 

The constants +INF, -INF, and 
NAN as used in this example are 
not predefined in Turbo C. How
ever, you can easily create con
stants that have these special 
numbers as their values by re
membering that Turbo C (like 
most C compilers) evaluates con
stant expressions at compile time. 
Thus, INF and NAN can be 
created as constants with the fol
lowing definitions: 

#define INF (1./0.) 
#define NAN (0./0.) 

What are all these crazy numbers 
good for? When performing com
putations on a computer, it's very 
important to have a closed arith
metic system. A closed arithmetic sys
tem means that every arithmetic 
operation yields a quantity that is 
somehow representable within the 
system. If a long sequence of op
erations is performed and the re
sult is a NAN, then a mathemat
ically invalid operation was 
performed somewhere along the 
way. Since the result of every ex
pression-including an invalid re
sult-is represented, the Runtime 
Library never has to throw up its 
hands in despair and crash. 

Another use for NANs is in 
creating "uninitialized" data. In C, 
all uninitialized data are initial
ized with 0 at startup. (That's +O, 
not -0.) Occasionally, a variable 
must truly be recognizable as un
initialized through some unique 
nonzero value. A constant that is 

70 TURBO TECHNIX September/ October 1988 

defined as a NAN (as shown ear
lier) can be used to initialize the 
variable with the value NAN. 
Since any operation on a NAN 
yields a NAN, a faulty answer 
won't occur when calculations are 
accidentally performed with un
initialized data. 

READING AND PRINTING 
INF, NAN 
INF and NAN values may be read 
into variables and displayed, just 
as with any legitimate floating 
point value. If a value happens to 
be plus infinity, minus infinity, or 
not-a-number, then it's printed as 
"+INF," "-INF," or "+NAN." 

The values INF and NAN can 
be read into any of the floating 
point formats, but only if pre
ceded by a sign symbol. Thus 
"+INF," "·INF," "+NAN," and 
"-NAN" are considered legitimate 
numbers to scanf(). In the case of 
NAN, the sign is meaningless, ex
cept to indicate to scanf() that 
NAN is a number and not a vari
able. 

RECOGNIZING INF AND NAN 
Since many situations require spe
cial treatment of INF and NAN, 
it's necessary to be able to recog
nize these values when they occur 
in your program. For example, if 
a function returns a NAN, you 
may need to know immediately 
that the function failed. 

Turbo C 2.0 handles +INF and 
-INF correctly in comparisons. 
The following method can deter
mine if x equals -INF: 

#define INF (1./0.) 
if (x ==-INF) ... 

Unfortunately, Turbo C does 
not support comparisons between 
floating point values and NANs. 
This support is not present in 
Turbo C for two reasons. First, 
ANSI C does not require it; and 
second, due to the way that the 
Intel CPU and coprocessor chips 
work, this support could not be 
added without slowing down every 
floating point compare operation. 
Therefore, unless the invalid op
eration exception is masked, a 
comparison that involves NANs 
generates the exception and ter-



x==NAN 
x!=NAN 
x < NAN 
x <= NAN 

always TRUE 
always FAL'iE 
unreliable 
unreliable 

Assume this definition for the above compar
isons: *define NAN(0.10.) 

Tab/,e 1. Results of comparisons in
volving NAN. 

minates the program with the fol
lowing message: 

Floating point error: Domain. 

If the INVALID exception is 
masked, the comparison generates 
inconsistent results, as shown in 
Table 1. Therefore, I recommend 
using a procedural test, such as 
the ieee_type() function given in 
Listing 1, in order to determine 
whether or not a number is a 
NAN. 

The function ieee_type() in 
IEEETYPE.C (Listing 1) identifies 
numbers as belonging to one of 
four categories: normal, +INF, 
-INF, and NAN. Zeros, normals, 
unnormals, and denormals are all 
classified as normals for simplicity. 
As long as a prototype can be 
used before ieee_type() is called, 
this function can be used for clas
sifying float, double, or long 
double arguments. Because 
ieee_type() requires that long dou
bles be in the IO-byte format, this 
function will not work with Turbo 
C versions that are earlier than 
2.0. 

INFINITE PHILOSOPHIES 
Different people have different at
titudes towards floating point 
overflows. The traditional (and 
common) view is that debugged 
programs don't overflow. On 
many mainframes, this may truly 
be the case, because the hardware 
may prevent the program from 
continuing after an overflow oc
curs. Therefore, your program 
had better be debugged. In defer
ence to this view, the default 
Turbo C behavior is to terminate 
the program in the event of an 
overflow. 

If you share this traditional 
view, Turbo C 2.0 has some new 
features to help you. You can trap 

the overflow, and even though 
you may consider the overflow to 
be fatal, your program can print 
some useful diagnostics before it 
dies. 

The more progressive view is to 
not discriminate against infinities 
and NANs, and to not trap any 
floating point exceptions. This 
view seems more appropriate for 
C programs. After all, C is the lan
guage that assumes that the pro
grammer knows what to do and 
then lets the programmer do it. 

Currently, Turbo C 2.0 library 
functions such as exp() will not re
turn a value larger than l.8e+308. 
Tradition requires Turbo C to re
turn representab/,e numbers, and 
l.8e+308 is the largest such num
ber. If the answer should be larg
er, then matherr() is called to no
tify the programmer of the error. 
However, the new IEEE standard 
has caused people to become 
more broadminded about the def
inition of a number-now a num
ber can be INF, or even NAN. 
The latest ANSI C draft allows 
these special numbers to be con
sidered representable. 

In keeping with this trend, 
some future Turbo C release will 
probably assume that C program
mers are ready to play as fast and 
loose with floating point numbers 
as they currently do with pointers 
and other data types. INFs and 
NANs will be declared represent
able numbers, just as the ANSI C 
draft allows. When exp(lelO) is 
called, it will just return +INF, 
and possibly not even call math
err(). A call to sqrt(-1) might just 
return NAN. 

In the meantime, the same 
thing can be accomplished under 
Turbo C 2.0 by replacing the li
brary's matherr() with a matherr() 
of your own devising, and then 
modifying the variable _huge_ -
dble. _huge_dble occurs in 
<math.h> in the following con
text: 

#define HUGE_VAL _huge_dble 

The purpose of _huge_dble is to 
contain the largest representable 
value for programs that need this 
variable. The library functions 
that need this value must simply 
reference _huge_dble. The default 
is l.8e+308. This value can also 
be defined as +INF. (Turbo C 1.0 

and 1.5 used a function called 
_huge_val() for HUGE_ VAL.) 

If you include MATHERR.C 
(Listing 2) in your program, and 
call startfp() when the program 
first runs, then all exceptions 
other than the denormal excep
tion are masked, all library errors 
are ignored, and the library func
tions return INF under appro
priate circumstances. 

CONTINUED FRACTIONS 
Here is a typical example where 
arithmetic with infinities is useful, 
even when a finite result is being 
calculated. Consider the following 
formula: 

tan x = x 
1- x' 

3- x' 
5- x' 

7-
The formula converges to 

tan(x) for any value of x. This 

... 

type of formula is called a con
tinued fraction, and can be thought 
of as being analogous to a power 
series. In this case, the continued 
fraction can be more useful for 
approximating the tangent of x 
since the formula converges ev
erywhere, and converges more 
rapidly than the power series. 
(The power series is only good for 
lxl < rr/ 2, as the tangent function 
has a singularity at rr/ 2.) 

The code in TAN.C (Listing 3) 
uses long doubles for interme
diate results. The calculation is 
likely to lose only a couple of bits 
of long double precision due to 
roundoff error, which won't mat
ter once the calculation is round
ed again to double precision. 
Thus, an answer will be accurate 
to the limits of double precision. 

The nice thing about this exam
ple is that infinities can occur in 
the calculation, yet it always gives 
the correct finite answer if 

continued on page 72 

September/ O ctober 1988 TURBO TECHNIX 71 



FLOATING POINT 

continued from page 71 

enough terms are used. In fact, 
because of the way the calculation 
is coded, it divides by 0 the first 
time through the loop! 

Not all calculations are so for
tunate. If a calculation produces 
an infinity, there's the risk that a 
O*INF, INF-INF, or INF/INF 
might produce a NAN. (0/ 0 als.o 
produces a NAN.) Any calculauon 
that depends upon a NAN yields 
a NAN. If the introduction of a 
NAN into a calculation is a possi
bility, then the calculation must 
check the result to see if the result 
is a NAN, or if the invalid bit was 
set in status87(). For example, 
consid-er the following expression: 

status87() & 
- (SY INVALID I SY_ZERODIVIDE I 

SY=OVERFLO\.I) 

If this expression evaluates to a 
nonzero value, then an invalid op
eration, a divide by zero, or an 
overflow must have occurred after 
either the start of the program or 
the last call to _clear87() or _(pre
set(). Arithmetic operations on 
NANs are considered invalid 
operations. 

Note that approx_ tan() treats 
x = O as a special case. If this were 
not so, then approx_tan() would 
encounter 0/ 0 and return a NAN. 
A better fix for this problem is to 
initialize y with some nonzero 
value. 

USING signal() TO TRAP 
EXCEPTIONS 
ANSI C specifies a portable way to 
trap floating point exceptions. 
This method involves using the 
signal() function to install a float
ing point exception han~ler. Tur
bo C 2.0 fully supports this 
scheme, as shown in SIGTEST.C 
(Listing 4). 

Call signal(SIGFPE,fphandler) 
to install the handler, and call 
setjmp(jumpl} before doing any 
floating point calculations. Ev~ry 
time the handler is triggered, 1t 
must reinstall itself, because each 
signal causes the main program to 
revert to its default signal handler. 
(This is an old UNIX quirk.) 

Following are the reasonable al
ternatives for a floating point ex
ception handler. Items 3 and 4 re
quire a physical coprocessor. 

1. Print a suitable error message 
and exit (this is the process per
formed by the default handler). 
A program that wants to do the 
same thing may still wish to re
place the handler in order to 
do some additional house
cleaning or to print a more in
formative error message. 

2. Perform a longjump to a safe 
place in the program. If this is 
done, the program must pay at
tention to all of the usual haz
ards of long jumps. In addi
tion, the program should call 
_(preset() to reset the coproces
sor or emulator. (The library 
function _(preset() resets the 
coprocessor. If for some reason 
a special value is maintained 
for the 8087 control word, then 
the control word must be reset 
to that special value because 
_(preset() installs the de~ault 
Turbo C control word.) Smee 
interrupts occur asynchro
nously, there is more than the 
usual danger here that an in
terrupt will happen while the 
code is in an inconsistent state. 

3. Set a flag and continue. As with 
case 3, most programs may pre
fer the simpler strategy of 
masking the exceptions. The 
occurrence of the exception 
can still be detected by exam
ining the status word with 
_status87(). The status word 
can then be cleared with 
_clear87(). 

4. Attempt to analyze the damage 
and repair it. This is nearly im
possible, because the 8087 is a 
very complex chip with mar:iy 
instructions, data types, regis
ters, and special cases. How-. 
ever, the Turbo C Runtime Li
brary Source does include a C 
interface to handle floating 
point exceptions, in whic~ . 
some additional informauon 1s 
provided. . 

Anyone who traps excepuons 
should be aware that some ver
sions of DOS 3.2 contain a rather 
nasty bug, where DOS only allows 
eight exceptions before it halts the 

72 TURBO TECHNIX September/ October 1988 

machine. Microsoft has a patch 
that fixes the problem. If you are 
using DOS 3.2 and a coprocessor, 
I strongly recommend that you 
either obtain the patch or else 
switch to DOS 3.1 or 3.3. 

R.I.P. UNARY PLUS 
As described in my earlier article 
on Turbo C floating point, the 
ANSI C draft had proposed a una
ry plus sign to force expressions 
to be evaluated in a particular 
order. This was needed by numer
ical analysts because C compilers 
traditionally reserve the right to 
ignore parentheses in an expres
sion such as the following: 
x =Cy - 2.1) + z; 

Turbo C 1.0 and 1.5 supported 
a unary plus to force a particular 
order of expression evaluation. At 
the ANSI C meeting in December 
1987, however, the decision was 
made that compilers should al
ways evaluate parenthesized ex
pressions first, unless it's provable 
that the expression evaluation 
order doesn't make any differ
ence. Turbo C 2.0 supports this 
change. Thus, the unary P.lus is 
obsolete in Turbo C, yet sull sup
ported. 

MAKING POINTS 
The C language is becoming in
creasingly popular for numerical 
work. Its old defects (such as re
arranging parenthesized expres
sions and not type-checking func
tion arguments} are no longer 
present. Turbo C now has features 
that FORTRAN programmers can 
only dream about: extended pre
cision, trappable exceptions, INF, 
and NAN. These, along with all of 
the usual advantages of C (porta
bility, preprocessor, dynamic 
memory, convenient data types, 
and control structures) and the 
advantages of Turbo C (speed, in
tegrated environment, third-
party support} make Turbo C the 
language of choice for nearly all 
numerical tasks. • 

Roger Schlafly is in charge of scientific 
and engineering products at Borland. 
He is the author of Eureka: The 
Solver and worked on floating point 
support for Turbo C. 

Listings may be downloaded from 
Library 1 of CompuServe forum 
BPROGB, as CFLT20.ARC. 



LISTING 1: IEEETYPE.C 

enuTI ieee 
ieee_normal, 
ieee_pINF, 
ieee mlNF, 
ieee:NAN, 

>; 

enun ieee ieee_type(long double x) 
< 

l.rlsigned int *a = (\Xlsigned int *) &x; 
if ((a[4J & Ox7FFF) I= Ox7FFF) return ieee_normal; 
if (a[OJ J a[1J J a[2J J (a[3J & Ox7FFF)) return ieee_NAN; 
return a[4J & OxBOOO ? ieee_mlNF : ieee_plNF; 

LISTING 2: llATHERR.C 

#include <math.h> 
#include <float.h> 

#define INF 
#define NAN 

(1 ./0.) 
(0./0.) 

void startfp(voidl 
< 

/* mask all exceptions but denormal */ 
_cont ro l87CMCll_EM·EM_OENORHAL , MCll_EM); 
HUGE_VAL = +INF; 

/* this gets cal led by library functions 
if a domain or range error occurs 

*I 
int cdecl metherr(struct exception *e) 
< 
/* return nonzero to show error has been handled * / 
/* lib functions will return something sens ible, */ 
I* if you let them */ 
/* we don't need no steenk:een' errors! */ 

return 1; 

LISTING 3: TAN.C 

#define NUM TERMS 15 
double approx tanCdouble xl 
< -

int i; 
long double x2 = x*x, y = O; 
if Cx == 0) return O; 
for Ci = 2*NUM TERMS-1; i >= 0; -= 2) 

y = i - xZ I y; 
return x I y; 

/* for control87 */ 
#include <float.h> 
/* for ten */ 
#include <math . h> 

int cdecl JnainC int argc, char **argv) 
< 

double x, y; 
/* mask all exceptions but denormal */ 

control87CMCll EM-EM DENORMAL,MCll EM); x = 2. 1; - - -
y = tan(x); 
printf("tan(Xgl = X25.20g\n",x,y); 
y = approx tanCxl; 
printfC"awrox_tanCXsl = X25 . 20g\n",x,y); 

LISTING 4: SIGTEST .C 

#include <signal .h> 
#include <stdio.h> 
#include <stdl ib.h> 
#include <setjmp.h> 

extern jmp_buf jump1; 

void cdecl fpllandler(int sigl 
< 

fprintf(stderr, 11 Floating point error.\n11 ); 

/* clean off the chip */ 
_ fpreset (); 
/* reinstall the exception handler */ 
signal (SI GFPE, fpllandler); 
/* jump to a safe place */ 
longjmp(jump1 >; 

September/ October 1988 TURBO TECHNIX 73 



g A DIRECTORY SEARCH 
~ ENGINE IN TURBO C 

Here's a truly generalized directory 
search routine that calls a procedural parameter 
each time it finds a matching file. 

J ake Richter 

DOS would not have made it very far 
without the ability to use wildcard charac
ters for certain file operations, such as 
COPY, DIR, and ERASE. Imagine copying 
all 142 of your C source code files from 

PROGRAMMER your hard disk to a floppy disk by typing 
their names on the DOS command line, one at a 
time. The means to avoid this sort of mindless 
drudgery are the low-level DOS functions Find First 
and Find Next. 

Find First searches for the first occurrence of a 
given file specification in a specified directory. The 
fi le specification may contain the wildcard characters 
"*" and "?," and thus can match more than one file. 
Find Next simply attempts to locate the next occur
rence of the same file spec, and can be called repeat
edly until no more matching files are found. Find 
First and Find Next comprise DOS's built-in file 
search toolkit. In this article, we'll examine the work
ings of Find First and Find Next, and will build them 
into a generalized file search "engine" for use with 
Turbo C. (On page 26 of this issue, Neil Rubenking 
implements a file search engine under Turbo Pascal 
5.0, also using Find First and Find Next.) 

ENTER T HE DTA 
Under DOS 2.x and later, Find First and Find Next 
are implemented as DOS functions 4EH and 4FH, 
respectively. Both functions require that a filename 
template (with optional path) and a file attribute 
value be specified. Using Find First and Find Next 
also requires the use of the DOS Disk Transfer 
Area (DTA). 

The Disk Transfer Area is used by DOS for exactly 
what its name implies: Disk data is transferred to and 
from this area of memory. When Find First and Find 
Next are called, the information returned by DOS is 
placed into the DTA. When a DOS application first 
starts up, the DTA is set to a 128-byte region at offset 
80H into its Program Segment Prefix (PSP). The 
Program Segment Prefix is a 256-byte block that is allo
cated by DOS in memory, in front of a loaded pro
gram. The DTA can also be moved to a more con-

74 TURBO TECHNIX September/ October 1988 

venient place, such as your program's data space. 
This move is accomplished by using the DOS func
tion Set DTA Address (lAH), which is called through 
DOS interrupt 21H using the following register 
values: 

• AH = lAH Specifies the Set DTA Address 
function 

• DS:DX = Segment:Offset of new DTA 
Function lAH returns no errors. 

When moving the DTA to your own program 
space, make sure that enough space is allocated for 
whatever DOS operation you plan to use. For the 
Find First and Find Next functions, the minimum 
DTA size is 43 bytes. 

DIRECTORY ENTRIES AND ATTRIBUTES 
When Find First and Find Next find a file, they re
turn information in the DTA that comes from the 
found file's disk directory entry. There are three 
basic types of directory entries: volume labels, subdi
rectories, and normal files. Each entry in the direc
tory structure uses the same amount of directory 
space. The entry types are differentiated from one 
another by the values in the file attribute field. 

Six file attributes are currently supported by DOS, 
and each file attribute has its own bit flag in the at
tribute field. 

Bit 0 (OlH): Read-Only. This attribute applies only 
to regular files. When set, it indicates that the file 
cannot be deleted or written to. A subdirectory en
try's Read-Only flag can be set, but the flag doesn't 
affect the use of that subdirectory. The Read-Only 
flag can be modified by using the ATTRIB program 
under PC-DOS and some versions of MS-DOS. 

Bit 1 (02H) : H idden F ile. This flag applies to files 
and subdirectories. When it's set, the file or subdirec
tory can't be seen in a DIR listing, and a hidden file 
can't be deleted from the command line. However, 
the file can still be accessed by a program, or by 
other DOS utilities such as TYPE or COPY. Hid-
den subdirectories can be accessed by RMDIR and 
CHDIR. 



Bit 2 (04H): System File. The System File attribute's 
effects are similar to those of the Hidden File attri
bute. The reason for the existence of the System File 
attribute lies in the DOS boot process. When IBM 
versions of DOS boot up, they search for two hidden 
system files, IBMBIO.SYS and IBMDOS.SYS, which 
are required in order to complete the boot proce
dure. 

Bit 3 (08H): Volume Label. This attribute identifies 
its directory entry as the current volume's volume 
label. Each DOS volume can only have one valid 
volume label. If multiple directory entries have the 
Volume Label bit set in their attribute fields, then 
only the entry that is listed first in the directory is 
recognized. No other attributes can be set in con
junction with this attribute. Once it's flagged as a 
volume label, the directory entry can only be mod
ified by using an extended FCB (as explained in 
"Taking Charge of DOS Volume Labels," TURBO 
TECHNIX, November/December, 1987). 

Bit 4 (lOH): Subdirectory. All subdirectories have 
this flag set in their attribute field. 

Bit 5 (20H): Archive. This flag is set each time a 
file is altered. DOS programs such as BACKUP and 
XCOPY use this bit to perform incremental backups 
(i.e., to back up only those files that have changed 
since the previous backup). When the file is copied 
by these utilities, its Archive flag is cleared; the flag 
remains clear until it's set again by a subsequent 
modification. The Archive flag has no effect on sub
directories. Like the Read-Only flag, the Archive flag 
can be modified by the ATTRIB program. 

DOS FUNCTION 4EH 
The DOS Find First function is called via INT 21H 
by using the following register protocol: 
• AH=4EH 
• CX = File attribute 
• DS:DX = Segment:Offset of ASCIIZ pathname 

string 
Here are some things to keep in mind when setting 
up and using Find First. 

1. The DTA must have been previously set to a buffer 
that contains at least 43 bytes of free memory. 

2. The file attribute parameter specifies which file at
tributes must be present in order for a match to be 
legal. Four attributes are valid when using Find 
First: Hidden File, System File, Volume Label, and 
Subdirectory. If no attribute bits are specified, reg
ular files (those with no attribute set) are searched 
for, as well as those files whose Archive or Read
Only attributes are set. If only the Volume Label at
tribute is set, then only a volume label is searched 
for. 

3. The ASCIIZ string can contain both a path and 
the file specification. The file specification can 
consist of a combination of valid characters and 
the two wildcard characters,"*" and"?." 
If the Carry flag is set upon return from Find First, 

then one of the following errors occurred in the 
code returned in AX: 

• File not found-02H 
• Path not found-03H 
• No more files/No match found-12H 
If the Carry flag is not set, then no error occurred 
and the DTA contains the information returned by 
this call. In essence, if DOS reports an error on Find 
First or Find Next, then there are no more files to be 
found (assuming that you've previously validated the 
file path). 

The information returned by DOS is placed in the 
DTA, and can be represented by the C structure 
shown in Figure 1. 

struct ffblk 
( 

char 
char 
int 
int 
long 
char 

}; 

ff_reserved[21l; 
ff_attrib; 
ff_ftime; 
ff_fdate; 
ff_fsize; 
ff_fname[13]; 

I* Reserved by DOS.*/ 
/* Attribute found.*/ 
/* File time. */ 
/*File date. */ 
/* File size. */ 
I* Found file name.*/ 

Figure 1. A C structure to divide the DTA into named fields. 

The ftblk structure is defined by Turbo C in the 
DIR.H include file. The ff_reserved field is used by 
DOS to store information pertinent to the search, 
such as current index into search, search mask, and 
so forth. The ff_fname field is an ASCIIZ string that 
contains the name of the file that was just found by 
Find First (and Find Next), with all spaces removed 
and a"." added to separate the filename and exten
sion. ff_attrib, ff_ftime, ff_fdate, and ff_fsize are the 
attribute, the time and date of last update, and the 
size of the found file, respectively. 

Certain constant definitions in Turbo C's DOS.H 
file can help break down the ff_attrib field into its 
individual bit flags. The definitions and their mean
ings are summarized in Table 1. 

Turbo C implements a function that calls Find 
First as find.first(); the function definition is shown 
in Figure 2. find.first() returns a nonzero value if no 
files that match the filename are found. The Turbo 
C version of the call requires a pointer to an ftblk 
structure because Turbo C sets the DTA to the spec
ified ftblk structure, prior to calling the DOS-level 
Find First. This approach is very useful when several 
ftblk structures are active at the same time, as I'll de
scribe shortly. 

CONSTANT VALUE MEANING 

FA_RDONLY OxOI Read-Only 
FA_HIDDEN Ox02 Hidden File 
FA_SYSTEM Ox04 System File 
FA_LABEL Ox08 Volume Label 
FA_DIREC Ox IO Directory 
FA_ARCH Ox20 Archive 

Tabl,e 1. Predefined constants in DOS.H that specify indi
vidual bit flags in the fil,e attribute byte. 

DOS FUNCTION 4FH 
The DOS Find Next function is also called via INT 
21 H, with register AH set to 4FH. No other registers 
need to be set. As its name implies, Find Next re-

continued on page 76 

September/ October 1988 TURBO TECHNIX 75 



SEARCH ENGINE 
continued from page 75 

#include <dir.h> 
#include <dos.h> 
typedef FFBLK struct ffblk; /* For cleaner decl.*/ 

int findfirst(filename, ffblkPtr, attrib) 
char *filename; /*File mask w/optional path */ 
FFBLK *ffblkPtr; /* Pointer to an ffblk struct */ 
int attrib; /*Valid attributes for search*/ 

Figure 2. Function findfirstf.) and its associated 
definitions. 

quires a DTA that has been initialized by a Find First 
call. (Without a properly initialized DTA, DOS won't 
know what file spec or attribute to search for, nor 
even where to start looking.) When it locates an ad
ditional match, Find Next updates the information in 
the DTA. 

If the Carry flag is set upon return from the Find 
Next call, then either error code 02H (file not found) 
or 12H (no more files found) is returned in AX. If 
the Carry flag is cleared, then no error has occurred. 

In Turbo C, Find Next is accessed through library 
function findnext(), which is defined as shown in 
Figure 3. As with find.first(), the value returned by 
the findnext() function is nonzero if no files that 
match the file specification (which is already in the 
DTA) are found. find.first() and findnext() both use 
the tlblk structure to divide the DTA into fields. 

THE SEARCH ENGINE 
As you may have gathered from the discussion so far, 
the find.first() and findnext() routines work best in 
combination. They suggest a general-purpose file 
search "engine" that searches a specified directory 
for files that match a given file spec and file attribute 
value. When a file is found, the engine takes some 
action by calling a function that is passed to the en
gine through a procedure pointer. I've implemented 
such a search engine function as a separate code 
module that can be linked with other Turbo C pro
grams. The SearchEngine() function definition is 
given in Figure 4. The actual code for SearchEn
gine() can be found in ENGINE.C (Listing 1). 

SearchEngine() takes a file spec (which may in
clude a path}, an attribute value that specifies which 
file attributes are valid to search for (see the earlier 
explanation of Find First}, and a pointer to a proce
dure. This procedure is called each time a file that 
matches the file spec and attribute is found. The pro
cedure's definition (assuming that you name the 
function MyFunc()) is as follows: 
#include <dir.h> 
#include <dos.h> 
typedef FFBLK struct ffblk; 

void MyFunc(ptrFFBLK) 
FFBLK *ptrFFBLK; 

If the step of passing a procedure to the search 
engine doesn't appear useful at first glance; let me 
provide an example. Let's assume that it's necessary 
to view the names of all of the current directory's C 
source code files that have been modified since your 

76 TURBO TECHNIX September/ October 1988 

#include <dir.h> 
#include <dos.h> 
typedef FFBLK struct ffblk; 
int f indnext(ffblkPtr) 
FFBLK *ffblkPtr; /* Pointer to an ffblk struct */ 

Figure 3. Functionfindnextf.) and its associated definitions. 

#include <dos.h> 

void SearchEngine(filename, attribute, procPtr) 
char *filename; 
char attribute; 
void C*procPtr)(); 

Figure 4. Function SearchEngine() and its associated 
definitions. 
last backup. The code for this task is provided in 
MODIF-C.C (Listing 2). 

MODIF-C contains two routines, main() and Dis
playModC(). main() serves as the program entry 
point, and initiates the call to SearchEngine(). Note 
that SearchEngine() is passed a file spec that con
tains a wildcard character "*" as the filename, with 
the extension fixed as "C." The attribute that is 
passed is "O," which indicates that only plain files are 
valid (Read-Only and Archive attributes are consid
ered plain for our purposes). Also, a pointer is 
passed to DisplayModC() so that SearchEngine() can 
call DisplayModC() on each "hit" during the search. 

Note that the function called by SearchEngine() 
has complete access to the found file's directory in
formation, via the pointer to the found file's DTA. 
This means that the file's name, date, time, size, and 
attribute are available to the procedure called 
through the procedure pointer. If necessary, the di
rectory for the file can be determined by making a 
call to the Turbo C library function, getcwd() (Get 
Current Working Directory), as I'll demonstrate later. 

To re-create MODIF-C.EXE with the command
line Turbo C compiler, execute the following DOS 
command-line commands: 

tee -c modif-c.c 
tee -c engine.c 
tee modif-c.obj engine.obj 

The -c option indicates that only an object file 
should be produced for the given source code file. 
The last line specifies that the two object code files 
are to be linked into an executable file. The .P~ file 
that creates MODIF-C.EXE using the Turbo C Inte
grated Development Environment contains just two 
lines: 
modif-c 
engine 

SEARCHING A DIRECTORY TREE 
Let's go one step further than the previous example, 
and say that we want to display the names of all of 
the modified C source code files that are located any
where on the current drive, even though these files 
might be in different subdirectories. This is not an 
easy problem to solve with typical iterative program
ming methods. Fortunately, this kind of problem is 
easy to solve by using recursion. 



A 

/I~ 
/I~ c I 

E F G H 

I/~ 
J K 

Figure 5. A schematic of a directory tree. 
First, a warning to those who aren't familiar with 

recursive techniques: Recursion is not free. Its cost is 
stack space. Every time a call is made, stack space is 
used to save the return address. If parameters are 
passed to a function, the parameters are placed on 
the stack as well. Finally, if local variables are de
clared within a function, those variables are also al
located on the stack. 

As you might know, the stack is limited in size. In 
the case of the PC, the maximum stack size is 64K 
(usually, however, the size limit is far less). Based on 
this, a tradeoff can be made between greater nesting 
depth versus a greater number of parameter and 
local variables when you design a function. 

If the stack size is exceeded, then critical data or 
code may be overwritten, crashing the application or 
even the system. This condition is known as stack 
overflow. Turbo C lets you guard against stack over
flow to some extent by using the -N switch on the 
command-line version of the compiler. Unfortu
nately, -N will not always work, especially if inline as
sembler code is used to manipulate the stack. Also, 
-N adds overhead in terms of execution speed and 
executable code size. I'd recommend using -N only 
for debugging recursive routines; eliminate it once 
the routine has been thoroughly shaken out. 

In the case of Small model Turbo C code, each 
call requires four bytes of stack. Local variables re
quire two bytes or more per variable. (The precise 
number of bytes depends upon a variable's type; use 
sizeof() to determine the variable's size.) Each pa
rameter requires at least two bytes (again, the num
ber of bytes depends upon the parameter's type). 
The amount of stack space available in the Small 
model depends upon the amount of space used by 
your global and static data. 

RECURSIVE SEARCHES 
DIRTREE.C (Listing 3) implements a routine that 
performs a recursive tree search of a directory tree, 
starting at the current directory. DIRTREE uses two 
routines, DirTree() and GetNextDir(). DirTree() is 
the entry point for the module. In addition, Dir
Tree() cuts down on stack overhead by initializing 
static variables that are used by the recursive routine, 
GetNextDir(). Since GetNextDir() has no param
eters and no local variables (it uses static variables 
instead), the only stack overhead incurred at each 
nesting level is the call data, which amounts to four 
bytes for the Small model. 

The prime directive when designing recursive rou
tines is to build in a fail-safe mechanism that termi
nates recursion at some point. Any one of the follow
ing three conditions terminates recursive calls to 
GetNextDir(): 

1. The current directory has no subdirectories; 

2. All of the subdirectories of the current directory 
have already been searched; or 

3. The nesting depth exceeds the maximum depth 
of the algorithm. GetNextDir() currently handles 
a maximum directory tree depth of 15 levels; this 
value can be changed. (The only reason for its 
current setting is that I consider 15 levels to be 
an extreme depth that virtually no one would 
require.) 

Note that conditions 1 and 2 are normal terminators, 
while 3 is an error condition. 

Each level of recursion (and, hence, each direc
tory to be searched) has its own FFBLK structure. 
This is necessary in order to determine whether ter
minating condition #2 (as given above) has oc
curred. The DTA for a specific search contains a 
place marker that DOS uses to determine the starting 
position for Find Next. Therefore, DOS knows when 
its search on any given directory is complete. This al
lows the transparent use of findfirst() and findnext() 
in a recursive directory tree search, as long as a 
pointer is passed to the correct FFBLK structure for 
any given level. 

The association of each level of recursion with its 
own FFBLK is performed by declaring an array of 
FFBLK structures named fileBlock. The number of 
elements in fileBlock is given by the constant MAX
DIRDEPTH (which, at 15, allows more nesting levels 
than anyone is ever likely to encounter). A variable 
named curDepth acts as the index into the array of 
FFBLK structures. Each successive call to GetNext
Dir() increments curDepth, and each return from 
GetNextDir() decrements it. 

If the FFBLK structures were declared as local to 
GetNextDir(), DirTree() would be significantly sim
plified, since as the array and its index would no 
longer be required. Each recursive level's FFBLK 
would be created on the stack when each recursive 
call is instantiated, and the different FFBLK struc
tures would never get mixed up. This method, how
ever, uses a great deal more stack space, and the aim 
here is to use as little stack space as possible. 

Turbo C's findfirst() and findnext() also make it 
convenient to integrate the recursive directory 
search routine GetNextDir() with SearchEngine(). 
Each time a normal terminating condition is en
countered, a call is made to SearchEngine(). The 
normal terminating conditions are designed such 
that each directory in a tree causes only one termi
nating condition. As an example, consider Figure 5, 
which schematically shows a directory tree whose 
root is a directory named "A." 

When called to process the subdirectories in Fig
ure 5, SearchEngine() processes them in the follow
ing order: E, I, F,J, K, G, B, C, H, D, and A. Sub
directories E, I, J, K, C, and H cause termination 
condition #l (notice that they have no child directo
ries). The rest of the subdirectories cause condition 

continued on page 78 

September/ October 1988 TURBO TECHNIX 77 



LISTING 1: ENGINE.C 

/************************************************************ 
ENGINE.C - by Jake Richter 

Provides core routine for a search engine that searches 
the current directory for a given file name (which may 
contain wildcards) with specific attributes. 111\en a file is 
fO<lld, the engine cal ls a f'-"Ction whose pointer it is 
passed upon entry with the contents of the OTA returned by 
the Find First and Find Next f'-"<:tions. 
************************************************************I 
#include 11dos.h 11 /* Contains ffblk structure. */ 
#include "dir.h" /* Required by findfirst, findnext, 

getcwd. */ 

/************************************************************ 
Program Definitions 

************************************************************I 
#define FALSE 0 
#define TRUE ! FALSE 
typedef struct ffblk FFBLK; 

!************************************************************ 
Mandatory Global Declarations 

***************************************************•••••••••I 
static FFBLK procBlock; /* Declare a file info block 

for the specific procs. *I 

/************************************************************ 
void SearchEngine(f; lename, attribute, procPtr) 

This routine sets up the call for the recursive tree 
search routine and the search engine. 
*******************************************"'****************I 
void SearchEngine(fi lename, attribute, procPtr) 
char *filename; 
char attribute; 
void C*procPtr)(); 
< 

int done; 

done= findfirst(filename, &procBlock, attribute); 

while (!done) 

< 

/* 111\ile there are still matching files ••• */ 

(*procPtr)(&procBlock); /*Call the user's function. */ 
done = findnext(&procBlockl; /* Search again. */ 
} 

return; 

LISTING 2: llODIF-C.C 

/************************************************************ 
MOOIF-C.C - by Jake Richter 

Displays all C source files in the current directory 
that have their archive bits set. 

************************************************************I 
#include <stdio.h> 
#include <dos.h> 
#include <dir.h> 

/***""******************************************************** 
Program Definitions 

************************************************************I 
#define FALSE 0 
#define TRUE I FALSE 
typedef struct ffblk FFBLK; 

/************************************************************ 
Externals 

************************************************************I 
extern void SearchEngineO; 

/************************************************************ 
void DisplayModC() 

This routine is called once for every C source file 
in the current directory. It displays only those C files that 
have their Archive attribute bit set. 
************************************************************I 
void DisplayModCCsearchRec) 
FFBLK *searchRec; 
< 

if CsearchRec->ff ottrib & FA ARCH) 
pri ntf ( 0 Xs\n 11 , SearchRec·>ff _name); 

return; 

78 TURBO TECHNIX September/ October 1988 

SEARCH ENGINE 
continued from page 77 

#2 after all of their child directories have been 
searched. 

TWO ENGINES 
What we now have are two different routines, both 
of which are general-purpose search engines for 
DOS directories. SearchEngine() searches a single di
rectory, and DirTree() searches the entire directory 
tree of the current drive. Use whichever routine is 
appropriate; their parameter lists are identical. 

For example, to incorporate full recursive tree 
search into the simple MODIF-C demo program,just 
substitute the following line for the original call to 
SearchEngine(): 
DirTree("*.C", 0, DisplayModC); 

Then recompile DIRTREE.C, recompile MODIF-C.C, 
and link the final .EXE file to the Turbo C com
mand-line compiler using the following commands: 
tee -c dirtree.e 
tee -e modif-e.e 
tee modif-e.obj engine.obj dirtree.obj 

If you're using the Integrated Development Environ
ment, the .PRJ file would look like this: 

modif-e 
engine 
dirtree 

The resulting program, MODIF-C.EXE, finds and 
displays the names of all of the modified C source 
files that are located in the current directory and in 
all of the directories below it 

To make the interface to the two search engine 
routines clear, MODIF-C has been kept bare-bones 
simple. Your first enhancement should almost cer
tainly be to retrieve command-line parameters so 
that the program can be set to search for more than 
just C source code files. [Editor's note: In future 
issues of TURBO TECHNIX, we'll publish short arti
cles that present file utilities built around the search 
engines-watch for them.] 

DON'T SOLVE PROBLEMS-BUILD TOOLS! 
Because the search engines' action is specified by 
the calling logic at runtime through procedure point
ers, the search engines can be applied to a variety of 
tasks, such as building linked lists of directory en
tries, deleting files, printing file headers, moving files 
out to a backup drive, and so forth. The possibilities 
are virtually unlimited, and need not be specified at 
compile time. That's the advantage of an "engine" 
concept, as opposed to simply hard-coding fixed so
lutions to individual problems. When you solve a 
problem, work a little longer to turn the solution into 
a tool-and you'll work less the next time the prob
lem comes up. • 

Jake Richter is the President of Panaaa, Inc., a PC con
sulting company in Woburn, Massachusetts. He can be 
reached on MCI MAIL and on BIX as jrichter. 

Listings may be downloaded from Library 1 of Compu
Serve forum BPROGB, as CENGNARC. 



/************************************************************ 
main() 

Here we make the call to SearchEngine. 

************************************************************I 
main() 
< 

SearchEngine( 11*.C", 0, DisplayModC); 
exit(O); 

LISTING 3: DIRTREE.C 

!************************************************************ 
DIRTREE.C - by Jake Richter 

Provides core routines for traversing a directory tree, 
using a "bottom-most first" algorithm. 

As presented, code will search the di rectory tree anc:t 
for each directory found, will call a routine called 
SearchEngine(), which in turn will process certain files in 
that directory in some fashion. 
************************************************************I 
#include 11dos.h 11 /* Contains ffblk structure. */ 
#include "dir.h" /* Required by findfirst, findnext, 

getcwd. */ 

/************************************************************ 
Program Definitions 

************************************************************I 
#define HAXDIRDEPTH 15 /* Kaxinun directory depth. */ 
#define FALSE 0 
#define TRUE ! FALSE 
typedef struct ffblk FFBLK; 

/************************************************************ 
Kandatory Global Declarations ............................................................ , 

/* Declare a file info block 
for each potential 
di rectory level. *I 

static FFBLK f i leBlock [KAXD I RDEPTHJ; 
static int curDepth = -1; /* Depth inc:ticator. */ 
static int done; /* Used as a local flag in 

the recursive function. 
Declared globally to 
minimize stack usage 
incurred by recursion. */ 

static char *filename; /* Filename mask for the 
Search Engine. */ 

static char 
static void 

attribute; 
<*funcPtr)( ); 

/* Attribute for engine. */ 
/* FlXlction ptr for engine*/ 

!************************************************************ 
void GetNextDi r() 

This is the recursive routine that traverses the 
di rectory tree. 
************************************************************I 
static void GetNextDir() 
< 

curOepth++; /* Every thne this code gets called, we go down 
a level in the tree. */ 

/* ~e can't go too deep because we have only 
so many file block structures. */ 

if (curDepth >= HAXDIRDEPTHJ 
return; 

/* Since this section is encountered only when 
going down to a new level, (re)initialize 
the current level's file block by calling 
findfirst. finc:tfirst anc:t findnext return a 
TRUE (non-zero) value when all fi Les in the 
current di rectory have been 11 found. 11 A 
separate block is needed for each level 
because previously determined information 
(set by findfirst() and subsequent findnext() 
cal ls) lll.ISt be maintained until an entire 
directory level has been searched. */ 

done= findfirst("*·*", &fileBlock[curDepthl, FA_DIREC); 

/* lt is i,,..:>0rtant to remerrber that 11 • 11 and 
11 .... are valid directory names, but that 
they also should be ignored while 
traversing the tree. The following 
conditional in psuedo-code: 

while((not all files have been "found") 
AND (((the currently found file is really a directory) 

AND (this directory starts with 11 • 11 )) 

OR (this the file is not really a directory))) 
then 

get the information of the next file found and check 
h against the previous conditions. 

while( ! done 
&& (((fileBlock[curOepthl .ff_attrib == FA_DIREC) 

&& (fileBlock[curDepthJ.ff_name[OJ == •. •)) 
11 (fileBlock[curDepthJ.ff_attrib l= FA_DIREC))) 

done = f indnext(&f i leB lock [curDepthJ); 

., 

/* \Jhen we get to this point, one of two 
things fTIJSt be true: either we are out of 
files, in which case (done== TRUE), or we 
have found the first val id directory name 
in the current directory. */ 

if (!done) 
< /* Since we have fOll'ld a val id directory, go 

to it and repeat the above. *I 
chdir(fi leBlock[curDepthl .ff name); 
GetNextDirO; /*Call this rOutine again. */ 
chdir( 11 •• 11 ); /* Move back up to the correct directory 

for this level. */ 
curDepth- -; 
) 

/* Also adjust the depth gauge. */ 

else 
< I* There are no val id dfrectories below 

the current one, therefore this one lll.lst 
be at the end of a branch and should be 
processed. 

/* Process this di rectory. 
SearchEngine( f i lenarne, attribute, fLnCPtr); 
return; /* ~e• re done at this level. 
) 

*! 

*/ 

*! 

/* Get the information about the next f i le. *I 
done = findnext(&fi leBlock[curDepthJ ); 

/* lie are now searching for all other 
directories that might be below the current 
one. */ 

while (1) 
< /* This 11 while" is the same as the previous.*/ 
while (!done 

&& (((fi leBlock[curDepthJ .ff attrib == FA DIREC) 
&& (fileBlockCcurDepthJ.ff name[OJ == '.')) 
11 (fileBlock[curDepthJ.ff-attrib I= FA DIREC))) 

done = findnext(&fi leBlockCcurDepthJ >; -

if (ldone) 
{ /* Drop down to the next level. 
chdi r( f i leB lock [curDepthJ . ff _name); 
GetNextDirO; /*Call this routine again. 
chdir( 11 •• 11 ); /*Move back l4>· 
curDepth- - ; 

/* Prepare for the 11whi le" above. 
done findnext(&fi leBlock[curDepthJ ); 

) 

else /* No 1110re files to be found. Break out of 

., 
*/ 
*/ 

., 

outer loop. *I 
break; 

/* Process the current di rectory since all the 
ones below it have already been processed*/ 

SearchEngi ne(f i lename, attribute, fLnCPtr); 
return; /* Bye. *I 

/************************************************************ 
void Di rTree(fname, at tr, proc) 

This routine sets ..., the call for the recursive tree 
search routine and the search engine. 
************************************************************I 
void DirTree(f""""', attr, proc) 
char *fname; 
char at tr; 
void (*proc)O; 
< 

filename = fname; 
attribute = attr; 
funcPtr = proc; 
GetNextDirO; 
return; 

/* Set global variables for Engine.*/ 

/* Initiate recursive search. */ 

September/ October 1988 TURBO TECHNIX 79 



DEFINITE CLAUSE GRAMMARS 
IN TURBO PROLOG 
A parser is only as good as its grammar. 

Barbara Clinger, Ph.D. 

Since microcomputers have become faster 
and contain more memory, producers of 
software are under pressure to create 
friendlier software. If "user friendly" is a 
euphemism for the ability to exchange in-

wrzARo formation with computers in English, 
then programs need a process to extract key infor
mation from the average user's input. One such pro
cess uses a definite clause grammar (DCC). 

The investigation of definite clause grammars is 
the primary purpose of this article. We'll also exam
ine parsers as a means to scan and interpret English 
sentences. In addition, two methods of partition
ing-simple partitioning, and parsing by difference 
lists-will be explored and compared. Finally, we'll 
examine a simple mathematical expression parser. 

GRAMMARS 
Languages are built with words; the lexicographic 
level is the dictionary which gives the definition, as 
well as the function, of a word (noun, verb, and so 
on). A language syntax imposes structure upon 
words. In English, phrases and sentences are part of 
the syntactic structure. In a programming language, 
such as Pascal, syntax is often provided through syn
tax diagrams. Figure 1 depicts a syntax diagram for 
a Pascal identifier (name). This diagram shows that 
the identifier must begin with a letter and may be 
followed by a combination of letters and digits. 

Grammars provide another method for describing 
a language. A grammar allows a language to be pre
cisely described by the use of a specific syntax. One 
popular grammar, called Bacus-Naur Form (BNF), is 
used to define the Turbo Prolog language (see Figure 
2). To see how BNF syntax is read, consider the fol
lowing statement: 
<riame> : := ( <letter> I _ ) 

{ <letter> I <digit> I _ }* 

This statement says that a name consists of a letter 
or an underscore, followed by zero or more repeti
tions of a letter, a digit, or an underscore. 

80 TURBO TECHNIX September/ October 1988 

Figure 1. Syntax diagram for a Pascal identifier (name). 

Letters and digits are also defined in BNF nota
tion. As any programmer knows, failure to follow the 
syntax of a language results in the ubiquitous "SYN
TAX ERROR" message, and rejection of the program 
by the compiler. A general discussion of BNF syntax 
can be found in Chapter 7 of the Turbo Prolog Tool
box Owner's Handbook. 

Using these simple concepts, I can define a very 
simple context-free grammar. My dictionary consists 
of three nouns (dog, cat, and water) and one verb 
(drinks). The syntax of this language has one rule: A 

<name> ::= ( <letter> I ) 
{<letter> <digit>! _}* 

<name-list> ::=<name> I <name> , <name-list> 
<variable> ::= (<capital-letter> I_) [<name> l 
<functor> ::=<small-letter> [<name>] 
<letter> ::=<small-letter> [<name> l 
<small-letter> ::= albl ..• lz 
<capital-letter> ::=AB ... Z 
<digit> ::=0111 ... 19 

Figure 2. BNF syntax used to describe a subset of tile 
Turbo Prolog language. 



sentence takes the form of a noun, followed by a 
verb, followed by a noun. Using BNF notation, this 
grammar is defined as: 

<sentence> ::=<noun> <verb> <noun> 
<noun> ::=dog I cat I water 
<verb> ::=drinks 

In this language, the following are all correct 
sentences: 
dog drinks water 
cat drinks water 
water drinks cat 

The last sentence is correct since it adheres to the 
syntax of a sentence; this sentence emphasizes why 
this grammar is called "context-free." The next 
higher level of a grammar imposes semantics (the 
meaning of words) on the language, and is beyond 
the scope of this article. 

DCG NOTATION 
A definite clause grammar (DCC) is simply a 
grammar that is expressed as logic 
statements; parsing is the execution of the 
statements. Although I'll use DCCs in 
context-free grammars in this article, keep 
in mind that they can be used for more 
powerful grammars. 

The notation used with a DCC differs 
slightly from the BNF notation used in 
Figure 2. However, the translation between 
the BNF notation and the DCC notation 
(given in Figure 3) is quite simple. For in
stance, the DCC notation for the simple 
grammar in the previous example is the 
following: 
sentence --> noun, verb, noun 
noun --> dog 
noun --> cat 
noun --> water 
verb --> drinks 

"sentence," "noun," and "verb" are called nontermi
nals. The tokens (also called terminals) are "dog," 
"cat," "drinks," and "water." 

The beauty of using DCGs to define a grammar is 
that the implementation in definite clause grammars 
follows naturally from the grammar's English de
scription. For instance, the next example 
defines a grammar to parse sentences 
of the following form: 
John likes Mary. 
The man sees a dog. 
Mary likes the dog. 
John eats. 

The grammar for these 
sentences can be described 
in English as listed below: 

• A sentence takes the form 
of a noun phrase, 
followed by a verb phrase. 

• A noun phrase takes 
either the form of a 
determiner (definite 
article) that is followed 
by a noun; or else 
the form of a noun. 

continued on page 82 



TOKEN The dictionary words are called tokens or 
terminals. 

NONTERMINALS These are words used in the grarrmar which are not 
terminals; they are given in terms of other 
language elements. 

--> This synbol is the equivalent of the ::= in BNF 
form and is read "takes the form of". 

The conma is read "followed by". 

Figure 3. The translation between BNF and the DCC notation. 

DEFINITE CLAUSE 
continued from page 81 

• A verb phrase takes either the 
form of a verb that is followed 
by a noun phrase; or else the 
form of a verb. 

Since the DCG form of the 
grammar will be converted into 
executable Prolog predicates, ac
ceptable Turbo Prolog names are 
used in the following definitions: 

sentence --> noun_phrase, 
verb_phrase 

noun_phrase --> determiner, noun 
noun_phrase --> noun 
verb_phrase --> verb, noun_phrase 
verb_phrase --> verb 

These definitions, along with the 
dictionary and a mechanism to 
convert DCGs into executable 
Turbo Prolog predicates, parse 
sentences of the desired form. 

There is one more point to note 
in this example. Since these def
initions will be converted to exe
cutable predicates, the order in 
which the definitions are listed 
can be very important. For in
stance, defining the verb phrase 
before defining the noun phrase 
does not affect the outcome in the 
example. However, if the two verb 
phrase definitions are inter
changed, then the outcome is 
drastically changed. I'll say more 
about this later in the section on 
difference lists. 

SCANNING AND PARSING 
A parser has two components: the 
"reader" and the "tester." The 
reader (also called the scanner) ac
cepts a stream of input and pro
cesses it into the appropriate data 
structure, which is then given to 
the tester. If the tester determines 
that the input is acceptable, it 
passes the information to the in
terpreter, which is the portion of 
the program that acts upon the 
information. 

