PASCAL USERS GROUP

Pascal News

NUMBER 21

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

APRIL, 1981

If this isn’t APRIL...

!
]

g

¥

-

!

‘l
3
-2y,

> /
L4

b QR -e 3
»
N P~
o
: _ X
-
(N .\}:
- M P -
o e -
- s v
.

does that mean we're late ?

—

Policy

POLICY: PASCAL NEWS (15-Sep-80)

*

*

Pascal News is the official but informal publication of the User's Group.

Pascal News contains all we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of:

1. Having to insist that people who need to know "about Pascal” join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls ‘or answer letters full of questions - we

will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiries has at the
"concentrators" (our phones and mailboxes). We are trying honestly to say:

"We cannot promise more that we can do."

Pascal News is produced 3 or 4 times during a year; usually in March, June,
September, and December.

ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a

virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and
18.5 cm lines!

Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY.

Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point oflview of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance,
style, output convenience, and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.

IMPLEMENTATION HWOTES - .reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

------ ALL-PURPOSE COUPON - - - - - — (1-Apr-81)

Pascal Users Group
P.O. Box 4496
Allentown, Pa. 18170-44¢g6 USA

Note

- We will not accept purchace orders.

- Make checks payable to: "Pascal Users Group", drawn on a U.S. bank
in U.S. dollars.

- See the Policy section on the reverse side alternate address if
you are located in the Australasian Region.

- Note the discounts below, for multi-year subscription and renewal.

- The U. S. Postal Service does not forward Pascal News.

, USA Europe Aust.
- [] 1 year $14. $14. AS 8.
[1 Enter me as a new member for:
[] 2 years $18. $25. AS 15.
[1 Renew my subscription for:
[1 3 years $25. #35. AS 24.

! !
[1 Send Back Issue(s) ! !

[1 My new address/phone is listed below

[1 Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

[] Comments:

ENCLOSED PLEASE FIND: AS

CHECK no.

G t= o= b=

NAME

ADDRESS

PHONE

COMPUTER

DATE

JOINING PASCAL USERS GROUP?

- Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.

- Please -enclose the ©proper prepayment (check payable to "Pascal User's
Group"); we-will not bill you.

- Please do not send us purchase orders; we cannot endure the paper work!

- When you join PUG any time within a year: January 1 to December 31, you will
receive all issues of Pascal News for that year.

- We produce Pascal News as a means toward the end of promoting Pascal and
communicating news of events surrounding Pascal to persons interested in
Pascal. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire to minimize paperwork, because we have
other work to do.

- American Region (North and South America), and European Region (Europe,
North Africa, Western and Central Asia): Join through PUGUSA

- Australasian Region (Australia, East Asia - incl. Japan): PUG (AUS) . Send

" SAlQ.@P0 per year to: Pascal Users Group, c¢/o Arthur Sale, Department of
Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania
7881, Australia. International telephone: 61-¢2-23 @561 x435

—— . — ————— ———— ————————————— —————————— —— — ——— ———— —— ———— ————— — —— ————————————— o o

PUG (USA) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatives collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG(USA). Persons in the Australasian Region must
join through their regional representative. People in other places please
join through PUG(USA). :

RENEWING?

- Please renew early (before November and please write us a line or two to tell
us what you are doing with Pascal, and tell us what you think of PUG and
Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

- Our wunusual policy of automatically sending all issues of Pascal News to
anyone who joins within a year means that we eliminate many requests for
backissues ahead of time, and we don't have to reprint important information
in every issue--especially about Pascal implementations!

- Issues 1 .. 8 (January, 1974 - May 1977) are out of print.

- Issues 9 .. 12 (September, 1977 - June, 1978) are available from PUG(USA) all
for $15.9¢ and from PUG(AUS) all for .$A15.00

- Issues 13 .. 16 are available from PUG(AUS) all for $Al5.¢9; and from
PUG (USA) all for s$15.00.

- Extra single copies of new issues (current academic year) are: $5.00 each -
PUG (USA) ; and $A5.¢0 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

- Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
cm. wide) form.

- All letters will be printed unless they contain a request to the contrary.

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:
(Company name if requestor is a company)

Phone Number:

Name and address to which information should
be addressed (Write "as above" if the same)

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the
case of a company, the requestor agrees that:

a) The Validation Suite is recognized as being the copyrighted, proprietary prop-
erty of R. A. Freak and A.H.J. Sale, and

b) The requestor will not distribute or otherwise make available machine-réadable
copies of the Validation Suite, modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and doc-
umentation contained in the Validation Suite for the purpose of compiler validation,
acceptance tests, benchmarking, preparation of comparative reports, and similar pur-
poses, and to make available the listings of the results of compilation and execution
of the programs to third parties in the course of the above activities. In such doc-
uments, reference shall be made to the original copyright notice and its source.

Distribution charge: $50.00

Make checks payable to ANPA/RI in US dollars drawn on a US bank. ‘ '
Remittance must accompany application. Mail request to:
Source Code Delivery Medium Specification: ANPA/RI ..
9-track, 800 bpi, NRZI, 0dd Parity, 600' Magnetic Tape P.0. Box 598
Easton, Pa. 18042
() ANSI-Standard USA
Attn: R.J. Cichelli
a) Select character code set:

() ASCII () EBCDIC

b) Each logical record is an 80 character card image.
Select block size in logical records per block.
()40 - ()20 ()10

() Special DEC System Alternates:
() RSX-IAS PIP Format
() DOS-RSTS FLX Format

Office use only -
Signed
Date

Richard J. Cichelli '
On behalf of A.H.J. Sale & R.A. Freak

Index

PASCAL NEWS #21 APRIL, 1981 INDEX

2 POLICY, COUPONS, INDEX, ETC.

1 EDITOR'S CONTRIBUTION

3 HERE AND THERE WITH Pascal

3 Book review: "The Pascal Handbook"

4 Book review: "Introduction to Pascal"

5 Tidbits

5 PUG PRESS ... our sister publication?

6 I'm not sure??

7 APPLICATIONS

7 The EM1 compiler -— Andrew s. Tanenbaum.

23 : Unreal Arithmetic —-— Jeff Pepper.

27 ARTICLES

27 "An extention to Pascal Read and Write Procedures"
-— by David Rowland.

28 "pPDP-11 Pascal: The Swedish Compiler vs. OMSI Pascal-1"
-- by Margret Kulos

49 OPEN FORUM FOR MEMBERS

43 PASCAL STANDARDS

85 ONE PURPOSE COUPON, POLICY

Contributors to this issue (#21) were:

EDITOR Rick Shaw

Here & There John Eisenberg

Books & Articles Rich Stevens

Applications =« Rich Cichelli, Andy Mickel
Standards Jim Miner, Tony Addyman
Implementation Notes Bob Dietrich, Greg Marshall

Administration Moe Ford, Jennie Sinclair

PASCAL NEWS APRIL, 1989 Page 1

Editor's Contribution

NEW ADDRESS

Yes, in my continued effort to bring you better service, (read
this as: I can not do all the work effectively!) I have found
someone else (read: sucker) to take over the PUG mailing list. I
am sure that this will increase the satisfaction level for this
task 1g@%. this will take a great load off of my back and allow me
to devote all of my time to editing and publishing Pascal News.

LATE

I thought April first (April Fools Day) was an appropriate target
date for this issue of Pascal News! I apologize for the tardiness,
but my work (I have a real job that pays the bills) and the many
pressing problems and issues of PN got in the way. I had to solve
the PUG Europe problem, and try to gather as much as I could
concerning the final vote on the ISO standard.

FUTURE OF PUG IN EUROPE
It took me more than a few months to correct the festering
problems in Europe surrounding ©Pascal News. The ©previous
coordinator was sinking under the mire of ever increasing Jjob
responsibilities as well as the editorship of clearly the best
journal dealing with practical software implementation. (SP&E) As
a result, the european region suffered from lack of attention.
This is over! PUG cares. Please send your "job well done's" to
David in Southampton, and send your complaints to PUGUSA. We will
be handling all but the Australasia Region from the US. Please
read the new APC carefully for policy and price changes. We will
be mailing by surface mail to the UK and Europe, but I have been
assured by the USPS that it should take no more than a month. I
have been asked if I would mail by air for an extra surcharge. The
answer has to be no, at this time. PUG can just not dfford the
" special processing and handling that this would be required for
two different types of mail. Sorry!

STANDARDS

Another delay was the standards effort. There is so much going on
in the standards arena that we just could not afford to miss it. I
think it was worth it. Over half of this issue is devoted to the
vote on the IS0 standard for Pascal (7185). Jim Miner has done
another fine job.

PASCAL NEWS APRIL, 1980 Page 2

THIS ISSUE

Now the good news! We have another jam packed issue. I think you
will recognize out book reviewer this issue. He is an "occasional"
contributor to PN. And I hope you will get a chuckle from our
"sister" publication PUG PRESS. Andy Mickel brings this little gem
to us. The other HERE. and THERE article is a real puzzle. It came
to me just as you see it!?

The application for this issue was so good I could not miss
publishing it. It is a Pascal to EMl pseudo code compiler by
Andrew Tanenbaum. Its a real beauty. But it was sooooo big I could
not publish it all ... yet. This issue contains the definition of
the assembler 1language that is output ahd also an interpreter
which serves as the EM1 machine definition. 1Issue 22 will contain
the program text for the EM1 Pascal compiler. I hope everyone
reviews the documentation and the' code, even if they do not need
the compiler. It 1is a fine example of elegant design and
implementation using the language Pascal. Also included 1in the
APPLICATIONS section is an article by Jeff Pepper om the
implementation of extended precision integer arithmetic. A fine
job. -

The ARTICLES section contains a thought provoking extension to the
read/write subroutines by David Rowland. Lets hear a response from
the members. And finally Maragret Kulos has contributed a very
comprehensive article comparing OMSI-1 Pascal and The Swedish
Pascal compiler. There is a great deal of interest in these two
compilers for the PDP-11. I hope this provides some answers.

All in all, a great issue. More to come on EM1 in issue #$#22.

Hope you like it!

KRRk RRKRR KRR KRRk Rk KRk kK

Here and There With Pascal

BOOK REVIEW

The Pascal Handbook by Jacques Tiberghien .
500pp, 270 Illustrations, SYBEX, Berkeley
(1980) $US14.95 (paper edition only),
ISBN 0-89588-053-9.

Overview

This is not a Pascal textbook; it is something very different. Perhaps the
most succint description is that it is a Pascal lexicon: a'sort of
all-purpose reference manual. It is organized around ent?les keyed ?y an
appropriate Pascal word (eg if, scope, writeln) arranged in alphabetical
order. Each entry. takes up one or more whole pages, and the standard sub-
headings are SYNTAX, DESCRIPTION, IMPLEMENTATION-DEPENDENT FEATURES and
EXAMPLE. The relevance of the entry to Standard Pascal and a number of .
particular implementations (HP1000, CDC, OMSI-1, Pascal/Z and UCSD Pascal) is
encoded into the entry.

Thus the book is meant to be used as a dictionary to look up difficult points
or to find out what some usage in a program you have received really means.
As such, it follows a lot of reference manuals which are similarly structured
(eg the B6700/7700 Pascal Reference Manual).

However, since Pascal is a small language with not very many thing§ needing
to be remembered, it needs to be asked why a lexicon of 500 pages is needed?
Examination of the book indicates that its main purpose seems to be to .
document extensions and differences between implementations. Thus, since its
topic is the union of all the quirks of 5 implementations, it has grown to
this rather large size.

Target and reality

So much for the target; how does the book match up to it in reali?y? The»
answer seems to be that it does a reasonably good job of documenting what
exists, but that it does not measure up to the very exacting stan?ards t@at
such an ambitious project warrants. The standard of accuracy against whl?h a
dictionary is judged is much higher than that appropriate for textbooks, in
which a few lapses can be tolerated or justified on the grounds that pedantic
accuracy would impede learning.

The slips in the book are far too numerous to detail (a lis? is.being sent to
the author), and a few examples will have to suffice. Dipping into the entry
for the reserved word for is probably the richest source of examples.

Faults which should be mentioned are:

(1) An "equivalent flow-chart" is given. The sense of defining a high-
level construct such as while in flow-chart terms is questionable at
the best of times, but for the complex for-statement it is ext?eme%y
unfortunate in that it might make people think the flow-chart is right.
It isn't. . .

(2) The prohibition on changing the value of the count variable is not
mentioned. .

(3) The limitations on what a count variable can be (only a local simple
variable) are not mentioned.)

(4) The correct restriction of the HP-1000 implementation is qon314ered to
be an implementation-dependent feature, whereas the corresponding flaw
"in the JEW/CDC implementation is not mentioned.

(5) The failure of many of these implementations to enforce the
requirements of the for-statement is not mentioned; indeed for four
implementations the entry is None known for implementation-dependent
features.

(6) The possibility of the statement failing to terminate (incorrectly) for
some limit values in the OMSI and UCSD implementations is not
documented.))

(7) The statement is made that The 4 and B parameters may not be modified
by the statement in the loop. This is simply incorrect, though it is
true to say that the loop limits are determined on entry to the loop.

Perhaps this is the worst case to show, but a few more examples will suffice
to show that the problem is not isolated. The syntax for MARK shows, that
this non-standard procedure takes a parameter which is an integer
expression. MAXINT is incorrectly described as determining the positive
limit of representable integers (which it may be only coincidentally). The
syntax for CASE statements is incorrect. And so on.

General issues

There are two major deficiencies in this book which deserve comment. First
is the lack of formal definitions, and indeed the appearance of only a few
English descriptions that resemble the actual requirements of Pascal. The
author claims to be talking about Pascal (presumably the standard variety) as
well as the others, but there is simply no basis for comparison if the reader
cannot find out what sets, for example, are really supposed to be.

The second is the mystifying omission of any reference to the Pascal
Validation effort. If one of the purposes of the book is to aid programmers
who wish to write portable Pascal programs, then it is difficult to
understand why the author did not carry out validation tests on the five
compilers he regards as important, and print the results in a second section
of the book. It would have added significantly to the value of the book as a
reference.

Minor issues

Regrettably, once again it is necessary to point out that capitals were
designed for carving into stone, not for ease of reading. This book
perpetuates the habit of printing programs in capitals, with consequent

loss of legibility.

It is difficult to deduce the author's criteria for choosing which topics to
omit or include. To illustrate this, note that the UNIT feature of USCD
Pascal, together with the corresponding USES, INTERFACE and IMPLEMENTATION
reserved words, is not treated in the book, apart from a mention, despite
their undoubted importance in use. On the other hand, such trivia as a pre-
defined function EXP10 in OMSI Pascal takes up 2 pages.

Directing another comment to the publisher rather than the author, one
wonders why the tremendous amount of white space in the book was tolerated.
A little care in layout (perhaps two entries per page; perhaps denser
printing) would have halved the number of pages, and perhaps reduced the
price.

T¢# SMIN TvISYd

T86T “114dY

¢ 39vd

Summary view

Despite the criticisms made above, I believe the book would be useful to
programmers who have to cope with Pascal programs which were developed on
different systems or in different dialects. The level of detail and accuracy
of information is not as high as it could be, but nevertheless the book has
no competitors.

I doubt that it will be of much use to programmers learning Pascal, still
less beginners at programming, because it is too difficult to see what is

really Pascal and what is "extension". And of course, dictionaries are
simply not meant to be read through.

A.H.J.Sale

BOOK REVIEW

INTRODUCTION TO PASCAL

. — including UCSD Pascal
by Rodnay Zaks
320pp, 100 illustrations
Sybex, Berkeley (1980) US$12.95 (Paper Edition only)
ISBN 0-89588-050-4

Reviewed by A.H.J.Sale, Sandy Bay, Tasmania.

Overview

On receiving a book which proclaims that it will teach you a programming

language, I conceive that most reviewers will groan and wonder what new there

is to say. The more so if the language is a popular one, such as BASIC,
Fortran, COBOL, or Pascal. For many educational book writers are

plagiarists, and after the fifth to tenth version of the same ideas, my eyes

get weary and the text fuzzy...

To start with, then, it is a pleasure to be able to write that Rodnay Zaks
book is somewhat different from the run-of-the-mill Pascal books. Firstly it
has a definite Larget readership, and is addressed to them. Dr 'Zaks' book is
well-suited to microcomputer enthusiasts and programmers who want to learn a
bit about Pascal but have no immediate intention of using it professionally.
The exposition is gentle, fairly easy to read, and liberally interlaced with

reading examples.

To enhance its value to such readers, Dr Zaks has decided to include material

on one popular variant of Pascal in the microcomputer field: UCSD Pascal.
This is interspersed throughout the book in clearly labelled sub—sections.

Seccondly, the book has a good collection of examples, and they are not

exactly the same examples you find in other textbooks!' Learning a language

is always easier if you can read-it (and read a lot of it), since then you
discover samplers (or templates) that you can modify to your own purposes,

and thus graduvally discover typical, programming paradigms of that language.

The Presentation is traditional, and there are no surprises. The chapter
headings are: B ¢ Concepts, Programming in Pascal, Scalar Types and
Operators, Expressions and Stalements, Input and Output, Control Structures,
Procedures and Functicns, Data Types, Arrays, Records and Variants, Files,
Sets, Pointers and Lists, UCSD and Other bascals, Program Development (15 in
all) followed by 12 Appendices including answers to selected exercises,

Shortcomings

In my opinion, the book is not likely to be widely used as a text in

tertiary courses, for several reasons. Most importantly, it is very light on.

the concepts of Pascal and Dr Zaks treats of the language simply as another
Fortran or BASIC. Instructors trying to get across the important advances in
knowledge about computing will not forgive the lack, whereas readers using it
as a self-tutorial almost certainly wouldn't notice the deficiency. Less
important, but still relevant, is the typical American verbosity in this

kind of book.

To illustrate the conceptual treatment, observe that 6 pages (pp135-140) deal
with enumerated types and subranges, and 11 pages (pp2U7-257) for sets.

Other data structuring methods seem to fare better, but this appearance
disappears on close examination. For example the array chapter contains

39 pages, but 4 pages are devoted to a matrix addition program, 16 pages to

a sorting program, and 8 pages to UCSD features (including UCSD strings which
are not arrays at alll), leaving 11 pages of discussion of the syntax and
semantics of arrayg. The low-level obsession with flow of control is very
obviqus in this book.

A reviewer cannot pretend to check every program and statement in a book such
as this, but I was pleased to note few errors or half-truths in "Introduction
to Paseal", MNotable amongst the omissions, however, are references to the
axiomatic definition of Pascal (surely one of the most important sources!)
and to the draft I30 Standard for Pascal. These omissions seem to be related
to the book's orientation towards small computers and relatively naive
programmers.

In spite of the great care put into this book (its technical presentation is
excellent except for the blunder of printing program text in capitals), I had
to come to the conclusion that the inclusion of UCSD Pascal in it is a
mistake. The book is predominantly about "Standard Pascal", and purchasers
who hope to learn something about UCSD Pascal that is not in the UCSD and
SofTech manuals will be disappointed. It seems that the UCSD material acts
as textual clutter, even if its inclusion on the cover sells more copies.

Summary

"Introduction to Pascal' by Dr Rodnay Zaks is a useful soft-cover book that
will probably be useful to people trying to learn Pascal by themselves, due
to the many examples. However, it will lead them up to the point of
programming using. Pascal, but thinking in traditional ways. Many of the
insights and productivity improvements will require extensive further
experience, but perhaps that is inevitable.

T¢# SMIN TvISvd

86T “11¥dY

b 39vd

X T’ug ﬁress *

Volume One Issue Three March 1980
;;gizgh;rx Maryanne Johnson (612)-474-7167
510 Wheelexr Drive Excelsior, Minnesota 55331

. Editors Patti Sue Selseth

Even with all the snow on the ground, SPRING IS IN THE ATIR!:!:!!
This 1s a good time to remember to bring your dog's shots up to date
and don't forget about heartworm.

One of Marianne's Pug Famlly has passed away in early February.
Helen Landon had only had her PUGS for 2% years, but she truly loved
them. JHer love for all animals was a driving force in her life, and
she will Ve missed. The family has requested memorials to Pet Haven

or American Cancer Society.

% Congyoduladions - OnlpurAlew Lé)/t\gbuive& %8

Tracy Cunningham has a new little girl PUG named Miss Josle Posie
Penelope. The day before Christmas she was brought home at the tender
age of 2% weeks. (Thils should be a reminder that not all breeders are as
concerned for the dog's welfare as they should be. There i1s no excuse for
selling a dog at this age for monatary gain. Remind people who are looking
for pupples that they should be eating from a dish, and should be able to
get along without their Mama and litter mates before they are taken home.)

Mr. and Mrs. Don Coen of South St. Paul are soon to be getting a new
baby boy PUG. They recently lost a 13 year old PUG,

Mr. and Mrs. Don Donaldson of River Faglls, Wisc. became owners of
a male PUG at Christmas time. They bought him from Rachel Fishcher; he
was at the Pug Party last fall as a puppy.

Mr. and Mrs. Joe Jenareo of Minot brought home a new female PUG in
December. They have an elght year old male and are also looking for
another male.

The John Kerschner Famlly recently bought an eilght month old PUG
puppy from Dorothy Justad.

¥ {’PU% oame Comkest

The John Healy Family would like to know some of the names that
have been given to the pugs. So we thought it would be fun to have a
“PUG NAME CONTEST." The contest will be based on the registered and/or
call names our PUG people have named theilr PUGS (past and present).
Some of the catagories will be: most unusual, most beautiful, most
interesting, most common, and most-humerous. To enter the contest, please
write or call Maryanne before June 1, 1980. All entrants will be mentioned
in the next newsletter.

* FHove %omﬂe(m&%ke l@ces{?e %

We have it on good authority that Pandy Wenz has visited Chipper
Justad at his home. Early May will tell the tail!'!!

Wood.

\

Stud

% Birth Amouncerents | e 2

Dorothy Justad is proud to announce the arrival ofs
crofts Foster Fordyce arrived February 12th (the one and only)
Sire: AKC & CKC ptd in Bermuda Ch. Sheffields Shortening Bread

(better known as Chipper)
Dam: Sugar Plum Jen I

X Wont Ads

WANTED - Small PUG Stud to breed with the Classiest Bitch in Town.
must be experienced yet gentle, loving, and discreet.

Contact Ron or Marlys Hampe (612)-890-4141

John G. Waltz; 184 Amherst, St. Paul 55105; is the manager at Sherwoc

Pet in St. Paul. He would like a male pet PUG at a reasonable price.

Eunice Thorson; 536 1lst St., Proctor, Mn. 55810; -recently lost her

fourteen year old PUG. She would like another girl puppy or older PUG.

X “Thank gou -)om{h}j

Our thanks to Dorothy Justad for the wonderful article on getting

started in show biz. We know it will be ful ¢
o themire oon useful to those of you interestec

"PUG
June

If you have any PUG news that you would like to share with fell

J ow
PEOPLE" please let us know. Deadline for the next newsletter is
1, 1980, Just call or write Maryanne, end we'll get your news in

the next issue of PUG PRESS.

mu

HAVE A HAPPY SPRING !iiit!:

’ Maryanne Johnson
Henrietta Wenz
——

Patti Sue Selseth

l@// }éifmn%

q—

TZ# SHIN 1¥IsYd

I86T “114dY

G 39vy

Dear Newsletter enthusiast, the following is a list of subjects that are
likely to be examined in the upcoming newsletters. If you feel like

it, please respond to any of the subject matter, adding suggestioms,
visions, or other comments. Bits of any incoming communication are
likely to be recycled into the newsletter at some date. This being the
first newsletters, the form may change from issue to issue, but my idea
initially is to have each letter be a theme examining some proponent of
the hypothetical floating sea city, of which we can all be a part.

a. the spiral method of accretion

b acquiring the necessary elements off the land: going into the
recycling aspects of the project, recycling of cars, refrigerators,
machines for the conducive materials, and also papers and (liquified)
plant matter, for the papier mache structures.

c. A deeper tripping out on paper machait: how it can be used to
invoke peoples' minds as to the process of accretion, selecting
varieties of forms which scintillate. Drawings can be included of
terrestrial motifs, walls, time capsules, zoomorphic borders of
gardens, rises, walkways, spontaneous expressions of color and

form.

d. aspects of energy acquisition and usage: Solar, wind models, under-
water exploits; shaiing-concepts, valuation.

e. Plantlife likely tn evulve, and the natures of . *ergent ecosyscer
including overlappings, and new symbioses.

f. Food to be grown, produced, specialty items for shipping away, into

the land: Pickles, sweets, noted cheeses, pastries, modes of eating;
availability of different substances.

g. Separation of thirds of spaces: industrial/mercantile/co-operative;
common/state-owned; and home spaces, privately ruled and operated.
h. Varieties of social forms, explorations of likely traditions to be

fused for propulsion into pyremusical ambidextrously mobile batteries.
Cultures to be examined including refugees, aliens, star-struck,
dropped out, mutating, change-oriented.

i. Blasting of t"e closed-ended systems, reiterating the expansive
potentials inuerent in futuristic thinking: an invitation to
recent explosions.

j. The inner workings and displayed aspects of the water system in the
structure. Designs for waterfalls, ponds,’ pools, streams, bathing,
plant feeding, recirculation, distillation.

k. Art- and Extrapolitical-aspects of lifestyles emerging on the sea.
Options for peoples' expressions in career, craft, vocation, activities;
1. An examination of the effort to create groups of three melting, softing

tetras, to meet and merge on the high seas, producing the interior
lagoons and flatlands. Also known as triahgulation, the tendencies of
groups of threes to balance and stability. N

m. Diagrammatic explanations of the various levels, including shipping
ports, flotation devices, fluxuating shores, and sky-high properties.
Proportions of spaces allotted'to playgrounds, bycicle loops,
orchards, cottages, mist gardens, arboretum/terminal stands, geodescic
elevating modules, and sky light sculptures of varying densities
will be suggested, examined, detailed.

n. Something to attract transient visitors: vacation playgrounds.
There are fantasy worlds open for exploration, and technological
and entertainment forms. Also perhaps, casino- and pub-like grottoes,
looking out to under the waves; and varieties of sports presentations
and activities. Contests, fairs, festivals, holidays, erectionms,
revampings, scribblings.

o. Communication with other life forms, and inviting them along for
the journey into spaces high and blue. The idea of having a dolphin
embassy, a whale tavern in the sea (growing types of algae for
them), platforms and niches to support many sea travellers, and
those from the sky.

A continuously building mural made by contributions from e&ch.
visitor in all the media. It will start from some initial point(s) xo)
and spread as more and more visitors come, make, and go. (Thanx, Yoko

The idea of "mot letting an enemy Tise on any‘level", as Maharisyi
so aptly puts it. The foreign relations applicable as: Ideologies
can be shared as love. Using the platform as a museum, a carousel
of multiple nationalities and displays of blfufcate merging, develop
events which can be generally supported by nations, groups, and
factions. In them independent rovers can sniff around.

T Examinations of the acoustics, the silent cave-likes, the public,

open, airy ampetheaters. Electronic and other forms of communication
running along its circuits, and extending from its structure.

s. Visions, ideas for schools, markets, subjects to be taught: seems

likely there's to be a concentration of the space studies on b?ard,
so examining some of the fields briefly: exo-ecology, %ow gravity
motion, non-terrestrial physics, neurogenetic engineering.

t Health, wholeness, holiness: attaining it and keeping it, some of

the newer medicinal statements have been waiting for somewhere like
this to display themselves, and from which to fly.

u. The idea as the project not just an end, a new place, but as another

1ink on the roadway. What then is to come next? What first? What
has been encouraging this? o o
v. The extra-realist art movement, its prln?lples and prln?lpalf.
w. Tributes to those livers of the past who ve s?nt good vibrations
into our present sphere. Catacombs and hl%lsldes.
X. The exposition and superimposition of the ideas of nakedness,
nudity, nets of reality, and masturbation. Techniques. 4
y. Proposal for direct access networks to stretch across the 1an.. .
z. "An animal's or plant's eye view of what we humans have been discussing,
sometimes grave, sometimes humorous.

In closing, I would like to add that all flowing waters lead to.the sea. Thanks
for the initial interest. Direct correspondance to me at: Kevin Switzer,
1534 Ford, Lincoln Park, Michigan 48146.

* Kk hk kk Kk k% EE E O 5

P@.swl WUser's gro “
7o ?\'\(Kg\m\a

Rox 485 .
F\'\\'&m”?\ ’ C.‘Lo.vit L 303l

f

T¢# SHIN TYISYd

T86T “I¥dY

9 39v{

Applications

EM-1 ASSEMBLY LANGUAGE

11.1. Introduction

An assembly language program consists of a series of Lines, each contain—
ing 0 or 1 statements. A machine -instruction may not be Labeled. In other
words, the label field on a machine instruction must be left blank. There are
two kinds of Labels, instruction and data labels. Labels start in column 1.
Instruction labels are unsigned positive integers, and each must appear alone
on a Line by itself. The scope of an instruction Label is its procedure.

The pseudoinstructions CON, ROM, and BSS may be lLabeled with a 1-8 char-
acter data Llabel, the first character of which is a letter, period or under-
score, followed by letters, digits, periods and underscores. Only 1 lLabel per
Line is allowed. The use of the character "." followed by a number (e.g. .40)
is recommended for compiler generated programs, since these are considered as a
special case and handled more efficiently in compact assembly lLanguage (see
below).

Each statement may contain an instruction mnemonic or pseudoinsfruction.
These must begin in column 2 or later (not column 1) and must be followed by a
space, tab, semicolon or LF. Everything on the Line following a semicolon is
taken as a comment.

ALl constants are decimal unless started with a zero e.g. 0177, in which
case they are octai. In CON and ROM pseudoinstructions, floating point numbers
are distinguished by the presence of a decimal point or an exponent (indicated
by E or e), or both. Double precision (long) integers are followed directly by
an L or L.

Also allowed as initializers in CON and ROM are strings. Strings are sur-
rounded by double quotes and may include \xxx, where xxx is a 3-digit octal
constant, e.g. CON "hello\012\000". Each string element initijalizes a single
byte. Strings are padded at the end up to a multiple of the word size.

Local labels are referred to as *1, *2, etc, in CON and ROM pseudoin-
structions (to distinguish them from constants), but without the asterisk in
branch instructions, e.g. BRF 3, not BRF *3.

The notation $procname is used to mean the descriptor number for the pro-
cedure with the specified name.

An input file may contain many procedures. A procedure consists of zero or
more pseudoinstructions, a PRG statement, a (possibly empty) collection of in-
structions and pseudoinstructions and- finally an END statement. The very Llast
statement on the 1input file must be EOF. The END directly preceding the EOF
may be omitted. .

Input to the assembleg is in lower case, if available. Upper case is used
in this document merely to distinguish key words from the surrounding prose.

11.2. Pseudo instructions

First the notation used for the operands of the pseudo instructions.

<num> = an integer constant

<sym> = an identifier

<arg> = <pum> or <sym>

<val> = <arg>, long constant (ending with L or L), real constant, string
c9nstant (§urroundgd by double quotes), procedure number (starting
With %) or instruction label (starting with *).

2...;* = zero or more of <...>

LDF =

one or more of <...>

Four pseudo instructions request global data:

BSS <num>
Reserve <num> bytes

not explici initiali i
of the womiTe: oYt , P itly initialized. <num> must be a multiple

HOL <num>

Idem, but all following absolute global data

this black. references will refer to

CON <val>+

Assemble global data words initialized with the <val> constants.
ROM <val>+

Idem, but the initialized data will never be changed.

Three pseudo instructjons partition the input into procedures:

PRO <sym>,<num1>,<num2>
Start of procedure. <sym> is the procedure name. <num1> is the
of bytes for arguments. <num2> is 1 for
out of the current module, 0 otherwise.
END
End of Procedure.

number
procedure names to be exported

EOF
End of module.

