

~~--Y. pro
orpeogew o

Nobody ever said programming ~ know to program in your
PCs was supposed to be easy. ~ favorite language.

But does it have to be tedi- --------------.
ous and time-consuming, too?

Not any more.
Not since the arrival of

the remarkable new program
in the lower right-hand comer.

Which is designed to save
you most of the time you're
currently spending searching
through the books and manuals
on the shelf above.

The Norton On-Line Pro
grammer's Guides are a quar
tet of pop-up reference
packages that do the same
things in four different
languages.

Each package consists of

Instant Access Program
• Memory-resident-uses just 71K.
• Full-screen or moveable half-screen

view, with pull-down menus.
• Auto lookup and searching.
• Tools for compiling your own databases.

ASSEMBLY (600K of data)
• DOS Service Calls: All INT 21h services,

interrupts, error codes, FCB and PSP
fie lds, standard handles and more.

• ROM BIOS Calls: All ROM calls plus low
RAM usage.

• Instruction Set: All 8088/86 instructions,
addressing modes, flags, bytes per
instruction, clock cycles and more.

• MASM: Pseudo-ops and assembler
directives.

• Tables: ASCII chart, line-drawing charts,
keyboard scan codes and more.

BASIC (270K each database)
• IBM BASICA, Microsoft QuickBASIC

and TurboBASJC.
• Statements and Functions: Describes all

statements and built-in library functions.

• Tables: Line-drawing characters.ASCII
chart, keyboard codes. error codes.
operators, etc.

C (600K each database)
• Microsoft C and Turbo C: Describes

language, including statements,
operators, data types and structures.

• Library Functions: Detailed
descriptions of all functions, from
abort O to write().

• Preprocessor Directives: Describes
commands, usage and syntax.

• Tables: ASCII chart, line-drawing
characters, keyboard codes, error codes.
operators, etc.

PASCAL- Turbo (360K of data)
• Language: Describes statements.

syntax, operators, data types and
records.

• Library: Describes the library
procedures and functions.

• lables: ASCII chart, line-drawing
characters, keyboard codes, error codes.
reserved words, etc.

two parts: A memory-resident instant
access program. And a comprehensive,
cross-referenced database crammed
with just about everything you need to

(If you don't believe us, you might want
to take a moment or two to examine the
data box you just passed.)

You can, of course, find most of this
Designed for the IBM PC. PC-AT and DOS compatibles. Available at most software

•

information in the books and manuals
on our shelf.

But Peter Norton-who's written a
few books himself-figured you'd rather
have it on your screen.

In seconds.
In either full-screen or moveable half-

A Guides reference summary
screen (shown in blue) pops up on
top of the program you're working

on (shown in green).

screen mode.

Summary data expands on
command into extensive detail.
And you can select from a wide

variety of information.

Popping up right next to your work
Right where you need it

This, you're probably thinking, is pre
cisely the kind of thinking that pro
duced the classic Norton Utilities.

And you're right
But even Peter Norton can't think of

everything.
Which is why there's a built-in com

piler for creating databases of your own.
And why all Guides databases are

compatible with the instant access pro
gram in your original package.

So you can add more languages without
spending a lot
more money.

To get
more informa
tion, call your
dealer.Or
call Peter
Norton at
1-800-451-
0303 Ext40.

And ask
for some
guidance.

dealers. or direct from Peter Norton Computing, Inc., 2210 Wilshire Blvd. #186, Santa Monica, CA 90403. 213-453-2361. Fax 213-453-6398, MCI Mail: PNC! © 1987 Peter Norton Computing

I
TURBO TECHNIX
The Borland Language Journal
January/February 1988
Volume I, Number 2

FEATURES
TURBO PASCAL

8 Replacing the Keyboard
Interrupt
Neil Rubenking

23 Forward Declarations in
Turbo Pascal
All.en]. Friedman

25 Skydiving and the Numerical
Methods Toolbox
Victor Mansfield

TURBOC
34 Floating Point in Turbo C

Roger Schlafly

43 Thinking in Turbo C
Bruce Webster

48 Using Turbo C
Reid Collins

54 Which Processor?
Juan Jimenez

60 Importing Reflex Databases
Kent Porter

TURBO PROLOG
72 Modifying the Pulldown

Predicate
Keith Weiskamp

85 The Tail Recursion Tiger
Michael Covington

92 Partners of a Sort
Alex Lane

TURBO BASIC
100 Using Random Files in

Turbo Basic
Ethan Winer

106 Converting .COM Files to
$INCLUDE Files
Bruce Tonkin

110 Drawing Ahead
Peter Aitken

BUSINESS LANGUAGES
116 Building On Quattro:

Introduction
Jeff Duntemann

123 PAL Procedures and
Procedure Libraries
Todd Freter

DEPARTMENTS
4 BEGIN: DOS, The

Understood
Jeff Duntemann

132 Binary Engineering:
"Go to, go to."
Bruce Webster

136 Language Connections:
Monochrome Graphics in
Two Languages
Gary Entsminger

143 Tales from the Runtime:
Expanding Wildcard Support
Bill Catchings and
Mark L. Van Name

151 Archimedes' Notebook:
Solving The Equation of State
for Ideal Gases
Namir Clement Shammas

155 BookCase: Turbo C: Memory
Resident Utilities, Screen 110,
and Programming Techniques
Reviewed fry Peter Aitken

156 Critique: TurboWINDOW/ C
for Turbo C
Don Fletcher

158 Turbo Resources

159 Coming Up

160 Philippe's Turbo Talk

2 TURBO TEOINIX January/ February 1988

8
Adding new keystrokes to your key
board (or taking some away!) requires
replacing the PC keyboard interrupt
with an interrupt handler of your
own.

34
Expressing analog quantities in a dig
ital world involves subtleties that the
integer world neatly avoids. Math co
processors further complicate matters
for those who want their programs to
run under all machine environments.
Turbo C's answers to these problems
are worth close study.

72
Fine-tuning the pulldown predicate
from the Turbo Prolog Toolbox pro
vides text menu versatility with rela
tively little effort.

100
Looking at a Turbo Basic disk file as a
collection of fixed-length records
divided into logical fields allows you
to read any record at random-with
out reading sequentially through
those that come before it.

Cover:
The humble decimal point helps Turbo C
express quantities in the real world.
Photography fry Mike Kirkpatrick.

...

... *
*More*M~
from Blaise. u

Turbo C TOOLS™ \ f
l Ii £R T.OOLS PLUS $99.95

ScreeRJllld windoAanagement including
EGA ~port: DOS memory control: ISRs:
scheduled intervention code; and much more.
ForTurbo Pascal. Magic is easy with Turbo C TOOLS

in your bag of tricks. New Turbo C
TOOLS™ from Blaise Computing is a
library of compiled C functions that
allows you full control over the com
puter, the video environment, and the
file system, and gives you the jump on
building programs with Borland's new
C compiler. Now you can concentrate
on the creative parts of your programs.
The library comes with well-docu
mented source code so that you can
study, emulate, or adapt it to your speci
fic needs. Blaise Computing's attention
to detail , like the use of function proto
typing, cleanly organized header files,

and a comprehensive, fully-indexed
manual, makes Turbo C

TOOLS the choice for
experienced

software

Turbo C
TOOLS

supports
the Borland

TurboCcom
piler, requires

DOS 2.00 or
later and is just

S129.00

•
developers as well as newcomers to
Turbo C TOOLS provides the sophisti- *
cated, bullet-proof capabilities needed
in today's programming environmentl,l
including removable windows, "side-.
kickable" applications, and general
interrupt service routines written in C. •
The functions contained in Turbo C
TOOLS are carefully crafted to supple- •
ment Turbo C, exploiting its strengths •
without duplicating its library functions.
As a result you'll get functions written
predominantly in C, that isolate hard
ware independence, and are small and
easy to use.
Turbo C TOOLS embodies the full spectrum
of general purpose utility functions that are
critical to today's applications. Some of the
features in Turbo C TOOLS are:

+ WINDOWS that are stackable and remov
able, that have optional borders and a cursor
memory, and that can accept user input.

+INTERRUPT SERVICE ROUTINE sup
port for truly flexible , robust and polite
applications. We show you how to capture
DOS critical errors and keystrokes.

+ INTERVENTION CODE lets you <level
... op memory resident applications that can

take full advantage of DOS capabilities.
With simple function calls, you can schedule
a Turbo C function to execute either when
a "hot keyn is pressed or at a specified time. * +RESIDENT SOFTWARE SUPPORT lets
you create , detect, and remove resident util
'ties that you write with Turbo C TOOLS.

+ FAST DIRECT VIDEO ACCESS for
efficiency, and support for all monitors
including EGA 43-line mode.

•

Turbo POWER SCREEN
COMING SOON! General screen manage
ment : paint screens ; block mode data entry
or fi eld -by-field control with instant screen
access. For Turbo Pascal.

Turbo ASYNCH PLUS $99.95
Interrupt driven support for the COM ports.
1/0 buffers up to 64K; XON/ XOFF; up to
9600 baud: modem and XMODEM control.
ForTurbo Pascal.

PASCAL TOOLS/TOOLS 2 $175.00
Expanded string and screen handling; graph
ics routines: memory management: general
program control : DOS file support and more.
For MS-Pascal.

CTOOLSPLUS $175.00
Windows; ISRs: screen handling; multiple
monitors; EGA 43-line text mode: direct
screen access; DOS file handling and more.
For MS and Lattice C version 3.00 and later.

LIGHT TOOLS $99.95
Windows; ISRs: EGA 43-line text mode:
direct screen access; DOS file handling and
more. For the Datalight C compiler.

ASYNCH MANAGER $175.00
Full featured interrupt driven support fQr the
COM ports. 1/ 0 buffers up to 64K; XON/
XOFF: up to 9600 baud: modem control and
XMODEM. ForCorMS-Pascal.

VIEW MANAGER $275.00
General screen control : paint screens; block
mode data entry or field-by-field control with
instant screen access. For C or MS-Pascal.

RUNOFF $49.95
Text formattex for all programmers; lteJtible
printer control: user-defined variables; index
generation: general macro facility. Crafted
in Turbo Pascal.

EXEC $95.{)()
NEW VERSlON! Program chaining execu
tive. Chain one program from another in dif
ferent languages: specify common data areas:
less than 2K of overhead. +DIRECTORY AND FILE HANDLING

support let you take advantage of the DOS
file structure , including volume labels and TOORDERC f()L't~E
directory structure. 800-333-8087
In addition to Turbo C TOOLS, Blaise TELEX: NUMBER-338tJ9 ---· ---Computing Inc. has a full line of sup- -------
port products for Microsoft , Lattice ------ ---· and Datalight C, Microsoft Pascal ________ opies ot --------

and Turbo Pascal. Call __ - - -;-;;ke magl~r ~~ur products Go \or
today for details , and r~f.S\ l w;~\~n\ortl\ation on orders add~'\. ---
make magic! \ £nc\~:e ~end tl\e tl\~re 'tar.. Dotl\Eu~ress standar a)----

\ 0 p e . dents add SaOOe~or Federa\ r. phone: l---- -- ---
cf>. res\ . $\0. --- ---

~~
-------~~------
BLAISE COMPUTING INC.

\ UPS shipping, .. · ~· ---- . 'Lip: D te:____----------

\ Natl\e:--------- State·--£ ·:;r.~P·alaMl ... ltf!!!!I!'~
\ j\ddress:~~ ------- ·· '. ·~ --------' Clt)'· MC#:
\ Y\SA or ___ :.""""!~~~f""""' Turbo C is a trademark of
\..---- Borland International. 2560 Ninth Street . Suite 316 Berkeley. CA 94710 (415) 540-5441

TURBO TECHNIX
The Borland Language Journal
J anuary/February 1988
Volume I Number 2

Publisher
Marcia Blake

Editor in Chief
J eff Dunteniann

EDITORIAL

Managing Editor
Michael Tighe

Technical Editor
Michael A. Floyd

TECH NICAL CONSULTANTS

Brad Silverberg
David Intersimone
Roger Schlafl y

DESIGN & PRODUCTION

Art Director
Karen Miner

Production Assistant
Annette Fullenon

Typesetting Manager
Walter Stauss

Typesetter/ System Supervisor
J effrey Schwenley

Typesetters
Ron Foster
J eanie Maceri

Photographer
Bradley Ream

Typesetting Traffir
Charlene McCormick

ADMINISTRATION

Purchasing
Brad Asmus

ADVERTISING

Advertising Saks Manager
John Hemsath
(408) 438-9321

Western Region
J anet Zamucen
(7 14) 858-0408

New England/ Mid-Atlantic Regions
Me1Tie Lynch
Nancy Wood
(6 17) 848-9306

South Region
Megan Patti
(813) 394-4963

BEGIN
DOS, The Understood

Jeff Duntemann

L
et's not be so quick to
bury DOS. It may well be
the first and only operat
ing system in history that

we truly understand.
What is the real value of an

operating system? Far more than
multitasking or a standard user
interface; it is the industry's level
of knowledge about it. My ratio
nale: What the OS can do, we
know how to do; what the OS can 't
do, we know how to work around.

My experience with minicompu
ter operating systems provides a
good counterpoint: Back in my
Xerox days I had to deal with a
Honeywell OS called CP 16. Like
almost all minicomputer software,
it was needlessly convoluted and
virtually undocumented. With only
a couple of hundred installations
in the world, and only three at
Xerox, there were no easily
accessible gurus to provide help.
Honeywell may have had some
gurus tucked away somewhere, but
they pointedly wouldn't tell us
who they were. Let's not even
think about a local equivalent to

DOS is easily

the most document

ed operating sy stem

in history, where

documentation

is measured in

insight, not

shelf-/ eet.

Ray Duncan's Advanced MS-DOS.
So no matter how powerful CP 16
may in fact have been, the only
way to gain access to that power
was by trial and error after relent
less hunting through the impenet
rable manuals.

DOS is easily the most docu
mented operating system in his
tory, where documentation is
measured in insight, not shelf
feet.The ten-million-plus installed
base allows world-class explainers
like Peter Norton and Ray Duncan
to make a living explaining DOS
by way of books, and now Peter
Norton has distilled much of the
tough stuff into a memory
resident green card called The

TU/WO TECHNJX (ISSN-0893-827X) is publi shed bimomhly by Borland Communications, a divis ion of Borland International, Inc., 4585 Scotts Valley Drive,
Scotts Vall ey, CA 95066. TURBO TECHNJX is a trademark of Borland lmernational, Inc. Entire contents Copyright C> J988 Borland Imernational, Inc. All
rights rese rved. No pan of thi s publication may be rep1imed or oth er.vise reproduced wi thout permission from the publisher. For a sta teme m of our pennis
sion poliC)' for use of li sti ngs appearing in the magazine, send a self-addressed stamped envelope to Permi ssions, TURBO TECHNIX, 4585 Scotts Valley
Drive, Sco11s Vall ey. CA 95066. Editorial and business offices: TURBO TECHNIX, 4585 Scotts Valley Drive, Scotts Valley, CA 95066. Subscription rate is $49.95
per yea r; rate in Canada $60.00 per year, payable in U.S. funds. Single copy price is $ 10.00. Third class postage pending at Santa Cruz, CA. For subscription
service write to Subscriber Sen•ices, TURBO TECHNIX. 4585 Scotts Valley D1ive, Scotts Valley, CA 95066. POSTMASTER: Send address changes to TURBO
TECHNJX, 4585 ScollS Valley Drive. Scotts Va lley. CA 95066.

TURBO TECHNIX makes reasonable effons to assure the accuracy of articles and information published in the magazine. TURBO TECHNIX assumes no
responsibi lity, however, for damages due Lo errors or omissions, and specifica lly disclaims a ny implied warranty of merchantability or f'iln ess fo r a particular
puqJOse. The li abi lity, if any. of Borland or any of the contributing authors of TURBO TECH NIX, for damages relating to a ny error o r omission shall be
li111ited to the p1ice of a one-year subscripLion to the magazine and shall in no evem include incidental, special, or consequential damages of a ny kind, even
if Borland or a conuibuting author has been advised of Lhe likelihood of such damages occurring.

Trade111arks: Turbo Pascal, Turbo Basic, Turbo(,~ Turbo Prolog, Turbo Toolbox, Turbo Tutor, Turbo GameWorks, Turbo Lightning, Lightning Word Wizard, Si<kKick,
SupcrKI')'. Eurfka , JvjlPx, Quallro, Sprint, Paradox, and Borland are trademarks or registered trademarks of Borland lntemational, Inc. or its subsidiaries.

4 TURBO TEQINIX January/ February 1988

Nonon Guides. Having such refer
ence works on hand, and having
professional explainers publishing
solid information on DOS all the
time, I'm confident that we know
exactly what DOS can do and
what it can't.

Our hacker-level knowledge of
DOS goes far deeper than that.
The unappreciated libeny of tak
ing a debugger to the OS (try that
in the mainframe/ mini world!)
has allowed the wild-eyed among
us to discover things, like the DOS
BUSY flag, that take the edge off
of DOS's famous reentrancy lim
itations. Careful program design
won't make DOS reentrant, but it
will allow us to design applications
that act as though DOS were re
entrant, which from the end user's
perspective is the same thing.

Contributing to our knowledge
of DOS is the fact that it rests on a
hardware platform known equally
well. If IBM had not published
the schematics and BIOS source
code for the original PC architec
ture, we would be years behind in
discovering workarounds for
DOS's weaknesses. Chaining onto
hardware-related system interrupts
like the timer tick (1 CH) have
allowed DOS wizards like Lane
Ferris to build preemptive multi
tasking into DOS applications
written in Turbo Pascal. (We'll be
providing much more on Lane's
multitasking kernel in a future
issue.) The stellar LIM 4.0
Expanded Memory Specification
would not have come to pass so
well or so quickly if the PC's bus
and memory architecture had
remained hidden behind legal
rampans and 457-pin bed-of-nails
custom ICs. LIM 4.0 goes about 80
percent of the way toward freeing
DOS from the 640K barrier
again , not by breaking the barrier,
but by making DOS act as though
it were breaking the barrier.

None of this would have hap
pened had DOS only sold into a
few hundred thousand systems, or
if Microsoft and IBM had been
pathological secret-keepers from
the beginning.

With all that in mind, I'll ask
the question every industry pundit
has been lately asking in print:
How long will DOS last?

It will outlast OS/ 2.
My reasoning turns on the fol

lowing issues:

• DOS can fake most of OS/ 2's
imponant features even on
8088-based PCs. DOS can coex
ist with software that multi
tasks-anyone who has used
BackComm or Lotus Express
will have to admit that. LIM 4.0
and its successors will put as
much memory as we can afford
in the box, and DOS will be
faked into using it for pro
grams and data.

What DOS can

do, we know how to

do. What DOS can't

do, we know how to

work around.

If the faking is seamless
enough, who cares?

• OS/ 2 has been designed for a
dead-end processor. The 80286
is an evolutionary side-trip;
essentially the chip that Intel
made while they were learning
how to make the 80386. It's only
about two-thirds there, with
incomplete hardware memory
management and an inability
to virtualize the 8086/ 8088.

By the time OS/ 2 comes into
wide use, Intel will most likely
be shipping their pg CPU,
which does for the 386 what
the 8088 did for the 8086:
embed a powerful CPU in a
low-cost mass-market package.
If the pg costs the same as a
286, why bother with the 286?
In six months that will be the
question to answer.

• In a well-integrated 386-based
machine, DOS, plus a "hypervi
sor," like Windows/ 386 or PC
MOS-386, become pretty much
everything that OS/ 2 is: A

genuine multitasking OS with
all the memory it needs. Since
each task has its own copy of
DOS, reentrancy ceases to be
an issue. Virtual-86 partitions
are limited to 640K, but pro
ducts like Qualitas's 386-To
The-Max will take 32-bit
extended memory and make it
act like LIM 4.0 expanded
memory. I have riot yet tested
Windows/ 386, but my sources
indicate that it is as fully capa
ble of providing a standard
user interface as OS/ 2's Pre
sentation Manager, and deadly
fast to boot. As 386-power
becomes more common, DOS
and Windows/ 386 will gradu
ally melt together; no one will
buy one without the other.

• We will never know as much
about OS/ 2 as we do about
DOS. By its design, the kernel
is a black box, and will be
highly resistant to probings by
curious hackers. Hardware
memory protection is a devilish
thing to defeat. My hunch is
that the merely curious will stay
home-and much that we
know about DOS has come
from the merely curious.

Furthermore, DOS may in fact
outlast OS/ 3, or whatever the next
generation protected-mode 386
OS happens to be, simply by rid
ing in its hip pocket through the
years. Knowing what we now
know about the market's insist
ence on upward compatibility, no
386 OS worth its pound of silicon
will go to market without being
able to run or emulate DOS as a
virtual-86 task.

Long after OS/ 2 has evolved
into OS/ 3 or OS/ 4, you'll still be
able to bring up Turbo Pascal
under DOS. For an operating sys
tem, at least, a little learning is
dangerous-and a lot may well
mean eternal life. •

Opinions expressed in this column
are those of the editor and do not
necessarily reflect the views of
Borland International, Inc.

J anuat)'/ Febrnary 1988 TURBO TECH IX 5

FOR THOSE
WHO WOULD
BE WRITERS

Your job is to weld ice and
iron.

Effective writing about pro
gramming must span the con
ceptual gulf between high tech
nology that defies description
and the English language,
which must describe it The job
is a dual one, requiring two sets
o~ skills developed in two sadly
divergent cultures. The seminal
British thinker C. P. Snow des
paired of a bridge between
these two cultures, and while
S~ow may ha~e been reaching
higher than literate tutorials on
technology, I feel that he des
paired too soon. Bridging those
cultures is what we do at

TURBO TECHNIX. If you have
the interest, we'd like you to join
us. Before you do, here are some
things to keep in mind:

Keep your topic focused. If you
can't get your mental arms around
a concept, the concept is probably
too broad. Broad articles can
rarely be deep enough to serve
the TURBO TECHNIX readership.
"Programming the EG.N' is too
broad. "Loading and Saving EGA
Text Fonts" is more like it Zero in
close and give us the whole story.

Understand before you explain.
If a concept proves difficult to
explain, it may be because you
don't fully understand it yet. Go
back to the manual. Bring up the
compiler and try a few twists on
the idea. Talk to your friends.
Know your topic inside and out,
and the discussion will flow more
easily.
Study the work of those who
succeed. What books and what
writers have helped you most? Go
back and read them again, not for
their content but for their

Lahey Computer Systems, Inc.
Sets a New FORTRAN Standard!

Introducing the latest addition to our line of FORTRAN Language Systems
Lahey Personal FORTRAN 77.

What you Get With
Lahey Personal
FORTRAN 77:

Lahey Experience.
We are experts 1n des1gn1ng
and 1mplement1ng FORTRAN
Language Systems. Lahey
has been producing
mainframe 1mplementat1ons
since 1967 and a PC
FORTRAN (F77L) since 1984.
In fact. F77L was named the
""EDITOR"S CHOICE" among PC
FORTRANs by PC Magazme. This
year span of spec1allzat1on has been
incorporated into the design of our
revolutionary Lahey Personal FORTRAN 77.

LAHEY SLASHES COMPILATION TIME.
Comp1la11on limps (m seconds) lor W~etslone Program {WHETS3H FO

M Lahey,~ ·•"'"A•~.,,.,,_,01• - 11.57

I Microsolt 54 .08

I Ryan McFarland «)"'"·~,.,

Customer Support:
Our philosophy is that customer retallonsh1ps begin. rather than end. at ihe
point of sale Services include free technical support. electronic bulletin board
~o~,!~st service and 1nformallon access, and newsletters to keep you up to

Purchasing the Lahey Personal FORTRAN 77 gives you our
FORTRA N experience. a feature loaded product. industry leading
comprlatron speed. and quality technical support; all for $95.

6 TURBO TECHNIX J anuary/ February 1988

Feature Loaded :
• Full 1mplementallon of the

ANSI X3.9-1978 FORTRAN
Standard

• Fast Comp1lat1on (see chart)
• Popular Language

Extensions highlighted 1n the
manual

• Source On-Line Debugger
• English D1agnost1cs and

Warning Messages
• LOGICAL· 1. LOGICAL"4
• INTEGER'2. INTEGER"4
• REAL"4 . REAL·s. and

DOUBLE PRECISION
• COMPLEx·s. COMPLEX"16
• Recursion
• 31 -Character Names
• Trailing Comment
• Cross Reference and Source

Listings
• 64 KB Generated Code
• 64 KB Stack Storage
• 64 KB Commons. Constants

and Saved Local Data
• Math coprocessor

requirement gives maximum
performance

• 350 Page User Manual
SYSTEM REQUIREMENTS

256K Ram MS·OOS {2 O or la1er)
Math Coprocessor Chip (8087 or 80287)

s95
Lahey 1s setting the

PC FORTRAN Standard.
TO ORDER

1-800-548·4 n8
Lahey Computer Systems. Inc

PO BOK 6091
Incline Village NV 8945-0

Telephone (702) 831-2500
TELEX 9102401256

methods. How have they organ
ized their material? What details
have they included, and what
have they omitted? What are
their examples like? Do they use
short sentences or long? What
t~chnical figures do they pro
VJde? There's no sin in imitating
the successful.

Use your own voice. The best
technical writing carries the
imprint of a human being. Pres
ent your explanations to the
readership as though you were
explaining it to a friend across a
desk. You don't have to "ummm"
and "ahhh," and the diction may
be more formal than ordinary
speech, but there's little profit in
pushing it into third person pas
sive. You wrote the program to
make BIOS calls; don't say, "The
program was written to make
BIOS calls."

These are broad principles to
ease your way into what we con
sider the technical writer's
mind~et. The details involving
margms, word processor formats,
code listings, and so on have
been collected into The TURBO
!ECHNIX Autlwrs' Guide, which
1s yours for the asking. Call or
write for a copy. Read it tho
roughly and mull it over.

That done, call and speak to
one of the editorial technical
staff about article concepts. We
do read unsolicited manuscripts,
but you have to keep in mind
that we have an entire year's
worth of issues in progress here
at any given time. Someone else
already may have sold us the
concept you're thinking about.
Certainly offer your ideas, but
don't be offended if we have to
say, "It's been done." Ask what
we'd like to have but haven't
assigned already. Somewhere
we'll find a concept that gener
ates some mutual excitement.

.The goal is to make program
mmg comprehensible, even to
those who do not consider them
selves programmers. Take up the
challenge. Ice welded to iron,
after all, produces light. •

-Jeff Duntemann

You do the creative stuff.
We'll write the code.

SYSTEM BUILDER™ $14995 & REPORT BUILDER™ Sf 2995

automate Turbo Pascal programming.
It's a state-of-the-art program gen
erator that automatically builds a
relational database application for
you in just seconds. You just paint
your screen and datafile layouts.

SO EASY . .. ideal for entry level "coders"
to produce relational database systems
without coding. (Entry level guide with
sample On-disk systems is provided.)
SO POWERFUL ... it provides program
ming professionals with more flexibility
and horsepower than any development
tool on the market (guide is provided.)

REPORT BUILDER CYCLE:
Key in the report parameters on screen

Print your listings
• New report format for reference
• Report element layout

Key in the report data elements on screen

Report Builder automatically writes the
program code and links it to your datafile

Print your listing
• Report program source code listings

Compile the report builder code using the
Turbo Pascal'" compiler

Attach the new report module to your
system menu

SYSTEM BUILDER CYCLE:
Paint the menu screens

System Builder automatically writes the
program code and combines the datafiles
into a relational database

Print your listings
• Program source code listing • Datafile
layouts • Self-documenting program
(includes screen schematics)

Compile the System Builder code using
Turbo Pascal'" compiler

Start using the completed system

*System Builder will generate 2,000 lines of program code in approximately 6 seconds.

REPORT BUILDER FEATURES:
• Automatically generates Indented, Structured Source

Code ready for compiling Turbo Pascal (no program
ming needed)

• Automatically interfaces to a maximum of 16 Datafiles
created with System Builder

• Supports Global Parameters such as Headings , Footers ,
Lines Per Page , Print Size and Ad Hoc Sorting

• Produces reports containi ng an unlimited number of
Sub-Headings , Sub-Totals and Totals

• Page breaks on Sub-Totals
• Report Builder will generate Report Programs which

can contain Report Elements not just restricted to Data
Elements. Reports can also include Text Strings , Vari
ables or Computed expressions containing references
from up to 16 Data files

• Use range input screens produced by System Builder to
allow End Users to select portions of a report as needed
(i.e. specific account ranges can be requested)

• Produces standalone Report Modules
• Easy-to-use Interface Program to access dBase Files

SYSTEM BUILDER PERFORMANCE
(Typical 10 screen 8 file/index application)

SYSTEM
TASK BUILDER DBASE Il l'"
Planning and Design
Screen Painting
Programming
Elapsed time to
completed system

60 minutes 60 minutes
15 minutes 3 hours
2 minutes 1 O hours
1 hour and 14 hours

17 minutes

SYSTEM BUILDER FEATURES:
• Automatically generates Indented, Structured, Copy

Book Source Code ready for compiling with Tu rbo
Pascal (no programming needed)

• Paint Application and Menu screens using Keyboard or
Microsoft Mouse"

• Finished Application screens all use System Builder's
In-Line machine code for exceptional speed

• Use fully prompted Screen Guidance Templates" to
define up to 16 Data fi les per application, each record
having an Unlimited Number of fields

• Define up to 16 Index Keys per application database
• Paint functions include:

---Center, copy, move , delete , insert or restore a line,
Go straight from screen to screen with one keystroke

-Cut and paste blocks of text screen to screen
-Draw and erase boxes, Define colors and intensities
-Access special graphic characters and character fill

• Supports an unli mited number of memory variables
• File Recovery Program Generator to make fixing of

corrupted datafiles an automatic process
• Automatically modifies data files without loss of data

when adding/deleting a field
• Menu Generator with unlimited Sub-Menu levels
• Experienced developers can modify the System Builder
• Develop systems for Floppy or Hard Disk
• Modify System Builder 's output code to include Exter

nal Procedures , Functions and Inline Code
• Easy-to-use Interface to access ASCII and dBase Files

VARs, system integrators and dealers:
Your inquires are always welcome.

Call us at the numbers shown on coupon.

"I think It's wonderful ... prospec
tive buyen should seriously con
sider DESIGNER even before
dBASE m." Mr. Greg Weale

Corporate Accounts Manager,
Computerland

"We used DESIGNER last year to
proanun a~ application. It
saved our pl'Op'IUIUllers so much
time. We now use DESIGNER
instead of dBASE mas our devel
opment standard:'

Mr. Peter Barge, Director
Services Division, Horwath cl: Horwath

"DESIGNER has resuhed In slpl
flcant time savlnp ... We use It on
clalsical database applications:•

Mr. Andy RJulevics, Director
Andrasoft Corporation

r- ----- ., Royal American Technologies
320 Harris Ave, Suite A
Sacramento, CA 95838

(800) 654-7766
In California (800) 851-2555

Please rush me _ _ copies of SYSTEM
BUILDER at $149.95 per copy and
__ copies of REPORT BUILDER at
$ 129.95 per copy. I am enclosing $6.00
for postage and handling. Note: California
residents please add 6% sales tax.

Address _ ___________ _

City _____________ _

State ______ Zip ___ __ _

Phone _ ___________ _

Payment: D Check D Money Order

0 Cashiers Check D AMEX

0 VISA 0 MASTERCARD

Expiration date ___ ______ _

Card Number _ _ ________ _

Signature ___________ _

30-Day Money-Back Guarantee. Not copy
protected . $10 restocking fee if envelope is
opened.
System Requirements-System Builder/Report
Builder : IBM PC/XT/AT 1 , or similar. with minimum
256K RAM , dual floppy drives. or hard disk, color
or monochrome monitor. MS 2 or PC 005 1 version
2.0 or later. Turbo Pascal Version 2.0 or later
(Normal, BCD or 8087 versions) .
1Tradcmarks of International Business Machines Corp.
2Tradcmark of Microsoft Corp.
·-Turbo Pa scal is a regi~ te red trademark of Borla nd International .

L·-:A::.is~cg:r:r:m:o~s:;·:c ·- - - .I

REPLACING
THE KEYBOARD
INTERRUPT
Capture the keystrokes that
DOS and BIOS throw away,
and hide the ones your
programs shouldn't see.

Neil]. Rubenking

When you hit a key on the PC keyboard, a
microprocessor in the keyboard itself
senos a signal to an 110 port in the PC.
The PC interprets the signal and takes
action. If you press a shift key, it notes the

w i zARo shift state. If you press a non-shift key, it
puts information into the keyboard buffer. When
your program reads a key, it gets key code informa
tion from this buffer. However, the keyboard signal
contains information that you can't normally get. It
sends signals when any key is pressed or released,
and it sends signals for key combinations like Alt
Home that the PC's BIOS ignores. In order to get
this information, you have to intercept that keyboard
signal before the BIOS can get it.

When the keyboard sends a signal, it causes a
hardware interrupt; whatever else the PC is doing, it
spends a moment servicing the keyboard. Because
this interrupt could happen in the middle of another
process without waiting its turn, it is called an asynch
ronous interrupt. The Hardware Keyboard Interrupt
is a routine in the BIOS that handles these signals
from the keyboard. At the start of the PC's memory
map, there is a table of vectors (addresses) for such
BIOS routines called the interrupt vector tabl,e. The
Hardware Keyboard Interrupt routine is number 9 in
this table. When the keyboard sends a code, the PC
transfers control to the address stored in the INT 9
vector. (When a program calls for keyboard input, it
uses another keyboard interrupt, number 16H. I~
this article, the phrase keyboard interrupt always refers
to Interrupt 9.)

The keyboard sends a signal telling exactly which
key was pressed (the make code), and also sends a
break code when a key is released. Every time you

continued on page IO

8 TURBO TEQINIX J anuary/ February 1988

LllTINI 1: EllOR. JIC

(*ERROR.INC
This is the error handler for ALL the INT9 front erd
demo programs*)

TYPE
string2 = string[2l;
string4 = string[4l;

CONST
HexDigit : ARRAY[0 •• 15] OF Char= 10123456789ABCDEF';

FUNCTION HexByte(B : Byte) : string2;
BEGIN

HexByte := HexDigit[B SHR 4l+HexDigit[B AND SFl;
END;

FUNCTION Hex(I : IJord) : string4;
BEGIN

Hex := HexByte(Hi(l))+HexByte(LoCI>>;
END;

{SF+} PROCEDURE My Error; {SF-}
BEGIN -

SetlntVec(Kbd Int, Kbd vec); {restore OLD INT9}
IF CExitCode <> 0) OR (ErrorAddr <> NIL) THEN

BEGIN
Assign(Output,''>;
RelJrite(OutPut);
IJriteLn(#7);
IF ExitCode = SFF THEN

IJriteLn('USER BREAK')
ELSE

BEGIN
IJriteLn('Critical Error# ',HEXCExitCode));
IJrite('AT PROGRAM LOCATION ');
IJriteLn(HEX(seg(ErrorAddr-)), 1 : 1 ,Hex(ofs(ErrorAddr")));

END;
END;

ExitProc := Exit_Vec; {restore previous ExitProc}
END;

LISTING 2: ACCEL.PAS

PROGRAM Accel;
USES Crt,Dos;

(* ======================================= *)
C* This program demonstrates a method for *)
C* accelerating the motion of an arrow-key *)
(*controlled character on the screen. *)
C* If a "direction" key is held down, the *)
C* character moves in larger and larger *)
C* j~s. up to a preset "Speed Limit". *>
(* It's easy to set the SPEED back down to*)
C* 1 whenever a new direction is chosen -- *)
C* the catch is to reset it when the *)
(* SAME direction key is RELEASED. *)
(* ======================================= *)

{=============}
{BEGIN INCLUDE}
{=============}
CONST

KR : Boolean = False;{KeyReleased FLAG}
Kbd_Int = 9;

VAR
Kbd_Vec, Exit_Vec : Pointer;

{SI ERROR. INC}

10 TURBO TEOINIX January/ February 1988

INTERRUPTS
continued from page 8

press or release a key the Key
board Intenupt receives a signal.
In most cases, the INT 9 routine
analyzes the key and puts the
result in the keyboard buffer.
However, the keyboard sends
more information than the BIOS
gives to your program. For exam
ple, the BIOS doesn't tell you
when a non-shift key is released,
nor does it directly tell you when a
shift key is pressed. Also, it disre
gards quite a few logical and use
ful key combinations such as the
Alt-Shift of the numeric keypad
keys. To get this information, you
have to change the Keyboard
Intenupt Vector to point to an
Intenupt Service Routine (ISR) of
your own devising. There's no
need to rewrite the whole BIOS
routine, because you can pass
control back to the original INT 9
when you've finished taking the
information you want The signal
from the keyboard remains avail
able until you send a particular
Reset code back to the keyboard.

DOS offers standard services to
fetch or change the value of any
intenupt vector. Turbo Pascal 4.0
includes a pair of routines that
call on these DOS services:
GetlntVec and SetlntVec. You can
create your own ISR in INLINE
code, save the old vector using
GetlntVec, and install your new
ISR with SetlntVec. Your routine
will intercept the keyboard's sig
nals and process them, then pass
the signals on to the BIOS. Your
routine can even prevent some
keys from reaching the BIOS, or
take over some of INT 9's regular
functions. The four sample pro
grams included with this article
demonstrate applications of this
technique.

THE DANGERS
Of course, as soon as you start
calling intenupts and inserting
INLINE machine code, you give
up portability. The very purpose

of a language compiler is to allow
the programmer to write in a
high-level language and not worry
about what machine code the
compiler generates. When you put
INLINE machine code directly
into a program, you lose this
advantage. The possibilities for
error are much greater at the
machine-code level, and can have
much wider consequences. Also,
Terminate and Stay Resident pro
grams (TSRs) such as SideKick
often trap INT 9 themselves in
order to be able to pop up on a
particular keypress. There is a
chance your program may be
incompatible with some TSRs, but
the results are worth the risk.

WHAT YOU MUST DO
Any program that contains an
interrupt handler has to be able to
perform a number of functions. It
must be able to change the appro
priate interrupt vector to point to
the address of the new ISR, and it
must be able to retain the pre
vious value of that vector. Your
program absolutely must restore
this value when it finishes. If a
program quits without restoring
the keyboard interrupt, the next
time you press a key the PC will
transfer control to the portion of
memory you have just vacated,
which now contains random
bytes. At this point you'll probably
have to turn off the computer,
because the keyboard won't
respond at all.

But what if your program
crashes? You still must restore the
interrupt even if the program fails.
Turbo Pascal 4.0 provides the exit
procedure facility for just such a
problem. The exit procec!ure gets
control when a program ends,
even if it crashes with a runtime
error. The exit procedure doesn't
prevent a crash, nor does it allow
you to fix things and return to
your normal program logic, but it
does allow you to perform some
cleanup. If you restore the inter
rupt in your error handler, you

continued on page 12

PROCEDURE CL!; INLINE(SFA); CINLINE procedures are NICE!}
PROCEDURE ST!; INLINECSFB);

PROCEDURE INT9_ISRC_Flags, _cs, _IP, _AX, _ex, _ex, _ox,
_SI, _DI, _DS, _ES, _BP:word);

INTERRUPT;
C* == *>
C* This procedure gets ahead of the normal *)
C~ interrupt 9 and checks if the current *)
C* character is a KEYPRESS code or a KEY *)
C* RELEASE -- if the latter, the typed *)
C* constant "KR" is set to TRUE C= 1). *)
(~ == *)
BEGIN
Inl ine(

S9C/
SE4/S60/
SA8/S80/
$74/SOS/
SC6/S06/>KR/$01/

{Press:}

{PUSHF ;Save flags}
{IN AL,S60 ;Read the keyboard port}
{TEST AL,$80 ;Is the high bit set?}
CJZ Press ;If not, skip to "Press"}
{HOV BYTE PTR [>KR],+$01 ;If so, make KR

C* ============================ *)
C* CHAIN to the regular INT 9 *)
C* ============================ *)
$90/ {POPF ;Restore the flags}

TRUE}

SA1/>KBD_VEC+2/ {HOV AX,C>KBD_VEC+2] ;Old vector seg to AX}
S8B/S1E/>KBD_VEC/ {HOV BX,C>KBD_VECl ;Old vector ofs to BX}
S87/SSE/$0E/ CXCHG BX,[BP+SOE] ;Swap ofs w/ return address}
$87/$46/$10/ CXCHG AX,CBP+S10l ;swap seg w/ return address}
$89/SEC/ {HOV SP,BP ;UNDO procedure's entry code}
SSD/ CPOP BP}
$07/ {POP ES}
S1F/ {POP OS}
SSF/ {POP 01)
SSE/ {POP SI}
SSA/ {POP DX}
SS9/ {POP CX}
SCB); CRETF ;in effect, JMP to old vector}

END;

FUNCTION KeyReleased : Boolean;
C* ================================ *)
C* Returns the state of the flag *)
C* KR and resets it to FALSE *)
C* ================================ *)
BEGIN

CL!; {Don't want it changing DURING this!}
KeyReleased := KR;
KR := False;
ST!; COK, can change now}

END;
{=============}
{END INCLUDE }
{=============}

PROCEDURE Do Demo;
(* =========;============================== *)
C* Here begins the DEMO procedure that uses *)
(* the !SR above. It responds to the four *)
(* arrows keys and to "U", "A", and 11Q11 • *)
C* Move around with the arrow keys for a *)
C* while, and then hit "A" to engage the *)
C* Accellator. 11U11 will Unaccelerate the *)
C* arrow keys, and 11Q11 is the signal to *)
C* Quit. *)
C* == *)

January/ February 1988 TURBO TEGINIX 11

CONST
UKey = #72; {SCAN codes for the arrow keys}
DKey = #80;
LKey = #75;
RKey = #77;

TYPE
direction = (Up, Down, Left, Right);

VAR
CRow, CCol Byte;
accel Boolean;
CH, CH2, Last Arrow Char;
M, Speed - Byte;

CONST
Speed_Limit = 8;
Mark = #SE9;{theta character}
urmark = #$20;{space character}
Arrows : SET OF Char= [UKey, DKey, LKey, RKeyl;

PROCEDURE RevVideo;
BEGIN

TextColorCBlack);
TextBackgroundCWhite);

END;

PROCEDURE initialize;
BEGIN

TextBackgroundCblack);
ClrScr;
RevVideo;
Write(' MOVE with 4 arrow keys.');
Write(' CAlccel, [Ulnaccel, [Q]uit.');
Write(' Speed: ');
TextBackground(Black);
TextColor(White);
Speed := 1;
CRow := 12;
ecol := 40;
Last Arrow := #0;
Accel := False;

END;

PROCEDURE PutAChar(co, ro, fore, back : Byte; CH char);
c• ===================================== *>
C* At location (co,ro), write character *)
C* CH with color specified by the fore· *)
C* and background attributes. *)
c• ===================================== *>
BEGIN

TextColor(fore);
TextBackground(back);
GoToXYCco, ro>;
Write(CH);

END;

PROCEDURE Move_Increment(D : direction);
c• ======================================= *>
C* Move the marker in the given direction *)
C* by as many spaces as the current SPEED. *>
C* If we hit the edge, beep and set speed *>
c• back to one. *)
c• ======================================= *>

PROCEDURE beep;
BEGIN

SoundC1000); Delay(50);
Sound(2000); Delay(50);
NoSound;

END;

12 TURBO TEGINIX J anuary/ February 1988

INTERRUPTS
continued from page 11

avoid having a program crash
become a complete system crash.
Also, every unit in your program
can have its own exit procedure,
and all the exit procedures will
execute when the program ends.
The file ERROR.INC (Listing 1)
contains an exit procedure error
handler that all the example pro
grams use.

The example programs I've
devised all intercept the INT 9
vector and replace it with one
pointing to a custom keyboard ser
vice routine. The program logic
for each demo program runs as
follows:

1. Save the old interrupt vector

2. Install the new ISR

3. Save the old ExitProc

4. Enable the new ExitProc

5. Demonstrate the ISR

6. Reinstall the old interrupt

The last demo program, MoreKey,
is different from the others in that
all the interrupt code is in a sepa
rate unit, but the sequence of
events it follows is the same.

SAMPLE USES
The simplest ISRjust "tastes" the
signal from the keyboard port
before passing it on. For example,
the ISR in the sample program
Accel merely checks if the scan
code is a break code. If so, it sets a
flag. Then it passes control on to
the original INT 9.

The ISR in ShKey does a little
more work before handing over
control. It compares the received
scan code to the codes of the
seven shift keys. If a code
matches, it sets a flag. With this
routine, you can say, "Press any
key when ready," and really mean
any key.

NoReboot prevents anyone
from rebooting the computer with
Ctrl-Alt-Del while the program is
running by suppressing the Del

key. If it detects a Del, it resets the
keyboard without ever letting the
BIOS see the Del keystroke.

The three examples above are
subtle, nosing about the edges of
the BIOS interrupt. They steal a
little data, or prevent the BIOS
from doing its job. MoreKey, the
fourth sample, actually takes over
the function of the BIOS and
creates useful new key codes not
provided by the standard key
board interrupt.

THE DEMO PROGRAMS
Accel. Listing 2 shows a sample
program that puts an accelerator
in your arrow keys. Many pro
grams move a marker around the
screen using these keys. It can be
very tiresome to move from one
edge of the screen to the other
one space at a time. The auto
matic accelerator causes the cur
sor to move faster when the user
holds down a key. You can imple
ment this fairly easily by keeping a
speed variable, and incrementing
it every time the key pressed is the
same as the previous key.

This almost works. However,
you need to be able to decelerate
when you get close to your desti
nation. When the user takes their
finger off the key, you need to set
the speed back to minimum.

Every key produces a make code
when you press it and a break code
when you release it. The two
codes are identical except for the
highest bit, set to 0 for a make
code and 1 for a break code. The
ISR in ACCEL simply tests for a
break code-one with the high bit
set to 1-and sets the Boolean
typed constant flag KR to True if
it finds one.

Note the unusual procedure
declaration for procedure
INT9_ISR. This is an interrupt
procedure, a new feature of Turbo
Pascal 4.0. The keyword INTER
RUPT tells 4.0 to save and restore
all the registers at the start and
end of this procedure. It also sets
the DS register to the main pro
gram's Data Segment, so you have

continued on page 14

BEGIN
{FIRST blank the old location }
PutAChar(CCol, CRow, white, black, unmark>;
CASE D OF

Up
Down
Left
Right

CR ow
CR ow
ecol
ecol

:= CRow-1;
: = CRow+1;
:= CCol-1;
:= CCol+1;

END;
IF CRow < 2 THEN

BEGIN CRow := 2; speed := 1; beep; END;
IF CRow > 24 THEN

BEGIN CRow := 24; speed := 1; beep; END;
IF CCol < 1 THEN

BEGIN ecol := 1; speed := 1; beep; END;
IF ecol > 80 THEN

BEGIN ecol := 80; speed := 1; beep; END;
{NOii mark the new location }
PutAChar(CCol, CRow, black, white, Mark>;

END;

BEGIN {procedure Do_Demo;}
Initialize;
PutAChar(CCol, CRow, black, white, Mark);
REPEAT

REPEAT
CH := #0; CH2 := #0;
REPEAT UNTIL KeyPressed OR KeyReleased;
IF KeyPressed THEN

BEGIN
CH := ReadKey;
IF (CH = #0) AND KeyPressed THEN

CH2 := ReadKey
ELSE CH := UpCase(CH);

END
ELSE {A key was released}

speed := O;
UNTIL ((CH IN ['A', •u•, 'Q'l > OR CCH2 IN Arrows));
IF CH = #0 THEN

BEGIN
IF Accel THEN

IF CH2 = Last Arrow THEN
BEGIN -

{Key CH2 is being held down
increase speed!}

IF Speed < Speed_Limit THEN
Speed := Speed+1;

END
ELSE Speed := 1

ELSE Speed := 1;
GoToXYC79, 1); Write(speed);
Last_Arrow := CH2;
CASE CH2 OF

UKey FOR M := 1 TO speed DO
Move lncrement(Up);

DKey FOR M == 1 TO speed DO
Move lncrement(Down);

LKey FOR M == 1 TO speed DO
Move lncrementCLeft);

RKey FOR M == 1 TO speed DO
Move_lncrement(Right);

END;
END

January/ February 1988 TURBO TEGINIX 13

ELSE
CASE CH OF

'A' : BEGIN
Accel := True;
RevVideo;
TextColor(Black+Blink);
GoToXY(59, 1); Write('ACCELERATED');

END;
'U' BEGIN

Accel := False;
RevVideo;
GoToXYC59, 1 >; Write(' 1);

END;
IQI :

END;
UNTIL CH = IQ I ;

END;

BEGIN
CheckBreak := TRUE;
GetlntVec(Kbd Int, Kbd Vee);
SetlntVec(Kbd-Int, @INT9 !SR);
Exit Vee := ExitProc; -
ExitProc := CilMy_Error;

{save 11old11 INT9}
{install new}
{save old ExitProc}
{install new}

Do Demo;
{The interrupt vector gets

END.

{show yer stuff!}
RESTORED in the ExitProc}

LISTING 3: SHKEY.PAS

PROGRAM Shift Key Pressed;
uses crt, dos; -
{===========:;:=}
{BEGIN INCLUDE}
{=============}
VAR

Kbd_Vec, Exit_Vec pointer;
CONST

Kbd_Int = 9;

{$1 ERROR. INC}

PROCEDURE CL!; INLINE(SFA); {INLINE procedures are NICE!}
PROCEDURE ST!; INLINE(SFB);

CONST
(* Scan codes for seven shift keys *)

SC LeftShift = 42;
SC-RightShift = 54;
SC-CtrlShift = 29;
SC-AltShift = 56;
SC-NLITILock = 69;
SC-ScrollLock = 70;
sc-CapsLock = 58;
SKP Boolean = False;{ShiftKeyPressed flag}
which : Byte = O;

PROCEDURE INT9 !SR(Flags, cs, IP, AX, BX, ex, _ox,
- =SI, _DI~ _os~ _ES~ _BP:word);

14 TURBO TEGINIX J anuary/ February 1988

INTERRUPTS
continued from page 13

access to program variables. Fig-
ure 1 shows the entry and exit
code Turbo Pascal generates for
an intenupt procedure.

50 PUSH AX
53 PUSH BX
51 PUSH ex
52 PUSH DX
56 PUSH SI
57 PUSH DI
1E PUSH OS
06 PUSH ES
55 PUSH BP
89E5 HOV BP,SP
81ECxxxx SUB SP,LocalSize
B8yyyy HOV AX,SEG DATA
8ED8 HOV DS,AX
{Body of procedure goes here}
89EC HOV SP,BP
50 POP BP
07 POP ES
1F POP OS
5F POP DI
5E POP SI
5A POP DX
59 POP ex
5B POP BX
58 POP AX
CF IRET

Figure 1. Entry and exit code for
interrupt procedures.

There is one catch. We just want
to peek at what the keyboard is
sending and then chain to the old
intenupt. This was a snap in
Turbo Pascal 3.0, because we
could store the old intenupt vec
tor in the code segment by mak
ing it a typed constant. A 3.0 pro
gram always has one single code
segment, so we always knew
where the saved intenupt vector
was kept. In 4.0, a program can
have multiple code segments, and
you can't store data in them. We
can store the old intenupt vector
in a variable of the new "generic
pointer" type, but we need access
to the data segment in order to
locate that variable. Before we
chain to the old intenupt, we have
to restore all the registers; after
doing this we no longer have
access to the main program's data
segment.

continued on page 16

Program in the fast lane with
Borland's new Turbo Pascal 4.0 !

0 ur new Turbo Pascal• 4.0 is so
fast. it's almost reckless. How
fast? Better than 27.000 li nes

of code per minute. That's more than
twi ce as fast a& 3.0 and the reason
why you need 4.0 today.

4.0 breaks the code barrier
No more swapping code in and

out to beat the 64K code barrier.
Designed for large programs. Turbo
Pascal 4.0 lets you use every byte
of memory in your computer.

4.0 uses logical units for
separate compilation

Pascal 4.0 lets you break up
the code gang into " units." or
"chunks. " These logical modules
can be worked with swiftly and
separately. Compiling and linking
these separate units happens in
a flash because your compiling
horsepower is better than 27.000
lines a minute.* And 4.0 also
includes an automatic project Make.

4.0 Highlights:
• Compiles 27.000 lines per minute
• Includes automatic pro ject Make
• Supports> 64K programs
• Uses uni ts for separate compilation
• Integrated development

environment
• Interactive error detection/

location
• Includes a command-line version

of the compiler

60-0ay Money-back Guarantee··

"fk.wlonanBMHz IBMAT

.. llwin1m60oaysoll)U'chase1t11sproductdoesno1perlorm111accordancewithw
claims, cal! OUI customer seMce department. and we will arrange a rell.ll'ICI

AUBorlaodproOJctsaretraclemarksor1eg1S1eredtrademarkSolBorland
lnlernatlOllal. lnc Copyrlfll•1987 Borland lnlernational,lnc Bl 11618

4.0 's cursor automatically
lands on any trouble spot

4.0's interactive error detection
and location means that the cursor
automatically lands where the error
is. While you're compiling or running
a program. you get an error message
and the cursor flags the error 's

4.0 gives you an integrated
programming environment

4.0's integrated envi ronment
includes pull-down menus and a
bui lt- in editor. Your program output
is automatically saved and shown in
the output window. You can Scrol l.
Pan . or Page through all your output
and know where everything is all the
time. Given 4.0's integration. you
can edit, compile. fi nd and correct
errors- all from inside the integrated
development environment. We even
include a command line version of
the compiler.

Compatibility with
Turbo Pascal 3.0

We've created Version 4.0 to be
highly compatible with Version 3.0
and included a conversion program
and compatibility units to help you
convert 3.0 programs to 4.0.

4.0 is all yours for only $99.95

location for you.
Sieve (25 iterations)

Size of Executable Fife

Execution speed

SteveolE!a1osn1enesfl.l'lonan8MHz lBMAT

--- Turbo PasCil4~o --- --.,.;,;,-,; PaSciT3:o ---1
I - ... 2224 b~t;;- -=~~~! -----· 11-sai·b~;;--- ------1

9.3 seconds __ J -== ~:_:_~con_~~-~ _ ~J
Smee the sOl.l'ce hie above is too small lo 1nd1ca1e a d1tlereoce in comp1lat1on speed we compiled our CHESS program from TurbO Gameworks to give you a !rue sense ol hOw
rruchraster40really1s1

Compilation of CHESS.PAS (5469 lines) ----- ------- --- ___ T ____________ -------
1 Tur!~PaS_E!fL~: O ----1 _!_u~b!!~SC~}:..~ .. --~
: 12.1 seconds ii 35.5 seconds I
~- --- -------- ---- -- - ------ ---------·------ ·-1 I 21.119 9.243 1 • .1 _____ -- - --- ----J- _____________________ __!

Compilation speed

Lines per minute

CHESS PAS c~Je<I on an 8 MHz IBM AT

For the IBM PS/2- and the I BM• and
Compaq• famil ies of personal computers and

all !00% compatibles

For the dealer nearest you.or Ill order now.

Call (800) 543-7543
IN1fRNA110NAI

YES! I want to upgrade to Turbo Pascal 4.0
and the 4.0 Tuolboxes

Please check box(es)

D Turbo Pascal 4.0 Compiler
D Turbo Pascal Tutor

Su111St1d Reta/I

$ 99.95
69.95
99.95
99.95
99.95
99.95
99.95

Registered owners have been notified by mail. If you are a registered Turbo Pascal user and have
not been notified of Version 4.0 by mail, please call us at (800) 543-7543. To upgrade if you
have not registered your product, just send the original registration form from your manual and
payment with this completed coupon lo:

l'ascal 4.0 Upgrade Dept. Name --- ---------- --
Borland International
4585 Scotts Volley Drive Ship Address-------------
Scotts valley, CA 95066

City--- -------- State __ _

Zip ____ Telephone (

For the IBM PS1r and the IBM• and CompaQ• lamilies al personal computers and all 100% compatibles.

This offer is limited to one upgrade per valid registered product It is good until June 30. 1988. Nol good with any
other otter tram Borland Please allow 4 to 6 weeks for delivery al Toolboxes

D Turbo Pascal Database Toolbox
o Turbo Pascal Graphix Toolbox
o Turbo Pascal Editor Toolbox
D Turbo Pascal Numerical Methods Toolbox
D Turbo Pascal Gameworks

Total product amount
CA and MA residents add sales tax
In US please add $5 shipping and handling for each product
~de US please add $10 stipping ii'<! handling for each product
Tola! amount enclosed
Please specify diskette size D sv~· D 311.!'

Payment· D VISA o MC o Check D Bank Oratt

Cred1I card expiration date·____) __ _

Upgr1d1t

$ 39.95
19.95
29.95
29.95
29.95
29.95
29.95

$ _ _ _

$ __ _
$ _ _ _
$ __ _
$ __ _

Outside u S make payments by bank draft payable in US dollars drawn on a US bank CODs and purchase orders
will not be accepted by Borland 1To quahty lor the upgrade prlCe you rrusl grve the se11al nurrber ol the equivalent product you are upgrading

Serial No.

INTERRUPT;
BEGIN

INLINE(
$9C/ {PUS HF}
SE4/$60/ {IN AL,$60 ;read keyboard port}
$3C/<SC CAPSLOCK/ {CMP AL,<SC CAPSLOCK}
S74/$1F/ {JZ Was Pressed}
$3C/<SC LEFTSHIFT/ {CMP AL,<sc_LEFTSHIFT}
S74/$1B/ CJZ Was Pressed}
$3C/<SC RIGHTSHIFT/ {CMP AL,<sc RIGHTSHIFT}
$74/$17/ {JZ Was Pressed}
$3C/<SC CTRLSHIFT/ {CMP AL,<sc_CTRLSHIFT}
$74/$13/ {JZ Was_Pressed}
$3C/<SC ALTSHIFT/ {CMP AL,<SC_ALTSHIFT}
$74/SOF/ {JZ Was_Pressed}
$3C/<SC NUMLOCK/ {CMP AL,<SC_NUMLOCK}
$74/$0B/ {JZ Was_Pressed}
$3C/<SC SCROLLLOCK/ {CMP AL,<SC_SCROLLLOCK}
$74/$07/ {JZ Was Pressed}
(* ==========================;====================== *)
(* IF you didn't j~ by now, it wasn't a shift key *)
C* === *>
$C6/$06/>SKP/$00/ {MOV BYTE PTR [>SKPJ,+$00 ;set SKP FALSE}
SEB/$08/ {JMP SHORT To Normal}

{Was Pressed:} -
SC6/$06/>SKP/$01/ {MOV BYTE PTR [>SKPJ,+$01 ;set SKP TRUE}
$A2/>WHICH/ {MOV C>WHICHJ,AL ;remember WHICH key}

{To Normal:}
-(* ============================ *)

(* CHAIN to the regular INT 9 *)
(* ============================ *)
$90/ {POPF ;Restore the flags}
$A1/>KBD_VEC+2/ {MOV AX,[>KBD_VEC+2J ;Old vector seg to AX}
$8B/$1E/>KBD VEC/ {MOV BX,[>KBD VEC] ;Old vector ofs to BX}
$87/$SE/$0E/- {XCHG BX,CBP+$0El ;Swap ofs w/ return address}
$87/$46/$10/ CXCHG AX, CBP+$10l ;Swap seg w/ return address}
$89/$EC/ {MOV SP,BP ;UNDO procedure's entry code}
$SD/ {POP BP}
$07/ {POP ES}
$1F/ {POP OS}
$SF/ {POP DI}
SSE/ {POP SI}
$SA/ {POP DX}
$S9/ {POP CX}
$CB); CRETF ;in effect, JMP to old vector}

END;

FUNCTION ShiftKeyPressed : Boolean;
C* ======================================= *)
(* Returns the value of flag variable SKP, *)
(* and resets it to FALSE *)
(* ======================================= *)
BEGIN

CL!; {Don't want it changing DURING this!}
ShiftKeyPressed := SKP;
SKP := false;
ST!; {OK, can change now}

END;

FUNCTION Read SKP : Byte;
(* ==========;======================= *)
(* Returns the value of flag variable*)
(* "WHICH", and resets it to 0 *)
(* ================================== *)
BEGIN

CL!; {Don't want it changing DURING this!}
Read SKP := which;
which : = O;
ST!; {OK, can change now}

END;

16 TURBO TEQINIX January/ February 1988

INTERRUPT
continued from page 14

INLINE wizard Lane Fenis
devised the solution to this prob
lem. We play some tricks with the
stack. When Turbo Pascal 4.0
encounters an interrupt proce
dure, it pushes all the registers
starting with AX and BX. That
means AX and BX are the last
registers to get popped when the
procedure ends. We copy the old
interrupt vector into AX:BX, then
exchange them with the segment
and offset of the return address
on the stack. The code that we use
to simulate the interrupt proce
dure's exit code leaves AX and BX
on the stack. Hence, when we do

DOS keeps

track of the current

shift states using

two bytes in low

memory (addresses

0040:0017 and

0040:0018).

a RETF (far return), control
passes to the old interrupt, and
when it ends, control goes to the
original return address.
Sh Key (Listing 3). DOS keeps
track of the current shift states
using two bytes in low memory
(addresses 0040:0017 and
0040:0018). Each bit in each of
these bytes indicates whether a
particular shift key is being held
down, or whether a shift lock is
active. When you press a shift key,
the BIOS updates these shift-state
bytes, but doesn't put anything in
the keyboard buffer. Conse
quently, the Turbo function
KeyPressed does not return True
when you press a shift key. The
ISR in ShKey checks each key
code received against the codes

for Ctr!, Alt, Left Shift, Right Shift,
Caps Lock, Num Lock, and Scroll
Lock.

If it makes a match, it sets one
flag to say a key was pressed and
another to say which key it was. As
in Accel, after the program takes a
peek at what the keyboard is send
ing, it passes control on to the reg
ular keyboard interrupt vector.

The ShiftKeyPressed function
reads the flag and automatically
resets it to False. The Read_SKP
function reads which key it was,
and resets the which flag to zero.
Shift key presses do not stack up in
the keyboard buffer the way ordi
nary keys do. If you press four
shift keys before the program is
ready to recognize one, only
the last will be recognized and
acted upon.

Picture what would happen if
the keyboard sent a key after the
ShiftKeyPressed function had
read the SKP flag but before
ShiftKeyPressed had zeroed SKP
out. Remember, this kind of inter
rupt is asynchronous, so it can
happen any time, even between
those two statements. Another key
would come in through the ISR,
and the SKP flag would be set to
True, but the next program line
would set it to False. The new shift
key would get lost. In order to
avoid this kind of problem, we dis
able interrupts during functions
ShiftKeyPressed and Read_SKP.
Turbo Pascal 4.0 has a new feature
that makes this easy. Note the calls
to procedures CLI and STI. These
procedures are INLINE directives,
and as such they are much like
macros in a macro assembler.
Wherever you use the name of an
INLINE directive, 4.0 directly
inserts the INLINE code it
defines. In this case, the proce
dures simply disable interrupts at
the start of the functions and en
able them again at the end.

NoRehoot (Listing 4). If your pro
gram is doing something impor
tant, like updating files for
million-dollar transactions, you
may want to prevent anyone from
rebooting the computer. The ISR
in this program reads the

keyboard port and checks the
result against the scan code of the
Del key. When it finds a Del code,
it resets the keyboard port just as
the normal keyboard interrupt
does when it's finished with a key.
This opens the keyboard to
receive the next key. In this case,
the ISR has to handle all the
housekeeping needed to end a
hardware interrupt. It sends an
End-of-Interrupt signal to the
Interrupt Controller chip and lets
the special Turbo Pascal 4.0 inter
rupt procedure code finish off the
interrupt call. The regular key
board interrupt never sees the Del
keystroke.

To suppress the Del key thor
oughly, you have to catch both its
make code and its break code,
since either code can initiate a
reboot in combination with Ctr!
and Alt. The two codes differ only
in the highest bit; 1 for a break
code, 0 for a make code. You
could compare the received code
against both codes, but I chose
instead to ignore the highest bit
and make only one comparison.
Performing an arithmetic AND of
the code with 01111111 binary
(7FH) forces the highest bit to 0

and leaves the lower seven
unchanged.

There's one problem with this
technique: certain RAM-resident
programs, such as SideK.ick, can
prevent it from working. Even
when NoReboot is running, you
can reboot by bringing up Side
Kick first. Since the default activa
tion key sequence for SideK.ick is
Ctrl-Alt, Ctrl-Alt-Del will usually
bring up SideK.ick and reboot the
computer. On the other hand,
SuperKey doesn't interfere. If you
pop up SuperKey's macro editor
over NoReboot, you'll find that
you cannot use the Del key. If you
seriously need to prevent reboot
ing, you'll have to make sure Side
Kick is not in the system.

MoreKey (Listing 5). There are
quite a few logical key combina
tions that the BIOS keyboard
interrupt simply ignores. For
example, Ctrl-Left arrow is a valid
combination, but Ctrl-Up is not.
Alt-Fl works, but not Alt-Home.

continued on page 18

~".,\ Hire a Pro for
Your NewTurbo 4.0

T um on the power of Turbo PROFESSIONAL 4.0, a library of more
than 300 state-of-the-art routines optimized for Turbo Pascal 4.0.

You'll have professional quality programs finished faster and easier.

Turbo PROFESSIONAL 4.0 includes complete source code,
comprehensive documentation and demo programs that

are powerful and useful. The routines include:

• Pop-up resident routines
• BCD arithmetic
• Virtual windows and menus
• EMS and extended memory access
• Long strings, large arrays, macros,

and much more.

Turbo PROFESSIONAL is only $99.
Call toll free for credit card orders.

1-800-538-8157 extension 830
1-800-672-3470 extension 830 in CA

Satisfaction Guaranteed or your money back within 30 days.

Turbo Pascal 4.0 is required. Regis1ercd For other infonna1ion ca\1 408-438-8608.

owner"'\ of Turbo Profe'\sional by Sunny 9 AM 10 5 PM PST. Shipping & taxes

Hill Software may upgrade for $30. prepaid for US and Canadian customers.

Include your seria l number. others please add $6 per ilcm.

TurboPower Software 3109 Scotts Valley Dr., Suite 122 Scotts Valley, CA 95066

January/ February 1988 TURBO TEQINIX 17

<=============>
(END INCLUDE }
<=============>

PROCEDURE Do_Demo;
VAR

CH : Char;
BEGIN

ClrScr;
\Jri teLn(I KEYBOARD INTERRUPT DEMO "Shi ft Keys" I);
\JriteLn(' ========================~==========='>;
\JriteLn;
\Jrite(' Press the various shift keys on the '>;
\Jri teLn('keyboard. The normal "KeyPressed"');
\Jrite(' function doesn''t notice these keys. ');
\JriteLn('But the new "ShiftKeyPressed"');
\JriteLnC' notices! Hit <Ctrl><Break> to quit.');
REPEAT

REPEAT UNTIL KeyPressed OR ShiftKeyPressed;
\JHILE KeyPressed DO CH := ReadKey;
CASE Read SKP OF

SC LeftShift
SC-RightShift
SC-CtrlShift
SC-AltShift
SC-NllllLock
SC-Scrol lLock
sc:capsLock

END;
UNTIL FALSE;

END;

BEGIN
CheckBreak := TRUE;

\JriteLnC'Left Shift');
\JriteLnC'Right Shift');
\JriteLnC'Control Shift');
\JriteLnC'Alt Shift');
\JriteLnC'Nl.111 Lock'>;
\JriteLnC'Scroll Lock'>;
\Jriteln('Caps Lock'>;

GetlntVec(Kbd Int, Kbd Vee); (save "old" INT9}
SetlntVec(Kbd-Int, @INT9 !SR); (install new}
Exit Vee := ExitProc; - (save old ExitProc}
ExitProc :=@My Error; (install new}
Do Demo; - (show yer stuff!}
(Old interrupt is restored by ExitProc}

END.

LISTING 4: NOREBOOT.PAS

PROGRAM No_Reboot;
{=============>
{BEGIN INCLUDE}
{=============}
Uses Crt, Dos;
CONST

D_Key = 83; C* SCAN code of the Del key *)
Kbd_Int = 9;

VAR
Kbd_Vec, Exit_Vec Pointer;

($1 ERROR. I NC}

PROCEDURE INT9_ISRC_Flags, _cs, _IP, _AX, _BX, _ex, _ox,
_SI, _DI, _os, _ES, _BP:word);

INTERRUPT;
(* == *)
C* This routine suppresses the key. *)
(* If it detects either a "make" or a *)
(* "break" from the key, it si111=>lY *)
(* resets the keyboard. \Jithout *)
C* there's no way to enter <Ctrl><Alt> *)
C* so you can't reboot. *>
(* == *)

18 T URBO TEOINIX J anuary/ February 1988

INTERRUPTS
continued from page 17

MoreKey enables thirteen useful
new keys, all previously unrecog
nized Alt-key combinations.

When you press an ordinary
key, the BIOS keyboard interrupt
inserts two bytes into the keyboard
buffer. These bytes are the ASCII
code for that key and the scan
code that produced it. For keys
that don't have ASCII equivalents,
like the function keys and arrow
keys, it inserts ASCII code 0 fol
lowed by an extended scan code.

When you press

an ordinary key,

the BIOS keyboard

interrupt inserts

two bytes into the

keyboard buff er.

Appendix E in the Turbo Pascal
4. 0 Owner's Handbook lists the key
codes returned by many special
key combinations. Unfortunately,
the list is not entirely correct. Any
key on that chart with a code
greater than 132 is only valid if
SuperKey is loaded. The BIOS
ignores them. MoreKey uses the
codes from this list for ten of its
new keys and extrapolates the list
for the other three. MoreKey
builds on the techniques intro·
duced in the other examples, and
adds the ability to insert key codes
in the keyboard buffer, just as the
BIOS INT 9 does.

MoreKey's new keys are the Alt
Shift of the 13 keypad keys-the
nine-key numeric pad itself, plus
Ins, Del, and the gray + and -
keys. However, there's a catch
normally you would use Alt plus
the keypad to enter special ASCII
codes. If you press Alt, type a
number on the keypad, and

release Alt, the ASCII character
corresponding to that number
appears. This process interferes
with using the Alt keypad another
way. MoreKey solves the problem
as SuperKey does, by requiring
that you press Left Shift-Alt for
those special ASCII codes.

The first thing the MoreKey
ISR does is check the shift states
in the BIOS ciata area. The byte at
address 0040:0017 contains this
information. In this byte, the
eighth bit reflects the Alt state and
the second bit the Left Shift state;
if the bit is 1, the corresponding
shift state is on. If Alt is off, it
immediately passes control to the
regular keyboard interrupt. If both
the Alt and Left Shift states are
on, it also hands over control.
And if the received signal is a key
board break code, or if it's less
than the code for Home or
greater than the code for Del, it
gives control to the regular inter
rupt right away.

Any keyboard signals that made
it through these tests are Alt plus
keypad codes. When one of these
codes is received, the keyboard is
reset so it can receive more keys
and deal with the received code.
The Turbo Pascal 4.0 Owner's
Handbook extended codes for
these keys are the scan codes plus
67H, so that's what you put into
the keyboard buffer, with a zero
for the ASCII code.

The code that does the buffer
filling is almost identical to the
corresponding code in the BIOS,
except that it does not check for a
full buffer. It does the following:
puts the two bytes of key code into
the keyboard buffer at the loca
tion marked by the buffer pointer
Tail; advances Tail by two bytes;
and if Tail points to the end of
the buffer, the code resets Tail to
the beginning. That's it.

MoreKey differs from the other
examples in that all of its interrupt

continued on page 20

BEGIN
INLINE(
SFB/ {ST! ;Allow interrupts}
S9C/ {PUSHF ;Save the flags}
SE4/$60/ {IN AL,$60 ;READ the keyboard port}
S24/S7F/ CANO AL,S7F ·Mask off "break bit"}
$3C/<0 KEY/ {CMP AL,<D_KEY ;Is it a 11 De°L 11 key?}
S74/S1S/ (JZ GetOut ;If so, throw it away}
(* ============================ *)
(* CHAIN to the regular INT 9 *)

(* ============================ *)
S90/ CPOPF ;Restore the flags}
SA1/>KBO VEC+2/ {MOV AX, [>KBO VEC+2] ;Old vector seg to AX}
$8B/S1Et>KBO VEC/ {MOV BX, [>KBO-VEC] ;Old vector ofs to BX}
$87/SSE/SOE/- {XCHG BX, [BP+SOEl ;Swap ofs w/ return address}
S87/S46/S10/ CXCHG AX, [BP+S10l ;Swap seg w/ return address}
$89/SEC/ {MOV SP,BP ;UNDO procedure's entry code}
SSO/ {POP BP}
S07/ {POP ES}
S1F/ {POP OS}
SSF/ {POP DI}
SSE/ {POP SI}
SSA/ {POP OX}
SS9/ {POP CX}
SCB/ CRETF ;in effect, JMP to old vector}

{GetOut:}
SE4/$61/
$88/SC4/
SOC/$80/
SE6/$61/
$86/SC4/
SE6/$61/
S90/
SFA/
SB0/S20/
SE6/S20);

END;

{=============}
{ENO INCLUDE }
{=============}

PROCEDURE Do_Demo;
VAR

L : STRING[80];
BEGIN

ClrScr;

{IN AL,$61
{MOV AH,AL}
{OR AL,$80
COOT $61,AL
{XCHG AH,AL
COOT $61,AL
{POPF
CCLI
{MOV AL,+S20
COOT S20,AL

;Read Kbd controller port}

;Set the "reset" bit and}
; send it back to control}
;Get back control value}
; and send it too}
;Restore the flags}
;No interrupts }
;Send an EOI to the}

interrupt controller}

IJri teln('KEYBOARD INTERRUPT DEMO "REBOOT PROHIBITED"');
1Jriteln(1 === 1

);

IJriteLn;
IJrite('IF SideKick is not loaded, you ');
IJriteln('cannot reboot from within');
IJrite('this program. Try it! You can ');
IJriteln('enter text, but you cannot');
IJriteln('reboot. Enter a blank line to quit.');
IJriteLn;
REPEAT

Readln(L);
IJritelnCL>;

UNTIL L = I I;

END;

BEGIN
CheckBreak := TRUE;
GetlntVec(Kbd Int, Kbd Vee);
SetlntVec(Kbd-Int, @INT9 ISR);
Exit Vee := ExitProc; -
ExitProc := @My_Error;
Oo_Oemo;
{Interrupt vector is RESTORED

END.

