

new

The ultimate productivity tool for (f · §] d :. I : j ~ '1J
~mmers • Puts volumes
P•v&~r-~~referenced data at your

fingertips. • Replaces most m~ual
searches with a few sunple

!liiifiiiiliiiii~ keystrokes. • Inclu~es
compiler for creatmg
your own databases.
• Also available in
versions for BASIC, C

and Pascal.

Nobody ever said programming PCs was
sup2osed to be easy.

But does it have to be tedious and time
consuming, too?

Not any more.
Not since the arrival of the remarkable new

program on the left
Which is designed to save you most of the

time you're currently spending searching through
the books and manuals on the shelf above.

The Norton On-Line Programmer's GuidesT"
are a quartet of pop-up reference packages that do
the same things in four differ
ent languages.

Each package consists of
two parts: A memory-resident
Instant Access™ program. I . I

•

And a comprehensive, 5 ·J.4.,.f
cross-referenced database •
crammed with just about
everything you need to know to program in your
favorite language.

And when we say everything, we mean
everything.

Everything from information about language
Designed for the IBM® PC. PC-AT and DOS compatibles. Available at most software

cesa

syntax to a variety of
tables, including ASCII
characters, line draw
ing characters, error
messages, memory
usage maps, important
data structures and
more.

How much more?
WelL the databases

for BASIC, C and Pas

A Guides reference summary
screen (shown in blue) pops up on
top of the program you re working

on (shown in green).

cal give you detailed listings of all built-in and
libr<!IY £unctions.

While the Assembly database delivers a com
plete collection of DOS service calls, interrupts
and ROM BIOS routines.

You can, of course, find most of this informa
tion in the books and manuals on our shelf.

But Peter Norton-who's written a few books
himself-figured you'd rather have it on your
screen.

In seconds.
In full-screen or moveable half-screen mode.
Popping up right next to your work Right

where you need it

or.
This, you're probably

thinking1 1s precisely the
kind of thinking that pro
duced the classic Norton
Utilities~M

And you're right
But even Peter Nor

ton can't think of every
thin .
~ch is why there's

a built-in compiler for
creating databases of your own.

And why all Guides databases are compatible
with the Instant Access program in your original
package.

Summary data expands on
command into extensive detail.
And you can select from a wide

variety of information.

So you can add more languages without spend
ing a lot more money.

To get more information, call your dealer. Or
call Peter Norton at 1-800-451-0303 Ext 40.

And ask for some guidance.

'J!.mr NtJrirNl-
COMPUTING

dealers, or direct from Peter Norton Computing, Inc., 2210 Wilshire Blvd., #186, Santa Monica, CA 90403. 213-453-2361, Fax 213-453-6398, MCI Mail : PNC! ©1987 Peter Norton Computing

I
TURBO TECHNIX
The Borland Language Journal
November/ December 1987
Volume I Number I

TURBO PASCAL
8 Turbo Pascal Arrives!

Jeff Duntemann
10 Turbo Pascal at 4

Jeff Duntemann
20 Turbocharging: Moving from

3.0 to 4.0
Bruce l#bster

24 Getting to Know Units
Tom Swan

32 Communicating with Child
Processes
Neil Rubenking

36 Exploring the Borland Binary
Editor
Jeff Duntemann

47 Sense and Semicolons
Jeff Duntemann

TURBOC
52 Taking Charge of DOS

Volume Labels
Kent Porter

58 Pointers in Turbo C
Mill£ Floyd

62 The End of the Line
Jonathan Sachs

65 Implementing Binary Trees
Kent Porter

68 Julian Days and Dates
Marty Franz

74 A Programmer's Guide to the
Parallel Port
Bruce &k£l

TURBO PROLOG
80 Recursive Data Types in

Turbo Prolog
Michael Covington

87 Extracting Routines from the
Turbo Prolog Toolbox
Dan Shafer

94 Thinking in Turbo Prolog
Al.ex Lane

99 Bit by Bit
Tom Castl.e and F. Barclay Shilliday

TURBO BASIC
104 Starting Out with the Turbo

Basic Database Toolbox
Peter Aitken

111 DOS Calls from Turbo Basic
Ethan Winer

114 Turbo Basic Communications
Reid Collins

124 Exploring the CIRCLE
Statement
Peter Aitken

BUSINESS LANGUAGES
128 Thinking in PAL

Todd Freter and Ken Einstein

DEPARTMENTS
4 From the Publisher

Marcia Blah£
6 BEGIN: Hello, World

Jeff Duntemann
132 Binary Engineering: Divide

and Rule
Bruce l#bster

136 Language Connections: The
Turbo Prolog-Turbo C
Connection
Gary Entsminger

142 Archimedes' Notebook: Flexi
ble Curve-fitting with Eureka
Namir Cl.ement Shammas

147 Tales from the Runtime: Get
ting Started
Mark L. Van Name and Bill
Catchings

152 Critique: QuickPak
Marty Franz

153 Critique: TECH Help!
Peter Aitken

155 Bookcase: Memory Resident
Utilities
Reviewed By Rick Ryall

156 Bookcase: Advanced Turbo
Pro log
Reviewed b-y Keith Weiskamp

158 Turbo Resources
160 Philippe's Turbo Talk

Philippe Kahn

2 TURBO TECHNIX November/ December 1987

8
Turbo Pascal 4.0 faithfully reflects the
structure of your program designs in
fast, compact code. The large code
model, separate compilation, and a
host of other enhancements are now
at your command.

52
DOS volume labels can be more use
ful than you think, and manipulating
them could be considerably less diffi
cult than you may have feared.

80
Turbo Prolog allows types that contain
themselves as fields. This powerful
feature facilitates easy implementation
of recursive data structures such as
binary trees.

104
All the tools you need for building a
custom database in Turbo Basic are
contained in the Turbo Basic Data
base Toolbox.

Cover:
Turbo Pascal 4. 0 will faithfully reflect
your ideas as structured applications.
Photograph by Bradley Ream.

Interlocking Pieces:
Blaise and

Turbo Pascal.
Whether you're a Turbo Pascal expert or a novice , you can benefit from using
special tools to enhance your programs , make them reliable , and give them a
professional look. With windows, menus, pop-up memory resident programs,

and communications support, Blaise Computing offers you all
~- the right pieces to solve your Turbo Pascal development puzzle.
~··-;;;i +POWER TOOLS PLUS™ is a general purpose library of over 140

~c0,.;;;.r" functions and procedures , like fast direct video access, general screen
handling including multiple monitors , and EGA 43-line text mode.
Stackable and removable windows with optional borders and

cursor memory provide complete windowing capabilities. Pop-up
menus are easily incorporated into your programs using the menu

management functions.
POWER TOOLS PLUS allows you to inspect , allocate ,

and free DOS memory. Execute any program, including
internal DOS commands, from within your Turbo
Pascal program.

Write general interrupt service routines in Turbo Pascal
for either hardware or software interrupts using the
POWER TOOLS PLUS !SR support functions. Blaise

Computing's unique intervention code lets you develop
memory resident applications that take full advantage of DOS

capabilities. With simple procedure calls, "schedule" a Turbo
Pascal procedure to execute either when a "hot key" is pressed
or at a specified time.
+ASYNCH PLUS™provides the crucial core of hardware

interrupts needed to support asynchronous data communi
cation. This package offers simultaneous buffered input and
output to both COM ports at speeds up to 9600 baud , and
supports the XON/ XOFF protocol , XMODEM file transfer
and modem control functions.

The underlying functions of ASYNCH PLUS are carefully crafted
in assembler and drive the UART and programmable interrupt con-

troller chips directly. These functions, installed as a memory resident
system, require just 3.2K bytes. Complete Turbo Pascal interfaces to the

assembler routines are provided.
The source code is included in all Blaise Computing products and

is efficiently crafted, readable and easy to modify. The INCLUDE
utility is provided to automatically determine which procedures and
functions are required, and to compact them all into a single file to
be included in your application. Each package is accompanied by an

indexed manual describing each procedure and function in detail with
example code fragments. The documentation reflects the attention to

detail and commitment to technical support that have distinguished
Blaise Computing over the years.

NOW, EVEN MORE POWER! Turbo ASYNCH PLUS

Turbo POWER SCREEN
COMING SOON! General screen manage
ment: paint screens; block mode data entry
or field-by-field control with instant screen,
access. For Turbo Pascal.

EXEC $95.00
NEW VERSION! Program chaining execu
tive. Chain one program from another in dif
ferent languages: specify common data areas;
less than 2K of overhead.

Key Player $49.95
"Super-batch '" program. Create batch files
which can invoke programs and provide
input to them; run any program unattended;
create demonstration programs; analyze key
board usage.

RUNOFF $49.95
Text formatter for all programmers. Written
in Turbo Pascal: flexible printer control; user
defined variables; index generation: and a
general macro facility.

Turbo C TOOLS $129.00
Windows: ISRs; intervention code; screen
handling and EGA 43-line text mode support;
direct screen access: DOS file handling and
more . For Turbo C.

PASCAL TOOLS/TOOLS 2 $175.00
Expanded string and screen handling; graph
ics routines; memory management; general
program control; DOS file support and more.
For MS-Pascal.

C TOOLS PLUS/5.0 $129.00
Intervention code, ISRs, Wjndows, direct
screen access. DOS file handling and more.
Designed specifically for Micr.osoft C 5.0
and QuickC.

VIEW MANAGER $275.00
General screen control; paint screens: block
mode data entry or field-by-field control with
instant screen access. For C or MS-Pascal.

ASYNCH MANAGER $175.00
Full featured interrupt driven support for the
COM ports. 1/0 buffers up to 64K: XON/
XOFF; up to9600 baud; modem control and
XMODEM. For C or MS Pascal.

LIGHT TOOLS $99.95
Windows; ISRs; EGA 43-line text mode;
direct screen access; DOS file handling and
more. For the Data light C compiler.

TO ORDER CALL TOLL FREE
800-333-8087

and Turbo POWER TOOLS PLUS are now designed TELEX NUMBER-338139 ---·
explicitly for Turbo Pascal Version 4.0. New high ----------

level functions provide reliable, fast, professional ------- .
routines- the right combination of pieces to ----":'-;s, ·esol-----

11 b P 1 1 h ---- • ht\l1ec • co?' od ts put your ur o asca puzz etoget er. ----- dt11ethen!1. l r---=;our?r uc Ool r
All source code is included for only r, ~ES\ S~'\s~nforrnationonordersadddS4\r

0
--

$129 ()() h Enc\ose i d rne rnor Dornesuc tandar a . -
. eac . ' 0 ?\ease sen s \es 'fal'. · \ £1'.press s) --

.... ~
-------~~------
BLAISE COMPUTING INC.
2560 Ninth Street, Suite 316 Berkeley. CA 94710 (415) 540-5441

' 'dentsaddoa()()lorFedera pnone:l-- -- -----
\ Cf>..res1~s1. _- ___
\ UPS snipping. . 'Zip: D te"----=::;;:

\ Name" State·---~£~1'-~?·iila~~-~!1\1
\ f>..ddress:----~ ----- crosoft · . ~------=:;;:; andQuickCare
\ Cit)'· r N\C# '. registered trademarks of
\ YlSA O - - - Microsoft Corporation. Turbo Pascal ir a regir-
'- _ -- - tcred trademark of Borland International.

TURBO TECHNIX
The Borland Language Journal
November /December 1987
Volume I Number I

Publisher
Marcia Blake

Editor in Chief
Jeff Duntemann

EDITORIAL

Managing Editor
Michael Tighe

Technical Editor
Michael A. Floyd

Copy Editor
Eileen Dempsey

TECHNICAL CONSULTANTS

Brad Silverberg
David Intersimone
Gary Whizin

DESIGN & PRODUCTION

Art Director
Karen Miner

TypeseUing Manager
Walter Stauss

Typeseller/ Systern Supervisor
Jeffrey Schwenley

Assistant Typeseller
Jeanie Maceri

Photographer
Bradley Ream

Typeselling Traffic
Charlene McCormick

ADMINISTRATION

Circulation
Pete Townsend

Purchasing
Brad Asmus

ADVERTISING

Assistant to the Publisher
Annette Fullenon
(408) 438-9321

Advertising Sales Manager
John Hemsath
(408) 438-9321

\#stem Region
Janet Zamucen
(714) 586-1517

New England/ Mid-Atlantic Regions
Merrie Lynch
Nancy Wood
(617) 848-9306

South Region
Megan Patti
(813) 391-1963

FROM THE PUBLISHER
Marcia Blake

W
elcome to the pages
of Borland's new
language journal!

We've had a great
time assembling the first issue of
TURBO TECHNIX, especially
since we've done it "the Borland
way." Unlike other new maga
zines, we never printed a
"dummy" with free space given to
advertisers in an attempt to fill the
book. We didn't spend a fortune
promoting the magazine to read
ers (they were already there, ask
ing for copies long before the
magazine's existence was anything
more than a rumor). We simply
collected a small-but-mighty staff
of a few of the best people in the
business, gathered material from
some of the most talented writer/
programmers around, and the
rest, as they say, "is history."

And you're look.in' at it.
Like Borland software, the mag

azine is ajet fighter-powerful
and compact-and, also like the
software, the magazine will con
tinue to provide full value long
after it is first published. Advertis
ers and readers alike will benefit

repeatedly from the structure and
the editorial charter of TURBO
TECHNIX, and those benefits are
both immediate and lasting.

Readers of TURBO TECHNIX
know they can find a broad spec
trum of Borland language exper
tise in these pages, and they'll also
find all the "latest and greatest"
offerings from a variety of manu
facturers and developers. And
TURBO TECHNIX advertisers can
be confident that their advertising
dollars are reaching a valuable,
qualified market of power users:
registered Borland language
owners ... early adapters and early
adopters ... true power users and
power buyers on the cutting edge of
new technology.

Powerful and compact
... that's the magazine, and that's
the team that put it together. And,
with our readers and advertisers,
that's the team that will go on to
build ever-better programs for the
ultimate benefit of all. So, climb
aboard-and enjoy the ride as this
jet fighter takes om •

The TURBO TECHNIX launch team, from /,eft: copy editor Eiken Dempsey,
managi,ng editor Michael Tighe, publisher Marcia Blake, assistant to the pub
lisher Annette Fulkrton, editor in chief Jeff Duntemann, art director Karen
Miner and technical editor Mike Floyd.

TURBO TECHNIX (ISSN-0893-827X) is published bimonthly by Borland Communications, a division of Borland International, Inc., 4585 Scotts Valley Drive,
Scotts Valley, CA 95066 . TURBO TECHNIX is a trademark of Borland International, Inc. U.S. subscriptions are $49.95 per year; Canada US $60.00 per year.
Single copy p1ice is $10.00. Third-class postage pending at Santa Cruz, CA, and at additional mailing offices. Phone (408) 438-9321. Postmaster: send
address changes to Subscription Dept., 4585 Scous Valley Drive, Scous Valley, CA 95066. Entire contents Copyright C> 1987 Borland International, Inc. All
Rights Reserved. No pan of this publication may be reprinted or otherwise reproduced without permission from the publisher. For a statement of our per
mission policy for use of listings appearing in the magazine, please send a self-addressed stamped envelope to TURBO TECHNIX, Permissions, Borland
Communications, 4585 Scotts Valley Drive, Scotts Valley, CA 95066.

TURBO TECH NIX makes reasonable efforts to assure the accuracy of articles and information published in the magazine. TURBO TF.CHNIX assumes no
responsibility, however, for damages due to errors or omissions, and specifically disclaims any implied warranty of merchantability or fitness for a particular
purpose. The liability, if any. of Borland or any of the contributing authors of TURBO TECHNIX, for damages relating to any error or omission shall be
limited to the price of a one-year subscription to the magazine and shall in no event include incidental, special, or consequential damages of any kind, even
if Borland or a contributing author has been advised of the likelihood of such damages occurring.

Trademarks: Turbo Pa.seal, Turbo Ba.sic, Turbo C, Turbo Prolog, Turbo Toolbox, Turbo Tutor, Turbo Gamettbrks, Turbo Lightning, Lightning Wird Wizard, SitkKick,
SuperKey, Eureka, Reflex, Qµattro, Sprint, Paradox, and Borland, are tratkmarks or registered trademarks of Borland International, Inc. or its subsidiaries.

4 TURBO TECHNIX November/ December 1987

•

• *
*More·M~
from Blaise. u

Turbo C TOOLS™ 'f
l TurhO POWER 'tOOLS PLUS $99.95

Screel\tfld windoJltiianagement including
EGA ~port: DOS memory control: ISRs;
scheduled intervention code; and much more.
For Turbo Pascal. Magic is easy with Turbo C TOOLS

in your bag of tricks. New Turbo C
TOOLS™ from Blaise Computing is a
library of compiled C functions that
allows you full control over the com
puter, the video environment, and the
file system, and gives you the jump on
building programs with Borland's new
C compiler. Now you can concentrate
on the creative parts of your programs.
The library comes with well-docu
mented source code so that you can
study, emulate, or adapt it to your speci
fic needs. Blaise Computing's attention
to detail, like the use of function proto
typing, cleanly organized header files,

and a comprehensive, fully-indexed
manual, makes Turbo C

TOOLS the choice for
experienced

software

..;.'•*

*
Turbo C

TOOLS
supports

the Borland
TurboCcom

piler, requires
DOS 2.00 or

later and is just
$129.00

•
developers as well as newcomers to
Turbo C TOOLS provides the sophistt- *
cated, bullet-proof capabilities needed
in today's programming environmen~
including removable windows, "side-.
kickable" applications, and general
interrupt service routines written in C. •
The functions contained in Turbo C
TOOLS are carefully crafted to supple- •
ment Turbo C, exploiting its strengths •
without duplicating its library functions.
As a result you'll get functions written
predominantly in C, that isolate hard
ware independence, and are small and
easy to use.
Turbo C TOOLS embodies the full spectrum
of general purpose utility functions that are
critical to today's applications. Some of the
features in Turbo C TOOLS are:

+ WINDOWS that are stackable and remov-
able, that have optional borders and a cursor
memory, and that can accept user input.

+ INTERRUPT SERVICE ROUTINE sup
port for truly flexible , robust and polite
applications. We show you how to capture
DOS critical errors and keystrokes.

+ INTERVENTION CODE lets you devel
... op memory resident applications that can

take full advantage of DOS capabilities.
With simple function calls, you can schedule
a Turbo C function to execute either when
a "hot key" is pressed or at a specified time. * +RESIDENT SOFTWARE SUPPORT lets
you create, detect, and remove resident util
.ties that you write with Turbo C TOOLS .

. + FAST DIRECT VIDEO ACCESS for
efficiency, and support for all monitors
including EGA 43-line mode.

•

Turbo POWER SCREEN
COMING SOON! General screen manage
ment: paint screens: block mode data entry
or field-by-field control with instant screen
access. For Tu rho Pascal.

Turbo ASYNCH PLUS $99.95
Interrupt driven supper! for the COM perts.
110 buffers up to 64K; XON / XOFF; up to
9600 baud; modem and XMODEM control.
For Turbo Pascal.

PASCAL TOOLS/TOOLS 2 $175.00
Expanded string and screen handling: graph
ics routines: memory management; general
program control: DOS file support and more.
For MS-Pascal.

CTOOLSPLUS $175.00
Windows; ISRs; screen handling: multiple
monitors: EGA 43-line text mode: direct
screen access: DOS file handling and more.
For MS and Lattice C version 3.00 and later.

LIGHT TOOLS $99.95
Windows: ISRs: EGA 43-line text mode:
direct screen access; DOS file handling and
more. For the Dataligbt C compiler.

ASYNCH MANAGER $175.00
Full featured interrupt driven support for the
COM ports. 1/ 0 buffers up to 64K; XON /
XOFF: up to9600 baud; modem control and
XMODEM. For C or MS-Pascal.

VIEW MANAGER $275.00
General screen control: paint screens; block
mode data entry or field-by-field control with
instant screen access. 'For C or MS-Pascal.

RUNOFF $49.95
Text formatter for all programmers: flexible
printer control: user-defined variables; index
generation: general macro facility. Crafted
in Turbo Pascal.

EXEC $95.00
NEW VERSlON! Program chaining execu
tive. Chain one program from another in dif
ferent languages: specify common data areas:
less than 2K of overhead. + DIRECTORY AND FILE HANDLING

support let you take advantage of the DOS
file structure, including volume labels and TOORDERCAU TOLLFREE
directory structure. 800-333-8087
In addition to Turbo C TOOLS, Blaise TELEX NUMBER-338~~-----
Computing Inc. has a full line of sup- __ _

. ---port products for Microsoft, Lattice ------ -------
and Datalight C, Microsoft Pascal ------- nieS oi -------

d T b P l C ll --- ..tc, co~ oducts an ur o asca . a ---- make ma .. -1 ·r ~our pr · \or
today for .details, and rY-isnw;~t~~nforroationon;dersaddr;~ -
make magic! \ t,nclt~e send roe ro~ '\aY.· ooro~tl~ress standar) ----

' 0 pea. dents addOS(i3tor Federa\ y. pnone: ~-

~
-------~'-'.:-----
BLAISE COMPUTING INC.

, cp.. res1~. g,$1 ·
\ UPS snipp1n , . --'Zip: Date:
\ Name: State. .£ _"'Y.~P~· l;l';lltlWI!~'{'"'
\ p..ddress:----~ ------ ·· ' . ·~-------=-= \ Cit)'· MC#: •
\ V\SA or ____ Turbo C is a trademark of

2560 Ninth Street. Suite 316 Berkeley. CA 94710 (415) 540-5441 \..---- Borland lntemational.

BEGIN
Hello, world.

Jeff Dunternann

y ou can write a grocery
list. Or you can write
The Great Gatsby. One
will get you through

a shopping trip, and the other is
bought by millions and remem
bered forever as a classic. Both
are works executed in a language
called English, and the fact that
few of us can aspire to writing a
timeless classic doesn't keep a
great many grocery lists from
being written.

The great truth that not every
one needs to write a 200,000-line
application was part of the force
that propelled Borland Interna
tional to prominence a few years
ago. The right ten lines of Turbo
Pascal can get you out of some
nasty comers. Industry pundits
have tried to discredit the notion
of general computer language liter
acy (as distinct from simple com
puter literacy, i.e ., not shrinking in
horror from the C > prompt) by
stating that the need for profes
sional programmers will always be
minuscule compared to the
number of small computers in
use. That's true, but entirely
beside the point.

Again, the comparison to Eng
lish is strong and valid: The
number of people who make their
living writing English prose is van
ishingly small compared to the
number of people who read and
write well. You can live in America
as an iliiterate,just as you can use
your computer without knowing
a thing about programming, but
in both cases you are very much
at the mercy of others. To take
control of your own life or your
own PC, you need to understand
the language of the realm.

This magazine is in your hands
because your recent purchase and

registration of a Borland language
or toolbox entitles you to a 12-
month free subscription-a $49.95
value. If you're reading a friend's
copy, you can purchase a subscrip
tion through the card attached to
the binding. It's as simple as send
ing in one card or another
except that the "other" card has
to have money along with it.

Our mission in creating TURBO
TECHNIX is to help you become
more literate in your chosen Bor
land language. Our method can
be summed up as the process of
answering two questions: How does
it work? and How do I do it? In
each article we'll explain some
programming principle at work or
some facet of the machine
beneath it-then cement the
knowledge by offering some use
ful code that illustrates the prin
ciple under discussion.

The heart of every issue is what
we call the Technix Core. The
Core consists of five departments,
one each for Turbo Pascal, Turbo
C, Turbo Prolog, and Turbo Basic,
plus a separate department for
Borland's new line of programma
ble business products: Quattro,
Paradox/ PAL, Sprint and Eureka.

Within each language depart
ment are at least three articles,
one at each of three broad expe
rience tracks.

Square One articles are for
computer-literate newcomers to a
given language. These articles
explain the structures and features
of the language without assuming
a great deal of background.

Programmer articles are targeted
at competent practitioners of the
language. We assume that you
know your way around and are
looking for a little more depth
and breadth. By and large, Pro-

6 TURBO TECHNIX November/ December 1987

grammer articles are less about
language features than about how
to apply them toward getting your
work done.

Finally, Wizard articles explore
the language areas that may have
lain just beyond your reach: assem
bly language interface, floating
point arcana, interlanguage calls,
interrupt handlers, and other items
that (unlike your editor) are said to
have considerable hair.

All this structure exists to keep
confusion to a minimum, but we
don't intend our tracks to become
ruts. Explore a little. Check out
what those Turbo Prolog guys are
up to ... or discover that Turbo Basic
isn't as basic as the basic BASIC
you once thought so ... base.

Outside the Technix Core, we
take a look at useful books in the
Bookcase, and interesting
programmer-oriented products in
Critique. We help you solve scien
tific and engineering problems
with Eureka: The Solver, in "Archi
medes' Notebook." Plus, we have
columns by Bruce Webster on soft
ware engineering, Mark Van Name
and Bill Catchings on the Turbo C
runtime library source, and Gary
Entsminger on interfacing Turbo
Prolog to Turbo C.

We plan to balance it all, from
issue to issue, so that no one goes
away from the feast hungry, and
we intend to do it with the sort of
light heart that keeps work from
becoming drudgery.

In the Borland tradition, no
magazine has been done quite this
way before. Tell us what you think.
Certainly, tell us what you, as
Turbo programmers, really need. In
helping you work with our lan
guages, please let us know how
well we're speaking yours. •

You do the creative stuff.
We'll write the code.

SYSTEM BUILDER™ $14995 & REPORT BUILDER™ $12995

automate Turbo Pascal programming.
It's a state-of-the-art program gen
erator that automatically builds a
relational database application for
you in just seconds. You just paint
your screen and datafile layouts.

SO EASY ... ideal for entry level " coders"
to produce relational database systems
without coding. (Entry level guide with
sample On-disk systems is provided.)
SO POWERFUL ... it provides program
ming professionals with more flexibility
and horsepower than any development
tool on the market (guide is provided.)

REPORT BUILDER CYCLE:
Key in the report parameters on screen

Print your listings
• New report format for reference
• Report element layout

Key in the report data elements on screen

Report Builder automatically writes the
program code and links it to your datafile

Print your listing
• Report program source code listings
Compile the report builder code using the
Turbo Pascal '" compiler

Attach the new report module to your
system menu

System Builder automatically writes the
program code and combines the datafi les
into a relational database

Print your listings
• Program source code listing • Datafile
layouts • Self-documenting program
(includes screen schematics)

Compile the System Builder code using
Turbo Pascal'" compiler

Start using the completed system

*System Builder will generate 2,000 lines of program code in approximately 6 seconds.

REPORT BUILDER FEATURES:
• Automatically generates Indented , Structured Source

Code ready for compiling Tu rbo Pascal (no program
ming needed)

• Automatically interfaces to a maximum of 16 Datafiles
created with System Builder

• Supports Global Parameters such as Headings , Footers,
Lines Per Page , Print Size and Ad Hoc Sorting

• Produces reports containing an unlimited number of
Sub-Headings , Sub-Totals and Totals

• Page breaks on Sub-Totals
• Report Builder will generate Report Programs which

can contain Report Elements not just restricted to Data
Elements. Reports can also include Tex! Strings, Vari
ables or Computed expressions containing references
from up to 16 Data files

• Use range input screens produced by System Builder to
allow End Users 10 select portions of a report as needed
(i.e. spec ific account ranges can be requested)

• Produces standalone Report Modules
• Easy-to-use Interface Program to access dBase Files

SYSTEM BUILDER PERFORMANCE
(Typical 10 screen 8 file/index application)

TASK
Planning and Design
Screen Painting
Programming
Elapsed time to
completed system

SYSTEM
BUILDER DBASE Ill'"

60 minutes
15 minutes

60 minutes
3 hours

2 minutes 10 hours
1 hour and 14 hours

17minutes

SYSTEM BUILDER FEATURES:
• Automatically generates Indented , Structured , Copy

Book Source Code ready for compiling with Turbo
Pascal (no programming needed)

• Paint Application and Menu screens using Keyboard or
Microsoft Mouse '"

• Finished Application screens all use System Builder 's
In-Line machine code for exceptional speed

• Use fully prompted Screen Guidance Templates'" 10
define up lo 16 Datafiles per application, each record
having an Un limited Number of fields

• Define up to 16 Index Keys per application database
• Paint functions include:

-Center, copy, move , delete, insert or restore a line ,
Go straight from screen to screen with one keystroke

-Cut and paste blocks of text screen 10 screen
- Draw and erase boxes. Define colors and intensities
- Access special graphic characters and character fill

• Supports an unlimited number of memory variables
• File Recovery Program Generator lo make fixing of

corrupted datafiles an automatic process
• Automatically modifies datafiles without loss of data

when adding/deleting a fie ld
• Menu Generator with unlimited Sub-Menu levels
• Experienced developers can modify !he System Builder
• Develop systems for Floppy or Hard Disk
• Modify System Builder's output code 10 include Exter

nal Procedures , Functions and Inline Code
• Easy-lo-use Interface to access ASCII and dBase Files

VARs, system integrators and dealers:
Your inquires are always welcome.

Call us at the numbers shown on coupon.

~ALA [gi~~~~M

"I think it's wonderful ••• prospec
tive buyers should seriously con
sider DESIGNER even before
dBASE m." Mr. Greg Weale

Corporate Accounts Manager,
Computer/and

"We used DESIGNER last year to
PJ'Oll'8lll a major application. It
saved our prop'811111lers so much
time. We now use DESIGNER
Instead of dBASE mas our devel
opment standard!'

Mr. Peter Barge, Director
Services Division, Horwath & Horwath

"DESIGNER bas resulted In signl
llcant time savings ••• We use it on
classical database applications!'

r--
Mr. Andy Rudevics, Director

Andrasoft Corporation

Roya1 American Technologies
320 Harris Ave, Suite A
Sacramento, CA 95838

(800) 654-7766
In California (800) 851-2555
Please rush me __ copies of SYSTEM
BUILDER at $149.95 per copy and
__ copies of REPORT BUILDER at
$129.95 per copy. I am enclosing $6.00
for postage and handling. Note: California
residents please add 6% sales tax .

Address ___________ _

City _____________ _

Stale ______ Zip _____ _

Phone ____________ _

Payment : 0 Check 0 Money Order

0 Cashiers Check 0 AMEX

0 VISA 0 MASTERCARD

Expiration date _________ _

Card Number __________ _

Signature ____________ _

30-Day Money-Back Guarantee. Not copy
protected . $10 restocking fee if envelope is
opened.
System Requirements - System Builder/Report
Builde r: IBM PC/XT/AT 1 • or s imilar. with minimum
256K RAM. dual fl oppy drives. or hard disk. color
or monochrome monitor. MS 2 or PC DOS 1 version
2.0 or later. Turbo Pascal Version 2.0or later
(Normal. BCD or 8087 ve rsions).
1Tradema rks of International Bui.1ness Machines Corp .
2Trademark of Microsoft Corp .
'~Turbo Pa!>cal 1s a reg1i.1ercd trademark of Borland lntcrna11onal .

L• -:A:.i s~eg:r:r:m:o~s=-:e ·- - - .I

TURBO PASCAL
4.0 ARRIVES!
Jeff Duntemann

P
ascal is the crystalline language.
The image of every component
mirrors the structure of the
whole, and in every glint is the

brilliance of Niklaus Wirth's seminal design.
As a vehicle for teaching the creation of
structured programs it has no equal, but Pas
cal came only slowly to acceptance as a
worthy tool for commercial software
development.

This was largely due to the fact that early
implementations were as lame as the origi
nal design was brilliant. The state of the Pas
cal art improved with time, but one common
thread ran through even the best implemen
tations: a single-minded insistence on porta
bility over speed. Writing a Pascal compiler
in Pascal makes for a ponderously slow (if
easily portable) compiler. Generating P-code
instead of native code allows an application
to run badly on as many different machines
as possible.

Time and again, a lesson too easily forgot
ten in our industry must be relearned: The
single most important attribute of any soft
ware tool is speed. Time is only money in
most industries. In software development,
time may be money, but speed is survival.
Early Pascal implementors continued to
shout about portability and wondered why
no one seemed to be listening.

8 TURBO TECHNIX November/ December 1987

Then came the autumn and winter of
1983-84. All around the country, thousands
of skeptical hands were snapping a single
disk into diskette drives, and typing TURBO
at the A> prompt. The reaction, passing
from mouth to mouth as thousands mounted
to tens and finally hundreds of thousands,
could be characterized in only one word:
Wow!

Turbo Pascal improved markedly through
its first three major versions. Greater speed
in both compilation and generated code,
overlays, better graphics, and improved con
trol over the underlying system all contrib
uted to its quick dominance of the Pascal
scene. There comes a time, however, when
evolutionary change is not enough, so build
ing on four years of experience, Borland's
development team has rewritten Turbo Pas
cal from scratch. In this premiere issue of
TURBO TECHNIX, we've devoted the greater
part of the Pascal section of the Technix
Core to introducing you to the new features
and power of Turbo Pascal 4.0.

I'll provide an overview of the new com
piler, and its completely new user interface,
in "Turbo Pascal at 4." The matter of con
verting source code from Turbo Pascal 3.0 to
4.0 is well-covered by Bruce Webster, in
"Turbocharging Your Code for 4.0." Tom
Swan eases the way toward separate compila
tion under Turbo Pascal 4.0 in "Getting to
Know Units." In "Communicating with Child
Processes," Neil Rubenking explains how to

EXEC to child processes and pass data back
and forth between parent and child-surely
one of the thorniest problems of the Turbo
Pascal 3.0 era. Finally, "Exploring The Bor
land Binary Editor" describes an intriguing
new feature of the updated and completely
rewritten Turbo Pascal Editor Toolbox.

I've always thought of computer program
ming as the reflection of the visions of the
programmer in the power of the language.
There is a necessary tension between the
blazing if unformed light of an idea and its
final coalescence into gritty reality as a pro
gram. The measure of a computer language
is how faithfully it can reflect that blaze of
an idea within the jumble of compromises
we call the PC architecture. A language of
limited expressibility like COBOL bends the
light always toward its own narrow shape,
while a language of unlimited amorphous
complexity like PL/ I scatters the light in
every direction, making every application a
uniform shade of gray. Somewhere in the
middle are the crystalline facets of Turbo
Pascal 4.0, faithfully reflecting your idea as
the application it will (with planning and
care) become. •

TURBO PASCAL AT 4
With Release 4 .0, Turbo Pascal celebrates its fourth
birthday-hut the presents are for you.

Jeff Duntemann

•
In four years there have been three Turbo
Pascals, and now, entering its fifth year,
there will be a fourth. In a larger sense,
the first three releases were one product,
each a proper superset of its predecessor

SQUARE ONE with only minor differences between
them. Turbo Pascal 4.0, by contrast, is a radical
change. The compiler has been completely re
designed for a new memory !IlOdel, separate compi
lation, and a very sophisticated user interface.
Changes like these do not sum up wdl in a para
graph or two. Follow along on a quick tour of the
new facets Turbo Pascal has turned toward the light
on its fourth birthday.

IN UNITS THERE IS STRENGTH
Separate compilation has never been part of the Pas
cal language definition, but time has shown that it's
very hard to manage large projects without it. Turbo
Pascal 4.0 adopts the units paradigm for separate
compilation pioneered by UCSD Pascal years ago and
used by Turbo Pascal for the Macintosh since its
release.

Elsewhere in this issue, Tom Swan discusses units
and their use in "Getting To Know Units." In brief, a
unit is a collection of data definitions and subpro
gram declarations compiled together and stored as a
.TPU (Turbo Pascal Unit) file on disk. In Modula 2
fashion, a unit has two parts: An interface part con
taining the definition of constants, data types and var
iables, and the headers of procedures and functions;
and the impUmientation part, which contains the
procedure and function local variables as well as the
source code. This allows the exhaustive interface to a
group of routines to be published without revealing
the exact details of their inner workings. Quite apart
from protecting trade secrets in third party libraries,
this scheme facilitates the division of large software
products into components that may be implemented
by separate groups of programmers without the possi
bility of "sneak paths" and other bug generators that
happen when one module is allowed to "peek" at
another's innards.

A program makes use of units through a new state
ment type-the USFS statement:

PROGRAM Ji veTalk;

USES DOS , CRT, CircBuff,
PullDowns, XMODEM;

The Turbo Pascal linker automatically links the code
for each unit into the memory image of the program
being compiled without recompiling any of the units.

Units have another interesting property: Each unit
contains an initialization section and an exit procedure
pointer. The initialization section is a special
procedure which is executed before the main
program starts running, allowing a unit to set up
hardware, save and modify interrupt vectors, etc. The
exit procedure pointer allows the definition of a
procedure that will be executed after the main pro
gram terminates. Exit procedures are not likely to be
needed as frequently as the initialization section, but
they do allow for tasks such as resetting hardware to a
default state and restoring saved interrupt vectors.
(The main program, while not considered a unit, also
has its own initialization section and exit pointer.)
This allows a unit (or the main program) to contain
system-level constructs that need to install themselves
before execution begins and then remove themselves
before control returns to DOS .

The standard units CRT and DOS, the runtime
library, and the 3.0 compatibility unit TURB03 are
present in a special file called TURBO.TPL (the
extension means Turbo Pascal Library) which is read
into memory when the compiler is invoked. Because
the resident library contains the routines most fre
quently linked into compiled programs, its presence
speeds linking considerably. TPLIB can be used to
add frequently referenced programmer-created units
to the resident library, although at the cost of some
free RAM. For example, when developing a program
that makes heavy use of graphics, the memory lost to
making GRAPH.TPU resident will be more than paid
for by the increase in compile/ link speed. Similarly, if

November/ December 1987 TURBO TECHNIX 11

Top of DOS Memory

The free list • keeps track of available heap space
FreePtr-

Free memory

HeapPtr-

A~

The heap
grows
toward high
memory ...

The stack segment
:::~ck •
toward low
memory ...

HeapOrg-

SSeg

Global variables

The data segment

..

Typed constants

DSeg-

Runtime library code segment.

Unit 'A' code segment

Uses
A,B,C,D,E;

Other unit code segments
Contents of
.EXE file image

Unit 'E' code segment

Main program code segment

Program segment prefix (PSP)
PrefixSeg- '----------------------'

Figure 1. The Turbo Pascal 4.0 memory map.

TURBO PASCAL AT 4

memory use becomes a problem,
unneeded resident units can be
removed from memory with
TPLIB.

R.I.P. SMALL MODEL
Almost certainly, the single most
clamored-for feature in the new
compiler is the move to the large
code model. The .COM files are
gone, and with them that 64K
ceiling that we all came to bump
against entirely too soon. Now,
beyond certain minimum

requirements for data, stack, and
heap, your programs may contain
as much code as will fit under the
DOS 640K memory limit. Each
separately compiled unit has its
own code segment, which may
contain up to 64K of code.

The rest of the runtime memory
map closely resembles that of
Turbo Pascal 3.0. Data and stack
are each given a segment; all
memory not occupied by code,
data, or stack is allocated to the
heap (see Figure 1). Note that

12 TURBO TECHNIX November/ December 1987

typed constants now reside in the
data segment rather than in the
code segment. Thus it's no longer
possible or even necessary to store
the program's DS value in a typed
constant during execution of
Turbo Pascal interrupt service
routines-the new interrupt direc
tive for interrupt procedures han
dles the saving and storing of DS
automatically, as I'll explain.

Version 3.0's use of the 8086
small code model masks much of
the complication of the 86-family
architecture from the program
mer. In moving to a large code
model some of this complication
must be taken into account. Proce
dures and functions may now be
declared as "near" or "far" using
the $F compiler directive. A near
procedure may only be called from
within its unit. A far procedure
may be called from anywhere in
the program. When the $F direc
tive is passive ({$F-}, the default)
the compiler decides whether to
compile a subprogram as near or
far. Subprograms declared in the
interface section of a unit are
compiled as far, while subpro
grams declared wholly in the
implementation part of a unit
(and hence are private to that
unit) are declared near.

When $F is active ({$F+}), how
ever, all subprograms are com
piled as far subprograms. Bracket
ing an otherwise near subprogram
between $F+ and $F- directives
will force it to be compiled as far:

{$F+}
FUNCTION PanicButton(SystemStatus)

: Boolean;
{$F-}

Far subprograms require 32-bit
calls and returns, which can add
noticeable overhead when exe
cuted from within a tight loop.

A WEALTH OF NUMBERS
For a strongly typed language,
Pascal was not originally defined
with a great many numeric types.
The familiar 16-bit Integer fits
neatly in an 8086 register and thus
meshes well with optimized code,
but these days, Maxlnt (32,767) is
small change. Counting things
like bytes on a disk, free bytes on
the heap, or records in a DOS
disk file has, until now, been done
with type Real, which is a "mea
sured quantity" type and shouldn't

continued on page 14

- 1

I!! Professional C function library

I!! 30 day money back guarantee

I!! Multiple bullet proof windows

I!! Easy full screen data entry

I!! Unlimited data validation

I!! Context sensitive help manager

I!! Menus like Lotus and Mac

I!! Programmable keyboard handler

I!! Text editor routines

I!! No royalties or runtime fees

I!! Library source included FREE

I!! Free technical support

I!! Free BBS at (214)418-0059

I!! Supports all major compilers

including Microsoft 5.0

I!! VCScreen code generator too!

I!! UNIX version available,

call for details

PROCEDURE HyISRCFlags,CS,IP,AX,BX,CX,DX,Sl,DI OS ES BP Word);
INTERRUPT; I I I

BEGIN

END;

Figure 2. An interrupt procedure declaration.
The pseudo-parameters do not accept actual parameters, but rather exist to allo
cate stack space to store machine register values. Because the registers are saved
on the stack rather than in a static buffer, the interrupt procedure is re-entrant.
The pseu~o-parameter~ may be modified within the procedure, and the modified
values will be loaded into the machine registers before the procedure returns con
trol to the interrupted code.

{$define SYMBOL)
{$undef SYMBOL)
{$ifdef SYMBOL)
{$ifndef SYMBOL)
{$else)

define symbol
undefine symbol
if SYMBOL is defined
if SYMBOL is not defin ed

{$endif:}
{$ifopt x+ J

{$ifopt X-)

if X compiler directive ON
(for O N/ OFF switches only)
if X compiler directive OFF

PREDEFINED SYMBOLS:

{$define TP40)
{$define INTEL)

defin ed if this is V4.0
defined if this is DOS Turbo
Pascal

{$defin e INTEL87) defined if coprocessor
present

Tab le I. Conditional Compilation symbols and directives.

TURBO PASCAL AT 4

continued from page 12
be used for counting things.

Turbo Pascal 4.0 puts things
right with a whole passel of new
numeric types that should serve us
well long into the gigabyte era.
The Most Valuable Player in this
new lineup is almost certainly
Longlnt, implemented as a 32-bit
quantity with the high bit acting as
a sign bit. Values of type Longlnt
range from -2,147,483,648 to
2,147,483,647. The familiar file
handling procedures Seek, File
Pos, and FileSize now take Lon
glnt parameters instead of Real
parameters. Longlnts can't index
arrays, since arrays must be defin
able as static data; i.e., an array
must fit in a single 64K 8086 seg
ment. Type Word (see below) can
index any array that will fit in a
single segment, so there is no
need for Longlnt array indices.
Otherwise, Longlnt is assignment
compatible and expression
compatible with other numeric
types.

Type Word is an "unsigned
integer," similar to Modula 2's

type Cardinal. Word is imple
mented as 16 bits but without any
sign bit, allowing it to express
values from 0 to 65,535. It may
index arrays and otherwise do the
same work as Integer for positive
quantities. Word will be especially
useful for counting in-segment
memory locations beyond 32,767
when using Mem and MemW.

At the other end of things, type
Shortlnt provides a "signed byte"
expressing values from -128 to
127. Shortlnt can do anything that
the other integer types can do
within its somewhat limited range.

The default type Real is identi
cal to the fast six-byte real type
used in earlier versions of the
compiler. In machines with a
numeric coprocessor, however,
several new real-number types
become available, all of them pan
of the IEEE floating point spec.

Type Double represents the
IEEE eight-byte double-precision
real format. This is the same as
type Real as implemented in
Turbo-87 Pascal through version
3.0. Type Single is the IEEE single
precision real format, which is
expressed in four bytes.

Type Extended is the IEEE

14 TURBO TECHNIX November/ December 1987

10-byte temporary real, which
provides unprecedented range in
the Pascal world, extending from
3.4 X 10- 4932 to 1.2 X 104932 . This
type must be used with the caution
that there is no "larger" numeric
type to "graduate" an intermediate
result to if it overflows Extended's
range.

Finally, Comp provides an
eight-byte integer type that corre
ponds to the 8087 "long integer"
type. (What Turbo Pascal imple
ments as a "long integer" is actu
ally the 8087's "short integer,"
while an ordinary Pascal integer is
called a "word integer" in the
8087 lexicon.)

Types Single, Double, Extended,
and Comp are not emulated but
are implemented using inline co
processor opcodes and the 8087
stack. A new compiler directive,
{$N+}, instructs the compiler to
generate coprocessor-specific
code. The compiler is capable of
detecting an installed coprocessor,
and will refuse to compile source
code containing the coprocessor
based real number types in a
machine lacking a coprocessor.

NEW HEAP
SOPHISTICATION
Heap management and pointers
have undergone a little evolution
between Turbo Pascal 3.0 and 4.0.
A terser synonym for the Addr
function has been provided:@.
The @ operator returns a new
type, the generic pointer. The
generic pointer is nothing more
than an 8086 machine address
and has no type of its own. It c'an
not be dereferenced in an expres
sion, but can be cast onto any
other pointer type.

Pointer types may now be
included in record constants by
using the predefined pointer con
stant Nil.

While the syntax of heap access
changes little from Turbo Pascal
3.0, the heap itself is implemented
differently. It is still a "long" heap
accessed by 32-bit pointers, and is
allocated all of memory not used
for code, data, and stack. Unlike
the 3.0 heap the 4.0 heap begins
above the stack, and grows toward
high memory (see Figure 1). The
start of heap memory is given by a
programmer-accessible pointer

continued on page 16

Turbo Pascal Programmers
sophisticated

software •

'",."

30 Day Money Back Guarantee!

PROFESSIONALS LIKE IT!

"Fast automatic updating of dependent fields adds flair to your
input screens turboMAGIC will be a blessing for
programmers who would rather not write the user interface for
every program." Neil Rubenking, PC Magazine, Feb. 24, 1987

"turboMAG/C is the Cadillac of prototyping tools for Turbo
Pascal Unlike the others, turboMAGIC is extremely flexible ...
On the whole, turboMAGIC does what it claims it will do."

Jim Powell, Computer Language, June 1987

" I was impressed with the turboMAGIC package ... the end
product is slick and professional ... the procedures created by
turboMAGIC are we// commented and easy to add to your own
code turboMAGIC is well worth its price. I only wish I had
had it for the last menu-driven software I wrote!"

Kathleen Williams, Turbo Tech Report, June 1987

The ~orld,s Best Code Generator!

turboMAGICM saves you time
MAGIC will generate all of the Turbo
Pascal code you need for your input
forms, help windows, pop up menus, and
pull-down menu systems.

turboMAGICM is easy to use

1. Paint the form you want with the
powerful editor.

2. Select any special attributes that you
want for fields or the form.

3. Let turboMAG/CM do the rest.

'•cl•reile-e•ll
"'•I 18 I Z!>!> I "C • l '',_,I "f • l'•' '''',' I '' '' I
"11 • l ' A' 'Z' .'." ' 1' I " I >l ' 9' "I' I ., >l ' +' ,' '.' ', '.' I ' ''l'I
"I • OoYr • l'I' ' 'l'I "[• ! ' ,' 8' ''l' t "H • l ' 11' · r·. ' I ' ' 'I' 1

ltelp llcu • e

The FIELD ATTRIBUTES screen lets you describe a field.

11e1,11 • ...i 0~1·11·1 mrwmmntWllmwwm

n .. ,e Y l~ tDI !VI ")~ I ~ 111 ,h l1.~t V1~eo
[1< tu [q\

The FORM ATTRIBUTES screen lets you describe a form.

turboMAGICM provides the ordinary •••
and a bit of the extraordinary!

• Forms that scroll in framed windows
• Forms up to 66 lines long using any colors

and graphics characters

• Automatic updating of dependent fields
• Conditional-use fields (field and prompt

can disappear if not needed)

• A help window per field or menu item

• Full-featured editing in fields
• Bomb-proof input handlers

• Support for printing forms, with video to
font translation

• 19 Built-in field types available and you
can add your own!

,------1 r1rL1 nr ~ 11] __.._,

jtmmll '~:'.'" '..~::·::· jlmimj rt;;;:::· I ~ . ~~;.''"
W"4er M or f Kooor llr ll ,

I •te~tt Str '"' .,(I , no•t~ l'l<>•t•
Lo•1 Z1r z,,t,ta.., "°' "" ' '• •••.t n
Soc Sec Soc Sc 11 .. h 1 .. ~1 1... ,.,,., .. 1 ~
lt•I Str••t of I i ~ I r••• 'lri•' ul ~ I
Ttlerloo• l llrCl Tel 11~•11 v~ llu v II
Z 1 ~ Co~e z ,,c,

The FIELD MENU - an extensive set of types

ORDER TODAY.
CALL 800-225-3165 or 205-342-7026
Requires 256K IBM and Turbo Pascal 3.X

Sophisticated Software, Inc.
6586 Old Shell Road

Mobile, Alabama 36608

TURBO PASCAL VERSION:
MICROSTAR PROGRAM SIZE:

4.77MHz IBM PC,
80ms hard disk

6MHz AT-compatible 286,
29ms hard disk

IOMHz AT-compatible 286,
29ms hard disk

16MHz AT-compatible 386,
29ms hard disk

16MHz AT-compatible 386,
DOS 3.1 VDISK

V4.0
20,965 LINES

3:04 (6.8K)

1:07 (18.7K)

0:54 (23.3K)

0:43 (29.3K)

0:21 (59.9K)

V3.0
20,433 LINES

18:03 (I.I K)

5:30 (3.7K)

4:05 (5.0K)

2:28 (8.3K)

2:15 (9.0K)

Figures are compi!,e time in minutes:seconds, and (lines per minute)

Tabl,e 2. Turbo Pascal 4.0 compilation speed benchmarks. The times gi.ven
are for compiling the MicroStar application from the Turbo Pascal Editor
Toolbox 2. 0.

TURBO PASCAL AT 4

continued from page 14
called HeapOrg, and the address
of the last allocated byte of the
heap (and thus the start of free
heap space) is given by pointer
HeapPtr.

Space can be allocated on the
heap in single-byte blocks, in con
trast to the minimum eight-byte
block of Turbo Pascal 3.0.

Free blocks of memory on the
heap are tracked by a stack-like
list of descriptors called the "free
list." This list grows downward
from the top of memory, and the
end of the list is pointed to by a
pointer called FreePtr. New de
scriptors are added to the free list
as blocks of memory are freed up
in the heap by FreeMem or Dis
pose. The free list is limited to
one 64K segment, allowing about
8000 descriptors.

A very similar system is used in
Turbo Pascal 3.0, the difference
being that the details are now
explained in the documentation
and the heap manager's compo
nents, including the free list, are
much more under the control of
the programmer. The most impor
tant of these components from
the programmer's perspective is a
pointer to an optional heap error
function. Once installed, the heap
error function will take control if
a call to GetMem or New requires
more memory than is present in
any single block on the free list.
The heap error function makes

possible true virtual storage sys
tems, since you can "back out" of
any attempted allocation if it's not
successful, and swap occupied
storage out to disk.

CASTING ABOUT
Turbo Pascal 3.0 has always
allowed free conversion (or "cast
ing") of scalar types from one to
another with its retype facility.
Turbo Pascal 4.0 greatly extends
retyping by allowing the casting of
any two types to one another pro
viding both types are exactly the
same size. This provides the same
function as the free union variant
record, but without the free
union's feel of being a "dirty
hack."

A simple example provides
independent access to the two
halves of a long integer. Given
this record definition

Hal fer = RECORD
LoYord,HiYord : Yord

END;

and a variable named WordVals
of this type, it is possible to cast a
Longlnt variable LL to WordVals
by writing:

YordVals := Halfer(LL);

This provides word-access to LL's
internal storage without running
afoul of Pascal's strong type
checking. The free union variant
record is still available for type
casting between types of differing
sizes, if that's ever necessary.

INLINE MACROS
An enhancement to Turbo Pas
cal's INLINE facility provides for
INLINE procedures and functions

16 TURBO TECHNIX November/ December 1987

through a new INLINE directive
used in a subprogram header. An
INLINE subprogram is different
from an ordinary subprogram in
that its code isn't called by way of
the 8086 CALL and RETURN
family of instructions, but rather is
inserted into the code stream
emitted by the code generator.
INLINE subprograms are there
fore actually machine-code
macros. One copy of the subpro
gram is inserted into the code file
at each invocation.

An INLINE subprogram may
have parameters. The parameters
are pushed onto the stack imme
diately before the code in the
body of the subprogram takes
control. As with ordinary subpro
grams, VAR parameters are passed
as addresses to the corresponding
actual parameters. Parameters are
used by directly popping them off
the stack into registers, and are
not available symbolically. Using
BP-relative addressing isn't neces
sary because no return address is
pushed onto the stack after the
parameters. The parameters are
waiting at the top of the stack
when the subprogram code begins
execution.

Quite apart from the machinery
of passing values to a macro,
INLINE subprograms can add to a
program's clarity by hiding the
messy details of an INLINE code
sequence behind a symbolic iden
tifier. The two definitions

PROCEDURE Enablelnterrupts;
INLINE($FB); (ST! }

and
PROCEDURE Disablelnterrupts;

INLINE($FA); (CL! }

allow us to replace the cryptic
statements INLINE($FA) and
INLINE($FB) with the more
meaningful identifiers Disable
Interrupts and Enablelnterrupts.

INTERRUPT PROCEDURES
It's always been possible to write
intenupt procedures in Turbo
Pascal, but the low-level "danger
ous" details have always been left
to the programmer. In trying to
set up INLINE statements to save
and restore registers in the proper
order, the newcomer has had to

face some predictable havoc.
Turbo Pascal 4.0 pours some oil

on the interrupt waters with a spe
cial procedure type designed to
handle register protocol during
execution as an Interrupt Service
Routine (ISR). The declaration
includes a new reserved word,
INTERRUPT, and pseudo
parameters allocated on the stack
for each of the 8086 registers, as
shown in Figure 2.

The parameters are "pseudo"
because of their special relation
ships to the 8086 machine regis
ters. The Turbo Pascal runtime
code copies the machine register
contents into the pseudo
parameters just before execution
begins, and will copy them back
into the various machine registers
just before execution ends. The
interrupt procedure can therefore
alter the pseudo-parameters, and
the altered values will take the
place of the register values saved
when execution of the interrupt
procedure began. This allows an
ISR written in Turbo Pascal 4.0 to
communicate with its callers
through register values, as most
BIOS ISRs do.

Pointing an interrupt vector to
the interrupt procedure (and sav
ing the previous vector, if neces
sary) are not handled automati
cally, and must be done explicitly
by the programmer during the
initialization of the application
that wishes to use the interrupt
procedure.

TEXT DEVICE DRIVERS
Turbo Pascal's predefined and
preopened device files Con, Trm,
Khd, I.st, Aux, and Usr are no
longer present, nor are their asso
ciated device names. Instead, a
new mechanism has been pro
vided for writing custom drivers
for text file devices.

The mechanism involves writ
ing four interface routines and
assigning their addresses to four
interface routine pointers in a
special Turbo Pascal 4.0 text file
interface block. This is done
within a custom assign routine
specific to a given device. The cus
tom assign routine takes the place
of the standard Assign procedure
used to assign ordinary files to

physical file names. Once the cus
tom assign routine associates an
ordinary text file variable with the
desired device hardware, the file
may be used exactly as any other
text device.

By opening up the text file
device machinery to the pro
grammer, Turbo Pascal 4.0 allows
the creation of drivers for custom
hardware, or logical ports like
COM3 and COM4 that are avail
able as commercial hardware pro
ducts but not supported by DOS.
Equivalents to Turbo Pascal 3.0's
very commonly used I.st and
Khd devices are provided in
the TURB03 unit for compati
bility's sake.

STANDARD UNIT GOODIES
Separate compilation makes a lot
of things easier, foremost among
them the distribution of subpro
gram libraries in compact, pre
compiled form. System-specific
features that once had to be built
into the compiler parser itself can
now be left in a unit. Several such
standard units are delivered with
Turbo Pascal 4.0, including:

DOS. The DOS unit implements
the familiar MSDOS and Intr
procedures from Turbo Pascal 3.0,
plus a number of new procedures
giving high-level access to many
useful DOS function calls. These
include "find first" and "find
next" file search routines; rou
tines to set and query the system
clock; to return the capacity and
remaining space of a given disk
drive; to set and query the attri
bute bits and time stamp of a
given file ; and to set and query
interrupt vectors. Two very difficult
Turbo Pascal 3.0 problems are
solved in the DOS unit: Procedure
Keep retains a correctly written
Pascal program in memory as a
Terminate and Stay Resident
(TSR) utility; and Execute uses the
DOS EXEC function to spawn a
child process or invoke
COMMAND.COM.

TURB03. This is a compatibility
unit containing functional equiv
alents to certain Turbo Pascal 3.0
built-ins that 4.0 either alters sig
nificantly or makes obsolete,
including the LongFileSize, Long
FilePos, LongSeek, MemAvail, and
Maxavail routines, and the KBD
and LST predefined device files.

CRT. All of Turbo Pascal's text
based CRT handlers (GotoXY,
ClrScr, etc.) have been reimple
mented as a unit written entirely
in assembly language. This pro
vides the fastest possible screen
110 for the standard IBM PC dis
play modes while still allowing a
programmer to implement a func
tionally compatible suite of CRT
routines for non-standard display
hardware.

GRAPH3. As with CRT, all the
pixel-oriented graphics routines
either built into Turbo Pascal 3.0
or residing in the GRAPH.BIN
external file have been gathered
together into a single assembly
language unit. This unit supports
the CGA and the EGA, as well as
the new VGA.

METALINGUISTIC MATTERS
New compiler directives add a
great deal of richness to the
Turbo Pascal language definition.
First of all, include files may now
be nested as many as eight levels
deep. This allows include files to
share other include files contain
ing standard type or constant
definitions.

Perhaps the most powerful of
the new compiler directives imple
ment conditional compilation. A
summary of the supported condi
tional metacommands is given in
Table 1.

The most obvious example of
conditional compilation involves
the real number dichotomy hing
ing on the presence or absence of
a math coprocessor. Because a
real number must be defined in
one of two ways at compile time,
conditional compilation allows a
single source code file to compile
to either six-byte software-only
real numbers or the IEEE real
numbers requiring the math
coprocessor.

To illustrate, suppose an appli
cation uses a suite of real-number
variables named R, S, and T. As
software-only reals, they would
have to be defined as Real; for
use in a coprocessor-equipped sys
tem they would be have to be
defined as Double. Conditional
compilation predicated on the
predefined symbol INTEL87 han
dles it nicely:

November/ December 1987 TURBO TECHNIX 17

Figure 3. The Turbo Pascal 4.0 Development Environment.

TURBO PASCAL AT 4

{$ifdef INTEL87}

TYPE
Float = Double;

{$else}

TYPE
Float Real;

{$end if}

VAR
R,S,T : Float;

The machinery for defining the
symbol INTEL87 is built into the
compiler: If the compiler detects
an 80X87 math coprocessor in the
system it defines INTEL87, other
wise the symbol remains unde
fined. The #ifdefINTEL87 direc
tive only checks for the presence
or absence of a defined symbol
named INTEL87; it is not a Bool
ean matter of truth or falsehood.

A PLACE TO STAND
A programming environment is
simply a place to stand, with
access to tools. DOS qualifies,
after a fashion: the C> prompt is
a place to stand, but the tools are
not well-integrated and you have
to reach for them. Over a period
of several years and through the
development of three other Turbo
languages, the Borland R&D
team has zeroed in on a potent
arrangement of tools. With 4.0,

the place to stand is solid indeed.
Turbo Pascal 4.0's programming

environment strongly resembles
that of Turbo C. Also like Turbo
C, a command-line invocable ver
sion of the compiler is shipped
with the environment-based com
piler. This will make it possible to
convert large, batch-tile based Pas
cal projects to Turbo Pascal 4.0
from other command-line based
Pascal compilers.

The environment screen is
divided into an edit window and
an output window, with a pull
dow11 menu bar across the top of
the screen, and a function-key
prompt bar along the bottom. Dia
log boxes appear as necessary to
report on the progress of a com
pile, or to prompt for further
input. If the environment senses
an EGA-type display adapter, a 43-
line screen mode becomes avail
able as a menu option. If a VGA
or VGA-compatible is detected, a
50- line text screen may be
selected instead. Figure 3 shows
the Turbo Pascal 4.0 environment
with both windows visible and the
Compile menu active.

The edit window contains the
familiar Borland editor as used in
Turbo Basic and Turbo C, which
is considerably more advanced
than the editor used in Turbo Pas
cal 3.0. Tabs, for example, may be
configured as either Turbo Pascal
style pseudo-tabs that move the
cursor to the position beneath the

18 TURBO TECH IX November/ December 1987

beginning of the next word on the
previous line, or true eight
position tabs that insert Ctrl-I
characters into the edit file rather
than space characters. This same
assembly language editor is now
available for inclusion in your
own programs as part of the
Turbo Pascal Editor Toolbox 2.0
(see "Exploring the Borland
Binary Editor," elsewhere in this
issue).

The output window is where
ordinary text output is sent during
compiled program (rather than
environment) execution. Both the
edit and output windows can be
zoomed to occupy all screen space
between the menu bar at the top
of the screen and the prompt bar
at the bottom. When sharing the
screen with the edit window, the
output window can be scrolled up
and down to bring all portions of
the output screen into view. The
environment retains the last speci
fied position of the cursor on the
output screen, and the flashing
text cursor will scroll faithfully
into and out of view along with
the other screen information.

The environment retains the
names of up to the last eight files
edited in a "pick" file, and when
the environment is run, the last
file edited is loaded into the editor
on the assumption that it is the
programmer's most likely choice.
Failing that, one of the other
recently edited files may be
chosen from a pick menu, or
some entirely new file loaded.

Most compiler switches and
options may be set from an
options menu. COMMAND.COM
may be loaded as a child process,
allowing the programmer to
"EXEC to DOS" to pe1form DOS
tasks or execute other applications
without losing the current Turbo
Pascal context.

Although all environment fea
tures are available through
menus, the PC function keys are
used to provide single-keystroke
access to important features. F2
saves the current edit file; F3
brings up a prompt to load a new
file; F5 zooms the currently active
window to the full screen, and so
forth. The several menus may be
invoked from within the editor by
a single keystroke Alt-key com
mand, and the familiar F7 (Begin
block) and F8 (End block) com-

mands are present from the edi
tor. By providing both menus and
single-keystroke access to com
piler features, neither newcomers
nor longtime experts will feel
shorted by the environment.

PROJECT MANAGEMENT
When a large application is
divided into many small source
code files, each of which may be
separately compiled into a unit,
there are suddenly choices as to
when and how to compile and
link the modules into the final
.EXE file . Turbo Pascal 4.0 pro
vides three separate commands
that initiate compilation:

Compile compiles the current
work file and any of its include
files. No separately compiled units
are recompiled during the
operation.

Make compiles the current work
file and include files, plus any
separately compiled unit whose
source was modified after it was
last compiled. For example, a pro
grammer might make a change to
his application that requires modi
fying the source code of fifteen of
the forty units comprising the
application. Invoking Make would
then compile only the main pro
gram and the fifteen modified
units before linking the main pro
gram and all forty .TPU files into
the final .EXE file.

Build recompiles all units along
with the main program, regardless
of time stamps.

UPHOLDING THE TURBO
TRADITION
Remarkably, earlier versions of
Turbo Pascal did little if any active
optimization of code. The com
piler was fast because it was writ
ten in assembly language, and its
generated code was fast (com
pared to that of most other lan
guage compilers of its time)
because that code was competent
and not haywire.

Turbo Pascal 4.0 upholds the
Turbo tradition. The newcompiler
is still written in assembly lan
guage (the command line version
is only 48K in size) but assembly
language written with four year's
experience in code generation
techniques behind it. Compilation
is a great deal faster than Turbo

Pascal 3.0 To give you an idea just
how fast, consider Table 2.
MicroStar is a WordStar-like word
processor consisting of 21,000
lines of Pascal code and distrib
uted with the Turbo Pascal Editor
Toolbox 2.0. This toolbox was
completely rewritten for release
with Turbo Pascal 4.0 and will not
be available for Turbo Pascal 3.0.
However, a copy of MicroStar 2.0
wa~ modified to compile under
Turbo Pascal 3.0 while being as
close as possible syntactically to
the Turbo Pascal 4.0 version. We
recorded its compilation times
under various machine environ
ments, as shown in the table.
Compilation is from four to
six times faster under Turbo
Pascal 4.0

Built into the compiler is a
"smart" linker that will not link
subprograms into an .EXE file if
those subprograms are never
called. This extends to the run
time library as well, making Turbo
Pascal 4.0 .EXE files consistently
smaller than those produced by
other native code Pascal compilers
for equivalent code. For example,
the simple "null" program

PROGRAM Null;

BEGIN
END.

produces an .EXE file only 1052
bytes in size. Because 3.0 includes
the entire runtime library in every
.COM file it generates, the same
program compiled under 3.0 occu
pies llK bytes. In a more practical
example, a 700-line "whereis" util
ity that compiles to a 16K file
under 3.0 reduces to a l 2K file
under 4.0.

The generated code has the
advantages of several kinds of
optimization, including short
circuit Boolean expression evalua
tion and constant folding.

Short-circuit Boolean expression
evaluation. Short-circuit Boolean
expression evaluation ceases eva
luation of a Boolean expression
as soon as the runtime code deter
mines that further evaluation can
not change the ultimate value of
the expression. For example, in
this statement

IF R<>O AND ((Sagitta/R) > CA/4.0)
THEN CalculateRatios;

an R equal to zero will stop eval
uation of the expression, since

False ANDed with any other Boo
lean value will still yield False.
Quite apart from speed and space
considerations, the sharp-eyed
may see an additional value to this
sort of evaluation: If R takes on a
zero value and the expression

Sagitta/R

is evaluated, a Divide By Zero run
time error will result. Short-circuit
Boolean expression evaluation
may be turned on and off with
either a compiler switch or
through a menu option in the
environment.

Constant folding. Constant fold
ing avoids creating a separate
instance of a named constant in
the code each time that constant
is used, if doing so will save space.
This generally applies only to
string constants, since Turbo-style
typed and structured constants
have always been stored only
once and accessed through point
ers when used.

Support code for the six-byte
software-only reals is consistently
about 30 per cent faster than it
was under Turbo Pascal 3.0, and
other generated code runs
between 20 per cent and 35 per
cent faster depending on the
context.

CONCLUSION
The critical path in any software
development scenario is not
between source code and object
code, but between the pro
grammer's mind and the finished
program. A great part of Turbo
Pascal's original success lay in get
ting unnecessary obstacles out of
this critical path. The enormous
boost in programmer productivity
that it provided more than com
pensated for the substitution of
include files for separate compila
tion and the use of overlays
instead of a large code model.

With Turbo Pascal 4.0, these
compromises have been removed.
It's fair to say that any user appli
cation that will function on a 640K
DOS machine can be written
effectively in 4.0, and that the
compiler has joined the other
three Turbo languages in the
big time of DOS software
development. •

November/ December 1987 TURBO TECHNIX 19

TURBOCHARGING:
MOVING FROM 3.0 TO 4.0
Converting from 3.0 to 4.0 will he a little work, hut
the payoff is considerable.

Bruce ~bster

• rnoGRAMM ER

No pain, no gain.
Adding as much to the Turbo Pascal

definition as does 4.0 means some retrofit
ting of older code will be required. Some
of the changes involve moving the lan
guage definition more closely in line

with the ANSI specification for Pascal, but most
of them add real value to your code in terms of
speed, modularity, or portability. The conversion pro
cess is not as painful as you might think, and Borland
has provided some tools to help you.

UPGRADING YOUR PROGRAM
For starters, you don't have to do all the work your
self. Turbo Pascal 4.0 includes a program called
UPGRADE.EXE. This utility takes your old 3.0 source
files , reads them in, and writes out two new files. The
first is an updated and commented version of your
old file , with minor changes made where possible
and comments inserted where potential problems
were detected. The second is a ')ournal" file, which
tells what UPGRADE noticed about your program and
what sfeps you might take to make the conversion. If
you print out the journal file, then refer to it as you
go through the updated source file, you'll find that
UPGRADE has probably done most of what you need
to in order to convert.

UPGRADE has a second function to make life
even easier: unit generation. By placing special direc
tives (in comments) throughout your program, you
can instruct UPGRADE to break your program up
into units. Chances are you'll have to do a bit of post
editing, but the bulk of the work will be done for you.

BUT WHAT IF I LIKE VERSION 3.0?
If you do, there's still hope. Version 4.0 includes two
units (program libraries) designed to help you sup
port programs written for 3.0. These units contain
constants, data types, variables, procedures, and func
tions that were predeclared in 3.0 but no longer exist

20 TURBO TECHNIX November/ December 1987

(or have been redefined) in 4.0. In most cases, they
have disappeared or been modified in an effort to
make Turbo Pascal more logical and consistent. How
ever, if your programs rely upon them heavily, you
may want to continue to use them.

These units are called Turbo3 and Graph3.
They're located in a file called TURBO.TPL, which is
Turbo Pascal's "resident library" file. If you're going
to use them, place the statement

USES Crt,Turbo3,Graph3;

at the start of your program, following your program
header. Let's take a quick look at each.

THE TURB03 UNIT
The Turbo3 unit restores some low-level 110 and sys
tem items found in 3.0 but not found (or redefined)
in 4.0. These include the following:

Kbd. Not found in 4.0; replaced by the ReadKey
function.

CBreak. Undocumented in 3.0; documented and
renamed CheckBreak in 4.0.

AssignKbd. Not defined in 3.0, but allows you to set
up any text file to act like Kbd.

MemAvail, MaxAvail. In 4.0, these are of type Long
Int and return the quantity of available heap space in
bytes; the functions in this unit are operationally iden
tical to those in 3.0 that are of type Integer, and
return the quantity of available heap space in
paragraphs.
LongFileSize, LongFilePos, LongSeek. These are all
of type Real and act just like 3.0 functions. Under 4.0
the functions FileSize, FilePos, and Seek all return
type Longlnt.

An important note: the unit
Turbo3 uses the unit Crt, so you
have to list Crt in the USES state
ment before Turbo3:

USES Crt, Turbo3;

THE GRAPH3 UNIT
This unit restores all the basic,
advanced, and turtle graphics
items not found in the unit Crt.
These are too lengthy to warrant
being listed here; suffice to say
that if you use Graph3, you have
full access to all the constants,
types, variables, procedures, and
functions described in chapter 19
of the Turbo Pascal Version 3.0 Ref
erence Manual.

As with Turbo3, Graph3 uses
the unit Crt, so you have to list
Crt in the USES statement before
Graph3:

USES Crt, Graph3;

OK, NOW WHAT?
Even with UPGRADE.EXE and the
two units, you may still need to
make changes in your source
code. The larger, more complex,
or trickier your program, the more
likely you'll need some hand
crafted changes. The purpose of
the following information is to
indicate what those changes are,
how you might go about making
them, and how vital they are to
the functioning of your program.

When tasks are listed, they will
be flagged as being one of these
three types:
• HELPF1JL: Takes advantage of

some feature in 4.0 to make life
easier. You don 't need to do

this; it's up to you.
• RECOMMENDED: Really

should be done, though you
may be able to get by without
doing it. Ignore these at your
own risk.

• ESSENTIAL: Must be done, or
your program won't correctly
compile and run under 4.0.

