
TUlllJO
TECHNIX
THE BORIAND LANGUAGE JOURNAL • MAY/JUNE 1988 • VOLUME ONE NUMBER FOUR• $10.00

~
:· POWER

··:·:~ GRAPHICS
WITHTHEBGI

A device-independent
standard for
Borland languages

The secrets of
mouse programming

Access the DOS
print spooler
from Turbo Pascal

: Directory searches
•

1 in Turbo Basic

Nobody ever said programming
PCs was supposed to be easy.

But does it have to be tedious
and time-consuming, too?

Not anymore.
Not since the arrival of the

remarkable new program in the
lower right-hand corner.

Which is designed to save you
most of the time you're currently
spending searching through the
books and manuals on the shelf
above.

It's one of a quintet of pop-up
reference packages, called the
Norton On-Line Programmer's
Guides, that actually gather your
data for you-on OS/2 Kernel API
or your favorite programming
language.

Each package comes complete
with a comprehensive, cross
referenced database crammed
withjustabouteverythingyou
need to know to write applications.

OS/2 KERNEL API (IM of data)
• Kernel API: Describes all OS/2 API
services: DOSx,KBDx,MOUxand VI Ox.
• Structure Tables: Lists all of the OS/2
data structures used in the Kernel AP! .
•Conversion Guide: DOS-to-OS/2 table
shows which OS/2 calls replace DOS
and ROM BIOS services.

ASSEMBLY (600K of data)
• DOS Service Calls: All INT 21h serv
ices, interrupts, error codes and more.
•ROM BIOS Calls: All ROM calls.
• Instruction Set: All 8088/86 instruc
tions, addressing modes, flags, bytes per
instruction, clock cycles and more.
• MASM: Pseudo-ops and assembler
directives.

BASIC (270K each database)
•IBM BASICA, Microsoft QuickBASIC
and TurboBASIC.
• Statements and Functions: Describes
all statements and built-in library func
tions.

"authoritatively detailed" to
describe the information

C (600K each database)
• Microsoft C and Turbo C: Describes
the C language.
•Library Functions: Detailed descrip
tions of all functions.
•Preprocessor Directives: Describes
commands, usage and syntax.

PASCAL-Turbo (360K of data)
• Language: Describes statements, syn
tax, operators, data types and records.
• Library: Describes the library proce
dures and functions.

FEATURES (all versions)
•Memory-resident-uses just 71.K.
• Full-screen or moveable half-screen
view, with pull-down menus.
•Auto lookup and searching.
•Tools for creating your own databases.
• More data: All five Norton Guides fea
ture a variety of tables, including ASCII
characters, line-drawing characters,
keyboard scan codes and much more.
• Includes both OS/2 protected mode
and DOS versions.

Not to mention a wealth of wisdom from
the Norton team of top programmers.
(PC ~ek used the words "massive" and

contained in the Guides. If you'd rather see for
yourself, you might take a moment or two to
examine the data box you just passed)

You can, of course, find most of this informa-
Designed for the IBM• PSl2'" and PC fam ilies, and 1000/o compatibles. Available at most software

•

tion in the books and manuals on our shelf.
But Peter Norton -who's written a few

books himself- figured you'd rather have it
on your screen.

Instantly.
In either full-screen or moveable half

screen mode.
Popping up right next to your work Right

A Guides reference summary
screen (shown in blue) pops up on
top of the program you're working

on (shown in green).

Summary data expands on
command into extensive detail.
And you can select from a wide

variety of information.

where you need it
This, you're probably thinking, is precisely

the kind of thinking that produced the classic
Norton Utilities.

And you're right
But even Peter Norton can't think of

everything.
Which is why each version of the Norton

Guides comes equipped with a built-in com-

piler-the same compiler used to develop the
databases contained m the Guides.

So you can create new databases of your own,
complete with electronic indexing and cross
referencing.

No wonder PC l%ek refers to the Guides as a
"set of programs that will delight programmers:'

Your dealer
will be de
lighted to give
you more infor
mation.All you
have to do is
call. Or call
Peter Norton
Computing.

And ask
for some
guidance.

':]!eter Ntlrlt#l-
COMPUTING

dealers, or direct from Peter Norton Computing, Inc.,2210 Wilshire Blvd. #186, Santa Monica, CA 90403. 213-453-2361. Visa and MasterCard welcome.©1988 Peter Norton Computing

I TURBO TECHNIX
The Borland Language Journal
May/June 1988
Volume 1 Number 4

FEATURES

TURBO PASCAL

12 Meet the BGI
Tom Swan

28 Plotting the Mandelbrot Set
with the BGI
Fred Robinson

36 Using Units To Hide Data
Structure Details
Marshall Brain

41 Interfacing the DOS
Print Spooler
Duane L. Geiger

47 Exploring the Interrupt
Vector Table
Jeff Duntemann

28
The Mandelbrot Set has been called
the most complex artifact to emerge
from pure mathematics. The Set itself
is less interesting than its boundary,
which is fractal in nature and infinite
in length. Plotting the fractal boun
dary with BGI color graphics reveals
landscapes of dazzling complexity that
may be enlarged and explored with
out limit

52
Adding integral mouse support to
your Turbo C and Turbo Pascal appli
cations has been something of a mys
tery-until now. Once you understand
how the mouse works and how the
mouse driver communicates with your
software, the mystery is solved.

TURBOC

52 Mouse Mysteries, Part 1: Text
Kent Porter

68 ++, --
Bruce F. Webster

71 A Quattro Save Translator
Bruce F. Webster

79 A Memory-Resident
Clock Utility
Ron Sires

TURBO PROLOG

84 Turbo Prolog 2.0:
Intelligent Evolution
Michael Floyd

90 What's In a List?
Keith Weiskamp

94 Playing Cat and Mouse
in Turbo Prolog
Safaa Hashim

84
Turbo Prolog advances the quest for
the ideal AI applications language by
offering dynamic databases, predi
cates with multiple arities, device
independent graphics through the
Borland Graphics Interface, and
many other new features.

TURBO BASIC

100 Variable Variations
David A Williams

105 Instantaneous H elp Screens
Ralph Roberts

106 Pick a File, Any File
Marty Franz

114 Plotter Support, Turbo-Style
William H. Murray and
Chris H. Pappas

118 Background Color Magic
Mark Novisoff

TURBO TECHNIX makes reasonable efforts to assure the accuracy of articles and information published in the magazine. TURBO TECHNIX assumes no
responsibility, however, for damages due lo errors or omissions, and specifically disclaims any implied warranty of merchantahility or fitness for a particular
pU'lJOSe. The liability, if any, of Borland, TURBO TECHNIX, or any of the contributing authors of TURBO TECHNIX, for damages relating to any error or
omission shall be limited to the price of a one-year subscriptio n to the magazine and shall in no event include incidental, special, or consequential dam
ages of any kind, even if Borland or a contributing author has been advised of the likelihood of such damages occurring.

Trademarks: Turbo Pascal, Turbo Basic, Turbo C, Turbo Prowg, Turbo Toolbox, Turbo Tutor, Turbo GameWorks, Turbo Lightning, Lightning Word Wizard, SitkKick,
SuperKey, Eureka, Ref/a, <!Jwttro, Sprint, Paradox, and Borland are trademarks or registered trademarks of Borland International, Inc. or its subsidia.US.

2 TURBO TECHNIX May/June 1988

120
Paradox's PAL language contains

. predefined functions for calculating

1
, ~· .. ~~ loan payments, present value, future

value, and net present value. Knowing
how to use them can save a great deal
of effort in creating PAL applications
that handle dollars and cents.

BUSINESS LANGUAGES

120 PAL's Tools for Financial
Information
Todd Freter

126 Building an Address
Database in Sprint
Nei,l Rubenking

-COLUMNS

4 BEGIN: Standardized Parts
Jeff Duntemann

131 Binary Engineering: How
Loosely Are You Coupled?
Bruce Webster

136 Language Connections:
A Blending of Media
and of Tools
Michael Floyd

140 Tales from the Runtime:
Diving into Printf
Bill Catchings and
Mark L. Van Name

160 Philippe's Turbo Talk

DEPARTMENTS

6 Dialog

150 Archimedes' Notebook:
Choosing the Most Cost
Effective Lens Design
Milton C. Kurtz

154 Critique: Mach 2 for
Turbo Basic
Marty Franz

155 Critique: C-scape with
Look and Feel
Marty Franz

156 BookCase: Turbo C
Programming for the IBM
Reviewed by Robert Alonso

157 BookCase: Artificial
Intelligence Programming
with Turbo Prolog
Reviewed by Sanjiva Nath

158 Turbo Resources

Cover: At last, Borland s languages will
speak graphically with one voice, through
the Borland Graphics Interface (BG!).
The BG! kernel detects the installed graph
ics display device at runtime, and wads
an appropriate driver. Drawing points,
lines, circles, ellipses, and polygons can be
easily done without learning a completely
new syntax for each Turbo language.
The BGI's speed, color, and versatility
will paint your graphics applications in
a completely new light.

TURBO TECHNIX

Publisher
Marcia Blake

Editor in Chief
Jeff Duntemann

EDITORIAL

Managing Editor
Michael Tighe

Technical Editor
Michael A. Floyd

Copy Editor
Pamela Dillehay

Technical Consultants
Brad Silverberg
David Intersimone
Dan Kernan
Charles Batterman
David Golden

DESIGN & PRODUCTION

Art Director
Karen Miner

Production Assistant
Annette Fullerton

Typesetting Manager
Walter Stauss

Typesetter/System Supervisor
Jeffrey Schwenley

Typesetters
Ron Foster
Jeanie Maceri

Typesetting Traffic
Charlene McCormick

Photographer
Bradley Ream

ADMINISTRATION

Purchasing
Brad Asmus

ADVERTISING

Assistant to the Publisher
Sheriann Glass

Advertising Sales Manager
John Hemsath
(408) 438-9321

Western Region
Janet Zamucen
(714) 858-0408

New England/Mid-Atlantic Regions
Merrie Lynch
Nancy Wood
(617) 848-9306

South Region
Megan Patti
(813) 394-4963

TURBO TECHNIX (ISSN-0893-827X) is published bimonthly by Borland Communications, a division of Borland International, Inc., 4585 Scotts Valley Drive,
Scotts Valley, CA 95066. TURBO TECHNIX is a trademark of Borland International, Inc. Entire contents Copyright ~1988 Borland International, Inc. All
rights reserved. No pan of this publication may be reprinted or otherwise reproduced without permission from the publisher. For a statement of our permis
sion policy for use of listings appearing in the magazine, send a self-addressed stamped envelope to Permissions, TURBO TECHNIX, 4585 Scotts Valley
Drive, Scotts Valley, CA 95066. Editorial and business offices: TURBO TECHNIX, 4585 Scotts Valley Drive, Scotts Valley, CA 95066. Subscription rate is $49.95
per year; rate in Canada $60.00 per year, payable in U.S. funds. Single copy price is $10.00. For subscription service write to Subscriber Services, TURBO
TECHNIX, 4585 Scotts Valley Drive, Scotts Valley, CA 95066. POSTMASTER: Send address changes to TURBO TECHNIX, 4585 Scotts Valley Drive, Scotts
Valley, CA 95066.

May/June 1988 TURBO TECHNIX 3

BEGIN
Standardized parts.

Jeff Duntemann

B
ack when I was 15 and
impatient, I decided to
build a car. I conned my
uncle out of his broken

self-propelled reel-style lawn
mower that would only go back
wards, scrounged some scrap
2 X 4s and pipe fittings from a
Chicago vacant lot, took apart my
old balloon-tire bike with the
cracked frame, and I built a car.
By bolting the wood frame onto
the wrong side of the lawnmower,
I worked around the frozen gear
box. With the frame slung under
the balloon-tired front axle and a
sawed-off bar stool as the front
seat, it was, shall we say, idiosyn
cratic. But it ran up and down the
alley at a reliable seven miles per
hour until the neighbors com
plained.

Had I been less impatient, I
could have grown up, bought a
raft of machine tools, and in
about 15 years hand-cloned a
Porsche. In the meantime, how
ever, I would still be taking the
bus.

Most people don't build cars,
and most people don't write soft
ware. Those of us who do, gener
ally approach it as though we
were hand-cloning a Porsche:
starting at the top with the specifi
cation of the gleaming end
product, and then painstakingly
creating a multitude of special
purpose components that, bolted

4 TURBO TECHNIX May/June 1988

together with care, produce that
snazzy, Turbo-charged accounting
package.

There's nothing wrong with this
method. In fact, it's the only effec
tive way to build competitive,
commercial-quality applications.
The other way to build software
by gluing together very high-level
standardized software parts-has
long been neglected, or else slan
dered under the term "prototyp
ing," when in fact it's just the
thing when all you really need to
do is tool up and down the alley.

As research for a new book I'm
working on, I've been building
some standardized parts. One of
them is an editor window that
incorporates the Borland Binary
Editor. The window only takes two
parameters: the filename to be
edited, and a number from 1 to 4
that specifies which fraction of the
screen to use (whole, half, third,
or a quarter). When called, the
window saves the underlying text
screen to the heap and then pops
up as far from the cursor as it can.

Another part is a file picker
window that only takes two pa
rameters: a file spec and a num
ber from 1 to 4. When called, it
works exactly like the editor win
dow except that it displays a
bounce-bar menu of filenames
that match the file spec.

Other standardized parts in the
works include a date field editor, a
string field editor, a phone num
ber field editor, and (with luck) a
1200-baud telecomm window with
only two parameters: a number to
dial, and the 1-4 screen-portion

value. Designing the parts takes
some cleverness, but stringing
them together takes very little.
The resulting applications are
"lumpy," and not especially flex
ible, but they work and can be
created in 20 minutes flat.

The secret is this: Keep the inter
faces simpl,e. Choose reasonable
defaults and live with them. Also,
have one part do one thing. A uni
versal field editor is far more trou
ble than separate ones for strings,
dates, and integers.

What I'm reaching for here is
called object-oriented program
ming, best known in specialized
languages like C++ and Actor,
but actually approachable in all of
the Turbo languages. It's been a
fascinating project, and I'll share
my thoughts on it here from time
to time, publishing some of my
objects in the Turbo Pascal section
of TURBO TECHNIX. The built-in
overhead and inflexibility make
object-oriented methods iffy for
commercial applications, but for
small or inhouse projects, these
methods can save enormous
amounts of work.

Remember, we're not talking
racing stripes here. If you only
need a go-kart, why build a
Porsche? •

Opinions expressed in this column are those
of the editor and do not nece ssarily re flect
the views of Borland International, Inc.

Interlocking Pieces:
Blaise and

Turbo Pascal.
Whether you're a Turbo Pascal expert or a novice, you can benefit from using professional tools
to enhance your programs. With Turbo POWER TOOLS PLUS™ and Turbo ASYNCH PLUS;"
Blaise Computing offers you all the right pieces to solve your 4.0 development puzzle.

Compiled units (TPU files) are provided so each package is ready to use
c with Turbo Pascal 4.0. Both POWER TOOLS PLUS and ASYNCH PLUS

-::-~~.;;C.-.:;~r use units in a clear, consistent and effective way. If you are familiar
co •• ~·"'f,ti with units, you will appreciate the organization. If you are just getting

~ ,.? started, you will find the approach an illustration of how to construct
and use units.

+POWER TOOLS PLUS is a library of over 180 powerful functions
and procedures like fast direct video access, general screen

handling including multiple monitors , VGA and EGA 50-line
and 43-line text mode, and full keyboard support, including

the 101/102-key keyboard. Stackable and removable win
dows with optional borders, titles and cursor memory
provide complete windowing capabilities. Horizontal, ver

tical, grid and Lotus-style menus can be easily incorporated
into your programs using the menu management routines.
You can create the same kind of moving pull down menus
that Turbo Pascal 4.0 uses.

Control DOS memory allocation. Alter the Turbo Pascal heap
size when your program executes. Execute any program from
within your program and POWER TOOLS PLUS automatically
compresses your heap memory if necessary. You can even force
the output of the program into a window!

Write general interrupt service routines for either hardware or
software interrupts. Blaise Computing's unique intervention
code lets you develop memory resident (TSRs) applications
that take full advantage of DOS capabilities. With simple pro
cedure calls, "schedule" a Turbo Pascal procedure to execute

either when pressing a "hot key" or at a specified time.

+ASYNCH PLUS provides the crucial core of hardware interrupts
needed to support asynchronous data communications. This package offers

simultaneous buffered input and output to both COM ports, and up to four
ports on PS/2 systems. Speeds to 19.2K baud, XON/ XOFF protocol , hard
ware handshaking, XMODEM (with CRC) file transfer and modem control
are all supported. ASYNCH PLUS provides text file device drivers so you

can use standard "Readln" and "Writeln" calls and still exploit interrupt-driven
communication.

The underlying functions of ASYNCH PLUS are carefully crafted in assembler
and drive the hardware directly. Link these functions directly to your application
or install them as memory resident.

Blaise Computing products include all source code that is efficiently crafted,
readable and easy to modify. Accompanying each package is an indexed

manual describing each procedure and function in detail with example
code fragments. Many complete examples and useful utilities are

included on the diskettes. The documentation, examples and

u

Turbo POWER SCREEN $129.00
NEW' General screen management; paint
screens; block mode data entry or field-by
field control with instant screen access. Now
for Turbo Pascal 4.0. soon for C and BASIC.

TurboC TOOLS $129.00
Full spectrum of general service utility func
tions including: windows: menus; memory
resident applications: interrupt service rou
tines: intervention code; and direct video
access for fast screen handling. For Turbo C.

CTOOLSPLUS $129.00
Windows: menus; ISRs: intervention code;
screen handling and EGA 43-line text mode
support; direct screen access; DOS file han
dling and more. Specifically designed for
Microsoft C 5.0 and QuickC.

ASYNCH MANAGER $175.00
Full featured interrupt driven support for the
COM ports. 1/0 buffers up to 64K: XON/
XOFF: up to9600 baud: modem control and
XMODEM fil e transfer. For Microsoft C and
Turbo C or MS Pascal.

PASCAL TOOLS/TOOLS 2 $175.00
Expanded string a nd screen handling: graph
ics routines: memory management; general
program control; DOS file support and more.
For MS-Pasca l.

KeyPilot $49.95
'·Super-batch" program. Create batch files
which can invoke programs and provide input
to them; run any program unattended; create
demonstration programs: analyze keyboard
usage.

EXEC $95.00
NEW VERSION! Program chaining execu
tive. Chain one program from another in
different languages; specify common data
areas: less than 2K of overhead.

RUNOFF $49.95
Text formatter for all programmers. Written
in Turbo Pascal: flexible printer control; user
defined variables; index generation: and a
general macro facility.

TO ORDER CALL TOLL FREE
800-333-8087

TELEX NUMBER· 338139

source code reflect the attention to detail and commitment to --------
technical support that have distinguished Blaise Computing over ____ - - -

the years. _____ ----·

Designed explicitly for Turbo Pascal 4.0, Turbo __ - - - --: h~ ~;es\ co\lies d~cts.
POWER TOOLS PLUS and Turbo ASYNCH ----- ndmetherig tor-.-;;;:;-;;our\lro ootor

PLUS provide reliable, fast, professional routines-')'£,S\ S~ is $~ntorinauon. orders add r;ir.
the right combination of pieces to put your Turbo Pascal\ £,nclt~e send me in~ 'Ta1' · Doin~tl~ress standar) ------
puzzle together. Complete price is $129.00 each. \ 0 P ea. dents add S~lor Federa\ 1' ptone-. l--

\ c1>.resh1.~\ling,$\O. ..,.\l.
'UPSS I ,.,1 .

..illllllf~ I Name-. State-.-- £,1'\l~· D~~a~t!e~·· __ ..

----------~'-'.: \ f>.ddr~ &ticrosoft

BLAISE COMPUTING INC. ', Cit'f·.- r MC# ". ,. __ ,.. -• registered ~;'jd~~:~~f,"~j
YlS~ O _ - - -'! Microsofl Corporation. Turbo Pascal is a reRis4

\. - - - - tered trademark of Borland International. 2560 Ninth Street, Suite 316 Berkeley, CA 947!0 (415) 540-5441

DIALOG
Dead horses with wheels; and how do
you pronounce ('('Dijkstra," anyway?

Are we glowing in th.e dark, or is
th.e smoke pouring out of your
ears? Errata or accolade? Bug or
feature? Let us and your fellow
readers know what's on your
mind, and our editorial staff and
authors will respond as best they
can.

Address ktters to:

DIALOG
TURBO TECHNIX Magazine

4585 Scotts Valley Dr.
Scotts Valley, CA 95066

Letters become th.e property of
TURBO TECHNIX and cannot
be returned. We cannot answer all
letters individually, but we will try
to print a representative sampling
of mail received.

INLINE TEXT
I would like to commend you on
one facet of the production of
your new journal. An article is
started and then completed with
out "interrupts." Many publica
tions give you the first page, fol
lowed by "continued on Page
500," which can be highly annoy
ing. This is one type of GOTO
statement that I can do without!

J. M. Anthony Danby
Raleigh, NC

When we say we're a structured maga
zine, we're not kidding. Once you
start a TURBO TECHNIX article,
it's definitely:
REPEAT

Read(APage);
TurnPage

UNTIL Done;

-Jeff Duntemann

6 TURBO TECHNIX May/June 1988

... AND ONE WITH ALL
FOUR LEGS
In the November/ December 1987
issue of TURBO TECHNIX, in the
article "Turbo Pascal 4.0 Arrives!"
you say, "The single most impor
tant attribute of any software tool
is speed." I say: "WRONG. The sin
gle most important attribute of
any software tool is correctness."

Frederick D. Portoraro
Toronto, Canada

Hey, come on. When I hire a horse at
a riding stable, I don't say, "Uh,
could you make it a live one, please?"
When we buy tools, we expect th.em to
be correct. Minor bugs make us com
plain; major bugs send th.e limping
nag back to th.e vendor. You're right,
of course, and it's a sad reflection on
th.e history of our industry that correct
ness is not an unspoken assumption
in every case. Th.e field is littered with
th.e corpses of companies who nailed
wh.eels on dead horses and assumed
we programmers wouldn't know th.e
dijf erence.

-Jeff Duntemann

WHO'S A HYPERVISOR?
I read with interest your editorial
entitled "DOS, The Understood"
in the January/ February 1988

issue of TURBO TECHNIX. You
write on Page 5: "In a well
integrated 386 machine, DOS,
plus a hypervisor like Windows/
386 or PC-MOS 386, become
pretty much everything that OS/2
is: A genuine multitasking OS with
all the memory it needs."

This statement is erroneous.
Unlike Windows/ 386, PC-MOS
386 is not a hypervisor-it is a
full-fledged multiuser I multitask
ing operating system for 80386-,
80286-, and 8088-based machines.

Thanks for the opportunity to
set the record straight.

Colleen Goidel
Public Relations Manager

Th.e Software Link, Inc.
Atlanta, GA

Thanks, Colleen. Th.e PC operating
system scene is getting to be what th.e
ancient Chinese philosophers would
have called "interesting. "Let me take
a moment to sum it up: Windows/
386, DesqView, and ICC's VM/386
are 386 hypervisors. All require DOS
to operate, but Desq View has a mode
that will operate correctly without a
386. PC-MOS/ 386 and Wendin-DOS
are complete, DOS-compatible operat
ing systems. PC-MOS/ 386 makes use
of 386 memory management and vir
tual 86 partitioning; Wendin-DOS
does not, although they claim to be
working on it. And, of course, OS/2
is ... OS/2. Everybody got all that?

-Jeff Duntemann

continued on page 8

Sophisticated User Interfaces in Minutes!
Put magic in your programs with 1,,,.6

N»VI
v~J_.O

The World's Best Code Generator!

Windows for data-entry (with full-featured editing), context-sensitive help, Lotus-style menus, pop
up menus, and pull-<lown menu systems. Overlay them. Scroll within them.

Users and critics say it all!. ..

" ... the best I've used ... The code that it generates is excellent, with every feature you
could conceivably desire if you have problems, they give excellent technical advice
over the phone It saves time, is flexible and produces screens which are state of the
art." Sally Stott, Software Developer

" ... the best screen generator on the market." George Kwascha, TUG Lines, Nov/ Dec 87

" ... the Cadillac of prototyping tools for Turbo Pascal. ... Unlike the others, turbo MAGIC
is extremely flexible [it} clearly offers the greatest variety of options."

Jim Powell , Computer Language, Jun 87

"Fast automatic updating of dependent fields adds flair to your input screens. . ..
turboMAGIC will be a blessing for programmers who would rather not write the user
interface for every program. " Neil Rubenking, PC Magazine, 24 Feb 87

"I was impressed with the turbo MAG IC package the procedures created by turbo MAG IC
are well commented and easy to add to your own code."

Kathleen Williams, Turbo Tech Report, May/ Jun 87

" ... definitely a recommended program for any Turbo Pascal programmer, novice or expert."
Terry Lovegrove, Library Hi Tech News, Oct 87

ORDER your Magic TODAY! Only $199.

CALL TOLL FREE 800-225-3165 or 205-342-7026

sophisticated
software

m
6586 Old Shell Road, Mobile, AL 36608

Requires 512K IBM PC compatible and Turbo Pascal 4.0. 30-Day Money Back Guarantee. Foreign orders add $15.

DIALOG
continued from page 6

WHERE IT'S@
The first two issues of TURBO
TECHNIX have been full of useful
stuff. As a user of Turbo Pascal,
several of the Toolboxes, Side Kick,
SuperKey, Reflex, and-most
recently-Quattro, I think it's
great to have a magazine that spe
cializes in articles about Borland
products.

The Quattro article in the
second issue whetted my appetite
for details of how to add features
to Quattro. I hope the articles
are within reach of a less-than
superstar Turbo Pascal pro
grammer.

One thing I'd like to do with
Quattro is add some @ functions
that correct what I see as deficien
cies in some of the existing func
tions. Specifically, I'd like to have
versions of the @COUNT,
@AVG, @STD, and@VAR func
tions that count only cells with
numbers or formulas in them and
ignore cells with text.

If these functions ignore text
cells then you can include text
column headings or dotted lines,
etc., at the top and bottom of the
blocks you want counted or aver
aged. That way, you can add rows
of data anywhere in your current
data columns and have correct
counts and averages. SuperCalc
4's COUNT and AV functions
ignore text cells, by the way.

If the future article that de
scribes how to add @ functions to
Quattro is not written yet, would
you consider using as an example
an @COUNT or @AVG function
that passes over text cells? I would
appreciate this very much!

Sam Baker
Columbia, SC

The idea is not to publish only one
article on building your own Quattro
@functions. We will be publishing
custom @functions regularly, along
with other kinds of Quattro add-ins,
in both Turbo C and Turbo Pascal.
Like every other kind of programming,
writing Quattro @ functions takes

8 TURBO TECHNIX May/June 1988

some close attention and practice, but
much of the hard work is already done
by virtue of Quattro 's internals being
available as callable routines. An
introductory article on @ functions in
our next issue will get you started,
and I'll pass along your requests to
our other authors who will be writing
about @functions in future issues.

-Jeff Duntemann

DEFENDING BASIC
I really enjoyed both of Bruce
Webster's articles in TURBO
TECHNIX, January/February
1988, and they were (mostly) accu
rate and right on the money. His
illustration showing how all of the
fancy control structures are noth
ing more than GOTOs in disguise
was masterful. However, I'd like to
add a few comments.

In "Thinking in C," Bruce
praises C for its conciseness in
allowing statements such as

c "' Ca > b) ? a : b;

and

while CCline[indx++]
tupper(getc(infile))) '"' EOF)

as if this were some really nifty
feature that BASIC does not pro
vide. He then goes on to deride
BASIC as having "very little form:
it's just a collection of numbered
statements." Further, in "Binary
Engineering," Bruce concludes
that GOTO should be used spar
ingly, and then only when
necessary.

Let's face it folks-you can write
terrible code in ANY language.
There is nothing inherent in
BASIC that would encourage poor
programming, or make tracing a
program's flow any more
difficult than in another language.
Real-world programs use proce
dures that call other procedures,
and C or Pascal really offer no
better protection against making a
mess of things.

Legitimate complaints against
BASIC might be that the BASICA
interpreter is slow and has a
clumsy line editor, or that most of
the current compilers make .EXE
files that are too large. But to say
that BASIC encourages "spaghetti
code" or that using GOTO is a
poor practice simply isn't true. Of
ten, attempting to avoid all use of
a GOTO simply results in code
that is harder to read.

For example, suppose you want
to pause until a user presses a key.
In BASIC it is often done like this:

WHILE INKEYS "' "": WEND

This is a perfect use of
WHILE .. WEND, and it avoids the
need for both a GOTO and, more
important, an extra line label. But
suppose you also need to know
which key was pressed. I've often
seen it done this way

XS = ""
WHILE XS = ""

XS = INKEYS
WEND

PRINT "You pressed the " XS "key"

where X$ must first be cleared,
just to insure that the WHILE will
execute at least once. Here, using
a GOTO is decidedly clearer,
while creating less code in the
bargain:

GetKey:
XS = INKEYS
IF XS = "" GOTO GetKey

This is a simplistic example for
sure, but it illustrates what often
results when a programmer
attempts to shoe-horn "structure"
into a situation where none is
called for. With all due respect,
Edsger Dijkstra seems like the pro
grammer's equivalent of Archie
Bunker.

BASIC lets you write very com
pact code too when you want.
Similar to Bruce's examples, you
might do this in BASIC

X = ABSCY * CZ > 9))

or:

WHILE
UCASESCINPUTSC1,#1))<>CHRSC13)

WEND

BASIC also lets you call DOS and
BIOS functions incorrectly, or
overwrite the operating system
just like C does. Indeed, BASIC is
a powerful and capable language,
GOTOs and all.

Ethan Winer
Crescent Software

East Norwalk, CT

Thus flares up a debate that has
raged for some years. I agree that it is
possible to write atrocious code in C or
Pascal; having taught an "Intro to

continued on page 10

Upgrade Your Technology
We're Programmer's Connection, the leading
independent dealer of quality programmer's
development tools for IBM personal com
puters and compatibles. We can help you
upgrade your programming technology with
some of the best software tools available.
Comprehensive Buyer's Guide. The CONN ECTION,
our new Buyers Guide, contains prices and up-to-date
descriptions of over 600 programmer's development
tools by over 200 manufacturers. Each description
covers major product features as well as special re
quirements, version numbers, diskette sizes, and
guarantees.
How to Get Your FREE Copy: 1) Mail us a card or
letter with your name and address; or 2) Call one of
our convenient toll free telephone numbers.

If you haven't yet received your copy of the
Programmer's Connection Buyer's Guide, act
now. Upgrading your programming technol
ogy could be one of the wisest and most
profitable decisions you 'll ever make.

blaise products
ASYNCH MANAGER Supports Tl111Jo C
C TOOLS PLUS/5 0
Turbo ASYNCH PLUS/4.0
Turbo C TOOLS
Turbo POWER TOOLS PLUS/4.0

List $100 Ours $89

List Ours

175 135
129 99
129 99
129 99
129 99

Peabody is a fa st and fl exible on- li ne reference uti lity wi th
databases available for Tu rbo Pascal v 3 & 4, Turbo C, Microsoft
C v 5,MS Assembler, or MS DOS It provides instant, accurate
and complete language 111 format1on in pop-up frames at the
touch ot a key Wi th Peabody, you can select general topics
from a structured subfect menu, or use Peabody 's hyperkey to
get 111stant help for the keyword closest to the cursor. Specify
data base desired. Ad ditional databases are available tor S45

borland products
EUREKA Equation Sol1er
Paradox 1.1 byAnsa Borland
Paradox 2.0 by Ansa BOrland
Paradox 366 by Ansa,Borland New
Paradox Network Pack by Ansa Borland
Quattro: The Professional Spreadsheet
Reflex: The Analyst
Sidekick
Sidekick Plus lie""
Superkey
Turbo Basic Compiler
Turbo Basic Database Toolbox
Turbo Basic Editor Toolbox
Turbo Basic Telecom Toolbox
Turbo C Compiler
Turbo Lightning
Turbo lightning Word Wizard
Turbo Pascal
Turbo Pascal Database Toolbox
Turbo Pascal Developer's Toolkit
Turbo Pascal Editor Toolbox
Turbo Pascal Gameworks Toolbox
Turbo Pascal Graphix Toolbox
Turbo Pascal Numerical Methods Toolbox
Turbo Pascal Tutor
Turbo Prolog Compiler
Turbo Prolog Toolbox

167 115
495 359
725 525
895 CALL
995 725
247 179
150 105
85 65

200 139
100 66
100 66
100 66
100 66
100 66
100 66
100 66
70 49

100 66
100 66
395 265
100 66
100 66
100 66
10~ 66
70 49

100 66
100 66

c language
CBTREE by Feacock Systems lie." 159 96
Essential Software Products Ail Vanwcs
Greenleaf Products All Vafle/1cs
Vitamin C by Crea/Ne Programming

VG Screen Fom1s Designer

CALL CALL
CALL CALL

225 149
100 79

USA 800-336-1166
Canada .. 800-225-1166
Ohio & Alaska (Collect) 216-494-3781
lnternational 216-494-3781
TELEX 9102406879
FAX 216-494-5260

Business Hours: 8:30 AM to 8:00 PM EST Monday through Friday
Prices. Terms and Conditions are subject to change.

Copyrighl 1988 Programmer's Connection lncocporated

database management
Clipper byNan/uekel
dBASE Ill Plus by Ashton-Tate
Fox BASE + by Fox Sol/Ware

695
695
395

Fox BASE +/366 by Fox Solrv.~re Ne\'/ 595
Genii er by Byte/
A: Base 5000 by Mteronm
R:Base System V byM1cronm

microsoft products

395
495
700

379
389
249
399
249
359
439

Microsoft C Compiler 5 w/CodeV1ew .. New Version 450 285
439
285

Microsoft COBOL Compiler wtlh COBOL Tools 700
Microsoft FORTRAN OpYmlllng Crmp .. . New Version 450
Microsoft Learning DOS .. 50 38

99 Microsoft Macro Assembler New Version 150
Microsoft Mouse Specify Sena/ or Bus ..

W>th Pam/ & Mouse Menus
••th M1crosoN W1nd0<"5 & Pam/
W>th EasyCAO ...

Microsoft DS/2 Programmer's Toolkit
Microsoft Pascal Compiler
Microsoft QuickBASIC
Microsoft QuickC ..
Microsoft Windows
Microsoft Windows 366
Microsoft Windows Development Kit
Microsoft Word ..
Microsoft Works

New
NCt'/ VerSIOf/

List $150 Ours $129

150 99
200 139
175 119
350 CALL
300 189

99 69
99 69
99 69

195 129
500 319
450 285
195 129

PC/Forms 1s a high powered screen management package.
PC,Forms takes the hassle out of sc reen design, screen
management. and input data validation. Forms are created and
maintained using the form editor: and processed at runtime via
the PC/Forms runtime library. Usi ng PC/Form s, th e code re
quired to process a complex sc reen can be reduced from
several hund red lines to only a few.

nostradamus products
Instant Assistant
Instant Replay Ill
Turbo Plus Supports TwtJo Pascal 4 o

other products
Ariel by Solu/1on Systems .
Dan Bricklin's Demo II by Sol/Ware Garden
Dan Bricklin's Demo Pgm by Software Garden
Dan Bricklin's Demo Tutorial by Software Garden
OPT-Tech Sort by Opf.Tecn Data Proc
Pea body by Copta Intl. Spcctly limguage
QBase Relat1onal Database Dy Crescent
QuickPak by Crescent Software
Resident Expert by Santa Rita. Spcctly Lang
risC Assembly Language by IMS/

100 89
150 129
100 89

195 CALL
195 179
75 57
50 45

149 99
100 89
99 89
69 59

CALL CALL
80 65

ORDERING INFORMATION
Orders within the USA (including

Alaska & Hawaii) are shipped FREE via UPS. Call for
express shipping rates.

VISA, MasterCard and
Discover Card are accepted at no extra cost. Your card
is charged when your order is shipped. Mail orders
please include expiration date and authorized signa
ture.

CODs and Purchase Orders are
accepted at no extra cost. No personal checks are ac
cepted on COD orders. POs with net 30-day terms
(with initial minimum order of $100) are available to
qualified US accounts only.

Orders outside of Oh io are not
charged sales tax. Oh io customers please add 5% Ohio
tax or provide proof of tax-exemption.

Most of our products come
with a 30-day documentation evaluation period or a 30-
day return guarantee. Please note that some manufac
turers restrict us from offering guarantees on their
products. Call for more information.

Our knowledgeable techn ical staff
can answer technical questions, assist in comparing
products and send you detailed product information
tailored to your needs.

Shipping charges for In·
ternational and Canadian orders are based on the ship·
ping carrier's standard rate . Since rates vary between
carriers, please call or write for the exact cost. Inter
national orders (except Canada). please include an ad
ditional $1 O for export preparation. All payments must
be made with US funds drawn on a US bank. Please
include your telephone number when ordering by mail.
Due to government regulations , we cannot ship to all
countries .

Please include your telephone num·
ber on all mail orders. Be sure to specify computer, .. __ _
operating system, diskette size, and any applicable
compiler or hardware interiace(s) . Send mail orders

to: Programmer 's Connection
Order Processing Department

7249 Whipple Ave NW
North Canton, OH 44720

peter norton products
Advanced Norton Utilities
Norton Commander ..
Norton Editor ... New Verswn
Norton Guides Specify Language

For OS/2 Ne1·1
Norton Utilities

List $139 Ours $119

150 89
75 55
75 59

100 65
150 109
100 59

C-terp is an interpreter/semi -compiler that serves as a power -
ful . professional C debugg ing and development environment.
It features: fu ll K&R C support with ANSI extensions. a ful l
sc reen, bu il t- in, reconfigurable editor; fast semi-compilation
and linking: complete multiple module support : 8087 support :
full graphics support including dual displays : and much more.

quinn-curtis products
DDS/BIOS & Mouse Tools tor TurlJo Pascal 75 67
MetraByte Data Acquisition Tools 100 89
Science & Engineering Tools 75 67

turbo pascal utilities
AZATAR DOS Toolkit by AZATAR 95 65
Btrieve /SAM File Mgr by Novell 245 184
Flash-up by Software Bot//1ng 89 79
Flash-up Developer's Toolbox 49 45
MACH 2 tor TurlJo Pascal byM1croHclp 69 55
Overlay Manager by Tt1rtJ0FlJwer Software Ncl'I 45 39
Screen Sculptor by Software Bon/mg 125 89
Speed Screen by Sol/Ware Bot//111g 35 32
System Builder by Ro)'<ll Amencan 200 169

IMPEX Ouery Ut11tty 130 115
Report Builder 1 BO 159

TOE BUG 4.0 Dy TurtJoF!Jwcr Soltwa1e 45 39
T mark by Tangent Designs 80 69
Turbo Anal1st by TllfboF!Jwcr Soltwa1c Nc1e 75 59
Turbo Professional 4 0 TurboF!Jwcr New Vcrs1011 99 79
TurboHALO by/MS/. Specify Tu1bo C orPascat 95 75
TurboPower Utilities by Tt1rtJ0FlJwer 95 78
Turbo Ref by Grac011 SelVlces 50 35

CALL for Products Not Listed Here

DIALOG
continued from page 8

Programming" class at a university
for a few years made that all too clear.
And I have seen some beautifully
structured code written in BASIC.
However, the proper question (to
paraphrase C.S. Lewis) is how much
worse the code written by the first
group would be if done in BASIC, or
how much better the code done by the
second group would be if written in C
or Pascal.

Ethan, I agree with your assertion
that "attempting to avoid all use of a
GOTO simply results in code that is
harder to read"-provided we're dis
cussing BASIC, which has a very
limited set of control structures. Given
the richer and more complex set of con
trol structures in C and Pascal, there
is little need or use for GOTO state
ments, and they are not so much
avoided as simply ignored.

I will also agree that BASIC has
improved vastly since its early days,
mostly by shamelessly borrowing from
P_ascal, C, and FORTRAN such posi
tive constructs as WHILE .. WEND
statements, block IF .. THEN state
ments, alphanumeric labels, unlabeled
statements, and parameters to subrou
tines. The result is code that looks sus
piciously like a mixture of Pascal, C,
and FORTRAN. I just prefer to skip
the new, improved BASIC and go
with the real thing.

As for Edsger Dijkstra, here's a
quote (based on the old, unimproved
BASIC) which should really make
your day: "It is practically impossible
to teach good programming to stu
dents that have had a prior experience
in BASIC: as potential programmers,
they are mentally mutilated beyond
hope of recognition." (Selected Writ
ings, p. 130)

-Bruce Webster

OS/2 ASCENDANT
Impossible for OS/ 2 to replace
DOS, you say? Think again. Look
at the history of Digital Research's
CP / M. More than five years ago
CP / M was the OS for microcom-

10 TURBO TECHNIX May/June 1988

puters, mostly for Z80 machines.
Then what happened? IBM rolled
out its PC, initially offering two
OS's: CP/ M-86 and something
brand new called PC-DOS.

Although CP / M was the stan
dard of the day (supporting such
staples as WordStar, SuperCalc,
and dBase II, and even had a
multitasking version, MP / M),
IBM's practically giving DOS away
at $70 per copy, along with its
technical superiority and excellent
documentation, rapidly made
DOS the favorite OS of the PC.
With its expensive pricing, its
crude documentation, and user
hostile error handling, CP / M was
a throwback to the Bad Old Days
of computer systems that Mr.
Duntemann seems to recall with
distaste. For awhile, software
developers supported both OS's.
The final blow to CP/ M-86, how
ever, came from neither Microsoft
nor IBM. It came from Lotus
Development, which offered its
1-2-3 spreadsheet product in DOS
format only. The success of 1-2-3
made CP / M compatibility
irrelevant.

I believe that history may repeat
itself. OS/ 2 and its successors are
likely to become the PC standards
that take us into the 1990s. As
such, OS/ 2 will kill off plain old
DOS,just like DOS finished off
CP / M several years ago. DOS will
become obsolete when software
developers offer (and the PC mar
ket accepts) their next-generation
blockbuster applications in OS/ 2
and Presentation Manager for
mats only.

Software developers-and PC
pundits-should encourage,
rather than discourage, the devel
opment of such needed standards
as OS/ 2. At this stage, those who
choose to ignore OS/ 2 do so at
their own peril.

-Kenneth C. Kmack
Lilburn, GA

You called it, right there in your last
p~ragraph. The ZBO industry was
crippled out of the gate by its lack of
hardware standards. IBM's PC blew
the Z80 away because the PC provided
a standard hardware environment
and with the Z80 went DRI's fort;,nes
and CPIM in general. CP/ M-86 and
DOS 1. 0 were just about identical.
Both had awful documentation and

cryptic error handling (which DOS
still has). DOS was cheaper (I think
more like $40, wasn 't it?), but no
better.

History will not repeat itself this
time for several reasons. There are ten
million 8088 machines out there
none of which will ever run os/2.
Tens of thousands more roll in from
the Far East every day, and sell for
$500 each. That's more than critical
mass, that's supercritical.

OS/ 2 is by no means being given
away. Cost does matter. Furthermore,
the current DRAM shortage and price
hikes could put a crimp in OS/ 2 's
early acceptance by making the neces
sary 2-4MB of RAM costly and hard
to find. Presentation Manager is criti
cal in many areas, especially software
portability, and if PM does not find
acceptance, OS/ 2 won't either. PM
will be successful on the new genera
tion 3861486 machines . .. but on the
slower mainstream 286 boxes, it's still
a very open question.

I'm flattered to see that I've finally
made the rank of pundit. I haven't
been so flattered since I was at a beer
bust back at DePaul University, and
an earnest young woman told me in
disbelief, "You always talk in com
plete sentences!"

-Jeff Duntemann

Have you written a major appli
cation using one of Borland's
programming products? If so,
Borland Product Communica
tions would like to hear about
it. Send a letter describing your
product, along with any market
ing copy relating to the pro
duct, to:

Bill Burch
Borland International

4585 Scotts Valley Drive
Scotts Valley, CA 95066-0001

'::$)

/~
You'LLLOVE

THESE UTILITIES.

g,

p~~
To

/ \ /-.)

)/

TOPAZ. (N

The breakthrough r I

I~ SAYWHAT?!

'o \) fast screen I ~\i b generator
toolkit for ,___J/
Turbo Pascal 4.0 dBAsE. ...___,,,

It doesn't matter which language you pro- Wi If you 'd like to combine the raw power and
gram in . With Saywhat. you can build beautiful. E speed of Turbo Pascal with the simplicity and
elaborate. colorful screens in elegance of dBASE, Topaz

minutesi That's right. Truly Gur ARANTEE IT! is just what you 're looking
fantastic screens for menus, 'I"\.. for. You see, Topaz (our
data entry, data display, and brand new collection of
help-panels that can all be displayed 0 n units for Turbo Pascal 4 0) was specially
with as little as one line of code in any IRON CLAD Y created to let you enjoy the best of both
language. Batch files . too. MONEY-BACK worlds. The result? You can create truly

With Saywhat. what you see is GUARANTEE. dazzling applications in a very short
If yo u aren't co mpletely

exactly what ycu gee And response time delighted with Saywhat or time. And no wonder. Topaz is a compre-
is snappy and crisp, the way you I ike it. Topaz, return them within hensive toolkit of dBASE-1 ike commands
That means screens pop up instantly. 30 days for a pro mpt, and functions. designed to help you
whenever and wherever you want them ~friendl y refun d. ,... create outstanding, polished programs,

Whether you 're a novice program- ~ 6? fast. Think of it. With Topaz you can write
mer longing for simplicity, or a seasoned -~ Pascal code using SAYs and GETs.
professional searching for higher produc- -1 PICTURE and RANGE clauses. then SELECT and USE
tivity, you owe it to yourself to check out U_ • \I databases (real dBASE databases!) . SKIP through
Saywhat. For starters. it will let you build .,J~ records . APPEND data. and lots more.
your own elegant. moving-bar menus into ' \ ' In fact. we've emulated over one hundred actual
any screen . (They work like magic in any //)) dBASE commands and functions. and even added new
application . with just one line of code11 k L commands and functions to enhance the dBASE
You can also combine your screens into extremely syntaxi All you have to do is declare Topaz's units in
powerful screen libraries. And Saywhat's remarkable your source code and you're up and running1
VIDPOP utility gives all languages running under PC/ The bottom line? Topaz makes writing sophisti-
MS-DOS. a whole new set of flexible screen handling cated Pascal applications a snap. Data entry and data
commands Languages like dBASE. Pascal . BASIC. C. base applications come together with a minimum of
Modula-2. FORTRAN . and COBOL. Saywhat works with code and they'll always be easy to read and maintain .
all the dBASE compilers. too' Topaz comes with a free code generator that auto-

With Saywhat we also include a bunch of terrific matically writes all the Pascal code you need to
utilities. sample screens. sample programs. and out- maintain a dBASE file with full-screen editing Plus
standing technical support. all at no extra cost. (Com- outstanding technical support. at no extra cost. (Com-
prehensive manual included Not copy protected. No prehensive manual included. Not copy protected No
licensing fee. fully guaranteed). $49.95 licensing fee. fully guaranteed) . $49.95

ORDER NOW. YOU RISK NOTHING. Thousands of satisfied users have already ordered from us. Why not call toll-free, right
now and put Saywhat and Topaz to the test yourself? They're fu lly guaranteed. You don 't risk a penny.

SPECIAL LIMITED-TIME OFFER! Buy ~Es. 1 want to try I
SaywhaP! and Topaz together for just I Saywhat?I your I 1ghtning-fast screen gener- Topaz, your programmers toolkit for Turbo I
$85 (plus $5 shipping & handling). ator so send __ cop1es 1549 95 each. pl us 55 Pascal 4 O so send __ cop ies 1549 95 each I
That's a savings of almost $15. :.h1pp1ng & handl ing! sub1ect to your iron-clad plus55sh1pp1ng&handling1subiec t toyouriron- I

To order Cdll toll-free money-back guarantee clad money-back guarantee I

800-468-9273
In California 800-231 -7849

International : 415-571-5019

The Research Group
88 South Linden Ave.

South San Francisco, CA 94080

D YES. I want to take advantage of your special offer! Send me __ cop ies of both Saywhat?I
and Topaz at 585 per pair I pl us 55 sh1pp1ng & handl1ng1 That's a savings of almost 515

AME---------~---------------~

CITY ____________ STATE ____ ZIP _____ _

D Check enclosed D Ship C 0 D D Credit Cd rd

--------- Exp date ___ Signatu re _______ _

T H E R E S E A R C H G R 0 U P

I
I
I
I
I
I
I
I
I

~ MEET THE BGI
~
i Discover the new frontier of Turbo Graphics by taking a
~ guided tour of the Borland Graphics futerface.

Tom Swan

Until recently, IBM PC color graphics
were about as exciting and colorful as
dried mud. Graphics programmers were

• well advised to purchase a Macintosh II,
Amiga, or Atari-anything but a PC.

SQUARE ONE Today, EGA (Enhanced Graphics Adap-
ter) and VGA (Virtual Graphics Array) displays are
putting a new face on PC graphics programming.
Combined with the new Borland Graphics Interface
(BGI), these display modes offer a fresh frontier for
PC pioneers to conquer.

An easy way to join the graphics wagon train is to
hitch Turbo Pascal 4.0 or Turbo C 1.5 to your trusty
computer. These new compiler versions come
equipped with interfaces to the Borland graphics
kernel, a machine language wagon master that man
ages a herd of PC graphics display modes with ease.

This introductory guided tour of the BGI covers a
wide range of terrain in order to provide you with a
feeling for the scope of BGI graphics capabilities. At
many of the stops, we'll just scratch the surface
further travel is left to you. Although the tour con
centrates on Turbo Pascal's BGI interface, much of
the following introduction to BGI graphics applies to
Turbo C as well.

A KERNEL OF BEAUTY
The word kernel usually refers to the part of an oper
ating system that runs in supervisor mode, resolving
conflicts, granting access to disks and other devices,
and making sure the dirty work gets done. In BGI
graphics, the kernel is the central core that initializes
the screen, draws lines and shapes, displays text, and
performs other graphics-related functions.

The Borland graphics kernel is identical (or at
least nearly so) in both Turbo Pascal and Turbo C.
Each language provides a graphics interface, which
allows you to use the items in the kernel. The graph
ics interface specifies the calling syntax of the kernel's
routines, and defines the kernel's data structures. In
Turbo Pascal, the graphics interface is stored in the
file GRAPH.TPU; in Turbo C, the graphics interface
is in the header file, GRAPHICS.H.

12 TURBO TECHNIX May/June 1988

USING BGI GRAPHICS
To use BGI graphics in Turbo Pascal, construct your
program like this:

PROGRAM MyGraphics;

USES Graph;

BEGIN
{ Graphics c011111ands }

END.

The USES Graph; statement tells the compiler to
load the GRAPH.TPU unit, making that unit's con
stants, types, variables, procedures, and functions
available to your program. Turbo C programmers
might want to print a copy of GRAPHIC.H for refer
ence to the many BGI commands and structures.
Turbo Pascal users can print GRAPH.DOC, a
text guide to the compiled GRAPH.TPU unit.
GRAPH.DOC also lists last-minute corrections to
the BGI information in the Turbo Pascal Owner's
Handbook.

THE DRIVER AND FONT FILES
BGI graphics driver code is stored in files ending in
.BGI. Each .BGI file contains hardware-specific code
for driving a particular kind of display device (see
Table 1). When you run a graphics program, the cor
rect .BGI file is loaded into memory; therefore, the
driver file must be in a location known to the graph
ics program when it is run. You need the BGI inter
face code-either GRAPH.TPU for Turbo Pascal or
GRAPHICS.H for Turbo C-only when compiling
graphics programs. You need the .BGI driver files
only when running these same programs.

Usually, it's best to store all .BGI files in the direc
tory that contains the Turbo Pascal or Turbo C com
piler. If you're short on disk space, though, use Table
1 as a guide while deleting all files except the file
that you need for your own system.

Another kind of graphics file,
ending in .CHR, contains data
that allows the display of text in
a variety of styles, or fonts . I'll
explain more about fonts in a
moment. For now, make sure you
have the .CHR files (listed in
Table 2) in your Turbo Pascal or
Turbo C directory. As with .BGI
files, you need .CHR files only
when running graphics programs,
not when compiling them.

INITIALIZING GRAPHICS
MODES
The first step in every graphics
program is to initialize a graphics
mode using one of three methods:
automatic, semiautomatic, or man
ual. The automatic method detects
the type of graphics hardware on
your system and then selects a
graphics mode that produces the
best results (usually a mode with
the highest supported resolution).
The semiautomatic method auto
matically detects the installed
graphics hardware, but allows you
to choose a display mode manu
ally. The manual method lets you
write programs that demand spe
cific display hardware and graph
ics modes.

All three initialization methods
require three global integer
variables:
VAR

grDriver,
grMode,
grError : Integer;

Integer grDriver represents a
.BGI driver by number (see Table
1) . The grMode variable repre
sents the mode for this driver,
thereby selecting a display resolu
tion and, for some drivers, a set
of colors. (Most drivers support
several different modes. Refer
to your Turbo language refer
ence manuals and the files
GRAPH.DOC and GRAPHICS.H
for the mode constants you can
assign to grMode.) The grError
variable holds error codes re
turned by several graphics
routines.

Automatic initialization. To auto
matically detect and initialize a
graphics display, first assign the
constant Detect to gr Driver. Then
call InitGraph:

continued on page 16

DRIVER NUMBER

CGA I
MCGA 2
EGA 3
EGA64 4
EGAMono 5
Reserved 6
Herc Mono 7
ATI400 8
VGA 9
PC3270 10

Tab/,e 1. BGI graphics drivers.

DESCRIPTION

Color Graphics Adapter
Multicolor Graphics Array
Enhanced Graphics Adapter
64KEGA
Monochrome EGA
none
Hercules Monochrome Graphics
AT&T 400-line graphics
Video Graphics Array
IBM PC 3270 Graphics

DISK FILE

CGA.BGI
CGA.BGI
EGAVGA.BGI
EGAVGA.BGI
EGAVGA.BGI
none
HERC.BG I
ATI.BGI
EGAVGA.BGI
PC3270.BGI

May/June 1988 TURBO TECHNIX 13

Buy OurTools,And we

Introducing Emerald Bay. The
breakthrough database server
technology for developing single
and multi-user applications.
Emerald Bay provides your pro
grams a common data storage
and retrieval method which
allows data to be transparently
shared across multiple and
diverse applications.

And when you buy one of our
tools for "C" dBASE™ or Lotus® ,
developers, we'll give you the per
sonal engine-free. No royalties
to pay, no licenses to sign.

Developed by Wayne Ratliff,
the creator of dBASE, Emerald
Bay is much more than just
another DBMS product, it's an
entirely new way to manage data.
It's designed to provide an open
platform for developing applica
tions in several languages and
environments, while Emerald
Bay maintains data security,
concurrency and integrity.

How The Engine Works
Before, data couldn't be readily

shared between applications.
But with Emerald Bay, PC appli
cations each share a common
data storage and retrieval

reduced network traffic and
~~ faster data access times.

method. And although the func
tions of the applications may
vary widely, any one application
can share another's data trans
parently; there is no data conver
sion or translation necessary.

When a PC is an intelligent
workstation on a LAN, the
Emerald Bay database server
technology controls all data

Emerald Bay Architecture

I I T

• EMERALD BAY DATA

I

OPERATING SYSTEM

HARDWARE

security and integrity, including
transaction logging with roll
back. An application simply
makes a request, which is sent
to the engine. There, only the
essential data is sent back to the
workstation. The result is vastly

How You Work With
The 'lbols

With the tools we pro
vide, you can easily develop
Emerald Bay applications

immediately in your familiar
development environment.

Emerald Bay technology
handles the usually code
intensive management of data,
so you can concentrate on
what you do best-developing
applications.

The Developers Toolkit/or "C"
includes well-documented, easy
to use "C" libraries that give you
the power to create advanced
applications, without the effort
usually associated with design
ing and coding a database
"backend'.'

Eagle is Emerald Bay's sophis
ticated dBASE-like program
ming language. As the logical
evolution of database language,
Eagle introduces advanced fea
tures, routines and language
components, including a com
piler, network commands, user
defined functions in "C" and
Assembly and automatic index
maintenance.

Summit is an "add-in" data
base management system for
Lotus 1-2-3, which gives you
sophisticated data manipulation
and analysis commands. All
three of Emerald Bay's develop
ment tools come with the Core
Components which include
Report Writer, Forms Generator,

©Migent, lnc., Registered trademarks: dBase (Ashton·'lll.te), Lotus and 1-2·3 (Lotus Development Corp.), OS/2 (International Business Machines, Corp.), Macintosh (Apple Computer, Inc.), Unix (AT&T).

11 Give You The Engine.
an Import/Export facility and
the Database Administrator

The Emerald Bay Database
Server is the heart of the multi
user Emerald Bay technology. Its
client/server architecture is
superior to current implementa
tions of LAN/DBMS products,
and increases total system
throughput, while reducing net
work traffic and access times.

Finally, while providing a path
to other operating systems such
as OS/2, Macintosh and UNIX,
Emerald Bay is a microcomputer
based technology that optimizes
your current hardware
investment.

Free Tuchnical Seminars
Were hosting a series of

free Emerald Bay Technical
Seminars during April and May
in cities across the country. It's
your chance to see Wayne Ratliff
demonstrate the capabilities of
Emerald Bay in person, as well
as get some practical experience
with the technology yourself.

Call us toll-free at
1-800-777-2027 (and ask for
Sandra) for the date and loca
tion of the seminar nearest you.
Space is limited, so be sure to
reserve your seat today.

Emerald Bay. Advanced
database server technology.
Available now.

'Irademarks pending: Emerald Bay, Eagle, Summit (Migent, Inc.)

Emerald Bay Engine Specifications
Data Storag~

·Max. databases No limit
· Max. tables per database 1000
· Max. fields per table 800
·Max. field width 512 characters
·Max. records per table No limit
· Max. width of records 10,000 bytes

(no limit on ext. fields)
·Max. open databases 7 (MS-DOS

limitation)
Index Storag~

· Composite keys supported
· Mixed data type keys allowed
· Keys of up to 100 bytes in length
· Automatic index maintenance
· Ascending and descending keys
· Case independent keys
· Automatic table indexing on record

number

Securicy And Integti__ty Features
· Access permissions by Read, Write,
Delete, Add and Grant

· All five access permissions work on
tables and objects

· Read, Write and Grant access per
missions operate at field level

· All data other than binary fields can
be encrypted

· 'lransaction logging, with commit and
rollback functions

· Full security functions at field and
table level

· Optional data encryption at field level
§y:stem Requirements

·MS-DOS 3.1 or greater
·Network database server or Single
user computer: PC X'I; AT, PS/2 or 386
compatible, 640K, Hard Disk

· \\brkstation on LAN: PC, XT, AT, PS/2
or 386 compatible, 640K

· NetBIOS compatible networks
supported

• EMi~o MIG=NT™
865 Ta.hoe Blvd., Call Box 6, Incline Village, NV 89450

FONTNAME NUMBER

DefaultFont
TriplexFont
Small Font
SansSerifFont
GothicFont

Tab/,e 2. BG! fonts.

MEETTHEBGI

continued from page 13

grDriver := Detect;

0
I
2
3
4

InitGraphC grDriver, grMode, 11);

The first two parameters to
InitGraph are the integer vari
ables, grDriver and grMode.
B~cause grDriver equals Detect,
ImtGraph automatically deter
mines the type of graphics hard
ware installed on your computer,
loads the appropriate .BGI driver,
an.d selects a default display mode.
ImtGraph returns values in
grDriver and grMode that repre
sent the selected display driver
and mode. You'll want to preserve
these values, especially if you plan
to switch between text and graph
ics screens during program
execution.

The third parameter to
InitGraph is a string specifying
the directory path where you store
your .BGI driver files. Use a null
string (two single quotes with no
space between them) if your .BGI
files are in the same directory
as the running program. If you
store your .BGI files else-
where (for example, in
C: \ TPAS\GRAPHICS), pass
the pathname to InitGraph:
grDriver := Detect;
InitGraphC grDriver, grMode,

1 C:\TPAS\GRAPHICS 1);

If all goes well, the screen
should now be clear and ready
for graphics commands. To be
certain of this, check function
GraphResult, which returns an
error code for the most recent
graphics operation (see Table 3).
All error values are negative
except for 0, thus indicating that
no error has occurred.

GraphResult resets itself and,
therefore, returns a valid number
only once after a graphics opera-

16 TURBO TECHNIX May/June 1988

1YPE DISK FILE

Bit map none
Stroked TRIP.CHR
Stroked LITT.CHR
Stroked SANS.CHR
Stroked GOTH.CHR

tion that returns an error code.
To preserve the error code value
ass~gn GraphResult to the integ~r
vanable grError immediately after
a graphics operation. To display
an English language error mes
sage rather than a cryptic error
code number, pass grError to
string function GraphErrorMsg
in a Writeln statement.
GraphErrorMsg inserts file
names in the empty parentheses
for error codes such as -3 and -4.

Figure 1 lists the full automatic
initialization sequence, complete
with error detection. Because
grDriver equals Detect, InitGraph
automatically detects and initial
~zes a graphics display mode, load
mg the appropriate driver into
memory. After InitGraph, assign
GraphResult to integer variable
grError. If grError does not
equal the constant grOk (see
Table 3), then an error occurred
during initialization. If this is
the case, pass grError to
GraphErrorMsg in a Writeln
statement to display an error mes
sage along with your heartfelt re
grets. If no error is detected
you're ready to roll. '

Semiautomatic initialization. The
semiautomatic initialization se
quence is a variation on the auto
matic initialization theme.

CONSTANT

grOk
grNolnitGraph
grNotDetected
grFileNotFound
grinvalidDriver
grNoLoadMem
grNoScanMem
grNoFloodMem
grFontNotFound
grNoFontMem
grlnvalidMode

gr Error
grlOerror
grlnvalidFont
grinvalidFontNum
grinvalidDeviceNum

ERROR
CODE

0
-1
-2
-3
-4
-5
-6
-7
-8
-9

-10

-II
-12
-13
-14
-15

Tab/,e 3. BG! error codes and messages.

F~rst, call.procedure DetectGraph
with two mteger variable para
meters:
DetectGraphCgrDriver, grMode);

After DetectGraph executes,
grDriver and grMode contain
values representing the driver
and display mode values that
lnitGraph returns when automati
cally detecting and initializing
graphics modes. After inspecting
grDriver, you can change grMode
~o a different value, thereby select
mg an alternate mode for the
detected driver by calling
InitGraph.

For example, let's use the
initialization sequence in Figure
2 to select 640 X 200-resolution
CGA or MCGA modes. After exe
cuting DetectGraph, assign an
appropriate mode constant to
grMode. In this case, assign either
CGAHi or MCGAMed, which
selects an alternate mode instead
of the usual defaults. Now, when
grDriver does not equal either
CGA or MCGA, the program halts
with an error message. Otherwise,
grDriver and the modified
grMode are passed to InitGraph,
completing the semiautomatic
initialization.

Manual initialization. The third
~nd final way to initialize graphics
1s to forego automatic device
detection altogether and to assign
values directly to grDriver and
grMode for specific graphics
hardware. To initialize EGA 640
X 350 16-color, 2-page graphics,
write the following code
sequence:

MESSAGE

No error
(BGI) graphics not installed
Graphics hardware not detected
Device driver file not found ()
Invalid device driver file ()
Not enough memory to load driver
Out of memory in scan fill
Out of memory in flood fill
Font file not found ()
Not enough memory to load font
Invalid graphics mode for selected
driver
Graphics error
Graphics l/O error
Invalid font file ()
Invalid font number
Invalid device number

grDriver := EGA;
grMode := EGAHi;
InitGraphCgrDriver, grMode,''>;

With this kind of initialization,
the program runs only on hard
ware that supports this particular
EGA multipage mode. (One page
equals the amount of memory
required to hold a single graphics
screen. Some drivers and modes
support multiple pages; others
support only one.)

Be careful when manually
initializing graphics. On some sys
tems, selecting nonexistent modes
can lock up the computer, forcing
you to reboot. For these reasons,
use automatic and semiautomatic
initialization methods whenever
you can-they help you write pro
grams that run on the widest pos
sible range of PCs.

TOOLS OF THE BGI ARTISAN
With initialization out of the way,
you're ready to begin using all of
the BGI's many graphics routines.

· There's more to BGI graphics
than I can possibly cover in a sin
gle article, but the following will
give you a running start.

Listing 1 (RANOOMGR.PAS)
lets you experiment with BGI
graphics by using a "replaceable"
procedure to perform the
graphics drawing activity. Pro
cedure DoGraphics contains a
REPEAT .. UNTIL loop, which
cycles until you press a key. The
ReadKey statement just before the
end of DoGraphics clears this
keystroke from memory.

grDriver := Detect;
InitGraph(grDriver, grMode, 11

);

grError := GraphResult;
IF grError <> Grok

THEN WritelnC 'Graphics error : '
ELSE DoGraphics;

Figure 1. Automatic BGl initialization.

DetectGraph(grDriver, grMode >;

The actual drawing commands
are inside the REPEAT .. UNTIL
loop. In the version of
RANDOMGR shown as Listing 1,
two commands select colors and
then draw colored lines at ran
dom, quickly filling the screen
with an assortment of colored
lines. To slow the action, insert
the statement Delay(150); between
REPEAT and SetColor. For
debugging, you can use similar
delays in order to watch complex
graphics sequences display them
selves to the screen in slow
motion.

Throughout this article,
you'll encounter replacement
DoGraphics procedures consisting
of article figures that draw graph
ics other than lines. By replacing
the original DoGraphics with one
of these other procedures, you
can see a broad sampling of BGI
graphics in action with minimal
fuss. The replacement procedures
are collected in a file called
GPROCS.SRC, which is contained
in the CompuServe download file
PASBGI.ARC.

Ending graphics programs. Be
fore ending your graphics pro
grams, always call OoseGraph in
the manner shown near the bot
tom of Listing 1. OoseGraph re
stores the display mode that was in
effect before the call to InitGraph,
and removes the graphics kernel
from memory. This prevents leav
ing the display in graphics mode.

If you want to return to graph
ics mode after you've called Oose
Graph, but you haven't ended
execution of your program, you
must again call InitGraph to
reload and initialize the graphics
kernel.

GraphErrorMsg(grError))

IF grDriver = CGA THEN grMode := CGAHi ELSE
IF grDriver = MCGA THEN grMode := MCGAMed ELSE

BEGIN
Writeln('Requires CGA or MCGA graphics' >;
Halt

END; { if }
InitGraph(grDriver, grMode, 11

);

Figure 2. Semiautomatic BGl initialization.

Colors and lines. SetColor takes a
value from 0 to n, selecting from
among n+ 1 colors for subsequent
drawing commands. The maxi
mum color value n is different for
various display modes, but is
always within the range 0 .. 15.
To find the maximum value for
your system, call function
GetMaxColor. Listing 1 uses this
technique to generate random
values from 1 to GetMaxColor,
selecting among all possible hues
except 0, which is the background
color (usually black).

LineTo takes two integer
parameters that represent the (x,y)
coordinate of one display pixel. A
pixel is the smallest graphics ele
ment you can display-a single
dot, the quark of computer graph
ics. LineTo connects two pixel
locations anywhere in the current
viewporl, which is the currently
usable display area. The first loca
tion is called the Current Point
(CP); the kernel remembers this
location at all times. The second
location is given by the coordinate
pair passed to LineTo as its two
integer parameters. Many graph
ics commands use CP as a starting
point, initialized by InitGraph to
(0,0) in the upper left corner.
LineTo connects CP to the passed
(x,y) parameters. After drawing,
the line's end becomes the new
CP; each subsequent line drawn
with LineTo begins where the
previous line ends.

Two other functions in Listing
1 help the program run correctly
in all display modes. Function
GetMaxX returns the maximum x
(horizontal) coordinate value for
the current graphics mode. Func
tion GetMaxY returns the maxi
mum y (vertical) value. Together,
these two integer functions let you
write programs that automatically
adjust for different display
resolutions.

More about lines and pixels. By
modifying Listing 1, you can
experiment with many other BGI
commands such as Line, which
connects two coordinates (xl,yl)

continued on page 18

May/June 1988 TURBO TECHNIX 17

PROCEDURE DoGraphics;

VAR ch : Char;
xmax, ymax : Integer;

BEGIN
xmax := GetMaxX + 1;
ymax := GetMaxY + 1;
REPEAT

Delay(150);
SetColor(1 + Random(GetMaxColor) >; { Select color }
Line(Random(xmax), Random(ymax), { x1, y1 }

Random(xmax), Random(ymax) >; { x2, y2 }
UNTIL Keypressed;
ch := Readkey

END; { DoGraphics }

Figure 3. Line demonstration procedure replacing DoGraphics in Listing 1.

PROCEDURE DoGraphics;

VAR ch : Char;
xmax, ymax : Integer;

BEGIN
xmax := GetMaxX + 1;
ymax := GetMaxY + 1;
REPEAT

SetFillStyleC 1 +Random(11), {pattern}
1 + Random(GetMaxColor)); { color }

Bar(Random(xmax), Random(ymax), { x1, y1 }
Random(xmax), Random(ymax > >; { x2, y2 }

UNTIL Keypressed;
ch := Readkey

END; { DoGraphics }

Figure 4. FiUed bar demonstration procedure replacing DoGraphics in
Listing 1.

PROCEDURE DoGraphics;

VAR ch : Char;
xmax, ymax : Integer;

BEGIN
xmax := GetMaxX + 1;
ymax := GetMaxY + 1;
REPEAT

SetColor(1 + Random(
Arc(Random(xmax),

Random(ymax) ,
Random(361) ,
Random(361) ,
Random(50)) ;

UNTIL Keypressed;
ch := Readkey

END; { DoGraphics }

GetMaxColor));
{ X coordinate value }
{ Y coordinate value }
{ Start angle }
{ End angle }
{ Radius }

Figure 5. Arc demonstration procedure replacing DoGraphics in Listing 1.

18 TURBO TECHNIX May/June 1988

MEET THE BGI
continued from page 17

and (x2,y2). Unlike LineTo, Line
ignores CP. To see how Line
works, replace DoGraphics in List
ing 1 with the procedure in Figure
3. When you run the modified
program, random lines are no
longer connected end for end.
Take out the Delay statement to
shift the program into high gear.

Figure 3 adds two new integer
variables, xmax and ymax. Before
the REPEAT .. UNTIL loop begins,

· the program assigns these vari
ables the maximum coordinate
values of the current graphics
mode, plus 1. Because the display
resolution is constant, the pro
gram runs faster by performing
these additions outside the loop.
Also, assigning values to variables
avoids repeated calls to GetMaxX
and GetMaxY. Small tricks such as
these contribute to making graph
ics programs (and other kinds of
programs, too!) run as fast as
possible.

To display individual pixels, use
PutPixel. Remove the statements
between REPEAT and UNTIL
from Figure 3 and insert the fol
lowing for a colored confetti
display:

PutPixel(Random(xmax),
Random(ymax),
Random(GetMaxColor + 1))

PutPixel takes three parame
ters: integer x and y coordinate
values, and a color value from 0 to
GetMaxColor. Unlike Line and
LineTo, PutPixel does not use the
color value passed to SetColor.
For the reasons mentioned
above, you'd be smart to assign
GetMaxColor+ 1 to an integer
variable and then move this addi
tion outside the REPEAT .. UNTIL
loop.

Rectangles. Procedure Rectangle,
as its name suggests, draws rectan
gles. Pass four coordinate values
to locate the upper left and lower

continued on page 20

Program in the fast lane with
Borland's new Turbo Pascal 4.0 !

0 ur new Turbo Pascal"
4.0 is so fast. it's
almost reckless. How

fast? Better than 27.000 lines
of code per minute.* That's
more than twice as fast as
Turbo Pascal 3.0.

4.0 Technical Highlights:

• Compiles 27.000 lines per
minute

• Includes automatic project Make
• Supports> 64 K programs
• Uses uni ts for separate

compi lation
• Integrated development

environment
• Interacti ve error detection/

location
• Includes a command line version

or the compiler
• Highly compatible with 3.0

For the I BM PS/ 2" and the IBM" and Compaq• fami
lies of personal computers and all 100% compatibles

4.0 breaks the code
barrier

No more swapping code in
and out to beat the 64 K code
barrier. Designed for large
programs. Turbo Pascal 4.0
lets you use all 640K of
memory in your computer .

Sieve (25 iterations)

~e of Executable File _

~ ;~ecut1on speed

rbo Pascal 4.0

2224 bytes
--1
t

Turbo Pascal 3.0 .

11682 bytes

9.3 seconds 9.7 seconds

Sieve ol E1atosthenes. run on an 8MHz IBM AT

Since the source tile above is too sma\t to indicate a d1tte1ence in compilatioo speed we compiled our CHESS p1ogram from Turbo Gameworks lo give you a
true sense 01 how much taster 40 really isl

Compilation of CHESS.PAS (5469 lines)

~Compilation speed t Lines per minute

CHESS PAS compiled on an 8 MHz IBM AT

-~urbo Pascal 4.0
12.1 seconds

27,119
-~-

Turbo Pascal 3.0

35.5 seconds

9,243 l

4.0 uses logical
units for separate
compilation

Pascal 4.0 lets you break
up the code gang into "units."
or " chunks." These logical
modules can be worked with
swiftly and separately. 4.0
also includes an automatic
project Make.

4.0's cursor automat
ically lands on any
trouble spot

4.0's interactive error
detection and location means
that the cursor automatically
lands where the error is.
While you're compiling or
running a program. you get
an error message and the
cursor flags the error's
location for you.

Only $99.95

60-Day Money-back Guarantee**

For the dealer nearest you.
or to order now.
Call (800) 543-7543
' Run on an 8MHz IBM AT

.. II wi lhin 60 days of purchase this product does nor perlorm in accor
dance with our claims, call our customer service deparlment, and we will
arrangearetuoel

All 801land prodocts are t1ademarks or reg1s1e1ed trademarks ot Borland
lnterna11onal, Inc Copyrighl C1987 8()(1aod tnternalional, Inc Bl 1166A

YES! I want to upgrade to Turbo Pascal 4.0 and the 4.0 Toolboxes

If you are a reg istered Turbo Pascal user and have not been notified of
Version 4.0 by mail, please call us at (800) 543-7543. To upgrade if
you have not reg istered your product. just send the original registration
form from your manual and payment with th is completed coupon to:

Turbo Pascal 4.0 Upgrade Dept., Borland International
4585 Scotts Valley Drive, Scotts Valley, CA 95066

Name --------------------

Ship Address ------------------

City ---------------State ___ _

Zip _____ Telephone (
This offer is limited 10 one upgrade per valid registered product. It is good until June 30, 1988. Not
good with any other otter from Borland. Outside U.S make payments by bank dralt payable in U.S. dol
lars drawn on a U.S. bank. COOs and purchase orders will not be accepted by Borland.

For the IBM PS/2" and the IBM 0 and Compaq• families of personal computers and all 100%
compatibles
1To qualify for lhe upgrade price you must give the serial number of lhe equivalent producl you are
upgrading.

Please check box(es)

o Turbo Pascal 4.0 Compiler
o Turbo Pascal T ulor
o Turbo Pascal Database Toolbox
o Turbo Pascal Graphix Toolbox
o Turbo Pascal Editor Toolbox
o Turbo Pascal Numerical Methods Toolbox
o Turbo Pascal Gameworks

Total product amount
CA and MA residents add sales lax

Suooested
Retail

$ 99.95
69.95
99.95
99.95
99.95
99.95
99.95

In US please add $5 shipping and handling for each product
Outside US please add $1 O shipping & handling
for each product
Total amount enclosed
Please specify diskette size o 51/4 o 3'h'

Payment: D VISA D MC D Check D Bank Draft
Credit card expiration date:__) ___ _

card* I I I I I I

Upgrade
Pricef

$ 39.95
19.95
29.95
29.95
29.95
29.95
29.95

$ __
$ __

$ __
$ __

Serial No.

