
TURllO
TECHNIX

THE BORLAND LANGUAGEJOURNAL • MARCH/ APRIL 1988 • VOLUME ONE NUMBER THREE • $10.00

VM '311.lVJS
6S~I 'ON .Lll'l~3d

OIVd
3'.:JV.LSO<l ·s·n
3.1~)110\l

EXPERT SYSTEM
DESIGN WITH
TURBO PROLOG

Tools for AI
applications

Creating Turbo
Prolog inference .
engmes

Writing custom
exit procedures
in Turbo Pascal

Turbo Basic
event handling

Instant Access Program
• Memory-resident -uses just 71K.
• Full-screen or moveable half-screen

view. with pull-down menus.
• Auto lookup and searching.
• Tools for compiling your own databases.

ASSEMBLY (600K of data)
• DOS Service Calls: All INT 2lh services,

interrupts, error codes. FCB and PSP
fields, standard handles and more.

• ROM BIOS Calls: All ROM calls plus low
RAM usage.

• Instruct ion Set: All 8088/86 instructions,
addressing modes, flags, bytes per
instruction. clock cycles and more.

• MASM: Pseudo-ops and assembler
directives.

• 1ables: ASCII chart. line-drawing charts.
keyboard scan codes and more.

BASIC (270K each database)
• IBM BASICA, Microsoft QuickBASIC

and TurboBASIC.
• Statements and Functions: Describes all

statements and built-in library functions.

know to program in your
favorite language.

• 'fables: Line-drawing characters. ASCII
chart. keyboard codes, error codes.
operators. etc.

C (600K each database)
• Microsoft C and Turbo C: Describes

language, including statements,
operators, data types and structures.

• Library Functions: Detailed
descriptions of all functions, from
abort ()to write ().

• Preprocessor Directives: Describes
commands, usage and syntax.

• Tables: ASCII chart, line-drawing
characters. keyboard codes, error codes,
operators. etc.

PASCAL-Turbo (360K of data)
• Language: Describes statements.

syntax, operators, data types and
records.

• Library: Describes the library
procedures and functions.

• 'fables: ASCII chart, line-drawing
characters, keyboard codes. error codes.
reserved words. etc.

(If you don't believe us, you might want
to take a moment or two to examine the
data box you just passed.)

You can, of course, find most of this
Dt'signed for the IBM PC. PC-AT and DOS compatibles. Available at most software

•

information in the books and manuals
on our shelf

But Peter Norton-who's written a
few books himself-figured you'd rather
have it on your screen.

In seconds.
In either full-screen or moveable half-

A Guides reference summary
screen (shown in blue) pops up on
top of the program you're working

on (shown in green).

screen mode.

Summary data expands on
command into extensive detail.
And you can select from a wide

variety of information.

Popping up right next to your work
Right where you need it

This, you're probably thinking, is pre
cisely the kind of thinking that pro
duced the classic Norton Utilities.
· And you're right

But even Peter Norton can't think of

everything.
Which is why there's a built-in com

piler for creating databases of your own.
And why all Guides databases are

compatible with the instant access pro
gram in your original package.

So you can addmorelanguages without
spending a lot
more money.

To get
more informa
tion, call your
dealer.Or
call Peter
Norton at
1-800-451-
0303 Ext40.

And ask
for some
guidance.

':I!eter NtlrltM-
COMPUTING

dealers, or direct from Peter Norton Computing. Inc., 2210 Wilshire Blvd. #186. Santa Monica. CA 90403. 213-453-2361. Fax 213-453-6398, MCI Mail: PNC! © 1987 Peter Norton Computing

I TURBO TECHNIX
The Borland Language Journal
March / April 1988
Volume 1 Number 3

FEATURES

TURBO PASCAL

12 Custom Exit Procedures
Tom Swan

23 Rounded Rectangles with
the BGI

Jeff Duntemann

24 Just In CASE
Jeff Duntemann

28 Filling Regions with the Turbo
Pascal Graphix Toolbox
Fred Robinson

34 Curves, Bezier-Style
Kent Porter

42
The SideKick Plus Kernel acts as both
supeniisor and resource for resident
tasks that may be supplied by Borland
or written by third-party developers.

The first marketable concept to rise
from decades of research in AI is the
expert system. By making the knowl
edge of many experts available to all,
expert systems make the power of one
mind the equal of many. Building
expert systems is not difficult with a
little knowledge-and Turbo Prolog.

TURBOC

42 The SideKick Plus API:
Introduction
Jeffrey Goldberg and Steven Boye

52 Making the switch()
Kent Porter

56 Maintaining Programs
with MAKE
Reid Collins

61 Building Far Pointers with
MK_FP
Michael Abrash

62 Comment Nesting
Roger Schlafly

TURBO PROLOG

64 Expert System Design from
a Height
Michael Floyd

67 Building an Inference Engine
With Turbo Prolog
Keith Weiskamp

80 Suitable for Framing
Michael Floyd

89 Metalogic and Expert Systems
Safaa H. Hashim

The assembly language screen
handlers offered with the Turbo Basic
Database Toolbox can put plenty of
snap into a video-intensive
application.

TURBO TECH NIX makes reasonable efforts to assure the accuracy of articles and information published in the magazine. TURBO TECHNTX assumes no
responsibility, however, for damages due to erro rs or omissions, and specifically disclaims any implied warranty of merchantability or fitness for a particular
purpose. The liability, if any, of Borland, TURBO TECHNTX, or any of the contributing authors of TU/IBO TECHNIX, for damages relating to any e1Tor or
omission shall be limited to the p1ice of a one-year subscription to the magazine and shall in no event include incidental, special, or consequential dam
ages of any kind, even if Borland or a contributing author has been advised of the likelihood of such damages occurring.

Trademarks: Turbo Pascal, Turbo Basic, Turbo C, Turbo Prolog, Turbo Toolbox, Turbo Tutor, Turbo CameWorks, Turbo Lightning, Lightning Word Wizard, SideKick,
SuperKey, Eureka, Reflex, Quattro, Sprint, Paradox, and Borland are trademarks or registered trademarks of Borland International, Inc. or its subsidiaries.

2 TURBO TECHNIX March/ April 1988

98

116
The richness of a programming lan
guage depends heavily on the power
of its control structures. PAL has all
control structures expected in a struc
tured language, plus one or two more
that proceed from its database
abilities.

TURBO BASIC

98 Turbo Basic Screens at
Assembler Speed
David A. Williams

105 SELECT CASE: Choosing One
From the Many
Ralph Roberts

110 Event Trapping in Turbo Basic
Ralph Roberts

BUSINESS LANGUAGES

116 PAL Control Structures
Dan Shafer

DEPARTMENTS

4 BEGIN: The Mine and the
Machine Shop
Jeff Duntemann

6 Dialog

121 Binary Engineering: Precondi
tions and Postconditions
Bruce Webster

134 Language Connections:
Linking Turbo Prolog and
Turbo Pascal 4.0
Peter Immarco

140 Tales from the Runtime:
Memory Models
Mark L. Van Name and Bill
Catchings

144 Archimedes' Notebook:
Designing a Two-Band
Vertical Antenna
Augie Hansen, KBOYH

149 Critique: Turbo C Tools
Peter Aitken

154 BookCase: Using Turbo Prolog
Reviewed by Sanjiva Nath

155 BookCase: Advanced
Techniques in Turbo Prolog
Reviewed by Alex Lane

157 BookCase: Advanced MS-DOS
Reviewed by Peter Aitken

158 Turbo Resources

159 Coming Up

160 Philippe's Turbo Talk

Cover: Our special Turbo Prolog section
looks into the machinery of expert systems,
which model the problem-solving abilities
of human experts in many knowledge
domains. Inference engines, reference
frames, metalogic-we offer you some
expert system expertise, and Turbo Prolog
can tie it all together. Page 64.

Cover V2.0: We've done a little post
optimization on the TURBO TECHNIX
cover. Design: Karen Miner. Photography:
Bradley R.eam.

TURBO TECHNIX

Publisher
Marcia Blake

Editor in Chief
Jeff Duntemann

EDITORIAL

Managing Editor
Michael Tighe

Technical Editor
Michael A. Floyd

Copy Editor
Pamela Dillehay

Technical Consultants
Brad Silverberg
David Intersimone
Roger Schlafly
Dan Kernan

DESIGN & PRODUCTION

Art Director
Karen Miner

Production Assistant
Annette Fullerton

Typesetting Manager
Walter Stauss

Typesetter/ System Superoisor
Jeffrey Schwenley

Typesetters
Ron Foster
Jeanie Maceri

Photographer
Bradley Ream

Typesetting Traffic
Charlene McCormick

ADMINISTRATION

Purchasing
Brad Asmus

ADVERTISING

Assistant to the Publisher
Sheriann Glass

Advertising Sales Manager
John Hemsath
(408) 438-9321

Western Region
Janet Zamucen
(714) 858-0408

New England/Mid-Atlantic Regions
Merrie Lynch
Nancy Wood
(617) 848-9306

South Region
Megan Patti
(813) 394-4963

TURBO TECHNIX (ISS -0893-827X) is published bimonthly by Borland Communications, a division of Borland International, Inc., 4585 Scotts Valley Drive,
Scotts Valley, CA 95066. TURBO TECHNIX is a trademark of Borland International, Inc. Entire contents Copyright ©!988 Borland International, Inc. All
lights reserved. No pan of this publication may be reprinted or otherwise reproduced without permission from the publisher. For a statement of our permis
sion policy for use of listings appea1ing in the magazine, send a self-addressed stamped envelope to Permissions, TURBO TECHNIX, 4585 Scotts Valley
Diive, Scotts Valley, CA 95066. Editorial and business offices: TURBO TECHNIX, 4585 Scotts Valley Drive, Scotts Valley, CA 95066. Subscription rate is $49.95
per year; rate in Canada $60.00 per year, payable in U.S. funds. Single copy price is $10.00. For subscription service write to Subscriber Services, TURBO
TECHNIX, 4585 Scotts Valley Drive, Scotts Valley, CA 95066. POSTMASTER: Send address changes to TURBO TECHNIX, 4585 Scotts Valley Dnve, Scotts Val
ley, CA 95066.

March/ April 1988 TURBO TECHNIX 3

BEGIN
The mine and the machine shop

Jeff Duntemann

P erhaps the question has
been put to you: "If
these AI systems are so
smart, why haven't they

cured cancer?" Do what I do: Sip
your drink and say, "How 'bout
them Giants?" It's true, though:
The words "artificial intelligence"
have taken some hits for not keep
ing promises they never really
made. Perhaps we could use some
new words. Certainly we need
some new understanding.

Human intelligence has two
facets: logic and reason on one
hand; and deeper things that well
up from the subconscious-intu
ition, hunches, creativity, mem
ory-on the other. We've been
studying logic and reason since
classical times, and by now we
know something about them. As
for those other things ... not only
haven 't we a clue as to how they
work, we may not even have a
model for how they work. In other
words, it may not be possible to
understand them, given the ana
lytical tools we have.

Those tools are logic and rea
son, and are essentially serial in
nature. They operate by breaking
down a complex whole into indi
vidual components small enough
to be understood alone, while
keeping track of the whole as a
map of relationships and classifi
cations. It's the best we can do, yet
the analysis of the whole bears
the same resemblance to the
whole as a dissected frog bears to
a live frog on a lily pad: It's all
laid out in clear view, but it
doesn't catch flies anymore.

The subconscious mind has its
own tools for grasping a complex
whole. Every so often, when strug
gling to analyze a difficult con-

4 TURBO TECHNIX March / April 1988

cept, the light breaks through
from beneath the fog and for a
wondrous moment or two we
simply understand. All the dispa
rate aspects of the problem stand
together in perfect harmony.
Then the light goes out-usually
as we race to keyboard or notepad
to capture what we can of the
moment-and what we knew we
understood we only remember
once understanding. A metaphor
here, a relationship there, shards
of a structure sketched out on
paper, but no matter how much
we manage to pin down, well,
somehow it just doesn't catch flies
anymore. Why? The subconscious
mind deals only in the gestalt.
Reason and logic begin by dis
mantling the gestalt. Understand
ing how we understand may be
forever beyond us.

All the best that is human bub
bles up from the subconscious in
this fashion . It's pretty raw stuff,
and we never quite get all of it. To
make it useful, we need to apply
the tools of logic and reason in
the guise of philosophy, science,
and engineering. By correlating
hunches and drawing conclusions
from fragmentary evidence, we
build our civilization. That isn't
to say we know where hunches
come from.

Perhaps we should study neural
networks. These are electrical or
logical models of the intercon
nectedness of nerve tissue, and we
have found that they excel at stor
ing and recognizing patterns in
an eerily gestalt-like manner. The
problem is that even the human
neural network is only the con
tainer-and attempting to reverse
engineer the human mind by

studying patterns of brain cells
may be like a crew of ants blindly
replicating a copy of an IBM PC
in the hope that Turbo Pascal will
suddenly appear in memory.

My metaphor for intelligence is
the mine and the machine shop.
Out of the mine comes a jumble
of ore-fragments of rock con
taining traces of metal combined
with other substances, plus the
bonus of a rich vein or pure
nugget from time to time. The ore
itself is useless. It must pass
through the smelter to become
metal, and through the machine
shop to become a useful artifact.
The processes are distinct yet
inextricable: Without the mine,
the machine shop can do noth
ing; and without the machine
shop, the ore from the mine is
dead weight.

The subconscious is the mine
from which we take the raw mate
rial of human thought, and logic
and reason form the machine
shop where our crazy notions are
converted into knowledge. Artifi
cial insight or artificial creativity
may be forever beyond us, but
artificial reason has been with us
for some time. A Turbo Prolog
program is just that-a tool for
shaping and correlating knowl
edge. Later on in this issue, Tech
nical Editor Mike Floyd shows us
how such tools can be built.

AI is a partnership. Human
insight and machine reason can
be a potent combination. Give it a
chance. Better still-give it a try.
We'll help you as best we can. •

Opinions expressed in this column
are those of the editor and do not
necessarily reflect the views of
Borland International, Inc.

Interlocking Pieces:
Blaise and

Turbo Pascal.
Whether you're a Turbo Pascal expert or a novice, you can benefit from using professional tools
to enhance your programs. With Turbo POWER TOOLS PLUS™ and Turbo ASYNCH PLUS!"
Blaise Computing offers you all the right pieces to solve your 4.0 development puzzle.

Compiled units (TPU files) are provided so each package is ready to use
with Turbo Pascal 4.0. Both POWER TOOLS PLUS and ASYNCH PLUS

~~. use units in a clear, consistent and effective way. If you are familiar
~..,.,..,_I with units, you will appreciate the organization. If you are just getting

~ .,. ,,... started, you will find the approach an illustration of how to construct
and use units.

+POWER TOOLS PLUS is a library of over 180 powerful functions
and procedures like fast direct video access, general screen

handling including multiple monitors , VGA and EGA 50-line
and 43-line text mode, and full keyboard support, including

the 101/102-key keyboard. Stackable and removable win
dows with optional borders, titles and cursor memory
provide complete windowing capabilities. Horizontal , ver

tical , grid and Lotus-style menus can be easily incorporated
into your programs using the menu management routines.
You can create the same kind of moving pull down menus
that Turbo Pascal 4.0 uses.

Control DOS memory allocation. Alter the Turbo Pascal heap
size when your program executes. Execute any program from
within your program and POWER TOOLS PLUS automatically
compresses your heap memory if necessary. You can even force
the output of the program into a window!

Write general interrupt service routines for either hardware or
software interrupts. Blaise Computing's unique intervention
code lets you develop memory resident (TSRs) applications
that take full advantage of DOS capabilities. With simple pro
cedure calls, "schedule" a Turbo Pascal procedure to execute

either when pressing a "hot key" or at a specified time.

+ASYNCH PLUS provides the crucial core of hardware interrupts
needed to support asynchronous data communications. This package offers

simultaneous buffered input and output to both COM ports, and up to four
ports on PS/2 systems. Speeds to 19.2K baud, XON/ XOFF protocol, hard
ware handshaking, XMODEM (with CRC) file transfer and modem control
are all supported. ASYNCH PLUS provides text file device drivers so you

can use standard "Readln" and "Writeln" calls and still exploit interrupt-driven
communication.

The underlying functions of ASYNCH PLUS are carefully crafted in assembler
and drive the hardware directly. Link these functions directly to your application
or install them as memory resident.

Blaise Computing products include all source code that is efficiently crafted,
readable and easy to modify. Accompanying each package is an indexed

manual describing each procedure and function in detail with example

u

Turbo POWER SCREEN $129.00
NEW! General screen management: paint
screens; block mode data entry or field·by·
field conirol with instant screen access. Now
for Turbo Pascal 4.0. soon for C and BASIC.

Turbo C TOOLS $129.00
Full spectrum of general service utility func
tions including: windows; menus ; memory
resident applications; interrupt service rou
tines: intervention code; and direct video
access for fast screen handling. For Turbo C.

CTOOLS PLUS $129.00
Windows: menus; ISRs: intervention code;
screen handling and EGA 43-line text mode
support; direct screen access; DOS file han·
dling and more. Specifically designed for
Microsoft C 5.0 and QuickC.

ASYNCH MANAGER $175.00
Full featured interrupt driven support for the
COM ports. 1/0 buffers up to 64K: XON/
XOFF; up to9600 baud; modem control and
XMODEM file transfer. for Microsoft C and
Turbo C or MS Pascal.

PASCAL TOOLS/TOOLS 2 $175.00
Expanded string and screen handling: gr-Jph
ics routines; memory management: general
program control: DOS file supp<.>rtand more.
For MS-Pascal.

Key Pilot $49.95
"Super-batch" program. Create batch files
which can invoke programs and provide input
to them: run any program unattended; create
demonstration programs: analyze keyboard
usage.

EXEC $95.00
NEW VERSION! Program chaining execu
tive. Chain one program from another in
different languages; specify common data
areas: less than 2K of overhead.

RUNOFF $49.95
Text formatter for all programmers. Written
in Turbo Pascal: flexible printercohlrol; user
defined variables; index generation; and a
general macro facility.

TO ORDER CALL TOLL FR,EE
800-333-8087

TELEX NUMBER· 338139 code fragments. Many complete examples and useful utilities are
included on the diskettes. The documentation, examples and
source code reflect the attention to detail and commitment to ______ _
technical support that have distinguished Blaise Computing over ___ - - - - -

the years. _____ -------·

Designed explicitly for Turbo Pascal 4.0, Turbo --------:b;~;.es\ copie~~cts-
POWER TOOLS PLUS and Turbo ASYNCH ---- nd t\\e the ng \or ~our pr 00 \or

PLUS provide reliable, fast, professional routines-\ "'(£,S\ s; is s~n\ormauon. orders add r~ir. --
the right combination of pieces to put your Turbo Pascal\ t,nc\0~e send me mo 'fall· oomEtl~ress standar) ---
puzzle together. Complete price is $129.00 each. \ 0 p\e . dents add Sa00\e~or federa\ Jl pnone-. ~-- ~ --

\ Cf>.res1. ing,$ \0. . ·-- _..!
..ollli.. \ UPS snipping,,, •v·- ----- . --'Z1P· Date.___-::;

..iiia.. \Name-...:...---------- State. !E~~ll~P·· ~,.~
~Ill!".: \ t>-ddr~ 1crosof1

BLAISE COMPUTING INC. ' cwr~ r MC#·-~r$·~-:;,~~:red ~~fl;:,;~~f,°~j
\ VlS,.,.. O _ - Microsoft Corporation. Turbo Pascal is a re11is·
\..----- tered trademark of Borland International. 2560 Ninth Street, Suite 316 Berkeley, CA 94710 (415) 540-5441

DIALOG
We confront some sticky issues; how could it he
OTHERWISE?

Are we glowing in the dark, or is
the smoke pouring out of your
ears? Errata or accolade? Bug or
feature? Let us and your fellow
readers know whats on your
mind, and our editorial staff and
authors will respond as best they
can.

Address /,etters to:

DIALOG
TURBO TECHNIX Magazine

4585 Scotts Valley Dr.
Scotts Valley, CA 95066

Letters become the property of
TURBO TECHNIX and cannot
be returned. We cannot answer all
l,etters individually, but we will try
to print a representative sampling
of mail received.

GLUE GLITCH
To The Editor:

Congratulations on the launch of
a wonderful magazine. I found
seven or eight items that I could
use personally in the first reading.
Parallel ports, the world's simplest
BASIC communications program,
and the like were right up my
alley.

My only complaint: The mailing
label did not have enough glue
and almost fell off. That would
have been a tragedy.

Please resist the temptation to
move away from short, hard
hitting practical articles. The last
thing the world needs is another
place to read long, boring pontifi
cations on computing. Keep it
crisp and to the point!

Ajaded computerist brought
back to life.

Erik Westgard
Itasca, IL

6 TURBO TECHNIX March/ April 1988

Never fear. We'll stay in your alley
as long as we can. (The word "pon
tification" isn't even in our spell
checker.) The glue probl,em is a sticky
situation, however . . . we adhere to
the philosophy that labels should stay
put, so we'll apply ourselves and see if
we can paste up a solution. When we
do, by gum, we'll make it stick.

THOSE SEMICOLONS AGAIN
To The Editor:

Before I dive into this one, let me
say that the first issue of TURBO
TECHNIX looked great! Congratu
lations to Jeff and the rest of the
crew for a fantastic job.

In the article "Sense and Semi
colons," on page 51, it says:
"[Rule] 4. A semicolon imme
diately before ELSE is always an
error."

This is true in standard Pascal.
In Turbo Pascal, however, there is
a very important exception: the
CASE .. OF statement.

In Turbo Pascal, it's perfectly
legal to write:

CASE inputChar OF
'A' : Aardvark;
'B' : Balloon;
'C' : Chill1)8nzee;
ELSE
Water111elon

END; { CASE)

In fact, it's good practice to always
place a semicolon before the
ELSE clause, so that the compiler
can easily locate errors in nested
IF and CASE .. OF statements.

But this is a relatively minor nit.
All in all, the article (and the en
tire issue) were superb. Keep up
the good work!

Brett Glass
Palo Alto, CA

Ouch! You got me, Brett. (Thanks
also to several others for pointing out
this lapse in logic.) The ELSE clause
in CASE .. OF is an addition to ISO
Pascal, and there is a competing (and
in my opinion, better) keyword that
does the same job: OTHERWISE.
There is a definite danger in making
the last case in a CASE .. OF statement
an IF statement with an ELSE clause.
Since the reserved word OTHERWISE
appears in no other part of the lan
guage, the probl,em of ELSE syntax
ambiguity goes away. I take up the
subject in more detail in 'Just in
CASE" in this issue; check it out.
There is a movement afoot to add
OTHERWISE to Turbo Pascal for the
PC as an alias for CASE .. OF's ELSE.
Turbo Pascal for the Mac uses
OTHERWISE, and this change
would make two already similar com
pilers even more compatibl,e. Let's hope
it happens.

-Jeff Duntemann

THROW CAUTION WHERE?
To The Editor:

Volume 1, Number 1, page 79,
under the subhead, "CAUTION
TO THE WIND ... ": "You won't
burn anything out as long as you
don't put more than 5 volts or less
than 0 volts on any of the pins."
The IBM Printer Adapter card
data outputs come from a 74LS374
IC. Upon shorting to ground, each
output line's current is specified to
be between 30-130 milliamps.
(This is from the TI data sheet.)
The data sheet contains a caution:
"Not more than one output

continued on page 8

You do the creative stuff.
We'll write the code.

SYSTEM BUILDER™ $199.95 & REPORT BUILDER™ $179.95

automate Turbo Pascal programming
It's a state-of-the-art program gen
erator that automatically builds a
relational database application for
you in just seconds. You just paint
your screen and datafile layouts.

SO EASY ... ideal for entry level "coders"
to produce relational database systems
without coding. (Entry level guide with
sample On-disk systems is provided.)
SO POWERFUL ... it provides program
ming professionals with more flexibility
and horsepower than any development
tool on the market (guide is provided.)

REPORT BUILDER CYCLE:
Key in the report parameters on screen

Print your listings
• New report format for reference
• Report element layout

Key in the report data elements on screen

Report Builder automatically writes the
program code and links ii to your datafile

Print your listing
• Report program source code listings

Compile the report builder code using the
Turbo Pascal '" compiler

Attach the new report module to your
system menu

SYSTEM BUILDER CYCLE:

System Builder automatically writes the
program code and combines the datafiles
into a relational database

Print your listings
• Program source code listing • Datafile
layouts • Self-documenting program
(includes screen schematics)

Compile the System Builder code using
Turbo Pascal '" compiler

Start using the completed system

*System Bu ilder will generate 2,000 lines o f program code in approx imately 6 seconds.

REPORT BUILDER FEATURES:
• Automat icall y gene rates Indented , Structured Source

Code ready fo r compiling Turbo Pascal (no program
ming needed)

• Automaticall y inte rfaces to a max imum of 16 Data files
created with System Builder

• Su pports Global Parameters such as Head ings , Footers,
Lines Per Page, Print Size and Ad Hoc Sorting

• Produces reports containing an unlimited number of
Sub-Headings , Sub-Totals and Totals

• Page brea ks on Sub-Totals
• Report Bui lder will generate Report Programs which

can contain Report Elements not j ust restric ted to Data
Elements. Reports can also include Text Strings, Vari
ables or Computed express ions containing references
from up to 16 Datafi les

• Use range input sc reens produced by System Builde r to
a ll ow End Users to select po rtions of a report as needed
(i.e . specific account ranges ca n be requested)

• Produces standa lone Report Modules
• Easy-to-use Interface Program to access dBase Files

SYSTEM BUILDER PERFORMANCE
(Typical 10 screen 8 fil e /index application)

SYSTEM
TASK BUILDER DBASE 111'"
Planning and Design

Screen Painting
Programming

Elapsed time to
completed system

60 minutes 60 minutes

15 minutes 3 hours
2 minutes 1 O hours

1 hourand 14hours
17 minutes

SOF[AND • International , Inc.
An alflllare company of Royal American Technologies

SYSTEM BUILDER FEATURES:
• Automaticall y generates Indented , Structured , Copy

Book Source Code ready fo r compiling wi th Turbo
Pascal (no programmi ng needed)

• Paint Application and Menu screens using Keyboard or
Microsoft Mouse'"

• Finished Application screens all use System Bu ilder 's
In-Line machine code for exceptional speed

• Use fu lly prompted Screen Guidance Templates ·· to
defi ne up to 16 Data fil es pe r appl ication , each record
having an Unlimited Number o f fields

• Define up to 16 Index Keys pe r application database
• Paint functions incl ude:

-Center, copy, move , delete, insert or restore a line.
Go straight fro m screen to sc reen wi th one keystroke

-Cut and paste bl ocks of text sc reen to screen
- Draw and erase boxes. Define colors and intensities
-Access special graphic characte rs and characte r fi ll

• Support s an unlimited number of memory variables
• File Recovery Program Generator to make fi xing of

corrupted da tafi les an automatic process
• Automaticall y mod ifies da ta fi les without loss of data

when adding/deleting a fi eld
• Menu Generator wi th unl imited Sub- Menu levels
• Experienced developers can modify the System Builder
• Develop systems fo r Floppy or Hard Disk
• Mod ify System Bu ilder 's output code to include Exte r

nal Procedures, Functions and lnli ne Code
• Easy-to-use Interface to access ASC II and dBase Files

VARs, system integrators and dealers:
Your inquires are always welcome.

Call us at the numbers shown on coupon.

"I think it's wonderful ••• prospec
tive buyers should seriously con
sider DESIGNER even before
dBASE m." Mr. Greg Weale

Corporate Accounts Manager,
Computer/and

"We used DESIGNER last year to
program a major application. It
saved our programmers so much
time. We now use DESIGNER
Instead of dBASE m as our devel
opment standard!'

Mr. Peter Barge, Director
&rvices Division, Horwath & Horwath

"DESIGNER has resulted in signi
ficant time savings ••• We use it on
classical database applications!'

Mr. Andy Rudevics, Director
Andrasoft Corporalion r·--·---,

Softland International, Inc.
320 Harris Ave., Suite A
Sacramento, CA 95838

(800) 654-7766
In California (800) 851-2555
Please rush me __ copies of SYSTEM
BUILDER at$ I 99 .95 per copy and
_ copies of REPORT BUILDER at
$179.95 per copy. I am enclosing $6.00
for postage and handling. Note: California
reside nts please add 6% sales tax.

Address _______ _ _ ___ _

CitY--------------

State ______ Zip _____ _

Phone ____________ _

Payment : D Check D Money Order

D Cashiers Check D AMEX

D VISA D MASTERCARD

Expiration date _________ _

Card Number - ----------

Signature _____ _______ _

30-Day Money-Back Guarantee. Not copy
protected . $20 restocking fee if not
returned in original conditio n.
System Req uircmcnts-Sys1em Bui lder/Report
Builder: IBM PC/XT/AT' , or simi lar. with mi nimu m
256K RAM . dual fl oppy drives, or hard disk. color
or monochro me monitor. MS2 or PC 0 05 1 version
2.0 or later. Turbo Pascal Version 2.0 or later
(Normal. BCD or 8087 vers ions).
1Tradema rks of International Business Machines Corp .
2Trademark ofM1crosoft Corp .
·~Turbo Pascal •~a reg1~tered trademark of Borland lnternat1onal .

L·-:A::s.::g.:r:r:.m:o~s:;-:e ·- - - .I

DIALOG
continued from page 6

should be shorted at a time and
the duration of the short circuit
should not exceed one second."

Your experimenter is likely to
ground some of the outputs. The
74LS374 can get quite hot; up to 4
watts worth if all 8 outputs are
grounded when all outputs are set
to l. Is your staff prepared to re
pair irate readers' damaged prin
ter boards?

Also, each data output line is
bypassed to ground with a 0.0022
microfarad capacitor, which re
duces radio interference, but also
slows the output waveform rise
time. Slow rise times can cause
spurious osci llations in your ex
perimenter's digital circuits con
nected to the data lines.

Stanley Logue
San Di,ego, CA

Well, "caution to the wind" is proba
bly a bit too carefree. Stanley is
right-you shouldn't ground more
than one of pins 2-9 on the parallel
port's DB25. But for that matter you
shouldn't ground any of them; there's
no logical reason to ground an output
pin. The bidirectional pins 1, 14, 16,
and 17, on the other hand, have pull
up resistors on their outputs and may
be freely shorted to ground indefinitely
whether they are acting as inputs or
outputs.

I've used the printer port in a num
ber of real-world hardware test situa
tions and it's always performed mar
velously. I think it's the quickest,
easiest way to control devices in the
outside world.

-Bruce Eckel

AND WHAT OF THE MAC?
To the Editor:

Never before have I felt the urge
to write and congratulate a maga
zine on its quality, until I read
TURBO TECHNTX from cover to
cover. The material is keeping me
entertained well enough so that I
don't mind waiting another nine
weeks until my copy of Turbo Pas
cal 4.0 arrives . .. I figure after
memorizing this issue, my 4.0 pro-

8 TURBO TECHNIX March/ April 1988

grams will be better for the wait. I
can't wait for the second issue
because I'm not sure how you 'can
improve on the first.

But what of the Macintosh, a
machine whose developers cry out
for this caliber of help? I read the
articles on PAL, Turbo Prolog,
and Turbo C. I loved them, but
what I really need right now is the
same lucid material covering
Turbo Pascal 011 the Mac. I can't
even find Tom Swan's book Pro
gramming with Macintosh Turbo
Pascal in the stores.

Michael Leahy
Columbus, OH

Tom Swan's book is excellent-if it
isn't on the shelves, order it!

Whether to be PC-specific was one of
the toughest calls we had to make in
designing TURBO TECHNIX. An
underlying philosophy here is that you
cannot separate a programming lan
guage from the machine environment
within which it operates. Most people
can master a language, but making
use of machine services is complex,
subtle, and almost always insuffi
ciently documented. We need to cover
machine-specific issues in great detail,
but if we tried to cover both the PC
and the Mac in one magazine we
would end up doing justice to neither.

Borland is presently working on
various means of providing addi
tional support and information to
Macintosh users, and we're adding
letters such as yours to a query file for
corporate planners ' use. Mac people,
let us know what you need, so we can
work toward a future in which the
grass grows green on both sides of the
68186 fence.

-Jeff Duntemann

YOU ASKED FOR IT ...
To the Editor:

Thank you so much for TURBO
TECHNIX. I was really impressed
with the quality of the publication
... a truly outstanding job.

The entire publication was
filled end to end with well
written, interesting, and useful
articles. I especially enjoyed the
articles by Jeff Duntemann and
Michael Covington. The magazine
has wonderful organization-it
was really nice to see that you
addressed all the major language
products. The article called "Lan
guage Connections: The Turbo
Prolog-Turbo C Connection" was
also extremely interesting.

Jeff ... you asked in your editor
ial what we, as Turbo program
mers, really need. Well, listed
below are a few of the things that
l would like to see:

l. How to interface Turbo Prolog
and Turbo Pascal;

2. How to easily perform
Call(Goal) functions within
Turbo Prolog;

3. How to easily perform functor
extraction operations in Turbo
Pro log;

4. How to easily perform database
management of large databases
and knowledge bases in Turbo
Pro log;

5. How to set up and uti lize
scripts, frames, demons, and
expert system shells in Turbo
Pro log;

6. AI and expert system tech
niques;

7. Handling graphics from within
Turbo Prolog, including infor
mation on the LoadPic com
mand from the Turbo Prolog
Toolbox. I have tried to use this
command without much luck
-some help would be appre
ciated.

Thank you, once again, for th is
excellent publication.

Lindsay D. Hiebert
Kansas City, MO

Lindsay, we're on your wavelength;
many of your wish list items are in
your hand.

Your first question is an easy one.
Peter lmmarco shows precisely how to
interface Turbo Prolog and Turbo
Pascal 4.0 in this month 's "Language
Connections" column.

Implementing a call predicate in
Turbo Prolog is not easy but it is pos
sible. Jn fact, Safaa Hashim demon
strates a call in his article "Metalogic
and Expert Systems" in this issue. His
example is specific to an expert system
design, but the technique of rewriting
rules as database facts and interpret
ing them is a general one.

Functor extraction is another diffi
cult area that requires an interpreter
to solve. Essentially, you are asking
how to implement functor in Turbo
Prolog. The trick here is to extract the
functor from a structure as it is inter
preted. Ergo, first we need an inter
preter. Again, "Metalogic and Expert

cnntinuPd on page JO

Upgrade Your Technology
We're Programmer's Connection, the leading
independent dealer of quality programmer's
development tools for IBM personal com
puters and compatibles. We can help you
upgrade your programming technology with
some of the best software tools available.
Comprehensive Buyer's Guide. The CONNECTION,
our new Buyers Guide, contains prices and up-to-date
descriptions of over 600 programmer's development
tools by over 200 manufacturers. Each description
covers major product features as well as special re
quirements, version numbers, diskette sizes, and
guarantees.
How to Get Your FREE Copy: 1) Mail us a card or
letter wi1h your name and address; or 2) Call one of
our convenient toll free telephone numbers.

If you haven't yet received your copy of the
Programmer's Connection Buyer's Guide, act
now. Upgrading your programming technol
ogy could be one of the wisest and most
profitable decisions you'll ever make.

USA 800-336-1166
Canada .. 800-225-1166
Ohio & Alaska (Collect) 216-494-3781
lnternational 216-494-3781
TELEX .. 9102406879
Business Hours: 8:30 AM to 8:00 PM EST Monday through Friday

Prices, Terms and Condttions are subject to change.
Copyright 1988 Programmer's Connection Incorporated

Sale Prices effective through 03/31/88

ORDERING INFORMATION
FREE SHIPPING. Orders within the USA (including
Alaska & Hawaii) are shipped FREE via UPS. Call for
express shipping rates.
NO CREDIT CARD CHARGE. VISA, MasterCard and
Discover Card are accepted at no extra cost. Your card
is .charged when your order is shipped. Mail orders
please include expiration date and authorized signa
ture.
NO COO OR PO FEE. coos and Purchase Orders are
accepted at no extra cost. No personal checks are ac
cepted on COO orders. POs with net 30-day terms
(with initial minimum order of $100) are available to
qualified US accounts only.
NO SALES TAX. Orders outside of Ohio are not
charged sales tax. Ohio customers please add 5% Ohio
tax or provide proof of tax-exemption.
30-DAY GUARANTEE. Most of our products come
with a 30-day documentation evaluation period or a 30-
day return guarantee. Please note that some manufac
turers restrict us from offering guarantees on their
products. Call for more information.
SOUND ADVICE. Our knowledgeable technical staff
can answer technical questions, assist in comparing
products and send you detailed product information
tailored to your needs.
INTERNATIONAL ORDERS. Shipping charges for In
ternational and Canadian orders are based on the ship
ping carrier 's standard rate . Since rates vary between
carriers, please call or write for the exact cost. Inter
national orders (except Canada), please include an ad
ditional $1 O for export preparation. All payments must
be made with US funds drawn on a US bank. Please
include your telephone number when ordering by mail.
Due to government regulations, we cannot ship to all
countries.
MAIL ORDERS. Please include your telephone num

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ bmon~m~o~m~ BesITTeWsp&~ycomp~~ ~~~• 

blaise products 
ASYNCH MANAGER Specify C or ill seal... 175 

List Ours 
135 

99 
55 

C TOOLS PLUS,15.0 . .. 129 
LIGHTTOOLS forDatal1ghtC ............... .......... Sate 100 
PASCAL TOOLS/TOOLS 2 .. 175 
Turbo ASYNCH PLUS,14.0 ... . 129 
Turbo C TOOLS ... 129 
Turbo POWER TOOLS PLUS,14.0 ... 129 
VIEW MANAGER Speedy C or lllscaf .. 275 

Peabody Pop-Up Reference Utility 
by Copia International 

List $100 Ours $89 

135 
99 
99 
99 

199 

Peabody is a fast and flexible on-line reference utility with 
databases available for Turbo Pascal or Microsoft C. It provides 
instant, accurate and complete language information in pop-up 
frames at the touch of a key. With Peabody, you can select 
general topics from a structured subject menu, or use 
Peabody's hyperkey to get instant help for the keyword closest 
to the cursor. Specify database desired. Additional databases 
are available for $100 with manual or $50 without manual. 

borland products 
EUREKA Equat10n Solver .. 167 105 
Paradox 1.1 by Ansa/Bolfand... . 495 359 
Paradox 2.0 by Ansa/Bolfand... 725 525 
Paradox Network Pack by Ansa/Bolfand. ... 995 725 
Quattro: The Professional Spreadsheet .... ...... .New 195 125 
Reflex: The Analyst . .. 150 99 
Sidekick . . . 85 57 
Superkey ... 100 64 
Turbo Basic Compiler... 100 64 
Turbo Basic Database Toolbox .. 100 64 
Turbo Basic Editor Toolbox .... 100 64 
Turbo Basic Telecom Toolbox .. 100 64 
Turbo C Compiler (Call for support products) ... 100 64 
Turbo lightning .. 100 64 
Turbo lightning Word Wizard ... 70 47 
Turbo Pascal ............................. ................... Sale 100 59 
Turbo Pascal Database Toolbox .. 100 64 
Turbo Pascal Developer's Toolkit .. 395 259 
Turbo Pascal Editor Toolbox .. 100 64 
Turbo Pascal Gameworks Toolbox .... . 100 64 
Turbo Pascal Graphix Toolbox .. 100 64 
Turbo Pascal Numerical Methods Toolbox ... 100 64 
Turbo Pascal Tutor ...... 70 41 
Turbo Prolog Compiler ... 100 64 
Turbo Prolog Toolbox ... 100 64 

c language 
C BTREE by feacock Systems ............ ......... New, Sale 159 119 
Essential Software Products Alf Vanebes ... CALL CALL 
Greenleaf Products All Vaneties .. CALL CALL 
V~amin C by Creative Programming ... 225 149 

VC Screen Forms Designer ... 100 79 

database management 
Clipper by Nantucket ... 
dBASE Ill Plusoy Ashton-Tate .. . 
Fox Base Plus by Fox Software .. . 
Genifer by Byte/ ... 
R:Base 5000 by Microrim .. 
R:Base System V byMicrorim ... 

peter norton products 
Advanced Norton Utilities .. 
Norton Commander ... 
Norton Guides Spedfy lJJnguage .. 
Norton Utiltties .. . 

Flash-Up with FREE Mouse 
from Software Bottling of NY 

List $89 Ours $79 

695 379 
695 3B9 
395 249 
395 249 
495 359 
700 439 

150 89 
75 55 

100 65 
100 59 

Flash-Up is a memory-resident macro, menu and note maker 
compatible with most languages. Easy-to-use features include 
a pull-down interface and on-line help. And until 03/31 /88, 
you'll also get a Microsoft compatible mouse FREE. 

microsoft products 
Microsoft C Compiler 5 w/CodeView ... 450 285 
Microsoft COBOL Compiler wdh COBOLTo&s . . 700 439 
Microsoft Excel.. 495 319 
Microsoft FORTRAN Opljmizing Compiler. .. 450 285 
Microsoft FORTRAN for XENIX... 695 439 
Microsoft Leaming DOS .. 50 38 
Microsoft MACH 20 ....................................... .New 495 329 
Microsoft Macro Assembler. . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . 150 99 
Microsoft Mouse Speedy Serial or Bus .. 

with Paint & Moose Menus .. ... . 
with Microsoff Wi'IOO..s & Paint ... 
withEasj{:AD ... 

Microsoft Pascal Compiler ... 
Microsoft QuickBASIC .. 
Microsoft QuickC ... 
Microsoft Windows .. 
Microsoft Windows 386 ... 
Microsoft Windows Development Kit .. 
Microsoft Word .. 
Microsoft Works .... 

periscope products 
Periscope I with Boarrl .... 
Periscope II with NM/ Breakout Swach .. 
Periscope 11-X Software Oriy ... . 
Periscope 111 BMHz Ve1Si'.1n .. . 
Periscope 111 ICMHz Version .. 

turbo pascal utilities 
AZATAR DOS Toolkit by AZATAR ... 
Btrieve /SAM File Mgr by NoveH .. 
DOS/BIOS & Mouse Tools by Quim-Curtis ... 

150 99 
200 139 
175 119 
300 189 
99 66 
99 66 
99 66 

195 129 
500 299 
450 285 
195 129 

345 275 
175 139 
145 105 
995 795 

1095 875 

95 85 
245 184 

75 67 

operating system, diskette size. and any applicable 
compiler or hardware interface(s). Send mail orders 

to: Programmer's Connection 
Order Processing Department 

7249 Whipple Ave NW 
North Canton, OH 44720 

Flash-up by Software Bottling ... 
Flash-up Developer's Toolbox 
MACH 21or TurtJo ills ca/ by MICroHelp .. 
MetraByte D/A Tools by Quinn-Curtis ... 
Overlay Manager by TurtxJAJwer Software ......... .New 
Science & Engrg Tools by Quim-Curtis ... 
Screen Sculptor by Software Bottling .. 
Speed Screen by Software Bottling. 
System Builder by Royal Anierican ... 

IMPEXOuetyt.11ility ... 
Report Builder .. 

TDEBUG 4.0 by TurlJoPower Software .. 
Tmark by Tangent Designs .. 
Turbo Analyst by TuIIXJAJwer Software ... ........... .New 
Turbo Plus by Nostradamus ... 
Turbo Professional 4.0 TuIIXJAJwer ...... .. New Ve1Sion 
TurboHALD from /MS/ . ...................................... Sale 
Turbo Power Utilities by TurlJoPower .. 
Turbo Ref by Gracon Sel'lices ........... ... . 
Universal Graphics library by Quinn-Curtis .. 

TurboGeometry Library 
by Disk Software 
List $100 Ours $89 

89 79 
49 45 
69 55 

100 89 
45 39 
75 67 

125 89 
35 32 

150 129 
100 89 
130 115 
45 39 
80 .69 
75 59 

100 89 
99 79 
95 69 
95 78 
50 35 

130 119 

TurboGeometry contains over 150 routin es that perform 
geometric calculations. Topics include: intersection of lines. 
arcs, circles and planes; finding coefficients of line equations. 
planes and circles; distance between points, lines, circles. 
arcs, and planes; decomposition of polygons; 20/30 transfor
mations; 20/30 curve generation, vector computations; con
vex hull computations; and much, much more. 

other products 
Brief by Soluti'.ln Systems . . . 
Dan Bricklin's Demo II by Software Garden ... 
Dan Bricklin's Demo Pgm by Software Garrlen ... 
Dan Bricklin's Demo Tutorial by Software Garden . . . 
Instant Assistant by Nostradamus ... ... . 
Instant Replay Ill by Nostradamus .......................... . 
OPT-Tech Sort byOpt-Teeh Data Proc ...... . 
Peabody by Copia Intl, Specify lJJnguage . ............ . New 
QBase RelaMnaJ Data/Jase by Crescent ..... . 
QuickPak by Crescent Software ... . 
Resident Expert Speedy lang by Santa ~ta ... 

195 CALL 
195 179 
75 57 
50 45 

100 89 
150 129 
149 99 
100 89 
99 89 
69 59 

CALL CALL 

CALL for Products Not Listed Here 



LISTING 1: PASSWORD.SC I 

CHECKPASS: PAL 2.0 procedure 
modified by Alan Zenreich 

PROC CheckPass() 
PRIVATE 
z, 
zusername, 
zuserpass, 
znameok, 
zpassword 

CURSOR OFF 
PASSIJORD 11dontshowit 11 

VIEIJ "secrets" 
MOVETO [name] 
FOR z FROM 1 TO 3 

lil1,0 CLEAR EOL 
?? "or press [Esc] to quit" 
GlO,O CLEAR EOL 
?? "Enter your name: 11 

CURSOR NORMAL 
ACCEPT "A15" TO zusername 
CURSOR OFF 
CLEAR 
IF NOT RETVAL THEN 

znameok=FALSE 
QUIT LOOP 

END IF 

LOCATE zusername 
IF retva l THEN 

znameok=TRUE 
zpassword=[passwordl 
QUIT LOOP 

ELSE 
znameok=FALSE 

to check passwords and user names 
11/13/87 212· 691 · 0170 
header contains name of proc 
variables private to this proc 
used as counter for loops 
name accepted from user 
password accepted from user 
name accepted or not 
password found in table 

turned cursor off 
present password for protected table 
places secrets table on workspace 

makes "name" field current 
top of FOR loop to check name 
clear a space for prompt 

prompt user for mane 

get input 

clear the screen 
user pressed escape 

is name in the table? 
Yes, so 

get the password 
go on to the next step 
No, so 

BEEP , tell the user about i t 
MESSAGE "That name can't be found" 

END IF 
END FOR 

UNPASSWORD "dontshowi t" 
RESET ; clears workspace and assures that unpassword takes affect 

IF znameok THEN 
FOR z FROM 1 TO 3 
lil1,0 CLEAR EOL 

; name was val id 
; check for valid password 

?? "or press [Esc] to qu i t" 
GlO,O CLEAR EOL 
?? "Enter your password: 11 

STYLE ATTRIBUTE 0 
ACCEPT 11A15" TO zuserpass 
STYLE 
SIJITCH 

CASE NOT RETVAL: 
pressed esc 

zpassword: 

prompt user for name 
black on black 
get input 
restore normal attributes 

RETURN FALSE 
CASE zuserpass = 

RETURN TRUE 
OTHERIJISE: 

; password i s good 

BEEP ; password no good 
MESSAGE "I nvalid password, try again" 

ENDSIJITCH 
END FOR 

END IF 
RETURN FALSE 

ENDPROC 

z=Checkpass() 
IF NOT z THEN 

EXIT 
END IF 

end of procedure definition 

allows for procedure swappi ng 

i f not TRUE, then ex i t 

10 TURBO TECH NI X March/ April 1988 

DIALOG 
continued from page 8 

Systems" points in the right direction. 
By starting with Hashim's principl,es, 
one could impl,ement functor by 
matching with and parsing a given 
structure. 

Management of the dynamic data
base is hey to using Turbo Prolog and 
is a subject TURBO TECH NIX 
plans to cover well. So stay tuned! 

You would like to see more on Al 
techniques, expert system, and knowl
edge representation? We couldn't be 
more on track in this issue. The theme 
is Expert Systems and Turbo Prolog. 
Knowledge representation, frames, 
scripts, and demons are discussed in 
detail in my article, "Suitabl,e for 
Framing. " In addition, Keith Weis
hamp impl,ements a compl,ete expert 
system shell in "Building an Inference 
Engine in Turbo Prolog'.' 

Handling graphics, parsing, 
contrxt-.wnsitive help, and the like are 
all topics addressed in the Turbo 
Prolog Toolbox. We plan to cover the 
toolbox in great detail in coming 
issues. 

-Mike Floyd 

CHECKPASS, TAK E T WO 
Alan Zenreich was one of several peo
ple who pointed out some bugs in the 
PAL listing PASS\!VD.SC (Volume 1, 
Number 1, page 131). That particu
lar version of the listing was printed 
in error, having been halfway through 
a conversion from Paradox 1. 0 to 
Paradox 2. 0. Alan was nice enough 
to "polish up" the CheckPass proce
dure for us, and we're printing it 
here. This version does require 
Paradox 2. 0, and it improves security 
by cl,earing the workspace with a 
RESET and assuring that the pass
word withdrawal does, inf act, ta he 
effect. In our phone conversation, 
Alan made a valid point: As PAL 
evolves, new reserved words will be 
added to its parser, and if you have 
PAL code containing identifiers iden
tical to those new reserved words, the 
code will need a lot of search-and
replace work to upgrade to the new 
Paradox version. Alan's own solution 
is to pref ace his own identifiers with a 
"z" as he has done here, under the 
(valid) assumption that few if any 
reserved words are ever likely to start 
with "z." The improved source code 
may be downloaded from CompuServe 
as PASS2.ARC. 

-Jeff Duntemann 



TURBO PASCAL 
AND TURBO c ... 
MEET 

It's time to put graphics 
into your programming. 

A picture's worth a thousand words. 
So your programming isn't complete 
until you have graphics. TurboHALO 
brings your screen and printer to life 

with subroutines that draw; chart, map, 
and display All with color, shape, 

clarity, perspective and motion. With 
TurboHALO, create any picture you 

can imagine. 

-raRB&llA• 0 
TurboHAW gives you 

graphics power. 
TurboHALO gives you everything you 

need for Turbo C and Turbo P'ascal 
graphics programming. A library of 

/ 
"ideal! TurboHALO does the job 
comparable co packages costing 

$3000 to $4000." 
Jim Bromley 

Superintendent of 
Spectrum Management 

"TurboHALO is so fun ... 

~ 
"/ like the speed of 

TurboHALO. .. it's ten times lilster 
than the competition." 

Deniz Terry 
Doctoral Candidate 

I use it to design 
programs as a hobby. .. It's got 

lots of abiliry." \ William Porter 
Control Systems Manager 

FOR 

"wt evaluated all of the graphic 
development packages for Turbo 
Pascal, and TtlfboHALO w;is the 

hands down wi/l/ler! " 
Quinn Curtis 

Largest New England Distributor 

GRAPHICS 
PROGRAMMING 

over 150 graphics subroutines. Drivers 
for over 42 graphics hardware devices 

for the IBM PC family and compatibles. 
You can create the images you want, 

on the hardware you have! 
Fast, proven and reliable. 

TurboHALO is up to ten times faster 
than other graphics toolkits. And with 

TurboHALO you get proven, reliable 
programming tools used by 

professionals for years. 
You'll like TurboHAW or your 

money back! 
TurboHALO is available for only $95. 

You get an unconditional 45-day 
money-back guarantee on TurboHALO. 

To order, call your dealer or IMSI at 
(415) 454-7101 or (800) 222-4723; in 

CA (800) 562-4723; in Washington DC 
(202) 363-9340 or in NC(919) 854-4674. r----------. 

I YES, I want to see the difference I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

TurboHALO makes in my graphics 
programming! Rush me the following I 
TurboHALO Graphics Toolkit(s)@ $95 
each p lus $3 shipping. California I 
residents add 6 % sales tax. 
D TtlfboHALO for Turbo Pascal 
D TurboHALO for Turbo C 
D Check enclosed for$ __ _ 

I 
I (made payable co IMS!) 

D c harge my credit card 
for$ D VISA D MasterCard I 

Sign:uure 

C;1rcl Number 

Name: 

Tirk 

Comp;my 

Stree t 

I 
I 

Expir.uion Dace 

1 
I 
I 

~c;-,y-----~s,-.w-:· -----~z~;p I 

Mai/co: 

I 
I 

L IMS/, 1299 Fourc/J Screec, San Rafael, CA 94901 .J ---------'fl1rboHALO requires 256K memory (min); memory residem drivers require 2K (Turbo Pascal only); DOS version 2.0 or higher; Borland language/compiler required. TurboHALO is a trademark of 
Media Cybernetics and IMS! . Turbo C and Turbo Pascal are trademarks of Borland. 



~ CUSTOM EXIT PROCEDURES 
~ 
~ A Turbo Pascal program isn't over until it's over, and it isn't 
5 over until after the END. 
E--< 

Tom Swan 

WIZARD 

Be kind to our webjooted friends. 
For a duck might be somebody 's mother, 
who lives all alone in the swamp, 
where it's always cold and damp ( dahmp ). 
Now, you may think that this is the end. 
Well it is. 

-Children's parody of John Philip Sousa's Stars and 
Stripes Forever. 

When a Turbo Pascal 4.0 program ends, several 
invisible events occur. The standard input and out
put files are closed. A message is displayed if a run
time error caused •he program to end prematurely. A 
return code is passed back to DOS (or to a parent 
program from a child process). Changed interrupt 
vectors are restored to their original values, that were 
saved earlier by Turbo Pascal runtime routines when 
the program started. 

In other words, to paraphrase the famous "duck" 
song, you may think that a Turbo Pascal program's 
END. is the end. Well, it isn't. 

LINKING INTO THE EXIT CHAIN 
By following a few simple rules, you can weld your 
own links to the chain of events following the END. 
of a Turbo Pascal program. A custom exit procedure 
runs immediately before Turbo Pascal's normal exit 
events occur, gaining control when one of the fol
lowing happens: 

• The program ends normally 

• A Halt statement is executed anywhere in the 
program 

• An Exit statement is executed in the program's 
outer block 

• A runtime error occurs 

Listing 1, ExitShell, demonstrates how to write a 
custom exit procedure. When you run the program, 
it displays: 
Welcome to ExitShell 
Press <Enter> to end program ... 
Inside CustomExit procedure 

12 TURBO TECHNIX March/ April 1988 

The message, "Inside CustomExit procedure," 
appears after you press Enter to end the program, 
proving that procedure CustomExit runs even 
though the program never calls it directly. To make 
this happen, ExitShell performs these two assign
ments at the beginning of the program's main body: 

savedExitProc := exitProc; 
exitProc := @CustomExit; 

The first assignment saves the value of exitProc, a 
generic Pointer variable defined in the System unit, 
which Turbo Pascal automatically links to every com
piled program. ExitShell's global variable, saved
ExitProc, holds the original exitProc value for the 
duration of the program. In your own programs, 
always save exitProc in a similar global variable. 
Never assign exitProc to a variable declared local to 
a procedure or function, or to a dynamic variable on 
the heap. The saved exitProc must be available after 
the program ends and, therefore, only a global vari
able will do. 

The second assignment sets exitProc to the 
address of the custom exit procedure-CustomExit 
in ExitShell. The @ operator returns the address of 
CustomExit. Because exitProc points to the custom 
exit procedure, Turbo Pascal will call this procedure 
when the program ends. 

Together, these assignments link a procedure 
(which can have no parameters) into the exit chain. 
You can name the exit procedure anything you like. 

Inside the exit procedure, assign the saved pointer 
back to exitProc. This preserves the exit chain, let
ting other processes execute their own exit proce
dures after yours finishes. Except for this step, there 
is no limit to what you can do inside a custom exit 
procedure. You can read and write files, display 
values, use DOS functions, call other procedures and 
functions, and perform any other actions as part of 
your program's shutdown sequence. 

continued on page 14 



1 + 

r-+---+----'-- - i 

I 

1 
I 
L 

r 
L 

I 
i 

I 
++-c: i ~~~ 

t 

t-
1-

~ - -

. I +I 

'· j 

,. 
; .. + 

-~ + 
t 
I 

-+ +-

+ J 



EXIT PROCEDURES 
continued from page 12 

It is critical to declare the exit 
procedure FAR by surrounding its 
declaration with the compiler 
directives {$F} and {$F-}. (See 
CustomExit in ExitShell.) Turbo 
Pascal calls the exit procedure 
with a FAR CALL instruction 
(technically called an Inter-Segment 
Call). Using the {$F} directive tells 
Turbo Pascal to end the procedure 
with a complementary Inter
Segment FAR RETURN instruc
tion. 

From my experience in prepar
ing the examples for this article, 
one of the most common mistakes 
is forgetting to declare an exit 
procedure FAR. Turbo Pascal does 
not prevent this mistake (which, as 
I painfully learned, causes a crash 
from which you'll probably have 
to reboot). If screwy things 
happen, or if the computer hangs 
when your program ends, you 
probably forgot to surround the 
custom exit procedure declaration 
with {$F} and {$F-}. 

CUSTOMIZING A RUNTIME 
HANDLER 
Custom exit procedures make it 
easy to write your own runtime 
error handler, perhaps displaying 
a more helpful message than that 
same ol' line: 
Runtime error 106 at 0000:001E 

To see an example of a custom 
runtime handler, type in and com
pile Listing 2, ErrorShell. As in 
the previous program, two assign
ments begin ErrorShell, saving 
exitProc in savedExitProc and 
assigning to exitProc the address 
of CustomExit. 

Inside CustomExit in Listing 2, 
an IF statement examines two 
global System unit variables, 
exitCode (type Integer) and 
errorAddr (type Pointer). Exit
Code holds one of three values: 
the integer number passed to a 
Halt statement, a runtime error 
code, or zero if the program 
ended normally or if an Exit state
ment was executed in the outer 
program block. ErrorAddr 
addresses the location of a run
time error if one occurred. 

14 TURBO TECHNIX March/ April 1988 

To determine the meaning of a 
nonzero exitCode value, check 
whether errorAddr is NIL. If so, 
then no runtime error occurred 
and, therefore, exitCode holds the 
value passed to a Halt statement 
But if exitCode is nonzero, and if 
errorAddr is not NIL, then a run
time error occurred. In this case, 
errorAddr specifies the segment 
and offset address of the runtime 
error, and exitCode equals the 
error code. (See your Turbo Pascal 
manual for a complete list of run
time error codes and their mean
ings.) To better understand how to 
use exitCode and errorAddr, try 
the following three experiments. 

1. Run ErrorShell (Listing 2). 
When the program asks for an 
integer value, type 0 and press 
Enter. The zero value passed to 
Halt is assigned to exitCode, 
which CustomExit then exam
ines. Consequently, Custom
Exit's IF statement does not 
execute and, therefore, the pro
gram silently ends as though it 
had no custom exit procedure. 

2. Run ErrorShell again, but this 
time type 100. When you press 
Enter, the program passes 100 
to Halt, setting exitCode to that 
value. Because no runtime 
error occurred, errorAddr is 
NIL and CustomExit's IF state
ment executes, displaying the 
messages: 

Program halted! 
Exit code = 100 

3. Run ErrorShell a third time. 
Type ABC and press Enter. 
Assigning alphabetic characters 
to integer variable num causes 
a runtime error during the call 
to Readln, assigning to error
Addr the address of the instruc
tion that caused the error and 
setting exitCode to 106, Turbo 
Pascal's error code for an 
"Invalid numeric format." Sens
ing that a runtime error has 
occurred, CustomExit's IF state
ment does not execute, instead 
letting Turbo Pascal display its 
familiar runtime error message. 

As you can see from these 
experiments, exitCode and 
errorAddr tell you the reason 
your program is ending. Table 
1 lists the possible combina
tions of the two values. By test
ing exitCode and errorAddr, 
you can write a custom error 
handler to take different 
actions before passing control 
back to DOS or to the parent 
process that activated the 
program. 

exit Code 

=O 

<> O 

<> O 

errorAddr MEANING 

= NIL normal pro
gram end 

= NIL Halt(n) 

<> NIL 

executed; 

Runtime error 
occurred; 

exit
Code=error 
code; 

errorAddr=address 

Tabl,e 1. exitCode and error
Addr combinations. 

TRAPPING RUNTIME 
ERRORS 
Because exitCode and errorAddr 
are variables, you can change 
their values inside a custom error 
handler to trap runtime errors 
and handle them yourse lf. For 
example, suppose your custom 
exit procedure finds that error
Addr is not NIL, indicating that a 
runtime error has occurred. After 
taking appropriate action-per
haps displaying the exitCode 
value, deallocating memory, clos
ing files, and so on-set error
Addr to NIL and exitCode to 
zero, canceling the runtime error. 

To see how this works, replace 
CustomExit in ErrorShell (Listing 
2) with the procedure in Listing 3. 
Run the modified program and 
type ABC to force a runtime error 
as you did in the earlier experi
ment. You should see a message 
similar to this: 

continued on page 16 



Program in the fast lane with 
Borland's new Turbo Pascal 4.0 ! 

0 ur new Turbo Pascal"' 
4. 0 is so fast. it's 
almost reckless. How 

fast? Better than 27.000 lines 
of code per minute. * That's 
more than twi ce as fast as 
Turbo Pascal 3.0. 

4.0 Technica l Highlights: 

• Compiles 27.000 lines per 
minute 

• Includes automatic project Make 
• Supports> 64K programs 
• Uses units for separate 

compi lation 
• Integrated development 

envi ronment 
• Interactive error detection/ 

location 
• Incl udes a command line version 

or the compiler 
• Highly compatible with 3.0 

For the IBM PS/2" and the I BM" and Compaq• fami
lies or personal compulers and all 100% compatibles 

4.0 breaks the code 
barrjer 

No more swapping code in 
and out to beat the 64K code 
barrier. Designed for large 
programs, Turbo Pascal 4.0 
lets you use all 640K of 
memory in your computer. 

Sieve (25 iterations) 
r 

r 
Size of Executable File 

Execution speed 

Sieve of Eratoslhenes. run on an 8MHz IBM AT 

r 
Turbo Pascal 4.0 

2224 bytes 

9.3 seconds 

Turbo Pascal 3.0 

11682 bytes 

9.7 seconds 

Smee the sou1ce file above is too small to indicate a d1tterence m compila11on speed we compiled our CHESS program tram Turbo Gameworks to give you a 
true sense ol how much taster 4 O really isl 

Compilation of CHESS.PAS (5469 lines) 

Compilation speed 

Lines per minute 

CHESS PAS compiled on an 8 MHz IBM AT 

Turbo Pascal 4.0 

t __ 12.1 seconds L 21.119 
L

Turbo Pascal 3.0 

35.5 seconds 

9,243 

4. 0 uses logjcal 
unjts f or separate 
compUaUon 

Pascal 4.0 lets you break 
up the code gang into " units." 
or "chunks. " These logical 
modules can be worked with 
swiftly and separately. 4.0 
also includes an automatic 
project Make. 

4.0's cursor automat
jcally lands on any 
trouble spot 

4.0's interactive error 
detection and location means 
that the cursor automatically 
lands where the error is. 
While you're compiling or 
running a program. you get 
an error message and the 
cursor flags the error' s 
location for you. 

Only $99.95 

60-Day Money-back Guarantee** 

For the dealer nearest you. 
or to order now, 
Call (800) 543-7543 
"Run oo an 8MHz IBM AT 

··u within 60 days ot purchase this product does not per1orm in accor
dance with 001 claims. call our customer se1vice depa1tment. and we will 
a11anoe a 1elund 

All Borland produc1s are trademarks or registered trademarks of Borland 
International. Inc Copyright C1987 Borland Internat ional, Inc Bl 1166A 

YES! I want to upgrade to Turbo Pascal 4.0 and the 4.0 Toolboxes 

If you are a registered Turbo Pascal user and have not been noti fi ed of 
Version 4.0 by mail, please call us at (800) 543-7543. To upgrade if 
you have not registered your product, just send the original registration 
form from your manual and payment with this completed coupon to: 

Turbo Pascal 4.0 Upgrade Dept., Borland International 
4585 Scotts Valley Drive, Scotts Valley, CA 95066 

Name -------------------

Ship Address ----- ------------
City _ _____ _________ State ___ _ 

Zip _____ Telephone ( 
This olfer 1s limited to one upgrade per valid registered product It is good unhl June 30. 1988 Not 
good with any other olfer from Borland. Outside U.S make payments by bank draft payable in U.S. dol
lars drawn on a U.S bank. CODs and purchase orders will not be accepted by Borland. 

For the IBM PS/2" and lhe IBM" and Compaq• families ot personal computers and all 100% 
compatibles 
1To quality tor the upgrade pr ice you must give lhe serial number ol lhe equivalent product you are 
upgrading. 

Please check box(es) 

o Turbo Pascal 4.0 Compiler 
o Turbo Pascal Tutor 
o Turbo Pascal Database Toolbox 
o Turbo Pascal Graphix Toolbox 
o Turbo Pascal Editor Toolbox 
o Turbo Pascal Numerical Methods Toolbox 
o Turbo Pascal Gameworks 

Total product amount 
CA and MA residents add sales tax 

Suggested 
Retail 

$ 99.95 
69.95 
99.95 
99.95 
99.95 
99.95 
99.95 

In US please add $5 shipping and handling for each product 
Outside US please add $10 shipping & handling 
for each product 
Total amount enclosed 
Please specify diskette size o 5'1• o 31/i 

Payment: o VISA o MC o Check o Bank Draft 

Credi! card expiration date:___) _ _ _ _ 

Card# I I I I I I 

Upgrade 
Pricef 

$ 39.95 
19.95 
29.95 
29.95 
29.95 
29.95 
29.95 

$ __ 
$ __ 

$ __ 
$ __ 

Serial No. 

TT/M-A/88 



LISTING 1: EXITSHEL.PAS 

PROGRAM ExitShell; 

{ Demonstrate how to write a custom exit procedure } 

VAR savedExitProc : Pointer; { Old ExitProc value } 

{$F+} PROCEDURE CustomExit; {$F-} 

{ Custom exit procedure } 

BEGIN 
Writeln( 'Inside CustomExit 
exitProc := savedExitProc 

END; { CustomExit } 

procedure' ) ; 
{ Restore saved exitProc pointer } 

BEGIN 

savedExitProc := exitProc; 
exitProc := @CustomExit; 

{ Save ExitProc pointer } 
{ Install custom error procedure} 

Writeln; 
Writeln( 'Welcome to ExitShel l 1 ); 

Write( 'Press <Enter> to end program ... ' >; 
Readln 

END. 

LISTING 2: ERRSHEL.PAS 

PROGRAM ErrorShell; 

{ Demonstrate how to write a custom halt and 
runtime error handler. } 

VAR savedExitProc : Pointer; { Old ExitProc value } 
num : integer; { Test nl.lllber } 

{$F+} PROCEDURE CustomExit; {$F-} 

{ Custom exit and runtime error handler } 

BEGIN 

IF ( exitCode <> 0 ) AND ( errorAddr NIL ) THEN 
BEGIN 

Writeln; 
Writeln( 'Program halted!' ); 
Writeln( 'Exit code = ' exitCode 

END; { if } 
{Display halt code} 

exitProc := savedExitProc { Restore saved exitProc pointer } 

END; { CustomExit } 

16 TURBO TECH IX March/ April 1988 

EXIT PROCEDURES 
continued from page I 4 

A small problem has developed. 
Please jot down the following 
nl.lllbers and call the programmer 
at 555-1212. 

Address 0:749 
Code 106 

Thank you for your support! 

This certainly is more friendly 
than Turbo Pascal's usual runtime 
error message, even if the last line 
sounds like that hick in the wine 
cooler commercial. The new exit 
procedure sets errorAddr to NIL 
and exitCode to zero, canceling 
the runtime error. This way, Turbo 
Pascal is unaware that an error 
occurred. If you remove these two 
assignments, Turbo Pascal displays 
its own runtime error message in 
addition to your custom note. 

UNITS AND EXIT 
PROCEDURES 
Another use for custom exit 
procedures is to add automatic 
shutdown code to units. (For a 
tutorial on Turbo Pascal 4.0 units, 
see my article, "Getting To Know 
Units," TURBO TECHNJX, 
November/ December 1987.) Each 
unit that a program uses can 
insert its own exit procedure into 
the chain of events that occurs 
when the host program ends. 

This technique opens countless 
doors for programmers. A 
memory management unit might 
deallocate a list of master pointers 
stored on the heap. A database 
unit might close temporary files, 
dumping buffered data to disk. A 
telecommunications unit could 
hang up the phone. These actions 
are guaranteed to occur even if 
the program halts prematurely 
due to a runtime error. 

Units install custom exit proce
dures in the same way as Listings 
I and 2 demonstrate. In this case, 
though, because multiple units 
might install several procedures 
into the exit chain, it's important 
to understand the order in which 
the program and various compo
nents in the units run. 

A unit can have a main body, 
called the initialization section. The 
statements in this section run 

continued on page I 8 



Sophisticated User Interfaces in Minutes! 

'",.6 
J..O 

Windows for data-entry (with full-featured editing), context-sensitive help, Lotus-style menus, pop
up menus, and pull-down menu systems. Overlay them. Scroll within them. 

Users and critics say it all!. .. 

". .. the best I've used . . . The code that it generates is excellent, with every feature you 
could conceivably desire . ... if you have problems, they give excellent technical advice 
over the phone . ... It saves time, is flexible and produces screens which are state of the 
art." Sally Stott, Software Developer 

" ... the best screen generator on the market." George Kwascha, TUG Lines, Nov/ Dec 87 

" ... the Cadillac of prototyping tools for Turbo Pascal .... Unlike the others, turboMAGIC 
is extremely flexible . ... [it} clearly offers the greatest variety of options." 

Jim Powell, Computer Language, Jun 87 

"Fast automatic updating of dependent fields adds flair to your input screens. . .. 
turboMAGIC will be a blessing for programmers who would rather not write the user 
interface for every program." Neil Rubenking, PC Magazine, 24 Feb 87 

"!was impressed with the turboMAG!Cpackage . ... the procedures created by turboMAGIC 
are well commented and easy to add to your own code. " 

Kathleen Williams, Turbo Tech Report, May/ Jun 87 

" ... definitely a recommended program for any Turbo Pascal programmer, novice or expert." 
Terry Lovegrove, Library Hi Tech News, Oct 87 

ORDER your Magic TODAY! Only $199. 