Before we can implement a 
DCG, we must decide upon the 
form of the data that goes into 
and comes out of the parser. The 
decision to use a list of tokens as 
input is almost universal. There
fore, the reader's output should 
consist of a list of tokens to be 
parsed. XPARS.SCA in the Turbo 
Prolog Toolbox is an example of 
a reader that's designed for input 
into predicates produced by the 
parser generator. The predicate 
reader in Listing 1 produces a list 
of strings that are used as tokens 
in that program. 

Before the parser can be imple
mented, the form of the data 
that's required by the rest of the 
program must be known. The out
put can be as trivial as a true or a 
false to indicate that the parsing 
was successful or unsuccessful, re
spectively (as shown in Listing 1). 
Alternatively, the output can be a 
list of keywords, a numerical 
value, or a more complicated 
structure that represents a parse 
tree. 

A parse tree is a structure that 
shows the overall construction of 
the original source input. In 
Pascal, the implementation of a 
tree structure is accomplished 
through pointers and records, 
where a record contains some in
formation along with pointers to 
other nodes in the tree. In Turbo 
Prolog, a tree structure is repre
sented through the use of com
pound objects. For instance, the 
sentence "the man sees a dog" 
can be represented by the follow
ing Turbo Prolog structure: 

82 TURBO TECHNIX September/ October 1988 

sentence(noun_phrase( 
determiner( the), 
noun( man)), 
verb phrase(verb(sees), 
nounJ,hrase(determiner(a), 
noun( dog)))). 

Figure 4 shows the parse tree for 
this sentence. 

With this sentence structure as 
output, the appropriate predicates 
must be written to extract the in
formation from the tree and then 
evaluate that information. Recall 
the DCG for the sentence struc
ture: 
sentence --> noun_phrase,verb_phrase 

The translation of this DCG re
quires the input list to be parti
tioned into two sublists A and B, 
in such a way that the list A is a 
noun phrase and the list B is a 
verb phrase. To see this clearly, 
consider the following input list: 
[the, man, sees, a, dog] 

This list can be partitioned into 
the sublists: 
[the, man] 
[sees, a, dog] 

The next step is to test whether 
the sublists [the, man] and [sees, 
a, dog] satisfy the criteria of being 
a noun phrase and a verb phrase, 
respectively. 

A very simplistic method for 
partitioning the input list is to use 
the predicate append. This two
way predicate not only appends 
two lists to produce a third, but it 
can also return all of the parti
tions of a list as two sublists. In 
simple grammars (such as the 
grammar implemented in Listing 
1), append is adequate for the job, 
and uses less stack than does the 
difference list method (which is 
described shortly). In a more com
plicated grammar, append re
quires a lot of backtracking and is 
less efficient. 

DIFFERENCE LISTS 
A more efficient method of parti
tioning is based upon an incom
plete data structure called the dif
ferena list. This alternative to list 
processing can greatly simplify 
list-processing programs. 

In order to use this partitioning 
method, a "subtraction" between 
two lists must first be defined. 
Let's examine the list A= [a, b, c]. 
A can be considered, in many 
ways, to be the difference of two 



sets, such as in the following 
examples: 
[a,b,c] [a,b,c,d,e] - Cd,e], 
[a,b,c] = Ca,b,c,d] - [d] 
Ca,b,c] = Ca,b,c] - Cl. 

In fact, the following statement is 
true for any set T, where the arbi
trary T makes the data structure 
incomplete: 

Ca,b,c] = Ca,b,cjn - T, 

In general, if A= [a,b, ... ,d], then 
A is the difference between the 
list X = [a,b, . .. ,dJT] and T, where 
T can be any list; this difference 
is denoted by A = X - T. Note that 
the empty list [] is expressed as 
X-X. 

To apply difference lists to 
DCGs, let A = [the, man, sees, a, 
dog_I T ] and look at the following 
grammar in terms of difference 
lists: 

sentence --> noun phrase, 
verb phrase 

According to this particular 
grammar, the difference list A - T 
is a sentence if A - Y is a noun 
phrase and Y - T is a verb phrase, 
for some list Y. 

To represent this as a Turbo 
Prolog clause, one would like to 
write: 
sentence(A - T):

noun_phrase(A - Y), 
verb_phrase(Y - T). 

The minus sign, however, normal
ly implies subtraction between real 
numbers. We could define a pred
icate, such as difference(X,Y,Z) 
where the difference of X - Y is 
returned in Z, and use difference 
in the clause for sentence. The 
same idea can also be coded with 
two arguments as in the following 
clause: 
sentence(A,T):-

noun_phrase(A,Y), 
verb_phrase(Y,T) 

Keep in mind that the two argu
ments in this clause refer to the 
difference lists. 

Listing 2 is similar to Listing 1, 
except that difference lists per
form the partitioning process in 
Listing 2. The difference lists are 
handled in the following clauses: 

sentence(List in,Rest):
noun_phrase(List_in,Y), 
verb_phrase(Y,Rest). 

noun_phrase(X,Rest):
determiner(X, Y), 
noun(Y,Rest). 

verb_phrase(X,Rest):-

sentence 

/~ 
noun phrase verb phrase 

/~ /~ 
determiner 

(the) 
noun 
(man) 

verb 
(sees) 

noun phrase 

determiner 
(a) 

noun 
(dog) 

Figure 4. Parse tree for the sentence "the man sees a dog. " 

verb(X,Y), 
noun_phrase(Y,Rest). 

determiner( ["the" I Rest] , Rest). 

noun( ["man" I Rest], Rest). 

To better visualize the action of 
these clauses, Figure 5 shows the 
CALLs and RETURNs from a 
trace of Listing 2 using List_in = 
["the", "man", "sees", "a", "dog"]. 
In particular, look at the first 
CALL to noun_phrase (line 2 in 
Figure 5) and follow the sequence 
to its RETURN (line 6). The call 
is made with the second param
eter (Rest) uninstantiated. Upon 
the RETURN, Rest is instantiated 
to the noun phrase (which is sat
isfied by List_in - Rest) , and to the 
potential verb phrase. 

If the first and third clauses for 
verb_phrase in Listing 2 are inter
changed, the parser succeeds as 
soon as the verb "sees" is found, 
which causes the noun phrase 
["a", "dog''] to be returned in 
Rest. This means that the parser 
has successfully found an accept
able sentence, but that the parser 
did not scan all of List_in. 

The program that uses differ
ence lists seems more difficult 
than the program that uses ap
pend. Even in such a simple gram
mar, however, the difference list 
version saves several calls to 
noun_phrase and verb_phrase. 
The time that's saved is not no
ticeable in a simple grammar. In 
more sophisticated grammars, 
however, the difference in time is 
important. 

PARSING MATHEMATICAL 
EXPRESSIONS 
My final example of the use of 
DCGs scans a mathematical ex
pression. This example illustrates 
several points, including how to 
handle a DCG that requires spe
cific symbols (such as the arith
metic operators"+" or"/ "); how 
to handle functions (such as the 
trigonometric functions); and how 
to return information from a scan
ner. 

For this example, Listing 3 re
turns the numeric value of an ex
pression, and Listing 4 returns the 
parse tree of an expression. 

Before defining the DCGs to 
parse an expression, let's think for 
a moment about the precedence 
of operations. Consider the fol
lowing expression: 
2 * 3 - 4 + 5*(sin(1.5) + 8"2> + 6/7 

The precedence of operations 
dictates that expressions within 
parentheses are evaluated first, 
then the individual terms that use 
multiplication and division are 
evaluated, and finally, the terms 
are summed. In evaluating such 
an expression, parentheses have 
the highest priority, followed by 
exponentiation, then by multipli
cation and division, and finally by 
addition and subtraction. Also, 
sin(l.5) represents a number that 
must be "looked up" before the 
expression inside the parentheses 
can be evaluated. I've defined a 
DCG in which the terminals are 
numbers (including pi and func-

continued on page 84 

September/ October 1988 TURBO TECHNIX 83 



DEFINITE CLAUSE 
continued from page 83 

tions that return numbers), with 
the syntax imposed by the oper
ators. The order in which the 
grammar is stated determines the 
priority of the operators. 

The previous expression con
tains four terms: 2*3, 4, S*(sin(l.5) 
+ 8"2), and 6/ 7. These terms are 
summed together to give the value 
of the expression. The word 
"sum" is used here because the 
operation of subtraction is math
ematically defined in terms of ad
dition. Subtraction introduces er
ror into some implementations of 
an expression parser that tries to 
evaluate from left to right. When 
a left to right evaluation is needed 
or desired, the safest method is to 
replace the -4 with its mathemat
ical equivalence,+ (-1)*4. (List
ings 3 and 4 perform a right to left 
evaluation.) 

In the following example, to
kens that are used specifically 
within the definitions are en
closed in brackets in order to dis
tinguish terminals from nonter
minals. 

expr --> expr, [+], term 
expr --> expr, [-], term 
expr --> term 

term - -> term, C*J, power 
term - -> term, [/], power 
term --> power 

power--> group, ["],power 
power --> group 

group --> [(], expr, [)] 
group --> nllllber 

nllllber --> (+], nllllber 
nllllber --> [-], nllllber 
nllllber --> [sin], group 
nllllber --> [cos], group 

nllllber --> [pi] 
nllllber - -> [NJ • 

The implementation of this 
grammar (in Listing 3) returns the 
value of an expression. Listing 4 
is an abbreviated version of this 
grammar that returns a structure 
for a parse tree. 

Let's compare the first clause 
for expr from Listing 3 and List
ing 4: 
!* From Listing 3 */ 
expr(X,L1,L2):-

append( Left, ["+"IR i ghtJ , L 1 >, 
exprCV1,Left,L2), 
term(V2,Right,L2) 
X = V1 + V2. 

!* From Listing 4 */ 
expr(branch(op("+"),L node, 

R_node),L1,L2):
appendCLeft, ["+",I Right] ,L 1), 
expr(L_node,Left,L2), 
term(R_node,Right,L2). 

In both programs, the first argu
ment determines the nature of the 
output of the parser, while LI and 
L2 represent a difference list, 
LI - 1..2. In both programs, append 
splits the original list (1..2) into two 
sublists. The left part of this list is 
sent to expr, which checks if this 
part is an expression; the right 
part of the list is sent to term, 
which checks if this part is a term. 

sentence( ["the11 , 11man11 , 11sees11 , 11a 11 , 11dog"J , ) 
noun_phrase( C11 the11 , 11man11 , 11sees11 , 11a 11 , 11dog11J, ) 

CALL: 
CALL: 
CALL: 
RETURN: 

CALL: 
RETURN: 
RETURN: 

CALL: 
CALL: 
RETURN: 
CALL: 
CALL: 
RETURN: 
CALL: 
RETURN: 
RETURN: 
RETURN: 
RETURN: 

determiner( ["the", "man", "sees", "a", "dog"] , - ) 
determiner( ["the", "man", "sees", "a", "dog"] , -

["man", "sees", "a", "dog] ) 
noun( C11man11 , 11sees11 , "a", "dog"] , _ ) 
noun( ["man", "sees", 11a 11 , 11dog 11 J , ["sees", "a", "dog"] ) 

*noun_phrase( C11 the11 , 11man11 , "sees", "a", "dog"], 
["sees", "a", 11dog 11 J ) 

verb_phrase( ["sees", "a", "dog"], _ ) 
verb(["sees 11 , 11a 11 , 11 dog 11J. ) 
verb( ["sees", 11811 , "dog"] , c"a", "dog] ) 
noun_phrase( [11a 11 , 11dog"J, _ ) 

determiner( ["a", "dog"] , _ ) 
determiner( ["a", "dog"] , ["dog"] ) 
noun( C11dog 11 J , _ ) 
noun( C"dog"J , CJ ) 

*noun_phrase( ["a", 11dog 11J, []) 
*verb_phrase( ["sees", "a", "dog"], []) 

sentence( ["the", "man", 11sees11 , 11a 11 , 11dog"J , CJ ) 

Figure 5. A sampl,e trace from the program in Listing 2. 

84 TURBO TECHNIX September/ October 1988 

In the case of Listing 3, if both 
calls are successful, then the re
turn values are added together 
(X =VI + V2), and the resulting 
value is returned by expr. In the 
case of Listing 4, if both calls are 
successful, then the node branch
( op("+"), L_node, R_node) is re
turned, where both L_node and 
R_node have been instantiated 
through calls to term. 

Finally, looking at the hierarchy 
of operations, the tokens (num
bers) have highest priority, groups 
(parentheses) have next highest 
priority, and so on up to + and -, 
which have lowest priority. This 
priority order corresponds to the 
DCC form of the parser from bot
tom to top. 

TRANSLATORS 
The advantage of using a pre
written translator is that the parser 
is generated automatically. The 
disadvantage to this approach is 
the need to use output in a form 
that is determined by the transla
tor. For example, XPARS from the 
Turbo Prolog Toolbox illustrates 
a parser for simple algebraic ex
pressions. With an input of "2 - 10 
+ 3," the parser returns the fol
lowing structure as its output: 

plus(minus(int(2),intC10)),int(3)). 

The parser generator could be 
modified to customize the output 
for your specific needs, although 
this is not a trivial task. 

In summary, there's really noth
ing mysterious or difficult about 
definite clause grammars. The dif
ficulty lies in the translation from 
DCC notation to executable 
Prolog clauses. The process of 
writing your own translator re
quires more effort in order to de
velop the parser, while the use of 
a utility (such as the parser gener
ator from the Turbo Prolog Tool
box) requires more effort in order 
to use the output in a specific 
program. • 

Barbara Clinger is a professor of 
mathematics at Wheaton Coll,ege in 
Norton, Massachusetts. 

Listings may be downwaded from 
Library 1 of CompuServe forum 
BPROGB, as DCC.ARC. 

listings begin on page 86 



PolyAWK. - The Toolbox Language·. 
For C, Pascal, Assembly & BASIC Programmers. 

We call PolyAWK our "toolbox" language 
because it is a general-purpose language that 
can replace a host of specialized tools or pro
grams. You will still use your standard language 
(C, Pascal, Assembler or other modular 
language) to develop applications, but you will 
write your own specialized development tools 
and programs with this versatile, simple and 
powerful language. Like thousands of others, 
you will soon find PolyAWK to be an indis
pensable part of your toolbox. 

A True Implementation 
Under MS-DOS 

Bell Labs brought the world UNIX and C, and 
now professional programmers are discovering 
AWK. AWK was originally developed for UNIX 
by Alfred Aho, Richard Weinberger & Brian 
Kernighan of Bell Labs. Now PolyAWK gives 
MS-DOS programmers a true implementation 
of this valuable "new" programming tool. 
PolyAWK fully conforms to the AWK standard 
as defined by the original authors in their book, 
The AWK Programming Language. 

A Pattern Matching Language 
PolyAWK is a powerful pattern matching 
language for writing short programs to handle 
common text manipulation and data conver
sion tasks, multiple input files, dynamic regular 
expressions, and user-defined functions . A 
PolyAWK program consists of a sequence of 
patterns and actions that tell what to look for 
in the input data and what to do when it's 
found. PolyAWK searches a set of files for lines 
matched by any of the patterns. When a match
ing line is found, the corresponding action is 
performed. A pattern can select lines by com
binations of regular expressions and com
parison operations on strings, numbers, fields, 
variables, and array elements. Actions may per
form arbitrary processing on selected lines. The 
action langauge looks like C, but there are no 
declarations, and strings and numbers are built
in data types. 

Saves You Time & Effort 
The most compelling reason to use PolyAWK is 
that you can literally accomplish in a few lines 
of code what may take pages in C, Pascal or 
Assembler. Programmers spend a lot of time 
writing code to perform simple, mechanical 
data manipulation - changing the format of 
data, checking its validity, finding items with 
some property, adding up numbers and print
ing reports. It is time consuming to have to 
write a special-purpose program in a standard 

Requires 
MS-DOS 
2.0 or above & 256K RAM. $99 
When you order PolyAWK you receive a copy 
of The AWK Programming Language written by 
the authors of the original UNIX-based AWK. 
The book begins with a tutorial that shows how 
easy AWK is to use, followed by a comprehen
sive manual. Because PolyAWK is a complete 
implementation of AWK as defined by the 
book's authors, you will use this book as the 
manual for PolyAWK. 
You can purchase PolyAWK and the book, The 
AWK Programming Language, for $99. If you 
already have the book, you can order PolyAWK 
software only for $85, which is $14 off the 
regular $99 purchase price. {The book serves 
as the User's Manual, so you you should 
already have a copy of the book if you are order
ing the software only.) 

PolyShell Bonus! 
PolyShell gives you 57 of the most useful UNIX 
commands and utilities under MS-DOS in less 
than 20K. You can still use MS-DOS commands 
at any time and exit or restart PolyShell without 
rebooting. MS-DOS programmers - discover 
what you have been missing! UNIX program
mers - switch to MS-DOS painlessly! 
PolyShell and PolyAWK are each $99 when 
ordered separately. Save $50 by ordering the 
PolyShell + PolyAWK combination package for 
$149. Not copy-protected. 

30-Day 
Money Back Guarantee 

Credit Card Orders: 

1-800-547-4000 
Ask for Dept. lTX 

Send Checks and P.O.s To: 
POLYTRON Corporation 

1700 NW 167th Place, Beaverton, OR 97006 
(503) 645-1150 - FAX: (503) 645-4576 

--iiPOILYlllllO 
High Quality Software Since 1982 

language like C or Pascal each time such a task 
comes up. With PolyAWK, you can handle such 
tasks with very short programs, often only one 
or two lines long. 

Prototype With PolyAWK, 
Translate To Another Language 

The brevity of expression and convenience of 
operations make PolyAWK valuable for proto
typing even large-sized programs. You start 
with a few lines, then refine the program, ex
perimenting with designs by trying alternatives 
until you get the desired result. Since programs 
are short, it's easy to get started and easy to start 
over when experience suggests a different 
direction. PolyAWK has even been used for 
software engineering courses because it's possi
ble to experiment with designs much more 
readily than with larger languages. It's straight
forward to translate a PolyAWK program into 
another language once the design is right. 

Very Concise Code 
Where program development time is more 
important than run time, AWK is hard to beat. 
These AWK characteristics let you write short 
and concise programs: 

• The implicit input loop and the pattern-action 
paradigm simplify and often entirely elimi
nate control flow. 

• Field splitting parses the most common forms 
of input, while numbers and strings and the 
coercions between them handle the most 
common data types. 

• Associate arrays use ordinary strings as the 
index in the array and offer an easy way to 
implement a single-key database. 

• Regular expressions are a uniform notation 
for describing patterns of test. 

• Default initialization and the absence of 
declarations shorten programs. 

Large Model 
Implementation 

PolyAWK is a large model implementation and 
can use all of available memory to run big pro
grams or read files greater than 64K. 

Math Support 
PolyAWK also includes extensive support for 
math functions such as strings, integers, 
floating point numbers and transcendental 
functions (sin, log, etc.) for scientific applica
tions. Conversion between these types is 
automatic and always optimized for speed 
without compromising accuracy. 

® 



LISTI NG 1: GRAMMAR. PRO 

/* Si""le DCG parser 
Barbara Clinger, 1988 

This program i llus trates the expansi on of a si""le OCG . 
lts vocabulary consists of: 

Nouns : John, Mary, man, dog; 
Determiners: the, a 
verbs: likes, sees 

S"°"l e input : The man sees a dog . 
output: True or False, for succes s or failure of parsing . . , 

domains 
tokl ist = string* 

precHcates 
reader( string, tokl ist) 
remove_period(tokl ist, tokl i st) 
append( tok list, tok l ist, tokl i st) 
do 

/* The granmar • / 

goal 

clauses 

sentence( tok list, tokl i st, tokl i st) 
noun_phrase(tokl i s t) 
verb_phrase(tokl ist) 
determiner Cs tring) 
noun( string l 
verb(string) 

do. 

/* the reader *I 

/* the parser *I 

/* The clause do pars es a sentence and returns true or false. Its 
writing is informational only . */ 

do :-
nl ,write("Enter a sentence --> 11 ), 

readln(S) ,nl ,nl, 
reader(S,List), /* us e the reader*/ 
write( 110Utput of the reader : 11 ,List),nl,nl, 
remove_period(List, List_i n) , 
sentence CL i st_ in, N0t..n_phrase 1 Verb_phrase), 
write(" Noun phrase: 11 ,Noun_phrase),nl, 
write("Verb phrase : 11 ,Verb_phrase) , nl. 

,. 
Using append to split the List_in into possible noun phrases and 
verb phrases is not efficient, but for si"l>le granmars it is 
adequate . ., 

/* expansion of: 
sentence - -> noun_phrase, verb_phrase ., 

sentence(List in,Noun list out,Verb list out) 
appe~(Noun_LTst_oUt, Verb_ LTst_oUt, L ist_in), 
noun_phrase(Noun_l ist_out), ! , verb_phras e(Verb_l ist_out). 

/* expansion of: 
noun_phrase - -> determiner, noun 
noun_phrase - - > noun ., 

noun_phrase((A,B]) : - determiner(A),noun( B) . 
noun_ph rase( !Al) : - noun( Al. 

I* expans ion of: 
verb_phrase 
verb_phrase 
verb__phrase ., 

verb, noun_ph rase 
verb, noun 
verb 

verb_phrase<CAIBJl :- verb(A), noun_phrase(B) . 
verb_phrase(!A,Bll :- verb(A),noun(B) . 
verb_phrase( !All :- verb(A). 

/* the dictionary */ 
detenni ner("the 11 ). 

determiner( 11 a11 ). 

not.ll( 11man11 ) • 

nol'1( 11 john"). 
noll'l( 11 mary11 ). 

notn( "dog"). 

verbC 11 tikes 11 ). 

verb( 11 sees 11 ). 

/* end of dictionary */ 

t• reader 

. , 
(1) the efll'ty string returns the efll'tY list, 
(2) if the string is not ~ty, it recursively takes the front 

token, converts it to lower case, then reads the rest of the 
list, until the string is efll'W· 

reader("",[]) :- ! • 
reader(Str, CTokenjRestJ) 

f ronttoken(Str, Tok,Str1), 
~r_lower(Tok, Token), 
reader(Str1 ,Rest), t. 

86 TURBO TECHNIX September/ October 1988 

/* removes the period from list of tokens, if it exists */ 
remove_periodCL 1,L2) :-

appendCL2, !". "l, L 1). 
remove_periodCL 1,L1). 

append((] ,List,List). 
append( !HITJ ,L, CHIT2J l 

append CT, L, T2) . 

LISTING 2: OIFFRENC.PRO 

1• Parsing by difference lists 
Barbara Clinger, 1988 

For input and output, this program is identical to 
Program Listing 1. However, the expansion of the granmar is 
done with difference lists rather than using append to split 
the list of tokens into noui phrases and verb phrases. ., 

domains 
tokl ist = string* 

predicates 
do 
reader(string, tokl ist) 
remove_period(tokl ist, tokl ist) 
append(tokl ist, tokl ist, tokl ist) 

/* The gramnar *I 

goal 

clauses 

do : -

sentence(tokl ist, tokl ist) 
noun_phrase(tokl ist, tokl ist) 
verb_phrase(tokl ist, tokl ist) 
determiner(tokl ist, tokl ist) 
noun(tokl ist, tokl ist) 
verb( tokl i st, tokl i st) 

do . 

nl,write( 11 Enter a sentence -- > 11 ), 

readln(S) ,nl ,nl, 
reader(S,List), 

/* the reader *I 

write( 110Utput of the reader: 11 ,List),nl,nl, 
remove_per i odCL i st, Li st_ in), 
sentenceClist in,list out), 
write("List oUt: 11 ,LiSt out),nl, /*informational write*/ 
Listout=!l. -

/* do succeeds when List out = [J. that is, all the list was 
parsed */ -

/* sentence: 

., 
list_in is a sentence if List_i n - Y is a noun phrase and 
Y - Rest is a verb phrase . If the predicate sentence succeeds 
in parsing the entire list then Rest is the °""ty list. 

sentence(List in,Rest) :-
noun_iitirase( Li st_ in, Y), verb_phrase(Y, Res t). 

1• noun_phrase 
X is a noun phrase 

if X Y is a determiner and Y - Rest is a noun, 
or if X - Y is a noun. ., 

noun_phra se(X, Rest) : - determi ner(X, Y), nounCY, Rest). 
noun_phrase(X, Y) :- noun(X, Y) . 

/* verb_phrase 
X is a verb phrase 

if X Y is a verb and Y - Rest is a noun phrase, 
or if X is a verb and Y - Res t is a noun 
or if X is a verb . . , 

verb_phrase(X, Rest) 
verb_phrase(X,Rest) 
ver b_phrase(X, Rest) 

/* the dictionary 

verb(X,Yl, noun_phrase(Y,Res t). 
verb(X,Yl, nounCY,Rest) . 
verb(X, Rest) . 

where X is ["the 11 (Restl, determiner is saying is that 
11 the11 is a determ1ner since [11 the11 ] is [11 the 11 IRest] - Rest. ., 

determiner( ["the" I Rest] ,Rest). 
determiner( ( •a• Rest], Rest). 

noun( !"man" I Rest] ,Rest). 
nc:ui( [ 11 john11 Rest] ,Rest). 
nc>ISI( [ 11maryt• Rest] ,Rest). 
noun( C11dog 11 Rest] ,Rest) . 

verb( !"l ikes"jRestJ ,Rest). 
verb( (11 sees 11 I Rest), Rest). 

/* end of dictionary */ 



/* reader 
( 1) the """ty string returns the """ty list, 
(2) if the string is not eq>ty, recursively it takes the front 

token, converts it to lower case, then reads the rest of the 
list, L.11til the string is ef11)ty. 

*/ 

reader( 1111
, []) :- ! • 

reader(Str, [Token I Rest]) 
f ronttoken(Str, Tok, Str1), 
upper _lower(Tok, Token), 
readerCStr1,Rest), I. 

/* remove a period at the end of a sentence */ 
remove_per i od( L 1, L2) : -

appendCL2, [11
•

111, l 1). 
remove_peri od(L 1, L 1). 

append( [] , List, List). 
oppendCCHITJ,L,CHIT2Jl :-

oppendCT,L,T2). 

LISTING 3: MATHEXP.PRO 

/* Mathematical Expression parser 

., 

Barbaro Clinger, 1988 

This program parses a mathematical expression and returns the 
value of the expression. It allows the use of · for exponation, 
grouping using parentheses, evaluation of fl.nctions (sine, 
cosine, ••• ). Decimals in the range from -1 to +1 nJSt be entered 
with a leading zero (Le., 0 . 25). A warning is issued if negative 
nurbers are raised to fractional JX>wers; the indeterminant zero 
raised to the zero power stops execution of the program. 

sarrple input: 2·3 + ( sin(2*pi/3) + 1 )"2 - ln(O. 123) 

domains 
tokl ist = string* 

predicates 
reader(string, tokl ist) 
give result(real,toklist,toklist) 
oppeiid(tokl ist, tokl ist, tokl ist) 
do 
if can do( real, real, real) 
is-odd-int( real) 
is-even int(real) 

/* the grailmar *1 

/* goal 

clauses 
do :-

expr(real, tokl ist, tokl ist) 
term( real, tokl i st, tokl i st) 
power( real, tok Li st, tokl i st) 
group( reel, tokl ist, tokl i st) 
nurber(reol, tokl ist, tokl ist) 

do. */ 

write( 11\Jhen entering nurbers between -1 and +1 enter11 ),nl, 
write( 11a leading zero. For exafl"1le 0.15 11 ),nl,nl, 
nl,write("Enter an expression: 11 ),nl, write(">"), 
readlnCS>,nl,nl, /* get the expression*/ 
reader CS, Li st in), /* process for expr * / 
expr(lnfo_out-;Ust_in,Rest), ! , /* parse expression*/ 
give_result(lnfo_out,list_in,Rest). /*print results*/ 

give resul t(N, , T) 
- T = []~ 

write("The value of the expression is 11 , N),nl. 
give_resul t(_,_, T) 

write( 11 CarY'K)t evaluate the expression. 11 ),nl, 
write("Unevaluated remainder list is: 11 ),nl,nl, 
write(T),nl,nl. 

/* THE GRAM"-'R */ 
/* An expression takes the form of 

an expression plus a term, 
or en express minus a term, 
or a term . , 

exprCX,L1,L2) :· 
oppend(Lef t, ["+"IR i ghtl, L 1 >, 
expr(V1 ,Left,L2), 
term(V2,R i ght, L2), 
X = V1 + V2. /* returns left value plus right value */ 

exprCX, L 1, L2) : • 
append( Left, C"·"IRightJ ,L 1 >. 
expr(V1 ,Left, L2>, 
term(V2, Right, L2), 
)( = V1 - V2. /* returns left value minus right value */ 

expr(X,L1,L2) : - term(X,L1,L2). 

/* A term takes the form of 
a term times a power 

or a term divided by a power 
or a power ., 

termCX,L1,L2) :-
append(Left, C"*"IRightJ ,L 1>, 
termCV1, left, l2), 
power(V2, Right, L2), 
)( = V1 * V2. /* returns left value times right value */ 

term(X,L1,L2) :· 
append(Left, C"!"IRightl ,L 1>, 
term(V1, Left, L2>, 
power(V2, Right, L2), 
X = V1 / V2. /* returns left value divided by right */ 

term(X,L1,L2) :· power(X,L1,L2). 

/* A power tokes the form of 
a gro'-4> raised to a sx>wer 

or a group 

Not ol l expressions of the form X • Y are possible. The clause 
if_can_do allows the obvious cases to be evaluated . . , 

power(X,L1,L2) :-
oppend(Left, [''""I Right] ,L 1), 
group(V1, Left, L2), 
powerCV2, Right, L2), 
if can do(X,V1,V2). /* check for acceptable cases */ 

power(X,L1~L2)-:· group(X,L1,L2). 

/* o group tokes the form of 
an expression enclosed in parentheses 

or a nurber 
*/ 

group(X, C"C"IL 1J ,L2) 
appendCSub_expr, [")"] ,l 1 ), 
exprCV, Sub_expr, L2), f, 
X = v. /* return the value inside the parentheses */ 

groupCX,L1,L2) :- nurber(X,L1,L2). 

/* o nurber tokes the form of 
a plus sign followed by a an l>'lsigned nurber N 

or a mir.;s sign followed by a an uisigned nurber N 
or sin(x), cos(x), .•. , ln(x), or the nurber pi 
or an l>'lS i gned nurber N 

*/ 

nurberCX, ["+"ITJ ,L2> :· 
nurber(X, T ,L2). 

nurberCX, ["-"ITJ ,L2> :
nurberCX1, T ,L2), 
X = ·X1. 

nuTberCX, [11 sin"IL1J,L2) 
group(V,L 1,L2), 
X = sin(V),!. 

nurber(X, ["cos"IL1J,L2) 
group(V,L 1,L2),X = 

nurberCX, ["ton"IL1J,L2l 
group(V,L1,L2), X = 

/* secant definition*/ 
nurber(X, ["sec" IL 1J ,L2) 

group(V,L 1,L2), 
COS(V) <> 0, 

X = 1/cos(V),!. 
nurber(_, ["sec" IL 1 J, L2) 

group(V, L 1, L2), 
cos(V) = 0, 

/* + N is the same as N *I 

/* return negative of '6'1S i gned N * / 

/* use of the sine fLnCtion, ITl.Jst */ 
/* be of the form sin(arg) */ 

cos(V), I. 

tan(V), ! . 

write("error in secant argL1nent 11 ),nl,nl,!,fail. 
nurber(X, C"arctan"IL1J,L2) :-

group(V,L1,L2),X = arctan(V),I. 
nurberCX,C"exp"JL1J,L2> :-

group(V,L1,L2>, X = exp(V),I. 
nurberCX,C"ln"IL1J,L2> :-

groupCV,L1,L2), X = ln(V),I. 
nurberCX, C"pi"ITJ, T) :-

X = 4 * arctan( 1), I • 
/* the angle whose tangent is 1 is pi/4 */ 

Nlll'ber( N1i11, CH I TJ , T) : -
str _realCH,N1.1n), I. /* convert string to '6lsigned nurber */ 

reader("",[}):· I . 
reader(Str, CToklRestJ) :

fronttoken(Str, Tok,Str1), 
reader(Str1,Rest), I. 

append([], Li st, Li st). 
append( CHITJ ,L, [H IT2J > :

appendCT, L, T2). 

September/ October 1988 TURBO TECHNIX 87 



/* The clause if can do tests some cases for the evaluation of 
expressions of the form V1 · V2 ., 

if can doCX,V1,V2) 
- - V1 > 0, ! , 1• positive bese, all ok •1 

X = expCV2 • ln(V1)). 
if can do(X,V1,V2) /* 0 raised to 0 is indeterminant */ 

- - V1 = 0, V2 = 0, ! , 
write("*************** ERROR **************"), nl , 
write("expression contains indeterminant form 0 · 011 ),nl, 
write( "************************************* 11

), nl, nl, 
X = ln(V1). /* automatic stop of program*/ 

if can do(X,V1, ) 
- - V1 = 0,- /* 0 raised to nonzero power is 0 */ 

x = 0. 
if can doCX, ,V2) 

- - V2 :;-0, /* any nutber except O rafsed to */ 
X = 1. /* the 0 power is 1 * / 

if can doCX,V1,V2) /*negative ruit>er to an odd*/ 
- - is odd int(V2), /* integer is ok */ 

x ; -expCV2 • lnCabsCV1 ))). 
if can doCX V1 V2) :- /*negative ruit>er to an even*/ 

- - is ~ve~ int(V2), /* integer is ok */ 
X; exp(V2 • ln(absCV1))). 

/* negative l'lllrber to a fractional power can swing right or wrong. 
For ex8flllle: 

C-32)" 0.2 (the fifth root of -32) is -2 
(-1024)-0.1 (the 10th root of -1024) does not exist.*/ 

if can do(X, V1, V2) 
- - X = expCV2 * lnCabs(V1))), 

write("*************** \JARN I NG ************** 11
), nl, 

write("expression contains ( 11 ,V1, 11 ) • ",V2),nl, 
write("had to use (abs( 11 ,V1,M)) - M,V2),nl,nl. 

is odd int(X) :- X = round(X), Cr<><.nd(X) lllOd 2) = 1. 
is=even_intcxi :- x = roundCX). 

LISTING 4: PARSTREE .PRO 

/* Parse Tree ex8"1'le 
Barbara Clinger, 1988 

This program illustrates a parser for simple algebraic expressions, 
(no exponentation, parentheses, or fLnCtions). It returns the parse 
tree of the expression. The tree is built using the structure node, 
which is essentially an operator or ruit>er with left and right 
branches. 

S8flllle i'1'Ut: 2 * 3 - 4 I 5 * 10 + 6 
The output is a tree which represents the rult>er Cin functor form) 

+( -( *(2,3), *( /(4,5), 10) ), 6 ) ., 
domains 

item= op(string) ; leaf(real) 
node = branch(item,node,node) ; empty 
tokl ist = string* 

predicates 
reader(string, tokl i st) 
give resul t(node, tokl ist, tokl ist) 
appefidCtokl ist, tokl ist, tokl ist) 
do 

/* the grammar * / 

goal 

clauses 
do : -

expr(node, tokl ist, tokl ist) 
term(node, tokl ist, tokl ist) 
rult>er(node, tokl i st, tokl i st) 

do. 

nl,write("Enter an expression - - > 11 ), 

readln(String) ,nl ,nl, 
reader(String,L ist in), 
expr(Tree, Li st_ in,iest), 
give_resul t(Tree, Li st_in,Rest). 

give result(N, ,T) 
- T s CJ~ 

write( 11 The structure of the expression is: 11 ),nl,nl, 
write(N),nl. 

give_resul t(_,_,_> 
write("Carnot evaluate the expression. 11 ),nl. 

reader( 1111 , Cl) I . 
reader(Str, [Tok !Rest]) :

fronttoken(Str, Tok, Str1), 
re&der(Str1 ,Rest),!. 

88 TURBO TECHNIX September/ October 1988 

/* expansion of : 

., 
expr ··> expr, [+], term 
expr -- > expr, [-], term 
expr --> term 

expr(brench(op("+"), L_node,R_node), L 1, L2) 
append(left, ["+"!Right] ,L1), 
expr(L_node, Left, L2), 
termCR node,Right,L2). 

expr(branchCopC"·"), L_node,R_node), L 1,L2) 
append( left,["-" !Right] ,l 1), 
expr(L node,Left,L2), 
term(R-node,Right,L2). 

expr(X,L1,L2) !- term(X,L1,L2). 

/* expansion of : 

., 
term --> term, C*l, nurber 
term - -> term, [/} , nuTt>er 
term - -> nurber 

term(branch(op(•*•), L_node,R_node) ,L 1, L2) 
eppend(left, C"*"IRightJ ,L 1), 
term(L_node,Left, L2>, 
runber(R_node, Right, L2). 

tenn(brench(op(•/•), L_node,R_node), L 1,L2) 
append( Left, C"/" IRightl, L 1 >, 
tenn(L node,Left,L2), 
r.aber(R_node, Right, L2). 

tenn(X,L1,L2) :- l'U1t>er(X,L1,L2). 

I* expansion of: 

., 
ruwt>er - ·> [+], nurber 
nuit>er --> C-J, l'U1t>er 
nurber ··> [NJ 

runber(X, c•+•ln,L2> 
nurber(X, T ,L2). 

ruit>ercx, c•-•1n ,L2> :-
l'U1t>erCbrenchc leaf(ll),empty,~ty), T ,l2), 
z. -w, 
X = branch( leaf(Z),empty,empty). 

l'Ult>er(branch( leaf CX>, empty ,empty), CH In, T > 
atr_realCH,X). 

append( CJ ,List, List>. 
llflPend< CH In ,L, CH 1121 > 

appender ,L, T2). 



N£\\l\ Turbo Prolog 2.0: 
Powerful Artificial Intelligence 
for your real-world applications! 

New Turbo Prolog8 2.0 lets you 
harness powerful AI techniques. 
And you don't have to be an 
expert programmer or artificial 
intelligence genius! 

You get an all-new Prolog 
compiler that's been optimized 
to produce smaller and more 
efficient programs than ever 
before. An improved full-screen. 
completely customizable editor 
with easy pull-down menus. All
new documentation. including a 
tutorial rich with examples and 
instructions to take you all the 
way from basic programming 
to advanced techniques. Even 
online help! 

Turbo Prolog Toolbox 
is 6 toolboxes in one! 

More than 80 tools and 8.000 
lines of source code help you 
build your own Turbo Prolog 
applications. Includes toolboxes 
for menus. screen and report 
layouts. business graphics. com
munications. file-transfer capa
bilities. parser generators. and 
more! 
Toolbox requires Turbo Prolog 
1.1 or later 
Just $99.95 

System Requlremenls For Ille IBM PS/2- and Ille IBM• family of per
sonal romputers and all 100% compatibles. flC.OOS (MS-DOS) 2.0 or later. 
J&IK RAM . 

• customer saUstaclion Is our main oonoern: if wiUlin 60 days ot purchase this 
product does not perform In acrordance wiUl our claims. call our customer 
service department. and we will arrange a refund. 

All Bor\lnd prodlldatre U'ldemlrU or rqblered ndemarbol Botland lnlenll&klnll, Inc. Olher 
bnodlnd produttnM1e11rt~olihelr respealve holden. f.opyrlchl • 1988 Bor\lnll 
llllel'nl&klnll. lnc. Bl1257A 

More new features! 
• An external database 

system for developing 
large databases. Supports 
B+ trees and EMS 

• Source code for a fully
featured Prolog interpre
ter written entirely in 
Turbo Prolog. Plus step
by-step instructions to 
adapt it or include it as is 
in your own applications! 

• Support for the Borland 
Graphics Interface. the 
same professional-quality 
graphics in Turbo Pascal. 
Turbo C. and Quattro 

• Improved windowing 
• Powerful exception 

handling and error 
trapping features 

• Full compatibility with 
Turbo C so the two lan
guages can call each 
other freely 

• Supports multiple 
internal databases 

• High-resolution video 
support 

Just $149.95! 

INTERNATIONAL 

" If I had to pick one 
single recommendation for 
people who want to try to 
keep up with the computer 
revolution. I'd say, 'Get and 
learn Turbo Pro log.· 

-Jerry Poumelle, Byte 

An affordable, fast. and 
easy-to-use language. 

-Darryl Rubin, AI &pert " 

60-Day Money-back Guarantee* 

For the dealer nearest you 
Call (800) 543-7543 



STATE SPACE 
Minimal search -maximum performance. 

Dr. Robert Crawford 

Most computer programs are reasonably 
well-behaved. In the absence of perni
cious bugs, a program will dutifully follow 
its algorithm, feeding on data along the 
way, then produce its results and call it a 

SQUAREONE wrap. Artificial intelligence programs de
viate from this procedural pattern, however. These 
eccentrics show not the slightest reluctance in plung
ing headlong into an unexplored search space in 
pursuit of an answer. All too often their nonchalant 
entry into such a system results in their program 
counter being irresistibly attracted to a black hole 
from which it never returns-and the program is lost 
in space. 

The above scenario unfolds when the program
mer fails to provide the program with an appropriate 
navigation system. The many techniques for guiding 
a program through its problem space are called 
search strategies. This article examines three of the 
simplest search strategies: depth-first search, 
breadth-first search, and best-first search. The depth
first and breadth-first searches are known as blind (or 
uninformed) methods since they utilize no heuristic 
information (or rules of thumb) about the problem. A 
best-first search, on the other hand, uses problem
specific information to traverse the search space 
more efficiently. Despite their differences, it turns 
out that all three approaches can be described in a 
uniform framework. We will look first at the general 
principles that are involved, and then I'll discuss 
their implementation in Turbo Prolog. 

STATE SPACE 
One popular problem-solving technique, known as 
"state space," is used in a wide variety of AI applica
tions including puzzles and games, natural language, 
and pattern-directed inference systems. This tech
nique uses a directed graph of nodes to represent a 
given problem. Each node in the graph, called a 
state, represents a particular problem situation. One 
node is connected to another node by an arc. An arc 
between nodes exists if it's possible to get from the 

90 TURBO TECHNIX September/ October 1988 

first node to the second node by a legal move (some
times referred to as a transition). 

Now suppose that we have a directed graph that 
models a search space. One of the nodes of the 
graph, called the start node, is designated as the be
ginning point for the search. Also, some of the 
nodes of the graph are designated as goal nodes, and 
represent the states that we want to reach. The object 
is to find, if possible, a path from the start node to 
some goal node. A small example of such a graph is 
given in Figure 1, where node 0 is the start node and 
nodes 13, 14, and 15 are goal nodes. I'll use this 
graph as an illustration, and will presume that the 
successors of a given node are generated in increas
ing numerical order. 

Some preliminary bookkeeping prevents going 
around in circles, exploring a section of the graph 
over and over. I therefore assume the existence of a 
mechanism for marking the nodes of the graph. In 
addition, a couple of simple data structures are re
quired. The first data structure is the list L of nodes 
that have been discovered but not fully explored. 
These nodes are the possible starting points for 
further probes into the graph. The other data struc
ture is a collection P of pointers joining pairs of 
nodes that have been discovered. When a goal node 
is found, this collection is used to construct a path 
from the start node to the goal node. Initially, only 
the start node is marked, L contains just the start 
node, and P is empty. 

The general approach can now be described, be
ginning with the start node. If the start node is also 
a goal node, the search has succeeded with no effort, 
and the trivial path can be returned as the answer. If 
the start node is not a goal node, then proceed with 
the search as follows: 
1. Choose the next node; and 

a. If the list L is empty, report failure; or 

b. If the list L is not empty, remove a node N 
from L and expand the node (i.e., generate a 
list S of all of the node's unmarked successors); 



Start Node ---Mii 
(initial state) 

5 7 

12 

15 2 

Goal Nodes 
(solution states) 

Figure 1. State space graph depicting node 0 as the initial state, and nodes 13, 
14, and 15 as the solution states. 

2. a. If one of these successors 
(say G) is a goal node, use P 
to generate a path from the 
start node to N, add the 
move from N to G, and re
turn this as the successful re
sult of the quest; or 

b. If no goal nodes have 
been generated, mark the 
elements of S and add them 
to L. Also add a pointer, 
which points from N to each 
element of S, to the collec
tion P; 

3. Go to step 1. 
All three of the search tech

niques that we are concerned with 
follow the outline just given. The 
difference lies in the manner with 
which the next node to be ex
panded is chosen. As you'll see, 
varying the way that this choice is 
made leads to strategies with 
widely disparate philosophies. 

DEPTH-FIRST SEARCHES 
Beginning at the start node, a 
depth-first search traverses down 
the levels of the search tree, 
choosing the lefthand node when
ever more than one node exists. 
In this way, a depth-first search 
travels down the left side of the 
search tree first If no solution is 
found, the search backs up one 
level and tries the righthand 

node. This process continues until 
all nodes have been examined. 

In Figure 1, a depth-first search 
generates the path (0,5,8,9,14) 
from the start node 0 to the goal 
node 14. The source of the name 
"depth-first" becomes clear as the 
progress of the search is traced. 
The search moves as far down 
into the graph as it can go before 
giving up and seeking alternate 
routes. When the path (0,5,8,3,1) 
is generated during the search, a 
dead end has been reached. The 
process then backs up, first to 3 
and then to 8, before taking the 
step from 8 to 9, which eventually 
leads to success. 

In terms of our general descrip
tion, some care is needed when 
adding new nodes to the list L. In 
particular, always put S at the be
ginning of L. When the time 
comes to pick a new node for ex
pansion, choose the first element 
of L. In this way, the list L be
haves like a stack-the last ele
ment in is the first element out. 

The reference to "backing up" 
the search tree is reminiscent of 
the backtracking mechanism of 
Turbo Prolog-and that's no ac
cident. Turbo Prolog searches for 
solutions in a depth-first fashion. 
One reason for using a depth-first 
search is that relatively little infor
mation needs to be maintained in 
order to recover the entire path 

once a goal node is found. The 
collection P of pointers that our 
implementation maintains is more 
than is needed for depth-first 
searching. At any stage, in fact, it's 
only necessary to track the point
ers along the current path. 

Depth-first searching, however, 
is not without difficulties. A major 
problem stems from the fact that 
the graphs involved in practical 
problems are very large, and 
sometimes infinite. It's relatively 
easy for a depth-first search to be 
led astray and to begin investigat
ing a hopeless path-like the 
(0,5,8,3) route in our example. If 
the graph along such an avenue 
is large or infinite, a black hole 
develops and absorbs our intrepid 
explorer. 

BREADTH-FIRST SEARCHES 
One way to avoid such a demise 
is to adopt a more cautious 
strategy for moving around in the 
graph. A breadth-first search is 
one such approach. The basic 
idea behind a breadth-first search 
is simple. Investigate the graph 
level by level, beginning with the 
root. Look next at the nodes that 
are one step removed from the 
root, then examine nodes that are 
two steps away, and so forth. In 
terms of our general paradigm, 
simply add the elements of S to 
the end of L instead of to the be
ginning of L, and continue to 
choose the first element of L as 
the next node to be expanded. In 
this case, the list L is used as a 
queue (a first-in-first-out list). 

When applied to the graph in 
Figure 1, the breadth-first search 
yields the path (0,6,9,14). At a 
length of three, this is one step 
shorter than the path that is gen
erated by the depth-first search. 
Indeed, it's easy to see that a 
breadth-first search always finds 
a path of minimal length between 
the start node and a goal node, 
since all paths of length n are in
vestigated before any paths of 
length n+l. 

You may now be wondering, "If 
a breadth-first search always yields 
the shortest possible path, why not 
use it all the time?" A primary rea
son is that the goal nodes may be 
quite far away from the start node. 
In such a case, a depth-first search 
may well get lucky and reach a 

continued on page 92 

September/ October 1988 TURBO TECHNIX 91 



STATE SPACE 
continued from page 91 

goal quickly, having explored rel
atively few false leads along the 
way. A breadth-first search, on the 
other hand, fans slowly down
ward, looking at the entire width 
of the graph until it reaches a 
goal. If all of the goals are far re
moved from the start node, the 
breadth-first search may take an 
intolerably long time. 

Another concern with using a 
breadth-first search is memory us
age. With a depth-first search, only 
the links that lead from the start 
node to the node currently being 
investigated need to be remem
bered in order to recapture the fi
nal path. A breadth-first search 
needs to remember all of the links 
in the whole bushy tree that it's 
built in order to function , since 
the search jumps to far-removed 
sections of the tree as it progress
es. This exorbitant memory re
quirement prevents practical im
plementations of logic program
ming languages, which are based 
on a breadth-first search. 

It's normally better to use a 
depth-first search when the search 
graph, as viewed from the per
spective of the start node, is long 
and deep. If the search graph is 
short and wide, breadth-first 
searching is more appropriate. 
Both methods are prone to con
siderable difficulties, and it's often 
necessary to provide additional in
formation about the graph (over 
and above the successor relation) 
in order to obtain an effective 
technique. This is what a best-first 
search tries to do. 

BEST-FffiST SEARCHES 
In order to describe the best-first 
search, it's necessary to make one 
additional assumption about our 
graph. Suppose that there is a rule 
by which two nodes in the graph 
can be compared in order to se
lect which node is more likely to 
lead to a goal node. Such a rule is 
typically based on heuristic knowl
edge about the particular problem 
being solved, and the rule may be 
quite inaccurate. As an example, 
take the number of each node in 
our sample graph as a measure of 
the "goodness" of the r1ode. The 
higher the number, the more 

likely our heuristic thinks that the 
corresponding node will lead to 
success. 

The description of the best-first 
search is clear. Always expand the 
node whose heuristic value is the 
largest of all the nodes in L-in 
other words, follow your best 
guess. Whether this represents an 
improvement over the earlier 
blind methods depends entirely 
upon how good the heuristic is. 
With a typical "good but not per
fect" rule, a best-first search ex
plores the graph in a depth-first 
fashion for a while. If success is 
not forthcoming, the rule causes 
a jump to another part of the 
graph in a manner similar to the 
breadth-first search. A carefully 
chosen heuristic can often get the 
best of both worlds. In this case, 
it's worth noting that the list L be
haves like a priority queue. 

A best-first search yields the 
path {0,7,10,9,14) when applied to 
Figure I. The best-first search 
finds this path with less explora
tion of the graph than either the 
depth-first or breadth-first 
searches, because it only looks at 
one short deadend (involving the 
step from 10 to 4). 

IN TURBO PROLOG 
A complete implementation of all 
three search techniques is given 
in SEARCH.PRO (Listing 1). Since 
Turbo Prolog is perfectly suited to 
problems of this type, the majority 
of the code is straightforward. I'll 
touch only on the highlights here, 
paying particular attention to 
those items which need to be 
changed in order to handle differ
ent problems. 

The vertices of the search 
graph are represented by entries 
of type node. In Listing 1, node is 
simply a new name for integer. In 
general, the definition of the node 
domain should be modified to fit 
the problem at hand. The remain
ing domains-pointer, pointers, 
and path-need no adjustment 
for other problems. The graph it
self is described by the predicates 
start_node, goal_node, and arcc. 
Naturally, the clauses for these 
predicates must be modified to 
apply to other search spaces. 