TI/M-J/88

PROCEDURE DoGraphics;

VAR ch : Char;
xmax, ymax
xrad, yrad
x, y

Integer;
Integer;
Integer;

BEGIN
xmax := GetMaxX + 1;
ymax := GetMaxY + 1;
xrad := xmax DIV 8; { X radius limit}
yrad := ymax DIV 8; { Y radius limit}
SetColor(White);
REPEAT

x := Random(xmax);
y := Random(ymax);
Ellipse(x,

y,
0,
360,
Random(xrad) ,
Random(yrad));

{ X coordinate value }
{ Y coordinate value }
{ Starting angle }
{ Ending angle }
{ X radius }
{ Y radius }

SetFillStyle(1 +Random(11), {pattern}
1 + Random(GetMaxColor); { color }

FloodFill(x, y, White)

UNTIL Keypressed;
ch := Readkey

END; { DoGraphics }

{ F il l el l i pse }

Figure 6. Filled ellipse demonstration procedure replacing DoGraphics in
Listing 1.

CONSTANT VALUE

Empty Fill 0
SolidFill I
Line Fill 2
LtSlashFill 3
Slash Fill 4
BkSlashFill 5
LtBkSlashFill 6
Hatch Fill 7
XHatchFill 8
Interleave Fill 9
WideDotFi ll 10
CloseDotFill II
User Fill 12

Table 4. SetFillStyle patterns.

MEET THE BGI
continued from page 18

right corners of a rectangular area
on screen. To draw rectangles at
random in the color passed to
SetColor, change Line to
Rectangle in Figure 3.

But, you say, you want boxes
filled with color, notjust the out
lines that Rectangle gives? Okay,
replace Rectangle with Bar.
Notice that Bar does not fill the

20 TURBO TECHNIX May/June 1988

FILL EFFECT

Background color
Solid color
Lines(---)
Thin slashes (/ / /)
Thick slashes (/ / /)
Thick backslashes (\ \ \)
Thin backslashes (\ \ \)
Light hatch marks
Heavy hatch marks
Interleaved lines
Sparse dots
Dense dots
Previous SetFillPanern

insides of boxes with the colors
passed to SetColor. To specify a
fill color for Bar, pass two word
parameters-pattern and color
to SetFillStyle.

Table 4 lists the constants you
may assign to pattern in order to
select different fill styles for Bar.
As always, the color parameter is a
value from 0 to GetMaxColor.
The complete procedure for dis
playing filled boxes in a variety of
colors and patterns is in Figure 4,
which replaces DoGraphics in
Listing 1.

Circles and ellipses. Three basic
procedures draw curves in BGI

graphics: Arc, Circle, and Ellipse.
Arc draws a partial circle. Circle
draws a complete circle. Ellipse
draws an oval, which may or may
not be circular.

To experiment with Arc, replace
DoGraphics in Listing I with Fig
ure 5. Arc takes five parameters to
draw a semicircle. The first two
values specify the (x,y) coordinate
of the semicircle's center of ra
dius. The next two values specify
starting and ending angles, form
ing imaginary spokes joining the
semicircle center with the two
ends of the arc. Angles may have
any values from 0 to 360; an angle
with 0 degrees intersects the arc at
3 o'clock, and greater angles move
counterclockwise. The final Arc
parameter specifies the semicir
cle's radius (i.e., the distance of
the drawn arc from its center).

The Circle procedure is easier
to use and takes only three
parameters: x and y values that
specify the circle's center, and a
radius value. To experiment with
Circle, replace Arc (all five lines)
in Figure 5 with:
Circle(

Random(xmax), {X}
Random(ymax) , {Y}
Random(50) >; {radius}

Circle always draws a round cir
cle-not such an easy feat when
you consider that pixels on most
PC displays are not square or even
close to it. Because of this, the ker
nel has to adjust the circle's width
and height according to the dis
play's aspect ratio. Otherwise, cir
cles would be egg-shaped. BGI
graphics makes drawing round
circles easy-you don't have to
deal explicitly with the display's
aspect ratio.

This advantage becomes more
apparent when you use proce
dures like Ellipse. Unlike Circle,
this procedure does not adjust for
the screen's aspect ratio. Ellipse
takes six parameters: x and y

coordinate values, starting and
ending angles (like Arc), and two
radii that represent invisible
horizontal and vertical axes within
the ellipse's boundaries. To dis
play round circles with Ellipse,
you have to adjust the axes your
self in order to compensate for
the current display's aspect ratio.

Just for fun, let's fill ellipses
with patterns and colors, as we
did earlier with rectangles using
procedure Bar. Again, SetFillStyle
selects a fill pattern and color.
This time, however, there's no
filled-oval procedure similar to
Bar. Instead, we need the proce
dure Flood.Fill, which fills en
closed shapes with the pattern
and color passed to SetFillStyle.
The complete Flood.Fill proce
dure, which replaces DoGraphics
in Listing 1, is in Figure 6.

Figure 6 demonstrates how to
fill shapes with Flood.Fill. The
shape must be completely
enclosed with pixels of a single
color that is different from the
background color. Any gaps in the
shape's outline allow the fill color
to leak outside of the shape, like
paint through a sieve. Figure 6
prevents this disaster by calling
SetColor with the constant White,
which is the color that Ellipse
uses for the drawn figure's border.

Notice that the starting and
ending angles in Ellipse are 0 and
360. These are the correct values
to use when drawing ellipses with
no gaps in the border. If you want
to draw a semiellipse-like a semi
circle, but not necessarily round
use values in the range of 0 to
360, as you did with Arc.

The two radii values, limited to
O .. xrad-1 and O .. yrad-1 in Figure
6, control the width and height
of the ellipse. Before the
REPEAT .. UNTIL loop, xrad and
yrad are limited to one-eighth the
display width and height. Thus,
ovals appear in relatively equal
sizes in all display resolutions.

I can't stress enough the impor
tance of writing graphics pro
grams in this way to ensure that

continued on page 22

Figure 7. A BG! bit-mapped font in increasing sizes. Note how aliasing (the
stairstep effect on diagonal character segments) becomes more objectionable as the
characters are enlarged.

Figure 8. A BG! stroked font in increasing sizes. Stroked fonts often improve in
appearance as they are enlarged. Note the clipping of drawn characters at the
bottom edge of the screen.

May/June 1988 TURBO TECHNIX 21

LISTING 1: RANDOMGR.PAS

PROGRAM RandomGraphics;

C* Demonstrates BG! graphics--Turbo Pascal 4.0--by Tom Swan*)

USES Crt, Graph;

VAR grDriver, grMode, grError Integer;

PROCEDURE DoGraphics;

VAR ch : Char;

BEGIN
REPEAT

SetColor(1 + Random(GetMaxColor
LineTo(Random(GetMaxX +),

Random(GetMaxY + 1) >;
UNTIL Keypressed;
ch := Readkey

END; { DoGraphics }

BEGIN
grDriver := Detect;
InitGraph(grDriver, grMode, 11 >;
grError := GraphResult;
IF grError <> Grok

) >; { Select color }
{ x coordinate value }
{ y coordinate value }

THEN Writeln('Graphics error : ' GraphErrorMsg(grError))
ELSE BEGIN

END
END.

DoGraphics;
CloseGraph

LISTING 2: FONTDEMO.PAS

PROGRAM FontDemo;

C* Demonstrates BG! text fonts--Turbo Pascal 4.0--by Tom Swan*)

USES Crt, Graph;

VAR grDriver, grMode, grError : Integer;

{ Display message, wait for Enter key, clear screen . }
PROCEDURE Pause;

BEGIN
GotoXY(2, 23);
Write(' Press Enter to continue ... ' >;
Readln;
ClearViewPort

END; { Pause }

{ Display test text for font nl.lllber fn }
PROCEDURE Testfont(fn : Integer);

VAR

BEGIN

size
name

Integer;
StringC10l;

name
name
name

{ Font size }
{ Font name }

:= 'Default';
:= 'Triplex';
:= 'Small 1;

CASE f n OF
Defaul tFont
TriplexFont
Small Font
SansSerifFont
GothicFont

name := 'Sans Serif';
name := 'Gothic'

END; { case }

22 TURBO TECHNIX May/June 1988

MEET THE BGI
continued from page 21

they run correctly in different dis
play modes. Never use fixed con
stants for coordinate limits in your
programs; instead, call GetMaxX,
GetMaxY, and GetMaxColor early
in your program and then assign
their return values to variables.
Later in your program, use the
values in those variables to adjust
other variables accordingly so that
the graphics conform to the size
and color palette of the current
graphics mode.

The final steps in Figure 6 call
SetFillStyle to select a fill pattern
and color at random; F1oodFill
then paints the oval. F1oodFill's x
and y parameters locate a pixel
somewhere inside the border of
the shape to be filled. The third
parameter, White in this example,
specifies the shape's border color.

INTERMISSION
So far, we've covered initialization
techniques, pixels, lines, re<::tan
gles, filled bars, arcs, circles,
ellipses, and flood filling. These
are merely the fundamentals of
BGI graphics, which has many
more routines for drawing poly
gons (filled and unfilled), moving
the CP, customizing fill and line
patterns, adjusting line widths,
drawing pie chart wedges, display
ing 3-D bars like those in a fancy
bar chart, playing around with
color palettes, inspecting the dis
play's aspect ratio, using bit-map
images, animating with multiple
display pages, and more.

Let me take a moment to go
over a few special routines that
you'll undoubtedly use from time
to time.

Clearing the screen. To clear the
display call ClearDevice, which is
faster than ClearViewport. (Clear
the display with ClearViewport

only if you call SetViewPort to re
strict the viewport-the visible
window in which the drawing
appears- to be less than the full
screen width and height.) To
change the background color
used by both ClearDevice and
ClearViewPort, call SetBkColor
with a value from 0 to
GetMaxColor.

Moving and inspecting CP.
MoveTo moves CP to any (x,y)
coordinate. This step is useful
when you're preparing to use
commands such as Line, which
starts drawing at CP. MoveRel
moves CP relative to the current
position of CP, according to the
amounts specified by the integer
parameters DX and DY. Use nega
tive DX values to move CP to the
left, and positive values to move it
to the right. Negative DY values
move CP up, and positive values
move it down. Integer functions
GetX and GetY return the CP's
current x and y values.

Restricted views. SetViewPort
takes five parameters. As in
Rectangle, the first four values
represent the two coordinates that
depict the upper left and lower
right corners of a rectangle.
SetViewPort restricts future draw
ing to the area within this rectan
gle's borders only if the fifth
parameter, which is Clipping of
type Boolean, equals True. If
Clipping is False, then the kernel
allows drawing to occur outside of
the viewport boundaries. This
technique is useful for centering
the coordinate origin (i.e., (0,0)),
which is normally located in the
upper left corner of the screen.
This advanced technique won't
be detailed here, but it shows
why you might want to turn
Clipping off.

continued on page 24

FOR size := 1 TO 8 DO
BEGIN

SetColorC size >;
SetTextStyleC fn, HorizDir, size >;
HoveToC 0, GetY + TextHeightC'H') + 2 >;
OutTextC name + 1 Font test pattern ABCDEFG 123456 !iil#$%· 1)

END { for }

END; { TestFont }

PROCEDURE WritelnTest; { Display text via Writeln }

BEGIN
GotoXYC 2, 2);
WritelnC 1 This text is displayed by Writeln 1);

Pause
END; { WritelnTest }

PROCEDURE DoGraphics; { Display graphics }

VAR fontNUTber : Integer;
ch : Char;

BEGIN
DirectVideo := False; { So Write, Writeln work in graphics

when using the Crt unit. }
{ Draw blue border and restrict viewport to protect
border from erasure: }
SetColorC Blue >;
Rectangle(0, 0, GetHaxx, GetMaxY >;
SetViewPortC 1, 1, GetMaxX-1, GetHaxY-1, ClipOn);
WritelnTest; { Demonstrate Writeln in graphics mode }
FOR fontNUTber := DefaultFont TO GothicFont DO
BEGIN

TestFontC fontNUTber >;
Pause

END { for }
END; { DoGraphics }

BEGIN
grDriver := Detect;
InitGraphC grDriver, grMode, 11 >;
grError := GraphResult;
IF grError <> Grok
THEN WritelnC 'Graphics error ', GraphErrorMsg(grError))
ELSE BEGIN

END
END.

DoGraphics;
CloseGraph

LISTING 3: COLORS.PAS

PROGRAM Colors;

(* Displays Color Chart--Turbo Pascal 4.0--by Tom Swan *)

USES Crt, Graph;

VAR grOriver
grMode
grError

Integer;
Integer;
Integer;

barWidth Word;
labelHeight : Word;
bwd2 Word;
bwt2 Word;
lhd2 Word;

{ Graphics driver nuiber }
{ Graphics driver mode }
{ Graphics error code }

{ Pixel width of bars }
{ Pixel height of bar labels }
{ barWidth DIV 2 }
{ barWidth times 2 }
{ labelHeight DIV 2 }

May/June 1988 TURBO TECHNIX 23

{ Initialize global variables, load text font, and display title. }
PROCEDURE Initialize;

BEGIN
{ Select text style, direction, size, and justification.

Then, display title at top center of screen. Reduce text
size for displaying labels under bars: }
SetTextStyle(SansSerifFont, HorizDir, 5 >; { Title}
SetTextJustify(CenterText, CenterText >;
MoveTo(GetMaxX DIV 2, GetMaxY DIV 8);
OutText('Color Ni..mbers');
SetTextStyleC SansSerifFont, HorizDir, 4 >; { Labels }

{ Initialize a few global variables: }
barWidth := C (GetMaxX + 1) DIV (GetMaxColor + 1)) DIV 2;
labelHeight := 2 * TextHeightC 1 0 1 >;
lhd2 := labelHeight DIV 2; { labelHeight DIV 2 }
bwd2 := barWidth DIV 2; { barWidth DIV 2 }
bwt2 := barWidth * 2 { barWidth times 2 }

END; { Initialize}

{Draw a single bar filled with a color}
PROCEDURE DraWOneBar(x1, y1, x2, y2 : Integer; color : Word >;

BEGIN
SetFillStyleC SlashFill, color);
Bar(x1, y1, x2, y2 >;
SetColor(White >;
Rectangle(x1, y1, x2, y2)

{ Select pattern, color }
{ Draw filled bar }
{Outline bars in white}
{Draw outline}

END; { DrawoneBar }

{ Display color ni..mber centered at Cx,y) under bar }
PROCEDURE LabelBarC x, y : Integer; color : Word);

VAR s : String [2] ; { Color ni..mber as a string }

BEGIN
Str(color, s >;
OutTextXYC x, y, s)

END; { LabelBar }

{ Convert color to string s }
{ Display text at Cx,y) }

PROCEDURE DrawBars; { Draw color bars and wait for key press }

VAR x1, y1, y2 : Integer;
color : Word;
ch : Char;

{ Coordinate values }
{ FOR-loop variable}
{ Keyboard character }

BEGIN
x1 := bwd2; { Initialize starting x1 value }
y1 := GetMaxY DIV 3; {Initialize y1 to top of bar}
y2 := GetMaxY - labelHeight; { Initialize y2 to bottom of bar}
FOR color := 0 TO GetMaxColor DO

BEGIN
DraWOneBar(x1, y1, x1 + barWidth, y2, color >;
LabelBar(x1 + bwd2, y2 + lhd2, color >;
x1 := x1 + bwt2 { Move x1 right for the next bar }

END; { while }
ch := ReadKey { Wait for keypress }

END; { DrawBars }

24 TURBO TECHNIX May/June 1988

MEET THE BGI
continued from page 23

Switching from text to graphics.
Occasionally, you'll want to switch
from a graphics screen to a text
screen and then back again. You
could call CloseGraph to shut
down the BGI kernel, and then
call InitGraph to reinitialize it
again, but there's an easier way.
Call RestoreCrtMode to tempo
rarily return to the display mode
that was active prior to calling
InitGraph. When you're finished
with the previous display mode,
return to your graphics mode by
calling SetGraphMode and
passing it the grMode variable
returned by InitGraph.

CLASSY CHARACTERS
Fonts. Earlier, I promised to
explain more about fonts. The
BGI supports two kinds of fonts:
bit-mapped and stroked. Charac
ters in bit-mapped fonts are com
posed of rectangular pixel arrays.
Characters in stroked fonts are
composed of vectors-line seg
ments whose sizes and directions
are defined as relative to some
starting point.

The difference between the two
kinds of fonts is important when
changing the default size of char
acter images. Blowing up bit
mapped fonts is done by simply
enlarging the pixels. This makes
the characters look blocky, with
huge stair steps (this effect is
called aliasing) on their sloping
parts (see Figure 7). Stroked fonts
are enlarged by making their com
ponent line segments longer, so
aliasing does not occur. Because
stroked fonts are defined as col
lections of line segments rather
than pixel blocks, characters look
good (in many cases, better) when
enlarged (see Figure 8). Bit
mapped fonts do offer one ad
vantage-speed. Stroked-font
characters, with their many line
segments, take longer to draw
than do bit-mapped characters.

The BGI kernel currently sup
ports one bit-mapped font and
four stroked fonts (see Table 2).
For comparison, Listing 2 displays
short text lines in all possible
fonts. To run the program, you
need to place the .CHR files listed
in Table 2 into the same directory
that you specified with the string
parameter to InitGraph.

Making your selection. Procedure
TestFont in Listing 2 shows the
correct way to select a font and
size. After the CASE statement sets
string variable name to the font's
name, a FOR loop cycles integer
variable size from 1 to 8. Most
fonts look best with small sizes in
this range, but you have to experi
ment. Different fonts with the
same size values appear larger or
smaller than others.

Use SetTextStyle to select a
font, direction, and size. The first
parameter in SetTextStyle is the
font number, which is one of the
five constants DefaultFont,
TriplexFont, SmallFont, Sans
SerifFont, and GothicFont.
DefaultFont (0) is a bit-mapped
font. The other four fonts are
stroked.

The second SetTextStyle
parameter can be either HorizDir
or VertDir. Use HorizDir to dis
play text horizontally from left to
right, and use VertDir to display
text vertically from top to bottom.
The final SetTextStyle parameter
specifies the font size.

SetTextStyle loads the appro
priate .CHR font file from disk,
searching the pathname passed to
InitGraph. If the kernel can't find
this font file, SetTextStyle returns
an error code through Graph
Result. (Note that for brevity's
sake, Listing 2 does not check for
this error.)

Displaying text. OutText and
OutTextXY display text in the
current font, direction, and size,
using the color most recently
passed to SetColor. OutText takes
a single string parameter and dis-

continued on page 26

BEGIN
grDriver := Detect;
lnitGraph(grDriver, grMode,
grError := GraphResult;
IF grError <> Grok

THEN
Writeln('Graphics error

ELSE
BEGIN

Initialize;
DrawBars;
CloseGraph

END

II) ;

', GraphErrorMsg(grError))

{Perform various initializations}
{ Display color bars }
{ Restore former text mode }

END.

LISTING 4: KALEIDO.PAS

PROGRAM Kaleidoscope;

(* Displays Kaleidoscope Patterns··Turbo Pascal 4.0--by Tom Swan *)

USES Crt, Graph;

VAR grDriver
grMode
grError

Integer;
Integer;
Integer;

{ Graphics driver nl.lllber }
< Graphics driver mode }
{ Graphics error code }

PROCEDURE DoGraphics; {Display graphics lM'ltil a key is pressed}

VAR xmax, ymax : Integer;
x1, y1, x2, y2 : Integer;
dx1, dy1, dx2, dy2 : Integer;
displayPeriod : Word;
linePeriod : Word;

{ Maxilll.lll x, y values }
{ Line endings }
{Change in x1,y1,x2,y2 }
{ Time between clearing }
{Time each pattern lives}
{ For clearing keypress } ch : Char;

PROCEDURE Initialize; {Perform various initializations}

BEGIN
Randomize;
displayPeriod := O;
xmax := GetMaxX DIV 2;
ymax := GetMaxY DIV 2;

{ "Seed" new random sequence }
{ Force call to NewDisplayPeriod}
{ Set x and y maxilll.lllS to middle }
{ of display resolution }

{Restrict viewport to 1/4 entire display. With clipping
off, this centers the origin (0,0) and makes mirror
images in the four quadrants easy to draw. }

SetViewPort(xmax, ymax, GetMaxX, GetMaxY, ClipOff)
END; { Initialize}

{Clear screen and initialize displayPeriod,
controlling length of time between screen clears: }

PROCEDURE NeWOisplayPeriod;

BEGIN
ClearDevice; { Clear entire display}
displayPeriod := 6 +Random(24) { 6 •• 29}

END; { NeWOisplayPeriod }

{Select coordinates, movements, linePeriod,
and line color at random: }

PROCEDURE NewValues;

May/June 1988 TURBO TECHNIX 25

BEGIN
x1 := Random(xMax +); { x1 <- 0 .. xmax}
y1 := Random(yMax +); { y1 <- 0 .. ymax }
x2 :=Random(xMax +); { x2 <- O .. xmax}
y2 :=Random(yMax +); { y2 <- O .. ymax}
dx1 :=Random(16) - 8; { dx1 <- -8 .. +7}
dy1 := Random(16) - 8; { dy1 <- -8 .• +7 }
dx2 := Random(16) - 8; { dx2 <- -8 .. +7 }
dy2 :=Random(16) - 8; { dy3 <- -8 .. +7}
linePeriod := 5 + Random(120>; { linePeriod <- 5 .. 124}
SetColor(1 + Random(GetMaxColor)

END; { NewValues }

{Adjust line coordinates, making lines appear to move:}
PROCEDURE MoveCoordinates;

BEGIN
x1 := x1 + dx1; {Add appropriate "delta," }

y1 := y1 + dy1; { meaning "change in," value }
x2 := x2 + dx2; { to line end coordinates. }
y2 := y2 + dy2

END; { MoveCoordinates }

PROCEDURE DrawLines; {Draw lines mirrored in four quadrants }

BEGIN
Line(-x1, -y1, -x2, -y2);
Line(-x1, y1, -x2, y2);
Line(x1, -y1, x2, -y2);
Line(x1, y1, x2, y2)

END; { DrawLines}

BEGIN
Initialize;
REPEAT

IF displayPeriod <= 0
THEN Nei.<>isplayPeriod;

NewValues;
WHILE (linePeriod > 0) AND
BEGIN

Delay(5 >;
MoveCoordinates;
Drawlines;
linePeriod := linePeriod -

END; { while}
displayPeriod := displayPeriod

UNTIL Keypressed;
ch := Readkey

END; { DoGraphics }

BEGIN

END.

grDriver := Detect;
InitGraph(grDriver, grMode, 11);

grError := GraphResult;
IF grError <> Grok

THEN
WritelnC 'Graphics error : '

ELSE
BEGIN

DoGraphics;
CloseGraph

END

26 TURBO TECHNIX May/June 1988

{ upper left quadrant }
{ lower left quadrant }
{ upper right quadrant }
{ lower right quadrant }

{ Clear screen }

NOT Keypressed) DO

{Set the speed limit}
{ Animate display }
{ Draw mirror images }

1

- 1

GraphErrorMsg(grError))

MEET THE BGI
continued from page 25

plays its characters beginning at
CP. After OutText, CP moves to
the position just after the last
display character. OutTextXY
ignores CP and takes x and yin
teger parameters, plus the string
to be displayed.

Listing 2 calls MoveTo, initial
izing CP to a starting position
before calling OutText. Each new
text line must be positioned a little
further down the screen, because
the characters are larger on each
successive line. Therefore, to cal
culate the position of each new
text line, the function TextHeight
is called from MoveTo's parame
ter line. TextHeight returns the
pixel height of a string; in this
case, the string consists of the
letter M. (M was chosen here
because it is about as tall as any
character gets.) The sum of the
current y coordinate value (GetY)
added to the value returned by
TextHeight, plus two additional
pixels for spacing, yields the new y
coordinate for the next text line.

Notice that when it calls
OutText, string variable name is
concatenated to the quoted string
literal "Font test pattern
ABCDEFG 123456 !@#$%. ' "
using the string concatenation
operator+. Remember, OutText
and OutTextXY take a sing!£
string parameter. Unlike Write
and Writeln, you can't separate
multiple parameters to OutText
and OutTextXY with commas.
Also, in order to display integer
and real number values, you must
first use Turbo Pascal's Str proce
dure to convert such values to
strings, and then pass the equiva
lent string values to OutText or
OutTextXY.

Using Write and Writeln in
graphics mode. You can also mix
text and graphics with Write and
Writeln, but you can display BGI
fonts only with OutText and
OutTextXY. In graphics mode,

Write and Writeln always use the
same system-resident font that
they use when called from text
mode. If your program uses the
Crt unit, which links fast, direct
video routines to Write and
Writeln, you must set the Boolean
variable DirectVideo to False.
If you don't do this, Write and
Writeln won't work on graphics
screens. If your program does not
use Crt, then Write and Writeln
work normally.

BGIROUNDUP
I'll leave you with two programs
that use many of the routines
covered in this article. The pro
grams, Listings 3 and 4, are heavi
ly commented and you should be
able to explore them without any
further help.

Listing 3, which displays a color
chart, adjusts for all possible dis
play resolutions and color sets. As
I suggested earlier, strive for this
same flexibility in your own pro
grams, so that your software runs
correctly in a wide variety of PC
graphics modes. Why limit your
audience?

Listing 4 displays an animated
color kaleidoscope that, again,
works in all modes supported by
BGI graphics. The program uses
the technique (mentioned earlier)
of setting a viewport without
enabling viewport clipping in
order to center the origin. This
technique divides the display into
four quadrants, making the mirror
images easier to draw than they
would be if the origin was in the
top left corner. The program is
great for parties and such-you
can drag it out when somebody
asks, "So what does this computer
of yours do?"

By now, you should have a feel
ing for the depth of BGI graphics
capabilities, even though we've

only scratched the surface. Of all
the graphics systems I've used in
various languages, there's no
question that the BGI kernel is a
top-notch performer. If you're
interested in graphics program
ming on the PC, you no longer
have to eye those pretty Amigas
and Ataris down at the budget
computer store. You may discover
that the new BGI frontier, and a
copy of Turbo Pascal or Turbo C,
are all you need. •

Tom Swan is the author of Master
ing Turbo Pascal 4.0, 2nd Edition,
Howard W Sams, 1988; Mastering
Turbo Pascal Files, Howard W
Sams, 1987; and Programming
With Macintosh Turbo Pascal,
john Wiley & Sons, 1987.

Listings may be downloaded from
CompuServe as PASBGI.ARC.

LIST OURS LIST OURS

ESSENTIAL COMM LIBRARY 185 125 TURBO POWER SCREEN 129 IOI
GREENLEAF C SAMPLER 95 69 TURBO POWER UTILITIES 95 79
GREENLEAF COMM LIBRARY 185 125 TURBO PROFESSIONAL 4.0 99 80
GREENLEAF FUNCTIONS 185 125 TURBO WINDOW PASCAL 95 80
MICROSOFT QUICK C 99 69 UNIVERSAL GRAPHICS LIBRARY 150 121
PANEUQC OR rrc 129 99
PERISCOPE 11 -X 145 106 OTHER LANGUAGES
PFORCE 395 215 LAHEY PERSONAL FORTRAN 77 95 86
RESIDENT C 99 85 LOGITECH MODULA-II COMP PACK 99 81
TURBO C 100 69 MICROFOCUS PERSONAL COBOL 149 119
TURBO C TOOLS 129 101 PC/FORTH 150 109
TURBO WINDOW/C 95 80

UTILITIES

o. e C!rli.
T-DEBUG PLUS 4.0

First symbolic nmtime debuga<r for Turbo Pucal

DAN BRICKLIN'S DEMO PROGRAM 75 59
DAN BRICKLIN'S DEMO PROG. II 195 179
FANSI CONSOLE 75 66

Programmer's Paradise Gives You Superb Selection,
Personal Service and Unbeatable Prices!

~~~"":~= 
or registers. Conditional breakpoints. Source and 
assembly ........ modes. Sourao code display 
with current mstruction highlighted and more. 

FETCH 55 49 
MACE UTILITIES 99 90 
NORTON COMMANDER 75 56 
NORTON EDITOR 75 70 Welcome to Paradise. The microcomputer software source that caters to your programming need!!. 
NORTON UTILITIES 100 61 Discove r the Many Advantages of Paradise .. 

• Lowest pnc<:! gu.u .... ~eed • Huge inventory, urunediate shipment • Speoal orders Lise S45 Special Price: S3t NORTON ADVANCED UTILITIES 150 101 
• Latest versions • Knowledgeable ~s staff • 30-day money-back guanmtee 

W/Source: 
List $90 Specia l Price: l80 

NORTON GUIDES 100 65 

Over 500 brand-name products in stock-if you don't see it, call! BORLAND PRODUCTS 

:: We'll Match Any Nationally Advertised Price. PASCAL LANGUAGE 
ALICE 

EUREKA 167 119 
REFLEX' THE ANALYST 150 99 

95 70 SIDEKICK 85 59 

LIST 

ARTIFICIAL INTELLIGENCE 
ARITY STANDARD PROLOG 95 
MULISP-87 INTERPRETER JOO 
PC SCHEME 95 
SMALLTALK/V 100 

EGNVGA COLOR OPTION 50 
GOODIES DISKETTE #I 50 
SMALLTALK/COMM 50 

TURBO PROLOG 100 
TURBO PROLOG TOOLBOX 100 
VP-EXPERT 100 

ASSEMBLY LANGUAGE 
Ez...ASM 70 
MS MACRO ASM (DOS OR OS/2) 150 
OPTASM 195 
THE VISIBLE COMPUTER,8088 80 
THE VISIBLE COMPUTER,80286 100 
TURBO EDITASM 99 

BASIC 
DB/LIB 139 
EXIM SERVICES TOOLKIT 100 

Term• and Policies 
•We honor MC, VISA, AMERICAN EXPRESS 
No tun:harat on credit urdor C.OD. PreP1YlllClll by 
check.NewYorkStateres.denttlddappllc•ble~l 

~~~~~~~~~~=·r:::.uPS 
• ~'t PancUe W1I match any Cllf"ttnt N1t1011-

~~:!:tsed~~::.=~~1~:
• Houn 9AM EST -)PM EST
• We'I Match any NabOnlly Ad~nJ&td Pnce
•M•ll QrU,., 1-lltlle ,_,.,,._e 1t••kr
•AN for deuill. Some manubcturen wil not allow
returnaoncedlsksealsan:brollen.

De. lers and Corporate Buyera-Call for
apecial diacounta and benefila!

OURS

80
199
86
85
45
45
45
69
69
90

66
99

172
66
90
86

121
90

ASCII TURBO GHOST WRITER
LIST OURS STARTER 99

289
99
75
75

SUPERKEY 100 69
80 TURBO BASIC COMPILER 100 69

FINALLY!
FLASH-UP
FLASH-UP TOOLBOX
GRAPHPAK
MICROHELP UTILITIES
PEEKS & POKES
QB ASE
QBASE REPORT
QUICKBASIC
QUICK-TOOLS
QUICKPAK
QUICKPAK II
QUICKWINDOWS
TRUE BASIC

W/RUNTIME
TURBO BASIC

DATABASE TOOLBOX
EDITOR TOOLBOX
TELECOM TOOLBOX

C LANGUAGE
C TOOLS PWS/5.0
ESSENTIAL C UTILITIES LIB.

COMPLETE
99 90 AZATAR DOS TOOLKIT
89 80 DOS/BIOS & MOUSE TOOLS
49 46 MACH 2
69 60 METRABYTE DIA TOOLS
59 49 OVERLAY MANAGER
45 39 W/SOURCE CODE
99 90 SCIENCE & ENGINEERING TOOLS

100
45
90
75

125 69 59 SCREEN SCULPTOR
99 69 SYSTEM BUILDER

130 Ill IMPEX
69 60 REPORT BUILDER
49 45 T-DEBUG PWS 4.0
99 90 W/SOURCE CODE

100 80 TURBO ADVANTAGE

150
100
130

150 105 TURBO ADVANTAGE COMPLEX

SPECIAL 45
SPECIAL 90

50
90
70
99

129
100
99

100 69 TURBO ADVANTAGE DISPLAY
100 69 TURBO.ASM
100 69 TURBO ASYNC PWS
100 69 TURBO GEOMETRY LIBRARY

TURBO HALO
TURBO MAGIC

129 101 TURBO PASCAL
185 125 TURBO PLUS

99
100
100

262 TURBO BASIC DATABASE 100 69
86 TURBO BASIC EDITOR TOOLBOX 100 69
70 TURBO BASIC TELECOM TB 100 69
66 TURBO C 100 69
90 TURBO LIGHTNING 150 95
39 W/WIZARD 100 69
80 TURBO PASCAL 100 69
69 TURBO PASCAL DBASE TOOLBOX 100 69
96 TURBO PASCAL DEV. TOOLKIT 395 289

131 TURBO PASCAL EDITOR TB 100 69
90 TURBO PASCAL GAMEWORKS TB 100 69

116 TURBO PASCAL GRAPHIX TB 100 69
39 TURBO PASCAL NUM. METHODS 100 69
80 TURBO PASCAL TUTOR 70 45
45 TURBO PROLOG COMPILER 100 69
80 TURBO PROLOG TOOLBOX 100 69
66
70

IOI
90
80
90
69
89

1-800-445-7899
In NY: 914-332-4548 f") ~ ra.; e TM Customer Service:

914-332-0869
International Orders:

914-3324548
Telex: 510-601-7602

A Division of Hudson Technologies, Inc.
42 River Street, Tarrytown. NY 10591

May/June 1988 TURBO TECHNIX 27

PLOTTING THE MANDELBROT
SET WITH THE BGI
Meet the most complex object in mathematics-the
Mandelbrot Set-brought to you in living color by the
Borland Graphics Interface .

Fred Robinson

Back in the fall of 1985, I sat poring over
the latest Scientific American, dumbfound-

.I ed. Professor Dewdney's Computer
Recreations article-the cover story, no
less-unveiled the Mandelbrot Set, one of

PROGRAMMER the most beautiful and probably the most
complex creature ever to emerge from the realm of
mathematics.

Well, if you have seen the October, 1985, Scientific
American, you've probably also been bitten by the
Mandelbrot bug. My own experience may be typical.
I've implemented software to generate the Set on the
Apple II+, and later in several different languages
on the PC, culminating with Turbo Pascal 3.0 and the
Turbo Pascal Graphix Toolbox. Now the next step
has arrived-Turbo Pascal 4.0 and the Borland
Graphics Interface team up to provide the
Mandelbrot Set generator presented here.

A COMPLEX NOTION
First, let's take a brief look at some concepts that
are key to describing the Mandelbrot set: complex
numbers, imaginary numbers, and the complex
number plane.

Complex and imaginary numbers. A compl,ex number
contains some form of the square root of -1, which
by convention is called i. Unlike the square roots of
positive numbers, i and multiples of i cannot be
found on the real number line. For this reason, mul
tiples of i are called imaginary numbers (hence the use
of the i). i isn't normally used in everyday calcu
lations.

A complex number has two parts: a real number
part, which is some value along the real number
line; and an imaginary number part. For example,
the sum of9.7 + 3.5i is a complex number. Complex
numbers can be added to, subtracted from, multi
plied with, and divided by other complex numbers.
(These operations are not as easy to perform on
complex numbers as they are on ordinary numbers,
but they can be done.)

28 TURBO TECHNIX May/June 1988

Complex numbers also have size. The size of a
complex number is its distance from the origin, (0,0);
this distance is calculated by using the Pythagorean
Theorem. For example, the size of 9.7 + 3.Si is Sqrt
(9.7 2 + 3.5 2

), or Sqrt (31.65), or about 10.31213.

The complex number plane. The compl,ex number
plane is represented by a Cartesian coordinate system
whose X axis is labeled the real axis, and whose Y
axis is labeled the imaginary axis. In this system, all
ordinary real numbers fall on the X axis. Any given
point on the plane corresponds to a complex num
ber. For example, the point (9.7, 3.5) corresponds to
the complex number 9.7 + 3.Si.

WHAT IS THE MANDELBROT SET?
The Mandelbrot Set is a region of the complex num
ber plane, situated between -2 + -2i and 2 + 2i, that
contains a set of complex numbers. When these
numbers are repeatedly subjected to a certain for
mula, they never achieve a size greater than 2. Natu
rally, a plane contains just as many points that will
exceed 2 as it does points that will not exceed 2. The
interesting part comes near the border between the
two regions.

The formula that is used to determine which num
bers belong to the Mandelbrot Set is deceptively sim
ple: Initialize z to the complex point c in question,
and simply repeat the following equation until either
the size of z exceeds 2, or else the process has been
repeated an arbitrary number of times:
z = z• + c

Once the size of z exceeds 2, it never returns to less
than 2. Some numbers take quite a while to reach
this size, other numbers never do, and still others
pass 2 almost immediately. For our purposes (given
somewhat slow general-purpose computers}, the
maximum number of iterations can be cut to
about 250.

Figure 1. Thi!full Mandelbrot Set, plotted from -2.0 to 2.0 and -2.0i to 2.0i.
Othi!r views are obtained by choosing a subset of the image and recalculating it
so that thi! new image occupies thi! entire image area.

Figure 2. Deep in thi! hi!art of thi! Set,
highlighting thi! fractal nature of thi!
edge of thi! Set. TM perimeter of thi! Set
is infinitely long, even though thi! Set's
area is finite.

THE FRACTAL EDGE
What is the point of all this? Well,
the Mandelbrot Set has an edge
that is fractal in nature. By specify
ing a small portion of the complex
number plane, mapping it onto a
PC display screen, and suitably
increasing the iteration limit, you
can see details of the fractal edge
in ever-decreasing size. Zooming
in even closer, the tiny details in a
larger picture can be seen to con
tain even smaller details.

I could go on like this for quite
a while, but the Set speaks for it
self. Figures 1 and 2 give you
some idea of what to expect from
a plot of the Set on an EGA in
640 X 350 graphics mode. Figure
1 is a view of the entire Set from a
height. The ranges used to gener
ate Figure 1 are -2.0 to 2.0 and -
2.0i to 2.0i. Zooming down several

continued on page 30

May/June 1988 TURBO TECHNIX 29

input real and imaginary ranges
input iteration maxirm.rn

for c.i = low imaginary to high imaginary
for c.r = low_real to high_real

z = c
repeat

z = z * z + c
until size (z)>2 or too many iterations
if size Cz)>2 then

plot (c.r, c.i)

Figure 3. This algorithm determines if a point on the comp/,ex number plane
belongs to the Mandelbrot Set.

Write Better
Turbo 4.0 Programs ...

Or Your Money Back
You'll write better Turbo Pascal 4.0 programs easier and faster

using the powerful analytical tools of Turbo Analyst 4.0~
You get • Pascal Formatter • Cross Referencer • Program
Indexer • Program Lister • Execution Profiler,
and more. Includes complete source code.

Turbo Analyst 4.0 is the successor to the
acclaimed TurboPower Utilities:
"lfyou own Turbo Pascal you should own the Turbo
Power Programmers Utilities, that's all there is to it."

Bruce Webster, BYTE Magazine, Feb. 1986

Turbo Analyst 4.0 is only $75.

A Library of Essential Routines
Turbo Professional 4.0 is a library of more than 400 state-of-the-art

routines optimized for Turbo Pascal 4.0. It includes complete
source code, comprehensive documentation, and demo

programs that are powerful and useful. Includes
• TSR management • Menu, window, and data

entry routines • BCD • Large arrays, and more.

Turbo Professional 4.0 is only $99.
Call toll-free for credit card orders.

1-800-538-8157 ext. 830 (1-800-672-3470 ext. 830 in CA)

Satisfaction guaranteed or your money back within 30 days.

Fast Response Series:
• T-DebugPLUS 4.0-Symbolic
run-time debugger for Turbo 4.0,
only $45. ($90 with source code)
• Overlay Manager 4.0-Use over
lays and chain in Turbo 4.0, only $45.
Call for upgrade information.

Tuma Pascal 4.0 is required.
Owners ofTurboPower Utilities w/o
source may upgrade for $40, w/source,
$25. Include your seriaJ number. For
other information call 408-438-8608.
Shipping & taxes prepaid in U.S. &
Canada. Elsewhere add $12 per item.

30 TURBO TECHNIX May/June 1988

TurboPower Software
P. 0. Box 66747

Scotts Valley, CA 95066-0747

MANDELBROT SET
continued from page 29

levels into the Set revealed the
image shown in Figure 2.

The first step in generating the
Mandelbrot Set is to master com
plex arithmetic. Complex addition
and subtraction are trivial, but
complex multiplication is not so
easy. Remember how to multiply
polynomial expressions? FOIL:
First + Outside + Inside + Last.
There is enough similarity be
tween a complex number and a
polynomial for this technique to
work. Multiplying two numbers,
A + Bi and C + Di, yields:

AC + ADi + BCi + BDii

This equation is simplified to:

(AC+ -BD) +(AD+ BC)i

Remember, since i is the square
root of -1 , i Xi yields -1 , produc
ing a negative BD in the result
shown above. Multiplying the !\s,
Bs, Cs, and Ds and then summing
the results generates a new com
plex number.

Once that process is under
stood, generation of the Set is
straightforward. The basic algo
rithm, which steps across a region
one pixel at a time, is shown in
Figure 3.

PLOT POINTERS
For the best results, assign a color
to each point plotted based upon
the number of iterations neces
sary to determine whether the
point belongs to the Set Points
belonging to the Set are usually
left black. Points outside of the
Set can be plotted many ways; the
easiest way is to illuminate those
points that require an even num
ber of iterations. This approach is
adequate for a two-color display,
such as the display supported
by the Turbo Pascal Graphix
Toolbox.

It's also possible to write a Set
generator using the Borland
Graphics Interface and Turbo
Pascal 4.0. This method results in
smaller code and faster compila
tion, as well as portability to differ
ent display devices, including
color displays. The use of color
offers more possibilities. For

continued on page 32

LI ST l NG 1 : HANDEL4. PAS

PROGRAM Mandel4;

{This program generates a section of the Mandelbrot Set, can save it
on di sk, and use existing Mandelbrot pictures to ZOON further into
the Set.}

USES
Crt, Graph, C°"lx; { CMPLX. TPU is created from CMPLX.PAS }

CONST
Scan_Width = 359; < 719 (max Hercules) DIV 2 >
Max_Scan_Lines = 349; { PC3270 maxil!Ull }
Aspect = 0. 75; { Typical screen aspect ratio >
Real_Length = 30;
Yes N No: SET OF char = [1 Y1 'N' •y•, 1 n 1];

Yes: -SET OF char= C'Y', 1 y 1 j;
1

No: SET OF char= [1N1 , 1n 1 J;
TP _Path = 'T: 1 ;

TYPE
Scan_L ine = ARRAY CO •• Scan_Widthl OF byte;
Scan Line Ptr =·scan Line;
Real)triiig = STR!NGCReal_Lengthl;
Color _Array = ARRAY CO •• 55] OF integer;

CONST
Colors_2: Color _Array = CO, 0, 0, 0, 1, 1,

0, 0, 0, 0, 1, 1,
Color arrangement for > 0, 0, 0, 0, 1, 1,
2·color screens > 0, 0, 0, 0, 1, 1,

0, 0, 0, 0, 1, 1,
0, 0, 0, 0, 1, 1,
0, 0, 0, 0, 1, 1,

Colors_ 4: Color _Array = (1, 1, 1, 1, 1, 1,
3, 3, 3, 3, 3, 3,

1,
1,
1,
1,
1,
1,
1,

2,
1,

1,
1,
1,
1,
1,
1,
1);

2, 2, 2, 2,
1, 1, 1, 1,

2,
1,

{ Color arrangement for > 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
< 4-color screens > 1. 1, 1, 1, 1, 1. 2, 2, 2, 2, 2, 2,

3, 3, 3, 3, 3, 3, 0, 0);

Colors_16: Color _Array = (1, 9, 1, 9, 1, 9, 1, 9,
2, 10, 2, 10, 2, 10, 2, 10,

Color arrangement for > 3, 11, 3, 11, 3, 11, 3, 11,
16-color screens > 4, 12, 4, 12, 4, 12, 4, 12,

5, 13, 5, 13, 5, 13, 5, 13,
6, 14, 6, 14, 6, 14, 6, 14,
7, 15, 7, 15, 7, 15, 7, 15);

VAR
Ch: Char;
Low, High, Del ta: C""1'lex;
Dots Horizontal, Dots Vertical, Start Y, Max CC>lrlt, Color_Couit,

oevice, Graph Mode-:- Max Colors, Hai_x: integer;
Use Color: Color Array; -
Pict'ure_Loaded: boolean;
File_Name: STRINGC80l;

Data line: Scan Line;
Screen_File: FILE OF Scan_L ine;
Screen: ARRAY CO •• Max Scan Lines] OF Scan_Line_Ptr;
Screen_Data: RECORD - -

Oots_H, Dots_V, COlrlt, Start: integer;
Low_Real, low_ I mag,
High Real, High !mag: Real_String;
Note! String C200J

END ABSOLUTE Data_L ine;

(***••··>

PROCEDURE Initialize;

{ This procedure checks for the graphics screen and selects a mode
based on a c00-.:>romise between resolution and the nutber of colors.

VAR
X: integer;

BEGIN
TextMode CLastMode);
TextColor CL ightBlue);
TextBackground (Black);
OirectVideo ::; False;
FHeName := 11

;

PictUre_Loaded := False;
DetectGraph (Device, Graph_Mode);
X := GraphResult;

l F X<>grOk THEN
BEGIN
Wr i teln C 'Sorry, l can' 't cope with th i s : ' GraphErrorMsg (X));
Halt
END {* THEN *};

CASE Device OF
EGA: Graph_Mode := EGAHi;
VGA : Graph_Mode := VGAHed;
MCGA: Graph_Mode := MCGACO;
EGA64 : Graph_Mode := EGA64Lo;
ATT400 : Graph_Mode := ATT400CO;
PC327D : Graph_Mode := PC3270Hi;
HercHono: Graph Mode : = HercMonoHi;
CGA, RESERVED: Graph_Mode := CGACD

END {* CASE *};

l ni tGraph (Device, Graph_Mode, TP _Path);

CASE Device OF
CGA, MCGA, RESERVED,
ATT40D: BEGIN

Color _Count := 54;
Use Color := Colors 4;
Max=Colors := 3; -
Max X : = GetMaxX
END - {* CASE CGACO, MCGACO, A TT 400CO *};

EGA, VGA,
EGA64: BEGIN

Color_Count := 56;
Use Color := Colors 16;
Max-Colors := 15; -
Max-X := GetMaxX DIV 2
END - {* CASE EGAH i , VGAH i , EGA64Lo *};

ELSE BEGIN
Color Count ·= 56·
Use c0lor :=°Colo~s 2;
Max-Colors := 1; -
Max-X := GetHaxX DIV
END-{* CASE ELSE *}

END {* CASE *};

FOR X : = 0 TO Max Scan Lines DO
New (ScreenCXll; -

RestoreCrtMode
END{* Initialize*>;

(***}

PROCEDURE Plot (X, Y: integer;

Color: word);

{ This procedure plots points on the screen. For high-resolution
width screens, two adjacent pixels are set.

BEGIN
CASE Device OF

CGA, HCGA, RESERVED,
ATT400: PutPixel (X, Y, Color);

ELSE BEGIN
PutPixel (X*2, Y, Color);
PutPixel (X*2+1, Y, Color)
END {* CASE ELSE *}

END {* CASE *}
ENO {* Plot *>;

(**********************************••·······························>
PROCEDURE Define_ Screen;

{This procedure defines the are• of the Mandelbrot Set to be viewed.
It can either be typed in at the keyboard, loaded as a partially
carpleted screen, or as a smaller sector of a COft1>leted picture.

VAR
X, Y: integer;
T°"", Ratio: double;

(**}
PROCEDURE No_Blank (VAR RS: Real_String);

{ This procedure removes leading blanks from the string RS.

BEGIN
WHILE RSC1l=' ' DO

RS := Copy (RS, 2, Length (RS)-1)
END {* No_Blank *};

(**}
PROCEDURE Sl.t>_Pi cture;

(This procedure allows the user to select a sub-section of a
carpleted screen to be blown up, effectively zooming in on a
smeller area.

Pressing keys 2 thru 5 changes the grid on the screen. A sl.t>
section may be chosen by pressing a letter, starting with A in the
upper left corner and moving across:

2: 8I8 3 :

A B c

D E F

G H l

listing continued on page 33

May/June 1988 TURBO TECHNIX 31

MANDELBROT SET
continued from page 30

instance, the CGA medium-resolu
tion mode gives you three colors
to use if you reserve black for the
Set. More advanced display
boards, of course, provide more
colors. My own system, which now
uses a Genoa Spectrum, generates
16 colors at 320 X 200. This is a
good compromise between resolu
tion, image quality, and speed of
generation.

Another point: Since every pixel
on the screen requires a certain
amount of real-number calcula
tion to determine the pixel's color,
a math coprocessor is essential.
Performing the calculations with
out a coprocessor takes about four
times longer than performing
them with a coprocessor. Also,
keep in mind that all black points
that represent the Set itself re
quire the full number of iterations
in order to calculate. Thus, images
that contain a great deal of black
take longer to calculate than those
with less black.

Finally, when you look at very
small regions near the edge of the
Set, it's necessary to increase the
number of iterations in order to
reveal details that would otherwise
be set to the black color of the Set.
Near the edge of the Set, the num
ber of iterations that is required
to attain a size greater than 2 in
creases dramatically. This increase
results in longer image generation
times.

MANDEL4
Mandel4 (Listing 1) takes advan
tage of many display types, using
the new standard BGI functions to
detect and initialize the displays. It
accepts starting regions from the
keyboard, or else takes a smaller
region from a completed screen.
Mandel4 requires the code in
CMPLX.PAS (Listing 2), which
is a unit that contains several
complex-number math routines.

In terms of resolution and
color, I've made some compro
mises when dealing with certain
screens. The horizontal resolution
of displays that contain a great
number of pixels in the horizontal
dimension has been halved. This

32 TURBO TECHNIX May/June 1988

allows faster picture creation with
the loss of only a small amount of
visual information. In screens
with few colors, the colors are
grouped together to make the
smaller details of the Set more vis
ible on the screen (the alternative
is a polychromatic hash where the
iteration count changes drastically
from one pixel to the next}.

Another compromise is the
method used to store the pictures.
Rather than encoding several pix
els into a byte, each pixel is stored
in a full byte. This increases
speed, and allows up to 256 pos
sible colors for a pixel (this color
range is supported by MCGA
and VGA displays). This storage
method, however, creates rather
large picture files, so be careful
that you have enough room avail
~ble on your disk when saving an
image as a file.

Mandel4 gives you the oppor
tunity to either load a previously
created image (by typing the name
of a picture file), or to generate a
totally new image (by typing in the
r~al and imaginary ranges, along
with the maximum iteration
count}. The program also allows
entry of a note for later reference.
Once this information is entered
Mandel4 plots the area encom- '
passed by the ranges specified.

If you load a partially finished
picture, Mandel4 continues to
~ork on it. If the picture you load
1s complete, however, it's thrown
onto the screen and a grid ap
pears that divides the screen into
quarters. By pressing keys 2
through 5, you can change the
grid to another grid in the range
of 2 X 2 through 5 X 5. Each
smaller area has the same propor
tions as the picture on the screen.
An area can be chosen by press
ing a letter key, starting with A in
the upper left corner and moving
across to the right, as shown in
Figure 4.

While Mandel4 is working on
a picture, a dot moves across the
screen and marks the pixel that is
currently being calculated. When
the picture is done, or if you
press a key during the drawing,
Mandel4 gives you an opportunity
to save the image in a file, and
then asks if you want to generate
another image. You can either
start over from scratch, or else use

After pressing 2:

A B c

D E F

G H

After pressing 3:

A B c D

E F G H

I J K L

M N 0 p

After pressing 4:

A B c D E

F G H J

K L M N 0

p Q R s T

u v w x y

After pressing 5:

Figure 4. How the screen is divided
after image plotting. To choose a sub
section of the image to "zoom, "simpz,,
press the l,etter that corresponds to t~
desired subsection.

the picture you've just completed
as a starting point for the next
image.

Mandel4 plots to many differen
displays, but picture files plotted
on one display can't be moved to
another (such as from CGA to
EGA).

GET SET
I guess it's possible to go over
board with the Mandelbrot Set
but I think that that's the most 'run
of all, don't you? Try it and you'll
see. •

Fred Robinson is a computer pro
grammer in the research department of
Ross Roy, Inc., an advertising firm in
Michigan.

Listings can be downloaded from
CompuServe as MANDEL.ARC.

listing continued from page 31

A B c D E
A B c D

F G H I J
E F G H

4: 5: K L M N 0
I J K L

p Q R s T
M N 0 p

u v w x y

Once a section has been chosen, the progra111 proceeda to calculate
and display the smaller section, as large as the screen may al low.}

CONST
Max_Letter: ARRAY [2 •. 51 OF char• (10 1 , 1 11 , 1P1 , 'Y');

VAR
Ch: char;
New_Size, Size, X, Y, Z, Sector, Sector_X, Sector_Y: integer;

BEGIN
Size := 1;
FHe Name := 11 •

Ch :; 121 ;

REPEAT
IF Ch IN ['2' •• 0 5°] THEN

BEGIN {* Change grid *}
New_size := Ord (Ch) - Ord < •o•);

IF Size<>New Size THEN
BEGIN -
C Undo existing grid }
FOR X := 0 TO Dots Horizontal DO

FOR z := 1 TO sTze-1 DO
BEGIN
Y := Z * Dots_Vertical DIV Size;
Plot (X, Y, Screen[YJ"[XJ)
END {* FOR, FOR *};

FOR Y := 0 TO Dots Vertical DO
FOR Z := 1 TO size-1 DO

BEGIN
X := Z * Dots_Hori zontal DIV Size;
Plot (X, Y, Screen[YJ"[XJ)
END {* FOR, FOR *};

Size := New_Size;

{ Make new grid }
FOR X : = 0 TO Dots Horizontal DO

FOR z := 1 TO sTze-1 DO
BEGIN
Y := Z * Dots_Vertical OJV Size;
Plot (X, Y, Max_Colors-Screen[YJ • CXJ)
E~D {* FOR, FOR *};

FOR Y := 0 TO Dots Vertical DO
FOR Z := 1 TD size-1 DO

BEGIN
X := Z * Dots_Horizontal DIV Size;
Plot CX, Y, Max Colors-Screen[YJ. CXJ)
END {* FOR, FOR - *}

END {* THEN *}
END {* THEN *};

Ch := UpCase (ReadKey)
UNTIL (Size IN [2 •• 5)) AND (Ch IN ['A' •. Max_LetterCSizeJJ);

{ Calculate new limits }
Sector := Ord (Ch) - Ord ('A' l;
Sector _X := Sector MOO Size;
Sector Y := Size - 1 - Sector DIV Size;
Sub_C°"" (High, Low, Delta);
Div_C_By_R (Del ta, Size, Del ta);
Low.R := Low.R + Del ta.R * Seetor _X;
High.R := Low.R + Delta.R;
Low.I :=Low.I+ Delta.I• Seetor_Y;
High.I :=Low.I+ Delta.I;

WITH Screen_Data DO
BEGIN
Start Y := O;
Dots ii :=Dots Horizontal;
Dots-V := Dots-Vertical;
COt.l"lt := Max c°'-'it;
Str (low.R, Low Real);
Str (low. I, Low-Imag);
Str (High.R, Hi9h_Real);
Str (High. I, High_!mag);
No Blank (Low !magl;
No-Blank (low-Real);
No-Blank (High !mag);
No-Blank (High-Real)
END {* WITH *};

RestoreCrtMode;
~rite
C'MaxirTUn iteration eouit •, Max_couit, 1 Change it? (Y/N) ');

REPEAT
Ch : = ReadKey

UNTIL Ch IN Yes_N_No;

Writeln (Ch);

IF Ch IN Yes THEN
BEGIN
REPEAT

wr;te ('Enter maxilTl.ft iteration COlrlt: • >;
CS!·} Readln (Max Couit) {$!+}

UNTIL !OResult=O; -

IF Max COt.l'lt<10 THEN
Max=COt.l'lt := 10;

Screen Data.Couit := Max_Ccuit
END {*-THEN *};

wr;te <•enter note: 1 >;
Readln (Screen Data.Note);
SetGrap11Mode (Grapn_Mode)
END {* Sub_Picture *};

c••>

BEGIN {* Define_Screen *}

Ch := 1 N1
;

IF Pi cture_Loaded THEN
BEGIN
Write ('Use picture in memory? (Y/N) 'l;

REPEAT
Ch : = ReadKey

UNTIL Ch IN Yes_N_No;

Writeln CChl
END {* THEN *};

IF Ch IN No THEN
BEGIN
Write ('Load a picture file? (Y/Nl ');

REPEAT
Ch : = ReadKey

UNTIL Ch IN Yes_N_No;

Writeln (Ch);

IF Ch IN Yes THEN
BEGIN { Load picture file }
REPEAT

Write ('Enter name of fHe: ');
Readln (File_Name);
Assign (Screen_Fi le, Fi le_N-l;
{$1 ·} Reset (Screen File) {$1+};

UNTIL !OResult=O; -

Read (Screen_File, Data_L inel;

FOR X := 0 TO Screen Data.Start-1 DO
Read cscreen_File; ScreenCXJ ">;

Close (Screen_Fi le);
Picture Loaded := True
END {* THEN *}

ELSE
BEGIN { Get info frOOI keyboard }
REPEAT

Write ('Enter range for the real (horiz.) axis: 'l;
{$!·} Readln (low.R, High.Rl {$!+}

UNTIL (IOResult=O) All> (low.R<>High.Rl;

IF Low.R>High.R THEM
BEGIN
T"°" := Low.R;
Low.R := High.R;
High.R := T"°"
ENO C* THEN *};

REPEAT
Write ('Enter range for the imaginary Cvert.) ax;s: ');
{SI·} Readln (low.I, High.I){$!+}

UNTIL (IOResult=Ol ANO (low.!<>High.!);

IF Low.!>High.I THEN
BEGIN
T~ :s Low.I;
Low.I :=High.I;
High.I := T"""
END {* THEN *};

REPEAT
~rite (1 Enter maxi nun iteration CC>llit: 1);

{$!·} Readln (Max COt.l'lt) CS!+}
UNTIL !OResult=O; -

May/June 1988 TURBO TECHNIX 33

IF Hax COll1t<10 THEN
Hax=COlllt := 10;

(,.
llHILE (C0111t<=H1x_C0111t) ANO (SqJare_Size_Of_C CZ_Point)<4.0) DO

BEGIN

llrite ('Enter note: 'l; < 2*
Hul t_c°"" CZ_Point, Z_Polnt, Z_Point); >
Add_C°"" (Z_Point, C_Polnt, Z_Point); }

Readln (Screen Data.Note);
Start_Y :2 O; -
Sub_c""" (High, Low, Delta);
Ratio:= Delta.I I Delta.R;
SetGraphHode (Graph_Mode);

IF Rat i o>=Aspect THEN
BEGIN
Dots Horizontal :=Round ((Hax_X + 1) •Aspect I Ratio) - 1;
Dots-Vertical :• GetHaxY
END (* THEN *)

ELSE
BEGIN
Dots Vertical := Round ((GetHaxY + 1) * Ratio I Aspect) - 1;
Dots-Horizontal := Hax X
END (• ELSE *); -

Ill TH Screen Data DO
BEGIN -
Dots H := Dots Horizontal;
Dots=V := Dots=Vertical;
COU"lt :s Hax_COU"\t;
Str Clow . I, Low lmag);
Str (Low.R, Low-Real);
Str (High.I, High lmag);
Str (Hi~.R. High)eal);
No Blank Clow lmag);
No=Blank Clow)eal >;
No_Blank (Hi~_lmag);
No Blank (High Real)
ENO {* lllTH *>;

Picture Loaded := False;
File Naifte := 11

END C* ELSE *}
ENO C* THEN *};

IF Picture Loaded THEN
BEGIN C-D...., picture onto the screen >
SetGraphHode (Graph_Hode);

lllTH Screen Date DO
BEGIN -
Start Y :z Start;
Max_cMt := COlM"lt;
Dots Horizontal :=Dots H;
Dots-Vertical :=Dots v;
Val (Low_Reel, Low.R,-Xl;
Val (Low_lmag, Low. I, Xl;
Val (High Reel, High.R, X);
Val CHigh)mag, High.I, X)
END {* lllTH *};

FOR Y := 0 TO Start Y-1 DO
FOR X :• 0 TO Dots Hori zontel DO

Plot (X, Y, Screen[YJ-(X]);

IF Start Y>GetHaxY THEN
Sub_Pfcture < Get a subregion of the c°""leted picture >

ELSE
Sub_C°"" (High, Low, Delta) < Continue drawing the picture}

END C* THEN *>;

Del ta.R := Del ta.R I (Dots Horizontal + 1 >;
Delta.I :=Delta.I I (Dots-Vertical+ 1)
END <* Define_Screen *>; -

{***)

PROCEDURE Generate;

< This is where most of the program's time is spent, generating the
screen. The section marked 1* is where code has been optimized by
putting the c°""lex-""'*>er math Instructions in this procedure rather
than calling the actual procedures . >

VAR
X, Y, Count: integer;
z Point, c Point: C°""lex;
T...,: double;

BEGIN {* Generate *}
Plot (Dots_Horizontal, Dots_Vertical, Hax_Colors);
C_Point.I :=High.I - Start_Y *Delta.I;
Y := Start_Y;

llHILE (Y<=Dots_Vertical) ANO NOT KeyPressed DO
BEGIN
Fil lChar (Screen(YJ - , Scen_llidth+1, 0);
C_Point.R :• Low.R - Delte.R;

FOR x :c 0 TO Dots Horizontal DO
BEGIN -
Plot (X, Y, llox_Colors);
C_Point.R :• C_Point.R + Delto.R;
Z_Po;nt :• C_Point;
Couit :• O;

34 TURBO TECHNIX May/June 1988

T~ :• Sqr CZ_Point . R) - Sqr CZ_Point.I) + C_Point.R;
Z_Point.I :• 2.0 * Z_Point.I * Z_Point.R + C_Point.I;
Z_Point.R :• T~;
CCU'lt : • Succ (CCU'lt)
END C* llHILE *>;

IF CCU'lt<Hex COlllt THEN
Screen CYJ"" CXJ : • Use_Color (C0111t HOO Color _count];

Plot CX, Y, Screen(YJ-[l(J)
END {* FOR *>;

C Point.I :• C Point.I - Delta . I;
Y-:=Y+1 -
END C* llHILE *>;

Screen Data.Start :=
END {*-Generate *>;

{**"*}

PROCEDURE llrap_Up;

{ This procedure deals with the shutting down of a picture.

VAR
X: integer;

BEGIN
Picture_Loaded := True;

IF KeyPressed THEN
Sound C440)

ELSE
BEGIN
Sound (660);
Delay C20l;
Sound (1000)
END {* ELSE *};

Delay (50>;
NoSound;

Ch := ReadKey;

RestoreCrtHode;
Write (•save picture? (Y/N) '>;

REPEAT
Ch := ReadKey

UNTIL Ch IN Yes_N_No;

llriteln (Ch);

IF Ch IN Yes THEN
BEGIN
IF File Name<>" THEN

BEGIN
Write ('Save aa •, File_Name, 1 ? CY/N) '>;

REPEAT
Ch : = Readeey

UNTIL Ch IN Yes_N_No;

llriteln (Ch)
ENO C* THEN *}

ELSE
Ch :• 1N I;

IF Ch IN No THEN
BEGIN
Write ('Enter ff lename to save It in: '>;
Readln (File NM!e)
END {* THEN *>;

Assign (Screen_Fi le, Fi le_NM!el;
Rewrite (Screen_Fi le);
Write (Screen_File, Data_Line);

FOR X := 0 TO Screen Data.Start-I DO
llrite cscreen_File, ScreencxJ - l;

Close (Screen File)
END C* THEN •};

llrite ('Do another? <YIN) '>;

REPEAT
Ch : = Readeey

UNTIL Ch IN Yes_N_No;

llriteln (Ch)
END {* llrap_Up *>;

{****************'****•****************************•**************}

BEGIN (* main *}
Initiat;ze;

REPEAT
Oefine_Screen;
Generate;
llrap_Up

UNTIL Ch IN No
END.

l!ST!NG 2: CMPLX.PAS

UNIT ~lx;

{ ln the following descriptions,
Capital letters CA, B) are real nurt>ers or real parts of complex
na..nt>ers. Lowercase letters Ca, b) are real factors of COl'f1'lex
parts. i is the square root of • 1 C./· 1) .

CONTENTS:

INTERFACE

TYPE
Complex

Add_Comp
Sl.b_Comp
Mul t_Comp
Mul t RC
Sl.b C From R
Div:c:By_R-
Size Of C
Square_$; ze_of _c

RECORD

CC1, C2, C OUt)
CC1, C2, C-OUt)
CC1, C2, C-OUt)
cc, R, c_olit>;
CR, c, c_out>;
cc, R, c_out>;
CC);
CC);

R, 1: double
END;

PROCEDURE Add_Comp CA, B: Complex;
Complex); VAR C:

PROCEPURE Sl.b_Comp CA, B:
VAR C:

Complex;
Complex);

PROCEDURE Mul t_Comp CA, B: Complex;
VAR C: Complex);

PROCEDURE Div_Comp CA, B: Complex;
VAR C: Complex);

PROCEDURE Div_R_By_C CR: double;
C: Complex;
VAR c_out: Complex>;

PROCEDURE Mul t_RC CC: Complex;
R: double;
VAR c_out: Complex);

PROCEDURE Sub_C_From_R CR: double;
C: Complex;
VAR C_Out: Complex);

PROCEDURE Div_C_By_R cc: Complex;
R: double;
VAR c_out: complex>;

FUNCTION Size Of c cc: Complex): double;
FUNCTION Square_$ize_Of_C CC: Complex): double;

{***}

IMPLEMENTATION

PROCEDURE Add_Comp CA, B: Comp! ex;
VAR C: Complex);

(RESULT CA+ai)+CB+bi) == A+ai+B+bi

BEGIN
C.R := A.R + B.R;
C.l := A.l + B.l
END (* Add_Comp *};

CA+B)+(a+b)i }

{*******'**}

PROCEDURE Sl.b_Comp (A, B: Complex;
VAR C: Complex);

(RESULT== CA+ai)-CB+bf) .a A+ai-B-bi == CA·B)+Ca-b)i }

BEGIN
C. R := A.R • B.R;
C.l :• A. I • B.t
END <* Sl.b_Comp *>;

{***)

PROCEDURE Mul t Comp CA, B: Complex;
- VAR C: Complex);

{ RESULT CA+ai)(B+bi) == AB + Abi + Bai + aibi
CAB·ab)+CAb+aB) f }

BEGIN
C.R :• A.R * B.R • A.l * B.l;
C.l :• A.R * B.l +A.! * B.R
END <* Mul t_Comp *};

{***)

PROCEDURE Div Comp CA, B: Complex;
- VAR C: Complex);

(RESULT z: CA+ai)/CB+bi) == CAB+ab)/CB'+b')+((aB·Ab)/CB'+b'))i

VAR
D: double;

BEGIN
D := Sqr CB.R) + Sqr CB.!);
C.R := CA.R * B.R + A.l * B.l) ID;
C.l :=CA.! * B.R • A.R * B.l) ID
END (* Div_Comp *};

{***)

PROCEDURE Div_R_By_C CR: double;
C: Complex;
VAR c_out: Complex>;

VAR
A: Complex;

BEGIN
A.R := R;
A. I := 0;
Div_Comp CA, C, c_OUt)
END (* Div_R_By_C *};

{***}

PROCEDURE Mul t_RC CC: Complex;
R: double;
VAR c_out:

(RESULT CC+ci)R == CR+cRi

BEGIN
C Qut.R := C.R * R;
c-out . 1 :=c.1 *R
END {* Mul t_RC *>;

Complex);

{***)

PROCEDURE Sub_C_From_R CR: dol.ble·
C: COf1'>le~;
VAR c_out: Complex>;

(RESULT == R-CC+ci) == R·C·ci == CR·C)·ci

BEGIN
C OUt.R := R • C.R;
c-out.1 :• -c.1
END (* Sub_C_From_R *>;

{***>

PROCEDURE Div_C_By_R CC: Complex;
R: dol.ble;
VAR c_out: Complex>;

{ RESULT CC+ci)/R == C/B+ci/R == CC/R)+Cc/R)f

BEGIN
C OUt.R :• C.R I R;
c-out.l := C.l IR
END <* Div_c_By_R *>;

<***'**********}

FUNCTION Size_Of_C CC: Complex): double;

(RESULT == Jcc•+c•)

BEGIN
Size_Of_C :=Sqrt CSqr CC.R) + Sqr CC.!))
END (* Size_Of_C *};

(**'***********)

FUNCTION Square_Size_Of_C CC: Complex): double;

(RESULT == c• + c•

BEGIN
square_Size_of_C := Sqr CC.R) + Sqr CC.!)
END (* Square_Size_Of_C *};

END.

May/June 1988 TURBO TECHNIX 35

USING UNITS TO HIDE DATA
STRUCTURE DETAILS
H iding data structure details is more than just keeping
secrets -it can make everyone's work easier.

Marshall Brain

There is more to Turbo Pascal's new units
feature than separate compilation. In
"Getting to Know Units" (TURBO TECH
NIX, November/ December, 1987), Tom
Swan explained how units may be used to

sQuAREO~E divide a large program into smaller, more
maintainable modules. This is certainly units' major
role in Turbo Pascal programming, but like packages
in ADA and modu/,es in Modula-2, units also play a
role in facilitating portable coding, and in limiting
the use of intermodule "sneak paths" and other
undesirable programming habits.

UNIT STRUCTURE
Let's recap unit structure briefly. Every unit has two
parts: an interface section and an implementation
section.

The interface section of the unit contains declara
tions of constants, types, and variables, as well as the
definitions of "public" subprograms and their pa
rameters. These subprograms and declarations are
globally "visible" to any program using the unit. For
example:

UNIT MyUnit;

INTERFACE

VAR
A, B,C:I NTEGER;

PROCEDURE P(VAR !:INTEGER);

In any program that uses unit MyUnit, the variables
A, B, and C will be global variables, and procedure P
will be a public procedure.

The impl,ementation section of a unit comes after
the interface section, and is "invisible" to programs
that use the unit. The implementation section may
contain its own "private" constants, variables and
types, but a program that uses the unit cannot access
them. This also applies to the actual bodies of the
procedures declared in the interface section. These
bodies are part of the implementation section, and
are also invisible to programs that use the unit.

36 TURBO TECHNIX May/June 1988

The interface section of a unit gives a program
access to the objects and capabilities inside of the
upit. The implementation section allows the pro
grammer to hide data structures and all code used
to manipulate those structures.

J UST ENOUGH KNOWLEDGE
When a team of several programmers develops large
programs, this dual structure of units forces a kind of
modularity that is very different from that obtained
by cutting monolithic programs up into libraries of
procedures. The structure of units allows each pro
grammer to be assigned a complete, standalone por
tion of the larger program that can be compiled and
tested on its own. The programming team is forced
to define and resolve the interfaces among all
modules before programming can begin. The inter
face sections of the units can actually be written as
part of the program spec, long before programming
begins in earnest. When it comes time to integrate
the units together into the complete program, this
upfront work on the module interfaces pays off by
making the integration and subsequent program
verification happen much more quickly and
smoothly.

The invisibility of each unit's implementation sec
tion gives units another important advantage. The
implementation section can be used to hide details
that cloud a program's structure, or to hide code that
may need to be changed in the future. Programmers
who are not responsible for writing the unit itself are
given just enough knowledge to use the unit's facili
ties in their own work, but not enough knowledge to
allow them to make unwarranted assumptions about
the internals of program modules written by others.
"The IntervalTimer procedure keeps its seconds
count in a word variable internally for speed," a pro
grammer might think, "so I can use a word variable
to hold intervals and not worry about overflow, even
though the interface is a Longlnt." Units would keep
that programmer from making that mistake by hid
ing the way IntervalTimer keeps house internally.

Units also allow complex, con
fusing code to be packaged in a
form that is much easier to use.
The confusing details are hidden
withi n the un it, while any pro
gram using the unit accesses the
code th rough a relatively small
number of easy-to-understand
procedure and functio n calls.

MAKING USE OF
INVISIBILITY
T he true function of any high
level language is the artful hiding
of program details. Consider one
simple Turbo Pascal statement:

New(Node);

Here, the program creates a
variable on the heap, which is
pointed to by a pointer named
Node. T he process be hind this
statement involves identifying the
type to which Node points, deter
mining the size of Node's refer
ent, traversing the free li st to fi nd
a block of free memory large
enough to contain the referent,
modifying the free li st to indicate
that another chunk of heap
memory has been allocated and
used, and fin ally loading the ad
dress of t he allocated space into
the poin ter variable Node. Since
all of that complication is hidden
beh ind o ne small statement, the
programmer can concentrate
instead on what to do with Node
and its dynamic referent on the
heap.

Similarly, hiding certain things
in the implementation section of
o ne or more un its makes con
struction of the main program
much easier, and also makes code
changes completely transparent to
all programs that use the unit.

This tech n ique is especially
powerful when applied to data
structures. Consider th is scenario:
You have written a la rge and com
plex data management program
for your company that is based on
a very large linked list of data.
Many programs written fo r in
house use revolve completely
around a single large data struc
ture in this manner.