CALL TOLL FREE 800-225-3165 or 205-342-7026 

sophisticated 
software 
~ 

6586 Old Shell Road, Mobile, AL 36608 
Requires 512K IBM PC compatible and Turbo Pascal 4.0. 30-Day Money Back Guarantee. Foreign orders add $15. 



Stan 
Turbo 

Exit Pascal 

A~ 

,, 
ln itA Unit A Exit A 

'~ 

,, 
lnit B UnitB 

,If 

lnitC UnitC ExitC 

h 

( \ 

.... Program 

Figure 1. Multip!,e exit procedures in units run in the opposite order from the 
order the initialization sections run. 

18 TURBO TECHNIX March/ April 1988 

EXIT PROCEDURES 
continued from page 17 

before the first statement in a pro
gram that uses the unit. When a 
program uses multiple units, the 
initialization sections in all units 
run in the same order as the unit 
names appear in the program's 
USES declaration. After all initiali
zation sections finish executing, 
the program body statements 
begin running. Then, when the 
program ends, any exit proce
dures installed by the units run in 
the opposite order of the unit de
clarations in the USES statement. 
Consider a program that begins 
like this: 

PROGRAM DemoExit; 

USES UnitA, UnitB, Unite; 

The program uses three units, 
UnitA, UnitB, and UnitC. Figure 1 
illustrates the order in which the 
unit initialization sections and exit 
procedures run. After Turbo 
Pascal completes its own startup 
chores, the initialization sections 
in UnitA, UnitB, and UnitC run in 
that order. Then, when the pro
gram ends-either normally, 
through H alt or Exit, or due to a 
runtime error-Turbo Pascal calls 
the custom exit procedures one by 
one, this time in the opposite 
order of the unit declarations. In 
the example shown in Figure 1, 
units A and C attach procedures 
to the exit chain. Unit B does not 
have an exit procedure and thus 
performs no actions when the 
program ends. 

Listings 4 through 7 correspond 
with units A, B, and C in Figure 1. 
To run the complete example, 
compile UNITA.PAS, UNITB.PAS, 
and UNITC.PAS each to a TPU 
(Turbo Pascal Unit) disk file. Next, 
compile DEMOEXIT.PAS (Listing 
7), and then run it. You should see 
these lines on display: 
Inside Unit A initialization 
Inside Unit B initialization 
Inside Unit C initialization 
Welcome to DemoExit 
Inside Unit c exit procedure 
Inside Unit A exit procedure 

Several important details con
tribute to making this multiple-



unit example work correctly. Units 
A and C save exitProc in global 
Pointer variables declared inside 
each unit's IMPLEMENTATION 
section. You could declare saved
ExitProc in the unit INTER
FACEs, but because there is no 
reason for statements outside of 
the unit to use the saved pointers, 
it's probably best to hide saved
ExitProc variables in the IMPLE
MENTATIONs where items are 
visible only to statements inside 
the units. 

The custom exit procedures
ExitA and ExitC in Listings 4 and 
6-are declared FAR, but are not 
listed in the INTERFACE. This 
makes the procedures private to 
the unit, and prevents ths: host 
program (or another unit) from 
calling exit procedures directly, a 
poor and possibly dangerous prac
tice. As in Listi ngs 1, 2, and 3, the 
exit procedures restore the saved 
exitProc pointers before ending, 
thus preserving the exit chain. 

A simple experiment demon
strates what happens if you fai l to 
preserve the exit chain when 
using multiple exit procedures. 
Remove the fo llowing statement 
from the ExitC procedure of 
UnitC: 

exi tP roc : = savedEx i tP roc 

When you run the buggy 
program, UnitC's exit procedure 
runs but UnitA's does not. This 
happens because UnitC breaks 
the exit chain by failing to restore 
the saved exitProc pointer. There
fore, th e pointer to UnitA's exit 
procedure is lost. Careful readers 
may realize th at if exitProc 
addresses ExitC in UnitC, and if 
ExitC fails to restore the previous 
exitPr oc pointer, an infinite loop 
is the logical result. ExitC would 
end, and Turbo Pascal would 
repeatedly call ExitC as the next 
exit procedure in the chain. 

Turbo Pascal prevents this run
away condition by setting exitProc 
to NIL before calling each exit 
procedure in the chain. When a 
program ends for one of the rea-

continued on page 20 

BEGIN 

savedExitProc := exitProc; 
ex i tProc := @CustomExit; 

IJri teln; 

{ Save ExitProc pointer } 
{ Install custom error procedure} 

IJritelnC 'IJelcome to ErrorShell' >; 
IJri teln; 
IJrite( 'Enter an integer value: 1 >; 
ReadlnC nun >; 
Halt( nun) 

END. 

LISTING 3: CUSTOMEX.SRC 

{$F+} PROCEDURE CustomExit; {$F-} 
BEGIN 

IF errorAddr <> NI L THEN 
BEGIN 

IJritelnC •--------------- - ------ - - - -- - ---------• >; 
IJritelnC 'A small problem has developed.' >; 
IJritelnC 'Please jot down the following nlJllbers' >; 
IJritelnC •and call the progranmer at 555 -1212. 1 >; 
IJriteln; 
IJritelnC 'Address= ', 

seg(errorAddr"), 1 : 1 , ofs(errorAddr") >; 
IJritelnC 'Code ', exitCode >; 
IJriteln; 
IJritelnC 'Thank you for your support!' >; 
IJritelnC •------------- - -------- - ---- - ---------• >: 

errorAddr := NIL; 
exitCode := 0 

{ Cancel runtime error > 

END; { if } 
exitProc := savedExitProc 

END; { CustomExit } 
{ Restore saved exitProc pointer } 

March/ April 1988 TURBO TECHNIX 19 



LISTING 4: UNITA.PAS 

UNIT UnitA; 

INTERFACE 

IMPLEMENTATION 

VAR savedExitProc : Pointer; { Old exitProc pointer } 

{SF+} PROCEDURE ExitA; {SF-} 
BEGIN 

Writeln( 'Inside Unit A exit procedure' >; 
exitProc := savedExitProc 

END; { ExitA } 

BEGIN 
savedExitProc := exitProc; 
exitProc := @ExitA; 
WritelnC 'Inside Unit A initialization' 

END. 

LISTING 5: UNITB.PAS 

UNIT UnitB; 

INTERFACE 

IMPLEMENTATION 

BEGIN 
Writeln( 'Inside Unit B initialization' ) 

END. 

LISTING 6: UNITC.PAS 

UNIT Unite; 

INTERFACE 

IMPLEMENTATION 

VAR savedExitProc : Pointer; { Old exitProc pointer } 

{SF+} PROCEDURE ExitC; {SF-} 
BEGIN 

Writeln( 'Inside Unit C exit procedure' ); 
exitProc := savedExitProc 

END; { ExitC } 

BEGIN 
savedExitProc := exitProc; 
exitProc := @ExitC; 
Writeln( 'Inside Unit C initialization' 

END. 

20 TURBO TECHNIX March/ April 1988 

EXIT PROCEDURES 
continued from page 19 

sons listed earlier, a portion of the 
runtime code linked to the pro
gram executes the following loop, 
expressed here in Pascal-like 
pseudo code: 

WHILE exitProc <> NIL DO 
BEGIN 

exitProc := NIL; 
Call procedure at exitProc 

END; { while } 
Perform Turbo Pascal's exit chores 

Because exitProc is NIL when 
UnitC's modified ExitC procedure 
begins running, failing to restore 
exitProc to its saved value ends 
the runtime loop, causing Turbo 
Pascal to immediately perform its 
ciwn exit chores. Knowing this 
technical detail about how Turbo 
Pascal works through the exit 
chain suggests a way to explicitly 
break the chain-just leave exit
Proc unchanged. (There's no 
need to set exitProc to NIL, 
although doing so is harmless. 
ExitProc is already NIL when a 
custom exit procedure begin.) 

Breaking the exit chain is an 
advanced technique and you 
should employ it only after careful 
thought. There are times when 
the method might come in handy, 
though. Suppose the first of sev
eral exit procedures discovers a 
fatal disk error in a database sys
tem of many related units. To pre
vent subsequent exit procedures 
from writing to disk, and there
fore, displaying multiple disk error 
messages for the identical condi
tion, the exit procedure could 
break the exit chain. The program 
might use an IF statement similar 
to this: 
{Si-} Close(f); {SI+} 
errn1..111 := IOResult; 
IF Errn1..111 <> D THEN 
Writeln 

('Fatal disk error#' ,errn1..111); 
ELSE exitProc := savedExitProc; 

If the Close on file f fails, the 
program displays an error mes
sage, leaving exitProc unchanged 
(equal to NIL) and, therefore, 
breaking the exit chain. Other
wise, it restores exitProc to its 
saved value, continuing with the 
next exit procedure in line. This 
way, disk errors abort the pro
gram, preventing other exit proce
dures from gaining control. 



DEBUGGING WITH EXIT 
PROCEDURES 
Listing 8, SysDebug, shows how to 
use an exit procedure as a debug
ging device during program devel
opment. Adding SysDebug to a 
program's USES declaration 
causes several internal Turbo Pas
cal variables to display when the 
program ends. After debugging, 
remove SysDebug from the USES 
declaration and recompile to 
create the finished code file. 

To use SysDebug, compile List
ing 8 to disk. Next, compile Listing 
9, SDTest. When you run SDTest, 
type 0, 100, or ABC-just as you 
did in the earlier experiments. In 
each case, the program ends by 
displaying a list of variables sim
ilar to the sample in Figure 2. 

Mernavail = 411440 bytes 
Maxavail = 411440 bytes 
PrefixSeg = $3628 
CSeg = $3643 
DSeg = $3767 
SSeg = $3780 
SPtr = $3FF6 
HeapOrg = $3B80:0000 
HeapPtr = S3B80:0000 
FreePtr = $9000:0000 
FreeMin = 0 
HeapError = $3694:00D2 
ExitProc = NIL 
ExitCode = 106 
ErrorAddr = $0000:0090 
RandSeed = 0 
Fi leMode = 2 
Runtime error 106 at 0000:0090. 

Figure 2. Adding the unit SysDebug 
to a program's USES statement pro
vides an exit procedure that displays 
several variabl,es when the program 
ends. The values above are from a 
samp!,e run of Listing 9, SDTest, 
after typing ABC into a numeric vari
abl,e and causing a runtime error. 

There isn't room here to de
scribe the meaning of each vari
able that SysDebug displays, 
although most values should be 
self-explanatory. Notice that 
because procedure CustomExit 
does not reset errorAddr, Turbo 
Pascal displays its usual message if 
a runtime error occurs. 

When writing your own units 
and programs, you can use similar 
debugging techniques. For exam
ple, suppose you have a telecom-

continued on page 22 

LISTING 7: DEMOEXIT.PAS 

PROGRAM DemoExit; 
USES UnitA, UnitB, Unite; 
BEGIN 

Writeln( 'Welcome to DemoExit' 
END. 

LISTING 8: SYSDEBUG.PAS 

UNIT SysDebug; 

{ System globals debugging unit } 

INTERFACE 

IMPLEMENTATION 

TYPE String15 = String[15l; { WPointer string parameter } 

VAR savedExitProc : Pointer; { Old ExitProc value } 

PROCEDURE WHex( v : word ); 
{ Display v as a 4-digit hex string } 
CONST 

digits : ARRAY[ 0 .. 15 l OF char= 1 0123456789ABCDEF'; 
BEGIN 

Write( digits[ hi( v) div 16 ], 
digits[ hi( v) mod 16 l, 
di 9 i tS [ l 0( V ) di V 16 ] I 

digits[ lo( v ) mod 16 l 
END; { WHex } 

PROCEDURE WPointer( description : String15; p Pointer ); 
{ Display pointer value in 0000:0000 format } 
BEGIN 

Write( description >; 
IF p = NIL THEN Write( 'NIL' ) ELSE 
BEGIN 

Write( 1$ 1 >; 
WHex( Seg(p· ) >; 
Write( 1 : ' ) ; 

WHexC Ofs(p-) 
END; { if } 
Writeln 

END; { WPointer } 

March/ April 1988 TURBO TECHNIX 21 



PROCEDURE WWord( description : Str ing15; w Word >; 
{ Display word value in 0000 hex format } 
BEGIN 

Write( description, •s• >; 
WHexC w >; 
Writeln 

ENO; { WWord } 

{SF+} PROCEDURE CustomExit; {SF-} 

{ Display system global variables at exit } 

BEGIN 
Writeln; 
Writeln( 
Writeln( 
Writeln( 
Writeln( 
WWord( 
WWord( 
WWord( 
WWord( 
WWord( 
WPointerC 
WPointer( 
WPointer( 
Writeln( 
WPointer( 
WPointer( 
Writeln( 
WPointer( 
Writeln( 
Writeln( 

•system unit global variables' >; 
·------ ------ --------- ---- ---' >; 
'Memavai l = I 

'Maxavail = I 

'PrefixSeg 
'CSeg = I 

'DSeg = I 
I 

'SSeg = I 

'SPtr = I 

'HeapOrg = I 

1 HeapPtr = I 

'FreePtr = I 

'FreeMin = I 

'HeapError I 
I 

'ExitProc I 

'ExitCode = I 

'ErrorAddr = I 

'RandSeed = I 

'Fi leMode = I 

exitProc := savedExitProc 

END; { CustomExit } 

BEGIN 
savedExitProc : = exitProc; 
exitProc := @CustomExit 

END. 

LISTING 9: SDTEST.PAS 

PROGRAM SDTest; 

{ Test SysDebug unit } 

USES SysDebug; 

VAR nun : integer; 

BEGIN 

memavail, ' bytes'); 
maxavai l, ' bytes 1 ); 

prefixSeg >; 
cSeg ) ; 
dSeg ) ; 
sSeg >; 
sPtr ) ; 
heapOrg >; 
heapPtr >; 
freePtr ); 
freeMin >; 
heapE r ror ) ; 
exitProc >; 
exitCode >; 
errorAddr >; 
randSeed >; 
fi leMode >; 

{ Restore saved exitProc pointer } 

{ Save ExitProc pointer } 
{ Install custom exit procedure} 

Writeln( 'Welcome to SysDebug unit test' >; 
Writeln; 
Write( 'Type an exit code : ' ); 
Readln( nun >; 
Halt( nun ) 

END. 

22 T URBO TECHNIX March/ April 1988 

EXIT PROCEDURES 
continued from page 2 I 

munications unit named Modem. 
You could write a separate un it, 
ModemDebug, to dump Modem's 
global variables after a test pro
gram run. Isolating the debugging 
statements in a separate unit's exit 
procedure makes it easy to remove 
the debugging when you're ready 
to compile the production pro
gram. Later, if problems develop, 
you can quickly add the debug
ging statements by compiling after 
reinserting ModemDebug in the 
program's USES declaration. 

SUMMING UP 
Custom exit procedures give 
Turbo Pascal programmers the 
ability to forge new links in the 
normal chain of events that take 
place when programs end. When 
programming your own custom 
exit procedures, remember to fo l
low these four critical steps: 

1. Save exitProc in a global 
Pointer variable. 

2. Assign to exitProc the address 
of your custom exit procedure. 

3. Declare the custom exit proce
dure FAR by surrounding its 
declaration with {$F} and {$F-} 
compiler directives. 

4. Restore the saved exitProc 
pointer from the value saved in 
step 1, and do it before leaving 
the custom exit procedure. 

As the examples in this article 
demonstrate, exit procedures can 
inspect Halt statement codes, han
dle runtime errors, perform unit 
dein itialization sequences, and 
help with debugging. And if you 
think that this is the end-well, 
this time, it is. • 

Tom Swan is the author of several 
books, including Mastering Turbo 
Pascal, Mastering Turbo Pascal 
Files (Howard W Sams), and Pro
gramming With Macintosh Turbo 
Pascal Uohn Wiley & Sons). Tom is 
currently revising Mastering Turbo 
Pascal for version 4. 0, scheduled for 
publication early in I 988. 

Listings may be downloaded from 
CompuServe as EXTPRC.ARC. 



ROUNDED RECTANGLES 
WITHTHEBGI 
Take the edge off your graphics windows with a little 
BGI cleverness. 

Jeff Duntemann 

Corners can be crass. In a highly pol
ished graphics windowing application, a 
softer touch around the edges can add 
much to the professional feel of the user 
interface. Using the Borland Graphics 

PROGRAMMER Interface (BGI) to create rectangles with 
rounded corners is relatively easy: Draw four 90-
degree circular arcs for the corners, and then con
nect the endpoints of the arcs with straight lines. 

This would be trivial, except . .. BGI arcs are speci
fied by an arc center and a radius, not by endpoints. 
Calculating the endpoints of an arc from its center 
and radius involves considerable floating point math, 
and would take more time than you might want to 
spend within a graphics drawing routine. 

Fortunately, the BGI calculates the coordinates of 
the endpoints as part of its assembly language arc
drawing algorithm, and these coordinates may be 
returned to your programs through a procedure 
called GetArcCoords. GetArcCoords returns the 
arc's endpoint coordinates in a record of type 
ArcCoordsType (Listing 1), defined in the inter
face section of the BG I's Graph unit. 

The procedure RoundedRectangle (Listing 2) 
requires these parameters-the coordinates of the 
upper left corner, the width and height of the rec
tangle, and the radius of the corners. Rounded
Rectangle first draws the four arcs at the corners, 
returning the arc coordinates each time through a 
call to GetArcCoords. Then it draws the four con
necting lines using those coordinates. No "absurdity
checking" is done within RoundedRectangle. If you 
specify an arc radius of 100 for the corners when 
your width and height are 25 pixels each, the BGI 
will draw something, but it might not resemble any
thing close to a rectangle. The value you use for the 
corner radius will depend on your needs and on the 
resolution of your graphics device. Try a few values 
(10 often works well) and use what looks good. 

Looking good is, after all, what graphics are for. • 

Listings may be downloaded from CompuServe as 
RRECT.ARC. 

LISTING 1: ARCTYPE.SRC 

ArcCoordsType = RECORD 
x, y 
Xstart, Ystart 
Xend, Yend 

ENO; 

LISTING 2: ROUNORCT .SRC 

Integer; 
Integer; 
Integer 

(->>>>RoundedRectangle<<<<- - - - - - - - -- - - - - - - - - - - - - - - -- -- - - - - - - - - -> 
{ } 

{ Filename : ROUNORCT. SRC • • Last Modified 1 /23/88 } 
{ } 
( by Jeff Ountemam } 
( Turbo Pascal V4.0 } 
( } 

{This routine draws a rectangle at X,Y; Width pi)(els wide and} 
{Height pixels high; with rounded corners of radius R. } 
( } 

{ The Graph unit rust be USED for this procedure to coopile. } 
{ } 

( From CC»4PLETE TURBO PASCAL, Thi rd Edition, by Jeff Ountemam } 
{ Scott, Foresman & Co. 1988 ISBN 0·673-38355·5 } 
(· ........................................................... ··} 

PROCEDURE RoundedRectangle(X, Y, Width, Height, R : Word); 

VAR 
ULOata,LLData,LRData,URData : ArcCoordsType; 

BEGIN 
{ First we draw each corner arc and save its coordinates: } 
Arc(X+R, Y+R,90, 180,R); 
GetArcCoords(ULOata); 
Arc(X+R, Y+Hei ght ·R, 180, 270, R); 
GetArcCoords( LLOata); 
Arc(X+Wi dth. R. Y+Hei ght. R. 270 ,360. R); 
GetArcCoords( LR.Data); 
Arc(X+Wi dth· R. Y+R. 0. 90. R); 
GetArcCoordsCURData); 
{ Next we draw the four connecting lines: } 
L ne(ULData. XEnd, ULOata. YEnd, LLData .XStart, LLOata. YStart) 
L ne(LLData. XEnd, LLOata. YEnd, LRData .XStart. LROata. YStart) 
L ne(LROata. XEnd, LRData. YEnd,UROata .XStart ,UROata. YStart) 
L ne(UROata. XEnd,URData . YEnd,ULOata .XStart ,ULOata. YStart) 

ENO 

March/ April 1988 TURBO TECHNIX 23 



~ JUST IN CASE 
~ 
i Choose one of many (or None of the Above) with Turbo 
~ Pascal's CASE .. OF statement. 
E--

Jeff Duntemann 

Far too many years ago there was a movie 
called If It's Tuesday, This Must Be Belgium. 
The movie was about the sort of Ameri
can tourist who collects European coun
tries like baseball cards, and to whom a 

SQUARE oN E seven-countries-in-seven-days tour is the 
only way to travel. The slightly twisted logic of the 
movie's title always brings to mind Pascal's CASE .. OF 
statement. Let's take a look at CASE .. OF, and let's 
start by playing tourist with the IF statement. 

IF .. ELSE..IF 
The star of If It's Tuesday, This Must Be Belgium had 
absolute faith in his itinerary. If lapheld portables 
had been available, he could have written a program 
to tell him where he was based on the system clock. 
The program would query the system clock and 
return a value in an enumerated type giving the day 
of the week: 

TYPE 
Day= (Monday,Tuesday,Wednesday, 

Thursday,Friday,Saturday,Sunday); 

VAR 
Today : Day; 

A function named GetDayOfWeek would return a 
value of type Day depending on the day as known by 
the system clock: 
Today := GetDayOfWeek; 

Once the day of the week was known, a series of 
IF statements would decide which country the tourist 
wasm: 
IF Today= Monday 

THEN Country := 'Luxenbourg•; 
IF Today = Tuesday 

THEN Country:= 1Belgil.Jll 1 ; 

IF Today = Wednesday 
THEN Country:= 'Netherlands'; 

IF Today = Thursday 
THEN Country := 'France•; 

IF Today= Friday 
THEN Country:= 'Austria'; 

24 TURBO TECHNIX March/ April 1988 

IF Today= Saturday 
THEN Country:= 'West Germany•; 

IF Today= Sunday 
THEN Country:= 'Switzerland'; 

Here, we have a separate IF statement for each day 
of the week. This works, but it's far from the best way 
to go. Why? Every one of the seven IF statements 
would always have to be evaluated, even if by chance 
the day happened to be Monday. 

Pascal offers a much better way, by allowing IF 
statements to be nested. This is done by making 
each of the seven IF statements (except the first, of 
course) part of the ELSE clause of the previous IF 
statement. The whole structure is shown in Figure 1. 
It reads much the way it works out logically: If it's 
Monday, this must be Luxembourg; else if it's Tues
day, this must be Belgium; else if it's Wednesday, this 
must be the Netherlands, and so on. 

IF Today = Monday THEN 
Country := 'Luxenbourg' 
ELSE IF Today= Tuesday THEN 

Country := 'Belgil.Jll' 
ELSE IF Today= Wednesday THEN 

Country := 'Netherlands' 
ELSE IF Today = Thursday THEN 

Country := 'France' 
ELSE IF Today= Friday THEN 

Country := 'Austria' 
ELSE IF Today = Saturday THEN 

Country := 'West Germany' 
ELSE IF Today= Sunday THEN 

Country:= 'Switzerland'; 

Fi~re 1. Nested IF statements. 



From a program execution 
standpoint, control leaves the 
nested IF statement as soon as 
one of the Boolean expressions 
becomes True. In other words, if 
it's Monday, the assignment 
statement 

Country := 1 Luxerrbourg 1 

is executed, and the IF statement 
terminates. Only if the day is Sun
day are all seven tests actually 
performed. 

ENTER CASE..OF 
The big IF statement shown in 
Figure 1 is perfectly good Pascal. 
However, you don't need anything 
that convoluted. Pascal provides 
an entirely separate control struc
ture to deal with situations exactly 
like this: the CASE .. OF statement. 

A CASE .. OF statement is like an 
n-way switch for program flow. A 
single value, called a case se/,ector, is 
tested for one of several values. 
For each one of those values, 
program flow can take a dif
ferent path. 

The result is very much like the 
nested IF statement, but the 
IF .. THEN .. ELSE work is handled 
beneath the surface. All of the 
equivalent logic to the nested IF 
statement is contained in the 
CASE .. OF statement shown in 
Figure 2. This is both smaller and 
simpler than the IF statement. In 
Figure 2, the variable Today acts 
as the case selector. Turbo Pascal 
looks at Today's value and com
pares it to the enumerated con
stants to the left of the colons. 
These constants are called case 
labels, and there is one for each 
possible value of Today. As an 
example, if Today is tested and 
found to be equal to the enu
merated constant Tuesday, the 
statement 
Country:= 1 Belgi1..111 1 ; 

is executed. Then, the CASE .. OF 
statement is finished, and it passes 
control on to the next Pascal state
ment in the program. 

There may be as many as 256 
case labels in a single CASE .. OF 
statement. Case labels must be 
constants. They may not be vari
ables. The enumerated constants 
acting as case labels in Figure 2 
are in their declaration order for 
clarity's sake. They can be in any 
order, however. You may hear 

other programmers say that the 
most frequently occurring labels 
should be near the top of the 
statement to maximize perfor
mance, but I recommend against 
that, if it obscures the meaning of 
the CASE .. OF statement. The 
increase in performance is so 
slight as to be unnoticeable, 
unless the CASE .. OF statement is 
in the middle of a tight loop. 
Tight loops are a poor place for 
something as elaborate as a 
CASE .. OF statement for perfor
mance reasons. 

In Figure 2, there is only one 
enumerated constant in each case 
label. That is not a requirement. 
There may be many constants in · 
each case label, separated by com
mas. Also, a closed interoal may act 
as a case label. In other words, a 
sequence like 'A' .. 'D' is equivalent 
to the list of constants 'A', 'B', 'C', 
'D'. If any one of those constants 
in a given case label is found to 

CASE Today OF 

be equal to the value of the case 
selector, the statement associated 
with that case label is executed. 

Consider Figure 3. Here, an 
enumerated type called State con
tains a constant representing each 
of the United States. (Note that the 
customary abbreviations IN, for 
Indiana, and OR, for Oregon, 
cannot be legal constants because 
both are reserved words in Turbo 
Pascal.) The CASE .. OF statement 
below the enumerated type defini
tion is from an imaginary mail
management program that tallies 
incoming pieces of mail by several 
geographic regions of the United 
States. Because there are several 
states in each geographic region, 
there are several enumerated con
stants in each case label. Each 
time a piece of mail in one of the 
regions is detected, a counter for 
that region is incremented. 

In both of our examples, enu
merated constants have been used 

continued on page 26 

Monday Country := 'Luxerrbourg'; 
Tuesday Country := 'Belgi1..111 1 ; 

Wednesday Country := 'Netherlands'; 
Thursday Country := 'France'; 
Friday Country := 'Austria'; 
Saturday Country := 'West Germany'; 
Sunday Country := 'Switzerland'; 

END; { CASE } 

Figure 2. A simp/,e CASE .. OF statement. 

TYPE 
{ II = Indiana; OG =Oregon to avoid reserved word conflict } 
State= (AK,AL,AR,AZ,CA,CO,CT,DE,DC,FL,GA,HI,IA,ID,IL,II,KS, 

KY,LA,MA,MD,ME,MI,MN,MO,MS,MT,NE,NV,NH,NJ,NM,NY,NC, 
ND,OH,OK,OG,PA,RI,SC,SD,TN,TX,UT,VA,VT,WA,Wl,WV,WY); 

VAR 
FromState : State; 

CASE FromState OF 
CT,MA,ME,NH, 
RI ,VT 
DC,DE,MD,NJ, 
NY,PA 
FL,GA,NC,SC 
IA, IL, II ,MI, 
MN,OH,WI ,WV 
AL,AR,KY,LA, 
MO,MS,TN,VA 
KS,ND,NE,SD, 
WY 
AK,CA,CO,HI, 
ID,MT,OG,UT, 
WA 
AZ,NM,NV,OK, 
TX 

END; { CASE } 

CountNewEngland := CountNewEngland + 1; 

CountMidAtlantic := CountMidAtlantic + 1; 
CountSoutheast := CountSoutheast + 1; 

CountMidwest := CountMidwest + 1; 

CountSouth := CountSouth + 1; 

CountPlains := CountPlains + 1; 

CountWest := CountWest + 1; 

CountSouthwest := CountSouthwest + 1; 

Figure 3. Multip/,e constants in case labels. 

March/ April 1988 TURBO TECHNIX 25 



JUST IN CASE 
continued from page 25 

as case labels. Actually, constants 
of any ordinal type may be used 
as a case label, including Char, all 
integer numeric types (Integer, 
Word, Longlnt, Byte, and Short
Int), Boolean, and any enumer
ated type. Real number constants, 
set constants, record constants, 
and array constants may not act as 
case labels. 

NONE OF THE ABOVE 
In Standard Pascal, that is about 
all there is to know about 
CASE..OF. Most of you are proba
bly aware of the truck-sized hole 
left in Standard Pascal's CASE .. OF 
structure: the case in which the 
case selector matches none of the 
case labels. 

Standard Pascal calls this situa
tion a runtime error. The pro
grammer is supposed to test the 
variable acting as the case selector 
before the CASE .. OF statement is 
executed, to be sure that all possi
ble values of the case selector are 
covered by a case label. To me this 
is silly; the CASE .. OF statement is 
a testing statement, and it is per
fectly capable of acting responsi
bly if one of the case selector 
values does not have a corres
ponding case label. The correct 
thing to do is simply to "fall 
through"; in other words, the 
CASE .. OF statement takes no 
action in such a "none of the 
above" case. Most Standard Pascal 
implementations work that way. 

Turbo Pascal takes it even fur
ther. In Turbo Pascal, a CASE .. OF 
statement may take an optional 
ELSE clause that executes when
ever the current value of the case 
selector does not match any of the 
case labels. Figure 4 is a simple 
example. Here, a hypothetical 
engine-monitoring system from a 
slightly futuristic vehicle detects a 
problem in the engine and dis
plays a message on a status panel 
corresponding to the detected 
problem code. If a problem 
code is generated for which 

26 TURBO TECHNIX March/ April 1988 

VAR 
ProblemCode Byte; 

Beep; 
Writeln('*****WARNING!*****'); 
CASE ProblemCode OF 

1 Writeln('[001l Fuel Supply has fallen below 10%'); 
2 Writeln('[002] Oil pressure is below min spec'); 
3 Writeln('[003] Engine t~rature is too high'); 
4 Writeln('[004] Battery voltage is below min spec'); 
5 Writeln(' [005) Brake fluid level is below min spec'); 
6 Writeln(' [006) Coolant level is below min spec'); 
7 Writeln(' [007) Transmission fluid level is below min spec'); 
ELSE 

BEGIN 
Writeln(' C***l 
Writeln(' 

Logic failure in problem reporting system.'); 
Please contact Studebaker as soon as possible!') 

END 
END; { CASE } 

Figure 4. The ELSE clause in a CASE .. OF statement. 

there is no known message, the 
system politely suggests that the 
driver contact the manufacturer 
immediately before the engine 
melts down. (One would hope the 
vehicle is equipped with a ce llular 
phone.) 

This is a good place to point out 
that the statement executed for 
any of the case labels or for the 
ELSE clause may be any legal 
Pascal statement, including (for 
example), a compound statement 
bracketed by BEGIN and END, 
another CASE .. OF statement, a 
FOR loop, or an IF statement. 
This being true, another problem 
arises-ownership of ELSE 
clauses. 

WHOSE ELSE IS THIS, 
ANYWAY? 
In my article "Sense and Semi
colons" (TURBO TECHNIX 
November/December, 1987), I 
fai led to point out an ugly trap 
that can be triggered by not pay
ing attention to semicolon place
ment. The CASE .. OF statement in 
Figure 5 has, for the last case 
label, an IF statement with an 
ELSE clause. The CASE .. OF state
ment itself, however, has no ELSE 
clause. Think about what would 
happen if you placed a semicolon 
after the procedure invocation: 

ExecuteC011111and(lncomingCharacter) 

In effect, this cuts loose the IF 
statement's ELSE clause. Nor
mally, a freestanding ELSE clause 

would be caught by the compiler 
as an error. However, because the 
CASE .. OF statement does not 
have an ELSE clause of its own, 
the CASE .. OF statement gladly 
appropriates the freestanding 
ELSE clause for itself. The code 
in Figure 5 will still compile, but 
now, the statement 

PunctuationComing := True 

has become the CASE .. OF state
ment's ELSE clause, and will be 
executed every time a character 
comes in for which the CASE .. OF 
statement has no other label. This 
situation is not equivalent to the 
original logic of Figure S's 
CASE .. OF statement, which simply 
falls through when it encounters 
unrecognized characters. A bug 
has been created that could take 
some considerable headscratching 
to resolve. 

The problem comes down to 
this: Depending on the presence 
or absence of that single semi
colon, an ELSE clause may belong 
to the CASE .. OF statement or to 
an IF statement associated with 
the last case label in the list of 
case labels. The ELSE clause may 
legally belong to either, but the 
logic of the CASE .. OF statement is 
radically different in either case. 

Some implementations of Pas
cal avoid this whole conflict by 
using the reserved word OTHER
WISE for the CASE .. OF state
ment's ELSE clause. For Turbo 



Pascal, we must work smart and 
make sure that a ll semicolons are 
wanted and are placed where they 
belong. 

NOT A HARD CASE 
A forma l summary of the 
CASE .. OF statement's syntax is 
given in Figure 6. Here are some 
things to remember: 

• The case selector must be a 
variable of some ordinal type or 
of a subrange of an ordinal 
type. It may be an aJTay ele
ment, pointer referent, or 
record field as lo ng as it is still 
of some ordinal type. 

• The case label may be a single 
constant, a list of constants 
separated by commas, or a 
closed interval of constants. 
These constants, of course, must 
be of an ordinal type or sub
range type identical to that of 
the case selector. 

• There can be no duplication of 
values among the case labels. In 
other words, if the constant 6 is 
present in one case label, it can
not be present in any other case 
label. 

• The case labels can be in any 
order, but it is customary to 
place them in their own collat
ing order; i.e., 'A' before 'B' 
before 'C', and so on. 

• Statements attached to case la
bels or to the ELSE clause may 
be any legal Pascal statement. 

• There may be only 256 case la
bels in any single CASE .. OF 
statement. 

• Make sure that any semicolon 
immediately ahead of the 
CASE .. OF statement's ELSE 
clause really belongs there. 

Quite apart from remembering 
these technical points, keep the 
logic of the CASE .. OF statement in 
mind as you code. The idea is to 
choose one path among many, 
based on a selector value. If you 
know your Turbo Pascal, and if 
your itinerary is sound, you' ll 
always know where you are. • 

CONST 
CR "M; 
LF = "J; 

CASE lncomingCharacter OF 
'A' .• 'Z' CapComing :=True; 
'a' .• 'z' LowerCaseComing :=True; 
1 11 •• 1 01 DigitComing :=True; 
CR EndOfLineComing :=True; 
LF EndOfLine := True; 
':' .. '@' IF COITITlarict!ode THEN ExecuteCOITITland(lncomingCharacter){;} 

ELSE PunctuationComing := True 
END; { CASE } 

Figure 5. One semicolon makes all the difference in the world. 

CASE <case selector> OF 
<constant list 1> <statement 1>; 
<constant list 2> <statement 2>; 
<constant list 3> <statement 3>; 
<constant list 4> <statement 4>; 

<constant list n> <statement n>; 
ELSE <statement> 

END; 

Figure 6. Formal definition of the CASE .. OF statement. 

~""\ Hire a Pro for 
Your NewTurbo 4.0 

T um on the power of Turbo PROFESSIONAL 4.0, a library of more 
than 300 state-of-the-art routines optimized for Turbo Pascal 4.0. 

You'll have professional quality programs finished faster and easier. 

Turbo PROFESSIONAL 4.0 includes complete source code, 
comprehensive documentation and demo programs that 

are powerful and useful. The routines include: 

• Pop-up resident routines 
• BCD arithmetic 
• Virtual windows and menus 
• EMS and extended memory access 
• Long strings, large arrays, macros, 

and much more. 

Turbo PROFESSIONAL is only $99. 
Call toll free for credit card orders. 

1-800-538-8157 extension 830 
1-800-672-3470 extension 830 in CA 

Satisfaction Guaranteed or your money back within 30 days. 

Turbo Pascal 4.0 is req uired. Registered For 01her inforn1ation call 408-438-8608. 
owners of Turbo Profe~'! iona l by Sunny 9 AM to 5 PM PST. Shipping & taxes 
Hill Soflware may upgmdc fo r $30. prepaid for US and Canad ian CU'ltomcrs. 

Include yoo r seri al number. 01hcrs please add $6 per i1em. 

TurboPower Software 3 109 Scotts Valley Dr. , Suite 122 Scotts Valley, CA 95066 

March/ April 1988 TURBO TECHNIX 27 



FILLING REGIONS WITH 
THE TURBO PASCAL GRAPHIX 
TOOLBOX 
Pump pixels into the empty spaces on your screen, 
no matter what shape they are. 

Fred Robinson 

Filling rectangular regions on a graphics 
screen is so simple that it can be done 
purely by calculation. In other words, 
given the coordinates of two diagonal 
corners of a rectangular region, the 

PROGRAMMER addresses of all interior points can be 
quickly and accurately derived mathematically. Cal
culating the interior points of irregular regions is 
almost impossible. The best way to fill nonrectangu
lar regions is to examine the screen buffer point by 
point to see what is filled and what is not, stopping 
when boundaries are encountered. 

A generalized region-filling routine is therefore a 
handy thing to have. With very little code, such a 
routine can be added to the Turbo Pascal Graphix 
Toolbox 4.0. I have written two implementations 
of a region filler, both of which are described in 
this article. 

A FEW DEFINITIONS 
What we need is a means of setting or resetting a 
continuous area of pixels, bounded by pixels of the 
same color or by the edge of the display. By continu
ous, I mean pixels that are touching at their edges, 
not merely at their corners, as shown in Figure 1. 

CONTINUOUS NONCONTINOUS 

• • • • • 
• • • • 
• • • • • • 
• • • • • • • 

• • • • 

Figure 1. Continuous and noncontinuous pixels. 

28 TURBO TECHNIX March/ April 1988 

In contrast to the area to be filled, the border that 
encloses the area may be like the noncontinuous 
image in Figure 1. In other words, its pixels may be 
connected either at the edges or at the corners. 
However, if even a one-pixel gap exists, the filling 
will spill out of its intended border and fill adjacent 
areas. 

In the discussion that follows, a background pixel is 
a pixel that is part of the region to be filled (for 
instance, an unlit pixel), and is represented in the 
figures by a blank space. A foreground pixel is the 
same color as the border and is represented by a 
small black circle. In the Turbo Pascal Graphix Tool
box, you are limited to only two different colors on 
the screen at one time, so the border color must 
always be the same as the color that fills the region. 

FILL 'ER UP 
One way to implement a region filler is to use recur
sion. Flood_Fill, in Listing 1 (FLOOD.INC), is a 
recursive region filler. Its algorithm is simple yet ele
gant in the way recursion tends to be: If the pixel to 
be filled is not yet set, it is set and Flood_Fill pro
ceeds to check its four orthogonal neighbors. If any 
of the neighbors are not set, Flood_Fill calls itself to 
fill them. For a procedure written entirely in a high
level language, Flood_Fill is very fast. It is also a 
memory hog of the first order. Since each call to 
Flood_Fill can generate up to four additional calls 
(each of which may further generate up to four addi
tional calls, and so on geometrically), your stack will 
disappear in a tremendous hurry. By default, only 
16,384 bytes of memory are allocated to the stack, 
and even with the $M compiler command, the stack 
may only be given 65,520 bytes. If you exhaust the 
memory allocated to the stack, runtime error 202 
(stack overflow) occurs and your program crashes. 
Therefore, Flood_Fill is good only for relatively 
small areas. 



POINT STACK 
x 

.. ·~· .... 
Figure 2. ExamplR regi,on to be fillRd, 
starting at x. 

.. 

POINT STACK 
3 
2 

2 •• 

I• ......... ................ 
Figure 3. Fill the first line containing 
x, and locate candidate points 2 and 
3 in the process. 

POINT STACK 
4 
2 

2 •• .................... 
4 ••••••••• 

Figure 4. Fill the line containing 3, 
andfind point 4. 

.. .. 

POINT STACK 
5 
2 

................... 
I•• ............ •.•...........•...... .......................... ..••............ 

Figure 5. Fill the line containing 4, 
and find point 5. 

POINT STACK 
6 
2 

• • • • • • • 2 •• .. . .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6. Fill the line containing 5, 
and find point 6. 

continued on page 30 

LISTING 1: FLOOD.INC I 
PROCEDURE Flood_Fill CX, Y: Real); 

{ Exa"llle of a flood-fill algorithm } 

{ By Fred Robinson 

VAR 

Monotreme Software Copyright ec> 1987 Monotreme Software 
29766 Everett 
Southfield, MI 48076 
USA } 

Start_X, Start_Y, X1Loc, X2Loc: Integer; 

(*****************************************************************) 

PROCEDURE Do_The_Flood_Fill CX, Y: Integer); 

{ The actual filling routine. Taken from Fundamentals of Inter
active Computer Graphics, Foley & Van Dam 1982, p. 448. } 

BEGIN 
IF CX>=X1Loc) AND CX<=X2Loc) AND CY>=Y1RefGlb) AND 

CY<=Y2RefGlb) THEN 
IF NOT PD ex, Y) THEN 

BEGIN 
DP ex, Y); 
Do The Flood Fill CX+1, Y); 
Do-The-Flood-Fill ex-1, Y); 
Do-The-Flood-Fill ex, Y+1); 
Do-The-Flood-Fill CX, Y-1) 
END (*-THEN *> 

END (* Do_The_Flood_Fill *); 

(*****************************************************************) 

BEGIN C* Flood Fill *) 
{ Get pixel coordinates of ex, Y) } 

IF DirectModeGlb THEN 
BEGIN 
Start X := Round CX); 
Start-Y := Round CY) 
END C* THEN *) 

ELSE 
BEGIN 
Start X := WindowX CX); 
Start-Y := WindowY CY) 
END C* ELSE *); 

{ Set the proper X-bounds } 

IF HatchGlb THEN 
BEGIN 
X1Loc := X1RefGlb; 
X2Loc := X2Refglb; 
END C* THEN *) 

ELSE 
BEGIN 
X1Loc := X1RefGlb SHL 3; 
X2Loc := X2RefGlb SHL 3 + 7 
END (* ELSE *); 

Do The Flood Fill (Start X, Start_Y) 
END C*-Flood=Fill *); -

March/ Aoril 1988 TURBO TECHNIX 29 



LISTING 2: FILL.INC l 
PROCEDURE Fill_Region ex, Y: Real); 

{ Region-filling code developed from a description of the algorithm 
in Fundamentals of Interactive COfll>Uter Graphics, Foley & Van Dam 
1982, p. 450-451. 

No provision has been made for differences between the FILL color 
and the BOUNDRY color; both are assumed to be the current set color. 
This is because the Graphix Toolbox is not set up to cope with multi 
color high-resolution display images. } 

{ By Fred Robinson 
Monotreme Software Copyright ec> 1987 Monot reme Software 
29766 Everett 
Southfield, Ml 48076 
USA } 

TYPE 

VAR 

{ Stack for storing potential starting po ints } 
Pair Ptr ; -Pair; 
Pair-; RECORD 

X, Y: 
Next: 

END; 

Integer; 
Pair_Ptr 

Top_Pair , This_Pair: Pair_Ptr; 
Start_X, Start_Y, X1Loc , X2Loc: Integer; 

(****************************************************************) 

PROCEDURE Fill_Line ex, Y: Integer); 

{ This procedure fills in the pixel line Y, starting at point X, 
first moving to the right to the rightmost unfilled pixel, then 
from ex, Y) to the left to the leftmost unfilled pixel. On both 
passes, the lines above & below are checked for candidate starting 
points . That is, if (X, Y) is not already filled in. } 

VAR 
X1, X2, Y_Above, Y_Below: Integer; 

(*************************************************************) 

PROCEDURE Check_Point ex, Y: Integer) ; 

{ Th i s procedure checks ex, Y) and, if it i s a po int to start 
filling at, adds it to the stack. } 

VAR 
This_Pair : Pair_Ptr; 

BEGIN 
IF eX>;X1Loc) AND eX<;X2Loc) AND eY>;Y1RefGlb) AND 

eY<;Y2RefGlb) THEN 
{ Making sure that ex, Y) is within legal l imits } 
IF NOT PD ex, Y) THEN 

IF ex;X2Loc) OR PD eX+1, Y) THEN 
{ Believe it or not, this double- IF construct 

is faster than ANDing the two condiitons } 
BEGIN 
New eThis_Pair); 
This Pair - .X ;; X; 
This-Pair - .Y ;; Y; 
This=Pair - .Next :; Top_Pair; 
Top_Pair ;; This_Pair 
END e* THEN, THEN, THEN *) 

END e* Check_Point *); 

(*************************************************************) 

30 TURBO TECHNI X March/ Apri l 1988 

FILLING REGIONS 
continued from page 29 

POINT STACK 
7 
2 

7 • • • • • • • 2 •• . . . . . . . . . . . . ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................... 
Figure 7. Fill the line containing 6, 
and find point 7. 

POINT STACK 
8 
2 

................... 
I • ............... I • • . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................... 

Figure 8. The search for a candidate 
point must be extended beyond the end 
of point Ts line until point 8 is 
found. 

POINT STACK 
9 
2 

Io o ........................... .......................... 
Figure 9. Note how point 2 has been 
marked a second time as point 9. 

POINT STACK 
2 

••••••••••••••••••••••• 2 •• 

........................... .......................... 
Figure 10. Point 2 is ignored, since it 
is within a filled line, and the filling 
operation is comfleted. 



Filling large areas without mas
sive use of the stack requires a 
more complicated algorithm. You 
may notice that a region to be 
filled consists of a number of 
horizontal lines of pixels, and 
each line must be filled in with a 
color. This suggests a better way. 
The sequence of Figures 2 
through 10 shows this filling pro
cess, step by step. 

x MARKS THE SPOT 
Given the task of filling the irregu
lar region shown in Figure 2, we 
can start at an arbitrary pixel 
marked with an "x." The first step 
is to fill the line containing the 
starting pixel, as shown in Figure 
3. This is done by first filling to 
the right of the "x," and then to 
the left. While filling the line, the 
routine checks above and below 
the line being filled for a back
ground pixel immediately to the 
left of a foreground pixel. This 
background pixel is called a candi
date point. The location of each of 
these points is stored in a stack
like First-In, First-Out data struc
ture created on the heap as a 
linked list. In Figure 3, the points 
detected are marked 2 and 3. 

Now there are two more points 
where filling must begin. Starting 
with the most recent candidate 
point found, the fill process is 
repeated, as shown in Figure 4. 
While filling the line starting with 
point 3, point 4 is found. 

The process continues with the 
line containing point 4. Note that 
the line containing point 2 is not 
yet filled because it is not at the 
top of the stack. Point 5 is found 
while filling point 4's line, and 
once point 4's line is filled, the 
line containing point 5 is filled, 
and so on until the stack of candi
date points is empty. You can fol
low the process to completion in 
Figures 5 through 10. 

Notice in Figure 8 that while 
filling the line containing point 7, 
checking for candidate points 
above the line is extended to the 
right beyond the end of point Ts 
line until a candidate point (point 

continued on page 32 

BEGIN e* Fill_Line *) 
IF NOT PD ex, Y) THEN 

BEGIN 

( Fill in to the right of ex, Y) } 

X1 := X; 
Y Above := Y - 1; 
Y=Below := Y + 1; 

WHILE ex1<=X2Loc) AND NOT PD ex1, Y) DO 
BEGIN 
Check Point ex1, Y Below); 
Check-Point ex1, Y=Above); 
DP exT, Y); 
X1 := X1 + 1 
END e* WHILE *); 

( Check above and below beyond the right end of the line just 
filled in } 

X2 : = X1 - 1; 

WHILE ex2<=X2Loc) AND NOT PD ex2, Y_Below) DO 
BEGIN 
Check Point ex2, Y_Below); 
X2 :=-X2 + 1 
END e* WHILE *); 

X2 : = X1 - 1; 

WHILE eX2<=X2Loc) AND NOT PD eX2, Y_Above) DO 
BEGIN 
Check Point ex2, Y_Above); 
X2 :=-X2 + 1 
END e* WHILE *); 

( Fill in to the left of ex, Y) } 

X1 := X - 1; 

WHILE ex1>=X1Loc) AND NOT PD ex1, Y) DO 
BEGIN 
Check Point ex1, Y Below); 
Check-Point ex1, Y=Above); 
DP exT, Y); 
X1 := X1 - 1 
END e* WHILE *) 

END e* THEN *) 
END e* Fill_Line *); 

(****************************************************************) 

BEGIN e* Fill_Region *) 

c Get pixel coordinates of ex, Y) } 

IF DirectModeGlb THEN 
BEGIN 
Start X := Round ex>; 
Start-Y := Round eY> 
END e* THEN *) 

ELSE 
BEGIN 
Start_X := WindowX ex>; 
Start Y := WindowY eY> 
END e* ELSE *); 

March/ April 1988 TURBO TECHNIX 31 



LISTING 3: FILLCIRC.PAS 

PROGRAM Fill_Circle; 

($M 65520,0,655360} (Set stack allocation to maxilTl.lll} 

uses 
Crt,GDriver,GKernel,Turbo3; 

($1 Fill.INC} 
($1 FLOOD.INC} 

( A demonstrator for Fill_Region and Flood_Fill. } 

( By Fred Robinson 

VAR 

Monotreme Software Copyright Cc) 1987 Monotreme Software 
29766 Everett 
Southfield, Ml 48076 
USA } 

I: Integer; 
X, Y: Real; 
White: Boolean; 
Ch: Char; 

BEGIN 
Randomize; 
White := True; 
lnitGraphic; 
Def i neWor l d C 1 , · 1 , -0. 75, 1 , 0. 75 >; 
SelectWorld (1); 
SelectWindow (1); 
SetlineStyle CO>; 

REPEAT 
IF White THEN 

SetColorWhite 
ELSE 

SetColorBlack; 

White := NOT White; 

FOR I := 1 TO 25 DO 
BEGIN 

SetAspect C2.25*Random); 
DrawCircle C2*Random-1, 1.5*Random-0.75, 1.5*Random) 

END C* FOR *); 

32 TURBO TECHNIX March/ April 1988 

FILLING REGIONS 
continued from page 31 

8) is found. Naturally, this exten
sion is not done if the line above 
or below the line being filled has 
already been filled. 

Also notice that in Figure 9, 
point 2 has been marked a second 
time as point 9. (Both points still 
exist as separate records on the 
stack, however.) This is a conse
quence of the algorithm and is 
perfectly legitimate. When the 
line-filling routine is handed a 
point that has already been filled, 
it ignores the point. This is what 
happens once the line containing 
point 9 is filled: Point 2 is now 
within a filled line, and the line
filler routine ignores it. 

Candidate points for starting 
the filling are background points 
to the immediate left of a fore
ground point, and background 
points along the right edge of the 
display screen. This second group 
is included because the edges of 
the display are necessarily consid
ered boundaries. 

The algorithm we've just step
ped through is summarized in 
three pieces of pseudo-code in 
Figure 11. 

The complete Turbo Pascal rou
tine Fill_Region is shown in List
ing 2, FILL.INC. 

Listing 3 (FILLCIRC.PAS) is the 
program Fill_Circle, which acts 
as a demonstration program for 
both of the region fill routines. 
Fill_Circle draws a number of 
circles on the screen, and then 
fills in randomly chosen regions 
among the intersecting circles. 
The drawing color alternates from 
black to white on each cycle of cir
cles and filling; pressing a key 
ends the program. Near the end 
of the main program are calls to 
both Fill_Region and 
Flood_Fill. One of the two must 
always be commented out. Choose 
the one you wish to demonstrate 
and comment out the other. Keep 
in mind that Flood_Fill is 
included only to demonstrate its 
unsuitability for filling large areas; 
as soon as it attempts to fill a size
able region, it exhausts stack 
space and ends the program with 
error 202. 



Fill_ Region is very effective, 
and will fill a region of any size or 
shape. It is not especially fast, but 
it doesn't require assembly lan
guage, nor does it demand huge 
amounts of stack or heap memory. 
It also provides a nice complement 
to the rectangle-fill routine in the 
Turbo Pascal Graphix Toolbox. • 

Fred Robinson is a computer pro
g;rammer in the research department of 
Ross Roy, Inc., an advertising firm in 
Michigan. 

Listings may be downloaded from 
CompuServe as TBFILL.ARC. 

routine fill_region (x,y) 
push (x,y) onto stack 

while the stack is not ~ty do: 
pop a point (x,y) from stack 
call fill_line with (x,y) 

exit fill_region 

routine fill line (x,y) 
if (x,y> is not filled then 

from (x,y) to the right until 
a lit point is reached do: 

check_point above 
check_point below 
set next point in the line 

continuing along the line 
above, to the right until 
a lit point is reached: 

check_point 

continuing along the line 
below, to the right until 
a lit point is reached: 

check_point 

from (x,y> to the left until 
a lit point is reached do: 
check_point above 
check_point below 
set next point in the line 

exit fi l l_l ine 

routine check_point (x,y) 
if (x,y) is on the display then 

if (x,y) is not lit then 
if (x+1,y> is lit, 
or (x+1,y) is not 
on the display then: 

push (x,y) onto the stack 

exit check_point 

Figure 11. Fill_Regi.on summarized 
in pseudo-code. 

FOR I := 1 TO 10 DO 
BEGIN 

REPEAT 
X :=Random* 2.0 - 1.0; 
Y :=Random* 1.5 - 0.75 

UNTIL NOT PointDrawn (X, Y); 

Fill_Region (X, Y) 
{ Flood Fill (X, Y) } {Using Flood_Fill exhausts stack space} 

END (* FoR *) 
UNTIL KeyPressed; 

Read (Klxl, Ch); 
LeaveGraphic 
END. 
{ Push the given starting point onto the stack } 

New (Top_Pai r>; 
Top_Pair· .Next := NIL; 
Top_Pair·.x := Start_X; 
Top_Pair ".Y := Start_Y; 

{ Set the proper X-bounds } 

IF HatchGlb THEN 
BEGIN 
X1Loc := X1RefGlb; 
X2Loc := X2Refglb; 
END (* THEN *) 

ELSE 
BEGIN 
X1Loc := X1RefGlb SHL 3; 
X2Loc := X2RefGlb SHL 3 + 7 
END (* ELSE *); 

{ Fill in until there are no more starting points on the stack } 

YHILE Top_Pa ir<>NIL DO 
BEGIN 
This_Pair := Top_Pair; 
Top_Pair := Top_Pair".Next; 
Start_X := This_Pair· .X; 
Start_Y := This_Pair".Y; 
Dispose (This_Pair); 
Fill Line (Start X, Start Y); 
END C* YHILE *) - -

END (* Fill_Region *); 

March/ April 1988 TURBO TECHNIX 33 



~ CURVES, BEZIER STYLE 
~ 

~ Take some dangerous curves in complete safety with Turbo 
~ Pascal in the driver's seat. 

Kent Porter 

One of the classic difficulties in high-level 
graphics programming is the representa
tion of complex, irregular curves. Exam
ples are decorative curlicues, handwriting, 
and the shapes of real-world objects with 

PROGRAMMER curved surfaces. Because of the impor
tance of these curves in CAD (computer-aided 
design) , this problem has attracted a great deal of 
energy, especially in the aerospace and automotive 
industries. In this article, we'll discuss one of the 
most practical solutions-the Bezier method-which 
enables you to express a complex curve in terms of a 
few points; we'll also give you a Turbo Pascal unit 
that you can apply to your own curve-drawing needs. 

The method takes its name from its inventor, P.E. 
Bezier (pronounced "bay-zee-AY"), a French mathe
matician working for Renault. Developed in the early 
1970s, the Bezier method is one of a group of mathe
matical curios called cubic splines, all of which des
cribe curves. Bezier's fundamental proposition is that 
a polygon can approximate a curve, which wends its 
way among the vertices (the "corners," or control 
points as we'll call them in this discussion). If the 
polygon closes back on its origin, the curve is also 
closed, such as in a circle or an ellipse. An open 
polygon, on the other hand, describes a curve with 
two end points. The curve touches only the end 
points, with the other vertices exerting an influence 
over its path. Figure 1 shows a Bezier curve drawn in 
CGA medium resolution, along with the polygon 
containing the curve's control points. 

A science fiction analogy helps explain how a 
Bezier curve works. Suppose a starship is moving 
from one star to another. As it travels, it encounters 
other celestial bodies whose gravity pulls it away 
from a straight line. All the objects in the universe 
influence its path to some extent, but the nearest 
ones have the most effect. When it finally arrives at 
its destination, the starship's track will have 
described a complex, constantly varying curve. 

34 TURBO TECHNIX March / Ap1;1 1988 

In the course of the journey, the craft's position at 
any instant is represented by two kinds of informa
tion. One is the position coordinates represented by 
x, y, and z (for horizontal, vertical, and depth, 
respectively). These coordinates indicate the star
ship's absolute location. The second piece of infor
mation is the percentage of total distance the star
ship has traveled from start to finish. This is a 
relative indicator ranging from 0 to 1 that is repre
sented by a value called u in the calculations in List
ing 1. When u = 0.0, the craft hasn't departed yet; 
when u = 1.0, it has arrived; and when u = 0.5, the 
starship is halfway to its destination. Thus, if you 
were the navigator, you could determine your posi
tion at any time by deriving the coordinates from u, 
which is, in effect, the controlling variable of the 
voyage. Bezier furnishes a formula for doing this. 

CALCULUS 101 
Unfortunately, no one has yet come up with a way to 
do more than the most primitive graphics without 
resorting to heavy math, and Bezier curves are no 
exception. The Bezier equation for a curve is: 

n 

P(u) = i~ 0 Pi Bi, n (u) 

In other words, for any point u, the location is the 
sum of n + 1 control-point factors proceeding from 
point 0. This factor is a blending function 

Bi,n (u) = C(n,i) u; (1 - u)n-i 

which in turn is derived from the binomial 
coefficient: 

C(n,i) = n!/(i! (n - i)!) 

So much for the equations. Now let's talk about what 
they mean. 



The blending function is where 
the real work of the Bezier meth
od gets done. This function calcu
lates a "gravity factor" for each 
control point relative to the cur
rent u. The closer a control point 
is to the metaphorical starship, the 
more "gravity" it has and the 
more it influences the craft's 
course, which is represented by 
the coordinates. When u = 0, the 
spacecraft is still at the point of 
origin, or p[O], and no other 
points have any influence on its 
position. p[l] begins to pull the 
craft as it leaves the point of 
origin. Halfway between p[O] and 
p[l], both points have the same 
influence on the starship. How
ever, p[2] also attracts the craft 
enough to pull it away from a 
straight line between p[O] and 
p[l]; other points beyond p[2] 
also attract the spaceship in 
diminishing proportion to their 
distance from it. As the craft 
approaches the end point, there is 
nothing beyond to draw it away, 
and so the craft arrives. 

The blending function is 
merely a mathematical statement 
of this effect. For each control 
point, it returns a fractional value 
by which the coordinates of that 
control point are multiplied. The 
sums of these x, y, and z products 
are the coordinates of the position 
at u . 

By drawing lines between suc
cessive u's, we make a map of the 
route, which is the Bezier curve 
based on the control point layout. 

OF HULLS AND SUCH 
The power of Bezier curves lies in 
their ability to represent a com
plex curve with a few points 
expressed in coordinates. The 
simplest curve is described by 
three points: the origin, the desti
nation, and one intermediate ver
tex. The outcome in this case is a 
smooth arc tending toward the 
intermediate point. 

continued on page 36 

LISTING 1: BEZIER.PAS j 

UNIT Bezier; 

{ Functions and procedures for Bezier curves } 

INTERFACE 

USES graph; 

CONST maxPoints 10; 
segments 40; 

{ max control points for a curve } 
{ nbr of segments in a curve } 

TYPE vectorArray =ARRAY [0 •. maxPoints, 0 .• 2] OF INTEGER; 

PROCEDURE BezierFcn (VAR x, y, z REAL; 
u REAL; 
n INTEGER; 

VAR p vectorArray); 
PROCEDURE DrawBezier2D (VAR p vectorArray; 

npts INTEGER); 
{ --------------- ----------------------------------------- } 
IMPLEMENTATION 

FUNCTION c (n, i : INTEGER) : INTEGER; 

{ Binomial coefficient used in blending function } 

VAR j : INTEGER; 

FUNCTION fact (q : INTEGER) : INTEGER; 
VAR f, c : INTEGER; 
BEGIN { COIJl>Ute factorial of q } 

f := 1; 
FOR c := q DOWNTO 2 DO 

f := f * c; 
fact := f; 

END; 

BEGIN 
C := fact (n) div (fact (i) * fact (n - i)); 

END; 
{ --------------------------- } 

FUNCTION blend (i, n: INTEGER; u: REAL) : REAL; 

{ Bernstein blending function used in Bezier formulation } 

VAR partial 
j 

BEGIN 

REAL; 
INTEGER; 

Partial := c (n, i); 
FOR j := 1 TO i DO 

Partial := partial * u; 
FOR j := 1 TO (n - i) DO 

Partial := partial * (1 - u); 
Blend := partial; 

End; 
{ --------------------------- } 

PROCEDURE BezierFcn; 

{ Returns 3D coordinates for current 'u' on the curve } 

VAR i INTEGER; 
b REAL; 

BEGIN 
x := O; 
y := O; 
z := O; 

March/ April 1988 TURBO TECHNIX 35 



FOR i := 0 TO n 00 
BEGIN 

b :=blend Ci, n, u); 
x := x + p Ci, OJ * b; 
y := y + p Ci, 1J * b; 
z := z + p Ci, 2J * b; 

END; 
END; 
{ --------------------------- } 

PROCEDURE drawBezier2D; 

{ Draws a 2D Bezier curve. Graphics mode assi.med. } 

VAR i INTEGER; 
oldX, oldY, 
u, x, y, z : REAL; 

BEGIN 
FOR i := D TO segments DO 
BEGIN 

u := i I segments; 
BezierFcn (x, y, z, u, npts, p); 
IF i = 0 THEN 

HoveTo (ROUND (x), ROUND (y)) 
ELSE 

LineTo (ROUND (X), ROUND (y)); 
END; 

END; 
{ --------------------------- } 

END. 

LISTING 2: CURVE.PAS 

Program curve; 

{ Draw a Bezier curve on the CGA } 

USES graph, Bezier, crt; 

CONST lastPoint = 6; { highest subscript used } 

VAR pt 
graphDriver, graphHode, errorCode, n 
wait 

{ --------------------------- } 

vectorArray; 
INTEGER; 
CHAR; 

PROCEDURE initPoints; { Define control points } 

VAR n, j : INTEGER; 

BEGIN 
FOR n := O TO maxPoints DO { Zero the array } 

FOR j := 0 TO 2 DO 
pt Cn, jJ := O; 

pt co, OJ := 160; pt co, 1J := 11 O; 
pt C1 I OJ := 160; pt C1, 1J := 160; 
pt C2, OJ := 55; pt C2, 1J := 160; 
pt C3, OJ := 55; pt C3, 1J := 20; 
pt C4, OJ := 205; pt C4, 1J := 40; 
pt [5 I OJ := 190; pt [5 I 1J .- 110; 
pt C6, OJ := 280; pt [6, 1J := 110; 

END; 
{ --------------------------- } 

36 TURBO TECHNIX March/ April 1988 

CURVES 
continued from page 35 

More interesting curves result 
from several points laid out in an 
order that very roughly approxi
mates the desired trajectory, as in 
Figure 1. That curve derives from 
seven control points. The straight 
lines join the points in order, 
forming an open polygon, or hull 
as it is often called. Normally, of 
course, you wouldn't draw the hull 
itself, since the object of the game 
is the curve. However, we show 
the hull here so that you can see 
how it provides an intuitive notion 
of how the curve will be drawn. 

Bezier curves are insensitive to 
orientation. In Figure 1, the origin 
is located at the center of the curl 
and the destination is located at 
the far right. However, if we had 
specified the control points in the 
opposite order, exactly the same 
curve would have resulted. 

Figure 2 illustrates a closed 
Bezier curve. The hull has six 
control points. The four corner 
control points are obvious. Less 
obvious are the origin and desti
nation control points, which are 
coincident at bottom center where 
the circle and hull meet. If you 
pulled one of the corners of the 
hull out or pushed it in, the Bezier 
curve would form a misshapen 
circle. 

One restriction on Bezier 
curves is that they cannot cross 
their own path. This is easy to 
avoid-don't let one hull line 
cross another. There's no easy 
way for software to check for this 
conflict, so it's your responsibility. 
If you try to make it happen, your 
program will either lock up in an 
endless loop, or it will crash with 
some bizarre error message. Later 
in this article, we'll show a way to 
overcome the problem by joining 
two separately calculated curves 
that may safely cross. 

IMPLEMENTING A 
BEZIER UNIT 
Listing 1 contains BEZIER.PAS, a 
Turbo Pascal 4.0 unit that partially 
implements a set of Bezier rou
tines. We say "partially" because, 



although the Bezier calculations 
return three-dimensional coordi
nate sets, the unit doesn't furnish 
a 3-D drawing routine. There's a 
good reason for this: 3-D graphics 
is a subject for a very thick book, 
and we haven't room to cover it 
here. If you want to learn more, 
see Principl,es of Interactive Computer 
Graphics, W. Newman and R. 
Sproull, New York: McGraw-Hill, 
1979. The Bezier algorithm in 
Listing 1 is based in part on 
Newman and Sproull, pp. 315-319. 

The maxPoints constant is set 
to 10, and the vectorArray type 
uses this value as the upward limit. 
In fact, because subscripting starts 
with 0, the array actually contains 
a maximum of eleven control 
points. This is consistent with the 
summarization function of the 
Bezier equation, which specifies 

n 
"L 

i=O 

or in other words, n + 1 control 
points. (Note that the term vector 
means a set of coordinates-these 
are the columns [0 .. 2] in vector
Array that correspond to x, y, and 
z.) Eleven control points for a 
curve seems a reasonable limit; if 
you need more, consider joining 
curves as discussed later. 

The segments constant is the 
basis for u in the calculations. 
This constant defines how many 
line segments make up the com
plete curve. The drawBezier2D 
procedure controls curve-drawing 
with the loop 

FOR i := 0 TO segments DO. 

and calculates u as i/segments. 
Therefore 0.0 < u < 1.0 repre
sents a percentage of the com
plete transit from origin to 
destination. 

Two of the five subroutines in 
BEZIER.PAS are externally visible. 
The drawBezier2D procedure is 
probably the only one you'll call, 
but you might want to call 
BezierFcn for applications such as 
marking points on the curve-say 
at every 10 percent of its length, or 
at its midpoint. Given the desired 

continued on page 38 

BEGIN 
( Set up the screen in CGA 320 x 200 mode, palette 1 } 

GraphDriver := CGA; 
GraphMode := CGAC1; 
InitGraph CgraphDriver, graphMode, 'C:\DRIVERS'); 

( Check to make sure it happened } 
ErrorCode := graphResult; 
IF errorCode <> grOK THEN BEGIN 

WRITELN ('Graphics error ', errorCode); 
WRITELN ('Program cannot run'); 
HALT ( 1); 

END; 

(Draw the hull outline} 
InitPoints; ( First initialize control points} 
SetlineStyle (dottedln, 0, nor""idth); 
SetColor C 1); 
MoveTo (pt CO, OJ, pt CO, 1J); 
FOR n := 1 TO lastPoint DO 

LineTo Cpt Cn, OJ, pt [n, 1J); 

( Now draw the curve itself } 
SetLineStyle (solidln, 0, nor""idth); 
SetColor (2); 
DrawBezier2D (pt, lastPoint); 

( Clean up after a keypress } 
Wait := readkey; 
CloseGraph; 

END. 

LISTING 3: TWOCURVS.PAS 

Program twoCurvs; 

( Draw joined Bezier curves on the CGA } 

USES graph, Bezier, crt; 

CONST lastPoint = 4; ( highest subscript used } 

VAR a, b 
graphDriver, graphMode, errorCode, n 
wait 

vectorArray; 
INTEGER; 
CHAR; 

( --------------------------- } 

PROCEDURE initPoints; ( Define control points } 

VAR n, j : INTEGER; 

BEGIN 
FOR n := 0 TO maxPoints DO ( Zero the array } 

FOR j := 0 TO 2 DO BEGIN 
a [n, jJ := O; 
b [n, jJ := O; 

END; 
a co, OJ := 10; a co, 1J := 11 O; ( first hull } 
a C1, OJ := 10; a C1, 1J := O· I 

a [2, OJ := 120; a C2, 1J := O· I 

a [3, OJ := 180; a C3, 1J := 110; 
a [4, OJ := 240; a [4, 1J := 11 O; 

b CO, OJ := 240; b [O, 1J := 11 O; ( second hull } 
b [1, OJ := 310; b [1, 1J := 11 O; 
b [2, OJ := 310; b C2, 1J := O· I 

b C3, OJ := 180; b [3, 1J := O· I 

b [4, OJ := 120; b [4, 1J := 199; 
END; 
( --------------------------- } 

March/ April 1988 TURBO TECHNIX 37 



BEGIN 
( Set up the screen in CGA 320 x 200 mode, palette 1 } 

GraphDriver := CGA; 
GraphMode := CGAC1; 
InitGraph (graphDriver, graphMode, 'C:\DRIVERS'); 

( Check to make sure it happened } 
ErrorCode := graphResult; 
IF errorCode <> grOK THEN BEGIN 

WRITELN ('Graphics error ', errorCode); 
WRITELN ('Program cannot run'); 
HALT (1); 

END; 

(Draw the first hull outline} 
InitPoints; (First initialize control points} 
SetLineStyle CdottedLn, 0, norrrA.lidth); 
SetColor (1); 
MoveTo Ca CO, OJ, a CO, 1J); 
FOR n := 1 TO lastPoint DO 

LineTo Ca Cn, OJ, a Cn, 1J>; 

(Draw the second hull } 
MoveTo Cb CO, OJ, b CO, 1J>; 
FOR n := 1 TO lastPoint DO 

LineTo Cb Cn, OJ, b Cn, 1]); 

(Mark the joint with a vertical line} 
MoveTo (240, 100); 
Linero C240, 120); 

( Now draw the first curve} 
SetLineStyle (solidLn, 0, norrrA.lidth); 
SetColor (2); 
DrawBezier2D Ca, lastPoint); 

( And second curve } 
Setcolor (3); 
DrawBezier2D Cb, lastPoint); 

( Clean up after a keypress } 
Wait := readkey; 
CloseGraph; 

END. 