92 TURBO TECHNIX September/ October 1988 

The predicates search and con
tinue_search form the heart of the 
search mechanism. The first 
clause of search says that the 
search (of whatever type) is over 
if the first node in the list of un
expanded nodes is a goal node. If 
this is not the case, the second 
clause of search expands the first 
(unexpanded) node and passes its 
arguments, together with the list 
of new nodes that it found, to con
tinue_search. In tum, continue_ -
search checks to see if a goal node 
is to be found among the newly 
generated nodes. If a new goal 
node is found, the search is over; 
otherwise, the new nodes are 
marked so that they will not be 
found again and are then merged 
into the list of unexpanded nodes. 
Finally, the pointer list is updated 
and control is passed back to 
search. 

The difference between the 
three search techniques manifests 
itself in the merge predicate. For 
the depth-first search, new nodes 
are appended to the front of the 
list of old nodes. For the breadth
first search, new nodes are ap
pended to the end of the list. In 
the case of the best-first search, an 
insertion sort inserts the new 
nodes into the list of old nodes. 
The only predicate related to 
merge that requires modification 
for other problem setups is better, 
which determines the ordering of 
nodes in the best-first search. 

NAVIGATIONAL CONTROLS 
These search methods can pro
vide adventurous programs with 
reliable controls. In general, blind 
searches should only be used in 
situations where no guiding infor
mation is available-they're the 
hallmark of programs that are in
tended to be of such general ap
plication that no particulars can 
be assumed. The time spent in 
manufacturing an accurate navi
gational heuristic pays sizable div
idends in performance. • 

Dr. Rnbert Crawford is a professor of 
computer scieru:e at Western Kentucky 
University. 

Listings may be downloaded from 
Library 1 of CompuServe forum 
BPROGB, as SEARCH.ARC. 

listing begins on page 94 



It's Easy To See Why Quattro 
Is The Spreadsheet Of Choice! 

In fact. it's hard not to see. 
Because one look at Quattroe shows 
you a lot more for your money. 
More speed. more power. and the 
most spectacular presentation
quality graphics anywhere-
built in. 

Dazzling and diverse 
If you went out looking, you'd 

be hard pressed to find spreadsheet 
graphics as dazzling and diverse 
as Quattro's. If you did, they'd be 
in a separate standalone package 
with a separate standalone price. 
And they still wouldn't be inte
grated with your spreadsheet's 
menu commands the way 
Quattro's are. 

Brilliance built in 
Quattro lets you choose from 10 

different types of presentation
quality graphs and a huge selection 
of fonts. fill patterns and colors. 

Quattro supports PostScript9 too. 
So you can use today's most popu
lar laser printers and typesetters to 
make your work-and yourself
look positively brilliant. 
•CAis&orntrsat.1sfactMlfl1s ourmalnronctrn . 1r•1Ulin60daysrJpu~lll1s prodoctdoes 

net prrform in ~net ... 11.11 oor claims. call our c11stomet st"l'\'i~ depanmm!.. ind wt •·ill 
arra~a~fuOO 

lltlHoflandproduCl.8a~U'a&>markJorrt'ttiSieredlrademarUotBortandlnLernational. loc. Lctus 
and 1-2-3 art rqisitml trademark.1 of lnws fk\.-elopmenl Corp OVler brand and prodl!Ct names 
al'1' ltademarUofthtir rcspttti1t holders Copyriglll 0\988 Borland lnkrnal.ional . Inc Bl 12J6A 

Hard copy made easy 
Quattro makes it easy to get hard 

copies of your graphics-with a 
printer or plotter. directly from the 
spreadsheet. In fact. you don't even 
have to leave the spreadsheet. 

Seeing is believing! 
Dazzling graphics are just one 

of Quattro's eye-opening features; 
your dealer can show you the 
others. Quattro is easy to use and 
fully compatible; it even accepts 
familiar 1-2-39 compatible com
mands and uses data files created 
with other spreadsheets and data
bases. But Quattro gives you a lot 
more-in fact. twice the speed and 
power of the old standard. For only 
half the price. 

60-Day Money-back Guarantee* 

For the dealer nearest you 
call (800) 543-7543 

INTERNATIONAL 

'' Quattro contains the most com
prehensive presentation graphics 
capability available in a spread
sheet ... The graphs Quattro can 
produce surpass even those avail
able through add-on products like 
Lotus Graphwriter or Freelance 
Plus. If Borland wanted to. it could 
certainly sell the graphics portion 
of the spreadsheet on its own merit 
as a standalone graphics application. 

Robert Alonzo, Personal Computing 

Quattro's presentation-quality gra
phics output capabilities rival 
those that 1-2-3 can obtain only in 
conjunction with separate presenta
tion graphics software ... For me. 
at least. Quattro has certainly 
become the character-oriented 
spreadsheet program of choice. 

William Zachmann, Computerworld 

In the few years since Lotus Devel
opment Corp. introduced 1-2-3, 
many companies have attempted to 
unseat the king of the spreadsheet 
hill. The latest contender. Borland 
International Inc. 's Quattro. suc
ceeds where other spreadsheet 
packages have failed ... Quattro is 
at least two steps ahead of 1-2-3. 

Ricardo Birmele, PCResource '' 



LISTI NG 1 : SEAllCll. PllO 

/* Graph Searchi~ */ 

&..ins 
node • integer /* Modify this to f it the probleio. */ 
pointer • ptr(node,node) 
po;nters a pointer* 
path : node* 

database 
.. rk(node) 

/* Predicates defining the search space */ 
/* Change these to fit the probl.,.. */ 

predicates 
stort node(node) 
goal n.xiec node> 
1rcc(node, node) 

clauses 
atart_node(O) . 

goal_node( 13) . goal_node( 14) . goal_node(15). 

orcc(0,5) . 
1rcc(4,2). 
arcc(ll,3). 
arcc(9, 14). 
arcc(11, 14). 

1rcc(0,6). 
1rcc(5,ll). 
orcc(ll,9). 
1rcc(10,4) . 
1rcc(12, 14) . 

arcc(O, 7). 
arcc(6,9). 
arcc(9, 11) . 
arcc(10,9). 
1rcc(12, 15). 

/* General purpose predicates */ 

predicates 
...tler(po inter, pointers) 
IO!ft'ber(node,path) 
append( path' peth, path) 
11Y_retract1l l (string) 

clauses 
....tier<H, [Hl_n. 
llellber(M,[ TJ) :

lleft'ber( H-;-T>. 

append([) ,L,L). 
append< [HITJ ,L, [MIT1l > 

append(T ,L, T1). 

llY retractall(•rk) 
retract(!Mrit(_))' 
llY retractal l (mark). 

llY_retractal l <_>. 
/* The search .echanl,. * / 

predicates 

arcc(3, 1). 
arcc(7, 10) . 
arcc(9, 12). 
arcc(11, 13). 

better(node,node) /* Modify this to suit the problem. */ 
~rked _ successor(node, node) 
search (string, path, pointers, node, path) 
cont i rue_aeorch( 1 tr i ng, path, pointers, node, path, peth) 
Insert (node, peth, peth) 
•rve< string, peth, path, peth > 
f i~th(pointers, path, path) 
Nrkal l(pooth) 
<¢ate_pointen(node,peth,pointera,pointers) 

cl-es 
better(X,Y) :

X >• y. 

1n1111rked_ successor(N, Ml 

94 TURBO TECHNIX September/ October 1988 

1rcc(N,M), 
not(•rk(M)). 

search(_, CTheGoal I _I ,P, TheGool ,Path) 
vool_node(TheGool >, 
fi~th(P, CTheGoalJ ,Path), 
I . 

search(Type, [N I RJ,P, TheGoal,Path) • 
f i rdal l (X, LmlBrked_successor(N ,X), New), 
cont iooe_search(Type, [NI RI, P, TheGoal ,Path,New). 

contirue_seorch(_, CN I _I ,P, TheGool,Path,New) 
lleft'ber(TheGool ,New), 
goal_node(TheGoal ), 
fi~th(P, [N, TheGoalJ ,Path), 
I. 

contiooe_search(Type, CNIRJ ,P, TheGoal,Path,New) 
Nrk1ll(New), 
Mtrge(Type, New,R, Newl), 
l.4)dete_pointera(N, New,P, NewP), 
search(Type, New\., NewP, TheGoal, Path). 

fi~th(P,[HITJ,Path) :
lleft'ber(ptr(X, H),P), 
I, 
fi~th(P, [X,HITJ ,Path). 

f i~th(_,Path,Path). 

1Mrkall( CHITJ) :
assert(Nrk(H)), 
Nrkall(T). 

rMrkall([)). 

i nsert(Node, [HI Tl, [Node, HI Tl> 
better( Node, H), 
I. 

insert(Node, [HITJ, [HINewTJ > 
lnsert(Node, T ,NewT). 

insert(Node, [), [NodeJ ). 

merge( "depth", New, R, Newt> 
append( New, R,Newl). 

inerge("breadth", New,R, Mewl) : -
append(R,New, New\.). 

•rve<"beat•, [HITJ ,L,NewL> :
insert(M,L, T~>, 
11erge("best•, T, T~,Newl). 

merge( "best", Cl , Mewl, Mewl). 

<¢ate_polnters(N, CHITJ ,P,NewP) 
<¢at1_polnters(N, T, Cptr(N,Hl I Pl ,NewP). 

<¢ate_polnters(_,_,NewP, NewP) . 

g<><1l 
rMkewindow( 1, 7, 7, •• ,5,5, 10,65), 
111'( _retractal l (mark), 
write("\n\tWhat type of search (depth, breadth, best)? •), 
readln(Type), 
clearwlndow, 
start_node<Sl, 
search(Type, CSJ, [), TheGool ,P1thl, 
wrlt1(•\n\tThe goal •, TheG<><1l, 

• waa reached via• ",Type, 11 -first search."), 
nl, 
nl, 
write("\tA path 

Path), 
nl,nl. 

leading frOlll a start node to this goal is:\n\n\t", 



TAKING TO THE SCREEN 
Take control of the Turbo Prolog Toolbox for your next 
generation of screens. 

Gaykn Wood 

The Turbo Prolog Toolbox offers an array 
of screen layout tools that allow you to 
easily design input screens. One such 
tool, the screen definition tool, is a program 
that lets you interactively design a form 

PROGRAMMER on the screen. Once the screen has been 
designed, the screen definition program saves the 
Turbo Prolog description of this screen as database 
facts. This definition file can then be consulted by 
other programs. With the aid of other tools in the 
toolbox, called screen handlers, the program displays 
and uses the screens that are defined by the screen 
layout tool. This approach allows the programmer to 
design a screen visually, rather than by the trial-and
error methods that are usually required by program
ming the screen manually. 

A problem that arises is that many of the keys that 
are used by the screen handlers for input, such as 
the Tab key or the FlO key, are predefined to per
form in a specific manner. Other keys, including 
most of the function keys, are not defined at all. 
These tools must be modified during the develop
ment of a "user familiar" application so that they 
perform in a way that the end user expects. Fortu
nately, the source code for the screen handling tools 
is included in the Turbo Prolog Toolbox, and it's rel
atively easy to modify them to suit your specific 
needs. 

In this article, I'll explain how to modify these 
tools to emulate a specific user interface. In particu
lar, I'll show how to enable all of the function keys, 
and how an additional key for user input can be de
fined. I'll also show how the Tab function can be 
given a "wrap around" capability, and we'll look at a 
method for correcting the cursor position when a 
field is full. Finally, I'll define a function to "back 
tab" from the middle of an input field. The specific 
changes that are involved in these tool modifications 
may not be of interest to everyone. The modification 
techniques, however, should interest any-me who 
wishes to customize input screens. 

THE BASICS 
The process of creating a screen with the screen 
layout tool SCRDEF.PRO (which is on the distribu
tion disk) is fairly straightforward, and is described 
in Chapter 3 of the Turbo Prolog Toolbox User's Guide. 
The result of this screen creation process is a consult 
file that describes text and input/ output fields. This 
file is ready for consulting by the application pro
gram, and contains database facts that correspond to 
the following: 
field(FieldName,Type,Row,Col,Length) 
textfield(Row,Col,Length,FieldString) 
windowsize(Height,Width) 

Once the screen values have been consulted, the 
presentation of the screen and the acceptance of in
put are handled by the tools in SCRHND.PRO. All 
screen handling capabilities can be invoked by a sin
gle call to the tool scrhnd: 
scrhnd(STATUSON,KEY):-

settopl ine(STATUSON), 
mkheader, 
writescr, 
field(FNAME,_,R,C,_),!, 
cursor(R,C), 
chng_actfield(FNAME), 
showcursor, 
repeat, 

writescr, 
keypressed, 
readkey(KEY), 
scr(KEY>, 
showcursor, 

endkey(KEY),!. 

The predicates settopline and mkheader establish 
a top line status window. The fields and associated 
screen text are then presented by writescr. The cur
sor is placed into the currently active field, which is 
defined by chng_actfield. Finally, showcursor dis
plays the cursor's row and column position in the 
top line status window. 

Processing begins with the repeat loop, which 
presents the fields and screen text with writescr. The 
keypressed predicate keeps the program "idling" un-

continued on page 96 

September/ October 1988 TURBO TECHNIX 95 



TAKING TO THE SCREEN 
continued from page 95 

til a key is pressed. The pressed 
key is then converted by readkey 
into a symbolic value, and the 
symbolic key's actions are defined 
by scr. Another call to showcursor 
updates the cursor position in the 
top line status window. Next, end
key checks if the symbolic key is 
defined as a "quit processing" key; 
if the key is not so defined, the 
program backtracks to the repeat 
loop and begins processing again. 

DEFINING NEW KEYS 
The first changes to be made to 
the screen handling tools define 
a new key for user input and en
able the use of all ten function 
keys. My particular user environ
ment requires the + key located 
next to the numeric key pad to be 
used as an input key-after filling 
in the fields on the screen, the 
user presses the + key to tell the 
computer that input is finished. 
An additional requirement of my 
application is that the user termi
nate the session by using any of 
the function keys. (The original 
tool only provides the FlO key or 
the Esc key for this purpose.) Nat
urally, the function keys can be 
defined to perform any action you 
wish. 

To define a new key, we must 
first look at the object KEY in 
TDOMS.PRO (provided on the 
Turbo Prolog Toolbox distribution 
disk). TDOMS declares the do
main names for all of the keys 
that are recognized by the tools. 
To define the new key, simply pick 
an appropriate symbolic name 
and add that name to the domain 
list. (I chose the symbolic name 
plus.) Note that function keys are 
already defined by the domain 
declaration: 

fkey(INTEGER) 

There is no need to modify this 
declaration. The new version of 
TDOMS is shown in Listing I. 

The readkey predicate, which 
reads an input character and 
returns its symbolic name, must 
now be modified to recognize the 
new key. readkey and its asso
ciated predicates can be found in 
TPREDS.PRO (also on the distri
bution disk). readkey reads a char
acter from the keyboard, converts 

that character into its ASCII code 
equivalent, and passes that code 
to readkeyl. Extended keys, such 
as the function keys or Ctrl-key se
quences, actually generate two 
characters; the first value for an 
extended key is always 0. If read
key l detects an extended key, the 
rest of the ASCII code is passed to 
readkey2, as shown in the follow
ing code: 
readkey1CKEY,_,0):-

! ,readchar(T), 
char int(T, VAL), 
readkey2(KEY,VAL). 

readkey1(cr,_, 13):-!. 
readkey1(esc, ,27):-!. 
readkey1(break,_,3):-!. 
readkey1(tab, ,9):-!. 
readkey1(bdel~_,8):-!. 
readkey1(ctrlbdel,_, 127):-!. 
readkey1(plus,_,43):-!. 
readkey1(char(T),T,_) • 

The + key has an ASCII code of 
43, and doesn't generate an ex
tended key code. Therefore, the 
+ key is included by simply add
ing another readkeyl clause: 

readkey1Cplus,_,43):-!. 

Again, fkey is already defined in 
readkey2, and there's no need to 
modify its definition. 

The modified version of 
TPREDS.PRO is shown in List
ing 2. 

SCRHND.PRO defines the ac
tions that will be initiated by each 
of the function keys and by the + 
key. At this point, all ten function 
keys can be enabled. First, add a 
clause to scr for each additional 
key. Inspection of the clauses for 
scr reveals that a clause for 
fkey(IO) is already present There
fore, clauses need to be added 
only for function keys 1 through 
9, and for the + key. 
scr( fkey(1) ):-not(typeerror). 
scr( fkey(2) ):-not(typeerror). 
sere fkey(3) ):-not(typeerror). 
scr( fkey(4) ):-not(typeerror). 
scr( fkey(5) ):-not(typeerror). 
scr( fkey(6) ):-not(typeerror). 
scr( fkey(7) ):-not(typeerror). 
scr( fkey(8) ):-not(typeerror). 
scr( fkey(9) ):-not(typeerror). 
scr( plus ) :-not(typeerror). 

not(typeerror) simply ensures that 
data in the current field is consis
tent with the field definition that 
was established when the screen 
was created. 

Finally, the action for each key 
is defined as follows: 

96 TURBO TECHNIX September/ October 1988 

endkey(fkey(1)):-!. 
endkey(fkey(2)):-!. 
endkey(fkey(3)):-!. 
endkey(fkey(4)):-!. 
endkey(fkeyC5)):-!. 
endkey(fkey(6)):-!. 
endkey(fkey(7)):-!. 
endkey(fkey(8)):-!. 
endkey(fkey(9)):-!. 
endkey(plus):-!. 

In this case, all of these keys ter
minate the session. However, 
these keys can be defined to per
form any action you wish. 

WRAPPING THE TAB 
The Tab key is used by the screen 
handler to jump from one field to 
the next If the Tab key is pressed 
while the cursor is located in the 
last field, however, nothing hap
pens. Getting the tab function to 
wrap around simply means that 
when the Tab key is pressed, the 
cursor moves from the last field 
on the screen to the first field. 

The functioning of the Tab key 
is defined in the clause scr(tab) in 
SCRHND.PRO, as shown: 

scr(tab):-
cursor(R,C), 
nextfield(R,C). 

cursor determines the current cur
sor position. nextfield establishes 
the next field in the sense of left 
to right, top to bottom: 

nextfield(_,_):-typeerror,!,fail. 
nextfield(R,C):-

field(FNAME, ,ROW,COL, ), 
gtfield(ROW,R,COL,C), -
chng_actfieldCFNAME),!, 
cursor(ROW,COL). 

nextfield(_,_). 

The first clause simply verifies 
that the definitions of the fields 
are consistent, and then it fails. 
Invalid fields are skipped. The 
second clause succeeds until the 
cursor is in the last field. At that 
point, a field whose cursor values 
qualify it as the "next field" can
not be found, and the second 
clause fails. Turbo Prolog back
tracks to the next clause, which al
ways succeeds. As the clause is 
currently written, however, no ac
tion is taken-nothing happens 
on the screen. To make the Tab 
key wrap around, simply change 
the third clause to: 

nextfield(_,_):-scr(home). 

Now, when the second clause of 
nextfield fuils, the third clause always 
succeeds, and the cursor is placed in 
the first defined field of the screen. 

continued on page 98 



SideKick Plus Gives Your PC 
the Power of Communication! 

~ 
Get full communi- -- ~ 
cations capabilities 4 
without leaving 
Quattro-or any 
other application 
you're using 

Online Help is -
always available 

It's a full-fledged communi
cations program for data and 
voice ... plus a lot more! 

Communication is power. And with 
SideKick" Plus. it's at your fingertips. 
Because SideKick Plus is the only com
munication software you need. To send 
your message around the world. Or to 
pick up messages from MCI or Dow 
Jones or any other electronic service. 
Automatically-even if you're down 
the hall in a meeting. Or doing some
thing else you do on your PC. (Try 
asking CrossTalk" software to do that!) 

SideKick Plus saves you time and 
keystrokes with sample scripts for pop
ular programs like MCI" Mail. Compu
Serve." and BIX." You can create 
scripts by simply recording your key
strokes. or edit scripts to access the 
full power of the script language. 

Turbo charge your Phonebook 
SideKick Plus lets you create the 

most high tech address books you've 
ever seen-entering names and 
addresses in the form you choose . 
Searching electronically for the infor
mation you need . And attaching notes 
and comments about each person 
listed . 

SideKick Plus is communications 
and more: seven powerful 
software packages in one! 
• A complete outliner that letB you 

open nine files at once 
• A sophisticated DOS file manager 
• A calendar you can use as a common 

scheduler if you 're on a local area 
network 

• Multiple notepads 
• A phonebook with full communications 
• Your choice of four different calculators 
• An ASCII table 

Plus: 
• Support for both expanded and extended 

memory. If you have an Intel Above" 
Board. you can take full advantage of 
your 640K of RAM and yet use all 
your SideKick Plus desk accessories 
at any time. 

• All completely integrated and instantly 
accessible over any other application 
you're working in 

• All taking up as little as 72K of your 
computer's RAM 

Minimum System Requirements: For IBM PS/ 2, IBM family of personal com
puters. and all 100% compatibles. Operating system: PC -DOS (MS-DOS) 2.0 
or later. Minimum system memory: 384K byteS. Minimum resident memory 
size: 72K. Hard disk. required. SupPorts both EMS and extended memory. 

•cuswmer satisfaction is our main conrern : If within 60 days ol purchase this 
produtt does not perform in accordance with our claims. call our customer 
service department. and we will arrange a refund . 

All Borlandprodl.ll1Sare lfadernlft8 1N'rqis&e~ lf8dl':marts ol Botlandlnlcrnlltlonal.lnc . Olher 

brand and produe1. names are lradtmarb or their re:specllve IM>lclers. 
C'.opyrleht •1 988 Borland lnitrnallonal. Inc Bl 1238A 

Ready-to-use scripts 
make it easy to log 
onto MCI, Compu

Serve, or BIX 

Define your pass
word and encrypt it 

for security 

Add in your local 
access number with 

a simple entry 

' ' The built-in communications 
program is very impressive ... 
Unlike most communications pro
grams (including some that cost 
twice as much as SideKick}, the 
new SideKick lets your computer 
communicate with another machine 
while you are running another 
program. 

-Lawrence Magid, Washington Post ' ' 

Get the power! 
To buy this kind of communication 

power and all the other SideKick Plus 
features separately. you'd spend 
hundreds of dollars and drain your 
computer's memory dry. Instead. just 
see your Borland dealer and get the 
power of SideKick Plus! 

Hard disk required. 

60-Day Money-back Guarantee* 

For the dealer nearest you 
Call (800) 543-7543 

INT[RNATIONAI 



TAKING TO THE SCREEN 
continued from page 96 

AUTO FILL WITH 
WRAPAROUND 
Perhaps the most significant en
hancement in terms of appear
ance is the modification of the ac
tions that occur when a field has 
been filled. The goal is to have 
the cursor move to the next field. 

As each character is entered, it's 
processed by scr(char(T)) in 
SCRHND.PRO. scr(right), which 
is the last call in scr( char(T)), han
dles the cursor as each character 
is entered. This process is shown 
in the following code: 
scr(right):-

actfield(FNAME>, 
not(noinput(FNAME)), 
field(FNAME,_,_,C,L), 
cursor(RO\J,COL), 
COL<C+L-1,!, 
COL1=COL+1, 
cursor(RO\J,COL1). 

scr(right):-move_right. 

If the current field is not full, the 
first clause of scr(right) moves the 
cursor to the right. If the current 
field is full, then the second 
clause goes into action. 

The temptation is to resolve the 
algorithm in move_right. Thanks 
to the declarative nature of Turbo 
Prolog, there's an easier way
simply tell the second clause of 
scr(right) to act like the Tab key. 
The second clause then becomes: 

scr(right):-scr(tab). 

This method resolves more 
than the auto fill issue. Because 
the Tab key was previously mod
ified to wrap around, the auto fill 
wraps also. When the last field is 
full, the cursor returns to the first 
field on the screen. 

BACK TAB FROM THE 
MIDDLE OF A FIELD 
Another useful feature is the abil
ity to back tab (Shift-Tab) from the 
middle of a field and move the 
cursor to the start of the field. 

The clause scr(btab) in 
SCRHND.PRO defines the back 
tab function. scr(btab) establishes 
the current cursor position and 
calls prevfield. prevfield only suc
ceeds when the cursor is in the 
first position of any field other 
than the first field. prevfield, 
along with chk_found, uses a fail 
to encourage Turbo Prolog's back-

tracking mechanism to do the 
work. The following code demon
strates this process: 
prevfield(_,_):-typeerror,!,fail. 
prevfield(R,C):-

field(FNAME,_,RO\J,COL,_), 
chk_found(FNAME,R,C,RO\J,COL),!, 
actfield(F1), 
field(F1 ,_,RR,CC,_), ! , 
cursor(RR,CC). 

chk_found(_,R,C,R,C):-!. 
chk_found(FNAME,_,_,_,_):

chng_actfield(FNAME),fai l. 

Let's create a hypothetical ex
ample to see how this works. 
Assume that the cursor is located 
in the first character position of 
the third field on a screen when 
the back tab function is invoked. 
When prevfield is called, field re
trieves the values for fieldl on the 
screen from the internal database. 
Those values are then passed to 
chk_found, along with the cursor 
position of the currently active 
field. The first clause of chk • 
found fails, since the row an-d col
umn values of the current field 
are not equal to the row and col
umn values for fieldl. The second 
clause establishes fieldl as the 
previous field, and then fails. 

prevfield repeats the process, 
retrieving the values for field2 on 
the screen. Once again, chk_
found checks if the row and col
umn values correspond to the cur
rently active field. The first chk_. 
found clause fails, the second 
clause establishes field2 as the 
previous field, and the program 
backtracks once again. On the 
third pass, chk_found verifies that 
the cursor values of field3 corre
spond to the currently active field. 
The remaining subgoals of prev
field determine the corresponding 
row and column values for this 
field, and place the cursor appro
priately. 

chk_found must determine if 
the current cursor position is 
within a defined field, and if so, 
reestablish the current field as the 
active field. First, the predicate 
declaration of chk_found must be 
expanded as follows, in order to 
include the length that corre
sponds to the row and column 
values being used: 

chk_found(FNAME,ROW,COL,ROW,COL,LEN) 

Next, prevfield must be modified 
to include the new parameter in 
the call to chk_found. The final 

98 TURBO TECHNIX September/ October 1988 

step is to modify the existing chk_. 
found clauses and add a new 
chk_found clause. Since the exist
ing two clauses of chk_found don't 
require the new parameter, this 
parameter may be included as an 
anonymous variable. The new 
chk_found clause, however, does 
use that new variable, as the fol
lowing code demonstrates: 

chk_found(_,R,C,R,C,_):-!. 
chk_found(FNAME,R,C,R,COL,LEN):-

C > COL, 
C < COL + LEN, 
chng_actfield(FNAME). 

chk_found(FNAME,_,_,_,_,_):
chng_actfield(FNAME),fai l. 

The second clause of chk • 
found now checks if the cu~ent 
cursor position, which is provided 
by prevfield, is located in a de
fined field. If the current cursor 
position is in a defined field, then 
chk_found establishes that field as 
the currently active field, and al
lows chk_found to succeed. 

Now, when the cursor is located 
in the middle of a field and the 
back tab function is used, the cur
sor returns to the first character 
position of that field. If used fur
ther, the back tab function will act 
as originally defined. 

If you're using Turbo Prolog 2.0, 
you must make one other change. 
SCRHND defines a predicate 
called trunc to truncate strings. In 
Turbo Prolog 2.0, trunc is a built
in predicate that truncates a real 
number and returns its integer 
value. Therefore, you need to 
change the name of the toolbox 
predicate from trunc to something 
else, such as trunc_. 

Listing 3 incorporates all of 
the changes that were made to 
SCRHND.PRO. The file TEST
PROG.PRO (Listing 4) contains a 
short program that tests the 
changes. (HNDBASIS.PRO from 
the distribution disk was used as 
a template for creating this test 
program.) Run these programs 
and observe the changes. I'm sure 
you'll find that your own personal 
requirements can also be easily 
incorporated into the already 
powerful Turbo Pro log Toolbox. • 

Gaylen Wood is a senior systems ana
lyst for the packaging division of the 
Weyerhauser Paper Company. 

Listings may be downloaded from 
Library 1 of CompuServe forum 
BPROGB, as SCRHND.ARC. 



LI ST! NG 1: XTDOMS. PRO 

/*Listing 1: XTDOMS.PRO */ 

/**************************************************************** 
Turbo Prolog Toolbox 
(C) Copyright 1987 Borland International. 

In order to use the tools, the follow;ng domain declarations 
should be included in the start of your program 

****************************************************************I 
/*************************************************************** 
* Modified 2/5/88 G. Wood 

Added 'plus• to domain of KEY. See changes in 
XTPREDS . PRO and XSCRHMD. PRO 

***************************************************************I 

DOMAINS 
ROW, COL, LEN, ATTR INTEGER 
STRINGLIST = STRING* 
INTEGERLIST = INTEGER* 
KEY er; esc; break:; tab; btab; del; bdel; ctrltxiel; ins; 

end ; home ; fkey(INTEGER) ; up ; down ; left ; right 
ctrl left; ctrlright; ctr lend; ctrlhome; pgup; pgdn; 
ctrlpgup; ctrlpgdn; char(CHAR) ; plus ; otherspec 

LISTING 2: XTPREDS.PRO 

/* listing 2: XTPREDS . PRO ., 
/**************************************************************** 

Turbo Prolog Toolbox 
(C) Copyright 1987 Borland International. 

This module includes some routines which are used in nearly 
all menu and screen tools. 

****************************************************************I 
/*************************************************************** 
* Modified 2/5/88 G. Wood 
* Added the•+• key (as 1 plus 1 ) to be a recognized key 
• See predicate readkey1 (below) and changes in XTDOMS.PRO 
* and XSCRHNO.PRO 
***************************************************************I 

/****************************************************************I 
r ~-t ~ 
/****************************************************************I 

PREDICATES 
nondeterm repeat 

CLAUSES 
repeat. 
repeat:-repeat. 

/****************************************************************I 
/* mi s cellaneous */ 
/****************************************************************I 

PREDICATES 
maxlen(STRIMGLIST ,COL,COL) 

/* The length of the longest string */ 
l istlen(STRINGLIST ,ROW) 

/* The length of a list */ 
wr i tel i st(ROW, COL, STRI NGLI ST) 

/* used in the menu predicates */ 
reverseattr(A TTR, ATTR) 

/* Returns the reversed attribute */ 
min(ROW,ROW,ROW) 
mi n(COL, COL, COL) 
min( LEM, LEM, LEN) 
min( IMTEGER, IMTEGER, INTEGER) 
max(ROW,ROW , ROW)max(Cfil,Cfil,Cfil) 
max CLEM , LEM, LEM) max( I MT EGER, INTEGER, I NT EGER) 

CLAUSES 
maxlen((HjTJ,MAX,MAX1) :

str _Len( H, LEMGTH), 
LEMGTH >MAX, ! , 
max len(T, LENGTH ,MAX1). 

maxlen(c_jTJ,MAX,MAX1) : - max len(T,MAX,MAX1) . 
maxlen( CJ ,LEMGTH,LEMGTH). 

listlen(CJ,0). 
l istlen( !_ITJ ,N): 

l istlen(T ,X) , 
N=X+1. 

writeli s tC , , ()). 
wr i tel is t CL (AM TKOL, CHITJ ) :

f ie ld s t r (ll,0,AMTKOL,H) , 
ll1 =ll+1, 
wri t e l is t(ll 1,AMTKOL, T) . 

mi n(X, Y, X) : · X<=Y, ! • 
mi n(_, X, X) . 

ma"(X, Y ,X ) : · )( >::;: Y, ! . 

max(_,X,X). 

reverseattr(A 1,A2): -
bi tandCA1 ,S07, H11 ), 
bit left( H11 ,4, H12) , 
bi tand(A 1, S70 , H21), 
b i tri ght(H21,4, H22), 
bi tand(A 1,S08, H31), 
A2=H12+H22+H31 . 

/****************************************************************I 
/* Find letter selection in a List of strings */ 
/* look initially for first uppercas e letter. */ 
I* Then try with first letter of each string. */ 
/************************************************************"****I 

PREDICATES 
upcCCHAR,CHAR) lowcCCHAR,CHAR) 
try _uppe r (CHAR, STRI MG) 
tryf i rstupper(CHAR, STR I MG LI ST, ROW, ROW) 
tryf i rst letter(CHAR, STR I MGLI ST. ROW. ROW) 
tryl etter(CHAR, STR I MGLI ST , ROW) 

CLAUSES 
upc(CHAR,CH): -

CHAR> = 1a1 CHAR <= 1z 1 I 
char_ int(CHAR, Cl), cJi=CI -32, char_ i nt(CH,CI 1). 

upc(CH,CH). 

lowc(CHAR,CH) : -
CHAR>= 'A' ,CHAR<= 1 Z 1 I! I 

char _ int(CHAR,CI) , Cl 1=CI+32, char _int(CH,CI 1 ). 
lowc(CH,CH). 

try_upper(CHAR. STRING) : -
frontch a r(STRIMG,CH , ), 
CH>= 1A1 , CH<='Z' 'I I -

CH=CHAR. 
try_ upper (CHAR, STRING): -

f rontchar(STR I NG, , REST), 
try_upper(CHAR , REST). 

tryfirstupper(CHAR, !Wl_l ,N , N) : 
try upper(CHAR,W), ! • 

tryf i rst~r(CHAR, C_ITJ ,N1 , N2) :
N3 = N1+1, 
tryf i rstupper(CHAR, T, N3 ,N2). 

tryf i rst letter(CHAR, !Wl _l ,N , N) : 
frontchar(W , CHAR, ), ! • 

tryf i rst letter(CHAR, c_ITJ, N1, N2> : 
N3 = N1+1, 
tryf i r s tletter(CHAR, T, N3, M2). 

tryl etter(CHAR, LIST, SELECT IOll): -
upc(CHAR , CH), tryf i rstupper(CH, ll ST, 0, SELECT ION),! . 

tryl etter(CHAR, LIST, SELECT IOll): -
lowc (CHAR, CH), tryf i rst let ter(CH, LIST, 0 , SELECT IOM) . 

, •••• **** ***** •••••••••••••••• * ******** •••••••• **************.****I 
/* ad justw i ndow takes a windows tart and a windows ize and adjus ts */ 
/* the windows tart so the window can be placed on the sc reen. */ 
/* adjframe look s at the frameattribute : if it is different from*/ 
/* zero , two is added to the size of the window * / 
/**********************************************••••••••••••••••••I 

PREDICATES 

adj us t w i ndow( ROW, COL , ROW, COL, ROW, COL) 
adj f rame(A TTR , ROW, COL , ROW , COL) 

CLAUSES 
adjus twi ndow( LI, KOL ,Dll ,DKOL ,All ,AKOL) : -

ll<25 - Dll ,KOL<80-DKOL, ! ,All =ll ,AKOL=KOL . 
adjus tw i ndow( LI, ,Dll , DKOL ,All ,AKOL) : -

LI <25 - Dll , I ,All =ll ,AKOL =80 -DKOL. 
adjus tw i ndow(_,KOL ,Dll , DKOL ,All ,AKOL): -

KOL <80 -DKOL, I ,All =25 -Dll, AKOL=KOL. 
adjustw i ndow( , ,Dll ,DKOL ,All ,AKOL): -

- ALI=25·Dll, AKOL=80 -DKOL . 

September/ October 1988 TURBO TECHNIX 99 



adjframe(D,R,C,R,C) :-! • 
adjframe(_,R1 ,C1 ,R2,C2):-R2=R1+2, C2=C1+2. 

!****************************************************************I 
/* Readkey *I 
/* Returns a synbol ic key fran the KEY domain */ 
/****************************************************************I 
/****************************************************************I 
!* Modified 2/5/88 G.llood */ 
/* Added readkey1 clause for synbol ic key 'plus' with ASCII 43*/ 
/****************************************************************I 

PREDICATES 
readkey(KEY) 
readkey1 CKEY, CHAR, INTEGER) 
readkey2CKEY, INTEGER) 

CLAUSES 
readkeyCKEY): - readchar(T) ,char_ int CT, VAL), readkey1 (KEY, T, VAL). 

readkey1 (KEY ,_,Dl: - ! , readchar(T) ,char_ int(T, VAL), readkey2CKEY, VAL). 
readkey1(cr ,_, 13) :-! • 
readkey1(esc,_, 27): - ! • 
readkey1 (break, ,3) :-! • 
readkey1(tab,_,9):-I. 
readkey1Cbdel ,_,8) :-1. 
readkey1 (ctrlbdel ,_, 127):-1. 
readkey1(plus, ,43):-1. 
readkey1(char(T), T ,_l 

readkey2Cbtab, 15):-1. 
readkey2(del ,83) :-! • 
readkey2Cins,82):-!. 
readkey2Cup, 72) :-1. 
readkey2Cdown,8D> :-! • 
readkey2Cleft,7S):-!. 
readkey2Cright, n> :- ! . 
readkey2Cpgup, 73>:-!. 
readkey2(pgdn,81 ):- ! • 
readkey2(end,79):-I. 
readkey2(hane, 71): - ! • 

readkey2Cctrlleft, 115) :- 1. 
readkey2Cctr l right, 116): · ! • 
readkey2Cctrlend, 117):-1. 
readkey2Cctrlpgdn, 118) :-! • 
readkey2Cctrlhane, 119): - !. 
readkey2Cctr lpgup, 132): - I • 
readkey2Cfkey(N),VAL):- VAL>58, VAL<7D, N=VAL-58, I. 
readkcy2Cfkey(N),VAL):- VAL>=84, VAL<1D4, N=11+VAL-84, I. 
readkey2Cotherspec,_). 

LISTING 3: XSCRHND.PRO 

/* Listing 3: XSCRHND.PRO */ 

/**************************************************************** 

Turbo Prolog Toolbox 
(C) Copyright 1987 Borland International. 

SCRHND 

This module i"l'lements a screen handler called by: 

scrhnd( TOPLI NE, ENDKEY) 

TOPLINE = on/off - determines if there should be a top line 
ENDKEY • Esc or F10 used to return values 

****************************************************************I 
/*************************************************************** 
* Modified 2/5/88 G.llood 
* Added capabilities to: 

enable all function keys and define an additional i~t key 
al low the tab to wrap-around 
correct cursor positioning when an input fleld is filled, 

including wrap-around 
define a back tab function fran the middle of an i~t field 

* See clauses scr 
nextfield 
chk found 
prevfield 

***************************************************************I 

100 TURBO TECHNIX September/October 1988 

I* 
DOMAINS 

FNAHE=SYHBOL 
TYPE = int(); str(); real() 

DATABASE 
/* Database declarations used 
insmode 
actfield(FNAHE) 
screen( SYMBOL, DBASEDOH) 
value(FNAHE, STRING) 
field( FNAHE, TYPE, ROii, COL, LEN) 
txtf i eld(ROll,COL, LEN, STRING) 
windows i ze(ROll, COL). 
notopl ine 

in scrhnd */ 
/* Global insertmode */ 
/* Actual field */ 
/* Saving different screens * / 
/* value of a field */ 
/* Screen definition * / 

/* DATABASE PREDICATES USED BY VSCRHND */ 
windowstart(ROll, COL) 
mycursord(ROll, COL) 

/* Database declarations used in l ineinp */ 
l i nei npstate(STR I NG,COL) 

*I 

PREDICATES 
/* SCREEN DRIVER */ 
scrhnd(SYHBOL ,KEY) 
endkey CKEY) 
scrCKEYl 
wri tescr 
showcursor 
mkheader 
showo..,·erwrite 

ass_ val ( FNAHE' STRING) 
valid( FNAHE, TYPE, STRING) 
type error 

chng actf i eld( FNAHE) 
field actionCFNAHE) 
field-value( FNAHE, STRING) 
noinpUt(FNAME) 
types( INTEGER, TYPE, STRING) /*Definition of the known types */ 

/*****************************************************************I 
/* Create the window */ 
/* This can be used to create the window automatically fran the */ 
/* windowsize predicate. */ 
/*****************************************************************I 

PREDICATES 
createwi ndow( SYMBOL) 

CLAUSES 
createwindow(off) :-

windowsizeCR,C), ! , 
R1=R+3, C1=C+3, 
makewindowC81,23,66, 1111 ,0,0,R1 ,C1) . 

createwindow(on) :
windows i zeCR, C), f, 
R1=R+3, C1=C+3, 
makewindow(85, 112, D, "" ,0, D, 1, C1l, 
makewindow(81, 23,66, 1111 , 1, 0, R1 ,C1). 

!*****************************************************************I 
/* Intermediate predicates */ 
/*****************************************************************I 

PREDICATES 
trunc_CLEN' STRING, STRING) 
oldstr( FNAHE, STR l NG) 
settopl ine(SYMBOL) 

CLAUSES 
endkey( fkey( 1 D)): - I • 
endkeyC esc >. 
/************************************************************* 
* Modified 2/5/88 G.llood 
* Added clauses to endkey for fkeys 1 thru 9, and 
* new synbolic key 'plus.' Allows these keys to terminate 

the screen hancH ing predicate, scrhnd 
*************************************************************I 

endkey( fkeyC 1)): - I. 
endkey( fkeyC2)): - ! . 
endkey(fkey(3)):-I. 
endkey(fkey(4)):-!. 
endkeyCfkey(5)) : - 1 • 
endkey( fkeyC6)) : - I • 
endkey(fkey(7)) :- ! • 
endkeyCfkeyC8)):-I. 
endkey( fkeyC9)): - ! • 
endkey(plus):-1. 



trlllC_(LEN, STR1, STR2): ·str _len(STR1, L 1), L 1>LEN, ! , 
fronts tr( LEN. STR1. STR2,_). 

trunc_(_,STR, STR l. 

settopl i ne(_): • retract(notopl ine), fail. 
settopl ine(of f): - ! , assert(notopl i ne). 
settopl ine(_). 

oldstr( FNAME, S): • 
oldstr(_, 1111 ). 

value(FNAHE,S), ! . 

ass_val(FNAHE,_):· retract(value(FNAHE, )),fail. 
ass_ val ( FNAME' VAL): -VAL><""' assert(va tuec FNAM~, VAL)) If ail. 
ass_ val(_,_). 

chng_actf i eld(_): • typeerror, I, fail. 
chng actfieldC ):· 

- retract(actf i eldC_ll, fail. 
chng actfieldCFNAME):· 

- assert(actfield(FNAHE)). 

typeerror: -
actf i eld( FNAHE). 
field( FNAHE, TYPE,_,_,_), 
value( FNAHE, VAL), 
not (valid( FNAHE. TYPE. VAL)), 
beep,!. 

valid(_,str,_). 
valid(_, int, STR): • str _ int(STR,_l. 
val id(_, real, STR): ·str _real (STR ,_). 

!* The known types * / 
types( 1, int, 11 i nteger"). 
typesC2, real, 11 rea l 11) . 
types(3 , str, "stri ng 11 ). 

/******************************************************************I 
/* SCREEN DRIVER */ 
/* Screen definition/input is repeated until F10 is pressed */ 
/******************************************************************I 

scrhnd(STATUSON. KEY):. 
settopl ine( STATUSOH), 
mkheader, 
wri tescr, 
f; eld( FNAHE ,_, R, c,_), ! , cursor(R:,C), 
chng_actf i eld( FNAHE), 
showcursor, 
repeat, 
wri tescr, 
keypressed,/*Continuation unti L keypress means 

that time dependent 
user functions can be updated*/ 

readkey( KEY), 
scr(KEYl, 
showcursor, 
endkey( KEY), ! . 

I***************************************************************** I 
/* Find the next field */ 
/*****************************************************************I 

PREDICATES 
/* The predicates should be cal led with: 

ACTROW, ACTCOL, MAXROW, HAXCOL, NEllROll, NEllCOL */ 
best_ri ght(ROll, COL, ROii, COL, ROW, COL) 
best_ left ( ROii, COL, ROii, COL, ROW, COL) 
best_down(RDll, COL, ROii, COL, LEN, ROW, COL) 
best_ up( ROii, COL, ROii, COL, LEN, ROii, COL) 
better _ri ght(RO\I, COL, ROii, COL ,RO\l,COL) 
better _lef t(ROW, COL, ROW, COL, ROii, COL) 
better _f i eld(ROW. COL. ROW. COL. LEN. ROii ,COL. LEN) 
calcdi st( ROii, COL, ROii, COL, LEN, LEN) 
move left 
move=right 
nextf i eld( ROii, COL) 
gtf i eld(ROW, ROii, COL, COL l 
prevf i eld(ROll, COL) 

/*************************************************** 
*Modif i ed 2/5/88 G. llood 

Added LEN to predicate chk_fa<.nd. See changes to 
chk_found clause. 

***************************************************I 
!* chk_found(FNAME,RO\l,COL,RO\l,COL) */ 
chk_ fOLnd( FNAHE, ROW, COL, ROii, COL, LEN) 
setlastf i eld 

CLAUSES 
best_ri ght(RO, CO, R1, C1 ,ROii, COL):· 

field(_,_,R2,C2,_), C2>CO, 
better _right(R0,C0,R1 ,C1 ,R2,C2), ! , 
best_ri ght(RO, CO,R2,C2,RO\I, COL). 

best_ri ght (_,_,R,C,R,C). 

better _ri ght(RO,_, R1 ,_, R2,_): ·abs(R2· R0) <abs(R1 ·RO),! • 
better _right(RO,_, R1, C1, R2, C2): ·abs(R2·RO)=abs(R1 ·RO), C2<C1. 

best_left(RO, CO ,R1, C1 ,RO\l,COL): • 
field(_,_,R2,C2,_l, C2<CO, 
better _left(R0,C0,R1 ,C1 ,R2,C2), ! • 
best_lef t(RO, CO, R2, C2, RO\l,COL). 

best_ left(_,_, R, C, R,C). 

better_ lef t(RO,_, R1 ,_,R2,_l: ·abs(R2·R0) <abs(R1 ·RO),! . 
better_ left(R0,_,R1, C1 ,R2, C2): · absCR2·RO)=absCR 1 · RO) ,C2>C1 . 

best_down(RO, CO, R1,C1,L1, RO\l,COL): • 
fieldC_,_,R2,C2,L2), R2>RO, 
better _f i eldCRO, CO,R1, C1, L 1,R2 ,C2, L2), ! , 
best_ down( RO, C0,R2, C2, L2, ROii, COL). 

best_down(_,_,R, c,_, R, Cl. 

best_up(RO,CO,R1,C1,L1 ,ROll,COL): • 
field(_,_,R2,C2,L2), R2<RO, 
better _f i eld(RO, CO,R1, C1, L 1, R2, C2, L2l, ! , 
best_up(RO, CO ,R2, C2, L2,RO\l,COL). 

best_l4>(_,_, R. c,_, R,C). 

better _f i eldCRO, CO, R1,C1,L1, R2, C2, L2): • 
calcdist(R0,C0,R1 ,C1,L1,DIST1 ), 
calcdi st( RO, co, R2, C2, L2,0 I ST2). 
OIST2<01ST1. 

calcdi st(RO,CO ,R1,C1,L1 ,DI ST):· 
C11=C1+L 1, 
max(CO,C1,H1), 
min(H1,C11,H2), 
0 I ST=3*abs(R1 · R0)+abs(H2 · C0). 

move_ left:· 
not(typeerror), 
actf i eld( FNAHE), 
fieldCFNAME,_,R,C,_), I, 
best_lef t(R. c, • 100. • 100. ROii, COL). 
f ield(F1 ,_,ROW, COL,_), 
chng_actf ield(F1 ), ! , 
cursor(RO\I, COL). 

move right:-
- not(typeerror), 

actf i eld( FNAHE). 
field(FNAHE,_,R,C,_), I, 
best_ri ght(R, C, • 100, • 100,ROll, COL), 
field( F1 ,_,ROii, COL,_), 
chng_actf i eld( F1), I, 
cursor(RO\I, COL). 

/************************************************************* 
* Modified 2/5/88 G. llood 

Changed chk_found clause in prevfield to include LEN . 
Changed existing chk_fa<.nd clauses to incorpcrate the 

additional variable position. 
Added new chk_found clause (second position) to check 

if current cursor position is in a defined field 
These changes will allow use of back-tab when anywhere 

in a field to return to first character of field then 
proceed to "back. up11 one field at a time . 

************************************************************I 
prevf ield(_,_):·typeerror, I, fail. 
prevf i eld(R,Cl: • 

f i eld(FNAME ,_,ROii, COL, LEN), 
chk_ fa<.nd( FNAHE, R,C, RO\l,COL, LEN),!, · 
actfieldCF1l, 
field(F1,_,RR,CC,_), ! , 
cursor(RR,CC). 

chk_found(_,R,C,R,C,_): ·I. 
chk_found(FNAME ,R,C, R,COL, LEN):· 

C > COL, 
C < COL + LEN, 
chng actfield(FNAME) . 

chk_fOLnd(FNAHE,_,_,_,_,_): · chng_actfield( FNAMEl, fail. 

September/ October 1988 TURBO TECHNIX 101 



/***************************************************************** 
* Modified 2/5/88 - G.llood 

Coomented out nextfieldC , ) and rep l aced with ind i cated claus e . 
This w; l l al low the sc r c"tab) clause to 11 wrap around 11 from last 
field to first field, and changes to scr(right) to allow filling 
last field and 11 wrap around 11 to first field. 

*******************************************************************I 

nextf i eld(_,_): - typeerror, ! , fail . 
nextf i eldCR, C): -

f i eldCFNAME ,_, ROii, COL, _ ), gtf i eld(ROll, R, COL, C), 
chng actfield(FNAME), ! • 
cursor C ROii, COL). 

/* nextfieldC _ , _ ). */ 

nextfield( , ): 
scr(home). 

gtfieldCR1 ,R2 , , ) :- R1>R2, ! • 
gtf i eld(R, R ,C1 ~ c2J : - C1 >C2 . 

setlastfield:-
f i eldC FNAME ,_,_,_,_), 
chng actfield(FNAME), 
fail:-

set lastf ield. 

/*****************************************************************I 
/* scr */ 
/*****************************************************************I 

/* Insert a new character in a field */ 
scr(char(T)): · actf i eldC FNAME), 

not(noi nput C FNAME) l, 
cursor{ ,C), 
field( FNAME ,_, ROii, COL, LEN),!, 
POS=C-COL, 
olds tr( FNAME. STR). 
l in(char(T), POS, STR, STR1), 
trunc CLEM, STR1, STR2), 
as s val C FNAME, STR2), 
field str(ROll,COL , LEN,STR2), 
scr(rlght). 