As people in your company
become dependent on this pro

continued on page 38

LISTING 1: LIST.PAS

unit addr_list;

{Unit to hide a linked list data structure from the main
program.}

{Marshall Brain Box 37224 Raleigh, NC 27597 ver 1.0 9/13/87)

INTERFACE
{This portion of the unit is used to describe the type of
objects used by the unit and the operations available to
manipulate those objects. This section is visible to any
program using this unit.}

TYPE
name string=STRINGC10J;
Addr;RECORD

last name,first name:name string;
street:STRING[40J; -
city:STRINGC10J;
state:STRINGC2J;
zi p:STRI NG [1 OJ;
phone:STRINGC15J;
comment:STRINGC40J;

END;

PROCEDURE load file(filename:STRING; VAR error:Boolean);
{LOAD FILE attempts to load the data structure from

the filename spec i fied. If unsuccessful, ERROR will
be true. File is assll!led to be in sorted order.}

PROCEDURE create file(filename:STRING);
{creates a new-file of name FILENAME.}

PROCEDURE save file;
{SAVE FILE saves the data structure back to the file it

was loaded from . }

PROCEDURE find first(lname,fname:name string; VAR rec:Addr;
- no match:Boolean);

{FIND FIRST will find-the first record wi th a name that
matches LNAME,FNAME. If a match is found, REC wi l l conta in
the record found. Otherwise, NO MATCH will be true and REC
will contain garbage.} -

PROCEDURE find next(lname,fname:name string; VAR rec:Addr;
- no match:Boolean);

{FIND NEXT will find-the next record matching LNAME,FNAME .
It is assll!led that FIND FIRST was used first. NO MATCH
is set if there are no matches.} -

PROCEDURE add rec(rec:Addr; VAR error:Boolean);
{ADD REC will add REC to the data structure, ma intaining
that data structure in sorted order by name. If the data
structure is full, ERROR will be set true.}

PROCEDURE delete rec;
{deletes the last record found using one of the FIND rtns.}

PROCEDURE change rec(rec:Addr);
{replaces the last record found using one of the find rtns

with rec. First and last name should not be changed, as th is
will destroy the linked list order. If the name needs
to change, use DELETE_REC and ADD_REC instead.}

FUNCTION size:word;
{SIZE will contain the nl.lllber of records in the data
structure.}

FUNCTION full:Boolean;
{FULL will be false if space remains in the data structure.}

May/June 1988 T URBO TECHNIX 37

IMPLEMENTATION
(This portion of the unit is invisible to the program, and
can be used to hide that data structure.}

(The data structure is currently il!1'lemented as a linked list.}
TYPE

pntr=" l l_rec;
LL rec=RECORD

a:Addr;
next,prev:pntr;

END;
VAR

first,last,curr:pntr;
f:FILE of Addr;
found: Boolean;

PROCEDURE init;
(A hidden routine used to init variables.}
BEGIN

first:=NIL;
last:=NIL;
curr:=NIL;
found:=False;

END;

PROCEDURE load file(filename:STRING; VAR error:Boolean};
(LOAD FILE att~ts to load the data structure from
the filename specified. If unsuccessful, ERROR will
be true. File is assuned to be in sorted order.}

VAR t~:Addr; p:pntr; err:Boolean;
BEGIN

init;
(make sure that file exists.}
Assign(f,filename);
(Si·} Reset(f); (Si+}
IF IOResult=O THEN
BEGIN

WHILE NOT EOF(f) DO
BEGIN

(append new records to the end of the linked list.}
Read(f, t~);
New(p);
{init p}
p" .a:=t~;
p".next:=NIL;
p".prev:=last;
{create the links.}
IF (first=NIL) THEN

first:=p
ELSE

last· .next:=p;
last:=p;

END;
Close(f);

END
ELSE

error:=True;
END;

PROCEDURE create_file{filename:STRING};
{creates a new file of name FILENAME.}

BEGIN
Assign(f,filename);
init;

END;

PROCEDURE save file;
{SAVE FILE saves the data structure back to the file it

was loaded from.}

38 TURBO TECHNIX May/June 1988

UNITS
continued from page 37

gram, they begin to demand more
speed. (And as more data is con
tinually added to the list, the
speed, of course, slows down.)
After examining your program,
you decide that the best way to
speed it up is to abandon the
linked list structure and switch to
an efficient B-tree data structure.
Unfortunately, literally thousands
of references to the linked list are
scattered throughout your pro
gram. It would take a great deal of
time to find and change all those
references, and the process would
probably spawn any number of
bugs in the code, all of which
would have to be eliminated.

Units can prevent situations like
this by completely hiding the na
ture and details of the data struc
ture from the main program. To
use units in this way, design a
procedural interface to your data
structure (in other words, make no
direct references to the structure
itself anywhere in the program)
and define this set of routines in
the interface section of a unit. For
a data management unit, you
might decide that the following
routines are needed: create_file,
load_file, save_file, add_rec,
delete_rec, change_rec,
find_first, find_next, size, and
full. With these routines and a
data record format in mind, you
can write the interface section of
your unit.

Once the interface to the unit is
designed, you can completely hide
your implementation of the data
structure in the implementation
section of the unit. An example
unit, using a linked list data struc
ture implementation, is shown in
Listing 1, LIST.PAS. This unit im
plements the data management
routines listed at the end of the
previous paragraph. In the List
unit, the design of the data struc
ture is completely invisible to the
main program. Only the data
record type, Addr, and the head
ers of the routines needed to
manipulate the data structure are
visible to users of the unit. Note
the critical fact in reading the
interface section of List: It speci
fies what each routine in the unit
does without indicating how.

THE BENEFITS OF
STRUCTURE SECRECY
When you separate a program
from the data structure in this
way, you gain four advantages:

1. The program that uses the unit
is conceptually easier to under
stand, because you now access
the data structure solely
through a set of high-level
commands. The absence of
more complex low-level data
structure manipulation code
makes your program much
cleaner.

2. The data structure can be com
pletely rebuilt at any time. You
might start with an array be
cause it's simple and fast for
small quantities of data, then
move to a linked list for its
larger data space, and switch
later to a B-tree for its faster
access time with large data
bases. The main program nev
er changes at all, even though
the structure containing its data
changes dramatically through
several revisions.

3. If you ever need these same
capabilities and data structure
in another program (which is
likely), you can easily reuse
your unit with only minor mod
ifications to the data record
declaration.

4. The use of specific interface
routines makes the data struc
ture much more reliable. Once
the interface routines have
been thoroughly debugged, it's
impossible to corrupt the data
structure through the main pro
gram. This debugged code can
then be used over and over
again.

Units can hide the details of
any kind of data structure you
wish to use. For example, a stack
unit can be created using PUSH,
POP, and CLEAR as the stack
interface routines. The stack itself
can be implemented using an
array, a linked list, a file, or what
ever is appropriate, and the main
program remains oblivious to im
plementation details. The same
technique can be applied to
queues, ring buffers, and so forth.

Porting programs between
hardware environments is
another instance where hiding

continued on page 40

VAR p:pntr;
BEGIN

Rewrite(f);
p:=first;
{loop to end of linked list.}
WHILE Cp<>NIL) DO
BEGIN

{some 1/0 checking could be added.}
WriteCf,p-.a);
{dispose of LL as it is saved.}
first:=first·.next;
di sposec p>;
p:=first;

END;
init;
CloseCf);

END;

PROCEDURE findClname,fname:name string; VAR rec:Addr;
VAR no match:BooTean);

{This hidden routine loops through the LL looking for the
name passed.}

VAR stop:Boolean;
BEGIN

stop:=False;
no_match:=True;
{loop until end of list, match found, or past where name
should be.}

WHILE (curr<>NIL) AND no_match AND NOT stop DO
BEGIN

IF Clname>curr·.a.last name) THEN {check next rec.}
curr:=curr·.next -

ELSE IF Clname=curr·.a.last name) THEN
{check for first name match~}
BEGIN

IF Cfname>curr·.a.first_name) THEN {check next rec.}
curr:=curr·.next

ELSE IF Cfname=curr·.a.first_name) THEN {match found.}
BEGIN

rec:=curr·.a;
no match:=False;

END -
ELSE {beyond where name can be.}

stop:=True;
END
ELSE {beyond where name can be.}

stop:=True;
END;

END;

PROCEDURE find first{lname,fname:name string; VAR rec:Addr;
- no_match:Boolean};

{FIND FIRST will find the first record with a name that
matches LNAME,FNAME. If a match is found, REC will contain
the record found. Otherwise, NO_MATCH will be true and REC
will contain garbage.}

BEGIN
curr:=first;
find(lname,fname,rec,no_match);
found:=NOT no_match;

END;

PROCEDURE find_next{lname,fname:name_string; VAR rec:Addr;
no match:Boolean};

{FIND NEXT will find-the next record matching LNAME,FNAME.
It is assuned that FIND FIRST was used first. NO MATCH
is set if there are no iiiatches.} -

BEGIN
curr:=curr·.next;
find(lname,fname,rec,no_match);
found:=NOT no_match;

END;

May/June 1988 TURBO TECHNIX 39

PROCEDURE add rec(rec:Addr; VAR error:Boolean};
(ADD REC will add REC to the data structure, maintaining
that data structure in sorted order by name. If the data
structure is full, ERROR will be set true.}

VAR terrp:Addr; no_match:Boolean; p:pntr;
BEGIN

(check for heap overflow.}
IF CMemAvail>SizeOf(Addr)) THEN
BEGIN

{find where new rec should go.}
curr:=first;
find(rec.last_name,rec.first_name,terrp,no_match);
{create new rec and link it in.}
New(p);
p· .a:=rec;
p· .next:=curr;
IF curr=NIL THEN p".prev:=last ELSE p".prev:=curr .prev;
IF curr=first THEN first:=p

ELSE IF (curr=NIL) THEN last".next:=p
ELSE curr·.prev·.next:=p;

IF curr=NIL THEN last:=p ELSE curr·.prev:=p;
error:=False;

END
ELSE

error:=True;
END;

PROCEDURE delete rec;
(deletes the last record found using one of the FIND rtns.}

VAR p:pntr;
BEGIN

IF found AND (curr<>NIL) THEN
BEGIN

WITH curr· DO
BEGIN

(unlink rec and dispose of it.}
IF curr=first THEN first:=next ELSE prev·.next:=next;
IF curr=last THEN last:=prev ELSE next-.prev:=prev;
dispose(curr);

END;
END;

END;

PROCEDURE change rec(rec:Addr};
{replaces the last record found using one of the find rtns

with rec.}
BEGIN

IF found AND (curr<>NIL) THEN
curr .a:=rec;

END;

FUNCTION size(:word};
(SIZE will contain the nl.llber of records in the data
structure.}

VAR cnt:word; p:pntr;
BEGIN

p:=first;
cnt:=O;
WHILE Cp<>NIL) DO
BEGIN

p:=p· .next;
cnt:=cnt+1;

END;
size:=cnt;

END;

FUNCTION full(:Boolean};
{FULL will be false if space remains in the data structure.}

BEGIN
IF MemAvail<SizeOfCAddr) THEN full:=True ELSE full:=False;

END;

(initialization code for the unit.}
BEGIN

init;
END.

40 TURBO TECHNIX May/June 1988

UNITS
continued from page 39

data structure implementation
details can be critical. For exam
ple, many mainframe programs
use large arrays (such as 500 X
500 element two-dimensional
integer arrays) that are literally
too large to fit into one of the PC's
64K memory segments. Such a
program can usually be moved to
a PC-memory for the code is
available in most cases. But to
allow the program to operate, the
array has to be broken down into
some other form, such as a linked
list of smaller one-dimensional
arrays on the heap, or even a
large disk file. In a large program,
the number of direct array refer
ences would be huge, and the pro
cess of inserting and debugging
all of the changes needed to con
vert the program for execution on
a PC could take months. A unit
consisting of a pair of array refer
ence routines called GET and
SET can hide the array's imple
mentation, and make changing
the data structure much easier
when the program is moved to
different systems with different
restrictions on data size and rep
resentation. Turbo Pascal is not
available for mainframes, of
course, but even in the absence of
units, data structure references
can be kept out of the main pro
gram. The larger principles are
valuable with any language in any
environment.

When properly used, units offer
a number of advantages to the
programmer. They allow pro
grams to be broken into reusable
modules, and also allow certain
details of the program's design to
be hidden from the main pro
gram. Hiding data structure details
in this way makes it easier to de
sign and implement programs
cleanly, to modify programs as
they evolve, and to port programs
among various machine
environments. •

Marshall Brain is a Pascal instructor
at North Carolina State University.
He can be reached at Box 37224,
Ral.ei,gh, North Carolina 27627.

Listings may be downloaded from
CompuServe as HIDE.ARC.

INTERFACING THE DOS
PRINT SPOOLER
Use the DOS Multiplex Interrupt to spool files for printing
from within your Turbo Pascal programs.

Duane L. Geiger

Version 3.0 of DOS provides application
programs with an interface to some of the
utility programs included with DOS. This
interface-the DOS MultiplRx Interrupt
($2F)-allows your Turbo Pascal pro-

wizARo grams to inspect the installed state of a
selected few of these utilities.

PRINT.COM
One of the utilities included with DOS that makes
use of the Multiplex Interrupt is PRINT.COM, a resi
dent program that manages print queues. This pro
gram allows normal foreground processing to con
tinue while files are printed as a background task.
PRINT was the first documented utility to use the
Multiplex Interrupt. Using the Multiplex Interrupt in
conjunction with PRINT allows you to submit a file
to PRINT for printing, remove a file or files from the
print queue, or inspect the current status of the print
queue.

When installed with its default settings, PRINT
uses a little more than SK of memory for the resident
portion of the program and the print queue. PRINT
has several command line installation options that
change the amount of memory reserved for PRINT's
operation. Refer to your DOS reference manual for
a complete discussion and examples.

THE MULTIPLEX INTERRUPT
The Multiplex Interrupt ($2F) was introduced into
the DOS documentation in version 3.0 as a standard
way to inspect the installed status of a few of the util
ities bundled with DOS. The use of the Multiplex
Interrupt may be compared to the use of the DOS
services interrupt ($21), except that instead of provid
ing the familiar DOS services, the Multiplex Inter
rupt furnishes the services of DOS utility programs.

As of this writing, four DOS utility programs are
documented as supporting the Multiplex Interrupt:
the Print Queue Manager (PRINT), the Route Disk
1/0 utility (ASSIGN), the File Sharing utility
(SHARE), and the Disk Spanning utility (APPEND).

This interrupt provides an excellent method for
these utilities to handle their respective functions
and provide "hooks" for application programs. In
order to avoid conflict with other utilities, each sup
ported utility is assigned a unique identification
code, which is reserved by standardizing the inter
rupt function call in the documentation.

MULTIPLEX CALLING CONVENTION
The Multiplex Interrupt uses a standard calling con
vention-registers are loaded in a consistent manner
and the interrupt is performed. In order to call the
Multiplex Interrupt, load the AH register with the
appropriate identification code for the utility pro
gram you want to access (see Table 1). Then load
the AL register with the selected function code (see
Table 2), and finally, make the interrupt call:

Jntr($2F,Regs);

When the call returns to your program, check the
carry flag. If the carry flag is set, an error has oc
curred. The appropriate error code appears in reg
ister AX (see Table 3).

All of the utility programs listed in Table 1 support
the Get Installed State function code (AL=O). Only
PRINT supports the additional (AL) functions listed
in Table 2. As an example of Get Installed State, see
the Shareinstalled function in the unit SPOOL.PAS
(Listing 1). Sharelnstalled loads the registers with
appropriate values and issues the Multiplex Inter
rupt. This function tests the version of DOS; if
the appropriate version of DOS is running,
Sharelnstalled issues the Get Installed State com
mand for SHARE (AH=$10, AL=$00). If SHARE
is resident, the function returns a value of True.

PRINT QUEUE MANAGEMENT
The print queue manager (PRINT.COM) supports
the functions that allow your programs to take direct

continued on page 42

May/June 1988 TURBO TECHNIX 41

LISTING 1: PR.PAS

PROGRAM Pr; {Multiplex Interrupt Test }

{$R-,S-,I-,D-,T-,F-,V-,B-,N·}
{SM 16384,0,655360 }
{

{
{

{
{

PR.PAS - Interrupt S2F (Multiplex) Demonstration
by

Duane L. Geiger

USES DOS,CRT,Spool;

VAR

}

}
}

}
}

Installed Boolean; { Print Spooler Installed Switch }
Name Path Name; { Full Path and Filename }
Ch Char; { Used to Pause the Program }

BEGIN
{ The first demonstration is to see if SHARE is installed. The }
{ same technique used to detect SHARE can also be used to test }
{ any utility which supports Get Installed State. }

lnstalled:=Sharelnstalled; { If SHARE is installed }

WriteLn('Share Installed: ',Installed,' Error:',Error);

{ The next part of the program si~ly checks to see if you have }
{ PRINT.COM installed, and if you have DOS 3.0 or greater. }
{ If either condition is not met, an error is returned. }

lnstalled:=Spoolerlnstalled; { If Print Spooler installed }
WriteLn('PRINT.COM Installed: ',Installed,' Error:',Error);
IF NOT Installed THEN Halt(Error); { Can't continue this program}

{ Now queue up a name to the print program. }

Name:='PR.PAS'; {Name of actual file to queue}
Write('Submitting: ',Name,' - '); {Print a test message }
SpoolerSubmit(Name); { Submit name to spooler }
IF OK THEN WriteLnC'Successful'> {Everything went OK }
ELSE WriteLn('Error encountered:',Error); {Display error message}

Name:='SPOOL.PAS'; {Submit another file to print}
Write(' Submitting: ',Name,' - '); { Di splay a message }
SpoolerSubmit(Name); { Submit name(s) to spooler }
IF OK THEN WriteLn('Successful') {Did it work correctly? }
ELSE WriteLn('Error encountered:',Error); {or pr~uce an error }

WriteLn('Press Any Key to Continue'); {Now printing PR.PAS }
REPEAT UNTIL KeyPressed; < Wait for a keystroke }
REPEAT Ch:=Readkey; UNTIL NOT KeyPressed; { Flush keyboard }

SpoolerStatusRead; { Pause and display queue }
IF OK THEN WriteLn('Successful') {OK on status read }
ELSE WriteLn('Error encountered:',Error); {An Error of some type}

WriteLnC'Press Any Key to Continue'); {Another pause }
REPEAT UNTIL KeyPressed; { Get a keystroke }
REPEAT Ch:=Readkey; UNTIL NOT KeyPressed; { Flush keyboard again }

Write('Spooler Release - '>; {Print test message }
SpoolerStatusEnd; { Start up the print job again}
IF OK THEN WriteLnC'Successful') < It went OK }
ELSE WriteLnC'Error encountered:',Error); {or it failed somehow}

Write('Canceling: ALL - '>; <Message declaring intent }
SpoolerCancelAll; {Cancel entire print queue }
IF OK THEN WriteLn('Successful') {It was successful or }
ELSE WriteLn('Error encountered:',Error); {it somehow failed }

Name:='Pr.Pas'; < Cancel individual filename }
Write('Canceling: ',Name,' - '>; < Display test message }
SpoolerCancel(Name); { Cancel by name }
IF OK THEN WriteLn('Successful') {It will work }
ELSE WriteLn('Error encountered:',Error); <or fail }

END.

42 TURBO TECHNIX May/June 1988

THE PRINT SPOOLER
continued from page 41

TO ACCESS THE RESI
DENT PORTION OF:

PRINT
ASSIGN
SHARE
APPEND
ReseJVed by DOS
Available values

USE
AH VALUE:

$01
$02
$10
$B7
$00-$BF
$CO-$FF

TabiR 1. MultipiRx Interrupt ID codes.

The multiplex

interrupt was intro

duced into the DOS

documentation in

version 3.0 as a

standard way to

inspect the installed

status of a few

DOS utilities.

control of the print queue. You
may submit files to the print
queue, delete files from the print
queue, and hold and release the
print queue. However, while
PRINT.COM is printing from the
queue, you cannot directly print
files to the printer because this
would cause quite a mess at the
printer itself. If a program at
tempts to print to the printer while
PRINT.COM is printing, a critical
error occurs.

The first step in providing
queue management support is to
report the status of the queue
manager. The sample unit pro
vides this facility by returning a
Boolean value from function
Spoolerlnstalled. This function
tests that the appropriate version
of DOS is running, then issues the
Get Installed State command for
PRINT (AH=$01, AL=$00). If the
queue manager is installed, the
function returns True.

The next step in queue man
agement support is submission of
a file to the queue manager. The
procedure SpoolerSubmit in the
sample unit provides this facility.
You must call this procedure with
the full file- and pathname of the
print image file to be placed in
the print queue. Note: You may
not use the DOS wildcard ch arac
ters(*,?) in the submit fil ename
string.

While

PRINT.COM is

printing from the

queue, you cannot

print directly to the

printer, because

this would cause

quite a mess at the

printer itself.

REGISTER AL FUNCTION
FUNCTION DESCRIPTION
CODE

$00
$01
$02
$03
$04
$05
$F8-$FF

Get Installed State
Submit File
Cancel File
Cancel All Fi les
Status Read
Status End
Reseived by DOS

Table 2. Multiplex Interrupt Junction codes.

REGISTER AX ERROR
ERROR CODES DESCRIPTION

1 Invalid Function
2 File Not Found
3 Path Not Found
4 Too Many Open Files
5 Access Denied
8 Queue Full
9 Busy
12 Name Too Long
15 Invalid Drive

NOTE: On an error, the Carry Flag is set.

Table 3. Multiplex Interrupt error codes.

continued on page 44

LISTING 2: SPOOL.PAS

UNIT Spool;
{
{
{

{
{

INTERFACE

Uses
DOS;

TYPE
PathName

VAR

{ PRINT.COM Spool Utility

SPOOL.PAS - Queue Management Routines
by

Duane L. Geiger

{Globally Known Types and Variables

{ Standard TP4 DOS Unit

STRING[64l; {Path and Filename String Area

}
}

}
}

}
}

}

)

}

OK
Error

: Boolean;
: Byte;

{ Global Flag for success Tests }
{ Error Flag if Not OK on Interrupt}

{ Possible error conditions encountered in Functions 1 through 5
{ Carry Flag is Set and Register AX contains:
{ 1 =Function Code Invalid
{ 2 =File Not Found
{ 3 = Path Not Found
{ 4 =Too Many Open Files
{ 5 = Access Denied
{ 8 =Queue Full
{ 9 = Spooler Busy
{ SOC = Name Too Long
{ SOF =Drive Invalid

FUNCTION Spoolerlnstalled : Boolean;
PROCEDURE SpoolerSubmit(Name PathName);
PROCEDURE SpoolerCancel(Name : PathName);
PROCEDURE SpoolerCancelAll;
PROCEDURE SpoolerStatusRead;
PROCEDURE SpoolerStatusEnd;

FUNCTION Sharelnstalled Boolean;

IMPLEMENTATION

TYPE
ZName = ARRAY[1 .. 64] OF Byte; { ASCllZ FileName Area

}
}

}
}

}

}

}
}

}
}

}

}

VAR
Regs
Major,
Minor

Registers;

Word;

{ Registers for DOS Unit Interface }
{Major version of DOS installed }
{ Minor version of DOS }

PROCEDURE ASCllZ(Name PathName; VAR PassName : ZName);
{ Create an ASCllZ Name from Pascal String}

TYPE
ASCllZName = RECORD

LnByte Byte;
NStr : ZName;

END;

{ Use the structure of string }
{ Length of the string }
{ Actual characters in string }

May/June 1988 TURBO TECHNIX 43

VAR
Nme : ASCllZName ABSOLUTE Name; { Point the string }

BEGIN
Nme.NStr[Nme.LnByte+1l := $00;
PassName := Nme.Nstr;

END;

{ Null terminate the string }
{Return the ASCllZ portion }

FUNCTION Spoolerlnstal led. : Boolean;
{ TRUE if Spooler Installed, Otherwise FALSE and an Error }

)

)
}

)

{ AL Contains installed Status:
{ $00 =Not installed, OK to install
{ $01 Not installed, Not OK to install
{ SFF = Installed

BEGIN
{ First test to see
IF (Major >= 3) AND

(Minor >= 0) THEN
ELSE BEGIN

if DOS 3.00 or Greater is Running }
{ It's version 3.0 or greater }
{Null then (It's OK for S2F) }
{ This is not a good version of DOS}

Error
Spoolerlnstalled
Exit;

:= 1; {Not Install and Can't Run }
:= False; { Function Return }

{ lnmeditate Exit }
END; { of Error Condition }

{ Now test to see if resident portion of PRINT.COM is installed.}
Error := O; { Reset System Wide Error }
Regs.AH := $01; { Select Resident Portion of Print }
Regs.AL := $00; {Request the Installed Status }
Intr(S2F,Regs); {Perform Status Interrupt)
IF ((Regs.Flags AND FCarry) <> 0) THEN BEGIN { Flags Set/Error }

Spoolerlnstalled := False; {Set 'Not Installed' Switch }
Error := Regs.AX;{ Load the Error Encountered }

END { of Error Condition }
ELSE { The Interrupt Succeeded)

Spoolerlnstalled := (Regs.AL=SFF); { SFF Indicates Installed)
END;

PROCEDURE SpoolerSubmit(Name
TYPE

PathName >;

Packet = RECORD
Level Byte;
NPtr : Pointer;

END;

VAR
SubPack Packet;
PassName Zname;

BEGIN
Error := O;
OK := True;
ASCIIZ(Name , PassName);
SubPack.Level := O;
SubPack.NPtr := @PassName;
Regs.AH := $01;
Regs.AL := $01;
Regs.OS := Seg(SubPack);
Regs.DX := Ofs(SubPack);
I ntr($2F, Regs);

{Submit Packet for PRINT.COM)
{ Printer Level)
{Pointer to ASCllZ name }

{Submit filename packet }
{ ASCllZ filename to pass)

{ Clear the Global Error Flag }
{ Assune it will work)
{Build an ASCllZ name to Pass)
{Print 'Level')
{Pointer to Filename }
{ Resident portion of PRINT)
{Submit a file to PRINT }
{ Segment pointer to packet }
{ Offset to submission }
{ MultiPlex interrupt }

IF ((Regs.Flags AND FCarry) <> 0) THEN BEGIN { Flags Set/Error }
OK := False;
Error := Regs.AX;

END;
END;

44, TURBO TECHNIX May/June 1988

{Error in file submission }
{ Load the Error Variable)
{of Error Handling }

THE PRINT SPOOLER
continued from page 43

SpoolerSubmit prepares a data
packet and passes the data packet's
address to PRINT This packet
contains an ASCIIZ string for the
full filename and a level code,
which must be set equal to zero.
(Currently, zero is the only level
code accepted by the PRINT pro
gram. I suspect that this level code
was originally intended to priori
tize the print queue, but prioriti
zation was never actually imple
mented in the PRINT program.)
To complete the submission pro
cess, the registers are set
(AH=$01, AL= $01, and DS:DX is
loaded with the address of the
submission packet), and the Multi
plex Interrupt is issued. If success
ful , Boolean variable OK is set to
True; otherwise, OK is set to False
and the global variable Error is
set to the value returned in regis
ter AX.

I suspect that

the level code was

originally intended

to prioritize the

print queue, but

prioritization was

never actually

implemented in the

PRINT program.

The procedures SpoolerCancel
and SpoolerCancelAll handle an
other important aspect of queue
management-the removal of
files from the print queue. Unlike
the submit function, the cancel
function accepts wildcard charac
ters as part of the filename string.
To cancel a single filename
from the print queue, call
SpoolerCancel with the name of
the file to be removed. To cancel
all files in the print queue, use
SpoolerCancelAll. If successful,

OK becomes True; otherwise, OK
is set to False and register AX is
copied to the Error global vari
able. When fi les being printed are
canceled, either the message "File
[filename.ext] canceled by opera
tor" or "All fi les canceled by oper
ator" is printed on the printer and
a page eject occurs.

The first entry

in the queue is the

name of the file

currently printing,

and the end of the

queue is marked by

an entry whose first

character is a null

character.

The remaining procedures
you'll need to control the print
queue are SpoolerStatusRead and
SpoolerStatusEnd, which let you
examine the current contents of
the queue and resume printing.

SpoolerStatusRead pauses the
print queue printing activity and
displays the fi lenames currently
pending in the queue. As part of
the status read function (AL =
$04), a pointer to the first file
name in the print queue is re
turned in registers DS:SI. The
print queue consists of a series of
64-byte entries, with each entry
terminated by a null character
($00). The first entry in the queue
is the name of the file currently
printing, and the end of the
queue is marked by an entry
whose first character is a null
character. You may modify
SpoolerStatusRead to return only

continued on page 46

PROCEDURE SpoolerCancel(Name : PathName);
(Remove a Filename, Wildcards are allowed}

VAR
PassName : Zname;

BEGIN
Error : = O;
OK := True;
ASCllZCName,PassName);
Regs.AH := $01;
Regs.AL := $02;
Regs.OS := Seg(PassName);
Regs.DX := Ofs(PassName);
IntrCS2F,Regs);
IF ((Regs.Flags AND FCarry) <> 0)

OK := False;
Error := Regs.AX;

END;
END;

PROCEDURE SpoolerCancelAll;
(Remove all names from print queue}

BEGIN
Error := O;
OK := True;
Regs.AH := $01;
Regs.AL := $03;
IntrCS2F,Regs);
IF ((Regs.Flags AND FCar ry) <> 0)

OK := False;
Error := Regs.AX;

END;
END;

PROCEDURE SpoolerStatusRead;

(ASCllZ FileName to Pass }

(Clear the Global Error Flag }
(Asslllle it will work }
(Build an ASCIIZ name to pass}
(Resident Portion of PRINT }
(Cancel a File in print queue}
(Pointer to the ASCIIZ Name }
(Offset to ASCIIZ Name }
(Multiplex Interrupt }

THEN BEGIN (Flags Set/Error }
(Error in File SubMission }
(Load the Error Variable }
(of Error Handling }

(Clear the Global Error Flag }
(Asslllle it will work }
(Resident Portion of Print }
(Cancel All Files In Queue }
(MultiPlex Interrupt }

THEN BEGIN (Flags Set if Error}
(Error in File Submission }
(Load the Error Variable }
(of Error Handling }

(Pause the Spooler and Read the names >.
VAR

QPtr -zName; (Pointer to ASCIIZ String }
ldx Longint ABSOLUTE QPtr; (Index Pointer }
I Byte; (String Index }
Name PathName; (Constructed File Name }

BEGIN
Error := O;
OK := True;
Regs .AH := $01;
Regs.AL := $04;
lntr(S2F,Regs);
IF ((Regs.Flags AND FCarry) <> 0)

OK := False;
Error := Regs.AX;

END
ELSE BEGIN

(Clear the Global Error Flag }
(Asslllle if will work }
(Resident Portion of Print }
(Hold for Status Read }
(MultiPlex Interrupt }

THEN BEGIN (Flags Set if Error}
(Error in File SubMission }
(Load the Error Variable }
(of Error Handling }
(Display the Queue }

(This section displays the names of all of the files that are}
(currently in the print Queue. If you want control, modify }
(this PROCEDURE to return the pointer to the names and bypass }
(this display routine. }

May/June 1988 TURBO TECHNIX 45

QPtr := Ptr(Regs.OS , Regs.SI >;< Point to First Name in Queue}
WHILE(QPtr·c11 <>SQQ) DO BEGIN {Start a Display Loop }

I := 1; Name := ''; < Index Pointer }
WHILE(QPtr.[ll <>SQQ) DO BEGIN {Start displaying Names}

Name:= Name+ ChrC QPtr.Cll >;<Build the Name String }
I := Succ(I); <Point to Next Character }

END; < of a Name Character }
WriteLnCName); {Display the Name just built }
Idx := Idx + 64; < Point to Next 64 Bytes }

END; { of Display Loop }

END;
END;

PROCEDURE SpoolerStatusEnd;
{ Clear the Paused Condition }

BEGIN
Error := O;
OK := True;
Regs.AH := S01;
Regs.AL := SOS;
IntrCS2F ,Regs);

< of Queue Display
{ of SpoolerStatusRead

}
}

{ Clear the Global Error Flag }
< Assl.llle if will work }
< Resident Portion of Print }
< Clear Status Read }
< MultiPlex Interrupt }

IF ((Regs.Flags AND FCarry) <> D) THEN BEGIN { Flags Set if Error}
OK := False; {Error in File SubMission }
Error := Regs.AX; { Load the Error Variable }

END; {of Error Handling }
END;

FUNCTION Sharelnstalled : Boolean;
BEGIN

{ First test to see
IF (Major >= 3) AND

(Minor >= 0) THEN

if DOS 3.00 or greater is running }

ELSE BEGIN
Error
Sharelnstalled
Exit;

END;

< It's version 3.0 or greater }
<Null then (It's OK for S2F) }
< This is not a good version of DOS}

:= 1; < Not Install and Can't Run }
:= False; < Function Return }

< Inmeditate Exit }
{ of Error Condition }

< Now test to see if
Error := O;

resident portion of SHARE is installed. }

Regs.AH := S10;
Regs.AL := SOO;
I ntrCS2F, Regs);
IF ((Regs.Flags AND FCarry)

Sharelnstalled :=False;
Error := Regs.AX;

END

< Reset System Wide Error }
{ Select resident portion of SHARE }
<Request the installed status }
< Perform Status Interrupt }

<> 0) THEN BEGIN { Flags Set if
<Set 'Not Installed' switch
< Load the Error Encountered
{ of Error Condition

Error}
}
}

}

ELSE
Sharelnstalled :=

END;

{ The interrupt succeeded
(Regs.AL = SFF); { SFF indicates installed

}

}

BEGIN
< First test to see
Regs.AH := S30;
MsDos(Regs);
Major := Regs.AL;
Minor := Regs.AH;

END.

if DOS 3.00 or Greater is Running
< Request Version Nl.lllber
< Perform Interrupt S21
{ Extract major version of DOS
< Extract minor version of DOS

46 TURBO TECHNIX May/June 1988

}
}
}

}

}

THE PRINT SPOOLER
continued from page 45

the pointer to the print queue so
that you can perform your own
decoding, rather than allow the
procedure to blindly display the
names in the print queue.

Finally, SpoolerStatusEnd re
leases the print queue manager
from its paused state after a
status read function call.
SpoolerStatusEnd, or any other
function call to PRINT through
the Multiplex Intenupt, releases
the queue and resumes printing.
SpoolerStatusEnd is also used to
display the contents of the print
queue when no other action is to
be taken.

You may modify

S poolerS tatusRead

to return only the

pointer to the print

queue so that you

can per/ orm your

own decoding,

rather than allow

the procedure to

blindly display the

names in the print

queue.

With this set of functions and
procedures, you can implement
print spool management in your
everyday applications. After all,
unless you need a long coffee
break, why wait for reports to fin
ish printing before you regain
control of your computer? •

Duane L. Geiger, author of Tele
Mark, has been an independent devel
oper and consultant for the last nine
years. He lives and works in Newport,
Oregon.

Listings may be downloaded from
CompuServe as SPOOL.ARC.

EXPLORING THE INTERRUPT
VECTOR TABLE
The first lK of PC RAM is the gatekeeper to your system's
DOS and BIOS resources. Feel free to look ... and touch
carefully.

Jeff Duntemann

PROGRAMMER

Most people think that DOS is the con
trolling hand within the IBM PC. While
largely true, this idea doesn't credit the
assistance of the IBM ROM BIOS, which
does much of the work for DOS. Both
DOS and the ROM BIOS are called

through software interrupts.

YO!
An inter:rupt is a tap on the CPU's shoulder, telling
the CPU that it must pay attention to something else
now. Interrupt mechanisms have always been part of
microprocessor systems. Until the development of
the 8086 and 8088, all interrupts were hardware
interrupts.

Hardware interrupts work this way: An electrical
signal on one pin of the CPU chip causes the CPU
logic to save the program counter, code segment reg
ister (CS), and flags register. The CPU is then free to
service the request from outside the chip to execute
some bit of code unrelated to its ongoing task. Once
the request for service is satisfied, the CPU restores
the registers it had saved and picks up its ongoing
task as though nothing had happened.

With the 8086 family architecture, Intel presented
the concept of the software interrupt. Software inter
rupts work exactly the same way as hardware inter
rupts, except that the triggering request is a machine
instruction (software) rather than an electrical signal
on a CPU pin (hardware).

Software interrupts provide standard entry points
to system software. When any kind of interrupt
happens, the CPU first saves essential registers, and
then performs a "long jump" to the location of the
interrupt service routine somewhere in memory.

The way that the CPU locates this interrupt service
routine is critical. The 8088 recognizes 256 inter
rupts, numbered from 0 to 255. When an interrupt
happens, the CPU must receive the number of the

Editor's Note: This article is excerpted from the forthcoming
book, Complete Turbo Pascal, Third Edition, by Jeff Duntemann.
Complete Turbo Pascal, Third Edition is scheduled for July, 1988,
publication by Scott, Foresman & Company.

requested interrupt. For hardware interrupts, this
number comes from the interrupt priority controller
chip outside the CPU. For software interrupts, the
interrupt number is built into the interrupt instruc
tion. For example, the 8088 instruction INT 21
triggers software interrupt 21H.

The first 1024 bytes of the PC memory map are
reserved for interrupt vectors. "Vector" can be taken
to mean "pointer," and pointers are exactly what
occupy those 1024 bytes of memory. Each of the 256
different interrupts has its own 4-byte region of this
1024-byte memory block (256 X 4 = 1024). This
4-byte region contains a 32-bit pointer to the first
instruction of the interrupt's service routine.

The first four bytes of 8088 memory contain the
vector for interrupt 0. The next four bytes of memory
contain the vector for interrupt 1, and so on up to
255 (see Figure 1). Obviously, ifthe CPU knows the
interrupt number, it can multiply that number by
four and go immediately to the interrupt vector for
any given interrupt. The first two bytes of the inter
rupt vector are the program counter value for the
start of the service routine, and the second two bytes
are the code segment value where that service rou
tine exists. The CPU need only load the code seg
ment value into the CS register and then load the

Intemlpt I Intemlpt 2
Offset Segment Offset

LSB MSB LSB MSB LSB MSB
4 5 6 7 8 9

Memory addresses ---.

t
0000:0 000

Figure 1. The structure of the 8088 interrupt vector tabl,e.
There are 256 vectors in the tabl,e, each consisting of 4 bytes
that represent the service routine segment and offset in the
order shown.

continued on page 48

May/June 1988 TURBO TECHNIX 4 7

LISTING 1: VECTORS.PAS

<·------ -- ------- ---- ---- ---- --- ----------- ----- --------------->
(VECTORS)
()

< Interrupt vector utility >
()

< by Jeff Duntemann >
(Turbo Pascal V4 . 0 >
< Lost update 3/15/88 >
()

< This program al lows you to inspect and change 8086 interrupt >
< vectors, and look at the first 256 bytes pointed to by any)
< vector. This allows the spotting of interrupt service)
< routine 11signatures11 (typical Ly the vendor's copyright }
< notice) and also indicates when a vector pointl to an IRET. >
()

(Fran: COMPLETE TURBO PASCAL, 3E by Jeff Duntemann)
< Scott, Foresman & Co., Inc. 1988 ISBN 0·673·38355·5 >
(····-·············-··-······ ······ ···- ----·-·-··------------- -)

PROGRAM Vectors;

USES DOS;

(SV·)

CONST
Up • True;

TYPE
String80
Block
PtrPieces

VAR

< For GetlntVec and SetlntVec >

< Relaxes type checking on string lengths)

• StringC80l;
• ARRAYCO •• 2551 OF Byte;
• ARRAYCO •• 3J OF Byte;

I : Integer;
VectorNllnber : Integer;
Vector : Pointer;
VSeg, VOfs : Integer;
NewVector : Integer;
MeQ!lock : Block;
ErrorPos it; on : Integer;
Quit : Boolean;
Coomand : String80;
CoomandChar : Char;

PROCEDURE StripllhiteCVAR Target : String);

CONST
llhitespace : SET OF Char • [#8,#10,#12,#13,' 'l;

BEGIN
WHILE (length(Target) > 0) AND (Target[l] IN llhitespace) DO

Delete(Target, 1, 1)
END;

PROCEDURE WriteHex(BT : Byte);

CONST
HexDigits: ARRAY[0 .. 15] OF Char• '0123456789ABCDEF';

VAR
BZ : Byte;

BEGIN
BZ := BT AND SOF;
BT := BT SHR 4;
Write(HexD i gi ts [BT], HexD i gi ts [BZJ)

END;

48 TURBO TECHNIX May/June 1988

INTERRUPT VECTORS
continued from page 47

program counter value into the program counter
register-and it's off and running the interrupt ser
vice routine.

The important fact here is that the code that
wishes to use a software interrupt service routine
doesn't need to know where that routine is located
in memory-the code only needs to know the inter
rupt number. Indeed, the actual location of the ser
vice routine can change over time as the routine is
altered or expanded. As long as the computer's boot
or startup code stores the correct interrupt vectors
into the lowermost 1024 bytes of memory, software
interrupt service routines may be located anywhere
and still be used quickly and easily by application
programs.

This is the spirit of the IBM PC's ROM BIOS. The
BIOS is a collection of software interrupt service rou
tines stored in ROM at the very top of the 8088's
memory address space. The interrupt numbers are
assigned according to the general function perform
ed by the interrupt service routine. For example,
interrupt 16 (lOH) controls video services for the PC.
Interrupt 22 (16H) controls access to the keyboard.

Not all software interrupts are reserved for the
use of the ROM BIOS; most of them are not used
at all. DOS uses a few software interrupts, and the
Microsoft and Logitech mouse drivers use one. Quite
a few peripheral driver programs, in fact, make use
of software interrupts. The PC as we know it would
have been impossible without them.

GetlntVec AND SetlntVec
The interrupt vector table can be explored with
DEBUG, but a fairly simple program makes the vec
tors easier to read and change. VECTORS.PAS (List
ing 1) provides a utility called Vectors that displays
and changes interrupt vectors, and also displays a
hex dump of the first 256 bytes of memory pointed to
by a vector. Changing an interrupt vector can be
strong medicine, and shouldn't be done unless you
know exactly what you're doing. Altering the timer
tick interrupt carelessly freezes your machine solid
in no more than 55 milliseconds' time. But if you
intend to write programs that intercept interrupt vec
tors, Vectors can save a lot of aggravation during
development.

One problem in reading simple hex dumps of the
vector table is that the vectors' components are
stored backward in memory from the way we human
beings generally write them (see Figure 1). The
offsets are stored before the segments, and the least
significant bytes of both segments and offsets are
stored before the most significant bytes.

Vectors reformats the interrupt vector table for
your eyes, and lets you perform certain useful opera
tions on the table. For example, it allows you to zero

out all 32 bits of a vector, and also lets you separately
change the offset or segment portion of any vector to
the value of your choice.

Vectors centers on two routines from Turbo
Pascal's DOS unit, GetlntVec and SetlntVec:

PROCEDURE GetlntVec
(lntNl.lllber : Byte;

VAR Vector : Pointer);

PROCEDURE Set!NtVec
(lntNl.lllber : Byte;
Vector : Pointer);

In both cases, lntNumber contains the number
of the interrupt whose vector you wish to read or
change, and Vector is a generic pointer containing
the address read from or written to that vector.
GetlntVec returns vector IntNumber in Vector; and
SetlntVec places the address in pointer Vector in the
vector table for interrupt IntNumber. These are
"well-behaved" routines for reading and setting vec
tors from the interrupt vector table. We say "well
behaved" because there are "ill-behaved" ways to
alter the vector table-by use of the MEM, MEMW,
and MEML statements.

Why are MEM, MEMW, and MEML ill-behaved?
Well, think about this: Suppose you're in the midst

of altering a vector in the table and you have half of
a new value written; then something somewhere in
the system calls that interrupt. At the moment when
the CPU recognizes the interrupt, you may already
have a new segment in place, but you may not yet
have overwritten the old offset. The CPU sends exe
cution charging off on this half-baked vector (which
points into the middle of a data buffer), starts execut
ing data as code, and freezes the machine solid.

DOS has a pair of functions for reading and set
ting interrupt vectors correctly that first disabl,e inter
rupts before reading or altering a vector. Only when
the vector is completely read, or completely changed,
will DOS re-enable interrupts. That way, your pro
grams will not end up reading a half-correct vector,
or (much worse) allowing the CPU to transfer con
trol to a half-correct vector.

PEEKING AT ISRs
The Vectors utility knows another trick-it can pro
vide a look at what any vector is pointing to. Any
initialized interrupt vector points to an interrupt ser
vice routine (ISR) of some sort. On command,
Vectors displays a hex dump of the first 256 bytes
of memory pointed to by any given interrupt vec-
tor. Those wild-eyed folks who read 8086 binary
machine code in their heads can track the logic of
simple service routines. The rest of us can look for
interrupt service routine "signatures," typically in the
form of copyright notices embedded in the binary
machine code. For example, if you have the Logitech
Mouse driver loaded, Vectors shows you the
Logitech signature at an offset of 16 bytes into the
driver, pointed to by interrupt 51 (33H).

Vectors tests every vector that it displays, and indi
cates whether the vector points to a byte containing

continued on page 51

fUNCT ION ForceCase(Up : BOOLEAN; Target : String) : String;

CONST
Uppercase : SET OF Char • ['A' ... 1 2 1];

lowercase : SET OF Char • [1 a 1 •• 1 z 1 J;

VAR
I : INTEGER;

BEGIN
IF Up THEN FOR I := 1 TO Length(Target) DO

IF Target[!] IN Lowercase THEN
Target [IJ := UpCase(Target CIJ)

ELSE { NULL)
ELSE FOR I := 1 TO Length(Target) DO

IF Target[I) IN Uppercase THEN
Target CIJ := Chr(Ord(Target CIJ)+32);

ForceCase := Target
ENO;

Procedure ValHex(HexStr;ng : String;

VAR

VAR Value : Longlnt;
VAR ErrCode : Integer);

HexDigits : String;
Position : Integer;
PlaceValue : -longlnt;
T°""Value : Longlnt;
I : Integer;

BEGIN
ErrCode := O; T°""Value := O; PlaceValue := 1;
HexDigits := '0123456789ABCDEF';
Stripllh i te(HexString); { Get rid of leading wnitespace)
IF Pos('S',HexString) = 1 THEN Delete(Hexstring, 1, 1);
HexString := ForceCase(Up,HexString);
IF (Length(HexString) > 8) THEN ErrCode := 9

ELSE IF (Length(HexString) < 1) THEN ErrCode := 1
ELSE

END;

BEGIN
FOR I := Length(HexString) DOllNTO 1 DO { For each character)

BEGIN
{ The position of the character in the string is its value:)
Pos iti on := Pos(Copy(HexString,I, 1),HexDigits) ;
IF Position= 0 THEN {If we find an invalid character •••)

BEGIN
ErrCode := I; { ••• set the error code .•.)
Exit { ••• and exit the procedure >

END ·
{ The' next line calculates the value of the given digit)
{ and adds it to the c<m.1lative value of the string: >
T°""Value := T°""Value + ((Position- 1) • PlaceValue);
PlaceValue := Placevalue • 16; { Move to next place >

END;
Value := T"""Value

END

PROCEDURE D""'6lock(XBlock : Block);

VAR
I,J,k'.: Integer;
Ch : Char;

BEGIN

May/June 1988 TURBO TECHNIX 49

FOR I : =0 TO 15 DO
BEGIN

{ Do a hex'""' of 16 l inea of 16 chars)

FOR J : =O TO 15 DO
BEGIN

< Show hex values

llr i teHex(Ord(XBlock [(1*16)+JJ));
llri te(' ')

EMO·
llriteC' I'>;
FOR J :•0 TO 15 DO

BEGIN

< Bar to separate hex & ASCII
< Show printable chars or ' '

Ch :=Chr(XB lock [(1*16)+JJ);
IF ((Ord(Ch)<127) AND (Ord(Ch)>31))
THEN llri te(Ch) ELSE llri te('. 1

)

END·
llriteln(' I')

END;
FOR l:=O TO 1 DO llriteln(")

END; < D'-""8lock)

PROCEDURE ShowHelp;

BEGIN
Wd teln;
Wr i teln(1 Press RETURN to advance to the next vector. 1);

Writeln;
Wri teln
('To display a spec1fic vector, enter the vector nullber (0-255) 1

);

Wri teln
(1 in decimal or preceded by a 11$ 11 for hex, fol lowed by RETURN.'>;
Writeln;
Writeln(1Valid comnards are:');
Wri teln;
llriteln
('0 : o~ the first 256 bytes pointed to by the current vector'>;
llri teln
(1E : Enter a new value (decimal or hex) for the current vector•);
WritelnC'H Display this help inessage 1

);

llriteln('Q Exit VECTORS');
llriteln('X Exit VECTORS 1);

llriteln('Z Zero s~t and offset of the current vector');
llriteln('? Display this help message');
Writeln;
Wd tee lfhe i ndi cat or 11 >> IRET" means the vector•);
llriteln(1 points to an IRET instruction•>;
Wdteln;

END;

PROCEDURE Di splayVectorCVectorN...t>er Integer>;

VAR
B~
Chunks
Vector
Tester

BEGIN

Integer;
PtrPieces;
Pointer;
· eyte;

Get I ntVecCVectorNiirber, Vector>;< Get the vector }
Tester :: Vector; { Can• t dereference 111typed pointer
Chunks := PtrPieces(Vector); < Cast Vector onto Chunks >
Write(VectorNiirber : 3, 1 S 1);

Wri teHex(VectorNiirber);
\Jr i te(' (' >;
llriteHex(ChunksCJJ >; { llrite out the chunks as hex digits >
llr i teHex(Chunks [21);
Write(': 1 >;
llri teHcx(Chunks [1J >;
llr i teHex(Chunks [OJ);
Write(1]

1 >;

50 TURBO TECHNIX May/June 1988

IF Tester · = SCF { If vector points to an UET, say ao)
THEN llrite(• » IRET ')
ELSE Write(' '>;

END;

PROCEDURE 0<111plargetOata(VectorN&.nber Integer);

VAR
Vector Pointer;
Tester "Block;

BEGIN
Get lntVec(VectorN&.nber, Vector); < Get the vector)
Tester :• Vector; < Cast the vector onto a pointer to a block
H-lock := Teater·; < Copy the target block Into -lock >
IF Menllock[OJ • SCF THEN < See if the first byte h an IRET }

llriteln('Vector points to an IRET.'>;
0""'8lock(-lock) < and fiNll ly, hex'""' the block. >

ENO;

PROCEDURE ChangeVector(VectorN.-r: Integer);

VAR
Vector : Pointer;
LongTef1\'.l, Tef1\'.lValue : Long Int;
SegPart,OfsPart : Word;

BEGIN
GetlntVec(VectorNl.IN:>er,Vector>; < Get current value of vector }
LongTef1\'.l :• Longlnt(Vector); < Cast Pointer onto Longlnt }
SegPart := LongT""l' SHR 16; < Separate pointer seg. from off.
OfsPart := LongTef1\'.l AND SOOOOFFFF; { And keep until changed }
Write('Enter segment 1 >;
Write('(RETURN ret•;ns current value): '>;
Readln(Coomand);
Str i pUh i te(Conmand);
< If something other than RETURN was entered:
IF Length(Coomand) > 0 THEN

BEGIN
Val(Coomand, Tef1\'.lValue,ErrorPosition); < Evaluate aa decimel
IF ErrorPosition = 0 THEN SegPart := Tef1\'.lValue

ELSE (If it 1 s not• valid deciinel value, evaluate as hex:
BEGIN

Va lHex(Conmand, Teq:>Value, ErrorPosi ti on);
IF ErrorPosition • 0 THEN SegPart := T°""Value

END;
{ Reset the vector with any changes:
Vector := Ptr(SegPart,OfsPart);
Set lntVec(VectorN&.nber, Vector);

END;
OisplayVector(VectorN...t>er); < Show it to reflect any changes
Writeln;
Write(1 Enter offset '); Now get an offset
llrite('(RETURN retains current value): ');
Readln(Coomand);
Stri pllhi te(Coomand);
< If something other than RETURN was entered: }
IF Length(Command) > 0 THEN

BEGIN
Val(Coomand,Tef1\'.lValue,ErrorPosition); <Evaluate as decimal
IF ErrorPosition = 0 THEN OfsPart : = Tef1\'.lValue

ELSE { If it's not a valid decimal value, evaluate as hex :
BEGIN

Val Hex(Corrrnand, Tefr4:>Vatue,ErrorPos it ion) ;
IF ErrorPosition = 0 THEN OfsPart := Tef1\'.lValue

END
ENO·
Fi~lly, reset vector with any changes : }

INTERRUPT VECTORS
continued from page 49

CFH. This is the machine-code equivalent of the
IRET (Intenupt Return) mnemonic. Pointing an
intenupt to an IRET instruction is a safety measure
that prevents havoc in case an intenupt occurs for
which the vector is uninitialized. If an unused vector
is made to point to an IRET, the worst that can
happen if that intenupt is triggered is nothing at
all-the IRET sends execution back to the caller
without taking any action.

In the best of all worlds, all unused interrupt vec
tors are initialized to point to an IRET. But as you'll
see once you run Vectors, only a few vectors are so
disarmed. Most vectors point to segment zero, offset
zero (which is in fact an intenupt vector itself-the
vector for intenupt 0, the first entry in the vector
table) . If such an intenupt occurs, the CPU attempts
to execute the intenuptjump table as though it were
code-which will almost certainly crash the machine
hard.

Vectors is simple in operation. It cycles through
the 256 intenupt vectors one at a time, displaying the
current value of the current intenupt vector, and
then pauses for a command. 'Jumping" to another
intenupt vector is done by entering that vector's
value as either a decimal number or a hexadecimal
value preceded by a "$."

The E command is used to change a vector value.
E prompts individually for the segment and offset
portion of the vector. If you don't wish to change
one or both of these, simply press Enter and nothing
is altered. As with jumping to a new value, vector
values can be entered in eithe·;- decimal or hex.

The command D dumps the 256 bytes pointed to
by the current vector. If the first byte of the block is
an IRET instruction, Vectors displays the string
">>IRET."

The command Z changes both the offset and seg
ment portion of a vector to zero. This is useful in
cases where you're testing software that modifies
intenupt vectors-and you may be modifying the
wrong vectors. Zeroing a vector allows you to come
back after your test software has run and to tell at a
glance if the zeroed vector or vectors have stayed
zeroed.

Either of the commands Q or X exits Vectors to
DOS.

The hex format display procedure WriteHex fig
ures prominently in Vectors as the mechanism by
which the intenupt vectors are displayed, and also as
the core of a hexdump routine, DumpBlock, that
dumps 256 bytes of memory at the location pointed
to by the current vector. •

Listings may be downloaded from CompuServe as
VECTOR ARC.

Vector := Ptr(SegPart,OfsPart>;
Set lntVec:CVectorNUlber, Vector);

END;

BEGIN
Quit := False;
VectorNYflber : = O;
\.lriteln('>>VECTORS<<'>;
Writeln('By Jeff 0111te1Mm'>;
Writeln('from the book: C<»4PLETE TURBO PASCAL, 3E');
Writeln('ISBN 0-673-38355-5°);
ShowHelp;

REPEAT
Di spl ayVector(YectorNui*ler);
Readln(Conmand>;

{ Show the vector I & address >
{ Get a ComMnd fr°"' the user >
< If something typed: > IF Length(COOllllllld) > 0 THEN

BEGIN
{ See if acer was typed; if one was, it becc.es the)
< current vector nl.IM>er.. If en error in converting the >
< strh'-.g to • ru'*>er occurs, Vec:tora then pArae1 the >
< string as a conmand. >
Val (Conmand,NewVector, ErrorPos it ion);
If ErrorPosition = 0 THEN VectorNui*ler := NewVector

ELSE
BEGIN

StripWhite(Conmand); < Remove leading whitespace }
Conmand := ForceCase(Up,Conmand); { Force to upper case}
ConmandChar := Conmand[IJ; { Isolate first character }
CASE ConmandChar OF

•Q•, 1 x 1 : Quit := True; { Exit VECTORS }
'0' : D~TargetData(VectorNui*ler); { D<np data }
'E' : ChangeVector(VectorN....,.r); { Enter vector }
1 H1

: ShowHelp;
•z• : BEGIN < Zero the vector >

Vector :• NIL; { Nil is 32 zero bits }
Set I ntVec(VectorNY9t>er, Vector);
Di spl ayVector(VectorN....,.r);
Wri teln('zeroed. 1);

VectorN....,.r := (VectorN...t>er + 1) HOO 256
END;

1 7 1
: ShowHelp;

END {CASE}
END

ENO
{ The following line increments the vector nu!ber, rolling over }
{ to 0 if the nu!ber would have exceeded 255: }
ELSE VectorN...t>er := (VectorN...t>er + 1) HOO 256

UNTIL Quit;
ENO .

May/June 1988 TURBO TECHNIX 51

~ MOUSE MYSTERIES,
~ PART 1: TEXT

Unraveling the mysteries of mouse programming is easy
with Turbo C and Turbo Pascal.

Kent Porter

Mice have moved into the PC main
stream. Because of the convenience they
offer the user, mice have become syn
onymous with friendly software and
intuitive interaction. From the user's

••nocRA ,~MEn perspective, a mouse can seem like a
simple-to-use, yet mysterious device that is probably
horrendously complicated to program. From the pro
grammer's viewpoint, however, writing a mouse pro
gram is not particularly difficult. In this first part of
"Mouse Mysteries," we'll use Turbo C and Turbo Pas
cal to explore the text mode region of the software
world of the mouse. The next article of this two-part
series will examine the techniques of mouse pro
gramming in graphics mode.

There are relatively few differences between
mouse functions in Turbo C and Turbo Pascal. In
the program examples, I've purposely called corre
sponding mouse functions in each language by the
same names. Also, I've used the same variables and
algorithms in the demonstration programs wherever
possible.

WHAT YOU WILL NEED
To incorporate a mouse into the user interface of
your program, you need three things:

• The hardware mouse itself

• The mouse device driver

• Software mechanisms to communicate with the
mouse

The first two items come from the mouse vendor.
The last item consists of the Turbo C and Turbo
Pascal programs in Listings 1 and 2, along with the
techniques discussed in this article.

Most mouse vendors adhere to the de facto
Microsoft standard that governs a two-button mouse,

52 TURBO TECHNIX May/June 1988

or else they furnish a Microsoft-based superset. Of
the latter, the best known vendor is Logitech, who
se lls a three-button mouse that is compatible with
the Microsoft standard (except for operations involv
ing the third button).

This series will explore programming the
Microsoft and Logitech device drivers (and by exten
sion, also the great majority of mice by other vendors
that emulate these mice) with Turbo C. Throughout
these two articles, we'll also point out the differences
in mouse programming between Turbo C and Turbo
Pascal.

COMMUNICATING WITH THE MOUSE
The only practical channel of communication
between the mouse and your software program is
through the mouse device driver. The driver is
accessible through software interrupt 33H (51 deci
mal), which is not used by DOS. This interrupt is
claimed by the mouse device driver during load-time
initialization and thereafter belongs to the driver.
Parameters are passed to the driver and back to the
caller through the 8086 registers.

To call the mouse, you must place a function code
into register AX and execute interrupt 33H. All the
mouse calls use full-word registers, and some calls
require additional parameters in the registers BX
through DX. A few mouse call s a lso expect segment
addresses in the ES register. Mouse inquiry functions
return values in the registers BX through DX, wrap
ping back to AX if returning four values. Your soft
ware can then extract these values as integers,
assigning and acting on them as appropriate.

THE MOUSE FUNCTIONS
Microsoft furnishes 16 mouse functions , numbered 0
through 15. Logitech's mouse functions are the
same, although a few differ slightly to accommodate
the third mouse button; there are a lso two superset
functions, numbered 16 and 19. The functions from
both manufacturers are summarized in Table 1.

continued on page 54

r

FUNCTION PURPOSE

Initialize mouse
Show mouse

NATURE

0
I
2
3
4
5
6
7
8
9
IO
II
12
13
14
15
16
19

Hide mouse cursor

Control
Control
Control
Inquiry
Control
Inquiry
Inquiry
Control
Control
Control
Control
Inquiry
Control
Control
Control
Control
Control
Control

Get position and buttu11 status
Set mouse cursor position
Get button press information
Get button release information
Set minimum/ maximum columns (x)
Set minimum/ maximum rows (y)
Define graphics pointer shape (I)
Define text pointer shape
Read motion counters
Define mouse event handler
Turn light pen emulation on
Turn light pen emulation off
Set motion-to-pixel ratio (I)
Conditional hide mouse cursor (2)
Set speed threshold (2)

NOTES:
(1) Covered in Part II.
(2) Logiwch only. Not covered here.

Tab/,e 1. The 16 Microsoft Mouse function calls, plus those provided by the
Logitech mouse.

MOUSE MYSTERIES

continued from page 52

Two sample programs illustrate
the most important calling/ return
ing conventions for each of the
functions listed in Table 1.
MOUSE.INC (Listing 1) is the
Turbo C include file that imple
ments the mouse function calls.
MOUSE.PAS (Listing 2) is the
complementary unit in Turbo
Pascal 4.0.

When looking through these
listings, keep in mind that the
primary differences between
the Turbo C and Turbo Pascal li
braries relate to the mouse inquiry
functions, which are mReset,
mPos, mPressed, mReleased, and
mMotion. In Turbo Pascal, struc
tures to be initialized are owned
by the calling program and passed
as variable (VAR) parameters. The
Turbo Pascal mouse functions
alter the owner's copy of the struc
ture; none of these functions
returns anything.

On the other hand, Turbo C
mouse functions own the struc
tures as statics, and return point
ers to those structures. This fol
lows the spirit of the C language,
which is much more pointer
oriented than Pascal. Also, Pascal
has no static storage class like that
in C.

Therefore, when writing Turbo
C programs that incorporate the
mouse, be sure to declare pointer
variables for the structures that
you intend to use, and to initialize

54 TURBO TECHNIX May/June 1988

those variables with the inquiry
functions' returned values.

Function 0: Initializing the mouse
(mReset). Any program that uses
the mouse must initialize it during
the setup phase by calling func
tion 0. Failure to do so means that
your program inherits a garbage
mouse status from either powerup
or the previous program, which
ever is most recent.

The reset function clears the
previous mouse status, places the
mouse cursor in the center of the
screen (though the cursor is invisi
ble-see the discussion of func
tions 1 and 2 below), and sets the
scope of operation to the full dis
play. Upon returning, AX contains
the mouse status (0 if the mouse
device driver is not installed, non
zero if it is installed), and BX con
tains the number of mouse but
tons (2 for Microsoft and clones, 3
for Logitech).

In Turbo Pascal, it's convenient
to stuff the returned values into a
record, which is why the unit in
Listing 2 defines the resetRec
type. Because this definition is in
the interface part of the mouse
unit, a program that USES this
unit can declare resetRec vari
ables as though the type were
intrinsic.

Note that the mReset procedure
receives the resetRec variable as a
VAR parameter. In other words, it
jointly owns the record with the
caller, thus enabling the proce
dure to pass back the values
returned by the mouse device

driver. The Pascal equivalents to
inquiry functions 3, 5, 6, and 11
operate similarly on records
passed as VAR parameters in
to return results. Let's declare the
resetRec variable as follows:

Var
theMouse : resetRec;

We then initialize the mouse with
this call:

mReset (theMouse);

Afterwards, our program can
check to see if a mouse is present
by using a test such as:

if theMouse.exists then
{do mouse stuff}

else
{mouse isn't active}

Things are a little different in
Turbo C, where we declare point
ers to the resetRec structure. In
Pascal, the call to initialize the
mouse is:

mReset (theMouse);

However, in Turbo C, the mouse
initialization call is:

theMouse = mReset ();

Both calls do the same thing, but
the calling sequence is different
because of the use of pointers
in C.

It's advisable to call mReset
again at the end of the program.
This step restores the device
driver to its default state and de
activates the mouse, so that subse
quent programs don't inherit an
unwanted mouse status.

Function 1: Show mouse cursor
(mShow). mReset leaves the
mouse cursor off. Therefore, the
very next step is usually to turn
the mouse cursor on. The only
way to do so is via function 1,
mShow. This control function
doesn't return a value, nor does
its counterpart, mReset.

Function 2: Hide mouse cursor
(mHide). This function turns off
the mouse cursor without other
wise changing its status. Even
though the cursor is "hidden"
after a call to function 2 (via
mHide) , it still moves in response
to physical travel of the mouse; of
course, you're not aware of the
cursor's movement until you call
mShow again and discover it in a
different place.

A strange tension exists among
functions 0, 1, and 2-they all

control an internal value called
the cursor fl ag, which is a signed
integer. mReset (fun ctio n 0) sets
the fl ag to -1, making the cursor
invisible. mShow (function 1)
increme nts the flag to 0, which
tells th e device driver that the cur
sor sho uld be visible. mHide
(fun ctio n 2) decrements the fl ag
back to -1. The net result is that if
you reset the mouse and then call
mHide, it takes two calls to mShow
to make the cursor visible, since
the inte rnal fl ag has dropped
to -2.

Oddly, the mouse device driver
doesn 't furni sh an inquiry to
determine the value of the inter
nal cursor fl ag, so the program
cannot ask if the cursor is on or
off. Therefore, the programmer is
responsible for tracking the
mouse cursor's status.

Function 3: Get position and but
ton status (mPos). T his inquiry
fun ctio n returns info rmation
about the status of the mouse; spe
cifically, it te lls the location of the
cursor and whether any button is
pressed down . All info rmation is
reported in real time- in other
words, if the mouse is in motion ,
you get a current position report
(which is probably not the
mouse's destinatio n). Likewise,
making infrequen t calls to this
functio n can potentially cause a
button click to be missed. To cap
ture a click as well as the mouse's
positio n at the ultimate destina
tio n , use function 12 (see func
tio ns 5 and 6 for more button
informatio n). Functio n 3 is chie fl y
useful in graphics-within a tight
loop, th is functio n can write a
pixe l to draw a track based o n
mouse movement, transforming
the mouse into a pe ncil of sorts.
Another commo n use fo r fun ction
3 is to determin e the locatio n of
the cursor. Dete rmining the cur
sor's positio n can come in handy
if you in tend to j ump it to another
place and you need an address to
which you'll return the cursor
later.

Fu nction 3 returns the button
status in BX, the column in CX,
and the row in DX. With a two
button mouse, b its 0 and 1 in BX
are set if the left and righ t but
tons, respectively, are down. Bit 2
represents the center button in

continued on page 56

LISTING 1: MOUSE.INC

/*MOUSE.INC: Turbo C Source code for mouse interface functions. */
I* Must #include dos.h before this #include to define the */
/* register set used to pass args to device driver */
I* ------·-··-------- -· ···----------- ----·-----···· · ··-- ---------- *I
/* Define int for mouse device driver */
#define callMDD int86(0x33, &inreg, &outreg)

/*Define sorting macros used locally*/
#define lower (x, y) (x < y) ? x : y
#define upper (x, y) (x > y) ? x : y

/* STATIC REGISTERS USED THROUGHOUT */
union REGS inreg, outreg;

/* STRUCTURES USED
typedef struct (

int exists,
nButtons;

} resetRec;

BY THESE FUNCTIONS */

/* TRUE if mouse is present */
/* # of buttons on mouse */

/* returned by mReset */

typedef struct (
int buttonStatus,

opCount,
colum, row;

} locRec;

/* bits 0-2 on if corresp button is down */
/*#times button has been clicked*/

I* position */
/* returned by ~os, ~ressed, mReleased */

typedef struct C
int hCount, /* net horizontal movement */
vCount; /* net vertical movement */

} moveRec; /* returned by n"folotion */
/* ---- - --- --- ---- - ----- -··- ------------ - ----------- - ---- - -·- - --- - */
/* Following are implementations of the Microsoft mouse functions */

resetRec *mReset ()
/* Resets mouse to default state. Returns pointer to a structure */
/* indicating whether or not mouse is installed and, if so, how */
/* many buttons it has. */
/*Always call this function during program initialization. */
{

s tatic resetRec m;

inreg.x.ax = O; /* function 0 *I
callMDD;
m.exists = outreg.x.ax;
m.nButtons = outreg.x.bx;
return (&m) ;

} /* --- - -·----------- - --- - -- *I
void mShow (void)
/* Makes the mouse cursor visible. Don't call if cursor is already */
/* visible, and alternate with calls to mHide. */
{

inreg.x.ax = 1;
cal lMDD;

} /* ··------------ - ---- - - -·- *I
void mHide (void)
/* Makes mouse cursor invisible.
/*still tracked. Do not call if
/* alternate with calls to mShow
{

/* function 1 */

Movement and button activity are */
cursor is already hidden, and */

*I

inreg .x.ax = 2; /* function 2 */
callMDD;

} /* -- -- -- - - - --- ---- - - - - -- - - */
locRec *~os (void)
/* Gets mouse cursor position and button status, returns pointer */
/* to structure containing this info */
{

s tatic locRec m;

inreg.x.ax 3;
cal lMDD;

/* function 3 */

May/June 1988 TURBO TECH NI X 55

m.buttonStatus = outreg.x.bx;
m.coll.ITYl = outreg.x.cx;
m.row = outreg.x.dx;
return (&m>;

} /* ...•.................... */
void rrf1oveto (int newCol, int newRow)
/* Move mouse cursor to new position */
c

/* button status */
/* horiz position */
/* vert position*/

inreg.x.ax = 4; /* function 4 */
inreg.x.cx newCol;
inreg.x.dx = newRow;
callMDD;

} /* *I
locRec *mPressed (int button)
/* Gets pressed info about named button: current status Cup/down), */
/*times pressed since last call, position at most recent press. */
/* Resets count and position info. Button 0 is left, 1 is right on */
/* Microsoft mouse. */
/* Returns po.inter to locRec structure containing info. */
c
static locRec m;

inreg.x.ax = 5;
inreg.x.bx = button;
callMDD;
m.buttonStatus = outreg.x.ax;
m.opeount = outreg.x.bx;
m.coll.ITYl = outreg.x.cx;
m.row = outreg.x.dx;
return C &m);

} /* */
locRec *mReleased (int button)

/* function 5 */
/* request for specific button */

/* Same as mPressed, except gets released info about button */
c
static locRec m;

inreg.x.ax = 6;
inreg.x.bx = button;
callMDD;
m.buttonStatus = outreg.x.ax;
m.opCount = outreg.x.bx;
m.coll.ITYl = outreg.x.cx;
m.row = outreg.x.dx;
return C&m);

} /* ························ */
void mColRange (int hmin, int hmax)

/* function 6 */
/* request for specific button */

/* Sets min and max horizontal range for mouse cursor. Moves */
I* cursor inside range if outside when called. Swaps values if */
/* hmin and hmax are reversed. */
c

inreg.x.ax
inreg.x.cx
inreg.x.dx
callMDD;

7·
' hmin;

hmax;

} /* */
void mRowRange (int vmin, int vmax)
/* Same as mHminmax, except sets vertical
c

inreg.x.ax = 8;
inreg.x.cx vmin;
inreg.x.dx = vmax;
callMDD;

} /*•...... *I

/* function 7 *I

boundaries. */

/* function 8 */

void mGraphCursor (int hHot, int vHot, unsigned maskSeg,
unsigned maskOfs)

/* Sets graphic cursor shape */
c
struct SREGS seg;

inreg.x.ax = 9; /* function 9 */

56 TURBO TECHNIX May/June 1988

MOUSE MYSTERIES

continued from page 55

the Logitech mouse and other
three-button mice. A zero in any
of these bit positions means the
corresponding button is not cur
rently being pressed.

Function 4: Set mouse cursor
position (mMoveto). This function
moves the cursor directly to the
specified column and row. The
mouse device driver is sensitive to
the display adapter in use, but
handles positioning coordinates
differently than you might expect.
Even in text mode, the device
driver regards the screen as a 640 X
200-pixel array (which is the same
as the CGA high-resolution graph
ics mode) . Under this scheme, a
character cell is 8 X 8 pixels for
the normal 80 X 25 text display.

The mouse cursor position in
text mode is always the pixel
address of the upper left corner of
the current character cell. Thus,
home position is 0,0; the position
of the next cell to the right is 8,0;
the cell directly below that is
located at 8,8; and so forth. To cal
culate the mouse cursor position,
multiply the text column and row
coordinates by eight. For instance,
the approximate center of the text
screen is the pixel address of
39,12; this maps to 312,96 in
mouse cursor coordinates. To
translate in the reverse direction,
divide the mouse cursor coordi
nates by eight.

In graphics mode, the cursor
moves smoothly, pixel by pixel. In
text mode, however, itjumps from
cell to cell in order to avoid oc
cupying two or more cells at the
same time. If you pass coordinates
to mMoveto that are not multiples
of eight (e.g., 313,97), the device
driver ignores the remainders and
positions the cursor at the next
lower integral text cell (312,96).

Function 5: Button press informa
tion (mPressed). The mouse
device driver records how many
times each button is pressed.
mPressed calls function 5 to get
this information for any specific
button. The button numbers are:
0 = Left; 1 = Right; for three
button mice only, 2 = Middle.

A request for press information

about a specific button clears its
history. Thus, a call might reveal
that button l has been pressed
twice. The next time you ask
mPressed about button 1, it re
turns zero if the button was not
pressed si nce that earlier call.

T his function also returns the
button status, which is real-time
information about all buttons
(exactly as in mPos). Additionally,
function 5 provides the column
and row of the cursor's position
during the last time the button of
interest was pressed. If the button
is currently down (the status bit is
ON), the position report is the
current location; otherwise, the
position report is historical
information.

mPressed is of limited useful
ness-if it's called from within a
loop, the loop might iterate many
times while the user has the but
ton pressed down. Each time,
mPressed reports the same button
operation as though it were a new
event. mReleased (described
below) is a better choice, since it
waits to update the internal coun
ter until the user has released the
button.

Function 6: Get button released
information (mReleased). This
function is similar to mPressed,
except that it reports how many
times the button of interest has
been released after being pressed.
It's a more reliable indicator of
a given button's activity than is
mPressed, simply because a
release is a singular event that
isn't tricked by a button's current
status.

Functions 7 and 8: Set Min/Max
columns and rows (mColRange
and mRowRange). These two
functions limit the operational
area of the mouse cursor, much
like fencing the backyard to con
fine the dog. Function 7
(mColRange) governs the range
of columns, and function 8
(mRowRange) controls the rows
in which the cursor can appear.
VVhen these two functions are
invoked, the cursor-if previously
located outside the defined area
moves inside of it. Thereafter, the
cursor simply refuses to cooperate
if you try moving it beyond any
boundary.

The default condition gives the
continued on page 58

inreg.x.bx = hHot;
inreg.x.cx = vHot;
inreg.x.dx = maskOfs;
seg.es = maskSeg;

/* cursor hot spot: horizontal */
/* cursor hot spot: vertical */

int86x (0x33, &inreg, &outreg, &seg);
} /* ------------------------ *I
void mTextCursor (int curstype, unsigned arg1, unsigned arg2)
/* Sets text cursor type, where 0 = software and 1 = hardware)
/* For software cursor, arg1 and arg2 are the screen and cursor
/* masks.

*I
*I
*/

/* For hardware cursor, arg1
/* i.e. cursor shape.

and arg2 specify scan line start/stop*/
*I

{

inreg.x.ax = 10; /* function 10 */
inreg.x.bx = curstype;
inreg.x.cx = arg1;
inreg.x.dx = arg2;
cal lMDD;

} /* ············-·---------- *I
moveRec *rrflotion (void)
/*Reports net motion of cursor since last call to this function */
{

static moveRec m;

inreg.x.ax = 11;
cal lMDD;
m.hcount = _ex;
m.vcount = _ox;
return C&m>;

} /* -·-------------------·-· */

/* function 11 */

/* net horizontal */
/* net vertical */

void mlnstTask (unsigned mask, unsigned taskSeg, unsigned taskOfs)
/* Installs a user-defined task to be executed upon one or more *I

/ / mouse events specified by mask.
{

struct SREGS seg;

inreg.x.ax = 12; /* function 12 */
inreg.x.cx = mask;
inreg.x.dx = taskOfs;
seg.es = taskSeg;
int86x (0x33, &inreg, &outreg, &seg);

} /* -··------··············· */
void mlpenOn (void)
/*Turns on light pen efllJlation. This is the default condition. */
{

inreg.x.ax = 13; /* function 13 */
cal lMDD;

} /* ·········-·····--------- *I
void mlpenOff (void)
/*Turns off light pen efllJlation. */
{

inreg.x.ax = 14; /* function 14 */
callMDD;

} /* -----·--·-······ ··· ····· */
void mRatio (int horiz, int vert)
/* Sets mickey-to-pixel ratio, where ratio is R/8. Default is 16 */
/* for vertical, 8 for horizontal */
{

inreg.x.ax 15; /* function 15 */
inreg.x.cx horiz;
inreg.x.dx vert;
callMDD;

} /* ·······-·-·------------- *I

May/June 1988 TURBO TECHNIX 57

LISTING 2: MOUSE.PAS

Unit mouse;

{--}
{ For Turbo Pascal Release 4.n. Won't work with older levels }
{ l"°"lements calls to mouse device driver. works with the }
{ Logitech and Microsoft mice, and anything else c~tible. }
{ }
{ NOTE!!! }
{ COMPILER OPTIONS MUST BE SET TO FORCE FAR CALLS! }
{ If not, user defined task installed by mlnstTask }
{ will crash the system. }
{--}

Interface

{$U \tp}
Uses DOS; { For interrupts and registers }

Const
MOD = $33; { Interrupt for mouse device driver }

Type
reset Rec record

exists Boolean;
nButtons : integer;

End;

{ Initialized by mouse function 0}
{ TRUE if mouse is present }

{ # buttons on mouse }

locRec = record
buttonStatus,
opCount,

colunn,
row

End;

{Initialized by mouse fens 3, 5, and 6}
{ bits 0-2 on if corresp button is down }

{#times button has been clicked}
{ opCount not returned by f cn 3 }

{ position }
: integer;

moveRec = record
hCount,
vCount : integer;

End;

{ Initialized by mouse fen 11 }
{ net horizontal movement }

{ net vertical movement }

Var Reg : Registers;

{ These are the Microsoft mouse functions }
Procedure mReset (var mouse : resetRec);
Procedure mShow;
Procedure mHide;
Procedure mPos (var mouse : locRec);
Procedure rrfoloveto (col, row : integer);
Procedure mPressed (button : integer;

var mouse : locRec);
Procedure mReleased (button : integer;

var mouse locRec);
Procedure mColRange (min, max : integer);
Procedure mRowRange (min, max : integer);
Procedure mGraphCursor (hHot, vHot : integer;

maskSeg, maskOfs : word);
Procedure mTextCursor (ctype, p1, p2 : word);
Procedure rrfolotion (var moved : moveRec);
Procedure mlnstTask (mask,

{

{
{

{
{

{

{

{
{

{

{
{

function 0 }
function 1 }
function 2 }
function 3 }
function 4 }

function 5 }

function 6 }
function 7 }
function 8 }

function 9 }
function 10 }
function 11 }

taskSeg, taskOfs : word); { function 12 }
Procedure mLpenOn; { function 13 }
Procedure mLpenOff; { function 14 }
Procedure mRatio Choriz, vert : integer); { function 15 }
{ -- }

58 TURBO TECHNIX May/June 1988

MOUSE MYSTERIES

continued from page 57

cursor access to the entire display
area; these procedures ovenide
the default. A typical application is
to limit the cursor to a pop-up dia
log box. To do so, follow these
steps:

1. Get the current cursor position
with mPos.

2. Create the pop-up.

3. Set the boundaries with
mColRange and mRowRange.

4. Perform the operations neces
sary to make the pop-up go
away.

5. Restore full-screen mouse oper
ation with another set of calls to
these procedures, this time
passing the absolute boundaries
of the display as parameters.