Besides the export flag in PRO, six ot
Separate compilation and Llinking:

her pseudo instructions are involved with
EXD <sym>

Export data. <sym> is exported out of this module.
IMA <sym>

Impart address. IMA allows global symbol <sym> to be used befofe it is

T¢# SH3N TYISvd

T86T “11ddY

[39v(

FWA

FWC

FWP

Three

LET

EXC

MES

defined. Note that <sym> may be defined in the same module.

<sym»

Simitar to IMA, but used for imported single word constants. These two
different forms are necessary, because the assembler must know how much
storage must be allocated if <sym> is used in CON or ROM.

<sym>
Forward address. Notify the assembler that <sym> will be defined Llater
on in this module, so that it may be uSed before being defined.

<sym>
Similar to FWA, but for constants.

<sym>

Forward procedure reference. FWP allows <sym> to be used before it is
defined. <sym> must be defined in the same module and must not be ex-
ported. Normally, unknown procedure names are entered in the undefined
global reference table, so that their names will be known outside this
module. Procedure names introduced by FWP are treated differently, how-
ever, to prevent their being exported.

other pseudo instructions provide miscellaneous. features:

<sym>,<arg>
Assembly time assignment of the second operand to the first one.

<num1>,<num2>

Two blocks of instructions preceding this one are interchanged before be-
ing assembled. <num1> gives the number of lines of the first block.
<num2> gives the number of lines of the second one. Blank and pure com-
ment lines do not count.

<num>,<val>*
A special type of comment. Used by compilers to communicate with the op-
timizer, assembler, etc. as follows:
MES 0 -
An error has occurred, stop assembly.
MES 1 -
Suppress optimization
MES 2 -
Use virtual memory (EM-2)
MES 3,<num1>,<num2> -
Indicates that a local variable 1is never referenced 1indirectly.
<num1> is offset in bytes from LB. <num2> indicates the class of
the variable.
MES 4 -
Number of source lines (for profiler).
MES 5 -
Floating point used.
MES 6,<val>* - p
Comment. Used to provide comments in compact assembly Llanguage
(see below).

12. ASSEMBLY LANGUAGE INSTRUCTION LIST

bly L
indic

x 3 3

y:

p:

struc

For each instruction in the List the range of operand values in the assem-

anguage is given. These ranges are all subranges of -32768..32767 and are
ated by letters:

full range, i.e. -32768..32767
0..32767

0..32766 and even

1 or (2..32766 and even)
-32768..32766 and even
2..32766 and even

0, 1Tor2

The letters §houLd not be confused with the letters used in the EM-1 din-
tion table in appendix 2. Instructions that check for undefined operands

and underflow or overflow are indicated by (*).

GROUP

Loc
LNC
Lo
LOE
Lop
LAI
LOF
LAL
LAE
LEX
LoI
LOS
LoL
LDE
LDF

GROUP

STL
STE
STP
SAL
STF
STI
STS
SbL
SDE
SDF

GROUP
ADD

sus
MUL

1: LOAD
m = Load constant (i.e. push it onto the stack)
m - Load negative constant
X — Load local word x
X = Load external word x
X = Load word pointed to by x-th Local
y = Load auto increment y bytes (address of pointer on stack)
m - Load offsetted. (top of stack + m yield address)
X = Load address of Llocal
X = Load address of external
n - Load lexical. (address of LB n static levels back)
y — Load indirect y bytes (address is popped from the stack)
— Load indirect (pop byte count, address; count is 1 or even)
X = Load double local (two consecutive locals are stacked)
X - Load double external (two consecutive externals are stacked)
m - Load double offsetted (top of stack + m yield address)
2: STORE
x = Store local
X — Store external
X = Store into word pointed to by x-th Local
y — Store auto increment y bytes (address of pointer on stack)
m - Store offsetted
y — Store indirect y bytes (pop address, then data)
~ Store indirect (pop byte count, then address, then data)
X — Store double Llocal
X = Store double external

m = Store double offsetted
3: SINGLE PRECISION INTEGER ARITHMETIC
= Addition (x)

~ Subtraction ()¢
= Multiplication (%)

T¢# SMIN 1vISvd

186T “11¥dY

8 39v(

DIV
MOD
NEG
SHL
SHR

GROUP

DAD
DSB
DHU
bov
DMD

GROUP

FAD
FsB
FMU
Fov
FIF
FEF

GROUP

AD1
PAD
PSB

GR OUP

INC
INL
INE
DEC
DEL
DEE
ZRL
IRE

GROUP

CID
CDI
CIF
CFI
CDF
CFD

GROUP

AND
ANS
IO0R
10s

=~ Division (%)

- Modulo i.e.remainder (%)

- Negate (two's complement) (%)
- Shift Left (%)

- Shift right (%)

4: DOUBLE PRECISION ARITHMETIC (Format not defined)

- Double add (%)

- Double Subtract (%)
- Double Multiply (%)
- Double Divide (%)
- Double Modulo (%)

5: FLOGATING POINT ARITHMETIC (Format not defined)

- Floating add (%)

- Floating subtract (%)

- Floating multiply (%)

- Floating divide (%)

- Floating multiply and split integer and fraction part (%)
- Split floating number in exponent and fraction part (%)

6: POINTER ARITHMETIC

m - Add the constant m to pointer on top of stack
- Pointer add; pop integer, then pointer, push sum as pointer
- Subtract two pointers (in same fragment) and push diff as integer

7: INCREMENT/DECREMENT/ZERO

- Increment top of stack by 1 (%)
x = Increment local (%)
x - Increment external (%)

- Decrement top of stack by 1 (%)
Decrement local (%)
Decrement external (%)
Zero local
Zero external

X X X X
I

8: CONVERT

- Convert integer to double (%)
- Convert double to integer (%)
- Convert integer to floating (%)
- Convert floating to integer (%)
— Convert double to floating (%)
- Convert floating to double (%)

9: LOGICAL

p - Boolean and on two groups of p bytes
- Boolean and; numper of bytes is first popped from stack
p - Boolean inclusive or on two groups of p bytes
- Boolean inclusive or; nr of bytes is first popped from stack

XOR
X08
coM
cos
ROL
ROR

GROUP

INN
INS
SET
SES

GROUP

LAR
LAS
SAR
SAS
AAR
AAS

GROUP

CMI
CMD
CMF
cmMu
CMS
cmp

TLT
TLE
TEQ
TNE
TGE
TGT

GROUP

BRF
BRB

BLT
BLE
BEQ
BNE
BGE
BGT

LT
ZLE
ZEQ
INE

-
pary

3333355
1

3333
I

Boolean exclusive or on two groups of p bytes

Boolean exclusive or; nr of bytes is first popped from stack
Complement (one's complement of top p bytes)

Complement; first pop number of bytes from stack

Rotate left

Rotate right

SETS

Bit test on p byte set (bit number on top of stack)

Bit test; first pop set size, then bit number

Create singleton p byte set with bit n on (n is top of stack)
Create singleton set; first pop set size, then bit number

ARRAY

Load array element

Load array element; first pop ptr to descriptor from stack
Store array element

Store array element; first pop ptr to descriptor from stack
Load address of array element

Load address; first pop pointer to descriptor from stack

: COMPARE
Compare 2 integers. Push negative, zero, positive for <, = or > ..
Compare 2 double integers
Compare reals

2

2

2
Compare 2 blocks of p bytes each
Compare 2 blocks of bytes; pop byte count
Compare 2 pointers

True if less, i.e. iff top of stack < 0

True if less or equal, i.e. iff top of stack <= 0
True if equal, i.e. iff top of stack =0

True if not equal, j.e. iff top of stack non zero
True if greater or equal, i.e. iff top of stack >= 0
True if greater, i.e. iff top of stack > 0

: BRANCH

Branch forward unconditionally n bytes
Branch backward unconditionally n bytes

Forward branch less (pop 2 words, branch if top > second)
Forward branch less or equal

Forward branch equal

Forward branch not equal

Forward branch greater or equal

Forward branch greater

Forward branch less than zero (pop 1 word, branch negative)
Forward branch Less or equal to zero

Forward branch equal zero

Forward branch not. zero

TZ# SMIN TYISVd

1861 “1I14dY

§ 39V4

ZGE
6T

GROUP

MRK
MRS
CAL
CAS
RET
RES

GROUP

BEG
BES
BLM
BLS
CSA
csB
DUP
pUs
EXG
HLT
LIN
LNI
LOR
MON
NoP
RCK
RCS
RTT
SIG

STR
TRP

Forward branch greater or equal zero
Forward branch greater than zero

: PROCEDURE CALL

Mark stack (n = change in static depth of nesting. - 1)
Mark stack; first pop the static Link from the stack
Call procedure (with descriptor n)

Call indirect; first pop procedure number from stack
Return (function result consists of top x bytes)

Like RET, but size of result on top of stack

: MISCELLANEOUS

Begin procedure (reserve z bytes for Locals)

Like BEG, except first pop z from stack

Block move x bytes; first pop destination addr, then source addr
Block move; Llike BLM, except first pop x, then addresses

Case jump; address of jump table at top of stack

Table Lookup jump; address of jump table at top of stack
buplicate top p bytes

Like DUP, except first pop p

Exchange top 2 words

Halt the machine (Exit status on the stack)

Line number (external 0 := n)

Line number increment

Load register (0=LB, 1=SP, 2=HP)

Monitor call

No operation

Range check; descriptor at (external) x; trap on error

Like RCK, except first pop x from stack

Return from trap

Trap errors to .proc nr on top of stack (-2 resets default). Static
Link of procedure is below procedure number. Old values returned
Store register (0=LB, 1=SP, 2=HP)

Cause trap to occur (Error number on stack)

13. KERNEL INSTRUCTION SET

Many of the instructions presented in the previous chapter are replace-
ments for a small sequence of basic instructions. The basic instructions form
Less than half of the complete instruction set. Unly a few basic dinstructions
have operands. Most of them fetch their arguments from the stack. Very few
basic instructions are provided to load and store objects.

For each of the groups of instructions.the basic ones are given:

GROUP 1: LOC, LAE, LEX, LOS

GROUP 2: STS

GROUP 3: ADD, SUB, MUL, DIV, SHL, SHR
GROUP 4: DAD, DSB, DMU, DDV

GROUP 5: FAD, FSB, FMU, FDV, FIF, FEF
GROUP 6: PAD, PSB

GROUP T7: -

GROUP 8: CID, CDI, CDF, CFD

GROUP 9: ANS, I0S, X0S, COS, ROL, ROR

GROUP 10: INS, SES

GROUP 11: AAS

GROUP 12: CMI, CMD, CMF, CMS, CMP, TGT, TLT, TEQ

GROUP 13: DRB, ZNE

GROUP 14: MRS, CAS, RES

GROUP 15: BES, BLS, CSA, CSB, DUS, EXG, HLT, LOR, MON, NOP, RCS,
RTT, SIG, STR, TRP

Almost all the other instructions can be replaced in the assembly language by a
short equivalent sequence of simpler instructions. By applying these replace-
ments recursively a sequence of basic imstructions can be found.

GROUP 1:
LNCm = LOC -m
LoL x = LAL x + LOI 2
LOE x = LAE x + LOI 2
LOP x = LoL x + LOI 2
LALy = DUP.2 + DUP2 + LOI 2 + ADI y + EXG + STI 2 + LOIy
LOFm = ADI m + LOI 2
LAL x = LEX O + -ADI X
Loy = LOCy 4 LGOS
LbL x = LAL x + LOI 4
LDE x = JLAE x + LOI 4
LDF m = ADIm + LOI 4

GROUP 2:
STL x = LAL x + STI 2
STE x = LWAE'x # STI 2
STP x = LOLx + STI2
SALy = DUP2 + DUP2 + LOI2 + ADI Yy + EXG + @I 2 + STIL y
STFm = ADIm + STI 2
STLy = LOCy + STS
SDL x = LAL x + STI 4
SDE x = LAE x + STE4
SOFm = ADIm + STI 4

T¢# SMAN TYISYd

T86T I1¥dY

0T 39vd

GROUP
MOD
NEG

GROUP
DD

GROUP
ADI

GROUP
INC
INL
INE
DEC
DEL
DEE
ZRL
ZRE

GROUP
CIF
CF1

GROUP
AND
IO0R
XOR
CoM

GR OUP
INN
SET

GROUP
LAR
SAR
AAR

GROUP
cMy
TLE
TGE
TNE

GROUP
BRF
BLT
BLE
BEQ
BNE
BGE
BGT
ZLT
ILE

TT - TTUTT 0O
-y o .

X X X =

-
~n
;N

W

5355353355

L[T | A 1 O T 1

oun o

W

non

woenwonn

W e w

ouUpP
Loc

oup
Loc

Loc
LoL
LOE
Loc
LoL
LOE
Loc
Loc

CID
CFD

Loc
Lo
Loc
Loc

Lo
Loc

LAE
LAE
LAE

Lac
TGT
TLT
TEQ

-Loc
CMI
CMI
CHI
CMI
CMI
CML
TLT
TLE

OCOX X —x x =

oo v o To

x

R

+ +

+ 4 ++ + +

+ 4+ +

+ 4+ o+

A+ + o+t

DIV
EXG

PAD

ADD
INC

-INC

sus
DEC
DEC
STL
STE

CDF
CDI

ANS
10s
X0S
Ccos

INS
SES

LAS
SAS
AAS

CMS
TEQ
TEQ
TEQ

ZEQ
LT
ILE
ZEQ
INE
1GE
L6T-
ZNE
INE

ORI IDDDI3

MUL
sus

DMU

STL
STE

STL
STE

+ sus

n = TEQ + INE n
IGE n = TGE + INE n
n =_T

Z6T . TGT + INE n
GROUP 14:

MRK n = LOC n + MRS

CALn = LOC n + CAS

RET p = L p + RES
GROUP 15:

BEG z = LoC z + BES

BLH p = Loc p + BLS

DUP p = LoC p + DUS

LINn = Locn + STE O

LNI = INEOQ

RCK x = LAE x + RcS

The replacements for LIN and LNI are onl
first HOL in that assembly module.
artificial. These instructions are

Y equivalent if they precede the
The replacements for LAI and SAI are rather
most Llikely preceded by a LAL or LAE

in-
struction. Then they replace the sequence:

LAL x + LAI Yy = LWL x + pup2 + ADI y + STL x + LOI y

LAE x + LAI Y = LOEx + pup2 + ADI 'y + STE x + LoOI y

LAL x + SAI Yy = LOL x + pup2 + ADI y + STL x + STIL y

LAE x + SAI y = LOE x + pUP 2 + ADI y + STE x + STI y

The replacements for LAS and SAS would even be longer,
the object to be loaded or stored

size y is known, then LAS and SAS ¢

LAS
SAS

because the size of
must be fetched from the descriptor. If the
an be replaced by:

AAS + LOI y
AAS + STIy

T¢# SMIN 1Y¥ISYd

T86T “114dY

1T 39v(4

program em1(tables,prog,output);
APPENDIX 1. OFFICIAL EM—1 MACHINE DEFINITION. s,pProg, p ;

s s . Label 9999;
{ This 1is an interpreter for EM-1. It serves as the official machine ;

definition. This interpreter must run on a machine which supports 32

const
bit arithmetic. t13 = 3192; { 2*%%x13 >
. . . t14 = 16384; { 2%x14 ¥
.Certain aspects of the definition are over specified. In particular: t15 = 32768; £ 2%%15 3
: t15m1 = 7; *15 -
1. The representation of an address on the stack need not be the t16m1 z ig;gg; E ;:*12 1 ;
numerical value of the memory location- t16m1 = 65535; { 2%%16 -1)}
t3 = - -
2. The state of the stack is not defined after a trap @a; aborted T = 2147483647; € 24431 -1 3
. an instruction in the middle. For example, it is officially En_ maxcode-= 8191; € highest byte in code address space
defined whether the second operand of an ADD instruction has maxdata = 8791 € highest byte in data address space

been popped or not if the first one is undefined (-32768).
{ mark block format >

3. The memory layout is implementation dependent. Only the most statd = 6; € how far is static Link from lb ¥
basic checks are performed whenever memory is accessed. dynd = 4; { how far is dynamic link from lb ¥
. . reta =2; € how far is the return address from lb
4. The format of the mark block is implementation dependent. mrksize = 6; { size of mark block in bytes >

5. The format of the procedure descriptors is implementation { procedure descriptor format ¥

dependent. pdargs = 0; { offset for the number of argument bytes }
) pdbase = 2; { offset for the procedure base ¥
6. The result of the compare operators CMI etc. are -1, 0 and 1 pdsize = 4; { size of procedure descriptor in bytes
here, but other negative and positive values will do and they
need not be the same each time. dsize = 4; { size of double precision integers
A rsize = 4; { size of reals >
7. The shift count for SHL, SHR, ROL and ROR must be in the range'O { header words ¥
to 15. The effect of a count greater than 15 or less than 0 is NTEXT = 1;
undefined.) 3 NDATA = 2;
. NPR OC =3;
ENTRY = 4;
NLINE = 5;
escape = 0; { escape to secondary opcodes)}
undef = -32768; { the range of integers is -32767 to +32767 }
{ error codes 2}
ESTACK = 0; EHEAP = 1; EILLINS = 2; EODDZ = 3;
ECASE = 4; ESET = 5; EARRAY = 6; ERANGE = 7;
EIOVFL = ; EDOVFL = 9; EFOVFL = 10; EFUNFL = 11;
EIDIVZ = 12; EFDIVZ = 13; EIUND = 14; EDUND =15;
EFUND = 16; ECFI = 17, ECFD = 18; ECDI =19;
EFPP = 20; ELIN = 21; EMON = 22; ECAL = 23;
ELAE = 24; EMEMFLT = 25; EPTR = 26; EPROC = 27;
EPC = 28;

TZ# SMIAN 1¥ISYd

T86T “1I¥dY

T 39v4

insr: mnem; { holds the instructionnumber
< 3 normalmap: boolean; { true except when in alternate context)
{ Declarations > halted: booléan; { normally false. set to true by halt instruction)
{ 38 exitstatus:word; { parameter of HLT 2}
uerrorlb:adr; { static link of error procedure

type uerrorproc:adr; € number of user defined error procedure)

bitval= 0..1; { one bit header: array[1..8] of adr;

bitnr= 0..15; { bits in machine words are numbered 0 to 15 } - . .

byte= 0..255; { memory is an array of bytes 2} tables: text; { description of Eﬂ-1.1nstruct1ons >

offset= 0..t15m1; { positive integers are offsets ¥ prog: file of byte; { program and initialized data

adr= 0..t16m1; { a machine word intérpreted as an address

word= -t15..t15m1; { a machine word interpreted as a signed integer }

full= -t1ém1..t16m1; { intermediate results need this range)

double=-t31m1..t31m1; { double precision range
bftype= (andf,iorf,xorf); { tells which boolean operator needed

Tg# SMIN TT¥ISYd

iflags= (mini,short,xbit,ybit,zbit); € :]
ifset= set of iflags; ’ < Various check routines
€
mnem = (NON, . . .
AAR, AAS, ADD, ADI,XAND, ANS, BEG, BER, BES, BGE, { gnly the mo§t basic checks are performed. These routines are inherently
BGT, BLE, BLM, BLS, BLT, BNE, BRB, BRF, CAL, CAS, : implementation dependent. }
CDF, CDI, CFD, CFI, CID, CIF, CMD, CMF, CMI, CMP,
CMS, CMU, COM, COS, CSA, CsB, DAD, DDV, DEC, DEE, procedure trap(n:byte); forward;
DEL,XDIV, DMD, DMU, DSB, DUP, DUS, EXG, FAD, FDV, g ddehkadr C e
FEF, FIF, FMU, FSB, HLT, INC, INE, INL, INN, INS procedure oddcnkadrla:zadr);
IOR: Ios: LAB: LAE: LAI: LAL: LkR: LAs: LDE: LDF: begin if (a>maxdata) or ((a>sp) and (a<hp)) then trap(EPTR) end;
tDL, LEX, LIN, LNC, LNI, LOC, LOE, LOF, LOI, LOL, 4 hicadr ¢ .
oP, LOR, LOS, LSA,XMOD, MON, MRK, MRS, MRX, MUL procedure chkaar(a:adr);
MXS, NEG, NOP, NUL, PAD, PSB: RCK: Rcs: REs: RET: begin if odd(a) then trap(EPTR); oddchkadr(a) end;
ROL, ROR, RTT, SAI, SAR, SAS, SDE, SDF, SDL, SES,
XSET, SHL, SHR, SIG, STE, STF, STI, STL, STP, STR, . procedure newpc (azadr) ; B
STS, SUB, TEQ, TGE, TGT, TLE, TLT, TNE, TRP, XOR- begin if (a<0) or (a>pd) then trap(EPC); pc:=a end;

-X0S, ZEQ, ZGE, ZGT, ZLE, ZLT, IZNE, ZRE, ZRL);
procedure newsp(a:adr);

dispatch = record begin if (a<lb-2) or (a>=hp) or odd(a) then trap(ESTACK); sp:=a end;
iflag: ifset;
instr: mnem; procedure newlb(a:adr);
implicit: word begin if (a>sp+2) or odd(a) then trap(ESTACK); lb:=a end;
end;

procedure newhp(a:adr);
begin if (a<=sp) or (a>maxdatat+1) or odd(a) then trap(EHEAP); hp:=a end;

var
code: packed array[0..maxcodel of byte; { code space } function argi(w:word):word;
data: packed arrayC0..maxdatal of byte; { data space > begin if w = undef then trap(EIUND); argi:=w end;
pc,lb,sp,hp,pd: adr; <{ internal machine registers
i: integer; { integer scratch variable ¥ function argn(w:word) :word;
s,t,k: word; { scratch variables } begin if w<0 then trap(EILLINS); argn:=w end;
j:offset; { scratch variable used as index } .
a,b:adr; { scratch variable used for addresses function argx(w:word):word;)
dt,ds:double; { scratch variables for double precision 2> begin if (w<0) or (w>=t15) or odd(w) then trap(EILLINS); argx:=w end;
rt,rs,x,y:real; { scratch variables for real .
found:boolean; { scratch 2} function argp(w:word):word;
opcode: byte; { holds the opcode during execution begin if odd(w) or (W<=0) or (w>=t15) then trap(EILLINS); argp:=w end;
escaped: boolean; { true for escaped opcodes }
cutoff: byte; { Jdpcode of first call in alternate context 2} function argy(w:word):word;

dispat: arraylboolean,bytel of dispatch;

[URREY

186T “IYdY

¢T 39V

begin 7f w=T then argy:=T else argy:=argp(w) end;

funetion argz(w:werd) swordy
begin if odd(w) or (w<=t15) or (w>=t15) then trap(EILLINSY; argz:=w end;

function chkovf(z:double) :word;
begin if abstz) >= tf5 then trap(EIOVFLY; chkovf:=z erd;

Memory access routines

¥
X
~Y

A ARG

memw returns a machine word as a signed integer: —32768 <= memw <= +32767
mefig returns a machine word as an address : 0 <= mema <= 65535

memb returns a single byte as a positive integer: O <= memb <= 255
store(a,v) stores the word or address v at machine address a

storeb(a,b) stores the byte b at machine address a

memi returns a word from the instruction space: 0 <= memi <= 65535
Note that the procedure descriptors are part of instruction space.
nextpc returns the next byte addressed by pc, fncrementing pc

lino changes the line riumber word.
ALL routines check to make sure the address is within range. The word

routines also check to see that the address is even. If an addressing
error is found, a trap occurs. ¥

furiction mema(aradr) radr;
var bradry)
begin chkadr(a); b:=datala+1]; mema:=256%b + datalal end;

funiction memw(azadr):word;
var b:adr; ’
begin bi=mema(a); it b>=t15 then memw:=b—-t16 else memw:=b end;

function memb(a:zadr):byte;
begin oadchkadr(a); memb:=datalal end;

procedure store(asadr; x:full);
begin chkadr(a);

if x < 0 then x := x+t16; { equivalent value, but positive ¥
datalal := x mod 2567 datala+1] := x div 256

end;

procedure storeb(a:zadr; b:byte);
begin oddchkadr(a); datalal:=b end;

function memi(azadr):adr;

var bradr;

begin
if odd(a) or (a>maxcode) then trap(EPTR); .
b:=codela+1T; memi:=256%b + codelal

end;

function nextpc:byte;
begin nextpc:=codelpcl; newpc(pc+1) end;

procedure Llino(w:word);
begin if (w<0) or (w>headerCNLINE]) then trap(ELIN); store(0,w) end;

Stack Manipulation Routines

A AR

push puts a word or address on the stack

popw removes a machine word from the stack and delivers it as a word
popa removes a machine word from the stack and delivers it as an address
pushd pushes a double precision number on the stack

popd removes 2 machine words and returns a double precision integer
pushr pushes a real (floating point) number onto the stack

popr removes 2 machine words and returns a real number

pushx puts an object of arbitrary size on the stack

popx removes an object of arbitrary size

procedure push(x:full);
begin newsp(sp+2); store(sp,x) end;

function popw:word;
begin popw:=memw(sp); newsp(sp-2) end;

function popa:adr;
begin popa:=mema(sp); newsp(sp-2) end;

procedure pushd(y:double);
begin { push double integer onto the stack } newsp(sp+dsize) end;

furniction popd:double;
begin { pop double integer from the stack) newsp(sp-dsize); popd:=0 end;

procedure pushr(z:real);
begin { Push a real onto the stack) newsp(sptrsize) end;

function popr:real;
begin { pop real from the stack } newsp(sp-rsize); popr:=0.0 end;

procedure pushx(size:offset; a:adr);
var i:integer;
begin

[URERU)

TZ# SMAN vISvd

T86T “11YdY

fT 39vd

if size=1
thens pusfhiGiemb (a)):
else if odd(size) or (sFze<=@)
" ther trap(EODDZY o
else for #:21 to size div 2 do push(memw(a=2+2%4))
endy

proceduré popx(size:offiset; azadr);
var i:integer;
begin
if size=t
ther begin storeb (a, membisp)); mewspicsp=2) endi
else #f odd€size) or (size<=0)
then trapCEODDL)
else for 1:=1 to size div 2 do store(atsize=2%i, popw)
end:;

[XN

manipulation routines Cextract, shift, rotate)

procedure steftlvar wiword); <€ 1 bit left shift ¥
begir if abs(wy > t14 then trapCEIOVFLY else w = 2%w énd;

procedure sright(var wiword); € F bit right shift with sign eéxtension ¥
Begin #f w >= 0 then w 2= w djv 2 else w 2= (w=1)y div 2 end;

grocedure rleft(var wiword)y; € 1 bit left rotate ¥
begin if w >= 0

then if w < t14 thenm wi= 2w else wr= Zxw-tT6

ebse if w 3= =t14 then w = Z¥wtf else wis 2%urt16+1
end';

procedure rright(var wiwerdds € 1 bit right rotate ¥
begin: #f oddi(w)
thent 1f w<0 then wr=Cu~1)y div 2 ébse w = w div 2 = t15
glse #f w<O then wr=z(w+tTé) div 2 else wi= w div 2
énd;

furiction bit (babitnr7 wiword) :bitvat; € return bit b of the word w ¥
var ¥ '-1tnr,
begin for 1= 1 to b do rright(w); bit=ord(oddéw)) endy

function bf(ty:bftype; wi, wliword)ysword; <€ return boolean fen of 2 words ¥
var tibitnry §iade;
begin j =03
for $:= 15 downto 0' do
begin i = 2%j;
case ty of
andfs if b\T{:('l,w‘T?'FBw(*ﬁ,wZ) = hen §:=+1;
Forfs ¥f bitCi, wi)+bit (i, w2) > en‘~ j=ie1;

SRR

xorf: if bitCi,wi)+bit(i, wa) = 1 then j:=j+1

end:
end;)
ifj <= t15m1 then bf:=j else bf:= j - t16&
end;
=
= s ¥ [
< Array Fndexing: X
£= . e hd) 3 —
=
furiction arraycalc(cradr)zadr; € subscript calculation ¥ =
var jiword; size:offset; arzadry «»
begin jz= popw ~ memv(c)
#f (§<0Y or (J>memu(c+2)) then trap(EARRAY)’, s
size = memwlc+4); L
f (size<®Y or ((size>1) and odd(size)) then trap(EODDZ);
& = jksize+popa;
arraycalc:=a
erdy
< bouble and Real Arithmetic b
¢ : - 23 >
=
€ ALL routines for doubles and reals are dummy routines, since the format of =
doubLes arid reals s not defined in EM-1. v
—
I3
functfon dodad(ds,dt:double) :double;]
begin € add two doubles)} dodad:=0 end;
function dodsb-(ds,dt :double):double;
begin € subtract two doubles)} dodsb:=0 end;
function dodml(ds,dt:double):double;
begin € multiply two doubles) dodmil:=0 end;
furiction doddv(ds,dt:double):double;
begin { divide two doubles } doddv:=0 end;
furction dodmd(ds,dt sdouble):double;
begin { modulo of two doubles) dodmd:=0 endy
function dofadi(x,y:real):real;
begin { add two reals)} dofad:=0.0 end; -
>
function dofsb(x,y:real):real; o
begin { subtract two reals } dofsb:=0.0 end; —
Ul

function dofmu(x,y:real):feal;
begin € multiply two reals } dofmu:=0.0 end;

function dofdv(x,y:real):real;
begin { divide two reals } dofdv:=0.0 end;

procedure dofif(x,y:real;var intpart,fraction:real);
begin { dismember x*y into integer and fractional parts X
intpart:=0.0; <{ integer part of xxy >
fraction:=0.0; { fractional part of x*y }>
end;

procedure dofef(x:real;var mantissa:real;var.exponent:integer);
begin { dismember x into mantissa and exponent parts
mantissa:=0.0; { mantissa of x }
exponent:=0; { exponent of x 2}
end; ’

€
{ Trap
€

procedure trap;

{ This routine is invoked for overflow, -and other run time errors.
For non-fatal errors, trap returns to the calling routine

b

begin
if uerrorlb=0 then
begin
writeln('error ', n:1, ' occurred without being caught');
goto 9999
end;
{ Deposit all interpreter variables that need to be saved on
the stack. This includes normalmap, all scratch varijables that can
be in use at the moment and (not possible in this interpreter)
the internal address of the interpreter where thé error occurred.
This will make it possible to execute an RTT instruction totally
transparent to the user program.
It can, for example, occur within an ADD instruction that both
operands are undefined and that the result overflows.
Although this will generate 3 error traps it must be possible
to ignore them all.