38 TURBO TECHNIX March/ April 1988 

CURVES 
continued from page 37 

point in terms of u, BezierFcn 
returns the coordinates. The func
tions C and Blend are useful only 
to BezierFcn, and therefore are 
not callable from outside the unit. 

PUTTING IT TO WORK 
The output from the demonstra
tion program CURVE.PAS in List
ing 2 is the curlicue shown in Fig
ure 1. This program uses the 
Bezier unit and also the Turbo 
Pascal 4.0 Graph unit. 

The program itself is simple 
and self-explanatory. It puts the 
display adaptor into CGA four
color (320 X 200) graphics mode 
(which also works on the EGA 
and VGA). After outlining the 
hull, the program draws the 
Bezier curve in a contrasting 
color, then waits for a keypress 
and terminates. 

JOINING CURVES 
You might need to join two or 
more curves when the path of the 
desired curve must cross over 
itself, or when the curve is so com
plex that it requires more control 
points than the Bezier unit 
supports. 

In order to achieve a smooth 
joint, you must follow two rules. 
First, make two end points of the 
adjacent curves coincident so that 
one curve ends at exactly the 
same point where the next curve 
begins. The second rule is to 
create continuity in the adjoining 
hulls across the joint. 

For example, assume that you 
have two hulls called A and B. A, 
which flows into B, has six control 
points. To achieve continuity, A[4], 
A[5] (coincident with B[O]), and 
B[l] must all lie on the same 
plane, so that a straight line 
passes through all of them. The 
span from A[4] through B[l] 
should be fairly long, so that the 
curves have room to sweep grace
fully to their coincident end 
points. A long span eliminates a 
sudden kink or angle that disrupts 
the curve's fl.ow. 



Figure 3 illustrates this. Both 
hulls are outlined in dotted lines. 
A vertical line marks the joint, 
which is in the bottom center of 
the right-hand polygon. Curve A 
sweeps up from the left side of the 
screen and down to the end point, 
where curve B picks up and 
crosses back over A. Run the 
TWOCURVS.PAS program in List
ing 3, and note that curve A and 
curve B are drawn in different 
colors. This color scheme clearly 
identifies the two curves and pin
points where one curve ends and 
the next curve begins. 

The Bezier method provides a 
powerful means for describing 
complex shapes using just a few 
data points. An interesting exer
cise in the Bezier method would 
be to write a mouse-knowledge
able program that lets you click on 
points on the screen, draw a 
curve, move the points around, 
and print the screen when you 
like the curve. 

Because the Bezier method was 
developed in response to the need 
for CAD tools in automotive 
design, they're eminently well
suited to computer an, and offer 
a fascinating object of study 
as well. • 

Kent Porter is th£ author of Stretch
ing Turbo Pascal (Prentice Hall 
Press), and writes for TURBO 
TECHNIX and other computer 
magazines. 

Listings may be downloaded from 
CompuServe as BEZIERARC. 

Figure 1. (Top) A Bezier curve and its 
hull. Each vertex of th£ hull, includ
ing th£ endpoints, is a control point to 
th£ curve itself 
Figure 2. (Middle) A closed Bezier 
curve. Th£ circle's two coincident end
points lie at th£ point where th£ curve 
contacts th£ hull. 

Figure 3. (Bottom) joining two Bezier 
curves. Th£ vertical line shows th£ 
point where th£ curves join. Note that 
th£ two hulls pass through this point 
and subtend a straight line for some 
distance to either side of th£ join point. 

March/ April 1988 TURBO TECHNIX 39 



Lots of software 
packages help you work, 
M oving ahead takes 

more than hard work, 
it takes smart work. 

There are stacks of productiv
ity software you can buy for 
your PC. But to work smart, 
you only need one: SideKick® 
Plus. It's the newest member 
of Borland's professional 
series, from the same people 
who brought you the original 
SideKick: the program that 
introduced more than a million 
PC users to the convenience 
of using their computer as an 
organizing tool. 

To buy productivity applica
tions like those in SideKick 
Plus separately, you'd spend 
almost a thousand dollars and 
drain your computer's memory 
dry. SideKick Plus takes 
as little as 

notepads, a versatile outliner, 
four different calculators, 
support for both EMS and 
extended memory. And 
lots more. 

You decide how to use 
SideKick Plus, too . Put your 
applications on your hard disk 
to call up when you need them, 
or leave them in RAM for 
instant availability. Either 
way, they're always at your 
fingertips . Accessible over any 
other application you're work
ing in. Amazingly affordable. 
And very, very smart. 

Here's What You Get! 
• The PhoneBook: complete 

data and voice communications 
that you can set to take place 
in the background, with auto
dialing, an encrypted glossary, 

and a full Script language. 
Even if you don't have 

a modem, it keeps 
your names, 

addresses, 
and phone 
numbers at 

your fingertips 
·Outlook: 

• The Calculator: four types: 
business, scientific, program
mer and formula 

• The Clipboard: for copy-and
paste integration between files 
and with other applications 

• The Time Planner: includes a 
Calendar. Appointment Book, 
and Schedule window. plus 
alarms, repeating appoint
ments. and attached agenda. 
Supports networks via a 
common calendar 

· The Notepad: nine file
editor Notepads, up to 11,000 
words each 

• The ASCII Table: to find 
and paste characters quickly 
and easily 

• Supports both EMS and 
extended memory: if you 
have expanded memory or the 
Intel Above'"Board, you can 
load the SideKick Plus desk 
accessories into expanded 
memory and leave even more 
of your conventional memory 
for your other applications. 
Other cards supported include: 
AST RAM page!, Quadram 
Liberty, STB Memory Cham
pion, and true compatibles. 

SideKick Plus puts you in control . .. 
for as little as 64K! 

The Outline 
Processor: nine 

Outliners with auto
matic numbering, tree charts, 
and table of contents 

Only $199.95 
(not copy protected) 

64Kof your computer's RAM; 
you decide exactly how much. 

You can select just the 
productivity applications you 
need. Like a sophisticated tele
communications package, a 
powerful DOS manager, nine 

Minimum System Requirements: For IBM PS/2, IBM family of pe1sonaJ compu1ers. 
and all 100% compatibles Operating system PC -DOS (MS-005) 2 0 or la1er M+n1mum 
system memory 384K bytes Minimum resident memofY size 64K. Hard disk reQu1red 

• The File Manager: extended 
DOS file and directory 
management 

60-day money-back guarantee* 

For a brochure. the dealer 
nearest you, or to order 
Call (800) 543-7543 

·cuslomer sa11stact1on is our main concern I! w1th1n 60 days ot purchase this product does All Bofland producls are lrademarks or reg1S1e1ed trademarks of Bofland lntemat1onal. Inc 
not perform 1n accordance with our clam'lS. call our customer service depar1ment and we Olher brand and prodllci names are trademarks ol their respective holders. Copyrighl 
will arrange a refund C 1988 Borland lntemat!OM!, Inc Bl 11 76 



Only one helps 
you work smarter. • • 

a 
twEKICK' Plus 

$25 
Rebate 

NOTEPAD software 

Calendar SOFTWARE 

NE"'' Announcing 
SideKick Plus! 

SideKick Owners: Get a great deal from 
your dealer and a $25 Rebate from Borland! 

$25 
Rebate 

Go to your favorite retailer for a great deal on new SideKick Plus. And. because you're a SideKick owner. we'll make it 
an even better deal-with a $25 rebate from Borland! To receive your rebate. you must return your completed SideKick 
Plus registration form from your manual. a copy of your dated SideKick Plus sales receipt. and this completed coupon to: 
Borland International, Dept. PSPR. 4585 Scotts Va lley Drive, P.O. Box 66000 1. Scotts Valley, CA 95066 

Name 

Street dealer atter 

City Zip 

Phone 

SideKick Serial o. (must be included to process rebate)* 
·11 your copy ol SideKick does not have a serial number. remove and return the Iron! cover ol your S1deK1ck manual 
To take advantage ol this rebate you must purchase SideKick Plus by May 31, 1988 and return the rebate request to Borland by July 31, 19B8 This oiler is good tor one rebate per 
registered copy ol SideKick Not good with any other oiler from Borland Please allow 6 to 8 weeks for delivery of rebate Oller good in the U.S .. and Canada only. 

INTERNATIONAL 





THE SIDEKICK PLUS API: 
INTRODUCTION 
Extend SideKick Plus with your own custom tasks-and let 
SideKick Plus do the hard work. 

Jeffrey Goldberg and Steven Boye 

How would you like your programming 
environment to include a TSR kernel, a 
pop-up menu system, a memory manager, 
and a communications manager? 

Interested? Well, welcome to the Side-
w•zARo Kick Plus programming environment, 
embodied in the SideKick Plus Application Program 
Interface (API). The SideKick Plus API is a new 
Borland product containing all the tools necessary to 
design and implement your own SideKick Plus tasks. 
In this article, we'll give you a brief introduction to 
the SideKick Plus API architecture and programming 
techniques. Future issues of TURBO TECHNIX will 
explain the process more fully, and provide further 
working examples of actual applications. 

THE TSR PROBLEM 
Borland's original SideKick was the first widely used 
Terminate and Stay Resident (TSR) application pro
gram. Other vendors quickly adopted the concept 
and a host of TSR applications appeared. Each 
worked well on its own, but when more than one 
TSR was resident in memory at one time, conflicts 
began. TSR battles over control of the keyboard 
interrupt have become legendary. The larger prob
lem of multiple TSRs occupying the lion's share of 
the PC's 640K of memory grew worse as TSRs grew 
in complexity and hence in size. Dropping one of 
several resident TSR applications from memory 
(except for the last TSR) did not reclaim that 
memory for use by other applications. 

A standard was needed for a higher-level TSR 
manager-a single TSR with the ability to share 
machine resources equitably, while claiming a mini
mal amount of the precious 640K memory. To sup
port today's and tomorrow's technology, this TSR 
also needed to be fairly device-independent from 
an applications standpoint. With all this in mind, 
Borland designed SideKick Plus to unify TSR pro
grams and eliminate troublesome TSR conflicts. 

THE KERNEL AND THE TROOPS 
Consensus is a uniquely human concept; among co
resident computer programs, one of them must be 
the boss. SideKick Plus assumes this supervisory role 
by always placing its central core-called the kemel
into memory. The kernel takes control of many 
things, including peripherals and memory manage
ment. What the user sees as SideKick Plus applica
tions are separate program modules called tasks. To 
do their work, these tasks call routines that are part 
of the kernel; they may also call other subprograms 
known as services. We'll say more about these services 
later. Right now, let's take a look at a SideKick Plus 
task. 

A SIDEKICK PLUS TASK-THE NOTEPAD 
Anyone familiar with the original SideKick, or with 
any Borland language, will recognize the SideKick 
Plus Notepad. Now, however, up to nine Notepads 
may exist, each able to read a file of 54,000 charac
ters. Even with all nine Notepads full-a showstop
ping 474K of notes-SideKick Plus occupies only 64K 
of your precious memory. This feat is due to the 
dynamic memory system in SideKick Plus, which swaps 
both data and code to the hard disk, EMS memory, 
or RAM disk. Side Kick Plus handles this swapping 
process for you whenever you request memory to be 
allocated for your program. 

After bringing up the Notepad from the main 
SideKick Plus menu, you'll also notice a new multi
level menu system. Pressing FlO brings up a menu 
on the right side of the window. Some of the options 
read like English sentences, such as Insert Time and 
Date at Cursor. For many of the options, you can still 
use the familiar SideKick Ctrl-key shortcuts; a status 
line in the lower left corner of the screen even indi
cates the shortcut, if one is available. 

continued on page 44 

March/ April 1988 TURBO TECHNIX 43 



LISTING 1: MINICOM.PRO 

!********************************************************* 
** ** 
** Profile for MINICOM -- TURBO TECHNIX Exarrple 
** 

** 
** 

*********************************************************/ 

MODULE TASKC"MiniCom", ALTM, 100); 

VERSION(O, 0, 1); 
SERVICE(ServFile, 
SERVICECServEd, 
SERVICE(ServTTY, 
SERVICE(ServMM, 

swap, 
swap, 
noswap, 
swap, 

0); 
3); 
0); 
2); 

/* Version O, req. kernel version 1 */ 
/* Req. version 0 of File 1/0 service*/ 
/* Req. version 3 of Editor service */ 
/* TTY driver is used */ 
/* Modem Manager service */ 

TEXT SECTION; 
TXTonLine 
TXToffL ine 
TXTerror 
TXTdiscon 
TXTillegalno 
TXTphoneErr 
TXTedLine 

MENU SECTION; 

"Online 
"Offl ine 
II ERROR "; 

= "Disconnecting"; 
"Illegal telephone nunber"; 
"No carrier"; 
"Note 

FUNCTIONKEYSC MainFkeys, EdFkeys); 
CLASSES( Online, Offline ); 

MENU(Main, " MiniCom "): 

\HEsc\N-Exit"; 
\HEsc\N-Exit"; 

\HEsc\N-Exit"; 

"Di al 11 menu(M di al), class(Offl ine); 
"Hangup" procleaf(hangup), class(Online), fkey( 11 Hangup11 ,F8,MainFkeys>; 
"Note" menu(M_note); 

MENUCM_dial, " NU!ber "): 
II II strleaf(phoneno,,,dial); 

MENUCM note, " Note "): 
"Edit"- procleaf(edit), fkey("Note", F9, MainFkeys); 
"Send" procleaf(send), class(Online); 

LISTING 2: MINICOM.C 

/********************************************************* 
** ** 
** Mini Com ** 
** ** 
** This is a sarrple cOlllll.lnications program which ** 
** demonstrates the SideKick Plus AP!. It uses ** 
** four services. ** 
** ServFile <Fi le l/O) ** 
** ServTTY (COM port driver) ** 
** ServMM (Modem Manager) ** 
** ServEd (Editor service) ** 
** ** 
*********************************************************! 

/* include AP! header files (API.LIB) */ 
/* ================================== */ 
#include <apihead.p> 
#include <apifunc.p> 
#include <skkeys.p> 

/* include APIP generated header file*/ 
/* ================================== */ 
#include 11 techmenu.h 11 

/* llJl>Ortant application constants*/ 
!* ============================= *I 
#define MAX EDSIZE CC1D * 1D24 + 905) I 16) /* About 10k */ 
#define COLOR PALETTE 41 /* Colors the same as Phonebook */ 
#define SETUP=VERSION 0 /* Setup version required */ 

44 TURBO TECHNIX March/ April 1988 

SIDEKICK PLUS 
continued from page 42 

A user may easily modify the 
Borland shortcut conventions in 
SideKick Plus. One keystroke pops 
up a menu that allows the user to 
change the shortcut or the menu 
title, or even to move the menu 
item. Once the programmer 
defines the default menus and 
saves them to a menu file, the 
application isn't affected by 
changes that the user makes in 
the menu. 

A SIDEKICK PLUS SERVICE
THE EDITOR 
SideKick Pius's editor is an exam
ple of a Side Kick Plus service. A 
seroice is a piece of code that sev
eral applications share, and can 
be used by many applications at 
the same time. SideKick Plus 
includes many services, ranging 
from reading in a line of text to 
performing all DOS file opera
tions. The example program in 
Listings 1 and 2 uses several of 
these services. To illustrate the use 
of SideKick Pius's editor as a ser
vice, let's look at the Phonebook. 

Although its roots are in the 
original SideKick Dialer, the Side
Kick Plus Phonebook is now more 
than just a dialer-it's a fully auto
mated communications package 
with a block-structured script lan
guage. Unlike the Dialer, the 
Phonebook lets the user open a 
new entry with a single keystroke, 
fill in the form, and press Esc. 
Because the SideKick Plus editor 
is available as a service to the 
Phonebook, the user can now 
append a note to any Phonebook 
entry by pressing F9, which opens 
an editor window attached to the 
entry. The Phonebook's editor is 
the same as the Notepad's editor. 
The Phonebook's editor window, 
howeve._r, saves its text to the 
Phonebook file rather than to a 
normal text file. 

TASK AND KERNEL 
ORGANIZATION 
Services, tasks, and the kernel 
make up a three-part puzzle. 
Their relationships are summar
ized in Figure 1. 



Swapping Area: 

Linked 
APT 

Code 

Disk, RAMdisk, or EMS 

Task 

Figure 1. SideKick Plus brings tasks 
and/ or seroices in from the swapping 
area as needed to keep its memory 
utilization as low as possible. 

As the heart of SideKick Plus, 
the kernel has many jobs: 

• Memory management of both 
the underlying application and 
of SideKick Plus code and data 

• Coordination of tasks and 
services 

• Keyboard input 
• Video support, including win

dow management and graphics 
screen restoration 

• Coordination with DOS, which 
includes defining SideKick Plus 
as a TSR or as a normal, non
resident application 

• Task scheduling 

TASKS 
Tasks are the main building blocks 
of SideKick Plus applications. A 
task, such as the Calculator or 
Notepad, will usually appear on 
the SideKick Plus main menu and 
can be selected by using the key
stroke shortcuts, such as Alt-C or 
Alt-N, respectively. 

A task consists of a set of proce
dures called in pairs (see Figure 2) 
by the kernel at special times. The 
first pair is initproc and killproc. 
As the name suggests, initproc is 
the initialization procedure that is 
called when you load SideKick 
Plus, and typically initializes win
dows and opens databases. Simi
larly, killproc is called when Side
Kick Plus is unloaded from 
memory. 

continued on page 46 

/*Window Variables used in application*/ 
I* ==================================== */ 

int mainwindow; !* Corrm. window that opens first *! 
int edwindow; !* Editor Window */ 

int mainposx = 1. !* Initial position/size of mainwindow */ I 

int mainposy = 1. , 
int mainsizex = 70; 
int mainsizey = 20; 
int edposx = 10; !* Initial position/size of 
int edposy = 5; 
int edsizex = 60; 
int edsizey = 17; 

/* Declarations for Window resizing and recoloring */ 

void far mainredraw( void >; 
WRSCB mainwrscb = { /* Window Resize Control Block 

for the main window */ 
MOOULEID, /* Module id, #define in the PRO 
CPROC)mainredraw, /*Procedure called 

after resizing the window */ 
5, 5, /* Minirra.Jll size allowed*/ 
NIL, NIL, /* Maxirra.Jll size. NIL means Kernel 
0, 0, /* Zoom position */ 
NIL, NIL /* Zoom maxirra.Jll size. 

NIL means Kernel decides */ 
}; 

WRSCB edwrscb = { /* Window Resize Control Block 

}; 

MOOULEID, 
CPROC)NIL, 
5, 5, 
NIL, NIL, 
0, 0, 
NIL, NIL 

for editor window */ 
/* Module id, #define by APIP */ 
!* Task redraw function */ 
!* Minimal size */ 
/* Maxinun size */ 
/* Zoom position */ 
!* Zoom size */ 

/* End of Window Declarations */ 

char phoneno[24J = ""; /* Phone nunber variable 
as read from the menu */ 

edwindow */ 

file*/ 

decides */ 

BOOL 
BOOL 

online =FALSE; 
newstat = FALSE; 

!*On-line or Off-line variable*/ 
!*Need to redraw status line Cline 25)? */ 

/* EDitor Control Block and EDitor INFormation Block */ 
!* ================================================== *! 

EDCB edcb; 
EDINFB edinfb = { 

0, 

}; 

0, 
0, 
0, 

ED INSERT I ED_TAB, 
80-

!* Size in bytes. 0 = Use MAX EDSIZE */ 
/* Cursor at first character Tn text */ 
/* Block start at 1st character */ 
!* Block end at 1st character so no */ 
!* marked and displayed block. */ 
/* Insert = ON and Hard Tabs = ON */ 
/* Right Margin at 80 */ 

/* Dynamic memory block with text */ 
!* ============================== */ 

int 
int 

TextHandle = O; 
TextPara = 1; 

I* Empty command table */ 
I* =================== *! 

/* Handle to block with text */ 
!*#of paragraphs allocated in initproc */ 

COMTABLE maincomtable [] = { 
0, 0, 0 /* Key, Procedure called, Parameter*/ 

}; 

March / April 1988 TURBO TECHNIX 45 



/* SETUP Control Block */ 
I* =================== */ 

/* Save Setup saves these items */ 
SETUPCB setuplist[] 

&MainFkeys, 
&EdFkeys, 
phoneno, 
&edinfb, 
&mainposx, 

}; 
#define SETUP_LEN 

= { 
sizeofCFKCB), /* 
sizeofCFKCB), /* 
si zeof Cphoneno), 
sizeof(edinfb), 
8 * sizeof(int) 

5 

Main set of function keys */ 
Editor function keys */ 
I* The Phone nllllber */ 
/* The editor settings */ 
/* The size and position */ 
I* of the windows. */ 

/********************************************************* 
** ** 
** 
** 

UTILITY FUNCTIONS ** 
** 

*********************************************************/ 

I* 
** Called after a resize or recolor. Updates mainpos and 
** mainsize with their new values and resets the viewport. 
** Does NOT replace the text after a resize/recolor. 
*I 

void 
{ 

} 

I* 

far mainredraw( void ) 

getwinposC &mainposx, &mainposy); 
getwinsize( &mainsizex, &mainsizey); 
setscoperelC1, 1, 1, 1>; 

** Disconnects, updates the menu system, and sets newstat so 
**that the status line reflects the change of state. 
*I 
void discol'V'lect( void ) 
{ 

message(NIL, (char 
modennangupC >: 
modemexit(); 
winlcil LO; 
hideclass(Online); 

*)TXTdiscon); /* TXTdiscon in PRO file*/ 

} 

unhideclass(Offline>; 

newstat = TRUE; 
onl i ne = FALSE; 

/*Kill the message window*/ 
/* Remove menu items with 

class(Online) in the PRO file*/ 
/* Show menu items with 

class(offline) in the PRO file*/ 

/********************************************************* 
** ** 
** 
** 

MENU ACTIVATED FUNCTIONS ** 
** 

*********************************************************/ 

void hangup( void ) 
{ 

disconnect(); 
} 

/* 
** Called when you use F10 Send. 
** Transmits all the data in the editor and echoes it to the screen. 
*/ 
void send( void ) 
{ 

char *p; 
char *pend; 

46 TURBO TECHNIX March/ April 1988 

SIDEKICK PLUS 
continued from page 4 5 

!NIT 

OPEN 

LEAVE 

ENTRY 

RESTART 

CLOSE 

KILL 

Figure 2. A task may be viewed as a 
set of procedures grouped in pairs and 
caUed by the kernel at appropriate 
times. 

The next pair of procedures is 
openproc and closeproc. The ker
nel calls openproc when the user 
first opens the task from the main 
menu. openproc usually fills in 
the windows initialized by init
proc. closeproc is called when the 
user presses Esc to exit the appli
cation, and allows the program to 
save the user's files and to close 
databases ( closeproc may be left 
blank). 

The last pair of procedures is 
leaveproc and restartproc, which 
are called when the user presses 
Ctrl-Alt or Esc to leave SideKick 
Plus, or Ctrl-Alt to restart SideKick 
Plus. Although you often leave 
these procedures empty, you can 
use them to open and close data
bases, or to automatically save 
data. 

The heart of the task is entry
proc. This procedure is a continu
ous loop that reads a character 
from the keyboard and stops 
when the Esc key is pressed. 
entryproc is often a very simple 
procedure, such as: 
while (TRUE) 
{ 

} 

c = readchar((PROC)NIL); 
if Cc == ESCAPE) 
break; 

Let's look briefly at task sched
uling, which is handled by the 
kernel. One of the kernel's 
responsibilities is to manage the 
keyboard. Whenever the program 
asks the kernel for input from the 
keyboard, the kernel presumes 
that the user wants to activate a 

continued on page 48 



Quattro lets 1-2-3 users do more 
without having to learn more 

If you know how to use 1-2-3®. switching to Quattro™ is a 
snap. There's no back-to-school. It's not that 1-2-3 and 
Quattro are the same; they're not. But you can tell 
Quattro to behave in familiar ways, and the sense of 
familiarity you'll enjoy is more like the one you feel 
while driving home. but in a brand new sports car. 

Quattro goes faster and 
does things better 
1-2-3 moves along pretty well, 
but Quattro flies right by be
cause it does things differently 
and it does them sooner rather 
than later. Quattro's recalcs for 
example, are intelligent, which 
means it only recounts the 
numbers that count and doesn't 
slowly and unnecessarily 
recount the whole spreadsheet. 
And SQZ!® Plus for Quattro 
automatically compacts and 
expands your spreadsheets by 
up to 95%. 

·eusromer Sil!slxlion 1s ot.r ma.n coocern. ~ wilM 60 oars ol p!.JCf\ise lfllS oroooci dOes no1 petkrm'" accor
dance W'lh cu clasms. tall ot.1 CUSlomtf ser11Ct clepartmerf. and we w I 1n;1noe 1 rtlln:I 
Al Borlind oroOJc:ts •t lridemirks 01regisltred1raaerrins ol 8orland lnlefNt!Ol\al, Inc 1-2-3 rs a regslered 
lrider!Wk olloMCofpSQZ1rs1regiS1eredtraoem.tolS~Corpnll'Mft1a11Plblisl'»llQO.Y1son 

Copyr1gtit01988Borlaodlnternat>ONl.lne 8! 118\A 

Quattro gets things done faster 
including inserting or deleting 
rows and columns. paging, or 
painting presentation-quality 
graphics. 

Quattro lets you print your 
presentation-quality graphs 
without having to buy a sepa
rate graphics package. It gives 
your work the completely 
professional look. 

Quattro, the new 
Professional Spreadsheet 
for only $199.95 
Quattro is a dramatic improve
ment in spreadsheet technology, 
graphics. speed, power. and 
price. It's only $199.95 and 
comes with our unique 60-day 
money-back guarantee and free 
technical support. To make both 
you and your work look good, 
get Quattro today. 

60-Day Money-back Guarantee* 

For the dealer nearest you, 
a brochure. or to order, 
Call (800) 543-7543 

INTERNATIONAi 



SIDEKICK PLUS 
continued from page 46 

new task. This is a major presump
tion. It means that any task you 
write must allow keyboard input 
most of the time and be ready to 
switch tasks anytime the user 
requests a new task from the 
keyboard. 

As you can see, the kernel han
dles many importantjobs in any 
SideKick Plus application. If the 
kernel is the heart of the program, 
where is the action? 

THE ACTION 
The action of the SideKick Plus 
task lies in procedures that are 
called by the kernel in response to 
input from the keyboard. For ex
ample, if FlO is pressed, the kernel 
pops up the menu for the task. 
The programmer uses the com
mand table and the .PRO file to 
define which procedures the ker
nel calls, the contents of the 
menu, and the definition of the 
task's shortcuts. 

Command table. The command 
table is the simpler method to 
implement, and does not let the 
user redefine the task's shortcuts. 
A command table consists of a 
number of entries, each contain
ing three fields: 

COMTABLE 

>; 

DemoComTab 
CTRLA, si:xtil>, 
CTRLB, test, 
CTRLC, demo, 
CTRLD, ~, 
0, 0, 0 

[] = { 
1, 
55, 
42, 
1, 

We'll look at the first entry in this 
command table as an example. 
The first field (containing a con
stant, CTRLA) is the key that acti
vates the procedure defined by 
the second field (containing a 
procedure name, spdmp), with the 
parameter defined by the contents 
of the third field (the value 1). 
The constant CTRLA was defined 
earlier in a header file as being 
equivalent to ASCII Ctrl-A. When 
the user presses Ctrl-A, the proce
dure spdmp is invoked with a 
parameter value of 1. Each key 
that is pressed is checked for a 
match against each entry in the 
command table. The last entry in 
the command table is zero-filled 
to indicate the end of the table. 

48 TURBO TECHNIX March/ April 1988 

Figure 3. MiniCom acc,epts a phone number from the user through a prompt 
defined in the . PRO fi/,e. 

Figure 4. MiniCom in action, connected to an online se:vice. The opfm: edit 
window contains a short message that has been transmitted to the sennce. 

The .PRO file. The .PRO file con
tains all of the menus for the task, 
together with the task's shortcuts 
and the procedures it calls. For 
easy translation into foreign lan
guages, put any user messages 
into the .PRO file. 

The .PRO file makes designing 
a menu system easy. You don't 
even need to write that read
integer or readstring routine for 
the nth time. For example, to read 

in a filename, use the command 
strlea£ The following portion of 
the .PRO file in Listing 1 

MENU(M dial, " Nunber ">: 
II - II 

strleaf(phoneno,,,dial); 

puts Number in the main menu 
with a single line below it that 



} 

I* 

p = reclainmem( TextHandle 
pend = p + edinfb.bytes; 
for C; p < pend; ) 
( 

); /* Get memory with Texthandle */ 
I* How big is it? */ 
I* Send it.... */ 

if CmodemwriteC*p)) 
writechar(*p++); 

/* •... To the modem*/ 
/* .... To the window*/ 

} 

releasemem( TextHandle ); /* Don't need memory any more, *I 
I* allow Kernel to swap it out. */ 

** Called when you press F9 or F10 Note Edit. 
** Opens an editor window with the text stored 
** in the block referenced by TextHandle. 
*I 

void edit( void > 
( 

} 

I* 

int re; 

winopenCedwindow); 
re = eddyneditC&edcb, &edinfb, "Note", TextHandle, TextPara); 
if C re) 

TextPara = re; 
getwinpos( &edposx, &edposy); 
getwinsizeC &edsizex, &edsizey); 
winclose(); 

**Called when you press F10 Dial and enter a nllllber. 
**The nllllber is in variable phoneno, if it is valid 
** If the user pressed Enter dial the telephon~ nllllber that 
** he has entered in the input field. This has been stored in 
** phoneno. If a connection is made the menu system and status 
** lines are updated so they reflect the status change. 
*I 
PROC dial( int NotEnter 
{ 

} 

int re; 

if CNotEnter) 
return POP_QUIT; /*Close menu if not the Enter key*/ 

/* The following sets Modem parameters; 
change for different configurations */ 

modeminitC BITS7ISTOP1 IPAREVENIBAU01200ICOM1 I 
PXONXOFFIMOOENAIDUPFULLIPDATAIPTONE, 
0, 0, 0, 0 >; 

re = lllOdemdialCphoneno); 
if (re == OK) 
( 

newstat = online =TRUE; 

/* Dialed OK so update */ 
/*status line and menus. */ 

hideclass(Offline); /*Remove class(offline) menu items*/ 
unhideclass(Online); /*Add class(online) menu items */ 
return POP_QUIT; /* Close the menus */ 

} 

errorCTXTerror, 
(char *)((re == ILLEGALNO) 

beeperrorC>; 
wait(); 
winkil LO; 
modemex i t (); 
return POP_STAY; 

? TXTillegalno : TXTphoneErr) ); 
I* Put up error msg and beep */ 
/* Wait for any keystroke */ 
/*Kill the message window */ 

I* Keep the menus open */ 

prompts the user for a text string. 
(See Figure 3, which shows a 
screen display of this process in 
action.) When the user presses 
Enter in the string, the kernel 
places the string into phoneno 
and calls procedure dial to check 
the string for validity. 

The .PRO file also specifies 
such things as whether the mod
ule is a task or a service, and the 
task's number. Listing 1 contains 
the .PRO file that accompanies 
MINICOM.C. 

ADDITIONAL INGREDIENTS 
THAT MAKE UP A TASK 
A task must be able to do two 
other things before winning its 
SideKick Plus spurs: resizing win
dows and saving setups. Although 
both features are optional, it is not 
difficult to make all the windows 
resizable, or to save setup infor
mation to the SideKick Plus .EXE 
file . 

Let's look at window resizing 
first. Each time the user changes 
the size of the window, the kernel 
calls a far procedure specified by 
the Window Resize Control Block 
or WRSCB. This procedure adjusts 
the window contents to match the 
new size of the window, and also 
performs any other adjustments, 
as shown below: 

getwinposC&mainposx,&mainposy>; 
getwinsizeC&mainsizex,&mainsizey); 
setscoperelC1, 1, 1, 1); 

This code updates the global vari
ables containing the position and 
size of the window, and makes 
text output sent to the window 
conform to the new size. 

Setup saving is equally easy to 
implement, and is similar to win
dow resizing. You create a SETUP 
Control Block, or SETUPCB, con
taining the addresses and sizes of 
whatever you wish to save. Then, 
when the user decides to save a 
setup, the kernel calls the proce
dure setupproc, which saves the 
SETUPCB and the setup data to 
disk as part of the SKPLUS.EXE 
file . 

THE MECHANICS 
Now that we've looked at different 
parts of the programming side of 
a SideKick Plus module, let's put 
them together. 

continued on page 50 

March/ April 1988 TURBO TECH NIX 49 



SIDEKICK PLUS 
continued from page 49 

1. Compile the .PRO file with the 
APIP (Application Program 
Interface Preprocessor) com
piler, to produce header files 
for inclusion into your C pro
gram; and assembler or C files 
that you compile separately 
from the C task. 

2. Compile the C task, including 
the header files. 

3. Link the C task, the API library, 
and the compiled APIP file. 

4. Make the resulting .EXE file 
into a .BIN file by using 
EXE2BIN. 

5. Use the Install program to 
make your newly created .BIN 
file part of the Side Kick Plus 
executable file, SK.PLUS.EXE. 
The .BIN file no longer needs 
to be present for execution, 
and can be erased or archived. 

A SAMPLE APPLICATION 
MiniCom is a real SideKick Plus 
application, written in less than 
400 lines of Turbo C code. It is a 
simple communications program 
with a lOK notepad that lets you 
write messages offiine, and then 
transmits them to your online ser
vice. Like any SideKick Plus com
munications application, Mini
Com is independent of the type of 
modem connected to the system, 
and supports the 9600 bps Telebit 
Trailblazer just as easily as a llO 
bps Teletype. 

You can see MiniCom in action 
in Figure 4. The source code is 
given in Listing 2, MINICOM.C. 

A fully compiled and linked 
MiniCom module is available on 
CompuServe. To make MiniCom 
part of your Side Kick Plus execut
able file, do the following: 

• Download MINCOM.ARC from 
CompuServe. 

• Use ARCX to expand the file 
into its component parts: 
MINICOM.BIN, MINICOM.C, 
MINICOM.PRO, and 
MINI COM.SYS. 

50 TURBO TECHNIX March/ April 1988 

!********************************************************* 
** ** 
** 
** 

APPLICATIONS ENTRY POINTS CALLED BY KERNEL ** 
** 

*********************************************************/ 

!* 
** The Kernel calls initproc when you load SKPLUS.EXE. 
** It initializes the main and editor windows, the editor, 
** and finally allocates a dl.lllllY memory block of one 
** paragraph to store the text from the editor. 
*! 
void initproc() 
{ 

} 

/* 

mainwindow = wininit( /*Main window initialization*/ 
mainposx, mainposy, /* Initial position and size */ 
mainsizex, mainsizey, 
COLOR PALETTE, /* Initial colour */ 
WIN_FRAME_SINGLE, WIN_OPT_ESC, 
&mainwrscb, /* Name of the WRSCB */ 
(char *)TXToffLine, /*Initial PRO file status line*/ 
maincomtable, /* Name of coomand table */ 
&MainFkeys ); /* Name of function key table */ 

edwindow = wininit( 
edposx, edposy, 
edsizex, edsizey, 
COLOR PALETTE, 
WIN FRAME SINGLE, 
&edwrscb,-
Cchar *)TXTedLine, 

maincomtable, 
&EdFkeys >; 

/*Editor window initialization*/ 
!* Initial position and size */ 

/* Initial colour */ 
WIN OPT ESC, 

t* Name of WRSCB */ 
!* Initial status line 

in PRO file*/ 
/* Name of coomand table */ 
/* Name of function key table */ 

edinit( &edcb, edwindow, &EdFkeys, MAX_EDSIZE); 

allocatememC &TextHandle, 1); /* Alloc some memory for later use*/ 
releasemem( TextHandle); /*Allow it to be swapped out */ 
edinfb.bytes = O; 

The Kernel calls Killproc when you unload SideKick Plus from memory. 
*! 
void killproc() 
{ 

} 

/* 

if Conline) 
disconnect(); 

**Called by the Kernel when you first open the application. 
*! 
void openproc() 
{ 

} 

/* 

winopen(mainwindow); 
if C!online) 
{ 

} 

else 

hideclass(Online); 
setscopere l C 1 , 1 , 1 , 1 ) ; 
clearscope(); /* Clears the window */ 

hideclass(Offline); 

**Called by the Kernel when you Esc out of the application. 
*/ 
void closeproc() 
{ 
} 



/* 
**Called by the Kernel when you press Ctrl-Alt to 
** leave SideKick Plus. 
*I 
void leaveproc() 
{ 
} 

I* 
**Called by the Kernel when you press Ctrl-Alt to 
** activate SideKick Plus. 
*/ 
void restartproc() 
{ 
} 

/* 
**Called by the Kernel when you save the setup. 
*/ 
void setupproc() 
{ 

} 

/* 

savesetup( setuplist, SETUP_LEN, SETUP_VERSION); 
savepalette( COLOR_PALETTE); 

**Handler called by the kernel while the application is 
**waiting in readchar for more characters. It will first 
**update the status line, if necessary, after which it copies 
** all characters from the modem until the user presses a key. 
** The handler then returns to the kernel so this in turn can 
** return to the application through readchar with the key. 
*/ 
int readfrOlllllOdem( void ) 
{ 

} 

I* 

char me· I 

if (newstat) 
{ 

/*New Status line required?*/ 

} 

for C;;> 
{ 

} 

newstat FALSE; 
winnewstatus((char *) 

(online? TXTonLine TXToffLine)); 

if (online && modemreadC&mc, 0)) 
writechar(mc); 

if Ckeypressed()) 
return FALSE; 

**While the application is open this function is executing. 
** The Kernel calls entryproc after openproc C011'9letes the 
** open operation. It 11¥.Jst contain a continuous loop that 
**calls readchar. 
*I 
void entryproc() 
{ 

} 

int c· I 

while (TRUE) 
{ 

} 

readfrOlllllOdemC); 
c = readchar( readfrOlllllOdem >; 
if (c == ESCAPE) 

break; 
else if (onl ine) 

modemwrite((char)c); 

• Be sure the .BIN and .SYS files 
are in the SideKick Plus 
directory. 

• Unload SideKick Plus from 
memory. 

• At the DOS prompt, type: 
INSTALL MINICOM.SYS. 

This procedure makes MiniCom 
part of SKPLUS.EXE, and rebuilds 
SideKick Plus into its default con
figuration. MINICOM.SYS is the 
batch file that automatically 
installs the new module by merg
ing the .BIN file into memory, 
rebuilding the library file 
SK.MAIN.BIN to include Mini
Com, and finally rebuilding your 
SKPLUS.EXE. If you later redesign 
SKPLUS.EXE by running Install 
again, you'll find MiniCom on the 
Design New SKPLUS menu. 

CONCLUSION 
This article is by no means a com
plete treatment of the Side Kick 
Plus API. We have only touched 
on the SideKick Plus architecture 
and the process by which a Side
Kick Plus task is created. The list 
of services available through the 
API is long and rich, and describ
ing them is more fitting for a book 
than for a single magazine article. 
In future issues of TURBO TECH
NIX, we will present more infor
mation about SideKick Pius's ser
vices and operation, plus further 
details of task development and 
more sample applications. • 

Jeffrey Goldberg is Product Manager 
for Borland's European Research and 
Development, and is a member of the 
SideKick Plus &search and Develop
ment team. He can be reached on 
CompuServe at 76127,355, and BIX 
as]GOLDBERG. Steven Boye is a 
member of Borland's Research and 
Development staff dedicated to Side
Kick Plus. 

Listings may be downloaded from 
CompuServe as MJNCOM.ARC. 

March/ April 1988 TURBO TECHNIX 51 



MAKING THE switch() 
Pick a path, any path, with Turbo C's switch() statement. 

Kent Porter 

SQUARE ONE 

What makes computer programs smart is 
their ability to make decisions and act up
on them. The simplest kind of decision
making is either I or: if a condition exists, 
do X; otherwise, do Y. In C, we might 
write this as 

if (condition) 
xO; 

else 
y(); 

where x() and y() are functions elsewhere in the pro
gram. But not all decisions have either/ or outcomes. 
Sometimes, as in a user's menu selection, there are 
many alternative actions based on a single condition. 
For those instances, C provides a special kind of 
multiple-choice statement called switch(). 

If you've programmed before in BASIC or Pascal, 
it is helpful to think of switch() as a cousin to 
BASIC's ON .. GOTO .. or ON .. GOSUB .. , to Turbo 
Basie's SELECT CASE statement, or to Pascal's CASE 
statement. They're all the same idea, but C-more 
flexible than other languages-allows certain things 
with its switch() statement that the others do not. 

THE CONCEPT OF switch() 
The concept behind switch() is that of an enumer
ated set of actions based on some controlling vari
able. Since that sounds dreadfully theoretical, let's tie 
it to a simple real world example: 

if today is 
Saturday: sleep in; 
Sunday: go to church; 
Any other day: go to work; 

Here, today is the controlling variable. Following its 
evaluation are alternatives to be done depending on 
what day of the week today is. 

The controlling variable is called the se/,ector, and 
the list of its possible values are the cases. Note that 
the above example has two specific cases (Saturday 
and Sunday) and a catchall case (any other day). 
Later we'll see how to deal with catchall cases using 
switch(). 

52 TURBO TECHNIX March/ April 1988 

Let's look at an actual switch() written in C. Sup
pose n is always a digit from 0 to 3, and we want to 
print its spelled-out equivalent on the screen. That is, 
when n = 0, print "zero" and if n = 1, print "one," 
etc. The switch() construction is: 
switch(n) { 

case 0: cputs ("zero"); 
break; 

case 1: cputs ("one"); 
break; 

case 2: cputs ("two"); 
break; 

case 3: cputs ("three"); 
break; 
} 

The opening statement, switch(n), says that you want 
to evaluate n and jump to one of the cases following 
based on the outcome of n. The curly braces are al
ways required (even if there's only one case) to iden
tify the extent of the switch() structure. 

The keyword case signifies the start of each alter
native. It's followed by one potential value of the 
selector, terminated by a colon. Then comes the 
code that you want executed for that case; a call to 
cputs() in this example. 

Note the keyword break. It means, "This is the 
end of this case." When execution reaches a break 
statement, it jumps to the closing curly brace, bypass
ing all the intervening cases and exiting from the 
switch(). The last case doesn't need to have a break 
statement, since it merely transfers control to the 
curly brace immediately following, but it's a good 
idea to include it. You'll see why later. 

Listing 1 is a simple program that expands on the 
example given above. It asks you to type some num
bers, or the letter q to quit. Every time you type a 
number, the program responds by printing its Eng
lish equivalent on the screen. There are some subtle 



differences between the original 
example and Listing 1, as we'll 
see. 

THE getch() FUNCTION 
The case variables are enclosed in 
single quotes. Why? Because 
getch() captures your keystrokes 
not as numbers, but as ASCII 
characters, which it assigns to the 
char variable d. The case specifi
ers must be of the same data type 
as the selector, so we specify them 
as the characters 'O', 'l', etc., in
stead of specifying numerics. 

The Turbo C function getch(), 
by the way, accepts one character 
from the keyboard and does not 
echo it back. That's why only the 
processed result of your input (the 
English equivalent) appears on 
the screen, instead of your actual 
input. 

Note also that the break state
ments appear on the same line as 
the cputs() statements. The Turbo 
C compiler doesn't care if multiple 
statements are on the same line, 
and since these are all simple 
cases that do essentially the same 
thing, putting break on the same 
line with cputs() reduces the pro
gram length without decreasing 
readability. 

When you run the program, try 
typing something besides num
bers. If you press any non
numeric key except q, nothing 
happens. This is because the 
switch() cases don't anticipate any 
values ford except numbers. Con
clusion: The switch() statement 
only acts on the cases it explicitly 
expects; it ignores any case that it 
doesn't recognize. 

That's why nothing happens if 
you press some alphabetic key 
such as p or v. Failing to find a 
case for dealing with those values 
of d, the switch() statement merely 
jumps to the closing curly brace. 

But what if you want switch() to 
recognize unanticipated cases? 
For that situation you can use the 
catchall case discussed next. 

LAST RESORT 
A catchall case is the case of last 
resort: "Since I can't do anything 

else with the selector, I'll .. . " The 
catchall case is like else in an if 
statement. 

Catchalls can detect errors. In 
the context of Listing 1, pressing 
any key except one of the num
bers is an error. In that event, in
stead of doing nothing, you might 
want to sound a beep to signal the 
user that an error has occurred. 

The switch() statement makes a 
special provision for catchalls. It is 
the keyword default, which must 
always be the last selection in the 
case list. Its format is: 
default: <statements>; 

Listing 2 (NUMS2.C) adds the 
catchall case to the switch() and 
sounds a beep at the console 
when the user presses any non
numeric key. 

Before we proceed further, let's 
pause a moment to consider some 
peculiarities of the switch() state
ment. 

ABOUT SCALARS 
Scalars are sets of values that have 
a regular, predictable sequence. 
An example is the unsigned inte
gers (0, 1, 2, 3, .. ,n). Another is the 
signed integers, which in Turbo C 
encompass the set of numbers 
-32768, ... , -1 , 0, 1, ... , 32767. Yet an
other example is the ASCII char
acters, ranging in value from 0 
through 255. You can also regard 
the members of an enumerated type 
as scalars. For example 

typedef enun (sun, mon, tue, wed, 
thu, fri, sat} days; 

in which sun=O, mon=l, and so 
on. 

In contrast to scalars, there are 
values with fractional parts (types 
float and double), and aggregate 
types such as structures, unions, 
bitfields, and arrays. None of 
these has a regular, incremental 
series of values. 

The selector in a switch() state
ment must be a scalar. It cannot 
resolve to some wishy-washy value 
like a floating point number or 
the combination of structure ele
ments, because that's too complex 
for any compiler to deal with. 
Therefore the data types of 
switch() selectors in Turbo C are 
limited to: 

• int (signed or unsigned), 
• char (signed or unsigned), 

• long (signed or unsigned), or 

• an enumerated type 

Trying to use any nonscalar type 
as a switch() selector causes the 
Turbo C compiler to dig in its 
heels and refuse to cooperate. 

Although scalars are series, 
their cases need not be handled 
in any particular order within a 
switch(). For example, in Listings 
1 and 2, we could have coded the 
order as: 
switch (d) ( 

case '9': cputs ("nine"); break; 
case '0': cputs <"zero"); break; 
case '5': cputs ("five"); break; 

etc. 
} 

In general, this kind of haphaz
ard order isn't a good idea be
cause it makes programs hard to 
read and understand. However, 
when a very large switch() is 
inside a loop and you're con
cerned about program efficiency, 
you achieve a slight improvement 
by placing the most frequently 
occurring cases near the top of 
the list. This is because the 
switch() statement hunts through 
the cases seeking a match for the 
current selector value. The fewer 
cases it has to search, the quicker 
the code will run. 

Next we'll consider an instance 
in which you have to specify the 
cases out of natural sequence. 

FLOW-THROUGH CONTROL 
Suppose you're writing a financial 
accounting system for a small 
business. In determining its 
requirements, you find that this 
company needs to run a routine 
general ledger job every day. 
Additionally, the first and the fif
teenth of the month are paydays, 
and the company bills on the 
tenth. You can specify this 
monthly agenda in pseudo-code 
as follows (for more information 
on pseudo-code, see "Binary 
Engineering," TURBO TECHNIX, 
November/ December, 1987): 

continued on page 54 

March/ April 1988 TURBO TECHNIX 53 



LISTING 1: NUMS.C I 

/* NUMS.C: Spells out keyed nli!bers to illustrate switch()*/ 

#include <stdio.h> 

main O 
{ 

char d· , 

puts ("Type some nli!bers, then q to quit\n"); 
do { 

d = getch O; /* get a keystroke *I 
switch (d) { /* act on it as follows */ 

case 101: cputs ("zero "); break; 
case I 11 : cputs ("one ">; break; 
case 121: cputs ("two "); break; 
case 131: cputs ("three "); break; 
case 141: cputs ("four ">; break; 
case 151: cputs ("five ">; break; 
case 161: cputs ("six ">; break; 
case 171: cputs ("seven "); break; 
case 181: cputs ("eight ">; break; 
case 191: cputs ("nine "); break; 

} /* end of switch */ 
} while Cd != 1q1 >; /*repeat until getting 1q1 

} I* then quit */ 

I-
LISTING 2: NUMS2.C 

*/ 

/* NUMS2.C: Enhancement of NUMS.C to illustrate catch-all case *I 

#include <stdio . h> 
#define BEEP 7 

main () 
{ 

char d· , 

/*ASCII beep character*/ 

puts ("Type some nli!bers, then q to quit\n"); 
do { 

d = getch O; I* get a keystroke */ 
switch (d) { /* act on it as follows*/ 

case 101: cputs ("zero ">; break; 
case 111: cputs ("one ">; break; 
case 121: cputs ("two ">; break; 
case 131: cputs ("three ">; break; 
case 141: cputs ("four "); break; 
case 151: cputs ("five ">; break; 
case 161: cputs ("six "); break; 
case 171: cputs ("seven "); break; 
case 181: cputs ("eight "); break; 
case 191: cputs ("nine ">; break; 
default: putchar (BEEP); break; /* catch-all */ 

} /* end of switch */ 
} while Cd != 'q' >; /* repeat until getting 1q1 

} /* then quit */ 

54 T URBO TECH NI X March/ April 1988 

*I 

MAKING THE switch 
continued from page 5 3 

i f date is 
1 or 15: do payroll; 

do dai Ly job; 
end of case; 

10: do bill i ng; 
do dai Ly job; 
end of case; 

Any other: do daily job; 
end of cases; 

T he translation into C presents a 
couple of surprises: 

switch (date) { 

} 

case 1: 
case 15: payroll <>; 

dai Ly O; 
break; 

case 10: billing(); 
default: daily<>; 

This is an example of flow-through 
control, the ability of the switch() 
statemen t to proceed from one 
case into the next. See what h ap
pens: case 1 does noth ing, but 
since it lacks a break statement, 
control fl ows th rough to case 15. 
Therefore case 1 and case 15 are 
multiple entry points into the 
same process. 

T he default case and case 10 
are a variation on this theme. O n 
the tenth of the month , case 10 is 
selected and the b illing is done. 
After that, control fl ows to the 
default case, which is the normal 
daily job. We know that the daily 
job will get executed on the tenth 
because there's no break state
ment in case 10, and thus noth ing 
to stop control from flowing 
th rough to the next case. T his 
makes the default case a subset of 
case 10, even though it's the one 
that gets selected most often . 

We could have written case 10 
the same as case 15, substituting 
billing() for payroll(). The way it's 
written is a shortcut that saves a 
little code. 

Note that there's no " fl ow
around" control; you can'tjump 
from o ne case to anoth er, bypass
ing intervening steps. T h at's why 
case 15 calls the daily j ob; there's 
no way for it to leapfrog over case 
10 into the default. 

Listing 3 is a simple program 
that puts this switch() structure to 



work. For each date you type in, 
the program shows which activi
ties it does on that date. You can 
stop it by typing 0. 

Using the multiple flow
throughs lets you construct action 
hierarchies. For example, if the 
company using this program 
decides to move its billing date to 
the fifteenth, you can rearrange 
the switch() cases as follows: 

switch (date) { 

} 

case 15: billing(); 
case 1: payroll C>; 
default: daily C>; 

Now on the fifteenth, you get bill
ing, payroll, and the daily job; on 
the first you get payroll and the 
daily; on all other days you get the 
daily job only. This is because no 
matter which case you select, you 
always flow through to all the sub
sequent cases. 

The use of flow-through control 
can get you into trouble if you're 
not careful. You might insert a 
new case between two that are 
logically sequential (e.g., between 
case 10 and default) without 
realizing that the one above lacks 
a break statement. Suddenly your 
program goes crazy. The best 
prevention against this is to 
heavily comment flow-through 
cases. 

As your C programs increase in 
complexity, you'll confront more 
and more situations where a 
choice cannot be answered 
plainly by a simple if .. then deci
sion. The switch() statement 
handles those multiple-choice 
situations simply and elegantly. 
Learn to use it, and your pro
grams will never find themselves 
standing in the crossroads, won
dering which way to go. • 

Kent Porter is the author of Stretch
ing Turbo Pascal and numerous 
other programming books. He is a fre
quent contributor to TURBO 
TECH NIX. 

Listings may be downloaded from 
CompuServe as SWITCH. ARC. 

LISTING 3: ACCTG.C I 

!* ACCTG.C: Demo of flow-thru in switch() statement */ 

#include <stdio.h> 

!* LOCAL FUNCTIONS */ 
void daily (void) 
{ 

puts ("Doing dai Ly job"); 
} /* ------------------------ *! 
void payroll (void) 
{ 

puts ("Doing payroll"); 
} /* ------------------------ */ 
void billing (void) 
{ 

puts ("Doing billing"); 
} /*------------------------- */ 
/* MAIN PROGRAM */ 

main () 
{ 

int date = O; 

do { 
printf C"\n\nEnter a date 
scanf ("%d", &date); 

Cor 0 to quit) ... "); 

if (date != 0) 
switch (date) { 

case 1: /* flow to case 15 */ 
payroll (); /* flow from case 1 */ 
daily O; 

case 15: 

break; 
case 10: billing <>; 
default: daily (); 

} /* end of switch () 
} while (date != 0); 

*! 

/*flow to default case*/ 
/* flow from case 10 */ 

} /* ------------------------ */ 

March/ Ap1il 1988 TURBO TECHNIX 55 



i MAINTAINING PROGRAMS 
= 
~ WITHMAKE 

Set up an ~~ instruction manual" using MAKE, and 
large programs assemble themselves. 

Reid Collins 

Turbo C offers a completely integrated 
development environment that satisfies 
the needs of most amateur and profes
sional C programmers. After you have 
written enough small- and medium-size C 

SQUAREONE programs to feel comfortable with the 
language, you may wander into the arena of devel
oping large programs, possibly as a way of making a 
living. When you do, look closely at the command
line environment: it's designed to help you handle 
the subtle and not-so-subtle problems associated with 
large projects. 

An important component of the command-line 
environment is the MAKE utility program. 
MAKE.EXE is a program builder/ maintainer that 
automates the process of constructing a program 
from its component parts. Large programs are usu
ally divided into a number of program modules that 
are linked together to produce executable programs. 
Individual modules can all be written by the same 
programmer, but it is more likely that a number of 
programmers will each contribute different pieces to 
the whole, and that the set of programmers on the 
project may change over time. 

If you have commercial aspirations, note that the 
successful programs in today's highly competitive 
marketplace must both provide the solutions needed 
by their users and be easy to understand and use. 
Even programs for your own personal use should be 
designed with the goals of utility and ease of use in 
mind. Why not do it right? 

Ease of use is obtained through simple external 
design. To achieve this goal, programs are usually 
very complex internally. Our task as programmers is 
to keep the internal complexity under control. That's 
where MAKE comes into play. In essence, MAKE is a 
tool for managing complexity. 

FEATURES OF MAKE 
The MAKE utility is a program that reads a set of 
instructions and interprets them in light of implicit 

56 TURBO TECH NIX March/ April 1988 

and explicit rules in order to build and maintain a 
program or a set of programs. 

Figure 1 shows a general view of a program
maintenance process for a program written in C. A 
set of source files, FILE LC through FILEN.C, and 
some header files are the sources from which the 
object files are built. The PROG.EXE file is created 
by linking the object files with standard runtime 
library modules and possibly some custom library 
modules. 

MAKE controls the running of the compiler and 
the linker. The instructions used by MAKE are pro
vided in a makefi/,e, which consists of several required 
and optional elements. The next section describes 
these elements in detail. In brief, the makefile con
tains lists of dependencies that specify the relation
ships between source files and target files, and rules 
that describe how source files are translated and 
combined to produce the target files. 

MAKE can also build and maintain documents in 
operating environments that use separate programs 
for editing and formatting document fi les. The UNIX 
operating system, for example, offers the vi screen 
editor and the nroff and troff text formatters. Under 
DOS, the combination of Emerging Technology's 
EDIX screen editor and WORDIX text formatter per
mits documents to be assembled automatically by the 
Turbo C MAKE program. 

MAKEFILES 
The default name for the MAKE instruction file is 
MAKEFILE. If MAKE is invoked without a fi le argu
ment, it looks for MAKEFILE in the current direc
tory. You can use other names if you wish. This is 
necessary if you have more than one makefile in the 
same directory. I usually name the makefile for the 
program it builds and give it a .MK or .MAK exten
sion. A makefile for the program FRAMUS, for 
example, would be FRAMUS.MAK. 



As Figure 2 shows, a makefile 
consists of some required and 
optional elements. The only 
required element is at least one 
dependency statement, which is an 
explicit rule. All other elements, 
such as comments, implicit ru/,es, 
macro definitions, and directives, are 
optional. 

Comments. Although comments 
are optional, it's a good idea to 
include descriptive comments in 
makefiles just as you should in 
source code files. Descriptive com
ments help you and others who 
read your code to understand its 
purpose and the details of its 
implementation. 

Each comment is preceded by a 
pound sign(#) on the same line. 
The comment can start anywhere 
on the line and terminates auto
matically at the end of the line. 
Here are some examples of com
ments in makefiles: 
# 
# The makefile for program FRAMUS 
# 

#default rules 

MOOEL = s # memory model 

Comments cannot be split 
across lines. Use a separate 
comment-start delimiter for each 
comment line. 

Rules. As noted earlier, there are 
two kinds of rules: explicit and 
implicit. Explicit rules specify the 
relationship between a target and 
the source or sources upon which 
it depends. For example, a link
able object file typically depends 
upon a C source file and possibly 
some header files. The line 

file1.obj: file1.c header.h 

indicates that FILEl.OBJ is built 
from FILEl.C and a local header 
file called HEADER.H. There can 
also be a dependency upon some 
of the standard header files, too, 
but these files normally do not 
change within the lifetime of a 
version of the compiler, so stan
dard header files are not usually 
listed in dependency lists. 

MAKE decides which objects 
should be remade according to 
the date and time stamps of 

filel.obj 

file2.obj 

TCC.EXE fileN.obj 

LIBRARIES 

....._ _ ___J MAKE.EXE 

makefile 

Figure 1. Building and maintaining 
programs with MAKE. 

related files. DOS maintains the 
date and time a file was last modi
fied as a pair of two-byte integers 
in the directory entry for the file. 
As shown in Figure 3, when 
MAKE sees a dependency, it gets 
the date/ time stamps of the target 
and source files and compares 
them. If any source file is newer 
(carries a more recent date/time 
stamp) than the target file, the 
target is remade according to the 
specified rule. 

Implicit rules are generalizations 
of specific (explicit) rules. An 
implicit rule describes how one 
type of file relates to another type. 

A prime example is the relation
ship between an object file (.OBJ 
extension) and the source 
file from which it is created (.ASM, 
.C, etc.). The implicit rule 
.c.obj: 

tee -e -ms $< 

tells MAKE that an object file is 
created from a C source file by the 
TCC compiler program. The -c 
option limits the process to a sim
ple compilation step. Without it, 
TCC would call the linker to 
create an .EXE file in addition to 
the .OBJ file. 

A comparable rule for the crea
tion and maintenance of an object 
file from an assembly language 
source file looks like this: 

.asm.obj: 
masm $<; 

TLINK.EXE prog.exe 

NOTES: 
Dependencies tell MAKE 
what fi/,es to update. 

Date/ Time stamps us_e_d ___ _ 

in fi/,e comparisons4 I 
Use TOUCH TOUCH.EXE 
to force 
fil.es to be 
updated. 

The exact form of the implicit 
rule depends on the programming 
tool that performs the required 
translation and the operation you 
want to perform. The mysterious 
looking $< token in these implicit 
rules is one of the predefined 
macros supported by Turbo C 
MAKE. This one yields the full 
pathname of the specified 
target file. 

Macros. A macro is essentially a 
short-hand notation for pro
grammers. Something small, such 
as a short name or even a single 
keystroke, is defined to have a 
meaning that usually would 
involve considerably more typing. 
MAKE accepts macros that are 
defined by the user in addition to 
several predefined macros. 

To define a macro in a make
file, simply type the name, an 
equal sign, and the definition. 
Here, for example, is a macro that 
identifies the \ TCINCLUDE 
directory for my Turbo C setup: 
INCLUDE = c:\tc\include 

The string on the left side of 
the equal sign is the macro name. 
The string on the right is called 
the expansion text. After a macro 
has been defined, you can use it 
in MAKE instructions by using the 
following symbolic notation. The 

continued on page 58 

March/ April 1988 TURBO TECHNIX 57 



MAKEFILE 

COMMENTS 

# comme nt text 

RULES 

•Implicit • Explicit 

MACRO DEFINITIONS 

name = macro_text 

DIRECTIVES 

• A Turbo C MAKE feature 

Figure 2. Elements of a makefi/,e. 

Macro Name Description 

$* Base filename. 

Implicit rules 

.src ext.target ext: 
conmand_l ist 

Explicit rules 

target list: source list 
c00mand_l ist -

Directives 

!directive [expression] 
[comnand l istJ 

Removes the extension part of the filename and returns the full pathname 
up to the base filename. 

$< Full filename. 
Yields the full pathname including any leading path information, the 
filename, and extension. 

$: Filename path. 
Removes the filename and extension from a full pathname and yields 
the path to the directory that contains the file. 

$. Filename and extension. 
Strips off any leading path information and yields only the filename and 
extension pans. 

$& Filename only. 
Yields only the filename pan of a pathname by stripping off the leading 
path information and the extension. 

$d(< name>) Defin ed test. 
If the macro name is defined, this macro yields a value of I; otherwise 
the value is 0. 

TIU! first five of the pmkfi11£d macros take a target filename and yield all or a portion of it when 
evaluated by MAKE. The sixth macro is an extension that determines whether a name is currently 
defined. 

Tab/,e 1. Predefined macros in Turbo C MAKE. 

MAKE 
continued from page 57 

macro name is surrounded by pa
rentheses and preceded by a dol
lar sign: 

$(INCLUDE) 

When MAKE runs, the macro 
invocation shown above is 
replaced by its expansion text. 
MAKE would operate as if you 
had directly typed c: \ tc\include. 

I encourage the use of macros 
because the practice tends to 

58 TURBO TECHNIX March / April 1988 

improve makefile readability and 
simplifies the task of changing 
multiple occurrences of the same 
text-just edit the macro defini
tion. Then any and all invocations 
of the macro will automatically get 
the new text when MAKE runs. 
The technique used in makefiles 
is analogous to using #define 
directives in C source files . 

Several predefined macros are 
supported by MAKE. Table 1 
shows each of the predefined 
macros and its purpose. All but 
one macro are filename macros 
that are used in rules to return full 

or partial names from associated 
dependency lines. Given the path
name c: \ tc\ project\source.c, 
here is what the first five prede
fined macros yield: 

$* -> c:\tc\project\source 
$< -> c:\tc\project\source.c 
$: -> c:\tc\project\ 
$. -> source.c 
$& -> source 

(We'll discuss the sixth pre
defined macro after we define 
MAKE directives.) 

Directives. The Turbo C MAKE 
utility offers something that other 
MAKE programs do not: directives. 
Turbo C MAKE directives are sim
ilar in purpose and implementa
tion to C preprocessor directives. 
The most obvious difference is 
that MAKE directives are signaled 
by an exclamation point as the 
first character on a line. The C 
preprocessor uses the pound sign, 
which MAKE already uses as a 
start-comment delimiter. 

The array of MAKE directives is 
impressive. There is a directive for 
file inclusion (!include 
<filename> ) that permits the 
text of other makefiles to be 
brought into the including make
file. Conditional directives 
(!if .. !elif .. !else .. !endif) permit a 
wide range of decision-making 
opportunities. The !if and !elif 
directives take expressions that 
are formed by using C-like expres
sion syntax. Each expression is 
evaluated as a signed long integer. 
The standard C unary(-, etc.), 
binary(<=,&&, etc.), and ternary 
(?:) operators may be used to form 
compound expressions. 

The sixth predefined macro, $d, 
takes a macro name invocation 
after it, and yields 1 if the macro is 
defined or 0 if it is not. The $d 
can be used in an expression 
as part pf an !if or other MAKE 
directive to control some aspect of 
the program-building process. 

The following MAKE lines 
determine whether the macro 
LASER has been defined. If it has, 
a special version of a printer pro
gram is created for a laser printer. 
Otherwise, a generic version of 
the print program is created. The 



macro OBJS is defined as a list of 
object files and LIB is the path of 
the standard library directory. 
!if $d(LASER) 
# make the laser version 
lpr.exe: lpr.obj $(0BJS) 
tlink $(LIB)\c0s lpr $(0BJS), 

!else 
#make the generic version 
pr.exe: pr.obj $(0BJS) 

tlink $(LIB)\c0s pr $(0BJS), 
!endif 

The directives accepted by the 
Turbo C MAKE utility provide 
more power and flexibility than 
the MAKE programs provided as 
standalone programs or with 
other C compilers. 

THE MAKE COMMAND LINE 
The easiest way to use MAKE is to 
put the instructions in a file called 
MAKEFILE and type MAKE at the 

Sample makefile 

# implicit rule 
.c.obj: 

tee -c -ms$< 

# dependencies 
filel.obj: filel.c header.h 

get the target file 
time stamp 

get all source file 
time stamps 

is any source 
file newer than 

the target 

N 

file I.obj 

filel.c 
header.h 

y remake 
the 
target 

DOS prompt. Figure 3. Interpreting rul,es in makefil,es. 
Options. If the directory in which 
MAKE is being invoked contains 
more than one makefile, you can 
use the -f option to specify the 
makefile to be used. The 
command 

make -flpr.mak 

tells MAKE to use the file 
LPR.MAK as the makefile. This 
version of MAKE does not permit 
any space between the option let
ter (t) and the filename. 

Other MAKE command-line 
options include: 

• -s Run silently-when used, 
MAKE doesn't print commands, 
it just executes them 

• -D Define named identifiers, 
such as -DDEBUG, to turn on 
debugging 

• -U Undefine a previously 
defined identifier 

• -n Display commands but do 
not execute them 

• -I <directory> Search <direc
tory> in addition to the current 
directory for include files 

• -? or -h Print a help message 

Termination. While any command 
executed by MAKE is running, 
you can press Ctrl-Break (or Ctrl
C) to terminate processing. If a 
command spawned by MAKE 
fails, MAKE quits so that you can 
see the error and warning mes
sages and take appropriate action. 

A SAMPLE MAKEFILE 
The Turbo C package includes a 
version of MicroCalc, which is a 
simple but effective spreadsheet 
program. The entire source is pro
vided along with a file called 
MCALC.P~ (Listing 1), a project
make file that is designed for use 
by the Turbo C integrated envi
ronment. Our purpose is to write 
a makefile that does the same job 
as MCALC.PRJ, only in the Turbo 
C command-line e~vironment. We 
will use the MicroCalc sources 
because they are available to all 
Turbo C users and afford us a 
representative project-control 
situation. 

The seven lines in MCALC.PRJ 
identify the modules that com
prise the MicroCalc program. The 
first six lines identify object 
modules that are to be recreated 
from their respective sources. 
Each depends upon the header 
file MCALC.H in addition to the 
associated C source file. 

The seventh item in the project 
module list is an explicit object 
filename that tells Turbo C to 
simply use an existing object 
module. This was done because 
the C source file for the 
MCMVSMEM module contains 
inline assembler statements. 
When TC.EXE compiles the 
source file , it has to create a tem
porary assembler source file and 
then call an assembler, such as 

MASM, to produce the required 
object file. Because Borland can
not be certain that a Turbo C 
user has a copy of MASM, the 
company has provided the pre
assembled MCMVSMEM.OBJ file. 

To use the project-make file, we 
must be operating in the inte
grated environment (TC.EXE). It 
might be necessary or desirable to 
operate in a batch environment 
instead, primarily for the purpose 
of automating the entire process 
of preparing a product for testing 
or distribution. For example, I 
have worked on projects that con
tain hundreds of thousands of 
source-code lines that take up to 
five hours to "rebuild." Ideally, I 
need to be able to start such a 
lengthy rebuilding process at the 
end of a work day and come in 
the next day to find the job com
pleted. Running MAKE (which 
calls TCC) from a batch file pro
vides the needed flexibility. 

Listing 2 shows the text of a 
makefile that is suitable for use 
from the command line and from 
within batch files . It contains 
many of the features supported by 
the Turbo C MAKE utility. The 
definitions section defines macros 
for the memory model, the path to 
the library directory, and lists of 
objects and sources. 

continued on page 60 

March/ April 1988 TURBO TECH IX 59 



LISTING 1: MCALC.PRJ 

mcalc (mcalc.h) 
mcparser (mcalc.h) 
mcdisply (mcalc.h) 
mcinput (mcalc.h) 
mcoomand (mca le. h) 
mcutil (mcalc.h) 
mcmvsmem.obj 

LISTING 2: MAKEFILE 

#makefile for the MCALC spreadsheet program 
# 9/15/87, Reid Collins 

# definitions 
MDL = s 
LIB = c:\tc\l ib 
OBJS = mcalc.obj mcparser.obj mcdisply.obj mcinput.obj \ 

mcoomand.obj mcutil.obj mcmvsmem.obj 
SRCS = mcalc.c mcparser.c mcdisply.c mcinput.c \ 

mcoomand.c mcuti l .c mcmvsmem.c 

#default rules 
.c.obj: 

tee -c ·mS(MDL) $< 

#dependencies 
mcalc.exe: $(0BJS) 

tl ink @l inkl ist 

S(OBJS): $(SRCS) mcalc.h 

#end makefile 

LISTING 3: LINKLIST 

c:\tc\l ib\cOs mcalc mcparser mcdisply me input mcOllllland mcuti l mcmvsmem 
mcalc 
nul 
c:\tc\lib\maths c:\tc\lib\emu c:\tc\lib\cs 

60 TURBO TECHNIX March/ April 1988 

MAKE 
continued from page 59 

The default ru/,es section pro
vides the implicit rule that tells 
MAKE how to produce an object 
file from a C source file. The lines 
in the dependencies section are the 
explicit rules that identify the rela
tionships among various files. 
MAKE reads the lines, checks time 
stamps of the files, and remakes 
any target file that is out-of-date 
with respect to its sources. 