/* Delete character under cur s or */ 
scr(de l): • actf i eldC FNAME) , 

not(noi nput( FNAME)). 
cursor{ ,C), 
f i eldC FNAME ,_, ROll,COL, LEN), I, 
POS=C-COL, 
olds tr( FNAME, STR), 
l inCdel ,POS, STR, STR1), 
ass_ val C FNAME, STR1), 
f i eld_str(ROll, COL. LEN ,STR1). 

/* Delete character before cursor and move cursor to the left */ 
scr(bdel):- actfieldCFNAMEl, 

not(noi nput( FNAME)), 
cursor( ,C), 
field(FNAME,_,ROll,COL,LEN), I, 
POS=C - COL-1, 
olds tr( FNAME, STR), 
l i n(del, POS, STR, STR1) , 
ass val(FNAME,STR1), 
field str(ROll,COL,LEN,STR1), 
sere left> . 

/*Jf there is an action - do it. Otherwise, go to next field*/ 
scr(cr) :-

actf i eld( FNAME), 
field actionCFNAMEl, 
cursor{RR, CC), cursor{RR, CC),! . 

scr(cr): -cursor(RR, CC) ,cursor(RR, CC), scr( tab). 

/* Change between insertmode ancl overwritemode */ 
scr{ ins): · changemode, showoverwri te. 

/* escape */ 
sere esc >. 

/* F10: end of definition*/ 
sere fkey(10) ):-not(typeerror). , ............................................................ . 

* Modified 2/5/88 G. llood 
* Added clauses to scr for fkeys 1 thru 9, and new synt>ol ic 
* key 'plus.• Allows thes e keys to now be recognized and 

processed 
••••••******************************************************I 

scrC fkeyC1l ): - notCtypeerror). 
sere fkey(2) ):-not(typeerror). 
sere fkey(3) ) : - not( typeerror). 
sere fkey(4) ):-not(-typeerror). 

102 TURBO TECHNIX September/ October 1988 

sere fkeyC5> 
sere fkeyC6> 
scr( fkey(7) 
scr( fkey(8) 
sere fkey(9) 
sere plus ) 

scr(right): -

) : ·not ( typeerror). 
) : ·not( typeerror). 
) : ·not( typeerror). 
) : ·not( typeerror). 
) : ·not ( typeerror). 

: -not ( typeerror). 

actf i eld( FNAME). 
not(no input( FNAME)), 
field( FNAME, , ,C, L), 
cursor(RO'W',CCiL), COL<C+L·1, 1, 
COL 1=COL+1, 
cursor(ROll,COL 1). 

/************************************************••··············· 
*Modified 2/5/88 - G.llood 
* Coomented out scr(right): -move right and replaced with 

indicated clause to al Low an aUto - skip from active 
field when full to next field, next in the sens e of left to 
right, top to bottom. 
See changes to nextfield claus e which will cause 11 wrap around 11 

to first field when las t field is filled 
************•••••••••••••• * **** ** ••••• •••••••• * •••••• ***********I 

/* scr(right):·move right. */ 
scr(right): · -

cursor{R,C), ! , 
nextf i eld(R,Cl. 

scr(ctrl right) : · 
actf ieldC FNAME), 
not(noi nput ( FNAME)). 
field( FNAME,_,_,c, L). 
cursor{ROIJ, COL), 
COL 1=COL+5, COL 1<C+L-1, I, 
cursor CROii, COL 1). 

scr(ctrl right): ·move_ri ght. 

sere left): -
actf i eld( FNAME). field( FNAME ·-·-· c,_). 
cursor(RO'W,COL), 
COL>C, t, 
COL 1=COL- 1, 
cursor(ROll,COL 1). 

sere left) : -move_lef t. 

scr(ctrlleft):-
actf i eld( FNAME). field( FNAME ,_,_,C,_). 
cursorCROll,COL>, 
COL 1=COL -5, COL 1>C, I, 
cursor(ROll, COL 1). 

scr(ctrl left): ·move_ left. 

scr(tab) :-
cursor(R, C), 
nextfield(R,C). 

scr(btab): -
cursor(R,C), 
prevfield(R,C). 

scr(up): -
not{ typeerror), 
cursor(R,C), 
bes t_up(R, C, -100, -100, 1,ROll, COL), 
field( F1 ,_, ROll,COL ,_), 
chng actfield(F1),1, 
cursor CROii, COL). 

scr(down) : -
note typeerror>, 
curs or{R,C), 
best_down(R,C, 100, 100 , 1 ,ROll,COL), 
f ieldC f 1 ,_, ROii, COL,_), 
chng_actfieldCF1), ! , 
cursor CROii, COL). 

scr(home) :-
not(typeerror), 
field(F1, ,ROll,COL, ), 
chng_actf T eldC F 1), ! ~ 
cursor(ROll, COL). 

scr(erd) : -
not( typeerror), 
setlastfield, 
actf i eld( FNAME). 
field( FNAME ,_, ROii, COL, _ ),!, 
cursor CROii , COL). 

/* scrCfkey(1)): - help. If helpsystem is used. */ 



1•••••••••••••••••••••******************************************** I 
/* Predicates maintaining the top messages line */ 
/*****************************************************************I 

mkheader:-notopl ine, ! • 
mkheader:-

sh i ftwi ndow(OLD), 
gotowi ndow(85), 
field str(0,0,30, 11 RO'tJ: 
gotowT ndow(OLD). 

PREDICATES 
get overwritestatus(STRING) 
show_str(COL. LEN.STRING) 
showf i eld(ROll, COL) 

CLAUSES 

COL:"), 

get overwri testatus( insert):· i nsmode, ! • 
get=overwr i testatus( overwrite). 

show_str(C, L, STR): -
windowsize( ,COLS), 
C<COLS, ! I -

MAXL=COLS-C, 
min(L,HAXL,LL), 
field str(O,C,LL,STR). 

show_str(_,= 1 _). 

showoverwri te: -notopl ine, ! . 
showoverwri te: · 

sh if tw i ndow( OLD), 
gotowi ndow(85), 
get overwr i testatusCOV), 
show strC20,9,0Vl, 
gotowindowCOLDl. 

showfield( , ):-keypressed, I. 
showf i eldCR,C) :-

field( FNAME, TYP, ROii, COL, LEN), 
RO'W=R, COL<=C, C<COL+LEN, 
types(_, TYP, TYPE), I, 
show str(30,8, TYPE), 
STR=FNAME, show_strC38,42,STR). 

showfield( , ):-keypressed, L 
showf i eld(R, CJ: -

txtfield(ROll,COL,LEN, TXT), 
RO'W=R, COL<=C, C<=COL+LEN, ! I 

show str(30 1 11 \ 1111 ) 

show-strc3i'.49, TXTl'. 
showf i eld(=,_): - show_str(30, 50, 1111 ). 

showcursor: - keypressed, ! • 
showcursor: -notopl i ne, I . 
showcursor: -

sh if twi ndow(OLD), 
cursor(R,C), 
str_int(RSTR,R), str_int(CSTR,C), 
gotowi ndow(85), 
show_str(4 ,4, RSTR), show_str( 14 ,4, CSTR), 
showfieldCR,Cl, 
gotowi ndow(OLD), 
cursor(R,C). 

/*****************************************************************I 
/* update all fields on the screen */ 
!******* ***** ** ******* **** ****** ** ** *** ***************************I 

writescr: -
field( FNAME ,_,ROll,COL, LEN), 
field attr(ROll,COL,LEN, 112), 
f ield-value(FNAME, STR), 
field-str(ROll, COL, LEN, STR), 
keypressed, 1 . 

wdtescr:-
txtf i eld(ROll, COL, LEN, STR). 
field str(ROll,COL,LEN,STR), 
keyprfissed, ! • 

writescr. 

/*****************************************************************I 
/* Shift screen */ 
I* Can be used if needed * / 
/*****************************************************************I 

/* 
PREDICATES 

shi f tscreen(SYMBOL) 

CLAUSES 
shiftscreen( ):-retract(field( , , , , )),fail. 
shiftscreen(-):-retract(txtfieldC ~~~)),fail. 
shi ftscreen(-) :-retract(windowsizfic-, -,),fail. 
sh i ftscreen(NAME): -screen( NAME, TERM), assertCTERM), fail . 
shiftscreen( ) • . , -

LI ST! NG 4: TESTPROG-PRO 

/* Listing 4: TESTPROG.PRO */ 

/******************************************************************* 

Turbo Prolog Toolbox 
(Cl Copyright 1987 Borland International-

HNDBASIS 
This SBflllle shows the minilTLITI structure of a program using the 
screen handlers. 

*******************************************************************I 

/*******************************************************************I 
/* Domains */ 
/*******************************************************************I 

incll.Kie 11 xtdoms.pro 11 

DOMAINS 
FNAME=SYMBOL 
TYPE = int(); str(); real() 

/*******************************************************************I 
/* Database predicates * / 
I******************************************************************* I 

DATABASE 
/* Database declarations used 
insmode 
actf i eld( FNAME) 
screen( SYMBOL, DBASEDOH) 
value( FNAME, STRING) 
fie ld(FNAME, TYPE ,ROii, COL, LEN) 
txtf i eld(ROll, COL, LEN, STRING) 
windows i ze(ROll, COL). 
notopl ine 

in scrhnd */ 
/* Global insertmode */ 
/* Actual field */ 
/* Saving different screens */ 
/* value of a field */ 
/* Screen definition*/ 

!* DATABASE PREDICATES USED BY VSCRHND */ 
wi ndowstart(ROll ,COL) 
mycursord(ROll, COL) 

/* Database declarations used in l ineinp */ 
l ineinpstate(STRING,COL) 
l ineinpflag 

/*******************************************************************I 
/* Include tools */ 
/*******************************************************************I 

include "xtpreds.pro" 
include 11menu.pro 11 

include 11status.pro11 

include 11 l ineinp.pro11 

include 11xscrhnd.pro11 /* Or vscrhnd.pro */ 

CLAUSES 
/******************************************************************* 

Field action 
*******************************************************************I 

f i eld_act ion(_): -fail. 

/******************************************************************* 
field value 

*******************************************************************I 

field_ value( FNAME, VAL): -value( FNAME, VAL l, ! . 

/******************************************************************* 
noinput 

*******************************************************************I 

no input(_) :-fai L 

GOAL 
cleerwindow, 
consul t( 11 test. scr11 ), 

createwi ndow(of f), 
scrhnd(off ,EndKey), 
removew i ndow, 
wri te(Erd:ey). 

September/ October 1988 TURBO TECHNIX 103 



~ THE TURBO BASIC/ 
~ ASSEMBLER CONNECTION 
E-< 

Write your procedures in Turbo Basic 
to make them work-then rewrite them 
in Turbo Assembler to make them fast. 

David A Williams 

Turbo Basic is so much faster than inter
preted BASIC that you might wonder if 
it's possible to do better. It is possible, and 
the way is through Borland's new Turbo 
Assembler. If certain key routines are 

wiZAao coded in assembly language and called by 
Turbo Basic, your programs will have considerably 
more zip. This technique gives you the best of both 
worlds-the convenience of Turbo Basic, and the 
speed of assembly language. 

TO THE METAL 
Turbo Basic provides three ways to tap the power of 
assembly language. 

CALL ABSOLUT E. The CALL ABSOLUTE state
ment transfers control to an assembly language rou
tine that was loaded prior to the call at a specific 
memory location. Although cumbersome, this meth
od is available in order to provide a degree of com
patibility with interpreted BASIC, where this tech
nique originated. There is no reason to recommend 
CALL ABSOLUfE for new programs, and I'll not 
discuss it further in this article. 

CALL INTERRUPT. When used with the REG 
statement and the REG function , the CALL INTER
RUPT statement provides access to all DOS and 
BIOS interrupt service routines. This technique has 
a somewhat narrow application, but it does provide 
a way to access certain information that is not other
wise available to a BASIC program. (For more infor
mation on CALL INTERRUPT, see "DOS Calls From 
Turbo Basic," TURBO TECHNIX, November/ De
cember, 1987; and "Calling BIOS Services From 
Turbo Basic," TURBO TECHNIX,Julyl August, 1988.) 

Turbo Basie's most general and powerful assembly 
language interface method involves calls to special 
procedures that are called INLINE procedures. IN
LINE procedures may include assembly language 
code in the form of strings of hexadecimal constants, 
or code may be loaded from a machine-code binary 
file at compile time. 

104 TURBO TECHNIX September/ October 1988 

INLINE PROCEDURES 
A CALL statement that is used to call an INLINE 
procedure is identical to a CALL statement that is 
used to call any ordinary Turbo Basic procedure. In 
fact, you can design programs with all procedures in 
Turbo Basic, and then replace one or more of the 
procedures with INLINE procedures in machine 
code without changing the main program. 

An INLINE procedure has the following structure: 

SUB <procedure name> INLINE 
$IN LI NE <byte list> 
$INLI NE "filename" 

END SUB 

Here, < procedure name> is the name that is used 
in the CALL statement to call the procedure. The 
$1NLINE metastatement may take either a byte list 
of values that represent machine code instructions, 
or else a file of such instructions that exists sepa
rately from the Turbo Basic source fi le on disk. Nor
mally you won't use both of the two forms of the 
$INLINE metastatement in the same procedure (but 
there's no harm in doing so). A single INLINE pro
cedure may contain any number of $INLINE meta
statements that specify byte lists. However, you may 
load up to-but not more than-16 binary fi les 
within a single INLINE procedure by naming each 
file within its own $INLINE metastatement 

LISTS OF BYTES 
The byte list is a series of values (usually hexadeci
mal) that are separated by commas. Each value rep
resents one byte of the code that comprises a ma
chine instruction. (Machine instructions in Intel's 86 
family of processors may be anywhere from one to 
six bytes in length, not counting prefixes.) You can 
string as many values behind the $1NLINE meta
statement as you wish, and there's no limit to the 
number of $INLINE metastatements that can be 
used within a single INLINE procedure. 



The process of entering code as 
a byte list after an $INLINE meta
statement is best used in very 
short programs that contain no 
jump instructions or other branch
es. DOS's DEBUG can perform 
the assembly process, but instruc
tions have to be entered one at a 
time to DEBUG, and then the re
sulting values must be keyed into 
the INLINE procedure by hand. 
Furthermore, DEBUG cannot con
vert labels to addresses, and can 
only treat each instruction in iso
lation from all others. Trying to 
hand- or DEBUG-assemble a com
plex routine with lots of condi
tional branches is the short path 
to insanity, due to the maddening 
difficulty of calculating relative 
jump offsets by hand. 

ENTER TURBO ASSEMBLER 
The better method by far is to 
load a binary file that contains 
machine code that was generated 
with an assembler. The $INLINE 
metastatement can accept a file
name that specifies a binary file of 
machine code instructions, as 
shown below: 

SINLINE "MYCOOE.BIN" 

This metastatement becomes the 
"beef' of an INLINE procedure. 

It's beyond the scope of this ar
ticle to teach assembly language 
programming. Although Turbo As
sembler is fairly new, it's highly 
compatible with MASM, and 
books previously published for 
MASM programming will help you 
get up to speed. Some tricks will 
make the assemble/ link process 
smoother and more automatic. 
The simple batch file below, 
ASM.BAT, automates the process: 

TASH %1; 
TLINK %1; 
DEL %1.0BJ 
EXE2BIN %1 %1.BIN 
DEL %1.EXE 

Execute ASM.BAT by typing the 
following command: 
ASM <filename> 

Here, <filename> is the name of 
the assembly language source file. 
Do not include the source file
name extension (i.e., ".ASM"). 
ASM.BAT performs the assembly 
process, the link process, and de
letes the superfluous files. ASM 
does leave the .MAP file on disk, 
however, so if you don't intend to 
use the .MAP information, the 
.MAP file must be deleted. This 
step can be performed manually 

or by the addition of another line 
to ASM.BAT to delete the .MAP 
file. 

ASM.BAT produces memory
image binary files with a .BIN ex
tension that are ready to load 
through the $INLINE metastate
ment. These files can also be 
given a .COM extension; since 
they're not executable, however, 
the .BIN extension is safer and 
more descriptive. Contrary to the 
instructions in the Turbo Basic 
Owner's Handbook, do not include 
an ORG 100 directive in the 
Turbo Assembler source files. 

PROBING AN ARRAY 
The rest of this article provides 
two useful examples of assembly 
language extensions to Turbo 
Basic, and explains how those ex
tensions are integrated into the 
calling program. Future issues of 
TURBO TECHNIX will present ad
ditional assembly language rou
tines, along with further discus
sions of specific issues such as 
parameter passing and the access 
of global resources. 

MAXDEMO.BAS (Listing 1) 
contains the source code for a 
simple Turbo Basic demo program 
that finds the largest value in an 

continued on page 106 

September/ October 1988 TURBO TECHNIX 105 



THE TURBO CONNECTION 
continued from page 105 

integer array. TBMAX.ASM (List
ing 2) is the assembly language 
source code file for the routine 
that MAXDEMO calls to do its 
quick-and-dirty work. MAXDEMO 
first creates the integer array A 
with 100 elements, and then calls 
the Turbo Basic procedure 
GTMAX. This procedure executes 
the machine code routine 
TBMAX to locate the largest value 
in the array. TBMAX executes 
twice as fast as any Turbo Basic 
routine that you could write to 
perfonn the same function . 

The stack is the key link be
tween a Turbo Basic program and 
any assembly language routine. 
All values are passed to machine 
code procedures by reference 
rather than by value. This means 
that the parameter's data values 
themselves are not passed on the 
stack; instead, an address that 
points to the memory location 
where each value is stored is 
placed on the stack by the com
piler. The assembly language rou
tine copies the address from the 
stack and uses that address to read 
the value of the actual parameter 
from memory, or else to store a 
value into memory as a means of 
returning a value to the calling 
Turbo Basic program. 

The CALL to GTMAX passes 
three parameters to GTMAX: 
MAXVAL, in which the machine 
code routine passes back the larg
est array value; A(l), which is the 
first element of the array; and 
COUNT, which is the number of 
array elements. Since Turbo Basic 
stores array elements in contigu
ous memory locations, the entire 
array can be accessed once the to
tal number of elements, and the 
address of the first element, are 
known. 

The assembly language routine 
must preserve the values in DS, 
SP, BP, and SS. Any other regis
ters may be freely changed. In the 
case of TBMAX, the only critical 
register is BP, which is pushed 
onto the stack. Once BP is safely 
on the stack, TBMAX loads the 

Segment BP+11H 

BP+10H 
Pointer to Maxval 

Offset BP+OFH ~ 
BP+OEH -> ES:BX -> c==J 

Segment BP+ODH 

BP+ OCH 
Pointer to AC1> 

Offset BP+OBH ~ 
~ 

BP+OAH -> ES:DI -> 

Segment BP+09H 

BP+08H 
Pointer to Count 

Offset BP+07H ~ 
BP+06H -> ES:BX -> c==J 

Segment BP+OSH 

BP+04H LES instructions are used 
to move the four-byte 
pointers to the actual 
parameters into registers 
ES and DI or BX. Then the 
actual parameters are 
accessed through ES:[Dll 
or ES: [BX] . 

Return address 
Offset BP+03H 

BP+02H 

Coll•c'' BP ''9· { 
BP+01H 

BP+ OOH 

Figure 1. The stack as it appears immediately after BP is pushed. 

stack pointer SP into BP. There
after, TBMAX accesses its param
eters through offsets from BP, 
which now points to the top of the 
stack. 

The stack contains a 32-bit ad
dress that points to the memory 
location where each parameter 
value is stored. Figure 1 shows the 
stack as it exists after the PUSH 
BP instruction. Each "brick" is 
one byte of memory, with high 
memory at the top of the figure. 
The parameters can be accessed 
in any order. In TBMAX, the pa
rameter that is accessed first is 
COUNT, which was the last one 
pushed. The LES instruction was 
designed specifically for retrieving 
addresses from the stack: Given 
the offset of the address from BP 
(here, +06H, where the plus sym
bol means that the offset is toward 
high memory), LES copies the seg-

ment address from the stack into 
F.S, and copies the offset address 
from the stack into BX. The MOV 
CX, F.S:[BX] instruction copies the 
actual parameter's value from 
memory into the CX register. The 
same technique is used to gener
ate a pointer to the first element 
of array A, but it's put into DI 
rather than into BX. Since the ar
ray count parameter COUNT was 
already moved from memory into 
ex, the original pointer to 
COUNT in BX is no longer 
needed and can be overwritten. 
Hence, the last step is to generate 
a pointer to MAXVAL, and to 
place that pointer into BX until 
it's needed later on. 

The rest of TBMAX compares 
the value of each array element to 
the value in AX. If an array ele
ment is found to be larger, that 
element replaces the previous 
value in AX. Because integers are 

106 TURBO TECHNIX September/ October 1988 



16 bits long, TBMAX increments 
DI twice for each pass through the 
loop. (Note: When working with 
long integers or floating point 
numbers, DI must be adjusted ac
cording to the size of the base 
type of the array.) After TBMAX 
has examined each element of ar
ray A, the value in AX is moved 
into MAXVAL through the point
er to MAXVAL that is now in reg
isters ES and BX. TBMAX finishes 
the process by popping BP off the 
stack. 

Some notes on TBMAX: The 
same routine works with a multi
dimensional array if COUNT con
tains the total number of individ
ual integer elements in the array. 
Remember, however, that the di
mension indexing system stans 
with zero. For example, an array 
dimensioned as A(2,50) has 153 
elements. Also, keep in mind 
when using an INLINE procedure 
that neither the procedure nor the 
machine code routine may con
tain RETURN statements. Turbo 
Basic takes care of that step auto
matically. 

PASSING STRING 
PARAMETERS 
The process of passing string 
values to assembly language rou
tines is a little more subtle. 
SCRNDEMO.BAS (Listing 3) 
shows a Turbo Basic demo pro
gram that incorporates Listing 4, 
TBQPA.ASM. TBQPA writes the 
designated string parameter di
rectly to display memory at the in
dicated row and column location. 
The parameter ATTRIB allows 
changes to be made to the color 
or to other screen attributes of the 
screen area that underlies the 
string to be written. This creates 
very snappy screen displays and 
provides a degree of color control 
that's not easily achieved with 
standard Turbo Basic statements. 
To keep TBQPA simple, I did not 
include code to prevent video 
snow when using IBM-style CGA 
boards. 

Since strings have a variable 
length, and are stored in a differ
ent memory segment than are 
other variables, a different tech
nique is needed in order to pass 

·string parameters. When a string 
is passed as a parameter, Turbo 
Basic pushes a full 32-bit pointer 
to a "string descriptor" onto the 
stack. The string descriptor consists 
of a two-byte string length counter 
and a two-byte offset into Turbo 
Basie's string data area (or string 
space). An assembly language rou
tine can access a string descriptor 
in the same way that the routine 
accesses a numeric variable. The 
low 16 bits contain the string 
length, and the high 16 bits con
tain the offset into string space of 
the first byte of string data. 

The instruction LES BX, 
[BP+ 12H] sets up ES and BX to 
point to the first byte of the string 
descriptor. The subsequent MOV 
instruction moves the string 
length value into CX. A minor 
complication with the string 
length counter is solved by an 
AND instruction: The high bit (bit 
15) of the string length counter 
has a special meaning to the 
Turbo Basic Runtime code, and 
should not be interpreted as pan 
of the string length value. The 
AND instruction masks out bit 15 
to keep it out of later comparisons 
and calculations. Finally, the stan
ing offset of string data within 
string space is moved into SI, us
ing the instruction MOV SI,ES: 
[BX+02]. Note that this offset isn't 
a full 32-bit address; the segment 
address of string space is still 
needed, and can be found at 
DS:OO, which is the first word in 
Turbo Basie's data segment. A lit
tle later in TBQPA, the caller's DS 
value is pushed onto the stack, 
and then DS is loaded with the ad
dress that is found at DS:OO. 

In order to move data directly 
into video memory, the location 
of video memory must be known. 
Video memory may be at one of 
two addresses (BOOOH or B800H) 

depending upon which display 
adapter is in use. TBQPA queries 
BIOS interrupt lOH to identify the 
video adapter, sets the address of 
the video buffer accordingly, and 
then moves the string and attri
bute data to the video buffer via 
a LOOP structure. When the data 
has been transferred, the routine 
restores the critical registers DS 
and BP, and returns control to the 
calling program. 

NOT SO BASIC BASIC 
TBMAX and TBQPA were kept 
simple to emphasize the interface 
between Turbo Basic and Turbo 
Assembler, rather than the work
ings of the assembly language 
routines themselves. Once you un
derstand how the two languages 
mesh, you can build on your ex
perience and write more ad
vanced routines. For example, it's 
not especially difficult to write as
sembly language routines that 
modify string data and then pass 
that data back to the calling pro
gram-just remember that you 
can't change the length of the 
string. If your application requires 
you to change a string length, 
then set up a dummy string of an 
appropriate length first and pass 
the modified string back in the 
dummy string, rather than in the 
original string. 

Numeric processing and screen 
handling are only two of the 
many areas where assembly lan
guage can improve the perfor
mance of your Turbo Basic pro
grams. Take the time to become 
familiar with 86-family assembly 
language-you'll find that BASIC 
is no longer as basic as it was 
when you first typed RUN. • 

David A Williams is a principal staff 
engineer for a major aerospace com
pany. He can be reached at 2452 
Chase Cirde, Cl£arwater, FL 34624. 

Listings may be downloaded from 
Library 1 of CompuServe forum 
BP ROCA, as TBT ASM.ARC. 

Listings begin on page 108 

September/ October 1988 TURBO TECHNIX 107 



LISTING 1: MAXDEMO.BAS 

CLS 
DEFINT A·Z 
DIM AC 100) 
RANDOMIZEC157) 
FOR 1=1 TO 100 

A( I >=10000*RND(9) 
NEXT 
MAXVAL=O 
COUNT=100 
CALL GTMAXCMAXVAL,A(1),COUNT) 
PR I NT MAXVAL 
END 

SUB GTMAX INLINE 
SINLINE "TBMAX.BIN" 

END SUB 

LISTING 2: TBMAX.ASM 

;TBMAX.ASM Routine to find max value in integer array 
COOE SEGMENT 

ASstME CS:COOE,DS:COOE 
PUSH BP ; Save BP 
MOV BP, SP ;Get stack address 

;Get the arglnents 
LES BX, CBP+06HJ 
MOV CX,ES: CBXJ 
LES DI, CBP+OAHJ 
LES BX, CBP+OEHJ 

;Find the max value 
MOV AX,ES: CD!J 

A: CMP AX,ES: [01+2] 
JG B 
MOV AX,ES: [01+2] 

B: INC DI 
INC DI 
LOOP A 
HOV ES: [BXJ , AX 

;Clean up and leave 
QUIT: POP BP 
COOE ENOS 

END 

LISTING 3: SCRNDEMO.BAS 

CLS 
DEFINT A·Z 
AS="THIS IS A TEST" 
R0\1=16 
COL=15 
ATTRIB=7 
CALL llRTCAS,ROll,COL,ATTRIB) 
CALL WRTC 11Another test 11 ,5,20, 15) 

;Get 
;Put 
;Get 
;Get 

addr of array count 
count in ex 
addr of first element 
addr of return value 

;Get flrst array element 
;COfll>8re present with next 

;Put new, larger value in AX 

;Store max value 

;Restore BP 

CALL llRTCLEFTSCAS,B)+"ALSO GOOO", 10, 40, 7) 
END 

SUB llRT INLINE 
SINLINE "TBQPA.BIN" 

END SUB 

108 TURBO TECHNIX September/ October 1988 

LISTI NG 4: TBQPA .ASM 

;TBQPA.ASM Fast screen write routine for Turbo Basic 
COOE SEGMENT 

ASSUME 
PUSH 
HOV 

CS:COOE ,OS :COOE 
BP ;Save BP 
BP ,SP ;Get stack. address 

;Get argLJnents 
LES BX, CBP+OAHJ ;Get addr of Col variable 
HOV DI ,ES: CBXJ ;Put Col rurber in DI 
DEC DI ;Change Col # to 0 - 79 
LES BX, CBP+OEHJ ;Get addr of Row variable 
HOV AX,ES: [BX] ;Put Row # in AX 
DEC AX ; Change to 0 • 25 
LES BX, CBP+12HJ ;Get addr of string pointer 
HOV CX,ES: [BX] ;Put string length in CL 
AND ex, 7FFFH ;Remove high bit 
CHP CX,00 ;Is it zero? 
JZ QUIT ;Yes, quit 
HOV SI ,ES: CBX+02J ;Put string start addr in SI 

;C01TpUte offset into video buffer 
HOV DX,0050H ;Nun of char per row 
HUL DX ;# rows times 80 
ADD DI ,AX ;Add colunn rurber 
SHL DI, 1 ;Hul ti ply by 2 

;Get video parameters 
LES BX, CBP+06J ;Get address of attribute 

;Put attribute in BX 
;Video buffer addr, mono 
;Put it in ES 

HOV BX,ES: CBXJ 
HOV AX, OBOOOH 
HOV ES,AX 
HOV AH,OFH 
INT 10H 
CMP AL, 7 
JE A 
HOV AX,OBBOOH 
HOV ES,AX 

A: PUSH OS 
;Copy date to video buffer 

;Read video mode 

;ls it mono? 

;Video buffer addr, mono 
;Put it in ES 
; Save OS on stack 

HOV DS,DS: COOJ ;Get string segment 
;Clear direction flag 
;Send 1 byte to buffer B: 

CLO 
MOVSB 
HOV 
INC 
LOOP 

;Clean up and 
POP 

QUIT: POP 
COOE ENDS 

END 

BYTE PTR 
DI 
B 

leave 
DS 
BP 

ES: CDIJ ,BL ;Attribute byte 
;Skip attribute byte 
;Loop 1.nti l done 

Restore DS 
Restore BP 
TB r1.ntime handles return 



Basically speaking, there's 
one choice ... Turbo Basic! 

' ' ... What really makes 
Turbo Basic special is its blind-
ing speed. small size. and many 
added commands. Programs 
compiled with Turbo Basic are 
often much faster and smaller 
than those produced by other 
compilers. 
Ethan Winer, PC Magazine Best of 1987 

Turbo Basic. simply put. is an 
incredibly good product. 

William Zachman, Computerworld '' 

Add another Basic advantage: 
The Turbo Basic Toolboxes New! 

• The Database Toolbox gives 
you code to incorporate into 

Turbo Basie's development environment gives you overlapping windows. pull down menus. and the ability 
to run text-based applications in a window. 

your own programs. You don't 
have to reinvent the wheel every 
time you write new Turbo Basic 
database programs. Turbo Basice is the BASIC that 

lets even beginners write polished. 
professional programs almost as 
easily as they can write their names. 

The others don't. When you 
really examine them. you'll find 
that even though they may be 
"quick." they make it hard to 
get where you're going. (Sort of 
like a car with an engine but no 
steering wheel.) 

Turbo Basic takes you farther 
faster-in the comfort of a sleek 
development environment that 
gives you full control. Naturally 
it has a slick. fast compiler just like 
all Borland's technically superior 
Turbo languages. It also has a full
screen windowed editor. pull-down 
menus. and a trace debugging 

System Requirements: for the IBM PS/2 .. and the IBMW famil y of personal 
computers and all 100% compatibles. Operating System: PC-OOS (MS-DOS) 
2_0 or later. ToollJoxes require Turbo Basic 1.1. Memory: 384K RAM for 
compiler. 640K RAM to compile Toolboxes. 

•customer salisfaction is our main concern : if within 60 days or purchase this 
product. does not. perform in accordance with our claims. call our customer 
service department. and we will arrange a refund. 

AllBortao<lllf'QduasarelraelemarUorttglSlere<lttademarksofBortandlnternatlooal. lnc.OUler 
brand and product names wt ttlKlemarU ol lhelr ~pmhe lloldtNJ Copyrlcht • 1968 Borland 
tnttrnatlonal. lnc BJ 1246 

system. And innovative Borland 
features like binary disk files. true 
recursion. and more control over 
your compiling. Plus the ability to 
create programs as large as your 
system's memory can hold. 

New! 

The critics agree. The choice is 
basic. Turbo Basic from Borland. 

• The Editor Toolbox is all 
you need to build your own 
text editor or word processor. 
including source code for two 
sample editors. 

60-Day Money-back Guarantee* 

Compare the BASIC differences! 

Compile & Link to 
stand-alone EXE 

Size or .EXE 

Execution time 
w/ 80287 

Execution time 
w/o 80287 

1 
-~------

Turbo Basic 1. 1 

3 sec. 

28387 

0.16 sec. 

0.16 sec. 

QuickBASIC 4.0 
Compiler 

7 sec. 

25980 

16.5 sec. 

286.3 sec. 

t-

QuickBASIC 4.0 
Interpreter 

21.5 sec. 

292.3 sec. 

-----, 

The Elkins Optimization Benchmark program from March 1988 issue of Computer Language was used. 
The Program was run on an IBM PS/2 Model 60 with 80287. The benchmark tests compiler's ability to 
optimize loop-invariant code. unused code. expression and conditional evaluation. 

BORLAND 

For the dealer nearest you 
call (800) 543-7543 



~ COMMAND LINE PARAMETERS 
: IN TURBO BASIC 
;:;i 
E-

Divide the command line string into parameters -
and conquer your Turbo Basic command line 
entry problems. 

Duke Kamstra 

The ability to read parameters that are 
entered on the DOS command line is a 
powerful feature in any application or 
utility program. Users have come to ex
pect applications to read information 

PROGRAMMER such as filenames from the command line 
when a language compiler or database is invoked. 
The Turbo Basic Integrated Development Environ
ment is a good example. When entered at the DOS 
command line, the following command invokes 
Turbo Basic and loads the file PARAM.BAS into the 
editor: 
TB PARAM 

This example only uses one command line param
eter, but many programs accept two or more. The 
widely used ARC utility, which is sold by System En
hancement Associates (Wayne, New Jersey) uses sev
eral command line parameters. The following exam
ple shows a typical invocation of ARC51.EXE: 

ARC51 A COML.ARC *.BAS *.EXE DESCRIPT.CIS 

This example command line contains five individual 
parameters, which are separated from one another 
by spaces. 

BRINGING THE COMMAND LINE HOME 
Most language compilers have some means of read
ing the command line parameters that are used by 
programs written in those languages. Turbo Basie's 
COMMAND$ function returns all of the command 
line parameters concatenated into one string. This 
is a good start; however, the information in the com
mand line string isn't really useful until the string 
has been separated into its individual parameters. 

When accessing command line parameters, a pro
gram needs access to two pieces of information: the 
number of parameters that were entered, and the 
values of the individual parameters themselves. 
While Turbo Basic provides the command line 

110 TURBO TECHNIX September/ October 1988 

string, the process of counting and separating the 
parameters that make up the string must be handled 
with additional code. In PARAM.BAS (Listing 1), I've 
provided the Turbo Basic function FNParam
Count%(), which returns the number of parameters; 
and FNParamStr$(), which returns individual pa
rameters by number. 

If you've done some Turbo Basic programming, 
PARAM.BAS should not be difficult to understand. 
FNParamCount%() handles the bulk of the work for 
both functions. When FNParamCount%() is called 
for the first time, it divides the command line string 
into individual parameters, and then stores the pa
rameters in the global array Parameters$(). At the 
same time, FNParamCount%() counts the number of 
parameters that it stores, and saves that count value 
in the STATIC variable Result%. Result% becomes 
the value returned by FNParamCount%() to the call
ing program. After the first time it's called, FNPa
ramCount%() does not need to process the com
mand string any further; when called again, FNPa
ramCount%() simply returns the value it already 
stored in Result%. 

FNParamCount%() separates parameters by scan
ning for separator characters (which may be either 
spaces or double quotes) in the string that is re
turned by COMMAND$. Each time FNParam
Count%() finds a separator, the left and right char
acter positions of the found parameter are recorded 
in a two-dimensional integer array, ParamPos%(). 
ParamPos%() contains up to 25 pairs of integers 
(each integer pair consists of a left and a right char
acter position value). This limits the number of pa
rameters that may be extracted from the command 
string to 25. Since DOS limits the size of the com
mand string to 127 characters, however, the maxi
mum of 25 parameters should not be a crippling 
limitation. Once the initial scan for separators is 
complete, FNParamCount%() loops through the 
command string a second time, and copies the 

continued on page 112 



LISTING 1: PARAH.BAS 

1 Author: Duke Kamstra 
' Mod . Date: 5/8/88 

' To use these routines in your own program, keep them in an 
1 include file. -1len you need to manage conmand line parameters 
1 in a program include these routines by inserting the 
• metastatement : 

SI NCLUDE "PARAH" 
1 in your program. Be sure to set the named constant 
' XHAXPARAHETERS appropriately for your application. If the 
• nurber of parameters given on the comnard line h larger 
' then XHAXPARAHETERS the extras ere ignored. 

XHAXPARAHETERS 25 ' Mexinl.ITI # of parameters that can be reed by the 
1 program. Should never be larger than 64 since 
1 DOS only allows a 127 character coomand line. 

DIH ParametersS(O:XHAXPARAHETERS) 1 String array used to store 
1 parameters 

XTRUE = 1 • Named constant representing boolean value 

DEF FNParamCountX 
1 Return the nurber of tOITIT'land line parameters passed to the program. 
• Store each of the parameters in the SHARED string array 
1 Parameters$(). Note the function will only process up to 
' XHAXPARAHETERS coomand line parameters . 

1 The first time the function is cal led it processes the parameter 
' list and sets a flag lnitielizedX to indicate that the coomand 
' line doesn• t need to be processed again. Any subsequent cal ls to 
1 the function will return the value stored in Resul tX. 

STATIC Initial izedX 1 Flag indicating parameters have been read 
1 and data structure has been initialized . 

STAT! C Resul tX ' Store result after calling the function 
1 the first time 

SHARED ParametersS() 1 Global variable to store parameter data 

LOCAL IX, JX, CountX, Para~osXO, SearchCharS 

XL = 0 1 Named constants used to reference Paran>osX 
XR = 1 
DIH Para~osX(O:XHAXPARAHETERS, XL:XR) ' Hake room for position 

• information 

IF lnitializedX <> XTRUE THEN 'lie haven't parsed the coomand 
' line yet 

1 Set flag indicating we've parsed the conmand line 
lnitializedX = XTRUE 
IF COMMANDS="" THEN 'No coomand line parameters specified 

FNParamCountX = O ' Return 0 for parameter count 
ResultX = O 1 Save parameter count in static variable 
EXIT DEF ' Leave the function 

ELSE 'At least one coomand line parameter was specified 
1 First we need to determine the nurber of parameters 
IX= 1 
llHILE (IX<= LEN(COMHANDS)) AND (CountX < XHAXPARAHETERS) 

CountX = CountX + 1 ' Increment parameter counter 
PararrPosX(CountX, Xi.) = IX ' Store left position of parameter 
' Oetermi ne what to search for as the end of the current 
1 parameter 
IF HIDS(COMMANDS,IX, 1) = CHRS(34) THEN 
1 Parameter is enclosed in double quotes 

SearchCharS = CHRS(34) 
PararrPosX(CountX, XL) = 1 we don't want the 11 

Para~osX(CountX, XL) + 1 

ELSE 
SearchCharS :: " " 

END IF 

1 look for a space 

1 Check ;t the next character in the comnand line terminates 
• the current parameter 
IF INSTR( IX+1 ,COMllANDS,SearchCharS) <> 0 THEN 

' find end of parameter 
IX = INSTR( IX+1, COMMANDS, SearchCherS) 
1 Store right position of parameter 
Paranf>osX(CountX, XR) = IX 
1 Advance past the 11 

IF SearchCharS = CHRS(34) THEN IX = IX + 1 
ELSE 

1 Store right position of parameter 
Paranf>osX(CountX, XR) = LEN(COMllANDS) + 1 
EXIT LOOP 

END IF 
llHILE MIDS(COMllANDS, IX, 1) = • " AND IX < LEN(COMHANDS) 

IX = IX + 1 • now find the start of the next parameter 
llEND 

llEND 

1 next we need to store the parameters in our SHARED string 
array 

FOR JX = 1 TO CountX ' Store each of the parameters 
ParametersS(JX) = MIDSCCOMHANDS, PararrPosX(JX, Xi.), 

PararrPosX(JX, XR) - PararrPosX( JX-;- XI.)) 
NEXT JX 
FNParamCountX = CountX 
Resu l tX = CountX 

E~D 1 F I COMMANDS = 1111 

ELSE ' The function has already been called once 
FNParamCountX = Resul tX 

END IF 
END DEF ' FNParamCountX 

DEF FNParamStrS(CountX) 
' Return the coomand line parameter indexed by CountX. The function 
'verifies that the parameter exists by calling FNPerameountX(). If 
' the parameter exists it is read from the global SHARED array 
1 Parameter$() and returned . 

SHARED Parameters$() ' Global variable to store parameter data 
LOCAL ParmcountX 

IF CountX <= FNParamCountX THEN ' Check to make sure parameter 
FNParamStrS = ParametersS(CountX) ' exists 

ELSE 
FNParamStrS = 1111 

END IF 
END DEF ' FNParamStrS() 

LISTING 2: PARMDEMO.BAS 

1 Author: Duke Kamstra 
' Hod. date: 5/8/88 

' This program demonstrates the subroutines FNParameountX() and 
' FNParamStrS(). 

1 COfl"Pi lat ion instructions: 
I. In the Turbo Basic Integrated Development Envi rorrnent: 

e. Load the program into the Turbo Basic editor. 
b . In the Options\Paremeter line meN.J define a coomand 

line parameter list. For exarrple: 
this is a "test parameter l ist 11 

c. Press ALT-R to rl-<l the program in memory. 
11. From a .EXE file: 

a. Load the program into the Turbo Basic editor. 
b. In the Options\C""1'i le to meN.J select EXE file. 
c. Press ALT-C to C""1'ile PARAH.BAS to PARAH.EXE. 
d. Press ALT-F Q to leave the Turbo Basic Integrated 

Oevelopnent Envi rorment. 
e. At the DOS coomand l i ne type: 

PARAH this is a "test parameter list" 

SJ NCLUDE "PARAH" 1 Include the comnand line parameter routines 

CLS 
PR I NT FNPararrCOlXltX; II parameters were passed to PARMDEM011 

PRINT "The parameters are: 11 

FOR IX = 1 TO FNParemCountX 
PRINT 11 Parameter# 11 ; IX, FNParamStrSC IX) 

NEXT IX 

September/ October 1988 TURBO TECHNIX 111 



PARAMETERS 
continued from page 110 

parameters out into the Parameters$() string array 
by using the left and right character positions stored 
in ParamPos%(). 

FNParamStr$() is much simpler. It first calls 
FNParamCount%() to make sure that the calling pro
gram hasn't asked for a nonexistent parameter. If 
the requested parameter exists, that parameter is 
read from the string array Parameters$() and re
turned as the function return value. If the requested 
parameter does not exist, no error is generated, but 
FNParamStr$() returns an empty string. 

TRYING IT OUT 
The file PARMDEMO.BAS (Listing 2) demonstrates 
the use of FNParamCount%() and FNParamStr$(). 
PARMDEMO simply $INCLUDEs the file PA
RAM.BAS and calls the two functions to display any 
parameters that are passed to PARMDEMO upon 
PARMDEMO's invocation. To try the demo program, 
load PARMDEMO.BAS into Turbo Basie's Integrated 
Environment and then compile it to an .EXE file. 
Next, exit Turbo Basic, and invoke PARM
DEMO.EXE with one or more command line 
parameters: 

PARMDEMO fee fie foe fum 

PARADISE PRICES 

CALL PROGRAMMER'S PARADISE TODAY and dis-
cover the best software at the best prices. You'll find software 
pros to help you select the products you need. Immediate 
shipment on our stock of over 1000 products with a 30-day 
money back guarantee. 
Basic Panel QC o r TC 
Q uick Bas ic 69 Peri scope 11 X 
db/Lib 121 Turbo C Too ls 
Finally! 90 Turbo Halo 
Finally! X Graf 90 Cbtree 
Q uick Windows 70 

w/Source 90 
Quick Pak I 60 
Quick Pak Profess ional 129 
Grafpak Professio nal 89 

C language 
C Tools Plus/5.0 
Greenleaf TurboFunctions 
Q uick C (Microsoft) 

101 
109 
69 

Pascal language 
M icrosoft Pascal 3.0 
Tdebug Plus 4.0 

w/Source 
Turbo Async Plus 
Turbo Geomet ry Library 
Turbo Halo 
Turbo M agic 
Turbo Plus 5.0 

112 TURBO TECHNIX September/ October 1988 

99 
106 
101 
80 

141 

189 
39 
79 

101 
90 
80 

179 
89 

The PARMDEMO program immediately summarizes 
the parameters, as shown in the following sample 
output: 
4 parameters were passed to PARMDEMO 

The parameters are: 
Parameter# 1 fee 
Parameter# 2 fie 
Parameter# 3 foe 
Parameter# 4 f Lm 

The PARMDEMO program calls FNParam
Count%() to determine how many parameters were 
passed to PARDEMO, and then calls FNParamStr$() 
to read each of the individual parameters. 

Note that your program may call either of the 
functions in either order, and as often as necessary. 
The call to FNParamCount%() in FNParamStr$() as
sures that if FNParamStr$() is called first, the com
mand line parameters are still processed and stored 
in Parameters$(). Either way, the parameters will be 
there when you need them. • 

Duk£ Kamstra is a quality assurance coordinator for 
Borland International, Inc. 

Listings may be downloaded from Library 1 of Compu
Serve forum BPROG.A, as TBCOML.ARC. 

Turbo Power Utiliti es 80 Source Prin t 80 
Turbo Professional 4.0 80 Tree DiaErammer 70 
Turbo Window/Pascal 80 M agic P 179 
Topaz 45 Desqview 115 
Turbo Analyst 59 No rton Guides 109 

Borland Products HOW WE WORK Eureka 119 
Refl ex : The Analyst 109 PHONE ORDERS Hours 9 AM - 7 PM 
Sideki ck 59 EST. We accept Maste rCard , Visa , 

Sidekick + 139 Am e ri can Exp re ss . In cl ude $3.95 per 

Superkey 69 
item for s hi ppin~ and handling. All 
shipments by U S ground . Rush se rvice 

Turbo Basic Compiler 69 avai labl e . 
Turbo Basic Database 69 

~JAIL ORDERS POs by mail or fax Turbo Bas ic Edito r TB 69 
Turbo Bas ic Telecom TB 69 

are welco me. Please include p ho ne 
number. 

Turbo C 69 
INTERNATIONAL SERVICE Call Turbo Lightning and 

Lightning Word Wizard 109 or fax for in fo rmation. 

Turbo Pascal 69 DEALERS AND CORPORATE 
Turbo Pascal Dbase Toolbox 69 ACCOUNTS Call fo r informati on. 
Turbo Pasca l Dev. Toolkit 289 UNBEATABLE PRICES We' ll 
Turbo Pascal Edito r Toolbox 69 match lower natio nall y adve rt ised 
Turbo Pascal Gameworks TB 69 p rices . 
Turbo Pascal Graphix TB 69 TECHNICAL Sl PPORT FROM 
Turbo Pascal Num. M ethods 69 SOFTWARE PROS 
Turbo Pascal Tuto r 45 

RETURN POLICY 30-day no-h assle Turbo Pro log Compiler 109 
Turbo Pro log Toolbox 69 return po licy. Some manu facturer 's 

products ca nnot be returned once disk 

Additional Products sea ls are broken . 

Lahefi Personal Fortran 86 In NY: 914-332-4548 
Smal talkN 85 Customer Service : 914-332-0869 
Smalltalk/286 169 Internatio nal Orders: 914-332-4548 
Multi -Ed it 90 Telex : 510-601 -7602 
Po ly Awk 90 Fax: 914-332-4021 

1-800-445-7899 
n ZJf1f1. raJ e TM 

A Division of Magellan Software Corp. 
55 South Broadway, Tarrytown , NY 10591 



GETTING IN THE LOOP 
LOOP is the key to repeating blocks of statements 
without using GOTO. 

Tom Wrona 

One of the key facets of structured pro
gramming is the art of making loops. 
While structured programming is pennitted 
by the syntax of BASIC, and encouraged by 
certain Turbo Basic features, BASIC (un-

SQUAREONE like Pascal) does not require structured 
programming. Thus, if your first programming lan
guage is BASIC, you might not fully appreciate the 
significance of loops in structured programming. 

When using interpreted BASIC, it's all too easy to 
produce what professional programmers call "spa
ghetti code": meandering, unstructured code that's 
hard to understand and hard to debug. The two 
prime spaghetti code influences in BASIC are the 
language's reliance upon line numbers, and its prim
itive looping abilities. Turbo Basic, however, corrects 
both problems. First of all, line numbers aren't re
quired in Turbo Basic; in fact, you should never use 
them. Period. Second, Turbo Basie's looping facilities 
are much more sophisticated than interpreted 
BASIC's good old FOR..NEXT, as I'll explain in 
this article. 

BEYOND FOR..NEXT 
FOR..NEXT only permits a block of statements to be 
repeated some number of times. Listing 1 is a min
imal program that illustrates how FOR..NEXT works, 
and shows the loop's use of the STEP keyword to in
crement the loop counter by a number other than 
one. Run this listing and watch what it does. While 
FOR..NEXT is useful, more powerful looping con
structs are needed for writing commercial-quality 
software. 

When you first start programming, it's a little dif
ficult to see what your modest efforts have in com
mon with commercial programs such as WordStar or 
Lotus 1-2-3. You begin by learning that a program is 
a list of instructions that are executed sequentially by 
the computer; your own programs contain sequential 
lists of Turbo Basic commands. However, when you 
start up an advanced application such as MicroCalc 
(the spreadsheet program that is included with 
Turbo Basic), you notice that its commands don't 

seem to be very sequential-the program is just there, 
on the screen, all at once. 

All programs, MicroCalc included, are thoroughly 
sequential-this becomes apparent when you look 
closely at the nature of the sequence. Listing 2 shows 
a short program that is very similar to programs writ
ten by most BASIC programmers while they're get
ting their feet wet. The program begins, executes 
some statements, and stops, producing the output 
shown in Figure 1. The text lines shown in Figure 1 
appear on the screen, one after the other, as the pro
gram executes each program line. 

Figure 2 is a screen "snapshot" of the MicroCalc 
screen that appears when MicroCalc executes. Com
pare Figure 1 with Figure 2. Rather than appearing 
to be the result of a sequence of instructions, Micro
Calc seems to be just "there" all at once, awaiting 
input. 

The operative word here is "awaiting." By the time 
MicroCalc has drawn the spreadsheet grid and be
gins waiting for our input (in this case, a number, a 
letter, a cursor movement key, or a slash command), 
the program has already done a lot of preparatory 
work and is in the middle of a loop. Examine Listing 
3, which shows the source code for MicroCalc's main 
program. We can pinpoint the exact location in the 
code when the program seemingly pops up on the 
screen all at once. (I've added numbers to the print
ed listing for reference purposes; these numbers are 

continued on page 114 

Let's play with numbers! 
Pick a nl.lllber and I'll tell you facts about it. 
What's your nl.lllber? 42 
The square root of your number is 6.48074069840786. 
Want to know something else CY/N)? Y 
A circle with a diameter of 42 would have 
a circLJTiference of 131.88. 
That's all! Thanks for playing! 