For simplicity just the normalmap flag will be stacked here }

push Cord(normalmap));
{ Now simulate the effect of an MRS instruction >

push(uerrorlb); { push static link ¥
push(lb); { push dynamic link 2
push(pc); { push return address
push(n); { push error number >

{ Now simulate the effect of a CAS instruction }
newlb(sp); newpc(memi (pd+pdsize*uerrorproc+pdbase));
if n in CESTACK,EHEAP,EILLINS,EODDZ, ECASE, ECAL, EMEMFLT,EPTR,
EPROC,EPC]” '
then goto 9999;
end;

procedure dortt;

var s:adr;

begin :

newpc (mema(lb-reta)); s:=lb-mrksize-2; newlb(mema(lb-dynd)); newsp(s);
{ So far this was a plain ret 02}

normalmap := popw = 1;

end;

[URURG

TZ# SM3IN TYISvd

T86T “114dY

9T 39vd

A A

Injtialization and debugging

procedure initjalize; <{ start the ball rolling ¥
{ This is not part of the official machine definition
const tab = '
var b:boolean;
cset:set of char;
f:ifset;
nmini, mbase,nshort,sbase, obase,i,j n:integer;
c:char;

[
’

function readword:word;
var b1,b2:byte; a:adr;
begin read(prog,b1,b2); a:=b2; a:=b1+256%a;
if a>=t15 then readword:=a-t16 else readword:=a
end;

function readdouble:double;
var a,b:adr;
begin a:=readword; b:=readword;
{ construct double out of a and b > readdouble:=0
end;

function readreal:real;
var b:byte; i:integer;
s:array[1..100] of char;
begin i:=0;
repeat
read(prog,b); i:=i+1; sCil:=chr(b)
until b=0;
if odd(i) then read(prog,b); <{ skip padding byte X
{ construct real out of character string s) readreal:=0.0
end;

begin
normalmap:=true;
halted:=false;
exitstatus:=-1;
uerrorltb:=0;
uerrorproc:=0;

{ initialize tables 2}
for i:=0 to maxcode do codeli]:=0;
for 1:=0 to maxdata do datalil:=0;
for b:=false to true do
for 9:=0 to 255 do
with dispatCblCil do
begin instr:=NON; jflag:=[zbit] end;

{ read instruction table file. see appendix 2)
reset(tables); insr:=NON;

repeat readln(tables) until eoln(tables); { skip until empty line)
repeat readln(tables) until eoln(tables); { skip until empty Lline 2}

Yy Y

readln(tables);
repeat
insr:=succ(insr); cset:=[1; f:=[];
read(tables,c,c,c,c);
while (c=' ') or (c=tab) do read(tables,c);
repeat
cset:=cset+[c];
read(tables,c)
until (c=' ') or (c=tab);
readln(tables,nmini, mbase,nshort,sbase,obase);
if 'x' in cset then f:=f+Ixbit];
if 'y' in cset then f:=f+[ybitl;
if '2' in cset then
with dispat('s' in cset]Cobasel do
begin iflag:=f+[zbitl; instr:=insr end
else
begin
with dispatC'Ll' in csetllobasel do
begin iflag:=f; instr:=insr end;
for i:=0 to nshort-1 do
with dispatl's' in csetllsbase+il do
begin jflag:=f+Cshortl; instr:=insr; implicit:=256*i end;
if insr=CAL then cutoff:=mbase else '
for i:=0 to nmini-1 do
with dispat[falselCmbase+il do
begin iflag:=f+Iminil; instr:=insr;
implicit:=itord('o' ih cset)
end;

{ skip empty Lline 2}

end;
until eoln(tables);

{ read in program text, data and procedure descriptors }
reset(prog);
for i:=1 to 8 do n:=readword; <{ skip first header
for i:=1 to 8 do header[il:=readword; <{ read second header 2}
Lb:=0; hp:=maxdata+1; sp:=0; Llino(0);
{ read program text ¥
for 9:=1 to headerCNTEXT] do read(prog, codeli-11);
{ read data blocks ¥
for i:=2 to readword do push(undef); { ABS block >
for §:=2 to headerCNDATA] do
begin n:=readword;
if n>=0 then
for j:=1 to n do push(undef)
else
begin j:=(n*t15) div t13; n:=(n+t15) mod t13;
case j of
0, { words X
1: { pointers
for j:=1 to n do push(readword);
2: { double integers
for j:=1 to n do pushd(readdouble);
3: { reals as character strings)
for j:=1 to & do pushr(readreal);

54

T¢# SHIN 1YI8Yd

T86T “11¥dY

[T 394

end
end;
{ read descriptor table
pd:=headerLNTEXT];

for i:=1 to header[NPROCI*pdsize do read{prog,codelpd+i

{ call the entry point routine

push{maxdata); € illegal static Link >

push(maxdata); € illegal dynamic Link >

pushi{maxcode); { illegal return address >

newlb(sp+2);

newpc (memi(pd + pdsizexheader[ENTRY] + pdbase));
end;

=11);

MAIN LOOP OF THE INTERPRETER

AN A

{ It should be noted that the interpreter (microprogram) for an EM-1
machine can be written in two fundamentally different ways: (1) the
instruction operands are fetched in the main loop, or (2) the in-
struction operands are fetched after the 256 way branch, by the exe-
cution routines themselves. In this interpreter, method (1) is used
to simplify the description of executign routines. The'dispatch
table dispat is used to determine how the operand is encoded. There
are 4 possibilities:

0. There is no operand

1. The operand and dinstruction are together in 1 byte (mini)
2. The operand is one byte long and follows the opcode byte(s)
3. The operand is two bytes long and follows the opcode byte(s)

In this interpreter, the main Lloop determines the operand type,
fetches it, and leaves it in the global variable. k for the execution
routines to wuse. Consequently, instructions such as LOL, which use
three different formats, need only be described once in the body of
the interpreter.

However, for a productien dnterpreter, or a hardware EM-1
machine, it dis probably better to use method (2), i.e. to let the
execution routines themselves fetch their own operands. The reason
for this is that each opcode uniquely determines the operand format,
so no table lookup in the dispatch table is needed. The whole table
is not needed. Method (2) therefore executes much faster.

However, separate execution routines will be needed for LOL with
a one byte offset, and LOL with a two byte offset. It is to avoid
this additional clutter that method (1) is used here. In a produc~
tion interpreter, it is envisioned that the main loop will fetch the
next instruction byte, and use it as an index into a 256 word table
to find the address of the interpreter routine to jump to. The
routine jumped to will begin by fetching its operand, if any,
without any table {Llookup, since it knows which format to expect.
After doing the work, it returns to the main Lloop by jumping fin-
directly to @ register that contains the address of the main Lloop.
When the alternate context is entered (after the MRX or MXS in-
structions), this register is reloaded so that an alternate main

loop is used, with an alternate branch table. A slight variation on"

this ddea is to have the register contain the address of the branch
table, rather than the address of the main loop.

Another issue - is whether the execution routines for LOL 0, LOL
2, LOL 4, etc. should all have distinct execution routines. Doing
so provides for the maximum speed, since the operand is dmplicit in
the routine itself. The disadvantage is that many mearly didentdcal
execution routines will then be needed. MAnother way of doing it ds
to kéep the instruction byte fetched from memory (LOL 0, LOL 2, LOL
4, etc.) in some register, and have all the LOL mini format instruc-
tions branch ro a common routine. This routine can then determine
the operand by -subtracting the code for LOL 0 from the nregister,
leaving the true operand in the register <(as a word guantity- of
course). This .method makes the interpreter smaller, but is a bit
slower.

[URENL)

TZ# SMIN YISvd

186T “114dY

8T 39v(

TJo make this important point a little clearer, consider how a
production interpretér for the PDP-11 might appear. Let us assume the
following opcodes have been assigned:

30: LoL O

31: LoL 2 (2 bytes, i.e. next word)

32: LOL 4

33: LOL 6

34: LOL b (format with a one byte offset) .

35: LOL w (format with a one word,“i.e. two byte offset)

Further assume that each of the 6 opcodes will have its own execution
routine, i.e. we are making a tradeoff in favor of fast execution and

a slightly larger interpreter.

Register r5 is the em1 program counter.

Register r4 is the em1 LB register

Register r3 is the em1 SP register (the stack grows toward high core)
Register r2 contains the interpreter address of the main loop

The main Loop

movb (r5)+,r0
asl r0
jmp *table(r0)

Llooks Llike this:

/fetch the opcode into r0 and <increment rS
/shift rO left 1 bit. Now: —-256<=r0<=+254
/jump to execution routine

Notice that no operand fetching has been done. The execution routines for
the 6 sample jnstructions given above might be as follows:

lolO:
lol2:
lol4:
lolé6:

Lolb:

Lolw:

mov (r4),(sp)+
jmp (r2)

mov 2(r4),(sp)+
jmp (r2)

mov 4(r4),(sp)+
jmp (r2)

mov. 6(r4),(sp)+
jmp (r2)

clr r0

bisb (r5)+,r0
asl r0

add r4,r0

mov (r0),(sp)+
jmp (r2)

clr r0

bisb (r5)+,r0
swab r0

bisb (r5)+,r0
asl r0

add r4,r0

mov (r0),(sp)+
jmp (r2)

/push Local 0 onto stack

/go back to main Loop

/push local 2 onto stack

/go back to main Lloop

/push Local 4 onto stack

/go back to main loop

/push Local. 6 onto stack

/go back to main loop

/prepare to fetch the 1 byte operand
/operand is now in r0

/r0 is now offset from LB in bytes, not words
/r0 is now address of the needed local
/push the local onto the stack

/prepare to fetch the 2 byte operand
/fetch high order byte first !!!
/insert high order byte in place
/insert Low order byte in place
/convert offset to bytes, from words
/r0 is now address of needed local
/stack the Llocal

/done

The important thing to notice is where and how the operand fetch occurred:
Lol0, Llol2, Lol4, and lolé, (the mini's) have implicit operands

lolb knew it had to fetch one byte, and did so without any table Lookup

Llolw knew it had to fetch a word, and did so, high order byte first }

€

{ Main Loop
€

begin initialize;
repeat
opcode := nextpc; { fetch the first byte of the instruction
if normalmap or (opcode<cutoff) then
begin escaped:=opcode=escape;
if escaped then opcode := nextpc;
with dispatlescaped]lopcode] do
begin insr:=instr;
if not (zbit in iflag) -then
begin '
if mini in iflag then k:=implicit else
if short in iflag then k:=implicit+nextpc else
begin k:=nextpc; if k>=128 then k:=k-256;
k:=256%k + nextpc
end;
if xbit in iflag then k:=k*2 else
if ybit in iflag then
if k=0 then k:=1 else k:=k*2
end
end
end
else
begin insr:=CAL; k:=opcode-cutoff end;

[MOR)

{
€ Routines for the individual instructions
{

Yy

case insr of
NON: trap(EILLINS);

{ LGAD GROUP 2}

LOC: push(k);

LNC:z push(-k);

LOoL: push(memw(lb+argx(k)));

LOE: push(memw(argx(k)));

LOP: push(memw(mema(lb+argx(k))));

LAI: begin k:=argy(k); a:=popa; b:=mema(a); store(a,b+k); pushx(k,b) end;
LOF: push(memw(popa+k));

LAL: push(lb+argx(k));

LAE: push(argx(k));

LEX: begin a:=lb; for j:=1 to argn(k) do a:= mema(a-statd); push(a) end;
LOI: pushx(argy(k) popa);

Los: begin k:=popa; pushx(argy(k),popa) end;

LDL: begin ki=argx(k); pysh(memw(lb+k)); push(memw (Lb+k+2)) end;

LDE: begin k:=argx(k); push(memw(k)); push(memw(k+2)) end;

LDF: begin a:=popa; push(memw(a+k)); push(memw(a+k+2)) end;

TZ# SMIN TYISvd

T86T “114dV

6T 39v4

{ STORE GROUP } -

STL:
STE:
STP:
SAL:
STF:
STI:
STS:
SDL:
SDE:
SDF:

store(lb+argx (k) ,popw) ;
stoce(argx(k),popw)i)) ,

Lb+argx(popw) ;)
;Z;;z(€§22£gy(;)g a:=p8pa; b:=mema(a); store(a,b+k); popx(k,b) end;
begin a:=popa; store(at+k,popw) end;
popx(argy(k),popa);(©) end:
begin k:=popa; popx(argy(k),popa) end;) .
begin k:=argx(k); store(Lb+k+2,popu);'store(Lb+k,pop?)~end,
begin k:=argx(k); store(k+2,popw); store(k,popw) end,'
begin a:=popa; store(a+2+k,popw); store(atk,popw) end;

{ SINGLE PRECISION ARITHMETIC)

ADD:
suB:
MUL:
XDIV:

XMOb:

NEG:
SHL:

SHR:

begin t:=argi(popw); s:= argi(popw); push(chkovf(s+t)) eng{
begin t:=argi(popw); s:= argi(popw); push(chkovf(s-t)) end:
begin t:=argi(popw); s:= argi(popw); push(chkovf(s*t)) end;
begin t:= argi(popw); s:= argi(popw); .

° if t=0 then trap(EIDIVZ) else push(s div t)

o) i (popw)

begin t:= argi(popw); s:=argi(popw); .

eotm if t=Dgthzn trap(EIDIVZ) else push(s - (s div t)*t)
end;

begin t:=argi(popw); push(—g) end;

begin t:=argi(popw); s:=argi(popw);

for i:= 1 to t do sleft(s); push(s)

end; .

begin t:=argi(popw); s:=argi(popw);

for i:= 1 to t do sright(s); Push(s)
end;

{ DOUBLE PRECISION ARITHMETIC X

DAD:
DSB:
DMU:

DOV:

DMD:

in dt:=popd; ds:=popd; pushd(dodad(ds,dt)) end;
2:3;2 gt:=zoﬁd; ds:=popd; pushd(dodsb(ds,dt)) end;
begin dt:=popd; ds:=popd; pushd(dodmd(ds,dt)) end{
begin dt:=popd; ds:=popd; pushd(doddv(ds,dt)) end:
begin dt:=popd; ds:=popd; pushd(dodmd(ds,dt)) end;

{ FLOATING POINT ARITHMETIC

FAD:
FsSB:
FMU:
FDV:
FIF:
FEF:

i = ; ¢) end;
begin rt:=popr; rs:=popr; pushr{dofad(rs,rt) ;
beg}n rt:=gopr; rs:=popr; pushr(dofsb(rs,rt)) end; .
begin rt:=popr; rs:=popr; pushr(dofmu(rs,rt;; eng;
begin rt:=popr; rs:=popr; pushr(dofdv(rs,rt end; . .
b:gin rt:=gogr; rs:=popr; dofiflrt,rs,x,y); pu%hr(y), pushr(x) end;
begin rt:=popr; dofef(rt,x,i); pushr(x); push(i) end;

{ POINTER ARITHMETIC

ADI:
PAD:

push(popatk) ;
begin t:=popw; push(popa+t+t) end;

PSB: begin a:=popa; b:=pan; push(chkovf(b-a)) end;

{ INCREMENT/DECREMENT/ZERO b
I

NC:
INL:
INE:
DEC:
DEL:
DEE:
ZRL:
ZRE:

push(chkovf(argi(popu)+1));
begin,k:=argx(k); t:=argi(memw(lb+k))
begin k:=argx(k); t:=argi(memw(k))
push(chkovf(argi(popu)-1));

begin k:=argx(k); ti=argi(memw(lb+k)); store(lb+k ,chkovf(t-1)) end;

begin k:=argx(k); t:=argil(memw(k)); store(k,chkovf(t-1)) end;
store(lb+argx(k),0);

store(argx(k),0);

; store(lb+k,chkovf(t+1)) end;
7 store(k,chkovf(t+1)) end;

{ CONVERT GROUP >

CIb:
CD.

CIF:
CFI:

CDF:
CFD:

I: begin dt:=popd

pushd (popw) ;
; if abs(dt) > t15m1 then trap(ECDI) else push(dt)
pushr(popw) ;
begin rt:=popr;
if abs(rt)>t15m1-0.5 then trap(ECFI) else push(round(rt))
end;
begin dt:=popd; pushr(dt) end;
begin rt:=popr; jf abs(rt) > t31m1
pushd(round(rt))
end;

=0.5 then trap(ECFD)

’

€ LOGICAL GROUP >
XAND ,ANS :

begin if insr=ANS then k:=popw; k:=argp(k);

end;

for j:=1 to k div 2 do
begin t:=popw; a:=sp-k+2; store(a,bf(andf,memw(a),t)) end;

IOR,I0S:

begin if insr=I10S then k:=p6pu; k

end;

:=argp(k);
for j:=1 to k div 2 do

begin t:=popw; a:=sp-k+2; store(a,bf(iorf, memw(a),t)) end;

XO0R, X0S:
begin if insr=X0S then k:=popw; k:=argp(k);

end;

for j:= 1 to k div 2 do
begin t:=popw; a:=sp-k+2; store(a,bf(xorf,memw(a),t)) end;

COM,COS:

begin if insr=C0S then k:=popw; k

end;
ROL: begin t:=popw; s:=popw; for j:=
ROR: begin t:=popw; s:=popw; for i:=

:=argp(k);
for j:= 1 to k div 2 do .

begin store(sp~-k+2xj, bf(xorf,memv(sp-k+2*j), =1)) end

1 to t do rleft(s); push(s) end;
1 to t do rright(s); push(s) end;

{ SET GROUP >
INN,INS:

begin if insr=INS then k:=popw; k:=argp(k);

t:i=popw; if t<0 then trap(ESET);
i:= t mod 16; t:i=¢t div 16; if 2%t>=k then trap(ESET);
S :=memw (sp-k+2+2%t) ; newsp(sp-k); push(bit(i,s));

end;

TZ# SHIN 1YISVd

186T “114dY

0z 39vd

end;
XSET,SES:

begin' if insr=SES then k:=popw; k:=argp(k);
t:=popw; if t<0 then trap(ESET);
ii= t mod 16; t:= t div 16; if 2xt>=k then trap(ESET)
for j:= 1 to t do push(0);
s:=1; for j:= 1 to i do rleft(s); push(s);
for j :=1 to k' div 2-t-1 do push(0)

end;

{ ARRAY GROUP
LAR,LAS:
begin if insr=LAS then k:=popa; k:=argx(k);
pushx (memw(k+4) ,arraycalc(k))
end;
SAR,SAS:
begin if insr=SAS then k:=popa; k:=argx(k);
popx (memw(k+4) ,arraycalc(k))
end;
AAR,AAS:
begin if insr=AAS then k:=popa; k:=argx(k);
push(arraycalc(k))
end;

{ CCMPARE GROUP
H in t:=popw; S:=popW;
o be?}ns<t ihgn push?-q)letse if s=t then push(0) else push(1)
end; b
: i :=popa; b:=popa;
e b§$1g<a tﬁeﬁ push(E1§ else if b=a then push(0) else push(1)
end; g
H i :=popd; ds:=popd;
oo beg}ndgzdtptﬁzﬁ oush(o1y else if ds=dt then push(0) elsepush(1)
end;
: i :=popr; rs:=popr;
e be?}nrQZrtptﬁen push%—?) else if rs=rt then push(0) else push(1)
end;
CMU,CMS:
begin if insr=CMS then k:=popw; k:=argp(k);
t:=0; j:=0;
while (j < k) and (t=0) do
begin a:= mema(sp-j); b:=mema(sp-k-j);
if b<a then t:= -1 else if b>a then t:=1;
ji=j+2
end;
newsp(sp-2xk); push(t);
end;

TLT: if popw < O then push(1) else push(0);
TLE: if popw <= 0 then push(1) else push(0);
TEQ: if popw = 0 then push(1) else push(0);
TNE: if popw <> 0 then push(1) else push(0);
TGE: if popw >= 0 then push(1) else push(0);

TGT: if popw > 0 then push(1) ekse push(0);

{ BRANCH GROUP X
BRF: newpc(pct+argn(k));
BRB: newpc (pc-argn(k));

BLT: begin t:=popw; if popw < t

BLE: beyin t:=popw; if popw <= t then newpc(pc+argn(k)) end;
BEQ: begin t:=popw; if popw = t then newpc(pc+argn(k)) end;
BNE: begin t:=popw; if popw <> t then newpc(pct+argn(k)) end;
BGE: begin t:=popw; if popw >= t then newpc(pct+argn(k)) end;
BGT: begin t:=popw; if popw > t then newpc(pc+argn(k)) end;

then newpc(pctargn(k)) end;

ZLT: if popw < 0 then newpc(pctargn(k));
ZLE: if popw <= 0 then newpc(pctargn(k));
ZEQ: if popw = 0 then newpc(pc+argn(k));
INE: if popw <> 0 then newpc(pc+argn(k));
2ZGE: if popw >= 0 then newpc(pc+argn(k));
ZGT: if popw > 0 then newpc(pctargn(k));

~

PROCEDURE CALL GROUP X

A~

There are four ways to mark the stack. The change in static depth can
be given as an immediate operand or the new static link.can be provided
on the stack. Also, the instruction may switch into alternate context,
or not. Only two of these have mnemonics, i.e. can be used by the prog-
rammer. These mnemonics are MRK and MRS, corresponding to the immediate
and stacked forms respectively. The decisjon about using alternate con-
text is made by the assembler. The four cases are:

MRK: immediate, normal context

MRX: immediate, alternate context

MRS: stacked, normal context

MXS: stacked, alternate context

b
MRK, MRS, MRX, MXS :
begin if (insr=MRS) or (insr=MXS) then k:=popw; k:=argn(k);
a:= Lb; for j:= 1 to k do a:= mema(a-statd);
push(a); push(lb); push(0);
normalmap:=(insr=MRK) or (insr=MRS);
end;
CAL,CAS: :
begin if insr=CAS then k:=popw; k:=argn(k);
a:=pd+pdsizexk; t:= memi(atpdargs); store(sp+2-t-reta,pc);
newpc (memi (a+pdbase)); newlb(sp+2-t); normalmap:=true;
end;
RET,RES:

begin if insr=RES then k:=popw; k:=argx(k);
newpc (mema(lb-reta)); a:=sp-k; b:=lb-mrksize-2;
newlb(mema(lb~dynd));
for j:=1 to k div 2 do store(b+2*j,memw(a+2%j));
newsp (b+k) ;

end;

TZ# SMIN 1¥ISYd

I86T “11¥dV

17 39vd

{ MISCELLANEOUS GROUP)
BEG,BES

begin if insr=BES then k:=popw; k:=argz(k);
ifk>=0
then for j:= 1 to k div 2 do push(undef)
else newsp(sp+k);
end;

BLM,BLS:

CSA:

CSB: begin k:=popa; b:=memi(pd+pdsize*memw(k)+pdbase);
t:=popw; i:=1; found:=false;
while (i<=memw(k+4)) and not found do
if t=memw(k+2+4*i) then found:=true else i:=i+1;
if found then s:=memw(k+4+4*7) else s:=memw(k+2);
if s=-1 then trap(ECASE) else newpc(b+s);
end;
DUP, DUS :
begin if insr=DUS then k:=popw; k:=argp(k);
for i:=1 to k div 2 do push(memw(sp - k. + 2));
end;
EXG: begin t:z=popw; 's:=popw; push(t); push(s) end;
HLT: begin exitstatus:=popw; halted := true end;
LIN: linoCargn(k));
LNI: Lino(memw(0)+1);
LOR: begin i:=k;
case i of O:push(lb); 1:push(sp); 2:push(hp) end;
end;
MON: ; € MON will not be described here >
NOP:
RCK,RCS:
begin if 1nsr=RCS then k:=popa; k:i=argx(k);
if (memw(sp)<memw(k)) or (memw(sp)>memw(k+2)) then trap(ERANGE)
end; .
RTT: dortt;
SIG: begin a:=popa; b:=popa; push(uerrorlb); push(uerrorproc);
uerrorprocz=a; uerrorlb:=l
end;
STR: begin i:=k;
case i of 0: newlb(popa); 1: newsp(popa); 2: newhp(popa) end;
end;
TRP: trap(popw) ;

begin if insr=BLS then k:=popw; k:=argx(k);
t:=popa; s:=popa;
for j := 1 to k div 2 do store(t—2+2%j, memw{(s—2+2%j))
end;
begin k:=popa; b:=memi(pd+pdsizexmemw(k)+pdbase);
t:= popw — memw(k+4); s:=-1;
if (£>=0) and (t<=memw(k+6)) then s:=memw(k+8+2%t);
if s=—1 then s:=memw(k+2);
if s=-1 then trap(ECASE) else newpc(b+s)
end; N

end { end of case statement)
until halted;

9999:

writeln('halt with exit status:',exitstatus);
end.

TZ# SMIN TYISYd

T86T “11¥dY

7z 39vg

{
{
{
{
{
{
q{
{
{
{
{
{

A,

UNREAL ARITHMETIC -- extended precision integer arithmetic
routines for 16-bit machines.

'PURPOSE :

This module .provides rautines for performing standard integer
arithmetic functions with extended precision. It is designed
for use on 16-bit imachines, where it effectively -extends MAXINT
from 32767 to roughly 256 trillion (248 - 1). This is
particularly useful in financial applications, where you can
store dollar amounts in tenths of a cent and still keep track
of up to $256 billion.

IMPLEMENTATION:
Numbers are of type UNREAL, a Pascal record containing 6 bytes
(0..255) and a boolean indicating the sign. The precision -
can be changed by changing the global .constant BYTEMAX, and
‘by changing code as noted in Uwrite. Changing Uread is more
difficult, but you probably never want to read a decimal
number larger than 15 digits anyway...

'EXCEPTIONS:

The ErrorTrap procedure is .called on all exceptions, which are
as follows:

The values returned by a procedure/function are undef<ined if an
exception is found.

B s * *an Py wxreny

Jeff Pepper

Three Rivers Computer ‘Corporation
160 N. Craig Street
Pittsburgh, PA 15213

written July 1980

TN TSSTRSF TSN TECS T8

"input too long" -- too many -chars in input string

"input too large" -- value of input > 2~48 - 1

"no number found" -- Uread encounters a non-digit ‘before]
finding a digit

"division by zero"

"addition -overflow"

"mult overflow"

O s e e e e T e

e R tbd by ok R

CONST

TYPL byte =

The following operations are available:

Unegate (a: unreal)

UUadd (a,b:
UUsub (a,b:
UUmalt (a,b:
uudiv (a,b:

UUgreater (a,b: unreal): boolean true iff a <
UUequal -(a,b: unreal): boolean true iff a =
Uzero «(a: unreal): boolean true iff a =

Uread (VAR f: text; VAR -num: unreal)

Uwrite (VAR f: text; num: unreal; fieldwidth: integer)

IUconvert (a: integer; VAR b: unreal)
converts dinteger to unreal

Ulcpnvert (a: unreal; VAR b: integer): booiean
converts unreal to integer. The function returns .a false value
iff a > maxint.

unreal

a
unreal; VAR c: unreal) c
unreal; VAR c: unreal) c
unreal; VAR c: unreal) -
unreal; VAR g,rem: unreal) q

r

.reads a number in .decimal form, -converts :to type unreal

converts from unreal to decimal :form, writes to Tile
f, using fieldwidth specified. Writes all '*'s if
fieldwidth is too small

I I S I I I I AT D e I I I I S I I I T eI L I T T I i I LI LI I,

bufmax = 163 { size of write buffer, - 1}
byteMax 53

{ size of ‘byte array, - 1}

0..265;
= ‘RECORD
byt: ARRAY [0..byteMax] OF byte:
pos: boolean; { true if it's .non-negative 3
END;

realArray = ARRAY [0..byteMax] OF integer;
writeBuf = ARRAY [0..bufmax] OF integer;
digArray = ARRAY [0..2] OF 0..9;

string = PACKED ARRAY [0..197] OF char;

{
procedure UUSub «(a,b: unreal; VAR «c: unreal); .FORWARD;
{

w

procedure ‘ErrorTrap (str: string);

BEGIN
writeln «(**** :UNREAL ARITHMETIC ERROR: ', str);
writeln;

END;

{
procedure Unegate (VAR a: unreal);
BEGIN

a.pos := NOT a.pos

‘END;

{

function Uzero (num: -unreal): boolean;
VAR i: integer; zip: boolean;

BEGIN
zip := TRUE;

FOR i := 0 to byteMax DO zip := zip AND (num.byt[i] = 0); {test all bytes}

Uzero := zip

END;

{

function UUequal .(a,b: unreal): boolean;
VAR i: integer: eq: boolean;

‘BEGIN

-eq := TRUE;

FOR i := 0 to byteMax DO eq := eq ‘AND (a.byt[i] = b.byt[i]):
SE;)

IF a.pos <> b.pos THEN eq := FALSE;

{just in case both are 0, but of different sign...}
IF Uzero(a) .-AND Uzero(b) THEN eq := TRUE;

UUequal := eq

END;

{

procedure IUcpnvert (a: integer; VAR u: unreal);
VAR i: dinteger;

BEGIN

FOR i := 2 to byteMax DO u.byt[i] := D;
u.byt[1] := ABS(a) DIV 256;

function UIconvert (u: unreal; VAR a: integer): baolean;

{ returns TRUE iff u is in range -32767 .. +32767 }

VAR small: ‘boolean;
i: integer;
BEGIN
small TRUE;

FOR i := 2 io byteMax DO small := small AND (u.byt[i] = 0);

UIconvert := small;
a := u.byt[1] = 256 + u.byt[0];
IF NOT u.pos THEN a := -a

T¢# SMIN TYISvd

“1YdY

1861

$7 39vg

{check for high byte overflow}

{mmmmmme- } IF tmp[byteMax] <= 255
THEN num. byt[byteMax] = tmp[byteMax]
function UUGreater (a.b: unreal): boolean; ELSE ErrorTrap ('input too large)
END;
VAR loc: integer; END;
state: (bigger, same, smaller);
BEGIN procedure Uwrite (VAR f: text; num: unreal; fieldwidth: integer);
IF Uzero(a) AND Uzero(b) THEMN UUGreater := FALSE
ELSE IF a.pos AND NOT b.pos THEN UUGreater := TRUE VAR s: writeBuf;
LLSE IF NOT a.pos AND b.pos THEN UUGreater := FALSE i,j: integer;
ELSE . digits: digArray;
BEGIN {at this point, a and b must have same sign} started, goodsize: boolean;
state := same;
loc := byteMax; { - }
REPEAT . procedure GetDigits (num: byte; VAR digs: digArray)
IF a.byt[loc] > b.byt[loc] THEN state := bigger BEGIN

ELSE IF a.byt[loc] < b.byt[loc] THEN state := smaller; digs[2] := num DIV 100;

loc := loc-1;

digs[1]

num MOD 100 DIV 10;

SHAN T¥asvd

UNTIL (state <> same) OR (loc < 0); digs[0] := num MOD 10
IF a.pos END;
THEN UUGreater := (state = bigger) {when both are pos.} { }.
ELSE UUGreater := (state = smaller); {when both are neg.}
END; BEGIN
END; FOR i := 0 to bufmax DO s[i] := 0
{) {0th byte}
GetDigits (num.byt[0], digits):
procedure Uread (VAR f: text; VAR num: unreal); FOR i := 0 to 2 DO sf{i] := digits[i];

VAR i,strlen: integer;

{1st byte -~ multiply by 2566, add to s}
tmp: realArray;

GetDigits (num. byt[l] digits);

1w

s1: array [0..bufmax] of char;
s: writebuf;

BEGIN

{initialize} .