Consider the following rule: 
$(0BJS): $(SRCS) mcalc.h 

This says that an object in the list 
of objects representing the OBJS 
macro depends on a related 
source file in the list. The source 
file is represented by the SRCS 
macro and the header file is 
MCALC.H. If either the source 
file or the header file carries a 
more recent date than the object 
file, the object will be remade. We 
use the default rule because there 
is no explicit rule in the makefile. 
Notice that it is not necessary to 
specify each object separately. 

One last detail : The number of 
filenames and other parameters 
that must be passed to the TLINK 
program exceeds the length sup
ported by the DOS command line. 
To get around this problem, use a 
separate linker-response file, 
LINKLIST (Listing 3), which you 
invoke by adding the line 

tl ink @l inkl ist 

in the dependency for 
MCALC.EXE. 

NOW IT'S YOUR TURN 
The MAKE utility and the soft
ware project-management philos
ophy that it was designed to sup
port both have their roots in the 
UNIX operating system. A natural 
extension of MAKE is to use it as 
the primary building block in a 
complete software generation sys
tem. This system can maintain 
software and also manage version 
and access control for large, multi
programmer projects. But that's a 
topic for another time. • 

Rei.d Collins is a senior programmer 
for a firm in the aerospace industry. 

Listings may be downloaded from 
CompuServe as MAKETC.ARC. 



BUILDING FAR POINTERS 
WITHMK_FP 
Touch any point in memory using a pointer generated by this 
simple macro. 

Michael Abrash 

Turbo C provides a set of macros for get
ting at any part of your PC's memory with
out resorting to assembly language or 
complex C code. The MK_ FP macro, 
contained in the DOS.H header file, is 

PROGRAMMER particularly interesting because it lets you 
build far pointers for accessing any address in the 
PC's one megabyte address space. Far pointers consist 
of paired segment: offset values, where the address 
pointed to is ((segment X 16) +offset) . Near pointers 
consist of offsets only, and can only address 64K 
within Turbo C's default data segment. 

The syntax of MK_FP is 

<farptr> = MK_FP(<segment>, <offset>); 

where farptr is a far pointer of any type, segment is 
an unsigned integer specifying the segment portion 
of the pointer, and oflSet is an unsigned integer 
specifying the offset portion of the pointer. 

Listing 1, MAKEFAR.C, builds a far pointer to the 
start of the color text display memory at B800:0000. 
Every byte at an even address is set to the asterisk 
character. Every byte at an odd address is set to the 
value 2. These odd bytes are attribute bytes, which 
describe how the characters at the preceding even 
bytes will be displayed, and the value 2 causes the 
previous characters to be displayed in green on a 
black background. Note that to work with a mono
chrome text mode display buffer you must change 
MK.FP's segment parameter OxB800 to OxBOOO. 

The value generated by MK_FP can only be 
assigned to a far pointer. Function FillScreen in List
ing 1 explicitly declares DisplayMemoryPtr to be a 
far pointer able to point anywhere in the PC's 
memory-no matter if a near or far data memory 
model is being used for the program as a whole. • 

Michael Abrash is an Engi.neering Fellow working on 
advanced graphics projects for Video 7, Inc., of Fremont, 
California. 

Listings may be downloaded from CompuServe as 
FARPTRARC. 

LISTING 1 : MAKEFAR.C 

/* 
• Program to demonstrate the use of the MK FP macro by building 
• a far po inter and using it to fill color-text display memory 
* with green asterisks . 
*/ 

#include <dos.h> 
#define FI LL_LENGTH 2000 

/* contains MK FP macro */ 
/* # of characters in an 80x25 

screen */ 
#define COLOR_TEXT_SEGMENT Ox8800 /* segment at which color text 

mode display metn0ry be!lins */ 

,. 
* Fills the color text mode screen with character Character, 
• displayed with attribute Attribute . 
*/ 

void Fil lScreen(char Character, ch•r Attribute) 
( 

int i; 
char far *Di splayMemoryPtr; 

/* Build a far pointer to color text mode display memory*/ 
OisplayMemoryPtr = MK_FPCCOLOR_TEXT_SEGMENT, 0); 

/* Set every character on the color text screen to Character, 
displayed with attribute Attribute*/ 

for ( i = 0; i < FILL_LENGTH; i++ ) C 
*DisplayHemoryPtr++ = Character; 
*DisplayMemoryPtr++ = At tribute; 

/* 
• Sa""le program to call Fi llScreen. 
*/ 

main() 
( 

Fil lScreenC 1
•

1
, 2); 

March/ April 1988 TURBO TECHNIX 61 



COMMENT NESTING 
Keep in mind the nesting habits of comments when hatching 
your latest hack. 

Roger Schlajly 

PROGRAMMER 

Standard C and Pascal do not allow com
ments to be nested. As soon as the com
piler sees the begin comment indicator, it 
ignores all characters until it reaches the 
end comment indicator, as shown here: 

/* In C, this whole sentence is 
a comnent, even though an extra 
'!*' appears in it. */ 

This is a serious nuisance if you are in a habit of 
"commenting out" large sections of code. For exam
ple, if you have this bit of code 
if (!++*s++) /* cryptic C code*/ 

long j 111>< buf > 
and you comment it out, you get: 

I* 
if (l++*s++) /* cryptic C code*/ 

longj111>(buf) 
*I 

Unfortunately, the compiler sees the first/* as the 
start of the comment, and thinks that the comment 
ends with the *I that follows C code. It compiles the 
longjmp(but) statement and then gets a syntax error 
at the next*/. The portable way to temporarily 
remove the code is to use the preprocessor: 

#if 0 
if (!++*s++) /* cryptic C code*/ 
longj111>Cbuf) 

#endif 

This gets the job done, even if there are prepro
cessor statements within the section of code. Lattice 
C popularized another method, by supplying an 
option (through a compiler switch) allowing com
ments to be nested. With this option, beginning and 
ending comment indicators must balance one 
another, just as parentheses must do within an 

62 TURBO TECHNIX March/ April 1988 

expression. Turbo C also has such a switch, -C, for 
Lattice compatibility. The default is to disallow 
nested comments, but with -C in force, comments 
may be nested, Lattice-style. 

Turbo Pascal users don't have an option to nest 
comments, but the compiler does support two logi
cally distinct kinds of comment delimiters: 

( This is a conment. } 
(* This is a conment too. *) 

A Turbo Pascal comment must be terminated with 
the same kind of delimiter character that started the 
comment. In other words, } must close a comment 
begun with {, and *) must close a comment begun 
with (*. So if you consistently use one style of com
ments for documenting your code, and another style 
for disabling portions of your code, everything will 
work fine: 

C* 

*) 

REPEAT (quit when Check fails} 
AllDone := Check(Arg1,Arg2); 
Arg2 := Arg1 

UNTIL Al lDone; 

Turbo Prolog uses the C comment delimiters and 
C comment conventions, but unlike Turbo C, there is 
no Turbo Prolog compiler option for allowing com
ments to be nested. Turbo Basic has broken away 
from total dependence on line numbers, but to a 
great extent it is still a line-oriented language. A 
comment in Turbo Basic begins anywhere on a line 
at the first occurrence of a single-quote character 
and continues to the end of the current line. Other 
single-quote characters may be used in a comment 
line, so it is possible to comment out a line of code 
that includes a comment by placing the single quote 
at the beginning of the line: 

'PRINT I,J,K 'Display the values on the screen 



Unfortunate ly, to comment out a 
block of lines, each line in the 
b lock must be commented out 
separately, with its own single 
quote in column I. 

AC P UZZLE 
ow for a C puzzle. Suppose you 

want a C program that wi ll com
pi le and run whether or not you 
se lect the option to nest com
ments; and suppose you want the 
program to behave differently 
depending on whether the option 
was se lected. It is tricky to write 
such a program because /* and 
*I wi ll almost always be syntax 
errors unless the compiler recog
nizes these delimiters as the 
beginning or end of a comment. 

Turbo Chas a 

switch, -C, that 

allows comment 

nesting. 

T he solution is to use a macro 
that pastes tokens together. The 
official ANSI C way to do this is, of 
course, supported by Turbo C. I've 
demonstrated the method in List
ing I . When you compile and run 
the code, the message it prints wi ll 
depend on whether or not you 
used the -C compiler switch (or 
the equivalent environment menu 
option) to allow nested comments. 
Because it's a puzzle, I won't 
explain how the solution works in 
detai l. Once you unravel it, how
ever, you wi ll know just about all 
there is to know about nesting 
comments in Turbo C. • 

Roger Schlajly is in charge of scientific 
and engineering products at Borland. 
He is the author of Eureka: The 
Solver and worked on floating point 
support for Turbo C. 

Listings may be downloaded from 
CompuSeroe as COMENT.ARC. 

LISTING 1: COMMENT.C I 
#define CONCAT(x,y) x ## y 
/*/**! 
#define NoNes ting 
CONCA TC/,*) 
*/ 

/* This i s a conment. */ 
#if !NoNesting 
/* And th i s is a /* nested */ conment. */ 
#end if 

#include <stdio.h> 

int cdecl mainCint argc, char **argv) 
{ 

#if NoNesting 
puts("Conments do not nest."); 

#else 
puts("Conments nest."); 

#endif 
return O; 

} 

March / April 1988 TURBO TECHNI X 63 



EXPERT SYSTEM DESIGN FROM 
A HEIGHT 
The next expert you consult may already he sitting on your 
desk! 

Michael Floyd 

English Lit 101-down the hall and to the 
left. Chem IA-next building over, sec
ond floor. Expert Systems and Turbo 
Prolog- you've come to the right place, 
and the front row is available. 

SQUARE ONE If you 're a procedural programmer who 
has been looking for a reason to get Turbo Prolog, 
look no more. If you already own Turbo Prolog and 
have been waiting for the right application to use it, 
the wait is over. Expert Systems and Turbo Prolog is the 
theme in this special issue, and class is now in ses
sion. The curriculum is a complete tutorial on expert 
systems and how they can be developed in Turbo 
Prolog. And you have the opportunity to learn from 
some of the best. 

In this article, you'll get a bird's-eye view of expert 
system design as we cover what expert systems are, 
how they're used, and what features are common to 
most knowledge-based systems. Once you've gotten 
the basics here, you need only turn the page to learn 
about the heart of an expert system-the inference 
engine-from Keith Weiskamp. Another flip of the 
page takes you on a journey through the world of 
knowledge representation as I discuss object
oriented programming with frames . Finally, Safaa 
Hashim takes you where no Turbo Prolog program
mer has gone before, in a unique discussion of 
metalogic and expert systems. 

WHAT IS AN EXPERT? 
Before we talk about expert systems, we should 
define what an expert is. An expert possesses a skill 
or knowledge set that represents mastery of a given 
field. We call upon experts to solve problems or to 
perform tasks for which we lack expertise. For 
instance, we may call a plumber to fix a clogged 
drain, a doctor to diagnose an illness, or a stock 
broker to advise us on stocks. 

64 TURBO TECHNIX March/ April 1988 

When an expert approaches a problem, he or she 
obtains as much information about the problem as 
possible. Then the expert quickly rules out extrane
ous information and boils the problem down to a 
class of problems that he or she is familiar with. 
Finally, the expert applies rules of thumb, or 
heuristics, to solve the problem. 

EXPERT SYSTEMS 
Like their human counterparts, expert systems pos
sess a domain of knowledge and a set of rules for 
using that knowledge to resolve a given situation . 

An expert system typically consists of a knowledge 
base containing all of the information about a spe
cific problem, an inference mechanism that per
forms reasoning and problem-solving, and a user 
interface that acquires new information and reports 
solutions. Figure 1 shows the relationship between 
the three parts of a typical expert syslem. 

We group expert systems into two major areas in 
terms of the problems they solve-synthesis and anal
ysis. A synthesis system generally combines knowl
edge with procedures to perform actions. An exam
ple of a synthesis system is XCON (also known as 
Rl) , which configures VAX mainframe computers. 

An analysis system, on the other hand, breaks 
down a problem in order to study or analyze a given 
situation. MYCIN, developed at Stanford University 
and used to diagnose bacterial infections, is a classic 
example of an analysis system. 

Consult 
'-.. Consult I"" 

Knowledge i-- Inference 
Engine ..._ Query User 

Base Interface 
Query (controller) 

I"" Report _,,j ,., 

Figure 1. The relationship between the three parts of a 
typical expert system. 



Some expert systems incorpo
rate both synthesis and analysis. 
VM (also developed at Stanford 
University) monitors patients in 
an intensive care unit, identifies 
possible alarm conditions, reports 
on those conditions, and recom
mends treatment for them. 

Expert systems can also be 
grouped into applications catego
ries. Most AI researchers cate
gorize these applications as inter
pretation, prediction, diagnosis, 
design, planning, monitoring, 
debugging, repair, instruction, 
and control. However, applica
tions do cross boundaries, so this 
categorization method can fall 
short in many cases. 

EXPERT SHELLS 
In addition to expert systems that 
solve specific problems, other sys
tems, called expert shells, solve 
classes of problems. Expert shells 
load and consult different knowl
edge bases, and apply the same 
rules of inference to solve a vari
ety of problems. 

As an example, EMYCIN is an 
expert shell that was developed 
from the original MYCIN expert 
system mentioned earlier. 
EMYCIN takes the inference 
engine from MYCIN and applies 
it to other problem domains. 
EMYCIN is particularly good at 
deductive problems involving a 
large amount of data. 

RULE-BASED SYSTEMS 
By far, the most popular problem
solving strategy used in expert sys
tem design is rule-based. A rule
based system uses production ru/,es 
to specify a set of conditions and a 
conclusion or action that follows 
from those conditions. The fol
lowing if-then rule represents a 
production rule: 

Rule N IF condition 1 is true 
AND condition 2 is true 
AND ... 
AND condition n is true 

THEN some conclusion or action 
fol lows 

Production rules are used in 
either fonuard-chaining or 
backward-chaining systems. A 
forward-chaining system starts 

with a set of conditions and works 
its way toward the conclusion. In 
other words, once the rule is se
lected, the system attempts to prove 
the first condition, then the sec
ond condition, and so on. If all 
the conditions prove true, then 
the conclusion follows. When all 
conditions are satisfied, the rule is 
triggered. When the conclusion is 
initiated (i.e., when the action in 
the THEN part of the rule is tak
en), the rule is fired. Because the 
conclusion follows naturally from 
the set of conditions, this ap
proach has an inductive quality. 

A backward-chaining system 
starts with the conclusion and 
works its way back to the condi
tion set. We can see this more 
clearly by rewriting the if-then 
rule: 

Rule N Conclusion is true IF 
Condition 1 is true AND 
Condition 2 is true AND 

AND 
Condition n is true. 

This approach assumes that the 
conclusion is true and sets out to 
prove the conditions. Thus, back-

ward chaining lends a deductive 
quality to the system. 

The Prolog language provides a 
natural way to write production 
rules that chain backward from 
the conclusion (or goal) to the 
conditions (or antecedents). For 
instance, in Turbo Prolog we can 
write a rule to define the state of 
good health: 

health(good) if 
t~rature(normal) and 
blood_pressure(normal) and 
tests(negative). 

In attempting to prove that the 
patient is in good health, Turbo 
Prolog assumes that the conclu
sion health(good) is true. Turbo 
Prolog then tries to satisfy each of 
the conditions to prove the goal. 

There are advantages and dis
advantages to each chaining 
method. For instance, a forward
chaining system selects relevant 

continued on page 66 

March/ April 1988 TURBO TECHNIX 65 



EXPERT SYSTEMS 
continued from page 65 

rules by triggering them. To col
lect all relevant rules may require 
looking at every condition in the 
rule base. 

A backward-chaining system 
chooses only matching rules, so 
the possibilities are immediately 
narrowed. However, attempting to 
satisfy a rule's conditions may lead 
to a dead end (i.e., a condition in 
the rule fails) . 

Some systems do both forward 
and backward chaining. In some 
cases, an algorithm selects the 
best method of chaining. In other 
cases, the user selects the chain
ing method to be used. 

GENERATE AND TEST 
Another problem-solving strategy 
we should mention is known as 
generate and test. In this approach, 
all possible solutions are first 
generated, then each possibility is 
tested. Generate-and-test systems 
are useful only when there is a 
small solution set. Larger systems 
must use advanced techniques to 
limit the solution set. In the inter
est of efficiency, larger systems 
must be nonredundant-they 
should never propose the same 
solution twice. Since Turbo Prolog 
provides a natural way to repre
sent production rules, and be
cause rule-based systems have 
offered greater success in expert 
system development, we will not 
cover generate-and-test systems in 
this issue. We mention them here 
only for completeness. 

COMMON FEATURES 
Despite numerous approaches to 
expert system design, some fea
tures are common to most or all 
expert systems. One such feature 
is a query facility, which is in
voked when the user consults the 
computer expert. Generally, the 
problem domain dictates the 
query's approach. However, the 
approach also depends on the 

66 TURBO TECHNIX March/ April 1988 

amount of information the system 
requires from the user in order to 
solve the problem. For instance, 
when the user has little informa
tion to offer initially, the query 
system may employ a question
and-answer approach. When the 
user has a large amount of infor
mation to offer initially, the query 
system may use a natural language 
processor. If the type of data to be 
acquired from the user is known, 
the query facility may display a 
form that the user must fill in. 

Another feature common to all 
expert systems is a report facility. 
An expert system must be able to 
display its findings, make recom
mendations, and so forth. This 
report may be a simple answer to 
a question, or may involve com
plex screen displays. For instance, 
a system that deals with large 
amounts of data may graph the 
data so that the user can visualize 
trends. 

Although not absolutely neces
sary, most analysis systems have 
the ability to explain their logic. 
An explanation facility is usually 
broken down into a how processor 
and a why processor. The how pro
cessor explains how a particular 
conclusion is reached, acting as a 
window into the logic of the 
knowledge base. 

In contrast, the why processor 
explains why a particular action 
(such as asking a question) is 
taken, acting as a window into the 
current state of the consultation. 

A rnl.e /,anguage is another fea
ture of many expert shells. In an 
expert shell such as EMYCIN, the 
user can create new knowledge 
domains by using a rule language 
very much like our if-then rules. 
These rules are presented in an 
English-like style, so that new 
knowledge domains can be 
created and maintained more 
easily. 

ADVANTAGES OF USING 
PRO LOG 
The Prolog language provides a 
natural way to represent produc
tion rules. In addition, Prolog's 
built-in pattern matching (unifica
tion) and backtracking facilities 
make it easy to implement a 

backward-chaining inference 
mechanism. 

Turbo Prolog also adds other 
capabilities. For instance, the 
implementation of a production 
rule language similar to the one 
in EMYCIN would require a 
parser. The Parser Generator pro
vided in the Turbo Prolog Toolbox 
could be invaluable in creating 
such a parser. 

Turbo Prolog and the Turbo 
Prolog Toolbox also allow you to 
develop a sophisticated user inter
face quickly and easily. Although 
I've dealt mostly with theory here, 
the importance of the user inter
face should not be underesti
mated. If you can't interact with 
the system, or can't understand 
the system's output, then the sys
tem becomes unusable. 

CONCLUSION 
When designing an expert system, 
there are a great many things to 
consider. First, what kind of ex
pert do you want to create? Will it 
be an adviser, a troubleshooter, a 
monitoring and control system, or 
some other type of system? Sec
ond, will the system deal with a 
specific problem, or a class of 
problems? These questions in 
turn affect the way knowledge is 
represented (see "Suitable for 
Framing"), how metaknowledge is 
structured (see "Metalogic and 
Expert Systems"), and how solu
tions are inferred (see "Building 
an Inference Engine with Turbo 
Prolog"). So, follow us on a jour
ney from human reasoning to 
computer reasoning as TURBO 
TECHNIX explores the anatomy 
of a computer expert. • 

R EFERENCES 
Hayes-Roth, Frederick & D. A. 
Waterman. Building Expert Systems, 
Reading, MA: Addison-Wesley 
Publishing Company, Inc., 1983. 

Winston, Patrick Henry. Artificial 
Intelligence, second edition, Read
ing, MA: Addison-Wesley Publish
ing Company, Inc., 1984. 



BUILDING AN INFERENCE 
ENGINE WITH TURBO PROLOG 
Data, data everywhere and not a thought to think. 
-Jeff Armstrong 

Kei,th Weiskamp 

If you've always wanted to unravel the 
mystery of how expert systems work, 
you've come to the right place-the infer
ence engine. Fortunately, building an 
inference engine with Turbo Prolog is 

PROGRAMMER much easier than you might think. Turbo 
Prolog's built-in pattern matching and backtracking 
features provide a solid foundation for implement
ing an engine. In fact, such an application really 
shows off the intrinsic power and flexibility of Turbo 
Prolog. In this article, we'll focus on the inference 
engine component of the expert system; however, 
we'll look at the engine in the context of a complete 
expert system shell. This approach has one major 
benefit-it illustrates how the inference engine inter
acts with the other components of the expert system. 

The classic textbook expert system is composed of 
an inference engine, a knowledge base, working 
memory, and a user interface. The hierarchy of 
these components is shown in Figure l. 

The user interface sits on top to communicate 
between the engine and the user. The knowledge 
base contains the rules and logic to guide the engine 
in its reasoning process. Finally, the working mem
ory serves as the warehouse to store the knowledge 
(facts) that the inference engine gathers as it goes 
about its reasoning process. 

ORIGINS I N LOGIC 
When we infer something, we come to a conclusion 
by either guessing, speculating, or surmising. For 
instance, we may infer that it is cold outside because 
there's snow on the ground. An inference, then, is 
the process of inferring. In logic, an inference is the 
process of deriving a strict logical consequence from 
a given premise. In cases where there is a degree of 
uncertainty, we can derive the likely consequences 
based on some degree of probability. 

You might now be wondering where the origins of 
inferential computation come from. Actually, the 

father of this technology is Plato-the first true logic 
programmer. The fundamental techniques used by 
the inference engine were developed by the ancient 
Greek philosophers. An inference is nothing more 
than a component of formal logic. In such a logical 
system, we can divide the universe into two parts: 

1. Relationships (what can be said about the world) 

2. Deductions (what can be proven from the known 
information) 

Essentially, the inference process consists of start
ing with something that is known and deducing 
something that is unknown. The most popular tech
nique for this transformation is called modus ponens. 
This technique states that if we have two objects, and 
we are given the following relationships 

1. Object 1 is true 

2. If Object 1 Then Object 2 

we can prove that Object 2 is true. This inference 
can be expressed in logical symbols as: 

(Object 1 A (Object 1 - Object 2)) - Object 2 

Believe it or not, this simple principle is the driving 
force behind the inference engine. Of course, in 
order to simulate the expertise of a person, the infer
ence engine must also be able to deal with missing 
information and information that might not be true 
in all cases. We'll touch on this point again shortly. 
But first, let's take a closer look at the inner workings 
of an inference mechanism. 

WHAT'S IN AN ENGINE 
When it comes to expert systems, the inference 
engine runs the show. In fact, an expert system with
out an inference engine is like an orchestra without 
a conductor. The engine serves as the link between 
the knowledge base and the user by performing two 
important tasks: reasoning and control. 

The inference engine simulates the human rea
soning process by using a predetermined algorithm 
for inferring facts from knowledge, usually in the 
form of rules. In fact, in many cases the inference 

continued on page 68 

March/ April 1988 TURBO TECHNIX 67 



INFERENCE ENGINES 
continued from page 67 

engine is nothing more than a 
fancy rule interpreter. The rea
soning algorithm is based on a 
control strategy for selecting rules 
from the knowledge base. Two of 
the popular strategies that you've 
probably come across are forward 
chaining and backward chaining. 
Forward chaining means working 
toward a conclusion by starting 
with a set of facts and appropriate 
assumptions. If a solution can't be 
reached, the inference engine 
backtracks and uses other facts 
and assumptions to try and reach 
a conclusion. Backward chaining, 
on the other hand, is the reverse 
of forward chaining. With this 
strategy, the inference engine 
starts with a conclusion or hypoth
esis and works backward in order 
to prove it. 

The system we will show you 
incorporates backward chaining. 
Because of Turbo Prolog's back
tracking mechanism, implement
ing a backward chaining infer
ence engine is really quite easy. 

To better understand the func
tion of the inference engine in an 
expert system, let's consider an 
example. Assume we have the fol
lowing rules in a knowledge base 

1. IF person has a good employ
ment record 

AND IF person's income is 
over $40,000 

AND IF person owns their 
home 

THEN person qualifies for a 
home equity loan 

2. IF person has been steadily 
employed for over three years 

AND IF person has good job 
outlook 

THEN the person has a good 
employment record 

and the following facts are 
known: 

1. John owns his home. 

2. John's income is $50,000. 

3. John has worked for the soft
ware factory for 10 years. 

4. John has a good job outlook. 

68 TURBO TECH NIX March/ April 1988 

USER INTERFACE 

• Ask questions 

• Obtain responses 

INFERENCE ENGINE 

(The controller) 

KNOWLEDGE BASE 

• Facts 

• Rules 

• Questions 

WORKING MEMORY 

• Acquired facts 

Figure 1. Components of an expert system. 

Figure 2. User interface for TPENGINE expert system shell using the 
Turbo Prolog Toolbox. 

With this infonnation, the infer
ence engine can detennine if 
John qualifies for a loan. Essen
tially, the inference engine's job is 
to either start with a conclusion 
and find the facts necessary to 
support the conclusion, or to start 
with facts and deduce a conclu
sion from the known infonnation. 
In our example, the inference 
process starts with the conclusion 
''.John can qualify for a loan," and 
attempts to verify it by using the 

rules in the knowledge base. Rule 
1 is examined first; however, to 
solve this rule, rule 2 must also be 
used. The process of using a rule 
is called ru/,e firing. Note that to 
solve a rule, the inference engine 
can either verify facts or fire other 
rules. 

CONTROLLING THE 
INFERENCE PROCESS 
We've examined the inference 
component of an inference 



engine in detail; however, we've 
only casually discussed the other 
component-control. Remember 
that the inference engine not only 
deduces unknown facts from 
known facts, but it also must de
cide how to select and process 
rules and facts (knowledge). To 
make these decisions, the control 
component performs the follow
ing functions: 

Pattern Matching. This function 
matches a given rule with the facts 
stored in the system. Since pattern 
matching is built into the Prolog 
language, we don't have to worry 
about writing a pattern matcher 
when developing an inference 
engine. This is one of the strong 
points of using Prolog to imple
ment expert systems. 

Selecting Rules. The inference 
engine uses this strategic algo
rithm to find the best rules for a 
given inference. The selection 
algorithm can be designed in 
many different ways, and in gen
eral is related to the way knowl
edge is stored in the knowledge 
base. 

Executing (firing) a rule. Once a 
rule is selected, it must be exe
cuted (fired). This process in
volves verifying each component 
of the rule by asking the user 
questions, or searching the knowl
edge base or working memory for 
known facts. 

Performing Actions. After pro
cessing an inference, the engine 
usually performs a set of actions, 
such as updating the knowledge 
base and working memory. In 
most expert systems, the facts 
acquired during an inference ses
sion are saved so that the infer
ence engine can use them at a 
later time. 

Selecting rules is the main task 
of the control component. A wide 
variety of techniques have been 
used by expert system developers, 
including the backward chaining 
and forward chaining search 
strategies discussed earlier. In our 
example of the inference process 
using the two loan qualification 
rules, the backward chaining 
method was employed to verify 
the conclusion or goal: 'John can 
qualify for a loan." This statement 

continued on page 70 

LISTING 1: &DESIGN.KB 

rule("Is book designed well? 11 ,is( 11 well_designed11 ), 

[are_correctC 11 page_nurbers11 ),are_correct( 11margins11 ), 

are_correct( 11 type_fonts11 ),are_correct( 11art_work11 )]). 

rule("Are chapter fonts ok?11 ,are_correct( 11chapter_fonts11 ), 

[is_set( 11chapter_header11 ),is_set( 11chapter_body11 ), 

are_setC"paragraph_heads")l). 
rule("Are page nllllbers ok? 11 ,are_correct( 11page_nurbers11 ), 

[are_on( 11even__pages11 , 11 left 11 ),are_on( 11odd__pages11 , 11 right 11 ), 

are_ i nC "pages", "order")] ) • 
ruleC"Are page nllllbers ok? 11 ,are_correct( 11 page_nurbers11 ), 

[are_onc 11even__pages 11 , 11center11 ),are_on( 11odd__pages11 , 11center11 ), 

are_inC"pages", "order")]). 
ruleC"Are margins ok? 11 ,are correct("margins"), 

[are consistentC"left-right margins"), 
are:consistentC"top_bot_margins11 )]). 

rule("Are code listings ok?11 ,are_correct( 11code_listings11 ), 

[are_inC"l i stings", "smal l_font"), i s_set("code_type")l). 
ruleC"Are code listings ok? 11 ,are_correct( 11code_listings11 ), 

[are_inC"l i stings", 11 bold_face11 ), i s_set("code_type")l). 
ruleC"ls code set ok?", is_set("code_type"), 

[has(" listings", "header") ,check( 11syntax11 )]). 

rule("ls code syntak ok? 11 ,check( 11syntax11 ),[is_language("pascal"), 
terminate( "semicolon", "statements")] ) • 

ruleC"ls code syntak ok? 11 ,check( 11syntax11 ),[is_language( 11 prolog11 ), 

terminate( 11 period11 , 11clause")l). 
ruleC"Are type fonts ok? 11 ,are_correct("type_fonts11 ), 

[has_codeC"book") ,are_correct("code_l i stings"), 
are_correct("chapter_fonts11 )]). 

rule("Are type fonts ok? 11 ,are_correct( 11 type_fonts 11 ),[no_code( 11 book11 ), 

are_correct("chapter_fonts")]). 
question(are_on( 11even__pages11 , 11 left 11 ), 

"Are even page nurbers on left-hand side?"). 
questionCare_on( 11odd__pages11 , 11 right 11 ), 

"Are odd page nllllbers on right-hand side?"). 
question(are_onC"even__pages11 , 11center11 ), 

"Are even page nurbers centered ?"). 
question(are_on( 11odd__pages11 , 11center11 ), 

"Are odd page nurbers centered?"). 
question(are_inC 11 pages 11 , 11order11 ), 

"Are pages in correct nuneric order?"). 
question(are_consistent("left_right_margins"), 

"Are the left and right margins consistent?"). 
question(are_consistent("top_bot_margins"), 

"Are the top and bottom margins consistent?"). 
question(has_code( 11 book11 ), 11Does the book have code?"). 
question(no_code("book"),"The book does not have code?"). 
question(are_inC 11 listings11 , 11small_font 11 ), 

"Are the code listings in a smaller font the the text?"). 
question(are_inC 11 listings11 , 11 bold_face11 ), 

"Are the code listings in bold face?"). 
question(has( 11 listings11 , 11 header"), 

"Do the code listings have the correct header?"). 
question(is_language("pascal"), 

"Are the code listings in Pascal?"). 
question(is_languageC"prolog"), 

"Are the code listings in Prolog? 11 ). 

question(terminate( 11semicolon11 , 11statements11 ), 

"Does each statement terminate with a semicolon?"). 

March/ April 1988 TURBO TECHNIX 69 



IJ 

question(terminate( 11 period11 , 11clause11 ), 

"Does each clause terminate with a period?"). 
question(is_set("chapter_header"), 

"Does each chapter have the correct heading?"). 
question(is_set("chapter_body"), 

"Is the type font consistent for each chapter?"). 
question(are_set("paragraph_heads"), 

"Does each paragraph have the correct heading?"). 
question(are_correct("art_work"), 

"Does each chapter have the correct figures?"). 

LISTING 2: TPENGINE.PRO 

!**************************************************************** 

File: tpengine.pro 
Author: Keith Weiska"l' 1987 

tpengine is basic inference engine written in Turbo prolog. 
The inference engine supports nKJltiple knowledge bases (rule 
sets). 

Uses: The following tools from the Turbo Prolog Toolbox are needed: 

tdoms.pro 
tpreds.pro 
status.pro 
pulldown.pro 
boxmenu.pro 

****************************************************************/ 

code=8000 
include "tdoms.pro" 

DOMAINS 

rule list 
rule= type 

/* names of rule heads and facts */ 
rule_ type* 

= isCsymbol>; 
are correct(symbol); 
are=consistent(symbol>; 
is set(symbol); 
are set(symbol); 
has(symbol,symbol); 
has_correct(symbol,symbol); 
are on(symbol,symbol); 
are-in(symbol,symbol); 
checkCsymboL>; 
has code(symbol); 
no code(symbol); 
is-language(symbol); 
terminate(symbol,symbol) 

rlst = string* 
file = dest 

DATABASE 

/*pull-down menu state*/ 
!* the active list of queries*/ 
!* the user selected query */ 

/* facts saved in working memory */ 

pdwstate(ROW,COL,SYMBOL,ROW,COL) 
querylist(STRINGLIST) 
currentquery(rule_type) 
storedfacts(rule_type) 
storedfalsefacts(rule_type) 
t~facts(rule_type) 
t~falsefacts(rule_type) 

/* teq:><>rary facts */ 

70 TURBO TECHNIX March/ April 1988 

INFERENCE ENGINES 
continued from page 69 

matches the conclusion of rule l ; 
therefore, this rule is fired and the 
inference engine must then verify 
the conditions: 

Does John have a good employ
ment record? 

Is John's income over $40,000? 

Does John own his home? 

Now the first condition matches 
the conclusion of rule 2. In this 
case, rule 2 becomes our new sub
goal that must be solved before 
our original goal can be verified. 
The conditions for the subgoal 
are: 

Has John been steadily employed 
for over three years? 

Does John have a good job 
outlook? 

Of course, now we're at the end of 
the line and can verify the sub
goal by using the facts in the 
knowledge base. Once this sub
goal is solved, we can return to 
the first goal. 

GETTING STARTED 
The program we'll create consists 
of an inference engine that can 
access multiple knowledge bases. 
The knowledge base we'll use is 
composed of a set of production 
rules and questions. The infer
ence engine is wrapped around 
an interface constructed with 
some of the tools provided with 
the Turbo Prolog Toolbox. 

Figure 2 shows a screen dump 
of the program interface. Note 
that six options are provided: Ask, 
Run, Knowledge_Base, Facts, 
Options, and Quit. The first 
option, Ask, allows us to select a 
query for the inference engine to 
process. 

The queries are taken from the 
production rules defined in the 
knowledge base. When we select a 
query, we are essentially asking 
the inference engine to help us 
verify that a given statement or 
situation is valid. Run starts the 
inference engine, and the 
Knowledge_Base option loads or 
clears a knowledge base. Facts 
provides access to the working 
memory of facts that the inference 
engine uses to process queries. 
The system that we'll build tem
porarily stores the facts that it 



gathers while processing a query. 
These facts can be saved so that 
they are available to the engine 
when processing other queries. 
Finally, Options is included to 
support a trace feature that will 
allow us to review the reasoning 
process of the inference engine. 
To construct the program, let's 
start with the knowledge base and 
then work our way up to the infer
ence engine. 

BUILDING THE KNOWLEDGE 
BASE 
A variety of representation 
schemes are available for building 
a knowledge base, including rules, 
frames, scripts, and semantic net
works. We'll use production rules 
in our system because they are 
easy to process with the inference 
engine. (For more on knowledge 
representation and frames, see 
"Suitable for Framing" elsewhere 
in this issue. For more on rules in 
the Turbo Prolog database, refer 
to "Metalogic and Expert Sys
tems," also in this issue.) 

The knowledge base that we'll 
build to test the inference engine 
contains some of the rules and 
facts used by book designers. In 
fact, these rules are specific to the 
design of programming books. 
Figure 3 shows the rules. 

Note that each rule in Figure 3 
consists of either facts that must 
be verified or other rules. For 
example, the first premise of the 
rule "The type fonts are correct" 
contains the fact "The book does 
not have code" and the rule "The 
code listings are correct." In addi
tion, some of the rules use the OR 
operator to join different pre
mises. The Turbo Prolog imple
mentation of this knowledge base 
is shown in Listing 1. Study this 
listing to see how the English-like 
production rules are represented 
as database clauses. Note that 
each rule clause represents one of 
the defined rules. In the cases 
where rules have more than one 
set of premises (i.e., rules that use 
the OR operator), a rule clause is 
defined to represent each set of 
premises. 

The knowledge base also con
tains a series of questions to 
support the defined rules. Each 
question is implemented as a 
database clause of the form: 

continued on page 72 

rule(string,rule_type,rule_list) /*rules loaded from a KB file*/ 
question(rule_type,string) /* questions from the KB */ 
how(rule_type,symbol,symbol) /* store rules and facts for trace */ 

/*these files are provided with the Turbo Prolog Toolbox*/ 
include "tpreds.pro" /* support predicates for toolbox */ 
include "status.pro" /* status bar message tools */ 
include 11 pulldown.pro11 /*pull-down menu tools*/ 
include 11 boxmenu.pro11 /* box menu tools */ 

PREDICATES 
msg(ROW,COL,STRING) 
getquery(STRINGLIST) 
unique(STRINGLIST, STRINGLIST) 
member(string, STRINGLIST, integer) 
process_file 
inference(rule_type,rlst) 
process_rule(rlst,rule_type,rule_list) 
process_facts(rlst,rule_list) 
getresponse(symbol) 
validresponse(symbol,rule_type,rlst) 
get_first(rule_list,rule_type) 
delete(rule_type,rule_list,rule_list) 
process( rule_ type) 
rmv_rule(rule_type,rule_list,rule_list) 
check_ans(symbol,symbol) 
adcl_fact(rule_type) 
check_fact(rlst,rule_type) 
process_why(rlst) 
display_rule(string) 
clearfacts 
clear facts 
clear-false facts 
clear:te111>_facts 
clear_te111>_false_facts 
clearte111>facts 
clear trace 
clear-rules 
clear:ques 
showfacts 
showtrace 
adcll(string,rlst,rlst) 
convert(symbol,rule_type) 
rememberte111>facts 
remember facts 
remember:false_facts 

CLAUSES 

/* The Inference Engine Clauses *****************************/ 

process(Query) :- inference(Query,_), 
rule(Str, Query,_),!, 
write("Your query:\n 11 ,Str, 11 \nis solved."). 

process(Query) :-
rule(Str, Query,_), I, 
write("Your query:\n 11 ,Str, 11 \ncamot be solved. 11 ). 

March/ April 1988 TURBO TECHNIX 71 



RULE: A book is designed well 
IF 

The pages are ni.mbered correctly 
AND 

The type fonts are correct 
AND 

The margins are set correctly 
AND 

The art work matches the text 

RULE: The chapter fonts are correct 
IF 

The chapter header is set correctly 
AND 

The text in the chapter body is set correctly 
AND 

The paragraph heads are set correctly 

RULE: The pages are nunbered correctly 
IF 

(Even page nunbers are on the left corner 
AND 

Odd page nunbers are on the right corner 
AND 

Each page is in the correct nunerical order) 
OR 

(Even page nunbers are centered 
AND 

Odd page nunbers are centered 
AND 

Each page is in the correct nLfllerical order) 

RULE: The margins are set correctly 
IF 

All left margins are consistent 
AND 

ALL right margins are consistent 

RULE: The code listings are correct 
IF 

AND 

OR 

AND 

(The listings are in a smaller font than the 
chapter text 

The code type is set correctly) 

(The listings are in a bold face style 

The code type is set correctly) 

RULE: The code type is set correctly 
IF 

Each Listing has a header 
AND 

The code syntax is correct 

RULE: The code syntax is correct 
IF 

(The code is in Pascal 
AND 

Each line of code is terminated by a semicolon) 
OR 

(The code is in Prolog 
AND 

Each clause is terminated by a period) 

RULE: The type fonts are correct 
IF 

(The book does not have code 
AND 

The code listings are correct 
AND 

The chapter fonts are correct) 
OR 

(The book does not have code 
AND 

The chapter fonts are correct) 

Figure 3. Ru/,es to be used in the book designer knowl£dge base. 

72 TURBO TECHNIX March/ April 1988 

INFERENCE ENGINES 
continued from page 71 

database 
question(rule_type, string) 

Here the term rule_type refers to 
one of the facts defined by the 
rule clauses. The second argu
ment consists of the question the 
inference engine asks when at
tempting to verify the fact. As an 
example, the question 

question(has_code(book), 
"Does the book have code?"). 

is used to process the fact, "The 
book has code." 

THE EXPERT SHELL 
PROGRAM 
The complete expert system shell 
is shown in Listing 2. The pro
gram is divided into three com
ponents: the inference engine 
clauses, support clauses, and 
clauses to process pull-down 
menu selections. The clauses that 
make up the core of the inference 
engine are process, inference, 
process_rule, rmv _rule, and 
process_facts. We'll look at these 
clauses in more detail in a mo
ment, but first let's see how the 
program is initialized. 

Before the user can do any
thing useful with the system, he 
must load the knowledge base. 
Once the knowledge base is 
loaded, getquery is called to con
struct a list of all of the rules in 
the knowledge base. This list is 
further processed by unique, 
which removes all rules with 
duplicate rule heads. The final 
result is a list of queries that is 
stored; the program can later con
struct a menu of queries from this 
list. In this sense, the program is 
dynamic; selecting Ask displays 
queries that reflect the current 
state of the knowledge base. 

After loading a knowledge base, 
you can select a query with the 
Ask option, and start the infer
ence engine by selecting Run. 

INSIDE THE INFERENCE 
ENGINE 
Now we're ready to tackle the 
heart of the expert system. Start
ing the inference engine calls 
process, with the user's query as 
the argument. process in tum 
calls inference, which controls the 
evaluation of the query. The infer-

continued on page 74 



~e~' Introducing Turbo C 1.5-
the best optimizing compiler 

gets even better! 
The professional 
optimizing compiler 
for less than $100 

Turbo C® is a techni
cally superior produc
tion-quality compiler. 
(Borland's equation sol
ver. EurekaN. is written in 
Turbo C.) And our Turbo 
C 1.5 offers a new library 
of the highest presenta
tion-quality graphics in 
the industry-the kind 
you'll see in Quattro.N 
our new professional 
spreadsheet. 

And spectacular graph
ics are just part of the 
brand-new features. 
Turbo C 1.5 enhance
ments also include: 
• A professional-quality 

graphics library of over 
70 functions 

• A librarian that allows you 
to build your own object 
module libraries 

• Context-sensitive help for 
the language and the 
library routines 

Actual photograph of Turbo C graphics displayed on IBM 8514 screen." 

• Text/video functions. 
including windows 

• 43- and 50-line mode 
support 

• VGA. CGA. EGA. Hercules. 
and IBM 8514 support 

• File search utility (GREP) 

INTERNATIONAl 

• Sample graphics 
applications 

• More than 100 new 
functions 

For professional-quality C 
at an affordable price. no one 
else comes close to Turbo C. 
Because no one can deliver 
technical superiority like 
Borland. 
60-Day Money-back Guarantee** 

For the dealer nearest 
you or to order. call 

(800) 543-7543 
Ml,,lmum 1y1t1m req11/rem1nt1: For !he IBM PS/2 .. and the IBM9 and Compaq• ramilies of pe1sonaJ computers and all 100% compatibles. PC-DOS (MS-0059

) 2.0 Of late1. 384K. 
·Artwork metalile cou1tesy ot Genigraphics• Co1poratioo 

··customer satisfaction is our main concern: ii within 60 days ol purchase this product does not per!Ofm in accordance with our claims. call our cuslomer service department, and we will arrange a refund 
AllBorlandprOlklc1saretrilC!emarksorreo1stered1riC!emarksolBorlanCllnlema1Jonal.lnc Otherbrinlanclpro0Jc1names1ntra<lemartsorrtg1sll!fedtrademar-Sollneirresl)e(:liYehOlders. Copyr1ghl •1!}87Bor*'<!lrternalional.lnt 8111658 .................... 
It's easy to upgrade to Turbo C 1.5! 
Just complete this coupon and mail it with payment before June 30, 1988. Or, call us at (800) 543-7543 and be ready to give our operators your name, 
credit card number, and the serial number on your Turbo C master disk. 

Turbo C 1.5 Upgrade Price 

CA and MA residents add sates tax 
Shipping and handling 

In US $5.00 (Outside US add $10) 

$ 33.50 

Total amount enclosed $ ____ _ 
Must Include your TUrbo C serial•--------
Return this coupon and the Turbo C RTL source code registration form from your Turbo 
C manual along with your payment by March 31, 1988 and receive your Turbo C 1.5 
upgrade for free' (No phone orders please.) 

Turbo C 1.5 Runtime Library 
Source Code $ 150.00 

CA & MA residents add sales tax 
Price includes shipping to all US cities. 
(Outside US add $10) 

Total amount enclosed $ ____ _ 

Please specily diskette size D 5V.- o 3\!i' 

Method al Payment: D VISA D MC 

Credit card expiration date: ___ / __ _ 

D Check D Bank Draft 

Cardi I I I I I I I I I I I I I I I I I I I 

Name----------------

Ship Address ---------------

City ________ State _______ _ 

Zip ______ Phone 1-1 -------

Mill coupon to: Turbo C 1.5 Upgrade Dept., Borland International 
4585 Scotts Valley Drive, Scotts Valley, CA 95066 

This otter is limited to one upgrade per valid p1oduct serial number. Not good with any olher offer from 
Borlaod. Outside US make payments by bank dralt payable in US dollars d1awn oo a US bank. 
CODs and p1.1chase orders will not be accepted by Borland. 

TT/M-A/88 



I* 

inference(Query, ) :- not(rule( ,Query, )). /* inference engine*/ 
inference(Query,Rlst) :- rule(No,Query,Cond list), 

addl(No,Rlst,Nrlst), -
assert(how(Query, rule,query)), 
get_first(Cond_list,Cond), 
inference(Cond,Nrlst), 
process_rule(Nrlst,Cond,Cond_list),!. 

process_rule(Rlst,Query,Cond_list):
rmv_rule(Query,Cond_list,N1),!, 

process_facts(Rlst,N1). 

rmv_rule(Query,Cond_list,N1) :- rule(_,Query,_), 
delete(Query,Cond list,N1). 

rmv_rule(_,Cond_list,corid_list). /*only facts in list*/ 

process_facts(_,[]). 
process_facts(Rlst,Cond_list) :- get_first(Cond_list,Prop), 

check_fact(Rlst,Prop), !, 
delete(Prop,Cond_list,New_list), 
process_facts(Rlst,New_list). 

process_facts(Rlst,CQuerylCond_list]) rule(_,Query,_), 
inference(Query,Rlst), 
process_facts(Rlst,Cond_list). 

getresponse(R) :- readln(Ask), 
check_ans(Ask,Rep), !, 
R=Rep; 
nl, write("Try another answer please. 11 ),nl, 
getresponse(R). 

check_ans(yes,y). 
check_ ans Cy, y). 
check_ans(n,n). 
check_ans(no,n). 
check ans(why,w). 
check=ans(w, w). 

add_fact(Fact) :- not(storedfacts(Fact)), 
assert(storedfacts(Fact)). 

add_fact(Fact) :- nl, write(Fact," is already stored. 11 ),nl. 

check_fact(_,Fact) 

check_fact(_,Fact) 

check_fact(_,Fact) 
check_fact(_,Fact) 
check_fact(Rlst,Fact) 

write(Str), 

storedfacts(Fact), 
assert(how(Fact, fact, memory)). 
t~facts(Fact), 
assert(how(Fact, fact, memory)). 
storedfalsefacts(Fact), !, fail. 
t~falsefacts(Fact), !, fail. 
:- question(Fact,Str), 

getresponse(Response), 
validresponse(Response,Fact,Rlst). 

Store all facts (true and false) in t~rary memory. */ 

validresponse(y,Fact,_) :- assert(t~facts(Fact)), 

validresponse(n,Fact, ) :
validresponse(w,Fact,Rlst) 

assert(how(Fact, fact, user)). 
assert(t~falsefacts(Fact)), !, fail. 

makewindow(1,7,7,"Why Window",10,20,10,40), 
makestatus(112,"Press any key to continue"), 
process_why(Rlst), 
readkey(_), 
removestatus, 
removewindow, ! , 
check_fact(Rlst,Fact). 

74 TURBO TECHNIX March/ April 1988 

INFERENCE ENGINES 
continued from page 72 

ence engine first locates the rule 
in the knowledge base that 
matches the query and then pro
cesses the rule by examining each 
premise of the rule. The algo
rithm for proving each premise is: 

1. If the premise matches one of 
the rules in the knowledge 
base, then locate the first pre
mise of that rule and start over 
with step 1. 

2. If the premise is stored as a fact 
in memory, then the premise is 
proven. Go to step 4. 

3. If the premise is an "askable" 
fact, then ask the user to verify 
the fact. If the fact is verified go 
to step 4. 

4. Locate the next premise for the 
rule and continue with step 1. 

This translates into Turbo Prolog 
as: 

inference(Query,_):-
not(rule(_,Query,_)). 

inference(Query,Rlst):
rule(No,Query,Cond list), 
addl(No,Rlst,Nrlst), 
assert(how(Query, rule,query)), 
get_first(Cond_list,Cond), 
inference(Cond,Nrlst), 
process_ruleCNrlst,Cond, 

Cond_l ist), ! • 

The first inference clause termi
nates the recursive inferencing 
process when a rule's premise 
does not reference another rule. 
The second inference clause, on 
the other hand, contains the core 
of the inference engine. Here, the 
first step is to obtain a rule from 
the knowledge base with a call to 
rule. The argument returns the 
list of premises, Cond_list. The 
next step is to add the name of 
the rule to a rule list that pro
cesses "why" responses. This fea
ture, which we'll discuss in the 
next section, lets us ask the infer
ence engine why it is asking us a 
particular question. The clause 
get_first returns the first prem
ise from the list of premises 
(Cond_list); the inferencing pro
cess then continues with the new 
premise. Note that inference 
keeps calling itself as long as a 
rule's premise refers to another 
rule. 

You're probably wondering how 
the inference engine knows if it is 



processing a rule or a fact. If a 
premise matches one of the rules 
stored in the knowledge base, the 
inference engine knows it has 
found a rule and continues to step 
through the rule list. On the other 
hand, if a match is not found, the 
first inference clause succeeds. 
This suspends the recursion built 
into inference long enough to 
evaluate the facts defined in a rule 
with a call to process_rule. Let's 
look at an example. 

Assume that we have the follow
ing two rules stored in a knowl
edge base: 

ruleC"rule 1",a, Cb,c,dl ). 
ruleC"rule 211 ,c,Cf,g]). 

The terms a and c refer to the 
rule heads (conclusions) and the 
terms b, c, d, f, and g represent 
their premises (or conditions for 
satisfying the rule). Ifwe start the 
inference engine with 

inference(a,_). 

the first call to rule produces the 
list of premises [b,c,d]. In this 
case, the first premise, b, is inter
preted as a fact since there are no 
other rules in the knowledge base 
that match this premise. The re
cursive inference clause then ter
minates, and process_rule is 
called with the arguments: 

process_ruleC ["rule 1"l ,b, Cb,c,d] ). 

This clause removes the first ele
ment from the rule list if it is a 
rule, and calls process_facts with 
the rest of the list to verify the 
premises. 

Our expert system shell con
tains an internal knowledge base, 
called the working memory, which 
stores the facts that the inference 
engine validates. The first step in 
evaluating a fact is to examine this 
working memory to determine if 
the fact is already known. If the 
fact is not stored, the inference 
engine asks the user to verify the 
fact. This is handled by the clause: 

check_fact(Rlst,Fact):-
question(Fact,Str), 
write(Str), 
getresponse(Response), 
validresponse(Response, 

Fact,Rlst). 

Here, question extracts the appro
priate question from the knowl
edge base and the user is asked 
to respond to the question by 
answering "yes" or "no." If our 

continued on page 76 

process_why([]). 
process_why([Head!Taill) :- process_whyCTail), 

display_rule(Head). 

display_rule(H) :- ruleCH,Rprop,_), 
wri te("\nProcess ing rule 11 , H, ": 11 ,Rprop) ,nl. 

clearteqJfacts :- clear_teqJ_false_facts, clear_teqJ_facts. 
clear_teqJ_false_facts :- retract(teqJfalsefacts(_)), fail. 
clear_teqJ_false_facts. 
clear_teqJ_facts :- retract(teqJfacts(_)), fail. 
clear_teqJ_facts. 

clearfacts :- clear false facts, clear facts. 
clear_false_facts :: retract(storedfalsefacts(_)), fail. 
clear false facts. 
clear-facts-:- retract(storedfacts( )), fail. 
clear)acts. -

remenberteqJfacts :- remerrber_facts, remerrber_false_facts. 
remenber_facts :- retract(teqJfacts(Fact)), 

assert(storedfacts(Fact)), remerrber facts. 
remenber facts. -
remenber:false_facts :- retract(teqJfalsefacts(Fact)), 

assert(storedfalsefacts(Fact)), remerrber false facts. 
remenber_false_facts. - -

showfacts : -
storedfacts(Fact), 
write("\nFact: ",Fact), 
fail. 

showfacts. 

showtrace : -
how(Term, Type, Spec), 
write("\nTrace: ",Term, 
fail. 

showtrace. 

II II 
I 

clear_trace retract(how( , , )), 
fail. - - -

clear _trace. 

Type, II ", 

clear_rules :- retract(rule(_,_,_)), 
fail. 

clear_rules. 

clear_ques :
retract(question(_,_)), 
fail. 

clear_ques. 

Spec), 

March/ April 1988 TURBO TECHNIX 75 



/* Support Clauses ************************************/ 

convert(Sym,Term) :- openwrite(dest,"convert.dat"), 
writedevice(dest), 
write(Sym), 
closefile(dest), 
openread(dest,"convert.dat"), 
readdevice(dest), 
readterm(rule_type,Term), 
closefile(dest), 
readdevice(keyboard). 

addl(Mem,L,CMemlLJ). 

get_first(CHl_l,H). 

delete( , Cl, Cl). 
delete(Head,CHeadlTaill,Tail) :- !. 
delete(Token,CHeadlTaill,CHeadlResultl) !, 

delete(Token,Tail,Result). 

unique( Cl, Cl). 
uniqueCCHITl, Result>:

member(H, T,_), !, 
unique(T, Result). 

unique( CH ITJ, CH IResul tl) :-
unique(T, Result). 

member(H, CHl_l, 1). 
member(H, C_ Tl, Pos):

member(H, T, Cpos), 
Pos = Cpos + 1. 

getquery(lst):-
findall(Str, rule(Str,_,_), Lst). 

/* Process pull-down menu options***************************/ 

pdwaction(1,0):-
querylist(Ql), /*build the query list*/ 
makestatus(112,"Use arrow keys to select a query"), 
boxmenu(3,5,10,30,7,7,Ql,"Select a query",1,Pos), 
member(ltem,Ql,Pos), 
rule(ltem,Query,_), 
assert(currentquery(Query)), 
removestatus. 

pdwaction(1,0):
queryl i st(_). 

pdwaction(1,0):-
msg(3,5,"Knowledge base not loaded"). 

76 TURBO TECHNIX March/ April 1988 

INFERENCE ENGINES 
continued from page 75 

fact bis verified, the inference 
engine continues to process the 
rest of the premises ( c and d). 
When c is evaluated, the inference 
engine discovers that this premise 
references a fact, and therefore, 
produces the premise list [f,g]. 
The next step is to evaluate the 
facts. Once they are proven, the 
engine backtracks and evaluates 
the premise d . The decision tree 
for this process is shown in Figure 
4. If any of the facts fail , the query 
is proven false. Keep in mind that 
the inference engine still supports 
compound rules. That is, we can 
define a rule of the form 

c IF (f AND g) OR (h AND i) 

which is expressed as: 

rule("rule 211 ,c, Cf ,g]). 
rule("rule 211 ,c, Ch, il ). 

In this case, if premise for g fails, 
the inference engine evaluates the 
rule by attempting to verify pre
mises h and i. Since Turbo Prolog 
automatically backtracks and 
searches for alternative solutions, 
we get this feature for free! 

THE WHY AND TRACE 
FEATURES 
To make our inference engine 
more sophisticated, we can add a 
why processor and a tracing fea
ture. The why processor, imple
mented as 
process_why( Cl). 
process_why(CHeadlTaill):-

process_why(Tail), 
display_rule(Head). 

displays the name of the rules in 
the order they are processed. The 
rules are displayed in a window as 
shown in Figure 5. Note that the 
rule name as well as the rule head 
are displayed. In this case, the 
"Why Window" tells us that the 
inference engine is asking us the 
question, "Are the left and right 
margins consistent?" This is to 
evaluate the rule "Are margins 
ok?", which is part of the rule "Is 
book designed well?" In this 
respect, the "Why Window" helps 
us to see the hierarchy of the 
rules being processed by the 
engine. 

To support this feature, we only 
need to keep a list of the rule 
names that are being investigated 
by the inference engine. If the 



user selects th is option by answer
ing a question with th e response 
"why" or "w," th e rules currently 
stored in the list are displayed in 
the order they are being pro
cessed. Of course, our display of 
the rules is somewh at primitive; 
however, you can j azz it up by 
modifying the process_ why 
clause so that the why explanation 
reads more like real English . (At 
least we have windows!) 

T he second feature we'll need 
is a trace. You can al~o call trace a 
"how" processor, since it tell s us 
"how" the infe rence engine does 
its reasoning. After a query is 
evaluated, we can select the trace 
listed under the O ptions com
mand; we'll then be presented 
with a window containing the rea
soning steps used by the inference 
engine. Figure 6 shows a sample 
trace that was generated to solve 
th e top-level query "Is book 
designed well?" 

Note that each entry in the 
trace contains three components: 
th e head of a rule or fact, a tag to 
tell us if th e trace item is a rule or 
fact, and a tag to tell us the con
text of the trace item. For exam
ple, the trace statements 

are correct("margins") rule query 
are-consistent("left right margins") 

- fact-user -
are_consistent("top_bot_margins") 

fact user 

are interpreted as: 

To solve the rule: 
The margins are correct 

The fact: 
Left/right margins are consistent 
was verified by the user 

The fact: 
Top/bottom margins are consistent 

was verified by the user 

Since facts can also be verified by 
examining the working memory, 
the trace also displays facts of the 
form 

no_code( 11 book 11 ) fact memory 

to indicate that the fact was stored 
in the working memory. 

Fact d 

Fact f Fact g 

Figure 4. Decision tree showing how 
ru/,es and facts are checked. 

continued on page 78 

pdwaction(2,0):- /* Solve a query */ 
retract(currentquery(Query)), 
cleartefll>facts, /* initialize the environment*/ 
clear trace, 
makestatus(112, 

"Answer questions with (y)es, (n)o or (w)hy"), 
makewindow(1,7,7, 11Query Window",3,5,15,60), 
process(Query),!, /*start the inference engine*/ 
changestatus("Press any key to continue"), 
readkey( ), 
removewiiidow, 
removestatus. 

pdwaction(2,0):-
msg(3, 16,"Query not selected"). 

pdwaction(3,1):- /*load the knowledge base*/ 
makewindow(1,7,4, 1111 ,3,26,5,30), 
window str("Enter Knowledge Base:"), 
process_file. 

pdwaction(3,2):- /* clear the knowledge base */ 
clear rules, 
clear=ques, 
retract(querylist(_)), 
msg(3,26,"Knowledge Base is cleared"). 

pdwaction(4,1):- /*display facts stored in memory *I 
makewindow(1,7,7,"Facts in memory",3,20,20,50), 
showfacts, 
makestatus(112,"Press any key to continue"), 
readkey(_), 
removestatus, 
removewinclow. 

pdwaction(4,2):- /* Add a fact to working memory*/ 
makewindow(1,7,7,"Add a fact",3,20,5,30), 
write("Enter fact to add to memory:\n">, 
readln(Resp), 
convert(Resp, Fact), 
add fact(Fact), 
rem0vew i ndow, ! . 

pdwactionC4,2):
removewindow, 
msg(3,43, "Fact camot be added"). 

pdwaction(4,3):- /* clear facts*/ 
clearfacts, 
msg(3,26,"Facts are cleared"). 

pdwaction(4,4):- /* Store tefll>Orary facts */ 
remerrbertefll>facts, 
msg(3,26,"Tefll>Orary facts are saved"). 

pdwaction(5,1):- /*About this program*/ 
makestatus(112,"Press any key"), 
makewindow(1,7,7,"About this program",3,30,5,40), 

write("This program is a inference engine\n"), 
write("written by Keith Weiskalll'····\n"), 
readkey( ), 
removewiiidow, 
removestatus. 

March/ April 1988 TURBO TECHNIX 77 



Figure 7. Ask pull-down menu showing samp!,e queries. 

78 TURBO TECHNIX March/ April 1988 

INFERENCE ENGINES 
continued from page 77 

To implement the trace, we use 
the how database clause, which is 
defined as: 

database 
how(rule_type,symbol,symbol) 

Every time a rule is processed 
or a fact is verified, it is asserted 
into the database. These actions 
occur in the clauses inference, 
check_fact, and valid.response. 
The trace is displayed by opening 
a window and calling showtrace, 
which steps through the how 
database: 

showtrace:-
how(Term, Type,Spec), 
write("\nTrace: ",Term, 

Type, " ", Spec), 
fail. 
showtrace. 

II ti , 

Again, this code could easily be 
modified to display the trace in a 
more user-friendly format. 

USING THE PROGRAM 
To run the program, simply com
pile and execute Listing 2. How
ever, before you can do anything 
with the program, you must load a 
knowledge base. If you attempt to 
select a query or run the program 
before loading a knowledge base, 
the program displays an error 
message. To test the engine, load 
the knowledge base BDESIGN.KB 
shown in Listing 1. Once this 
knowledge base is loaded, select 
the Ask option and you'll be pre
sented with a set of queries as 
shown in Figure 7. 

You can also use the Facts 
option to Show, Add, Clear, and 
sTore facts. These options per
form the following tasks: 
• Show: Display all of the facts 

currently stored in working 
memory. 

• Add: Add a fact to working 
memory. 

• Clear: Remove all the facts from 
working memory. 

• sTore: Save the temporary facts 
from an inference engine run 
to the working memory. 

When the inference engine veri
fies facts by asking the user ques
tions, it stores the facts in a tem
porary database. This database is 
also examined by the engine as it 



processes other facts. Whenever a 
new query is selected for process
ing by the inference engine, this 
temporary database is cleared; 
if you want to save the facts 
gathered from a particular query, 
you should use the sTore option 
to save them. 

CONCLUSION 
We have not only constructed a 
basic inference engine, but we've 
also put together a working expert 
system, including the user inter
face and knowledge base to illus
trate how the inference engine 
operates. The program can be 
loosely defined as an expert sys
tem shell since it is not tied to one 
particular knowledge domain. 

The inference engine is 
designed to process production 
rules; however, it could be modi
fied to support other knowledge 
representation schemes, such as 
frames. The important thing to 
realize is that the knowledge base 
serves as a road map to direct the 
reasoning process of the engine. 
In fact, the order of the rules 
defined in the knowledge base 
determines the order of the infer
encing process. Therefore, if you 
define your own rule sets, make 
sure you consider the effect that 
the order of your rules has on 
the outcome of the inferencing 
process. • 

SUGGESTED READING 
Bratko, Ivan. Prolog Programming 
for Artificial Intelligence. Reading, 
MA: Addison-Wesley, 1986. 
Frenzel, Louis E.,Jr. Understanding 
Expert Systems. Indianapolis, IN: 
Howard W Sams & Co., 1987. 
Marcus, Claudia. Prolog Program
ming. Reading, MA: Addison
Wesley, 1986. 
Raphael , Bertram. The Thinking 
Computer. San Francisco, CA: W 
H. Freeman and Co., 1976. 
Weiskamp, Keith and Hengl, 
Terry. Artificial Intelligence Program
ming With Turbo Prolog. New York, 
NY: John Wiley & Sons, 1987. 

Keith Weiskamp is the editor-in-chief 
of PC AI magazine, and is co-author 
of Artificial Intelligence Program
ming with Turbo Prolog. 

Listings may be downloaded from 
CompuServe as ENGINE.ARC. 

pdwact ionC5 , 2): - / * Show the trace */ 
makewindowC1,7, 7, "lnference Eng ine Trace" ,3,10 , 20,60), 
showtrace, 
makestatus(112,"Press any key to continue"), 
readkey(_), 
removestatus, 
removewindow. 

pdwaction(6,0): · /* msg(15,10,"Please press the space bar."),*/ 
shiftwindow(1), removew i ndow, removestatus, exit . 

process_file: · /* read in the knowledge base using consult*/ 
readln(Str), 
consult(Str) , 
getquery(Qrylst), 
unique(QryLst, Mlst), 
assert(querylist(Mlst)), 
removewindow. 

process_file: -
nl, window_strC"Knowledge Base Can't be loaded"), 
readkey( ), 
removewiridow. 

msg(R,C,S): -

GOAL 

makestatus(112,"Press any key"), 
makewindow(1,7,4,"",R,C,5,30), 
window str(S) , 
readkey(_), 
removewindow, 
removestatus . 

makew indowC1,7,0, 1111 ,0,0,24,80), 
makestatus(112, 

"Select with arrows or use first upper case letter"), 

pul ldown(7, 
C curtain(5, "Ask", [] ), 

curtainC14 , "Run11 , [] ), 

curta i nC23 , 11Knowledge_Base11 , ["Load" , "Clear"]), 
cur tainC43 , 11 Facts11

, C"Show11
,

11Add11 , "Clear", "sTore"l ) , 
curtai nC55 , 110pt ions 11 , ["About Th is Program", 

curtainC68, 11Quit 11 , Cl) 
] I 

_,_ ) , 

"Show t race"]), 

write("\n Exit Turbo Inference Engine "), nl. 

March/ April 1988 TURBO TECHNIX 79 



8 SUITABLE FOR FRAMING 
i 
Q.. 

g An object-oriented approach using frames can make an 
~ unruly knowledge base more manageable. 
E--

Michael Floyd 

In designing an expert system, one imme
diately thinks about the knowledge base 

.. 

and how to represent its knowledge. For 
instance, if we are designing a simple 
backward chaining diagnostic system, we 

PROGRAMMER would probably think in terms of produc
tion (IF / THEN) rules. But in larger systems, produc
tion rules tend to be unmanageable after a certain 
point. To define a particular object thoroughly may 
require twenty, thirty, or forty rules, or maybe more. 

Describing a single object clearly and completely is 
no problem in itself. But when we are describing 
hundreds of objects, the problems grow exponentially. 

It is no wonder that a great deal of time has been 
spent on ways to better represent knowledge. One 
popular knowledge representation scheme is the 
frame. Frames are a means of organizing knowledge 
in an efficient manner. In this article, I will explain 
what frames are, why they're useful, and how you 
can implement them in Turbo Prolog. In the process, 
I'll cover related topics such as value inheritance, 
defaults, and if-needed procedures. I'll also show how to 
create and modify frames on-the-fly. 

THE FRAME CONCEPT 
Frames are data structures that provide a way to 
organize data about objects. We use frames to de
scribe an object, action, or event. Frames provide a 
way to group common concepts and situations into a 
hierarchy for easier and more efficient manipula
tion. They are particularly useful in the context of 
knowledge representation where there is a pattern to 
the knowledge that can be characterized or 
stereotyped. 

You can visualize a frame by thinking of it as a 
box. This box is itself an object that contains other 
objects. On the side of the box, we may provide a 
description-what it's made of, what's in it, what it 
should be used for, and so forth. In addition, the box 
may have other smaller boxes in it. 

A frame, like the box, is an object with a set of 

80 TURBO TECHNIX March/ April 1988 

Frame concept 

Slot#! Value #I 

t---.~ Procedure # 1 

Slot #2 Value #2 

1----.~ Procedure #2 

Slot #3 Value #3 

t---.~ Procedure #3 

Slot #4 Value #4 

t---1~ Procedure #4 

Figure 1. Elements of a sing/,e frame. 

attributes that describe the frame. These attributes 
are known as slots. Figure 1 shows a graphic repre
sentation of the frame concept. 

Notice in Figure 1 that the name of the frame 
represents the general topic or concept that the 
frame refers to. Also note that the slots (which are 
numbered) contain an attribute and a value for that 
attribute. We can fill the slots with either data or 
objects. In addition, we can attach procedures that 
perform some action to specific slots. 

To put this in context, consider this example in 
which we describe a microcomputer. First, let's de
scribe our prototype for a general class with the 
following characteristics: 

continued on page 82 





FRAMING 
continued from page 80 

1. CPU 

2. monitor 

3. keyboard 

4. one serial port 

5. one parallel port 

6. printer 

With this description, we can con
struct a frame for a microcompu
ter, like the one shown in Figure 2. 
Note that not all of the slots have 
values in them. Also note that the 
slot for ports has more than one 
value. 

By linking frames together with 
other frames, we can develop a 
hierarchy from general classes to 
specific cases. One type of link 
that relates two frames is known 
as an IS-A link. An IS-A link lets us 
say things such as, "a microcom
puter is a computer and a PC is a 
microcomputer." From these two 
statements, we can deduce that a 
PC is a computer. 

Another type of link, known as 
an AKO (A-Kind-Of) link, allows 
us to link classes to subclasses. 
With an AKO link, we could say 
that a computer is a kind of 
machine. Figure 3 shows the rela
tionship of a particular PC to the 
general class of machines using 
IS-A and AKO links. This process 
of obtaining instances from 
classes is known as inheritance. We 
will have more to say about in
heritance in a moment. 

Now that we have a general 
understanding of the frame con
cept, let's take a look at how it can 
be implemented in Turbo Prolog. 

FRAMES IN TURBO PROLOG 
In Turbo Prolog, we will use struc
tures to construct a frame describ
ing a microcomputer. Since the 
slots that fill the frame are known, 
domain declarations can be used 
to describe the frame. Our first at
tempt might look something like this: 

domains 
frame = frame(object,slots) 

slot = cpu(synbol); 
moni tor(synt>ol); 
keyboard(synbol); 
serial_portsCinteger); 
parallel_ports(integer); 
printer(synbol) 

slots = slot* 

object = synt>ol 

82 TURBO TECHNIX March/ April 1988 

Microcomputer 

CPU 

Monitor 

Keyboard 

Pons 

Printer 

One serial, 
one parallel 

Figure 2. A frame describing a 
microcomputer 

Just as our general definition 
states, the frame consists of an 
object and a list of slots that de
scribe the object. The slot domain 
defines the possible slots that our 
frame system can have. Our frame 
for a microcomputer would look 
like 

frame(microcOIJ1)Uter, 
[Cpu(80286) I 
monitor(high res), 
keyboard(enhanced), 
serial_ports(1), 
parallel_ports(1), 
printer(yes)J). 

which defines the prototype 
microcomputer as an 80286-based 
machine with a high-resolution 
monitor, an enhanced keyboard, 
one serial port, one parallel port, 
and a printer. 