{save "old" INT9}
{install new}
{save old ExitProc}
{install new}
{show yer stuff!}

in the ExitProc}

J anuary/ February 1988 TURBO TEGINIX 19

LISTING 5: MOREKEY.PAS

PROGRAM More Keys;
(* =========;===================================== *)
(* IN this exal11'le, the interrupt handler code *)
(* is c~Letely contained in the UNIT called *)
C* "MOREKEYU". The unit'~ initialization part *>
C* installs the new interrupt, and its ExitProc *)
C* restores the original interrupt. This is *)
(* totally invisible to your program -- just *)
C* USE the unit and that's all! *)
(* ===~=== *)

USES Crt,Dos,morekeyU;

PROCEDURE Do_Demo;
VAR

CH, DH : Char;
BEGIN

CL rScr;
WriteLn('KEYBOARD INTERRUPT DEMO "More Keys"');
WriteLn('==================================='>;
WriteLn;
Write('Press various keys and combinations. ');
WriteLn('The <Alt> plus keypad combinations');
Write('now work as in Appendix K of the TURBO ');
WriteLn('3.0 manual. ALSO, the <Alt>+nl.mber');
Write('combinations are still available -- you ');
WriteLn('must press <Alt><LeftShift>+nl.mber. 1);

Writeln('Hit <Esc> to end demo.');
Wri teLn;
REPEAT

DH := #0;
CH := ReadKey;
IF (CH = #0) AND KeyPressed THEN

BEGIN
DH := ReadKey;
CASE DH OF

#174 Writeln('<Alt><Home>');
#175 WriteLn('<Alt><Up>');
#176 WriteLn('<Alt><PgUp>');
#177 WriteLn('<Alt><GreyMinus>'); {*}
#178 WriteLn('<Alt><Left>');
#179 WriteLn('<Alt><Center>'); {*}
#180 WriteLn(1 <Alt><Right>');
#181 WriteLn(1 <Alt><GreyPlus>'); {*}
#182 WriteLnC'<Alt><End>');
#183 Writeln('<Alt><Down>');
#184 WriteLn('<Alt><PgDn>');
#185 WriteLn('<Alt><Ins>');
#186 WriteLn('<Alt>');
(* ================================== *)
(* NOTE: The three keys marked with a *)
(*{*}do NOT appear in the list in *)
(* Appendix K. However, the scan *)
(* codes are logical in relation to *)
(* those that do appear. *)
(* ================================== *)

END;
END

ELSE
CASE CH OF

#8 : Write(#8,' 1 ,#8);
#13 : Wr i teLn;
#27 : ; {our QUIT signal}
ELSE Write(CH);

END;
UNTIL (CH = #27) AND (DH = #0);
{i.e., until you press <Esc>}

END;

BEGIN
Do_Demo;

END.
{show yer stuff!}

20 T URBO TEGI NIX J anuary/ February 1988

INTERRUPTS
continued from page 19

handling code is contained in a
unit. The unit is called MoreKeyU
(Listing 6), and it takes care of
everything. Any code you put
between a BEGIN .. END pair at
the end of a unit is executed auto
matically at the start of any pro
gram that USF.S the unit. This
initialization section is where we
put the code to install the new
ISR. The exit procedure gets exe
cuted at the end of any program
that USF.S the unit. We put the
code to restore the original inter
rupt in the exit procedure. Hence
the main program MoreKey only
needs to put MoreKeyU in its
USF.S statement. Without any
further work, the ISR will be
installed at the start and removed
at the end of the prograrp.

The

initialization

section is where we

put the code to

install the new JSR.

USING THESE ROUTINES IN
YOUR PROGRAMS
To incorporate the INT 9 ISR rou
tines from the sample programs
into your own programs, follow
these steps:

1. Put the lines of the main pro
gram body that precede
Do_Demo before the start of
your main program.

2. Mark the code between the
BEGIN INCLUDE and END
INCLUDE comments as a block
and press Ctrl-KW to write it to
a file under a name of your
choosing. These comments
bracket the ISR routine itself
and any of its essential declara
tions. $INCLUDE the resulting
file in your program.

3. Modify your own exit proce
dure if you have one. Note:
The file ERROR.INC is
$INCLUDEed inside this block
(Turbo Pascal 4.0 allows nested
include files). If you already
have an exit procedure in your
program, eliminate the line
that $INCLUDEs ERROR.INC
and put the line
SetlntVec(Kbd_Int, Kbd_vec);

at the end of your exit proce
dure. This absolutely essential
statement restores the compu
ter's original INT 9 vector
before your program termi
nates. If you fail to do this, your
system will come down hard as
soon as the next key is pressed.

If you follow these instructions,
the special keyboard functions
added by the ISR will be available
in your program. Of course, if you
choose to use MoreKey, it's much
simpler.Just put MoreKeyU in
your USFS statement, and that's
all you need do. You can convert
the other examples to units too, if
you wish.

Do be careful. The ISRs shown
in this article should be quite safe,
but there may be interactions with
RAM-resident programs or other
parts of your own program. Test
them carefully and satisfy yourself
that the routines work correctly in
your program. If you make a mis
take in the INLINE code, the
results may be drastic. The key
board may not respond, or you
may get the message "Memory
Allocation Error." If this happens,
reboot and double check your
code.

WRITING YOUR OWN ISRs
If you're not familiar with
assembly language, the safest way
to write a new ISR is to modify
one shown in the listings. You
may want to install a hardware
reset switch on your computer
before starting to work with ISRs,
because almost every error in an
ISR requires that you power down
the computer. A reset switch
allows you to do the equivalent of

continued on page 22.

LISTING 6: MOREKEYU.PAS

UNIT MoreKeyU; {More Keys UNIT}
(* ===============;==================== *)
(*Demonstrates a method for enabling *)
C* handy key cooi:linations that the BIOS *)
C* normally throws away. *)
(* ==================================== *)

Interface
USES Crt,Dos;

(* == *)
(* There's nothing at all in the INTERFACE *)
(* portion of this unit. It's c°""letely *)
(* self-contained. The initialization *)
C* code at the end loads the new Interrupt *)
C* Service Routine and the ExitProc puts *)
C* back the old interrupt. *)
(* == *)

Implementation

VAR
Kbd_Vec, Exit_Vec : Pointer;

CONST
ROM Data
KB Flag
Head
Tail
KeyBuf
BufEnd
Kbd Int

$0040; {Segment for ROM data about keyboard }
$0017; {Offset for shift states }
$001A; {Offset for Kbd. buffer HEAD pointer }
$001C; {Offset for Kbd. buffer TAIL pointer }
$001E; {Offset for Keyboard buffer itself }
$003E; {Offset for end of keyboard buffer }
9;

{$1 error. inc}

PROCEDURE INT9_ISR(_Flags, _cs, _IP, _AX, _BX, _ex, _ox,
_SI, _DI, _os, _ES, _BP:word);

INTERRUPT;
(* ======================================= *)
C* This !SR first checks if the <Alt> key *)
(* is pressed and the <LeftShift> is NOT *)
(* pressed. IF so, it grabs the scan code *)
(* waiting in the keyboard and checks if *)
(* it is a KEYPAD key. IF so, it clears *)
(* the keyboard and stuffs the keyboard *)
(* buffer with the value corresponding *>
(*to that key cooi:lination as listed in *)
(*Appendix K of the TURBO 3.0 manual. *>
(* *)
(* If none of the special cases apply, it *)
(* is a normal key, to be given to the *)
(* normal keyboard interrupt. *)
(* *)

C* Sounds c°""licated, but the end result *>
(* is that you can use the <Alt>+Keypad *>
(* cooi:linations in a program. If you want *)
(* <Alt><Nllllber> cooi:linations (e.g., to *>
(*get char 219), you use <Alt><LeftShift> *)
C* <Nllllber>, just as with SuperKey. *>
(* ======================================= *)
BEGIN
I NL! NE (

$f B/
$9C/
$1E/
$E4/$60/
$88/SC1/
$B8/>ROM DATA/
S8E/$08/
$A0/>KB FLAG/
$A8/$08/
$74/$14/
$A8/$02/

{ST! ;Allow interrupts}
{PUSHF ;save the flags}
{PUSH OS ;Save the Turbo OSeg}
{IN AL,$60 ;Read the keyboard port}
{HOV CL,AL}
{HOV AX,ROM_OATA}
{HOV DS,AX ;Set OS to ROM_DATA segment}
{MOV AL, [>KB FLAG]}
{TEST AL,$08 ;The 8 bit is ALT}
{JZ Norm Key ;IF not alt, normal}
{TEST AL,$02 ;The 2 bit is L-Shift}

January/ February 1988 TURBO TEGINIX 21

$75/$10/ {JNZ Norm Key ;If L-shifted, riOrmal}
$88/SC8/ {HOV AL,CL}
$3c/S80/ CMP AL,S80 ;Is it a key-relee$e?}

1
!3/SOA/ JNB Morm Key ;If so, treat als normal}
~C/$47/ CMP AL,s47 ;lelow Home is ll)
72/$06/ JB ~orm Key}
lC/$53/ CMP AL, SS3 ; Above Del is no ' L>
7FtS02/ JG •orm Key>

Sll/$19/ JMP 1· HORT Special_Key}
{Nori i:ey:} t; it's not a spe fal k y, just CHAIN to the , o~· iinterrupt}

1F/ ~ S ;Restore TURB¢ g}
9ot POPF ;Restore the fl)

SA1/>KBD VEC+2/ (HOV AX, [>KBD VEC+2l ;Old vectbr seg to AX}
S8B/$1Et>KBD_VEC/ {MOV BX,[>KBD=VEC] ;Old vector ofs to BX}
$87/SSE/SOE/ tXCHG BX, CBP+SOEl ;Swap ofs w/ teturn address}
$87/$46/$10/ {XCHG AX,[BP+S10l ;Swap seg w/ return address}
$89/SEC/ {MOV SP,BP ;UNDO procedure's entry code}
$50/ {POP BP} .
$07/ {POP ES}
S1F/ {POP OS}
SSF/ {POP 01}
$SE/ {POP SI}
$5A/ {POP OX}
$59/ {POP CX}

CB/ {RETF ;in effect, JMP to old ll'ector}
{Spe fal_Key:}

SO/
/$61/
/$C4/

t/S80/
UtS61/

/$C4/
$U,/$61/
$58/
$04/$67/
$14/$00/
$u/SC4/
$8B/$1E/>TAIL/
$89/$07/
$81/SC3/S02/$00/
$81/SFB/>BUFEND/
S7C/S03/
SBB/>KEYBUF/

{BufOK:}

!
PUSH AX ;Save the key we got}
IN AL,S61 ;Read Kbd controller port}
MOV AH,AL} I
OR AL,$80 ;Set the "reset" bit and}
OUT S61,AL ; send it back tb control}
XCHG AH,AL ;Get back control value}

{OUT S61,AL ; and send it tob>
{POP AX}
{ADD AL,$67 ;+67h makes jt SUJ>erKey code}
{HOV AH,+$00 ;O for Scan Code)
{XCHG AH,AL}
{MOV BX,C>TAIL]}
{MOV CBXl,AX ;Put key in buffer}
{ADD BX,+$02 ;Advance tail pdihter}
{CMP BX,>BUFEND ;IF at end of buffer}
{JL BufOK}
{MOV BX,>KEYBUF ; set back to beginning}

$89/$1E/>TAIL/ {MOV [>TAIL],BX}
$80/$26/>KB FLAG/$~7/ {AND BYTE PTR C>KB_FLAGJ,SF7}

- {Turn off ALT flag }
$1F/
$91>/

t
f A/
10/$20/
E6/S20);

!
POP OS ;Restore TURBO DSeg}
POPF ;Restore the f l!ig$}
CL! ;No interrupts J
MOV ~L,+$20 ;Send an EOI to the}

{OUT S20,AL interrupt controller}
END;

(* == *)
C* You can end a UNIT with just an "END." *)
C* statement, but if you end it with a *)
(* "BEGIN .. END." pair, the code between *)
C* that pair will be executed aut0111atically *)
C* at the beginning of any program that *)
C* USES the UNIT. *)
C* == *)

BEGIN
CheckBreak := TRUE;
GetlntVec(Kbd_Int, Kbd_Vec);
SetlntVec(Kbd Int, @INT9 !SR);
Exit Vee := ExitProc; -
Ex tProc := @My Error;

END. - I

{save "old" INT9)
{install new}
{save old ExitProc}
{install new}

22 TURBO TEGINIX January/ February 1988

INTERRUPTS
continued from page 21

a power-down reboot without
actually turning off the power,
thereby avoiding electrical stress
on your system. When you're
developing a new ISR, always save
your code before you run it, or
else you may lose your work.

You might think it's easier to
write your routines in Turbo Pas
cal itself, rather than using
INLINE. In fact, it is dangerous.
The 4.0 Runtime Library is not
completely reentrant, though it is
more so than 3.0. DOS itself is not
reentrant, so any routines that call
on DOS services are not safe in
an ISR. The safest way to avoid
reentrancy problems is to stick to
INLINE code.

When you're

developing a new

JSR, always save

your code before

you run it, or you

may lose your

work.

The PC keyboard sends a lot of
information to the BIOS, but the
BIOS throws some of it away.
Using Interrupt Service Routines
gives you access to this informa
tion before the BIOS does. Use it
to your advantage. By keeping
your ISRs simple you avoid inter
fering with the BIOS while gain
ing information that would not
normally be available to your
program. •

Neil Rubenking is a professional Pas
cal programmer and writer. He can be
found daily on Borland's Compu
Serve Forum answering Turbo Pascal
questions.

Listings may be downloaded from
CompuServe as KEYINT.ARC.

FORWARD DECLARATIONS
IN TURBO PASCAL
W hen chicken calls egg and egg calls chicken , Pascal will
call foul- unless you use a forward declaration.

Allen]. Friedman

• SQUARE ONE

What is forward declaration, and why use
it?

The technique is controversial, running
contrary to the style and spirit of the Pas
cal language, but it can be very handy. In
this article we will look into the nature of

forward declaration, as well as discuss some reasons
for limiting the use of this technique.

Pascal was developed in reaction against the com
mon programming practices widely used in other
older languages like FORTRAN and COBOL. Source
code could appear anywhere and subroutines could
be in any order, global variables could be created
and destroyed at will, data could be freely converted
from one data type to another, and nested chains of
GOTO statements snaked lazily around huge
programs.

These practices made life easy for some pro
grammers, but they also caused maintenance and
reliability nightmares. Pascal, as it was originally
defined, was supposed to be pure, without the poten
tial for such abuse. It forced programmers to docu
ment, to declare, to keep things in their proper order
and therefore preserve some logical sense through
out a program. But it was also a difficult language in
which to do useful work.

FORWARD REFERENCING
Forward declaration was introduced as a way of satisfy
ing what the Turbo Tutor documentation calls the
Great Underlying Rule of Pascal: All identifiers must
be declared before they are used. If your program
logic requires calling procedure P, but you have not
yet declared procedure P, you must use a forward ref
erence or the program will not compile.

The classic example of forward reference is the
circular recursion problem. In short, circular recursion
means a situation in which two procedures call one
another. This is distinct from ordinary (and more
common) recursion, in which a single procedure
calls itself (see Figure 1). At first glance it looks like

both instances are infinite loops, but for simplicity's
sake other parts of the required logic are not shown.
In a real situation, there must be a Boolean test
before each recursive or circularly recursive call so
that there is some way to halt the process when it
has gone on long enough.

In Figure 2 the two procedures Pl and P2 each
call the other, and there is no way of arranging them
in the source file in order to satisfy the Great Under
lying Rule. Pascal demands that both Pl and P2 be
declared before they are used. The program as it is
given in Figure 2 will not compile, much less run.
Declaring P2 with the reserved word FORWARD, as
is done in Figure 3, solves this paradox and makes
the program compilable.

Because space is limited, this is not a particularly
compelling example of the use of forward declara
tions. However, in real-world programming there are
cases where circular recursion is the best way to go,
and where the logic is complex enough to require
the use of forward declarations. In such situations,
the only alternative to forward declaration is another
programming language.

DEFINING DECLARATION
Note the technique used in forward declaration. We
actually declare P2 twice, once before it is first called
(by Pl) as a forward reference, and then later when
we specify the procedure logic. The forward declara
tion contains the full procedure or function header,
with the reserved word FORWARD added. The
second, or defining declaration contains only the
procedure name in its header, followed by the type
and variable declarations and the code block itself.
Note that the procedure's parameters are not
declared a second time in the definition declaration.
This is similar to what is done in specifying a proce
dure that exists in a separately compiled unit, where
the interface declaration of a procedure contains the

continued on page 24

January/ February 1988 TURBO TEOINIX 23

DECLARATIONS
continued from page 23

parameter list, whereas the imple
mentation declaration does not.
The first declaration allows the
compiler to accept Pl's call to P2,
as long as the forward reference is
eventually resolved later in the
same program block.

Programmers who learned Pas
cal before encountering Turbo
Pascal will probably feel a bit
uneasy about all this. It seems like
having your cake and eating it too,
and we know about free lunches.
Forward reference is one of those
things, like GOTO, that have
been included in the language
because someone somewhere may
really need them, but you really
don't expect it to happen to you.

IMPLEMENTING FORWARD
REFERENCES
Forward reference raises potential
program maintenance issues
because of having two declara
tions, usually widely separated in
the source file. There can also be
problems due to the restricted
header in the actual declaration.
When the code block references
the procedure's parameters, it
must use them exactly as they
appear in the header of the for
ward declaration. Of course, good
programming style and program
mer discipline can overcome
these objections, just as in the use
of GOTO.

Forward references do have
some implementation restrictions
under Turbo Pascal 4.0. A
forward-declared subprogram can
not be an INLINE subprogram,
nor an interrupt procedure. The
defining declaration, however,
may be a machine-code external
subprogram. Finally, the defining
subprogram definition may not be
another forward declaration.

We have examined forward dec
larations in some detail, and have
suggested situations in which they
might be useful. There are some
situations involving circular recur
sion where clarity of the code is
actually enhanced by the use of

Recursion Circular Recursion

P2 Pl

Figure 1. Recursion and circular recursion.

{This program WILL NOT compile)
PROGRAM Example_1;

VAR
y : integer;

PROCEDURE P1CVAR x : integer);

BEGIN
{ program logic that changes x)
If x > 0 Then P2(x);

END; { P1)

PROCEDURE P2(VAR x : integer);

BEGIN
{ program logic that changes x }
If x < 0 Then P1Cx);

END; { P2 }

BEGIN { Example_1 }
{ ... program logic to set y}
P1(y);

END. { Example_1)

Figure 2. Circular recursion without
forward declaration.

forward declaration. There are
potential problems in mainte
nance and debugging caused by
forward references, but when
used with care and discipline, they
can be a valuable tool for solving
certain kinds of programming
problems. •

Allen j. Friedman is an independent
software consultant and freelance
writer living in Maine.

{This program WILL compile ...)
PROGRAM Example_2;

VAR
y : integer;

PROCEDURE P2CVAR x integer);
Forward;

PROCEDURE P1CVAR x : integer);

BEGIN
If x > 0 Then P2(x);
{ program logic that changes x }

END; (P1 }

PROCEDURE P2;

BEGIN
(program logic that changes x }
If x < 0 Then P1(x);

END; { P2)

BEGIN { Example_2 }
{ ... program logic to set y}

P1 (y);
END. { Example_2 }

Figure 3. Circular recursion with for
ward declaration.

24 TURBO TEGINIX J anuary/ February 1988

SKYDIVING AND THE
NUMERICAL METHODS
TOOLBOX
Free-fall into easy numerical solution of terminal velocity
with a little help from Messrs. Newton and Raphson.

Victor M ansfield

Gabardine sleeves snapping against a
rush of wind, sunlight sparkling on a

•

colorful helmet and the fading roar of an
airplane engine may not sound very close
to computer programming, but a skydiv

PROGRAMMER ing analysis easily demonstrates the sim
ple yet elegant numerical algorithms in the Numeri
cal Methods Toolbox.

SKYDIVING EQUATIONS
Figure 1 shows a schematic of the forces acting on
you, the skydiver, falling under the gravity force, mg,
where m is the skydiver's mass and g is the accelera
tion due to gravity (32 feet/ second/ second or 9.81
meters/ second/second). This force acts in what is

~ Viscous friction force = k V 2

+ ~Skydiver

~ Gravity Force= mg

Figure 1. The dynamics of skydiving.

chosen to be the negative direction. The air rushing
past you provides a viscous friction force opposing
your downward motion. Experiments have shown
this friction force is approximated by k V2 where vis
your velocity relative to the air and k is a constant
depending upon the surface area you present to the
air. Constant k changes if you go into spread-eagle
position, increasing your friction, or if you pull your

arms and legs in (greatly reducing your friction) and
dive down head first.

Skydiving dynamics are governed by Newton's
beloved Second Law: F = ma, where Fis the sum of
the external forces, m is the mass of the object, and a
is the acceleration. Acceleration is the time derivative
of the velocity, therefore:

F= ma=mdV
dt

If the forces are written explicitly with the proper
signs this becomes:

kV2 -mg= mdV
dt

(1)

Since the viscous friction force grows with the square
of the velocity, there is a critical terminal velocity for
which the gravitational force is exactly balanced by
the friction force. This means k V2 = mg and
dV I dt = 0, or Vis constant at the terminal velocity,
v; . In other words, when the forces cancel there is
no acceleration and Vis constant at v; . At terminal
velocity, the left side of equation (1) is zero so we
can say:

mg=kW (2)
Combine equation (2) with equation (1) to eliminate
the constant k. The resulting equation can be easily
integrated over time to give:

exp (- {f-)-1
V= Yi (2)

exp - ~ + I

(3)

Although I don't do it here, you can complete the
analysis by integrating equation (3) over time to get
the distance fallen with time. For the present, it is
enough to examine V(t, l{). Notice as time t goes to
infinity that equation (3) shows V going to - i{. In

j anuary/ Febrnary 1988 TURBO TECHNIX 25

SKYDIVING
continued from page 25

other words, after enough time (we will find out what
"enough" means below), the viscous friction forces
build up enough to balance gravity and leave you
falling blissfully at the constant terminal velocity V
going to -V,.

We must have a measurement to find V, . An exhil
arating downward velocity of -90 miles/ hour = -40
meters/ second is measured after five seconds of fall
ing. Knowing this we plug V= -40 mi s, g = 9.81
m/ s/ s, and t = 5 seconds into equation (3) to get

(
98.1)

exp - T - 1

- 4o = i; (98. I)
exp -T+ I

(4)

ROOTS TO EQUATIONS IN ONE VARIABLE:
BISECTION
Equation (4) cannot be solved analytically for V,, but
it is a snap numerically. To start the process define a
function F(V,) :

(

(98.I)) exp - If - I

F(V,) = V, (98.1) + 40
exp -- + I v,

F(Vi)

··· ...

··············· ... \

Figure 2. F(V,) versus V,.

26 TURBO TECHNIX January/ February 1988

(5)

Vi

When F(V,) = 0 a root to equation (5) has been
found. This root is the numerical value of V, . Figure
2 shows a plot of F(Vi) versus V, . As we will see, it is
good practice to get a rough plot of the function
before attempting to find its roots or zeros.

The simplest root-finding method is the bisection
iteration method. All the methods for finding roots in
Chapter 2 of the Numerical Methods Toolbox are
iterative. Although bisection is slow it cannot fail,
and for that reason alone it is valuable. From Figure
2 we see that the function must pass through zero
over some interval because it changes sign. The
bisection algorithm boils down to this: Evaluate the
function at the midpoint of the interval and examine
its sign. Replace whichever limit has the same sign as
the function at the midpoint with the midpoint. Each
iteration reduces by half the interval containing the
root. A formal statement of the algorithm to solve
equation (5) is shown in Figure 3. This simple algo
rithm is implemented in Listing 1, taken from the
Numerical Methods Toolbox file BISECT.INC.

PURPOSE: Find a root for a user-specified function,
F(x), within a user-specified inteival, [LeftEnd,
RightEnd], where F(LeftEnd) and F(RightEnd) are of
opposite signs. The user supplies the desired tolerance,
Toi, to which the root is found.

INPUT: LeftEnd, RightEnd, Toi, Maxlter
OUTPUT: Answer, £Answer, Iter, Error
Step I : Set Iter = I. { Iteration variable.)
Step 2: While Iter < Maxlter do Steps 3-6.

Step 3: MidPoint = (LeftEnd + RightEnd)/ 2.
Step 4: If F(MidPoint) = 0 or (RightEnd - LeftEnd)/

2 < Toi then OUTPUT(Answer =
Midpoint, £Answer= F(Answer),
Iter, Error);
STOP. {Successful completion.)

Step 5: Iter = Iter + I.
Step 6: If F(LeftEnd) F(MidPoint) > 0

then LeftEnd = MidPoint
else RightEnd = Midpoint.

Step 7: OUTPUT(Bisection failed after Maxlter)
{ Unsuccessful.)
STOP.

Figure 3. The bisection algorithm.

In the Toolbox the demonstration program
BISECT.PAS (not given here) calls BISECT.INC. For
all the 70-odd algorithms in the Numerical Methods
Tool?ox, each algorithm is implemented in a sepa
rate mclude file called by a demonstration program
that handles the 1/0. The demo programs provide
for keyboard or file input, and screen, file, or printer
output. They also process error messages and check
for legal input.

To see just how simple it is to call the bisection
routines, I have included a simplified version of
BISECT.PAS, called BISECT2.PAS, in Listing 2. This
has all the bells and whistles removed so that it is
easier to see the essential root-finding mechanisms
at work.

For example, to use BISECT.INC to solve the pres
ent problem, we only need to replace the Pascal
function TNTargetF as originally given in

BISECT.PAS, with a Pascal function that evaluates
F(v;) of equation (5). This is dorie in BISECT2.PAS.
Then run the modified program to get the value of
v; . Figure 4 shows a sample session running
BISECT2.PAS to solve our problem.

B:\>bisect2
Enter LeftEndpoint RightEndpoint separated by a space.
17 -75

Enter the tolerance C1E-8 suggested): 1e·8
Enter maxirJLm nll'li>er of interations
(100 suggested): 100

Error = 0
left endpoint:

right endpoint:
1.7000000000E+01

-7.5000000000E+01
1.0000000000E-08

100
Tolerance:

MaxirJLm nll'li>er of iterations:

NLl'li>er of iterations:
Calculated root:

Value of the function
at the calculated root:

B: \>

28
-5.8201114371E+01

-7.6135620475E-08

Figure 4. A sampl,e session using BISECT2.PAS.

Knowing V,= -58.20 mis we can plot equation (3)
as a function of time. Figure 5 shows how the skydiv
er's velocity evolves with time. Notice that after about
15 seconds this velocity levels off to a value indistin
guishable from V,. Although I will not do it here, it

V= 0.0-+:

Velocity
(m/ sec)

V= -40.0

T=O.O

· ..

T=5.0

Terminal velocity

··
······ ·························

I
Time (sec)

Figure 5. How the skydiver's velocity evolves over time.
continued on page 28

llSTING 1: BISECT.INC

PROCEDURE Bi sect Clef tEnd : Real;
RightEnd : Real;
Tel : Real;
Maxi ter : Int,ger;
VAR Answer : Real;
VAR !Answer : Real;
VAR I ter : I nte9er;
VAR Error : Byte);

(- --------- --- --- ----- -- ---------- -- ------------------- -- ---.....)
{- -)

(- Turbo Pascal Nunerical Methods Toolbox -)
(- (C) Copyright 1986 Borland International. -)
(- -)

(- Input: LeftEnd, RightEnd, Tel , M~xiter -)
{-Output: Answer, fAnswer, lter, Error -)
(- -)

{- Purpose: This unit provides a procedure for finding e root -}
{- of a user specified function, for a user specified -)
{- interval, {a,b], where f(a) and f(b) are of opposite -}
{- signs. The a lgorithm successively bisects the -)
{- interval, closing in on the root. The user rust -)
(- supply the desired tel erancF to whi ch the root shou ld -)
(- be found. , -)
(- -)

(· Global Variables: LeftEnd real l left endpoint ·)
(- RightErif real right endpoint -)
{- Tel real tolerance of error -)
{- Maxtter real max nurber iteratiorc5 -)
{- Answer real root of TNTargetF -)
(- !Answer real TNTargetFCAnswer) -)
(- (should be close to OJ -)
{- I ter : in teger nurber of iterations -)
(· Error : byte error flags -)
(· -)

{- Errors: 0: No error -)
(- 1: maxirrun m1rber of iterations exceeded -)
(· 2: f(a) and f(b) are not of opposite signs -)
C · 3: To l <= 0 -)
(· 4: Maxiter < 0 -)
(- -)

(- Version Date : 26 January 1987 -)
(- -)

(-------------------------------------- --------------------------)

CONST
TNNearlyZero = lE-015; (If you get a syntax error here,

{ you are not runn ing TURB0- 87.
(TNNearlyZero = 1E-015 if using the 8087
{ math to · procefsor.)
(TNNearlyZero = lE-07 if not using Fhe 8087)
c math <o-procersor.)

VA R
Found : Boolean;

PROCEDURE Testinput(LeftEndpoint : R~al;

RightEndpoint : ¥eal;
Tol : Real;
Haxtter : Integer;
VAR Answer : Reai;
VAR fAnswer : Real;
VAR Error : Byte;
VAR Found : Boolean);

(- --.... --. -. -- .. -.. -- --- -.. -. - .. -,. -. ---- ------. -.. -- -. -- .. ·)

(- Input: LeftEndpoint, RightEndpoint, Tel, Haxiter -)
{-Output: Answe r , fAnswer, Error, Found -}

continued on page 28

January/ February 1988 TURBO TEOINIX 27

(- -)

{- This procedure tests the input data for errors. If -)
(- LeftEndpoint > RightEndpoint, Tol <= 0, or Haxlter < D, -)
{- then an error is returned. If one the of the er-$ints -)
(- (LeftEndpoint, RightEndpoint) is a root, then Fcxrd=TRUE -)
{- and Answer and fAnswer are returned. -}
(- --------- -- ---- --- --------------- --- -- --- ---- -- -- ----------)

VAR
yleft, yRight : Real; (The values of function at endpoints.

BEGIN
yLeft := TNTargetF(LeftEndpoint);
yRight := TNTargetF(RightEndpoint);

IF Abs(yleft) <= TNNearlyZero THEN
BEGIN

Answer := LeftEndpoint;
fAnswer ::::: TNTargetF(Answer);
Found := True;

END;

IF Abs(yRight) <= TNNearlyZero THEN
BEGIN

Answer := RightEndpoint;
fAnswer := TNTargetF(Answer);
Found := True;

END;

IF NOT Found THEN (Test for errors)
BEG! N

IF yLeft*yR i ght > 0 THEN
Error := 2;

IF Tol <= 0 THEN
Error := 3;

IF Haxlter < 0 THEN
Error := 4;

END;
END; { procedure Tests)

PROCEDURE Converge(VAR LeftEndpoint : Real;
VAR RightEndpoint : Real;
Tol ·Real·
VAR found ; Boolean;
HaxI ter : Integer;
VAR Answer : Real;
VAR fAnswer : Real;
VAR I ter : Integer;
VAR Error : Byte);

(- ------ --- ----- -- --- ------ ---- ---- --------- ---- --- ----- ---- --)

(· Input: LeftEndpoint, RightEndpoint, Tol, Haxlter -)
{- Output: Found, Answer, f Answer, I ter, Error -)
(- -)

(- This procedure applies the bisection method to find a ·)
(- root to TNTargetF(x) on the interval [LeftEndpoint, ·)
(- RightEndpointJ. The root lllJSt be fcx.nd within Haxlter ·)
(- iterations to a tolerance of Tel. If root found, then it -)
(- is returned in Answer, the va Lue of the function at the -)
{- approximated root is fAnswer (should be close to -}
{- zero), and the nurber of iterations is returned in Iter. -)
(---·-------·-------)

VAR
yleft : Real;
HidPoint, yMidPoint : Real;

PROCEDURE lnitial(LeftEndpoint : Real;
VAR I ter : Integer;
VAR yleft : Real);

28 TURBO TEQINIX January/ February 1988

SKYDIVING
continued from page 27

would be easy to integrate the function V(t) from 0 to
15 seconds to see how far the skydiver falls in 15
seconds. This can be done with equal ease, either
analytically or with the Numerical Methods Toolbox.
In this time period the skydiver must fall around 600
meters (1970 feet) before reaching terminal velocity.
Most of the time you free-fall at terminal velocity
rather than accelerate.

FASTER CONVERGENCE: NEWTON'S METHOD
Even though this problem hardly strains the compu
ter, 28 iterations were needed to get the required
accuracy using bisection. (The number of iterations
increases with the size of the intetval, RightValue -
LeftValue, or with a smaller tolerance, TOL.) In
more involved problems, this much calculation could
be a problem. Although numerical methods for find
ing roots to equations is still an active research topic,
Isaac Newton developed (without a PC!) one of the
most popular and efficient methods used today
Newton 's method. (This method is also called the
Newton-Raphson method.) It has a simple geometric
interpretation.

Figure 6 shows a function, F(X), which has a root
at X = R. Let an estimate of the root be Xn, which
equals the line segment OB. The value F(Xn) is
labeled C and equals the line segment BC. The slope
of F(X) at xn is the tangent to the CUIVe F(X) at that
point. The letter A labels the point where this

F(X)

R A B
x

0

Figure 6. A function F(X) with a root at X ± R

tangent line intersects the X-axis. Let this intersec
tion point be the next estimate of the root, x.+1
which equals the line segment OA. This is obviously
a better estimate of R than x •. From the geometry of
Figure 6 we have

OA= OB-AB

or equivalently:

X.+1 = X. - AB (6)

By the definition of the tangent function we have:

BC
tan(CAB) =AB (7)

From Figure 6 we know that BC = F(X), and from
elementary calculus we know that the slope of the
line at point C equals tan(CAB). Thus equation (7)
becomes

where F'(X) is the standard notation for the
X-derivative of F(X). Finally, we can eliminate AB
from equations (6) and (8) to get

F(X.)
X.+1 = x. - F'(X.)

(8)

(9)

This is the heart of Newton's method. A more formal
presentation of the algorithm is shown in Figure 7.

PURPOSE: Finding a root for a user-specified function,
F(x) , with a user-specified initial approximation, Guess.
The method uses the derivative of the function to
rapidly converge to an approximate solution whose tol
erance is specified by Toi.

INPUT: Guess, Toi, Maxlter
OUTPUT: Root, Value { = F(Root) }, lter, Error
Step I: Set Iter = I. { Iteration variable.)

Step 2: While Iter < Maxlter do Steps 3-6.
Step 3: Rootn- 1 Root,. -F(Root.)/F'(Root,.).

Step 4: If I Rootn+ I - Root,. I <Toi then
OUTPUT(Root, Value, Iter, Error);
STOP. {Successful completion.)

Step 5: lter = lter + I.
Step 6: Root,. = Root,.+ 1 .

Figure 7. Algorithm for Newton's Metlwd.

Newton's method has much faster convergence
than the bisection method. In the present example,
with equivalent starting guesses, Newton's method
required six iterations while bisection required 28.
When it is approaching a root, the number of signifi
cant digits found with Newton's method may double
at each iteration! However, it has obvious problems
where the function has a zero derivative. For exam
ple, imagine trying to find the root R shown in

continued on page 30

{ Initialize variables. }
BEG! N

lter := O;
yLeft := TNTargetF(LeftEndpoint);

ENO; {procedure Initial)

FUNCTION TestForRoot(X, OldX, Y, Toi : Real) : Boolean;
{- ---------- ----- ------ -- ----- ------- --- -- --- ----- -. ----- . --- -----)

{- These are the stopping criteria. Four different ones are -)
{- provided . If you wish to change the active criteria, sirrply -)
{- cooment off current criteria (including the appropriate OR) -)
(- and remove the conment brackets from the criteria (including -)
<- the appropriate OR) you wish to be active. -)
{· --- -------- -- --- --- -- -- ----- ------- --- -- ---- -- ------ -- ------ - -- -)
BEGIN

c•
c•

TestForR:oot := {- --- --- -- -- ---- --- -- -- --)
(ABS(Y) <= TNNearlyZero) {-Y=O -)

{· -)

OR {- -)

{· -)

(ABS(X • OldX) < ABS(OldX * Tol)) {- Relative change in X -)
{- -)
{- -)

OR *) {- -)
*) {· -)

(* (ABS(X - OldX) < Tol) *) {· Absolute change in X -)
c•
(*

(*
(*

OR

(ABS(Y) <= Tol)

*) {- ·}
*) {· ·}

*) {- ·}

*) {- Absolute change in Y ·}
{· -- ------ ------ ---- ----·}

{· ------ ---------------- -------- ---- ------------ --------- ----- -----)
{·The first criteria si~ly checks to see if the value of the -)
{· function is zero. You s hould probably always keep this ·}
{- criteria active. -)
{· -)

{- The second criteria checks relative error in x. This criteria -)
{- evaluates the fractional change in x between interations. Note -)
{· x has been rrultiplied through the inequality to avoid divide -)
{- by zero errors. -)
{· -)

{- The third cri teria checks the absolute difference in x -}
{- between iterations. -)
{· -)

{- The fourth criteria checks the absolute difference between -)
{- the value of the function and zero. -)
{---- --- ----- -- --- ---- ---- ---- ---- ---- ---- ---- -- ----- ----- ---- -----)

END; { function TestForRoo t)

BEGIN { procedure Converge)
lnitial(LeftEndpoint, lter, yLeft);
llH I LE NOT (Found) AND (lter < Hax I ter) DO

BEGIN
Iter := Succ(lter);
HidPoint := (LeftEndpoint+RightEndpoint)/2 ;
yl1idPoint := TNTargetF(HidPoint);
Found :=TestForRoot(MidPoint, LeftEndpoint, yMic:Point, Tol>;
IF (yLeft*y11idPoint) < 0 THEN

RightEndpoint := HidPoint
ELSE

BEGIN
LeftEndpoint := HidPoint;
yLeft := y11idPoint;

ENO;
END·

Answe~ := HidPoint;
fAnswer := yMidPoint ;
IF I ter >= Maxi ter THEM

Error:= 1;
END; { procedure Converge)

BEGIN { procedure Bi sec t)
Found := False;
Testlnput(LeftEnd, RightEnd, Tol, Haxlter, Answer ,
fAnswer, Error, Found);
IF (Error = 0) AND (Found = False) THEN { i . e. no error)

Converge(LeftEnd, R ightEnd, Tol 1 Found, Maxi ter,
Ans wer, fAnswer, Iter, Error);

END; { procedure Bi sect)

January/ February 1988 TURBO TECHNIX 29

LISTING 2: BISECT2.PAS

PROGRAM Bi sect2;

{· ---- -- -- -- --. - ---- ---- -------- - ------ ------ ---- ------. -·-- -------)
{- -)

(-Purpose: This program demonstrates the bisection routine with -)
(- a bare minirrun of calling code. -)
{- No 1/0 options or error checking code. -}
{· -)
{- -)

{· Include files: BISECT. INC procedure Bisect -)
{· -)

c- Version July 1987 -)
{- - --- --- ----- -·- ------------ --- -- ------ ------- ----- ----- ----------)

VAR
LeftEndpoint, RightEndpoint
Answer, yAnswer : Real;

Real; { Endpoints of the region)
{ Root of F(X))

Tol : Real;
Iter, Maxlter Integer;
Error : Byte;

{ Tolerance)
{ Nuiber of iterations)
{ Flags something wrong)

{----- HERE IS THE FUNCTION TO FINO A ROOT OF ------)

FUNCTION TNTargetF(X: Real) : Real;
BEGIN

TNTargetF := -40 .0+X*(1 . 0-Exp(·98.1/X))/(1.0+Exp(-98.1/X));
ENO; { function TNT argetF)

{- ---- --- --.. -. ------ - - --------- -- -- --- ----- ------ --)

{SI BISECT. INC) { load procedure Bisect)

BEG! N
< Get necessary input.
Error := O;
~riteln('Enter LeftEndpoint RightEndpoint seperated by a space.' J;
Readln(Le t tEndpoi nt, R i ghtEndpoi nt);
\.lri teln;
\.Jr i te('Enter the tot erance (1 E-8 suggested): ');
ReadlnCTol);
\.lrite(1 Enter maxifTl.ITI nurber of interations (100 suggested) : 1);

ReadLnCHaxI ter);

Bisect(LeftEndpoint, RightErdpoint, Tol, Haxl ter,
Answer / yAnswer, l ter, Error);

{Give resulting output.}
\.Ir i teln;
\.lri teln('Error = 1 , Error);
\.l riteln(1 left endpoint: 1 :30, LeftErdpoint);
\Jriteln('right erdpoint: 1 :30, RightEndpoint);
'Jr iteln('T olerance: 1 :30, To l);
\.lriteln('Maxinun mnt>er of iterations: ' :30, Haxlter);
Uriteln;
\J riteln('NuIDe r of iterations: ':26, lter:3);
\.lriteln('Cal culated root: ' :26, Answer);
Ur iteln('Value of the function 1 :26>;
Uriteln('at the ca l culated root: 1 :26, yAnswer);

ENO.

BEGI N
IF Abs(Slope) <= TNNearlyZero THEN

Error : = 2; { Slope is zero}
END ; { procedure CheckSlope)

PROCEDURE Initial(Guess Real;
Tol ' : Real;
Max I ter : Integer;
VAR OldX : Real;
VAR OldY : Real;
VAR Olcl)eriv : Real ;
VAR. Fourd : Boo lean;
VAR. Iter : Integer;
VAR. Error : Byte);

{- ---- --- --- ---- -- ---- -- --- -- ---- -- --- ---- --- -- -- --- ----- ---- -)

{- Input: Guess, Tol, Maxtter -)
{-Output: OldX, OldY, Olc[)eriv, Found, Iter, Error -}
{- -)

{- This procedure sets the initial values of the above -)
{- variables. If OldY is zero , then a root ha s been -)
{- Found and Found = TRUE . This procedure also checks -)
{- the tolerance (Tol) and the maxinun nuroer of iterations -)
{- (Haxlter) for errors. -)
{--- --- ---- ---- ---- -- -- --- --- --- ---- ---- --- ----- -- --- -- --- --- -)

30 TURBO TEGINIX J anuary/ February 1988

SKYDIVING
continued from page 29

Figure 8 with an initial estimate of X0 • The first
attempt at improving the estimate of the root brings
you to X1 then to X2• From there you go off into the
wild blue yonder. The minimum of F(X) at Xm in will
force the algorithm to oscillate about that point or go
off into infinity. (Now you can see why it is good
practice to get a rough plot of the function before

F(X)

X;
.. : ·· : ... ~

.......

R : .. ··

0 Xo X2

Figure 8. A function F(X) with a zero derivative at X2.

finding its roots.) In the Numerical Methods Toolbox
implementation (Listing 3, RAPHSON.INC) we have
an error message that appears if the derivative is
approaching zero, and an upper limit, Maxlter, to
the number of iterations that can be attempted. If
these conditions occur, appropriate error messages
are generated.

As with the bisection method, there is a simple
demo program for Newton's method included with
the Numerical Methods Toolbox. Program
RAPHSON2.PAS can be easily modified to solve
the function given in equation (5). Listing 4,
RAPHSON2.PAS, shows the modified program.
Again, the function TNTargetF must be changed to
evaluate the F('\0. Additionally, a second function
must be provided, TNDerivF. This function evaluates
F'(Vt), the derivative of the function given in equa
tion (5). A sample session running RAPHSON2 is
given in Figure 9.

MORE FROM CHAPTER 2 OF NUMERICAL
METHODS TOOLBOX
As powerful as Newton's method is, there are many
situations requiring other techniques. The Numeri
cal Methods Toolbox implements several other algo
rithms that can handle most of the broad range of
root-finding problems encountered in the real world.
For example, in situations where it is difficult to cal
culate the derivative of a function (as Newton's

continued on page 32

Sophisticated User Interfaces in Minutes!

Windows for data-entry (with full-featured editing), context-sensitive help, Lotus-style menus, pop
up menus, and pull-down menu systems. Overlay them. Scroll within them.

Users and critics say it all!...

"... the best I've used . . . The code that it generates is excellent, with every feature you
could conceivably desire. . . . if you have problems, they give excellent technical advice
over the phone It saves time, is flexible and produces screens which are state of the
art.,, Sally Stott, Software Developer

" ... the best screen generator on the market.,, George Kwascha, TUG Lines, Nov/ Dec 87

" ... the Cadillac of prototyping tools for Turbo Pascal. ... Unlike the others, turboMAGIC
is extremely flexible [it] clearly offers the greatest variety of options.,,

Jim Powell, Computer Language, Jun 87

"Fast automatic updating of dependent fields adds flair to your input screens. . ..
turboMAGIC will be a blessing for programmers who would rather not write the user
interface for every program.,, Neil Rubenking, PC Magazine, 24 Feb 87

"I was impressed with the turbo MAGIC package the procedures created by turbo MAGIC
are well commented and easy to add to your own code. ,,

Kathleen Williams, Turbo Tech Report, May/Jun 87

" ... definitely a recommended program for any Turbo Pascal programmer, novice or expert.,,
Terry Lovegrove, Library Hi Tech News, Oct 87

ORDER your Magic TODAY! Only $199.
CALL TOLL FREE 800-225-3165 or 205-342-7026

sophisticated
software
m

6586 Old Shell Road, Mobile·, AL 36608
Requires 512K IBM PC compatible and Turbo Pascal 4.0. 30-Day Money Back Guarantee. Foreign orders add $15.

BEG! N
Found := False;
Iter := O;
Error := O;
OldX := Guess;
OldY := TNTargetF(OldlO;
Olclleriv := TNDerivFCOldlO;
IF Abs(OldY) <= TNNearlyZero THEN

Found :: True
ELSE

CheckSlope(Olclleriv, ErrorJ;
IF Tol <= 0 THEN

Error := 3;
IF Maxi ter < 0 THEN

Error := 4;
END; { procedure Initial }

FUNCTION TestForRoot(X, OldX, Y, Tol : Real) : Boolean;

{- ------- ------ ---- ------- ------ -- ------ --- ----- -- --- -- --- -- -----·}
(- These are the stopping criteria. Four different ones are ·}
{-provided. Jf you wish to change the active criteria, sirrply -}
{- cooment off the current criteria (including the preceding OR) ·}
{- and remove the conrnent brackets from the criteria (including -}
{· the following ORJ you wish to be active. -}
(- -------- ---- ---------- -- ------------------ --- ---- --- --- -- -------}

BEG! N

TestForRoot := {-------------------------·-}
CABSCY) <= TNNearlyZero) (- Y = 0 -}

{- -}

or {- -}
{- -}

(ABSCX • OldX) < ABS(OldX*Tol)J {· Relative change in X ·}
{- -}

c• or *) (- -}
(* *) {- -}

c• (ABS(OldX - X) < Tol) *) {- Absolute change in X -}
(* *) (- -}

c• or *J {- -}
(* *) {- -}

(* (ABS(Y) <= Tol) *) {· Absolute change in Y -}
{- ------------- --- --- -------}

{- ---------------- -------- -- --------- -- ---- - - - - - - - - -- -------------- -}

{-The first criteria si~ly checks to see if the value of the ·)
{- function is zero. You should probably always keep this -)
{-criteria active. -}
{- -}

{- The second criteria checks relative error in X. This criteria -}
{- evaluates the fractional change in X between interations. -)
{- Note that X has been rrultiplied throught the inequality to -}
(- avoid divide by zero errors. -)
{- -}

{-The third criteria checks the absolute difference in X -)
{- between iterations. -)
{- -)

{- The fourth criteria checks the absolute difference between -}
{- the value of the function and zero. ·}
{- ·}

{- ---- -- ------------------ -------------- ----- -------- ---- -- ----. ---·}

END; { procedure TestForRoot }

BEGIN { procedure M°"ton Raphson }
Initial(Guess, Tol, Haxlter , OldX, OldY, Old1eriv,
Fourd, lter, Error);

llHILE NOT(Found) AMO (Error = 0) AND (I ter < Maxi ter) DO
BEG! N

Iter := Succ(lter);
NewX := OldX-OldY/Olclleriv;
NewY := TNTargetF(NewX);
NeWOeriv := TMDerivF(NewX);
Found := TestForRoot(MewX, OldX, NewY, Tol);
OldX := NewX;
OldY := NewY;
OldJeriv := ~e\oiOeriv;
IF NOT(Found) THEN

CheckSlope(Olc:Deriv, Error);
END;

Root := OldX;
Value := OldY;
Deriv := Olcf:leriv;
IF NOT(Found) AND (Error= 0) AND (lter >= Maxlter) THEN

Error := 1;
END; { procedure Newton_Raphson }

32 TURBO TEGINIX January/ February 1988

SKYDIVING
continued from page 30

B: \>raphson2
Initial Approximation to the root: -17

Tolerance (> 0, suggested 1E-6): 1e-6

Maximum number of iterations (>= 0, suggested 100): 100

Error 0

B:\>

Number of iterations:
Calculated root:

Value of the function
at the root:

Value of the derivative
of the function at the

calculated root:

6
-5.8201114685E+01

O.OOOOOOOOOOE+OO

-2.4257986428E-01

Figure 9. A sampl,e session using RAPHSON2.PAS.

method requires), the Secant method can often be
used. It is similar to Newton's method, but slower.

There are also cases where the roots of real poly
nomials are needed. Polynomials have multiple
roots, making it more efficient to factor out the root
from the polynomial after it is found. This reduces
the degree of the polynomial (the highest power of
the variable) and allows for more accurate and faster
root finding of the next root The factoring (called
deflation) is carried out for each root as it is found.
Sometimes the functions are complex, i.e., involving
the square root of -1. Muller's method can find a
possibly complex root to a complex function. Finally,
it is often necessary to find complex and real roots to
a complex polynomial. The powerful and reliable
Laguerre's method (which also uses deflation)
does this.

Each of these algorithms is carefully implemented
in Chapter 2 of the Numerical Methods Toolbox and
is called by a simple demonstration program that
handles all 1/0 and error checking. The demo pro
grams are written so that very little coding is needed
to adapt it to your particular problem.

F(GERONIMO)
Even where roots are known to exist, it is not always
possible to find them with purely analytical methods.
Among other things, the Turbo Pascal Numerical
Methods Toolbox provides numerical methods for
finding roots. For any given problem, at least one of
the methods will be appropriate. Finding your termi
nal velocity after jumping from an airplane is only a
single vivid example, if not an especially practical
one-unless your lapheld computer skydives with
you. •

Victor Mansfield, a professor of physics and astronomy at
Colgate University, headed the team that built the Turbo
Numerical Methods Toolbox. His princip!,e research inter
ests are in theoretical astrophysics and the philosophy of
quantum mechanics.

Listings may be downloaded from CompuSeroe as
SKYDN.ARC.

LI ST I NG 3: RAPHSOIL I NC

PROCEDURE Newton_Rapltson(Guess : Real;
Tol : Real;
Maxlter : Integer;
VAR Root : Real;
VAR Value : Real;
VAR Deriv : Real;
VAR I ter : Integer;
VAR Error : Byte);

{- --------- ------------ ----- -------------- -- --- -- ---- -- ---- --------)
{- -)

{- Turbo Pascal Mi..merical Methods Toolbox -}
{- (CJ Copyright 1986 Borland International. -)
{- -)

{- I~t: Guess, Tol, Maxlter -)
{- OUtp.Jt: Root, Value, Deriv, lter, Error -}
{- -)

{-Purpose: This unit provides a procedure for finding a single -}
{- real root of a user specified function with a known - }
{- continuous first derivative, given a user -)
{- specified initial guess. The procedure irrplements -)
{- Newton-Rapltson' s algorithm for finding a single -)
{- zero of a function. -)
{- The user T11.Jst specify the desired tolerance -)
<- in the answer. ·)
{- -)

{- Global Variables: -)
(- Guess : real; user's estimate of root -)
(- Tol real; tolerance in answer -)
{- Haxiter integer; maxilT'Ull nurber of iterations -}
{- Root real; real part of calculated roots -)
<- Value real; value of the polynomial at root -)
{· Oeriv real; value of the derivative at root ·)
{- lter real; nurber of iterations it took. ·)
<- to find root -)
{· Error byte; flags if something went wrong ·)
{- -)

{- Errors: 1: lter >:::: Maxiter -)
{· 2: The slope was zero at some point -)
{ - 3: To l <: 0 -)
{- 4: Maxlter < -)
{- -)

{- Version Date: 26 January 1987 -)
{- -)

{- ----------------- -- ------------------------- ------ --------- -- ----)

CONST
TNNearlyZero = 1E·015; { If you get a syntax error here, you are)
{ not running TURB0-87.)
{ TNNearlyZero 1E-015 if u s ing the 8087)
{ math co· processor.)
{ TNNearlyZero : 1E-07 if not using the 8087)
{ math co-processor.)

VAR
Found : Boolean; { Flags that a root has been Found)
OldX, OldY, OldJeriv,
NewX, NewY, NewOeriv : Real; { Iteration variables

PROCEDURE CheckSlope(Slope : Real;
VAR Error : Byte);

{ - ------ ----------- ------ ------ ----- --- ---- -- --- ----)

{- Input: Slope -)
{- Output: Error -)
{- -)

{- This procedure checks the slope to see if it is ·)
{- zero. The Newtoo Raphson algorithm may not be ·)
{-applied at a point where the slope is zero . -)
{- --- - --- -- ----- --- --- ---- -------------- ---- ----- - --)

LISTING 4: RAPHSON2.PAS

PROGRAM Raphson2;

{- ---------- -----.. ----- -------------. ----- ------------------------- -)
{ -)

{ Turbo Pascal Ncmerical Methods Toolbox -)
{- (CJ Copyright 1986 Borland International. -)
{- -)

{· PurfX>se : This sarrple program demonstrates the -)
{· Ne1i.1ton-Raphson algorithm. This program is very -)
{- bare-boned; it contains no 1/0 checking. -)
{- -)

{- Include Fil es: RAPHSON. I NC procedure Newton_Rapltson -)
{- -)

{- Version Date: 26 January 1987 -)
{- -)

{- -------- --------------- ---- --------- ---------- ------- --------- -- ---)

VAR
lnitGuess : Real;
Tolerance : Real;
Root, Value, Deriv Real;
lter : Integer;
Maxlter : Integer;
Error : Byte;
Outfile : Text;

Initial approximation)
Tolerance in answer)
Resulting roots and other info)
Muri:>er of iterations to find root
Maxi nun nl.IJ'ber of iterations)
Error flag)
output file)

{------- HERE JS THE FUNCTION ----------)
FUNCTION TNTargetF(X: Real) : Real;
BEGIN

TNTarget F : : -40. O+X*C 1. 0-Exp(-98. 1 /Xl)/(1.0+Exp(-98. 1 /X));
END; { function TNTargetF)
{-. -------------. ------. ----------------)

{------- HERE JS THE DERIVATIVE --------)
FUNCTION TNDerivFCX: Real) : Real;
VAR EE : Real;
BEGIN

EE :: Exp(-98.1 /Xl;
TNDerivF :: (1.0-EE*(1.0+98.1/X)l/(EE+1.0)+

98.1*EE*CEE-1.Dl/(X*Sqr(EE+1.Dll;
END; { function TNDerivF)
{- --- --------- ------ ---------- ------- -- -)

{SJ RAPHSOIL INC) { Load procedure Rapltson)

BEGIN { program Newton_Rapltson
\Jrite(1 Initial Approximation to the root: '>;
Readln(I ni !Guess);
\Jri teln;
\Jrite(1 Tolerance (> 0, suggested lE-6): 1);

Readln(Tol erance);
\Jri teln;
\.Jrite(1 Haxi1TUJ1 nuii:>er of iterations (>:::: 0, suggested 100) : 1);

Readln(Maxl ter);
\.Jri teln;

Newton Raph son(I ni tGuess, Tolerance, Maxi ter,
- Root, Value , Oeriv, Iter, Error);

Uri teln;
\.Jriteln(1 Error = 1

1 Error);
\Jriteln(1 MLITber of iterations: ':30, Iter:3);
\Jriteln(1 Calculated root: 1 :30, Root);
~riteln('Value of the fuiction' :28);
'Jriteln(•at the root: 1 :30, Value);
\Jr iteln('Value of the derivative' :28>;
\.Jriteln(•of the function at the' :28);
\.Jriteln(•calculated root: 1 :30, Der iv);

END. { program Newton_Rapltson)

January/ February 1988 TURBO TEGINIX 33

u
0

~ FLOATING POINT IN
E--

TURBO C
Describe ~n analog world in a digital fashion-here's what
happens beneath the surface.

Roger Schlafly

While computers see information only in
black and white, the world around us
exists in endless shades of gray. Mapping
the real world onto long lines of ones
and zeros is a difficult business, made all

wizARD the more difficult by a need to ration the
binary bits that represent an analog quantity. Small is
fast, large is expensive, and as in many realms, there
are compromises to be made. The most effective tool
for mapping the analog onto the digital is the float
ing point number.

Computers use floating point numerals to represent
the values that fall between the whole numbers. For
example: 2.3, -3.14159, and l.02el0. Internally, such
numbers are represented as a mantissa and an expo
nent. The number 20403.23 becomes 2.0403 X 104, or
0.000012407 is 1.2407 X 10·5. Thus the decimal point
"floats" to where the significant digits begin. The big
advantage to floating point is that it allows a fixed
amount of storage (usually four or eight bytes) to
represent a wide range of real numbers.

THE IEEE FLOATING POINT STANDARD
The IEEE standard for representing floating point
numbers specifies a 4-byte format, an 8-byte format,
and a 10-byte format. These are the formats used by
the Intel math coprocessors 8087, 80287, and 80387.
They are also the formats used by Turbo C, Turbo
Basic, and Turbo Pascal 4.0, as well as Turbo-87 Pas
cal 3.0. (This article refers to the 8088 and 8087 for
simplicity, but the information in it holds true for the
8086, 80186, 80286, 80386, 80287, and the 80387.)

The floating point types in Turbo C are float and
double. Variables of type float are stored as IEEE
four-byte numbers. These are commonly referred to
as "single precision" in FORTRAN and other lan
guages. The type double is for double-precision vari
ables, and they are stored as IEEE eight-byte
numbers. Certain internal calculations are done in
still higher precision, storing temporary values in the
IEEE 10-byte format. The precisions of these formats
are summarized in Table 1.

34 TURBO TEQINIX J anuary/ February 1988

FORMAT BITES BITS SIGN MANTISSA EXPONENT

Single 4

Double 8

Extended JO

32

64

80

I bit 23 biis

I bit 52 bits

I bit 64 bits

8 bits

II bits

15 bits

FORMAT DECIMAL PRECISION RANGE

Single about 7 digits ± 3.4 x JO ·38 to ± 3.4 x JO 38

Double about 16 digits ± 1.8 x JO ·308 to ± 1.8 x 10 308

Extended about 19 digits ± I x JO -4932 to ± I x JO 4932

Tabl,e 1. Floating point formats and their precisions.

TURBO C AND THE ANSi C STANDARD
Turbo C is a nearly complete implementation of the
ANSI C draft standard for the C language. The treat
ment of floating point in the ANSI C standard is not
much different from the way people have always used
floating point in C, the main differences being in
prototypes, unary pluses, and long doubles.

Prototypes. In pre-ANSI C compilers, all floating
point numbers were converted to doubles in expres
sions. Function arguments were always converted to
doubles before being pushed onto the stack. Even if
you tried to define a function taking an argument of
type float, as in
void foo(x)
float x;
{ ... }

foo(3.4);

the compiler would treat the argument as a double
anyway. The call foo(3.4) would push the eight-byte
representation of 3.4, and the function foo would
access it on the stack as an eight-byte double.

In ANSI C and Turbo C, functions are allowed to

take four-byte floating point argu
ments on the stack. The above
code is written:
void foo(float x)
{ ... }

foo(3.4);

The prototype for foo declares
that its argument is of type float.
In the subsequent call to foo, the
compiler knows that the argument
3.4 is to be treated as a float con
stant, and not a double constant.
As long as you put the necessary
prototypes at the beginning of
your file, which in this case is:

void foo(f loat x>;

Turbo C checks all of the argu
ment types. If they do not match
exactly, it either does the neces
sary conversions or reports an
error.

Unary pluses. Like prototypes,
unary pluses are also new with
ANSI C. In a statement such as

x = a + (b - c);

where x, a, b, and c are all dou
bles, the definition of C explicitly
allows the C compiler to ignore
the parentheses and evaluate in a
different order, such as:

x = (a + b) - c;

or even,
x = (a - c) + b;

This flexibility lets the compiler
do some optimization. The above
three statements would be
mathematically equivalent if infi
nite precision were available, but
they are not equivalent when eval
uated on the limited precision of
computers. In cases where the
values being manipulated are very
large, precision can be lost trying
to express the larger intermediate
results, even if the final value is
fully expressible in the available
precision. If b and c are nearly
equal the programmer might
place b - c in parentheses, on the
assumption that it would be evalu
ated first, thus minimizing the
intermediate round-off errors.
This would have no effect, since
the chosen order of evaluation
cannot be guaranteed under
UNIX C. With ANSI C, however,
the programmer can guarantee it

continued on page 36

FLOATING POINT
continued from page 35

by using a unary plus before the
left parenthesis, as in:

x = a + +Cb - c);

Long doubles. The third ANSI C
innovation is the long double
type. The exact size or format of
the floating point types are not
specified in the standard, but long
double is a floating point type at
least as big as double. The idea is
to implement floats as IEEE 4-byte
single precision, doubles as IEEE
8-byte double precision, and long
doubles as IEEE 10-byte extended
reals. Thus long doubles are used
for intermediate results where
high accuracy is required. In
Turbo C 1.5, long doubles are
implemented as IEEE 8-byte dou
ble precision, the same as type
double, but future versions are
likely to use the 10-byte fonnat.

ASSEMBLY LANGUAGE
INTERFACE
Real-valued functions in Turbo C
have a different calling conven
tion from Microsoft C, Lattice C,
and all of the other C compilers.
Since this is the biggest incompati
bility between Turbo C and the
other C compilers on an object
code level, it is worth explaining
what the differences are and why
they exist.

In Lattice C, doubles are
returned in the registers AX, BX,
CX, and DX. Microsoft C and
Turbo C functions may be
declared as cdecl or pascal
depending on whether you want
C-like or Pascal-like calling con
ventions. cdecl is the default for
both compilers.

In Microsoft C, a double cdecl
function returns a pointer to the
double in the DX:AX registers, or
the DS:AX registers, depending
on the memory model. A double
pascal function also has an extra
pointer on the stack when called,
and the function must remove it
on exit. It is unclear why the extra
pointer is there; the other pascal
functions don't have it and there
is nothing in the Microsoft docu
mentation that discusses it.

In contrast, Turbo C returns
doubles on the top of the 8087
stack. The 8087 stack is assumed
to be clean when the call takes
place, and it is the responsibility
of the calling function to remove
the real value from the 8087 and
put it wherever it belongs. pascal
and cdecl functions return dou
bles the same way. The Turbo C
convention is much more efficient
than that of Microsoft C or Lattice
C, because the 8087 is the natural
place to keep floating point
numbers. Consider this fairly typi
cal code:
double square(double x)
{ return x*x;>

y = square(x) I 3.;

In Turbo C, y is computed by
pushing x onto the 8088 stack,
and calling square. Then square
loads x into the 8087, squares it,
and returns, leaving the result on
the 8087 stack. Next, y is obtained
by dividing the top of the 8087
stack by 3 and storing it.

In Microsoft C, the square func
tion would have to do an FWAIT
to allow the 8087 to finish the
multiply, then store the result in a
static area of memory. After
returning, the double in that static
area of memory has to be
reloaded into the 8087. Lattice C
is even more inefficient because
there is no way to directly transfer
a real number between the 8088
and 8087 registers.

Besides being more efficient,
returning reals on the 8087 stack
gives greater accuracy. All of the
transcendental functions in the
Turbo C library are computed to
80 bits of precision. An expression
such as the conditional
if (sin(x)*cos(x)-sqrt(x) > 0.) ...

is calculated to the full 80 bits of
precision. Future versions of
Turbo C will have 10-byte IEEE
long doubles, so the full precision
may be saved in named variables
as well.

If no 8087 is present, it is emu
lated, and double-precision quan
tities are returned on the emulator
stack. If you only write programs
in C, you don't need to know how

36 TURBO TEOINIX January/ February 1988

it works. However, if you want to
write Turbo C programs that call
assembly language routines to do
floating point arithmetic, and if
you want your programs to work
automatically whether there is an
8087 installed in the machine or
not, then you need to understand
how the emulator works.

THE 8087 EMULATOR
The emulator optimizes floating
point programs by imitating the
8087. Nearly everyone who has a
PC and cares about floating point
speed and accuracy buys an 8087.
Floating point programs should
therefore have inline instructions
to make efficient use of the 8087.
However, you also want your pro
grams to be usable by people who
don't have one. Therefore, Turbo
C generates code in such a way
that the 8087 can be emulated if it
is not there. At runtime, a library
routine tests for the presence of
the 8087. If one is found, inline
code is used; if no 8087 is found,
the 8087 instructions are emu
lated. There is some overhead in
using an emulator, but it is a
penalty paid only by those who
don't have an 8087.

So how can we have inline
floating point instructions and still
have programs that work without
an 8087? If things had been
planned properly, the 8088 would
always be aware of the presence
of an attached coprocessor. If it
tried to execute an 8087 instruc
tion when the chip is not there,
then it would trigger a restartable
exception. Then the operating sys
tem could have been written so
that at boot time it would deter
mine if the 8087 is present, and if
not, load an appropriate emulator.
The emulator would then be a
software exception handler that is
capable of mimicking all of the
8087 instructions. When a pro
gram encounters a floating point
instruction, then it would be exe
cuted inline if the 8087 is present,
otherwise it would jump to the
exception handler, mimic the
instruction, and return to the pro
gram to execute the next
instruction.

Unfortunately, the 8088 is not
smart enough to behave reason
ably if the 8087 is absent, and

there is no floating point excep
tion handler software in DOS.
The 80286 was designed with the
capability to jump to an interrupt
handler if there was no attached
80287, but by the time the 80286
hit the market, the IBM PC and
DOS had become the standard
that software was obliged to
support.

Runtime detection and emu
lation of the math coprocessor
orginated with Microsoft, who
wanted its languages to work
efficiently both with and without
the math coprocessor. The
scheme they developed built on
Intel's earlier system, which
involved replacing the first two
bytes of a floating point instruc
tion with a software interrupt
instruction. The interrupt pointed
to a handler that actually emu
lated 8087 instructions.

Interrupt handling. In overview,
the Microsoft emulation works
like this: At compile/link time,
floating point instructions are
generated with software interrupt
opcodes in place of the first two
inline opcode bytes. At runtime, a
suite of emulation interrupt
handlers is installed. Then, a
library routine runs before the
application code itself takes con
trol, and tests for the presence or
absence of the 8087, posting a flag
somewhere with the results. The
interrupt handler checks the flag,
and if an 8087 is present it
patches the two software interrupt
opcode bytes back to the equival
ent 8087 inline floating point
instructions. Then it returns con
trol to the beginning of the float
ing point instruction it just
patched, executing the instruction
in line. Alternately, if the 8087 is
not present, the interrupt handler
mimics the 8087.

The result is fairly efficient if
the 8087 is present, as the first
time each generated floating point
instruction is executed there is the
extra overhead of going through
the interrupt handler, but each
subsequent execution of the same
instruction will execute the inline
8087 code and not jump to the
interrupt handler. This dual
sequence of events is illustrated in
Figure 1.

Now, in detail: Microsoft allo
cates interrupts 34H through 3EH
for use by floating point emula
tion. DOS does not use them.
During code generation, Turbo C
can follow two paths, depending
on whether the programmer
chooses to compile for inline 8087
code (thus requiring a math
coprocessor at runtime) or for

INT 35H

handler

INT 35H
handler

~1
I I I ~1¥1 J J I I I I I

If no 8087 is detected in the system, a software
interrupt transfers control to the interrupt
handler, which emulates the floating point oper
ation. Control returns to the instruction fol
lowing the software interrupt instruction.

runtime emulation. If inline code
is the desired output, (using the
-£87 switch for the Turbo C
command-line compiler, or the
Options/ Compiler / Code
Generation / Floating point toggle
set to 8087 / 80287 in the Turbo C
programming environment) ordi
nary 8087 opcodes (beginning
with 9BH) are generated for float
ing point instructions.

INT 35H

handler

111 ff!llf!l11111

INT35H

handler

I I I lcnl351 I I I I I I I

handler

I
I I I l9Bl01I I 1 I I I I I

If an 8087 is detected in the system, control is
passed to the software interrupt the first time the
code is executed. The software interrupt handler
patches the calling code, replacing the software
interrupt call with the equivalent native 8087
instruction. Any future execution of that code is
done directly by the coprocessor.

Figure 1. Floating point coprocessor emulation.

continued on page 38

January/ February 1988 TURBO TEOINIX 37

FLOATING POINT
continued from page 37

For inline 8087 code, this is all
that happens. However, if emula
tion is selected, the compiler adds
special fixup records to the .OBJ
file so that the linker will convert
the floating point instruction
opcodes to software interrupt
opcodes at link time. The fixups
are associated with public sym
bols. A Turbo C library module
contains the definitions. The cor
rect values for these fixups are
given in Table 2.

If a floating point instruction
has a segment override prefix,
then sometimes two fixups are
needed for one floating point
instruction. All of the floating
point instructions are at least two
bytes long, except when an
FWAIT instruction stands alone
and is not the start of a floating
point instruction. The lone
FWAIT instruction is actually
emitted by the code generator as a
NOP FWAIT and fixed up to an
INT 3DH at link time with
FIWRQQ. At runtime, it is either
converted back to a NOP FWAIT
if an 8087 is present, or to a NOP
NOP if there isn't one (see
Table 3).

MASM and the 8087. For pure C
programming there is no need to
bother with these details, since
Turbo C does it all for you, but
what if you have assembly lan
guage files or inline assembler
code in your Turbo C files? Cur
rently you are dependent on
MASM, Microsoft's Macro
Assembler. As it turns out, MASM
does everything you need with an
inadequately documented

public FIARQQ, F IDRQQ,
FIIJRQQ
F IARQQ equ OFE32h
FICRQQ equ OOE32h
F IDRQQ equ 05C32h
FIERQQ equ 01632h
FISRQQ equ 00632h
Fl\JRQQ equ OA230h

Floating point
mnemonics

Opcodes emitted
Without emulation With emulation

FLO
FLO
FLO
FLO
FLO
FLO
FLO
FLO
FAOOP
FMULP
FSTP
FINIT
F\JAIT

dword ptr [bxl
dword ptr [bx+100Hl
qword ptr [bxl
qword ptr [bx+100Hl
qword ptr [sil
qword ptr [si+100Hl
qword ptr es:[si]
qword ptr es: [si+100Hl

ST(O)

980907
9809870001
980007
9800870001
980004
9800840001
98260004
982600840001
980EC1
9BOEC9
980008
9B08E3
9098

C03507
C035870001
CD3907
CD39870001
C03904
CD39840001
CD3C0004
C03C00840001
C03AC1
C03AC9
C03908
C037E3
C030

To emulate a floating point instruction, the first two bytes of each instruction must be replaced by a
software interrupt. Standalone FWAIT is a special case. The 9BH byte is the FWAIT 8087 instruc
tion. Because the code for INT CDH is two bytes long, the code generator must precede standalone
FWAIT instructions with a NOP (code 90H) to allow room to replace the FWAIT with a two-byte
software interrupt call.

Tab/,e 3. Emulation code generation.

command-line switch. The MASM
default is not to recognize any
8087 instructions. If you want it to
assemble 8087 instructions, you
must put a .8087 directive in your
.ASM file or put a / R switch on
the command-line when assem
bling your file. (For the one or
two 80287-specific instructions,
you must use the .287 directive in
your source code, because there is
no corresponding command-line
switch.) If you put a / E switch on
the command line instead, MASM
generates the fixups, with the pub
lic names shown in Table 2, that
will convert the floating point
instructions to interrupts. If you
have inline assembler in your .C
files, Turbo C will EXEC out to
MASM from within the compiler,
with the / E switch set.

An alternative to MASM for
Turbo C inline assembler code is
the A86 shareware assembler,
which is available for download
ing from CompuServe. A86

FICRQQ, FIERQQ, FISRQQ,

fwait I ds:
fwait I cs:
fwait I esc
fwait I es:
fwait I ss:
nop I fwait

supports emulated floating point
instructions, and is many times
faster than MASM.

If you have an 8087 and you do
not want the linker to change
your floating point code to inter
rupts, you can create an assembler
file just like Table 2, but with the
public symbols equated to zero.

public FJARQQ, FJCRQQ, FJSRQQ

At runtime. Each Turbo C
generated .EXE program tests for
the presence of the 8087 at start
up, and installs interrupt handlers
for interrupts 34H through 3EH.
The exit() function restores these
interrupts to their previous vectors
before returning to DOS. If you
exit a program without going
through the exit() function, such
as with the Break key, or by abort
ing during a critical error, then
the interrupts will not be restored.
It doesn't matter in most everyday
situations, because DOS does not
use these interrupts. The scenario
for trouble would be this: A Turbo
C program does a spawn to
another program that has floating
point code and no critical error or
control-break handler; the user
breaks out of the spawned pro
gram back to the parent program,
and then the parent program
attempts to execute floating point
instructions. The results would be
unpredictable (but almost cer
tainly fatal to the parent program)
since the spawned program's
interrupt handlers would still be

FJARQQ equ 04000h esc nn --> ds:nn
FJCRQQ equ OCOOOh esc nn --> cs:nn
FJSRQQ equ 08000h ; esc nn --> ss:nn

Tab/,e 2. Emulator from the Turbo C Runtime Library Source.