FOR i := 0 to bufmax DO BEGIN s[i] := 0; s1[i] := '0' END;
{skip leading spaces}

{100k for minus sign}
{eat leading sign}

WHILE f~ = * * DO get(f);
num.pos := ~= t=T)y
IF f~ IN ["=*,'+"] THEN get(f):

FOR i :=0 to 2
BEGIN
s[2+1] :=
s[1¢i]
s[0+1] :=
END;

s[2+i] + digits[i] *
s[1+i] + digits[i] *
s[0+i] + digits[i] *

{2nd byte -- multiply by 65536, add to
GetD1g1ts (num.byt[2], digits);
FOR i := 0 to 2 DO

stilem := 0;

WHILE (fA ™ ['0'..'9']) AND (strLen <= bufmax) DO

read (f. sifstrlLen]);

strien := strlen +
END;

1;

{read into a string of digits}

IF strien > bufMax THEN ErrorTrap ('input too long
ELSE IF strLen = 0 THEN ErrorTrap ('input not found

BEGIN

{now reverse the string and convert from chars to integers}

FOR i := 0 to strLen-1 DO s[i]

{abracadabra...

convert the

d!g1t array to

base 2566}

1= ord(si[strLen-i-1]) - ord('0');

tmp[0] := s[0] + s[1] * + s[2] * 100 + s[3] * 232 +
s[4] * 16 + s[5] * 160 + s[6] * 64 + s[7] * 128;
tmp[1] := s[3] * 3 + s[4] * 39 + s[5] * 134 + s[6] * 66 +
sf77 * 150 + s[8] * 226 + s[9] * 202 + s[10]* 228 +
s[11]* 232 + s[12]* 16 + s[13]* 160 + s[14]* 64;
tmp[2] := sf5] + s[6] * 15 + s[7] * 152 + s[8] * 245 +
s[9] * 164 + s[10]* 11 + s[11]* 118 + s[12]* 165 +
sf13]* 114 + s[14]* 122;
tmp[3] := s[8] * 5 + s[9] * 59 + s{10]* 84 + s[11]* 72 +
s[12]* 212 + s[13]* 78 + s[14]* 16;
imp[4] := s[10]* + s[11]* 23 + s[12]* 232 + s[13]* 24 +
s[14]* 243;
tmp[5] := s[13]* 9 + s[14]* 90;
FOR i := 0 to byteMax - 1 DO
_IF tmp[i] <= 255
THEN num.byt[i] := tmp[i]
ELSE
BEGIN
tmp[i+1] := tmp[i+1] + tmp[i] DIV 256;
num.byt[i] := tmp[i] MOD 256
END;

s[4+i] +
s[3+i] +
s[2+i] +
s[1+§] +
s[0+i] +

digits[i]
digits[i]
digits[i]
digits[i]
digits[i]

IR

odwoaaa

{3rd byte -- multiply by 16,777,216 and add to s}

GetDigits (num.byt[3], di
FOR i := 0 to 2 DO

s
s
s
s
E

{4th byte -- multiply by 4,
IF tum.byt[4] > 0 THEN
BEGIN
G:tDigits (num. byt[4].
FOR i := 0 to 2 D

BEGIN

s[9+i] := s[9+i] + digits[i] *
s[8+i] s[8+i] + digits[i] *
s[7+1] s[7+i] + digits[i] *
s[{6+i] s[6+i] + digits[i] *
s[5+1] s[5+i] + digits[i] *
s[4+1] s[4+i] + digits[i] *
s[3+i] s[3+i] + digits[i] *
sf2+i] s[2+1] + digits[i] *
s[1+4] := s[1+i] + digits[i] *

gits);

digits[i]
digits[i]
digits[i]
digits[i]
digits[i]
digits[i]
digits[i]
digits[i]

IR

294,967,296

digits):

and add to s}

“1Ydv

I8b1

he 3vvd

s[0+i] := s[0+i] + digits[i] * 6
END;
END;

{5th byte -- multiply by 1,099,611,627,776 (I hope) and add to s}
IF num.byt[sj > 0 THEN
BEGIN

GetDigits (num. byt[5] digits);
FO 2 D

R i :=0 to
BEGIN
s[124§] := s[12+i] + digits[i] * 1;
{s[11+i] := s[11+i] + digits[i] * 03}
s[10+i] := s[10+i] + digits[i] * 9;
s[9+i] := s[9+i] + digits[i] * 9;
s[8+i] := s[8+i] + digits[i] * 5;
s[7+i] = s[7+i] + digits[i] * 13
s[6+i] = s[6+i] + digits[i] = 13
s[5+i] = s[6+i] + digits{i] * 63
s[4+i] := s[4+i] + digits[i] * 23
s[3+i] := s[3+i] + digits[i] * 7;
s[2+i] . := s[2+1] + digits[i] * 73
s[1+i] = s[1+i] + digits[i] * 7;
s[0+i] := s[0+i] + digits[i] * 6
END;

END;

{*** IF YOU INCREASE THE NUMBER OF BYTES BEYOND 0..5: repeat the process
as above for all higher-order bytes, using a multiplier that's
256 * the multiplier for the next lower byte ***}

{now reduce all values to range 0..9}
FOR i := 0 to bufmax DO
IF s[i] > 9 THEN

BEGIN

s[i+1] := s[1+1] + s[1] DIV 10;
s[i] := s[i]

END;

{check to see if any digits will be Tost}
goodsize := TRUE;
FOR i := fieldwidth TO bufmax DO
goodsize := goodsize AND (s[i]="0);

IF NOT goodsize
THEN FOR i := fieldwidth-1 downto 0 DG write ('*')
ELSE
BEGIN
IF fieldwidth > bufmax + 1 THEN {pad w/ spaces on right if needed}
BEGIN

write (* ':fieldwidth - (bufmax + 1));
fieldwidth := bufmax + 1;
END;

started := FALSE;
FOR i := fieldwidth-1 downto 0 DO
BEGIN
IF (s[i] = 0) AND (NOT started) AND (i > 0)
THEN IF (NOT num. pos) AND (s[i-1] > 0)

THEN write (- {1ead1ng minus sign}
ELSE write (’ ’) {leading space}
ELSE
BEGIN
write (s[i]:1); started := TRUE
END;
END;
END;
END;
{ N 3

procedure UUadd (a, b: unreal; VAR c: unreal);

VAR i: dinteger;
tmp: realArray;

BEGIN
{first, juggle the signs}
IF a.pos AND NOT b.pos
THEN BEGIN Unegate(b); UUSub (a,b,c) END
ELSE IF *NOT a.pos AND b.pos
THEN BEGIN Unegate(a); UUsub (b,a,c) END

ELSE IF NOT a.pos AND NOT b.pos
THEN BEGIN Unegate(a); Unegate(b); UUadd(a,b,c); Unegate(c) END
ELSE
BEGIN {now we know both are positive}
FOR i := 0 to .byteMax DO tmp[i] := a.byt[i] + b.byt[i];
FOR i := 0 to byteMax - 1 DO
IF tmp[i] <= 265
THEN c.byt[i] := tmp[i]
ELSE

BEGIN
c.byt[i] := tmp[i] - 256
tmp[i+1] := tmp[i+1] + 1

END;
IF tmp[byteMax] <= 255
THEN c.byt[byteMax] := tmp[byteMax]
ELSE ErrorTrap ('addition overflow)
c.pos := TRUE;

Procedure UUsub {a, b: unreal; VAR c: unreal};

VAR i: dinteger;
tmp: realArray;

BEGIN
{juggle the signs}
IF a.pos AND NOT b.pos
THEN BEGIN Unegate(b); UUAdd(a,b,c) END
ELSE IF NOT a.pos AND b.pos
THEN BEGIN Unegate(a); UUadd(a,b,c); Unegate(c) END
ELSE IF NOT a.pos AND NOT b.pos
THEN BEGIN Unegate(a); Unegate(b); UUsub(a,b,c); Unegate(c) END

{now make sure a>=b}
ELSE IF UUGreater(b,a)

THEN BEGIN UUsub(b, a, c); Unegate(c) END
ELSE
© BEGIN

FOR i := 0 to byteMax DO tmp[i] := a.byt[i];

FOR i := 0 to byteMax - 1 DO

IF tmp[i] >= b.byt[i]
THEN c.byt[1] := tmp[i] - b.byt[i]

ELSE
BEGIN
c.byt[i] := tmp[i] + 256 - b.byt[i];
tmp[i+1] := tmp[i+1] - 1
END;
c.byt[byteMax] := tmp[byteMax] - b.byt[byteMax];
c.pos := TRUE; {it better bel}
END;
END;
{
procedure UUmult (a, b: unreal; VAR c: unreal);
VAR i, j: integer;
imp: realArray;
BEGIN
FOR i := byteMax DOWNTO 0 DO
BEGIN

tmp[i] := 03
FOR j := 0 to i DO tmp[i] :="tmp[i] + (a.byt[i-j] * b.byt[il):
END;
FOR i := 0 to byteMax - 1 DO
IF tmp[i] <= 255
THEN c.byt[i] := tmp[i]
ELSE
BEGIN
c.byt[i] := tmp[i] MOD 256;
tmp[i+1] := tmp[i+1] + (tmp[i] DIV 256)
END;
IF tmp[byteMax] <= 255
THEN c.byt[byteMax] := tmp[byteMax]
ELSE ErrorTrap (° mu1t overflow
c.pos := (a.pos AND b.pos) OR NOT (a.pos OR b.pos);
END;

T¢# SMAN TYISYd

T86T “I4dY

G¢ 39v({

{ommminnn)

- procedure UUDAv (@,b: unrEal;: VAR g, rem: unreal);

VAR’ shiftCt, ,j: integer;
asize, bs1ze' integer;

¢ : . e
function TooFar (; " boolean;
VAR 1i,j: integer; shifted: urreal;
BEGIN]
dsize := byteMax; i L
WHILE (a. byt[as1zé] 0), AND’ (asize > 0) DO asize := asize = 1
bsize := byteMax .
WHILE (b~ hyt[bSIZ@] = 0) AND' (bsizé > 0) DO Gsize := bsize - 1
IF dsize = bsize

THEN: TooFar :# TRUE

SE-
BEGIN!) .
FOR! 1 := bytéMix downto 1: do’ shiftedibyt[i]. := b.byt[i-1]7
shifted.byt[0] :
Toofdr := UUGreater (shifted, &)
ENDY
END;
{

BEGIN’
IF Uzero(b)
EBEN ErrorTrap: ('Division by zerd' ')

BEGEN-
(f1QUFe out quotient’s & rem’s signs- now, then force a and b positive}

q.pos o= os AND: bpos). OR NOT (a.pos OR b.pos);

rem:. pos- a’.-pos’y

a. pos £

bipos :< TRUE; .

FOR' i 2 0 to byteMax DO g. hytt1] i= 05 finitidlize a1l 0's)
SHYTECE: o=

wngbﬂ NOT fooPaF (‘a,b) DO
FOR f := byteMax DOWNTO 1 DD b.byt[i] := b.byt[i-1]; {shift Teft)
BBy L[0T

shiftCt §g1ftct + Ty
FQRA?':= shiftct DOWNTO' 0 DO

WHILE NOT UUGreater (b’,a) DO
N WBytfi)o+ 13

END;.
IF i > 0 THEN
BEGIN

FOR j := 0 to byteMax - 1 DO b.byt[j] := B.byt[j+#1]s {shift right}
b. by%[bytenax] 1= 03
END

END%
rem.byt := a.byty; N
END;
END;

P
{

procedure Maiii;

VAR a,i,f: integer;
vz, rem: unreal;
c1: char;

diammy : bpd]eih}

BEGIN:

REPEAT
write' ('Enter problem in' form f-op-n:)
Ure
reai'(ch)'
Uread' (1nput)i
CASE ch' OF

*>': IF UUgreater(x,y) THEN write ('greater') ELSE wfite' ('not grtr’)y

'c

[
i

rery
2N
END;

write ('—--

IF ch IN [+,

IF UUequal(x, y) THEN write (’equal') ELSE write ('not equal’

BEGIN: dummy := UIcorivert(x,a); if dummy THEN write (’'conv OK
write (a:10): IUconvert(a,z) END;

UUadd (x,y,z);

UUsub (X,y,z);

Umult (x,y,z)3

UUdiv (x,Y,z, rem);

{case}

/v,'c'] THEN Uwrite (output,z,15);

Yoy vy

IF ch='/" THEN' BEGIN write. (', rem = *); Uwrite(output,rem,10) END;.

writelns;
UNTIL false;
END;

BEGIN
Main
END.

W)

ji

TZ# SMIN TYISYd

T86T “11YdV

9¢ 39v(4

PASCAL INPUT/OUTPUT

In this example characters derived from the variable |

.! . . 9 [4
Art,cles by WRITE are sent to the procedure CONVERT, which stores
- \ J them in an array.

VAR
CHARS:ARRAY(.1..10.) OF CHAR;
C, I:INTEGER;

PROCEDURE CONVERT(CH:CHAR);

BEGIN

_ » ! IF C <= CMAX
AN EXTENSION TO PASCAL READ AND WRITE PROCEDURES THEN

BEGIN
David A. Rowland CHARS(.C.):=Cli;
Real-Time Software Associates C:=C+1;
2717 Hillegass Ave. END ;
Berkeley, Calif. 94705 END;
(415) 548-8095

BEGIN

Pascal READ and WRITE have several distinct actions.
They convert between Internal forms of data and their
representations as character strings, and they direct the
character strings through files. They are also the only
procedures in Pascal that allew an arbitrary number of
parameters of varying types.

Sometimes it is useful to have the properties of READ
and WRITE separate from the file structure., For example,
one may wish to convert an integer to a character string and
store the string in an array. Or one may wish to take input
from a keyboard directly through (ts input buffer address

. rather than defining a system handler for it.

Files in READ and WRITE are specified by being named
first in the parameter Tist. |If no file name appears, an
appropriate system file is implied. The extension 1is to

Cy=1; 1:=437;
WRITE(COMVERT, [);
END.

. The second example shows liow READ can read
directly from a hardware input buffer.

VAR
I', J:INTEGER;

PROCEDURE GETCH (VAR CH:CHAR);
VAR

RCSR ORIGIN 1775G0B:INTECER;

RBUF ORIGIMN 177562B:CHAR;
BEGIN

/*Until a char is ready, wait herex/
WHILE RCSR = 0 DO /*nothing*/ ;

allow the first parameter in the list to be the name of a CH:=RBUF;
user-defined procedure. For READ it must be a procedure END; ‘
having a parameter 1list like (VAR CH:CIJAR). For WRITE it
must have a parameter list Tike (CH:CHAR). BEGIN
READ(GETCH, 1, J);
The actions are then: for READ, every time a character END. ¢ SR

is sought, the user procedure is called. [t returns the
character in CH. For WRITE, ‘the user procedure 1is called
with the character provided as the parameter.

This extension is very much in .the spirit of Pascal,
which elsewhere allows procedures to be passed as
parameters. [t may seem a slight convenience in standard
Pascal, but it s an enormous aid in the multi-tasking
version of Pascal which we have created. |t allows one the
full flexibility and familiarity of READ and WRITE in the
absence of any operating system. [t might be considered for
other real-time and process control languages.

intcgers

TZ# SMIN Tvasyd

T86T “1IYdY

[T 39v4

PDP-11 PASCAL: THE SWEDISH COMPILER
Vs
OMSI PASCAL-1

Margaret A. Kulos
Naval Underwater Systems Center
New London, Connecticut

ABSTRACT

This paper presents a comparison of
Seved Torstendahl's Swedish Pascal
compiler and +the Oregon Minicomputer
Software Inc. (OMSI) Pascal-1 compiler.

.A comparison of +the results of
applying +the Pascal Validation Suite
against both compilers is reported. A
discussion of +the factors +hat mneed
consideration in +transporting programs
written for one of the compilers +to the
other, Dbased on the results of the
validation suite, is presented.

INTRODUC TION

This paper presents a comparison of +two Pascal
compilers implemented on a PDP-11/70 running the
RSX—~11M~PLUS operating system.

A comparison of +the results of applying the Pascal
Validation Suite against | Seved Torstendahl's Swedish
-Compiler and the Oregon Minicomputer Software Inc. (OMSI)
Pascal compiler is reported. Both compilers are discussed
in relation to +the requirements of +the draft Pascal
standard. Specific areas where programs written <for omne
compiler may not be compatible with the other compiler are
highlighted. This paper does not discuss the differences in
the I/0 handling by the two compilers except for presenting
the validation suite results for tests that examine I/0 as

stated in the draft standard.

PASCAL STANDARDIZATION

The formal effort to produce a standard for the Pascal
programming language began in 1977 when a working group was
formed within the British Standards Institution (BSI). In
October 1978, Pascal was listed as a International Standards
Organization (ISO) work item and a working draft was
circulated as the ISO document (1).

The current version of the standard (the 5th working
draft) is being circulated to ISO member bodies for comment.
In the United States, the cognizant body is the joint ANSI
X3J9-IEEE Pascal Standards Committee (2).

THE PASCAL PROCESSOR VALIDATION SUITE

The Pascal processor validation suite by A.H.J. Sale
and R.A. Freak is a series of +test programs written in
Pascal that are designed to support +the draft standard
(3,4). This suite of programs may be wused <to validate a
compiler by presenting it with a series of programs which it
should or should not accept. The suite also contains a
number of tests that explore implementation defined features
and the quality of +the processor. Processors that "pass"
all the tests are likely to be well designed and relatively
trouble free; although they may not be error free.

Use of the validation suite provides an opportunity to
measure the gquality of a processor and aids implementators
in providing a correct implementation of "standard" Pascal
in an effort to improve the portablity .of Pascal programs.

The six classes of tests in the validation suite are
conformance, deviance, implementation defined, error
handling, quality, and extension.

Conformance programs are correct standard Pascal
programs that should compile and execute.

Programs in the deviance class are Pascal programs that
differ in subtle ways from the standard. These detect
processors that:

Ea) handle an extension of Pascal
b) fail to check or limit some Pascal
feature appropriately, or

TZ# SMIN 1¥ISYd

T86T “11¥dY

8¢ 39vY{

(¢) incorporate some common error.

Implementation defined programs detail features of the
processor that are implementation dependent.

The programs in the error handling caﬁegory test
situations where an error should be detected. This enables
documentation of undetected error conditions.

Programs that explore the quality of an implementation
are classified as quality tests.

The final category of tests investigates the syntax of
extensions to +the 1language according to +the conventions
cited in the standarad.

A1l test programs are labeled with a test number
corresponding to the section in +the standard which gives
rise to the test .followed by a dash and a serial number that
uniguely identifies each test written for that section. For
example, the test numbered 6.10-3 is the third +test in the
validation suite corresponding to that section of the
standard numbered 6.10.

SWEDISH COMPILER VALIDATION REPORT

The following is a report of results .obtained Dby
running the Pascal Validation Suite against +the Swedish
Compiler Version 6. The details.of the test results state
the actions demonstrated by the compiler for a particular
test rather than the requirements 1listed' in +the standard.
Examples of syntax constructs that will cause a test to fail
are provided in the descriptions only for those tests that
are not self-explanatory.

Pascal Processor Identification

Computer: DEC PDP-11/70 running RSX-11M-PLUS V1 BL6

Processor: Swedish Pascal Compiler Version 6.01

Test Conditions
Tester: M.A. Kulos
Date: September 1980

Validation Suite Version: 272

Conformance Tests

Number of tests passed: 118
Number of tests failed: 17

Details of failed tests:

6.1.8-1 Comment is not considered +to be a token
separator.

PROCEDURE(*comment*)ABC; is not a legal procedure
heading.

6.2.2-5> Type identifier which specifies the domain
of a pointer type is not permitted to have its defining
occurrence anywhere in the +type definition part in
which the pointer type occurs.

PROGRAM Name;
TYPE
node=real;

"PROCEDURE X;
TYPE
p="node;

6.4.3.3-1 Empty field-list in variant part of
record type definition is not allowed.

e = RECORD
CASE married OF
true: (spousename:string);
false: ?
END;

6.4.3.5-1 TFile of pointer to integer is not
allowed.

‘TYPE
i=integer;

VAR
ptr:"i;
filex:file of ptr;

T¢# SMIN TYIsvd

T86T “11¥dY

67 39v4

6.4.3.5-3 The end of line marker is not inserted
at the end of a line, if not explicitly done in a
program.

6.6.3.1-5, 6.6.3.4-1 and 6.6.3.5-1 Procedure
declaration is not permitted as argument to a
procedure. Procedures and functions may not be passed
to other procedures and functions as parameters.

PROCEDURE Conforms(PROCEDURE abc(x:integer));

Note: Version 4 of the Swedish compiler would process
this statement correctly if procedure abe . did not have
an argument——-which goes along with the Jensen and Wirth
definition of a parameter list (5).

6.6.3.4-2 The environment of procedure parameters
does not conform to +the reguirements stated in +the
standard. (This test did not compile because of the use
of a procedure as an argument to a procedure.)

6.6.5.2-3 "TRUE" is not assigned to “EOF" if the
file is empty when reset.

6.6.5.4—1 TUNPACK is not implemented by the
compiler.

6.6.6.2-3 The arithmetic function ARCTAN is not
implemented.

6.6.6.3-1 Transfer functions TRUNC and ROUND give
-error... floating point number too large. (This error
is due to the failure of the function DIV on a negative
number rather than the implementation of the
functions.)

6.8.2.4~1 XYon-local GOTO statements are not
allowed.

6.8.3.9-7 The use of extreme values in a FOR loop
causes wraparound (overflow), — leading to an infinite
loop.

FOR i:= MAXINT-10 to MAXINT DO something;

6.9.2-2 Read of a character variable is not
equivalent to correctly positioning the buffer
variable.

6:9.4-4 Real numbers are not correctly written to
text files due to the fact that when a real number does
not fit the format specified, or the fraction length is
not specified, the number is written +to the text file
in scientific notation.

Deviance Tests
Number of deviations correctly detected: 63
Number of tests showing true extensions: 1

Number of tests not detecting erroneous deviations: 30

Details of extensions:

6.1.5-6 Lower case "e" may be used-in real numbers
(e.g. 1.602e~20).

Details of deviations not detected:

6.1.2-1 NIL is not implemented as a reserved word
and may be redefined.

6.1.7-5 and 6.9.4-12 Packed is ignored so that
pracked array of char is identical to array of char.

6.1.7-6 and 6.1.7-7 Strings .are compatible with
bounds other than 1..n, allowing deviant programs to
execute.

TYPE
alpha = 'A'..'Z';

VAR
al : arrayl1..4] of char;
a2 : array|0..3] of char;
a3 : arrayl2..5] of char;
a4 : array{i..4] of alpha;

BEGIN
al:='ABCD';

(* the next three are not valid assignments¥)
a2:='EFGH'; .
a3:="IJKL';
a4 :="MNOP';

T¢# SMIN Tv¥ISvd

T86T “IYdY

0¢ 39v¢

6.1.7—8 'Compatibility of subranges of char and
packed arrays of char is not checked and the assignment
of erroneous values is allowed.

6.10-3 The default file output is not implicitly
declared and it can be redefined.

6.2.2—-4 Incorrect scope allows programs that are
incorrect to compile.

(¥ 1red' is used in a local procedure
before its declaration. *)

PROGRAM Xxx;

CONST
red=1;

PROCEDURE Yyy;

CONST
m=red

TYPE
colour:(yellow,green,red);

6.2.2-9 A function identifier may be assigned
outside of its block.

6.3-5 Signed constants are permitted’ in contexts
.other than CONST declarations.

Writeln(+TEN);

6.3-6 Scope error...constant may be used in its
own declaration. ’

PROGRAM Mainprogram;
CONST)

ten=10;
PROCEDURE Localprocedure;
CONST

ten=ten;

6.4.1=3 Attempt to wuse types in +their own
definition when the type with +the same identifier is
available in an outer scope is not detected by the
compiler.

6.4.2.4-2 Real constants are permitted in a
subrange declaration. (Should be limited to subrange of
another ordinal type.)

6.4.3.2-2 Index type should be limited +to
ordinal-types. Compiler allows real bounds.

testarray = array [1.5..10.1] of real;

6.4.3.2-5 Strings are not required to have
subrange of integers as an index type.

6.4.5-2 Var parameters which are compatible bdutb
not identical are allowed

PROGRAM. e o v v
TYPE
colour = (red,pink,orange,yellow,
green,blue);

subone = red..yellow;
subtwo = pink..blue;
VAR

colour! : subone;
colour2 : subtwo;
PROCEDURE test(VAR coll:subone);

END (*procedure¥*)

BEGIN (*main program¥)
colour2:=pink;
test(colour2)

END.

(* Colouri and colour 2 are compatible but
not identical. The call to procedure
test should fail in this example. *)

6.4.5-3 Non-identical array fypes allowed as var
parameters.

6.4.5-4 Non—-identical record types allowed as var
parameters.

TZ# SM3N TYISVd

I86T “114dY

Tg 39v¢

6.4.5-5 Non—-identical pointer types allowed as var
parameters.

6.6.2-5 Function declaration with no assignment to
function identifier is permitted.

6.7.2.2-9 Unary operaonr plus is allowed to other
than numeric operands.

(e.g.) CONST

dot = '.';
BEGIN
WRITEIN(+dot) ;

6.8.2.4-2 Jumps Dbetween branches of an IF
statement are allowed.

6.8.2.4-3 Jumps between branches of a CASE
statement are allowed.

6.8.3.9-2, 6.8.%.9-3, and 6.8.%.9~4 Assignment to
a FOR statement control variable within the FOR loop is
not detected by compiler.

6.8.%.9-9 Non-local 'variable at 'an intermediate
level can be used as a FOR statement control variable.

6.8.3.9-14 Global variable (at the -program level)
can be used as a control variable in a FOR statement.

6.8.3.9-19 Nested FOR statements using the same
control variable are not detected.

6.9.4-9 Attempt to oubtput integers whose field

width parameters are zero or negative are not detected
by compiler.

Error Handling Tests

Number of errors correctly detected: 35
Number of errors not detected: 31

Details of Errors Not Detected

' 6.2.1-7 Tocal variables are not undefined at
beginning of statement part.

6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-T, 6.4.3.3-8 Variant
un—definition is not detected, there is no checking on
the tag field of variant records.

6.4.6-4 Value of expression out of closed interval
of destination in assignment statement is an error and
is detected at run time with a PASRUN error 12
(subscripting error) occurring. The program, however,
continues to execute.

VAR
Answer : array[1..5] of integer;
i : integer;

i:=5;
answer:=2%i;

6.4.6-6 Array subscript compatibility is not
checked.

6.4.6-T7 Members of a set expression not in the
closed interval specified by base +type of assignment
destination are not detected as errors.

6.4.6-8 Assignment compatibility for sets passed
as parameters is not checked.

6.5.4-1, 6.5.4-2 Pointer variable with undefined
value or value NIL when de-referenced is not detected.

6.6.2-6 Undefined function result is not detected.

6.6.5.2—1 Put operation on file when EOF is false
is not detected. This may occur when a file is reset
(opened for read only) and written to.

TZ# SMAN 1YISYd

T86T “11¥dY

¢ 39v({

6.6.5.2-6, 6.6.5.2-7 Changing current file
position while buffer variable is an actual parameter
to a procedure or an element of a record variable list
does not produce an error message.

6.6.5.3-4, 6.6.5.3-5, 6.6.5.3-6 Dispose procedure
is not implemented.

6.6.5.3-7 Variables from NEW used as operand in
assignment gtatement or actual parameter pass
undetected.

6.6.6.2-4, 6.6.6.2-5 Negative arguments passed +to
LN or SQRT are not detected.

6.7.2.2-3 When the second operand of DIV is zero,
no error is detected.

6.7.2.2-6, 6.7.2.2-T7 Result of binary integer
operations not in range O..MAXINT and O..-MAXINT are
not flagged as errors.

6.7.2.2-8 MOD zero is not detected as an error.

6.8.3.5-5 CASE statement that does not contain a
constant of selected value produces no warning.

6.8.3.9-5, 6.8.3.9-6 The use of a FOR statement
control wvariable after FOR statement without an
intervening assigmment or, +the wuse of a control
variable after a loop which is not entered is an error
that is not detected.

6.8.3.9-17 Nested TFOR statements using same
control variable are not detected as errors.

6.9.2-4, 6.9.2-5 Reading integers and reals from

file of text when the text is not a wvalid integer or
real number does not produce a diagnostic. For
example, the text string read as a real 'ABC123. 456' is
not detected as an error.

Implehentation Defined Tests

The implementation defined +tests in the validation

suite demonstrated +the following characteristics of the
Swedish compiler:

A rewrite is permitted on the output file.
Alternate comment delimiters are implemented.
Equivalent symbols for * y and := are not allowed.
BEquivalent symbol for [j is implemented (i.e. (.
is allowed
Alternate symbols for <, >, <=, >=, and <> are not
available.
The value of MAXINT is 32767.
Ordinal numbers of set elements must 1lie in the range
0..63 or ' '..' !'‘for characters.
A measure of time and space requirements of a program
which is an implementation of Warshall's algorithm
yields:
space = 370 bytes (2960 bits)
time = 1.066 seconds
(This is in comparison to 0.81646 seconds
and 143 bytes——6864 bits on a Burroughs
B6700 running the B6700 Pascal compiler
version 2.9.001.
The characteristics of +the floating-point arithmetic
system are determined to be:
24 bit mantissa.
Rounds- on arithmetic.
EPS (smallest positive number such that
1.0+4EPS <> 1.0)is:
6.4604644E-08.
The smallest positive floating point
number is: 2.9387357E-39.
The largest positive floating point
number is: 1.7014119E+38.
The value of expressions are fully evaluated before the
boolean value is determined. -
Index is selected before an expression is evaluated.
Expression is evaluated before a pointer is
de-referenced.
The output buffer is flushed at +the end of program
execution.
Real numbers are written with two exponent.digits.
Default field width values are:
Integer 8 characters
Boolean 6 characters

T¢# SMIAN vISYd

T86T “114dV

49 3§Vd

Real 15 characters.
A total of 18 implementation defined tests were run.
Quality Tests

Twelve quality +tests were executed, producing the
following observations:

— There are 10 significant characters in an identifier.

— The compiler does not assist in detecting unclosed
comments.

— MNore than 50 types are allowed-

— More than 50 labels permitted.

— More than 100 variable declarations allowed.

— Functions SQRT, BEBXP, SIN, COS, IN are implemented
consistently.

~ TFunction ARCTAN is not implemented.

— Operator DIV does not handle negative values correctly.

— VWarnings are not generated for impossible cases in a
CASE statement.

— FOR statements may be nested at least 15 levels deep.

— FOR satatement control variable may be accessed upon
exit from loop (value is last value in loop)-.

- Recursive I/0 is allowed using the same file.

- TLarge populated CASE statement (containing 255
constants) is allowed.

Extensions

Number of tests run = 1

The only extension test run -demonstrated that the
OTHERWISE clause in a CASE statement has not been
implemented but has instead been modified <+to use +the word
OTHERS as a case .constant.

OMSI VALIDATION REPORT

The OMSI Pascal-1 compiler was tested against the
Pascal Validation Suite by Barry Smith, a member of the
Oregon Software implementation/maintenance team in September
1979

Conformance Tests

Of the 137 conformance tests attempted, 15 failed. The
major reasons were:

— Comment delimeters not required for pairwise matching.

— Pointer scope not handled correctly.

— Assignment to function identifier within nested module
generates faulty code-

- Empty record types and cases_ are not allowed.

- Equal, compatible sets of different base types do not
compare.

— Set of char is implemented as a 64 element set.

— Procedural parameters do not conform to draft standard
proposal.

— End of file on empty temporary file not checked.

— Pack and unpack not implemented.

— Empty <£ield specifications not allowed in record
declarations.

- Conversions on reading real numbers not identical to
the conversions performed by the compiler.

— Writing boolean values is incorrectly right-justified.

Deviance Tests

Forty—one of the 95 deviance tests attempted in the
compiler test proved to be deviations to the standard. The
basic causes were:

— Real number constants without digits after point
allowed.

- Packed array of char identical to array of char

Requirements to be a string-type are not checked.

Empty string allowed.

— Incorrect scope allows incorrect programs to compile
and execute.

- Invalid programs where function identifier is
inaccessible.

TZ# SMIN T¥ISYd

I86T “TIY4dV

hg 39vd

— Punction identifier may be assigned outside of its
block.

— Packed scalars, subranges and type-identifiers are
allowed.

- ﬁon—integer subrange index types are allowed for string

ypes.

— The use of a set of real is not detected.

— Compatible bdut not identical var parameters are
allowed.

— Non-identical array types and pointer types allowed as
var parameters.

— File assignment and records containing file components
compiled as descriptor copy-

— TPunctions without assignment +to function identifier
alloved.

— GOTO statements that transfer into structured statement
components are allowed.

— Control variable in a FOR statement may be from any
level of the program and may be assigned a value within
the statement. The same variable may also be used in
nested loops.

~ Use ‘of external file (other <than program parameters)
not 'stated.

— The files input and output are not implicitly declared
at the program level, bdbut at a lexically enclosing
level.

— The entire program heading may be omitted.

Error tests

0f the forty-eight tests attempted, 11 detected
errors while 35 of the remaining +tests compiled and
executed without detecting +the areas where the code
deviates from +the standard. The basic causes of
undetected errors were:

~ Use of un-defined values.