Not bad for a first try, but there 
are a few problems. First, a slot 
may itself be a frame. For in
stance, we may want to describe a 
class of microcomputers rather 
than an individual system. Also, 
since the slots are hard coded, we 
have to change the program each 
time we add a new slot. 

A better approach is to write the 
frame in general terms. That way 
we can construct new frames or 
slots on-the-fly. 

domains 
frame = frame(object,slots) 
frames = frame* 
slot = slow(object,value) 
slots = slot* 
value = 

int(integer); ints(integers); 
real_(real) ; reals(reals) ; 
str(string) ; strs(strings); 
frame(object,slots); 
frames( frames) 

object = synt>ol 
integers integer* 
reals = real* 
strings = string* 

Let's work our way, from the bot
tom group of the declarations, up. 
First are the basic types for object, 
and our lists for integers, reals, 
and strings. The symbol domain 
has been omitted since symbols 
can be handled equally well as 
strings. 

Next are the declarations for 
value, which define all the possi
ble values for a given slot in a 
frame. Basically, this declaration 
says that value can either be an 
integer, real, string, or one of 
their respective lists. In addition, a 
value can be a frame, or a list of 
frames (we'll have more about the 
frame declaration in a moment). 

Now that the possible values for 
the frame system have been 
defined, we can describe a slot for 
a frame. A slot is simply an object 
and a value (a description of the 
object). Notice that in this declara
tion slot appears both as the 
domain type (on the left side of 
the equals sign) and as the func
tor name (on the right side). This 
is allowed in Turbo Prolog and 
makes it clear as to which struc
ture the domain refers. The next 
step is to declare a list of slots. 

Now we're ready to construct 
the frame. Consistent with our 
original definition, a frame is an 
object and a list of slots that de
scribe the attributes of the frame. 
Again, notice that frame appears 
as both the domain type and the 
functor name. Also, recall that the 
frame structure was declared as a 
value. Turbo Prolog lets us assign 
structures to different domains, 
just as it does with basic types. 
You've probably done this many 
times with a declaration such as 

domains 
age = integer 
iq = integer 

which says that a person's age and 
1.Q. are both integers. 



INHERITANCE 
As we mentioned earlier, frames 
have certain properties that help 
us organize and represent knowl
edge. One of these properties is 
called inheritance. Inheritance is 
how particular objects inherit 
attributes from a template for that 
class of objects. 

As an example, recall our proto
type for a microcomputer; we said 
that it would have at least a CPU, 
monitor, keyboard, one serial 
port, one parallel port, and a prin
ter. This prototype is our template 
for the general class of microcom
puters. Now we can describe a 
particular microcomputer (a PC) 
that inherits a property (it has a 
CPU) from our template. To see 
how this works, let's construct a 
frame for the microcomputer 
using our new representation for 
a frame. We'll use the predicate 
has to describe the relation: 

has(microcomputer, 
[slot( cpu, st r( "yes")), 
slot(monitor,str("yes")), 
slot(serial_port,int(1)), 
slot(parallel_port,int(1)), 
slot(printer,strC"yes"))J). 

Again, this says that a microcom
puter has a CPU, a monitor, one 
serial port, one parallel port, and 
a printer. This is similar to our 
first frame definition of a micro
computer. The difference is that 
each attribute is in a slot structure 
rather than being hard coded. We 
can now describe specific types of 
microcomputers: 

has( ibm_pc, 
[slot(cpu type,str( 11808611 )), 

slot(monTtor,str("monochrome")), 
slot(drive,str( 11360K"))J). 

has(pc_xt, 
[slot(cpu_type,str( 11808811 )), 

slot(monitor,str("rgb")), 
slot(graphics_card,strC"CGA")) 

]). 

has(pc_at, 
[s lot(cpu_type, str( 118028611 )), 

slot(monitor,str("Hi-Res")), 
slot(graphics_card,str("EGA")) 

]). 

These three frames describe the 
attributes of a PC, a PC-XT, and a 
PC-AT respectively. We can further 
refine the categories by describing 
specific configurations of particu
lar machines: 

has(dans_pc, 
[s lot(modem, str(" internal 11)), 

slot(hard_disk,str( 11 20 MB"))J). 

Machine 

• _ ___.r~A~~C--------o+k~r +-IS-A._.________, 

~ainframe I IS-A Super computer 

Microcomputer 

IS-A 
~ 

IS-A 

Amiga Macintosh IBM PC-AT 

IS-A IS-A IS-A 

Pam's computer Dan's computer Jeffs computer 

Figure 3. Network of links between frames. 

has( jeffs_pc, 
[slot(coprocessor,str( 118028711 )), 

slot(ext memory,str("2 MB")), 
s lot(hard_di sk, str( 1130 MB")) 

]). 

To relate the particular machines 
to the class of microcomputers, we 
can say that Dan's machine is a 
PC-XT, and that a PC-XT is a 
microcomputer. Similarly, we can 
relate Jeffs PC as a PC-AT: 

is_aCpc_xt,m_icrocomputer). 
is_a(pc_at,microcomputer). 

is_a(dans_pc,pc_xt). 
is_aCjeffs_pc,pc_at). 

Figure 4 shows the relationships 
between the frames we have just 
created. 

So far, we have merely stated 
facts about computers. In order 
for the two specific machines to 
inherit the values of a microcom
puter, we need some rules of inher
itance. Since these rules describe 
how facts are used in the system 
(as opposed to rules about the 
knowledge domain), we refer to 
them as meta rules (see "Metalogic 
and Expert Systems" elsewhere in 
this issue): 

attr(Object,Value):
description(Object,Value). 

attr(Object,Value):-
is a(Object,Object1), 
attr(Object1,Value), 
description(Object, 

SomeValue). 

description(Object,Value):
has(Object,Description), 
member(Value,Description). 

The first rule says that the attrib
ute of an object is a value if the 
description of the object has that 
value. This rule looks to see if 
there is an explicit fact that satis
fies the premise. For instance, we 
know that a PC-XT has a CGA 
graphics card because it is stated 
explicitly in the frame for the 
PC-XT. 

If there's no explicit fact about 
the object, the second rule relates 
our rule of inheritance. It says 
that the attribute of an object is a 
value if we can relate that object 
to some other object with that 
value. For instance, we know that 
Jeff's computer has a CPU because 
he has a PC-AT, which is a micro
computer, and a microcomputer 
has a CPU. 

The description rule does the 
lookups. Using the call to has, it 
looks up the given object and 
instantiates its associated list of 
slots to the description. The call to 
member then goes through the 
description list to see if the partic
ular value we are looking for is in 
the list. The complete program is 
given in Listing 1. 

In running Listing 1, you can 
enter goals such as: 

attr( jeffs_pc, 
slot(coprocessor,str( 118028711 ))) 

attr(dans_pc, 
slot(serial_port,int(1))) 

continued on page 84 

March / April 1988 TURBO TECHNIX 83 



Figure 4. Relationship between class and instances of microcomputers. 

FRAMING 
continued from page 83 

These two goals simply return 
True, verifying thatjeffs PC has 
an 80287 math coprocessor, and 
that Dan's PC has one serial port. 

By the way, attr as written only 
handles IS-A links. To handle 
AKO links, we should add a third 
attr rule. 
attr(Object,Value):-

ako(Object,Object1), 
attr(Object1,Value), 
description(Object, 

SomeValue). 

This rule treats AKO links exactly 
the same as IS-A links. This 
implies that the difference be
tween AKO and IS-A links is 
purely semantic. There may, how
ever, be reason to report that a 
value was inherited through an 
AKO link. Our example does not 
consider AKO links since they are 
treated the same. If you wish to 
include them, be sure you have at 
least one ako fact such as 

ako(computer,machine). 

in your database. 

DEFAULTS 
So far, we have been filling slots 
with values that are always true. 
However, we know that the world 
is not so black and white. There 
are times when we can assume 
that something is probably true, 
but must allow for some degree of 

84 TURBO TECHNIX March/ April 1988 

uncertainty. We need to be able to 
fill slots with default values that 
can be overridden if our assump
tion falls through. 

To do this, we must slightly 
modify our definition of a slot to 
take into account the type of value 
that the slot contains. This refer
ence to a value's type is known as 
the facet of the slot. Our new defi
nition handles both value and 
default facets. The change to the 
domain declaration of slot con
sists of adding a third argument: 

domains 
slot = slot(id,value,facet) 

Of course, we need to define what 
a facet is. 

facet = symbol 

There are no changes to the 
inheritance procedure since the 
algorithm for locating a default 
facet is the same as for locating a 
value facet. We have to change the 
call to attr to specify whether the 
procedure should find value facets 
(value inheritance) or default facets 
(default inheritance). Obviously, the 
calling procedure has to deal with 
default inheritance in a slightly 
different manner. 

The only other change is to the 
actual frames in order to specify 
whether a slot is a value or a 
default slot. Here are the changes 
to the microcomputer frame for 
handling facets: 

has(microcomputer, 
Cslot(cpu,str("80286"),default), 
slot(monitor, 

str( 11hi-res 11 ),default), 
slotCserial_port,intC1),value), 
slot(parallel_port, 

int C 1), value), 
slot(printer,str("yes"),default) 

]). 

These statements say that our tem
plate for a microcomputer has 
three default values (an 80286 
CPU, a high-resolution monitor, 
and a printer) that can be 
changed. Our two absolute values 
maintain that our template always 
has one serial port and one paral
lel port. 

IF-NEEDED PROCEDURES 
In some instances, such as when a 
slot contains no explicit values, we 
can calculate a value based on 
existing information. For example, 
perhaps we want to find out the 
amount of available memory on a 
640K machine, and we know that 
RAM-resident programs take up 
128K By associating a procedure 
with an avail_mem slot, we can 
calculate the amount of available 
memory if it is not explicitly 
stated. Hence, we call it an if
needed procedure. Here's an algo
rithm for an if-needed procedure 
to calculate the amount of avail
able memory. 

1. Get the amount of total mem
ory from the total memory slot. 

2. Get the amount of memory 
used by RAM-resident pro
grams in the memory_used 
slot. 

3. Calculate the amount of avail
able memory and report the 
result. 

In Turbo Prolog this translates as: 

calc mem:-
flndCslot(total mem, 

int(Total),value)), 
findCslot(mem used, 

int(Used),value)), 
Avail mem =Total - Used, 
write(Avail_mem). 

We can, in theory, inherit if
needed procedures. One method 
is to establish a set of procedures 
that can be referenced by an 
indexed value, such as: 

procedure(1):-
/* Do some stuff */ 

procedure(2):-
/* Do some other stuff */ 



This does not allow us to create if
needed procedures on-the-fly, 
however. To handle this, we need 
to be able to create and call proce
dures at will. However, the tech
niques required are beyond the 
scope of this article (see "Meta
programming and Expert Sys
tems" elsewhere in this issue). 
Our next example simply incorpo
rates the if-needed procedure 
directly into the search algorithm. 

PUTTING IT TOGETHER 
Now that we have facilities for 
value and default inheritance, 
along with the ability to attach if
needed procedures, we can put 
together a controlling clause that 
combines procedures. Most likely, 
we will want to inherit values first 
since they are absolute truths and 
do not involve a calculation. If 
there is no value facet, we will 
look for an if-needed procedure 
to calculate the value. Failing that, 
we will finally look for a default 
value that carries some degree of 
uncertainty: 

n inheritance:-
- attr(jeffs_pc, 

slot(avail_mem,X,value)), 
write(X). 

n_inheritance:-
attr(jeffs_pc, 

slot(total_mem, 
int(Total),value)), 

attr(jeffs_pc, 
slot(mem used, 

int(Used),value)), 
Avail mem =Total - Used, 
write(Avail_mem). 

n_inheritance:-
attr(jeffs_pc, 

slot(avail mem,X,value)), 
write(X,"\n some uncertainty"). 

n_inheritance:-
writeC"No values available"). 

CREATING AND MODIFYING 
FRAMES 
Now that we have established the 
inheritance between frames, we 
are ready to start manipulating 
them. In general, this means 
adding the ability to create new 
frames, modify existing frames, 
and delete frames that have 
become obsolete in our knowl
edge system. In order to assert 
and retract frames to and from 
the database, the has predicate 
must be defined as a database 
predicate. 

database 
has(object,slots) 

continued on page 86 

LISTING 1: FRAME1.PRO 

/* Si~le Frame Exa~le */ 

domains 
frame 
frames 

slot 
slots 
value 

frame(object,slots) 
frame* 

slot(object,value) 
slot* 

object 
integers 
reals 
strings 

int(integer) ; ints(integers) ; 
real_Creal) ; reals(reals) ; 
str(string) ; strs(strings) ; 
frame(object,slots) ; frames(frames) 
symbol 
integer* 
real* 
string* 

predicates 
attr(object,slot) 
description(object,slot) 
is_a(object,object) 
member(slot,slots) 
has(object,slots) 

clauses 

/* These 3 clauses describe the way in which frames inherit 
properties from their parent */ 

attr(Object,Value):
descriptionCObject,Value). 

attr(Object,Value):
is_a(Object,Object1), 
attr(Object1,Value), 
descriptionCObject,_). 

description(Object,Value):
has(Object,Description), 
member(Value,Description). 

/* This is the Actual frame to represent the attributes of a typical 
microcomputer. */ 

/* Prototype house */ 

has(microcomputer, Cslot(cpu,str("yes")), 
slot(monitor,str("yes")), 
slot(serial_port,int(1)), 
slot(parallel_port,int(1)), 
slot(printer ,strC"yes"))J). 

I* The rest are particular type houses which carry the specific 
attributes, plus those inherited from the parent frame */ 
has( ibm_pc, Cslot(cpu_type, str( 11808611 )), 

s lot(moni tor, strC"rnonochrome")), 
slot(drive,strC"360K"))J). 

has(pc_xt, Cslot(cpu_type, str( 11808811 )), 

slot(moni tor, str("rgb")), 
slot(graphics_card,str("CGA"))J). 

March / Ap1·il 1988 TURBO TECHNIX 85 



has(pc_at, Cs lot(cpu_type, str( 1180286")), 
s lot(moni tor, st r( "Hi -Res")), 
slot(graphi cs_card, str("EGA"))l). 

has(dans__pc, Cslot(modem,str("internal")), 
slot(drive,str( 11360K"))l ). 

has(jeffs__pc, [slot(coprocessor,str( 1180287")), 
slot(monitor,str("rgb")), 
slot(graphics_card,str("color"))]). 

/* is_a relates children to its parent*/ 

is_a(pc_xt,microc°"""'ter). 
is_a(pc_at,microc°"""'ter). 

is_a(dans__pc,pc_xt). 
is_a(jeffs__pc,pc_at). 

/* menber simply checks to see if a particular value is in the 
slot list*/ 

I -

menber(Value,[Valuel_l):-!. 
menber(Value, C_IRest]):-menberCValue,Rest). 

LISTING 2: FRAME2.PRO 

/******************************************************************* 
This example demonstrates the use of frames in Turbo Prolog. 
The goal shows how to combine value and default inheritance with 
if-needed procedures to create an N inheritance scheme. A facility 
is also provided to allow a user to create frames on-the-fly. 

Mike Floyd 12/16/87 
Turbo Technix 
Borland International 
******************************************************************/ 

domains 
frame 
frames 

slot 
slots 

value 

id 
facet 
parents 
integers 
reals 
strings 

frame(id,slots,parents) 
frame* 

slot( id, value, facet) 
slot* 

int(integer) ; ints(integers) 
real (real) ; reals(reals) ; 
strCstring) ; strs(strings) ; 
frame(id,slots,parents) ; frames(frames) 
symbol 
symbol 
id* 
integer* 
real* 
string* 

database 
has(id,slots) 
is a( id, id) 
ako(id,id) 
dbslot(slot) 

/* database relation to store frames */ 
/* is-a link for objects*/ 
/* ako link for objects*/ 
/* database storage for slot values */ 

86 TURBO TECHNIX March/ April 1988 

FRAMING 
continued from page 85 

create_ frame: -
write("Enter Frame Name: "), 
readln( Frame), 
get slots(Slotlist), 
get-relations, 
insert_frame(Frame,Slotlist). 

get slots(Slots):-
write("Enter Attribute Name: "), 
readln(ld), 
ID <> 1111 , 

write("Enter attribute: "), 
readln(Value), 
assertz(tslot(slot(ld, 

str(Value)))), 
get slots(Slots). 

get slotsCSlots):-
findallCSlot, tslot(Slot),Slots). 

get relations:
findall(Id,has(ld, ),Idlist), 
show(Idlist), -
write("Enter object1: "), 
readln(Object1), 
write("Enter object2: "), 
readln(Object2), 
assert(is_a(Object1,0bject2)). 

show([]):- ! • 
show( CHI List]):

write(H),nl, 
show( Li st). 

insert_frame(Id,Slots):
asserta(has(Id,Slots)). 

Figure 5. Turbo Prolog code to create 
and modify frames. 

We had to do this anyway since we 
would like to be able to consult 
our knowledge base of frames. 

To create new frames, we need 
a clause that constructs the frame 
and inserts it into the database. In 
this case, we'll get our input from 
the user, then construct the frame. 
Our basic algorithm is to: 

1. Get the name of the frame. 

2. Get the slot information. 

3. Display a list of the current 
frames and allow the user to 
define any is_a relationships 
between objects. 

4. Construct the frame and assert 
it into the database. 

The create_frame clause in Fig
ure 5 details this algorithm in 
Turbo Prolog. By adding this code 
to the earlier listing, the user can 
now add their own frames to the 
system without programmer inter
vention. If the appropriate is_a 
relationships are defined, the new 
frames can inherit values from 
parent frames just as our original 
frames do. 



There are a couple of things 
that have not been handled in 
Figure 5 due to space limitations. 
First of all, the interface could bet
ter insulate the user from the 
frame syntax by being a little 
more friendly. Also, when enter
ing attribute values for slots, the 
get_slots clause assumes that 
everything is of type string. To 
make this general for any data 
type requires an additional ques
tion to the user about the data 
type. The clause would then have 
to lookup the appropriate struc
ture in a table and convert the 
input. Finally, get_slots assumes 
that the information input by the 
user is absolutely true. So, the 
information is always put in the 
value facet of the slot. 

In order to modify existing 
frames, we first need to add the 
ability to remove old frames from 
the knowledge base. Deletingjust 
the frame serves the purpose, but 
it leaves extraneous is_a relation
ships in the database. Not only 
does this take up unnecessary 
space in the knowledge base, but 
it slows down processing time; it 
takes the system longer to realize 
that a frame has been removed 
and cause the goal to fail. 

delete frame(Frameld):-
retract(has(Frameld, )), 
retract(is_a(Frameld~_)), 
retract(is_a(_,Frameld)), 
fail. 

delete_ frame(_). 

The fail guarantees that we have 
retracted all occurrences of has 
and is_a database facts con
taining Frameld. The second 
delete_frame clause allows us to 
return from the call successfully. 

With the create_frame and 
delete_frame tools implemented, 
adding a facility to modify existing 
frames is a simple matter of com
bining tools. Listing 2 shows the 
complete code for the features 
we've implemented so far. 

TRACING PROGRAM LOGIC 
There is one other feature we 
should mention, but won't imple
ment due to space-keeping track 
of parent nodes to easily trace 
through our logic. This is impor
tant if we wish to provide an 
explanation facility in an expert 
system. This requires some small 
changes in the declaration of our 

continued on page 88 

predicates 
attr(id,slot) /* get or verify the attribute of an object*/ 
descriptionCid,slot) /* does frame lookups and instantiation*/ 
member(slot,slots) /* look for an object in a list of objects*/ 
create frame /* Create a frame from user input */ 
insert-frame(id,slots) /* insert frame into the database*/ 
delete-frame(id,slots) /* delete a frame from the database */ 
get slots(slots) /* get all slots related to a frame*/ 
get-relations /*get all relations and display to user*/ 
show(parents) /*show a list of parent frames*/ 
n_inheritance /* implements an N inheritance scheme */ 

goal 
n inheritance. 

clauses 
n inheritance:-
- attr(jeffs_pc,slot(avail_mem,X,value)), 

write(X). 
n inheritance:-
- attr(jeffs_pc,slot(total_mem,int(Total),value)), 

attr(jeffs_pc,slot(mem_used,int(Used),value)), 
Avail mem =Total ·Used, 
write(Avail mem). 

n inheritance:-=-
attr(jeffs_pc,slot(avai l_mem,X,value)), 
write(X,"\nsome uncertainty related to answer"). 

n inheritance:-
- write("No values available"). 

/* These 3 clauses describe the way in which frames inherit 
properties from their parent */ 

attr(Object,Value):
description(Object,Value). 

attr(Object,Value):
is_a(Object,Object1), 
attr(Object1,Value), 
description(Object,_). 

/* attr() clause to search AKO links*/ 
attr(Object,Value):

ako(Object,Object1), 
attr(Object1,Value), 
description(Object,_).*/ 

description(Object,Value):
has(Object,Description), 
member(Value,Description). 

member(X,[XI ]):-!. 
member(X, [_ L]):-member(X,L). 

/* Create and modify frames */ 
create_frame:-

write("Enter Frame Name: "), 
read l n( Frame), 
get_slots(Slotlist), 
get relations, 
insert_frame(Frame,Slotlist). 

get slots(Slots):-
write("Enter Attribute Name: 11 ), 

readln( Id), 
ID <> 1111 , 

write("Enter Value of Attribute: "), 
readln(Value), 
assertz(dbslot(slot(ld,str(Value),value))), 
get slots(Slots). 

get slots(Slots):
findallCSlot,dbslot(Slot),Slots). 

March/ Apri l 1988 TURBO TECHNIX 87 



get relations:-
findal l(ld,has( Id, ),ldlist), 
showCldl ist), -
write("Enter object1: "), 
readln(Object1), 
write("Enter object2: "), 
readln(Object2), 
assert(is_a(Object1,0bject2)). 

show( [] ) : - ! . 
show(CHIList]):

write(H),nl, 
show(List). 

insert f rame(ld,Slots):
asserta(has(ld,Slots)). 

delete frame(ld,Slots):
retract(has(ld,Slots)). 

/* Prototype microcOIJ1X.lter */ 
has(microcOIJ1X.lter, Cslot(cpu,str( 118028611 ),default), 

slot(monitor,str("hi-res"),default), 
slot(serial__port,int(1),value), 
slot(parallel__port,int(1),value), 
slot(printer,strC"yes"),default)]). 

/* The rest are particular type microc01J1XJters which carry the 
specific attributes, plus those inherited from the parent 
frame. */ 

has( ibm__pc, [slot(cpu_type, str( 11808611 ), value), 
slot(moni tor ,str("monochrome") ,default), 
slot(drive, str( 11360K"), value)]). 

has(pc_xt,Cslot(cpu_type,str( 11808811 ),value), 
slot(monitor,str("rgb"),default), 
slot(graphi cs_ca'rd, strC"CGA") ,default)]>. 

has(pc_at,[slot(cpu_type,str( 118028611 ),value), 
slot(moni tor, str("Hi -Res") ,default), 
slot(graphics_card,strC"EGA"),default)]). 

has(dans__pc, [slot(modem,str("internal 11 ), value), 
slot(drive,str( 11 360K11 ),value)]). 

has( jeffs__pc, Cs lot(coprocessor, str( 118028711 ), value), 
slot(total mem,int(640),value), 
slot(mem_used,intC128),value)]). 

/* is_a relates a child object or frame to its parent*/ 

is_a(pc_xt,microcOIJ1X.lter). 
is_aCpc_at,microcOIJ1X.lter). 

is_a(dans__pc,pc_xt). 
is_a(jeffs__pc,pc_at). 

88 TURBO TECHNIX March / April 1988 

FRAMING 
continued from page 87 

frame structure. First, we need to 
add a third argument-which is a 
list of objects-to the frame struc
ture. We call this a list of parents. 
We also need to declare the par
ent and its associated list: 

domains 
frame(object,slots,parents) 
parent = object 
parent = parent* 

The next step is to add a state
ment to the meta rules that adds 
the name of the parent frame as it 
is instantiated. I'll leave this and 
the other improvements I've men
tioned, as a homework assign
ment. 

As you can see, frames are most 
useful when we can categorize an 
object into a class of objects. This 
makes frames ideal in a 
classification-type expert system, 
such as GENI (on the Turbo 
Prolog distribution disk). But 
expert systems are not the only 
applications well-suited to frames. 
Since frames can represent events 
and situations as objects, you can 
use them in areas such as robot
ics, where the frame could repre
sent an action to be carried out. 
Other areas include sensor
controlled systems, image and 
voice recognition systems, and 
so forth . 

In this article, we've explored 
the concept of frames, as well as 
value inheritance, defaults, and if
needed procedures. We've also 
seen how these concepts can be 
implemented in Turbo Prolog. In 
addition, we've created clauses 
that create, modify, and remove 
frames on-the-fly. Finally, we've 
discussed some features, such as 
tracing program logic, that can 
enhance a frame-based expert sys
tem. By mastering this object
oriented approach to knowledge 
representation, you can add flex
ibility as well as efficiency to your 
expert system. 

REFERENCES 
Winston, Patrick Henry. Artificial 
Intelligence, Addison Wesley, 1984. 

McCord, Michael, et. al.. Know/,edge 
Systems and Prolog, Addison Wes
ley, 1987. 

Listings may be downloaded from 
CompuSeroe as FRAMES.ARC. 



METALOGIC AND EXPERT 
SYSTEMS 
The golden rule of metalogic is: ~~ •• . do unto thyself." 

Safaa H. Hashim 

Metalogical programming is a powerful 
technique that, among other things, 
allows a system to learn. This is especially 
important in the design of an expert sys-
tem. In this article I will discuss what 

wizARo metalogical programming is, why it is 
important, where you can use it, and how you can 
implement it. 

METALOGIC AND METALANGUAGE 
The term metalogical prog;ramming comes from the 
word metalogic. According to W L. Reese, metalogic 
is " .. . the study of the structure, signs, connectives, 
formulae, theorems, and rules of inference of logic 
from a syntactic, semantic, and pragmatic point of 
view. Metalogic is the metalanguage of logic." 1 

Therefore, on one hand, logic (as a language) has 
primitives for representing knowledge about the 
world; on the other hand, it also has primitives for 
representing knowledge about itself. 

In philosophy this is known as the Use-Mention 
Distinction of a language. This enables us to tell the 
difference between a language and its metalanguage. 
The metalanguage of a language allows us to talk 
about and study the language itself. Metalanguage 
refers to the primitives of the language. 

Bertrand Russell, the well-known philosopher, first 
drew this distinction. He suggested that to study a 
language, you need to go outside of the language 
itself; you need to construct another language on top 
of the language under consideration-a 
metalanguage. 

METALOGICAL PROGRAMMING IN PROLOG 
In Prolog we can achieve a metalogical effect by exe
cuting a metalogical predicate. But what is a metalog
ical predicate? Authorities on Prolog differ slightly in 
defining a metalogical predicate. Leon Sterling and 

1 Reese, W.L., The Dictionary of Philosophy and Religion, Eastern and 
Western Thought, Atlantic Highlands, New j ersey: Humanities 
Press, 1980. 

Ehud Shapiro offer a global view: "[metalogical pred
icates] are outside the scope of first-order logic, as 
they query the state of the proof, treat variables 
(rather than the terms they denote) as objects of the 
language, and allow the conversion of data struc
tures to goals." 2 

Sterling and Shapiro further categorize the meta
logical predicate into four types: 

1. Predicates that determine whether or not a term is 
a variable (i.e., var(TERM)). 

2. Predicates that handle term comparison. That is, 
they check whether two variables are identical 
(not just unifiable, as are any two variables). 

3. Predicates that treat variables as manipulatable 
objects. 

4. Predicates that allow data to be executed as goals. 
For example, call(color(red)) is a metalogical 
predicate that executes its argument, the com
pound object color(red), as a goal. 

The first three types of metalogical predicates are 
beyond the scope of this article; we will focus on the 
fourth type. Turbo Prolog has at least one built-in 
metalogical predicate of the fourth type: findall. It is 
of the fourth type because it takes a predicate as its 
second argument and executes it as a goal. Then it 
collects all the answers related to its first argument 
and puts them in a list. But in addition to findall, we 
need a general system for handling data as goals. We 
need the metalogical predicate, call, which takes a 
term as its sole parameter and executes it as a goal. 

WHEN IS METALOGIC PROGRAMMING 
NEEDED? 
As stated at the beginning of this article, metapro
gramming techniques are useful when writing an Al 
application that can learn. In learning, the program 

continued on page 90 

2Sterling, Leon and Ehud Shapiro. The Art of Prolog: Advanced Pro
gramming Techniques, Boston, MA: M.I.T Press, 1986. 

March/ April 1988 TURBO TECHNIX 89 



LISTING 1: CLPROC.PRO 

/* A si""le clause processor. */ 

domains 
PARAMETER = reference SYMBOL 
PARMlist =PARAMETER* 
Llist = PARMlist* 

database 
clCPARMlist,Llist) 

predicates 
cal lCPARMl ist) 
calls(Llist) 
feature(PARAMETER,PARAMETER,PARAMETER) 

clauses 

I* **************************************************************** *I 
/* ********* The knowledge base expressed using the "cl" facts **** */ 
!* **************************************************************** *I 

/* "cl" facts which represents Turbo Prolog rules */ 

cl([reacts,wo,violentlyJ, 
[[feels,wo,lonelyJJ). 

cl([turns,wo,greenJ, 
[[color,greenJ, 
[placed_besides,wo,"better looking species"]]). 

/* 11cl 11 facts which represent Turbo Prolog facts */ 

cl( [color,greenJ, [] ). 
cl( [placed_besides,wo,"better looking species"],[]). 
cl( [feels,wo, lonely], [J ). 
cl( [has,wo,"affinity for gold"],[]). 
cl( [has,wo,"affinity for si lver"l, [J ). 
cl( [has,wo,"affinity for precious stones"],[]). 

I* **************************************************************** *I 
/*A rule that uses the Metalogical predicate "call" */ 
/* **************************************************************** */ 

feature(Name,Topic,Feature) if 
call([Topic,Name,FeatureJ),!. 

/* **************************************************************** */ 
/* A si""le clause-processor. */ 
/* **************************************************************** */ 

/* processing a single clause: a rule */ 

call(B) if 
cl CB, CHITJ ), 
call CH), 
callsCT), 
!. 

/* processing a single clause: a fact */ 

call(P) if 
cl(P, [] ). 

/*processing a list of clauses*/ 

calls([]). 
callsCCHITJ> if 

call CH), 
calls(T). 

/* **************************** END *********************** *I 

90 TURBO TECHNIX March/ Apd l 1988 

METALOGIC 
continued from page 89 

can modify its behavior; it can 
acquire new knowledge, that is, 
new facts and rules. It can also 
delete old knowledge that has 
become obsolete or inconsistent 
with the current state of the 
knowledge. 

In addition, metaprogramming 
is useful when we want to extend 
the power of Turbo Prolog. For 
instance, we might need to match 
a variable with a built-in Turbo 
Prolog predicate. Writing interpre
ters is a good application for this 
purpose. In an interpreter, there 
are times when we would like to 
instantiate a variable to a built-in 
Turbo Prolog predicate. In other 
words, we transform a built-in 
predicate into data and vice versa. 
This is particularly important in 
implementing expert system 
shells. In fact, Listing 2 (which we 
will look at shortly) shows a por
tion of the inference engine for 
TESS (The Expert System Shell) 3• 

Metaprogramming can also 
extend Turbo Prolog's power in 
object-oriented programming. An 
object has procedures as part of its 
definition in object-oriented pro
gramming. In Prolog, objects are 
represented as facts. Metalogical 
programming techniques allow us 
to do object-oriented program
ming by passing rules as parame
ters to objects (facts). Object
oriented programming is a power
ful tool for many applications, 
including frames (see "Suitable 
for Framing" elsewhere in this 
issue) and in developing user 
interface systems. 

On the flip side, metalogical 
programming is not needed when 
a task can be implemented with
out it-if you can write it directly 
in Turbo Prolog, do it. Why pro
gram at a metalogical level when 
it can be done on a basic level? If 
you stick to basic Turbo Prolog, 
you can keep things simple, save 
on memory, and cut processing 
time. 

3Hashim, Safaa and Philip Seyer. Turbo 
Prolog: Advanced Programming Techniques, 
Philadelphia, PA: TAB Books, Inc., 1988. 



THE call PREDICATE AND 
TURBO PROLOG 
With that said, let's examine the 
metapredicate call. Using call, 
variables can match whole predi
cates, facts or rules, as well as 
other types of domains. For exam
ple, consider the following pro
gram fragment: 

database 
caused_by(string,string) 

clauses 
noticed(Name,Situation) if 

cal l(Situation). 

.cause_by("no l ight11 , 11no power"). 

Given this program, if we enter 
the goal 

noticed(james,caused_by(X,Y)) 

the system would respond: 

X ="no light" 
Y = "no power" 
True 

Now, if we enter a new goal 

noticed(james, 
caused_by("car not working", 

"dead battery")) 

the subgoal 

call(caused by("car not working", 
- "dead battery")) 

is executed. Notice that the call 
predicate executes the term 
caused_by, which is a compound 
object. Therefore, call is interpret
ing the data as a goal. The goal 

caused by("car not working", 
- "dead battery") 

fails because there is no fact like 
this. An extension to this program 
could be a predicate that asks the 
user to confirm if a term is true or 
not. If the term is true, we add the 
term as a subprogram. 

Unfortunately, things are not 
so easy in Turbo Prolog. The dif
ficulty lies in matching terms with 
clauses. In Turbo Prolog you can 
match a term with a term, but you 
cannot match a term with a clause. 
To get around the problem, we 
need a different representation 
of clauses. 

REPRESENTING RULES IN 
THE DATABASE 
There are two issues behind the 
design of a uniform representa-

ti on of facts and rules. The issues 
are: 

1. How to assert, retract and con
sult rules as well as facts. 

2. How to match a predicate with 
a term. In other words, pass a 
predicate as a parameter for 
other predicates. 

In Turbo Prolog, to assert, 
retract, and consult clauses, we 
have to declare the clauses as 
database. Only facts are allowed 
in a database domain type-no 
rules. To get rules into the picture, 
we have to write them as facts. To 
do this, let's use a fact called cl 
(short for clause). For, example, in 
our system, this rule 

turns(wo,green) if 
color( green) 
placed_besides(wo, 

"better looking species"). 

could be written as a cl fact in this 
way: 

cl([turns,wo,green], 
[[color ,green], 
[placed besides,wo, 
"better looking species"] 

] ) . 
Notice that writing rules as cl facts 
allows us to assert and retract rules 
(as well as facts) to and from the 

knowledge base. 
To see how Turbo Prolog pro

cesses this representation, let's 
consider the clause processor in 
Listing 1. In running this pro
gram, we can enter the goal: 
feature(X,Y,Z). 

Turbo Prolog matches this goal 
with the feature rule in the pro
gram. Then the subgoal 

call([turns,wo,green]) 

is executed. The program 
responds: 

"X=wo, Y=turns, Z=green". 

WRITING THE CLAUSE 
PROCESSOR 
Listing 1 contains a single rule 
and a knowledge base of cl facts. 
The feature rule has one subgoal: 
the predicate call. Notice that call 
takes a predicate (which is a list of 
terms). It tries to prove the predi
cate true by matching it with the 
first parameter of a cl fact. 

There are two call clauses. 
The first clause tries to match 
its parameter with a cl fact
which really represents a rule. 
The second does the same by 

continued on page 92 

The Stonehaven 

LEXICON 
Natural Language Power for your 

Turbo Prolog Programs 
Turbo Lightning spelling checks - with routines to 

build custom dictionaries. 

Synonyms and alternative spellings. 

Grammar sidecar to Borland's Lightning provides 
parts of speech, tense, root words, and derivation 
for a working vocabulary of 40,000 words. 

Color management, parsing, menus, and user cor
rection of strings and files. 

Extensive examples, including parsing of natural 
language commands. 

No Royalties - No Copy Protection 

Requires Turbo Prolog & Turbo Lightning 

$74.95 + $5.00 UPS Shipping 

800-356-6875 
Stonehaven 

Laboratory 
4 7925 Eightieth St. West 

Lancaster, California 93536 

~ 
~ 

March/ April 1988 TURBO TECHNIX 91 



METALOGIC 
continued from page 91 

matching the parameter with a cl 
fact representing a fact. Figure 1 
illustrates how call works. 

DEALING WITH VARIABLES 
Now suppose we have a variable 
in our rules. Our ru les are repre
sen ted as cl facts. T he problem is 
that Turbo Prolog does not a llow 
"free variables" in the database. 

So how can we assert and 
retrieve rules that h ave variables? 

feature(Name,Topic,Feature) i f 
callCCTopic,Name,Feature]) . 

I 
call( B ) i f 

cl C B , [ H I T ]) , 

clCCreacts,wo,violentlyJ, 

That is, how can we use variables 
in cl facts? The solution is to treat 
variables as strings by writing 
them as capitalized words between 
quotes. To implement this, we 
need a mechanism to interpret 
strings that start with an upper
case letter as variables. We also 
need the ability to match these 
variables with other terms (con
stant or variable terms). 

To deal with these two issues we 
need some kind of a unification 
algorithm-an algorithm that rec
ognizes and matches variables 

call( H ) , cal ls( T ),! . 

I 
[[feels,wo,lonelyJJ ). 

Hatches the ~ty l ist [] 

Figure 1. Di,agram of how call matches a cl fact. 

call C P, IN - l i s t , OUT - l ist , NUM -of -ca l l ) 

The predicate - - --------' 
relation list 

The input list of ----------J 
binding pairs 

The output list of -------' 
binding pairs 

If "P" is called recursively more 
than once, this nunber indicates the 
level of nested calls of "P." 

Figure 2. Structure of the call predicate. 

a_tblC S , P , IN-list, OUT - list , NUM 

L=M~t 
pairs 

nlllt>er of times 
variable is called 

li st of binding 

'--- - ---- input list of binding 
pairs 

List representation of predicate 
relation--the goal that needs to be 
proved or resolved 

List representation of predicate relation. It 
could be a part of a cl fa~ t. Cit could be 
the head or a subgoal in the tail of a clause). 

Figure 3. Structure of the a_ tbl predicate. 

92 TURBO TECH NI X March/ Apdl 1988 

with terms and predicates. We can 
do this with a binding table. 

THE BINDING TABLE 
A binding tab/,e is a list of pairs. We 
call a variable and its value a bind
ing pair. For example, the fact 

cl ( [share , eve lyn,foster , offi ceJ, 
[] ) . 

would match the goal 

ca ll ( [share , "X", "Y", "Z"J ) . 

and we would get this binding 
table (list of pairs): 

Cpa i r ( "X" , evel yn) , 
pa ir("Y" ,fost er), 
pa ir("Z" , office)J 

The situation gets complex when 
we use rules with variables, and 
even more complex if there are 
alternative facts and/ or rules. In 
this case we would have multiple 
bindings for the same variable. 
For example, if we have these 
three facts 

cl([share, eve lyn ,foster,officeJ, 
[] ) . 

cl( [share,mar ia,l eah, apartmentJ, 
[] ) . 

cl C [share,ph i li p, kl.mi ko, love], []). 

we get a binding table with three 
bindings for each of"X'', ''Y'', and 
"Z" (this will become apparent in 
a moment). Table 1 shows the 
binding pairs resulting from our 
previous goal. 

The process of binding varia
bles is more complex than what 
we have just stated. Through the 
execution process (implemented 
by call), variables may start out as 
free variables. Then later they 
may be bound; even later they 
may be unbound, and so on. This 
means variables may have differ
ent bindings at different levels. 
For purposes of Prolog backtrack
ing, we also need to keep a record 
or a history of each variable used 
in the unification process. 

In Table 1, the numbers at the 
top represent the binding level. 
That is, if a predicate share(X,Y,Z) 
is called three times, there can be 



Variable 

Binding levels 

2 3 

"X" evelyn maria phi lip 
''Y'' foster leah kumiko 
"Z" office apartment love 

Tab/,e 1. A binding tab/,e for three 
variab/,es. 

th ree possible bindings for X, Y, 
and Z. Let's use our list of pairs to 
represent the b inding table. But 
first, we need to make one change 
to the compound object pair. We 
need to add a thi rd (integer) argu
ment th at shows the level at which 
the variable is bound to a value. 
We refer to it as the binding num
ber. As a result the list of binding 
pairs will look like this: 

Cpair("X",evelyn, 0) , 
pa ir("Y",foster , 0) , 
pai r ("Z",off ice,0), 
pair("X",maria, 1) , 
pair("Y",leah,1), 
pair("Z" , apartment,1), 
pairC"X",phi l ip,2), 
pair("Y",kuniko, 2), 
pair("Z", love,2) l 

MAT CHING UNBOUND 
VARIABLES 
Remember that in Prolog, vari
ables can also act as place 
holders. In other words, an 
unbound variable X can match 
any other variable. It could match, 
say, Y or Z (whether they are 
bound or free). So how can we 
keep track of which variable is 
bound and at what level? T he pair 
representation we discussed ear
lier handles this. The structure of 
pair is: 

pair(VARIABLE,VALUE,INDEX-NUMBER) 

This representation assigns a 
unique pair to each variable in 
the process of executing the cl 
facts. As an example of how free 
va1iables can match other free or 
bound variables, append the fol
lowing cl facts to the program in 
Listing 2 and run this example: 
cl( [marr ied,phi l i p,kunikol, [] ). 
c l( Cshare,"X","Y", love], 

C Cmar r i ed, "X" , "Y"l l >. 

continued on page 94 

LISTING 2: TBL-MOD.PRO 

/* The Binding Tables Algor i thm program. */ 

domains 
INT = reference INTEGER 
PARAMETER = reference SYMBOL 
PAIR= pair(PARAMETER,PARAMETER , INT) 
PAIRlist PAIR* 
PARMlist =PARAMETER* 

predicates 
a_tblCPARMlist,PARMlist,PAIRlist,PAIRlist,INT) 

bTBL(PARMlist,PARMlist,PAIRlist,PAIRlist,INT) 
cTBL(PARAMETER,PARAMETER,INT,PAIRlist,PAIRlist) 

dTBLCPARAMETER,PARAMETER,INT,PAIRlist,PAIRlist) 
eTBLCPARAMETER,PARAMETER,INT,PAIRlist,PAIRlist) 
fTBL(PARAMETER,PARAMETER,INT,PAIRlist,PAIRlist) 

gTBL(PARAMETER,PARAMETER,INT,PAIRlist,PAIRlist) 
hTBL(PARAMETER,PARAMETER,INT,PAIRlist,PAIRlist) 
jTBLCPARAMETER,PARAMETER,INT,PAIRlist,PAIRlist) 

variable(PARAMETER) 
capital(PARAMETER) 
member(PAIR,PAIRlist) 

clauses 
a_tblCCNAMEISlistl, CNAME!Vlistl,IN,OUT,NUM) if 

bTBL(Slist,Vlist,IN,OUT,NUM). 

bTBL( []I[] I TBL, TBL,_) if ! • 

bTBL(CSIST], CVIVTl,IN,OUT,NUM) if 
cTBL(S,V,NUM,IN,OUTA), 
bTBL(ST,VT,OUTA,OUT,NUM). 

cTBL(XS,V,NUM,IN,OUT) if /* "V" here can be free or bound*/ 
bound(XS), 
va r iableCXS), /* "XS" is a string starts with capital letter */ 
dTBL(XS,V,NUM,IN,OUT), ! . 

cTBL(SS,V,NUM,IN,OUT) if /* "V" here can only be bound*/ 
bound(V), 
variable(V), /* "SS" is a string acting as a constant */ 
gTBL(SS,V,NUM,IN,OUT), ! . 

cTB L(SS,FV,NUM,IN,OUT) if 
free( FV), 
hTBL(SS,FV,NUM,IN,OUT). 

cTBLCFS,BV,NUM,IN,OUT) if 
free(FS), 
jTBLCFS,BV, NUM,IN,OUT), !. 

cTBL(S,S,_,TBL,TBL). 

dTBLCXS,V,NUM , IN,OUT) if 
bound(V), 
eTBL(XS,V,NUM,IN,OUT) , ! . 

dTBLCXS,FV,NUM,IN , OUT) if 
free( FV) , 
fTBL (XS, FV,NUM,IN,OUT). 

eTBL(XS,BV,NUM,TBL,TBL) if merrber(pair(XS,BV,NUM),TBL). 
eTBLCXS,BV,NUM,IN, Cpair(XS,BV,NUM)IIN]) if 

not(merrber(pair(_,BV,NUM),IN)). 

fT BLCXS, ,NUM, [], [pairCXS,XS,NUM)l ). 
fTBLCXS,V,NUM,CpairCXS,V,NUM)IRl, CpairCXS,V,NUM>IRl). 
fTBLCXS , V,NUM,CPAIRIINl, [PAIR OUT]) if fTBLCXS,V,NUM,IN,OUT). 

gTBL ( I I I [] I ) if ! I fa i l. 
gTBL CSS~XV , NUM~CpairCXV,XV,NUM>IRl,CpairCXV,SS,NUM)IRl). 
gTBL( SS, XV , NUM , [PAIRIINl, [PAIRIOUT]) if gTBLCSS,XV,NUM,IN,OUT). 

hTBL(S , S,_, []I[]). 

March / Apri l 1988 T URBO TECH NIX 9 3 



hTBL(S, S,NUM, Cpai r(XS,XS,NUM) 'Rl, Cpai r(XS, S,NUM) IR]). 
hTBL(S, FV ,NUM, [PAIR I IN] I [PAIR OUT]) if hTBL(S, FV ,NUM, IN,OUT). 

jTBL(S,S, ,0,0). 
jTBLCFS,BV,NUM, Cpair(FS,BV,NUM>IRl, Cpair(FS,BV,NUM) IRl ). 
jTBL(FS,BV,NUM, CAI IN], CAIOUTJ) if jTBLCFS,BV,NUM,IN,OUT). 

/* ****** check if a letter is a capital letter ********** *I 

variable(String) if 
frontstr(1,String,CHAR, ), /* take first character*/ 
capital(CHAR). /* check-if CHAR is a capital letter */ 

capital(Uchar) if 
upper_lower(Uchar,Lchar), 
Uchar <> Lehar. 

/**********A pair is a member of a list of pairs******* *I 

membercx, ex I 1 >. 
member(X,C_ Yl) if member(X,Y). 

LISTING 3: CALL.PRO 

/* Processing clauses with variables using binding tables. */ 

domains 
Llist = PARMlist* /* Llist is a list of lists of SYMBOLS*/ 

database 
clCPARMlist,Llist) 

include 11 tbl-mod.pro11 /* tbl-mod.pro is the program in 
listing 2 */ 

predicates 
call(PARMlist,PAIRlist,PAIRlist,INT) 
calls(Llist,PAIRlist,PAIRlist,INT) 

clauses 

/* Executing the head of a clause , the conclusion. */ 

call(P,IN,OUT,NUM) if 
cl(S,0), 
a_tbl(S,P,IN,OUT ,NUM), ! . 

call(P,IN,OUT,NUM) if 
cl CS, CHIBJ ), 
a_tbl(S,P,IN,TBLA,NUM), 
callsCCHIBJ,TBLA,OUT,NUM), !. 

call(P,IN,OUT,NUM) if 
cl CS, CHIBJ ), 
NUMA= NUM + 1, 
a_tbl(S,P,IN,TBLA,NUMA), 
calls(CHIBJ,TBLA,OUT,NUMA), !. 

/*Processing the tail of the clause, The subgoals or conditions. */ 

calls([],TBL,TBL,_). 

callsCCSHISTl,IN,OUT,NUM) if 
a tbl(SH,P,IN,TBLA,NUM), 
call(P,TBLA,TBLB,NUM), 
calls(ST,TBLB,OUT,NUM), ! . 

94 TURBO TECHNIX March/ April 1988 

METALOGIC 
continued from page 93 

Now enter the following goal at 
the Goal: prompt: 

call C [share, "M", "W", "T"l , Cl , 
OUtTBL,0) 

Our inference engine (predi
cates call and a_tbl) generates a 
binding table for all of the vari
ables involved in satisfying the 
goal. The list of binding pairs will 
resemble: 

OutTBL = Cpair("M","X",0), 
pai r( 11W11 , 11 Y11 ,0), 
pair("T",love,0), 
pair( 11X11 ,phi lip, 1), 
pai rC 11 Y11 , kumi ko, 1 )] 

In other words, the system is 
saying: 

M = phil ip 
W = kumiko 
T = love 
True 

In our expert system shell we 
wrote a translation predicate that 
automatically translates the final 
binding table into the usual Turbo 
Prolog answer. 

THE BINDING PROCESS AS A 
UNIFICATION ALGORITHM 
The Turbo Prolog predicate that 
performs the unification and 
binding of variables is called 
assign_table or a_tbl for short. 
Listing 2 shows the binding table 
module. 

The main predicate in the bind
ing table module, a_tbl, is called 
by call and calls (see Listing 3). 
call, as presented so far, has one 
parameter: the predicate we want 
to execute. But as it stands, this 
predicate does not work for predi
cates with variables. To resolve 
this, we need to make some 
changes. We will add two parame
ters to call; both will be lists. Fig
ure 2 shows the new structure. 

Usually when we execute a goal, 
we start with the IN-list as an 
empty list. This means we start 
with an empty list of pairs, that is, 
an empty binding table. If we 
have the goal 

Goal: call C Cl i kes, "X", "Y"l , Cl , 
OUT,0) 



and have asserted the following cl 
fact in our knowledge base 

cl( Cl ikes,evelyn,artl, Cl). 

then the Out-list would be : 

OUT = Cpai r(evel yn, "X", 0), 
pair(art, 11 Y11 ,0)l 

T hings get more complex when 
we have rules in our knowledge 
base that match the goal. For 
example the asse rted rule 

cl( Cl ikes, 11X11 , 11 Z11l, 
[ Clikes, 11 X11 , 11 Y11 l , 

Cl ikes,"Y","Z"l 
]). 

causes recursion to take place. 
T his means that we h ave nested 
calls to the predicate likes. a_ tbl 
takes care of this complexity by 
matching the goal predicate with 
rules as well as facts. To see how, 
consider the abstract form of 
a_ tbl in Figure 3. 

Note that the a_ tbl takes a 
predicate P and tries to match it 
with a predicate S in the knowl
edge base. S can e ither be the 
head or a member of the body of 
an asserted cl fact. 

a_tbl takes an input li st of 
binding pa irs (possibly empty) and 
outputs another li st of pairs with 
variables matched to e ither vari
ables or constan ts. T he number of 
nested calls, NUM, is usually set to 
0 in call. call then increments 
NUM whenever the re is a nested 
call to the same predicate. 

In a_tbl, the asserted predicate 
and the goal must have the same 
symbol (name) or they will not 
match . Remember, the name of a 
predicate is always the first 
member of its list representation . 
Once the predicate names match , 
a_ tbl removes the first member 
of each list and passes th e rest of 
each list to bTBL. bTBL takes one 
paramete r from the asserted rela
tio n and one parameter fro m the 
goal and calls cTBL, which com
pares them: 

a_tblCCNAMEISlistl, 
CNAMEIVlistl,IN,OUT,NUM) if 

bTBL(Slist,Vlist,IN,OUT,NUM). 

bTBL([],[],TBL,TBL,_) if!. 
bTBLCCSISTl,CVIVTl,IN,OUT,NUM) if 

cTBL(S,V,NUM,IN,OUTA), 
bTBL(ST,VT,OUTA,OUT,NUM). 

continued on page 96 

LISTING 4: A_CALL.PRO 

/*Executing built-in predicates by the clause-processor . */ 

domains 
INTL ist = INT* 
REAU ist = REAL* 
Llist = PARMlist* /* Llist is a list of lists of SYMBOLS*/ 

database 
cl(PARMlist,Llist) 

include 11 tbl -mod.pro 11 /* tbl -mod.pro is the program in 
Listing 2 */ 

predicates 
call(PARMlist,PAIRlist,PAIRlist,INT) 
calls(Llist,PAIRlist,PAIRlist,INT) 
a_callCPARMlist) 

strint(PARMlist,INTlist) 
strreal(Parmlist,REALlist) 

clauses 

/* ************ "call" & "calls", The clause processor*************! 

call(P,IN,OUT,NUM) if 
cl(S, [] ), 
a_tbl(S,P,IN,OUT,NUM), !. 

call(P,IN,OUT,NUM) if 
cl ( s I [H I Bl ) • 
a_tbl(S,P,IN,TBLA,NUM), 
callsCCHIBl,TBLA,OUT,NUM), !. 

call(P,IN,OUT,NUM) if 
clCS,CHIBl), 
NUMA = NUM + 1 , 
a tbl(S,P,IN,TBLA,NUMA), 
callsCCHIBl,TBLA,OUT,NUMA), !. 

calls([],TBL,TBL,_). 

calls([SHISTl,IN,OUT,NUM) if 
a_tbl(SH,P,IN,TBLA,NUM), 
callCP,TBLA,TBLB,NUM), 
calls(ST,TBLB,OUT,NUM), ! . 

March/ Apri l 1988 TURBO TECH NI X 95 



/* ***** "a_call" calling the built-in Turbo Prolog predicates*****/ 

a call C ["+" X Y Zl ) if 
- strreatcix'.vi, [A,8]), 

C = A + 8, 
str_realCZ,C), 
! . 

a_callC["+",_,_,_]) if!, fail. 

a_callC [11 - 11 ,X,Y,Zl) if 
strreal( [X, Yl, CA,8l ), 
C = A - 8, 
str_realCZ,C), 
! . 

a_callCC"- 11 ,_,_,_l) if!, fail. 
a_callCC"*",X,Y,Z]) if 

strreal( CX,Yl, CA,8] ), 
C = A * 8, 
str_real(Z,C), 
! • 

a_call(["*",_,_,_l) if!, fail. 

a_callCC"/",X,Y,Z]) if 
strrealCCX,Yl, CA,8]), 
C = A I 8, 
str_realCZ,C), 
! . 

a_cal l CC"/" ,_,_,_l) if ! , fail. 

a_callC[11 mod11 ,X,Y,Z]) if 
strintC [X, Yl, CA,8] ), 
C = A mod 8, 
str_int(Z,C), 
! • 

a_callC["mod",_,_,_]) if !, fail. 

a_call(["=",X,X]) if!. 

a call(["round" X Yl) if 
- bound(X), 

1 1 

str_realCX,A), 
B = round(A), 
str_realCY,B). 

a call C ["sin" X Yl ) if 
- bound(X), 

1 1 

str _real CX,A), 
B = sinCA), 
str_real(Y,B). 

96 T URBO TECHNIX March/ April 1988 

METALOGIC 
continued from page 95 

So cTBL gets two parameters fro m 
hTBL, namely, a string S fro m the 
assen ed predicate and a string V 
from the goal. cTBL does a num
ber of tests o n these parameters 
before it takes actio n . 

call REVISITED 
If the predicate is a fact, then a 
match with an assen ed cl fact in 
the knowledge base will simply 
return True. For example, if we 
have the fo llowing clause in our 
knowledge base 

cl( [l ikes,evelyn,artl, [l) 

and we give the goal 

Goal: callCClikes,evelyn,artl) 

it will succeed. 
T he situatio n is di fferent when 

the called predicate is a rule. T he 
body of a database fact is a list of 
predicates. Each predicate in th e 
body consti tutes a subgoal or a 
condition . For example, in this 
rule 

cl([likes,eveyln,artl, 
[ [goes_often_to,evelyn,"X"l, 

[rusel.111, "X"l 
l ) . 

the sublists [goes_often_ to, 
evelyn,X] and [museum,X] are 
conditions to be satisfied before a 
conclusion about [likes,eveyln,art] 
is reached. Here, each subgoal in 
the body must be executed first 
before any conclusio n can be 
reached. This means two calls are 
needed to match th e two subgoals 
with facts or rules in th e knowl
edge base. Notice th at we have a 
variable in the firs t and second 
subgoal, namely X. 

ACCESSING BUILT-IN 
PREDICATES 
In Listing 4 you can see the pro
gram for the clause p rocessor with 
additio nal a_ call rules. T hese 
rules allow you to make use of 
some of Turbo Prolog's built-in 
predicates. For example, these 
clauses let you use the plus 
operator: 

a_callC [11 +11 ,X,Y,Zl) if 
strreal C [X, Yl, CA,Bl), 
C = A + B, 
str_realCZ,C),! . 

a_call([ 11+11 ,_,_,_]) if !, fail. 



To add 2 and 3, we would give the 
goal 

a_cal l C [11+ 11 , 11211 , 11311 , SLITI]). 

and the result would be: 

Sl.ITI = "5" 

To keep things simple we did not 
add these a_call clauses to our 
expert system shell (TESS). How
ever, you may want to add them if 
you're building your own shell. 

By the way, this approach to 
implementing metapredicates is 
built in to the inference mecha
nism, and is therefore specific to 
to an expert system or expert sys
tem shell. However, these same 
techniques can be generalized in 
a Prolog interpreter, giving you 
full meta capabilities in other 
applications. Happy metapro
gramming! • 

I would like to thank Philip Seyer for 
his help in preparing this artide. 

REFERENCES 
Bown, Kenneth A. "Meta-Level 
Programming and Knowledge 
Representation." Journal of New 
Generation Computing, Tokyo: 
OHMSHA Ltd. and New York: 
Springer-Verlag, 1985. 

Bown, Kenneth A., and T. 
Weinberg. "A Meta-level Exten
sion of Prolog." Cohen,]. and 
Conery, J., eds. Proceedings of the 
1985 Symposium on Logic Pro
gramming, Washington, D.C.: 
IEEE Computer Society Press, 
1985. 

Miyachi, T. et al. "A Knowledge 
Assimilation Method for Logic 
Database." Journal of New Gener
ation Computing, Tokyo: OHM
SHA Ltd. and New York: Springer
Verlag, 1984. 

Pereira, Fernando C.N. and Stuart 
M. Shieber. "Prolog and Natural
Language Analysis." CSU Lecture 
Notes No. 10, Stanford, CA: Center 
for the Study of Language and 
Information, 1987. 

Safaa H. Hashim is a graduate 
student in the Computer Science 
Di,vision, University of California, 
Berkeley. 

Files may be downloaded from 
CompuServe as MET A. ARC. 

a call(["cos" X Yl) if 
- bound(X), I , 

str real CX,A), 
B =-cos(A), 
str_realCY,B). 

a call( [11graphics11 ,Mode,Palette,Backgroundl) if 
- strintCCMode,Palette,Backgroundl, CM,P,Bl), 

graphics(M,P,B). 

a callCC11dot 11 ,Row,Col,Color]) if 
- strintCCRow,Col,Colorl, CIRow,ICol,IColor]), 

dotCIRow,ICol,IColor). 

a callCC"line11 ,Row1,Col1,Row2,Col2,Colorl) if 
- strintCCRow1,Col1,Row2,Col2,Colorl, 

CIRow1,ICol1,IRow2,ICol2,IColor]), 
lineCIRow1,ICol1,IRow2,ICol2,IColor). 

a call C ["true"]). 
a-call( C11 fail 11J) if 
- fail. 

a_callC C"!"l) if 
!. 

a_cal l C ["not" I Tl) if 
bound(T), 
not(a call(T)), 
!. -

/* *************************** strreal & strint ******************* *I 

strrealC CJ, CJ). 
strrealCCSHISTJ,CRHIRTl) if 

bound(SH), 
str realCSH,RH), 
strrealCST ,RT>. 

strint( Cl, CJ). 
strint( CSH I STJ, CI HI ITl) if 

bound(SH), 
str int(SH,IH), 
strTntCST, IT). 

I* **************************************************************** *I 

March/ April 1988 TURBO TECHNIX 97 





TURBO BASIC SCREENS AT 
ASSEMBLER SPEED 
The Turbo Basic Database Toolbox provides new, fast tools 
for writing information to your screen. 

David A. Williams 

Snappy screen displays are one of the 
things that separate a professional, well
designed program from the "other" kind. 
Although compiled Turbo Basic programs 
will run rings around interpreted BASIC, 

PROGRAMMER there is always room for improvement in 
the screen-handling area. Large amounts of data 
take a noticeable amount of time to fill the screen, 
and it is difficult to regenerate a screen if you have 
overwritten part of it and only wish to restore that 
part. 

There is only one way to get brisk displays that 
appear to snap into place-through assembly lan
guage routines that write directly to video memory. 
While writing such routines is not difficu lt, many 
people prefer not to dabble in assembly language. If 
you are among the hesitant, help is at hand. The 
Turbo Basic Database Toolbox has a collection of 
assembly language routines and Turbo Basic subpro
grams that require no knowledge of either assembly 
language programming or of the Turbo Basic/ 
assembly language interface. In this article, I will 
show you how to use these routines with a program 
that you can employ to generate pop-up menus. 

Before you embrace this technique, you should 
know th at programs that write directly to video 
memory are sometimes termed "ill-behaved" because 
of two problems. First, these programs can interfere 
with windowing in multitasking environments. Since 
the task manager can't detect and inhibit screen writ
ing, a program running in the background might 
overwrite the display of another program running in 
the foreground. Second, there is always the possibi l
ity, albeit remote, that your program won't run on 
some computers if the video display doesn't follow 
the IBM design. Nevertheless, many highly regarded 
programs use this method and the risk is minimal, 
especially if you are writing code for your own use. 

VIDEO BASICS 
Before you can read from or write to video memory, 
you need to know where it is. The video memory 
address depends on the video adapter you're writing 
to, and the mode in which it is operating. 
Monochrome adapters, including the Hercules adap
ter, use memory starting at segment BOOOH, while 
the CGA uses memory starting at segment B800H. 
The EGA and VGA adapters can use either address 
depending on which monitor is attached: If a color 
monitor is installed, video memory starts at B800H; 
for a monochrome monitor, video memory starts at 
BOOOH. The video mode is indicated by a number 
between 1 and 15 maintained by the ROM BIOS; 
this number tells you all you need to know. If it's less 
than seven, you have a color system operating in text 
mode; if it's seven, you have a monochrome system; 
if it's greater than seven, you are operating in a 
graphics mode. The Toolbox routines only work in 
text mode. 

You can read and write to a monochrome adap
ter's video memory at any time without a problem. 
On the other hand, some early color adapters gener
ate interference, called snow, if you write to their 
video memory when the video circuitry is also 
addressing that memory to refresh the display. To 
avoid snow, we have to read and write during the 
horizontal or vertical retrace period when the screen 
is blanked. Don't worry about the details, because 
the Toolbox routines take care of it automatically. 

You also need to know how the data in the video 
memory is organized. A 25-by-80 screen holds 2000 
characters. Each character requires two bytes in 
video memory. The first holds the ASCII representa
tion of the character, and the second holds the video 
attribute that determines the appearance of the char
acter on the screen. The video attribute byte is bit
mapped, with different bits carrying different mean
ings. Figure 1 shows how the attribute byte is 

continued on page 100 

March/ April 1988 TURBO TECHNIX 99 



l = Background 
Blink bits 

Invisible 0 0 0 

Underlin e 0 0 0 

No rmal 0 0 0 

Reve rse video 0 I I 

Figure 1. The monochrome attribute byte. 

l = Background 
Blink Colors 

Black 0 0 0 0 

Blue 0 0 0 I 

Green 0 0 I 0 

Cyan 0 0 I I 

Red 0 I 0 0 

Magenta 0 I 0 I 

Brown 0 I I 0 

Light grey 0 I I I 

Dark grey 0 

Light blue 0 

Light green 0 

Light cya n 0 

Light red 0 

Light magenta 0 

Yellow 0 

White 0 

Figure 2. The color attribute byte. 

100 TURBO TECHNIX March/ April 1988 

l= High-
light 

0 0 0 

0 0 0 

0 0 I 

I 0 0 

Inte nsity 

0 0 

0 0 

0 0 

0 0 

0 I 

0 I 

0 I 

0 I 

I 0 

I 0 

I 0 

I 0 

I I 

I I 

I I 

I I 

Foreground 
bits 

0 0 

0 I 

I I 

0 0 

Foreground 
Colors 

0 0 

0 I 

I 0 

I I 

0 0 

0 I 

I 0 

I I 

0 0 

0 0 

I 0 

I I 

0 I 

0 I 

I 0 

I I 

TURBO BASIC SCREENS 
continued from page 99 

interpreted by monochrome dis
plays; Figure 2 shows how the 
attribute byte is interpreted for 
color displays. Note that the 
"light" colors (colors with the 
intensity bit set to 1) are not legal 
background colors, since the back
ground color is specified by only 
three bits. 

Note that the 
('('light" colors 

(colors with the 

intensity bit set to 

1) are not legal 

background colors, 

since the back

ground color is 

specified by only 

three bits. 

If you want your program to 
run automatically on either color 
or monochrome systems, it must 
determine what system it is run
ning on and make the necessary 
adjustments. The Toolbox rou
tines do part of this for you, but 
you must determine the attribute 
that will give the desired effect on 
both color and monochrome 
monitors. Some attributes 
intended for a color monitor are 
visible on a monochrome moni
tor, but in general, you must use 
different attributes for each, espe
cially if you are generating high
lighted or reverse video text. For 
example, an attribute byte of 17H 
gives you white letters on a blue 
background on a color monitor, 
but does not produce visible text 
on a monochrome monitor. 

THE TOOLBOX ROUTINES 
The Turbo Basic Database Tool
box includes a collection of rou
tines for reading and writing to 



video memory in monochrome or 
color text modes, and for perform
ing several other video functions. 

The file SCRNASM.BOX from 
the distribution disk contains the 
following seven assembly lan
guage routines: 

CurPos Sets the cursor position. 

CurSize Sets the cursor size. 

GetVid Returns the current 
video mode. 

SetVid Sets the current video 
mode. 

Scroll Scrolls a screen section 
up or down one row. 

ReadVid Reads text and attrib
utes from video 
memory. 

WriteVid Writes text and attri
butes to video memory. 

The first five use the CALL 
INTERRUPT statement to call 
interrupt lOH, the ROM BIOS 
video service interrupt. The last 
two are assembly language 
INLINE subprograms. The 
INLINE routines are formatted so 
that a comment statement beside 
each opcode string contains the 
assembly language source code 
for the opcodes on that line. This 
also allows you to alter them, but 
there is little sense (and consider
able danger) in doing so. 

These low-level routines are 
versatile, but require some setup 
work. The file SCRNSUBS.BOX 
contains the following three 
Turbo Basic subprograms: 

Scrnlnit-Determines the video 
mode and initializes the shared 
variables used by the other 
routines. 

SaveScreenArea-Saves the text 
and screen attributes of a spec
ified screen area. 

WriteScreenArea-Writes text and 
attributes to a specified area of 
screen memory. 

These three routines perform the 
necessary setup and then call the 
assembly language routines to do 
the real work. For most applica
tions, these three high-level rou
tines make it unnecessary to deal 
with the assembly language rou
tines themselves. 

A SAMPLE PROGRAM 
MENU.BAS (Listing I) illustrates 
several of the Toolbox screen 
handling routines. It generates a 
pop-up menu with a selection bar 
and a one-line prompt at the top 
of the screen for each menu selec
tion. You make a selection by mov
ing the menu bar with the up or 
down arrow keys, and then press
ing Enter when the bar highlights 
your choice. The prompt changes 
as the selection bar moves over 
the selections. Alternatively, you 
can make a selection by pressing a 
key corresponding to the number 
of the selection. 

The main program calls the 
three routines from 
SCRNSUBS.BOX; these in turn 
call several of the assembly rou
tines from SCRNASM.BOX. The 
program begins with two 
$INCLUDE metastatements that 
include SCRNASM.BOX and 
SCRNSUBS.BOX into the pro
gram's logic. Since all numerical 
values passed to these routines 
must be integers, SCRNSUBS.BOX 
also executes a DEFINT a-z state-

ment, defining variables a 
through z as integers. 

Next, the program clears the 
screen and defines a function that 
we'll use to get input from the key
board. Then, a call to Scrnlnit 
determines the video mode and 
returns it in the shared variable 
Scro.Mode (defined in 
SCRNSUBS.BOX). Scrnlnit also 
initializes two variables used by 
the other SCRNSUBS.BOX rou
tines. One, Scro.Segment, con
tains the segment address of video 
memory. The other, Scro.Retrace, 
indicates whether it is necessary to 
restrict video memory access to 
the retrace periods. Since the 
main program uses neither 
Scro.Segment nor Scro.Retrace, 
their names don't appear in 
MENU.BAS. 

The block IF statement estab
lishes variables containing the 
screen attributes according to the 
screens, 07H is normal white text 
on a black background; 70H is 
reverse video. On color screens, 
17H produces white text on a blue 
background; 71H produces the 

continued on page 102 

I_ <..QJ.s>~ou WON'T BELIEVE YOU GOT ALONG WITHOUT IT ... 

~ BoosterGraphics 
Graphics Subroutine Library for Turbo Basic 

BoosterGraphics gives Turbo Basic programmers the power to create sophis
ticated graphics effects and graphics based user interfaces - easily & quickly. 

Features include: 
Multipage graphics 
High speed pixels, lines, circles 
Image blitter routines 
Easy graphics mode windows 
Instant pull-down menus 
Extended ASCII fonts 
Fast & flexible IMAGE TEXT 
Powerful graphics editor 
BoosterPaint included 
Familiar BASIC syntax for all commands 

ALL IN GRAPHICS MODE!! 
Compatible with CGA, EGA, VGA, MCGA and HERCULES standards 

Introductory price $55.00 • 30 day money back guarantee 
Assembly source code available• Not copy protected, no royalties 

Free technical support •Free updates if purchased before Jan. 31, 1988 

To order, please call us: 
Suncloud Software, Inc. 
101 West Ninth Street 
Durango, Colorado 81301 
(303) 24 7-0439 

add $3.00 shipping/ handling U.S., $5.00 Canada 
We ship any way you want - all major credit cards accepted. 

Turbo Basic is a registered trademark of BORLAND INT'L 

March / April 1988 TURBO TECHNIX 101 



LISTING 1: MENU.BAS 

'This program generates a pop-up menu using assembly language routines 
'from the Turbo Basic Database ToolBox. David A. Williams 12/1/87 

$include "scrnsubs.box" 
$include "scrnasm.box" 
els 

'The high-level Basic routines 
'The low-level Assembly routines 
'Clear the screen 

'Define a function to get keyboard input 
def fnink$ 
ink: 

i$ = 1111 
i$ = inkey$ 
if i$ = 1111 then goto ink 
fnink$ = i$ 

end def 

'This call determines the video mode and from that the video memory 
'address. Sets shared variables used by the other routines. 
call scrninit 

'Check video mode and 
if scrn.mode = 7 then 

norm = 7 

set foreground & background colors accordingly. 