PREDEFINED IDENTIFIERS
Version 4.0 doesn't support all the
predefined identifiers that 3.0
does. Some have been dropped
because they no longer make
sense; others have been super
seded by new identifiers; still oth
ers have been moved into the
units found in TURBO.TPL.
• Use Turbo3 and/ or Graph3 as

needed. Ultimately, you will
want to convert completely to
4.0 identifiers. (HELPFUL)

• Take advantage of the new rou
tines in the standard units,
such as ReadKey (which
returns a scan code).
(HELPFUL)

• Convert completely to 4.0 iden
tifiers. This weans you away
from features no longer sup
ported directly in 4.0 and
increases your compatibility
with revised Turbo Pascal
based products, future versions
of Turbo Pascal, and (eventu
ally) other Turbo languages.
(RECOMMENDED)

• Run UPGRADE.EXE on your
source code. This will make
direct replacements wherever
possible and give you com-

ments on the rest.
(RECOMMENDED)

• Use the appropriate units for
certain data types, variables,
procedures, and functions that
were built into 3.0. For ex;:m
ple, the procedures lntr and
MsDos are no longer prede
clared; instead, they are found
in the DOS unit. Similarly, the
Lst device (text file associated
with the printer) is defined in
the Printer unit. (ESSENTIAL)

DATA TYPES
Version 4.0 introduces a number
of new data types and language
functions involving data types.
Many of these will help you to
drop some of the "kludges" that
you've had to use in the past.
• Use type casting in place of the

Move routine to copy the con
tents of one variable into the
space of another variable of an
incompatible type. For exam
ple, use

RealVar := RealCBuffPtrA);

instead of :
Move(BufferPtrA,

RealVar,SizeOf(RealVar));

With 4.0's new extended type
casting, you can handle most of
these transfers, so long as the
destination is the exact same
size as the source. (HELPFUL)

• Convert to new data types
where appropriate and practi
cal. These include Longlnt and
Word (to replace Integer) ;

November/ December 1987 TURBO TECHNIX 21

TURBOCHARGING

Pointer (as a generic pointer
type); and String (with an
assumed maximum length
of 255 characters).
(RECOMMENDED)

• Be aware that hexadecimal
(base-16) constants are consi
dered to be of type Word
(rather than of type Integer), so
that the hex constant $FFFF
represents 65535 instead of
-1. You should consider con
verting any variables that are
assigned hex constants to type
Word. (RECOMMENDED)

• Likewise, be aware that 4.0
now allows you to assign
-32768 to a variable of type
Integer. Previously, the only
way you could do that was by
assigning it the hex constant
$8000. However, that hex con
stant now represents the value
32768 (being of type Word);
assigning it to an Integer varia
ble will cause a compiler error.
(RECOMMENDED)

• Use string library routines
(such as Length and Copy)
instead of directly accessing the
internal string structure, such
as Ord(SVar[O]), or absolute
addressed byte variables, on
top of strings. This protects you
against any future changes in
how strings are implemented.
(RECOMMENDED)

• Be aware that type checking in
4.0 is more strict on strings,
characters, and arrays of char
acters. The assignment

CharVar := StringVar

is no longer acceptable, even if
StringVar is declared as
String[!]. The assignment
StringVar := ArrayVar is still
acceptable, but ArrayVar :=
StringVar is not. (ESSENTIAL)

• Version 4.0 enforces type
checking more strictly on
derived types, which means
that variables must have identi
cally named types or be
declared together in order to
be assignment-compatible. For
example, given

VAR
A : Alnteger;
B : Alnteger;

then A and B are not assign
ment compatible (that is, the
statement A:= B will cause a

compiler error), since they are
separately derived types. In
order to be assignment
compatible, they need to be
declared together

VAR
A,B : Alnteger;

or they need to be of the same
named data type:

TYPE
IntPtr = Alnteger;

VAR
A : IntPtr;
B : lntPtr;

Either of these solutions will
work just fine; the second one
is more general (allowing other
variables, parameters, and
functions to be of the same
data type), and so is preferred.
(ESSENTIAL)

• The BCD data type (and its
associated Form routine) are
not supported in 4.0. Consider
using the Longlnt data type; if
you have a math coprocessor,
then use the {$N+} directive
and use the IEEE type Comp
(8-byte integer). (ESSENTIAL)

LANGUAGE FEATURES
Version 4.0 introduces some re
strictions and some enhance
ments. The restrictions are
designed to help it conform to
the ANSI standard definition of
Pascal, while the enhancements
are there to make your life as a
programmer easier.
• Version 4.0 assumes short-circuit

Boo/,ean evaluation. This means
that evaluation of Boolean
expressions is halted as soon as
possible. For example, consider
the expression

IF expr1 AND expr2 •..

If exprl is False, then the
entire expression will be False,
regardless of the value of
expr2. If short-circuit evalua
tion is enabled, then if expr I is
False, expr2 won't be evalu
ated. For example, if expr2
contains a function call, then
that function won't be called if
exprl is False. You can enable
standard (non-short-circuit)
Boolean evaluation with the
{$B+} compiler option. Be
aware of the implications of en
abling short-circuit evaluation.
(HELPFUL)

22 TURBO TECHNIX November/ December 1987

• In line with the ANSI standard,
4.0 allows you to use only glo
bal and local variables as FOR
loop control variables. For
example, if the statement

FOR Indx := Start TO Finish

appears in a procedure (or
function), then lndx must be
declared either globally or
within that procedure. lndx
cannot be a formal parameter
of that procedure, nor can it be
declared within an enclosing
procedure. (NECESSARY)

INPUT AND OUTPUT
Turbo Pascal 4.0 has made some
significant changes in 110 han
dling, many of which are intended
to increase ANSI compatibility.
Most of these have to do with text
files.
• Read(IntVar) now waits for an

integer value to be entered;
pressing Enter will no longer
cause the program to continue,
leaving IntVar unchanged.
Revise your program appro
priately. (RECOMMENDED)

• If you are reading and writing
real number values with data
files, be aware of the differen
ces between the standard type
Real (six bytes, compatible with
3.0) and the IEEE floating
point types supported by the
{$N+} directive (Single, Double,
Extended, and Comp) . Use the
latter types only if you are sure
that your program and any
resulting data files will be used
only on systems equipped with
a math coprocessor.
(RECOMMENDED)

• You can no longer directly
declare variable-length buffers
for text files in the format:

var F : textClengthJ

Instead, you use the predefined
procedure SetTextBuf.

PROGRAM AND MEMORY
ORGANIZATION
One significant change in 4.0 is
the introduction of units. A unit is
a collection of declarations and
subroutines that can be compiled
separately. A program can consist
of many units and a main pro
gram; each unit, as well as the
main program, can occupy a full
64K code segment, giving you
essentially unlimited code size for

your program. Units give you four
important capabilities:
1. They allow you to create librar

ies (such as those in
TURBO.TPL) that you can use
in many different programs.

2. They allow you to break up a
large program into manageable
chunks by collecting related
declarations and subprograms
together.

3. They allow you to "hide" decla
rations and subprograms that
you don't need (or want) to be
"visible" to the rest of the
program.

4. They allow you to break the
64K code barrier, since each
unit can contain up to 64K
of code.
As a consequence, significant

changes have been made in
memory organization as well. The
user's guide explains more of the
details; here are some of the tasks
you need to consider:
• Convert your libraries from

include files to units. This is by
no means necessary, but it has
several advantages. For one,
you don't have to recompile the
routines in the unit each time;
for another, you can distribute
your library routines without
distributing source code.
(HELPFUL)

• 4.0 has a new compiler direc
tive, {$M}, allowing you to set
the stack and heap sizes within
a program. The format is

{$M stack size,heap min,heap max}

where all three values are in
bytes. The default values are:

{$M 8192,8192,655360)

(HELPFUL)
• Convert large programs from

overlays to units. You have to
do this, since 4.0 no longer sup
ports overlays. If you have been
using overlays to get around
the 64K code limit, then you
won't have to worry any more:
the main program and each
unit can be up to 64K in size. If
you've been using overlays
because all your code couldn't
fit into memory at once any
way, then you'll have to do
some rewriting, since the main
program and all units have to
fit into memory at the same
time. (ESSENTIAL)

• As mentioned earlier, be aware
that MemAvail and MaxAvail
are now of type Longlnt and
return their values in bytes
instead of paragraphs. Either
use Turbo3 (which supplies the
original 3.0-compatible versions
of MemAvail and MaxAvail), or
make the appropriate changes
throughout your program.
(ESSENTIAL)

COMPILER DIRECTIVES AND
ERROR CHECKING
Version 4.0 heavily redefines the
compiler directives and error
codes. UPGRADE.EXE may help
modify the compiler directives, but
you are going to have to be sure
you've caught all of them and that
you've also changed over to the
new error codes. Keep in mind:
• If an existing program doesn't

work correctly, try turning off
short-circuit Boolean evalua
tion with the {$B+} directive;
the default is {$B-}.
(HELPFUL)

• Range checking is now enabled
by default; if you want it dis
abled, place a {$R-} directive at
the start of your program. If
you're unsure, leave enabled. If
your program is halting with
range-checking errors, either
leave it enabled and figure out
the problems, or disable it.
(RECOMMENDED)

• Review all use of error codes,
especially when the check is
more than simply zero vs. non
zero. Define all error codes as
constants in a global location
so as to more easily deal with
future changes. (ESSENTIAL)

• Review all compiler directives.
Some are new, many have been
redefined, others have been
dropped altogether.
(ESSENTIAL)

• ErrorPtr is gone; you should
now use ExitProc. User-written
error handlers must be modi
fied . (ESSENTIAL)

ASSEMBLY LANGUAGE
USAGE
Some significant changes have
also been made on assembly lan
guage usage. Most notably, there
is a new usage of the INLINE key
word which defines an inline
macro rather than a separate, call
able routine. This is in addition to
the familiar 3.0 usage.

• For short assembly language
code, consider using the
INLINE directive (which differs
from the INLINE statement).
This generates actual inline
macros in the resulting object
code. (HELPFUL)

• Convert from INLINE to exter
nal subroutines where appro
priate and practical; use
INLINE only when necessary.
(RECOMMENDED)

• The INLINE statement no
longer allows references to the
location counter (*), nor does it
allow references to subprogram
identifiers. (ESSENTIAL)

• External subroutines must be
reassembled and incorporated
in .OBJ format; if in doubt, use
the Microsoft Macro Assembler
(MASM) to do the reassembly.
(ESSENTIAL)

• Typed constants now reside in
the data segment (relative to
DS) rather than the single 3.0
code segment (relative to CS).
Therefore, they must be
accessed differently by any
external subroutines.
(ESSENTIAL)

SUMMARY
This list is not exhaustive in either
sense of the word. Many of your
programs will run with little or
no modification; others will work
fine with just the processing
UPGRADE.EXE performs. Like
wise, this list doesn't cover all pos
sible compatibility problems, since
many Turbo Pascal programmers
take advantage of undocumented
or unsupported features of 3.0.
Be sure to check the READ.ME
file on your Turbo Pascal 4.0 dis
tribution disk for any additional
conversion.

Converting to 4.0 will probably
be easier than you think. But even
if it's a hassle, it'll be worth it in
both the short and the long run.
Version 4.0 compiles quicker, links
smarter, produces smaller and
faster code, and offers greater
flexibility and power. At this point,
you've probably got a good idea of
what you need to do. Go to it! •

Bruce W!bster is a computer mercenary
living in th.e Rockies. He can be
reach.ed atjadawin Enterprises, P. 0.
Box 1910, Orem, UT 84057, or via
MCJ Mail (as Bruce W!bster), or on
BIX (as bwebster.)

November/ December 1987 TURBO TECHNIX 23

GETIING TO KNOW UNITS
Separate compilation by way of units saves compile
time and helps large projects come together smoothly.

Tom Swan

One of Turbo Pascal 4.0's most useful new
features is the unit, a collection of con
stants, types, variables, procedures, and

• functions compiled and stored in special
files for programs to share. In this intro

SQU ARE ONE
duction, I explain what units are and show

you how to use the precompiled units supplied on
your Turbo Pascal diskettes. I also list a complete
example to demonstrate how to create your own
units.

WHAT IS A UNIT?
If a program is like a factory, a unit is like a ware
house, stocked with goodies ready for programs to
put into production. Inside units are various raw
materials-constants, types, variables, procedures,
and functions-precompiled and stored in special
.TPU (Turbo Pascal Unit) files.

To add a unit's features to programs, you tell the
compiler to use that unit. Turbo Pascal then reads the
.TPU file containing the unit and attaches all of the
unit's declarations to the program, just as though the
program had declared those same items itself.

Included on the Turbo Pascal master diskettes are
eight precompiled units, ready for use. These units
have two main purposes: they hold Turbo Pascal's
standard library of routines, and they help smooth
the transition from older Turbo Pascal compilers to
the present 4.0 version.

You can also write your own custom units contain
ing tested and debugged routines and data structures.
This helps you to organize large programs into
modules. For example, you might insert all of a pro
gram's disk 1/0 routines in one unit, put all the
keyboard-input routines in another unit, and so on.
Modular programs like these are easier to write,
debug, and modify.

Units also help reduce compiling times. Turbo Pas
cal can read a unit's binary image from a .TPU file
more quickly than it could recompile all the unit's
routines from scratch. By compiling a program's

24 TURBO TECHNIX November/ December 1987

many modules apart from one another, a technique
known as separate compilation, you concentrate on
individual sections without having to recompile the
entire program for each modification you make.
Separate compilation is especially important to full
time programmers who frequently work on programs
containing tens of thousands of statements. With
separately compiled units, Turbo Pascal 4.0 is well
suited to professional software development.

HOW TO USE UNITS
A simple example explains how to use units. Our goal
is to write a program to center a line of text on dis
play-nothing to shake the earth, but suitable for the
demonstration. We need procedures to clear the
screen, position the cursor, and display text. Here is
the complete program:

PROGRAM MyTest;
USES CRT;
BEGIN

ClrScr;
GotoXYC25, 12);
IJrite

('Introducing Turbo Pascal Units')
END.

Following the PROGRAM declaration, a USES
statement tells Turbo Pascal to use the Crt unit. If you
have Turbo Pascal 4.0, type in this example and save
as MYTEST.PAS. (Consult your reference manual and
refer to the introductory article on Turbo Pascal 4.0
elsewhere in this issue for more information on typ
ing programs.) Press Alt-R to compile and run. The
first statement (the line after BEGIN) clears the
screen by calling procedure ClrScr. The second state
ment positions the cursor at the location inside Go
toXY's parentheses, centering the string for Write.

For an experiment, remove the USES statement
and type Alt-R to run. What happens? If you are fol
lowing along, you receive the following error when

UNITS

the compiler reaches ClrScr:

Error 3: Unknown Identifier

This error occurs because
Turbo Pascal no longer knows the
meaning of ClrScr. (You would
experience a similar problem with
GotoXY if the compiler got that
far.) Because the Crt unit defines
the meaning of ClrScr and Goto
XY-plus several other proce
dures and functions-you must
use Crt in programs that call the
routines inside the unit. Re
moving the USES statement
causes Turbo Pascal to forget what
ClrScr means.

For reference, Listing 1 lists
Crt's complete interface-all of
the items in the unit's warehouse
that progr~~s can put into pro
ducuon. S1m1lar printouts for
other units are provided with
Turbo Pascal 4.0.

USING MULTIPLE UNITS
To use more than one unit in a
program, separate multiple unit
names with commas in a single
USES statement. For example
the following statement starts' a
graphics program that calls DOS
routines:

USES CRT,Graph,DOS;

T?e Graph unit adds graphics
rouunes to the program while the
Dos u~it adds the ability to call
operaung system functions. But
why include Crt here as well? The
answer is that Graph also uses the
features in Crt, a fact that you
learn from Graph's interface
printout in the Turbo Pascal Refer
ence Manual. Therefore, the pro
gram must include both Crt and
Graph, even if the program itself
makes no use of Crt's features.

When using more than one
unit this way, the order of the unit
names in USES is often important.
As .in this case where the Graph
umt uses Crt, the program speci
fies both unit names. Because
Graph uses Crt, the Crt unit must
be specified first. In general,
when a unit uses other units, the
lowest units on the totem pole
the ones that other units use
always come first. If unit A uses
units B and C, and if unit B uses

C, then this is the correct declara
tion order in USES:
USES C,B,A;

You might find this rule easier
to memorize if you pretend that
units nest inside each other. In
this example, units C and B nest
inside A Unit C nests inside B. No
units nest inside C. In the USES
~tatement, units with deeper nest
ing levels come first. Those units
on outer nesting levels (those that
use other units) come last.
Remember, though, that units do
not physically nest inside each
other. Units never actually contain
another unit's code, even when
they use other units' features.

B~ca~se units do not physically
nest ms1de each other, only one
copy of a unit ever ends up in
me.mory regardless of how many
umts use the other unit. If a pro
gram and three units use Crt, the
compiler still attaches only one
copy of Crt to the finished code.
You wa~te nothing by using multi
ple copies of the same units in
various program modules.

REDEFINING UNIT
IDENTIFIERS
When using multiple units two
identifiers will sometimes have the
same name. For example, suppose
you purchase a precompiled unit,
perhaps a 3-D graphics module,
from a software company. Inside
unit ThreeD is a procedure,
ClrScr-exactly the same name as
the routine in Crt.

Although this is a hypothetical
case, there is an easy fix. To dis
tinguish two identical identifiers
in different units, use dot notation
as follows:

PROGRAM DotsThe~ay;
USES CRT,ThreeO;
BEGIN

CRT.ClrScr;
ThreeD.ClrScr

END.

The first statement, Crt.ClrScr,
calls the routine in unit Crt. The
second statement, ThreeD.ClrScr,
calls the routine in ThreeD. Even
though both routines have the
same ~ame, attaching the unit
name m front of the identifiers

26 TURBO TECHNIX November/ December 1987

allows Turbo Pascal to resolve the
ambiguity.

If you did not use dot notation
as in this example, then which
ClrScr routine would Turbo Pascal
use? The answer is: the one most
recently declared. In the example,
a lone ClrScr would refer to the
routine in ThreeD because that
unit is declared after Crt. This is
a~ important rule to keep in
mmd. If you redefine an identifier
from a unit, then the most recent
declaration takes precedence.

This ability to redefine unit
identifiers has advantages and dis
advantages. For example, you can
use the Crt unit in a program, but
define your own ClrScr proce
dure. In that case, Turbo Pascal
uses your routine instead of Crt's
(unless you use dot notation to
specify Crt.ClrScr). If you acciden
tally redefine ClrScr or other
identifiers, though, you can spend
many long moments wondering
why your programs don't work as
expected. Be careful not to rede
fine identifiers from units unless
that's your intention.

WRITING YOUR OWN UNITS
Writing your own custom units is
no more difficult than writing pro
?Tams. Everything that you can do
m a Turbo Pascal program you
can do in a unit. All units have
these four parts:
1. Declaration
2. Interface
3. Implementation
4. Initialization
Th.e Decl,aration, which gives the
umt a name, is similar to a pro
gram's header. A unit named
MyStuff would begin like this:

UNIT MyStuff;

Usually, you should save the
unit text file on disk using the
same name for both the unit and
file-MYSTUFF.PAS in this exam
ple. W?e~ Turbo Pascal compiles
the umt, 1t creates a binary file
named MYSTUFF.TPU containing
the unit's compiled symbols and
code. When you later compile a
program that USES MyStuff,
Turbo Pascal automatically looks
for MYSTUFF.TPU on disk.

If you use a different file name
for the unit, you must tell the com
piler about the change. For exam
ple, if you store the MyStuff unit
as STIJFF.PAS and compile to
STIJFF.TPU, you would write the
foilowing statement to use the unit
in a program:

PROGRAM SomeStuff;
USES {$U STUFF.TPU} MyStuff;

This tells the compiler that the
MyStuff unit is actually in the file,
STIJFF.TPU. The compiler directive,
{$U STUFF.TPU}, appears inside
the USFS statement just ahead of
the unit name.

The second part of a unit is the
interface. In this section, which
begins with the keyword INTER
FACE, are the declarations that
you want programs to understand.
There are never any program
ming statements in the unit's
interface. There are only declara
tions of constants, data types, vari
ables, procedures and functions.
Returning to the earlier ware
house analogy, the unit's interface
section is similar to an inventory
sheet that tells you (and the com
piler) what items the unit con
tains. The interface is the unit's
documentation-the part that de
scribes the items on the unit's
warehouse shelves.

Suppose you decide to add a
constant, a variable, and a proce
dure to a unit. The interface sec
tion then looks like this:

INTERFACE
CONST MyNl.lllber 9;
VAR MyVariable : Integer;
PROCEDURE

MyProcedure(VAR X : Integer);

MyProcedure has no program
ming statements attached-only a
declaration with the procedure's
name and parameters in paren
theses. (If a procedure or function
has no parameters, then it simply
ends with a semicolon after its
name.)

Remember, the interface merely
describes the items in the unit.
The interface never contains any
executable programming
statements.

Following the interface section
comes the juicy part-the impk
mentation. As its name suggests,
the implementation implements the
items declared in the interface.

Into the implementation go the
programming statements that
make the unit routines strut their
stuff. Back at the warehouse, the
implementation contains the
stock-the actual items described
in the interface's inventory. When
Turbo Pascal compiles a program
that uses a unit, it attaches the
unit's implementation to the
finished result.

One important rule to
remember when writing your own
units is that every procedure and
function declared in the interface
must have a completed routine in
the implementation. Continuing
our example, if MyProcedure
adds constant MyNurnber to
parameter x, the complete imple
mentation would be:

IMPLEMENTATION
PROCEDURE MyProcedure;
BEGIN

X := X + MyVariable
END;

In the interface, MyProcedure
includes a parameter list. In the
implementation section the
parameter list is missing. This is
not a mistake. You can declare
procedure and function parame
ters only in the unit's interface
section. Those same parameters
never repeat in the implementa
tion. For reference, some pro
grammers repeat the parameter
list in the implementation, turning
it into a comment with (* and *)
or {and}. If you see this in a unit
listing, don't be confused. It's just
a trick to make life with units a lit
tle easier. For example, the imple
mentation for MyProcedure could
begin:

PROCEDURE
MyProcedure{(VAR X : Integer)};

Of course, real units usually
have many procedures and func
tions in their repertoire, not just
one routine as in this example. In
addition, a unit can have other
supporting procedures and func
tions for its own use. Such rou
tines also appear in the imple
mentation part, but are not
available to programs that use the
unit because the routines have no

corresponding declarations in the
interface and, therefore, are com
pletely hidden except to the
unit itself.

The final part of a unit is the
initialization, which resembles a
Pascal program's main body.
(Remember that units are not
complete Pascal programs!)
Suppose MyUnit must initialize
MyVariable to the value of
MyConstant. The initialization
section would then have
this design:

BEGIN
MyVariable := MyConstant

END.

The statements in a unit's
initialization run just prior to the
first statement in the program that
uses the unit. This allows the unit
to perform start-up chores-such
as initializing a variable as in this
example-before the program
begins. For units with no such
chores to perform, just type
BEGIN and END with no state
ments in between.

AN EXAMPLE UNIT
As a useful example, and to dem
onstrate a few other details, List
ing 2, Box, contains a procedure
and several variables that you can
use to draw boxes on screen. Type
the listing and save as BOX.PAS.
Compile to disk, creating the file
BOX.TPU. Notice that Box's inter
face section begins with a USFS
statement, telling Turbo Pascal
that Box uses Crt's features.
Because Box uses Crt, so must
your program, which might begin
this way:

PROGRAM MyBoxes;
USES CRT,Box;

Following Box's interface sec
tion, eight CHAR variables tell the
unit what characters to use to dis
play boxes. TopLine through
RightLine are for vertical and
horizontal lines. TopLeftComer
through BottomRightComer are
for drawing box corners.

The last item in Box's interface
is a procedure, DrawBox, which
has four integer parameters. To
draw a box, call DrawBox with the
coordinate values representing

November/ December 1987 TURBO TECHNIX 27

UNIT Crt;

INTERFACE

CONST

{ CRT modes }

BW40 = O;
C40 = 1;
BW80 = 2;
C80 = 3;
Mono = 7;
Last = -1;

LISTING 1: CRT.HOR

{ 40x25 B/W on Color Adapter }
{ 40x25 Color on Color Adapter }
{ 80x25 B/W on Color Adapter }
{ 80x25 Color on Color Adapter }
{ 80x25 B/W on Monochrome Adapter }
{ Last active text mode }

{ Foreground and background color constants }

Black = O;
Blue = 1;
Green = 2;
Cyan 3· I

Red 4· I

Magenta = 5;
Brown 6· I

LightGray 7;

{ Foreground color constants }

DarkGray 8· I

Li ghtB lue 9;
LightGreen 10;
Li ghtCyan 11:
LightRed 12;
LightMagenta 13;
Yellow 14;
White 15;

{ Add-in for blinking }

Bl ink = 128;

VAR

{ Interface variables }

CheckBreak: Boolean;
CheckEOF: Boolean;
DirectVideo: Boolean;
CheckSnow: Boolean;
TextAttr: Byte;
WindMin: Word;
WindMax: Word;

{ Interface PROCEDURES }

{ Enable Ctrl-Break }
{ Enable Ctrl-Z }
{ Enable direct video addressing}
{Enable snow filtering}
{ Current text attribute }
{ Window upper left coordinates }
{ Window lower right coordinates }

PROCEDURE AssignCrt(var F: Text);
FUNCTION KeyPressed: Boolean;
FUNCTION ReadKey: Char;
PROCEDURE TextMode(Mode: Integer);
PROCEDURE Window(X1,Y1,X2,Y2: Integer);
PROCEDURE GotoXY(X,Y: Integer);
FUNCTION WhereX: Integer;
FUNCTION WhereY: Integer;
PROCEDURE ClrScr;
PROCEDURE ClrEol;
PROCEDURE Insline;
PROCEDURE Delline;
PROCEDURE TextColor(Color: Integer);
PROCEDURE TextBackground(Color: Integer);
PROCEDURE LowVideo;
PROCEDURE HighVideo;
PROCEDURE NormVideo;
PROCEDURE Delay(MS: Integer);
PROCEDURE Sound(Hz: Integer);
PROCEDURE NoSound;

28 TURBO TECHNIX November/ December 1987

UNITS

the box's top-left and bottom-right
corners. For example, this outlines
the entire screen:

DrawBoxC1,1,25,80);

Next comes the unit's imple
mentation, the part that fleshes
out the interface's declarations.
The eight constants here are the
default values that the unit uses
for Box's global variables.
Because these declarations appear
in the unit's implementation part,
they are invisible except from
inside the unit The unit itself can
make use of the eight constants,
but a program that uses the unit
cannot do the same. Programs
(and any other units that use Box)
see only the items in the unit's
interface.

Although Box declares only
constants in its implementation, it
could also declare data types and
variables here as well. Those dec
larations would also be hidden
from programs that use Box.

Some programmers call the
declarations in the implementa
tion private, because the items in
this section are strictly for use by
routines inside the unit. The dec
larations in the interface are pub
lic, visible to both the outside
world and to the statements inside
the unit. It's good programming
practice to carefully restrict a
unit's public parts to those items
that programs and other units
need to know.

Following the eight constants is
the completed DrawBox proce
dure. For reference, parameters
are converted into a comment.
Remember, parameters to public
routines can appear only in the
interface section, never in the
implementation section.

Inside DrawBox are three
main sections comprising the
actual programming that runs
when you call this procedure.
First, eight statements draw the
box's corners. Next, two FOR
loops fill in the top and bottom

sides. Another FOR loop fills in
the left and right sides, complet
ing the box.

The unit's initialization comes
last, between BEGIN and END. In
this example, the unit's body
initializes the unit's global varia
bles, assigning the eight constants
to the variables declared in the
interface.

Initializing global variables in
the unit's body is a typical job for
a unit initialization to perform.
Although not shown here, the
unit body could also call proce
dures and perform other actions
as part of its startup sequence.

USING THE BOX UNIT
As an example of using the Box
unit, Listing 3, TestBox, draws two
boxes on screen. The program
begins with a USES statement,
specifying both Crt and Box. Crt
must precede Box. Do you
remember why?

The program's body clears the
screen before calling DrawBox.
After that, three statements assign
new values to a few of Box's glob
al variables. Notice that these vari
ables-BottomLeftCorner, Bot
tomRightCorner, and
Bottomline-are not declared
anywhere in TestBox. The varia
bles appear in Box's interface (see
Listing 2). Because TestBox USES
Box, it can use anything in the
unit's interface as though the pro
gram had declared those same
items itself.

As explained earlier, items
declared only in the unit's imple
mentation are private and are not
visible to programs. As a demon
stration of this rule, add the fol
lowing line after TestBox's
BEGIN:
TopLine := DefTop;

Attempting to assign to Topl..ine
the default value for box-top lines
(Defl'op) fails because Defl'op is
not visible to TestBox. The Def
Top constant is declared in the
Box unit's implementation and,
therefore, only the statements
inside the unit can use this con
stant's value.

L____ LISTING 2: BOX.PAS ___j
UNIT Box;

(*

* PURPOSE A Unit for displaying boxes
* SYSTEM
* AUTHOR

IBM PC/MS-DOS, Turbo Pascal 4.0
Tom Swan

*>

INTERFACE

USES Crt;

VAR Topline:
LeftLine:
BottomLine:
Rightline:

TopLeftCorner:
TopR i ghtCorner:
BottomLeftCorner:
BottomRightCorner:

CHAR;
CHAR;
CHAR;
CHAR;

CHAR;
CHAR;
CHAR;
CHAR;

{ Horiz. top line char}
{Vert. left line char}
{ Horiz. bottom line char}
{Vert. right line char}

< Top left corner char }
{ Top right corner char }
{ Bottom left corner char }
{ ~ottom right corner char }

PROCEDURE DrawBox(Top, Left, Bottom, Right : INTEGER);

{Call this procedure to draw a box, using the global character
variables. The four parameters are not checked. Using values
outside the legal display coordinates will produce strange
looking boxes! }

{ --- ------------------- - }

IMPLEMENTATION

CONST DefTop=
Def Left=
Def Bottom=
DefRight=

#205;
#179;
#196;
#179;

DefTopLef t= #213;
DefTopRight= #184;
DefBottomLeft= #192;
DefBottomRight= #217;

PROCEDURE DrawBox(* (Top, Left, Bottom, Right : INTEGER) *);

{Draw rectangular outline pegged to these coordinate values. }

VAR x, y : INTEGER; { T~rary screen coordinates }

BEGIN

< First, draw the box's four corners }

GotoXY(Left, Top >; { Top, Left }
\Jrite(TopLeftCorner);

GotoXY(Right, Top); { Top, Right }
\Jrite(TopRightCorner >;

GotoXY(Left, Bottom >; { Bottom, Left }

\Jrite(BottomLeftCorner >;
GotoXY(Right, Bottom >; { Bottom, Right }
\Jrite(BottomRightCorner >;

November/ December 1987 T URBO TECHNIX 29

{Next, fill in the top and bottom sides}

GotoXYC Left + 1, Top >;
FOR x := (Left + 1) TO (Right - 1) DO

Write(TopLine >;

GotoXYC Left+ 1, Bottom >;
FOR x := (Left + 1) TO (Right - 1) DO

Write(BottomLine >;

{And then fill in the left and right sides)

FOR y := (Top + 1) TO (Bottom - 1) DO BEGIN
GotoXYC Left, y);
Write(LeftLine);
GotoXY(Right, y);
Write(RightLine)

END { for }

END; { DrawBox }

BEGIN {Unit initialization}

TopLine := DefTop;
LeftLine := DefLeft;
BottomLine := DefBottom;
RightLine := DefRight;

{Assign default character}
{ values to global vars. }

TopLeftCorner := DefTopLeft;
TopRightCorner := DefTopRight;
BottomLeftCorner := DefBottomLeft;
BottomRightCorner := DefBottomRight

END. { Box unit }

PROGRAM

USES

BEGIN

END.

LISTING 3: TESTBOX.PAS

TestBox;

Crt, Box;

{ Draw a test box }

ClrScr;
DrawBox(5, 8, 15, 64 >; {Use default values}

{Draw a second box, this time with a double-line
border on the top and bottom.)

BottomLeftCorner := #212;
BottomRightCorner := #190;
BottomLine := #205;
DrawBox(3, 30, 20, 58 >;

{ Change unit's variables }

{ Draw the box }

GotoXYC 1, 24) {Position cursor before program ends}

30 TURBO TECHNIX November/ December 1987

UNITS

UNITS AND THE TURBO
PASCAL PROGRAMMER
This introduction to units de
scribes what units are and shows
how to use units in Turbo Pascal
programs. There is more to the
unit story than I have room to
cover here-and more informa
tion about units in your reference
manual-but I've tried to touch
on the major topics to give you a
running start to using and writing
units for your own programs.

Units can help you to write
modular programs that are easier
to design, code, debug and (over
the long term) maintain. Because
units are separately compileable,
you are no longer required to
compile all of a large application
any time you need to compile a
part of it. By allowing the program
module interface to remain visible
while hiding implementation
details, units facilitate team pro
gramming and the distribution of
proprietary subprogram libraries
without revealing the source code.
The precompiled units supplied
with Turbo Pascal 4.0 provide
excellent examples of units in
action-be sure to examine them
and experiment with them.

Units are like warehouses,
stocked to the ceiling with goodies
for programs to share. As pro
gramming tools, units promote
modularity and give you the ability
to separately compile large pro
grams in pieces. Units are a wel
come and an important new addi
tion to our old friend, Turbo
Pascal. •

Tom Swan is the author of Master
ing Turbo Pascal, Mastering
Turbo Pascal Files (Howard W
Sams), and Programming with
Macintosh Turbo Pascal (John
Wiley & Sons). Swan is currently
burning the silicon candl,e at both
ends, revising Mastering Turbo Pas
cal 4. 0 for rel,ease in 1988 whil,e writ
ing a new book about Turbo C.

Listings may be downloaded from
CompuServe as UNJTS.ARC.

Add up to 96K
above 640K to all
programs, including
PARADOX and 1-2-3.

Paiity-checked 256K
'Nith a one-year
warranty

Run custom software
or the 3270 PC
Control Program
above 640K

Run resident
programs like
Sidekick above 640K

Tbp off a 512K IBM
AT's memory to 640K
and add another
128K beyond that.

Short card works in
the IBM PC, XT, AT,
and compatibles.

Add expanded
memory to programs
supporting the
Lotus/ Intel/
Microsoft
specification 3.2.

MAXIT™memory works above 6401{
for only $195.

Break through the 640K barrier.
MAXIT increases your PC's available
memory beyond 640K. And it does
it for only $195 .

MAXIT includes a 256K half-size
memory card that works above
640K. MAXIT will •
• Add up to 96K above 640K to all

programs.
• Run memory resident programs

above 640K.
• Top off an IBM AT's mAmory from

5 l 2K to 640K.
• Expand 1-2-3 Release lA or 2.0

worksheet memory by up to 256K.
• Add expanded memory above

640K to programs like Symphony 1.1.

Big gain - no pain.

Extend the productive life of your,
IBM PC, XT, AT or compatible. Build
more complex spreadsheets and
databases without upgrading your
present software.

Installation is a snap.
MAXIT works automatically. You
don't have to learn a single new
command.

If you have questions, our cus
tomer support people will answer
them, fast. MAXIT is backed by a
one-year warranty and a 30-day
money-back guarantee.

Order toll free 1-800-227-0900.

MAXIT is just $195 plus $4 ship
ping, and applicable state sales tax.
Buy MAXIT today and solve your
PC's memory crisis. Call Toll free 1-
800-227-0900 (In California 800-
772-2531).
We accept VISA, MC, AE, and DC.

~,,~

1tnUI
Osborne ~AcGra"~·Hill
2600 Tenth Street. Berkeley. Cal1forn1a 94710

M AXIT 1s a trademark ol McGraw-Hill CCIG software IBM 1sa reqistt'red trademark of lnlerllclhonal Business Machines Corporahon, l 2-3 and Symphony are
registered trademarks of lotus Development Corporation. S1dek1rk 1s a registered trademark al Borland lnternahonal Inc, PARADOX is a trademark o! ANSA
Software

~
< v
1J)

~ COMMUNICATING WITH
~ CHILD PROCE~ES

Turbo Pascal 4.0 makes spawning a child process as
easy as calling a library function. Here's how to facili
tate communication with your offspring.

Neil Rubenking

Using Turbo Pascal 4.0, you can run any
DOS program file as a child process from
within a Turbo Pascal program and return
seamlessly to your program when the
child process ends.

WIZARD
This hasn't always been the case. Pre

vious versions of Turbo Pascal had an Execute com
mand, but it was only capable of executing other
Turbo Pascal .COM files created with the same ver
sion of the compiler. Likewise, the Chain feature,
which allowed stripped-down Turbo Pascal code
modules to pass control among themselves while
calling a single copy of the runtime code, was highly
specific to Turbo Pascal itself.

The correct way to execute child processes is to use
the DOS EXEC function call. This is difficult to set
up, but an assembly language procedure called Exec
in the standard DOS.TPU unit does all the work. It's
easy. The syntax is:
Exec(' PROGRAM ' ,'COMMAND LI NE');

What more could you ask for?
Well, the Chain and Execute commands are no

longer with us. Using Chain you were able to pass
global variables from your main program to the
chained program. The new-style Exec routine only
allows you to pass as much data as you can fit on a
command line. If you need to communicate between
your programs, will you have to stay back with Turbo
Pascal 3.0?

Fortunately, no. This article demonstrates two dif
ferent methods for a parent program to communicate
with its child processes.

THE SHARED DATA AREA METHOD
To use this method, you must collect all the global
variables that the programs will share and create a

32 TURBO TECHNIX November/ December 1987

record type to hold them. You need to be sure this
type declaration is exactly the same in both programs,
so make it a separate file and $INCLUDE it in both.

Declare a variable of the shared record type in the
parent, and a pointer to that type in the child. You
give the child process access to this shared area by
simply passing the address of the shared area on the
command line. The child process uses the Ptr func
tion to point its pointer at the shared area. ow the
child process can read or write data to the shared
area.

THE COPIED DATA AREA METHOD
If you really want to pass a lot of data, it may be
impractical or inelegant to put it all into one record.
In this case, you let the parent and child each have its
own data. You simply copy from parent to child when
the child begins execution, and copy the data back to
the parent when it ends.

Turbo Pascal's Move command copies bytes from
one address to another. Once you know the address
of the data area in the parent, you're ready to Move.
Again, you'll need to be sure the set of variables
you're passing is identical in both cases, so write it to
a separate file and $INCLUDE it in both.

In this case, the communication is not as complete.
The two data areas are separate, and you must copy
one to the other whenever you make a change. How
ever, this method is better suited to passing a large
number of variables.

DEALING WITH ERRORS
The parent program needs to know how well its
children have worked. When the child process termi
nates, it should tell the parent what's happened. The
word variable status carries this information between
child and parent. A value of 1 in status signals suc
cessful completion. If the child process crashes, a

PROGRAM Parent;

uses dos;

{SH 8192,8192,8192)
{$1 LISTOF.VAR)
{$1 PASSOATA. TYP)
{$1 HEX. INC)

VAR
p

t~
teoµl

BEGIN

passdata;
string[6J;
string[6J;

llSTING 1: PARENT.PAS

WriteLn{ 'THIS is th• PARENT program.');
Wri teln(1 ======:==:===::============ 1);

P.password := 'BORLAND int';
P.status := O;
WriteC'~at string shall I pass to the children?:');
ReadLn{ P. name);
thing :: P.name;
Str(seg(P), tetrpS);
Str{ofs{P), te<rp());
Exec(1 CH ILDA. EXE', terrp:S+- 1 1 +terrp());
Writeln;
Writeln(1 NOJ we are bock to the parent program'>;
CASE P.status OF

0 Writeln(1WHAT we have here is a failure to Conm.Jnicate'>;
1 : BEGIN

Writeln('THE STRING we got is 111 ,P.name, 1111);

Writeln('THE INTEGER we got is 1 ,P.nurber);
ENO·

2 : Wri~eLn{'The user halted the child process with "Break');
3 .. SFF : Writeln(·~S! The child process crashed in en •,

1 1..nexpected way. 1);

ELSE
\Jrite('The child process crashed with error S 1 >;
WriteLn{HexByte{P.status AND SFF));

END;
status ::: O;
keyword : = 1 BORLAND int 1 ;

Str{seg{mark1), tetrpS);
Str{ofs{mark1), teoµl);
Exec{' CH I LOB. EXE'. t'"'¢•' '•te<rp());
Writeln;
Writeln('NOW we are baclt to the parent program•);
CASE status OF

O WriteLn('IJHAT we tiave tiere is a failure to conm.micate');
1 : BEGIN

WriteLn{'THE L()jGINT we got is ',L);
\JdteLn('THE ST~IMG we got is 111 ,thing, 1111);

2 : ~~~ ~eLn{ 0 The user halted the child process with "Break');
3 •. SFF 1JriteLn(1 cx::J=lS! The child process crashed in an 1

1

'U"'le.xpected way.'>;
ELSE

Write('Ttie ctiild process crashed with error S 1 >;
WriteLn{HexByte{status AND SFF));

END;
ENO.

PROG~ A;

{$1 PASSOATA. TYP)
{$1 GETPARAM. INC)
{$1 HEX. I NC)

VAR

LISTING 2: CHILDA.?AS

P : "passdata; {defined in PASSOATA.TYP)
ls_chi ld : boolean;

PROCEDURE Passback_Status{code integer);
BEGIN

p- .status := Code;
END;

PROCEDURE Check_lf_Child;
(* -- *)
(* IF this program is running as a child process, *)
{* then there will be two val id \KJROs on the *)
(* conmand line. Assuning we find these words, *)
(* we set a pointer to the address ttiey define *)
(* ard look for a particular 11 password" in that *)

(* area. IF we find it, then we have successfully *)
(* set up a shared data area with the parent. *)
{* •.•••••••••••••••••••••••••••••••.•••••••••••••• *)

VAR S, 0 : word;
BEGIN

Get Parameters{S,O,ls Child); {in GETPARAH.INC)
IF Is Child THEN -

3EGIN
P ·= Ptr{S O)·
IF. p· .pass~ord = 'BORLAND int' THEN

Passback_Status{3)
ELSE

BEGIN
\Jri teLn(1 ERROR in address 1);

ls_Chi ld := false;

EMO;
END;

END;

{$1 ERRORHAN.INC)

BEGIN
Ex i t?roc : = Q)ErrorHancHer;
\Jritdn;
\Jritdn(' THIS is program A1);

Check If Child;
IF ls-Chlld THEN

BEGIN
Vriteln('
llri te{'
IJri te(1

Ttie name passed from PARENT was 111 ,P·.name, 1111
);

ENTER A STRING - : '); ReadLn(P" .name);

p- .status
{status 1

ENTER AN INTEGER : '>; ReadLn(P" .nuroer);
·= 1.
~ no~mal termination}

EloO;
ENO.

LISTING 3: CHILDS.PAS

PROGRAM B;

{SI LISTOF.VAR)
{SI HEX. INC)
(SI GETPARAH. INC)

VAR
S,O, Len : word;
I s_chi ld : boolear;

PROCEDURE Passback_Status{code integer);
BEGIN

status := Code;
HOVE{mark1, HEH[S:OJ, Len);

END;

PROCEDURE Check_lf_Chi ld;
(* -- ---- -- - -------------- -- - - - - - .. ----------- ---- -- *>
c• IF this prograni is running as a ctiHd process, *)
(* then there will be two val id llOROs on the *)
(* coomand line. Assuning we find these words, *)
(* we set a pointer to the address they define *)
(* and look for a particular 11 password 11 in that *)

(* area. IF we find it, then we have successfully*)
(* set up a shared data area with the parent. *)

(* - • - --- - -- --- -- - - -- - -- - - --- - - - - -- -- - ---- ----- - - - - *)
BEGIN

Get Parameters{S, 0, Is Child); {in GETPARAM.l~C)
IFls_ChildTHEN -

END;

BEGIN
Len := ofs{mark2) • ofs{mark1 >;
HOVE{HEH[S:Dl, mark1. Len);
IF keyword = 'BORLAND int' THEN

BEGIN
Is Child := true;
Passback_Status(3);

ENO
ELSE

END;

BEGIN
Wr i teLn(1 ERROR in address') ;
Is Child := false;

END;_

{SI ERRORHAN. I NC)

BEGIN
ExitProc := OlErrorHardler;
Wri teLn;
WriteLn(1 THIS is program 8 1);

Check If Child;
IF ls=child THEN

BEGIN
Wri teLn{'
Write{'
Write('
status :=
{status 1

The
ENTER
ENTER ,.

string passed from PARENT was 111 , thing, 1111 >;
LONGINT: 'l; ReadLn{L);
STRING : '); ReadLn{thing);

i~ normal termination}
ENO·

IF 1s'child THEN "°"°(mark1, HEH[S:OJ,
END. -

Len);

LISTING 4: PASSDATA. TYP

(* ============================::============= *)

(* PARENT and CHILOA share this file. This *)
(* is necessary to be sure the fields in the *)
(* pointer to the stiared area will be correct. *)

{* ===================::====================== *)
TYPE

passdata = RECORD
password string [80J ;
name
nuroer
status

END;

string [80J;
integer;
word;

November/ December 1987 TURBO TECHNIX 33

LISTING 5: LISTOf.VAR

(* =================:==========:::================= *)
(* PARENT and CHILDS share the list of variables *)
(* in this file. Thfs sharing is necessary to *)

(* make SURE the passed data will be correct. •)
c• == * >
VAR

mark! : byte;
L : Longlnt;
status : word;
keyword: stringC80J;
thing : string(80l;
rMrk2 : byte;

LISTING 6: GETPARAM. INC

PROCEDURE Get_Parameters(VAR SegP, OfsP : word; VAR OK : boolean);
VAR code : word;
BEGIN

OK := false;
IF Paramcount <> 2 THEN

BEGIN
WriteLnC 1 Program rUl'Yling as a standalone•>;
Exit;

END·
Val(~rem5tr(1), SegP, Code);
IF Code <> 0 THEN

BEGIN
llriteln(' ERROR in segment parameter');
Exit;

END;
Val(ParamStr(2), OfsP, Code);
IF Code <> 0 THEN

BEGIN
Wri teln(1

Exit;
END;

ERROR in offset parameter');

OK := true;
ENO;

{SF+}
{SI-}

LISTING 7: ERRORHAN. INC

PROCEDURE ErrorHandler;
VAR t : integer;
BEGIN

IF ErrorAddr = NI l THEN
BEGIN

IF Exi tCode = SFF THEN
BEGIN

llri teln(' USER BREAK') ;
IF Is Child THEN Passback Status(2);
{status 2 means Break} -

END;
Exit;

END;
I := IOresul t;
Ass i gn(OUtput, 1 1);

ReWri te(Output);
llrite(' ERROR S',HexByte(ExitCode));
Wrheln(1 at 1 , hex(seg(ErrorAddr·)), 1 : •, hex(ofs(ErrorAck:k.)));
Close(OUtPut>;
If Is Child THEN Passback Status(ExitCode OR S100);

END; - -
{Sf-}
{SI+}

c• HEX functions *)

type
string2 = string [21;
string4 = string[4J;

const

LISTING 8: HEX.INC

HexDigit : ArrayC0 •• 151 of Char= '0123456789ABCDEf';

fcnction HexByte(B : byte) : string2;
begin

HexByte := HexDigitCB shr 41 + HexDigitCB and SFJ;
end;

fcnction Hex(I : integer) : string4;
begin

Hex:= HexByte(Hi(I)) + HexByte(Lo(I));
end;

34 TURBO TECHNIX November/ December 1987

CHILD PROCESSES

user-written error handler passes back that informa
tion in status, as I'll describe later. The only way sta
tus will still be 0 after the Exec call is if the call
failed-e.g., if the program to be executed as a child
process was not found on disk. Based on this status
word, the parent can determine the outcome of its
child processes.

THE SAMPLE PROGRAMS
The programs PARENT.PAS (Listing 1), CHILDA.PAS
(Listing 2), and CHILDB.PAS (Listing 3) demonstrate
these two techniques. CHILDA and PARENT have a
shared data area whose data type declaration appears
in the file PASSDATA.TYP (Listing 4). CHILDB and
PARENT have a copied data area whose variable list
is in the file LISTOF.VAR (Listing 5). Note that PAR
ENT, CHILDA, and CHILDB are three independent
programs that must be compiled separately to disk
the Make or Build options will not detect any rela
tionship between them.

SETTING UP COMMUNICATION
In each method, the parent program creates a
command line consisting of the segment and
offset of the shared data in string form. For CHILDA,
the address is that of the shared record variable P.
For CHILDB, it is the address of the first variable in
the list of copied variables, markl. Both child pro
grams use the same procedure to get and test the
command line parameters-Get_Parameters, in file
GETPARAM.INC (Listing 6). This procedure checks
the command line. If there are exactly two parame
ters and each is a valid integer, it sets the Boolean
variable OK to True and sets its arguments to the
integer values.

If CHILDA receives a valid address on the com
mand line, it sets its shared data pointer P to point to
that address. A word of caution here-before writing
anything to this area, CHILDA checks the password
field. If the password doesn't match, then something
went wrong. If it does match, you can now read and
write the data through the pointer.

CHILDB uses the passed data address differently.
It uses the Move statement to move data starting at
mark I. The number of bytes to move is the differ
ence between the offsets of the first shared variable
and the final marker, mark2. Here again, it uses a
password variable to confirm that the address was
correct. Now the child program can read the shared
data any time. In order for it to write data, it has to
use Move again to copy the shared data area back to
the parent.

Both child programs simply collect some data and
pass it back to the parent. To see what happens when
a child crashes, give a non-numeric entry when the
program asks for a number, or press Ctrl-C. It works!

MISCELLANEOUS FILES
All three of the programs use the file HEX.INC (List
ing 8). Routines in this file will translate a byte or a
word into a two- or four-character hexadecimal string.
This is handy for addresses and errors.

The child programs also share the same error
handler, in ERRORHAN.INC (Listing 7). You'll notice
some differences between this error handler and its
3.0 equivalent.

First, ERRORHAN begins with the compiler direc
tive {$F+} and ends with {$F-}. When this directive is
active, ({$F+}) the compiler generates a FAR proce
dure or function. Since the error handler may be
called from anywhere in the program, it has to be
declared FAR.

Second, the arguments to the procedure, usually
named ErrNum and ErrAdclr, are gone. The global
variables ErrorAdclr and ExitCode replace them, and
ErrorAdclr is a true pointer now. You install the error
handler differently, too. In 3.0, you set the integer
variable ErrorPtr equal to the offset of the handler.
In 4.0, you set ExitProc, not ErrorPtr, and ExitProc
is a full segment offset address. The new@ operator

returns the address of its parameter, like the Adclr
function in 3.0. @ErrorHandler returns the address
of procedure Error Handler.

An error handler can take care of any "cleanup"
work you need to do when the program crashes. In
our case, all we need to do is tell the parent program
what happened. Since the two child processes com
municate with the parent differently, the error
handler calls a procedure Passback_Status. Each
child program has its own version of this procedure.

In Exec, Turbo Pascal 4.0 offers an execute
program routine that is much more powerful than its
predecessor in 3.0. A little pointer savvy will allow you
to regain the power lost with the demise of Turbo
Pascal 3.0-style Chain and Execute. •

Neil Rubenking is a professional Pascal programmer and
writer. He is a contributing editor for PC Magazine and
can be found daily on Borland's CompuServe Forum ans
wering Turbo Pascal questions.

Listings may be downloaded from CompuServe as
PROCESS.ARC.

~~"\ Hire a Pro for
Your NewTurbo 4.0

Tum on the power of Turbo PROFESSIONAL 4.0, a library of more
than 300 state-of-the-art routines optimized for Turbo Pascal 4.0.

You'll have professional quality programs finished faster and easier.

Turbo PROFESSIONAL 4.0 includes complete source code,
comprehensive documentation and demo programs that

are powerful and useful. The routines include:

• Pop-up resident routines
• BCD arithmetic
• Virtual windows and menus
• EMS and extended memory access
• Long strings, large arrays, macros,

and much more.

Turbo PROFESSIONAL is only $99.
Call toll free for credit card orders.

1-800-538-8157 extension 830
1-800-672-3470 extension 830 in CA

Satisfaction Guaranteed or your money back within 30 days.

Turbo Pascal 4.0 is required. Registered For other information call 408-438·8608.
owners of Turtx> Professional by Sunny 9 AM to 5 PM PST. Shipping & 1axes

Hill Software may upgrade for $30. prepaid for US and Canadian customers.
Include your serial number. others please add $6 per item.

TurboPower Software 3109 Scotts Valley Dr., Suite 122 Scotts Valley, CA 95066

November/ December 1987 TURBO TECHNIX 35

Add the text editor used in the Borland languages to
your own applications. It will only cost you
l 4K ... bytes, that is.

Jeff Duntemann

Those of us who somehow managed not
to be astonished by Turbo Pascal's speed

•

back in 1984 did not fail to be astonished
by its size. "Folded into hyperspace" was
my favorite explanation for an editor/

PROGRAMMER f 36 compiler/ environment taking all o K-
my own rather limited "smart" directory lister pro
gram (written in that other Pascal) was larger than
36K all by itself.

It wasn't hyperspace, of course-just assembly lan
guage. And although the Turbo Pascal compiler got
most of the glory, the assembly language text editor
hiding beside it in memory kept appearing in (and
evolving through) other Borland products, from
SideKick's Notepad through Turbo Prolog, Turbo
Basic, Turbo C, and Eureka: The Solver.

As part of the major rewrite of Turbo Pascal's Edi
tor Toolbox (coinciding with the release of Turbo
Pascal 4.0), the same assembly language editor in
binary unit form has been added to the Toolbox's
considerable repertoire. By using unit BinEd, your
own applications can now incorporate the Borland
Binary Editor.

SMALL WONDER
The original Borland Binary Editor used in Turbo
Pascal 1.0-3.0 was only lOK in size. The Binary Editor
has grown some since then in both size and power,
but it still adds only about l 4K of code to applications
that incorporate it.

Unlike the standard units included with Turbo Pas
cal 4.0, the implementation section of BinEd is not
included as part of the product. The interface section
stands alone in a file named BINED.HDR, given in
Listing 1. BINED.HDR contains descriptions of the
entry points to the several routines incorporated in
the Binary Editor, along with a description of the data

36 TURBO TECHNIX November/ December 1987

structures that pass information back and forth
between the Binary Editor and your own applications.

The Binary Editor is a "plain ASCII" text editor,
meaning it does not insert unprintable control codes
in the edited file for formatting purposes. If a file is
printable when loaded, it will still be printable when
written back out to disk. The command set
understood by the editor is a subset of WordStar's,
(see sidebar) and depends on control-key combina
tions rather than the PC keyboard function keys or
pull-down menus. A key-code installation utility
included with the Binary Editor, however, allows you
to set many of the commands to any keystroke
combination you prefer.

The Binary Editor incorporates a number of intri
guing features:
• It is self-windowing. Within the Editor Control

Block (ECB) are coordinates for the upper left
comer and lower right comer of a window. These
coordinates are passed to the Binary Editor when
it is invoked. The Binary Editor will display, clear,
and scroll only within the window defined by
those coordinates.

• A cursor position and marked block may be passed
to the Binary Editor along with a text file. Again,
the ECB contains fields specifying a cursor posi
tion offset in characters into the text file, as well as
an offset for the start and end of a marked block.
If some other program mechanism has examined
a text file and located a position or region within
the file that needs attention, the Binary Editor may
be popped up with the cursor at that position, or
with the block in question marked and
highlighted.

• Multiple exit commands may be specified at run
time. In other words, although the Binary Editor
will always exit on Ctrl-KD, other exit command

continued on page 38

Program in the fast lane with
Borland's new Turbo Pascal 4.0 !

0 ur new Turbo Pascal®
4.0 is so fast. it's
almost reckless. How

fast? Better than 27.000 lines
of code per minute.* That's
more than twice as fast as
Turbo Pascal 3.0.

4.0 Technical Highlights:

• Compiles 27.000 lines per
minute

• Includes automatic project Make
• Supports> 64K programs

4.0 uses logical
units for separate
compilation

Pascal 4.0 lets you break
up the code gang into "units."
or "chunks." These logical
modules can be worked with
swiftly and separately. 4.0
also includes an automatic
project Make.

• Uses units for separate
compilation

• Integrated development
environment

4.0 breaks the code
barrier

4.0's cursor automat
ically lands on any
trouble spot

• Interactive error detection/
location

• Includes a command line version
of the compiler

• Highly compatible with 3.0

For the I BM PS/2" and the I BM 0 and Compaq• fami
lies of personal compuiers and all 100% compatibles

No more swapping code in
and out to beat the 64 K code
barrier. Designed for large
programs. Turbo Pascal 4.0
lets you use every byte of
memory in your computer.

4.0's interactive error
detection and location means
that the cursor automatically
lands where the error is.
While you're compi ling or
running a program. you get
an error message and the
cursor flags the error's
location for you. Sieve (25 iterations)

Turbo Pascal 4.0

Size of Executable File

Turbo Pascal 3.0

11 682 bytes

Only $99.95

60-Day Money-back Guarantee** >-----------~-~
Execution speed 9.7 seconds

Sieve ot Era1osthenes. run on an SMHz IBM AT

Since the source hie above is too small lo rnd1ca1e a d1tterence in compilation speed we compiled oor CHESS p1ogram from Turbo Gameworks 10 give you a
true sense othow much laster 40 really isl

For the dealer nearest you.
or to order now.

Compilation of CHESS.PAS (5469 lines) Call (800) 543-7543
__ --+--Turbo Pasc_al_4_.o_--'-- Turbo Pascal 3.0

"Run on an 8MHz IBM AT Compilation speed 12.1 seconds 35.5 seconds
· ·u w1th•n 60 days ot pu1chase lh1s product does not perlmm in accor
dance w,th our c1a1ms. ca' our customer service depallment. and we w
a11angearetund Lines per minute 27,119 9,243

CHESS PAS compiled on an 8 MHz IBM AT All Borland products are trademarks or reg1s1ered 1rademarks ot Borland
lnternat1ona Inc Copy11gh1 C1987 Borland lnternatiooa' Inc Bl 1166

YES! I want to upgrade to Turbo Pascal 4.0 and the 4.0 Tuolboxes

If you are a reg istered Turbo Pascal user and have not been notified of
Version 4.0 by mail, please call us at (800) 543-7543. To upgrade if
you have not registered your product, just send the original registration
form from your manual and paymenl wilh lhis completed coupon to:

Turbo Pascal 4.0 Upgrade Dept., Borland International
4585 Scotts Valley Drive, Scotts Valley, CA 95066

Name -------------------

Ship Address

City _______________ State ___ _

Zip _____ Telephone (

Please check box(es)
Suggested

Retail
Upgrade
Prlcef

o Turbo Pascal 4.0 Compiler $ 99.95 $ 39.95
o Turbo Pascal 4.0 Developer 's Library 395.00 150.00

(Includes Turbo Pascal Tutor and all Toolboxes; must be ordered with compiler)
o Turbo Pascal Tutor $ 69.95 $ 19.95
D Turbo Pascal Database Toolbox 99.95 29.95
o Turbo Pascal Graphix Toolbox 99.95 29.95
o Turbo Pascal Editor Toolbox 99.95 29.95
o Turbo Pascal Numerical Methods Toolbox 99.95 29.95
D Turbo Pascal Gameworks 99.95 29.95

Total product amount
CA and MA residents add sales tax
Shipping and handling·
Total amount enclosed
Please specify diskette size o 51/t o 3'h'

$ ____ _
$ ____ _
$ ____ _
$ ____ _

Serial Na.

This oller 1s lim1led to one upgrade per valid registered product 1t 1s good unlll November 30, 1987
Not good with any olher oller from Borland Please allow 4 to 6 weeks !or delivery of Toolboxes Outside
US make paymenls by bank draft payable 1n US dollars drawn on a US bank CODs and purchase
orders will nol be accepted by Borland

For the IBM PS/2- and the IBM" and Compaq• families of personal computers and all 100% compatibles

Paymenl o VISA o MC o Check o Bank Draft

t To qualify for lhe upgrade price you must give the serial number of the equivalenl producl you are
upgrading

Credit card expiration date ___) ___ _

Card# I I I I I I
·1n US please add $5 sh1pp1ng for each producl ordered or $15 !or lhe Compiler and Developer's Library Outside US please
add $10 sh1pp1ng and handling for each producl ordered or $25 for lhe Compiler and Developer's Library

TI-11 /87

c LISTING 1: BINEO.HDR _J
{$!-}
{$$-}
{SR-}

unit BinEd;
{-The Borland binary editor interface for Turbo Pascal}

interface

const
MaxFileSize = SFFEO;
EdOptlnsert = S1;
EdOptlndent = $2;
EdOptTAB = $8;
EdOptBlock = $10;
EdOptNoUpdate = $20;
EventKBflag = 1;
CAnorm = #255#1;
CAlow = #255#2;
CAblk = #255#3;
CAerr = #255#4;
EdStatTextMod = 1;

type

{Maximun editable file size}
{Insert on flag}
{Autoindent on flag}
{Tab on flag}
{Show marked block}
{Don't update screen when entering editor}
{Scroll, n1.111 or caps locks modified mask}
{Activates CRT "normal" attribute}
{Activates CRT "low" }
{Activates CRT "block" }
{Activates CRT "error" }
{Text buffer modified mask>

AttrArray = array[0 .. 3] of Byte;
ASCIIZ = array[0 .. 255] of Char;
ASCIIZptr = "ASCllZ;
TextBuffer = array[O .. SFFFOl of Char;

CRTinsStruct =
record

CRTtype : Byte;
CRTx1, CRTy1,
CRTx2, CRTy2 : Byte;
CRTmode : Byte;
CRTsnow : Byte;
AttrMono : AttrArray;
AttrBY : AttrArray;
AttrColor : AttrArray;

end;
Clptr = "CRTinsStruct;

EdlnsStruct =
record

ComTablen : Yord;
ComTab : TextBuffer;

end;
Elptr = "EdlnsStruct;

Ml insStruct =
record

Ver : Byte;
VerSub : Byte;
VerPatch : Char;
CPUmhz : Byte;
Clstruct : Clptr;
Elstruct : Elptr;
DefExt : ASCllZptr;

end;
Mlptr = "MlinsStruct;

{CRT installation structure}

{1=1BM, O=Non}

{Initial window size}
{Initial mode 0-3,7 or FF(default)}
{0 if no snow, don't care for mono}
{CRT attributes for mono mode}
{CRT attributes for b/w modes}
{CRT attributes for color modes}

{Command table installation structure}

{Maximum length of command table}
{Command table}

{Main installation structure}

{Main version}
{Sub version}
{Patch level}
{CPU speed for delays}
{Points to CRT installation record}
{Points to Editor installation area}
{Points to ASCllZ default extension}

38 TURBO TECHNIX November/ December 1987

THE BINARY EDITOR

continued from page 36
strings may be passed to the
Editor when it is initialized.
The command which caused
the Editor to exit is returned to
the application using the Edi
tor. This allows an application
to "duck out" of the Binary Edi
tor temporarily to take care of
other tasks and reenter it later,
perhaps without the user know
ing that editing had been inter
rupted. For example, if an
interactive help system must be
available during editing, the Fl
key could be defined as an exit
command. When the user
requests help by pressing Fl,
the Binary Editor would return
control to the application pro
gram along with the Fl key
stroke. The application would
then branch to the help system
based on the Fl command, and
later reenter the editor to
resume work where it had been
left when Fl had been pressed.

• A "user event handler" may be
defined. Every time the Binary
Editor checks for a pending
keystroke, it calls a procedure
whose address has been passed
to the Editor as a procedure
pointer. (If the pointer passed
is NIL, the call is not made.)
This allows an application
incorporating the Binary Editor
to perform some "cooperative"
multitasking, such as continu
ously maintaining a clock dis
play in the corner of the
screen, or sending characters
from a file out to the system
printer while another file is
being edited.

BUILDING THE BINARY
EDITOR INTO A PROGRAM
Considering all that the Binary
Editor is able to do, application
support for it is almost trivial. In
fact, the smallest possible text edi
tor incorporating the Binary Edi
tor can be written in just 27 lines.
This editor is given in Listing 2,
SIMPLE.PAS. You can invoke
SIMPLE.PAS from the command
line with a text filename:

C>SIMPLE MYFILE.TXT

It edits the file, and saves the file
to disk under the same file name
when exited, with the original ver
sion of the file retained as a .BAK
file. Because SIMPLE.PAS is
uncluttered and easy to
understand, we'll use it as an
example in the following
discussion.

To use the Binary Editor, your
programs must USE both the
BinEd and Crt units:

USES BinEd,CRT;

An ECB (whose type EdCB is
declared in the BINED.HDR file
shown in Listing 1) must be
declared as a variable:

VAR EdOata : EdCB;

Before you can load a file and
call the Binary Editor for editing,
the Editor must be initialized with
a call to a function called InitBi
naryEditor. The initialization task
allocates buffers in memory and
sets up certain fields in the ECB.
The parameters to InitBinaryEdi
tor are important, and bear exa
mining in some detail:

EdData. ECB variable EdData
goes to InitBinaryEditor "empty"
and comes back ready to be
passed to the editor proper.

DataLen. This Word variable
gives the size of the workspace
available to the Binary Editor. A
constant named MaxFileSize may
be imported from unit BinEd, as is
done in SIMPLE.PAS. Its value,
$FFEO, is the largest possible
workspace that may be edited.
However, if less space will do, a
smaller value may be passed here.
Because this workspace is sub
tracted from the heap, using a
smaller workspace will make more
memory available for dynamic
variables used in other parts of
the application calling the Binary
Editor.

CXl and CYl. These are the coor
dinates of the upper left corner of
the window within which the Edi
tor must work. CXl must be less

EdCB =
record

x1, y1, x2, y2 : Byte;
DataSeg : '.lord;
DataSegLen : '.lord;
Options : '.lord;
FileStr : ASCllZptr;
Corrmands : ASCllZptr;
Place1 : ASCllZptr;
Place2 : ASCllZptr;
Event : Pointer;
Buffer : "TextBuffer;
BufSize : '.lord;
Mlstruct : Mlptr;
ComTab: ASCllZptr;
EOtext : '.lord;
CursorPos : '.lord;
BlockStart : '.lord;
BlockEnd : '.lord;
Status : '.lord;
DataPtr : "TextBuffer;

end;

const

{Editor control block in detail}

{UL & LR corners of editor window}
{Segment address of editor data area}
{Requested data area length (bytes)}
{Bit flags for editor options}
{Points to ASCllZ filename}
{Points to string of editor corrmands}
{Not used here}
{Not used here}
{Points to event handling procedure}
{Points to text area}
{Available size for text}
{Points to main installation record}
{Points to terminate corrmand table}
{Current number of chars in text buffer}
{Current cursor position in buffer}
{Start of marked block in buffer}
{End of marked block in buffer}
{Editor status}
{Points to Turbo heap block }
{ allocated for text buffer}

{CRT attributes for normal low blk error}
MonoArray : AttrArray = ($F, $7, $7, $70);
BwArray : AttrArray = ($F, $7, $7, $70);
ColorArray : AttrArray = ($E, $7, $3, $1E);

{---}
procedure CRTputFast(x, y : '.lord; s : string);

{-Use binary editor services to write a string to the screen}
{x in 1 .• 25, yin 1 .. 80}

function ExpandPath(Fname : string) : string;
{-Return a complete path using the binary editor services}

function lnitBinaryEditor(
var Ecllata : EdCb;
DataLen : '.lord;
Cx1 Byte;
Cy1 : Byte;
Cx2 : Byte;
Cy2 : Byte;
'olaitForRetrace : Boolean;
Copt ions : '.lord;
DefExtension : string;

var ExitCommands;
UserEventProcPtr : Pointer
) : '.lord;

{Editor control block}
{Size of binary editor workspace}
{Editor window, upper left x 1 •. 80}
{Editor window, upper lefty 1 •. 25}
{Editor window, lower right x 1 .. 80}
{Editor window, lower right y 1 •• 25}
{True for snowy color cards}
{Initial editor options}
{Default file extension }
{ (must start with a period)!}
{Corrmands to exit editor}
{Pointer to user event handler}

{-Initialize the binary editor, returning a status code}
{

Status Codes -
0 Successful initialization
1 = Insufficient memory space for text buffer
}

function ReadFileBinaryEditor(var EdOata : EdCb;
Fname : string) '.lord;

{-Read a file into the binary editor buffer space, }
{ returning a status code }
{

Status codes -

November/ December 1987 TURBO TECHNIX 39

}

0 = Successful read
1 =File not found, new file assl.llled
2 =File too large to edit

procedure ResetBinaryEditor(var EdData EdCb);
{-Call the editor reset procedure}

function UseBinaryEditor(var Ecl>ata : EdCb;
StartComnands : string) : Integer;

<-Edit file, using startcomnands, and returning an exitcode}
{

Exit codes -
-1 = Editing terminated with ·Ko
0 = Editing terminated with first user-specified exit comnand
1 •••

}

function ModifiedFileBinar~Editor(var Ecl>ata : EdCb) : Boolean;
{-Return true if text buffer was modified during edit}

function FileNameBinaryEditor(var Ed>ata : EdCb) : string;
{-Return the current file pathname of the specified control block}

function SaveFileBinaryEditor(var Ecl>ata : EdCb;
MakeBackup : Boolean) : Word;

{-Save the current file in the editor text buffer,
{ returning a status code }
{

Status codes -

}

0 = Successful save
1 =File creation error
2 = Disk write error
3 =Error closing file

procedure ReleaseBinaryEditorHeap(var EdData : EdCb);
{-Release heap space used by a binary editor control block}

LISTING 2: SIMPLE.PAS

program Silll>le; {SIMPLE.PAS: A silll'le editor using the BINED unit}

uses BinEd, Crt;

const ExitComnands : Char = #0; {No extra exit commands}
var EdData : EdCB; {Editor control block}

procedure Abort(Msg : String);
begin {Abort}

GotoXYC1, 25); Write(Msg); Halt(1);
end; {Abort}

begin {main}
if CParamcount = 0) then

Abort('Usage: SIMPLE filename.ext');
if (lnitBinaryEditor(EdData, MaxFileSize, 1,

True, EdOptlnsert, 11 , ExitComnands, nil)
Abort('Unable to load binary editor.');

if (ReadFileBinaryEditor(EdData, ParamStr(1))
Abort('Unable to read ' + ParamStrC1>>;

ResetBinaryEditorCEdData);
if (UseBinaryEditor(EdData, '') = ·1) then

if ModifiedFileBinaryEditorCEdOata) then
if (SaveFileBinaryEditor(EdOata, True)

Abort('Error saving file.');
GotoXYC1,25);

end. {main}

40 TURBO TECHNIX November/ December 1987

{No filename}

1, 80, 25,
<> 0) then
{Couldn't load editor}
> 1) then
{Couldn't read file}
{Reset for new file}
{Edit the file}
{Was it modified?}

<> 0) then {Save it}

THE BINARY EDITOR

than 80, but I have tested CYI out
to 62 lines on the Genius VHR
display.

CX2 and CY2 are the coordi
nates of the lower right corner of
the Editor's window. Again, CY2
must be less than or equal to 80,
but CX2 works to at least 66 lines.

WaitForRetrace. This flag tells
the Editor whether or not to wait
for vertical retrace before refresh
ing the screen. IBM's original
Color Graphics Adapter (CGA)
displays "snow" when its buffer
memory is accessed during display
scan. Many CGA-compatible dis
play boards use dual-ported
memory and do not have this
problem. For clean displays on all
adapters this parameter should be
set to True. However, if you only
intend to run the editor on a
snow-free adapter, setting Wait
ForRetrace to False will make for
faster screen refresh.

COption. This set of bit flags is
gathered together into a Word.
The bit flags are Editor toggles
that may be changed by various
key commands during editing,
and Options specifies the initial
state of these toggles. The bit flags
may be imported from unit BinEd
as constants whose identifiers
begin with EdOpt. (See the
CONST section of BINED.HDR,
Listing 1.) The easiest way to spec
ify the bit flags is to use the EdOpt
constants and add together any
constants corresponding to the
toggles you wish to assert. For
example, to bring up the Binary
Editor with both insert and auto
indent on but with all other
options off, add together the con
stants EdOptlnsert and EdOpt
Indent and pass the resulting
value in the COptions parameter.

DefExtension. This is a string
specifying a default extension to
be assumed for a file name speci
fied without an extension. Turbo
Pascal's well-known assumption of
a .PAS extension for extension
less file names is this feature in

action. Wildcard characters are
not allowed. Pass an empty string
(") to assume no extension.

ExitCommands. This parameter is
slightly peculiar because it's an
untyped VAR parameter. As
happens with untyped VAR
parameters, the actual parameter
passed in ExitCommands is a
pointer to a region of memory
containing sequences of bytes ter
minated by a NUL character,
binary 0. In C circles this would
be called an "ASCIIZ string." This
NUL-terminated string contains
substrings that the Editor watches
for in the stream of characters
coming from the keyboard. Any
sequence found in the stream
causes the Editor to return control
to the calling logic. The actual
parameter passed in ExitCom
mands may be any type, but the
most convenient thing to do is
define a typed constant array of
Char with the desired values
inside. This is best shown as an
example:

CONST
ExitCorrrnandArray

ARRAY[0 •. 6] OF Char
(#2,AK,AX,#2,AK,AQ,#0);

Here, ExitCommandArray con
tains two separate exit commands:
Ctrl-KX and Ctrl-KQ. The format
for a command is: A binary byte
specifying the length of the com
mand in bytes, followed by the
characters comprising that com
mand. The entire array must be
terminated by a binary 0. The #2
characters in the array tell the
Editor to watch for the following
two characters as an exit
command. There's nothing magi
cal about a two-character
sequence; if you wanted to use
Ctrl-X to exit the editor, the
sequence would be #l, • X. To
search for an "extended" key, use
an initial byte of #0. The charac
ter sequence for Fl 0 would be
#2,#0,#68.