Figure 1. Programs written by newcomers often present a 
simfle, linear question-and-answer session such as the one 
shown here. A repeating command loop offers a great deal 
more sophistication with respect to how a program com
municates with the user. 

September/ October 1988 TURBO TECHNIX 113 

u -r:.Fl 

~ 
0 = 
~ 
E-o 



GETTING IN THE LOOP 

continued from page 113 

not present in the actual MC.~AS 
file.) Line 67 is the comment !me 
shown below: 

•set up a LOOP UNTIL '/Q' conmand 
is chosen 

Immediately after this line, a 
DO .. LOOP begins that deter
mines which key has been 
pressed by the user. (I'll discuss 
DO .. LOOPs in more detail 
shortly.) This DO .. LOOP, which 
is the main body of the program, 
shunts the flow of the program to 
the subroutine that is invoked by 
the keypress. Everything above 
line 67 in the program is prepara
tion for the DO .. LOOP. Lines 58-
65 check if a filename (of a pre
viously saved spreadsheet) has 
been typed in after the "MC" on 
the command line; if the filename 
was entered, then the subroutine 
Load is CALLed to load that 
sheet; otherwise (El.SE), a blank 
spreadsheet is drawn by CALLing 
the Grid subroutine. Subroutines 
such as Grid are contained in var
ious include files, which are part 
of MicroCalc. 

PSEUDO-CODE 
One way to understand a pro
gramming problem is to think in 
terms of "pseudo-code." Pseudo
code is an English-language 
"sketch" of a program that you 
create before you get down to the 
job of coding in your actual pro
gramming language. (For more on 

pseudo-code, see "Binary Engi
neering," TURBO TECHNIX, No
vember / December, 1987.) 

Pseudo-code is useful not only 
for creating a program, but also 
for analyzing an existing program. 
One good way to increase your 
understanding of program struc
ture is to reverse-engineer a pro
gram's source code back to 
pseudo-code. For example, the 
pseudo-code equivalent of the 
code from the beginning of the 
program to the start of the main 
loop at line 68 is shown below: 

Initialize all variables 
and arrays (CALL !nit) 

IF a filename was typed in ... 
CALL the spreadsheet file 

loading subroutine. 
No filename? (ELSE) 

CALL Grid to draw 
a blank spreadsheet. 

That's all, go on. (END IF) 

The main loop extends from 
the DO keyword in line 68 to 
LOOP UNTIL CalcExit% in line 
93. This main loop, called a 
DO .. LOOP, is one kind of control 
structure. 

CONTROL STRUCTURES 
Control structures such as 
DO .. LOOPs are a language's 
method for determining which 
instructions get executed, based 
upon the value of a variable or 
the occurrence of an event. Not 
all control structures are loops. 
For example, an IF .. THEN condi
tional test is used to determine if a 
spreadsheet file should be loaded. 

114 TURBO TECHNIX September/ October 1988 

Figure 2. The command menu from 
the MicroCalc spreadsheet, shown 
here, uses a loop to repeatedly test the 
keyboard until a command character 
is entered. Once a character is detected, 
the program executes the command 
represented by that character. 

The logic of such a test is very 
English-like: IF the filename ex~ 
isls, THEN CALL Load to load 1t, 

El.SE draw a blank spreadsheet. 
Although multiple tests can be 
performed using IF .. THEN, each 
test occurs only once. Thus, 
IF .. THEN is a one-way action, not 
a loop. 
The 00 .. LOOP statement. While 
both IF .. THEN statements and 
DO .. LOOP statements always in
volve testing, DO .. LOOPs are 
used more as processing tools, in
stead of testing tools. Again, the 
name DO .. LOOP reflects the 
function of these keywords in an 
English-like fashion: The program 
will DO some process UNTIL or 
WHILE some expression is true 
or false. 

What MicroCalc's main 
DO .. LOOP does (and, therefore, 
what the program spends most of 
its time doing) is nothing more 
than waiting for keyboard input. 
When such input appears, the 
program processes the keyboard 
input to see what should be done 
next. MicroCalc keeps on process
ing keyboard input until a "/ Q" 
is entered to terminate the pro
gram. 

Calling ReadKBD. The main 
loop's first action (at line 69) is to 
CALL a little subroutine called 
ReadKBD. ReadKBD, which is 
reproduced in Listing 4, tells its 
caller which key has been pressed. 
What is ReadKBD? Another loop, 
of course. ReadKBD's loop is the 

continued on page 118 



SUN M ON TUE WED THU FRI SAT 

6 • zC(P ... 

20 

27 

MAGIC PC ELIMINATES CODING ..• curs MONTIIS OF DATABASE DEVELOPMENI'? 

Time is money. And coding a DBMS 
application like Accounting or Order 
Entry takes a lot ofboth. Simply be
cause hacking out mountains of code 
with your RDBMS or 4GL is too 
slow. Not to mention the time to re
write if you make a mistake or change 
the design. 

EXECUfION TABLES 
ELIMINATE CODE! 

Magic PC cuts months of your appli
cation development time because it 
eliminates coding. You program with 
the state-of-the-art Execution Tables 
in place of conventional programming. 

HOW DOES IT WORK? 
Magic PC turns your database design 
scheme directly into executable appli
cations without any coding. Use Exe
cution Tables to describe only what 
your programs do with compact design 
spec's, free from lengthy how to pro
gramming details. Each table entry is 
a powerful non-procedural design in
struction which is executed at com
piled-like speed by a runtime engine. 
Yet the tables can be modified "on the 
fly" without any maintenance. De
velop full-featured multi-user turn
key systems with custom screens, 
windows, menus, reports and much 
more in days - not months! No more 
low-level programming, no time 
wasted ... 

MAGIC PC™ 
The Vl1uJoatabase Language 

"Magic PC's database en
gine delivers powerful app
lications in a fraction of 
the time . .. there is no com
petitive product" 

"Overall, Magic PC is one 
of the most powerful DBMS 
packages available." 

• Quick Application Generator 

• BTRIEVE® - based multi-user RDBMS 

• Visual design language eliminates coding 

• Maintenance-free program modifications 

• Easy-to-use Visual Query-By-Example 

•Multi-file Zoom window look-ups 

• Low-cost distribution Runtimes 

• OEM versions available 

ATTENTION BTRIEVE® USERS 
Now you can quickly enhance your BTRIEVE®
based applications beyond the capabilities of 
XTRIEVE® and RTRIEVE®. Use Magic PC as 
a tum-key BTRIEVE® Application Generator to 
customize your applications without even chang
ing your existing code. 

AK~R 
19782 MacArthur Boulevard, Suite 305 

Irvine, California 92715 
lLX: 493-1184 FAX: 714-833-0323 

DATABASE PROGRAMMERS 
Join the thousands of professional 
database programmers and vertical 
market developers who switched to 
Magic PC from dBase®, R:BASE®, 
Paradox®, Clipper®, Datatlex®, Rev
elation®, Basic, C, Pascal, etc. 

•iii :1;.)i1+m 11
• 

We're so sure you'll love Magic PC -
we'll let you try the complete package 
first Only a limited quantity is avail
able, so call us today to reserve your 
copy. Pay for Magic PC only after 30 
days of working with it* To cancel ... 
don't call ... simply return in 30 days 
for a $19.95 restocking fee. 

ORPAYNOWATNORISK 
Pay when you order and we'll wave 
the $19.95 restocking fee so you have 
absolutely no risk. 

SPECIAL OFFER !6U 
s199,~ ~ \ , .... 

Magic LAN multi-user - $399 
Magic RUN - call for price 

Order Now Call: 
800-345-MAGIC 

In CA 714-250-1718 
IT 

Add $10 P&H, tax in CA. International orders add $30. 
•secured with credit card or open P.O. Valid in US. 

Dealers welcomed 



Paradox 2.0, the top-rated 
Network, 386, and 

Paradox~ is both the first family in 
DBMS and the top-rated relational 
database. Software Digest has 
ranked Paradox #1 for the past 
2 years; PC Magazine gave Paradox 
its "Editor's Choice" award and 
InfoWorld named it 1987 "Product 
of the Year" for Database Systems. 

Now there's OS/2 
Paradox OS/2 is the newest 

member of the Paradox family
more are on the way and they're all 
100% compatible with each other. 

Paradox OS/2 allows you to take 
advantage of powerful OS/2 fea
tures such as addressing up to 16 
megabytes of memory and running 
concurrent sessions. And Paradox 
OS/2 even lets you start new OS/2 
sessions from within Paradox. 

•customer satisfaaion ls our main concern: if within 60 days of purchase this 
product does not perform in accordance with our claims. call our customer 
service departmenl, and we will arrange a refund . 

All Borland prodllCtli art 11adem1rks or re1l5&eml 11adtmarb of Borltnd llllemalional. Inc_ Witt 
brand and product namtS art ltadtmarks of I.heir respecthe holdtrs. CopyrigM • 1988 Borlltld 
lnLf:rnalk>nal.lnc B\12281' 

Harness the power of 386 
Paradox 386 is powerful new 

DOS software for your powerful 
new hardware and it's designed 
exclusively for 80386-based sys
tems. It also lets you ignore the old 
640K limits and races through your 
data 32 bits at a time instead of just 
16. It's a perfect solution for 
anyone faced with very large tables 
(tens of thousands of records or 
more) and/or large applications. 

'' As proof of Borland's commit
ment to delivering compatibility 
across diverse hardware and soft
ware environments. Paradox 386 
and Paradox 2.0 can share the 
same databases and applications 
on a network. 

Giovanni Perrone. PC Week 

Paradox ... it's the PC database
management system equivalent to 
turbo-charging an M-series BMW. 

Giovanni Perrone. PC WEEK '' 

The Paradox Network 
really works 

Network users, you need 
Paradox's multiuser capabilities. 
The network runs smoothly, intelli
gently and so transparently that 
multiusers can access the same 
data at the same time-without 
getting in each other's way. (But 
safeguards prevent multiple users 
from altering the same data at the 
same time.) And with screen 
refresh you get real-time data 
updates on your screen. 

'' [Paradox is] a true network 
application, a program that can 
actually take advantage of a net
work to provide more features and 
functions, things that can't be done 
with a standalone PC. 

Aaron Brenner. LAN Magazine 

[Paradox] elegantly handles all 
the chores of a multiuser database 
system with little or no effort by 
network users. 

Mark Cook and Steve King 
Data Based Advisor '' 



relational database, has 
now OS/2 versions! 

"Query-by-Example" gives you 
the right answer, right now 

Our "Query-by-Example" (QBE) 
techn ique is just one illustration of 
the technological leadership offered 
by Paradox for the past 2 years. 

QBE is fast and simple to use. 
Simply call up a form and check off 
the information you want. 

I Ubl to ir1:ltd! ,a ri,ld in tie Ifill; cm to Ji~.,., h~le i:ll'i =" 

Sil(TltdT T· ,.;T""'-1 '.L 'l 

PIDCIT'l'.'51td Triptl~ic 

1
1: 1 f>IM 

- riptl IC 
I OeR.lier Jlirthardndiids(IJ) 12,m.• 
2 11,..U.,lll P.dnt-v.ilrt. 149,f!h.fl9 
J hhl llillhi19~ 31';,0lll).ll!l 
4 - ~.!.!~''°"' c1 .. 1 

4,Y/,,19 
s ........ 10,'1h.19 
6 MU- P.d.ol·w.lrl 149,9'1>.llO 
1 l\lltUe.r; Sl1tW.Whlle 1~J~:: • t,ir., Pdnl-wltt • Airt hintmbids UJ1 12,!l'h.ll 
II P..Wtt rdtrt~ltt 149,t?l.ll 

Without having to write a line of 
code, you can. for example, get an
swers to queries like: Find all the 
items we sold for more than $1000 
and tell me who ordered them. 

An artificial intelligence tech
nique called "heuristic query 

optimization" gives Paradox's QBE 
the abi lity to figure out not just the 
right answer. but also the fastest 
way to get the right answer. 

QBE makes high-speed links 
between one piece of data and 
another and quickly sees the rela
tionsh ips your question calls for. 

PAL:'" A powerful 
programming language 

PAL. the Paradox Application 
Language, is a ful l-featured. high
level. structured database program
ming language that lets you write 
soph isticated Paradox programs 
(scripts) and applications. It in
cludes such powerful features as 
looping constructs. arrays, branch
ing, procedures. and a fu ll set of 
functions. 

'' Most people we meet who 
give Paradox a try. end up 
switching to it ... 

Mark Cook and Steve King 
Data Based Advisor '' 

There's a Paradox 2.0 
version for you 

Whether you're a DOS or 
OS/2 user. there's a Paradox 
version for you. 

60-Day Money-back Guarantee* 

For a brochure or the dealer nearest 
you. call (800) 543-7543 

INTERNATIONAL 



GETTING IN THE LOOP 

continued from page 114 

gateway into MicroCalc, the re
ceiving dock where the characters 
come when they're shipped out of 
the keyboard by the user's fingers. 
Below are the two statements con
tained in ReadKBD, along with a 
pseudo-code explanation of each: 

STATEMENT: RetChar$ = 
INKEY$ 
PSEUDO-CODE: Request a char
acter from the keyboard (IN
KEY$) and place it in the function 
return variable (RetChar$). 

STATEMENT: LOOP UNTIL 
RetChar$< >'"' 
PSEUDO-CODE: Keep requesting 
a character from the keyboard un
til the character that you get 
(stored in RetChar$) is an actual 
character and not a null string 
('"'). 

Essentially, ReadKBD is a 
keyboard-input processing ma
chine that receives characters 
from the keyboard and places 
them into the program. Why is an 
input processing loop necessary 
when INPUT can be used? Be
cause when INPUT executes, it in
variably puts that dumb question 
mark on the screen-this is fine 
for a quick and dirty program, but 
inappropriate for professional
quality programs that you can 
write with Turbo Basic. 
Loops within loops. ReadKBD's 
presence in the main loop is a 
perfect illustration of the "loop 
within a loop" type of program
ming. Both ReadKBD and the 
main loop are DO .. UNTIL loops. 
In this kind of loop, the process
ing statements are repeated 
UNTIL the test condition is true. 
In the case of ReadKBD, the 
clever construction UNTIL
RetChar$ < > "" means that un
less the program has something 
else to do, it remains in its tight lit
tle loop, checking the keyboar_d 
for characters. Given the relauve 
slowness of humans and the 
speed with which the machine 
can process their input, it's safe to 
say that MicroCalc spend~ over. 90 
percent of its time execuung this 
one line! 

In the main loop, the test con
dition is LOOP UNTIL Calc
Exit%. Although CalcExit% is an 
integer (this is indicated by the 
presence of the percent sign), it's 
used here as a Boolean variable 
that can be interpreted as either 
True or False. In the Command 
subroutine, which interprets slash 
commands, there is a SELECT 
CASE statement that assigns Calc
Exit% with a value of True if 
"I Q" has been pressed. Ou.st ~s 
DO .. LOOP is FOR..NEXT s big 
brother, SELECT CASE is 
IF .. THEN's big brother. For more 
on SELECT CASE, see "SELECT 
CASE: Choosing One From the 
Many," TURBO TECHNIX, 
March/ April, 1988.) 
Where to test? In both ReadKBD 
and the main loop, the condition 
is tested at the bottom of the loop. 
However, testing can be perform
ed at the top of the loop, at the 
top and the bottom of the loop, or 
at neither. If testing is not done at 
either the top or the bottom of the 
loop, the loop is then endles~ ~nd 
repeats forever, unless an exit 1s 
performed somewhere in the mid
dle of the loop via a GOTO state
ment (bad practice), or else via the 
EXIT LOOP statement (infinitely 
better) as shown below: 

DO 
GetSomeinput(InputPresent%) 
IF NOT InputPresent% 

THEN EXIT LOOP 
Process Input 

LOOP 

Testing at the top of the loop is 
simple to perform, as demon
strated by the following code: 

QuitProcess% = 0 

DO UNTIL QuitProcess% 
DoSomel./ork 
Arel.JeDoneYet(QuitProcess%) 

LOOP 

The logical opposite of a 
DO .. UNTIL loop is a DO .. WHILE 
loop. In a DO .. WHILE loop, the 
processing operation is repeated 
WHILE the condition is true. The 
operation of a DO .. WHILE loop 
is shown below: 
GetSomeinput(InputPresent%) 
DO 

Process Input 
GetSomeinput(InputPresent%) 

l.JHILE InputPrcsent% 

Notice that the presence of the 
keyword WHILE at the bottom of 
the loop makes the LOOP key
word unnecessary. 

118 TURBO TECHNIX September/ October 1988 

Another syntax for DO .. WHILE 
is called WHILE .. WEND; this syn
tax is borrowed from older ver
sions of BASIC. WHILE .. WEND 
tests at the top of a loop, as dem
onstrated in the following code: 

GetSomeinput(InputPresent%) 

l.JHILE InputPresent% 
Process Input 
GetMoreinput(InputPresent%) 

I.JENO 

WHILE .. WEND is completely 
equivalent to DO .. WHILI'.; . 
whether you use it or not 1s stnctly 
a matter of taste. 

ONWARD 
To learn how to write commercial
quality software, you have to un
derstand how it differs from the 
toy programs that we all write 
when starting out. With Turbo 
Basic, an important first step is to 
understand structured program
ming and control structures such 
as DO .. LOOP statements. Where 
do you go from here? Try studying 
the source code for MicroCalc. 
Print it out and follow the pro
gram flow into the various include 
files and their procedures and 
functions. Rewrite MC.BAS as 
pseudo-code to get some more in
sights into how large programs 
are put together. Identify useful 
subroutines like ReadKBD that 
you can use and reuse in your 
own projects. Obtain public do
main programs that include 
source code, and study the code 
with a critical eye. Is the code 
sloppy or tight? Is it spaghetti code 
or well-commented structured 
code? 

The more source code that you 
study, and the more that you write 
yourself, the better you'll beco_me 
at programming in Turbo BasIC. 
And someday, perhaps, the com
mercial program that pops up on 
my screen will be yours. • 

Tom Wrona is a writer, consultant, 
and the author of How to Run a 
Hard Disk PC, published in March 
by Scott, Foresman & Company. 
Reach Tom via CompuServe 
(76137,3363) or MCI Mail. 

Listings may be downloaded from 
Library 1 of CompuServe forum 
BPROGA, as LOOPS.ARC. 



LISTING 1: FORTEST.BAS 

'A si~le program demonstrating FOR •• NEXT 
' with the STEP modifier: 

FOR i = 2 to 8 STEP 2 
Print 

NEXT i 
PRINT 11~0 do we appreciate?" 

LISTING 2: NUMBERS. BAS 

'Toy Program by Tom Wrona 

CLS 
PRINT "Let's play with no..nbersl" 
PRINT "Pick a no..nber and I'll tell you facts about it . " 
INPUT 11What 1 s your nurber11 ; nurt>er 
PRINT 11 The square root of your nurber is " SQR(nurber) 11 ." 

INPUT "llant to know something else (Y/N)" answers 
l F UCASES(answer$) • "N" GOTO DONE 
PRINT "A circle with a diameter of 11 nurber 11 would have 
PRINT"• circi.nference of" 3.14 * nurber 11

•
11 

DONE: 
PRINT "That's all! Thanks for playing!" 

LISTING 3: MC.BAS 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 ' 
11' 
12 ' 
13 ' 
14 ' 
15 ' 

MC . BAS 
VERSION 1.0 

Turbo Basic 
(C) Copyright 1987 by Borland International 

System Requirements: 
DOS Version 2. 0 or later 

- 320K 

This program is a si1rple spreadsheet program that is provfrJed 
as an exaffllle of a si1rple application that can be done in 
Turbo Basic. You are encouraged to study this program and 
make any enhancements and mcxJi fications that you might want. 

21 ·~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

22 
23 $DYNAMIC 
24 SS TACK 10240 
25 
26 S!NCLUOE 00HC0.1NC" 
27 
28 
29 S!NCLUOE "MCI. INC" 
30 
31 
32 S!NCLUOE 00 MC2.1NC" 
33 
34 S!NCLUOE "HC3. !NC" 
35 
36 $1 NCLUOE "MC4. l NC" 
37 
39 

' All arrays are DYNAMIC 
1 to prevent stack overt low 

' Global variables, named constant AND 
• array definition 

1 Mi see l l aneous corrrnands AND ut i lit i es 
• (Keyboard, screen, toggles) 

' !nit, display & clear spreadsheet grid 

' Display Cells; 1110ve arO<rod spreadsheet 

1 load, Save AND Print a spreadsheet; 
'display on-line rMnual; DOS shell 

40 $I NCLUOE "HCS. l NC" 
41 
42 
43 SI NCLLCE "MC6. I NC" 
44 
45 
46 S!NCLUOE "HC7. INC" 
47 
48 SINCLUOE "MC8. INC" 
49 
52 RANOCJO ZE TI HER 
53 Begintiiner=TIHER 
54 

1 ProcedJres to evaluate forll'lJlas AND 
1 recalculate the spreadshttt 

• Procedures to read, ~te AND forw1t 
' cells; COA1nBnds dispatcher 

• Some string ft..netions 

1 Procedures to Read/\Jr i te records to or 
' from the spreadsheet data structure 
1 init random nurber generator 
1 initial tiine 

55 '~--------- MAIN PROGRAM -----------~ 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
n 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

CALL !nit 
Fi leNameS=FNGetCmdS 
IF FNExistsXCFi leNameS) THEN 

CALL load 
ELSE 

CLS 
CALL Grid 
CALL GotoCell(GlobFXX, GlobFYX) 

END IF 

' set up a LOOP UNTIL '/Q' ccmnand 
DO 

CALL ReadCBO(ChS) 
CALL lBMCh(ChS) 
SELECT CASE leftS(ChS, 1) 

CASE CHRS( 5) 
CALL Hoveup 

CASE CHRSC24), CHR$(10) 
CALL MoveOown 

CASE CHR$(4), CHR$(13) 
CALL HoveRight 

CASE CHRS( 19) 
CALL MoveLeft 

CASE CHRS( 1) 
CALL MoveHome 

CASE CHRS(6) 
CALL MoveEnd 

is chosen 

'"E 

I ·x, . J 

t ·o, "M 

'·s 

CASE "/ 11 1 Comnand Header 
CALL Ccmnands 

CASE CHRSCXEdi tKey ) ° F2 
CALL GetCell(GlobFXX, GlobFYX) 

CASE ELSE 
IF ( leftS(ChS, 1) >="" ) AND ( leftS(ChS, 1) <= CHRS(255)) 

THEN CALL GetCel l(GlobFXX, GlobFYX) 
END IF 

ENO SELECT 
LOOP UNTIL CalcExitX 

END 
96 ·~-----------END MAIN PROGRAM 

LISTING 4: READKBD.BAS 

1 ReadKBD, a subroutine contained in MC1. INC 

SUB ReadKBD(RetCharS) 
' This function reads a keystroke from the keyboard 
1 and returns 1- OR 2 · character string. 

DO 
RetCharS = l NKEYS 

LOOP UNTIL RetCharS<>"" 

END SUB 

' get the keyboard input 

September/ October 1988 TURBO TECHNIX 119 



~ TURBO ASSEMBLER: 
~ CIVaIZING MACHINE 
~ LANGUAGE 
~ 
f If you've never tackled the 86-family's own language, 

this may be the Ideal time to start. 

Tom Swan 

You've probably heard The Famous 
Truths About Assembly Language-"Pro
gramming in assembly language is more 

• 
difficult than teaching buffaloes to 
pirouette;" "An assembly language pro-

SQUARE oNE gram can trash memory faster than Oliver 
North can shred a sensitive document;" and, "Only 
13-year-old software prodigies can understand as
sembly language mnemonics!" 

These are bad raps. Assembly language is not a 
great deal more difficult to learn and to use than any 
other computer language. This is especially true now 
with the availability of new features such as Ideal 
mode, local labels, and improved command-line op
tions in Turbo Assembler-Borland International's 
newest Turbo language and the partner of Turbo De
bugger. If you're eager to learn assembly language, 
you couldn't have picked a better time to begin. 

Turbo Assembler is not just for beginners, though. 
If you're an experienced assembly language pro
grammer, you'll be happy to know that Turbo As
sembler is fully compatible with the Microsoft Macro 
Assembler (MASM). Turbo Assembler recognizes all 
MASM macros, conditional assembly and other di
rectives, plus simplified segment models. If you have 
existing assembly language programs to maintain, 
Turbo Assembler can almost certainly assemble them. 

Of course, Turbo Assembler carries the famous 
Borland mark of the gazelle-it assembles a 2000-
line test file in less than four seconds on a 16-mHz 
80386 system (about twice as fast as MASM 5.1). And, 
like MASM, Turbo Assembler supports all typical PC 
processors (8088, 8086, 80186, 80286, 80386) and 
math coprocessors (8087, 80287, 80387). 

Other features make Turbo Assembler friendly to 
use. For example, the following command assembles 
all of the .ASM files in a directory: 

TASM *.ASM 

Turbo Assembler's most intriguing new feature, 
called Ideal mode, is a logical refinement to standard 
MASM syntax. If you're new to assembly language 
programming, Ideal mode will help you get up to 

120 TURBO TECHNIX September/ October 1988 

• 

speed without getting 
bogged down in minor syntac

tical quirks that plague other assemblers (especially 
MASM). If you're an old pro (or a young pro!), you'll 
appreciate Ideal mode's many improvements to 
MASM syntax, plus the ability to switch back to full 
MASM compatibility at any time and assemble exist
ing modules written in the standard syntax. I'll cover 
Ideal mode in more detail shortly. 

First, however, a note to beginners: If assembly 
language is still gobbledygook to you, skim over the 
specific examples in this introduction. I've tried to 
provide general information for those of you with lit
tle or no assembly language experience, but there 
isn't enough room here for a complete tutorial. For 
help with learning assembly language, refer to the 
Turbo Assembler manual, other TURBO TECHNIX 
articles, and forthcoming books on Turbo Assembler. 
[Editor's note: Including one by the estimable Mr. 
Swan.] 

USING TURBO ASSEMBLER 
Unlike other Turbo languages, Turbo Assembler is not 
an integrated development environment with a text 
editor and pull-down menus. Instead, Turbo Assembler 

I 



perates from 
the DOS command 

ine, similar to the way 
MASM runs. Turbo Assembler 

requires the use of a separate 
editor for typing programs, and most 

people probably will use the editor in Turbo C, 
Turbo Pascal, Turbo Basic, or Turbo Prolog. Other 
good choices are the MicroStar editor in the Turbo 
Pascal Editor Toolbox, or the notepads in SideK.ick 
and SideKick Plus. You can also use an editor such as 
Brief (my favorite), or any word processor that edits 
plain ASCII text. 

Many people will use Turbo Assembler with one 
or more high-level Turbo languages to convert se
lected BASIC subroutines, Pascal procedures, or C 
functions to assembly language in order to gain the 
extra speed that only pure machine code can give. In 
fact, experts estimate that most programs spend 
about 90 percent of their time executing only 10 per
cent of their code. In theory, therefore, the conver
sion of the critical 10 percent of any program to as
sembly language potentially increases program 
speed by almost as much as could be done by rewrit
ing the entire program. 

To help you mix and match Turbo Assembler with 
other Borland languages, individual chapters in the 
Turbo Assembler manual explain how to interface 
assembly language to Turbo Pascal, Turbo C, Turbo 
Basic, and Turbo Prolog. Turbo C can even call 
Turbo Assemble'r directly to assemble inline assem
bly language statements embedded in Turbo C 
source text. 

Of course, standalone programs can also be as
sembled with Turbo Assembler. Programs can be lo
cated in one file, or else divided into modules, as
sembled separately, and then linked with other 
modules to create the final code file on disk. Since 

ssembler is fully 
with MASM, you can take 

ge of the thousands of lines of 
u lished assembly language source code 

available on bulletin boards, in magazines and 
books, and elsewhere. 

QUIRKS MODE 
Through a special command, Turbo Assembler can 
even reproduce known MASM bugs and quirks. To 
use this command, type QUIRKS into your source 
text to throw Turbo Assembler into quirks mode for 
near 100-percent MASM source code compatibility, 
warts, bugs, and all. 

The only MASM programs that Turbo Assembler 
cannot digest are a few rare (and poorly written) ex
amples that rely on MASM's two-pass nature. Turbo 
Assembler is a one-pass assembler-it reads a pro
gram text file a single time in order to generate an 
object file that contains the assembled program code. 
MASM reads a program text file twice-once to iden
tify labels, and once again ~o generate the object 
code. With respect to speed, one pass is obviously 
better than two. Besides, you're better off not using
and never writing-finicky two-pass-dependent pro
grams in the first place. 

IDEAL MODE-ENTER STAGE RIGHT 
Besides MASM compatibility (with or without quirks), 
Turbo Assembler introduces Ideal mode-this depar
ture from MASM syntax is a subject that's bound to 
be controversial among bit-twiddlers everywhere. 
Ideal mode is to assembly language what Hamlet 
and other Shakespearean plays were (and are) to · 
English-the sensible and inventive force that civi
lizes an existing language. Shakespeare didn't create 
English. He improved and expanded the language in 
ways that have lasted until today and that will no 
doubt endure for as long as English itself. Similarly, 
Turbo Assembler's Ideal mode improves MASM syn
tax in ways that are likely to have long-lasting effects 
on PC assembly language programming. Ideal mode 
is not just a new assembly language syntax-Ideal 
mode has refined, reformed, and civilized MASM. 

New and improved syntax. Ideal mode improves 
MASM syntax in two fundamental areas: consistency 

continued on page 122 

September/ October 1988 TURBO TECHNIX 121 



TURBO ASSEMBLER 
continued from page 121 

and type-checking. An improved consistency among 
commands helps you to remember syntax rules, and 
lets Turbo Assembler use simpler parsing methods to 
read and understand programs. Due to its simpler 
parsing rules, Ideal mode assembles programs about 
30 percent faster than they can be assembled in 
MASM mode. That's 30 percent faster than Turbo 
Assembler's own MASM-compatible mode, which is 
already twice as fast as MASM itself1 

Keywords. In Ideal mode, most keywords begin an 
instruction, rather than appearing in the apparently 
random fashion that they do in MASM. Table 1 com
pares several Ideal mode keywords to their MASM 
equivalents. Notice that ENDP and ENDS are option
ally followed by the name of the procedure or seg
ment that was previously used in a matching PROC 
or SEGMENT directive. (In MASM, the name pre
cedes the keyword and, therefore, must be used in 
both places.) 

MASM Mode 

name ENDP 
name ENDS 
name GROUP segs 
name LABEL type 
name MACRO args 
name PROC type 
name RECORD args 
name SEGMENT args 
name STRUC 
name UNION 

Ideal Mode 

ENDP [name] 
ENDS (name] 
GROUP name segs 
LABEL name type 
MACRO name args 
PROC name type 
RECORD name args 
SEGMENT name args 
STRUC name 
UNION name 

Tab/,e 1. Ideal mode versus MASM keywords. Bracketed 
items are optional. 

Type-checking. Ideal mode's stronger type-checking 
rules help you write programs that have fewer bugs 
and make more sense both to you and to the assem
bler. When assembling in Ideal mode, for example, 
Turbo Assembler never lets addresses be confused 
with values stored in memory (this is a prime source 
of bugs even with experienced programmers). Ideal 
mode also eliminates MASM's annoying tendency to 
calculate some offsets relative to individual segments 
that are collected by the GROUP command. In Ideal 
mode, items in grouped segments are always ac
cessed relative to the group, not to the segment in 
which the items reside. 

Pascal and C programmers know that strong type
checking helps prevent bugs by restricting assign
ments and other operations to variables of compat
ible types. With Turbo Assembler's Ideal mode, 
assembly language programmers can now enjoy sim
ilar benefits with no loss of capability and no penalty 
on program speed. 

IDEAL MODE AND BRACKETS 
An excellent example of how Ideal mode's stronger 
type-checking rules help prevent bugs is the way that 
square brackets (e.g., []) are required in order to ob
tain the contents of a memory location. For example, 
[MyVar] with brackets refers to the contents stored 
in memory at the location marked by the label, 

122 TURBO TECHNIX September/ October 1988 

MyVar. This rule has important consequences in 
constructions such as the following: 

Count dw 0 

mov ax, [Count] 

Here, Count is a label (a pointer) that locates a 
two-byte word in memory, which is initialized to zero. 
(The dw stands for "define word.") The second line 
moves the contents of Count into register ax. Be
cause of the brackets, there's no question that 
[Count] refers to the contents of the memory loca
tion and not to the value of the Count label itself. 
Contrast this with the following: 
mov ax, Count 

MASM allows this ambiguous construction. (So 
does Turbo Assembler in MASM mode, of course.) 
The instruction seems to be loading Count into ax. 
But that's silly. Count is a label, a 32-bit address com
posed of 16-bit segment and offset values-and 32-
bit labels cannot be loaded into 16-bit registers. Only 
16-bit values can be loaded into 16-bit registers, and 
only 8-bit values can be loaded into 8-bit registers. 
Since it knows that this instruction is senseless, 
MASM assumes that you must be trying to load ax 
with the contents stored at the address of Count and, 
therefore, happily assembles the program as though 
you had written mov ax,[ Count] with brackets! 

Turbo Assembler in Ideal mode properly warns 
that you probably forgot the brackets around Count. 
Ideal mode can do this because it checks that the 
type of the destination (ax) is compatible with the 
source (Count). 

When you do want to load the value of a label into 
a register, you must specify which type-compatible 
part of the label is to be used. To assign the 16-bit 
offset value of the label Count to ax, relative to the 
segment that declares the label, you must write: 
mov ax, OFFSET Count 

Both Turbo Assembler (in all modes) and MASM 
correctly assemble this instruction. When the pro
gram runs, the 16-bit offset address of Count is 
moved (copied) into ax. The danger here-and the 
reason that Ideal mode rejects the bracketless con
struction-is that you might easily forget to type the 
OFFSET keyword when referring to the label's ad
dress. If you do this in MASM, the assembled code 
mistakenly refers to the contents stored at this ad
dress, and you won't know something is wrong until 
the program begins to misbehave. Turbo Assembler's 
Ideal mode spots this and other subtle mistakes dur
ing assembly, thus helping you to write programs 
that run as you intend. Unlike MASM, Ideal mode 
never tries to decide what you "really" mean! 

OTHER IDEAL-MODE FEATURES 
Another important Ideal-mode feature is a new job 
description for a useful assembly language employee
the lonely dot. In MASM, dots have many jobs. Dots 
begin some directives (.LIST and .RADIX), but not 
others (INCLUDE and COMM). Dots separate struc
tures, as in CUSTOMER.ADDRESS. Dots are used in 
floating point numbers (5.2) and in some commands 
(.386) that look like numbers, but aren't. It's enough 
to drive you batty, if not dotty. 



The Ideal dot. In Turbo Assembler's Ideal mode, 
dots never begin keywords. Period. Dots always sep
arate identifiers in structures and unions, and mark 
the decimal places in floating point numbers. 

Since no Ideal-mode keyword begins with a dot, 
some MASM directives are necessarily different, as 
shown in Tables 2 and 3. For instance, the MASM 
command .286 (which enables 80286-processor in
structions) is P286 in Ideal mode. Ideal mode com
mands that begin with percent signs, such as %LIST 
and %NOCREF, affect program listings. These 
changes help clarify programs and make them easier 
to read. In Ideal mode, you always know a command 
when you see one. Even better, you don't have to 
hunt through the manual to find out whether a com
mand requires a leading dot. 

MASM Mode 

.CREF 

.LALL 

.LFCOND 

.LIST 

.SFCOND 

.XALL 

.XCREF 

.XLIST 

Ideal Mode 

%CREF 
%MACS 
%CONDS 
%LIST 
%NOCONDS 
%NO MACS 
%NOCREF 
%NO LIST 

Tab/,e 2. Ideal mode versus MASM listing controls. 

MASM Mode Ideal Mode MASM Mode Ideal Mode 

. 186 Pl86 .ERR2 ERRIF2 

.286 P286N .ERRB ERRIFB 

.286C P286N .ERRDEF ERRIFDEF 

.286P P286 .ERRDIF ERRIFDIF 

.287 P287 .ERRDIFI ERRIFDIFI 

.386 P386N .ERRE ERRIFE 

.386C P386N .ERRIDN ERRIFIDN 

.386P P386 .ERRIDNI ERRIFIDNI 

.387 P387 .ERRNB ERRIFNB 

.8086 P8086 .ERRNDEF ERRIFNDEF 

.8087 P8087 .ERRNZ ERRIF 

.FARDATA FARDATA .CODE CODESEG 

.FARDATA? UFARDATA .CONST CONST 

.MODEL MODEL .DATA DATASEG 

.RADIX RADIX .DATA? UDATASEG 

.ERR ERR .STACK STACK 

.ERR! ERRIFI 

Tab/,e 3. Ideal mode versus MASM dot commands. 

Nesting and field names. Ideal mode structures and 
unions can also be nested (this is an illegal opera
tion in MASM). In addition, field names that are in
side one structure can be the same as the field 
names that are inside another structure. The ability 
for two or more structures to have the same field 
names is especially helpful during the manipulation 
of linked lists with many structures, where all link 
fields in various records are named something like 
NextRec and PrevRec. MASM requires unique 
names to be invented for fields in all records, even 
when the fields have identical purposes. 

PROGRAMMING IN IDEAL MODE 
Other major differences between MASM and Ideal 
modes are best described by example. Listing 1 is an 

Ideal mode program that displays a disk directory. 
This program incorporates a single directory "search 
engine" that is similar to the search engines for 
Turbo Pascal and Turbo C presented elsewhere in 
this issue. 

To create and run DR.EXE, use the following 
commands: 

TASM DR 
TLINK DR 
DR 

After an initial comment line in the listing, the 
keyword IDEAL initiates Ideal mode. Although not 
shown here, the keyword MASM can be used to 
switch back to MASM compatibility. This lets you al
ternate between the two modes in the same listing as 
often as you like. 

Because the %TITLE directive begins with a per
cent sign, you know that this command affects listing 
output. Notice that a comment line (the text that fol
lows the semicolon) is allowed because the title 
string in Ideal mode must be enclosed in quotes. To 
create a listing file, assemble the program with the 
following command: 

TASM /L DR 

To generate a cross-referenced symbol table at the 
end of the listing, use this command instead: 

TASM /C/L DR 

Table 4 lists other command-line options that can be 
used during assembly . 

continued on page I24 

Get To Know 
Your Programs 

Inside! 
and Out! 

~~ Now you can analyze 
J llllllll · ·~:s"·:~ your programs with ( ill <~~;;:),~ [~0 unprecedented detail 

~'.'.1,•· '~~:.~~·~ with Inside!, a new . · ·~"::> · software package from 
_)." Paradigm Systems. 

Inside! allows you to examine 
111111, the route your programs take 

through execution counts, minimum, maximum and 
total elapsed times and a count of how many times 
each source line executes - function by function 
for popular Borland and Microsoft languages! 

---Now available---
Inside! Turlx> C Inside! Quick C Inside! Microsoft Fortran 
Inside! Turbo Pascal Inside! Quick Basic Inside! Lattice C 

Inside! Microsoft Pascal Inside! Logitech Modula·2 

Paradigm 
Systems 
Incorporated 
P.O. Box 152 Milford, MA 01757 
To Place Orders Product Support 

(800)537-5043 (508)4 78-0499 
Visa/Mastercard Accepted 

SYSTEMS· INCORPCJRATED lns1del is a trademark o1 Paradigm Systems lncorp()1ated 

September/ O ctober 1988 TURBO TECHNIX 123 



TURBO ASSEMBLER 
continued from page 123 

Option 

I A 
IC 
I D 
I E 
/ H 
/ I 
I] 
/ L 
/ ML 
/ MU 
/ MX 
I N 
/ P 
IS 
I T 
IW 
I X 
/Z 
I ZD 
/ ZI 

Description 

Order segments alphabetically 
Add cross-reference to listing file 
Define a symbol 
Emulate floating point instructions 
Display command-line syntax help 
Set include-file path 
Define a startup directive 
Generate a listing file 
Treat symbols as case-sensitive 
Convert symbols to uppercase 
Make public and external symbols case-sensitive 
Suppress symbol table in listing file 
Check for impure code 
Specify sequential segment-ordering 
Suppress messages on successful assembly 
Enable warning messages 
Include false conditionals in listing 
Display lines containing errors 
Enable line-number information in object file 
Enable debugging information in object file 

Tab/,e 4. Turbo Assemb/,er command-line options. 

The DOSSEG, MODEL, and STACK commands 
select the Small memory model, which is a good 
choice for most standalone assembly language pro
grams. Table 5 lists other memory models that can 
be used in both Ideal and MASM modes. 

Model 

Tiny 

Small 

Medium 

Compact 

Large 

Huge 

Description 

Code, data, and stack in one 64K segment 
Subroutine calls and data references are 
near. Use for .COM files only. 
Code and data in separate 64K segments. 
Subroutine calls and data references are 
near. Use for most .EXE files and small- to 
medium-size programs. 
Unlimited code size. Data limited to one 64K 
segment. Subroutine calls are far; data ref
erences are near. Use for large programs 
with minimal data. 
Code limited to one 64K segment. Unlimited 
data size. Subroutine calls are near; data ref
erences are far. Arrays limited to 64K. Use 
with small- to medium-size programs with 
many or very large variables. 
Unlimited code and data sizes. Subroutine 
calls and data references are far. Arrays 
limited to 64K. Use for largest program and 
data storage requirements, as long as no sin
gle variable exceeds 64K. 
Unlimited code and data size. Subroutine 
calls and data references are far. Arrays not 
limited in size. Pointers to array elements 
are far. Use for largest programs where one 
or more variables exceed 64K. 

Table 5. Turbo Assemb/,er memory models. 

Four equates (which use the EQU directive) asso
ciate constant values with the identifiers: Attribute, 
FileName, Cr, and U. During assembly in Ideal 
mode, equates are stored as text As a result, expres
sions are not evaluated until the program uses the 
equated identifier. At that time, the associated text re
places the identifier in a process similar to the oper
ation of a macro. In the sample listing, the equates 
are simple numbers. Suppose, however, that you 

124 TURBO TECHNIX September/ October 1988 

have the following equates: 
c 4; 
Value EQU C+10; 
c 9; 

In MASM mode, Value equals 14 because Turbo As
sembler evaluates the expression C+ 10 when read
ing the EQU declaration. In Ideal mode, Turbo As
sembler evaluates C+ 10 at the place where the Value 
identifier later appears in a program statement. The 
difference is important Because the second equate 
redefines C to 9, Value in Ideal mode equals 19, not 
14 as it would in MASM mode. (Here, an equals sign 
is the same as EQU, but allows the value associated 
with an identifier to be changed.) In Ideal mode, you 
can be certain that C+ 10 uses the value of C because 
C exists at the place in the program where the 
equated identifier appears. 

In Listing 1, DATASEG defines the program's data 
segment, which is the memory storage area for vari
ables. Two of these variables are strings. FileSpec, 
which is an ASCIIZ string that ends with a zero byte, 
holds the directory search wildcard (identical to wild
card expressions such as *.PAS or TEST.* in DOS 
DIR commands). The program uses CrU (a peculiar, 
although common, kind of DOS string that ends with 
a dollar sign) to display blank lines. The third vari
able, DTA, reserves 128 bytes for the DOS directory 
search functions. 

The program's code segment begins at the key
word CODESEG. The comments to the right of each 
line describe the assembly language instructions. No
tice how OFFSET keywords specify label addresses. 

The DATASEG and CODESEG keywords demon
strate Turbo Assembler's simplified memory seg
ments. (Similar keywords are available in MASM 
mode.) You can always define segments the hard way 
by using SEGMENT directives, as required in early 
versions of MASM. Most times, however, you can use 
the simplified directives and select an appropriate 
memory model from Table 5. 

PROCEDURES AND LOCAL LABELS 
Assembly language procedures, which are optionally 
delimited by the PROC and ENDP directives, resem
ble BASIC subroutines more than Pascal procedures 
or C functions. As Listing 1 shows, the name follows 
the PROC directive in Ideal mode; MASM reverses 
this order. 

Notice the labels @@tlO:, @@t20:, and @@t30: 
inside DirSearch. Farther down, two of these same 
labels appear again. After a LOCALS directive (not 
required in Ideal mode), labels that begin with @@ 
are local to the portion of the program that is sepa
rated from the rest of the program by nonlocal labels. 

Local labels, which can be used in both Ideal and 
MASM modes, have two main purposes. A local label 
can define a temporary destination for a jump, such 
as the jmp @@tlO instruction in procedure Dir
Search. More importantly, a local label can also elim
inate the worry that you may have used the same 
label in another part of the program. The use of lo
cal labels avoids the annoying MASM error "Symbol 
already defined," because unique labels no longer 
have to be invented for every last destination in your 
program. 



Local labels are not merely convenient, however. 
They can also help prevent serious bugs by restrict
ing short jumps to small sections of code. For exam
ple, if you misspell or forget to define the @@tlO: 
label in procedure DirSearch, the jmp @@tlO in
struction cannot accidentally jump into the middle of 
the next procedure, which also contains a label 
@ @tlO:. The bug is prevented because the nonlocal 
label ListDir lies between the local label @@tlO: 
and the jmp @@tlO instruction. 

AN ASSEMBLY LANGUAGE SEARCH ENGINE 
Listing l contains a procedure, DirSeareh, that 
searches the current directory for a given file spec
ification (which may contain wildcard characters) 
and a file attribute byte. DirSearch uses the DOS 
Find First and Find Next functions (as described in 
"A Directory Search Engine in Turbo C" on page 74 
of this issue). To use DirSeareh, extract the proce- · 
dure DirSeareh from the program and include it into 
your own program. Call DirSeareh with ds:dx ad
dressing a null-terminated file specification string. If 
you desire, assign a set of attributes to ex that limits 
directory entries to those entries that are marked 
with the Archive, Hidden, or other flags. Otherwise, 
set ex to zero to ignore file attribute settings. 

Assign to bx the code-segment offset of a proce
dure to be called by DirSeareh each time a matching 
file is found. The corresponding procedure in List
ing 1 is ListDir, which simply transfers one filename, 
a character at a time, to the standard output through 
DOS function 2. In your own procedure, you might 
further examine the filename or other information 
stored in DTA and take appropriate action. (Consult 
a DOS reference for the offsets to various directory 
items.) For example, filenames could be transferred 
to an array and a sorted directory displayed later in
side a window. Or, you could search for two different 
filename endings and list all *.EXE and *.COM files 
(a fancy pattern-matching scheme that DOS cannot 
provide from its command line). The choices are 
limited only by your imagination. 

After all, isn't that the reason why you've decided 
to learn-or why you're already using-assembly 
language? Like no other programming language, 
assembly language offers the most flexibility for the 
implementation of your software dreams. 

If you've been meaning to learn assembly lan
guage, or if you're tired of fighting MASM's crock of 
quirks, take a look at Turbo Assembler and try a few 
examples in Ideal mode. I think you'll be pleased. 
Undoubtedly, some MASM fans will hear about Ideal 
mode and say, "If it ain't broke, why fix it?" I say, 
"It's been broke all along, and the repair truck has 
finally arrived." • 

Tom Swan is the author of Mastering Turbo Pascal 4.0, 
Second Edition (Howard W Sams). Barring World War 
Ill or, even worse, a coffee bean shortage, Tom's new book, 
Mastering Turbo Assembler, will be availabl,e early in 
1989. 

Listings may be downloaded from Library 1 of Compu
Serve forum BPROGB, as TADIRARC. 

LISTING 1: OR.ASM 

;·· Display disk directory. llritten by Tom Swan in Turbo Asseftt>ler. 

IDEAL 
XT I TLE "DR . ASM" 
OOSSEG 
MODEL SNll 
STACK 256 

; Switch on Ideal .:de 
; Cornnentl allowed in titles! 
; Use standard segments 
; 64K code; 64K data 
; Reserve space for stack 

Attribute EQU 0 
30 
13 
10 

; Attribute for DirSearch 
FileName EQU ; Offset to file ,,_ in OTA 

; ASCII cerdage return Cr EQU 
Lf EQU ; ASCII line feed 

OATASEG 

FileSpec 08 ....... , 0 
Cr, Lf, 1S 1 

128 DUP (7) 

; ASCllZ (null-ending) string 
; Carriage return, line feed CrLf 08 

OTA DB ; 128-byte 1.11itialized buffer 

COOESEG 

Start: 
lllOV ax,ik:late ; Initialize DS to address 
lllOV ds,ax of data segment 
lllOV dx, OFFSET OTA ; Tell DOS to use our 
lllOV ""· 1ah disk transter area (OTA) 
int 21h ; Call DOS, assign OTA addreaa 

taOV bx, OFFSET ListDir ; Address Lis to i r subroutine 
taOV ex, Attribute ; Assign attribute to ex 
lllOV dx, OFFSET FileSpec ; Address wild card string 
call Di rSearch ; Search and list di rectory 

lllOV ax,04C00h ; End whh exit code • 0 
int 21h ; Return to DOS 

0 i rectory Search sli>rout i ne 
l"'°t: bx = address of subroutine to call for each Ntch 

ex = attribute(s) to match 
ds:dx = address of ASCllZ wild card string, e.g. "*.PAS" ,0 

PROC DirSearch 
lllOV 

""· 4eh 
; Find-first f<.netion nuibtr 

j"" short ilit20 ; JU"P into loop 
allt10: 

taOV ah, 4fh ; Find-next f<.netion nuibtr 
allt20: 

int 21h ; Call Dos, find first/next 
jc ilit30 ; Exit when done 
call bx ; Call user s'-*>routine 
j.., allt10 ; Continue searching 

ilit30: 
ret ; Return to call er 

ENDP 

List directory entry sli>routine 
l"'°t: OTA contalna one directory entry from DirSearch 

PROC L fstD i r 

ilit10: 

lllilt20: 

ElllP 

cld ; Clear direction flag 
taOV si. OFFSET DTA+FileName ; Address file ,,_ in OTA 

lodsb 
or al, al 
je allt20 
mov ah, 2 
IOOV dl, al 
int 21h 
j111p aolt10 

.av 

.av 
Int 
ret 

END 

""· 9 dx, OFFSET CrLf 
21h 

Start 

; al<-name[sil; si<·af+1 
; Is al = 0? 
, If al = 0, jurp to exit 
; Display-char f<.netion nurt>er 
; llove char to dl 
; Call DOS, print character 
; Do next character 

; Display ASCllS string 
; Assign offset to CrLf string 
; Call DOS, print string 
; Return to caller 

; End of text. Progr'"" entry point. 