— Variant undefinition.

— Assignment compatibility (except index type in arrays).

— NIL or undefined pointer de-referencing.

— Undefined function result.

~ Pile buffer aliasing and use of file.

— Some disposing conditions with undefined values or var
parameters.

— Dynanic variant record _used in expression or
assignment.

— Succ or pred of limiting value in type.

— Chr of very large integer.

— Overflow of integer %type.

— Assignment compatibility with overlapping sets.
— Case expression with no matching label.

— TUse of for statement control variable after loop

termination.
—~ Nested loops using same control variable.

Implementation Defined Tests

The execution of the implementation defined tests
showed the following results:

— The value of MAXINT is 32767.

—~ The set of char is not implemented (but is equivalent
to the set of characters from underscore character to
the back-arrow character.

— Set limits are O to 63.

— Standard functions are not allowed as functional
parameters.

— Real representation is as follows:

24 bit mantissa.

Rounds on arithmetic.

EPS = 5.96E08.

Minimum floating point number is:
2.393E-39.

Maximum floating point number is:
1.70E+38.

— Boolean expressions are evaluated fully.

— 1Index to _array selected before expression evaluated
(e.g. a[i]:=exp).

- Eyaluation before dereferencing in the statement

:=eXp-.
- Eeal ngmbers are written with two exponent digits.
— Default field widths are:

Integer 7
Boolean 5
Real 13

— A revwrite is permitted on the output file.
— Alternate symbols are allowed only for comment
delimiters.

TZ# SMIN vISvd

T86T “11YdY

G¢ 39vd

Quality tests

Twenty-seven quality tests were attempted, with three
tests failing for the following reasons:

- Coul% not handle program with 50 labels (infinite
loop).

- The use of a real expression in. the SIN/COS test
generated error for lack of register.

- Patal error when compiling 11 nested for loops.

The quality measurements resulting from +the other 21
tests demonstrate the following:

- Tdentifiers of any length are allowed, disallowing all
mis-spellings.

— Unclosed comments take the remainder as comment with no
warnings.

— More than 50 types are allowed.

- Array[integer] is detected but diagnostic message
produced is not a applicable warning.

- Record fields are allocated representation space in
declaration order.

— More than 100 variable declarations are allowed.

— Less than 10 nested procedures are allowed.

— Mod is inconsistent for negative operands.

~ No warnings generated for impossible CASE clauses.

— More than 256 case constants are allowed.

- Undefined (out-of-range) values of case expressions are

: possible but do not cause damage.

—~ No more than 3 nested WITH statements permitted.

- Textfile without EOLN at end is still printed.

- Recursive I/0 allowed on same file.

COMPARISON OF VALIDATION TEST RESULTS

A comparison of the results of applying the Pascal
Validation Suite to both the Swedish compiler and the
OMSI Compiler produced the results shown in +table 1.

CLASS | SWEDISH COMPILER | OMSI COMPILER
* T - T g
CONFORMANCE, ! 87% .! 89%
1 1
DEVIANCE i 68% ; 56%
1 I
ERRORHANDLING | 76% I{ 76%
1
1 i
Table 1

Percent of Test Results
Consistant with Draft Standard

The results show that both compilers conform
relatively well to the standard definition in accepting
"correct" programs. They are also comparable in error
detection.

The OMSI compiler appears to deviate in more cases
than +the Swedish compiler in +that it accepts more
syntax constructs that are not allowable according to
the definitions.

The following is a list of the areas where the two
compilers differed in +the conformance and deviance
tests of the Pascal Validation Suite. The details for
each instance are available in +the validation reports
for +these compilers. It is important to note that
these factors need consideration when +trying to ensure
that programs written for one compiler may be
transported to the other.

— The Swedish compiler allows redefinition of.NIL.
— The OMSI compiler allows a decimal point not
followed by a digit.

TZ# SMIN TYISYd

I86T “11Y4dY

9¢ 39Y({

Comments are not allowed as token separators in
the Swedish compiler.

The Swedish compiler permits lower case "e" to be
used in real numbers.

The OMSI compiler comment delimiters do not have
to be a pairwise match.

The OMSI compiler allows invalid programs with
inaccessible function identifiers and functions
that attempt assignments outside +their Dblocks.
Assignment to a function identifier from within a
nested procedure or function generates bad code.
The OMSI compiler allows signed characters,
strings, scalars, and enumerated types.

The Swedish compiler permits a constant to be used
in its own declaration.

Real constants are allowed in subrange
declarations by the Swedish compiler.

The OMSI compiler allows packed scalars, subranges
(i.e., not restricted to structures), and packed
type identifiers.

The Swedish compiler allows real bounds as an
index type.

The Swedish compiler allows the wuse of undefined
variants in a record.

The OMSI compiler does not detect the use of a set
of reals as erroneous.

A file of pointer to integer is not allowed by the
Swedish compiler.

The Swedish compiler allows non-identical record
types as var parameters.

Compatability of file types and records containing
file components is allowed by the OMSI compiler.
Equal compatible sets of different base types do
not compare as equal in the OMSI compiler.

Unpack is not supported by the Swedish compiler.
The Swedish compiler does not support the ARCTAN
function.

Non-local GOTO statements are not allowed by the
Swedish compiler.

In the Swedish compiler, +the assignment does not
follow ‘the expression evaluation in a FOR
statement.

The control variable in a FOR statement is allowed
as a formal parameter by the OMSI compiler.
Reading a character variable is not equivalent to
correctly positioning the ©buffer variable in the
Swedish compiler.

The Swedish compiler does not allow fedefining the
default file at a local level.

Real numbers are not correctly written +to text

files by the Swedish compiler because the format
defaults +to scientific mnotation when the real
number does not fit the format specified.

— Negative field widths give undesired output and
issue no warning in the Swedish compiler. The
OMSI compiler -uses the absolute value of the width
and gives an octal interpretation of the number.

- The OMSI compiler ignores program parameters,
allowing the use of an external file not declared.

~ The entire program heading may be omitted and not
detected by the OMSI compiler. .

The Swedish compiler and the OMSI compiler
generated similar results in the validation suite tests
for standard implementation defined features and
quality. The following is a 1list of areas where the
two compilers differed. The reader is again referenced
to the validation suite reports for the details of the
test results for each compiler.

- The %wedish compiler allows (. .) as a substitute
for . :

— The OMSI compiler default output.field width for
integers is 7 characters, whereas the Swedish
compiler default is 8.

— The OMSI compiler default output field width for
boolean values is 5 characters, whereas the
Swedish compiler default is 6.

— The OMSI compiler default output £field width for
reals is 13 characters, whereas the Swedish
compiler: default is 15.

— Identifiers are significant to 10 characters in
the Swedish compiler. The OMSI compiler has no
limit.

~ The OMSI compiler MOD function is inconsistently
implemented for negative rumbers.

— The Swedish compiler DIV function is
inconsistently implemented for negative numbers.

ADDITIONAL NOTES

In further examination of the results of the tests
of +the wvalidation suite for +the OMSI and Swedish
Compilers, it is important to note that there are areas
in which both compilers disagree with the proposals of
the draft standard. These items should also be
considered when writing programs for either compiler in
order %o attain code +that is reasonably compiler
independent. The following is a list of features found

TZ# SMIN TYISvd

186T “11¥dY

/¢ 39vd

in both compilers that do not agree with the draft
standard.

— Empty strings are allowed.

- Packed is ignored. A packed array of char is
identical to an array of char and similarly with
other structures.

- String type requirements are not checked.

- I/0 files can be redefined (i.e., not implicitly
declared at the program level.

— Pointer scope is not handled correctly.

- A function identifier may be assigned a value
outside of its block.

— The unary operator "+" is allowed with a constant
identifier.

- String types are allowed to have non-integer
subrange index types.

- Empty record types with semicolons and empty case
variants are not permitted.

— Var parameters +that are compatible butb not
identical are allowed.

— Non-identical array ‘types and non-identical
pointer types are allowed as var parameters.

- A function definition with no assignment +to the
function identifier is allowed.

— Only the procedure parameters as defined by Jensen
and Wirth are allowed.

— End-of-file is not checked on an empty +temporary
file.

- GOTO statements are allowed +to +transfer into
struc tured statement components.

— Assigmment to a FOR control variable is allowed
within the FOR statement.

— The FOR statement control variable is allowed to
be program global.

—~ Nested 1loops using the same control wvariable
produces an infinite loop.

— The Swedish compiler allows an otherwise clause in
a case statement, using the word OTHERS as a case
constant (the standard proposes OTHERWISE). The
OMSI compiler, however, allows an ZELSE clause
similar to the ELSE clause of an IF statement,
rather than a case label.

CONCLUSION

This paper has mno conclusion. The statistical
differences comparing both compilers +to +the draft
standard are not absolute measures of the "correctness"
of a compiler and should not be viewed as such. The
intent of +this discussion has been 1o present the
differences between the Swedish Pascal Compiler and the
OMSI Pascal-1 Compiler from a user perspective,
considering what syntax construct are particular to a
certain compiler and should not be wused in programs
that are intended +to be transportable. It would be
difficult to say that one compiler is better than the
other based solely on the information presented in this
paper.

T¢# SMIN TYISYd

T86T “114dV

8¢ 39v{

REFERENCES

(1) Addyman, A.M., "Pascal Standardisation", Pascal
News, No. 18, 1980.

(2) Addyman A.M., "A Draft ©Proposal for Pascal",
Pascal News, No. 18, 1980.

(3) Winchmann, B.A., and Sale, A.H.J., "A Pascal
Processor Validation Suite", (document accompanying
Pascal Validation Suite).

(4) Sale, A.H.J., "The Pascal Validation Suite -
Aims and Methods", Pascal News, No. 16, 1980.

(5) Jensen, Kathleen and Wirth, Niklaus, Pascal
User Manual and Report, Springer-Verlag, New ~York,
1974.

(6) "Three Sample Validation Reports™, Pascal News,
No. 16, 1980. :

ACKNOWLEDGEMENTS

The author wishes to acknowledge the assistance of
E. Wade Scannell of Shearwater, Inc., in analyzing the
results of the validation suite applied +to the Swedish
Pascal compiler.

TEXT VERSION:2.50-01 INSTALLED AUG 1980
ON: MEAP 11/70 SYSTEM
FOR HELP CALL: .
STEPHEN P. PACHECO (4730) OR ROY E. TOZIER (4754)
START OF RUN: 16:03:38 26-0CT-80 .
END OF RUN 16:04:13 BELAPSED WALL TIME= 30.93 SECONDS.

COMMAND LINE SUPPLIED TO TEXT:
**DXT @PAPER/-SP

ARRKKERRK RUN STATISTICS *¥¥*XX¥H%X _
922 RECORDS READ 895 RECORDS WRITTEN 23 PAGES GENERATED

102 RECORDS USED IN TEMP FILE.
ONE OR MORE "SAVED STATE" RECORDS REMAIN STACKED.

MULTIPLE INPUT FILES USED:
abstract.txt
intro.txt
standard.txt
validate.txt
swedrpt.txt
omsirpt.txt
compare.txt
conclude.txt
ref.txt

TZ# SMIN TYISvd

T86T “1I4dV

bg 39vd

Open Forum For Members

S 11703 03aWnNn MM "W === SHAI MICRO COMPUTERS LTD.

521111 :90 ; LYYV 13 HIRY Ny JERUSALEM, ISRAEL, GIVAT SHAUL B’, TEL. 621111, P.0.B 3405
3405 1.0 CABLES: RIMCO, TELEX: 25387
P.O. Box 43942 MS-4162
Rick St. Paul, Minnesota 55164
With all this talk about Ada replacing Pascal as the avant-garde language of the eighties, I Pascal Users Group
thought I would contribute these definitions from The Name for Your Baby, by Jane Wells and]53’17335 Peacht
. NP eachtree
Cheryl Adkins [Westover Publishing Company, Richmond, Virginia. 1972]: Dunwoody Road
Atlanta, GA 30342
ADA: (Aida, Eng.) "Prosperous, happy"; Old English . Sirs:
PASCAL: Born of suffering; Hebrew .
Our firm has developed a Pascal based program generator called "MINIAC"
which makes possible an 80-90% reduction in the time required to write
But then again, what's in a name? typical business data processing programs.
. [W I enclose a brochure describing MINIAC, which we have implemented in the
. UCSD p-System, a microcomputer environment. We are planning a CP/M imple-
Scott H. Costello mentation soon, and we forsee no special problems in implementing MINIAC

in any environment which provides a sufficiently powerful Pascal.

We have been using MINIAC for nine months to develop software for our
clients in Israel, and we feel that our initial expectations were fully

justified.
We are planning to market MINIAC in the Umited States, and it is for this
MATHEMATIS CHES INSTITUT D 8 MUNCHEN 2, pex reason that we are contacting you. Perhaps MINIAC would be of interest to
DER LUDWIG-MAXIMILIANS-UNIVERSITAT THERESIENSTRASSE 30 some of your members.
MUNCHEN TEL.: DURCIHYANL 28 04/
2 (VERMITTLUNG 2390410 s
Prof. Dr. Ginther Kraus If so, we would be pleased to answer any questions they may have.

Thanking you in advance for your consideration, I remain

. . Sincerely,

_A;ex Ragen

General Manager
I am going to develop PASCAL - programs for use in pure mathematics
(Complex Analytic Geometry, Algebraic Geometry, Algebraiec Topology). ar/hs
Who is interested to join ideas and experiences? enc
I am interested in commercial applications, too.

Ginther Kraus, Mathematisches Ingtitut der Universitidt Miinchen,
TheresienstraBe 39, D-8000 Minchen 2 (West Germany)

TZ# SMIAN TYISYd

T86T “11¥dY

0h 39v({

. southwest decision systems, inc.
30 west bayaud, suite 201

(text of notice for Pascal News)

Southwest Decision Systems, Inc. is a small software

house in Denver, Colorado, specializing in the writing

and installation of Pascal-based software on microcomputers.
We would welcome leads from university faculty, in the

U.S. or elsewhere, concerning exceptional students near

the M.S. (or equivalent) who might be suitable for
positions with S.D.S. starting late 1982. Demonstrated
ability to conceive and complete a substantial Pascal
programming project to a very high standard will be the

principal requisite. Replies (from faculty on Y

please) to David P. Babcock, Southwest Decision Systems, Inc.,

30 West Bayaud Avenue, Suite 201, Denver, Colorado 80223.

303-777-3638

denvenr, colorado 80223

Comment on A.H.J. Sale's Proposal to Extend Pascal

by Tom Pittman
P.0. Box 6539
San Jose’ CA 95150

ref: SIGPLAN 16:4 p98-103

It seems to me that while the while-statement and the repeat-statement are
"similar" when considered through the flow chart paradigm. they actually have
significant differences, resulting (for example) in the fact that dominator
analysis requires only one pass if the only loop structure is repeat. but as
many passes as the deepest nesting of loops if while-loops are used.

The point is that the repeat-statement performs a valuable service in clearly
representing a loop structure that is to be perforined one or more times and
terminated on a condition generated by the execution of the body of the Toop.
It is significant that Mr. Sale proposes to filter existing programs by
replacing the simple repeat-statement with either a duplication of the body
(offering opportunities to have differing versions of the code intended to be
the same) or the introduction of that dreaded goto. The repeat-statement
cannot be correctly simplified.

Now. I will grant that the répeat-statement may be easily misunderstood. The
goto-statement which is offered to replace it is surely no less misunderstood!
Merely the fact that neither Mr. Sale's students nor the poor anonyrious
progranmmer whose code he set up for us to ridicule are able to grasp the
proper distinction between repeat and while, is a poor excuse indeed for the
removal of that function from the language. The problem in understanding that
gives rise both to the ill-conceived scanner and the terminal I1/0 excerpt is
one of not fully thinking through the program flow, and such a fault will
result in incorrect code whether or not the repeat-statement is available to
be the butt of misdirected ridicule.

AN,

TZ# SMIN TYISYd

“1YdY

1861

T 39vg

ters our

i

COMPUTACIONES INFOTEC S.R.L.
APARTADO 61125, CARACAS 1060A, VENEZUELA

) AV. ‘FRANQISCO DE MIRANDA, GALERIAS MIRANDA, 3° PISO, CHACAO
g gy, “TELF.: (02) 333590 TLX: 23327 CENINVE
iNrFOTEC

I recevea the ALL-PULPCSE CTUPOH and I am very interested in joining the
roup. I an a Softwars Enginneer and our Company IHFOTEC is representing aicro-
conputar equipinant in Yenezucla Like ALTOS, TVI, AIIADEZ, IRICROPRO, etc. AlLL

our Softuare is developed in PFASCAL (UCSD, PASCAL/I,, PASCAL/iTH. Our compu-
7-an

~30 pEsed.

I uill subnit in the future some ideas or articles concerning our expe-

rience in PASCAL. e have developed @ General Purpose Data Case ilanagement

Systcu Generator. It is Hierarchical and it is only necesary %o generate
tihe Schena end all the rest of the system will work., It includes a Pata Dase
Zuitor for deta entry, viewing and editing, General purpose query systerm used
to prouuce suw—sets of the whole date base, tacles of information, reports,
ctc. Tha tailes can de menipulated vwith cur Table System for merging, sorting,
joininyg, and statistical anzlisis can b2 carried out with our Stat Package.
For tiac Scheua generation there are several grogrems: Schema cditor, List, CRT
end Printer format editer, etc.

The systen was first dcvelcpea in UCSD PASCAL but has been trensfered to
PASC/L/OT+ running on CP/Y Y2.xx, NP/I Vl.xx, ect. It is nou a complete menu
driven system.

Ac to tiie wemdership you will find enclosed a check for USS 25.00 for a 3
yeor subscrintion. Flease kurry me the issues.

incegly

s

President
Computaciones IiiFOTEC, 3.R.L.

Pascal Users' Group, c¢/o Rick Shaw
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, GA, 30342

Dear Mr. Shaw,

For users of interactive systems a very simple

modification of the program, Referencer, by Arthur Sale

adds a very useful feature. This feature causes all

declaration parts to be printed out and thus provides a

very handy reference document when developing large
programs.

The modification inserts the following:

After line 0785 printflag:=false;
After line 0897 printflaf:=false;
Line 609 remove
Line 610 remove
Sincerely yours, = , . -
R ¥ & ot
s oo AT K H

Edgar S. Gilchrist
218 Via Ithaca
Newport Beach, CA, 92663

Note: My system is AppleII+ and UCSD Pascal.

TRS-80 UCSDH FASCAL bw FMG

I would he irmterested in corresronding with anwone who is
currently using the UCBD PASCAL sacksdge modified Tor the
TRE-80 hw FMG Corrorastion. I have been using the swstem for
rarsonal rrodects for over s wear snd am verw satisfied with
its carahilitiesy excert for one sroblem which I hore some-

one else has encountered snd solved!!! Frodgrams which wutil~
ize random secess Files (using GET and FUT) arrear Lo ran-
domly destrow hlocks on the diskette in the write mode

(using FUT), It seems that a8 budg in the code rermits (ran-
dom) overwrite of some of the diskette sector cortbrol infor-
mationy so that the sector is no longer asble to be found,
It esnuwone else has exrerienced this sroblemy rlesse set in
touch (esrecially) if you have fimxed it. If & FP-code disass-
sembler is availshle for this UCBD FASCALy I would he verw
interested in getting 2 hold of it.

Richard J. Ronneau
4 Tanglewood rive

Shrewshursy MA 01545

(617) 845-1432

T¢# SMIN vISvd

86T “11¥dY

Zh 39v4

Pascal Standard: Progress Report

by Jim Miner (1981-07-31)

The second ISO Draft Proposal for Pascal (as printed in Pascal News #20)
has received strong support in the official vote this spring.” The number of
countries disapproving has dropped from four to one.

Second DP 7185
Approving
Approving with comments Disapproving
Italy Australia Japan
Netherlands Austria
Poland * Canada
Switzerland Czechoslovakia *
United Kingdom Finland
France
Germany
United States
* country is an '0' member -- vote is advisory.

Some degree of compromise has been reached in the "conformant array parameter"
issue (see Pascal News #19, page 74). Because of the convergence of support
evidenced by this vote, it is 1ikely that SC5 (the ISO Programming Languages
committee) will approve the DP with a few changes at its October meeting in
London. Once it has done so, the draft will be a Draft International Standard
(DIS) to be voted on by a broader constituency. In short, nearly all of the
technical work has been done on the standard, freeing it to progress through
the remaining steps toward official adoption. The changes made to the DP will
result from the comments submitted by the member bodies with their votes.

Tony Addyman and Working Group 4 are presently developing those changes.

The official comments on the DP are quite voluminous, but we have decided to
print them here. One reason is that you can get some idea of the amount of
effort that goes into each new draft. Remember that these comments are just
the output of national committees, and that these committees worked hard to
formulate the comments and to reject others. The work done by Tony Addyman at
each stage has been tremendous.

Another reason for printing the comments is so you can appreciate the
difficulty of some of the technical issues,.and the tensions created by
conflicting goals of eliminating technical flaws, establishing the standard as
quickly as possible, and making the standard as readable as possible. For
example, the German comments regarding "denote" raise an issue that pervades
the entire document, but its resolution would require many more months and
might result in a less readable document.

Finally, note that not everyone is happy with conformant arrays. Both the
United States and Japan stress their dislike of including an extension to
Niklaus Wirth's Pascal in the first standard. The United States committee is
now preparing to put out a draft proposed American National Standard for
public comment which will not have any kind of conformant array parameters.
Many countries also have criticised certain details of the feature as defined
by the second DP; most objected to the use of parentheses in the actual
(calling) parameter to specify it as a value (as opposed to "var") parameter.
Some changes will therefore be made in the final version.

american national standards institute, inc.
1430 broadway, new york, n.y. 10018
(212) 354-3300

S0/TC 97/SC 5 N
981 May 08

Iso0
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

1S0/TC 97/SC 5
PROGRAMMING LANGUAGES

Secretariat:

USA (ANSI)

Summary of Voting on 97/5 N 595 -
Second DP 7185 - Specification for the
Computer Programming Language — Pascal

The Secretariat issued this document for voting by 31 March 1981. To date
the following votes have been received:

'P' Members approve 4 Italy, Netherlands, Switzerland, United
Kingdom
'P' Members approve 7 Australia, Austria, Canada, Finland, France,

with comment

'P' Members disapprove 1 Japan

Germany, United States

'P' Members not Voting 6 China, Hungary, Norway, Romania, Spain, Sweden

'0' Members approve 1 Poland

'0' Members approve

with comment 1 Czechoslovakia

Comments received :

Australia - Attachment A

Austria - Page 35, paragraph (e) (1) first line:
specifiecation

Canada - Attachment B

Czechoslovakia - Attachment C

Finland - Attachment D

France - Attachment E

Germany - Attachment F

Japan - Attachment G

USA - Attachment H - 2 parts

Specification instead of

606

TZ# SMIN T¥ISYd

11YdY

186T

¢h 39v4

DOCUMENT ISO/TC 97/SC 5 N595

ATTACHMENT A

ISO/DP 7185 - Specification for the
Computer Programming Language PASCAL

Comment of Australian Member Body

In recording a vote of approval on the above 150/DP, the
Australian Member Body submits the following comment:

The Australian vote in favour of the adoption of DP7185.1 expresses the view
that the conceptual structure and definition of the DP are correct and
appropriate for an International Standard, and takes into account the delays
that have already arisen in the preparation and approval of a Pascal Standard.

However, examination of the DP has revealed a number of points which are not
adequately defined by the text, though the intent is well-understood by those
who have worked on this Standard. The following comments therefore represent
our considered view of the editorial changes that must be made to the Draft
Troposa. so that it does say what is meant. We believe that the changes will
be non-controversial, and should be incorporated before the DP is sent for
voting as a DIS. Generally the changes correct grammatical and puwctuation
errors, poor English expression, or omissions.

POSITIVE COMMENT

Comment received on such documents is usually negative, since critical appraisal
is sought. It should, however, be placed on record that comments received
by the Australian Committee have praised two features of the definition which have
raised controversy in the past:
% the conformant-array-parameter, and
% the restriction of a for-statement controlled-variable to local
simple variables.

he Draft Proposal was favourably received,

In addition, the improved formalism of t Ly re
; . even greater use of formal definitions

and the view has been expressed-that an
would have been welcome.

TyPoGRAPHICAL COMMENT

PROBLEM
Australia draws attention to the poor presentation of DP7185, and in particular
to the following features of the document:

% The typefont (which is guessed to be that of a Decwriter) is very difficult
to read in large quantities; its treatment of characters with descenders
(for example p, q) is unacceptable in a professional document.

* No underlining or italicising is used in the document, not even where such
treatment would aid clarity by giving cues. Thus no headings are
underlined or bold-faced, making it difficult to find places in the
document. Also, notes should be in a distinctive type-face if possible.
Particularly bad examples can be ‘found in section 6.9, where the sense
of the words inmput and output are only determinable with difficulty:

DP7185: ...applied to the required textfile output.
better: ...applied to the required textfile denoted by the required
identifier output
or: ...applied to the required textfile output.
RECOMMENDATION

While sympathising with the problems associated with the preparation of this
document, it is recommended that before the DP is sent out for a further vote,

or for voting as a DIS, it should either be typeset or it should be typed with an
acceptable word-processing system providing for good-quality typefonts.

INTRODUCTION & ZERO-MUMBERING

PROBLEM

It is barbarous to start the numbering of sections in this document from
zero, and offends against normal practice.

In addition, the Introduction is nothing of the sort, but rather part of the
prescription of section 1 (Scope of this Standard).

RECOMMENDATION
Delete the "0. INTRODUCTION" heading.

Move the text contained in the now deleted Introduction to the end of paragraph
1.1, page 2.

ERRORS

PROBLEM

The definition of error in section 3.1, page 3, is correct, but suffers from two
defects. Firstly, the detection of errors is hardly to be regarded as "optional
in accepted English usage; rather the detection of errors may be elided by

implementations which do not profess to offer the highest quality of implementation.

Unless the meaning is expressed correctly, implementors will take the words in the
most relaxing sense.

The second flaw is more serious: the philosophy of errors is nowhere stated.
This is certain to cause confusion in future revisions of the Standard, and has
been illustrated with the rapid switching of positions on goto-statements in
recent drafts. Clearly this is not part of the Standard, but could be in a NOTE.

TZ# SMIN TWISYd

T86T 1144V

hh 39vd

RECOMMENDATION
1. Alter the definition of error to:

3.1 error. A violation by a program of a requirement of this standard
which a processor is permitted to leave undetected.

2. Between 3.1 and 3.2 add the following NOTEs:

NOTE. If it is possible to construct a program in which the violation
or non-violation of a requirement of this Standard requires knowledge
of the data read by the program, or of the implementation definition

of implementation-defined or implementation-dependent features, then
violation of that requirement is classed as an error. Processors may
detect and report on some violations of the requirement without such
knowledge, but there always remain some cases which require ezecution
or simulated emecution, or proof procedures with the required knowledge.
Requirements which may be verified without such knowledge are not
classified as errors.

NOTE. Processors should attempt the detection of as many errors as possible,
and to as complete a degree as possible. Permission to omit detection is
provided for implementations in which the detection would be an excessive
burden, or which are not of the highest quality.

NDEFINITION OF PROCESSOR

PROBLEM

The definition of processor is incorrect. A processor can only be regarded
as a complete system for processing Pascal programs, and parts of a complete
system cannot be regarded as a "processor'.

A partial processor (eg a compiler, as suggested by the DP) is free of all sorts
of semantic constraints; even with a run-time system it can still shed responsibility
to a host operating system, or even to hardware design.

If validation of Pascal processors is to be possible, this definition must say
what has been assumed all along: a Pascal processor is an entity that accepts
Pascal programs, and "executes" them.

RECOMMENDATION
Replace definition 3.4, page 3, by:

3.4 processor. A system ox mechanism which accepts a program as input,
prepares it for ewecution, and exzecutes the process so defined with
data to produce results.

NOTE. A processor may consist of an interpreter, a compiler and
run-time system, or other mechanism, together with an associated
host computing machine and operating system, or other mechanism for
achieving the same effect. A compiler in itself, for example, does
not constitute a processor.

REQUIRED, PREDEFINED & PREDECLARED

PROBLEM
There are a collection of problems with the terms required, predefined, and
predeclared in the DP. These are detailed below.

* The terms predefined and predeclared are not defined in the DP, and
are not common English words. Their meaning in the context of the
DP is thus uncertain, and only determined by Pascal tradition.

* The term required is defined by 6.2.2.10 and nowhere else. A definition of
the meaning of the term is necessary, especially as it does not mean
predefined nor predeclared.

* In clause 4 an assumption relating to the denotations of required
identifiers in program fragments in the DP is stated, but in terms
of "predefined or predeclared". Not only are these not defined, but
Pascal tradition would then exclude imput or output from the set.

RECOMMENDATIONS

1. Replace the following sentence in seation 4, page 3, lines 18-21:

Any identifier that is defined in clause 6 as the identifier of a
predeclared or predefined entity shall demote that entity by its

5 occurrence in such a program fragment.

y:
Any identifier that is defined in clause 6 as a required identifier
shall denote the corresponding required entity by its occurrence in
such a program fragment.

2. Add at the end of the first paragraph of 6.1.3, page 6:
'Ic‘ienti_ﬁlers that are specified to be required shall have special
significance in Pascal (see 6.2.2.10 and 6.10).

3. Add the following sentence after the last paragraph of section 6.3, page 11:
The required constant-identifiers are specified in 6.4.2.2 and 6.7.2.2.

4. Replace the sentence following in section 6.4.1, page 12;
The required types shall be denoted by predefined type-identifiers
(see 6.4.2.2 and 6.4.3.5).
by:
The required type-identifiers and corresponding required types are
specified in 6.4.2.2 and 6.4.3.5.
5. Replace the only paragraph of 6.6.4.1, page 38, by: .
The required procedure-identifiers and function-identifiers and
the corresponding required procedures and functions shall be as
specified in 6.6.5 and 6.6.6 respectively.

a

Add at the end of section 6.2.2.10; page 10:
See 6.1.3, 6.4.1 and 6.6.4.1.

NOTE: The required identifiers' input and output are not included,
gince these denote variables.

TZ# SMIN T¥ISYd

I86T “114dY

Gh 39v4

7. Replace the first sentence 'of the second paragraph of section 6,10, page 65;

by

The occurrence of the identifier input or the identifier output as a
program parameter shall constitute ite defining-point for the region
that is the program-block as a variable-identifier of the required
type denoted by tezt.

The occurvence of the vequived identifier input or the required
identifier output as a program pavameter shall constitute its
defining-point fop the vegion that is the program-block as a
variable-identifier of the required type denoted by the required
type-identifier text,

8. The example at the end of 6.6.2 violates the requirements of section 4 by
using the required identifier new with a denotation that is not the required
procedure, Though the usage is obvious, it is incomsistent, and the example
should be rewritten with the identifier new replaced by estimate.

LANGUAGE LEVELS

PROBLEM

The DP defines two "levels" of the language, which it numbers.0 and 1,

two objections to this scheme:

#* Numbering an enumerated set of objects 0 and 1 is a barbarism in the
English language, however mathematically attractive it might be. Levels
1 and 2 would be far preferable.

% The level chosen to be level 0 is in fact close to what is popularly known

as Standard Pascal, whereas level 1 contains an extension which is at
present not common. It would therefore be preferable to refer to the
"levels" by names which indicate their usage.

The Australian recommendation is to adopt the latter course, using the names
Standard Pascal and Extended Pascal to distinguish the levels. Not only does

this make the distinction clear, it has the following advantages:

Vendors of Pascal products can more readily identify.their conformance
as being to "Standard Pascal as defined in IS07185" etc.

* Puture revisions of the Standard can retain Standard Pascal as a subset,
by confining extensions to Extended. Pascal.