1 07H For mono systems 
rev= 112 1 70H 

else 
norm = 23 
rev= 113 
color 7,0 
els 

'17H For color systems 
'71H 
'Sets screen color for main program 

end if 

'Establish arrays for the menu and the one-line prompt. 
dim text$(10), Prompt$(8) 

'This array contains the menu items and graphical characters to 
'make a box 
Text$(1) chr$(218)+string$(10,chr$(196))+chr$C191) 
Text$(2) chr$(179)+" Choice 1 "+chr$(179) 
Text$(3) chr$(179)+" Choice 2 "+chr$(179) 
Text$(4) chr$(179)+" Choice 3 "+chr$(179) 
Text$(5) chr$(179)+" Choice 4 "+chr$(179) 
Text$(6) chr$(179)+" Choice 5 "+chr$(179) 
Text$(?) chr$(179)+" Choice 6 "+chr$(179) 
Text$(8) chr$(179)+" Choice 7 "+chr$(179) 
Text$(9) chr$(179)+" Quit Q "+chr$C179) 
Text$(10) = chr$(192)+string$(10,chr$(196))+chr$(217) 

'This array contains the prompts 
Prompt$(1) "This is the prompt for menu choice 111 + string$(44," 
Prompt$(2) "This is the prompt for menu choice 211 + string$(44," 
Prompt$(3) "This is the prompt for menu choice 3" + string$(44," 
Prompt$(4) "This is the prompt for menu choice 411 + string$(44," 
Prompt$(5) "This is the prompt for menu choice 511 + string$(44," 
Prompt$(6) "This is the prompt for menu choice 611 + string$(44," 
Prompt$(?) "This is the prompt for menu choice 711 + string$(44," 
Prompt$(8) : II Press Q to end the program II + string$(44," 

II) 
II) 
II) 
II) 

II) 
II) 

II) 
II) 

'Fill the screen using standard Basic functions to sirrulate a program. 
for i 1 to 10 
print" Now is the time for all men to come to the aid of the party." 
print " The quick red fox jl.JOl>ed over the lazy dog's back." 
next 
locate 23,20 
print "Press any key for menu" 
i$ = fnink$ 

'Now save the screen. 
'String variables SaveText$ and SaveAttr$ retain the data until 
'we're ready to restore the screen. 

102 TURBO TECHNIX March/ April 1988 

TURBO BASIC SCREENS 
continued from page 101 

opposite. The Color statement sets 
the overall screen color to give 
white characters on a black 
background. 

Now we set up two string arrays, 
one to hold the menu items and 
another to hold the text prompts 
associated with those menu items. 
The Text$ array contains graphi
cal characters used to build a box 
around the menu. The use of 
arrays also makes it possible to 
use a FOR..NEXT loop to display 
the menu and to select the partic
ular prompt we want to display, 
depending on the location of the 
selection bar. 

Next, we fill the screen with 
lines of text to simulate a program 
in progress. The program uses 
Turbo Basie's PRINT statement to 
demonstrate how long it takes 
ordinary screen-handling code to 
fill the screen compared to the 
pop-up menu generated later. If 
you are using a 12- or 16-MHz 
processor, you won't notice much 
difference, but on a slower ma
chine the improvement is dra
matic. With the demonstration 
screen in place, the program waits 
for user input before displaying 
the menu. 

When the user responds with a 
keystroke, the program saves the 
information displayed on the cur
rent screen so that the screen can 
be restored later. For simplicity's 
sake, we use the SaveScreenArea 
routine to store every character of 
the first 15 screen lines rather 
than trying to exactly match the 
section of screen used by the 
menu. You can, however, save any 
rectangular subset of the screen 
by passing to SaveScreenArea the 
coordinates of the upper left 
corner of the area to be saved, 
along with the number of rows 
and columns to be saved. The text 
and its video attributes are saved 
in separate string variables, Save
Text$ and SaveAttr$. Note that it 
is not necessary to declare these 
variables or set them up before 
calling SaveScreenArea, because 
they are declared along with the 
SaveScreenArea routine in 
SCRNSUBS.BOX. 



The WriteScreenArea routine is 
used three times: first to display 
the menu, then to display the 
prompt in reverse video at the top 
of the screen, and fina lly to re
store the screen before the menu 
subroutine terminates. The text 
and video attributes are contained 
in two separate strings of identical 
length . We could have displayed 
the entire menu with one call to 
WriteScreenArea, but writing the 
text and attribute information 
separately makes it easier to move 
the selection bar. As the program 

We could have 

displayed the entire 

menu with one call 

to W riteScreen

Area, but writing 

text and attributes 

separately makes it 

easier to move the 

menu bar. 

cycles through the FOR.NEXT 
loop, it uses one of two attribute 
strings, depending on the position 
of the bar. The attribute string 
Reverse$ displays its underlying 
text in reverse video, and 
Normal$ displays its underlying 
text in normal video. Understand 
that the bar itse lf is nothing more 
than a line of attributes forcing 
the underlying text to reverse 
video. 

The total number of bytes dis
played by each call to Write
ScreenArea is equal to the num
ber of rows displayed multiplied 
by the number of columns dis
played. The length of the text and 
attribute strings should each equal 
the product of rows multiplied by 
column s. If a string is longer, the 
last few bytes of the string are not 
displayed. If a string is shorter, 
WriteScreenArea displays what-

continued on page 104 

UpperRow = 1 
Lef tCol = 1 
NurberOfRows = 15 
NurberOfCols = 80 
call SaveScreenArea(UpperRow,LeftCol,NurberOfRows, 

NurberOfCols,SaveText$,SaveAttr$) 

'Display the menu and process user inputs. 
j = 0 
while j = 0 

BarRow = 
gosub menu 
k=O 
whilek=O 

iS = fnink$ 
k = asc( i$) 
if k < 49 then 

k = asc(right$(i$,1)) 

'Start on menu item one 
'Display the menu 

'Get user input 

if k = 13 then 'Enter key 
k = BarRow 'k will equal 1 thru 8 

elseif k = 72 then 'Up arrow key 
if BarRow > 1 then BarRow = BarRow - 1 
gosub menu 
k = 0 

elseif k = 80 then 'Down arrow key 
if BarRow < 8 then BarRow = BarRow + 1 
gosub menu 
k = 0 

end if 
end if 

wend 

'Find the selection 
select case k 
case 1, 49 

SS = "You have chosen selection 1" 
gosub action 
exit select 

case 2, 50 
SS = "You have chosen selection 2" 
gosub action 
exit select 

case 3, 51 
SS = "You have chosen selection 311 

gosub action 
exit select 

case 4, 52 
S$ = "You have chosen selection 4" 
gosub action 
exit select 

case 5, 53 
SS = "You have chosen selection 511 

gosub action 
exit select 

case 6, 54 
SS = "You have chosen selection 611 

gosub action 
exit select 

case 7, 55 
SS = "You have chosen selection 7" 
gosub action 
exit select 

case 8, 81, 113 
j = 1 

'Picks up 8, Q, and q 
•Quit the program 

end select 
wend 
els 
end 

March/ April 1988 TURBO TECHNIX 103 



'Subroutine to display the menu 
menu: 
'Establish video attributes for normal line and 
'reverse video selection bar 
Normal$ = string$(12,chr$(norm)) 
Reverses = chr$(norm)+string$(10,chr$(rev))+chrS(norm) 

'We'll use literals in the call instruction this time. 
'Each pass thru the loop displays one line of the menu. 
'The calling sequence is WriteScreenArea(UpperRow, LeftCol1..1111, 
' NunberOfRows, NunberOfColli1111s, TextString, AttributeString) 

for i = 1 to 10 
UpperRow = i + 1 
if i = BarRow + 1 then Attr$=Reverse$ else AttrS=NormalS 
call WriteScreenArea(UpperRow, 30, 1, 12, Text$(i), AttrS) 

next 

'Display the prOlfllt 
attrS = string$(80,chr$(rev)) 

call WriteScreenArea(1, 1, 1, 80, PrOlflltS(BarRow), AttrS) 
return 

'This routine simulates program action that would be taken after 
•a menu selection. 
action: 
'Restore the screen 
call WriteScreenAreaC1, 1, 15, 80, SaveText$, SaveAttr$) 

locate 23,20 
print SS 
locate 24,23 
Print "Press any key to continue"; 
iS = fninkS 
return 

104 TURBO TECHNIX March / April 1988 

TURBO BASIC SCREENS 
continued from page I 03 

ever data it finds in memory fol
lowing the end of the string. 

Once the menu has been dis
played, the program waits for the 
user to make a selection. The 
inner WHILE loop accepts the 
input character from the user and 
formats it for the SELECT CASE 
statement. It tests for either the up 
arrow or down arrow keys, and if 
either key is pressed, it moves the 
menu bar appropriately. If a num
ber key is pressed, the program 
uses the SELECT CASE statement 
to execute a section of code cor
responding to the number 
pressed. If Enter is pressed, the 
program uses the position of the 
selection bar to derive an equiva
lent menu item number. The last 
menu item requires a "Q" or "q" 
character to quit the menu, and 
shows that you can use a letter as 
well as a number to make a 
selection. 

The first seven menu selections 
each call a routine named Action 
that restores the screen and waits 
for user input before continuing. 
Then the program exits the 
SELECT CASE statement, and the 
outer WHILE loop cycles back to 
the user input section. When you 
choose Quit from the menu, the 
program exits the loop and ends. 

THE BOTTOM LINE 
You can use this basic technique 
to design many types of menus 
and screen displays. Creating fast 
help screens is another applica
tion that comes to mind. The 
Toolbox designers have done the 
hard work of putting assembly 
language speed and power at your 
disposal. All you need is a little 
ingenuity in using these routines 
to give your programs a snappy, 
professional appearance. • 

David A Williams is a Principal 
Staff Engineer for a major aerospace 
company. He can be reached at 2452 
Chase Circle, Clearwater, Florida 
34624. 

Listings may be downloaded from 
CompuServe as ASMENU.ARC. 



SELECT CASE: CHOOSING ONE 
FROM THE MANY 
Like Turbo Pascal and Turbo C, Turbo Basic provides 
a way to choose one of many program paths based on a 
single value. 

Ralph Roberts 

The SELECT CASE statement is a general 
purpose testing command, for selecting 
one path among several possible paths, 
depending on the value of a single 
expression or variable. Why case? A case is 

SQUAREo~E simply an instance of something. That 
ubiquitous little red sign found in older buildings, 
"In Case Of Fire, Break Glass," is a good example. 
Selecting a case, then, is simply tagging a desired 
response to a specific condition: If flames and 
smoke, then access the fire department subroutine. If 
there are many cases, one from the many must be 
chosen in a structured fashion without undue com
plication. SELECT CASE does this well, and is thus a 
first cousin to CASE .. OF in Turbo Pascal and switch 
in Turbo C. 

Those of us who have programmed in older 
BASICs recognize the use of the case concept in 
computer parlance. T he following statements are all 
ways of testing a case in older versions of BASIC, as 
well as in Turbo Basic: 

IF A = 1 THEN GOSUB 100 
ON X GOTO 2000, 3000 , 4000 
IF CK = 4) AND CZ = 6) THEN END 

T h ese statements work quite well for less involved 
cases, but become increasingly complex when you 
are attempting to program response to, perhaps, a 
range of numbers. Sure, it can be done with IF state
ments, though awkwardly. To test for the range of 90 
to 99 you might use the statement: 

IF ex > 90) AND ex < 100) THEN 
GOSUB RangeReact 

This is not too bad, and it kicks in nicely for the 
range we want. But what if you want this statement 
to trigger a subroutine call for one of ten different 
ranges? Sure, just add nine more lines of source 
code; after all, as the old saw goes, why should 
things be simple when they can be so beautifully 
complex? 

There is a better way of implementing case selec
tion. Here's how to test for the range of 90 to 99 
using the SELECT CASE statement (i.e., doing the 
same th ing as th e one-liner above): 

SELECT CASE X 
CASE 90 - 99 
GOSUB RangeReact 

END SELECT 

In this simple example of testing for numbers in 
only one range, we are not saving much in terms of 
source code. What we are doing, however, is adding a 
measure of structure beyond the conditional test and 
the GOSUB. This helps the readability of the pro
gram, especially if the number of conditions to be 
tested for increases later on. 

T HE SELECT CASE STATEMENT 
The syntax for SELECT CASE is moderately 
straightforward: 

SELECT CASE expression 
CASE test list 

statements 
[CASE test list 

statements] 
[CASE ELSE 

statements] 
END SELECT 

Anything enclosed in brackets is optional. The test 
list is one or more tests to be performed for the indi
cated value of expression. The tests are separated by 
commas, and expression can be either string or 
numeric. However, expression and all the test lists 
within the SELECT CASE statement must be of the 
same type. 

Legal tests for the CASE clauses include equality, 
inequality, greater than, less than, and (as we saw 
above) range. Some examples of CASE tests are 
given in Figure 1. 

continued on page 106 

March/ April 1988 TUR BO TECH IX 105 



LISTING 1: RANOOM1.BAS 

'RANDOM1 - - Ralph Roberts 

CLS: ON KEY (10) GOSUB Endlt KEY (10) ON PRINT PRINT 
RANDOMIZE TIMER 

GetRandomNl.lllber: 

A = INT(RND * 1000) + 1 COUNT = COUNT + 1 

SELECT CASE A 
CASE < 11 

PRINT A 11 was the first # in the range 1- 10 to be hi t, 11 

PRINT 11 and it took 11 COUNT 11 tries." 

CASE ELSE 
GOTO GetRandomNl.lllber 

END SELECT 

Endlt: 
END 

LISTING 2: RANDOM2.BAS 

'RANDOM2 - - Ralph Roberts 

CLS: ON KEY (10) GOSUB Endlt : KEY (10) ON PRINT PRINT 
RANDOMIZE TIMER 

GetRandomNl.lllber: 

A = INT(RND * 1000) + 1 COUNT COUNT + 1 

SELECT CASE A 
CASE 90 to 99 

PRINT A 11 was the first # in the range 90 -99 to be hit," 
PRINT 11 and i t took 11 COUNT 11 tries. 11 

CASE ELSE 
GOTO GetRandomNl.lllber 

END SELECT 

Endlt: 
END 

106 T URBO TECH NI X March/ April 1988 

SELECT CASE 
continued from page 105 

If a CASE clause has multiple 
tests, then there is an implied OR 
logical operator between each. In 
other words, the test clause 

r.ASE 10 , 20, 30, 40 

means that a value of lO or 20 or 
30 or 40 causes it to trigger and 
execute the following statements 
unti l another CASE clause is 
encountered, or until one of the 
END SELECT, CASE ELSE, or 
EXIT SELECT clauses is encoun
tered. EXIT SELECT, when 
encountered within a SELECT 
CASE statement, immediately ter
minates the statement and passes 
control to the statement following 
SELECT CASE. Should the pro
gram go through the SELECT 
statement without a case being sat
isfied, control passes to the next 
statement after the END SELECT 
statement. 

USI NG SELECT CASE IN 
PROGRAMS 
Again, the SELECT CASE state
ment is very powerful for compar
ing a variable against a list of pos
sible values. This allows you to 
write source code that is less awk
ward than trying to do the same 
thing with multiple IF statements. 

Let's stan with a simple exam
ple program that shows how to 
test for a specific range. T he pro
gram, RANDOMl.BAS, is given in 
Listing 1. RANDOM] generates a 
random number in the range of 1 
to 1000, then tests to see if that 
number fits within the range of 1 
to 10. If it doesn't, then a new ran
dom number is generated and 
tested again. When one is fi nally 
found that falls within the speci
fied range, that number and the 
number of tries the program took 
to find a match are printed to the 
screen. 

It is good programming practice 
to provide an exit from a program 
in case it gets trapped in an end
less loop. Therefore, key FlO is at
tached to a routine that ends the 
program. This is done th rough 
event trapping. Turbo Basic checks 
between each statement to see if 
the specified key has been 
pressed, giving control to the spe-



cified subroutine if it has. (For 
more on event trapping, see 
"Event Trapping in Turbo Basic," 
elsewhere in this issue.) 

One more note: The statement 
RANDOMIZE TIMER uses your 
computer's clock to get a starting 
"seed" for the random number 
generator so that it won't always 
start the program by generating 
the same number. 

The CASE test in Listing 1 is 
simplistic. If the random number 
is less than 11 (i.e., in the range of 
1 to 10, since no negative random 
numbers are generated here), the 
two print statements are executed 
and control is given to the state
ment following END SELECT, 
ending the program. If the CASE 
is not satisfied, then the CASE 
ELSE statement is executed, and 
the program goes back and selects 
another random number. It is true 
that the SELECT CASE statement 
could have been placed within a 
DO UNTIL loop to avoid the use 
of the GOTO , but in this program 
it illustrates the logic of a CASE 
ELSE clause. 

Let's take this program and 
make the single CASE test slightly 
more complex. Instead of looking 
for a range between zero and 
some positive number (which the 
single IF statement IF A< 11 
THEN ... could have done just as 
well), let's change the range to 90 
to 99. The modified program is 
given in RANDOM2.BAS. (Listing 
2). 

Now we are starting to see the 
true power of SELECT CASE. List
ing 2 works the same as Listing 1, 
except that it is now triggered by 
numbers in the range of 90 to 99. 
For more complex testing, 
SELECT CASE has a definite edge 
in time and memory over equiva
lent collections of IF statements. 

ow, with another modification, 
we can make SELECT CASE really 
blow IF statements away. How 
about a list of 20 numbers! They 
can be any 20 numbers, in any 
order. Instead of 20 IF statements, 
we need only one CASE test. See 

continued on page 108 

CASE < X : relational (less than) 

CASE > X : relational (greater than) 

CASE 35 : equality (the "=" sign is assumed) 

CASE 90 to 99 : range (or "CASE X to Y") 

CASE 35, X : equality test (if X = 35) 

CASE 400 to 499, 35 : combinations (impli'citly ORed, 
i.e., in the range of 400-499 or equal to 35) 

Figure 1. Tests used in SELECT CASE clauses. 

T hat's right. Saywhat, the lightning-fast screen 
generator, lets you build beautiful, elaborate, 

color-coded screens in minutes! We're talking 
about incredible screens for menus, data entry, 
data display, and help-panels that can all be dis
played with as little as one line of code in any 

MONEY · BACK GUARANTEE 
If you aren't completely delighted with 
Saywhat, return it within 30 days for a 
prompt, friendly refund. 

language. Even batch files. or run it non-resident, transparently, with your 
With Saywhat, what you see is exactly favorite application). 

what you get. And response time is snappy and With Saywhat we also include a bunch of 
crisp, the way you like it. That means screens terrific utilities, sample screens, sample programs, 
pop up instantly, whenever and wherever you and truly outstanding technical support, all at 
want them. no extra cost (Comprehensive manual included. 
THE PERFECT TOOL FOR PROGRAMMERS. Not copy protected. No licensing fee) . 

Whether you 're a novice programmer long- ORDER NOW. YOU RISK NOTHING. 
ing for simplicity, or a seasoned pro searching Thousands of satisfied users already know 
for higher productivity, you owe it to yourself to that Say what can make screen design and pro-
check out the all-new Version 3.6 of Saywhat. It gramming a pleasure, not a chore. Why not call 
offers full monochrome emulation and lets you toll-free, right now and put Say what to the test 
build your own elegant, moving bar menus into yourself! The next time you sit down to create 
any screen . (They work like magic in any a screen , we guarantee ~f 
application, with just one line of code!) You can you'll be glad you did. 
also combine your screens into powerful screen 
libraries. And Saywhat's remarkable VIDPOP~ 
utility gives all languages running under PC/ MS- • • 
DOS, a whole new set of screen handling com-
mands- languages like dBASE, Pascal, BASIC, s 49 95 
C, Modula-2, FORTRAN , and COBOL. (You can 
make VIDPOP resident and available at all times, • 

(Plus $5 shipping and handling) r--/-- -- --- ----, 
r:-J ~ • I want to try your l igh t n i ng·fa~t screen generator 'lh order: 
00 so send me _ copies of saywhat (S49.9; plus c

8
·a1

0
1 toOll-fr.ee

468
_
9273 1 I S5 :'lhipping and handling) suhjcct to your money-back guaranlcc. 

Na me In Californ ia: 

I Address - - -- -- 800•231·7849 
In Canada 

I 
<:.!'.L_ State Zip 800· 663·9361 
0 Check cn clo~cd 0 Ship C.0. 0. O Credit card In ternational : 

415-571-5019 

l *------
Signature _____ _ 

___ bp. date The Research Group 
88 South Linden A\'C. 
South San •·rancisco. CA 9·1080 

T H E R E S E A R C H G R 0 U P 

I 
I 
I 

March/ April 1988 TURBO TECHNIX 107 



LISTING 3: RANDOM3.BAS 

'RANDOM3.BAS -- Ralph Roberts 

CLS: ON KEY (10) GOSUB Endlt : KEY (10) ON PRINT PRINT 
RANDOMIZE TIMER 

GetRandomNl.lllber: 

A = INT(RND * 1000) + 1 : COUNT = COUNT + 1 

SELECT CASE A 
CASE 50,100,150,200,250,300,350,400,450,500,_ 

550,600,650,700,750,800,850,900,950,1000 

PRINT A II was the first # in the TEST LIST to be hit," 
PRINT " and it took " COUNT " tries." 

CASE ELSE 
GOTO GetRandomNl.lllber 

END SELECT 

Endlt: 
END 

I-
LISTING 4: RANDOM4.BAS 

'RANDOM4.BAS Ralph Roberts 

CLS: ON KEY (10) GOSUB Endlt 
RANDOMIZE TIMER 

GetRandomNl.lllber: 

AS = CHRS(INT(RND * 26) + 65) 

SELECT CASE AS 
CASE 11A11 , 11E11 , 11 l 11 , 11011 , 11U11 

KEY (10) ON PRINT PRINT 

COUNT COUNT + 1 

PRINT 11 ' 11AS111 was the first letter in the TEST LIST to be hit," 
PRINT " and it took " COUNT " tries." 

CASE ELSE 
GOTO GetRandomNl.lllber 

END SELECT 

Endlt: 
END 

108 TURBO TECHNIX March/ April 1988 

SELECT CASE 
continued from page 107 

Listing 3, RANDOM3.BAS, which 
is our same random-number tes
ter, except that it looks for a dis
joint list of individual values 
rather than a continuous range of 
values. 

It is possible to have much 
longer lists than this, too. In test
ing RANDOM3.BAS, I used a list 
that had 120 different numbers. 
Remember, however, when build
ing longer lists, use the under
score character at the end of each 
line so that Turbo Basic will con
sider all the lines of your list to be 
part of one single list. 

The SELECT CASE technique is 
not limited only to numbers. You 
may also use single letters or 
strings of letters with equal facility. 
Our program, revamped yet again 
to test for one letter out of a list of 
letters, is given in Listing 4, 
RANDOM4.BAS. Furthermore, 
you could also use whole words or 
phrases enclosed in quotes as the 
test cases, rather than single char
acters. Now, let's get back to 
numbers and have some fun with 
SELECT CASE. 

TURBO BASIC ELECTION 
CENTRAL 
Do you ever wonder how random 
the random numbers in your pro
grams are? Turbo Basic does very 
well in distributing these numbers 
and, using SELECT CASE, we can 
prove it. Since 1988 is an election 
year, let's hold an on-screen pri
mary to find out who our leader is 
going to be. The program, 
ELECTION.BAS, is given in 
Listing 5. 

We'll generate a continuous 
stream of random numbers from 
0 to 999 and test to see into which 
100-count bracket each random 
number falls. For each bracket 
we'll display the percentage of the 
numbers belonging to that 
bracket.. The distribution of the 
random numbers is a little ragged 
at first, but over a few thousand 



numbers the distribution becomes 
flat within one or two percent. 
You'll find that this is a very close 
election. Pity the politicians who 
are not as efficient as Turbo 
Basic-or those who have some 
bugs in their closet ... 

CONCLUSION 
The single page dedicated to 
SELECT CASE in the Turbo Basic 
Owner's Handbook merely hints at 
its incredible power. By using this 
statement in its many variations, 
you can write programs that deal 
effectively with multiple choices 
that would be very confusing 
otherwise. You can test long li sts 
of numbers or strings for matches 
far more easily than with multiple 
IF tests. 

By using 

SELECT CASE in 

its many variations, 

you can write pro

grams that deal 

effectively with 

multiple choices 

that would be 

very confusing 

otherwise. 

SELECT CASE is one of the 
reasons why so many of us have 
fallen in love with Turbo Basic
and Turbo Basic returns the favor 
by making us look good when 
people read and evaluate our 
programs. • 

Ralph Roberts, WA4NUO, is a free
lance writer who has written books on 
many topics, including Turbo Basic, 
"Turbo Prolog, Reflex, and autograph 
collection. 

Listings may be downloaded from 
CompuServe as SELECT.ARC. 

LISTING 5: ELECTION.BAS 

' :::::::::::::: THE RANDOM ELECTION RETURNS:::::::::::: 
' ::::::::: Ca demonstration using SELECT CASE) ::::::::: 

' -- Ralph Roberts 

CLS : RANDOMIZE TIMER : ON KEY (10) GOSUB Endlt : KEY (10) ON 

COLOR 15,0 : LOCATE 3,7 : ? "RANGE" 
LOCATE 3,21 : ? "HITS" : LOCATE 3,30 : ? "PERCENT" 

FOR X = 0 to 9 
LOCATE X + 5, S 
? USING "###";X * 100; : ? II - 11 ex * 100) + 99 : NEXT x : COLOR 7,0 

LOCATE 16,S COLOR 0,7 : ? II TURBO BASIC Election Central II 

LOCATE 17,S ? II CA demo of SELECT CASE) II 

GetRand~l-'Tlber: 

A = INTCRND * 1000) : COUNT = COUNT + 1 
COLOR 0,7 : LOCATE 1,S : ? COUNT; II Random Nl-'Tlbers •••• F10 Ends II 

COLOR 7,0 

SELECT CASE A 

CASE 0 to 99 : LOCATE S,20 : COUNT1 = COUNT1 + 1 
? COUNT1 : LOCATE S,29 : ? USING 11 ###.##11 ;(COUNT1/COUNT) * 100; 
? II %11 

CASE 100 to 199 : LOCATE 6,20 : COUNT2 = COUNT2 + 1 
? COUNT2 : LOCATE 6,29 : ? USING "###.##";CCOUNT2/COUNT) * 100; 
? II %" 

CASE 200 to 299 : LOCATE 7,20 : COUNT3 = COUNT3 + 1 
? COUNT3 : LOCATE 7,29 : ? USING 11###.##11 ;CCOUNT3/COUNT) * 100; 
? II %" 

CASE 300 to 399 : LOCATE S,20 : COUNT4 = COUNT4 + 1 
? COUNT4 : LOCATE S,29 : ? USING 11###.##11 ;CCOUNT4/COUNT) * 100; 
? II %" 

CASE 400 to 499 : LOCATE 9,20 : COUNTS = COUNTS + 1 
? COUNTS : LOCATE 9,29 : ? USING 11 ###.##";CCOUNTS/COUNT) * 100; 
? II %" 

CASE SOO to S99 : LOCATE 10,20 : COUNT6 = COUNT6 + 1 
? COUNT6 : LOCATE 10,29 : ? USING 11 ###.##11 ;CCOUNT6/COUNT) * 100; 
? II %" 

CASE 600 to 699 : LOCATE 11,20 : COUNT?= COUNT?+ 1 
? COUNT? : LOCATE 11,29 : ? USING 11 ###.##";CCOUNT?/COUNT) * 100; 
? II %" 

CASE 700 to 799 : LOCATE 12,20 : COUNTS = COUNTS + 1 
? COUNTS : LOCATE 12,29 : ? USING 11###.##";CCOUNTS/COUNT) * 100; 
? II %11 

CASE SOO to S99 : LOCATE 13,20 : COUNT9 = COUNT9 + 1 
? COUNT9 : LOCATE 13,29 : ? USING 11 ###.##11 ;CCOUNT9/COUNT) * 100; 
? II %" 

CASE > S99 : LOCATE 14,20 : COUNT10 = COUNT10 + 1 
? COUNT10 : LOCATE 14,29 : ? USING "###.##";CCOUNT10/COONT) * 100; 
? II %" 

END SELECT 

GOTO GetRandomNl-'Tlber 
Endlt: 

END 

March/ April 1988 TURBO TECHNIX 109 



~ EVENT TRAPPING IN 
: TURBO BASIC 
;::i 
E--

Don't miss a Main Event-set a trap in Turbo Basic 
and catch them every time. 

Ralph Roberts 

WIZARD 

The Declaration of Independence begins: 
"When in the course of human events ... " 
In that case, the body politic detected tax
ation without representation and a reac
tion occurred. Putting it into Turbo Basic 
terms, we might have: 

IF Taxation= WithoutRepresentation 
THEN GOTO BostonTeaParty 

Like humans, computer programs can react to 
events. Turbo Basic gives us a background process
ing capability called event trapping. You may use the 
techniques described in this article to both simplify 
and speed up various operations. 

Event trapping allows a Turbo Basic program to 
continually check for certain events while the pro
gram as a whole is executing. An event can occur at 
any point during program execution, and your pro
gram will still respond to it. 

Event trapping in Turbo Basic may be controlled 
precisely with the $EVENT metastatement, turning 
the event checking on or off as desired for various 
portions of the program, as we'll demonstrate later 
in this article. First, let's define the various types of 
events that may be trapped. 

Turbo Basic recognizes and reacts to six types of 
events. The first is a specified keystroke, trapped with 
ON KEY. With keystroke event checking, your pro
gram can be asking itself questions such as, "has FlO 
been pressed?" or "has the space bar been hit?" or 
"how about the combination of Alt-Shift-A?" between 
each statement. 

Turbo Basic 1.0 allows you to set up as many as 20 
of these keystroke event traps, all waiting patiently 
for keys at the same time. Turbo Basic checks all of 
the traps between every Turbo Basic program state
ment; detection of a specified keystroke or keystroke 
combination triggers a subroutine invocation. 

The second type of event, trapping with ON 
TIMER, involves a countdown timer. A subroutine 
you write is given control when a specified interval 
has elapsed. For example, control might be given to 

llO TURBO TECH NIX March/ April 1988 

a trap subroutine that updates an on-screen clock 
when 60 seconds have elapsed. Thus, every minute, 
the clock would be advanced automatically. 

The third type of event is the arrival of a character 
at a communications port. These events are trapped 
by ON COM(n), where n is the number (either l or 
2) of a serial communications port. Once this com
mand is executed, Turbo Basic checks between the 
execution of every subsequent statement for charac
ters arriving at the specified serial port. If a character 
is detected, control passes to the associated subrou
tine. The ins and outs of using ON COM were 
covered in "Turbo Basic Communications," (TURBO 
TECHNIX, November/ December, 1987). 

The pressing of a joystick button is the fourth type 
of event that can be trapped by a program, through 
ON STRIG. The fifth type of event is a press on the 
light pen button, through ON PEN. Finally, the sixth 
type of event is the emptying of the background 
music buffer-as the buffer empties, the program 
can check to see if more notes need to be written to 
the buffer. This is handled through ON PIAY. 

Event trapping in Turbo Basic begins with these 
various ON <event type> statements. We'll look 
more closely at the most commonly used event trap
ping statements: ON ERROR, ON KEY, ON TIMER, 
and ON PIAY. 

TRAPPING ERRORS 
Good programming practice requires dealing courte
ously with errors. There is nothing so irritating to a 
user as having the program bomb and display some 
cryptic message such as : 

Error 53 at prm-ctr: 42 

They will growl and yell, "What the heck does that 
mean?" 

Even we mighty programmers would have to do a 
little thumbing through the Turbo Basic manual to 
figure it out. Error 53 is simply "File not found. " The 



program counter number refers to 
the location in the source code of 
the failed statement. None of this 
is of any value to an end user. 

The two-line program that 
generated this error was: 

INPUT "File Name ",FileName$ 
OPEN FileName$ FOR INPUT AS #1 

When compiled and run, the pro
gram responds with the cryptic 
error message quoted earlier. I 
entered the filename "B:GROK," 
and since there is no file on drive 
B named GROK, the program 
went down in flames. This is a 
very common error, given the all
to-common propensity for press
ing the wrong key, not having the 
right disk inserted, or forgetting to 
specify the correct path to the file. 

The answer? Event trapping, of 
course. So, let's modify the pro
gram to recover from Error 53 
and another common filename 
error, Error 64, "Bad File Name." 
The expanded and considerably 
more courteous program is given 
in Listing 1. 

The first line uses ON ERROR 
to turn the error event trapping 
on. Whenever an error occurs, 
program control is switched to the 
HandleErrors subroutine. The 
question marks in that routine, by 
the way, are Turbo Basic short
hand for the PRINT statement. 
The variable ERR is automatically 
loaded with the number of the last 
error that occurred. 

Should Error 53 or Error 64 
occur-caused by a typo or non
existent filename being entered-

the program gives a polite and 
understandable error message, 
and recycles to let the user try 
again. This is the way good pro
grams work. 

A single error-handling routine 
can test ERR and take different 
courses of action depending on 
which error it detects. Listing 1 
deals with only two errors, but for 
real programming you will want to 
develop error-handling subrou
tines that allow the program to 
recover from most common 
errors, or at least to gracefully 
exit in the event of an unfore
seen one. 

Once an error has been dealt 
with, control must be returned to 
some point in the program. The 
RESUME statement handles this 
task. There are several variations 
on the RESUME statement. The 
reserved word RESUME by itself 
(or RESUME 0 if you still think in 
terms of line numbers) causes 
execution to return to the same 
statement that caused the error. 
RESUME NEXT transfers control 
to the statement following the one 
that caused the error. RESUME 
< label> transfers control to the 
statement at < label>. 

As shown in Listing 1, once the 
error handler has notified the 
user that the filename entered was 

not valid, the RESUME GetA
Filestatement transfers control 
back to the code that prompts the 
user for a filename. Keep in mind 
that once you've entered an error
trapping subroutine, error trapping 
is disabl,ed until you execute a 
RESUME statement of some kind. 
Any error that occurs within an 
error trap brings execution to a 
halt with a cryptic error message, 
just as though error trapping did 
not exist. Make sure that your 
error handlers are watertight! 

Also note that RESUME and 
RESUME NEXT add four bytes to 
your code file for every statement 
in a program, even if only a hand
ful of those statements are capa
ble of triggering errors. If at all 
possible, use RESUME <label> to 
keep the size of your final execut
able file to a minimum. 

ERRADR, ERL, and ERROR 
are also associated with ON 
ERROR. These statements give 
your program access to informa
tion about its own errors, and can 
be used to build elaborate debug
ging machinery into your pro
grams. We will cover these Turbo 
Basic statements in a later article. 

KEYING IN ON EVENT 
HANDLING 
The ON KEY statement checks 
between every executed statement 
for the depression of a specified 

continued on page 112 

March/ Apri l 1988 TURBO TECHNIX 111 



EVENT TRAPPING 
continued from page 111 

keystroke or combination of key
strokes. The general format is 

ON KEY(n) GOSUB <label> 

where n is an integer describing 
the key to be trapped and label is 
the first statement of your trap 
routine for that key. 

The key (as it were) to ON KEY 
lies in specifying n. There are two 
layers to the process. The first 
layer is to make n a number from 
1-31, with the numbers associated 
with specific keys as shown in 
Table 1. An example drawn from 
Listing 2 to trap function key FlO 
would be: 

ON KEY(10) GOSUB KEY10 
KEY(10) ON 

This may be enough if you want 
to trap the function keys or the 
cursor keys. However, to trap keys 
other than the cursor or function 
keys, you must go through the 
second layer. 

This second layer involves 
defining up to ten keystrokes or 
keystroke combinations through 
the KEY statement. (This is a 
separate statement from both ON 
KEY(n) and KEY(n).) The syntax 
is: 

KEY n,CHRS(<shiftstatus>)_ 
+CHRS<<scancode>) 

Essentially, if you use KEY this 
way, it "builds" a keystroke from a 
shift status byte and a scan code 
byte and assigns that keystroke to 
n. This allows you to trap nearly 
any key on the PC keyboard, 
either alone or with any combina-

n KEY 

1-10 Fl - FIO 
II Up arrow 
12 Left arrow 
13 Right arrow 
14 Down arrow 
15-25 KEY n definitions 
30 Fil 
31 Fl2 

Tab/,e 1. Key numbers for ON 
KEY(n). 

tion of the Ctr!, Alt, and Shift keys. 
<scancode> is a number from 
1-83, specifying a scan code for 
one of the keys on the keyboard. 
These codes are given in Table 2. 
<shiftstatus> is a number from 
0-255. It is a bit map specifying the 
state of the various shift-type keys 
for the desired keystroke. The 
meanings of the various bits are 
given in Table 3. For detecting 
multiple keys, simply add each 
key's bit value together. For exam
ple, to detect either the right or left 
shift key, you must add 1 and 2 
and use a value of 3. To associate 
trap key 15 (n from ON KEY(n)) 
with Ctrl-Shift-S, you would exe
cute this key statement: 
KEY 15,CHR$(6)+CHR$(31) 

The scan code of the S key is 31, 
and the 7 value for shift status is 
obtained by adding 1, 2 and 4, 
which are the bit values for the 
two shift keys and the control key, 
respectively. 

Using ON KEY(n) only asso
ciates a specific key or keys with a 
specified trapping routine. Trap
ping itself does not begin until 
you explicitly enable it. Use 
KEY(n) ON to enable trapping 
key n, and KEY(n) OFF to disable 
trapping key n. You can turn key 
checking on or off within particu
lar segments of your program by 
bracketing the section between 
KEY(n) ON and KEY(n) OFF 
statements. 

An example of ON KEY event 
trapping is shown in Listing 2. 

The first few lines of Listing 2 
establish trapping routines for 
function keys Fl, F2, F3, and FlO. 
The numbers 1-10 always refer to 
the 10 function keys. 

The operation of our example 
program is simple in the extreme. 
It enters a continuous loop, re
peatedly printing the time to the 
screen. Between each statement in 
the loop, the program checks to 
see if one of the four defined keys 
have been pressed. 

If the Fl key is pressed, execu
tion of the loop is interrupted and 
control goes to the KEYl subrou
tine. A beep sounds and the pro-

112 TURBO TECHNIX March / April 1988 

gram returns to the loop. The F2 
key routine works identically save 
that it sounds two beeps, and the 
F3 key sounds three beeps. The 
FlO key terminates the program by 
calling the subroutine KEYlO. 

This example is simplistic, but it 
shows the technique of trapping 
keystrokes. Of course your own 
subroutines will be much more 
complex. The Fl key might invoke 
a help screen (this is becoming 
fairly standard in the PC industry), 
the F2 key might be used to halt 
program operation, save data to 
disk, then continue, and so on. 

TIME FOR EVENT TRAPPING 
The ON TIMER statement allows 
the execution of a subroutine 
after a specified delay. Its general 
format is 
ON TIMER (n) GOSUB <label> 

where n is the number of seconds 
to wait, from 1 to 86,400 (there are 
86,400 seconds in 24 hours). 

This command can be consid
ered a real "sleeper." You could 
put it in a game program for your 
kids (or you) so that if play goes 
on too long, it would give a mes
sage such as "Go to bed!" or 
"You've played this game long 
enough!," then exit. 

Let's look at a somewhat whim
sical example of both time and 
key event trapping, with a little 
music and text animation thrown 
in for flavor. It's called "The 
Dancing Lady," given in Listing 3. 

The figure on the screen is ani
mated continuously by the loop 
after the label Dance. The ON 
TIMER trap counts seconds. Its 
trap subroutine, Update, breaks 
out of the animation loop once 
per second-just long enough to 
display the seconds count on the 
screen. The ON KEY trap pro
vides an exit to the endless loop 
represented by Dance. Whenever 
an FlO keypress is detected, the 
program ends. 

The dancing lady's music is 
generated by the PLAY statement, 



KEY SCAN CODE IN HEX KEY SCAN CODE IN HEX 

Esc 01 Left shift 2A 
! I 02 J\ 2B 
@ 2 03 z 2C 
# 3 04 x 2D 
$ 4 05 c 2E 
% 5 06 v 2F 
- 6 07 B 30 
& 7 08 N 31 
* 8 09 M 32 
( 9 OA <. 33 
) 0 OB >. 34 

oc ? I 35 
+= OD Right shift 36 
Backspace OE PnSc * 37 
Tab OF Alt 38 
Q IO Space bar 39 
w II Caps Lock 3A 
E 12 Fl 3B 
R 13 F2 3C 
T 14 F3 3D 
y 15 F4 3E 
u 16 F5 3F 
I 17 F6 40 
0 18 F7 41 
p 19 F8 42 
{ [ IA F9 43 
l J 1B FlO 44 
Enter IC Num Lock 45 
Ctr! ID Scroll Lock 46 
A IE 7 Home 47 
s IF 8 Up Arrow 48 
D 20 9 Pg Up 49 
F 21 Grey- 4A 
G 22 4 Left Arrow 4B 
H 23 Pad 5 4C 

J 24 6 Right Arrow 4D 
K 25 Grey+ 4E 
L 26 I End 4F 

27 2 Down Arrow 50 
28 3 Pg Dn 51 
29 0 Ins 52 

Fil D9 . Del 53 
Fl2 DA 

Tab/,e 2. Keyboard scan codes. 

MODIFIER KEY BINARY VALUE HEX VALUE 

Right Shift 0000 0001 

Left Shift 0000 0010 

Ctr I 0000 0100 

Alt 0000 1000 

Num Lock 0010 0000 

Caps Lock 0100 0000 

Tab/,e 3. The bit values for <shiftstatus>. 

01 

02 

04 

08 

20 

40 

and repeats endlessly because of 
the ON PIAY(n) statement. The 
MB command at the start of the 
music encoding string tells Turbo 
Basic to play the tune in the back
ground while the rest of the pro
gram executes in the foreground. 
This is done by "spooling" com
mands to the PIAY statement in a 
music buffer and passing notes to 
the PC's sound-generating hard
ware through an interrupt-driven 
scheme. By executing an ON 
PIAY(5) statement, an event 
occurs when only five notes 
remain in the music buffer. If the 
event-trapping subroutine submits 
the same music encoding string to 
the PIAY statement, the tune 
repeats as soon as it is finished. 

ON TIMER and ON PIAY, as 
well as the other event trappers 
that check for their events be
tween each statement, have a trap 
stop feature . In other words, once 
the trap is triggered and control is 
given to the trap's subroutine, 
checking between each statement 
is turned off. Without this feature, 
the subroutine could be called 
repetitively from within itself, eat
ing stack space on each event 
until stack space is exhausted and 
the program crashes. 

When the closing RETURN of 
the Update subroutine is encoun
tered, the event trapping is auto
matically turned back on. Here, it 
would be equivalent to the 
TIMER ON statement but, de
pending on the event trap, it 
could also be COM ON, PEN ON, 
PIAY ON, KEY ON, or STRIG 
ON-those being the other event 
trappers that check between state
ments for events. 

SPEEDING UP EVENT
TRAPPED PROGRAMS 
We have been enthusiastic about 
event trapping so far, and indeed 
the techniques described above . 
are very effective programming 
tools. You should be aware, how
ever, that there are no free 

continued on page 114 

March / April 1988 TURBO TECHNIX 113 



LISTING 1: ERRORS.BAS 

ON ERROR GOTO HandleErrors 

GetAF i le: 

INPUT "File Name" FileNameS 
OPEN FileName$ FOR INPUT AS #1 
PRINT "Fi le located. Thanks you!" 
PRINT "Press RETURN:" 
END 

HandleErrors: 

IF (ERR = 53) OR (ERR = 64) THEN ? : 
? "Sorry, no such file. Please try again.":? 

RESUME GetAFile 

LISTING 2: KEYEVENT.BAS 

CLS 
ON KEYC1) GOSUB KEY1 
ON KEYC2) GOSUB KEY2 
ON KEY(3) GOSUB KEY3 
ON KEYC10) GOSUB KEY10 

LOCATE 25,15 

KEY (1) ON 
KEY (2) ON 
KEY (3) ON 
KEY (10) ON 

COLOR 0,7 
? II F1 = 
COLOR 7,0 

beep, F2 = 2 beeps, F3 = 3 beeps, F10 = Exit "; 

LoopAroundEndlessly: 
LOCATE 10,35 : ? TIMES; 
GOTO LoopAroundEndlessly 

KEY1: 
? CHR$(07); DELAY .5 RETURN 

KEY2: 
? CHR$(07); DELAY .5 ? CHR$(07); DELAY .5 RETURN 

KEY3: 
? CHR$(07); : DELAY .5 ? CHR$(07); DELAY .5 ? CHR$(07); 
DELAY .5 : RETURN 

KEY10: 
END 

114 TURBO TECHNIX March/ April 1988 

EVENT TRAPPING 
continued from page 113 

lunches, and that event trapping 
involves a performance overhead. 

Because a program with event 
trapping must check between each 
statement for the indicated event 
or events, program speed is 
reduced. In some cases, such as in 
a sort routine, this reduction in 
speed could be unacceptable. 
Event trapping also exacts an 
additional penalty on compiled 
program size. In an event-trapped 
program, the Turbo Basic com
piler adds at least one byte more 
per statement to the program's 
.EXE file than it does to one with
out trapping enabled. 

The obvious answer is to only 
enable event trapping during cer
tain portions of the program. It's 
simply not needed everywhere. 
You can use such statements as 
TIMER OFF, KEY OFF, and 
PLAY OFF to disable trapping 
through portions of your program, 
and then use TIMER ON or KEY 
ON to re-enable it. Note that this 
does not help the problem of the 
extra event-trapping code. 

Turbo Basic does provide an 
answer. The $EVENT metastate
ment allows you to control the 
generation of event trapping code. 
The statement $EVENT OFF in 
your program stops the compiler 
from generating the extra event
trapping code until the compiler 
encounters an $EVENT ON com
mand. (Remember that metastate
ments must always be on a line by 
themselves.) 

Be aware of an important dif
ference between the use of the 
$EVENT metastatement and turn
ing off trapping with a statement 
such as KEY(l) OFF. Both do, in 
effect, the same thing. However, 
the KEY OFF, PLAY OFF, TIMER 
OFF, STRIG OFF, and PEN OFF 
statements simply stop the pro-



gram from reacting to their traps, 
but the tests for the events are still 
made, which consumes some 
small but appreciable amount of 
time. 

The $EVENT metastatement, 
on the other hand, is a compiler 
directive that prevents this code 
from being generated in the first 
place. Hence, with less code to 
execute, your programs run more 
quickly. 

You must coordinate the use of 
these two techniques, however. If 
you do a KEY (1) ON statement in 
an area of your program governed 
by $EVENT OFF, the KEY state
ment will be inoperative because 
the event-checking code was 
never generated. The default con
dition in Turbo Basic is $EVENT 
ON. 

DISCRETION IS THE BETTER 
PART OF TRAPPING 
The use and control of event trap
ping in Turbo Basic programs is 
not merely desirable, but a neces
sity. Error recovery, program 
branching, timer control, recog
nizing and acting on keystrokes
these are things that separate 
"toy" programs from professional 
software products. Admittedly, 
every advantage is balanced by 
some disadvantage. You sacrifice 
some speed of operation and must 
accept larger executable files. Your 
skill as a programmer will dictate 
how effectively you balance the 
two sides of the equation with 
such tools as the $EVENT meta
statement. Use trapping only 
where you must, and you will use 
it best. • 

Ralph Roberts, WA4NUO, is a free
lance writer who has written books on 
many topics, including Turbo Basic, 
Turbo Prolog, Reflex, and autograph 
coUection. 

Listings may be downloaded from 
CompuServe as EVENTS.ARC. 

LISTING 3: LADY.BAS 

' THE DANCING LADY: a program showing ON TIMER, and ON KEY event 
' trapping plus some nifty text animation 
' and some unforgettable music 

CLS 

Song1$ = "MBT255N44N42N41N37N37N32N37N37N41N37N41N44N42N41 11 

Song2$ = 11 N42N39N39N32N39N39N42N39N42N46N44N42 11 

Song3$ = "N41N37N37N32N37N37N41N37N41N44N42N41" 
Song4$ = "N42N41N42N39N44N42N41N37N37N37" 

$SOUND 75 

Jig$ = Song1$+Song2$+Song3$+Song4$ 

ON TIMER (1) GOSUB Update : TIMER ON 
ON KEYC10) GOSUB Endlt : KEYC10) ON 
ON PLAY(5) GOSUB LoadJig : PLAY ON 

PLAY Jig$ 'Play the song the first time 

COLOR 0,7: LOCATE 25,30 : ? " THE DANCING LADY ... Press F10 to End"; 
COLOR 7,0 
Dance: 

LOCATE 1, 1 
? II /.@.\ II 

? II ( 

* ) II 

-
? II ) ) II 

? II ( ) II 

LegMovement: 

-' I_ 
? II II 

? II II 

? •• -------------- •• DELAY .1 
LOCATE 5, 1 
? II I --1_ II 

? II _\ II : DELAY .1 

LOCATE 5, 1 
? II _i-- \ 
? II /_ 

LoadJig: 
PLAY Jig$ 
RETURN 

Update: 

X% = CSRLIN 
Y% = POSCO) 

TIME = TIME + 
LOCATE 2,20 : 
LOCATE X%,Y% 

RETURN 

Endlt: 

CLS : END 

II 

II : DELAY .1 : GOTO Dance 

' Reload the music buffer when it's ~ty 

' save cursor position 

' increment seconds 
PRINT "The lady has been dancing ";TIME;" seconds."; 

1 restore cursor 

March/ April 1988 TURBO TECHNIX 115 



PAL CONTROL 
STRUCTURES 
Structuring programs in PAL 
will he familiar territory if 
you know either Pascal or C. 

Dan Shafer 

For better or for worse, a language is 
known by its control structures. Pascal is 
the land ofREPEAT .. UNTIL and 
CASE .. OF. C is famous for switch. BASIC, 
alas, is known for GOTO. Understanding 

sQuARE 
0~E how languages control their own flow of 

execution is critical to working effectively within 
them. 

In this article, we'll examine the control structures 
in PAL. If you have some experience in Pascal or C, 
much of this will look like familiar territory. PAL bor
rows heavily from these two languages for its syntax 
and command names. Even if you don 't "speak" Pas
cal or C, however, this article will help you to under
stand and deal with control structures. 

WHAT ARE WE CONTROLLING? 
Before we examine the actual structures in PAL, we'll 
review why we use control structures in PAL or any 
other programming language. 

Left to their own devices, programs written in 
procedural programming languages follow a blind, 
straight-ahead execution strategy. They carry out the 
first instruction they encounter, then the second, 
then the third, and so forth. 

Real-life programs almost never work this way. To 
deal with the complexities of real life in procedural 
programs, we often do two things: branch and loop. 
Control structures alter a program's execution flow 
either by branching to other instructions rather than 
the next one in line, or by repeatedly executing a 
series of instructions in a loop until some condition 
causes the loop to end. 

PAL offers two branching constructs: 
IF .. THEN .. El.SE, for binary branching; and 
SWITCH, for multiple-path branching. 

The language also offers three types of loops: 
FOR, WHILE, and SCAN. 

PAL also includes three ways to stop a loop before 
its natural conclusion: RETURN, QUIT, and EXIT. 