38 TURBO TEOINIX January/ February 1988

in place. You can avoid this situa
tion by calling _£preset after the
spawn but before executing

GRAPHICALLY
YOURS,
TURBO C 1.5
The first major update of Turbo
C contains a number of impor
tant enhancements. The most
visible of these is Turbo C I.S's
completely new video support.
This support closely parallels
the video support provided with
Turbo Pascal 4.0, and includes
an important new subsystem:
The Borland Graphics Inter
face (BGI), a device-inde
pendent graphics library with
loadable drivers for most major
graphics display devices.

Supported display devices
include the CGA, EGA, VGA,
MCGA, Hercules, ATT 400-line
Graphics Adapter, and the 3270
PC Graphics Adapter. The BGI
is viewport-based, and all draw
ing coordinates are viewport
relative. Most BGI parameters
(size ofviewport, last point
addressed, etc.) can be queried
as to their current state. Draw
ing functions include line, rec
tangle, arc, circle, ellipse,
polygon, bar (filled rectangle),
pie-slice, and filled polygon. An
8 by 8 bit-mapped text font is
provided, as well as several
scaleable stroke fonts.

Turbo C 1.5 provides
enhanced text video support as
well, with text windows, text
block transfers between screen
and memory buffers, text mode
state query, and complete attri
bute control.

Also new to 1.5 is Streams, a
highly portable means of han
dling text and binary files that
is similar to file handling in
Turbo Pascal. A grep utility, and
TUB, an object librarian, are
among the new utilities provid
ing support for the compiler
and linker.

A 175-page bound addendum
to the Turbo C Reference Guide
summarizes these and other
changes, all intended to make
Turbo C the most powerful
system development tool you
can buy. •

any floating point instructions.
When first loaded into memory,

the floating point instructions in
the application all begin with soft
ware interrupts in the range 34H
through 3EH. The first time any
instruction is executed, the soft
ware interrupt passes control to
the interrupt handler. The inter
rupt handler checks a flag that
indicates whether or not the
initial test discovered an 8087 in
the system. If no 8087 is installed,
the interrupt handler then emu
lates the floating point instruction,
and returns control to the first
instruction after the modified float
ing point instruction. However, if
an 8087 does exist in the system,
the interrupt handler "unpatches"
the software interrupt instruction
that invoked it back to the original
8087 inline floating point instruc
tion. Then, it returns control to
the just-patched floating point
instruction, which executes inline.

This process is repeated for the
first execution of any floating
point instruction in the applica
tion. However, once a floating
point instruction is patched, it exe
cutes inline for all subsequent
executions, providing the full
speed of 8087 code execution.
The overhead of invoking the
software interrupt handler
happens only once per instruc
tion, so it is relatively slight. The
only disadvantage is that code
generated in. this way cannot be
written into ROM or EPROM.

LIMITATIONS OF THE
EMULATOR
The floating point emulator does
not support everything the
coprocessor does, and there are
certain limitations on its use,
explained below.

Denormals. These are special
numbers that are smaller than the
smallest normal number but still
larger than zero. Denormals are
expressed with a special bit encod
ing and must be handled differ
ently than normal numbers. The
smallest normal double that
is greater than zero is about
1.8 X 10 ·308

, but there are denor
mal doubles as small as about
1.0 X 10 ·324

. These denormals are
like fixed-point numbers with the

decimal ~oint at approximately
1.0 X 10 · 08

, so the smaller they
are, the fewer bits of precision
they have.

The advantage of having denor
mals is demonstrated by the pro
gram in Listing 1. Both x and y
are normal and have full preci
sion in the double-precision for
mat, but they are very small and
very close to each other, and their
difference is about 1.0 X 10 ·315

,

which is smaller than can be nor
mally represented. If this situation
occurred on an older computer
that did not use the IEEE floating
point format, you would have the
unpleasant situation in which the
difference would underflow to
zero even though the numbers
are not equal. As a result, code
like
if (X != y) z = x I (X - y);

could fail to produce the expected
results. Using denormals, the
IEEE standard requires that two
numbers be equal if and only if
their difference is actually zero.

The emulator supports denor
mals for intermediate calculations,
but not for end results, because
denormals are convened to zeros.
Thus the above code would work
properly, but in the program given
in Listing 2, z should be a denor
mal. If run on a machine with an
8087, z will be a denormal, but on
a machine without an 8087, z will
underflow to zero.

Floating point registers. The 8087
has eight floating point registers
that are intended to be used as a
stack, and that is how Turbo C
uses them. Normally, numbers are
pushed onto the top of the stack,
operations take place at the top of
the stack, and numbers are
popped off. For example, the
function in Listing 3 computes an
expression and leaves the result
on the top of the stack.

The 8087 also has instructions
that are not stack-oriented for
moving registers around. An
example is

FXCH ST(3), ST

which exchanges the contents of
register 3 with the top of the stack

continued on page 40

J anuary/ February 1988 TURBO TEGINIX 39

FLOATING POINT
continued from page 39

(register 0). It does the expected
thing whether or not register 3 is
empty. The emulator, however,
implements the registers as a true
stack, and empty registers do not
exist. Exchanges only work prop
erly on nonempty registers. Regis
ter wraparound is also not sup
ported in the emulator.

Precision exception. The 8087
sets an exception flag if the result
of an operation is imprecise,
which includes the majority of
floating point calculations. For
example, 2.0 X 3.0 is calculated on
the 8087 with complete accuracy,
but computing 0.2 X 0.3 gives a
round-off error. Since 0.2 and 0.3
cannot be represented with com
plete accuracy in a binary format
anyway, everyone expects that the
last bit may have required round
ing. The emulator only sets the
flag bit when a floating point
number in the emulator is being
stored as an integer and rounding
is necessary.

The TC library function
_status87() returns the status
word of the 8087 chip, or the sta
tus word of the emulator if no
8087 is present. Bit 5 of the status
word is the precision exception.
The following code will print a
message if the 8087 is present, but
not otherwise:
double x;
x = 0.2;
x *= 0.3;
if C status87() & Ox20)

puts("Loss of precision.">;

Winities. Turbo C only supports
projective infinity. This is of no
importance to the vast majority of
programmers, but the 8087 can be
put into a special mode called
affine infinity, which distinguishes
between positive infinity and neg
ative infinity. Future releases of
Turbo C are likely to support
affine infinity, since projective
infinity has been dropped from
the IEEE standard.

FWAIT. An FWAIT instruction
must precede each floating point
instruction, since an instruction
without the FWAIT, such as
FNINIT, cannot be emulated. The
FWAIT provides room in the

floating point instruction to patch
in the emulator's software inter
rupt invocation, as described ear
lier. The Microsoft assembler puts
these in automatically. They are
not really necessary with the
80287, but if you want your pro
grams to work interchangeably on
the 8087, using them is a good
idea.

ASSEMBLY LANGUAGE
EXAMPLE
Most people think that only a
masochist would write floating
point code in assembly language.
For the most part I agree, but
there are cases when it is worth
while. Many floating point pro
grams spend most of their time in
a few tight loops, so it might make
sense to write these tight loops in
assembly language. However, a
tight floating point loop could still
be spending most of its time in a
library routine. In that case you
can't speed it up very much with
out rewriting the library routine.
This option will soon be available
to the programmer, since the
Turbo C Runtime Library source
is to be released as a separate
product.

With Turbo C, you can improve

#include <float.h>

unsigned int fpstatus;
main(){

both speed and accuracy by using
the floating point registers. Gains
will be achieved whether the 8087
is present or not. Consider a func
tion to take the dot product of two
real vectors, each of length n. The
dot product of x[] and y[] is
defined by:
X(O] * y(O] + ••• + X[n-1] * y[n-1]

(Remember that all arrays start at
0 in C, so a length n array has an
index running from 0 to n-l, not 1
ton.) A typical C function to calcu
late it is given in Listing 4. Listing
5 shows a slightly smaller way to
code it that is no more efficient
and perhaps less readable.

On an 8 MHz IBM AT with an
80287, either of these functions
takes about 11 milliseconds to take
the dot products of vectors of
length 100. This can be coded
with inline assembler in Turbo C
(for the tiny- , small- , and
medium-memory models) as
shown in Listing 6.

This last version (Listing 6) is
more efficient because the varia
ble sum is kept on the floating
point stack instead of in memory.
It takes about two-thirds the time
of the earlier versions (Listings 4
and 5) if a coprocessor is present,
or about three-quarters the time if

/* reset the 8087, leaving all exceptions masked*/
_control87CMCW_EM,MCW_EM);

}

I* do floating point work here */

I* now, check for masked exceptions before proceeding */
fpstatus = _status87C);
if Cfpstatus & SW INVALID)

puts("Floating point error: invalid operation.">;
if (fpstatus & SW ZERODIVIDE)

puts("Floating point error: zero divide.");
if Cfpstatus & SW OVERFLOW)

puts("Floating point error: overflow.");

/* reset 8087 before doing more work */
_clear870;

/* do more floating point work here */

Figure 2. A simpl,e floating point exception handler.

40 TURBO TEGINIX January/ February 1988

a coprocessor is not present. It is
also more accurate, because the
floating point registers have
10-byte precision and doubles
only have eight. As a result, there
is less reason to be concerned that
round-off errors will accumulate
to a significant level.

If some future version of Turbo
C implements long doubles as
10-byte reals, then the extra preci
sion could be obtained in C (with
out resorting to assembler) by
merely declaring the variable sum
to be a long double.

FLOATING POINT
EXCEPTIONS
The C language does not specify
what happens with a floating
point exception (such as dividing
by zero); it is up to the compiler
implementer. The possible flmn
ing point exceptions that are
caught by the 8087 are:

• Invalid operation

• Denormal operand

• Zero divide

• Overflow

• Underflow

• Inexact result

Of these, Turbo C traps only the
invalid operation, zero divide, and
overflow exceptions. (An early
release also trapped the denormal
operand and underflow excep
tions.) If a program ever divides
by zero, or if a computation pro
duces a number too large to be
represented in the eight bytes
allotted an IEEE real, an error
message appears on the screen
and the program aborts.

Such an exception need not be
fatal, though. The IEEE standard
provides for arithmetic with Infin
ity and Not-a-Number (NaN), so
you can just let the 8087 divide by
zero and produce an infinity if
you wish. Figure 2 shows a pro
gram that does this. Note that the
code in Figure 2 is not complete
and is given as an example only.

The other exceptions are not
worth checking for in most cases.
If a computation underflows, i.e.,
if the evaluated quantity gets too
close to zero to be distinguished
from zero within the eight bytes of

continued on page 42

LISTING 1: DENORMAL.C

/*Listing 1: */

double x,y;
main(){
x = 1.e-300;
y = x *(1. + 1.e-15>;
if (x == y) puts("x == y"); else puts("x != y");
if (x - y == 0.) puts("x - y = 011); else puts("x - y != 011);

}

LISTING 2: DENORMAL2.C

/*Listing 1: */

double x,y;
main(){
x = 1.e-300;
y = x *(1. + 1.e-15);
if (x == y) puts("x == y11); else puts("x != y");
if (x - y == 0.) puts("x - y = 011); else puts("x - y != 011);

}

LISTING 3: SUMPROD.C

I* Listing 3: */

double sum_of_prod(double a, double b, double c, double d)
/* returns a*b + c*d *I
{

asm fld qword ptr a
asm fmul qword ptr b
asm fld qword ptr c
asm fmul qword ptr d
asm fadd
}

LISTING 4: DOT.C

/* ~isting 4: */

double dot(int n, double *x, double *y)
{

}

int i;
double sum= O.;
for Ci = O; i < n; ++i)

sum = sum+ x[iJ * y[iJ;
return sum;

Janua1-y/ February 1988 TURBO TEGINIX 41

LISTING 5: DOT2.C I

I* Listing 5: */

double dot(int n, double *x, double *y)
{

}

double sl.lll = O.;
while (n··)

Sl.lll += *x++ * *y++;
return sl.lll;

LISTING 6: OOT3.C

!* L i st i ng (>: *I

doub\e dot(int n, double *x, double *y)
{

asm fldz
_SI = x;
_DI = y;
while (n··)
{

asm fld qword ptr [siJ
asm add si,8
asm fmul qword ptr Cdil
asm add di ,8
asm fadd

}

}

LISTING 7: MATHERR.C

/*Listing 7: */

#include <math.h>
int cdecl matherr(struct exception *e)
{ return 1;}

42 TURBO TEOINIX January/ February 1988

FLOATING POINT
continued from page 41

an IEEE real, the 8087 just con
verts it to a zero as the program
mer presumably wants. The inex
act result exception occurs on
almost every floating point opera
tion, because there is almost
always some round-off error.
Denormals should not be a con
cern in most programs either;
they have less precision than nor
mals but they are so close to zero
it hardly matters.

Those Turbo C Runtime Library
math functions having arguments
out of range or other such errors
call the _matherr() function to
handle them. _matherr() in turn,
calls matherr(), which returns a
zero in its default incarnation,
causing _matherr to print a sim
ple message and abort to DOS. To
perform custom error handling,
you simply rewrite matherr() to

handle the error and return a
nonzero value to _matherr. On a
nonzero value from matherr(),
_matherr() continues execution
without aborting. If you do not
want an error message on your
screen just because you tried to
take the square root of a negative
number, add the function in List
ing 7 to one of your files. More
sophisticated error handling can
be obtained by examining the
struct whose address is passed to
matherr().

CONCLUSION
Floating point numbers are most
often used as a method of describ
ing a thoroughly analog world in
digital fashion. A Turbo C
programmer who is aware of the
underlying theory of floating
point numerics will make the best
use of the considerable powers of
the 86-family of CPUs and their
math coprocessors. •

Roger Schlafly is in charge of scientific
and engineering products at Borland.
He is the author of Eureka: The
Solver and worked on floating point
support for Turbo C.

Listings may be downloaded from
CompuServe as CFLOAT.ARC.

THINKING IN TURBO C
Until you learn to think in a language, you cannot hope to
become a virtuoso.

Bruce F. Webster

It's been argued that Pascal and C are
fairly similar. This contention is usually
supported by noting that both languages

•
support loops, IF /THEN statements, sub
routines (with parameters), pointers,

SQUARE o~E records, and user-defined data types.
Some of the recent versions of BASIC are lumped in
there, too, since they often provide similar features.
Therefore, it should be very easy for someone profi
cient in one of these languages to pick up another.

Nonsense. All three languages come from three
different directions, and whatever the superficial
similarities may be, the underlying philosophical dif
ferences remain profound.

The goal of this article is to help you to under
stand the mindset behind the C programming lan
guage. If you're a Pascal (or BASIC) programmer,
and you approach C as being merely Pascal (or
BASIC) with different syntax, you're in for a lot of
frustration. If, on the other hand, you learn to think
in C, you'll be pleasantly surprised at just how effec
tive a C programmer you can be.

FREEDOM OVER SECURITY
Programming in BASIC is like carving soap with a
plastic knife: there's little chance of hurting yourself,
but it takes a lot of work to get the job done. Pro
gramming in Pascal is like using a table knife: the
work is easier and faster, and the chances of slipping
and cutting yourself aren't that much greater.
Programming in C is like using a double-edged razor
blade: the work is quick and intricate, and there's a
much greater chance of bloody fingers.

C was developed by Dennis Ritchie at Bell Labora
tories, in conjunction with his efforts to create the
UNIX operating system. C itself descended from a

chain of languages, including B, BCPL, and CPL.
The goal through this development chain was to
create a language that offered the structure and por
tability of high-level languages (such as FORTRAN
and ALGOL), yet allowed the user the low-level sys
tem access and freedom of assembly language.

The result-as documented in The C Programming
Language by Ritchie and Brian Kernighan-was a
language that, while appearing to be high-level, gave
you the freedom to hang yourself. Type and parame
ter checking were nonexistent, implicit and explicit
type casting were allowed, heavy use of pointers was
almost essential, and any memory location was at
your disposal. On top of all that, the C compilers did
only minimal syntax checking; if you wanted to do a
thorough check of your program, you ran the source
code through a separate style- and syntax-checking
program called lint.

This was precisely the freedom needed for systems
programming, particularly for writing an operating
system. And that freedom is still the source of much
of the praise and most criticism of C. For novice
(and not-so-novice) C programmers, this freedom
can be deadly and frustrating, leading to bugs that
are difficult to track down. For skilled C pro
grammers, it can be the life-saving difference, allow
ing them to get in and do exactly what they need to
do without the language (and any arbitrary
restrictions thereof) getting in the way.

The C standard evolved as an attempt to increase
security while not limiting freedom. One example is
the function prototype, similar to a FORWARD dec
laration in Pascal, which allows the compiler to
check the number of parameters and their types.
And some C compilers are doing considerably more
error checking during compilation, eliminating the
need for a separate lint program. Turbo C, for exam-

continued on page 44

January/ February 1988 TURBO TEOINIX 43

Declarations of types, constants, and variables.

I flJNC()
flJNC()

flJNC()

) flJNC() I

MA™() ~
FUNQ) I ~

flJNC()

...--flJN-C(-)----.,1.==:-I flJNC(~) ~-~-~ I FUNQ) I FUNQ)

flJNC()

Figure 1. main() and its functions.

THINKING IN TURBO C
continued from page 43

pie, does extensive checking, not
only for errors but also for poten
tial errors-statements that are
syntactically correct but which
may have different results than
those intended.

CONCISENESS OVER
CLARITY
C programs lend themselves to
conciseness. This is due to the
rich, extensive set of operators,
and the loose definition of what
constitutes a statement. Briefly
put, C treats any expression fol
lowed by a semicolon as a state
ment. The expression doesn't
have to do anything, or it may per
form several tasks. Furthermore,
you can insert these expressions
in unexpected places, such as in
the three sections of a for
statement.

Because of this flexibility, C pro
grammers can (and often do)
cram considerable work onto a
single line. Here's a simple exam
ple. Suppose you have three vari
ables, a, b, and c, and you want to
assign to c the maximum of a and

b. In Pascal, you'd probably write
this:
if a > b

then c := a
else c := b;

In C, you could write a very sim
ilar construct:
if (a > b)

c = a;
else

c = b·
But the~e's a more concise way to
write this in C:

c = (a > b) ? a : b;

The construct

<exp1> ? <exp2> : <exp3>
is known as the conditional opera
tor. The operator evaluates
< expl >; if the result is "true"
(nonzero), then it evaluates
<exp2> and assumes that value;
otherwise, it evaluates <exp3>
and assumes that value.

As another example, consider
the following piece of code:
indx = O;
wh i le ((l i ne [i ndx++ l =

toupper(getc(infile))) != EOF);

The while statement reads in a
series of characters from a pre
viously opened file, converting the
alphabetic characters to upper
case, and storing all characters
(whether converted or not) into
line, presumably an array of type

44 TURBO TEOINIX January/ February 1988

char. This continues until the
end-of-file is reached. Note that
the while expression does all the
work; there's no actual statement
being executed in the while loop,
as would be required to accom
plish anything in Pascal.

These are simple examples, but
others can be found in any good
(and many bad) C programs. The
resulting compactness has a major
advantage: it allows you to see
more of your program at a time .
on your screen. It also has a major
disadvantage: it can make your
program very hard to read .

FLEXIBILITY OVER FORM
Standard Pascal is a form-driven
language. A program follows a
fixed format: program header;
sections for labels, constants,
types, and variables; procedure
and function declarations, and
finally, the main program body.
Procedures and functions repli
cate the main program format and
are often called subprograms for
that very reason. All identifiers
(labels, constants, types, variables,
procedures, and functions) must
be declared before they are used.
Turbo Pascal relaxes some of
those restrictions, allowing the
declaration sections (everything
between the program headers and
the main body) to be in any order
and to occur multiple times. In
either case, execution starts at the
first statement of the main body
and continues until the last state
ment of the main body (or until a
Halt or Exit statement is exe
cuted).

Standard BASIC (whatever that
is) has very little form: it's just a
collection of numbered state
ments. Execution starts with any
statement and freely flows to any
other statement. Variables can be
"declared" just by using them in a
statement. Some newer versions of
BASIC (such as Turbo Basic) elim
inate line numbers, and add form
with control structures, true sub
routines, and alphabetic labels.

C is different from both Pascal
and BASIC. A C program is a col
lection of declarations and func
tions. Constants, variables, and
data types must be declared
before they are used, but there is
no inherent ordering beyond that.
Functions may be called by other
functions before being declared,
though that prevents parameter
checking. The main body of the
program is just another function;
it can appear anywhere in the
program and is distinguished by
having the special name main().
Think of functions as islands
floating in a sea of declarations:
no one island is in control of any
other, but you need a starting
point, which is main(). See
Figure 1.

There is also form within func
tions. A function consists of a
function header (including
parameter declarations) and a
body. The header declares the
function, giving its data type, the
function name, and the names
and types of its parameters. The
body is just a compound state
ment: a left (opening) brace, zero
or more local declarations, zero or
more statements, and a right (clos
ing) brace. Pascal users will note
that the left and right braces
correspond to BEGIN and END
in Pascal.

Consider the sample program
in Listing 1. Execution of this pro
gram begins with the function
main() being called by the operat
ing system. main(), in turn, calls
three other functions: lsort,
dumplist, and lmax. The function
lsort, in turn, calls yet another
function, swap. Each time a func
tion ends, control returns to the
function that called it. The pro
gram ends when main() is done,
that is, when its last call to printf()
returns.

ADAPTABILITY OVER
CONSISTENCY
After you write a program in
Turbo Pascal or Turbo Basic, you

compile it and run it. Occasion
ally, directives may include addi
tional files, or enable and disable
certain compiler options, but the
source code that the compiler uses
remains pretty much as you
wrote it.

In contrast, the C language is
closely tied to the concept of a
preprocessor. The purpose of the
preprocessor is to create a copy of
your source code for the compiler
to use; the text is modified accord
ing to the preprocessor com
mands it contains. The #include
< file> command should be famil
iar (and self-explanatory), but the
other commands provide capabili
ties that you might not expect,
given a background in other
languages.

The fundamental idea of pre
processor commands is macro sub
stitution. A macro is a piece of text
that you can define and use
throughout your program. When
the preprocessor massages your
text immediately prior to compila
tion, it substitutes the macro defi
nition for the macro name.

Suppose you had the following
preprocessor command near the
start of your file:

#define NULL 0

This defines the macro NULL to
be equivalent to the text string 0.
Later in your program, you might
use NULL like this:

if (result== NULL) { ••. }

When the preprocessor massages
your code it makes a literal substi
tution, so that the compiler sees
the following:

if C result == 0) { . • • }

If that were all that macros did, it
would be nice but not terribly
exciting. Macros, however, do
much more. Consider the
following:

#define
max(i, j) ((i) > (j) ? (i > : C j))

If you used this macro in your
program, it might look like this:

c = max(a+2,b);

which the preprocessor would
convert to

c = (a+2) > Cb) ? (a+2) : Cb>;

assigning to c the maximum of a2
and b. If you look at the file
STDIO.H on your Turbo C distri
bution disk, you'll find a number
of such macros already defined
for you. Keep in mind that while
max(iJ) looks like a function, it is
not a function but a single C state
ment incorporating the condi
tional operator explained earlier.

THINGS TO WATCH FOR
There are a number of common
pitfalls for novice C programmers.
Many of them are listed in the
Turbo C User's Guide, but they bear
repeating here.

Beware of confusing the expres
sions a = b and a == b. The first
expression assigns the value of b
to a, then a assumes the value of
b; the second compares a and b
and yields a 0 (false) if a and b are
not equal or a 1 (true) if a and b
are equal. So, the statement

if (ab) ..

is valid, but doesn't do what you
might think.

Identifiers in C are case signifi
cant, so that the variable names
indx, Indx, and INDX are all
separate and distinct identifiers.

All simple type parameters (int,
float, char, etc.) are pass-by-value.
If you want to do a pass-by-address,
(similar to a VAR parameter in
Pascal) then you must do it liter
ally: pass the address, using the
address-of operator"&" on the
actual parameters. You must then
define the formal parameters as
pointers. For example, look at the
swap() function in Listing 1, then
look at the call to swap() inside of
lsort().

Speaking of which ... when you
read values into variables using
scanf(), be sure to use the address
of operator"&" as needed.

It's very easy to get confused
continued on page 46

January/ Febrnary 1988 TURBO TEGINIX 45

LISTING 1: SAMPLE.C J
/*--*/
/* Demo sort program for THINKING IN TURBO C */
/* *I
/* by Bruce IJebster *I
/* *I
/* Turbo C 1 .5 */
/* Last modified 11/20/87 */
/*--*/

#define LISTSIZE
typedef int

100
numlist[LISTSIZEl;

I* define constant */
/* define data type */

int lmax(numlist list, int count); /*declare functions*/
void swap(int *i, int *j);
void lsort(numlist list, int count);
void dumplist(numlist list, int count);

/*----------- ---- --------------------------- ------------------*/
I* main() */
/*-- ----- -- -- -----------*/
main()
{

numl ist
int

count = O;

list;
count,i;

/* declare array */
I* declare variables */

do { /* get value from 1 to 100 */

}

printf("Enter #of items (1..%d): 11 ,LISTSIZE);
scanf(11 %d11 ,&count);

} while (count< 1 && count> LISTSIZE);

for Ci=O; i<count; i++)
list[il =rand();

lsortClist,count>;
dumplistClist,count);
i = lmaxClist,count>;
printf("The maxirrun value in the
return(O);

/* initialize array with*/
/* random values */

/* sort array *I
/* print array on screen */
/* get max value in array*/

list is %d\n 11 ,i);

/*--*/
I* end of main() */
/*-------------- --*/

/*--*/
/* lmax() -- Returns the maxirrun value in an array */
/* Called only by main() */
/*-- ----------*/
int lmax(numlist list, int count)
{

int i,max;

46 TURBO TEGINIX J anuary/ February 1988

THINKING IN TURBO C
continued from page 45

with pointers, especially when you
drag in arrays and strings, or
when you pass parameters
through several levels of function
calls. When in doubt, make
diagrams.

There are two ways to define
string: as a pointer to char or as a
char array. The first method does
not set aside any memory for the
string, but it does allow direct
assignment of string literals. The
second does set aside memory but
does not allow direct assignment;
you have to use the built-in func
tion strcpy() instead.

Make sure you understand the
use of the "++" and "--" opera
tors before using them. Beware of
using them with a variable that
appears two or more times in an
expression. Also, if you use one
with a pointer variable, be sure
you know whether it's increment
ing the pointer address or the
value to which the pointer points.

DIVING IN
This is all well and good, but how
do you take that first step, dipping
your toes into C? Coming from
BASIC or Pascal, you may find C
intimidating. For starters, write a
few simple programs. Don't use
any global declarations (i.e., those
written outside of any function);
just set up your main function

main()
{

}

... some C declarations •.•

... some C statements .••

and see what you can do. Declare
variables of different data types.
Practice reading data in from the
keyboard and writing it back out
to the screen. Try out each of the
statement types (assignment, for,
while, do .. while, if, switch, etc.).
Become familiar with the com
piler warnings and error messages
that you will invariably generate
the first few times.

Next, write a few functions

(outside of main(), that is). Call
them from main(), and have them
call other functions. Practice pass
ing parameters: int, float, char,
pointers, strings, arrays, structures,
and so on. Find out what you
need (and don't need) to do in
order to pass-by-value. When you
get code that works, print out a
copy of it so that you can refer to
it later. Now, start using more of
the runtime library functions.
There are over 300 predefined
functions for you to use, all docu
mented in the Turbo C Reference
Guide. Do some exploring; select
functions at random and write
programs that use them. If you're
really ambitious, keep writing pro
grams until you've used each of
the functions at least once.

Finally, start writing your own
libraries. Collect useful functions
of yow own devising into one file,
create a header file for it, and
store it where you can get to it
when you need to use it. At this
point, you'll realize just how com
fortable you feel in C, and you'll
wonder why you were avoiding it
in the first place.

GO FOR IT
C is a powerful, popular language
that is fast becoming the standard
development language on mini
and microcomputers. Proficiency
in C is a highly marketable skill,
but to gain that proficiency, you
need to understand the language
well. This article provides a start,
but the only sure method is to
write lots of code (and good code)
in C, on the language's own terms.
Good luck, and happy coding. •

Bruce Webster is a computer mercen
ary living in the Rockies. He can be
reached atjadawin Enterprises, P.O.
Box 1910, Orem, UT 84057; via
MCI MAIL (as Bruce Webster) or on
BIX (as bwebster.)

Listings may be downloaded from
CompuServe as THINKC.ARC.

}

max = l is t [0] ;
for (i=1; i<count; i++)

if Cl ist Cil > max>
max= list[il;

return(max);

/*--*/
I* swap() -- Swaps two integer values */
I* Called only by lsort() */
/*--*/

void swap(int *i, int *j)
{

int telll>;

telll> = *i; *i = *j; *j telll>;
}

/*--*/
I* lsort() -- Sorts a nlllleric array in ascending order */
I* Uses selection sort algorithm */
I* called only by main() */
/*--*/

void lsort(nllnlist list, int count)
{

}

int top,k,min;

for (top=O; top < count-1; top++) {
min = top;

}

for Ck = top+1; k < count; k++)
if Cl ist Ck] < list [min])

min = k;
if (min != top)

swapC&list[topJ,&listCminl);

/*-- - -------------*/
I* dllnplist() -- displays a nlllleric array on the screen */
I* called only by main() */
/*--*/

void dllnplist(nllnlist list, int count)
{

}

int i;

for Ci=O; i<count; i++)
printf(11%8d 11 , list Cil >;

printf("\n">;

J anuary/ February 1988 TURBO TEGINIX 47

USING TURBO C
Roll up your sleeves and take a practical course in power

• programmmg.

R.eid Collins

•
Borland International's Turbo C has a
dual personality. For learning and tinker
ing, it offers TC.EXE, an integrated
editor-compiler-linker that resembles the
integrated environment used by Turbo

SQUARE o~E Pascal. For developers of large applica-
tions, Turbo C can also be used in a more traditional
command-line mode as TCC.EXE, permitting com
piler and linker operations to be controlled by batch
command scripts and automatic program maintain
ers. Both versions of the compiler are part of the
Turbo C package. This package includes an
enhanced MAKE program and other utilities that
give the serious program developer complete control
over the program development process.

To demonstrate Turbo C, we will develop two small
programs. The first, HELLO, is a single module pro
gram and the second, CONCAT, is contained in two
modules. CONCAT may be used as a substitute for
the DOS TYPE command. First, we will examine
Turbo C as an integrated environment, then as a col
lection of separate but related programs.

A VERSATILE COMPILER
Turbo C is an optimizing compiler with numerous
options that permit developers to customize opera
tion for specific requirements and personal prefer
ences. Resulting object modules may be optimized
for speed or size. Other options available in the inte
grated environment and on the standalone compil
er's command line afford the developer wide latitude
in the selection of error-handling procedures,
memory model, target processor, and code
generation features.

Turbo C supports the use of inline assembly lan
guage code for those who need to program the "bare
metal." It also permits inter-language calling with
Turbo Prolog and assembler routines. In addition,

48 TURBO TEOINIX J anuary/ February 1988

you may select the standard Pascal parameter
passing sequence to speed up function-calling times.

With the de facto C standard expressed in Ker
nighan and Ritchie's The C Programming Lan{f/J,age
and the ANSI draft standard at its roots, Turbo C is
very compatible with the major C compilers currently
available for the IBM PC. Code written for Turbo C
can be compiled by Microsoft C, Lattice C, and most
other C compilers with little or no change to the
source code. The reverse is also true. Exceptions to
painless portability are restricted primarily to low
level, machine-dependent routines that are not con
strained by any standards, de facto or otherwise.

WHOLE> SUM (PARTS)
The primary components of the Turbo C integrated
development environment are contained in the
TC.EXE program file. By combining the functions of
a full-screen editor, an optimizing C compiler, a fast
linker, and a project-management utility into a single
program, Turbo C provides the sort of operational
synergy that comes of having all the right tools
instantly at hand.

Because of the close relationship of the environ
ment's components-the compiler and the editor,
for example-easy exchange of infonnation and a
high level of interaction are possible. When errors
are detected by the compiler, information that identi
fies source lines containing the errors is fed back to
the editor. You can quickly locate and correct offend
ing source lines with the help of "point-and-shoot"
control from an error list. After selecting an error
from the list, you are returned to the editor with the
cursor at the problem line. Switching among the
Turbo C components is quick and easy.

Before using the integrated Turbo C environment,
you will need to do a small amount of configuration
work. The process is fairly painless because the
TCINST program and TC do all the bookkeeping.

You just select options and type a
few responses. As a minimum you
should run TCINST to specify
Turbo C's default directory. Then
start TC (Figure 1 shows the main
screen) and use the Options
Environment menu to set up the
default paths to header files and
libraries. TCINST modifies the
TC.EXE file to reflect your
preferences.

TC attempts to read the Turbo
C configuration file, TCCON
FIG.TC, at program start up. If the
file does not exist or if you wish to
change it, you can make selections
under the TC Options menu. You
provide values for various com
piler, linker, and environment
variables, then select the Store
options entry to preserve the
values.

You will probably want to add
the Turbo C directory to your
PATH environment variable so
that the programs in it can be run
from anywhere in the directory
hierarchy. This is best done by
editing the line containing the
PATH command in AUTO
EXEC.BAT. After saving the
change, run AUTOEXEC from
the DOS command line or reboot
the system. Either method will
write the new path specification
into the DOS environment

HELLO THERE
To test the Turbo C installation
and configuration, create a simple
program source file, compile it,
and run it. Listing 1 is a variation
on the HELLO program, which is
the de rigueur C test program. This
version of the program uses the
low-level write function from the
standard runtime library instead
of the usual printf. The sizeof
operator calculates the number of
bytes in the message. Using write
results in a smaller executable
program (2120 bytes vs. 5760
bytes), because it doesn't drag
unneeded formatting code into
the executable file .

Creating and editing the source
file with the built-in editor is easy.
To edit the file, go to the File
menu and select the Load entry.
Respond with the name
HELLO.C, which the editor will

adopt as the name of the current
file. The Turbo C editor is imme
diately familiar to anyone who has
used other Borland language pro
ducts. If the default commands
don't suit you, change them by
using the Options-Editor menu.

After the source code has been
keyed in, save the file (Alt-F, then
S, for Save) and then compile it
(Alt-C to get the Compile menu
and select the Make EXE file
option). The default is a small
model program optimized for
speed, but you can instruct the
compiler to use other models
and optimizations from the
Options-Compiler menu.

The Turbo C

editor is imme

diately familiar to

anyone who has

used other Borland

language products.

The resulting program can be
tested by using the Run selection
of the main menu (Alt-R). Because
a permanent copy of the program
is saved to disk, you can also leave
Turbo C (Alt-F, then Q, for Quit)
and run the HELLO program
from the DOS command line.

A TRIP TO THE PROJECTS
Our first example (HELLO.C) is a
simple, single-module program.
The program is contained in one
source file and the compiling and
linking steps are triggered by a
single command (Compile-Make
EXE file). More complex pro
grams are often divided into
modules, with each module con
taining one function or a small
collection of closely related func
tions. How do we handle such
programs? Certainly there will be
additional work to do to keep
track of all the pieces of a pro
gram. What happens if a change
is made to one of the source files?
Will it be necessary to recompile
the entire program? No, because

"project making" takes care of the
details.

The Turbo C integrated devel
opment environment is as well
suited to the task of preparing
multi-module programs as it is to
preparing single-module pro
grams. In fact, you still start the
process of compiling and linking
with a single command (Alt-R).
However, you become directly
involved in project making
because you create a project
control file that lists the names of
all modules that comprise the pro
gram. You only have to do this
once, (unless, of course, you
change the organization of the
program).

Project making takes the tedium
out of building complex programs.
When you invoke the Project fea
ture of Turbo C directly (Alt-P) or
indirectly by selecting Compile or
Run, Turbo C takes a list of
module names from the project
control file and makes sure that
each object file is current with
respect to its related source file.
When you edit a source file, the
modification date and time in the
file's directory entry is set to the
date and time when the changes
are saved on disk. Assuming your
system clock is correct, Turbo C
compares the object file time to
the source file time and recom
piles the source file if it's newer
than the object file. Only source
files that have been modified
since they were last compiled
need to be recompiled.

The following multi-module
example should help to clarify the
project-making process. Refer to
Figure 2 as you read this de
scription.

The program CONCAT, short
for concatenate, can be used to
display the contents of ASCII text
files and to combine the contents
of several files into one by using
output redirection. The program
is produced from two source files,
CONCAT.C (Listing 2) and FILE
COPY.C (Listing 3). In addition to
typing in the two source files, you
must create the file CONCAT.PRJ,
which is the list of filenames on
which the program is based. List
ing 4 contains the text of

continued on page 50

J anuary/ February 1988 TURBO TEOINIX 4.9

LISTING 1: HELLO.C

#define STD_OUT

main()
{

static char msg[] = { "Hello, lolorld!\n" >;

}

write(STD_OUT, msg, sizeof(msg));
exitCO>;

LISTING 2: CONCAT.C

/**
* C 0 N C A T
*
* Concatenate files. For each file named as an argl.Jllent, CONCAT
* writes the contents of the file to standard output. COlllll8nd-line
* redirection may be used to collect the contents of multiple files
* into a single file. This program is adapted for DOS from the
* "cat" program presented in "The C Progranming Language", by
* Kernighan and Ritchie, Prentice-Hall, 1978. Modifications include
* argv[Ol processing for DOS and improved error handling.
*
* Exitcodes (DOS ERRORLEVEL):
* 0 success
* 1 error opening a named file
* 2 1/0 error while copying
* 3 error closing a file
**/

#include <stdio.h>

/* function prototype */
extern int filecopy(FILE * FILE*);

main(argc, argv)
int argc;
~har *argv [];
{

int i;
FILE *fp;

/* loop index */
/* input file pointer*/

static char progname[] = { "CONCAT" };

/*

I* program name */

* Be sure that argv[Ol is a useful program name. Under DOS 3.x
* and later, argv[O] is the program name. The program name is
* not available under earlier versions of DOS and is presented
* as a null string (1111

) by Turbo C.
*/

if (argv[Ol [0] == '\0')
argv[O] = progname;

/*if no filenames are given, use standard input*/
if (argc == 1) {

if Cfilecopy(stdin, stdout) == EOF) {
perror(argv[Ol); /*display the system error message*/
exitC2>;

50 T URBO TEOI NIX J anuary/ February 1988

USING TURBO C
continued from page 49

CONCAT.PRJ. Each filename in
the project-control file may be
typed with or without a .C
extension.

Tell Turbo C to make the CON
CAT project by going to the
Project menu, selecting Project
na,me, and entering CONCAT.PRJ,
then pressing Enter. Invoking
either the Run or Compile-Make
EXE file menu executes the
project-make feature . The results
of the project-make operation are
updated object files and an
executable program file.

The integrated linker, which is
responsible for combining all the
components of a program,
requires a set of instructions to tell
it the program name, the linkable
objects and libraries needed to
produce the program, and
whether to produce a MAP file .
The program name is taken from
the name of the project file. The
instructions are prepared by the
Turbo C project maker and are
stored in the file TPROJ.LNK
(Listing 5).

The first object in the list of
linkable objects is the COS.OBJ file
(small model-other models use
different names). This is the run
time startup module that each pro
gram must have to set up correct
operating conditions and get
information from the DOS com
mand line. On successive lines,
the link file lists two additional
object files, CONCAT.OBJ and
FILECOPY.OBJ, that must be
linked. A "+" at the end of a line
indicates that the object list con
tinues onto the next line.

The next two lines provide the
program and map file base names
to which the linker appends .EXE
and .MAP, respectively. The last
line is a list of library files that are
to be searched for modules that
resolve names found in the pro
gram's object modules. For exam
ple, calls to fopen, exit, and other
functions are satisfied by the
linker when it includes copies of
the object code for the named
modules into the executable
module. The linker only copies
code that is needed from the

you know, making it uninviting to
use. With separate programs, you
can choose your editor.

The TCC program is the heart
of the Turbo C system. TCC is
comparable to the cc command
under UNIX. It is the control pro
gram that can be used either to
compile a single C source file or
to orchestrate the process of com
piling multiple modules. TCC's
project management facilicy han
dles calling the linker to combine
the modules into an executable
program. We will, however, use
TCC as a module compiler and
use a separate program, MAKE, to
manage the program preparation.
MAKE is described in the next
section.

Figure 1. A Turbo C integrated development environment display.

The TLINK program is a stand
alone linker. It is compatible with
the DOS linker, but because it has
few optional features, it is both
smaller and faster than most other
linkers. It produces standard DOS
.EXE files. When used to link tiny
model programs (all code and
data in a single 64K segment), the
resulting .EXE file can be con
verted to .COM format. This
makes it possible to write DOS
device drivers and ROMable code
in C instead of assembler.

libraries in an attempt to keep the
final program size to a minimum.

We have just used the integrated
development environment pro
vided by Turbo C's TCC.EXE pro
gram to produce a multi-module
program. A contrasting view of the
world of C program development
is that each component of the C
programming system should be a
separate entity. One program is
used for editing, another for com
piling, and yet another for linking.
Still other programs are used to
manage program development
and maintenance tasks. With
Turbo C, you can have it your way.
Let's see how to use the
command-line mode.

THE N COMMANDMENTS
Moses had it easy. He only had to
deal with ten command(ment)s.
The Turbo C command-line com
piler presents you with a mind
boggling array of command-line
options that effectively force (or at
least request) differing behavior
of the C compiler system. But fear
not, because you usually can get
by remembering just a few of
them. Most of the time, the

options are cast into commands in
batch files or makefiles where they
are invoked automatically.

The primary advantage of using
separate programs for editing and
compiling is that each can be eas
ily replaced by another that per
forms the same function in a way
that better suits a particular pro
grammer's needs. For example,
you can use your favorite program
editor instead of struggling to
learn the peculiarities of the one
provided with a vendor's C system.
Although the vendor's editor may
be perfectly acceptable, it may be
markedly different from the one

Some configuration of the
Turbo C command-line system is
appropriate. Listing 6, TIJR
BOC.CFG, contains a single line
that is read by TCC and TLINK It
identifies the directories in which
to find header files and libraries.

continued on page 52

FILECOPY.C
main() filecopy()

'------..-----"--'

Standard libraries --- "•

main()
exit()

000

~~----...
Executable program { '---------'

Figure 2. Producing a multi-module program.

J anuary/ February 1988 TURBO TEDINIX 51

}

}

else

}

I* process the named files one at a time*/
for Ci = 1; i < argc; ++i) {

/*attempt to open the source file*/
fp = fopen(argv[il, 11 r 11);

if Cfp == NULL) {

}

/*unable to open the file*/
fprintf(stderr, 11%s: cannot open %s\n",

argv[Q], argv[il >;
continue; /* Look for more files*/

else {

}

exi t(O);

/*copy the current file
if Cfilecopy(fp, stdout)

perror(argv[OJ);
exitC2);

}

to the standard 0 1.Jtput *I
EOF) {

/*close the current file*/
if Cfclose(fp) == EOF) {

}

fprintf(stderr, 11%s: error closing %s\n",
argv[QJ, argv[il);

exit(3);

}

LISTING 3: FILECOPY.C

/**
* F I L E C 0 P Y
*
* Copy the input stream to the output stream. Return 0 if the
* copy is successful or EOF for any I/0 error.
**!

#include <stdio.h>

int
fi Lecopy(fin,
FILE *fin;
FILE *fout;

fout)
/* input stream pointer */
/* output stream pointer */

{

}

int ch;
int rcode;

/*holds ASCII characters and EOF */
I* return code */

I*
* Copy input to output until end of file is reached
* or an I/0 error occurs.
*I

rcode = O;
while ((ch= getc(fin)) != EOF)

if Cputc(ch, fout) EOF) {
rcode = EDF; /* output error */
break;

}

if (ferror(fin))
rcode = EOF;

return (rcode);

/* input error */

52 TURBO TEOINIX January/ February 1988

USING TURBO C
continued from page 51

You should use the correct names
for your setup. The Turbo C man
uals suggest putting all files in
directories starting with TURBOC
(e.g., C:\TURBOC), although
nothing in the software requires
it. I used C: \TC instead (less typ
ing!) with no ill effects.

COOKING WITH MAKE
I say "cooking" with MAKE
because MAKE is a utility program
that reads a "recipe" for a pro
gram, mixes and matches ingre
dients, and produces a product.
Using MAKE, a separate program
that does much the same job as
the project-make feature of the
integrated development environ
ment, you could become the "Gal
loping Gourmet" of programmers.
MAKE implements a series of
instructions in an external data
file, usually called MAKEFILE, to
control the compilation of C
sources, the assembly of assembly
language sources, and the linking
of objects and library modules to
produce an executable program.
MAKE employs file date and time
stamps to determine which com
ponents of a program need to be
remade.

To re-MAKE a program, simply
type MAKE at the DOS prompt in
the directory containing MAKE
FILE. By default, MAKE looks for
the name MAKEFILE unless told
explicitly to use some other
filename.

Listing 7 is the makefile for the
CONCAT program. Any text that
follows a pound sign (#) on a line
is a comment. The MAKEFILE
begins with a statement of the rule
used by the TCC program to pro
duce an object file from a C
source file. Then some symbolic
names are defined. Note that the
MDL name (memory model) is
required in the compiler rule but
has not yet been defined when
the rule is read. That's okay with
the Turbo C MAKE command
because it will rescan the file as
needed to take care of such for
ward references.

The remaining instructions tell

MAKE to run the linker on the
specified objects and libraries.
The line
concat.exe: $(0BJS)

tells MAKE that the executable file
depends on the object files .
$(0BJS) expands to concat.obj
filecopy.obj when the line is
scanned. If either object file is out
of date (older than its related
source file), it will be recompiled.
If CONCAT.EXE is older than
either of the object files on disk
(or if CONCAT.EXE does not
exist), the program will be
relinked.

It is not

necessary with the

Turbo C MAKE
program to

describe the

dependencies of

each file

independently.

The last line shows the depen
dencies of object files on source
files. It is not necessary with the
Turbo C MAKE program to des
cribe the dependencies of each
file independently as it is with the
Microsoft MAKE program, for
example.

When developing major appli
cations, you will probably find it
best to use the integrated develop
ment environment (TC) for initial
design and experimentation. You
can then switch to the command
line mode for intense develop
ment and project maintenance. At
that point, MAKE becomes an
indispensable tool in the quest to
keep a program up to date without
a lot of manual bookkeeping and
wasted time. •

Reid Collins is a computer program
mer for a firm in the aerospace
industry.

Listings may be downloaded from
CompuSeroe as USETC.ARC.

I-

LISTING 4: CONCAT.PRJ

concat
filecopy

LISTING 5: TPROJ.LNK

C:\TC\LIB\COS.OBJ+
CONCAT.OBJ+
FILECOPY.OBJ
C:\TC\CONCAT\CONCAT
C:\TC\CONCAT\CONCAT/N/D/C/X
C:\TC\LIB\EMU.LIB C:\TC\LIB\MATHS.LIB C:\TC\LIB\CS.LIB

LISTING 6: TURBOC.CFG

-Lc:\tc\lib -Ic:\tc\include

LISTING 7: MAKEFILE

#makefile: program builder for CONCAT

rules
.c.obj:

tee -e -m$(MDL) $<

#symbolic constants
MDL = s
LIB = c:\tc\l ib
SRCS = concat.c fileeopy.c
OBJS = concat.obj filecopy.obj

instructions
eoncat.exe: $(0BJS)

tlink $(LIB)\e0$(MDL) $(0BJS), $*, , $(LIB)\c$(MDL)

$(0BJS): $(SRCS)

J anuary/ February 1988 TURBO TEGINIX 53

• · I

,
J

.•

- ...

WHICH PROCESSOR?
Let your software determine what sort of engine is
under the hood.

Juan E. Jimenez

The success of Intel's microprocessors, in
conjunction with the IBM Personal Com
puter, has resulted in a proliferation of
machines with different but related
microprocessors, all running the same

wizAno DOS operating system. This creates a
problem for developers who want to take advantage
of the newer CPUs such as the 80386, but still main
tain compatibility with the 8088 and the 8086.

You can solve this problem by writing code that
only uses the standard 8086 instruction set, if such a
chip is resident in the computer where th~ program
is running. However, if the computer has a more
advanced microprocessor installed, then your pro
gram should make use of an extended instruction
set.

But how do you identify the type of microproces
sor in the computer? A few routines have appeared
in the past, but most of them were dependent on
obscure features and old chip design errors, and
were unnecessarily complex. Basing a software deci
sion on a bug in a chip design is risky business
indeed-no CPU manufacturer should be expected
to maintain bugs in chip mask redesigns for the
benefit of programmers using the bugs as though
they were features. The methods I describe below all
depend on documented CPU features that are
unlikely to change as Intel refines its chip designs. I
am indebted to Mr.Jose Sanders, Intel Field Engi
neering Representative for Puerto Rico and the
Caribbean, for providing the information upon
which this article is based.

I have written a simple routine called GETCPU
that identifies the 8088/ 86, 80188/ 186, 80286 or
80386 CPUs. Two different versions of GETCPU are
presented here: Listing 1 is for Turbo C, and Listing
2 is for Turbo Pascal 4.0. The two versions differ in
the calling requirements of the host high-level lan
guage; the actual MASM logic that tests the CPU is
identical. Listing 3, WHATCPU.C, is a short program
that invokes GETCPU and prints out the name of

the CPU identified in the system. Listing 4,
WHATCPU.PAS, is an identical program written in
Turbo Pascal 4.0. Listing 5, WHATCPU.PRJ, is a
Turbo C project file for recompiling and relinking
WHATCPU.C. (In a sidebar to this issue's "Language
Connections" column, Gary Entsl!linger describes
how to interface GETCPU to Turbo Prolog; Bruce
Tonkin describes the interface to Turbo Basic, in
"Converting .COM Files to $INCLUDE Files.")

IDENTIFYING THE 80286/ 80386 CHIPS
Here's how it works. The first test checks to see if we
are working with an 8088/ 86/ 188/ 186 chip, or one
of the more advanced 80286 or 80386 designs. The
test examines the flag register of the CPU (see Figure
1). If you look over Intel's technical specifications for
these chips, you will see that bit 15 of the flag register
is undefined in all of these processors. However,
Intel documentation states that this bit is always 1 in
the case of the 8088/ 86/ 188/ 186 CPUs, and 0 in the
case of the 80286 and 80386. It cannot be forced to
the opposite state. In the first portion of the routine
we try to set the upper bit of the flag register to 1; if
we succeed, we know we have an 8088/ 86 or 80188/
86. If we don't, we know we have either an 80286 or
an 80386.

If we determine that the CPU is not an 8088/ 86 or
an 80188/ 86, the second portion of GETCPU deter
mines whether we are running an 80286 or 80386.
This is done by attempting to set bits 12, 13, and 14
of the flag register to ls. These bits represent the
nested task flag (bit 14) and 110 privilege level (bits
12 and 13). After a RESET, all three of these bits are
set to 0. On the 80286 these bits remain Os, and can
not be set to ls while in real mode. However, on the
80386 these bits can be set to ls while in real mode,
though doing so will have no effect. So, we try to set
the three bits to ls, and if we can't we know we have
an 80286. If the bits can be set successfully, we know
we have an 80386. In either case we are done and

continued on page 56

J anuary/ February 1988 TURBO TEGINIX 55

LISTING 1: C_GETCPU . ASM

name c GETCPU
page ss, 132
title "C_GETCPU -- Determines Which INTEL CPU is Installed"

This program determines which INTEL CPU is being used in the
machine, whether it is an 8088/86, 80188/186, 80286 or 80386.
It uses doclJllented and supported differences in flag register bit
configurations to determine whether the CPU is an 80286 or 80386,
and differences in shifting using CL to determine if it is an
8088/86 or 80188/186. It is intended to be used as an external
routine from Turbo C, and returns an integer result in the form
the last three digits of the processor type, as depicted in the
table below. This code is designed for the TINY/SMALL modem.
See page 254 of the Turbo C User's Gui de for information on how
to modify this routine for other memory models.

If the processor is The routine returns

80386
80286
80188/186
8088/86

386
286
186
86

Declaration of the routine in Turbo C is:

int C_GETCPU();

To assemble:

HASH C_GETCPU,,,;

Code segment begins here

; Required by Turbo C for small ,..,,.,ry model
_TEXT segment byte public 'COOE'

aSSlJlle cs:_TEXT ; Ditto
·--
; Actual ID routine begins here

; Make sure Turbo C can get here
; Entry point for the subroutine

; Save flag registers, ~ use them here

public _C_GETCPU
_c_GETCPU proc near

pushf
xor
push
popf
pushf
pop
and
cmp
jz

ax,ax
ax

ax

; Clear AX and •••
; .•. push it onto the stack
; Pop 0 into flag registers Call bits to 0),
; atteff1Jting to set bits 12 -1 5 of flags to 0 1 s

; Recover the save flags
ax, MOOOh
ax,08000h
_8x_18x

; If bi ts 12-15 of flags are set to
; zero then it's 8088/86 or 80188/186

·--------- ---------- ---------------------------- --- ------------------
; It is either an 80286 or an 80386,. let's find out which •.•

IOOV

push
popf
pushf
pop
and
jz

ax,07000h
ax

ax
ax, 07000h
_286

Try to set flag bi ts 12-14 to 1 's
Push the test value onto the stack.
Pop it into the flag register
Push it back onto the stack
Pop it into AX for check
if bits 12-14 are cleared then
the chip is an 80286

56 TURBO TEOINIX January/ February 1988

Protected
mode flags

Real mode flags

15 14 13 12 11 10 9 8 7 6 5 4 3 2

80286/
80386 Bit

8086/ 8088
80186/ 80188

0 - CF - Carry Flag
2 - PF - Parity Flag
4 - AF - Auxiliary Carry Flag
6 - ZF - Zero Flag
7 - SF - Sign Flag
8 - TF - Trap Flag
9 - IF - Interrupt Enable Flag
10 - DF - Direction Flag
11 - OF - Overflow Flag

12 - IOPL - 110 P1ivilege Level , bit 0 Flag
13 - IOPL - 110 Privilege Level, bit I Flag
14 - NT - Nested Task Flag

0

. ...
*Always 1 for 8086/ 88/ 186/ 188 Always 0 for 80286/ 386

Figure 1. The 86jamily flag register

WHICH PROCESSOR
continued from page 54

can exit. Note that this may or may not work cor
rectly in a protected mode environment like OS/ 2;
the methods described in this article were designed
and tested for use under DOS in real mode only.

DISTINGUISHING THE "STANDARD CHIPS"
Discriminating between an 8088/ 86 or 80188/ 86 is a
little more difficult. In this case, we use the SHL
(shift left) and CL with a count command. As it turns
out, the 8088/ 86 uses all the bits in CL to perform
the shift, allowing a shift value of up to 255. How
ever, the 80188/ 86 only use the lowest five bits in CL
for the shift (as do the 80286 and 80386). Therefore,
we set AX to all ls, then try to shift AX left 33 times.
In the 8088/ 86, we get a full 33-bit shift, leaving a
value of 0 in AX. In newer CPUs, though, attempting
to shift by 33 (100001 binary) amounts to a shift by
only 1, since bits 5 and higher in CL are ignored.

We simply check AX to see if it contains a value of
0. If it does, we have an 8088/ 86 and we can exit. If
we find a nonzero value, we have an 80188/ 86.

RETURNING THE PROCESSOR NAME
GETCPU passes the result back to the host language
as an integer. The integer value is 86 if we have an
8088/ 86, 186 for an 80188/ 186, 286 for an 80286, and
386 for an 80386. Note that no effort is made to dis
tinguish between an 8088 and an 8086, or between
an 80188 and an 80186. The differences between the
members of these two closely related pairs of chips
lie almost entirely in the bus structure that interfaces
the CPU to the outside world. The 8088 and 80188
are essentially 8-bit pans with a 4-byte prefetch
queue, while the 8086 and 80186 are 16-bit pans

······· -- --- -------- -------------------------- ------- -- -- --------- ---
; Ok, we know it's an 80386 now, tell the user about itl

mov ax,386 ; It 1 s not a 286, so ; t lllJSt be an 80386
j"" OOllE ; (at least l.f'ltil the 80486 cOl!ll!s out •••)

·--.
; Tell the user it's an 80286
;------ --- ----------------------- ------------ -- ----------- -- ---------
_286: ""'" ax,286 ; Get the ms; ready