Finally, UserEventPtr is an
untyped pointer that is passed the
address of a FAR-declared proce
dure that executes every time the

T LISTING 3: DEMOOA.PAS

{ DEMOO.PAS Binary Editor 2.00A }
{Copyright 1986,87 (c) Borland International }
{Modified by Jeff Duntemann for Turbo Technix 8/31/87}

program BinaryEditorDemoO;

uses
bined,
crt,
dos; (JD}

{***)
{******************demonstration follows**********************}
{***}
{* This demonstration shows the use of one editor window which *}
{*********works just like a standalone Turbo editor.**********}
{***}

of the editor window}
const

{Coordinates
Windx1 1;
Windy1 = 1;
Windx2 = 80;
Windy2 = 25;
MakeBackup = True;

{Change to 43 for EGA 43-line operation}
{True to create .BAK files}

var
EdData : EdCB; {Editor control block}
ExitCode ; Word;
ExitCorrmand : Integer;
Fname : string;

{Status code set by bin. ed. functions}
{Code for corrmand used to leave editor}
{Input name of file being edited}

Junk : Boolean;
XSave,YSave : Integer;
VidSegment : Word;
VideoBufferSize : Word;
SavePtr -word;
VideoPtr ·word;
VideoSeg Word;
Now DateTime;

const

{JO}
{JD}
{JO}
CJD}
CJD}
{JO}
{JO}

{Corrmands other than -K-o to exit editor}
ExitCorrrnands : array[0 .. 3] of Char
(#2, ·K, ·o, #0);

{Procedures and functions used as part of the demo}

procedure WriteStatus(msg string);
{-Write a status message}

begin {WriteStatus}
GoToXYC1, Windy2);
TextColor(White);
Wri te(msg);

end; {WriteStatus}

procedure ChecklnitBinary(ExitCode : Word);
{-Check the results of the editor load operation}

begin {ChecklnitBinary}
if ExitCode <> 0 then begin

{Couldn't load editor}
case ExitCode of

- I

1 : WriteStatus('lnsufficient heap space for text buffer');
else

WriteStatus('Unknown load error');
end;
GoToXY(1, Windy2);
Halt(1);

end;

November/ December 1987 TURBO TECHNIX 41

end; {ChecklnitBinary}

procedure CheckReadFile(ExitCode : Word; Fname string);
{-Check the results of the file read}

var
f : file;

begin {CheckReadFile}
if ExitCode <> 0 then begin

{Couldn't read file}
case ExitCode of

1 : begin
{New file, assure valid file name}
{$1-)
Assign(f, Fname);
Rewrite(f);
if IOResult <> 0 then begin

CloseCf);
WriteStatus('lllegal file name '+Fname);

end else begin
Close(f);
Erase(f);
Write('New File');
Delay(2000);
WriteCM>;
ClrEol;
Go T oXY C 1 , 1) ;
ClrEol;
Exit;

end;
{$1+}

end;
2: WriteStatus('lnsufficient text buffer size');

else
WriteStatus('Unknown read error'>;

end;
GoToXYC1, Windy2);
Halt(1);

end;
GoToXYC1, 1);
ClrEol;

end; {CheckReadFile}

procedure CheckSaveFileCExitCode : Word; Fname string);
{-Check the results of a file save}

begin {CheckSaveFile}
if ExitCode <> 0 then begin

{Couldn't save file}
case ExitCode of

1 WriteStatus('Unable to create output file •+Fname);
2 : WriteStatusC'Error while writing output to '+Fname);
3 : WriteStatus('Unable to close output file '+Fname);

else
WriteStatus('Unknown write error');

end;
GoToXY(1, Windy2);
Halt(1);

end;
end; {CheckSaveFile}

function GetFileName string;
{-Return a file name either from the command line or a prompt}

var
Fname : string;

begin
if Parameount > 0 then

Fname := ParamStr(1)
else begin

{GetFileName}

42 TURBO TECHNIX November/ December 1987

THE BINARY EDITOR

Binary Editor checks for a pend
ing keystroke. More on this later.

InitBinaryEditor. This function
returns a value of True if the
initialization has completed suc
cessfully. The ECB it returns must
be passed to all subsequent Binary
Editor routines. Once the Editor is
initialized, a file may be read for
editing. This is done with the
function ReadFileBinaryEditor. It
takes the initialized ECB as one
parameter and a file name as the
other, and returns a status code as
a Word value. The status code will
be one of three values: 0, indicat
ing successful load; 1, indicating
that no file is found and that a
new file of that name will be
created; and 2, indicating that the
indicated file was too large to load
into the current Editor workspace.

As long as the initialized ECB
remains intact, the Binary Editor
can be exited and reentered with
out disturbing the file under edit
in the workspace. Therefore, each
time the Editor is entered after a
new file has been loaded into the
workspace, the ResetBinary
Editor procedure must be called
with the ECB as its parameter, to
inform the Editor that the file in
the workspace is in fact new.

To actually begin editing the
loaded file, invoke the function
UseBinaryEditor with the ECB as
one parameter and a string con
taining one or more "start com
mands" as its other parameter.
Any sequence of control-character
commands may be passed in the
start commands string, followed
by a NUL character. For example,
to move immediately to the end of
the loaded file as soon as editing
begins, pass Ctrl-QC in the Start
Commands string.

The exit codes returned by Use
BinaryEditor specify how the
editor was exited. A value of -1
indicates that the Ctrl-KD
command was used. Ctrl-KD is the
default and only valid exit code,
unless others are specified during
the call to InitBinaryEditor.

Values of 0 or greater indicate
which one of the user-specified
exit codes was issued. A 0 indi
cates the first command in the
ExitCommands ASCIIZ string, 1
the second command in the
string, and so on. The exit command
itself is not returned.

Exiting the Binary Editor does
not automatically save any
changes made to the file in the
workspace. That must be done
explicitly using function SaveFile
BinaryEditor. Its first parameter is
the ECB and its second is a Bool
ean value that if True, will cause
the last saved version of the file to
be retained as the backup version
with a .BAK file extension.

A Boolean function, Modified
FileBinaryEditor, is available that
returns a True value if the file in
the workspace was modified since
the last time the file was saved.
This allows an application to
decide whether or not the work
space file must be saved.

A MORE SERVICEABLE
EDITOR
SIMPLE.PAS clearly illustrates
the essential logic in using the
routines in BinEd, but it is a min
imal editor at best, especially with
respect to error handling. Listing
3 shows a much better text editor
distributed with the Turbo Pascal
Editor Toolbox. DEMOO.PAS has
more of a user interface: If no file
name is entered on the command
line, it prompts for one. It also
gives the user the option of not
saving a file once it has been
edited. Most important, when a
file I/O error occurs, it provides
detailed feedback in cases where
SIMPLE.PAS can only shrug.

To demonstrate how easy it is to
build upon the Binary Editor, I
have added some features to
DEMOO.PAS:
• It saves the DOS text screen to

the heap before it alters the
screen, and restores the text
screen just before it returns to
DOS. This can be useful when
you need to edit a number of

Write('Enter file name to edit: ');
Readln(Fname);

end;
if Fname = 1 ' then

Halt;
GetFileName := Fname;

end; {GetFileName}

function ExitBinaryEditor(var EdOata EdCB;
ExitCorrmand Integer) Boolean;

{-Handle an editor exit - save or abandon file}
var

ExitCode : Word;

function YesAnswer(prompt : string) : Boolean;
{-Return true for a yes answer to the prompt}

var
ch : Char;

begin {YesAnswer}
WriteStatus(prompt);
repeat

ch := UpCase(readkey);
unt i l ch in ['Y • , • N •] ;
Write(ch);
YesAnswer :=(ch= 'Y');

end; {YesAnswer}

begin {ExitBinaryEditor}
case ExitC0111Tiand of

-1
begin

ExitCode := SaveFileBinaryEditor(EdOata, MakeBackup);
CheckSaveFile(ExitCode, FileNameBinaryEditor(EdOata));
ExitBinaryEditor := True;
GoToXYC1, Windy2);

end;

0 : CK-Q}
begin

if ModifiedFileBinaryEditor(EdOata) then
if YesAnswer('File modified. Save it? (Y/N) ')then begin

ExitCode := SaveFileBinaryEditor(EdOata, MakeBackup);
CheckSaveFile(ExitCode, FileNameBinaryEditor(EdOata));

end;
ExitBinaryEditor := True;
GoToXYC1, Windy2);

end;

end;
end; {ExitBinaryEditor}

{$F+} {All User-Event procesudures 111.1st be FAR calls!}
PROCEDURE ClockerCEventNo,lnfo : Integer);

VAR
Hours,Minutes,Seconds,Hundredths : Integer;
TimeBuf,TimeT~ : String;

BEGIN
GetTime(Hours,Minutes,Seconds,Hundredths);
Str(Hours:2,TimeBuf>;
Str(Minutes:2,TimeT~>;
1 F TimeT~C1l = • • THEN TimeT~C1l := 10 1

;

TimeBuf := TimeBuf+ 1 : 1 +TimeT~;
Str(Seconds:2,TimeT~>;
IF TimeT~C1l = • • THEN TimeT~C1l := 101 ;

TimeBuf := TimeBuf+ 1 : 1 +TimeT~;
CRTPutfastC65,1,TimeBuf)

END;

November/ December 1987 T URBO TECHNIX 43

The Borland Binary Editor
Command Set
CURSOR MOVEMENT COMMANDS

Character left
Character right
Word left
Word right
Line up
Line down
Scroll up
Scroll down
Page up
Page down
Beginning of file
End of file
Beginning of line
End of line
Top of screen
Bottom of screen
Top of block
Bottom of block
Previous cursor position
Jump to marker 0 .. 3
Set marker 0 .. 3

Ctrl-S or Left Arrow
Ctrl-D or Right Arrow
Ctrl-A or Ctrl-Left Arrow
Ctrl-F or Ctrl-Right Arrow
Ctrl-E or Up Arrow
Ctrl-X or Down Arrow
Ctrl-W or Ctrl-Up Arrow
Ctrl-Z or Ctrl-Down Arrow
Ctrl-R or Pg Up
Ctrl-C or Pg Dn
Ctrl-QR or Ctrl-Pg Up
Ctrl-QC or Ctrl-Pg Dn
Ctrl-QS or Home
Ctrl-QD or End
Ctrl-QE or Ctrl-Home
Ctrl-QX or Ctrl-End
Ctrl-QB
Ctrl-QK
Ctrl-QP
Ctrl-QO ... Ctrl-Q3
Ctrl-KO ... Ctrl-K3

INSERT AND DELETE COMMANDS

New line Ctrl-M or Enter
Insert line Ctrl-N
Insert control character Ctrl-P

EX: Ctrl-P G inserts BEL (Ctrl-G)
Tab Ctrl-I or Tab
Delete current character Ctrl-G or Del
Delete character left Ctrl-H or Backspace
Delete word Ctrl-T
Delete to end of line Ctrl-QY
Delete line Ctrl-Y

BLOCK COMMANDS

Begin block
End block
Copy block
Move block
Delete block
Hide block
Mark single word
Read block from file
Write block to file
Print block

MISCELLANEOUS COMMANDS

Exit editor
Toggle insert mode
Toggle autoindent
Toggle fixed tabs/ smart tabs
Restore line
Search for string
Search and replace string
Repeat last search operation

F7 or Ctrl-KB
F8 or Ctrl-KK
Ctrl-KC
Ctrl-KV
Ctrl-KY
Ctrl-KH
Ctrl-KT
Ctrl-KR
Ctrl-KW
Ctrl-KP

Ctrl-KD
Ctrl-V or Ins
Ctrl-QI
Ctrl-0 F
Ctrl-QL
Ctrl-QF (See notes on options)
Ctrl-QA (See notes on options)
Ctrl-L

44 TURBO TECHNIX November/ December 1987

NOTES

SEARCH OPTIONS

B - Searches backwards, from the
current cursor position toward
the beginning of the fil,e.

G - Search globally, i.e., search the
entire fil,e starting at the begin
ning, or backward from the end
of the fil,e if combined with the B
option.

#(a number) -
Find the nth position of the
search string, starting at the
current cursor position.

U - Ignore case and treat all charac
ters as uppercase.

W - Search for whol,e words only;
skip patterns embedded in other
text.

REPLACE OPTIONS

N - Replace without asking.

THE BINARY EDITOR

files in a directory and don't
want to have to display the
directory again before each
edit,just to make sure you've
spelled a file name right.

• It uses the user-event feature of
the Binary Editor to maintain a
clock display in the upper left
corner of the screen. The
address of procedure Oocker is
passed to the Binary Editor
during the call to InitBinaryEd
itor by using the Addr func
tion. A user-event procedure
must be declared as a FAR
procedure by enclosing it
between the {$F+} and {$F-}
compiler directives. The proce
dure may be given any name,
but it must be declared with two
parameters (again, the names
are not important) of type
Word, as shown in Listing 3.

The shaded lines of code are the
continued on page 46

If you ever
wanted to

take a crack
at assembly

language,
You probably already

know that assembly
language subroutine.s
are the smarte.st way to
get the faste.st programs.

But if the complexitie.s
of working in assembler
made you think twice,
here's some good news.
We've made Microsoft®
Macro Assembler Version
5. 0 a lot easier to use.

We eased the learning
process by giving you the be.st
support around. We com
pletely revised our docu
mentation. The new Mixed
Language Prograrmning
Guide give.s you step by step
instructions for linking your
assembly code with Microsoft
QuickBASIC, C, FORTRAN,
Pascal and other language.s. And
you get a comprehensive refer
ence manual with listings of the
instruction set and example.s of each instruc
tion. We didn't stop there, though.You also
get an on-disk collection of template.s
and example.s.

We've also dramatically simplified the
high-level language interface. In just a few

nows
the time.
simple steps, you can be
calling Macro Assembler
subroutine.s from pro
grams written in your
favorite language.

Now that you're writ
ing the faste.st programs,
Microsoft is giving you
the faste.st way to de
bug them. For the first
time, we've added our
Code View® debugger
to Macro Assembler.
With source code

and comments on your
screen, Microsoft Code

View make.s debugging pro
grams containing assembly

language subroutine.s a snap.
And you'll be glad to know that you

don't sacrifice any speed for all the ease of use.
We took the faste.st Macro Assembler on

the market and made it even faster.
So what are you waiting for? Get your

hands on Microsoft Macro Assembler and
see what it's like to break your personal
speed limit

For more information or for the name of your nearest
.\\icrosoft dealer, call (800) 426-9400. In Washington State and

Alaska, (206) 882-8088. In Canada, call (416) 673-7638.

Microsoft, the Microsoft logo and U:xleView are registered trademarks of Microsoft Corporation.

(SF·>

(<<<< Monochrome >>>>)
(From: COMPLETE TURBO PASCAL by Jeff Dt.11temam)
< Scott, Foresman & Co. 1986 ISBN 0·673·18600·8 >
< Descrfbed in section 17.2 •• Last mod 2/1/86 >
(HIGHLY specific to the IBM PCI >

FUNCTION Monochrome : Boolean;

VAR
Regs : Registers;

BEGIN
INTR(17,Regs);
IF (Regs.AX AND $0030) = $30 THEN Monochrome := True

ELSE Monochrome := False
END;

begin {OemoO}
XSave := WhereX; YSave := WhereY; {JO)
VideoBufferSize := Windx2*Windy2*2; {JO}
GetMern(SavePtr,VideoBufferSize>; {JO}
IF Monochrome THEN VidSegment := SBOOO ELSE {JD}

VidSegment := SB800; {JD}
VicleoPtr := Ptr(VidSegment,0); {JD}
Move(VicleoPtr",SavePtr ",VideoBufferSize); {JD}

{Get a file name}
Fname := GetFileName;

{Initialize a window
ExitCode :=
lnitBinaryEditor(
Ec:()ata,

for the file}

MaxFileSize,

llindx1,
Iii ndy1,
llindx2,
Windy2,
True,
EdOptlnsert+EdOptlndent,
'.PAS' I

ExitCorrmands,
AddrCClocker));
ChecklnitBinary(ExitCode);

{Read the file}

{Editor control block }
{Size of data area to reserve for}
{binary editor text buffer, SFFEO max}
{X of upper left corner; 1 .. 80)
{Y of upper left corner}
{X of lower right corner}
{Y of lower right corner}
{True = wait for retrace on CGA cards}
{Initial editor toggles}
{Default extension for file names}
{Corrmands which wi ll exit the editor}
{JD: Add a clock in the corner}

ExitCode := ReadFileBinaryEditor(EdData, Fname);
CheckReadFile(ExitCode, FileNameBinaryEditor(EdData));

{Reset the editor for the new file}
ResetBinaryEditor(EdData);

{Edit the file}
ExitCorrmand :=
UseBinaryEditor(
EdData,
I I) ;

{Editor control block for this window}
{No startup corrmands passed to editor}

{Handle the exit by saving the file or whatever}
Junk := ExitBinaryEditor(EdData, ExitCommand);

{Release heap space used by the editor data structure}
ReleaseBinaryEditorHeap(EdData);

Move(SavePtr",VideoPtr· ,VideoBufferSize); {JD}
FreeMern(SavePtr,VideoBufferSize); {JD)
GotoXYCXSave,YSave-1); {JD}

end. {DemoO}

46 TURBO TECHNIX November/ December 1987

THE BINARY EDITOR

continued from page 44
modifications made to the
distribution file DEMOO.PAS.

OTHER CONSIDERATIONS
The ECB occupies a central place
in the Binary Editor's scheme of
things. It serves as a high shelf
where the Editor can temporarily
shove its important information,
and it also offers the user certain
special-purpose hooks into the
Editor's operation.

The CursorPos field is initial
ized to zero, and when a file is
first edited, the cursor is posi
tioned to the offset given. As the
user moves the cursor through the
file being edited, the Editor
updates CursorPos in the ECB.
Setting CursorPos to some other
offset before calling UseBinary
Editor will bring the file to the
screen with the cursor offset that
many characters into the file .

Similarly, the BlockStart and
BlockEnd fields in the ECB are
initialized to zero, but may be
given values that specify the
boundaries of an initially marked
block. If the Binary Editor is
entered with bit 4 of the Options
field set to 1, the block will be
highlighted. This bit is toggled by
the Ctrl-KH command.

THE EDITOR AS A BASIC
MECHANISM
In mechanical engineering
there are certain fundamental
mechanisms (lever, screw,
inclined plane) that make up
larger mechanisms. The same is
true of large application pro
grams. These programs contain
basic mechanisms such as sort
routines, tree managers, and text
editors that have definitely "been
done" and yet still must be there,
and still must work correctly. I
have written my own text editor
(in interpreted. BASIC, mon Di,eu!)
and would just as soon not have
the pleasure again, thank you.
The Borland Binary Editor pro
vides a very serviceable editor
-a basic mechanism in well
documented, bolt-on form. •

Listings may be downloaded from
CompuSeroe as EXBINED.ARC.

SENSE AND SEMICOLONS
Semicolons are for separating-that's the only rule
you need to remember.

Jeff Duntemann

• SQUARE ONE

Little things do count, and if the impor
tance of little things is measured by the
size of the headaches they cause, then in
Pascal circles the humble semicolon
stands apart. Newcomers to the language,
desperate to find sense in Pascal's bewil-

dering array of syntactic rules and regulations, too
often see nothing but capriciousness in the placing of
semicolons. There are places where they must go,
places where they can't go, and places where it
doesn't seem to matter whether rhey go or not There
are times when it can send you screaming out into
the den to watch "Love Boat" reruns, sure that
nothing makes sense in the world anymore.

Of course, like everything else in Pascal, semicolon
placement does make sense. The problem is that the
sense in semicolon placement proceeds from the
larger structure of the Pascal language-and in first
facing the language, newcomers tend to take arms
against a sea of details, losing the big picture in the
process. It's time to take a closer look at semicolons
and the sense behind them.

THE ICE CREAM SODA METAPHOR
But first, a profound truth: The Turbo Pascal com
piler drinks your program through a straw. It's an
easy thing to forget. You look down at your neatly
indented pages of source code and see a two
dimensional landscape of program structures. The
compiler has no comparable view from a height. It
opens your source file, reads the first character, and
then the next character, and then the next, remem
bering certain essential things as it does its work.
Still, its "view" of the language is essentially one
dimensional.

Also, remember that source code formatting is
utterly ignored by the compiler. The two program list
ings in Figure 1 are completely identical from the
compiler's perspective. Sadly, all your carefully consi
dered indenting and spacing are left behind in the
bottom of the glass as the program disappears up the
straw. What we call "whitespace" (space characters,
tab characters, carriage returns) is ignored beyond

what it takes to delineate reserved words and identifi
ers from one another. In other words, one white
space character is required to separate Figure l's
BEGIN from ClrScr (a carriage return) and the sev
eral space characters after the carriage return are
ignored.

Formatting in Pascal is ignored to free the lan
guage from the tyranny of line structure, a bond that
BASIC, FORTRAN, COBOL, and other early compu
ter languages are only just now beginning to break.
(Turbo Basic breaks it quite thoroughly, prompting
some people to say it's becoming distinctly Pascal-ish.)
To allow you to format source code as you please, the
compiler must ignore any and all such formatting.
The soda straw through which it sees your source
code is a set of blinders that forces it to see only what
matters.

But the problem remains: Whitespace isn't always
enough to tell the compiler when a statement ends.
Consider these two equally valid assignment
statements:

Foo :=
Pl + 0.6

Foo := Pl + 0.6 - Foo

Given that formatting is ignored, and that the com
piler is examining these statements character by char
acter, how does it know when they end? The com
piler cannot "look ahead" to see what's coming up
the straw and use that information to decide whether
or not the statement it is currently compiling has
ended. And because of the way it works, a "one-pass"
compiler like Turbo Pascal cannot postpone a deci
sion on ending a statement while it sucks up and
examines a few additional characters. Once it passes
a point in the source code, it never goes back.

Enter the semicolon: Its job is to tell the compiler
when a statement is complete. When the compiler
encounters a semicolon, it assumes that the current
statement has ended, and that the next character up
the straw begins a new statement. This is why we say

November/ December 1987 TURBO TECHNIX 47

PROGRAM Rooter;

VAR
R,S : Real;

BEGIN
ClrScr;
\.lri teln

('>>Square root calculator<<');
\.lri teln;
\.lri te

C '»Enter the number: ') ;
ReadlnCR>;
S := Sqrt(R);
\.lri teln

C' The square root of ',R:7:7,' is ',S:7:7, '.')
END.

PROGRAM Rooter;VAR R,S : Real;BEGIN ClrScr;
\.lritelnC'>>Square root calculator<<');\.lriteln;
\.lrite('>>Enter the number: ');ReadlnCR);S := Sqrt(R);
\.lriteln(' The square root of ',R:7:7,' is ',S:7:7, '·')
END.

Figure 1. Two views of program Rooter.

SEMICOLONS

that the semicolon is a statement
separator.

THE FREIGHT CAR
METAPHOR
When you have a series of state
ments, a semicolon must stand
between one statement and the
next. One way to think about this
is to imagine a line of boxcars on
a rail siding. Between every pair
of boxcars is a pair of linked
couplers. If Pascal statements were
boxcars, each pair of couplers
would be a semicolon.

Now, confusion may arise if you
mistake BEGIN and ~ND for box
cars. BEGIN and :f:ND are not
statements. They are reserved
words and act only as markers sig
naling the beginning and ending
points of a compound statement.
With that in mind, the semicolon
situation in the following com
pound statement should make
sense:

BEGIN
I : = 11;
J := 17;
K := 42

END

There is no semicolon after the 42
because there is no statement after
the 42. The statement K:=42
doesn't need separating from any
thing, therefore, it has no semi
colon after it.

When you have a
series of statements, a

semicolon must
stand between

one statement and
the next.

THE INVISIBLE MAN RETURNS
If only it were that simple. Aggra
vated beginners will be quick to
point out that Turbo Pascal will
not complain if they put a semi
colon after the 42 anyway. True,
true. To explain the sense in that,
I have to point out that the follow
ing will compile just as readily:

BEGIN
I := 11;
J := 17;
K : = 42;;;;;;;;;

END

Can there be couplers without
boxcars? Yes, if they are invisib/,e
boxcars

The culprit here is a Pascal
abstraction called the null state
ment. Part of the syntactic rules of
Pascal enable an "invisible" state
ment to exist anywhere an ordi
nary statement can exist. It's not a
matter of some unseen special
character the way a TAB or BEL
character is unseen; it's very much
there in your file . The null state
ment is simply nothing at all.

48 TURBO TECHNIX ovember/ December 1987

Between each of the multiple
semicolons after the 42 is a null
statement. If there were only one
semicolon after the 42 (where a
newcomer frequently places one)
it would serve to separate the
statement K:=42 from a null state
ment immediately following it.
The null statement does nothing
and generates no code.

Null statements seem pointless
at first glance until you under
stand why they are necessary. The
null statement is Pascal's NO OP
(No Operation, from the famous
8086 machine instruction that
does nothing.) It holds a place in
a program where a statement can
legally go but where no statement
is wanted.

For example, consider this
statement:

IF NOT Diskettelslnserted
THEN RequestADisk

In a hypothetical program, the
Boolean variable Diskettelsln
serted contains a value of True
any time there is a diskette in a
given drive. The procedure
RequestADisk asks the user to
insert a diskette in the drive. The
logic of the above statement is
plain, but it would be plainer to
eliminate the NOT:

IF Diskettelslnserted
THEN {NULL}
ELSE RequestADisk

This reads less like pig latin and
better follows the conventional
logic of human conversation: If
the diskette is inserted, do
nothing; otherwise insert a
diskette.

The comment NULL is there
for readability's sake only. The
compiler ignores it. Between the
THEN and ELSE reserved words,
however, is a genuine null state
ment. Pascal allows them primar
ily to enable more flexibility in
writing structured statements like
the (admittedly simple) example.

The previous example only
shows why the null statement is
supported; it doesn't address semi
colons. Because there are no
other statements between THEN
and ELSE there is no need for a
semicolon.

A better, if more complex,
example of null statements in use
involves the CASE statement. Con

continued on page 50

A DEAL YOU CAN'T REFUSE!
FREE*

Turbo C® or

FREE*
QuickC™ or

FREE*
Norton on Line

(Borland) (Microsoft) Programmers Guide for C'"

* If you ALREADY own one, get a FREE REFUND . .. See special offer.

C WHY YOU CAN'T REFUSE
f(:p-"" AC COMPILER without a good add-on library is like a PC without a keyboard ...

it won 't do what you want it to do.
ft :P-"" GAIN C POWER Add capabilities your compiler library does NOT have, e.g.:

IS> Easy menuing
s Flexible powerful windowing

s Advanced string manipulation
IS Formatted data entry

IS Powerful cursor. video and attribute control
1Si Time and date arithmetic

- display default values
- calculator style entry option

1Si Sample code and abundant examples im;. 500 functions you need

SAVE TIME, TIME, TIME: man-years on development, calendar months on schedule!

SMALLER PROGRAM SIZE: your application code can be up to 100% smaller!

EASY for beginners! POWERFUL for professionals!

INSTANT INSTALLATION UTILITY included!

SUPERB DOCUMENTATION: time saving, helpful, clear, complete, instructive.

BUSINESS USERS: FREE 3 machine site license (C Library & Power Windows).

FULL SOURCE CODE! NO ROYALTIES on products you develop.

FREE UTILITY: To convert Turbo Pascal code to C code.

FREE: Either Turbo C, or QuickC or Norton On-Line Programming Guide for C.

SAVE MONEY! SAVE TIME! DON'T WAIT ORDER NOW!
SATISFACTION GUARANTEED

POWER WINDOWS'"
MOST POWERFUL YET

POP-UP/PULL DOWN/OVERLAP
Menus/Overlays

Help Screens
Messages/Alarms

ZAP ON/OFF SCREEN
FILE-WINDOW MANAGEMENT

Horizontal & Vertical Scrolling
Word Wrap & Line Insertion
Cursor/Attributes/Borders

Many types of menus. Highlighting.
Move data between files. keyboard.
program and windows. Status Imes.
Change s1zellocat10nloverlappmg. Move!
add/delete/cascade windows.
5 disks $159.95

>(.SPECIAL OFFER
Free Turbo C or Ou ickC or Norton On Lme
Programmers Guide for C with purchase ol C Staner
Package, C Business Library, C Function Library or
Power Windows. Even if you already own Turbo C or
Qu1ckC or Norton On Line Programmers Guide for C ,
we will refund up to the full purchase pr ice of one of

~:6:a~:c~ra8e~u~\~he~~\~~:~r~~se of C Starter

(Limited time offer ... Direct from Entelekon only) CALL (713) 468-4412

C FUNCTION LIBRARY
BEST YOU CAN GET

HUNDREDS OF FUNCTIONS
FULLY TESTED

BETTER FUNCTIONS
Most complete screen handling plus
graphics; cursor/keyboard/data entry, 72
stnng functions with word wrap; status
and control; utility/DOS BIOS!t1me/data
functions; pnnter control & more. Special
Functions.
7 disks $159.95

C BUSINESS LIBRARY
INCLUDES C FUNCTION LI BRARY, POWER
WINDOWS, SUPERFONTS FOR C , B-TREE
LIBRARY, ISAM

ALL for $299.95
(A $500.00 VALUE)

B-TREE LIBRARY & ISAM
DRIVER

POWERFUL DATA MANAGER
FAST! EASTY TO USE!

16.7 MILLION RECORDS/FILE
16. 7 MILLION KEYS/FILE

FixedNariable length records.
Fast 8 -tree indices. Add/remove keys
Find f1rst!last!nextlany key Find keys by
Boolean selection. Readl wnte!delete or
add records to file .
Full source. No royalties .$129.95
Multi-User option available.

C STARTER PACKAGE
INCLUDES C FUNCTION LIBRARY, POWER
WINDOWS, SUPERFONTS FOR C

ALL for $199.95
(A $370.00 VALUE)

Entelekon
12118 Kimberley, Houston , TX 77024 71 3-468-4412

SINCE 1982

VISA-MASTERCARD-CHECK-COD

SEMICOLONS
sider this statement:

CASE CourseGrade OF
'A': PrintConmendation;
'B':
'C': I

'D': PrintWarningNote;
'F': PrintFailureNote
ELSE GradingSystemError

END

In a hypothetical grading system
for a school, this CASE statement
decides what action to take based
on a course grade value. An 'A'
grade generates a printed com
mendation, while a 'D' generates a
warning note and an 'F' a notifica
tion of course failure. No action
needs to be taken for 'B' or 'C'
grades. Grades other than 'A', 'B',
'C' 'D' and 'F' are undefined and
ge~er~te an error message indi
cating the grade was entered
incorrectly.

Note that for 'B' and 'C' grades
there is only a semicolon after the
case label. These semicolons are
required to avoid a syntax error,
because every case label must
have a statement. Here, case lab
els 'B' and 'C' have only null state
ments, but null statements are just
as valid as "real" statements. They
indicate to the compiler (and to
the human being who has to read
the code) that nothing need be
done.

Another interesting thing about
the CASE statement example
appears when you try to add mul
tiple null statements after one of
the existing statements, much like
we did earlier after the K:=42
statement:

CASE CourseGrade OF
'A': PrintConmendation;
'B':
'C':
'D':
IF':
ELSE

END

,
PrintWarningNote;;;;
PrintFailureNote
GradingSystemError

Turbo Pascal will kick this out
as a syntax error. Why? Well,
within a CASE statement, each
case label must have either a sin
gle statement or a compound
statement bounded by BEGIN
and END. PrintWarningNote; by
itself is a single statement. Print
WarningNote;; (which has a null
statement between the two semi
colons) is neither a single state
ment nor a compound statement,

and thus generates a syntax error.
Null statements are often visible

only by virtue of a semicolon, so
understanding null statements
and where they are allowed can
only help you understand the
placement of semicolons. Again,
as with the first example using the
IF statement, I recommend using
a comment like {NULL} to mark
the position of a necessary null
statement. It's rather like the ban
dages on the Invisible Man;
they're there to keep the guy out
of trouble.

IF, IF IF IS NECESSARY, YOU
GO ASTRAY ...
One of the most common semi
colon errors, especially for Pascal

This rule, at least, is
fairly simple:
A semicown

immediawly be/ ore
an ELSE keyword is

always an error.

newcomers, is in the IF statement.
Like any statement, an IF state
ment must be separated from any
following statement with a semi
colon. Unlike most Pascal con
structs, IF has an optional portion,
signaled by the reserved word
ELSE. The ELSE portion of the
statement is often put on a separ
ate line for neatness' sake, conse
quently newcomers sometimes
code up something like this:

IF TanklsFull THEN Agitate;
ELSE AddReagent;

Tidy as it looks, and as much as it
resembles normal Pascal practice,
Turbo Pascal won't care for this at
all. What we have here is one state
ment, and the semicolon after
Agitate tries to separate it into
two. The ELSE portion cannot
stand alone and therefore
becomes an error. This error is so
common that it has been named
"freestanding else" by harried
CSlOl professors.

50 TURBO TECHNIX November/ December 1987

This rule, at least, is fairly sim
ple: A semicolon immediately before
an ELSE keyword is always an error.

The IF statement situation is
worsened by the fact that IF state
ments are frequently nested.
Unless there are compound state
ments embedded within a nested
IF statement, there is no need for
semicolons. This may at times pro
duce the somewhat anomalous
situation where code runs for lines
and lines and lines without any
semicolons at all. Listing 1 is a
good example. What looks like a
fairly complicated function body is
actually only two distinct state
ments: One short 1/0 port read
followed by a whopper of a nested
IF statement The IF statement is
the tinted portion of the listing.

Function Button reads the cur
rent state of the buttons attached to
either of the two PC joysticks. (It is
thus similar to the STRIG function
in Turbo Basic.) There are two pos
sible joysticks, with each supporting
two possible buttons. The current
state of all four possible buttons is
kept in the high four bits of the
byte stored at 110 port $201.

Button is passed a joystick
number (1 or 2) in StickNumber
and a button number (1or2) in
ButtonNumber. What Button does,
functionally, is single out the one
requested bit of the four button
bits and translate the state of that
bit (either off or on) to a Pascal
Boolean value of either Trne (if
the button is pressed) or False (if
the button is not pressed.) Num
bers greater than two passed in
either parameter will guarantee a
Boolean return value of False.

The algorithm might be called
"divide and question." We first ask
of the parameters, "Is it stick# 1 ?"
If stick# 1 is in fact the joystick we
wish to test, we then ask, "well,
then, is it button #l?" IfButton
Number is indeed 1, we can then
test the state of the bit belonging to
stick #l , button #l by masking out
the appropriate bit and comparing
the bit to zero. Note that the bits
are "active low;" when a button
is pressed, its bit is set to zero,
not one.

If it is not stick #l, it will then be
either stick #2 or an invalid stick
number. And, if it is not button#} ,
it will be either button #2 or an

invalid button number. For each of
the tests there are two possibilities.
This is a situation tailor-made for
nested IF statements. Turbo Pascal
"understands" when a statement in
the next level of nesting begins
because of the structure of the IF
statement: After THEN begins a
new statement; and after ELSE
begins a new statement And
because the final "action" to con
vert a bit number to a Boolean
value is a single assignment of a
Boolean expression, no compound
statements are involved. And no
semicolons.

There is probably some addi
tional semicolon arcana lurking
about the comers of the Pascal lan
guage definition, but we've looked
at most of it To review:
1. Semicolons separate statements

in a compound statement; that
is, a series of statements
bounded by BEGIN and END.

2. Line structure and source code
formatting are ignored by the
compiler. Carriage returns tell
the compiler nothing about
where statements begin and
end. Semicolons do that

3. The "null statement" is a sym
bolic abstraction that can exist
legally anywhere a real state
ment can. This is why you can
have a semicolon immediately
before the END reserved word;
the semicolon separates the last
real statement in the compound
statement from an "invisible"
null statement

4. A semicolon immediately before
EIBE is always an error.

You needn't commit any of this
to memory as long as you fathom
the sense of what semicolons are
for. Look for the higher principles
in the language syntax, where
you'll find that Pascal nearly always
makes perfect sense. Conversely,
trying to memorize a blizzard of
detail usually leads to headaches.
Finally, you can always learn these
things (as I did) by tearing your
hair out, so long as you remember
(as I failed to do) that eventually
you run out of hair. •

Listings may be downloa<kd from
CompuServe as SEMICLN.ARC.

LISTING 1: BUTTON.SRC

{----BUTTON.SRC--- ! ----}
{ }
< by Jeff Duntemann }
< Turbo Pascal 4.0 -- Last update 9/22/87 }
{ For "Sense and Semicolons" -- TURBO TECHNIX V1#1 }
{ Adapted from TURBO PASCAL SOLUTIONS by Jeff Duntemann }
{ }
< BUTTON.SRC reads the state of the joystick buttons. }
< It does *NOT* read the XY value of the joystick itself-- }
< for that you need assembly language. }
{ }
{ The button switch states are maintained in the high 4 }
< bits of input port $201 for both PC-supported joysticks. }
< The bitmap looks like this: }
{ }
{ j76543210j }

~ I I 1-----------------> Button #1 joystick #1 ~
{ -------------------> Button #2: joystick #1 }
< ---------------------> Button #1, joystick #2 }
{ -----------------------> Button #2, joystick #2 }
{ }
< The low four bits are used to test the XY values; we }
< ignore them here. }
{ }
< One important thing to keep in mind is that a LOW (0) bit }
{ indicates a button DOWN and a HIGH bit (1) indicates a }
< button UP. That's why we test against a 0 bit rather }
< than a 1 bit. }
{------------------------------- -------------------------------}

FUNCTION Button(StickNumber,ButtonNumber : Integer) : Boolean;

VAR
PortValue : Byte;

BEGIN
PortValue := Port[$201l;
IF StickNl.lllber = 1 THEN

< Read the joystick 1/0 port }
< For joystick #1 }

IF ButtonNl.lllber = 1 THEN
Button := CCPortValue AND $10) = 0)

ELSE
IF ButtonNl.lllber = 2 THEN

Button := CCPortValue AND $20)
ELSE Button := False

= 0)

ELSE

END;

IF StickNl.lllber = 2 THEN { For joystick #2)
IF ButtonNl.lllber = 1 THEN

Button := CCPortValue AND $40) = 0)
ELSE

IF ButtonNl.lllber = 2 THEN
Button := CCPortValue AND $80) = 0)

ELSE Button := False
ELSE Button := False

November/ December 1987 TURBO TECHNIX 51

Ii TAKING CHARGE OF DOS
VOLUME LABELS
Handle disk volume labels without handles-use
Extended FCBs instead.

Kent Porter

Of all the many features and convenien
ces DOS offers, probably none is as neg
lected as the volume label. It's not hard to
see why; DOS works just as well with disks
that don't have one as with those that do.

WIZARD _ ___ In fact, DOS doesn't even do anything
with the label except to display it (or a message saying
there isn't one) when you list the directory, and there
are no DOS calls that specifically manipulate the
label. So why bother with it?

Labels can be useful for a number of things. One
example is detecting when a diskette has been
switched while files are still open. Another is in safe
guarding sensitive information by refusing to write to
a disk that lacks the right label. This article examines
some uses for labels, and shows how to read, write,
and modify them from within Turbo C programs.

First let's pin down what a label is, and how it's
stored on disk. There's nothing magical about a label.
It's simply a special entry in the disk's root directory.
All file entries in DOS 2.0 and higher carry a byte
describing the file's attributes (normal, hidden, read
only, etc.). A label is a directory entry with an attri
bute byte whose value is 08H. No space is allocated to
the entry. It's much like a file that was created and
then closed without any data being written to it. The
only space a label occupies, then, is the 32 bytes
taken by each directory entry.

This explains why a label is limited to 11 charac
ters. In the directory, DOS reserves 11 bytes for a file
name, with the name itself being left justified and the
extension rightjustified. DOS bypasses this conven
tion when storing and retrieving a label, instead left
justifying the label in the 11 characters and padding
to the right with spaces to fill unused positions. You
can have up to 11 characters in a label because that's
how many bytes there are in a directory entry.

52 TURBO TECHNIX November/ December 1987

The attribute byte governs how DOS treats each
entry. When you list the directory, you only see nor
mal and read-only files. The DIR command skips
over those with other attributes. That's why IBM
BIO.COM, IBMDOS.COM, and other hidden and
system files don't show up in the listing. Neither does
the label, except in a special message at the top.

Most of the DOS file-management routines, and
all of them in Turbo C except for findfirst() and find
next(), don't deal with files having unusual attributes.
You have to work at it when fooling with the label,
and writing a label should be considered armed and
dangerous inasmuch as it can potentially maim the
directory. Later we'll deal with safe methods for
manipulating labels from within Turbo C programs.

Meanwhile, let's consider some uses for labels.

WHAT ARE THEY GOOD FOR?
The mainframe world has been using volume labels
for years. No doubt that's where the idea came from
when Microsoft set out to create DOS. They're partic
ularly useful for identifying removable media such as
disk packs and diskettes, but they can also serve to
distinguish among fixed media such as multiple hard
disks. In short, a label answers the question, "Who
are you?"

There are several reasons you might want to ask
this of a disk. One is to determine whether a diskette
has been switched in the drive before writing to an
open file. I have horror stories, and probably most
other heavy PC users do too, about switching disks to
save multiple copies of a file being edited. Later you
discover that the disks are corrupted beyond redemp
tion. If every diskette had a unique label and the pro
gram checked the label before writing, this wouldn't
happen. Later we'll discuss the problem of unlabeled
disks (which are indistinguishable from one another)
and what to do about them in this context.

Another application for labels is to protect sensi-

$20 $10 $08

I I 5 I 4 I s

Unused

Figure 1. DOS fi.l,e attribute bits.

DOS VOLUME LABELS

tive data. Software, by and large, is
naive about this. It cheerfully
writes anything on any disk. An
electronic prowler can thus bring
up an application, save the com
pany's most intimate secrets on
any old disk, and take them away
to be analyzed. Making a program
label-sensitive isn't a cure-all for
industrial espionage, but it can
help. Develop a sensible,
harmless-looking labeling system
for diskettes containing sensitive
data, keep those diskettes locked
up, and make the program that
reads and writes them check lab
els. If a program balks at writing
to the intruder's diskette because
it has the wrong label, he or she
won't have a clue as to why. Espe
cially since it never occurs to
anyone using micros that disk lab
els might be important.

You can also effect a form of
copy protection for your software
using labels. It works like this: the
first time the program runs, it
checks the disk label. If there is
no label, it creates one. In either
case, it modifies itself by initializ
ing a label field within the code
space, then saves its own image to
disk. Thereafter, each time the
program starts, it checks the actual
label against the one it expects,
and if they don't match, the pro
gram aborts.

$04 $02 $01

I 2 I I 0

I

L
Hex value

Bit No.

Read-only

Hidden

System

Volume
Label

Subdirectory

Archive

There are rules
about labels, and
DOS brooks no
argument about

them. If you violate
the rules, DOS

refuses to write out
the label, hut it

doesn't explain why.

No doubt there are other uses
for labels as well. Our purpose
here is not to present an exhaus
tive list, but to give you some ideas
about how to put this unappre
ciated DOS feature to work pro
tecting your disks, data, and
software.

WHAT TO DO ABOUT
UNLABELED DISKS
One unlabeled disk looks the
same as the next, and since few
DOS users bother to label
diskettes, this makes it impossible
to detect if diskettes have been
swapped in the drive. Conse-

54 TURBO TECHNIX November/ December 1987

quently, if your program is going
to check for switched diskettes
before writing to an open file, it
must first determine the label of
the diskette from which it initially
read the data. When no label
exists, it must create one that has
a good chance of being unique.

Suggestion: Make a string out
of the system time and label the
diskette with it. By going down to
the level of hundredths of a
second, there is virtually no
chance that any two diskettes will
ever be assigned the same label.

Having so tagged the diskette,
the program can then check the
current label against the "read
from" label before performing a
write, and if they're not the same,
tell the user to put the correct disk
back in the drive. This is a sensi
ble way to avoid the idiotic corrup
tion of diskettes.

DOS IS FINICKY
There are rules about labels, and
DOS brooks no argument about
them. If you violate the rules,
DOS refuses to write out the label,
but it doesn't explain why. Its only
response is to return OFFH in the
AL register, meaning that the
operation was unsuccessful.

Because a label is a kind of file
name, you can only use characters
that are valid within the name of
any DOS file. The DOS manual
spells them out; in general they're
any printable character, minus the
wildcard characters"?" and"*".
The 11-byte field must be padded
with trailing spaces.

These restrictions pose a spe
cial problem for C programs,
since C always terminates a string
with an ASCII null or zero (\0 in
C notation) and leaves garbage
after it. Consequently, after load
ing the label into the file control
block and before asking DOS to
put it on the disk, you have to
replace the null terminator and
any other garbage in the 11-byte
field with spaces. The pad() func
tion in Listing 1 performs this
service.

A label can only have a mean
ingful existence in the root direc
tory. Theoretically it's possible to
copy one to a subdirectory, but

DOS would never notice it and
your software would have to go to
extraordinary lengths to find it
It's been reported here and there
that DOS has bugs with regard to
labels, which can cause it to gar
ble directories, lose files, and even
render the disk useless. For these
reasons, it's advisable .to limit a
disk to one label properly placed
in the root where it belongs.
Manipulate the label using the
"safe" procedures outlined next
and shown in the VOLUME.C
program in Listing 1.

OPERATING ON DISK
LABELS
DOS provides two sets of func
tions for operating on files. One
set came into existence with DOS
2.x and uses an integer called a
file handl,e to identify a given open
file; the handle routines accom
modate tree-structured directories.
The other set of file-handling
functions are holdovers from DOS
l.x, which in tum were inherited
from CP/M-80. It is these low-level
functions, specifically 11 H, l 6H
and l 7H under interrupt 21H,
that must be used to operate on
labels. These functions only work
on the root directory, which
explains why a label is meaning
less anywhere else.

The low-level functions use a
structure called a fil,e control block
(FCB) instead of a handle. There
are two types of FCBs, the stand
ard format and a larger version
called an extended FCB, or XFCB.
The extended format is just an
ordinary FCB preceded by an
eight-byte header containing,
among other things, an attribute
byte. DOS functions llH, 16H,
and l 7H recognize which FCB
format they're dealing with by
checking the first byte; it's always
OFFH in an XFCB.

You have to use an XFCB
when working with a label, since
attribute byte OSH is a necessary
part of the label format. Turbo C
furnishes definitions of the FCB
and XFCB in the include file
DOS.H , and the Turbo C function
findfirst() can be used to read a

label. However, there is no func
tion provided with Turbo C to
change a label. Because these are
risky operations that require care
ful control, it's best to use the
Turbo C intdos() function with
appropriate register setups.

READING A LABEL
To read a label, use DOS function
11 H. This function refers to an
initialized XFCB to find out what
you want to look for in the root
directory. If it finds a match, it
writes the corresponding XFCB to
a separate 64-byte buffer called
the DTA, for disk transfer address,

You have to use an
XFCB when working

with a label, since
attribute byte 08H is

a necessary part of
the label format.

and returns zero in register AL to
indicate success. If there is no
match (no label in this case), func
tion 11 H returns OFFH and the
DTA is unchanged. Following a
successful read, you can fetch the
label from offset OSH of the DTA.

Thus, before looking for the
label, you have to do some setup.
The first thing is to develop the
DTA structure. For reasons we'll
discuss later in connection with
changing a label, this is not
merely a copy of the XFCB defini
tion given in DOS.H . An entry
under GLOBALS in the heading
of Listing 1 defines the structure
variable dta.

Next you need to initialize a
copy of the XFCB format as
shown in the declaration of struct
xfcb fcbx in the program. The
variable fcbx thus has its first byte
set to OFFH to identify an XFCB
to DOS, the reserved prefix field is
set to zeros, and the attribute byte
is set to OSH for a label (constant
FA__LABELisdefinedin
DOS.H). Now you can begin
execution.

The first executable step is to
tell DOS where the DTA is. Do
this by passing a far pointer to the
Turbo C setdta() function, indicat
ing the segment and offset of the
structured dta variable. Next put
the disk drive indicator into the
fcb....drive field of structured vari
able fcbx. Finally, fill the file
name and extension fields of fcbx
with the wildcard character "?",
which tells function llH to return
whatever name it finds in associa
tion with a label entry.

Now you can actually search
for the label. Function gotlabel()
in the program performs this task.
Put the offset of fcbx into register
DX, function llH into AH, and
call DOS with intdos(). If register
AL contains OFFH on return, DOS
did not find a label, and a zero in
AL means that it loaded the lab
el's XFCB into the DTA.

Based on a simple test of regis
ter AL, you can either fetch the
label name from dta.oldlabel, or
determine that the disk is unla
beled. What you do from that
point depends on your applica
tion: VOLUME.C reports the out
come and asks the user if he or
she wants to write a new label,
then proceeds based on the reply
to the query, and on whether or
not the disk is already labeled. A
less interactive program might act
according to different decision
rules, simply storing the label if
one exists and writing one if it
doesn't, without asking the user's
permission or preference.

CHANGING AN EXISTING
LABEL
If you want to change an existing
label to something else, proceed
as though you're renaming a file
using DOS function l 7H. Turbo C
has no equivalent that provides
the necessary level of control for
labels.

DOS function l 7H requires
deliberate corruption of the XFCB
in the DTA. Write the new label
starting six bytes after the end of
the old label (field newlabel in the
dta structure), and pad the
remainder of the field with spaces.

November/ December 1987 TURBO TECHNIX 55

i LISTING 1: VOLUME.C

/* VOLUME.C: Reads and writes voliine label */

I* INCLUDES */
#include <stdio.h>
#include <dos.h>
#include <string.h>

/* CONSTANTS */

J

#define PROMPT 11 \nLabel is limited to 11 characters:"
#define BEEP 7
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

I* LOCAL FUNCTION PROTOTYPES */
char gotlabel (void);
void change (void>;
void addlabel (void);
void pad (char name[]);

I* GLOBALS */
union REGS reg;
struct {

char
char
char
char
char

skip1 [8];
oldlabel [11];
skip2 [5];
new label [11];
skip3 [29];

/* register set */
/* simulated xfcb loaded by DOS fen 11h */

/* space to old label */
/* old label */

/* space to new label */
I* new label */

/* to make struct 64 bytes long */
} dta;
struct xfcb fcbx = {{OxFF}, /* initialize xfcb for label search*/

{"\0\0\0\0\011 }, /* reserved zeros */
{FA_LABEL}, /* set label attribute*/

};

I* -------------------------- */

main ()
{

char exists;

I* INITIALIZE */
setdta CMK_FP C_DS,(unsigned) &dta)); /* dta =scratch buffer*/
puts C"\nGet volume label from which drive?");
fcbx.xfcb_fcb.fcb_drive = toupper (getch ()) - '@'; I* get drive*/
strcpy (fcbx.xfcb_fcb. fcb_name, "???????????" >; I* set wildcard *I

I* PROCESS */
if (exists = gotlabel ())

printf C"\nLabel of drive %c is %.11s",
fcbx.xfcb_fcb.fcb_drive + '@', dta.oldlabel);

else
printf (11 \nDrive r.c has no label",

fcbx.xfcb_fcb.fcb_drive + '@');
puts ("\n\nDo you want to write a new label? (y/n)");
if (toupper (getch ()) == 'Y')

if (exists)
change ();

else
addlabel ();

} /* ------------------ - ----- *I

56 TURBO TECHNIX November/ December 1987

DOS VOLUME LABELS

Because the DTA's attribute and
oldlabel fields are already set (by
function 11 H), no other change to
the DTA is required.

The change() function in the
listing shows what to do next.
Load the offset to the dta variable
into register DX, DOS function
l 7H into AH, and call intdos().

On return, register AL contains
the result. It's zero if successful,
and potentially a catastrophe if it's
OFFH. Any time this call is unsuc
cessful, immediately inspect the
involved disk for damage to the
FAT and root directory.

There are three probable
causes for failure : you're trying to
change a label that doesn't exist;
your program set up the newname
field in the DTA incorrectly; your
copy of DOS is corrupted. In the
first two cases, DOS simply refuses

On return, DOS
returns zero in

register AL for a
successful save
and OFFH if
unsuccessful.

to process the request and never
goes to the disk, so damage is
unlikely.

LABELING AN UNLABELED
DISK
Never assume that a disk is unla
beled. Instead check first for the
existence of a label by attempting
to read it. If you get OFFH back in
register AL, you know for certain
that the disk is unlabeled. The
reasons for this are twofold. DOS
may suffer a nervous breakdown
over having two labels in the
same directory, and even if it
doesn't, it will only recognize the
first one it finds and ignore
the second.

DOS function 16H creates a

new file, and that's the function
you use to write a label. In chang
ing the label as discussed above,
you use the DTA; to write a new
label, instead use the same XFCB
stnlcture you set up for the search
with function 11 H. As the listing
for function addlabel() shows,
copy the label into the file
name field at offset 08H (field
fcbx.xfcb_fcb.fcb_name in the
program). Although this field is
officially eight bytes long, fol
lowed by another three for the
extension, Turbo C will let you
copy up to the full 11 characters
into the name field. Don't forget
to pad the unused bytes with
trailing spaces, lest DOS choke
on the invalid null terminator.
Nothing else needs to be done
to prepare the XFCB.

Write the label into the root
directory by placing the offset of
the stnlctured fcbx variable into
register DX, DOS function 16H
into register AH, and issuing
intdos().

On return, DOS returns zero in
register AL for a successful save
and OFFH if unsuccessful. Failure
usually occurs for one of two rea
sons: an improperly developed
XFCB, or a full directory.

CONCLUSION
While at first glance labels don't
seem to have much purpose, in
fact they can be used creatively by
advanced programs as a tool for
protecting disks, data, and even
software. Because DOS furnishes
no specific calls for operating on
labels, it's necessary to develop
one's own. Writing labels to disk
can be perilous unless you apply
common sense and a bit of care,
and then it can be a simple and
safe operation. The methods fur
nished here should provide useful
and reliable techniques for taking
advantage of this ignored feature
ofDOS. •

Kent Porter is a professional writer
specializing in software. His most
recent book is Stretching Turbo Pas
cal (Brady/ Simon & Schuster), and
he's now at work on an advanced
Turbo C book.

Listings may be downloaded from
CompuServe as DOSLABEL.ARC.

char gotlabel (void) /* read label from disk */
/* returns TRUE if found, else FALSE */

{

reg.x.dx = (unsigned) &fcbx;
reg.h.ah = Ox11;
intdos (®, ®);
if C!reg.h.al)

return (TRUE);
else

return (FALSE);

/* point DX to fcbx */
/* DOS fen: search for first */

/* call DOS */
I* AL = 0 when successful */

/* non-zero AL means no label found */

} /* ············•·•···•••··· */

void change (void)
{

puts (PROMPT);

/* change disk label */
/*same DOS call as renaming file*/

scanf (11 %11s 11 , dta.newlabel); /* ignore more than 11 chars*/
pad (dta.newlabel); /*pad with trailing spaces*/
reg.x.dx = (unsigned) &dta; /* point to dta buffer */
reg.h.ah = Ox17; /*DOS fen: rename file*/
intdos <®, ®); /* call DOS*/
if (!reg.h.al) /*AL= 0 when successful*/

printf ("\n\nLabel successfully changed to %.11s",
dta. new label);

else <

}

puts (11 \n\nUnsuccessful! Disk may be damaged");
putchar (BEEP);

} /* *I

void addlabel (void)
{

puts (PROMPT);

/* label an unlabeled disk */
/* same DOS call as creating new file*/

scanf ("%11s", fcbx.xfcb fcb.fcb name); /* get 11 chars*/
pad Cfcbx.xfcb_fcb.fcb_name); - /*pad with trailing spaces*/
reg.x.dx = (unsigned) &fcbx; /* have to use xfcb for this */
reg.h.ah = Ox16; /*DOS fen: create file*/
intdos C®, ®); /*call DOS*/
if (!reg.h.al) /* AL = 0 when successful */

printf (11 \n\nDisk is now labeled %.11s", fcbx.xfcb_fcb.fcb_name);
else <

}

puts C"\n\nUnsuccessful! Root directory may be full");
put char (BEEP);

} /*•................. *I

void pad (char name[]) /*pad filename with trailing spaces*/
< /*DOS chokes on C null terminator in filename*/
int p;

if (strlen (name) < 11)
for (p = strlen (name); p < 11; p++)

name Cpl = ' ' ;
} /* ························ *I

November/ December 1987 TURBO TECHNIX 57

Ii POINTERS IN TURBO C
The secret to efficient data access is simply this:
point!

Mike Floyd

•
Man has used them since the beginning
of time. Trackers hacked them into the
sides of trees so they wouldn't get lost.
North American Indians used them as a
road sign by stacking rocks to point the

SQUARE ONE way. And early astronomers used the Big
Dipper as one to locate Polaris (the North Star). So
what are they? Pointers.

Pointers are markers that show where something is.
In a programming language, a pointer is a variable
whose value is the address of an object rather than
the actual object. In a language like Turbo C, you will
soon see that they can be an invaluable tool to the
programmer.

This article covers some basics about memory
addresses and how to use pointers. I'll show you how
a pointer can be used to get a value as well as how to
get the address of a value. Finally, I will talk about
some of the reasons you would consider using them.

MEMORY ADDRESSING
Among novice C programmers, there's a great deal of
confusion about pointers. Because many high-level
languages don't allow the programmer to access
addresses, even seasoned programmers find pointers
a bit troublesome. To get a better understanding of
how pointers work, let's first take a look at how values
are addressed.

Figure 1 shows how RAM is divided. Notice that the
operating system is located in the lowest portion of
RAM. Next is what's known as the transient program
area (TPA) where the executable program resides.
Finally, any memory not used by the operating system
or the program is left as free memory. As the pro
gram runs, some of this free memory is used for
dynamic data storage (for variables, constants, etc.).

Remember that the smallest unit in this scheme is
known as a bit, which has one of two values: 0 or 1.
Also recall that eight bits make up a byte and two

58 TURBO TECHNIX November/ December 1987

bytes make up a word. Further, four bytes make a
long word and 16 bytes make a paragraph on the PC.
As shown in Figure 2, each byte has an address.

As an example, consider the following program
fragment where two values are declared: an integer i,
and a character c:

int i;
char c;
i = 5;
c = 's';

Once declared, we assign the value 5 to the variable i,
and the value 's' to the variable c. When these varia
bles are declared, the compiler determines how much
memory must be set aside to store these values. Fig
ure 3 shows how these values are addressed in
memory, assuming the starting address of integer i
begins at 65000 and the address of character c starts
at 65010.

USING POINTERS
As we said before, a pointer is simply a special kind
of variable that contains the address of a value rather
than the actual value. Pointers may be incremented,
decremented, and assigned new values. Since we are
accessing the value indirectly through the use of
pointers, this process is called indirection. To declare a
pointer, we use the indirection operator "*":

int *ip

The int tells the compiler what type of data the point
er will point to (integer in this case). The indirection
operator tells the compiler to first create an address
for the pointer, then mark the variable ip as a
pointer.

Like any variable, a pointer must be initialized
once it's declared. This is done by assigning the
address of a variable to the pointer variable. The
address-of operator"&" is used to get the address of
the variable. So, given that the variables i and *ip
have been declared, we initialize ip by assigning the
address of i to it:

ip = &i

LOWEST (OOOOH) HIGHEST (09FFFFH)

Operating
System

Transient
Program Area

Free
Memory

0001 0002

Bit Byte Word

65000 65001

I · I · I
Now we can start using the

variable ip in our program, but
remember, ip contains an address.
To get the actual value we must
use the indirection operator"*",
as shown here

main() {

}

int i, *ip;
ip = &i;
i = 5;
printf

("The value of i= :Y.d\n",*ip);
printf

("The address of i= :Y.p\n", ip);

which will print:

The value of i = 5
The address of i = FFD4

First we declare the variable i
and the pointer variable ip to be
an integer. Next we initialize ip to
the address of i. This is a very
important step, and one which
many beginners forget.

Once the pointer variable has
been initialized, we assign the
value 5 to the variable i and print
out the results. Notice that the first
printf statement uses the indirec
tion operator to get the value
being pointed to by ip. Finally, the
second printf statement prints out
the contents of ip, which is the
address of i. Notice in the output
that the address is printed out in
hex notation. This hex value is
the equivalent of 65492.

This simple program demon
strates three important steps to
working with pointers. First,
declare your pointer variable.

65010

I I

One good reason to
use pointers is that a

function cannot
directly access a

variable defined in
another function.

Second, initialize the pointer (or
the results can be unpredictable).
Finally, use the indirection opera
tor "*" to get whatever your point
er is pointing to.

FUNCTIONS AND POINTERS
With that little bit under our belts,
we are ready to graduate to the
next level. There really is no trick
to using pointer variables within
functions, but they are absolutely
essential, as you will soon see. In
terms of usage, there is little dif
ference between the way pointer
variables are treated and the way
regular variables are treated. Con
sider the following function which
calculates a factorial and passes
back the result via a pointer
variable.

Figure 1. Memory layout on the
IBMPC.

Figure 2. Basic units of memory.

Figure 3. Storage and addressing of
values in memory.

void factorial(int nlJll,

{

}

double x;
int i;

double *result)

if(nlJll < 1) {
*result = 0.0;
return;

}

for ex= 2.0, *result = 1.0;
nlJll > 1; n1.J11--, x = x + 1.0)

*result = *result*x;

I* End factorial */
Note in our declaration of fac

torial that result is a pointer varia
ble and that we are passing the
value of that pointer (i.e., *result).
This is essential whenever we
wish to change the actual value of
a variable defined outside of the
function. The reason is that Turbo
C, like most C compilers, passes a
copy of the variable to the func
tion when called. So, a function
cannot directly access a variable
defined in another function
(unless declared as external).
Therefore, without pointers, there
would be no way to modify the
variable within the function.

Finally, here's how factorial
is called.
main()
{

int x;
double y;

November/ December 1987 TURBO TECHNIX 59

POINTERS

}

x = 6;

factorial(x,&y);
printf(11%f 11 ,y);

/* End main */

POINTER ARITHMETIC
We can manipulate pointers as
well as increment and decrement
them. For instance, the pointer ip
can be incremented
ip++;

where ip has been previously
declared as
int *ip

Similarly, the same pointer ip can
be decremented:
ip- - ;

As an example, consider the fol
lowing function which passes a
string in as an argument and
returns the length of that string.

str len(str)
char *str
{

}

int i;

for (i=O; *str != '\0'; str++)
i++;

return(i);

Here, the variable str is a
pointer to characters. The for
loop begins by initializing the
counter i to 0. Next a test for the
null character (designating the
end of the string) is made and,
until successful, increments str to
point at the next character in the
string. When the end of the string
is encountered, the length of the
string is returned through the
function value.

Remember that when you
increment a pointer, you are
incrementing an address. Keep in
mind that this has a different
effect on different data types,
depending on their storage
requirements. In this case we are
incrementing a pointer to a char
acter. Since a character only
requires one byte of storage, the
next address will be the current
address + 1. If, on the other
hand, we were counting up the
number of elements in a list of
integers, the next address would
be the current address + 2.

WHY USE POINTERS?
With a small taste for how point
ers work, you must be asking your
self, "Why should I care about
addresses?" After all, we could
simply assign 5 to i and be done
with it.

One good reason to use point
ers is that a function cannot
directly access a variable defined
in another function (unless
declared as external). Also, using
pointers reduces the chance of
side effects. Since a function can
not directly access a variable
defined outside of its domain,
there is less chance of "contami
nating" other variables in the
program.

The creation of new data
objects is a very important reason
to use pointers. Normally, we must

Many of the built-in
library functions in

Turbo C make use of
pointer variables. If
you 're planning to

take advantage of all
of the features of
Turbo C, you will

want to learn how to
use pointers.

declare data objects and structures
in our program. Turbo C then
looks at these declarations and
allocates an appropriate amount
of memory for them. This
requires that our program know
in advance what objects to expect.
But Turbo C, through the use of
malloc, calloc, and free, allows
you to allocate and deallocate
memory during the execution of
your program. So, by using point
ers, it is possible to create new
data objects on the fly. This is
essential for programming appli
cations such as a relational
database.

The use of pointers can
improve the efficiency of your
program because they are treated

60 TURBO TECHNIX November/ December 1987

internally by Turbo C. Conse
quently, they are handled in a
more efficient manner. The use of
pointers will also speed up your
program in most cases, since the
compiler tends to generate less
code.

Pointers can also be used to
save data space. Imagine a case
where you must display one of
four strings, such as an error mes
sage, to the user. For simplicity,
let's assume that the string will be
no longer than 80 characters. A
four-dimensional array of charac
ters could be defined as:

char msg C4l [80];

This automatically allocates space
for a 4 X 80-character array,
whether we need all that space or
not. In other words, this guaran
tees that we will use up 320 bytes.

A more efficient way to do this
is to declare a pointer to
characters:

char *msg[4l;

In this case, our program must
allocate space for the array vari
able msg. The advantage is that
we can allocate just enough space
for the strings to be stored, and
not waste unused space. In larger
programs where memory space is
at a premium, this approach can
become very important.

There is one other reason to
use pointers in your programs.
Many of the built-in library func
tions in Turbo C make use of
pointer variables. If you're plan
ning to take advantage of all of
the features of Turbo C, you will
want to learn how to use pointers.

There is considerably more
to using pointers in Turbo C
than we've covered here, but
this should provide you with a
good foundation. A careful read
ing of the Turbo C manual and a
mastery of pointers will put you
well on the way to becoming
a C wizard. •

REFERENCES
Purdum, Jack]. C Programming
Guide, Indianapolis, IN: Que Cor
poration, 1987.

Turbocharge Your
Programming
With Turbo Basic!

'' Borland Internationai's
Turbo Basic is unquestionably
an outstanding software pro
duct. It provides an efficient
and comprehensive BASIC
programming environment
at a very affordable price.

An excellent BASIC devel
opment system with enhance
ments that allow more effec
tive programming.

T urbo Basic® is the
BASIC compiler you've
been waiting for! It's a

complete development envir
onment with an amazingly fast
compiler. a full-screen win
dowed editor. pull-down
menus. and a trace debugging
system. We've also added
many innovative features
including binary disk files.
true recursion. and several
new compiler directives to
give you more control at com
pile time. And your program
size isn't limited by 64K
you can use all available
memory!

' ' I'm extremely impressed
with Turbo Basic. It's fast. it
cooperates with resident key
board handlers . . . it offers a
wealth of important new fea
tures. and it costs only $99.

Ethan Winer. PC Magazine J J

Giovanni Perrone quote, reprinted trom PC 'Neek, May S!h, 1987
Copy1igh1 1987 Zitt Communications Company. Ethan Winer quote,
reprin1ed from PC Mag, May 12th. 1987 Copyright 1987 Z11t Com
mun1ca11ons Company William Zactvnann quote. rep1mted tram
Computerworld, May 4th, 1987 with permission.

All Borland products are reg1s1e1ed 1rademarks or llademarks ot
Bor land lnternat1onal, Inc Other branel and product names are
trademarks or regislered trademarks of their respective holders
Copy11ghl 1987 Borland lntemat1ona! Bl· 1156

Giovanni Perrone. PC Week

Turbo Basic sets a standard
for programming languages
on PCs that is the equivalent
of the first running of the
four-minute mile.

Corporate users of BASIC
will find Turbo Basic a tool
worth many times its cost and
a quantum improvement over
anything they have ever used.
William l,achmann, Computerworld jj

A technical look at Turbo Basic
• Context-sensitive help
• Full recursion supported
• Customizability of user interface and

editor
• Full 64K for strings
• Standard IEEE floating-point format
• Floating-point support. with full

8087 (math coprocessor) integration .
Software emulation if no 8087
present

• Program size limited only by availa
ble memory (no 64K limitation)

• EGA and CGA support
• IBM Personal System/ 2 VGA and

MCGA 2- and 16-color support in
640 x 480 resolution

• Full integration of the compiler. edi
tor. runtime libraries. and executa
ble program. with separate windows
for editing. messages. tracing. linker
l ibraries. user interface. and execu
tion in one compiler file

• Compile. runtime. and 1/ 0 errors
place you in source code where
error occurred

• Access to local. static & global
variables

• New long integer (32-bit) data type
• Full 80-bit precision
• Pu ll-down menus
• Full window management

-- ----~

BASIC Benchmarks

Compile & Link
to St.and alone. Exe

' Size of .Exe

Execution 11me w/ 80287
w/ o 80287

'Tllrbo Basic 1.0

3

32753

18 secs
109 secs

OulckBaslc 3 / 87

17

41162

25 secs
114 secs

Benchmark by Jerry Pournelle run on IBM PC/ AT with 80287 at 8 MHz with IEEE fl oating point. Bench
mark fills two floating-point matri ces with 50 elemenl.'l. mul tiplies the two matr ices and sums the resulL<l.
Sum = 23345440.135511 3

INTERNATIONAL

For the dealer nearest you
or to order by phone

Call (800) 255-8008
in CA (800) 742-1133
in Canada (800) 237-1136

Ii THE END OF THE LINE
It's not easy knowing when you're at the end of the
line if the line ends six ways

Jonathan Sachs

PROGRAMMER

Character I/O is one of the less standard
ized areas of computing. Because C was
developed in Unix, where lines are ended
by a single character (newline), C repre
sents an end-of-line as a single character
when reading or writing a character stream.

This presents a problem when C is ported to sys
tems such as DOS, where a line normally ends with a
"carriage return, line feed" (CR/LF) sequence.
Simply reading the CR/LF makes sense to DOS pro
grammers, but it doesn't make sense in terms of C. C
programs developed in Unix have to be modified to
work in DOS, and vice versa.

HOW C SOLVES THE PROBLEM ...
Implementors of C resolve this problem by translat
ing CR/LF to newline when reading a file , and new
line to CR/LF when writing a file. This translation is
done on files that are opened in text mode. For
example, it's done when a file is opened with a 't' in
the mode parameter of the fopen command, or when
a file is opened without a mode specifier in fopen,
and the global variable_fopen is set to O_TEXT.
Thus, the statement

fputc('\n' ,file);

actually writes two characters, a CR and a LF, if file
represents a text file .

Functions such as fgetc and fgets translate the
other way when reading. Functions such as fputc and
fputs translate newline to CR/LF when writing. Func
tions such as putchar and puts perform the same
translation when writing to stdout.

... OR ALMOST SOLVES IT
But translating back and forth between CR/LF and
newline doesn't end the problems associated with this
difference between DOS and C. Unfortunately for C,
a line in a DOS file may end in a variety of ways, and

62 TURBO TECHNIX November/ December 1987

the differences among them are significant. For
example, if a line ends with a CR alone, that means
"carriage return without line feed." In other words,
the following line will be superimposed on this one if
the file is printed.

Many DOS application programs use different ways
of representing lines to convey significant informa
tion. One of the most prominent is WordStar, which
can end a line in at least six different ways. Word
Star's most common distinction is between a hard car
riage return, which ends a paragraph (OxOD/ OxOA,
CR/LF), and a soft carriage return, which may move
whenever the text is edited or the margins are
changed (Ox8D/ OxOA, CR/LF with the high-order bit
turned on in the CR character).

Sometimes it's useful to be able to read a character
stream and recognize all possible kinds of line end
ings. The fgetln function shown in Listing 1 does this.

fgetln COMPLETES THE SOLUTION
The essential purpose of fgetln is to read a line from
a file. In this, it is similar to the standard library func
tion fgets. Here is a summary of the differences:
• fgets does not recognize all possible ways of end

ing a line in DOS, and does not distinguish among
the ones it does recognize.

• Because fgetln reads carriage returns and line
feeds separately, its file handle must be opened in
binary mode rather than text mode. Normally you
can do this by omitting the 't' in fopen's file mode
parameter. If _fmode is set to O_TEXT, how
ever, the default mode is "text;" then you must
include a 'b' in fopen's file mode parameter.

• fgets expects a pointer to the buffer where it is to
store the line it reads. fgetln expects pointers to
two buffers: one for the line, and the other for the
characters that end the line. (The latter buffer
must be three characters long, allowing for a maxi
mum of two line-end characters and a NUL.)

• If a line is too long for the text
buffer, fgets stops reading in
the middle of the line and
resumes the next time it is
called. fgetln simply discards
the excess. One can argue that
the fgets approach is superior
because data is never lost, but
the fgetln approach seems to
be more useful in most
applications.