continued on page 118 ~ 

~ 
s 
l 

~~~~~~~~~~~~~~~~~~~~~~ 

116 TURBO TECHNIX March/ April 1988

PAL
continued from page 116

BRANCHING INSTRUCTIONS
Within PAL, the easiest and most
common type of branching is
binary, or two-way, branching. If
you have procedural language
programming experience, you are
already familiar with the nearly
universal IF .. THEN .. El.SE con
struct. Such branches take the
general form:
IF <some condition is true>

THEN
<execute 1 or more conmands>

ELSE
<execute other conmands(s)>

END IF

The El.SE clause is optional,
but IF, THEN, and ENDIF must
be included in any IF statement. If
you omit the El.SE cl~use, the IF_
statement terminates tf the condi
tion is found to be false.

In other words, the omission of
the El.SE causes the IF statement
to be exited when the condition is
not true.

Notice that the IF clause is exe
cuted only once. It tests the condi
tion, and if the condition is true,
certain instructions are carried
out. If the condition is not true,
other instructions, possibly outside
of the IF statement, are executed.

Figure 1 is an example of_ an
IF .. THEN .. El.SE statement m a
PAL program. The program fr~g
ment in Figure 1 looks at a vana
ble called Result. If Result is
negative, it sets up a display sty!~
attribute that displays the value m
red type on a blue background. If
Result is positive, it sets up the
attribute to display white on black.
The last line of the listing uses the
PAL question mark operator, ?, to
print the value of R~sult. Because
Result is a number, 1t must be
converted to a string so that the ?
operator can display it. This con
version is handled by the
STRVAL function.

You can nest IF statements
inside of other IF statements. The
additional IF statements can be
part of the THEN clause of the
original IF statement, or they can
be part of the El.SE clause. PAL
places no arbitrary limit on the
depth of such nesting. Figure 2

IF Result<O
THEN STYLE ATTRIBUTE 20
ELSE STYLE ATTRIBUTE 15

END IF
? STRVAL(Result)

Figure I . The IF .. THEN .. ELSE
structure.

shows a nested IF .. THEN .. El.SE
statement. Briefly, this set of com
mands fills in the last name field
of a record with the last name
field of the preceding record if
the user authorizes it. (In fact, this
procedure would probably never
be used in PAL because there are
nonprogramming ways to carry
forward a name from one record
to another, but the procedure is
illustrative nonetheless.)

The outermost IF statement
checks to see if the LastName
field is blank. If not, execution
falls through all of the IF con
structs. If LastName is blank, then
the second IF statement checks
the previous record's LastName
field. If a name is found there, the
user is asked if he wants to use the
same name in the new record. If
the user responds "Y," the proce
dure assigns the previous record's
LastName field to the current
record's LastName field and con
tinues processing. Otherwise, the
user is asked to supply a last name
string.

The other branching structure
in PAL is the SWITCH statement.
If you are experienced in C, you'll
notice that the PAL SWITCH
statement is virtually identical to
its C counterpart. If your expe
rience is in Pascal, you will still
recognize the construct as being
fairly similar to the CASE .. OF
statement in that language. A
SWITCH statement has this basic
form:

SWITCH
CASE <condition1> :

<1 or more coomands>
CASE <condition2> :

<1 or more coomands>
CASE <condition3> :

<1 or more coomands>
OTHERWISE :
<1 or more coomands>

ENDSWITCH

118 TURBO TECHNIX March/ April 1988

IF (ISBLANK(ThisRecord[LastName]))
THEN IFCNOT
(ISBLANK(PrevRecord[LastName])))

THEN ? "Use " +
(PrevRecord[LastName]) + 11 ? 11

IF (GETCHAR()=ASC("Y"))
THEN

(ThisRecord[LastName])=
(PrevRecord[LastName])

ENDIF
ELSE ?

"Please supply a last name!"
END IF

END IF

Figure 2. A nested IF .. THEN .. ELSE
group.

You can have as many CASE
clauses as you like; we've stopped
at three for convenience, not for
any technical reason. Each CASE
clause has a condition associated
with it. This condition is like those
used with the IF statement. The
conditions must evaluate to a
Boolean, true/false result. Gener
ally, conditions use logical opera
tors for their tests.

The OTHERWISE clause is
optional. If present, it handles
conditions not covered by one of
the CASE clauses.

In PAL, one of the most fre
quent uses for the SWITC~ state
ment is in creating and using
menus that look like Paradox's
single-line menus. Using another
built-in PAL command, SHOW
MENU, your application can pro
duce such a menu and store the
user's response in a variable. The
SWITCH statement can then be
used to carry out specific instruc
tions relevant to the choice. Usu
ally, these are either PIAY state
ments that result in Paradox
loadi~g and running other scripts
(what Paradox calls program files),
or the name of a procedure you've
defined in your program. But
SWITCH can also parcel out con
trol to other kinds of statements,
such as those used in the discus
sion of the IF .. THEN .. El.SE
statement.

Figure 3 is a sample menu
handling routine. It assumes that
the SHOWMENU command has
been used and that the user's
response is stored in the variable
Menu Choice.

LOOPING INSTRUCTIONS
Loops alter the normal sequential
flow of program execution by
causing one or more instructions

inside the loop structure to be
executed more than once or
skipped complete ly, based on
some condition.

Table 1 provides guidelines for
determining when to use each of
PAL's three built-in loop structures.
The basic format for the FOR
loop is:
FOR <counter> FROM <startvalue>

TO <endvalue>
STEP <stepvalue>
<1 or more conmands>

END FOR

The counter is a variable. The
value following the optional
FROM clause tells where to stan
counting, and the value following
the optional TO clause tells where
to stop counting and terminate
the loop. The value following the
STEP clause (also optional) deter
mines the incremental value to
add to the variable each time
through the loop.

Each time through the loop, all
of the instructions between the
FOR and the ENDFOR are exe
cuted. Figure 4 demonstrates the
use of a FOR loop. When the loop
in Figure 4 finishes executing, the
cursor will be five rows lower in
the table on the screen than it was
before the loop began. Multiple
position cursor movement is one
of the most common uses of FOR
loops in PAL.

A WHILE loop's general struc
ture looks like this:
WHILE <condition>

<execute 1 or more conmands>
ENDWHJLE

The WHILE loop differs from
the FOR loop in two significant
ways. First, it executes an indeter
minate number of times rather
than a set number of times.

SWITCH
CASE MenuChoice = "Schedule"

PLAY 11 skednew11

CASE MenuChoice = "Cancel" :
PLAY "apptxcl 11

CASE MenuChoice "Reschedule"
PLAY 11 resked 11

CASE MenuChoice "Exit" :
QUIT

OTHERWISE
BEEP
MESSAGE "To quit, select Exit"

ENDSWJTCH

Figure 3. Menu-handling irnple
mentecl with SWITCH.

Second, because it executes as
often as needed, the WHILE loop
can also execute zero times (i.e.,
be skipped completely). Figure 5
shows a modified version of our
previous example containing a
series of nested IF statements.
Here, we've substituted a WHILE
loop for the first IF statement. If
ThisRecord's LastName field is
not blank, the loop never exe
cutes. On the other hand, unlike
the earlier FOR loop, this one will
not let the user escape until he
gives the program some data for
LastName. (We could have de
signed the earlier example to
force this as well, but that would
have complicated things unnec
essarily.)

tures, SCAN, is unique to Paradox.
Because Paradox is a database
management system, PAL pro
grammers frequently need to read
through all of the records in a file,
then retrieve or update them
based on some criteria. Sometimes
you need to update all of the
records in a file. While this could
be accomplished using the other
looping structures and some built
in functions, PAL provides a struc
ture specifically for this purpose.
The form is simplicity itself:

SCAN FOR <condition>
<1 or more conmands>

END SCAN
continued on page 120

The last of PAL's loop struc-

Loop type

FOR

WHILE

SCAN

Whe n to use it

Use FOR when you know the number of times you
want the loop to be carried out, or when the number
of executions needed can be dete rmined and placed in
a numeric variable.

Use WHILE when the loop must be executed an
indeterminate number of times (i.e., as long as some
condition is valid).

Use SCAN when performing some action on all or
selected records in a Paradox data fil e (table).

Table 1. Using the right loop at the right time in PAL.

TURBO C QUICK C LET'S C DESMET C DAT ALIGHT C ECO-C
LATIICE C MICROSOFT C AZTEC C COMPUTER INNOVATIONS C

~---~ NEW --- Limited time offer.

Peacock System's CBTREE
Object library for only $49!

Our FULL COMMERCIAL VERSION of CBTREE in object library format
is being offered for the amazingly low price of $49.

CBTREE provides you with easy to use functions that maintain key
indexes on your data records. These indexes provide you with fast,
keyed access, using the industry standard B+tree access method.

Everything you need to fully utilize CBTREE in your applications is
included. The CBTREE source code can be purchased later at any
time for the $110 difference. Example source programs and utilities
are included FREE.

CBTREE source library $159
Object library only $49

This limited time offer is simply too good to refuse. Peacock's standard
ROYALTY FREE, UNCONDITIONAL MONEY-BACK GUARANTEE ,
AND FREE TECHNICAL SUPPORT applies to this offer.

To order or for additional information
call 1-800-346-8038 or (703) 847-1743 or write:

.:
·':: ... -, .. ·: PEACOCK SYSTEMS, INC. . 2108 GALLOWS ROAD, SUITE C

VIENNA, VA 22180
PEA COCK SYSTEms. nc

Tradtlfllarks: Turbo C (Borland) ; Quick C (M1crosott) , Let's C (Mmk Wilh<1ms); DeSmet C (Ot!Smet

Software); Datalight (Dalalight), Latllce C (lattice); M1aosott C (M1crosoh): Aztec C (ManK Soltware) :

Computer lnncwa!Jons C (Computer Innovations); Eco-C (Ecosott, 1nc) .

March/ April 1988 TURBO TECHNIX 119

PAL
continued from page 119

The FOR is optional. If it is
present, then the condition fol
lowing it becomes a selection cri
terion. Only records that meet this
criterion are affected by the com
mands in the loop. If it is omitted,
then all of the records in the file
are affected by the commands in
the loop.

Figure 6 shows the use of the
SCAN structure. Here, the system
will award a bonus of $1,000 to all
of the sales staff in the Sales file

FOR counter FROM 1 TO 5
DOWN

END FOR

Figure 4. A FOR loop.

who have year-to-date sales of
$100,000 or more. If their sales
are below $100,000, nothing
happens.

We might want to apply a vari
able bonus to sales representatives
based on year-to-date totals. Fig
ure 7 shows how to do this using a
SWITCH statement inside of a
SCAN loop.

EXITING LOOPS
I doubt there is a programmer
alive who has never accidentally
created an infinite loop. Such a
loop never terminates because it
never meets the condition it needs
to meet before it can end. For
example, if the condition calls for
the value of a variable X to be
greater than 50, and inside the
loop the program is resetting the
value of X to 1 each time, X is
never going to get to 50. The loop
will keep executing forever.

There are three ways to get out
of loops before they terminate
normally. The first, RETURN, is
used only in complex PAL scripts
and is not discussed here.

The other two are QUIT and
EXIT. Either of these commands
can be placed anywhere inside a
loop. When the QUIT command
is encountered inside a loop, it
returns the user to Paradox as it
leaves the loop. When EXIT is

WHILE CISBLANKCThisRecord[LastName])
IF CNOT(ISBLANKCPrevRecord[LastName])

THEN? "Use"+ CPrevRecord[LastName]) + "?"
IF CGETCHAR()=ASCC"Y"))

THEN CThisRecord[LastName])=
CPrevRecord[LastNameJ)

ENDIF
ELSE? "Please supply a last name!"
ENDIF

ENDWHILE

Figure 5. A WHILE loop.

SCAN FOR (Sales[YTD] >= 100000)
CSales[BonusJ) = 1000

END SCAN

Figure 6. Paradox's SCAN statement.

SCAN FOR (Sales[YTD]) > 0
SWITCH

CASE (Sales[YTDJ) >10000 AND (Sales[YTDJ) < 50000:
(Sales[Bonus]) = 100

CASE (Sales[YTD]) >= 50000 AND (Sales[YTDl < 100000:
CSales[BonusJ) = 500

CASE (Sales[YTD]) >= 100000
(Sales[BonusJ) = 1000

ENDSWITCH
END SCAN

Figure 7. SWITCH within SCAN.

WATCH THE
END ZONE
If you are an experienced C or
Pascal programmer, be careful
of the END statement in PAL
programming. In traditional
programming languages, a sin
gle END form is used to termi
nate loops, branch constructs,
and even programs and proce
dures. PAL, however, has a spe
cialized END construct for each
type of activity. For example, in
an IF clause group, an ENDIF
is used. Similarly, ENDWHILE
and ENDFOR terminate the
WHILE and FOR structures.
If you're new to PAL, be watch
ful; this can take some getting
used to. •

-Dan Shafer

encountered, the user is taken out
of Paradox and directly into DOS.
QUIT and EXIT are normally
used in conjunction with one of
the branching constructs, when
some specific condition arises dur
ing a loop that makes further exe
cution of the loop unnecessary or
even dangerous.

As we've seen, PAL's control
structures are as powerful as those
of any popular high-level lan
guage. They let you program in a
readable, structured way without
"stretching" for the solution. If
you need further evidence, con
sider that PAL has been used to
generate enormous vertical mar
ket packages without a trace of the
oldest control structure of all:
GOTO! •

Dan Shafer is an independent consul
tant and freelance writer living in
Redwood City, California. He has
been using Paradox for more than a
year and has fielded a dozen applica
tions in PAL.

120 TURBO TECHNIX March/ April 1988

BINARY ENGINEERING

Preconditions and Postconditions

Bruce Webster

D
id you know that it's
possible (in theory, at
least) to make your
program bug-free? In

other words, you can write a com
plete specification of your pro
gram, then design and write your
program to match that specifica
tion exactly. An entire branch of
computer science, dealing with
program correctness, is dedicated to
doingjust that, using such tools as
propositions, assertions, predicate
calculus, abstract data design, and
flow analysis. Entire books have
been written on the subject, some
of which are listed at the end of
this article.

"So where does that leave me?"
you may ask. "All I want to do is
write a program to play tic-tac-toe,
not get a degree in computer
science." Fair enough. However,
there are some simple techniques
that you can use to make even
your tic-tac-toe program work cor
rectly. Let's look at two of them:
data abstraction, and the use of
pre- and postconditions.

DATA ABSTRACTION
Programs have one function-to
manipulate information. And they
are built from two items: algo
rithms and data structures. Data
structures are named storage loca
tions in memory and on disk that
hold the information. Algorithms
are sequences of instructions that
perform the manipulation. Since
we spend most our time working
on the algorithms, we tend to
approach programming from that

direction, with the data structures
as something of an afterthought
In other words, we use a code
driven approach to writing our
programs. For example, in writing
a tic-tac-toe program, we might
quickly sketch out the main body
of the program in the following
pseudo-code:

start new game
REPEAT

get move
make move
update display

UNTIL game over
show results (winner or draw)

We can turn this almost verba
tim into a main program, write the
indicated subroutines, and pro
ceed until the program works.
This represents a good, solid, top
down structured approach to writ
ing the program.

However, what if we use an
abstract data approach instead?
Rather than diving into our code,
we're going to define the data
types and structures needed to
represent a game of tic-tac-toe.
Furthermore, we're going to do it
without worrying (for now) about
which programming language
we're using or how we're going
to implement it. This is what is
meant by the "abstract" in "ab
stract data type." We're approach
ing the problem in terms of the
game itself, instead of in terms of
the game's implementation. So
let's look at the game of tic-tac-toe
to see what data types we might
need.

Playing tic-tac-toe means mak
ing moves, alternating Xs and Os,
on a 3-by-3 grid. The game is over
as soon as one of three conditions
is satisfied: there are three Xs in a

row (horizontal, vertical, or diago
nal) ; there are three Os in a row;
or all nine locations are occupied.
Once the game is over, the winner
is the player with three symbols (X
or 0) in a row. If neither player
wins, then the game is a draw.

Our most general data type is
going to be game. There are two
basic operations we want to per
form on a game: set up a new
game, and make a move at a given
location. There are also some
pieces of information we want to
be able to extract from a game,
such as how many moves have
been made, whose move is next,
what move (if any) has been made
at a given location, whether or not
the game is over, and who the
winner (if any) is. So we now have
the definition shown in Figure 1,
using a Pascal-like pseudo-code
notation.

We've got two other data types
to define here: move and location.
The type move consists of three
values: X, 0, and blank (no move
yet). The only operation we would
probably be interested in is an
"opposite" function: if passed X, it
returns 0, and if passed 0, it re
turns X. So we might define move
as shown in Figure 2.

The last data type, location, is
used to specify locations on the
tic-tac-toe grid. Since the grid is
3.rby-3, we can use the numbers 1
through 9 as shown in Figure 3.
We don't need to perform any
operations on the location data
type itself; it will only be used as a
parameter to some of the opera
tors for game. We can now pro-

continued on page 122

March/ April 1988 TURBO TECH IX 121

unit TicTac;
{

TICTAC.PAS

author

abstract data types MOVE,

last update

unit for i~lement
LOCATION, GAME
bruce f. webster
12 dee 87

}

interface

{ definitions for abstract data type Move }

type
Move = CBLANK,X ,0);

function Opposite(M : Move) : Move;

{ definitions for abstract data type Location }

const
Glim

type
Location

9·
'

= 1. .GL im;

{ defint ions for abstract data type Game }

type
Board
Game

Grid
Next,IJin
Moves

end;

array[Location] of Move;
record
Board;
Move;
Integer

function Getloc(var G : Game; L ·: Location) Move;
function NextMove(G : Game) : Move;
function MovesMade(G : Game) : Integer;
function GameOverCvar G : Game) : Boolean;
function \Jinner(G : Game) : Move;
procedure DoMove(var G : Game; L : Location);
procedure NewGame(var G : Game; First : Move);

i~lementation

function Opposite(M Move) : Move;
{

purpose
pre
post

}

begin
case M of

BLANK
x
0

end

return opposite of value passed
m has a value of X, 0, or BLANK
if m = X, then returns O
if m = O, then returns X
else returns BLANK

Opposite
Opposite
Opposite

.-

. -
:=

BLANK;
O;
x

end; { of proc Opposite }

procedure Setloc(var G : Game; L : Location; M : Move);
{

}

purpose
pre

post

begin

sets a locat i on i n the game to a given value
l is in the range 1 .• 9
m has a value of X, o, or BLANK
location l in the game has value m

G.Grid[Ll := M
end; { of proc Setloc }

122 TURBO TECH NI X March/ Apdl 1988

BINARY ENGINEEERING
continued from page 121

vide a definition for location as
given in Figure 4.

DATA 1YPE: game

PURPOSE: represent a game of tic
tac-toe

CONTENTS: contains complete tic-tac
toe game infom1ation,
including tic-tac-toe grid,
moves made, next move,
game status, and winner

OPERATIONS:
newGame(G : game; First: move)
doMove(G : game; Loe : location)
movesMade(G : game): integer
nextMove(G: game): move
getLoe(G: game; Loe : location) :
move
gameOver(G: game): boolean
winner(G : game) : move

Figure 1. The definition of game.

DATA 1YPE: move

PURPOSE: represent moves in a ti c
tac-toe game

VALUES: blank, X, 0

OPERATIONS: opposite(M : move): move

Figure 2. The definition of move.

2 3

4 5 6

7 8 9

Figure 3. Locations on the tic-tac-toe
grid .

We've now defined the abstract
data types we need to play tic-tac
toe. This is all very fine, and it's
probably a novel approach for
most of you, but what does it have
to do with program correctness?
T hat's what we're about to see.

DATA 1YPE: location

PURPOSE: enumerate location on ti c
tac-toe board

VALUE: the integers I through 9

OPERATORS: none

Figure 4. The definition of location.

PRECONDITIONS AND
POSTCONDITIONS
In our defini tions of the abstract
data types, we listed a series of
operators for the types game and
move, and we gave brief or im
plied descriptio ns of what each
did. Now let's get a li ttl e more for
mal and give preconditions and
postconditions for each one.

A precondition for an operator
is j ust that: a conditio n that must
be true before the operator is
called. It is a restrictio n placed on
the use of the operator. T he user
the n has the responsibility of
ensuri ng that all preconditions for
a given operator are true, prior to
calling the operator. If the user
fa il s to do this, then the operator
is no lo nger guaranteed to give
the correct results. For example,
a precondition of the operator
doMove() might be that the game
isn't over yet.

A postcondition for an operator
is simply a result of that operator.
You, the implementor, are guaran
teeing th at if all of the precondi
tio ns for a given operator are met,
then all of the postconditions for
th at operator will be true. For
example, a postcondition of the
operator doMove() might be that
the indicated locatio n in the grid
has been set to X or 0 , depending
upo n whose move it is next.

Consider the fo llowing sets of
pre- and postconditions for the
operators mentioned earlier:

newGame(G: game; First: move)

pre: First has the value X or 0

post: T he grid in G has been
cleared, th e game status has
been set to not over, the
number of moves made has
been set to 0, the winner has
been set to b lank (none) ,
and the next move set to
First

continued on page 124

function GetLoc(var G : Game; L : Location) : Move;
{

purpose
pre
post

returns value of a given location in the game
g has been initialized, l is in the range 1- .9
returns value of g at location l

}

begin
GetLoc .- G.Grid(L]

end; { of proc Getloc }

function NextMove(G : Game) : Move;
{

purpose
pre
post

returns next move
g has been initialized
if game is not over

then returns X or O
else returns BLANK

}

begin
NextMove := G.Next

end; { of func NextMove }

function MovesMade(G : Game) : Integer;
{

}

purpose
pre
post

returns nl.llber of moves made in game so far
g has been initialized
returns a value in the range 0 .. 9

begin
MovesMade := G.Moves

end; { of func MovesMade }

procedure InARow(var G : Game; I,J,K : Location);
{

puporse
pre
post

checks for three X's or O's in a row
g has been initialized, 0 or more moves made
if locations i,j,k all have the same value
and that value is not BLANK

then the winner is set to that value
}

begin
with G do begin

if Win = BLANK then begin
if (Grid(!] = Grid CJ]) and (Grid[J] = Grid[K])
and (Grid(!] <> BLANK) then Win := Grid(!]

end
end

end; { of proc InARow }

procedure CheckForWin(var G : Game; L : Location);
{

purpose
pre

see if last move won the game
g has been initialized, 1 or more moves made,
l is in the range 1 .. 9, location l has X or 0,
last move was made at location l

post

}

begin
case L

1

2

if l forms 3 X's or O's in a row
then the winner is set to that value ex or 0)

of
begin

lnARow(G, 1,2,3);
InARow(G, 1,5,9);
lnARow(G, 1,4, 7)

end;
begin

InARow(G,1,2,3);
InARow(G,2,5,8)

end;

March / Apdl 1988 T URBO TECH NI X 123

3

4

5

6

7

8

9

end

begin
InARow(G,1,2,3);
InARow(G,3,5,7);
InARow(G,3,6,9)

end;
begin

lnARowCG,1,4,7);
InARow(G,4,5,6)

end;
begin

InARow(G,1,5,9);
InARow(G,2,5,8);
InARowCG,3,5,7);
InARow(G,4,5,6)

end;
begin

InARow(G,3,6,9);
InARow(G,4,5,6)

end;
begin

InARow(G, 1,4,7);
lnARowCG,3,5,7);
InARow(G,7,8,9)

end;
begin

lnARowCG,2,5,8);
InARow(G,7,8,9)

end;
begin

InARow(G,1,5,9);
InARow(G,3,6,9);
InARow(G,7,8,9)

end

end; { of proc CheckForWin }

function GameOver(var G : Game) : Boolean;
{

purpose
pre
post

}

begin

returns status of game Cover or not)
g has been initialized, 0 or more moves
if game is over

then returns TRUE
else returns FALSE

GameOver := CG.Win<> BLANK) or CG.Moves Glim)
end; { of func GameOver }

function WinnerCG : Game) : Move;
{

purpose
pre
post

returns winner of game
g has been initialized, the game is over
if there are 3 X's in a row, returns X
if there are 3 O's in a row, returns O
else returns BLANK (draw)

124 TURBO TECHNIX March/ April 1988

have been made

BINARY ENGINEERING
continued from page 123

doMove(G: game; Loe: location)

pre: G is not over, Loe is in the
range 1..9, and location Loe
in the grid is blank

post: Location Loe in the grid is
set to either X or 0 (depend
ing on who had the next
move), the number of moves
made has been incremented,
the next move has been set
to the opposite value, and
the game status and winner
(if any) have been updated
accordingly

movesMade(G: game): integer

pre: G is initialized (via
newGame), and 0 or more
moves have been made (via
calls to doMove)

post: Returns the number of
moves made so far (0 .. 9)

nextMove(G: game): move

pre: G is initialized, and 0 or
more moves have been
made

post: If the game is not over, then
returns the next player to
move (X,0); if the game is
over, then returns blank

getLoc(G: game; Loe: location):
move

pre: G is initialized, and 0 or
more moves have been
made, Loe is in the range
1..9

post: Returns the contents of loca
tion Loe in the grid (X, 0, or
blank)

gameOver(G: game): boolean

pre: G is initialized, and 0 or
more moves have been
made

post: Returns TRUE if at least one
of the following conditions is
met: nine moves have been
made; there are three Xs in
a row (horizontally, verti
cally, or diagonally); there
are three Os in a row

continued on page 126

Paradox: The perfect relational
database manager for both novices

and advanced users
Paradox® is so tech
nically advanced that
it's easy to use.

You don't have to be a
genius to use the new

Paradox 2.0. Even if you're
a beginner. Paradox is the
only relational database
manager that you can take
out of the box and begin
using right away.

That's because Paradox
incorporates advanced
artificial intelligence
technology.

Paradox encourages
you to do things your
own way

With Paradox you 'II soon
be creating professional
customized applications.

Most important of all. as
your information manage
ment skills grow. and you
want more creative free
dom. Paradox stays out of
your way.

What all this means to
you is that you can concen
trate on running your busi
ness and stay well ahead
of the competition while
Paradox takes care of the
details.

With Paradox, net
works really work

Paradox 2.0 also handles
multiple users on a network.
making powerful multiuser
applications a reality.
This in itself is quite an
achievement.

'' Paradox is. indeed
a unique blend of a
user-friendly relational
database with a highly
sophisticated and pow
erful programming
environment.

Ruse/ DeMaria. PC Heek ''

'' We find Paradox
preferable tD every data-
base system we've
encountered so far.
including dBASE III
PLUS, for both every
day use and application
development.
Jay A/person & Steve King

Dat.a Based Advisor ''

For a brochure or
more information. please

call (800) 543-7543

Paradox is remarkably easy to use.
It's remarkably sophisticated.

That's not a contradiction.
That's innovation.

PARADOX
by Ansa

A Borland Company

Paradox is a registered trademark ot Ansa Software Ansa is a Borland International Company Other bf and and product names are registered trademarks or trademarks ol the1r
respective holders Copyright c 1987 Borland International ·11 this prnducl does nol perform 1n accordance with our claims. please call our customer service department, and we
will arrange a lull refund Bl 1160A

}

begin
\Jinner := G.\Jin

end; { of func \Jinner }

procedure DoMove(var G : Game; L : Location);
{

purpose
pre

make next move in game
g has been initialized, 0 or more moves made,
the game is not over, l is in the range 1 .. 9,
getloc(g,l) is BLANK

post the next move is made at location
a possible win is checked
if game is not over,

then the next move is toggled
else the next move is set to BLANK

}

begin
with G do begin

SetlocCG,L,G.Next>;
Moves := Moves + 1;
CheckFor\Jin(G,L);
if not GameOver(G)

then Next := Opposite(Next)
else Next := BLANK

end
end; { of proc DoMove }

procedure NewGame(var G Game; Firs t : Move);
{

}

var
I

purpose
pre
post

initialize a new game
first has a value of X or O
g has been initialized:

locations 1 .. 9 are setBto BLANK
the next move is set to first
the winner is set to BLANK
the nunber of moves is set to 0

: Integer;
begin

with G do begin
for I := 1 to Glim do

Setloc(G,I,BLANK);
Next := First;
\Jin : = BLANK;
Moves := 0

end
end; { of proc NewGame }

end. { of unit TicTac }

126 T URBO T ECH NI X March/ April 1988

BINARY ENGINEERING
continued from page 124

winner(G : game) : move

pre: T he game is over
(gameOver(G) is TRUE)

post: Returns X if th ere are th ree
Xs in a row; else returns 0 if
there are th ree Os in a row;
e lse returns blank

opposite(M: move) : move

pre: M has the value X, 0, or
blank

post: Returns a value according to
the following table:

M returns

blank
x
0

blank
0
x

What have we accomplished by
a ll of this? We've defined a set of
operators that can be written bug
free. In oth er words, if the pre
conditions are met for each oper
ator, we can guarantee the
postconditions.

Notice that there is an impor
tant relationship between th e pre
conditions and the set of opera
tors: the set of operators is suf
ficie nt to let the user guarantee all
preconditions. For example, the
operator doMove() requi res th at
th e game not be over and that the
location given be unoccupied.
T he operators gameOver() and
getLoc() let the user test both of
these conditions.

There are other subtle but
important relationships between
the operators. T he pre- and post
conditio ns of doMove(), for exam
ple, guarantee th at th ere can
never be both th ree Xs in a row
and th ree Os in a row, avoiding
potential bugs in gameOver() and
winner().

Finally, notice that we've done
the bulk of our work without writ
ing a single line of code! In fact,
we haven't even locked ourselves
into a given programming lan
guage. Let's see how we migh t
implement th is.

IMPLE MENTING YOUR
DESIGN
Most often, the best way to imple
ment an abstract data design is as
a separate module, such as a unit
(in Turbo Pascal) or a separately
compiled library (in Turbo C).
Th is has th ree major benefits:

• Program decomposition: Breaks
your program down into
smaller, more manageable
chunks, maki ng it easier to
code and debug.

• Moduw independence: Lets you
create a module th at you might
be able to use in several
programs.

As you write

your module, you

may find you need

additional opera

tors, not for the end

user, but for your

own internal use.

• Information hiding: Hides the
actual impleme ntation from
the user, allowing you to make
changes in the implementation
itself without the user knowing
or caring.

As you write your module, you
may fi nd that you need additional
operators, not for the end user,
but for your own internal use.
T his is perfectly normal and to be
expected. You sh ould write the
same abstract specifications for
these additional operators, com
plete with pre- and postconditions,
to help ensure the internal cor
rectness of your module. For
example, here are three operators
th at you migh t end up creati ng for
the game data type:

continued on page 128

LISTING 2: GAMEIO.PAS

unit GamelO;
interface

uses CRT,TicTac;

type
CharSet
MsgStr

= set of Char;
= stringC80l;

{ define types for parameters }

procedure DisplayGame(theGame : Game);
procedure DrawGrid;
procedure ReadChar(var Ch : Char; Prompt MsgStr; OKSet CharSet);
procedure Readlnt(va r Val Integer;

Prompt MsgStr;
Low,High Integer);

implementation

const
BoardX
BoardY
Bar
Line
Cross

= 10;
= 10;
= #186;
= #205;
= #206;

{ positioning for tictactoe grid }

{ special characters used for grid }

procedure DrawGrid;
{

}

purpose

pre
post

draws full-sized tictactoe grid,
with smaller nLmbered one beside it
screen has been cleared
two grids drawn on screen

procedure DrawHorz(X,Y : Integer);
{

}

purpose
pre
post

draws horizontal bar for tictactoe grid
x <= 63, y <= 23
bar is written to screen

begin
GoToXY(X, Y);
Write(Line,Line,Line,Line,Line,Cross);
Write(Line,Line,Line,Line,L ine,Cross);
Write(Line,Line,Line,Line,Line)

end; { of locproc DrawHorz }

procedure DrawVert(X,Y : Integer);
{

purpose
pre
post

draws vertical bars for tictactoe grid
x <= 78, y <= 16
vertical bar appears on screen (with gaps for crosses)

}

var
J,I : Integer;

begin
for J : = 1 to 3 do begin

for I := O to 2 do begin
GoToXY(X,Y+I); Write(Bar)

end;
y := y + 4

end
end; { of locproc DrawVert }

March/ Apdl 1988 T URBO TECHNI X 127

procedure DrawMovesCX,Y : Integer);
(

}

purpose
pre
post

draws 3x3 grid with numbered positions
x <= 77, y <= 21
3x3 grid drawn on screen

begin
GoToXYCX,Y); Write(1 11 ,Bar, 1 21 ,Bar, 13 1);

GoToXYCX,Y+1); Write(Line,Cross,Line,Cross,Line);
GoToXYCX,Y+2); Write(14 1 ,Bar, 1 5 1 ,Bar, 16 1);

GoToXYCX,Y+3); Write(Line,Cross,Line,Cross,Line);
GoToXY(X,Y+4); Write(1 71 ,Bar, 1 8 1 ,Bar,'9')

end; (of locproc DrawMoves }

begin
DrawHorz(BoardX,BoardY);
DrawHorz(BoardX,BoardY+4);
DrawVert(BoardX+5,BoardY-3);
DrawVert(BoardX+11,BoardY-3);
DrawMoves(BoardX+20,BoardY)

end; (of proc DrawGrid }

procedure DisplayGame(theGame : Game);
(

}

purpose
pre
post

draws status of tictactoe game on screen
grid has already been drawn on screen
contents of each grid location are displayed

var
l,Col,Row : Integer;
H : Hove;

begin
for I := 1 to Glim do begin

H := GetLoc(theGame,I);
Col := BoardX + 2 + 6 * CCl-1) mod 3);
Row := BoardY - 2 + 4 * ((1-1) div 3);
GoToXY(Col ,Row);
case H of

BLANK
x
0

end
end

Write(' ');
Write('X');
Write('O')

end; (of proc DisplayGame }

procedure ReadChar(var Ch : Char; Prompt : HsgStr; OKSet : CharSet);
(

purpose
pre

post
}

begin

prompt for and get one character of a given set
okset is non-empty and contains valid uppercase
characters (including digits, punctuation, etc.)
readchar() returns some character contained in okset

GoToXYC1,1); ClrEol;
Write(Prompt);
repeat

Ch := UpCase(ReadKey)
until Ch in OKSet;
Write(Ch)

end; (of proc ReadChar }

128 TURBO TECHNIX March/ April 1988

BINARY ENGINEERING
continued from page 127

setLoc(G: game; Loe: location;
M: move)

pre: G is initialized, and 0 or
more moves have been
made; Loe is in the range
1..9; M has the value X, 0,
or blank

post: Location Loe in the grid is
set to the value M

inARow(G: game; IJ,K: location)

pre: G is initialized, and 0 or
more moves have been
made; I,J and Kare all in
the range 1..9

post: If the game is not over yet
and the grid locations I,J,
and K all have the same
value, and that value is X or
0, then the game is over,
and the winner is set to that
value; otherwise, there is no
effect

checkForWin(G : game; Loe :
location)

pre: G is initialized, and 1 or
more moves have been
made; Loe is the location of
the last move made

post: All possible winning moves
through Loe are checked

Should these operators be "vis
ible" to the end user? That
depends. If you're writing a pro
gram that plays tic-tac-toe against
the user, then these kinds of oper
ators may prove useful for quick,
low-level access. But they also
increase the danger of "corrupt
ing" the correctness of the game
data structure, and thus introduc
ing bugs into your program.

In defining the data types them
selves, you can now use whatever
tools the language provides. For
type move, you can use an enu
merated type (in either C or Pas
cal) or simply an integer value (C,
Pascal, or BASIC). For type game,
you can use a structure (C), a
record (Pascal), or an array (C,

Pascal, or BASIC). You're free to
use whatever you feel most com
fortable with and whatever works
best for your implementation.

In fact, the ideal situation is to
have the user completely unaware
of the internal structure of the
game data structure, to remove
any temptation for direct modifi
cation. There are a number of
ways to accomplish this. One is to
declare the public version of game
to be an array of some number of
bytes, with no hint as to the inter
nal organization. Your operators
can work on that array directly, or
map it into a structure or record
for internal use.

Through type

casting and other

techniques, your

operators can refer

ence the internal

structure of the

game, while the

user sees it only as

the referent of an

untyped pointer.

Another approach, which works
particularly well in C, is to make
game an untyped (void) pointer.
You then need to have two new
operators:

createGame(G: game)

pre: G does not currently point
to an allocated block of
memory

post: Memory is allocated for a
game data structure, and G
points to that memory

continued on page 130

procedure Readint(var Val
PrOOllt
Low, High

Integer;
HsgStr;
Integer);

{

purpose
pre
post

}

begin
{$I·}

repeat

pr°"llt for and get an integer value in a given range
low <= high
readint() returns some value in the range low .. high

GoToXYC1, 1); ClrEol;
Write(PrOOllt,' (',Low,',' ,High,'): ');
ReadlnCVal)

until (IOResult = 0) and (Val >= Low) and (Val <= High)
{$I+}

end; { of proc Readint }

end. { of unit GameIO }

LISTING 3: MOVES.PAS

unit Moves;
{

MOVES.PAS unit for making computer's moves for tictactoe
author bruce f. webster
last update 12 dee 87

}

interface

uses TicTac;

var
CF lag
CHove

: Integer; { 0 if computer moves first, 1 otherwise}
: Hove; { contains computer's market CX,0) }

procedure GenerateMove(G : Game; var L : Location);

implementation

function WinFound(G : Game; var L : Location) : Boolean;
{

purpose
pre

post

checks for winning move in game
g has been . initialized, 0 or more moves have been made,
the game is not yet over
if the next move can win the game
then l is set to that move and winfound() returns TRUE
else l is unchanged and winfound() returns FALSE

March/ April 1988 TURBO TECH NIX 129

}

var
T~ Game;
I Integer;

begin
I := 1;
WinFound := FALSE;
repeat

if GetLoc(G,I) =BLANK then begin
T~ := G;
DoHoveCT ~, I) ;
if GameOverCTe~) and (Winner(Temp) <> BLANK) then begin

L := I;
WinFound := TRUE;
Exit;

end;
end;
I := I + 1;

until I >Glim;
end; { of func WinFound }

function BlockFound(G: Game; var L : Location) : Boolean;
{

}

purpose
pre

post

var
Te~
I
J

checks for blocking move in game
g has been initialized, 0 or more moves have been made,
the game is not yet over
if the next move can prevent the following move from
winning the game
then l is set to that move and blockfound() returns TRUE
else l is unchanged and blockfound() returns FALSE

Game;
Integer;
Location;

begin
I := 1;
BlockFound := FALSE;
repeat

if GetLoc(G,I) =BLANK then begin
Te~ := G;
DoHoveCT~, I>;
if not WinFound(Te~,J) then begin

L := I;

130 TURBO TECHNIX March/ April 1988

BINARY ENGINEERING
continued from page 129

destroyGame(G: game)

pre: G points to a game data
structure

post: The memory G points to is
deallocated, and G contains
a null pointer value

Through typecasting and other
techniques, your operators can
reference the internal structure of
the game, while the user sees it
only as the referent of an untyped
pointer.

I'm sure you're dying to see
how this all turns out, so I've pro
vided an implementation in Turbo
Pascal. The code that we've been
talking about all along is in the
unit source file TICTAC.PAS, List
ing 1. Additional code to display
the game board and accept input
from the user is provided in
GAMEIO.PAS, Listing 2. Routines
that allow the computer to play
against the user are in
MOVES.PAS, Listing 3.

USING THE
IMPLEMENTATION
Now that we have an implementa
tion to work with, let's go back
and look at the main body of our
program that we created so long
ago. We've cleaned it up a bit, so
that now it looks like this:

theGame : game
Next : location

startGame(theGame)
REPEAT

getMove(theGame,Next)
doHove(theGame,Next)
displayGame(theGame)

UNTIL gameOver(theGame)
showResultsCtheGame)

You'll recognize two of these
operators-doMove() and
gameOver()-from the list of
operators we implemented earlier.
But what about the other four?
These are operators for our entire
game-playing program. Three of
them-startGame(), display
Game(), and showResults()-

involve screen output. The fourth,
getMove(), may involve input (if
the user is playing one or both
sides), and it may involve calcula
tions (if the computer is playing
one or both sides). Regardless of
the function of the operators,
though, we can still use the same
pre/ postcondition approach:

startGame(G: game)

pre: G exists (but is not necessar
ily initialized)

post: All game options have been
selected, a new game (G) has
been started, and the game
has been displayed on the
screen

getMove(G: game; Next:
location)

pre: G is initialized, 0 or more
moves have been made, and
the game is not yet over;
Next exists

post: Next contains a value in the
range 1..9, and that location
in the grid in G is blank

displayGame(G: Game)

pre: G is initialized and 0 or
more moves have been
made

post: The game is displayed upon
the screen

showResults(G: Game)

pre: The game G is over

post: The results (X won, 0 won,
a draw) are somehow indi
cated on the screen.

If we now implement these four
functions according to their pre
and postconditions, we will have a
program with no bugs. It will per
form exactly as specified. The
program file in Turbo Pascal
(PLAY.PAS) is given in Listing 4.

Note how the specifications for
each of these operators mesh with
one another as the program runs.
Let's look at our pseudo-code
again, inserting the postconditions

continued on page 132

BlockFound := TRUE;
Exit

end
end;
I := I + 1

until I> GLIM;
end; { of func BlockFound }

procedure GenerateMove(G : Game; var L : Location);
{

}

purpose
pre

post

strategy

analysis

generates next move for computer
g has been initialized, 0 or more moves have been made,
the game is not yet over
*l contains a value in the range 1 .. 9,
getloc(g,*l) returns BLANK
goes first for move to the center C*l == 5)
then focuses on corners, then moves randomly
always looks for winning move
after 3 or more moves, also looks for blocking moves
not perfect, but si~le and effective; won't always
win when it could, but always plays to at least a draw

var
NMoves : Integer;

begin
L := 5;
NMoves := MovesMade(G);
if NMoves <= 2 then begin

if GetLoc(G,L) = BLANK
then Exit

end;
if WinFoundCG,L) then Exit;
if CNMoves > 2) and BlockFound(G,L) then Exit;
repeat

if NMoves <= 4
then L := 1 + 2 * Random(5)
else L := 1 + Random(GLim);

until GetLoc(G,L) =BLANK
end; { of proc GenerateMoves }

end . { of unit Moves }

March/ April 1988 TURBO TECHNIX 131

program PlayGame;
{

}

purpose
author
last update

ifl1'lement tic-tac-toe on the COIJ1'Uter
bruce f. webster
12 Dec 87 -- 1100 mst

uses CRT,TicTac,Moves,GameIO;

procedure StartGame(var theGame Game);
{

purpose
pre
post

}

var

set up a new game
none
g,cflag,cmove have been initialized
no moves have been made
the tictactoe grid has been drawn on the screen

Ans Char;
begin

Cl rScr;
ReadChar(Ans,'Who moves first: H)ll!lan or C)Ofl1'Uter? ', ['H','C'l);
if Ans = 'C'

then CFlag := 0
else CFlag := 1;

ReadChar(Ans,'Do you wish to be X or O? ', ['X','O'l);
if Ans = 'X'

then CMove := O
else CMove := X;

if CFlag <> 0
then NewGame(theGame,Opposite(CMove))
else NewGame(theGAme,CMove);
DrawGrid;
DisplayGame(theGame)

end; {of proc Initialize}

procedure GetMove(theGame Game; var L : Location);
{

purpose
pre

post

select the next move for the game
g has been initialized
0 or more moves have been made
the game is not yet over
l contains a value from 1 .• 9
getloc(g,l) is BLANK

132 TURBO TECHNIX March / April 1988

BINARY ENGINEERING
continued from page 131

after each operator. The result is
shown in Figure 5.

Note that each operator has its
preconditions made by the post
conditions of the previously called
operator(s). It is this meshing that
allows us to write programs that
can be proven correct.

You may be wondering where
the other operators (getLoc(), etc.)
have gone. They are (most likely)
being used within the new opera
tors above. A sample list of possi
ble calls is shown in Table 1.

theGame : game
Next : location

theGame, Next exist
startGame(theGame)

theGame has been initialized
0 moves have been made
the game is displayed on the screen

REPEAT
the game is not over

getMove(theGame,Next)
Next has a value in the range 1 .. 9
Next points to a blank location in the grid

doMove(theGame,Next)
the next move has been made at Next
the player of next move has been toggled

(X->O, 0-> X)
I or more moves have now been made
displayGame(theGame)

the game is displayed upon the screen
UNTIL gameOver(theGame)

the game is over
showResults(theGame)

the results of the game are displayed on
the screen

Figure 5. The meshing of pre- and
postconditions.

startGame(): newGame(),
displayGame()

getMove(): getloc(),
movesMade(),
nextMove(),
opposite()

displayGame(): getLoc(),
movesMade(),
nextMove()

showResults(): winner()

Tab/,e 1. Operators as used by other
operators.

CONCLUSION
Using pre- and postconditions for
subroutines, combined with an
abstract data approach , provides
you with a simple but effective
step toward program correctness.
It avoids the pitfalls of the "dive
in-and-code" method, a tempta
tion to which many of us suc
cumb. It also encourages good
software engineeri ng techniques,
including modularity, decomposi
tion, and information hiding.
Besides, it's kind of fun.

For those of you brave enough
to delve into the more technical
aspects of program correctness
and abstract data design, I've
li sted a few below. Be warned:
most are quite formal and are
usually digestible only in small
chunks. The exception is the book
by Stubbs and Webre, which
focuses more on data structures
than on program correctness, and
is a great book for any pro
grammer's library. •

SUGGESTED READING
Dijkstra, Edsger W. A Discipline of
Programming. Englewood Cliffs:
Prentice-Hall, Inc., 1976.

Gries, David. The Science of Pro
gramming. New York: Springer
Verlag, 1981.

Jones, Cliff B. Software Develop
ment: A Rigorous Approach.
Englewood Cliffs: Prentice-Hall
International, 1980.

Reynolds, John C. The Craft of Pro
gramming. Englewood Cliffs:
Prentice-H all International, 1981.

Stubbs, Daniel F., and Webre, Neil
W. Data Structures with Abstract
Data Types and Pascal. Monterey:
Brooks/ Cole Publishing Com
pany, 1985.

Bruce Webster is a computer merce
nary living in California. He can be
reached via MCI Mail (as Bruce
Webster) or on BIX (as bwebster.)

Listings may be downloaded from
CompuServe as TICTAC.ARC.

}

var
I

begin
: Integer;

if (HovesHade(theGame) mod 2) CFlag
then GenerateHove(theGame,L)

else begin
repeat

Readlnt(l,'Enter move',1,9);
if GetLoc(theGame,1) <>BLANK
then \.lrite("G)

until GetLoc(theGame,I) = BLANK;
L := I

end
end; C of proc GetHove }

procedure ShowResults(var theGame : Game);
{

}

purpose
pre

post

show results of tictactoe game
g has been initialized, 5 or more moves have been made
the game is over
the results of the game are displayed on the screen

var
H : Hove;

begin
H := \.linner(theGame);
GoToXY(1,1); ClrEol;
case H of

BLANK
x
0

\.lrite('The game was a draw');
\.lrite(1The winner is X');
\.lrite('The winner is 0')

end;
\.lrite(' press any key to continue (Q to quit) ')

end; C of proc Cleanllp }

var
theGame
Next
Ch

Game;
Location;
Char;

begin C main body of program TicTacToe }
repeat

StartGame(theGame);
repeat

GetHove(theGame,Next);
DoHove(theGame,Next);
DisplayGame(theGame);

until GameOver(theGame);
ShowResults(theGame);
Ch := ReadKey;

until (Ch in C'Q', 'q'l >;
ClrScr

end. C of program TicTacToe }

March/ April 1988 TURBO TECHNIX 133

LANGUAGE
CONNECTIONS
Get the best of both worlds by link
ing Turbo Prolog to Turbo Pascal.

Peter Immarco

T
he moment has
arrived-the moment
when you can call
Turbo Pascal 4.0 rou

tines from Turbo Prolog. At last,
all those wonderful Turbo Pascal
routines that you carefully crafted
are available to your Turbo Prolog
programs. The possibilities are
endless, but at what cost? As you
wi ll see, it is easier than you might
expect.

In this article, I'll show you how
to directly link Turbo Pascal 4.0
routines with a Turbo Prolog pro
gram. In addition, we will take a
firsthand look at the new utility
from Borland that converts unit
(.TPU) files to object (.OBJ) files .

GETTING STARTED
Before we go too far, we should
mention two restrictions. First, the
Turbo Prolog-to-Turbo Pascal
bridge is a one-way connection.
You can call a Turbo Pascal proce
dure from Turbo Prolog, but you
cannot call a Turbo Prolog predi
cate from Turbo Pascal.

Secondly, Turbo Pascal defines
its real numbers to be six bytes in
size, while Turbo Prolog stores its
real numbers in eight bytes (con
forming to the IEEE standard).
Because of this incompatibility in
real number storage, Turbo Pascal
code that uses floating point oper
ations must use a math coproces
sor. If a coprocessor is not availa
ble, you cannot pass and manipu
late real numbers between the two
languages, and you will have to do
a ll real arithmetic in either Turbo
Prolog or Turbo Pascal (but not
both) . If you do have a math
coprocessor, define your Turbo
Pascal real numbers as double
precision reals.

134 TURBO TECHNIX March/ Apdl 1988

With that in mind, let's see how
to link the two languages. The
actual connection is a six-step
process.

1. Compile a ll Turbo Pascal code
to units.

2. Extract the System unit, along
with any other standard units
that may be used from the
Turbo Pascal unit library
(TURBO.TPL).

3. Convert all Turbo Pascal units
(.TPU fi les) to object (.OBJ)
modules.

4. Create an assembly language
bridge to handle the naming
conventions.

5. Compile any Turbo Prolog
code to object modules.

6. Link all the object modules to
create an executable (.EXE)
file .

Let's examine each of these steps
in detail.

In order to link Turbo Pascal
code with Turbo Prolog code, all
Turbo Pascal modules must be in
object code format. Since Turbo
Pascal does not compile object
code, Borland provides a utility
that converts Turbo Pascal units to
object modules (we'll discuss this
utility at greater length shortly). If
you have Turbo Pascal code that is
not in unit form, you must first
convert that code to units before
using the conversion utility. (We're
assuming that you're familiar with
units. If you feel a little shaky on
units, refer to the Turbo Pascal
Owner's Handbook.)

Before going on to step 2, we
should do a little preparation

work. First, create a list of all the
units that you intend to use. Start
your list with the names of the
units you have just converted (or
created). Add the name of the
Turbo Pascal System unit, which is
used by all Turbo Pascal 4.0 units.
In addition, if you plan to do any
screen 110, add Crt to your list of
units. Other standard units you
may consider are Printer, Dos,
Turbo3, and Graph3.

Before you begin, make sure
that a .TPU file exists for each of
the units on your list. Notice that
the System unit does not have a
corresponding .TPU file
(SYSTEM.TPU). This is because
SYSTEM.TPU resides in the unit
library file, TURBO.TPL. There
fore, you must extract the System
unit from TURBO.TPL using the
unit mover utility,
TPUMOVER.EXE, on the Turbo
Pascal 4.0 distribution disk.

The unit mover is painless to
use. To extract the System unit
from the unit library, simply enter

TPUMOVER TURBO . TPL / * SYSTEM

at the DOS prompt. This com
mand assumes that
TPUMOVER.EXE and
TURBO.TPL are in the current
directory. The unit mover assumes
that input files will have a .TPU
fi le extension, so the .TPL exten
sion is included in the command
line. The / * parameter tells
TPUMOVER to extract the unit
that is specified next in the com
mand line (in our case, the System
unit). The unit mover then extracts
the System unit from TURBO.TPL,
creating SYSTEM.TPU. (For more
information on the unit mover,
consult the Turbo Pascal Owner's
Handbook.)

Once you've collected the .TPU

files, the next step is to convert
them to object modules using the
unit conversion utility,
TPU20BJ.EXE. Like the unit
mover, using TPU20BJ is straight
forward. As an example, let's con
vert the System unit to an object
module. With both SYSTEM.TPU
and TPU20BJ.EXE in the current
directory, enter

TPU20BJ SYSTEM

at the DOS prompt. TPU20BJ
assumes that the input file has a
.TPU file extension and auto
matically names the converted file
with a .OBJ file extension. In this
case, the converted file is named
SYSTEM.OBJ. If you have multi
ple files, you can convert them
one at a time or you can convert
them all at once. For example, to
convert three units named Unitl,
Unit2, and Unit3, you would type:

TPU20BJ UNIT1,UNIT2,UNIT3

The converted files would be
named UNITl.OBJ, UNIT2.0BJ,
and UNIT3.0BJ. TPU20BJ
reports the names of any units it
cannot find.

AN EXAMPLE
To make things concrete, let's link
a Turbo Prolog program, shown in
Listing 1, to a Turbo Pascal unit
that contains a single procedure
called Square_O, shown in Listing
2. Square_O has two integer
parameters, lnNumber and
OutNumber. InNumber is passed
by value, while OutNumber is
passed by reference. Square_O
takes lnNumber and multiplies it
by itself, returning the result in
OutNumber. We will call
Square_O from our Turbo Prolog
program.

Before you can call a Turbo
Pascal procedure, you must create
a Turbo Prolog global predicate
for that procedure. For instance,
the global predicates section in
Listing 1 contains a declaration
for square that calls the Turbo
Pascal procedure Square_O. You'll
also notice the global predicates
systeminit, systemexit, saveBP,
and restoreBP.

We've named the Turbo Pascal
procedure Square_O, instead of
Square, for a reason. During com
pilation, Turbo Prolog generates a
different predicate name for each

of the global predicate's possible
flow patterns (see the Turbo Prolog
Owner's Handbook for an explana
tion of flow patterns). Each subse
quently generated predicate name
consists of the original predicate's
name, followed by an underscore
character and a number. The
number for the first predicate
name generated during compila
tion would be 0. For each name
created thereafter, the number
would increment by one. If, for
instance, the predicate square had
three flow patterns, Turbo Prolog
would generate three calls to
procedures named square_O,
square_l, and square_2. Conse
quently, we must add the suffix to
our Turbo Pascal procedures.

A global predicate begins with a
predicate name, and is followed
by its arguments in parentheses.
The number of arguments the
predicate has must exactly match
the number of variables declared
in the Turbo Pascal procedure.
Also, the domain types of the
parameters must exactly match the
variable types declared in the
Turbo Pascal procedure header.
(Compare the square predicate
declaration in Listing 1 to the
Square_O procedure declaration
in Listing 2.)

After the predicate name comes
the "-"separator, followed by the
predicate's flow pattern. Since we
pass the first argument and return
the second argument, square has
an (i,o) flow pattern. Turbo Prolog
passes input parameters by value.
An input parameter's value at the
time of the call is pushed onto the
stack before the call is made.
Turbo Prolog expects that return
arguments (corresponding to an
output flow pattern) will be passed
by reference. A double word
pointer to the output parameter is
pushed onto the stack before the
call is made. The predicate square
in Listing 1 has an (i,o) flow pat
tern, so the procedure Square_O
in Listing 2 passes lnNumber by
value, and OutNumber by refer
ence as indicated by the Var iden
tifier. There must always be a
correlation between the input and
output parameters of a Turbo
Prolog global predicate and the
value and reference variables of a
Turbo Pascal procedure.

Following the flow pattern dec
laration (if one exists) comes the
keyword language, which is fol-

lowed by the identifier pascal. The
pascal identifier tells Turbo Prolog
that the global predicate is a Pas
cal module.

INITIALIZING UNITS
systeminit, the unit initialization
procedure for the System unit, is
also located in the global predi
cates section of Listing 1. When a
Turbo Pascal program executes, it
immediately calls each of the unit
initialization procedures. If we
plan to do any screen I/O from
Turbo Pascal, we must include the
unit initialization for the Crt unit
as well. Turbo Prolog does not
automatically make these calls for
you, so you must call the unit
initialization procedures from
your Turbo Prolog program.

Similarly, as your Turbo Pascal
program terminates, it calls all the
unit exit procedures. Again, Turbo
Prolog does not make these calls
automatically. Table 1 shows a list
of the initialization and exit calls
for the System and Crt units.

Notice two additional global
predicates, saveBP and restoreBP,
in Listing 1. You must save the
base pointer register before call
ing the Turbo Pascal unit initial
ization procedures, because some
of the initialization procedures
disturb the base pointer register.
Turbo Prolog uses the base point
er register to reference variables
created in Turbo Prolog predi
cates. Notice that initialize in List
ing 1 calls saveBP before any of the
unit initialization procedures are
called. The saveBP predicate calls
the SaveBP _O procedure in the
Turbo Pascal unit PROFACE.PAS,
shown in Listing 3. The procedure
SaveBP _O saves the base pointer
to the global variable BPStorage.
After all the calls to the unit
initialization procedures are com
pleted, the complementary proce
dure RestoreBP _O is called.
RestoreBP _O restores the base
pointer from BPStorage, return
ing it to the value it had before
the unit initialization procedures
were called.

THE BODY EXPLAINED
The main body (or goal) of List
ing 1 consists of the predicate run.

continued on page 136

March/ April 1988 TURBO TECHNIX 135

LISTING 1: PR02PAS.PRO

/* PR02PAS.PRO - a simple example of interfacing Turbo Prolog 1.1 to
Turbo Pascal 4.0 */

project "PR02PAS.PRJ"

global predicates
systeminit - language asm /* Calls the ASM module*/

/* SYSTEMINIT 0 which in turn */
/* calls the Turbo Pascal SYSTEM

square(integer,integer) -
(i,o) language pascal

systemexit - language asm

saveBP
restoreBP

predicates
initialize
run
goodbye

goal
run.

clauses
run:-

language pascal
language pascal

/*

/*
/*
/*
/*
/*

/*
/*
I*

unit initialization code*/

The Turbo Pascal proce- */
dure takes a number and */
returns its square. There- */
fore it has an (i,o) */
flow pattern */

This predicate calls the*/
exit code for the SYSTEM */
unit *I

initialize,/* Initialize all units that have initialization*/
/* code and maintain BP */

clearwindow,
square(4,Result),
write("The square of 4 is ",Result),
nl,
write("Press any key to continue."),
readchar(),
goodbye. - /*Call the exit code of any units that have them*/

/*Call all the unit initializaton code*/
initialize:-

saveBP, /* Save the Base Pointer register from harm*/
systeminit, /*Make the calls to the unit initialization*/
RestoreBP. /* Restore the Base Pointer register */

/*Call any necessary unit exit code. */
goodbye:-

systemexit. /* systemexit will terminate program */

/* END PR02PAS */

136 TURBO TECHNIX March/ April 1988

*/

CONNECTION
continued from page 135

run calls initialize immediately to
make sure the units have been
properly initialized. The calls to
the unit initialization procedures
within the predicate initialize
should be made in the same order
that the units would appear in a
Turbo Pascal uses statement. The
System unit initialization call is
always first.

The program then clears the
screen and makes the call to
square with the value 4. Turbo
Pascal multiplies the value 4 by
itself, and the result is bound to
the variable Result. After writing
the value of Result to the screen,
the program pauses until you
press a key. run then calls
goodbye, making sure all the unit
exit procedures are called, and
terminates the program via
system exit.

BRIDGING THE GAP
We need to call the Turbo Pascal
System unit initialization and exit
procedures in Table 1. In order to
do so, we need to create a global
predicate for each of these proce
dures. However, as mentioned
earlier, Turbo Prolog generates an
_O suffix at compile time, so we
cannot directly call these proce
dures from Turbo Prolog. The
solution is to write a small assem
bler program that passes on the
calls to the (standard) unit initial
ization and exit procedures. Since
these procedures do not require
any parameters, the assembler
program is straightforward.

Listing 4 shows the interface

Call Function

SYSTEM_001 The initialization code
to Turbo Pascal. Must
be called before calling
a Turbo Pascal routine
from Turbo Prolog.

SYSTEM_003 The exit code for Turbo
Pascal. Must be called
at the end of a Turbo
Prolog program.

CRT_OOO The Initialization code
from unit CRT.

Table 1. Turbo Pascal unit initializa
tion and exit calls for the System and
Crt units.

bridge (BRIDGE.ASM), which is
written in assembly language. At
the top of the listing is an external
procedure statement (EXTRN),
which li sts all the Turbo Pascal 4.0
un it in itialization and exit code
procedure names used in our
sample Turbo Prolog/ Pascal pro
gram. Each bridge procedure con
sists of a procedure labe l with a _O
suffix, a call to the correct proce
dure, and a far return.

THE CONNECTION
Now we are ready to link the
object modules from our Turbo
Prolog, Turbo Pascal, and assem
bly language routines. You should
have already compiled
PASUNIT.PAS (Listing 2) and
PROFACE.PAS (Listing 3) to units.
In addition, you should have
extracted the System unit from the
Turbo Pascal unit library
(TURBO.TPL). T he next step is to
convert all the un its to object
modules, using TPU20BJ :
TPU20BJ PASUNIT,PROFACE , SYSTEM

Now that the units have been
converted, the next step is to
assemble BRIDGE.ASM to an
object module. If you are using
Microsoft's assembler MASM,
enter
MASH BRIDGE

at the DOS prompt.
Our final step is to compile the

Turbo Prolog module, linking all
of the object modules together to
create the executable fi le. You can
create the executable fi le in two
ways. You may use Turbo Prolog's
auto-link faci lity, or you can create
the executable fi le manually with
the LINK EXE utility provided
with DOS. We'll look at the auto
link method first.

Going back to Listing 1, you' ll
see that the first statement in the
program is a project statement:
project "pro2pas. prj "

PR02PAS.P~ (in Listing 5) con
tains a li st of all the object
modules that Turbo Prolog must
link in order to create
PR02PAS.EXE. These modules
include the Turbo Prolog program
PR02PAS, the assembly module
BRIDGE, and the Turbo Pascal
modules PROFACE, PASUNIT,
and SYSTEM. To compile the pro
ject, se lect the Project option from

continued on page 138

LISTING 2: PASUNIT.PAS

(PASUNIT.PAS - which will result in the unit file, PASUNIT.TPU}

1r1it PASUNIT;

interface
(Two integer parameters only }
procedure Square_O(InN'-'Tber: Integer; Var OutN'-'Tber: Integer);

il!l>lementation

(Squa re takes a l"IU!i:>er CinN'-'Tber) and returns its square in
OutN'-'Tber }

procedure Square_O;
Begin

OutN'-'Tber:=lnNlilber*InN'-'Tber;
end;

end.

I -

LISTING 3: PROFACE.PAS

(Base Pointer protection procedures }

IXlit PROFACE;

interface

procedure SaveBP_O;
procedure RestoreBP_O;

illl>lementation

Var
BPStorage: Word;

Procedure SaveBP_O;
Begin

(Save the base pointer BP in a Turbo Pascal
global variable - BPStorage. BP should
be on the stack, pushed there by Turbo
Pascal. Push it back onto the stack to
insure a proper return for Turbo Pascal }

lnLine(S58/ (pop Ax }
S50/ (push Ax }
SBF/BPStorage/ (mov Di,Ofs BPStorage}
S89/S05 (mov [Dil,Ax CDS) });

end;

Procedure RestoreBP O;
Begin -

(Reset the Turbo Prolog base pointer (BP)
what it was before initialization calls}

(Remove the BP value pushed on the stack by
by Turbo Pascal. Move the old CBPStorage) BP
value that was pushed on the stack by
Turbo Prolog into Ax , and push it onto the
stack. when RestoreBP returns turbo will be
fooled into resetting the BP to the value
we pushed on the stack, not the value i t
placed there. }

lnL ineCS58/
SBF/BPStorage/
S8B/S05/

(pop Ax }
(mov Di ,Ofs BPStorage}
(mov Ax, CD il }

end;
end .

S50 (push Ax });

March/ April 1988 TURBO TECH NIX 137

LISTING 4: BRIDGE.ASM !

MASM assent>ler ex~le of a bridge to the
Turbo Pascal 4.0 1.r1it initialization and
exit procedures.

EXTRN SYSTEM_001:far,CRT_OOO:far,SYSTEH_003:far
PUBLIC SYSTEMINIT_O,CRTINIT_O,SYSTEHEXIT_O

BRIDGE segment
ass1..111e CS:BRIDGE

; Pass on call to Systemlnit 0 to SYSTEM_001.
Systemlnit_O proc Far -

call SYSTEH_001
ret

Systemlnit_O endp

; Pass on call to Crtlnit 0 to CRT 000.
Crtlnit_O proc Far - -

call CRT_OOO
ret

Crtlnit_O endp

; Pass on call to SystemExit 0 to SYSTEM_003.
SystemExit_O proc Far -

call SYSTEM_003
ret

SystemExit_O endp

BRIDGE ends
end

LISTING 5: PR02PAS.PRJ

pro2pas+system+pas1.r1it+proface+bridge

LISTING 6: BRIDGE2.PAS

{ Pass the Turbo Prolog 'underscore' procedure names
onto the correct Turbo Pascal 4.0 procedure name }

1.r1it BRIDGE2;

{ Link in the external CEXTRN) declarations for
the 1.r1it initialization and exit codes}

interface
uses CRT;

{One for each Turbo Pascal procedure called}
procedure ClrScr_O;

i""lementation

{ Just pass the call on to the correct Turbo Pascal
procedure }

procedure ClrScr O;
Begin -

CLRSCR;
end;

end.

138 TURBO TECHNIX March/ Ap1;1 1988

CONNECTION
continued from page 137

the Options pulldown menu, load
PR02PAS.PRJ, and select
Compile. Turbo Prolog then com
piles PR02PAS.PRO to an object
file and links it with the other
object files specified in PR0-
2PAS.PRJ, creating
PR02PAS.EXE. Voila! Any errors
that occur during the compilation
and link process appear in the
Message window.

THE ROAD NOT TRAVELED
The DOS LINK utility provides
the second method of linking the
object files to create the execut
able file . Keep in mind that Turbo
Prolog requires LINK version 2.20
or greater in order to link cor
rectly. First, compile
PR02PAS.PRO to an object file
using the OBJ file compiler
option. Next, Quit out of Turbo
Prolog to perform the link. LINK
links all of the object files, the
Turbo Prolog initialization
module, the symbol table created
by compiling the Turbo Prolog
module, and the Turbo Prolog
Runtime Library, to create the
executable image. My link com
mand looked like this:

link INIT+PR02PAS+SYSTEM+
PASUNIT+PROFACE+BRIDGE+
PR02PAS.SYM,PR02PAS,,PROLOG

CALLING TURBO PASCAL
FUNCTIONS
There may be times when we wish
to call Turbo Pascal library func
tions and procedures from Turbo
Prolog. For instance, we can clear
a window in Turbo Prolog, but
clearing the entire screen may be
a problem if several windows
exist. One solution is to call the
Turbo Pascal library procedure
ClrScr to clear the screen.

Once again, we run into the
problem of the _O suffix generated
by Turbo Prolog. In this case, we
don't have to use assembly lan
guage to handle the naming con
ventions. We can create a _O suf
fixed procedure in Turbo Pascal
to pass the Turbo Prolog call on to
the correctly named Turbo Pascal
library procedure.

BRIDGE2.PAS in Listing 6 does
exactly that for us. It defines a

procedure, ClrScr_O, which
makes a call to the library proce
dure OrScr, and then returns to
the calling program. To add
BRIDGE2.PAS to our program,
compile BRIDGE2.PAS to a unit,
extract the CRT unit from
TURBO.TPL and convert the
units to object modules as de
scribed earli er. Then add CRT
and BRIDGE2 to the li st of
modules in PR02PAS.PRJ (or the
LINK command line). Finally, add
a call to the CRT initialization
procedure in the Turbo Prolog
code. Listing 7 reflects these
changes to our Turbo Prolog pro
gram. You can use this same
method to call other Turbo Pascal
library procedures or functions.

WHAT TO WATCH OUT FOR
There are a couple of things to
watch for. If you change a unit
file , remember to convert the unit
to an object file using TPU20BJ.
I forgot a couple of times and
couldn 't figure out why the
changes weren't showing up in
my program.

If you've created a unit contain
ing initialization code, and you
intend to interface that unit to
Turbo Prolog, you have to convert
that code into a procedure, put
ting the procedure header in the
interface section of that unit.
Otherwise, there is no way to call
the initialization code, because no
procedure name exists that can be
referenced from a Turbo Prolog
global predicate. If you want to
maintain compatibility for that
unit with other Turbo Pascal pro
grams, change the initia li zation
code in your newly created initiali
zation procedure to a single cell.
Then a ll should be well.

Also, as we mentioned earlier,
Turbo Pascal code that uses float
ing point operations must have a
math coprocessor. Otherwise, you
will have to do your floating point
arithmetic in Turbo Prolog. •

Peter lmmarco is the national sales
manager for Thought Dynamics,
makers of the memory-resident utility
Fetch. He can be reached at 1142
Manhattan Ave., Suite CP-310,
Manhattan Beach, CA 90266.

Files may be downloaded from
CompuServe as PROPAS.ARC.

LISTING 7: PR02PAS2.PRO

/* PR02PAS.PRO - a simple example of interfacing Turbo Prolog 1.1 to
Turbo Pascal 4.0 */

project "PR02PAS.PRJ"

global predicates

systeminit - language asm

crt i nit - language asm

clrscr - language pascal

square(integer,integer) -
(i,o) language pascal

systemexit - language asm

saveBP
restoreBP

predicates
initialize
run
goodbye

goal
run.

clauses
run: -

language pascal
language pascal

/*Calls the ASM module that*/
/* in turn calls the SYSTEM unit*/
/*initialization code*/

/*Initializes the CRT unit*/

/* Clear the screen, but using */
/* Turbo Pascal */

/* The Turbo Pascal proce- */
/* dure takes a nunber and */
/* returns its square. There- */
/*fore it has an (i,o) */
/* flow pattern */

/*This predicate calls the*/
/* exit code for the SYSTEM */
/* unit */

initialize, /* Initialize all units that have initialization*/
/* code and maintain BP */

clearwindow,
square(4,Result),
write("The square of 4 is ",Result),
nl,
write("Press any key to continue."),
readchar(),
goodbye. - /*Call the exit code of any units that have them*/

/*Call all the unit initializaton code*/
initialize: -

saveBP,
systeminit,
crt init,
RestoreBP.

/* Save the Base Pointer register from harm */
/*Make the calls to the unit initialization*/
/* procedures */
/* Restore the Base Pointer register */

/* Call any necessary unit exit code. */
goodbye:-

clrscr,
systemexit. /* Systemexit will terminate program */

/* END PR02PAS */

March/ April 1988 TURBO TECHNIX 139

TALES FROM THE
RUNTIME
Memory models

Mark L. Van Name and Bill Catchings

I
n our last column (TURBO
TECHNIX, January I F ebru
ary, 1988), we discussed the
wildcard expansion routine.

Like all of the Turbo C Runtime
Library routines, this one works
with any Turbo C programs. In
particular, it works regardless of
the memory model you use. Last
issue we used a few coding tricks
to make sure that our code would
meet this goal. To save space we
largely glossed over those tech
niques. This time around we take
a deeper look at the various PC
memory models and how they
affect your work with Turbo C and
its Runtime Library.

Many programmers treat
memory models as nothing more
than hindrances or annoyances
that are best avoided. However,
choosing the right memory model
is crucial, due to the trade-offs in
program speed, size, and capabil
ity. As we look further into the
Runtime Library source code, you
will need a solid understanding of
memory models for two reasons.
First, the Runtime routines sup
port all of Turbo C's memory
models. This support shows up in
odd coding tricks, such as the few
we used in our wildcard expan
sion routine, expwild. The second
reason involves the extensive use
of assembly language in the Run
time. While memory model sup
port usually only affects a few
declarations in Turbo C routines,
it has far greater implications for
assembly language programs.

THE MEMORY MODEL BLUES
When programming on the PC,
you quickly learn that Turbo C is
not the source of the memory
model blues. Instead, the cause of
the trouble is the hardware archi
tecture of the Intel 8086 family of
processors. Although many PCs
now use newer Intel CPUs, the
newer systems still follow roughly
the same rules that we will discuss
here. The Intel 80286 and 80386
CPUs can operate in several
modes, but when they are execut
ing in real mode, they function in
essentially the same fashion as the
older 8086. While some of the
details vary, an 80286 or 80386
running under OS/ 2 also has bas
ically the same characteristics that
we describe here.

The 8086 family employs a seg
mented architecture in which
memory is divided into chunks, or
segments. Each 8086 segment con
tains 64K (The 80386 can accom
modate segments of different
sizes.) A program executing on
the 8086 can have up to four dif
ferent segments in use at any
time: one for code, one for the
stack, and two for data. Each seg
ment is identified by one of the
8086's segment registers.

To locate a byte in memory you
need an address with two compo
nents: the segment in which the
byte resides, and its offset, or posi
tion, in that segment. Each com
ponent is typically a 16-bit num
ber. If a byte is within any of the
segments that you are currently
using, all you need to define is

140 TURBO TECHNIX March/ April 1988

its address, its segment register,
and the 16-bit offset of the byte.
Any address that can be defined
with only its offset and a current
segment register value is called
near. An address that is outside of
the current segments, and there
fore requires both an offset and a
16-bit segment identification, is
called a far address.

Obviously, if some parts of a
program think a byte's address is
far, while others treat it as near,
things will break down. A memory
model is simply a set of rules that a
program's modules follow in
order to handle addresses
consistently.

The memory model you use
depends primarily on your pro
gram's size and data addressing
requirements. If your program is
small, you may be able to keep all
of your code and data near. Lar
ger programs often need more
than 64K of code or data, and so
must use far code or far data.
Because they require only 16 bits,
near pointers are smaller and can
be processed more quickly than
far pointers, which require 32 bits
but give you a larger range of
addresses (your address space).

THE SIX MODELS
In order to let you pick the type of
addresses most appropriate for
your programs, Turbo C and its
Runtime Library support six
memory models. (These six are
similar to those offered by most

other C compilers.) The Runtime
object library for each memory
model is in a different library file .
To build a program that uses a
particular memory model, follow
the conventions of that model and
then link the program with the
appropriate Runtime Library.

We need to introduce a few
terms before we explain the six
memory models. Global memory is
the memory used for a program's
globally declared variables, while
static memory is that used for its
static variables. C keeps all of the
local variables for its procedures
on the stack, which is a first-in,
first-out data structure maintained
by dedicated pointers in the 8086
family hardware. Any storage that
you dynamically allocate at run
time, such as that which you get
by calling malloc, is part of the
memory known as the heap.

The sizes we use in defining
Turbo C's memory models are the
maximums. The 8086 can address
a maximum of 1 MB of total mem
ory, while the PC further restricts
that to 640K

Turbo C's smallest memory
model is known as the Tiny
model. Programs that follow the
Tiny model use a single 64K seg
ment for everything-code, global
memory, static memory, stack, and
heap are all in the same segment.
You must use this memory model
to build a DOS .COM file.

In the Small memory model you
have two different 64K segments.
All of the code goes into one,
while the other holds global data,
static data, the stack, and the
heap.

The Medium model also forces
you to keep all of your data in one
segment. It allows your code, how
ever, to run over many segments,
up to a maximum of 1 MB.

The Compact model is similar to
the Medium, but with the space
allocation reversed. It gives you
only 64K for code, but you can
have 64K for global and static
memory, another 64K for the
stack, and up to 1 MB for the heap.

The Large model still limits you
to 64K for global and static data,
and 64K for the stack, but here
you can have up to 1 MB for the
heap and up to 1 MB for your
code.

The Huge memory model is the
biggest of the bunch. It is just like
the Large model except that each
source code file can have its own
64K segment for its global and
static variables.

Again, remember that all of
these sizes are limited by the 1 MB
address space of the 8086. There
are also a few other restrictions.
Regardless of the memory model,
no single routine can be larger
than 64K Because even the Huge
model has a maximum of 64K for
the global and static data in each
source code file, you cannot
declare any single data item to be
larger than 64K

You can get around this last re
striction by dynamically allocating
heap for an object. Items from the
heap can be larger than 64K as

long as you explicitly declare the
pointer to them to be Huge. (Note
that this is a declaration for a sin
gle pointer, which is not the same
as having the entire program fol
low the Huge memory model.)
When you use a Huge data object,
prepare to pay a speed penalty.
Turbo C uses normalized pointers
to work with Huge data items.
This is because arithmetic on a
32-bit segment and offset address
does not correctly carry from the
offset to the segment. Turbo C
keeps pointers correct by working
on them only in subroutines,
which are obviously much slower
than the machine instructions that
process most pointers.

MIX AND MATCH
Turbo C provides one other pow
erful construct: you can build pro
grams that use mixed memory
models, in which different rou
tines follow different models. This
lets you follow one of the smaller,
faster memory models for most of
your routines, while allowing indi
vidual data items (or even proce
dures) to be far or Huge. If most

continued on page 142

helps compare evaluate, find products . Straight answers for serious programmers.

FREE Catalog & Advice
CNer 40 products for Turbo X programmers
PLUS over 700 more for programmers In other
languages. Technical specialists help you
choose the rlght product for you. Call today.

Turbo BASIC Support

BASIC Development Tools PC$ 89
Turbo Finally! PC $ 85

Turbo C Support

Blackstar C Functions
C Utility Library
C Worthy Interface Library
with Forms

Curses - by Aspen
dB_ VISTA - single user
dBx - dBASE Ill to C
Essential Graphics
Greenleaf C Sampler
Greenleaf Comm Library
Greenleaf DataWindows
Greenleaf Function Library
Panel PLUS
PC-lint - v. 2.10
Turbo C Tools - by Blaise
Turbo HALO
TurboWINDOW/C

PC$ 99
PC $119
PC $169
PC $249
PC $109
MS CALL
MS$299
PC $185
PC$ 69
PC $129
PC $155
PC $139
MS$395
MS$ 99
PC$ 95
PC$ 79
PC$ 75

Recent Discovery
WKS Library - 30 C functions access spreadsheet
data. Enter/change cell values. formulas, macros,
range names, column widths. alobal defaults.
Lotus 1-2-3 or compatible. MS, Turbo C. Lattice.
Source Included. No royalties. PC $85

Vitamin C PC $ 159
Windows for Data PC CALL

Turbo Pascal Support

Halo
Mach 2 - MicroHelp
Math Pak 87
Report Builder
Screen Sculptor
System Builder
TP2C
Turbo Asynch Plus - Blaise
Turbo Extender
Turbo HALO
Turbo Optimizer - object
with source

Turbo Power Tools Plus
Turbo Power Utilities
Turbo Professional
Turbo-Ref
TURBOsmith Debugger
TurboWINDOW

PC $209
MS$ 55
PC$ 79
PC $159
PC$ 89
PC $129
PC $199
PC$ 99
PC$ 65
PC$ 79
PC$ 59
PC $109
PC$ 99
PC$ 79
PC$ 79
PC$ 35
PC$ 79
PC$ 79

Feature

Turbo-t...C Tools - Trans
lates Pascal to modular
K&R. MS, Turbo library
support. nested proce
dures, alt data types (incl.
structured constants).
operators. control struc
tures. 99% rate. PC $459

Cal I for a catalog and solid value
800-421-8006

Note: All prlces subject

:,Oo~~"'.'~~~~n°~is ad.
Some prlces are spe
cials. Ask ebout COD

'l'llE PllOGll1UDIEll'S SHOP
Your complete source for software services and answers

5-x Pond Park Road , Hingham. MA 02043
Mass . 800-442-8070 or 617-740-251 O

& POs. 200 formats
r,1us 3' laptop. UPS sur-

n".;~~lh~~~ add $3

TX388

March/ Apdl 1988 TURBO TECHNIX 141

FROM THE RUNTIME
continued from page 141

of your program uses a larger
model, you can also go the other
way and declare individual rou
tines and pointers to be near.

When assembling a routine, a
symbol definition (done with the
MASM ID parameter) specifying
which Turbo C memory model
you want can be one of the argu
ments to MASM. You pass these
definitions in the form
I D_ <memory model>_, giving
parameters like I D_LARGE_ or
I D_HUGE_. For example, the
command

MASM setargv /D_LARGE_ /MX

assembles the file SETARGV.ASM
with the Large memory model.
(Thel MX parameter preserves case
sensitivity for C's sake.) In our first
column we provided two batch
files that used the I D parameter
as they built and updated the Run
time libraries. If you omit the I D
parameter, the Turbo C assembly
language include file, RULES.AS!,
assumes the Compact memory
model.

Regardless of the memory
model you use when writing