j"" OOllE ; Bye

;- ~~- ~;,;,:.-;; ·;~ -~;;~~~ -~~-~;~-~~- ~;~;~:-~;-~;~~-~ -;~-; ;;· -
~~~~;~~;------ - ------- -- ------------------ - ------------------------·-

lllOV 

lllOV 

shl 

ax,OFFFFh ; Set AX to all 1 's 
cl,33 Now we try to shift left 33 ti,..., If it's 
ax,cl an 808x it will shift it 33 ti,...s, if it's 

jnz _18x 
an 8018x it wil only shift one ti""' 
Shifting 33 ti""'s would have left all O's 
if any 1's are left it in an 80188/186 

mov ax,86 
OOllE 

No 1 •s, it•s an 8088/86 
j"" ·-----·---·----------------------------------·-----·-----------------

; It's an 80188 or 80186 ••• 

_ 18x: mov ax,186 ; FCUld a 1 in there somewhere, H 1 s an 8018x 

; All done, let's go back ... 

DONE: popf ; Restore the flag registers 
ret 

·-- -- ---- --------------- ----------------·-- ·-------------------------
; End of code and segment 

_C_GETCPU endp 
TEXT ends 

- end _C_GETCPU 

ltSTJNG 2: GETCPU.ASM 

name GETCPU 
page SS, 132 
title 'GETCPU . BIN - -- Determines which INTEL CPU is installed' 

This program determines which Intel CPU is being used in the 
machine, whether it i s an 8088/86, 80188/186, 80286 or 80386 . 
tt uses docunented and supported differences in flag register bit 
configurations to determine whether the CPU is an 80286 or 80386, . 
and differences in shifting using CL to determine if it is an 
8088/86 or 80188/186. It is intended to be used as an external 
routine froni Turbo Pascal, and returns an integer result in the 
form of the last three digits of the processor type, 
as depicted in the table below. 

[ f the processor is 

80386 
80286 
80188/186 
8088/86 

The routine returns 

386 
286 
186 
86 

continued on page 58 

with a 6-byte prefetch queue. 
The instruction sets of the 8088 and the 8086 are 

identical, as are the instruction sets of the 80188 and 
80186. Although the members of the two pairs can be 
distinguished from one another by testing the size of 
the prefetch queue, there is little point in it for the 
programmer if the instruction sets are the same . 

In the best of all worlds, a CPU should be able to 
tell an application program what it is in response to 
a suitable query. The 386 (and, according to Intel, all 
future 8086-family chips) have chip type and other 
information placed in the general registers upon a 
hardware reset. However, no BIOS that we know of 
saves that information for later reference by applica
tion software, so we cannot get at it for the time 
being. I would encourage developers of future BIOS 
software to consider the needs of programmers 
whose code must run on all compatible chips, and 
keep this chip-identifying information in a safe place 
after a reset. • 

Juan Jimenez is an independent computer consultant, 
programmer, systems analyst, and hacker. He can be 
reached at P.O. Box 9811, Santurce Station, Santurce, PR 
00907. 

Listings may be downloaded from CompuServe as 
GETCPU.ARC. 

TURBO C QUICK C LET'S C DESMET C DAT ALIGHT C ECO-C 
LATIICE C MICROSOFT C AZTEC C COMPUTER INNOVATIONS C ,.... _____________ _ 

NEW --- Limited time offer. 

Peacock System's CBTREE 
Object library for only $49! 

Our FULL COMMERCIAL VERSION of CBTREE in object library format 
is being offered for the amazing ly low price of $49. 

CBTREE provides you with easy to use functions that maintain key 
indexes on your data records. These indexes provide you w ith fast, 
keyed access, using the industry standard B+tree access method . 

Everything you need to fully utilize CBTREE in your applications is 
included. The CBTREE source code can be purchased later at any 
time for the $50 difference . Example source programs and utilities are 
included FREE. 

CBTREE source library $99 
Object library only $49 

This limited time offer is simply too good to refuse. Peacock's standard 
ROYAL TY FREE , UNCONDITIONAL MONEY-BACK GUARANTEE, 
AND FREE TECHNICAL SUPPORT appl ies to this offer . 

To order or for additional information 
1-800-346-8038 or write: 

~ 
PEACOCK SYSTEms. nc 

PEACOCK SYSTEMS, INC. 
2108 GALLOWS ROAD, SUITE C 
VIENNA, VA 22180 

Trademarks: Turt>oC (Borland); Quick C (Microsoft); Let's C (Mark Wil~ams); 08Smet C (08Smet 

Software) ; Oat.alight (Datatight); Lattice C (lattice) : Mia-osolt C (Miaosott) : Aztec C (ManlC Software) ; 

Computer Innovations C (Computer Innovations); Eco-C (Ecosott, Inc) . 

January/ February 1988 TURBO TEQINIX 57 



continued from page 58 

··--- ------ -------------------- ------ ----- --- ------------------------
' Declarat;on of the routine in Pascal V4.0 is: 

(SL GETCPU} 
f1..11Ction GETCPU integer; external; 

To asseri>le: 

MASM GETCPU; 
·---- ------- ------------ ------ -- ----------------------------------- .. -
~ Code seginent begins here 
·---- --- ------ ---------------- --- -------- ----------------------------
~ode segment para public 'COOE 1 

assune cs: code 
?Jbl i c getcpu 

·--------------------------------------------------------------------
~ Actual id routine begins here 

getcpu proc near 
pushf 
xor ax,ax 
push ax 
popf 
pushf 
pop ax 
and ax, 08000h 
c"" ax, 08000h 
jz _8x_ 18x 

; Save the flag registers, we use them here ... 
; Cl ear AX and push it onto the stack 

Pop 0 into flag registers Call bits to 0), 
att"°"ting to set bits 12·15 of flags to O's 
Recover the saved flags 
If bits 12·15 of flags are set to zero then 
cpu is 8088/86 or 80188/86 

·-------------------------------------·------------------------------. 
mov ax, 07000h 
push ax 
popf 
pushf 
pop ax 
and ax, 07000h 
jz _286 

Try to set flag bits 12-14 to 1°s 
Push the test value onto the stack 
Pop it into the flag revister 

; Push it back onto the stack 
Pop it into AX for check 
If bits 12·14 are cleared then the chip is 
an 80286 

·------------ ---- ------- ---- ----- --- -------- --------- ----------------
;Ok, we know it•s an 80386 now, tell the user about it! 
·----- -- -- ---------- ----- --- ---------------- -------------------------
' fftOV ex , 386 

j"" DONE 
; 1t 1 s not a 286, so it 111.JSt be a 386 

; . ~ ~;;. ;~~. ~~~;.;; .; ~. ~~. ~~~~ .................... -.. -......... -.. -.. 

_ 286: rnov ax, 286 ; Get the msg ready 
j°" DONE ·------------ -- --- ------ ----------- ------------------ ----------------

; We know i t is either an 8088/86 or 80188/86, but which one is it? 

_8x_ 18x: 
mov ax,Offffh Set AX to all , •s 
mov cl ,33 ; Now we try to shift left 33 times. If it IS 

shl ax,cl an 808x it will shift it 33 times, 
an S018x it will only shift one time . 

if it IS 

jnz -18x Shifting 33 times would have left all O's . 
I I any 1 's are left it's an 80188/186 

mov ax,86 ; No 1 •s, it's an 8088/86 

j"" DONE 
·-------- ---- ---- -- ------- ------- --------------------- ---------------
; It's an 80188 or 80186 • •• 

_18x: mov ax, 186 ; Found e 1 in there somewhere, it•s an 80188 
; or an 80186 

·------------------------ -- ------ ------------------------------- -----
;All done, let's go back. .. 

DONE : popf ; Restore the flag registers 
ret ; - ~~- ~f -~~. ~~- ~~~~; ..... ·- .... ··- -·-- .. ·- ....... ·- ............ . 

getcpu endp 
code ends 

end getcpu 

58 TURBO TEQINIX January/ February 1988 

LISTING 3: llHATCPU.C J 
I* •• •• ··- ·- • • • • •• •• ·- - • • ·- • • ·-· ·-- - ·- - ·-· ·- • • · • • ·-- ·- • •• • • • ·-· • • • *I 
/* llHATCPU.C - Turbo C program to show ex8f1"4'le of how to use the */ 
/* C GETCPU asseri>ly language module. */ 
/* ·-·-·-···---=-·····--····--·--··-······-···········-·--·········- *I 

#include <stdio.h> 

int c_GETCPUO; 

main() 
( 

int CPU_Type; 
CPU_Type = C_GETCPU(); 
printf( 11 Processor is [80 11 ); 

switch (CPU_ Type) 
( 

case 386: printf( 11 38611 ); 

break; 
case 286: printf( 11 28611 ); 

break; 
case 186: printf( 11 188/18611 ) ; 

break; 
case 86 : printf( 11 88/86"> ; 

break; 

printf( 11]\n11
) ; 

LISTING 4: llHATCPU.PAS 

PROGRAM llHATCPU; 

VAR 
CPUTYPE : integer; 

(SL GETCPU} 
FUNCTION GetCPU integer; external ; 

BEGIN 

ENO . 

CPUTYPE := GetCPU; 
write(• Processor is C80') ; 
CASE CPUTYPE of . 

END 

386: wr iteln( 0 3861 'J; 
286 : writeln( 0 2861 '> ; 
186: writeln('188/86l 'l; 
86 : writeln( 0 88/861 'l; 

LISTING 5: llHATCPU.PRJ 

wnatcpu 
c_getcpu.obj 

/* Receives result */ 
/* Call the fl.net ion */ 
I* Print coomon msg */ 
/* Depending on result */ 
/* Print rest of msg */ 

/* Terminate msg string */ 



Turbocharge Your 
Programming 
With Turbo Basic! 

'' Borland Internationai's 
Turbo Basic is unquestionably 
an outstanding software pro
duct. It provides an efficient 
and comprehensive BASIC 
programming environment 
at a very affordable price. 

An excellent BASIC devel
opment system with enhance
ments that allow more effec
tive programming. 

Giovanni Perrone, PC Week 

Turbo Basic sets a standard 
for programming languages 
on PCs that is the equivalent 
of the first running of the 
four-minute mile. 

Corporate users of BASIC 
will find Turbo Basic a tool 
worth many times its cost and 
a quantum improvement over 
anything they have ever used. 

William l,achmann, Computerworld '' 

T urbo Basic" is the A technical look at 11.Jrbo Basic 
BASIC compiler you've 
been waiting for! It's a 

complete development envir
onment with an amazingly fast 
compiler. a full-screen win
dowed editor. pull-down 
menus. and a trace debugging 
system. We've also added 
many innovative features 
including binary disk files. 
true recursion, and several 
new compiler directives to 
give you more control at com
pile time. And your program 
size isn't limited by 64K
you can use all available 
memory! 

' ' I'm extremely impressed 
with Turbo Basic. It's fast. it 
cooperates with resident key
board handlers . .. it offers a 
wealth of important new fea
tures. and it costs only $99. 

Ethan Winer. PC Magazine '' 

Giovanni Perrone Quote. reprinled ham PC Week. May 5th. 1987 
Copyright 1987 Z1tt Commumca11ons Company Ethan Winer QUole. 
rep1inted from PC Mag, May 12th, 1987 Copy11ght 1987 Zitt Com
munica11ons Company William Zachmann quo1e. reprinted from 
Compulerworld, May 4th, 1987 with pe1m1ssion 

All Borland products a1e reg1steced trademarks m 1rademarks o! 
Borland International, Inc Other brand and product names are 
tradema1ksor registered trademarksol their1especlive holders 
Copyright 1987 80fland International 81 -1156 

• Context-sensitive help 
• Fu ll recursion supported 
• Customizability of user interface and 

editor 
• Full 64K for strings 
• Standard IEEE floating-point format 
• Floating-point support. with full 

8087 (math coprocessor ) integration . 
Software emulation if no 8087 
present 

• Program size limited only by availa
ble memory (no 64K limitation) 

• EGA and CGA support 
• IBM Personal System/ 2 VGA and 

MCGA 2- and 16-color support in 
640 x 480 resolution 

INTERNATIONAL 

• Fu ll integration of the compi ler, edi
tor. runtime libraries. and executa
ble program. with separate windows 
for editing. messages. tracing. linker 
libraries. user interface . and execu
tion in one compiler file 

• Compile. runtime. and 1/0 errors 
place you in source code where 
error occurred 

• Access to local. stati c & global 
variables 

• New long integer (32-bit) data type 
• Full 80-bit precision 
• Pull-down menus 
• Full window management 

For the dealer nearest you 
or to order by phone 

Call (800) 255-8008 
in CA (800) 742-1133 
in Canada (800) 237-1136 



v 
0 

= ~ IMPORTING REFLEX 
DATABASES 
Hook into a Reflex database to give your Turbo C 
application added flexibility 

Kent Porter 

Reflex, like most major application sys
tems (Lotus 1-2-3, dBASE, Paradox, etc.) 

.I has proprietary file structures. Instead of 
simply writing data to a file, Reflex stores 
control information at the start of the file 

PROGRAMMER followed by the data itself. Later, when ' 
the file is read back in, Reflex uses the control infor
mation to reconstruct labels, sort, and display the 
data in its proper format. Thus, Reflex databases are 
self-describing entities. 

That is, they are if the receiving program knows 
how to interpret the control information. In the 
absence of this knowledge, the file is just a bunch 
of gobbledygook; with it, the program rapidly and 
efficiently processes the file's contents. This article 
takes us on a journey through the most important 
Reflex data control structures, providing practical 
information as well as a close look at the subtleties 
of a major application system. We'll also develop a 
program that prints out a Reflex database structure, 
and show how to extract data from it, all using 
Turbo C. 

THE BIG PICTURE 
A Reflex database consists of fixed and variable
length structures in a preset order. As we'll see later, 
a system of pointers glues the whole thing together 
and provides software paths for getting from place to 
place. Here's the overall structure of a Reflex data
base file: 

1. Header record 

a. General information 

b. Section descriptors 

c. Empty space to complete 512 bytes 

2. Field directory 

a. Sort specifications 

b. Field name pool 

c. Field descriptor table 

3. Enumerated ("repeating") text pools by field 

4. Master record 

60 TURBO TEQINIX January/ February 1988 

5. Data records 

6. Other sections (not of interest to programmers) 

Some of the terms in this list might not be familiar. 
Don't worry; you'll know what they mean by the time 
we've finished, and how each contributes to the over
all structure. 

GO TO THE HEAD OF THE FILE 
Most of the Reflex file control information can be 
described in terms of Turbo C structures. We'll pre
sent them as we go along so that you can see what 
each one contains. Later we'll assemble all of them 
into a file called REFLEX.H, which you can #include 
at the start of any C program that accesses Reflex 
databases. 

The very first component of the file is a 66-byte 
header record containing general information about 
the database and the Reflex version that created it. 
Figure 1 lists the header record structure. 

Note that some of information is useful to pro
grammers and some is not. For example, the three 
"ver" fields (verViews, etc.) give version numbers for 
the Reflex software components that created the 
database. These will help future releases of Reflex 
cope with old files but are of no value to your appli
cation. On the other hand, some of the fields are 
important. 

The stamp[] field identifies the file as a Reflex 
database. It contains the null-terminated character 
sequence 
3Q. !&@#$! && 

which is fixed in all databases. Your program should 
check this field for a match against a constant; if 
unequal, you are not reading a Reflex file. The 
ffiecalc field normally contains a zero, indicating 
that the file was recalculated before being saved. If it 
contains a nonzero value, some of the data in the 
file might not be correct, as in the case of a file 
being modified and saved with Recalc turned off. 



#define RXID "3Q. ! &@#$ ! &&" /* Reflex identifier */ 

typedef struct { 
int hdrSz; 
char starrpC12]; 
int dirty; 
int verViews; 
int verModels; 
int verData; 
int fRecalc; 
char screenType; 
char checkSlJTl; 
char reservedC38]; 
int sectionCt; 
DFDESC dfSection[]; 

/*file header structure*/ 
/*size of file header= 512 */ 

/* identification = 113Q. ! &iil#S! && 11 * / 
/*non-zero irrplies corrupt file*/ 

/* view info version level */ 
/*modeling system version level */ 

/* raw data version level */ 
/*non-zero irrplies recalc necessary*/ 

/*active screen type at file creation*/ 
/*file checkslJTl */ 

/* reserved for future use */ 
/* nl.lllber of sections of type DFDESC */ 

/* section descriptors */ 
} DFHDR; 

Figure 1. Reflex header record structure described in Turbo C. 

typedef struct { 
int dfType; 
long dfAddr; 
long dflen; 

/*data file section descriptor*/ 
/* section type code */ 
/* start address in file (bytes) */ 
/* length (bytes) */ 

} DFDESC; 

Figure 2. Descriptor node structure in Turbo C. 

typedef struct { 
unsigned f ldType 
unsigned isAscending 
unsigned fieldID 

} FLDSORTSPEC; 

7· I ,. 
I 

8; 

/* field sort spec */ 
/*used internally by Reflex*/ 

/* sorting order */ 
/* field ID: index to field defin */ 

Figure 3. Turbo C field structure for sorting. 

The sectionCt field contains a 
value indicating how many section 
descriptors follow the header 
record. 

Section Descriptors. A Reflex file 
contains up to 12 sections-major 
subdivisions-in addition to the 
header record. The section 
descriptors identify what and where 
they are. Only three of the 12 are 
mandatory and thus useful to pro
grammers, with the rest (the View 
Manager state, global filter, etc.) 
being internal to Reflex. 

Figure 2 lists the structure of the 
descriptor node. One such 10-byte 
node exists for each section pres
ent in the file; they begin imme
diately after the sectionCt field in 
the header record. We need to pay 
attention to nodes pertaining to 
the data control and content sec
tions of the file, as shown in 
Table 1. 

dffype SECTION 

2 Field directory 
9 Database master record 
I Data records 

Table 1. The three mandatory section 
descriptors in Reflex. 

The three descriptors in Table 1 
appear in every Reflex database. 
Any of the other nine may or may 
not be present. 

Empty Space. The header node 
occupies 66 bytes and each des
criptor occupies 10. Therefore the 
entire header record, which des
cribes the database in general, 
uses somewhere between 96 and 
186 bytes, but its physical length is 
512. What's in the rest? Nothing. 
It's reserved space. 

DESCRIBING FIELDS 
The field directory section contains 
almost everything you need to 
know about the file except its 
actual data contents. It consists of 
three major segments: 

• Global sort specifications 
• Field names 

• Field descriptors 

Global Sort Specs. Reflex lets you 
sort on up to five fields, indepen
dently, in either ascending (A to 
Z) or descending (Z to A) order. A 
precedence is assigned to each 
field (key), such that the order of 
Key 1 prevails over the order of 
Key 2, and so on. The global sort 
specs, located in the first 12 bytes 
of the file starting at offset 512, 
contain this information. 

A 16-bit Turbo C bit field struc
ture exists for each of the five pos
sible sort keys, and Figure 3 shows 
how it's arranged. A sixth struc
ture in the file contains the sort 
spec terminator, which sets the 
first two bit fields to binary ls. A 
terminator also appears after the 
last valid sort spec. When sorting 
on two keys, the first two struc
tures show valid sort specs, a ter
minator appears in the third and 
sixth structures, and the fourth 
and fifth contain garbage. 

Precedence is indicated by the 
order in which fields appear in 
the specs. If Key 1 is field 4 and 
Key 2 is field 2, then the first 
record's fieldID contains 4 and 
the second contains 2. The third 
is a terminator. The fieldID com
ponent, then, is an index to the 
appropriate entry in the field 
directory table. 

Up to this point, all the nodes 
of the file have been of fixed 
length, which makes for tidy pro
gramming because you know with 
certainty where things are. Not so 
from now on. Enter the variable
length record, which makes the 
programmer's life more interest
ing and guarantees job security to 
the venerable pointer. 

Field Names. The field directory 
table consists of three variable
length nodes. Each begins with a 
word indicating how many bytes 
the node contains, followed 
immediately by its contents. These 
nodes are, in order, an index 
directory, the name pool, and the 
field descriptor table. 

The index directory contains an 
offset to the field name string 

continued on page 62 

January/ February 1988 TURBO TEGINIX 61 



REFLEX DATABASES 
continued from page 61 

within the pool. Since the field 
descriptors (described later) con
tain the same information, the 
index directory is redundant. Con
sequently, as you'll see in the 
SHOWRXD.C program later, it's 
unnecessary to remember the 
location of this index; simply use 
the node length to skip past the 
index to the actual name pool. 

The field name pool contains 
ASCIIZ (null-terminated text) 
strings giving the names of the 
Reflex data fields. The maximum 
allowable length of a field name is 
73 bytes plus the null terminator. 
Consistent with the overall archi
tecture of this section of the data
base, the first word of the pool 
indicates how many bytes the pool 
occupies, including null 
terminators. 

Within Reflex, a data field is 
identified by a relative number 
starting at 0 and working upward 
towards the total number of fields 
in the database. The names within 
the pool appear in field order, as 
do the field descriptors. 

When retrieving data from the 
file, the text name of the field is 
probably irrelevant and certainly 
less important than knowing the 
field number, but it's vital when 
examining the database structure. 

Field Descriptors. The field des
criptor tabl,e is an array of fixed
length structures describing each 
field in reference-number order. 
While each descriptor occupies a 
known length of 16 bytes, the 
number of fields varies from one 
file to another. As a result the 
overall size of the table is variable. 
That's why the first word of the 
table gives its length, which is cal
culated as 

n * sizeof (FLDDESC) 

where n equals the number of 
fields in the database. You can 
work the length expression back
wards (divide the table length by 
the field descriptor size) to find 
out how many fields there are, as 
in: 

fread C&tablen, sizeof(int), 1, db); 
nflds = tablen / sizeof CFLDDESC); 

Figure 4 lists the format of each 
field descriptor within the table. 

typedef struct { 
HANDLE index; 
HANDLE pool; 

} ETREC; 

/* text table master structure */ 
/* pointer to index */ 

/* pointer to text pool */ 

typedef struct { 
unsigned nameOffset; 
char dataType; 
char precision; 

unsigned f ldOffset; 
ETREC etr; 
unsigned isDescend : 1; 
unsigned sortPos : 7; 
char reserved; 

/* field descriptor record */ 
/* offset of field name in name pool */ 

!* field type */ 
/* decimal precision = 5 bits, 

field formats = 3 bits */ 
/* offset of field in record */ 

/* repeating text info */ 
/* descending flag */ 
/* sort precedence */ 

/* not used */ 
} FLDDESC; 

Figure 4. Field descriptor master structure in Turbo C. 

Note that this structure includes 
the substructure ETREC, which 
applies to enumerated or "repeat
ing text" fields. 

Within the field descriptor, the 
nameOffset field gives an index to 
the name pool pinpointing the 
start of the ASCIIZ string that con
tains the field name. It is this field 
that makes the name pool index 
redundant, as discussed earlier. 

The data Type member of the 
FLDDESC structure is an eight-bit 
integer indicating the data type of 
the field. Its permissible values are 
listed in Table 2. 

VALUE lYPE REMARKS 

0 Untyped Field type not yet 
determined 

1 Text Stored in record 
2 Enum text Offset into enumer-

ated text pool 
3 Date 16-bitjulian date 
4 Numeric 64-bit IEEE (Turbo C) 

double 
5 Integer 16-bit signed integer 

Tabl,e 2. Data types for the FLDDESC 
structure. 

The precision component is 
actually a bit field, but it cannot be 
defined as such because Turbo C 
automatically allocates 16 bits to 
bit fields, while precision is an 
eight-bit element. Consequently, 
"bit-fiddling" is necessary to 
derive values from this element. 
The first five bits indicate the 
decimal precision for floating 
point formats, while the remain
ing three define the field format. 

In Reflex, precision refers to the 
number of digits following the 
decimal point in a floating point 
number. Reflex has options with 

regard to floating point output, in 
the format XXX.YYY ... where the 
Xs are some number of significant 
digits and the Ys are fractional 
values. Except for the general 
numeric format, precision says 
how many Ys can appear in 
Reflex output. This has no bear
ing on the internal file-retained 
value of floating point numbers, 
which are 64-bit IEEE-standard 
formats compatible with Turbo C's 
double type. Legal precision 
values are 0 through 15. 

The format component (low 
three bits) of the precision field 
refers to the display format for a 
field. The meaning depends on 
the field's data type. Table 3 lists 
values for dates as well as other 
numeric data. 

Date Fields 

VALUE MEANING 

0 Default MM/ DD/ YY 
1 MM/ DD/ YY 
2 MM/ YY 
3 DD-Mon-YY 
4 Mon-YY 
5 Month DD, YYYY 

Numeric Fields 

VALUE FORMAT DISPlAY AS 

0 General (See 3 below) 
1 Fixed -XXX.YY 
2 Scientific -X.YYYe+zz 
3 General Fixed or Scientific for 

width 
4 Currency ($X,XXX.YY) 
5 Financial (X,XXX.YY) 

Tabl,e 3. Format component for the 
display field. 

The tldOffset member gives the 
byte offset to the field within the 

62 TURBO TEOINIX January/ February 1988 



data record, which we will discuss 
in more detail presently. For now, 
you should know that a data 
record contains a four-byte 
header followed by a variable 
number of elements actually 
containing data. The fldOffset is 
then calculated as four plus the 
sum of the sizes of all preceding 
fields within the data record. You 
can ignore the isDescend and 
sortPos elements, which merely 
confirm the global sort specifica
tions discussed earlier. 

Three words appear after the 
last field descriptor and before the 
enumerated text fields. Pay no 
attention to them; they are for 
internal Reflex use and contain 
the values Ox0013, OxOOOl, and 
OxOOOO. We mention them here 
only for those who would reverse 
the process described in this arti
cle and write a Reflex file from a 
Turbo C application. 

Now let's talk about enumerated 
text fields. 

REPEATING TEXT 
Reflex is unusual among database 
management packages in that it 
lets you define text fields that con
tain a predefined data set. An 
example might be a personnel 
application, in which everyone 
belongs to some department: Mar
keting, Engineering, Sales, 
Accounting, etc. You could set up 
these selections in advance and 
then pick from among them using 
the FlO (choices) key as you create 
a new record. Reflex refers to 
them externally as Repeating Text 
(RT) and internally as Enumerated 
Text (ET) fields. They get special 
treatment in a Reflex database. 

ET data are stored in reverse 
order by field, after the three 
constants following the field 
descriptors. For example, if fields 
3 and 7 contain Repeating Text 
according to the / RF display in 
Reflex, then the ET selections 
appear as field 7, followed by field 
3 in the database file. Since each 
such field contains its own set of 
selections, a separate text pool 
exists for every ET field. You can 
locate these nodes using the 

ETREC pointers ih the field 
descriptors. 

Consistent with the spirit of 
Reflex's variable-length records, 
an ET node consists of: 

• An integer showing the length 
of the index. 

• A variable-length index of inte
gers giving the offset of each 
repeating text string within the 
following pool, relative to the 
start of the pool. For example, if 
the pool contains the entries 

Marketing\0 (length 10) 
Engineering\0 (length 12) 
Accounting\0 (length 11) 

then the index length is 6 
because each of the three items 
is two bytes long. The contents 
of the index are 0, 11, and 24. 

• An integer giving the length of 
the ET pool itself plus three 
bytes for each entry (this is 
required by Reflex). The total 
length in this case is (10 + 3) + 
(12 + 3) + (11 + 3) = 42 bytes. 

• The text data comprising the ET 
pool. 

When there are no repeating 
text fields in a database (which is 
most common), no space is set 
aside for them. 

The major section following the 
enumerated text field selections is 
the database master record. 

MASTER RECORD 
Despite its exalted name, the mas
ter record is the simplest structure 
in the entire Reflex database. It 
contains two integers, and can be 
found by using the dfAddr field in 
the section descriptor (DFDFSC 
structure) whose dffype field con
tains nine integers. 

The first field in the master 
record shows the total number of 
data records in the file. The 
second, which is of interest only 
to Reflex itself, indicates the 
number of records that have 

passed the most recently applied 
filter. Figure 5 lists a C structure 
describing the master record. 

DATA RECORDS: HOW MUCH 
CONTROL INFORMATION IS 
THERE? 
There are a couple of ways to 
determine the amount of control 
information. The easiest is to treat 
the unused 326 bytes following 
the section descriptors as part of 
the control information. Thus, the 
header record occupies a fixed 
512 bytes, the sort specs a fixed 12 
bytes, and everything beyond that 
is variable. 

The second way is to find the 
total size of the control informa
tion by inspecting the dfAddr field 
in the data records' section de
scriptor (dITYJ>e = 1), which is in 
the third descriptor record. This 
tells where the data records begin 
as an offset from the start of the 
file and thus accurately reflects 
the size of all the control 
information. 

In the current releases of 
Reflex, this value is a long, located 
at offset SCH (decimal 92) within 
the file. You can use fseek() or 
lseek(), depending on which 
Turbo C file access method you 
select, to move the file pointer, 
then read it into a variable that 
will be used to allocate the 
required space. After moving the 
pointer, don't forget to do two 
things: recast the long read from 
the file into an int or unsigned for 
the call to malloc(); and reset the 
file pointer to the start of the file 
before attempting another read. 

There's a simple way to make 
all this control information 
instantly accessible to the pro
gram: put it on the heap. Calcu
late the size of the node as 
described, allocate the space using 
malloc(), and read that many bytes 
from the file into the node. When 
you finish doing this, 

continued on page 64 

typedef struct { 
unsigned totalRecs; 
unsigned filtRecs; 

} MASTREC; 

/* data base master record */ 
/*total nlJTlber of records in file*/ 

/*#recs passing most recent global filter*/ 

Figure 5. Reflex master record structure in Turbo C. 

J anuary/ Febrnary 1988 TURBO TEOINIX 63 



LISTING 1: REFLEX.H 

/* reflex.h: structure definitions for Ref lex data bases */ 

#define HANDLE void far * 
#define RXID 11 3Q.!&Cil#S!&&11 

/* 32-bit pointer */ 
/* Reflex identifier */ 

typedef struct { 
int dfType; 
long dfAddr; 
long dfLen; 

} DFDESC; 

typedef struct { 
int hdrSz; 
char starrp[12l; 
int dirty; 
int verViews; 
int verModels; 
int verData; 
int fRecalc; 
char screenType; 
char checkS1.111; 
char reservedC38l; 
int sectionCt; 
DFDESC dfSectionCl; 

} DFHDR; 

typedef struct { 
unsigned f ldType 
unsigned isAscending 
unsigned f ieldlD 

} FLDSORTSPEC; 

7· I 

1. 
I 

8· I 

/*data file section descriptor*/ 
/* section tytpe code */ 

/*start addr in file (bytes)*/ 
/* length (bytes) */ 

/*file header structure*/ 
/*size of file header= 512 */ 

/* identification= 113Q.!&Cil#S!&&11 */ 
/*non-zero irrplies corrupt file*/ 

/* view info version level */ 
/*modeling system version level*/ 

/* raw data version level */ 
/*non-zero irrplies recalc necessary*/ 

/* active screen type at file creation*/ 
I* file checks1.111 */ 

/* reserved for future use */ 
/* nllli:>er of sections of type DFDESC */ 

/* section descriptors */ 

I* field sort spec */ 
/*used internally by Reflex*/ 

/* sorting order */ 
/* field ID: index to field defin */ 

typedef FLDSORTSPEC SORTSPECC6l; /* sort specs array */ 

typedef struct { 
HANDLE index; 
HANDLE pool; 

} ETREC; 

typedef struct { 
unsigned nameOffset; 
char dataType; 
char precision; 

unsigned f ldOffset; 
ETREC etr; 

/* text table master structure */ 
/* pointer to index */ 

/* pointer to text pool */ 

unsigned isDescend : 1; 
unsigned sortPos : 7; 
unsigned reserved : 8; 

/* field descriptor record *I 
/* offset of field name in name pool */ 

I* field type */ 
/* decimal precision = 5 bits, 

field formats = 3 bits */ 
/* offset of field in record */ 

/* repeating text info */ 
/* descending flag */ 
/* sort precedence */ 

I* not used *I 
} FL DDESC; 

typedef struct { 
unsigned totalRecs; 
unsigned filtRecs; 

} MASTREC; 

/* data base master record */ 
/* total nllli:>er of records in file*/ 

/*#recs passing most recent global filter*/ 

64 TURBO TECHNIX January/ Februan' 1988 

REFLEX DATABASES 
continued from page 63 

the file pointer has advanced to 
the start of the data records them
selves, and all the control infor
mation is on the heap where the 
program can address it directly. 
The only thing that still needs 
doing is to initialize pointers to 
the various elements of the node. 

SETTING UP THE POINTERS 
The control information for a 
Reflex database has seven major 
entry points that must be assigned 
pointers, plus a number of struc
ture types that have already been 
discussed. It's also useful to have a 
couple of work variables (work 
and temp) for performing pointer 
arithmetic. The #include file 
REFLEX.H, shown in Listing 1, 
defines the structures and 
declares all the global variables 
necessary to process Reflex data
base control information. 

It takes a lot of pointer arith
metic to initialize the seven point
ers to the control structure ele
ments. 

The #include file INPTRRXD.I 
in Listing 2 shows the processes 
for initializing the pointers. Note 
that this is an inline file ; simply 
place the directive 

#include <inptrrxd.i> 

in your source file wherever you 
want to initialize the control struc
ture pointers. Before invoking it, 
you must satisfy the following 
conditions: 

• Include REFLEX.H 

• Allocate a node on the heap for 
the control information 

• Read the control information 
into the node 

• Set variables base and head to 
point to the start of the node 

The algorithms in INPTRRXD.I 
set the requisite global pointers; 
you can then use them in your 
application. 

DOCUMENTING A REFLEX 
DATABASE 
Reflex doesn 't include a utility for 
printing out the characteristics of 
a database. Consequently the pro-

continued on page 66 



If you ever 
wanted to 

takeacracK 
at assembly 

language, 
You probably already 

know that assembly 
language subroutines 
are the smartest way to 
get the fastest programs. 

But if the complexities 
of working in assembler 
made you think twice, 
here's some good news. 
We've made Microsoft® 
Macro Assembler Version 
5.0 a lot easier to use. 

We eased the learning 
process by giving you the best 
support around. We com
pletely revised our docu
mentation. The new Mixed 
Language Programming 
Guide gives you step by step 
instructions for linking your 
assembly code with Microsoft 
QuickBASIC, C, FORTRAN, 
Pascal and other languages. And 
you get a comprehensive refer
ence manual with listings of the 
instruction set and examples of each instruc
tion. We didn't stop there, though.You also 
get an on-disk collection of templates 
and examples. 

We've also dramatically simplified the 
high-level language interface. In just a few 

nows 
the time. 
simple steps, you can be 
calling Macro Assembler 
subroutines from pro
grams written in your 
favorite language. 

Now that you're writ
ing the fastest programs, 
Microsoft is giving you 
the fastest way to de
bug them. For the first 
time, we've added our 
Code View® debugger 
to Macro Assembler. 
With source code 

and comments on your 
screen, Microsoft Code

View makes debugging pro
grams containing assembly 

language subroutines a snap. 
And you'll be glad to know that you 

don't sacrifice any speed for all the ease of use. 
We took the fastest Macro Assembler on 

the market and made it even faster. 
So what are you waiting for? Get your 

hands on Microsoft Macro Assembler and 
see what it's like to break your personal 
speed limit 

For more information or for the name of your nearest 
:\1icrosofl dealer, call (800) 426-9400. In Washington State and 

Alaska, (206) 882-8088. J.n Canada, call (416) 673-7638. 

Microsoft, the :\1icrosofl logo and Code View are registered trademarks of i\ \icrosofl Corporation. 



I* GLOBALS */ 
FILE 
unsigned 
unsigned 
int 
DFHDR 
DFDESC 
SORT SPEC 
char 
FLDDESC 
int 
MAST REC 

*Lst; 
nflds; 
base, te111>; 
*work; 
*head· 
*desc~· I 
*sort; 
*pool; 
*dtable· 
*etpool; 
*mast; 

/* printer */ 
I* # field descriptors */ 

/* point of reference for control info */ 
/*for getting Lengths from file*/ 

/* header record */ 
/* section descriptor table */ 
/* global sort specs table */ 

/* field name pool */ 
/* field descriptor table */ 

/* enumerated text pool */ 
/* master record */ 

LISTING 2: INPTRRXD.I 

/* inptrrxd.i: initializes pointers to Reflex data base control 
info entry points. 

Assumes reflex.h has been #included and globals 'base' and 
'head' have been initialized for stack operation. 

This file is #included inline after Loading the control 
info onto the heap and before the application tries to use 
the control info to do anything */ 

/* ---- initialize pointers to fixed sections*/ 
descr = (DfDESC*)(base + 66); /* section descriptors */ 
sort = CSORTSPEC*)Cbase + head->hdrSz); /* sort specs */ 

/* - - -- initialize ptrs to variable sections*/ 
/* field name pool */ 

work = Cint*)((unsigned)(sort) + 11); 
te111> = (unsigned)(work) + *work + 4; 
pool = (char*) te111>; 

te111> = (unsigned)(pool) - 2; 
work = Cint*)Cte111>>; 
te111> += Cunsigned)(*work + 4>; 
dtable = CFLDDESC*) te111>; 

/* field descriptor table */ 

/* calculate nl.ll1ber of fields */ 
work= Cint*)(unsigned)Cdtable) - 1; 
nflds = *work I sizeof CFLDDESC); 

/*enumerated text pool (point to first index length*/ 
te111> += (unsigned) *work + 8; 
etpool = (int*) te111>; 

/* master record */ 
mast = CMASTREC*)(unsigned)((descr+1)->dfAddr +base - 1); 

66 TURBO TEOINIX January/ February 1988 

REFLEX DATABASES 
continued from page 64 

gram SHOWRXD.C in Listing 3 
not only illustrates a practical 
application of the discussion up to 
this point, but also provides a 
handy utility for Reflex users. You 
can use it to create a hardcopy 
document explaining the structure 
of any Reflex database. 

To operate SHOWRXD.C, first 
compile it with Turbo C in the 
small memory model, making the 
executable file SHOWRXD.EXE. 
Note: before doing this, place 
REFLEX.H and INPTRRXD.I 
(Listings 1 and 2, respectively) in 
the \ INCLUDE subdirectory 
shown in your Turbo C Options/ 
Environment menu. 

When the .EXE file exists, you 
can run it for any Reflex database. 
On the command line, type 
SHOWRXD and hit the Enter key. 
The program asks: 

Name of Reflex database? 

Type the filename, preceded by 
the drive and path if necessary. If 
you omit the .RXD filename 
extension associated with Reflex 
databases, the program automati
cally appends it using Turbo C's 
fnsplit() and fnmerge() functions. 

The listing in Figure 6 shows 
the output of SHOWRXD.C for 
Reflex database CUSTLIST.RXD, 
a sample file included on the 
Reflex package distribution disk. 

FETCHING DATA FROM A 
REFLEX FILE 
Unlike SHOWRXD.C (Listing 3), 
which reports the structure of any 
Reflex database irrespective of its 
actual contents, fetching data is 
application-dependent. That is, 
you need to know in advance 
which database you want to pro
cess, and which field(s) you want 
to read. 

The reasons are clear based on 
the preceding discussion: The 
structure of a Reflex database is 
variable, and the contents of a 
given field in one database might 
be very different from those in the 
same position in another 
database. 

As an example, Figure 7 con
trasts two of the Reflex sample 
files: MAILLIST.RXD and 
CUSTLIST.RXD. You can't use the 



Control information for Reflex 
data base CUSTLIST.RXD: 

Total records 35 
Filtered records 35 
N"'1lber of fields 8 

Header record contents: 
Size of header 
Reflex identifier 
Corruption indicator 
View version level 
Modeling version Lev. 
Raw data version Lev. 
Recalc necessary 
Screen type 
File checksllll 
Reserved field 
Section descriptors 

512 
3Q • ! &lil#S ! && 
Clean 
7 
4 
3 
No 
IBM CGA 
25 
(38 bytes) 
12 

Global sort specifications by 
precedence: 

Descending: Field Address 

8 Field Descriptors: 
Field name: Date 
Data type: Date 
Format: MM/DD/YY 
Field offset 4 

Field name: Rep 
Data type: Text 
Field offset 6 

Field name: Name 
Data type: Text 
Field offset 8 

Field name: Address 
Data type: Text 
Field offset 10 

Field name: City 
Data type: Text 
Field offset 12 

Field name: State 
Data type: Text 
Field offset 14 

Field name: Zip 
Data type: Text 
Field offset 16 

Field name: Total Sales 
Data type: Nlllleric 
Precision 2 
Format Fixed (-XXX.YY) 
Field offset 18 

Figure 6. Samp!,e output of 
SHOWRXD, which documents the 
CUSTLIST database. 

same application program to pull 
mailing info rmation from both 
databases for two reasons: 

1. T he corresponding fie lds are in 
differen t positions (i.e., Name is 
fi eld 0 in MAILLIST and fie ld 2 
in CUSTLIST). 

2. The corresponding fie lds are of 
differe n t data types (i.e., ZIP 

continued on page 68 

LISTING 3: SHOWRXD.C 

/* showrxd.c: Displays fixed information about Reflex data bases */ 
/* ~ritten for small model of Turbo C by K. Porter*/ 

/* INCLUDE FILES */ 
#include <stdio.h> 
#include <string.h> 
#include <dir.h> 
#include <ref lex.h> /* Separate Reflex structure definitions */ 

/* DEFINE CONSTANTS */ 
#define OUTDEV "PRN" 
#define EJECT 12 

/* output device */ 
/* printer page eject */ 

I* LOCAL 
void 
void 
void 
void 
void 

main () 
{ 

char 

long 
unsigned 
FILE 

FUNCTION PROTOTYPES */ 
showMast (char name[], MASTREC *mast); 
showHead CDFHDR *head); 
showSort (SORTSPEC *srt); 
showName (unsigned offset); 
showfield (unsigned nf, FLDDESC *fld); 

fname[MAXPATH], 
drive[MAXDRIVE], dir[MAXDIR] , 
name[MAXFILE], ext[MAXEXTl; 
fpos; 
d· I 

*db; 

I* OPEN FILES */ 
d = O; 
l st = fopen < OUTDEV, "w" ) ; 
cputs ( "\nName of Reflex data base? " ) ; 
gets ( fname >; 
fnsplit ( fname, drive, dir, name, ext >; 
if C !strlen ( ext )) 

I* filename*/ 
I* C0f11>0nents */ 

/*file position*/ 
/* misc variable */ 
/*database file*/ 

/* open output */ 

/*get filename*/ 
/*split filename*/ 

strcpy ( ext, 11 .RXD" 
fnmerge ( fname, drive, 
db = fopen ( fname, "r" 
i f C db != NULL ) { 

>; I* if no extension, make it 11 .RXD" */ 
dir, name, ext >; /* and reassemble */ 
); 

setvbuf ( db, NULL, _IONBF, 0 ); /*make file unbuffered*/ 

} 

/* ---- verify that file is open and a Reflex data base*/ 
fseek ( db, BBL, SEEK_SET >; /* point to size of control info */ 
fread C &fpos, sizeof (long), 1, db >; /* get it */ 
fseek C db, OL, SEEK SET >; /* repoint to start */ 

- /* ---- put control info on the heap */ 
base= (unsigned) malloc ((unsigned) fpos); /*allocate node*/ 
head = (DFHDR*) base; /* set header pointer */ 
d = freed (((char*)(base)), sizeof (char), ((int)(fpos)), db); 

if ( db == NULL I I d == 0 ) < /* er ror handler */ 
printf C "Error accessing file %s\n", fname ); 
printf C "file is %s open, items read= %u\n", 

Cdb==NULL ? "not" : ""), d); 
exit (1); 

} else 
if ( strcmp C head->stamp, RXID ) != 0 ) < 

pr intf ( 11 \n\nfile %s is not a Reflex data base\n", fname >; 
exit (1); /* exit with condition code*/ 

} 

January/ February 1988 TURBO T EGINIX 67 



!* INITIALIZE POINTERS TO CONTROL INFO */ 
#include <inptrrxd.i> 

!* SHOW INFORMATION ABOUT DATA BASE */ 
showMast Cfname, mast>; 
showHead (head); 
showSort (sort); 
showField Cnf lds, dtable); 

!* show master record */ 
/* list header record*/ 

/* show global sort specs */ 
/* show field descriptors */ 

!* END OF JOB */ 
putc C EJECT, lst ); 
close C lst >; 
free C head ); 

/* eject page */ 
/* close printer */ 

/*deallocate heap space*/ 
} /* ---------------- End of main() ------------------------------ *! 

void showMast (char name[], MASTREC *mast) /*show master record*/ 
{ 

fprintf ( lst, "Control information for Reflex data base %s:\n", 
name ); 

fprintf ( lst, " Total records %d\n", 
mast->totalRecs ); 

fprintf ( lst, " Filtered records %d\n", 
mast->filtRecs >; 

fprintf ( lst, " Nl.ri>er of fields %d\n", nflds >; 
} /* ------------------------ *! 

void showHead CDFHDR *head) 
{ 

/* list header record*/ 

fputs ( "\nHeader record contents: \n", l st ) ; 
fprintf ( lst, " Size of header %d\n", 
fprintf ( lst, " Reflex identifier %s\n", 
fprintf ( lst, " Corruption indicator %s\n", 

(head->dirty) ? "Corrupt" : "Clean" >; 
fprintf ( lst, " View version level %d\n", 
fprintf ( lst, " Modeling version level %d\n", 
fprintf ( lst, " Raw data version level %d\n", 
fprintf ( lst, " Recalc necessary %s\n", 

(head->fRecalc) ? "Yes" "No" >; 
fputs ( " Screen type ", lst >; 
switch ( head->screenType ) < 

case 0: fputs ( "IBM CGA", lst >; break; 

head->hdrSz >; 
head->starrp >; 

head->verViews >; 
head->verModels >; 
head->verData >; 

case 1: fputs ( "Hercules", lst >; break; 
case 2: fpllts ( "IBM 3270 PC APA", lst >; 
case 3: fputs ( "IBM EGA", lst >; break; 
case 4: fputs ( "IBM PGC", lst >; break; 
case 5: fputs ( "AT&T 6300 Seri es", lst ) ; 
case 6: fputs ( "Sigma 400 11 , lst ) ; break; 
case 7: fputs ( "STB SuperRes 400 11 , ls t ) ; 
default: fputs( "(Unknown)", lst >; 

break; 

break; 

break; 

} 

putc ( '\n', lst >; 
fprintf ( lst, " Fi le checksun %X\n", head->checkSun >; 
fputs ( " Reserved field (38 unused bytes)\n", lst >; 
fprintf ( lst, " Section descriptors %d\n", head->sectionCt >; 

} /* ------------------------ */ 

68 TURBO TEOINIX J anuary/ February 1988 

REFLEX DATABASES 
continued from page 67 

Mail list: 
Fld# Name Type 

--------
0 Name Text 
1 Address Text 
2 City Text 
3 State Text 
4 ZIP Nuneric 

Cust list: 
Fld# Name Type 

--------
0 Date Text 
1 Rep Text 
2 Name Text 
3 Address Text 
4 City Text 
5 State Text 
6 ZIP Text 
7 Sales Nuneric 

Figure 7. Structures of two dissimilar 
Reflex files. 

is numeric in MAILLIST and 
text in CUSTLIST). 
Consequently, you have to write 

programs to process specific data
bases, and the only variability is 
among Reflex databases that have 
identical field attributes within the 
domain of the application. That is, 
if two files are identical within the 
first n fields and the application 
only processes those n fields (or 
some subset of them), then the 
database is sufficiently generalized 
to process both files. 

That's a hair-splitting distinc
tion. The general rule is that you 
need a separate P'.ogram for 
extracting data from every Reflex 
file unless you specifically know 
otherwise. 

First, set the file pointer to the 
data records. The section descrip
tor field (descr + 2)->dfA.ddr 
gives the offset of the data records 
from the start of the file. The 
records section itself begins with 
an unsigned word used internally 
by Reflex, with the first data 
record following immediately. 
Thus, use fseek() to point into the 
file at the location given by: 

(descr+2)->dfAddr + 2 

A data record consists of four 
sections: a word indicating the 
length of the record (not counting 
itself), a fixed-format record 
header structure, a fixed-length 
data section, and a variable-length 
text pool. 

The four-byte record header 



contains mostly reserved Reflex 
information. Only the fourth byte 
is potentially meaningful; it shows 
how many fields in the record 
actually contain data. Ordinarily 
you can simply skip the header 
and go directly to the fixed-length 
data section. 

The term fixed length is some
what misleading. The data sec
tion's length is fixed for each 
record within a given file, but its 
length varies from one file to 
another based on the number of 
fields per record. 

Every field is 16 bits long except 
for untyped fields and numeric 
(floating point) , which is a 64-bit 
IEEE-standard format compatible 
with Turbo C's double type. All 
fields, except untyped fields, have 
two special values representing 
null and error. A null value shows 
up as a blank cell on the Reflex 
display, while an error value 
causes Reflex to display the word 
ERROR in the cell. The format 
specifications for each type are 
listed in Table 4. 

lYPE REPRESENTATION 

0 (untyped) No data stored 
I (text) 16-bit unsigned giving 

offset into text pool at 
ertd of record, measur-
ing from start of record 
header. 
Null: 0 
Error: I 

2(ET) 16-bit unsigned giving 
offset into ET pool in 
field directory. 
Null: O 
Error: I 

3 (date) 16-bit unsigned: 
number of days since 
12/ 31/1899 
Null: 0 
Error: OxFFFF 

4 (numeric) 64-bit IEEE floating 
point 
Null: MSW = Ox7FFF 
Error: MSW = Ox7FFO 

5 (integer) 16-bit signed integer 
Null: Ox8000 
Error: Ox8001 

Tab/,e 4. Format for fixed-length data 
in a record. 

Thus, each field's position 
within the data section is offset 
from the start of the header 
record by four bytes plus the 
aggregate length of all preceding 
fields (see Table 5). 

continued on page 70 

void showSort (SORTSPEC *srt) 
{ 

!* show global sort specs */ 

unsigned n, p; 
FLDSORTSPEC *spec; 
FLDDESC *fld; 

fputs ( 11 \nGlobal sort specifications by precedence:\n", lst >; 
for ( n = O; n < 6; n++ ) { 

) 

spec = srt + n; /* point to next sort spec */ 
if ( spec->fldType == Ox7F && spec->isAscending ) { 

if ( spec srt ) 
fputs ( " (None)\n", lst >; 

break; /* quit on terminator (OxFF) */ 
) else 

if ( spec->fieldID <= nflds ) { /* show order */ 

) 

fprintf ( lst, " %s Field ", (spec->isAscending) 
? "Ascending: " : "Descending:" >; 

!* Note: We have to follow a chain of references 
to find the field name. spec->field!D gives 
the field descriptor record#, whose first 
field is an offset into the fieldname pool, 
from which we can print the name */ 

fld = dtable + spec->fieldID; 
p = fld->nameoffset; 
showName ( p ) ; 

/* point to field descr */ 
/* get name offset in pool */ 

/* print it */ 

) /* ------------------------ *! 

void showName (unsigned offset) /* print pool field name to lst */ 
{ 

char *name; 

name = (char *) pool + offset; 
fputs ( name, lst ); 
putc ( '\n', lst ); 

) /* ------------------------ *! 

!* node address of string */ 

void showField (unsigned nf, FLDOESC *fld) 
{ /* list field descriptors*/ 
FLDDESC *f; 
unsigned n; 

fprintf ( lst, "\n%u Field Descriptors:", nf >; 
for ( n = O; n < nf; n++ ) { /* loop thru table for nf items */ 

f = fld + n; /* point to next descriptor */ 
fputs ( 11\n Field name: ", lst >; 
showName ( f->nameoffset >; 
fputs ( " Data type: 
switch ( f->dataType ) { 

Ii 
1 

lSt ) i 
/* list field name*/ 

/* show data type */ 
case 0: fputs ( "Untyped\n", lst >; break; 
case 1: fputs ( "Text\n", lst >; break; 
case 2: fputs ( "Repeating text\n", lst >; break; 
case 3: fputs ( "Date\n", l st ) ; 

fputs ( " Format: 11 , lst ) ; 
switch C f->precision & Ox07 ) { /* date format */ 

case O: 
case 1: 
case 2: 
case 3: 
case 4: 
case 5: 

fputs 
fputs 
fputs 
fputs 
fputs 

"MM/DD/YY\n", lst ) ; break; 
"MM/YY\n", lst ) ; break; 
"DD-Mon-YY\n", lst >; break; 
"Mon-YY\n", lst >; break; 
"Month DD, YYYY\n", ls t ) ; 

January/ February 1988 TURBO TEGINIX 69 



REFLEX DATABASES 
continued from page 69 

FIELD TYPE OFFSET LENGTH 

date 
untyped 
numeric 
text 

4 
6 
8 

16 

2 
2 
8 
2 

Tab/,e 5. Field position within the 
data section of a record. 

For example, if you want to 
read only the numeric field from 
each record, first get the word 
length at the start of the record, 
then jump eight bytes and read 
the field into a variable of type 
double. Skip to the next record by 
adding the record length to the 
file pointer, then doing an fseek() 
on that result. 

The data text pool is at the end 
of the record. It exists only when 
the record contains nonnull and 
nonerror text fields. If the user 
has typed "Mary Smith" into the 
only text field of the record, then 
Mary's name appears as an 
ASCIIZ string with the "M" in the 
first byte position after the end of 
the data section. The text field 
within the data section contains a 
number indicating how many 
bytes the "M" is offset from the 
start of the record header. 

Note that there are no sequenc
ing rules regarding the placement 
of data text strings in the pool. If a 
record has two text fields, the 
string for field=2 might precede 
that for field= 1. Also, no string is 
referenced by more than one 
field. For every valid (nonnull, 
nonerror) text field, there is a 
unique ASCIIZ string in the 
variable-length pool, even if two 
or more have identical content. 

PUTTING IT TO WORK 
Now let's turn talk into action with 
a program that reads the Reflex 
sample database CUSTLIST.RXD 
and prints a report showing total 
sales by customer. We call it 
CUSTLIST.C and it is in Listing 4. 

The first part of the program is 
similar to SHOWRXD.C (Listing 
3). The chief differences are that 
it declares fewer variables and 
functions, and it opens a constant 
filename. 

} 

break; 
case 4: fputs ( "Ni.meric\n", lst >; 

fprintf ( lst, " Precision %d\n", 
CC f->precision & OxF8 ) >> 3 >>; 

fputs ( " Format ", lst ); 
switch C f->precision & Ox07 ) < !* ni.meric format */ 

case 0: fputs ( "General\n", lst ); break; 
case 1: fputs ("Fixed (-XXX.YY)\n", lst >;break; 
case 2: fputs ( "Scientific C-X.YYe+ZZ)\n", lst >; 

break; 
case 3: fputs C "General\n", lst >; break; 
case 4: fputs ( "Currency ($X,XXX.YY)\n", lst >; 

break; 
case 5: fputs C "Financial CX,XXX.YY)\n", lst >; 

} 

break; 
case 5: fputs ( "lnteger\n", lst >; break; 

} 

fprintf ( lst, " Field offset 
} 

} /* ------------------------ */ 

LISTING 4: CUSTLIST.C 

%u\n", f->fldOffset >; 

!* custlist.c: reports name and total sales from custlist.rxd */ 
/* Written for small model of Turbo C by K. Porter */ 

/* INCLUDE FILES */ 
#include <stdio.h> 
#include <string.h> 
#include <dir.h> 
#include <reflex.h> /* Separate Reflex structure definitions */ 

!* DEFINE CONSTANTS */ 
#define outdev "PRN" 
#define dbname "CUSTLIST .RXD" 
#define EJECT 12 

I* LOCAL FUNCTION PROTOTYPE */ 
void report ( void ); 

I* GLOBAL INPUT FILE */ 
FILE *db; 

main () 
{ 

long 
unsigned 

fpos; 
d· , 

!* OPEN FILES*/ 
d = O; 

/* report output device */ 
!*Reflex file to process*/ 

/* printer page eject */ 

/* file position*/ 
/* misc variable */ 

ls t = fopen ( outdev, "w" ) ; /* open output * / 
cputs ( "\nGenerating sales report from Reflex data base:\n" >; 
db = fopen C dbname, "r" >; 
if ( db != NULL ) { 

setvbuf ( db, NULL, _IONBF, 0 >; /*make file unbuffered*/ 
/* ---- verify that file is open and a Reflex data base*/ 

fseek ( db, 88L, SEEK_SET >; !* point to size of control info */ 
fread ( &fpos, sizeof (long), 1, db>; /*get it*/ 
fseek ( db, OL, SEEK_SET >; /* repoint to start */ 

/* ---- put control info on the heap */ 
base= (unsigned) malloc ((unsigned) fpos); /* allocate node*/ 
head = (DFHDR*) base; /* set header pointer */ 
d = fread (((char*)(base)), sizeof (char), ((int)(fpos)), db); 

70 TURBO TEGINIX January/ February 1988 



Once the program has initial
ized the control pointers as 
described earlier, it calls the 
report() function. This subpro
gram implements the discussion 
in the preceding section. 

In particular, note the manipu
lation of the fptr variable, which 
serves as a point of referenc~ for 
the start of the record header. 
During each iteration of the 
loop-which repeats for every 
record-fptr is first set to point at 
the record length. After perform
ing fseek() and reading the 
length, fptr advances two bytes so 
that it points to the start of the 
record header. All subsequent 
pointer arithmetic offsets from the 
value of fptr. The last instruction 
in the loop advances fptr by the 
current record length, so that it 
moves to the next record and 
repeats the process. 

To run the program after com
piling, just type CUSTLIST. (It 
expects to find CUSTLIST.RXD in 
the current directory.) The pro
gram then prints out a report with 
35 line items (records) showing 
the customer name and the total 
sales. If you want to redirect the 
output to some other medium (a 
disk file, for example), change the 
definition of OUTDEV and re
compile. Similarly, you can add 
pathname information to the defi
nition of DBNAME when the 
database is known to exist in a 
specific subdirectory. 

It's not difficult to find your way 
around a Reflex database once 
you know how the pieces fit 
together. This article takes the lid 
off the most important aspects of 
data organization in Reflex data
bases, giving you the Turbo C 
tools to document files and extract 
data from them. • 

Kent Porter is a professional writer 
specializing in software. His latest 
book, Stretching Turbo Pascal 
(Simon & Schuster/ Brady), is written 
for experienced Turbo Pascal pro
grammers. He's now working on a 
similar book for Turbo C users that 
will appear next spring. 

Listings may be downloaded from 
CompuServe as READRX.ARC. 

} 

if ( db == NULL I I d == 0 ) { /* error handler */ 
printf ( "Error accessing file Xs\n", dbname >; 
printf ( "Fi le is Xs open, items read = Xu\n", 

(db==NULL ? "not" : 1111 ), d); 
exit (1); 

} else 
if ( strCl!1) ( head->St81!1), RXID ) I= 0 ) { 

printf ( 11 \n\nFile Xs is not a Reflex data base\n", dbname ); 
exit (1); /* exit with condition code */ 

} 

!* INITIALIZE POINTERS TO CONTROL INFO */ 
#include <inptrrxd.i> 

!* PRODUCE REPORT BY READING DATA BASE */ 
report (); 

!* END OF JOB */ 
putc (EJECT, lst ); 
close ( lst >; 

/* eject page */ 
/* close printer */ 

I* deallocate heap space*/ free ( head ) ; 
} /* ---------------- End of main() ------------------------------ *I 

void report (void) 
{ 

/* generate report */ 

long fptr, text; /*file pointers: main and text pool */ 
/* total sales field */ 

/* loop counter for # records */ 
/* record length, text offset */ 

/* character, string for text output */ 

double sales; 
unsigned recs; 
int reclen, tofs, n; 
char ch, name[80l; 

fputs ( 11 SALES REPORT FROM CUSTLIST.RXD:\n", lst >; 
fptr = (descr+2)->dfAddr + 2; /* start of first record *I 
for ( recs = O; recs < mast->totalRecs; recs++ ) { 

} 

} 

fseek ( db, fptr, SEEK_SET >; /* point to next record *I 
freed ( &reclen, sizeof(int), 1, db >; /*get length */ 
fptr += 2; /* advance to start of header */ 
fseek ( db, (fptr + 8), SEEK_SET >; /* skip to name field */ 
freed ( &tofs, sizeof(int), 1, db >; /*get text offset */ 
if ( tofs < 2 ) 

fprintf ( 11 \n Xs 11 , (tofs) ? "ERROR" : "NULL"); 
else { 

} 

text = fptr + tofs; 
fseek ( db, text, SEEK_SET >; 
n = O; 

/* point to name string */ 
/* go to it */ 

do { 
freed ( &ch, sizeof(char), 1, db >; 
name[n++l = ch; 

} while ( ch >; 
fprintf ( lst, 11 \n X-30s", name >; 
fseek ( db, (fptr + 18), SEEK_SET >; 
fread ( &sales, sizeof(double), 1, db >; 
fprintf ( lst, 11 X12.2f l", sales >; 

I* get next char */ 

/*until null char*/ 
/* print name */ 

/* skip to sales */ 
I* get data */ 
I* print it */ 

fptr += reclen; I* advance to next record */ 

January/ February 1988 TURBO TEQINIX 71 



• PROGRAMMER 

When making an axe handl,e 
the pattern is not far off. 
. .. We'll shape the handl,e 
By checking the handl,e 
Of the axe we cut with-
Lu ]i Wan Fu (4th century AD.) 

The Turbo Prolog Toolbox provides a treasure chest 
of tools for developing user interfaces. With the 
tools, you can add better user interface features, 
including pop-up, pull-down, and tree-type menus; 
status bars for messages; and context-sensitive help. 

Particularly useful is pulldown, a predicate that 
allows you to create pull-down menus using a menu 
bar. In this article, I'll show you step-by-step how the 
pulldown tool works, and how you can modify it to 
add two enhancements: automatic update of status 
bar messages and a continuous scrolling feature for 
pull-down menus. The first enhancement allows you 

72 TURBO TEOINIX January/ February 1988 

to display instructional messages in a reverse video •••••llllli 
status bar at the bottom of the screen as the user 
moves around the menu system. The other enhance-
ment adds a continuous scrolling capability to pull-
down menus. Thus, when you are at the beginning 
or end of a menu and attempt to move down or up, 
the reverse video menu selector wraps around 
instead of stopping. But, before we jump in and start 
dissecting and modifying the pulldown tool predi-
cate, let's discuss the basic operations of pull-down 
menu systems and look at how the pulldown predi-
cate is used. 

A TASTE OF PULL-DOWN MENUS 
Pull-down menus consist of two components: a 
menu bar, which is usually displayed horizontally 

continued on page 74 



ge base 

January/ February 1988 TURBO TEQINIX 73 



PULLDOWN PREDICATE 
continued from page 72 

across the top of the screen, and 
pull-down menus, which are dis
played vertically under the menu 
bar (see Figure 1). Each entry in 
the menu bar has either an action 
or a pull-down menu associated 
with it. You can move around the 
menu system by using one of the 
arrow keys or you can press the 

Quit, does not have a pull-down 
menu associated with it since its 
menu list is empty. 

The pulldown predicate takes 
four parameters: 

pulldown(ATTRIBUTE,MENULIST, 
CHOICE,SUBCHOICE) 

The A 'ITRIBUfE defines the 
foreground and background 
colors that are to be used for each 
of the windows (menus) in the 
pull-down menu system. The 

Fi?;Ure 1. Samp!,e pull-down menu created by the pulldown tool. 

Enter key to select an item. If 
you're at all familiar with the 
Turbo Prolog or Turbo C environ
ment, you're probably already an 
expert on pull-down menus. 

The pulldown tool provided 
with the Turbo Prolog Toolbox 
allows you to create pull-down 
menus patterned after those used 
in Turbo Prolog. A complete pull
down menu system can be gener
ated with just one call. For exam
ple, the statement 

pul ldown(7, [curtain(5,"Help Menu", 
["System", "Topi c"l), 

curtainC20,"Print Menu", 
[11Draft 11 , 11Bold11l), 

curt a i n(35, "Quit", [] ) 
] I CH, SUBCH). 

creates a menu bar at the top of 
the screen with the items Help 
Menu, Print Menu, and Quit. Pull
down menus are associated with 
the first two items. The third item, 

MENULIST contains the list of 
strings for the pull-down menu 
bar and the strings for their asso
ciated pull-down menus. For 
example, the item 

curtainCS, 11 Help Menu", ["System", 
"Topic"]) I 
creates an entry in the pull-down 
menu bar called Help Menu at 
column 5, and defines its pull
down menu to contain the selec
tions System and Topic. Note that 
each entry in MENULIST is 
represented as a complex object: 

curtainCCOL,STRING,STRINGLIST) 

The term curtain is commonly 
referred to as a functor in Turbo 
Prolog. Using functors, we can 
group different objects together to 
create complex data structures. 
One major benefit of program
ming in Turbo Prolog is that it is 
easy to create and modify these 
data structures. In fact, such 

74 TURBO TEGINIX J anuary/ February 1988 

structures can often be modified 
without forcing you to rewrite 
major sections of a program, 
which is often the case with pro
grams written in procedural 
languages. 

The last two arguments in pull
down, CHOICE and SUB
CHOICE, are output parameters 
that contain the position of the 
menu-bar cursor and the selection 
from the vertical pull-down menu 
associated with the menu-bar 
item. These parameters are 
returned when pulldown termi
nates and thus can be used for 
diagnostics and other purposes. 

Using the pulldown tool is a 
two-step process. First you define 
the menu bar and the pull-down 
windows for each entry in the 
menu bar. Second, you define the 
actions associated with each 
option in the windows. When 
pulldown is called, the main 
clause takes control of your pro
gram and interprets the keys that 
you enter. If you select an item 
from a menu by pressing the 
Enter key, one of two things may 
happen. If there is a pull-down 
menu associated with the item you 
have selected, then that menu is 
displayed. If there is no pull-down 
menu associated with the selec
tion, an action, represented by 
one of the user-defined pdwaction 
clauses, is processed. Thus, when 
you use pulldown, you must utilize 
pdwaction to define an action for 
each possible menu selection. 

IMPLEMENTATION AND 
INTERNALS 
Internally, the operation of the 

pulldown(ATTR,LIST,SLIST,CH1,CH2):· 
makewindow(81,ATTR,ATTR, 1111 ,0,0, 

3,80), 
pdwlistlen(LIST,MAXCOL), 
writepdwlist(ATTR,LIST), 
pdwmovevert(0,0,ATTR,LIST), 
changepdwstateCpdwstate(O,O,up, 

0,0)), 
repeat, 
pdwstateCROW,COL,DOWN,MAXROW, 

LEN) I 

readkeyCKEY), 
pdwkeyact(KEY,ROW,COL,DOWN, 

MAXROW,MAXCOL,LEN, 
ATTR,LIST ,SLIST I 

CONTINUE), 
CONTINUE=stop,removewindow, 
pdwstate(ROW1,COL1,_,_,_),!, 
CH1=COL1+1, 
CH2=ROW1. 

Fi?;Ure 2. Main clause for pulldown. 



pull-down menu tool is similar to 
that of a case statement in a 
procedural language. Figure 2 
shows the main pulldown clause. 

The calls to makewindow, 
pdwlistlen, writepdwlist, and 
pdmovevert generate the pull
down menu bar or horizontal 
menu. This menu is created using 
Turbo Prolog's built-in makewin
dow, field_attr, and scr_char 
predicates. The value used for the 
window number is 81. Watch out! 
If you use pulldown, don't define 
any windows with this number. 

In general, putting up menus 
takes some time: adjusting a lot of 
coordinates, writing strings to a 
window in different attributes, and 
creating a menu selection bar. 
Fortunately, to implement our sta
tus bar messages, we don't need to 
modify any of the code used for 
drawing and updating menus. If 
you decide you want to modify 
any of the internal menu attri
butes, now you know where to 
look. 

The changepdwstate predicate 
updates the current state of the 
pull-down menu system. change
pdwstate performs a retract and 
an assert, then stores the pull
down menu status in the dynamic 
database. The declaration of this 
database predicate is: 
database 

pdwstate(ROY,COL,SYMBOL,ROY,COL) 

Here the first two parameters con
tain the current cursor position 
(the row and column correspond
ing to one of the defined menus). 
The third parameter, SYMBOL, 
contains the current state of the 
menu system. Two different con
ditions are supported: "up" and 
"down." The "up" condition indi
cates that all of the pull-down 
menus are not displayed, and 
"down" indicates that a pull-down 
menu is currently displayed 
(active). The final two parameters 
contain the dimensions of a menu 
row and column to help control 
the movement through the actual 
pull-down menus. 

The core of pdwstate is a short 
loop that gets the current state of 
the menu system, reads a key from 
the user, and performs 

continued on page 76 

LISTING 1: STATUS1.PRO 

/* Listing1 */ 

!* Pulldown window action corresponding to input key and 
spul ldown 

window state */ 

pdwkeyact(right,ROY,COL,up,MAXROY,MAXCOL,LEN,ATTR,LIST,SLIST,cont):
nextcol(COL,1,COL1,MAXCOL), 
pdwmovevert(COL,COL1,ATTR,LIST), 
setstatus(COL1,ROY,SLIST,up), 
changepdwstate(pdwstate(ROY,COL1,up,MAXROY,LEN)). 

pdwkeyact(right,ROY,COL,down,_,MAXCOL,_,ATTR,LIST,SLIST,cont):
nextcol(COL,1,COL1,MAXCOL), 
check_removewindow(ROY), 
pdwmovevert(COL,COL1,ATTR,LIST), 
makepdwwindow(COL1,ATTR,LIST,MAXROY1,LEN1,FIRSTROY), 
setstatus(COL1,0,SLIST,down), 
changepdwstate(pdwstate(FIRSTROY,COL1,down,MAXROY1,LEN1)). 

pdwkeyact(left,ROY,COL,up,MAXROY,MAXCOL,LEN,ATTR,LIST,SLIST,cont):
nextcol(COL,-1,COL1,MAXCOL), 
pdwmovevert(COL,COL1,ATTR,LIST), 
setstatus(COL1,ROY,SLIST,up), 
changepdwstate(pdwstate(ROY,COL1,up,MAXROY,LEN)). 

pdwkeyact(left,ROY,COL,down,_,MAXCOL,_,ATTR,LIST,SLIST,cont):
nextcol(COL,-1,COL1,MAXCOL), 
check_removewindow(ROY), 
pdwmovevert(COL,COL1,ATTR,LIST), 
makepdwwindow(COL1,ATTR,LIST,MAXROY1,LEN1,FIRSTROY), 
setstatus(COL1,0,SLIST,down), 
changepdwstate(pdwstate(FIRSTROY,COL1,down,MAXROY1,LEN1)). 

pdwkeyact(up,ROY,COL,down,MAXROY,_,LEN,ATTR,PDYLIST,SLIST,cont):
ROY>1, ! , 
ROY1=ROY-1, 
field_attr(ROY, 1,LEN,ATTR), 
pdwindex(COL,PDYLIST,curtain(_,_,LIST)), 
pdwindex(ROY1,LIST,YORD), 
intenseletter(ROY,1,ATTR,YORD), 
reverseattr(ATTR,REV),field_attr(ROY1, 1,LEN,REV), 
cursor(ROY1,1), 
R=ROY1-1, 
setstatus(COL,R,SLIST,down), 
changepdwstate(pdwstate(ROY1,COL,down,MAXROY,LEN)). 

pdwkeyact(down,ROY,COL,down,MAXROY,_,LEN,ATTR,PDYLIST,SLIST,cont):
RO\J<MAXROY,!, 
ROY1=ROY+1, 
field_attr(ROY, 1,LEN,ATTR), 
pdwindex(COL,PDYLIST,curtain(_,_,LIST)), 
INDX=ROY-1,pdwindex(INDX,LIST,YORD), 
intenseletter(ROY,1,ATTR,YORD), 
reverseattr(ATTR,REV),field_attr(ROY1,1,LEN,REV), 
cursor(ROY1,1), 
setstatus(COL,ROY,SLIST,down), 
changepdwstate(pdwstate(ROY1,COL,down,MAXROY,LEN)). 

pdwkeyact(down,_,COL,up,_,_,_,ATTR,LIST,SLIST,cont):
makepdwwindow(COL,ATTR,LIST,MAXROY1,LEN1,FIRSTROY), 
setstatus(COL,0,SLIST,down), 
changepdwstate(pdwstate(FIRSTROY,COL,down,MAXROY1,LEN1)). 

pdwkeyact(cr,_,COL,up,_,_,_,ATTR,LIST,SLIST,stop):
makepdwwindow(COL,ATTR,LIST,MAXRO\J1,LEN1,FIRSTROY), 
setstatus(COL,0,SLIST,down), 
changepdwstate(pdwstate(FIRSTROY,COL,down,MAXROY1,LEN1)), 
FIRSTROY=O, 

January/ February 1988 TURBO TEQINIX 75 



CH=COL+1, SUBCH=O, 
not(pdwaction(CH,SUBCH)). 

pdwkeyact(cr,ROW,COL,down,_,_,_,_,_,_,stop):· 
CH=COL+1, SUBCH=ROW, 
not(pdwaction(CH,SUBCH)), 
check_removewindow(ROW). 

pdwkeyact(char(CHAR),ROW,COL,UP,_,_,_,ATTR,PDWLIST,SLIST,stop):· 
is_up(UP,ROW),I, 
pdwlist_strlist(PDWLIST,STRLIST), 
tryletter(CHAR,STRLIST,SEL),NEWCOL=SEL, 
pdwmovevert(COL,NEWCOL,ATTR,PDWLIST), 
makepdwwinclowCNEWCOL,ATTR,PDWLIST,MAXROW1,LEN1,FIRSTROW), 
setstatus(NEWCOL,ROW,SLIST,up), 
setstatus(NEWCOL,0,SLIST,down), 
changepdwstate(pdwstate(FIRSTROW,NEWCOL,down,MAXROW1,LEN1)), 
FIRSTROW=O, 
CH=NEWCOL+1, SUBCH=O, 
not(pdwactionCCH,SUBCH)). 

pdwkeyact(char(CHAR),ROW,COL,down,MAXROW,_,LEN,ATTR,PDWLIST, 
SLIST, stop):-

ROW><O, 
pdwindex(COL,PDWLIST,curtain(_,_,LIST)), 
tryletter(CHAR,LIST,SEL),ROW1=SEL+1, 
field attr(ROW,1,LEN,ATTR), 
R=ROW71, 
pdwindex(R,LIST,OLDWORD), 
intenseletter(ROW, 1,ATTR,OLDWORD), 
reverseattr(ATTR,REV),field_attr(ROW1,1,LEN,REV), 
cursor(ROW1, 1), 
CH=COL+1, SUBCH=ROW1, 
R2=ROW1·1, 
setstatus(COL,R2,SLIST,down), 
changepdwstate(pdwstate(ROW1,COL,down,MAXROW,LEN)), 
not(pdwaction(CH,SUBCH)), 
removewindow. 

pdwkeyact(esc,ROW,COL,down,_,_,_,_,_,sLIST,cont):
check_removewindow(ROW), 
setstatus(COL,ROW,SLIST,up), 
changepdwstate(pdwstate(O,COL,up,0,0)). 

LISTING 2: STPMEX.PRO 

/**************************************************************** 

EXafll>le using the pull-down menu tools with status 
bar update. 

****************************************************************/ 

include "tdoms.pro" 

DATABASE 
pdwstate(ROW,COL,SYMBOL,ROW,COL) 

include "tpreds . pro" 
include "status.pro" 
include "spulldwn.pro" 

Predicates 
msg(ROW,COL,STRING) 

/*modified pull-down menu package*/ 

76 TURBO TEQINIX J anuary/ February 1988 

PULLDOWN PREDICATE 
continued from page 75 

an action. In this respect, operat
ing pulldown is similar to operat
ing a simple state machine: 
repeat, 
pdwstate(ROW,COL,DOWN,MAXROW,LEN), 
readkeyCKEY), 
pdwkeyact(KEY,ROW,COL,DOWN,MAXROW, 

MAXCOL,LEN,ATTR,LIST, 
SLIST ,CONTINUE), 

CONTINUE=stop, ... 

The valid input tokens are the left, 
right, up, and down arrow keys; 
the Esc key; the Enter key, and the 
first highlighted letter of each 
menu option. Therefore, the pull
down menu tool contains a 
pdwkeyact clause to handle every 
combination of valid user input 
and the current state of the menu 
system. You can easily extend the 
input processing capabilities, for 
example adding a feature and 
linking it to a function key, by 
adding an additional pdwkeyact 
clause. 

ADDING STATUS BAR 
MESSAGES 
A useful programming tool is a 
programmer's work of art. Thus, 
when modifying a tool, it is impor
tant to exercise some sensitivity 
and try to make changes that 
reflect the internal structure of the 
tool. In practice, most tools are 
created out of other tools. This is 
certainly true for the tools found 
in the Turbo Prolog Toolbox. 

The pulldown predicate uses 
some internal tools for list manip
ulation that are useful for imple
menting our status bar update fea
ture. In this section we'll take a 
close look at how we can enhance 
the status bar by making a min
imum number of changes and 
using some of the internal tools 
provided with pulldown. 

Our first goal is to redefine the 
call to the pull-down menu system. 
Here we make use of Turbo Pro
log's compound object support. 
The new call is: 



spulldown(ATTRIBUTE,MENULIST, 
STATLIST,CHOICE,SUBCHOICE) 

and the definition of the new 
parameter STATLIST is: 

domains 
STATITEM stat(STRING, 

STRINGLIST) 
STATLIST STATITEM* 

Thus, an example for a status 
message structure is: 

stat("Select for help options", 
["Help about the system", 
"Help on files"]) 

The first string is the message dis
played when the corresponding 
option from the menu bar (hori
zontal menu) is selected. The list 
of strings, on the other hand, 
includes the messages displayed 
when traversing the options from 
the accompanying pull-down 
menu. 

To completely implement the 
status bar update feature we must 
enhance the definition of two 
existing predicates, add two new 
predicates, and modify some of 
the internal predicates used in 
PULLDOWN.PRO. 

The pulldown tool contains two 
internal predicates for performing 
list processing operations. The 
first, pdwlistlen, determines the 
length of the list of arguments 
used in the pulldown call. The 
second, pdwindex, returns the list 
element at a specified position in 
the list. In the predicates section, 
pdwlistlen is defined as: 

predicates 
pdwlistlen(MENULIST,COL) 

To add the needed support for 
our status bar messages, we can 
define two other pdwlistlen 
predicates: 

pdwlistlen(STATLIST,COL) 
pdwlistlen(STRINGLIST,COL) 

With these new definitions, we 
can use the same code from the 
pdwlistlen clause to determine the 
length of the status list arguments 
and also the length of a general 
list of strings. The following is the 
code for pdwlistlen: 

pdwl istlen( [] ,0). 
pdwl istlen( [_ITJ ,N):-

pdwlistlen(T,X), 
N=X+1. 

We must also add a predicate defi
nition for pdwindex: 

continued on page 78 

CLAUSES 

/* After a menu item is selected, one of the corresponding actions 
is chosen. 

*/ 
/*The file pull-down menu options*/ 

pdwaction(1,1):-msg(3,10,"Load file selected"). 
pdwactionC1,2):-msg(4,10,"Save file selected"). 
pdwaction(1,3):-msg(5, 10,"Directory selected"). 
pdwactionC1,4):-msaC6, 10,"Print selected"). 
pdwacti on( 1,5): -msg(7, 10, "Copy selected"). 
pdwactionC1,6):-msg(8,10,"Rename selected"). 
pdwaction(1,7):-msg(9, 10,"0perating system selected"). 

!* The Run menu */ 

pdwaction(2,0):-msg(3,25,"Run selected"). 

/* The Help pull-down menu options*/ 

pdwaction(3,1):-msg(3,40,"Topic selected"). 
pdwaction(3,2):-msg(4,40,"Edit selected"). 
pdwaction(3,3):-msg(5,40,"Run selected"). 
pdwaction(3,4):-msg(6,40,"0p~ions selected"). 
pdwacti on(3,5): -msg(? ,40, "Qui ck help selected"). 

/* The options pull-down menu options*/ 

pdwaction(4,1):-msg(3,44,"Screen selected"). 
pdwaction(4,2):-msg(4,44,"Printer selected"). 
pdwactionC4,3):-msg(5,44,"Mouse selected"). 
pdwaction(4,4):-msg(6,44,"0ptions macros"). 

/* The Quit menu */ 

pdwactionC5,0):-exit. 

msg(R,C,S):-
makestatus(112,"Press any key"), 
makewindow(1,7,7,"Message Window",R,C,5,30), 
window str(S), 
readkey( ), 
removewiiidow, 
removestatus. 

GOAL 
/* 

1 2 3 4 5 6 
0123456789012345678901234567890123456789012345678901234567890123456789 

*/ 
Files Run Help Setup Quit 

makewindow(1,7,0,"",0,0,24,80), 
makestatus(112," Select with arrows or use first upper 

case letter"), 
spulldown(7, 

[ curtai nC5, "Fi Les", ["Load", "Save", "Di rectory", "Print", 
"Copy","Rename","Operating System"]), 

curtain( 20, "Run", []), 
curtainC35,"Help" ,["Select topic","Edit","Run", 

curtainC48,"Setup" 

curtainC63,"Quit" 
] I 

"Options","Quick help"]), 
, ["Screen","Printer", "Mouse", 

"Macros"]), 
I[]) 

January/ February 1988 TURBO TEOINIX 77 



stat("Select for file options", 
["Load a new file" 
"Save Current fil~ to disk", 
"View current directory", 
"Print current file", 
"Make a copy of current file", 
"Rename file", 
"Execute DOS COlllll8ndS 11]), 

stat("Execute a program",[]), 
stat("Select for help", ["Specify a topic", 

"Get help about the editor", 
"Get help on running a program", 
"Get help on the systems options", 
"Get the quick guide"]), 

stat("Select to setup the system", ["Setup the screen", 
"Setup the printer", "Setup the mouse", 
"Setup macros"]), 

stat("Select to exit the program", Cl) 

,CH,SUBCH ), 
write("\n CH ",CH), 
write("\n SUBCH = 11 ,SUBCH),nl. 

LISTING 3: SPULLDWN.PRO 

/**************************************************************** 

Turbo Prolog Toolbox 
(C) Copyright 1987 Borland International. 

modified by KJ Weiskamp to support: 

1) Automatic status bar update 
2) Continuos scroll inside pull -down menus 

PULL DOWN MENU 

The parameters are: 
spulldown(ATTRIBUTE,MENULIST,STATLIST,CHOICE,SUBCHOICE) 

where 
ATTRIBUTE is used in all the windows 
MENULIST is the text for the menus 
STATLIST is the text for the status strings 
CHOICE is the selection from the horizontal menu 
SUBCHOICE is the selection from the vertical menu 

(or zero if there is no vertical menu for 
the CHOICE horizontal item) 

****************************************************************/ 

/* ----- Include this database in your program 
DATABASE 

pdwstate(ROW,COL,SYMBOL,ROW,COL) 

include tooldom and toolpred 

And provide the clauses for the pdwaction predicate 

*/ 

DOMAINS 

/*data structure for pull-down menu strings*/ 
MENUELEM= curtain(COL,STRING,STRINGLIST) 
MENULIST= MENUELEM* 

78 TURBO TEOINIX J anuary/ February 1988 

PULLDOWN PREDICATE 
continued from page 77 

pdwindex(COL,STATLIST,STATITEM) 

And the code is: 

pdwindex(O, CH 1-l, H) :- ! • 
pdwindex(N,C_ TJ,X):-

N1=N-1,pdwindex(N1,T,X). 

Again, we do not have to modify 
this code. But to understand how 
this predicate works, we might 
want to look at an example. 
pdwindex is a general tool to 
retrieve an element from a list of 
elements. For example, in the call 

pdwindex(2, ["one", "two", "three", 
"four"], Str). 

pdwindex binds the string 
"three" with the variable Str. If 
you're confused, keep in mind 
that this tool assumes that the first 
element of the list is element 0. 

ADDING TWO PREDICATES 
We have extended the definitions 
of the needed internal predicates, 
and we are now ready to imple
ment the two new predicates, set
status and checkargs. These are 
defined as: 

predicates 
setstatus(COL,ROW,STATLIST, 

SYMBOL) 
checkargs(MENULIST,STATLIST) 

setstatus is responsible for updat
ing the status bar message. check
args tests the arguments in the 
new spulldown call to make sure 
that the menu list arguments 
match the status message argu
ments. Let's look at setstatus first 
(see Figure 3). 

setstatus(COL1,_,SLIST,up): 
pdwindex(COL1,SLIST, 

stat(STR, )), 
changestatusCSTR).-

setstatus(COL1, ,SLIST,down):
pdwindexCCOL1,SLIST, 

stat(_,LIST)), 
listlen(LIST,LISTLEN), 
LISTLEN=O, 
pdwindex(COL1,SLIST, 

stat(STR, )), 
changestatus(STR),!. 

setstatus(COL1,ROW,SLIST,down):
pdwindex(COL1,SLIST, 

stat(_,LIST)), 
pdwindex(ROW,LIST,STR), 
changestatus(STR). 

Figure 3. Clauses for setstatus. 



setstatus takes four parameters. 
The first two, COLI and ROW, 
indicate the index position for the 
corresponding status string in the 
status list. Keep in mind that the 
functor stat has two objects, a 
string and a list of strinl!s: 

stat(STRING,STRINGLIST) 

Also, the status argument itself is a 
list of stat objects: 

[stat( ..• ), stat( ... ), stat( ... ), . . . ] 

Therefore, the COLI argument 
refers to the position or member 
in the list of stat objects and the 
ROW argument refers to the posi
tion or member of a string in the 
list of strings. 

The third argument, SLIST, 
contains the list of stat objects. 
The last argument indicates the 
current state of the menu system. 
Therefore, we have one clause 
that processes the pull-down 
menus in the "up" state, and two 
clauses to process the "down" 
state. As shown, the "up" state is 
simple to process. This action 
involves finding the correspond
ing message from the status list 
and displaying the message by 
using a call to changestatus-one 
of the status bar predicates pro
vided with the Turbo Prolog Tool
box in STATUS.PRO. 

Processing the "down" state is a 
little more difficult. In this case, 
we must first determine if there 
are any members in the status 
string list. A list of length equal to 
zero indicates that the corre
sponding pull-down menu bar 
option does not have a menu 
associated with it. Therefore, the 
message bar is updated with a sta
tus bar message and not a pull
down menu message. If the list 
has members, then the final 
clause is executed and the appro
priate message corresponding to 
one of the options inside the pull
down menu is displayed. 

ERROR CHECKING 
To guarantee that the status bar 
messages work in harmony with 
the menu system, we must verify 
that the number of menu list argu
ments is equivalent to the number 

continued on page 80 

!* data structure for status bar strings */ 
STATITEM= stat(STRING,STRINGLIST) 
STATLIST= STATITEM* 

STOP = stop(); cont() 

PREDICATES 

!* the modified pulldown predicate*/ 
spulldown(ATTR,MENULIST,STATLIST,INTEGER,INTEGER) 
pdwaction(INTEGER,INTEGER) 

pdwkeyact(KEY,ROW,COL,SYMBOL,ROW,COL,COL,ATTR,MENULIST, 
STATLIST ,STOP) 

pdwmovevert(COL,COL,ATTR,MENULIST) 
pdwindex(COL,MENULIST,MENUELEM) 
pdwindex(ROW,STRINGLIST,STRING) 

/* add this predicate to support status bar strings */ 
pdwindex(COL,STATLIST,STATITEM) 

makepdwwindow1(ROW,COL,ROW,COL,ATTR,STRINGLIST,ROW) 
makepdwwindow(COL,ATTR,MENULIST,ROW,COL,ROW) 
writelistp(ROW,COL,ATTR,STRINGLIST) 
line_ver(ROW,ROW,COL) 
line_hor(COL,COL,ROW) 
lcorn(COL,CHAR) 
rcorn(COL,CHAR) 
pdwlistlen(MENULIST,COL) 
pdwlistlen(STATLIST,COL) /*supports status strings*/ 
pdwlistlen(STRINGLIST,COL) /* suuports general string lists*/ 
writepdwlist(ATTR,MENULIST) 
changepdwstate(DBASEDOM) 
check removewindow(ROW) 
is_up(SYMBOL,ROW) 
nextcol(COL,COL,COL,COL) 
intense(ATTR,ATTR) 
intensefirstupper(ROW,COL,ATTR,STRING) 
intenseletter(ROW,COL,ATTR,STRING) 
pdwlist_strlist(MENULIST,STRINGLIST) 
setstatus(COL,ROW,STATLIST,SYMBOL) 
checkargs(MENULIST, STATLIST) 

CLAUSES 

/* draw pulldown window */ 
line_verCR1,R2,C):

R2>R1,!, R=R1+1, 
scr_char(R1,C,' I'), 
line ver(R,R2,C). 

line_ver(_~_,_). 

line hor(C1,C2,R):-
- C2>C1,!, C=C1+1, 

scr char(R,C1,'-'), 
line horcc,c2,R>. 

line_hor(_~_,_). 

!*Make the pulldown window*/ 

/* update status message*/ 
!* test arguments */ 

makepdwwindow(NO,ATTR,MENULIST,LISTLEN,MAXLEN,FIRSTROW):
pdwindex(NO,MENULIST,curtain(CCOL,_,LIST)),COL=CCOL, 
ROW=2, 
listlen(LIST,LISTLEN1),LISTLEN=LISTLEN1, 
maxlenCLIST,0,MAXLEN), 
makepdwwindow1CROW,COL,LISTLEN,MAXLEN,ATTR,LIST,FIRSTROW). 

January/ February 1988 TURBO TEOINIX 79 



/* makepdwwindow1C_,_,_,_,_,_,0):-keypressed,I. */ 
makepdwwindow1C_,_,o,_,_,_,o>:-1. 
makepdwwindow1(ROW,COL,LISTLEN,MAXLEN,ATTR,LIST,1):

NOOFROWS=LISTLEN+2, NOOFCOLS=MAXLEN+2, 
adjustwindow(ROW,COL,NOOFROWS,NOOFCOLS,AROW,ACOL), 
makewindow(81,ATTR,0, 1111 ,AROW,ACOL,NOOFROWS,NOOFCOLS), 
writelistp(1,MAXLEN,ATTR,LIST), 
cursor(1,1),reverseattr(ATTR,REV), field_attrC1,1,MAXLEN,REV), 
ENOROW=NOOFROWS-1, 
ENDCOL=NOOFCOLS-1, 
line_hor(1,ENDCOL,0), 
line_hor(1,ENDCOL,ENDROW), 
line_ver(1,ENDROW,0), 
l ine_ver(1,ENDROW,ENDCOL)', 
scr_char(ENDROW,0, 1 L1 ), 

scr_char(ENDROW,ENDCOL, •J '), 
lcorn(COL,LCORN), scr_char(0,0,LCORN), 
RCOL=ACOL+ENDCOL, 
rcorn(RCOL,RCORN), scr_char(O,ENDCOL,RCORN). 

/*draw pulldown window corners*/ 
lcorn(O, 1 ~·) :- 1. 
lcorn(_, 'T'). 

rcorn(79, ·~ ') :- I. 
rcorn(_,'T').' 

check removewindow(0):-1. 
check:removewindow(_):-removewindow. 

is_up(up,_):-1. 
is_up(_,0). 

intense(ATTR,ATTR1):-
bitxor(ATTR,$08,ATTR1). 

intensefirstupper(ROW,COL,ATTR,WORD):
frontchar(WORD,CH,_), 
CH>='A', CH<= 1Z1 ,l,scr_attr(ROW,COL,ATTR). 

intensefirstupper(ROW,COL,ATTR,WORD):
frontchar(WORD,_,REST),COL 1=COL+1, 
intensefirstupper(ROW,COL1,ATTR,REST). 

intenseletter(ROW,COL,ATTR,WORD):-
intense(ATTR, INTENS), 
intensefirstupper(ROW,COL,INTENS,WORD),!. 

intenseletter(ROW,COL,ATTR,_):-
intense(ATTR, INTENS), 
scr_attr(ROW,COL,INTENS). 

pdwl ist_strl ist( [], [] ). 
pdwlist_strlist([curtain(_,H,_>IRESTPDWl, CHIRESTSTRJ):

pdwlist_strlist(RESTPDW,RESTSTR). 

pdwmovevert(COL1,COL2,ATTR,LIST):
pdwindex(COL1,LIST,curtain(POS1,WORD1,_)),str_len(WORD1,LEN1), 
pdwindex(COL2,LIST,curtain(POS2,WORD2,_)),str_len(WORD2,LEN2), 
field_attr(0,POS1,LEN1,ATTR), 
intenseletter(0,POS1,ATTR,WORD1), 
reverseattr(ATTR,REV), 
field_attr(0,POS2,LEN2,REV), 
intenseletter(0,POS2,REV,WORD2), 
cursorC0,POS2). 

setstatus(COL1,_, SLIST,up):
pdwindex(COL1, SLIST, stat(STR,_)), 
changestatus(STR). 

80 TURBO TEOINIX January/ February 1988 

PULLDOWN PREDICATE 
continued from page 79 

of status list arguments. We use a 
clause called checkargs to do this: 

checkargs(LIST,SLIST):-
pdwlistlen(LIST,SZ1), 
pdwlistlen(SLIST,SZ2), 
SZ1=SZ2, ! . 

checkargs( , ):
makewindow(80,7, 7, 

"Error Window" 5 15 
4,45) I I I I 

window str("Menu list does not 
- match with Status 

list") I 
readkey( ), 
removewiildow, 
exit. 

If both arguments are of the same 
length, everything proceeds 
nicely. On the other hand, if their 
lengths are not equal, we have a 
serious problem and the program 
stops. The second checkargs 
clause puts up an error window to 
display the error message. If we 
must abort the program, we might 
as well do it in style! 

MODIFYING THE 
PREDICATES 
We're now ready for the last step: 
performing surgery on pulldown 
and pdwkeyact. First, let's modify 
pulldown. Figure 4 displays the 
modified clause. 

We change the name to 
spulldown and add the parameter 
SLIST. The second major change 
consists of adding a call to 

spulldown(ATTR,LIST,SLIST, 
CH1,CH2):

checkargs(LIST,SLIST), 
makewi ndow(81,ATTR,ATTR, 1111 , 

0,0,3,80), 
pdwlistlen(LIST,MAXCOL), 
writepdwlist(ATTR,LIST), 
pdwmovevert(O,O,ATTR,LIST), 
changepdwstate(pdwstate(O,O, 

up,0,0)), 
setstatus(O,O,SLIST,up), 
repeat, 
pdwstate(ROW,COL,DOWN,MAXROW, 

LEN) I 

readkey(KEY); 
pdwkeyact(KEY,ROW,COL,DOWN, 

MAXROW,MAXCOL,LEN, 
ATTR,LIST ,SLIST I 

CONTINUE), 
CONTINUE=stop,removewindow, 
pdwstate(ROW1,COL1,_,_,_),!, 
CH1=COL1+1, 
CH2=ROW1. 

Figure 4. Modified form of pulldown. 

continued on page 82 



~L 1 . "'•c'decode,dccode . c 
OltlAHD IHPUT -

- --------------- ---Ll"t: -t!tltltl.:lb- LUL.,,.,-> !Kli no< 

SCROLL - HHLf 
responses = freopen<"dbug2.t,,p", .. .,.· 
spa .. nlp(P _llAJT, "debug .cOl'I", HULLl: 
re lose(cON'la1l<is); -- RESIDDIT EXPERT <t11l--

ltS-C Version 5.8 
rewind (responses l: 
.. hi le (data_byte ·= '(' aa data_byte 

{ 
.... 11~~PRE\I DITRY 

data_byte = getc(responses): 
} 

getc (responses ) . 
linclude <stdlo.h> 

etc (responses I: char llfgets(str ,cnt, s:trea111); 
<code_string, 5, responses): : char llStr; 

while <data_byte 1 = '.' A& data_byte Int cnt; 
< F I LE "Streu ; 
data_byte = getc(responses): 
} ---+ OVEJIV IEV ._ 

f gets (entry_yo i nt_str i n<J, 5, response 
fc lose(responses): This function reads a string f~ 

the input s:trea11 specified by 
<strea11> and stores It In <str >. The 

c~nds = fopenl"dbu9l tnp", "y"), 

! pr i ntf (connands, "n rs\n l\nu 0008 '/.S 

I close I connands 1. "================== 
'.°""41-.ds = freopen('dbugl.tnp'', "r", stdinl: 
cesponses = freopenf"dbug2.tnp", "y", stdoutJ: 

-~~ ~ ~IL • i 

Use One of Ours or Build Your Own! 

THEPO~UPREFERENCE 
REVOLUTION BEGINS 

How much development time could you save if 
you never had to open another PC language or 
technical reference manual again? What if you 
could just point at a compiler keyword, assembly 
instruction, or function name on your screen and 
with a keystroke have complete, authoritative 
information about language syntax, operands, 
parameters, examples, and much more? 

INTRODUCING THE RESIDENT 
EXPERT SYSTEM 

A growing library of comprehensive, disk 
resident reference guides about the PC and your 
favorite PC languages. All available instantly 
through our unique memory resident pop-up 
access system. 

VIRTUALLY EVERYTHING YOU 
NEED TO KNOW 

Each of our Compiler Reference Guides 
contains virtually everything you need to know 
to program with your preferred implementation 
of your favorite language. Language syntax, all 
library functions , compiler directives, and error 
codes are thoroughly documented. 

Our PC Programmer's Reference Guide 
documents every PC (and AT) processor 
instruction and every BIOS and DOS service 
interrupt. You' ll also find tables of keyboard 
codes, line drawing, ASCII, and IBM character 
sets, and much more. 

THE SPECIALIST'S LIBRARY 

Your compiler is unique. That's why our 
reference guides are specialized ... each one 
designed for a particular vendor's language 
implementation. 

NEW!! 

RESIDENT EXPERT Compiler 

Make your own Reference 

Guides 

QUICK DRAW ACCESS SYSTEM 

Point-and-shoot ... just place the cursor over any 
term on your screen. Chances are we've got it 
fully detailed in one of our data bases. 

Fully cross indexed ... ifthe instruction or library 
function you're using isn't quite right, our related 
topics cross index can help you find a better one. 

Multiple volumes on line ... you can have one or 
a dozen of our pop-up reference guides on 
line ... a complete library available instantly. 

THE INFORMATION YOU 
NEED ... WHERE YOU NEED IT 

Our pop-up shell varies its size and shape 
dynamically, only taking as much space on your 
screen as it needs and it never covers your 
working area. You can see your work and our 
reference data at the same time. 

RESIDENT EXPERT Shell(*) ..... $19.95 
(with PC-DOS/ MS-DOS Reference Guide) 

RESIDENT EXPERT Compiler ..... $39.95 
(create your own Reference Guides!) 

RESIDENT EXPERT Reference Guides 
Borland Turbo C (vl.0) . .. ......... $19.95 
Borland Turbo Pascal (v4.0) ......... 19.95 
Borland Turbo Prolog (vl.l) ......... 19.95 
Lattice C (v3.2) ...... .......... .... 39.95 
Mark Williams Let' s C (v4.0) ........ 19.95 
Microsoft C (v5.0) .. ..... . ... ... . .. 39.95 
Microsoft Quick C (vl.O) ............ 19.95 
PC Programmer's Reference Guide ... $39.95 

*The RESIDENT EXPERT Shell is required 
to access and display all Reference Guides .. .. 

Santa Rita 
For the location of your nearest Santa Rita 
Software dealer, or to order direct, call us at 
1-2 14-727-92 17 . We'd like to hear from you. 

Santa Rita Software 
1000 E. 14th Street, Suite 365 

Plano, Texas 75074 

The RESIDENT EXPERT System 
Resident Expert is a trademark of The Santa Rita Company. Borland, Turbo C, Turbo Pascal, and Turbo Prologare trademarks of 
Borland International In c. IBM and PC-DOS are trademarks of International Business Machines Corporation. Lattice C is a 
trademark of Lattice Inc. LetsC is a trademark of Mark Williams Company. Microsoft and MS-DOS are trademarks of Microsoft 
Corporation. 



setstatus(COL1,_, SLIST,down):
pdwindex(COL1, SLIST, stat(_,LIST)), 
listlen(LIST,LISTLEN), 
LISTLEN=O, 
pdwindex(COL1,SLIST, stat(STR,_)), 
changestatus(STR),I. 

setstatus(COL1,ROW, SLIST,down):
pdwindex(COL1, SLIST, stat(_,LIST)), 
pdwindex(ROW,LIST,STR), 
changestatus(STR). 

checkargs(LIST,SLIST):
pdwlistlen(LIST,SZ1), 
pdwlistlen(SLIST,SZ2), 
SZ1=SZ2, ! • 

checkargs(_,_):-
makewindowC80,7,7,11Error Window",5,15,4,45), 
window strC"Menu list does not match with Status list"), 
readkey( ), 
removewiiidow, 
exit. 

pdwl i stlenc Cl ,0). 
pdwlistlenCC_ITl,N>:

pdwListlenCT,X>, 
N=X+1. 

writepdwl ist(_, Cl). 
writepdwlistCATTR,CcurtainCPOS,WORD,_),Tl):

str len(WORD,LEN), 
field str(O,POS,LEN,WORO), 
intenseletter(O,POS,ATTR,WORO), 
writepdwlist(ATTR,T). 

writelistp(_,_,_,[]). 
writel istpCROW,LEN,ATTR, CHITl ):

field_str(ROW, 1,LEN,H), 
intenseletter(ROW,1,ATTR,H), 
ROW1=ROW+1, 
writelistp(ROW1,LEN,ATTR,T). 

pdwindex(O, CH,_], H) :-1. 
pdwindex(N,C_ Tl,X):-N1=N-1,pdwindex(N1,T,X). 

changepdwstate(_):-retract(pdwstate(_,_,_,_,_)),fail. 
changepdwstate(T):-assert(T). 

nextcol(0,-1,COL1,MAX):-COL1=MAX-1,!. 
nextcol(COL,1,0,MAX):-COL=MAX-1,!. 
nextcol(COL,DD,COL1,_):-COL1=COL+DD. 

spulldown(ATTR,LIST,SLIST,CH1,CH2): -
checkargs(LIST,SLIST), 
makewindow(81,ATTR,ATTR, 1111 ,0,0,3,80), 
pdwlistlen(LIST,MAXCOL), 
writepdwlist(ATTR,LIST), 
pdwmovevert(0,0,ATTR,LIST), 
changepdwstate(pdwstate(O,O,up,0,0)), 
setstatus(0,0,SLIST,up), 
repeat, 
pdwstate(ROW,COL,DOWN,MAXROW,LEN), 
readkeyCKEY), 
pdwkeyact(KEY,ROW,COL,DOWN,MAXROW,MAXCOL,LEN,ATTR,LIST, 

SL! ST I CONTINUE), 
CONTINUE=stop,removewindow, 
pdwstate(ROW1,COL1,_,_,_),!, 
CH1=COL1+1, 
CH2=ROW1. 

82 TURBO TEGINIX J anuary/ February 1988 

PULLDOWN PREDICATE 
continued from page 80 

checkargs. Finally, we add a call to 
setstatus: 

setstatus(0,0,SLIST,up) 

This call initializes the menu sys
tem by displaying the first mes
sage from the status message list. 

The final modifications consist 
of adding calls to setstatus from 
each of the pdwkeyact clauses. 
This task is fairly straightforward. 
Place the call immediately before 
the call to changepdwstate in each 
clause. Listing I shows the modi
fied code. 

ADDING CONTINUOUS 
SCROLLING 
In most respects, the pulldown 
tool allows you to create pull
down menu systems that are 
almost identical to those found in 
Turbo Prolog and Turbo C. Unfor
tunately, the designers of pull
down left out one feature : the 
menu bar does not continue to 
scroll around when it gets to the 
top or bottom of a pull-down (ver
tical) menu. In Turbo Prolog and 
Turbo C, the menu continues to 
scroll. If you get to the end of the 
menu and hit a down arrow key, 
the highlighted menu selection 
bar advances to the first item in 
the menu. Thus you can hold 
down either the up arrow or down 
arrow key and the menu selector 
loops around. If you don't believe 
me, try it. Right now! 

Fortunately this feature can eas
ily be added. To implement this, 
add two pdwkeyact clauses. The 
first pdwkeyact clause handles the 
case when a pull-down menu is 
"down," the menu selector bar 
(reverse video bar) is positioned at 
the first menu item, and the user 
input is the up arrow key (see 
Figure 5). 

Note that the first pdwkeyact 
clause uses the statement ROW = 
1 to see if the menu bar is posi
tioned at the first item. This clause 
then determines the length of the 
menu list using pdwlistlen. Once 
the length is determined, the last 
menu item is highlighted in 
reverse video. Also, pdwkeyact 
contains a call to setstatus to 
update the status message. 



pdwkeyact(up,ROW,COL,down,MAXROW,_, 
LEN,ATTR,PDWLIST,SLIST, 
cont):-

ROW=1, ! , 
ROW1=ROW-1, 
field attr(ROW,1,LEN,ATTR), 
pdwindex(COL,PDWLIST, 

curtain( , ,LIST)), 
pdwindex(ROW1,LIST,ijoRD), 
intenseletter(ROW,1,ATTR,WORD), 
pdwlistlen(LIST,LEN1), 
reverseattr(ATTR,REV), 
field attr(LEN1,1,LEN,REV), 
cursor(LEN1,1), 
R=LEN1-1, 
ROW2=LEN1, 
setstatus(COL,R,SLIST,down), 
changepdwstate(pdwstate(ROW2,COL, 

down,MAXROW,LEN)) . 

Figure 5. Additional pdwkeyact 
clause to add continuous scrolling 
"up." 

The second pdwkeyact clause 
handles the menu scrolling when 
the menu selection bar is at the 
end of the menu, as shown in 
Figure 6. 

pdwkeyact(down,ROW,COL,down,MAXROW, 
_,LEN,ATTR,PDWLIST,SLIST, 
cont):-

ROW=MAXROW, ! , 
ROW1=1, 
field attr(ROW,1,LEN,ATTR), 
pdwindex(COL,PDWLIST, 

curtain(_,_, LIST)), 
INDX=ROW-1, 
pdwindex(INDX,LIST,WORD), 
intenseletter(ROW,1,ATTR,WORD), 
reverseattr(ATTR,REV), 
field attr(ROW1,1,LEN,REV), 
cursor(ROW1,1), 
setstatus(COL,0,SLIST,down), 
changepdwstate(pdwstate(ROW1,COL, 

down,MAXROW,LEN)). 

Figure 6. Additional pdwkeyact 
clause to add continuous scrolling 
"down." 

USING THE NEW TOOL 
A sample program, given in List
ing 2, shows you how to use the 
new tool, spulldown. Listing 3 dis
plays the complete spulldown tool. 
The sample program creates a 
pull-down menu system with five 
items: Files, Run, Help, Setup, and 
Quit. In this program, some of 
these menu items are linked with 
pull-down menus and some are 
not. This allows you to see how 
the tool operates in both of these 
cases. 

When using the new spulldown 
continued on page 84 

/* Pulldown window action corresponding to input key and Pulldown 
window state */ 

pdwkeyact(right,ROW,COL,up,MAXROW,MAXCOL,LEN,ATTR,llST,SLIST,cont):
nextcol(COL, 1,COL1,MAXCOL), 
pdwmovevert(COL,COL1,ATTR,LIST), 
setstatus(COL1,ROW,SLIST,up), 
changepdwstate(pdwstate(ROW,COL1,up,MAXROW,LEN)). 

pdwkeyact(right,ROW,COL,down,_,MAXCOL,_,ATTR,LIST,SLIST,cont): 
nextcol(COL, 1,COL1,MAXCOL), 
check removewindow(ROW), 
pdwmovevert(COL,COL1,ATTR,LIST), 
makepdwwindow(COL1,ATTR,LIST,MAXROW1,LEN1,FIRSTROW), 
setstatus(COL1,0,SLIST,down), 
changepdwstate(pdwstate(FIRSTROW,COL1,down,MAXROW1,LEN1)). 

pdwkeyact(left,ROW,COL,up,MAXROW,MAXCOL,LEN,ATTR,LIST,SLIST,cont): 
nextcol(COL,-1,COL1,MAXCOL), 
pdwmovevert(COL,COL1,ATTR,LIST), 
setstatus(COL1,ROW,SLIST,up), 
changepdwstate(pdwstate(ROW,COL1,up,MAXROW,LEN)). 

pdwkeyact(left,ROW,COL,down,_,MAXCOL,_,ATTR,LIST,SLIST,cont): 
nextcol(COL,-1,COL1,MAXCOL), 
check removewindow(ROW), 
pdwmovevert(COL,COL1,ATTR,LIST), 
makepdwwindow(COL1,ATTR,LIST,MAXROW1,LEN1,FIRSTROW), 
setstatus(COL1,0,SLIST,down), 
changepdwstate(pdwstate(FIRSTROW,COL1 , down,MAXROW1,LEN1)) . 

pdwkeyact(up,ROW,COL,down,MAXROW,_,LEN,ATTR,PDWLIST,SLIST,cont):
ROW>1,!, 
ROW1 =ROW-1, 
field attr(ROW,1,LEN,ATTR), 
pdwindex(COL,PDWLIST,curtain(_,_,LIST)), 
pdwindex(ROW1,LIST,WORD), 
intenseletter(ROW, 1,ATTR,WORD), 
reverseattr(ATTR,REV),field_attr(ROW1,1,LEN,REV), 
cursor(ROW1,1), 
R=ROW1-1, 
setstatus(COL,R,SLIST,down), 
changepdwstate(pdwstate(ROW1,COL,down,MAXROW,LEN)). 

pdwkeyact(up,ROW,COL,down,MAXROW,_,LEN,ATTR,PDWLIST,SLIST,cont): 
ROW=1,!, 
ROW1=ROW-1, 
field attr(ROW,1,LEN,ATTR), 
pdwindex(COL,PDWLIST,curtain(_,_,LIST)), 
pdwindex(ROW1,LIST,WORD), 
intenseletter(ROW,1,ATTR,WORD), 
pdwlistlen(LIST,LEN1), 
reverseattr(ATTR,REV),field_attr(LEN1,1,LEN,REV), 
cursor(LEN1,1), 
R=LEN1-1, 
ROW2=LEN1, 
setstatus(COL,R,SLIST,down), 
changepdwstate(pdwstate(ROW2,COL,down,MAXROW,LEN)). 

pdwkeyact(down,ROW,COL,down,MAXROW,_,LEN,ATTR,PDWLIST,SLIST,cont): 
ROW<MAXROW I ! I 
ROW1=ROW+1, 
field attr(ROW, 1,LEN,ATTR), 
pdwindex(COL,PDWLIST,curtain(_,_,LIST)), 
INDX=ROW-1,pdwindex(INDX,LIST,WORD), 
intenseletter(ROW,1,ATTR,WORD), 
reverseattr(ATTR,REV),field_attr(ROW1,1,LEN,REV), 
cursor(ROW1,1), 
setstatus(COL,ROW,SLIST,down), 
changepdwstate(pdwstate(ROW1,COL,down,MAXROW,LEN)) . 

January/ February 1988 TURBO TEOINIX 83 



pdwkeyact(down,ROW,COL,down,MAXROW,_,LEN,ATTR,PDWLIST,SLIST,cont):
ROW=MAXROW I ! , 
ROW1=1, 
field attr(ROW,1,LEN,ATTR), 
pdwindex(COL,PDWLIST,curtain(_,_,LIST)), 
INDX=ROW-1,pdwindex(INDX,LIST,WORD), 
intenseletter(ROW, 1,ATTR,WORD), 
reverseattr(ATTR,REV),field_attr(ROW1,1,LEN,REV), 
cursor(ROW1,1), 
setstatus(COL,0,SLIST,down), 
changepdwstate(pdwstate(ROW1,COL,down,MAXROW,LEN)). 

pdwkeyact(down,_,COL,up,_,_,_,ATTR,LIST,SLIST,cont):
makepdwwindow(COL,ATTR,LIST,MAXROW1,LEN1,FIRSTROW), 
setstatus(COL,0,SLIST,down), 
changepdwstate(pdwstate(FIRSTROW,COL,down,MAXROW1,L~N1)). 

pdwkeyact(cr,_,COL,up,_,_,_,ATTR,LIST,SLIST,stop):
makepdwwindow(COL,ATTR,LIST,MAXROW1,LEN1,FIRSTROW), 
setstatus(COL,0,SLIST,down), 
changepdwstate(pdwstate(FIRSTROW,COL,down,HAXROW1,LEN1)), 
FIRSTROW=O, 
CH=COL+1, SUBCH=O, 
not(pdwaction(CH,SUBCH)). 

pdwkeyact(cr,ROW,COL,down,_,_,_,_,_,_,stop):
CH=COL+1, SUBCH=ROW, 
not(pdwaction(CH,SUBCH)), 
check_removewindow(ROW). 

pdwkeyact(char(CHAR),ROW,COL,UP,_,_,_,ATTR,PDWLIST,SLIST,stop):
is_up(UP,ROW),!, 
pdwlist_strlist(PDWLIST,STRLIST), 
tryletter(CHAR,STRLIST,SEL),NEWCOL=SEL, 
pdwmovevert(COL,NEWCOL,ATTR,PDWLIST), 
makepdwwindow(NEWCOL,ATTR,PDWLIST,MAXRow1,LEN1,FIRSTROW), 
setstatus(NEWCOL,ROW,SLIST,up), 
setstatus(NEWCOL,0,SLIST,down), 
changepdwstate(pdwstate(FIRSTROW,NEWCOL,down,MAXROW1,LEN1)), 
FIRSTROW=O, 
CH=NEWCOL+1, SUBCH=O, 
not(pdwaction(CH,SUBCH)). 

pdwkeyact(char(CHAR),ROW,COL,down,MAXROW,_,LEN,ATTR,PDWLIST, 
SLIST,stop):

ROW><O, 
pdwindex(COL,PDWLIST,curtain( , ,LIST)), 
tryletter(CHAR,LIST,SEL),ROW1;SEL+1, 
field_attr(ROW,1,LEN,ATTR), 
R=ROW-1, 
pdwindex(R,LIST,OLDWORD), 
intenseletter(ROW,1,ATTR,OLDWORD), 
reverseattr(ATTR,REV),field_attr(ROW1,1,LEN,REV), 
cursor(ROW1,1), 
CH=COL+1, SUBCH=ROW1, 
R2=ROW1-1, 
setstatus(COL,R2,SLIST,down), 
changepdwstate(pdwstate(ROW1,COL,down,HAXROW,LEN)), 
not(pdwaction(CH,SUBCH)), 
removewindow. 

pdwkeyact(esc,Row,COL,down,_,_,_,_,_,sLIST,cont):
check_removewindow(ROW), 
setstatus(COL,ROW,SLIST,up), 
changepdwstate(pdwstate(O,COL,up,0,0)). 

/* pdwkeyact(fkey(1), , , , , , , , ,cont):- help. 
If a help system is us~/- - - -

84 TURBO TEOINIX January/ February 1988 

PULLDOWN PREDICATE 
continued from page 83 

predicate, remember to include 
the status-bar file, STATUS.PRO, 
before including the file contain
ing spulldown. If you don't, Turbo 
Prolog will scream at you because 
of the undeclared clause, change
status. You also must include the 
file TPREDS.PRO. The spulldown 
tool is stored in the file 
SPULLDOWN.PRO. 

spulldown IN ACTION 
Believe it or not, even with the 
modifications, the pull-down 
menu system is still fast. In fact, 
it's about as fast as the Turbo C 
environment according to my 
benchmarks. That's right. I've 
developed a set of benchmarks for 
testing user interfaces, especially 
pull-down menus. The major 
benchmark consists of holding 
down the right or left arrow key 
and counting the number of times 
the reverse video menu bar whips 
across the screen. In my test, I dis
covered that the Turbo C menu 
system can be traversed 4 7 times 
in 30 seconds; the test program 
developed here did 50 cycles. The 
test program, with status message 
update, actually beat Turbo C
but then again maybe the bench
mark is unfair since Turbo C has 
seven entries in its pull-down 
menu bar and the test program 
only has five. Now, if you don't 
think this is a practical bench
mark, ask yourself when was the 
last time you used the Sieve or 
Dhrystone in a program. 

Nevertheless, the Turbo Prolog 
Toolbox is a great source of pro
gramming gems. After modify
ing pulldown, you might want 
to add personal features to some 
of the other tools. After all, there 
is great satisfaction in conquering 
a software tool and making it 
your own. • 

Keith Weiskamp is the editor-in-chief 
of PC AI Mag~zine, and co-author 
of the forthcoming book, Artificial 
Intelligence Programming with 
Turbo Prolog. 

Listings may be downloaded from 
CompuServe as PDOWN.ARC 



THE TAIL RECURSION TIGER 
Given the right conditions, the Turbo Prolog compiler will 
optimize your code for speed and efficiency. 

Michael Covington 

• 
Pascal, BASIC, or C programmers who 
start using Prolog are often dismayed to 
find that the language has no FOR, 
WHILE, or REPEAT statements. That is, 
there is no direct way to express iteration. 

SQUARE ONE Prolog allows only two kinds of repetition: 
backtracking, in which multiple solutions are sought 
for a single query, and recursion, in which a proce
dure calls itself. 

As it turns out, this doesn't restrict the power of 
the language. In fact, Turbo Prolog recognizes a spe
cial case of recursion-called tail recursion-and 
compiles it into an interative loop in machine lan
guage. This means that although the program logic 
is expressed recursively, the compiled code is as effi
cient as it would be in Pascal or BASIC. 

This article explores the art of coding repetitive 
processes in Prolog. As we'll see, recursion is in most 
cases clearer, more logical, and less error-prone than 
the loops that conventional languages use. But 
before we explore recursion, let's look at 
backtracking. 

BACKTRACKING 
When a procedure backtracks, it looks for another 
solution to a query that has already been solved. A 
clause that is capable of generating multiple solu
tions is said to be nondetenninistic. You can exploit 
backtracking as a way to perform repetitive 
processes. 

Consider the program in Listing 1 (BAKTRAK 
PRO). The predicate country simply lists the names 
of various countries, so that a goal such as 

country(X) 

has multiple solutions. The predicate print_ 
countries then prints out all of these solutions. It is 
defined as follows: 

print_countries:
country(X), 
write(X), 
nl, 
fail. 

print countries. 

Look at the first clause. It says: "To print coun
tries, find a solution to country(X), then write X and 
start a new line, then fail." By fail we mean "assume 
that a solution to the original goal has not been 
reached, so back up and look for an alternative." 
The built-in predicate fail always fails, but we could 
equally well force backtracking by using any other 
goal that would always fail, such as 5 = 2 + 2 or 
country(shangri_la). 

The first time through, X is instantiated to eng
land, which is printed. Then, when it hits fail , the 
program backs up. There are no alternative ways to 
satisfy nl or write(X), so the program looks for a dif
ferent solution to country(X). The last time coun
try(X) was executed, it gave a value to the previously 
uninstantiated variable X So before retrying this 
step, Turbo Prolog de-instantiates X. Then it can 
look for an alternative solution for country(X) and 
instantiate X to a different value. If it succeeds, exe
cution goes forward again and the name of another 
country is printed. 

Eventually, the first clause runs out of alternatives. 
When this happens, execution falls through to the 
second clause, which succeeds without doing any
thing further. In this way the goal print_countries 
terminates with success. Its complete output is: 

england 
france 
germany 
denmark 
True 

If the second clause were not there, print_countries 
would terminate with failure, and the final message 
would be False. Apart from that, the output would be 
the same. 

Backtracking is a good way to get all the alterna
tive solutions to a goal. But even if your goal doesn't 
have multiple solutions, you can still use backtrack
ing to introduce repetition. One way to do this is to 
simply define the two-clause predicate: 

continued on page 86 

January/ Febrnary 1988 TURBO TEOINIX 85 



TAIL RECURSION 
continued from page 85 

repeat. 
repeat :- repeat. 

repeat is a nondeterministic 
clause; it tricks Prolog's 
control structure into thinking it 
has an infinite number of differ
ent solutions. (Never mind how
after we discuss tail recursion 
you'll know why it works.) The 
purpose of repeat is to allow back
tracking ad infinitum. 

Listing 2 (1YPEWRIT.PRO) 
shows how repeat works. The 
procedure typewriter accepts 
characters from the keyboard and 
prints them on the screen until 
the user types Enter (ASCII code 
13): 

typewriter:
repeat, 
readchar(C), 
wri te(C), 
char _int(C, 13). 

It works as follows: Execute repeat 
(which does nothing) , then read a 
character into the variable C, write 
C and check whether the ASCII 
code ofC is 13. Ifso, you're fin
ished. If not, backtrack and look 
for alternatives. Neither write nor 
readchar generates alternative 
solutions, so backtrack all the way 
to repeat, which always has alter
native solutions. Now execution 
can go forward again, reading 
another character, printing it, and 
checking whether it is ASCII 13. 

Note that the character C gets 
de-instantiated when we backtrack 
past readchar(C) , which instan
tiated it. De-instantiation is vital 
when backtracking is used to 
obtain alternative solutions to a 
goal, but de-instantiation also 
makes it hard to use backtracking 
for any other purpose. The reason 
is that although a backtracking 
process can repeat operations any 
number of times, it can't 
"remember" anything from one 
repetition to the next. All variables 
lose their values when execution 
backtracks through the steps that 
instantiated them. Therefore, it is 
necessary to use the database to 
store intermediate results (such as 
the current value of the counter) 
within a repeat loop. 

RECURSION 
This leads to the other way of 
expressing repetition-recursion. A 
recursive procedure is one that 
calls itself. Recursive procedures 
have no trouble keeping records 
of their progress because coun
ters, totals, and intermediate 
results can be passed from each 
iteration to the next as arguments. 

The logic of recursion is easy to 
follow if you allow yourself to 
forget, for the moment, how com
puters work. (Prolog is so different 
from machine language that 
ignorance of computers is often 
an asset to the Prolog program
mer.) Forget that the program is 
trekking through memory 
addresses one by one, and 
imagine instead a machine that 
can follow recipes like this one: 

To find the factorial of a 
number N: 
If N is 1, the factorial is 1. 
Otherwise, find the factorial of 
N-1, then multiply it by N. 

That is: To find the factorial of 
3 you must find the factorial of 2, 
and to find the factorial of 2 you 
must find the factorial of I. Fortu
nately, you can find the factorial 
of 1 without referring to any other 
factorials, so the repetition doesn't 
go on forever. When you have it, 
you multiply it by 2 to get the fac
torial of 2, then multiply that by 3 
to get the factorial of 3, and you're 
done. The Prolog code for this is: 

factorial C 1, 1). 
factorial(X,FactX):-

X > 1, 
Y = X-1, 
factorial(Y,FactY), 
FactX = X*FactY. 

The second clause states X > I 
as a condition, so that at most 
only one clause will apply for any 
given number. Listing 3 
(FACTl.PRO) shows the complete 
program. 

But wait a minute, you say. How 
does the program execute factor
ial while it's in the middle of exe
cuting factorial? If you call factor
ial with X equal to 3, factorial 
then calls itself with X equal to 2. 
Does X then have two values, or 
does the second one just wipe out 
the first, or what? 

The answer is that the compiler 
creates a new copy of factorial so 
that factorial can call itself as if it 
were a completely separate proce-

86 TURBO TEGINIX January/ February 1988 

<lure. The executable code doesn't 
have to be duplicated, of course, 
but the arguments and internal 
variables do. This information is 
stored in an area called a stack 
frame, which is created every time 
a procedure is called. When the 
procedure terminates, the memory 
occupied by its stack frame is 
returned to the heap, and execu
tion continues in the stack frame 
that was previously being used. 

Recursion has two advantages. 
First, it can express algorithms 
that can't conveniently be 
expressed any other way. Recur
sion is the natural way to describe 
any problem that contains within 
itself another problem of the 
same kind. Examples include tree 
searches (a tree is made up of 
smaller trees) and recursive sort
ing (to sort a list, partition it, sort 
the parts, and then put them 
together). 

Second, recursion is logically 
simpler than iteration. Recursive 
algorithms have the structure of 
an inductive mathematical proof. 
Our recursive factorial algorithm 
above describes an infinite 
number of different computations 
by means of just two clauses. This 
makes it easy to see that the 
clauses are correct. Further, the 
correctness of each clause can be 
judged independently of the 
other. 

But recursion has one big draw
back: it eats memory. Whenever a 
procedure calls itself, the state of 
execution of the ca Iii ng procedure 
has to be saved on the stack. This 
means that if a procedure calls 
itself 100 times, 100 different ver
sions of its stack frame have to be 
stored at once. The memory of 
the IBM PC accommodates at 
most 300 or 400 stack frames 
(depending on the amount of 
available memory, the number of 
arguments being passed, whether 
there are nondeterministic calls 
within the recursive call, etc.) So 
what do you do if you want to 
repeat something more than 400 
times? 

TAIL RECURSION 
There's a special case in which a 
procedure can call itself without 
storing a stack frame. Recall that 



the stack frame enables the outer 
procedure to resume after the 
inner procedure finishes. What if 
the outer procedure isn't going to 
resume? 

This isn't as crazy as it sounds. 
Suppose the outer procedure calls 
the inner procedure as its very last 
step. When the inner procedure 
terminates, the outer procedure 
won't have anything else to do. 
This means it doesn't need a stack 
frame. Control can go directly to 
wherever it would have gone 
when the outer procedure 
finished. 

Suppose, for example, that 
procedure A calls procedure B, 
and B calls procedure C as its very 
last step. When B calls C, we know 
that B isn't going to do anything 
further. So instead of creating a 
new stack frame for C under B, we 
replace the stack frame of B with 
that of C, making appropriate 
changes in the addresses of 
parameters. When C finishes, it 
thinks it was called by A directly. 

Now suppose that instead of 
calling C, B calls itself as its very 
last step. Our recipe says that 
when the call takes place, the old 
stack frame for B should be 
replaced by a new stack frame for 
B. This is a trivial operation; only 
the parameters need to be set to 
new values. It is much like updat
ing the control variables in a loop. 

This is called tail recursion opti
mization or last call optimization, 
and it was introduced into Prolog 
by David Warren at the University 
of Edinburgh. About half of the 
available Prolog implementations 
have it today. Last call optimiza
tion is also a prominent feature of 
Scheme-a LISP dialect deve
loped at M.I.T.-and is available 
in some common LISP 
implementations. 

MAKING IT WORK IN 
PROLOG 
What is meant when we say that 
one procedure calls another "as 
its very last step"? In Prolog, this 
means that: 

1. The call is in the last clause of 
the predicate 

continued on page 88 

LISTING 1: BAKTRAIC.PRO 

!* BAKTRAK.PRO */ 

!* Uses backtracking to print 
all solutions to a query*/ 

PREDICATES 

country(syrrbol) 
print_countries 

CLAUSES 

country(england). 
country( fr ance) • 
country(germany). 
country(denmark). 

print countries : - country(X) '· 
wri te(X), 
nl, 
fail. 

print_countries. 

LISTING 2: TYPEWRIT.PRO 

!* TYPEWRIT.PRO */ 

/*Uses •repeat' to keep accepting 
characters and printing them 
until Return is encountered. */ 

PREDICATES 

repeat 
typewriter 

CLAUSES 

repeat. 
repeat :- repeat. 

typewriter :- repeat, 
readchar(C), 
write(C), 
char _int(C, 13). 

January/ February 1988 TURBO TEGINIX 87 



LISTING 3: FACT1.PRO ~ 

!* FACT1.PRO */ 

!* Recursive program to compute factorials. 
This is not tail recursive. */ 

PREDICATES 

factorial( integer, real) 

CLAUSES 

factorial(1,1). 

factorialCX,FactX) 
x > 1, 
Y = X-1, 
factorialCY,FactY), 
FactX = X*FactY. 

LISTING 4: COUNT.PRO 

/*COUNT.PRO*/ 

/*Tail recursive program that 
never runs out of memory */ 

PREDICATES 

count( real) 

/* Reals can be much 
bigger than integers. */ 

CLAUSES 

count(N) 

GOAL 

count(1). 

wri te(N) ,nl, 
NewN = N+1, 
countCNewN). 

LISTING 5: BADCOUNT.PRO 

!* BADCOUNT.PRO */ 

!*Three procedures that are like 
COUNT.PRO but not tail recursive; 
they run out of memory after 
a few hundred iterations. */ 

PREDICATES 

badcount1(real) 
badcount2(real) 
badcount3Creal) 
check( real) 

88 TURBO TEOINIX January/ February 1988 

TAIL RECURSION 
continued from page 87 

2. The call is the very last subgoal 
of the clause, and 

3. There are no untried alterna
tives for earlier subgoals in the 
clause. 

The following example satisfies 
all three conditions: 

count(N):-
write(N),nl, 
NewN = N+1, 
count(NewN). 

This procedure is tail recursive; it 
calls itself without allocating a 
new stack frame and therefore 
never runs out of memory. As 
shown in Listing 4 (COUNT.PRO), 
given the goal 

count(O). 

the procedure count will print 
integers starting with 0 and never 
end. Eventually, rounding errors 
will make it print inaccurate 
numbers, but it will never stop. 

HOW NOT TO DO IT 
Now that we've shown you how 
to do it right, Listing 5 (BAD
COUNT.PRO) shows you three 
ways to do it wrong. First, if the 
recursive call isn't the very last 
step, the procedure isn't tail 
recursive. For example: 
badcount1 (X): -

write(X),nl, 
NewX = X+1, 
badcount1(NewX), 
nl. 

Every time badcountl calls itself, a 
stack frame has to be saved so that 
control can return to the calling 
procedure, which has yet to exe
cute its final nl. So only a few 
hundred recursive calls can take 
place before the program runs out 
of memory. 

Another way to lose tail recur
sion is to leave an alternative 
untried at the time the recursive 
call is made. Then a stack frame 
has to be saved so that if the 
recursive call fails, the calling 
procedure can go back and try the 
alternative. For example: 

badcount2(X):-
write(X),nl, 
NewX = X+1, 
badcount2(NewX). 

badcount2(X):
X < 0, 
write("X is negative."). 



Here the first clause of badcount2 
calls itself before the second 
clause has been tried. Again, the 
program runs out of memory after 
a few hundred calls. 

The untried alternative need 
not be a separate clause for the 
recursive procedure itself. It can 
equally well be an alternative in 
some other clause that it calls. For 
example: 

badcount3(X) :-
write(X) ,nl, 
NewX = X+1, 
checkCNewX), 
badcount3CNewX). 

check(Z):- Z >= O. 
check(Z):- Z < O. 

Suppose X is positive, as it nor
mally is. Then when badcount3 
calls itself, the first clause of check 
has succeeded but the second 
clause of check has not yet been 
tried. So badcount3 has to pre
serve a copy of its stack frame so 
that it can go back and try the 
other clause of check if the 
recursive call fails. 

CUTS TO THE RESCUE 
This being so, you may think that 
it's impossible to guarantee that a 
procedure is tail recursive. After 
all, it's easy enough to put the 
recursive call in the last subgoal of 
the last clause, but how do you 
guarantee that there are no alter
natives in any of the other proce
dures that it calls? 

Fortunately, you don't have to. 
The built-in cut operator"!" 
allows you to discard whatever 
alternatives may exist. We can 
then fix up badcount3 (leaving 
check as it was): 
cutcount3(X):-

write(X),nl, 
Newx = X+1, 
checkCNewX), ! , 
cutcount3CNewX). 

The cut means "burn your 
bridges behind you" or, more pre
cisely, "once you reach this point, 
disregard alternative clauses for 
this predicate and alternative solu
tions to earlier subgoals within 
this clause." That's precisely what 
we need. Because alternatives are 
ruled out, no stack frame is 

continued on page 90 

CLAUSES 

/* badcount1: 
The recursive call is not the last step. */ 

badcount1CX) :- write(X),nl, 
NewX = X+1, 
badcount1CNewX), 
nl. 

/* badcount2: 
There is a clause that has not been tried 
at the time the recursive call is made. */ 

badcount2CX) 

badcount2CX) 

I* badcount3: 

write(X),nl, 
NewX = X+1, 
badcount2CNewX). 

x < 0, 
writeC"X is negative."). 

There is an untried alternative in a 
procedure called before the recursive call. */ 

badcount3(X) :- write(X),nl, 
NewX = X+1, 
check(NewX), 
badcount3(NewX). 

check(Z) 
check(Z) 

z >= 0. 
z < 0. 

LISTING 6: CUTCOUNT.PRO 

I* CUTCOUNT.PRO */ 

/* Shows how 1 badcount2' and 'badcount3' 
can be fixed by adding cuts to 
rule out the untried clauses. 
These versions are tail recursive. */ 

PREDICATES 

cutcount2Creal) 
cutcount3Creal) 
check( real) 

CLAUSES 

/* cutcount2: 
There is a clause that has not been tried 
at the time the recursive call is made. */ 

cutcount2CX) write(X), 
nl, 
NewX = X+1, 
! , 
cutcount2CNewX). 

January/ February 1988 TURBO TEOINIX 89 



cutcount2(X) x < o, 
write("X is negative."). 

/* cutcount3: 
There is an untried alternative in a 
clause called before the recursive call. */ 

cutcount3(X) :- write(X), 
nl, 
NewX = X+1, 
check(NewX), 
I, 
cutcount3(NewX). 

check(Z) 
check(Z) 

z >= o. 
z < o. 

LISTING 7: FACT2.PRO 

I* FACT2.PRO */ 

/*Tail recursive program 
to C0111'Ute factorials */ 

PREDICATES 

factorial(integer,real) 
factorial_aux(integer,real,integer,real) 

/*Numbers likely to exceed 
32767 are declared as reals */ 

CLAUSES 

factorial(N,FactN) 
factorial_aux(N,FactN, 1, 1). 

factorial_aux(N,FactN,l,P) 
I <= N, 
NewP = P*I, 
New! = 1+1, 
! , 
factorial_aux(N,FactN,NewI,NewP). 

factorial_aux(N,FactN,I,FactN) 
I > N. 

90 TURBO TEQINIX January/ February 1988 

TAIL RECURSION 
continued from page 89 

needed and the recursive call can 
go inexorably ahead. 

A cut is equally effective in 
badcount2: 

cutcount2(X):-
wri te(X) ,nl, 
Newx = X+1,!, 
cutcount2(NewX >. 

cutcount2(X):
X < 0, 
write("X is neg~tive. 11 ). 

If the cut is executed, the com
piler assumes there are no untried 
alternatives and does not create a 
stack frame. See Listing 6 (CUT
COUNT.PRO) for the complete 
program. 

Unfortunately, cuts won't help 
us with badcountl , whose need 
for stack frames has nothing to do 
with untried alternatives. The only 
way to improve badcountl would 
be to rearrange the computation 
so that the recursive call comes at 
the end of the clause. 

USING PARAMETERS AS 
LOOP VARIABLES 
Now that we've mastered tail 
recursion, what do we do about 
loop variables and counters? To 
answer that question, let's do a bit 
of Pascal-to-Prolog translation. 

We have already developed a 
recursive procedure to compute 
factorials; now let's develop an 
iterative one. In Pascal, this is: 
p := 1; 
for I := 1 to N do 

P := P*I; 
FactN := P; 

There are four variables here. 
N is -he number whose factorial 
we're finding; FactN is the result 
of doing so; I is the loop variable, 
counting from 1 to N; and P is the 
variable in which the product is 
accumulated. A more efficient Pas
cal programmer might combine 
FactN and P, but in Prolog it pays 
to be fastidious. 

The first step in translating this 
into Prolog is to replace for with a 
simpler loop construct, making 
explicit what happens to I in each 
step. Let's recast the algorithm as 
a while loop: 



p := 1; 
I := 1; 
while I <= N do 

begin 
P := P*I; 
I := 1+1 

end; 
FactN := P; 

Now we're ready to construct 
the Prolog translation, shown in 
Listing 7 (FACT2.PRO). Our fac
torial procedure only has N and 
FactN as arguments. A second 
procedure, 
factorial_aux(N,FactN,I,P) 

actually performs the recursion; 
its four arguments are the four 
variables that need to be passed 
along from each step to the next. 
So factorial simply invokes 
factorial_aux, passing along N 
and FactN along with the initial 
values for I and P: 
factorial(N,FactN):-

factorial_aux(N,FactN, 1, 1). 

That's how I and P get initialized. 
Again you interrupt me with a 

puzzled look. How can we "pass 
along" FactN to another proce
dure? It doesn't even have a value 
yet! The answer is that all we're 
doing is unifying FactN in one 
clause with FactN in another. The 
same thing happens whenever 
factorial_aux passes FactN to 
itself as an argument in a 
recursive call. Eventually, the last 
FactN gets a value, and when this 
happens, all the other FactN's, 
having been unified with it, get 
the same value. 

Now for factorial_aux. Ordi
narily, it checks that I is less than 
or equal to N-the condition for 
continuing the loop-and then 
calls itself recursively with new 
values for I and P. Another pecu
liarity of Prolog asserts itself here. 
In Prolog, as in arithmetic (but 
not in most programming lan
guages), the statement 
p = p + 1 

is manifestly false. You can 't 
change the value of a Prolog vari
able. Instead, you have to create a 
new variable and say: 
NewP = P + 1. 

So here is the first clause: 

factorial aux(N,FactN,l,P):-
1 <= N~ 
NewP = P*I, 
New!= 1+1,!, 
factorial aux(N,FactN,Newl, 

- NewP). 

As in cutcount2 above, the cut 
makes the clause tail recursive 
even though it isn't the last clause. 

Eventually, the loop exceeds N. 
When it does, we simply unify the 
current value of P with FactN and 
stop the recursion. One way to do 
this is: 

factorial_aux(N,FactN,1,P):-
1 > N, 
FactN = P. 

But there is no need for FactN = 
P to be a separate step; the 
unification can be performed in 
the argument list by putting the 
same variable name in the posi
tions occupied by FactN and P. 
This gives us the final clause: 

factorial aux(N,FactN,I,FactN):-
1 > N.-

Remember that if I > N failed, 
the unification of the second and 
fourth arguments would have no 

effect, because execution would 
backtrack out of this clause imme
diately, returning all variables to 
their previous state. • 

SUGGESTED READING 
Tail recursion is discussed at 
greater length in Chapter 4 of 
Prolog Programming in Depth, by 
Michael Covington, Donald Nute, 
and Andre Vellino (Scott, Fores
man and Company, to appear in 
January 1988). The most compre
hensive-and elegant-study of 
tail recursive algorithms that I 
have seen is Structure and Interpre
tation of Computer Programs, by 
Abelson and Sussman (M.I.T. 
Press, 1984), which uses Scheme, a 
LISP dialect, but presumes no 
prior knowledge of it. 

Michael Covington does artificial 
intelligence research at the University 
of Georgia and has written over 100 
magazine artides relating to 
microcomputers. 

Listings may be downloaded from 
CompuServe as TAIL.ARC. 

helps compare evaluate , find products . Straight answers for serious programmers . 

FREE Catalog & Advice 
CNer 40 products for Turbo X programmers 
PLUS over 700 more for programmers In other 
languages. Technical specialists help you 
choose the right product for you. Call today. 

Turbo BASIC Support 

Recent Discovery 

Turbo-t~ Toole . Translates Pascal to modular 
K&R. MS, Turbo C library support, nested proce
dures, all data types (Ind. structured constants), 
operators, control structures. 99% rate. PC $459 

Vitamin C 

BASIC Development Tools 
Turbo Finally! 

PC $ 89 Windows for Data 
PC $159 
PC $319 

PC$ 85 

Turbo C Support 

Blackstar C Functions PC $ 99 
C Utility Library PC $ 119 
C Worthy Interface Library PC $169 
with Forms PC $ 249 

Curses - by Aspen PC $109 
dB VISTA- single user MS CALL 
dBx - dBASE Ill to c MS $299 
Essential Graphics PC $185 
Greenleaf C Sampler PC $ 69 
Greenleaf Comm Library PC $ 129 
Greenleaf DataWindows PC $159 
Greenleaf Function Library PC $139 
Panel PLUS MS $ 409 
PC-lint-v.2.10 MS$ 99 
Turbo C Tools - by Blaise PC $ 95 
TurboHALO PC $ 95 
TurboWINDOW/C PC $ 79 

Turbo Pascal Support 

Halo 
Mach 2 - MicroHelp 
Math Pak 87 
Report Builder 
Screen Sculptor 
System Builder 
TDebug-Plus 
TP2C 
Turbo Asynch Plus - Blaise 
Turbo Extender 
TurboHALO 
Turbo Optimizer - object 
with source 

Turbo Power Tools Plus 
Turbo Power Utilities 
Turbo Professional 
Turbo-Ref 
TurboWINDOW 

PC $209 
MS$ 59 
PC$ 79 
PC $115 
PC$ 95 
PC $119 
PC$ 49 
PC $209 
PC$ 79 
PC$ 65 
PC$ 95 
PC$ 69 
PC $109 
PC$ 79 
PC$ 79 
PC$ 49 
PC$ 45 
PC$ 79 

Feature 
.--~~~~....,..~~~-:-:-~-;---, 

Call for a catalog and solid value Note: All prices subject 
to change without 
notice. Mention this ad. 
Some prices are spe
cials. Ask about COD & 
POs. 200 formats plus 
3' laptop. UPS surface 
shipping add 3$frtem. 

TURBOamlth Debugger · 
VietN, edit Pascal source, 
machine code. variables, 
memory in multi-win· 
dows. Step, trace. breek
points. 8087, BCD, sup
port. PC $79 

800-421-8006 
'l'llE PllOGlliUDIEll'S SHOP 
Your complele source for soffware services and answers 

5-x Pond Park Road , Hingham, MA 02043 
Mass . 800-442-8070 or 617-740-25 10 TX188 

January/ Febrnary 1988 TURBO TEGINIX 91 



PARTNERS OF A SORT 
Turbo Prolog solves a sort puzzle by borrowing a piece from 
Turbo Pascal. 

Alex Lane 

WIZARD 

Lists of objects can be elegantly sorted in 
Turbo Prolog using any of a number of 
well-known methods like Quicksort, bub
ble sort, and insertion sort. Unfortunately, 
once the number of items to be sorted 
gets above a few thousand, the Turbo 

Prolog programmer risks exhausting stack or heap 
(allocatable memory) . The actual number of sortable 
items depends on several factors, including available 
memory, the size of the application itself, and the 
sorting method used. But eventually there comes a 
point where the data to be sorted is too large for any 
configuration. 

I learned this the hard way while writing a custom 
Turbo Prolog application requiring the sorting of 
several thousand names. Try as I might, all my 
attempts crashed and burned due to a lack of avail
able memory. What I needed was a way to call a 
time-out in the middle of my Turbo Prolog code, get 
the names sorted some other way, and then continue 
with my Turbo Prolog program. 

DATABASE TOOLBOX TO THE RESCUE! 
I had everything I needed except a sorting program, 
and I really didn't relish the prospect of rolling one 
from scratch. The DOS SORT utility was out, 
because it can't handle files larger than 64K. As I 
scanned my library for my trusty reference on algo
rithms, I spied the Turbo Pascal Database Toolbox 
Owner's Handbook and picked it up on impulse. When 
I read the blurb on the back cover about Turbo Sort 
I knew I'd hit paydirt. ' 

The drawback to my discovery was that Turbo 
Prolog does not link directly with Turbo Pascal. For
tunately, breaking out to DOS to invoke a child pro
cess is simple in Turbo Prolog. Turbo Prolog pro
vides the system predicate that takes a string as an 

92 TURBO TEOINIX January/ February 1988 

argument and passes it to DOS as a command. For 
instance, if we issue the command 

system("DIR B:") 

the program will pause, display the directory of drive 
B:, and then resume execution of the Turbo Prolog 
code. In my program, the argument to the system 
predicate runs the sort program. 

The last thing to consider is how to pass data 
between applications. Turbo Sort needs an input file 
to work on, so the Turbo Prolog program must create 
such a file containing the necessary information. 
After the sort program finishes writing the results to 
its output file, the newly resumed Turbo Prolog pro
gram must read that file to extract the results of the 
sort. A schematic diagram of this relationship is 
shown in Figure 1. 

With the Turbo Pascal Database Toolbox manual 
in hand, I modified the son routine to accommodate 
my requirements. In shon order I had my sorting 
program, and the overall job was completed on time 
and on budget. 

To give you a better idea of how this is done, let's 
use this technique to sort the filenames in all directo
ries and subdirectories of a hard disk. The modified 
Turbo Pascal Turbo Sort program RDSRT.PAS is 
shown in Listing 1. 

ABOUT RDSRT.PAS 
Turbo Sort, provided in the Turbo Pascal Database 
Toolbox, uses the Quicksort algorithm and virtual 
memory management to rapidly son quantities of 
data that may exceed the memory available for sort
ing. Both features are important in this application, 
panicularly memory management, because free 
memory may be limited while the sort program is 
running (don't forget the calling Turbo Prolog pro
gram is still resident, just suspended). 

Turbo Sort requires the programmer to supply 



Turbo Prolog Program Turbo Prolog Program 

(stops) 
(pause) 

(resumes) 

I I I t 
write data to file system ("RDSRT"). read data from fil e 

TEST.DAT RDSRT.COM 

(uses Turbo Son) 

TEST.OUT ., 

Note : Programs execute from left to right in this schematic. 

Figure 1. Flow of program control between Turbo Prolog and Turbo Pascal routines. 

three procedures, InP, OutP, and Less, in order to 
create a sorting program. lnp passes items to be 
sorted to Turbo Sort, OutP fetches them back later, 
and Less lets Turbo Sort know the order in which 
you want things arranged. 

To make things simple, we're going to arrange 
things such that the parent Turbo Prolog program 
always writes the information to be sorted in a file 
called TEST.DAT. Furthermore, each line in 
TEST.DAT is an 18-byte record where the first 12 
characters are the filename, the next four characters 
are an identifying index, and the last two characters 
are a carriage return/ line feed (OD OA) combination. 
The Turbo Pascal procedure lnp then opens 
TEST.DAT, reads the data in one line at a time, and 
passes the records to Turbo Sort using the 
SortRelease procedure. 

Once Turbo Sort is finished, the procedure OutP 
creates a file TEST.OUT (our Turbo Prolog program 
will expect to see it!) . Then, using a 
REPEAT .. UNTIL loop, OutP makes calls to the 
SortReturn procedure and writes the results to 
TEST.OUT. This continues until the SortEOS func
tion returns the value True. 

The Less fonction is used by Turbo Sort to decide 
where and how to compare items being sorted. In 
our case, we want to compare filenames and then 
proceed to sort in ascending alphabetical order. 
Declaring the variables FirstObject and 
SecondObject to be absolute at X and Y, respectively, 
is hecessary because Less is called with two parame
ters (the addresses of the data items being 
compared). 

Once all of these procedures are supplied, we set 
the sort in motion by calling the function TurboSort 
with the size (in bytes) of the items to be sorted as a 
parameter: 

ErrorStatus := TurboSort(ltemSize); 

The value returned in ErrorStatus may be used as a 
diagnostic to make sure everything worked smoothly. 

ON THE TURBO PROLOG SIDE 
Listing 2 shows the source code for UNIVDIR.PRO, 
which is the Turbo Prolog program that does most of 
the mule work. 

The predicate univdir is designed to retrieve all 
file information from all subdirectories. As men
tioned before, each filename, along with a unique 
identifying number (generated by the program), is 
written to a work file called TEMP.DAT. We do this to 
limit the size of TEMP.DAT. Although we could, in 
principle, write all file information out to this file, 
the resulting file may be too large for our system. 
(Don't forget, we need at least as much space avail
able on disk for the sorted copy of the file as for the 
original, unsorted file.) 

The rest of the file information (size, date and 
time of creation, etc.) is saved in the dynamic data
base using asserta. Once all files have been found, 
the program calls the system predicate to execute 
RDSRT.COM (our Turbo Pascal sort module) . 
RDSRT reads TEMP.DAT, sorts the filenames and 
outputs a list of identifying numbers that correspond 
to the order of the alphabetized files. To clarify: if 
the original file looks like 

ZAPFNCS.C 1 
FOO.BAR 2 
DATABASE.DAT 3 
PROLOG.EXE 4 
TURBO.COM 5 

then the output file TEST.OUT will look like: 

3 
2 
4 
5 
1 

This is done both to conserve space on the disk 
(remember, this technique was originally used to sort 

continued on page 94 

January/ February 1988 TURBO TEGINIX 93 



LISTING t: RDSIT .PAS 

program Read_Sort_Write_Sequential_Fi le; 

type 
FileMame =record C* FileMame is an 18-byte record*) 

Fi lenn : array Ct •• 121 of char; 
Index : array[1 •• 41 of char; 
CR : byte; 
LF : byte; 

end ; 

OirectoryFile =file of FileName; 

var 
Mom : array[1. . 181 of char; 

(SJ SORT.BOX) 

procedure I np; 
var 

rec : integer; 

text; 
begin 

ClrScr; 

Results 

wdtelnC 1 Preparing to sort file names.') ; writeln; 
writeln('Collecting file names .• • '); writeln; 
Assign( f , 'TEST .OAT'); 
(SI - > Reset(f); (SJ+} 

if IOresult <> 0 then begin 
writeln( 1 Not there . •); 
end; 

rec : = O; 
repeat 

rec, : =rec+1; 
wd te(#13, rec:6); 
readln(f,Nom); 
SortRel ease(Mom); 

until EOF(f); 

writeln(' file names collected'); writeln; 

integer; 

writeln( 1 Now sorting ... (ttiis might take a few minutes). 1 ); 

end; 

function Less; 
var 

FirstObject : FileMame absolute X; 
SecOl'd>bject: FileName absolute Y; 

begin 
Less : = FirstObject.Fi lenn < Secord:>bject.Fi lenn; 

end ; 

94 TURBO TEOINIX January/ February 1988 

PARTNERS OF A SORT 
continued from page 93 

nearly 5,000 names!) and to make the next step easy. 
Once DOS hands the CPU back to Turbo Prolog, 

the program opens TEST.OUT and MYFILES.DAT. 
The next step is to assign the read and write devices 
so that the program reads the data from TEST.OUT, 
formats the output, and writes it to MYFILES.DAT: 

goal 

system("RDSRT"), 
openread(f1,"TEST.OUT"), 
openwrite(f2, 11MYFILES.DAT 11 ), 

readdeviceCf1), 
writedevice(f2), 
pretty_out(f1,f2), 

The clause that does the formatting is 
pretty_out. First, the identifying tags in TEST.OUT 
are read one at a time. Then the associated file 
information is removed from the Prolog database 
using retract, and the same information is neatly 
output to a text file: 

pretty_out(ln,Out):-
repeat, 
readint(A), 
retract(file(File,Ext, ,Size, 

Path,Hour~Min,Year, 
Mo,Day,A)), 

writef( 11%-8%-4 %6.0f %02:%02 11 , 

11%02-%02-%4 %-24\n", 
File,Ext,Size,Hour,Min, 
Mo,Day,Year,Path), 

writedevice(screen), 
write("%"), 
writedevice(Out), 
eof(ln). 

When we've reached the end of TEST.OUT, no 
clauses remain in the database and control is passed 
back to the goal. The program can button up the 
output file and delete TEST.DAT and TEST.OUT. We 
must take care to reassign the read and write devices 
back to the keyboard and screen, respectively. 

readdevice(keyboard), 
writedevice(screen), 
closefile(f1), 
closefi leCf2), 
deletefile("TEST.DAT"), 
deletefile("TEST.OUT"), 

FINDMATCH AND THE TURBO PROLOG 
TOOLBOX 
The univdir predicate depends on the findmatch 
tool predicate from the Turbo Prolog Toolbox 
(located in BIOS.PRO on the Tools disk). However, 
there is one quirk in working with findmatch straight 
off the distribution disk. 

The problem is that findmatch evaluates and 
returns file sizes as integers. Because the range for 
integer values is between -32768 and 32767, this lim
its the file sizes that findmatch can accurately report. 



On the surface, it seems easy enough to fix this prob
lem: just specify the file size to be real in both find
match and the helping predicate convert_match. 
Having done this, however, you'll notice that the 
sizes of some files are reported correctly, the sizes of 
others are reduced, while some file sizes still have 
negative values. 

The culprit is within the DTA_word predicate 
used in convert_match. DTA_word relies on the 
built-in predicate memword, which returns an 
integer corresponding to the specified segment and 
offset in memory. If the most significant bit of the 
word at that location in memory is set, the integer 
value is considered negative. 

To solve this dilemma, I've created adjust, which 
guarantees that convert_match gets numbers in the 
correct format for the calculation of file size. Here's 
how it is defined: 

predicates 
adjust(integer,real) 

clauses 
adjust(l,R):-

1 < 0, 
R = I + 65536.0, 
!; 
R = I,!. 

Recall that an integer is a 16-bit quantity. If the high
order bit is set, the integer is considered to be a neg
ative number in the range -32768 to -1. To convert 
this value to a number from 32768 to 65535, we add 
65536.0. By adding a real number (instead of just 
65536) to the integer value, the result R is stored as a 
real. So, the conversion from integer to real is made 
automatically. 

The corrected portion of the code has been high
lighted in Listing 3 so that you can easily modify 
your toolbox code. 

TOOLBOX TO TOOLBOX 
The technique of writing data to a file and then 
using the system predicate to efficiently process that 
data is simple, yet powerful. Although no single lan
guage can aspire to be all things to all programmers, 
the Borland family of language products and tool
boxes offers an impressive arsenal of code for the 
programmer seeking results. The principle behind 
this method can easily be applied to situations where 
heavy number-crunching is required in a Prolog pro
gram, or perhaps, in situations where pattern match
ing or symbolic manipulation is needed inside a Pas
cal or C program. • 

Alex Lane is a knowledge engi.neer living in Jacksonville, 
Florida. He is the moderator of the Prolog conference on the 
Byte Information Exchange (BIX). Direct your correspon
dence to him at 1873 Bartram Road, Jacksonville, FL 
32207. 

Listings may be downloaded from CompuServe as 
TS ORT.ARC 

pr ocedure OutP; 
var 

1 : integer; 
Thing : Fi leName; 
g : text; 

begin 
wri teln; 
wr i teln( •writing t~rary disk. fi Les • . . '>; 
Ass i gn(g, 'TEST .Cl.IT'); 
Rewri teCg>; 
repeat 

SortReturn( Thing); 

writeln(g, Thing . Index); 
until SortEOS; 
cl osec g >; 

end; 

procedure DisplayResults(results integer); 
begin 

Wri teln; 
Wri teln; 
case Results of {display sort results 

0: Writeln('Returning to main program.'); 
3 : WritelnC'Error: not enough memory to sort'); 
8: Writeln('Error: illegal item length.'>; 
9: Writeln( 1 Error: can only sort 1

1 Maxlnt, 1 records.•>; 
10: Writeln( 1 Error: disk full or disk write error.'); 
11 : Writeln( 1 Error: disk error during read.'); 
12 : Writeln('Error: directory full or invalid path name'); 

end; C* case *) 
end; (* DisplayResults *) 

begin 

end. 

Results := TurboSort(SizeOf(fileName)); 
OisplayResul ts( Results >; 

LISTING 2: ~J NJVDIR.f~ P f1 

! " UN l VD! R .PRO 

• I 

This routine collects a database of all file s in 
all suWirectories on a disk , sort s the f ilenames , and 
then uses the res ult to ou t put a formatted, sort ed List of 
fi Les to the screen and nn ASCII file. 

Copyright 1987 , by Alex Lane 

This progrLim uses modified routines from the Turbo Prolog 
Toolbox, which is Copyri::;ht 1987 , Borland International. 

domains 
fil e = f 1; f 2 
chnrlist:: ch a r * 

continued on page 96 

J anuary/ February 1988 TURBO TECHNIX 95 



database 

f i le(str i ng 1 string, integer, real , string, integer, integer, real, 
integer, integer, integer) 

path(string) / *used to build a pseud.1-stack of subdirectories */ 
t(integer) / *th is functor provides a 1 tag' identification • ; 

predicates 
univdir(string) 
posl or record( string, integer, intcgr.r, inteuer,re.11, intcqr.r, 

- - irllegcr,rci'.ll,string) 
tag( integer) 
tok.eni ze f i l cnamc(str i ng, string, s tr ing) 
l ist_text'Cs t ring,charl ist) / "' ( i ,o) */ 

l i st_text1 (string, chartist, string) 
append( chartist, char list , chartist) 
pretty_out(f i le, file) 
repeat 

goa L 
makewindow(1,7,7 1

11 Hard disk directory list sorter 11 ,0,0,25,80), 
asserta(t(1)), /"' initialize the tag index to 1 */ 

1• The file TEST.DAT will contain 18-byte records consisting of 
a 12-byte file name, a 4-di3it tag identification, and a 
carriage· return· line· f ecd c01rilbi nation 

• / 
openwr i te( f 1, 11TEST .OAT 11

), 

/"' the argl.ITICnt to univdir() specifies where to START the 
di rectory search. Examples: 

· / 

1111 
• searches the default disk 

11 c: 11 
• searches the C: disk (typically the hard disk) 

11 \\PROLOG 11 
• searches the subdirect:iry \PROLOG on the 

default disk (recull th.-1t the 1 \ 1 charactP.r 
must appear twice in a string since it is the 
escape ch:iracter). 

univdir( 11 C: 11 ), 

closefi le( fl), 
retract(t(_)), /* this fella's job is done*/ 

/* we no\.I make a system call to DOS, whi ch \.lill run the 

· / 

program RDSRT.COM for us. RDSRT.COM already expects to find 
a file called TEST.DAT in the default directory, and after 
procC'ssing, wilt leave a file called TEST.OUT for us to use 
when control returns to this program . 

systcm("RDSRT 11
), 

96 TURBO TEQINIX J anuary/February 1988 

clearwindow, 
openread(fi , 11 TEST .OUT 11 ), 

1• we wil 1 write the sorted hard disk file information to the 
fi l e MYFILES . TXT on the default disk. 

• / 
openwr i te( f2, "MYF I LES. DAT 11 ), 

readdevice(f1), 
wri tedevi ce( f2l, 
pretty_out( f 1, f2), 
readdevi ce( keyboard), 
writedevice(screen), /* restore the console devices for i/o */ 
closefi le( fl), 
closef i leCf2), 
deletefi le("TEST .DAT"), 
deletefile(l1TEST.OOT 11 ), /*clean up a little before exiting* / 
write(" \ n\ rll one . The sorted f i le listing is in MYFILES . DAT"). 

1• FIMDMATC.PRO is a modified excerpt of the Turbo Toolbox file 
BIOS.PRO Mod ifi cations to support file sizes greater 32767. 

• / 
incl lK:le "f i ncinatc . pro" 

c lauses 

/ *The univd i r() pred icate is the workhorse of the the program. It 
cal ls the Toolbox predicate fin<*natch() to retrieve filenames. If 
the file name is the name of a subdirectory, the predicate 
post_or_record() asserts the sutx:Hrectory name using the path() 
functor . Otherwise, the filename is prepared for sorting and 
asserted through the file() functor. · / 
univdir(Path) :-

concat (Path, 11 \ \ • . * 11 , SearchSpec), 
f i n<*natch( Search Spec, 63, 

Filename, Fi leAttr, Fi leH, Fi leM, Fi leY, 
Fi leMo, Fi leO,F i leSi ze), 

Filename<> 11
•

11
, /* i gnore the DOS . and •• file entr i es* / 

Fil ename<> 11 • • 11 , 

post or record( Filename, Fi leAttr, Fi leH, Fi leM, Fi leY, Fi leMo, 
- - FileO,F il eSize,Path), 

fail. / * we use fail here to force backtracking to 
firdnatch() •1 

/ *Once we've exhausted the entries in any given directory, this call 
to univdi r() sets us down another path to a new subdirectory by 
retracting a path name through the path() functor. 

• / 
univdir( ):· 

retract< path< NewPath l l, 
wr i te("! 11 ), 

univdi r(NewPath). 

/ *if we've run out of entries and out of path names, we 1 re done 
scanning the directory on the disk . 

•1 
univdir( ): · I. 

post_or _record( Name, 16,_,_,_,_,_, _,Path):· 
concet (Path, 11

\ \",Halfway), 
concat c Halfway, Name, NewPath), 
asserta( path( MewPath)). 

post_ or _record( Name, Attr, Hour , M; n, Year ,Mo,Oay, Size, Path): -
Attr <> 16, 
write( 11 #11 ), 

tokenize filename(Mame,File,Ext), 
writedevTce(f1 ), 
tag(A), 
writef( 11 X·8X-4X4\n 11 , File,Ext,A), 
wr i tedevi ce( screen), 



assertz( f i Le( File, Ext, At tr, Size, Path, Hour, Min, Year ,Mo, Day ,A)), 

/* I'd like to extract the file end extension parts of the name so 
as to be able to uniformly sort on en 8-char file and 3-char 
extension, with both the file and extension flush left. In other 
words, instead of having names like: 

. , 

C. BAT 
FOO.BAR 
DISKDOPE.C 
README 

I'd I ike to have: 
C .BAT 
FOO .BAR 
DISKDOPE .C 
READ ME 

tokenize fi lename(Mame,Fi le,Ext) 
list 'text(Mame,Mamel ist), 
appe;;.,CA, [' . ' ITJ ,Mamel ist), 
B ; [ '.' I T l. 
list text(Fi le,A), 
list=text(Ext,B). 

tokenize_ f i lename(Mame, Mame, 11 • "). 

list text("",()) : - ! . 
l ist=text(String, [HITJ) 

bound(String), 
f rontchar( String, H, Rest), 
list text(Rest, T). 

l ist_textCString, [H ITJ l : • 
bourd(H), 
Li st_text1( 1111

, CH I T1, String). 

list text1CA, [],Al : • ! . 
list=text1CA,[HITJ,0Ut) :· 

str char(Hs,H), 
conCat CA, Hs, AHs), 
l ist_text1(AHs, T ,Out). 

tag(M) : • 
retract(t(A)), 
M ; A + 1, 
assertaCtCM)), ! 

append( [J ,L,L). 
eppendC [XI L 1J ,L2, lX IL3J l : • appendCL 1 ,L2,L3). 

1• The pretty_out() predicate lets me output a nicely formatted list 
of file information . . , 
pretty_out( ln,OUt) : • 

repeat, 
readint(A), 
retract( file( Fi le, Ext, , Size, Path, Hour ,Min, Year ,Mo,Oay ,A)), 
writef("X-8X·4 X6.0f - X02:X02 X02·X02·X4 X·24\n", 

Fi le,Ext, Size, Hour ,Min,Mo,Day, Year ,Path), 
wr i tedevi ce( screen), 
write( 11 X11 ), 

wr i tedevi ce(OUt), 
eof( In). 

repeat. 
repeat: - repeat. 

LI ST I MG 3: FI MDHATC. PW(' 

I Ir:*************************************"'"'***"'**"'******************* 

Turbo Prolog Toolbox 
CC) Copyright 1987 Borland International. 

(Corrections 10/87 by a. lane) 

Returning all matching files to a file specified by backtracking. 

Ex : Fi ndMotch ( 11c: \ \prol og\ \ *. PR0 11
, ScarchA t tribute ,MatchF i l eName, 

Fi lesA t tr i butc, Hour, Min , Year, Month ,Day, Fil esS i ze) 

Ex: Fi ndMatch( 11 c: \ \ •. * 11
, 63, Hatchf i l cName, Fil esA t tribute, Hour, Hin, 

Year ,Honth,Doy, Fil cs Size} 

Rnnge for attributes remerrbering it is a bitmask 
Attributes 0 Search for ordinary files 

Hour 
Min 
Year 

Month 
Day 
Fi less i zc 

1 Fi le is read only 
2 Hidden file 
4 System file 
8 VolLmC label 
16 Subdirectory 
32 Archive file (used by backup & rest.) 

0-23 Hour of day when the file was created 
0-59 Minut es 
1980·2099 

1·1 2 
1-31 
0·30MB Size of file 

*****'* *** ******** * *"' *********"'* **********"'* * ** * * "'**"'************'***I 

PREDICATES 
nondeterm Fi ndMatch( String, Integer, String, I ntegcr, Integer, Integer, 

Real, Integer, Integer, Real) 
/ * NOTE: Last parameter in FindMatch changed from Integer to Real 

10/87 a.lane . , 
nondcterm findfi les(STRING, INTEGER) 
nondeterm f i ndnext 
convert Hatch( String, String, Integer, I ntegcr, l nteger, Real, Integer, 

- I ntcger, Real) 
/* NOTE: last parameter in convcrt_Mi'ltch changed from Integer to Rcol 

10/87 a.Lano •1 

continued on page 98 

January/ Febrna1)' 1988 TURBO TEGINIX 97 



continued from page 97 
DTA_word(String, Integer, Integer) 
F rontChar2( String, Char, String) 
i solate_bi ts( Integer, Integer, Integer, I ntcger) 
adjust( integer, reel) 

CLAUSES 
f i ndMatch( f i leSpec ,Attribute, 
f i leName, Fil esAttr, Hour ,Min, Year ,Month, Day, Fi less i ze): -

/*Allocate Oefault Disk buffer area*! 
str_len(DTA, 128), 
ptr _dword(OTA, DTA_SEG, OTA_ OFF)' 
AX = S1A00, OS=OTA SEG, OX=DTA Off, 
bi os<S21, reg(AX, o ~ O, ox, o, o, os ~Ol ,_l, 
f i ndf i les( f i leSpec, Attribute), 
convert_Match(DTA, Fil eName, Fil esA ttr, Hour, Min, Year ,Month, Day, 

Fi lesSize). 

f indf i les(F i leSpec,Attributc): -
pt r _dword( f i l eSpec' FSPEC_SEG' f SPEC_Of f)' 
bios(S21, reg($4E00,0,Attribute,FSPEC OFF,0,0,FSPEC SEG,0), ), 
findnext. - - -

findnext. 
findnext:-

bi os(S21, reg(S4F00, 0, 0, 0, 0, 0, 0, 0), reg(AX ,_,_,_,_,_,_,_)), 