6. Use mMoveto with the cursor
position saved in step 1 to put
the cursor back where it was
during step 1. Note that both
procedures sort the parameters
to make sure that they're in cor
rect order.

Function 10: Set text cursor
(mTextCursor). You have your
choice of two text cursors when
using a mouse; function 10 lets
you select a cursor and specify
how it will appear. The hardware
cursor selection (option 1) puts
the video adapter's text cursor
under control of the mouse, pro
viding a single cursor on the dis
play (although the text 110 posi
tion does not move with the
mouse; see the discussion of
MOUSDEMO later in this article) .
The software cursor (curstype = 0
in Listing 1, or ctype = 0 in List
ing 2) lets you have two cursors on
the display at the same time. One
cursor operates normally in
response to 110, while the other
cursor is controlled by the mouse.
To reduce user confusion, the
software mouse cursor can have a
unique appearance provided by
any of the 256 text characters. My
favorite is character 18H, which is
an upward-pointing arrow.

The software cursor is the
default. Thus, if you call mReset
and then mshow without an inter
vening call to function 10, you get
a mouse cursor independent of
the normal hardware cursor.
Furthermore, this default software

cursor is a simple full-cell block
that inverts the attributes of any
character cell it occupies. For
example, if you have gray letters
on a black background, the cell
occupied by the software mouse
cursor contains a black letter on a
gray background. Unlike the hard
ware cursor, the software cursor
does not blink.

To change the software cursor's
attributes, pass two masks in the
CX and DX registers (in Listing 1,
use arguments argl and arg2,
respectively; in Listing 2, use
parameters pl and p2, respec
tively). argl is the screen mask; it
should have the value 77FFH if
the cursor is a see-through rectan
gle, and OOOOH if the cursor uses
one of the 256 characters as its
shape. arg2 defines the cursor
itself. Place a foreground / back
ground attribute byte in the upper
eight bits, and place the ASCII
value of the cursor shape (charac
ter) in the lower eight; use ASCII
character 0 if the cursor is to be a
simple rectangle. For example, the
patterns for a see-through block
cursor are 77FFH and 7700H; the
patterns for a gray up-a!Tow cur
sor against a black background
are OOOOH and 0718H (where 18H
is the aJTow symbol). Complete
the parameter setup by passing 0
as the curstype argument.

A hardware cursor is simpler to
define. Set up argl and arg2 with
the starting and ending scan lines
of the cursor. The top scan line is
always 0. On a monochrome
adapter, the bottom scan line is
12. For all graphics boards operat
ing in text mode, the bottom scan
line is 7 Gust as it is for ROM
BIOS interrupt IOH, function 1).
To tell the mouse device driver to
take control of the hardware cur
sor, pass the value 1 as the
curstype parameter.

MICE AT WORK
The MOUSDEMO program
(MOUSDEMO.C in Listing 3 and
MOUSDEMO.PAS in Listing 4)
has two phases. The first phase
demonstrates the software cursor,
which is an up-alTow that travels
one cell at a time around the text
display in response to mouse
movement. When the software
cursor moves into a cell already
occupied by a character, the cur-

continued on page 60

IMPLEMENTATION

Function lower (n1, n2 : integer)
Begin

If n1 < n2 then lower := n1
Else lower := n2;

End;

Function upper (n1, n2 : integer)
Begin

If n1 > n2 then upper := n1
Else upper := n2;

End;
{ --------------------------- }

integer; { Local to unit}

integer; { Local to unit }

Procedure mReset; { Resets mouse to default condition}
Begin

reg .ax := O;
intr (MOD, reg);
if reg.ax <> 0 then

mouse.exists := TRUE
else

mouse.exists := FALSE;
mouse.nButtons := reg.bx;

End;
{ --------------------------- }
Procedure mShow; { Make mouse cursor visible }
Begin

reg.ax := 1;
intr (MOD, reg);

End;
{ --------------------------- }
Procedure mHide; { Make mouse cursor invisible }
Begin

reg.ax := 2;
intr (MOD, reg);

End;
{ --------------------------- }
Procedure nf>os; { Get mouse status and position }
Begin

reg.ax := 3;
intr (MOD, reg);
mouse.buttonStatus := reg.bx;
mouse.colunn := reg.ex;
mouse.row := reg.dx;

End;
{ --------------------------- }
Procedure rrl4oveto;
Begin

{ Move mouse cursor to new location }

reg.ax := 4;
reg. ex : = col ;
reg.dx := row;
intr (MOD, reg);

End;

May/June 1988 TURBO TECHNIX 59

(------------------- --- ----- }
Procedure n>ressed; (Get pressed info about a given button }
Begin

reg.ax := 5;
reg.bx := button;
intr CMDD, reg);
mouse.buttonStatus : = reg.ax;
mouse.opCount := reg . bx;
mouse.coll.lll'l := reg.ex;
mouse.row := reg.dx;

End;
(--- ------- -- ------- ---- -- -- }
Procedure ~eleased; (Get released into about a button }
Begin

reg.ax := 6;
reg.bx := button;
intr CMDD, reg);
mouse.buttonStatus := reg.ax;
mouse.opCount := reg.bx;
mouse.col\.111'1 := reg.ex;
mouse.row := reg.dx;

End;
(---------- ----------------- }
Procedure mColRange; (Set coll.lll'l range for mouse }
Begin

reg.ax := 7;
reg . ex := lower (min, max);
reg.dx := upper (m in, max);
intr (MOD, reg);

End;
(-- -- ------ ------ -------- --- }
Procedure ~owRange; (Set row range for mouse }
Begin

reg.ax := 8;
reg.ex := lower (min, max);
reg.dx := upper (min, max);
intr (MOD, reg);

End;
(--- ----- -- --- ----- -- -- ----- }
Procedure mGraphCursor; (Set mouse graphics cursor }
Begin

reg.ax := 9;
reg.bx := hHot;
reg.ex := vHot;
reg.dx := maskOfs;
reg.es := maskSeg;
intr (MOD, reg);

End;

60 TURBO TECH NI X May/June 1988

MOUSE MYSTERIES
continued from page 59

sor temporarily replaces the text.
When the cursor moves on, the
text reappears.

The software cursor phase
works like this: As you move the
cursor around with the mouse,
notice that a mouse position
report appears on the display
each time that you click the left
button. There are two cursors on
the screen: the normal flashing
underscore (which is the hard
ware cursor) and the up-arrow
cursor controlled by the mouse.

This condition continues under
control of the first Turbo C DO
loop (REPEAT .. UNTIL in the
Turbo Pascal program) until you
click the right mouse button. At
that point, the demo moves into
the second phase to illustrate the
hardware cursor.

The hardware cursor comes
under control of the mouse as a
result of the second call to
mTextCursor, which sets the cur
sor shape to a small block the size
of a character.

In this part of the demo, move
the mouse cursor and click the
right button to signal that you
want to enter text, then begin typ
ing after the program prints a
question mark. End the input by
pressing Enter, then move the cur
sor elsewhere and repeat. You can
end the program by clicking the
right button.

Even though the mouse takes
over the hardware cursor's shape
and position, it does not affect the
location of normal 110 opera
tions. Thus, regardless of the
physical cursor's location on the
display, an input or output pro
ceeds from wherever the last 110
occurred. This is admittedly
strange, but true.

Therefore, if you want the 110
location to correspond to the posi
tion of the mouse-controlled cur
sor, you have to track the cursor.
In Turbo Pascal, use GotoXY
as shown in the second
REPEAT .. UNTIL loop of
MOUSDEMO.PAS. This process
involves converting the mouse
position into normal text coordi
nates through integer division by
eight.

Note that MOUSDEMO.C has a
couple of local functions-clrScr

and gotoxy-to emulate intrinsic
Pascal procedures. Both of these
functions call ROM BIOS inter
rupt lOH, which furnishes video
services. T he clrScr function
merely resets the display to the
current video mode, causing the
adapter to clear the screen . The
gotoxy function calls ROM BIOS
function 2, which repositio ns the
cursor to the specified row and
column. While these fu nctions
have nothing to do with the
mouse, they're useful additions
to your Turbo C bag of tricks.

Similarly, the mMoveto after the
gets in MOUSDEMO.C (Read.In in
MOUSDEMO.PAS) is necessary to
relocate the mouse cursor back to
the beginning of the output string.
Otherwise, the cursor remains sta
tionary at the end of the output
string unti l you move the mouse
again, at which point the cursor
jumps back to the start of the
string and commences motion
from that position.

Note that this clean-up process
resets the mouse cursor. This is
in deference to subsequent pro
grams, including DOS, which
migh t otherwise be peculiarly
affected if the mouse is still
"alive."

The MOUSDEMO program is
highly mouse-intensive. It expends a
great deal of programmatic energy
to get information about the
mouse, even though a mouse is an
accessory and not the principal
input device for most software.
For example, a menu-driven appli
cation might accept several alter
native forms of input for selecting
a menu choice:

• Cursor keys followed by Enter
• An alphabetic key identifying a

choice
• Mouse movement and a click

The introduction of a mouse,
with all of the attendant inquiry
and control calls, greatly compli
cates this situation. Life would be
much easier if we could simply
check periodically to see if the
user has done something with the
mouse, and if so, act upon it For
tunate ly, mouse function 12 lets us
do precisely that.

continued on page 62

{ --- -- ----- ----- ---- ----- --- }
Procedure mTextCursor; { Set mouse text cursor }

{ NOTES: }
{ Type 0 is the software cursor. When specified, p1 }
{ and p2 are the screen and cursor masks. }
{ Type 1 is the hardware cursor. When specified, p1 }
{ and p2 are the start and stop scan lines, i.e. }
{ the cursor shape. }

Begin
reg.ax := 10;
reg.bx := ctype;
reg.ex := p1;
reg.dx := p2;
intr (MOD, reg);

End;
{ --- -- -- -- ---- -- --- --------- }
Procedure 111'1otion; { Net movement of mouse since last call }

{ Expressed in mickeys (1/100 11) }

Begin
reg.ax := 11;
intr (MOD, reg);
moved . hCount := reg . ex;
moved.vCount : = reg.dx;

End;
{ -- --------- -- ----- --- -- ---- }
Procedure mlnstTask; { Install user-defined task}
Begin

reg.ax : = 12;
reg.ex := mask;
reg.dx := taskOfs;
reg.es := taskSeg;
intr (MOD, reg);

End;
{ -- ----- -- --- ----- ---- --- -- - }
Procedure mlpenOn; {Turn on light pen e!TKJlation (default)}
Begin

reg.ax := 14;
int r (MOD, reg);

End;
{ --- ------- ----- ----- ---- --- }
Procedure mlpenOff; {Turn off light pen e!TKJlation}
Beg in

reg.ax : = 15;
intr (MOD, reg);

End;
{ --- --- --- ---- ----- ---- ----- }
Procedure ~atio; { Set mickey to pixel ratio }

{ NOTES: }
{ Ratios are R/8. }
{Default i s 16 for vertical , 8 for horizontal }

Begin
reg.ax := 15;
reg.ex := horiz;
reg.dx := vert;

End;
{ ------ ----- ----- -- ------- -- }

End.

May/June 1988 T URBO T ECHNIX 6 1

LISTING 3: M<l.ISDEMO.C

I* MOUSDEMO.C: Demo of basic mouse operations */

I* INCLUDES */
#include <stdio.h>
#include <dos.h>
#include <mouse.i>

/* CONSTANTS */
#define HARDWARE 1 /* cursor types */
#define SOFTWARE 0
#define LEFT O /* mouse buttons */
#define RITE 1
#define ROMBIOS int86 C0x10, &inreg, &outreg) /*BIOS calls*/

I* LOCAL FUNCTIONS */
void clrScr (void);
void gotoxy (int col, int row);

I* ••···•••••••••••••• *I
main ()
{

reset Rec
locRec
int

*theMouse;
*its;
col, row;
input [80];

/* from reset function */
/* from mouse inquiries */

char

clrScr O;
theMouse = mReset C>;
if CtheMouse·>exists) {

/* clear screen */
/* reset mouse */

/*do following if it exists*/

/* Software mouse cursor */
puts ("Software cursor:">;
printf ("Demo of a mouse with %d buttons\n", theMouse·>nButtons);
puts ("Move the mouse around and click the left button");
puts ("Click the right button for hardware demo\n");
mTextCursor (SOFTWARE, OxOOOO, Ox0718); /* set s/w cursor */
mShow C>; /* turn it on*/
do {

its = mReleased CLEFT);
if Cits·>opCount > 0) {

/* check left button */

mHide C>; /*cursor off in case of scroll */
printf C"\nMouse is at col %d, row r.c:J 11

, its·>col1..1111,
its·>row); /* position report */

mShow (); /*cursor back on*/
}

its = mReleased CRITE);
} while Cits·>opCount == O>;

/* Now do hardware mouse cursor demo */
clrScr O;
puts ("Hardware cursor:");

/* check right button */
/* repeat until operated*/

/* clear screen */

puts ("Move the mouse, click left button");
puts ("Type something and press Enter">;
puts ("Click right button to end demo">;
theMouse = mReset C>; /* reset mouse */

/* set h/w cursor */
/* cursor on */

mTextCursor (HARDWARE, 2, 5);
mShow ();
do {

its = mReleased CLEFT);
if Cits·>opCount > 0) {

col = its·>col1..1111 I 8;
row = its·>row I 8;
gotoxy (col, row);
putchar ('?');
gets (input>;
""'1oveto Cits·>colLm11, its·>row);

}

its = mReleased (RITE);
} while Cits·>opCount == 0);

62 TURBO TECHNIX May/June 1988

/* check left button */
/* if operated .•• *I

/* C01f4'Ute text position */

/* go there */
/* prOl1lJt */

/* restore position */

/* check right button */
/* repeat until operated*/

MOUSE MYSTERIES
continued from page 61

Function 12: Define mouse event
handler (mlnstTask). This rather
esoteric function keeps the code
free of frequent mouse checks. In
fact, function 12 is so powerful
that you can incorporate a mouse
into your program with very few
function calls.

mlnstTask (see Listings 1 and 2)
attaches a user-defined routine (a
"task") to the mouse device driver.
When calling mlnstTask, you
effectively tell the device driver,
"Watch for certain events. When
they happen, call my routine."
Thus, a portion of your program
becomes an extension of the
device driver.

THE EVENT HANDLER
An event is any of the mouse
actions listed below. You pass a 16-
bit mask in the ex register to tell
the device driver which events to
watch for. The bit numbers and
their corresponding events are
given in Table 2. For example, if
you want the device driver to call
your routine when either the left
or right button is released, pass
the mask 0014H. Note that bits 7
through 15 are unused.

BIT EVENT

0 Mouse cursor moved
1 Left button pressed
2 Left button released
3 Right button pressed
4 Right button released
5 Middle button pressed

(Logitech only)
6 Middle button released

(Logitech only)

Tab/,e 2. Mouse events and thei.r cor
responding mask bits.

You must also give the address
of your event handler routine to
the task installer. Pass the address'
segment as the second parameter
and its offset as the third parame
ter, as in the example below:

mlnstTaskCOX14,seg(handler),
ofs(handler));

Thereafter, whenever the left or
right button is released, the device
driver automatically hands control
to your routine via a far call.

When calling your handler, the
device driver passes the informa
tion to the registers summarized

in Table 3. You can examine these
registers to find out which event
occurred and where it occurred.
I'll cover this process presently,
but first let's look at how to write
the event handler.

REGISTER DATA

AX Event that occured
(a bit set as above)

BX Status of the buttons
(I bit if down)

CX Horizontal cursor postion
DX Vertical cursor position

Tabl,e 3. Returning data from mouse
events.

Everything about your mouse
event handler is the same as an
interrupt service routine except
that the event handler must exit
via a far return. In Turbo Pascal,
you must exit via a RETF instruc
tion, rather than with the IRET
instruction that Turbo Pascal auto
matically inserts into the machine
code before the END of a proce
dure identified as INTERRUPT.
As a result, you have to code the
entire 12-byte exit processing
sequence with inline code, as
shown in MOUSEVNT.PAS (List
ing 5). This code, by the way, is
invariant for any mouse event
handler, so you can safely insert it
"as is" into your own routines.

The most important restriction
on an interrupt service routine is
that it cannot perform any 1/0,
DOS, or ROM BIOS calls. Since
it's seemingly cut off from the
world, what can the event handler
possibly do? The answer is, "Not
much"-nor should it. The object
of the game is to handle the event
as quickly as possible and return,
so that the device driver can
release control and let the run
ning program resume. Conse
quently, the event handler should
confine itself to saving a record of
the event that the program can
process at its convenience.

DOING IT IN TURBO
PASCAL4.0
Turbo Pascal 4.0 interrupt proce
dures have access to global
variables due to the compiler
inserted entry processing (which

continued on page 64

/* Clean up and end of job */
mTextCursor (HARDWARE, 6, 7);
mReset C>;
cl rScr ();

} else

/*use 11, 12 if mono board*/
/* reset cursor */
/* clear screen */

puts ("Mouse not present in system. Demo can't run.");
} /* ------------------------ */
void clrScr (void) /* clears the screen */

/* Uses ROM BIOS int 10h to reset video mode to itself */
{

struct REGS inreg, outreg;

inreg.h.ah OxOF;
ROMBIOS;
inreg.h.al outreg.h.al;
inreg.h.ah O;
ROMBIOS;

} /* ------------------------ */
void gotoxy (int col, int row)

{

struct REGS inreg, outreg;

/* first get current mode */

I* copy mode */
/* now reset to same mode */

/* pos1t1on text cursor */
I* Uses ROM BIOS int 10h */

inreg.h.ah 2· .
inreg.h.bh O· . /* function 2 sets cursor pos */

/* video page 0 is active */
inreg.h.dh row;
inreg.h.dl col;
ROMBIOS;

} /* ------------------------ */

LISTING 4: MOUSDEMO.PAS

PROGRAM mousdemo; { Demo of the mouse unit }

USES dos, crt, mouse;

CONST hardware 1;
software = O;
left O;
right 1;

VAR theMouse
its
col, row
input

BEGIN
CLRSCR;

resetRec;
locRec;
integer;
string [80];

mReset CtheMouse);
IF theMouse.exists THEN

{ Do the software mouse demo
BEGIN

first }

WRITELN
WRITELN

('Software cursor:'>;
('Demo of a mouse with ',

{ cursor types }

{ mouse buttons }

{ for mouse f cn 0 }
{ for mouse inquiries }

{ clear the screen }
{ initialize the mouse}

{ and make sure we have one }

theMouse.nButtons, ' buttons'>;
WRITELN ('Move the mouse around and click the left button'>;
WRITELN ('Click the right button for hardware mouse demo'>;
WRITELN;
mTextCursor (software, $0000, $0718); { set s/w cursor }

{ turn cursor on } mShow;
REPEAT

mReleased Cleft, its);
IF its.opCount > 0 THEN BEGIN

mHide;
WRITELN ('Mouse is at colllTl'l '

', row' its.row);

{ check left button }

{ in case screen scrolls}
its.colllTl'l,

mShow; { cursor back on }
END;

May/June 1988 TURBO TECHNIX 63

mReleased (right, its);
UNTIL its.opCount > O;

{ Now do the hardware mouse demo }
CLRSCR;
WRITELN ('Hardware cursor:');
WRITELN

{ check right button }
{ loop if not released }

('Hove the mouse, click left button');
WRITELN ('Type something and press Enter');
WRITELN ('Click right button to end demo');
mReset (theHouse); { clear old mouse status }
mTextCursor (hardware, 2, 5); {set h/w cursor as small block }
mShow; { and turn it on }
REPEAT

mReleased Cleft, its);
IF its.opCount > 0 THEN BEGIN

col := its.colurn DIV 8;
row := its.row DIV 8;
GOTOXY (col, row);
WRITE('?');
READLN (input);
mHoveto Cits.colurn, its.row>;

END;
mReleased (right, its);

UNTIL its.opCount > 0;

{ Clean up afterwards }

{ check left button }

{ compute text position }

{ move text pointer }
{ prompt }

{ get the input }
{ restore position }

{ check right button }
{ loop if not released }

mTextCursor (hardware, 6, 7); {if graphics board, else 11,12}
mReset (theHouse); {reinitialize mouse}
CLRSCR;

END
ELSE

WRITELN ('House not present in system');
END.

LISTING 5: MOJSEVNT.PAS

PROGRAM mousevnt;

USES dos, crt, mouse;

TYPE mEvent = record
event,
btnStatus,
horiz,
vert : WORD;

END;

VAR mous mEvent;
m resetRec;

{Illustrates mouse function 12}

< for recording mouse event }

{ --- }
PROCEDURE handler {House event handler called by device driver }

(Flags, cs, IP, AX, BX, ex, DX, SI, DI, OS, ES, BP : WORD);

INTERRUPT;

64 TURBO TECHNIX May/June 1988

MOUSE MYSTERIES
continued from page 63

occurs at the BEGIN keyword).
This code saves all the CPU
registers and then sets DS to point
to the data segment, enabling the
routine to read or write any pro
gram global. The procedure also
has direct access to registers, since
they're named as parameters. Con
sequently, you can simply copy
from registers into the fields of
the record defined as the mEvent
type (or into any other variable of
type WORD). Afterward, control
passes through the inline se
quence and returns to the device
driver.

In this way, the handler quickly
saves a record of the event and
returns. A more sophisticated pro
gram than the demo in Listing 5
might instead stick the record into
a linked list serving as a queue, so
that several events can be stored
up.

In either case, the program
must look periodically to see if a
mouse event has occurred (by
checking if the event field is non
zero or if the queue pointer is not
nil). If a mouse event has oc
curred, the program must then
take action. A necessary part of
the action is resetting the indica
tor so that the same event isn't
processed more than once. The
statement mous.event := O; in the
demo loop performs this step.

DOING IT IN TURBO C
The MOUSEVNT.C program (List
ing 6) is functionally similar to its
Turbo Pascal counterpart, with
one notable exception-the loca
tion of the buffer that saves the
mouse event status. The Pascal
version treats this buffer as a
global, which is accessible from
the interrupt-class handler. The
same thing could be done in
Turbo C by making the handler
function an interrupt-class pro
cess. However, I treated it differ
ently due to a fundamental differ
ence between the Turbo Pascal
and Turbo C compilers.

Turbo Pascal makes it easy to
insert the necessary inline code to

continued on page 66

Basically speaking, there's
one choice ... Turbo Basic!

Compare the BASIC differences!

Turbo Basic 1.1

Compile & Link to 3 sec.
stand-alone EXE

Size of .EXE 28387

Execution time 0.16 sec.
w/ 80287

Execution time 0.16 sec.
w/ o 80287

QuickBASIC 4.0
Compiler

7 sec.

25980
--

16.5 sec.

--
286.3 sec.
--

QuickBASIC 4.0
Interpreter

21.5 sec.

292.3 sec. _J
The Elkins Optimization Benchmark program from March 1988 issue of Computer Language was used.
The Program was run on an IBM PS/ 2 Model 60 with 80287 at 10 MHz. The benchmark tests compil
er's ability to optimize loop-invariant code, unused code, expression and conditional evaluation.

T urbo Basic® is the BASIC that
lets even beginners write pol
ished, professional-looking pro
grams almost as easily as they
can write their names.

The others don't. When you
really examine them, you'll find
that even though they may be
"quick," they make it hard to
get where you're going. (Sort of
like a car with an engine but no
steering wheel.)

Turbo Basic takes you farther
faster-in the comfort of a sleek
development environment that
gives you full control. Naturally
it has a slick, fast compiler, just
like all Borland's technically
superior Turbo languages. It also
has a full-screen windowed edi
tor, pull-down menus, and a
trace debugging system. And
innovative Borland features like
binary disk files, true recursion,

System Requirements: For the IBM PS/ 2 ... and the IBM• (amily or personal
oomputers and all 100% compaUbles. Operating System: PC-DOS (MS-DOS)
2.0 or later. Toolboxes require Turbo ~ic t.0. Memory: 384K RAM for
compi ler. 640K RAM to compile Toolboxes.

• customer satisfaction Is our main concern: if witllin 60 days or purehase this
product does not perform In aa::ordance with our claims. call our customer
service deparunent. and we will arrange a refund.

All Borland produas are trademarks or ttels&ered trademarks of Borland lniernational . Inc
Quiet.BASIC ls 1 rqlscered tradert11tk ol Mlcroeotl Corporatlon Other brand and prodl.ICI. names
art lra(lemarks ollheir respecUve holden. Copyrl&ht • 1988 Borland lmetnalklnal . Inc Bl 1242

and more control over your com
piling. Plus the ability to create
programs as large as your sys
tem's memory can hold-not
just a cramped 64K.

The critics agree. The choice
is basic. Turbo Basic from
Borland.

Add another Basic advantage:
The Turbo Basic Toolboxes New!

• The Database Toolbox gives
you code to incorporate into
your own programs. You don't
have to reinvent the wheel
every time you write new
Turbo Basic database
programs. New!

• The Editor Toolbox is all
you need to build your own
text editor or word processor,
including source code for two
sample editors.

60-Day Money-back Guarantee*

INTERNATIO NA L

'' With a total programming
environment like Borland
International 's Turbo Basic
at the ready, even novice pro
grammers can soon write
programs that look as if they've
been polished by a professional
... What really makes Turbo
Basic special is its blinding
speed, small size. and many
added commands. Programs
compiled with Turbo Basic are
often much faster and smaller
than those produced by other
compilers.
Ethan Winer, PC Magazine Best of 1987

[Turbo Basic] is easy enough to
use for the beginning program
mer and has enough power and
sophistication for the profes
sional. It is an unbelievable
achievement for the price.

Giovanni Perrone, PC Week

[Turbo Basic] simply blew away
my optimization test ... these
test results were truly wonderful
surprises.

T .A. Elkins, Computer Language

Turbo Basic, simply put, is an
incredibly good product.

Wi/Jiam Zachman, Computerworld ''

For the dealer nearest you
call (800) 543-7543

BEGIN
mous.event := AX;
mous.btnStatus := BX;
mous.horiz := CX;
mous.vert := DX;
inl ine C (Exit processing for far

S8B/SE5/ (MOV SP, BP }
$50/ (POP BP }

$07/ (POP ES }

$1F/ (POP OS }

SSF/ (POP DI }

SSE/ (POP SI }

SSA/ (POP DX }

$59/ (POP ex }

$5B/ (POP BX }

$58/ (POP AX }

$CB); (RETF }

END;
(·-------------------------- }

BEGIN
(Set up screen }

CLRSCR;
GOTOXY (17 I 25);

return to device driver }

WRITE ('Press left button for position, right to quit');
GOTOXY (27, 1);
WRITELN ('MOUSE EVENT-HANDLING DEMO');

(Set up mouse }
mReset Cm>;
IF m.exists THEN BEGIN

mlnstTask ($14, seg Chandler), ofs Chandler));
mous.event := O;
mShow;

(Loop to perform demo }
REPEAT

IF mous.event = 4 THEN BEGIN
mHide;
WRITELN C'X mous.horiz 5, ' Y ' mous.vert 5);
mShow;
mous.event := O;

END;
UNTIL mous.event = $10;

(Clean up and quit }
mH i de;
mReset Cm>;

END;
CLRSCR;
END.

LISTING 6: MOUSEVNT.C

/* MOUSEVNT.C: Illustration of mouse function 12 */

I* INCLUDES */
#include <stdio.h>
#include <dos.h>
#include <mouse.i>

/* DEFINES */
#define ROMBIOS int86 C0x10, &inreg, &outreg)

/* TYPE DEFINITION */
typedef struct (

unsigned event,
btnStatus,
horiz, vert;

} mEvent;

/* structure for recording mouse event */
/* event that occurred */

/* current button status */
/* position where event occurred */

66 TURBO TECH IX May/June 1988

MOUSE MYSTERIES
continued from page 64

exit properly from the handler.
Turbo C also supports inline code,
but you need to also have an
assembler that the compiler can
run as a child process in order to
translate the inline assembly lan
guage. If you don't have an assem
bler, you can't use inline code.
Thus, I chose a different way to
store the mouse event status.

When DOS starts a program, it
attaches a prefix structure called
the Program Segment Prefix (PSP)
to the memory image. The lower
half of this 256-byte structure is
rigidly formatted and should
never be modified by the pro
gram. The upper 128 bytes, how
ever, are available for the pro
gram to use. Turbo C programs
don 't ordinarily use this space, so
we can safely grab some of it.

You can get the segment
address of the PSP in a couple of
ways. The simplest way is to read
the system global _psp, which is
furnished by DOS.H and is auto
matically initialized when the pro
gram begins execution. The _psp
glohal contains the PSP segment.
Note that the mouse setup in
MOUSEVNTC uses _psp to initial
ize the pointer to the event buffer.

Because it's called by the mouse
device driver (and therefore
inherits the device driver's data
segment), the handler routine
has no access to globals within
MOUSEVNT.C (physically,
the handler is a part of
MOUSEVNT.C; functionally, it's a
subroutine of the device driver) .
For that reason, we have to use
another way to calculate the PSP
segment. The PSP has a value lOH
less than the code segment in the
Turbo C near memory models
(Tiny, Small, and Compact). Thus,
we can easily find the PSP seg
ment by subtracting JOH from the
CS register (see the second state
ment in the handler function).

While MOUSEVNT.C is a sim
ple demonstration of mouse event
handling, it contains all of the ele
ments necessary for more com
plex applications. The main part
of the program constantly loops.
With each loop, the program
checks the event field to see if an
event has occurred; if one has
occurred, the program takes

action. The left button
mous->event = = 4

produces a position report on the
screen. The right button

mous->event = = OxlO

terminates the loop, ending the
program.

Function 13 and 14: Light Pen
Emulation (mLpenOn/Off). The
reset function sets light pen emu
lation ON by default Software
that expects light pen input then
interprets the mouse cursor as the
light pen's position.

Not much software uses a light
pen, so it's seldom necessary to
call these functions. You may need
them when you're writing an
application that uses a light pen
that's independent of the mouse.
In this case, you should turn emu
lation OFF immediately after
reset, so that your program isn't
confused by dual signals.

By now, you're probably eager
to start creating your own spectac
ular user interface around a
mouse. You should have enough
information and the right tools to
begin. I leave you with three
pieces of advice about mouse
programming:

1. Use a handler installed via
function 12 as much as pos
sible, rather than other status
checking calls.

2. Check the mouse event status
often, preferably in a loop.
Check elsewhere as well if you
leave the loop for lengthy
periods.

3. When you don't want the
mouse to be available to the
user, save the cursor position
and hide it. Later, when re
opening the mouse for busi
ness, reset the cursor position
and restore the cursor to its
former position.

See you in Part 2, where we'll
hunt down the mouse in graphics
territory. •

Kent Porter is the autlwr of Stretch
ing Turbo Pascal and numerous
other programming books. He is a fre
quent contributor to TURBO
TECHNIX.

Listings may be downloaded from
CompuServe as CMOUSE.ARC.

/* LOCAL PROTOTYPES */
void clrScr (void);
void gotoxy (int, int);
/* --- *I
void far handler (void) /* event handler called by device driver*/
{

mEvent far *save;
unsigned a, b, c, d;

/* pointer to save area in diff segment */
/* te111J storage of registers */

a = _AX, b = _BX, c = ex d = DX·
save= MK_FP (_CS - Ox10,

1

0xOOC0);
1

save->event = a;
save->btnStatus = b;
save->horiz = c;
save->vert = d;

} /* ------------------------ */
main ()
{

mEvent far *mous;
reset Rec *m;

/* Set up screen */

/* save registers */
/* point to PSP user area */

/* stuff registers into it */

clrScr (); /* clear screen */
gotoxy C17, 24>;
printf ("Press left button for position, right to quit");
gotoxy (27, 0);
puts ("MOUSE EVENT-HANDLING DEMO");

/* Set up mouse */
m = mReset ();
if Cm->exists) {

mlnstTask C0x14, FP_SEG Chandler),
mous = MK_FP C_psp, OxOOCO);
mous->event = O;

/*initialize mouse*/
/* if mouse exists ... */

FP OFF Chandler));
-,. point to event buffer */

/* reset event signal */
/* show cursor */ mShow C);

/* Loop to perform demo */
do {

if Cmous->event == 4) {
mHide O;

}

printf C"\nX = %3d, Y
mShow ();
mous->event = O;

I* if left button operated •.• *I
I* hide cursor in case of scroll */

%3d 11
, mous->horiz, mous->vert);

/* show cursor again *I
/* reset event signal */

} while Cmous->event != Ox10); /*loop til right button*/

/* Clean up and quit */
mHide O;
mReset C);

}

/* cursor off */
/*reinitialize mouse*/

clrScr (); /* clear screen*/
} /* ------------------------ */
void clrScr (void) /* clear screen */
{ /*Uses ROM BIOS int 10h to reset video mode to itself*/
struct REGS inreg, outreg;

inreg.h.ah = OxOF;
ROMBIOS;
inreg.h.al = outreg.h.al;
inreg.h.ah O;
ROMBIOS;

} /* ------------------------ *I
void gotoxy (int col, int row)
{

struct REGS inreg, outreg;

inreg.h.ah 2· I

inreg.h.bh = O· I

inreg.h.dh row;
inreg.h.dl = col;
ROMBIOS;

} /* ------------------------ *I

/* get current mode */

/* copy mode */
/* reset to same mode */

/* position text cursor */
I* uses ROM BIOS int 10h */

/* fen 2 sets cursor position */
/* video page 0 is active */

May/June 1988 TURBO TECHNIX 67

u
0 = 5
E-o

++, --
There's more to adding or subtracting by one
than meets the eye.

Bruce F. Webster

Part of the strength and power of Turbo C
comes from your freedom to build tight,
precise expressions that do exactly what
you want without taking up a lot of source
code. Much of this freedom comes from

SQuAnEo:-<E C's large list of operators and the flexibil-
ity you have in using them.

New users of C sometimes have problems with
four of C's operators: preincrement, predecrement,
postincrement, and postdecrement. The names seem
formidable, but you can easily break them down:
"pre" means "before," "post" means "after," "incre
ment" means "add l," and "decrement" means "sub
tract l." So, assuming that x is a variable in some
expression, Table 1 shows you how the operators
look and what they do.

OPERATOR NAME EXAMPLE MEANING

Preincrement ++x add l to x before evaluat-
ing the expression

Predecrement --x subtract I from x before
evaluating the expression

Postincrement x++ add I to x after evaluating
the expression

Postdecrement x-- subtract I from x after
evaluating the expression

Tab/,e 1. Turbo C's increment and decrement operators.

Consider the postincrement operator. The Turbo
C statement

x++·
'

is roughly equivalent to the Turbo Pascal statement:

x:=x+1;

I say "roughly" because you can put x++ into
expressions, something the Pascal language won't let
you do with x : = x + 1.

For example, the following statement means
"assign the value of x toy, then add 1 to x":
y = x++;

If x had a value of 42 prior to executing that state
ment, then x would have a value of 43 and y would
have a value of 42 after the statement executed.

68 TURBO TECHNIX May/June 1988

Notice that the statement below has a completely
different result:

y = ++x;

This statement adds 1 to x before assigning x toy, so
that if x starts out with a value of 42, both x and y
end up with a value of 43 after the statement executes.

Perhaps the most common use of these operators
is within loops, especially for loops. The typical for
mat is:

for Ci= start; i <= finish; i++) {
<statements>;

}

This for loop executes <statements> with the vari
able i going from start to finish, being incremented
by 1 each time. You can build the same structure with
a while loop:

i = start;
while Ci <=finish) {

<statements>;
i++·

' }

These examples show how the increment and
decrement operators work, but they don't really dem
onstrate these operators' usefulness. Consider the
short program in Figure 1.

The third executable statement-the while loop
does all the work of counting how many characters
are in the string variable line. Note that the while
structure itself doesn't have any statements to exe
cute; the counting work is done within the expres
sion line[count ++] inside the parentheses.

How does this work? First, remember that the
while loop will repeat its evaluation of the expression
within the parentheses until the expression takes on
a value ofO (or FALSE). Strings in C (such as line)
are terminated with a NUL (ASCII 0) character. So,
this loop will sit there, with count incrementing itself,
until a NUL character is encountered at line[count].

The variable count starts off at 0, so the while loop
tests line[O], then increments count. The loop con
tinues this process, incrementing count by 1 each

continued on page 70

UNLEASH YOUR 80386!
Your 80386-based PC should run two to
three times as fast as your old AT. This
speed-up is primarily due to the doubl
ing of the clock speed from 8 to 16 MHz.
The new Micro Way products discussed
below take advantage of the real power
of your 80386, which is actually 4 to 16
times that of the old AT! These new pro
ducts take advantage of the 32 bit regis
ters and data bus of the 80386 and the
Weitek 1167 numeric coprocessor chip
set. They include a family of MicroWay

80386 compilers that run in protected
mode and numeric coprocessor cards
that utilize the Weitek technology.

The benefits of our new technol
ogies include:
• An increase in addressable memory
from 640K to 4 gigabytes using MS
DOS or Unix.
•A 12 fold increase in the speed of 32 bit
integer arithmetic.
•A 4 to 16 fold increase in floating point

speed over the 80387 /80287 numeric
coprocessors.

Equally important, whichever Micro
Way product you choose, you can be
assured of the same excellent pre- and
post-sales support that has made Micro
Way the world leader in PC numerics
and high performance PC upgrades.
For more information, please call the
Technical Support Department at

617-746-7341
After July 1988 call 508-7 46-7341

mW1167 Numeric
Coprocessor Board

Micro Way®
80386 Support

MicroWay 80386 Compilers
NOP Fortran-3S6 and NOP C·3S6 are globally
optimizing 80386 native code compilers that
support a number of Numeric Data Processors,
including the 80287, 80387 and mW1167. They
generate mainframe quality optimized code and
are syntactically and operationally compatible to
the Berkeley 4.2 Unix f77 and PCC compilers.
MS-DOS specific extensions have been added
where necessary to make it easy to port pro
grams written with Microsoft C or Fortran and
RIM Fortran.

The compilers are presently available in two
formats: Microport Unix 5.3 or MS-DOS as ex
tended by the Phar Lap Tools. MicroWaywill port
them to other 80386 operating systems such as
OS/ 2 as the need arises and as 80386 versions
become available.

The key to addressing more than 640 kbytes
is the use of 32-bit integers to address arrays.
NOP Fortran-386 generates 32-bit code which
executes 3 to 8 times faster than the current
generation of 16-bit compilers. There are three
elements each of which contributes a factor of 2
to this speed increase: very efficient use of
80386 registers to store 32-bit entities, the use of
inline 32-bit arithmetic instead of library calls,
and a doubling in the effective utilization of the
system data bus.

An example of the benefit of excellent code is a
32-bit matrix multiply. In this benchmark an NOP
Fortran-386 program is run against the same
program compiled with a 16-bit Fortran. Both
programs were run on the same 80386 system.
However, the 32-bit code ran 7.5 times faster
than the 16-bit code, and 58.5 times faster than
the 16-bit code executing on an IBM PC.
NOP FORTRAN-386 TM ••••• • ••••••••• $595
NOP C-3S6™ $595

Micro
I/Vay

MicroWay Numerics
The mW1167 '"' is a Micro Way designed high
speed numeric coprocessor that works with the
80386. It plugs into a 121 pin "Weitek" socket
that is actually a super set of the80387. This soc
ket is available on a number of motherboards
and accelerators including the AT&T 6386,
Tandy 4000, Compaq 386/20, Hewletl Packard
RS/20 and MicroWay Number Smasher 386. It
combines the 64-bit Weitek 1163/64 floating
point multiplier/adder with a Weitek/lntel de
signed "glue chip". The mW1167'"' runs at 3.6
MegaWhetstones (compiled with NOP Fortran-
386) which is a factor of 16 faster!han an AT and
2 to 4 times faster than an 80387.
mW116716 MHz• $1495
mW1167 20 MHz $1995

Monoputer'"' - The INMOS T800-20 Trans
puter is a 32-bit computer on a chip that features
a built-in floating point coprocessor. The T800
can be used to build arbitrarily large parallel pro
cessing machines. The Monoputer comes with
either the 20 MHz T800 or the T 414 (a T800
without the NOP) and includes 2 megabytes of
processor memory. Transputer language sup
port from MicroWay includes Occam, C, Fortran,
Pascal and Prolog.
MonoputerT414·20 with 2 meg1 ••• $1495
Monoputer TS00-20 with 2 meg1 ••• $1995

Quadputer '"' can be purchased with 2, 3 or 4
transputers each of which has 1 or 4 megabytes
of memory. Quadputers can be cabled together
to build arbitrarily fast parallel processing
systems that are as fast or faster than today's
mainframes. A single T800 is as fast as an
80386/mW1167 combination!
Biputer '"' TSOO/T 414 with 2 meg' $3495
Quadputer 4 T414-20 with 4 meg1 ••• $6000
' Includes Occam

80386 Multi-User Solutions
ATS'"' - This intelligent serial controller series is
designed to handle 4 to 16 users in a Xenix or
Unix environment with as little as 3% degrada
tion in speed. It has been tested and approved by
Compaq, Intel, NCR, Zenith, and the Department
of Defense for use in high performance 80286
and 80386 Xenix or Unix based multi-user
systems.
AT4- 4 users • $795
ATS - S users ..•.• $995
AT16 - 16 users • $1295

Phar Lap'"' created the first tools that make it
possible to develop 80386 applications which
run under MS-DOS yet take advantage of the full
power of the 80386. These include an 80386
monitor/loader that runs the 80386 in protected
linear address mode, an assembler, linker and
debugger. These tools are required for the MS
DOS version of the MicroWay NOP Compilers.
Phar Lap Tools . • •. $495

PC/ AT ACCELERATORS
2S7Turbo-10 10 MHz• • $450
2S7Turbo-12 12 MHz .• • $550
2S7TurboPlus·12 12 MHz $629
FASTCACHE·2S6 9 MHz•.. • ... $299
FASTCACHE·2S612 MHz•..... $399
SUPERCACHE-2S6•. $499

MATH COPROCESSORS
803S7·20 20 MHz•...... $795
S03S7-16 16 MHz• $495
802S7-10 10 MHz $349
802S7-S S MHz • •• • • $259
802S7-6 6 MHz ••. •• $179
80S7-2 S MHz • $154
8087 5 MHz $99

The World Leader in PC Numerics
P.O. Box 79, Kingston, Mass. 02364 USA (617) 746-7341

32 High St., Kingston-Upon-Thames, U.K., 01-541-5466
St. Leonards, NSW, Australia 02-439-8400

main()
{

char lineC128J;
int count;

count= O· /* initialize the counter to O */
sc~nf(11 %~:1 , line); /* get a string from the user */
wh~le (l1ne[count++l); /*count chars in the string */
printf("There are :Y.d characters in the line\n",··count);

}

Figure 1. Doing real work with an empty while statement.

{

float *myptr,mylist[20J;

myptr = &mylist[OJ; /*point myptr at start of mylist */
while (myptr < &mylist[20J) {

*myptr = 1.0;
myptr++;

}

Figure 2. Incrementing printer referents.

++ --'
continued from page 68

time, until line[count] is NUL, and
the loop ends. Note, however, that
count will be incremented one last
time after the NUL is detected, and
so count will be too large by 1.
That's why we put --count in the
printf() call: we first decrement
count by 1, then print out its value.

POINTERS
When a pointer-type variable is
being incremented or decre
mented, the++ and -- operators
work a little differently. They still
add or subtract a fixed value from
their operands, but that value now
depends upon the pointer type
you can no longer assume the
value to be 1.

Suppose you have some data
type called mytype, and that myptr
is declared to be a pointer to
mytype as shown below:

mytype *myptr;

Given the above declaration, the
expression
myptr++;

no longer means "add 1 to
myptr." Instead, it means "add
sizeof(mytype) to myptr." In other
words, the address stored in myptr
is incremented by the number of
bytes that a variable of type
mytype uses.

How would this be helpful?
Consider the code in Figure 2.
Here, mylist is a list of 20 ele
ments of type float, and myptr is a
pointer to type float. The while
loop starts with myptr pointing to

70 TURBO TECHNIX May/June 1988

the first element in mylist. Each
pass through the loop points
myptr to the next element in the
list. The expression myptr ++,
adds the size (in bytes) of type
float to myptr, "bumping" myptr
to the next element in mylist.

If the size of the float type is
not taken into account, increment
ing myptr only points myptr to
the second byte in the same float
ing point number that myptr
pointed to originally-perhaps a
useful thing to do from time to
time, but not what we want to do
here.

Pointers, then, are a special
case for incrementing and decre
menting. The assumption in
incrementing or decrementing a
pointer is that the pointer is point
ing to a list of items that have the
same data type. The idea is to
point to the next (or previous)
item in the list, not simply to add
or subtract one byte to or from the
address of the pointer's referent.

PITFALLS
You need to be aware of potential
problems using these operators.
For example, consider the follow
ing statements:

x = 10;
y = 3 * x++ + 5 * --x;

After these statements execute
what values do x and y have? The
answers are 10 and 72, respec
tively. Why? Because the --x takes
place before the expression is
evaluated at all, reducing x to 9.
3 * 9 + 5 * 9 is 72. x is then incre
mented back up to 10 with x++.

A second problem, alluded to
above, deals with pointers. In the
test() function in the following
program, note that we're passing a
pointer to a long variable, so that
we can change it within test() and
have that change reflected
elsewhere:
void test(val)
long *val;
{

*val++;
}

main()
{

}

long i;
i = O;
test(&i);
printf("i = :Y.d \n" , i) ;

However, when the program runs,
you'll find that i is not (necessar
ily) 1. That's because the expres
sion *val ++ within Test() does a
postincrement on the address in
val rather than on the long value
pointed to by *val. To increment
the value, you need to write
(*val) ++ instead. This forces the
++ operator to act upon *val
rather than just val.

CONTROL, CONTROL
The increment and decrement
operators in C are popular be
cause they're concise, useful, and
allow tremendous control over
values in iterative operations. Two
cautions when you use them:

• Comment heavily; the terse
ness of C in general, and the
terseness of these operators in
particular, makes extra com
menting necessary.

• Be sure that in any given ex
pression, increment and decre
ment do what you want them to
do. Look carefully at which
side of the operand the opera
tor is placed, and make sure
you understand the difference
between incrementing or
decrementing a pointer and
incrementing or decrementing
the pointer's referent.

Look before you code. That's
one of several important axioms
in working with C, and never
more necessary than when work
ing with++ and--. •

Bruce Webster is a computer merce
nary living in the Santa Cruz moun
tains. He can be reached via MCI
MAIL (as Bruce Webster) or on BIX
(as bwebster).

A QUATTRO SAVE
TRANSLATOR
Quattro' s open architecture lets you create
your own translators for writing spreadsheets to disk
in any format you choose.

Bruce F. Webster

With release of the Quattro Developer's
Toolkit, you can join the Quattro add-in
development team and begin writing
your own extensions and additions to
Borland's Professional Spreadsheet. Start-

rRoGRAMMER ing in this issue, TURBO TECHNIX will
present a series of articles on creating custom
Quattro add-in programs with Turbo C and Turbo
Pascal. Because special libraries and start-up code
are needed to create Quattro add-ins, these pro
grams assume that you have the Quattro Developer's
Toolkit.

In this issue, we'll look at file translator drivers, or
"translators." A translator performs one of two tasks,
depending upon whether information is moving into
or out of Quattro. A retrieve translator converts a file
into a series of records that Quattro understands. A
save translator saves a Quattro spreadsheet as a disk
file using a defined format.

As a simple example, consider a translator that
saves a spreadsheet to disk. Specifically, the transla
tor saves the current Quattro spreadsheet as a plain
ASCII text file, with each row of cells taking up one
line and all cells within a row separated by commas.
Cells that contain text (such as label cells) are saved as
text surrounded by quotation marks; thus, any com
mas embedded in the text won't be confused with
commas that separate two adjacent cells. Empty rows
are inserted as blank lines; empty cells in a non
empty row are inserted as a pair of double quotes
("").

HOW A SAVE TRANSLATOR WORKS
When Quattro saves a file to disk, it checks the
extension of the output filename provided by the
user, then loads the corresponding file translator.
Quattro looks in its current directory for a translator
file named FSxxx.TRN, where xxx is the output file
extension. For example, if Quattro is told to save the
current spreadsheet to BUDGET.ASC, it looks for a
file named FSASC.TRN, loads that file, and then uses
it to save the spreadsheet.

Quattro opens the output file itself and starts pass
ing spreadsheet records to the save translator. Quattro
contains two types of spreadsheet records: cell and
nonce!!. A cell record holds the contents of a given
cell (i.e., the spreadsheet's data), and can be one of
several types (most notably, INTEGER, NUMERIC,
LABEL, and FO RMULA). Noncell records hold
spreadsheet settings and other descriptive
information.

Quattro passes these spreadsheet records one at
a time to the save translator. The translator then
decides what to do with each record. Typically, the
translator converts each record to a format appro
priate to the type of file it's creating. Next, the trans
lator writes the translated record to that new file.
While the translator can ignore or combine records,
it always receives each record one at a time, in this
order:

• WKQBOF (WKQ Beginning-Of-File) record
• all noncell records
• all cell records
• WKQEOF (WKQ End-Of-File) record

The translator can request that Quattro skip all
the noncell records; likewise, after receiving all the
noncell records, the translator can request that
Quattro skip all the cell records.

STRUCTURE OF A TRANSLATOR
A save translator must contain at least these four
functions: init_save(), cvt_rec(), end_nonc(), and
end_save().

init_save(). This function handles initialization of
the save translator. (init_save() does not open the
output file-that step is performed by Quattro.)
init_save() takes the following form:

int init save(unsigned h,
- char *filename ,

unsigned password);

continued on page 74

May/June 1988 TURBO TECHNIX 71

Borland's New Professional Spreadsheet

Quattro:Twice the speed.
Twice the power. Half the price.

Q uattro··. our new professional
spreadsheet. proves there
are better and faster ways to

do everything. To do graphics. To
recalculate. To do macros. To save
and retrieve. To search. sort. load.
To do anything and everything that
state-of-the-art spreadsheets
should do.

Quattro gives you
presentation-quality
graphics

Quattro brings new highs in
quality graphics to your spread
sheet. It also brings Postscript'"
support and new variety and
diversity to the kinds of graphs
and graphics you can produce
from your spreadsheet. and you
can produce hard copy of your
graphics-with either printer
or plotter-without leaving the
spreadsheet. All you do is hit
"Print." Quattro makes it easy
to get hard copy-and you don't
have to buy a separate graphics
program.

·cus1omeisa1stact100 SOUl ~n concem. 1wtri.n60d.1ysotpucnast1ll'S !lforutl<loesnolpertorm in
actOl~nce .,.. ,tn w ell! ms call OU' CUSlomtr ~Y1Ct oepartmenl and ~ .. ~ i!lranqe ' re1Ul1d

""" "'••k 8/2/17

l/t/17
llCtll•l

8/l6/87
•ct1.1111

l/2J/t7
actu,,. 1

81 30/t7
•ctu111

916/87
actual
91 1 '1•1
•ctu111

9/20111
llCti.taJ

9/27/17
llCtuaJ

loO

Joo ,
loo

" loo .,

'" .,

" "
" ,.

•o

"
" ,,

•o

'

" "
" "
" ,,

" ,,

Quattro recalculates much
faster than you-know-who

The smartest and fastest way
to recalculate a spreadsheet is to
do what Quattro does. something
called "intelligent recalc," which
in English means you only re-count
the numbers that count.

In a spreadsheet, not all numbers
are born equal and changing one
number doesn't always change
everything, so Quattro recalculates
just the formulas that matter. not
all the formulas it knows. (You
wouldn't reshoot a whole movie
just because you changed one
scene. but unfortunately, that's the
way 1-2-3 does it-and that's why
it takes so long.)

Quattro demystifies
Macros and makes
your work go faster

Using macros-electronic short
cuts-is easy with Quattro. Quattro
offers a complete macro debugging
environment as you "single-step"
through your macros and record
them as you work.

AHBorlind111000ttsarelfademarksorreg.stl!fedrrl<lemaltsolBorlandlnlematOONl,lnc 1·2·31$J
leQo$11!fedllaoemarkoll<*JSDe~Co:pSOll1SiilltQISleredllaoetTlafkOISymaoletColplT11ner

Hi1Ptbl•Sh11QO"l'S1on0tnet111and..Op0Wt1~;nlrJdemarutwreQtSll!ftdlfldema'ksolll'tt

rts0etl,11tholders Coo1!"'glt01968BorlMMIWtrNlllOllal 811206A

If you know how to use
1-2-3, you know how
to use Quattro

You don't have to learn a whole
new program. Quattro works
directly with all 1-2-3 file formats.

o importing/exporting or macro
translation is required. Quattro can
also load and save ASCII, Paradox®.
and dBASE® files.
Compatible with 1-2-3? Yes.
Faster than 1-2-3? Yes.
Technically superior to 1-2-3? Yes.
Half the price of 1-2-3? Yes!

' ' ... It's a perfect choice
for either the novice spreadsheet
user or for someone who has
mastered every arcane twist
of 1-2-3.

Ezra Shapiro. Byte J J

Quattro includes SQZ!® Plus
data compression

A special implementation of SQZ!
Plus. the spreadsheet file compres
sion utility, is built into Quattro
and comes to you absolutely free!
SQZ! Plus for Quattro automatically
compacts and expands Quattro
spreadsheets by up to 95% during
file saving and retrieving.

In ven to1 y Levels

By Items

180J:- -

1 6C)()l-

14001-

----~-- - 1 r- 1
I I Chairs ,, _ ,

Expenses

' I ' I Tables

I Lamps ,_,
1 PC's I

1200f
l~~

'---- ~

I Quattro: Natural
vo ution

1970
HANO-HELO CALCULATOR

1979
VIS/CALC •

1982
LOTUS 1-2-3°

1987
QUATTRO"

Quattro: The Professional Spreadsheet

FEATURE

ReCalc Cash Flow Model (5K cells)
-

~ Delete Row 15K cells (Recalc Time)

-
QUATTRO

. 27 sec.

. 76 SBC .

LOTUS
2.01

....
~

t--- ---t-

2.90sec .

2.38 sec .

19 .8 sec .

17.4 sec .

Load File (15K cells)

Page Down (A1 to A1000)

Presentation-quality Graphics
--

Cl)
Graph Types

-
~ Integrated Graph Printing $;:
Q. 1--- -
~ Full Graph Customization

On-Screen Font Styles

1-- -
Postscript Support

User-modifiable Menus

-

- -
--

--- t-

-

15.9 sec.

12.2 sec.

YES

10

YES
--

YES

11

YES
-

YES

NO

6

NO

NO

NO

t t-- - .-; -
NO

NO

NO

NO

NO

- Menu Shortcuts YES 1--j:::; Pull-down menus YES
~ - ----m Point and Press Editing YES s - - -

Automatic Installation YES

Macro Learn Mode YES
ct:

~
t-- --1 t--

NO

27

NO

Maximum Number of Macros
Q 1---Q.

Single Step Macro Debugging Environment

Price

60-Day Money-Back Guarantee•

Get Quattro, the
professional spreadsheet
for only $247.50

Quattro is so advanced it's easy
to use and it's half the price of
1-2-3. It's fully compatible with all
your existing 1-2-3 files and
macros-but it makes everything in
them look better. print better and
makes your work go faster.

l'or the IBM PS/2 and the IBM famil y of personal
computers and all 100% compatibles.

Unlimited

YES
--1----- ---~

$247.50 $495

Benchmark details available upon request.

F'or the dealer nearest you
or a brochure.

Call (800) 543-7543

INTERNATIONAL

typedef struct {
unsigned rectype;
unsigned reclen;

/* record type */

char recbody;
/* record body length */
/* start of record body */

) REC_HDR;

typedef struct {
int doserr;
unsigned int rectype;
int reclen;
char *recdata;

) RECDESC;

/* error code CO if none) */
/* record type */
/* record length */
/* pointer to record body */

Figure 1. The REC_HDR and RECDESC types used by a Quattro save
transl,ator.

8
9
10
11
12
13
14
15
16
17
18
19
20
B7: CD4) 31949
10-Mar-BB 11:25 AM

Figure 2. The spreadsheet SAMPLE. VVKQ on the Quattro screen.

"","EXPENSE REPORT FOR ALLISON SPRINGS"
"","WEEK ENDING JUNE 27, 198711

THE SAVE TRANSLATOR
continued from page 71

h is the DOS file handle for the
file that Quattro has opened.
filename is the complete DOS
pathname, and password is a flag
that indicates if the user has
entered a password.

init_save() returns one of two
values: 0 or SKIP _NON_CELLJi.
If init_save() returns 0, then
Quattro passes the noncell
records, starting with BOF; if
init_save() returns
SKIP _NON_CELLS, Quattro
passes only the cell records.

cvt_rec(). This function retrieves
the Quattro spreadsheet records
one at a time. It converts each
record to the required output for
mat, and writes that converted
record to the output file. cvt_rec()
typically appears as shown below:

RECDESC *cvt_rec(REC_HDR r);

Figure 1 shows the types
REC_HDR and RECDESC, which
are defined in the header files
included with the Quattro Devel
oper's Toolkit. The record type
and length fields together are
called a record header. The field
recbody is the beginning (the first
byte) of the record body.

The basic structure of cvt_rec()
is usually a switch statement,

"DAY OF WEEK","DATE","LOCATION","TRANS. 11 , 11 HOTEL","ENTERTAIN 11 , 11MEALS 11 , 11 TOTAL 11 , 1111 , 11DAY OF WEEK 11
,

11DATE 11
,

11MEALS 11

"SUNDAY",31949,"SAN DIEG011 ,89,0,10,36.95,135.95, 1111 , 11 TUESDAY 11 ,31951,35
"MONDAY",31950,"SAN DIEG011 ,9,67,32.5,19.56,128.06, 1111 , 11 SUNDAY 11 ,31949,36.95
"TUESDAY",31951,"SAN DIEG0",27.55,67,0,35,129.55, 1111 , 11WEDNESDAY 11 ,31952,45.15
"WEDNESDAY",31952,"SAN DIEG011 ,12.5,67,98.1,45.15,222.75
"THURSDAY",31953,"SAN DIEG011 ,0,67,0,24.25,91.25
11 FRIDAY 11 ,31954, 11 SAN DIEG011 ,0,67,0,28.55,95.55
"SATURDAY",31955,"SAN JOSE 11 ,133,67,0,0,200
1111 1111 1111 ··-·· ··-·· ··-·· ··-·· ··-·· I I I I I I I

"TOTAL","",'"',271.05,402, 140.6, 189.46, 1003.11

Figure 3. The spreadsheet SAMPLE. VVKQ, translated to comma-delimited ASCII format.

74 TURBO TECHNIX May/June 1988

based on r.rectype, which handles
each record according to its type.

cvt_rec() is expected to return a
pointer to a RECDESC structure.
This structure must be declared as
static so that it continues to exist
between calls to cvt_rec(). The
entire RECDESC structure should
be initialized to zero. However,
the doserr field can be used to
prematurely abort the entire save
process, in case of file corruption
or other errors. To abort, set

doserr to one of the following
values, which are predefined in
the header files:

DE_CORRUPT-Save the file to
disk with this record as the last
record.

DE_ABORT-Don't save the file;
delete the specified file from disk.
end_nonc(). Quattro calls
end_nonc() to signal that all of the
noncell (spreadsheet information)
records have been passed to the
translator. end_nonc() is shown
below:

int end_nonc(void);

All records passed by Quattro
after it calls end_nonc() are cell
records. At this point, you can tell
Quattro to skip all the cell records,
according to which of the follow
ing two values are returned by
end_nonc() to Quattro:

0-Pass all cell records.

SKIP _CELLS-Skip all cell
records.

If end_nonc() returns
SKIP _CELLS, then Quattro
completes the save process
without passing any additional
spreadsheet records.

end_save(). end_save() is pro
vided for the convenience of the
translator, and typically is used to
release memory heaps or to close
any auxiliary files opened by the
translator. (Quattro opens and
closes the data file selected by
the user.) A return value is not
required. end_save() is shown
below:

void end_save(void);

More about translator functions.
You can, of course, have many
more functions within your save
translator. However, you must
include the four functions discuss
ed above, and they must contain
the declarations shown above;
otherwise, you won't be able to
link those functions with the
necessary routines to produce an
executable file translator. Also,
you cannot put a main() function
into your translator!

A SIMPLE TRANSLATOR
FSASC.C in Listing 1 is a simple
save translator that writes a
Quattro spreadsheet as an ASCII

continued on page 76

LISTING 1: FSASC.C

!* FSASC.C COITl'lla -delimited save driver

*/

author:
last update:
COfllliler:
link fi Les:

David Golden (minor changes by Bruce F. ~ebster)
08 March 1988
Turbo C 1.5
COSAVEC.OBJ, QC.LIB, CC . LIB

This exalll>le uses •cvt_rec• to convert records. For11?Jla records
are converted to either a NUMBER or LABEL record.

#include <quattro.h>
#include <qdriver.h>

/*general Quattro Toolbox header file*/
/*additional header file for translators*/

char out[300J; /* output buffer "'-!St be external to any
procedure to ensure it stays in existence
upon return to Quattro */

unsigned handle; /*file handle stored here*/

/***Procedure specific to saving COITl'lla-delimited * * *!

/*
Procedure 'fillin' that 'fills in' by generating:
1) •null' fields that serve as placeholders for blank cells (1111)

2) 'null' lines that serve as placeholders for blank rows
(just CR/LF)

Receives: pointer to cell record that contains header information
needed (the cell col and row)

Returns: nothing
*/

int lastcol=O;
int lastrow=O;

/* coll.1111 for last cell written*/
/* row for last cell written*/

int foundinrow=O; /* 'true' if cell already written out
for this row */

/*all record types have header info in conmon */
void fillin(NUMBER_REC *r)
{

int i,nlll1_lines,nlll1_flds,str_len;
int col = r->col;
int row = r->row;

if(row > lastrow)
{ /*generate end of line sequence followed by as many blank lines

as needed */
out[OJ = OxOO; /*ensure we concatenate at start of buffer*/
for(nlll1_lines = row-lastrow, i=O; i < nlll1_lines ; i++) {

strcat(out, 11\r\n11);

/* output the buffer every 125 iterations to guarantee we
don't overflow: 125*2=250 C <300) */

if((i%125)==124) {
write(handle, out, strlen(out) >;

out[OJ = OxOO;

May/June 1988 TURBO TECHNIX 75

}

}

}

}

if(strlen(out)>O) /* flush buffer */
_write(handle, out, strlen(out) >;

lastrow=row;
lastcol=O;
foundinrow=O;

/* generate field separators to go between this field
and previous one, and if necessary create null fields
for the etl1'tY cells */

outCOl = OxOO;
if Cfoundinrow)

strcat(out, 11 , 11);

/*generate null fields (including preceding conma) if an etl1'tY
cell preceded this one (in the same row) */

J* see if we need to create any null fields to precede this one */
ifC!foundinrow)

nun_flds=col; /* row starts with efl1)ty cells */
else

nun_flds=col-lastcol-1;

for(i=O ; i<nun_flds ; i++) <
strcat(out, 11 \

11
\

11
,

11
);

}

if(CiX90) == 89) <

}

write(handle, out, strlen(out) >;
outCOl = OxOO;

if((str len=strlen(out)) > 0) /* flush buffer */
_write(handle, out, str_len >;

lastcol = col;
foundinrow = 1;
return;

/* init_save() function

*I

Initialize save driver. This is the first procedure called.
Should save as an extern the file handle passed to it since
it is not passed on subsequent calls. Quattro opens and
closes the output file.

Return value is either 0, meaning to pass non-cell records then
to pass cell records, or SKIP_NON_CELLS to skip non-cell records.

NOTE: this version will cause two warnings, since we use neither
'filename' nor 'password'. You can safely ignore these
warnings.

76 TURBO TECHNIX May/June 1988

THE SAVE TRANSLATOR
continu,ed from page 75

(plain text) file, with one row per
line. Cells in a given row are
separated by commas; empty cells
are inserted as a pair of double
quotes (""). Labels are enclosed
by double quotes to identify them
as labels and to prevent any con
fusion that could be caused by the
(entirely legal) presence of a
comma within a label.

In addition to the four required
translator functions, FSASC.C con
tains the function fillin(), which
checks for empty cells and rows
located between the cell just
passed to FSASC.C and the last
cell that FSASC.C handled. fillin()
inserts a pair of double quotes ("")
to indicate empty cells, and inserts
blank lines for empty rows. All
cells in a given row are separated
by commas.

The function init_save() just
saves a copy of the file handle
and returns a value of
SKIP _NON_CELLS, telling
Quattro that the translator only
wants cell records.

Since the noncell records are
being skipped, the function
end_nonc() won't be called by
Quattro and doesn't have to do
anything. It still must be declared,
however, in order for the transla
tor to link properly.

cvt_rec() is called once by
Quattro for each nonempty cell.
Quattro starts with the first (top
most) nonempty row and sends all
nonempty cells (from left to right)
in that row before moving to the
next nonempty row. cvt_rec() calls
fillin() to insert any empty rows or
cells, then writes out the numeric
value or label string.

In this case, end_save() doesn't
do anything, but it needs to be
declared so that the translator can
be linked.

COMPILING AND LINKING
A file translator's internal struc
ture is different from the internal
structure of a regular .EXE file.

Specifically, a fil e translator has
different startup code and uses a
special library (which replaces the
regular Turbo C Runtime Library).
To create the translator, you must
have th e Q uattro Developer's
Toolkit, wh ich contains all the
fi les you need.

A fi le translator must be com
piled with Turbo C's Compact
memory model. T he startup code
fi le is COSAVEC.O BJ (instead of
the regu lar COC.OBJ). Since the
special library is QUATTROC.LIB,
which contains all the 1/0 rou
tines used in FSASC.C, you don't
have to link in CC.LIB. If you use
any math routines, th en you
must link in a special library,
QMAT HC.LIB, which replaces
MATHC.LIB.

If you're using the Turbo C
Integrated Environment
(TC.EXE), you'll need to use a
project fi le. For FSASC.C, create
the fil e FSASC.PRJ, which con
tains the following:

c:\tc\lib\cOsavec.obj
fsasc.c
c:\tc\lib\qc.lib

T his fi le presumes that your
library directory is C: \ TC\LIB;
you may need to change th is path
to reflect your own hard disk
setup.

Note that when you list
COSAVEC.OBJ as the first fi le,
Turbo C's linker uses it (instead
of COC.OBJ) as th e startup code.
Be sure to set the compiler model
to Compact. After you compile
and link, you'll have a fil e named
FSASC.EXE. Rename it to
FSASC.TRN, and copy it to your
Q uattro disk or directory for test
ing and use.

If you're using the Turbo C
command-line compiler (TCC.EXE),
compile your program to .OBJ
code only. Use the Compact
model and tell TCC where the
include directory is located:

C>tcc -c -me - Ic:\tc\include fsasc

Invoke TLINK EXE and tell it
which startup code and libraries
to use:

C>tlink c:\tc\lib\cOsave fsasc,
fsasc.trn,, c:\tc\lib\qc

continued on page 78

init_save(h,filename,password)
unsigned h; /* file handle*/
char *filename; /*filename - - has Pascal style length byte as

initial byte, null-terminated*/
unsigned password; /* password flag : 1 if one entered, 0 if not */
{

handle = h;
return SKIP_NON_CELLS;

}

/* end_nonc() function

*I

Called after all the non-cell records have been passed.
Return SKIP_CELLS to skip the cell records or 0 to not skip.

int end_nonc(void)
{

return O;
}

/* cvt_rec() function

*I

Convert given record. Called to present a worksheet record to
the driver. The translator can either write the record information
to disk or ignore the record.

This procedure is passed a pointer to the worksheet record header.
It should return a pointer to a record descriptor structure.
On a •save• operation the •ctoserr' and •reclen' fields are used
to return status information to Quattro.

The doserr field must be given one of the following status codes:
DE CORRUPT save the file to disk with this as the last record
DE-ABORT do not save the file; delete it from disk
ACCEPTED all is okay; send the next record

RECDESC rec; /* record descriptor to return. This must
be external to ensure it remains in existence
after a pointer to this structure is returned
to Quattro. */

RECDESC * cvt_rec(REC_HDR *r)
{

unsigned rectype; /* record type */
void *body; /* pointer to record body */

/* qTempHeapC4*1024); /* create heap for internal translator use */

rectype = r->rectype; /* fetch record type */

rec.doserr =ACCEPTED; /*Primary return flag says all is OK*/
rec.reclen =ACCEPTED; /*Secondary return flag says all is OK. */

body = (void *) &r->recbody; /* pointer to body */

switch Crectype) {

May/June 1988 TURBO TECHNIX 77

}

case INTEGER: {

}

INTEGER_REC *c = CINTEGER_REC *) body;

fill in(CNUMBER_REC *) c); /*typecast done
to prevent warning */

sprintf(out,"Xd",c->value);
writeChandle, out, strlen(out));

break;

case NUMBER: {
NUMBER_REC *c

/* includes nuneric-valued forrrulas */
(NUMBER_REC *) body;

}

fillin(c);
sprintf(out, 11Xg 11 ,c->value>;
write(handle, out, strlen(out));

break;

case LABEL: {
LABEL_REC *c

!* includes string-valued forrrulas */
= CLABEL_REC *) body;

}

fill in((NUMBER_REC *) c); /*typecast done
to prevent warning */

/* skip leading format byte: */
sprintf(out, 11 \ 11%5\1111 , c->text+1);
write(handle, out, strlen(out));

break;

default:
break;

!* ignore WKQEOF end of file record*/

return &rec; /* return pointer to record descriptor */

}

/* end_save() function

*!

Called after all of the records have been passed to the driver.
Gives the translator the chance to close ancillary files,
deallocate heaps, etc.

void end_save(void)
{

/* qTe!JllOeallC);
return;

}

/* release tetrp<>rary memory heap */
/* There is no return value */

78 TURBO TECHNIX May/June 1988

THE SAVE TRANSLATOR
continued from page 77

The result is FSASC.TRN; copy
this file to your Quattro disk or
directory.

USING A TRANSLATOR
Using a translator is easy: just save
a spreadsheet with the appropri
ate file extension. For example,
load in the file SAMPLE.WKQ,
which comes on your Quattro
disks. (Figure 2 shows a portion of
SAMPLE.WKQ as it appears on
your screen from within Quattro.)
Now, save SAMPLE.WKQ to disk
as SAMPLE.ASC, using the Save
option on Quattro's File menu.
Behind the scenes, Quattro auto
matically looks for the save trans
lator file FSASC.TRN, loads it
from disk into memory, and uses
it to write the spreadsheet to disk
in ASCII format. The result is an
ASCII file that looks like the file
in Figure 3.

What if the appropriate file
translator can't be found on disk?
Quattro then saves the file to disk
in the standard .WKQ format.

ADD-IN VERSATILITY
This should give you a feeling for
what it's like to use the Quattro
Developer's Toolkit. Most of the
add-in programs that you can
create follow the same general
format of a set of functions called
by Quattro at specific times or in
response to specific events. In
future issues, we'll talk about how
to write custom @ functions, as
well as general add-in programs
in Turbo C and Turbo Pascal. •

Bruce Webster is a computer merce
nary living in California. He can be
reached via MCI MAIL (as Bruce
Webster) or on BIX (as bwebster.)

Listings may be downloaded from
CompuServe as OVTRAN.AR.C.

A MEMORY-RESIDENT
CLOCK UTILITY
No matter what else your PC is doing, it can always give you
the time of day.

Ron Sires

Memory-resident utilities have taken the
PC world by storm. Once installed, these
programs remain in your computer's
memory and wait for an event that tells
them to take action. The signal event may

WIZA RO b d h e user-generate , sue as striking a
mouse button or a particular key combination; or it
may be computer-generated, like reading a disk or
writing to the screen. After the utility has performed
its task, it returns to its inactive state in the comput
er's memory, waiting for the signal event to occur
again.

The signal event is termed an interrupt, and the
procedure that is called when the interrupt occurs is
an interrupt service routine, or ISR. The interrupts are
numbered from 0 to 255, and many pass control to
ISRs in the PC ROM BIOS when they occur. A
memory-resident program may replace a ROM BIOS
routine with its own ISR, but a well-behaved resident
program will save the address of the interrupt's origi
nal ISR. When the interrupt is generated, the pro
gram will call the original ISR, after taking its own
action. This allows more than one memory-resident
utility to service the same interrupt.

CLOCKCOM, a memory-resident clock utility
application, incorporates an ISR and demonstrates
how Turbo C makes the development of well
behaved memory-resident programs very easy.
CLOCK takes over the timer control interrupt (inter
rupt 1 CH), which the PC generates about 18.2 times
a second. Every time this interrupt occurs, CLOCK
inspects the system time and displays it in the upper
right corner of the screen if the time isn't already
displayed there. Every time the minutes roll over to a
new hour, the speaker beeps twice.

INSTALLING THE ISR
The source code for CLOCKCOM is given in Listing
1. The following global declaration in CLOCKC
defines oldtick as a pointer to an interrupt function
that doesn 't return a value:

void interrupt (*oldtick)();

Pointer oldtick saves the address of the timer inter
rupt's original service routine. The Turbo C keyword
interrupt causes the compiler to add ISR housekeep
ing code to the beginning and end of the function.
When the function terminates, the computer returns
to the state it was in before the function took control.

The original ISR will be replaced by tickintr(),
which is also declared as an interrupt function. This
process of saving and replacing ISRs is handled by
four lines of code from main(), shown in Figure 1.

The number of an interrupt, in this case interrupt
lCH, is passed to Turbo C's getvect() function.
getvct() returns the address of that interrupt's cur
rent ISR, which is also known as the interrupt vector.
This address is saved in oldtick. The disable() func
tion turns off interrupts, so that the computer doesn't
attempt to call the JSR before it's completely in
stalled. The number of the interrupt being replaced,
and the new ISR's address, are passed to the
setvect() function . Turbo C interprets the identifier
tickintr (without the parentheses) as the address of
the function, rather than as a call to the function.
Finally, enable() turns the interrupts back on once
the new ISR is completely and safely installed.