* Implementors who choose not to implement the extension for conformant
arrays will not be saddled with an implied deficiency ("only level 0").

RECOMMENDATION
Replace the phrases at level 0 and at level I in section 5.1, page 4, and in
section 5.2, page 5 by as Standard Pascal and as Extended Pascal respectively.

Replace the NOTE in section 5, page 4 by:

NOTE. There are two levels of compliance, known as Standard Pascal and
Extended Pascal, Standard Pascal does not include conformant array
parameters. Extended Pascal does include conformant array parameters.

There are

Replace the several occurrences of

[do] not apply to level 0
in sections 6.6.8.6, page 35; 6,6.3,7, page 35; and 6.6.3,8, page 37 (and any other
occurrences) by:

[do] not apply to Standard Pascal

Wherever any further occurrences of levels 0 or 1 appear, replace them by appropriate

text; a full cross-reference was not available to us to check that all have been
detected.

DeETECTION OF VIOLATIONS

PROBLEM

Section 5.1(e) requires the detection of violations that are not errors. However,
it does mot require that the detection by the processor be reported to the user
of the processor.

Secondly, it is unreasonable for the Standard to insist on processors reporting
all violations. Parasitic effects of one error may mask some violations and often
do; other processors often have error-limits. Interpreters, of course, adopt a
different approach to error-detection, The thinking in this section is confused:
the appropriate requirement is that the processor be able to classify programs
into two classes:

1. The class of compliant programs, and

2, The class of non-compliant programs.
However, if the processor has not completely examined a program text, as ,occurs
in processors with an error limit, processors which abort under some table overflow
conditions, or direct execution or interpreter machines, then a third response
is permissible:

8, The~class of programs in which no non-compliant feature has yet been

.detected, but which has not yet been completely examined.

Processors should report accordingly, and this should be the Standard's stance.
More information about the source of non-compliance in such programs cannot be
legislated for as it is heavily dependent on technique.

RECOMMENDATION
leplace section 5.1(e), page 4, by:

(e) determine whether or not a program violates any requirement of this
standard that is not designated an error and report the result of this
determination to the user of the processor, In the case where the
processor does not examine the whole of the program, the user shall be
notified that the determination is incomplete whenever no violations have
been detected in the program text examined.

Add a NOTE at the end of Section 5.1, page 5:

NOTE, Normally a processor which consists of a compiler and ancillary
components will be able to classify programs into the compliant or
non-compliant categories in accordance with clause 5.1(e) after examining
the program text. However, in cases where the compilation is aborted
due to some limitation of tables, ete, an incomplete determination

of the kind "No violations were detected, but the examination is
incomplete" will satisfy the requirements of clause 5.1(e). In a similar
manner an interpretive or direct execution processor may report an
incomplete determination for a program of which all aspects have not
been examined.

T¢# SHIN TYISVd

T86T “11¥dY

9f 39v{

ROR-REPORTING

PROBLEM

The redquirement stated in section 6.1(f) does pot veauire that all the statements
relating to error-reporting be easy to find, and indeed they may be obscurely hidden
in an obscure part of the documentation and widely scattered. This is undesirable.

RECOMMENDATION
Add the following to the end of §.1(f), pages 4 & 5:

If any violations that are designated as errors are treated in the manner
deservibed in 5.1(f)(1), then a note veferencing each such treatment shall
appear in q separate section of the aceompanying document.

ResTRICTIONS AND COMPLIANCE OF PROCESSORS

PROBLEM

Though the DP addresses the problems of specifying extensions im section 5.1(g),
noyhere is it stated what action processors must take with respect to pestrictions,
It is possible to argue that po restrictions are possible, apd processors must comply
with all requirements of the Stapdard if they are to claim compliance with it, but
Australia considers that this is unrealistic, Processors will contain restrictiops,
even if oply a few.

In addition, ignoring the problem effectively prohibits any new reserved words, sinee
these restrict the set of permissible ideptifiers, thus encouraging overloading
of existing eperators, words, and other extensiop mechanisms,

Australia argues that the DP should gontain a statement controlling the use of
compliance statements, which specifies action with respect to restrietions,

RECOMMENDATION
'Add at the epd of section 5,1, page 5§, but not dependent op (i), the following:

A processor that purports to comply, wholly or partially, with the
requirements of this Standard shall do so only in the’ following terms,
A compliance statement may be produced by the processor as a consequence
of using the processor, or may be included in accompanying documentation,
If the processer eomplies in all vespects with the requirements of this
Standard the compliance statement shall be:
<This processor> complies with the requirements of <Standard Pascal>
as stated in IS071856, 198-,
If the processor complies with some but not all of the requirements of
this Standard then it shall not use the above statement, but shall instead
use the following complianee statement:
<This processor> gomplies with the requirements of <Standard Pascal>
as stated in IS07185, 198-, with the following exceptions:
<followed by a reference to, or a complete list of, the requirements
of the Standard with which the processor does not comply.>
In both cases the temt <This processop> may be replaced by an unambigyous
name identifying the processor, and the text <Standard Pascal> may
be replgced by Extended Pascal if appropriate to the lepel of implementation,

NOTE. Processors that do not comply fully with the requirements of the
Standard are not required to give full details of their failures to comply
in the compliance statement; a brief reference to accompanying documentation
which contains a complete list in suffictent detail to identify the

defects is sufficient,

CoMPLYING PrOGRAMS

PROBLEM

The NOTE at the end of section 5.2, page 5, is grossly misleading. The results
produced under the conditions stated certainly are required to be the same for

a class of programs, while other classes have constraints which permit different
results. The resultant confusion requires that the Standard say precisely what is
implied, not an -incorrect statement.

RECOMMENDATION
Delete the NOTE at the end of 5,2, page 5, and replace it by the following:

FOTE. A program that complies with the requirements of this clause may
rely on particular implementation-defined values or features, and it may
contain errors which will only be evoked by particular data values.

NOTE. The requirements for compliant programs and compliant processors do
not require that the results produced by a compliant program ave alwdys
the same when processed by a compliant processor. They may be, or they
may differ, or potential errvors may be evoked, depending on the program.
The simplest program to illustrate this is:

program g(output); begin writeln(mazint div (mazint-32767)) end.

CHARACTER-STRINGS

PROBLEM

The description of character-strings and the demotation of string-elements

in 6,1,7, page 7, is confusing, apd omits to give the apostrophe-image a value
of chap-type, except by implication, Also the term "string of characters" is
used in a context where "character-string" is more appropriate.

RECOMMENDATION
Delete the text paragraph in 6.1,7, page 7, and replace by:

6,1.7 Character-strings. A character-string containing aq single
string-element 8 lenote a value of the required char-type

(see 6,4.2,2), A chavacter-string containing more than one
string-element shall denote a value of a string-type (see 6.4.3,2)

with the same number of components as the character-string contains
string-elements. Each string-element shall denote an implementation-
defined value of the required char-type, subject to the restriction that
no such value may be denoted by more than one string-element,

NOTE. Conventionally, the apostrophe-image is regarded as a substitute
for the apostrophe character, which cannot be a string-character,

SUBSIDIARY NOTE
The required values of char-type are:
the ten digit-values denoted by '0' .'1', '2', ..., , '9’
the space-value denoted by ' '
the number-values denoted by '+','-!','.!
the exponent-value denoted either by 'e' or 'E'
whatever case letters are required for 'True' and 'False'

©ooEE
EEFoN
@ nx o

TZ# SH3N TYISVd

I86T “1IYdv

/[t 39vd

In the preceding redraft, the value denoted by the,apostrophe—irpage is added

as a required value, but it need not denote a value whose graphical . .
represéntation is indeed the ' character. This is exactly tl.xe same situation
as exists with the other required values: the external graphical representations
of the values are not controlled.

LEx1cAL ALTERNATIVES

PROBLEM 1

The second NOTE in section 6.11, page 68, is incorrect. The Standard does indeed
exclude the existence of other symbols, since processors which accept them

are probably (depending on the symbol) accepting programs which are not compliant
Pascal programs, and therefore contain extensions.

RECOMMENDATION
Delete NOTE 2 on page 68, and the numeral "1" from the first NOTE. .

PROBLEM 2

This whole section is at variance with section 6.1, which sets out the requirements
for lexical tokens. Properly, it belongs there, not here at the end of the
Standard, which is simply where Niklaus Wirth put it originally in the User Manual.

RECOMMENDATION
Delete section 6.11 and insert a new section 6.1.9 as follows:

6.1.9 Lexical alternatives. The representation for lexical tokens and
separators given in sections 6.1.1 to 6.1.8 constitutes a reference
representation for these tokens and separators which shall be used for
program interchange.

To facilitate the use of Pascal on processors which have a character set
which will not support the reference representation, the following
alternatives are provided. All processors which have the required characters
in their chavacter set shall provide both the reference representations
and the alternative representations, and the corresponding tokens or
separators shdll not be distinguished.
The alternative representations for tokens are given below:

Reference token Alternative token
A .
L (.
])

NOTE. The character + which appears in some national variants of the ISO
character set is regarded as identical to the character A.

The alternative forms of comment arve all forms of comment where one or
both of the following substitutions are made: .

Delimiting character Alternative delimiting
pair of characters
{ (*

} *)

NOTE. A comment may thus commence with "{" and end with ")", or
commence with "(*" and end with "}".

IDENTIFIER AND LABEL TERMINOLOGY

PROBIEN

The following problem was drawn to Australia's attention by W.Price, but

the solution differs slightly from that proposed. It is however based on the
comments received, but modified to cope with labels.

In section 6.2.2 the word identifier is used with at least four meanings. The
one attached to the syntactic definition should be left wntouched, but the
others need to be distinguished to clarify the DP. Labels are equally affected.

RECOMMENDATION

1. Change the second sentence of 6.1.3, page 6, to read:
All characters of an identifier shall be significant in distingwishing
between identifiers.

2. Replace clause 6.2.2.5 by:
When an identifier or label has a defining-point for region A
and an identifier or label that cannot be distinguished from it
(see 6.1.3 and 6.1.6) has a defining-point for some region B enclosed
by A, then region B and all regions enclosed by B shall be ezcluded
from the scope of the defining-point for region A.

3. Replace clause 6.2.2.7 by:
The scope of a defining-point of an identifier or label shall
include no defining-point of another identifier or label that
camot be distinguished from it (see 6.1.3 and 6.1.6).

4, Change
..all occurrences of that identifier or label shall be designated
applied occurrences. ..
in clause 6.2.2.8 to read:
..each occurrence of an identifier or label which is indistinguisable
from the identifier or label of the defining-point (see 6.1.3 and 6.1.6)
shall be designated an applied occurrvence of that identifier...

5, Change
...a type-identifier may have an applied occurrence in the
domain-type. . .
in clause 6.2.2.9 to read:
...an identifier may have an applied occurrence in the type-identifier
of the domain-type...

FuncTIoN STVLISTICS

PROBLEM
An example of a procedure-and-function-declaration-part is given in section 6.6.2,
pages 31 & 32. Amongst the examples is an example of functions using mutual
recursion, and illustrating the forward directive. This example is written with
poor stylistics, in that: :
* the mutuality of the recursion is disguised by the layout, in which
the two procedures are written differently;
* Apart from the Standard-oriented comment at the top, the mutuality of
the recursive references is not documented; and
* a pseudo-repetition of the parameter list of ReadOperand suggests that
this poor practice of repeating information (possibly erroneously) be
copied.

T¢# SMIN 1vIsvd

T86T “11YdV

gt 39v4

RECOMMENDATION
Replace the text beginning "{This example of ..." to the end of the section by:

{ The following two functions analyse a parenthesized expression and convert it
to an internal form. They are declared forward since they are mutually recursive -
they call each other. }
function ReadExpression : formulaj;
forward;
function ReadOperand : formulaj;
forward;

function ReadExpression; { See forward declaration of heading. }
var
this : formulaj;
begin
this := ReadOperand;
while IsOperator(nextsym) do
this := MakeFormula(this, ReadOperator, ReadOperand);
ReadExpression := this
end;

function ReadOperand; { See férward declaration of heading. }
begin
if IsOpenParenthesis(nextsym) then
begin
SkipSymbol;
ReadOperand := ReadExpression;
{ nextsym should be a close-parenthesis. }
SkipSymbol
end
else .
ReadOperand := ReadElement
end;

CONFORMANT ARRAY SYNTAX

PROBLEM

The syntax for index-type-specification does not use bound-identifier.

RECOMMENDATION
Replace the syntax for this in section 6.6.3.7, page 36, lines 16-18, by:
index-type-specification =

bound-identifier "..!" bound-identifier
":" opdinal-type-identifier .

FOR-STATEMENT SPECIFICATION

PROBLEM
In 6.8.3.9, pages 55 & 56, a circular argument is introduced in following the
consequences of making the limit expressions el and e2 '"compatible'" rather than
"assignment-compatible" with the control-variable. Firstly, the fourth sentence
of the second paragraph states:
The value of the final-variable shall be assigrment-compatible with the
control-variable when the initial-value is assigned to the control-variable.
Later, the paragraph goes on:
Apart from the restrictions imposed by these requirements, the for-statement
for v := el to e2 do body
shall be equivalent to

and this shows that an over-riding restriction is specified in terms of a subsidiary
specification (which is valid only where not in conflict with the previous
restrictions). Secondly, the similar restriction on el is not mentioned at all,

and is only implied by the equivalent program-fragment.

The problem is derived from the decision to abandon "assignment-compatibility"
as the prime requirement for the limit expressions under all uses. However, if
that decision is left, then it can readily be seen that the proper restriction is
related to the execution or not of the controlled statement ('"body"), not of
components of a (virtual) equivalent fragment, and its execution-sequence.

RECOMMENDATION
Delete the sentence given above (first italicised entry) and replace it by:

The initial-value and the final-value shall be assigrment compatible

with the type of the controlled-variable if the statement of the
for-statement is executed.

TRIVIAL MISTAKES

PROBLEM
The DP contains several trivial punctuation and grammatical mistakes.

RECOMMENDATIONS
1. Delete second comma in second sentence of 6.4.4, page 21.
2. Delete comma in NOTE on page 16 of 6.4.3.2.
8. In 6.4.3.4, page 19, line 9, insert the word type so that the First sentence
of the paragraph begins:
For every ordinal-type S, there exists an unpacked set type
designated ’

4. In 6.4.8.2, page 16, replace characters by string-elements and left to right
by textual in lines 7 and 8 respectively.

5. In 6.5.1, page 24, line 3, delete the text
(current)
or remove the parentheses.

T¢# SMIN 1vIsvd

T86T “1I¥dV

6 39v4

ATTACHMENT B COMMENT ON Error Handlind (S.1f)
i STATUS Editorial

Canadian Standards Association FROKLEN STATEHENT
Association Canadienne de Normalisation Parts 2 and 3 of this section (5.1f) say

*2) the rrocessor shall have rerorted a prior warnind that

Rexdale, Ontario
an occurrence of that error was rossihlei
3) the rrocessor shall rerort the error durind rrerzration
COMMITTEE CORRESPONDENCE of the rrodram for executioni'
The term ‘erior warnind®' rresumably means 3 warnind rrior to
sp Please oddress reply to writer af: execution, That iss this warnind occurs during rrerzration of
. the rrodram for execution. Rewordind rart 2 makes it clearer
Anthony Bickle that parts 2 and 3 deal with distinct, but related, issues,
ot)
Scrniic Compuling Divaon
P PROPOSED CHANGES
w'ouwbas.\-w'g".amu
O yicent Macsay Rerlsce S.1f part 2 with
KiAiCT
190073522 ‘2) the rrocesor shall rerort durind ereraration of the
rprogrem for execution that an occurrence of that error was
March 6, 1981 rossiblej*
COHMENT ON Numbers (4.4.2.2)
STATUS Editorial
FROBLEM STATEMENT
This section says 'The values shall be a subset of the whole
numbersy denoted as specified in 6,1,5 by the sidned-inteder
CAC/IS0/TC97/SC5 Position to values (see also 6.7,2.2).' The values are denoted rot by
velues, but by the suntactic class sidned-inteder,
CNC/ISO Secretariat Letter
) XOPOSEI CHANGES
File No. SCC ID 504 (97/5)-2 PROP HANG
DP 7185 In section 6.,4.2,2y rerlace '..iby the sidned-inteder
valuesyys* by "4y by sidned-inteser. ' and rerlace "..sby

the sidned-real values.' by *.,,by sidned-real,*'.

COMHENT ON File-tures (6.4,3.5)

STATUS Error

FROBLEM STATEMENT
W DP 7 . In rart d of the definition of 2 seauence-tyre, the case in
We approve DP 7185 as presented, though making vhich ¥ is empty and % is non-empty is not covered.

the following comments of an editorial nature: PROFOSEDl CHANGES

Rerlace

'If % is the empty sequercesr then x=y shall be true if and
only if ¥ is also the emrty seauence.’

with

*If either % or ¥ is the emrty seauences thern x=y shzll be
true if and only if both % and ¥ are emptyi®

TZ# SMIN voSvd

T86T “114dY

0Gq 39Y(

COMMENT ON Examrle in 6.6.2
STATUS Frogram Hud
FROKLEN STATEMENT

In function ReadExpression) the statement
*this = MakeFormula (this; ReadOrerator: ReadOrerand)i’

would. not be standard-conformind if both ReadOrerator and
ReadOrerand were functions that advance the input strees - it
relies on the left-to-right evaluation of the actual

parameters.
PROFOSED' CHANGES
Rerlace ‘function ReadExrression ... endi® with

*function ReadExrression | foraulaj
var
this ! formulaj
op | oreratori
bedin
ihis i= ResdOrerandj
while IsOrerator (nextsua) do bedin
or 1= ReadOreratori
this = MakeFormula (this, orr ReadOrerand)i

endj
ReadExrression i= this
endi*

COMHMENT OM Actuzl rarameters with packed tures (New 6.6.3.1 and 6:6.3.7)

STATUS Editorial
FROBLEN STATEMENT

Does the sentence

*An actual varisble rarzmeter shall not denote a comronent
of a .varishle that Frossesses a ture that is desidnated
racked:*

mean thzt the comronent’s ture must not be racked; or that the
variable’s ture must not be racked? The latter interrretation
is the desired one.

FROFOSED CHANGES
In 6,6.3.1 rerlace the ambiduous sentence with
*An actuzl verizhle rzrameter shall not denote a component
of a varizhle where that variable rossesses 2 tupe which is
desidnated racked.’

Similarly, in 64643.7 rerlace

*vvishall not denote 2 comronent of a wvariasble that
rossesses 2 tupe that is designated packed.®

with

*vvishall not dernote 3 comronent of a3 varizble where that
variable rosseses 3 tyre which is desidnzted racked.'

COHMHENT ON Conformant array parameters (New 6:6.3,7)
STATUS Editorial
FROBLEM STATEMENT

This section (6.6.3,7) says

‘vvv3nd which shall have 3 comronent-tyre that shall be
that denoted by the ture-identifier contained by the
conformant-array-schema in the
conformant-array-rarameter-specification and which shall
have the index-tures of the ture Possessed by the
actual-parameters that corresrond (see 6.6.3.8) +to the
index-tyre-srecifications contained by the
conformant~array-schema in the
coriformant-array-rarameter-crecification.*®

Since Fascal does not have true multi-dimension arrayss the
sentence should be rhrased in terms of nested conformant array

schemas
‘FROFOSED CHANGES
Rerlzce the sentence tail auotled above with

*+vivand which shall have 8 comronent-ture that shall be
that denoted by the ture-identifier or
conformant-arrag-schemsa closest-contzined by the
conformant-array-rarameter-srecification and which shall
have the index-tyre rossesced by the actuzl rarameters that

corresrond (see 646.3.8) to the sindle
index-tyre-srecification closest-contained by the
conformant-array-schema in the

conformant-array-rarameter-srecification,*

As is the case elsewheres; this definition arrlies to the
lond-hand form of conformant-array-parameter-specifications.

COHHENT ON Assidnind-reference (6.,5.1)

STATUS Error
FRORLEM STATEMENT

The definition of =assidning-reference in section 6:5.1 does
not say anythind about actusl rarameters to reauired
rrocedures other than read and readln. As it turns out, there
is no real need since the motion of assidnind-reference is
only used in the definition of the for-statement, and the ture
of the loop variable cannot be an array-, rointer-s or
file-ture, The iterm ‘assidnind-reference® and its rlacement
in 6.5.1 dive one the micleadind imrression that it is 3

denerzlly useful notions

T¢# SMIN TYISYd

T86T “114dY

Tg 39vd

FROFOSED' CHANGES

If the term assidnind-reference is to remain srecific to
ordinal-tyres then either a) chande the name to
‘ordinal-assidnind-reference's or b) move the definition
(6,5/1) to 6.8,3,9 (for-statements),

If the term is to be made denerally usefuls then to the
definition of assidnind-references arrend

*(d) The veriable is denoted by the variable-access in a
rrocedure-stetement that srecifies the activation of
the reauired rrocedure new,

(h) The variable is denoted by the third actual rarameter
in 3 procedure-statement that specifiec the activation

of the reauired procedure rachk.

(i) The veriable is deroted by the second actuzl parzmeter
in 8 rrocedure-statement thzt specifies the activation
of the reauired procedure unpack.

(J) The wvariable is denoted (rossibly imrlicitly) by the
file-ture =actual earameter in a3 procedure-statement
that specifies the activation of any of the followind
reauired rrocedures! read, readln; writey writelm
dets rut, reset, rewrite, and rade.

NOTE! It is possible for a processor to determine 3all
assidnind-references in a statement without havind to
execute the rrodram. It is used in the definition of the
for-statement.*

COHMENT ON Imrlementatior-Derendencies v.s. Extensions

STATUS Error
FROELEM STATEMENT

The standard is confused with resrect to the nature and
varieties of imrlementation-derendencies, We Frrorose the
followind characterizations of the terms
‘implementation-derendent’ and ‘extension®.

An ‘imelementation-cderendent® asrect of the landuade is one
for which the standard does not dive 3 comrlete definition,
The intention is to allow the imrlementor a dreater desree of
fréedon than is normally the case, The following
characterictics are desireable!

1) A stendard-conforming Frocessor may choose any
inplementation of an implementation-derendent feature zs
lond 2s it meets the reauirements set down by the standard.

2) A standard-conformind rrocessor need not document the
way(s) in which the imrlementation-derendent asrects. of the
landuade are imrlemented (c.f. imrlementation-defined
asrects).

standard-conformingd prodram may not rely on the manner in
which an imrlementztion-derendent asrpect is imrlemented.

3

On the other hand, the term "extensions® is used for “...any
fealures accerted by the processor that are not srecified in
clause 6,° The intention of talking about extensions in the
standard is to allow an imrlementation to asudment the landuzde
defined in the standard, Extensions have the follouind
characteristics!

1) Standard-conformingd rrocessors may surrort extensions.

2) Standard-conformind processors must be able to rrocess the
use of any extensions ',,.in 3 manner similar to that
specified for errors...'

3) Standard-conforming FroCcessors must docusent all
extensions.

4) Standard-conformind prodrams must not use any extensions,

FROFOSED CHANGES

It would seem arrrorriate to define the term extensions in
section 3 instead of in section 5.1 by addind

‘3,5 extension, A fealure accerted by a3 rrocessor that is
not specified in clause 6,*

In section 5/1y we find

"(i) be sble to rrocess in 2 manner similar to that
specified for errors any use of an
imelementation-derendent feature.*

This clause in meanindless! any rprodram containind an
2ssidnment statement can be said to use an
imrlementation—-derendent feature, The violation is in relyind
on a particular imrlementztion of an imelementation-derendent
fezture., Since detection of such violations 1is imeossible in
generzly clause 5,1 (i) should be deleted.

A better wordind for 5.2 (c) is

‘(c) not rely on any rarticuler intereretation of
imrlementation-derendent . aspects of the landuade
concomitant with the prodram’s comrliance level,®

Section é,1/4 talks about implementation-derendent directives,
Calling such directives imrlementation-derendent is incorrect
- the imrlementor would not even have to document them! These

are extensions - and the standard has adeauate consiraints on
extensions. Therefore, delete the sentence .'Other
implementation-derendent directives may be provided.' and

chansge

"NOTE! On many rprocessors the directive external is used to
specify that the +.."*

T¢# SMIN YISYd

I86T “11Y4dY

25 39vg

to

*NOTE! Many processors provider as an extensions the
directive external which is used to srecify that ...*

The imrlementation-derendencies mentioned in sections 6.7.2.1»
617,31 6,8,2,2, and 6,8.2,3y are true
imrlementation-derendencies — no chandes are needed.

As suddested in another comment; the effect of inspectind a
textfile to .which Frade have been arrlied should be
imrlementation-defined; not implementation-derendent.

In section 6.10 we find

‘The bindind of the varizbles denoted by the rrodram
rarzmeters to entities external to the rrodram shzll be
imrlementation-derendents excert if the variable rossesses
a file-tyre in which case the bindind shall be
imrlementation-defined.*

As is the case with directives; we don‘t want the imrlementor
doind off and rrovidind non-file-tyre rrodram rarzmeters
without documentingd themi this should be czlled an extension.
Rerlace the above sentence with

"The wvarisbles denoted by the rrodram rarameters shall
rossess a file-ture 2and the bindind of the variables to
entities externsl to the prodram shall be
imrlementstion-defined."*

If it is still deemed necessary to mention the ' common
extension, extend the note as follows!

*NOTE! The external reeresentation of such external
entities is npot defined in this standards; nor is any
prorerty of 3 Pascal rrodram derendent on such
rerresentstion, As an extensions many rrocessors rerait the
variables denoted by the rrodram rarameters to rossess 3
tuyre other than a file-tuyre.'

COMMENT ON If statements (4.8,3.4)
STATUS Editorial
FROBLEM STATEMENT

This section says 'An if-statement without an else-rart shall
not be followed by the tokern else,® It is only a rroblem if
an if-stalement without an else-part is IMMELNIATELY followed
by the token else.

FROFOSEDl CHANGES
Chende the sentence to read! ‘An if-statement without an

else-rart shall not be immediately followed by the token
else,"

COHHENT ON Procedure rade (4.,9.6)
STATUS Editorial
FRORLEM STATEMENT

"The effect of insrectind a textfile to which the rade

frocedure was aprlied during deneration shall be
1mflementation—deﬁendent" It would be more =zrrrorriazte i{;
this asrect was imrlementation-defined, .not

inrlenentztion-derendent. This would also be consistent with
stance taken in 6,10 uhere the effect of the arrlication of
feset or rewrite to either infut or outrut was classed as
imelementation-defined,

FROFOSED CHANGES

Qhanse the senterice to! *The effect of insrecting ... shall be
imrlementation-defined.*

COMMENT ON Terminatind execution of prodrams (5.1 i 3)-
STATUS Editorial
FROBLEM STATEMENT

Section 5.1y rart i) subrart 3 says ‘the rrocessor shall
rerort the error durind execution of the rrodrans and
terninate execution of the rrodram,* An imrlementstion should
be free to decide (and document) what form of corrective
action, if any, will be taken in the event of a
runtime-detected rroblem. For examrles the frrocessor might
want to ask Llhe user what velue his uninitizlized variable
should haves and then resume esxecution.

FROFOSED CHANGES

Chande the serilence to! *4) the rrocessor shall rerort the

error during execution of the program,*

T¢# SMAN TvISvd

T86T “1IY4dY

¢G 39Y¢

Comment on Value Conformant Arrays (6.6.3.7)
Status: technical comment
Problem Statement:

An actual-parameter corresponding to a conformapt—array-parqmeter-
specification is allowed to be an expression (that is not a variable-
access). This results in copying of the value of the actual-parameter.

This approach is conceptually inappropriate, inconsistent with
the rest of the language, and error-prone. In PASCAL, it has been
the programmer of the procedure declaration who has decided (by choosing
between the variable and value forms of formal parameter specjficat1ons)
whether a local copy of an actual-parameter is necessary. This
responsibility should not fall on the callers of a procedure because,
in principle, they need only concern themselves with what the procedure
does, and should not be concerned with how this is done. If
parenthesization of an actual conformant array parameter is by
accident omitted, the result will often be a subtle logical error
because of unexpected storage sharing, with no compile-time or
run-time warning. :

Proposed Changes:

.1.A1l0w value as well as variable forms of conformant-array-
parameter-specifications.

2.Require an actual-parameter which corresponds to a variable
conformant-array-parameter-specification to be a varriable-access.

3.Modify the restriction in the last paragraph of 6.6.3.7 to
apply only when the actual-parameter corresponds to a value
conformant-array-parameter-specification.

ATTACHMENT C

Czechoslovak comments of an editorial nature on document
IS0/TC 97/SC 5 N 595 - DP 7185

1)

2)

3)

4)

In our opinion, the incorporation of levels O and 1 into

the specification of Pascal in fact defines two programming
languades, being inconsistent with the need of portability
of programs,

We suggest therefore to retain one level of compliance only,
preferably level 1 (including conformant array schema) to
force compiler producers to include this required feature
into their products,

In section 6.4.3.4 a statement limiting the largest and
amallest values of the base-type was deleted, We are
convinced that such limits exist in each implementation

and are usually low.

We suggest to add a statement to section 6.4,3.4, stating
an existence of limits of the cardinality of canonical sets
(these limits being implementation-defined) and requiring
their minimal range to allow for set of char,

The behaviour of the procedures read and resdln is not
satisfactorily resolved when reading integer- or real-type
values,

We suggest to adjust parts (c) and (d) of section 6,9.2 in
such a way, that if rest of file being scanned for integer
or real values consists of spaces and end-of-lines only,
then reading shall cease, sof and eoln being true and value
of varisble v being left undefined,

The production rule for procedure-statement conflicts with

the definition of parameter-lists for procedures read, readln,

write, writeln,

We suggest to formally complete the production rule for
p?ocedure-statement as follows:

procedure-statement =

procedure-identifier actuel-parameter-list'] [
read-procedure-identifier read-parameter-list /
readln-procedure-identifier readln-parameter-list /

write-procedure~identifier write-parameter-list' /
writeln-procedure-identifier writeln-parsmeter-list ,

T¢# SMIN TvISvd

T86T “11¥dY

f1G 39v(d

ATTACHMENT D

COMMENTS OF SFS ON DP7185 "SPECIFICATION FOR THE PROGRAMMING LANGUAGE

Finnish comments are}nainly based on the paper prepared
at the Helsinki University of Technology and made by
the PAX-Pascal Group (Jukka Korpela,Pertti Tapola,

Timo Larmela, Ahti Planman). I have collected some

other opinions listed below.

Layout of the draft is incomplete: It's very difficult
to find starting points oh chapters from the text,
because there are no extra e'ty lines between chapters,
Darker chapter headings or headings written with
letters differing from normal text would help. Contents
(page 1) is incomplete and doesn't include all chapter
headings. Index (pages 77-82) is very uncomfortable

to use because of several references to same objects
(for example term "variable" has 23 references).
References should be grouped into "sub-terms" or/and
main references should be underlined or written with
different type. Some terms (for example "comment")

‘are missing.

In chapter 6.1.2 characters "{“ and "}" are missing
from the production special-symbol. It would also be
usefull to have reference to the chapter 6.1l (Hardware

representation) where alternative symbols are listed.

In chapters 6.1.8, 6.4.3.1.2 and 6.5.3.2 references

to chapter 6.11 as above. Thats important for
scandinavian Pascal users, because we use scandinavian
letters K,6,A having same code as [,\,]. Just a

few terminals have characters [and } .

In chapter 6.4.3.1 order of productions is wrong,
injsome other chapters too.

In chapter 6.4.3.3 (record type variant part) it
should be possible to have as an element of case-
constant-list some kind of subrange expression of

form case-constant ".." case-constant. Same form

is also usefull in case-statement (6.8.3.5). In
addition this form of case—cdétant is compatible with

set expressions.