September/ October 1988 TURBO TECHNIX 125 



A reliable tool for parsing strings 
is needed to split Paradox fields into suhfields
MATCH fills the bill. 

Bill Cusano 

Sooner or later it's going to happen: Your 
database needs will eventually grow to the 
point where you need to restructure a ta
ble to provide more detail. A 5000-record 
name and address table that contains city, 

PROGRAMMER state, and zip code information in a single 
field is a perfect example. If you want to restructure 
the table so that city, state, and zip code each have 
their own field, you have a serious problem. 

The solution is a parsing tool that splits the ad
dress field into its three components: city, state, and 
zip code. In the grammatical sense, parsing means to 
split a sentence into its grammatical components 
(i.e., subject, verb, object, and so forth). What's 
needed here is a variation on that theme- a method 
of splitting a string along some logical boundary, 
such as a comma, a space, or some other combina
tion of characters. 

THREE ON A MATCH 
A PAL function , called MATCH, provides a way to 
match a string against a pattern. The syntax of 
MATCH is: 

MATCH(String, Pattern, [Vars]) 

String is the text string to be tested, Pattern is a 
string template against which the string is matched, 
and [Vars] is an optional list of variables used in seg
menting the string on the first occurrence of a pat
tern match. To see how this type of parsing can help 
solve our problem, let's look at a few typical strings 
that contain city, state, and zip code data: 
"S.::otts Valley, CA 95066 11 

"Los Angeles, CA 9006611 

"Redmond, IJA 98073 11 

"East Hartford, CT 0610811 

The four lines shown above contain similar logical 
boundaries between the separate data elements that 
are to be extracted. All of the lines contain at least a 
comma between the city and state information, and 

126 TURBO TECHNIX September/ October 1988 

at least one space between the state and zip code in
formation. This pattern is consistent through all of 
the strings. 

Defined concisely, the pattern consists of a vari
able number of characters for the city, followed by a 
comma and one or more spaces, followed by two or 
more characters that represent the state, and ending 
with one or more spaces followed by the zip code. 

In PAL, the double period ( .. ) in a pattern string 
represents any number of alpha, numeric, or special 
characters. The double period can be used to build 
the pattern just described. The first part of the pat
tern string contains a double period to represent the 
variable number of characters (including spaces) 
that comprise the city information. This double pe
riod is then followed by a comma and a space ( .. ,) to 
indicate the logical break between the city and the 
state. 

Another double period followed by a space ( .. ) 
represents the pattern for the state information and 
its separator from the zip code. Although each state 
is represented by only two characters, we can't be 
sure how many spaces will precede the state infor
mation, so the double period is used just to be safe. 

A final double period represents the zip code and 
the complete pattern string becomes " .. , .... ". A vari
able name must be present to receive each segment 
of the information (i.e., each portion represented by 
a double period); the variable names City, State, and 
Zip are used in this example. A MATCH function 
can then be stated for each of the example strings, 
as shown in Figure 1. 

Tidy as they seem, these MATCH invocations 
won't do the job in all cases. In all except the first ex
ample string, in fact, the value of the variable State 
is set to a single space character because multiple 
spaces are present between the comma and the state 
code. In such a case, the middle double period ( .. ) in 
the match pattern picks up the second blank space 
after the comma and considers that blank space to 

continued on page 128 



Version 
2.1 

In Paradox, you create many tables and often quite a bit of confusion. 
How many times have you asked yourself: 

• I have many tables in several directories. how can I keep track of them? 
• Ne my Field Types. Image Formats and Validity Checks consistent across my tables? 

• I renamed my "'Staff" table to "'Employee", where do I have to make Tablelookup changes? 
• How much disk space is used by a table and its entire family? 

• What settings have I placed in reports (length, width. setup, etc.)? 
• How can I tell when my tables need to be restructured to remove wasted space? 

• Which of my tables are encrypted. write protected, or corrupted? 
• What rights have I assigned to each field for password protected tables? 

The 12 Paralex reports answer all of these questions. and many more. Paralex creates Data, Table and Password 
dictionaries that gather extensive information from your Paradox tables. 
The reports may be sent to printer. screen, or disk tile. Dictionaries are Paradox tables, so you have total flexibility. 
Paralex is menu driven, so it's easy to use. We can't imagine Paradox applications without Para Lex. 

Although Paralex list price is $149.95, 
you may order tor only $99.95 + $5.00 ship ping and handling. 

You may order by credit card, by calling 800-336-6644. Checks and Purchase orders may be sent directly to: 

Para lex requires Paradox 2 0 (or higher) ond o 640kb machire. Pera lex wos reviewed by the Paradox Users Journal, and Data Based Advisor 
Para lex is written is procedlJalized PAL code Registered Pora lex users will receive a disk with several useful procedures that went into the building of Para Lex 

Enhance the power of Paradox. 

With PlayRight. The fi rst ASCI I text editor designed especia lly for Paradox. PlayRight's mu lti-file editing, 
extens ive block operation , sc ript formatting, custom configuration and spool-printing capabi lities bring speed 
and efficien cy to your writing- and deb ugging. And, because it looks and feels like your bui lt -in PAL editor, 
it's easy to use. PlayRight snaps right into Paradox, instantly replacing the simple PAL editor. Instantly 
enhanc ing the power of Paradox . 

"P/ayRight is great - I can hardly imagine anyone 
who writes scripts being without this program ... 

- Doug Cobb 

The Burgiss Group 

Paradox Users Journal 
October I 987 

3332 Eastburn Road 

Co mpatible with Paradox 2.0 and 386. 

The Paradox'· Script Editor 

$129.95 30-day money back guarantee 

To p lace your cr edit ca rd order: 
800-262-8069 
For a free brochure, call 
704-552-9875 

Cha rlotte orth Carolina 282 10 

Paradox is a registered trademark of Ansa Software; Ansa is a Borland International Company. 



LISTING 1: CSZ.SC 

; SCRIPT: CSZ.SC 
; AUTHOR: Bill Cusano (516) 293 -6846 
; FUNCTION: Demonstrate using MATCH to parse a string 

PROC CSZSpl it(CSZ) 
PRIVATE x4 , x5 

The If statement below tests whether the string in CSZ 
matches a given pattern . The MATCH f1.<1Ction performs 
this test, ard if the test passes, variables City ard 
State are assigned the values of their corresponding 
patterns within the string . The double dot<- · > pattern 
used here accepts any nl.llber of characters or n&..ltbers in 
the position. 

If MATCH(CSZ," .. . • • ".City. State) THEN 

The WHILE conmard below tests, in each pass through 
the loop, that the string value of the variable State 
matches the qJOted pattern . Here, if the string 
contains a leading space, the loop contirues. The 
MATCH function performs a logical test for a 1Mtch 
ard, upon a match, it fills the variable x4 with all 
characters to the right of the leading space. 

WHILE MATCH(State, 11 • • 11 ,x4) 

Each pass through the loop causes the variable 
State to be reassigned to the value of x4. Thus 
the string loses its Leading blank space. 

State = x4 

ENOWHILE 

The \IHILE loop above would only be run if there 
are leading spaces in the string. If it does 
not rl.Xl, we need to assign the value of State to 
the variable x4, which is tested below . 

x4 = State 

Here, we're using MATCH again to separate out the 
State ard ZIP data from the remains of the string 
once City has been removed . 

If HATCH(x4," •••• ",State, Zip) THEN 

This WHILE statement removes leading spaces from 
Zip : 

WHILE MATCH(Zip, 11 • • 11 ,xS) 

Zip • x5 

ENDWH I LE 
ENO! f 

ENOIF 
ENOPROC 

; Below is a test program for procedure CSZSpl it: 

City = "" 
State = 1111 

Zip = nn 

ii 2,4 ? "Enter String: 11 
; Enter a string to split 

ACCEPT "A25" TO CSZ 
CSZSpl it(CSZ) ; Split city, state, ard ZIP from CSZ 

i 6,4 77 City ; Show the three fields split from string CSZ 
i 7,4 77 State 
a l!,4 77 Zip 
sleep 3000 

128 TURBO TECHNIX September/ October 1988 

PARSING STRINGS 
continued from page 126 

MATCH 
("Scotts Valley, CA 9506611 , 11 •• , •••• 11 ,City,State,Zip) 
MATCH 
("Los Angeles, CA 90066 11 , 11 •• , • • • • ",City, State, Zip) 
MATCH 
C"Rednond, IJA 9807311 , 11 .. , •••• 11 ,City,State,Zip) 
MATCH 
("East Hartford, CT 0610811 , 11 .. , •••• 11 ,City,State,Zip) 

Figure 1. A first cut at using MATCH to parse city, state, 
and zip information from a singlR string. This won't work 
correctly because there may be multiplR spaces between the 
components, and there's no way to match on multiplR 
spaces. 

be the state information. The Zip variable then con
tains all of the remaining information in the string, 
which includes both the state and zip code. 

To allow for extra spaces, the string must be split 
into two stages. In the first stage, the string is split 
into two pieces, rather than three. As a result of the 
following MATCH statement, the variable City con
tains the city information, and the variable State con
tains both the state and the zip code: 

MATCHC"Rednond, IJA 98073 11 , 11 •••• 11 ,City,State) 

Any leading spaces in the string in State can be 
trimmed by using another MATCH statement within 
a simple loop test, as shown in Listing 1. 

Once the city data has been parsed out, the same 
process is repeated in order to split the State string 
that now contains the state and zip code information. 
After copying State into a temporary variable named 
x4, the following invocation of MATCH performs the 
second split: 

MATCHCx4," •••• 11 ,State,Zip) 

Again, a WHILE loop should be used after the split 
to remove any leading space characters from the Zip 
string. 

LET'S SPLIT 
The CSZSplit procedure in Listing 1 demonstrates the 
versatility of the MATCH function in parsing the ad
dress string to produce separate city, state, and zip 
code strings. Once you add three new fields to the 
original table to house these values, you can loop 
through the expanded table record by record and 
store the values of the variables City, State, and Zip 
into the new fields. PAL can do it-problem 
solved! • 

Bill Cusano is the owner of Cusano Marketing, a consult
ing group that offers training and developer support mar
keted under the name "SablR Solutions. " 

Listings may be downloaded from Library 1 of CompuServe 
forum BORAPP, as ?MATCH.ARC. 



CAPTURING DIRECTORIES 
WITH SPRINT 
Sprint's gateway to DOS-the call command
lets you consider much of DOS's power 
as an extension of Sprint. 

Bruce F. Webster 

Quite apart from the expected text-pro
cessing features, Sprint's macro language 
offers considerable low-level access to 
DOS and to the computer itself. This is 
exemplified by Sprint's call command, 

PROGRAMMER which lets you execute DOS commands or 
external programs through DOS's Exec function. In 
this article, I'll present GetDirectory, a Sprint macro 
that illustrates how a technical documentation spe
cialist might take advantage of these features to cus
tomize Sprint for special needs-in this case, to eas
ily input a file directory summary without leaving 
Sprint. GetDirectory uses call to execute a DOS DIR 
<filespec> command, redirect DOS's output to a 
disk file, and then read the disk file into a document 
at the cursor position. 

DISSECTING A MACRO 
The Sprint source code for GetDirectory is given in 
Listing 1. Because of the terseness of the Sprint 
macro language-which resembles a cross between 
Forth and C-GetDirectory isn't very big. Let's dis
sect it, line by line, to see just how it works. 

The first line of code establishes the macro's name 
(GetDirectory). Macro names are not case-sensi
tive-GetDirectory and getdirectory are seen as the 
same by the macro compiler. When beginning a new 
macro, you must specify the macro name, followed 
by a colon. This signals the end of the previous 
macro (if any) and the start of the new macro. 

The command set QF "DIR.LST'' on the next line 
copies the string "DIR.LST" into the variable QF. 
QF is one of Sprint's 26 predefined string variables, 
which are named QO .. Q9 and QA .. QP. DIR.LST is 
the name of the temporary disk file that will hold the 
directory listing. 

A file specification for the directory listing is en
tered via the following line: 

message "Enter filespec: " set QQ 

This is a standard method for printing a prompting 
message on the status line and then reading in a re
sponse from the keyboard. In this case, the response 

continued on page 130 

LISTING 1: DIR.SPM 

GetD i rectory: 
asks for file specification, gets directory listing (redirected 
into t~ file), reads listing into file being edited, deletes 
t~ file 

GetD i rectory: 
set QF 110JR . LST 11 

1nessage "Enter f i l espec : 11 set QQ 
01ark { to QQ delete past iswhite } 
if (0 subchar QQ) { 

} 

tnessege 11 \nlook i ng for 11 message QO 
32 call 11comnand /cDIR 11 co 11 >11 QF 
read QF 
status 11 \nReading in results .. . 11 

32 call "cOlll118nd /cERASE " QF 

name of macro 
set name of t~ file 
get file specification 
delete leading balnks 
if f i l espec entered 

print message 
do DIR comnand 
start reading file 
print message 
ERASE t~ file 

else do nothing 

September/ October 1988 TURBO TECHNIX 129 



DIRECTORY CAPTURE 
continued from page 129 

is copied into variable QO. In general terms, the 
command message <string> prints <string> on 
the status line. The command set Q<n > may take 
an optional string value (as shown earlier). When 
the string value is present in a set command, the 
value is copied into the named variable. Since no 
string value is contained in the set command in Get
Directory, set waits for string input from the key
board. The string data read from the keyboard is 
then assigned to Q<n>. 

The mark command in the next line is somewhat 
tricky. The syntax mark{ ... } saves your place in the 
edit buffer, executes the commands within the curly 
braces, and then returns you to your position in the 
edit buffer. The command to QO states that you are 
now editing the contents of QO. The command 
string delete past iswhite deletes any leading white
space (blanks, tabs, and so forth) in QO. The aim is 
to remove any leading blanks that you might have 
entered in the file specification. 

The rest of GetDirectory is contained in a single 
if statement. Sprint's if statement general format is: 
if <expression> <conmand> 

Since each separate Sprint macro command can be 
considered an expression, combinations of com
mands that act as one expression must be enclosed 
in parentheses. Likewise, in order for the if state
ment to execute more than one command, the com
mands to be executed must be within curly braces. 

The expression (0 subchar QO) tests to see 
whether or not QO contains a file specification. The 
literal effect of (0 subchar QO) is to return the char
acter stored in QO[O]. If QO is nonempty, then the re
turned character is nonzero, which is equivalent to 
TRUE. If the expression resolves to TRUE, then the 
rest of the if statement is executed. If QO is empty, 
then the returned character is NULL (ASCII 0, the 
standard C end-of-string character), which is equiva
lent to FALSE-this means that the rest of the if 
statement is then skipped. 

The first line of the if statement's block calls mes
sage twice. The first invocation of message clears the 
message bar (by virtue of the leading \ n, which 
prints a new line) and displays the string "Looking 
for." The second invocation of message prints the 
file specification contained in QO. The two displays 
comprise a status message that's shown to the user 
while the directory is being read. 

The next line contains the DOS Exec command 
call. The number (32) that precedes call is a com
mand code that tells call not to switch to the DOS 
screen; as a result, the DOS operation happens invis
ibly. All of the strings that follow the call keyword are 
concatenated together and then passed to DOS 
through the Exec function. In this case, COM
MAND.COM is executed by using the / c directive to 
pass a command line to COMMAND.COM that con
sists of three items: "DIR," the file spec in QO, and 
the redirection command ">DIR.LST." In effect, the 
following DOS command is being executed from 
within Sprint: 

130 TURBO TECHNIX September/ October 1988 

DIR <filespec> > DIR.LST 

The output from the DIR listing is redirected to the 
file DIR.LST. 

Once created, DIR.LST must be read into the file 
that you're editing, by the read QF command. QF, if 
you remember, contains the string "DIR.UiT," 
which is the name of the file that contains the direc
tory data. The read QF command automatically dis
plays the message "Reading in DIR.LST. .. " and starts 
the reading process. 

The status command on the next line is very 
much like the message command, except that status's 
message is automatically erased as soon as another 
status or message command is executed. The status 
command is actually executed before Sprint finishes 
reading DIR.LST, so that status's message replaces 
the message displayed by the read command. 

The macro's last line uses the call command to 
execute COMMAND.COM again. This time, COM
MAND.COM is passed the command string "ERASE 
DIR.UiT," which deletes the temporary file DIR.LST 
once DIR.LST is no longer needed. 

FETCHING A DIRECTORY 
To use GetDirectory, run Sprint, key in the source 
code, and save the source code as DIR.SPM in your 
Sprint directory. Close that file and open a document 
file. Bring up the Utilities menu by pressing Alt-U. 
Select the Macros submenu and then choose the 
Load command. You'll be shown a list of all of the 
.SPM files in your Sprint directory; select DIR.SPM 
and press Enter. You've now loaded the macro and 
compiled it into Sprint. 

To use the macro, select the Utilities/ Macros/ 
Enter command. When the status line prompts you 
for the macro name, enter GetDirectory. Sprint then 
asks if you wish to Execute the macro or to Assign 
the macro to a key sequence. Press "!\' (for Assign), 
then press Alt-H to assign the macro to the Alt-H 
hotkey. (I present Alt-H as an example because it 
isn't used by the standard Sprint interface.) 

Now, move the cursor to some point in your file 
and press Alt-H. When the status line prompts you 
for a file specification, type"*.*" and press Enter. 
The message "Looking for*.*" appears on the status 
line, followed by the message "Reading in results ... ". 
The standard directory information for the specified 
files is then inserted at that point in your file. 

THE call OF THE WILD 
The techniques embodied in GetDirectory can eas
ily be adapted to other purposes. For example, you 
could reproduce the Utilities/ DOS command func
tion for use within a custom user interface. The call 
command could be set up to run another program 
instead of COMMAND.COM. call is your gateway to 
DOS-let your imagination go to work. • 

Bruce Webster is a computer mercenary living in Califor
nia. He can be reached via MCI MAIL (as Bruce Webster) 
or on BIX (as bwebster ). 

Listings may be downloaded from Library I of the 
BORAPP forum on CompuServe, as SPDIRARC. 



Introducing 
Sprint-

the professional, 
programmable 
word processor! 

SPECIAL OFFER: 
ONLY $99.95 ! 

t»a 
BORLAND 
INTERNATIONAl 



The race into the Age of 
Customization is on-led by 
Sprint.® You can use Sprint as 
js and be very happy with the 
way everything works for you 
-or you can easily customize 
Sprint to do everything 
your way. 

It's a completely 
customjzable word processor 
that. for example. lets you 
re-define keys, delete menu 
items. make your own short
cuts. invent your own menus. 
and use Sprint's online facil
ity to create your own quick 
reference cards. 

•customer satisfaction is our main concern ; if within 60 days or purchase this 
produc.t does not perform in accordance with our claims. call ou r customer 
service department. and we wlll arrange a refund. 

All Borland products are trademarks or registered trademarks ot Borland 
International. Inc. OUler brand and product names are trademarks or their 
respective holders. 
Copyright 01988 Borland International . Inc. Bl 12678 

Why walk when 

You're given the 
customizing power to avoid 
pop-up menus altogether-
if that's the way you like to 
work. Sprint can be com
pletely function-key-driven. 
and while Sprint's function 
key assignments are logically 
defined, they're easy to alter. 

Nothing goes slow 
when you Sprint! 

Sprint is fast. It scrolls fast, 
edits fast, switches between 
fi Jes fast. offers fast shortcuts 
and proves that the slow way 
is no way. 

Prices and specifications subject to change without notice. 

Minimum System Requirements: 

For the IBM PS/2 and the IBM ramil y or personal computers and all 100% 
compatibles. Requires PC-DOS (MS-DOS•) 2.0 or later. 256K memory (384K 
recommended ). and two floppy drives or a hard disk. 

You can work on up to 
24 files at once. divide 
your screen into as many 
as six windows. and never 
miss a beat because Sprint 
remembers which files 
you were working 
on last. 

Because Sprint brings 
you the speed you're 
used to with Turbo 
Pascal® and Turbo C,® 
it never wastes your 
time and true Turbo
performance is finally 
available in a text 
editor. 

To see just how 
much faster Sprint works for 
you, check out the compara
tive time tests. 

Sprint gives you six 
optional interfaces 
including EMACS 

The customizing you 
choose to do is one variation 
on Sprint's theme and there 
are six others. 

We give you free (for a 
limited time) Alternative 
User Interfaces for: 

• EMACS 
• WordStar® 
• Microsoft® 

Word 

• WordPerfect® 
• MultiMate® 
• SideKick® 

And you also get file 
conversions for: 

• WordStar 
• Microsoft Word 
• WordPerfect 
• MultiMate 
• DisplayWrite® 4 

(DCA RFT) 



you can Sprint? 
Sprint lets you use EGA 

and VGA cards for 43- or 
50-line displays; it directly 
reads ASCII files without 
conversion and saves files 
with hard carriage returns 
for electronic mail. 

You're given a built-in 
compiler with a syntax similar 
to C; separate source files; an 
extensive macro language; the 
ability to call DOS functions 
and much, much more. 

"Auto-Save" means you'll 
never lose your work when 
you Sprint! 

Forgetting to "Save" is a 
fact of life as are power out
ages, and it used to be that 
a power outage could wipe 

'i.L 5M,'i.THE 
SHERR · . Aw111ie 

222 Fo1.111tancA g5oos 
Ben Lomond' 5555 

(408) 555-

See how fast you can Sprint! 
,-- . -· ,·-·-··-···---

Save File' Top to Go To Line Search & Find 
Bottom2 1500 Replace3 Unique Word 

Sprint 1.0 5.9 .1 .1 1.6 3.3 
·--~·--~ 

WordPerfect 4.2 41.1 5.3 5.4 6.6 6.2 
--·· 

WordStar 4.0 4.4 4.6 4.7 17.1 13.8 
!----- ·-t- --

MS Word 4.0 9.7 .1 N/A 4.6 7.0 
I 

Tests were performed on a Multitech 286 AT (8 MHz). 640K RAM. ' file size 103K. ' 1636 lines. 
' 14 occurrences. Times shown are in seconds. (Benchmark details available upon request.) 

out everything you've done. 
Not any more. Your work is 
always safe when you Sprint. 

Sprint's "Auto-Save" auto
matically saves your words as 
you type, so if the lights do go 
out, you may be in deep dark-

ness but not deep trouble. 
Sprint's Auto-Save is more 
than "insurance," it's also 
invisible. You know it's there, 
but it does its job without 
interrupting yours. 

Stonewall Tiines 
The Employee Newsletter of Stonewall Brokers Inc 

May '88 ' . 

We'll Be Havin ' 
Some.Fun Parking Problems Employees of the 

Month 

10NAL osJECilVE: 
pROFESS ofessional e 

TI11s year's summer party 
will be held on Cowell 
Beach. down by Lhe Bom·d
walk. on F'1iday, \June 10th. 
It will s tart at hJgh noon. 
We will have two vollevbaJI 
courts. loads of beacJ{ 
chairs. and food and drink 
until well Into the evC'nlng. 
We'll encl with a bonfire and 
marshmallows. 

As you can see by the 
following chart. our llWe 
company Isn't so lil.tle 
anymore ... 

Congratulations to lhe fol 
lowing Stonewall employees: 

. company utilizing my pr 
. . . th a growing 

Pos1t1on wt 

Nove111ber 1987 
to 
Prese11t 

October 1986 

~ove111ber 1987 

At1g1tst ·1985 

toctobe r 1986 

April 1981 

t? ' "' ' 1qg5 

we·u be barbec11etng beef rib 
steaks. chicken thiihs. 
salmon steaks, and vf"..ge
table kabobs. Since we 
can't provide an four to 
everybody. be sure to sign 
up wHh Parly Planning for 
your choice of food before 
June l sl. We"ll also have 
salads. breads. vegetables. 
baked potatoes, a nd des
serts, as well as three or 
four dozen different items 
for your snacking pleasure. 

We want you to have as 
much fun as you did last 
year. but we've decfcled 
against serving and a llowfng 
alcohoUc beverages. Please 
don't bring any. 

Just lfkc last year, everyone 
will get a Stonewall Towel. 
Everything Is free, Including 
U1e suntan oil. 

If you want lo help plan the 
pnrty, rome on down dnd 
give us your ideas. We neC'd 

! •• 111 
''°'*'-''°"'"'''-

Until the new parkJng 
s tructure Is finished. we're 
going to continue having 
parking problems. If you 
can car pool w1th a friend. 
please do so {if you wanl 
names of people who live 
near you, contact Per
sonnel). Whatever you do. 
don·l take up two spares for 
any reason. ~flle vlsllor 
parking area Is for v:lsil'ors 
only. rmat's people who 
don'l work here.) 

TI1c garage Is scheduled to 
be completed by June 1st. 
It wtll provide covered 
parking for 60 cars and 
unroverecl parking for 
another 60. Since coverrd 
parking will be Jn such 
demand, we're going to 
devise a fair plan so that 
eve1yonc gets to enjoy IL 

w Annelle Christensen and 
Brad Dix.for selling up the 
new computer system: 

.J Dennis Feldman.JOr refer
ring a new large client; 

w Lora Mattos for her 
exquisite cooking: 

rJ Bradley Hughes and 
Adam Vonwal.for lf-teir 
record sales achlt."'ue
ments: and 

..J Tom Stanley for 
reorganizing the 
uxirehou.se. 

Promotions 

The President's Office ls 
pleased and proud to 
announce the following 
promotions: 

u Robert Schindler has 
been named Assistant 
Major Account Manager. 

"Belly Willards will 
replace Robert as Senior 
Account Representative. 

'-'Joy Flannery will be the 
new Jnfonnalion Systems 
Manager. · 

W·4Fonn 



You have a head start when you Sprint! 
Sprint WordPerfect MS Word 

1.0 4.2 4.0 

Maximum file size Disk Disk Disk 
Mail Merge Yes Yes Yes 
Thesaurus (integrated) Yes Yes Yes 
Windows Open (maximum) 6 2 8 
Files Open (maximum) 24 2 8 
Cross-Reference (dynamic) Yes No No 
Indexing Options 7 1 3 
Snaking Columns (chg# on same Yes Yes Not same pg. 
page) 
Parallel Columns Yes Yes Yes 
H-P LaserJet Support Full Full Full 
Postscript Support Full Text Full 
Mouse Support (integrated) Yes No Yes 
AutoSave (without interruption) Yes No No 
User Interface 
Define Shortcuts Dynamically Yes No No 
Run Alternative User Interface Yes No No 
Verify spelling as you type Yes No No 
Fully programmable macro language Yes No No 

Suggested List Price $199.95 $495.00 $450.00 

What you get when you Sprint! 

• Includes Auto-Save that 
saves your work without 
interrupting it 

• Sprint supports 350 popu
lar printers including 
HP LaserJet,® other laser 
printers and typesetters 
plus has Postscript® 
support 

• Supports multiple fonts. 
including downloadable 
fonts, in all sizes including 
scaled sizes 

• Includes file conversions for 
Microsoft Word, WordPer
fect, MultiMate, WordStar, 
and DisplayWrite 4 
(DCA RFT) 

• Includes Alternative User 
Interfaces for EMACS, 

SideKick. WordStar, Word
Perfect, Microsoft Word. 
and MultiMate 

• Comes with an integrated 
100,000-word speller and 
220,000-word thesaurus 

• Produces highly profes
sional output: long or short 
documents. cross-refer
encing, indexing, structured 
headings. tables of contents, 
word spacing, automatic 
kerning and ligatures as 
well as character substitu
tion for items like typog
rapher's quotation marks 

•Can be used "as is," cus
tomized by you and/or you 
can use the Alternative User 
Interface you already know 

Word Star MultiMate Adv. 
4.0 11,1.0 

Disk 128K 
Yes Yes 
Yes Yes 
1 1 
1 1 

No No 
3 No 

No Yes 

Yes Yes 
Partial Full 

No Text 
No No 
No No 

No No 
No No 
No No 
No No 

$495.00 $565.00 

INTERNATIONAL 

60-Day Money-back Guarantee* 

To order now. 
Call (800) 543-7543 



Special off er: 
Sprint for only $99.95! 

For registered Borland cus
tomers and for a limited time 
only (offer ends September 
30. 1988). Sprint is all yours 
for only $99.95t direct from 
Borland! 

The suggested retail price 
for Sprint is $199.95. We 
think $100.00 off is the best 
way we can show our appreci
ation for your loyalty and sup
port. (When you consider that 
many word processors are in 

the $500 to $600 range, that 
$99.95, including 6 alterna
tive user interfaces. should 
start looking even better!) 

Sprint works with today's 
hardware and will work with 
tomorrow's. Anywhere from 
an 8088 PC through a 386. 

It's already a major success 
story in Europe; it's the #1 
selling word processor in 

France (and everyone knows. 
50 million Frenchmen can't 
be wrong!) 

Sprint. It's the word pro
cessor you· d expect from 
Borland: the value. technical 
excellence and programma
bility you'd expect from 
Borland. Sprint. for your 
eyes only, $99.95. 

tPlus shipping and uix if appropriate. 

----------------------------- Section 5 
Chapter Heading 

• 

• 

• 

Scalable Font SALES AND MARKETING PLAN 

Box Drawing 

Section Heading 

Automatic Table-Referencing 

Footnote Capability 

Page Footing 

5.J 

desptte uzcreased )'ears our market sh 
we Will soen be a rompettt101: To maintam are has increased,/ 
l'lsual/y and tech1~';;:,~ncmg Oceanu.: Muszc s o~~,de~mg lead, 
pru:ed belou' all but thy superwr to all other n1ark o 2 which rs 
be announced m N. ; cheapest entr1.es Th et entnes and 

ew ork 's World Tracte C e new product unit J 
enter (see page 14) 

New Pricing for Video 2 5.2 
Marketing Tools 

National Oceanic Music Co . 
'"POrawon Report 



BINARY ENGINEERING 
Designing data structures, part II 

Bruce F. Webster 

L 
ast issue, I talked about a number of the 
basic data types and structures, and how to 
design them. In this issue, I'll explore an
other category of data types and will discuss 

some guidelines for data structure design. 

ENUMERATED TYPES 
An enumerated data type (or EDT) is a user-defined 
data type. In defining an EDT, you list (or enumerate) 
its possible values, which are identifiers enclosed 
within parentheses and separated by commas. Any 
of the enumerated values can then be assigned to 
variables that are declared to be of that data type. 
Figure 1 gives examples of a few EDTs in both Pascal 
and C, and shows how you might use them. 

Enumerated data types are actually disguised inte
ger constants. In Pascal, they're strongly disguised
you can't use these integer constants directly in inte
ger expressions unless they're converted first into an 
integer value via the Ord transfer function. In C, you 
can treat enumerated data types exactly like int 
values. In both languages, the first identifier has a 
default value of 0, the next has a value of 1, and so 
on. Thus, N identifiers map onto the integer range 
O .. N-1. As shown in Figure 1, C gives you the addi
tional ability to explicitly assign values to given iden
tifiers. In fact, since EDTs in C are really just inte
gers, most of the following discussion focuses on 
EDTs in Pascal. 

What issues are involved in the design of enumer
ated data types? The first issue is this: Why use enu
merated data types at all? Answer: To help document 
your program. When used properly, EDTs make your 
programs easier to read and modify. Compare the 
code shown in Figure 1 with that in Figure 2, which 
shows the Pascal code from Figure 1 with all EDT 
values converted to their corresponding integer 
values. It is not at all clear from the code what the 
values 9, 1, 5, and 3 represent; in fact, the first value 
is misleading, while the last value bears no apparent 
relation to what it represents. 

This brings up the second issue in EDT design: 
mapping. As defined in Figure 1, the values January 
through December in the EDT Months correspond 
to the integers 0 . .11. However, you may want these 
values to correspond to the integers 1 .. 12 for calcu
lation or other purposes. To implement this change 

136 TURBO TECHNIX September/ October 1988 

LISTING 1; TESTDAYS.PAS 

program TestDays; 

uses CRT;< for ClrScr, GoToXY, ClrEol > 

type 
Days = (Sun, Mon, Tues, Wed, Thurs, Fri, Sat, encl>ay>; 

const 
Dayfjame : arrey[DeysJ of string[SJ 
= ( 1 SlXl', 1 Mon 1

, 'Tues•, 'Wed', 'Thurs•, •Fri 1
, 'Sat•, 11

); 

var 
Today, Tomorrow : Days; 

function ToUpper(S : string) : string; 

var 
1,Len 
Ch 

: word; 
: char; 

begin 
Len := Length(Sl; 
for I := 1 to Len do begin 

Ch := S[IJ; 
if ('a' <=Ch) end (Ch<= 'Z'l 

then S [I) := ChrCOrdCCh)-32> 
end; 
ToUpper ;: S 

end; < of func ToUpper > 

function GetDey(Pr°""t : st r ing) : Days; 
( 

var 

writes out Pr°""t at (1,1) -- continues to pr°""t L.ntil 
the user enters a val id day name (Soo .. Sat) ; case doesn't 
matter •• returns the day value entered 

Ans : string[SJ; 
Day : Days; 

begin 
repeat 

GoToXYC1, 1); ClrEol; 
llrite(Pr°""tl; 
Readln(Ans); 
Ans : = ToUpperCAns); 
Day := SL.n; 
while (Dey<= Set) and (Ans<> ToUpper(DayName[Day))) do 

Day := Succ(Day) 
lilt i l Day <> encl>ay; 
GetDay : = Day 

end; < of func GetDay > 

begin < main body > 
ClrScr; 
Today : = GetDayC 'llh i ch day of the week is today? •); 
Tomorrow : = Succ(Todayl; 
if Tomorrow = endlay 

then Tomorrow : = Sun; 
\JritelnC 'Tomorrow is : ',DayHame[Tomorrowl) 

end . ( of program TestDays ) 



Turbo Pascal: 

type 
Days 

Months 

Coins 

var 
Today 
ThisMonth 
Coin 

begin 

(Sun, Mon, Tues, Wed, 
Thurs, Fri, Sat); 

(January, February, March, 
April, May, June, July, 
August, September, October, 
November, December); 

(penny, nickel, dime, quarter, 
halfdollar, dollar); 

Days; 
Months; 
Coins; 

ThisMonth := October; 
for Today := Mon to Fri do begin 

end; 
Coin := quarter; 

end. 

Turbo C: 

typedef enun { sun, mon, tues, wed, 
thurs, fri, sat} days; 

typedef enun { january, february, march, 
april, may, june, july, 
august, september, october, 
november, december } months; 

typedef enun { penny=1, nickel=5, dime=10, 
quarter=25, halfdollar=50, 
dollar=100} coins; 

main { 
days 
months 
coins 

today; 
thisMonth; 
coin; 

thisMonth = october; 
for(today = mon; today<= fri; today++) { 

} 

coin = quarter; 

} 

Figure 1. Some exampl,es of enumerated data types and how they are used. 

var 
Today,ThisMonth,Coins integer; 

begin 
ThisMonth := 9; 
for Today := 1 to 5 do begin 

end; 
Coin := 3; 

end. 

Figure 2. The Pascal code from Figure 1, with all EDT values converted to 
their corresponding integer values. 

in Pascal, you must actually expand 
the EDT definition and give it a 
new dummy initial value to map 
to 0. In C, another solution is 
available: Just assign the value of 
1 to the identifier january and the 
other months will follow suit, so 
that february will have a value of 
2, and so on. Figure 3 shows ex
amples for both languages. 

Note that the noMonth solution 
in Figure 3 has another advan
tage: It can act as a "null" value. 
When assigned to a variable, a 
null value indicates that the vari
able doesn't currently hold any 
particular month. This allows you 
to distinguish between variables 
that have actually been assigned 
a given value, and those which 
aren't currently being used. 

Another reason why you might 
want to "pad" the beginning or 
the end of an enumerated type 
with extra values (especially in 
Pascal) is range checking. Con
sider the code in Figure 4, which 
sets up a while .. do loop to cycle 
through the days of the week, and 
increments Day at the end of the 
loop. The problem is this: If 
range checking is enabled and 
Day = Sat, then the statement 
Day := Succ(Day) causes a run
time error. Why? Because the vari
able Day is only allowed to have 
the values Sun through Sat. Thus, 
Succ(Sat) is out of the range of the 
EDT, and therefore is undefined. 
One solution, shown in Figure 5, 
is to pad the EDT with an extra 
value at the end so that Day holds 
the value endDay after the last call 
to Succ. (Another solution, of 
course, is to turn off range check
ing, but that decision may return 
to haunt you later.) 

There's one last problem with 
EDTs: text I/O. Pascal doesn't 
support the reading of EDT values 
directly into an EDT variable, nor 
does it allow an EDT value to be 
put into a Write or Writeln state
ment. Your only real option with 
Pascal is to typecast the EDT value 
to some type (such as Char or In
teger) that's compatible with text 
I/O. C does let you treat enum 
variables just like any other inte
ger variable, but (as with typecast
ing EDT values in Pascal) that 
doesn't help you if you want to en
ter or display an actual EDT value, 
such as january or penny. 

continued on page 138 

September/ October 1988 TURBO TECHNIX 137 



Turbo Pascal: 

type 
Months (noMonth, January, February, 

March, April, May, June, 
July, August, September, 
October, November, December); 

Turbo C: 
typedef enLITI { noMonth, january, february, 

march, april, may, june, 
july, august, september, 
october, november, 
december } months; 

or 

typedef enLITI { january=1, february, march, 
april, may, june, july, 
august, september, october, 
november, december } months; 

Figure 3. Pascal and C adjustments to make an enumerated type line up with 
a given range of integers. 

type 
Days (Sun, Mon, Tues, Wed, Thurs, Fri, Sat); 

var 
Day Days; 

begin 

Day := Sun; 
while Day<= Sat do begin 

Day := Succ(Day) 
end; 

end. 

Figure 4. Code that generates a runtime error if range checking is enabled. 

type 
Days (Sun, Mon, Tues, Wed, 

Thurs, Fri, Sat, endDay); 

Figure 5. One solution to the problem in Figure 4. 

BINARY ENGINEERING 
continued from page 137 

The general solution here is to 
construct an array of strings that 
contain text equivalents of the 
EDT values, and then index the 
array by the enumerated type. For 
input, read in a string from the 
console, compare that string to 
each of the strings in the array, 
and use the corresponding EDT 
value when a matching string is 
found. To make the process case
insensitive, convert both strings to 
upper- or lowercase before the 
comparison. Similarly, the same 
array can be used to display or 
print the string that represents 
each EDT value as needed. I've 
provided the Pascal implementa-

tion of this solution in Listing 1; 
the C implementation is (as they 
say) left as an exercise for the 
reader. 

OUTPUT AND INPUT 
In this and my previous columns, 
I've talked a fair amount about 
some of the different data types 
and structures that you can have 
in a program. The question still 
remains: How do you go about de
signing them? The first step is to 
look at the output that your pro
gram requires. The ultimate pur
pose of a program is to produce 
output of some sort: text, data, 
graphics, electronic signals to 
hardware, or (in the case of many 
benchmarks) duration of execu
tion. The information that a pro
gram generates determines what 

138 TURBO TECHNIX September/ October 1988 

information it must track during 
execution-and the latter is the 
information that goes into your 
data structures. 

Anticipated input also affects 
the design of your data structures, 
since you need some way to hold 
whatever data the program might 
receive during execution, whether 
that be from a file, from the user, 
or from some other device. The 
input itself is ultimately deter
mined by the nature of the de
sired output. 

CALCULATION VERSUS 
STORAGE 
Just because your program outputs 
certain information doesn't mean 
that your data structures must 
hold that information. For exam
ple, a program that prints a mul
tiplication table doesn't need to 
hold the entire table in an array. 
Instead, the program can generate 
a value in the table and then print 
the value, based upon a few pieces 
of information. Likewise, a pro
gram that draws a circle on the 
screen only needs to know the cir
cle's center coordinates, its radius, 
the line width, and the line color; 
the program doesn't have to keep 
an actual copy of the screen 
image. 

The same principle holds true 
for the internal workings of the 
program. Suppose you write a 
spreadsheet program where each 
cell is represented by a record. 
You could choose to implement 
the spreadsheet as a linked list of 
those records, traversing the list to 
find the cells as you need them. 
With this method, records are 
created only for the nonempty 
cells. While this minimizes mem
ory usage, it does so at the cost of 
performance. As an alternative ap
proach, you could implement the 
spreadsheet as a two-dimensional 
array of the same records. In this 
case, you can access any cell di
rectly, and perform operations on 
the spreadsheet very quickly. Re
gardless of how small the actual 
spreadsheet is, however, a large 
amount of memory is used with 
this method, and the size of the 
spreadsheet is quickly limited. 

The above example represents 
a classic tradeoff in computer pro
gramming: speed versus memory. 



You can often make a program 
run faster if more explicit infor
mation is stored, but to do so re
quires additional memory. Like
wise, less memory is used if the 
minimal information is stored and 
the rest of the information is cal
culated as needed; however, the 
program will run more slowly. 

Which way should you go? That 
depends, of course, upon which 
resource is more limited: time or 
space. If you're trying to make the 
program run as fast as possible, 
then you can use memory to hold 
more explicit information. For ex
ample, I once wrote a graphics 
package that drew certain geomet
ric figures by calling a few trig 
functions (sin and cosine). Unfor
tunately, that process slowed 
things down. My solution was to 
create an array to hold all of the 
required values, and then to index 
into that array to get the values. 
The result was a significant im
provement in drawing speed, at 
the cost of the memory that was 
used to hold the array. 

On the other hand, if memory 
is limited, then you can afford to 
take the necessary time to calcu
late information as it's needed, 
rather than to calculate the infor
mation once and then store it. For 
example, if an application re
quires your program to check if a 
number is prime, standard numer
ical checks can be used to deter
mine "prime-ness," rather than 
using the method of storing a 
table of prime numbers. 

GUIDELINES 
What are the criteria to use when 
deciding which information will 
be stored and which will be calcu
lated? Here are a few: 

How often do you need this infor
mation? If it's used at only one or 
two spots in the program, you may 
be better off just calculating the 
information at those spots. On the 
other hand, if the information is 
used repeatedly-either within a 
loop or in many different places 
in the program-store the infor
mation in memory so that it can 
be quickly retrieved. 

How much space does the infor
mation use in relation to other 
data? If you're writing a payroll 
program, the paycheck amount 
can be calculated as needed and 

may not need to be stored. But in 
this case, you're only looking at a 
few extra bytes per record, so 
why not just store the paycheck 
amount? It may come in handy 
elsewhere. On the other hand, 
storing an entire multiplication 
table takes up far more space than 
the upper and lower limits that 
are needed to generate it. 

How much time does it take to 
calculate the information? The 
geometric graphics package men
tioned above was written for the 
Apple II, which has a fairly com
plex relationship between mem
ory locations and pixels on the 
screen. My program could make 
the necessary calculations to gen
erate the correct byte and bit mask 
values that tum a given pixel on 
or off. However, this process 
slowed things down too much. My 
solution was to set aside several 
hundred bytes of memory for two 
lookup tables that gave me the 
byte-and-bit information for every 
X,Y pixel location on the screen. 

Do you really need the informa
tion? It's easy to get into the habit 
of adding more fields to a record 
than you really need. When writ
ing a payroll program, for exam
ple, you might be tempted to put 
a lot of extraneous information 
into each record (date of birth, 
sex, height, weight) . Such informa
tion normally has no bearing on 
the determination of how much 
the person gets paid, so why store 
it? Remember: If it doesn't affect 
output, then you probably don't 
need it. 

Do you need to access "subsec
tions" of the information? If you 
write a program that prints a list 
of numbers in a series, then your 
best bet may be to simply generate 
the numbers as they are printed. 
However, if you need to reference 
specific numbers in that series, 
then storing the series in an array 
may be the better answer. 

How much storage space do you 
have to spare? If you've got a lot 
of space to work with, then go 
ahead and use it. The use of more 
space will improve performance 
and reduce program size and com
plexity. Likewise, if you're tight on 
memory, then look for ways to 
swap speed for space. Also, disk 
space can become critical as well, 
especially if you're using diskettes. 

How many instances of the data 
structure will you need? There's 
a difference between maintaining 
an address list of a few friends, 
and writing a database program to 
track 25,000 students. In the first 
case, you can store a lot of infor
mation for each friend, since 
you're unlikely to run out of mem
ory. In the second case, every byte 
in a record definition adds 25K to 
the database size, and memory 
disappears in a hurry. 

How critical is performance? In 
the case of the graphics package, 
performance was extremely crit
ical, so I elected to use a large 
amount of memory for the lookup 
tables, rather than to use a small, 
simple subroutine to perform the 
byte-and-bit calculations. Even 
though memory was also very 
tight, I chose to go for perfor
mance and look for memory sav
ings elsewhere. 

DESIGNS ON DATA 
Data structure design, like algo
rithm design, is both a science 
and an art. There are rules, guide
lines, and even formulae that you 
can apply in order to figure out 
the best solution to a given prob
lem. At the same time, an instinct 
for quickly narrowing down the 
choices comes with time and prac
tice-practice that includes a fair 
amount of trial and error. The 
trick is to be aware of the possibil
ities, and to look for new and dif
ferent solutions, rather than to 
always adhere to the same old 
methods. It may tum out that the 
old approach was the better one, 
but that's valuable information as 
well. As always, the best way to 
hone your programming skills is 
to sit down and write programs. 

In the next issue of TURBO 
TECHNIX, I'll continue with part 
three of this discussion, where I'll 
compare linked lists and arrays. In 
the meantime, happy coding. • 

Bruce Webster is a computer merce
nary living in California. He can be 
reached on MCI Mail (as Bruce Web
ster), and on BIX (as bwebster ). 

Listings may be downloaded from 
Library I of CompuServe forum 
BPROGA, as EDT.ARC. 

September/ October 1988 TURBO TECHNIX 139 



LANGUAGE 
CONNECTIONS 
Turbo Prolog 2.0 meets Turbo 
Assembler. 

Philip Seyer 

Because of its early association with the Jap
anese fifth-generation supercomputer proj
ect of the 1990s, Prolog has been called a 
fifth-generation language. Assembly lan

guage, on the other hand, gets as close to the nuts 
and bolts of the computer as is possible without us
ing binary. One wonders, then, why the Turbo 
Prolog programmer would ever consider "dirtying" 
his/ her hands with something as low-level as assem
bly language. Actually, there are a number of very 
good reasons to link your Turbo Prolog routines with 
Turbo Assembler. Two reasons that immediately 
come to mind are the resulting increase in speed 
and the reduction in code size. Another reason to 
use Turbo Assembler is to perform some of the low
level functions that are difficult to handle in Turbo 
Prolog. In this way, you can develop new predicates 
to further extend the capabilities of Turbo Prolog. 

This article will take you step-by-step through the 
Turbo Prolog/ Turbo Assembler connection. In the 
process, I'll examine how a Turbo Assembler pred
icate is created, and will show how to pass simple 
data types between the two languages. Ultimately, 
you'll walk away from this article with two new pred
icates-open and read-to open and read binary 
files. 

READING BINARY FILES 
Turbo Prolog provides the filemode predicate to 
open files in either text or binary mode. In text 
mode, Turbo Prolog translates certain characters so 
that the file is more readable. For instance, the se
quence ODOAH is interpreted as a carriage return/ 
line feed, which generates a new line. Binary mode, 
on the other hand, allows your program to read a 
file without making any such conversions. Since this 
process is particularly useful when reading binary 
files, this mode is called binary mode. 

Unfortunately, a couple of characters are special 
in Turbo Prolog. One such character, lAH, marks 
the end of a file. Therefore, whenever a file is read 
in binary mode and the character lAH is encoun
tered, Turbo Prolog thinks the job is done and ig
nores the rest of the file. One solution to this di
lemma is to write an assembler routine to read the 
file. 

140 TURBO TECHNIX September/ October 1988 

DUMP.PRO (Listing 1) shows a simple Turbo 
Prolog program that calls two assembly language 
modules. This program opens a file, reads each byte 
from the file, and then displays the bytes on the 
screen. DUMP reads any file, including binary files, 
and shows how to pass simple data types from Turbo 
Prolog to Turbo Assembler. 

Starting with the run predicate in Listing 1, the 
program creates a window, prompts the user for a 
filename, and then passes the filename to the read
FILE predicate: 

readFILE(FileNAME):-
open(FileNAME,FileHANDLE), 
FileHANDLE <> 255, 
repeat, 

read(FileHANDLE, 
NlJllberBYTESread,ReadBUF), 

processBYTECNlJllberBYTESread, 
ReadBUF), 

NlJllberBYTESread = O,!. 

readFILE takes the filename that is passed to it, and 
immediately calls open (which is written in Turbo 
Assembler). 

The first argument of open contains the name of 
the file to be opened (this filename is declared as a 
string). The second argument returns an integer 
value that corresponds to the file handle created 
when open opens the specified file. If the file can't 
be opened, then open returns the value of 255. The 
statement that follows the call to open checks to 
make sure that FileHANDLE is not equal to 255. If 
FileHANDLE is set to 255, this statement fails, caus
ing Turbo Prolog to backtrack to the second read
FILE clause: 
readFILECFileNAME):- !, 

removewindow, 
write("Sorry, unable to open ", 

FileNAME, 11 • 11 ),nl, 
exit. 

In the case where open returns a valid file handle, 
readFILE enters the repeat loop (for more on re
peat loops, see "Failing With Grace," TURBO TECH
NIX, Julyl August, 1988). The repeat loop continually 
calls read (also written in Turbo Assembler) to read 
a byte from the file that was just opened, and calls 
processBITE to write that byte on the screen. 



read takes FileNAME as its first argument, and re
turns two integer arguments: NumberBYfESread 
and ReadBUF. Normally, NumberBYfFSread is set 
to 1 to indicate that a single byte has been read from 
the file. ReadBUF contains an integer that repre
sents the ASCII code for the byte that was read from 
the file. Next, NumberBYfFSread and ReadBUF 
are passed to processBYfE, which displays on the 
screen the ASCII code of the character in ReadBUF. 
(Of course, this routine could also process the input 
byte in many other ways.) 

The terminating condition, NumberBYfFSread = 
0, returns true when the end of the file is reached, 
and terminates the repeat loop. Once the condition 
NumberBYfESread = 0 succeeds, readFILE also 
succeeds and control returns to run. Since there are 
no more subgoals to execute, the program ends. 

INTERFACING CONSIDERATIONS 
When passing an argument to an assembler routine, 
Turbo Prolog pushes that argument onto the stack. 
Turbo Prolog may push either the actual value of the 
argument or the address of the argument, depending 
upon the argument's data type. If the argument is an 
integer, for instance, the actual value is placed on 
the stack. On the other hand, if the argument is a 
string, then the address goes on the stack. Table 1 
summarizes the manner in which arguments are 
passed onto the stack. 