• fgets stores a newline at the
end of the line it reads (assum
ing it could fit the whole line in
the buffer). This is the only way
you can tell whether or not
fgets was able to read the
whole line. fgetln does not
store the line-end characters in
the text buffer.
The program FGETDEMO.C

(Listing 2) demonstrates the use of
fgetln. It prompts you for a file
name and opens the specified file .
Then it reads each line and dis
plays the line preceded by its
length. After each text line it dis
plays a separate line presenting
the end-of-line character(s) in
hexadecimal form.

HOW fgetln TREATS LINE
ENDS
Here is a summary of the rules
that fgetln uses to identify line
ends:
• The following character

sequences end a line: CR
(OxOD) ; LF (OxOA); and CR fol
lowed by LF. The high-order
bit may be on in either charac
ter or both.

I LISTING 1: FGETLN.C i

/* FGETLN.C -- read a line from an ASCII file, with limited length.
It recognizes line-end characters with the parity bit on . */

#ihclude 11 stdio.h 11

#define NUL
#define LF
#define CR
#define EOO

((char)O)
((char)OxOA)
(Cchar)OxOD)
((char)Ox1A)

!*****
*Get a line from a file. This is like fgets(), but:
* 1. Reads to the end of the line even when the buffer won't hold it
* all.
* 2. Returns the actual (untruncated) line length, not a pointer to
* the line. Returns EOF if it encounters EOF with no preceding
* data characters.
* 3. Recognizes line ends that consist of CR or LF alone, and
* recognizes line end characters with the parity bit on.
* 4. Returns the end-of-line character(s) in a separate buffer.
*IN: "lim" is the length of "bfr", including space for the
* terminating NUL.
* "fp" is the file handle. Note that the file should be opened

in binary mode!
*OUT: 11 bfr11 contains at most lim-1 characters of the next line, NUL-
* delimited.
* 11eolbfr 11 contains the character or characters that ended the
* line, NUL-delimited. If the line was ended by EOF (ctrl-Z or
* physical end of file), 11 eolbfr11 is null.
*RETURN:The actual (untruncated) length of the line, not including the
* line end character(s); EOF if EOF.
*****/

int fgetln(bfr, Lim, eolbfr, fp)
unsigned char *bfr;
unsigned l im;
unsigned char eolbfr[3J;
FILE *fp;

{

int i I
j;

register char *cp;
char *ep,

*bfrl imit;

/*A character read from file. */
/* "i" with parity stripped. */
/* Pointer to buffer. */
/* Pointer to eolbfr. */
/* Limit of buffer, excluding final NUL. */

/* Set up buffer pointers. */
cp = bfr·1; /* Character before start of buffer. */
bfrlimit = cp+lim; /*Last character of buffer (for NUL). */

/* Each loop reads one character into 11 bfr. 11 The loop is ended by
end·of·line or end-of-buffer. On exit, "cp" points to the last
character stored; to bfr-1, if none. i & j contain the character
after the last one stored. */

j = Ox7f & C i = fgetc(fp) >;
while (i!=EOF && j!=EOO && j!=CR && j!=LF && cp<bfrlimit) {

*++cp = i;
j = Ox7f & C i = fgetc(fp));
}

/* If end of buffer, discard characters until another end condition
occurs. "cp" is advanced to reflect length of line read, but no more
data is stored. End status is the same as preceding loop. */

while (i!=EOF && j!=EOD && j!=CR && j!=LF) {
++cp;
j = Ox7f & C i = fgetc(fp));
}

/*Seal end of line. */
*++cp = NUL;

November/ December 1987 TURBO TECHNIX 63

/*Store end of line characters in 11eolbfr. 11 */
ep = eolbfr;
if (j==EOO I I j==CR II j==LF)

/*No physical end of file. */
{

/*Store the first EOL character. If it's CR, read the next one to
look for an LF. */

*ep++ = i;
if C j==CR) {

j = Ox7f & C i = fgetcCfp) >;
/* If the 2nd one is LF, store it too; else put it back. EOF
isn't a character, & since it will repeat, need not be
"put back." */

if C j==LF)
*ep++ = i;

else if C i!=EOF
ungetc(i, fp);

}

/*Put back an EOO character at the end of a non-null line. Return
EOF with a null line the next time this function is called. */

else if C j==EOO)
ungetc(i,fp);

}

/* Seal the EOF string. */
*ep = NUL;

/* If any characters were read, return the nunber. */
if (cp>bfr)

return(cp-bfr);
/* No characters were read. If the EOL buffer is efllltY, or contains

EOO, return EOF. */
if C ep==eolbfr I I *eolbfr==EOO

return(EOF);
/*We read a null line. */
return(O);
}

LISTING 2: FGETDEMO.C

/* FGETDEMO.C -- test & demonstrate fgetln(). */

#include "stdio.h"

int fgetln(unsigned char *bfr, unsigned Lim,
unsigned char *eolbfr, FILE *fp >;

main()
{

FILE *fp;
unsigned char workarea[73] ,eolarea[3J;
int Len;

fputs("What file shall I read?", stdout >;
gets(workarea);
fp = fopen(workarea, 11 rb11);

if (!fp) {
fputs("That file doesn't exist!\n", stdout);
exi t(O);
}

while ((len = fgetln(workarea,sizeof(workarea),eolarea,fp)
!= EOF

) {
printf(11 %Sd <%s>\n\t\t%02X %02X\n", Len, workarea, eolarea[Q],

eolarea[1] >;
eolarea[O] = eolarea[1] = O;

}

printf ("***EOF***\n");
}

64 TURBO TECHNIX November/ December 1987

END OF THE LINE

• An end-of-file condition or an
end-of-data character (Ctrl-Z,
OxlA) also ends a line. Ox9A
(Ctrl-Z with the high-order bit
on) is treated as an ordinary
data character.

• If fgetln encounters end-of-file
or end-of-data at the end of a
non-null line, it returns the
line. For end-of-file, the end-of
line buffer contains a null
string. For end-of-data, it con
tains a one-character string
consisting of an end-of-data
character. If fgetln encounters
end-of-file or end-of-data after
the end of a line, it returns an
end-of-file condition immedi
ately.

• When fgetln returns an end-of
file condition, the end-of-line
buffer contains either a null
string or a OxlA to indicate
whether the function encoun
tered end-of-file or end-of-data
in the file.

HOW fgetln WORKS
The overall strategy of fgetln is
quite simple:
1. Read as much of the line as fits

in the text buffer.
2. If the line overllows the buffer,

read and discard the rest.
3. Analyze the end-of-line charac

ters and store an appropriate
value in the end-of-line buffer.
There is one unusual feature of

the code that deserves mention:
the character-reading loops start
with the buffer pointer positioned
to the character before the first
character of the buffer, and end
with the pointer at the last charac
ter position stored, rather than the
position after it. The loop is
slightly more efficient when writ
ten this way. Since repeated calls
to fgetc make fgetln rather slow in
any case, the trickiness of these
loops seems worthwhile. •

Jonathan Sachs has worked as a soft
ware developer and technical writer
since 1971. He operates a consulting
company near San Francisco.

Listing may be downloaded from
CompuServe as LINEND.ARC.

IMPLEMENTING BINARY
TREES
Plant a pointer, water recursively, grow a tree.

Kent Porter

PROGRAMMER

My wife, a student of human nature, is
fond of observing that our greatest
strengths are often our greatest weak
nesses. And while my wife is a self
proclaimed computerphobe, she has
unwittingly placed a finger precisely on

the problem with C pointers; they're so flexible that
it's often difficult to figure out how to work with them.
That's why it's a challenge to implement dynamic
data structures-whose lifeblood is pointers-in C.
This article shows how to build, search, and traverse
binary trees without getting lost among all those
pointers.

A binary tree is a dynamic structure inherently
ordered by keys into a hierarchy. The internal nodes
of the tree consist of at least three fields: a data item
serving as the key, and two pointers to other nodes of
the same type. The pointers, called LLink and RLink
by convention, point to children of lower and higher
key values, respectively. The end nodes (commonly
called leaves) have the same structure, but their point
ers are NULL.

Aside from their efficiency, one of the advantages
of binary trees is that it's possible to keep track of and
work with a great deal of data using only one or two
pointers within the program's data space. One points
to the root (the highest-level node in the tree) and
another might be needed to provide a means of
keeping track of where we are as we move about.

For simplicity, suppose we have a tree that counts
the frequency of letters in text. We can define the
node type as follows:

typedef struct ntag {
char letter;
int freq;
struct ntag *Llink,

} NTYPE;

/* key field */
/* frequency */

*RL ink;

Note that LLink and RLink must be declared as point
ers to struct ntag, since the type identifier NTIPE has
not yet been asserted when the compiler encounters
them.

Now the only data item we need to declare in order
to implement the tree is

static NTYPE *root;

Declaring it as a static guarantees that the pointer is
born initialized to NULL. That's important for deter
mining whether or not the tree exists.

Let's say we build the tree from the string "ROGER
SMITH." The resulting tree structure is shown in Fig
ure 1, with the frequencies in parentheses. The root
pointer points to the top node, R.

Figure 1. A binary tree based on the name "Roger Smith. "

BUILDING THE TREE
The tree does not exist when the root pointer is
NULL. Thus the first node to be allocated becomes
the root, and the root pointer acquires its address.
Thereafter this pointer is stable, providing entry into
the tree.

A new node (whether the first or any subsequent)
always begins life as a leaf, so its LLink and RLink
are set to NULL and its data fields are initialized as
appropriate. Nodes subsequent to the first have no
enduring external effect; the root pointer is set only
for the first. However, when a node becomes a par
ent, its LLink or RLink (depending on key relation
ships) is updated to point to the child. Thus, the root
pointer is, in effect, the parent of the tree as a whole,
and all nodes are within levels of descendancy
from it.

Listing 1, CHARFREQ.C, contains the recursive
function newnode() that seeks the proper location
and inserts the new node. By each invocation passing
a pointer to itself in the parent argument, the child

November/ December 1987 TURBO TECHNIX 65

LISTING 1: CHARFREQ.C

/* CHARFREQ.C: Analyzes frequency of printable characters in a text
string, using a binary tree */

#include <stdio.h>
#include <string.h>
#include <alloc.h>
#include <ctype.h>

I* NODE STRUCTURE */
typedef struct ntag {

char letter;
int freq;
struct ntag *LL ink, *RLink;

} NTYPE;

I* GLOBAL */

/* key value */
/* frequency *I

!* linkage pointers*/

static NTYPE *root; /* entry to binary tree*/
/* ---------------------- LOCAL FUNCTIONS ------------------------ *!
NTYPE *found (char arg, NTYPE *node) /* search for matching key */
{

while Carg != node->letter) /*loop while no match*/
if (node== NULL) /*if hit a leaf •.. */

return (NULL); /* abandon search */
else /* else go left or right from here */

node= Carg < node->letter) ? node·>LLink : node·>RLink;
return (node); /* when found match, return node addr */

} /* ------------------------ *!
NTYPE *newnode (char arg, NTYPE *parent, NTYPE *node) /* add node */
{

if (node != NULL)
if Carg < node->letter)

node = newnode (arg, node,
else

!* recur to find location for node */
/* going left or right as appropr */
node->Lli nk);

node= newnode (arg, node, node->RLink);
else { /* position found for new leaf */

node= CNTYPE*) malloc (sizeof CNTYPE)); /* alloc heap space*!
node->LLink = node->RLink = NULL; /* leaf pointers always NULL*/
node->letter = arg; /* set key */
node->freq = 1; /* and count of one*/
if (root !=NULL) /* if not first node ... *!

if Carg < parent->letter) /*set parent's correct pointer*/
parent·>LLink =node;

else
parent->RLink = node;

}

return C node);
} /* ------------------------ */
void inOrder CNTYPE *node)
{

if (node != NULL) {
inOrder Cnode->LLink);

}

printf C"\n%c %d 11
,

node->letter, node->freq);
inOrder Cnode->RLink);

} /* ------------------------ */
void postorder CNTYPE *node)
{

if (node != NULL) {
postorder (node->LLink>;
postorder Cnode->RLink);
free (node);

}

/* output tree by key order */

!* keep working left */
/* then print contents */

/* now work to the right */

/* delete tree from heap */

/*do all to left*/
/*all to right*/

/* and finally this node*/

66 TURBO TECHNIX November/ December 1987

BINARY TREES

can update its parent's linkage
pointer at the time of creation.

SEARCHING A TREE
A binary tree is called binary
because each node has, at most,
two paths emanating from it: a
less-than path and a greater-than
path. Thus each node is effec
tively a fork in the road, and we
pick which branch to take based
on a comparison of the key with
the argument. The search stops
when: (1) we find the key we're
looking for, or (2) we hit a leaf
and can't go any further. In the
second case, the search is unsuc
cessful.

A search function can signal
the outcome by returning a point
er: either NULL if unsuccessful,
or the node containing the sought
key otherwise. That's what the
found() function performs in
Listing 1.

TRAVERSING THE TREE
Traversing is the process of mov
ing through the entire tree, usu
ally for the purpose of doing
something with all of its contents.
Traversal always proceeds in the
same physical order: root to
lowest-keyed node to highest
keyed and then back to root.

Traversal of the left side of Fig
ure 1 goes in the order R, G, E,
space, E, G, I, H, I, G, R. Having
traversed the left side, it then fol
lows the sequence 0, M, 0, S, T,
S, 0, and returns back to R.

The apparently horrendous
complexity of moving through a
tree consisting of an unknown
number of levels and nodes is
solved by the use of recursion.
Recursive functions use the stack
to keep track of where they came
from and thus don't explicitly
need to store their path of retreat.
The downside of recursion is that
it quickly devours stack space.

If you have a good-sized tree,
don't use Turbo C's tiny code
model lest the tree and the stack
collide and crash the program.

There are three kinds of tree
traversal, called pre-order, in-order,
and post-order. These methods
differ not in the sequence of visit
ing nodes, but in the order in
which they do something with the
contents. Note that in Figure 1, R,

G, and 0 are all visited three
times; E, I, M, and S twice, and the
leaves only once. This gives us
one to three opportunities to work
on every node.

Pre-order processes the con
tents when it enters a node for the
first time; in-order as it moves
from the left branch to the right;
and post-order when it leaves the
node for the last time. Each has a
unique purpose:
• Pre-order can be used to write

contents to disk in a sequence
that permits later reconstruc
tion of the tree in its present
form.Just read 'em back out
and build the tree to achieve
the same configuration.

• In-order is useful for outputting
the tree's data sorted by key.

• Post-order is handy for deleting
an entire tree from the heap.
Listing 1 contains the

inOrder() and postOrder(
functions, and Listing 2,
PREORTRV.C, shows
preOrder(). To adapt them to
your own uses, you need change
only the processing statement,
leaving the pointer-following
statements intact.

SAMPLE APPLICATION
Now let's put the creation, search
ing, and traversal of a binary tree
to work. CHARFREQ.C, accepts a
line of user input. It then analyzes
the frequency of printable charac
ters by organizing them in a
binary tree and counting occur
rences, and produces a report in
alphabetic sequence using in
order traversal. Afterwards it
deletes the tree from the heap.

Binary trees are an excellent
means for organizing and operat
ing on large amounts of data at
blazing speed. The methods
covered here provide skeletons
that you can adapt without
suffering the heartbreak of
pointer paralysis. •

Kent Porter is a professional writer
specializing in software. His most
recent book is Stretching Turbo Pas
cal (Brady/Simon & Schuster), and
he's now at work on an advanced
Turbo C book.

Listings may be downloaded from
CompuServe as BINTREES.ARC.

} /* ---------------------- MAIN PROGRAM ------------------------- */
main ()
{

char c, text [80J;
int n, p;
NTYPE *current;

}

do {
puts ("\n\nType text to be analyzed:");
gets (text);
if ((n = strlen (text)) != 0) {

for Cp = O; p < n; p++) {
/* process if text typed*/

}

c = toupper (text Cpl); /* get
if (isprint (c)) {

if (root == NULL) /* if
root = newnode Cc, NULL, NULL);

else

next letter, upshift */
/* see if printable*/

first letter in text */
!* create root */

if ((current = found (c, root)) != NULL)
current->freq++; /*count if duplicate*/

else
newnode (c, root, root);

}

}

/* PRINT FREQUENCY ANALYSIS */

/* else add to tree */
/*end of 'if printable' */

/* end of for loop */

puts ("\nFrequency of letters used:");
i nOrder C root);

/* DELETE TREE FROM HEAP */
postorder (root);
root = NULL;

} wh i le (n ! = 0) ;
/* end of if */

/* repeat */

LISTING 2: PREORTRV.C

void preOrder (NOOETYPE *node)
{

if (node != NULL) {

}

/* insert your processing
preOrder (node->LLink);
preOrder (node->RLink);

operation here */
/* now go left */

/* and then right */

} /* end of function preOrder() */

November/ December 1987 TURBO TECHNIX 67

Ii JULIAN DAYS AND DATES
Make today's date a single number and spend less
time manipulating it.

Marty Franz

In business programming, dates are often
as important as dollars. Inventory ship-

_ _. ments arrive on them, birthdays need to
.. be remembered by them, and interest (or

penalties) are figured with them. But as
PROGRAMMER

important as dates are, using conventional
calendar dates can be cumbersome for the pro
grammer. There's no way to directly subtract March 1,
1986, fromJanuary 28, 1987, to find the number of
days that have elapsed. Instead, you end up loading
an array with the number of days in each month and
iterating through it-a tedious and needlessly bug
filled exercise.

The problem in computing with dates comes from
our way of representing them, which combines three
different numbering units: the number of days in a
month, the number of months in a year, and the
number of years lhal have elapsed since the start of
the Christian era. To easily do any arithmetic with a
"number" having three "digits," each in a different
base (10, 28, 29, 30 or 31, and 12), you must first con
vert it to a single number having a single base. Typi
cally, a number of days from a given date is used. Any
date will do for computational purposes, so long as all
dates you use are converted from the same base date.

The difficult part is figuring the number of days in
a month (that's where you need the array mentioned
earlier) and leap years, which adjust the number of
days in the month of February. It would be easier if
all the years, and all the months, had the same
number of days. Then you could simply multiply each
"digit" in a date by its appropriate radix, add them
together, and have a valid base 10 date, and forget
about arrays.

This can be done, but not with the Gregorian
calendar (the one we use that has leap years every
four years except every century year not divisible by
four ... got that?) This calendar was adopted in 1528 by
Pope Gregory XIII to correct errors that had accrued
in the earlier calendar, invented by Julius Caesar.

RENDERING UNTO CAESAR
The Julian calendar was based on a simpler 365-day
year with a leap year every four years no matter what.

68 TURBO TECHNIX November/ December 1987

We can convert dates into a workable format if we do
our multiplying using fractional numbers (employing
the astronomical fact that there are 365.25 days in a
year and 30.6001 days in the average month). Then we
adjust the month and year if necessary to always place
the date after February to incorporate the leap day.

Using Julian dates is nothing new. Even before
there were computers, astronomers needed to figure
out the number of days between two dates, often for
sightings separated in time by several years. They
used an annual almanac that employed the Julian
calendar and an accompanying set of formulas.
(Those formulas are included in this article.) Because
the early astronomers worked with a variety of
calendars (some dating back thousands of years) and
a variety of long-term observations, they decided on
January 1, 4713 B.C., as their base date. All their
observational dates were then calculated to be a
number of days from this date. For example, January
28, 1987, is Julian day 2442824.

The modules provided here include functions that
perform this calculation. In the functions, there are
two formats for dates. The first is the conventional
Gregorian calendar date expressed as a real number,
with the components of the date arranged within the
real number in the form YYMMDD. For example, the
date May 1, 1987, would be kept as the single real
number 870501.0. Dates in this format are easy to
enter, edit, and keep in files. The various parts (year,
month, and day) can be extracted by division and
subtraction.

The second format used is the Julian date
expressed as the number of days that have elapsed
since January 1, 4713 B.C. You can use this format in
computations involving dates in the future, or the
number of days between two dates. You also can eas
ily find the day of the week for a particular date,
simply by dividing the Julian day number by seven,
taking the remainder, and adding the day of the week
for the base date.

The accompanying listings include versions of the
Julian and Gregorian calendar functions for Turbo C,
Turbo Basic, and Turbo Pascal. These functions are

LISTING 1: CHRONO.C I
/*
CHRONO.C: Julian date and time routines for C

version:
ccxr.,i ler:
uses:

5-20-87
Turbo C version 1 . 0
stdio . h, stdl ib.h, dos.h
object module type:

This file contains functions to work with calendar dates . A
calendar date is a real nurt>er in the format YYHMOD. For
exalll'le , 4/23/87 would be 870423. Julian dates are 11magic 11

hashed versions of calendar dates that allow arithmetic,
determining the day of the week, etc . without consul ting an
actual calendar.

Functions in this file:

. ,

yearCDJ
dayCDJ
month CD)
jul ian(D)
calendar(J)
dayofll<!ek(J)
today()

Returns the year part of a calendar date
Returns the day part of a calendar date
Returns the month part of a calendar date
Converts a calendar date to a jut ian date
Converts a jut i an date to a calendar date
Returns day of week for a jut ian date
Returns today's date (from DOS) as calendar
date

#include <stdio.h>
#include <stdl ib . h>
#include <dos.h>

double year(), day(), month();
double jul ian(), calendar(), dayofweekO;
dcubl e today();

double year(double cal J
{

double floor();

return floor(cal I 10000 .0J;

double day(double cal)
{

double floor();

return floor(cal • Cfloor(cal J 100.0J * 100.0J);

double ronth(double call
{

dolble floor();

return floor((cal - Cyear(cal) • 10000.0J - day(calJJ I 100.0J;

double jul ian(double cal J
{

dolble m, y, floor();

if (month(cal) > 2) {

else

m = month(cal) + 1.0;
y = year(cal J;

m = month(cal J + 13.0;
y = year(calJ - 1;

return f loor(365. 25*(1900. O+y))+fl oor(30 .6001 *m)+day(cal)+1720982,

dolble calendarCdouble jul)
{

double m, d, y, dayno, floor();

dayno = jul - 1720982;
y = floor((dayno - 122.1 J I 365 . 25);
m = floorC(dayno - floor(365.25 * yJ> I 30.6001);
d = dayno-floor(365.25 * y) - floor(30.6001 • ml;
m = Cm < 14) 7 m • 1 : m • 13;
y = Cm < 3) 7 y + 1 : y;
return Cy - 1900) • 10000.0 + m * 100.0 + d;

double dayofweek(dolble jul J
{

double dayno, x, fracx, floor(>;

dayno = jul - 1720982;
x • (dayno + 5.0) /7.0;
fracx = x · floor(x);
return floor(7 * fracx + 0.5);

J*
The today function is already available from Turbo C.
Here • s a shell using getdate().
*/

dolble today()
{

struct date d;

getdate(&dl;
return (d.da_year - 1900) • 10000.0 + d.da_mon • 100 . 0 + d.da_day;

LISTING 2: CHRONO. INC

CHRONO .J MC: Julian date functions

version: 05-20-87
ccn,::>i ler: Turbo Pascal v3.0
uses: nothing
module type: include file

This file contains functions to work with calendar dates .
calendar date is a real nurber in the format YYMMDD. For
ex~le, 4/23/87 W0Uld be 870423. Julian dates are 11 magic 11

hashed versions of calendar dates that al lo" arithme . ic,
determining the day of the week, etc. without consulting an
actual calendar.

Functions in this file:

YearCDJ
Day(D)
Month CD)
Juli an(OJ
CalendarCJJ
DayOflleek(J)
Today

Returns the year part of a calendar date
Returns the day part of a calendar date
Returns the month part of a calendar date
Converts a calendar date to a jut i an date
Converts a jul ian date to a calendar date
Returns day of week for a jul ian date
Returns today's date (from DOS) as calendar
date

flnCtion Year(Cal real) : integer;
(

Return the year part of a date in the format YYMMOD.

begin
Year := Trunc(Cal/10000.0J;

end; < Year }

function Oay(Cal : real) : integer;
(

Return the day part of a date in the format YYMMOO.

begin
Day := Trunc(Cal-(lnt(Cal/100.0)*100.0));

end; (Day }

h.nction Month(Cal : rea l) : integer;
(

Return the month part of a date i n the format YYMMOD.

begin
Month : = Trunc((Cal - CYearCCal)*10000. 0 J-Day(Cal) l/100 .OJ;

end; < Month >

function Julian(Cal : real) : real;
(

Convert a calendar date CYYMMODJ to a Julian date.

var
m, y : integer;

begin
if Month(Cal J > 2 then
begin

m := Succ(Month(CalJJ;
y := Year(Cal J;

end
else
begin

m := Month(CalJ+13;
y : = Pred(Year(Cal)J;

end·
Juli an : = Int (365.25*(1900+y))+Int (30 .6001*m)+Day(Ca l)+1720982. O;

end; (Juli an >

November/ December 1987 TURBO TECHNIX 69

THE DOS LEAP YEAR
PROBLEM
Somewhere deep within DOS is a mechanism
for calculating the day of the week given the
date. When you read the date through DOS
function call $2A, register AL contains a value
ranging from 0 through 6, where 0 indicates
Sunday, and 6 indicates Saturday.

So rather than implement tortuous algo
rithms like Zeller's Congruence for calculating
the day of the week, you can read the current
date and save it, set the DOS date to your input
date, and then read back that date with function
$2A-and get your day of the week in AL.
(Then restore the current date that you saved.)

One problem is that DOS doesn't understand
dates prior to 1/1/80-use this method only for
dates since then. The other problem is that in
leap years DOS's day-of-the-week is off by one.
You must "rotate" the day of the week indicator
downward on a leap year day, translating a 0 to
a 6 and decrementing any other value by 1. The
bug is quite consistent, and the workaround is
reliable.

DateToDayOfWeek uses this method to
return the day of the week for any given date. It
corrects for the DOS leap year bug as well.

- Jeff I>untemann

FUNCTION DateTo01yOfWeek(Year,Month,D1y : lnt911er) : lnt911er;

VAR
S1veD1te,WorkDate : R911isters;
DayN.m>er : Integer;
LeapYearOay : Boolean;

CONST
DayArray : ARRAYC1 .. 12J OF lnt911er •

(31,28,31,30,31,30,31,31,30,31,30,31 >;

BEGIN
LeapYearOay := False;
IF (Month • 2) AND ((Year MOD 4)•0) AND (Day • 29) THEN

Le1pYe1r01y :z True;
IF (NOT LeapYearOay) AND (Day > DayArray [Month]) THEN

DoteToOayOfWeek :• -1

END;

ELSE
BEGIN

WorkDate.AH := S2B;
SaveOate.AH := S2A; (Saves date encoded in registers }
MSDOS(SaveOate); (Fetch & save today's date}
WITH WorkDate DO

BEGIN
CX :• Year; (Set the clock to the i""'t date)
OH :• Month;
OL :s Day;
MSDOS(WorkOate);
AH :• S2A; (Turn around and reed it beck }
MSDOS(WOrkDate); < to find the day-of-week indicator >
DayNuN>er ,. AL; { in AL)
IF LeapYearOay THEN < Correct for DOS' s leap year bug)

IF DayNl.lllber • 0 THEN OayNl.lllber :• 6
ELSE DayNl.lllber :• Prod(DayNl.lllber>;

DateToOayOfWeek : • DayNl.lllber
ENO;

S1vo01te.AH :• S2B; < Restore clock to today's date }
MSDOS<SaveOate);

ENO

70 TURBO TECHNIX November/ December 1987

JULIAN DAYS

slightly different because of variations in each lan
guage's greatest integer (such as Turbo Basie's INT or
equivalent) function. To use the Turbo Basic and
Turbo Pascal versions, include the source file in your
program. The Turbo C version should be compiled as
an object module and then linked.

CALENDAR FUNCTIONS
The functions provided for each language are:

Year extracts the year from a date in Grego
rian calendar format (YYMMDD).

Month extracts the month from a date in
Gregorian calendar format (YYMMDD).

Day extracts the day from a date in Grego
rian calendar format (YYMMDD).

Julian converts a date from Gregorian format
to Julian format. The result is a real
number that is the number of days that
have elapsed since January 1, 4713 B.C.

Calendar converts a date from Julian format
back to calendar (Gregorian) format.
The result is a real number in the for
mat YYMMDD.

DayOfWeek passes a date in Julian format, returns
the day of the week as a number
between 0 (for Sunday) and 6 (for
Saturday).

Today returns the current date from the MS
DOS system clock in Gregorian format
(YYMMDD).

The code in these functions is straightline. The
only subtlety is
if Month(Cal) > 2 then
begin

m := Succ(Month(Cal));
y := Year(Cal);

end
else
begin

m := Month(Cal)+13;
y := Pred(Year(Cal));

end;

which adjusts the month and year so thatjanuary
and February are always reckoned as if they were the
thirteenth and fourteenth months of the prior year.
This ignores leap years in the calculation. The
reverse is done for the conversion back to Gregorian
format.

For example, if you want to find the number of
days between January 28, 1987 and March 1, 1986, in
a Turbo Basic program, you can write
PRINT FNJulian(870128)-FNJulian(860301)

These functions are based on approximations and
are useful between March 1, 1900 and February 28,
2100, so you won't have to leave the country when the
year 2000 rolls around. In short, incorporating these
Julian date functions in your programs will save you
time and effort the next time you work with the
calendar. •

Marty Franz is a programmer who frequently writes on
microcomputer topics. Marty lives in Kalamazoo, Michigan.

Listings may be downloaded from CompuServe as
JULIAN.ARC.

fl.11Ction C1lendar(Jul : reel) : reel;
<

Convert 1 Julian date to 1 calendar date CYYMMOD).

var
m, d, y , D1yNo : reel;

begin
DoyNo :• Jul - 1n0982.0;
y :• lnt((DoyNo-122.1)/365.25);
m :• lnt((D1yNo-lntC365.25*y))/30.6001);
d :• D1yNo - lntC365.25*y) - lnt(30.6001*m>;
ff m < 14 then

lft :• II .. 1
else

m :• • - 13;
ff m < 3 then y : • y + 1;
Calendar :• (y-1900)*10000.0 + m*100.0 + d;

end; < C1lendar >
fl.11Ctfon OoyOflleek(Jul : reel) : Integer;

<
Returns the day of the week for 1 Jul Ion date, with O=Sunday.

var
DoyNo : real;

begin
D•yNo :• Jul - 1n0982.0;
DoyOflleek :• RoundC7 • Froc((OayNo+5.0)/7.0));

end; < DayOflleek >

fl.11Ction Today : real;
<

Return todoy•s dote as 1 calendar date fn YYHMOD format.

const
GetDate • S2AOO;

var
Regs : record

AX, BX, CX,OX,BP, SJ ,DI ,OS, ES, Flags integer;
end·

y, m, d : integer;
begin

with Regs do
begin

AX :z GetOate;
HsOos(Regs);
y :•ex;
m :• Hi(OX);
d :• Lo(OX);

end;
Today :• Cy-1900)*10000.0 + m*100.0 + d;

end; { Today)

' CHRONO. TB:

1 version:
1 con,:>iler:
1 uses:
' module type:

LISTING 3: CHROllO. TB

Juli an Date functions

05-20-87
Turbo BASIC v1 .0
nothing
include file

1 This file contains functions to work with calendar dates. A
1 calendar date is a real rllllber in the format YYHMOD. For
' exanple, 4/23/87 would be 870423. Julian dates are "magic"
' hashed versions of calendar dates that al low arithmetic,
' determining the day of the week, etc. without consul ting an
1 actual calendar.

' Fl.11Ctlons in this file:

' FNYeer(O)
' FN01y(O)
' FNHonth(O)
' FNJul hn(D)
' FNColendar(J)
' FNOoyOflleek(J)
' FNToday

DEF FNYeerCCol)

Returns the year part of 1 calendar date
Returns the day part of 1 calendar date
Returns the month part of 1 calendar date
Converts 1 calendar date to 1 jul ion date
Converts 1 Jul fan date to a calendar date
Returns day of week for a jul ian date
Returns today's date (from DOS) as calendar
date

' Return the year in 1 calendar date.
FNYeer • INTCCol/10000)

ENO DEF

DEF FND1y(Cal)
' Return the day in a calendar date.
FND1y • INTCCol-CINTCCal/100)*100))

END DEF

DEF FNHonth(Cal)
' Return the month in 1 calendar date.
FNHonth • INT((Cal-(FNYeor(Cal)*10000)-FNOay(Cal))/100)

END DEF

DEF FNJuli1n(C1l)
' Convert 1 calendar date into a Julian date
LOCAL m, y
IF FNHonth(Cal) > 2 THEN
... FNHonth(Cal)+1
y • FNYear(Cal)

ELSE
II • FNHonth(Cal)+13
y • FNYear(Col)-1

END IF
FNJul ion • INTC365.25*(1900+y))+INTC30.6001*m)+FNOayCCal)+1720982

ENO DEF

DEF FNC1lendar(Jul)
1 Convert a Julian date into a calendar date
LOCAL m,d,y,OayNo
DayNo • Jul - 1720982
y • INTCCDayNo-122.1)/365.25)
m • INT((OayNo- INTC365 .25*y))/30.6001)
d = OayNo· INTC365.25*y)- I NTC30.6001*m)
IF m < 14 THEN

m • m·1
ELSE

m • m-13
END IF
IF m < 3 THEN y = y + 1
FNCalendar • (y-1900)*10000 + m*100 + d

END DEF

DEF FNOayOflleekC Jul)
' Convert Juli an date to day of week, O=Slrday
LOCAL OayNo, X, F racX
DayNo = Jul - 1720982
X = (0ayNo+5)/7.0
FracX • X - INT(X)
FNOayOflleek = INTC7*FracX•.0.5)

END DEF

DEF FNToday
' Return today's date as a calendar date from HS DOS
LOCAL a,d, y
REG 1, &H2AOO
CALL INTERRUPT &H21
y • REG(3)
m = INTCREG(4)/256)
d • REG(4) AND &HOOFF
FNToday • Cy-1900)*10000 + m*100 + d

END DEF

November/ December 1987 TURBO TECHNIX 71

Introducing the two
on earth

-

The new COMPAQ DESKPRO 386/20™

The world now has two new
benchmarks from the leader
in high-performance personal
computing. The new 20-MHz
COMPAQ DESKPRO 386/20 and
the 20-lb., 20-MHz COMPAQ
PORTABLE 386 deliver system
performance that can rival
minicomputers'. Plus they intro
duce advanced capabilities
without sacrificing compatibil
ity with the software and hard
ware you already own.

It simply works better.

Both employ an industry
standard 80386 microprocessor
and sophisticated 32-bit architec
ture. Our newest portable is up
to 25% faster and our desktop is
actually up to 50% faster than
16-MHz 386 PC's. But we did
much more than simply increase
the clock speed.

For instance, the COMPAQ
DESKPRO 386/20 uses a cache
memory controller. It comple
ments the speed of the rnicropro-

cessor, providing an increase in
system performance up to 25%
over other 20-MHz 386 PC's. It's
also the first PC to off er an op
tional Weitek"' Coprocessor Board,
which can give it the performance
of a dedicated engineering work
station at a fraction of the cost.

They both provide the most
storage and memory within their
classes. Up to 300 MB of storage
in our latest desktop and up to
100 MB in our new portable.

most powerful PC's
and off.

and the new 20-MHz COMPAQ PORTABLE 386™

Both use disk caching to inject
more speed into disk-intensive
applications.

As for memory, get up to 16 MB
of high-speed 32-bit RAM with
the COMPAQ DESKPRO 386/20
and up to 10 MB with the COMPAQ
PORTABLE 386. Both computers
feature the COMPAQ® Expanded
Memory Manager, which supports
the Lotus®/Intel®/MicrosoW Ex
panded Memory Specification
to break the 640-Kbyte barrier.

With these new computers
plus the original COMPAQ
DESKPRO 386r~ we now offer
the broadest line of high
performance 386 solutions.
They all let you run software
being written to take advantage
of 386 technology. And to prove
it, from now until December 31,
1987, we're including Microsoft®
Windows/386 Presentation Man
ager free with your purchase of
any COMPAQ 386-based PC.

It provides multitasking capabil
ities with today's DOS applica
tions to make you considerably
more productive. But that's just
the beginning. For more infor
mation, call 1-800-231-0900,
Operator 40. In Canada, call
416-733-7876, Operator 40.

Intel , Lotus, Microsoft , and Weitek are
trademarks of their respective companies.
© 1987 Compaq Computer Corporation.
All rights reserved.

l'DmPAQ®

Ii A PROGRAMMER'S GUIDE TO
THE PARALLEL PORT
Take the printer off your printer cable and it
becomes a gateway to the Real World.

Bruce Eckel

When IBM came out with their first paral
lel printer card, it was (of course) expen-

• sive. At those prices, one wouldn't think of
.. using it for anything but a printer. The

design wasn't complicated, however, and
PROGRAMMER

everyone has since cloned it, making it the
cheapest adapter card available for the PC. With
these prices, one starts thinking: "Why can't I use this
thing in a burglar alarm? Or to control my Jacuzzi?
Or to automate all manufacturing in the United States
and eliminate the national debt?"

In this article, I will show you how to read from
and write to the printer port on a pin-by-pin basis
(since each pin seems to have its own personality). I
will also describe some basics for interfacing external
switches to the port

FOUR CARDS
I studied the design of four different cards: an AST
board and three low-cost clones (the cheapest one
was $21 from Microsphere in Bend, Oregon). All
were identical, which makes sense because any piece
of software must see the same bits in the same I/O
locations if it is to communicate correctly with the
printer, regardless of the card's manufacturer.

Printer cards live in the "I/O space" (they are
sometimes referred to as being "I/O mapped"). This
means that to talk to them, you don't use Turbo C's
peek() and poke() functions but instead the inport()
and outport() functions. The card is accessed
through three consecutive I/ O addresses: BASE (the
starting address), BASE + 1, and BASE + 2. BASE is
set by dip switches or jumpers on your printer board;
standard addresses are Ox378 for LPTl, and Ox278 for
LPT2. Some cards (including IBM's original Mono
chrome Display and Printer Adapter) also support
Ox3BC for LPT3.

25 PINS
Usually, what you see of the printer port is a 25-pin
female DB-25 connector sticking out of the back of

74 TURBO TECHNIX November/ December 1987

your computer. Figure 1 names each pin and pro
vides its port address, which data bit affects the pin,
whether data is inverted between the data bus and
the pin, and what the physical inputs and outputs
look like electrically to the outside world.

The board's power supply requirements specify 0
volts for ground and 5 volts for v+, so you might
think 0 volts is a logic zero, 5 volts is a logic 1, and
anything else is uncertain. Actually the hardware
devices used on the board (TTL) have a different
concept of 0 and 1: less than or equal to 0.8 volts
indicates a zero, and 2.7 volts or more indicates a 1.
These are the voltages you will see coming out of
pins 2-9 (the printer data pins), if you connect a
voltmeter directly to the pins.

Pins 1, 14, 16, and 17 are a little different. They are
the only pins that work both ways, i.e., data may be
read into the computer from an external device, or
data may be output to a device external to the compu
ter. These pins use a kind of output called open collec
tor. Depending on the logic state of the output, it will
either be pulled low to ground or sent into a condi
tion that resembles an electrical open circuit. The
voltage on an open-collector output just floats around
when it is set to 1, so if you want the output to go to a
real 1, you must insert a resistor connected to 5 volts
on the output pin. These resistors (typically 4700
ohms) "pull up" the output to 5 volts (instead of just
TTL's normal 2.7 volts) when the output is 1, so
they're called pull-up resistors. Pins 1, 14, 16, and 17 all
have open-collector outputs with pull-up resistors, so
they will output a solid 5 volts when set to 1.

The pull-up resistors make life a lot easier when
reading a value from the outside world. Otherwise,
unconnected TTL inputs tend to float high; you'll see
when playing with PRINTER.C that they are generally

PRINTER DATA:

-BUSY
Read-only: 1/0 address BASE+ 1
Data bit 7

Essentially write-only (read for verification
of written data only). 110 address BASE

PE (Paper End)
Read only:
110 address BASE+l
Data bit 5

13

SELECT

25

•
12

ACK
Read-only: 110 address BASE+ 1
Data bit 6

Also generates IRQ7
(interrupt vector 15)
when properly c.onfigured (see text)
and presented with a TTL 0.

24

•
11

23

•
JO

22

•
• 9

21 •
• 8

Pins 18-25: Ground

20

•
• 7

Read only: 1/0 address BASE+ 1
Data bit 4 -SELECT INPUT

Data bit

19

•

0
1
2
3
4
5
6
7

• 6

Pin

2
3
4
5
6
7
8
9

• 5

17

• 4

16

• 3

15

• 2

-STROBE
*Read and write:
110 address BASE+2
Data bit 0

14

-AUTO FEED
*Read and write:
110 address BASE+2
Data bit I

*Read and write: ERROR
1/0 address BASE+2 INITIALIZE *Read only:
Data bit 3 *Read and write: 110 address BASE+ 1

110 address BASE+2 Data bit 3
Data bit 2
(Special case-output must be
a 'I' to read this pin.)

*To read data from the outside world, a "O" must first be written to this pin.
The output has a pull-up resistor that pulls it up to five volts.

NOTES: Signal names having a preceding minus sign (i.e., -STROBE) electri
cally invert an incoming voltage; i.e., a TTL zero on the pin will be inverted
and sensed by the computer as a TTL one, and vice versa. The overbar indi
cates only the logical sense of the .Print'!1"'s. sign~l-in ~ther war~'. when the
ERROR line goes to zero, the pnnter is signaling an error condition.

BASE is the starting 110 address of the block of three 110 addresses required by
the parallel board logic (see text).

Figure I. The PC parallel port.

high but some of them will rattle
around a bit. It is tempting to rely
on the inputs to be high when
open and to pull them to ground
with a switch to make them low,
but this is a bad practice since
open TTL inputs are susceptible
to noise. If you want to hook a
switch up this way, you should pull
the input pin up to 5 volts
(through a resistor-around 5K
ohms), which means you must
have your own external power
supply.

Fortunately, the four pins 1, 14,
16, and 17 already have pull-ups
on them, so if you can get away
with only four input lines, all you
need is a wire from the pin to a

switch that is connected to one of
the ground pins (18-24). No exter
nal power supply is needed. To
read these pins, you must first let
the open collector of the output
driver for that pin float so that you
can impress your external data on
the pin-otherwise the pin will
always be pulled down to zero.
For the inverting pins, this means
writing a zero to the output; for
the noninverting, a 1.

The 110 address BASE reads
and writes the eight bits of printer
data on pins 2-9. Unfortunately,
unless you physically modify the
board, you can only read back
what is presently written to the
port, which means it's good for
output, but virtually no good for
input.

THE CODE
Listing 1, PRINTER.C, is a Turbo
C program that allows you to
separately read and write each pin
(providing the pin in question has
both capabilities) without affecting
any of the others. Of course, you
can manipulate things a byte at a
time, but most people start out
looking for a single switch closure
or turning a single relay on and
off; this should make it simpler to
get sta11ed.

To be explicit, I created a con
stant array of structures called
pin_description[] that contains
all the information about e<.. _h
pin: where it lives, whether it
inverts, how to read it, etc. The
two functions read_pin() and

November/ December 1987 TURBO TECHNIX 75

f LISTING 1: PRINTER.C I

/* PRINTER.C: Reads and writes individual printer port pins.
Bruce Eckel, Eisys Consulting, 1009 N. 36th St. Seattle WA 98103.
The functions also c~nsate for logic inversions, so writing a
11 111 to a pin will cause that pin to go to a TTL one, reading a 11 111

from a pin means the voltage is at or above a TTL one, etc. */

#define TEST INPUT
#undef TEST OOTPUT
#include <dos.h>
#include 11bits.h 11

#include "printer.h"

const struct

/* To compile the input test*/
/*To exclude compilation of the output test*/

!* contains bit masks: BITO, BIT1, etc. */
/* contains BASE address definition, etc. */

pins { /* holds a full description of each pin on the port*/
byte pin_nllllber;
char name[15l; /*The name of the pin*/
byte ability; /* READ_ONLY, WRITE_ONLY, READ_WRITE, GROUND*/
byte pullup; /* NO PULLUP, PULLUP 0, PULLUP 1 */
byte polarity; /* INVERTED, NORMAL *t -
int io_address; /* The i/o address of the pin -- see diagram */
byte datamask; /* Which data bit the pin connects to *!
} pin_description[25] = {
{ 1, "strobe", READ_WRITE, PULLUP_O, INVEIHED, BASE+2, BITO },
{ 2, "print data 011 , READ_WRITE, NO_PULLUP, NORMAL, BASE, BITO },
{ 3, "print data 111 , READ_WRITE, NO_PULLUP, NORMAL, BASE, BIT1 },
{ 4, "print data 211 , READ WRITE, NO PULLUP, NORMAL, BASE, BIT2 },
{ 5, "print data 311 , READ=WRITE, NO=PULLUP, NORMAL, BASE, BIT3 },
{ 6, "print data 411 , READ_WRITE, NO_PULLUP, NORMAL, BASE, BIT4 },
{ 7, "print data 511 , READ_WRITE, NO_PULLUP, NORMAL, BASE, BIT5 },
{ 8, "print data 611 , READ_WRITE, NO_PULLUP, NORMAL, BASE, BIT6 },
{ 9, "print data 711 , READ_WRITE, NO_PULLUP, NORMAL, BASE, BIT7 },
{ 10, 11ack 11 , READ_ONLY, NO_PULLUP, NORMAL, BASE+1, BIT6 },
{ 11, "busy", READ_ONLY, NO_PULLUP, INVERTED, BASE+1, BIT7 },
{ 12, "paper end", READ_ONLY, NO_PULLUP, NORMAL, BASE+1, BITS },
{ 13, "select", READ_ONLY, NO_PULLUP, NORMAL, BASE+1, BIT4 },
{ 14, "auto feed", READ_WRITE, PULLUP_O, INVERTED, BASE+2, BIT1 },
{ 15, "error", READ ONLY, NO PULLUP, NORMAL, BASE+1, BIT3 },
{ 16, "initialize",-READ_WRlTE, PULLUP_1, NORMAL, BASE+2, BIT2 },
{ 17, "select input", READ_WRITE, PULLUP_O, INVERTED, BASE+2, BIT3},
{ 18, "ground", GROUND, 0,0,0,0 },
{ 19, "ground", GROUND, 0,0,0,0 },
{ 20, "ground", GROUND, 0,0,0,0 },
{ 21, "ground", GROUND, 0,0,0,0 },
{ 22, "ground", GROUND, 0,0,0,0 },
{ 23, "ground", GROUND, 0,0,0,0 },
{ 24, "ground", GROUND, 0,0,0,0 },
{ 25, "ground", GROUND, 0,0,0,0 }
};

byte oldvalue[3] = { 0,0,0 }; /* holds presently output values of
bits, used to change one bit without
disturbing the rest. */

byte read_pin(byte pin_nllllber)
!* Returns 0 if voltage on pin is TTL zero, 1 if TTL one. */
!* These macros make things easier to read, and reduce typos. */
#define PIN pin_description[pin_nllllberl
#define INDEX (PIN.io address - BASE)/* tells us if it's BASE+1,

- +2 or +3 */
{

if (PIN.ability== GROUND)
return(O); /* Ground is always at zero, right? */

if (PIN.pullup == PULLUP 0) {
oldvalue[INDEXl &= -PIN.datamask; /* set bit to O */
outportb(PIN.io_address, oldvalue[INDEXl>;
}

if (PIN.pullup == PULLUP_1) {
oldvalue[INDEXl I= PIN.datamask; /* set bit to 1 */
outportb(PIN.io_address, oldvalue[INDEXl);
}

if (PIN.polarity== INVERTED)
return (inportb(PIN.io_address) & PIN.datamask ? O : 1 >;
!* note ternary if-then-else returns 0 if a 1 is returned at that

bit position, and a 1 if a zero is returned (page 127 in user's
guide). */

else
return (inportb(PIN.io_address) & PIN.datamask? 1 : 0 >;

}

byte write_pin(byte pin_nllllber, byte value)
/* If value is one, that pin goes to a TTL one; if zero, goes to

76 TURBO TECHNIX November/ December 1987

THE PARALLEL PORT

write_pin() simply access the
array to find out how to manipu
late the pin you've asked it to read
or write. I also added the two
functions gotoXY() and els() to
move the cursor and clear the
screen.

I use conditional compilation to
let you select what you want
main() to do: if you #define
TEST_INPUT, the program will
read all the input pins (and a few
of the ground pins, just to show its
robustness) and continuously dis
play them on the screen, so you
can connect various pins to
ground and see what happens. If
you #undef TEST _INPUT and

#define TEST_OUTPUT, the pro-

You can poke around
with a voltmeter and

assure that every
thing is properly

toggling on and off.

gram will make all the pins (the
ones it can write to) high, tell you
about them and wait, then make
everything low, etc. This way you
can poke around with a voltmeter
and assure that everything is prop
erly toggling on and off.

Since the header files (ending
with .H) affect PRINTER.C, you
should set up a project file (PRINT
ER.PR]) and tell Turbo C you are
using it. This way, if you change
something in the header files,
Turbo C will know to recompile
PRINTER.C. The project file is
simple; it need only contain
PRINTER (PRINTER.H BITS.H)

which means there is one file in
this project called PRINTER.C
(Turbo C assumes the .C), and it
depends on PRINTER.H and

BITS.H. If you change either of
those files, Turbo C recompiles
PRINTER.C.

INTERRUPTS
The printer board also supports
interrupts; when properly config
ured, pulling the ACK line (pin
10) to ground will cause IRQ7 to
be generated. "Properly config
ured" is nontrivial, as you will see
from TSR.C (Listing 2). This is a
Terminate and Stay Resident
(TSR) program written entirely in
Turbo C (one of the wonders of
Turbo C is you don't have to
resort to assembly language to
write a TSR or other interrupt rou
tine-a marvelous reduction of
programming hassles) that initial
izes all the hardware and installs
itself in RAM to wake up with
IRQ7. Configuring the printer
board involves two steps: 1) setting
a bit on the board to enable the
interrupt; and 2) programming
the 8259A Programmable Inter
rupt Controller to accept the inter
rupt. It's inappropriate to go into
all the hardware details here; as
long as you set the BASE address
correctly, you can pull pin 10 to
ground and generate the inter
rupt. (If you're hungry for more
details, and want to know how to
modify the board to get more out
of it, check out my column in the
October-November 1987 issue of
Micro Cornucopia.)

TSR.C just gives the framework
for the interrupt. You'll notice the
only real function it performs in
the interrupt is the call to beep().
You can add anything else you
want as long as you don't make
any calls to DOS or the ROM
BIOS. This means anything like
printf(), scanf(), getch() ... well, that
sort of limits you, doesn't it?
Everyone who writes a "pop-up"
program has to cope with this
problem, which arises because
DOS and the BIOS are not re
entrant, meaning you can't call
them if someone else (i.e., the
process you're interrupting) has
already called them. If Borland
had written DOS and the ROM
BIOS, we probably wouldn't have
these problems. All this means
you have to write your own
keyboard and screen-control

TTL zero. */
/* Returns WRITE_SUCCESS, READ_ONLY, or GROUND */

{.f b" l" 1 (PIN.a 1 1ty ==GROUND)
returnCGROUND); /*bail out if we can't write to the pin*/

if (PIN.ability== READ ONLY) return(READ ONLY);
if (PIN.polarity == NORMAL){ -

if (value == 0)
oldvalueCINDEXl &= -PIN.datamask; /* set bit to 0 *I

else oldvalueCINDEXl I= PIN.datamask; /* set bit to 1 */
}

if (PIN.polarity== INVERTED){
if (value == 0)

oldvalueCINDEXl I= PIN.datamask; /* set bit to 1 */
else

oldvalueCINDEXl &= -PIN.datamask; /* set bit to 0 *I
}

outportbCPIN.io_address, oldvalueCINDEXl); /*send the value out to
the pins */

return(WRITE_SUCCESS);
}

void gotoXYCint x, int y) /* Like Turbo Pascal. */
/* This was taken from page 132 of the Turbo C Reference Guide */
#define VIDEO Ox10
{

}

union REGS regs;
regs.h.ah = 2; /* set cursor position*/
regs.h.dh = y;
regs.h.dl = x;
regs.h.bh = O; /* video page 0 *I
int86(VIDEO, ®s, ®s);

void
els() /*quick-and-dirty clear screen */
{

#define SCREEN_BASE Oxb800 /* base address of color graphics card

#define SCREEN HEIGHT 25
#define SCREEN-WIDTH 80

(and EGA in color graphics mode */

#define SCREEN-CHARS (SCREEN WIDTH * SCREEN HEIGHT * 2)
-/* nl.llber of chars and attributes in a screen */

unsigned int scr index;
for(scr_index-= O; scr_index < SCREEN_CHARS; scr_index += 2) {

pokeb(SCREEN BASE,scr index,' ');
} - -

}

main()
{

int pin_nl.llber; /* Note the pin_nl.llber is off by one since arrays
in C are indexed from 0. */ els();

#ifdef TEST_INPUT /* selects the input test */
do <

for Cpin_nl.llber = O; pin_nl.llber <= 20; pin_nl.llber++) {

}

/*Most of this is just fooling around with tricks to make
things come out nice on the screen. */

gotoXYCCpin_nl.llber % 2? 40 : 0),(2 *Cpin_nunber /2) + 1));
printfC"pin %d: %s ", PIN.pin_nunber, PIN.name);
if (PIN.ability== READ_ONLY) printf("R">;
if CPIN.abi l ity == WRITE_ONLY) printf("lol");
if (PIN.ability == READ_WRITE) printf("RW");
gotoXYCCpin_nl.llber % 2 ? 65 : 25), (2 * Cpin_nl.lllber /2) + 1));
printf("value: %d 11 , read_pin(pin_nl.lllber));

} while (!kbhit()); /*continue until any key is pressed*/
}

#endif TEST INPUT
#ifdef TEST-OUTPUT /* selects the output test */
while(1) < -

}
}

for Cpin_nl.llber = O; pin_nl.llber <= 20; pin_nl.llber++)
write_pin(pin_nl.llber, 1);

printf("all on\n");
if(getch() != ' ')

break; /* if anything but spacebar, bail out of "while" loop.*/
for Cpin_nl.llber = O; pin_nl.llber <= 20; pin_nl.llber++)

write_pin(pin_nl.llber,0);
printf("al l off\n");
if (getch() != ' ') break;

#endif TEST_OUTPUT

November/ December 1987 TURBO TECHNIX 77

LISTING 2: TSR.C

/* TSR.C:

*/

Terminate and Stay Ready (TSR) program written entirely in Turbo C.
Bruce Eckel, Eisys Consulting, 1009 N. 36th St., Seattle, WA 98103.
7/87. The interrupt line on the parallel printer card (·ACK: pin
10 on the DB-25 connector) is allowed through to IRC7, and the
8259A is configured to service the interrupt when ·ACK is pulled to
ground using a simple switch, TTL or CMOS logic. You can test it
just by poking a wire from pin 10 to one of the ground pins
(18-25). Each time you bring the line low, you will hear a brief
beep. More information can be found on pp 274-276 of the Turbo C
user's guide, and under "keep" in the reference guide.

#include <dos.h>
#define INT_NUMBER 15 /* interrupt nll11ber to install this function

into. Note IRC7 on the PC card bus
corresponds to interrupt handler 15 in the
interrupt vector table. */

#define PROG_SIZE Ox620 /*Run the Turbo C compiler with the
options:linker:mapfile set to "segments."
Look at the mapfile generated for this
program. The "stop" address for the
stack is the highest adress used ·· set
PROG SIZE to this value for use with the
"keep()" conmand */

#define PPORT_BASE Ox378 /*Parallel port board base address for LPT1.
This address is usually determined by
either dip switches or jllllpers. Change
this if you're using LPT2 or some other
address. */

#define PIC_OCW1 Ox21 /* Address of 8259A Prograrmiable Interrupt
Controller Operation Control Word 1. */

void interrupt int_handler()

/* "interrupt" is a special Turbo C compiler directive which causes
all the registers to be pushed on entry and restored on exit. In
addition, the special "return from interrupt" instruction is used to
exit the routine (and interrupts are re-enabled), instead of a normal
"return from subroutine" instruction, which a regular function call
uses. The "interrupt" directive means you can write interrupt
routines without using assembly language (hooray for increased
productivity!). */

{

extern void beep(int time); /* function prototype shows the compiler
how a proper function call should
look. */

int i;
beep(30); /* All we do is make a little noise, but you can add all

kinds of stuff here (as long as you don't make any DOS
or BIOS calls, since you might be interrupting one and
they aren't re-entrant. */

/* tell the 8259A Interrupt Controller we're done executing IRC7 */
outportb(Ox20,0x67); /* specific EOI for IRQ7 */

}

main() /* this installs the interrupt, sets up the hardware, and
exits leaving the program resident. Main is never used
again. */

{

setvect(INT_NUMBER,int_handler); /*passes the ADDRESS of the
beginning of the
int_handler() function. */

/*change the bit on the parallel board to allow the ·ACK
interrupt to pass through to IRC7 on the PC card bus. */
outportb(PPORT_BASE + 2, Ox10);

/*zero top bit of OCW1 to allow IRC7 to be serviced. Note we get
the current OCW1, force the top bit to 0 and put it back out ··
this retains the rest of the word (which affects other aspects
of the machine) to prevent undesirable side effects).

78 TURBO TECHNIX November/ December 1987

THE PARALLEL PORT

routines, directly controlling the
hardware so you don't meet a
DOS call in a dark alley some
where. Those subjects are large
and complex, and must be
handled elsewhere.

INTERFACING BASICS
To make anything happen, you
need wires and details of how to
connect to the card.

The quick-and-dirty approach
to getting the wires you need is to
cannibalize a printer cable.
(They're pretty cheap, $15-20.) All
you need to do is cut off the Cen
tronics connector end, strip all
the wires, and use a continuity
checker to determine which wires
go to which DB-25 pins. The other
approach is to use a male DB-25
ribbon-cable connector and some
ribbon cable. This has some
advantage since the wires in the
ribbon cable are all neatly lined
up in order.

READING FROM THE
OUTSIDE
As noted before, the simplest data
acquisition system you can make
is to connect a switch between
ground (pins 18-25) and any of
pins 1, 14, 16, or 17. If you want
switches on other readable pins,
they need external pull-ups for
reliable operation, ideally 4700
ohms to an external power supply.

You may also connect the read
able pins directly to other elec
tronic circuits. The most common
circuits you will encounter are
CMOS or TTL digital logic, both
of which work fine. You can also
use the inputs to look at analog
circuits, but in no case should any
of the circuits (TTL, CMOS, or
analog) output more than five
volts or less than 0 volts. The
ground of the external electronic
circuit needs to be connected to
the ground of the printer board.

WRITING TO THE OUTSIDE
The writable output lines will each
provide a few milliamps of current
(enough to tum on a light
emitting diode, which can often
be useful) . If you want to control
higher voltages, use optocouplers.

(I've provided an extensive intro
duction to control electronics in
my Micro Cornucopia column.)

You can also drive other digital
electronic circuits. TTL inputs can
be connected directly to TTL out
puts, but CMOS inputs (running at
5 volts, of course) require pull-up
resistors on the lines to get the
TTL outputs to rise to what CMOS
considers an acceptable 1.

If you start trying to pass voltage
levels across more than 15 or 20
feet, you may experience noise
problems. This can be solved elec
tronically (can't everything?) with
high-current buffers, but it's much

If you start trying to
pass voltage levels

across more than 15
or 20 feet, you may . .
experience noise

problems.

simpler just to move the computer
closer.

CAUTION TO THE WIND ...
Go ahead-working with the
parallel port hardware is perfectly
safe. You can't get shocked. You
won't burn anything out as long
as you don't put more than 5 volts
or less than 0 volts on any of the
pins. It's the least expensive and
least complicated way to bring bits
into your PC from the outside
world. •

Bruce Eckel has a BS in applied phys
ics from the University of California,
Irvine, and an MS in computer engi
neering from Cal Poly San Luis
Obispo. He writes a hardware/ soft
ware project column in Micro Cor
nucopia. Contact Bruce at: Eisys,
1009 N 36th St., Seattle, WA 98103.

Listing may be downloaded from
CompuServe as PARALLEL.ARC.

}

I know all this writing-to-hardware stuff nr.Jst seem mysterious,
but if you really want to understand it you have to read the
8259A manual (not pretty) and stare at the diagrams for the
printer board (see text). */
outportb(PIC_OCW1, inportb(PIC_OCW1) & Ox7f);

keep(O,PROG_SIZE); /* first parameter is exit status */

void
beep(int time)
/*beeps the speaker, carefully restoring the state of the control

port. ("Remember, scouts: leave things BETTER than you found
them ... ").
Taken directly from the Turbo C User's Guide, page 275. */

{

char originalbits, bits;
int i, j;

}

/* get the current control port setting */
bits = originalbits = inportb(Ox61);

for (i = O; i <= time; i++) {
/*turn off the speaker for a while*/

outportb(Ox61, bits & Oxfc);
for (j=O; j <= 100; j++)

,
/*now turn it on for awhile*/

outportb(Ox61, bits I 2>;
for (j = O; j <= 100; j++)

}

/* restore the control port setting */
outportb(Ox61, originalbits);

[LISTING 3: PRINTER.H______j

/* PRINTER.H: #defines and typedefs used in printer.c */

#define BASE Ox378 /* base address of parallel printer card*/
typedef int boolean; /*makes usage a little more obvious,

like Pascal */
typedef unsigned char byte; /* if it's always positive and never more

than 255, why use extra space?
(then again, why not?) */

#define READ ONLY 1 /* Indicates the pin can only be read from */
#define WRITE ONLY 2 /* Indicates the pin can only be written to */
#define READ_WRITE 3 /* The pin can be read from or written to *I
#define GROUND 4 /* This is a ground pin -- can't do either */
#define WRITE SUCCESS 5 /* Returned by write pin() upon successful

- write */ -

#define NO PULLUP 6
#define PULLUP_O 7

#define PULLUP_1 8

/*There is no pullup resistor on this pin. */
/*There is a pullup resistor on this pin.

You nr.Jst set the output to 10 1 before
reading it. */

/* There is a pullup resistor on this pin.
You must set the output to 1 11 before
reading it. */

#define INVERTED 9 /*A TTL one will appear on the data bus as a 0 */
#define NORMAL 10 /*A TTL one will appear on the data bus as a 1 */

[LISTING 4: BITS.H

/* BITS.H: defines bit patterns for selecting a bit within a byte. */

#define SITO Ox01
#define BIT1 Ox02
#define BIT2 Ox04
#define BIT3 Ox08
#define BIT4 Ox10
#define BITS Ox20
#define BIT6 Ox40
#define BIT7 Ox80

/* bit masks */

November/ December 1987 TURBO TECHNIX 79

RECURSIVE DATA TYP~ IN
TURBO PROLOG
Turbo Prolog's ability to define data types recursively
allows you to simply declare structures, such as trees,
• 1n your program.

Michael Covington

~ IZARIJ

Turbo Prolog is the only widely used pro
gramming language that allows the user to
define recursive data types. A data type is
recursive if it allows structures to contain
other structures like themselves. One of
the most familiar recursive types is the tree

shown in Figure 1. Crucially, each branch of the tree
is itself a tree. Other recursive structures include
lists-because the tail of every list is itself a list-and
more complex linked structures.

Trees are easy to create in Lisp and standard
(Edinburgh) Prolog. But in these languages, trees are
not a type. There is no way to tell the compiler to
expect a tree at a particular point in the program.
Instead, every procedure must check the types of its
arguments when they are actually passed to it. While
this leads to greater versatility, it also consumes CPU
time.

Turbo Prolog makes this checking unnecessary by
requiring the programmer to declare the types of all
arguments of procedures. This isn't as restrictive as it
sounds because a user-defined type can consist of a
set of alternatives rather than a single basic type.
More importantly, type definitions can be recursive.

TREES AS A DATA TYPE
Recursive types were popularized by Niklaus Wirth in
Algorithms+ Data Structures= Programs. Wirth, you
will recall, invented Pascal-not Prolog-nearly
twenty years ago. He didn't implement recursive types
in Pascal, but he did discuss what it would be like to
have them. If Pascal had recursive types, we would be
able to define a tree as something like this:

{Not correct Pascal! }

TYPE treetype RECORD
name: String[80J;
left,right : treetype

END;

That is: "A tree consists ·of a name, which is a string,
and the left and right subtrees, which are trees." The
nearest we can come to this in Pascal is to use point-

80 TURBO TECHNIX November/ December 1987

ers and say:

TYPE treeptr = ~treetype;
treetype = RECORD

name: String[80J;
left,right : treeptr

END;

But notice a subtle difference: Now we're talking
about the memory representation of a tree, not the
structure of the tree itself. We treat the tree as consist
ing of cells, each containing some data plus pointers
to two more cells. Turbo Prolog allows truly recursive
type definitions in which the pointers are created and
maintained automatically. For example, we can
define a tree as follows:

domains
treetype = tree(string,treetype,treetype)

A domain is simply a user-defined type. This declara
tion says that a tree will be written as the type marker,
or functor, tree whose arguments are a string and two
more trees.

But this isn't quite right; it provides no way to end
the recursion, and in real life, the tree does not go on
forever. Some cells don't have links to further trees. In
Pascal, we could express this by setting some pointers
equal to the special value nil; here we don't have
access to the pointers. The solution is to define two
kinds of trees: ordinary ones and empty ones. This is
done by allowing a tree to have either of two func
tors: tree, with three arguments, or empty, with
no arguments.

domains
treetype = tree(string,treetype,treetype); empty()

Notice that the names tree and empty are created by
the programmer; neither of them has any predefined
meaning in Turbo Prolog. We could have used xxx
and yyy equally well.

rvet e, Cla ice for Mr.
ulso, Fran " lay Fun
avri tic Tran
imerl othy Boards"

om ent Backu
arsen d S BACKUP
u, Yi g 'lour Bat
agen, es ating Pi N
aga, Microsoft
al pol PCs B

Glendo S/2 EV
wing, ng :r.tor&I

Davidg cope 3
Salomon Munge
Hashim, N va ce of J
Stone, ard q OS/2
Chishol . Tim se Matr
Borovsk Mikhail Contro,
Skaggs, llen .q Surpl
Bentley, Brian "X. ndows ,.
Diggins, Robert "VG po-

Bensmill r, Sy
Chomp sky Rock
Acura, s l • .

Cathy

Michael Melody

__ c_ha_rt_e_s _ __.I l.___H_az_e_i __ _.I L.l ___ J_im __ __.I I Eleanor

Figure 1. Part of the author's daughter's family tree.

Michael

/
I Ch>~_Hazel---'

Figure 2. Depth-first traversal of the tree in Figure 1.

RECURSIVE TYPES

We can now write the tree in
Figure 1 as it would appear in a
Prolog program:

tree(11Cathy11 ,

tree("Michael",
tree(11Charles11 ,empty,empty),
tree("Hazel",empty,empty)),

tree("Melody",
tree("Jim" ,empty, empty),
tree("Eleanor",empty,empty)))

This is indented here for readabil
ity, but Prolog does not require
indentation, nor are trees
indented when you print them out
normally. Note that this is not a
Turbo Prolog clause; it is just a
value to which a variable can be
instantiated. Note further that it
has no counterpart in Pascal,
because in Pascal there is no writ
ten representation for a tree.

TREE TRAVERSAL
Before we discuss how to create
trees, let's consider what to do
with a tree once we have it. One

of the most frequent operations is
to examine all the cells and pro
cess them in some way, either
searching for a particular value or
collecting all the values. This is
known as traversing the tree. One
basic algorithm for doing so is the
following:
1. If the tree is empty, do nothing.
2. Otherwise, process the current

node, then traverse the left sub
tree, then traverse the right
subtree.

Like the tree itself, the algorithm
is recursive: it treats the left and
right subtrees exactly like the orig
inal tree. Turbo Prolog expresses
it with two clauses, one for empty
and one for non-empty trees:

traverse(empty). /* do nothing */

traverse(tree(X,Y,Z)):-
/* do something with X *!
traverse(Y),
traverse(Z).

82 TURBO TECHNIX November/ December 1987

A key concept of Prolog is that
multiple definitions can be given
for a single procedure. These are
tried in sequence; if the first one
does not match the actual argu
ments or cannot be carried out
successfully, the next definition is
used instead.

Our tree traversal algorithm is
known as a depth-first search
because it goes as far as possible
down each branch before backing
up and trying another branch
(Figure 2). To see it in action, look
at the program TREESRCH.PRO
which traverses a tree, printing all
the elements as it encounters
them. Given the tree in Figures 1
and 2, TREESRCH.PRO prints:

Cathy
Michael
Charles
Hazel
Melody
Jim
Eleanor

Of course we could easily adapt
the program to perform some
other operation on the elements
rather than printing them.

Depth-first searching is strik
ingly similar to the way Prolog
searches a knowledge base,
arranging the clauses into a tree
and pursuing each branch until a
query fails. If we wanted, we could
describe the tree by means of a set
of Prolog clauses such as:

father_of(11Cathy11 , 11Michael 11).

mother_of("Cathy","Melody").
father_of(11Michael 11 , 11 Charles11).

mother_of("Michael","Hazel").

This is, in fact, preferable if the
only purpose of the tree is to
express relationships between
individuals. However, it leaves us
unable to treat the whole tree as a
single data object, and as we shall
see, complex data structures sim
plify difficult computational tasks.

CREATING A TREE
One obvious way to create a tree
is to write down a nested structure
of functors and arguments as we
did in the example above. Ordi
narily, however, trees are created
by computation. In each step, an
empty subtree is replaced by a
non-empty one through Prolog's
process of unification (argument
matching). Creating a one-cell
tree from an ordinary data item is
of course trivial:

create_tree(N,
tree(N,empty,empty)).

This says: "If N is a data item then
tree(N,empty,empty) is a one-cell
tree containing it." Building a tree
structure is almost as easy. The
following procedure takes three
trees as arguments. It inserts the
first tree as the left subtree of the
second tree, giving the third tree
as the result:

insert_left(X,tree(A,_,B),
t ree(A, X, B)).

All that Prolog has
to do is match the

arguments with each
other in the proper
positions, and the

work is done.

Notice that the procedure has no
body-there are no explicit
"steps" in executing it. All that
Prolog has to do is match the
arguments with each other in the
proper positions, and the work is
done.

Suppose for example we want to
insert

tree(11Michael 11 ,empty,empty)

as the left subtree of:

tree(11Cathy11 ,empty,empty).

We just execute the goal

insert_left(tree("Michael,
empty, empty),
tree(11 Cathy11 ,empty,empty),T).

and T immediately takes on the
value:

tree("Cathy",tree("Michael",
empty,empty),empty).

This gives us a way to build up
trees step by step. Program
MAKETREE.PRO demonstrates
this technique. In real life the
items to be inserted into the tree
could come from external input.

Notice that there is no way to
change the value of a Turbo
Prolog variable once it's instan-

I LISTING 1: TREESRCH.PRO

/* Traversing a tree by depth-first search
and printing each element as it is encountered */

domains
treetype = tree(string,treetype,treetype) empty()

predicates
print_all_elements(treetype)

clauses
print_all_elements(empty).

print_all_elements(tree(X,Y,Z))
write(X),nl,
print_all_elements(Y),
print_all_elements(Z).

goal
print_all_elements(tree("Cathy",

tree("Michael",
tree(11 Charles 11 ,empty,empty),
tree(11 Hazel 11 ,empty,empty)),

treeC 11Melody11 ,

tree("Jim", empty, empty),
tree(11 Eleanor 11 ,empty,empty)))).

LISTING 2: MAKETREE.PRO

/* Silll>le tree building procedures

create_tree(A,B) puts A in the data field of a one-cell tree giving B
insert left(A,B,C) inserts A as left subtree of B giving C
insert=right(A,B,C) inserts A as right subtree of B giving C *I

domains
treetype = tree(string,treetype,treetype) empty()

predicates
create_tree(string,treetype)
insert_left(treetype,treetype,treetype)
insert_right(treetype,treetype,treetype)

clauses
create_tree(A,treeCA,empty,empty)).
insert_left(X,tree(A,_,B),tree(A,X,B)).
insert_right(X,tree(A,B,_),tree(A,B,X)).

goal

/* First create some one-cell trees .•• */

create tree(11Charles 11 ,Ch),
create-tree(11 Hazel 11 ,H),
create-tree(11 Michael 11 ,Mi),
create-tree("J im", J),
create-tree(11 Eleanor11 ,E),
create-tree(11 Melody11 ,Me),
create=tree(11 Cathy11 ,Ca),

/* •.. then link them up .•• */

insert left(Ch,Mi,Mi2),
insert-right(H,Mi2,Mi3),
insert-left(J,Me,Me2),
insert-right(E,Me2,Me3),
insert=left(Mi3,Ca,Ca2),
insert_right(Me3,Ca2,Ca3),

I* ... and print the result.*/

write(Ca3),nl.