WHAT TIME IS IT?
The ISR tickintr() uses the Turbo C biostime()
function to determine the time. The invocation
biostime(O,OL) returns the number of timer ticks (in
the form of a long integer value) that has occurred
since system midnight. These timer ticks occur at a
rate of 18.20648193 per second, according to IBM's
ROM BIOS listing. For CLOCK's purposes, rounding
this rate to 18.2065 ticks per second yields sufficient
accuracy.

continued on page 80

May/June 1988 TURBO TECHNIX 79

CLOCK
continued from page 79

First, we want to convert this
number of ticks into the number
of minutes that have passed since
system midnight. The formula to
use is

minutes since midnight=

ticks since midnight
18.2065 ticks/ second X 60 seconds/ minute

or:
ticks since midnight
1,092.39 ticks/ minute

In a structured

language such

as C, designing a

good data structure

may be even more

important than

using a correct

program control

structure.

One major consideration in any
memory-resident program (espe
cially one that executes 18.2 times
per second!) is to use as little time
and memory as possible. Since
floating point arithmetic is very
costly in terms of both time and
memory, it's best to use integer
arithmetic. To perform this divi
sion using integers, we apply the
mathematical fact that multiplying
the top and bottom of a fraction
by the same number doesn't
change the value of the fraction.
The first instruction in tickintr()
multiplies the top and bottom of
our fraction by 100, converting
ticks into minutes without resort
ing to floating point arithmetic:

mins aft mid =
(biostime(O,OL) * 100L) I 109239L;

From this number, tickintr()
derives rawhour, which is the
hour on a 24-hour clock; hour,

80 TURBO TECHNIX May/June 1988

oldtick = getvect(Ox1C);
disable();
setvect(Ox1C, tickintr);
enable();

/* Save original JSR in oldtick */
/* Disable interrupts. */
/* Replace JSR with tickintr() */
/*Allow interrupts again. */

Figure 1. The process of saving the old JSR interrupt vector and replacing it
with tickintr.

typedef struct SCR LOC {
char s char, s attr;

} SCR_LOC; - - /* One screen location. */
*/
*I

typedef SCR_LOC SCRLJNE[80J; /*One screen line.
SCRLINE far *scr; /* Entire screen.

Figure 2. Declaration of the screen access data structures.

Myline[5J C10J .s_char = 'Z'; /*Put a 'Z' at row 5, col. 10 */

HomeAttr = Myline[OJ [OJ.s attr; /*Store the attribute of*/
- /* the upper left corner. */

Figure 3. Direct assignments to the video refresh buffer.

Start Stop Length Name

OOOOOH OOF90H OOF9EH TEXT
OOFAOH 01247H 002A8H -DATA
01248H 0124BH 00004H -EMUSEG
0124CH 0124DH 00002H -CRTSEG
0124EH 0124EH OOOOOH -CVTSEG
0124EH 0124EH OOOOOH -SCNSEG
0124EH 01297H 0004AH -BSS
01298H 01298H OOOOOH =BSSEND

Class

COOE
DATA
DATA
DATA
DATA
DATA
BSS
BSSEND

Figure 4. CLOCK's memory usage from the map file.

which is the hour on a 12-hour
clock; and minute, the number
of minutes after the hour.

STRUCTURES AND SCREENS
In a structured language such as
C, designing a good data structure
may be even more important than
using a correct program control
structure. A data structure that
corresponds closely with the ob
ject it models makes a program
clearer and more efficient.
CLOCK's method for accessing
the display screen illustrates such
a data structure.

Each position on the PC's
screen corresponds to a pair of
bytes in memory-the first byte is
the ASCII code of the character,
while the second byte is the attri
bute or color of the character and
its background. Two thousand of
these pairs exist; one pair corre
sponds to each location on the 25-
row, 80-column display. These
character-attribute pairs-called
the video refresh buffer-begin at
hex address BOOO:OOOO for display
adapters connected to a mono
chrome screen, or at B800:0000
for adapters connected to a color
screen.

Once given the row and
column of a character or attribute,
CLOCK's video access data struc
tures can read or write that char
acter or attribute at any screen
location. For example, the struc
tures allow the program to easily
put an 'S' at row 5, column 20;
or to find the attribute of row 3,
column 79. The video access data
structures are set up in the dec
larations (excerpted from
CLOCKC) in Figure 2.

In Figure 2, the typedef key
word defines a complex variable
in a series of logical steps. Unlike
the declaration of a variable, a
typedef declaration does not allo
cate memory for a variable. In
stead, typedef creates a new data
type that is equivalent to some
usual C type. The first typedef
declares the SCR_LOC type to be
a structure of two bytes, where

one byte is called s_char and the
other is called s_attr. Thus, if
MySpot is a variable of type
SCR_LOC, and MySpot occupies
the same place in video memory
as the screen's upper left corner,
the character at that screen loca
tion is MySpot.s_char, and the
attribute is MySpot.s_attr. The
assignment below puts an '/\ at
that screen location:

MySpot.s_ehar = 'A';

The second declaration in Fig
ure 2 defines the SCRLINE type
as an array of 80 SCR_LOC struc
tures. This array is analogous to a
single line on the screen; how
ever, it comes close to meeting the
goal of direct screen access by row
and column because of the way C
handles array indexing. If MyLine
is a variable of type SCRLINE and
is located at the beginning of
video memory, then MyLine[O] is
the first screen line, MyLine[l] is
the second, and MyLine[20] is the
21st. This works because incre
menting the index of an array by
one causes the memory address
that is accessed to be incremented
by the size of the array's type.
MyLine's type is SCRLINE, and its
size is equal to that of one screen
line. This means that MyLine[l] is
one screen line past MyLine[O]
and MyLine[20] is 20 screen lines
past MyLine[O]. Although this pro
cess accesses the screen by row,
what about providing access to
individual locations on that row?
MyLine[n], where n is any integer,
is of type SCRLINE, which means
that it is an array of 80 SCR_LOC
structures. A second array index,
specifying an element number
from 0 to 79, allows access to indi
vidual elements of the array. Since
each array element is a structure,
the structure member must also be
named for direct access to the
screen. Assignments such as those
in Figure 3 then become possible.

One further puzzle, glossed
over in the above paragraphs,
remains to be solved. When a vari
able of type SCRLINE is declared,
Turbo C allocates space in
CLOCK's data segment for that
variable. In order for the screen
access scheme to work, the vari
able must be located at the begin
ning of video memory. The only
way to access a specific address in
memory, such as BOOO:OOOO, is to

Since most

memory-resident

programs must be

executed as .COM

rather than .EXE

files, those programs

must be compiled to

the Tiny memory

model.

use a pointer. In fact, for the
single-user, single-task PC, a
pointer and a memory address
are virtually the same thing. The
final trick to accessing the video
memory as though it were a
25 X 80 array of character
attribute pairs is to declare a
pointer to such an array, assign
the desired memory location to
that pointer, and then treat the
pointer as the name of an array.

The pointer scr is defined as a
far pointer to SCRLINE so that
both a segment and an offset can
be specified. scr is given its value
through a call in main() to Turbo
C's MK_FP library function (see
"Building Far Pointers with
MK FP" TURBO TECHNIX,
Mar~hi April, 1988, p. 61.) The
pointer takes on a value of either
B800:0000 or BOOO:OOOO, depend
ing on whether or not a color dis
play is in use. This allows assign
ments to and from scr[row]

[column].s_char and scr[row][col
umn].s_attr to be used for read
ing from and writing to the
screen, as shown in the disptime()
function.

MAKING CLOCK MEMORY
RESIDENT
When a normal program termi
nates, it gives all of its allocated
space back to DOS. For a program
to remain resident, it must retain
its memory allocation after control
returns to DOS. Turbo C provides
this ability with the keep() func
tion, which takes the two integer
parameters status and size. status
is the exit status to be returned to
DOS, and size is the amount of
memory measured in paragraphs
(one paragraph equals 16 bytes)
that the program retains. It seems
strange that this function requires
that the program's size be known
while the program is being devel
oped, but there is a way around
this requirement.

Since most memory-resident
programs, including CLOCK, must
be executed as .COM files rather
than as .EXE files, those programs
must be compiled to the Tiny
memory model, which puts all of
the programs' code and data into
64K of memory. This means that
CLOCK can safely be compiled
with size = 4096, because the pro
gram will retain as much memory
as it could possibly need (64K).
However, it's desirable for resi
dent programs to use as little
memory as possible, so once the
program has been tested and
debugged to its final form, the
link map is used to find the actual
number of paragraphs that the
program requires. The following
command line compiles and links
CLOCK in the Tiny memory
model, and generates a link map
file called CLOCKMAP:

tee -mt -M eloek.e

The map file is an ASCII text file
that contains information about
how CLOCK's memory will be

continued on page 82

May/June 1988 TURBO TECHNIX 81

LISTING 1: CLOCK.C

I*
/*
/*
/*
/*
/*
/*
/*

Clock.c ·· Memory·resident program to display a clock in the
upper right corner of the screen

(c) Copyright 1988, Sires Software, All Rights Reserved.

CAUTION: Do not run CLOCK from within the Turbo C integrated
environment. The computer may hang if a memory-resident
program is installed from within another program.

/*To C011'4>ile from cOITlll8nd line:
/*To convert .EXE to .COM file:
/*

tee ·mt ·M clock.c
exe2bin clock.exe clock.com

*!
*/
*I
*/
*I
*I
*/
*I
*I
*I
*!

#define COPYRIGHT "CLOCK 1.0 (c) Copyright 1988, Sires Software, "\
"All Rights Reserved."

#include <dos.h>
#include <bios.h>

#define TRUE -1
#define FALSE 0

typedef struct SCR LOC {
char s_char~ s_attr;

} SCR LOC;
typedef SCR_LOC
SCRLINE

char attr;

SCRLINE[80l;
far *scr;

void interrupt (*oldtick)();

/* One screen location */
/*One screen line */
!* Pointer to entire screen*/

void disptirne(int hour, int minute, int rawhour)
{

}

int i· .
scr[O] [70].s char = (hour> 9) ? 1 11 : 1 1

;

scr [0] [711 .s-char = (hour % 10) + 1 0 1 ;

scr[Ol [72].s-char = 1 : 1 ;

scr[Ol [73].s-char =(minute I 10) + 0 0°;
scr[Ol [741 .s-char = (minute % 10) + 1 0 1 ;

scr[O] [75] .s-char = 1 1 ;

scr[O] [76] .s-char = (rawhour < 12) ? 'A' 'P';
scr[O] [77] .s-char = 'M';
for Ci=70; i<78; i++)

scr [0] [i] .s_attr = attr;
return;

void beep(void)
/* Routine will beep the speaker twice briefly. */
{

unsigned int i, j;

for Ci=O; i < 2; i++)
{

/* Beep at approx. middle C *I sound(512);
for (j=O; j
nosound();
for Cj=O; j

< 40000; j++) ; /* for 1/2 second. */
/* Turn off speaker */

< 20000; j++) ; /* for 1/4 second. */

82 TURBO TECHNIX May/June 1988

CLOCK

continued from page 81

allocated when CLOCK is run.
The portion of CLOCK that per
tains to size is given in Figure 4.
The last value in the Stop column
is the number of bytes (in hex)
used by the program. To convert
this value to the number of para
graphs, just shift it one hexadec
imal digit to the right and round
the last digit up. In the example,
the number of bytes is 01298H,
which converts to 012AH para
graphs (remember that in hexa
decimal arithmetic, 9 + 1 = A).
Thus, the keep() function for this
example is keep(O,Ox12A). As was
done in CLOCK, this number may
be rounded up to err on the side
of safety.

In order for CLOCK to work
properly, it must be converted
from the .EXE file produced by
Turbo C to a .COM file. This con
version is done by the EXE2BIN
program, which comes with DOS:

exe2bin clock.exe clock.com

CLOCK.C's internal arrangement,
with main() last and all functions
defined before they are used, is
due to a peculiar limitation of
EXE2BIN, which requires that the
source code be in that format in
order for the .EXE file to be
converted.

LIMITATIONS AND POSSIBLE
ENHANCEMENTS
CLOCK operates in text mode
only. If you shift into graphics
mode with CLOCK in operation,
CLOCK's output will not be vis
ible, because the text video buffer
is at a different location from the
graphics video huffer.

Text editors that work directly to
screen memory may inadvertently
copy CLOCK's display to other
parts of the screen when they
scroll the top line downward. A
great many programs reserve the
top line for status information,
and CLOCK's display may obscure
important information. You can
reposition CLOCK's output simply
by specifying a different row and
column position.

Because CLOCK performs
direct screen accesses in the inter
est of speed, it will create video
"snow" on an old-style IBM CGA
display. A strategy for eliminating

A program

can determine if it

is already installed

by inspecting

memory at some

offset from the

referent of interrupt

lCH's vector.

this interference can be found on
pages 79-80 of Ray Duncan's
excellent book, Advanced MS-DOS
(reviewed in TURBO TECHNIX,
March/ April, 1988). Also, CLOCK
does not check to see if a copy of
itself is already resident and oper
ating. Such a check can be per
formed in several ways. Most
involve inspection of the code at
some offset from the referent of
interrupt lCH's vector for a signa
ture consisting of the program's
name or some other unique string
of bytes like SIRESCLOCK

This simple version of CLOCK
works well; take the time to im
prove and enhance it to your own
satisfaction. My own commercial
product, the Sires Alarm Clock, is
a greatly enhanced version of
CLOCK Turbo C handles all of
the difficult work-the rest is up to
your imagination. •

Ron Sires is president of Sires Soft
ware, a database consulting and soft
ware development firm in Berke{,ey,
California. He may be reached at Sires
Software, 2925 M.L. King,Jr. Way,
Berke{,ey, California 94703.

Listings may be downloaded from
CompuServe as CLOCK.ARC.

}

}

return;

void interrupt tickintr(void)
{

}

int rawhour, hour, minute;
int mins aft mid;
static newhour=TRUE; /* Should beep() be called

when minute == 0? */

/* Use 18.2065 ticks/sec */
/* 18.2065 ticks/sec * 60 secs/min * 100 == 109239L */
mins aft mid = (biostime(O, OL) * 100L) I 109239L;
rawhour ; mins aft mid I 60;
minute = mins aft mid % 60;
if (minute% 1o +- 1 0 1 != scr[Ol [741.s char /*Does the time */
II minute I 10 + 10 1 != scr[Ol [73].s=char) /*need to be put*/

I* on the screen? */
{

hour = (rawhour > 12 ? (rawhour · 12) :
(rawhour == 0 ? 12 : rawhour));

disptime(hour, minute, rawhour);
if (minute == 0)
{

}

else

if (newhour)
{

beep();
newhour = FALSE;

}

newhour TRUE;
}

(*oldtick)O;
return;

int color_adpt(void)
/* Return 0 if monochrome adapter, 1 if color adapter*/
{

return ((biosequip() & Ox0030) != Ox0030);
}

main()
{

puts(COPYRIGHT);

scr = MK_FP((color_adpt() ? OxB800 : OxBOOO), Ox0000);
attr = ((scr[O] [O] .s_attr » 4) + (scr[O] [O] .s_attr « 4)) & Ox77;

}

/*Clock Installation */
oldtick = getvectCOx1C>;
disable();
setvect(Ox1C, tickintr);
enable();

/* Save original !SR in oldtick.
/* Disable interrupts.
/*Replace !SR with tickintr().
/*Allow interrupts again.

*I
*/
*I
*/

keep(O, Ox0130); /* Terminate but stay resident with exit */
/* status 0, reserving 130H paragraphs. */

May/June 1988 TURBO TECHNIX 83

TURBO PROLOG 2.0:
INTELLIGENT EVOLUTION
Turbo Prolog spread s its wings as the second
generation is born.

Michael Floyd

PROGRAMMER

One of the most exciting aspects of work
ing with the Turbo languages is watching
their evolutionary process. Like the cater
piller's transformation into a butterfly,
the Turbo languages periodically undergo
a metamorphic process to emerge as a

new creature.
Turbo Prolog has undergone its first transforma

tion, and has emerged wearing the colors of 2.0.
Some of the things you'll see in the new version of
Turbo Prolog include the ability to create and manip
ulate multiple databases, color graphics through the
Borland Graphics Interface (BGI), new debugging
capabilities, conditional compilation, extensions to
the language, a full-featured development environ
ment, and a new and improved manual.

If you're a Turbo Pascal, Turbo C, or Turbo Basic
programmer, you may be quite surprised at some of
Turbo Prolog 2.0's new features. If you're already a
Turbo Prolog programmer, you'll want to watch
closely as this tale of evolution unfolds.

THE DATABASE CONCEPT
By far, the most significant change in Turbo Prolog
2.0 is its handling of the database-or should I now
say, databases. You'll notice first that there are two ·
types of databases-internal and external. An inter
nal database corresponds to the dynamic database in
earlier versions of Turbo Prolog. However, you can
now have more than one internal database. The fol
lowing statements, for example, declare two internal
databases:
DATABASE - clb1

precl1
pred2

predN

DATABASE -db2
predA
predB

predZ

84 TURBO TECHNIX May/June 1988

These statements declare the dbl database with the
database predicates pred l , pred2, and so on; and the
db2 database with the database predicates predA,
pred.B, and so on to pr ed.Z. (Database predicates
behave just as they do in earlier versions.)

In Turbo Prolog 2.0, built-in predicates such as
asser ta, asser tz, consult, and save have been ex
tended to address specific databases. For example, to
assert pred2("fact") into the the db l database, make
the following statement:

asserta(pred2C"fact"), db1)

Another important feature to note is that Turbo
Prolog 2.0 supports local and global databases. Our
discussion up until now has referred to local data
bases, which are databases declared locally in a pro
gram or module. In addition to local databases, you
can declare global databases that are shared between
modules. In a global database declaration, the key
word global must preface the database keyword.

EXTERNAL DATABASES
External databases extend the capabilities of the
internal database in a number of ways. First, exter
nal databases can be placed in conventional RAM
(memory below 640K), in extended memory (EMS),
or in a disk file. In addition, external databases can
load and store data in binary form. Finally, the use
of B+ trees in external databases allows more effi
cient handling of data than is possible in internal
databases (because of an internal database's sequen
tial nature).

An external database has two parts: data items,
which are Turbo Prolog terms stored in chains;
and an index value that corresponds to a B+ tree.
Chains are a way of grouping like data (terms) into
a structure that can be referenced. There is no

continued on page 86

~ - -~lff'J,,, .
:~r-~

DATABASE I

Tenn l
Chain I

Domain 1

Ref l

Chainl
l

(Database, Cham,

Chain 2

•

•

•

Chain 3

Tenn2.-

Domain 2

Ref2

Tenn3

-----1-..~ ,...Domain 3 ~

Ref3..-,

Term, TermDomain, Reference)

__.,

TennN

Domain N

RefN

Figure 1. Structure of chains in the external database.

INTELLIGENT EVOLUTION
continued from page 84

practical limit on the number of
terms that a chain can contain. In
addition, there is no limit to the
number of chains that can be
stored in an external database.
Figure 1 shows the structure of a
chain.

86 TURBO TECHNIX May/June 1988

Chains are a

way of grouping

like data (terms)

into a structure that

can be referenced.

A chained item consists of the
name of the database that con
tains the item, the name of the
chain, the domain that the chain
belongs to, the actual term in the
chain, and a special reference
value that allows quick lookups
within the chain.

As an example, imagine a case
where you have a database that
tracks the PCs in a company. One
chain could correspond to the

individuals in the company, and
another chain could contain spe
cific information about individual
PCs. By linking these chains to
gether through their reference
values, you can easily add a rela
tional capability to the databases.

The second part of an external
database is a reference to a B+
tree. In Turbo Prolog, a B+ tree is
a data structure that is contained
in an external database. Each
entry in the B+ tree consists of a
key string and a database refer
ence number. When creating a
new database entry, the pro
grammer defines a key string that
can be referenced during lookups.
The database reference number is
created by Turbo Prolog as each
entry is created, and can also be
referenced directly. When search
ing for a record, the programmer
references the key string to be
searched on, and Turbo Prolog
returns the associated reference
number. This reference number is
then used to retrieve the actual
record from the database.

BGI
If you haven't seen the Borland
Graphics Interface (BGI) in Turbo
Pascal 4.0 or Turbo C 1.5, you're
in for a real treat. The BGI is a
library of graphics routines that
does everything from drawing spe
cialized character fonts to detect
ing the type of graphics card
installed in your PC. The library
includes high-level routines to
draw lines, circles, ellipses, arcs,
rectangles, and polygons. The
library also contains a number of
routines for drawing two- and
three-dimensional bars, and pie
slices for creating charts. In addi
tion, the BGI provides a number
of patterns that can be used to fill
any object. (For a complete dis
cussion of the Borland Graphics
Interface, see "Meet the BGI,"
elsewhere in this issue.)

The BGI's sixty or so graphics
routines are accessed through
built-in predicates. For instance,
drawing a circle is a simple matter
of specifying the X and Y coordi
nates and the radius of the circle
in the following call:

circle(X,Y,R)

The BGI's coordinate system is
similar to the system used in the
turtle graphics of Turbo Pro log
l .x, although the scaling has
changed. The upper left comer
of the screen is designated as
(0,0). The X (row) and Y (column)
values increment from that point
according to the screen mode the
system is in. For instance, on a

One interesting

new feature is that

predicates can now

have multiple ari

ties. The program

mer simply makes

a declaration for

each arity that will

be supported by a

program.

CGA system in low-resolution
mode (320 X 200, four colors), the
bottom right comer is designated
as (319,199). Figure 2 shows the
coordinate system used for a CGA
in low-resolution mode.

The BGI also supports the
notion of viewports. As the name
implies, a viewport is a window to a
(possibly) larger graphics image.
Viewports use a clipping system so
that portions of the image that are
not in the current viewport (or
window) are not visible (i.e.,
clipped).

The BGI routines allow you to
draw either bit-mapped or stroked
fonts . Bit-mapped fonts are gener-

ated as an 8 X 8 matrix of pixels.
Bit-mapped fonts are quicker to
draw, since they are drawn pixel
by pixel. To create larger bit
mapped fonts, however, the
matrix must be multiplied by a
scaling factor-this results in
poorer resolution since the font
is, in effect, magnified.

A stroked font, on the other
hand, is defined by a set of vectors
that describes each character.
Since these vectors must be inter
preted, they are slower to draw.
On the positive side, stroked fonts
retain their resolution for larger
characters.

The best news for Turbo Prolog
programmers is the BGI's drivers.
These drivers support the
Hercules, CGA, MCGA, EGA, and
VGA cards, as well as the IBM
3270 and AT&T 400-line graphics
cards. No longer does the pro
grammer have to resort to C or
assembly language for such
support.

LANGUAGE EXTENSIONS
Borland has the reputation of
listening to its customers and im
plementing their suggestions in
future versions of products. Turbo
Prolog 2.0 is no exception. Many
enhancements to the language
resulted directly from user sugges
tions. Some of these enhance
ments are changes to existing
built-in predicates, while others
are new predicates and compiler
directives. The list of enhance
ments is quite long, so I'll just
highlight some of the major
points.

One interesting new feature is
that predicates can now have mul
tiple arities. The programmer
simply makes a declaration for
each arity that will be supported
by the program. For example,
consider the following program
fragment:

continued on page 88

May/June 1988 TURBO TECHNIX 87

(0,D)

(0,199)

(159,99)

•

(319,0)

(399,199)

Figure 2. Coordinate system for a CGA system.

INTELLIGENT EVOLUTION
continued from page 87

predicates
run
run(integer)

clauses
run:-
malcewindowC1,2,3, 1111 ,0,0,25,80),

run(O).
run(X):-

X <= 100,
Y = X+1,
write(Y),
run(Y).

Notice that the first run clause has
an arity of 0 (referred to as run/ O)
while the second run clause has
an arity of 1 (run/ I). Also notice
that it is possible to call one clause
from the other.

Another enhancement is condi
tional compilation, which com
piles a given section of a program
only if a condition is satisfied.
Conditional compilation is partic
ularly useful for generating differ
ent versions of the same program.
The syntax takes the form:

ifdef Constant!D

elsedef

endef

88 TURBO TECHNIX May/June 1988

For instance, we can write a rou
tine to set the graphics mode,
based on the type of graphics card
installed in the PC:
predicates

constants
egaCard =

ifdef egaCard
goal

graphics(S,1,1),
write("System in EGA Mode),

elsedef
goal

graphics(1,1, 1),
write("System in CGA Mode"),

enddef

This program fragment demon
strates another new feature-con
stants. As in other languages,
once the value of the constant
has been set, it remains the same
throughout the program.

Turbo Prolog 2.0 has a number
of new window-handling features,
including the ability to change
window colors during program
execution. The user of a program
can now modify window color and
size at runtime.

Other features include built-in
error handling and reporting,
extended text mode handling,
character manipulation similar to
already existing built-in string
manipulation, and more.

THE DEVELOPMENT
ENVIRONMENT
Turbo Prolog's windowed develop
ment environment, in a sense, has
served as the prototype for Turbo
Basic, Turbo C, and Turbo Pascal
4.0, and is now a Borland stan
dard. Many of the changes in the
Turbo Prolog 2.0 development
environment were made to bring
it more into line with the other
Borland compiler environments.
Now, if you're familiar with one
Borland development environ
ment, you are familiar with them
all.

Many of the

changes in the

Turbo Prolog 2.0

development envi

ronment were made

to bring it more into

line with the other

Borland compiler

environments.

Notice, for example, that most
of the hot keys that perform
actions such as running a pro
gram from the editor (Alt-R), or
exiting from the development
environment (Alt-X), have been
standardized. I typically shift from
Turbo C to Turbo Pro log (espe
cially in a joint development) and
couldn't survive without this kind
of standardization. If you prefer
other assignments, you can rede
fine the hot keys easily from
within the environment.

Whe~ st~rting ~p Turbo Prolog
2.0, you re immediately placed in
the editor, ready to program.
"But," you say, "I wanted to load
in a program first." No problem
Turbo Prolog (along with all
of the compilers) now takes
command-line arguments. For
instance, to load MYPROG.PRO
into the environment upon start
up, simply issue the following
command at the DOS prompt:

PROLOG -E MYPROG

As you go through the pulldown
menus, notice that the Files pull
down menu has been moved to
the far left. If you've worked with
Turbo Pascal 4.0, Turbo C, or
Turbo Basic, this standard menu
will be familiar to you. For in
stance, when browsing for files
using the Load option, you can
now easily move from one direc
tory to another by highlighting
and selecting the appropriate
directory name.

Next in the pulldown menu sys
tem are the Edit and Run buttons.
As always, the Run option com
piles your program to memory
and then executes that program.
This provides the power of a com
piler, combined with the instant
~eedback normally seen only in
mterpreters.

New to Turbo Prolog is the abil
ity to set up linker options in the
environment. Particularly useful is
the ability to include libraries in
the link command. Thus, modules
written in other languages that
require their own runtime library
support can now be linked in
directly from the development
environment.

In addition, you have complete
control over other options, includ
ing compiler directives from with
in the development environment.
The programmer can set up op
tions without hard coding them
into the program. Some of the
new compiler directives allow bet
ter control over heap, stack, code,
and trail sizes, overflow checking,
and the generation of error and
warning messages.

DOCUMENTATION
Unlike many compiler manuals,
the Turbo Prolog Owner's Handbook
includes a complete language
tutorial. This tutorial is a must for
a language like Turbo Prolog,
which is a new area for even sea
soned programmers. While the
original Turbo Prolog Owner's
Handbook was just under 250

Modules written

in other languages

that require their

own runtime

library support can

now be linked in

directly from the

development

environment.

pages, the tutorial section alone in
2.0 is now around 300 pages. The
tutorial takes the reader through
the Prolog language, step by
step, and includes programming
exercises to test the reader's un
derstanding. Solutions to the
exercises are provided.

The manual also discusses
other topics such as the BGI, data
base programming techniques,
system-level programming, and so
forth. In general, the reader will
find excellent coverage of each
topic, plus many more example
programs.

The reference section of the
manual provides a quick lookup
to all of Turbo Prolog's built-in
predicates. This section has been
~xpanded to include full descrip
t10ns of the predicates and
includes example programs for

each. These example programs
show how a particular predicate
works, and give the reader a feel
for the predicate's application.

THE SECOND GENERATION
IS HERE
Prolog has long been known as
a prototyping language because
applications can be quickly
modeled in the language. Since
Prolog programs provide a logi,cal
description of a problem, the
prototype served as a program
specification in the development
process. After setting up working
models in Turbo Prolog, program
mer~ usually developed their proj
ects m a language such as C. But
with the extensions added by the
Turbo flavor, many developers
find that once the prototype is
done, so is the project.

Turbo Prolog 2.0 adds many
features (such as conditional com
pilation) that previously were seen
only in languages such as Pascal
and C. The development environ
ment provides total control over
compiler directives so that various
versions of a program can be cus
tomized. Turbo Prolog 2.0 extends
the Prolog database concept sig
nificantly with the implementation
of chained terms to add true rela
tional capability, and the addition
of B+ trees to allow sorting and
retrieval of data at lightning
speeds. In addition, with tools
such as the BGI at your command,
adding sophisticated graphics is a
snap.

The evolution of Turbo Prolog
puts the power of Artificial Intelli
gence in your hands. The exten
sions to Turbo Prolog add power
to traditional applications as well.
Because of its declarative nature
Turbo Prolog allows you to write'
many applications in only one
tenth the lines of code usually
required with traditional lan
guages. This difference translates
into savings in development time,
and ultimately reduces cost. Now,
the only question is whether you
want to become a conscious part
of Turbo Prolog's evolution .. .
and the answer should be easy. •

May/June 1988 TURBO TECHNIX 89

WHAT'S IN A LIST?
fu list processing, a little hit of recursion goes a long way.

Keith Weiskamp

One of the powerful features of Turbo
Prolog-a feature that gives Turbo Prolog
the edge over its more procedural cous
ins, such as Turbo C or Turbo Pascal-is
its ability to easily process lists. When

SQUARE ONE you're programming in Turbo Prolog, you
don't have to worry about all of the traditional pro
gramming headaches like pointers, memory alloca
tion, and the linked-list data structures from comput
er science 101. Of course, the trade-off in Turbo
Prolog is that you have to master recursion.

In this article, we'll explore the fundamentals of
list processing and recursion in Turbo Prolog. We'll
also build some useful tools to show you how to work
with lists in Turbo Prolog.

STARTING WITH THE BASICS
Most programming languages provide some type of
data structure, such as an array, for list representa
tion. The limitation of such built-in data structures is
that they don't allow you to construct dynamic lists
lists that can grow and shrink during the execution
of a program. Fortunately, Turbo Prolog provides
real dynamic list processing capabilities.

A list in Turbo Prolog is simply a sequence of zero
or more elements. Because a list is a dynamic struc
ture, you don't have to specify its size. Lists are easy
to represent in Turbo Prolog. (They are so easy, in
fact, that you might feel a little guilty about using
them!) A list is constructed by enclosing elements
between the brackets [] as shown:

[1,2,3,4]
Cone,two,three,fourl
[11one11 , 11 two11 , 11 three11 , 11 four 11]

[]

A comma separates each element in the list. If you
forget a comma, the compiler gives you a friendly
reminder. Note that we represent an empty list by
using just the brackets[].

90 TURBO TECHNIX May/June 1988

Each element or member in a list can be defined as
either a standard domain type, such as an integer or
a character, or a user-defined domain type. Keep in
mind, however, that Turbo Prolog places one impor
tant restriction on list elements: all of the elements
in a list must be of the same domain type. Therefore,
the following lists aren't valid:

["one", "two" ,3 ,4]
[5.7,1 0.9, 20, 'c'l

We can handle lists containing elements of different
types through the use of complex objects. That sub
ject, however, is beyond the scope of this article.

Now that you know what a list looks like, you're
probably wondering how to declare one. Like all
user-defined domain types, lists must be declared in
the domains section of a program. To declare a list
domain, use the * symbol to indicate that the speci
fied domain name represents a list. For example, the
following declaration creates a domain called strlist,
which is defined as a list of strings:

dOlllll i ns
strlist =string*

This domain can then be used in a predicate decla
ration such as:

predi cates
search(st rlist,string , integer)

Given this declaration, the predicate search accepts
arguments like:

search(["door", "window", "wall "l,
11door 11 , Pos)

search([], "wall 11, Pos)

PROCESSING A LIST
When processing a list, one of the first things to do is
access a single element in the list. In order to do
this, Turbo Prolog divides a list into two components,
a head and a tail. The head is the first element in the

list; the tail is the list that is left
when the first element (the head)
is removed. The symbol I is used
to separate the head and the tail.
As an example, let's attempt to
match the list [1,2,3,4] with the
terms:

[H ITJ
We get the following result:

H = 1
T= [2,3,4]

The task of dividing a list into a
head and a tail is handled by
Turbo Prolog's built-in unification
algorithm. For example, let's de
fine a predicate and clause
head_tail as:

domains
strlist =string*

predicates
head_tail(strlst)

clauses
head_tail([HeadlTail).

Now, we call head_tail with the
goal:

head_tai l([11 red11 , 11 green11 , 11 blue11]).

Upon execution, the list
["red", "green'', "blue"] is passed to
the head_tail clause. Because the
variables Head and Tail are unin
stantiated (i.e, have no value),
Turbo Prolog binds (assigns) the
first element of the list to Head,
and assigns the rest of the list to
Tail. In this case, the string red is
bound to the term Head, and the
list ["green", "blue"] is bound to
the term Tail. Here's a quick pro
gram that applies the head/ tail
relationship:

domains
slist =symbol*

predicates
div_list(slist)

div _list simply displays the two
components of a list, the head
and the tail. Let's give the goal:

div_list([this,is,a,list]).

In this case, Turbo Prolog
responds with:
The first element is: this
The rest of the list is:

[11 is 11 , 11a11 , 11 list 11]

Lists behave differently depend
ing upon whether the head and
tail are bound or free, and how
the list is passed. For instance, our
last example removes the head
from a list. We add an element to
a list by instantiating the head of
the list. Consider the following
clause, which writes a list to the
screen:

domains
intlist = integer*

predicates
add_elem(integer,intlist,intlist)

clauses
adcl_elem(Element,List1,List2):-

Lists2 = [Elementjlist1l.

Now, let's give the goal:
adcl_elem(1, [2,3,41 ,X).

Turbo Prolog responds with:

x = [1,2,3,4]

When specifying a head/ tail rela
tionship, the rule is: If the head is
bound to a value, that value is
added to the front of the list; if
the head of the list is a free vari
able, that variable is bound to the
first element in the list.

A UTILE BIT OF RECURSION
In Turbo Prolog, recursion is used
to perform most of the useful list
processing tasks. After all, most list
operations-such as finding a
member in a list, or counting the
number of elements in a list-

c lauses require some method of stepping
div_l i st([Head I Tai ll >: - through a list. The typical method
write(11 \nThe first element is: 11 in a procedural language like C is

Head),
write(11The rest of the list is: 11 a loop. In Turbo Prolog, we rely

Tail>. ' upon recursion or backtracking to
handle looping.

To show how recursion is used
to access a list, let's modify our
previous clause, div _list, so that we
can step through a complete list.
Here is the new version:

domains
ilist = integer*

predicates
div_list(ilist)

clauses
div list([]).
div=list([HeadjTaill):

write(11\nThe first element is: 11
,Head),nl,

write("The rest of the list is: 11 ,
Tail),

div_list(Tail).

Note that div _list now has two
clauses. The first clause, which is
known as an anchor clause, simply
tests for the empty list. This clause
terminates the recursion when we
get to the end of the list. The sec
ond clause, which performs the
actual processing, separates the
head from the tail of the list and
then displays both the head and
the tail on the screen. Finally,
div _list calls itself (the recursive
call) with the tail of the list. There
fore, each time div _list is called,
the list is reduced by one ele
ment-the current head. Each
time the recursive call is made,
the first div _list clause tests to see
if the list is empty ([]). If the list is
empty, this clause succeeds and
we are done. For example, let's
call div _list with:

div_list([1,2,3]).

The goal produces the following
output:

The first element is: 1
The rest of the list is: [2,3]
The first element is: 2
The rest of the list is: [3]
The first element is: 3
The rest of the list is: []

BUILDING LIST TOOLS
The basic recursive technique
illustrated in the previous example
can easily be applied to construct
the fundamental list processing
operations such as appending ele
ments, searching for elements,
and deleting elements. To show
you the power of Turbo Prolog's

continued on page 92

May/June 1988 TURBO TECHNIX 91

LISTING 1: EXAMPLES.PRO

/* get an element at specified position*/

domains
i list = integer*

predicates

index(ilist, integer, integer)

clauses

index([Head l_J, 1, Head).

indexCC_ITailJ, Pos, Elem)·
Pos > 1,
New_pos = Pos - 1,
index(Tail, New_pos, Elem).

I* The Append Tool */

domains

clist char*
ilist integer*
rlist real*
stlist =string*
slist =symbol*

predicates

append(clist, clist, clist) /*Append 2 character lists. */
append(ilist, ilist, ilist) /*Append 2 integer lists. */
append(rlist, rlist, rlist) /*Append 2 real lists. */
append(stlist, stlist, stlist) /*Append 2 string lists. */
append(slist, slist, slist) /*Append 2 symbol lists. */

clauses

append(CJ, List, List).

append([Head I List1 J, List2, [Head I Rest J)
append(List1, List2, Rest).

/* The Reverse Tool */

include "append.pro"

predicates

reverse(clist, clist
reverse(ilist, ilist
reverse(rlist, rlist
reverse(stlist, stlist
reverse(slist, slist)

clauses

reverse([J , [J) .

/*Reverse the character list. */
/*Reverse the integer list. */
/*Reverse the real list.*/

I* Reverse the string list.*/
/*Reverse the symbol list. */

reverse(C Head I Tail J, Result >
reverse(Tail, Temp),
append(Temp, C Head J, Result).

92 TURBO TECHNIX May/June 1988

WHAT'S IN A LIST?
continued from page 91

list processing capabilities, let's
construct some list processing
tools.

The first tool, called index, is
shown in Listing 1. This predicate
determines which element is at a
specified position in a list, and in
one respect, illustrates how a list
in Turbo Prolog can be accessed
like an array. index takes three
arguments:
index(List,Pos,Member)

The first argument, List, supplies
the list to be searched. In our
example, this argument must be a
list of integers; you can also
modify List to support lists of
other domain types, such as
strings and characters. The argu
ment Pos specifies the position of
the element to be accessed, and
Member is used to return the ele
ment. For example, the following
goal binds the variable X to the
list element 76:
indexCC20,45,76,89J,3,X).

This produces the same effect as
does the following statement,
which is written in Turbo Pascal:

X := List C3J;

Of course, in order to access
the list in Turbo Prolog, we must
use recursion. Note that the predi
cate index contains two clauses.
The first clause terminates the
recursion, and the second clause
decrements the list index and calls
itself recursively until the desired
index position is reached.

The next tool that we'll con
struct is append, which is also
shown in Listing 1. This predicate
joins two lists together and pro
duces a new list. The general for
mat for append is:

appendCList1,List2,List3)

Here, the arguments Listl and
List2 provide two lists of any stan
dard domain type, which can be
joined to create a new list that is
bound to the variable argument

List3. For example, to combine
the list [a,b,c] with [d,e,t], we give
the goal :
appendCCa,b,cl, [d,e,f], L)

In this case, Turbo Prolog
responds with:

L = Ca,b,c,d,e,fl

The append predicate first copies
one element at a time from Listl
to List3. This step is performed by
the clause:

appendCCHeadlList1l,List2,
[Head!Restl):-

appendCList1,List2,Rest).

Each time append calls itself, the
current first element (Head) of
Listl becomes the first element of
List3. This process continues until
Listl is empty. The following an
chor clause terminates the recur
sion:

append([] ,List,List).

This anchor clause also makes
sure that List2 is joined with List3.
How is this done? Well, remember
that List3 is represented as the
two components:

[Head I Rest]

Therefore, when the recursion
terminates, the term Rest is bound
to the second list.

The last tool provided in Listing
1 illustrates how the append predi
cate can be used to alter the order
of a list. In this case, the predicate
reverse is used to reverse a list.
For example, let's give the goal:
reverseCC1,2,3,4l,L).

This goal produces the result:

L = [4,2,3, 1)

It's easy to reverse a list by using
recursion. The technique involves
stepping through the list by allow
ing the second reverse clause to
call itself, as shown below:

reverse([Head!Tail],Result):-
reverse(Tail,T~),
appendCT~,CHeadl,Result).

Whe n the list becomes empty, the
recursion is terminated by the
clause:

reverse([] , Cl) .

Once the list becomes empty, the
new list is created by appending
elements in the reverse order

from which they were removed.
To help you see how this is done,
let's trace through the reverse
predicate using the list [1,2,3,4] as
the first argument. Each time
reverse calls itself, the list is separ
ated as shown:

sively four times in order to get to
the end of the list. Therefore,
when the recursion stops, it must
unwind one level at a time.

END OF THE TOUR
This concludes our quick tour of
Turbo Prolog's list processing
capabilities. We started with the
fundamentals of list construction
techniques, and then wrote a few
predicates to illustrate how lists
can be processed with Turbo
Prolog. Along the way, we've
investigated most of the basic
techniques for writing recursive
clauses. The key to writing useful
list processing predicates in Turbo
Prolog lies in using recursive pro
gramming techniques. •

Call 1:

Call 2:

Call 3:

Call 4:

Head = 1
Tail = [2,3,4)

Head = 2
Tail = [3,4)

Head = 3
Tail= [4]

Head = 4
Tail = []

At this point, the list is empty and
the first clause terminates the
recursion. Therefore, the next
step consists of the following calls
to append to construct a new list: Krdth Weiskamp is a co founder of PC

AI magazine, and is coauthor of Arti
ficial Intelligence Programming
with Turbo Prolog.

appendCCl,4,Result>
appendCC4l,3,Result)
appendCC4,3l,2,Result)
appendCC4,3,2],1,Result)

Although the append predicates
are listed together, they are actu
ally called each time the recursion
unwinds one level. Remember
that reverse called itself recur-

Listings may be downloaded from
CompuServe as LISTP.ARC.

The Stonehaven

LEXICON
Natural Language Power for your

Turbo Pro log Programs
Turbo Lightning spelling checks - with routines to

b uild custom dictio naries.
Synonyms and alternati ve spellings.
G rammar sidecar to Borland's Lightning provides

parts of speech, tense, root words, and derivatio n
fo r a working vocabulary of 40,000 words.

Color management , parsing, menu s, and user cor
rection of strings and fil es.

Extensive examples, including parsing of natural
language commands.

No Royalties - No Copy Protection

Requires Turbo Prolog & Turbo Lightning

$74.95 + $5.00 UPS Shipping

800-356-6875
Stonehaven

Laboratory
47925 Eightieth St. West

Lancaster, Cali fo rnia 93536

~
~

May/June 1988 TURBO TECHNIX 93

s PLAYING CAT AND MOUSE
~ IN TURBO PROLOG
~ Don't grab your mouse by the recursive tail just yet!

You may need to backtrack.

Safaa H. Hashim

When you pursue a mouse with Turbo
Prolog, you'll find that the game is very
different from a mouse chase in Turbo C
and Turbo Pascal. The fine art of pro
gramming a mouse in Turbo Prolog is the

wizAao topic of this first article in a two-part se-
ries. In Part 2, I'll show how you can use these
mouse programming techniques to capture the
power of your mouse for various Turbo Pro log
applications.

We won't explore the basics of mouse program
ming in this discussion, because they are thoroughly
covered in Kent Porter's article "Mouse Mysteries,"
elsewhere in this issue. I highly recommend that you
read "Mouse Mysteries" before you jump into Turbo
Prolog's cat-and-mouse techniques. Particularly
important are the sections on mouse functions and
how to communicate with the mouse.

This article deals specifically with the Microsoft
Mouse. If you use a different mouse, don't worry
most mouse packages contain a driver that emulates
the Microsoft Mouse driver.

BUILDING THE BETTER MOUSE TRAP
As discussed in "Mouse Mysteries," the driver for the
Microsoft Mouse uses a software interrupt for com
municating between the mouse and the computer.

94 TURBO TECHNIX May/June 1988

To return the mouse status, for example, we execute
interrupt 33H (51 decimal) and make a call to func
tion 0. This call resets the serial port of the mouse,
and sets the internal driver variables to their initial
values. Thus, in order to communicate with the
mouse, we must be able to make DOS interrupt calls
using Turbo Prolog.

refers to

Turbo Prolog does not support inline
assembler for interrupt calls, but instead

provides the built-in predicate bios.
The bios predicate lets you make
calls to the ROM BIOS, including
the interrupt service routines. The

bios predicate takes three
arguments. The first

argument

the interrupt
number being
called, and the last
two arguments refer to compound objects corre
sponding to the registers before and after the bios
call. The general form of the bios predicate is:

bios(lnterruptNo,Registersln,
RegistersOut)

Internally, Turbo Prolog defines a special domain,
called the reg domain, for Registersln and
RegistersOut. The reg domain takes the form:
reg(AX,BX,CX,DX,SI,Dl,DS,ES)

The arguments of the reg domain represent eight
16-bit 8088 registers. We use these registers to pass

parameters to an intenupt service
(Registersln), as well as to return
the result of the execution of that
service (RegistersOut).

To see how the bios predicate
works in relation to the mouse,
let's consider an example. Listing
1 defines two clauses: One clause
checks to see if the mouse is
installed; the other clause initial
izes the mouse. To see how Listing
1 reacts to different situations,
enter the following goal before
and after installing your mouse
driver:

Goal: rnsm_chk_init(STATUS)

Note in Listing 1 that the first call
in msm_chk_init is a bios call to
intenupt 33H (the $ indicates a
hex value). We must specify the
function call (in this case, 0) in
the AX register, so the first argu
ment of reg (for the input regis
ters) is set to 0. This call does not
use the other registers. However,
since the domain has an input
flow pattern, Turbo Prolog re
quires that the entire domain be
instantiated. Therefore, the other
seven register slots are padded
with Os.

The status value is returned
back in the AX register, so we
specify the variable AX in the first
slot of the output registers. Again,
we're not concerned with the oth
er registers, so we've used the
anonymous variable (_).

After making the bios call,
msm_chk_init calls
report_init_status, which reports
whether or not the mouse is
installed.

Using the same principles
described in Listing 1 for initializ

ing the mouse, we can write
other clauses to call all of

the driver functions.
Listing 2 documents

continued on page 96

LISTING 1: !NIT.PRO

/*
A program to check for the initial mouse state

*/

PREDICATES
rnsm_init /*Microsoft Mouse initialization predicate*/
rnsm chk initCSTRING) /* Check initial mouse state */
rep0rt_lnit_status(INTEGER,STRING)

CLAUSES
rnsm init :-

biosCS33, reg(0,0,0,0,0,0,0,0),
reg(AX,_,_,_,_,_,_,_)),

AX <> 0.

rnsm chk initCSTATUS) :-
bios(51, reg(0,0,0,0,0,0,0,0),

regCAX,_,_,_,_,_,_,_)),
report_init_status(AX,STATUS).

report_init_status(0, 11Mouse is not installed").
report_init_status(-1,"Mouse is installed").

LISTING 2: MSM-DRV.PRO

/* **

Microsoft Mouse Driver (functions) Predicates
Safaa H. Hashim

Works with Microsoft's Driver and with MOUSE
SYSTEMS driver for their PC MOUSE driver
CMSMOUSE.COM).

This program is a modified version of a program by
Terry Dawson.

** */

PREDICATES
rnsm init
msm-show
rnsm-hide
msm=stat(INTEGER,INTEGER,INTEGER)
msm_pos(INTEGER,INTEGER)
msm_press(INTEGER,INTEGER,INTEGER,INTEGER,INTEGER)
msm release(INTEGER,INTEGER,INTEGER,INTEGER,INTEGER)
msm=horzCINTEGER,INTEGER)
msm vert(INTEGER,INTEGER)
msm=block(INTEGER,INTEGER,INTEGER)
msm_textCINTEGER,INTEGER,INTEGER)

CLAUSES

msm_mickey(INTEGER,INTEGER)
msm_user(INTEGER,INTEGER)
msm_pen_on
msm_pen_off
msm ratio(INTEGER,INTEGER)
msm-cond(INTEGER,INTEGER,INTEGER,INTEGER)
msm=ds(I NTEGER)

/* MSMOUSE FUNCTION # 0 */

msm init:
bios($33,reg(0,0,0,0,0,0,0,0),

reg(AX,_,_,_,_,_,_,_)),
AX<>O.

/* MSMOUSE FUNCTION # 1 */

msm show:
bios($33,reg(1,0,0,0,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

I* MSMOUSE FUNCTION # 2 */

msm hide:
bios($33,reg(2,0,0,0,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

/* MSMOUSE FUNCTION # 3 */

msm stat(Button,Row,Col):- /* (o,o,o) */
bios($33,reg(3,0,0,0,0,0,0,0),

reg(,BX,CX,DX, , , ,)),
Button=BX, col=CX, Row=ox: - -

/* MSMOUSE FUNCTION # 4 */

msm_pos(Row,Col):- /* (i,i,i) */
bios($33,regC4,Col,Row,0,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

/* MSMOUSE FUNCTION # 5 */

/* Flow pattern: Ci,o,o,o,o) */
msm_press(Button,Status,Count,Row,Col):

bios(S33,reg(5,Button,0,0,0,0,0,0),
reg(AX,BX,CX,DX, , , ,)),

Status=AX, Count=BX, Col;CX,-Row=DX.

/* MSMOUSE FUNCTION # 6 */

/* Flow pattern: (i,o,o,o,o) */
msm_release(Button,Status,Count,Row,Col):

bios(S33,reg(6,Button,0,0,0,0,0,0),
reg(AX,BX,CX,DX, , , ,)),

Status=AX, Count=BX, Col;CX,-R0w=DX.

/* MSMOUSE FUNCTION # 7 */

msm horzCMin,Max):- /* Ci,i) */
bios($33,reg(7,0,Min,Max,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

96 TURBO TECHNIX May/June 1988

CAT AND MOUSE

continued from page 9 5

the various function calls to the
mouse. Again, "Mouse Mysteries"
provides a detailed explanation of
each function call.

PROGRAMMING TECHNIQUES
Once the basic calls have been
implemented, we're ready to use
them in our applications. First, we
must determine how to continu
ously poll the mouse. Our initial
inclination might be to embed the
function calls within a recursive
loop. However, even with Turbo
Prolog's tail recursion optimization
techniques (see "The Tail Recur
sion Tiger," TURBO TECHNIX,
January/February, 1988) your pro
gram will quickly run out of stack
space, and will end abruptly with
a runtime error. Therefore, the
solution is to use a repeat/ fail
loop, which reclaims stack space
after each pass. Listing 3 uses a
repeat/ fail combination to poll
the mouse and to report the last
button pressed. The loop occurs
in the button_status clause:

button_status •
msm init,
msm=show,
repeat,

msm stat(X, ,),
button(X,_>: -

The call to button(X,_) provides
the failing condition. If a button
has not been pressed, button(X,_)
fails and the clause backtracks to
repeat, starting the polling pro
cess over.

To run Listing 3, issue the goal:
Goal: button_status.

After the mouse is initialized
(msm_init) and its cursor is dis
played (msm_show), the program
enters the repeat loop. The call to
msm_stat binds the variable X to
an integer value that refers to the
number of the pressed button. If
no button is pressed, the returned
value is 0. X is then passed on to
button, which checks to see if a
button has actually been pressed
(X <> 0). button then uses
Bmeaning to report the name of
the pressed button. As mentioned
earlier, if no button has been
pressed, button fails and back
tracks to repeat. When a button is
pressed, button succeeds and the
program terminates.

We can expand the techniques
in Listing 3 to allow the continu
ous use of the mouse, even after
we have pressed a button. This
approach is handy in an applica
tion that uses the mouse for con
tinuous interaction with the user.
We do this by appending a fail to
the end of the button clause:

buttonCX,Y) :-
X <> 0, /* When X=O then no

button is pressed */
Bmeaning(X,Y),
write("\n",Y,"\n"),
fail.

This guarantees that button
will always fail and that the pro
gram will backtrack to repeat (in
button_status), starting the whole
process over again. In this case,
the only way to stop the program
is to use the Ctrl-Break sequence.

Another useful Turbo Prolog
predicate reports the cursor posi
tion at the click of a particular
mouse button. POSITION.PRO
(Listing 4) is an example of this
"reporting" technique. To invoke
POSITION.PRO, issue the goal:

Goal: report_pos

The system then enters text mode,
which is the default mode; now
you can move the cursor with the
mouse. When you press the left
button, the program writes the
row and column of the cursor
position. When you move the cur
sor to a new position and press
the left button again, the program
writes the new row and column
values. This continues each time
you press the left button. When
you press the right button, the
screen changes into graphics
mode and displays the graphics
cursor (an arrow). If you press the
left button now, the X and Y coor
dinates of the cursor are repre
sented as an integer between 0
and 31999 (the range of 0-31999 is
the coordinate system used by
Turbo Prolog in graphics mode).

Notice two predicates in List
ing 4-txt_pos and txt_posl. The
clauses for these two predicates
are:

txt_pos :-
rnakewindowC1, 7,0,"Text Mode",

0,0,25,80),
writeC"\nPress left button to

locate cursor position"),
repeat,

msm_stat(Button,Row,Col),
txt_pos1(Button,Row,Col).

txt_pos1C1,Row,Col):-

continued on page 98

/* MSMOUSE FUNCTION # 8 */

msm_vert(Min,Max):- /* Ci,i) */
bios($33,reg(8,0,Min,Max,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

/* MSMOUSE FUNCTION # 9 */

msm_block(Row,Col,Mask):- /* Ci,i,i) */
bios($33,reg(9,Col,Row,Mask,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

/* MSMOUSE FUNCTION # 10 */

msm_text(Select,Screen,Cursor):- /* Ci,i,i) */
bios($33,reg(10,Select,Screen,Cursor,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

/* MSMOUSE FUNCTION # 11 */

msm_mickey(Row,Col):- /* Co,o) */
bios($33,regC11,0,0,0,0,0,0,0),

reg(, ,CX,DX, , , ,)),
Col=CX, Row=DX~ - - - -

I* MSMOUSE FUNCTION # 12 */

msm_user(Mask,Address):- /* Ci,i) */
bios($33,regC12,0,Mask,Address,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

/* MSMOUSE FUNCTION # 13 */

msm_pen_on: -
bios($33,reg(13,0,0,0,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

/* MSMOUSE FUNCTION # 14 */

msm_pen_off :-
bios($33, regC14,0,0,0,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

I* MSMOUSE FUNCTION # 15 */

msm_ratio(Vert,Horz):- /* Ci,i) */
bios($33,reg(15,0,Horz,Vert,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

/* MSMOUSE FUNCTION # 16 */

msm cond(UY,UX,LY,LX):- /* Ci,i,i,i) */
bios($33,reg(16,0,UX,UY,LX,LY,0,0),

reg(_,_,_,_,_,_,_,_)).

/* MSMOUSE FUNCTION # 19 */

msm ds(MPS):- /* Ci) */
bios($33,reg(19,0,0,MPS,0,0,0,0),

reg(_,_,_,_,_,_,_,_)).

!* *************** End of MSM-DRV.PRO ******************* */

May/June 1988 TURBO TECHNIX 97

LISTING 3: BUTTONS.PRO

/* *** *I
/* This is a testing program to report the pressed button. */
!* *** *!

include "msm-drv.pro"

PREDICATES
button_ status

repeat
button(INTEGER,STRING)

Bmeaning(INTEGER,STRING)

CLAUSES
button_ status

msm init,
msm=show,
repeat,

msm stat(X, ,),
buttonCX,_):- -

repeat.
repeat :- repeat.

/* Table of Mouse Buttons corrbination for PC MOUSE (3 button mouse).

*/

For users of Microsoft Mouse only 0,1,2,3 corrbinations are
applicable.

Button Status is an integer referring to the pressed
button corrbinations. The following corrbinations are
recognized:

0 initial status (no button is pressed)
1 left ; Cleft)

left + right (6)
2 right;

right + middle (6)
3 left + right
4 middle;

middle + left; (6)
middle + r·ight; C3)

5 left + middle + right;
middle + left (6)

(right)

Cleft + right)
(middle)

Cleft+ middle)

6 right + middle (right + middle)
7 left+ middle+ right ••••• Cleft+ middle+ right)

button(X,Y) :-
X <> 0, /* When X=O then no button is pressed */
Bmeaning(X,Y),
write(11 \n 11 ,Y, 11 \n11).

BmeaningC1,"left button is pressed").
Bmeaning(2,"right button is pressed").
BmeaningC4,"middle button is pressed").

/* ******************** END OF BUTTONS.PRO ***********************/

LISTING 4: POSITION.PRO

/* **

This program shows a technique to return cursor postion
in both text mode Crow and colunn of cursor), and
graphics mode ex and Y coordinates of cursor).

** *I

98 TURBO TECHNIX May/June 1988

CAT AND MOUSE
continued from page 97

NewRow = Row/8,
NewCol = Col/8,
cursor(NewRow,NewCol),
write(NewRow, 11 , 11 ,NewCol),
fail.

txt_pos1C2,_,_).

After the repeat subgoal, we get
the status of the mouse (Button,
Row, and Col), which we pass to
txt_posl. There are two txt_posl
clauses, which are selected by
pressing the appropriate button
on the mouse. Pressing the left
button instantiates Button to the
value 1, which matches with the
first txt_posl clause. Notice that
the fail in this clause causes back
tracking (in txt_pos) back to
repeat. This backtracking allows
the program to mark many posi
tions on the screen, as long as you
only press the left button. When
you press the right button, the
program transfers control to the
second clause for the txt_posl
predicate, the subgoal
txt_pos(2,_,_) succeeds, and
control returns to report_pos.

END OF A TAIL
This brings us to the end of this
Turbo Prolog cat-and-mouse
game-at least for the moment.
During the chase, we've explored
a number of mouse programming
techniques that are unique to
Turbo Prolog. First, we've exam
ined how basic mouse functions
are called with the bios predicate.
Second, we've used backtracking
instead of recursion to continu
ously poll the mouse for activity.
Third, we've explored how to
associate the mouse with specific
actions in our program.

The mouse can be used in
Turbo Prolog applications in a
number of ways. For instance, you
can use the mouse to dynamically
move Turbo Prolog windows on
the screen by pointing to a win
dow and dragging it to a new posi
tion. This same technique can
also be used to resize a Turbo
Prolog window.

Another possible Turbo Prolog
mouse application is to select
strings of text displayed on the
screen, and then move or copy
those strings to a new screen loca
tion. In graphics mode, the mouse
can be used to point or to draw

lines, rectangles, polygons, and
so forth; and to indicate the
direction for rotation, reflection,
perspective, and other kinds of
graphical transformations of
those figures.

In the second article of this two
part series, we'll chase our mouse
into two Turbo Prolog applica
tions. The first application will use
the mouse with a pop-up menu; in
fact, we'll modify the Turbo Prolog
Toolbox's menu tools to work with
the mouse. The second applica
tion will allow us to scroll text in a
window by using horizontal and/
or vertical scroll bars similar to
those on the Macintosh. Tune in
next time as the Turbo Prolog
mouse chase continues. •

REFERENCES
Carrol, John M. (ed.). Interfacing
Tlwught: Cognitive Aspects of
Human-Computer Interaction, Bos
ton, Massachusetts: MIT Press,
1987.
Solution Systems. "Experts' Views
on the Human Interface Traits of
Successful Commercial Software."
The Developer's Publisher, 1987.
(For a copy of this report, write to
Solution Systems, 541 Main Street,
Suite 410, South Weymouth, MA
02198J
Heckel, Paul. The Elements of
Friendly Software Design, New York,
New York: Warner Books, Inc.,
1984.
King, Richard Allen. The MS-DOS
Handbook, Alameda, California:
SYBEX Inc., 1986.
Nath, Sanjiva. Turbo Prolog: Fea
tures for Programmers, Portland,
Oregon: MIS Press, 1986.
Nickerson, Raymond S. Using Com
puters: Human Factors in Informa
tion Systems, Boston, Massachu
setts: MIT Press, 1987.
Shneiderman, Ben. Designing the
User Interface: Strategies for Effective
Human-Computer Interaction,
Reading, Massachusetts: Addison
Wesley Publishing Company, 1987.

Safaa H. Hashim is a graduate stu
dent at the Computer Science Divi
sion, University of California,
BerkeU?y.

Listings may be downloaded from
CompuServe as MOUSEl.ARC.

include "msm-drv.pro" /* include mouse driver file*/

PREDICATES

report_pos
txt_pos

txt_pos1(INTEGER,INTEGER,INTEGER)
gra_pos

gra_pos1(INTEGER,INTEGER,INTEGER)
repeat

CLAUSES

/* ** *I
/*REPORT CURSOR POSITION BOTH IN TEXT, AND GRAPHIC MODE */
/* ** *I

report_pos :
msm init,
msm=show,
repeat,

txt_pos,
gra_pos.

/* ************************ *!
!* TEXT MODE *I
/* ************************ */

txt_pos :-
makewindow(1, 7,0,"Text Mode 11 ,0,0,25,80),
write("\n Press left button to indicate cursor position"),
repeat,

msm stat(Button,Row,Col),
txt=pos1(Button,Row,Col).

/* If Button= 1, you pressed left button to report position*/

txt_pos1(1,Row,Col):-
NewRow = Row/8, /* scale cursor row position to text mode *!
NewCol = Col/8, /* scale cursor col position to text mode */
cursor(NewRow,NewCol),
write(NewRow, 11 , 11 ,NewCol),
fail.

/* If Button = 2, you pressed the right button to end text mode */

txt_pos1(2,_,_).

/* ************************ *!
I* GRAPHIC MODE */
/* ************************ */

gra pos :
graphics(2, 1,4),
write("\n Press left button to indicate cursor position"),
msm_show,
repeat,

msm_stat(Button,X,Y),
gra_pos1(Button,X,Y).

gra_pos1(1,X,Y) :- /* left button is pressed*/
NewX = CX/200)*31999, /* scale X coord. to graphic mode */
NewY = (Y/640)*31999, /* scale Y coord. to graphic mode */
Xpos=X/8, Ypos=Y/8, cursor(Xpos,Ypos),
write(NewX "," , NewY),
fail.

gra_pos1(2,_,_).

repeat.
repeat :- repeat.

/* ********************* END OF POSITION.PRO *********** */

May/June 1988 TURBO TECHNIX 99

VARIABLE VARIATIONS
The area in which a variable is known can he as important
as the data it contains.

David A. Williams

Modern BASIC compilers such as Turbo
Basic not only enable your programs to
run faster, but they also have many fea
tures that make your programs easier to
write, debug, and maintain. Examples

sQUAREONE include procedures (subprograms), multi-
line defined functions, block-structured program
statements, and the "scoping" of variables. Of these
extensions, variable scoping is by far the subtlest and
most alien to the original spirit of Dartmouth BASIC.
The scoping of Turbo Basie's variables is well worth
a close and thorough look.

GLOBAL HEGEMONY
Interpreted BASIC treats all variables as global.
Once you declare a variable, it is available to be read
or modified by any statement in the program. This
makes each variable identifier absolutely unique. You
can use a given variable name for only one entity in
a single program, whether the variable is in the main
program or in a small subroutine.

This is no great hardship if you write small, simple
programs; you can easily remember which variable
names have been used. The larger the program,
however, the more likely you are to make a mistake.
Index variables, which act as counters in
FOR..NEXT loops, are especially difficult to track.
Consider the following program fragment:
CLS
DIM •••
1=37.4
X=23

GOSUB Calclt

PRINT l*X

During development of this program, you decide to
save some effort and "drop in" the small section of
code shown below that you've lifted from another
program:

100 TURBO TECHNIX May/June 1988

Ca lclt:
FOR 1=1 TO 10

FOR J=1 TO 20
A(l)=A(l)*B(J)

NEXT J
NEXT I
RETURN

Note that the variable I appears in both sections of
code, even though there is no logical connection
between the two sections. The I in subroutine Calclt
is used only as a FOR..NEXT loop counter and
bears no relation to variable I in the main program.
The two sections do not conflict with one another
from a syntactic standpoint, but they may logically
interfere with one another unless you take specific
steps to ensure that they don't

This limitation makes it very difficult to write
generic routines that you can combine into a single
library file and use in many different programs. A
library of such commonly used routines can save you
many hours of programming and debugging time
and let you concentrate on creating your main pro
gram. Libraries are most comprehensible if you
establish a system in which a particular variable
name always represents the same kind of quantity, or
is always used for the same purpose in every routine.
Using the variable I only within FOR..NEXT loops
would be a good example of this sort of convention.
Before you can follow this system, however, you
need a way to keep the multiple instances of identi
fier I in all of your various library routines from con
flicting with one another.

Language designers created the concept of scope
to meet this need. The language compiler restricts
the use of local variables to a certain area of the pro
gram. This area, called the local variable's scope, is
the region of the program in which the variable is
"known" (i.e., where the variable is available to be
read from or written to).

The compiler builds a conceptual fence that iso
lates one section of the program from another. Since
program code on one side of the fence is indepen
dent from that on the other, you can have identical

continued on page 102

VARIABLE
continued from page 100

variable names for different vari
ables, as long as each instance of
a name resides within its own
fenced-off backyard. Turbo Basic
constructs these fences around
routines written as procedures
and as defined functions, and also
around chained programs. On the
other hand, program code
imported with the $INCLUDE
metastatement, and subroutines
called via GOSUB, share the
scope of the main program and
do not have a separate scope.

THE VARIABLE BESTIARY
While the term "local" is often
applied to any variable whose
access is limited in some way, the
true definition of local variab/,e
under Turbo Basic is more pre
cise. A running program, upon
entering a procedure or function,
establishes local variables on the
stack. These local variables disap
pear and their values are lost dur
ing stack clean-up when the pro
gram exits the procedure or
function.

A static variab/,e is similar to a
local variable in that its scope is
limited to the routine in which it
is declared. However, the com
piler assigns each static variable a
permanent location in memory, so
the static variable retains its exis
tence and its value even after the
program exits the routine that
owns the variable.

Of course, you usually don't
want to completely isolate subpro
grams from your main program.
You have to pass variables and
values to the routine and send the
results back to the main program.
One way of doing this is with an
argument list, a list of variables or
values passed to the procedure or
function. Variables in the argu
ment list are available to both the
caller and the routine being
called. There are limits to the use
of argument lists, most notably
that array variables cannot be
passed to functions as arguments.
Arrays may, however, be passed as
arguments to procedures.

Shared variab/,es are available to
both the subprogram in which
they are declared and to the main

102 TURBO TECHNIX May/June 1988

program, but not to other sub
programs. They can be used to
augment the argument list of a
subprogram, because variables of
any type can be shared variables.
Arrays declared in a function
should be declared as SHARED
with the main program, because
(as mentioned above) array vari
ables cannot be passed to func
tions through argument lists.

With earlier BASICs, the term
global variable is sometimes used
interchangeably with shared vari
able, but a global variab/,e is avail
able to all parts of a program with
out restriction. Any program
statement in the main program, in
any procedure, or in a function
can access a global variable.
Turbo Basic, however, does not
support global variables in this
sense. By default the scope of a
variable in Turbo Basic is limited
to the entity in which it is defined
(either the main program or a
subprogram), and no single state
ment declares a variable to be
global. To make a Turbo Basic
variable effectively global, you
must declare it as SHARED within
every subprogram in the program.

In certain situations, a variable's
status defaults to local, static, or
shared. But you can also declare
the status of a variable with the
LOCAL, STATIC, and SHARED
statements. You can only use these
statements within procedures and
functions, and they must appear
before the code body of the pro
cedure or function.

PROCEDURES AND THEIR
VARIABLES
A procedure is a multiline program
segment bounded by the SUB and
END SUB statements. The main
program calls a procedure with a
CALL statement, which may have
an argument list. Although the
Turbo Basic Owner's Handbook
states otherwise on page 355, vari
ables declared within a procedure
are static by default, but you may
also declare variables to be local
or shared. You cannot declare any
variable in a LOCAL, STATIC, or
SHARED statement if that same
variable also appears in the argu
ment list.

Consider the following ex
ample:
CLS
A=3
8=56
X=S
Y=2
C=6
CALL TESTCX, Y)
PRINT C,X,A,Y
END
SUB TESTCA,D)

LOCAL B
SHARED C
B=A-2
C=C+A
D=4*B
E=E+1

END SUB

The PRINT statement displays:

11 5 3 100

The variable B in the procedure
is declared as local; it is main
tained on the stack and its value
will be lost when the program
exits the procedure. The variable
B in the procedure is different
from the variable B in the main
program, because their scopes do
not intersect.

The main purpose of the
SHARED statement in procedure
TEST is to make the main pro
gram variable C available to TEST
without having to put C in the
argument list. Shared variable C
starts out with the value 6 assigned
in the main program. C is then
changed by the procedure TEST;
when printed, C has the new
value of 11.

X is not changed by procedure
TEST, but Y assumes the value of
D. This example illustrates how a
value may be returned to the main
program through the argument
list. The main program's variable
A does not change, since it is
independent of the variable A in
the procedure's argument list.

You must keep default condi
tions in mind, but it is not neces
sarily a good idea to depend on
them. Being explicit about vari
able scoping costs nothing in code
speed and costs very little in com
pilation time. E, which by default
is static, is initialized to 0 when
the program begins execution,
and is incremented by 1 each time
the procedure TEST executes.
The incremented value remains
in memory between executions of
TEST. There is no reason to
declare B as local, as opposed to
letting it be static by default (like

variable E). Good practice, how
ever, suggests that you declare the
procedure's own variables with
the STATIC or LOCAL statements
as desired so that anyone looking
at your program listing (including
you) can see the nature of your
variables at a glance. Further
more, Borland does not guarantee
that default conditions will not
change in future releases of the
compiler. To this end, we should
add the statement STATIC E to
the example program.

SHARING STRATEGIES
For any given variable, you have
to choose between using the argu
ment list or the SHARED state
ment when you are designing a
procedure. If your procedure is
for use within a single program,
the SHARED statement is very
convenient. On the other hand, if
you are designing a routine for
incorporation into a library that is
used by many programs, it is bet
ter to pass everything possible
through argument lists. You will
be able to use the routine in any
program without worrying about
matching shared variable names.

You can pass arrays either
through the argument list, or by
declaring them as SHARED
within the procedure. With the
former method, use the format
arrayname(n), where n is the
number of dimensions. Keep in
mind that passing arrays in this
way applies only to procedures;
arrays cannot be passed to func
tions as arguments. In the
SHARED statement, use
arrayname().

An additional advantage of
using argument lists in passing
values to procedures is that the
actual parameters passed as argu
ments can be different variables
on each invocation, whereas a
shared variable is always the same
variable on every invocation . For
example, consider the following
procedure header:
SUB AVERAGE(Nlll1Array(1),Average)

Here, the formal parameter
NumArray(l) specifies that a one
dimensional array may be passed
to AVERAGE. It doesn 't say which
array. In other words, if you have
two arrays, Array I and Array2,
eithe r one may be passed to
AVERAGE in the NumArray(l)
form al parameter.

On the other hand, if you don 't
include an array formal parameter
in the argument list, and instead
declare Array I as SHARED within
procedure A VERA GE, the actual
array variable Array I is the only
array that will be available to
AVERAGE.

DEFINED FUNCTIONS
Support of multiline defined func
tions is one of Turbo Basie's more
significant enhancements. Older
BASIC interpreters limit defined
functions to a single line. Using
multiple lines in Turbo Basic
allows the creation of consider
ably more complex functions.

While similar to procedures,
defined functions have several
distinctive properties. You exe
cute a function by placing its
name in an expression, as in
A=FNTFST(X,Y). The function
name takes on a value during the
function 's execution, and this
value is returned to the caller as
though the name of the function
were the name of a variable.

A function is not required to
return a value in the function
name; it may simply perform its
work by executing some state
ments. Values may also be passed
back to the caller through shared
variables. Note that, unlike pro
cedures, functions cannot pass
values back to the main program
through the argument list. An
other difference between func
tions and procedures is that vari
ables appearing in a function's
argument list are local to that
function, but other variables in
the function are by default shared
with the main program unless
declared otherwise.

The following example illus
trates some of the properties of
variables in defined functions:

CLS
X=5
Y=3
A=17
ANSWER=FNTEST(X,Y)
PRINT ANSWER,C,A
END
DEF FNTEST(A,B)

FNTEST=A-2+2*A*B+B·2
C=A+B

END DEF

The PRINT stateme nt displays the
output:

64 8 17

continued on page 104

THE WINDOW BOX

WINDOW BOX (n):
1. A flower box that enhances the beauty of

a window.
2. A windowing toolbox for C programmers.

Enhance the beauty of your C applications
with THE WINDOW BOX.

ADD SOME PIZAZZ!
THE WINDOW BOX lets you ELECTRIFY
your programs with pop-up windows, pull
down menus with highlight bar selection , and
context sensitive help . Watch your screen go
blank when your program is idle. Assign
functions to the function keys. Much more!

ADD SOME POWER!
Read many fields with one operation . Data
entry windows offer many formats , com
plete cursor navigation , and let you tie veri
fication functions to any field . Use scrolling
and text-editing windows, too. Print a
window, not necessarily the whole screen.
(Super for mailing labels!) Much more!

SOURCE CODE PROVIDED.
Contains no assembler code! Only standard
C code. See how things work. Understand
how things work . Change how things work .
Compatible with all major C compilers.
Requ ires MS-DOS/ PC-DOS.

REASONABLE PRICE.
And no royalties. Only $49.50 including
shipping and tax . Or, try the demo disk and
inspect the manual for only $10. Like what
you see , and apply this $10 to the purchase
price. Overseas add $5.00 per order and we
will Air Mail.

SATISFACTION GUARANTEED, or return in
30 days for a full refund .
Mastercard/Visa: Call 412-487-4282.
Or, send checks (U .S. funds) to :

Verti ca l Horiz ons Software
11 3 L ingay Dri ve
Glem shaw. PA 15116

May/June 1988 TURBO TECHNIX 103

VARIABLE

continued from page 103

A function is given a value by
assigning the value of some
expression to the function name,
as in the statement:
FNTEST=A"2+2*A*B+B"2

The main program can access this
value by using the function name
in an expression. The expression
does not have to be an assign
ment statement. I could also have
written:

PRINT FNTEST(X,Y)

Note that variable C, which is a
shareu variable by default, is avail
able to the main program even
though it was never declared
there. Shared variables are the
best way to operate on arrays,
since you can't pass complete
arrays to functions through the
argument list. Only the individual
elements of an array can be
passed in this way.

A and B are local by virtue of
appearing in the argument list. If
your function requires the use of
temporary variables, you can de
clare them with the LOCAL or
STATIC statements to avoid inter
ference with main program vari
ables. Again, good practice dic
tates that you declare all of your
variables as having a specific
scope, rather than rely upon
default conditions. This means
that we should add the statement
SHARED C to the FNTEST
function.

Defined functions have another
property not shared by proce
dures, as shown below:
CL:.
X=1
Y=2
Z=3
DUMMY=FNTESTCX,Y,Z)
PRINT X
CALL TEST(X,Y,Z)
PRINT X
END
DEF FNTEST(A,B,C)

A=A+B*C
END DEF
SUB TEST(A,B,C)

A=A+B*C
END SUB

The function and the procedure
seem identical, yet the first PRINT
X statement will display 1, where
as the second will display 7. In the
first case, the function's argument
list passes only the value of the

104 TURBO TECHNIX May/June 1988

variable X. The function cannot
change X since it doesn't know
where X is stored. This is called
passing by value. In the second
case, the procedure's argument list
passes the address of the variable
X. The procedure reads the origi
nal value, performs the operation,
then returns the result to the vari
able X. This is called passing by ref
erence. If you change the CALL
statement to CALL TEST((X),Y,Z),
the value of X will not change
because this tells the compiler to
pass only the value of X.