IF THE AND THE WHAT IS PUSHED 
ARGUMENT IS: VARIABLE IS: ONTO THE STACK IS: 

An output argument Any data type 4-byte address of the 
output argument 

An input argument String, symbol, or 4-byte address 
compound object 

An input argument Integer 2-byte value 

An input argument real 8-byte value (IEEE 
format) 

An input argument Char 2-byte value 

Tab/,e 1. A summary of how various data types are pushed 
onto the stack. 
There's no need to worry about the data type of 
return arguments, since Turbo Prolog always passes 
return values by reference. 

In addition to passing arguments to the assembler 
routine, Turbo Prolog pushes a four-byte return ad
dress onto the stack. This address is the location of 
the next instruction in the Turbo Prolog program 
where execution is to continue after the assembly 
language predicate finishes its work. For instance, 
consider the call to open, which passes two argu
ments: 
open(FileNAME,FileHANDLE) 

Recall that FileNAME is a string variable. According 
to Table 1, Turbo Prolog pushes the address of a 
string on the stack. Thus, the first argument on the 
stack is a four-byte address. Since FileHANDLE is a 

return value (as designated by the output How pat
tern in the global declaration), FileHANDLE is also 
passed as a four-byte address. Figure 1 shows what 
the stack looks like when open (in Listing 2) first 
starts its work. These initial conditions are called the 
activation record for the Turbo Assembler module. 

BOTTOM 

Address of FileNAME 4 bytes 

Address of FileHANDLE 4 bytes 

Return address to Turbo Prolog routine 4 bytes 

TOP 

Figure 1. The activation record for OPEN.ASM. 

It's good practice to push the contents of the base 
pointer (BP) onto the stack in order to keep the base 
pointer out of harm's way. That's because the calling 
program needs the contents of BP to be preserved. 
This step is performed as follows: 
PUSH BP 
MOV BP,SP 

Now BP, instead of the stack pointer (SP), can be 
used to access the stack. Keep in mind that whenever 
something is pushed onto the stack, the location of 
all of the items on the stack is changed. Figure 2 
shows what the stack looks like after BP is pushed 
onto it. 

BOTTOM 

+JO 
Address of FileNAME 4 bytes 

Address of FileHANDLE 4 bytes 
+6 

+2 
Return address to Turbo Prolog routine 4 bytes 

BP 2 bytes 
+o 

TOP 

Figure 2. The status of the stack after pushing the base 
pointer. 

DOS interrupt 21H (function 3DH) is used to open 
the file specified in DS:DX. This function requires 
that the string that represents the filename be an 
ASCIIZ (null-terminated) string. Since Turbo Prolog 
stores its strings as ASCIIZ strings, there's no need to 
convert the string. 

To get the address of FileNAME, the segment of 
the address must be moved into DS, and the offset of 
the address must be moved into DX. As you can see 
from Figure 2, the offset is at the position BP + 10, 
and the segment is at BP + 12. 

MOV DX, [BP]+ 10 
MOV OS, [BP]+ 12 

continued on page 142 

September/ O ctober 1988 TURBO TECHNIX 141 



LISTING 1: DUMP.PRO 

/* 

*/ 

NOTE : This program links in two externa l ob j ect 
fi Les: open . obj and read.ob j. Assenble these 
files using Turbo Assenbler . Be sure to CQOl> i le 
this program as a project. 

If COfll>iling as a project, create a project file 
called 11 dlJ'T1'.prj 11 with the following text: 

siirple 
open 
read 

To t()O\:)i le, choose "Project" from the "Cotrpi le" 
pul ldown menu, and select the appropriate project file. 

PROJECT "SIMPLE" 

global DOMAINS 
file= infi l e 
STR I NGLl ST = STR I NG* 
I NTEGERLl ST = l NT EGER* 

GLOBAL PRED l CATES 

openCSTRING, INTEGER) - Ci ,o) language asm 
read(lNTEGER,lNTEGER,INTEGER) - Ci,o,o) language asm 

PREDICATES 

run 
readfi le(STRING) 

repeat 
proces sBYTE ( l NTEGER, INTEGER) 

GOAL 

run. 

CLAUSES 

!****•************************* rll"l *******************************I 

run if 

makewindow(1,7,7, 11 Test of OPEN and READ routines 11 ,0,0,25,80), 
cursor (5, 10), 
write( 11Enter filename : 11

), 

read l n(F i l ename >, 
cl earwindow, nl, nl, 
readF I LE (Fi leNAME). 

/***************************** readf i le *************•*************I 

readFlLE(FileNAME) if 
open( Fi leNAME, Fi leHANDLE), 
FileHANDLE <> 255, /*Check for error in opening file*/ 
repeat, /* we backtrack to here if not EOF */ 
read( f i leHANDLE. NurberBYTES r ead, ReadBUF). 
processBYTE CNurberBYTESread, ReadBUf), 
NurberBYTESread = 0, ! . /* Check for end of file . */ 

readFILECFi leNAME) if l, 
removewi ndow, 
write("Sorry, l.Klable to open 11 ,FileNAME , 11 • 11 ),nl, 
exit . 

/********•••••••••••••••••••••• repeat ****************************I 

repeat. 
repeat if 

repeat. 

/**************************** processBYTE *************************I 

processBYTECNurberBYTESread, ReadBUF) if 
NurberBYTESread <> 0, 
write(ReadiUF, 11 11

), I. 
processBYTECO,_) if l, 

nl, 
write("End of file. 11

), 

nl. 

/*********************** END OF DUMP. PRO **************************I 

142 TURBO TECHNIX September/ October 1988 

LANGUAGE CONNECTIONS 
continued from page 141 

Before calling function 3DH, we need to take care 
of a few other registers. First, set AL to zero to 
specify that we want to open a file for reading. Since 
AH specifies the function call, set AH to 3DH. 

Once the registers have been set, make the call to 
int 21. If no problems arise, then intenupt 21 H 
opens the file and returns the file handle in the AX 
register. If DOS cannot open the file, the carry flag 
is turned on. The following instruction lets us easily 
check if the carry flag is set: 
JC FAILURE 

This instruction says, "If the carry flag is set, jump to 
FAILURE." If the carry flag is not set, the address of 
the file handle is assigned to DS:DI via the LDS 
instruction: 
LOS 01,DIJORD PTR [BP] + 6 

Next, move the contents of AX to the output argu
ment, and restore the DS and BP registers. There is 
one final bit of cleanup to do before control is 
returned to Turbo Prolog. Eight bytes must be 
popped off the stack for FileNAME and 
FileHANDLE (four bytes each). 

Listing 4 shows the read routine that actually 
reads the file that was just opened. The module is 
straightforward and well commented, so I' ll leave 
this module as an exercise for the reader. The 
overall connection is similar to the open routine. Be 
sure to save the original base pointer, and to move 
the stack pointer to BP. Also, don't forget to save 
Turbo Prolog's data segment. When returning to 
Turbo Prolog, remember to restore the original base 
pointer, along with the data segment. Finally, pop all 
"pushed" parameters off the stack. 

ONE STEP BEYOND 
This example demonstrates how to pass simple data 
types, such as strings and integers, between Turbo 
Prolog and Turbo Assembler. A number of unan
swered questions still remain. For instance, there's 
the question of how to handle complex structures, 
such as lists or compound objects. In addition, you'll 
need to know how to allocate memory for structures 
in Turbo Assembler in a way that's acceptable to 
Turbo Prolog. Finally, you may want to call a Turbo 
Prolog predicate from Turbo Assembler. The an
swers to these questions will be the subject of a fu
ture "Language Connections." • 

Philip Seyer is a composer, writer, and microcomputer 
analyst. He is coautlwr of Turbo Pro log Advanced Pro
gramming Techniques, TAB Books, Inc. 

Listings may be downloaded from Library 1 of 
CompuServe forum BPROGB, as PROASM.ARC. 



LISTING 2: OPEN . ASH 

CCMMENT •*********************************************************** 

This program rece i ves the address of an ASCI 12 string (a string 
that ends with a binary zero) . The string contains the name of 
a file that is to be opened. The program opens the file and 
returns an integer that acts as a file reference (a l so called 
a file handle). We return the f il e handle by plac i ng its 
address on the stack. 

10 
9 
8 
7 
6 
5 
4 
3 
z , 

<··- FIRST PARM (INPUT PARM) 

<·-- SECOllD PARM COOTPUT PARM) 32 BIT POINTER 

RETURN ADDRESS 

0 BP 

TOP OF STACK 

---------- ------ ----- --------- ------- --------------------- ---- ------ 0! 

A_PROG SEGMENT BYTE 
ASSUME CS: A PROG 

PUBLIC open_O -
open_O PROC FAR 

HOV SJ ,OS 
PUSH BP 
HOV BP,SP 
HOV OX, [BPJ+ 10 
HOV OS, [BPJ+ 12 
SUB AL,AL 
HOV AH,3Dh 
INT 21h 

JC FAILURE 

;save SI 
;save BP on stack. 
· BP = SP 
;get offse t address of filename 
;get segment addr . of filename 
; Set Al to 0 for read access 
;Specify open function 
; Invoke the interrupt 

LOS 01,0llORO PTR [BP] + 6 ;make OJ point to output parm 
SUB AH,AH 

FAILURE: 

HOV [Oil ,AX 
POP BP 
HOV OS,SJ 
RET 8 

HOV AX,OFFh 
LOS 0 I , OllORO PTR [BPJ + 6 
HOV [Oil ,AX 
POP BP 
HOV OS,Sl 
RET 8 

open 0 ENOP 
A_PROG ENDS 
ENO 

LISTING 3 : READ.ASM 

;Move AX to Fi leHANOLE 
;Restore BP 
; Restore OS 
;pop the parms off the stack 

;OFFh will be error flag 
;Make O I point to output pa rm 
; Move error value to FileHANDLE 
;Restore BP 
;Restore DS 
;pop the parms off the stack 

COMMENT * · · -- ---- ---- -·· ·-- -- -- -- -· -- --- · -· -· -- · · · -- · · -----· ······· · 

This program receives an integer on the stack. that refers to 
an open file . This numer is cal led a file handle. The 
Turbo Pro log program gets the file handle by calling the 
assenbl y language predicate 11 open. 11 F; leHANDLE appears at 
offset 14 on the stack. 

BOTTOM OF STACK 

15 
14 <--- 1st PARM (INPUT) FileHANOLE ( Z bytes) 
13 
12 ,, 
10 <- -- Address of 2nd PARM (OOTPUT) NliliJYTESread 
9 
8 
7 
6 <----Address of 3rd PARM (()JTPUT) OataBUF (4 byte pointer) 
5 
4 
3 
Z <··RETURN ADDRESS , 
0 <--BP 

TOP OF STACK 

A_PROG SEGMENT BYTE 
ASSUME CS: A PROG 
ASSUME OS : A=PROG 

PUBLIC read 0 
read_O PROC -FAR 

FAJ LURE: 

HOV AH,3Fh 
INT 3 

PUSH BP 
HOV BP, SP 
HOV SI ,OS 

HOV ex, 1 

AH :: 3F means read file 
This causes program to halt 
under debug 

Save base JX>inter on stack 
Set BP to SP 
Save Turbo Prolog program's 
data segment address 

ex rrust contain nurber 
of bytes to read 

Set OS : OX to po i nt to addrress OataBUF 

HOV OS, [BPJ +8 
HOV OX, [BPJ +6 

HOV BX, [BPJ+ 14 

; Put high word in OS 
;Put low word in DX 

; get t; le handle from stack 

Before calling I NT 21, make sure these conditions 
are satisfied : 

AH 3FH 
ex = file handle 
ex = numer of bytes to read 
OS:DX point to the address of the input buffer 

INT 21h 
JC FAILURE If carry flag is set 

ill!I> to FA I LURE 

Zero out the hibyte of the OataBUF var i able 

HOV OJ ,OX 
INC OJ 
HOV BYTE PTR [OlJ ,OOh 

OJ ·> lowbyte 
Make DI po i nt to hibyte 
Move zero to hi byte 

AX shows the numer of bytes read . So now we 
return this information to Prolog 

LOS 01,0llORO PTR [BPJ +10 

HOV [Oil ,AX 

POP BP 
HOV DS,SJ 

RET 10 

Make DS:OI point to 
the NlililYTESread variable. 
Move AX to Nll!6YTESread 

Restore the Base Pointer 
Restore calling progs data 
data segment 
Pop the parRIS off the stack 
4+4+2 

HOV AX,OFFh OFFh is hex for ·1 
LOS 01,0llORO PTR [BP] + 10 Set Nll!6YTESread to -1 
HOV [Oil ,AX To show read failure 
POP BP Restore BP 
HOV OS,SI Restore OS 
RET 10 Pop the parms off the stack 

The 10 after RET is critical. \Jithout h, the return to 
Turbo Pro log will be fouled up . 

lie put 10 after RET here because we need to pop the parameters 
that were pushed on the stack when this routine was cal led. 
This routine receives 3 argunent s on the stack: 

Fi leHANLE (2 bytes) 
Nll!6YTESread (4 byte pointer) 
OataBUFF (4 byte pointer) 

2+4+4 = 10, hence the 10 after RET 

read_O ENDP 
A PROG ENDS 
ENO 

September/ October 1988 TURBO TECHNIX 143 



TALES FROM THE . 
RUNTIME 
Reading the command line 

Bill Catchings and Mark L. Van Name 

T he fundamental purpose of the Runtime is 
to provide a common set of b_uilding bl?cks 
with which you can more easily and qmck
ly construct applications. Starting with this 

column, we turn for a while to the addition of signif
icant and useful new building blocks. 

Our first building block is a basic command parser 
and handler. Many applications use command lines. 
Even if you're not interested in buildi~g such an ap
plication, this example shows how to mtegra~e a 
completely new building block into the Runume. 

THE TALE 
A command handler insulates you from the messy 
details of reading and parsing a command line. It 
handles leading spaces, ignores blank lines, lets the 
user delete characters, and searches for a command 
match. The command handler presented in this ar
ticle also includes a routine, cmd_file, that redirects 
input from the standard input file (stdin) to another 
file. 

The command handler is driven with a list of com
mand keywords. The list should contain one or mo.re 
entries of the structure type cmd_key (see CMD.H , m 
Listing 1). Each entry in the list has three compo
nents: a command keyword, a routine to call for that 
command, and a pointer to the next entry. The "next 
entry" pointer for the last entry must be null. 

The command handler is fairly straightforward to 
use. First, declare a list of command entries. (You 
must write the routines for each of the commands. 
Fortunately, those routines are the functions that . 
your application provides.) The command proml?t is 
established by calling cmd_init with a prompt stnng. 
Next, call cmd_read to get a line of input from the 
user. Finally, call the command parser, cmd_parse. 

cmd_parse returns either a pointer to the com
mand entry that matches the user's entry, or else a 
null pointer. cmd_parse also returns the rest of the 
command line if the user entered a valid command. 
A null pointer indicates that the user's input did not 
match a command. In this case, you can call cmd_ -
error to print a standard error message. 

The command handler also handles lines that 
contain several commands in a row. For example, 

144 TURBO TECHNIX September/ October 1988 

consider the following command line: 

SET FOO ON 

In this case, cmd_parse returns the command SET, 
and moves the start of the input line to the "F" in 
FOO. Call cmd_parse again to parse FOO. Finally, 
call cmd_parse a third time to parse ON. 

It's important to note that, even though the com
mand entry structure (cmd_key) contains pointers to 
routines, the command handler does not use those 
pointers. The programmer must call the routine for 
the command that cmd·_key returns. This desigri lets 
your program ignore those routines in some cases, 
and possibly to not provide these routines for some 
entries. This flexibility is useful, for example, when 
cmd_parse must get both a command (for which you 
probably would call a routine) and its arguments (for 
which you would not call a routine). 

The complete command handler is in two files: 
CMD.H (Listing 1) and CMD.C (Listing 2). We sug
gest that you place CMD.H into your standard Turbo 
C include directory (usually \ TURBOC\INCLUDE), 
since you need to include CMD.H in order to use the 
command handler. 

THE RUNTIME 
This article assumes that you've already loaded the 
Runtime source and built all of its libraries. If you 
have not, use the Runtime's install procedure to 
build the directories and load the source files (see 
"Tales From the Runtime," TURBO TECHNIX,]ulyl 
August, 1988). Then change directories to the Run
time's CUB directory (usually\ TURBOC\LIBRARY
\ CLIB), and use the following two batch file com
mands to build all of the objects and libraries: 

CLIB all -1\turboc\include 
CLIBRLIB 

In addition, you must tell Turbo C to use these 
libraries rather than the standard libraries. To do so, 
run TC and select Options/ Directories/ Library di- . 
rectories. Assuming that you've used the standard di
rectory structure from our earlier columns, enter the 
following directories: 

C:\TURBOC\LIBRARY\CLIB; 
C:\TURBOC\LIB 

Turbo C now checks the modified libraries first, and 
then looks into its standard LIB directory for any-



thing that's not in those libraries. Choose Options/ 
Store Options, and be sure to answer "Y'' when 
Turbo C prompts you to overwrite TCCONFIG.TC. 

The next step is to add the new routines to the 
libraries. Change directories to the CLIB Runtime di
rectory, copy CMD.C to that directory, and then enter 
the following batch file command: 

CLIBREPL all crrd.c -1\turboc\include 

This batch file command updates all of the memory 
model libraries. You'll get the following warning 
message when you run this batch file for the first 
time: 
Warning: 'CMD' not found in the library 

This warning message appears because CLIBREPL 
removes each old object from the library before it in
serts the new object. Since our routines are not yet in 
those libraries, CLIBREPL cannot remove them; 
thus, it gives the warning and then adds our rou
tines. If you repeat this process later, you won't get 
a warning. 

TAKING ORDERS 
CMDTEST.C (Listing 3) tests the command handler. 
Since we've heavily commented CMDTEST.C, we'll 
only touch on a few key points that may not be 
obvious. 

To avoid problems with forward references, de
clare the routines for each command (exit, prompt, 
and execute) first. The problem of forward refer
ences occurs when you use a routine in a file before 
you present its code, as we do here. Without these 
declarations, the compiler complains that it doesn't 
know these routines when it encounters calls to 
them. An alternate solution to this problem is to 
change the order of the routines, so that each rou
tine appears before it's used. 

Place the commands into an array, main_cmd[], of 
cmd_key structures. Initialize each element of the ar
ray to point to the next element (with the exception 
of the last element, which must be a null pointer). 
You don't have to worry about declaring the size of 
the array; the use of brackets ([]) forces the compiler 
to handle that for you. While this example uses an 
array, that's not a requirement. Also, the command 
entries must be in a linked list, but their order 
doesn't matter. 

You can also use the same routine for more than 
one command, as shown by "exit" and "quit." Both 
of these commands use the standard C exit routine. 

The main program of CMDTEST.C uses cmd_init 
to set its prompt. The program continues to get com
mands until the user enters "exit" or "quit" on the 
command line. The loop first calls cmd_read to read 
a line, and then calls cmd_parse on that line to get 
a command (along with any arguments). If cmd_
parse returns zero, the user did not enter a legal 
command, so cmd_error is called. If the user en-

tered a legal command, the loop calls the routine as
sociated with that command, which is located in the 
main_cmd[] array. That routine is then passed with 
the rest of the command line. The command's rou
tine could use cmd_parse to parse the rest of the 
command line, although we do not do so in our 
example. 

execute uses cmd_file to redirect the command 
handler's input to the file whose name the user en
tered. prompt uses cmd_init to change the prompt to 
the string that the user entered after "prompt." 

INSIDE THE COMMAND HANDLER 
As with CMDTEST.C, CMD.H and CMD.C are 
heavily commented, so we suggest that you read 
them for a detailed explanation of the command 
handler. We will only touch on the high points here. 

The main contribution of CMD.H is the command 
entry data structure, cmd_key, which is described 
above. CMD.H also contains constants that limit the 
maximum line and prompt sizes, plus templates for 
all of the command handler's routines. 

CMD.C contains the source code for the routines. 
All of those routines share common variables that 
contain the input line, the prompt string, and point
ers to the input and output files. 

To avoid problems encountered when writing 
prompt in CMDTEST.C, cmd_init copies the prompt 
string to the command handler's internal prompt 
variable. We initially left the new prompt in the input 
buffer, which is where the new prompt is entered by 
the user. Since we saved only a pointer to that 
prompt, however, new text typed by the user ap
peared as the prompt the next time the command 
line was displayed. To avoid that problem, we main
tained our own copy of the prompt string. 

When a command does not match the command 
line, cmd_error simply displays an error message. 
You could place more sophisticated error handling 
into the program at this point, if you chose to do so. 

cmd_file changes the command handler's input 
file. After the caller opens the input file, cmd_read 
reads that file, closes it, and returns to std.in for in
put. This approach precludes nested command files, 
a loss that we decided was not significant for the 
basic command handler. 

cmd_parse parses the command line. The argu
ments to cmd_parse are the input line to be parsed 
and the linked list of possible commands. cmd_parse 
uses cmd_token to get the first token, and then se
quentially searches the list of possible commands, 
using cmd_compare to compare the token with each 
command key. cmd_parse handles exact matches, 
one or more partial matches, and no match. If an 
exact match or only one partial match occurs, then 
cmd_parse returns the matching key. Otherwise, it 
returns zero. 

cmd_compare compares the user's entry with the 
possible command keywords. cmd_compare returns 
CMD_MATCH for an exact match; otherwise, 
it returns CMD_NOMATCH. The constant 

continued on page 147 

September/ October 1988 TURBO TECHNIX 145 



LISTING 1: Cll>.H 

/* This file contains the information that we include in 
the conmand handler, OIO . C. 

We store the set of legal conrnands in a linked list of 
the fol lowing structures. The entry for each conmand 
contains the conrnand's keyword, followed by the function 
that we are to call if the user enters that keyword, 
and then a pointer to the entry for the next conrnand. 
The last entry has a zero in this pointer field. 
The conrnand handler tries to match the conrnand that a 
user enters with one of these conrnand keywords. */ 

typedef struct cmd_key_st 
( 

char *keyword; 
void C*funct ion)(); 
struct cnd_key_st *next_key; 

cmd_key; 

/* ~e define several general conmand handler constants. */ 

#define CMO MAX 
#define CMO=PR_MAX 

256 
40 

/* Maxirrun input line size */ 
/* Maxinin pr~t size */ 

/* We also define here all of the routines in CMO.C for any 
routine that might need to call them. Note that we define 
the argi.rnents for each routine so that Turboc C can 
verify that all cal ls to them use parameters of the 
correct type . */ 

void cmd_init( char *pr~t ); 
vo;d cm::! error<>; 
void cmd=file( FILE *ifp ); 
int cmd_carpare( char *key, char *token >; 
char *cmd_token( char **cmd_ptr l; 
cmd_key *cmd_parsec char **cmd_ptr, cmd_key *keys ); 
char *cmd_read(); 

LISTING 2: CM>.C 

/* This file contains the code for our conrnand handler . */ 

/* First we include several standard C include files, and 
then we include our carmand handler's include file, CMO . H. */ 

#include <stdio.h> 
#include <conio.h> 
#include <string.h> 
#include <cmd.h> 

/* For standard 1/0 functions */ 
/* For console 1/0 functions */ 
/* For string manipulation fLnCtions */ 
I* our conrnand handler's include file */ 

/* Now we define several constants that we use throughout the 
conrnand handler . These are result codes that cmd_compare() 
can return as it is ccxrparing what the user entered to the 
set of legal keywords. */ 

#define CHO NOMA TCH 0 
#define CHD=MATCH 1 
#define CMD_PART 2 

/* Input did not match any keyword */ 
/* Input matched a keyword exactly*/ 
/* Input matched a substring of a 

keyword */ 

I* Now we define several variables that we use throughout the 
conmand handler. */ 

char cmd_buffer[ CMD_MAX J; 
char cmd_pr~t [ CMD_PR_MAX J; 
FILE *cmd_ifp=stdin; 

FILE *cmd_ofp=stdout; 

/*Input line buffer*/ 
I* Storage for the pr~t */ 
/* Input file pointer. 

Initial Ly we get all input 
from the standard input 
device . */ 

/* output file pointer . 
Initial Ly we get all output 
from the standard output 
device . */ 

/* Now we define the conrnand handler's functions. Note that 
by defining every function before we use h we avoid all 
forward reference problems. */ 

/* The first function, cmd init(), sets the conmand handler's 
proopt. It does so by copying the proopt string from the 
container in wh i ch the caller passed it to our internal 
storage . It uses the standard Turbo C string copy function, 
and it copies up to the maxinin prompt size. It does not 
return a value. */ 

146 TURBO TECHNIX September/ October 1988 

void cmd_init( pr~t ) 
char *prorrpt; 

/* Note that it returns nothing. */ 

{ 

strncpy( cmd_prompt, proopt, CMD_PR_MAX ); 

/* end routine cmd_init() */ 

/* The cmd error() routine is more of a placeholder than anything 
really Useful. It just prints a generic error message . It 
has no argunents and does not return a value. */ 

void cmd error() 
( -

printf( "No conmand matches what you entered. \n" ); 

/* end routine crn::t_error() */ 

I* The next routine, cmd_file(), lets the caller re·direct the 
conmand handler's input from its default (or previous) source 
to a file. It takes the file pointer of that file as its 
only argument. It does not return a value. */ 

void cmd file( i fp ) 
FILE *ifp; /* pointer to the file that is to be the new 

input source *I 

/* Remember that the conmand handler gets its input from 
the file associated with the file pointer cmd_ifp. */ 

cmd_ifp = ifp; 

/* end routine cmd_fi le() */ 

/* cmd_compare COITpare a keyword with a token that cmd_parse has 
extracted from the user's input. 
It returns one of two codes: CMD_MATCH if the two strings match 
exactly, or CMD_NOMATCH if they do not exactly match. 

This is the routine where we would add partial keyword matching. 
It would return the code CMD_PART if the token were a substring 
of the keyword. *I 

int cmd_compare( key, token ) 
char *key, *token; /* the conmand and token it is to carps re * / 
{ 

int match; /* to get the comparison result from strcmpi() */ 

I* We use the standard library function strcmpi() to do the 
carparison. It does a case-insensitive coq:>arison. */ 

match = strc,,..:>iC key, token ); 

/* Now return the proper status ·· 0 hlCHcates a match. */ 
if ( match == 0 ) 

return( CMD_MATCH ); 
else 

return( CMD_NOMATCH ); 

/* end routine cnd_compare() */ 

I* cmd token() finds the first "token" in a line of user input. 
We define a token to be a stdng of characters that contains 
no spaces and that is fol lowed by either a space or an 
end-of-string null (\0). 

The input string should not contain any non·printable 
characters (such as carriage return or line feed), and it 
llUSt be terminated by a null. It is up to the caller to "18ke 
sure that this condition is true. Note that cmd read() always 
returns a string terminated by a ~ll, so this cOndition should 
not be a problem. 

This routh..e has one ar91.1nent, a pointer to a pointer to a Line 
of input text. 

After it finds the first token, it moves the input line pointer 
to point to the first character after the space after that 
token . (It replaces that trailing space with a null.) If the 
token ends with a null rather than a space, this routine leaves 
the input line pointer pointing at the null. */ 

char *cmd_token( cmd_ptr ) 
char **and_ptr; /* pointer to a pointer to a line of input text */ 
( 

char *save_ptr, 
*tmp_ptr; 

/* pointer to the start of the input line */ 
/* pointer to our current positiori in the 

input line */ 

/* Start both of our work pointers at the beginning of the line */ 

Listings continue on page 148 



TALES FROM THE RUNTIME 
continued from page 145 

CMD_PART is defined for the case where the user's 
input token is a substring of the keyword. cmd_parse 
is designed to handle that case, but cmd_compare 
does not yet check for partial matches. This is a po
tentially important enhancement. 

cmd_compare uses the standard library routine 
strcmpi to do a case-insensitive comparison. strcmpi 
returns 0 for a match. If no match occurs, strcmpi re
turns a negative or positive number to indicate 
which string is lexically "greater." 

cmd_token finds and returns the first token in the 
input line that it receives as an argument. cmd_token 
also updates the pointer to that line to point to the 
first character after the space that follows the token. 
A token is defined in the program as a string of non
space characters followed by a space, or by a null 
character that marks the end of the string. The caller 
of cmd_token must ensure that the input line ends 
with a null. (The string returned by cmd_read is so 
terminated.) 

cmd_token accepts all characters up to a space or 
a null. If cmd_token encounters a space, it replaces 
that space with a null, moves the input pointer past 
the space, and returns the token. If cmd_token en
counters a null, it returns the token that it found, if 
any. cmd_token ignores all spaces at the beginning 
of the line. 

cmd_read gets a line of input either from the con
sole (std.in) or from a command file that is set by 
cmd_file. cmd_read also handles 110 chores such as 
echoing characters, ignoring leading spaces and 
empty lines, and deleting characters. 

cmd_read uses getch to read from the console. 
getc is used to read from a file because getc only re
turns input when the user terminates the line by 
pressing Enter. Our program must examine every 
character, not just the entire line, so that we can pro
vide command editing features. 

One consequence of this choice is that input redi
rection at the DOS level will not work with our com
mand handler. Fortunately, this is generally not a 
problem for an interactive command line parser. 

cmd_read puts most of the characters that it en
counters into the input buffer. Newline characters 
and carriage returns are treated in a special way, 
since they mark the end of a line. cmd_read also 
handles an end-of-file character, which causes cmd_ -
read to close the input file and then reset the com
mand handler to read from the console. Backspaces 
receive special treatment as well, because they are 
used for character deletion. Spaces are handled dif
ferently because they must be echoed on the screen, 
but ignored at the beginning of a line. 

This design has two small flaws. First, because 
cmd_read ignores leading spaces and does not put 
them in the input buffer, they cannot be deleted. 
Second, if the user enters any other nonprintable 
characters, cmd_read puts them in the input buffer 

and passes them along. Remedies to these two flaws 
would improve the command handler. 

ANOTHER TALE 
We've already noted several useful improvements 
that you could make to this basic command handler. 
Many others are also possible, such as support for 
more than keyword parsing, with special codes for 
such things as numbers, filenames, and dates. You 
could also improve the basic data structure, perhaps 
by making the function field a union of a function, 
a pointer, or a number. With this modification, the 
caller could do more with the parsed command than 
just call a routine. 

Our next column will focus on one "enhance
ment" that is, in itself, a useful building block: 
improvements to cmd_read. A number of improve
ments can be made, including the ability to support 
the DOS command-line editing functions. But, that's 
another tale. • 

Mark L. Van Name is a freelance writer. Bill Catchings is 
a freelance writer and a software engineer at Data General 
Corp. 

Listings may be downloaded from Library 1 of Compu
Seroe forum BPROGB, as CMDLIN.ARC. 

dp_MA~ 

dBass III Too Is in 
Turbo PasGal 4.0 

Complete Suppod for dBase Ill files. 
DBF. NDX. DBT file & record Access. 

Fully Compatible dBase Ill B• Tree ISAM. 
Librat·y of 100• functions in TP4 Unit. 

Allotvs 250• files & indexes open at once. 
LRU file caching, rnund rnbin file managet· . 

-
I 

dB.A.SE III + 
dp_ MAX 

Turbo Pascal 4.0 

Max Sofhvat·e Consult ants. Inc. 
4101 Greenmount Avenue 

Baltimore, MD 21218 
13011-323-5996 

$149 

September/ October 1988 TURBO TECHNIX 147 



save_ptr = t""_ptr = *cmd_ptr; 

/* Loop until we hit 1 rYJtl. */ 
while ( *t""_ptr I= '\0' ) 

/* If we ar-e on a space, we nust process it . If not, we 
just increment the line pointer and move on. */ 

if ( *t""_ptr == ' ' > 
( 

} 
else 

/* If the space is at the begiming of the line, we 
ignore it by incrementing both our work and initial 
line position pointers, and then contirYJing in the 
loop to get the next character. */ 

if ( t""_ptr -= save_ptr ) 
( 

} 

tq:>_ptr++; 
aave_ptr++; 
continue; 

/* If we are not at the begiming of the line, we 
replace the space with a rYJll, move the pointer 
to the next character, and exit the loop. */ 

*tq:>_ptr++ = 1 \0 1
; 

break; 

tft1) ,J>t r++; 

/* Update input line pointer */ 

return( save_ptr >; /* Return pointer to token *I 

/* end routine cmd token() */ 

/* cmd_parse() gets the first token fran the input line and t~ies to 
find a conmand that the token matches. It also moves the input 
line pointer past the token. It returns either the conmand entry 
that the token matched or, if there was no match, zero. 

It has two argi..ments: a pointer to • pointer to a line of inp..it 
text, and a linked list of conmand entries.*/ 

cmd_key *cmd_parse( 
char **cmd_ptr; 

cmd_ptr, keys > 
/* pointer to a pointer to the input */ 
/*the linked list of conmands */ cmd key *keys; 

( -
char *token; /* pointer to the first token it finds*/ 

/* a pointer to a conmand entry that cmd_key *part_key=OL; 

int match; 
the token partially matches, if any*/ 

/* return code fran cmd_canpare() */ 

/* Get the first token fran the canmand line. */ 
token = cmd_token( cmd_ptr >; 

/* Now check to see if that token matches any of the conmand 
keys . Loop through the list of key entries and canpare 
each key entry to that token. *I 

while ( keys I= OL > 
( 

match = cmd_canpare( keys-> keyword, token ) ; 

/* If the token matches an entry exactly, return that 
entry . */ 

if ( match == Cl1D PIATCH 
return( keys ) ; 

/* If we find a partial match for the first time, save 
a pointer to that entry . If we find a partial 01Btch 
for the second time, the token is antiiguous, so we 

return no match C zero). *I 
if ( 11&tch == CIC> _PART ) 
( 

} 

if ( part_key I= OL ) 
return( OL ) ; 

else 
part_key = keys; 

/* If the token does not match the conmand key at all, we 
move on to the next conmand key. *I 

keys = keys->next_key; 

> /* end while loop*/ 

/* If we fall through the loop and 01Bke it to this point, we 
did not find an exact 11&tch. If we found only one partial 
1111tch, we treat it as an exact match and return the matching 
entry. Otherwise, we return no match (zero). */ 

if ( part_key I= OL ) 
return< part_key >; 

else 
return( OL ) ; 

/* end routine cmd_parse() */ 

148 TURBO TECHNIX September/ October 1988 

/* cmd read() gets 1 line of input, either fran the user or fran a 
1 flle to which the user has redirected the ccmnand handler's 
input. 

cmd_read() handles leading spaces and """ty lines. It also lets 
the user delete characters . It considers a line to be text 
that is terminated by either a carriage return or a line feed. 

It takes no arg1.111ents. It returns a pointer to the input line. */ 

char *cmd read() 
( -

char *cmd_ptr; 
int c; 

!* a pointer into the input buffer */ 
/* t"""°rary character holder * / 

/* start out pointing to the start of the input buffer */ 
cmd_ptr = cmd_buffer; 

/* Display the pranpt and then get input until the user 
terminates a line with a carriage return or line feed . */ 

printf( "\nXs", cmd_pranpt >; 
while ( 1 ) 
( 

/* If our global input file pointer points to stdin, 
use Turbo C;s console getch() function . This lets us 
see every character the user types, rather than having 
to wait 1.11til he enters 1 carriage return, as getc() 
does. We need to see every character to handle 
editing. Otherwise, use getc() to get input fran • 
file. */ 

if ( cmd_ifp == stdin 
c = getchO; 

else 
c = getc( cmd_ifp >; 

/* Now handle the input character . */ 
switch C c ) 
( 

/*If the input character is an end-of-file indicator, 
we nust have just finished processing a comnand 
file. Close that file. Then reset our global input 
file pointer to point to standa rd input so that 
we can get more input f nteract i 11e l y f ran the user. * / 

case EOF: 
if ( cmd_ifp I= stdin ) 
( 

fclose( cmd ifp >; 
cmd_ifp = stdin; 

} 

break; 

/* If the input character is 1 backspace, use it to 
erase the previous character. 
If we are at the start of the line, ignore it, 
because there is nothing to delete. 
Otherwise, pdnt backspace, space, backspace to 
erase the previous character. Then backup the 
buffer pointer. */ 

case '\010': 
if ( cmd_ptr == cmd_buffer 

break; 
printf( "\010 \010" ); 
cmd_ptr- -; 
break; 

/* If the input character is either a carriage return 
or 1 line feed, we may be done. Echo a newline. 
Then, if we are at the begiming of the line, re- type 
the pranpt and continue. 
Otherwise, we resl ly are done with this line. Put 
1 rYJl l in the buffer to terminate that string, and 
return a pointer to that buffer. */ 

case '\n': 
ease 1 \r 1 : 

putc( '\n 1
, crOO_ofp >; 

if ( cmd_ptr == cmd_buffer 
( 

} 

printf( 11Xs 11 , cmd_proq:>t ); 
break; 

*cmd_ptr = 1 \0 1 ; 

return( cmd_buffer ) ; 

!* If the input character is a space, it "1Btters 
whether we are at the begiming of the I ine. 
If we are, echo the space and ignore it. 
If not, treat it like any other character by 
falling through to the next case. */ 

case 1 1 : 

if ( cmd_ptr == cmd_buffer 
( 
putc( • •, cmd_ofp >; 

break; 



/* We assU'Tle all other characters are printable ones 
that could be part of a conmand. We just copy them 
to the buffer and echo them on the screen. * / 

default: 
*cmd_ptr++ = c; 
putc( c, cmd_ofp ); 
break; 

} /* end the switch statement */ 

/* end the character processing loop */ 

/* end routine cmd_read() */ 

LISTING 3: OOTEST .C 

/* This file contains a sirrple program that tests our corrrnend 
handler. 

We include in it both the standard Turbo C l/0 routines 
and our conmand handler include file. */ 

#include <stdio.h> 
#include <cmd.h> 

/* standard l/0 routines */ 
/* Conmand parser definitions */ 

/* We define several of the routines in this file to avoid 
forward reference errors. */ 

void exitO; 
void prarptO; 
void execute(); 

/* main_cmd is en array of key entries that define our test's 
legal conmands. We use the cmd key structure from CMO.H. 
To show that more than one corrm:and can use the same action 
function, we make the exit and quit conmands synonyms. 

We link each entry to the next one by using the & operator 
to get the address of that entry. 
To make the last entry point to nothing else, we use a 0 
pointer. (We coerce the 0 to long to make it 32 bits. */ 

cmd key main cmd[] = { 
- 11executeii, execute, &main_cm::f[ 1 l, 

11exit 11 exit &main cmcH 2 l 
11proq:>i: 11

, pr~t, &inain_cm::f[
1

3], 
uquit 11 , exit, (cm::f_key *> OL 

>; 

/* The Nin program is a si°"le test that uses the command 
handler's functions. */ 

main () 
{ 

char *argunents; /* Pointer to the argll!lents that 
the conmand handler returns */ 

/* The conmand entry it returns * / cmd_key *main_ans; 

/* First we initialize our command prarpt. */ 
cmd_init( 11Cmd test>" >; 

/* Then we loop forever, processing commands. We exit the 
loop when the user enters exit or quit. * / 

while ( 1 ) 
{ 

/* First we get a line of input from the user. The 
string pointer that cmd_read returns points to the 
first conmand line that the user typed that 
contained something other than blanks. */ 

argll!lents = cmd_read() ; 

/* We then call the command parser to parse that command 
line. We pass it the address of the address of the 
string it should parse, so that it can move the 
argll!lents pointer past the one conmand that it 
processes . In this way we can process a string of 
several commands by calling it with the same argll!lent 
line repeatedly. 
We also pass it the address of the first entry in the 
linked list of conmand entries. 
cmd_parse returns the conmand entry from that table 
that .. tched the conmand the user entered. */ 

tnain_ans = cm:t_parse( &argiinents, &main_cmd[ 0 J >; 

/* If cmd_parse returned a null conmand entry, then the 
user entered a conmand that did not match any of the 
legal options. l n that case we cal l the conmand 
handler•s error routine. 

If the user entered a legal conmand, we then call its 
routine with the remainder of the conmand line as its 
argll!lent. */ 

if ( main ans == (cmd key *) OL ) 
cmd error(); -

else -
( *Cmain_ans->function) )( argll!lents ); 

/* end the conmand processing loop */ 

/* end the main program * / 

/* Now we provide the routines for the commands in our 
main cmd structure. 
main-cmd[ 1 J and main cmd[ 3 J both use the standard C 
function exit(). -

main cmd[ 0 J uses the routine execute(), which we 
define below. 

It executes conmands from a conmand file whose name the 
user gives as an argll!lent. It opens the file and passes 
its file pointer to the conmand handler's cmd_file() 
routine. */ 

void execute( file ) 
char *file; /* Fi le of conmands that we are to execute */ 
{ 

FILE *ifp; /* file pointer for that file */ 

/* If the file open fails, print an error message. 
If it succeeds, pass its file pointer (ifp) to cmd_file(), 
which will re-direct the command handler's i'l"'t to that 
file. Then print a message that tel ls the user that the 
conmand handler is now executing the conmands in that 
file. */ 

if C Cifp = fopen( file, "r" ) ) ==NULL ) 
printf( "Camot open the file %5\n", file ); 

else 
{ 

cmd_file( ifp ); 
printf( •executing the conmands in file %5\n", file >; 

/* end routine execute */ 

/* main_cmd[ 2 J uses the routine prarpt(), which we 
define below. 

It changes the command handler's prarpt to the prarpt string 
that the user entered by calling cmd init() with that new 
prarpt. */ -

void prarpt( prarpt str ) 
char *prarpt_str; -,. the new prarpt string */ 
{ 

cmd_init( prarpt_str ); 

/* end routine prarpt() */ 

September/ October 1988 TURBO TECHNIX 149 



CRITIQUE 

TURBO ASYNCH PLUS 
B/,aise Computing, Inc. 
2560 Ninth Street, Suite 316 
Berkeley, CA 94710 
(415) 540-5441 
$129.00 

R
ight up there on the list 
of Great Unsolved Mys
teries, along with Ame
lia Earhart's disappear

ance and the Loch Ness Monster, 
are the questions, "Why didn't 
they put interrupt-driven com
munications into the PC's ROM 
BIOS?", and "Why doesn't inter
rupt 14H buffer the characters 
that come in from the communi
cations line?" 

If you wish to roll your own 
telecommunications code in 
Turbo Pascal, this little enigma 
means that you can poll interrupt 
14H and content yourself with 
300-baud operation. Otherwise, 
you can handle interrupts directly 
by diving into the arcane lore of 
the 8259A PIC and 8250 UART 
and then, before giving up, use 
somebody else's library. 

Designed for use with Turbo 
Pascal 4.0, Blaise Computing's 
Turbo Asynch Plus is a library that 
effortlessly handles the messy de
tails of interrupt-driven asynchro
nous communications on PC, AT, 
PS/ 2, and compatible computers. 
Turbo Asynch Plus' three diskettes 
contain the units (.TPU files), 
.OBJ files, Pascal and assembler 
source code, project files for re
compilation, and sample pro
grams. 

A text file de

vice driver (TFDD) 

allows communica

tions ports to be 

treated as files via 

the use of Readln 
and Writeln 
statements. 

The sample programs include 
a file transfer program that uses 
XMODEM protocol, a checkout 
program that tests and demon
strates the various Asynch Plus 
functions, and a (somewhat lim
ited) terminate-and-stay-resident 
(TSR) program that performs 
background communications. 
Source code for the units is pro
vided, but an assembler must be 
used in order to change any of 
the assembly language code. 

Turbo Asynch Plus is organized 
into three levels for easier main
tenance and comprehension. The 
first level, which is called "Level 
O," is written entirely in assembly 
language. This level handles the 
details of interrupt-driven com
munications, supports multiple 
ports, hardware and software flow 
control (DTR, RTS, and XON/ 
XOFF in combination), baud rates 
up to 19,200, and the data word 
formats that are normally avail
able through the BIOS. Level 0 
also handles the buffering of 
characters to and from the com
munications ports, and the use of 

150 TURBO TECHNIX September/ October 1988 

fixed-size circular queues that are 
provided by the caller. Level 0 
may be linked into the rest of your 
program, or else loaded separately 
as a TSR utility. 

The second of the three levels, 
"Level l," uses Level O's functions 
in order to provide a basic Turbo 
Pascal interface to the communi
cations ports. Level 1 calls Level 
O's functions with the Turbo Pas
cal Intr() procedure. Level 1 al
lows you to set and read a port's 
transmission options, read and 
write characters, and open and 
close the port completely from 
Turbo Pascal without worrying 
about assembly language or hard
ware arcana. 

The last of the three levels, 
"Level 2," extends Level 1 by add
ing such niceties such as the au
tomatic management of the buf
fers on the heap, and a record 
structure for setting the communi
cation port options. 

Along with this three-level set 
of basic functions, Turbo Asynch 
Plus contains four other support 
units. One of these units accesses 
the PC's normal BIOS services 
through interrupt 14H. (This unit 
is probably more useful on a 
PS/2, which has a more complete 
set of communications services, 
including 19,200 baud support, 
built into its BIOS.) The second 
support unit facilitates the process 
of sending commands and receiv
ing responses from a Hayes
compatible modem. The third unit 
is an XMODEM unit that handles 
the process of transmitting and re
ceiving files using XMODEM pro
tocol with either checksum or 
CRC. Finally, a text device driver 



allows communications ports to be 
treated as files via the use of 
ReadLn and WriteLn statements. 

Turbo Asynch Plus' documen
tation is good. The three-ring, PC
style slipcase binder includes 198 
laser-printed pages and a com
plete index. One shortcoming for 
unsophisticated programmers, 
however, is that the fairly techni
cal Level 0 functions are discussed 
before the more frequently used 
functions in Levels 1 and 2. For
tunately, numerous examples and 
an introductory section on 
asynchronous communications 
soften the blow. All of the exam
ple programs are extremely well
written and should be no trouble 
to work with. The .DOC files on 
the diskettes also provide addi
tional information beyond the 
material in the manual. 

If Turbo Asynch Plus has a 
drawback, it's that the product's 
scope is too narrow. In order for 
your program to perform terminal 
emulation, for example, you have 
to write the screen and control se
quence handlers yourself. Sim
ilarly, the modem support pro
vided in the modem unit consists 
simply of sending and receiving 
modem commands with error 
checking, and doesn't include 
higher-level functions such as ini
tialization, dialing, or hangup. 
(You can borrow routines that do 
some of these things from the 
FILEMOVE example program, 
however.) Support for other file
transfer protocols, such as Kermit, 
would also be useful. 

But not everyone needs these 
extra functions, and Blaise has 
probably made a wise decision to 
concentrate on the basics of mov
ing data over wires. If you need to 
do asynch communications with 
Turbo Pascal-especially over 
multiple lines simultaneously with 
industrial-strength error checking 
and recovery-then Turbo Asynch 
Plus is definitely worth looking 
into. • 

- Marty Franz 

TURBO PROFESSIONAL 4.0 
FOR TURBO PASCAL 
TurboPower Software 
P. 0. Box 66747 
Scotts Valley, CA 95066-0747 
$99.00 

Y
ou knew it was com
ing-as soon as you put 
down your hefty new 
Turbo Pascal 4.0 man

ual and your eyes returned back 
to their normal size, you knew that 
software companies would be writ
ing some very useful Pascal librar
ies in the near future. It was clear 
that the concept of the unit would 
become to software what slots are 
to a motherboard: a third-party in
vitation to create enhancements. 
One third-party developer who 
accepted the challenge is Turbo
Power Software. 

The manual 

was written by 

someone with a 

clear and concise 

command of the 

English language 

and an obvious 

understanding of . 
programming. 

TurboPower's Turbo Profes
sional 4.0 for Turbo Pascal con
tains numerous unit files that 
comprise a broad-ranging collec
tion of more than 300 Pascal rou
tines. These routines support long 
strings (up to 65,520 characters), 
random access text files, interrupt 
service routines, terminate-and
stay-resident programming, the 
use of extended and expanded 
memory, runtime error recovery, 
huge arrays (up to 32MB), auto
matic heap compression (when 
exiting to DOS or executing a 
child program), sorting, keyboard 
macros, BCD arithmetic, and, of 

course, screen handling. Full 
source code is supplied for all rou
tines, including those in assembly 
language. 

It appears that as much time 
was spent documenting Turbo 
Professional as was spent pro
gramming it. The spiral-bound 
manual exceeds 400 pages, and 
was written by someone with a 
clear and concise command of the 
English language and an obvious 
understanding of programming 
(this is a rare combination). Each 
chapter of the manual is dedicat
ed to one Turbo Professional unit, 
with one or two routines on each 
page. Pascal routines for each unit 
are listed in alphabetical order
this is infinitely preferable to a ca
nonical alphabetical listing of ev
ery routine in one huge section, 
because related routines can be 
found without the need to sift 
through quantities of irrelevant 
material. Each description con
tains a subprogram declaration, a 
statement of purpose, comments, 
cross references ("see also ... "), 
and-nearly always-an example. 
Frequently, examples of what not 
to do, as well as what to do, are 
presented. Several working exam
ple programs demonstrate the use 
of Turbo Professional's units. Doc
umentation also includes a com
plete index, plus an appendix that 
contains all unit dependencies. 

Another plus for Turbo Profes
sional is its overall approach. Tur
boPower did not assume that a 
programmer would buy this tool
box for the purpose of building a 
single application around it. As a 
result, most of Turbo Profession
al's routines don't force a pro
grammer to make decisions about 
hardware configurations while 
writing the program. Instead, the 
routines let the program itself 
query the hardware to determine 
the best configuration at runtime. 

As an example, consider Turbo 
Professional's large arrays. Many 
library products force the pro
grammer to determine the size of 
the array at compile time. This ap
proach requires a least common 
denominator approach, where the 
array is sized to work on a com
puter that has the least amount of 
memory and the least number of 

continued on page 152 

September/ October 1988 TURBO TECHNIX 151 



CRITIQUE 

continued from page 151 

hardware features. As long as the 
programmer is writing the pro
gram for one person on a known 
computer, this situation is per
fectly tolerable. However, it's not 
tolerable for the person who 
writes general application soft
ware where the end user and the 
computer hardware are both un
known. Realizing this, Turbo Pro
fessional uses pointers and un
typed variables to allow each 
routine to manipulate arrays of 
varying sizes. 

In general, any Turbo Profes
sional routine can be inserted into 
an existing application without the 
need to restructure the entire ap
plication to conform to Turbo Pro
fessional. Bravo! 

It's impossible for a single per
son to thoroughly test the more 
than 300 Pascal procedures and 
functions in Turbo Professional. 
However, the routines themselves 
appear to be bug-free-during 
more than six months of use in 
programs ranging in length from 
8000 to 15,000 lines, no bugs man
ifested themselves. 