November/ December 1987 TURBO TECHNIX 83

Hoover

Eisenhower Roosevelt

~~-C-an_e_r~~-1 '~~-F_o_rd~~~ Kennedy Truman

Johnson Nixon

Reagan

Figure 3. Binary search tree constructed by adding the names Hoover, Roose
velt, Truman, Eisenhower, Kennedy, Johnson, Nixon, Ford, Carter, and Rea
gan, in that order.

RECURSIVE TYPES

tiated unless backtracking occurs.
That's why MAKETREE.PRO uses
so many variable names; every
time we create a new value we
have to have a new variable. The
superabundance of variable
names here is unusual; more com
monly, repetitive procedures
obtain new variables by invoking
themselves recursively, since each
invocation has a distinct set of
variables.

BINARY SEARCH TREES
So far, we have been using the
tree to represent relationships
between its elements. We have
already noted that this is not the
best use for trees, since Prolog
clauses can do the same job. But
trees have other uses.

In particular, trees provide a
good way to store data items so
that they can be found quickly. A
tree built for this purpose is called
a search tree, and from the user's
point of view, the tree structure
carries no information-the tree

is merely a faster alternative to a
list or array.

Recall that we traverse an ordi
nary tree by looking at the current
cell and then at both of its sub
trees. To find a particular item, we
may have to look at every cell in
the whole tree. Thus the time
taken to search the tree with N
elements is, on the average, pro
portional to N.

A binary search tree is con
structed so that we can predict,
upon looking at any cell, which of
its subtrees our item will be in.
This is done by defining an order
ing relation on the data items,
such as alphabetical or numerical
order. We then place items in the
left subtree if they precede the
item in the current cell and in the
right subtree if they follow it. Fig
ure 3 shows an example. Notice
that the same names, added in a
different order, would produce a
somewhat different tree. Notice
also that although there are ten
names in the tree, we can find any
of them in at most five steps.

Every time we look at a cell dur
ing a search, we eliminate half of
the remaining cells from consider
ation and the search proceeds
very quickly. If the size of the tree
were doubled, then only one extra
step would typically be needed to

84 TURBO TECHNIX November/ December 1987

search it. This means that the time
taken to find an item is, on the
average, proportional to log2 N
(or, in fact, proportional to log n
with logarithms to any base).

To build the tree, we start with
an empty tree and add items one
by one. The procedure for adding
an item is the same as for finding
one: we simply search for the

Recall that we
traverse an ordinary

tree by looking at
the current cell and
then at both of its
subtrees. To find a
particular item, we
may have to look at

every cell in the
whole tree.

place where it ought to be, and
insert it there. The algorithm is:
1. If the current node is an empty

tree, insert the item there.
2. Otherwise, compare the item to

be inserted with the item stored
in the current node. Insert the
item into the left subtree or the
right subtree, depending on the
result of the comparison.

In Prolog, this requires three
clauses, one for each situation.
The first clause is:

insert(Newltem,empty,
tree(Newltem,empty,empty)):-!.

That is: "The result of inserting
Newltem into empty is tree(New
Item,empty,empty)." The excla
mation mark is called a cut; it
means that if this clause can be
used successfully, no other clauses
should be tried.

The second and third clauses
take care of insertion into non
empty trees:

insert(Newltem,
treeCElement,Left,Right),
treeCElement,NewLeft,Right)):

Newltem <Element,!,
insert(Newltem,Left,Newleft).

insert
(Newltem,
tree(Element,Left,Right),
tree(Element,Left,NewRight))
insert(Newltem,Right,NewRight).

That is, if Newltem <Element, we
insert into the left subtree; other
wise we insert into the right sub
tree. Notice that because of the
cuts, we get to the third clause
only if neither of the preceding
clauses has succeeded.

TREE-BASED SORTING
Once we have built the tree, it's
easy to retrieve all the items in
alphabetical order. The algorithm
is again a variant of the depth-first
search:
1. If the tree is empty, do nothing.
2. Otherwise, retrieve all the items

in the left subtree, then the cur
rent element, then all the items
in the right subtree.

Or, in Prolog:

retrieve_all(~ty).
/* Do nothing */

retrieve all(tree(ltem,
Left,Right)):

retrieve_al lCLeft),

<do something to item>

retrieve_allCRight).

A sequence of items can be sorted
by inserting them into a tree and
then retrieving them in order. For
N items, this takes time propor
tional to N log N, because both
insertion and retrieval take time
proportional to log N, and each of
them has to be done N times. No
faster sorting algorithm is known.

Program TREESORT.PRO
is a useful DOS utility that uses
this technique to alphabetize
any standard DOS text file,
line by line. To test it, I sorted
the 428-line README file distri
buted with Turbo Pro log 1.1;
TREESORT.PRO was more than
five times as fast as SORT.EXE,
the sort program provided by
DOS. Clearly, tree-based sorting is
efficient

TREESORT.PRO has just one
quirk. Turbo Prolog's built-in
predicate readln expects every file
to end with the same sequence as
standard DOS text files: return
(ASCII character 13), linefeed
(character 10), and end-of-file
character Ctrl-Z (character 26).

Files created with Borland edi
tors often end with just Ctrl-Z at

l LISTING 3: TREESORT.PRO J
I* TREESORT.PRO Michael A. Covington 1987

*I

Fast tree-based sort program.
Reads lines from a file, sorts them in alphabetical
order, and writes them on another file.

The input file rr..ist be a normal DOS text file.
That is, the end-of-file mark (Ctrl·Z> rr..ist be
preceded by an end-of-line mark CCtrl·M Ctrl-J).
Otherwise the Ctrl-Z will be moved up into the
middle of the file making it end prematurely.

domains
treetype = tree(string,treetype,treetype)
file infile; outfile

predicates
main
read_input(treetype)
read_input_aux(treetype,treetype)
insert(string,treetype,treetype)
write_output(treetype)

clauses

/*
*
*/

Main procedure, invoked by goal

main
clearwindow,

~ty()

write("Turbo Prolog Treesort / M. Covington 1987\n\n"),

write("File to read: "),
readlnCln),
openread(infile,ln),

write("File to write: "),
readln(Out),
openwrite(outfile,Out),

readdevice(infile),
read_input(Tree),

writedevice(outfile),
write_output(Tree),
closefile(outfile).

main :-
/* Execution drops to this clause if */
/*anything in the preceding one fails*/
closefile(outfile),
writedevice(screen),
write("Unable to perform sort.\n"),
write("Probable cause: Missing file.\n").

November/ December 1987 TURBO TECHNIX 85

/*
* read_input(Tree)
*
*

reads lines from the current input device until EOF, then
instantiates Tree to the binary search tree built therefrom

*!

read_input(Tree) :
read_input_aux(eflllty, Tree).

/*
* read_input_aux(Tree,NewTree)
* reads a line, inserts it into Tree giving NewTree,
* and calls itself recursively unless at EOF.
*/

read_input_aux(Tree,NewTree) •
readln(S),
! I

insert(S,Tree,Tree1>,
read_input_aux(Tree1,NewTree).

read_input_aux(Tree,Tree).
/* If the first clause failed, we are at EOF. */
/* So the second clause succeeds with no further action. */

/*
* insert(Element,Tree,NewTree)
* inserts Element into Tree giving NewTree.
*/

insert(Newltem,efllltY,tree(Newltem,efllltY,efllltY))

insert(Newltem,tree(Element,Left,Right),
tree(Element,Newleft,Right))

Newltem < Element,
!,
insert(Newltem,Left,Newleft).

insert(Newltem,tree(Element,Left,Right),
tree(Element,Left,NewRight))

insertCNewltem,Right,NewRight).

!*
* write_output(Tree)

! .

* writes out the elements of Tree in alphabetical order.
*!

write_output(eflllty). /* Do nothing */

write_output(tree(ltem,Left,Right))
write_outputCLeft),
write(ltem),nl,
write_outputCRight).

goal
main.

86 TURBO TECHNIX November/ December 1987

RECURSIVE TYPES

the end of the final line. When
this occurs, read.In treats the Ctrl-Z
as a readable character. During
the sort process, TREESORT.PRO
carries the Ctrl-Z to whatever posi
tion the line occupies in the final
sequence of lines in the sorted
file. The result is a file that seems
to be the right size but ends
abruptly in the wrong place when
edited or printed, since the end
of-file marker has been moved to
somewhere in the middle of the
file.

This could be corrected by
modifying the program to test
whether each line ends in Ctrl-Z
and, if so, delete the Ctrl-Z. This,
however, would take extra CPU
time. Hopefully, in the future Bor-

TREESORT.PRO
was more than five

times as fast as
SORT.EXE, the sort

program provided by
DOS. Clearly, tree

based sorting is
efficient.

land will modify read.In so that
Ctrl-Z is recognized as terminating
the line as well as the file . •

SUGGESTED READING
Covington, Michael. "Procedural
Algorithms in Prolog." PC Tech
journal, Vol. 5, No. 3 (March 1987),
pp. 159-164.
Wirth, Niklaus. Algorithms + Data
Structures = Programs, Englewood
Cliffs, New Jersey: Prentice-Hall,
1976.

Michael Covington does artificial
intelligence research at the University
of Georgia and has written about 100
magazine articles relating to
microcomputers.

Listings may be downloaded from
CompuServe as RECURSE.ARC.

EXTRACTING ROUTIN~ FROM
THE TURBO PROLOG
TOOLBOX
If you don't need the entire toolbox, take what you
need-it's easier than you might think. ·

Dan Shafer

Learning how to use the Turbo Prolog
Toolbox effectively and efficiently can

• greatly streamline your Turbo Prolog pro-
.. gramming tasks. In this article, we will take

a look at the basic concepts involved in
PROGRAMMER

using the Turbo Prolog Toolbox routines.
We will examine differences in memory utilization
between the two primary methods of using these rou
tines. Finally, we will discuss some of the most useful
Toolbox routines in depth.

TWO P ATHS
There are at least two ways to use the routines sup
plied in the Turbo Prolog Toolbox. The routines are
lumped together for convenience in files of related
predicates. For example, the file MENU.PRO, which
we will use extensively in this discussion, contains
three predicates: menu, menu_ leave and
menu_ mult.

In many situations, you may be content with simply
using an include fi le, the method shown in the Turbo
Prolog Toolbox manual. However, there are times
when memory constraints can become significant,
particularly if your program involves the need to
include several of the Turbo Prolog Toolbox files. In
that event, you may want to save space by retrieving
only the specific routines you need for your program
from the files supplied by Borland. Doing so requires
a number of steps.

First, you should familiarize yourself with the predi
cates in each of the potential include files with which
your program will work. If the application involves a
complex usage of several include files, you may want
to make a written list of the predicates in each for
later reference.

Second, you should go through your code and be
sure which of the predicates in each include file your
program is actually using. Check them off the list as
you find a need for them so that when you are done,
you will have a complete list of the predicates your

program needs from the include files.
Third, edit from each of the include files those

clauses your program is not using. In doing so, be
sure to remove all of the clauses for an unneeded
predicate. Once you've removed the clauses for a
given predicate, it's a good idea to immediately
remove the predicates declaration. If you forget to
remove this declaration you will receive an error mes
sage at compile time.

Also, you may wish to remove any domain declara
tions associated with these unneeded clauses. If you
do this, though, be sure that the domain declarations
are not used by other, needed predicates in your pro
gram or in the include file . Otherwise, you will once
again run into apparent bugs at compile time.

It is a good idea, by the way, to save these modified
include files under different names from those used
by Borland on the distribution disks. That way, if you
need the original include file in a later project, you
won't find yourself wondering where the missing
predicates went.

With all of this done, make backup copies of your
newly modified files and then compile the code. If
you have a multi-file project, be sure that an appro
priate .PRJ file exists before you attempt to compile.

"STANDARD" INCLUDE FILES
There are two Turbo Prolog Toolbox files which
every program that uses Toolbox routines generally
incorporates: TPREDS.PRO and TDOMS.PRO. The
former contains some frequently used predicates and
the latter some almost universally required domain
declarations.

However, just because Borland supplies these
files and recommends their usage doesn't mean that
they don't represent fertile ground when looking for
more places to save space if you need it in your com
piled Turbo Prolog program. If you can identify do
mains and predicates that are defined in those files
and not needed in your program or in any of the
include files from the Toolbox, you should feel free
to modify them. Again, you should save them under
different names.

November/ December 1987 TURBO TECHNIX 87

LISTING 1: HYHENU.PRO

/******************'**
listing 1.
Turbo Prolog Toolbox Article

This program demonstrates the use of extracted
predicates fran files furnished on the Turbo Prolog
Toolbox distribution disks. It creates two new
INCLUDE files fran those on the distribution disks:
HENPREDS.PRO Iran TPREDS.PRO and NEllHENU.PRO fran
MENU.PRO. In both cases, umeeded predicates have
been removed Iran the original files and the modified
files saved separately.

*** ******** ** ** ****** * ***** *** ****** ••• ************** *******I
include 11 tdoms.pro11 /* no modifications · nothing to delete */
include 11 menpreds.pro11 /* as modified for this program */
include 11 newnenu.pro 11 /* as modified for this program */

predicates

goal

clauses

menberC integer, integerl ist)
fun(integerl ist)
power _user(integerl is t)
developer(i ntegerl i st)
fun only(integerl ist)
all-work(integerl ist)
craiy(integerl ist)
wd te_h(integerl ht)

cl earwi ndow,
menu_ITl.Jlt(lO, 10,7,7, [11 Arcade·style games 11 , 11 Databases 11 ,

"Expert Systems Developnent 11 , "Math Reseerch 11 ,

11 Prograrrming 11 , 11 Spreadsheets 11 , 11 Teleconm..ni cat i ons 11 ,

"Text Adventure Games 11 , 111.Jord Process i ng 11],

"Select all of the things for which you use a
c~ter 11 ,

CJ , Choices) ,
write_ it (Choices l.

/* These predicates permit us to categorize responses from the
menu in such a way as to make the conp.Jter's analysis and advice
more interesting and less expected. To see what they are intended
to mean, look at the "write it" clauses below. All work basically
the same way. The menu choices are categorized into 11 fi..ri 11 , 11 power
user 11 , 11 developer 11 and 11 crazy. 11 Since the user is making a
111.1ltiple·choice selection, his/her replies are stored in a list
cal led Choices (as set up in the "meN.J_lll.ll t" predicate call in
the goal, above). Then we just use the 11 meri>er 11 predicate to
determine if a particular value is part of that list or not.*/

funCChoices) :-
menberC 1, Choices).

fun(Choices) :·
menberC8, Choices).

power_user(Choices) :·
menberC2, Choices).

power _user(Choices) :
menber(6, Choices).

power _user(Choices) : •
menberC7,Choices).

power_user(Choices) :
menber(9, Choices).

developer(Choices) :·

88 TURBO TECHNIX November/ December 1987

EXTRACTING ROUTINES

TPREDS.PRO is a particularly useful place to look
when saving space. There are 14 predicates defined
in the file, and they are logically grouped into these
categories:
• miscellaneous
• letter-selection routines to scan a string
• predicates to adjust the locations of windows on

the display
• keyboard input handlers
If your program doesn't need one or more of these

categories of predicates, it's easy to edit the
TPREDS.PRO file and remove the unneeded blocks.

WHAT CAN YOU SAVE?
Just to get an idea of the degree of compiled file-size
savings attainable by the methods we've just de
scribed, let's take a look at the simple XSTATUS.PRO
program on page 12 of the Turbo Prolog Toolbox
manual. That program demonstrates the display and
use of a status line. It uses three include files, the
standard TDOMS.PRO and TPREDS.PRO, along with
STATUS.PRO.

A look at XSTATUS.PRO reveals that, of the predi
cates defined in TPREDS.PRO, it only uses the key
board reader routines. Thus we can eliminate all but
the last section of code from that file, an action that
results in a saving of 4,137 bytes, reducing the file
from 5,377 bytes to 1,240 bytes.

As you might expect, the savings in TDOMS.PRO
are less dramatic. We can eliminate only a small
number of domain declarations: ROW, COL, LEN,
STRINGLIST and INTEGERLIST. This editing
creates a new file of 687 bytes, compared to the origi
nal 753 bytes in TDOMS.PRO.

Before any of these changes are made, compile the
XSTA TUS.PRO file as it's furnished by Borland, and
you will find the resulting .EXE file occupies 42,594
bytes. After removing the unneeded predicates and
domain declarations, the compiled result takes up
42,295 bytes, a savings of only 299 bytes.

Sometimes, of course, 300 bytes can be important,
particularly when you are bumping against the upper
limits of your PC's memory. We should also note that
if the XSTATUS.PRO file didn't require all of the
predicates in the STATUS.PRO file, the memory sav
ings would be greater. The fact that XSTATUS.PRO is
provided to demonstrate all of the predicates in STA
TUS.PRO means that we can't eliminate any of the
predicates in STATUS.PRO.

But if you were using one of the MENU.PRO rou
tines in your program, it's quite likely you would need
only one of the three types of menu:
• a single-choice menu that disappears when the

user makes a selection (using the menu predicate)
• a single-choice menu that stays on the screen after

the user makes a selection (using the menu_leave
predicate)

• a multiple-selection menu (using menu_mult).
In that event, you can delete the other two types of

menu predicates from the MENU.PRO file, save it
continued on page 90

Borland's Turbo Prolog, the natural
introduction to Artificial Intelligence

Nothing says Artificial
Intelligence has to
be complicated, aca

demic or obscure. Turbo
Prolog® proves that. It's
intelligent about Intelli
gence and teaches you
carefully and concisely
so that you soon feel right
at home.

Which is not to say that Artificial
Intelligence is an easy concept to
grasp, but there's no easier way to
grasp it than with Turbo Prolog's
point-by-point, easy-to-follow
Tutorial.

Turbo Prolog is for both
beginners and professional
programmers

Because of Turbo Prolog's natural
logic, both beginners and accom
plished programmers can quickly
build powerful applications-like
expert systems, natural language
interfaces, customized knowledge
bases and smart information
management systems. Turbo Prolog
is a 5th-generation language that
almost instantly puts you and your
programs into a fascinating new
dimension. Whatever level you work
at, you'll find Turbo Prolog both
challenging and exhilarating.

Turbo Prolog is to Prolog what
Turbo Pascal is to Pascal

Borland's Turbo Pascal" and
Turbo C" are already famous, and
our Turbo Prolog is now just as
famous.

Turbo Pascal is so fast and power
ful that it's become a worldwide
standard in universities, research
centers, schools, and with pro
grammers and hobbyists. Turbo
Prolog, the natural language of Arti
ficial Intelligence, is having the
same dramatic impact.

All Borland products are trademarks or registered trademarks of Bor
land lnternauonal, Inc or BorlandJAnalyt1ca, Inc Other brand and pro
duct names and trademarks or registered trademarks of their respec
tive holders Copyright 1987 Borland International

81-1120

Borland's new Turbo Prolog
Toolbox adds 80 powerful tools

Turbo Prolog ToolboxN includes
80 new tools and 8000 lines of
source code that can easily be
incorporated into your own pro
grams. We've included 40 sample
programs that show you how to put
these Artificial Intelligence tools
to work.

Already one of the most powerful
computer programming languages
ever conceived, Turbo Prolog is
now even more powerful with the
new Toolbox addition.

The Critics' Choice
'' I really wouldn't want to choose the
most important MS-DOS product devel
oped last year, but if I had to, I think it
would be Borland's Prolog, which gives
users a whole new way to think about
how to use their computers.

jerry Poumelle, it User's View, '
Info World

Turbo Prolog offers the fastest and most
approachable implementation of Prolog.

Darryl Rubin, Al E:xpert 1'

INTERNATIONAL

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY. CA 95066
(408) 438-8400 TELEX: 172373

Turbo Prolog Features:
~ A complete development

environment
~ A fast incremental compiler
~ A full-screen interactive

editor
~ Graphic and text window

support
~ Tools to build your own

expert systems
~ Full DOS access and support
~ A free Tutorial
~ The free GeoBaseN natural

query language database
~ An easy-to-understand 200-

page manual
All this and more for only $99.95!

The new Turbo Prolog
Toolbox includes:

~ 80 tools
~ 8000 lines of source code

that can easily be
incorporated into your own
programs

~ 40 sample programs
~ Business graphics
@ File transfers from Reflex,9

dBASE m,• 1-2-3" and
Symphony"

~ Sophisticated user-interface
design

~ Screen layout and
handling-including virtual
screens

~ Complete communications
package including XMODEM
protocol

@ Parser generation
~ Opportunity to design AI

applications quickly
~ 5th-generation language and

supercomputer power to
your IBM"PC and
compatibles

Only $99.95!

I-

merrber(3, Choices).

developer(Choices) : •
merrber(S, Choices).

crazy(Cholces) : •
merrber(4,Choices). /* Isn't any math researcher? */

/* If the user indicates only game choices, s/he's categorized as
11 flr'_only11 for our purposes. */

fun only(Choices) : ·
- fun(Choices),

notCpower _user(Choices) l,
not(developer(Choi ces)).

/*Similarly, if the user indicates no fun choices at all, but only
power user or progranmer uses, s/he•s categorized as
11 all_work 11

• */

all workCChoices) :·
- not(fun(Choices)),

power _userCCho; ces).

all workCChoices) :·
- not(fun(Choices)),

developer(Choices).

all work(Choices) :·
- not(fun(Choices)),

not(crazyCChoi ces)).

/* Here come the messages of advice • • words of wisdom, if you will •
for each category of respondent. *I

write it(Choices) : ·
- fun only(Choices),

writ'e(11 Maybe it's time you got serious about your
corrp.Jter 111).

write it(Choices) :·
- all work(Choices),

write("All work and no play makes for rich, but dull,
progranmers!").

write it(Choices) :·
- crazy(Choices),

write(11 You are definitely a strange duck! 11).

write it(Choices) :·
- not(fun onlyCChoices)),

not(al l-workCChoi ces)),
not(crazyCChoi ces)),
write("You seem to be pretty well-balanced.").

/* Standard 11ment>er 11 definition, but not included with Turbo
Prolog. */

merrbercx, cxj_n.
merrber(X, [YJ) : •

meiiber(X, Yl.

90 TURBO TECHNIX November/ December 1987

EXTRACTING ROUTINES

continued from page 88
under a different name and eliminate enough file
space to make the effort worthwhile.

A BRIEF MENU EXAMPLE
Let's create a small demonstration program to show
how to include a single routine from the MENU.PRO
file rather than reading in the entire file with an
include statement.

Listing 1 displays a menu of choices from which
the user makes multiple selections. Then the menu is
removed and the program displays some advice
based on the user's selections. In your own program,
of course, you could do anything you wish with the
user's reply.

Listing 2 is the MENU.PRO file provided on the
Turbo Prolog Toolbox distribution diskette. The
shaded areas indicate those lines removed to create
the file MYMENU.PRO which is included in the
NEWMENU.PRO program in Listing 1. These are
lines that can be eliminated because we are only
using one of the menu types.

Listing 3 shows the TPREDS.PRO file supplied by
Borland with the Toolbox. Again, the shaded area
represents the lines removed to create the
MENPREDS.PRO file included in MYMENU.PRO.
(The TDOMS.PRO file had no possible deletions in
this application.)

Before any of the include files are changed, if we
compile MYMENU.PRO, the resulting .EXE file
occupies 44,730 bytes of space on the disk. After we
make the changes indicated by the shading in the
listings and then compile MYMENU.PRO, we create
an .EXE file which only needs 44,671 bytes of space,
a saving of only 59 bytes. This is despite the fact that
the reduced file sizes are more than 1,750 bytes smaller
after unneeded predicates are removed.

You will find that this pattern remains fairly
consistent. For example, if we chose to implement a
simple one-choice menu that goes away after the user's
selection is made, we would find to our surprise that
we save even less total compiled file size than when
we do our multiple-choice menu (44 bytes rather than
59).

BE EFFICIENT
It's possible to save space by extracting specific
predicates and groups of predicates from the files
supplied on the Turbo Prolog Toolbox distribution
diskettes. Often, the amount of space saved will not
seem significant. But when larger files are included
in your code, and your program makes use of small
portions of their content, this is definitely a technique
to keep in mind. •

Dan Shafer is the author of the best-selling Turbo Prolog
Primer and the recently re/,eased Advanced Turbo Prolog
Programming, both published by Howard W Sams & Co.
He lives in Redwood City, California.

Listings may be downloaded from . CompuServe as
EXTRACTP.ARC.

LISTING 2: HENU1 .PRO

,
Turbo Prolog Toolbox
(C) Copyright 1987 Borlard International.

menu
lrrplements a popup menu with at most 23 possible choices.
For more than 23 possible choices use longmeoo.

The up ard down arrow keys can be used to move the bar .
RETURN or F10 will select an irdicated iten.
Press;ng Esc aborts menu selection and returns zero.

The argunents to menu are :

menu(ROii, COL, Ill NDOllATTR, FRAMEATTR, STR l NGLIST, HEADE~, STARTCHOI CE,
SELECTION)

ROii ard COL determines the position of the window
llATTR ard FATTR determine the attributes for the window

ard its frM!e - if FATTR i s zero there
will be no frame arOl.nd the window.

STRINGLIST is the list of menu items
HEADER is the text to appear at the top of the menu window
STARTCHOICE determines where the bar should be placed.

Ex: menu(S,5,7,7, [thh,is,a,testJ, 11 select word 11 ,0,CHOICE)

**I

PREDICATES
menu(ROii, COL,ATTR ,ATTR, STRINGLI ST, STRING, INTEGER, INTEGER)
menuini t(ROll, COL ,ATTR,ATTR, STRI NGL l ST. STRI NG,ROll, COL)
menu1 (SYMBOL, ROll,ATTR, STRINGLIST, ROll,COl, lNTEGER)
menu2(KEY, STRI NGLI ST, ROii ,ROii, ROii, SYMBOL)

- I

CLAUSES
menu(ROll,COL,llATTR, FATTR,l IST, HEADER,STARTCHOICE ,CHOICE) : •

......,in! t(ROll,COL ,llATTR, FATTR, L !ST ,HEADER, NOOFROll,LEN),
ST1•STARTCHOICE·1,.,.x(0, ST1, ST2l ,HAX•NOOFROll· 1,
Min(ST2,HAX, STARTROll),
menu! (Cont, STARTROll,llATTR, l I ST. NOOFROll,LEN ,CHOICE).
removew I ndow.

menuini t(ROll, COL, llATTR, FATTR, L l ST, HEADER,NOOFROll, NOOFCOL): •
max l en(L l ST, 0, HAXNOOFCOL),
str _len(HEADER, HEAD LEN),
HEADL 1=HEADLEN+4,
max(HEADL 1,HAXNOOFCOL ,NOOFCOL).
listlen(LIST,LEN) , LEN>O,
NOOFROll=LEN,
adj frame(FATTR, NOOFROll, NOOFCOL, HH1, HH2),
adjustwindow(ROll, COL, HH1, HH2, AROll, ACOL),
makewi ndow(81, llA TTR, FATTR. HEADER, AROll, ACOL, HH1. HH2).
wri tel i st(O. NOOFCOL, LI ST) .

menu1(cont,ROll,ATTR, LIST ,HAXROll, NOOFCOL, CHOICE):· I.
reverseattrCATTR, REV),
f i eld_attr(ROll, 0. NOOFCOL, REV).
cursorCROll,0),
readkey(KEY>,
field attr(ROll, 0, NOOFCOL ,ATTR).
menu2CKEY, LIST ,HAXROll,ROll, NEXTROll, CONT),
menu! (CONT ,NEXTROll,ATTR, LI ST ,HAXROll,NOOFCOL ,CHOICE).

menu! (esc,ROll,_,_,_,_, CHOICE):· I. CHOI CE=R0\1+1.
menu1 (_, ROll,ATTR,_,_, NOOFCOL, CHOI CE):·

CHOICE•R0\1+1,
reverseattrCATTR, REV),

1-
f i eld_attr(ROll, 0, NOOFCOL,REV).

- I
-~- 1

- 1

- I

- 1

·- I

menu2Cesc,_,_,_, ·1 ,esc) : ·I.
menu2(fkey(10) ,_,_, ROii, ROii, stop):· I.
menu2Cchar(C), LI ST, , , CH, selection):· tryletter(C, LIST, CH), I .

;•menu2(fkey(1),_,_,ROll~ROll,cont):·l,help. If a help system is
used •;
menu2(cr ,_,_,ROii, CH, selection) : · I, CH•ROll.
menu2(up, , ,ROll,NEXTROll,cont) : ·ROll>O, I ,NEXTROll=ROll·1 .
menu2(dowfi,=,HAXROll, ROii, NEXTROll, cont): -

NEXTROll=ROll+ 1,
NEXTROll<KAXROll, I •

menu2(end,_,HAXROll,_, NEXT, cont):· I, NEXT=HAXROll-1.
menu2(pgd-i,_,HAXROll,_,NEXT ,cont) :-1. NEXT=HAXROll·,.
men.J2(home,_,_,_, 0, cont): · 1.
menu2Cpgup,_,_,_,O,cont): ·I .
menu2C_,_,_, ROii, ROii, cont).

/**I
;•, leave •;
/* As, but the window I 1 - not removed on return. •I
/****************'**I

PREDICATES
menu_leove(ROW,COl.,ATTR,ATTR,STRINGL IST ,STRING, INTEGER, INTEGER)

CLAUSES
menu leave(ROll,OOL ,llATTR, FATTR, LI ST. NEADER,STARTCHOICE,CHOICE) : •

-,ini t(ROll,COL ,llATTR, FATTR, l IST, HEADER,NOOFROW,NOOFCOL),
STl•STARTCHOICE· 1 ,Nx(O, ST1, ST2) ,HAX•NOOFROW·1,
•inCST2,HAX, STARTROll),
menu! (cont. STARTROll,llATTR, LI ST. NOOFROll, NOOFOOL,CHOICE).

,•...............................
menu rrul t

lrrplements a popup-menu which allows a rrultiple number of
selections.

Each selection is made by pressing RETURN. All selections ore
then activated by pressing F10 •

The argunents to menu_rrul t are:

menu(ROii, COL ,Ill NDOllATTR, FRAMEATTR, STR I NGLIST, HEADER, STARTL I ST,
NEllLIST)

ROii ard COl determine the position of the window
llATTR ard FATTR determine the attributes for the wirdow

and its frame • if FATTR is zero there
will be no frame arOl.nd the window.

STR I NGLI ST Is the list of menu items
HEADER is the text to appear at the top of the menu wirdow
START LI ST determines the i terns to be highlighted when

the menu is first displayed
NEllLIST contains the list of selections

Ex: mer...i_rult(5,5, 7, 7, [this, is, a, test] ,"select words", [1] ,NE\JLIST)

**** * ****** *********** ***** ** ••••••••••••••••••••• •••••••••••••*I

November/ December 1987 TURBO TECHNIX 91

EXTRACTING ROUTINES

PREDICATES
menu ..,1 t(ROW,COl,ATTR,ATTR, STRINGLI ST ,STRING, INTEGERLI ST,

- INTEGERLIST)
""l tmenu1 (SYHBOl, ROll,ATTR, STRINGLI ST, ROii, COL, INTEGERL I ST,

INTEGERLIST)
highlight selected(INTEGERLIST ,COL,ATTR)
handle selection(INTEGER, INTEGERLIST, INTEGERLIST ,COL,ATTR)
try_del (INTEGER, I NTEGERLIST, I NTEGERLI ST ,COL,ATTR)

CLAUSES

menu ""l t(ROll, COL, llATTR, FATTR, LI ST, HEADER,STARTCHLIST ,CHLIST)
- menuinit(ROll,COL,llATTR, FATTR, LI ST. HEADER,NOOFROll, NOOFCOL).

..,1 tme 1(cont, O,llATTR. LIST ,NOOFROW, NOOFCOL. STARTCHLI ST.
CHLIST),

removew i ndow.

nut t~1 (stop,_,_,_,_,_,CHL,CHL) :·I.
nultmenJ1(esc,_,_,_,_,_,_, []):·I.
""l tmenu1 (select i on,ROll,ATTR, LI ST ,HAXROll , NOOFCOL ,OLDCHL I N,CHLCllT) : •

CHOICE•1+ROW,
handle selection(CHOI CE, OLDCHLI N, NEllCHLI N, NOOFCOL, A TTR) ,
rul tmeru1 (cont , ROll,ATTR, LI ST ,HAXROll, NOOFCOL,NEllCHLIN, CHLCllT) .

""l tmenu1 (cont, ROll,ATTR, LIST ,HAXRO\I, NOOFCOL,CHLIN,CHLCllT): •
reverseattr(ATTR, REV),
hlghl lght selected(CHLIN,NOOFCOL,REV),
cursor(RW,0),
readkey(KEY),
onenu2CKEY, LIST ,HAXROll, ROii, NEXTROll,CONT),
rul tmenu1 (CONT. NEXTROll,ATTR, LIST ,HAXROll, NOOFCOL,CHLIN, CHLCllT).

hight lght_selected(CJ,_,_).
highl lght_selected(CH I Tl, L,ATTR): •

ROll=H· 1,
field attr(R0\1,0,L,ATTR),
high l T ght_selectedCT, L ,ATTR).

try_del(SELECTIOll, CSELECTIONIRESTJ ,REST ,LEN,ATTR> :·
ROll=SELECTION · 1,
field attr(R0\1,0, LEN ,ATTR), I.

try_del(SELECTION, CHIRESTJ, CHIREST1J ,LEN,ATTR): ·
try_del (SELECTION, REST ,REST1, LEN ,ATTR).

handle select i on(SELECTIOll,OLDCHIN ,NEllCHIN, LEN,ATTR): •
try del(SELECTION,OLDCHIN,NEllCHIN,LEN,ATTR), I.

handle_selecti on(SELECTION ,OLDCHIN, CSELECTION iOLDCHINJ ,_,_).

92 TURBO TECHNIX November/ December 1987

T LISTING 3: TPREDS1.PRO

,•..•......................................
Turbo Pro log Toolbox
CC> Copyright 1987 Borland International.

This module includes some routines which are used in nearly
all me,.._, and screen tools.

**I , .. ,
1• repeat */
/**/
PREDICATES

nondetena repeat

CLAUSES
repeat.
repelt: ·repeat.

!**I
/* mi scellaneous */
!**I

PREDICATES
maxlen(STRINGLIST ,COL,COL) /*The length of the longest string*/
l i s tlen(STRINGLIST ,ROii) /* The length of a list */
writel i st(ROll,COL,STRINGLIST) /* used in the menu predicates */
reverseattr(ATTR,ATTR) /* Returns the reversed attribute */
•in(ROll,ROll,ROll) min(COL ,COL,COL)
mlnCLEN, LEN, LEN) mi n(I NT EGER, I NT EGER, INTEGER)
max(ROll ,ROii, ROii) max(COL, COL , COL)
max(LEN . LEN , LEN) max(INTEGER, INTEGER, INTEGER)

CLAUSES
maxlen(CHITJ ,HAX,HAX1) :

str len(H, LENGTH),
LENGTH>HAX. I.
maxlen(T , LENGTH , HAX1) .

max len(c_ITJ ,HAX,HAX1) : - maxlen(T ,HAX,HAX1).
maxlen(Cl , LENGTH, LENGTH) .

listlen([],0).
list len< c_ITJ ,N): •

l istlen(T ,X),
N=X+1 .

writelist(, ,CJ) .
wri tel i st(Ll-;-ANTKOL, CH ITJ >: ·

field str(LI ,0 , ANTKOL,H) ,
L11=Ll+1 ,
wr i tel i st(LI 1,ANTKOL, Tl.

min(X, y ,X):-X<•Y, I.
min(_,X,X).

max(X, Y ,X) :-X>=Y , I.
max(_ , X, X).

reverseattr(A 1,A2): -
b i tand(A1, S07 , H11) ,
bit left(H11,4 , H12),
bi tand(A 1, S70 , H21) ,
b i tr i ght(H21,4, H22),
b i tand(A 1, SOS, H31),
A2=H12+H22+H31 .

I ******••**•******* I
/ * Find letter selection in a list of strings */

/* Look initially for first uppercase letter . */
/* Then try with first letter of each string. */
, •• l

PREDICATES
upc(CllAR,CHAR) lowc(CHAR,CHAR)
try_ upper(CHAR, STRING)
tryf i rstupper(CHAR, STRINGLI ST, ROii, ROI/)
tryf i rst letter(CHAR,STRINGLIST, ROii, ROI/)
tryletter(CHAR, STRINGL I ST ,ROii)

CLAUSES
upc(CHAR,CH):·

CHAR>• 1a 1 CHAR<= 1 Z1 I
char lnt(CHAR,CI), cii•tl - 32, char _lnt(CH,CI 1) .

upc(CH,CH) :-

lowc(CHAR,CH): •
CHAR>• 1A 1 ,CHAR<• 1 Z1 , I,
char lnt(CHAR,CI), Cl1•Cl+32, char_lnt(C11,Cl1).

lowc(CH,CH).

try_upper(CHAR,STR ING):
frontchar(STRl NG,CH,),
CH>•'A',CH<•'Z',I, -
CH=CHAR.

try_upper(CHAR,STRING): •
f rontchar(STR I NG, • REST).
try_upper(CHAR,REST).

tryfirstupper(CHAR, [Iii_] ,N,N) :·
try_upper(CHAR,11),1.

tryfirstupper(CHAR, C_ITJ ,N1,N2) :
N3 • N1+1,
tryf; rstupper(CiiAi\, i, N3 , N2).

tryfirstletter(CHAR, Clll_l ,N,N) :·
frontchar(ll,CHAR,_), I.

tryfirstletter(CHAR, [_ITJ,N1,N2J :
N3 • N1+1,
tryf i rst letter(CHAR, T, N3,N2).

tryletter(CHAR, LIST, SELECTION):·
'4'C(CHAR,CH). tryf i rstupper(CH, LI ST ,0,SELECTIOll). I .

tryletter(CHAR, LI ST, SELECTION):·
lowc(CHAR, CH). tryf i rstletter(CH, LI ST ,0, SELECTIOIO.

, ... ,
/* adjustwindow takes a windowstart and a windowsize and adjusts •t
/* the windowstart so the window can be placed on the screen. •t
/* adjframe looks at the frameattribute: if it is different frM •t
/* zero, two is added to the size of the window •t
I***•/

PREDICATES
adjustwi ndow(ROI/, COL, ROI/, COL, ROI/, COL)
adj f rame(A TTR, ROI/, COL, ROI/, COL)

CLAUSES
adjustwindow(ll, KOL,DLl ,DKOL ,ALI ,AKOL): •

LI <25-DLI, KOL<80·DKOL, I ,ALI =LI ,AKOL=KOL.
adjustwindow(ll, ,Dll ,DKOL,All ,AKOL):·

ll"<25·Dll, 1,All=ll ,AKOL=80·DKOL.
adjustwi ndow(_, KOL,Dll ,DKOL,ALI, AKOL): •

KOL<80·DKOL, I ,All=25·Dll, AKOL=KOL.
adjustwindow(, ,Dll ,DKOL,All ,AKOl): •

-AL I =25·Dll, AKOL=80·DKOL.

adjframe(O,R,C,R,C): ·I.
adj frame(_,R1, C1, R2,C2) :-R2=R1+2, C2•C1+2.

/**I
I* Readkey * /
/* Returns 1 s~l ic key from the KEY domain */
/**I

PREDICATES
readkey(KH)
readkey1(KEY ,CHAR, INTEGER)
readkey2CKEY. INTEGER)

CLAUSES
readkey(KEYJ: ·readchar(T) ,char_ int CT, VAL), readkey1(KEY, T, VAL).

readkey1(KEY ,_, 0): - I, readchar(T) ,char_ int CT, VAL), readkey2(KEY, VAL).
readkey1(cr ,_, 13): ·I.
readkey1(esc,_, 27) :- I.
readkey1(break,_,3) :-1.
readkeyl(tab,_,9>:-1.
readkey1 Cbdel ,_,8>: ·I.
readkey1(ctrlbdel, , 127):-1.
readkey1(char(T), T~_)

readkey2Cbtab, 15):·1.
readkey2Cdel,83J:-I.
readkey2(1ns,82):· I .
readkey2Cup, nJ: ·I.
readkey2(down,80):·1.
readkey2Cleft, 75): ·I •
readkey2Crf ght, 77): ·I .
readke\•2Cpgup, 73) : - 1.
readkey2Cpgdn,81) :-1.
readkey2Cend, 79): ·I.
readkey2Chome, 71) :-1.
readkey2Cctrlleft, 115):·1.
readkey2Cctrl right, 116): ·I •
readkey2Cctrlend, 117): ·I .
readkey2Cctrlpgdn, 118):·1.
readkey2(ctrlhome, 119):-I.
readkey2(ctrlpgup, 132): ·I.
readkey2(fkey(NJ,VAL):· VAL>58, VAL<70, N=VAL·58, I.
readkey2Cfkey(NJ,VAL):· VAL>•84, VAL<104, N=11+VAL·84, I.
readkey2(otherspec, _).

November/ December 1987 TURBO TECHNIX 93

THINKING IN TURBO PROWG
A programming language should he a reflection of
the way the programmer thinks. To program in Turbo
Prolog you have to think the part.

Alex Lane

I remember my first experience with
Prolog-in the pre-Turbo days-as being
a struggle. My only clear recollection of

• that night was the realization that I was
dealing with something "completely differ-

SQUARE ONE f h p 1 c ent." As moderator o t e ro og con1er-
ence on the Byte Information Exchange (BIX), I see
that my early experiences are being repeated by other
programmers whose roots lie in the conventional
language world. Most certainly, the biggest obstacle to
the mastery of the language is learning to think in
Pro log.

Before actually sitting down to program in Turbo
Prolog, it is important to get a sense of what Prolog is,
and what place it occupies in the computing scheme
of things.

PROLOG: A SYMBOLIC LANGUAGE
To date, most of the problems that computers have
been programmed to solve involve manipulation of
numbers. In such programs, problems are solved
using addition, subtraction, and other familiar opera
tions. For the past several decades, computer scien
tists have spent most of their time developing com
puter languages for better and faster numerical
computation.

Some early computer scientists believed computers
could be programmed to manipulate symbols as well
as numbers. Such programs perform abstract opera
tions on data structures. Unfortunately, such pro
grams also required a lot of random access memory,
which just wasn't available in those early computers.
Although languages like LISP and Prolog provide
tools for symbolic computation, the ability to write
such programs was, until recently, restricted to those
with access to multimillion-dollar computers.

Prolog is a language based on a branch of formal
logic called predicate calculus. Predicate calculus pro
vides us with a way to represent propositions, the
relationship between propositions, and the means to

94 TURBO TECHNIX November/ December 1987

infer new propositions from existing ones. Since
Prolog is a symbolic language, it is particularly well
suited for solving problems that involve relations
between objects.

THE DECLARATIVE vs. PROCEDURAL
DEBATE
The world of programming languages may be divided
into two camps: the declarative and the procedural.
Languages such as LISP are planted squarely on the
declarative side of the fence while BASIC, Pascal, and
C are lumped together on the procedural side. Prolog
straddles the fence, being both semi-declarative and
semi-procedural.

The declarative approach to programming empha
sizes the relations defined ("declared") by the pro
gram. Declarative programming focuses on describ
ing the problem, leaving out the procedures that tell
the computer how to find the solution. In a purely
declarative language, you'd simply enter a set of facts
and relations about, say, the stock market. Then you'd
be able to ask questions like, "What's a good stock to
invest in?" and let the computer find an answer.
While there are no "purely" declarative languages,
Prolog does go a long way in bringing the idea to
reality.

In the procedural-more properly called the
imperative-approach to programming, the pro
grammer must also describe the steps to be taken to
arrive at an answer. If the declarative approach
addresses the "what" of a program, the procedural
approach addresses both the "what" and the "how."

In practice, the concepts of "declarative" and "pro
cedural" are relative. For example, the BASIC
expression
x = y + z
reflects both styles of programming, depending on
your point of view. Viewed in the context of the over-

all program, the statement proce
durally specifies an addition and
assignment Viewed in the context
of the BASIC interpreter, the
statement declaratively says:
"Don't bother me with the details
about registers, opcodes and the
like, just add Y and Z and store
the result in X."

While Prolog's declarative
nature is normally a big plus in
writing programs, it is an obstacle
to those who insist on having a
great deal of control over how
their programs find answers.Just
as diehard assembly language pro
grammers decry the loss of con
trol imposed by a language like
Pascal, some Pascal programmers
initially feel uncomfortable hand
ing over control to Prolog's unifi
cation and backtracking
mechanisms.

A NEW VOCABULARY
Like most programming lan
guages, Turbo Prolog has its own
terms and definitions. If you've
read the definitions and found
them a bit, well, alien,join the
club. However, an understanding
of these terms is essential, and is
one of the first hurdles to over
come in learning Prolog.

Object. A very basic Prolog con
cept is the object. In the English
language, an object would be
called a noun. In other words, an
object is the person, place, or
thing that a relation describes. In

Prolog terms it is a general term
describing a single element of
some type. By type, we mean either
a standard Turbo Prolog domain
type, such as a real number, a
character or string, or some user
defined domain type. We'll pick
domains up again shortly when
we discuss Turbo Prolog program
structure. For right now,
remember: objects, and the rela
tions between them, are what
Prolog programming is all about.

Relation. A relation is a name that
describes a collection of objects,
for example:

has(bird,wings).

Here, the name of the relation is
has and the objects in the relation
are bird and wings. The number
of objects in a relation is called
the arity of the relation. In our
example, the relation has has an
arity of 2. By the way, a relation
need not be associated with any
objects at all. Such relations have
an arity of 0.

A point that terrifies some
novice Prolog programmers is
deciding how to represent the
relationship between objects. For
instance, it may be decided, arbi
trarily, that the relation ''.John
likes Mary" is to be expressed in
the form

likes(john,mary).

Having been presented with this
(or a similar) example of express
ing a relation, many beginners
agonize over how to describe a
similar relation, such as ''.John

is Mary's father." Given the
alternatives

father(john,mary).
father(mary,john).

must the relation be expressed a
certain "correct" way? The answer
is no. The relationship between a
relation and its objects is pretty
arbitrary and really exists only in
the programmer's mind. What is
important is for the relation to be
expressed consistently in all
clauses. Thus, the programmer
must decide on a particular con
vention and stick to that conven
tion throughout the program.

In addition, it helps to select a
relation whose name is meaning
ful. For example, the expression

blivet(john, mary).

doesn't communicate anything
about the relation between John
and Mary. Comments also add
to the clarity of the program. It
never hurts to include a comment
such as

I* father(Father,Offspring)
"Father is the father of
Offspring" */

in the program source code so
that the intended relationship is
clear to anyone reading your code
(including yourself six months
down the line).

Predicate. Predicate is the techni
cal term for a relation. In Turbo
Prolog, predicates are declared.
This declaration can be viewed as
a blueprint for a relation. Once

November/ December 1987 TURBO TECHNIX 95

KEYWORD PURPOSE

domains

global domains

Declares user-defined domains (types).

When using domains in more than one
module.

database

predicates

Declares database predicates.

global predicates

Declares predicates used in clauses section.

When using predicates in more than one
module.

goal

clauses

Goal (or conclusion) to be proved (required).

Defines facts and rules used in the program.

Table 1. Program Structure in Turbo Prolog.

THINKING IN PROLOG

declared, the programmer can
write facts and rules that define
(or describe) the predicate.

Facts, Rules, and Clauses. Facts
and ruks are types of clauses (we'll
get to clauses in a second). A rule
consists of two parts. The first
part, called the head, consists of a
relation and is known as the con
clusion. The second part, called
the body of the rule, consists of
one or a series of relations and
statements called subgoals. The
head and body are separated by
the ":-" operator or the equivalent
keyword if. Subgoals are separated
by the "," or";" operators, or the
equivalent keywords and or or,
respectively.

So, the basic form of a rule is

conclusion(is true) if
subgoal1(-is_true >and
subgoal2C is_true) and

subgoalNC is_true).

If the subgoals can be proved to
be true, then the conclusion is
also true. Rules, by the way, can
not be dynamically changed in
Turbo Prolog the way facts can.

A Prolog fact consists of a rela
tion followed immediately by a
period. A fact is actually a special
case of a rule. Thus, it can be
thought of as a clause with a body
but no head and is sometimes
referred to as a headless clause.
In a Prolog program, facts are true
statements. Facts are also capable
of being dynamically changed
using the assert and retract
relations.

With this basic collection of
terms, we are prepared to talk
about more advanced Turbo

Prolog concepts, the most basic of
which is program structure.

UNDERSTANDING PROGRAM
STRUCTURE
In order to be compiled correctly,
programs written in Turbo Prolog
must conform to a relatively rigid
structure. The structure is identi
fied by the use of the keywords
shown in Table 1.

Not all Turbo Prolog programs
require all the sections shown in
Table 1 to be included. The
extreme case is to key "R" (for
RUN) at Turbo Prolog's Main
Menu with nothing in the editor.
Despite not having declared any
predicates, you can still use 1:urbo
Prolog's built-in predicates. Smee
no goal has been declared, a Dia
log window appears with a Goal:
prompt. You could now carry on
an interactive Prolog session
indefinitely, but it wouldn't be too
interesting.

The point of programming in
Prolog consists of developing your
own set of facts and rules, devis
ing a goal, and setting the pro
gram running. As a very min
imum, this requires you to get
familiar with the domains, predi
cates, goal, and clauses program
sections. As the table indicates,
there are more sections than
those mentioned here. But for our
purposes, we will only conce~n
ourselves with these four basic
sections.

The domains section contains
domain declarations. A domain is
an object classification. There are
five basic standard domains:
integer, real, char, string, and
symbol. (A sixth domain, file,
deals with file input/ output opera
tions and is not considered here) .

The first four basic domains are

96 TURBO TECHNIX November/ December 1987

self-explanatory: they denote
whole numbers, decimal numbers,
individual characters, and strings
of characters, respectively. The
symbol domain is somewhat of a
catch-all for a generalized object.
As an example of a domain decla
ration, we can say

domains
nunber = integer
float = real

which creates two new domains.
The first declaration creates a
number domain in terms of the
built-in integer domain. It is worth
noting that a number is now a
separate domain from an integer
and can only be used in that con
text. Similarly, a new domain,
float, has been declared as a spe
cial kind of real, which is not to
be confused with any other type
of real.

These five domains are gener
ally sufficient for simple Turbo
Prolog programs, unless you plan
to use lists. You may declare a list
domain simply by defining it in
terms of one of the standard
domains, such as

charlist =char*

which says that the domain char
list (defined by you) describes a
list of characters. Domain declara
tions can get pretty sophisticated
and can be used to perform strict
type checking. For the time being,
limiting yourself to the standard
domains plus user-defined list
domains will get the job done.

The predicates section of a
Turbo Prolog program is simply a
list of the relations that will be
used in the clauses section of the
program. Each declaration. con
sists of the name of a relauon fol
lowed by the domain names of
the objects in that relation. For
instance, the declaration

predicates
has(symbol,symbol)

declares the predicate has with
two arguments, both in the symbol
domain.

The clauses section of a Turbo
Prolog program is where you de
scribe the problem at hand. This
section consists of all the facts and
rules that define the relations
declared in the predicates section.
In our example, we can have a
collection of facts that describe
various animals as well as a char-

WATCH
YOUR

LANGUAGE:

Our readers know that TURBO TECHNIX is the place to be when the
focus is on development. They watch us for the tips and techniques that help

them utilize the speed and power of Borland's programming languages.
And they spend a lot of time in these pages.

Your ad should be here.

WATCH TURBO TECHNIX

JANUARY / FEBRUARY 1988
ISSUE CLOSING DATE: NOVEMBER 6

Turbo C is strong in floating point, and understand
ing the machinery behind floating point can help in
using that machinery effectively ... Using advanced
features of Intel's microprocessors requires knowing
what processor is installed in a user machine, and we
show you how to find out ... A complete expert sys
tem shell in Turbo Prolog is laid out in lights ... And
that's just a snapshot!

MARCH/ APRIL 1988
ISSUE CLOS! G DATE: DECEMBER 23

Artificial intelligence will require good natural lan
guage parsing, for which Turbo Prolog is a "natural"
... Turbo Pascal proves its low-level smarts by spool
ing sequences of tone descriptors in memory and
playing them in the background through the PC's
speaker .. . Making the Turbo C/ Reflex database
connection is as easy as adding a short function
library to your Turbo C Applications ... And a whole
lot more!

CALL NOW
RESERVE YOUR TURBO TECHNIX SPACE TODAY!

Office of the Publisher
(408) 438-9321

Publisher
Marcia Blake

Advertising SalRs Manager
John Hemsath

Assistant to the Publisher
Annette Fullerton

Western Office

(714) 586-1517
Janet Zamucen

New England/
Mid-Atlantic Office

(617) 848-9306
Merrie Lynch
Nancy Wood

Southern Office

(813) 394-4963
Megan Patti

THINKING IN PROLOG

acteristic that each has:

has(fish,scales).
has(bird,wings).
has(tiger,stripes).

The goal is what makes a
Prolog program "go." In Prolog,
the user specifies a goal, and the
system tries to satisfy that goal (or
prove it to be true). In Turbo
Prolog, goals can either be inter
nal (i.e. part of the program), or
external, where the user is promp
ted for a goal through the Dialog
window during a Turbo Prolog
session. Goals are expressed in
the form of a rule body: as either
a single statement or as the con
junction of several subgoals. In
our example, we could state the
following external goal:

goal: hasCbird,wings).

Since there is a matching fact in
the clauses section, the system will
return a True response.

If you've ever programmed in
Pascal, you might notice that
Turbo Prolog programs superfi
cially resemble Pascal programs in
their structure. Turbo Prolog's
domains and predicates declara
tions, with the requirement that
the objects of relations have a spe
cific type, are roughly analogous
to the LABEL, CONSTANT, 1YPE
and VAR sections of Pascal pro
grams. Similarly, Turbo Prolog
clauses are analogous to the
procedure and function declara
tion part of a Pascal program,
while the Turbo Prolog goal is
analogous to the main body of a
Pascal program.

UNDERSTANDING
VARIABLES
The most common method of set
ting up a goal is to represent one
or more objects in a relation as a
variable. Variables in Prolog have
names just like symbols, except
they begin with a capital letter.
Having been given a goal with
one or more variables in it, Prolog
begins a process of scanning both
the built-in and user-defined pred
icates for a matching relation. For
example, if we had the goal

has(bird,What). /* Notice that
'What' is a
variable! */

Prolog would come up with the
fact

has(bird, wings).

and would match (or unify) the
objects in the goal with those in
the fact In this simple example,
What would be instantiated (or
bound) to the value of wings, and
the goal would succeed.

If, in our example, the goal had
been

has(cow,What).

Prolog would not be able to come
up with a match, because there is
no relation about a cow. The way
Prolog determines this is by exam
ining each of the has relations
sequentially. Prolog would first
attempt to match the goal and
the relation

has(fish,scales).

Since cow and fish do not match,
the first relation would fail. Pro log
would then backtrack to the next
clause looking for an alternative
solution. Once all the clauses had
been scanned, the goal would also
fail. (We'll get to failure in a
moment).

An uninstantiated, or unbound
variable is truly an unknown
object in Prolog; it has no default
value. Once a Turbo Prolog varia
ble is bound through the process
of unification, its value is set in
concrete unless Turbo Prolog
backtracks, in which case the vari
able reverts to the unbound state.
A bound variable's scope extends
only as far as the clause in which
it appears. This is in sharp
contrast to the time when BASIC
was the only game in town, and
all program variables were global
in the sense that all variables were
accessible from any place within
the program. The advent of struc
tured languages like Pascal and C
gave rise to the concept of local
variables-those accessible only
from within a limited block of
code-while preserving the ability
to use global variables. In Turbo
Prolog, however, there is no built
in facility for using global
variables.

UNDERSTANDING FAILURE
Mention "failure" to a pro
grammer steeped in traditional
languages and the reaction is icy.
If a traditional program fails,
something is drastically wrong,

98 TURBO TECHNIX November/ December 1987

either with the compiler, the pro
gram, or the computer. Failure
means an error, and is to be
avoided at all costs.

In Prolog, however, failure is a
perfectly legitimate result and
occurs when a search of a set of
clauses comes up empty. When
this happens, Prolog backtracks to
the last place where it can find an
alternative solution and starts
moving forward again.

Backtracking is simply a way of
searching for a solution, much the
same way you might go about
finding a path through a maze. At
any fork, you might systematically
choose to go down the left path. If
at any point, you run across a
dead end (this corresponding to a
Prolog failure), you retrace your
steps back to the last fork and
choose to go down the next un
traveled path to the left If no
such paths exist, you simply
retrace your steps back to an ear
lier fork. If a solution exists, this
technique will guide you through
the maze, despite the number of
dead ends (failures) you pre
viously encountered.

PARTING WORDS
Leaming to think and to program
in Turbo Prolog may well be the
most challenging computing task
you choose to tackle. If you're like
me, you might even feel discour
aged at an apparent lack of pro
gress. However, I can look back
and recall the difficulties I had
with C, and Pascal, and even with
BASIC, and remember (with a
chuckle) how those were
overcome.

Prolog is-slowly-coming
into its own. In the future, it will
likely be the language of choice
for solving a number of important
tasks both in the field of Artificial
Intelligence and more traditional
areas. With a working knowledge
of Turbo Pro log, you can be a part
of that future . •

Alex Lane is a software engineer liv
ing in Jacksonville, Florida. He is
moderator of the Prolog conference on
the Byte Information Exchange (BJX).
Correspondence should be directed to
him at RS&H, P.O. Box 4850, jack
sonville, FL 32201.

BIT BY BIT
Turbo Prolog's bitwise operators allow fine-tuning of
your screen control.

Tom Castle and F. Barclay Shilliday

If you have never worked with bitwise
operations before, don't shy away. They're

•

not hard. A bit is simply a physical switch
representing a basic unit of memory in
your computer. The switch can be on or

PROGRAMMER
off; nothing else. When a bit is on, we call

it set or TRUE, giving the bit location a value of one.
When a bit is off, we call it dear or FALSE, giving the
bit location a value of zero. This is why the binary
numbering system, which uses only zeros and ones to
denote values, is so closely tied to the functions of a
computer.

Working with bits alone is cumbersome and con
fusing, so most of the time we work with groups of
bits. The most familiar group, a byte, is eight bits.
There are also groups of four bits called nibbl,es and
groups of 16 bits called words. Depending on the type
of microprocessor you're using, the variable types
you're used to seeing might represent a different
number of bytes. Character variables are almost uni
versally eight-bit values, but the move toward more
powerful microprocessors may bring a 16-bit charac
ter set in the future. Integers are commonly repres
ented as 16-bit values, but a move has already started
to use 32-bit integers on some machines.

Figure 1 shows the values associated with each bit
location of an integer when the bit is set. The total
value of the integer can be obtained by summing the
values of the set bits. The highest order bit, 15, is the
sign bit. If set, it produces a negative number. If clear,
the value is positive.

BIT MANIPULATIONS
Turbo Prolog includes the major bitwise operators
you will need for most bit manipulations. But, the
Turbo Prolog Owner's Handbook assumes that you
understand the basics behind these functions. The
bitwise operators bitand, bitor, bitxor, and bitnot use
a system called logi,cal combinatorials or Boolean logi,c.
The operators AND, OR, XOR, and NOT are dia
grammed in the truth tables of Figure 2. To read the

table for a given operator, pick the value on the iop
and read down t6 the appropriate value on the left.
The value inside the box is the l9gipil result. For
example, a logical Oil betweert TRUE (correspond
ing to a value of 1) and FALSE (a value ofO) results
in a value of TRUE. The operator NdT uses only
one argument; TRUE becomes FALSE and FALSE
becomes TRUE.

The predicates bitand, bitor, bitxor, and bitnot
use the logic diagrammed in Figure 2 on each bit
contained in the variables that are passed to them. So
if you perform a logical operation between two inte
gers, each of the 16 bits is subjected to the operation
in the appropriate bit location.

Figure 3 schematically represents the workings of
the logical operators bltright and bitleft. These func
tions move the contents of a variable's bits over a
specified number of places to form a new value. A
logical shift right by one place has the same effect as
dividing by two and discartiing any remainder. A logi
cal shift left by one place has the sarrte effect as mul
tiplying by two.

Turbo Prolog does not support the use of
unsigned integers. Such integers do not allow nega
tive numbers and use bit 15 to hold the value 32768.
This creates a range bf integers from zero to 65535
instead of -32768 to 32767. Because the sign bit is
always used, care must be taken not to shift inadvert
ently left into the sign bit. Bytes and words are much
like the pre-Columbian view of a flat Earth. If you
push something past the edge, it will fall off into
oblivion and be gone forever.

USES OF BIT TWIDDLING
Bit manipulations are extremely important for some
tasks. For instance, flags are values that provide status
information about a given condition within a pro-

November/ December 1987 TURBO TECHNIX 99

low--0rder byte

128 64 32 16

I
8

I
4

I
2

I
bit 7 6 5 4 3 2 0

high--0rder byte

I
sign I 16384 I 8192 I 4096 1-1 1024 I 512 I 256 I

bit 15 14 13 12 11 10 9 8

Figure 1. Value5 associat,ed with each bit of an integer.

T F T F T F T F

T T F T T T T F T

F F F F T F F T F

AND OR XOR NOT

Figure 2. Truth tables of Boo/,ean aperators and resuUs.

A SHIFT RIGHT

I • I • I I I • I I I • I (54)

bit 7 6 5 4 3 2 0

binight (54,2,X) shift right 2 bits

'
I

0

I
0

I I I
0

I
(I3)

bit 7 6 5 4 3 2 0

B. SHIFT LEFT

0 0 0

I I
0 (54)

bit 7 6 5 4 3 2 0

bitleft (54,2,X) shift left 2 bits

'
I

0

I I I
0

I
0

I
0 I (216)

bit 7 6 5 4 3 2 0

Figure 3. Graphic representation of wgical shifts.

100 TURBO TECHNIX November/ December 1987

BIT BY BIT

gram. Each of the 16 bits of an
integer can act as a flag for differ
ent information rather than wast
ing an entire integer on each flag.

To use each bit as a flag, we
must have a convenient way of
setting and clearing bits as
required. Figure 4 demonstrates
how to clear and set specific bits
in a byte. For illustrative purposes,
we randomly chose the starting
values and the bits to manipulate.
To clear bits, construct a mask that
is clear only in those bits. A logi
cal AND between the specified
value and the mask produces a
result that is clear in the proper
bits but conserves all other
information.

For each bit you want to set, set
the mask in those bits and clear
the rest. A logical OR ensures a
set of the proper bits while con
serving the other information.

Besides flags, you might be
wondering what other uses can be
made of bit manipulations. You
can use bit manipulation in a text
encryption scheme. In standard
ASCII, setting bit 7 enables the
extended characters. You might
set bit 7 on every character you
write to a disk file, making the file
illegible to anyone but yourself.
Alternatively, you could perform a
logical shift left one place on the
characters being written to disk
for the same effect.

Bit manipulations can also
change attributes on the IBM text
screen. To see how, let's first
examine the architecture of the
screen.

THE IBM TEXT SCREEN
The memory address in which the
physical text screen is mapped
varies depending on the video
adapter board used to control the
monitor. The segment paragraphs
of the base page address for the
EGA, CGA, and monochrome
adapters are A800H, B800H, and
BOOOH, respectively.

The screens start at an offset of
zero in the upper left cornet of
the screen. The first byte contains
the ASCII code of the character
displayed. The next byte contains
the text attribute that holds the

information about the blink, back
ground color, foreground color,
and intensity. Each 16-bit word
consecutively contains the next
pair of character and attribute
bytes. The layout of the attribute
byte is given in Figure 5.

REVERSE ATTRIBUTES
By knowing how the attribute byte
is laid out, it's a simple matter of
bit twiddling to produce an attri
bute where the foreground and
background colors are exactly re
versed except for the intensity of
the foreground color. The job
becomes slightly more compli
cated if we want to preserve the
blinking or foreground intensity
quality.

The most straightforward
approach to reversing an attribute
is shown as the rev _attr predi
cate in Listing 1. The first task is
to safeguard the blink and inten
sity bits 7 and 3, respectively. We
do this by query of the current
attribute. A logical AND operation
on that value with 136 (bits 3 and
7 set) results in a mask with bits 3
and 7 preserved and the rest of
the byte cleared (equal to 0).

The second task is to perform
some shift operations. We are
going to make two new bytes by
shifting four bits right or left, to
make our new foreground and
our new background, respectively.
We then have to perform a logical
AND between each new byte and
7 for the foreground (112 for the
background). This is necessary to
clear extraneous information
from the old blink or intensity bit,
so it doesn't corrupt our new
values.

Our final task is to combine
the new bytes together along with
adding back the blink/intensity
mask. This is done by two logical
OR operations on the bytes
involved. Setting this new attri
bute, which we label REVATTR in
Listing 1, to the current attribute
finishes the process of producing
a reverse video effect on your
next write or field_str call.

BLINK AND INTENSITY
By now you probably realize that
turning the blink or the high
intensity foreground qualities on
or off is a fairly simple matter.

Clearing specific bits (in this example-bits 2 and 5)

bit 7 6 5 4 3 2 0 value

I I
0

I I I I
0

I I I START 187

I I I
0

I I I
0

I I I MASK
219

bitand (START, MASK, RF.SULT)

'
I I

0 0

I
0 I RESULT 155

Setting specific bits (in this example-bits I and 3)

bit 7 6 5 4 ' 3 2 0 value

I
0

I I I
0 I 0

I
0

I
0 I START 98

I
0

I
0

I
0

I
0

I I
0

I
0 I MASK IO

bitor (START, MASK, RF.SULT)

'
I

0

I I I
0

I I
0

I I
0 I RLSULT\06

Figure 4. Graphic representation of some useful bit manipulations.

BACKGROUND FOREGROUND

color color

Blink r g b Int r g b

128 64 32 16 8 4 2 1

bit 7 6 5 4 3 2 0

r = red, g = green, b = blue contribution

Figure 5. Layout of the attribut,e lTyf£.

ovember/ December 1987 TURBO TECHNIX 101

I LISTING 1: ATTRDEMO.PRO J
I* LISTING 1. */

/**!
/* ATTRDEMd.PRO */
/* a demonstration of some si""le predicates */
/* to control screen attributes */
/* by direct manipulation of the bits in the attribute byte */
/* *I
/* by Tom Castle and F. Barclay Shilliday */
/**!

PREDICATES
hidecurs
rev attr
bl ink on
bl ink= off
intens on
intens-off
dodemo-

/* This is a short demo */
/* of the predicates we */
/* developed to manipulate */
/* the text attribute byte */

GOAL

CLAUSES

makewindow(1,33,7,"
dodemo,
readchar(_),

Attribute Demo 11 ,0,0,25,80),
/* make a window then do the*/
/* the various manipulations*/
/* Hold for a keypress then */
/* return to editor *I
/* for MONOCHROME, change */
/* scr attrib 33 -> 7 or 112*/
/* OR THE HIDECURS WILL NOT */
I* WORK */

exit.

/**/
/* HIDE THE CURSOR */
/* This method provides an alternative to the built-in */
/* cursorform predicate (an undocl.lllented feature) for */
/* hiding the cursor. This metHod is t~rary. In fact, */
/*the cursor will reappear after any cursor or write */
/*predicate calls. */
!**/

hidecurs:-
cursor(R,C),
str char(Ch, 1 \219 1),

field_str(R,C,1,Ch),

/* find where the cursor is */
/*convert ASCII 219 (solid*/
/*non-blinking square) to a*/
/* string. Plop it in, find */

rev_attr, /* the current attribute & *I
attribute(REVATTR), /* reverse it, set the */
field attr(R,C,1,REVATTR),/* attr.@ cursor to switch*/
rev attr. /* background to foreground*/

- /* Switch back for next call*/

/**/
!* REVERSE VIDEO *I
/* This is the most involved of our predicates shown here.*/
/* The idea is to obtain the current attribute from the */
/* standard unbound attribute function. We then start */
/* constructing new bytes from various manipulations, */
/*splicing them back together, and installing the new */
/* value as the new current attribute. */
/**/

rev attr:-
- attribute(ATTR),

bitand(ATTR, 136,Mask),
/* find the current attribut*/
/*build a mask with only */
/*the blink and intens bits*/

bitleft(ATTR,4,NB), /* make fore -> background */
bitand(NB, 112,Newback), /* and clear any debris. */
bitright(ATTR,4,NF), /* make back -> foreground */
bitand(NF,7,Newfore), /*and clear any debris */
bitor(Newback,Newfore,Newattr), /* OR to make newbyte*/

102 TURBO TECHNIX November/ December 1987

BIT BY BIT

Those qualities can be changed
by finding the current attribute,
setting or clearing the appropriate
bits, and setting the new attribute
with the attribute predicate.

The blink is controlled by bit 7.
It can be turned on by performing
a logical OR with 128 (all bits
clear except bit 7). This forces
bit 7 to equal 1 while letting the
others remain the same. The
blink is similarly turned off by a
logical AND with 127 (all bits set
except bit 7) which forces bit 7
to equal zero.

The high-intensity quality of
the foreground is controlled by bit
3. Intensity is controlled in much
the same way as blink. To turn the
high intensity on, perform a logi
cal OR with 8 (bit 3 set) . Likewise,
turn high intensity off by using a
logical AND with 247 (all bits set
except bit 3).

You can redefine the blink and
intensity predicates to return the
new attribute value. This means
that you must change the predi
cates declaration to something
like:

predicates
blink_on(integer)

Then you could pass the new
attribute obtained from blink_on
to a field_attr call.

HIDE THE CURSOR
There are many times when we
want to program all input/ output
through field strings to retain
more control over user interac
tion. One of the annoyances that
may crop up when using field
strings exclusively is the presence
of that obtrusive, flashing cursor.

There is an undocumented way
of turning off the cursor using the
cursorform predicate: simply use
values greater than 14. The trou
ble is that the change is perman
ent, even after you leave Turbo
Prolog. If your program doesn't
reset the cursor before exiting, the
only way to regain the cursor is to
reboot your system.

However, there is also a tem
porary method of hiding the cur
sor. We developed the hidecurs
predicate in Listing 1 from a sug
gestion from p. 92 of Peter Nor
ton's Programmer's Guide to the IBM

PC. The idea is to locate the cur
sor and plop in the ASCII value
219, a nonblinking rectangle that
occupies the entire character box.
To do this, first convert the ASCII
value into a string so we can use
the field_str predicate to poke it
into the proper location. We tried
several variations of this tech
nique using the membyte predi
cate, but none worked as success
fully as the method shown in
Listing 1.

After string conversion, we
then reverse the current attribute
and install the new value with the
rev _attr and attribute predicates.
Using the field_attr predicate, we
finish the deception. The final
task is to again reverse the current
attribute value for any future
screen calls.

The cursor is not out of the
way for good. It appears hidden
only as long as you don't actually
move it with the cursor or write
predicates. You can use field
strings and all will be well. Of
course, if you need to move the
cursor, you can always hide it
again with another hidecurs call.

FINAL WORDS
If you are using a monochrome
monitor, there are only a few use
ful attribute combinations. White
on black is 7 (bits 0-2 set). Black
on white is 112 (bits 4-6 set).
Underline is 1. Invisible is 0. All
other combinations are white on
black. You can still twiddle the
blink and intensity bits, though.

You now have a good founda
tion on which to experiment with
bit manipulations. You'll be sur
prised at the interesting things
that can be done. •

Tom Cast/,e is an MS chemist in Kala
mazoo, Michigan. He writes software
reviews for the Atari ST computer and
studies Aikido in his spare time. F.
Barclay Shilliday is also a chemist in
Kalamazoo. He enjoys gardening,
playing soccer, and fiddling, but not
at the same time.