~~~~ext. 

convert Match(OTA, Fi leName, Fil esA ttr, Hour, Min, Year, Month, Day,
- FilesSize):-

DTA word(OTA, 21, FAttr), bi tand(fat tr, 255, f i lesAttr),
OTA - word(OTA, 22, Fi lesT ime), bi tand(Fi lesT ime, 63 ,Hin),
isolate bits(filesTime,6,31, Hour),
OTA word(DTA, 24, Fil esDate), bi tand(Fi lesDate, 31, Day),
isolate bits(Fi lesOate,5, 15,Month),
isolate-bi ts(Fil esOate, 9, 127, Yeur1), Year=Year1+1980,
OTA wordCDTA,26,LowSize),
OTA-word(OTA, 28, Hi ghSi ze),

/* lowSize ind/or HighSize may be returned as negative nurbers if
they ere larger then 32767 (they ere, after ell, integers). The

*I
adjust() predicate turns •em into reals for us. a.lane

adjust C Lows i ze, LS),
adjust CH ighSi ze, HS),
f i less i ze=LS+1024. 0*64. O•Hs,
ptr _dword(DTA,DTA_SEG, OTA_ Off),
NEii Off = OTA Off+30,
pt r =dword(Fi leNamel ,OT A_SEG, NE\.l'_OFF),
concat(FileNamel , 1111 ,FileName). /*Create a copy*/

98 TURBO TEGINIX January/ February 1988

I****************•**************************•••****••***************
Return a word from the OTA area

* **** ** • * • ** ******* ******** **** **** * *** * **** * ** • • • • ****** * **** ******I

OTA_word(OTA,Of f, \IORO): -
ptr dword(OTA,DTA SEG,DTA Off),
NEii-OFF =OTA OFF+OFF, -
rnem:iord(OTA_SEG, NEll_OF f, \IORO).