As with all good things, there 
are limits to what can be done 
with Turbo Professional 4.0. The 
screen-handling routines work 
only in text mode. Also, even 
though the manual claims that 
novice programmers with a pass
ing knowledge of interrupt service 
routines and terminate-and-stay
resident programs can use the 
toolbox for writing TSRs and ISRs, 
there isn't really enough informa
tion in the manual to spare a nov
ice some lengthy, and perhaps 
painful, trial and error experi
ences in these two areas. In addi
tion, nothing indicates how much 
generated code a given Turbo Pro
fessional routine adds to your ap
plication (a programmer who 
knew the object code size for each 
procedure and function could as
sess the tradeoff between the 
power of a routine and the mem
ory that the routine uses). Finally, 

Turbo Professional often takes a 
routine that would normally be a 
procedure and makes the routine 
return its own error code by de
claring the routine as a function. 
This process often requires the 
use of dummy variable assign
ments or do-nothing program 
statements just to call the function, 
as in the following example from 
the manual: 
if not 
Save~indowC1,1,Current~idth, 

then 

Succ(CurrentHeight), 
False,P) 

{can't fa i l; 
buffer already allocated}; 

These flaws are, at best, quib
bles. Turbo Professional 4.0 is a 
well-executed Turbo Pascal tool
box with procedures and func
tions that are usable by program
mers at all experience levels. The 
product is well thought out, rea
sonably priced, powerful, and im
mediately useful. If you're looking 
for a good toolbox for Turbo 
Pascal 4.0, I suggest you give Tur
bo Professional 4.0 some serious 
consideration. • 

-RickRyall 

386MAX occupies 

only 3K of DOS 
memory, and relo
cates the bulk of its 
58K of code to the 
high end of extend
ed memory. 

386MAX 

Qualitas 
8314 Thoreau Drive 
Bethesda, MD 20817-3164 
(301) 469-8848 
$74.95 

L 
ike money, memory isn't 
everything-but it cer
tainly makes many 
things easier. The key in 

either case is to make the most of 
what you have. While the 80386 
CPU contains the machinery for 

152 TURBO TECHNIX September/ October 1988 

putting memory wherever you 
need it, there's more to memory 
management than simply throw
ing addresses around. Qualitas' 
386 MAX is a utility designed to 
make the most of 386 memory 
management in as many different 
ways as possible. 

386 MAX began as a means to 
fill a hole. The first Intel 386AT 
motherboards had 512K of fast 32-
bit real-mode RAM, and special 
slots for an additional 4MB of fast 
32-bit extended RAM starting at 
the lMB mark. However, no alter
native existed between 512K and 
640K other than to use slow, 
AT-style 16-bit RAM, which (at 
16mHz) devours machine perfor
mance in a torrent of wait states 
the moment program execution 
wanders into it. 386 MAX fills that 
128K hole with fast 32-bit extend
ed memory, using the 386's built
in memory management. Any 
empty space left in systems with 
MDA or CGA display adapters is 
also filled with DOS memory, up 
to the 704K mark. Furthermore, 
on systems that allow it, 386 MAX 

fills the empty space between the 
high end of display memory and 
the low end of ROM with 32-bit 
RAM, and makes that RAM avail
able to DOS as well. 

These are the obvious tricks 
that can be played with 386 page 
remapping. 386 MAX pulls quite a 
few others as well, such as the 
following: 

• 386 MAX emulates EMS RAM (in
cluding LIM 4.0 functions), us
ing 32-bit extended RAM; 

• 386MAX moves slow ROM-based 
BIOS code into fast 32-bit RAM 
(resulting in a 40 percent im
provement in BIOS perfor
mance); 

• On 16-bit systems equipped 
with 386 accelerator boards, 
386 MAX swaps the slow 16-bit 
RAM on the motherboard with 
fast 32-bit extended RAM on 
the accelerator board; 

• 386 MAX can move TSR utilities 
into high DOS memory be
tween the display adapter and 
ROM, thus freeing up contig
uous low DOS RAM for normal 
applications; 

• 386 MAX can locate blocks of 
ROM, and time memory access 
for all types of memory 
throughout the system. 



In essence, 386 MAX is "glue" for 
pulling a system together under 
the 386 and DOS. The product 
consists of a DOS device driver 
that contains the actual memory 
management machinery, plus a 
standalone utility that identifies 
blocks of memory, times memory 
performance, and loads TSRs into 
high memory. The driver occupies 
only 3K of low DOS memory, and 
relocates the bulk of its 58K of 
code to the high end of extended 
memory. 

I've successfully used 386 MAX in 
a number of configurations in my 
system, which contains 512K on 
the motherboard and 2MB of fast 
32-bit extended memory. Most fre
quently, I backfill the 128K "hole" 
mentioned earlier, and then di
vide extended memory into two 
portions. A 1200K section is 
treated as EMS memory that con
tains SideKick Plus overlays and 
a Turbo Pascal 5.0 edit buffer, and 
the balance is left as extended 
memory that contains a RAM disk 
for use with the Turbo Pascal com
piler and Turbo Assembler. When 
working with graphics, I skip the 
RAM disk and use all of the ex
tended memory for EMS, which is 
then divided between SideKick 
Plus and Tall Tree Systems' ]Laser 
SA (Standalone).JLaser SA is a 
small board that allows a bit
mapped image stored in EMS 
memory to be converted into vid
eo. This video image is fed di
rectly to the laser controller of a 
standard Canon-based laser print
er. As a result, a full-page 300 dpi 
image prints from memory to 
paper in about 10 seconds. 

The only important limitation 
of 386 MAX is due to the nature of 
the 386 itself. 386 MAX must be the 
memory management "boss" -
and other bosses, such as Win
dows 386 or PC MOS/ 386, cannot 
peacefully coexist with 386 MAX. For 
the same reason, 386 MAX conflicts 
with Paradox 386. However, Qual
itas and Quarterdeck have coop-

erated to allow 386 MAX to work 
with DESQview as a functional 
substitute for Quarterdeck's own 
QEMM memory manager. Qual
itas states plainly that ill-behaved 
TSRs and programs that try to ex
ploit the 386 may conflict with 
386 MAX. In my experience, how
ever, all important TSRs have 
functioned correctly, both in low 
memory and in high memory. 

The documentation is terse, but 
unambiguous and complete. Any 
programmer who has worked suc
cessfully with a command-line 

compiler or assembler will be 
comfortable with the command
switch complexity of 386 MAX. The 
product does what it says it will do, 
and has not failed under my 
testing. 

Much of the magic of the 386 
remains dormant because of the 
lack of software to bring the magic 
into play. 386 MAX turns the magic 
loose-I recommend it highly. • 

-Jeff Duntemann 

CBTREE, the easiest to use, 
most flexible B +tree file manager 
for fast and reliable record access 

CBTREE ••• Includes over 8,000 lines of 'C' source code FREE! 
Since 1984, thousands of 'C' programmers have benefited from using CBTREE . 

Save programming time and effort. You can develop you r applications 
quickly and easily since CBTREE 's interface is so simple . You ' ll cut weeks off your 
development time . Use part or all of our complete sample programs to get your 
applications going FAST ! 

Portable 'C' code. The ·c· source code can be compiled with all popular C 
compilers for the IBM PC includ ing Microsoft C, Quick C, Turbo C, Lattice C, Aztec 
C and others . Also works under Unix , Xenix , AmigaDos , Ultrix , VAX/CMS, and others. 
CBTREE inc ludes record locking calls for multi-user and network applications. 

The CBTREE object module is only 22K and is easy to link into your programs 
You don't even pay runtime fees or royalties on your CBTREE applications 1 

Reduce costs with system design flexibility. CBTREE allows unre
stricted and unlimited designs. Reduce your development costs. You define your 
keys the way you want. Supports any number of keys , variable key lengths , con
catenated keys, variable length data records, and data record size . Includes crash 
recovery utilities and more. 

Use the most efficient search techniques. CBTREE is a full function 
implementation of the industry standard B t tree access method, providing the fastest 
keyed file access performance. 

• Get first 
• Get last 
• Get previous 
• Get next 
• Get less than 
• Get less than or equal 

Database Calls: 
• Get greater than 
• Get greater than or equal 
• Get sequent ial block 
• Get partial key match 
• Get all partial matches 
• Get all keys and locations 

• Insert key 
• Insert key and record 
• Delete key 
• Delete key and record 
• Change record locat ion 

CBTREE is only $159 plus shipping • a money-saving price! 

We provide free telephone support and an uncondltional 90-day money back 
guarantee! 

To order or for additional information on any of our products, call TOLL FREE 
1·800·346-8038 or (703) 847-1743 or wr ite us ing the address below. 

NEW CBTREE add·on products to make your programming easier. AVAILABLE 
NOW! • Adhoc query, report ing system ; • SOL interpreter. 

If you program in 'C ', sooner or later you 're going to need a B+tree. Don 't delay unt il you 're 
in a crunch , plan ahead , place your order for CBTREE now. Orders shipped with in 24 hours ' 

~ 
~ 
PEACOCK SYSTEms. nc 

PEACOCK SYSTEMS, INC. 
2108-C GALLOWS ROAD 
VIENNA, VA 22180 

September/ October 1988 TURBO TECHNIX 153 



BOOKCASE 

C PROGRAMMER'S GUIDE TO 
SERIAL COMMUNICATIONS 

Joe Campbell, Howard W Sams & 
Company, Indianapolis, IN: 1987, 
ISBN 0-672-22584-0, 670 pages, soft
cover, $22.95, diskettes (2) $35.00, 
ASCil wall chart $10.00. 

W
hether you're ~com
puter communica
tions user or a pro
grammer, if you 

want to learn more about com
puter communications, then this 
book is required reading. It's 
really two books in one: An intro
duction to serial communications, 
and a communications guide for 
C programmers. 

The first of the book's two sec
tions covers the basic topics th::it 
you need to understand before 
you attempt any serious serial 
communications programming. 
This introductory and background 
material, although somewhat tech
nical, is clearly written and inde
pendent of any programming lan
guage. The discussion concen
trates on defining serial communi
cations, describing how it works, 
and providing insight as to why it 
often appears to be such an ar
cane field. This section contains 
no program code at all. 

The second section gets down 
to the business of programming 
serial ports in C (along with a little 
help from assembly language), 
and includes program listings for 
IBM PC and Kaypro computers. 
The C code is standard enough to 
be widely applicable across hard
ware environments and C compil
ers. The ubiquitous Hayes modem 
(and compatible modems) is pre
sented as the basis of the program 
interface to data communications 
hardware. 

If you are not already a moder
ately experienced C programmer, 
you're apt to have trouble with the 
material in this section. The au
thor advises relative newcomers to 
C to gain appropriate experience 
first, and then come back to the 
book-this is good advice. 

COVERAGE 
As the title states, the book's cov
erage is limited to serial communi
cations, and further restricted to 
the asynchronous realm. Even 
those restrictions leave a lot of 
ground to cover. 

Campbell presents an entertain
ing history lesson on the evolu
tion of serial communications 
since the late 1800s. Although 
short in human terms, the history 
of communications is a lengthy 
one in the technological sense, 
and it's interesting to see the ef
fect of the legacy of mechanical 
contrivances upon today's solid
state technology and terminology. 

154 TURBO TECHNIX September/ October 1988 

An examination of standards 
describes and explains the ASCII 
character set, including the codes 
that represent letters, numbers, 
punctuation marks, and control 
characters. The EIA RS-232 serial 
specification-the electrical, me
chanical, and functional specifi
cation to which our computer's se
rial ports and modems should 
adhere-is discussed as well. 

The author categorizes ASCII 
characters into six sets: graphics 
characters; physical device con
trol; logical communications con
trol; physical communications 
control; information separators; 
and code extension controls. 
Characters in each category are 
fully described and clearly ex
plained. Extensive use of tables 
and illustrations helps clarify and 
organize this standards informa
tion, which is far more accessible 
than it is in any of the standards 
documents themselves. 

Campbell takes the time to ex
plain the many conventions of se
rial communications, such as the 
uses of control codes. His book is 
one of only a small number of 
books that accurately define the 
BREAK signal and its purpose, 
and delve into the inner workings 
of the cyclical-redundancy check 
(CRC) method of error detection. 

In his description of the infa
mous RS-232-C standard and its 
application, Campbell is careful to 
point out how the interface is reli
able for its intended purpose, 
which is to connect data terminal 
equipment (DTE), such as termi
nals and computers, to data com
munication equipment (DCE), 
such as modems. The fog that sur
rounds the RS-232-C has been the 
result of poorly written standards 



documents, and the frequent ap
plication of the standards to situa
tions far outside of their intended 
scope. 

With all of the current interest 
in public-access bulletin-board sys
tems and information utilities, file 
transfer protocols are a hot topic. 
Campbell presents technical and 
operational aspects of the Kermit 
and XMODEM file transfer pro
tocols to show how both binary 
and ASCII text files can be easily 
moved from one computer system 
to another. 

The subject of error detection 
and correction is an important 
one, and Campbell gives it a sig
nificant amount of coverage. He 
describes the use of simple parity, 
checksums, and CRC methods to 
detect errors. 

Campbell approaches the uni
versal asynchronous receiver I 
transmitter (UART)-the heart of 
the computer's serial port-from 
two directions. He first describes 
a virtual UART, which demon
strates all of the tasks that a UART 
must do in order to convert paral
lel data to an asynchronous serial 
form and vice versa. (These tasks 
are not trivial because of exacting 
timing considerations and other 
factors .) The process of designing 
a virtual UART helps program
mers appreciate the benefits of us
ing a packaged UART, and gives 
them an understanding of the 
complex programming require
ments of a general-purpose UART 
such as the National 8250. 

The final chapter of the book 
describes interrupts in the IBM 
PC family of computers and the 
Kaypro machine. This material 
shows how to implement inter
rupt-driven, rather than polled, 
communications programs. The 
inclusion of the Kaypro informa
tion provides an important com
parison of serial communications 
in both the DOS and CP/ M oper
ating system environments. Be
cause the Kaypro has no internal 
timing facilities, the programmer 
faces a much more difficult task in 
generating precise timing inter
vals, delays, and "tick" marks. The 
relatively small amount of assem
bly language code in this book is 
confined to low-level tasks such as 
timing functions, checking key
board status, and other hardware
dependent functions. 

STRENGTHS AND 
WEAKNESSES 
The C Programmer's Guide to Serial 
Communications provides excellent, 
in-depth coverage of crucial topics 
of serial communications pro
gramming that are often neg
lected. This very readable book is 
a good blend of theory and prac
tice, and is carefully crafted. 

Physically, the book is both too 
big and too small. I would prefer 
to see this 650-page book divided 
into two separate volumes-each 
of the two sections is effectively a 
complete book in itself. (Well, al-

most-the second book could dis
cuss such additional topics as 
background communications and 
RS-232 networks.) 

Diskettes of source code are 
available from the author. The 
source requires the use of an as
sembler in addition to a C com
piler. Some minor modifications 
to the C and assembler source 
files are needed in order for these 
files to work with certain compiler 
and memory-model combinations. 
Appendix C contains instructions 

continued on page 156 

Realize The 
Hidden Potential 

lnYour386! 
Imagine more fast memory to run CAD/CAM spread

sheets, networks and other memory-hungry applications. 
386MAX™ takes advantage of the unique memory remap
ping capabilities of the 80386 chip maximizing the speed and 
memory management potential of your 386. 

Additional Memory EMS Support 
•Opens up more DOS memory for •Converts all or part of your 

applications by moving memory extended memory to expanded 
resident programs-including memory fully emulating LIM 4.0. 
most network files-to "High DOS" • Provides the EMS memory 
memory above 640K. management support needed for 

•A typical system with an EGA multitasking programs (Windows 
would have 176K High DOS avail- 2.03, etc.). 
able (less 64K for full EMS support). 386 Utilities 

Speed • Displays memory speed 
•Makes 386 accelerator boards •Maps resident program usage 

run at their fastest speed by including high DOS memory 
swapping fast 32-bit memory • Displays EMS memory usage 
into first 640K. •Scans for ROM addresses 

•Speeds up EGA display by 400/o. $74 gs includes domestic shipping. 

Automatically remaps slow system • v1sNMc;coo 
and EGA ROMs into fast RAM. To order 386MAX;" call : 

301-469-8848 System requirements: 
Any 80386-based PC with a minimum 
of 256K extended memory. Needs 
4KB to install in CONFIG.SYS. Sup
ports up to 32 MB of EMS memory. • QUALITAS™ 
8314 Thoreau Drive Bethesda, Md 20817 FAX 301-469-5810 

September/ October 1988 TlffiBO TECHNIX 155 



BOOKCASE 

continued from page I55 

to help you with the assembly lan
guage interface under PC-DOS/ 
MS-DOS. 

Joe Campbell's C Programmer's 
Guide to Serial Communications has 
taken a position on my reference 
shelf next to the dictionary, the
saurus, C compiler manuals, and 
other frequently used reference 
volumes that must be within three 
feet of my operating position. 

Campbell calls serial communi
cations programming "doing bat
tle with the serial port" -this is an 
apt description of the process to 
those of us who have done it. This 
book gives you the tools and tech
niques that you need to have a 
fighting chance in that battle-a 
programmer who wanders off into 
serial communications without 
this handy guidebook is taking in
ordinately high risks. • 

- Reid Collins 

F!LE FORMATS FOR 
POPULAR PC SOFTWARE 
Jeff Walden, John Wiley & Sons, Inc., 
New York, NY: I986, ISBN 0-47I-
8367I-O, 287 pages, softcover, 
$24.95. 

MORE FILE FORMATS FOR 
POPULAR PC SOFTWARE 

Jef!Walden,John Wiley & Sons, Inc., 
New York, NY: I987, ISBN0-47I-
85077-2, 369 pages, softcover, 
$24.95. 

A
s one who has written 
books, I sometimes re
view books with a bit of 
envy, wishing that I had 

been given the contract instead, 
and wondering how I could have 
made the book better. But the 
writing of these two books is a job 
I wouldn't wish for. Fi/,e Formats for 
Popular PC Software and More Fi"le 
Formats for Popular PC Software 
present file formats that are used 
by popular PC application pro
grams. This is hardly a subject to 
stir the blood, but it's required 
reading for anyone who programs 
a PC for a living. 

Each spiral-bound book has 
sturdy, glossy stock covers. With 
each book you get very little 

snappy patter, no tutorial informa
tion, and three parts. The first 
part of each volume describes 
each file format in excruciating 
detail. No-nonsense tables present 
information about byte offsets, 
contents, and their purpose. While 
a few comments have been added, 
explanations are kept to a min
imum. A notable exception is the 
Framework II format that is pre
sented in More Fil£ Formats-with 
63 pages of description, it's easily 
the most complicated file de
scribed in either of the two books. 
The second section of each book 
contains dumps of sample files 
with expanded control characters 
and added offsets (presented in 
what author Jeff Walden terms 
"music staff' style). The final part 
of each volume consists of the 
source listing of the Turbo Pascal 
program that produced the 
dumps. 

The first book contains the file 
formats for Lotus 1-2-3, Sym
phony, Ability, dBASE II and III, 
DIF, Multimate, Microsoft Multi
plan (SYLK), SuperCalc 3, Visi
Calc, WordStar, and WordStar 
2000. The second book contains 
formats for Framework II, Reflex, 
Microsoft Rich Text Format, 
SuperCalc 4, SuperProject Plus, 
Volkswriter, and WordPerfect. 
Most of the formats were obtained 
with the direct cooperation of the 
various vendors, so the informa
tion can be assumed to be accu
rate. The author scrupulously 
identifies the versions of the soft
ware that correspond to the file 

156 TURBO TECHNIX September/October 1988 

formats described in the text. As 
new versions of software are re
leased, we can only hope that 
these books will keep up with the 
leading edge. 

The value of this file format in
formation cannot be overstated. 
Just glancing at the layout for Lo
tus 1-2-3 .WKS files, for example, 
is enough to convince me that 
there's no way I'd reverse-engi
neer it even ifl had a river of Jolt 
Cola and the fastest 386 system my 
employer could buy. But thanks to 
Mr. Walden's efforts and Lotus' 
cooperation, the necessary infor
mation is all there in the book. Al
though the fiendishly intricate 
structure of the .WKS files re
quires fancy coding in order to 
create a routine to read or write 
Lotus files, you now have a fight
ing chance. 

Not only is the information in 
these books valuable, it's useful in 
a practical sense. If you develop 
software programs for a large cor
poration that uses one or more of 
the programs discussed by Mr. 
Walden, you will need to read or 
write at least one of these files 
eventually. While most major ap
plications perform ASCII file 
translation, the ability to read and 
write files in the files' native for
mat offers a cleaner and more di
rect way to interface to those files. 
In addition, some programs, such 
as WordPerfect, support more fea
tures in native file format than in 
ASCII format, so direct access be
comes a requirement. 

In short, since the ability to ex
change data between applications 
is an important consideration of 
PC programming these days, the 
file layout information provided 
in these two books is a necessity. 
But don't plan on buying these 
books, reading them just once, 
and then coming away from the 
experience with detailed knowl
edge about the internal workings 
of the covered products. These 
are reference books-you will 
need knowledge of both a specific 
application and a programming 
language in order to make good 
use of the books' information. 
While programming to proprietary 
file formats isn't easy, Mr. 
Walden's two indispensable books 
make it at least possible. • 

-Marty Franz 



TURBO RESOURCES 

COMPUSERVE 
The best online information about 
the Borland languages can be found 
on CompuServe's three Borland fo
rums. Quite apart from providing 
the listings appearing in TURBO 
TECHNIX, the Borland forums con
tain many megabytes of useful util
ities and source code in all Borland 
languages. Furthermore, some of the 
most interesting and knowledgeable 
people in the programming subcul
ture hang out on CompuServe, pro
viding an informal, online user 
group that is always in session. If 
you have a question, leave a mes
sage in the appropriate forum, and 
in almost every case someone will 
jump in with an answer. 

Subscribing to CompuServe can 
be done through the coupon en
closed with every Borland product 
(which also includes $15 worth of 
online time for your first month) or 
by calling CompuServe at (800) 848-
8199. You'll need a modem and 
some sort of communications soft
ware that supports the XMODEM 
file transfer protocol. 

How to acceA the Borland 
ForulfUI on CompuServe: 

TURBO TECHNIX listings for Turbo 
Pascal and Turbo Basic are available 
in Library I of the BPROGA 
Borland Programming Forum (GO 
BPROGA). Turbo C, Turbo Prolog, 
and Turbo Assembler listings are 
stored in Library 1 of the BPROGB 
Forum (GO BPROGB). Listings for 
Business Language articles are also 
available in Library 1 of the Borland 
Applications Forum (GO BORAPP). 
From the initial CompuServe 
prompt, type GO <forum name> or 
follow the menus. If you're not al
ready a member of a forum, you 
mustjoin by following the menus 
before you can download the 
listing files. 

How to download TURBO 
TECHNIX code listings from 
CompuServe: 

At the forum menu, type: Library 1. 
This will take you to the TURBO 
TECHNIX data library, where all list
ing files are stored. Listing files are 
archived using the ARC52 archiving 
scheme. You will need the 
ARC-E.COM program (available in 
Library 0 of BPROGA, BPROGB, 
and BORAPP) or one compatible 
with it to extract listing files from 
downloaded archives. 

Magazine archive files are organ
ized two ways: by article and by 
issue. In other words, there will be 
one .ARC file for every article that 
includes listings; and a single, larger 
.ARC file for each issue that con
tains all of the individual .ARC files 
for that issue. You can therefore 
download listings for individual ar
ticles, or download the entire issue's 
listings in one operation. 

The all-issue files follow a naming 
convention such that NVDC87.ARC 
contains all listing archives from the 
November/ December, 1987 issue, 
JNFB88.ARC contains the listings 
from the January/ February, 1988 
issue, and so on. The name of an ar
ticle's individual listings archive file 
is given at the end of the article. 

To download an archive file, bring 
up the Library 1 prompt and type: 

DOW <filename>IPROTO: XMO 

After pressing Enter, start your own 
communications program's XMO
DEM receive function. After you 
have completely received the file, 
you must press Enter once to inform 
CompuServe that the download has 
been completed. Once you have 
downloaded an archive file, you can 
"extract" its component files by in
voking ARC-E.COM at the DOS 
prompt with: 

C>ARC-E <filename> • 

CHANGE OF ADDRESS 
If you've moved or changed your 
name since you began receiving 
TURBO TECHNIX, please let us know 
so we can make sure your copies go 
to the right person in the right place. 
Send us a letter providing both your 
old and your new name and address, 
and attach an existing mailing label 
from TURBO TECHNIX if possible. 
Send the letter to: 

TURBO TECHNIX 
Attn: Magazine Dept., Subscriptions 
Borland International, Inc. 
1800 Green Hills Road 
Scotts Valley, CA 95066-0001 

ONLINE AND 
BETWEEN COVERS 
The following information describes 
two sources where you can learn 
more about Borland language prod
ucts: On the Borland CompuServe fo
rums, and in books now or soon to be 
in print. This issue, the CompuServe 
highlights are from the Turbo Pascal/ 
Turbo Basic Forum, BPROGA The 
files shown in this section are not re
lated to articles in TURBO TECHNIX, 
but are of general interest to Turbo 
programmers. All files for Turbo Basic 
are stored in Library 9; all Turbo 
Pascal files are stored in Library 2. 
The books presented here are only a 
sampling. (We can't possibly list all 
published Borland-related books. 
Also, this listing reflects no judgment 
about the quality of any book.) For 
more information on these and other 
Borland-related books, contact the 
publishers or your local bookstore. 

TURBO PASCAL: (Library 2) 

PIBMDO.ARC Uploaded: 6/ 6/ 88 
Size: 20,935 bytes 
This archive contains routines for in
terfacing Turbo Pascal 4.0 programs 
to several popular DOS-based multi
taskers: TaskView, OmniView, DESQ
view, DoubleDos, and TopView. 

continued on page 158 

September/ October 1988 TURBO TECHNIX 157 



TURBO RESOURCES 
continued from page 157 

DESQlO.ARC Uploaded: 6/ 6/ 88 
Size: 6,794 bytes 
DESQview interface routines recom
mended and published by Quarter
deck to create DESQview-aware pro
grams and adapted for use with Turbo 
Pascal 4.0. Complete assembler and 
Pascal source files included. Routines 
permit direct writing to video buffers 
with utilities such as QWIK41A.ARC. 

TPHRT.ARC Uploaded: 6/ 2/ 88 
Size: 10,112 bytes 
TPHRT is a high-resolution timer/ 
profiler for Turbo Pascal 4.0. The ~ser 
places simple calls to TPHRT rouunes 
in the source code under study, com
piles and runs the code, and a com
plete report of all TPHRT timer activ
ity is generated. Up to 100 dif!ere.nt 
timers may be active. Resoluuon 1s 
one microsecond and is self-cali
brating. 

EGASAV .ARC Uploaded: 5/ 5/88 
Size: 3,072 bytes 
This archive contains a unit that in
terfaces two routines for saving and 
restoring EGA (640 X 350) 16-color 
graphics screens to and from RAM_· 
Provides a good example of accessmg 
and programming the EGA's internal 
registers. 

A UTOI2.ARC Uploaded: 4/ 26/ 88 
Size: 3,840 bytes 
This program illustrates how to 
change the values of typed constan~ 
within a Turbo Pascal .EXE file. This 
is a common technique that can be 
used to create installable software. 

STDERR.ARC Uploaded: 3/ 15/ 88 
Size: 1,662 bytes 
This unit provides access to the stan
dard error device through a prede
fined text file variable. Version 1.1 
fixes the problem with command-line 
redirection to a file. 

TURBO BASIC: (Library 9) 

BASICA.UNP Uploaded: 4/ 30/ 88 
Size: 1,212 bytes 
This program demonstrates how to 
unprotect a program saved in Inter
preted Basic (BASICA or BW-Basic 
with the I P option) so you may load 
it into Turbo Basic and compile it 

DATASC.ARC Uploaded: 9/ 10/ 87 
Size: 4,224 bytes 
Datascrn is a free-form screen
oriented numeric data input routine. 
It's intended for use in calculation in
tensive programs that require multiple 
numeric input variables that can be 
revised quickly and easily. Datascrn is 
readily incorporated into the main 

program as an include file. Data 
screens are designed and saved 
separately. 

NWDM02.ARC Uploaded: 5/ 30/ 88 
Size: 7,964 bytes 
Latest demo in source code of window 
effects that can be created with the 
help of either the Turbo Basic Editor 
Toolbox or the Turbo Basic Database 
Toolbox. You must have either the Ed
itor Toolbox or the Database Toolbox 
to compile this demo, because the ac
tual screen routines are in two Tool
box routines. If you do not have the 
Toolboxes, see the file WDEMO.ARC 
for the .EXE file. 

WDM02.ARC Uploaded: 5/ 30/ 88 
Size: 40,495 bytes 
WDM02 demonstrates some window
ing capabilities of the Turbo Basic 
Toolboxes. This .EXE file demon
strates the windowing capabilities of 
a Toolbox for those who don't own 
one. The source code is in the file 
NWDM02.ARC for the additional 
routines that call the Toolbox 
routines. 

VARSTR.ARC Uploaded 4/ 6/ 88 
Size: 1,408 bytes 
This file demonstrates how you can 
find the address at which Turbo Basic 
has stored your strings. 

CPI.ARC Uploaded 4/ 5/ 88 
Size: 19,072 bytes 
CPI (Communication Program Inter
face) is a TSR device driver for buf
fered data input, baud-rate selection 
from 75 to 115,200 baud, background 
communication, signing on data in
put, and more. Easy to use with any 
language or direct from DOS without 
programming the comm chip. 

TURBO C BOOKS 

Turbo C for &ginners; Steve Burnap; 
Compute! Books 

Turbo C, The Essentials of Programming-, 
Ira Pohl/ Al Kelly; Benjamin/ 
Cummings 

Using Turbo C; Herbert Schildt; 
Osborne/ McGraw-Hill 

Advanced Turbo C; Herbert Schildt; 
Osborne/ McGraw-Hill 

Turbo C: Memory Resident Utiliti.es, 
Screen 110 and Programming Techniques; 
Al Stephens; MIS Press 

Turbo C, The .1rt of Program Design, 
optimization and Debugging-, Stephen 
Randy Davis; M&T Books 

Turbo C Programmer's Library; Kris 
Jamsa; Osborne/ McGraw-Hill 

Turbo C: The Complete Reference; Ste
phen O'Brien; Osborne/ McGraw-Hill 

The Waite Group's Turbo C Bible; Naba 
Barkabati; Howard W. Sams & Co. 

Turbo C Programming for the IBM; 
Robert LaFore; Howard W. Sams & Co. 

158 TURBO TECHNIX September/ October 1988 

Complete Turbo C; Strawberry Software; 
Scott, Foresman & Co. 

Programming with Turbo C; Beverly 
and Scott Zimmerman; Scott, Fores
man &Co. 

Mastering Turbo C; Stan Kelly-Bootle; 
Sybex Inc. 

Systems Programming in Turbo C; 
Michael Young; Sybex Inc. 

Turbo C Programmer's Guide; Nathan 
Goldenthal; Weber Systems, Inc. 

Turbo C Programmer's Resource &ok; 
Frederick Hultz; Tab Books, Inc. 

Turbo C DOS Utiliti.es; Robert Alonso; 
John Wiley & Sons, Inc. 

Turbo C Survival Guide; Larry Miller I 
Alex Quilici; John Wtley & Sons, Inc. 

Turbo C Programmer's Guide; B. 
Barden; John Wiley & Sons, Inc. 

Turbo C At Any Speed; Richard Wiener; 
John Wiley & Sons, Inc. 

TUG 

The national user group for Turbo 
languages is TUG, the Turbo User 
Group. TUG publishes a bimonthly 
journal called Tug Lines that contains 
bug reports, programming how-to's, 
and product reviews. Extensive public
domain utility and source code librar
ies are available to members. An op
tional multi-user BBS with file upload
ing/ downloading, messaging, and 
teleconferencing is available to the 
public. Membership dues are $24.00 
US/ year (including Washington 
State); $28.00 Canada and Mexico; 
$39.00 overseas. 

TUG 
P.O . Box 1510 
Poulsbo, WA 98370 
BBS: (206) 697-1151 

LOCAL USER GROUPS 

One of the best places to look for ad
vice and face-to-face assistance with 
your programming problems is at a lo
cal user group meeting. Most user 
groups in the larger cities have special 
interest groups (SIGs) devoted to the 
most popular programming lan
guages, usually with strong Turbo 
presences. We will be listing some of 
the largest and most active user 
groups in major urban areas across 
the country; obviously, there are thou
sands of user groups that we cannot 
list due to space limitations. If no 
listed group is convenient to you, ask 
about local user groups at a local com
puter store or check with a faculty 
member at a high school or college 
with a computer curriculum. 



BOSTON COMPUTER SOCIETY 
Information: (6I7) 367-8080 
BBS: (617) 227-7986 
One Center Plaza 
Boston, MA 02108 

CAPITAL PC USER GROUP (DC) 
4520 East-West Highway, Suite 550 
Bethesda, MD 20814 

CHICAGO COMPUTER SOCIETY 
Information: (3I2) 794-7737 
BBS: (312) 942-0706 
P.O. Box 8681 
Chicago, IL 60680-8681 

HAL/PC (HOUSTON) 
Information: (713) 524-8383 
BBS: (713) 847-3200 or 
(713) 442-6704 

NEW YORK PC USER GROUP, INC. 
Information: (212) 533-6972 
BBS: (212) 697-1809 
40 Wall Street, Suite 2124 
New York, NY 10005 

PACS (PHILADELPHIA) 
Information: (215) 951-1255 
BBS: (215) 951-1863 
PACS, c/o Lasalle University 
Philadelphia, PA 19141 

SAN FRANCISCO PC USERS GROUP 
Information: (415) 221-9166 
BBS: (415) 621-2609 
3145 Geary Blvd, Suite 155 
San Francisco, CA 94118-3316 

ST. LOUIS USERS GROUP 
Information: (314) 968-0992 
BBS: (314) 361-8662 

TWlN CITIES PC USER GROUP 
Information: (612) 888-0557 
BBS: (612) 888-0468 
P.O. Box 3163 
Minneapolis, MN 55403 

ADVERTISERS' INDEX 
Advertiser 

Aker Corp. 

American Cybernetics 

ASCII 
Austin Code Works, The 

Black & White International 

Blaise Computing 

Page No. 

115 

43 

159 

47 

37 

5 
Borland International, Inc. 29-32, 
44-45,89,93,97, 109, 116-117, 131-135 

Burgiss Group, The 127 

Chen & Associates, Inc. 

CHANCElogic 

Computer Solutions 

Disk Software 

159 

51 

159 

36 

English Knowledge Systems, Inc. 159 

Entelekon Software Systems 61 

Ithaca Street Software, Inc. 159 

Lahey Computer Systems, Inc. 39 

Matrix Software 25 

Max Software Consultants, Inc. 147 

Microway 

Nostradamus 

41 

23, C3 

I C:>CLASS.ADS 

C:>CLASS.ADS is TURBO TECH
NIX magazine's display classified 
advertising section. Special sizes 
and rates are available for 
C:>CLASS.ADS-$150 per column 
inch, with a 2-inch minimum. (A 
minimum ad, for example, mea
sures exactly 2 1/ 16" wide by 2" 
long.) All C:>CLASS.ADS must be 
prepaid and submitted in camera
ready form (black and white PMT 
or Velox) to: 

C:>CLASS.ADS 
TURBO TECHNIX 
1800 Green Hills Road 
P.O. Box 660001 
Scotts Valley, CA 95066-0001 

For information, please contact the 
Advertising Department at ( 408) 
438-9321. 

T Pascal, Turbo C 
Microsoft C 

Complete data base 
code in just 10 minutes! 

Draw & paint your screens, point out indexes & 
that's it! Generator has: S.tree file manager, 
Automatic indexing, Context sensitive help, 
Automatic programmer documentation. 

Unlimited technical support 

T Pascal $389 I C Versions: $499 
30 day money-back guarantee 

Turbo Programmer 
ASCII - (800) 227- 7681 

Opt-Tech Data Processing 

Osborne/McGraw-Hill 

Paradigm Systems 

Peacock Systems 

Perpetual Data Systems 

Polytron Corporation 

Programmer's Connection 

Programmer's Connection/ 
Blaise Computing 

Programmer's Paradise 

Qualitas, Inc. 

Quarterdeck Office Systems 

Research Group, The 

Software Artistry 

Softway, Inc. 

Sophisticated Software 

TOP GUN Systems 

Trio Systems 

TurboPower Software 

Vertical Horizons Software 

Visitech Software 

Zenreich Systems 

159 

17, C4 

123 

153 

40 

85 

9 

7 

112 

155 

C2-1 

15 

11 

50 

35 

18-19 

69 

46 

65 

22 

127 

J.. Convert Turbo Pascal (V3.X) to Turbo Cl 
J.. Saves You Hundreds of Hours! 
@$99 + S&H (US/Canada=$5. Foreign=$20) 
~ Foreign Bank Check. add $30 

P.O ./C.O.D., add $10 
J.. Demo Disk = $5 

CHEN & ASSOCIATES, INC. 
4884 Conltltutlon Ave., Ste. 1 E 
Baton Rouge, Loulalane 70808 

lfJ04111Z8-57651lnqulrlul I 1-800-448-CHEN (Orders! 

TURBO SOFTWARE 
We have a large collection of the best Shareware & 
Public Domain for the Turbo Languages I 

Turbo Pascal 3.0 6 disks for S25 
4.0 4 disks for $18 

Turbo Prolog 3 disks for $14 
Turbo C 5 disks for $21 
Turbo Basic 3 disks for $14 

3 112 disk format $1 per disk extra. 
All dsks completely filled! Windowing Packages, Utilities, Ex
amples, Tutorials, Enhancements, and more. Free 32 pg. cata
loge with over 200 disks described. Each disk only $4.50 or less. 
Free shipping I Visa/Master Card, C.O.D. 

Computer Solutions 
P.O. Box 354 •Mason, Ml 48854 

1-800-874-9375 to order 
1-517-628-2943 for info & Ml 

JAKE'": A BREAKTHROUGH IN 
NATURAL LANGUAGE SOFTWARE 

Create a natural language front end to your 
database, game, or graphics program! JAKE 
is a library usable with Turbo C for translating 
English queries and commands into function 
calls and data structures. JAKE offers context
sens~ive semantic processing, while interlacing 
easily to any application and using < 64K 
of memory. $495 complete. 

Sound too good to be true? Get our 
interactive demo for only $10 and see. 

CALL (408) 438~922 VISA, MC 

English Knowledge Systems, Inc. 
5525 Scotts Valley Dr. Suite 22 

Scotts Valley, CA 95066 

OPT-TECH SORT ™ 

The High Performance Sort/ 
Merge utility. Use stand-alone or 
Call as a subroutine. Unlimited 
filesize, multiple keys, record 
selection & much more! 

for MS-DOS $149_ 
Call or write for more info_ 

Opt-Tech Data Processing 
P.O. Box 678/Zephyr Cove, NV 89448 

(702) 588-3737 

I l:ON-TOOLStm 
I con ed i tor, i con f i I es, 
C function source code. 
Turbo C, Quick C, MetaWIND, 
ESI, and GFX graphics. 

$69.95 
Ithaca Street Software, Inc. 

114S Ithaca Drive 
Boulder, CO 80303 
(303) 494-8865 

September/October 1988 TURBO TECHNIX 159 



PHILIPPE'S 
TURBO TALK 
With Turbo Debugger, 
it's OK to crash! 

Philippe Kahn 

A cademic types will tell 
you that with proper de
sign techniques, it's pos
sible to write programs 

that are correct from the word 
GO. In the real world, with real 
programs that do real work, it 
never works out that way. In fact, 
if a program under development 
never crashes, it can't be much of 
a program! 

Even the bestjugglers drop 
some balls when they work on 
new tricks! As a matter of fact, it 
is well known that the best 
jugglers are probably the ones 
that have dropped a lot of balls. 
There's nothing wrong with crash
ing during development. What's 
wrong is crashing and not under
standing why. 

ERROR IS HUMAN, BUT ... 
In 44 B.C. (Before Computers), 
Cicero said: "Any man can make 
mistakes, but only an idiot persists 
in his error." In Latin, it became 
more radical over time: "Erare 
humanum est, sed perseuerare diabol
icum: Error is human, but repeat
ing it is an act of the devil!" 

Of course, you have to spend 
time and energy in careful soft
ware design, or the product will 
never even be finished, much less 
work. The primary factor is the 
project's overall architecture. 
That's the foundation on which 
work will be done. It has to be 
solid and very well thought out. 
Then you start with a design, and 
I guarantee you that there will be 
some major changes to that de-

sign by the time the product ships. 
It's natural. Otherwise, you can 
bet that it won't be much of a 
product. Too many people show 
more interest in a quick profit 
than in quality work. Products are 
rushed to market even though the 
programs have more bugs than a 
tropical island. 

But even with the best design 
humanly possible, there will be 
bugs. There will be crashes. The 
key is to have good people using 
debugging tools that they under
stand, so that even the worst crash 
is a learning experience. 

THE RIGHT TOOLS 
Your tools should match your 
problem. You can't debug a 
leading-edge program with a 
trailing-edge debugger. If you're 
going to program for the 386, your 
debugger had better understand 
the 386. If your program is going 
to use EMS, your debugger had 
better understand EMS. Other
wise, you're over-driving your 
headlights .. . 

Turbo Debugger helps you to 
see what's going on. Look at every
thing. If your program brings the 
system down, look carefully at all 
the side effects as well. That can 
be quite an education right there: 
You can learn more about DOS 
when it goes down in flames than 
you can when it works! But you 
don't learn anything unless you 
can watch what happens right up 
to the explosion. 

It helps to have a safe place to 
watch from. Powering down is a 
waste of time. That's why at 
Borland we built 386 support into 

160 TURBO TECHNIX September/ October 1988 

Turbo Debugger. We put Turbo 
Debugger in one protected virtual-
86 partition and left the test pro
gram in another, so that even if 
the test program crashes its par
tition, nothing touches Turbo 
Debugger. 

And then there are the danger
ous ideas you get while imple
menting a cutting-edge design. 
They may work fine, or they may 
blow you away every time, but you 
won't know until you try, and with 
Turbo Debugger you can make an 
informed decision. Without Turbo 
Debugger, you can only do what's 
safe. With Turbo Debugger, you 
can explore new territory and 
make it safe. 

WATCH WHAT GOES WRONG 
This is the importance of debug
ging: To watch what goes wrong 
so that you can not only fix that 
bug but recognize that whole class 
of bugs. Little by little, you fine
tune your design so that it be
comes crashproof. 

It's OK to crash. A program can 
die a thousand deaths, and come 
back every time. And each time 
it'll be a little better, if you really 
work at learning from your mis
takes. Remember, someone who 
never makes a mistake doesn't 
usually make anything, and like 
the ancient Chinese saying goes: 
"The first thousand times don't 
count!" • 



Turbo-Plus 5. 0 



SPECIAL TURBO SALE 
Get $5.00 Off Every Turbo Pasca1·4 Book 
Get $3.00 Off Every Turbo c·& Turbo Basic Book 

Using Turbo C" 
by Herbert Schildt 
For all C programmers , beginners to pros , this excellent guide 
helps you write Turbo C programs that get professional results . 
~Paperback , ISBN: 0-07-881279-8, 431 pp ., 73/s x 9y, 
Borland·Osborne/McGraw-Hill Programming Series 

$16.95 

Advanced Turbo C' 
by Herbert Schildt 
Unveils Turbo C power programming techniques to serious 
programmers . Covers Turbo Pascal conversion to Turbo C and 
Turbo C graphics. 
~Paperback , ISBN: 0-07-881280-1 , 397 pp , 73/s x 91/, 

Borland•Osborne/McGraw-Hill Programming Series 

$19 .95 

Turbo c' : THE COMPLETE REFERENCE 

By Herbert Schildt Covers Version 1.5 
Programmers at every level of Turbo C expertise can quickly 
locate information on Turbo C functions , commands , codes , and 
applications-all in this handy encyclopedia . 
)>4.sS Paperback, ISBN: 0-07-881346-8, 850 pp , 73/s x 9y, 
Borland•Osborne/McGraw-Hill Programming Series 
$21 .95 

Turbo Pascal' 
THE COMPLETE REFERENCE 

Covers Version 4 
by Stephen O'Brien 
The first single resource that lists 
every Turbo Pascal command , 
function , and feature, all illustrated 
in short examples and applications. 
Ideal for every Turbo Pascal 
programmer. 

~Paperback, ISBN: 0-07-881290-9 , 814 pp ., 73/s x 91
/, 

Borland•Osborne/McGraw-Hill Programming Series 

$19 .95 

For A limited Time Only 

Using Turbo Pascal " VERSION 4 
by Steve Wood 
Build the skills you need to become a productive Turbo Pascal 4 
programmer. Covers beginning concepts to full-scale 
app1ications . 

)».tS°Paperback, ISBN: 0-07-881356-5 , 546 pp ., 73/s x 9y, 
Borland•Osborne/McGraw-Hill Programming Series 

$14.95 

Advanced Turbo Pascal ' VERSION 4 
by Herbert Schildt 
The power of Turbo Pascal 4 will be at your fingertips when you 
learn the top-performance techniques tram expert Herb Schildt. 
~Paperback , ISBN: 0-07-881355-7 , 416 pp ., 73/s x 91/, 

Borland•Osborne/McGraw-Hill Programming Series 

$16 .95 

Turbo Pascal ' 
PROGRAMMER'S LIBRARY, SECOND EOITION 

by Kris Jamsa and Steven Nameroff 
Take full advantage of Turbo Pascal , and the newest versions of 
Turbo Pascal , with this outstanding collection of programming 
routines . Includes routines for the Turbo Pascal toolboxes . 
~Paperback , ISBN: 0-07-881368-9, 600 pp ., 73/a x 91/, 

Borland•Osborne/McGraw-Hill Programming Series 

$17.95 

Using Turbo Basic ' 
by Frederick E. Mosher 
and David I. Schneider 
Introduces Turbo Basic to novices 
and seasoned pros alike. Learn 
about the Turbo Basic operating 
environment and the interactive 
editor. 

):18.aS' Paperback, 
ISBN: 0-07-881282-8 , 
457 pp , 73/s X 9y, 

Borland•Osborne/McGraw-Hill Programming Series 

$16 .95 

ORDER TODAY! CALL TOLL-FREE 800-227-0900 Use Your Visa , MasterCard, 
or American Express 

~ 'J ~ Osborne McGraw·l-lill 
-j • 2600 Tenth Street 

I. M ~ Berkeley, California 94710 
Turbo Basic. Turbo C. and Turbo Pascal are registered trademarks 
of Borland International Copyright© 1988 McGraw-Hill Inc 

a: 
0 
m 

• 

c 
..I 
a: 
m 


	2022-09-02-0001
	2022-09-02-0002
	2022-09-02-0003
	2022-09-02-0004
	2022-09-02-0005
	2022-09-02-0006
	2022-09-02-0007
	2022-09-02-0008
	2022-09-02-0009
	2022-09-02-0010
	2022-09-02-0011
	2022-09-02-0012
	2022-09-02-0013
	2022-09-02-0014
	2022-09-02-0015
	2022-09-02-0016
	2022-09-02-0017
	2022-09-02-0018
	2022-09-02-0019
	2022-09-02-0020
	2022-09-02-0021
	2022-09-02-0022
	2022-09-02-0023
	2022-09-02-0024
	2022-09-02-0025
	2022-09-02-0026
	2022-09-02-0027
	2022-09-02-0028
	2022-09-02-0029
	2022-09-02-0030
	2022-09-02-0031
	2022-09-02-0032
	2022-09-02-0033
	2022-09-02-0034
	2022-09-02-0035
	2022-09-02-0036
	2022-09-02-0037
	2022-09-02-0038
	2022-09-02-0039
	2022-09-02-0040
	2022-09-02-0041
	2022-09-02-0042
	2022-09-02-0043
	2022-09-02-0044
	2022-09-02-0045
	2022-09-02-0046
	2022-09-02-0047
	2022-09-02-0048
	2022-09-02-0049
	2022-09-02-0050
	2022-09-02-0051
	2022-09-02-0052
	2022-09-02-0053
	2022-09-02-0054
	2022-09-02-0055
	2022-09-02-0056
	2022-09-02-0057
	2022-09-02-0058
	2022-09-02-0059
	2022-09-02-0060
	2022-09-02-0061
	2022-09-02-0062
	2022-09-02-0063
	2022-09-02-0064
	2022-09-02-0065
	2022-09-02-0066
	2022-09-02-0067
	2022-09-02-0068
	2022-09-02-0069
	2022-09-02-0070
	2022-09-02-0071
	2022-09-02-0072
	2022-09-02-0073
	2022-09-02-0074
	2022-09-02-0075
	2022-09-02-0076
	2022-09-02-0077
	2022-09-02-0078
	2022-09-02-0079
	2022-09-02-0080
	2022-09-02-0081
	2022-09-02-0082
	2022-09-02-0083
	2022-09-02-0084
	2022-09-02-0085
	2022-09-02-0086
	2022-09-02-0087
	2022-09-02-0088
	2022-09-02-0089
	2022-09-02-0090
	2022-09-02-0091
	2022-09-02-0092
	2022-09-02-0093
	2022-09-02-0094
	2022-09-02-0095
	2022-09-02-0096
	2022-09-02-0097
	2022-09-02-0098
	2022-09-02-0099
	2022-09-02-0100
	2022-09-02-0101
	2022-09-02-0102
	2022-09-02-0103
	2022-09-02-0104
	2022-09-02-0105
	2022-09-02-0106
	2022-09-02-0107
	2022-09-02-0108
	2022-09-02-0109
	2022-09-02-0110
	2022-09-02-0111
	2022-09-02-0112
	2022-09-02-0113
	2022-09-02-0114
	2022-09-02-0115
	2022-09-02-0116
	2022-09-02-0117
	2022-09-02-0118
	2022-09-02-0119
	2022-09-02-0120
	2022-09-02-0121
	2022-09-02-0122
	2022-09-02-0123
	2022-09-02-0124
	2022-09-02-0125
	2022-09-02-0126
	2022-09-02-0127
	2022-09-02-0128
	2022-09-02-0129
	2022-09-02-0130
	2022-09-02-0131
	2022-09-02-0132
	2022-09-02-0133
	2022-09-02-0134
	2022-09-02-0135
	2022-09-02-0136
	2022-09-02-0137
	2022-09-02-0138
	2022-09-02-0139
	2022-09-02-0140
	2022-09-02-0141
	2022-09-02-0142
	2022-09-02-0143
	2022-09-02-0144
	2022-09-02-0145
	2022-09-02-0146
	2022-09-02-0147
	2022-09-02-0148
	2022-09-02-0149
	2022-09-02-0150
	2022-09-02-0151
	2022-09-02-0152
	2022-09-02-0153
	2022-09-02-0154
	2022-09-02-0155
	2022-09-02-0156
	2022-09-02-0157
	2022-09-02-0158
	2022-09-02-0159
	2022-09-02-0160
	2022-09-02-0161
	2022-09-02-0162
	2022-09-02-0163
	2022-09-02-0164