Listing may be downloaded from
CompuServe as BITPRO.ARC.

bitor(Newattr,Hask,REVATTR),/* add back the blink and*/
/* intensity bits to form a */

attribute(REVATTR). /*reverse video. Set attrib */

!**/
I* BLINK */
/*The blink is determined by bit 7 of the attribute byte.*/
/* If the bit is set, blinking is activated. If the bit */
I* is clear, blinking is deactivated. We will use the */
/* method shown in Figure 4 to set and clear bit 7 to */
/*control the blink. */
/**!

bl ink on:-
attribute(ATTR) I
bitor(ATTR,128,BLINK),
attribute(BLINK).

blink off:

/* find the current attrib */
I* set bit 7 with AND 128 */
/* plop in new attribute */

attributeCATTR), /*
bitand(ATTR,127,NOBLINK),/*
attribute(NOBLINK). /*

find the current attrib */
clear bit 7 with OR 127 */
plop in new attribute */

/**!
/* FOREGROUND INTENSITY */
/*The foreground intensity quality is controlled by bit */
/* 3. Like the blink bit, a set bit will activate. Again,*/
/* the methods to selectively set and clear bit 3 are */
/*generalized in Figure 4. */
/**/

intens on:-
attributeCATTR),
bitor(ATTR,8,INTENS),
attribute(INTENS).

intens off:

/* find the current attrib */
/* set bit 3 with OR 8 */
/* plop in new attribute */

attribute(ATTR), /* find the current attrib */
bitand(ATTR,247,NOINTENS),/* clear bit 3 with AND 247*/
attribute(NOINTENS). /* plop in the new attribute*/

/**/
I* DEMO */
/**/

dodemo:-
cursor(1,34), /* we're just going to move*/
write("Normal text"), /* the cursor near the top */
cursor(3,30), /* center and start writing */
rev attr, /* text using the various */
write(" Now, reverse text "), /* predicates. */
cursor(S,31), /* all the predicates except*/
rev attr, /* the hidecurs can be used*/
write("now, normal again"),/* with write statements. */
cursor(7,35), /* Hidecurs must only be */
blink_on, /*with field_str since any*/
write("blink on"), /*cursor movement with a *I
cursor(9,35), /* write call will show the */
blink off, /*cursor again. So you */
write(11 bl ink off"), /* would use hidecurs after */
cursor(11,31), /*any write call to keep it*/
intens_on, /* hidden. Intensity bits */
write("high intensity on"), /* are not recognised by*/
cursor(13,31), /* all color d)sµ[~ys. You */
intens_off, /* just need to experiment. */
write("high intensity off"),
hidecurs,
field_str(15,35,10, 11 hidecursor11),

readchar(_), /* wait for a key press so */
cursor(17,34>, /* you can see that the */
write("show cursor"), /*cursor is hidden and will*/
readchar(), /* show again. */
cursor(19-;35),
write("all done").

November/ December 1987 TURBO TECHNIX 103

~
rl'J

~ STARTING OUT WITH THE
~ TURBO BASIC

DATABASE TOOLBOX
If that database manager you bought gets
unmanageable, roll your own!

Peter Aitken

As its name implies, the Turbo Basic Data
base Toolbox is intended primarily to sim-

__. plify the development and support of data-
.. base applications programs using Turbo

Basic. Before describing the contents of
PROGRAMMER

the Toolbox and presenting a sample
application program, let's review some database
terminology.

A database is a collection of information that is
stored in a fixed format. Perhaps the most common
example is an address book, where the information
for each person follows the same format: name, street
address, city, etc. Each separate entry is called a record,
while the individual pieces of information that make
up a record are called fields.

In addition to storing information, a database pro
gram must provide reasonably fast access to that
information. The simplest way to find a particular
record-for example, John Smith's address-is to
sequentially search the database, record by record,
until a match is found. However, searching through a
large database can be a time-consuming process even
for today's speedy computers, so a faster method is
needed. The Turbo Basic Database Toolbox speeds
database searching and other maintenance tasks by
means of keys contained in index files.

When you create a data file with the Database
Toolbox, you specify one field that will be used as the
key. For our address list example, the most logical key
field might be last name. The Toolbox routines will
then automatically create and maintain a sorted
index file that consists of all key field entries-in our
example, last names-with pointers to the locations
in the data file where the associated records are
located. Thus, when you want to look up John Smith's
address, the program can quickly look up "Smith" in
the index file and go directly to the proper record
without having to search the data file at all.

104 TURBO TECHNIX November/ December 1987

'passes records to Turbo Sort:
SUB Sortload STATIC

OPEN "DATAFILE.DAT" FOR INPUT AS #1
WHILE NOT EOF(1)

LINE INPUT #1, A$
CALL SortRelease(A$)

WEND
CLOSE #1

END SUB

'record comparison function:
SUB LessThan(A$, BS, Result)

Result = (A$< BS)
END SUB

'prints sorted records:
SUB SortOut STATIC

CALL SortReturn(A$, Done)
WHILE NOT DONE

WEND
END SUB

LPRINT A$
CALL SortReturn(A$, Done)

Figure 1. Custom routines for Turbo Sort.

CALL SaveScreenArea(UpperRow, LeftColumn,_
NunberOfRows, NunberOfColumns,_
SavedText$, SavedAttributes$)

CALL WriteScreenArea(UpperRow, LeftColumn,_
NunberOfRows, NunberOfColumns,_
HelpText$, HelpAttributes$)

delay 5 'wait a bit before restoring original screen

CALL WriteScreenArea(UpperRow, LeftColumn,_
NunberOfRows, NumberOfColumns,
SavedTextS, SavedAttributes$) -

Figure 2. Saving and restoring text under a help screen.

i LISTING 1: ARTICLES.BAS

'***
'Source file ARTICLES.BAS
'Demonstration program for some TURBO BASIC DATABASE TOOLBOX calls
'Maintains a flat-file database of magazine articles, indexed on
•article nunber and article topic.
'***

ON ERROR GOTO ERRORHANDLER

DEFINT A - Z

CALL dblnit
CALL Scrnlnit
CALL lnitEntry

•all nl.lllbers to default to integers

'initialization for Turbo Basic Access
•initialization for screen routines
'initialization for keyboard entry routines

$INCLUDE "ARTICLES. INC" 'the file ARTICLES.INC was generated with
'the INCGEN utility program. It creates or
•opens the data set and defines the fields
'for the variables. See listing #2.

'As set up by the include file, the database is keyed on the
•articles.nl.lllber field, which does not allow duplicate keys.
'We will now set up an auxiliary index file that will key on
'the articles.topic field and will allow duplicate keys.

AUX.KEY.LENGTH= 18 'length of articles.topic field
!NCR LastFileNun
ARTICLES.AUX= LastFileNun
DUPS.ALLOWED = %YES

'Try to create the index, which succeeds only if it doesn't exist

CALL Makelndex(ARTICLES.AUX, "ARTICLES.DB1 11 , AUX.KEY.LENGTH,_
"ARTICLES.DBD 11 , ARTICLES.RLEN, DUPS.ALLOWED)

'If the index already exists, we can open it

IF dbStatus = %FileAlreadyCreated then_
CALL OpenlndexCARTICLES.AUX, 11ARTICLES.DB1 11 , AUX.KEY .LENGTH,_

"ART! CLES .DBD" I ARTICLES. RLEN I DUPS .ALLOWED)

'Data and index files are open - we can display main menu screen

DO UNTIL DONE

CLS
LOCATE 1,20
LOCATE 5,25
LOCATE 7,25
LOCATE 9,25
LOCATE 11,25

PRINT "MAGAZINE ARTICLE DATABASE MAIN MENU"
PRINT 11 F1: MAKE NEW ENTRIES"
PRINT 11 F2: BROWSE BY NUMBER"
PRINT 11 F3: BROWSE BY TOPIC"
PRINT 11 F4: EXIT"

'Get keystroke

DO
CALL GetKeystrokeCCh)

LOOP UNTIL (Ch > 313 and Ch < 318) •accept F1-F4 only

Ch = Ch - 313 •now Ch = 1 for F1, 2 for F2 etc.

ON CH GOSUB NEWENTRIES, BROWSENUMBERS, BROWSETOPICS, FINISH

LOOP 'end of main menu loop

'Program comes here when DONE = %YES to end program and exit

CALL dbClose(ARTICLES.FILE)
CALL Closelndex(ARTICLES.AUX)
CLS: LOCATE 1,1 : END

106 TURBO TECHNIX November/ December 1987

DATABASE TOOLBOX

THE B+ TREE STRUCTURE
The Database Toolbox maintains
index files using a B+ Tree struc
ture. The B+ Tree is a type of
binary tree, a data structure that
permits a program to rapidly and
efficiently locate a data item, even
in very large files. You don't need
to know anything about B+ Trees
to use the Toolbox, but the man
ual contains a good explanation
of them for those who are
interested.

A data file can be indexed on
more than one field. For example,
our address list could be indexed
on zip code as well as last name. A
data file with its associated index
file(s) is called a data set.

The Turbo Basic Database
Toolbox consists of several com
ponents. The major component is
the Turbo Basic Access System,
which contains the routines for
working with data sets.

The Turbo Basic access calls
are divided into two categories:
high-level calls and low-level calls.
The high-level calls are easier to
use and more powerful than the
low-level calls, but they are not as
versatile.

The main functional difference
between the two types of calls is
that the high-level calls handle
both the data file and the primary
index file of a data set, while the
low-level calls deal with only one
or the other. The high-level calls
actually use the low-level calls,
combining them to provide the
most frequently needed database
functions in single calls. Many less
complicated database applications
can be programmed using only
the high-level calls. The low-level
calls are needed for more sophis
ticated programming situations.
For example, you must use low
level calls to:
• Create more than one index

file for a particular data file.
• Use extension records (asso

ciate more than one record
with a key).

• Index a key that may have

duplicate entries, such as a zip
code in a large address list.

• Use index files to index some
thing other than a data file,
such as an array.

RELATIONAL DATABASES
Some of you may have heard of
relational databases, and are
wondering: A) What are they?,
and B) Can they be done with the
Turbo Basic Database Toolbox?

To answer the first question, a
relational database program is
one that can make use of the rela
tionships between two or more
separate data files that have one
or more fields in common. For
example, a business may maintain
one data file of sales information,
including the name of the sales
man for each sale, plus a separate
personnel data file that includes
educational and salary informa
tion for each salesman. Using a
relational database program, you
could relate information between
the two files based on the com
mon field (name). One example
would be correlating sales perfor
mance with salary history, to see if
your best-paid employees are the
best performing. Relatively few
database situations really need a
relational capability, but it can be
very powerful when required.

As to whether the Turbo Basic
Database Toolbox has relational
capabilities, the answer is yes and
no. No, because the Toolbox does
not contain routines specifically
designed for relating two separate
data files. Yes, because the Tool
box routines allow you to have
more than one data file open at a
time. Therefore, although the pro
gramming would not be trivial,
you could write your own code to
relate records in separate data
files.

The Toolbox also includes
Turbo Basic Sort, a rapid sorting
algorithm that can sort data on
one or more keys. It is not limited
to sorting data files created with
the Toolbox, but can sort essen
tially any data. The flexibility of
Turbo Sort is due to the fact that
the user supplies the input, com
parison, and output routines while

'*************************** SUBROUTINES ***************************

SUB EntUserHook(Ch$)
Ch$ = InkeyS

END SUB

FINISH:
DONE = %YES

RETURN

•subrouti~~ called by GetKeyStroke()

•--
NEWENTRIES:

ExitKeysS
Pr0111JtAttr
DataAttr
EntryMode
Temp$
NllnsS
ALLS

= chrSC 13)
7

= 112
= 3
= 1111

= 11012345678911

= 1111

'ENTER key terminates entry
•screen colors for pr0111Jt
'anq for data

'teq:>late for accepting numerals only
'teq:>late for accepting any character

'The next section of code gets user ~ntries and LSETs them into
'fields (defined in ARTICLES.INC) in preparation for writing to disk

CLS
CALL Pr0111JtEntry(4, 5, NllnsS, 5, 1, PrOll1JtAttr,DataAttr,ExitKeysS,_

EntryMode, "Article number: ", Temp$, Changed, ExitKey)

IF Temp$="" then RETURN •we are done if nothing entered

LSET articles.m.rnberS = Temp$: Temp$ = 1111

CALL Pr0111JtEntry(18, 18, ALLS, 6, 1, Pr0111JtAttr,DataAttr,ExitKeysS,_
EntryMode, " Article topic: 11 , Temp$, Changed, ExitKey>

LSET articles.topic$= Temp$: Temp$= 1111

CALL Pr0111JtEntry(62, 62, ALLS, 7, 1, PrOll1JtAttr,DataAttr,ExitKeysS,_
EntryMode, " Article title: ", Temp$, Changed, ExitKey)

LSET articles.title$= Temp$: Temp$= 1111

CALL Pr0111JtEntryC20, 20, All$, 8, 1, Pr0111JtAttr,DataAttr,ExitKeys$,
EntryMode, " First keyword: ", Temp$, Changed, ExitKey) -

LSET articles.keyword1$ = Temp$: Temp$ = 1111

CALL Pr0111JtEntryC20, 20, ALLS, 9, 1, Pr0111JtAttr,DataAttr,ExitKeys$,_
EntryMode, "Second keyword: ", Temp$, Changed, ExitKey)

LSET articles.keyword2$ = Temp$: Temp$ = 1111

CALL Pr0111JtEntry(60, 60, All$, 10, 1, Pr0111JtAttr,DataAttr,ExitKeys$,
EntryMode, " Authors: ", Temp$, Changed, ExitKey) -

LSET articles.authors$ = Temp$: Temp$ = 1111

CALL Pr0111JtEntry(40, 40, ALLS, 11, 1, Pr0111JtAttr,DataAttr,ExitKeysS,
EntryMode, " Journal: 11 , Temp$, Changed, Exi tKey) -

LSET articles.journal$ = Temp$: Temp$ = 1111

CALL PrOlflltEntry(4, 5, NllnsS, 12, 1, Pr0111JtAttr,DataAttr,ExitKeys$,_
EntryMode, " Year : ", Temp$, Changed, ExitKey)

November/ December 1987 TURBO TECHNIX 107

LSET articles.year$ = T~ : T~ = 1111

CALL Pr~tEntry(20, 20, ALLS, 13, 1, Pr~tAttr,DataAttr,ExitKeysS,_
EntryMode, 11 Citation: ", T~, Changed, ExitKey)

LSET articles.citation$ = T~ : T~ = ""

•now we are ready to write the new record to disk. First write the
•record with the unique key articles.nunber using the high-level call
1dbWrite. If the key articles.nunber already exists, the old data
•are overwritten.

NewkeyS = articles.nunberS
CALL dbWrite(articles.file, NewkeyS)

'the variables dbStatus and DataRef& are set by the dbWrite routine

IF CdbStatus = %KeyAlreadyExists) THEN_
LOCATE 20,19 :_
PRINT "Article nunber exists - record 11 ;DataRef&; 11 updated"_

ELSE
LOCATE 20,24 :_
PRINT "New article nunber - record added at # ";DataRef&

DELAY 1 •wait a bit

•now to add the secondary key articles.topic to the auxiliary
'index file, which does permit duplicate keys.

IF articles.topics <> 1111 THEN
NewkeyS = articles.topic$
CALL AddKey(articles.aux, DataRef&, Newkey$)

END IF

RETURN

•---
BROWSENUMBERS:

CLS: LOCATE 24,10
PRINT "F1: next record F2: previous record F3: main menu";
CALL ClearKey(articles.file)
CALL dbNext(articles.file, keyvalS)

DO
GOSUB display.record 'display current record

•get keystroke from user

DO
CALL GetKeystrokeCCh)

LOOP UNTIL (Ch > 313 and Ch < 317) •accept F1-F3 only

IF Ch = 314 THEN 'if F1 get next record
CALL dbNextCarticles.file,keyvalS)

IF Ch= 315 THEN 'if F2 get previous record
CALL dbPrevCarticles.file,keyvalS)

IF Ch = 316 THEN EXIT LOOP

IF dbStatus = %EndOfFile THEN BEEP

LOOP
RETURN

BROWSETOPICS:

CLS: LOCATE 24,10

108 TURBO TECHNIX November/ December 1987

DATABASE TOOLBOX

Turbo Sort does the actual sorting.
This may sound intimidating, but
the needed routines are typically
very short and easy to write. For
example, the three routines in Fig
ure 1 read a list of data from a
disk file, sort it alphabetically, and
print the results.

These routines can be as sim
ple or complex as your application
requires. By writing them yourself,
you gain great flexibility. For
example, records could be
received over a modem, sorted on
several fields, and then passed to
a database program.

Turbo Sort can sort a maximum
of 32,767 records, and maximizes
speed by doing all sorting, when
possible, in memory. If there is
insufficient memory, Turbo Sort's
virtual memory manager will
make use of disk space, treating it
as an extension of RAM.

KEYBOARD ENTRY TOOLS
The Turbo Basic Database Tool
box also includes a set of miscel
laneous tools that handle key
board entry of data and
sophisticated screen operations.
These tools can be very useful in
programming database applica
tions, and you will also find them
to be great timesavers in almost
any other type of programming.

The primary function of the
keyboard entry routines is to dis
play data fields on the screen,
accept user input, and return the
data to the calling program. The
routine PromptEntry, for exam
ple, displays a prompt and an
entry field on the screen and per
mits the user to enter and/ or edit
a string. The routine allows con
trol over all aspects of the process,
such as the color, location, and
size of the entry field, what char
acters will be accepted, and the
key(s) that will terminate entry.

Using these routines, your pro
grams can have the sophisticated
and convenient data entry screens
that usually are found only in
expensive commercial programs.

SCREEN CONTROL
ROUTINES
The screen control routines pro
vide some low-level functions,
such as setting the cursor size and
position and setting or reading

the current video mode. The
high-level screen functions can
scroll a rectangular area of the
screen up or down, and can read
or write text and color attributes
directly from or to video memory.

These latter routines allow the
screen area being read from or
written to to be specified either in
terms of absolute memory
addresses or in terms of screen
rows and columns. These func
tions greatly simplify program
ming of pop-up menus and help
screens. For example, the three
calls shown in Figure 2 will save
the contents of an area of the
screen, display some help infor
mation, and then restore the origi
nal text.

Speed-critical screen functions
are written in inJine assembler
code for maximum speed. With
these routines, windows appear
and disappear almost
instantaneously.

The Turbo Basic Database
Toolbox also includes several util
ity programs that facilitate the
development and support of data
base applications. There are file
translation programs that will con
vert ASCII, dBase II, dBase III,
and Reflex files to Turbo Basic
Access format, plus an export pro
gram that will convert a Turbo
Basic Access data file to an ASCII
file . These translation programs
make it possible for you to convert
an existing application from
almost any dedicated database
program to Turbo Basic without
fear that you will have to rekey
data.

There is also a program that
can repair damaged Turbo Basic
Access data files. Damaged files
are usually the result of the pro
gram terminating improperly,
without having closed the data
and/ or index files. In such cases,
REBUILD.BAS can repair the
damaged files so the data in them
are not lost.

Finally, there is a very useful
programming utility called
INCGEN.BAS which will generate
the Turbo Basic code to open and
define the fields for a particular
database. The Turbo Basic code
that INCGEN generates is in the
form of an include file that can be
incorporated into your program

PRINT 11 F1: next record F2: previous record F3: main menu";
CALL ClearKey(articles.aux)
CALL NextKey(articles.aux,DataRef&,keyvalS)
CA~L GetRec(articles.file,DataRef&)

DO
gosub display.record

•now get keystroke

DO
CALL GetKeystrokeCCh)

LOOP UNTIL (Ch > 313 and Ch < 317)

IF Ch = 314 THEN

•accept F1-F3 only

CALL NextKey(articles.aux,DataRef&,keyvalS>

IF Ch = 315 THEN
CALL PrevKey(articles.aux,DataRef&,keyvalS)

IF Ch = 316 THEN EXIT LOOP

IF dbStatus = %EndOfFile THEN_
BEEP

ELSE -
CALL GetRec(articles.file,DataRef&)

LOOP
RETURN

'**************~*******************
DISPLAY.RECORD:

LOCATE 5,5
LOCATE 6,5
LOCATE 7,5
LOCATE 8,5
LOCATE 9,5
LOCATE 10,5
LOCATE 11,5
LOCATE 12,5
LOCATE 13,5

RETURN

PRINT Nllllber: ";articles.nllllberS
PRINT Topic: ";articles.topics
PRINT Title: ";articles.titles
PRINT Keyword1: ";articles.keyword1S
PRINT Keyword2: ";articles.keyword2S
PRINT Authors: ";articles.authorsS
PRINT Journal: ";articles.journals
PRINT ' Year: ";articles.years
PRINT " Citation: ";articles.citation$

'***

ERRORHANDLER:

CLS
PRINT "Error ";ERR
PRINT "Aborting program"
CALL dbClose(ARTICLES.FILE)
CALL Closelndex(ARTICLES.AUX)
END

'***

'these are the INCLUDE statements for the toolboxes

SINCLUDE "DBHIGH.BOX"
$INCLUDE "OBLOW.BOX"
$INCLUDE "ENTSUBS.BOX"
$INCLUDE "SCRNSUBS.BOX"
$INCLUDE "SCRNASM.BOX"

'**************** END OF ARTICLES.BAS **********

November/ December 1987 TURBO TECHNIX 109

1 LISTING 2: ARTICLES.INC T

'***
Articles Database Include file for TURBO-BASIC ISAM

' Dataset reference No:
' Data file name:
' Data File length:
1 Key File name:
• Key length:

articles.File
artjcles.DBO
268

articles.DBI
4

'***

defint a-z

if articles.File> 0 then goto Endarticleslnc 'skip if already open
incr LastFi leNLlll
articles.File= LastFileNl.lll
articles.Rlen = 268
articles.Klen = 4

call dbCreate(articles.File, FlleNo, _
"articles.OBI", articles.Klen, "articles.OBO'', articles.Rlen)

if dbStatus • XFile~lreadyCreated then_
call dbOpen(articles.File, FileNo, _

"articles.OBI", articles.Klen, articles.Rlen)

if articles.Rlen <> 268 then
print "articles.OBO length is inconsistent with this program."
end

elseif articles.KLen <> 4 then
print "articles.OBI key length is inconsistent with this program."
end

end if

field FileNo,
4 as articles.Skip$,_
4 as articles.NUMBERS,
18 as articles.TOPICS,-
62 as articles.TITLES,:
20 as articles.KEYIJOR01S,
20 as articles.KEYIJOR02S,-
60 as articles.AUTHORS$, -
40 as articles.JOURNALS,-
4 as articles.YEARS, -
20 as articles.CITATIONS

field FileNo, 268 as articles.Buffers

gosub articlesClear
goto Endarticleslnc:

articlesClear:
lset articles.Buffers = string$(268, " ">

return •articlesClear

Endarticleslnc: 'End of this include file

llO TURBO TECHNIX November/ December 1987

DATABASE TOOLBOX

with an $INCLUDE statement
This can be very useful when you
are using a number of programs
to maintain several database files.
For a particular program to access
a particular database, all you need
to do is $INCLUDE the code
generated by INCGEN for that
database.

All of the Toolbox routines are
supplied as Turbo Basic source
code. This allows you to study the
code to see how things are done,
and to modify it if you wish. Of
course, the Borland technical sup
port people cannot help you with
Toolbox code that you've
modified.

Take a look at the sample
database application program,
ARTICLES.BAS, written using the
Turbo Basic Database Toolbox.
ARTICLES.BAS creates and main
tains a database file of magazine
article citations, allowing you to
browse through the file entries
sorted by either the number or
the topic of the articles. The
source code is given in Listing 1,
while the include file generated
with the INCGEN utility is given in
Listing 2. The source code is thor
oughly commented, which should
allow you to figure out how the
program works.

ARTICLES.BAS is pretty much
"bare-bones," lacking the fancy
screen displays, sophisticated
search routines, and printer out
put that you might want in your
own database programs. Rather
than being a finished product, it is
intended only to demonstrate
some of the capabilities of the
routines in the Database Toolbox.
These routines enabled me to
write a fast, functional database
management program using as lit
tle as 100 lines of code. If you do
much database programming, and
you value your time, this Toolbox
should be of interest to you. •

Peter Aitken is an assistant professor
at Duke University Medical Center,
and is the author of DigScope, a scien
tific software package. He writes and
consults in the microcomputer field.

Listing may be downloaded from
CompuServe as TBDBASE.ARC.

DOS CALLS FROM TURBO
BASIC
Here's how to determine where you are in a DOS
directory structure by calling DOS Interrupt 21.

Ethan Winer

WIZARD

One of the significant enhancements
to BASIC introduced with Turbo Basic is
the CALL INTERRUPT statement. CALL
INTERRUPT performs a direct call to any
8086 software interrupt, with necessary
register values passed by way of the REG

statement. All of the DOS functions can be per
formed by using CALL INTERRUPT to call DOS
interrupt 21H, although as you might imagine, some
are more complicated to set up than others.

Turbo Basic makes it easy for programmers to
change the current default directory, but unfortu
nately, it provides no easy way to determine which
directory is currently active. From the DOS prompt
you simply issue a CD (or CHDIR) command without
arguments, and the command will return the current
directory. Listing 1 shows a Turbo Basic subprogram
that uses DOS function 47H to retrieve the current
directory and place it into a BASIC string.

GetDir is called by specifying a drive letter and
passing a string variable that is to receive the
returned directory information. Since a number of
new concepts are used in this subprogram, let's take a
closer look at how it works.

First, a string long enough to hold the largest pos
sible path name is created. Not only must we tell DOS
where to put the information it will return, but we
must also ensure that other data isn't overwritten. If
enough space has not been properly set aside, a sys
tem crash is the likely consequence.

Next, the drive letter being passed is checked to
see if it is a null string, which we'll use to mean the
default drive. Many of the DOS functions can be
instructed to use drive A, drive B, and so forth, or the
current default drive. In this case the drive designator
is placed in the DL register, with a 1 indicating drive
A, a 2 for drive B, and a 0 for the default. Notice how
the drive letter is first forced to uppercase. This
makes it easier for the calling program, by allowing it
to use either uppercase or lowercase.

DIRECTING DOS
When we ask DOS to get the current directory for a
given drive, we must also indicate where that infor-

mation is to go, which in this case is the variable
Dir$. But before we can know where Dir$ is, we must
get the pointers that Turbo Basic maintains for its
own use. This is done with a combination of the
V ARPTR and V ARSEG instructions.

V ARSEG returns the segment that holds the
string's descriptor, and VARPTR returns the address
within that segment. Therefore, we must first make
Dir$'s descriptor segment the current one for the
PEEKs that are to follow. (We'll explain in detail how
this is done below.) Once the descriptor address has
been found, we can then locate the actual string.

A string descriptor is simply a four-byte table that
contains a string's length and its address. We've
already seen how to find where it is, but not what to
do with it once we've found it. The first two bytes
together contain the length of the string, and the
next two bytes hold its offset within the string data
segment. The "+2" and "+3" get the address by
skipping over the length bytes.

Keep in mind that the string data segment is dif
ferent from the string descriptor segment. One of
Turbo Basie's greatest advances over earlier BASICs
is its improved use of memory. Rather than place all
of the strings and their descriptors within a single
segment, they are instead kept in separate segments
to allow more space. This makes things much more
difficult when we have to find where a string is really
located in memory.

The string data segment can be found by examin
ing the very first two bytes in Turbo Basie's default
data segment. That's the segment selected for subse
quent PEEK statements when you execute a DEF SEG
by itself with no arguments. By PEEKing at these two
bytes, we can obtain the segment that contains the
actual string data. The offset within that segment is
the one we got from the four-byte descriptor.

CALLING DOS
Once we've obtained both the segment and offset for
Dir$, we are finally ready to call DOS. In fact, the rest

November/ December 1987 TURBO TECHNIX 111

I LISTING 1: GETDIR.BAS

'*** GetDir.Bas - returns the current directory for a specified drive

CLS
LINE INPUT "Which drive? ", 0$
CALL GetDir(D$, Directory$)
PRINT "The current di rectory on drive " 0$ " is \" Di rectory$
END

SUB GetDir(Drive$, Dir$) STATIC

LOCAL Drive, Descriptor!, Address!

Dir$ = SPACE$(64) 'make room for directory name

IF Drives = 1111 THEN 'a drive wasn't specified, so
Drive= 0 ' use the default drive

ELSE
Drive = ASC(UCASE$(Drive$)) - 64 'adjust so 11A11=1, "B"=2, etc.

END IF

DEF SEG = VARSEG(Dir$) 'find Dir$ descriptor address
Descriptor! = VARPTR(Dir$)
Address! = PEEK(Descriptor! + 2) + 256! * PEEK(Descriptor! + 3)

DEF SEG
REG %OS, PEEK(O) + 256! * PEEK(1)
REG %SI, Address!
REG %DX, Drive
REG %AX, &H4700

CALL INTERRUPT &H21

IF Dir$= SPACE$(64) THEN
Dir$ = "Error"
EXIT SUB

END IF

'find string data segment at
'address 0, and put it in OS
'offset within segment in SI
'specify drive in DL
'specify service &H47 in AH

'call DOS

•error - indicate this to the
caller with error message

'keep only the name portion; DOS marks end with a CHR$(0)
Dir$= LEFT$(Dir$, INSTR(Dir$, CHR$(0))-1)

END SUB

$INCLUDE "RegNames.lnc" 'this file defines registers,
' and is on the Turbo disk

112 TURBO TECHNIX November/ December 1987

DOS CALLS

is easy after what we just went
through! The segment of the
string variable into which the path
name will be placed is assigned to
the DS register, and the string's
offset within that segment goes
into SI. The number indicating
which drive to use is put into DL,
and the Get Directory service
number (47H) goes into AH, as
usual. Finally, CALL INTERRUPT
does the work of putting the cur
rent directory path into Dir$.

The last step is to isolate just
the returned path from the rest of
Dir$, which brings up another
important issue. When a file or
path name is sent to DOS, the end
must be marked with a null, ASCII
character 0. (In Turbo Basic,
CHR$(0)). DOS doesn't use string
descriptors like Turbo Basie's, and
marking the end of data with a
null is the only way DOS can tell
when it has reached the end.

Likewise, when a string is
being returned to us, DOS also
marks the end with a null. For this
reason, INSTR is used to locate
the null character that DOS put
there, and Dir$ is then reassigned
to keep only the part that matters.

One thing to note: when DOS
returns a path name, it omits the
drive letter, the colon, and the
leading backslash. Therefore, if
the current directory happens to
be the root, DOS will simply
return a single zero byte.

CONCLUSION
The trick in using DOS calls
through CALL INTERRUPT is
not in making the call itself.
Instead, the key is in setting up
information to be passed to the
interrupt handler, and then
retrieving information the
handler returns to us.

Particularly, getting Turbo Ba
sie's string information to and
from interrupts is less than obvious.
But with that understanding under
your belt, you should be able to

access any of the many DOS
services from within Turbo Basic. •

Ethan Winer owns Crescent Software,
and is the author of the QuickPak
utilities for Turbo Basic and Micro
soft QuickBASIC.

Listing may be downloaded from
CompuServe as TBDOSCAL.ARC.

Borland' s new Turbo C:
The most powerful

optitnizingcompilerever

0 ur new Turbo C
generates fast,
tight, prcx:iuction

quality ccx:ie at compilation
speeds of more than
13,000* lines a minute!

It's the full-featured
optimizing compiler
everyone has beer;i waiting
for.
Switching to Turbo C, or
starting with Turbo C, you
win both ways

If you're already programming
in C, switching to Turbo C will
make you feel like you're riding
a rocket instead of pedaling a
bike.

If you've never programmed
in C, starting with Turbo C gives
you an instant edge. It's easy to
learn, easy to use, and the most
efficient C compiler at any price.

' ' Turbo C does look like
What We've All Been Waiting
For: a full-featured compiler
that produces excellent
code in an unbelievable
hurry . .. moves into a class
all its own among full
featured C compilers ...
Turbo C is indeed for the
serious developer ... One
heck of a buy-at any
price. Michael Abrash,

Programmer's journal ''

join more than 100,000 Turbo C
enthusiasts. Get your copy of
Turbo C tcxiay!

All Borland products are trademarks or registered trademarks ot Borland lr.terna
tional, Inc., or Bor land/Analytica. Inc Other brand and product names are trade
marks or registered trademarkso1 their respective holders
Copyright 1987 Borland International Bl-1136

Technical Specifications
~ Compiler: One-pass opamizing com

piler generating linkable object
modules. Included is Borland's high
performance Turbo Linker.· The object
module is compaable with the PC
DOS linker. Supports tiny, small, com
pact, medium, large, and huge
memory model libraries. Can mix mod
els with near and far pointers. Includes
floaang point emulator {utilizes 80871
80287 if installed}.

~ Interactive Editor. The system includes
a powerful, interactive full-screen text
editor. If the compiler detects an error,
the editor automaacally positions the
cursor appropriately in the source
code.

& Development Environment' A powerful
"Make" is included so that managing
Turbo C program development is
highly efficient Also includes pull
down menus and windows.

& Links with relocatable object modules
created using Borland's Turbo Prolog"
into a single program.

& lnline assembly code.

& Loop opamizations.

~ Register variables.

& ANSI C compatible.

& Start-up rouane source code included.
~ Both command line and integrated

environment versions included.

~ License to the source code for Run
ame Library available.

Sieve benchmark

1Urbo C Microsoft~
c

Compile time 2.4 13.51

Compile and
4.1 18.13 link time

Execution
time 3,95 5.93

Object code
239 249 size

Execution
size 5748 7136

Price $99.95 $450.00

'Benchmar'< run on an IBM PS/2 Model 60 using Turbo C version 1.0 and
the Turbo Linker version 1.0; Microsott C version 4.0 and the MS overlay
linker version 3.51 .

Minimum system requirements: IBM PC, XT. AT, PS/2 and true compatibles
PC-DOS (MS-DDS) 2.0 or laler 384K

For the dealer nearest you or to order by phone call

{800) 255-8008
in CA (800) 742-1133 in Canada (800) 237-1136

INTERNATIONAL

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CA 95066
(408) 438-8400 TELEX 172373

Only $99.95!

TURBO BASIC
COMMUNICATIONS
Hiding beneath a single Turbo Basic keyword is an
interrupt-driven communications engine.

Reid Collins

The field of data communications is a
large one, and to most PC users, it is

• steeped in mystery, magic, and no small
.. amount of frustration. If you have a serial

port and a modem attached to your PC,
PROGRAMMER

perhaps you, too, have experienced some
of the frustrations that are associated with making
connections to the outside world.

This article looks at one small corner of data com
munications by taking a ground-level view of PC
based asynchronous communications through Turbo
Basic. Its purpose is to lift the shroud of mystery and
expose the essential elements of PC communications
typified when a PC is used as a local terminal con
nected to a remote computer.

The programs presented here show how easy it is
to write a useful communications program in Turbo
Basic. This is because Turbo Basic incorporates a set
of statements and functions that do a lot of the diffi
cult work for you. In nearly all other computer lan
guages, the task is significantly more complex. The
first program, MINCOM, is the briefest communica
tions program I could write that allows the PC to
operate successfully as a terminal. An elaboration of
MINCOM is presented in a second program, SIM
COM. It is essentially the same program as MIN
COM, but SIMCOM adds a number of safety nets and
convenience features that make data communications
both more reliable and more pleasant for the user.

GROUND ZERO
Figure 1 shows the arrangement of hardware on
which the programs function. The PC must be able to
run DOS 2.0 or later and Turbo Basic. A Hayes
compatible modem, either internal or external, is
connected to the PC and to an ordinary telephone
line. Alternately, the connection may be directly from
one machine to another using a short cable wired as
a null-modem cable (also called a modem elimina-

114 TURBO TECHNIX November/ December 1987

tor). The remote computer may be another PC or any
other computer that is capable of answering a call.

An external modem requires a serial adapter in the
PC and a connecting cable. If an internal modem is
used, it combines the functions of a serial port and a
modem into a single adapter.

The programs presented in this article are designed
for full-duplex asynchronous communications with
bulletin board systems and information utilities such as
the Source, and any other system that supports this
form of data communications. Full duf/,ex means that
unrelated data streams may be sent in both directions
at the same time without interfering with each other.
The term asynchrorwus means that the local and remote
systems may transmit at any time, that there is no com
mon clocking mechanism, and that neither system has
advance knowledge of the other's plans to transmit
Each system must be ready to receive input at all times
during a session.

To produce a workable connection between two
machines, we must have an agreement between the
two ends of the connection about the values of a set of
communications parameters. Of primary importance is
transmission rate. At rates of 300 bits per second (bps)
and less, the rate may be expressed equivalently in
baud or state transitions per second. This is the basic
signaling rate of frequency-shift keying (FSK), that indi
cates the rate at which the signal switches between two
audible frequencies. One baud is one state transition
per second. (Note: the frequently used phrase "baud
rate" is a redundancy. A baud specification is a rate, so
300 bps, for example, is the same as 300 baud. It makes
no more sense to say "baud rate" than to say "Hertz
per second" when speaking of frequency.)

Above 300 bps, the one-to-one correspondence of
data bits per second to baud no longer holds because
of the way signals are impressed on the carrier signal.
With the phase-modulation techniques typically used at
higher rates, a 1200 bps data rate is achieved on a sig
nal with a basic signaling rate of 600 baud. Still higher
transmission rates are accomplished by encoding
greater numbers of bits per state transition. Always
express the transmission rate in bits per second (rather

_J r.::::::::l ~~~~o EJ
-LL:'J~ _. Mod<m 1

Local
PC system

Direct (via null modem) *
*The serial port adapter and external modem functions may
be combined in an internal modem adapter.

than baud or state transitions per
second) regardless of the value be
cause it is the number of bits per
unit of time that really describes
how fast data are being trans
mitted.

Another important communica
tions parameter is parity. Parity pro
vides a simple method of detecting
single-bit errors by checking the
number of bits set to logical 1 in a
received character. If even parity is
being employed, for example, the
transmitter of data will set or clear
the parity bit to produce a code
that contains an even number of 1-
bits. This code is then sent over the
line, and if the receiver counts an
odd number of 1-bits, it has reason
to believe the received character
was corrupted during transmission.
However, even if a transmission
error can be detected this way, no
means of correcting the error
exists in simple asynchronous
transmission. Parity may be set to
even, odd, none (the parity bit can
arbitrarily take on any value or be
absent), space (the parity bit always
set to 0), or mark (the parity bit
always set to 1).

The number of data bits in a trans
mitted character is another com
munications parameter that must
be specified. This parameter indi
cates how many bits are used to
form the codes that represent
transmitted characters. Values from
five to eight data bits are permitted.

Remote host
computer

The ASCII character set requires
seven bits, permitting codes rang
ing from 0 to 127. Eight-bit encod
ing can be used to express 256 dis
tinct codes (0 to 255) and may be
used to transfer extended codes
found in IBM PC character graph
ics and true 8-bit data that com
prise binary files such as execut
able programs. When eight data
bits are used, the parity setting
must be none.

Each transmitted character code
is framed by one start bit and one
or more stop bits. The number of
stop bits is specified as either one
or two. At speeds below 300 bps
(typically the standard Teletype rate
of 110 bps) specify two; otherwise
use one. When the number of data
bits is only five, specifying two stop
bits results in a stop period equiva
lent to one and a half stop bits.

Of course, we must specify the
serial port to use. On an IBM PC
or compatible machine, the serial
ports are identified as the primary
adapter, COMl, and the secondary
or alternate adapter, COM2. AUX
may be used as a synonym for
COMl because it is initialized by
DOS to be the same as COMl. The
DOS MODE command can be
used to assign AUX to COM2.
Some hardware add-on boards use
tricks to provide additional com
munications ports, but DOS does
not support additional serial ports

Figure 1. Typical PC-communications
setups.

without the installation of special
device drivers.

With the preliminaries out of the
way, let's see what it takes to write a
communications program in Turbo
Basic. You may be surprised to find
out how little programming is
needed.

A MINIMAL COMMUNICA
TIONS PROGRAM
The four-line program in MIN
COM.BAS (Listing 1) shows the
simplest working communications
program that can be written in
any dialect of BASIC, to my
knowledge. The program makes
some assumptions that may not be
correct for a given machine and
communications channel; there
fore, you may need to modify the
source code (transmission rate,
parity, etc.) for your system.

The logic of MIN COM is shown
in Figure 2. The first step initial
izes the selected communications
port for the required transmission
rate, parity, and the number of
data and stop bits, as well as set
ting up a communications buffer.
Then the program enters an end
less loop that alternates between
sampling the characters from the
port ("polling" received data) and
the keyboard (data to be transmit
ted) . In this simple program, any
thing that is received from the
communications line is displayed
on the local screen and anything
keyed by the user is sent to the

November/ December 1987 TURBO TECHNIX 115

Stan

Initialize
com pon

Anything in the
com buffer?

Read next char
from com buffer

Display the
character

Anything in the
keybd buffer?

Read next char
from keybd buffer

Send the char
to com pon

Figure 2. The logi,c of a minimal asynchronous communications program.

BASIC COMMUNICATIONS

serial port for transmission to the
remote system.

Care must be taken to avoid
operations that stop the loop by
waiting for either incoming or
outgoing data. Therefore, a test is
made to see whether the end of
file (EOF) has been reached on
the received data before an
attempt is made to read anything.
EOF returning a value of TRUE
(-1) indicates that the receive
buffer is empty. We'll examine the
receive buffer in detail shortly.

The same practice prevents a
blocking read from occurring on
the keyboard. The INSTAT func
tion returns a value of TRUE (-1)
if any unread characters are in
the keyboard buffer and F AISE
(0) if there is nothing to read. If
the buffer is not empty, INKEY$
reads the next available character,
which is immediately transmitted
to the remote system.

USING MINCOM
MINCOM provides a real operat
ing challenge because it does
nothing to help the user. Dialing
is entirely manual. There are no
safety nets, so performance on
noisy lines is likely to be poor.
And making a clean disconnect is
purely a matter of luck. Also,
because Turbo Basic adds a line

feed to any received carriage
return character, displayed output
is always double spaced. But the
program works and is simple
enough to be totally understand
able, so it's a good starting point.

You can run MINCOM from
within the Turbo Basic environ
ment or as a standalone execut
able program. In either case, you
should select the option that en
ables keyboard break (using the
Ctrl-Break combination) before
compiling and running the pro
gram. Otherwise it may be difficult
to get out of the polling loop once
you're finished using the program.

The following operating
instructions assume that you are
using a Hayes-compatible modem
and a Touch-Tone telephone.
They also assume that you have
compiled MINCOM to a stand
alone .EXE file. To make a call,
turn on the modem and start the
program by typing MINCOM fol
lowed by an Enter. To dial, type
the Hayes command prefix AT (in
uppercase) followed by DT (the
Hayes commands meaning "dial
using Touch-Tones"), followed by
the number. Terminate the com
mand with an Enter. You may
need to modify this procedure to
suit your operating conditions
(modem and telephone types) .

If all goes well with the call, you
should get some indication that
the remote system is ready to com
municate, such as a log-in prompt

116 TURBO TECHNIX November/ December 1987

or a banner screen. You may have
to type an Enter or two to get the
remote system to synchronize with
your data transmission rate and
other settings before it can
respond correctly. Once con
nected, your local system looks
like a simple terminal from the
remote system's perspective. Any
thing you type is sent out and any
thing received goes to the screen.
A few control codes (format effec
tors such as CR, LF, and tab) are
interpreted, but other control
codes will usually display strange
characters on the screen.

Disconnecting can be a bit of a
problem because of timing consid
erations. Type whatever command
tells the remote system to discon
nect, and hope for the best. You
may be able to get back to DOS by
pressing Ctrl-Break. Often, how
ever, MINCOM will h:ing the local
system awaiting input from the
communication line that never
arrives. If this happens to you, do
a warm reboot (Ctrl-Alt-Del) to
restart your computer.

COMMUNICATIONS SUPPORT
Although it appears to be a very
simple program, MINCOM is, in
fact, a rather complex piece of
code at the machine level. Hidden
from your view as a Turbo Basic
programmer is all the work that is
done by the OPEN COM state
ment and the statements that test
and read the internal buffers
established by Turbo Basic and
DOS. Indeed, this automatic buf
fering is MINCOM's key to suc
cess. Without it, the program
would not work very well at all.

Figure 3 depicts an implementa
tion of a receive buffer. Incoming
data from the communications
lines is automatically buffered by
the runtime code. Unless told oth
erwise, Turbo Basic establishes a
256-byte circular buffer (I'll
explain why it's called "circular"
shortly) and installs an interrupt
driven interface routine. A Turbo
Basic metastatement may be used
to specify a different buffer size

SCOMn size

where n is the port number and
size is the buffer size in bytes.

Upon receipt of a character in the
port's receive data register (which
can hold only one character
read it or lose it!), the intenupt
routine adds the character to the
receive buffer and advances a
pointer-the write pointer-to the
next location where a character
will be written.

A read pointer that points to the
buffer location where the next
read-character operation will be
attempted is also maintained by
the interface routine. An INPUf$
function call can be used to
extract a string of a specified
length from a communications
buffer beginning at the current
read position. After a successful
read operation, the read pointer is
advanced to the next location in
the buffer, marking the point at
which the next call to an input
function will begin reading.

If the write and read pointers
are equal (pointing to the same
place) the input buffer is empty.
An attempt to read a character or
string from an empty buffer, with
INPUf$ for example, will appar
ently hang the program by waiting
for something to arrive. A pro
gram should use the end-of-file
(EOF) function to determine
whether there is anything to read
to prevent this sort of freeze-up.
The EOF function returns a
TRUE (-1) value when the buffer
is empty and FAISE (0) otherwise.

The buffer is described as circu
lar although it is really just a lin
ear array of character-sized stor
age locations. The routines that
control reading and writing opera
tions automatically move their
pointers back to the beginning of
the buffer if an attempt is made to
increment past the end of the
buffer. Logically, the buffer is like
a ring-it has no beginning or
end.

COMMUNICATIONS EVENT
TRAPPING
MINCOM, when compiled by
Turbo Basic and run on a 4. 77
MHz IBM PC, will keep up hand
ily with a 1200 bps input stream.

Data read
by program

Data received and
stored, but not yet read

Read
pointer

Write
pointer

Figure 3. Received data buffering.

At higher transmission rates,
problems can arise when charac
ters are arriving rapidly in long,
continuous streams, and especially
when a color I graphics adapter is
being used and the screen must
be scrolled following a CR/LF on
the bottom line of the screen.

The intenupt-driven interface
put into place by the call to OPEN
COM takes care of preserving the
incoming characters in the buffer,
but our programs still have to
empty the buffer as rapidly as pos
sible. If characters are not taken
out fast enough, data will eventu
ally be lost because the write
pointer will overtake the read
pointer, writing over data that has
yet to be read. The use of event
trapping can help to preclude data
loss.

Event trapping is a feature of
Turbo Basic that causes a program
to check between the execution of
program lines (or optionally
between statements) to see
whether an event has occurred. In
addition to checking for key
presses (ON KEY), joystick button
presses (ON STRIG), and a var
iety of other "ON somethings"
that can specified, Turbo Basic
can be told to check for the arrival
of new characters at a specified
communications port.

Two statements are used to con
trol event trapping: COM and ON
COM. The COM statement turns
trapping on and off, and ON
COM declares the subroutine that
will handle trapped events.

The COM statement has the
following general form

COM(n) { ON I OFF I STOP }

where n is 1 or 2 and the braces
and vertical bars are notation that
means "select one and only one
of the enclosed choices." COM
ON enables trapping, so that any
newly received characters set an
internal flag indicating activity.
COM OFF disables trapping, thus
causing any activity to be com
pletely ignored.

A COM STOP instruction halts
trapping but remembers that a
flag was set. A subsequent COM
ON instruction results in an
immediate trap to the specified
service routine. The service rou
tine is identified by an ON COM
statement of the form

ON COM(n) GOSUB label

where n is either 1 or 2 and label
is the mnemonic label or line
number that is associated with the
service routine. If label is set to
line number 0, trapping is
disabled.

When a character arrives, the
trap service routine is executed.
Turbo Basic clears the flag and
does an immediate COM STOP
just before entering the service
routine. This prevents unwanted
additional checking and event
trapping while the routine is exe
cuting. When the trap service rou
tine returns, Turbo Basic executes
a COM ON to enable event trap
ping again.

COM and ON COM permit us

November/ December 1987 TURBO TECHNIX 117

LISTING 1: MINCOM.BAS 1

100 CLS:LOCATE 1,1,1:0PEN 11 COM1:1200,E,7,1 11 AS #1
110 IF NOT EOF(1) THEN PRINT INPUT$(1, #1);
120 IF INSTAT THEN PRINT #1, INKEY$;
130 GOTO 110

LISTING 2: SIMCOM.BAS

•--
I PROGRAM: SIMCOM -- a SIMple COMfl'l.Jnications program in

Turbo Basic.

1 AUTHOR: Reid Collins
' WRITTEN: April 25, 1987

1 DESCRIPTION:
SIMCOM is a simple program that provides a basic Level of
full-duplex asynchronous c0111T1Unications support with a few
amenities to enhance its usefulness.

•--
1 Initialization -- default values and possible override of the
1 corrmunications parameters from a disk init file.
•--
CLEAR
CLOSE
DEFINT A-Z

1 initialize memory; clear event traps

' all vars are ints unless noted otherwise

•--- Boolean values
False = 0
True = NOT False

•--- set up an error handler
ON ERROR GOTO ErrorHandler

•--- define screen colors --
Fgnd = 2
Bkgnd = 0

•--- default corrmunications parameters --
Portnum = 1
Port$ = 11 COM1' 1

Rate$ = 11 1200 11
' specify as bits per second

Parity$= 11E11
' even parity

Databits$ = 11 711
' ASCII characters only

Stopbits$ = 11 111
' 1 or 2 stop bits

•--- set screen and cursor
SCREEN 0, 1, 0, 0
COLOR FGND, BKGND
CLS
LOCATE 1, 1, 1

•--- flow control variables and constants --
Paused = False
PausedCount = 0
WarningLevel = 128
Waiting = 0 ' corrm input queue size (used for testing)

•--- read init file, if any ---
10 OPEN 11 SIMCOM.INI 11 FOR INPUT AS #2

INPUT #2, Portnum, Port$, Rate$, Parity$, Databits$, Stopbits$
CLOSE #2

continued on page 122

118 TURBO TECHNIX November/ December 1987

BASIC COMMUNICATIONS

to write simple programs that
respond quickly to asynchronous
events. Let's put them to work.

A SIMPLE COMMUNICATIONS
PROGRAM
SIMCOM is an elaboration of
MINCOM. It adds several impor
tant features that make the origi
nal program both easier to use
and more reliable. It also works
around a few problems that result
from the way Turbo Basic does
certain things.

The SIMCOM program is a full
duplex asynchronous communica
tions program that features user
definable configuration from an
external initialization file. Listing
2, SIMCOM.BAS, contains the
source for the program. SIMCOM
may be run within the Turbo
Basic environment or as a separ
ate executable program file. To
produce SIMCOM.EXE, read in
the source file and select the EXE
mode under the Options menu.
The Keyboard break option
should be OFF, forcing the user to
exit the program by using an
approved quit command rather
than typing Ctrl-Break.

The operating instructions for
SIMCOM are similar to the ones
for MINCOM. However, when the
program starts, it looks in the
current directory for the file
SIMCOM.INI, which is the initiali
zation file that lets a user custom
ize the communications parame
ters used by SIMCOM. Listing 3
contains the author's initialization
for a system equipped with a
Hayes 1200B internal modem.

If the file exists, the default
parameter values are replaced by
those in the file. If the file is not
found, the error recovery routine,
specified by the call to ON
ERROR, bypasses the statements
that read and close the file.

Error detection and recovery in
SIMCOM is simple but effective.
In addition to the disk error
procedure just described, the error
handler responds to all other
errors by jumping back into the
keyboard loop. This procedure
allows the user to continue operat
ing or at least exit gracefully after
an error.

The keyboard loop understands
only two commands. These com
mands are invoked by keys that
produce two-character sequences
in which the first is a NUL byte (a
character with a value of 0) and
the second is usually the scan
code for the key. The two
accepted commands are:

Ctrl-End (NUL + 117)--
Quit (return to TB.EXE or DOS)

F1 (NUL + 59)--
Send a hardware BREAK signal

In addition, the Del key on a PC
keyboard issues a NUL byte fol
lowed by scan code 83. This
sequence is converted to an ASCII
DEL code (127) and sent to the
remote system.

All standard ASCII characters
(7-bit) and IBM Extended ASCII
charact~rs (8-bit) typed at the key
board are sent to the remote sys
tem unchanged. The extended
characters may be transmitted by
using the PC's Alt-number
method. For example, the block
character (code= 219) is transmit
ted by holding Alt and keying in 2,
1, and 9 on the numeric keypad,
and then releasing the Alt key.
Keep in mind that this method of
typing IBM extended characters is
part of the PC's BIOS keyboard
support and not SIMCOM or
Turbo Basic.

When a character is received
from the remote system and
stored in the receive buffer, SIM
COMjumps to the GetComlnput
subroutine, which checks to make
sure there is really something to
read. If so, the subroutine extracts
a character from the buffer and
processes it. It then branches back
to the beginning of the subroutine
to see whether there is anything
else to read (another character
may have arrived while one was
being processed). Only when the
receive buffer has been com
pletely drained does the
GetComlnput subroutine return
control to the keyboard loop.

FLOW CONTROL
At transmission rates of 1200 bps
and above, it's possible for the

transmitting system to get ahead
of the receiving system. Control
sequences that cause the receiving
system to do time-consuming
tasks, such as scrolling the screen
or writing data to disk, are usually
responsible for the inability to
keep up. The receiving system
needs a way to tell the transmit
ting system to stop sending until it
is able to catch up.

Flow control is one possible

answer to this problem. In a full
duplex setting, the receiving sys
tem can send an XOFF character
(ASCII code 19) to tell the trans
mitting system to suspend trans
missions. Usually, the receiving
system monitors its input buffer. If
it gets filled beyond some thresh
old (WarningLevel in SIMCOM),
an XOFF is sent. After its receive
buffer has been drained com
pletely, or below some minimum
level, the receiving system sends
XON to signal the transmitting

continued on page 122

BASIC Programming Tools
There's nothing basic about these
professional programming utilities.

Whether you're a seasoned expert or
just starting out, we can help you cre
ate programs that run faster, work
harder, and simply look better. We
have built our reputation on customer
satisfaction by providing expert advice
and quality technical support. All
Crescent Software products include
source code. demonstration programs,
clear documentation, and a 30-day
satisfaction guarantee.

• QBase is a superb screen designer
and full-featured relational data
base. Because we include complete
BASIC source code, OBase can be
customized to suit your needs.
Besides its database capabilities,
OBase is outstanding for creating
custom titles, help screens, and
product demos, and includes a
versatile slide-show program. 599

NEY''
• QBase Report enhances OBase by

generating reports with multiple
levels of sorting, automatic record
updating, browsing, and transaction
posting. As a special bonus, OBase
Report includes a complete, ready
to run, time billing application for
computer professionals. $69

• QulckPak contains more than 65
essential routines for BASIC pro
grammers. Included are programs
for windowing, access to DOS
and BIOS services, searching and
sorting string arrays, creating
pull-down and Lotus'" menus,
accepting data input, and much
more. OuickPak is loaded with
examples and tutorial information,
and comes with a clever tips and
tricks book, plus The Assembly
Tutor - a complete guide to
learning assembly language from
a BASIC perspective. $69

• By Customer Demand -
QulckPakll
More than 30 additional tools,
including disk and printer tests to
eliminate the need for On Error in

--
your programs, and a multi-line
text input routine that lets you put
a note pad with full word wrap
anywhere on the screen from within
your programs. Other routines
include binary file access. more
menus, multiple screen save and
restore, continuous time display,
automatic box drawing, and much
more. (Available for use with
QuickBASIC only.) $49

NEVI!
• CraphPak is an extensive collection

of routines for displaying line, bar,
and pie charts automatically within
your programs. It will create 3-D
charts with manual or automatic
scaling, titles and legends in any
size or style, as well as scrolling
and windowing in graphics.
Graph Pak also comes with a sophis
ticated font editor for customizing
your own character sets. 569

CRESCENT
SOFTWARE

64 Fort Point Street, East Norwalk, CT 06855
(203) 846-2500

Separate versions are available for Microsoft
OuickBASIC and Borland Turbo Basic - please
specify when ordering. No royalties, not copy
protected. of course. We accept Visa. MIC. C.O.D.
and Checks. Add S3 shipping and handling, SIO
overnight and foreign. S25 2nd day foreign.

November/ December 1987 TURBO TECHNIX 119

Paradox: the top-rated
relational datatiase
manager in the world

" p aradox® is once again the
top-rated program. with the
latest version scoring even

higher than last year's top score."
(Software Digest's 1987 Ratings
Report-an independent compara
tive ratings report for selecting
IBM PC business software. All tests
for the Ratings Report were done
by the prestigious ational Soft
ware Testing Laboratory, Philadel
phia. PA.) The Ratings Report mes
sage is crystal clear: there is no
better relational database manager
than Paradox. NSTL tested 12 dif
ferent programs and amongst other
results. discovered that Paradox is
3 times faster than dBASE® and 6
times faster than R:BASE® on a
two-file join with subtotals test.t

Paradox does the impossible:
Combines ease of use with
Power and Sophistication
Even if you're a beginner. Paradox
is the only relational database man
ager that you can take out of the
box and begin using right away.
Because Paradox employs state-of
the-art artificial intelligence tech
nology, it does almost everything
for you-except take itself out of
the box. (If you've ever used 1-2-3®
or dBASE.® you already know how
to use Paradox. It has Lotus-like
menus, and Paradox documentation
includes "A Quick Guide to Paradox
for Lotus users" and "A Quick Guide
to Paradox for dBASE users.")