I•••••••*••***•*******••**••••*•••*******•**•*****•••*••*•**•*******
Special version of frontchar

* * • *** * ** * • ** ** ** ** *** * • * * **** * *** * *** * * * • * • * •• * • • *** * * • • * ** * *******I

frontChar2(S,C,S2) :- FrontChor(S,C,S2), I.
frontChar2(S, '\000' ,S2) :-

ptr dword(S,S SEG,S OFF),
S2 Off=S Off+l, -
ptr _dworcics2, s_sEG, s2_0F F >.

i solate_bi ts(llord, Shi ftfac, Bi tHask, V)

bi tr i ght(llord, Shi f tf BC' V1)'
bi tand(V1 'Bi tHask 'V).

/***

/***•*

adjust(integer, real)

(added 10/87 by a. lane

Recall that an integer is a 16-bit quantity. If the high-order bit
is set, the integer is considered to be a negative nurber in the
range -32768 to -1. To convert this value to a nurber from 32768 to
65535, we odd 65536.0 (the '.0 1 port mnkcs Rurc we ndd o rcol
m.anbcr, else we'd be effectively ndding zcrot)
* ** • * * * *** ** ** ** * *** ** * •• •• *** * * ** * * * * **** * * ** * * * *** * ****** ** *******I

adjust(I, R) :-

l < 0,
R I + 65536.0,
I·
R = I, I.

Ne"'' Introducing Turbo C 1.5-
the best optimizing compiler

gets even better!
The professional
optimizing compiler
for less than $100

Turbo C"' is a techni
cally superior produc
tion-quality compiler.
(Borland's equation sol
ver. Eureka··. is written in
Turbo C.) And our Turbo
C 1.5 offers a new library
of the highest presenta
tion-quality graphics in
the industry-the kind
you'll see in Quattro:·
our new professional
spreadsheet.

And spectacular graph
ics are just part of the
brand-new features.
Turbo C 1.5 enhance
ments also include:
• A professional-quality

graphics library of over
70 functions

• A librarian that allows you
to build your own object
module libraries

• Context-sensitive help for
the language and the
library routines

Turbo C 1.5 gets you into great pictures and adds dazzling new f eatures

• Text/ video functions.
including windows

• 43- and 50-line mode
support

• VGA. CGA, EGA. Hercules.
and IBM 8514 support

• File search utility (GREP)

BORLAND
INTERNATIONAL

• Sample graphics
applications

• More than 100 new
functions

For professional-quality C
at an affordable price. no one
else comes close to Turbo C.
Because no one can deliver
technical superiority like
Borland.
60-Day Money-back Guarantee*

For the dealer nearest
you or to order. call

(800) 543-7543
Minimum 1y1tem requirements: For the IBM PS/2 .. and the IBM9 and CompaQ• families of personal computers and all 100% compatibles. PC-DOS (MS-0059

) 2.0 or later 384K.
·customer sat1s!act1on is our main concern. ii within 60 days ot purchase this product does not perform in acco1dance wi!h OUf claims, can our custome1 service department. and we will arrange a refund
All BodanO Ofo.lJCIS are traoemar~s or 1eg1Slete<J triOemalks ol Borl¥10 lnlema11onal, Inc Otner bland nl llfOO.CI ~ ;n lriGerl'Mks or rt\JISlere<J lrademifks ol mew rtsl)KINe noklers Copyn911 C1987 Borland lnlelNliOllil. Inc 811165

It's easy to upgrade to Turbo C 1.5!
Just complete th is coupon and mail it with payment befo re June 30, 1988. Or, call us at (BOO) 543-7543 and be ready to give our operators your name,
credit card number, and the serial number on your Turbo C master disk.

Turbo C 1.5 Upgrade Price

CA and MA residents add sales tax

Shipping and handling
In US $5.00 (Outside US add $10)

Total amount enclosed

$ 33.50

$ ____ _

Must include your Turbo C serial# ________ _
Return lh1s coupon and the Turbo C RTL source code reg1slralion lorm lrom your Turbo
C manual along with your payment by March 31 , 19BB and receive your Turbo C 1 5
upgrade lor lreei (No phone orders please.)

Turbo C 1.5 Runtime library
Source Code $ 150.00

CA & MA residents add sales tax
Price includes shipping lo all US cities.
(Outside US add $10)

Total amount enclosed $ ____ _

Please specify diskette size o 51/4 o 31;,·

Method al Payment· D VISA D MC

Credit card expiration date: ___ / __ _

o Check o Bank Dratt

Cardi I I I I I I I I I I I I I I I I

Name ----------------

Sh1pAddress --------------

City ________ Slale _______ _

Zip ______ Phone(_) -------

Mail coupon ta: Turbo C 1.5 Upgrade Dept.. Borland International
45B5 Scotts Valley Dnve, Scotts Valley, CA 95066

This otter is lim11ed 10 one upgrade pe1 valid product serial number Nol good with any other 0He1 horn
Borland Ou1s1de US make paymen1s by bank dralt payable in US dolla1s drawn on a US bank
COOs and purchase 01ders will nol be accepted by Boi!and

USING RANDOM FILES IN
TURBO BASIC
Master Turbo Basie's random files and he outstanding in your
FIELD.

Ethan Winer

If you were to ask most BASIC pro
grammers which area of programming

•

was the most difficult for them to master,
the answer would undoubtedly be creat
ing and accessing random data files.

PROGRAMMER While BASIC has always enjoyed a repu-
tation for being the easiest of the high-level lan
guages to learn, there is no disputing that the com
mands for manipulating database files are often less
than obvious. Indeed, because part of my work is
supporting a line of BASIC enhancement products,
this is one of the topics I am most frequently asked
to explain.

The focus of this article, therefore, is on the vari
ety of techniques that are used to create, read, and
write disk files with fixed-length records. Unlike sim
ple sequential files that are accessed with INPUT
and PRINT statements, the fixed-length files used in
most databases require additional preparation.

FILE BASICS
Before you can read or write any disk file in Turbo
Basic, you must first use the OPEN command. There
are actually two different forms of OPEN-one
being an abbreviated version-but we will use the
more formal syntax here because it's clearer. A valid
DOS filename must be given, as well as a number
that will be used for all subsequent references to the
file. You may choose any number you'd like, as long
as only one file with that number is open at one
time.

The example shown in Figure 1 opens a file
named TEST.DAT for sequential output, assigns it

OPEN "test.dat" FOR OUTPUT AS #1 'open the file
FOR x = 1 TO 25 'print the messages

PR I NT #1, "This is message m.mber" x
NEXT
CLOSE #1 'close the file

Figure 1. Sequential JUes are written using the familiar
PRINT command.

100 TURBO TEOINIX January/ February 1988

the number 1, and writes a 25-line test message.
Notice that once the name and number have been
originally specified, only the number is needed when
printing to the file.

Because this file is being written to with PRINT
statements, a carriage return and line feed will be
added at the end of each message line. This corre
sponds exactly to the way the PRINT command nor
mally works when writing to the screen. As you
might expect, sequential files are read using a disk
form of the INPUT statement, and the carriage
return/ line feed pair that was originally added by
PRINT tells Turbo Basic when the end of each line
has been reached.

OPEN "test.dat" FOR INPUT AS #1 'open the file
FOR x = 1 TO 25

LINE INPUT #1, test$ 'read each line
PRINT test$ 'show it on screen

NEXT
CLOSE #1 'close the file

Figure 2. Reading a sequential file is done with INPUT or
LINE INPUT.

The code in Figure 2 improves on Figure 1 by
using LINE INPUT rather than INPUT, because
INPUT cannot digest quotes, commas, or colons. In
this example, we know that 25 lines are in the file, so
a simple FOR/ NEXT loop can be used to read each
line. But what should we do if the number of lines to
be read is unknown? Attempting to read beyond the
end of a sequential file produces an error, and the
best way around this problem is to use the EOF (End
of File) statement just prior to reading each line, as
shown in Figure 3.

continued on page 102

RANDOM FILES
continued from page 100

OPEN "test.dat" FOR INPUT AS #1
~HILE NOT EOF(1) .

LINE INPUT #1, tests
PRINT tests 'to the screen

~END

CLOSE #1

Figure 3. Using BASJC's EOF() func
tion to determine the end of a fi/,e.

This is the preferred approach
for reading sequential files, since
it can accommodate any number
of lines without ever causing an
error. But there are two funda
mental problems with sequential
files-reading them is relatively
slow, and the only practical way to
get to the last line is by grinding
through all of the lines before it.
True, Turbo Basic does offer a
binary mode to read any portion
of a file, but binary access is not
really intended for getting individ
ual lines of text. Further, how
would you know where in the file
the last line begins?

ENTER RANDOM ACCESS
When a sequential file is being
read with INPUT or LINE INPUT,
Turbo Basic must examine every
single byte as it comes from the
disk, looking for either a carriage
return that marks the end of the
line, or a CHR$(26) (Ctrl-Z) that
marks the end of the file . This
takes a considerable amount of
time when many lines are to be
read. Worse, for each string that is
being read, additional time is
needed to locate a suitable place
in memory to store it. Then, the
string data must be placed there,
and finally that portion of mem
ory must be marked as being in
use.

Random access files are instead
read (and written) in chunks,
which can quickly be placed into
an area of memory that has pre
viously been set aside just for this
purpose. Instead of checking each
byte as it is being read, Turbo
Basic simply grabs a portion of
the file from the disk in one oper
ation. And because random

'-------- custname ___/__ phone$___/_ etc. -

Figure 4. A random field buffer is comprised of separate strings.

access files are comprised of fixed
length records, it is easy to deter
mine where in the file a given
record begins.

Of course, you don't have to
calculate the location of the bytes
to be read or written-Turbo
Basic does this automatically. By
specifying the length of each
record when the file is first
opened, any record can be
accessed by simply using its
number. This is where the term
"random" comes from, since any
record can be accessed at random
in the file, without having to start
at the very beginning and read
past every record before it.
Another feature of random files is
that once they have been opened,
they can be both read and written
at will.

The example below opens a file
named JUNK DAT for random
access, and specifies that each
record have a length of 56 bytes.

OPEN 11 junlc.dat 11 FOR RANDOM
AS #1 LEN = 56

When this statement is executed
in a running program, a 56-byte
area of memory is set aside as a
storage buffer to hold the records
to be read or written. As a matter
of interest, file buffers are always
located in Turbo Basie's string
data area. Again, the file buffer is
simply a temporary holding area
for data on its way to or from a
disk file.

Besides telling Turbo Basic the
name of the file and the length of
each record, you must also define
the variables that will be assigned
to the file buffer. This is done
with the FIELD statement, as
shown below.

FIELD #1, 25 AS cust.name$,
14 AS phones,
5 AS zip.code$,
4 AS amount$,

4 AS balance.due$,
2 AS account$,
2 AS price.code$

Once these field assignments
have been made, the original
buffer space is divided into sepa
rate strings, like those shown in
Figure 4. The key point here is
that the 56-byte buffer memory is
set aside when the file is opened,
and the positioning of the strings
within the buffer is determined by
the FIELD statement.

Notice how the underscore
character is used to continue what
is really a single FIELD statement
over several program lines to
increase readability. Also notice
that even though some of the vari
ables being defined are in fact
numeric amounts, they must be
represented here as strings. Let's
take a closer look at this issue.

VARIABLE STORAGE
Whenever you assign a string vari
able, Turbo Basic must locate a
free area of memory sufficiently
large to hold all of the string vari
able's characters. Of course, short
strings occupy less memory than
long strings; the point is that the
amount of required memory var
ies, depending on the string's
length. Numeric variables are
handled very differently, though.
They use a fixed number of bytes
no matter what value the variable
happens to contain. For example,
all double-precision numeric vari
ables occupy eight bytes of mem
ory, while regular integer vari
ables require only two.

Whenever you enter a numeric
variable in response to an INPUT
command, Turbo Basic must con
vert the digits you type into the
appropriate internal format,
which takes time. This contributes
to the slowness of reading or

102 TURBO TEOINIX J anuary/ Febrnary 1988

writing sequential files, because in
sequential files, numeric values
are stored on disk as ASCII digits.

There is a problem inherent
in writing ASCII digits out to
disk to represent numeric values.
There are three digits in the
ASCII representation of the
value 100, but only one digit in the
ASCII representation of the value
6. Thus, the physical size
of the representation changes
depending on the value being
represented.

This does notjive with Turbo
Basie's requirement that each
record of a random file be the
same length as every other record.
To keep all instances of any
numeric type the same physical
size, numeric values are instead
represented on disk in Turbo
Basie's internal numeric formats.
In this format, the values 6 and
100 each occupy exactly two
bytes-the same physical size as
any other integer value through
out the integer range. Using a
number's "native" internal format
in a disk file also means that
numbers read in from a random
file can be processed very quickly,
because the conversion from
ASCII digits to a binary value has
already been performed when the
record was originally written to
disk.

But remember that random file
buffers are allocated and main
tained in string space. In a sense,
the buffer is a collection of
strings. What we need to do, then,
is to somehow convert a numeric
value into a string containing the
character equivalents of the
numeric value's internal binary
representation. This does not
mean that we convert a binary
integer value into a printable
string like "100" or "6"! The string
form of a binary numeric value
may or may not be printable; in a
sense, the string form is just the
binary bytes of the numeric value
with a string-descriptor "coating"
to make them palatable to Turbo
Basie's string-handling machinery.

Four different commands are
provided to convert each of the
numeric types to this string form,
and another four convert the

string form back to numeric
values of specific types.

MKI$ (Make an Integer into a
String) takes the two bytes that
represent an integer variable and
converts them into string form.
For example, the integer value 288
is stored internally by Turbo Basic
as two bytes-32 and 1-as illus
trated below.

x% = 288
address = VARPTR(x%)
DEF SEG = VARSEG(x%)
PRINT PEEK(address),

PEEK(address + 1)
PRINT PEEK(address) +

256 * PEEK(address +-1)

This results in the numbers 32
and 1 being displayed, followed by
the total combined integer value
288. MKI$ locates the integer vari
able x%, and creates a string from
the two individual bytes compris
ing x%. Both of the Turbo Basic
statements below do exactly the
same thing, although as you can
see, MKI$ is much terser and
simpler to use:
Value$ = MKI$(x%)
Value$ = CHR$(PEEK(address)) +

CHR$(PEEK(Address + 1))

The method used to store
single- and double-precision num-
bers is more complicated; we won't
bother with the exact formulas. It
is only important to remember
that the floating point conversion
routines operate the same way. To
create a string variable from a
single-precision number requires
the MKS$ function, while MKD$
does the same thing for a double
precision amount. The last con
verting function is MKL$, and it
converts Turbo Basie's long inte
gers to a string. Once the values
have been converted to string
form, they may then be assigned
to the variables that were declared
as part of the field statement.

In the example above, Value$
was assigned directly using the
MKI$ function . Unfortunately,
normal string assignments cannot
be used when filling the variables
in a field buffer, because of the
way Turbo Basic allocates string
memory. Each time a string is
assigned-even if it was defined
earlier-a new area of memory is
set aside to hold it. But since the
variables kept in a field buffer
must stay in the same place, we

can't use the normal assignment
statements. Remember, one of the
reasons random files are so fast is
because their buffer memory loca
tion is fixed when the file is first
opened.

LSET, RSET, AND MID$
Turbo Basic provides three com
mands that let you assign a string
that already exists without chang
ing its location-LSET, RSET, and
the statement form of MID$. All
of these work by letting you
replace characters within a string,
as opposed to creating an entirely
new string. Let's take a closer look
at each of these statements.

If you are designing a database
program to keep track of, perhaps,
the names and addresses of your
customers, at some point you must
decide how many characters are
to be allowed for each field. I usu
ally limit address fields to 32 char
acters, because that's how many
can comfortably fit on a standard
3 112-inch-wide mailing label.

Using that as an example, sup
pose an address occupies only 20
characters. What you'd really like
is to place the name into the first
20 character positions in the
string, and then pad the remain
ing 12 places with blanks. This is
precisely what LSET does. It's
important to understand that if
the trailing positions in a field are
not blanked out, then any rem
nants left over from a prior read
or write will still be present. Again,
the same area of memory is used
repeatedly for all file reads and
writes.

RSET is similar to LSET, except
it right justifies the new string into
the existing field variable. With
either LSET or RSET, attempting
to insert a string that is too large
assigns only as many characters as
will fit, without creating an error.

Notice that in addition to their
intended use for assigning field
variables, LSET and RSET can
also be used to advantage in many
other programming situations.
Since new space isn't established
each time the string is assigned,
these commands work very
quickly, while minimizing the clut
ter that normally occurs in the
string data area.

continued on page 104

J anuary/ Febrnary 1988 TURBO TEOINIX L03

RANDOM FILES
continued from page 103

Most programmers use MID$ to
extract a portion of a string, but it
can also be used to insert charac
ters, much like LSET and RSET.
But where LSET and RSET fill
any unused character positions
with blanks, MID$ instead leaves
them undisturbed. The syntax for
using MID$ to assign characters is
the same as when it is used to
extract characters; you specify the
starting position in the string, as
well as the number of characters
to include. Like LSET and RSET,
if you attempt to replace too many
characters in a string with MID$,
those that don't fit will be omitted
without causing an error. By the
way, the MID$ length parameter
is optional, and if it's omitted, all
of the characters through the end
of the string will be included.

PUTTING IT ALL TOGETHER
Now that we've seen the individ
ual steps needed to prepare a field
buffer, let's put it all together into
a single program. The example in
Figure 5 first opens the file and
defines all of the string variables
that comprise the field buffer.
Next, each variable is assigned a
value, and then the information is
written to a disk record. The last
step reads the next record from
the file, and reassigns its contents
to the original variables for
display.

Two new commands have been
introduced here: GET and PUf.
Unlike their graphics counterparts
(which have no relation to these
file versions), GET and PUf are
used to read and write disk
records. Besides indicating which
file number is to be read or writ
ten, you also specify which record
number to operate on. In truth,
the record number is an optional
parameter, and if it's left out,
Turbo Basic will default to the
next one in sequence. Personally,
I always include an explicit record
number,just to eliminate any pos
sibility of a mix-up.

Two other new commands
being used are CVI and CVS,
which complement MK.I$ and
MKS$, respectively. Where MK.I$

cname$ = 11Quux, Sam" 'make up some data
phon$ = 11 (408)-438-840011

zip$ = 11 12345 11

amt! = 102.45
bat.due! = 398.77
acct% = 158
pre.code% = 32

record.nl.ITlber = 123

OPEN "stuff.dat" FOR RANDOM AS #1 LEN = 56
FIELD #1, 25 AS cust.name$,

'open the file
'set up fields

14 AS phone$,
5 AS zip.code$,
4 AS amount$,
4 AS balance.due$, _
2 AS account$,
2 AS price.code$

LSET cust.name$ = cname$
LSET phone$ = phon~
LSET zip.code$ = zip$
LSET amount$ = MKS$(amt!)
LSET balance.due$= MKS$(bal.due!)
LSET account$ = MKl$(acct%)
LSET price.code$ = MKI$(prc.code%)

PUT #1, record.nl.ITlber
record.nl.ITlber = record.nl.ITlber +
GET #1, record.nl.ITlber

PR I NT cus t. name$
PR I NT phone$
PRINT zip.code$
PRINT CVS(amount$)
PRINT CVS(balance.due$)
PRINT CVl(account$)
PRINT CVl(price.code$)

CLOSE

•assign field variables

'write to record #123
'point to next record
'read it from disk

Figure 5. Using GET and PUf to read and write random fil,es.

obtains the two bytes that com
prise an integer value and create a
string from them, CVI does
exactly the opposite. That is, it
takes a two-character string and
creates an integer value from the
characters. CVD and CVL also
convert strings to numbers, with
the first intended for double
precision values, and the second.
for long integers. As in the MK.I$
example shown earlier, normal
Turbo Basic commands can
imitate the action of CVI. Of
course, I'm not recommending
that you program this way, but in
the interest of completeness,
here's what CVI really does:

x% = CVl(value$)
x% = ASC(value$) + 256 _

* ASC(RIGHT$(value$, 1))

RANDOM FILE TECHNIQUES
Now that we know the essential
operations needed to manipulate
random access files, let's look at a
few real-life situations. After a file
has been created and data placed
into it, one of the first things
you'll want to do is be able to
report on that data. For example,
you may need to identify all
accounts that have had a balance
due for more than 30 days. Or
perhaps you want the ability to
delete records from the file, or
provide other reporting options.
We're not going to pursue a
lengthy discussion of indexing or
sorting techniques here; however,
a few practical examples come to
mind.

First, you need to know how
many records are in the file. This
is easy to determine by dividing
the file size by the record length:

104 TURBO TEGINIX January/ February 1988

OPEN "accounts.dat" FOR RANDOM AS #1 LEN 125
nl.ITI.recs = LOF(1) I 125

FIELD #1, 32 AS account.names, _
32 AS address$,
25 AS city$,
2 AS states,
5 AS zipS,

14 AS phones,
6 AS date.dues,
1 AS pa; d. ynS I
4 AS last.pa)lllntS, _
4 AS bal .dues

today$ = RIGHTS(dateS,2) + LEFTSCdateS,2) + MIDS(dateS,4,2)

FOR x = 1 TO nllTI.recs
GET #1, x
IF date.due$ <= today$ AND paid.ynS <> "Y" THEN

LPRINT account.names, phqneS, CVSCbal.dueS)
END IF

NEXT

CLOSE

Figure 6. A database report that examines every record in the file.

OPEN "my-stuff.dat" FOR RANDOM
AS #1 LEN = 87

number.of.records = LOF(1) I 87

Notice that LOF is a handy way to
obtain the length of any file,
including .COM or .EXE pro
grams. But be careful to close the
file as soon as you get its length,
to avoid any possibility of altering
it:

OPEN "anyfile.ext" FOR RANDOM
AS #1 LEN = 1

size! = LOF(1)
CLOSE

Most of the data you'll be stor
ing in a random access file will
consist of either strings or
numeric values. However the best
way to store certain information is
not always obvious. For example,
dates can be represented in a vari
ety of ways. At the minimum, you
should omit any separating
hyphens or slashes, except when
displaying them on the screen.
That is, 01/15/ 88 would be kept
on disk in a six-byte field as
011588. But this method does not
allow a direct comparison; it is not
obvious that 011588 is later than
123187, regardless of whether you
use a string or numeric
comparison.

A much better approach is to
swap the digit pairs around so that
the year comes first, followed by
the month and day. Since one of

the main objectives of a database
report is to process the informa
tion as quickly as possible, using
this technique provides a dramatic
improvement. The example in
Figure 6 opens a hypothetical disk
data file, and then lists the name,
phone number, and amount for
all accounts that are due but not
yet paid.

This example assumes that the
field paid.yn$ contains either a
"Y" if the account has already
been paid, or an "N" or a blank if
it has not. We also assume that the
dates in the file were swapped
around into a YYMMDD format
when each record was written. If
the date the account was due is
today or earlier, and it has not
already been settled, then the
name and other information are
printed.

Since you'll undoubtedly be
coding these date fields many
times, this is a natural application
for Turbo Basie's multiline user
defined functions . In fact, an even
better approach is to pack all
dates into only three bytes (instead
of six) to save disk space, using:
CHR$(year- l 900)
CHR$(month)
CHR$(day).

DELETING RECORDS
The last item is a method for
deleting records from a database.
Of course, there's no reasonable
way to physically remove a record
from a disk file, so our only

recourse is to mark it in some way.
Many commercial database pro
grams reserve an extra byte in
each record for exactly this pur
pose, however we can eliminate
that wasted byte with some clever
programming.

Since text fields such as a name
or address don't need to accom
modate the PC's extended graph
ics characters, the simplest
approach is to convert one of the
letters in a name to its corre
sponding graphic symbol in the
"high" 128 bytes of the PC charac
ter set. This is accomplished by
either adding 128 to the charac
ter's ASCII value, or by using the
Turbo Basic OR function to do
the same thing by explicitly setting
bit 7 to a binary 1. The example
below retrieves the record to be
deleted from the file, adds 128 to
the ASCII value of the first char
acter in the last name field, and
then writes the record back to
disk:
GET #1, record.nlJ'Ober
LSET l.nameS =

CHRS(ASC(l.name$) + 128) +
MIDS(l.nameS, 2)

PUT #1, record.number

Then, when you're reporting on
the file and need to tell if a record
was deleted and should not be
included, all you have to do is
check the ASCII value of the field:

GET #1, record.nlJ'Ober
IF ASC(l.name$) => 128

THEN .•• 'record is deleted

WRAPPING UP
We have looked at a variety of
techniques for reading and writ
ing random access disk files, as
well as several tips and techniques
you can apply in your own pro
grams. While these examples are
far from the final word on the
subject, I hope they will encour
age you to experiment on your
own, and further explore one of
Turbo Basie's most powerful
capabilities. •

Ethan Winer owns Crescent Software,
and is the author of the QuickPak
utilities for Turbo Basic and
QuickBASIC.

January/ February 1988 TURBO TEGINIX 105

u -r:FJ

~ CONVERTING .COM FILES TO
~ $INCLUDE FILES

Managing Turbo Basic assembly language subroutines
is easier if you turn them into text.

Bruce Tonkin

What can't be done in Turbo Basic
directly can often be done from assembly
language. Nearly anything done in
assembly language will be faster than
equivalent BASIC code. These two rea-

wizAno sons form a compelling case for adding
assembly language routines to your Turbo Basic
programs.

Rather than import .OBJ files directly, Turbo Bas
ie's interface to assembler routines requires the
$1NlJNE metastatement. $1NlJNE works in either
of two modes:

1. Place the hex values of the machine code instruc
tions (in human-readable "&H" format) into your
file after the $1NlJNE metastatement.

2. Specify the name of a .COM file, enclosed in
quotes, after the $1NlJNE metastatement. The
binary bytes contained in the .COM file are read
into the native code program image being gener
ated by Turbo Basic.

This can be handy, but if you use a lot of separate
assembly language routines it is more convenient to
put them all into a single library file. Your disk will
be less cluttered and there will be fewer files to track.
However, there's no way to combine .COM files, and
Turbo Basic programs won't link with .OBJ files in
the standard fashion. What to do?

The simplest way to create library files is to some
how put the routines into a text file, and either
include them into your source code with the
$INCLUDE metastatement, or simply read them into
the editor and save them as part of your Turbo Basic
source code file. Unfortunately, assembler programs
as created according to the instructions in the Turbo
Basic Owner's Handbook are .COM files, and manually
converting a program from the .COM format to the
$1NlJNE "&H" text format can be a real chore.

Fortunately, there are ways to avoid most of the
effort. The method I provide in this article makes
things just about as easy as the "linked module"

106 TURBO TEOINIX January/ February 1988

approach to assembly language code used by Quick
BASIC, and it allows you to make libraries of
assembler routines with about the same effort you'd
need for QuickBASIC.

I will assume for this discussion that you have
referred to the Turbo Basic Owner's Handbook (see
Appendix C, especially) and have created several
.COM files from assembly language source code files
according to the instructions given there. Let's sup
pose those two .COM files are called MYl.COM and
MY2.COM. Each of them is to be inserted into your
program at a specific location.

FROM BINARY TO TEXT
First, we need to create text files MYl .INC and
MY2.INC from their equivalent .COM files. I have
written a short program called COM2INC to do that,
as shown in Listing 1.

COM2INC.BAS can be compiled to an .EXE file
with Turbo Basic and run from the command line as
you need it. It will convert the input file to an output
file with the .INC file extension. An input filename
entered without any file extension is assumed to
have a .COM extension. If you forget COM2INC's
syntax, or need to use input and output files with dif
ferent names, you can invoke COM2INC without any
command-line parameters and it will prompt you for
the input and output filenames.

For example, to convert MYl.COM to MYl.INC,
enter the command:
C>COM2INC MY1

That is sufficient to complete the conversion. Or, if
you want to convert MY2.BIN to MY2.HEX, enter the
command:
C>COM2INC

Answer the questions, filling in the complete file
names when asked.

The output file is a DOS text file with a maximum
of five hexadecimal values per line. If you'd like

more or less than that number, change the MOD 5
in the FOR loop to MOD n, where n is whatever
value you'd like. If you want only one value per line,
the IF test can be eliminated entirely and the FOR
loop can run from 1 to LASTBYTE; in that case, you
can also eliminate the Jines:

GET 1,LASTBYTE
PRINT #2, 11&H 11 ;HEX$(ASC(A$))

Because of the way the program operates, the first
line in the output file will always be blank. The blank
line does no harm.

COM2INC has no error checking. If the input file
doesn't exist, it will create a zero-length file with the
name you specified. If the output file already exists, it
will be overwritten. If there's no room on the disk
for the output file, an error message will be
displayed.

Place the Turbo BASIC metastatement

$INCLUDE MY1.INC

at the point where you would like to insert the code
from MYl.COM. Likewise, insert the line
$INCLUDE MY2.JNC

where you want to insert MY2.COM. Keep in mind
that such assembly code include files must be framed
within a SUB .. INLINE and END SUB framework.

Since libraries of .INC files are simply text files,
they are easy to maintain: to add a routine to a
library, just read the .INC file into the library from
disk and place it within the required framework:
SUB <MYCODE> INLINE
<include the .INC file here>
END SUB

and you're done. (You can pick whatever name you
like in place of <MYCODE>.) To get rid of a rou
tine, just mark it and delete it from Turbo Basie's edi
tor. It's simple!

A REAL EXAMPLE
Elsewhere in this issue, Juan Jimenez presents an
assembly language routine for detecting the CPU
type from within a program. Using GETCPU from
Turbo Basic is not difficult, and provides a good
example of the use of COM2INC.

From within a BASIC program, GETCPU is called
this way

CALL GETCPUCX%)

where X% is an integer parameter that returns a
value of 86, 186, 286, or 386, depending on which
processor is detected.

The assembly language source code for
GETCPU.ASM needs some slight modification to
work properly with Turbo Basic. The modified
assembly language source code file is given in List
ing 2, GETCPUTB.ASM. The changes only involve
the entry and exit code. I have added the first three
instructions:
PUSH BP
MOV BP,SP
LES DI I [BP+6]

continued on page 108

LISTING 1: COM2INC.BAS

' COM21NC.BAS
' ~.lr itten in Turbo Basic by Bruce Tonkin on 5/11/87

1 This program converts COM files to $INCLUDE text files
' with the Turbo Basic SINLINE meta-coornand. The output
1 files may be inserted or easily SINCLUDEd into
• Turbo Basic programs.

DEFJNT A-Z
F$•COMMAND$

'All variables will be integers
1 Check to see if there 1 s a conmand line

\.JH I LE FS= 1111

PRINT"This program will convert COM files to SINCLUOE files"
PRINT"for use with Turbo BASIC. The default file type of"
PRINT"the source file is COM. The default file type of the"
PRINT 11 output f ile is INC. You may override either defautt 11

PRINT"by entering a spacific file type specification. 11

PRINT"lf you enter no name for the output file, it wilt be 11

PRUH"named the same as the input file, but will have a file"
PRINT 11 type specification of INC. 11

LINE INPUT 11 Enter the name of the file to convert: 11 ;FS
llEND

IF COMMANDS•"" THEN
LINE INPUT"Enter the name of the desired output file: ";OS
END IF

IF INSTRCFS, 11 • 11)<2 THEN FS=F$+ 11 .COM"
IF 0$= 111 t THEN

'fix input spec

OS=LEFT$(F$, INSTR(FS, II. II))+ 11 l NC"
ELSE

'fix output spec,

IF INSTR(OS, 11 • 11)<2 THEN 0$=0$+ 11 .INC"
END IF

1both ways.

OPEN 11 R11 ,i,Fs,i
FIELD #1, 1 AS AS
LASTBYTE•LOF (1)
OPEN"0 11 ,2,os
FOR J:1 TO LASTBYTE-1

GET 1, I
X•ASC(A$)

'input file wil l be read one byte
•at a time into AS
'end of file position
'output file is opened

IF ((1-1) MOO 5:0) THEN PRINT #2,"":PRJNT #2,"SJNLJNE ";
PRINT #2,"&H";HEXS(X);
IF ((1-1) MOO 5<>4) THEN PRINT #2,",";

NEXT I
GET 1, LAST BYTE
PRINT #2, "&H"; HEX$(ASC(A$))
CLOSE
PRINT"Conversion is coo-plete. ";LAST9YTE; 11 bytes read."
END

January/ February 1988 TURBO TEGINIX 107

LISTING 2: GETCPUTB.ASH

nomc GETCPU
page 55, 132
title 1 GETCPU.BIN ·-·Determines which INTEL CPU is installed'

By Juan Jiminez -- Modified for Turbo Basic by Bruce Tonkin
Last modified 10/15/87

This program determines which one of the Intel CPU 1 s is being used
in the machine, whether it is an 8088/86, 80188/186, 80286 or 80386.

; It uses the differences in flag register bit configurations to
; determine whether the CPU is en 80286 or 80386, and the differences
; in shifting using CL to determine if it is an 8088/86 or
; 80188/186. It returns an integer result in the form of the last

three digits of the processor type, as depicted in the table below.

If the processor is The rout inc returns

80386 386
80286 286
80188/186 186
8088/86 86

; Use of the routine in Turbo BASIC is:
CALL GETCPU(XX)

; ~here GETCPU is an inl ine subprogram of form:

SUB GET CPU I NLI NE
SJNLINE "GETCPU.BIN"
ENO SUB

; Alternatively, GETCPU may be placed inline by means of byte values
; generated with Bruce Tonkin's COM21NC utility. Sec text for this
; listing.

; To asserrble:

; MASM GET CPU,,.;
; LINK GETCPU.,,;
; EXE2B IN GET CPU. EXE GET CPU. COM

; Code segment begins here

cseg segment para public 1 COOE •
ossl.IT'IC cs: cs cg, ds: cscg, cs: cscg, :;os: cs cg
org lOOh

·-···-·---····----------------------·-·-·--------------------------··
; Actual id routine begins here

gctcpu proc near
push bp ; Turbo Basic requires you save the base pointer.
mov bp,sp ; Hove the stack pointer to bp.
les di, [bpt6J ; Offset address of the integer parameter.

108 TURBO TEOINIX January/ February 1988

CONVERTING .COM
continued from page I 07

These instructions became necessary because Turbo
Basic expects the return value to be passed on the
stack rather than in a register, as with Turbo Pascal
and Turbo C. PUSH BP is required because we will
be using BP. The original GETCPU.ASM neither
uses nor modifies BP. MOV BP,SP loads the value of
the stack pointer into BP. LES DI, [BP+6] puts the
address of Turbo Basie's X% parameter into ES: DI.
Using this address, we will later write into X% the
code value indicating the type of CPU.

The exit code required a little enhancing as well.
These instructions were added after the POPF
instruction that restores the flags register from the
stack:
CLO
STOSll
POP BP

The first two instructions store the return value into
the integer parameter X%. POP BP restores Turbo
Basie's BP value, which the entry code had pushed
onto the stack.

Finally, the RET instruction that Turbo Pascal and
Turbo C require when returning from machine-code
subroutines is commented out. Turbo Basie's CALL
statement takes care of returning control-the
machine-code subroutine merely has to end.

Assemble and link GETCPUTB.ASM, and convert
the .EXE file to a .COM file:

MASM GETCPU,,,;
LINK GETCPU, I I;
EXE2BIN GETCPU.EXE GETCPU.COM

This done, convert GETCPU.COM to an include file
with COM2INC:
COM2INC GETCPU.COM

Listing 3 shows the text file produced by COM2INC
for GETCPU.COM. Note that line 1 is blank.

Building the convened include file into a program
is easy, as shown in Listing 4, WHATCPU.BAS. The
file GETCPU.INC is read into the file and bracketed
by the SUB GETCPU INLINE and END SUB
statements.

The 5-up "&H'' format used here is fairly compact,
if not especially readable. (Readability could be
improved by making the listing 1-up and loading the
assembly language mnemonics to the right of the
opcode bytes, in comments.) No linking or other spe
cial processing is necessary. Once your suite of
assembly language utilities is proven reliable, you
can tuck it into your main source code files without a
second thought. •

Bruce Tonkin is an independent program developer who
insists on using BASIC in preference to 0th.er languages.
He is the author of the My Word! word processor.

Listings may be downloaded from CompuServe as
COM/NC.ARC.

These first three instructions have changed from Juan's original
code. See the Turbo BASIC manual, page 401, for a small example
program and explanations of the logic. Fortunately, the original
routine didn't use di or the direction flag.
Turbo BASIC doesn• t demand that you save and restore the flags,
but I will leave that part of the program logic alone· - the changes
l 've made will be easier to see that way.

pushf Save the flag registers, we use them here ...
xor ax,ax Clear AX and push it onto the stack
push ax
popf Pop 0 into flag registers (all bits to OJ,
pushf attefl"l'ting to set bits 12·15 of flags to O's
pop ax Recover the saved flags
and ax,08000h ; If bits 12·15 of flags are set to zero then
Cfl"I' ax,08000h ; cpu is 8088/86 or 80188/86
jz _8x_18x

·---------·--
; It is either an 80286 or an 80386, let's find out which ...

mov ax, 07000h
push ax
popf
pushf
pop ax
and ax, 07000h
jz _286

Try to set flag bits 12·14 to 1's
Push the test value onto the stack
Pop it into the flag register
Push it back onto the stack
Pop it into AX for check
If bits 12·14 are cleared then the chip is
an 80286

·--
~Ok, we know it's an 80386 now, tell the user about it!

mov ax,386
j"I' DONE

; It's not a 286, so it rrust be a 386

·--
; Tell the user it is an 80286

286: mov ax, 286 ; Get the msg ready
j"I' DONE

·--
; \Je know it is either an 8088/86 or 80188/86, but which one is it?

8x 18x:
mov ax,Offffh Set AX to all 1 's
mov cl,33 ; Now we try to shift left 33 times. If it IS

shl ax,cl ; an 808x it will shift it 33 times, if it IS

an 8018x it will only shift one time.
jnz 18x Shifting 33 times would have left all O •s.

If any 1's are left it's an 80188/186
mov ax,86 ; Mo l 1 s, it 's an 8088/86

j"" DONE
·--
; It's an 80188 or 80186 •.•

18x: mov ax,186 ; Found a 1 in there somewhere, it's an 80188
; or an 80186

·--
;All done, let's go back . . .

DONE: popf
cld
stosw
pop bp
ret

; Restore the flag registers
; clear direction flag
; store ax in location for nuneric variable
; restore base pointer
for Turbo BASIC, the ret rrust *not* be used.

; End of code and segment

getcpu endp
cseg ends

end getcpu

LISTING 3: GETCPUTB. INC

SI NLI NE &H55 ,&H8B, &HEC, &HC4, &H7E
SINLINE &H6,&H9C,&H33,&HCO,&H50
SINLINE &H90,&H9C,&H58,&H25,&HO
SINLINE &H80,&H30,&HO,&H80,&H74
SI NLI NE &H18, &HB8, &HO, &H70, &H50
SI NLI NE &H90, &H9C, &H58, &H25, &HO
SINLINE &H70,&H74,&H6,&HB8,&H82
SINLINE &H1,&HEB,&H19,&H90,&HB8
S!NLINE &H1E,&H1,&HEB,&H13,&H90
S!NLI NE &HB8,&HFF ,&HFF ,&HB1 ,&H21
S!NLINE &H03,&HEO,&H75,&H6,&HB8
S!NLINE &H56,&HO,&HEB,&H4,&H90
SINLINE &HB8,&HBA,&HO,&H90,&HFC
$I NLI NE &HAB, &H50

LISTING 4: llHATCPU.BAS

' llHATCPU. BAS By Bruce Tonkin

' Determines and displays the Intel CPU type on the host machine
This version includes the machine code as INLINE statements.

' For TURBO TECHNIX V1#2
' Last modified 10/15/87

' Requires Juan Jiminez 1 s GETCPU asse<OOly language
routine modified to run with Turbo Basic.

XX:O
CALL GETCPU(XX)
X$•Ml0$(STR$(XXJ, 2)
PRINT 11 Your CPU is an [80 11 ;XS;

PRINT"] II

ENO

IF XX:86 THEN PRINT"/88";

SUB GET CPU l NL! NE
$1 NLI NE &H55, &H8B, &HEC, &HC4, &H7E
SINLINE &H6,&H9C,&H33,&HCO,&H50
$INLINE &H90,&H9C,&H58,&H25,&HO
SINLINE &H80,&H30,&H0,&H80,&H74
$INLINE &H18,&HB8,&HO,&H70,&H50
SINLINE &H90,&H9C,&H58,&H25,&HO
$INLINE &H70,&H74,&H6,&HB8,&H82
$INLINE &H1,&HEB,&H19,&H90,&HB8
$INLINE &H1E,&H1,&HEB,&H13,&H90
$I NLINE &HB8,&HFF ,&HFF ,&HB1 ,&H21
$INLINE &H03,&HEO,&H75,&H6,&HB8
SINLINE &H56,&HO,&HEB,&H4,&H90
SINLINE &HB8,&HBA,&HO,&H90,&HFC
SINLINE &HAB,&H50
ENO SUB

January/ February 1988 TURBO TEGINIX 109

DRAWING AHEAD
Draw the line at building complex graphics images pixel by
pixel. Turbo Basic provides an easier way.

Peter G. Aitken

One of the highlights of Turbo Basic is its
powerful set of built-in graphics state
ments, particularly the flexib le graphics

•
capabilities found in the DRAW state
ment. DRAW operates somewhat like a

sQUARE o~E miniature graphics programming lan-
guage embedded within Turbo Basic. First, one or
more commands are put into a string expression; the
string expression is passed to the DRAW statement;
and the DRAW statement executes the commands to
produce screen images. What can be accomplished
with DRAW is limited only by your creativity.

DRAW operates only in graphics mode, and can
be used only if you have a Color Graphics Adapter
(CGA), an Enhanced Graphics Adapter (EGA), a
Hercules graphics card, or a Video Graphics Array
(VGA) installed in your PC. Before executing a
DRAW statement, you must switch the display mode
to a graphics mode (using the SCREEN statement).
In order to understand the details of DRAW, you'll
need some familiarity with the nature of graphics
displays and the way they work.

GR APHICS BASICS
The smallest display unit on a graphics screen is
called a pixel. One pixel is the smallest dot that can
be displayed, and the smallest meaningful measure
of distance or movement on a particular screen is
the distance between two adjacent pixels. The overall
resolution of a screen is expressed as the number of
pixels available in the horizontal and vertical direc
tions. Thus, the CGA has a horizontal-by-vertical
resolution of 640 by 200 in high-resolution mode
(SCREEN 2) and 320 by 200 in medium-resolution
mode (SCREEN 1). In contrast, the EGA has a maxi
mum resolution of 640 by 350 (SCREEN 9), and the
new VGA standard found in IBM's Personal System
2 has a resolution of 640 by 480. As you might
expect, higher resolution-more pixels per unit
area-gives a clearer and more detailed image.

The location of any given pixel on the screen is

llO TURBO TEGINIX J anuary/ February 1988

expressed in terms of x,y coordinates, with x repre
senting distance (in pixels) from the left edge of the
screen, and y the distance from the top edge. By con
vention, the pixel in the upper left corner of the
screen has coordinates of 0,0, which results in the
pixel at the lower righ t corner of the screen having
coordinates (X-1), (Y-1), where X and Yare the
maximum resolution for your screen.

The relationship between distances in the X and Y
directions determines the aspect ratio of a particular
display. If the physical distance between adjacent
pixels is the same in the X direction as it is in the Y
direction, the aspect ratio is 1/1 , or 1. To facilitate
the use of inexpensive TV-derived display hardware,
however, the folks at IBM had to design almost all
PC graphics standards so that the aspect ratio is less
than one. In SCREEN 1 mode the aspect ratio is 5/ 6;
the ratio is 5/ 12 in SCREEN 2 mode, and 8.76/ 12 in
SCREEN 7 / 8/ 9 modes. The only exception is the
new VGA graphics standard, which has an aspect
ratio of 1. (Desktop graphics has finally come into its
own and is no longer beholden to TV receiver
designs.) Thus, with most graphics displays, a line in
the X direction will always be shorter than a line of
the same number of pixels in the Y direction. When
using the DRAW statement, take into account the
aspect ratio of your graphics display.

THE CONCEPT OF DRAW
Using the DRAW statement is conceptually similar to
drawing on a piece of paper with a pencil. When
drawing with a pencil, you control the direction and
distance the pencil moves, whether or not it makes a
line (by lifting it from the paper), and the color of
the line (by changing pencils). With the DRAW state
ment, you have control over the same parameters of
drawing, keeping in mind that color, of course, is
available only if you have a color display.

TA-45 U4

TA90 R4

The fundamental DRAW com
mands control movement in the
four major directions and the four
diagonal directions. These com
mands are:

Vn Move up
Dn Move down
Ln Move left
Rn Move right
En Move up and right
Fn Move down and right
Gn Move down and left
Hn Move up and left
(In all examples here and later, n
is the number of pixels to move).

These commands specify the
direction and distance to draw,
but how does the computer know
where to start drawing? Unless
otherwise specified (with com
mands to be discussed below),
drawing always begins at the last
point referenced, or LPR. The LPR is
the screen position most recently
referenced by a graphics state
ment. For example, after the exe
cution of a CIRCLE statement, the
LPR is at the center of the circle.
When you first enter graphics
mode with a SCREEN statement,
Turbo Basic sets the LPR to the
center of the screen. The Turbo
Basic mqnual has additional infor
mation on the LPR.

Now that you know the basic
DRAW commands, let's type a
simple Turbo Basic program:
CLS
SCREEN 9 'SCREEN 2 for CGA
DRAW "U50 R50 D50 L50"

TA 270 U4

R4

TAOU4

TA225 U4

When you first

enter graphics

mode with a

SCREEN statement,

Turbo Basic sets

the Last Point

Referenced (LPR)

to the center of

the screen.

This draws a square with sides
50 pixels in length. Now change
the DRAW argument to "E50 F50
G50 H50" and run the program
again. This time you get a dia
mond shape, which is nothing
more than a square tilted by 45
degrees. Experiment with these
drawing commands until you have
a good feel for them.

M:ODIFYING MOVEMENT
There are two modifying prefixes
that can precede any mov~ment
command. The prefix Jl causes
the movement to be made without
drawing-in effect, it lifts your
pencil point from the paper. To
see its effect, modify the sample

Figure 1. This drawing illustrates
how the direction of drawing can be
changed with the "TA'' command.
Each line segment is paired with the
DRAW command used to create it.
The length of each segment, four
units, is arbitrary-you should pay
attention only to the TA commands
and the direction commands (U, R,
etc.). The arrows are not part of the
screen output these commands pro
duce; they were added to show the
direction in which the lines are
drawn.

program given above by prefixing
one of the drawing commands
with B, for example:

DRAW "U50 BR50 D50 L50"

The second modifier is N,
which does not change what is
drawn, but causes the LPR to be
reset to its original position after
the command is executed rather
than being left at the end of the
just-drawn line. Its effects can be
seen by modifying the drawing
command in the sample program
to read:

DRAW "NU50 NR50 ND50 NL50"

Executing the modified program
results in a cross being drawn.
Because the N prefix resets the
LPR after each line is drawn, each
line starts from the same central
point rather than from the end of
the last line.

Another command is M, or
move. This is the only drawing
command that takes two argu
ments. Thus, "M x,y" draws from
the LPR to point x,y. If x has a
leading plus or minus sign, the
move is relative to the LPR. If not,
the move is made to absolute
screen coordinates. Thus
DRAW "M +10,10"

draws to a point 10 pixels to the
right and 10 pixels below the LPR,
while

DRAW "M 10,10 11

continued on page 112

January/ February 1988 TURBO TEGINIX 111

Figure 2. Each square was drawn with the same DRAW commands, (given in
Listing 1) with only the scale factor changed between squares. The LPR
returns to the center of the squares after each one is drawn.

Figure 3. Characters drawn using BIGPRINT. Note that all characters are
made up of straight lines, since DRAW cannot produce curves.

112 TURBO TEGINIX January/ February 1988

DRAWING AHEAD
continued from page 111

draws to absolute screen coordi
nates 10,10, which is the point 10
pixels to the right and 10 pixels
below the top left corner of the
screen. If prefixed with B, M
moves without drawing.

We have now covered the fun
damental DRAW commands,
those that actually draw lines and
move the LPR. You may have
noticed, however, that so far we
are limited to drawing in only
eight fixed directions with one
line color. Additional DRAW com
mands permit greater control.

There are two commands that
change the angle of movement:
"An" and "TAn". In both cases, n
specifies the new angle of move
ment. For the "A" command, n
can take only the values 0, 1, 2, or
3, specifying respectively 0, 90,
180, and 270 degrees (measured
counterclockwise from the verti
cal) . For the "TA" command, n
specifies the turn in degrees and
can take values between -360 and
360. Positive values cause a coun
terclockwise turn, negative values
a clockwise turn.

Both of these commands func
tion by rotating the reference axes
used by the DRAW command. To
illustrate what this means, imagine
that the drawing angle was turned
counterclockwise by 90 degrees.
This could be done by issuing one
of two commands: DRAW "Al" or
DRAW "TA90". After either of
these commands, the reference
axes will be shifted so that "up" is
toward the left, "left" is down,
"down" is toward the right, and so
on. This is shown in the follow
ing; both of these commands will
draw a box 100 pixels on a side:

DRAW "U100 L100 D100 R100 11

DRAW "U100 TA90 U100 TA180 11+
11 U100 TA270 U100 TAO" -

Note that the second line ends
with"TAO", which resets the draw
ing axes to their normal position.
It's a good idea to reset the axes to
their default orientation at the

end of any command string that
rotates them; otheIWise, subse
quent DRAW commands may give
very strange results! The genera
tion of lines and movement of the
LPR using various "TA" com
mands is shown in Figure 1.

Before moving on to the next
DRAW command, we need to look
at ways in which commands can
be presented to the DRAW state
ment. The DRAW command can
accept either a literal string or a
string variable as its argument.
Thus, the statement

DRAll 11 U10 R20 G30 11

has the same effect as the
statements:

A$ = "U10 R20 G30"
DRAll A$

INCORPORATING VARIABLES
While DRAW can accept a string
literal or a string variable, it can
not accept a combination of liter
als and variables. However, there
are ways to incorporate variables
into command strings; to illus
trate, let's look at a programming
example.

You have designed a small pat
ter11 whose commands are con
tained in the string DESIGN$.
The pattern is 40 by 40 pixels, and
you want to repeat the design
across the top of the screen. One
method is to use repetitive
statements:

DRAll "BM 1,4011 'go to x=1, y=40
DRAll DESIGN$ 'draw the pattern
DRAll "BM 41,40 11 'go to x=41, y=40
DRAll DESIGN$ ' etc.

DRAll "BM 601,4011

DRAll DESIGN$

Of course, Turbo Basic has sev
eral ways, such as FOR-NEXT
loops, to simplify the program
ming of repetitive operations.
Realizing this, you try the
following:

FOR I% = 1 to 601 STEP 40
DRAll "BM 11 ,I%, 11 ,40 11

DRAll DESIGN$
NEXT I%

The result? An error message!
Although the idea is logical, Turbo
Basic will not accept the com
bined string/ variable argument
passed to the first DRAW state
ment. There are two ways around
this. The first is to use Turbo Bas
ie's number-to-string and string
concatenation commands to
incorporate the variable 1% in the
command string, as follows:

FOR I% = 1 to 601 STEP 40
MOVE$= "BM 11+STR$(I%)+11 ,4011

DRAll MOVE$
DRAll DESIGN$

NEXT I%

By setting the

drawing color the

same as the

background color,

you can draw

invisible lines that

can later be made

visible by changing

the background

color.

The first time through the loop,
MOVE$ will equal "BMl,40"; the
second time through, it will equal
"BM4l,40", and so on.

The second method is to use
the VARPTR$() function , which
returns a pointer to a variable in
string form. This permits the
DRAW statement to access the
contents of variables, as follows:

FOR I% = 1 to 601 STEP 40
DRAll "BM =11+VARPTR$(I%)+ 11 ,40 11

DRAll DESIGN$
NEXT I%

Note the equal sign following the
DRAW command letter(s) that the
variable is to be associated with.

SIZING IMAGES
Now that you understand how to
incorporate numeric variables in
DRAW command strings, we can
look at the DRAW command for
changing the size of the drawn

images. The DRAW statement
uses a scaling factor to determine
final image size. The arguments to
the movement commands (U, D,
L, R, E, F, G, H, and relative M)
are multiplied by the scaling fac
tor, which is 1 by default, to give
the final dimension in pixels. The
command to modify the scaling
factor is "Sn". n can range
between 1 and 255, and is divided
by 4 to give the actual scaling
factor, ranging from 0.25 to almost
64. With the "Sn" commands the
actual size of objects can be
changed over a range from one
quarter to 64 times the size speci
fied by the numerical arguments
themselves. For example, the com
mand DRAW "Sl RS" would pro
duce a line two pixels long, and
DRAW "S255 RS" would produce
a line 510 pixels long. A good
demonstration of the scaling fac
tor is provided by the short pro
gram SCALER, Listing 1. The
screen output of this program is
shown in Figure 2.

Finally, there are a few miscel
laneous DRAW commands. First,
the "Cn" command causes
subsequent lines to be drawn in
color n. The range of colors avail
able depends on the type of
graphics adapter and monitor,
and on the display mode being
used. When using an EGA or
VGA, the PALETTE and
PALETTE USING statements also
play a role. Generally, the back
ground color and available palette
are set using the COLOR state
ment, and the foreground color is
set with the "Cn" argument to the
DRAW command. The default
color is the highest legal color
attribute. By setting the drawing
color the same as the background
color, you can draw invisible lines
that can later be made visible by
changing the background color
and/ or palette. (See the sections
of the Turbo Basic manual on the
COLOR, SCREEN, and PALETTE
statements for more details about
control of color.)

The final DRAW command is
"P color, boundary", which is very

continued on page 114

January/ February 1988 TURBO TEOfNIX 113

LISTING 1: SCALER.BAS

SCREEN 9
FOR I% = 2 TO 74 STEP 8

DRAW "BM 320,175 11

DRAW "S =" + VARPTR$(I%)
DRAW "BM +7,5 11

DRAW "U10 L14 D10 R14"
DELAY 0.5

NEXT 1%

LISTING 2: DRAWDEMO.BAS

'SCREEN 2 for CGA

•move to screen center
'change 175 to 100 for CGA
•set scale factor
•move to corner where next
•square starts
'draw square
•wait a bit

'**
'program DRAWDEMO.BAS
'demonstration of Turbo Basic DRAW cOITflland
•requires EGA or CGA adapter
'**

CLS : SCREEN 9 'change to SCREEN 2 for CGA

'Loop accepts messages and passes them to subroutine BIGPRINT

DO
CLS : LOCATE 1,1
INPUT "Enter text: 11 , MESSAGE$
IF MESSAGE$ = 1111 THEN EXIT LOOP
CALL BIGPRINT(1, 100, MESSAGE$)
LOCATE 24,37
PRINT "HIT ANY KEY";
WHILE NOT INSTAT : WEND

LOOP

SCREEN 0
END

'exit loop if null entry

'***

SUB BIGPRINT(XLOC%, YLOC%, MESSAGE$)

LOCAL MESSAGE.LENGTH%

'Declare and initialize array. The array is dimensioned 26
'elements long with subscripts 65 thru 90, so that the array
•subscript will match the ASCII code of the corresponding letter.
'Thus, ASC("A") = 65, and the commands to draw an "A" are in
'LETTER$(65)

DIM LETTER$(65:90)

'DRAW cOITfllands for letters A thru Z in order

114 TURBO TEGINIX January/ February 1988

DRAWING AHEAD
continued from page 113

similar to the PAINT statement.
The "P" command starts at the
current x,y coordinate and fills
pixels with the color color until it
reaches the boundaries indicated
by boundary. This command is use
ful for filling shapes that you have
created with other DRAW com
mands. Two points about the "P"
command need mentioning. First,
if the current x,y pixel is ~!ready
the boundary color, "P" will have
no effect. Thus, if you draw a fig
ure and want to fill it, you'll have
to move the current x,y position
into the interior of the figure
before issuing the "P" command.
Second, the "P" command is very
good at finding "leaks" in boun
daries. Even one missing pixel in
the boundary will cause the fill
color to leak out and possibly
cover the entire screen.

DRAWING ON WHAT YOU'VE
LEARNED
Now that you know all about the
DRAW command, what can you
do with it? To illustrate its flexibil
ity, I have written a subroutine
that produces letters on the graph
ics screen. Of course, you can
write normal-sized text to the
graphics screen with Turbo Basie's
PRINT statement, but there may
be times when you want larger
letters. The Turbo Basic
subroutine BIGPRINT (given as
part of the DRAWDEMO.BAS pro
gram in Listing 2) uses the DRAW
command to produce letters that
are approximately four times as
large as normal screen text. The
letters were designed on graph
paper by roughly tracing each let
ter, using straight lines only,
within a 25 by 25 grid.

Once I was satisfied with the
designs, the lines that made up
each letter were then translated
into DRAW commands. The let
ters were designed for optimum
reproduction on a 640 by 350 EGA
screen (SCREEN 9 mode); the
subroutine will work on a CGA in
SCREEN 2 mode, but the different
aspect ratio will result in rather

tall and thin letters. An EGA
screen display of BIGPRINT's
output is given in Figure 3.

BIGPRINT requires th ree
parameters: XLOC% and YLOC%
are integers giving the x and y
position of the lower left corner of
the first letter; MESSAGE$ is the
text to be printed. As written, the
only ch aracters that BIGPRINT
accepts are letters and the space
character. Lowercase letters are
converted to uppercase, and
bounds checking is not performed
on the x and y coordinates. If you
find BIGPRINT useful , you can
design your own numbers,

The ('('P"

command is very

good at finding
<'<'leaks" in

boundaries. Even

one missing pixel in

the boundary will

cause the fill color

to leak out and

cover the entire

screen.

punctuation marks, and lowercase
letters. You could also modify
BIGPRINT to use the color, scal
ing factor, and rotation com
mands to produce text in different
colors, sizes, and angles. •

Peter Aitken is an assistant professor
at Duke University Medical Center,
and is the author of Di,gScope, a scien
tific software package. He writes and
consults in the microcomputer field.

Listings may be downloaded from
CompuServe as DRAW.ARC.

LETTER$(65)
LETTER$(66)
LETTER$(67)
LETTER$(6B)
LETTER$(69)
LETTER$(70)
LETTER$(71)
LETTER$(72)
LETTER$(73)
LETTER$(74)
LETTER$(75)
LETTER$(76)
LETTER$(77)
LETTER$(7B)
LETTER$(79)
LETTER$(BO)
LETTER$(B1)
LETTER$CB2)
LETTER$(B3)
LETTER$(84)
LETTER$(B5)
LETTER$(86)
LETTER$(B7)
LETTER$(88)
LETTER$(B9)
LETTER$(90)

'code begins

"TA-20 U21 TA-160 U21 010 TAO L11"
"U20 R10 F2 D6 G2 L10 R10 F2 D7 G2 L10"
"BU2 F2 RB E2 BL12 U16 E2 RB F2"
"U20 R9 F3 D14 G3 L9
"U20 NR10 D10 NR10 D10 R10"
"U20 NR10 D10 R9"
"BU2 F2 RB E2 U4 NL2 NR2 BD4 BL12 U16 E2 RB F2 11

"U20 D10 R11 U10 D20"
"BR6 R4 BL2 U20 L2 R4"
"BU4 D2 F2 R6 E2 U1B L4 RB"
"U20 D9 TA -35 U11 BD11 TA-137 U15 TAO"
"NU20 R14"
"U20 TA-142 U10 TA-36 U10 TAO D20"
"U20 TA -155 U22 TAO U20 11

"BU3 U14 E3 RB F3 D14 G3 LB H3"
"U20 R10 F2 D6 G2 L10"
"BU3 U14 E3 RB F3 D14 G1 H2 F4 BH2 G2 LB H3"
"U20 R10 F2 D6 G2 L10 R4 TA-150 U11 TAO"
"BU3 F3 R6 E3 U4 H3 L6 H3 U4 E3 R6 F3 11

"BRB U20 NLB RB"
"BU20 D1B F2 R10 E2 U18"
"BU20 TA -160 U22 TA -20 U22 TAO"
"BU20 BL3 TA -170 U20 TA-20 U9 TA-160 U9 TA - 10 U20 TAO"
"TA-30 U22 TAO BL14 TA-150 U22 TAO"
"BR8 U10 NH10 E10"
"BU20 R16 TA150 U23 TAO R16 11

MESSAGE . LENGTH% = LENCMESSAGE$) '# characters in MESSAGE$

DO UNTIL MESSAGE.LENGTH% = 0

'get the ASCII value of leftmost character in MESSAGES

CODE% = ASCCMESSAGES)

'convert lower case codes to corresponding upper case codes

IF CODE%> 96 AND CODE%< 123 THEN CODE%= CODE% - 32

'decrement length and strip off leftmost character

DECR MESSAGE.LENGTH%
MESSAGES = RIGHTSCMESSAGES,MESSAGE . LENGTH%)

'if not uppercase or space, loop

IF CODE%< 65 OR CODE%> 90 THEN
IF CODE% <> 32 THEN GOTO-ENDLODP

•move to start point for next character

DRAW "BM= 11+ VARPTR$(XLOC%) + ", =" + VARPTR$(YLOC%)

'if not a space, draw the letter

IF COOE% <> 32 THEN DRAW LETTER$(COOE%)

'next letter wi l l be 25 pi xels to the right

XLOC% = XLOC% + 25

END LOOP:
LOOP

END SUB

J anuary/ February 1988 TURBO TEOINIX 115

BUILDING
ON QUATTRO:
INTRODUCTION
Borland is opening the door
wide to third-party add-in
products for Quattro:
The Professional Spreadsheet.
Jeff Duntemann

n a sense, a spreadsheet is a nonprocedural
language displayed in two dimensions. In
the spreadsheet paradigm, relationships
between cells are defined, and the recalcu
lation command invokes the machinery that
propagates new values into the cells accord

ing to their relationships. How the spreadsheet
accomplishes recalc is hidden from the user, and
only the results are seen.

This makes it difficult to build on a spreadsheet as
a platform for vertical-market applications. To go
further than canned models and collections of
macros requires both more resources and more con
trol. The resources are generally there if the spread
sheet is good, but the conceptual difficulties of open
ing up a closed calculating engine to outside
tinkering have held back any movement toward a
truly programmable spreadsheet. To be program
mable, a spreadsheet must be designed for program
mability-it cannot be tacked on as an afterthought.

By developing the Quattro API (Application Pro
gram Interface), Borland is doing for the spread
sheet paradigm what PAL and the dBase languages
have done for the database paradigm. The Quattro
API allows developers to generate vertical-market
applications based on a powerful general-purpose
"engine." The Quattro spreadsheet has been
designed so that its central engine facilities are
accessible as callable routines. At any given time, the
many aspects of Quattro's state may be read as
though they were global variables. By providing doc
umentation of all these entry points and status items,
and bindings for the Borland high-level languages,
the Quattro Add-In Toolkit becomes the foundation
for a family of extensions that will work correctly
and without unsuspected side effects.

continued on page 119

116 TURBO TECHNIX January/ February 1988

~·
.~ Quattro: Twice the speed.
Twice the power. Half the price!
Q

uattro~. our new genera
tion professional spread
sheet proves there are

better and faster ways to do
everything. To do graphics. To
recalculate. To do macros. To
save and retrieve. To search.
sort. load. To do anything and
everything that state-of-the
art spreadsheets should do.

Our technical superior
ity means product
superiority

Lotus" Development. mak
ers of 1-2-3." is bigger by fac
tors than Borland. Bigger. not
better. Technical superiority
is a Borland trademark. and
Quattro is fresh proof that it
produces a better product.

Quattro gives you
presentation-quality
graphics

Quattro brings new highs
in quality graphics to your
spreadsheet. It also brings
new variety and diversity
to the kinds of graphs and
graphics you can produce
from your spreadsheet. and
you can produce hard copy of

QUATIRO

your graphics-with either
printer or plotter-directly
from the spreadsheet without
leaving the spreadsheet. And
Quattro also gives you Post
script'" support.

Quattro recalculates
a Jot faster than
you-know-who

The smartest and fastest
way to recalculate a spread
sheet is to do what Quattro
does. which is something
called "intelligent recalc."
which in English means you
only re-count the formulas
that count. Unlike 1-2-3.
Quattro recalculates just
the formulas that matter.

If you know how to
use spreadsheets,
you know how to
use Quattro

You don't have to learn a
whole new program. Quattro
works directly with all 1-2-3
file formats. No importing/
exporting or macro translation
is required. Quattro can also
load and save ASCll. Paradox."
and dBASE" files. Compatible
with 1-2-3? Yes. Technically
superior to 1-2-3? Yes. Half
the price of 1-2-3? Yes!

Get Quattro, the pro
fessional spreadsheet
for only $195. 00

Quattro is so advanced it's
easy to use and it's less than
half the price of 1-2-3. It's
not copy protected. and it's
fully compatible with all your
existing 1-2-3 files and
macros-but it makes every
thing in them look better.
print better and it makes your
work go faster.

60-day money-back guarantee*

Quattro: The Professional Spreadsheet

FEATURE

ReCalc Cash Flow Model (SK cells)

c::i Delete Row 1 SK cells (Recalc Time)

~ Load File (1 SK cells)

Page Down (A 1 to A 1000)

Price

QUATTRO LOTUS 2.01

. 27 sec. 2.90sec .

.76 sec. 2.38 sec .

15.9 sec. 19 .8 sec .

12.2 sec. 17.4 sec .

$195 $495

Benchmatk details available upon request. For the IBM PS/2'" and the IBM® and Comi:aq® families of personal computers and all 100% compatibles.

·customer sahs1acf!On 1s oor main coocern, ii w1th1n 60 days of
purchase this p1oduct does not perform in accordallCe witn our
claims, call our customer service department, and we will cmange
a refund

All 801land p1oducts are 1rademarks m registered trademarks or
Borland ln!erna11onal. Inc Lotus and 1·2·3 are registered trade·
marks o! Lotus Development Corp Other brand and product names
are trademarks or registered trademarks ot their respective holders
Copyright c1957 Borland ln1ernat1onal Bl· 11 44E IN Tr HNAT/ONA

For the dealer nearest
you, a brochure, or
to order now, call
(800) 543-7543

Quattro

Eva!

Library calls

Significant event
notification

DOS disk storage

Add-ins can access
most Quattro services.

Add-in

Add-in

Add-in

Add-in

Add-in

Add-in

Figure 1. The Quattro add-in architecture

QUATTRO
continued from page 116

In this and future articles in
TURBO TECHNIX, we will present
the architecture of Quattro exten
sions and the methods involved in
writing them.

EXTENDING QUATTRO
THREE WAYS
Quattro extensions fall into three
general categories:

• @ function libraries
• drivers
• add-ins

The relationship of these exten
sions to Quattro and to one
another is illustrated in Figure 1.

@ Function libraries. Much of
the power of the spreadsheet
paradigm proceeds from the
notion of relating one cell or
group of cells to another cell or
group of cells. Built-in spread
sheet functions constitute one
importa nt element of the

cell-to-cell relationship.
These relationships are defined
by formulas that may be attached
to a given cell. Most spreadsheets,
and many databases (including
Reflex), support a repertoire of@
functions, so called because their
names begin with an "@" charac
ter. One simple example is
@SUM(<range>), which calcu
lates the sum of the values in a
range of cells. For example, the
function @SUM(Bl..Bl2) returns
the sum of all the values stored in
cells Bl through Bl2. Functions
can also be written to return text
strings, dates, times, and other
types of data.

Quattro contains about 100 dif
ferent built-in @ functions, cover
ing most general requirements for
business spreadsheet use. They
include the logical , string, and
counting functions common to
most spreadsheets, plus transcen
dental functions, database aggre
gation functions, and financial
functions that compute compound
interest, annuities, and
depreciation.

These are powerful but very
horizontal functions. To some
extent, application-specific func
tions can be constructed by com
bining the @ functions into for
mulas, but there are compu
tational and performance limits
when using formulas built only
from basic operators and @ func
tions. Quattro addresses these lim
itations by supporting loadable @
function libraries produced by
third-party vendors.

@ function libraries are collec
tions of routines written to allow
their interpretation by Quattro's
function evaluator. Once loaded,
@ functions from a third-party
library are indistinguishable from
Quattro's built-in functions.
Library @ functions have the
same limitations-typically, they
can only return a single value
when they are called-but they
are potentially more powerful.
Loading the library may be made
automatic by specifying the library
name in Quattro's Startup menu.

continued on page 120

J anuary/ February 1988 TURBO TEGINIX 119

QUATTRO
continued from page 119

In this way, users need not be
aware that a library is involved.
Once loaded, the @ functions
from a library may also be
accessed by Quattro add-ins, as
described below.

Quattro

.. ···· ...

.. ···
.. ····

.~·""

·" " .~ .. ·"
.··

Current workspace

The obvious applications for @
function libraries are to provide
collections of functions more
application-specific than those
built into Quattro: statistical or
scientific libraries, specialized
financial libraries, or libraries of
more advanced database-style
functions. Even more application
specific might be functions that
service the requirements of a par
ticular type of business. For exam
ple, you could have functions that
evaluate the quality of a loan
application according to entered
values, such as the amount of the
loan, percent down payment, and
the years the borrower has been
employed.

The less obvious applications
for @ function libraries are
driven by the fact that library
functions can access any of the
Quattro services documented in
the Add-in Toolkit. They can
create and write to their own DOS
files, examine cells and ranges of
cells, query Quattro attributes, and
many other things. A special
purpose @ function could be writ
ten to act as a recalculation
"demon"-it would "awaken"
when its cell was reached during
recalculation, and take some
action based on Quattro's current
state. This demon function could
act as a recalculation "breakpoint"
for spreadsheet debugging and
auditing. Another use might be a
real-time securities trading system
in which, during recalculation, the
demon function actually dials an
online service, checks the current
price of a given security, and then
inserts the price into the cell that
is associated with the demon func
tion. Add-ins and drivers do not
allow that fine a level of control
during recalculation.

El Disk Storage

Excel driver

@ function libraries are loaded
into one of Quattro's eight "slots"
for resident extensions. The total
number of loaded libraries and
add-ins cannot be greater than
eight, because libraries must share

Figure 2. A Quattro driver.

these slots with the add-ins
described below.

Drivers. The job of a Quattro
driver is quite specific since driv
ers either convert Quattro spread
sheets into other program file
formats, or import program data
files into a Quattro spreadsheet. A
separate module is required for
both file import and file export.

The conversion process is
handled transparently from a
user's standpoint. From Quattro's
perspective, the type of data file is
determined by its file extension.
Quattro's own spreadsheet files
are given a .WKQ extension.
When a user asks to load a .WKQ
file, Quattro loads the file directly
under the assumption that the file
is in its native format. A request to
load a file with any extension
other than .WKQ prompts Quattro
to look on disk for a driver
module associated with that file
extension.

120 TURBO TEGINIX January/ February 1988

Driver module names are keyed
to the file types they support,
according to the following
pattern:

FR???.TRN-Imports foreign file
formats to Quattro

FS???.TRN-Exports Quattro
spreadsheets to foreign formats

For example, Paradox database
files have a .DB extension. The
import driver for Paradox files
would be named FRDB.TRN. The
FR stands for "File Retrieve," and
the .TRN is a common extension
for all drivers. The export module
would be named FSDB.TRN. The
FS stands for "File Save."

If a user requests the loading of
a file ending in .DB, Quattro
searches the disk for a driver file
named FRDB.TRN. If the driver is
not found, an error message is
displayed. Note that the user
simply requests a filename and
does not have to notify Quattro
that the file is in a format other
than Quattro's own. If the

required driver is located on disk,
Quattro loads the driver into
memory and executes it. (Figure 2
illustrates this situation.) The
driver reads the foreign data file
and translates the data into Quat
tro spreadsheet form.

Once a given translation task is
completed, the memory occupied
by the driver is released. The
driver is reloaded each time a file
must be translated.

Drivers are more compact than
add-ins. They are not notified of
significant events (explained
below). Drivers can take advan
tage of Quattro services such as
displaying a menu of choices. For
example, the dBase driver allows
the user to change a certain field's
type and size by selecting from a
list of fields.