Basic principles of garbage collection system should
be formulaten in spite of it's hardware-dependence.
Thats important because different implementations

have different properties (e.g. what to do with dynamic
allocated variables referenced with pointers written
into file-variable.

Tampere 1981-03-16

Hannu §a::;fi§_/x\\\\\

Acting member of SFS on the area of ISO TC97/SC5

T¢# SMAN TY¥ISYd

1YdY

Igbl

S§ 39vy

HELSINKI UNIVERSITY OF TECHNOLOGY
Computing Centre

PAX-Pascal Group/Jukka Korpela 4-MAR-1981

COMMENTS ON THE 2ND DRAFT PROPOSAL FOR THE ISO
SPECIFICATION FOR THE COMPUTER PROGRAMMING LANGUAGE PASCAL

CONTENTS
FOLewoIrd « « « o o o o o o o o s o o s » o & o s o o s o o o =
.

CHAPTER 1 STRUCTURE AND TERMINOLOGY
1.1 OVERALL STRUCTURE AND COMPLETENESS OF THE DRAFT
1.2 THE STABILITY OF PASCAL + « « o« o o o = o = =
1.3 CONCEPTS AND DENOTATIONS . « « .+ o N
1.4 THE STRUCTURE OF LANGUAGE DEPINITION @ e e e e
1.5 TERMINOLOGY « « « ¢ o o o o s o o o o & o o =

CHAPTER 2 DETAILED COMMENTS AND SUGGESTIONS
2.1 LEXICAL TOKENS P T
2.2 BLOCKS, SCOPE AND ACTIVATIONS e e e e e e e s
2.3 CONSTANT-DEFINITIONS + « « o o o & o o o o «
2.4 TYPE-DEFINITIONS « « o o o s o o o o o o s o =
2.4.1 GENELALl « « + o o o o o 8 o o e e s s e s
2.4.2 Simple—tYPeS + « o o 4 0 b e s e e e e e .o
2.4.3 Sstructured-types e e e e e e e e
2.5 DECLARATIONS AND DENOTATIONS OF VARIABLES . .
2.6 PROCEDURE AND FUNCTION DECLARATIONS
2.7 EXPRESSTIONS « « « o o o « o o o o o o s o o« =
2.8 STATEMENTS « o « o o o o o o o o o o o o o o« =
2.9 INPUT AND OUTPUT « « « o « o o s o o o o o o =
2.10 PROGRAMS « « « « o o o o o o o dbe o o o o o
2.11 HARDWARE REPRESENTATION « o
2.12 TYPOGRAPHIC ERRORS AND STYLISTIC MATTERS « ..

Foreword

This paper has been prepared at the Helsinkl University of
Technology Computing Centre. It does not present any official
statement of any organization but reflects the observations,
suggestions, and opinions of several specialists actively
working on the fields of systems and applications
programming, including -Pascal compiler writing and
maintenance, and teaching of Pascal.

1(19)

e sl i el el
FENR S}

b b S b
@ Wl

[

@ NS W

MDD N O

CHAPTER 1

STRUCTURE AND TERMINOLOGY

1.1 OVERALL STRUCTURE AND COMPLETENESS OF THE DRAFT

The draft being commented contains significant improvements
to the first draft, and is, in general, sufficiently complete
and well-structured te become a standard.

The main disadvantage is the alteration of terminology and
style for semi-formal definitions. This draft, as well as the
first draft, contains a great amount of terminology which is
not commonly known and used in the Pascal community, or even
differs from the terminology currently in use.

For example, the definitions in clause 6.2.3 are difficult to
understand, and assumably extremely obscure to ordinary
Pascal programmers. What makes them strange for experts to»o
is the obvious attempt to avoid references to implementation.
The definitions become understandable to a compiler writer
when the "within"™ relation is conceptually associated with
what is known as static link in implementations.

On the other hand, the last note in clause 6.6.3.7 makes a
rather explicit reference to implementation, using the notion
of activation record.

It is difficult to define some features of Pascal in a menr -
which 1is both general (not referring to a particular meth0d3
of implementation) and understandable, ‘and possibly thsa
difficulty is inherent.

In spite of the criticism above, the. difficulties of
specification should not be allowed to postpone the
standardization of Pascal. Probably a sufficient solution
would be to add a few notes referring to implementation
aspects, particularly to clause 6.2.3 but possibly also to
clauses 6.6.6.3 (about the fact that in practise the address
of an actual variable parameter is passed and all references
to the formal parameter use the address passed), 6.6.3.4 and
6.6.3.5 (an analogous note would be wuseful), 6.6.3.7 (e.ga.
that both the address of an actual parameter and the actual
index bounds are passed), 6.8.2.4 (a nonlocal GOTO requires
an appropriate context switching), and 6.8.3.10 (the addiess
of a record variable in the record variable list of a WITH
statement is calculated once only).

The structure of the draft is similar to previous
descriptions of Pascal. However, the order of presentation
should be reconsidered in the following respects.

1. Clause 6.3 bears the title Constant-definitions, although
it also describes constants. Splitting it into two parts
would not be worth while, but ‘the title should be
changed.

TZ# SHIN TvISvd

“1HdY

1861

9g 39v¢

2. Similar comment applies to clause 6.4. However, the
importance of ~the subject and the length of the clause
suggest that the clause should be divided into several
major sub-clauses of clause 6. At present clause 6.4
describes type definitions, denotations of types, and.the
meanings of type denotations. These subjects should te
treated separately.

3. Rules for procedure and function declarations in clause
6.6 exhibit greatesimilarity of structure. Integration of
the specifications would increase readability and reduce
the size of the standard.

1.2 THE STABILITY OF PASCAL

The two major changes stated in the foreword are useful. The
first one is to be regarded as a necessary language change.
The second one is rather strong . extension ‘to the language
defined by Niklaus Wirth but is very useful. The solution
adopted, to make it a sort of “recommended extension”, is
elegant.

They are some features of Pascal in which the draft differs
from Wirth’s definition and/or most current implementations
in a manner which makes them important for ordinary users.
Mentioning them in the foreword would be worth while. This
applies in particular to type compatibility rules 1n the
broad sense, the semantics of WITH statement, the meaning cof
IN operator, and the format of output of real values to a
textfile. The changes involved are definitely improvements

The definition of Pascal should not be changed from that
given in the draft in any essential respect. There are,
however, some features which should be specified more
exactly.

Moreover, after the official approval of the standard by ISO,
a project should be started in order to define "level 2
Pascal”, i.e. to standardize some extensions to the. language
described by the document being cur;ently prepared. It is
well known that there are several extensions to Pascal Jn
existing implementations. Often the extensions serve simila
purposes but differ in their syntax and/or details of
semantics. Given that extensions are available and are used,
portability of programs could be increased if the most common
extensions were standardized.

The project suggested would inevitably encounter serious
problems because of the warying needs of the users as well as
the different opinions of language implementors and computer
scientists. Anyhow, the Pascal language was designed for
teaching - and is undoubtedly the best language for that
purpose - but is being wused for the construction of
complicated "real-life" programs and systems as well. The
true applications of Pascal require carefully selected and
defined extensions to the language.

Admittedly, Ada is an extension of Pascal, but in roughly the
same’ sense as Pascal is an extension of Algol 60, i.e. very

far from being a pure extension. A fundamental difference
between Ada and Pascal is that Pascal can be learned in toto
within reasonable time, even by a person with no previous
experience about computers, whereas Ada is "everything for
everybody" which makes the language conceptually difficulx
and large in contents. .

There is no need to suggest what the "level 2 Pascal" would
contain. 1Instead the problem is to limit the extensions to a
conceptually clear repertoire which increases the expressive
power of the language without substantially decreasing
efficiency of implementation. In our opinion, the following

. extensions (possibly together with some minor extensions)

would constitute such a repertoire:
1. Use of static expressions instead:-of constants.
2. Some kind of module structure. -

3. Setarate compilation of modules, together with the
definition of the properties of the software support
needed. :

4. Dynamic arrays, which could be added to the language
simply by allowing the use of a parameter of a procedure
or function in the same manner as constant identifiers ia
type definitions.

5. Double-precision real numbers.
6. The LOOP EXIT construct.

7. OTHERS branch and/or subrange notation for case constant
lists in CASE statement.

8. Additional predefined procedures and functions for file
operations (close, delete, append, etc.), including tools
for control over input errors 1like invalid format of
numeric data.

9. Standardization of the feature that program parameters
declared as array variables represent external random
access files.

1.3 CONCEPTS AND DENOTATIONS

When describing a programming language, clear distinction
should be made between an underlying concept (an abstract
entity) like a variable, and its denotation like a wvariable
denotation. The draft is incomplete in this respect. For
variables, such distinction is made in most contexts; but for
types not. Moreover, the production rule for variable
denotation ("variable-access™ in the draft) uses terms 1like
"entire-variable"; a more adequate term would be
"entire-variable-denotation".

Consider, for example, clause 6.4.3.5. It first specifies
"file-type" by a production, i.e. defines the term
"file-type" as one form of type denotation. However, the textl
then uses the term "file-type" as being something which can
be denoted by a type-denoter. Such confusions could be
avoided by the systematic distinction mentioned.

TZ# SMIN TvIsSvd

T86T “1IYdY

/5 39vy

1.4 THE STRUCTURE OF LANGUAGE DEFINITION

The draft uses the verb "shall® excessively. A standard, by
its very nature, says ‘how things shall (or should) be;
undiscriminated use of ™shall® is redundant.

Moreover, gxcessive use of "shall" hides the fact that the
different statements din the draft standard have varying
logical status. Lapguage definitions (excluding experimental
formalized -systems) 4in general consist of .(a) rules for
context free syntax, wmsually given in BNF form, (b)
additional syntactic rules, gilven in prose, and (¢) semantic
Krules, given in prose and being somewhat 1less exact than

yntactlc rules. The draft uses "shall" both in class (b) and
in class {c) rules. It would be more natural tc restrict the
use of “"shall" +to c¢lass (b) rules, class (c) rules just
stating what IS the meaning of a language construct.

In addition, there are -the specifications for error
conditions, with the word "error" used to designate what is
commonly known as runtime error. (A processor may of course
be able to detect a runtime error during compilation, in
special cases.) In these specifications, ™"shall"™ is not
necessarily strange but useless.

Yet another group of statements in language definition
consists of nominal definitions (for auxiliary concepts).

a sense, a language standard as such is, a nominal deflnltion
of a lapguage. From the reader’s point of view at least, it
would be very useful to separate nominal definitions (in the
strict sense) from the other contents of the standard. They
neither describe the language nor set any requirements upou
complying programs or processors, but serve for the purpose
of description and specifying requirements.

Consequently, the lowest level clauses of the standard (i,e.
clauses not containing any other clause) should be organ’vvd
as follows. First the relevant production rules are given (ir
BNF) . Then the additional syntactic requirements aru
specified, in prosé, but exactly, using whatever auvxiliary
technical terms are needed. Next, the semantic tules av:2
given, in prose, and this specification is sometimes
unavoidably inexact (but uniquely interpretable by
experienced benevolent readers) . Finally, the erovr
conditions, if any, are specified.

Whether the suggested structuring is reflected by apprepriate
sub-titles, paragraphlng, layout, or similar methods, is a
matter of convenience. In most cases, paragraphing seem= tp
be the most adequate method. The first prose per:3y avh
(syntactic rules) may well use the word "shall®, whilst the
others should use "is".

Nominal definitions should, if possible, be collected into
separate clauses, and clearly distinguished as such, e.qg o
beginning them with "Definition." or "Conyention.". Then it
would be unnecessary to use clumsy constructs in Engl]tﬁ-
instead of "a shall be designated as b" one may specify "a is
called b", "a is said to be b", or simply "a is b".

To make the suggestions more concrete, here is a revised form
of 6.5.5 (with no changes to the contents):

6.5.5 Buffer-variables.

buffer~variable = file-variable """
file-variable = variable-~access .

A file-variable shall be a variable-access that denotes a
variable possessing a file-type.

A buffer-variable denotes & variable associated with
variable denoted by the file-variable of the buffer-vari
A buffer-variable associated with a textfile posse-c2
char—type; otherwise, a buf fer-variable possesses
component-type of the file-type possessed by
file-variable of the buffer-variable. A reference or ac.e
to a buffer-variable constitutes a reference or acwess,
respectively, to the associated file-variable.

Examples:
input”
pooltapeB2A”

It is an error to alter the value of a file-variable £ when a
reference to the buffer-variable £” exists.

The reyised form uses the terminology of the draft, and is
not to be taken as a final suggestion but rather to
illustrate the method of presentatjion.

The term "implementation-defined"™ is defined (clause 3.2) too
vaguely. In particular, may the corresponding definition {for
an implementation) specify additional error conditions,
restrictions or even changes to the specifications in the
standard?

Especially important problem arises from the fact that
binding of program parameters of file type to external
entities is "implementation-defined". Does this imply that
there must be some binding? If not, it is possible to provide
a processor which strictly conforms to the standard bput I:
completely useless. Moreover, it is assumably intended that =2
program parameter of type Text can be bound to a device 1lixe
terminal, line printer, or card reader. Now suppose that we
bind a such a programeparameter, say £, to a terminal, writ=:
to the f£file £, and then try to do Reset(f). Strictly taking
this should give us the opportunity to read back what we
wrote. (Clause 6.6.5.2 implies that Reset(f) does not change
the sequence of components associated with the value of £,
except that it may append an end-of-line component to it.)
Although this is implementable (by making, say, a disk cozy
of everythlng written to f) it pragmatically makes no sens=.

The problem is even clearer for a file bound to an unspoclaed

card reader, first opened by Reset and then re-opencd by
Rewrite; since the pre-assertion for Rewrite 1is True, the
operation should definitely be possible. One solution iz af
course to prevent the binding of a program parameter othar
than 1Input or Output to a device; but such a restriction
seems unacceptable and it probably is not the intention that

-the standard would implicitly require it.

TZ# SHMAN TYISvd

T86T “IIYdV

85 394

Consequently, one should either specify that the definition
of an implementation-defined feature introduces modificatioas
to the language specification, or to remove any need far su
modifications. (The latter alternative is definitely beile .
and would reguire changes to the specification of Reset a=
Rewrite at least, probably also the specificaticn of veal
arithmetic operations which should be specified to be an
error if the operation is not carried out with sufficient
accuracy.)

1.5 TERMINOLOGY

The following changes of terminology are suggested. They
would be motivated by the terminology currently in use, or by
simplicity, or by a clearer distinction between "things apd
names", i.e. between (abstract) entities and their
denotation.

"The y closest-containing an x" should be replace@ 'by "tae
smallest y that contains an x". ("Closest-containing" dogs
not correspond to normal rules of formation of words in
English.)

"New-type", "new-ordinal-type", etc. should' be replaced by
"type-description”™, "o:dinal—type—degcr1ption", etc.,
nordinal-type" by "ordiral-type-denotation” (or —denoter),
and so on. A type-denotation is a language construct that
denotes a type; a type is an abstract entity (and the wcv4d
"type" as such should be reserved fog that purpo§e); and a
type-description is any type-denotation which 1is not a
type-identifier.

similar changes should be made to terminology related o

variables. "yariable-access" should be replaced . b?
wgariable—-denotation®. The variable (as abstract entiZy,
associated with a file-variable should be callei
"buffer-variable"; it can be denoted. ol

buffer-variable-denotation of the form £~ but it need ?ot
(for example, a formal parameter may denote a buff2r
variable) .

ntdentified-variable" should be replaced. by
nreferenced-variable™ or nreferenced-variable-denotation”, as

appropriate.

The phrase "the type possessed by x" is strange
artificial. It should be replaced by "the type of x".

will be possible when "type" is restricted to refer te en
entity, not to a syntactic constrgcg (becausg "of" app}led to
syntactic constructs has a specific technical meaning by
clause 4).

There seems to be no good reason to use the attribute
"required" instead of "predeclared" or "predefined", except
that it may shorten some specifications (sometimes "regqui--3"
should be replaced by "predeclared or predefin:.
Admittedly the existence of e.g. the type intec:r
"required"; but the potential existence of enumeratecd L
is ""required" as well. Moreover, the "required"
identifier 1Integer can appropriately be called "predef(i-
whereas the type denoted cannot adequately be Cori Lol
"required" or ‘"predefined". It is "introduced by lang.:age
definition", but such a term would admittedly be clumsy.

CHAPTER 2

DETAILED COMMENTS AND SUGGESTIONS

These comments are organized according to. the structur: o~
the draft.

The relevant clauses of the draft are referred by their

number only, so that these comments should be read togsth::
with the draft.

2.1 LEXICAL TOKENS

The statements "Identifiers may be of any 1length. 11
characters of an identifier shall be significant." are
redundant and should be made into a note. Howowve-,
restricting the number of significant characters -
identifiers to, say, 10 would not decrease the exprc sive
power of Pascal, would allow compilers to be slightly more
efficient, and would promote portability of programs (be.aus.
in any case programs will be wused in environments noc
supporting infinite recognition length).

The statement "A directive shall occur only in a

procedure-declaration or function-declaration."™ could b
misinterpreted so that, for instance, "forward" could not %o
used as identifier (which is the case in e

implementations). A clarifying note should be added.

Clause 5.1.5 states that "An unsigned-real shall denoz. 1=
decimal notation a value of real-type". The meani-3 ¢~
"denote" in this context requires clarification, since op
unsigned-real in general does not exactly correspond to any
value of real-type (the internal representation of real
numbers being what it wusually is). Moreover, it cannot be
uniquely derived from 6.1.5 what a processor should do «~i%’
an unsigned-real whose mathematical wvalue is outside the
implemented range. Consider 1e-1000 (assuming a typical
floating point representation in which no accuvai=
representation for it exists); should the processor reprn:
the wvalue as 0.0, or as the smallest positive real nu
representable, or should it give an error message? And
about 1le+1000?

T¢# SMIN TYISvd

T86T “11Y¥dY

6 39vd

e —y

The pseudo-production for string-character should be replace:
by a more adequate formulation, e.g. by the following:

The syntax rule for string-character iz
implementation-defined and shall have the form
string-character = al 6 a2 & ... 6 aN

where each of al, a2, ..., aN is a terminal symbol denoting a
single character.

2.2 BLOCKS, SCOPE AND ACTIVATIONS

The draft requires, for a change, that every declared nbel
must be used. Admittedly it is good programming practiér T
to declare labels which are not used; but why shou®’ N

be treated differently from identifiers in this roep-~-*
processor may give warnings about unused identif:et: 10

labels or it may not; but to specify such redun:dancy L o
violation of the rules of language is guestionable.

A note should be appended to clause 6.2.2, saying that tne
scope of an identifier shall not contain applied occurrenc.:
of synonymous identifier (from outer scope) , it thes
principle is to remain. However, the proposed scopw R
unnecessarily complicate compilers, and it is unlikely Y
any standard can enforce such rules to be implemont. :
pascal processors. We strongly suggest that the definitica ¢
scope be revised back to the principle that the scepe st o
from the defining-point. It would hardly decrease lan:
security, and would be intuitively more understandable ¢
the principle that the scope begins at a point preceding i
defining-point.

Clause 6.2.3.2 would be easier to understand if some nobt
were appended, e.g. a note stating (as in the first draft®
that each activation of a block introduces a collection o

distinct local variables.

py—

Clause 6.2.3.3 is extremely vague. Is the first stac:
nominal definition of "within" relation between activas "1
or does it prescribe where an activation can be desia bt
(by what?). The statement after the note wuses ‘¥ 2o
"within" to denote a relation between occurrences of 1 a7
and identifiers, on one hand, and activations, on the ¢
Presumably the word "within" should in that contex’
understood in some intuitively evident sense; but in w~hat
sense can an occurrence be within an activation?
occurrence of an identifier primarily appears (textua
within a block, and it obviously denotes some entity w.ioe
belongs to some activation of that block; but the pro lem
remains: what is the corresponding activation?

2.3 CONSTANT-DEFINITIONS

The semantics of a sign in a constant, however obvious,

should be explicitly specified. (Notice that such a siun in
not an operator, so that the semantic rules for unary "+" and

"-" are not applicable.)

2.4 TYPE-DEFINITIONS

2.4.1 General

The <statement "The- required types shall be denoted 'y

predefined type-identifiers ---." is redundant. !

2.4.2 Simple-types

The alternatives integer-type, Boolean-type, and char-tyn~
should be removed from the production for ordinal-type. Thew
are redundant (being special cases of
ordinal-type-identifier), there are no productions for ¢ -eu.
apd the terms are used to refer to the abstract type—entit}r
(instead of identifiers) in the sequel.

The production
real-type = type-identifier .
should be added.

The ;pgcification of the required numerical types would be
clarlfled. by referging to "the mathematical set of whole
numbers" instead of just "whole numbers" and similarly €for
real numbers.

gince the specification of integer-type in 6.4.2.2 might '
interpreted as excluding the possibility of existence oi
values of that type outside the interval -—Maxint..Maxi-!

is suggested that +the sentence beginning with "The VA
shall be a subset of the whole numbers —---" be truncai~ N
t?at part cited; the denotation of values of integer-ty.w o
signed-integers is sufficiently described by clauses Tl
and 6.3, provided that the 1latter is extended b
qescription of the semantics of a sign, as suggested ear
in these comments.

Tﬁe rules for subrange-types (in 6.4.2.4) are inexact and
given .in a confusing order (syntactic requirements ! :i:
intermixed with semantic specifications). For exam 1
starting the description by "The definition of a type --
may suggest that subrange type denotations would only o
allowed in type definitions, and leaves unspecified what ‘= a
definition of a type.

2.4.3 structured-types

The specification of the effect of PACKED should be
clearer. The phrase "should be economised" can be interpr:
so that PACKED is a suggestion only, and the processor

choo§e not to apply any effective packing even if it wou?.
possible, or a processor may ignore PACKED entirely. This :
assumably the intended interpretation; the next paraér"u

however{ refers to the representation of a type (values cf :
type) in data storage as being "packed". Evidently thi- i:
some: confgsion, because nothing prevents the proce$30r .’r;;
represe?tlng a structured type not designated piacked in a
Sz;g)whlch is packed (in the sense that minimal! stor - e

T¢# SMIN VISYd

1YdY

1361

09 39v4

Consequently, clause 6.4.3.1 should be modified as fal -w.-:
First, the only statement that is strictly relats? *-»
language definition is made: "The occurrence of the * ko=~
packed in a new-structured-type shall designate the oo
denoted thereby as packed." Then the following is statad e s
note: "The designation of a structured type as pack:l lors
not -designate any component of the type as packed." Ther =
note about the logical effect is given; this note may re. ' as
the note in the draft. Finally, a third note (whic™ -
practically very important but logically irrelevant) s! sad*

be given, e.g. as follows: "On many processors, Lo
designation of a structured-type as packed may caus. i
representation of values of the type to require 1less :113

storage than otherwise would be the case; on the other - - i,
it may cause operations on, or accesses to compononts o,
values of the type to be less efficient in terms of space, or
time, or both."

In 6.4.3.2, as well as in 6.5.3.2 and 6.6.3.7, cer.zin
syntactic constructs are defined to be "equivalent". The
precise meaning of such definition is left unspecified. “i-an
"equivalent" presumably means 1is roughly what ig men¢t
"identical" according to Leibrniz’ definition of ide = -.
("BEadem sunt qui inter sibi salva veritate sul -~
possunt"). Thus, a definition (convention) should - be

stating that when two syntactic constructs are definad -~ ...
equivalent, this means that either of the two construct: .-
be replaced by the other without affecting the correctn. . :

meaning of a proigam, and that anpy rule -iiven for eikthe:
construct is applicable to the other as well. :

A note should be given in 6.4.3.3, stating that for a vavriant
part without a tag-field, the selector of the variant part
does not necessarily have a physical correspondence in the
representation of the record type.

Clause 6.4.3.3 allows empty field-lists which implies that an
empty record is allowed. However, the question arises whether
a variable of an empty record type is initialized or not; on
one hand each variable is uninitialized when it come: to

. existence; on the other hand, a record is initialized when

"all of its fields are initialized, which means that an e:ptw
record would always be initialized. Since empty records are
useless, a minor change of definition would remove thisg
theoretical but irritating problem: remove the outermostk
brackets from the production for field-list, enclose the
symbol field-list into brackets in -the production for
variant, and add (into the text) the requirement that for a
field-list with no fixed-part, at least one variant of the
variant-part shall contain a field-list.

The draft does not specify any restrictions on the use of
ordinal types as the base-type of a set-type. This
effectively means that implementation of sets will be rather
inefficient, which causes set types to lose a lot of their
usefulness. (So this change to the language is an operation
which may succeed but the patient may die.) The restrict’ans,
as specified in the first draft, should be restored.)

2.5 DECLARATIONS AND DENOTATIONS OF VARIABLES

Clause 6.5.3.2 does not specify ' the order in which tnhe
indices of an indexed variable are evaluated; neither does.it
state that the order is implementation-dependent. Analogously
with e.g. 6.7.2.1, it should be specified that the order of
evaluating the index-expressions in an indexed-variable is
implementation-dependent.

The production

field-designator-identifier = jidentifi .
should be included into clause 6.5.3.3. fler

2.6 PROCEDURE AND FUNCTION DECLARATI”..S

Clause 6.6.3.1 specifies that with each formal value orc
variable arameter the i ¢
specificatgon is somewhaieobégur:nbegiigsiggeghgagiggii;rThSE
the‘ article "the" (" -—- defining-point as the aséox.al'c
variable-identifier ---"). similar comment applics éu
procedural and functional parameters. The use of "the" sncm.
to suggest that the existence of such an associated entit;
has been previously postulated, which is not the case.

Clguse 6.6.3 does not specify any restrictions on the allowed
types of a formal value parameter. Clause 6.6.3.2 specifies
that the actual parameter must be assignment-compatible with
Fhe type possessed by the formal parameter. This means that
it ig legal to declare a procedure with a value parameter of
a file type but illegal to call such a procedure. This is
somewhat strange; in general, language definition should not
formally allow constructs which are useless. The following is
suggested:

1. Aadd thg following definition to clause 6.4.3.5, befor;
the f1r§t paragraph of the very text: "a type is said té
have a file component if it is a file type, or an array
type whose component type has a file component, or a
record type such that at least one of its fields is or a
type. that has a file component." Change the parag;aoh
mentioned to read as follows: "The type-denoter of a
file-type shall not denote a type that has a file
component.”®

2. Change statement.(a) of 6.4.6 to read as follows: "(a) Tl

and T2 are the same type which does not have a fjle
component."

3. Add the following sentence to 6.6.3.2: "The tvoe of a
formal parameter shall not have a file component:"

By 6.6.3.3, "An actual] variable parameter shall not denctw .
component of a variable that possesses a type thg; b=
de51gpated packed." However, there is some doubt about tﬁc
relation of componentship. For clarification, the Eollowiqg

. note should be added: The relation of componentship is not

transitive; that is, if a is a component of b and b is a
component of c, then a is not a’ component of c.

TZ# SMIN TvISvd

I86T “TIY4dY

19 30vg

In 6.6.3.7, it |is said that the actual parameter
corresponding to a conformant array schema "shall be eithrr a
variable access or an expression that is not a.factor that is
not a variable-access". This is not very explicit, and it
seems that the contents of that specification is not what is
intended: probably the second "npot" should be removed? Of
cburse, any variable-access is an expression that is not a
factor that’'is not a variable-access, so the subsequent rules
are ambiguous. What is effectively meant 1is probably thrat
such an actual parameter shall be either a variable or 2n
expression that is either a string constant (possibly in
parentheses) or a variable enclosed in parentheses.

Oon the other hand, the differences between the first dre;
and the second draft in the specification al
conformant—array-schemas clearly show that the authors of the
second draft wish to allow conformant-array-schemas as valu2
parameters. We have no strong opinion about such an
extension. However, if accepted, the extension should be mzde

in a less confusin way. In_general, value and variable
parameters are distinguished "by the absence or presence of

the token VAR in a parameter-specification. We can see no
reason why this method should not be used For
conformant—-array-schemas, too.

The note in clause 6.6.4.1 should not be a note but a part of
the very specification of the language. Moreover, it leaves
undefined what rules, if any, given for user-declaied
procedures and functions are applicable to requirad
procedures and functions. This incompleteness is particularly
important to the semantics of Write, Writeln, Read, Readln,
Pack, and Unpack.

Clause 6.6.5.2 specifies the semantic of Read and Write in
terms of an expansion into more primitive statements (cf.
also 6.9 for similar expansions). Now if Read(f,a,b) shall he
equivalent to BEGIN Read(f,a); Read(f,b) END we have to azx:°’

1. shall the variable f be evaluated several times

2. shall such evaluation be affected by the effects of the
previous operations caused by the statement (consider
Read (£Ai4,i,3))

Obviously it is intended that access to the file variable is=
established as the first operation in.the execution cf the
‘procedures mentioned; this should be specified.

)

Clause 6.6.5.4 defines the transfer procedures Pack and
Unpack as "™macros" *whose calls must be equivalent tec ths
given expansions. However, it makes no sense to interpret
this literally because it would imply that the parameters arve
name parameters, guite contrary to the nature of the Pascai
language. (Literally, 6.6.5.4 would imply that if in, =ay,
Pack(a,i,z), a is an indexed variable (of an array type, <[
course), its indices should be evaluated N times where N is
the number of components of <z. Consider the (admittedly
theoreticall!) possibility that the evaluations of-a and
affect each other!) — Thus it should be specified that th-
parameters of Pack and Unpack shall be evaluated once corliy,
in an implementation-dependent order.

2.7 EXPRESSIONS

Clause 6.7.1 says that "An expression shall denote a value
——", .and clause 6.7.2.1 speaks of ‘revaluation" of
expression. However, it is not defined what is the value »Ff

‘an expression, or what constitutes the evaluatica N oEn

expression. It would not be very difficult to stppl
sufficiently precise definitions. B

According to clause 6.7.2.2, "The results of the rce.;.
arithmetic operators and functions shall be approxxmatlonr s

the corresponding mathematical results. The accuracy of this
approximation shall be implementation-defined.™ sSuch a
specification is definitely an improvement but is

" insufficient. For what is an approximation? Suppose that we

have a floating point system where the range of absolute
values of representable numbers is roughly le-38 to 12+38,
and consider the operation of squaring the number le-30. Ic
0.0 an approximation to the result? Most mathematicians would
say no. And what about squaring le+30? Notice that whot ?r
commonly known as floating point overflow or underflow sha'

not be an error according to the draft. Assumably a proce,s"
may give a runtime warning; but it must also proceed us.njy
some "approximation" to the result. Notice also that clause
6.6.6.2 specifies that sqr(x) is an error if the square .of x
does not exist; this can be interpreted so that underflow or

overflow 1in the calculation of sgr(x) for real x would be an

error; why ‘'should sqr be exceptional in this respect?

It should be specified that the order of evaluation of the
expressions of the member-designators of a set constructor is
implementation-dependent. Currently no order is specified,
which should probably be interpreted so that the order is
implementation-dependent, but this should be stated
explicitly.

2.8 STATEMENTS

The requirement (in 6.8.3.9) that "The statement o~ =
for-statement shall not contain an assigning-reference --- o
the control-variable of the for-statement." is understanc =]
from the security point of wview. However, it reqg. r
complication of processors which would not be other
necessary (at least partial cross-reference information
be gathered). This means extra costs, the benefits Llwing
questionable. These comments of course only apply to checiin-
against assigning references in procedures and funct.on
invoked within a for-statement. One solution would be 1t
require that the variable used as a control variable sha°
not be wused outside that statement part in which ¢t
corresponding for-statement occurs. This would bar ™
decrease the expressive power of Pascal. It is moreover ‘ou:}
programming practise to reserve the control variables feu
that purpose only. Such a restriction would allow the rule
mentioned to be formulated in a manner which can be
implemented with no significant extra costs. Notice that
speaking of implementation in this context refers to inhe:rent
problems of implementing the requirement of the draft, not to
any particular implementation.