SINGLE-LINE FUNCTIONS
Single-line functions have proper
ties similar to multiline functions
that don't use the LOCAL,
STATIC, or SHARED statements.
Variables in the argument list are
local, and all variables within the
function's definition are shared
with the caller. The following
example illustrates a simple
single-line function :

CLS
B=10
X=2
PRINT FNTEST(X)
END
DEF FNTEST(Y)=B+Y

The PRINT statement displays 12.

CHAINED PROGRAMS
Chained programs are relics of the
days of small memory systems and
the limited power of BASIC inter
preters. Programs of a reasonable
size often could not fit completely
in memory, so they were divided
into multiple modules that passed
control from one to another, with
each module taking its turn in
memory while it executed. Turbo
Basie's ability to use all available
memory will probably allow you to
combine previously chained pro
grams into a single module. Turbo
Basic does support chaining to a
limited extent, and the subject of
local variables is not complete
without mentioning chaining.

With the statement CHAIN
< filespec>, a program can pass
execution to a second program
that has been compiled with the

.EXE or .TBC extension. The
second program can pass execu
tion back either to the first pro
gram, to a third program, or to
DOS. The scope of all variables in
a series of chained programs is
limited to the single program that
contains those variables. In other
words, if PROGA chains to
PROGB, PROGB has no knowl
edge of, or access to, variables
within PROGA.

The COMMON statement
allows you to share variables
among programs in a chained
series of programs. COMMON,
accompanied by a variable list,
must appear in both the called
and the calling programs. The
variable list in each program must
contain the same number and
type of variables, listed in the
same order. To share variables A,
B, MyArray, and BUF$, the fol
lowing statement must appear in
all programs that will share these
variables, in exactly this form:
COMMON A, B, MyArray(1), BUFS

The scope of all variables cited in
the COMMON statement is thus
expanded to include all programs
that contain the COMMON state
ment. Again, it is crucial that each
variable in all COMMON state
ments has the same name, the
same type, and is in the same
order in all instances of the
COMMON statement, or else
a runtime error will occur.

VARIABLE STARS
As author Tom Swan has said,
statements are what a program
does, and variables are what a pro
gram knows. When first learning a
programming language, users
often look at the statements that
make up a program without think
ing very much about the variables
that are acted upon by those state
ments. Taking the time to under
stand how scoping affects Turbo
Basie's variables will make it much
easier to create programs that
work correctly and read well, both
now and six months from now. •

David A Williams is a principal staff
engineer for a major aerospace com
pany. He can be reached at 2452
Chase Cirde, Clearwater, Florida
34624.

INSTANTANEOUS
HELP SCREENS
Tuck some helpful information in the screens
hiding behind your screen.

Ralph Roberts

Instantaneous help screens are an easy
way to add professional "slickness" to
your Turbo Basic software. These screens
appear instantly at the touch of a key,
then neatly disappear until called again.

PROGRAMMER You can have up to eight display
"pages" in text mode, but only on CGA, EGA, or
VGA adapters. The page being processed and/ or
displayed is set using the SCREEN statement. The
general format is:

SCREEN [model [, [col or flag] [, [apage] [, [vpage] •

The mode must be 0 (i.e., the text default), and
colorflag is not used (though you can use the
COLOR statement as much as desired) . The trick is
the last two parameters, apage and vpage. apage, an
integer value from 0 to 7, controls which text page is
written to. vpage selects the one shown.

In a help screen application, you want to devise a
routine to load help screens during program initiali
zation so that the screens do not appear until they're
called. Use event trapping to make a screen pop into
place when a specific "help" key is pressed. You write
to one screen while showing another.

At the start of the program, Fl is defined as invok
ing the HELP subroutine; the FlO Endlt subroutine
provides an exit from the program. When a subrou
tine is assigned to a function key, you must turn the
key on. Turbo Basic then checks between each state
ment to see if that key has been pressed. If it has, the
associated operation is performed.

Note that this will not work on the IBM Mono
chrome Display Adapter, which contains only 4K of
text buffer; this is enough for a single page and no
more. •

Ralph Roberts is a freelance writer and ham radio operator
(WA4NUO) who has written books on many topics, in
cluding Turbo Basic, Turbo Prolog, Reflex, and auto
graph coUecting.

Listings may be downloaded from CompuServe as
HLPSCRARC.

LISTING 1: SCREEN.BAS

' : : : : : : : : : Instantaneous Help Screens by Ralph Roberts : : : : : : : : : : : :

CLS : ON KEY (1) GOSUB ONE : ON KEY (2) GOSUB H«l
ON KEY (10) GOSUB Endlt : KEY (1) ON : KEY (2) ON : KEY (10) ON
SCREEN ,,1,0 'Write to Screen 1 but show Screen O!

COLOR 14 ' Make it a different color
FOR XX= 1 TO 42 ' Use integers for loops, it's faster

PRINT "This is an instantaneous HELP Screen . 11
;

NEXT XX : PRINT ' This loop invisibly fi I ls the HELP screen
PR I NT : PR I NT • (press any key to return to program)"
COLOR 15 ' color for second HELP screen

SCREEN .,2,0
FOR XX = 1 lO 42 ' Use integers for loops, it's faster.

PRINT "This is yet another HELP Screen. 11 ;

NEXT XX : PRINT ' This loop invisibly fills the 2nd HELP screen
PRINT : PRINT " (press any key to return to program)"
COLOR 7 ' Restore color to default
SCREEN , ,0 ' Restore screen writing to Screen 0

MainProgram:
LOCATE 1,20 : PRINT 11 1 n s t a n t a n e o us S c r e en s11

LOCATE 25,20 : PRINT "Hit F1 for Help, F2 or Help2, or F10 to end";
LOCATE 12,30 : COLOR 0,7 : PRINT DATES, TIMES; : COLOR 7,0
GOTO MainProgram

Endlt:
CLS : COLOR 7,0 : ENO

ONE:
HelpScreen = 1 : GOTO HELP

TWO:
HelpScreen = 2 : GOTO HELP

HELP:
SCREEN .,HelpScreen ' POP up the cal led for screen
WaitABit:

AS = INKEYS : IF AS= '"' THEN llaitABit
SCREEN , ,O ' restore main program screen & contfr1ue operation

RETURN

May/June 1988 TURBO TECHNIX 105

~ PICK A FILE, ANY FILE
0
~ File selection menus let your user ~~ peruse and choose," with
E-- a little help from the Turbo Basic Database Toolbox .

Marty Franz

Sooner or later, your programs will need
to get a filename from your user. When
that time arrives, you could execute an
INPUT statement asking your user to type
the drive, directory, and fi lename. In this

PROGRAMMER situation, the task of specifying a legal
fi lename (eight letters, digits, and common symbols;
followed by a period; optionally followed by one to
three characters) falls completely upon your user
and leaves plenty of room for a naive user to make a
mistake.

Isn't there a better way to ensure that you get a
correct fi lename from your user? Wouldn't it be nicer
if your user could highlight a fi le in a list that you
display on the screen, and then select that fi le by
pressing Enter?

You can make th is scenario a reality by rounding
out your Turbo Basic programs with the routines
demonstrated in the fi le selection program
PICKER.BAS (Listing 1). PICKER prompts the user
for a drive and directory, and then displays a list of
the fi les in that directory. The selected fi le is high
lighted by using the up and down arrow keys, and
the Home and End keys. If Enter is pressed, the
highlighted fi le is displayed for confirmation; if Esc
is pressed, entry is aborted.

Although PICKER is a simple program, it illus
trates the use of the various Turbo Basic routines
described below. These routines, which can be
modified and incorporated into your own programs,
provide good examples of the use of Turbo Basie's
powerful CALL INTERRUPT statement. They also
demonstrate the use of subroutines from the Turbo
Basic Database Toolbox for handling the detai ls of
getting input from the user, scroll ing, and writing to
the screen.

INT ERRUPT HINTS
Before we examine the implementation of Turbo
Basie's CALL INTERRUPT statement in PICKER,
let's look for a moment at the way that Turbo Basic
handles interrupts.

l06 TURBO TECHNIX May/June 1988

Using interrupts from interpreted BASICA is
tedious and requires an assembler. You have to write
assembly language routines to pass control and
parameters from your BASIC program to the inter
rupt routine, then generate the interrupt, and finally
clean up the stack and come back. Turbo Basic, how
ever, contains a CALL INTERRUPT statement that
allows you to generate any valid 8088 interrupt by
specifying the interrupt number. For example, to call
DOS using the CALL INTERRUPT statement, you
code:
CALL INTERRUPT &H21

Turbo Basic provides a REG buffer to hold 8088
register values before and after an interrupt call. The
Turbo Basic Owner's Handbook tells exactly which sub
scripted element in the REG buffer stands for which
register in the buffer. For example, element 0 holds
the flags register, element 1 holds the AX register,
and so on. Rather than attempting to remember all
these correlations, you should always include the fi le
REGNAMES.INC from the Turbo Basic distribution
disk, and define named constants for the frequently
used register values. Your code will be much more
readable if you refer to registers and DOS function
call services by their symbolic names:

%Findfirst=&H4EOO
REG %AX,%FindFirst

This is much easier to read than the literal
equivalent:

REG 1,&H4EOO

Following readability conventions makes future
maintenance of your program much easier.

To make effective use of CALL INTERRUPT, you
should have both a DOS technical reference manual
and a good reference to PC BIOS routines. Other
books on IBM PC assembly language are also
helpful.

LOOKING FOR FILES
The routines MsDos and FNDosEr ror set the regis
ters and check for errors; we can also call them to
perform directory searching chores. Searching

a DOS directory involves two calls:
Find First Matching File and Find
Next Matching Fi le. The logic for
using th ese calls (assuming that
you already have a fi le mask) can
be expressed in pseudo-code:

Fi nd first file matching the mask
If there was a file found then

Do
Find the next file

that matches the mask;
Loop until no more files

End If

T he first of PICKER's two main
parts contain s two versio ns of this
logic. The versio n in the subrou
tine FNCountFiles returns a count
of the fil es matching the mask
and enables you to dynamically
allocate an array to hold the
fil en ames. Another version of
this logic is in the subroutine
FNGetFiles, which fi lls a string
array with all the fi les that match
the mask. T he fo llowing Turbo
Basic code statements let you use
these routines:

Mask$="*·*"
NumberFiles=FNCountFiles(Mask$)
DIM FileNamesS(Nl.lllberFiles)
CALL GetFiles(Mask$,Fi l eNames$())

If a nonexistent or illegal mask
is e ntered, th e routines find no
fil es. In this case, calling the fu nc
tio n FNDosError returns the
reason why no fi les are found.
While officially the code 2 signi
fi es No Files Found, and the code
18 indicates No More Files, any
return code oth er than zero is
treated in the same way. Let's
amend the logic given above to be
the fo llowing:

Mask$="*·*"
Nl.lllberFiles=FNCountFiles(Mask$)
IF Nl.lllberFiles>O THEN

DIM FileNames$(Nl.lllberFiles)
CALL GetFiles(Mask$,FileNames$())

ELSE
PRINT "No files found . "

END IF

As shown here, the first part of
PICKER handles the actual direc
tory search; we'll jump farther into
PICKER shortly. First, however,
you need to know about three
important wrinkles with respect
to directory searches in BASIC.

Attribute Mask . Searching directo
ries requires you to specify an
attribute mask, a long with the fi le
name. The attribute rnask tells DOS
which types of directory entries
you are seeking. The exact bit
meanings (when bits are equal to
one) are given below:

continued on page 108

LISTING 1: PICKER.BAS ~

1 PICKER.BAS: Demonstration file picker program

1 version: 2-10-88
1 compiler: Turbo BASIC 1. 0
1 uses: REGNAMES.INC, ENTSUBS.BOX, SCRNASM.BOX, SCRNSUBS.BOX
1 module type: .EXE

1 (C) Copyright 1987 Marty Franz

1 This program prompts the user for a list of files and displays
1 them, allowing selection using the up and down arrow keys,
1 Home, End, and Esc.

DEFINT A-Z

$INCLUDE "REGNAMES.INC"
$INCLUDE "ENTSUBS.BOX"
$INCLUDE "SCRNASM.BOX"
$INCLUDE "SCRNSUBS.BOX"

%False=O
%True=NOT(%False)

%GetDTA=&H2FOO
%FindFirst=&H4EOO
%FindNext=&H4FOO

%SearchAttribute=&H21
%FileNameOffs=30

'From the Turbo BASIC Database Toolbox

'Dos and Bios calls

'file attribute: R/O +archive
'filename offset within OTA

%NoError=O 'Dos error code

SUB EntUserHook(Ch$)
1 This routine is required by the Turbo BASIC Database Toolbox entry
' functions.
Ch$=1NKEY$

END SUB

DEF FNLo(X)
1 Return the low byte of integer X.
FNLo=X MOD 256

END DEF

DEF FNHi(X)
' Return the high byte of integer X.
FNHi=INT(X/256)

END DEF

SUB StringAddr(Segment,Offset,SS)
1 Subroutine to get the segment and offset of a string. Gets
1 the segment from the first two bytes of the default segment.
1 Gets the offset by reading the string descriptor and getting
1 the third and fourth bytes of that.
LOCAL 0
Segment=PEEK(0)+256*PEEK(1)
O=VARPTR(S$)
DEF SEG = VARSEG(S$)
Offset=PEEK(0+2)+256*PEEK(0+3)
DEF SEG

END SUB

DEF FNASCllZ$(Segment,Offset,MaxLen)
1 Get an ASCllZ string from memory at the location given by
1 Segment:Offset. MaxLen is a check on the length of the
' string to get.
LOCAL P,N,S$
S$=1111

N=O
P=Offset
DEF SEG = Segment

May/J une 1988 TURBO TECHNIX 107

WHILE PEEK(P) AND N<=HaxLen
SS=SS+CHRSCPEEKCP))
INCR P
INCR N

WEND
DEF SEG
FNASCllZS=SS

END DEF

DEF FNDosError
' Return the last DOS error code rece ived.
IF CREG(O) AND &H01) THEN

FNDosError=REGCXAX)
ELSE

FNDosError=O
END IF

END DEF

SUB HsDos(N)
' Perform HS DOS call N. Assumes the other reg isters have been
' set up already. N i s used as AX va lue.
REG 1,N
CALL INTERRUPT &H21

END SUB

SUB GetDosDTA(Segment,Offset)
' Get the current Dos OTA segment and offset. If bot h are zero
• then an error occurred .
Offset=O :Segment=O
CAL L HsDos(%GetDTA)
IF FNDosError=XNoError THEN

Offset=REG(XBX)
Segment=REG(%ES)

END IF
END SUB

DEF FNCountFiles(FileSpec$)
' Return a count of the files matching the f il espec. Use thi s
' subroutine to pre-allocate ar rays for sort i ng and choosing.
' If i t returns 0 then no f i les were found; t his means checking
' FNDosError for t he reason.
LOCAL Segment,Offset,Hask$
HaskS=FileSpecS+CHR$(0)
CALL StringAddr(Segment,Offset,Hask$)
REG %CX,XSearchAtt r ibute
REG XOX,Offset
REG "'>S,Segment
CALL HsDos(XF i ndF irst)
IF FNDosE r ror=XNoE rror THEN

Count=O
DO

Count=Count+1
CALL HsDos(XF indNext)

LOOP UNTIL FNDosError
FNCountFiles=Count

ELSE
FNCountFiles=O

END IF
END DEF

SUB Get Files(FileSpecS,F il eArray$(1))
• Fill a string array wi th t he fi les that match t he filespec
' passed. Fi lls up to upper bound of Fi leArray from lower
I bound.
LOCAL l,Segment,Offset,HaskS,DTASeg,DTAOffs
CALL GetDosDTACDTASeg,DTAOffs)
Hask$=FileSpec$+CHR$(0)
CALL StringAddrCSegment,Offset,HaskS)
REG %CX,XSearchAttribute
REG XDX,Offset

108 TURBO TECHNIX May/June 1988

P ICK A FILE
continued from page 107

&HOl: file is read-only
&H02: hidden fi le
&H04: system file
&H08: volume label
&HlO: subdirectory
&H20: archive bit

The archive bit is set whenever
the fi le is written to and closed.
It's used by the DOS BACKUP
utility to tell if the file has been
changed since the last time it was
written to. After the backup has
been made, this bit is reset to
zero.

You can combine these bits into
a single b inary byte to tell DOS
exactly what kinds of fi les you
want to look for. PICKER uses the
value &H21 to include read-only
and nonarchive files in the
search, and to omit everything
else. You may also include hidden
files, system files, and subdirecto
ries in the search.

Disk Transfer Add ress. File infor
mation is placed in a Disk Transfer
Address, or DTA, which is an area
that DOS uses to pass information
about directory entries. The layout
of the DTA when you search direc
tories is summarized in Table 1.

21 bytes - reserved by DOS
I byte - attribute found
2 bytes - file 's time
2 bytes - file' s date
2 bytes - low word of file's size
2 bytes - high word of fil e's size
13 bytes - name and extension of file

Tab/,e 1. The structure of the DOS
Disk Transfer Area.

The fi le's name and extension
are stored as a proper filename
ending with a zero byte. (This type
of filename is called an ASCIIZ
string in the DOS documentation.)
The function FNASCllZ retrieves
this filename from the DTA, and
the subroutine GetDosDTA finds
the segment and offset of DOS's
current DTA. DOS assumes that
you already know which drive and
path to search, and only gives you
the specific filename and fi le
related information (date, time,
and size).

File specification mask. You need
to pass an ASCIIZ string to DOS
containing the actual file specifi-

continued on page 110

"Behind the beauty of the
Turbo C environment
stands the brawn of

a full-fledged compiler"
" Taking compilers and pro
gram development tools into the
next generation is Borland
International's Turbo C, a
$99.95 package that will stun
you with in-RAM compilations
that operate at warp speed .

. . . a 21st century compiler at a
preinflation 1967 price. Is it any
wonder that Turbo C was
included in the Best of 1987?

Richard Hale Shaw, PC Magazine

Turbo C represents an all-new
price-performance level-one
that will be hard to match. much
less beat.

Marty Franz, PC Tech Journal

Stephen Randy Davis, PC Magazine Actual photograph of Turbo C graphics displayed on IBM 8514 screen.·

Turbo C showed excellent
compiler speeds. good overall
benchmark scores. and extraor
dinary floating-point performance.
Scott Robert Ladd. Micro Cornucopia "

Our new Turbo C 1.5 is a
technological tour de force

At Borland we believe the slow
way is no way, so Turbo C® is a
racer. And as well as white-knuckle
speed, Turbo C also gives you
spectacular graphics.

Minimum sy1tem requirements: For the IBM PS/2"' and the IBM8 family ot per·
sonal computers and all 100% compahbles PC-DOS (MS-DOS•) 2 O or late1 384K
"Aflwork me1alile cou11esy of Gerng1aph1cs Corpo1ation
··customer sahstact100 is our main concern, 11 w1th1n 60 days ot pLrchase ttus product
does nol peilorm m accmdance wilh oor claims, call OUf customer service department,
and we will aHangea relund
AllBorlandP100Jctsarena0tmarks01rtQ1Sll!leOl1adl!!NtksotBorlailOlnll!lnat·onal Ire 011\e! bri!Mand
orOOJc1namesare1rademails01r~'s1tiec!1ra0t~ksoltne.rmptct'~enotl'.ltls Coprr1Qt11•19878olland
lnlematONI Inc Bl 1221

Some of the reasons why the
critics are so enthusiastic
about Turbo C 1.5
Turbo C now includes:
• A professional-quality graphics

library of over 70 functions
• A librarian that allows you to

build your own object module
libraries

• Context-sensitive help for the
language and the library routines

• Text/ video functions.
including windows

• 43- and 50-line mode support
• VGA. CGA, EGA. Hercules. and

IBM 8514 SU pport
• File search utility (GREP)
• Sample graphics applications
• More than 100 new functions

The professional optimizing
compiler for Jess than $100.00

For professional-quality C at a
sane price. nothing comes close to
Turbo C. It's super-fast and super
graphic. (We used it ourselves to
write Eureka:'" The Solver and to
develop the presentation-quality
graphics in Quattro:· our new and
highly successful professional
spreadsheet.) No one can deliver
technical superiority like Borland.

60-Day Money-back Guarantee**

For the dealer nearest you.
Call (800) 543-7543

INTERNATIONAL

REG %DS,Segment
CALL MsDos(%FindFirst)
IF FNDosError=%NoError THEN

1=1
DO

FileArray$(1)=FNASCIIZS(DTASeg,DTAOffs+%FileNameOffs ,12)
!NCR I
Call MsDosC%FindNext)

LOOP UNTIL FNDosError OR I>UBOUND(FileArray$(1))
END IF

END SUB

SUB Choose(Pick,Visible,N,ChoicesS(1))
' Subroutine to choose an item f rom a string array. Pick holds
' the item nurber the user chose. Visible is the nl.Jlber of
' items on the screen ••• it can be less than N, the nl.Jlber of
' items in the array. If so, the routine will scrol l the list
' up and down. The array Choices$ contains the items. When
' complete, the variable EscPressed will be %True if the user
' aborted, %False otherwise. Keys handled are Enter, Esc, the
' up and down arrows, Home, and End .
SHARED EscPressed
SHARED Ent.NotAvailable,Ent.Escape,Ent.CR,Ent.UpL ine,Ent.DnL i ne ,_

Ent.Home,Ent.End
LOCAL From,I,R,Top,Bottom,Margin,Cmd
Top=CSRLIN:Margin=POS(O)
Bottom=Top+Visible·1
Pick=1
From=1
GOSUB DisplayChoices
Done=%False
DO

GOSUB Highlight
DO

CALL GetKeyStroke(Cmd)
LOOP UNTIL Cmd<>Ent.NotAvailable
GOSUB Lowlight
SELECT CASE Cmd
CASE Ent . Escape

Done=%True
EscPressed=%True

CASE Ent . CR
Done=%True
EscPressed=%False

CASE Ent.Upline
IF Pick>1 THEN

DECR Pick
IF R>Top THEN

DECR R
ELSE

CALL Scroll(1,Top,Bottom,Margin,80,&H07)
LOCATE R,Margin
PRINT ChoicesS(Pick);

END IF
ELSE

CALL MinorErrorSound
END IF

CASE Ent .Dnli ne
IF Pick<N THEN

!NCR Pick
IF R<Bottom THEN

!NCR R
ELSE

CALL Scroll(O,Top,Bottom,Margin,80,&HO?)
LOCATE R,Margin
PRINT Choices$(Pick);

END IF
ELSE

CALL Mi norE rrorSound
END IF

110 T URBO TECH NI X May/June 1988

PICK A FILE
continued from page 108

cation mask to search for. The
string is passed to DOS by loading
the DX register with the string's
offset, and loading the DS register
with the string's segment. You
can'tjust use Turbo Basie's
V ARSEG and V ARPTR functions
to set these registers, because
VARSEG and VARPTR return the
segment and offset of the string's
descriptor, rather than of the
string itself. To find the actual seg
ment and offset of the string's
data, you need to obtain the string
data segment from the first two
bytes of Turbo Basie's default
data segment. The subroutine
StringAddr, which uses the third
and fourth bytes of the string's
descriptor, finds the offset of the
string data with in this segment.
The code that accomplishes the
sequence is near the top of both
the FNCountFiles function and
the GetFiles procedure.

CHOOSING A FILE
The second pan of PICKER is the
subroutine Choose, which uses
subroutines and shared variables
that are found in the Turbo Basic
Database Toolbox. Choose dis
plays the contents of the array on
the screen and allows the user to
pick from among the displayed
fi lenames. This straightforward
subroutine displays as many
names as it can, then lets you pick
one by moving a reverse video bar
up and down on the screen. The
up and down arrows move the
highlight bar up or down the list.
The Home key goes to the top of
the list, and the End key goes to
the bottom. Study the code and
you'll see that it's easy to support
additional keys, such as PgUp or
PgDn. The logic for Choose can
be summarized in the following
pseudo-code:
Di splay as many i tems as you can
St ar t wi th the first one

Do
Get a keypress
If Ent er or Esc pressed then

Done
Else

Move the hi ghl ight bar
as required

End if
Loop unt i l done

When Choose is called, it
assumes that the cursor is at the

top left corner of the area to be
used for input. T he parameters
passed to Choose are:

Pick

Visible

N

T he number of the
item actually picked by
the user.
T he number of items
in the list th at can be
seen at o ne time.
Th e total number of
items in the list.

Choices$() A string array contain
ing the items to be dis
played and chosen
from .

Notice that nothing in the
design of Choose limits it to the
selectio n of filenames only. You
can modi fy Choose to select any
thi ng that can be kept in a list in
your programs, such as menu
option s, names, and so fonh.

Also notice that you can choose
both the number of items in the
list and the number of items that
are visib le at any one time on the
screen. Choose will scroll the list
up or down as needed when you
move the h ighlight bar.

Choose scrolls the screen with
the Turbo Basic Database Tool
box's Scroll subroutine, which
uses the PC's BIOS VIDEO service
(interrupt lOH, subfunctions 6 and
7) to scroll the screen one line up
or down. Another subroutine,
ClrArea, uses the Toolbox func
tion WriteScreenArea to clear an
area of the screen th at is desig
nated by the row and column of
its top left and bottom right
corners. T h e subroutine ClrEol
simulates the Turbo Pascal func
tion of the same name, and also
uses WriteScreenArea to clear a
single line from the cursor to the
edge of the screen.

Choose contains a sh ared
variable named EscPressed. This
variable is set to the constant
%True when the Esc key, rather
than Enter, is used to exit the sub
routine. This process allows you
to check whether the user has
aboned a fi le selection session.

The function GetKeyStroke is
wonh funher explanation. This
function is a Turbo Basic Data
base Toolbox subroutine that
retrieves a keypress as an ASCII
number, rather than as a string.
For extended keys (such as the

continued on page 112

CASE Ent.Home
From=1
Pick=1
GOSUB DisplayChoices

CASE Ent.End
From=N
Pick=N
GOSUB DisplayChoices

END SELECT
LOOP UNTIL Done
EXIT SUB

DisplayChoices:
' Display all the choices starting with From on the screen.
' Clears the display area first.
CALL ClrArea(Top,Bottom,Margin,80)
!=From
R=Top
COLOR 7,0
DO

LOCATE R,Margin
PRINT ChoicesS(I);
INCR I
INCR R

LOOP UNTIL l>N OR R>Bottom
R=Top
RETURN

Highlight:
' Highlight the current choice. Di splays this in reverse
' video.
LOCATE R,Margin
COLOR 0,7
PRINT ChoicesSCPick);
RETURN

Lowlight :
' Lowlight the current choice before moving on. Displays the
' choice in normal video.
LOCATE R,Margin
COLOR 7,0
PRINT ChoicesSCPick);
RETURN

END SUB

SUB ClrArea(TopRow,BottomRow,LeftCol,RightCol)
' Clear an area of the screen using WriteScreenArea
LOCAL Nl.lllberOfRows,Nl.lllberOfCols,NumberOfChars,ClrTextS,ClrAttrS
Nl.fl"berOfRows=BottomRow-TopRow+1
Nl.fl"berOfCols=RightCol-LeftCol+1
Nl.fl"berOfChars=Nl.lllberOfRows*Nll!lberOfCols
Cl rTextS=STRINGSCNl.lllberOfChars," ")
ClrAttrS=STRINGS(Nl.lllberOfChars,&H07)
CALL WriteScreenArea(TopRow,LeftCol,NumberOfRows,Nl.lllberOfCols,

ClrTextS,ClrAttrS) -
END SUB

SUB ClrEol
' Clear a line from the cursor to the end us i ng ClrArea
CALL ClrArea(CSRLIN,CSRLIN,POS(0) , 80)

END SUB

1 Ma in program

CALL Scrnlnit
CALL l ni tEntry
DIM Fi leNamesS(100)
COLOR 7,0:CLS

' Required by SCRNSUBS and SCRNASM
' Requ i red by ENTSUBS

LOCATE 1, 1:PRINT "F i le Pi cker Demo";
LOCATE 3, 1:PRINT STR INGS(80 , 196);

May/June 1988 TURBO T ECHNIX 111

Done=XFalse
EntSpecS=1111

Pr°""tS="Drive and Directory: 11

FieldSize=80-LEN(Pr°""tS)-1
DO

CALL Pr°""tEntry(FieldSize,FieldSize, 1111 ,2,1,&H07,&H70,CHRS(13),3,_
Pr°""tS,EntSpecS,Changed,ExitKey)

IF Changed AND LEN(EntSpecS)>O THEN
SpecS=EntSpecS+11 *.*11

N=FNCountFiles(SpecS)
IF N>O THEN

LOCATE 24, 1
CALL ClrEol
PRINT "Files listed:";N
CALL GetFiles(SpecS,FileNamesS())
LOCATE 4,20
CALL Choose(Pick,19,N,FileNamesS())
IF NOT(EscPressed) THEN

LOCATE 24, 1
CALL ClrEol
PRINT "You chose ";FileNamesS(Pick);

ELSE
CALL MinorErrorSound

END IF
ELSE

LOCATE 24,1
CALL ClrEol
PRINT "No fi Les found ••• ";
CALL MinorErrorSound

END IF
ELSE

Done=XTrue
END IF

LOOP UNTIL Done
CLS
END

112 TURBO TECHNIX May/June 1988

PICK A FILE
continued from page 111

function keys, Alt keys, and cursor
pad keys), the second byte of the
extended ASCII value is added to
255. For example, the Home key,
75, is translated as 326. When you
include the Toolbox subroutines,
you can use shared variables such
as Ent.Home for these commonly
used keycodes. If you aren't build
ing strings out of the user's key
presses, GetKeyStroke is the pre
ferred way to work with key
presses.

The Toolbox subroutine
PromptEntry, called from the
main program of PICKER,
retrieves the drive and directory.
Normal video attribute (7H) is
used for the prompt area, and
reverse video (70H) is used for the
input area. This powerful Toolbox
subroutine makes it easy to han
dle the user's input because it sup
ports color changes, field lengths,
and even the editing keys. (The
Turbo Basic Database Toolbox's
screen functions are described in
"Turbo Basic Screens At Assem
bler Speed," TURBO TECHNIX,
March/ April, 1988.)

TAKE YOUR PICK
The routines included in PICKER
constitute a simple toolbox for
searching for files using the DOS
FIND FIRST and FIND NEXT ser
vices, and for picking items from
lists. You can also break each of
the two parts of PICKER out into
its own $INCLUDE file for use in
other programs. There's plenty of
room for improvement here,
including defining the screen
colors through variables, putting
multiple columns of choices on
the screen, and handling addi
tional movement keys. But the
routines as written illustrate the
basics well enough for you to
move forward on your own. Use
them in good health, and from
now on don't be shy about asking
your users to pick a file. •

Marty Franz is a programmer who
frequently writes on microcomputer
topics. He lives in Kalamazoo,
Michigan.

Listings may be downloaded from
CompuServe as PICKERARC.

Our readers know that TURBO TECHNIX is the place
to be when the focus is on development. They watch
us for the tips and techniques that help them utilize
the speed and power of Borland's programming lan
guages. And they spend a lot of time in these pages.
Your ad should be here.

SEPTEMBER/OCTOBER 1988
ISSUE CLOSING DATE: JUNE 23

Multitask Turbo Pascal applications under DOS . . . learn how to
use linked lists in Turbo C . .. understand PAL procedure memory
management . .. save and load EGA screens from Turbo Basic .. .
add a pattern-matcher to the MicroStar editor from the Turbo
Pascal Editor Toolbox . .. learn about storing data in 286 extended
memory .. . our columnists, our critiques, and lots more!

NOVEMBER/DECEMBER 1988
ISSUE CLOSING DATE: AUGUST 25

More on Turbo Pascal multitasking ... take the mystery out of
structures and unions in Turbo C ... write a code-generating
script in PAL ... emulate SQL in Turbo Prolog . .. rotate Turbo
Basic GET / PUT bitmaps in a hurry . . . create custom disk format
ter programs in Turbo Pascal .. . expert advice from our colum
nists, and much more!

There's only
one way
t;o reach
a programmer

Use the
programmers'

• magazine:
TURBO
TECHNIX
THE BORLAND LANGUAGE JOURNAL

CALL NOW
RESERVE YOUR
TURBO TECHNIX
SPACE TODAY!

Office of the Publisher
(408) 438-9321

Publisher
Marcia Blake

Advertising Sa/,e.s Manager
John Hemsath

Western Office
(714) 858-0408
Janet Zamucen

New England/
Mid-Atlantic Office
(617) 848-9306
Merrie Lynch
Nancy Wood

Southern Office
(813) 394-4963
Megan Patti

~ PLOTTER SUPPORT,
i TURBO STYLE
E--<

Don't rely on canned programs to do your plotting-send
your own commands from any Turbo language.

William H. Murray and Chris H. Pappas

Many scientists, engineers,and mathema
ticians use plotters on a regular basis to

• output information from commercial pro-
.. grams such as AutoCad, ASYST, smART-

WORK, and Energraphics. Pen and ink
PROGRAMMrn drawings done on a plotter are crisp and
neat. However, it's often difficult to write your own
software to take greater advantage of the plotter. For
tunately, many plotters now available respond to the
Hewlett Packard Graphics Language (HPGL) com
mand set, which is summarized in Table 1. Describ
ing these commands in detail is beyond the scope of
one article, but most plotter manuals discuss the
commands in sufficient depth.

What the manuals typically do not provide are
language-specific programming examples. The best
way to learn anything is by example, and here we
provide simple examples of how to use the HPGL

114 TURBO TECHNIX May/June 1988

commands in all four Turbo languages. To take
advantage of these four example programs, you need
a plotter capable of understanding the HPGL com
mand set. HPGL is as close as we come to a plotter
interface standard these days, and most low-end plot
ters support it. Plotter manufacturers usually provide
chapters in their hardware documentation to help
you interface their plotters with your programs, and
these chapters should say if your plotter understands
HPGL. (If you're unsure about your plotter, contact
the manufacturer directly.)

GIVE US SOME KIND OF SINE
The example plotter program is a popular graphics
routine that plots a curve of SIN(X)/ X.

Figure 1. A plot of the curve repre
sented by the function SIN(X)/ X, as
produced by the listings in this article.

Most plotters communicate with
your PC through a serial port.
Before executing any of the exam
ple programs, you need to set the
baud rate and other communica
tion parameters of one of your
serial ports to match the require
ments of your plotter. In our case,
the plotter requires a baud rate of
9600, no parity check, 8 data bits,
and 1 stop bit. We've used serial
port COMl. Setting things up is

continued on page 116

COMMAND EXAMPLE DESCRIPTION

AA AA 2016,2016,90,5; Draws arcs (absolute)
AR AR 1016,1016,90,5; Draws arcs
CA CA3 Gets alternate character set
CI CI 250,5 Draws circle
CP CP2,-2 Character plot
cs cs 2 Gets standard character set
DC DC Reactivates auto pen lift
OF OF Sets plotter's default function
DI DI 1 Direction of line lettering
DP DP Deactivates auto pen lift
DR DR 1 Direction of line lettering
OT OT*; bill* Character (*) is terminator

for label
EA EA 1000,1000; Rectangle at absolute coordinate
ER ER 500,500 Rectangle at relative coordinate
EW EW 500,30,90,5; Perimeter of a pie segment
FT FT 3,50,45 Fill instruction
IM IM 19; Reports unmasked

program errors
IN IN Reinitializes plotter
IP IP 500,250, 1500,1250; Assigns new coordinates
IW IW 500,0,625,250; Boundary for plotting
LB LB THIS IS MY LABEL Draws a string of characters
LT LT2,5; Line type, for style of line
OA OA Outputs pen coordinates

& physical status
oc oc Outputs pen coordinates

& logical status
OD OD Actual coordinates & physical status
OE OE Outputs first unmasked instructions
OF OF Outputs size of plotter unit
OH OH Upper and lower plotter area
OJ OJ Outputs plotter identification
00 00 Outputs options of plotter
OP OP Current coordinates of Pl

and P2
OS OS Output status byte
ow ow Coordinates of window
PA PA 500,500; Moves pen to specified position
PD PD Pen down
PR PR 500,500; Moves pen to relative

coordinates
PS PS 3; Sets paper size
PT PT .5 Pen point thickness (mm)
PU PU Pen up
RA RA 600,600; Shades rectangle
RO R090; Rotates plotter coordinates
RR RR 600,600; Shades relative rectangle
SA SA Selects recent character set
SC SC 0,10365,0,7962; Scale
SI SI .6,.5; Size of character set
SL SL I (45 degrees) Slants character set
SM SM+; Character and vector system
SP SP 5; Selects pen
SR SR 1,1; Width, height character size
SS SS Selects most recent character set
TL TL I; Horizontal and vertical ticks
UC UC Designs symbols and characters
vs vs 15; Pen velocity
WG WG 500,30,90,5; Fills pie segment
XT XT Draws vertical tick at position
Yf YT Draws horizontal tick at position

Table 1. Hewlett Packard Graphics Language commands.

May/June 1988 TURBO TECHNIX ll5

LISTING 1: PLOT.BAS

REM PROGRAM PLOT.BAS

REM LOAD BLACK PEN AND KEEP IT UP
LPRINT "IN SP 111

REM PLOT A SIN(X)/X CURVE IN BLACK
FOR X=3 TO 1033

Z=((X*10)-5182.5)*0.0035
IF Z=O.O THEN Z=0.1
Y=(2000+3000*SIN(Z)/Z)
LPRINT 11 PA 11 ,(X*10), 11 , 11 ,(Y), 11 PD 11

NEXT X
LPRINT "PU"

REM DRAY A BLUE BORDER AROUND YHOLE SIN(X)/X PLOT
LPRINT "SP 6 PA 0,0 PD EA 10365,7962 PU"

REM DRAY A RED LINE THROUGH MID POINT OF PLOT
LPRINT "SP 2 PA 0,2000 PD PA 10365,2000 PU"

REM DUMP PLOTTER BUFFER, ETC.
LPRINT "PA 0,7962 SP"

LISTING 2: PLOT.PAS

PROGRAM PLOT(INPUT,OUTPUT);

USES Printer;

VAR
X, Y Integer;
Z Real;

PROCEDURE DRAYER;

BEGIN
(* LOAD BLACK PEN AND KEEP IT UP *);
YRITELN(LST,'IN SP 1;');

(* PLOT A SIN(X)/X CURVE IN BLACK *);
FOR X:= 3 TO 1033 DO
BEGIN

Z:=((X*10)-5182.5)*0.0035;
IF Z=O.O THEN Z:=0.1;'
Y:=ROUND(2000+3000*SIN(Z)/Z);
YRITELN(LST,'PA ',(X*10),',',(Y),' PD;')

END;
YRITELN(LST,'PU;');

(* DRAY A BLUE BORDER AROUND YHOLE SIN(X)/X PLOT *);
YRITELN(LST,'SP 6 PA 0,0 PD EA 10365,7962 PU;');

(* DRAY A RED LINE THROUGH MID POINT OF PLOT *);
YRITELN(LST,'SP 2 PA 0,2000 PD PA 10365,2000 PU;');

(* DUMP PLOTTER BUFFER, ETC. *)
YRITELN(LST,'PA 0,7962 SP;');

END;

BEGIN
DRAYER;

END.

LISTING 3: PLOT.C

I* PROGRAM PLOT.C */

#include <stdio.h>
#include <math.h>

116 TURBO TECHNIX May/June 1988

PLOTTER SUPPORT

continued from page 115

simple via two invocations of the
DOS MODE command:
C>MOOE COM1:9600,N,8,1,P
C>MOOE LPT1:=COM1

You can replace COMl with
COM2 in the two commands if
you intend to use serial port
COM2. The P (short for Printer or
Plotter) in the first command
avoids possible time-out errors;
omit it if you intend to communi
cate with a remote communica
tions service rather than a desktop
peripheral.

PLOTTING BY EXAMPLE
Listing 1 is a complete Turbo
Basic program that generates the
plot of the sine curve described
earlier. Turbo Basic LPRINT com
mands direct program output to
the printer port. The various
HPGL commands are enclosed
within the LPRINT statements
(refer to Table 1 for more infor
mation about each command).

HPGL is as

close as we come to

a plotter inter/ ace

standard these

days, and most

low-end plotters

support it.

Listing 2 is an equivalent Turbo
Pascal program. In this example,
output is directed to the printer by
using the I.ST device file in each
Writeln statement. Otherwise, the
program is structured very much
like the Turbo Basic program.

Listing 3 is a Turbo C program.
In C, there is no simple way to
send output to the printer when
using the printf command. It is
much easier to write and compile

the program so that the plotter
commands are sent to standard
output. You can then redirect stan
dard output to the chosen serial
port using DOS command line
output redirection. This process
requires that you compile the pro
gram to a .EXE file and then leave
the Turbo C programming envir
onment. When you are ready to
execute the program, use the DOS
redirection command:

C>PLOT > PRN

Once plotter

commands are sent

to standard output,

you can redirect

standard output to

the chosen serial

port using DOS

command line

redirection.

Listing 4 completes the set of
examples with a Turbo Prolog pro
gram that generates the same plot.

Figure 1 is the sample plot
generated by each program. The
actual plot is in color, with a blue
border and a red line through the
midpoint of the plot, but it's repro
duced here in black and white. It's
simple once you see how it's
done! •

Bill Murray and Chris Pappas are
professors of computer science at
Broome Community College. Together
they have written six books for
Osborne McGraw-Hill. Their book on
the IBM PS/ 2 Model 80 will be
released this summer.

Listings may be downloaded from
CompuServe as HPPLOT.ARC.

main()
(

int x,y;
float z;

}

/* LOAD BLACK PEN AND KEEP IT UP */
printfC"in sp 1;">;

!* PLOT A SIN(X)/X CURVE IN BLACK */
for Cx=1; x<1034; x++)
(

z=CCx*10.0)-5182.5)*0.0035;
if Cz==0.0) z=0.1;
y=Cint)C2000.0+3000.0*sin(z)/z);
printfC"pa");
printf("%d",x*10);
printf(",");
printf("%d", y);
printfC"pd;">;

}

printfC"pu;");

!* DRAW A BLUE BORDER AROUND WHOLE SIN(X)/X PLOT */
printf("sp 6 pa 0,0 pd ea 10365,7962 pu;">;

/* DRAW A RED LINE THROUGH MID POINT OF PLOT */
printf("sp 2 pa 0,2000 pd pa 10365,2000 pu;">;

/* DUMP PLOTTER BUFFER, ETC. */
printfC"pa 0,7962 sp;">;

LISTING 4: PLOT.PRO

predicates
plot(real)
checkZCreal,real)
drawer

goal
writedevice(printer),
drawer,
writedevice(screen),
write("done").

clauses
drawer:-

write("in sp 1;"), /* Load Black Pen*/
plot(3),
writeC"pu;"),

/* Draw a blue border around the plot */
write("sp 6 pa 0,0 pd ea 10365,7962 pu;"),

/*Draw a red line through the midpoint of the plot*/
write("sp 2 pa 0,2000 pd pa 10365,2000 pu;"),

/* Dump Plotter Buffer, etc. */
writeC"pa 0,7962 sp;").

plot(1034):-!.
plot(X):-

TempZ = CCX*10) - 5182.5)* 0.0035,
checkZCTempZ, Z),
Y = (2000 + 3000* sin(Z) /Z),
TenX = X*10,
writeC"pa",TenX,",",Y,"pd;"),
Newx = X+1,
plot(NewX).

checkZCTemp,Val):
Temp = O,!,
Val=0.1;
Temp = Val.

May/June 1988 TURBO TECHNIX 117

BACKGROUND COLOR MAGIC
You can trade those blinking characters for eight
new background colors. Here's how.

Mark Novisoff

If you're like most programmers, you
probably think that the PC can display
only eight background colors in text
mode. Not true-you can get 8 additional
background colors on a color monitor,

wizARD for a total of 16. One word of caution
these eight new colors come at the cost of blinking
foreground characters.

The text video attribute byte uses 4 bits for fore
ground color (giving us 16 colors), 3 bits for the
background color (giving us 8 colors), and 1 bit indi
cating whether or not the foreground character is
blinking. Listing 1 (MAGIC.BAS) reprograms the
video controller to interpret the blink bit as back
ground color information. This allows us to use 4
bits for background color, for 16 background colors.

MAGIC also detects the presence of an EGA or
VGA adapter, which is necessary because the method
for reprogramming the controller differs depending
upon which graphics board is installed. When a CGA
is present, we simply do an OUT to the video con
troller chip. When an EGA or VGA is installed, we
must use a BIOS service since the EGA/VGA con
troller is not 100 percent compatible with the CGA
controller. We detect these adapters by calling two
BIOS services-the first detects VGA adapters, and
the second detects both VGAs and EGAs. If neither
BIOS service recognizes the installed adapter, the
adapter is a CGA.

After MAGIC checks whether an EGA or VGA is
installed, it displays characters in foreground colors
from 0 to 15 against background colors from 0 to 7.
At the point where MAGIC reprograms the video
controller, the background cells beneath the blink
ing characters magically change to eight new back
ground colors-and the blinking stops.

It's really a small price to pay. •

Mark Novisoff is the president of MicroHelp, Inc., and is
the author of Mach 2 for Turbo Basic, an assembly lan
guage subroutine library.

Listings may be downloaded from CompuServe as
COLORS.ARC.

118 TURBO TECHNIX May/June 1988

LISTING 1: MAGIC.BAS

' MAGIC.BAS by Mark Novisoff.

' This program demonstrates how you can display a total
1 of 32 backgr04...nd colors on a color monitor.

' Make sure that you "Zoom'' the run window out to the full screen I

Defint A·Z
True = -1
False = D
Reg 1, &H1a00 ' This is a VGA specific BIOS call
Call Interrupt &H10
Al = Reg(1) Mod 256 ' Get low byte (al register)
If Al <> &H1A Goto No.Vga • If Al<>&H1a then there is no VGA
Bl = Reg(2) Mod 256 ' Get low byte
If Bl = 7 Goto Found . Vga ' If Bl=7 or 8, then a VGA is there
If Bl <> 8 Goto No. Vga ' Not there

Found.Vga:
Vga = True
Goto Do.display

No. Vga: ' No VGA, but maybe an EGA
Reg 1, &H1200 ' EGA/VGA BIOS serv ice
Call Interrupt &H10
Bl = Reg(2) Mod 256 ' Get low byte
If Bl <> &H10 Then

Ega = True
End if

Do.display:
Cls
For Foreground=O to 31

For Background=O to 7

1 Then we have EGA

Color Foreground,Background
Print 11aaa •;

Next
Next
Print
Print
Color 7,0
If EGA + VGA <> 0 Goto EGA ' If either one was detected

CGA: '········· For CGA Adapters ----------

Input 11 Press <Enter> to disable blink 11 , AS
out &H308, 9 ° for mono use out &H3B8
Input "Press <Enter> to enable blink 11 , AS
out &H3D8, &H29 ' for mono use out &H3B8
End

EGA: ' · · · ·····For EGA/VGA Adapters········
Input 11 Press <Enter> to disable bl ink 11 , AS
Reg 2,0
Reg 1,&H1003 ' BIOS service to disable/enable bl ink
Call Interrupt &H10
Input 11 Press <Enter> to enable blink 11 , AS
Reg 2, 1
Call Interrupt &H10

Lots of software packages
help you work; only one helps you
work smarter ... SideKick Plus!

M oving ahead takes more than
hard work. it takes smart
work. There are stacks of

productivity software you can buy for
your PC. But to work smart, you only
need one. SideKick® Plus.

To add all the productivity applica
tions in SideKick Plus separately,
you'd spend hundreds of dollars-and
drain your computer's memory dry.
SideKick Plus takes as little as 64K of
your computer's RAM ... you decide
exactly how much. And you set up just
the productivity applications you need.

•cuscomtrsatisfaalon ls ourmainoonctrn. 1f .. 1thln60da)'5oCpun:llastthis productdoesn<t
performlnacoordanoe .,,,1U1 ourclalms. callourcu~rservietdepartment. and .. "t ,.1 ll
arrangearerund

All Borland produas art 118demarks or reei~red trademarks oC Borlarld lni.ernallooal. Inc
Intel Is a rqis&.tred trademark and Abovt Board is a trademark of Intel Corporation
Other bratld and product names are ltademark.s of their resJJMlve OOlders
Copyrlgllt •l 988 Borland lnternatlonal . Inc 81 1180B

They're always at your fingertips.
Instantly accessible over any other
application you're working in. Amaz
ingly affordable. And made to work
together .

Here 's What You Get!
• The PhoneBook. complete voice and

data communications that you can set to
take place in the background

• The Time Planner. to manage your
schedule with alarms. repeating appoint
ments and more

• The Notepad. nine file editor Notepads.
up to 11.000 words each. Use up to nine
notepads at once!

• The Clipboard. to transfer information
between files or applications with a
single keystroke

• Outlook: The Outline Processor.
to organize your thoughts

Minimum System Requlrtmenl8: For IBM'" PS/2. 18\.t family of 11trsonal rompuiers. and
all 100% C001patibles. Operating s)'Slem PC·OOS(MS-OOS•) 2.0 or llllfr Minimum system
~mory 384 K bytes Minimum resident memory sltt 60:. HaM disk miulred

• The Calculator of your choice: Business.
Scientific. Programmer or Formula

• The File Manager. to create.
move. search. or rename DOS files
and directories

• The ASCII Table. organized to help you
find and paste characters fast

• Supports both EMS and extended
memory: if you have an lntele AboveN
Board or extended memory you can load
in the SideKick Plus desk accessories and
leave most of your conventional memory
for your other applications

Includes 5114" and 3112" disks.
Hard disk required.

60-day money-back guarantee*

I NT ER N ATION A L

For the dealer nearest you
Call (800) 543-7543

SIDEKICK OWNERS: GET A GREAT DEAL FROM YOUR DEALER AND A $25 REBATE FROM BORLAND! $ 2 5
Go to your ravorite retailer ror a great deal on new SideKick Plus. And. because you're a
SideKick owner. we' ll make it an even beuer dea l-with a $25 rebate rrom Borland! To
receive your rebate. you must return your completed SideKick Plus registration rorm rrom Name
your manual. a copy or your dated SideKick Plus sales receipt. and thi s original completed
coupon (including your original SideKick serial number.*) Lo: Street

Borland International, 4585 Scotts Valley Drive,
P.O. Box 660005, Scotts Valley, CA 95066-0005

·n your copy ot S1deKick does not have a serial number, remove and return the lront cover ot your original SideKick manual To take advan·
tage ot this 1ebate you must purchase S1deK1ck Plus by May 31 , 1988 and relurn the rebate request 10 Borland by July 31 , 1988 This otter 1s
good 1or one rebate pe1 registered copy ot miginal SideKick Not good with any othe1 otter trom Borland Please allow 6 to 8 weeks tor deliv
e1y ot rebate Otter good in the U S and Canada only •

City Sta te Zip

Phone

Original SideKick Serial No. -----------
(must be included to process rebate)*

REBATE

$25
REBATE

~ PAL'S TOOLS FOR FINANCIAL
;3
~ INFORMATION
~
IJl

~ Money is no object when you write your financial analysis
~ programs in PAL.

Todd Freter

No matter how obliquely we try to put it,
at some level business programming is

..

the technology of managing money.
Apart from a simple program to manage
a business contact file, few PAL applica

rRoGRAMMER tions for business will not involve finan
cial programming of some sort. PAL is well-equipped
to deal with financial matters, and in this article we
will take a close look at PAL techniques involving the
coin of the realm.

PAL'S FINANCIAL FUNCTIONS
Among the 126 predefined functions in PAL are 4
functions devoted exclusively to financial analysis.
Like functions in other programming languages,
these financial functions take arguments and return
single values. PAL's financial functions are:

• Future value, FV: The future value of equal, regu
lar payments on a loan or to an annuity fund for
a certain number of time periods.

• Payment, PMT: The periodic payment amount to
pay off an amortized loan.

• Present value, PV: The present value of equal,
regular payments on a loan or withdrawals on an
investment for a certain number of time periods.

• Net present value, CNPV: The value in current
money of future cash flows associated with an
investment.

These four financial functions fall into two catego
ries: single-record financial functions, and multiple
record financial functions.

SINGLE-RECORD FINANCIAL FUNCTIONS
The singk-record financial functions FV, PMT, and PV
perform operations on one or more data items as
arguments that together constitute a single-record
occurrence of financial data. These functions do not
operate on sets of values in a column.

Future Value, FV. This calculation demonstrates the
cumulative result of making payments to an annuity

120 TURBO TECHNIX May/June 19?.8

fund by showing what those payments, at the speci
fied interest rate, will yield after a given number of
payments. PAL's future value function is:

FV(Nun1,NLm2,Nlill3)

Numl is a numeric expression representing the peri
odic payment, Num2 is a numeric expression repre
senting the interest rate per period for which each
payment is made (expressed as a decimal),
and Num3 is a numeric expression
representing

the number of periods during
which payments are made.

Note that each of these argu
ments is a numeric expression. As
in other programming languages,
functions in PAL allow you to
supply expressions that evaluate
to numbers.

PAL calculates future value with
the formula:
FV = p*CC1+r)n-1)/r

p is the payment amount, r is the
nominal interest rate, and n is the
number of payment periods.

For instance, to calculate the
future value of an annuity with a
9.6 percent annual interest rate to
which you make quarterly pay
ments of $325.39 for 15 years, run
this PAL script:

MESSAGE FV(325.39,0.024,60)
SLEEP 10000

The M~AGE command dis
plays the result of the
calculation.

The SLEEP command gives you
10 seconds to see that in 15 years
you'll be sitting on the tidy sum of
$42,700.87 (which isn't bad, con
sidering that your total outlay is
60 payments of $325.39, or
$19,523.40).

You can make this script more
universal and friendly by using
display statements and variables to
contain user input for the func
tion's arguments. The modified
script is given in Listing 1,
FUTURE.SC.

Payment, PMT. This calculation
determines the amount that must
be paid every period to pay off an
amortized loan for a given num
ber of periods at a specified inter
est rate. An amortized loan is a
mortgage-type loan, in which
interest and principal
are paid

off together, unlike consumer
loans, such as credit accounts or
automobile loans. You cannot use
PMT to determine the payment
on non-amortized loans. PAL's
payment function is:

PMT(Nllll1,Nun2,Nt.1113)

Numl is a numeric expression
representing the amount of the
loan (principal), Num2 is a nu
meric expression representing the
effective interest rate per period
for which each payment is made
(expressed as a decimal), and
Num3 is a numeric expression
representing the number of peri
ods during which payments are
made.

PAL calculates the payment
with the formula:

PMT = P*(r/(1-(1+r)-n))

P is the principal loan
amount, r is the nominal

interest rate per
period (not per

year!), and n
is the

continued on page 122

May/June 1988 TURBO TECHNIX 121

PAL FINANCIAL TOOLS

continued from page 121

number of payment periods in the
term of the loan.

For instance, to determine the
monthly payment for a home
equity loan of $30,000 at 10.5 per
cent per year for 15 years, with
payments due at the end of each
month, run the following script:

MESSAGE
PMTC30000,(.105/12),(15*12))

SLEEP 10000

The monthly payment will be
$331.62. To calculate the total cash
outlay of the loan (principal and
interest, exclusive of loan fees),
multiply the payment amount by
the number of payment periods.
In this case, $331.62 X 180 =

. $59,691 .60.
You can easily generate a script

that accepts user input for the
PMT function's arguments and
displays the value that PMT
returns.

Present Value, PV. This function
represents the initial or principal
value of an amortized loan. PV
tells you how high a mortgage you
should apply for, based upon the
payment you can afford to make,
the effective interest rate, and the
number of payment periods in the
loan contract. PAL's present value
function is:

PV(Num1,Num2,Nl.m3)

Numl is a numeric expression
representing the periodic payment
amount, Num2 is a numeric ex
pression representing the effective
interest rate per period for which
each payment is made (expressed
as a decimal), and Num3 is a
numeric expression representing
the number of periods in which
payments are made.

PAL calculates present value
with the formula:

PV = p*CC1-(1+r)-n)/r)

p is the principal loan amount, r
is the nominal interest rate per
period, and n is the number of
payment periods in the term of
the loan.

122 TURBO TECHNIX May/June 1988

For instance, if you can afford a
monthly mortgage payment of
$675.00, and your research shows
the two best loans are for 11.5 per
cent for 15 years or 12.25 percent
for 30 years, run the following
script to determine the amount of
principal for which you can apply
under either loan:
x = PVC675, (0.115/12), (15*12))
y = PVC675, (0.1225/12), (30*12))
? "Apply for II I x,

11 at 11.5% for 15 years."
? "Apply for ", y,

" at 12.25% for 30 years."
SLEEP 10000

A multiple

record function is

the natural com

panion of a rela

tional database

system, which stores

data in tables

made up of rows

(records) and

columns (fields).

The result tells you to apply for
$57,781.71 on the 15-year loan and
$64,414.76 on the 30-year loan.
Now use the FV function to deter
mine the relative costs of both
loans (the quantity of principal
plus interest).

MULTIPLE-RECORD
FINANCIAL FUNCTION
PAL's multiple-record financial
function CNPV performs an op
eration on values that together
constitute a multiple-record oc
currence of financial data. A
multiple-record function that
operates on a set of like values is
the natural companion of a rela
tional database management sys
tem, which stores data in tables
made up of rows (records) and
columns (fields). CNPV performs

operations such as the calculation
of the average value in a set of
values. CNPVs name begins with
a C to indicate that it operates on
a set of values in a column. This
distinction reflects the nature of
the Paradox database in which the
financial information is stored.
Net Present Value, CNPV. This
function evaluates investment op
portunities based upon the time
value of money being invested.
Net present value analyzes an
investment based on a series of
real or projected cash flows per
time period, as a function of the
interest paid to finance the invest
ment. If the net present value cal
culation returns a positive value,
the investment should be profit
able. PAL's net present value func
tion is:
CNPV(TableName,FieldName,Number)

TableName is a string (not an
expression) representing the
name of the table with a numeric
field whose entries represent in
vestment cash flows, FieldName is
a string (not an expression) repre
senting the name of the numeric
field in TableName containing
cash flows for regular periods,
and Number is a numeric expres
sion (expressed as a decimal)
representing the effective interest
rate per period for which each
payment is made. Passing the
name of a non-numeric field in
FieldName causes a PAL script
error.

PAL calculates net present value
with the formula:

CNPV = sum(p=1 to n) of Vp/(1+r)p

p is the period associated with a
cash flow amount, Vp is the cash
flow in the pth period, r is the
nominal interest rate per period,
and n is the number of payment
periods for which there is cash
flow.

Consider an apartment build
ing, with income from its units

PERIOD Month NetCash

1 Jan -200
2 Feb 2000
3 Mar -150
4 Apr 1000
5 May 600
6 Jun 750
7 Jul 200
8 Aug -175
9 Sep 450

JO Oct 1200
11 Nov - 75
12 Dec -150

Figure 1. A tab/,e of cash flow values
for one year. Each value consists of
income plus expenses for a particular
month of the year in question.

and costs associated with each
apartment or for the building as
a whole. Let's assume you can
secure a loan at 11.75 percent to
finance the apartment building.
Let's also assume that you can
project the monthly cash flow
based on rental income and
expenses over the next twelve
months, as shown in the Paradox
table in Figure 1. To evaluate the
net present value of this invest
ment's cash flow at 1.15 percent
per month, run the PAL script
NETPV.SC in Listing 2. NETPV.SC
evaluates the cash flow for the
investment and determines its net
present value. If the result of the
calculation is positive, the script
embeds it in an encouraging mes
sage; if negative, the script
embeds it in a cautionary mes
sage. In this case, the net present
value is $5138.68, and the program
exhorts you to invest. Of course,
much more information goes into
a decision to invest money, but
net present value is a useful tool
for evaluating the cash flow pro
jections of the investment.

PAL's net present value calcula
tion presumes two things:

• The initial cash flow before
payments start is zero; and

• Payments are made at the end
of the payment period.

The apartment building example
assumes that you buy the property
with no down payment. If the
investment involves an initial cash
flow I, then you simply add it to
the calculated net present value:
I+CNPV(TableName,FieldName,Number)

If you make a down payment, it
must be added as an initial (nega
tive) cash flow to the net present
value. If the down payment is
greater than $5138.68, then your
investment in the building may
not be profitable for the first year.
You can continue projecting fu
ture cash flows and include

Net present value

analyzes an invest

ment based on a

series of real or

projected cash

flows per time

period, as a func

tion of the interest

paid to finance the

investment.

BUYERS
Name MaxDownPmt MaxMonthlyPmt

Feldman
Ruzicka
Grijalva
Chung
Bedrosian

35000.00
19500.00
22000.00
44000.00
29000.00

1900.00
1750.00
1750.00
1750.00
1750.00

Figure 2. A tab/,e listing the maximum
possib/,e down payment and monthly
payment for a list of home buyers.

them in a net present value calcu
lation to determine when the
investment will become profitable.

USING PAL'S FINANCIAL
FUNCTIONS
Let's incorporate PAL's financial
functions into a simple real estate
application. Based on a minimum
of information about buyers,
agents can identify optimal
financing for a home purchase
using either or both of two
simple PAL scripts: Listing 3,
DOWNPMT.SC; and Listing 4,
PAYMENT.SC.

These scripts work with two
tables, buyers and lenders. The
buyers table, as shown in Figure 2,
contains three fields:

• Name identifies the buyer (or
buyers) with a single surname.

• MaxDownPmt contains the
maximum down payment the
buyer(s) can afford.

• MaxMonthlyPmt contains the
maximum payment the buy
er(s) can manage each month.

The lenders table, as shown in
Figure 3, has six fields:

• Lender identifies a lending
institution by name.

• DownPct contains the percen
tage of the purchase price
required as a down payment
for the loan.

• Rate contains the fixed rate of
interest on the loan expressed
as a percentage.

• Term contains the term of the
loan expressed in years.

• Points contains the number of
points that the borrower must
pay for the loan.

• Fees contains the loan fee for
the particular loan.

continued on page 124

LENDERS
Lender Down Pct Rate Tenn Points Fees

Barney's Mortgage 17.5 12.25 30 1.5 500.00
Barney's Mortgage 20 11.75 15 1.5 500.00
Honest Abe's Loans 15 13 30 2 450.00
Honest Abe's Loans 15 12.5 15 2 450.00
Debtor's Bank 20 11.75 15 1.5 550.00
Debtor's Bank 20 12.5 30 1.5 550.00

Figure 3. A tab/,e of wan term information from various /,enders.

May/June 1988 TURBO TECHNIX 123

LISTING 1: FUTURE.SC

CilO, 0 ?? "Enter payment amount:"
CilO 36 ACCEPT "n" TO amount
Cil1 : 0 ?? "Enter annual rate:"
Cil1,36 ACCEPT "n" TO rate
@2,0 ?? "Enter term Cnunber of years):"
@2,36 ACCEPT "n" TO term
@3,0 ?? "Enter nunber of payments per year:"
@3,36 ACCEPT "n" TO payments ; e.g., to convert yearly rates

; for monthly or quarterly payments
answer = FVCamount, rate/100/payments, term*payments)
iil5,0 ?? "If you pay$", amount, " ", payments,

" times per year at ", rate, "" interest for ", ter111,
" years,"

iil6,0 ?? "the future value will be S", answer, "·"
SLEEP 10000

LISTING 2: NETPV.SC

x = CNPVC"building", "Netcash", .0115)
IF x > 0

THEN MESSAGE "Net present value is ", x, ", so go for it!"
ELSE

MESSAGE "Net present value is ", x , ", so don't touch it!"
END IF
SLEEP 10000

LISTING 3: DQ.INPMT.SC

password "onlynames"
view "buyers"

permit access to Name field only
put buyers table on workspace
move cursor to Name field moveto field "Name"

wait table display protected table to user so
; that user can select name of buyer

pr001>t "Move cursor to name and press F2 for report."
until "F2" select name where cursor is
n = [Name] ; store current value in n

; withdraw Name-only access to buyers
; table and clear all passwords

unpassword "onl ynames"
menu {Tools} {More} {Protect} {ClearPasswords}
password "readfields" ; permit access to all fields
view "buyers" put buyers table on workspace again
moveto field "Name" move cursor to Name field
locate n find the name browsed and chosen by user

create output file based on name

f =
x =
y =

I

"c:" + n + 11 .dwn"
Cmaxdownpmtl
[maxmonth l ypmtl

of user and assign file name to f

assign buyer's MaxDownPmt to x
assign buyer's MaxMonthlyPmt to y
Write report header to file that

; identifies buyer and stated down payment
print file f "Report for buyer: ", n, 11 \n\n",

"Based on your stated maxinun down payment, S11 , x, 11\n",
"consider the following financing:\n\n"

view "lenders" put lenders table on workspace
scan "lenders" perform following calculations on all

records of lenders and write results to
file, record by record -
calculate down payment corrected for fees,
points, and "reserve" fund stored in prin

prin = ccx * 100/Clenders->downpctl * .95) *
(100 - [lenders->points])/100) - [lenders->fees]

; with correct loan amount Cprin), use PMT
; function to calculate the monthly payment

pay= pmt(prin, ([lenders->ratel/100)/12, Clenders->terml*12)
if pay <= y ; if buyer can afford this monthly payment

then ; then write that information to file
print file f "You can finance S", prin, " at ",

Cl enders-> rate], "" for \n", Clenders->term],
" years with a monthly payment of S", pay,
" from \n", [lenders-> lender], ". \n"

124 TURBO TECHNIX May/June 1988

PAL FINANCIAL TOOLS
continued from page 123

Because the buyers table con
tains sensitive information about
each buyer's finances, passwords
are applied so that only the Name
column can be browsed with the
WAIT TABLE command. In this
way, when either script is played,
the Grijalvas will not see how
much the Feldmans can afford to
put down on a house. Once the
buyer's name is selected, a differ
ent password allows the script to
read the values that the user can
not directly access.

Because the

buyers table con

tains sensitive

information, pass

words are applied

so that only the

Name column can

be browsed with the

WAIT TABLE

command.

Two simple PAL scripts match
prospective buyers with realistic
financing. Listing 3, Downpmt,
evaluates each of the lenders'
plans in terms of the buyer's
stated down payment. The pro
gram then determines how much
money the buyer could borrow on
the basis of the down payment
under each plan, and tests wheth
er the buyer can afford the
monthly payments for the plan,
based on the buyer's stated
budget.

Listing 4, Payment, evaluates
each of the lenders' plans in
terms of the buyer's stated month
ly payment. Payment then deter-

mines how much money the
buyer could borrow on the basis
of the monthly payment under
each plan, and tests whether the
buyer can qualify for the loan,
based on the buyer's down
payment.

More elaborate

formatting of the

output report is
always an option,

and should be

added to any

commercial

application.

Both scripts assume that the
buyers have not included loan
points and fees in estimating their
down payments. The scripts also
reduce the buyer's stated down
payment by five percent to accom
modate unanticipated expenses
that often crop up in the purchase
of a home. (This five percent ad
justment is arbitrary and can be
modified as the PAL programmer
sees fit.) Downpmt and Payment
write the results of their evalua
tions into DOS files with simple
formats. The formatting of this
information is simple to keep the
scripts short and their use of
PAL's financial functions clear.
More elaborate formatting is
always an option and should be
added to any commercial
application.

These scripts illustrate how
PAL's financial functions can pro
vide the heart of a convenient
script that supports real financial
and commercial situations. •

Todd Freter is Senior Writer/Editor at
Ansa Software.

Listings may be downloaded from
CompuSeroe as PALFINARC.

else ; if buyer cannot afford this, write also
print file f "The monthly payment$", pay, 11 at 11 ,

Clenders->rate], 11% for \n", Clenders->terml,
" years from ", Clenders->lenderl, " exceeds your stated \n",
"budget of $", Cbuyers->maxmonthl ypmtl, 11 • \n"

endif ; close affordability test
endscan ; conclude scan operation

; withdraw read-only access to buyers
unpassword "readfields"
clearall ; clear both tables from workspace

LISTING 4: PAYMENT.SC

password "onlynames"
view "buyers"

permit access to Name field only
put buyers table on workspace
move cursor to Name field moveto field "Name"

wait table display protected table to user so
; that user can select name of buyer

cursor to name and press F2 for report." prompt "Move
until "F2" select name where cursor is
n = [Name] ; store current value in n

; withdraw Name-only access to buyers
; table and clear all passwords

unpassword "onlynames"
menu {Tools} {More} {Protect} {ClearPasswords}
password "readfields" ; permit access to all fields
view "buyers" put buyers table on workspace again
moveto field "Name" move cursor to Name field
locate n find the name browsed and chosen by user

create output file based on name
I

f = "c:" + n + 11 .pmt"
x = Cmaxdownpmtl
y = Cmaxmonthlypmtl

of user and assign file name to f

assign buyer's MaxDownPmt to x
assign buyer's MaxMonthlyPmt to y
Write report header to file that

; identifies buyer and stated monthly payment
print file f "Report for buyer: ", n, 11 \n\n",

"Based on your stated maxil!Ull monthly payment, $", y, 11 \n",
"consider the following financing:\n\n"

view "lenders" put lenders table on workspace
scan "lenders" perform following calculations on all

records of lenders and write results to
file, record by record -
calculate down payment corrected for fees,
points, and "reserve" fund stored in prin

prin = pv(y, ([lenders->ratel/100)/12, Clenders->termJ*12)
; calculate the loan amount for which buyer
; could afford the monthly payments

downpay = (.95 * prin * Clenders->downpctl/100 * (100 -
Clenders->pointsl)/100) - Clenders->feesl

if downpay <= x
then '

calculate down payment corrected for fees,
points and "reserve" based on the loan
amolX'lt that the buyer's monthly payment
could carry
if buyer can afford this down payment
then write the information to the file

print file f "You can finance S11 , prin, "at",
Clenders->ratel, 11% for \n", Clenders->terml,
" years with a down payment of $", downpay, 11 \n",
11 and a monthly payment of S11 , y, 11 from",
Cl enders-> lender], 11 • \n"

else ; if buyer cannot afford this, write also
print file f "The required down payment of$", downpay,
11 to finance 11 , prin, " at ", Clenders->ratel,
11% for \n", Clenders->terml, " years from",
Clenders->lender], " exceeds your stated \n",

11maxi1TU11 for a down payment of $", x, 11 .\n"
endif ; close affordability test
endscan ; conclude scan operation

; withdraw read-only access to buyers
unpassword 11 readfields11

clearall ; clear both tables from workspace

May/June 1988 TURBO TECHNIX 125

~ BUILDING AN ADDRESS
~
~ DATABASE WITH SPRINT
~
if)

~ Build a database right into your word processor-in the word
~ processor's own language.

Neil Rubenking

Sprint is subtitled "The Professional
Word Processor," but it's much more than

..

that-Sprint's macro language is as pow-
erful as any programming language. If
you're familiar with C or Fonh, you'll rec

PROGRAMMER ognize pans of Sprint's macro language.
However, other pans of the language are designed
especially for word processing, and are quite differ
ent. For example, Sprint has 16 Q-registers instead of
string variables; each of these registers holds any
amount of text up to an entire document.

Besides the obvious word processing functions,
Sprint's macro language invokes software interrupts,
and reads or writes any memory location or pon. As
an example, you can force Caps Lock on with this
Sprint macro:

40h->PeekSeg (Peek 17h I (1 << 6)) -> Peek 17h

This get-to-the-hardware power lets Sprint take full
control of the PC when necessary. In the process,
Sprint accomplishes things that one would not ex
pect of a word processor, such as the creation and
maintenance of a macro-based address database.

THE DATABASE
The macro file DATABASE.SPM (Listing 1) uses
Sprint's menuing and text manipulation abilities to
create a handy address database that you can load
with names of frequent correspondents. This data
base macro lets you insen name and address infor
mation into your current document by choosing the
name you want from a pop-up Sprint menu. Mainte
nance of the database is handled by loading and
running DATABASE.SPM through the Macros item
on the Utilities menu (Alt-U); this displays a menu
with the two options, Add New and Delete. Since
deleting doesn't make sense until the database
contains entries, I'll discuss Add New first.

ADDING A NEW ENTRY
When you select the Add New menu entry, the
Add.New macro asks you for information via a
prompt in the highlighted bar at the bottom of

126 TURBO TECHNIX May/June 1988

Sprint's screen. Add.New first requests the name that
is to appear on the menu, and then prompts you to
specify three lines of text to be associated with that
name. This text can be a person's name plus two
lines of address information, or any other three lines
of text-it's up to you. Now for the magic-the Sprint
code modifies itself to include the new name choice
as part of the macro source code in the file
DATABASE.SPM.

The next time you run the database macro, the
name you previously entered appears as a new
choice on the menu. When you select that name, the
macro insens the name and its three associated text
lines into your document at the current cursor posi
tion. You can keep adding names to the macro
when the macro contains more names than can fit
on the screen, simply page through the additional
choices as you would with any other Sprint menu.
An onscreen menu produced by the database macro
is shown in Figure 1. The three-line address at the
top of the document was insened by pressing the
Enter key when the corresponding name was
highlighted.

HOW IT WORKS
Sprint is a new language to almost everyone, so
I'll walk through Listing 1 step-by-step. The fi le
DATABASE actually holds three separate macros.
The first macro, Add.New, adds names to the data
base by modifying the last macro, which is database.
The database macro is a simple Sprint menu. The
title of the menu follows the word "menu" itself, and
parentheses enclose the menu choices. Each menu
choice consists of a line that appears in the menu,
a number of Sprint commands, and a comma to
separate the menu choice from the next choice.
The remaining macro, DeleteOne, removes records
from the database. Let's look at the database macro
after one name has been added to it, as shown in
Figure 2.

continued on page 128

Introducing Paradox 386.
Optimized for 386 environments

and up to 5 times faster
than Paradox 2.0

D esigned exclusively for
80386-based systems,
Paradox® 386 runs up to

5 times faster than Paradox 2,0,
It's that much faster because it
accesses your fu 11 Ii near address
space. which in English means it
uses all the memory you or your
company paid for when you put
together your 386 systems,

With Paradox 386, the old
640K limits are a thing of the past
·sottware Digest Rahngs Report. March 1986. July 1987

··customer satislact1on rs our mam concern, ii within 60 days ol pu1chase 1h1s product
does riot perform m accordance with our ctaims. call our customer service department
and we will arranoe a refund

PuclO• IS ;i 1egsleied lrademalk OI Msa Sollwaie. ,v,g 1s a Bolland 1n1ema1n comp.arry Qmer bland and
PloduC1namesare!rl<ltmafksOllhe•rt$pe(:11vehOIOefs
Coe>rJiont019tl8Bol~lnll!lna!ONl,lnc 81120lA

-ltf'koox-
,.....,....-i.w.,_

It runs in the
DOS environment

and is a modern must
for power users con
fronted with very large
tables (tens of thousands
of records or more)
and/or large applica
tions, Paradox 386
makes more ambitious
mainframe-type applica
tions feasible on the PC
because it addresses up
to 16 megabytes of
memory,

But back to speed,
Paradox processes data

32 bits at a time instead of just 16
bits at a time, so you race rather
than run,

Paradox 2.0 and 386.
The same but different

Paradox 386 gives you all the
functionality, power. and flexibility
that earned Paradox the Software
Digest top-rating for PC relational
databases~ Like Paradox 2,0, the
all-new Paradox 386 gives you
the speed and power to:
• Query multiple tables simultaneously
• Use an unlimited number of

selection criteria

• Do pattern matches and relational
operations on tables with up to
2 billion records

And Paradox 386 makes fast work
of big operations like:
• Retrieving data with large single

or multi-table queries
• Paging through screens of infor

mation as you view large tables
• Sorting tables with several

thousand records
• Developing applications with the

Paradox Personal Programmer 386
• Running large memory-intensive

applications

Paradox 386 also lets you share
data on local area networks with
workstations running different
network versions of Paradox.