procedures to add to the Runtime,
or changing those already in it,
you want a single source code
module that works with all six
memory models. All of the source
code supplied by Borland works
with all six models.

That source code contains
resources that you can use in writ
ing routines that are independent
of the memory model used by the
caller. These resources are useful
both when you are working with
the Runtime and for other C and
assembly language programming
tasks.

RULES.AS! uses the symbol that
you set with the MASM I D
parameter to execute EQUATE
statements when defining two
important symbols: LPROG and
LDATA. LPROG tells whether the
code uses far calls and returns,
while LDATA shows whether the

I FDEF HUGE - -mov ax, seg _ stklen@ if we are using the huge model,
mov es, ax we need the segment that holds
mov ax, es:_stklen@ the stack data

ELSE
mov ax, - stklen@ here we need only the stack's

length, as all data in one seg
END IF

Figure 1. Assembly code to handle global variab/,es using the Huge memory
model.

The second arg is the destination string. We push first its
segment if we are in a large data memory model. In any case,
we then push its offset.

IF LDATA
mov ax, word ptr NewCmdLn+2 Segment for large data
push ax

END IF
mov ax, word ptr NewCmdLn Destination offset
push ax

Figure 2. Assembly code to hand/,e near and far addresses.

data is far. Each is set to True or
False as appropriate for the
memory model you use.

Many routines then test these
symbols in conditional statements
so that they can take the action
appropriate to the memory model.
We used these symbols several
times in the code in our last
column; we have extracted four of
those cases as examples here.

In Figure 1, we check to see if
the program is being assembled as
a Huge memory model routine. If
HUGE is defined, then we
know that, unlike in all the other
memory models, global variables
are not necessarily all in the same
segment. Therefore, we must get
the segment address as well as the
offset of the global variable
_stklen before we can get its
value. If _HUGE_ is not
defined, then there is only one
global data segment. In this case,
since the data segment, DS, points
to the only global data segment,
we now can load the contents of
_stklen directly. If we had not
handled this special case, our rou
tine might not work in the Huge
memory library.

In Figure 2 we test the LDATA
symbol. We use it rather than the
memory model symbol so that one
section of code will work with all

of the memory models that have
far data. We test LDATA here to
be sure that we are handling a
subroutine argument correctly. Be
sure to set up subroutine argu
ments correctly. If the routines
you call use the wrong stack
offsets to locate their arguments,
you will get the wrong data. In
Figure 2 we must make sure that,
if a given data item is far, we first
push the segment address for that
item and then the offset address.
Both addresses are necessary for
far data, and the segment address
must be first.

Subroutine arguments affect not
only the routines you call, but also
the work you do when cleaning
up the stack after a routine re
turns to your code. When a rou
tine returns to your code, you
must adjust the stack pointer to
remove the bytes that you pushed.
If you forget to clean up the stack,
your own code will attempt to
return to what it thinks is the
caller's address on top of the
stack. This will not be an address
at all, but leftover data, and your

142 TURBO TECHNIX March / April 1988

program wi ll die most ignobly. In
Figure 3 we adjust the stack differ
ently, depending upon the size of
one of the pointer arguments. If
the data for this program is far, we
have to pop the extra two bytes of
segment identification from the
stack.

LPROG and LDATA are not
the only memory model tools in
RULES.ASL That fi le also con
tains a few macros that make it
easier for you to push pointer
arguments. For some unknown
reason, none of Borland's Run
time code uses these macros.

MEMORABLE MACROS
One useful pair of macros is
pushDS_ and popDS_. If you
are using any memory model with
far data, these macros take the
expected action: they push or pop
the DS. If you are using a memory
model with only near data, where
the value of DS never changes,
these macros do nothing.

Another macro, PushPtr, makes
it simple for you to push pointers
independently of memory model.
PushPtr's arguments are the
memory locations containing a
pointer's offset and its segment. In
a routine with far data, PushPtr
pushes both the segment and the
offset, while in a routine with near
data, it pushes only the offset.

When writing code that works
with all memory models, you must
consider the type of call , as well as
the type of the arguments to that
call. It's crucial if a procedure is
called with a near call or a far call.
The normal procedure in MASM
is to declare every label as near or
far, after which calls to that label
are handled appropriately.

RULES.AS! provides some rou
tine declaration macros that let
you handle this problem inde
pendently of the memory model
you are using. The Proc@ macro
opens a routine within a module,
while PubProc@ lets you open a
public function . You can use
ExtProc@ to declare an external
function.

All of these macros take as their
arguments the name of the rou
tine and an argument that says
whether the routine follows C
(_CDECL_) or Pascal
(_PASCAL_) calling conven
tions. These macros then set up
that routine so that it works cor
rectly with the memory model
being used. These macros also
add an underscore to the front of
the routine's name if it is a C rou
tine. Once you use these macros
to declare a routine, you can
call that routine with the name
<symbol name>@; you no longer
have to worry whether it follows C
or Pascal conventions, or whether
it is near or far. Figure 4 shows
the declaration of the Turbo C
Runtime Library routine sbrk as
an external routine, followed by a
call to sbrk.

CALL TO THE wild
We used one other trick in the last
column that is worth revisiting
now that we have discussed
memory models. We needed to
pass the DOS command line to
expwild to expand any wildcards
in it. Unfortun ately, the command
line is at a fixed place that is out
side the single global data seg
ment of the memory models with
near data. For memory models
with far data this is no problem,
because they address all data with
both a segment and an offset. But

we had to make sure that our C
routine expwild could work with
every memory model.

Turbo C's supp011 of explicit
pointer types came to our rescue.
We declared the source string
parameter to expwild to be a far
pointer. In expwild we used that
pointer to read the command line
and copy all relevant portions of
that line into a local variable.
Then we passed that local variable
to the routine wild for expansion.
This let Turbo C handle the call to
wild in the manner appropriate to
the memory model being used,
rather than a lso forcing wild (and
any other routines that wild might
in turn call) to declare its argu
ments as far.

No one likes to worry whether
their code will work with all of the
memory models, but because of
the architecture of the 8086 family
of processors, you have no choice.
Fortunately, Turbo C's Runtime
Library source code gives us some
support primitives that help make
the job a little easier.

Next issue we will delve into
another part of the Runtime. As
always, if there is a particular area
that you would like us to explore,
please write and let us know. •

Mark L. Van Name is a freelance
writer. Bill Catchings is a freelance
writer and a software engineer at
Data General Corp.

; Clean up the stack after the call. ~e adjust by 10 if in a large
; data memory model because of the extra segment id we pushed.

IF LOATA
add

ELSE
add

END IF

sp, 10 Clean up the stack

sp, 8 Clean up the stack

Figure 3. Assembly code to adjust the stack depending on pointer size.

ExtProcii) sbrk, _CDECL_

call sbrkii) ; Get some memory

Figure 4. Declaring and calling the Turbo C Runtime Library routine sbrk as
an external procedure.

March/ April 1988 TURBO TECHNIX 143

ARCHIMEDES'
NOTEBOOK
Designing a two-band vertical
antenna.

Augie Hansen, KBOYH

E ureka: The Solver is an
ideal tool for radio engi
neers and experimen
ters. In particular, I have

found it useful in designing tuned
circuits and antennas. Although
there are many fairly inexpensive
antennas available over the coun
ter, it is both fun and instructive to
bui ld your own antenna from
scratch.

In this article, we will design a
two-band vertical antenna, and in
the process, examine radio fre
quency resonant circuits. A
parallel-tuned circuit is at the
heart of this easy-to-build
antenna. By editing the Eureka
equation file, you can extend the
multibanding technique used here
to vertical antennas that cover
more than two bands, and to
other types of antennas, including
horizontal dipoles and the vener
able inverted vee.

HALF AN ANTENNA IS
BETTER T H AN NONE
If you are an experienced radio
operator or short-wave listener,
you know that the vertical
antenna is a much-maligned
antenna, often described as work
ing "equally poorly in all direc
tions." That's essentially true, but
it's really a bad rap. If properly
installed over a decent ground
system, the vertical antenna has a
low angle of radiation and is
therefore an excellent long
distance (DX) antenna. It is one
of the few antennas that is eco
nomically and mechanically fea
sible for low-frequency operation.

The vertical antenna is essen
tially half of a dipole stood on
end. In its many variations, it can
be ground-mounted, elevated
above the earth's surface, or it can
be cut to one of several common
wavelengths for a given frequency
to obtain the desired radiation
angle. And it can be made from a
wide variety of alternate materials,
including suspended wire and
aluminum tubing.

Typical ground-mounted single
band verticals are cut to some
fraction of the desired wave
length. The length (in feet) of a
1I 4-wave series-fed vertical an
tenna is equal to 234,000 divided
by the frequency in kilohertz. The
empirically derived number
234,000 is based on practical expe
rience with antennas of various
thicknesses, and works well for
verticals constructed of aluminum
tubing. The 1/4-wave vertical over
a perfect ground has a feed-point
impedance of about 36 ohms.
Over typical lossy ground, even
with a modest ground system, the
vertical has a feed-point impe
dance that approximates the
impedance of standard 50-ohm
coaxial cable. This eliminates the
need for complicated feed-point
impedance matching. Other com
monly used dimensions include
3/ 8-wave, 112-wave, and 5/ 8-wave
verticals, each having unique ver
tical radiation patterns and feed
point characteristics.

Making a multiband vertical
antenna involves constructing an
element that looks like a resonant
radiator in each of the target fre
quency bands (Figure 1). One way
of making an antenna resonate in

144 TURBO TECHNIX March/ April 1988

more than one band is to use a
trap that disconnects one section
of the antenna from another at
one frequency, but acts as a load
ing coil at another frequency. A
trap is simply a tuned circuit that
is also physically able to maintain
antenna integrity under maximum
wind loading and other environ
mental conditions.

GOOD VIBRATIONS
A tuned circuit consists of capaci
tors and inductors in various com
binations. We will restrict our
attention to the simple parallel
connected type. At a given excita
tion frequency, an inductor exhib
its some inductive reactance, XL.
Similarly, a capacitor exhibits a
capacitive reactance, Xe. By con
vention, inductive reactance is con
sidered "positive" and capacitive
reactance "negative" because they
are 180 degrees apart in phase.

At the resonant frequency, the
magnitudes of the inductive and
capacitive reactances are equal
(X1. = Xe). The offsetting phase
relationship produces a net reac
tance of 0 in a series circuit and a
reactance that is infinitely large in
a parallel circuit. The values of XL
and Xe are defined as:

X1.= 2rrfL

1
Xe = 2rrfC

continued on page 146

There's only one way to reach
a programmer ...

Use the programmer's magazine:

TURBO TECHNIX THEBORLANDLANGUAGEJOURNAL

Our readers know that TURBO TECHNIX is the place to be when the focus is
on development. They watch us for the tips and techniques that h elp them
utilize the speed and power of Borland's programming languages. And they
spend a lot of time in these pages.

Your ad should be here.

J ULY I AUGUST 1988
ISSUE CLOSING DATE: APRIL 24

Create custom text device drivers in Turbo Pascal
... build a meta interpreter in Turbo Prolog ...
add mouse support to your graphics applications . . .
check printer status from within PAL programs .. .
add a pattern locator to the MicroStar editor from
the Turbo Pascal Editor Toolbox .. . save and load
EGA screens in Turbo Basic ... all the TECHNIX
you've come to expect, and a whole lot more!

CALL NOW

SEPTEMBER/OCTOBER 1988
ISSUE CLOSING DATE: JUNE 23

Multitask Turbo Pascal applications under DOS ...
learn how to use linked lists in Turbo C . .. write a
code-generating script in PAL ... use Turbo Basic
to convert binary files to ASCII files for transmission
as text through a modem . .. telecommunications
with Turbo Prolog ... understand how data is stored
in and retrieved from 286 extended memory ...
our columnists, our critiques, and lots more!

RESERVE YOUR TURBO TECHNIX SPACE TODAY!

Office of the Publisher
(408) 438-9321

Publisher
Marcia Blake

Advertising Sal.es Manager
John Hemsath

Western Office

(714) 858-0408
Janet Zamucen

New England/
Mid-Atlantic Office

(617) 848-9306
Merrie Lynch
Nancy Wood

Southern Office

(813) 394-4963
Megan Patti

Trap circuit

c

Trap

I / 4-wave
on the
higher

frequency
(physical)

t
I / 4-wave
on the
lower

frequency
(e lectrical)

50-ohm feed line ••••••••It--!
FigurP 1. A two-band trap vertical antenna. At the high frequency, the trap
effectively disconnects the upper portion of the antenna. At the lower frequency,
the trap acts as a loading coil, and brings the physically short driven el,ernent
into resonance.

NOTEBOOK
continued from page 144

By equating the values and solv
ing for the lumped constant LC,
we obtain the following equation:

1012
LC=--

4rr2f2

Once we have the value LC for
a given frequency, we can rum
mage through our old parts bin
for a suitable inductor or capaci
tor as one compone nt of the
resonant circuit and then calcu
late the needed value of the other.
The solution recommends values
for L and C based on a rule of
thumb that the reactances should
be about 200 ohms. However, you
are free to assign a value to C that
produces a capacitive reactance
between 100 and 300 ohms. The
value of L is calculated to balance
the chosen C.

If we are inordinately lucky or
well stocked, we might find both
needed components on hand. It is
more likely, however, that we will
need to build or buy at least one
of them. Fortunately it is easy to
build inductors and capacitors out

of readily available materials.
For this design, we assume a

capacitor value and determine the
needed inductance, and then cal
culate the number of turns
needed for a given form factor
(coil diameter and length). The
number of turns, n, is calculated
by the formula

n = (L(l8d + 40l)) 01
'

d

where d is the diameter of the coil
form and l is its length (both in
inches). L is the inductance in
microhenrys. This is a reasonable
approximation for values of coil
length equal to or greater than 0.4
times the coil diameter.

EXPRESS YOURSELF
To express the formulas in terms
acceptable to Eureka, we r.eed to
make a few changes. As shown in
TRAP.EKA (Listing 1), the rr sym
bol is replaced by the built-in
function pi(), which returns the
value of pi. I use parentheses to
group expressions for clarity.

L46 TURBO TECH NIX March / April 1988

The *, / ,and' symbols indicate
multiplication, division, and expo
nentiation respectively.

To make the equations read
able, I have used descriptive
names, such as len and dia instead
of the cryptic land d shown in the
standard equations above. In
addition, I have extensively com
mented the equation file so that it
can stand alone. The comments
contain detailed infom1ation
about each step.

In the NUMBER OF TURNS
calculation, a constraint is applied
to check coil form values. Using
too small a coil length will give
inaccurate results.

Eureka's solution is given in
Figure 3.

HOT TIPS
I constructed the two-band vertical
from 1 114-inch O.D. aluminum
tubing. The base is insulated from
ground by standoffs attached to a
section of 2-by-4 driven merci
lessly into the ground. A dozen
radials of varying lengths are at
tached to a 114-inch copper
ground rod and joined to the
feedline shield. The feedline cen
ter conductor attaches to the verti
cal element

Figure 2 shows one of many
possible trap constructions. It uses
two short aluminum tubing sec
tions insulated from each other by
a Plexiglas or treated wood dowel.
I used 1 1/8-inch O.D. tubing
which telescopes nicely with the
1 1I4-inch element sections. A
1-inch O.D. insulator provides
enough rigidity to keep the
assembled antenna upright under
operating conditions.

The coil is a traditional air-coil
type cut to the required dimen
sion. The capacitor is formed by
cutting a piece of coaxial cable to
a length that produces the
required capacitance. You will
need to look up the cable's capac
itance per foot in the manufactur
er's literature, or measure the ca
pacitance of a short piece with a
capacitance meter. You could also
build the calculation into the
equation file and let Eureka do

Yott can use any combination of
coil and capacitor that p roduces
resona nce at t/U' design frequency,
provided it fi ts mechanically.

The central third of the trap and
ends of the coaxial capacitor must
be adequately weal l1Rrproof ed.

Use RCr 8U cabl.e f or high-power
traps. RCr58U is su itabl.e f or low
power.

Plexiglas
or wood

j'""f""-,;..__ ___ do we I
I-inch
0 .0 .

wire

Coaxia l
"capacitor"

I / 8-inch 0 .0.
aluminum

Figure 2. Mechanical details of a typi
cal trap. The coaxial capacitor has the
advantage that it can be "trimmed" by
cutting between resonance tests-as
long as it is not cut shorter than the
resonant frequency requires.

the math for you. I chose to use a
commercial 50 pF transmitting
capacitor instead, but the coaxial
capacitor is an inexpensive and
adequate alternative. Be sure to
weatherproof the cable ends with
a sealant or at least good-quality
tape.

If you use the coaxial capacitor,
you will need to extend the coax
ial cable stub along one element
away from the trap. It must go in
the direction away from the
higher frequency portion of the
element so that it won't detune
the antenna during high
frequency operation. You should
fine tune the trap so that it reso
nates at the higher frequency
design center, providing a high

continued on page 148

LISTING 1: TRAP.EKA

;------------------------------------- --;
TRAP: Trap vertical calculations
Augie Hansen, KBOYH

Formulas are based on the ARRL 1986
Handbook for the Radio Amateur.

;---------------------------------------;

.

Determine values of inductance (L) and capacitance (C)
required to resonate at a specified frequency. The
calculations are based on the formula

f = 10"6 I (2 * pi * sqrt(L * C))

where f is in kilohertz, L in microhenries, and C is
in picofarads, which are units suitable for tuned circuit
construction with readily available COfll:>Clnents. Also
calculate the lengths of the lower and upper portions of
the radiating element.

DESIGN DATA --

Adjust these values to match your design goals
and parts on hand •

f1 14100
f2 7100
dia = 2.0
len = 0.82
c = 50

high-band (20M) design frequency (kHz)
low-band (40M) design frequency (kHz)
coil diameter in inches
coil length in inches
pF

CALCULATE LC PRODUCT, L, AND C VALUES ----------------

LC represents a lllllped value of inductance times
capacitance. Using the given C, the required value
of L is calculated. The trap must exhibit a high
impedance in the high-band operating range. .

K1 1.0e+12
K2 1.0e+9
Xr 200
LC K1 I (4 * pi() -2 * f1"2)
Cr K2 I (2 * pi() * f1 * Xr)
L = LC I C
Lr = LC I Cr
L (C) : = LC I C

conversion constants

recomnended reactance value

recomnended C value
L based on your C value
recomnended L value

listing continued on page J 48

Ma rch/ April 1988 TURBO TECHNIX 147

listing continued from page 14 7

NUMBER OF TURNS --------------------------------------

Determine the nllllber of turns required to produce
an inductance of L (microhenrys) by using an air coil
of dia (inches) diameter and Len Cinches) length.
The calculation is a reasonable approximation for
a coil length greater than or equal to 0.4 times
the diameter. The value is based on the calculated
L, not the recornnended Lr value.

turns = (sqrt(L * CC18 * dia) + (40 * Len)))) I dia
Len >= 0.4 * dia ; constraint

tpi

I

TURNS PER INCH ----------------------------···---·----

Calculate the resulting turns per inch. You may need
to spread turns or use a different form size to get
the desired result.

turns I len

ELEMENT LENGTHS --------------------------------------

The lower menber is a full physical 1/4-wave element
for the higher frequency. The upper menber is cut
to provide an overall electrical 1/4-wave at the
lower design frequency. Coq>ensation must be made
for the loading effect of the trap coil by shortening
the upper element. Use telescoping 2-piece elements
to allow adjustment of center frequencies on both
bands and center-loading coq>ensation on the low
frequency band.

K3 234000
elem1 = K3 I f1

1/4-wave conversion constant
length of lower member

elem2 = CK3 I f2) - elem1 max. length of upper member

148 TURBO TECHNIX March/ April 1988

NOTEBOOK
continued from page 147

Eureka: The Solver, Version 1.0
Monday November 30, 1987, 10:12 am.
Name of input file: B:\TRAP.EKA

Variables Values

c 50.000000

Cr 56.437923

dia 2.0000000

elem1 16.595745

elem2 16.362002

f1 14100.000

f2 7100.0000

K1 1.0000000e+12

K2 1.0000000e+09

K3 = 234000.00

L 2.5481913

LC. = 127.40957

Len .82000000

Lr 2.2575169

tpi 8.0735844

turns 6.6203392

Xr 200.00000

Figure 3. Eureka's solution.

impedance at that frequency. Ad
just the trap in isolation for coarse
resonance before installing it in
the antenna. Use a dip meter or
RX noise bridge to check the
trap's resonant frequency.

The need to "cut and try"
causes much of the aggravation
associated with practical electronic
experimentation; numbers worked
out on paper are either approxi
mate or simply wrong. Eureka can
help by bringing the numbers into
line. The rest is up to you. Happy
DXing! 73, KBOYH. •

Augie Hansen is a computer consul
tant and trainer who owns and oper
ates Denver-based Omniware. He is
the author of several computer books,
including Proficient C, Microsoft
Press, 1987.

Listings may be downloaded from
CompuServe as ANTENA.ARC.

CRITIQUE

Turbo C Tools

Blaise Computing Inc.
2560 Ninth Street, Suite 316
Berkel£y, CA 94 710
(415) 540-5441
$129.00

0 ne of the advantages to
programming in C is
the availability of a vari
ety of function libraries.

By providing tested and debugged
code for many programming tasks,
a good library can significantly
reduce the time and technical
expertise required for applications
development Blaise Computing
has been supplying high-quality C
function libraries for years. They
now bring us Turbo C Tools, a
library designed specifically for
Borland's Turbo C compiler.

It is impossible to completely de
scribe the contents of this library
without taking up most of the mag
azine. Turbo C Tools contains 183
different functions, ranging from
the simple, such as sending a new
line to the standard output device,
to the complex, like installing a C
function as an interrupt service rou
tine. For the sake of economy, I'll
describe the more sophisticated
functions in detail while providing
a summary overview of the pack
age's other capabilities.

Turbo C Tools is not merely a
rewrite of the function libraries that
Blaise publishes for other C compil
ers. It is tailored specifically for
Turbo C, taking advantage of Turbo
C's strengths while not duplicating
functions found in Turbo C's own
function library. No license or
royalty agreement is needed to

distribute programs developed with
Turbo C Tools.

WINDOWS AND SCREEN
FUNCTIONS
Turbo C Tools includes 33 screen
handling functions that provide a
high-level interface to the video
display. Most of the functions work
via the BIOS, while a few use direct
access to video hardware for maxi
mum speed. Turbo C Tools sup
ports five display types: mono
chrome display adapter, Color
Graphics Adapter, Enhanced
Graphics Adapter, Professional
Graphics Adapter, and the PCjr.
The EGA 43-line text mode is sup
ported for either monochrome or
color monitors.

The Turbo C Tools' screen func
tions enable the user to: determine
the type of installed video equip
ment and its current mode; select
display device, mode, and page;
retrieve and set cursor location and
style; clear and scroll whole or rec
tangular regions of screens; write to
and read from the screen, and con
trol color palettes.

Turbo C Tools provides powerful
support for text-based windows.
There are 27 functions for creating,
displaying, modifying, and using
windows. Examples of windows
created with the Turbo C Tools win
dows functions are shown in Figure
1 (see page 152). Many of these
functions provide control of
advanced window features. The
advanced features can be used if
needed, but can also be safely
ignored since windows are auto
matically created with a set of
default characteristics that are suit
able for most applications. This
choice between default and user
specified window characteristics
provides flexibility.

Creating a window requires only
a single function call, passing the
window's size and the attributes of
its data area as parameters. Once
created, a window exists as a data
structure in memory. Displaying the
window on the screen requires
another call, to specify the win
dow's screen location and border
type. A window is required for
almost all window functions, such
as those that write to and read from
a window, whether or not it is dis
played. Window output functions
include writing strings and single
characters, wordwrap, and string
formatting (in the manner of
prin~)). Input functions include
echoing keyboard input in the
window, and reading data from a
window to a buffer.

Turbo C Tools allows precise
control over a window's appear
ance. For example, screen attributes
of an entire window or of a portion
of a window can be changed. Sim
ilarly, a window or a rectangular
block within a window can be
scrolled horizontally or vertically.
Windows can overlap, and the
number of concurrent windows is
limited only by available memory.
All interactions between windows,
such as saving and restoring pre
vious screen contents, are handled
automatically.

Turbo C Tools uses its window
functions to implement an impres
sive set of menu functions. Three
basic menu styles are available: ver
tical, horizontal, and grid. Selection
is made with a moving highlight
bar or by user-defined keystrokes. A
fourth type of menu, Lotus-style, is
a horizontal menu with automatic

continued on page 150

March/ April 1988 TURBO TECHNIX 149

CRITIQUE
continued.from page 149

display of a menu description
whenever a menu item is high
lighted. The four types of menus
that can be created with Turbo C
Tools are illustrated in Figure 2 (see
page 152). A nice feature is the abil
ity to protect individual menu items
when a menu choice is not avail
able at a particular point in the pro
gram. A protected menu item is dis
played in a different color, and
cannot be selected by the highlight
bar.

The menu functions allow com
plete control over the interactions
between your menus, program, and
keyboard input By default, the
Home, End, Tab, Shift-Tab, Enter,
Esc, and arrow keys allow naviga
tion within and between menus in
the usual manner. The response to
keypresses can be defined any way
you like. For example, keys can be
defined to enable selection by
pressing the first letter in the menu
item. The menu functions are very
flexible, and can be used for every
thing from simple 2-choice menus
to complicated multilevel menu sys
tems like those used in the Turbo C
environment

INTERRUPT AND
INTERVENTION ROUTINES
Some of the most useful features of
Turbo C Tools are those provided
under the headings of "Interrupt
Service Support" and "Intervention
Code." The Interrupt Service Sup
port routines provide all the sup
port needed to utilize interrupt ser
vice routines (ISR) written in Turbo
C, both hardware and software
driven. This includes installing and
removing ISRs, manipulating the
interrupt vector table, detecting
installed ISRs, and instalJing/
removing TSR (terminate and stay
resident) programs.

Blaise uses a clever approach to
the special problems associated
with ISRs. The address placed in
the interrupt vector table does not

point directly to the ISR code.
Rather, it points to a data structure
called the ISR control block. The
first few bytes of this structure are a
far call to the interrupt dispatch
routine. The dispatch routine does
two things. First, it uses information
stored in the ISR control block to
prepare the processor to execute
the ISR; for example, it sets the
stack segment and stack pointer
registers. Second, it transfers con
trol to the ISR itself. When the ISR
terminates, control passes back to
the dispatcher, which restores the
initial machine state and returns to
the original caller via an IRET
instruction. Your own code does
not need to attend to these house
keeping chores because the Turbo
C Tools routines take care of them.

The Interrupt

Service Support rou

tines provide all the

support needed to

write hardware or

software interrupt

service routines

(ISRs) in Turbo C.

Turbo C Tools' intervention code
routines are the icing on the inter
rupt service support cake. The
intervention routines can schedule
your ISRs to be invoked at regular
time intervals, at a specified time of
day, or when a "hot key" is pressed.
This enables you to write programs
that will, for example, automatically
read data from laboratory instru
ments every 10 minutes, call an
online service for stock quotes at
noon every day, or pop up,
SideKick-like, at the press of a key.
While the Turbo C Tools routines
greatly simplify writing of code for
ISRs and TSRs, careful program
ming is still required. The Turbo C
Tools manual does a good job of
explaining the pitfalls that lie in
wait for inexperienced program-

150 TURBO TECHNIX March/ April 1988

mers. Topics covered include hard
ware interrupt priorities, reentrancy,
interrupt filtering, and background
floating point operations.

OTHER HELPFUL FUNCTIONS
Turbo C Tools includes a raft of
other functions which, while not as
impressive as the screen and inter
rupt routines, are nonetheless very
useful and an important addition to
any C programmer's arsenal. String
functions perform filling, searching,
character conversions, and tab
expansion and compression.
Graphics functions draw colored
dots and lines. Keyboard functions
perform various types of keyboard
input and manipulation. File func
tions maintain volume labels, and
lock or unlock portions of files.
Printer functions provide an inter
face to the DOS PRINT utility. Util
ity functions-some of which are
implemented as macros-provide
57 miscellaneous services. These
include manipulation of pointers
and addresses, memory transfers,
obtaining program environment
information, clock and speaker
control, port 110, and data conver
sion. Particularly useful are two
functions for detecting pointer
errors, which can help in tracking
down the sources of those pesky
null pointer assignments.

While Turbo C Tools certainly
covers a wide range of program
ming needs, it does not do every
thing. The major deficiencies are in
graphics, for which there is only
very rudimentary support, and
asynchronous communications, for
which there is no support This is
not necessarily a problem, because
those programmers who do not
need graphics or communications
functions will not want to pay for
them. If you need a communica
tions library, Blaise's "C Asynch
Manager" now supports Turbo C as
well as Microsoft C. Specialty graph
ics routine libraries for Turbo C
are, or will soon be, available from
several firms.

EVALUATING A FUNCTION
LIBRARY
Of course, a C function library
must be evaluated on more than

the number of functions it provides.
The key concern is: Do the func
tions do what they are supposed to?
Of almost equal importance is how
well integrated and robust the func
tions are, how errors are handled,
availability of customer support,
and the quality of the documen
tation.

Turbo C Tools scores very high
marks in these areas. While time
limitations prevented me from per
forming extensive tests on every
function, I did give the more com
plicated ones a thorough workout
All performed smoothly and with
out problems. Given the complexity
of some of the Turbo C Tools func
tions, this suggests that the code is
well written and thoroughly de
bugged. Runtime errors are han
dled well. For example, if you try to
lock part of a fi le that has not been
opened, display a window that is
already displayed, or select a non
existent menu item, the function
does not crash but instead returns
an error code, allowing your pro
gram to trap the error. T he Turbo
C Tools header fi les are written to
take advantage of Turbo C's

strong data-typing and function
prototyping capabilities, which is
very helpful in detecting and pre
venting bugs. Complete sample pro
grams are included that illustrate
the use of many Turbo C Tools
functions, particularly the more
complicated ones such as interrupts
and intervention code.

Turbo C Tools comes with four
compiled library versions, one each
for the Small, Medium, Compact,
and Large memory models. The
library for the Small model can also
be used for the Turbo C Tiny
model, with the limitation that sev
eral speaker-control functions are
not available. When using the
Turbo C Huge memory model, the
Turbo C Tools Large model library
provides reliable support for pro
grams that don't contain data
objects (such as arrays) exceeding
65536 bytes in size. Since programs
lacking data objects larger than 64K
can be compiled with the Large
memory model, the point of this
support is unclear. For programs
that really require the Huge
memory model, a Huge model

library can be constructed by re
compiling the Turbo C Tools source
code modules using the -mh com
piler option.

Did I say "source code"? Yes
indeed-source code is included
for every Turbo C Tools function.
Almost all of the modules are writ
ten in C. The few exceptions,
mostly the routines for direct video
access, are in assembly language.
The source code is fu lly and clearly
commented, and can be modified
and recompiled if you have the
need, or the code can simply be
used as an educational tool.

The manual is a bit over 300
pages and is supplied in an IBM
size binder. While I wish the type
was slightly larger, the manual is
otherwise quite good. It begins with
a general overview of the Turbo C
Tools functions, instrnctions for
installation, and information on
programming style, compiler warn
ings, and printing and modifying
the source code. Next, there is a
chapter on each category of func
tion-string, menu, window, etc.

continued on page I 52

LIST OURS

ESSENTIAL COMM LIBRARY 185 125 TURBO WINDOW/PASCAL 95 79
LISTIOURS

GREENLEAF C SAMPLER 95 69
GREENLEAF COMM LIBRARY 185 125
GREENLEAF FUNCTIONS 185 125
MICROSOFT QUICK C SPECIAL 99 65
PANEUQC OR rrc 129 99
PERISCOPE ll·X 145 I05
PFORCE 295 215
RESIDENT C 99 85
TURBO C JOO 65
TURBO C TOOLS 129 99
TURBO WJNDOW/C 95 19

TURBO-TO-C TOOLS 495 449
UNIVERSAL GRAPHICS LIBRARY 150 119

OTHER LANGUAGES
LAHEY PERSONAL FORTRAN 11
LOGITECH MODULA-II COMP KIT
MICROFOCUS PERSONAL COBOL
PC/FORTH

UTI L IT I ES

951 89 99 79
149 119
150 109

Programmer's Pa; adise Gives You Superb Selection,
Personal Service and Unbeatable Prices!

~-T-U_R_B_O_P_R_O_F_E_S_S_I_O_N_A_L_4.-0- g~ ~~:mm:~ g~~g riR?Ri~ l~~ I~~
DAN BRICKLIN'S DEMO TUTORIAL 50 45

~eer~i~~~3{~0°/i:;d~ ~~~gf!!~~=I '(I_ 6~~ l~~ju5~es
pop-up resident routines, BCD arithmetic,
virtual windows and menus, EMS and extended
memory access, long strings, large arrays,
macros, and runtime error recovery. Complete
source code is included.

FANSJ CONSOLE 75 65
FETCH 55 45
MACE UTILITIES 99 89
NORTON COMMANDER 75 55 Welcome to Parad ise. The microcompuler software source that caters to your programming needs.

Discover the Many Advantages of Paradise ..
• Lowest pnce gu.u eed • Huge uweniory, unmediate shipment • Special orders
• Latest versK>f!s • Know~geable sales staff • 30-day money-back guarantee

Over 500 brand-name products in stock -if you don't see it, call!

LIST OU RS L ISTIOURS

ARTIFICIAL I NTELLI GENCE
ARITY STANDARD PROLOG 95 19
MULISP-87 INTERPRETER JOO 199
PC SCHEME 95 85
SMALLTALKJV SPECIAL 99 19

EGANGA COLOR OPTION 50 45
GOODIES DISKETIE # 1 50 45
SMALLTALK/COMM 50 45

TURBO PROLOG 100 69
TURBO PROLOG TOOLBOX 100 69
VP-EXPERT JOO 89

ASSEMBLY LANGUAGE

Ez....ASM 70165 MS MACRO ASSEMBLER 150 99
OPTASM SPECIAL, NEW 195 165
THE VISIBLE COMPUTER:8088 80 65
THE VISIBLE COMPUTER:80286 100 89
TURBO EDITASM 99 85

BASIC
DB/LIB
EXIM SERVICES TOOLKIT 1391119 50 45
FINALLY! 99 89

Terms and Policies
·We honor MC, VI SA, AME RICAN EXPRESS
No surclw"jtt on crt"dll card or C.O.D Pltpayment by
check. New Yoric State rt'!iMknt' ~ apphublt sales
W andhanclin1jl3.9Sprrt1m1.sentUPS

~.c:e .avaibbll', pttvaibng rates.
radiMwilmatchanycurr~nanon
forthe~listed111thi1ad.
·~todwicewithoutnotlt'e

• -'WM EST

:~J,~~{,_~=:.~.'::~r
•Ask for detadt. Some mam1ilcturtts "'ii flOl lllow

rtll,ll'Jlf;GnCtdiskteabattbroken.
Dulera and Corpora te Buyera-Call fo r

1pecial di•counca and benefi t•!

FINALLY! XGRAF 99 89
FLASH-UP 89 19
FLASH-UP TOOLBOX 49 45
GRAPH PAK 69 59
INSIDE TRACK 65 55
MICROHELP UTILITIES 59 49
PEEKS & POKES 45 39
QB ASE 89 19
QBASE REPORT 69 59
QUICKBASIC SPECIAL 99 65
QUICK-TOOLS 130 109
QUICKPAK 69 59
QUJCKPAK 11 49 45
QUICKWINDOWS 99 89
TRUE BASIC 100 19

.W/RUNTJME 150 105
TURBO BASIC 100 69

DATABASE TOOLBOX JOO 69
EDITOR TOOLBOX 100 69
TELECOM TOOLBOX 100 69

C LANGUAGE
C TOOLS PWS/5.0 1291 99
ESSENTIAL C UTILITIES LIB. 185 125

1-800-445-7899
In NY: 914-332-4548

Customer Service:
914-332-0869

International Orders:
914-332-4548

Telex: 510-601-7602

List: $99 Speci al Pr ice: $79

PASCAL LANGUAGE
ALICE 95 69
AZATAR DOS TOOLKIT NEW 99 85
DOS/BIOS & MOUSE TOOLS 75 69
FLASH-UP 89 19
FLASH-UP DEVELOPER"S TOOLBOX 49 45
MACH 2 75 59
METRABYTE DIA TOOLS 100 89
SCIENCE & ENGINEERING TOOLS 75 69
SCREEN SCULPTOR 125 95
SPEED SCREEN 35 32
SYSTEM BUILDER 150 129

IMPEX 100 89
REPORT BUILDER 130 115

TURBO ADVANTAGE 50 45
TURBO ADVANTAGE COMPLEX 90 19
TURBO ADVANTAGE DISPLAY 70 65
TURBO. ASM 99 69
TURBO ASYNC PLUS 129 99
TURBO GEOMETRY LIBRARY NEW 100 89
TURBO HALO 99 85
TURBO MAGIC 199 119
TURBO PASCAL 100 69
TURBO PASCAL DEV. TOOLKIT 395 289
TURBO PLUS 100 89
TURBO POWER UTILITIES 95 19
TURBO PROFESSIONAL 4.0 SPECIAL 99 79

A Division of Hudson Technologies, Inc.
42 River Street, Tarrytown, NY 10591

NORTON UTILITIES 100 59
NORTON ADVANCED UTILITIES 150 99
NORTON GUIDES 100 65

BORLAND PRODUCTS
EUREKA 167 115
REFLEX: THE ANALYST 150 99
SIDEKICK 85 59
SUPERKEY 100 69
TURBO BASIC COMPILER 100 69
TURBO BASIC DATABASE 100 69
TURBO BASIC EDITOR TOOLBOX 100 69
TURBO BASIC TELECOM TOOLBOX 100 69
TURBO C COMPILER 100 65
TURBO LIGHTNING 150 95

W/WIZARD 100 69
TURBO PASCAL 100 69
TURBO PASCAL DBASE TOOLBOX 100 69
TURBO PASCAL DEV. TOOLKIT 395 289
TURBO PASCAL EDITOR TOOLBOX 100 69
TURBO PASCAL GAMEWORKS TB 100 69
TURBO PASCAL GRAPHJX TOOLBOXIOO 69
TURBO PASCAL NUM. METHODS 100 69
TURBO PASCAL TUTOR 70 45
TURBO PROLOG COMPILER 100 69
TURBO PROLOG TOOLBOX 100 69

March/ April 1988 TURBO TECHNIX 151

Figure I. Turbo C Tools provides a compl.et.e set of functWris for ma:nagment of
screen windaws. The programmer has total control over size, positwn, border style,
and color, plus a flexible set of windaw input! output functWris. Interactwns
between windows, such as saving and restoring previous screen contents, are all
handled automatically.

Figure 2. Turbo C Tools makes it easy to include sophisticated _menus i"! your pro~
grams. The four available menu types are illustrated here: vertu:al, horizontal, gnd,
and Lotus-style. Menu colors can be tast,eful and discrete or loud and garish
depending on the programmer's aesthetic prejerences.

152 TURBO TECHNIX March / April 1988

CRITIQUE
continued from page 151

These chapters not only summarize
the capabilities of the functions, but
provide a quick overview of those
aspects of DOS and the computer
hardware that are relevant to the
functions under discussion. For
example, the section on screen
functions discusses attribute bytes,
color palettes, and the video modes
available on the five supported dis
play adapters. The sections on
interrupt service support and inter
vention code are particularly useful.

Customer

support seems

excellent. I called

Blaille a few times

and on all occasions

I received prompt

and knowledgeable

advice.

The remainder of the manual is
made up of an alphabetical func
tion reference. Each entry summa
rizes the function's action, lists any
necessary include file, and defines
the function's return value and
parameters. An example program
fragment is provided for every func
tion. There are useful appendices
on troubleshooting, header files,
error messages, etc., plus a detailed
index.

Customer support seems excel
lent I called Blaise a few times for
clarification on some points that
weren't clear in the manual. On all
occasions I received prompt and
knowledgeable advice.

As you may have surmised, I am
very impressed by Turbo C Tools. It
is a powerful, well-implemented
function library that should be a
welcome addition to any Turbo C
programmer's shel£ •

-Peter Aitken

How Eureka: The Solver
instantly solves equations
that used to keep you
up all night
The state-of-the-art answer to any of your
scientific. engineering, financial, algebraic,
trigonometric, or calculus equations =
Eureka: The Solver~

Eureka: The So Iver
i h~ dit ti! ve ' onnctn<ls ":eµort raph pt ions ~ in<low

Edit Plot

"I ,.+f1:

jil ''I

IJ~r if 1;1

'i\J• ,,

"'' '
1·.11': " ~" 11, . :1 JH11~.1

"• 1ot°"• 111 1ftf1f1tt

H1·pod :l··r• •lf111f1f11HH~

1·1., .• IT··n 1 I '1. 1 .fHHHI f, I 111

J,,11T,·n 1 fHHHH1

,,1:.11 U1<1 l I ' ~ 1 ::·i·Jt." Ln1I•

f1t. f1f1

,,J1,, u,,, I ::tl'lf1t. Ln1],

·~ - Help 1 :;o ve -Load -Zoon : ,. -Next I : - Bey Blk f,i -End Blk c"i <-Sizelnove

Eureka inswntly solved this Physics equation by immediat.ely calculating how much work
is required w compress isobarically 2 grams of Oxygen initially at STP w l/1 its original
volume. In Science, Engineering, Finance and any application involving equations, Eureka
gives you the right answer, right now!

E ureka can solve most
equations that you 're
likely to meet. So you

can take a mathematical
sabbatical.

Most problems that can be
expressed as linear or non
linear equations can be solved
with Eureka. Eureka also han
dles maximization and minim
ization. plots functions. gener
ates reports. and saves you an
enormous amount of time.

Eureka instantly solves
equations that would've made
the ancient Greek mathemati
cians tear their hair out by
the square roots-and it's all
yours for only $167.00.

Minimum system requirements: For lhe IBM PS/2·
and the IBM• and Cornpaqo lamilies ol personal compu
ters and all 100% compatibles. PC-DOS (MS-DOS•) 2.0
and later. 384K.

Eureka: The Solver is a lrademark ol Borland
International, Inc.
Copyright 1987 Borland International. Bl-11 450

It's easy to use
Eureka: The Solver
1. Enter your equation into

the full-screen editor
2. Select the "Solve"

command
3. Look at the answer
4. You're done

You can then tell Eureka to

• Evaluate your solution
• Plot a graph
• Generate a report. then

send the output to your
printer. disk file or screen

• Or all of the above

BORLAND
INTERNATIONAL

You can key in:
5'I' A formula or formulas

5'I' A series of equations-and
solve for all variables

5'I' Constraints (like X has to
be <or= 2)

5'I' A function to plot

5'I' Unit conversions

5J' Maximization and minimi
zation problems

5'I' Interest Rate/ Present Value
calculations

5'I' Variables we call "What
happens?," like " What
happens if I change this
variable to 21 and that
variable to 27?"

' ' Merely difficult prob
lems Eureka solved virtually
instantaneously; the almost
impossible took a few
seconds.

Stephen Randy Davis, jj
PC Magazine

Eureka: The Solver
includes

5J' A full-screen editor

5J' Pull-down menus

5J' Context-sensitive Help

5J' On-screen calculator

5'I' Automatic 8087 math
co-processor chip support

5'I' Powerful financial
functions

5J' Built-in and user-defined
math and financial
[unctions

5'I' Ability to generate reports
complete with plots and
lists

5'I' Polynomial finder

5'I' Inequality solutions

' ' Get Eureka. You won't
regret it. Highly recommend it.

Jerry Pournelle, Byte j j

F'or the dealer nearest you
or to order by phone

Call (800) 255-8008
In CA: (800) 742-1133;
In Canada: (800) 237-1136

BOOKCASE

USING TURBO PROLOG
Khin Maung Yin with David Sowmon,
QUE Corporation, Indianapolis, IN:
1987, ISBN 0-88022-270-0, 597 pages,
softcover, $19.95, disk $29.95.

T urbo Prolog's growing
popularity as a powerful
AI tool for business and
scientific applications

has attracted both programmers
and hobbyists alike. To satisfy their
intellectual curiosity and whet their
appetite for information, a wide
selection of books is now being
offered. While some books intro
duce readers to the fundamentals
of Prolog using Turbo Prolog,
others focus on specific real-world
applications, such as decision sup
port tools and expert systems.

One book, Using Turbo Prowg, is
a modest title from QUE's collec
tion that promises to be a compre
hensive guide to Turbo Prolog. And
comprehensive it is, with its 600
pages of text, example programs,
chapter summaries, program flow
diagrams, and exercises. The book,
which deals primarily with Turbo
Prolog 1.1, begins with an introduc
tion to the basic Prolog concepts
and concludes with topics such as
building expert systems and pro
cessing natural language queries. It
is directed at the novice program
mer, although the author, Dr. Khin
Maung Yin, suggests that it is also a
valuable asset for the Prolog expert.
Like most programming books, this
one is logically divided into two sec
tions. The first section, consisting of
eight chapters, presents the basic
Prolog concepts and specific Turbo
Prolog implementations. The four

chapters in the second section are
devoted to applications, with the
programs also demonstrating the
techniques learned in earlier
chapters.

The author begins with a typical
"Getting started in ... " chapter intro
ducing the basic Prolog terms in
the context of declarative and
imperative languages. The discus
sion is brief and "FYI" only. The
emphasis here is on programming
in Prolog and not on understand
ing its origin and evolution.

Also in the first section, the au
thor discusses the construction of a
Turbo Prolog program with its five
sections: domains, predicates,
clauses, goal, and database. Subse
quent chapters cover more ad
vanced topics, such as backtracking,
recursion, lists, strings, and files.

154 TURBO TECH NIX March/ April 1988

Each chapter in the first section
is a blend of discussion of basic
terms with intermittent example
programs and related exercises to
promote hands-on learning. Many
good analogies, such as the one
presented in the context of back
tracking, provide for good overall
reading. Each chapter concludes
with a summary.

The last chapter in the first sec
tion highlights Turbo Prolog's built
in predicates for creating windows,
bit-mapped graphics, turtle graph
ics, and music. Simple example pro
grams illustrate various techniques
involving the use of these predi
cates. Here, the author also pro
vides programs that illustrate the
use of predicates in business appli
cations, such as menu construction
with windows and making presenta
tion graphics. These programs will
be especially valuable for generat
ing some quick applications in
Turbo Prolog.

The second section provides the
most appeal with its four chapters
dedicated to Prolog's most visible
applications. The author entices the
reader by using popular topics for
his programs. In the first chapter in
this section, the reader learns to
create dynamic databases. The
author provides programs for build
ing pro football and college foot
ball databases to illustrate various
techniques for creating and manip
ulating dynamic databases.

Similarly, the author illustrates
various considerations that apply to
creating rule-based and logic-based
expert systems in Turbo Prolog. A

simple program representing a
medical diagnosis expert system
gives an idea of how to develop
such an expert system. One chapter
is also dedicated to processing natu
ral language. Here, programs dem
onstrate the use of keyword analysis
in processing user queries, lexical
sentence analysis, and so forth.

Within each chapter of this sec
tion, the author begins with the
basic concepts. For example, when
discussing expert systems, the
author briefly discusses expert sys
tem fundamentals, such as the
structure of an expert system,
knowledge representation, and
methods of inference. Structure
charts and data flow diagrams illus
trate program design and imple
mentation.

Throughout the book, Dr. Yin
illustrates the use of structure
methodology in building programs
by first creating smaller modules
(similar to Pascal's procedures) that
can be combined to create larger
programs. Later chapters carry this
a bit further by borrowing routines
created in earlier chapters to build
larger applications.

For the most part, example pro
grams are short and simple, and
the coverage on topics is limited to
basics. This is both the book's
strength and weakness: strength
from the beginner's perspective,
and weakness from an advanced
user's perspective. The book is a
great value for novice program
mers, providing a clear, concise,
and comprehensive guide to Turbo
Pro log.

In contrast, experienced pro
grammers looking for in-depth cov
erage on specific topics may be dis
appointed. Basic coverage is
applied to most topics, but a few
topics of interest to experienced
users are missing. For example,
there is no discussion on interfac
ing other languages with Turbo
Prolog. In spite of this, the book is
worth the price and should be con
sidered by any Turbo Prolog
programmer. •

- Sanjiva Nath

ADVANCED TECHNIQUES IN
TURBO PROLOG
Carl Townsend, SYBEX, Inc.,
Alameda, CA: I 987, ISBN 0-89588-
428-3, 398 pages, so.ftcover, $I8.95,
disk $29.95.

Despite the somewhat intimidating
reference to "advanced techniques"
in the title, you don't have to be a
Prolog wizard to benefit from this
volume. In the book's preface,
Townsend describes his audience
as "experimenters interested in
developing small expert systems
containing up to 750-1000 rules."
The concept behind this book is
that intermediate-level Turbo
Prolog programmers can best
develop their skills through a com
bination of study and experimenta
tion. To this end, Townsend takes
the reader through an impressive
collection of source code, which is
available for further study and
modification.

The book is divided into two
parts-the Basic Libary and the
Applications Library. Townsend
builds the Basic Library as a set of
Turbo Prolog tools, which he uses
in the Applications Library.

BASIC LIBRARY
The introduction to the first section
describes the similarities and differ
ences between Turbo Prolog and
other procedural and declarative
languages. I was pleased to see that
this discussion, especially the com
parison with standard "Edinburgh"
Prologs, is presented in a well
balanced manner. Although the
reader presumably owns Turbo
Prolog, Townsend's observations
are also valuable for improving
one's overall Pro/,og literacy.

Chapter 1 examines Prolog in
the context of procedural lan
guages. After noting the difference
between declarative and procedural

programming, Townsend presents
the Turbo Prolog equivalents for
the familiar IF .. THEN .. ELSE,
DO .. WHILE, and other control
structures. For those just starting the
process of mastering Prolog, these
ten pages are a nugget

The next three chapters build a
library of tool predicates that can be
incorporated int-0 different pro
grams. Each predicate is docu
mented with its name, the data type
and flow pattern for each argu
ment, and a short description of
the predicate's application. General
purpose predicates, benchmarking
code, and eight pages of date
processing routines are included.
An important discussion at the end
of this chapter covers two funda
mental Prolog predicates: true and
repeat.

The pace picks up in the next
chapter as the author presents
predicates for string-handling oper
ations. These predicates are particu
larly useful, since they mesh well
with the existing string-handling
predicates in Turbo Prolog. This
chapter's only fault is that it's too
short

The text proceeds with a discus
sion of list-processing predicates,
which Townsend groups into four

continued on page I 56

March/ Apdl 1988 TURBO TECH NIX 155

BOOKCASE
continued from page 155

categories: predicates for displaying
the contents of lists, predicates for
sorting lists, predicates that apply
statistical operations (like standard
deviation and variance) to lists, and
general list predicates. The sorting
predicates predictably cover the
bubble sort, the insertion sort, and
the Quicksort, and are all briefly
annotated in the text I suspect that
someone new to Prolog or to recur
sion may need an outside reference
to completely understand how this
code works. But then again, this is
not a beginner's book.

Townsend also presents a chap
ter on arithmetic operations that
include predicates for finding the
maximum, minimum, or greatest
common denominator of two
numbers; as well as code for per
forming the Sieve of Eratosthenes
benchmark. The chapter concludes
with an example mini-program
demonstrating the use of the ran
dom predicate, and with sugges- .
tions for using the random predi
cate in applications.

Databases are of prime impor
tance to Turbo Prolog pro
grammers. Although the author
devotes an entire chapter to the
dynamic database, including disk
based databases, Townsend's cover
age falls short of the mark. The
predicates for the disk-based data
base only hint at what can be done
using the routines from the Turbo
Prolog User's Manual. Similarly, I
felt that the code for querying and
sorting a database was lean.

The last two chapters in the first
part of the book undertake some
truly advanced topics: BIOS- and
DOS-level support, and interfacing
Turbo Prolog with other languages.
These chapters are idea-oriented,
so they contain no presentation of
separate predicates. Rather, these
chapters present concepts and

mini-programs on topics such as
the use of a mouse in a Turbo
Prolog application. The chapter ?n
BIOS- and DOS-level programmmg
is a good introduction to the use of
the Turbo Prolog bios predicate.

The chapter on compiling and
interfacing Turbo Prolog code with
other languages is alone worth the
price of the book. This discussion
covers the theory behind interfac
ing and troubleshooting programs
that use Turbo Prolog with C (Lat
tice, Microsoft, and Turbo) and
assembly language.

APPLICATIONS LIBRARY
In the second part of the book,

the author sets off on a grand tour
of applications ranging from the
design of forward- and backward
chaining expert systems to natural
language parsers. These four chap
ters examine the strategies, models,
and predicates used to build expert
systems in Turbo Prolog. Here,
Townsend incorporates the Turbo
Prolog tools built in the first section
of the book into the design of
actual applications. The ideals of
readability, reliability, and efficiency
are stressed throughout

The first chapter in this section
introduces fundamental concepts of
expert systems, and presents a sim
ple medical diagnostic system. In
the next chapter, Townsend does a
first-class job developing concepts
such as knowledge representation
and search strategies. His explana
tions mesh well with the systems he
presents.

Townsend uses a second medical
diagnostic system, which inclu.des
certainty factors in the reasonmg,
in a discussion of backward
chaining expert systems. This dis
cussion leads the reader through all
the steps of building the expert sys
tem, including accumulating, chart
ing and clustering facts about var
ious vitamin deficiencies. The next
two chapters implement a planning
expert system using a forward
chaining mechanism, and a frame
based weather-forecasting expert
system.

156 TURBO TECHNIX March/ April 1988

The natural language processing
chapter presents a quick run?own
of noise-disposal, state-machme,
and DCC parsers, with example
code. I found the DCC parser code
pertaining to airline schedules to
be particularly interesting.

The last two chapters in the book
describe techniques for solving
logic problems and spanning tree
problems. Although the material on
logic puzzles is interesting, the
accompanying discussion is skimpy.
The same can be said for the chap
ter on spanning trees. Somehow, I
got the feeling that although they
contain nice pieces of code, both of
these chapters were included as an
afterthought; they're far too short
and seem out of place both physi
cally and logically.

Overall, I like both the content
and presentation of this book. Phys
ically, it is a sturdily bound paper
back. The publisher made good use
of typography to set of! headin?s, .
text, and code. If you hke to wnte m
your books, you'll appreciate the
wide margins. The index is ade
quate, and the appendices are
genuinely useful (I particularly like
the glossary). For those who dislike
typing source code, an optional
diskette is available for $29.95.

Personally, I might have coded
some of the Turbo Prolog predi
cates presented in this book differ
ently, but that's as it should be.
After all, the goal of the book is to
get the reader to think about, and
in, Turbo Prolog. Despite the
imposing title, novices as well as
intermediate programmers can
profit from this book, because its
topics range from fundamental to
very advanced. Despite some we~
nesses, this book is a valuable addi
tion to the library of both the
novice and seasoned Turbo Prolog
programmer. •

-Alex Lane

ADVANCED MS-DOS
Ray Duncan, Microsoft Press, Red
mond, WA- 1986, lSBN 0-914845-77-
2, 468 pages, paperback, $22.95.

T here are millions of
IBM-PC and PC
compatible computers in
use today, and almost

every one of them uses the MS
DOS operating system (the version
sold by IBM, called PC-DOS, is
essentially identical). Many comput
er users, intent only on working
with applications programs, can
successfully master their spread
sheets, databases, and word proces
sors without having the slightest
idea about the internal workings of
DOS. For those of us who write
programs, however, knowledge of
the operating system is essential.
Dozens of books have been pub
lished on DOS, some intended for
beginners and some for more
advanced users. As its title implies,
Advanced MS-DOS falls into the lat
ter category. It is an excellent book,
providing the clearest and most
complete exposition of DOS that
I've seen (and I've read most of the
competition).

The emphasis of this book is not
only on understanding how DOS
works, but (quoting the Introduc
tion) on providing "the detailed
information necessary to write
robust, high-performance applica
tions under MS-DOS." It does this
by explaining in detail how pro
grams run under DOS, and how
programs can access the many
DOS services that are available.
This book is not for beginners, but
is intended for experienced pro
grammers who are familiar with the
architecture of the 8088/ 80286
microprocessor family. The author
does not attempt to provide an
assembly language tutorial, an
introduction to programming logic,
or an explanation of PC hardware.

The first 270 pages of the book
comprise a section called "Program
ming with MS-DOS." It begins with
a history of DOS, starting with its
origins in the CP / M-80 operating
system and detailing the changes
made as DOS evolved from version
1.0. The second chapter discusses
the bootstrap procedure, how DOS
is loaded in memory, and the gen
eral functions of the three major
components of the operating sys
tem: the Basic Input/Output Sys
tem (BIOS), the DOS kernel, and
the command processor. Among
the topics covered in other chapters
are file and record manipulation,
programming of character devices,
and details of disk access. The
chapters on memory allocation, the
EXEC function, interrupt handlers,
and installable device drivers are
themselves worth the price of the
book because of their clear treat
ment of these complex subjects.

The remainder of the book is
devoted to programmers' reference
material. First, there is a complete
reference to DOS interrupts 20H
through 2FH. Most of this section is
devoted to the many operating sys
tem services that can be accessed
via software interrupt 21H. Next is a
section detailing the ROM BIOS
interrupts lOH (video), 13H (floppy
disk), 14H (serial port), 16H (key
board), and 17H (printer). The last
section refers to interrupt 67H,

which accesses the Lotus/ Intel/
Microsoft expanded memory man
ager. Sample code, in assembler, is
included for each interrupt

Duncan feels, as I do, that func
tioning, documented programs are
an indispensable learning tool. The
book contains many code frag
ments and complete programs,
most of which can be used directly,
or with minor modification, in your
own programs. These include an
interrupt handler for the divide-by
zero critical error; a boilerplate
installable device driver; a simple
interrupt-driven terminal program,
and perhaps most interesting of all,
a simple command shell for DOS
that replaces COMMAND.COM as
the user's interface to DOS. (COM
MAND.COM is called via EXEC to
process commands that the shell
itself does not handle.) The shell
may be easily extended by the sea
soned assembly language or Turbo
C programmer.

The programming examples are
in assembler or C, which makes the
book most appealing to users of
those languages. Even so, the clarity
of explanation and the complete
ness of program comments are
such that the book will be of value
to users of other languages, such as
Pascal and BASIC. A companion
disk, containing the programming
examples as both source code and
executable files, is available by mail
for $15.95.

Although I did not try every pro
gram example, the book appears
remarkably free of errors. This
speaks well for the author's care in
writing and knowledge of the sub
ject Coupled with his clear and
straightforward writing style, this
makes for an eminently useful and
readable book. If you have the
necessary background, this book
provides you with the information
you'll need to write the next 1-2-3 or
SideKick. •

-Peter Aitken

March/ April 1988 TURBO TECHNIX 157

TURBO RESOURCES

YOUR SUBSCRIPTION
You're looking for Borland language
information. Where to go? Well, for
starters, right here. A free 12-month
subscription to TURBO TECHNIX is
yours for the asking when you register
any of the Borland languages (includ
ing Quattro, Paradox, Eureka, and
Sprint) or language toolboxes. A sub
scription request card is packaged
with each of those products-fill it out
and return it to be sure you get every
issue. If your copy of a Borland lan
guage product was shipped without
the subscription request card, just
write, "I would like to subscribe to
TURBO TECHNJX" in the bottom
margin of the registration card.

COMPUSERVE
The best online information about
the Borland languages can be found
on CompuServe. Subscribing to Com
puServe can be done through the cou
pon enclosed with every Borland pro
duct (which also includes $15 worth of
online time for your first month) or
by calling CompuServe at (800) 848-
8199. You'll need a modem and some
sort of communications software that
supports the XMODEM file transfer
protocol.

Learning your way around Compu
Serve takes some time and practice,
but good books have been wiitten
about it, including Charles Bowen's
and David Peyton 's How To Get The
Most Out Of CompuSeroe and Advanced
Compuseroe for IBM Power Users (New
York: Bantam Computer Books, 1986).
Howard Benner's TAPCIS shareware
utility can automate sessions and help
you minimize connect time. It is avail
able for downloading on CompuServe
from DL 12 of the Word Perfect Sup
port Group forum (GO WPSG). The
TAPCIS file is 239,297 bytes long
plan to spend some hours download
ing it.

How to access the Borland Fonims
on CompuServe:
TURBO TECHNIX listings for Turbo
Pascal and Turbo Basic are available

in DU (Data Library 1) of the
BPROGA Borland programming
forum (GO BPROGA). Turbo C and
Turbo Prolog listings are stored in
DLl of the BPROGB forum (GO
BPROGB). Listings for Business Lan
guage articles are also available in DL
1 of the Borland Applications Forum
(GO BORAPP). From the initial Com
puServe prompt, type GO < forum
name> or follow the menus.
How to download TURBO
TECHNIX code listings from
CompuServe:

At the Functions prompt, type: DL 1
This will take you to the TURBO
TECHNIX data library, where all
listing files are stored. Listing files
are archived using the ARC52 archiv
ing scheme. You will need the
ARC-E.COM program or one compati
ble with it to extract listing files from
downloaded archives.

Archive files are organized two
ways: by article and by issue. In other
words, there will be one .ARC file for
every article that includes listings, and
a single, larger .ARC file for each
issue containing all the individual
.ARC files for that issue. You can
therefore download listings for indi
vidual articles, or download the entire
issue's listings in one operation.

The all-issue files follow a naming
convention such that NVDC87.ARC
contains all listing archives from the
November/December 1987 issue,
JAFB88.ARC for the J anuary/Febru
ary 1988 issue, and so on. The name
of an article's individual listings
archive file is given at the end of each
article.

To download an archive file, type
DOW <filename>/ PROTO : XMO

at the DL l prompt. After pressing
Enter, start your own communications
program's XMODEM receive func
tion. After you have completely
received the file, you must press Enter
once to inform CompuServe that the
download has been completed. Once
you have downloaded an archive file ,

158 TURBO TECHNIX March/ April 1988

you can "extract" its component files
by invoking ARC-E.COM at the DOS
prompt this way:
C) ARC-E <filename>

NATIONAL USER GROUPS
TUG
The national user group for Turbo
languages is TUG, the Turbo User
Group. TUG publishes a bimonthly
newsletter called Tug Lines that con
tains bug reports, programming how
tos, and product reviews. Extensive
public-domain utility and source code
libraries are available to members.
Dues are $22.00 US/ year ($23.72 in
Washington State); $26.00 Canada
and Mexico; $38.00 overseas.
TUG
PO Box 1510
Poulsbo, WA 98370
TPro Users
TPro Users was founded specifically
to support Turbo Prolog program
ming. Their bimonthly newsletter
contains technical articles, application
stories, tips and techniques, and more.
TPro also maintains an electronic bul
letin board for source code download
and message posting. Dues are $25.00
US/year; $35.00 overseas.
TPRO USERS
3109 Scotts Valley Drive, Suite 138
Scotts Valley CA 95066
BBS: (408) 438-6506

LOCAL USER GROUPS
One of the best places to look for
advice and face-to-face assistance with
your programming problems is at a
local user group meeting. Most user
groups in the larger cities have special
interest groups (SIGs) devoted to the
most popular programming lan
guages, usually with strong Turbo
presences. We will be listing some of
the largest and most active user
groups in major urban areas across
the country; obviously, there are thou
sands of user groups that we cannot
list due to space limitations. If no
listed group is convenient to you, ask
about local user groups at a local com-

puter store or check with a faculty
member at a high school or college
with a computer curriculum.
BOSTON COMPUTER SOCIETY
Information: (617) 367-8080
BBS: (617) 353-9312
One Center· Plaza
Boston, MA 02108
CAPITAL PC USER GROUP (DC)
4520 East-West Highway, Suite 550
Bethesda, MD 20814
C SIG: Fran Horvath
AI/ Prolog SIG: Dick Strudeman
BASIC SIG: Don Withrow
CHICAGO COMPUTER SOCIETY
Information: (3 12) 942-0705
BBS: (312) 942-0706
Pascal SIG: Bill Todd (312) 439-3774
C SIG: Ed Keating (312) 438-0027
AI/ Prolog SIG:
Jim Reed (312) 935-1479
Basic SIG:
Hank Doden (312) 774-5769
HAL/ PC (HOUSTON)
Information: (7I3) 524-8383
BBS: (713) 847-3200 or (713) 442-6704
Pascal SIG:
Charles Thornton (713) 467-1651
C SIG: Odis Wooten (713) 974-3674
Compiled BASIC SIG:
Larry Krutsinger (713) 784-9216
AI SIG (Prolog):
George Yates (713) 448-7621
NEW YORK PC USER GROUP, INC.
Information: (2 12) 533-6972
BBS: (212) 697-1809
40 Wall Street Suite 2124
New York, NY 10005
PACS (PHILADELPHIA)
Information: (2I5) 95I-1255
BBS: (215) 951-1863
PACS, c/ o Lasalle University
Philadelphia, PA 19141
SAN FRANCISCO PC USERS GROUP
Information: (4 15) 22I-9I66
444 Geary Blvd, Suite 33
San Francisco, CA 94118

ST. LOUIS USERS' GROUP
Information: (3 I 4) 968-0992
BBS: (314) 361-8662
Pascal SIG:
Jeffrey Watson (314) 481-4239
Cl Assembler SIG:
David Rogers (314) 968-8012
BASIC SIG:
Dennis Dohner (314) 351-5371
TWIN CITIES PC USER GROUP
Information: (612) 888-0557
BBS: (612) 888-0468
PO Box 3163
Minneapolis, MN 55403
Independent CBBS systems with
programming orientation
Questor Project Washington, DC
(703) 525-4066 24Hr $
Illinois BBS Chicago, IL
(312) 885-2303 24Hr $
PC-TECH BBS Santa Clara, CA
(408) 435-5006 24Hr
$ = membership fee required

Coming Up
The Borland Graphics
Interface ...
An e:xpwsion in the number of different
graphU:s devices for the PC has made
life difficult for software deueWpers in
recent years. The CGA, EGA, VGA and
others all need to be supported, but how
to do it? Borland now provides the
answer with the Borland GraphU:s
Interface (BG!), a deuice-irui.ependent
graphU:s syst,em that detects an installed
graphU:s device at program startup and
wads an appropri.ate graphU:s driver.
The rest is up to you . . . but with a
toolkit of 60 function calls, your graph
U:s programming should be easier and
more powerful than ever. Read Tom
Swan '.s introduction lo the BG! and get
ready to see your graphU:s screen in a
who/,e new light.

Solve your mouse
mysteries ...
You probably haven't ever gotten the
whole story on attaching your cursor to
that litt/,e cake of soap on its e/,ectronic
rope. Some registers, a software inter
mpt, and just a litt/,e magic are what
it takes to make your code mouse
know/,edgeab/,e. In Part 1 of this two
part series, Kent Porter provides a
thorough discussion of all text-based
mouse calls, and also explains
interrupt-driven mouse event handling
through the mysterious mouse function
call 12H. Working mouse-interface
libraries will be provided for both
Turbo Pascal and Turbo C. GraphU:s
ori.ented mouse programming will wrap
up the series in our July/ August issue.

And the TECHNIX keep
on coming ...
Paradox'.s PAL language has numerous
built-in functions for financial analysis,
and Todd Freter takes us on a tour of
present and future value, PAL-styw.
Learn about weal variables in Turbo
Basic, and list manipulation in Turbo
Prowg. Get a glimpse of the future, as
Saf aa Hashim shows us how the hyper
text data linking paradigm can be
imp/,emented in Turbo Prowg. Our
book reviews, cri.ti,ques, and honored
columnists will all return to keep you
informed in the true Turbo fashion.

C:>CLASS.ADS

TURBOGEOMETRY LIBRARY
Turbo Pascal, C, Mac and Microsoft C

Over 150 geometric routines that include:
Intersections of Lines, Arcs, Planes, Circles

2D and 3D Transformations
Equations of Lines, Circles, Planes.

Hidden Line, Perspective, Curves
Surface Areas & Volume Routines

Clipping, Composite Matrices, Vectors.
Distance Computations.

Decomposition of Concave Polygons
Reg. IBM PC(Comp)/MAC. VISA,MC,MO
Source Code,Manual for $99.95 +$5 S&H
Disk Software, Inc. 2116 E.Arapaho #487.

Richardson, TX 75081 (214)423-7288

C:>CLASS.ADS is TURBO
TECHNIX magazine's display
classified advertising section.
We welcome to these pages all
those who would like to take
advantage of the special sizes
and rates available for
C:>CLASS.ADS-$300 per
column inch, with a 2-inch
minimum. (A minimum ad,
for example, measures exactly
21/16" wide by 2" long.) All
C:>CLASS.ADS must be pre
paid and submitted in camera
ready form (black-and-white
PMT or Ve lox) to:

C:>CLASS.ADS
TURBO TECHNIX
4585 Scotts Valley Drive
Scotts Valley, CA 95066

For additional information,
please call Production Assistant
Annette Fullerton at (408)
438-9321.

March / April 1988 TURBO TECHNIX 159

PHILIPPE'S TURBO
TALK
Let's take humor seriously.

Philippe Kahn

Woody Allen was
recently asked what
memories and
legacy he wanted to

leave behind to his movie fans
and readers. The question was,
"Would you like to live on in the
minds of your readers?" He
responded, "No, I'd rather live on
in my apartment."

So a pompous question got a
humorous answer-but people
with a less-developed or non
existent sense of humor (and you
must agree that the high-tech
industry seems to have more than
its fair share of both types) would
have answered differently.

The typical high-tech industry
answer would have gone on about
"The Cosmic Importance of our
State-of-the-An Gizmo" or about
"The Utmost Significance of our
Achievements in Bringing Soul to
Machines" or some other miracle.

Give me a break!
If you dare to take yourself that

seriously, people will laugh at you
anyway! All this is not to say that
the high-tech industry is shallow
or that everything's a joke; far
from it. But we all need perspec
tive, and humor has a funny way
of restoring perspective-not to
mention creating enthusiasm for
what you're doing.

It's possible, and healthful, to
laugh about what you're doing
without laughing at what you're
doing. We should be able to laugh
about the high-tech industry.

In some of our ads, we've used
a quotation which runs, "The rea-

It's possible,

and healthful, to

laugh about what

you're doing with

out laughing at

what you're doing.

We should be able

to laugh about the

high-tech industry.

son angels can fly is because they
take themselves lightly," and that's
our attitude at Borland.

HIGH TECH CAN ALSO BE
HIGH PRESSURE
In our business, we are constantly
under pressure. We are expected
to keep on building new and
exciting software. And that's fun.
But I have noticed that the most
creative times are often the times
when laughs are the rule rather
than the exception.

Humor frees up the subcon
scious ... lets the ideas roll.
Hackers know this. Berkeley
UNIX has a utility called "For
tune" that displays a little joke
when you log in. Maybe PC-DOS
should do something like that.

We've all heard about the yoga
master who says that the best form
of meditation is a big laugh in the
morning. I say that's a good start.
There is something fundamentally

160 TURBO TECHNIX March/ April 1988

healthy about a good laugh, and it
sure takes the pressure off our
shoulders.

SOFTWARE BUZZWORDS
REVISITED
Entire books-very popular books,
at that-have been written about
this industry and its jargon. We've
really left ourselves wide open to
the jabs of "outsiders," so why not
justjoin the fun?

For instance, do you know what
Imelda Marcos and a "multitask
ing operating system" have in
common? That's a tricky one, but
let's just say that Imelda has three
thousand pairs of shoes and only
one pair of feet!

Or how about looking at what a
1V evangelist and "distributed
database access methods" have in
common: There are going to
be solutions real soon now, pro
vided you make a contribution
today.

What about "desktop connectiv
ity" versus having the America's
Cup in San Diego: Lots of water,
but not much wind!

.. . And we can go on and on.

WE'RE SERIOUS ABOUT
GOOD SOFTWARE
It might be true that humor is the
only test of gravity and gravity the
only test for humor. So, like the
swordsmiths of ancient times, and
unlike Woody Allen (who proba
bly has much more humor than
we do-but who doesn't program)
we at Borland would like to be
remembered as forging the best
blades of all. With humor.

Seriously. •

Announcing
Two Dynamic New Imprints

~ • 2600 Tenth Street
"j '~I Osborne McGraw· Hill

1tn j Berkeley, California 94710

The Borland-Osborne/McGraw-Hill
Business Series

..... Using REFLEX®: THE DATABASE MANAGER
by Stephen Cobb
Features sophisticated SuperKey® macros and REFLEX
Workshop '" applications. ·
821.95 paperback , ISBN 0-07-881287-9

<11111 Using SPRINT™: The Professional Word Processor
by Kris Jamsa and Gary Boy
Take advantage of this fabulous new word processing system
that is powerful, fast, and includes many desktop publishing
features .
S21.95 paperback, ISBN 0-07-881291-7

The Borland-Osborne/McGraw-Hill
Programming Series

<11111 Using Turbo C®
by Herbert Schildt
Here's the official book on Borland 's tremendous new language
development system for C programmers.
819.95 paperback, ISBN 0-07-881279-8

<11111 Advanced Turbo C®
by Herbert Schildt
For power programmers. Puts the amazing compilation speed
of Turbo C® into action .
S22.95 paperback, ISBN 0-01-881280-1

<11111 Advanced Turbo Pro log® Version 1.1
by Herbert Schildt
Now Includes the Turbo Prolog Toolbox '" with examples .

821.95 paperback, ISBN 0-07-881285-2

<11111 Turbo Pascal® Programmer's Library
by Kris Jamsa and Steven Nameroff
Revised to cover Borland's Turbo Numerical Methods Toolbox '"
821.95 paperback, ISBN 0-07-881286-0

<11111 Using Turbo Pascal®
by Steve Wood
Featuring MS-DOS programs, memory resident applications.
in-line code, interrupts , and DOS functions
819.95 paperback, ISBN 0-07-881284-4

<11111 Advanced Turbo Pascal®
by Herbert Schildt
Expanded to include Borland 's Turbo Pascal Database Toolbox®
and Turbo Pascal Graphix Toolbox®
S21.95 paperback, ISBN 0-07-881283-6

·Available at Book Stores and Computer Stores.
OR CALL TOLL-FREE 800-227-0900 1

800-772-2531 (In California)
In Canada, contact McGraw-Hill Ryerson, Ltd. Phone 416-293-1911

Trademarks: SuperKey, REFLEX, Turbo BASIC, Turbo C, Turbo Pascal Database Toolbox, Turbo Pascal Graphix Toolbox, Turbo Pascal , Turbo Prolog , and Turbo Prolog Toolbox
are registered trademarks of Borland International. REFLEX Workshop, SPRINT, and Turbo Pascal Numerical Methods Toolbox are trademarks of Borland International. WordPerfect

is a reg istered trademark of WordPerfect Corp . WordStar is a registered trademark of Micro Pro lnt'I Corp . Copyright © 1907 McGraw-Hill, Inc.

l
I

11

I

	2022-09-02-0001
	2022-09-02-0002
	2022-09-02-0003
	2022-09-02-0004
	2022-09-02-0005
	2022-09-02-0006
	2022-09-02-0007
	2022-09-02-0008
	2022-09-02-0009
	2022-09-02-0010
	2022-09-02-0011
	2022-09-02-0012
	2022-09-02-0013
	2022-09-02-0014
	2022-09-02-0015
	2022-09-02-0016
	2022-09-02-0017
	2022-09-02-0018
	2022-09-02-0019
	2022-09-02-0020
	2022-09-02-0021
	2022-09-02-0022
	2022-09-02-0023
	2022-09-02-0024
	2022-09-02-0025
	2022-09-02-0026
	2022-09-02-0027
	2022-09-02-0028
	2022-09-02-0029
	2022-09-02-0030
	2022-09-02-0031
	2022-09-02-0032
	2022-09-02-0033
	2022-09-02-0034
	2022-09-02-0035
	2022-09-02-0036
	2022-09-02-0037
	2022-09-02-0038
	2022-09-02-0039
	2022-09-02-0040
	2022-09-02-0041
	2022-09-02-0042
	2022-09-02-0043
	2022-09-02-0044
	2022-09-02-0045
	2022-09-02-0046
	2022-09-02-0047
	2022-09-02-0048
	2022-09-02-0049
	2022-09-02-0050
	2022-09-02-0051
	2022-09-02-0052
	2022-09-02-0053
	2022-09-02-0054
	2022-09-02-0055
	2022-09-02-0056
	2022-09-02-0057
	2022-09-02-0058
	2022-09-02-0059
	2022-09-02-0060
	2022-09-02-0061
	2022-09-02-0062
	2022-09-02-0063
	2022-09-02-0064
	2022-09-02-0065
	2022-09-02-0066
	2022-09-02-0067
	2022-09-02-0068
	2022-09-02-0069
	2022-09-02-0070
	2022-09-02-0071
	2022-09-02-0072
	2022-09-02-0073
	2022-09-02-0074
	2022-09-02-0075
	2022-09-02-0076
	2022-09-02-0077
	2022-09-02-0078
	2022-09-02-0079
	2022-09-02-0080
	2022-09-02-0081
	2022-09-02-0082
	2022-09-02-0083
	2022-09-02-0084
	2022-09-02-0085
	2022-09-02-0086
	2022-09-02-0087
	2022-09-02-0088
	2022-09-02-0089
	2022-09-02-0090
	2022-09-02-0091
	2022-09-02-0092
	2022-09-02-0093
	2022-09-02-0094
	2022-09-02-0095
	2022-09-02-0096
	2022-09-02-0097
	2022-09-02-0098
	2022-09-02-0099
	2022-09-02-0100
	2022-09-02-0101
	2022-09-02-0102
	2022-09-02-0103
	2022-09-02-0104
	2022-09-02-0105
	2022-09-02-0106
	2022-09-02-0107
	2022-09-02-0108
	2022-09-02-0109
	2022-09-02-0110
	2022-09-02-0111
	2022-09-02-0112
	2022-09-02-0113
	2022-09-02-0114
	2022-09-02-0115
	2022-09-02-0116
	2022-09-02-0117
	2022-09-02-0118
	2022-09-02-0119
	2022-09-02-0120
	2022-09-02-0121
	2022-09-02-0122
	2022-09-02-0123
	2022-09-02-0124
	2022-09-02-0125
	2022-09-02-0126
	2022-09-02-0127
	2022-09-02-0128
	2022-09-02-0129
	2022-09-02-0130
	2022-09-02-0131
	2022-09-02-0132
	2022-09-02-0133
	2022-09-02-0134
	2022-09-02-0135
	2022-09-02-0136
	2022-09-02-0137
	2022-09-02-0138
	2022-09-02-0139
	2022-09-02-0140
	2022-09-02-0141
	2022-09-02-0142
	2022-09-02-0143
	2022-09-02-0144
	2022-09-02-0145
	2022-09-02-0146
	2022-09-02-0147
	2022-09-02-0148
	2022-09-02-0149
	2022-09-02-0150
	2022-09-02-0151
	2022-09-02-0152
	2022-09-02-0153
	2022-09-02-0154
	2022-09-02-0155
	2022-09-02-0156
	2022-09-02-0157
	2022-09-02-0158
	2022-09-02-0159
	2022-09-02-0160
	2022-09-02-0161
	2022-09-02-0162
	2022-09-02-0163
	2022-09-02-0164