~
~0

~0 0 ·s-0; ~ .~0
~'if ~0 0~~ -0"0 &"' c,0 0&'

~~~ "'-0 ~v d- x-~"' ~~"' .~~ ~ «:: 
,oc:s · ,.,o~ 0 ° 0 o' 1::-o" ~ o 0 

~0'" <v~c, <v~c, '«)" «.0 :.::,0'" ~0~ «.~,o «. 
T::r-t:rC:rT::r 8.7 Paradox 1.1 • • 
r:rr:rr:rr:r 8.2 XDB 1.10 • • r:rr:rr:r 7.6 Power Base 2.3 • • r:rr:rr:r 7.0 Open Access 11 2.0 

r:rr:rr:r 7.0 DataEase 2.5/2 • • r:rr:r 6.6 dBASE Il l PLUS 1.1 
r:rr:r 6.4 R:BASE System V 1.1 

How to make your network work 

To run Paradox 2.0 or the Paradox Network Pack on a network, you need: 

• Novell with Novell Advanced Netware version 2.0A or higher 
• 3Com 3Plus with 3Com 3+ operating system version 1.0, 1. 1 or higher 
• IBM Token Ring or PC Network with IBM PC Local Area Network Program 

version 1. 12 or higher 
• Torus Tapestry version 1.45 or higher 
• AT&T Starlan Network with AT&T PC 6300 

Network Program 
• Other network configurations that are 100% compatible with ODS 3. 1 and 

one of the listed networks above 

The merger of Ansa with Borland is subJect 10 the linal approval of 
shareholders and regulatory authorilies 

RATINGS KEY 

• • • 512K $495 
(On a scale of Oto 1 O) 

Overall Evaluation 

• • • 320K $750 (rl)t-,:z.-o- 9.0 or higher 

• • 384K $349 "'"''"" 8.0. 8.9 
"'"'"' 7.0. 7.9 

• • • 256K $395 "'"' 6.0 . 6.9 
"' 5.0. 5.9 

• • • 384K $600 All Other Ratings 

• I! 384K $695 • 7.0. 9.9 
5.0. 6.9 

• • • 512K $700 • UNDER 5.0 

System Requirements for Single User: 
• DDS 2.0 or higher 
• IBM" PS/2 and PC, Compaq• PC families and other 100% compatibles 
• 5t2K RAM 
• Two disk drives, 31h-inch and 51/.-inch supported 
• Compatible monochrome, color. or EGA monitor with adapter 
System Requirements for the Network Workstation: 
• DOS 3. 1 or higher 
• 640K RAM 
• Any combination ol hard, floppy, or no disk drives 
• Compatible monochrome, color, or EGA monitor with adapter 

"Rep1inled with permission by S-Oftware Digest from its July 1987 Report covering 12 rela
tional database programs 

a: 
LJ.J 6 
:;: 
~ 5 

·•- ·· 

Source: Software Digest• 

Ideal programs have high levels of both power and 
usability. Programs plotted in the upper righthand 
portion of the diagram above come closest to achieving 
that ideal. 

Paradox responds instantly 
to "Query-by-Example" 
The method you use to ask ques
tions is called Query-by-Example. 
Instead of spending time figuring 
out how to do the query, you simply 
give Paradox an example of the 
results you 're looking for. Paradox 
picks up the example and automati
cally seeks the fastest way of get
ting the answer. Paradox. unlike 
other databases. makes it just as 
easy to query multiple tables simul
taneously as it is to query one . 

··Rebate request roost be received by BOJland no later than February 15, 1988 
Mail to Paradox Rebate Department. Borland lnlernalional, 
4585 Scotts Valley Drive. ScoUs Yalley, CA 95066 

tTest was designed and executed by NSTL A 1,000-record and a 10,000-record file were 
J01ned A short text tield from the 1,000-record file and a nuneric !1e!d lrom the 10,000-
record lile we1e selected (using the 1,000-record me indexes). The short text lield was 
grooped and sorted in ascending order, the numeric lield was sub!o1aled for each group, 
andtheresultsoutputtoanullprinter. Testtimestromthelastkeys!rokeonthecommand 
sequence unil return ol program control were recorded and averaged 

Paradox is a 1egistered trademark ol Ansa Soflware Ansa is a 80fland International Com
pany Other bfand and pfoduct names are trademarks or registered trademarks of !heir 
respective holders. Copyright ~1987 Borland International. 81-1158 

II within 60 days ol pLKchase this product does not perlorm in accordance wilh our claims, 
call oor customer service de~artment , and we will arrange a refund 



Paradox makes your network 
run like clockwork 
Paradox is just as valuable to multi 
and network users as it is to single 
users. It runs smoothly, intelligently 
and so transparently that multiusers 
can access the same data at the same 
time-without either being aware of 
each other or getting in each other's 
way. It works exactly the same way 
whether you're flying solo or as part 
of the crew. 

'' Paradox was a delight to 
use. both as a standalone pro-
duct and from a local area net
work server 

Don Crabb, InfoWorld '' 

Paradox saves you from 
Future Shock 

l ~ PARADOX2.0 

'- PARADOX386 ~ 

.t PARADOX SOL ~ 

'- PARADOX 0512 SL 
l.t PARADOX UNIX ~ 

1987 1988 1989 I 1990 ] 

Your investment today in Paradox ap
plications is protected as new genera
tions of hardware emerge. Paradox 
2.0 applications will run unchanged 
on Paradox 386. Paradox OS/2. 
Paradox Unix and Paradox SQL. 

'' Paradox 2.0 will do for the 
LAN what the spreadsheet did 
for the PC 

David Schulman. Bendix Aerospace '' 

PARADOX 
bv.Ansa 

A Borland Company 

'' Anyone who hasn't seen the 
network version of Paradox should 
take a look. Ansa has dramatically 
advanced the state of the art in 
multiuser network databases 

Phil Lemmons, BYTE '' 

Paradox updates automatically 
Changes made by anyone are automat
ically updated to everyone. While 
more than one person can be working 
in the same table at the same time. 
there are safeguards that prevent. two 
users from making changes to the 
same record at the same time. 

Special Offer! 
We're making a Special Offer on 

all three versions of Paradox. Mail in 
your proof of purchase. dated between 
September 15. 1987 and December 
15. 1987 and your signed registration 
form for any of the three. and we'll 
mail you a $100.00 rebate .** It's that 
simple. 
• Paradox 1.1. suggested retail. 

$495.00 
• Paradox 2.0. suggested retail. 

$725.00 
• Paradox Network Pack. suggested 

retail. $995.00 (each pack supports 
up to 6 users) 

60-Day Money-Back Guarantee 

For a brochure or the dealer 
nearest you call (800) 255-8008, 
in California (800) 742-1133, 
in Canada (800) 237-1136. 

#RADOX 



•--- enable corrrnunications event trapping ---
20 IF Portnum < 0 OR PortnlJTI > 2 THEN 

PRINT "Bad port specification: COM"; PortnlJTI 
END 

END IF 
COM(Portnum) ON 
ON COM(Portnum) GOSUB GetComlnput 

•--- define values for 
IF Portnum = 1 THEN 

PortAddr = &H3FB 
ELSE 

PortAddr = &H2FB 
END IF 
BreakBit = &H40 
BreakPeriod! = 0.5 

a BREAK signal 

' COM1 control port address 

' COM2 control port address 

' bit pattern for BREAK on/off control 
' seconds to hold a SPACING signal 

•--- open the needed data streams ---
COMPARMS = PortS+11 : 11+RateS+11 , 11+Parity$+11 , 11+DatabitsS+11 , 11+StopbitsS 
PRINT "SIMCOM Parameters: 11 + COHPARMS 
OPEN COMPARMS AS #1 I serial port default setup 

1 Keyboard dialing reoutine -- get a number from the user and call 
' the remote system (configured for Hayes-compatible tone dialing). 
·--------------------------------------------------------------------
INPUT "Number to call: ", Numbers ' get number for the host 
PRINT #1, "ATDT'' +Numbers ' call using tone dialing 

1 Main loop -- enter an interactive session with the remote system. 
' The program spends most of its time waiting for the user to type 
' something. When data arrives at the com port, it is read and acted 
' upon immediately, interrupting anything the keyboard routines may 
• be doing at the time. 
•--------------------------------------------------------------------
MainLoop: 

WHILE True 
.' process keyboard input, if any 

IF INSTAT THEN 
' got something -- check for special keys 
KS = INKEYS 
IF LEN(KS) = 2 THEN 

GOSUB ExtendedCode 
ELSE ' send anything else to the remote host 

PRINT #1, KS; 
END IF 

END IF 
WEND 

•--------------------------------------------------------------------
' Extended code subroutine -- process selected extended key codes. 
•--------------------------------------------------------------------
ExtendedCode: 

SELECT CASE ASC(RIGHTS(KS, 1)) I read the scan code 
CASE 59 ' F1 key pressed -- send a hardware BREAK signal 

GOSUB SendBreak 
CASE 83 ' Del key pressed -- send a real ASCII DEL code 

PRINT #1, CHRS(127); 
CASE 117 ' Ctrl-end pressed -- return to BASIC (or DOS) 

' after reporting flow control data 
CLS 
PRINT PausedCount; "XOFF(s) sent to the remote system" 
PRINT "Longest waiting data stream ="; Waiting; "Character(s)" 
PRINT "Bye from SIMCOM" 
END 

END SELECT 
RETURN 

122 TURBO TECHNIX November/ December 1987 

BASIC COMMUNICATIONS 

system that it's alright to start 
sending again. 

Although flow control via ASCII 
XOFF/XON control codes is 
widely used, it is not universal. 
Some systems will not honor an 
XOFF request. It may be neces
sary to use a lower transmission 
rate with such systems or break 
the work into smaller chunks to 
prevent overflow. Alternatively, a 
larger buffer can be specified, but 
this method only delays the buffer 
overflow and resultant lost data; it 
doesn't prevent overflow. For sim
plicity's sake, SIMCOM does not 
honor flow control requests from 
the remote system, but you can 
add it easily if you need to com
municate with a slow remote sys
tem or another copy of SIM COM. 

SIMCOM incorporates a moni
toring feature to help you deter
mine an optimum size for the 
communications buffer and the 
value ofWarningLevel. When a 
session ends, SIMCOM reports 
the number ofXOFFs it sent and 
the largest number of characters 
that were waiting to be read from 
the receive buffer during the ses
sion. A large number of XOFFs 
indicates that SIMCOM frequently 
fell behind. The number of wait
ing characters tells you how close 
the transmitting system came to 
overrunning the receive buffer. 

A HARDWARE BREAK 
SIGNAL 
Transmitting a hardware BREAK 
signal requires fiddling with the 
bits of an I/O port on the serial 
adapter of the active serial port. 
SIMCOM initializes several values 
that are needed to generate the 
BREAK signal correctly. BREAK is 
not a normal character. It is a sig
nal-an interruption in the nor
mal flow of data-and its purpose 
is to get the attention of the 
remote computer system. 

When the user presses the Fl 
key, SIMCOM imposes zeros on 
the communications line for a 
half-second period. It does so by 



setting and clearing bit 6 of the 
line control register. On the pri
mary serial adapter (COMl), the 
line control register is at 110 
address (port) 3FBH. On the 
secondary serial adapter (COM2), 
it is located at 1/0 address 2FBH. 

To set the bit, the Turbo Basic 
function INP is used to read the 
port value. The value is ORed 
with a mask value of 40H. The 
our statement, therefore, sets bit 
6 in addition to those that were 
already set. The Turbo Basic 
DELAY statement provides a 
machine-independent time delay, 
effectively holding the communi
cations line in the spacing state 
for a period determined by the 
BreakPeriod! variable (the excla
mation point indicates that the 
variable contains a single
precision floating point value). At 
the conclusion of the delay 
period, ANDing the port's con
tents with the bitwise complement 
of the mask effectively clears the 
BREAK bit without affecting any 
of the other bits. 

CONCLUSION 
SIMCOM acts like a simple hard
copy terminal. It works well with 
bulletin board systems and other 
services that don't require special 
capabilities. To make it really use
ful, you will probably want to add 
a dialing directory, file transfer 
capabilities, maybe a video termi
nal emulation, and a friendly user 
interface. SIMCOM shows, in its 
simplicity, how to use several cap
able Turbo Basic statements and 
functions as the essential building 
blocks of a communications pro
gram. All of the user-convenience 
features and safety nets can be 
added easily with only a modest 
amount of programming. Try your 
hand at it. It's fun, and you can 
save yourself $150 or more on the 
cost of a commercial communica
tions package. • 

R.eid Collins is a senior programmer 
for an aerospace company. 

Listings may be downloaded from 
CompuServe as BASCOMM.ARC 

' Minimal error-handler routine -- a disk error means there is no 
' init file. Anything else causes an irrmediate return to the 
' keyboard input routine (so the user can try to recover) 
1--------------------------------------------------------------------
ErrorHandler: 

IF 10 =ERL THEN ' no initialization file found 
PR! NT "Using default coom.mi cation parameters" 
RESUME 20 

ELSE ' go back to reading the keyboard 
RESUME MainLoop 

END IF 

·--------------------------------------------------------------------
' R~ceived data subroutine -- process corrnunications line data 
' coming in from the host. 
•--------------------------------------------------------------------
GetComlnput: 

IF EOF(1) THEN 
IF Paused THEN 

Paused = False 
PRINT #1, CHR$(17); 

END IF 
RETURN 

END IF 

' OK for host to send again 
' send an XON to the host 

' next two lines are for testing the c01111J.Jnications input buffer 
InputBufLen = LOC(1) 
IF lnputBufLen > WarningLevel AND not Paused THEN 

Paused= TRUE ' input buffer filling up 
PRINT #1, CHR$(19); I send an XOFF to the host 
PausedCount = PausedCount + 1 

END IF 
IF InputBufLen > Waiting THEN Waiting = InputBufLen 
' read from the c01111J.Jnications buffer 
1$ = INPUT$(1, #1) 
IF 1$ = CHR$(8) THEN 

' simulate a non-destructive backspace 
IF POS(O) > 1 THEN LOCATE , POSCO) - 1 

ELSEIF 1$ = CHR$(13) THEN 
LOCATE , 1 ' simulate a lone carriage return 

ELSE 
PRINT !$; ' display anything else unchanged 

END IF 
GOTO GetComlnput ' see whether there's any more input 

•--------------------------------------------------------------------
' BREAK signal subroutine -- holds the C01111J.Jnication line at logical 
' zero for a period of time that exceeds one normal character 
' transmission period c-112 second is commonly used). 
•--------------------------------------------------------------------
SendBreak: 

duT PortAddr, CINP(PortAddr) 
DELAY BreakPeriod! 
OUT PortAddr, (INP(PortAddr) 
RETURN 

OR BreakBit) ' set BREAK bit 

AND NOT BreakBit) I clear BREAK bit 

LISTING 3: SIMCOM.INI 

1 
COM1 
1200 
N 
8 
1 

November/ December 1987 TURBO TECHNIX 123 



EXPLORING THE CIRCLE 
STATEMENT 
From pie charts to Pac-Man, Turbo Basie's CIRCLE 
statement does it all. Here's how. 

Peter Aitken 

One of the reasons for the popularity of 
Turbo Basic is the wide variety of graphics 
statements built into the language. Using 

• these statements, programmers can pro
duce impressive business graphics, user

SQUARE ONE 
friendly interfaces, dazzling games, and 

most any other sort of screen display that can be 
imagined. 

The CIRCLE statement, used to draw circles and 
ellipses, is one of the most useful graphics com
mands. This article provides a step-by-step explana
tion of the CIRCLE statement, and then applies the 
statement in a pie-chart subroutine that can be incor
porated into your own programs. CIRCLE is a gra
phics statement, and therefore can be used only if 
you have a graphics adapter, and only when the 
adapter is in a graphics mode. Some of the arguments 
that CIRCLE takes refer to screen units, and will con
sequently have different meanings depending on the 
screen mode. 

In all graphics modes, coordinates of 0,0 refer to 
the top left comer of the screen, with X coordinates 
increasing toward the right, and Y coordinates 
increasing toward the bottom. The lower right comer 
of the screen has the maximum X and Y coordinates 
for any graphics mode: these are 320,200 for 
medium-resolution mode (SCREEN 1), 640,200 for 
high-resolution mode (SCREEN 2, 7, or 8), 640,350 
for enhanced high-resolution EGA mode (SCREEN 9 
or 10), and 640,480 for VGA enhanced high
resolution (SCREEN 11 and 12). With different reso
lutions, the same X,Y coordinates will refer to differ
ent screen locations in different graphics modes. 

KNOWING THE MODE 
As with all graphics statements, programming with 
the CIRCLE statement requires knowledge of the 
screen mode that will be in effect when the statement 
is executed. (See the Turbo Basic Owner's Handbook for 
additional information on graphics screen modes in 
the reference section under the SCREEN statement, 
p. 333.) 

124 TURBO TECHNIX November/ December 1987 

The syntax of the CIRCLE statement is as follows: 

CIRCLE [STEP] (X,Y),Radius[,Color,Start,Stop,Aspectl 

Arguments in square brackets are optional; the 
only arguments that must be included whenever CIR
CLE is called are X, Y, and Radius. These required 
arguments determine where on the screen the circle 
is located, and how big it is. X and Y are the coordi
nates of the center of the circle, in the units of the 
current screen mode. Radius, as you may have 
guessed, determines the circle's radius. 

The Color argument determines the color used to 
draw the circle. The colors available, and the default 
value used if no Color argument is given, depend on 
the type of graphics adapter you have and on the spe
cific graphics mode that is currently active. (For 
further details, consult the sections on the Color and 
SCREEN statements in the Turbo Basic Owner's 
Handbook.) 

The Start and Stop arguments are used when you 
want the CIRCLE statement to draw only part of a cir
cle. Start and Stop are angular measurements, that is, 
they give the angles at which the drawing of the circle 
starts and stops. However, they use a method of speci
fying angles that may be unfamiliar to some of you. 
To be able to effectively use the CIRCLE statement, 
it's necessary to understand how start and stop angles 
are specified. 

Most of us are used to measuring angles in 
degrees. A complete circle contains 360 degrees. 
Using a clock for illustration (not a digital clock, but 
the old-fashioned kind with hands!), at one o'clock 
the angle between the hands is 30 degrees, at three 
o'clock it is 90 degrees , at four o'clock it is 120 
degrees, at six o'clock it is 180 degrees, and so forth. 

The CIRCLE statement does not use degrees to 
specify angles, but uses a unit of angular measure
ment called the radian. One radian is defined as the 
angle at the center of a circle that subtends an arc 
equal in length to one radius. Now, you may recall 
from high school geometry that there is a fixed rela
tionship between a circle's diameter and its circum
ference such that: 



circllllference/diameter = PI 

PI is a constant, the same for all 
circles, and equal (approximately) 
to 3.14159265. Since diameter= 
2 X radius, a circle's circumfer
ence has a length equal to 2 X PI 
X radius. Therefore, the angle of 
a full circle (i.e., 360 degrees) is 
equal to 2 X PI radia?s. The rela
tionship between radians and 
degrees is that 1 radian equals 
approximately 57.3 degrees, and 1 
degree equals 0.0175 radian. 

With the CIRCLE statement, 0 
radians refers to the point on the 
circle directly to the right of the 
center-the "3" on a clock face . 
From zero, radians increase coun
terclockwise: Pl/2 radians at "12," 
PI radians at "9," and 3 X Pl/2 
radians at "6." CIRCLE works in a 
counterclockwise direction also, 
drawing counterclockwise from 
Start to Stop. Thus, the expres
sions Start=O Stop=PI/2 cause 
CIRCLE to draw one-quarter of a 
circle, while Start=PI/2 Stop=O 
cause CIRCLE to draw three
quarters of a circle. Examples ?f 
the circles that result from vanous 
Start and Stop values are shown 
in Figure 1. . . 

If Start and/ or Stop 1s given as 
a negative value between 0 and 

-2XPI, the angle is still int:r- . 
preted as positive but a radms 1s 
drawn from the center to the start 
or stop point. This permits wedges 
to be drawn, a feature that will be 
used in the following pie-chart 
subroutine. To draw a radius at 0 

radians, you should specify a very 
small negative value rather than 
"minus zero" (Start= -0.0001 
rather than Start= -0.0). 

THE ASPECT ARGUMENT 
It was mentioned earlier that the 
CIRCLE statement can draw 
ellipses as well as circles. This is 
where the Aspect argument comes 
in. In a circle, the radius is the 
same for all angles. An ellipse is 
sort of a "squashed" circle, so that 
the radius in the horizontal, or X, 
direction is different from the 
radius in the vertical, or Y, direc
tion. The Aspect argument gives 
the ratio of the Y radius to the X 
radius. 

If the Aspect argument is omit
ted, a true circle is drawn. This 
does not, however, mean that the 
default aspect is 1. Because of the 
way graphics units are rep~es- . 
ented on the screen, a vertical lme 
of a certain number of graphics 
units will not have the same actual 
length as a horizontal line of the 
same number of graphics units. 
This can be illustrated by running 
the following short program, 
which draws vertical and horizon
tal lines, each 100 graphics units 
long. 

SCREEN 2 
DRAIJ "BM 50,50 0100 R100" 

After running this program, use a 
ruler to measure the line lengths 
on your screen. You'll find that 
the horizontal line is 5/ 12 the 
length of the vertical line. I~ you 
change the program to run m 

O.PI 

0,-3*Pl/2 

-Pl/8,-1 5*Pl/8 

-15*Pl/8,-Pl/8 

Figure 1. The circks shown here result 
from executing a CIRCLE statement 
with the Start and Stop values 
shown (PI= 3.14159265). Note that 
the bottom two figures use the same 
two angles for Start and Stop, but 
are reversed in position. 

November/ December 1987 TURBO TECHNIX 125 



~ 
Aspect 0.1 

Aspect 4 

Aspect I 

Aspect 0.2 

Figure 2. These ellipses were all 
drawn in SCREEN 2 mode, with 
Radius set to 5 5. 

THE CIRCLE STATEMENT 

SCREEN 1 mode, the horizontal/ 
vertical ratio will be 516. The ratio 
between the Y and X lengths is 
the default aspect ratio used by 
the CIRCLE statement when an 
Aspect argument is not specified. 
The default aspect ratio is differ
ent for different graphics modes, 
and is automatically determined 
by Turbo Basic. 

If graphics units are different 
in the X and Y directions, then 
how is the Radius argument inter
preted? If no Aspect argument is 
given, or if an Aspect less than 1 
is given, then the Radius argu
ment specifies the radius in the X 
direction. If an Aspect greater 
than 1 is specified, the Radius 
argument specifies the radius in 
the Y direction. The effects of dif
ferent Aspect arguments are 
shown in Figure 2. 

The STEP keyword determines 
whether the X and Y coordinates 
of the circle's center are inter
preted in absolute or relative coor
dinates. If the STEP keyword is 
included in the CIRCLE state
ment, X and Y are interpreted as 
relative to the last point refer
enced, or LPR. The LPR is set to 
the center of the screen upon 
entering a graphics mode with a 
SCREEN statement, and is moved 
by subsequent graphics state
ments. For example, after a CIR
CLE statement is executed, the 
LPR is at the center of the circle. 
(For further information on LPR, 
see the discussion in the Graphics 
section of Chapter 4, p. 110 of the 
Turbo Basic Owner's Handbook.) 

If the STEP keyword is not 
included, X and Y are interpreted 
in terms of absolute screen coor
dinates. To illustrate the effect of 
STEP, compare the plot created by 

SCREEN 2 
CIRCLE (320,100),50 
CIRCLE (50,50),25 

with that created by 

SCREEN 2 
CIRCLE (320,100),50 
CIRCLE STEP (50,50),25 

The first program draws the 
smaller circle at 50,50 relative to 
the top left corner of the screen 
(absolute coordinates). The 
second program draws the smaller 
circle at 50,50 relative to the cen-

126 TURBO TECHNIX November / December 1987 

ter of the large circle (the LPR). 
The CIRCLE statement is very 

forgiving in terms of accepting 
out-of-range arguments. In fact, 
the X, Y, Radius, Start, and Stop 
arguments can accept essentially 
any value without causing an 
error. The center, and all or part 
of the circumference of a circle, 
can be outside the screen boun
daries. Only that part of the circle 
that falls within the screen boun
daries will be drawn. To illustrate, 
run this program: 

SCREEN 2 
FOR I=O TO 39 STEP 3 
CIRCLE (20*1,5*1),10*1 

NEXT I 

As for Start and Stop arguments, 
the only values that are meaning
ful to the CIRCLE statement are 
those between -2 X PI and 2 X PI. 
If values outside this range are 
given, Turbo Basic, in effect, 
divides them by 2 X PI and uses 
the remainder. Thus, a Start 
argument of 9 X PI is equivalent 
to PI, 4 X PI is equivalent to 0, 
-5 X PI/2 is equivalent to-PI/2, 
and so on. 

THE PieChart SUBROUTINE 
Now that we have thoroughly 
explored the components of the 
CIRCLE statement, let's take a 
look at a subroutine that uses 
CIRCLE for drawing pie charts on 
the screen. PieChart is a simple 
subroutine, and will draw only 
one pie chart with a maximum of 
ten sections, without labels. It's 
passed the values to be graphed in 
a one-dimensional integer array 
Pie%(), with Pie%(0) containing 
the number of sections and 
Pie%(1) through Pie%(Pie%(0)) 
containing the values for each 
section. 

The line numbers in the sub
routine should not be entered 
when you key in the program
they are included for reference 
purposes only. PieChart is pro
vided within a simple demonstra
tion program called PieDemo (you 
can figure out the workings for 
yourself if you're interested). 

The first line defines the sub
routine PieChart and indicates 
that it will be passed a one
dimensional integer array as a 
parameter. Line 10 declares local 
variables that are used in the sub
routine, and line 20 declares the 
variable PI, defined in the main 



program body, as a shared varia
ble. Lines 30-60 assign values to 
local variables that determine the 
location and size of the pie chart 
and the starting point of the first 
wedge. Line 70 clears the screen 
and sets graphics mode 2 (640 x 
200 resolution). 

Lines 80-130 are a loop that 
executes once for each section of 
the pie chart. Line 90 determines 
the stop angle for the wedge (the 
start angle is set to 0 for the first 
wedge). Since the full pie chart 
will be an angle of 2 X PI, one 
percent of the chart will be 0.01 X 
2 X PI or 0.02 X PI, and the total 
angle for the Nth wedge will be 
Pie%(N) X 0.02 X Pl. The stop 
angle is obtained by adding the 
total angle to the start angle. 

Line 100 draws the wedge. By 
specifying the stop angle as a neg
ative quantity, a line will be drawn 
from the stop end of each arc to 
the center of the circle. 

Line 110 sets the start angle for 
the next wedge equal to the stop 
angle for the preceding wedge. 
The loop then cycles to plot the 
next wedge. Once all wedges are 
plotted, line 130 waits for a key
press before returning. Since 
INSTAT only detects a keypress 
but does not remove it from the 
keyboard buffer, line 140 is 
included to read the keypress, 
which would otherwise remain in 
the keyboard buffer and might 
cause problems in other parts of 
the program. 

The PieChart subroutine can 
be used as it is, but it also offers 
considerable room for enhance
ment. To increase your familiarity 
with the CIRCLE statement, you 
could try some additional pro
gramming exercises. For example, 
you could modify PieChart to pro
duce a so-called "exploding" pie 
chart, where one wedge is 
emphasized by being slightly 
separated from the others, or to 
use ellipses to make the pie chart 
appear three-dimensional. • 

Peter Aitken is an assistant professor 
at Duke University Medical Center, 
and is the author of Di,gScope, a scien
tific software package. He writes and 
consults in the microcomputer field. 

Listings may be downloaded from 
CompuServe as CIRCLE.ARC 

I LISTING 1: PIEDEMO.BAS J 
REM - program PIEDEMO 
REM - demonstrates PieChart subroutine 

Again: 

Pl=3.141592 
DIM Pie%(10) 

CLS 
INPUT "HOW MANY CATEGORIES (MAX = 10, 0 TO EXIT)";Pie%(0) 
IF Pie%(0)=0 THEN END 
IF Pie%(0)<2 OR Pie%(0)>10 THEN BEEP : GOTO Again 
Sun=O 

FOR 1=1 TO (Pie%(0)-1) 
LOCATE 1+10,20 
PRINT "ENTER PERCENTAGE FOR CATEGORY ";I; 
INPUT Pie%(1) 
SlllFSun+Pie%(1) 

NEXT I 

IF Sl.111 >= 100 THEN 
CLS 
BEEP 
LOCATE 10,20 
PRINT "PERCENTAGES TOTAL MORE THAN 100 - TRY Again" 
FOR I = 1 TO 1000 : NEXT I 
GOTO Again 

ELSE 
Pie%(Pie%(0))=100-Sl.11l 

END IF 

CALL PieChart (Pie%()) 

GOTO Again 

REM - subroutine starts here 

SUB PieChart (Pie%(1)) 

10 LOCAL XCenter,YCenter,Radius,StartAngle,StopAngle,Counter 
20 SHARED Pl 

30 XCenter = 0 
40 YCenter = 0 
50 Radius = 160 
60 StartAngle = 0 
70 CLS : SCREEN 2 'Use SCREEN 9 for EGA color; 10 for EGA mono 

80 FOR Counter = 1 TO Pie%(0) 
90 StopAngle = StartAngle + Pie%(Counter)*0.02*PI 
100 CIRCLE STEP CXCenter,YCenter),Radius,,StartAngle,-StopAngle 
110 StartAngle = StopAngle 
120 NEXT Counter 

130 WHILE NOT INSTAT : WEND 
140 KS = INKEYS 

END SUB 

November/ December 1987 TURBO TECHNIX 127 



THINKING IN PAL 
The Paradox Application Language can automate any 
Paradox interactive session. 

Todd Freter and Ken Einstein 

T he paradox of Paradox is that it can at 
once be both powerful and easy to use. 
Much has been made of its approachability 
by unsophisticated users, but far less has 

been said about one of the facets of its power as a 
database manager: PAL, the Paradox Application 
Language. In this article, we'll present an oven'iew of 
PAL and the entire Paradox applications develop
ment environment and provide a brief code example 
to give you a taste of what it's like to think and pro
gram in PAL. In future issues we'll be presenting 
more detailed exercises with an eye toward improving 
your PAL skills. 

SPEAKING IN PARADOX 
Paradox is a fully relational database management 
system designed to meet the needs of users at all lev
els of experience. PAL is a complete structured pro
gramming language that resides within Paradox and 
lets you customize the very general Paradox environ
ment into smoothly integrated applications. Other 
tools in the Paradox package include: 
• A built-in editor that is totally integrated with the 

rest of the environment; 
• A powerful debugger; 
• The Personal Programmer, a menu-driven applica

tion generator that programmers can use both as a 
prototyping tool and as an automatic code genera
tor for simple to fairly complex applications; and 

• A runtime module that can be used to distribute 
database applications in a cost-effective way. 
PAL, a complete programming language in itself, is 

the most sophisticated of these tools. In style, it 
resembles a cross between the popular dBase lan
guage and C, but with much tighter integration 
between the language and the database manager's 
own interactive features. For example, in PAL, pro
grams can directly access Paradox menus or can emu
late their operation through a group of primitives 
called abbreviated menu commands. The interactive 
nature of the product is always available to the 
programmer. 

128 TURBO TECHNIX November/ December 1987 

In fact, the relationship between the interactive use 
of Paradox and its use through the embedded pro
gramming language is the reverse of that typically 
found in database systems. Usually, the interactive 
model is based on programming language syntax; 
interactive use, such as with the dBase Assistant, is 
considered a way to help non-programmers navigate 
through the system. In Paradox, virtually all of the 
functionality of the program is available interactively 
through menus. It is the interactive use of the pro
duct, and not the syntax of the programming lan
guage, that governs. In fact, because of this tight inte
gration, it is often useful to think of PAL as an 
automated Paradox user. 

To appreciate PAL as a language it is essential to 
first understand the nature and capabilities of 
Paradox itself. 

PARADOX FROM A HEIGHT 
Paradox is object-oriented. It lets users directly inter
act at a high level with objects such as tables, forms, 
and reports. These objects can quickly be created 
interactively and then directly referenced by applica
tions programs. Because Paradox allows access to 
these objects at a high level, neither interactive users 
of the program nor applications developers need be 
concerned with lower-level operations such as open
ing and closing files, explicitly saving changes, and so 
forth. 

The Paradox report generator has a highly visual, 
what-you-see-is-what-you-get interface, allowing very 
complex reports without programming. It supports up 
to 16 levels of grouping, a full range of summary cal
culations, and provides special support for mailing 
labels and other free-form output It is almost never 
necessary to write code solely to generate printed 
output. 

The Paradox query language is a true "query by 
example" system that allows both programmers and 
interactive users to construct query statements in a 
visual, non-procedural manner. When a query is exe
cuted at run time, Paradox internally translates the 



query statement into procedural 
code and then optimizes that code 
to produce the desired results in 
the shortest possible time. Query 
statements developed interactively 
in Paradox can be stored as pro
gram modules that can be directly 
incorporated into applications. 

Paradox's virtual memory man
agement system allows it to 
manipulate large files (limited 
only by disk capacity) at RAM 
speed. It automatically pages data 
between disk and RAM. 

Paradox supports both primary 
and secondary indexes. Indexes 
are automatically maintained and 
used by the program, therefore 
neither interactive users nor appli
cations developers need worry 
about index maintenance. 

Sequences of interactive key
strokes can be recorded as scripts 
or programs. Recorded scripts can 
be incorporated directly into more 
elaborate PAL applications. 

PARADOX DEVELOPMENT 
STRATEGIES 
Developing an application under 
the Paradox environment is 
essentially a three- (or four-) step 
process: 
1. Because PAL takes full advan

tage of Paradox, you can first 
use Paradox to create the 
tables, queries, forms, reports, 
and other objects needed for 
an application. 

2. You can then record scripts to 
capture interactive operations 
as program modules. You can 
also use the Paradox Personal 

Programmer to automatically 
generate code for operations 
that can't be done interactively 
in Paradox, such as construct
ing custom menus. 

3. You can use PAL's Script Editor 
to write whatever PAL code is 
needed to establish the flow of 
control, to customize screen 
and keyboard 1/0, to fine-tune 
performance, and to tie every
thing together. 

4. Finally, you have the option of 
using the Paradox Runtime to 
package and distribute the 
application to your users. 

THE PAL LANGUAGE 
In addition to being able to take 
full advantage of all of the func
tionality of Paradox, PAL gives 
you access to additional features 
and tools: 
• Unlimited variables and arrays: 

The number of variables and 
arrays you can define is limited 
only by system memory. Built
in primitives for using arrays to 
manipulate entire records en
able you to move records 
between tables quickly. 

• Procedures: In a manner very 
similar to C, PAL allows you to 
create procedures consisting of 
sequences of commands. 
Procedures may or may not 
take arguments or return 
values. PAL places no restric
tions on the number of user
defined procedure definitions 
that can be active in memory 

simultaneously, since at run 
time PAL can automatically 
swap active procedures into 
and out of memory if resources 
become tight PAL procedures 
also allow for private and glob
al variables, recursion, nesting 
of scripts and procedures, and 
dynamic scoping of variables. 
You can also create libraries of 
preparsed procedure 
definitions. 
In addition to traditional con

trol structures such as IF-THEN
EL5E, WHILE-ENDWHILE, FOR
ENDFOR, and SWITCH-CASE, 
PAL has a powerful SCAN con
struct that lets you perform 
sequences of operations on each 
record of a table very quickly. 
Complete control over screen and 
keyboard 110 is possible through 
PAL, as is full password encryp
tion: Data can be selectively 
encrypted, and you have control 
over user access of data down to 
the field level. 

PAL includes more than 100 
built-in functions, including: 
• Mathematical, statistical, and 

transcendental functions; 
• Financial functions, such as 

mortgage-payment calculation 
and computation of present 
and future value; 

• Powerful string parsing, match
ing and formatting functions; 

• Functions to manipulate and 
determine the status of Paradox 
objects. 

November/ December 1987 TURBO TECHNIX 129 



THINKING IN PAL 

PAL IN ACTION 
In order to appreciate PAL in 
action, let's look at the definition 
of a procedure called CheckPass 
that performs password checking 
for an application. CheckPass 
gives the user of the application 
three chances to first present a 
valid user name and then a pass
word that matches the user name. 
If the name and password pres
ented are valid, the procedure 
returns the logical value True; 
otherwise it returns False. 

Note: CheckPass as given here 
contains syntax specific to 
Paradox 2.0 and will not operate 
correctly under Paradox 1.1. 

The code for CheckPass is 
given in Listing 1. In this example, 
PAL keywords appear in upper
case to highlight them; in practice, 
keywords may be uppercase, low
ercase, or mixed case as desired. 

CheckPass assumes that the 
user names and passwords are 
stored in a Paradox table called 
secrets. The table and some sam
ple data are shown in Figure 1. As 

SECRETS====Narne====Password== 
1 I Bill I AC327 I 
2 I Ji l l I OPENUP I 
3 I April I Sparky I 
4
5 

II Mike I 46352 I 
George Hayward 

Figure 1. The secrets tabl.e. 

you can see, the table has two 
fields: name and password. 
CheckPass also assumes that the 
table itself has been password pro
tected and that "dontshowit" is the 
required password for the table. 
The table can be created quickly, 
filled with data and protected by 
using Paradox interactively. 

A PAL procedure definition is 
enclosed in a PROC-ENDPROC 
block within the script. The 
second line of the procedure 
declares three variables that are 
PRIVATE to it. These variables 
are not typed in this declaration; 
PAL automatically types variables 
dynamically as values are assigned 
to them. 

Next, the PASSWORD com
mand is used to present Paradox 
with the password "dontshowit" 
needed to gain access to the pro
tected secrets table. The VIEW 
command places the secrets table 

in the Paradox workspace so that 
its data can be accessed by the 
PAL program logic. One signifi
cant difference between using 
Paradox interactively and control
ling it through PAL is that the 
workspace can't be viewed on the 
screen during the running of an 
application unless the pro
grammer explicitly makes it vis
ible. Thus, although the VIEW 
command places the secrets table 
in the workspace, it is not visible 
to users of the application. 

The MOVETO FIELD state
ment makes the name field cur
rent. Interactively, this would be 
done by using the arrow keys on 
the numeric keypad to move the 
cursor to the various fields of the 
table. The MOVETO command 
lets the programmer make a field 
current without having to worry 
about where the cursor is located. 

The next 16 lines of the pro
gram contain a FOR loop that 
gives the user three chances to 
enter a valid name. At the top of 
the loop, the statement "@2,4" 
positions the cursor at row 2, 
column 4 and the "?" command 
outputs the specified string to the 
screen at that position. The 
ACCEPT command is a powerful 
primitive that controls user input. 
In this case, the program expects 
the user to enter an alphanumeric 
value of up to 15 characters; what
ever the user enters will be 
assigned to the private variable 
username. ACCEPT automatically 
performs validity checking on the 
values entered by the user. For 
example, if the user were to enter 
an alphanumeric value into an 
ACCEPT that was expecting a 
number, PAL would automatically 
generate an error message to the 
user. 

The LOCATE command is then 
used to check the value in the 
username variable against the 
values in the name column of the 
secrets table. If the name is pres
ent in the table, LOCATE makes 
the record containing that value 
current. Also, as a side effect, the 
value returned in a special system 
variable called retval is set to 
True; if the name is not present 
in the table, retval is set to False. 

The procedure tests the value of 
retval to determine whether or 
not the entered user name is 
valid. If the name is valid, the pri
vate variable nameok is set to 

130 TURBO TECHNIX November/ December 1987 

True, and PAL breaks out of the 
FOR loop with the QUITLOOP 
statement. If the value in user
name is not valid, the user hears a 
beep, a message is output to the 
screen and the first command in 
the loop is reexecuted. 

The first FOR loop ends with 
the nameok flag set to True or 
False. The IF in the next state
ment tests the value of the flag; if 
equal to True, then the user will 
be asked to provide a valid pass
word associated with that name. A 
new prompt for a password 
appears where the prompt for 
username was displayed, and PAL 
ACCEPTs the user's input and 
assigns it to the private variable 
pass. The program then checks 
the password's validity. 

This checking is done using a 
powerful PAL construct called a 
fiild specifier. Remember that the 
LOCATE command positions the 
cursor to the record containing 
the name entered by the user. 

PAL allows you to reference 
each field in the current record by 
merely enclosing the name of the 
field in square brackets. Thus the 
statement 

IF [password] = pass 

checks to see whether the value in 
the pass variable is equal to the 
value in the password field of the 
current record. If there is not a 
match, a beep sounds, and a mes
sage indicates that the password is 
invalid. If this is not the user's 
third password challenge, another 
attempt may be made to enter the 
password. 

If a correct password is entered, 
then the CLEARALL statement 
removes the secrets table from the 
workspace, and the UNPASS
WORD statement withdraws the 
previously presented password so 
that the table is protected from 
any further access. Then the 
RETURN command is used to 
assign a value of True to the 
CheckPass procedure. After a 
RETURN command, all further 
statements in the procedure are 
skipped, and the procedure 
is exited. 

If the user fails the three 
attempts to supply the correct 
password, or if a valid user name 
is not entered, then the Paradox 
workspace is cleared and pass
word access to secrets is with-



drawn as above, but a value of 
False is returned by the 
procedure. 

When PAL encounters the 
PROC-ENDPROC block in a pro
gram, it parses the entire proce
dure definition and then loads it 
into memory. It is then available 
to be called. 

The last three lines of code in 
Listing 1 show how the CheckPass 
procedure could be used in a pro
gram once it's been loaded into 
memory. The IF statement in the 
code calls CheckPass. If the value 
returned by CheckPass is False, 
then the abbreviated menu com
mand EXIT is issued. EXIT has 
the same effect as an interactive 
user selecting Exit from the 
Paradox menu-it exits the pro
gram and returns to DOS. There
fore, users who are not able to 
provide a valid name and pass
word won't be able to continue 
with the application. 

As noted above, procedure defi
nitions can also be be stored in 
libraries. When stored in libraries, 
procedures may be loaded and 
run much more quickly, since they 
do not have to be compiled again 
when loaded. Also, placing a 
procedure in a library is one way 
to encrypt it; in the case of Check
Pass this would obviously be 
necessary to prevent enterprising 
users from reading the PAL 
source code to learn the specified 
password to the secrets table. 

THINK IN PARADOX 
Part of the secret of thinking in 
PAL is, in fact, to keep thinking in 
Paradox: the syntax of the lan
guage follows the interactive use 
of Paradox very closely. Aim your 
design at the natural flow of con
trol the user would encounter in 
getting his or her work done. 
Anything that the user can do 
in Paradox, PAL can automate. 
Define the job to be done, and 
with PAL, most of the work 
is over. • 

Ken Einstein is manager of documen
tation and interface design at Ansa 
Software. Todd Freter is senior writer/ 
editor at Ansa Software. 

Listings may be downloarkd from 
CompuServe as THINKPAL.ARC. 

T LISTING 1: PASSWD.SC 

; Checkpass procedure to check passwords and user names 

PROC Checkpass() 
PRIVATE nameok, pass, username 
PASSWORD 11dontshowit 11 

VIEW "secrets" 
MOVETO FIELD "name" 
FOR i FROM 1 TO 3 

@2,4 ? "Enter your name: " 
"ACCEPT 11A15 11 TO username 
CURSOR OFF 
@5,5 CLEAR EOS 
CURSOR NORMAL 
LOCATE username 
IF retva l 

THEN nameok = True 
QUIT LOOP 

ELSE 
BEEP 
MESSAGE "That name can't 
nameok = False 

ENDIF 
END FOR 

header t ontains name of proc 
variables private to proc 
present password for protected 
; "secrets" table 

places secrets table on workspace 
makes 11name 11 field current 
top of FOR loop to check name 
pr~t user 
get input 

is name in the table? 
Yes, so 

go on to the 
next step 

No, so 
; tell the user about it 

be foUhd11 

IF nameok ; was a valid name presented? 
THEN ; Yes, so 

FOR i FROM 1 TO 3 ; check for valid password 
@2,4 ? "Enter your password: 11 

ACCEPT 11A15 11 TO pass 
IF [password] =pass ; password is good 

THEN 
CLEARALL ; clear table from workspace 
UNPASSllORD 11dontshowit 11 ; reprotect table 
RETURN True ; set value and return 

ELSE ; pass~ord no good 
BEEP 
MESSAGE "Invalid password" 

END! F 
END FOR 
CLEARALL user failed after 3 tries 
UNPASSllORD "dontshowi t•1 

RETURN False 
ELSE user presented an inval id name 

CLEARALL 
UNPASSllORD 11dontshowit 11 

RETURN False 
END! F 
ENDPROC 

IF NOT Checkpass() 
THEN EXIT 

end of procedure definition 

call Checkpass 
if not True, then exit ENDIF 

November/ December 1987 T URBO TECHNI X 131 



BINARY ENGINEERING 

Divide and rule 

Bruce l%bster 

A true story: In the finals 
of a state high school 
programming competi
tion, the contestants 

were given the task of writing a 
program to generate all the prime 
numbers within a certain range 
and having certain characteristics. 
Only two contestants came up 
with a working program. One 
wrote a program that ran for 
around three hours before they 
could verify that it would indeed 
solve the problem; had they let it 
run to completion, it would have 
taken about six hours. The other 
wrote a program that completely 
and correctly generated the list of 
desired primes in about three min
utes. The first contestant won the 
competition. Why? Because he 
took a minute or two less to write 
his program than the second con
testant did. 

An observation: Two books sit 
side by side on a shelf near me. 
One is titled The Craft of Program
ming, the other The Science of Pro
gramming. At the other end of the 
shelf are three more volumes, all 
of which carry the subtitle, The Art 
of Computer Programming. Between 
them stand other books: Elements 
of Programming Style, Structured Sys
tem Design, A Discipline of Program
ming, The Mythical Man-Month, 
and one slim volume called Soft
ware Engineering for Micros, among 
others. What is programming
art, craft, science, or discipline? 
Do any of these titles apply? Do all 
of them? Does it matter to micro 
programmers? 

Well , yes and no. Most of us 

can cook to one degree or 
another. Some of us can cook well 
enough to keep from starving; 
opening a carton of milk and a 
box of Cheerios is within our 
grasp. Others of us can open cans, 
saute mushrooms, and brown 
meat. Yet others can prepare a 
variety of delicious, attractive 
meals for ourselves and our fami
lies. And there are those who 

This time, we 're 
going to talk about 

methodical problem 
solving: how to 

attack it step by step. 

cook well enough to get paid for 
it. Does it matter how well you can 
cook? Depends upon what you 
want to do with it. Is there an 
advantage in improving your 
cooking skills, even if you don't 
want to become a paid chef? It 
might make your own life more 
pleasant. And what is cooking, 
anyhow-art, craft, science, or 
discipline? 

Programming, like cooking, is 
done to solve problems. You cook 
to feed yourself, to feed others, to 
entertain, to have fun, to justify 
that expensive stove-top grill you 
bought. You program to balance 
books, to contact others, to enter
tain, to have fun, to justify that 

132 TURBO TECHNIX November/December 1987 

expensive desktop system you 
bought. And, like cooking, pro
gramming is faster if you buy 
ready-made solutions, but cheaper 
(usually) if you do it yourself. 

The point is this: no matter how 
well you know how to program 
now, it won't hurt you to learn 
more. And since you're holding 
this magazine in your hands, you 
want to program. We're here to 
help you to learn how. 

A BRIEF ASIDE 
Me? My name's Bruce Webster. I 
program some, and I write some, 
and I teach some. Keeps me busy. 
Yes, I do have a degree in compu
ter science and actually worked 
out in industry for several years. 

STEPS TO PROBLEM 
SOLVING 
The essence of programming is 
problem solving. Yes, it is possible 
to program just for fun or for 
whatever reasons, but the reason 
behind the actual program is to 
solve the problem. To learn to 
program well-to learn to be a 
software engineet-you must 
learn how to solve problems. 

This time, we're going to talk 
about methodical problem solv
ing. There is a creative side to 
problem solving, the "Aha!" 
effect, that leads to sudden break
throughs. In my experience, that 
happens most often in the context 
of step-by-step work. So let's look 
at some steps to problem solving. 



STEP 1: UNDERSTAND THE 
PROBLEM 
Before you can solve a problem, 
you have to know what the prob
lem is. The difficulty is this-what 
you think the problem is may not 
actually be the problem at all. 

Case in point. A firm wanted to 
expedite orders by creating a com
puterized invoicing system; pre
viously, the secretary had typed 
each invoice by hand. So, one of 
the in-house programmers was 
assigned to develop the system. 
She developed specifications, con
sulted with the secretary, designed 
the program, coded, debugged, 
and installed it. The result: the 
secretary got the invoices done 
more quickly, but orders still 
weren't expedited. Why? Because 
the bottleneck was in the shipping 
room, where the invoices were 
now piling up. 

At the risk of sounding radical, 
the moral here is to question 
authority. If your boss comes to 
you with a problem to solve, ask 
enough questions (and do enough 
research) to assure yourself that: 
1) the problem indeed needs to be 
solved, and 2) that the problem 
has some bearing on the real 
issues. 

STEP 2: ANALYZE THE 
PROBLEM 
Once you've picked the right 
problem to solve, you need to ana
lyze it to determine the solu
tion(s), if any. If there are no solu
tions, then you need to go back to 

But (and be honest 
now) how many of 
you have had the 

phrase ~~balance my 
checkbook" or 

~~organize my recipes" 
drift through your 

mind when contem
plating programming 

on your micro? 

Step 1 and find a problem you can 
solve. If there are many solutions, 
you need to look at each and 
decide which is most likely to 
meet your needs. 

The answer to solving a prob
lem with a computer almost 
always involves output. Of course, 
you will immediately start thinking 
up exceptions. I, of course, will 
counter by redefining the word 
"output," which, after all, means 
far more than numbers on a 
screen or words on a page. So, 
rather than debate semantics, let's 
agree to call a program's solution 
"output," and go from there. 

Why start with the output? 
Because that determines every
thing else. A computer program 
has four basic elements: input (to 
get the data) , data structures (to 
hold it), algorithms (to manipulate 
it), and output (to write it out) . But 

since we know, or at least suspect, 
what the output should be, we 
work backwards from there. 

An important part of this step, if 
not the most important part, is to 
be sure that a computer should be 
part of the solution. Years ago, in 
the days of mainframes and 
punched cards, a computer 
science professor was approached 
by a colleague in a different disci
pline. This colleague was inter
ested in using one of the large 
computers on campus to develop 
and maintain a list of names and 
addresses. This would involve 
punching several cards for each 
entry, writing a program to read in 
and format the data, and printing 
it out to put in a binder. He felt 
that this would make it easy to 
update, add, and remove 
addresses as needed. He asked 
the CS professor how he could 
best go about doing this. The CS 
professor replied that the best 
solution would be to buy a small 
notebook, some paper for it, and a 
pencil. Write each name and 
address on a separate piece of 
paper, and put them all in the 
notebook. That way, changes 
could be made by adding or re
moving sheets of paper, or erasing 
and rewriting to make modifica
tions. All things considered, the 
CS professor continued, this 
would be a far easier solution 
than what the colleague was 
proposing. 

Given the accessibility and ease 
of use of most micros, the low-

November/ December 1987 TURBO TECHNIX 133 



BINARY ENGINEERING 

tech approach may no longer be 
the best solution for this particular 
problem. But (and be honest 
now), how many of you have had 
the phrases "balance my check
book" or "organize my recipes" 
drift through your mind when 
contemplating programming on 
your (or someone else's) micro? 
Worse yet, how many of you actu
ally spoke these phrases aloud in 
justifying your purchase of a com
puter? (And how many of you 
were too chicken to give the real 
reason: to play games and other
wise entertain yourself?) 

Well, don't feel too embar
rassed; you're in plenty of com
pany. And chances are that you've 
already reached the conclusion 
that a pencil and calculator, or a 
3 X 5 box and some index cards, 
solve those problems far better 
than a computer. Which entitles 
you to give a small, superior smile 
when your neighbor gives the 
same justifications for the compu
ter system he just bought. 

STEP 3: DECOMPOSE THE 
PROBLEM 
Some years ago-back in 1965, to 
be exact-Edsger Dijkstra pub
lished an article entitled "Pro
gramming Considered as a 
Human Activity" (Proceedings of the 
1965 IFIP Congress, pp. 213-217). In 
it, he discusses the growing com
plexity of computer programs, the 
limits of the human mind to com
prehend such programs, and then 
makes the following statement: 

"The technique of mastering com
plexity has been known since 
ancient time: Divide et impera 
(Divide and rule)." 

What may seem obvious today 
was innovative and controversial 
twenty years ago, but time has 
been on Dijkstra's side. His theme, 
expanded in a later paper called 
"The Humble Programmer" 
(Communications of the ACM, Vol. 

15, No. 10, pp. 859-66), is that the 
best way to deal with large, incom
prehensible problems is to break 
them down into small, under
standable ones. Furthermore, 
those smaller problems should be 
clearly understood and analyzed, 
anti they should stand relatively 
independent of one another. And 
once you've solved all the little 
problems, the big problem has 
also been solved. 

Man-years and megabucks have 
been lost by an unwillingness or 
inability to spend time on these 
first three steps, usually due to a 

If there's a moral, it's 
this: The longer you 
wait before coding, 

the quicker you '11 get 
the coding-and the 

project-done. 

desire to "see results" quickly. 
And, sadly, managers are some of 
the worst offenders. I know that I 
caused a fair amount of hair
pulling because of my approach. 

When I'd get a new project to 
work on, I'd listen to the require
ments, look at any pertinent data, 
and then go into "ponder" mode: 
I'd put my feet on my desk, fold 
my arms across my chest, lean 
back in my chair, and stare at the 
wall (or ceiling, depending upon 
how far back I could lean). Occa
sionally, I'd close my eyes. 
Depending upon the size and 
complexity of the project, this 
could go on for just a few minutes 
or last (off and on) for days. In my 
mind, I would think about the 
problem, break it down into sub
problems, consider solutions, and 
try to visualize the consequences 
of those solutions. Once I had a 
clear idea of the finished result, I 
would start designing the pro
gram. I know there were a few 
managers who would have liked 

134 TURBO TECHNIX November/ December 1987 

to fire me, but I kept on complet
ing projects. 

STEP 4: WRITE THE PROGRAM 
USING PSEUDO-CODE 
At this point, you're probably 
chomping at the bit, anxious to sit 
down at a computer and start 
churning out code. You are ready 
to start programming, but not in 
the language you think. You're 
going to start by writing your pro
gram in pseudo-code. 

What's pseudo-code? The prefix 
pseudo comes from Greek and 
means "fake" or "false." In other 
words, you're going to write in a 
phony programming language. 
The idea is to code in a language 
that you (and presumably others) 
can understand: English, or a 
structured subset thereof. For 
example, Figure 1 shows a 

find the lowest value in the list 
swap with the top value 
move the top down by one 
continue until at end of the list 

Figure 1. English-like pseudo-code for the 
sekction sort. 

pseudo-code implementation of a 
selection sort. Of course, you can 
make it look more like a "real" 
programming language if you 
want, as shown in Figure 2. 

Why use pseudo-code? There 
are basically three reasons. First, 
you've produced a version of the 
program that almost any pro
grammer can read, regardless of 
what languages she (or he) does 
or doesn't know. Besides, it beats 
the heck out of flowcharting 
(gag!) for readability and ease of 
modification. 

Next, it allows you to focus on 
solutions without worrying too 
much about implementation 
details. The language(s) we use 
can blind us to certain approaches 
or considerations; by delaying the 
actual coding as long as possible, 
we avoid that. 

Finally, it lets you quickly move 
from one language to another. 
You can take the pseudo-code 



{ Selection sort by Bruce Webster } 
{ Pseudo-code -- Last modified 9/23/87 } 

subroutine SelectionSortCList=array,Count=list size) 

variables: Top, Min, K = index values 

for Top going from 1 to Count-1 by 1 do 
set Min to Top 
for K going from Top+1 to Count by 1 do 

if List[K] is less than List[Minl then 
set Min to K 

end if 
end for 

if Min is different from Top then 
swap Li st [Min] and Li st [Top] 

end if 
end for 

end Selection 

Figure 2. Program-like pseudo-code for the sel,ection sort. 

I* Selection sort by Bruce Webster */ 
I* Turbo C - - Last modified 9/23/87 */ 

void selection(int *list,int count) 

{ 

} 

int top,min,k,tefl1); 

for(top=O; top < count-1; top++) 
{ 

} 

min = top; 
for(k=top+1; k < count; k++) { 
if Clist[kl < list[min]) 

min = k; 
} 

if (top != min) { 
tefl1) = list[topl; 
list [top] list [min]; 
list [min] = tefl1); 
} 

Figure 3. The se/,ection sort as impl,emented in C. 

above and translate it into any 
language as needed. 

STEP 5: TRANSLATE INTO THE 
TARGET LANGUAGE(S) 
Once you've gone through all this 
and have your problem solved in 
pseudo-code, then you start trans
lating it into your target language. 
Even if you don't know the target 
language well, you can translate a 
good pseudo-code implementa
tion by browsing the reference 
manual for that language. For 
example, Figure 3 shows a Turbo 
C version of the selection sort. 

Note that we had to adjust the 
starting and ending values in the 
for loops, since arrays in C start 
with an index value of 0 (instead 
of 1, as we had used in the 
pseudo-code above). 

Will you always use pseudo
code? As you get better and better 
in a given language, the pseudo
code step becomes tedious and 
often unnecessary. When that 
happens, you can switch to stepwise 
refinement for Steps 4 and 5. Step
wise refinement simply means 
that you start off coding in your 
target language, but use comments 

and dummy subroutine calls in 
place of pseudo-code instructions. 
You then replace each comment 
or dummy subroutine with the 
actual code for that function, mak
ing each replacement work before 
going on to the next item. 

If your target language is 
assembly, you could even use a 
high-level language for your 
pseudo-code. Years ago, I got the 
job of writing a hyphenation pro
gram for a spell-check.mg package. 
The algorithm was printed in a 
book and described in convoluted 
English; the target language was 
8080 assembler under CP / M. I 
had never programmed under 
CP I M and had only done a little 
Z-80 coding (and none in 8080). 
So I wrote the program, using 
pencil and paper, in Pascal, going 
over it again and again to make 
absolutely sure it corresponded to 
the English description. Then I 
sat down and "hand-compiled" it 
into 8080 assembly language, 
looking up instructions and CP / M 
system calls as I needed to. I fin
ished the entire program in less 
than three weeks, despite holding 
down a full-time job. 

THE MORAL 
If there's a moral to the column, 
it's this: the longer you wait before 
coding, the quicker you'll get the 
coding-and the project-done. 
Assuming, of course, that you 
spend that time designing. 

That's it for this issue. Feel free 
to write me with requests for top
ics; however, due to the volume of 
mail and my own crummy letter
writing habits, I can't guarantee 
individual replies. Until then, I'll 
see you on the bitstream. • 

Bruce W!bster is a computer mercenary 
living in the Rockies. He can be 
reached atjadawin Enterprises, P.O. 
Box 1910, Orem, UT 84057, via 
MCI Mail (as Bruce W!bster), or on 
BIX (as bwebster ). 

November/ December 1987 TURBO TECHNIX 135 



LANGUAGE CONNECTIONS 

The Turbo Prolog-Turho C Connection 

Gary Entsminger 

T he connection between 
Turbo Prolog and 
Turbo C is something 
I'm very excited about, 

having used it to write (along with 
my friends Larry Fogg at Micro 
Cornucopia and Mollie Messimer 
at the University of Virginia), sev
eral "smart" programs-including 
an expert system development 
tool and a statistical inference 
system. 

In this issue, I'll go over the 
details of connecting these two 
snappy languages, and next issue, 
I'll begin detailing some very prac
tical uses of this connection. 

Each language provides the 
programmer with certain advan
tages. Since we want to get the 
most out of each language, it 
might be worthwhile to first 
explore some of these advantages. 
So, let me cover a few of the issues 
and conclude with a prediction: If 
you're a Prolog or C programmer, 
you're going to believe that Turbo 
Prolog and Turbo C go together 
like Chuck Berry and a rock and 
roll rhythm in 4/ 4. 

LISTS VS. ARRAYS 
Typically (for convenience and 
efficiency), we collect objects in 
single structures. A simple (and 
powerful) structure in Pascal and 
C is the array, which is simple for 
two reasons: 1) its contents are of 
one type; and 2) memory is auto
matically allocated by our pro
grams for storing those contents 
(we don't have to worry about low
level stuff like dynamic memory 
allocation and deallocation). 

This second advantage turns 
out to be an array's main disad-

vantage. Memory is automatically 
allocated, but in advance. Since 
our program has to know the size 
of an array when it begins execut
ing, we can't dynamically create 
new data objects; we can only fill 
the array. And, it turns out, 
dynamically creating new data 
objects is essential for program
ming relational databases, expert 
systems, and the like. 

Fortunately, programming lan
guages came out of the first dark 
ages a while ago, and high-level 
languages (like Pascal and C) 
supply a variable, called "pointer" 
for skirting this limitation. (A 
pointer holds the address of some 
data rather than the data itself.) 

We use pointers to create more 
complex structures, for example, 
the linked list, which also has two 
main advantages: 1) its contents 
can be of more than one type, 
and 2) data objects can be dynam
ically created while our program is 
running. 

We can dynamically create 
objects while our program is run
ning, but we must allocate 
memory for them. Turbo C pro
vides the functions-malloc, cal
loc, and free for this purpose. But 
it still requires this extra (low
level) step. 

The designers of Turbo Pro log 
decided to take care of this low
level step for us, by including the 
dynamic memory allocation step 
in a very powerful pair of dynamic 
structures-the list and the functor. 
In combination, they provide the 
power of a linked list but require a 
lot less programming expertise 
(it's as close to a more-for-less 
situation as you're likely to 
encounter). 

A list (like an array) is a collec-

136 TURBO TECHNIX November/ December 1987 

tion of similar objects (or types), 
but with two primary advantages: 

1. Unlike the array in Pascal or C 
(which Prolog lacks), we don't 
have to predetermine its size; 

2. Unlike the Pascal linked list 
and C structure we don't have 
to allocate storage for its 
contents. 

The link between items in the list 
is built-in. 

REPRESENTING 
STRUCTURES 
From Turbo C's point of view, a 
Prolog list is a recursive structure 
containing three elements-a type 
(type=l if it's a list element; or 
type=2 if it's at the end of a list), 
the value of the element (which is 
the same as the Turbo Prolog 
type), and a pointer to the next 
node (node=l if there's a next 
element; or node=2 if it's at the 
end of the list or it's an empty list) . 
A list of reals looks like this in 
Turbo C: 

struct real list { 
char functor; 
double val; 
struct real_list *next; 

}; 

A Prolog structure is an object 
which contains a set of objects 
(called components). A functor 
provides a general description of 
the structure. In Prolog, a functor 
is represented as 

f(object) 

and the C structure is represented 
as 



struct real_func { 
char type; 
real value; 

}; 

So, a linked list of Pascal- or C
like records might look like this in 
Pro log 

record(Rec_Num,List_of_items) 

where Rec_Num can be any 
number of records containing a 
list of indeterminate size. Prolog 
handles all the memory alloca
tion! So we can add record after 
record (data object after data 
object) without worrying (much!) 
about low-level details. This 
functor-list combo is a very power
ful feature that makes Prolog very 
high-level indeed, and invaluable 
for many projects (often flying 
under the AI banner) that depend 
on dynamic data object creation. 

TURBO PROLOG AND THE 
MEAN 
The mean (or central tendency) is 
an impressively useful statistic, 
used in many different fields-the 
sciences (for statistical inferences 
and as the basis for more sophisti
cated inferences); in sports (bat
ting averages, shooting percen
tages, betting odds, etc.); in 
government, in business, and so 
on. 

The mean is useful, and it's triv
ial to calculate, which qualifies it 
beautifully for an example to con
sider alternative programming 
strategies. 

The mean is equal to the sum 
of cases (a list of numbers) 
divided by the number of cases. 
In Listing 1, we pass the function, 

Tail Recursion and the Mean 
The code in Listing 6 (another 
version of mean in Turbo 
Prolog) is recursive and very fast, 
but requires so much memory 
that it can only solve a short list 
(a few thousand reals on a 
640K/286-based system). In 
order to understand why the 
code uses so much memory, let's 
go down a level and see what's 
happening with the stack (that 
very important last-in, first-out, 
volatile bundle of memory). 

Each time a program calls a 
function, it puts the return 
address of the next function 
(and other pertinent parameters) 
on the stack. This enables it to 
continue processing after it 
returns from a function. So each 
time mean calls itself, it 
remembers that it must eventu
ally divide by the count. 

Listing 6 is similar to Listing 1 
except that it calculates the mean 
value in the main clause rather 
than in the terminating clause. 
So, the recursive call to mean 
appears in the middle of the 
clause. The final step of our 
mean calculation, dividing by 
the count, occurs after the recur
sive call: 

meanCHITJ ):-

mean(T,Y,N2), 
Z = Y/N, 

We can change our program's 
strategy (without changing the 
actual process of calculation) by 
moving the division to another 
variant of mean, in effect, con
cealing the division from the 
central variant (this is how we 
came up with Listing 1 ). 

The central variant ends by 
calling itself, and therefore does 
not have to save all those ad
dresses (one each time it calls 
itself). This programming strat
egy, called tail recursion, is 
essential for efficient Turbo 
Prolog programming. 

By making our clause tail re
cursive (i.e. the recursive call is 
the last call in the clause), Turbo 

Prolog is able to optimize the 
internal code generated by the 
compiler. This technique is 
known as tail recursion elimination. 
Tail recursion elimination is 
a method of optimizing your 
program by replacing recursion 
with iteration. This technique 
not only eases the demands 
placed on the stack, but can 
greatly improve the speed of 
execution. 

The code in Listing 1 uses tail 
recursion elimination by elimi
nating all calls after the recursive 
call to mean. 

On a lOMHz 80286-based 
Multitech-AT (without a numeric 
coprocessor), Listing 1 calculates 
the mean of a list of 7000 reals 
in 1.21 seconds. 

Well, 7000 reals in 1.21 
seconds seems pretty fast, but 
I'm never sure how fast "fast" 
really is, so I decided to test the 
mean by writing the fastest real 
processor I could in the fastest 
high-level procedural language I 
have, Turbo C, and then com
paring it to Turbo Prolog. 

The program in Listing 7, the 
fastest I created in Turbo C, gets 
its input (7000 reals) from an 
array. On the same system (same 
time of day, same current), it 
takes 2.53 seconds. 

In other words, with the right 
conditions-if you define a rela
tionship (or problem) succinctly 
and eliminate tail recursion
Turbo Prolog might just be the 
fastest high-level number 
crunching language on the PC. 

The catch is, of course, the 
right conditions. And unfortu
nately, describing a problem suc
cinctly and eliminating tail recur
sion are suddenly formidable 
tasks when things get compli
cated. Eventually, I'm betting, if 
you program long enough in 
Prolog, your descriptive prowess 
or your tail recursion elimina
tion will quit meshing. • 

November/ December 1987 TURBO TECHNIX 137 



I LISTING 1: MEAN.PRO I 

/* Listing 1 - Prolog module to find the mean using tail recursion 
elimination */ 

domains 
real_list =real* 

database 
answer( real) 

predicates 

/* Create storage for answers. */ 

process(real_list) 
mean(real_list,real,integer) 

clauses 
process(List):

N=O, 
S=O, 
mean(List,S,N), 
answer(Answer), 
writeCAnswer). 

meanCCHITl,S,N):
Y=H+S, 
N2=N+1, 
meanCT, Y ,N2). 

mean( Cl , S, N): -
Z=S/N, 
assert(answer(Z)). 

/*Initialize Count to 0. */ 
/* Initialize teflll storage var */ 
/*Pass "mean" the list and vars. */ 
/* Get answer from storage. */ 

/* "mean" recursively processes */ 
/*the list --adding each member */ 
/* to the sum of the others and */ 
/* keeping track of the no of */ 
/* members. */ 
/*~hen the list is eflllty, */ 
/* divide the total by the count */ 
/* and store the answer. */ 

LISTING 2: MEAN-P.PRO 

/* Listing 2 - Turbo Prolog module to call C to find the mean, 
which is passed back in a functor. */ 

domains 
il ist=real* 
ifunc=f(real) 

global predicates 
cpinit language c 

mean(ilist,ifunc) - Ci,o) 

/*declare Turbo C initialization*/ 
/* module, cpinit */ 
Co, i) language c 

predicates 
processCilist) 

goal 
cpinit, 

/* declare Turbo C module, mean. */ 

process(C1.0,5.0, 10.0, 14.0]). 

clauses 
process(List):

mean(L i st ,Ans>, 
write(Ans),nl. 

/*Call Turbo C module to calculate mean*/ 

138 TURBO TECHNIX November/ December 1987 

LANGUAGE CONNECTION 

mean, a list of numbers to be 
summed one by one until the list 
is exhausted. We count the 
number of cases (numbers), and 
eventually divide the sum of the 
cases by the count. The summa
tion of cases can be represented 
in Prolog as 

mean( CH I Tl ,S,N): -
Y = H+S, 
N2 = N+1, 
mean(T,Y,N2). 

which pulls the first element out 
of the list, adds it to the current 
sum S and assigns it to Y. N is 
used to count the number of ele
ments summed up thus far. So, N 
is incremented and the result is 
assigned to N2. Finally, mean is 
called to add the next element in 
the list to the total sum. 

We are finished with the sum
mation when there are no more 
elements in the list. So the termi
nating condition becomes 

mean C [] , S, N ) : -
Z = S/N, 
asserta(answer(Z)). 

which says that when the variable 
list is empty ([]), calculate the 
mean and assert the result in the 
database. 

TURBO PROLOG TO 
TURBOC 
The program in Listings 2 and 3 is 
another version of mean which 
sets the stage in Turbo Prolog, 
calls Turbo C to calculate, and 
then returns to Prolog for the fin
ishing touches. 

This code (with the problem 
"described" in Turbo Prolog and 
"solved" in Turbo C) takes 2.63 
seconds to calculate 7000 reals. In 
this case it's slightly slower than 
Turbo Prolog or Turbo C alone 
(see sidebar) but impressive none
theless. We get the descriptive 
power of Pro log, the processing 
power of C, and the flexibility of 
using two qualitatively different 
languages in one program. 

Let's look more closely at List
ings 2 and 3 for the details of 
interfacing between these two lan
guages. In the Turbo Prolog code 
(Listing 2), note the following 
points. 



• The C functions being called 
must be declared as global 
predicates. As with all global 
declarations, the 1/0 flow pat
terns must be declared explicity. 
In addition, the language to be 
interfaced (in this case C) must 
be specified. 

• CPINIT is called first in the 
goal section in order to set 
memory allocation compatibility 
between Turbo Prolog and 
Turbo C (if you're using inte
gers exclusively, you can skip 
this step). 

In the Turbo C code (Listing 3), 
note the following points. 
• The C function (mean) which is 

called by Turbo Prolog is suf
fixed with _O. This corre
sponds to the (i,o) flow pattern 
specified in the Turbo Prolog 
module. Thus, the suffix refers 
to a specific flow pattern and is 
generated internally by Turbo 
Prolog. The suffix must be 
incremented by 1 for each addi
tional flow pattern. For 
instance, if a second flow pat
tern were specified, such as 
(o,i), a second mean function 
would have to be defined in C 
and would include the 1 
suffix. 

• There is no C main module; it's 
replaced by the main module 
(containing the goal) in Turbo 
Pro log. 

When compiling your C module, 
keep these points in mind. 
• Compile using the large 

memory model (the only 
memory size Turbo Prolog com
piles to). 

• Compile with register allocation 
turned off (-r-). 

• Compile with generate under-
bars turned off (-u-). 

When linking, remember these 
points. 
• INIT (Turbo Prolog's initializa

tion module) must be the first 
object file linked. 

• CPINIT must be the second 
object file linked. 

• .OBJ modules can follow 
CPINIT in any order. 

• The PROLOG.SYM file must be 
the last module linked. 

• Specify the output (.EXE) file 
name. 

! LISTING 3: MEAN-C.C 

/* Listing 3 - C function called by Turbo Prolog to find the mean.*/ 

struct ilist { /*Declare a Turbo Prolog list in C */ 
char functor; 
double val; 
struct ilist *next; 

}; 

struct i func < 
char type; 
double value; 

/* Declare a Turbo Prolog functor in c *I 

}; 

void mean O(struct ilist *in, struct ifunc **out) { 
int count = O; 
double y = 0, z = O; 

if Cin->functor !=1) 
fail_cc(); 

while(in->functor !=2) < 
y = y + in->val; 
count = count+1; 
in = in->next; 

} 

z = y/count; 

/* 1 indicates a list element. */ 

/* 2 indicates an ~ty list. */ 
/*Keep a running sun of the list. */ 

/*Get the next member of the list. */ 

I* z = the mean. */ 

*out = (struct ifunc *) palloc Csizeof(struct ifunc)); 
C*out)->value = z; 
C*out)->type = 1; 

} 

LISTING 4: VARIANCE.PRO 

I* Listing 4 - Turbo Prolog main module to call Turbo C to calculate 
the variance. The variance is passed back to Turbo 
Prolog as a real */ 

domains 
ilist=real* 
ifunc=real 

database 
answer( real) 

global predicates 
cpinit language c /*declare Turbo C initialization */ 

/* module, cpinit */ 
varianceCilist,ifunc) - Ci,o) language c 

/* declare Turbo C module, variance */ 

predicates 
main 
process(ilist) 

goal 
cpinit, 
main. 

clauses 
main:-

/* cpinit 1TM.Jst be invoked before we call the*/ 
/* TC function. */ 

L ist = [1.0,5.0, 10.0, 14.0J, 
process(List). 

November/ December 1987 TURBO TECHNIX 139 



process(List):-
variance(List,Answer), /*Pass the list to variance*/ 
Answer > 10, /* Then, the condition succeeds */ 
write(Answer). 

process(_):- /* Else, say it doesn't */ 
write("Condition fails."). 

LISTING 5: VARIANCE.C 

/* Listing 5 - Turbo c function to be called from Turbo Prolog 
to calculate the variance. */ 

struct ilist { /*Declare a Turbo Prolog list in C. *I 
char functor; 
double val; 
struct ilist *next; 

}; 

struct ifunc { 
char type; 
double value; 

}; 

void variance O(struct ilist *in, struct ifunc **out) { 
int count-= O; 

} 

double y = 0, dev = 0, square = 0, squares=O, z = 0, var = O; 
struct ilist *dup_list; 

if (in->functor !=1) fail cc(); 
dup_list = in; -/*Save the address of the head*/ 

/*of the list. */ 

while(in->functor !=2) { /*Find mean first. */ 
y = y + in->val; 
count = count+1; 
in = in->next; 

} 

z = y/count; 
/* Then find variance. */ 

while(dup_list->functor !=2) { 
dev = z - dup_list->val; 
square = dev * dev; 
squares = squares + square; 
dup_list = dup_list->next; /*Get next list element. */ 

} 

var = squares/count; /* Get var and return it. */ 

*out= (struct ifunc *) palloc (sizeof(struct ifunc)); 
C*out)->value = var; 
C*out)->type = 1; 

140 TURBO TECHNIX November/ December 1987 

LANGUAGE CONNECTION 

• Finally, list the libraries begin
ing with PRO LOG.LIB. (See the 
Turbo C manual for specific C 
library link order.) . 

My LINK line for mean looked 
like this: 

TLINK !NIT CPINIT MEAN-P MEAN-C 
MEAN-P.SYM,MEAN, ,Prolog+ 
EMU+MATHL+CL 

MEMORY MANAGEMENT 
Since we're connecting Turbo 
Prolog and Turbo C, we're com
bining two different approaches 
to the dynamic structure/ memory 
problem. How do we handle it? 

When we pass complex struc
tures between Turbo Prolog and 
Turbo C, we note whether Turbo 
Prolog will handle the memory 
management for us or not. And 
the rule for noting is simple: if the 
structure originates in a Turbo 
Prolog module, we don't have to 
allocate memory for it. If it origi
nates in Turbo C, we do. 

In Listings 2 and 3, when our 
Turbo Prolog module passes the 
list to our Turbo C module, it's 
passing a Turbo Prolog list, which 
means space has been allocated 
for it. However, when our Turbo 
C module is finished, it passes its 
results back in a functor which it 
has created dynamically while 
Turbo Prolog was away, so to 
speak. The size of the return 
structure (because it is a structure) 
is unknown to the Turbo Prolog 
calling module. So, we h ave to 
allocate space for it in our Turbo 
C module. 

But, our Turbo Prolog module 
is in control of our computer's 
memory once it begins executing. 
So, our Turbo C function must 
allocate memory within the Turbo 
Prolog system, by Turbo Prolog 
rules. Fortunately, Turbo C and 
Turbo Prolog know these rules, 
and we can use two functions for 
the connection-the sizeof func