Make the most of your fast
new 386 hardware with our
fast new 386 software

Get up to speed with Paradox
386. Your 386-based system has
the racing engine, Paradox 386
is the racing fuel.

For information on upgrading
from Paradox 2.0 to 386, call
(800) 543-7543.

Works with the Intel® Inboard'"

60-Day Money-back Guarantee**

For the dealer nearest you or
a brochure. call (800) 543-7543

JN TERNA TIONA l

Figure 1. A Sprint screen showing the menu created by database.

database : menu "Address Database"
"Acid New person 11 AcldNew,
"Delete a person" DeleteOne,
"Joe"
"Joe Jones"
"\n123 Pleasant St."
11 \nAtown, USA\n")

Figure 2. The database macro, after one name has been added.

SPRINT DATABASE
continued from page 126

The first menu choice is still
Add New; selecting this choice
runs the macro AddNew, as de
scribed before. Delete is still the
second menu choice. However,
the menu now contains a third
choice,Joe. If you selectjoe,
Sprint executes the commands fol
lowing that line up to the comma
(or to the final parenthesis). In
this case, the commands are text
strings that Sprint inserts in the
document. Note the \n in the last
two lines-this command stands
for "new line." Without this com
mand, the macro inserts the fol
lowing text into your document
as one line:
Joe Jones123 Pleasant St.Atown, USA

As you add more people to the
database, you'll create similar
entries for each new person.

The AddNew macro uses one
of Sprint's multiple buffers to hold
the text of the macro file. With
the command 2 open, we locate
DATABASE.SPM and read it into

128 TURBO TECHNIX May/June 1988

a buffer. At the end of the macro,
the command close closes the
temporary buffer and returns to
the previous buffer. The 2 before
open tells Sprint to search the
path for the requested file, if that
file is not found in the current
directory. Naturally, the macro
quits with an error message if it
can't find DATABASE.SPM.

After the open command is
issued, the text of DATABASE.SPM
is stored in a buffer. Before
adding a new name, we have to
make sure there's enough room
for it. In theory, names could be
added until the menu lines total
more than 4K, but Sprint's 42K
macro space would probably be
overrun first. To avoid running
out of macro space, the database
is arbitrarily limited to 75 names.
We need to count the lines in the
database macro to be sure it
doesn't already contain 75 names.

First, find the beginning of
the database macro. The string
"database:" occurs three times:
twice in search macros, and the
third time as a macro name itself.
To locate the third occurrence,
use the command 3 repeat, which
makes Sprint repeat the search
three times. The current line
number is stored in the variable
holdnum.

Next, locate the last nonempty
line of the macro. toend goes to
the end of the file and performs
a character search in reverse for
a right parenthesis, using the
command:
r (')' csearch)

After the search, the line number
of the found line is stored in line.
If this line number is less than or
equal to the sum of holdnum plus
4 lines for each of 75 entries, the
macro has room for more entries.
Otherwise, the program sends a
message and quits.

If room is available for a new
entry, delete the final parenthesis
using del. Next, insert a comma, a
new line, and several spaces in
the form of this string:

",\n II

In general, you tell a macro to
insert text in a document by
simply placing the text in quotes.
You can also explicitly call the
macro insert. To insert FOO, for
example, you would type:

insert "FOO"

In addition, you need to use
insert to insert the contents of a
Q-register into a document. Be
sure to surround the request with
parentheses to make it clear that
this is not a request to fill the
Q-register, as in the example
below:
(insert Q1)

You can't insert every character
this way, though. For example, the
quote character delimits strings.
To insert a literal quote character,
precede it with a backslash, as
in\".

Input from the user is needed
for the next steps. In Sprint, it's
easy to read text into a Q-register.
The macro set QO fills QO with
the user's response to the prompt
"Enter text:". To specify a differ
ent prompt, use the message
macro to put the prompt on the
status line first. Before all but the

second input request, clear QO
with the command set QO "".
Since the actual address name
is almost certainly related to
the menu name, leave the name
inQO.

Notice the string \ \ n in three
places. The doubled slash charac
ter is no accident-in Sprint, the
slash is the signal for a special
character. \ n means new line, \ t
means tab, and so on. The idea
is to insert the two literal char
acters \ and n into the text in the
Q-register, so that they can be
added to the source code of the
database macro. Sprint interprets
\ n (with a single slash) as a re
quest to insert a new line; the ex
tra slash in \ \n tells Sprint not to
interpret the character that fol
lows the slash.

After all the lines are written
to the buffer, restore the final pa
renthesis and write the changed
text back out to the macro file
DATABASE.SPM. This step is
handled by the command Write
"%",which tells Sprint to write the
current buffer to the current file
name. The last step is to activate
the newly modified macro with
the command mread "database".

DELETING AN ENTRY
The DeleteOne macro lets you
use any part of a name or address
to select an entry to delete. Sup
pose you want to delete Joe Jones,
but you can only remember that
he lives on Pleasant Street ... or
was it Pheasant? Enter "P?eas" at
the prompt; when the macro finds
a match, it displays the whole line
and asks you to confirm. Suppose
that it displays "Alice Pleasance
Liddell." Since that's not the entry
you want, answer the prompt with
NO. The next match that you see
is "123 Pleasant St.", which is the
one you want. If you confirm the
deletion, DeleteOne removes this
entry and then reloads the
changed macro file .

DeleteOne locates
DATABASE.SPM and finds the
start of the database macro within
the file, just as Add.New does.
Then DeleteOne prompts you for
the name that you wish to delete.
The search occurs within one big

continued on page 130

LISTING 1: OATABASE.SPM

;DATABASE Macro set
int holdm.111

AddNew : ;MACRO to add a new person

}

I

if (2 open 11database.spm11) {

; Get to the start of the database macro
3 repeat { 1 search "database :" }
line->holdnun
toend r (')' csearch)

}

Be sure there aren't TOO many already.
We set a limit of 75 names

f line<= 4*75+holdnun {
del ", \n "
set QQ ""
message "Name to appear on menu: "
set QQ S
; to allow first letter conflicts:
mark (to QQ while !isend Tolower)
"\"" (insert QO) "\"S\n "
Message "Name line for address: "
set QQ S
"\"" (insert QO) "\"S\n 11

set QQ ""
message "Street line: "
set QQ S
11 \ 11 \\n" (insert QO) "\"$\n 11

set QQ '"'
message "City,State,Zip line: 11

set QQ S
11 \ 11 \\n" (insert QO) "\\n\11$) 11

write 11%11

close
mread "database"

else {
close
message 11 \nOnly 75 entries allowed -- sorry.

}

else {
bell message 11 \nFi le DATABASE.SPM not found"

}

DeleteOne : ; MACRO to delete a person
set QQ ""
message "Delete who: 11

(set QQ)
if (2 open 11database.spm") { ; big IF

; Get to the start of the database macro
3 repeat { 1 search "database :" }
down down

II

May/June 1988 TURBO TECHNIX 129

DO { ; Offer matching entries for deletion
if !(3 search QO) {; 2 means allow wildcards

bell message "Sorry, " (message QO)
message " NOT FOUND"
0 wait close break

}

set Q2 1111

; Put the whole found LINE in Q2
(tosol copy toeol Q2) tosol
(message "Delete ")
(message Q2)
if ask " CY/N)" { if yes delete

setmark
; Get to the start of the matched entry
r (',' csearch) down tosol ;; added tosol!

Now delete it

}

4 repeat { delete Ctoeol c) }
; If we erased the final ")", restore it.
if !C'>' csearch) {

toend r C',' csearch) del ")"
}

write 11%11

close
mread "database"
break

else {

}

; Not that one? Move down a line so we
; don't find the same one again!

down tosol

} ; big DO
} ; big IF
else {

be l l message "File database. SPM not found"
}

database : menu "Address Database"
"Add New person " AddNew,
"Delete a person" DeleteOne)

130 TURBO TECHNIX May/June 1988

SPRINT DATABASE
continued from page 129

DO loop. Notice that break occurs
in two places, which are the exits
from the loop. The loop ends if it
fails to find the string or if you
confirm that the string it finds is
correct. When you confirm an
entry for deletion, the macro
deletes all four lines. In order to
do this, the macro has to locate
the beginning of the entry. (Re
member, the macro can match
any of the entry's four lines.) The
following line of commands first
searches backward to the comma
that ends the previous entry, and
then moves down to the start of
the next text line:

r (',' csearch) down tosol

The deletion of the actual text
information in the macro is per
formed by this line of code:

4 repeat { delete Ctoeol c) }

Delete toeol simply deletes to the
end of the line. To delete the line
end character, add the c to direct
the macro to delete one more
character past the end of visible
text.

After making the deletion,
DeleteOne saves and reloads
DATABASE.SPM, just as Add.New
did. Of course, if no name was
selected for deletion, the reload
ing process is skipped.

GIVE IT ATRY
The Add.New macro is ready to
roll-you can type it in or down
load it from CompuServe and run
it. Since the names are in a stan
dard text file, they can even be
edited with Sprint. The ability to
edit the macro file also allows you
to export names from a separate
database program, such as
Paradox, and then insert them
into the macro-but don't forget
that 75-name limit! •

Neil Rubenking is a professional Pas
cal programmer and writer. He is a
contributing editor for PC Magazine,
and can be found daily on Borland 's
CompuServe Forum answering Turbo
Pascal questions.

Listings may be downloaded from
CompuServe as SPDBAS.ARC.

BINARY ENGINEERING
How loosely are you coupled?

Bruce F. Webster

L
ast issue, we looked at
using pre- and postcon
ditions to implement
abstract data types, and

created a standalone module that
implements a tic-tac-toe board. We
provided a listing of the module,
and used the module to write a
program that plays tic-tac-toe. You
can plug the tic-tac-toe module
into a program of your own de
sign, without having to copy any
other portion of the tic-tac-toe
program, by simply declaring in
your program that you're using
the module.

By contrast, I recently tried to
extract the routines that handle
the creation, display, and selection
of menus out of a text editor's
source code. This task initially
appeared easy, because the high
est level menu routines were set
off in a separate module. It turned
out, however, that those routines
called procedures in several other
modules; the routines also used a
number of global variables that
were used by still other modules.
Attempts to extract those proce
dures and variables showed ob
scure linkages to yet other proce
dures and variables. In the end, I
gave up, feeling as though I were
trying to remove the entire ner
vous system-intact-from an
animal.

The difference between last
issue's tic-tac-toe module and the
menu module described above
lies in their degrees of coupling.
Coupling refers to the intercon
nectedness between two pieces of
code involving parameters, global
variables, etc. Most often, one of

the pieces of code is in a program,
and the other piece is located in a
subroutine or collection of sub
routines used by that program.
Coupling is usually a function of
how communication takes place
between the pieces of code, and
which procedures are called by
both pieces.

Coupling refers

to the intercon

nectedness between

two pieces of code

involving parame

ters, global vari

ables, and so on.

Code is often described as
being "loosely coupled" or "tightly
coupled." The tic-tac-toe module
was loosely coupled with the tic
tac-toe program. It's an easy task
to extract a loosely coupl,ed module
from a program for use in an
other program. It's also easy to
write another version of that
module and then drop the new
version in place of the first one, as
long as each version's interface is
the same.

By contrast, the menu routines
in the second example are tightly
coupl,ed, both to the editor and to
one another. They make extensive
use of the editor's global variables,
and call many procedures used by

other sections of the editor.
Hence, it's almost impossible to
extract the menu-handling rou
tines in a form that can be used
by any other program. Also, it's
difficult to write a new implemen
tation of the menu routines that
could be used in place of the cur
rent routines.

Does this mean that loose cou
pling is always good, or that tight
coupling is always bad? Not neces
sarily. In some situations, tight
coupling is more convenient; in
other situations, it's essential. But
before we explore tight coupling
further, let's look more closely at
loose coupling.

LOOSE COUPLING
Imagine for a moment that you
want to enhance your stereo sys
tem, which currently has several
components, including an ampli
fier, a turntable, and a tape deck.
You decide to add a compact disc
player, so you connect it to the
system with a couple of audio
cables. When you get a two-drive
cassette deck, you simply unplug
the old cassette deck and plug in
the new one. Finally, you decide
that vinyl is passe and you remove
your turntable from the system
altogether.

Throughout this process your
stereo system continues to work
just fine . Adding the CD player
gives the system new capabilities
without diminishing existing ones.
Swapping the tape decks increases
the functionality of the tape deck
subsystem. Removal of the turn
table shrinks the stereo system's
size and functionality, but doesn't
affect any other functions in the
system.

continued on page 132

May/June 1988 TURBO TECHNIX 131

BINARY ENGINEERING
continued from page 131

This stereo system is loosely
coupled. The CD player (a module
of the system) connects with the
amplifier (and thus with the rest
of the system) via two simple
cables. For the most part, the CD
player's make, model, and features
are irrelevant to the amplifier,
which only knows about the CD
player's two cables that carry the
sound for the amplifier to process
and send to the speakers. Like
wise, the CD player knows noth
ing about the amplifier other than
that the amplifier expects two
cables. The CD player has no con
nection at all with the speakers,
even though they ultimately play
(make audible) the signals.

What's the benefit of this loose
coupling? As shown, you can up
date, modify, or rearrange your
stereo system with a minimum of
hassle or problems. As newer and
better components come along,
you can upgrade your system
accordingly. (My modest system,
which has been evolving for sev
eral years now, has none of its
original components left.)

Getting a little closer to home,
coupling applies to computer
hardware as well. Consider the
typical DOS-based system, which
has a series of expansion slots
based on a standard interface that
allows you to upgrade and modify
your system. The system usually
has a socket for an optional math
coprocessor, and you can often
upgrade other aspects of the sys
tem as well, such as its disk drives.

Loose coupling works well with
hardware; does it work equally
well with software? Yes-but as
with hardware, loose coupling
in software requires some fore
thought and discipline. The result,
though, can be well worth it

Consider, for example, the case
of a large software project that
involves several programmers.
Each programmer has responsibil
ity for a section of the finished
program. The software design can
be separated into loosely coupled
modules, with the interface for
each module clearly specified.
Each programmer can then work
independently to develop modules
according to the specifications,

132 TURBO TECHNIX May/June 1988

much as a host of companies can
manufacture CD players based on
the specifications for input (the
standard compact disc format)
and output (two channels of
sound). If all the programmers
follow the agreed-upon specifica
tions, the resulting modules will
in theory, at least-easily plug
together to form the finished
program.

Global variables

between two pieces

of code tend to bond

tightly; to make the

code more loosely

coupled, these

global variables

typically need to be

replaced by

parameters.

The same principle applies
when you're doing all the pro
gramming yourself. By breaking
the program into separate, loosely
coupled modules, you make your
overall design task easier. You also
make it easier to recycle your code
into other programs, since you
can plug in those modules else
where with little or no modification.

HOW TO DO IT
We've established that loose cou
pling is desirable under some cir
cumstances. The next question is:
How do you achieve it?

Think again about the stereo
system example. The CD player
and the amplifier contain very
complex electronics, yet the two
are not connected with a mass of
wires. Two cables suffice, since the
amplifier cares only about the left
and right channels coming out of
the CD player.

You must similarly limit the con
nections in your code, because the
more connections you include,
the more tightly your code will be

coupled. Possible connections are
mutually referenced constants,
data types, variables, and sub
routines-any of these connec
tions between several pieces of
code can cause tight coupling,
and decoupling the code can be
messy. Global variables between
two pieces of code tend to bond
more tightly; to make the code
loosely coupled, these variables
typically need to be replaced by
parameters.

Let's start by talking about a sin
gle subroutine. The first step in
making it loosely coupled with the
rest of the code is to pass all infor
mation via parameters, rather
than through global variables.
Consider the sort routine in List
ing 1. This routine presumes that
the program contains two global
variables: List (an array of type
Integer) and Count (an integer
variable}. It sorts the integers in
List into ascending order, using
the selection sort method. This
routine is tightly coupled to the
rest of the program, and it can
only sort the one integer array
(List). To use Listing 1 in another
program, that program must also
have an integer array named List,
as well as an integer variable
named Count.

Now look at the version of the
sort routine in Listing 2. This ver
sion expects to be passed two
parameters-an array and the
number of elements in the array.
Some coupling is still going on,
since Listing 2 expects the global
types ListType and BaseType to
be declared; data types, however,
tend to be less binding than vari
ables. In fact, Listing 2 is set up so
that you can declare BaseType to
be any one of a number of types
in your program-Char, Byte,
Shortlnt, Integer, Word, Longlnt,
Real, Single, Double, Extended,
Comp, any enumerated data type,
or any string type. All you must do
is declare BaseType appropriately,
with ListType declared as an array
of BaseType (with some specific
limit}, and the procedure still
works correctly. Note, however,
that ListType has a fixed length,
and that it's the only type of array

you can pass to Sort within the
program.

Finally, look at the sort routine
in Listing 3. This routine is com
pletely decoupled from the pro
gram, and requires no global dec
larations whatsoever. Listing 3 is
restricted to arrays of four base
types: Shortlnt, Integer, Longlnt,
and Real. The type is indicated by
the Size parameter, which should
be 1, 2, 4, or 6, respectively. If Size
holds any other value, then the
nested function LessThan always
returns a value of False, leaving
the array untouched. There is also
an arbitrary (though very large)
limit on the array size, based on
constraints imposed by the Turbo
Pascal compiler. The rewards,
however, are twofold: you can
drop this routine into any pro
gram without having to modify
either the program or this proce
dure; and you can pass an array
of any length (up to the indicated
maximum) to this routine.

So much for decoupling a sin
gle procedure; what about a whole
group of them? This can be either
easier or more difficult, depend
ing upon what you're decoupling.
In many cases, any shared con
stants, data types, variables, and
subroutines can all be put into a
single, separate unit or module,
along with the routines to be
decoupled.

In the last issue, for example,
we looked at TicTac, a unit for
playing tic-tac-toe. This unit im
plements a constant (Glim), a
few data types (Move, Location,
Game), and a number of proce
dures and functions. TicTac
makes no external references,
and so can be dropped into any
program.

We also looked at the Moves
unit, which allows the computer to
play tic-tac-toe. This unit is not as
loosely coupled-it depends upon
the TicTac unit for data types and
subroutine calls. Moves presents
two variables and one procedure
to the main program; the program
uses them to generate the neces
sary moves. The Moves unit, how
ever, doesn't depend upon any
thing from the main program, so
this unit can also be dropped into
another program if the TicTac
unit is in that program also.

Finally, the GameIO unit
depends upon both the TicTac
unit and the standard CRT unit
GameIO requires the presence of
both of these units in order to
function. In turn, GameIO pre
sents to the main program a cou
ple of data types and four proce
dures, which can be used to
display the game and to prompt
for moves.

Tightly coupled

code-both custom

ized and inline-is

almost always

faster than more

general, loosely

coupled code.

These units are loosely coupled
to each other, and even more
loosely coupled to the main pro
gram. The main program "knows"
almost no details of how the tic
tac-toe game is implemented, how
moves are generated, or how the
game in progress is displayed. If
you modify the Moves unit to play
a more (or less) intelligent game,
the program itself won't be aware
of the changes.

By contrast, changing from the
tic-tac-toe program's text-based
display to a graphics display would
require more work, since the
GameIO unit and the main pro
gram are more tightly coupled in
their mutual use of the CRT unit
and in their presumption of a text
display. To loosen the bonds, we
would need to add a clear-screen
procedure and a write-string
procedure to GameIO. All game
I/O would then be directed
through the unit, and we could
switch to a graphics display with
out making any changes to the
main program.

TIGHT COUPLING
If loose coupling is so great, why
don't you do it all the time? There
are three basic reasons: speed,
memory, and convenience. Let's
look at each of them.

Speed. Compare the sort routines
in Listings 1 and 3. Which do you
think executes more quickly? Ca
sual examination indicates that
the version in Listing 1 is faster;
this version has less overhead and
uses fewer instructions to perform
the same operation. Also, the code
generated to reference parameters
is often more complex than that
generated to reference global vari
ables, due to stack manipulation,
indirect addressing, and similar
issues. Actual tests show that the
routine in Listing 1 sorts a list of
1000 random integers more than
three times faster than the routine
in Listing 3.

Must this always be the case?
Essentially, yes. Tightly coupled
code-both customized and
inline-is almost always faster
than more general, loosely
coupled code. The issue then
becomes one of tradeoffs: Is the
increase in speed sufficient to jus
tify the loss of flexibility? That's a
decision you must make for your
self, case by case.

Memory. The second reason for
considering tightly coupled code
is memory. Again, a quick compar
ison of Listings 1 and 3 reveals
which one produces more ma
chine code. In addition to produc
ing more code, general routines
often require more data space as
well in order to handle a wider
variety of situations, especially
error conditions.

Even more significantly, passing
all information as parameters can
create a lot of stack overhead, es
pecially if you have a large amount
of global information that is
needed by many different rou
tines. At the very least, you need
to pass addresses or pointers to
those data structures; this process
does use less space, but can still
significantly affect stack overhead,
especially if you have any recur
sive routines.

Convenience. The last reason to
use tightly coupled code is conve
nience. Looking at Listings 1 and
3, which do you think would be

continued on page 134

May/June 1988 TURBO TECHNIX 133

LISTING 1: SORT1.PAS

procedure Sort;
{

}

preconditions: List is an array[1 •. Limitl of Integer
Count is of type Word

and in the range O .• Limit
postconditions: The elements 1 .. Count of List are sorted

in ascending order

var
Top,Min,K,Tetll> Integer;

begin
for Top := 1 to Count-1 do begin

Min := Top;
for K := Top+1 to Count do

if List[Kl < List[Minl
then Min := K;

if Top <> Min then begin
Tetll> := List[Topl;
List [Top] : = List [Hin] ;
List [Hin] := Tetll>

end
end

end; { of proc Sort }

LISTING 2: SORT2.PAS

procedure Sort(var List : ListType; Count : Word);
{

}

preconditions: BaseType is a type for which the operators
:=, <>, and < all are defined

ListType = array[1 .. Limitl of BaseType
Count is in the range 0 .. Limit

postconditions: The elements 1 .. Count of List are sorted
in ascending order

var
Top,Hin,K Integer;
Tetll> Base Type;

begin
for Top := 1 to Count-1 do begin

Min := Top;
for K := Top+1 to Count do

if List[K] < List[Hin]
then Min := K;

if Top<> Min then begin
Tetll> := List[Topl;
List[Topl := List[Minl;
List [Min] := Tetll>

end
end

end; { of proc Sort }

134 TURBO TECHNIX May/June 1988

BINARY ENGINEERING
continued from page 133

easier to write off the top of your
head? Which appears easier to
debug and get running? (As a mat
ter of fact, I did have a bug in the
routine I wrote for Listing 3: I
started the three local arrays with
an index of 0 instead of 1. Took
me a while to track the problem
down.)

Again, if your routines need to
access a lot of data structures, it
can be painful to have long
parameter lists to every procedure
and function. Of course, not all
code needs to be decoupled; rou
tines that are naturally grouped
together can communicate via
global (to them, at least) data
structures.

Some years back, I coauthored
a large, realtime, high-resolution
graphics computer adventure
game. The final code was around
15,000 lines of Pascal and another
5,000 lines of assembly language.
Because of severe constraints on
memory and a need for as much
speed as possible, my set of
loosely coupled units became ever
more tightly coupled as time went
on. Case in point: the graphics
library, which started out as a
general graphics library that did
lots of error checking and little
game-specific graphics. Once
speed and memory constraints
began to crop up, though, we
started pruning-many safeguards
were removed; code that pre
sumed a lot about the rest of the
game was added; and references
were made to global data struc
tures that were shared with the
rest of the game. The final graph
ics library was so tightly coupled
to the game itself as to be useless
for any other application without
very significant rewriting-but it
achieved its purpose of making
the game both possible and fast
enough to be accepted by its
users.

Each unit in the game was
tightly coupled with the main pro
gram. A few very large global data
structures were used to contain
the complete game state. This
approach, of course, made it easy
to save and restore the game in
progress by simply writing the

data structures to disk to be saved,
then reading them back in to be
restored. Passing the data struc
tures through all the different lay
ers of procedure calls would have
been ridiculous, especially given
the tight memory and speed con
straints. Instead, the data struc
tures were assumed global and
were used freely by all routines.

There was, however, significant
decoupling between units due to
the simple fact that we couldn't fit
more than a few units into mem
ory at any one time. Each unit or
set of units handled a distinct,
nonoverlapping function. When
that function (such as ship repair)
took place, the required unit was
loaded in from disk; when the
function was done and another
function (such as navigation) took
place, the old unit was flushed
out, and the new one was
loaded in.

STAY LOOSE
As a general rule, loose coupling
is preferable to tight coupling.
Loose coupling allows for modu
lar design, structured program
ming, and recycled code, and
generally makes it easier to debug,
maintain, and upgrade programs.
Loose coupling is based largely on
heavy use of parameter lists, the
avoidance of communication via
global variables, and the forma
tion of separately compiled
modules or units.

Tight coupling, even though it
introduces problems, is sometimes
necessary and desirable. You can
generally use tight coupling to
improve performance, reduce
code size, and add convenience.
However, these benefits need to
be weighed against increased
complexity in debugging, mainte
nance, and upgrading. Whether
you decide upon loose coupling
or tight coupling, you'll find that
the use of good design and coding
techniques does wonders. •

Bruce Webster is a computer merce
nary living in California. He can be
reach£d via MCI Mail (as Bruce
Webster) or on BIX (as bwebster).

Listings may be downloaded from
CompuServe as COUPLE.ARC.

LISTING 3: SORT3.PAS

procedure Sort(Size,Count : Word; var List);
{

)

preconditions: Size has a value of 1, 2, 4, or 6
Count is in the range O .. Limit

postconditions:

List is an array of type Shortlnt, Integer,
Longlnt, or Real

the upper bol.nd of Limit and the type of List
are determined by Size as follows:
Size max value of Limit type of List

1 (>4,000
2 32,000
4 16,000
6 10,667

The elements 1 .• Count
in ascending order

Short Int
Integer
Long Int
Real

of List are sorted

var
Slist
!List
Llist
Rlist
Top,Min,K

array[1 .. 64000] of Shortlnt
array[1 .. 32000] of Integer
array[1 .. 16000] of Longlnt
array[1 .. 10667l of Real
Word;

function LessThan(l,J : Word) : Boolean;
begin

case Size of
1 LessThan := SListCll < SListCJl;
2: LessThan := Ilist[I] < IList[Jl;
4 : LessThan := LListCll < LList[Jl;
6 : LessThan := RList[I] < RList[Jl;
else LessThan := False

end
end; { of locproc LessThan)

procedure SwapCl,J : Word);
var

I(
Temp
ch

begin

Word;
: Shortlnt;
: char;

I := 1 + CI-1)*Size;
J := 1 + CJ-1)*Size;
for IC := 0 to Size-1 do begin

Temp := SList[l+Kl;
Slist[l+I(] := SList[J+Kl;
Sli st [J+I(] : = T ell1'

end
end; { of locproc Swap)

begin
for Top := 1 to Count-1 do begin

Min := Top;
for K := Top+1 to Count do

if LessThanCK,Min)
then Min := K;

if (Min <> Top)
then SwapCMin,Top);

end;
end; { of proc Sort)

absolute Li st;
absolute List;
absolute List;
absolute List;

May/June 1988 TURBO TECHNIX 135

LANGUAGE
CONNECTIONS
Creating a work of art often means a
blending of media-and of tools.

Michael Floyd

I
like analogies. Analogies
help me bridge the concep
tual gap between what I
know and what I'm strug

gling to learn. When I encoun
tered a list in Turbo Prolog for the
first time, I immediately looked
for an analogous concept in a
procedural language-and picked
the array. At first, my analogy
between Turbo Prolog's list and
the array worked well. I soon
found, however, that drawing
parallels between procedural and
declarative languages can be dan
gerous. Armed with my analogy, I
expected the list to perform in the
same way that an array performs.
Instead, I discovered that an array
handles programming activities
that are difficult to do with a list.

These differences became more
apparent when I wanted to search
through a large list and needed to
improve the search strategy. A
binary search would have been
ideal, but this search method
requires individual elements to be
addressed directly. However, list
elements by nature are accessed
sequentially. (For more informa
tion about lists, refer to "What's In
a List," elsewhere in this issue).

Fortunately, with the marriage
of Turbo Pro log and Turbo C, you
can combine the power of list pro
cessing with the strength of arrays.
In this article, we'll look at lists
and arrays from both sides of the
fence. We'll examine ways to
represent a Turbo Prolog list in

Editor's Note: Due to the very recent
announcement of Turbo Prolog 2.0, we
were unable to reflect 2.0 in this article.
Note that some of the techniques de
scribed are specific to Turbo Prolog 1.x.

136 TURBO TECHNIX May/June 1988

Turbo C, and see how to convert
the list to an array and back to a
list again. Finally, we'll present an
example that sons and searches a
list using Turbo C's qsort and
bsearch routines.

LISTS IN TURBO C
Internally, Turbo Prolog repre
sents a list in memory as a linked
list. Each record in the linked list
contains three fields. The first
field, which is one byte in size, is
the list functor. The second field
is the actual element in the list;
the size of this field is the number
of bytes that corresponds to the
element type. The third field is
a pointer (represented as a far
pointer) to the next element in
the list; this field's size is four
bytes. The three fields are repre
sented below as a data structure
in Turbo C:

typedef struct ilist (
char functor;
int value;
struct ilist *next;
} intl ist;

functor indicates the type of ele
ment that is referenced by the list
record. If functor = 1, the record
is a list element; if functor = 2,
the record is a special value that
indicates the end of the list. value
is the actual element being refer
enced, and next is another ilist
that references the next element
in the list.

CONVERTING A LIST TO
AN ARRAY
To convert a list to an array, we
need to know how many elements
are in the list. We must also know
the data type of the list in order to
allocate space for the array to be
created. Once the array is created,

convert the list by copying ele
ments from the list to the array.
To do this, we'll create the func
tion ListToArray, which takes two
arguments. The first argument is a
pointer to the list to be converted,
and the second argument points
to the resulting array. The func
tion itself returns an integer value
that corresponds to the number of
elements in the list. This example
uses a for loop to tally the number
of elements in the list:

int ListToArray(intlist *list,

(
int **ResultArray)

intlist *savelist = list;
int *array;
int i = O;
for(i=O; list->functor == 1;

list= list ->next)
i++;

array=palloc(i*sizeof(int));
list = savel ist;
for(i=O; list ->functor==listfno;

list=list->next)
array[i++J=list->value;

*ResultArray=array;
return(i);
}

Next, we must allocate space
for the array on the stack. As al
ways, use the routines provided in
CPINIT.OBJ to manage the heap
and stack in order to guarantee
that heap space and stack space
are handled using Turbo Prolog's
rules. The palloc routine allocates
space on the global stack.

Once the list has been con
vened, we can process the array in
any manner we choose. In order
to get the results back to the
Turbo Prolog module, consider
ArrayToList, which appears
below. This function reverses the
process and converts the array to
a list:

void ArrayTolist(int arrayCl,int n,
intlist **list)

< int i;

}

for Ci=O; i<n; i++)
{

}

intlist *p =*list
= palloc(sizeof(intlist));

p->functor = listfno;
p->value = arrayCil;
list= &C*list)->next;

{

}

intlist *p =*list
= palloc(sizeof(char));

p->functor = nilfno;

ArrayToList converts an array
to a Turbo Prolog list, using palloc
to allocate memory on the global
stack for each element of the list,
and then builds the list by travers
ing through the array. Notice that
the last element of the list is spe
cial-in effect, this element says,
"I am the last element, because
the value at p-functor is nilfro."
This last element is very important
and must be specified.

There is one final point:
ArrayToList receives its list from
the Turbo Prolog calling module
via a pointer (to the list), and
passes the result list back as a
pointer to a pointer. Turbo Prolog
gets the list from the address spec
ified by the pointer to the list.

SORTING A LIST
A5 mentioned earlier, we some
times want to search efficiently
through large lists of data. With
the techniques implemented so
far, we can pass a list to Turbo
C and convert it to an array.
Now, we'll use Turbo C to search
through the array and retrieve a
particular item.

A number of search algorithms
are available, but I prefer using
the capabilities that are already
built into a language. Turbo C
implements the library routine
bsearch to perform a binary
search. Although a binary search
expects the data to be sorted in
ascending order, this is not a
problem-we can use the library
routine qsort to perform a quicker
sort (an optimized quick sort) on
the array before it's passed to
bsearch. Let's look at the sort
routine first.

In Turbo C, we'll define a func
tion, callable from Turbo Prolog,

to perform the following actions:
take a list from Turbo Prolog, con
vert the list to an array, pass the
array to qsort, and convert the
sorted array back to a list that is
then returned to Turbo Prolog.
This Turbo C function is shown
below:

void sortlist_O(lntlist *lnlist,
lntlist **Outlist)

{

}

int n, *Array;
n = ListToArray(lnlist, &Array);
qsort(&ArrayCOl,n,sizeofCint),

C°""8re);
ArrayTolist(Array,n,Outlist);

Since the function is being called
from Turbo Prolog, that function
is defined as void. Note that (as
always) an _O has been appended
to the function name to coincide
with Turbo Prolog's naming con
ventions. After the variable decla
rations, ListToArray is called to
perform the conversion. We
assign the number of elements in
the list (returned by the function)
to n.

qsort takes four arguments: the
address of the first element in the
array, the number of elements in
the array, the size of each element
in the array, and the name of a
function that is defined by the
programmer. The purpose of this
programmer-defined function is
to compare two elements and
then return a value based on the
results of that comparison. qsort
calls the comparison function suc
cessively to compare two individ
ual elements until all of the ele
ments in the array have been
sorted. Depending on how the
comparison function is written,
the array can be sorted in ascend
ing or descending order. This
compare function sorts in as
cending order:
int COl1l>8re(void *p1, void *p2)
{

returnC*Cint *)p1-*Cint *)p2);
}

To see how compare is used, con
sider two elements to be sorted: 32

I terns COl1l>8 red Returns

and 19. compare takes 32 as the
first argument and 19 as the
second argument, and then takes
their difference (32 - 19 = 13).
The positive value indicates
that pl is greater than p2, and
the values are swapped. Table 1
shows the possible results of a
comparison.

Once the array is sorted, the
final task is to convert the array
back to a list (ArrayToList) and
pass the list back to Turbo Prolog.

SEARCHING A LIST
Now that we've sorted a Turbo
Prolog list, let's use Turbo C's
bsearch to search the list for par
ticular items. Again, create a call
to a function. The process is sim
ilar to that used on sortlist, but
add an argument that specifies the
element to be searched for in the
list. Because there is no need to
pass a list back to Turbo Prolog,
the outlist parameter has been
removed:
void search_O(lntlist *lnlist,

int *key)
{

int n, *Array, *found;
n = ListToArray(lnlist, &Array);
found = (int *) bsearchC&lcey,

&ArrayCOl,n,sizeof(int),
coq>are);

if CfOl.l'ld == 0)
{

fai l_ccC>;
}

We give the Turbo C function
some Turbo Prolog flavor by
allowing search_O to either suc
ceed or fail, based on the results
of the search. By calling Turbo
Prolog's fail_cc library routine,
the call to search fails if bsearch
does not find the element being
searched for.

In PSORT.PRO (Listing 2), the
find clause is called to search for a
specified element in the array.
find calls the Turbo C search func
tion. find is nondeterministic, so if
search fails, Turbo Prolog back-

continued on page 138

-------------- ---------··---
*p1 < *p2 an integer < 0

*p1 = = *p2 0

*p1 > *p2 an integer > 0

Tab/,e 1. A list of possib/,e values returned by compare.

May/June 1988 TURBO TECHNIX 137

LISTING 1: CSORT.C

void bsearch(void *key, void *base, int nelem, int width,
- int C*fc"1'H»;

void _qsort (void *base, unsigned nelem, unsigned width,
int C*fc"1')(const void*, const void*));

#define qsort _qsort
#define bsearch bsearch
#define listfno 1
#define nilfno 2

void *palloc(unsigned);

typedef struct ilist {
char Functor;
int Value;
struct ilist *Next;
} lntlist;

int ListToArray(lntList *List, int **ResultArray)
{ IntList *SaveList List;

int *Array;
int i = O;

/*Count list items. */
for(i=O; List·>Functor ==listfno;

List = List ->Next)
i++;

/*Allocate stack space. */
Array= pallocCi*sizeof(int));

List = Savelist;
/*Copy list to array.*/

for(i=O; List ->Functor==listfno; List=List->Next)
Array[i++l=List->Value;

*ResultArray=Array;
return(i);
}

void ArrayToList(int Array[],int n,lntList **List)
{ int i;

}

/*Allocate a record for each element. */
for Ci=O; i<n; i++)
{ IntList *p =*List = palloc(sizeof(lntList));

p->Functor = listfno;

}

{

}

p->Value = Array[il;
List = &C*List)->Next;

/*Allocate the last record in the list. */

lntList *p =*List = palloc(sizeof(char));
p->Functor = nilfno;

/* Corrpare two items in an array */
int corrpare(void *p1, void *p2)
{

returnC*Cint *)p1-*Cint *)p2);
}

/* Sort a Turbo Prolog List */
void sortlist_OClntList *lnList, lntList **OutList)
{

}

int n, *Array;
n = ListToArray(lnList, &Array);
qsortC&Array[O],n,sizeofCint),corrpare);
ArrayToList(Array,n,OutList);

138 TURBO TECHNIX May/June 1988

LANGUAGE CONNECTIONS
continued from page 137

tracks to the second find clause,
which informs the user that the
element being searched for is not
in the list.

ON THE TURBO
PROLOG SIDE
The program in Listing 1
(CSORT.C) implements all of the
techniques discussed so far. List
ing 2 (PSORT.PRO) is the Turbo
Prolog module that orchestrates
the sorting and searching. As al
ways, Turbo Prolog must be the
main module.

Starting with the goal,
PSORT.PRO first calls cpinit to
initialize the memory manage
ment routines. Then run is in
voked to get the list items from the
user. List items are asserted into
the Turbo Prolog database as they
are entered. Once the user termi
nates the list (by entering -999),
findall is used to collect all the
database entries into a list. The
list is then passed to the sortlist
function created earlier.

Once the list is sorted, we create
a window displaying the sorted
list, and pause so that the user can
examine the list. The user is then
prompted to enter another value,
which is passed to the find clause.
As mentioned earlier, find imme
diately calls search (written in
Turbo C), passing the list sorted by
sortlist and the value to search for
in the list. If search succeeds, a
message is displayed indicating
that the value was found in the
list. If search fails (via fail_cc in
the Turbo C function), Turbo
Prolog backtracks to the next find
clause and displays a message that
the element was not found.

PUTTING IT ALL TOGETHER
I won't go into all of the agoniz
ing details of the link process
here. If you read "Language Con
nections" regularly, you probably
have this step memorized by now!
If you want to know more about
the link process, refer to any of
the earlier "Language Connec
tions," or consult the Turbo C
User's Guide.

Remember to use the Large
memory model when compiling

the Turbo C module. Also, don't
forget to set the Generate under
bars compiler option OFF, and
Use register variables OFF. Al
though not required, I like to
setjump optimization ON.

To link our project together, we
must use a command line linker
such as TLINKEXE, which is pro
vided on the Turbo C disk. The
files to be linked (in order) are:

• !NIT.OBJ-Turbo Prolog's
initialization module;

• CPINIT.OBJ-Turbo C's initial
ization module to handle
memory management by Turbo
Prolog rules;

• PSORT.OBJ-the compiled
Turbo Prolog module;

• CSORT.OBJ-the compiled
Turbo C module;

• PSORT.SYM-the symbol table
created when compiling the
Turbo Prolog module;

• PROLOG.LIB-the Turbo
Prolog Runtime Library; and

• CL.LIB-the Turbo C Large
memory model library.

Your command line to TLINK
should look something like this:

TLINK INIT CPINIT PSORT CSORT
PSORT.SYM,SORT,,PROLOG+CL

By the way, here's one final
note about linking this type of
project-we can't use Turbo
Prolog's project facility (in the
Turbo Prolog development envi
ronment) because we must link in
Turbo C's Large memory model
library. Turbo Prolog does not yet
let us link in other libraries.

THE RIGHT TOOLS FOR
THE JOB
No single set of tools is appro
priate for every task at hand. I
have most of the tools necessary
to work on my car, but I occasion
ally have to borrow an item from
my neighbor's toolbox.

Likewise, Turbo Prolog is a
powerful tool that opens the door
to a wide variety of programming
tasks. On occasion, however, I
also reach into my collection of
procedural tools. Together, this
blend of procedural and declara
tive programming tools make up
a toolbox whose creative possi
bilities are unequaled by either
language alone. •

Listings may be downloaded from
CompuServe as PCSORT.ARC.

/*Search a sorted list for a specified value*/
void search_OCintList *InList, int *key)
{

int n, *Array, *ptr;
n = ListToArray(InList, &Array);
ptr =(int*) bsearchC&key,&ArrayCOJ,n,sizeof(int),cOl!l>Bre);
if Cptr == 0>
{

fai l_cc();
}

}

LISTING 2: PSORT.PRO

DC»4AINS
list = integer*

DATABASE
db(integer)

GLOBAL PREDICATES
cpinit language c
sortlistClist,list) - Ci,o) language c
searchClist,integer) - Ci,i) language c

PREDICATES
run
repeat
test_input(integer)
find(list,integer)

GOAL
cpinit,
run.

CLAUSES
run:- /* Get items. */

clearwindow,
repeat,
write("Enter list C-999 to quit): "),
readint(S),
test_inputCS),
findallCN,db(N),List),
sortlist(List,L), /*Call C function to sort list. */
makewindowC2,7,7," In Turbo Prolog 11 ,7,10,7,50),
write(L),nl,
readcharC), clearwindow,
writeC"Enter value to search for: "),
readint(SVal),nl,
findCL,SVal), /*Search for element in list*/
readcharC_>,
removewindow, clearwindow.

findCL,SVal):-
searchCL,SVal), /* If search fails, backtrack to next clause*/
write(Sval, 11 found in List").

find(,SVAL):-
write(Sval,11 NOT found in List").

test_input(S):
s = -999.

test_input(S):-
/*End of list, so succeed & process. */
/* If list hasn't been terminated,

assert new merrber, and fail to force
backtracking. */

s <> -999,
assert(db(S)), fail.

repeat.
repeat:- repeat.

May/June 1988 TURBO TECHNIX 139

TALES FROM THE
RUNTIME
Diving into print£

Bill Catchings and Mark L. Van Name

T wo issues back, we added a wildcard
expansion routine, expwild, to the Run
time. While from time to time you may
want to add other routines, you may find

that you also want to change existing ones. Chang
ing an existing routine, however, can be much
harder than adding a new one. This time around
we'll demonstrate how to modify a Runtime routine
by adding a new capability to an existing major func
tion-printf.

printf is a familiar built-in function that produces
formatted output, and requires two sets of argu
ments. The first set is a single quoted string that con
tains a series of literal constants and special format
ting instructions. These formatting instructions
typically consist of a percent sign (%) followed by a
single letter, such as %d for an integer number. The
second set of arguments contains the variables and
constants to be formatted. printf matches each of
these to a formatting instruction. Consider the printf
statement:
printf("This is a sa111>le: %d, %d. \n", i, j >;
This statement outputs the characters up to the first
format instruction ('!od) as a literal string. It then
applies the first '!od to the contents of the integer
variable i, and the next instruction (%d) to the con
tents of the integer variable j. It also prints the
comma and spaces as literals.

If i is 1 and j is 2, this printf statement produces
the following line:

This is a sa111>le: 1, 2.

ADDING A DATE FORMAT TO printf
The new capability that we'll add to printf is %m, a
formatting instruction for dates. We chose a simple
format that consists of a three-letter month abbrevia
tion, a space, a two-digit day, a comma and space,
and then a four-digit year. For example, the date
6/ 1188 appears as ''.Jun 1, 1988." Because the date
structure used by the Turbo C getdate routine
returns a date that fits in a long, we made our %m
format instruction require a long argument.

Listing 1 shows a sample printf that uses %m. The
only unusual thing about this routine is the bit of
type casting trickery that we went through to pass the
contents of the date structure to printf as a long.
Because C will not allow us to directly cast the date

140 TURBO TECHNIX May/June 1988

structure as a long, we start with the address of the
structure, which is a pointer, and cast it as a pointer
to a long. Then we get the long value addressed by
that pointer.

By processing the date as a long, you can easily
convert other dates to a format that our new printf
will handle. You can also modify our new printf to
work directly on the date structure. The DOS date
function returns its values in two registers-the year
is returned in one register, and the day and month
are returned in the other. While you could change
our code so that %m handles two arguments, each
printf format directive traditionally matches one
argument; we chose to follow that tradition.

Now that we've discussed how to use %m, let's look
at the way it works. The source code for printf is in
the file PRINTF.C in the CLIB subdirectory of the
Runtime source directory structure that we set up in
our first column (see "Tales From the Runtime,"
TURBO TECHNIX, November/ December, 1987). So
far, so good: PRINTF.C is even written in C. Look
closer, however, and you'll find that PRINTF.C is a
326-byte shell that calls the function _vprinter (see
Listing 2). If you snoop around the C language a bit,
you'll find that printf is actually a family of three
functions, which differ only with respect to where
they send their output. printf writes to the standard
output device, while fprintf sends output to a file,
and sprintf puts its results into a string. All three
functions use _ vprinter for the real work. This
design keeps all three printf versions consistent, and
makes our job easier-when we change _vprinter,
we're adding the %m function to all three printf
functions.

INSIDE _ vprinter
The source for _ vprinter is located in the file
VPRINTERCAS, which contains 38K of primarily
assembler code. Since VPRINTER is a .CAS file, it
has the advantage of containing both C and assem
bler code. Because this is a C column, and because
we prefer C to assembler, we wrote nearly all of our
_ vprinter changes in C.

In order to change _ vprinter, you first need to
understand how it works; that makes a dip into
assembler unavoidable. The commented C code in

VPRINTER, however, explains the routine's structure
nicely. We discuss some of the more interesting
aspects here.

_ vprinter begins with a few important compiler
directives. The #pragma inline directive enables the
use of inline assembly language and allows us to
freely mix C and assembler. _vprinter also contains
three #include statements. The first include file,
asmrules.h, contains many macros that are very use
ful for inline assembler. The second file, rules.h,
contains a number of general Runtime declarations.
The final include file, _printf.h, provides the declara
tions of several support routines used by the printf
family.

Because _ vprinter is designed to support three
functions that handle output in different ways, it has
an unusual calling sequence. The basic format for a
call to _ vprinter is:

int pascal _vprinter(putnF *putter,
void *outP,
char *formP,
va_l ist argP)

The first unusual aspect of _vprinter is imme
diately apparent-_vprinter uses the Pascal calling
conventions. Many internal Runtime routines use
these calling conventions rather than the C rules,
because the C calling sequence rules are built to
handle a variable number of arguments. Routines
that obey these sequence rules push parameters on
the stack in right-to-left order, and then push the
return address. The called routine must know how
many arguments it needs, and be able to get those
arguments from the stack as it needs them. In addi
tion, the called routine cannot clean up the stack;
the calling routine must clean up the stack after it
regains control. Routines that obey the Pascal calling
rules also push the arguments first and then the
return address, but they push the arguments in left
to-right order. Because Pascal does not allow a vari
able number of arguments, the called routine cleans
up the stack as it returns.

_ vprinter follows the Pascal calling conventions
and accepts a fixed number of arguments; in this
case, it accepts four. The first argument, putter, is a
pointer to a function to which putter passes the out
put string. This function prints output in the manner
appropriate to the particular printf family member
that makes this call. For example, both printf and
fprintf use the function _fputn to write bytes to a file .
The second argument, outP, is used by the first argu
ment; _ vprinter passes outP to the function putter.
For printf and fprintf, outP is a file pointer for the
file to which _fputn writes (printf places stdout in
the address pointed to by outP).

The last two parameters contain the business part
of _vprinter's input. formP is a pointer to the format
string, which is the first major parameter to printf.
_ vprinter parses this string and uses the string's
directives to format the output. argP is a pointer to a
list of the rest of the arguments; _ vprinter retrieves
each of these arguments in turn to match directives
in the format string.

The basic operation of _vprinter is fairly simple.
_ vprinter reads the format string and outputs the
literals it finds there until it encounters either a \ or

continued on page 14 2

LISTING 1: DATE.C

/* DATE.C ·- routine to test our ll:m addition to printf. */

#include <stdio.h>
#include <dos.h>

main()
{

struct date test;

getdate(&test) ;

/* the structure needed by getdate * /

/* pass it the address of that structure *I
/* so that it can change that structure *I

/* our printf enhancement expects 1 long . Cast the address */
/* of the structure as a pointer to a long, and then get that */
/* long . Tou have to go through this silliness because you */
/* cannot directly cast a structure as • long. */

printf("~ Xs\n", *(long*) &test, "--everything works!");

LISTING 2: PRINTF .C

/* the printf family last modified : - 18 Mar 87

Turbo C Runtime Library version 2.0

Copyright (c) 1987 by Borland International Inc., All Rights Reserved . .,
#include <stdio.h>
#include < stdio . h>
#include <yrintf .h>

cdecl printf(char *fmt, •••)
{

return _vprinter C_fputn, stdout, fmt, _va_ptr);
}

LISTING 3: YPRINTER.CAS

/* vprinter last inodified :- 18 Mar 87

Turbo C Runt i111e Library version 2.0

Copyright Cc) 1987 by Borland International Inc., All Rights Reserved.
*/

#pragma inl ine

#incll.XH? <asmrules.h>
#include <rules.h>
#include <_printf.h>

static char NullString[] = "Cnulll";

static char hexDigits [16J =
{

1 0 1 , •1 1 , •2 1 , 13•, 14 1 , •s•, 16 1 , •1•, 18 1 , 1 9 1 , 1A', •e•, •c• ,•o•, •e•, 1 F1 ,

>;

/**** Begin addition ****/

/* Array of inonth names *I

static char *months [121 = <
"Jan"' Mfebu' .. Maru' HAprn' uHay", "Jl.nu,
"Jul 11 , •Aug11 , 11Sep11 , 110ct 11 , 11 Nov" , HDec"

};

!**** End addition ****/

static void near pascal Hex4 (unsigned datum) ,.
Convert 16 bit parameter to 4 hex digits at ES : [di].

Note: TC does not realize that 11scasb11 i~l ies DI, so DI is not
pushed/popped. That is nice , but one day it may cease to
be true • • .

May/June 1988 TURBO TECHNIX 141

.,
{

asm mov dx, datun
asm IOOV c., OF04h
asm llOV bx, offset hexOigits
asm cld
asm mov al, dh
asm shr al, cl
asm xlat
asm stosb
asm mov al, dh
asm and al, ch
asm xlat
asm stosb
asm mov al, di
asm shr al, cl
asm xlat
asm stosb
asm onov al, dl
asm and al, ch
asm xlat
asm stosb

return;

,.
_vprinter is a table·driven design, for speed and flexibility.
There are two tables. The first table classifies all 7· bit ASCII
chars and then the second table is the switch table which points to
the function blocks which handle the various classes of characters.

All characters with the 8th bit set are currently classed as
don't cares, which is the class of character also used for normal
alphabetics. All characters less than • • C0x20) are a.lso classed
as don• t cares • . ,
t~f......,,
<

_si, /*sign fHl (1+ 1 or 1
') */

_af, /* alternate form */
_ar, /* format Cwidth or precision) by argunent */
_lj, /* left justify */

_pr,
_nu,
_lo,
_sh,
_fz,

_de,
_oc,
_un,
_he,

_pt,
_fl,
_ch,
_st,

_ns,
_zz,
_de,
_pc,

/* precision
/* nuneral
/* long
/* short
/* fill zeros

L* dec1mat
/* octal .
I* "'5igned deciNl
/* hexadecimal

/* pointer
/* float
/* char
/* string

/* l"Ulber sent
/* termi net or
t• dont care
/* percent

*/
*/
*/
*/
*/

*I
*/
~/

*I

*/
*/
*/
*/

*I
*/
*/
*I

_ne, /* near pointer */
fa, /* far pointer */

:dt, /**** Date format **** /

characterClass; ~
1

/* Here is the table of classes, indexed by character.
*/
static ord8 printCtype [96] •
{

/* SP I # S X ' + , • I *I
_si ,_dc,_dc,_af ,_dc,_pc,_dc,_dc,_dc,_dc,_ar ,_si ,_dc,_lj ,_pr ,_de,

/* O 1 2 3 4 5 6 7 8 9 : ; < > ? *I
_fz,_nu,_nu,_n.J,_nu,_nu,_nu,_,...,,,_nu,_nu,_dc,_dc,_dc,_dc,_dc,_dc,

/**** Change the de (don't care) for M to dt (date) ****/
/* A B C - D E F G ~ I J K L M N 0 *I

:dc,_dc,_dc ,_dc,_de,_f l ,_fa,_f l ,_sh ,_de,_dc,_dc,_dc,_dt ,_ne,.:_dc,

/* P Q R S T U V 11 X Y Z [\ l */
~c,_de,fa,fa,fa,fa,fa,fa,~e,fa,_de,fa,fa,fa,fa,~,

/**** Change the _de (don't care> for m to _dt (date) ****/
/* · a b c d e f g h i j k l m n o *I

_de ,_de ,_de,_ch ,_de,_f l ,_fl ,_fl ,_sh,_de ,_de ,_de,_lo,_dt ,_ns,_oc,

/* p q r s t u v w x y z { I > - DEL *I
pt, de, _de, _st, _de,_ un, _de, _de, _he, _de, _de, _de, _de, _de ,_de ,_de,

>;

142 TURBO TECHNIX May/June 1988

FROM THE RUNTIME
continued from page 141

a%. If _vprinter finds a \ , it gets the next character
and handles the escape sequence.

The real work starts when _ vprinter encounters a
%, which indicates a format directive. _vprinter gets
the type of the format directive and cases off that
type into code that handles the directive. If_ vprinter
encounters an illegal format character, it abandons
the format process and then prints the illegal format
character, along with the rest of the format directive
string, as literals. _vprinter follows this approach
because it assumes that the format string and the
subsequent arguments are not synchronized and can
no longer be processed together.

ADDING THE FORMAT DIRECTIVE
To support our modification of _vprinter with a new
format directive case, we've made several other,
smaller changes. Listing 3 contains the source for
the modified _ vprinter routine; our changes are
marked with comments that begin with /**** and
end with****/.

The first new code in _ vprinter is a set of month
names, in the form of a static array of three-char
acter entries. We index into this array by using the
month number minus 1 to find the name of the
month we want. While all of our month names are
the same length, the code handles names of differ
ent lengths, so you can also use full month names.

_vprinter represents a format directive as an enu
merated data type containing both directives
(typedef enum characterOass) and a lookup array of
characters (printCtype). printCtype maps the actual
format characters (such as d, s, f, and now m) to
their corresponding internal directive cases
(_de, _st, _fl, and now _dt, respectively). We changed
both characterOass and printCtype to handle a new
case for our date format, _dt, and added this new
case to the end of the enumerated data type. We
added entries for both lowercase and uppercase m
into the character array printCtype. To support the
_dt case, we also declared five new variables. Three
of these variables-year, month, and day-are inte
gers that hold the parts of a date. We also declared a
character pointer to temporarily hold the month
string, and another character pointer for the output
string.

Before we get into our new code, we should men
tion something odd that happened as we worked on
_ vprinter. Our new code somehow caused a prob
lem with some code (_si) in another part of the pro
gram. _si, which is the case that handles a sign
directive, contains a short jump (limited to 128K) to
vpr _nextSwitch. Since our new code doesn't fall
between the jump and the destination, it should not
have affected this jump; nevertheless, the short jump
broke, probably due to the different alignment of the
code. This break caused the assembly language code
passed by Turbo C to MASM to generate a MASM
error. The fix was easy: we turned the jump into a
normal jump by removing short from it. If you make
our other changes, be sure to make this one.

continued on page 144

pascal _vprinter (putnF *putter,
void *outP,
char *forfd=>,
va_l ist argP

,.
The list of argunents *argP is comined with literal text in the
format string *fornf> according to fonnat specifications inside
the format string.

The S14>Pl ied proced.ire *putter is used to generate the output.
It is required to take the string S, which has been constructed by
_vprinter, ard copy it to the destination outP. The destination mey
be a string, a FILE, or whatever other class of construct the caller
requires. It is possible for several cal ls to be made to *putter
since the buffer S is of limited size.

•putter is required to preserve SJ, OJ.

The only purpose of the outP argunent is to be passed through to
putter.

The object at *argP is a record of 1.nknown structure, which
structure is interpreted with the aid of the format string. Each
field of the structure uy be an integer, long, doc.ble, or string
(char*). Chars mey appear but occupy integer-sized cells . Floats,
character arrays, and structures 1nay not appear.

The result of the flrlCt ion is a cOlrlt of the characters sent
to •outP.

There is no error indication. When an incorrect conversion spec
is encountered _vprinter copies the format as a literal (since it is
assLmed that al igrment with the argunent list has been lost),
begiming with the •:t• which introduced the bad format.

If the destination outP is of limited size, for exaf1'4lle a string
or a full disk, _vprinter does not know. overflowing the destination
causes ..-defined results. In some cases *putter is able to hardle
overflows safely, but that is not the concern of _vprinter.

The syntax of the format string is:

*!

format : := C Cl iterall ['lt' conversion J l*

conversion : := 1 X1

flag : :z 1 • 1 I 1+ 1

CflagJ* [width] ['.' precision] [' l 'J type

I ''' I •o•
width : :z •• 1 I ~r
precision ::s 1 • 1 (1* 1 nurber);

type::= 'd'l'i'l'o'l'u'i'x'l'n'l'X'i
'f' •e• 'E' •g• I 'G' I
1c 1 •s•
1 p 1 1N1 'f 1

define Ssize 80

typedef enun
{

flagStage, fillzStage, wideStage, dotStage , precStage,
ellStage, typeStage,

syntaxStages;

typedef enun
{

register

altFormatBit
leftJustBit
notZeroBit
fi l lZerosBit
isLongBit
farPtrBi t
altOxBit

flagBits;
ord16 aP·

• 1,
• 2,
• 4,
= 8,
• 16,
= 32,

• 64,

char fc:
char isSigned;

fnt16
fnt16
bi tsl!
char
int
ord16

width;
precision;
flagSet;
plusSign;
leadZ;
abardonP;

/* the '#' flag */
/* the • ·' flag */
/* 0 (octal) or Ox (hex) prefix*/
/* zero fill width */
/* long·type argunent */
/* far pointers * /

!* '#' flag confirmed for Xx format */

/* format char, from the format string */
/* chooses between signed ard Ln&fgned

int& */

/* posn of bad syntax f n fonoat
string */

char
card16
card8
char

t...,Str [381;
totalSent IS O;
ScOl.llt = Ss i ze;
S [SsizeJ;

/* longest _realcvt string */
/* characters sent to putter */
/* free space remaining in S */
/* t"""°rary constructed result

SI, DI;

buffer * /

!* prevent the c°""fler making its
own usage */

fnt year, month , day; /**** Holders for the parts of a
date ****/

char *cP ·
char *monthptr;

/**** Pointer to output string ****/
/**** T~rary pointer ****/

#if 0 /* the remaining variables are held entirely in registers */

char hexcase;

long t~L;
syntaxStages
char
char
int

stage;
c;
*cP·
•;p;

/* choose upper or lower case Hex
alphabet */

CH

#endi f

/* General outline of the method:

First the string is seamed, and conversion specifications detected .
The preliminary fields of a conversion Cf lags, width, precision,
long) are detected ard noted.

The orgunent is fetched ard converted, U'lder the optional
guidance of the values of the preliminary fields. With the sole
exception of the 1s 1 conversion, the converted strings are first
placed in the t~Str buffer.

The contents of the terrpStr (or the argunent string for 's')
are copied to the output, fol lowing the guidance of the preliminary
fields in matters such as zero fill, field width, ard justification. .,
#if 0
/* Warning: the fol lowing C code is conment only I It has not
been tested . . ,
aP = O;

#define PutToS(c) \
(S (aP++J = c; \
if (··Scount == 0) \
(S[aPJ = O; putter (S,

totalSent += (ScOLnt

vpNEXT:

Ss i ze, outP);
Ssizel; })

aP = 0;\

if ('\0' == (fc = *(forrrl'++))) /*the normal end*/
{

if cssize - ScOLntl
{

}

totalSent += (Ssize ~ Scot.X'lt);
p..1tter CS, Ssize ~ ScOl.llt, outP);

return totalSent;

ff (('lt' ZS fc) && c•:t• I• (fc = *(formP++)))) goto vpCONV;

PutToS (fc);
goto vpNEXT;

vpCONV:
abardonP = (Ln&igned) formP;
width = ·1;
precision • ·1;
plusSigns 1 \0 1 ;

leadZ s O;
#if LDATA

flagSet • farPtrBit;
#else

flagSet • O;
#endif

stage • flagStage;
cP = 1+terrpStr; /*terrpStr [OJ Ny be used for inserting •+'••t
goto vpDoSwitch;

vpNextSwitch:
fc IS *(fornf>++);

vpDoSwi tch;
if ((fc < ' ') 11 Cfc & Ox80)) goto vpAbanton;
switch (printCtype Cfc- • 'l)
{

case (af): /* al ternateFono */
ff-(stage > flagStage) goto vpAbandon;
flagBits I• altFormatBit;
goto vpNextSwi tch;

case (lj): /* leftJust */
if-(stage > flagStage) goto vpAbandon;
flagBits I= leftJustBit;
goto vpNextSwitch;

case (_sf): /*sign fill*/
ff (stage > flagStage) goto vpAbandon;
ff CplusSign I= •+• l plusSign = fc;
goto vpNextSwi tch;

case (_ne): /* near pointer*/
ff (stage > flagStage) goto vpAbandon;
flagBits &= -farPtrBit;
goto vpNextSwi tch;

case (_fa): /* far pointer */
ff (stage > flagStage) goto vpAbandon;
flagBits I= farPtrBit;
goto vpNextSwitch;

May/June 1988 TURBO TECHNIX 143

case (ar): /* format by arg * /
tei;> = *(((int *) argP)++);
tf (stage < wideStage)

<
>
else

width = teq:i; stage = wideStage + 1;

if (stage == precStage)
<

>
else

precision = t~; stage ++;

goto vpAbardon;
goto vpNextSwitch;

case (fz): /* f i l l Zeros *I
if-(stage > flagStage) goto vpr_N\MERAL;
if (flagBits ' leftJustBit)

goto vpNextSwitch; /* TB 12 . may.117 */
flagSet I= fll lZerosBit;
stage z fi l lzStage;
goto vpNextSwitch;

case (_pr): /* precish>n 1
.' *I

if (stage >= precStage) goto vpAbandon;
stage z precStage;
goto vpNextSwi tch;

c1se (nu) /* nunera l * /
vpr _NUMERAL: -

vpUINT:

if (stage <= wfdeStage)
C width = (width < 0) 7 fc - 10 1 : width*10+(fc - '0');

stage = wideStage;
>
else

if (stage I= precStage)
<

>
else

precision = precision * 10 + Cfc - 1 0 1 >;
sta9e = precStage;

goto vpAbandon;
goto vpNextSwi tch;

case < lo): /* long */
flagSet I= isLongBit; stage = ellStage;
goto vpNextSwi tch;

case (sh): /* short*/
fliigset &= -islongBit; stage= ellStage;
goto vpNextSwi tch;

case (_de) : radix z 10; goto vplNT;
case (oc) : racHx = 8; goto vp.JlNT;
case Cun> : radix = 10; goto vpUINT;
case (he) : hexCase = fc - ('x' - 'a');

- radix = 16; goto vpUI NT;
case (_fl) : goto vpFLOAT;

case (ch) :
cP; (char *) (((int *) argP)++); cP C1J = O; goto vpCOPY;

case (stJ :
cP-= *(((char **) argP)++); goto vpCOPY;

case C ns) : /* nu!lber sent * /
iP-= *(((int *) argP)++);
*iP = totalSent + Ssize - ScO\Xlt;
goto vpNEXT;

case (_pt) : goto vpPointer

case C n)
case <J>c>
case (_de) : goto vpAbandon;

isSigned = false;
teq:>l = (flagSet & isLongBit) 7 *(((long *)argP)++) :

*(((unsigned *) argP)++);
goto vpPUTINT;

vplNT:
isSigned s true;
teq:>L • CflagSet & isLongBit) ? *(((long*) argP)++)

*(((int *) argP)++);
vpPUTINT:

notZero = tMpl. I= OL;
cP = 1 + t~tr; /* teq:>Str COJ reserved for sign */

longtoa (t~, cP, radix, isSigned, hexCase>;
lf (precision > 0)
<

if (precision > (len • strlen (cP) - C*cP zz 1
-'))

leadZ s precision • len;
else

precision = len; /* ragged foMMt is safer than lost
digits */

144 TURBO TECHNIX May/June 1988

FROM THE RUNTIME
continued from page 142

We've added the new case _dt after the last exist
ing case that did any real work. We comment the
code heavily, but a few points deserve further
explanation.

We save the current position in the format string,
and the format character itself, in the variables
formP and fc (respectively), because the rest of the
_vprinter cases save them. We've used assembler
code because the values were already in registers,
and assembler provides the quickest way to access
these values.

The next block of code takes the long argument
from argP that contains the date, and unpacks that
date into the year, day, and month variables. The
first word contains year; although DOS says that
dates start from 1980, the year is actually counted
from zero so we don't need to convert it. We extract
the year with a bit of casting trickery: First, we cast
the argP pointer to an integer pointer so that we can
access the integer year. Next, we get the value of
year, and then increment the pointer argP. Notice
that we increment argP only after we have cast it as
an integer, so that argP is incremented correctly by
two bytes. We use similar tricks to retrieve the day
and month, but because they are one byte each, we
get them as characters and then cast them to inte
gers. The final cast is unnecessary because C would
do the conversion for us automatically, but we do it
explicitly to make the intent of the code clear.

We then set our string pointer to the work area
pointer, tempStr, that is used by the rest of the code
in _ vprinter.

From here on, our code is a fairly typical number
to-character conversion exercise. We index into our
month array to find the month name and move that
name, along with a trailing space, into the work
string. We then convert the day to a character string
and add the string, a comma, and a space to the
work string. Finally, we convert the year to a charac
ter string and add it to our work string.

The only unusual code here involves the function
_longtoa. This function , as its name implies, trans
lates a long into an ASCII string. Its source code
is in the file L TOA.CAS in the CUB subdirectory.
_longtoa requires five arguments. The first two argu
ments-the number to be translated and the destina
tion string-are the main ones. The third parameter
specifies the radix (_longtoa handles any radix from
2 to 36). The final two arguments specify how the
sign should be handled and whether to capitalize let
ters if the output is hexadecimal; since we don't need
either of them here, we set them both to zero. Be
cause _longtoa does not update the destination
string pointer to point to the end of the result, we
handle that step manually after converting the day.

The last bit of our code is in assembler so that we
can easily jump to the code labeled vpr _COPY,
which is used by all of the _ vprinter cases to handle
the final output and cleanup. Our code places a

continued on page 147

goto vpllUMERlC;

vpPointer:
isSigned = false;
eP = t...,Str;

t"""1. = *(((unsigned *> argP)++);
if (flagSet & farPtrBit)
{

}

Hex4 (eP, *(((unsigned*> argP)++);
cP += 4;
*(cP++) = 1 : 1 ;

Hex4 (eP, t~>;
t"""1. = (flagSet & farPtrBit) ? *(((long*> argP)++) :

*(((unsigned *) argP)++);

notZero = false; /* suppress cheek for 0/0x/OX prefixing */
*CcP += 4) ; 1 \0';
len ; cP - terrpStr;
eP = t...,Str;
precision = MAX Clen, prechion);
goto vpCOPY;

vpFLOAT:
eP = 1 + t~Str; /* t~Str [OJ reserved for sign */
_realevt (((double *) argP)++,

(precision > 0) ? precision : 6,
cP, fc, altformat);

notZero = false; /* suppress cheek for 0/0x/OX prefixing *I
goto vpCOPY;

vpllUMER l C:
if CplusSign && (*eP != '-')) *(--cP) plusSign;

vpCOPY:
Len = strlen (eP);
if Cal tFormat & notZero)
{

}

if ((fe == 'o') && (leadZ <= 0))
if ((fc == 'x') 11 Cfc == 'X'))
{

flagSet I= al tOxbit;
width -= 2;
if ((leadZ -= 2) < 0)

leadZ = O;

if (! leftJust)
while (width > (Len + leadZ))
{

width PutToS (1 1);

}

if (flagSet & al tOxBit)
{

PutToS (00°); PutToS Cfe);
}

if (leadZ > 0)
{

ten -= leadZ;
width -= leadZ;

leadZ 1·

/*OM : 05/11/87 */
/*OM : 05/11/87 */

if ((Cc • cP* > == ' -'> 11 Ce == ' '> 11 Cc == •+'))

}

if (Len > 0) < width- - ; Len --; PutToS C*CcP++));
while (leadZ-- > 0) PutToS ('0' >;

width -= Len;
while (Len -- > 0) PutToS C*<eP++));
if CleftJust)

while (width-- > 0) PutToS <' '>;
goto vpllEXT;

#endif

asm
asm

asm
asm

push
cld

lea
mov

ES

di, s
aP, di

/*This paragraph is arranged to give in-line flow to the onost
frequent case, literal transcription from *ford> to *outP. */

vpr _NEXTap:
asm lftOV

vpr_NEXT:
asm LES_

vpr _nextCh:

asm
asm
asm

lods
or
jz

di, aP
/* looptoherewhenOl still valid*/

si, ford>

BTO (ES [sill
al, al -

/* res.,.. here from this literal/
space scan section *I

vpr _respondJ"I'

asm

asm je
vpr_literal:

al, 1X1

vpr _C()ljV

/* The 1 %1 character be;ins a
conversion * /

/*but "XX11 is just a literal 1 %1 • */
asm mov ss_ Cdil, al
asm inc di
asm dee BYO (Scount)
asm jg vpr _nextCh

SimloealCal l
asm J"I' vpr _Cal !Putter
asm j"I' short vpr _nextCh

vpr _respondJ"I':
asm j"I' vpr _respond

/* If arrived here then a conversion specification has been
encOlX'ltered. * /

vpr _CONV:
asm mov

asm lods
asm cq:>
asm je

asm mov

asm sub
asm mov
#if LOA TA
asm mov
#else
asm MOV

#endif
asm ll'IOV

asm mv
asm mov
asm j"I'

vpr _nextSwi teh:
asm lods

vpr_doSwitch:
asm ebw
asm mv
asm xchg
asm sli>
asm ~

asm jae
asm rov

switch

vpr _j"""bandon:

abandonP, si /*abandon will print from here*/

BYO (ES_ Csi])
al, •x•
vpr_literal

aP, di

ex, ex
leadZ, ex

/* keep the result pointer safe. */

/* CH is flagStage */

BYO (flagSet), farPtrBit

flagSet, cl

plusSign, el
WO (width), -1
WO (precision), -1
short vpr _ doSwiteh

/* loop to here when seaming flags */
BYO (ES_ Csi])

/* this is the Major switch. */

dx, ax /* save original char in DL */
bx, ax
bl,
bl, 128
vpr _j"""bandon
bl, BYO (printCtype Cbx])
(_BX) /* ===> clobbers AX, BX <=== */

/* Extend local j~ range */
asm i"I' vpr _abandon

case (_af):
asm C"I'
asm ja
asm or
asm j~

ease (_lj):
asm cq:>
asm ja
asm or
asm j"I'

case c_si):
asm C"I'
asm ja
asm cq>
asm je
asm mov
asm j"I'

case _ne):
asm cq:>
asm ja
asm and
asm j"I'

case _fa):
asm eq>
asm ja
asm or
asm j"I'

ease C_fz) :
asm cq:>
asm ja
asm test
asm jnz
asm or
asm mov

asm

/* when 1 # 1 was seen */
eh, flagStage
vpr _j irpAbandon
BYO (flagSet), altFormatBit
short vpr _nextSwi tch

/* when 1
- 1 was seen */

eh, flagStage
vpr _j"""bandon
BYO (flagSet), leftJustBit
short vpr _nextSwitch

/* when • 1 or 1 + 1 was seen */
ch, flagStage
vpr _jirpAbandon
BYO (plusSign), 2Bh
vpr _nextSwi teh
plusSign, di

I* 1+ 1 */
/* ignored if '•' already */

vpr _nextSwi tch /**** Eliminate the short ****/

/* near pointer */
ch, flagStage
vpr _abandonJ"I'
BYO CflagSet), NOT farPtrBit
vpr _nextSwi teh

/* far pointer * /
eh, flagStage
vpr _abandonJ"I'
BYO CflagSet) , farPtrBit
vpr _nextSwi teh

/* leading width 0 0° acts as a flag */
ch, flagStage
case_nu /*
BYO (flagSet), leftJustBit
short vpr _nextSwi tchJ"I'
BYO CflagSet), fillZerosBit

else it is just a digit */
/* TB 12.may.87 */
/* TB 12.may.87 */

ch, fil lzStage /* but it l!'lJSt be part of
width */

short vpr _nextSwi tchJmp

May/June 1988 TURBO TECHNIX 145

vpr _abandonJ"l': /* Extend local juq> range */
asm j"" vpr abandon

case (ar):
#if LDATA
asm push
#endi f
asm LES_
asm mv
asm .c:td
#if LDATA
asm pop
#endif
asm
asm

aop
jnb

ES

di, argP
•x, ES_ Cdil
llO (argP), 2

ES

ch, wideStage
vpr _argPrec

/* when 1 • 1 was seen */

/* it causes the next argument * /
/* to be taken, * /

/* depending on the stage, */

•sm mov width, ax I* as the width, */
asm .:>v ch, wideStage +
vpr _nextSwi tchJ"l':
asm i"l' vpr _nextSwi tch

vpr _argPrec:
asm C!11>
asm jne
asm mv
asm inc
asm i"l'

case (_pr):
asm cq:>
asm jnb
asm mov
asm j~

ch, precStage
vpr _ abandonJ"l'
precision, ax
ch

/* or as the precision. */

short vpr _nextSwi tchJ"l'

ch, precStage
vpr _abandonJ"l'

/* when is seen */

ch, precstage /* a precision should fol low */
short vpr _nextSwi tchJ"l'

/* l./hen a nuneral is seen, it may be either part of a width, or */
/* part of the precision, depending on the stage. */

case _nu):
case nu:
asm - xchg
asm sub
asm cbw
asm t""P
asm ja

asm
asm
asm
asm
asm
asm
asm
asm

mov
xchg
or
jl
mov
mul
add
i"l'

vpr _precN1.111eral:

ax, dx
al, 10 1

ch, wi deStage
vpr _precN1.111eral

ch, wi deStage
ax, width
ax, ax /*
vpr _nextSwi tchJ"l'
dx, 10
dx
width, ax

I* when 0 .. 9 seen *I

/* move char back into AL */

is this the first width digit ? *I
/*default width was -1 */

short vpr _nextSwitchJ"l'

asm C!T1> ch, precStage
asm jne vpr _abandonJ"l'

asm
asm
asm
asm
asm
asm
asm

xchg
or
jl
mov
mul
add
i"l'

case lo):
asm or
asm MOV

asm j""

case sh):
asm - and
asm mv
asm jq;>

ax, precision
ax, ax /* is
vpr _nextSwi tchJ"l'
dx, 10
dx
precision, ax
vpr _nextSwi tchJ"l'

this the first precision digit ? *I
/*default precision was -1 */

,. was seen */
BYO (flagSet), isLC>n11Bit
ch, ellStage
vpr _nextSwi tchJ"l'

/* if 1h 1 was seem */
BYO (flagSet), not isLC>n118it
ch, el lStage
vpr _nextSwi tchJmp

/* The previous cases covered all the possible flags. Now the
following cases deal with the different argument types.