Add-ins. These are likely to be
the most numerous Quattro exten
sions, as well as the most general
and versatile. An add-in is a pro
gram module that can be loaded
by the user through the Load
menu, or can be automatically
loaded at Quattro start-up time.
The add-in has access to nearly all
Quattro services, and appears to
the user as another Quattro fea
ture invoked from the menu tree.

Typical add-ins might include
the following:

• spreadsheet auditor programs
• annotator programs that attach

small note-windows to specific
spreadsheet cells

• drivers for WORM optical stor
age devices that create an audit
trail by archiving every revision
of a spreadsheet

• special-purpose text editor or
telecommunications windows

These are all extensions that
might otherwise be implemented
as external TSR programs that
have little or no knowledge of the
Quattro spreadsheet internals.
Writing them as Quattro add-ins
not only provides close integra
tion with the Quattro product
itself, but also saves considerable
work for the developer. The tre
mendous resources of the Quattro
program are placed at the disposal
of the add-in via Turbo C or
Turbo Pascal interface.

Add-ins are .EXE or .COM files
containing interface routines
linked from the library distributed
with the Quattro Add-in Toolkit.
The extension is changed to .QA!
from .EXE or .COM so that a user
cannot accidentally execute an
add-in from DOS.

Quattro can have up to eight
extensions loaded at any one
time. These may be either @
function libraries or add-ins, but
the total number of resident
extensions is limited to eight.
Extensions can be unloaded when
no longer needed to allow other
extensions to be loaded in their
places.

RESPONDING TO
SIGNIFICANT EVENTS
Add-ins exercise control in two
ways:

1. The user may explicitly invoke
an add-in from the Run menu.
Add-ins may also be spliced into
any point in the Quattro menu
tree by a "menu-builder" utility,
making the add-in indistinguish
able (to the user) from any stan
dard Quattro menu feature.
When invoked, the add-in does
its job and then returns control
to Quattro. A spreadsheet audi
tor or report-generator might
work in this fashion. The add-in
might communicate with the
user through a window overlay
ing the Quattro spreadsheet, or
it might take over the screen
completely in the manner of an
entirely separate application.
The type of face the add-in
shows to the user is entirely up
to the developer.

2. The add-in also has an oppor
tunity to run whenever certain
things happen in the Quattro
program itself. These triggering
occurrences are called signifi
cant events. Examples of these
events are saving or retrieving a
spreadsheet file; erasing a
spreadsheet; moving a block of
cells; inserting or deleting rows
or columns of cells; and
repainting the screen. The add
in is also notified when the user
chooses to unload it, allowing
the add-in to close any open
files and put its house in order
before being overwritten. Add
ins are notified when Quattro is

about to save a .WKQ file, and
they can save their own data,
regardless of format, in the
.WKQ file. Similarly, add-ins are
notified when Quattro intends
to read a .WKQ file, so that they
can prepare to receive any data
in the file tagged as belonging
to the add-in. This allows a
"sticky-notes" type application,
where the add-in keeps its note
data in the .WKQ file, thus mak
ing the added complication of
separate disk files unnecessary.

These two methods (user invo-
cation and event-triggered invoca
tion) are not exclusive. A given
add-in may run in both modes.
During those times when the add
in is not in the foreground run
ning, it may have to keep track of
what is happening to the current
spreadsheet in memory. Being
able to run periodically allows the
add-in to update its own status
tables or files as the spreadsheet
changes in the foreground.

Figure 3 details the logical struc
ture of an add-in program. The
program contains a structure
called the add-in information tablR.
This table contains the add-in's
name, a pointer to a help file, 24
status bytes, and 32 addresses
representing entry points to the
add-in itself. Each significant
event has a corresponding entry
point in the add-in information
table. Quattro notifies the add-in
of a significant event by calling
the add-in through the appro
priate address in the table. The
address points to a service routine
within the add-in that takes neces
sary action and then returns con
trol to Quattro.

The add-in's developer need
not implement a service routine
for every significant event. For
example, an add-in might only
need to respond to the saving or
loading of a spreadsheet. The
addresses corresponding to all
other significant events would be
set to zero.

Up to eight add-ins may be resi
dent in memory at once, and all
of them are notified of every sig
nificant event. Each add-in has
the opportunity to take control in
sequence if it has a service routine
corresponding to the event.

continued on page 122

J anuary/ February 1988 TURBO TEGINIX 121

L 7
PSP

cc · 1 ToQ.uattrd
--;c <

ADl)IN.UAf ~··

•

~ v
"'

Add-in name
~

"' u Fred ·2
Helpfile name ::l

Fredhelp.hlp E
E
O·

llJ Mailbox u
::0 -
~ Event I NUL
c Event 2 PROC2 0 ·=
"' Event 3 PROC3 ~
§ c;;

,£ Event4 NUL u
....

.:: Event 5 PROC5
llJ :a c c

~
... "' .c:

"'O c ..:: Event 29 PROC29
llJ

Event 31 PROC 31
;.

"'-1

Event 30 NUL
Event 32 PROC 32

~

Figure 3. A Qµattro add-in.

ADDING IN FUNCTIONALITY
Add-ins are much more powerful
and general than either @ func
tion libraries or drivers. The fol
lowing are the most important
things an add-in can do in coop
eration with Quattro:

• Get status information. The add
in can interrogate anything that
can be set in a menu, including
screen colors, default directo
ries, column widths, and what
ever options the user can set.

• Feed keystrokes to Quattro. The
add-in can play "automated
user" by passing sequences of
keystrokes to Quattro. There
fore, an add-in can generate
any sequence of keys that the
user can type.

• Execute Quattro commands. An
add-in can execute Quattro
menu commands by passing
menu-equivalent codes to
Quattro.

• Evaluate formulas. The add-in
can pass an @ function to

Quattro for evaluation and keep
the returned value for its own
purposes, rather than storing it
in a cell. Both built-in and
library functions are accessible.

• Use the Quattro UI. The add-in
can use the same screen han
dling routines Quattro uses for
prompts and dialogue boxes,
windowing, screen repainting,
and so on, in the course of com
municating with its own users.

• Trace cell-to-cell dependencies. The
add-in can determine the cells
on which a given cell depends
for its own values, as well as
those cells that depend on a
given cell for their values.

• Obtain memory through Quattro.
Quattro manages both real and
expanded memory for data stor
age, and an add-in can request
memory through Quattro for its
own dynamic data structures.
This allows the add-in to make
use of expanded memory with
out having to determine
whether or not expanded
memory is available.

• Use Quattro 's help system. At an
add-in's request, Quattro
switches to the add-in's help file .
The add-in's help support can
use features of Quattro's help
facility including context
sensitive screen display. The
Quattro Add-in Toolkit provides
a help linker that automatically
builds custom help files.

CREATING QUATTRO
EXTENSIONS
The preferred form for Quattro
extensions is an .EXE file created
with Turbo C or Turbo Pascal 4.0.
Bindings specific to each lan
guage must be linked with the
.EXE file . These bindings include
function prototypes for all the
numerous Quattro services, and
also startup code specific to the
type of extension. For example, a
replacement cO routine must be
linked into every extension
created with Turbo C, and the cO
for a driver differs from the cO for
an add-in. In a future release, a
custom .TPU unit file will be pro
vided that contains interface
procedures for Turbo Pascal.

Certain rules and restrictions
on what an extension may do
must be respected, or the add-in is
considered "ill-behaved" and may

122 TURBO TECHNIX January/ February 1988

not function correctly with Quat
tro. Particularly, keystroke capture
and display output must be done
through Quattro services to avoid
conflict with Quattro's keyboard
and screen-repaint management.

From a height, the Quattro API
is relatively simple. The details
grow more subtle, because extend
ing a spreadsheet is fundamen
tally different from extending a
database manager with a pro
cedural command language. As
with any language, you need to
think in its terms to gain the most
benefit from its power. Future
issues of TURBO TECHNIX will
provide detailed tutorials on the
Quattro extension development
process, along with examples in
Turbo C and Turbo Pascal. •

QUATTRO
DEVELOPER
CONFERENCE
'88
On January 20-23, 1988, Bor
land will present the Quattro
Developer Conference '88, a
four-day technical conference
on developing Quattro
extensions.

The coverage will be
advanced and is targeted for
serious programmers and 1-2-3
add-in developers who are
already fluent in Turbo C and/
or Turbo Pascal 4.0 at a system
level. The training will be
hands-on and computers will
be provided. Since the Turbo C
and Turbo Pascal sessions will
be running in parallel, it will
not be possible to attend both.

The $395 fee includes the
Quattro Add-in Developers'
Toolkit, lodging, and all meals.
In addition to the purely tech
nical sessions, attendees will be
able to meet with Borland exec
utives and technical staff to dis
cuss ideas, wishlists, and other
matters. The conference will be
held at the Chaminade Confer
ence Center in Santa Cruz,
California. Attendance will be
limited; to reserve your place,
call the Borland Corporate
Communications Group at
(408) 438-8400. •

PAL PROCEDURES AND
PROCEDURE LIBRARIES
PAL procedures are smaller and run faster when you place
them in libraries.

Todd Freter

Procedures? Libraries? In a database
manager's application language?

Why not? PAL accommodates the
expectations of serious programmers
who have come to rely on efficient tools

PROGRAMMER like those provided by the C language.
PAL procedures and libraries represent just such
tools.

PAL PROCEDURES
As in other programming languages, a procedure in
PAL is a named set of program statements. When
taken together, the statements constitute a discrete
module. In PAL, a procedure is defined within a
script and may be stored in procedure libraries. A
procedure can take multiple arguments and return a
single value.

A PAL procedure is considered defined once
Paradox has read the source code and parsed it into
binary form in memory. After that, the procedure
can repeatedly perform its task without being re
parsed or interpreted on a step-by-step basis each
time the procedure is invoked. Because of this, when
a procedure is called in a PAL application, it exe
cutes more quickly than the equivalent sequence of
PAL statements on which the procedure is based.
PAL statements executed outside of a procedure must
be parsed and interpreted one-by-one, with the
expected performance overhead.

In addition, PAL procedures can be stored in and
accessed from libraries. A procedure stored in a
library is already defined and parsed into its low
level operations. This can further improve applica
tion performance by eliminating the need for
Paradox to define procedures prior to running the
application.

SCRIPTS AND PROCEDURES IN PAL
The connection between a script and a procedure in
PAL is quite close. In fact, a procedure usually be
gins as a script written in PAL, with almost no special

or distinctive use of the language. If you know how
to write PAL scripts, it is easy to develop procedures.

To use a PAL example that will be familiar to C
programmers, you can start with a script called hello,
shown in Listing 1, HELLO.SC. Listing 1 corre
sponds closely to the canonical program for intro
ducing the C language to new programmers, shown
in Listing 2, HELLO.C. The ? command in PAL, like
printf in C, displays a string of characters, and the
SLEEP 5000 command delays execution of the next
command for five seconds (5000 milliseconds) so
that the program user has time to read the string
"Hello, world!" on the screen before it disappears.
This is because Paradox would immediately clear the
screen after displaying "Hello, world!" to the user.
Then control returns to whatever called hello.

To implement the script in Listing 1 as part of a
PAL procedure, simply surround the statements with
two other PAL commands. The PROC procedure
name() command names the procedure, which must
be followed by a pair of parentheses, and the END
PROC command terminates the procedure. All state
ments between the PROC procedurename() and
ENDPROC commands constitute the body of the
procedure. For instance, you could write a script
called greet containing a procedure based on hello,
shown in Listing 3, GREET.SC. This script defines a
procedure called hello() with the same PAL com
mands as the hello script. After this new script, greet,
defines the hello() procedure, it calls and executes
hello() as a custom command. To continue the com
parison with C, refer to Listing 4 (GREET.C), which
is a C program that performs the same tasks as the
PAL procedure in Listing 3.

Although our example presents a procedure that is
trivial in its simplicity, a PAL procedure can be of
any practical length. In addition, procedures can be
nested to any level.

continued on page 126

J anuary/ February 1988 TURBO TEO'INIX 123

Paradox: the top-rated
relational datatiase
manager in the world

" p aradox® is once again the
top-rated program, with the
latest version scoring even

higher than last year's top score."
(Software Digest's 1987 Ratings
Report-an independent compara
tive ratings report for selecting
IBM PC business software. All tests
for the Ratings Report were done
by the prestigious National Soft
ware Testing Laboratory, Philadel
phia, PA.) The Ratings Report mes
sage is crystal clear : there is no
better relational database manager
than Paradox. NSTL tested 12 dif
ferent programs and amongst other
results, discovered that Paradox is
3 times faster than dBASE® and 6
times faster than R:BASE® on a
two-file join with subtotals test.t

,; i::;.<:-C:l)

"''"' «--'ti>:-
~?,\fl "'- i:::-0 if::'e 'f'<:; e" ~'t>

«' ()'~ .:,./§ ~'li
'f'. IQ «;; {/>~ ~ ~

~~ ~ ,o~
c,O d° ~

i':!i':!i':!i':! 8.7 Paradox 1.1 •
i':!i':!i':!i':! 8.2 XDB 1.10 •

i':!i':!'tl 7.6 PowerBase 2.3 •
i':! i':!i':! 7.0 Open Access II 2.0
i':! i':!i':! 7.0 Data Ease 2.5/2 •

i':! i':! 6.6 dBASE Ill PLUS 1.1
i':!i':! 6.4 R:BASE System V 1.1

How to make your network network

To run Parallox 2.0 °'the Parallox Netwo<k Pack on a network you need·

• Novell v.illl Novell Advanced Netware version 2 OA or higher
• 3Com 3Plus with 3Com 3+ operal1ng syslem ver~on 1 0. 11 °'higher
• IBM Token Ring 0< PC Netwo<k v.iltl IBM PC Local Area Netwol1< Pro-

gram version 1.12 Of higher
• Torus T apeslry version 1.4 or higher
• AT&T Slarlan Nelwork v.illl AT&T PC 6300 Nelwork Program version
• Olher nelwork configuralions lllal are 100% COfllJ<!lible v.illl DDS 3 1

and one of lhe lisled networks

• • •
•

Paradox does the impossible:
Combines ease of use with
Power and Sophistication
Even if you're a beginner, Paradox
is the only relational database man
ager that you can take out of the
box and begin using right away.
Because Paradox employs state-of
the-art artificial intelligence tech
nology, it does almost everything
for you-except take itself out of
the box. (If you've ever used 1-2-3®
or dBASE.® you already know how
to use Paradox. It has Lotus-like
menus, and Paradox documentation
includes "A Quick Guide to Paradox
for Lotus users" and "A Quick Guide
to Paradox for d BASE users.")

RATINGS KEY

• • • 512K $495
(On a scale of 0 to 10)

Overall Evaluation

• • • 320K $750 'O''O'-t-tttt 9.0 or higher

• • 384K $349 "'""'"'' 8.0 . 8.9 <r<r<r 7.0 . 7.9

• • • 256K $395 <r<r 6.0 . 6.9
<r 5.0 - 5.9

• • • 384K $600 All Other Ratings

• • 384K $695 • 7.0 . 9.9
5.0 . 6.9

• • • 512K $700 • UNDER 5.0

System Requirements for Single User:
• DOS 2 O or higher
• IBM• PS/2 and PC. Compaq• PC lam1lles and olher 100% compalrbles
• 512K RAM
• Two disk drives. 31'1-mch and 51/Hnch supporled
• Compalrble monochrome. color. or EGA monilor wrlh adapler

System Requirements for the Network Workstation:
• DOS 3 1 or higher
• 640K RAM
• Any combmalron of hard. floppy, or no disk drives
• Compalrble monochrome, color. or EGA monilor wrlh adapler

"Rep1 1nted w tl'l perm-ss1on by Solt1'iare Digest r1om ts Ju:y 1987 Report covering 12 re:a
ttona da!a t>aseprograms

dBase Il l PLUS I

I
I

I
I
I

_______ _J
1 23456 7 89 10

USABILITY

Source: Software Digest •

Ideal programs have high levels or both power and
usability. Programs plotled in the upper righthand
portion or the diagram above come closest w achieving
that ideal.

Paradox responds instantly
to "Query-by-Example"
The method you use to ask ques
tions is called Query-by-Example.
Instead of spending time figuring
out how to do the query, you simply
give Paradox an example of the
results you 're looking for. Paradox
picks up the example and automati
cally seeks the fastest way of get
ting the answer. Paradox, unlike
other databases, makes it just as
easy to query multiple tables simul
taneously as it is to query one.

··Rebate 1eQuest musl be received by Borland no la1er than February 15. 1988
Ma ;I to Paradox Rebate Depa11men1. Borland lntemat1ona!.
4585 Scotts Valley Drive. Scolts Valley, CA 95066

tTest was designed and executed by NSTL A 1,000-recOfd am! a 10,000-recOfd hie were
Joined A shorl texl held from the 1,000-record lile and a numeric lie!d from the 10.000·
record lile were selected (using the 1,000-record lile indexes) The short text held was
grouped and sorted in ascending order, the nume1ic lield was subtotaled ror each group,
and ltle results output to a null printer Test times trom the last keystroke on the command
seQuenceuntil returnotprogramcontrol were recorded and averaged.

II w1th1n 60 days ot purchase !his product does nol perfmm in accordance with our claims.
can our customer service departmenl and we will arrange a refund

Paradox is a registered trademark ot Ansa Software Ansa is a Borland lnlernatiooal com
pany Other brand and product names a1e reg1slered trademarks Of tradema1ks ot their
respective holders Copyright o 1987 Borland tnte1nahonal Bl· 1158B

Paradox makes your network
run like clockwork
Paradox is just as valuable to multi
and network users as it is to single
users. It runs smoothly, intelligently
and so transparently that multiusers
can access the same data at the same
time-without either being aware of
each other or getting in each other's
way. It works exactly the same way
whether you 're flying solo or as part
of the crew.

' ' Paradox was a delight to
use. both as a standalone pro-
duct and from a local area net
work server

Don Crabb, lnfoWorld ''

Paradox saves you from
Future Shock

T ~ PARADOX 2.0

~. PARADOX 386 ~

' PARADOX SOL ~

' PARADOX 0 512 "'l
~ PARADOX UNIX SL

1987 1988 1989 I 1990

Your investment today in Paradox ap
plications is protected as new genera
tions of hardware emerge. Paradox
2.0 applications will run unchanged
on Paradox 386. Paradox OS/ 2.
Paradox Unix and Paradox SQL.

' ' Paradox 2.0 will do for the
LAN what the spreadsheet did
for the PC

David Schulman, Bendix Aerospace ''

PARADOX
bvAnsa

A Borland Company

' ' Anyone who hasn't seen the
network version of Paradox should
take a look. Ansa has dramatically
advanced the state of the art in
multiuser network databases

Phil Lemmons. BYTE ''

Paradox updates automatically
Changes made by anyone are automat
ically updated to everyone. While
more than one person can be working
in the same table at the same time.
there are safeguards that prevent. two
users from making changes to the
same record at the same time.

Special Offer !
We're making a Special Offer on

all three versions of Paradox. Mail in
your proof of purchase. dated between
September 15. 1987 and December
15. 1987 and your signed registration
form for any of the three. and we'll
mail you a $100.00 rebate.** It's that
simple.

• Paradox 1.1. suggested retail.
$495.00

• Paradox 2.0. suggested retail
$725.00 (each copy of Paradox 2.0
supports one user on a network)

• Paradox Network Pack. suggested
retail. $995.00 (each network pack
supports up to 6 users on a network)

60-Day Money-Back Guarantee

For a brochure or
the dealer nearest you
call (800) 543-7543

t'.'tRADOX

PAL
continued from page 123

PARAMETERS AND VALUES
IN PROCEDURES
A key capability of procedures is
that they can take parameters and
return values. Consider a proce
dure that calculates the length of
the hypotenuse of a right triangle.
The procedure then displays the
hypotenuse and lengths of the
other sides by means of a ? com
mand, as shown in Listing 5,
HYPO.SC.

The Hypotenuse() procedure is
called from within the ? com
mand. Then the body of the
procedure executes, assigning the
product of x squared to w and the
product of y squared to z. The
procedure returns the square root
of the sum of w and z. The ? com
mand displays the returned
hypotenuse and lengths of the
other sides, supplied by the
program.

Listing 6, HYPO.C, shows the
equivalent of the Hypotenuse()
procedure in C. The difference in
program size alone illustrates
some efficiencies of PAL over C.

VARIABLES IN PROCEDURES
PAL procedures can make use of
PAL variables as arguments. To
allow you maximum flexibility in
writing scripts and procedures,
PAL automatically designates any
variables that function as argu
ments as private to that procedure.
This allows you to duplicate vari
able names in and out of a proce
dure without confusion. In the
Hypotenuse() procedure example
above, variables x and y are
named as arguments. These va1;
ables are not disturbed by varia
bles with the same names outside
the procedure.

Variables declared inside the
procedure that are not formal
arguments (like w and z in
HYPO.SC) are global to the script in
which the procedure is called. If you
declare a variable inside the body
of a procedure that has the same
name as a variable outside the
procedure, you may not get the
result you expect. Variables that

are not formal arguments might
carry in a value from outside of
the procedure.

If you wish to declare variables
to be used for "scratch" storage
inside of a PAL procedure, pre
cede them with the PRIVATE key
word. In this way, the variable
inside the procedure body exists
separately from a variable of the
same name outside the procedure.

Variables

declared inside

the procedure that

are not formal

arguments are

global to the script

in which the

procedure is called.

THE DETAILS OF PROCE
DURE DEFINITION
In the examples above, we have
seen how a procedure is defined.
You simply surround a set of PAL
commands with PROC proce
durename() and ENDPROC. But
procedure definition in PAL is
more than merely adding two
statements before and after a
selection of commands. The
actual sequence of events when
you execute a procedure-defining
script is significant.

When you play a script that
defines a procedure, Paradox first
parses all the PAL statements in
the body of the procedure and
stores the parsed statements in a
section of memory specially
reserved for them. Then, when
ever the script invokes the proce
dure, Paradox directly accesses the
preparsed statements from
memory and executes them. This
technique avoids Paradox having
to individually interpret the proce
dure's statements during each
invocation and results in signifi
cant performance improvements.

126 TURBO TEOINIX January/ February 1988

Once defined this way within a
script, a procedure remains in
memory until one of two things
happens: all script play ends, or
the RELEASE PROC.S command
releases all procedures from
memory. Paradox reserves a por
tion of main memory for proce
dure definitions. If you define all
of your procedures dynamically
within script play, you may use up
all of that memory. Once you
reach that limit, other new proce
dures cannot be defined. If you
wish to define more procedures
than can fit in the memory
reserved for them, then you must
use the RELEASE PROC.S com
mand to free up memory for
them. For example, the greet
script described earlier might be
modified to manage its procedure
as shown in Listing 7, GREET2.SC.

This example defines the
hello() procedure, executes it and
then releases the memory it had
occupied. It provides explicit con
trol, but at the cost of requiring
explicit programming. In a script
with several procedures, such
explicit control can require more
attention to details than you may
care to devote.

If you store procedure defini
tions in libraries, however, you
can rely on Paradox 2.x automatic
virtual memory management
(VMM), described later in this
article.

In contrast to PAL, C does not
include its own automatic VMM
system. Nor does C include such
high-level constructs as the
RELEASE PROC.S command that
dynamically releases memory
occupied by procedures. Memory
management in C is considerably
different and lower-level than
memory management in PAL and
Paradox.

PAL PROCEDURE LIBRARIES
PAL emulates C with its libraries
much as it does with its proce
dures, but PAL offers libraries
with a different philosophy.

A PAL library corresponds both
to a C library and also to a C

header file that is accessed with
the #include directive. Both PAL
libraries and C libraries or header
files contain procedures and rou
tines. Unlike C, however, PAL
enables you to access a library's
procedures as specifically or as
generally as you wish. In C, access
to routines that are not part of the
main program occurs by way of
linking separately compiled librar
ies together into a single execut
able file, or else by including
header files into the program
code.

A PAL library can contain up to
300 preparsed procedures. You
create libraries in the context of a
script, just as you define proce
dures in a script. PAL includes
four commands to manage proce
dure libraries:

• CREATELIB creates a proce
dure library.

• READLIB reads procedures
into memory from a library.

• WRITELIB writes procedures
into a library.

• INFOLIB provides information
about procedures in a library.

Listing 8, SALUTE.SC, illustrates
how libraries are created. This
example creates the salute proce
dure library to reside in a DOS
file called SALUTE.LIB. (Paradox
recognizes DOS files with the .LIB
extension as procedure libraries.)
The hello() procedure is defined,
written to the salute library, and
then read from the salute library.
Finally, hello() is invoked.

To accomplish the same thing
as SALUTE.SC in a C program,
you would have two options. One
is to put the hello() routine into a
header file like SALUTE.H in the
INCLUDE directory and include it
at the beginning of the C pro
gram. Listing 9, HELLOINC.C,
illustrates this first option.

The other option is to put the
hello() procedure definition into a
library in the LIB directory and to
link that library into the final
executable program file.

Procedure libraries developed
with the CREATELIB command
normally contain up to 50 PAL

procedures, but if you use the
SIZE number option, you can
create a library with up to 300
procedures. In Listing 8 above,
the salute library could contain up
to 50 procedures, but if the state
ment read

CREATELIB salute SIZE 100

then the salute library could con
tain up to 100 procedures.

Multiple

procedures can be

written to or read

from a library in a

single WRITELIB
orREADLIB
statement.

Procedures can be written to a
library at any time after the library
is created. Also, multiple proce
dures can be written to or read
from a library in a single WRiTE
LIB or READLIB statement. The
only requirement is that the
library have space for the new
procedures. For example, if you
create a library that allows 100
procedures, and you write the
lOOth procedure to that library,
you will have no problem. If you
attempt to write a 101st procedure
to that library, the write attempt
will fail.

In C, by contrast, there is no
practical limit on the number of
routines that can be placed in a
header file or library. In addition,
defining C procedures does not
include preparsing, nor does it
occur dynamically in a script.
Instead, a C routine is defined
simply by being written and stored
in a header file or a library, which
are simply DOS files . C routines,
whether part of a library, a header
file, or the main program code,
must be compiled before running
the programs into which they are
linked. By comparison, PAL is an
interpreted language with no tra
ditional compilation process.

USING PROCEDURE
LIBRARIES
As shown in Listing 8, you can
create a PAL procedure library,
define procedures, write the
procedures into the library, and
read procedures from the library
into memory; all within a single
script. In small applications that
perform a limited number of
tasks, this can constitute thorough
ness to the point of overkill. PAL
procedure libraries are more
appropriate in larger, more ambi
tious applications.

As your application takes shape,
use a separate script to create a
procedure library, define the
procedures, and write the proce
dures into the library. Then you
can pare down the application
itself by replacing the parts that
were defined as procedures with
procedure calls into the library
instead. You can either use the
explicit READLIB command,
specifying the library and proce
dure name or names as needed,
or you can load the procedures
automatically.

AUTOLOADING PROCEDURES
In addition to explicitly reading
(loading) procedures into memory
with the READLIB command, you
can load them automatically with
an autoload library that contains all
the procedures you need. An auto
load library is one that Paradox
automatically consults for proce
dure definitions whenever you
play a script that invokes the
procedures. By default, the auto
load library is a library named
PARADOX2.LIB in the current
working directory; procedures that
are stored in this library need not
be loaded with READLIB.

You can use another library
instead of PARADOX2.LIB as the
autoload library. Simply assign a
string to the autolib system vari
able corresponding to the library
name, minus the .LIB extension.
For instance, to designate
SALUTE.LIB as the autoload
library, simply include

autolib ="salute"
continued on page 128

J anuary/ February 1988 TURBO TEatNIX 127

PAL
continued from page 127

in your application. Then you can
invoke procedures in SALUTE.LIB
without explicitly reading them
into memory with the READLIB
command.

Autoloading is a convenient
way to provide maximal access to
procedures in your application
with a minimum of code. You can
reassign the autolib system vari
able as often as you wish and
invoke procedures contained in
the currently specified autoload
library.

However, the convenience of
autoloading must be weighed
against the benefits of using
READLIB and RELEASE PROCS
for efficient application perfor
mance. READLIB supports the
optional IMMEDIATE keyword,
which allows you to specify when
the procedure definitions are read
from disk into memory. This can
have a key effect on performance,
since using autoloaded proce
dures may require a large number
of disk accesses.

Further, scripts that use explicit
READLIB and RELEASE PROCS
commands are easier to debug
than scripts that modify the auto
lib variable to cause procedures to
load automatically. It's up to you
to determine which convenience
you prefer in developing
applications.

PAL's autoloading corresponds
more closely to C's use of header
files loaded with the #include
directive. However, C does not
allow you to substitute one header
file for another as easily and
dynamically as PAL does, by
merely reassigning a name to the
autolib system variable.

PROCEDURES AND MEMORY
MANAGEMENT
As mentioned above, procedures
defined within the body of a script
are not subject to automatic
memory management. Procedures
defined in a script remain in
memory until the script play ends
or until they are cleared with the
RELEASE PROCS command.

PAL procedures stored in librar-

ies, however, are subject to Para
dox's VMM system. This automatic
virtual memory management sys
tem, introduced with Paradox 2.0,
contains the following tools:

• automatic loading and swapping
of procedures into and out of
memory

• the use of expanded memory
(vs. extended memory) for
procedure storage

• the SETSWAP command, to
control the point at which
Paradox swaps procedures
out of memory

• the MEMLEFT function, for
additional control in memory
management.

The conve

nience of auto

loading must be

weighed against

the benefits of

using READLIB
and RELEASE
PRO CS for efficient

application

per/ ormance.

As explained above, C has no
equivalent to Paradox's VMM sys
tem and thus does not provide
high-level tools such as those
listed here for control in memory
management.

AUTOMATIC PROCEDURE
SWAPPING
Paradox reserves a portion of
main memory for procedure defi
nitions. This portion of memory is
not infinite, and it may not be
able to accommodate all the
procedure definitions that your
application uses.

For this reason, Paradox auto
matically swaps procedure defini
tions into and out of memory on a
least-recently-used (LRU) basis.
This swapping takes place strictly
as needed for minimal impact on
the application's performance.

128 TURBO TEGINIX J anuary / February 1988

This automatic memory manage
ment can save much work for
application developers, because
Paradox's LRU strategy has no
effect on program logic or flow
control.

When Paradox swaps proce
dures automatically, it looks for
the procedure in the order of
precedence shown below:

1. In main memory (including
extended memory, if your com
puter supports it).

2. In the temporary storage area
of expanded memory, if the
computer has it.

3. On disk in the library from
which the procedure was origi
nally read.

4. On disk in the current autoload
library.

The net effect of extended
memory on computers that sup
port it is more main memory for
all operations. Thus, extended
memory provides the quickest
swapping of all. On computers
that cannot support extended
memory, expanded memory can
make procedure swapping barely
noticeable to application users.

However, the swapping mecha
nism itself is independent of how
your computer is equipped, so no
special coding is required to take
advantage of extended or
expanded memory. Any provi
sions that eliminate disk accesses,
such as extended or expanded
memory, will improve
performance.

RESTRICTIONS ON
AUTOLOADING AND
AUTOSWAPPING
Some important restrictions apply
to automatic memory manage
ment of procedures:

• Autoloading and autoswapping
in Paradox are limited to proce
dures that are read in from
libraries with READLIB or
accessed from the autoload
library. Procedures defined
within the script itself are unaf
fected by automatic memory
management. (This can actually
benefit performance when

continued on page 130

WATCH
YOUR

LANGUAGE

Our readers know that TURBO TECHNIX is the place to be when the focus is
on development. They watch us for the tips and techniques that help them uti

lize the speed and power of Borland's programming languages. And they
spend a lot of time in these pages.

Your ad should be here.

WATCH TURBO TECHNIX
MAY !JUNE 1988
IS.SUE CLOSING DATE: FEBRUARY 10

Device-independent graphics means that one source
code file can support many different graphics boards,
and the Borland Graphics Interface does it all for Turbo
Pascal and Turbo C ... check printer readiness with a
simple PAL procedure . .. build mouse support into your
Turbo C and Turbo Pascal graphics programs ... experi
ment with hypertext using Turbo Prolog ... understand
how multiple indexing works with the Turbo Pascal Data
base Toolbox ... perform fast text pattern searches in tel
ecommunications programs . . . and lots more!

JULY I AUGUST 1988
ISSUE CLOSING DATE: APRIL 24

Learn how to design and write TSR's that coexist in
memory with Sidekick Plus ... create custom text
devices in Turbo Pascal . . . build a meta interpreter in
Turbo Prolog ... add your own pull-down menus to
MicroStar in the Turbo Basic Editor Toolbox . .. drive
stepper motors through the parallel port with a TSR
utility in Turbo Pascal .. . draw Bezier curves quickly .
.. generate custom reports with a PAL program ... all
the TECHNIX you've come to expect, and a whole lot
more!

CALL NOW
RESERVE YOUR TURBO TECHNIX SPACE TODAY!

Office of the Publisher
(408) 438-9321

Publish.er
Marcia Blake

Advertising Sal,es Manager
John Hemsath

Western Office

(714) 858-0408
Janet Zamucen

New England/
Mid-Atlantic Office

(617) 848-9306
Merrie Lynch
Nancy Wood

Southern Office

(813) 394-4963
Megan Patti

I-

I -

I -

LISTING 1: HELLO.SC ~

? "Hello, world!"
SLEEP 5000

LISTING 2: HELLO.C

#include <stdio.h>

main()
{

printf("Hello, world!\n");
}

LISTING 3: GREET.SC

PROC hello()
? "Hello, world!"
SLEEP 5000

ENDPROC

hello()

LISTING 4: GREET.C

#include <stdio.h>

hello()
{

}

main()
{

}

printfC"Hel lo, world! \n");

hello();

LISTING 5: HYPO.SC

PROC Hypotenuse(x,y)
w=x*x
z=y*y
RETURN (SQRT(w+z))

ENDPROC

x = 4
y = 5
? "If a right triangle has sides 11 ,x, 11 and 11 ,y, 11

,
11

? "then its hypotenuse is 11 ,Hypotenuse(x,y), 11 •
11

SLEEP 4000

130 TURBO TEGINIX J anuary/ February 1988

PAL
continued from page 128

you must rely on immediate access
to a procedure whenever it is
invoked.)
• The size of the largest proce

dure that can be loaded is a
function of how many images
(tables, queries, etc.) and vari
ables are used in your applica
tion. The largest procedure can
not exceed the difference
between total available memory
and the sum of memory for
images and memory for
variables.

• Some procedures that are
higher on the call chain than
the currently active procedure
cannot logically be swapped out.
Refer to Chapter 15 (Perfor
mance and Resource Tuning) in
the PAL User's Guide for more
information.

DEBUGGING PROCEDURES
You can define procedures at any
point in the process of developing
your application. However, in the
debugging phase, you must
observe some simple precautions
so that normal debugging can
take place.

Remember that procedures are
sets of preparsed instructions
based on PAL statements. The
PAL Debugger can only debug
PAL statements, not lower-level
interpretations of PAL statements.
However, if the PAL Debugger
has access to the PAL statements
from which a procedure is
defined, then debugging can take
place normally.

When you define a procedure
and write it to a library, the full
pathname of the script is stored in
the library along with the proce
dure itself. The PAL Debugger
relies on this information to
locate the script containing PAL
statements on which the proce
dure is based. Therefore, the
script that defined the procedure
must be in the same drive and
directory that it was in when it was
originally written to the procedure
library, because that is where the
PAL Debugger will look for the
PAL code. If the script that

defines a procedure is moved to a
different directory, the PAL
Debugger will not find it and will
issue an error message.

When you debug the script on
which a procedure is based, it's
your responsibility to write the
corrected version into the proce
dure's library. The PAL Debugger
does not do this for you.

USING PAL PROCEDURES IN
APPLICATIONS
As a programmer you have many
options on how to use PAL proce
dures and libraries, and the best

If the script

that defines a

procedure is

moved to a

different directory,

the Debugger will

not find it and will .
issue an error

message.

options will be a matter of strat
egy. Your decisions will reflect the
use that your program makes of
procedures, the computer re
sources available to your program,
and other key factors. In general,
procedures are easy to define and
use; how effectively they augment
your application depends upon
how well you fine-tune them.
Here, too, PAL is like C, where a
variety of techniques are available
to optimize your program code,
but they exist at a considerably
higher level in PAL. We'll explore
some of PAL's fine-tuning tech
niques in a future article. •

Todd Freter is Senior Writer/ Editor at
Ansa Software.

Listings may be downloaded from
CompuServe as PALPRO.ARC.

LISTING 6: HYPO.C _J

#include <stdio.h>
#include <math.h>

float Hypotenuse(x,y)
int x,y;
{

}

main()
{

float w,z;

w = x*x;
z = y*y;
return sqrt(w+z);

int x,y;

x = 4;
y = 5;

printf("lf a right triangle has sides %d and %d,\n",x,y);
printf("then its hypotenuse is %f.\n",Hypotenuse(x,y));

}

LISTING 7: GREET2.SC

PROC hello()

hello()

? "Hello, world!"
SLEEP 5000
ENDPROC

RELEASE PROCS hello

LISTING 8: SALUTE.SC

CREATELIB "salute"
PROC hello()

? "Hello, world! 11

SLEEP 5000
ENDPROC

WRITELIB "salute" hello

READLIB "salute" hello

hello()

LISTING 9: HELLOINC.C

#include <stdio.h>
#include <salute.h>

main()
{

}
hello();

J anuary/ February 1988 TURBO TEGINIX 131

BINARY ENGINEERING
~~Go to, go to. "-Troilus and Cressida

Bruce F. Webster

C
onsider the following
opening paragraph of
a letter publishe~ in a
computer magazme:

Editor:
For a number of years I
have been familiar with the
observation that the quality
of programmers is a decreas
ing function of the density
of the GOTO statements in
the programs they produce.
More recently, I discovered
why the use of the GO'l'O
statement has such disas-
trous effects, and I became
convinced that the GOTO
statement should be abol-
ished from all "higher level"
programming languages
(i.e., everything except, per
haps, plain machine code).

This letter could come from any
one of a number of publications
during the last 10 years, where
arguments about the pros and
cons of GOTO statements have
raged from time to time. What
makes this letter interesting,
though, is that it was published 20
years ago, in the March 1968 issue
of Communications of the ACM. It
was written by Edsger Dijkstra, an
internationally respected compu
ter scientist known for his blunt
and controversial statements. The
letter was titled "Go To Statement
Considered Harmful," and was
the initial volley in a conflict that
continues to this day over the
proper role (if any) of GOTO
statements in computer programs.

To a large extent, the battle is
over. The anti-GOTO forces are
the clear victors, with a two
decade emphasis on "structured
programming" and the introduc-

tion of constructs such as WHILE
loops and trne IF .. THEN .. ELSE
statements into formerly unre
pentant languages, such as BASIC
and FORTRAN. However, the pro
GOTO forces have not been com
pletely vanquished. They still
occupy a niche, and point out the
algorithms and circumstances
where use of a GOTO statement
produces better, cleaner code
than the alternative. Between the
territories lies a demilitarized
zone, across which both sides face
off. Insults and the occasional pot
shot are not uncommon, but more
common still are secret incursions
across the border to use privately
the techniques disavowed publicly.
Proponents of GOTO-less pro
gramming usually have a few
guilty GOTOs in their closets,
while the most unrepentant
GOTO fanatics may find them
selves drifting into WHILE loops.

So, what's all the fighting about
anyway? Why did Dijkstra (and
others) argue so strenuously
against the GOTO statement,
while Knuth (and others) argued
so eloquently for it? Why, 20 years
after Dijkstra's letter, can you still
start a heated argument in any
group of two or more pro
grammers with either of the fol
lowing statements:

I think that the GOTO state
ment should be banished
from all high-level
languages.

I think that the GOTO state
ment is a useful and vital
part of any programming

132 TURBO TEQINIX January/ February 1988

language and should be
used freely.

A LOOK AT THE GOTO
STATEMENT
First, we'd better clarify the subject
for those unfamiliar with it. After
all, there are programmers out
there-good ones, too-who have
never used a GOTO statement.

Most programs are written in
programming languages that fol
low a sequential/procedural
model, such as FORTRAN,
COBOL, BASIC, Pascal, and C.
Simply put, execution starts with
the first statement in the program,
then continues to the next, then
the next, and so on until encoun
tering the last statement (or a
statement explicitly directing the
program to halt). A statement
might reference a procedure, also
known as a subroutine, subpro
gram, or function. In that case,
the statements in the procedure
are executed in a similar fashion,
after which execution continues
with the statement following the
procedure reference.

This is all very nice but also
very boring: a program limited to
executing each statement exactly
once and in strict sequential order
is limited, indeed. A conditional
statement-IF some condition is
true, THEN execute this state
ment-provides variation, but
does little to divert the inexorable
march from start to finish. Like a
ski run, you can choose an alter
native course down the slope, but
you can't suddenly jump back up
the slope to repeat a section or try
several alternatives all on the
same rnn.

Ah, but you can perform such
magic in a program with a GOTO

statement. A GOTO statement
usually takes the form

GOTO <label>

where <label> is an identifier or
line number telling which state
ment to go to next. This lets you
go back to a preceding (in sequen
tial order) statement or skip over
some following statements.

Note that the GOTO statement
isn't very useful without the IF
statement (or its local equivalent).

CONTROL STRUCTURES
With both the GOTO and IF
statements, you can build all the
major control structures used in
procedural languages: FOR,
WHILE, REPEAT,
IF .. THEN .. ElSE, and CASE. Con
sider the parallel constructs
shown in Table 1.

As you can see, all the fancy
statements on the left are just dis
guised combinations of IF and
GOTO, though easier to read and
understand. However, they don't
provide any functionality that IF
and GOTO don't, and there are
certainly some things that you can
do with GOTO that you cannot
with these statements. Why use
them, and why avoid using
GOTO?

PROBLEMS WITH THE GOTO
STATEMENT
Dijkstra's letter focused on one
major concern: program verifica
tion and debugging. He noted
that the ability to clearly trace the
sequence of execution is a
tremendous help in getting your
program to work. As procedures
and control structures are intro
duced (such as those in Table 1),
tracing becomes more complex,
but is still well defined, and the
intent of the program remains
clear.

Unbridled use of the GOTO
statement, though, can quickly
complicate a program beyond
reasonable human comprehen
sion. When Dijkstra wrote his let
ter, the predominant computer
languages-COBOL and FOR
TRAN-had little in the way of
control structures beyond the sim
ple IF and the GOTO, so pro-

X := A; FOR X := A TO B DO
<statement>; Again: if X > B GOTO Done;

<statement>;
x := x + 1;
GOTO Again;

Done:

~HILE <condition> DO
<statement>;

Again: if not <condition>
then GOTO Done;

<statement>;
GOTO Again;

Done:

REPEAT Again: <statement>;
<statement>

UNTIL <condition>;

IF <condition>
THEN <statement1>
ELSE <statement2>;

if not <condition)
then GOTO Again;

if not <condition>
then GOTO Else;

<statement1>;
GOTO Done;

Else: <statement2>;
Done:

CASE V OF
C1 : <statement1>;
C2 : <statement2>;
C3 : <statement3>;
ELSE <statement4>

if CV= C1) then GOTO Do1;
if CV = C2) then GOTO Do2;
if CV = C3) then GOTO Do3;
<statement4>;
GOTO Done;

END; Do1: <statement1); GOTO Done;
Do2: <statement2); GOTO Done;
Do3: <statement3);
Done:

Tab/,e 1. The classic structured statements impl,emented with GOTO.

grammers used them as shown in
Table 1. Unfortunately, not all of
them understood how they were
using them, nor did they limit
themselves to well-defined control
structures. The results were pro
grams that (to use Martin Hop
kin's phrase), "look like a bowl of
spaghetti"; hence the derogatory
phrase, "spaghetti code." (Hop
kins 1972).

What's wrong with "spaghetti
code"? Simply put, it's a pain to
debug and modify. Effective
debugging of a program usually
involves looking at a set of state
ments and being able to clearly
define all possible conditions
under which that code is executed.
If there is a clearly defined flow
path to those statements, then
tracing back along that path lets
you see everything that's hap
pened up to that point. That, in
turn, helps you to define the set of
conditions for that code's
execution.

But what if you have GOTO
statements in different locations
in your program, all branching to
one chunk of code? Defining the
set of conditions under which that
code is executed now becomes
complicated, since you have multi-

pie flow paths to it. And it is even
more complicated when those
flow paths themselves are
entangled with GOTO statements.
The "bowl of spaghetti" imagery
quickly replaces that of a single,
complex-but-traceable path.

ARGUMENTS FOR ELIMINAT
ING THE GOTO STATEMENT
Dijkstra has never been known for
pulling punches; this is, after all,
the man who said, "The use of
COBOL cripples the mind; its
teaching should, therefore, be
regarded as a criminal offense."
(Dijkstra 1982). So when he saw
the problems caused by the
GOTO statement, he simply pro
posed dropping it from all high
level languages. Others jumped
on the bandwagon, and the elimi
nation of GOTO statements, both
from languages and from existing
programs, became something of a
crusade.

The key to this movement was a
set of papers showing how all uses
of GOTO statements could be
replaced by program reorganiza
tion and appropriate use of con-

continued on page 134

January/ February 1988 TURBO TEGINIX 133

BINARY ENGINEERING
continued from page 133

trol structures. Most often cited
was a paper with the inviting title
of "Flow Diagrams, Turing
Machines, and Languages with
Formation Rules." (Bohm and
Jacopini 1986) This highly theo
retical paper proved, in essence,
that you can turn any flowchart
(hence, any piece of spaghetti
code) into a structured program
given the proper control struc
tures. Since it had been "proven"
that you didn't need GOTO state
ments, and since GOTO state
ments were so heavily abused,
therefore they should be elimi
nated altogether.

Perhaps the best summary of .
the arguments against the GOTO
statement are presented in a
paper by W. A. Wulf. (1972) His
initial cominents focus on the
problems resulting from abusing
the GOTO statement and the
need for clearer program struc
ture, especially for large programs.
He reviews the theoretical proofs
showing that you can eliminate
the GOTO statement, then he
addresses the practical issues of
convenience and efficiency. He
concludes that in order to "pro
duce large programs of predicta
ble reliability ... unrestricted
branching between components
cannot be allowed." His solution
is to replace all uses of the GOTO
statement with the corresponding
control structures.

ARGUMENTS FOR KEEPING
THE GOTO STATEMENT
The theory is all well and good,
but the first problem you encoun
ter is that not all languages have
the control structures necessary to
replace all uses of the GOTO
statement. When Dijkstra wrote
his letter to CACM, FORTRAN
really only offered the FOR loop,
the logical and arithmetic IF , and
the computed GOTO (a simplistic
CASE statement). Today, many
versions of BASIC still only offer
the FOR statement and an
IF .. GOTO statement.

In these situations, use of the
GOTO is unavoidable and, in
fact, desirable-as long as it builds

well-formed control structures,
such as those shown in Table 1.
Unfortunately, it seldom stops
there, and the usual problems of
unwise GOTOs arise. It's better
for the language to implement the
control structures directly; for
example, the IF .. THEN .. EI.SEIF
.. EI.SE..ENDIF and
WHILE .. WEND structures found
in some versions of BASIC. But
lacking that, GOTO statements
are often necessary and wise.

A second problem is that cer
tain algorithms or sections of code
are more understandable and/ or
more efficient with GOTO state
ments than without. Donald
Knuth, perhaps one of the best
known and most iconoclastic com
puter scientists, took the anti
GOTO movement as a challenge.
He jointly published several pa
pers demonstrating that code frag
ments containing GOTO state
ments could not be made GOTO
less without introducing addi
tional calculations or variables.
He also showed that the readabil
ity of the code suffered as well.
His provocatively entitled paper,
"Structured Programming with go
to Statements," lists several such
examples. (Knuth)

Interestingly enough, Knuth
contradicts himself a bit in that
same paper. After stating the
famous dictum that "premature
optimization is the root of all
evil," he goes on to justify the use
of GOTO statements in certain
instances in order to avoid an
extra test in an inner loop.

Another look at keeping the
GOTO statement is found in a
paper by Martin Hopkins (1972).
He puts forth five basic argu
ments. First, as mentioned earlier,
the alternatives to GOTO state
ments aren't always there. Second,
the GOTO statement can be used
to create new control structures;
after all, someone had to invent
the CASE structure (in this case,
Tony Hoare back in 1966). Third,
given the pressures and demands
of certain programming tasks,
"sometimes a GOTO is a useful, if
ugly, tool to handle an awkward
situation." Fourth, the poor code
generated by compilers structures
often leads programmers to use
GOTOs in the name of efficiency.

134 TURBO TEOINIX January/ February 1988

Fifth, Hopkins fears a monolithic
programming style will stifle crea
tivity. He needn't have worried.

GUIDELINES
So, when should you use GOTO
statements, or should you use
them at all? Even among the pro
ponents of the GOTO statement,
the message is clear: Use it only
when it is a superior alternative.
What are those circumstances?

• When the language doesn't
contain the control structure
desired. For example, if you're
writing code that needs a
WHILE loop and the language
doesn't provide one, you don't
have much choice. In such
cases, be familiar with the con
structs in Table 1 and drop
them in as "boilerplate" code,
plugging in the necessary
substitutions.

• When it makes an algorithm
more clear. Certain algorithms
that are concise and straight
forward when using GOTOs
can become expanded and
muddled when the GOTOs are
dropped. Don't sacrifice clarity
for ideology, but first be sure
that the algorithm is indeed
clearer with the GOTOs than
without.

• When it makes an algorithm
significantly more efficient. If
using a GOTO allows you to
drop a statement or compari
son from a time-critical inner
loop that is executed thousands
or millions of times, do it. How
ever, beware of making your
code obscure for marginal
improvements in performance.

• When it's late, you're tired, you
know the GOTO will do the
trick, and you're only going to
use the program once anyway.
Hopkins' comment is, "I tend
to sympathize with the
programmer who fixes up a
one-time program at 3:00 a.m.
with a GOTO." Of course
Hopkins also says, "A pro~am
mer should be able to justify
each use of GOTO."

• When none of the above con
ditions is true, but you really
want to irritate some acquain
tance who is fanatic about

avoiding GOTO statements
and who will eventually read
your code.
One of the few necessary uses

of GOTO in Pascal is breaking
out of a FOR loop before the con
trol variable has stepped through
its range. In most Pascal imple
mentations, modifying the control
variable to terminate the loop
early is either forbidden during
the compile pass or else generates
unpredictable code. Two keywords
associated with the FOR loop,
Break and Cycle, have been
implemented in only a few Pascal
compilers, not including Turbo
Pascal. Cycle short-circuits the
loop, increments the control vari
able, and begins at the top of the
loop again. Break ends the loop
and passes control to the first
statement following the FOR
statement.

Without Break, Turbo Pascal
must resort to GOTO:

FOR I := 1 TO 50 DO
BEGIN

IF PanicButton THEN GOTO 100

END
100: WritelnC'Loop finished!');
Granted, this structure might have
been written as a WHILE loop,
but it would not have been as
obvious. Situations like this do not
come up often, but when they do,
they can be devilishly difficult to
massage into a different but equi
valent form.

Given the right control struc
tures, it is possible to write vast
amounts of code without ever
using a GOTO statement. I know;
I've written vast amounts of Pascal
and can count the number of
GOTO statements I've used on
one hand. Once I copied a shell
sort algorithm out of a book. The
other two or three times I was a
few levels deep in control struc
tures, wanted to exit the proce
dure I was in, and the Pascal com
piler I was using didn't have the
Exit statement. Even there, I could
have rewritten the procedure to
avoid the GOTO, but I felt the
code was cleaner than the
rewritten version would have been.

By the way, this avoidance
hasn't been out of ideological fer
vor. I programmed heavily in

FORTRAN for several years
before using Pascal. However, I
was so tickled at all the new tools I
had to use that I never got around
to making the GOTO statement
part of my Pascal programming
style.

That is probably the best
approach for you as well: try not
to make the GOTO statement part
of your programming style. It can
be a useful tool, but it is used best
when used sparingly. •

REFERENCES
The papers cited in this article are
reprinted in Classics of Software
Engimeering (edited by Edward
Nash Yourdon, New York: Your
don Press, 1979).

1. Dijkstra, Edsger. "Go To State
ment Considered." Communica
tions of the ACM, Vol. 11, No. 3
(March 1968), pp. 147-148.
Reprinted in Classics, pp. 29-33.

2. Hopkins, Martin E. "A Case for
the GOTO." Proceedings of the 25th
National ACM Conference, August
1972, pp. 787-90. Reprinted in
Classics, pp. 101-109.

3. Dijkstra, Edsger. "How Do We
Tell Truths That Might Hurt."
Found in Selected Writings on Com
puting: a Personal Perspective,
Springer-Verlag, 1982, pp. 129-131.

4. Bohm, C. andjacopini, G.
"Flow Diagrams, Turing Machines,
and Languages with Only Two
Formation Rules." Communications
of the ACM, Vol. 9, No. 5 (May
1966), pp. 366-71. Reprinted in
Classics, pp. 13-25.

5. Wulf, W. A. "A Case Against the
GOTO." Proceedings of the 25th
National ACM Conference, August
1972, pp. 791-97. Reprinted in Clas
sics, pp. 85-98.

6. Knuth. D. E. "Structured Pro
gramming with go to Statements."
Taken from Current Trends in Pro
gramming Methodology, Volume 1,
Raymond T. Yeh, ed. Reprinted in
Classics, pp. 259-321.

Bruce Webster is a computer mercen
ary living in the &ckies. He can be
reached at]adawin Enterprises, P.O.
Box 1910, Orem, UT 84057; via
MCI MAIL (as Bruce Webster) or on
BIX (as bwebster.)

OU WON'T BELIEVE YOU GOT ALONG WITHOUT IT ...

BoosterGraphics
Graphics Subroutine Library for Turbo Basic

BoosterGraphics gives Turbo Basic programmers the power to create sophis
ticated graphics effects and graphics based user interfaces - easily & quickly.

Features include:
Multipage graphics
High speed pixels, lines, circles
Image blitter routines
Easy graphics mode windows
Instant pull-down menus
Extended ASCII fonts
Fast & flexible IMAGE TEXT
Powerful graphics editor
BoosterPaint included
Familiar BASIC syntax for all commands

ALL IN GRAPHICS MODE!!
Compatible with CGA, EGA, VGA, MCGA and HERCULES standards

Introductory price $55.00 • 30 day money back guarantee
Assembly source code available• Not copy protected, no royalties

Free technical support •Free updates if purchased before Jan. 31, 1988

To order, please call us:
Suncloud Software, Inc.
101 West Ninth Street
Durango, Colorado 81301
(303) 247-0439

add $3.00 shipping/ handling U.S., $5.00 Canada
We ship any way you want - all major credit cards accepted.

Turbo Basic is a registered trademark of BORLAND INT'L

January/ February 1988 TURBO TEGINIX 135

LANGUAGE CONNECTIONS
Monochrome graphics in two languages.

Gary Entsminger

Y:
ou can spruce up

almost any application
by adding a window
nterface and/ or a

graphics display. Turbo Prolog's
built-in windowing commands,
makewindow, shiftwindow,
removewindow, window_attr,
and window_str, make this
especially easy.

Creating graphics displays is
only slightly more difficult. If you
have an EGA or CGA video card,
you can use the built-in graphics
predicate and its support predi
cates, dot and line, to create
delightful colors and shapes.

But owners of Turbo Prolog 1.1
will find that monochrome graph
ics modes are not supported. This
means that if you need graphics
with a monochrome graphics card
(such as the Hercules card), you
must develop your own graphics
interface. This isn't as hard as it
sounds. You can create surpris
ingly good images on Hercules
and monochrome cards, and on
any system in general, by using
character graphics (in text mode).

Figure 1. Bar graph produced by the program in Listings 1 and 2.

In fact, writing to a text mode
display is generally faster than
writing to a graphics mode dis
play, since we're writing blocks
instead of individual pixels. The
tradeoffs are obvious-no color,
no grand details, and no diagonal
lines-but we still have a lot of
power.

For example, we can draw a
pretty fair bar graph by writing
characters directly to screen
memory. All it takes is a little

understanding of how the display
works, and some programming
tools.

SETTING UP THE BAR
Let's describe a program for draw
ing a bar graph on a mono
chrome system. The program
combines the high-level power of
Turbo Prolog and the low-level
power of Turbo C. Our minimum
requirements are to:

1. Set up a simple interface for
communicating between pro
gram and user

2. Get information (scale, etc.)
about the bar graph from the
user

3. Set up the graph (calculate axis
values, bar widths, and heights)

4. Clear the screen

136 TURBO TEOINIX January/ February 1988

5. Remove the cursor

6. Draw the graph

7. Interact again with the user (do
we continue or not?)

8. Clear the screen

9. Restore the cursor.

_The program should also con
sider the ways a user might try to
blow up the program (by entering
bar values outside a range, etc.).
Listing 1 shows the Turbo Prolog
code for this sequence of events.

Prolog's built-in makewindow
predicate sets up the interface,
and uses read and write state
ments to interact with the user.
Control is then passed to Turbo C
for the low-level acrobatics.

THE VIDEO ADAPTER
The EGA, CGA, and monochrome
display adapters use different
addresses, so if we write to the
wrong address, nothing (visible)
happens on the CRT. The base
address for the monochrome and
Hercules video cards is bOOOH,
defined as SCREEN_BASE in
defs.h (see Listing 3). Change this
address for other adapters. The
SCREEN_ WIDTH is set to 80
characters (also shown in Listing
3). If you have another screen
size, change this definition
as well.

We can write a character and its
attribute directly to the screen
with Turbo C's built-in function
pokeb, which requires three
parameters-Segment, OflSet, and
Value. For example, to write the
letter A to the screen at (10,20) in
normal video (i.e., white charac
ters on a black background) you
would make the following calls:
_pokeb(SCREEN_BASE,

((10 * SCREEN WIDTH)
+ 20) * 2,0x41>;

_pokeb(SCREEN_BASE,
(((10 * SCREEN WIDTH)
+ 20) * 2) + 1, 7);

SCREEN_BASE is equal to the
address of the video adapter card
(((y * SCREEN_WIDTH) + X) * 2)

which is equal to the offset
address (we have to multiply by 2
to coordinate the 8088's and
6845's view of memory: the 6845
doesn't take attribute bytes into
consideration). Ox41 is the ASCII
hexadecimal code for a capital A,
and 7 is the normal attribute code.

THE 6845 CRT CONTROLLER
The 6845 CRT Controller is the
brain of the video adapter, select
ing each character code to be dis
played from the adapter memory
and controlling the horizontal
and vertical characteristics of the
display, as well as the cursor
image. We'll use it to turn the cur
sor off and restore it after we've
finished drawing our bar graph.
To program the controller, all we
need do is write to its registers (at
3b4H and 3b5H). We must write to
3b4H first in order to select any of
the 6845's 16 other registers that
begin at 110 port address 3b5H.

continued on page 138

LISTING 1: P-BAR.PRO

!* Listing 1 -- PROLOG MAIN MODULE*/

global predicates
draw bar(integer,integer,integer,integer) -

- Ci,i,i,i) language c
clear screen language c
remove cursor language c
draw axis language c
restore_cursor language c

predicates
main
process
set_up_bar(integer,integer,integer,integer,real)

goal
main.

clauses

/* PROLOG module must contain */
/*a GOAL in order to COflllile */
I* to .OBJ. */

main:- /* Set up user interface. */
makewi ndow(1, 7, 7, "Graphics", 0, 0, 25 ,80),
process. /* Process the problem. */

main:- /* Continue? */
write("Do you want to continue? y or n"),
readchar(Answer), Answer= 'y',
main. /* Call main recursively. */

main:- /* We're done. */
nl,write("Press any key to end."),
readchar(),
clear_screen(), /* Clean up for next applic.*/
restore_cursor().

process:-
write("Enter the number
readint(NlJT()fBars),
clearwindow,

/* Process the problem. */
of bars: "),

NlJT()fBars <= 10, /* The system is currently */
/* set up to handle 10 bars.*/

write("Enter max value on Y scale: "),
read int (Max),
Max > 0,
clearwindow,
YScale = 18/Max,

Width = 60/NlJT()fBars,
Xstart = 2,

clear _screen(),
remove cursor(),
draw axis(),
Num ; 1,

/* Avoid division by zero. */

/* Our axis is currently set */
/* up as 18 by 60. */

/* Start the first bar next */
/* to the y axis. */

/* Call C functions. */
/* Who needs it? */

/* Set Num for first bar. */
!* And begin. */

January/ February 1988 TURBO TElliNIX 137

set_up_bar(Nl.Jll,NlJTOfBars, Width, Xstart, Yscale),
fail. /* Fail when we're finished*/

/* and reclaim memory. */

/* Error report. */
process:-

write("System is currently set up to draw 10 bars"),
write(" & Y > 0, <= 30,000 max."),
nl, fail.

set_up_bar(O,_,_,_,_): - !. /* There are no bars to */
/*process, so we're done. */

set_up_bar(N1.J11,NlJTOfBars,Width,Xstart,Yscale):-
N1.J11 <= NlJTOfBars, /* Are we done? */
write("Enter the value for bar 11 ,Nl.Jll ,": "),
readint(Y),
Height=Y*YScale, /* Calculate height of bar. */

/*Call C function to draw. */
Height <= 18, /* Value <= Y max? */
draw bar(N1.J11,Xstart,Height,Width),

- /* Get next x position. */
XNewPos= Xstart +Width+ 1,
XNuNew=Nl.Jll + 1, /*Keep count of bars. */

/* Continue getting bar */
/*values until we're done. */

!,set_up_bar(XNuNew,NlJ110fBars,Width,XNewPos,Yscale).
set_up_barCN1.111,NlJTOfBars,_,_,_):-

N1.J11 >= NlJTOfBars,I. /*We're done.*/
set_up_bar(N1.J11,NlJTOfBars,_,_,_):-

N1.J11 <= NlJTOfBars, /* There's an input error. */
write("Bar value exceeds Y max."),
! •

LISTING 2: C·BAR.C

#include 11defs.h 11 /* Hercules #defines */

/* Put a character and its attribute anywhere on the screen. */

void putc_at_location(char ch, int x, int y, unsigned char attrib)
{

_pokeb(SCREEN_BASE,((y * SCREEN_WIDTH) + X) * 2,ch);

/* SCREEN_BASE = Address of the video adapter card;
((y * SCREEN_WIDTH) + X) * 2 = offset address */

_pokeb (SCREEN_BASE,(((y * SCREEN_WIDTH) + x) * 2) + 1, attrib);

}

138 TURBO TEOINIX J anuary/ February 1988

LANGUAGE CONNECTION
continued from page 137

For example, to change the
shape of the cursor on the mono
chrome adapter, we write a lOH to
I/O port address 3b4H (the cur
sor start register) . Then we set the
value we want for the cursor (e.g.,
12 for a two-line underline 12-10)
at 3b5H. To turn the cursor off, we
write a lOH to 3b4H and a 20 (the
code to turn the cursor off) to
3b5H. (Note: the Hercules and
monochrome adapters produce a
character image of 14 scan lines.
If you're working with a CGA
adapter, you only have eight scan
lines, so you need to write a
smaller value (for instance, 6) to
3b5H.)

Also, note that in order to
address the 6845's registers, we
must write to both addresses
(3b4H and 3b5H).

We can write to the 6845 regis
ter address by using the built-in C
function outportb, which requires
two parameters (the address, and
an integer value):
_outportb(Ox3b4,10);
_outportb(Ox3b5,20);

The complete remove and re
store cursor functions (in Turbo
C) are in Listing 2.

THE BAR GRAPH
The easiest way to draw a bar in
character mode is to fill a block
(or bar) of locations with a charac
ter. In other words, each bar is
equal to a rectangle without a
border. In order to decide how
big to make each bar we need to
know the scale we're using to
draw the bars, as well as each
bar's height and width. We'll cal
culate these values from the user's
input.

ln my example (Listings 1 and
2), I've set up an X/ Y axis 18 (Y
axis) by 72 characters (X axis) .
After the user supplies the maxi
mum value for the Y axis, we cal
culate the value of one unit on the
Y axis by dividing 18 by the
chosen maximum value. The
height of each bar is then the
user-supplied value for each bar
multiplied by the value of one
unit.

To get the width of each bar we
divide the total width (72 charac-

ters) by the number of bars. This
distributes the bars evenly across
the graph.

The other order qf business is
to decide which graphics charac
ters will fill our bars. I've chosen
the three characters with hex
values bO, bl, and b2. By setting
up a switch statement in C (see
Listing 2), we can alternate the
characters, making our bars more
readable. The resulting graph of
10 bars is in Figure 1.

THE CONNECTION
Looking over the Turbo Prolog
code, you should first note that
the main module of our mixed
language program is written in
Turbo Prolog, so the Turbo Prolog
compiler handles all the memory
management and function calling
(see "Language Connections" in
the November/ December issue
for details on memory
management).

Our Turbo C functions are sub
routines of the Turbo Pro log main
program, so we must declare them
as global predicates, and we must
specify the flow patterns of the
functions. We omit parameters
and flow patterns for the few
functions that neither receive nor
pass variables or values.

The user interface implements
makewindow within a recursive
loop to allow for successive runs
(see set_up_bar in Listing 1). By
using a fail at the end of process,
the program backtracks, thus free
ing any memory previously allo
cated. I've also included some
error checking (see the predicates
main, process, and set_up_bar
in Listing 1) to protect the pro
gram from errant user input. If a
value is out of range, the program
explains why it's not executing,
and asks the user if he/ she wants
to continue.

Note that we can include files in
the Turbo C code, but if an
include file (or library) contains a
built-in function, we must prefix
the function with an underscore.
The built-in functions pokeb and
outportb must be written as
_pokeb and _ outportb, respec
tively. This requirement holds in
spite of the fact that the Turbo C
compiler option Generate under
bars has been turned off.

continued on page 142

I* Draw a bar. If height = 0, don't draw the bar,
just go to the next. Use differer.t characters for
different bars up to a maxirrun of 10 bars. Add more
bars by adding more case statements. */

void draw_bar_O~int no, int start_x, int height, int width)
{

int i,j,end_x,end_y,start_y;

switch (height){
case 0 :

break;
default:
end_x = start_x + width;
end_y = 22 · height;
start_y = 22;

for (j = start_x; j <=end x; ++j)
for Ci = end_y; i <= start_y; ++i)

switch (no){
case 0 :

putc_at_location(OxB1,
break;

case 1 :
putc_at_location(OxB2,
break;

case 2 :
putc_at_location(OxBO,
break;

case 3 :
putc_at_location(OxB1,
break;

case 4 :
putc_at_locationC0xB2,
break;

case 5 :
putc_at_location(OxBO,
break;

case 6 :
putc_at_location(OxB2,
break;

case 7 :
putc_at_location(OxBO,
break;

case 8 :
putc_at_locationC0xB1,
break;

case 9 :
putc_at_location(OxB2,
break;

case 10 :

}

putc_at_location(OxBO,
break;

j, i I 7);

j, i, 7);

j, i, 7);

j, i I 7>;

j, i, 7);

j, i I 7);

j, i, 7);

j, i I 7);

j, i I 7);

j, i, 7);

j, i I 7);

J anuary/ February 1988 TURBO TECHNIX 139

LISTING 1a: PROCPU.PRO

/* Listing 1a -- PROCPU.PRO which calls the assembly language
subroutine and displays the CPU's name

TO LINK: Execute the following link line from the DOS prOl'Jllt:

LINK init PROCPU ASMCPU PROCPU.SYM,GETCPU,,PROLOG

*I

code = 2500

global predicates
getcpu(integer) - (o) language asm

goal
getcpu(CPU), /* Call ASM subroutine. */
makewindow(1, 77, 7, "", 10, 20, 10,40), /* llri te result *I
write("Processor is 80 11 ,CPU),
nl,
write("<RET>"),
readlnC),
removewlndow.

LISTING 2a: ASMCPU.ASM

Set up for call from Turbo PROLOG

CSEG SEGMENT
ASSUME CS:CSEG,DS:CSEG,ES:CSEG,SS:CSEG

PUBLIC getcpu_O

getcpu_O PROC FAR

PUSH BP

MOV BP,SP

Turbo PROLOG expects external procedures
to end with " 0"
Turbo PROLOG requires all ext procedures
to be "FAR"
Save old Base Pointer, and load Stack
Pointer, so that BP can be used to
address parameters

MAIN subroutine (code contributed by Juan Jimenez)

PUSHF
XOR AX,AX

PUSH AX
POPF

PUSHF

POP AX
AND AX,08000h
CMP AX,08000h
JZ _8x_18x

Save the flag registers
Clear AX and push it onto the stack
etc ••••..••••••••

Pop 0 into flag registers (all bits to
0),
attefll>ting to set bits 12- 15 of flags to
O's
Recover the saved flags
If bits 12-15 of flags are set to zero
then cpu is 8088/86 or 80188/86

140 TURBO TEGINIX J anuary/ February 1988

Identifying the
CPU from
Turbo Prolog
Those Turbo Prolog program
mers who read Juan Jimenez's
article about identifying the sys
tem CPU with an assembly lan
guage subroutine called from
Turbo Pascal (elsewhere this
issue) might want to add a sim
ilar little routine to their Turbo
Prolog repertoire. It's an easy
connection, but one requiring a
few alterations in Mr.Jimenez's
assembly language code.

First, let's write the Turbo
Prolog part-a little program
that calls the assembly language
subroutine, then writes it to the
screen after getting the CPU
value. See Listing la.

Note the global predicate dec
laration and the flow pattern of
the subroutine. Since we're not
going to pass anything to the
subroutine, but we do want to get
a value back, our flow pattern is
(o).

Next, we'll write the assembly
language interface. Since the
internal part of the subroutine is
identical whether you use Turbo
Pascal or Turbo Prolog, refer to
the Jimenez article for the code.
I will, however, detail the Turbo
Prolog-to-assembler interface.

First, we rename our external
procedure by appending a _O,
which enables Turbo Prolog to
recognize it as an external
procedure. Also, Turbo Prolog
requires all external procedures
to be FAR, so we call it accord
ingly. Then, we preserve the
Base Pointer (BP), and load the
Stack Pointer (SP) so that we can
use BP to address parameters.
See Listing 2a.

Each call to an external sub
routine has an activation record,
which goes onto the stack. This
record includes the previous BP
setting (before we called the
external subroutine), the address
from which execution is to con
tinue after the subroutine is exe
cuted (IP), and the values
and addresses of input or output
parameters. See Figure 1 a.

[BP) + 6 - Address where the value of
"CPU" will be placed
(4 bytes)

[BP] + 2 - Address where execution
continues after GETCPU ends
(4 bytes)

[BP] + 0 - Previous BP setting before
execution of GETCPU
(2 bytes)

Figure la. Activation record for thR
call to getcpu.

When a program calls an
external subroutine, the CALL
instruction (generated in this
case by Turbo Prolog) stores (or
PUSHes) the instruction pointer
(IP) onto the stack. This is essen
tial since the assembly language
subroutine uses the IP itself. In
order to return to the coJTect
instruction in our Turbo Prolog
program we need to retrieve the
original IP.

Since all external calls in
Turbo Prolog are FAR, this
PUSH requires four bytes-two
for the contents of the CS regis
ter and two for the contents of
the IP. When our subroutine fin
ishes execution, it POPs the orig
inal value of the IP off the stack.

The results of the CPU check
(handled by the subroutine) are
in the AX register. In order to
get these results back to our
Turbo Prolog program, we put
them onto the stack (the next
space = [BP] + 6), where Turbo
Prolog expects to find them.

Then, we restore the Base
Pointer and return to Turbo
Prolog, deallocating the space we
used for parameters on the stack
(four bytes in this case for the
output parameter).

And that's it. By making slight
variations (depending on the
number of parameters and the
flow pattern) you can use this
method to call most external
assembly language subroutines
from Turbo Prolog. •

-Gary Entsminger

Listings may be downloaded from
CompuServe as PROCPUARC

Decide whether CPU is 80286 or 80386

MOV AX,07000h
PUSH AX
POPF
PUS HF
POP AX
AND AX,07000h
JZ 286

It' s an 80386

MOV AX,386
JMP DONE

; It' s an 80286

286: MOV AX,286
JMP DONE

Try to set flag bits 12-14 to 1's
Push the test value onto the stack
Pop it into the flag register
Push it back onto the stack
Pop it into AX for check
If bits 12-14 are cleared then the chip
is an 8028(>

It's not a 286, so it must be a 386

; Get the msg ready

; It's an 8088/86 or 80188/86

_8x_18x:
MOV AX,Offffh
MOV CL,33
SHL AX,CL

JNZ 18x

MOV AX,86
JMP DONE

; It's an 80188 or 80186

18x: MOV AX,186

Set AX to all 1's
Now we try to shift left 33 times. If
it's an 808x it will shift it 33 times,
id it's an 8018x it will only shift one
time.
Shifting 33 times would have left all
O's. If any 1 1 s are left it's an
80188/186
No 1 1 s, it's an 8088/86

Found a 1 in there somewhere, it's an
80188 or· an 80186

; New "DONE" gets us back to Turbo PROLOG

DONE:
LOS Sl,DYORD PTR [BPJ+6 Move returned value's address

into SI (another register which
allows indirect addressing can
be used

HOV [SIJ,AX

POPF
POP BP
RET 4

getcpu_O ENDP
CSEG ENDS
END

Move the value in AX Ci .e. the
processor # to the address in SI
Restore the flag registers
Restore Base Pointer
Return to next execution address
IP and de-allocate parameters (4
bytes for returned vari~ble)

J anua1y / February 1988 T URBO TE01NIX 14.1

}

}

/* Draw an inverse video x/y axis. */

void draw_axis_O()
{

int x,y;
y = 23;
for (x = 1; x <= 73; ++x) /* from 1,23 to 1,73 */

putc_at_location(Oxdb,x,y,7>;
x = 1;
for (y = 3; y <= 23; ++y) /*from 3,1, to 23,1 */

putc_at_location(Oxdb,x,y,7);
}

r• Clea!" the scr~en by 1iriting blanks to every
screen ~ocation. */

void clear_~creen_O()

{

unsigned int x,y;
for Cy = O; y <=25; ++y)

for (x = O; x <=80; ++x)
putc_at_location(' ',x,y, 7);

}

/* Remove or restore the cursor by writing to the
6845 CRT Controller. */

void remove_cursor_O()

{

__ <,lltp::irtb(Ox3b4, 10);

_outportb(Ox3b5,20);
}

void restore_cursor_O()
{

/* Ox3b4 = PC 1/0 address register
of the 6845;
10 = 6845 register which
defines cursor start */

/* 20 = code to turn cursor off */

_outportb(Ox3b4, 10); /* Ox3b4 = PC 1/0 addres~ register
of the 6845;
10 = 6845 register which
defines cursor start ~/

_outportb(Ox3b5,(CURSOR)); /* CURSOR = cursor end */
}

LISTING 3: DEFS.H

/*Listing 3 - C Support module*/

#define SCREEN BASE OxbOOO /* base address of hercules card */
#define CURSOR-12
#define ~CREEN_~IDTH 80

t"i2 TURBO TECHNIX January/ Febrnary 1988

LANGUAGE CONNECTION
continued from page 139

Our programmer-defined Turbo
C functions that are called directly
by Turbo Prolog must have a _O
suffix, since Turbo Prolog
requires it. This applies to
clear _screen, remove_cursor,
draw _ axis, and draw _bar.
putc_at_location, on the other
hand, is only called by another
Turbo C function (not by Turbo
Prolog), so it needs no underscore
cosmetics.