tion that sizes the structure 

sizeof(struct ifunc) 

and palloc (one of the special 
memory management functions 
contained in CPINIT which allo
cates storage on the stack for the 
structure: 

palloc sizeof(struct ifunc)) 



Objects of known size (reals, 
chars, and the like) don't need 
our memory management since 
Turbo Prolog knows in advance 
the size of the objects it's getting 
in return. So returning non
structures is a piece of cake. See 
Listing 5 where our Turbo C func
tion calculates and returns the 
variance via a simple pointer. 

The variance is another very 
useful descriptive statistic, equal to 
the sum of the deviating squares 
of a list divided by the number of 
cases (or observations). (I'll spare 
you these details, since most of 
you probably would rather live 
without them. However, if you're 
interested in making sense of var
iance, deviating squares, and so 
forth, check out the reference to 
Bradley at the end of this 
column.) 

This is a more complicated 
problem because we need to cal
culate the mean before we can 
calculate the variance. So we'll 
have to process the list twice in 
the same function. A second poin
ter points to our original list and 
makes it a snap to reprocess the 
list again quickly in Turbo C. 

In Turbo Prolog, however, this 
would be a little tricky-I'll leave 
this problem for a homework 
assignment. • 

REFERENCES 
Acquired Intelligence. "micro ei.n

stei.n" User's Manual and Reference, 
1987. 

Borland International. Turbo 
Prolog Owner's Handbook, 1986. 

Borland International. Turbo C 
User's Guide, 1987. 

Bradley,]. and]. McClelland. 
Basic Statistical Concepts, 1978. 

Bratko, I. Prolog Programming For 
Artificial Intelligence, 1986. 

Entsminger, GL "Game Theory 
Modeling In Prolog and C". 
Micro Cornucopia,#31. 

Kernighan, B. and D. Ritchie. The 
C Programming Language, 1978. 

Gary Entsminger writes on artificial 
intelligence topics, and is an associate 
editor of Micro Cornucopia. 

Listings may be downloaded from 
CompuServe as LCVlNl.ARC. 

I LISTING 6: MEAN2.PRO j 

/* Listing 6 · Mean in PROLOG without tail recursion elimination*/ 

domains 
real list= real* 

database 
answer( real) 
data(integer,real_list) 

predicates 
process(real list) 
mean(real_list,real,integer) 

clauses 
process(List):

N=O, 
S=O, 
mean(List,S,N), 
answer(Answer), 
wri te(Answer). 

mean( Cl , , ) . 
meancc~ITl~S,N>:

Y=H+s, 
N2=N+1, 
mean(T,Y,N2), 
T = []I 
Z=Y/N2, 
assert(answer(Z)). 

mean( c_l_l ,_,_). 

/* Call Turbo PROLOG function. */ 
I* to calculate the mean. */ 
/* Get the answer from the answer and */ 
/* report. *I 

/*These lines force mean to */ 
/* remeriber an address each time */ 
/* it calls itself recursively. */ 
/*We need this line to make */ 
/* mean always succeed. */ 

LISTING 7: MEAN3.C 

/* Listing 7 -- a fast mean function in Turbo C *I 

#include <stdio.h> 
void mean(double *list); 

main() 
{ 

double list[7000J; 
double i; 

for(i = 1; < 7000; i++) 
list[il=i; 

/*Create a list of reals to process */ 
/* The time to do this isn't included*/ 
/* in the benchmark. */ 

mean(list); /*Call subroutine, mean */ 

} 

} 

void mean(double *list) { 
int i; 
double x = 0, z; 

puts("start"); 

I* to calculate. */ 

/* Start timing here */ 
for(i = 1; i < 6999; 
x = list[il + x; 

i++){ 

} 

Z = X/i; 
printf("%f\n",z); 

/* Add each element of *I 
/* the array. */ 
/* Divide by count */ 
I* Print result */ 

November/ December 1987 TURBO TECHNIX 141 



ARCHIMEDES' NOTEBOOK 

Flexih~e curve-fitting with Eureka 

Namir C/,ement Shammas 

E ureka's powerful 
optimization. engine 
can solve a variety of 
least-squares c1.1rve

fitting problems. This article looks 
at using Eureka: The Sqlver for 
what are commonly called nonit
erative and iterative curve-fitting 
problems. Of course, Eureka itself 
solves all of the problems via iter
ative optimization techniques. 

LINEAR AND POWER 
MODEL~: RELATING TWO 
VARIABLES 
The first cate~ory of fitted 
mathematical models simply 
relates two observed variables, call 
them Y and X. The variable Y (i.e., 
the dependent variable) is a meas
ured response to the changes in 
variable X (i.e., the independent 
variable). The simplest relation 
between any two variables is the 
linear model: 
Y(X~ = a * X"b 

Despite its simplicity, many 
physical and chemical laws, as 
well as practical correlations, are 
linear (or are approximated to ljn
earity for practical ranges of 
values). Nevertheless, there are 
numerous cases where nonlinear 
mopels must be used. For exam
ple, the power model correlates the 
variables X and Y using: 
Y= a Xb (1) 

Traditionally, to use the above 
model with statistical packages you 
must transform equation (1) into: 

log Y= log a + blog X (2) 
However, when using Eureka 

you need not resort to equation 
(2). Instead, the nonlinear form of 
equation (1) will do just fine. In 
Eureka, equation (1) is expressed 
in a slightly modified form : 

Y(X) = a * X"b (3) 

This tells Eureka that X is the 
independent variable, not a or b. 
Similarly, other popular nonlinear 
models (such as the logarithmic, 
exponential, reciprocal, and 
square root models, to name a 
few) can be used in their direct 
fofI!l. Keep in mind, however, that 
Eureka does not support mathe
matical transformations with func
tion definitions. For instance, the 
following function definition is 
illegal: 
ln(f(x)) = aO + a1 + x 

Correlating two variables is 
extended to a popular category of 
functions, namely, polynomials. A 
quadratic fit is expressed in 
Eureka as: 

Y(X) = aO + a1 * X + a2 * X"2 (4) 

Higher-order polynomials are 
similarly written. In addition to 
polynomials, you may use any 
arbitrary function that you feel is 
meaningful to correlate variables 
X and ):'. Listing 1 shows a Eureka 
file that lists the two categories of 
functions used in correlating X 
and Y. In the listing, I use f(x) 
instead ofY(X) in expressing the 
dependent variable. The sample 
problem in Listing 1 fits a power 
model into the given data. The 
data reveal that the fitted curve 
approximat~s a square function. 

MULTIPLE VARIABLE 
MODELS 
The power and versatility of 
Eureka enables you to tackle the 
correlation of more than two 
observed variables. Using linear 
models, this class of problem is 
known in statistics as multip!,e lin
ear regression. Eureka is able to 
handle simple and complex mod
els that involve multiple variables. 

142 TURBO TECHNIX November/ December 1987 

In the category of simple multivar
iable models, the observed 
response is assumed to be the sum 
of the linear combination of the 
observed dependent variables. 
The general model is: 

f(x1 , .. .,xn )= ao+ a,J;(x1)+. . . 
+aJn(xJ (5) 

Notice that each right-hand 
term uses a single-variable func
tion. No cross-product terms are 
used. Examples of models in this 
category are: 

f(X1,X2) = aO + a1 * X1 + a2 * X2 

f(X1, X2) 
= aO + a1 * log(X1) + a2 I X2 

f(X1,X2,X3) 
= aO + a1 * X1 + a2 * X2 + a3 * X3 

f(X1,X2,X3) 
= aO + a1 * sqrt(X1) + a2 
* log(X2) + a3 * X3 

Eureka is able to handle cross
product models with equal ease. 
The general model is: 

f(x1 ,. .. ,xn) = ao + aJ1 (x/" .. ,xn) + .. . 
+aJn(xl' .. .,xn) (6) 

Among the most popular equa
tions in this category are the 
surface-fitting models. Listing 2 
contains commented models for 
both categories. The model for 
the three-dimensional curve is 
also shown, along with an arbi
trarily chosen model. The sample 
problem fits the given data with a 
double quadratic model. 

It is important to point out that 
multivariable correlation models 
need not be a strictly linear com
bination. I have used the linear 
form due to its popularity. Eureka 
is able to handle nonlinear forms 
as well. For example, you may 
write an empirical equation for 
three independent variables as: 



CFIT1 . EICA 

version 1.0 
August 10, 1987 

L LISTING 1: CFIT1.EICA 

Copyright Cc> Namir Clement Shanmas 

Least-square fitting between two variables 

J 

general model is: f(x) = expression of variable x 

examples: 

Sirrple models 

linear 
power 
logarithmic 
exponential 
reciprocal 
square- root 

fitting 
fitting 
fitting 
fitting 
fitting 
fitting 

Advanced models 

f (X) 
f(x) 
f(x) 
f(X) 
f(x) 
f(x) 

quadratic fitting f(x) 
cubic fitting - -- > f(x) 
hybrid fitting e.g.: 

= aO + a1 * x 
= aO * x·a1 
= aO + a1 • LnCx) 
= expcao + a1 • x> 

aO + a1 I x 
= aO + a1 * sqrt(x) 

aO + a1 * x + a2 * x"2 
aO + a1 * x + a2 * x · 2 • a3 * x· 

f(x) bl / x + bO • Ln(x) + aO + al • x + a2 •x -2 

$ substlevel 0 

state selected model here 
Model : power 

f(X) aO * x -al 

f(l) 1 
f(2) 4.1 
f(3) 8.9 
f(4) 16 
1(5) 25 

CFIT2.EICA 

version 1 .o 
August 10, 1987 

LISTING 2: CFIT2.EICA 

Copyright (C) 1987 Namir Clement Shann18S 

Least - square fitting between three or more variables 

general model is: 

fCxl, • •. ,xn) 

examples : 

aO + a1 f1(x1, ••• ,xn) + a2 + f2Cx1, •• • , xnl + 
an fn(x1, ... ,xn) 

Sirrple models: no cross-product terms 

f(x1 ,x2) 
fCx1 ,x2,x3) 
f(x1, x2l 
fCx1 ,x2,x3) 

aO + a1 • x1 + a2 • x2 
aO + a1 * x1 + a2 * x2 + a3 * x3 
aO + a1 • Ln<x1 l + a2 * sqrtCx2l 
aO + a1 • x1 -2 + a2 • x2 + a3 • Ln(x3) 

Advanced models: with cross-product terms 

3-0 surface 
f(x1 ,x2J = aO + a1 • x1 + a2 + x1 -2 + b1 • x2 + b2 • x2 -2 + cl 

f( x1 ,x2,x3) = aO + al • xl • sqrt(x2) + a2 * Ln(x2) • x3 -2 

$ substlevel = 0 

state selected model here 
fCx1,x2) = aO < a•• xl + a2 • x1 "2 +bl* x2 + b2 • x2-2 

f( 1, 1) = 11 
f(l ,2) 17 
f(1 ,3) 27 
f(1 ,4) 41 
f(2, 1) 7 
f(2,2) 14 
f(2,3) 25 
f(2 , 4) 40 
f(3, 1) -1 
f(3 , 2) 7 
f(3,3) 19 
f(3 , 4) 35 
f(4 , 1) -13 
f(4,2) -4 
f(4,3) = 9 
f(4,4) = 26 

PLOT1: CFIT1.PLT 

Solution: 

Variables Values 

aO 

a1 

Maxim..1t1 error is 

f 
105. 

... 

.99806750 

2.0009539 

. 10508944 

.. .. 

·······---- --------+ 
-8.08 10.0 

PLOT2: CFIT2.PLT 

Solution: 

Variables Values 

aO 3 . 7500000 

al 3.5000000 

•2 - 2 . 0000000 

b1 1-5000000 

b2 2.0000000 

Maxirrun er ror is 2.2500000 

18.7t +---- ---········ 
-10.0 .. .. 10.0 .. .. 

-243. 

November/ December 1987 TURBO TECHNIX 143 



Figure 2. A full-screen graphics plot of the same curve. 

NOTEBOOK 

f(x1,x2,x3) 
= aO * x1Aa1 * x2Aa2 * x3Aa3 

without resorting to "linearizing" 
the above equation using a loga
rithmic transformation. 

NONLINEAR CURVE
FITTING 
The next two popular problems 
traditionally fall into the iterative 
curve-fitting category. The first 
deals with measuring the time 
response of a first-order system: 

Y = Y0 (1 - e-kl) (7) 

where Y is the measured response, 
t is the time, and Y and k are both 
constants. Equation (7), also 
known as the crescent-shaped 
curve, has popular manifestations 
in physics, chemistry, and engi
neering. Consider a modified 
form of equation (7), appro
priately called the modified crescent
shaped curve: 

y =Ya- Ya' e-• 1 (8) 

Ya' is approximately equal to Ya . 
The explicit distinction between Ya 
and Ya' gives the model more flexi
bility to handle errors in the data. 

Listing 3 shows a Eureka pro
gram that fits a given set of data 

144 TURBO TECHNIX November/ December 1987 

with the model in equation (8). 
The data represents the rise in the 
concentration of oxygen in water 
that was initially oxygen-free. The 
solution computed by Eureka, 
without explicit initial values, 
comes very close to the exact 
values of the coefficients. 
The second case of nonlinear 
curve fitting seeks to find the 
unknown coefficients, k1 and k2 , 

in the following system of differ
ential equations: 

dA -k1A 
dt 

dB k1A-k2B 
dt 

solving the above equations for 
the condition t = 0, A= A0 , and 
B = 0 results in: 
A= A0 e-kl (9) 

B= Aok1 
(k2-k1)(e-•11-e-•21) (10) 

Chemistry offers an application 
for equations (9) and (10). These 
equations represent a solution to 
two consecutive first-order reac
tions that convert an initial com
pound, A, into an intermediate 
compound, B, before yielding the 
final product, C. Handling equa
tion (9) is very easy. Hence, I will 
concentrate on obtaining the 
values of kl' k2' and A0 using equa
tion (10), given the observed data 
for variables B and t. Listing 4 
shows a Eureka program with 
sample data using the model in 
equation (10). Notice that I have 
included an explicit initial guess 
value for A0 . The nature of the 
problem enables you to consis
tently provide such a guess. This 
is beneficial in obtaining the 
solution. 

The last line of Listing 4 
includes the results of running the 
example, and shows the close 
agreement between the exact solu
tion and that obtained by Eureka. 
Keep in mind that the data are 
ideal and contain no measure
ment errors. The graph of the fit
ted function is also included, 
showing that the function has a 
maximum. • 

Namir C/ement Shammas is editor of 
the Turbo Tech Report newsl,etter, 
and a columnist for Dr. Dobb's 
Journal and PC AI. 

Listings may be downloaded from 
CompuServe as CURVEFIT.ARC. 



How Eureka: The Solver 
instantly solves equations 
that used to keep you 
up all night 
The state-of-the-art answer to any of your 
scientific. engineering, financial, algebraic, 
trigonometric. or calculus equations = 
Eureka: The Solver'· 

Eureka: The So lver 
i le rlit o l ue nnnan~s eprirt rnph rt ion<:.: indou 

E<l i l l'lnl 

"t "' ,,1 .. , U .. 1 I '" \•,111 

"• 
IJpr if'J 

,,1:.q·U, ,1 11 t, .. 1 • 
.. 1: 'I U1 ,1 1·-1llj 1111 M,, t, "' 

1 11fH1f1 

"' "• 11.11·1• ,,M' II• 1,11fH111 

H1•porl .1111· l•ltl f1fH11HH111f1 

!" l 01.1 I T,·111 I :1, 1 .11fHH1 l 1.•i11 

I 111 1 T1·n 1• fHHHH1 

,,f!.11·U, 11 I .'f1 " J.\1,:::1 .l .. 1111 

111, f111 

•1Tl11 U," I ::f1'H11. 1 .... 1. 

Help Saue · Loarl - Zoon -Next Be~ B lk En<l Blk - Size ·'noue 

Eureka instantly solved lhis Physics equalion by immediaiely calculaling how much work 
is required to compress isobarica//y 2 grams of Oxygen inilia//y at STP to V2 ils original 
volume. In Science, Engineering, Finance and any applicalion involving equalions, Eureka 
gives you lhe right answer, right now! 

E ureka can solve most 
equations that you 're 
likely to meet. So you 

can take a mathematical 
sabbatical. 

Most problems that can be 
expressed as linear or non
linear equations can be solved 
with Eureka. Eureka also han
dles maximization and minim
ization. plots functions. gener
ates reports. and saves you an 
enormous amount of time. 

Eureka instantly solves 
equations that would've made 
the ancient Greek mathemati
cians tear their hair out by 
the square roots-and it's all 
yours for only $167.00. 

Minimum system requirements: For the IBM PS/2· 
and the IBM• and Compaq• fam1l1es al personal compu
ters and all 100% compatibles. PC-DOS (MS-DOS•) 2.0 
and later. 384K. 

Eureka: The Solver ts a trader.iark al Borland 
International, Inc 
Copyright 1987 Borland International Bl-11458 

It's easy to use 
Eureka: The Solver 
1. Enter your equation into 

the full-screen editor 
2. Select the "Solve" 

command 
3. Look at the answer 
4. You're done 

You can then tell Eureka to 

• Evaluate your solution 
• Plot a graph 
• Generate a report. then 

send the output to your 
printer. disk file or screen 

• Or all of the above 

BORLAND 
INTERNATIONAL 

You can key in: 
13' A formula or formulas 

13' A series of equations-and 
solve for all variables 

13' Constraints (like X has to 
be <or= 2) 

@' A function to plot 

13' Unit conversions 

13' Maximization and minimi
zation problems 

13' Interest Rate/ Present Value 
calculations 

13' Variables we call "What 
happens?." like "What 
happens if I change this 
variable to 21 and that 
variable to 27?" 

' ' Merely difficult prob
lems Eureka solved virtually 
instantaneously; the almost 
impossible took a few 
seconds. 

Stephen Randy Davis, !1!1 
PC Magazine 

Eureka: The Solver 
includes 

13' A full-screen editor 

13' Pull-down menus 

13' Context-sensitive Help 

13' On-screen calculator 

13' Automatic 8087 math 
co-processor chip support 

13' Powerful financial 
functions 

13' Built-in and user-defined 
math and financial 
functions 

13' Ability to generate reports 
complete with plots and 
lists 

13' Polynomial finder 

13' Inequality solutions 

' ' Get Eureka. You won't 
regret it. Highly recommend it. 

Jerry Pournel/e, Byte !I !I 

F'or the dealer nearest you 
or to order by phone 

Call (800) 255-8008 
In CA: (800) 742-1133; 
In Canada: (800) 237-1136 



CFIT3.EKA 

version 1.0 
August 10, 1987 

LISTING 3: CFIT3.EICA 

Copyright Cc) 1987 Nami r Clement Shanmas 

] 

Non·linear least·square fitting of a modified crescent shaped model 

general model is: f(t) = aO • a1 • exp<-k • t) 

where aO, a1 and k are constants, & aO is approximately equal to a1 

S substlevel = 0 

; state selected model here 
f(t) = aO • a1 • exp(-k • t) 

f(1) = 0.86 
f(2) • 1.65 
f(3) = 2.39 
f(4) = 3.00 
fC5l = 3.58 
f (6) = 4. 11 
f(7) = 4.58 
f(8) = 5 .01 
f(9) = 5.40 

; Solution is aO = a 1 = 9. 1 , k 1 = 0. 1 

CFIT4.EKA 

version 1.0 
August 10, 1987 

LISTING 4: CFIT4.fKA 

Copyright (c) 1987 Namir Clement Shaomas 

Non-linear least-square fitting 

general model is: 

8Ct) =AO * k1 /Ck2 · k1) * (exp(-k1 * t) • exp(-k2 * t)) 

S substlevel = 0 

; state selected model here 
8(t) = AO • k1 /Ck2 · k1) • Cexp<-k1 • t) · exp(-k2 • t)) 

8(1) = 59.66 
8(2) = 75.93 
8(3) • 76. 78 
0c4> = n.44 
8(5) = 66.64 
8(6) = 60. 70 
8(7) = 55.07 
8(8) = 49.89 
8(9) = 45.16 

; initial guess for AO 
AO := 110 

; Solution is AO = 100, k1 1, k2 = 0.1 

146 TURBO TECHNIX November/ December 1987 

Solution: 

Variables 

aO 

a1 

L PLOT3: CFIT3.PLT 

Values 

9.6658878 

9.6107779 

.090974651 

Maxina.n error is .039362152 

f 
8.51 

.. 
•. 655 

Solution: 

Variables 

AO 

k1 

k2 

.. 

.... ... ... .. 

20.0 

PLOT4: CFIT4.PLT 

Values 

99.992302 

1.0000918 

.099991530 

Maxim.n error Is .0032416853 

a 
81.3 

·6.25 

.... .. .. .. 
... 

.... 

15.0 



B 
orland is offering its 
customers the unusual 
opportunity to license 
the source code to its 

Runtime Library routines for 
Turbo C. In this column we typi
cally will examine components of 
that Runtime source code and 
explore both how they work and 
how you can modify them. This 
time around, however, we'll take a 
look at the Runtime's basic struc
ture and provide some DOS batch 
files that will help you work on 
the source code. (To follow com
mon usage, we refer to the Run
time Library simply as the 
Runtime.) 

When you use a programming 
language, you rarely think only of 
the language itself, its syntax and 
semantics. Instead, you must con
cern yourself with the entire 
environment in which it operates, 
from the operating system to the 
compiler to the linker to the very 
functions it provides. Many of 
these support functions typically 
are not a part of the language's 
actual syntax. Yet the language 
would be almost useless without 
them. This is particularly true of 
C, which was designed to be a 
small, portable language. 

THE TURBO C RUNTIME 
FUNCTIONS 
AC compiler's runtime library is 
composed of these support rou
tines. The C language proper 
includes no interfaces to the out
side world. There are no I/O rou
tines or operating system func
tions. The typical C runtime 
library fills this gap and provides 
other useful functions . The Turbo 

TALES FROM 
THE RUNTIME 
Getting Started 

Mark L. Van Name and Bill Catchings 

C Runtime offers over 300 func
tions that help to make it a very 
useful development tool. Some of 
the major areas addressed by 
Turbo C Runtime functions 
include the following: 
• correct setup of the execution 

environment 
• retrieval of command line 

arguments 
• stack and memory manipulation 
• operating system interface 
• basic input and output 
• process management 
• string manipulation 
• basic math functions 
• sorting and searching 

Virtually all C compilers pro
vide at least a minimal runtime 
library, but few give their users the 
chance to license their runtime 
source code. Despite the unusual 
nature of this practice, there are 
very good reasons you might want 
this code. It can serve as a useful 
learning aid, because aside from 
actual programming, there are few 
better ways to learn to use a pro
gramming language than to read 
good code written by others. Also, 
by having the Turbo C Runtime 
source code, you can better 
understand exactly what the sup
port routines do and how they do 
it. This understanding is particu
larly useful when you must be 
sure of what a function does, as 
you might need to be when, for 
example, you are debugging your 
own code or trying to write a sim
ilar routine. But the most impor
tant reason for getting this source 
code is the opportunity it gives 
you to modify the capabilities of 
Runtime routines. You might wish 
only to replace a Runtime func
tion with one that does something 

a bit differently, or one that adds 
a few new features, or simply one 
that is more efficient for your 
most common uses. No matter 
how well a general function per
forms, you can usually replace it 
with one that is better tailored to 
your needs if you have special 
knowledge of your application. 

In general, a runtime library's 
performance is one area that can 
be easily affected. For example, 
the Turbo C Runtime was com
piled with options that stressed 
small code size over speed. You 
could make the opposite choice. 
Also, to make it useful on the 
broadest range of PCs, the Run
time interacts with the user 
through DOS routines. At the 
expense of portability, you can 
improve performance by chang
ing the Runtime I/O routines to 
work with the BIOS or even go 
directly to the hardware. In some 
cases, notably when you are devel
oping a Terminate and Stay Resi
dent (TSR) application, such as 
SideKick, you would have to 
change the I/O routines or not 
use them. This change is required 
because DOS is not reentrant and 
so cannot be called from within a 
TSR. Regardless of the reason you 
buy this source code, once you 
load it onto your disk and start 
looking around you will find that 
there is a lot of it! Because of the 
size and number of files, we will 
assume that you have a hard disk 
and that Turbo C is already on 
your system in a top-level direc
tory called TURBOC. For conve
nience, in both our text and batch 
files we refer to the hard disk as 

November/ December 1987 TURBO TECHNIX 14 7 



FROM THE RUNTIME 

drive C. You can change those ref
erences if necessary to reflect your 
own disk structure. 

If you have Turbo C, you 
already have the Runtime, of 
course. You just do not have the 
source code. 

The Runtime library is com
posed of several libraries and 
objects in the C: \ TURBOC\LIB 
directory. There are two libraries 
for floating point: FP87.LIB and 
EMU.LIB. FP87.LIB is used when 
you have a math coprocessor 
(8087, 80287, or 80387) on your 
system. When you do not, 
EMU.LIB provides software float
ing point functions. You will 
rarely want to change these librar
ies. In fact, the Runtime source 
does not include the code for 
FP87.LIB, although it does have 
the source for EMU.LIB. 

The Runtime also includes 
three other standard parts: a math 
library, a library of general C sup
port functions, and a start-up rou
tine. Because of the 8086 family's 
memory architecture, however, 
there are several files for each of 
these. In fact, Turbo C offers six 
different memory models: tiny, 
small, compact, medium, large, 
and huge. Corresponding to these 
six memory models are six start-up 
files, named CO<x>.OBJ, where 
<x> is one of the letters t, s, c, m, 
I, or h. 

THE MATH LIBRARIES 
There are also five math libraries, 
MATH <x>.LIB, and five general 
C libraries, C<x>.LIB, where 
<x> is defined as one of the let
ters listed above except that there 
are no specific libraries for the 
tiny memory model. This is 
because code that uses the tiny 
and small memory models shares 
the small (with the specifiers) 
libraries. All programs, regardless 
of the memory model they 
employ, use the same floating 
point libraries (FP87.LIB and 
EMU.LIB). 

The source for the Runtime 
comes in four directories: MATH, 

CLIB, EMULIB, and INCLUDE. 
The first three contain the source 
for the MATH <x>.LIB, 
C<x>.LIB, and EMU<x>.LIB 
libraries, respectively. While there 
are different finished libraries for 
each memory model, there is only 
one set of sources. You use com
mand line options to build the dif
ferent memory model libraries 
from the single source set. The 
fourth directory contains include 
files that are used in many of the 
Runtime sources. In all, there are 
about 275 source code files and 10 
include files. 

There are three major types of 
source files, and you can identify 
them by their file name extension. 

The Runtime also 
includes three other 

standard parts: a 
math library, a 

library of general C 
support functions, 

and a start-up 
routine. 

The .C files are completely C 
code; those that end in .ASM are 
completely assembler. Taking 
advantage of Turbo C's ability to 
include inline assembly code, the 
.CAS routines contain both C and 
assembly code, although typically 
they are nearly all in assembler. 
The frequent use of assembly 
code in the Runtime has the 
advantages of smaller and more 
efficient Runtime routines than 
would otherwise be possible. This 
brings us to a crucial point: If you 
do not want to mess with assembly 
code, you will have trouble with 
the Runtime source code. It con
tains a great deal of assembly 
code, including several large, 
important functions. To work 

148 TURBO TECHNIX November/ December 1987 

with this source code you must 
have Microsoft's Macro Assembler 
(MASM) and the object module 
librarian (LIB) that the MASM 
package includes. In fact, if you 
present TCC (the Turbo C com
mand line executable) with an 
.ASM module or include inline 
assembly code in a .C file (such as 
the .CAS files), TCC will call 
MASM. We suggest that you put 
the MASM and LIB executables in 
a directory that is included in your 
path. Likewise the C: \ TURBOC 
directory should be in your path 
so that TC (the Turbo C environ
ment executable) and the other 
Turbo C executables can always 
be found. 

THE MATH AND CLIB 
DIRECTORIES 
The meat of the Runtime source 
is in the MATH directory, with 
about 40 modules, and the CLIB 
directory, which contains over 230 
modules. Both of these directories 
also contain DOS batch files 
named MA TH.BAT and 
CUB.BAT, respectively, that 
rebuild the libraries. These batch 
files in tum each depend on a file 
that lists the files to be linked into 
the library (MA TH.RSP and 
CLIB.RSP). Both rebuild all five 
memory model libraries. They use 
TCC options that optimize for size 
(-0) and tum on register optimi
zation (-Z). 

While all of this sounds reason
able, we suggest that you not use 
these batch files because of the 
directory structure that they fol
low. MATH.BAT and CUB.BAT 
assume that they are executed 
from the directory that contains 
the sources, that objects will go 
into a subdirectory of the source 
directory called OBJ, and that your 
include files are in 

C:\INCLUDE 

and 

C:\LJBRARY\INCLUDE 

Few programmers are likely to 
organize their disks in this 
fashion. 



We suggest an alternative 
directory structure and we have 
provided two batch files, 
NEW _MATH.BAT and 
NEW_CLIB.BAT, that use these 
structures (see Listings 1 and 2). 
First, create a directory for the 
entire Runtime source in your 
Turbo C directory, C: \ TURBOC\ 
RUNTIME. Under it put the 
four release directories, now 

C:\TURBOC\RUNTIME\MATH 
C:\TURBOC\RUNTIME\CLIB 
C:\TURBOC\RUNTIME\EMULIB 
C:\TURBOC\RUNTIME\INCLUDE 

Then create a fifth directory, 

C:\TURBOC\RUNTIME\OBJ 

that will hold the objects that 
result from your work. 

It is seldom a good 
idea to trash the 

original copies of 
anything. 

While the libraries that are 
shipped with Turbo C are in 

C:\TURBOC\RUNTIME\LIB 

we feel that you should avoid 
placing your changed versions 
there. It is seldom a good idea to 
trash the original copies of 
anything. Instead, create a 
directory, 

C:\TURBOC\RUNTIME\LIB 

that will contain the new libraries 
you build. Start it out with copies 
of all of the libraries and start-up 
objects from the standard library 
directory, and then change them 
as you desire. 

To get Turbo C to use the 
libraries in these new locations 
you must inform both the TC 
environment executable and the 
TCC command line version. For 
TCC, either use the argument 

-LC:\TURBOC\RUNTIME\LIB 

or add the line to the appropriate 
TURBOC.CFG. To instruct TC to 

L_ LISTING 1: NEW_MATH.BAT ~ 

ECHO OFF 
ECHO *** 
ECHO*** Building MATH Library 
ECHO *** 
ECHO *** 
ECHO*** Step 1: Compiling Model-Independent Modules 
ECHO *** 
CD \TURBOC\RUNTIME\MATH 
DEL *.OBJ 
DEL •. \OBJ\*.OBJ 
masm FLAGS87 /MX; 
masm FTOL /MX /E; 
COPY *.OBJ •• \OBJ 
ECHO *** 
ECHO*** Step 2: Building SMALL and TINY Memory Model Math Library 
ECHO *** 
tee ·l\TURBOC\INCLUDE -1\TURBOC\RUNTIME\INCLUDE ·O ·Z -e -d -mt *.C* 
DEL .. \LIB\MATHS.* 
lib •. \LIB\MATHS @MATH.RSP 
ECHO *** 
ECHO*** Step 3: Building MEDIUM Memory Model Math Library 
ECHO *** 
DEL *.OBJ 
tee -1\TURBOC\INCLUDE ·l\TURBOC\RUNTIME\INCLUDE -0 -z -e -d -nm *.C* 
COPY •• \OBJ\*.OBJ 
DEL .. \LIB\MATHM.* 
lib .. \LIB\MATHM @MATH.RSP 
ECHO *** 
ECHO*** Step 4: Building COMPACT MedilJTl Model Math Library 
ECHO *** 
DEL *.OBJ 
tee ·l\TURBOC\INCLUDE -1\TURBOC\RUNTIME\INCLUDE ·O ·Z -e ·d -me *.C* 
COPY •. \OBJ\*.OBJ 
DEL .• \LIB\MATHC.* 
lib .• \LIB\MATHC @MATH.RSP 
ECHO *** 
ECHO*** Step 5: Building LARGE Memory Model Math Library 
ECHO *** 
DEL *.OBJ 
tee -1\TURBOC\INCLUDE -1\TURBOC\RUNTIME\INCLUDE ·O ·Z -e -d ·ml *.C* 
COPY .. \OBJ\*.OBJ 
DEL .. \LIB\MATHL.* 
lib •. \LIB\MATHL @MATH.RSP 
ECHO *** 
ECHO*** Step 6: Building HUGE Memory Model Math Library 
ECHO *** 
DEL *.OBJ 
tee ·l\TURBOC\INCLUDE ·l\TURBOC\RUNTIME\INCLUDE -0 -z -e -d -mh *.C* 
COPY •• \OBJ\*.OBJ 
DEL .. \LIB\MATHH.* 
lib .. \LIB\MATHH @MATH.RSP 
lib .. \LlB\MATHtt ·FLAGS87; 
ECHO *** 
ECHO*** Finished Building MATH Library 
ECHO *** 

November/ December 1987 TURBO TECHNIX 149 



i=- LISTING 2: NEW_CLIB.BAT ~ 
ECHO OFF 
ECHO *** 
ECHO*** Building CLIB 
ECHO *** 
ECHO *** 
ECHO*** Step 1: COlll>iling Model-Independent Modules 
ECHO *** 
CD \TURBOC\RUNTIME\CLIB 
DEL *.OBJ 
DEL .. \OBJ\*.OBJ 
masm EMUINIT /MX; 
masm LDIV /MX; 
masm LRSH /MX; 
masm LXMUL /MX; 
masm OVERFLOW /MX; 
masm PADA /MX; 
masm PADD /MX; 
masm PCMP /MX; 
masm PINA /MX; 
masm PSBP /MX; 
masm SCOPY /MX; 
masm SPUSH /MX; 
COPY *.OBJ .. \OBJ 
ECHO *** 
ECHO*** Step 2: Building SMALL and TINY Memory Model Library 
ECHO *** 
masm CO,COT /D~TINY~ /MX; 
masm co,cos /D~SMALL~ /MX; 
COPY COT.OBJ .. \LIB 
COPY COS.OBJ .. \LIB 
masm SETARGV /D~SMALL~ /MX; 
masm SETENVP /D~SMALL~ /MX; 
masm EXEC /D~SMALL~ /MX; 
masm SPAWN /D~SMALL~ /MX; 
masm CVTFAK /D~SMALL~ /MX; 
masm REALCVT /D~SMALL~ /MX; 
masm SCANTOD /D~SMALL~ /MX; 
tee -1\TURBOC\RUNTIME\INCLUDE -1\TURBOC\INCLUDE -0 -z -e -mt *.C* 
DEL .. \LIB\CS.* 
lib .. \LIB\CS @CLIB.RSP 
ECHO *** 
ECHO*** Step 3: Building MEDIUM Memory Model Library 
ECHO *** 
DEL *.OBJ 
masm CO,COM /D~MEDIUM~ /MX; 
COPY COM.OBJ .. \LIB 
masm SETARGV /D~MEDIUM~ /MX; 
masm SETENVP /D~MEDIUM~ /MX; 
masm EXEC /D~MEDIUM~ /MX; 
masm SPAWN /D~MEDIUM~ /MX; 
masm CVTFAK /D~MEDIUM~ /MX; 
masm REALCVT /D~MEDIUM~ /MX; 
masm SCANTOO /D~MEDIUM~ /MX; 
tee -1\TURBOC\RUNTIME\INCLUDE -1\TURBOC\INCLUDE -0 -z -e -mm *.C* 
COPY .. \OBJ\*.OBJ 
DEL .. \LIB\CM.* 
lib .. \LIB\CM @CLIB.RSP 
ECHO *** 
ECHO*** Step 4: Building COMPACT Memory Model Library 
ECHO *** 
DEL *.OBJ 
masm co,coc /D~COMPACT~ /MX; 
COPY COC.OBJ .. \LIB 
masm SETARGV /D~COMPACT~ /MX; 
masm SETENVP /D~COMPACT~ /MX; 
masm EXEC /D~COMPACT~ /MX; 
masm SPAWN /D~COMPACT~ /MX; 
masm CVTFAK /D~COMPACT~ /MX; 
masm REALCVT /D~COMPACT~ /MX; 
masm SCANTOD /D COMPACT /MX; 
tee -1\TURBOC\RUNTlME\INCLUDE -1\TURBOC\INCLUDE -0 -z -e -me *.C* 
COPY •. \OBJ\*.OBJ 
DEL .. \LIB\CC.* 
lib .. \LIB\CC @CLIB.RSP 
ECHO *** 
ECHO*** Step 5: Building LARGE Memory Model Library 
ECHO *** 

150 TURBO TECHNIX November/ December 1987 

FROM THE RUNTIME 

use the new libraries, follow this 
menu path within TC: Options to 
Environment to Library directory. 
From the Library directory, enter: 

C:\TURBOC\RUNTIME\LIB. 

If you use the Turbo C linker 
TLINK directly, you must supply 
the exact name, including the 
path, of every library that you wish 
to use in the link. 

Our library batch files , 
NEW_MATH.BAT and 
NEW_CLIB.BAT, assume this 
directory structure and also 
inform you of their progress 
as they work. 

The easiest way to use these 
batch files is to put them in your 
C: \ 11.JRBOC directory, so that 
they're on your path along with 
the other Turbo C executables 
and .BAT files . They connect to 
their source directory 

C:\TURBOC\RUNTIME\LIB 

C:\TURBOC\RUNTIME\MATH 

for 

NEW_MATH.BAT, 

C:\TURBOC\RUNTIME\CLIB 

for 

NEW_CLIB.BAT 

and then remove all objects there 
and in our proposed object 
directory. The batch files then 
rebuild all memory model 
libraries. This is a time-consuming 
process; it took about 45 minutes 
to build CS.LIB on an 8 MHz AT 
clone, and that is the library for 
only one of the five memory 
models. 

Consequently, you rarely will 
want to build only the C<x> 
libraries completely from scratch. 
Rather, you will want to change 
only a few routines and avoid the 
high cost of rebuilding all of the 
libraries. 

For just these occasions we 
have written two DOS batch files, 
UPDC.BAT and UPDASM.BAT, 
that allow you to change a single 
.C (or .CAS) or .ASM file, respec-



tively. These batch files appear in 
Listings 3 and 4. As usual, we 
suggest that you put them in 
C: \ TURBOC so that they are 
always available. They work only 
on the C<x>.LIB libraries, but 
you could copy them and make 
minor modifications to have batch 
files for the MATH<x>.LIB 
libraries as well. Each one updates 
all five memory model C<x>.LIB 
libraries in the directory 
C: \ TURBOC\RUNTIME\LIB. 
Each requires one argument, the 
base name (for example, FOO, 
but not FOO.C or FOO.ASM) of 
the source file to be changed in 
the library. They assume that you 
are running them from the 
directory that contains the source 
file and that TCC, MASM, and 
LIB are in the current directory or 
on your path. 

An alternative to this approach 
would be to construct MAKE files 
that contain the instructions for 
all of the files in each of the 
source directories. We did not fol
low this approach because of the 
large number of files, but for dedi
cated MAKE users it probably 
would be well worth the trouble. 

With these four batch files and 
our new directory structure in 
place, we are ready to get into the 
code itself. In future columns we 
will do just that. We will look at 
routines as diverse as CO (the 
start-up routine) and printf, prob
ably starting with the addition of 
file name template, or wildcard, 
abilities to the standard Turbo C 
command line argument proces
sor (_SETARGV). Until then, we 
encourage you to browse through 
the Runtime source and experi
ment with this exciting and useful 
new product. • 

Mark L. Van Name is co-founder and 
vice president of research and develop
ment at Foresight Computer Corp. He 
is also a freelance writer. Bill Catch
ings is a software engineer at Data 
General Corp and a freelance writer. 

Listings may be downloaded from 
CompuServe as RSVJVJ.ARC 

DEL *.OBJ 
masm CO,COL /D~LARGE~ /MX; 
COPY COL.OBJ .. \LIB 
masm SETARGV /D~LARGE~ /MX; 
masm SETENVP /D~LARGE~ /MX; 
masm EXEC /D~LARGE~ /MX; 
masm SPAWN /D~LARGE~ /MX; 
masm CVTFAK /D~LARGE~ /MX; 
masm REALCVT /D~LARGE~ /MX; 
masm SCANTOO /D~LARGE~ /MX; 
tee -1\TURBOC\RUNTIME\INCLUDE -1\TURBOC\IN 
COPY .. \OBJ\*.OBJ 
DEL .. \LI B\CL. * 
lib .. \LIB\CL @CLIB.RSP 
ECHO *** 
ECHO*** Step 6: Building HUGE Memory M 
ECHO *** 
DEL *.OBJ 
masm CO,COH /D~HUGE~ /MX; 
COPY COH.OBJ .. \LIB 
me.sm SETARGV /D~HUGE~ /MX; 
masm SETENVP /D~HUGE~ /MX; 
masm EXEC /D~HUGE~ /MX; 
masm SPAWN /D~HUGE~ /MX; 
masm CVTFAK /D HUGE /MX; 
masm REALCVT /D==HUGE== /MX; 
masm SCANTOO /D~HUGE~ /MX; 
tee -1\TURBOC\RUNTIME\INCLUDE -1\TURBOC\IN 
COPY .. \OBJ\*.OBJ 
DEL .. \LIB\CH.* 
lib .. \LIB\CH @CLIB.RSP 
ECHO *** 
ECHO*** Finished Building CLIB 
ECHO *** 

ECHO OFF 
ECHO *** 

LISTING 3: UPDC. 

ECHO*** Updating C Module %1 In All Memo 
ECHO *** 
tee -1\TURBOC\RUNTIME\INCLUDE -1\TURBOC\IN 
lib \TURBOC\RUNTIME\LIB\CS -+%1; 
tee -1\TURBOC\RUNTIME\INCLUDE -1\TURBOC\IN 
lib \TURBOC\RUNTIME\LIB\CM -+%1; 
tee -1\TURBOC\RUNTIME\INCLUDE -1\TURBOC\IN 
lib \TURBOC\RUNTIME\LIB\CC -+%1; 
tee -1\TURBOC\RUNTIME\INCLUDE -1\TURBOC\IN 
lib \TURBOC\RUNTIME\LIB\CL -+%1; 
tee -1\TURBOC\RUNTIME\INCLUDE -1\TURBOC\IN 
lib \TURBOC\RUNTIME\LIB\CH -+%1; 
ECHO *** 
ECHO *** Finished Updating Module %1 In Al 
ECHO *** 

LISTING 4: UPDASM. 

ECHO OFF 
ECHO *** 
ECHO *** Updating Assembler Module %1 
ECHO *** 
masm %1 /D SMALL /MX; 
lib \TURBOC\RUNTIME\LIB\CS -+%1; 
masm %1 /D MEDIUM /MX; 
lib \TURBOC\RUNTIME\LIB\CM -+%1; 
masm %1 /D~COMPACT~ /MX; 
lib \TURBOC\RUNTIME\LIB\CC -+%1; 
masm %1 /D LARGE /MX; 
lib \TURBOC\RUNTIME\LIB\CL -+%1; 
masm %1 /D HUGE /MX; 
lib \TURBOC\RUNTIME\LIB\CH -+%1; 
ECHO *** 
ECHO *** Finished Updating Assembler Modul 
ECHO*** CLIB Libraries 
ECHO *** 



CRITIQUE 
QuickPak for Turbo Basic 

Q:µickPak for Turbo Basic 
Crescent Software 
64 Fort Point Street 
East Norwalk, CT 06855 
(203) 846-2500 
List Price: $69.00 ($3 sl h) 

C 
rescent Software's 
QuickPak for Turbo 
Basic is a set of subrou
tines and documentation 

for Turbo Basic. Originally 
released for Microsoft's Quick
BASIC, it was convened for the 
Turbo Basic environment by its 
author, Ethan Winer. 

QuickPak consists of a single 
5.25-inch diskette and three laser
printed, softbound manuals. The 
first manual is the software 
owner's guide, the second an 
assembly language tutor, and the 
third a collection of hints on 
using BASIC more effectively. All 
are written in a clear, humorous 
manner and interspersed with lit
tle cartoons: a welcome change 
from the very serious Microsoft 
manuals, but not as necessary with 
Borland's lighter documentation. 

The assembly language tutor 
included as pan of QuickPak is 
intended to help the casual or 
novice programmer write portions 
of BASIC programs in assembler, 
for more speed or access to the 
PC's DOS and BIOS services. As 
such, it is not a comprehensive 
tutorial, but more a chapter in a 
larger assembly language primer. 
With this limitation in mind, it 
does a good job of explaining the 
basics of writing assembly lan
guage subroutines. 

The software shipped as pan of 

QuickPak consists of BASIC and 
assembly language routines which 
perform some little things that 
enhance both QuickBASIC and 
Turbo Basic. These routines 
include file manipulation, fast 
sorting, video services, and getting 
the current directory of a drive 
into a string so it can be restored 
later. 

Because Turbo Basic does not 
use a linker, the routines are 
included in source programs 
using the $INCLUDE metastate
ment. The dependencies between 
source files are not documented 
in the manual, so you need to 
inspect the source to make sure all 
of the required subroutines are 
included. Since many of the sub
routines have both a BASIC 
"wrapper" and an assembler 
$INLINE that does the real work, 
care must be taken to ensure that 
both source files are accessible or 
compilation errors will occur. One 
way around this problem is to 
modify the BASIC functions to use 
the same directory for both the 
assembler and BASIC files, 
instead of QuickPak's default 
INCLUDE directory for the 
assembler files. 

Making this modification, and 
working with the package in 
general, is easy: all of the subrou
tines (including the pans in 
assembly language) are gener
ously commented and clearly for
matted. While Winer's formatting 
style is not the same as Borland's 
examples, even beginners should 

152 TURBO TECHNIX November/ December 1987 

have little trouble figuring out 
these subroutines and changing 
them to suit their needs. All of the 
source files have long commented 
prologues that clearly explain 
their calling parameters and 
shared variables. 

Included in QuickPak are most 
of the pieces needed to write busi
ness applications, including input 
routines (text, date, and numbers), 
menus (Lotus-style, pulldown, and 
conventional), an assortment of 
string functions, date and time 
routines, and others. Some of the 
routines are not as robust as they 
might be: for example, the menu 
routines display only nine items 
and won't scroll through a display 
of a larger number of items. 

All of the routines have been 
designed to minimize the neces
sary calling parameters. Although 
this makes the routines easier to 
use, it also means that changes 
must be made for more complex 
uses. 

Many of the major subroutines 
have demonstration programs that 
can be immediately compiled and 
evaluated. A minor quibble is that 
there is no standard header file of 
commonly used descriptive con
stants that can be placed at the 
start of a program to simplify 
using the routines. 

Taken together, the routines 
supplied in QuickPak are more 
topical than comprehensive. That 
is, they address specific needs 
within the Turbo Basic and Quick
BASIC environment rather than 
providing a unified toolbox for 



business software developers. 
Some routines are far more useful 
than others. For example, the sort 
package is a fast, general-purpose 
quicksort suitable for business use, 
while the menu routines require 
substantial cosmetic reworking 
and are more an example or scaf
fold than a production program. 

QuickPak clearly was a hasty 
conversion from Microsoft Quick
BASIC: the Turbo Basic
applicable portions of the docu
mentation are found only in a 
small addendum pamphlet. In the 
assembly tutor especially, these 
changes should have been incor
porated into the text for clarity 
and readability. Further, given 
Turbo Basie's radical memory 
organization, most of the hints in 
the hint booklet are effectively 
worthless. 

This criticism in mind, Quick
Pak is still a good value, especially 
for those needing to understand 
the code they use. Its clear source 
code is well worth examining by 
programmers who want to learn 
Turbo Basic or build their own 
software toolbox. Combined with 
a file access method, QuickPak 
would be a good start for business 
programmers who need a toolbox 
of routines they can easily modify. 
With improved, Turbo Basic
oriented documentation, 
QuickPak will be a very 
useful product. • 

- Marty Franz 

TECH Help! 

TECH Help! Version 3.2a 
Flambeaux Software 
1147 East Broadway, Suite 56 
Glendale, CA 91205 
(818) 500-0044 
List price: $69.95 

I t's late at night, and you're 
putting the final touches on 
your magnum opus, a pro
gramming masterpiece that 

will assure your fame and fortune. 
Just a few more final touches-but 
you can't remember the details of 
a certain DOS video call. As you 
reach for a reference book, it 
happens. You knock over a cup of 
coffee, sending a high-caffeine 
river flowing into your brand new 
80486 machine. 

As the motherboard melts and 
the hard disk starts sounding like 
a garbage compactor, you congrat
ulate yourself for having stashed 
numerous backup copies of the 
program around your house. At 
this moment, the last trickle of 

coffee finds its way through the 
floor to the basement fuse box, 
where it causes a short circuit. 
While you manage to escape the 
resulting fire, the entire house
including all program backups 
and your autographed photo
graph of Philippe Kahn-bums to 
a crisp. 

Could this nightmare scenario 
have been avoided? With TECH 
Help!, that fateful reach for the 
reference book never would have 
happened. TECH Help! is a 
memory-resident technical refer
ence "book" that can be popped 
up within applications programs. 
TECH Help! makes available most 
of the technical information that 
would be found in the DOS Techni
cal Reference Manual, the IBM PC/ 
XT I AT Technical Reference Manual, 
and an assembly language refer
ence book. TECH Help! is 
intended primarily for pro
grammers, who can access its 

helps compare evaluate , find products. Straight answers for serious programmers. 

FREE Catalog & Advice 
Over 40 products for Turbo X programmers 
PLUS over 700 more for programmers in other 
languages. Technical specialists help you 
choose the right product for you. Call today. 

Recent Discovery 
Turbo-to-C Tools - Translates Pascal to modular 
K&R. MS, Turbo C library support, nested proc&
dures, all data types (incl. structured constants), 
operators, control structures. 99% rate. PC $459 

Vitamin C Turbo BASIC Support 

BASIC Development Tools 
Turbo Finally! 

PC $ 89 Windows for Data 
PC $159 
PC $319 

Turbo C Support 

Blackstar C Functions 
C Utility Library 
C Worthy Interface Library 
with Forms 

Curses· by Aspen 
dB_ VISTA· single user 
dBx • dBASE Ill to C 
Essential Graphics 
Greenleaf C Sampler 
Greenleaf Comm Library 
Greenleaf DataWindows 
Greenleaf Function Library 
Panel PLUS 
PC-lint· v. 2.10 
Turbo C Tools· by Blaise 
Turbo HALO 
TurboWINDOW/C 

PC $ 85 Turbo Pascal Support 

PC$ 99 
PC $119 
PC $169 
PC $249 
PC $109 
MS $129 
MS $299 
PC $185 
PC $169 
PC $129 
PC $159 
PC $139 
MS $409 
MS$ 99 
PC$ 95 
PC$ 95 
PC$ 79 

Halo 
Mach 2 • MicroHelp 
Math Pak 87 
Report Builder 
Screen Sculptor 
System Builder 
TDebug-Plus 
TP2C 
Turbo Asynch Plus· Blaise 
Turbo Extender 
Turbo HALO 
Turbo Optimizer· object 
with source 

Turbo Power Tools Plus 
Turbo Power Utilities 
Turbo Professional 
Turbo-Ref 
TurboWINDOW 

PC $209 
MS$ 59 
PC$ 79 
PC $115 
PC$ 95 
PC $119 
PC$ 49 
PC $209 
PC$ 79 
PC$ 65 
PC$ 95 
PC$ 69 
PC $109 
PC$ 79 
PC$ 79 
PC$ 49 
PC$ 45 
PC$ 79 

Feature 

TURBOsmith Debugger -
View, edit Pascal source, 
machine code, variables, 
memory in multi·win
dows. Step, trace, break
points. 8087, BCD sup-

Call for a catalog and solid value 
800-421-8006 Note: All prices subject 

to change without 
notice. Mention this ad. 
Some prices are sp&
cials. Ask about COD & 
POs. 200 formats plus 
3' laptop. UPS surface 
shipping add 3$/item. port. PC $65 

'l'llE PllOGll1UDIEll'S SHOP 
Your comple/e source /or soltware services and answers 

5-x Pond Pa rk Road , Hingham . MA 02043 
Mass . 800-442-8070 or 617-740-2510 

November/ December 1987 TURBO TECHNIX 153 



quick routes from the main menu 
to the specific topic you are inter
ested in. For example, one index 
lists all 269 TECH Help! topics 
alphabetically, starting with 

About DOS Functions 
Access Mode I Open Mode 
ANSI Console Escape Sequences 

and ending with: 

used Video Service Directory 
XT Hard Disk Ports 
XT Switch Settings. 

In contrast, the General Index 
lists topics by category. The first 
category is ANSI.SYS, under which 
the topics ANSI Console Escape 
Sequences and The CONFIG.SYS 
File are listed; the second category 
is ASCII, with topics ASCII and 
ASCIIZ, Box Line and Special 
Characters, Character Set Matrix 
Epson/IBM Printer Control ' 
Codes, and Extended ASCII 
Keystrokes. 

Accessing a specific topic some
times requires moving through 
one or two submenus before 
reaching the explanatory text. The 
name of the current submenu or 
topic is displayed at the top of the 
screen, and navigation commands 
are displayed at the bottom. 

In both menus and text, topic 
keywords are distinguished by 
color or, with a monochrome dis
play, intensity. As you scroll 
through the text, a highlight bar 
moves from keyword to keyword. 
At any time, pressing Enter takes 
you to the highlighted topic. The 
Esc key backs you up, in order, 
through previous topics. This sys
tem makes it fast and easy to move 
around in TECH Help!. In addi
tion, access to information is rea
sonably fast, even though data 
must be read from disk. Using an 
XT with a hard disk, TECH Help! 
screens came up almost instan
taneously in most cases and never 
took longer than about half a 
second. 

WELL BEHAVED IN MEMORY 
In memory-resident mode, TECH 
Help! is well behaved, meaning 
that it can happily coexist with 
other memory-resident programs. 
I installed TECH Help! in all pos
sible permutations with SuperKey 
and SideKick-before them, 

between them, and after them
and all combinations functioned 
properly. These programs can 
also be popped up in almost any 
order. 

Thus, for example, while writ
ing in Sprint I could pop up 
TECH Help! to find some infor
mation, pop up SuperKey to write 
a macro, and then activate the 
Side Kick dialer. A few taps of the 
Esc key would then back me out 
of all three. The only exception I 
found was when SuperKey is 
popped up from the DOS prompt. 
In this situation, TECH Help! can
not be popped up on top of 
SuperKey. From inside an applica
tion, however, TECH Help! can 
be popped up on top of SuperKey. 
I don't know the reason behind 
this incompatibility, but in any 
event, it's minor and unlikely to 
be of concern to anyone. The 
important point is that I was never 
left with a locked keyboard or 
crashed system. 

As well designed as TECH 
Help!'s user interface is, it would 
not be of much use if it presented 
incorrect information. Although I 
could not check everything, I did 
crosscheck several dozen items 
against my own knowledge and 
other reference sources. I did not 
find a single error in TECH 
Help!, which suggests that it can 
be counted on to provide accurate 
information. 

TECH Help!'s major flaw is that 
it takes up the entire screen when 
activated and disappears com
pletely when exited. This makes it 
difficult to transfer information 
from TECH Help! to the program 
or document you are editing. A 
variable size window that pops up 
away from the current cursor loca
tion, and then remains visible 
temporarily after TECH Help! is 
exited, would be an improvement. 
Overall, however, this is an excel
lent product, and I have become 
quickly addicted. I highly recom
mend TECH Help! to serious pro
grammers or anyone else who 
needs fast, online access to techni
cal information about MS-DOS 
and PCs. • 

-Peter Aitken 



BOOKCASE 

MEMORY RESIDENT 
UTILITIES, INTERRUPTS, 
AND DISK MANAGEMENT 
WITH MS & PC DOS 

Michael Hyman, Management Infor
mation Source, Inc., Portland, OR· 
1986, ISBN 0-943518-73-3, 373 
pages, perfect bound, $22. 95, disk 
$20.00 

T he stated purpose of 
this book is to provide 
advanced DOS pro
grammers with a 

"detailed understanding of the 
sophisticated aspects of DOS pro
gramming." It is doubtful that any 
one book could completely cover 
such a broad topic, but for the 
person interested in advanced 
DOS subjects, Michael Hyman's 
attempt is well worth the price. 

The book, like its title, is 
divided into three sections that 
deal with disk drives, interrupts, 
and memory residency. Each sec
tion is comprised of several small 
chapters. 

Each subject is supported with 
example routines in either Turbo 
Pascal or assembly language 
source form. This is one of the 
strong points of the book: The 
practical nature of real-world pro
gramming is illustrated much 
more effectively when honest pro
gram examples are used to sup
port the concepts under discus
sion. Thus, Hyman avoids the 
"lead them to water but don't let 
them drink" attitude that certain 
more famous programmer's 
guides seem to favor. 

The author recommends Turbo 
Pascal and Microsoft Macro 
Assembler for compilation of the 
example listings. A disk contain
ing both the source code and 

• compiled programs is available 
from Princeton Software for $20. 

Section I thoroughly explains 
disk drives and files. Subjects 
include the hard disk partition 
record, the boot record, the file 
allocation table, the root directory, 
subdirectories, file erasure, and 
the recovery of erased files. 

To reinforce what is learned in 
this section, Hyman encourages 
the reader to type in, compile, and 
run the Turbo Pascal program 
EXPLORER, which is a fairly pow
erful disk editor. As each subject is 
covered, modules are added or 
enhanced until the program can 
read and write disk sectors, view 
the boot record and root direc
tory, change file attributes and 
unerase files. At the end of each 
lesson, the author suggest experi
ments with EXPLORER to 
enhance comprehension. 

Section II covers operating sys
tem interrupts and function calls. 
Screen, keyboard, mouse, and 
light pen control are discussed, as 
are files and directories. The de
scriptions of text and graphics 
techniques, however, are some
what skimpy. The author appar-

ently recognizes this, because he 
recommends another of his 
books, Advanced IBM PC Gra
phics, in several places. 

The chapter on conventional 
and expanded memory usage is 
quite good. Two example pro
grams are included, both written 
in assembly: MOVE, which 
renames files and allows the mov
ing of files between subdirectories 
without copying and erasing the 
originals, and DIR2, which is an 
enhanced directory utility similar 
to the DOS command DIR. 

Memory resident and "pop-up" 
utilities are the subject of Section 
III: how to write them, which 
operating system calls to use, and 
what to avoid. Two assembly lan
guage programs are used to illus
trate these concepts: VIDEOTBL, 
a small program that replaces the 
video parameter table and 
remains in memory, and PRO
TECT, a memory-resident utility 
that prevents hard disks from being 
formatted by DOS or BIOS calls. 

Memory Resident Utilities, 
Interrupts, and Disk Management 
with MS & PC DOS assumes some 
knowledge of operating systems in 
general, and DOS in particular. 
Given the subject of the book, this 
is not a bad assumption. The book 
is not fancy or smooth, but it 
is straightforward, unpretentious, 
and clear. The examples given 
bear the mark of experience, and 
the warnings supplied could only 
come from a programmer who 
has successfully attempted what 
he claims is possible. 

Michael Hyman has a good atti
tude and his book reflects it; I 
recommend it to anyone who is 
interested in exploring advanced 
topics in DOS programming. • 

-Rick Ryall 

November/ December 1987 TURBO TECHNIX 155 



BOOKCASE 

ADVANCED TURBO PROLOG 
PROGRAMMING 

Dan Shafer, Howard W Sams & 
Company, Indianapolis, IN 1987, 
ISBN 0-672-22573-5, 251 pages, soft
cover, $19.95, Disk $10.00 

T urbo Prolog is a lan
guage in search of 
applications. Since its 
birth, this unique 

declarative language has been 
tempting software developers with 
its Al programming features and 
its built-in symbolic processing 
capabilities. Unfortunately, very 
little has been written to show 
programmers how to develop 
solid applications. Most of the 
books written on Turbo Prolog 
only go as far as explaining what's 
in the user's manual. 

Fortunately, Dan Shafer, in his 
latest Prolog book, has taken a dif
ferent approach. Hopefully, this 
book is the beginning of a new 
wave of useful, practical, and well
designed advanced Turbo Prolog 
programming books. 

Advanced Turbo Prolog Program
ming is designed for programmers 
who have bought Turbo Prolog, 
read most of the tutorial books, 
and are now ready to take the 
next step- to create real pro
grams. The author's goal is to dis
pel the myth that Turbo Prolog is 
a toy language; thus, he emphas
izes the important programming 
concepts and techniques and uses 
solid examples. 

The book is unique in two 
respects. First, it presents impor
tant software development issues, 
such as modular programming, 
interfacing to other languages, 
and constructing utilities, that 
most Prolog books usually ignore. 
Second, many of the example pro
grams are written by a variety of 
programmers; thus, the reader 
benefits from the knowledge and 
programming experience of other 
Prolog aficionados. 

The book is divided into five 
parts: modular programming with 
Turbo Prolog, interfacing Turbo 
Prolog with the outside world, nat
ural language processing, math 
and logic, and constructing useful 
utilities. Readers can obtain the 
code presented in the book by 
sending the author $10 or by 
downloading the code from Com
puServe (a nice touch). In general, 
each part is well written and the 
code is thoroughly explained, 
even though I have a few com
plaints. More on that later. 

WHAT CAN YOU DO WITH IT? 
If you have been using Turbo 
Prolog and you're still asking this 
question, then this book might be 
just what you're looking for. The 
first part of the book is dedicated 
to answering the question: How 
can Turbo Prolog be used to 
develop modular programs? To 
answer this, the author develops a 
sample program, Micro_Parse, 
which performs simple analysis of 
a sentence. Modular program
ming is an important topic that 
most Turbo Prolog books, includ
ing the user's manual, do not 
cover in depth. Turbo Prolog pro
vides unique and powerful fea
tures for modular programming 
such as global variables, projects, 
the module list, and global defini-

156 TURBO TECHNIX November/ December 1987 

tions for predicates and domains. 
The author presents these topics 
clearly and illustrates how they 
are used with the sample program. 
Also included is a section on writ
ing and testing modules, which 
provides some unique insights 
into developing programs. 

I found the second part, which 
presents techniques for interfac
ing Turbo Prolog with other lan
guages and applications, to be the 
most interesting and useful. The 
topics covered include interfacing 
Turbo Prolog with C, Pascal, 
assembly language, and DOS; 
memory management; using the 
Turbo Prolog Toolbox serial port 
predicates; working with external 
data files; and techniques for 
accessing database and spread
sheet files. The basic concepts 
involved in interfacing Turbo 
Prolog with other languages are 
generally well presented. 

However, I found the section 
on interfacing with C somewhat 
disappointing. Here the author 
presents a very short example of a 
character counting program to 
illustrate how Turbo Prolog can 
be combined with Microsoft C 4.0. 
Although the material is accurate, 
(this is the first correct published 
explanation that I am aware of) I 
think the example is too simplistic. 
Combining languages is always 
difficult and I think the reader 
would greatly benefit if more 
examples were provided. 

The author does do the reader 
a great service by accurately show
ing how Turbo Prolog interfaces 
with assembly language. Early ver
sions of the user's manual 
explained the interface incor
rectly, and I'm sure any pro
grammer who has tried to make 
the two languages work together 
will treasure this material. 

Another notable chapter in the 
second part is the one dedicated 
to interfacing with DOS. This 
chapter explains the bios predi-



cate in detail and presents the 
portbyte predicate. As a bonus, 
RS-232 interfaces using the Turbo 
Prolog Toolbox are discussed. I 
think the Toolbox is one of the 
most useful sets of programming 
tools that I have ever used, and 
I'm glad the author included some 
discussion about the tools. 

In Part 3, the author presents 
an important Al application: natu
ral language processing. This sec
tion begins with a general discus
sion about the fundamental issues 
involved in natural language pro
cessing. Topics such as conceptual 
dependency theory, pattern 
matching (ELIZA), grammars, and 
general parsing techniques are 
covered. But don't expect to find 
any code in this section. Chapters 
13 and 14 in Part 3 do, however, 
present a few sample programs. 
Most noteworthy is the augmented 
transition network (A TN) example 
presented in chapter 14. ATNs 
are powe1ful devices for repre
senting grammars and are used in 
many commercial and theoretical 
natural language processing pro
grams. (The A TN program was 
written by a high school student.) 

I have only one complaint with 
the section on ATNs. I think the 
author should have provided a 
more in-depth discussion about 
how the ATN example program 
works and how it can be ex
panded. I think the "Oh by the 
way, here is the code" approach is 
far below the quality of the rest of 
this book. 

The last two parts, 4 and 5, are 
devoted to math, logic, and tech
niques for developing useful utili
ties. Some interesting logic puzzle 
programs are presented, including 
the well-known Master Mind 

game. To illustrate the math capa
bilities of Turbo Prolog, a pro
gram for performing mortgage 
amortization is developed. The 
intent of these programs is to 
show the reader how to solve 
problems with Turbo Prolog. In 
this respect I think the author is 
successful. But the chapter that 
impressed me the most was the 
last one, which illustrates how to 
simulate calls and pass predicates 
in Turbo Prolog. This is the type 
of material I expect to find in an 
advanced programming book. 

CONCLUSION 
In general, Advanced Turbo Prolog 
Programming is a well-written text 
that should appeal to all pro
grammers who want to both 
improve their Turbo Prolog pro
gramming skills and learn tech
niques for developing useful 
applications. It is refreshing to 
read a book that uses practical 
examples to explain important 
programming issues. Most Turbo 
Prolog books (and even standard 
Prolog books) rely too heavily on 
the ')ohn loves mary" examples, 
which needless to say, aren't help
ing to advance the popularity of 
the Prolog language. Advanced 
Turbo Prolog Programming stands 
out from the pack because it takes 
a much more serious and practical 
approach to the Turbo Prolog 
language. 

I recommend that you buy two 
copies of this book: one to keep 
for your own library, and one to 
send to your favorite Pascal or C 
programmer to get the message 
out: Turbo Prolog is more than 
just a toy AI language. • 

-Keith Weiskamp 

COMING UP 

Floating point in 
Turbo C ... 
Expressing analog quantities 
within your program's digital uni
verse is subtle, as anyone who has 
read the IEEE floating point speci
fication can attest. Discover what's 
going on behind the numbers: 
Turbo C's floating point smarts 
allow your programs to use the 
math coprocessor when you have 
one, and emulate it when you 
don't. 

Turbo C for Turbo 
Pascal, Turbo Prolog, 
and Turbo Basic 
people ... 
Bruce Webster explains the 
mindset behind the C language, 
and Reid Collins provides a 
guided tour of the Turbo C devel
opment environment and the 
MAKE utility. 

and the TECHNIX 
keep coming ... 
Need some speed in your Turbo 
Prolog projects? Take hold of tail 
recursion. Michael Covington is 
your guide, and with his help you 
can call yourself and not be late 
for dinner. 

Far too many people simply 
treat the 80286 and 80386 as fast 
8088s, and make no use at all of 
these processors' more advanced 
features.Juan Jimenez explains 
how to let your programs deter
mine which processor lurks at the 
heart of the machines they're run
ning on. With a little help from 
Bruce Tonkin and Gary Entsmin
ger, Juan provides routines for all 
four Turbo languages to detect the 
CPU type (8088/ 188, 8086/ 186, 
80286 or 80386) using fully sup
ported CPU features documented 
by Intel. 

Bruce Tonkin provides a utility 
that converts assembly language 
.COM files to Turbo Basie's 
INLINE format. All our columnists 
will return with more practical 
advice. 

November/ December 1987 TURBO TECHNIX 157 



TURBO RESOURCES 

You're looking for Borland language information. 
Where to go? Well, for starters, right here. A 12-month 
free subscription to TURBO TECHNIX is yours for 
the asking when you register any of the Borland lan
guages (including Quattro, Paradox, Eureka, and 
Sprint) or language toolboxes. A subscription request 
card is packaged with each of those products-do fill 
it out and return it to be sure you get every issue. If 
your copy of a Borland language product was shipped 
without the subscription request card, just write, "I 
would like to subscribe to TURBO TECHNIX," in the 
bottom margin of the license statement. 

COMPUSERVE 
The best online information about the Borland lan
guages can be found on CompuServe. Subscribing to 
CompuServe can be done through the coupon 
enclosed with every Borland product (which also 
includes $15 worth of online time for your first 
month) or by calling CompuServe at (800) 848-8199. 
You'll need a modem and some sort of communica
tions software that supports the XMODEM file 
transfer protocol. 

Learning your way around CompuServe takes 
some time and practice, but good books have been 
written about it, including Charles Bowen's and 
David Peyton's How To Get The Most Out Of Compu
Serve and Advanced CompuServe for IBM Power Users 
(Bantam Computer Books, New York: 1986). Howard 
Benner's ZAPCIS shareware utility can help you min
imize connect time and automate sessions. It is availa
ble for downloading on CompuServe from DL 3 of 
the IBM Communications Forum (GO IBMCOM). 

How to access the Borland Forums on CompuServe: 
All TURBO TECHNIX listings are available in all Bor
land forums, in DL 1 (short for Data Library 1). From 
the initial CompuServe prompt, type 

GO <forl.JTI name> 

or follow the menus. If you are not already a member 
of a forum, you must join by following the menus 
before you can download the listing files. There is no 
additional charge for joining a forum. 

158 TURBO TECHNIX November/ December 1987 

How to download TURBO TECHNIX code listings 
from CompuServe: 

At the Functions prompt, type: 

DL 1 

This will take you to the TURBO TECHNIX data 
library, where all listing files are stored. Listing files 
are archived using the ARC51.EXE archiving scheme. 
You will need this program or one compatible with it 
to extract listing files from downloaded archives. The 
ARC5 l .EXE shareware program is available from the 
DL-please contribute to the authors. 

Archive files are organized two ways: by article and 
by issue. In other words, there will be one .ARC file 
for every article that includes listings, and a single, 
larger .ARC file for each issue containing all the indi
vidual .ARC files for that issue. You can therefore 
download listings for individual articles, or download 
the entire issue's listings in one operation. 

The all-issue files follow a naming convention such 
that NOVDEC87.ARC contains all listing archives 
from the November/ December 1987 issue,JAN
FEB88.ARC for the January/ February 1988 issue, and 
so on. The name of an article's individual listings 
archive file is given in the magazine at the end of the 
article. 

To download an archive file , type 

DOY <filename>/PROTO: XMO 

at the DL 1 prompt. After pressing Enter, start the 
XMODEM receive function of your own communica
tions program. After you have completely received 
the file, you must press Enter once to inform Compu
Serve that the download has been completed. Once 
you have downloaded an archive file, you can 
"extract" its component files by invoking ARC51.EXE 
at the DOS prompt this way: 

C>ARC51 E <filename> 

TUG 
The national user group for Turbo languages is TUG, 
the Turbo User Group. TUG publishes a bimonthly 
newsletter called Tug Lines that contains bug reports, 
programming how-tos, and product reviews. Exten
sive public-domain utility and source code libraries 
are available to members. Dues are $22.00 US/ year 
($23.72 in Washington State) ; $26.00 in Canada and 
Mexico; $38.00 overseas. 



TUG 
P.O. Box 1510 
Poulsbo, WA 98370 

LOCAL USER GROUPS 
One of the best places to look for advice and face-to
face assistance with your programming problems is at 
a local user group meeting. Most user groups in the 
larger cities have special interest groups (SIGs) 
devoted to the most popular programming languages, 
usually with strong Turbo presences. The following is 
a list of some of the largest and most active user 
groups in major urban areas across the country; 
obviously, there are thousands of user groups that we 
cannot list due to space limitations. If no listed group 
is convenient to you, ask about local user groups at a 
local computer store or check with a faculty member 
at a high school or college with a computer 
curriculum. 

BOSTON COMPUTER SOCIE1Y 
Information: (617) 367-8080 
BBS: (617) 353-9312 
One Center Plaza 
Boston, MA 02108 

CAPITAL PC USER GROUP (D.C.) 
Information: (301) 652-7791 
4520 East-West Highway, Suite 550 
Bethesda, MD 20814 
C SIG: Fran Horvath 
AI/Prolog SIG: Dick Strudeman 
BASIC SIG: Don Withrow 

CHICAGO COMPUTER SOCIE1Y 
Information: (312) 942-0705 
P.O. Box 8681 
Chicago, IL 60680 
BBS: (312) 942-0706 
Pascal SIG: Bill Todd (312) 439-3774 
C SIG: Ed Keating (312) 438-0027 
AI/Prolog SIG: Jim Reed (312) 935-1479 
BASIC SIG: Hank Doden (312) 774-5769 

HAL/PC (HOUSTON) 
Information: (713) 524-8383 
BBS: (713) 847-3200 or (713) 442-6704 
Pascal SIG: Charles Thornton (713) 467-1651 
C SIG: Odis Wooten (713) 974-3674 
Compiled BASIC SIG: Larry Krutsinger 
(713) 784-9216 
AI/Prolog SIG: George Yates (713) 448-7621 

NEW YORK PC USER GROUP, INC. 
Information: (212) 533-6972 
BBS: (212) 697-1809 
40 Wall Street, Suite 2124 
New York, NY 10005 

PACS (PHILADELPHIA) 
Information: (215) 951-1255 
BBS: (215) 951-1863 
PACS, c/o La Salle University 
Philadelphia, PA 19141 

SAN FRANCISCO PC USERS GROUP 
Information: (415) 221-9166 
3145 Geary Blvd., Suite 155 
San Francisco, CA 94118 

ST. LOUIS USERS GROUP 
Information: (314) 968-0992 
BBS: (314) 361-8662 
Pascal SIG: Jeffrey Watson (314) 481-4239 
Cl Assembler SIG: David Rogers (314) 968-8012 
BASIC SIG: Dennis Dohner (314) 351-5371 

TWIN CITIES PC USER GROUP 
Information: (612) 888-0557 
BBS: (612) 888-0468 
P.O. Box 3163 
Minneapolis, MN 55403 

Independent CBBS systems with programming 
orientation 
QUESTOR PROJECT 

(703) 525-4066 24Hr 
ILLINOIS BBS 

(312) 885-2303 24Hr 
PC-TECH BBS 

(408) 435-5006 24Hr 

Washington, D.C. 
$ 

Chicago, IL 
$ 

Santa Clara, CA 

$ = membership fee required 

November/ December 1987 TURBO TECHNIX 159 



PHILIPPE'S TURBO TALK 

Fast is fun and we all hate to wait! 

Philippe Kahn 

I 
n the Wild West, gunfight
ers were either quick on the 
draw or they were history. 
Back then, there were 

obvious health benefits in being 
faster than anyone else. 

Unfortunately, in today's com
puter industry it's not fatally dumb 
to be slow, but it is a waste of your 
own good time when someone or 
something slows you down. 

WHY WE ALL HATE TO WAIT 
We're used to speed. We don't ride 
horseback, we fly. We don't wait 
for letters to make it past hungry 
dogs, we use electronic mail or 
faxes. We don't wait in lines at the 
bank, we use ATMs. We don't 
walk, we run. We don't like wait
ing-and there's no good reason 
today why anyone has to wait. 
Waiting is a waste of time. 

Actually, Hemingway said 
something like, "Time is the thing 
we have the least of," and none of 
us wants to waste it or let others 
waste it for us by making us do 
things the hard way. But I guess 
not everyone gets the Hemingway 
message. 

We design cars to do a com
fortable 85 miles an hour on 
billion-dollar freeway systems built 
to handle that speed safely, then 
slow everyone down to 55. In this 
case, the technology is there, but 
the intelligence is not. We all love 
the German autobahn! 

FLAWED TECHNOLOGY 
SLOWS YOU DOWN JUST AS 
SURELY AS FLAWED LOGIC 
The compiler that can't compile 
fast enough is wasting your time. 
The database that can't find a 
record or sort your data fast 
enough is eating up the clock. 
The program that demands you 
take six different steps when it's 
possible to do them all in one 
keystroke is stealing time. The 
word processor that is so "user 
friendly" that it forces you to use 
templates in order to remember 
its "ergonomic design" certainly is 
not letting you make the best use 
of your time. The spreadsheet that 
laboriously recalculates every 
number it knows, instead of just 
the numbers that matter, is about 
as helpful as leg-irons to a sprint
er trying to beat the 100-meter 
record. And, of course, the same 
holds for the operating system 
that is so "state of the art" that its 
promoters will go to great lengths 
explaining why there have to be 
"performance tradeoffs." 

Programs like these are all time 
bandits. They take their time and, 
in the process, rob yours. 

YOU CAN'T AFFORD TO 
OBEY PARKINSON'S LAW 
Professor Northcote Parkinson's 
laws are funny. His "Work 
expands to fill the time available" 
law means that if people have all 
day to do something, they'll take 
all day to do it. Someone may 
have all day to write a letter, so 
they can take all day and it's no 
big deal. 

160 TURBO TECHNIX November/ December 1987 

But most of us don't have that 
luxury. Deadlines are stalking us, 
the clock is ticking and the meter 
is running. Time is "of the 
essence" and we can't afford to 
dawdle. We can't allow ourselves 
to be cast in the same mold as the 
woodsman with a blunt axe. He 
takes half a day instead of half an 
hour to trim a tree but then says 
he "hasn't got time to stop." 

Slow software is the modern
day blunt axe. 

WE'RE NOT HERE TO WASTE 
YOUR TIME 
The serious (some say slavish) 
commitment we have to speed 
and to not wasting anyone's time 
should be apparent by now. We 
want to champion the concept of 
fast, compact and efficient pro
grams in a world where people 
are saying, "It's okay if it's slow, 
because soon all the machines 
will be 24MHz 80386s; it's okay if 
it's big, because memory is cheap; 
and in any case, it'll all be solved 
by the new multitasking operating 
system." 

Well, if you think about it, if it's 
twice as fast on a machine today, 
it'll be twice as fast on a future 
machine, too, and no matter how 
you look at it, memory can always 
be used in a smarter way than to 
store sloppy programs. Even if it's 
free! 

We all want to have fun, and 
fast is fun. So let's not waste pre
cious time with software that's a 
little slow on the draw! • 



Borlands Quattro: The New Generation 
Spreadsheet-Twice the speed. 

Twice the power. Half the price. 

Quattro··. our new genera
tion professional spread
sheet proves there are 

better and faster ways to do 
everything. To do graphics. Tu 
recalculate. Tu do macros. Tu 
save and retrieve. To search. 
sort, load. Tu do anything and 
everything that state-of-the
art spreadsheets shou ld do. 

Our technical superior
ity means product 
superiority 

Lotus® Development, mak
ers of 1-2-3.® is bigger by fac
tors than Borland. Bigger. not 
better. Technical superiority is 
a Borland trademark. and 
Quattro is fresh proof that it 
produces a better product. 

Quattro gives you 
presentation-quality 
graphics 

Quattro brings new highs 
in quality graphics to your 
spreadsheet. It also brings 
new variety and diversity to 
the kinds of graphs and gra
phics you can produce from 
your spreadsheet. and you can 

produce hard copy of your 
graphics- with either printer 
or plotter-directly from the 
spreadsheet without leaving 
the spreadsheet. Quattro also 
gives you Postscript'" support. 

Quattro recalculates 
a lot faster than 
you-know-who 

The smartest and fastest 
way to recalculate a spread
sheet is to do what Quattro 
does. which is something 
called "intelligent recalc." 
which in English means you 
only re-count the formulas 
that count. Unlike 1-2-3. 
Quattro recalculates just the 
formulas that matter. 

Quattro: The New Generation Spreadsheet 
FEATURE QUATTRO LOTUS 2.01 

ReCalc Cash Flow Model (SK cells) . 27 T 2.90sec . 

Cl Delete Row 15K cells (Recalc Time) .76 sec. 2.3Bsec . 
~ -- -Q,_ Load File (15K cells) 15.9 sec. 19 .8 sec . (I'.) 

Page Down (A 1 to A 1000) 12.2 sec. 17.4 sec. 

Price $195 $495 

Benchma1k details available upon request . 

For the IBM PS/2'" and the IBM® and Compaq® families of personal computers and all 100% compatibles. 

·n w1th1n 60 days ot purchase this p1oduct does not pe1to1m 1n 
accordance with OUf i:la1ms. call our customer service department. 
and we will arrange a refund 

AU Borland products are trademarks or registered trademarks of 
Bo1!and ln1emat1ooaJ. Inc Lotus and 1-2-3 are reg1sre1ed trade
marks or lotus Oevelopmenl Corp Other brand and product names 
are lrademarks m registered t1ademarks ol the1r 1espec11ve holders 
Copy11ght C1987 Borland lntemahonal 81-1144 

INTERNATIONAL 

Using macros
electronic shortcuts
is easy with Quattro 

Quattro offers a complete 
macro debugging environment 
and puts you in control as you 
"single-step" through your 
macros and record them 
as you work. 

If you know how to 
use spreadsheets, 
you know how to 
use Quattro 

You don 't have to learn a 
whole new program. Quattro 
works directly with all 1-2-3 
file formats. o importing/ 
exporting or macro translation 
is required. Quattro can also 
load and save ASCII. Paradox.® 
and dBASE® files. Compatible 
with 1-2-3? Yes. Technically 
superior to 1-2-3? Yes. Hal f 
the price of 1-2-3? Yes! 

Get Quattro, the new 
generation spread
sheet for only $195.00 

Quattro is so advanced it's 
easy to use and it's less than 
half the price of 1-2-3. It's 
not copy-protected. and it's 
fully compatible with all your 
existing 1-2-3 files and 
macros-but it makes every
thing in them look better. 
print better and makes your 
work go faster. 

60-day money-back guarantee* 

For the dealer nearest 
you, a brochure, or 
to order now, Call 
(800) 543-7543 



Announcing 
Two Dynamic New Imprints 

C':'i • 2680 Tenth Street 
"' 'J ~ Osborne McGraw·Hill 
11M i Berkeley; California 94710 

The Borland-Osborne/McGraw-Hill 
Business Series 

..... Using REFLEX®: THE DATABASE MANAGER 
by Stephen Cobb 
Features sophisticated SuperKey® macros and REFLEX 
Workshop '" applications. · 
S21.95 paperback, ISBN 0-07-881287-9 

,.... Using SPRINT™: The Professional Word Processor 
by Kris Jamsa and Gary Boy 
Take advantage of this fabulous new word processing system 
that is powerful . fast, and includes many desktop publishing 
features. 
S21.95 paperback, ISBN 0-07-881291-7 

The Borland-Osborne/McGraw-Hill 
Programming Series 

,.... Using Turbo C® 
by Herbert Schildt 
Here's the official book on Borland 's tremendous new language 
development system for C programmers. 
S19.95 paperback, ISBN 0-07-881279-8 

,.... Advanced Turbo C® 
by Herbert Schildt 
For power programmers. Puts the amazing compilation speed 
of Turbo C® into action . 
S22.95 paperback, ISBN 0-07-881280-1 

,.... Advanced Turbo Pro log® Version 1.1 
by Herbert Schildt 
Now Includes the Turbo Prolog Toolbox '" with examples . 

S21.95 paperback, ISBN 0-07-881285-2 

,.... Turbo Pascal® Programmer's Library 
by Kris Jamsa and Steven Nameroff 
Revised to cover Borland's Turbo Numerical Methods Toolbox '" 
S21.95 paperback, ISBN 0-07-881286-0 

,.... Using Turbo Pascal® 
by Steve Wood 
Featuring MS-DOS programs, memory resident applications, 
in-line code, interrupts, and DOS functions 
819.95 paperback, ISBN 0-07-881284-4 

,.... Advanced Turbo Pascal® 
by Herbert Schildt 
Expanded to include Borland's Turbo Pascal Database Toolbox® 
and Turbo Pascal Graph ix Toolbox® 
821.95 paperback, ISBN 0-07-881283-6 

Available at Book Stores and Computer Stores. 
OR CAU TOU-FREE 800-227-0900 

800-772-2531 (In California) 
In Canada, contact McGraw-Hill Ryerson, Ltd. Phone 416-293-1911 

Trademarks: SuperKey, REFLEX , Tucbo BASIC, Turbo C, Turbo Pascal Database Toolbox, Turbo Pascal Graphix Toolbox, Turbo Pascal, Turbo Prolog, and Turbo Prolog Toolbox 
are registered trademarks of Borland International. REFLEX Workshop , SPRINT, and Turbo Pascal Numerical Methods Toolbox are trademarks of Borland International. WordPertect 

is a registered trademark of WordPertect Corp. WordStar is a registered trademark of MicroPro lnt'I Corp . Copyright © 1987 McGraw-Hill, Inc . . .. . . 

• 