The first gr0l4> of cases is for the integer conversions. */

case (_oc):
asm mov
asm jmp

case _un):
asm mov
asm jmp

case (_he):
asm mov
asm MOV

asm add
vpr _NoSign:
asm mov BYO
,. j""

I* octal
bh, 8
short vpr _NoSign

/* unsigned
bh, 10
short vpr _Ul MT

/*hex
bh, 10h
bl, 'A' - 'X'
bl, dl

(plusSign), 0
short vpr _UINT .,

146 TURBO TECHNIX May/June 1988

.,

.,

.,

vpr _UIMT:
asm mov
asm MOV

asm LES_

asm IK>V

asm sub
asm jmp

case (_de):
asm mv
vpr_INT:
asm
asm

asm

asm
asm

OIOV

lllOV

LES_

mov
cwd

vpr_toAsci i:
asm inc
asm inc

asm mov

asm test
asm je
asm mov
asm inc
asm inc
vpr_shortlnt:
asm mov
esm push
asm push
asm or
asm jz
asm or
vpr _ doL toA:
#if LDATA
asm push
#endif
asm
asm
asm
asm
asm
asm
asm

esm
asm

asm
esm

lea
push
OIOV

cbw
push
OIOV

push

push
call

push
pop

BYO (isSigned), false
fc, dl /* rement>er the type character. */

di, argP

ax, ES
dx, dx-

[di]

short vpr _toAsci i

/* fetch the arg1.111ent. wO * /
/* zero extend by default * /

,. deci111al .,
bh, 10

BYD (isSigned), true
fc, dl /* r""""1'ber the type character. */

di, argP

ax, ES_ Cdil

di
di

/* fetch the arg1.111ent. wO *I
/* sign· extend by default */

/* advance past arg.wO */

fornf>, s i /* r""""1'ber progress through format * /

BYO (flagSet), isLongBit /* short or long int 7 */
vpr _shortlnt
dx, ES_ [di]
di
di

argP, di
dx
ax ,. (t""l'L .,

ax, dx
vpr _doLtoA
BYO (flagSet), notZeroBit

SS

di, t...,Str C1l
di /* , cP •• 1+t...,Str */
al, bh

•x /* AL , r8dix */
•l, isSigned
ax /* , isSigned */

bx /* IL
EXTPROC (_LC>n11toa)

SS
ES

, hexcase) */
/* returns pointer to string */

/* ES_ Cdil = cP == 1+t...,Str */
/*ES is needed in oll llOdels */

asm mv dx, prec:is;on
asm or dx, dx
asm jg vpr _c<>L<'ltActualJ"1'
asm J"1' vpr _testFil lZeros
vpr _c<>L<'ltActualJ11p:
asm jmp vpr _cOL<'ltActual

,.
The 'P' conversion takes either a near or a far pointer and puts
h out in the usual Intel xxxx:xxxx hex style. .,

case (_pt):
asm MOV

asm IROV

asm

asm
asm
asm
asm
asm

asm
asm

asm
asm
asm
asm
asm
asm
asm

lea

LES
push
inc
inc
lllOV

test
jz

push
inc
inc
OIOV

push
pop
call

fc, dl
formP. si

di, t...,Str

bx, argP
ES Cbxl
bx-

bx
argP, bx

/* pointer */
/* r""""1'ber the type character. *I
/* r""""1'ber progress through

format */

/* fetch the argument. wO *I

BYO (flagSet), farPtrBit
vpr _pt rLS\I

ES CbxJ
bx-
bx
argP, bx
SS
ES
Hex4

/* fetch the argunent. W"I * /

/* add di, 4 Hex4 does this */

asm lllOV al, ...
asm stosb

vpr _ptrLSW:
asm push SS
asm pop ES
asm call Hex4

/* add di, 4 Hex4 does this *I
asm lllOV BYO css_ Cdil), 0

asm lllOV BYO (isSigned), false
asm and IYO (fl agSet), NOT notZeroB it

asm lea ex, teq:>Str
asm 1ub di, ex
asm xchg ex, di /* ex s Len, DI = t...,Str */

asm llOV dx, precision
asm C"'fl dx, ex
asm jg vpr _ptrEnd
asm llOV dx, ex

vpr _ptrEnd:
asm i"'P vpr _testF i l lZeros

/* The 'c 1 conversion takes a character as parameter. However, note
that the character occupies an (int) sized cell in the arg""""t
list. */

case c_ch):
asm mov
asm mov

asm LES -asm mov
asm add

asm push
asm pop
asm lea
asm mov
asm mov
asm mov
asm i"'P

forri>, s i
fc, dl

di, argP
ax, ES Cdil
WO (argP), Z

SS
ES
di, t...,Str [1 l

/* char */
/* rement>er progress through format * /
/* remenber the type character * /

ah, 0 /* terminate the terrporary string. */
ES_ Cdil, ax
ex, 1
vpr _ CopyLen

/* The 1 s• conversion takes a string (char *) as argl..lt'lent and copies
the string to the output buffer . */

case C_st):
asm mov
asm mov

asm LES

forrrP, si
fc, dl

di, argP

/* string */
/* rement>er progress through format * /
/* rement>er the type character •I

asm test
asm jnz

BYO (flagSet), farPtrBi t
vpr _farString

#if HUGE - -
asm i"'P vpr_abandonJ"'P /*DS can't be asscrned in HUGE roodel*/
#else
asm mov
asm add
asm push
asm pop

di, ES [di]
WO (argP), Z
OS
ES

/* [di] = (OS:char *) *(argP++) */

asm or di, di /*SS* I
asm i"'P short vpr _countString
#end i f
vpr _farString:
asm Les
asm add
asm
asm

mov
or

di, ES Cdil
WO (argP), 4
ax, es
ax, di

vpr countString:
asm- jnz NotaNul lPtr
asm push OS
asm pop ES

/* ES: Cdil = (char *) *(argP++) */

/*$$*/
/*SS* I

asm mov di,offset NullString

/*$$*I
/*SS* I
/*SS*/
/*SS•/

NotaNul lPtr: /*SS* I
SimlocalCal I

asm l"'P vpr_strlen /*ex= strlen (ES: Cdil) */
asm cq:> ex, precision
asm jna vpr _CopyLenJ..,
asm MOV ex, precision /* precision may trlllCate string. */
vpr _CopyLenJ"'P:
asm i"'P vpr _Copylen

/* All real·l'U'l'ber conversions •re done by _realcvt. */

case (_fl):
asm IROV

esm inov
fo~, s.i
fc, dl

t• float */
/* retnent>er progress through foMMt * /
/* reftleflber the type character • t

FROM THE RUNTIME
continued from page 144

string pointer in ES:DI (the standard place to store a
string pointer), which points to the output string we
create. Because tempStr is a local variable, we know
that it is in our stack segment, so we set F.S to SS. (We
use the trick of pushing SS and then popping the
contents into F.S to get around the fact that Intel
architectures before the 80386 treat these two regis
ters as less than full, and will not let you move from
SS to F.S.) We finish by putting the address of
tempStr into DI and jumping to vpr_COPY.

That's it! All of the printf family members can
now handle dates. When it comes to working with
existing routines, the bulk of the effort goes into
understanding how the code works. Adding the new
code is simple once you master the original code.

We've not yet selected the topic for our next
column, and are considering everything from text
processing goodies to BIOS-independent screen
handling code. Do you have any suggestions? Like
some radio stations, we welcome your requests. Write
to us care of TURBO TECHNIX, and we'll see what
we can do. Until then, have fun as you continue to
work with the Runtime and Turbo C. •

Mark L. Van Name is a freelance writer. Bill Catchings is
a freelance writer and a software engineer at Data General
Corp.

Listings may be downloaded from CompuServe as
PRINTF.ARC.

TURBO C QUICK C LET'S C DESMET C DAT ALIGHT C ECO-C
LATIICE C MICROSOFT C AZTEC C COMPUTER INNOVATIONS C

NEW --- Limited time offer.

Peacock System's CBTREE
Object library for only $49!

Our FULL COMMERCIAL VERSION of CBTREE in object library format
is being offered for the amazingly low price of $49.

CBTREE provides you with easy to use functions that maintain key
indexes on your data records. These indexes provide you with fast.
keyed access. using the induslry standard B+tree access method.

Everything you need to ful ly utilize CBTREE in your applications is
included. The CBTREE source code can be purchased later at any
time for the $110 difference. Example source programs and ut ili ties
are included FREE.

CBTREE source library $159
Object library only $49

This limited time offer is simply too good to refuse. Peacock's standard
ROYAL TY FREE , UNCONDITIONAL MONEY-BACK GUARANTEE,
AND FREE TECHNICAL SUPPORT applies to this offer.

To order or for additional information

~~~:~iF~i~~;~;;~.,,~c. 
DEACOCH SYSTEms. nc 

Trademil1ks: TurboC (Borland); Quick C (M1crosoh); Let's C (MQ/k Williams), OttSmet C (OttSmet 

Solt-Hare); Datahght (Datal:ght), LatDce C (lart1c~). M1aosott C (MICl'osohL Aztec C (Manx Soit>Nare); 

Compu ler Innovations C (Comput1:1r Innovations). Eco-C (Ecosott, Inc). 

May/June 1988 TURBO TECHNIX 147 



asm LES_ 

ex, precision asm 
ism 
asrn 
asm 

lllOV 

or 
jnl 
lllOV 

ex, ex /* is precision defaulted ? *I 

vpr _cvtReal: 
#if LDATA 
asm push 
#e-.di f 
asm push 
asm push 
#if LDATA 
asm push 
#endi f 
a~ lea 
asm push 
asm push 

vpr _cvtReal 
ex, 6 

ES 

di 
ex 

- SS 

bx, tenipStr !1J 
bx 
dx 

/* (valueP */ 
/* I ndec */ 

/* cP */ 
/* formCh */ 

asn1 rov 
asm and 
asm push 

ax, altformatBit 
el, BYO (flagSet) 
ex /* al tformat) *I 

asm call EXTPROC (_realcvt) 

asm add 

asm 
asm 
asm 

push 
pop 
lea 

llO (argP), 8 

SS 
ES 
di, teq>Str !1J 

vpr _testfi l lZeros: 
asm test BYO (flagSet), 
asm jz vpr_NUllERIC 
asm mov dx, width 
asm or dx, dx 
asm jng vpr _NUMERIC 

vpr _countActual: 
SimLocalCal l 

asm 1"l' vpr _s"trlen 

asm 
asm 
asm 

sub 
jng 
mov 

dx, ex 
vpr _ NUll~R I c 
leadZ, dx 

/* ((do<ble *) argP) ++ */ 

/* ES_ [di] cP 1+teq>Str */ 

f i l lZerosB it 

/* ES rust be well defined! */ 

/* CX strlen (ES: [di]) */ 

I* DX leadZ */ 

/* If arrived here, then ten-pStr contains the result of a ni..meric 
conversion. It may be necessary to prefix the nurber with a 
mandatory sign or space. */ 

vpr_NUMERIC: 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 

mov 
or 
jz 
cmp 
je 
dee 
sub 
8dc 
lllOV 

al, plusSign 
al, al 
vpr_COPY 
BYO (ES: (dill, 
vpr_COPY 
di 
llO (leadZ), 
WO < leadZ), 0 
ES: [dil, el 

/* ES rrust be we ll defined ! */ 

/* don't al low negative leadZ */ 
/* *(··cP) = plusSign */ 

/* If arrived here then ES: CdiJ = cP points to the converted string, 
which oust now be padded, aligned, and copied to the output. */ 

vpr_COPY: 
Sini..ocalCal l 

ism T~ vpr _strlen /* CX = strlen (ES: [di]) */ 

vpr _Copylen: 
asm MOV 

asm RK>V 

asm 

asm 
asm 
asm 
asm 
asm 

asm 
asm 
asm 
asm 
esm 
asm 

moY 

and 
cmp 
jne 
MOY 

cmp 
jne 
cmp 
jg 
moY 
jmp 

vpr _maybeA l t Hex: 

si, di 
di, aP 

bx, width 

/* COlfteS from Xe or Is section */ 
/* cP == ES: Csi) */ 

!* BX = width */ 

al, notZero8it + altformatBit 
al, BYO (flagSet) 
al, notZeroBit + 1ltFormatBit 
vpr doLead 
ah, -fe 

ah 1 0 1 

vp~ _maybeAl tHex 
llO (leadZJ, 0 /*alternate lllOde with octal fonaat*/ 
vpr dolead /* requires there to be at least */ 
WO (leadZ), 1 /* one leading zero. */ 
short vpr _doLead 

asm C"ll ah, 1x 1 /* alternate inode with •x• or 1 >C 1 */ 
asm je vpr_isAltHex 
asm c~ ah •x• 
asm jne vp; _dole&d 
vpr _isAl tHex: 
asm or 
asm sub 
asm sub 
asm jnl 
asm moy 

BYO (flagSet), 
bx, 2 
llO ( leadZ), 
vpr doLead 
llO CleadZ), 0 

J* format requires sending a */ 
/* 11Qx 11 or 11 ox 11 prefix. */ 

altOxBit 
!* width -= 2; */ 
/* leadZ -= 2; */ 
/* DH 05/11/87 */ 
/* DH : 05/11/87 */ 

148 TURBO TECHNIX May/June 1988 

mr dolead: 
a~m- add ex, leadZ 1• ex = len + leadZ •; 

asm test BYO (flagSet), leftJustBit /* is result to be left 
justified? */ 

vpr _checkOx asm 
asm 

jnz 
j~ short vpr_nextJust /* (! leftJust) == leftFill */ 

Ypr _justloop: 
asm mov al, 1 1 

SimLocalCal l 
asm T~ vpr _PutTos 
asm dee bx 

vpr _nextJust: 
asm e"°" bx, ex 
asm jg vpr _justloop 

vpr _checkOx: 
asm test 
asm jz 

BYO (flagSet), altOxBit 
vpr _checkleadZ 

asm mov al, 1 0 1 

SimlocalCal l 
~sri Tllll vpr _PlitToS 
asm 111av al, fc 

SimLocalCal l 
asm ).., vpr_Putros 

vpr _checkLeadZ: 
asm mv 
asm or 
asm jng 

asm sti> 
asm sub 

asm 
asm 
asm 

MOY 

c~ 
je 

asm e~ 

•sm je 
asm ~ 

asm jne 
vpr _leadSign: 

dx, leadZ 
dx, dx 
vpr_actualCopy 

ex, dx 
bx, dx 

1l, ES : Csil 
al, 1

·• 

vpr _leadSign 
8l I I 

vp~ leadSign 
al - •• , 
~ _signedlead 

asm lods BYO (ES: Cs i J l 
SimLocalCal l 

asm T~ vpr _PutTos 
asm dee ex 
asm dee bx 

vpr _signedlead: 
asm xehg ex, dx 
asm jcxz vpr _ l eacllone 

vpr leadZero: 
asm- mov al, •0 1 

Sini..ocalCal l 
asm T~ vpr _PutToS 
asrri loop vpr _leadZero 

vpr_ l ead>one: 
asm xchg ex, dx 

/* is leading zero fill required? */ 

t• len -= leadZ •; 
/* width -• leadZ */ 

1• any leading sign R.Jst be */ 
/* copied before the •I 
/* leading zeroes. •; 

1• anticipates aetualCopy '*/ 

/* leading zeroes fol low sign */ 

/'* Now we copy the actual converted string from terf1)Str to output. */ 

Ypr _actualCopy: 
asm sub 
asm jcxz 

bx, ex 
vpr_copied 

/* width -= len; */ 

Ypr _copyloop: 
a s1.r'I lods BYO 

/*this is the high-point of _vprinter!*/ 
(ES: Csil J 

as.m mov BYO (SS_ (di]), al 
a<:>m inc di 
asm dee BYO (Scount) 
asm jg vpr_loopTest 

SimLocalCal l 
asm T~ vpr Cal lPutter 
Ypr loopTest: -
asm- loop vpr _ copyloop 

vpr _copied: 

/*Is the field to be right·filled? *I 

asm or 
asm jng 
asm mov 
vpr _ri ghtloop: 

bx, bx 
vpr done 
ex, -bx 

asm mov al, • 1 

SimLocalCal l 
asm T~ vpr _PutToS 
asm loop vpr _rightloop 

/* any remaining width 7 */ 



/*lf arrive here, the conversion has been done and copied to output*/ 

vpr_done: 
asm il!f> vpr _NEXT 

case (_ns) : 
asm MOY 

/* lll.ITber sent *I 
forrrP, si I* remeri>er progress through format */ 

asm LES_ 
asm test 
asm jnz 
#if _HUGE_ 

di, argP 
BYO (flagSet), farPtrBit 
vpr _ farCount 

asm il!f> vpr _abandonJl!f> /*OS can't be assuined in HUGE model*/ 
#else 
asm mov di, ES [diJ 

WO (argP), 2 
OS 

I* CdiJ = (DS:char *) *(argP++) */ 
asm add 
asm 
asm ES 
asm 
#endif 

push 
pop 
il!f> short vpr _makeCount 

vpr _ farCount: 
asm Les 
asm add 

vpr makeCount: 

asm 
asm 
asm 
asm 
asm 

lllOV 

sub 
add ,.,,. 
il!f> 

di, ES Cdil 
WO (argP), 4 

ax, Ssize 
al, Scount 
ax, totalSent 
ES: CdiJ, ax 
vpr _NEXTap 

/**** Begin addition ****/ 

/* Code for date processing */ 

case (_dt) : 
asm 
asm 

mov 
mov 

fornf>, s i 
fc, dl 

I* ES: [di] (char *) *(argP++) */ 

/* Save progress through format * / 
/* Save the type character *I 

/* Unpack the COOl>Onents of the date. Year - int, day - char, 
and month - char . Casting is the key here . *I 

year =*(((int *) argP)++); 
day = (int) *(((char *) argP)++); 
month= (int) *(((char*) argP)++l; 

cP = tefl1=>Str; /* Get a pointer to the destination*/ 

J* Move the appropriate month name into the des t ination string. 
Fol low it by a space. */ 

monthptr = months Cmonth· 1J; 
while ((*cP = *monthptr++) != 1 \0 1 ) cP++; 
*cP++ : I I• 

J* longtoa converts a long into an ASC J t string . The f i rst 
8rgt.1T1ent is the long, the second the destinat i on, the third 
the radix. The remaining two are not used here. Convert 
the day into ASCII. */ 

_longtoa ((long) day, cP, 10, 0, Ol; 

/* longtoa does not update the string pointer, so we do that by 
hand . Add a conma and a space for the sake of neatness . * J 

cP = tellf>Str + strlen (tellf>Str); 
*cP++ I I• 

*cP++ s I Ii 

/* Convert the year to A.SC! I. */ 

_longtoa ((long) year, cP, 10, 0, 0); 

/* vpr _COPY takes care of all the applying of arguments to 
the string we created (such as 11axinun length, right 
justification, etc.) and then calls the f~tion to output 
the resulting string. vpr_COPY requires that ES:DI point 
to the string to process, so we set H up before calling.*/ 

asm push SS 
asm pop ES 
asm lea di, teq:>Str 
asm j"" vpr _COPY 

/**** End addition **** J 

case C zz): 
case (-de): 

case (pc>: 

/* \0 characters, unexpected end of format string */ 
/* ordinary "don't care" chars in the wrong position */ 
I* 1 X1 percent characters in the wrong position */ 
/* goto vpr _abandon */ 
I* end switch */ 

/* !f the format goes badly wrong, then copy it literally to the 
output and abandon the conversion. */ 

vpr _abandon: 
asm 1nev 
#if LDATA 
asm inov 
#endif 
asm 
asm 

AIOV 

mov 

$ i I abandonP 

ES, W1 (forri>) 

di, aP 
al, 1X1 

vpr abandLoop: 
- SimlocalCal l 

asm Jllf' vpr _PutToS 
asm lods BYO (ES CsiJ) 
asm or al, al -
asm j nz vpr _ abandloop 

/* If arrived here then the f~tion has finished (either correctly 
or not). */ 

vpr _respond: 
asm Cflll BYO (Scount), Ssize /* anything waiting to be 

asm jnl vpr _end 
SimlocalCal l 

asm Jllf> vpr _Cal I Putter 

vpr _end: 
asm pop ES 

return totelSent; 

written? */ 

/** 
/* 

local, nested functions are placed here **/ 

clobbers AX. ES *rrust* be defined in all models. ., 
vpr _strlen: /* scan string ES: CDIJ up to \0 *I 
asm pus h 
asm mov 
asm mov 
asm repne 
asm not 
asm dee 
asm p:>p 
asm pop 

di 
ex, - 1 
al, o 
scasb 
ex 
ex 
di 
ax 

/* count the string length. */ 

/* (not CX) == (-1 ·CX) */ 
/* scasb overshoots * / 

asm add 
Hm j"" 

ax, 3 
ax 

/* skip the il!f> after _SimlocalCal l_ */ 
t• ex = string length */ 

I* RETNEAR *I 

/*** 
I* 

Put character to next post ion in S, check for S full 

clobbers AX. 
*/ 
vpr _PutToS: 
asm llOV 

asm inc 
asm dee 
asm jng 
asm pop 

BYO (SS_ CdiJ ), al 
di 
BYO (Sc<Ult) 
vpr _Cal lPutter 
ax 

***/ 

asm add 
asm j"" 

ax, 3 
ax 

/* skip the j"" after _SimlocalCal l_ */ 
t* ex = string length */ 

/* RETNEAR *I 

/** 
I* 

call *putter to flush S **I 

clobbers AX. 
*I 
vpr _Cal !Putter: 
asm push bx 
asm push ex 
asm push dx 
asm push ES 
asm lea ax, 
asm sl.b di, ax 

asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
I* 

putter CS, _DI, outP); 

Scount = Ssize; 
totalSent += _DI; 

lea di, 
pop ES 
pop dx 
pop ex 
pop bx 
pop ax 
add ax, 3 
il!f> ax 
RETNEAR */ 

/* couit chars in S *I 

I* skip the il!f> after _SimlocalCal l_ */ 
/* ex = string length */ 

/*** end of eot>edded functions ***I 
) 

May/June 1988 TURBO TECHNIX 149 



ARCHIMEDES' 
NOTEBOOK 
Choosing the most cost-effective lens 
design is easy with Eureka! 

Milton C. Kurtz 

N 
ewton postulated that 
light, as a stream of par
ticles, travels in straight 
lines. This theory 

makes optical problems solvable 
using simple geometry, or more 
specifically, by applying geometrical 
optics (see accompanying sidebar). 
One application particularly well
suited to geometrical optics is the 
lens problem. We will examine the 
behavior of a thin lens, and use 
Eureka to determine the most 
cost-effective way to design a thin 
lens for a given application. 

DESCRIBING A THIN LENS 
First, we will present some defini
tions to describe our lens. 

Index of Refraction. A light ray is 
bent, or refracted, when it passes 
from one medium, such as air, 
into another medium of different 
density, such as glass. The ability 
of a medium to bend light rays is 
its index of refraction, which is a 
ratio of the velocity of light in a 
medium compared to the velocity 
of light in a vacuum. (This subject 
has been investigated thoroughly 
by Snell, and the refraction of 
light follows Snell's Law.) 

Thin Lens. A thin lens is a lens 
whose thickness is small com
pared with its other features (e.g., 
focal length). 

Focal Point. The focal point of a 
lens is a point on the axis having 
the property such that any ray 

150 TURBO TECHNIX May/June 1988 

coming from it, or proceeding to 
it, travels parallel to the axis after 
refraction. 

Focal Length. The focal length of a 
lens is the distance between the 
focal point on the axis of the lens 
and the center of the lens. 

Axis. The axis of the lens is a 
straight line passing through the 
geometrical center of the lens, 
perpendicular to the radii of 
curvature. 

A lens has two focal points; 
each focal point is equidistant 
from the center of a symmetrical 
lens. The focal point defined 
above is the primary focal point; the 
other focal point is the secondary 
focal point. Light traveling parallel 
to the axis will , after refraction, 
proceed toward-or appear to 

F 

1' 
Primary 
focal 
point. 

:----1-: 

Axis 

emanate from-the secondary 
focal point. 

If we designate fas the primary 
focal length in a symmetrical lens, 
and f' as the secondary focal 
length, thenf= f'. These condi
tions are shown in Figure 1. 

If we know the focal length of 
a thin lens and the position of the 
object being viewed through the 
lens, we can find the position of 
the object's image by one of three 
methods: graphical construction, 
experimentation, or use of the 
lens formula. 

THE LENS FORMULA 
The lens formula is readily de
rived from the geometry of Figure 
2. The diagram shows two rays 
leading from the object of height y 

Axis F' 

~ 
Secondary 
focal point 

Figure 1. Two views of a thin lens with rays from and to F and F', 
respectively. 

D 

y' 

C' . ..-x .... 



to the image of height y'. Lets 
represent the object distance from 
the center of the lens and lets' 
represent the image distance from 
the center of the lens. x represents 
the object distance from the 
focal point F, and x' represents 
the image distance from focal 
point F'. 

From similar triangles C'DE and 
F'DA, the proportionality between 
corresponding sides gives: 

(1) 

y - y' is used instead of y + y' 
because y', by the convention of 
signs, is a negative quantity. Also, 
from the similar triangles CDE 
and FAE, we can derive the 
relationship: 

The sum of these two equations 
yields: 

(2) 

Since f = f', the two terms on the 
right may be combined and y - y' 
canceled out, resulting in the 
equation: 

1 1 1 -+--s s' - f (4) 

This equation is the lens formula, 
where s is the object distance, s' is 
the image distance, andf is the 
focal length of the lens. Object 
distances are positive if the object 
lies to the left of its reference 
point A, and image distances are 
positive if the image lies to the 
right of reference point A. 

Now that we know the relative 
positions of the object and image, 
it's easy to determine their sizes. 
The lateral magnification is: 

y' s' 
m=-=--y s 

(5) 

When s and s' are both positive, 
the negative sign of the magnifica
tion denotes an inverted image. 

The images formed by the lens 
in this exercise are real in that 
they form a visible image on a 
screen. Real images are formed 
when the rays of light are actually 
brought to focus in the plane of 
the image. Other conditions will 
form a virtual image, or one that 
cannot be formed on a screen. In 
a virtual image, the rays from a 
given point on the object do not 
come together at the correspond
ing point in the image. They must 
be projected backward to find the 
image plane. Virtual images are 
produced by converging lenses 
when the object is placed between 
the focal point and the lens. This 
condition is shown in Figure 3. 

The power of a 

thin lens (in units 

known as diopters) 

is given as the 

reciprocal of the 

focal length 

expressed in meters. 

C' E r::·:·: ·:._ ._._ ......... .. .. ... .. . . 
. . . g: . . 
B' 

3 

F B 

One other point of interest is 
the determination of the power of 
a lens. The power of a thin lens 
(measured in units known as diop
ters [D]) is given as the reciprocal 
of its focal length (expressed in 
meters). 

P=l_ 
f 

(6) 

For example, a lens with a focal 
length of +25 centimeters has a 
power of 1/ 0.25 meters or +4.0 D. 
These units are used in optome
try, and can be found on your eye
glass prescription or stamped on 
the inside of the temple bow on 
reading glasses. 

CHOOSING A LENS 
We now have the formulas and 
background information that we 
need in order to choose a lens for 
use in applications such as those 
involving the observation of an 
object located at a fixed distance 
from the lens. A number of differ
ent focal lengths are possible and 
the image distance varies, so we'll 
set up the lens formula in Eureka 
to determine the image distances 
that pertain to a range of focal 
lengths. Of course, we could set 
up this problem in a language 
such as Turbo Basic, where all sys
tem constraints, as well as the vari
ables to be considered, are called 
out. However, Eureka allows us to 
quickly model the lens problem 

continued on page 152 

8 

Figure 3. Placement of an object between the focal point and the l,ens, creating a 
virtual image. 

May/June 1988 TURBO TECHNIX 151 



NOTEBOOK 
continued from page 151 

without worrying about program
ming details. 

As a more concrete example, 
let's use an optical inspection 
instrument to observe a row of 
slots that are machined into a rod. 
We want to determine the width of 
the slots, along with the distance 
between them. (For simplicity's 
sake, we'll look only at the optics 
here, disregarding the usual 
mechanisms that are involved in 
holding and supporting an 
object.) The only constraint we'll 
put on the system is that we can
not get closer than six inches 
from the slots because of interfer
ing mechanisms. We now have a 
two-part problem to solve-we 
need to select the best focal 
length in order to project an 
image of the slots onto an appro
priate sensor, and we need to 

determine the location of the 
sensor. 

This is a simple statement of 
the problem, but additional infor
mation must be considered (such 
as the resolution that we want in 
the measurement). In addition, 
only a finite number of focal 
length lenses is available from 
suppliers; others must be specially 
ordered (a very expensive consid
eration). Thus, we want to choose 
our lens from a standard catalog. 

SOLVING IT WITH EUREKA 
To set up the problem in Eureka, 
we'll slightly rewrite Equation 4. 
Let p represent the object dis
tance, q represent the image dis
tance, and f represent the focal 
length. The new lens equation is: 

1 1 1 
- +-=-p q f 

This is the standard form of the 
lens equation. 

(7) 

After loading Eureka, choose 
Edit and enter the lens formula. 
Add the constraint p = 25. Next, 
select a series of standard focal 
lengths from a supplier's catalog 
and setfto those values. Table 1 
shows a list of image distances for 

152 TURBO TECHNIX May/June 1988 

Focal Length f Image Distance q 

7.0 ITl1l 

8.0 ITl1l 

10.0 ITl1l 

12.7 ITl1l 

14.2 ITl1l 

15.0 ITl1l 

18.0 ITl1l 

9.72 ITl1l 

11. 75 ITl1l 

16.67 ITl1l 

25.81 ITl1l 

32.87 ITl1l 

37.25 ITl1l 

64.29 ITl1l 

Table 1. List of image distances for given values of the focal length. 

1/p + 1/q = 1/f 

p = 25 

f = 7 

Solution: 

Variables Values 

f = 7.0000000 

p 25.000000 

q 9.7222222 

Figure 4. Solution generated by Eureka to find the image distance for a given 
focal length. 

Only a finite 

number of focal 

length lenses is 

available from 

suppliers; others 

must be specially 

ordered, which is a 

very expensive 

proposition. 

given values of the focal length. 
Choose the first focal length 

listed in Table 1, and set f = 7. 
Now, escape from the Edit 

mode and choose Solve. As 
Eureka solves the lens equation, 
we find that q is easily obtained 
for each value off. When f = 7 
the image distance q is approxi~ 
mately 9.72 millimeters. Figure 4 
shows a solution generated from 
this run. 

We can easily choose an image 
distance for a given focal length, 
but how do we choose the right 
image distance? Equation 5 shows 
that the ratio of the image dis
tance to the object distance pro
vides a measure of the magnifica
tion of the system. Let's assume 
that it would be desirable to have 
the image be approximately two 
times the size of the object. Set up 
that ratio in Eureka, without speci
fying a focal length f: 

q/p = 2 

Given an object distance of 25 mil
limeters, we see that the ideal 
focal length is 16.67 millimeters, 
and the image distance is 50 mil
limeters. However, because this is 
a nonstandard focal length, it's 
not desirable. The two standard 



focal lengths of 15 and 18 millime
ters are close, so let's examine 
them more carefully. 

We specified earlier that we 
could get no closer than 25 mil
limeters from the object. When we 
set the focal length to 15 at a mag
nification of 2, the object distance 
is 22.5 millimeters and the image 
distance is 45 millimeters. 

Equation 5 

shows that the ratio 

of the image dis

tance to the object 

distance provides a 

measure of the 

magnification of 

the system. 

Again, this does not meet our 
requirement that the object dis
tance be at least 25 millimeters. 
When we change the focal length 
to 18 millimeters, the object dis
tance becomes 27 millimeters, and 
the image distance becomes 54 
millimeters. Clearly, the 18 mil
limeter lens meets all the require
ments of the system. 

The short history of optics 
included in the accompanying 
sidebar, along with this simple 
geometrical optics application, 
should help make optics a less for
midable area. We did not touch 
on physical optics, where Eureka 
can play a much greater role in 
easing the workload of the system 
designer who deals with the com
plex equations of that field. • 

Milton C. Kurtz is a 1946 graduate 
of the University of Maryland. He has 
spent most of his career in applied 
science and instrumentation develop
ment. Now retired, he is a director of 
Emkay Engineering, Inc., of Sara
toga, California. 

THE DUALITY OF LIGHT 
The fundamental picture of the 
way we view light has changed 
significantly during the last 300 
years. Isaac Newton defined light 
as a stream of particles in his 
basic treatise OPTICKS, printed 
in 1704. Because of his stature as 
a scientist, his hypotheses were 
supported by his contemporaries 
and successors. This corpuscular 
theory of light was generally ac
cepted for almost a century. 
However, Newton also noticed 
that light exhibits some "wave
like characteristics" -called 
"Newton's Rings"-during his 
experiments with glass plates 
and thin films. These "Rings" 
cast considerable doubt upon 
the corpuscular theory as the 
sole answer for the understand
ing of light. 

In 1803, Thomas Young 
observed that a monochromatic 
light beam passing through two 
pinholes produces an interfer
ence pattern much like the pat
tern of waves in water. His ob
servation lent support to the 
wave theory of light, which was 
expressed earlier by Christian 
Huygens. Another fact already 
known about the behavior of 
light was that two kinds of wave 
propagation exist in a medium
longitudinal waves, which consist 
of compressions and rarefac
tions in that medium as exhib
ited by sound waves; and trans
verse waves, as demonstrated by 
wave propagation in water and 
electromagnetic waves. Augustin 
Jean Fresnel and Dominique 
Francois Arago reviewed this 
information and other work to 
date and clearly demonstrated 

that light must consist of trans
verse waves oscillating at right 
angles to their direction of 
propagation. 

This important development 
fit James Clerk Maxwell's e/,ectro
magnetic theory of light, which was 
postulated later in the 1800s. 
Maxwell described light as a 
"rapid variation in the electro
magnetic field surrounding a 
charged particle, the variations 
in the field being generated by 
the oscillation of the particle." 

In Maxwell's theory, light 
takes its place along with other 
forms of radiant energy as an 
aspect of the fundamental phe
nomenon of electromagnetism. 
The study of physics over the last 
100 years has indicated that 
while the fundamental associa
tion of light with electromagne
tism has held firm, the nature of 
the understanding of that associ
ation has undergone some 
changes. Light, even though it 
demonstrates such wave-like 
phenomena as interference and 
polarization, also interacts with 
matter as if the light itself con
sists of a stream of individual 
bundles-called photons-with 
their own energy and momen
tum. So, what is light? Except for 
minor differences, light and mat
ter are essentially the same
both are made up of particles 
that exhibit wave-like character
istics. We must keep this duality 
in mind when considering the 
applications of optics. • 

-Milton C. Kurtz 

May/June 1988 TURBO TECHNIX 153 



CRITIQUE 

MACH 2 FOR 
TURBO BASIC 

MicroHelp, Inc. 
2220 Carly/,e Drive 
Marietta, Georgi,a 30062 
(404) 973-9272 
$69.95 

S
peed is of the essence in 
commercial programming. 
And speed is something 
that BASIC programmers 

have traditionally forsaken in 
exchange for BASIC's easy coding 
and testing. To boost the notori
ously slow speed of IBM PC BASIC, 
MicroHelp, Inc., developed Mach 2, 
a set of assembly language subrou
tines; Mach 2 is now available for 
Turbo Basic. Even though Turbo 
Basic is much faster than the 
BASICA interpreter, it still benefits 
greatly from Mach 2's speed 
injection. 

Mach 2's two diskeues contain 
.INC files for the subroutines and a 
copious set of example programs, 
plus a master demo program. The 
manual is organized functionally, 
with a separate chapter for each 
type of Mach 2's subroutine (screen 
handling, window management, etc.). 

To use Mach 2, you copy the 
.INC files to a working directory 
and use the $INCLUDE compiler 
directive to incorporate them into 
your Turbo Basic program. Most 
of the .INC files are inline subrou
tines, consisting of unadorned lines 
of hexadecimal constants, and can
not be readily modified by the user. 
Assembler source code for the rou
tines is available separately, but 
since the routines work as docu
mented in the manual, the source 
code is unnecessary for most users. 

Mach 2 provides more than 34 

154 TURBO TECHNIX May/June 1988 

routines that handle a variety of 
functions, including screen man
agement (reading and writing char
acters directly to screen memory), 
window management, file and 
device management, user input, 
sorting, and menus. In particular, 
the string input routine is unusually 
fast and flexible, with 16 calling 
options. Using this single input rou
tine, the programmer can control 
the cursor's shape (with different 
shapes for insert and typeover 
modes), text colors, fill characters, 
field length, and field exit criteria. 

Some of Mach 2's more unusual 
(and useful) functions include large 
character displays (multiline charac
ters made out of the PC's line-draw 
characters, useful for titles and 
warnings); Soundex codes (hashing 
a string into its phonetic equivalent, 
useful for searching for names that 
sound alike but are spelled differ
ently); and Lotus-Intel-Microsoft 
(LIM) Expanded Memory handling. 
Mach 2 also provides routines for 
storing strings in reserved memory, 
which consists of dynamic arrays 
that are allocated from within a 
Turbo Basic program and used to 
hold strings. This use of reserved 
memory for strings works around 
Turbo Basie's 64K string space lim
itation, and could prove a godsend 
to programmers writing large appli
cations. The master demo program 
demonstrates each subroutine's 
capabilities to good effect 

Even when using all the subrou
tines provided, programmers who 
write business applications will still 
need a file access manager (such as 
the Turbo Basic Database Toolbox) 
in order to develop complete busi
ness applications. 

Mach 2's documentation is good, 
and offers many hints on improv
ing the performance of Turbo Basic 

code and using the Mach 2 subrou
tines. Handy reference sections list 
the subroutine calls, and the sam
ple programs are well documented. 

While the performance of Mach 
2's assembly language subroutines 
is striking, there is a price to be 
paid-the interface to them is more 
fragile than that of subroutines writ
ten in Turbo Basic alone. For 
example, single- and double
precision floating point numbers 
cannot both be passed interchange
ably to Mach 2's routines, so careful 
declaration of a variable's type is 
necessary. Nor can constants or 
dynamic arrays be passed. The type 
and number of par.uneters to each 
CAIL statement must exactly match 
the documented parameters for 
that statement, otherwise what the 
Mach 2 manual euphemistically 
calls "unpredictable results" will 
occur. Finally, careful initialization 
and termination of the routines is 
required. The manual clearly spells 
out these limitations, but novice 
programmers might have trouble at 
first, since Mach 2 requires more 
discipline than is needed for nor
mal Turbo Basic programming. 

There is one niggling flaw in 
Mach 2-it requires interrupt 66H 
for passing information between 
the Turbo Basic program and the 
assembly language routines. Some 
way to alter Mach 2's interrupt 
number should be provided. 

But when Mach 2 is set up cor
rectly, the results can be dramatic. 
If you need the functions it pro
vides, and you don't mind writing 
your Turbo Basic code with a bit 
more discipline than usual, this 
assembly language subroutine 
package comes highly rec
ommended. • 

-Marty Franz 



C-SCAPE WITH 
LOOK AND FEEL 

The Oakland Group, Inc. 
675 Massachusetts Avenue 
Camlffidge, MA 02139 
(800) 233-3733 or (617) 491-7311 
$99.00 

0 ne of the major differ
ences between desktop 
computers and their 
mainframe brethren is 

that the small machines must cater 
to naive users. This creates a pro
gramming challenge-many desk
top computer users who have 
grown up with applications such as 
Paradox and WordStar also expect 
easy-to-use, friendly interfaces for 
custom or inhouse software. 

In C, this user interface chal
lenge poses a problem, because the 
C language supports no standard 
user interface other than the oper
ating system's command line. 
Sooner or later, most serious C soft
ware developers must face the task 
of writing a library of C functions to 
get input from, and to present out
put to, the user. When that time 
arrives, "canned" libraries of com
plete and tested user interface func
tions can prove useful-C-scape 
from The Oakland Group is such 
a product 

C-scape contains a library of 
functions that implement a user 
interface, and a screen designer 
program, called Look and Feel, that 
automates the coding of screens, 
borders, and input fields. The 
Turbo C programmer can use 
C-scape to incorporate menus, win
dows, and input fields into a pro
gram with a minimum of fuss. 
C-scape is available for most popu
lar PC-based C compilers; the 
Turbo C version, "turbo priced" at 
$99, includes the function library 
object modules, the Look and Feel 
utility, and bulletin board support 
It is shipped as a 500-page perfect 
bound manual and five diskettes. A 
$180 upgrade to source code and 
full telephone support is also 
available. 

To use C-scape, you place the 
appropriate #include statements 
and function calls into your Turbo 
C program, and then compile and 
link with the C-scape header files 
and libraries. As an alternative to 
coding these statements manually, 
the Look and Feel screen designer 

can be used to design the screens 
interactively, and then to automatic
ally generate the calls to the appro
priate C-scape library routines. As a 
third option, C-scape can import 
screens created with Dan Bricklin's 
Demo Program. 

The Look and Feel screen 
designer uses the C-scape user 
interface, and provides a good 
example of what can be done with 
C-scape in a production program. 
The screen designer allows you to 
type characters and lines in ttue 
WYSIWYG (What-You-See-Is-What
You-Get) fashion, to draw borders 
and backgrounds, and to create 
menus. Once you're happy with 
what you see, you can generate 
source code from the completed 
screen. Commands are activated 
from a menu that pops up when 
FlO is pressed; or through hot keys 
(a necessary option, given the 
infrequent-then-intense use that 
this type of program receives). Look 
and Feel also contains a complete 
help facility. A nice feature of Look 
and Feel that is not found in many 
other screen designers is the ability 
to create screens larger than 80 X 
25 with support for horizontal and 
vertical scrolling. This feature 
allows developers to support screen 
formats such as the EGA 43-line 
and VGA 50-line formats; and to 
support large text screens like the 
Micro Display Systems Genius VHR 
66-line display. 

The C-scape library is built in 
two levels. The higher level of the 
library has functions for entering 
fields of text, phone numbers, cur
rency, dates, times, and so forth. An 
applications programmer will prob
ably use these functions most fre
quently. Several different types of 
menus are supported at this level, 
including the familiar Lotus-style 
"moving bar," pulldown menus, 
and pop-up menus. A help facility 
can be incorporated into programs 
to allow the creation of text files for 
display when the user presses the 
Fl key. C-scape's sophisticated help 
facility contains highlighted key
words with cross references to 
other screens. Miscellaneous utility 
functions handle such activities as 
word-wrapping text in a string. 

The lower level of the C-scape 
library controls the software objects 
that the higher level uses. These 

objects include menus, fields, and 
"seds," which are screen windows 
with customizable properties such 
as borders and titles. The lower
level functions are most useful for 
hardcore product developers who 
want a unique "look and feel" for 
their product The C-scape library 
makes heavy use of pointers to 
functions; the lower level of the 
library supports replacement of 
these functions to handle custom 
field validation and keystroke trans
lation. Another portion of C-scape's 
lower-level functions is a screen 
driver, which can be customized to 
handle nonstandard PC displays. 
(It's illuminating to run the RAM 
screen driver and the BIOS-only 
screen driver consecutively to com
pare their performance!) 

The C-scape library works well in 
actual use. The higher-level func
tions are rich; in fact, many Turbo 
C programmers will never need to 
use the lower-level functions. The 
menufunPrintf() function in partic
ular is nicely done-strings similar 
to those used by print£() handle 
cursor positioning, color changes, 
and printable and nonprintable 
characters with a powerful, if con
cise, syntax. Since the C-scape func
tions all religiously use the screen 
driver, they're portable among var
ious types of PC hardware. In addi
tion, when the RAM driver is used, 
C-scape's functions are fast The 
product's documentation is well
written and fully indexed, and de
scribes each call in some detail. 

C-scape suffers from a few draw
backs. Its construction, while flexi
ble, may be too complex for modifi
cation by beginning or casual C 
programmers. Also, C-scape's docu
mentation describes the lower-level 
functions before discussing the 
higher-level ones; this could prove 
initially overwhelming to less
advanced programmers. 

But building a good user inter
face is what C-scape is for, and 
that's what it accomplishes. Profes
sional C programmers and consul
tants would do well to evaluate 
C-scape before undertaking their 
next screen-intensive project • 

-Marty Franz 

May/June 1988 TURBO TECHNIX 155 



BOOKCASE 

TURBO C PROGRAMMING 
FOR THE IBM 

Rnbert Lafore, Howard W Sams & 
C.Ompany, Indianapolis, IN, ISBN 
0-672-22614-6, 585 pages, softcover, 
$22.95. 

T he first half of this un
usually comprehensive 
book offers an excellent 
introduction to the 

Turbo C environment and to C pro
gramming in general. The second 
half of the text covers a wealth of 
progressively more advanced Turbo 
C topics (such as memory models, 
pointers, and advanced variables), 
which provide interesting reading 
for both the novice and the more 
experienced Turbo C programmer. 

Chapter 1 presents a step-by-step 
guide to Turbo C's integrated devel
opment environment, and walks 
the reader through the process of 
creating a simple Turbo C program. 
The author then discusses the dif
ferent types of files (header, library, 
runtime, math, and programmer
generated) that are required to 
build a C program. In this chapter, 
Lafore provides easily understood 
explanations of basic concepts, and 
doesn't make the common mistake 
of assuming that the reader under
stands the linking process and the 
use of header files. 

The second chapter introduces 
the building blocks of Turbo C pro
grams: variables, 110 functions, 
and operators. In the following 
three chapters, Lafore uses these 
building blocks to explore the con
trol statements of Turbo C in an 
informative discussion of loops, 
decisions, and functions. 

156 TURBO TECHNIX May/June 1988 

The next two chapters focus on 
those areas where C differs most 
from other compiled languages. 
Array declaration, content, initial
ization, size, and sorting are pre
sented in Chapter 6, along with a 
discussion of string variables, ini
tialization, and 110 functions. The 
explanation on copying strings into 
an array of strings is particularly 
interesting. 

The discussion on pointers in 
Chapter 7 skillfully explains what is 
often regarded as one of the most 
difficult concepts to master in C. 
Lafore starts with a lucid introduc
tion to the need for pointers in 
Turbo C, and moves on to cover 
the mechanics of pointer usage. 
This chapter is required reading 
even for the very experienced 
Turbo Pascal programmer, because 
C handles pointers differently than 
does Turbo Pascal. 

The last seven chapters of the 
book address more advanced pro
gramming topics such as extended 
keyboard codes, cursor control, 
command-line arguments, struc-

tures, unions, ROM BIOS routines, 
memory and the character display, 
color graphics, and disk 110 opera
tions. Lafore devotes a chapter to 
the creation of larger programs in 
Turbo C, and covers separate com
pilation, conditional compilation, 
and memory models. The book's 
final chapter examines advanced 
variables (register variables, enu
merations, and storage classes). 

Throughout the text, Lafore 
emphasizes a practical, hands-on 
approach to programming con
cepts, and includes a wealth of 
clear and concise program exam
ples. Important facts are visually 
highlighted in gray boxes through
out each chapter. All chapters end 
with a summary, followed by a set 
of exercises that is designed to help 
the reader apply his/ her newfound 
knowledge (answers are included 
in the back of the text). Appendices 
include references, hexadecimal 
numbering, a bibliography, and an 
ASCII chart. 

As an added plus, Lafore often 
provides helpful solutions to prob
lems that a C programmer will typi
cally encounter. For example, the 
discussion of color graphics intro
duces direct memory access by 
presenting relevant examples such 
as the use of ROM routines to plot 
points in graphics modes. The 
"Files" chapter presents an impres
sive discussion of text mode versus 
binary mode. 

This book offers an excellent 
presentation of programming con
cepts and example programs for 
both beginning and more ad
vanced C programmers, and is a 
valuable addition to any Turbo C 
programmer's book she!£ • 

-&bert Alunso 



ARTIFICIAL INTELLIGENCE 
PROGRAMMING WITH 
TURBO PROLOG 

Kei,th Weiskamp and Terry Hengl, john 
Wiley & Sons, Inc., New York, NY: 
1988, ISBN 0-471-62752-6, 262 pages, 
so.ft wver, $22. 95, disk $24. 95. 

I 
f you are one of the many 
newcomers to the field of 
Artificial Intelligence pro
gramming, you may be dis

covering that learning Turbo Prolog 
and reading books about basic 
Prolog concepts are not enough to 
get you started on developing AI 
applications. Many programmers 
who have explored Turbo Prolog 
and even written a few short pro
grams may still feel handicapped 
when trying to apply that knowl
edge to the development of a 
serious AI application. 

Until now, this scenario could 
have been attributed, at least in 
part, to the absence of books on AI 
fundamentals as they relate to 
Turbo Prolog. Most books on the 
market today emphasize Prolog 
programming theories and tech
niques, rather than the world of 
Artificial Intelligence and related 
concepts. None of these books has 
attempted to illustrate the funda
mentals of AI using Turbo Prolog
that is, until Artificial Int.elligence Pro
gramming with Turbo Prowg, written 
by Keith Weiskamp and Terry 
Hengl. This book has a very spe
cific goal-to show you how to use 
Turbo Prolog to develop AI applica
tions. The authors seem to have 
spent a great deal of effort in stay
ing with this game plan. 

OPENING THE WINDOW 
The book has a pleasant, readable 
style. The authors begin by "Open
ing the AI Window" to let you peek 
into the world of AI applications. 
The first two chapters in the book 
also cover features of Turbo Prolog. 
However, instead of regurgitating 
the information in the Turbo Prowg 
Owner's Handbook, the authors focus 
on the way that Turbo Prolog works 
and cover such topics as the Reso
lution Principle, unification, back
tracking, and nondeterministic 
programming. 

Artificial 
Intelligence 
Programming 

with Turbo 
Pro log 

KEITll 'W E!SKMIP 

TERRY IIE:\IGL 

Chapter 3 provides an introduc
tion to software design using Turbo 
Prolog. Here, the authors illustrate 
techniques for developing an AI 
toolbox-a collection of subrou
tines (predicates) that are essential 
to developing AI applications. For 
example, if you have some expe
rience with a procedural language 
like Pascal or C, you know that you 
need to develop some routines for 
controlling program flow. One such 
control structure that is essential in 
large scale applications-the 
repeat/ fail loop-is covered in the 
book. Similarly, the authors provide 
predicates to process various Prolog 
data structures, such as characters, 
strings, and lists. A section is also 
devoted to the role of recursion in 
Turbo Prolog programming. 

LAYING THE GROUNDWORK 
The remaining four chapters in the 
book develop the groundwork for 
AI programming. In Chapter 4, the 
authors discuss the development of 
an inference engine, including the 
fundamentals of reasoning as a 
process of both categorizing infor
mation in the form of known facts 
and rules (knowledge), and creating 
new facts and rules. Perhaps the 
most important concept in this 
chapter is that of formal reasoning 
using propositional and predicate 
calculus. The authors follow the 
discussion on propositional calculus 
with an example (the Translate pro
gram) that illustrates how Turbo 
Prolog could be used with formal 
propositional logic. The chapter 
concludes by explaining forward 
and backward chaining, which are 
the control strategies used in build
ing an inference engine, along with 

the actual construction of the core 
of an inference engine (a sched
uler, a rule interpreter, and the 
knowledge interface.) 

Chapter 5 provides an in-depth 
look at natural language process
ing. The reader is presented with 
natural language processing tech
niques, including pattern matching. 
The discussion of transition net
works includes both augmented 
and recursive transition networks. 
Example programs illustrate each 
of these techniques. 

One of the most critical factors 
in the development of expert sys
tems is the representation of facts 
or knowledge, since knowledge 
comprises the actual data in a 
Prolog program. Chapter 6 explores 
various techniques used in AI pro
grams for representing knowledge, 
including specific knowledge 
representation features in Turbo 
Prolog. The chapter also includes a 
discussion of knowledge represen
tation with frames and provides an 
example of such a representation 
in Turbo Prolog. 

The book's final chapter takes 
you through the various develop
ment stages of an expert system. 
The authors explain various char
acteristics and types of expert sys
tems, and provide hints about tech
niques for improving the example 
expert system. 

Artificial Int.elligmce Programming 
with Turbo Prowg provides you with 
basic Turbo Prolog concepts, and 
helps you build AI tools, by primar
ily focusing on the groundwork 
needed for programming AI appli
cations. It is not (necessarily) a 
beginner's book about Turbo 
Prolog, and doesn't attempt to 
replace your Owner's Handbook or a 
tutorial/ reference guide. For users 
who are ready to make the jump 
into real-world AI applications, Arti
faial lnt.elligmce Programming with 
Turbo Prowg should prove quite 
valuable. • 

- Sanjiva Nath 

May/June 1988 TURBO TECHNIX 157 



TURBO RESOURCES 

COMPUSERVE member of a forum, you must join 

The best online information about 
by following the menus before you 

the Borland languages can be found 
can download the listing files. 

on CompuServe's three Borland 
How to download TURBO 

forums. Quite apart from providing 
TECHNIX code listings 

the listings appearing in TURBO from CompuServe: 

TECHNIX, the Borland forums con- At the Functions prompt, type: DL 1. 
tain megabytes of utilities and This will take you to the TURBO 
source code in all Borland Ian- TECHNIX data library, where all list-
guages. ing files are stored. Listing files are 

Subscribing to CompuServe can archived using the ARC52 archiv-
be done through the coupon en- ing scheme. You will need the 
closed with every Borland product ARC-E.COM program (available in 
(which also includes $15 worth of DL 0 of BPROGA, BPROGB and 
free online time for your first BORAPP) or one compatible with it 
month) or by calling CompuServe at to extract listing files from down-
(800) 848-8199. You'll need a modem loaded archives. 
and communications software that Archive files are organized two 
supports XMODEM file transfers. ways: by article and by issue. In 

Leaming your way around other words, there will be one .ARC 
CompuServe takes some time and file for every article that includes 
practice, but good books have been listings; and a single, larger .ARC 
written about it, including Charles file for each issue containing all the 
Bowen's and David Peyton's How To individual .ARC files for that issue. 
Get The Most Out Of OJmpuServe and You can therefore download listings 
Advanced O:Jmfru&rue for IBM Power for individual articles, or download 
Users (New York: Bantam Computer the entire issue's listings at once. 
Books, 1986.) Howard Benner's The all-issue files follow a naming 
TAPCIS shareware utility can help convention, such as NVDC87.ARC 
you automate sessions and minimize (which contains all listing archives 
connect time. It's available for down- from the November/December, 1987 
loading on CompuServe from DL 12 issue}, andJAFB88.ARC (for the Jan-
of the WordPerfect Support Group uary/February, 1988 issue), and so 
Forum (GO WPSG). The TAPCIS on. The name of an article's individ-
file is 239,297 bytes long-plan to ual listings archive file is given at the 
spend some hours downloading it. end of the article. 

How to acceu the Borland To download an archive file, bring 

Forums on CompuServe: up the DL 1 prompt and type: 

TURBO TECHNIX listings for Turbo 
DOW <filename>IPROTO: XMO 

Pascal and Turbo Basic are available After pressing Enter, start your 
in DL l (Data Library 1) of the own communications program's 
BPROGA Borland Programming XMODEM receive function. After 
Forum (GO BPROGA). Turbo C and you have completely received the 
Turbo Prolog listings are stored in file, you must press Enter once to 
DL 1 of the BPROGB Forum (GO inform CompuServe that the down-
BPROGB). Listings for Business load has been completed. Once you 
Language articles are also available have downloaded an archive file, 
in DL 1 of the Borland Applications you can "extract" its component files 
Forum (GO BORAPP). From the by invoking ARC-E.COM at the DOS 
initial CompuServe prompt, type prompt with: 
GO <forum name> or follow the C>ARC-E <filename> • menus. If you are not already a 

158 TURBO TECHNIX May/June 1988 

YOUR SUBSCRIPTION 

A free 12-month subscription to 
TURBO TECHNIX is yours for the 
asking when you register any of th e 
Borland languages (including 
Quattro, Paradox, Eureka, and Spri 
or language toolboxes. A subscripti 
request card is packaged with each 

nt) 
on 
of 

those products-do fill it out and 
return it to be sure you get every iss ue. 
If your copy of a Borland language 
product was shipped without the su b-
scription request card, you can also 
use the subscription services card 
bound into this issue. Don't forget 
your signature and the serial numb er 

e of a qualifying Borland product-w 
need them to grant your free 
subscription. 

If you have moved or changed yo ur 
e name, please use the card to provid 

updated information. If possible, at-
tach the old mailing label to the car d. 

NATIONAL USER GROUPS 

TUG 

The national user group for Turbo 
languages is TUG, the Turbo User 
~roup. TUG publishes a bimonthly 
journal called Tug Lines that contain s 
bug reports, programming how-tos, 
and product reviews. Extensive pub!" 
domain utility and source code Iibra 

!C

r-
ies are available to members. An 
optional multiuser BBS with file 
uploading/ downloading, messaging 
and teleconferencing is available to 
the public. Membership dues are 
$22.00 US/ year ($23.72 in Washingt on 
State}; $26.00 Canada and Mexico· 
$38.00 overseas. ' 

TUG 
PO Box 1510 
Poulsbo, WA 98370 
BBS: (206) 697-1151 



TPro Users 

TPro Users was founded specifically 
to support Turbo Prolog program
ming. Their bimonthly newsletter 
contains technical articles, application 
stories, tips and techniques, and more. 
TPro also maintains an electronic bul
letin board for source code download
ing and message posting. Dues are 
$25.00 US/ year; $35.00 overseas. 

TPROUSERS 
3109 Scotts Valley Drive, Suite 138 
Scotts Valley, CA 95066 
BBS: ( 408) 438-6506 

LOCAL USER GROUPS 

One of the best places to look for 
advice and face-to-face assistance with 
your programming problems is at a 
local user group meeting. Most user 
groups in the larger cities have special 
interest groups (SIGs) devoted to the 
most popular programming lan
guages, usually with strong Turbo 
presences. We will be listing some of 
the largest and most active user 
groups in major urban areas across 
the country; obviously, there are thou
sands of user groups that we cannot 
list due to space limitations. If no 
listed group is convenient to you, ask 
about local user groups at a local com
puter store or check with a faculty 
member at a high school or college 
with a computer curriculum. 

BOSTON COMPUTER SOCIETY 
Information: (617) 367-8080 
BBS: (617) 353-9312 
One Center Plaza 
Boston, MA 02108 

CAPITAL PC USER GROUP (DC) 
4520 East-West Highway, Suite 550 
Bethesda, MD 20814 
C SIG: Fran Horvath 
Al/ Prolog SIG: Dick Strudeman 
BASIC SIG: Don Withrow 

CHICAGO COMPUTER SOCIETY 
Information: (312) 942-0705 
BBS: (312) 942-0706 
Pascal SIG: Bill Todd (312) 439-3774 
C SIG: Ed Keating (312) 438-0027 
Al/ Prolog SIG: Jim Reed 
(312) 935-1479 
Basic SIG: Hank Doden 
(312) 774-5769 

HAL/ PC (HOUSTON) 
Information: (713) 524-8383 
BBS: (713) 847-3200 or 
(713) 442-6704 
Pascal SIG: Charles Thornton 
(713) 467-1651 
C SIG: Odis Wooten (713) 974-3674 
Compiled BASIC SIG: Larry 
Krutsinger (713) 784-9216 
AI SIG (Prolog): George Yates 
(713) 448-7621 

NEW YORK PC USER GROUP, INC. 
Information: (212) 533-6972 
BBS: (212) 697-1809 
40 Wall Street Suite 2124 
New York, NY 10005 

PACS (PHIIADELPHIA) 
Information: (215) 951-1255 
BBS: (215) 951-1863 
PACS, c/ o Lasalle University 
Philadelphia, PA 19141 

SAN FRANCISCO PC USERS GROUP 
Information: (415) 221-9166 
444 Geary Blvd, Suite 33 
San Francisco, CA 94118 

ST. LOUIS USERS' GROUP 
Information: (314) 968-0992 
BBS: (314) 361-8662 
Pascal SIG: Jeffrey Watson 
(314) 481-4239 
Cl Assembler SIG: David Rogers 
(314) 968-8012 
BASIC SIG: Dennis Dohner 
(314) 351-5371 

TWIN CITIES PC USER GROUP 
Information: (612) 888-0557 
BBS: (612) 888-0468 
PO Box 3163 
Minneapolis, MN 55403 

Independent CBBS systems with 
programming orientation 

Questor Project Washington, DC 
(703) 525-4066 24Hr $ 

Illinois BBS 
(312) 885-2303 

PC-TECH BBS 
( 408) 435-5006 

Chicago, IL 
24Hr$ 

Santa Clara, CA 
24Hr 

$ = membership fee required 

I C:>CLASS.ADS 

TURBOGEOMETRY LIBRARY 
Turbo Pascal, C, Mac and Microsoft C 

Over 150 geometric routines that include: 
Intersections of Lines, Arcs, Planes, Circles 

2D and 3D Transformations 
Equations of Lines, Circles, Planes. 

Hidden Line, Perspective, Curves 
Surface Areas & Volume Routines 

Clipping, Composite Matrices, Vectors. 
Distance Computations. 

Decomposition of Concave Polygons 
Req. IBM PC(Comp)/MAC. VISA,MC,MO 
Source Code.Manual for $99.95 +$5 S&H 
Disk Software, Inc. 2116 E.Arapaho #487. 

Richardson, TX 75081 (214)423-7288 

C:>ClASS.ADS is TURBO 
TECHNIX magazine's display 
classified advertising section. 
We welcome to these pages all 
those who would like to take 
advantage of the special sizes 
and rates available for 
C:>ClASS.ADS-$300 per 
column inch, with a 2-inch 
minimum. (A minimum ad, for 
example, measures exactly 
2 1/ 16" wide by 2" long.) All 
C:>ClASS.ADS must be pre
paid and submitted in camera
ready form (black and white 
PMT or Velox) to: 

C:>ClASS.ADS 
TURBO TECHNIX 
4585 Scotts Valley Drive 
P.O. Box 660001 
Scotts Valley, CA 95066-0001 

For additional information, 
please call Production Assistant 
Annette Fullerton at ( 408) 
438-9321. 

May/June 1988 TURBO TECHNIX 159 



PHILIPPE'S TURBO TALK 

The new age of software 
craftsmanship. 

Philippe Kahn 

D 
oes a compiler become 
better because it's pack
aged in a huge box and 
sold by weight? Maybe 

you've heard that if some compa
nies know that a retailer must 
carry their product, they make the 
package as big as possible to push 
other vendors off the shelf. The 
user community is smart enough 
to see through this. Still, some 
people get caught by surprise. 

Good documentation isn't the 
same as fat documentation. Docu
mentation writers should not get 
paid by the word any more than 
software engineers should get 
paid by the line of code. It's con
tent that counts, of course, and 
we all know that. 

ARE BENCHMARKS USEFUL 
TO REAL USERS? 
Should we compiler vendors opti
mize for benchmarks? At Borland, 
we make the conscious decision 
not to do so, but rather to set com
piler default settings for conve
nience and efficiency. However, 
we've all heard about software 
optimized for benchmarks .. How 
about "sieve recognizers?" Maybe 
that's a joke, but it's true that some 
business software, and even some 
compilers, are now written so that 
they make the "standard bench
marks" look good. Who cares 
about the user? The user never 
runs benchmarks. The only real 
measure of software performance 
is how quickly it gets the user's job 
done. It's hard to write a bench
mark that takes the real world into 
account. But it should be done, or 
the benchmarks aren't saying any
thing useful. In the meantime, the 

160 TURBO TECHNIX May/June 1988 

users will, by their natural com
mon sense, separate the hype 
from the reality and get their work 
done faster. The real benchmark 
is, "Am I more productive, and is 
the quality of my work higher 
when I use this tool?" 

DO FAST AND SMALL STILL 
COUNT? 
For years we've noticed that 
memory is getting cheaper and 
that processors are getting faster. 
So we're all excited about the 
wonderful applications that we are 
going to be able to build with this 
increased computing power. We 
all know that software tends to use 
up all available memory, and that 
it also has a tendency to grab all 
the processor time it can. Until 
now, we have all tried to be very 
careful to use hardware resources 
as efficiently as possible. Yet, al
though we remember great soft
ware that ran in 64K machines 
running 8-bit processors, today we 
consider it almost normal for soft
ware to require a 32-bit processor 
and several megabytes of RAM. 
Now, is this because this particular 
piece of software uses the com
puter's resources less efficiently? 
Or is it because the people who 
wrote it were thinking, "After all, 
memory is cheap and processor 
speeds are faster, so who cares?" 
With more memory in almost 
every machine, there's a tendency 
to write what I call "sloppy soft
ware." Who cares if "Hello, world" 
takes 400K if I still have mega
bytes left? 

Then there's the old hype line 
that says, "This machine is so fast, 
it doesn't matter that the operat
ing system is written in interpret
ed BASIC." Guess how fast that 

machine would run if it had a real 
operating system? 

Why is this sort of logic wrong? 
After all, with faster processors 
and cheap memory, do code size 
and execution speed matter? 
Under DOS, of course they do. 
But how about multitasking op
erating systems with dynamic 
memory management? Think 
about it: slow applications will 
steal precious time from other 
tasks and slow them down. And 
memory hogs will force the OS 
to constantly swap the other tasks 
to and from disk. It's even worse 
than under DOS, where a big, 
slow application only penalizes 
itself. In a multitasking environ
ment, slow and fat applications 
penalize all the other tasks. Deja 
vii! Small, efficient code matters 
more than ever before! 

Now that the 640K barrier is 
about to be broken, new programs 
will grow to fit available memory 
and processing speed. A color 
paint program on the Mac that I 
was just playing with requires 1.5 
megabytes. The first MacPaint ran 
in 128K Is the new program ten 
times better than the original? I 
don't think so. 

ENTER THE NEW AGE OF 
SOFTWARE CRAFTSMANSHIP 
Remember the scene on the sink
ing Titanic, when the passenger 
yelled to the drink steward, "Yes, 
I know I rang for ice, but this is 
ridiculous!" Size and speed, qual
ity documentation, and "real 
world optimizations" will matter 
more and more. If we keep that 
in mind, we are going to witness 
a new age of software crafts
manship. • 



Turbo-Plus 5. 



Borland·Osborne/McGraw-Hill Presents 
The Official Books on TURBO c~ TURBO BASIC~ & TURBO PASCAL® 

"The technical depth and timeliness of books in the Borland·Osborne!McGraw-Hill Programming Series provide 
excellent supplementary support for Borland's best-selling compilers. Users at all levels can turn to these books 
to help them get the most out of Turbo Pascal, Turbo C, and Turbo Basic." Philippe Kahn , Chairman & CEO , Borland International 

Using Turbo C 
by Herbert Schildt 

For all C programmers , beginners to pros, this excellent 
guide helps you write Turbo C programs that get profes
sional results . 
$19.95 Paperback, ISBN: 0-07-881279-8 , 431 pp ., 73/a x gy, 
Borland•Osborne/McGraw-Hill Programming Series 

Advanced Turbo c· 
by Herbert Schildt 

Unveils Turbo C power programming techniques to serious 
programmers . Covers Turbo Pascal conversion to Turbo C 
and Turbo C graphics. 
$22.95 Paperback, ISBN: 0-07-881280-1, 397 pp ., 73/a x gy, 
Borland-Osborne/McGraw-Hill Programming Series 

Turbo c : THE COMPLETE REFERENCE 

by Herbert Schildt Covers Version 1.5 
Programmers at every level of Turbo C expertise can quickly 
locate information on Turbo C functions , commands , 
codes , and applications-all in this handy encyclopedia . 
$24.95 Paperback, ISBN: 0-07-881346-8, 850 pp ., 73/a x gy, 
Borland•Osborne/McGraw-Hill Programming Series 

Turbo Pascal 
THE COMPLETE REFERENCE 
Covers Version 4 
by Stephen 0 'Brien 

The first single resource that 
lists every Turbo Pascal com
mand , function , and feature , 
all il.lustrated in short examples 
and applications . Ideal for 
every Turbo Pascal programmer. 

$24.95 Paperback, ISBN: 0-07-881290-9, 814 pp., 73/a x 91/• 

Borland•Osbornel McGraw-Hill Programming Series 

Turbo Pascal 4: THE POCKET REFERENCE 
by Kris Jamsa 

This little booklet puts all essential Turbo Pascal Version 4 
features and commands at your fingertips . 
$5.95 Paperback , ISBN: 0-07-881379-4 . 120 pp . 4y, x 7 
Borland•Osborne/McGraw-Hill Programming Series 

Using Turbo Pascal' VERSION 4 

by Steve Wood 

Build the skills you need to become a productive Turbo 
Pascal 4 programmer. Covers beginning concepts to full
scale applications . 
$19 .95 Paperback, ISBN: 0-07-881356-5, 546 pp ., 73/a x gy, 
Borland•Osborne/McGraw-Hill Programming Series 

Advanced Turbo Pascal VERSION 4 
by Herbert Schildt 

The power of Turbo Pascal 4 will be at your fingertips when 
you learn the top-performance techniques from expert 
Herb Schildt. 
$21 .95 Paperback, ISBN: 0-07-881355-7 , 416 pp ., TV. x gy, 
Borland•Osborne/McGraw-Hill Programming Series 

Turbo Pascal 
PROGRAMMER'S LIBRARY, SECOND EDITION 
by Kris Jamsa and Steven Nameroff 

Take full advantage of Turbo Pascal .and the newest versions 
of Turbo Pascal , with this outstanding collection of pro
gramming routines. Includes routines for the Turbo Pascal 
toolboxes. 
$22.95 Paperback. ISBN: 0-07-881368-9 . 600 pp .. 73/a x gy, 
Borland•Osborne/McGraw-Hill Programming Series 

Using Turbo Basic 
by Frederick E. Mosher 
and David I. Schneider 

Introduces Turbo Basic to nov
ices and seasoned pros alike . 
Learn about the Turbo Basic 
operating environment and the 
interactive editor 

$19.95 Paperback, 
ISBN: 0-07-881282-8, 
457 pp. , 73/s x 91

/• 

Borland•Osborne/McGraw-Hill Programming Series 

Turbo c PROGRAMMER'S LIBRARY 
by Kris Jamsa 

This powerful collection of Turbo C programming routines 
enhances the producivity and efficiency of all Turbo C 
programmers . 
$22.95 Paperback, ISBN: 0-07-881394-8. 650 pp . 73/a x gy, 
Borland-Osborne/McGraw-Hill Programming Series 

ORDER TODAY! Call Us Toll-Free 800-227-0900 We accept Visa , MasterCard, and American Express. 

In Canada, contact McGraw-Hill Ryerson, Ltd. Phone 416-293-1911. 

~ 'J ~ Osborne McGraw· Hill 
-J • 2600 Tenth Street 

I. M • Berkeley, California 94710 Turbo Basic . Turbo C, and Turbo Pascal are registered trademarks 
of Borland International. Copyr ig ht c 1988 McGraw-Hill , Inc . 

a: 
0 
m 

• 


	2022-09-02-0001
	2022-09-02-0002
	2022-09-02-0003
	2022-09-02-0004
	2022-09-02-0005
	2022-09-02-0006
	2022-09-02-0007
	2022-09-02-0008
	2022-09-02-0009
	2022-09-02-0010
	2022-09-02-0011
	2022-09-02-0012
	2022-09-02-0013
	2022-09-02-0014
	2022-09-02-0015
	2022-09-02-0016
	2022-09-02-0017
	2022-09-02-0018
	2022-09-02-0019
	2022-09-02-0020
	2022-09-02-0021
	2022-09-02-0022
	2022-09-02-0023
	2022-09-02-0024
	2022-09-02-0025
	2022-09-02-0026
	2022-09-02-0027
	2022-09-02-0028
	2022-09-02-0029
	2022-09-02-0030
	2022-09-02-0031
	2022-09-02-0032
	2022-09-02-0033
	2022-09-02-0034
	2022-09-02-0035
	2022-09-02-0036
	2022-09-02-0037
	2022-09-02-0038
	2022-09-02-0039
	2022-09-02-0040
	2022-09-02-0041
	2022-09-02-0042
	2022-09-02-0043
	2022-09-02-0044
	2022-09-02-0045
	2022-09-02-0046
	2022-09-02-0047
	2022-09-02-0048
	2022-09-02-0049
	2022-09-02-0050
	2022-09-02-0051
	2022-09-02-0052
	2022-09-02-0053
	2022-09-02-0054
	2022-09-02-0055
	2022-09-02-0056
	2022-09-02-0057
	2022-09-02-0058
	2022-09-02-0059
	2022-09-02-0060
	2022-09-02-0061
	2022-09-02-0062
	2022-09-02-0063
	2022-09-02-0064
	2022-09-02-0065
	2022-09-02-0066
	2022-09-02-0067
	2022-09-02-0068
	2022-09-02-0069
	2022-09-02-0070
	2022-09-02-0071
	2022-09-02-0072
	2022-09-02-0073
	2022-09-02-0074
	2022-09-02-0075
	2022-09-02-0076
	2022-09-02-0077
	2022-09-02-0078
	2022-09-02-0079
	2022-09-02-0080
	2022-09-02-0081
	2022-09-02-0082
	2022-09-02-0083
	2022-09-02-0084
	2022-09-02-0085
	2022-09-02-0086
	2022-09-02-0087
	2022-09-02-0088
	2022-09-02-0089
	2022-09-02-0090
	2022-09-02-0091
	2022-09-02-0092
	2022-09-02-0093
	2022-09-02-0094
	2022-09-02-0095
	2022-09-02-0096
	2022-09-02-0097
	2022-09-02-0098
	2022-09-02-0099
	2022-09-02-0100
	2022-09-02-0101
	2022-09-02-0102
	2022-09-02-0103
	2022-09-02-0104
	2022-09-02-0105
	2022-09-02-0106
	2022-09-02-0107
	2022-09-02-0108
	2022-09-02-0109
	2022-09-02-0110
	2022-09-02-0111
	2022-09-02-0112
	2022-09-02-0113
	2022-09-02-0114
	2022-09-02-0115
	2022-09-02-0116
	2022-09-02-0117
	2022-09-02-0118
	2022-09-02-0119
	2022-09-02-0120
	2022-09-02-0121
	2022-09-02-0122
	2022-09-02-0123
	2022-09-02-0124
	2022-09-02-0125
	2022-09-02-0126
	2022-09-02-0127
	2022-09-02-0128
	2022-09-02-0129
	2022-09-02-0130
	2022-09-02-0131
	2022-09-02-0132
	2022-09-02-0133
	2022-09-02-0134
	2022-09-02-0135
	2022-09-02-0136
	2022-09-02-0137
	2022-09-02-0138
	2022-09-02-0139
	2022-09-02-0140
	2022-09-02-0141
	2022-09-02-0142
	2022-09-02-0143
	2022-09-02-0144
	2022-09-02-0145
	2022-09-02-0146
	2022-09-02-0147
	2022-09-02-0148
	2022-09-02-0149
	2022-09-02-0150
	2022-09-02-0151
	2022-09-02-0152
	2022-09-02-0153
	2022-09-02-0154
	2022-09-02-0155
	2022-09-02-0156
	2022-09-02-0157
	2022-09-02-0158
	2022-09-02-0159
	2022-09-02-0160
	2022-09-02-0161
	2022-09-02-0162
	2022-09-02-0163
	2022-09-02-0164