To make the executable pro
gram, link the .OBJ code (gener
ated by the source code in Listings
1 and 2) with INIT, CPINIT, the
symbol table, and the PROLOG
and CL libraries. Your command
line (for linking) should look like:
Tlink init cpinit p-bar c-bar

p-bar.sym,bar,,prolog+cl

As always, when you compile
the Turbo C code, remember to
use the large-memory model;
select Jump optimization
(optional); and turn off Use regis
ter variables and Generate
underbars.

You can, of course, make a
number of enhancements. For
instance, you might experiment by
reading the information needed
by the bar graph from a file, or
you might push on into graphics
mode if you have a Hercules,
CGA, or EGA adapter. Initializing
the Hercules adapter for graphics
mode (as opposed to text mode) is
a bit tricky, so I'll save it and the
EGA for ano~her time. •

REFERENCES
Eckel, Bruce. "Tools For Quick
System Constrnction." Micro Cor
nucopia #38, 1987.

Kernighan, B.W. & D.M. Ritchie.
The C Programming Language,
Prentice-Hall, Inc., 1978.

Willen, D.C. & JI. Krantz. 8088
Assembler Language Programming:
The IBM PC, Howard Sams & Co.,
1983.

Listings may be downloaded from
CompuServe as LCVIN2.ARC

Gary Entsminger is a freelance writer
and is an associate editor of Micro
Cornucopia magazine.

TALES FROM THE
RUNTIME
Expanding wildcard support

Bill Catchings and Mark L. Van Name

I
n our last column we discussed a directory
structure that is helpful when you begin to
modify parts of the Turbo C Runtime Library
source code. This time we make some changes

to that source code, and we assume that you are
using this directory structure.

EXPANDING WILDCARD SPECIFICATION
While Turbo C offers many useful functions, it lacks
one feature that is offered by C under the UNIX
operating system: the automatic expansion of wild
card file specifications. In DOS you can type com
mands such as "Dir *.Bat" and see a list of all files
that match the given specification. UNIX carries this
ability further. The command processor, or shell,
expands any wildcard file specifications it encounters
on a command line before the filenames are passed
to the program being executed.

For example, if you have a word counting program
named wc and type the command "we *.bat" from
the shell, the shell replaces "*.bat" with a list of files
that match that template. Each filename is an indi
vidual null-terminated string. If three files matched
this specification, wc would see its argc as four (these
three plus one for the program name) and its argv
would contain the three filenames. The programmer
who wrote wc would not have to do anything to get
this feature .

You can mimic this ability by calling a routine
from within your main routine to make a wildcard
expansion pass over argv. It then adjusts argc and
argv appropriately, so that the rest of the code never
knows the difference. This approach works, but it
requires you to modify every program, and it is not
as elegant as the UNIX approach. Because we miss
this feature, and because we prefer elegance, we
went into the Runtime source and changed it so that
wildcard expansions occur before your main routine
is ever called. Once you have installed the changes,
you'll never worry about wildcard expansion again!

We limited our changes to two files, one old and
one new. Both are shown in the accompanying list
ings. The new one, WILD.C (Listing 1), does the

actual work of expanding wildcard file specifications.
We modified the existing file, SETARGV.ASM (Listing
2) in order to force a call to our routine prior to call
ing the main routine. When you're ready to add
them to the library, use UPDC.BAT (Listing 3) to
update WILD.C, and UPDASM.BAT (Listing 4) for
the new SETARGV.ASM. Don't be alarmed if both
of these procedures take a little while to execute,
because each one has to update five libraries, one
for each of the memory models. One final reminder:
Make a copy of the original SETARGV.ASM and
stash it somewhere safe in case you need it later.

As we noted last time, much of the Runtime source
is written in assembler. We try whenever possible to
do our work in Turbo C, but some assembly lan
guage programming is almost always required. This
means that you need a copy of MASM to complete
the modifications.

The changes we made this time are a typical
example. We started by altering an assembly lan
guage routine, _setargv. We made as few changes as
possible, however, and called our C routine, expwild,
to do the bulk of the work.

We chose to start the wildcard expansion process
in _setargv because it is the natural place to begin.
One of the last things the startup procedure cO.asm
does is to call _setargv before calling your main
routine. Because all startup functions other than the
command line processing have already been done,
we are able to call a Turbo C routine for most of the
work. As you look over the changes we made to
_setargv, remember that the C calling conventions
require that the first argument be on the top of the
stack. This means that our assembly language code
must push the arguments to any Turbo C routine
onto the stack in reverse order of their appearance
in the routine's declaration. Also, we skirt the entire
problem of the underscores that prefix Turbo C rou
tine names called from assembly language. We use

continued on page 144

J anuary/ February 1988 TURBO TEQINIX 14 3

FROM THE RUNTIME
continued from page 142

the ExtProc macro to declare our external Turbo C
procedure. This macro is defined in the file
RULES.AS! and handles such underscore problems
automatically.

THE JOB OF _setargv
The job of _setargv is to turn the command line
that COMMAND.COM provides, which is one string,
into a set of null-terminated strings usable by your
Turbo C program. For ease of reference we call
these strings words. Turbo C passes these words to
your main program by pushing pointers to them and
pushing the words themselves onto the stack.
_setargv is written in assembler primarily because it
does so much stack manipulation. It has to place
these arguments on the stack and make sure that
they are still in the right place when your main rou
tine starts. When called, _setargv returns the
address of its caller in a variable, and then jumps to
that address when it finishes. This avoids having an
argument on the top of the stack popped as if it were
the return address.

_setargv performs one other major function; it
handles quoted strings. Normally, two command line
words that are separated by spaces or tabs are
pushed as two separate arguments. All characters
within a quoted string, however, are treated as one
argument.

Since _setargv already reads through the com
mand line once in order to process quoted strings,
the most efficient way to handle wildcard expansion
is to do it during this pass. But that would have
forced us to change a great deal of _setargv, which
would have meant even more assembly code.
Because this is startup code that is executed only
once, and because we wanted most of the work to be
in Turbo C, we opted for a simpler approach that
runs slightly slower. We process the command line
twice. The first time we run through it in Turbo C,
expanding any wildcard file specifications we find.
We then give this expanded string to the rest of the
code in _setargv, which handles any quoted strings.

Because we are creating an intermediate form of
the command line, we need some memory in which
to store this string. We chose to get that memory
from the lowest level Turbo C memory allocation
routine available, sbrk. sbrk costs the least to use,
both in terms of the amount of computation it per
forms and in the number of routines that it causes to
be linked into our final code. Higher level Turbo C
memory allocation functions, such as malloc, ulti
mately use sbrk and additional control information.

We wanted to allow as large an expanded com
mand line as possible, but we did not want to stop

144 TURBO TECHNIX January/ February 1988

anyone's program from executing because we con
sumed tons of additional memory. We decided to
allocate as much as half the size of the stack. This
choice should be fine for most programs. Also, we
give back the memory before your main routine ever
starts. To free the memory we only have to call sbrk
with the negative of the amount of memory we allo
cated previously. We get the stack size from the varia
ble _stklen.

expwild TAKES OVER
Once we have the needed memory, we get the initial
command line and terminate it with a null. Then we
pass it, and the destination command line buffer we
just allocated, as well as the maximum size of that
buffer, to our Turbo C routine expwild. We pass the
initial command line as a far pointer so that expwild
works regardless of the memory model with which
you compile your code.

expwild is yet another of those string processing
procedures that has to be careful to keep its offsets
right while remaining familiar and straightforward.
It plows through the command line, copying charac
ter after character from the initial string to the desti
nation buffer. It treats either a space or a tab as an
end-of-word marker, remembering word boundaries
as it goes. When it finally encounters a word that
contains a wildcard character ("*" or "?"), it backs up
the pointer in the source string to the start of that
word. It then copies that word into a local variable
buffer (wildspec) and passes that to the routine wild
for expansion. We use the local variable rather than
the source string itself so that wild does not have to
deal with the far pointer that expwild receives. This
makes wild a general purpose routine that you can
call at any time.

expwild has some limitations. If there is not
enough space available to hold the expanded com
mand line, we truncate the line. Your program never
knows that the truncation occurred. On the bright
side, this choice allows your program to work on all
of the files that did fit.

Another limitation of expwild is that it doesn't
handle quoted strings. This creates two problems.
First, it expands all wildcards it finds, even if they are
in quoted strings. This may go counter to the very
reason you quoted the string in the first place. More
importantly, you cannot pass an asterisk or a ques
tion mark as an argument to your program. The cor
rect method is to modify expwild so that it handles
these two cases. It should not expand quoted
strings-simple enough. As to passing either wild
card character as an argument, we recommend the
UNIX convention: precede the character with a
backslash ("\"). Because of space limitations we
have left these improvements to you.

wild receives a wildcard file specification from
expwild; a buffer to hold the resulting filenames;
and the maximum size of this expansion buffer. It

separates the filenames in the expansion buffer with
spaces. If no files match the wildcard, it just copies
the input string to the output string and returns. If
you would like to treat such cases as errors, you
could easily modify it to return a null string any time
no files match a given wildcard specification.

A WALK ON THE wild SIDE
wild works by calling three Turbo C library routines.
Because we want your main program to receive com
plete filenames, wild first calls fnsplit with the wild
card specification. This routine extracts the drive and
directory names. We then make these the first part of
the name of every matching file. If at any time we
run out of space in the expansion buffer, we go back
to the last name we managed to fit into the buffer,
add a null terminator, and return. wild always
returns the size of the resulting string of filenames.
After fnsplit, wild calls findfirst to find the first
matching wildcard specification, and findnext to find
all subsequent matches. These two routines, how
ever, return the simple filename and extension for
each matching file.

Once you have installed wild in your Runtime
library, you can call it any time you need to expand a
wildcard file specification. This ability is useful in
any program that prompts the user for a filename.

That's it. The code contains further comments that
should help clear up any confusion you might still
have. Add these two routines to your library and any
programs you compile will automatically be able to
handle wildcard file specifications. Of course, if a
program is not designed to accept more than one
filename, you will have to change it to take full
advantage of this ability.

As you might expect, this new ability does cost
something other than the tiny bit of extra time it
takes to execute. It adds about 1 K to the size of your
final executable file , most of which comes from
other routines that are linked with it. We don't mind
this additional amount, but you might if you have
any programs that are really pushing the edge of the
memory envelope. If you run into such a program,
just go back to your original copy of the libraries.

Next issue we will delve deeper into the depths of
the Runtime. Let us know if you have any special
requests for future topics. Until next time, happy
wildcarding! •

Mark L. Van Name is a freelance writer. Bill Catchings
is a freelance writer and a software engineer at Data
General Corp.

Listings may be downloaded from CompuServe as
EXPWLD.ARC.

LISTING 1: llJLD.C

#incltx:le <stdio.h>
#inclOOe <di r.h> /* The stuff for fnspl it and ffblk */

I* \Je use a far pointer for the source so that no matter what
memory model you use the DOS coomand line can be passed to
expwi ld. Because the coornand line res ides outside of Turbo
C • s data segment, it rust be passed this way . \Je do not want
the routine wild() to have to deal with far pointers, however .
To avoid this problem we copy any file specification we are
about to pass to wild() into a local variable. */

expwild (source, dest, maxsize) /*called from setargv to*/
/* handle any wi ldcard */
/* specifications in the */
/* conrnand line *I

char far *source;
char *dest;
int maxsize;

int count= 1, savecOl.l"'lt = 1, wildcount;
char *dwrdptr, /* destination string pointer*/

wildspec[128J, / * 128 is max coomand line size*/
wi ldptr; / used to extract wi tdcard spec */

char far *swrdptr; -/* Far pointer to match source */

~wrdptr = source;
d""~ptr = dest;

/*Initialize the source ard */
/* destination word pointers */

/* Hove characters from the source to the destination until
we hit the end of the null-terminated string. */

while ((*dest::: *source++) J::: 1 \0 1)

{

/* If the string is too big, we're done. Exit the loop.*/

if (++count >= maxsize) break;

/* Possibly tak.e scxne action based on what the character was * /

switch (*dest++)
{

case 1 • 1 :

case 1 ?':

/* 'iJe just moved a wildcard character. Move back in the source to
the start of the last word and copy into wildspec (our local
variable buffer for the call to wild) that word. Jn this way
wild need not deal with a far pointer. lie copy until we hit a
space, tab or the end of the string. Terminate the wi ldcard
specificat ion string with a null. Reset count to what it was
et the start of the word. */

wi ldptr ::: wi ldspec;
source ::: swrdpt r;
while (•source!::: 1 1 && *source!::: 1 \t' &&

*source ! = 1 \0 1) *wi ldptr++ ::: •s ource++;
*wildptr::: 1 \0 1

;

COl.llt ::: savecOU"'lt;

continued on page 146

January/ Febrnary 1988 TURBO TEGINIX 145

continued from page 14 5
/* Call wild to expand the wild spec. Put the answer where the

last destination word pointer was. Update the count and the
destination pointer. */

wildcount =wild Cwildspec, dwrdptr, maxsize - count);
COlrlt += Wi ldc:OU"'lt;
dest = dwrdptr + wi ldcount;
break;

/ * dest now contains any previous arguncnts plus this one that
has been expanded by wild(). lie' re done with this case. *I

case

/* \Je hit a word terminator . \Je update the source aOO
destination word pointers to point to the next character.
\Je also save the count as of the start of this word, in case
we have to roll back to this position later. */

swrdpt r = source;
dwrdptr = dest;
savecount = count;
break;

/* Oro 1 t do anything for any other character.
the source string to the destination string.

Just move it from
*/

default:
break 1•

/* switch */

I* while loop */

return (count);

/* expwild */

/* Return the length of the new */
/* conmend line *I

int wild (wi ldspec, expand, maxsize) /* general purpose routine */
/* that accepts an input *I

char *wi ldspec, *expand;
int maxs i ze;

struct ffblk ffblk;
char drive[HAXDRIVEl,

char *bufptr;
int size = O;

bufptr = expand ;

/* wi ldcard spec wi ldspec * /
/* and puts the resulting * /
/ *full file names, i f any, */
/ * in expand */

/*Spec ial file block*/
dir[HAXOIRl, name[HAXFJLEl, ext[HAXEXTJ;

/* these constants are in di r . h •I
/*and reflect DOS size limits*/

/* Save our original pointer */

/* Split the file name into its fundamental COlrp<>nents. lie need
the drive and directory information because the findfirst and
findnext functions return only si~le file names, and we want
to return to our caller corrplete, unanbiguous file pathnames . */

fnsplit (wildspec, drive, dir, name, ext);

146 TURBO TEOINIX January/ February 1988

/*Find the first file that matches the input wi ldcard specification.
If none match, then copy the input string to the output output
string and return the length of the resulting string. Mote that
another option is to return a null if the caller passes in a
wi ldcard spec that matches no file . lie elected to let the caller
handle the results in this case. Both findfirst and findnext
require a special file information block structure of type
ffblk. */

if Cfindfirst Cwildspec, &ffblk, 0) I= 0)

LISTING 2: SETARGV.ASM

NAME setargv
PAGE 60, 132

;[]-- ----- --- ---------- ----- -------------- --- ---- --- -- ---- --- --[]
SETARGV.ASH - - Parse COIT11\8nd Line

Turbo- C Run Time Library ve rsion 1.0

Copyright (c) 1987 by Borland International Inc .
All Rights Reserved.

;CJ - --- ---- -- - -- -- - - - - --- - - - -- --- ------- --- --------- - ---- - --- - -Cl

Header@

ExtSym@
dPtrExt@
ExtSym@
ExtSym@
ExtSym@
ExtSym@
ExtProc@

JMCLUOE RULES . AS!

Segment and Group declarations

External rtferences

argc, I/ORO, COECL
- argv, coecl -
YsP• llORo, _CDECL_
_envseg, I/ORO, _COECL_
_envLng, \IORO, _COE CL_

osmajor, BYTE, COECL
abort, _COECL_ - -

;*** Begin addition
Here we declare our new C routine, expwild, as well as the fact

; that we will use the library routine sbrk (for memory allocation).
; \./e also need to know the size of the stack., and so access it.
; The macros ExtProc and ExtSym are defined in RULES.AS! .

Ext.Prod)
ExtProc@
ExtSym@

expw i ld, _COECL_
sbrk, COE CL
_stklen. I/ORO-;-_COECL_

·*** End addition

SUB TTL Parse COIT11\8nd Line
PAGE

; / * */
; / *-- -- ----- -- - · - . -- --- - -- - - - - -- - - . -- - ---- -- - -- - - - - --- - -*/
; /* */
; / * Parse Conmand line *I
; /* - - -- ------ - - - -- - - - */
; / * *I
; / *- -- . -- . -- - - - --- -- -- - - - - - - - . -- - -- -- --- -- - -- - - - - --- - -.-*I
; ,. * /
PSPCrrd equ 00080h

CSeg~ /* Get lhe next file . If there are no more, back up end put

IF LPROG
SavedReturn
ELSE
SavedReturn
END! F
Saved>S
SevedBP

dd

dw

dw
dw

;*** Begin addition
; Here we declare e double word pointer to hold the address of our
; corrmand line string and a word to hold the string's size . Ue
; do not initialize either one.

NewCrn:ILn
NewCmdsz

dd
dw

strncpy (expand, wi ldspec, maxsize>;
return (strlen (expand));
t• if no files match this wildcard specification*/

while (1 l /* loop uitil no more files match the wi ldcard spec */
{

/*Build up the cooplete file name from the optional drive name
end path name of the original wild file spec and the file name
found by either findfirst or findnext. IM.Size·size is always
the total space remaining for the string. */

strncpy Cbufptr, drive, maxsize - size);
strncet (bufptr, dir, maxsize - size);
strncat Cbufptr, ffblk.ff_name, maxsize - size>;

size += strlen Cb.Jfptr); /* Increase the string size to*/
/* reflect the added file name * J

/*If the string is now too long, roll back to the previous
file name, deposit a null and return the string size . bufptr
still points to the start of this new file name, so rolling
back is sirrple. */

if (size>= maxsi ze • 1)
{

*(bufptr - 1) = '\0';
return (strlen (expand));
/* if the string is too long */

/'" Update the pointer to move past the newly added file name •nd
put a space after that file name. Because we corrpared size to
maxsize·l above, we know there is room for the blank. */

bufptr = expand• size++;
*bufptr++ : I I;

a null over the space after the last name and return the size. */

if (findnext c&ffblkl != 0)
{

*(bufptr - 1) = '\0';
return (size);
/* if there ere no more files that match this spec */

} /* loop through ell matching file names */
J* wild */

;*** End addition

PubProc@ _setargv, _CDECL

First, save call er context ard Return Address

pop word ptr SavedReturn
IF LP ROG

pop word ptr SavedReturn+2
END! F

mov SavedDS, ds

·*** Begin deletion
This block of code got the address of the conmand line, zeroed
the registers, got the conmand line's length, appended a null to
the conmand line, end set up the registers for later . ex ended
up containing the size of the coornand line string, incll.x:Hng the
null, and other registers ~ere set t o zero. The code we g ive
below to replace this code will end up in the same state, but will
first call our routine expwild to preprocess the conmand line .

;***

cld
mov
mov
xor
mov
mov

es,
si,
ax,
bx,
dx,

ySp@
PSPCmd
ax
ax
ax

mov ex, ax
lods byte ptr es: (siJ
mov di, si
xchg ax, bx
mov es: {di+bx], al
inc bx
xchg bx, ex

End deletion

;*** Begin addition

ES: SI = Command Line address

AX BX = ex = DX
AX BX = ex = DX

Append a \0 at the end

CX = Command Line size including \0

?reprocess the comnard line for wild card expansion

First, we get the stack size to see how large the expanded text
can be. \Je limit ourselves to one · half of the available st ack .

continued on page 148

January/ February 1988 TURBO TEOiNIX 14 7

continued from page 14 7
I FOEF HUGE -mov

mov
mov

ELSE
mov

END! F
sar

mov

ax, seg st kl en@ -
es, ax
ax, es:_stklen@

ax, -stklen@

ax,

N ewCrrdS z, ax

if we are using the huge model,
we need the segment that holds
the stack data

here we need only the stack 1 s
length, as all data in one seg

Divide by two to leave room

Save the maxi ITlllTI coomand size

Now we call sbrk to allocate the desired memory . We push the
amount we need, which was in ax, onto the stack and do the call.

push
call

ax
sbrk@ ; Get some memory

After a call we ITlJSt restore the stack to its previous state.
Rather than popping the argL.Jnent we just adjust the stack pointer.
Also, because we called a C routine, whi ch could have messed up
our data segment , we restore it to the segment value saved earlier
by the existing code. Finally, we save the address of the new
coornand line buffer we allocated, wh ich was returned in ax.

add sp , 2 ; Clean up the stack
mov ds, SavedJS ; Necessary?
mov word ptr HewCrrdLn, ax ; Save the 1X>inter offset

s brk returns the segment in dx for large memory mc>del code.
So , if we' re not us ing that nlOde l, set dx to our segment so that
the following ccxie will work.

I FE

ENO! F

LOA TA
mov

mov

cld

dx, ds ; Get our own segment if not returned

word ptr NewCrrdLn+Z, dx Save the 1X>inter offset
segment just after the
pointer off set

tell it to increment pointers
after string operations

Now we do basically what the earlier deleted ccxie did. We get
the coomand line address and append a null to the comnand line.

mov es, _psp@ Get the DOS coomand lirre
mov $ i I PSPCrrd address
xor ax, ax Zero AX and BX
mov bx, ax
lods byte ptr es: (si]
xchg ax, bx
mov es: (si+bxl, al Append a \0 at the erd

Here we pus h the argunents for expwi ld and then make the call .
The third arg, and so the first to be pushed, is the maxilTl...ITI
coomand line size.

mov
pus h

ax, NewCrrdSz
ax

Get the maxi rrun coomand size

The second arg is the des tination str i ng. We pus h fir s t its
s egment if we a r e in large mode l . Jn any ca s e, we then pus h it s
o ffset.

14.8 TURBO TECHNIX January/ February 1988

IF LOA TA
mov ax, word ptr Ne\.JCrrdln+2 Segment for large data
push ax

END IF
mov ax, word ptc NewCmdLn Destination offset
push ax

The first arg is the source coomand line string. lie push beth its
segment and offset in all cases because expwi td expects a far ptr
for this arg .

mov ax, _psp@ Segment of DOS coomand l i ne
push ax
mov ax, PSPCwd+1 Offset (+ 1 to pass the count byte)
push ax
call expwi ld@ Finally, call expwi ld to expand

the coornand line

; Clean up the stack after the call. lie adjust by 10 if in large
; model because of the extra segment id we pushed.

IF LOA TA
add sp, 10 Clean up the stack

ELSE
add sp, 8 Clean L4J the stack

END! F
mov ds, Saved)S Restore our data segment

Then, process the coomand line. We put the size in ex and the
string itself in es:(sil, just as their ccxie did. Finally, we
zero the same registers as the original (now deleted) code.

mov
mov
mov

mov
xor
mov
mov

ex,
es,

s i ' ·

di'
ax,
bx,
dx,

ax
word ptr
word ptr

s i
ax
ax
ax

Put size in ex
NewCrrdlr1"'2
NewCrrdln ; Get the address of the

; expanded string
Set up the registers correctly
AX = BX = ex = DX = 0

·*"'*End addition

Processing
call
ja

lnString
jb
call
ja

NotOuote
crrp
je
crrp
jne

EndArgunent
xor

jrrp

label near
Mex tChar
MotOuote
label near
GetArgOLgth
Next Char
lnString
label near
al / I I

Mot a quote and there are more

CoiTmand line is errpty now

Mot a quote ard there are more

ErdArgL.Jnent Space is an argunent separator
al, 9
Processing TAB is an argLJrent separator
label near
al, al Space and TAB are argunent

short Processing' separators

Charac ter test function us ed in SetArgs
On entry AL holds the previous character
On exit AL holds the next character

ZF on if the next charac ter is quote (11)

and AL = 0
CF on if end of corrmand line and AL= 0

NextChar PROC NEAR
or ax, ax
jz NextCharO
inc dx
stosb
or al, al
jnz NextCharO
inc bx

NextCharO label near
xchg ah, al
xor al, al
stc
jcxz Nextchar2
lods byte ptr es: Csil
dee ex
sub al, 1111

jz NextChar2
add al, 1111

crrp Bl t I \I
jne NextChar1
cnp byte ptr es: (sil,
jne NextChar1
lods byte ptr es: (Sil
dee ex

NextChar1 label near
or si, si

NextChar2 label near
ret

NextChar ENOP

Invalid program name

BadProgName
jrrp

label near
abortil

DX= Actual length of CmdLine

BX = Ntirber of parameters

End of coomand line--> CF ON

Cuote found - -> AL 0 and ZF ON

It is not a \

Only 11 is transparent after \

Be sure both CF & ZF are OFF

Now, Cooµite Argv(Ol length

GetArgOLgth label near
mov bp, es BP :::: ~rogram Segment Prefix address
mov si, _envlng@
add si, 2 SJ Program name offset
mov ex, , ex Filename si ze Cincll.Kies \0)
crrp _osmajor@, 3
jb NoProgranilame
mov es, _envseg@
mov di. si SJ argv (0] address
mov cl, 07fh
repnz scasb
jcxz BadProgName
xor cl, 07fh ex Filename size {includes \0)

NoProgralliilame label near

Now, reserve space for the argLIT'lents

Reserves pace label near
inc bx argv(Ol = Pg~ame
mov _argd~, bx
inc bx argv ends with NULL
mov ax, ex Size = Pg~ameLgth +
add ax, dx CmdLineLgth +
add bx, bx argc * 2 {LOATA = 0)

IF LOATA
add bx, bx argc * {LOATA = 1)

ENOI F
add ax,
and ax, not k'.eep stack word aligned
add bx, ax
mov di, Sp
sub di, ax SS:OJ = OestAddr for Pg~ame
sub Sp, bx SS: SP = &argv (0]
xchg bx, bp BX = Program Segment Prefix address
mov bp, Sp BP = &argv (0]
mov word ptr _argv'iil, sp

IF LOA TA
mov word ptr _argv@+2, SS

ENOJ F
mov ax, SS
mov es, ax ES:OJ = Argunent 1 s area

Copy program name

CopyArgO label near
mov (bp]. di Set argv(n]

IF LOA TA
mov (bp>2J, es
add bp, 4

ELSE
add bp,

ENOJ F
mov ds, _envseg@
dee ex
rep movsb
xor al, al
stosb

Copy the coomand line

·*** Begin deletion
This code used to ready the coomand line size and address.
Because we have changed these two, however, we rrust delete this
code and replace it with our own.

mov
xchg
mov

ds, bx
ex, dx
s i , PSPCrrd +

·*** End deletion

·*** Begin addition

ex Comnard Line size
OS: SJ Comnard line address

Ue ready the size and address of our newly expanded conmand line.
The code below ours puts all of the argunents on the stack.. It
uses the stack. pointer that previous code has already adjusted
to be in the correct position to hold all of the ar9UT1ents.

continued on page 150

January/ Febrnary 1988 TURBO TECHNIX 149

continued from page 149
xchg ex, dx ; ex : Conrnand line size
push ax Save AX
mov ax, word ptr NeWCmdLn+2 Use expanded conmand line
mov ds, ax
mov si I word ptr NeWCrrdLn OS:Sl = Conmand Line

address
pop ax .

·••• End addition

CopyArgs label near
jcxz SetLastArg
mov [bpJ' di Set argv [nl

IF LOA TA
mov [bp+2J' es
add bp, 4

ELSE
add bp,

ENO! F
CopyArg label near

lodsb
or al, al
stosb
loopnz CopyArg
jz CopyArgs

SetLastArg label near
xor ax, ax
mov [bpJ, ax

IF LOA TA
mov [bp+2J' ax

ENOIF

Restore caller context and exit

;••• Begin addition
; \Je are finished. \Je call sbr-k with the negative of the amount
; of memory it gave us, which causes that memory to be freed.

mov
neg
push
call
add

ax, MewCrrdSz
ax
ax
sbrl<ol
sp, 2

·*** End addition

mov ds, SavedlS
IF LPROG

Get the coomand size
Negate

Free up any storage we use
Clean up the stack after the call

jrrp dword ptr SavedReturn
ELSE

jrrp word ptr SavedReturn
ENO! F
EndProc@
CSegEnd@

END

_setargv, _COECL_

150 TURBO TEGINIX January/ February 1988

LISTING 3: UPOC.BAT 1
ECHO OFF
ECHO '***
ECHO*** Updating C Module X1 In All Memory Model CLIB Libraries
ECHO ***
tee -1\TURBOC\RUNTIME\INCLUDE -1\TURBOC\INCLUOE
lib \TURBOC\RUNTIME\LIB\CS -+X1;

-o -z -c -mt X1 .c*

tee -I\TURBOC\RUNTIME\INCLUOE -1\TURBOC\INCLUDE
lib \TURBOC\RUNTIME\LIB\CM -+X1;

-0 -z -c -rrm X1 .c•

tee -1\TURBOC\RUNTIME\INCLUOE -1\TURBOC\INCLUOE
lib \TURBOC\RUNTIME\LIB\CC -+X1;
tee - I\ TURBOC\RUNT !ME\ I NCLUOE - I\ TURBOC\I NCLUDE
lib \TURBOC\RUNTIME\LIB\CL -+X1;
tee - I\ TURBOC\RUNT !ME\ I NCLUOE ·I\ TURBOC\INCLUOE
lib \TURBOC\RUNTIME\LIB\CH -+X1;
ECHO ***

-0 -z

-0 -z

-0 -z

-c -me

-c -ml

-c -rm

ECHO*** Finished Updating Module X1 In All CLIB Libraries
ECHO ***

LISTING 4: UPOASM.BAT

ECHO OFF
ECHO •••
ECHO *** Updating Asse<rbler Module X1 In All CLIB Libraries
ECHO •••
masm X1 /0 SMALL /MX;
lib \TURBOC\RUNTIME\LIB\CS -+X1;
masm X1 /0 MEDIUM /MX;
lib \TURBOC\RUNTJME\LIB\CM -+X1;
masm Xl /D_COMPACT_ /MX;
lib \TURBOC\RUNTIME\LIB\CC -+X1;
masm X1 /0 LARGE /HX;
lib \ TURBOC\RUNT I ME\LI B\CL -+X1;
masm X1 /0 HUGE /MX;
lib \TURBOC\RUNTIME\LIB \C H -+x1;
ECHO •••

X1.c*

X1 .c*

X1 .c*

ECHO*** Finished Updating Asse<rbler Module X1 In All Memory Model
ECHO••• CLIB Libraries
ECHO ***

ARCHIMEDES'
NOTEBOOK
Solving equations of state for ideal
gases.

Namir Cl.ement Shammas

T
he equation of state for
ideal gases represents a
particular class of prob
lem common in science

and engineering. But it's a prob
lem well suited to Eureka's
capabilities.

The equation of state for ideal
gases, also known as the ideal gas
law, describes the relationship
between the pressure, volume,
temperature, and quantity (moles)
of a gas. The ideal gas model is
stated in the following simple
equation

Pv = nRT (1)

where Pis the pressure in atmos
pheres, v is the volume in li.ters, n
is the number of moles (weight
per molecular weight), R is th~
universal gas constant, and T is
the absolute temperature in Kel
vin. Equation (1) is also often writ
ten in the following form:

PV=RT

where Vis the molar volume:
v=!!. n

The ideal gas model succeeds
in approximating the characteris
tics of real gases under relatively
low pressures and temperatures.
The deviation from the ideal state
depends on the chemical nature
of the gas. To better correlate the
pressure, the molar volume, and
the temperature, numerous
researchers have devised empiri
cal and semi-empirical equations.
We consider two popular equa
tions and present their Eureka
solutions.

SOLVING THE VAN DER
WAALS EQUATION

The first equation is the van der
Waals equation

(p + ; 2) (V-b) =RT (2)

where a and b are coefficients cal
culated using:

(~~) (R~Y,2)
RI;

b= 8P
c

(3)

(4)

P and T are the critical pressure
~nd ten';.perature, respectively.
Since each gas has a particular
critical pressure and temperature
value, the corresponding values
for a and b are also unique to
each gas. Consequently, a and b
express the unique deviation of
each gas from the ideal state.

The second equation used in
tackling real gases is the Redlich
Kwong equation

RT a
P= V-b - T°5 V(V + b)

where coefficients a and b are
evaluated using:

R2T2s
a = 0.427480 --'-

~

b = 0.086640 RI;
~

The overall effect of deviating
from the ideal gas law is
expressed in the following
equation

PV=ZRT (5)

where Z is the compressibility fac
tor. When Z approaches unity, the

behavior of the gas also
approaches the ideal state. Many
charts and graphs list values for
the compressibility factor as func
tions of the reduced temperature,
T. and reduced pressure, P,.. They
a~e calculated using:

T
I;=-r

c (6)

p
i:: = p

c (7)

The next step is to build the
Eureka equation files that state
the above equations, and then
allow Eureka to solve them.
Listing 1 contains a Eureka equa
tion file that solves the van der
Waals equation of state, and Table
1 shows its solution. The equation

SOLUTION:

VARIABLES VALUES

a 4.2090807
b .037225067
MW 17.0000000
n 43.099625
p 10.0000000
Pc 112.500000
Pr .888888889
R .082600000
T 298.000000
Tc 405.600000
Tr .73471400
v 2.3203058
Volume 100.000000
w 732.69363
z .94260598

Maximum error is 3.5527137e-l 5

Table 1. Solution of the van der
Waals equation of state.

file of Listing 1 contains the
following:

continued on page 152

J anuary/ February 1988 TURBO TEGINIX 151

LISTING 1: VOERWAAL.EKA

VDERWAAL.EKA

version 1.0

date 7/24/1987

Copyright (c) 1987 Namir Clement Shammas

This Eureka program provides for the algebraic manipulation of the
van der Waals equation of state.

P is the pressure of the gas
Pc is the critical pressure
Pr is the reduced pressure C= P/Pc)
V is the molar vol1.111e of the gas
W is the weight of the gas
MW is the molecular weight of the gas
n is the number of moles (= W/MW)
R is the universal gas constant, expressed in corresponding units
T is the absolute temperature
Tc is the critical temperature
Tr is the reduced temperature (= T/Tc)

van der Waals equation of state
CP + a I V"2) * CV - b) = R * T

, Corll>ressibility factor
Z = P * V I CR * T)

calculate the number of moles
n = W I MW

; molar vol1.111e
V = Voll.Ille I n

calculate coefficient 'a'
a = 27 * CR * Tc) "2 I (64 * Pc)

; calculate the coefficient 1 b1

b = R * Tc I (8 * Pc)

; reduced temperature
Tr = T I Tc

; reduced pressure
Pr = P I Pc

; for ammonia: Tc = 405.6 K, Pc= 112.5 atm and MW 17
Tc = 405.6
Pc = 112.5
MW = 17

the universal gas constant, in atm-l/gmole/degK is:
R = 0.0826

;--------------------- ------------------------ -------
Normally, the above variables provide given data. The variables
below lend themselves to the algebraic manipulation process. Either
cOlllllent out the sought variable or use the':=' instead of the'='
to assign a 'guess' value.

the pressure (in atm) is:
p = 10

the mass of the gas (in gm) is:
w = 10

the temperature (in degrees Kelvin) is:
T = 273 + 25

; the gas vol1.111e (in liter) is:
Voll.Ille = 100.0

152 TURBO TEGINIX J anuary/ February 1988

NOTEBOOK
continu.edfrom page 151

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Comments that describe the
problem solved and list the
variables involved;
The van der Waals equation
of state, copied verbatim from
equation (2) (notice that
Eureka does not require the
left hand side of the equation
to be a simple variable).
The equation to evaluate the
compressibility factor, using
equation (5);
The number of moles of the
gas, given its weight and
molecular weight; (I have
added this simple equation
because in many engineering
calculations you are dealing
with weights of gases, as
opposed to moles of gases.)
The molar volume, which is
calculated by dividing the
actual volume with the
number of moles;
The equation to evaluate coef
ficients a and b using equa
tions (3) and (4);
The reduced temperature and
pressure values, using equa
tions (6) and (7);
The critical temperature, criti
cal pressure, and molecular
weight for the particular gas
being considered; (The values
I have included are for ammo-
nia [NH

3
])

The value for the universal
gas constant that corresponds
to the units being used;
The input variables for the
equation of state; in this
example, the weight of the
ammonia gas that occupies
100 liters, under 10 atmos
pheres of pressure and at 25
degrees Celsius.

The solution indicates that
there are 732. 7 grams of ammo
nia. The compressibility factor is
estimated at 0.94260598. The solu
tion section displays alphabetically
the input values, the intermediate
solutions, and the results.

To solve for other physical
properties such as the pressure,
volume, or temperature, you can
comment out the sought variable
(and uncomment the previous
one). In principle, you may even
solve for the critical pressure, criti
cal temperature, and the molecu-

continu.ed on page 154

How Eureka: The Solver
instantly solves equations
that used to keep you
up all night
The state-of-the-art answer to any of your
scientific. engineering, financial, algebraic,
trigonometric, or calculus equations=
Eureka: The Solver'"

Eureka: The Solver
l" il1· ldit 0 I Vt~ OMM1lllli"> f.: eporl 1 .roph 1111t ions U in~ou

Edit Plot
-

J
II/ hH1·tffl

(lh,11· i1 Ui11·h I' ,il) !'ti.Ii 1: I.Ii
Uerif~

:(1H,.rU11r·k 11.lrn1l1•c.J
I \olL11·Uurk l'•(t.lt lli1 Mfl l1•c_; . l1bi'.',f1Hi'.H1
VJ u i •'/ Uxt11jt·11Mi1··. 'M. .Hb/.~,HHHH

Report ,tjff1·1·1·11tt' . HHttHHHHH

Fi 1M I Tt>np 1 I(, '.HHHH "}(1•Jvi11

lni t Tt·np !.'/I. HHHHH 1:
:u!L1"Uorh 'IH .11'111.llll .Jou le·; ''""""""!

/Hf. ,• HH
11Th1·U11d, '111 .. '.llH'IHf. .l1111lt··

·1 -Help I ' -Save /' Load l'. -Zoon /'t. -Ne<t 1·: -Bey Blk !':;. End Blk : • k••LL Sizel nuve

Eureka insr.antly solved this Physics equation by immediately calculating how much work
is required to compress isobarically 2 grams of Oxygen initially at STP to V2 its original
volume. In Science. Engineering, Finance and any application involving equations, Eureka
gives you the right answer, right now'

E ureka can solve most
equations that you 're
likely to meet. So you

can take a mathematical
sabbatical.

Most problems that can be
expressed as linear or non
linear equations can be solved
with Eureka. Eureka also han
dles maximization and minim
ization, plots functions, gener
ates reports, and saves you an
enormous amount of time.

Eureka instantly solves
equations that would've made
the ancient Greek mathemati
cians tear their hair out by
the square roots-and it's all
yours for only $167.00.

Minimum system requirements: For lhe IBM PS/2·
and /he IBM• and Compaq• lamilles al personal compu
lers and all 100% compal1b les. PC-DOS IMS-DOS•) 2.0
and laler 384K.

Eureka· The Solver is a lrademark al Borland
lnlernalional, Inc
Copyrighl 1987 Borland lnlernalional 81 -1 1458

It 's easy to use
Eureka: The Solver
1. Enter your equation into

the full-screen editor
2. Select the "Solve"

command
3. Look at the answer
4. You're done

You can then tell Eureka to

• Evaluate your solution
• Plot a graph
• Generate a report, then

send the output to your
printer, disk file or screen

• Or all of the above

BORLAND
INTERNATIONAL

You can key in:
~ A formula or formulas

~ A series of equations- and
solve for all variables

~ Constraints (like X has to
be <or= 2)

~ A function to plot

~ Unit conversions

~ Maximization and minimi-
zation problems

~ Interest Rate/Present Value
calculations

~ Variables we call "What
happens? ," like "What
happens if I change this
variable to 21 and that
variable to 27?"

'' Merely difficult prob
lems Eureka solved virtually
instantaneously: the almost
impossible took a few
seconds.

Stephen Randy Davis, ''
PC Magazine

Eureka: The Solver
includes

~ A full-screen editor

~ Pull-down menus

~ Context-sensitive Help

~ On-screen calculator

~ Automatic 8087 math
co-processor chip support

~ Powerful financial
functions

~ Built-in and user-defined
math and financial
functions

~ Ability to generate reports
complete with plots and
lists

~ Polynomial finder

~ Inequality solutions

' ' Get Eureka. You won't
regret it. Highly recommend it.

Jerry Pournelle. Byte ''

For the dealer nearest you
or to order by phone

Call (800) 255-8008
In CA: (800) 742-1133:
In Canada: (800) 237-1136

LISTING 2: ICWONG.EKA

KIKlNG.EKA

version 1.0

date 7/24/1987

Copyright (c) 1987 Namir Clement Shammas

This Eureka program provides for the algebraic manipulation of the
Redlich·Kwong equation of state.

P is the pressure of the gas
Pc is the critical pressure
Pr is the reduced pressure (= P/Pc)
V is the molar volune of the gas
W is the weight of the gas
MW is the molecular weight of the gas
n is the nl.lllber of moles C= W/MW)
R is the universal gas constant
T is the absolute t~rature
Tc is the critical t~rature
Tr is the reduced t~rature C= T/Tc)

Redlich·Kwong equation of state
P = R * T /CV · b) · a /(sqrt(T) * V * CV + b))

; C°""ressibility factor
Z = P * V I CR * T)

; calculate the nllllber of moles
n = W I MW

; calculate molar volune
V = Volune I n

; calculate coefficient 'a'
a = 0.42748 * R"2 * Tc"2.5 I Pc

; calculate the coefficient 1 b1

b = 0.086640 * R * Tc I Pc

; reduced t~rature
Tr = T I Tc

; reduced pressure
Pr = P I Pc

; for ammonia: Tc = 405.6 K, Pc= 112.5 atm and MW = 17
Tc = 405.6
Pc = 112.5
MW = 17

the universal gas constant is:
R = 0.0826

·-------------------------------------- --------------,
Normally, the above variables provide given data. The variables
below Lend themselves to the algebraic manipulation process. Either
comnent out the sought variable or use the 1 := 1 instead of the'='
to assign a •guess• value.

the pressure (in atm.) is:
p = 10

the mass of the gas (in grams) is:
w = 10

the t~rature (in degrees Kelvin) is:
T = 273 + 25

; the gas volune (in liter) is:
Volune = 100.0

154 TURBO TECHNIX J anuary/ February 1988

NOTEBOOK
continued from page 152

lar weight. However, such solu
tions rarely lead to meaningful
results.

SOLVING THE REDLICH
KWONG EQUATION
Listing 2 shows a Eureka equation
file for solving the Redlich-Kwong
equation and Table 2 shows its
solution. To build the equation

SOLUTION:

VARIABLES VALUES

a 85.895070
b .025801438
MW 17.0000000
n 43.988585
p 10.0000000
Pc 112.500000
Pr .888888889
R .082600000
T = 298.000000
Tc 405.600000
Tr .73471400
v 2.2733171
Volume 100.000000
w 747.80594
z .92355699

Maximum error is 1. 7763568~ 14

Tab/,e 2. Solution of the &dlich
Kwong equation of state.

file, you follow steps that are very
similar to those for the van der
Waals equation. The differences
are the equation of state used and
the formulas for calculating coef
ficients a and b.

The equation file of Listing 2
solve the same problem stated
above (i.e., the physical properties
of ammonia gas) . The results are
that the calculated mass of ammo
nia is 747.8 grams and the com
pressibility factor is 0.92355699.
The Redlich-Kwong equation is
more reliable than the van der
Waals form. The estimated gas
weight is about 15 grams higher
(corresponding to a 2 percent
increase). The compressibility fac
tor obtained by the Redlich
Kwong equation is about 2 per
cent less than that for the van der
Waals equation. •

Namir C/,ement Shammas is the editor
of Turbo Report news/,etter, and a
columnist for Dr. Dobb'sjournal
and PC AI.

Listings may be downloaded from
CompuServe as GASLAWARC.

BOOKCASE

TURBO C: MEMORY
RESIDENT UTILITIES,
SCREEN 1/0 AND
PROGRAMMING
TECHNIQUES
Al Stevens, Management Information
Source, Inc., Portland, OR 1987,
ISBN 0-943518-35-0, 400 pages, soft
cover, $24.95, disk $20.00.

A
rst I wasn't sure

whether to review this as
a book of source code,
or to review it as a C

function library that has an un
usually detailed manual. Either
would have been appropriate.
Stevens' book contains a complete
library of routines for program
ming screen windows and
memory-resident utilities in Turbo
C, plus clear explanations of how
the routines work and how to
use them.

The book devotes short chap
ters to the C language and to the
Turbo C implementation, and
then presents a small collection of
low-level, general purpose rou-.
tines that manage the screen dis
play and keyboard .. These ~ou
tines, which deal d1rectly with the
computer's hardware and BI~S,
support the higher-level funcuons
developed later in the book.

Next, Stevens discusses the con
cept of video windows in relation
to the PC's video architecture, and
then presents source code for a
windows function library. This
library is quite complete, allo~ng
you to establish single or muluple
windows, write to them, change
their colors and position, promote
and demote windows, and per
form just about any other window
function you might want.

Two types of windo~s are s~p
ported: stacked, in whJCh ~od1fi
cations are made only to windows
that are in full view on the screen,
and layered, in which modifica
tions can be made to partially or
totally hidden windows. Stacked
windows are less flexible than
layered ones, but are much faster.
A program can use either stacked
or layered windows, but not both.

After Stevens details how easily
you can include windows in your
programs, he then tells you what
you can do with them. Four of the
most popular uses for windows
are context-sensitive help, data
entry, free-form text editing, and
pop-up menus. Stevens devo.tes a
chapter to each of these topics:
and provides a library of funcuons
for each. The functions are well
designed and very useful, and
greatly reduce the effort needed
to include sophisticated window
ing in your programs.

The remainder of the book
deals with techniques for writing
programs that terminate and ~tay
resident. TSR programs are diffi
cult to write because they must be

able to pop up and function prop
erly no matter what the state of
the machine, and then must com
pletely restore that state w~en .
exited. Stevens gives a detailed dis
cussion of the various hardware
and software factors that must be
taken into account when writing
TSR programs, some routines for
use in TSRs, and a TSR program
that shows the routines in use.

You will need the Microsoft
Macro Assembler to use the TSR
routines, because Turbo C's sta:t
up code-supplied by Borland m
assembly source code-must be
modified and reassembled to en
able your TSR program to restore
the divide-by-zero interrupt vector.
The macro assembler is also
needed if you plan to use window
routines on an IBM Color Graph
ics Adapter, because two routines
specific to the CGA include inline
assembly language. The book's
optional program dis~ ought to
contain assembled object code for
these files, but it doesn't.

This book is not a primer on C
programming. The author has
assumed that readers have a
reasonable knowledge of the C
language and of DOS. Familiarity
with assembly language and the
PC's register and address architec
ture will help in getting the most
out of the book, but this is not
necessary to make use of the soft
ware routines that are provided.

The book is 400 pages, with a
good chunk of that devoted to
program listings. It is w~rth ~he
cost for either the funcuon librar
ies or the programming informa
tion alone. Since it provides both,
and is clearly written to boot, I
recommend it highly. •

-Peter G. Aitken

J anuary/ February 1988 TURBO TEQINIX 155

CRITIQUE

Turbo WINDOW /C

TurboWINDOWIC
MeWf;raphics
269 Mt. Hermon Rnad
Scotts Valley, CA 95066
(408) 438-1550
$95.00

W hile watching me
create a graphics

demonstration for
ne of my ciasses, my

wife insightfully commented, "A
single picture is worth 1000 lines
of code." Drawing pictures on
computers is hard work. This goes
triple if you need to support many
different and incompatible graph
ics devices. So if a third party
vendor markets a library that sup
ports the functions necessary for
drawing, so much the better-the
vendor gets the work, and you get
the fun .

Metagraphics Software Corpora
tion provides such a library for
Turbo C. TurboWINDOWI C costs
$95.00, isn't copy protected, and
requires no royalties for linking
with commercial applications.
Included in the package is an
excellent 248-page manuai, a
memory-resident graphics driver
written in assembly language, and
the necessary libraries to allow
Turbo C to communicate with the
memory-resident driver. Finally,
the company includes a rich selec
tion of example programs to help
you understand how to use the
195 procedures provided in the
library.

When writing graphics pro
grams to sell to the public, the first
problem you face is supporting
the bewildering array of graphics
boards, graphics printers, and
(somewhat) PC-compatible com
puters in use. To solve this prob
lem, TurboWINDOWI C under-

stands more than 50 of these
printers and graphics boards, and
automatically configures itself to
the graphics board it detects at
runtime. (Autodetection does not
apply to printers and plotters.)
You must still handle some of the
work, such as scaling drawings
and correcting for aspect ratios,
but enough information is avail
able in the documentation to
make the task, if not simple, at
least comprehensible. Therefore,
you can write a program that will
run on an IBM clone with a CGA
color card, or on an IBM AT with
an EGA color card using the same
source code. The runtime configu
ration is handled automatically
with a TurboWINDOW/ C func
tion grquery. If you wish, you can
override the automatic selections
by naming devices on the com
mand line.

You can use two different coor
dinate systems to draw: local or
virtual. A third coordinate system
(world) is used internally by the
TurboWINDOW/ C software to
transfer and scale bit images.
Although local coordinates are
usually tied to the display width
and height, both local and virtual
coordinates can be set to any
value as long as the difference
between minimum and maximum
doesn't exceed 64K

All drawing in Turbo WIN
DOW I C is done through a view
port, which stores the text and
drawing defaults, local and virtual
coordinates, and clipping limits.
The actual displayed pixels are
stored in a bitmap, which is man
aged transparently by the Turbo
WINDOW I C software. Bitmaps

156 TURBO TECHNIX January/ February 1988

are quite handy when converting
plotter-style vector scan output to
printer-style raster scan output.
Such a conversion only requires
creating a bitmap with the proper
resolution, drawing on the bitmap
with TurboWINDOWI C's vector
drawing commands, and finally
dumping the bitmap's pixels to the
printer. You can have several
viewports referencing different
sections of a bitmap, each having
different local and virtual coordi
nates. The only limit to the size
and number of bitmaps in use is
the amount of memory you have
available. All images are clipped
outside of local or virtual coordi
nate bounds. In addition, a
smaller area can be clipped by set
ting the necessary coordinates
within the port. All memory man
agement tasks are handled auto
matically, so you needn't worry
about segments or 64K limits.

Eight different graphics cursors
come standard with TurboWIN
DOW I C, but if one of them won't
work in your application, you can
create your own. Cursors can be
visible or hidden, and will auto
matically track your mouse if you
wish. Mouse support is provided
for Mouse Systems, Logitech,
Microsoft, and other Microsoft
compatible mice. In most cases
(the new Microsoft bus mouse
being a notable exception), the
necessary mouse driver is incorpo
rated within the Metagraphics
driver.

Lines can be set to any odd
pixel width (1, 3, 5, etc.), one of
three end styles (round, flat, or
square) andjoin types (round,
bevel, or miter). Also standard are
32 different fill patterns and eight
line-dash styles. All of these are
stored in the current viewport,

and can be changed along with
color and drawing mode as often
as you like.

Drawing ovals and rectangles is
handled by passing the coordi
nates of the lower left and upper
right corners of an enclosing box
to the corresponding procedure,
which will draw a rectangle or
oval that fits inside that box. Both
ovals and rectangles can be filled
with any of 32 different patterns,
or framed with any available line
width and style. Arcs are drawn by
again specifying a box, with a start
and end angle of the arc. Rectan
gles may be drawn with rounded
corners. Polygons can be drawn,
filled, inverted, or erased. Entire
sections of the screen can be
saved in an image buffer for later
use, repositioned on the bitmap,
and scaled up or down.

Metagraphics provides a
number of bitmapped and outline
fonts for use in TurboWINDOW/
C. They can be loaded on
demand for the current graphics
card. Using Metafonts, another
Metagraphics product, virtually
any type of font can be created.
Bitmapped and outiine fonts can
be drawn in all four directions,
using standard, bold, italic, under
line, or strikeout typefaces. Print
ing can be aligned left, right, or
center; drawn in strings, or as
characters. In addition, outline
fonts can be slanted, and may be
scaled to fit a given space.

The current keystroke, position
of the cursor, and state of the
mouse buttons can be queried
with one function call. Other sys
tem utilities are provided to help
with graphics file operations,
transformations between local
and virtual coordinates,
command-line processing, and
hard-copy output to a printer or
plotter.

Customer support is excellent.
I've called Metagraphics several
times, and have gotten prompt,
accurate help each time. Upgrades
to the product will cost you the
price of a phone call to the Meta
graphics BBS.

TurboWINDOW/ C is a power
ful programming tool, and even
though the folks at Metagraphics
try to make your exposure to the
package as painless as possible,
some head scratching and wall

kicking may happen while you
learn to use some of its more com
plex features , such as event han
dling. The line-up of supported
graphics boards is impressive, but
there should be more support for
input and output devices like the
newer laser printers, plotters,
graphics tablets, and trackballs.

Metagraphics has a winner with
TurboWINDOW/ C. I have deve
loped and sold a major circuit
board design program over the
past year and a half, and I used
their companion product Turbo
WINDOW / Pascal (which uses the

T hat's right. Saywhat, the lightning-fast screen
generator, lets you build beautiful, elaborate,

color-coded screens in minutes! We're talking
about incredible screens for menus, data entry,
data display, and help-panels that can all be dis
played with as little as one line of code in any
language. Even batch files.

With Saywhat, what you see is exactly
what you get. And response time is snappy and
crisp, the way you like it. That means screens
pop up instanily, whenever and wherever you
want them.

THE PERFECT TOOL FOR PROGRAMMERS.
Whether you're a novice programmer long

ing for simplicity, or a seasoned pro searching
for higher productivity, you owe it to yourself to
check out the all-new Version 3.6 of Saywhat. It
offers full monochrome emulation and lets you
build your own elegant, moving bar menus into
any screen. (They work like magic in any
application, with just one line of code!) You can
also combine your screens into powerful screen
libraries. And Saywhat's remarkable VIDPOP
utility gives all languages running under PC/ MS
DOS , a whole new set of screen handling com
mands- languages like dBASE, Pascal, BASIC,
C, Modula-2 , FORTRAN , and COBOL. (You can
make VIDPOP resident and available at all times,

same memory-resident driver and
command set) to do it. I've had no
customer complaints traceable to
the Metagraphics portions of the
program. After a month of testing
the Turbo C version, I didn't find
any reason to fault the Turbo C
specific interface. If you do graph
ics programming in Turbo C, try
Metagraphics, TurboWINDOW/
C-you'll like it. •

-Don fletcher

MONEY ·BACK GUARANTEE
If you aren't completely delighted with
Saywhat, return it within 30 days for a
prompt, friendly refund.

or run it non-resident, transparently, with your
favorite application) .

With Saywhat we also include a bunch of
terrific utilities, sample screens, sample programs,
and truly outstanding technical support, all al
no extra cost (Comprehensive manual included.
Not copy protected. No licensing fee).

ORDER NOW. YOU RISK NOTHING.
Thousands of satisfied users already know

that Saywhat can make screen design and pro
gramming a pleasure, not a chore. Why not call
toll-free, right now and put Saywhat to the test
yourself! The next time you sit down to create
a screen, we guarantee t:J.f
you'll be glad you did . r ~

••

r--/------·
.-J ~ 1 1 want lo try your lightning-fast screen generator
~ so send me _ copies of Saywhat (S-t9.95 plus I S5 shi pping and handling) subject to your money-back guaramee.

(Plus SS shipping and handling) ----,
'IO order:

800:46&·9273 I
In California: Name

I Address

I
City

D Check enclmed D Ship C.O.D. D Credi1 card

State

I

S'--i,,__gn"'-'a1_ur-'--e __

Exp. date

800-231-7849
In Canada
800-663-9361
lnlcrnational:

415-571-5019
The Rc~carch (;roup
88 South Linden Ave.
South San Francisco, C.\ 9 1080

T H E R E S E A R C H G R 0 U P

I
I
I

Januat) '/Febn.1ary 1988 TURBO TEGINIX 1.57

TURBO RESOURCES

YOUR SUBSCRIPTION
You're looking for Borland language
information. Where to go? Well, for
starters, right here. A free 12-month
subscription to TURBO TECHNIX is
yours for the asking when you register
any of the Borland languages (includ
ing Quattro, Paradox, Eureka, and
Sprint) or language toolboxes. A sub
scription request card is packaged
with each of those products-fill it out
and return it to be sure you get every
issue. If your copy of a Borland lan
guage product was shipped without
the subscription request card, just
write, "I would like to subscribe to
TURBO TECHNIX" in the bottom
margin of the registration card.

COMPUSERVE
The best online information about
the Borland languages can be found
on CompuServe. Subscribing to Com
puSeIYe can be done through the cou
pon enclosed with every Borland pro
duct (which also includes $15 worth of
online time for your first month) or
by calling CompuServe at (800) 848-
8199. You'll need a modem and some
sort of communications software that
supports the XMODEM file transfer
protocol.

Learning your way around Compu
Serve takes some time and practice,
but good books have been written
about it, including Charles Bowen's
and David Peyton's How To Get The
Most Out Of CompuServe and Advanced
Compuserve for IBM Power Users (New
York: Bantam Computer Books, 1986).
Howard Benner's TAPCIS shareware
utility can automate sessions and help
you minimize connect time. It is avail
able for downloading on CompuServe
from DL 12 of the Word Perfect Sup
port Group forum (GO WPSG). The
TAPCIS file is 239,297 bytes long
plan to spend some hours download
ing it.

How to access the Borland Forums
on Comp11Serve:
TURBO TECHNIX listings for Turbo
Pascal and Turbo Basic are available

in DLI (Data Library l) of the
BPROGA Borland programming
forum (GO BPROGA). Turbo C and
Turbo Prolog listings are stored in
DLI of the BPROGB forum (GO
BPROGB). Listings for Business Lan
guage articles are also available in DL
l of the Borland Applications Forum
(GO BORAPP). From the initial Com
puServe prompt, type GO < forum
name> or follow the menus.
How to download TURBO
TECHNIX code listings from
CompuServe:
At the Functions prompt, type: DL 1
This will take you to the TURBO
TECHNIX data library, where all
listing files are stored. Listing files
are archived using the ARC52 archiv
ing scheme. You will need the
ARC-E.COM program or one compati
ble with it to extract listing files from
downloaded archives.

Archive fi les are organized two
ways: by article and by issue. In other
words, there will be one .ARC file for
every article that includes listings, and
a single, larger .ARC file for each
issue containing all the individual
.ARC fi les for that issue. You can
therefore download listings for indi
vidual articles, or download the entire
issue's listings in one operation.

The all-issue files follow a naming
convention such that NVDC87.ARC
contains all listing archives from the
November/ December 1987 issue,
JAFB88.ARC forthe J anuary/ Febru
ary 1988 issue, and so on. The name
of an article's individual listings
archive file is given at the end of each
article.

To download an archive file, type
DOW (filename)/ PROTO: XMO

at the DL 1 prompt. After pressing
Enter, start your own communications
program's XMODEM receive func
tion. After you have completely
received the file, you must press Enter
once to inform CompuServe that the
download has been completed. Once
you have downloaded an archive file ,

158 TURBO TEGINIX January/ February 1988

you can "extract" its component files
by invoking ARC-E.COM at the DOS
prompt this way:
C) ARC-E (filename)

NATIONAL USER GROUPS
T UG
The national user group for Turbo
languages is TUG, the Turbo User
Group. TUG publishes a bimonthly
newsletter called Tug Lines that con
tains bug reports, programming how
tos, and product reviews. Extensive
public-domain utility and source code
libraries are available to members.
Dues are $22.00 US/year ($23.72 in
Washington State); $26.00 Canada
and Mexico; $38.00 overseas.
TUG
PO Box 1510
Poulsbo, WA 98370
T Pro Users
TPro Users was founded specifically
to support Turbo Prolog program
ming. Their bimonthly newsletter
contains technical articles, application
stories, tips and techniques, and more.
TPro also maintains an electronic bul
letin board for source code download
and message posting. Dues are $25.00
US/ year; $35.00 overseas.
TPRO USERS
3109 Scotts Valley Drive, Suite 138
Scotts Valley C:A 95066
BBS: (408) 438-6506

LOCAL USER GR OUPS
One of the best places to look for
advice and face-to-face assistance with
your programming problems is at a
local user group meeting. Most user
groups in the larger cities have special
interest groups (SIGs) devoted to the
most popular programming lan
guages, usually with strong Turbo
presences. We will be listing some of
the largest and most active user
groups in major urban areas across
the country; obviously, there are thou
sands of user groups that we cannot
list due to space limitations. If no
listed group is convenient to you, ask
about local user groups at a local com-

puter store or check with a faculty
member at a high school or college
with a computer curriculum.
BOSTON COMPITTER SOCIE1Y
Information: (617) 367-8080
BBS: (617) 353-9312
One Center Plaza
Boston, MA 02108
CAPITAL PC USER GROUP (DC)
4520 East-West Highway, Suite 550
Bethesda, MD 20814
C SIG: Fran Horvath
Al/ Prolog SIG: Dick Strudeman
BASIC SIG: Don Withrow
CHICAGO COMPITTER SOCIE1Y
Information: (312) 942-0705
BBS: (312) 942-0706
Pascal SIG: Bill Todd (312) 439-3774
C SIG: Ed Keating (312) 438-0027
Al/ Prolog SIG:
Jim Reed (312) 935-1479
Basic SIG:
Hank Doden (312) 774-5769
HAL/PC (HOUSTON)
Information: (713) 524-8383
BBS: (713) 847-3200 or (713) 442-6704
Pascal SIG:
Charles Thornton (713) 467-1651
C SIG: Odis Wooten (713) 974-3674
Compiled BASIC SIG:
Larry Krutsinger (713) 784-9216
AI SIG (Prolog):
George Yates (713) 448-7621
NEW YORK PC USER GROUP, INC.
information: (212) 533-6972
BBS: (212) 697-1809
40 Wall Street Suite 2124
New York, NY 10005
PACS (PHILADELPHIA)
Information: (215) 951-1255
BBS: (215) 951-1863
PACS, c/ o Lasalle University
Philadelphia, PA 19141
SAN FRANCISCO PC USERS GROUP
Information: (415) 221-9 I 66
444 Geary Blvd, Suite 33
San Francisco, CA 94118
ST. LOUIS USERS' GROUP
Information: (314) 968-0992
BBS: (314) 361-8662
Pascal SIG:
Jeffrey Watson (314) 481-4239
Cl Assembler SIG:
David Rogers (314) 968-8012
BASIC SIG:
Dennis Dohner (314) 351-5371
TWIN CITIES PC USER GROUP
Information: (612) 888-0557
BBS: (612) 888-0468
PO Box 3163
Minneapolis, M 55403
Independent CBBS systems with
p rogramming orien tation
Questor Project Washington , DC
(703) 525-4066 24Hr $
Illinois BBS Chicago, IL
(312) 885-2303 24Hr $
PC-TECH BBS Santa Clara, CA
(408) 435-5006 24Hr
$ = membership fee required

C:>CLASS.ADS

This is our Display Classified
section, brand new to TURBO
TECHNIX. We congratulate our
Charter Advertiser and extend
a welcome to vendors of all
sizes who would like to take
advantage of th e special rates
for this section: $300 per
column inch, with a 2-inch
minimum (a minimum ad mea
sures 2 1/16" wide by 2" long).
All C:>CLA.SS.ADS must be
prepaid and submitted in
camera-ready form (black and
white PMT or Velox) to:
C:>CLASS.ADS, TURBO
TECHNIX, 4585 Scotts Valley
Drive, Scotts Valley, CA 95066.
For additional information, call
(408) 438-9321.

Coming Up
Expert System Design
with Turbo Prolog ...
Learn how to create your own compu
ter expert from top to bottom in this
theme issue as we explore the major
components of expert system design.
Starting with a bird's-eye view of
expert systems, Mike Floyd discusses
what '.s important and why. Next,
you'll /,earn how to organize and
represent know/,edge with a popular
technique known as frames. Keith
Weiskamp explains the heart of an
expert system-the inference engine;
Safaa Hashim shows how meta
logical features can be added to an
expert system. Finally, Carl Townsend
will show you how an English lan
guage interface can be impl,emented to
give your expert system a true air of
intelligence.

Join the Dialog ...
The TURBO TECHNIX mailbag is
bulging, and we'll be reaching in
for the best our readers have to
offer. Starting with our next issue,
"Dialog" will be joined by the edi
torial staff and TURBO TECHNIX
authors for lively give-and-take on
issues that start at Turbo program
ming and go where they will.
Gripes? Requests? Favorite hax?
Give us your best shot, and enjoy
the ricochets.

Turbo C Users
At last. a powerful C windowing package wi th a
complete tutorial on PC video and full source code.

C Windows Toolkit
• Windows
• Menus
• ~Siem Support
• ono. CGA ,

Hercules Support

• EGA Support
(43 Lines. 64 Colors)

• £GA Fon! Edilor Included

: /;,~rp/~~u~~~,~~s

PO. Box 475594 • Garland . TX 75047 • (214) 226-6909

Only $99.95 :S:: W
(T1 residents add S8 00 sales tu:es}

Understand custom exit
procedures .. .
Turbo Pascal 4.0 units can execute
special procedures before a program
runs and after it terminates. This
advanced technique allows a unit to
create a special machine setup for pro
grams that incorporate it, and then to
restore the prior machine setup before
the program returns to DOS. It's
subt/,e, but Tom Swan will show you
how it's done.

and the TECHNIX keep
commg ...
Learn how to deal with important
events when they happen in Turbo
Basic, under the ab/,e tutelage of
R.alph Roberts. Choosing one from
many is a technique that comes under
the lights in three separate artic/,es, for
Turbo Pascal on CASE, Turbo C on
switch, and Turbo Basic on
SELECT CASE.

We critique the Norton Guides and
a pair of new books on Turbo Prolog
and Turbo C programming, and
return with more expert insights from
our honored columnists.

J anuary/ February 1988 TURBO TEGINIX 159

PHILIPPE'S TURBO
TALK
If we don't take care of the future ...

Philippe Kahn

I
always say that if we don't
take care of the future, the
future will take care of us.
We'll all be living in the

future for the rest of our lives, so
we'd better pay it some attention.
What is ignored will be decided by
default-by people who do not
have our best interests in mind.

The future should be open. I
don't mean Glasnost, (the Russian
version of "openness," which
somehow includes the Berlin
Wall) , but real openness within
the software industry. The trend
has been moving the other way in
the past year or two: Look-and
Feel, audiovisual copyrights,
name-calling, and endless law
suits. Sometimes you can almost
feel that the SP in Software Pub
lisher stands for "Software Protec
tionist," "Software Paranoid,"
"Software Padlock," "Software Pat
ent," "Software Predator" or per
haps "Software Psychoneurotic"!
That kind of future we don't need.
In reality, we all have to collabo
rate on industry-wide issues. It's
not a zero-sum game. Everyone
can play, and we'll all win.

IDEAS AND STANDARDS ARE
MEANT TO BE SHARED
As the old wisdom goes, "When
you steal ideas from one author,
it's plagiarism. If you steal from
many, it's research." And we all
know that nothing is more dan
gerous than an idea that's the
only one we have. Then again,
sharing ideas and information
isn't always completely open
ended. Sometimes it's better to
keep your mouth shut. Maybe
Gary Hart shouldn't have chal
lenged the press to follow him
around. And ripping off ideas is
no good either; Joe Biden found

that out. He should have read
what Einstein said: "The secret to
creativity is knowing how to hide
your sources." Guess about mine ...

As software people, we're in the
idea business. We know the way
and should lead the way. We
should never forget to be pioneers
and we should never spend more
time with lawyers than with
developers.

MEMO: WHY WE EXIST
We can never forget why we exist,
as NASA did. Instead of respond
ing to Kennedy's pioneering call
to "go to the moon and back
within a decade," and keeping the
momentum, NASA has allowed
smaller minds to intervene. The
accountants are now in charge.
The spirit of adventure and explo
ration, and the thirst for new
knowledge, are lost. Instead of
installing a space station and man
on Mars, we're asked to be excited
about accountants in space.
Kennedy never asked if getting an
American on the moon would
make a profit-and we have to be
just as adventurous and open
minded.

DON'T WAIT FOR ALPHONSE
People have talked and argued
about building a tunnel between
England and France for more
than 100 years-and no one's dug
the first hole. Nothing gets
accomplished when Alphonse
waits for Gaston and Gaston waits
for Alphonse. We can't sit around
waiting for someone else to take
the risks and invest the money for
the next technological break
through. If someone makes the
first move, we'll get started. If
everyone makes the first move,
watch out!

160 TURBO TEGINIX January/ February 1988

INNOVATION CAN ALSO BE
MISCALCULATION
However we approach the busi
ness of innovation, we can't forget
that we're also in the business of
not being dumb. Innovation can
turn into miscalculation. Some
times the cure is worse than the
disease. And sometimes there is
no disease.

In trying to honor Susan B.
Anthony with a dollar coin, we did
it cheap and made it the same size
as a quarter. People were con
fused and ended up paying a dol
lar for a 25-cent newspaper; nor
was there any place to put Susan
B. dollars in most American cash
registers. Susan is now history
twice. And we don't miss the coin,
mostly because we didn't need it.

In the same vein, you don't
build programs that eat up far
more memory than most people
have in their computers. You don't
build hardware that is "largely
IBM compatible." You don't sell
software that makes the job more
difffficult than using pencil and
paper.Just because you thought of
it doesn't mean the world needs it.

RIDING THE TECHNOLOGI
CAL DRAGON
By riding and taming the techno
logical dragon, we will build
tomorrow's future. Not just a sim
ple extension of today's world, but
new opportunities, quantum leaps
beyond what we know today. It's
innovation time. This is the time
to forge ahead, to establish and
share standards, to keep moving
on. Sharing standards and ideas
will go a long way towards making
this vision happen. Let's all build
the future together. Today. •

Announcing
Two Dynamic New Imprints

~ • 2600 Tenth Street
IJ~ '~ ~ Osborne McGraw· Hill

11M II Berkeley, California 94710

The Borland-Osborne/McGraw-Hill
Business Series

~ Using REFLEX®: THE DATABASE MANAGER
by Stephen Cobb
Features sophisticated SuperKey® macros and REFLEX
Workshop '" applications. ·
S21.95 paperback, ISBN o-07-B81287-9

~ Using SPRINT™: The Protessional Word Processor
by Kris Jamsa and Gary Boy
Take advantage of this fabulous new word processing system
that is powerful , fast , and includes many desktop publishing
features .
S21.95 paperback, ISBN 0-01-881291-1

The Borland-Osborne/McGraw-Hill
Programming Series

~ Using Turbo C®
by Herbert Schildt
Here's the official book on Borland 's tremendous new language
development system for C programmers.
S19.95 paperback, ISBN 0-01-881219-8

~ Advanced Turbo C®
by Herbert Schildt
For power programmers. Puts the amazing compilation speed
of Turbo C® into action.
822.95 paperback, ISBN o-01-BB1280-1

~ Advanced Turbo Prolog® version 1.1
by Herbert Schildt
Now Includes the Turbo Prolog Toolbox '" with examples

821.95 paperback, ISBN 0-07-881285-2

~ Turbo Pascal® Programmer's Library
by Kris Jamsa and Steven Nameroff
Revised to cover Borland's Turbo Numerical Methods Toolbox '"
S21.95 paperback, ISBN 0-01-881286-o

~ Using Turbo Pascal®
by Steve Wood
Featuring MS-DOS programs, memory resident applications,
in-line code, interrupts, and DOS functions
S19.95 paperback, ISBN 0-07-881284-4

~ Advanced Turbo Pascal®
by Herbert Schildt
Expanded to include Borland 's Turbo Pascal Database Toolbox®
and Turbo Pascal Graphix Toolbox®
S21.95 paperback, ISBN 0-07-881283-6

Available at Book Stores and Computer Stores.
OR CAU TOU-FREE 800-227-0900

800-772-2531 (In California)
In Canada, contact McGraw-Hill Ryerson , Lid. Phone 416-293-1911

Trademarks: SuperKey, REFLEX, Turbo BASIC, Turbo C, Turbo Pascal Database Toolbox , Turbo Pascal Graphix Toolbox, Turbo Pascal , Tu rbo Prolog, and Turbo Prolog Toolbox
are registered trademarks of Borland International. REFLEX Workshop , SPRINT, and Turbo Pascal Numerical Methods Toolbox are trademarks of Borland International. WordPertect

is a registered trademark of WordPertect Corp . WordStar is a registered trademark of MicroPro lnt'I Corp . Copyright © 1987 McGraw-Hill , Inc.

•