RES LA

T¢# SMIN TYISYd

186T “TI¥dV

79 39v(

2.9 INPUT AND OUTPUT

The effect of read(f,v) when £ is a textfile and v is of
integer or real type is incompletely specified in clause
6.9.2. It is said that it causes "reading from £ a sequence
of characters", and assumably reading involves the same
operation as get. However, the details are unspecified. The
error condition descriptions use the notion of "the rest of
the seguence", but it is left undefined what "the sequence”
is; a related rule ("Reading shall cease ---") is given, but

it is obscure. For instance, if the characters "1", "E", and
"X" are encountered, in that order, when readlng a)e:;
number, what happens? Most existing runtime systems repor a

format error, but the specification of the draft would .eom
to imply that the input should be accepted, "1" being the
longest sequence available that forms a signed-number. It is
not only difficult to implement the lookahead required; such
lookahead would be quite contrary to the fundamental ideas of
file handling in Pascal.

It is said, in 6.9.2 (b), that "It shall be an error if the
rest of the sequence does not form a signed-number according
to the syntax of 6.1.5.". This purely syntactic approach
gives no answer to the question how underflow or overflow
should be treated.

The definitions (c) and (d) in clause 6.9.2 shbuld be given
by appropriate equivalent program fragments or other uniquely
interpretable methods.

2.10 PROGRAMS

The note in clause 6.10 is very . obscure. What are the
properties of a Pascal program?

The pragmatic meaning of sample program t6pép3p3d2revised as
test program should be enlightened. Moreover, the program is
related to earlier versions of draft standards (the program
is not related to clause 6.6.3.3 as one would expect), ard
should be accordingly updated.

2.11 HARDWARE REPRESENTATION

Comment delimiters should be required to be matching, so that
comment beginning with " (*" is only closed by "*)" aud
comment beginning with "&" isg only closed by ®"&". 1In fact,
clause 6.1.8 should be rewritten in this respect, so that
there would be two different forms of comments. The character
"4" (as well as "a") has been replaced by a national letter
in several modifications of international character codes

2.12 TYPOGRAPHIC ERRORS AND STYLISTIC MATTERS

The table of contents does not correspond to the titles in
the text (e.g. for clauses 6.1 and 6.2).

Clause 3.4 shogld say "accepts a program" instead of "accepts
the program", i.e. accepts any program (subject to 1.2 (a)).

The specification of char-type in 6.4.2.2 would be better
formulated if the beginning of the second statement would
read as "The values shall be the enumeration of an
implementation-defined set of characters™. Similar conment
Zpglées to the pseudo-production for "string-charactec" 1in

In 6.2.2.9, the word new-p01nter-types' should appear ir
singular, because it is preceded by m"any".

In the final note in clause 6.4.3.2, the comma following the
word “"which" is ungrammatical. (Possibly. it should precede
the "which".)

In 6.4.3.5, the paragraph beginning with "Let £.I and f.R
each ~be a single value ---" uses the word "single"
redundantly in two occurrences.

In 6.4.4, the comma after the word "them"™ in the second
statement is ungrammatical. ’

The abbreviated notation specified in 6.5.3.2 and 6.6.3.7 -
described by saying that "a single comma" or "a ERRAS:
semicolon” replaces a certain syntactic construct. The .or.
"single" in these contexts is redundant.

.
In 6.6.3.6 (e) (1), the word "index-type-specification” :s
misspelled as "index-type-specifiecation".

In 6.6.5.3, the second statement of the specification of the
second form of new contains the misspelling "possesed" of
"possessed”.

In 6.9.4.5.1, the specification of the condition under which
the sign character is ‘-’ involves the condition (eWrit!-.~ ~
0). However, it seems to be so that (e<0) imp”
(eWritten>0) so that the latter can be omitted. Probably e
redundancy results from an analogy with 6.9.4.5.2. (For f.xe3l
point representation the condition (e<0) and (eWritten>f)
does not contain redundancy, of course.)

T¢# SMAN TvISvd

186T “1IYdY

¢9 39Vv({

ATTACHMENT E

COMMENTS FROY THE FRENCH MEMBER BODY
ON ISO/TC 97/SC 5 N 595
SECOND DP 7185 — SPECIFICATION FOR
COMPUTER PROGRAMMING LANGUAGE PASCAL

GENERAL

The French committee voted positively about this second draft proposal, one

of its main motivations being that the standardization of PASCAL will be useful
only if it is completed very soon. As a further way to speed up the remaining
part of the standardization process, the French member body strongly suggests
that the next meeting of WG 4, whose main purpose will be to revise and incor-
porate if possible those improvements suggested during the vote, do not wait
until the next meeting of SC 5 in London, but is convened before summer.

The French member body officially offers to organize such a meeting in NICE,
France, in June or July of 1981. This should allow the completion of the stardard
to be done in the present year.

The following comments are devided in two parts : technical comments, which deal
with the language PASCAL as described in the second DP 7185, and editorial comments,

which deal with the description itself. Comments considered especially important
by the French member body are emphasized with an asterisk.

COMMENTS

* Character set, special symbols, reference language

The French committee tried several times, but with no success, to obtain the
specification in Standard Pascal of a required character set, and to obtain a
clear separation between the description of the reference language and its
various hardware representations. The current state of the draft proposal shows
that these proposals were not so bad, since, while the printing quality and the
character set of the descriptions of Pascal are quietly worsening from one version
to the next, they become at the same time more and more similar to the current ISO
standard character set. The last evidence of this progressive modification is the
replacement of the character "f ", the.only remaining one that was not in the ISO
set, by the character "~ ". Although these modifications result only from successive
changes in the printing devices used for the successive descriptions, some benefit
can be got. Hopefully, the final version of the standard description will not use
a printer with only the 48 character set of Fortran !

The main concern of the French committee is that the lexical description of Pascal
does not prevent the use of good printing devices with their full range of capabi-
lities, i.e. that Pascal programs printed with boldface keyboards, italics identi-
fiers and not-too-offending operators (for exemple, in both Wirth's books published
by Printice—Hall) are legal Pascal programs.

This does not deal only with books, after all, since the time when phototypesetters
or printing devides of an equivalent quality will be usable for ordinary computer
output is probably not so far.

Although a clear distinction between the reference language and its hardware repre-
sentations would have been considered by the French committee more appropriate for
such a purpose, the current draft allows almost completely what we need, in a
different way. Since the representation of letters is considered insignificant, the
only remaining problem is with special symbols. Alternative representations were
provided for implementations which lack some good quality characters, like square
brackets or braces. In the present draft, an alternative is provided for implemen-
tations which have a better character than "~", i.e. the up arrow. We propose to
prusuve in such a direction, and to provide good alternatives for unsatisfying special
symbols. No implementation is required to provide these alternatives if they are not
available in its character set, but a program which uses them is legal. Our proposal
of course, does not include bad representations for existing good symbols, made
only for using available characters, like "&" for "and", for example, or worse,

" # " ofor MM,
Provosal : table 6, page 68

Add the following alternative symbols, which appear in the order of decreasing
importance :
reference <Y &= >= and or not

alternative #* < > ~ v bl

* Conformant array parameters

The French committee tried to compare the four successive variants of the proposal
that were done in the first DP 7185; in WG 4 documents N 5 and N 9, and in the
current DP. The main critic we made about the current state of the proposal is that
a feature added for a very precise purpose (i.e. to allow character string constants
as conformant array parameters) is now used for a completely different thing, remi-
niscent of PL/1 (i.e. simulating value parameters with dummy variables).

What is worse, the first intended purpose is not completely achieved, since a formal
conformant array parameter cannot be a string variable, which greatly weakens the
advantages provided by the feature. Several possible solutions were considered.

The proposal we made seems to have only very simple consequences on both the descrip-
tion of the language and its implementation, it needs no modification to the level
O conformity, and its has interesting consequences on most uses of conformant array
parameters.

Proposal -1 : Section 6.6.3.7, pages 35 to 37

Come back to the wording of WG 4 N 9, or something equivalent which uses an auxi-
liary' variable only when the actuel parameter is a string constant, and moreover
which does not force any implementation of the feature.

Proposal 2 : Sections 6.4.3.2, 6.6.3.7 and 6.6.3.8
In Section 6.6.3.7, allow the lower bound of an index-type-specification to be

a constant of the suitable type, in which case the corresponding actual parameter
must have an index type with the same lower bound.

T¢# SMIN TYISYd

86T “11¥dY

9 39v(

Conformant array parameters with a constant lower index bound would probably be
the great majority, and they can be implemented more efficiently. Moreover, in
Section 6.4.3.2, extend the definition of a string type to include the case of a
packed conformant array of characters with a constant lower bound of i. Thus the
formal parameter is a string, comparison operators can be used as well as the
procedure write, and it should only be stated that it is an error when upper bounds
differ in an assignment involving such "conformant strings".

0f course, the two preceeding proposals should be carefully worded, and all conse-—
quences on the full draft taken care of. This could be done for the next meeting
of WG 4.

Recursive type definitions

On page 12, Section 6.4.1, the last sentence of the paragraph that follows the syntax
makes an exception to a general rule, especially for allowing the use of a type-
identifier in a pointer-type, while it is not entirely defined, as in the following

example :

type Tt = record ... x : AT1 ; ... end ;

0f course, this is not necessary, since the type 471 may be defined ans named before,

an probably this definition is needed anyway for other purposes, bécause of the strict

compatibility rules. What is worse, this exception legalizes some absurd type defi-
nitions, as in the following example :

type T2 = array [1..10Q) of 1T2 ;
3 = 113 3
Proposal : Section 6.4.1, page 12

Remove the first half of the last sentence.of the second paragraph, which thus
becomes :

"The type-denoter shall not contain an applied occurrence of ‘the identifier in
the type—definition".

The required type integer

On page 48, Section 6.7.2.2, the first paragraph implies that there may exist some
values of the integer—type that are not in the closed interval -maxint..+maxint.
This seems useless. On the contrary, on machines using two's-complement arithmetic,
the negative number with the largest absolute value could be used as an "undefined"
value, extremely useful for checking that variables are initialized.)

Proposal : Section 6.7.2.2, page 48

Reword the first paragraph so that the integer—type is exactly the interval -maxint.
+maxint.

EDITORIAL COMMENTS

page 2, 1.2 (a)

Add the sentence ", and the actions to be taken when the corresponding limits are
exceeded". .

This suggestion was triggered by the constatation that nothing was said about what
happens when the procedure new finds no more available space.

page T, 6.1.5

Noth:f.ng- is sa?‘.d about the meaning of the period and the digit-sequence that follows
i‘P, in an unsigned-real. A possible solution would be to replace "digit-sequence"
with "fractional-part", defined elsewhere as a digit-sequence.

page 10, 6.2.3

This Whole.section is very difficult to understand. A possible solution would be
to use a simple stack implementation model, not compelling for implementaters, but
much clearer.

page 11, 6.3

?his :E.s th? :f_:‘irst occurrence of a systematic principle used in the whole standard,
i.e. :.den‘!::l.f:!.ers are always quelified in syntax rules, except for their defining-
point. This is pretty good, but a note should explain it, for example, at the end
of Section 6.2, or in Section 4.

pages 15, 18, 19

Examples use type identifiers that are defined only on page 22 (colour, vector)
or not defined at all (string, angle). Something would be.done.

pages 33, 34

Boring repetitions occur every time something is saif about procedures and
f\.mc‘b:!.ons.'By defining the term "subprogram", and by specifying a uniform subs-
titution with either "procedure" or "function", it should be easy to simplify and
shorten ‘f:he second paragraph of page 33, the last two paragraphs of the same page,
and Sections 6.6.3.4 and 6.6.3.5 on page 34.

page 34, 6.6.3.3

Since the ty;:es possessed by the actual-parameters are the same as that denoted
by the type-identifier, they must be identical. The second sentence of Section
6.6.3.3 is consequently useless.

page 35, 6.6.3.6

By ?eplacing in (a) the two occurrences of "value" with "value(resp. variable)",
it is possible to entirely omit (b).

page 36, 6.6.3.7

A note should be insered before the last ind
. 1d paragraph of page 36, explaining th
bound-identifiers are neither constants nor varia’bles.P ' ® & that

TZ# SHIN 1YISYd

T86T “11¥dY

G9 39vd

page 37, 6.6.3.7

The first sentence of the second paragraph is impossible to understand, and
probably wrang. The fourth paragraph is extremely difficult to understand, and
should be either worded differently or illustrated with an example, or both.
In the third note of the page, "anonymous" should be replaced with "auxiliary",
for uniformity.

page 43, 6.6.6.4

The descriptions of succ and pred differ only by one word ("less" instead of
"greater"). A simplification in the same way as page 35, 6.6.3.6 should be possible.

page 47, 6.7.2.2
The last three paragraphs of the page begin with a sentence stating that a term is

an error if something occurs. Given the definition of an error, it should be better
to state that it is an error if y = 0 in a term of the form X/Y, ete.

page 50, 6.7.3

For the sake of uniformity with Section 6.8.2.3, the second sentence should end

with "... activation of the block of the function-block associated with the function-
identifier of the function-designator".

page 52, 6.8.2.4

The wording is extremely unclear, especially in (b). What are "these exceptions" ?
page 53, 6.8.3.5

By adding ", otherwise it shall be an error" at the end of the first paragraph,
the second one can be omitted.

page 55, 6.8.3.9
Nothing is said about the assignment-compatibility of the initial-value.
page 59, 6.9.1

It seems that only textfiles occurring as program-parameters could be used at all.
This relates to nothing elsewhere, and should be omitted.

page 68, 6.1.1

The last part of note 2, dealing with the possibility of national variants, disap-
peared during the summer. Why ? . ’
page 67

The chosen example cannot be considered a significant demonstration of the capabili-
ties of Pascal. A better example could be found in one of the numerous textbooks
about the language.

Appendices

Syntax diagrams are recognized as an excellent means for syntactic descriptions,
especially for Pascal. They should be included in an additional appendix.

ATTACHMENT F

1981-03-02 German Comments on Second DP 7185 Page 1

Part I. Technical reasons

1. Call-by value for conformant array parameters

We do not approve that the call-by-value of conformant array

parameters is specified by enclosing the a c t ua l para-

meters in parentheses. In Pascal, the parameter access method
is always specified with the f o r m a 1 parameters. There

should be no exception for conformant array parameters.

2. Use of "denote"

The use of "denote" in Second DP 7185 is not consistent. See

the accompanying notes "German concerns on the use of 'denote'".

Part II. Editorial comments

O. INTRODUCTION
Delete this heading and include the text as new paragraph 1.3

4., DEFINITIONAL CONVENTIONS, Table 1
Delete the line "> shall have as an alternative definition".

5.1 Processors (h) and (i)
Replace "specified for errors" by "specified for violations".

6.1.5. Numbers

Change the sequence of the syntax to run from signed-number to
digit-sequence (top-down) in accordance with usage in other places
of the Second DP 7185.

6.2.3.2 (d) and (e)
Formal parameters are associated to the b 1 o ¢ k , not to the
identifier (see 6.6.1). Change, therefore, the wording as foolows:
(d) for each procedure-identifier local to the block, a procedure
with the procedure-block corresponding to the procedure-identi=
fier, and the formal parameters of that procedure-block; and
{e) for each function-identifier local to the block, a function .
with the function-block corresponding to, and the type posses-—
sed by, the function-identifier, and the formal parameters
of that function-block.

T¢# SMIAN TvISvd

T86T “114dY

99 39v(

6.4.2.2 integer-type

Include after "see also 6.7.2)." the following text taken from
6.7.2.2: "The required constant-identifier maxint shall denote
an implementation-defined value of integer-type. All integral

values in the closed interval from -maxint to +maxint shall be

values of the integer-type."

6.4.1 General. Second paragraph.

Replace "as the domain-type" by "in the domain-type".

6.4.1 General. Third paragraph.

Delete the sentece "The required types shall be denoted by
'predefined type-identifiers (see 6.4.2.2 and 6.4.3.5)."

6.4.2.2 char-type

Insert after "without graphic representations" the following
text ", the others denoted as specified in 6.1.7 by the

character-denoter".

6.4.2.3 Enumerated types.

Delete "as their identifiers occur ... enumerated-type" and
add after "from zero." the following: "The mapping shall be

order preserving."

6.4.3.1 General.

Change the sequence of the syntax to run from new-structured-type

to structured-type (top-down).

6.4.3.2 Array-types. Next to last paragraph.

Insert after "a smallest value of 1" the following: "and a
largest value of greater than 1". This is a clarification for

the use of string types.
6.4.3.2 Array-types. Last note.

Delete comma after "which".

6.4.3.4 Set-types.

Replace "of its base-type" in the first sentence by "of the
base-type of the set-type".

Replace "an unpacked set designated" in the last paragraph
by "an unpacked set type designated".

6.4.3.5 File-types. Last four paragraphs.

Replace "a sequence x~S(e), where x is" by "a sequence csa§(e),
where cs is".

Replace "If x is a line then no component of x other than x.last"
by "If 1 is a line, then no component of 1 other than 1.last".

Replace "A line-sequence, z, shall be either the empty seqguence
or the sequence x~y where x is a line and y is a line-sequence"
by "A line-sequence ls shall be either the empty sequence or the

sequence 1lvls' where 1 is a line and 1s' is a line-sequence".

Replace in (b) the text "shall be x~y where x is a
line-sequence and y is a sequence of components" by ‘"shall
be 1lstcs where 1s is a line-sequence and cs is a seguence
of components".

In the NOTE following (b) replace vy by cs in two places.

6.4.7 Example
In NOTES 2. replace "to have been declared" by "to have been
defined".

6.6.1 Procedure-declarations. Third paragraph.

Replace "the the procedure-declaration" by "the
procedure-declaration".

6.6.3.6 Parameter list congruity.

In (e) (1) replace "index-type-specifiecation" by
"index-type-specification”.

6.6.3.7 Conformant array parameters.

We propose to use the syntax as stated in "Notes on US concerns".

TZ# SMIN TYISVd

T86T “11¥dY

(9 39v¢

6.6.5.2 File handling procedures. First paragraph.

Move the clause"and similarly for £O” and fA" to the end of

the sentence.

6.6.5.3 Dynamic allocation procedures. NOTE.

Replace "see 6.8.2.2" by "see 6.8.2.2 and 6.6.3.2"

6.7.2.2 Arithmetic operators.

The paragraph after the NOTE shall read as follows:

"Any monadic operation performed on an integer value in the
interval -maxint..+maxint shall be correctly performed according
to hte mathematical rules for integer arithmetic. Any dyadic

integer operation on two integer values in this same interval

shall be correctly performed according to the mathematical
rules for integer arithmetic, provided that the result is also

in- this interval. Any relational operation on two integer values
in this same interval shall be correctly performed according to

the mathematical rules for integer arithmetic."
(Note that the other parts of this paragraph have been shifted

to 6.4.2.2.)

6.7.2.4 Set operators. Table 4.

Insert after "a canonical set-of-T type" the following: "@ee 6.7.1)".

6.7.2.5 Relational operators. Table 5.

Delete "(see 6.7.1)" after "a canonical set-of-T type".

In the fourth paragraph after Table 5, replace "Where u and v

denote simple-expressions" by "Where u and v denote operands".

6.8.1 General. .

Replace "A label occurring in a statement"

of a statement".

6.8.2.2 Assignment-statements.

by "A label, if any,

Delete the last paragraph "The state of a variable ... possess

a structured-type." Insert this text under
3.5 undefined. and 3.6 totally-undefined.

3. DEFINITIONS

as

6.8.2.3 Procedure-statements. First paragraph.
In the text "which is list of" insert an "a" after "which is".

6.8.3.5 Case-statements.

Delete last sentence of the first paragraph "One of the .
to the case-statement."

6.8.3.9 For-statement.

Replace "The value of the final-value shall be assignment-com=
patible with the control-variable" by "The value of the
final-value shall be assignment-compatible with the type
possessed by the control-variable™".

6.8.3.10 With-statements.

Replace '"as the only record-variable" by "as single
record-variable" .

In the Example replace "shall be equivalent to" by "shall
"has the same effect on the variable date as"

6.9.2 The procedure read.

(c) Delete the clause "the longest sequence available that forms".
Change the sequence of the last sentences.

(d) same as section (c).

6.9.4.1 Multiple parameters.

Delete the heading; preserve the text as part of 6.9.4.

6.9.4.2 Write-parameters.

Change to 6.9.4.1.

6.10 Programs. First paragraph.

Replace "Each program parameter shall be declared" by "“Each
program parameter except the identifiers input and output, if
occurring, shall be declared".

Second example: Replace "t6p6p3p3d2revised"” by "té6p6p3p4d2revised"

T¢# . SHIN TY¥ISYd

T86T “114dY

89 39v4

German concerns on the use of "denote"

In the use of the word 'denote', we realize the insight
that there exists a sharp difference between the 'thing'
meant by a certain piece of program text, and the program
text itself. All kinds of syntactic constructs never are
those mysterious P a s c a 1. things, but only denote them.

NOTE: This distinction may Dbe found in some formal language
definition techniques, especially the denotational semantics
(see Gordon, Stoy, Tennent, Bjorner/Jones).

We fully agree with an approach allowing us to treat the
Pascal objects without need to refer to some syntactic
instances, and we feel it the only way to succeed in drafting
an unambiguous and yet understandable standard.

Unfortunately, however, the promising approach has not been
carried throught the whole draft, what lack, on the one hang,
makes it even more ambiguous than former, not formally based,
drafts, and on the other hand, at some points totally unclear.

As an example for the latter conjecture look at 6.6.3.7 of
N9. There is stated on p. 1€, line 8f: "...the formal parameters
shall possess an array-type ...", and in the MNOTE on the same
page: "The type of the formal paremeter cannot be a string—
type (see 6.4.3.2) because it is not denoted by an array-type."

For the initiated, the word "denoted" in the note makes clear
that the latter T"array-tvpe" means a piece of text derivable
from the syntactic non—terminal array-type (p.15 of ¥4), while
the former means a semantic entity, a property of a variable
structured as an array. Is every reader of the standard initiated?

The following lines list those places in M4/N9, where we
found errors in the two drafts related to the "denote"-
distinction between syntactical and semantical entities.
We do not claim for completeness!

- 6.4.2.1: simple Types General: we are not able to derive the

real-type (integer—type, boolean-type,char—type) from simple-type,

but only the denoting identifiecrs.
simple-type = ordinal-type I real-type-identifier
ordinal-type = new-ordinal-type I integer—-type—identifier I
Boolean—-type—identifier I char—type-identifier

- 6.4.3.2 Array-types: the second to sixth occurence of the
word "array-type" in the section address the synctactic
entity , the others the semantical thing, the mapping.

NOTE : Ve assume that all sections on type specify the same mess,
but do not list all of them.

- 6.4.3.4 Set-types: In the last paragraph "S" seems to be
the name of the semantical thirg, but the wording "set of S"
instead of set-of-S supports the syntactical view. In either

case, it is used wrongly.

- 6.5.1 Variable-declarations: In the second paragraph, "buffer-
variable" is used for both, the syntactical structure and the

semantical entity.

- 6.6.3 Parameters: Formal parameters and actual-parameters are

syntactical entities and do not possess a type! The type is
possessed by the variable denoted by the parameters.
Here we have a real «clash in terminology, because we should
better associate the type of a formal variable parameter
with the parameter—identifier, not with the denoted variable,
since the denoted variable is the variable denoted by the
corresponding actual-parameter.

- 6.6.5.2 File handling procedures: On p. 38 the verbs "to
denote" and "to be" are wused just the false way round. Some
examples: "vl...vn denote variable-access" should reaad
"vl...vn are variable—accesses", "Consequently it may be a
component of a packed structure" should read "Consequently
it may denote a component of a packed structure", since
variable-accesses are pieces of text (like vl) denoting
variables (like components of packed structures).
Additionally, only the variable denoted by the file-variable
f possesses a type, and read, readln, write, writeln are not
procedures, but procedure-identifiers.

- 6.6.5.3 Dynamic allocation procedures: P is a variable-access
(a statement missing in the draft!) and denotes a variable,
which possesses a type anG may be attributed a vzlue.

- 6.6.5.4 Transfer procedures; A can be a variable-access, not
variable, j and k don't possess types, and an expression
es not have a value.

T E : It is impossible to list all inconsistencies of 6.6.4,
6.6.5 and 6.6.6. Ve assume that these section have not Leen
untergone careful reading when introducing the distinction
between syntax and semantics.

a
do
N O

- 6.7.1 Expressicns General: The first sentence states, how

it should be: "An expression shall denote a value". The last
paragraph on p.43 and the MNOTE, howvever, miss a number of
"Genote"s: ‘“"shall have the value denoted by x", “from the

value denoted by x to the value denoted by y", "if the
value denoted by x greater than the value denoted by y".

- 6.7.2.5 Relational operators,
- 6.7.3 Function designators,
- 6.8.3.4 If-statements, and

- 6.8.3.7 Repeat-statements: Here we find the word "yields",
which (possibly) reflects the fact, that the values denoted
by the expressions are time-variant. We will comme to this
point later.

- 6.9 Input and Output: The points of 6.6.5.2 as to "to be",
"to denote", "to possess a type" and to the distinction
between procedures and procedure-icdentifiers apply here, too.

As we have tried to show, the introduction of the syntax/
semantic-distinction, whi‘ch made the draft much harder to
read . than its predecessors, resulted, as undergone only
half-hearted, in a draft being neither exact nor readable,
while former ones were at least readable.

T¢# SMAN Tv¥ISvd

I86T “1IYdY

69 39v4

i i ities)
We do not think that correction of .all errors (or laxi
will do, as the standard, then, will be totally unreadable.
Instead, we have two alternative proposals for further

processing:

) the approach to its end, but in a more suitable
. Eg%;, hi.e.ppgive a formal definition of PASCAL bgsed
on Oxford notation or the related and,more-conyenlent
Vienna Development llethod. This will establish an
unambiguous reference for implementors and debuggers.
Additionally, for the informal reader (he who would
have been content with one of the former drafts)
annotate the formal definition with some text along
the lines of one of the former drafts.

2) Make the distinction between syntax and semantic totally

clear by consequent wording, e.g. a syntactical non-
terminal denoting some semantical entity x should be
specified an "x-denoter". Pushing this approac@ throggh
the draft will at least convert all inconsistencies
and ambiguities into errors, which may be fixed by two
ways, an exact one and a lax one: . .
The exact one proceeds by inserting the words
"denoted by" at all places where.they are needed. As we
mentioned earlier, the draft will probably become un-
readable. The 1lax one includes the sentence: "wherevgr
context makes clear whether &an X or an x-denoter is
addressed, the x-genoter is uscd to-.name the x", Then we
may throw away a lot of "denote's and have to correct
only some places (e.g. the first mentioned section on
conformal-array parameters).

NOTE: We 1like proposal 1 better, sirce it is more clean
and thus more suited for an international standard.

At last, a few words on the defeyred time—var@ancg pgoblem:
The relation between a variable-access or a function-designator
and its value 1is not as simple as the relation betyeen a type-
denoter and its type, but is twofold: the vaﬁlable—access
denotes a variable, and that variable "denotes the. value
actually attributed to it. The semantics‘ of an assignment
statement is a change only of the second relat{on, while a
procedure call affects the first one. So we should not use the
word denote to describe the relation between a var}able—
access and its value, and, as expressions incorporate variable-
access, an expression and its value. .

In the denotational semantics the two—-stageness is reflected ‘by
the use of two different mappings, one relating the synctactical
to the semantical entity, and one relating that to the value:
By this, you can clearly describe _pow different operations
(assignment versus call) affect different changes in meaning.

References:
Bjorner D., Jones C.B (eds): The Vienna Development llethod:
The Meta-Language, LNCS 61, Springer 1978 .
Gordon M.J.C.: The Denotational Description of Programming
es, Springer 1979
Stﬁ;ng?g?: 6engtatgonal Semantics: The Scott-Strachey Approach
to Programming Language Theory, MIT Press 1977 .
Tennent R.D.: The Denotational Semantics of Programing
Languages, CACM 19 (1976), 8, 437 - 453

ATTACHMENT G

Japanese Comments

"We saw that the Second draft rrorosal (N595) had been extremely imrroved, The
elshoration done by the editors shall be highly aprreciated, However) the
prorosal still contains several problems to be considered carefully ands because
some of them are very essentialy we are very sorry Lo disaprrove the draft this
time once again, Our comments are as follows,

1, Score rules (6,2,2)

1.1 Accordind to 4,2/2.4) the rules 6.2,2,5 and 6,2,2,4 shall be exclusion
erincirles. From this viewroints rule 6.2,2,5 seems all right, However,
6:2,2,5 shall be amended as!

T 82,206 The ‘region that 15 the Pield-Srecifier of a field-desidnator shall be
excluded from the enclosind scores,
The oridinal 6.2,2,6 exrresses the same rule as one expressed in 6:5:5:3 and
thus seems surerfluous,

1,2 6,2,2,7 shall be amended as!

6:22,7 There shall not be tho definind=points of the same identifier or label
for the same redion: The oridinal 4,2,2,7 *The score of 3 definind point of an
identifier shall include no other defining roint of the same identifier® does
not allows say; the occurence of the value rarameter identifier because (see
P.33) the score that is the formal rarameter list of the definind point as a
rarameter identifier contains the defining roint as the associated variable
T"Uidentifier for the Tedicn that is the Block, - - ° C

2, Conformant array rarameters

2.1 We have discussed on this matter very intensively and came to conclude that
“"the conformert-array-rataneters in the “Fresent Form Is still too a4 hoc and
erensture. It makes it very hard to teach or explain the landuage, It
contradicls with the originsl aim uf the landuade that is 'to n3ke available a
landuade suitable for teaching programming as 3 sustematic discirline based on
certain fundamental concerts clearly and naturally reflected by the landuade',
If the conformant array parameters shall be introduced for *writing of both
“Susten ard T arrlicalion softuare’, the inciusion of enly conformant array
raramelers seems not enmough, We rieed more features, Sor we strondly recommend
to remove the conformani array rarameters from the current draft, It shall be
reconsidered todether with other imeortant extensionss; after the current draft
is standardized,” = ToTotT o ’))

TV TESFecislIy T we T U6Rt T 1TKe the Testurve Ttoo indicate value and variasble -
rarameters a3t the calling site, This is not the princirle of Fascal but of
Fortran, We can not accert the miuture of Fascal and Fortran.

2,3 Descrirtions for the conformant array parameters have not been brushed up,
The sentence like 'The actual parameter shall be either 3 variable access or an
" Tespression that 15 not 3 Tactor that 15 I not 3 veriable Sccesst is bevond our
understanding, Moreovery in the same clauses there are several places where the
exPressions are wmeant in this sense without any comments: We think it would
take long to improve the ides of the conforkant array parameters, So, in order
to arerove the draft in one or iwo mare editinds, the discussion of the
—cenformant array parameters shall be postroned to_the later version,

TZ# SMAN TvISYd

T86T “114dY

0/ 39v(

3, Suntax rules

3,1 Grours of ‘suntax Tules in 3 clause are sresented bottom-ur (cf., espression
6.7,1) or tor-down (cf, record tures &,4,3,3) or in mixed order (cf,
structured ture 6,4,3,1)y They shall be rresented in a3 systematic way.

3,2 Throughout the whole suniax rules: there are nonterminal sumbols which are
defined but not referred to in other rules, They are only used in semantics,

T They arel rointer-tures prodram, read-rarameler-list, readln-parameter-list;

77 TEdiforial comments

srecial-symbols sidned-number, sinple-tyre structured-ture,
write-rarsmeter-list and writeln-parameter-list. They shall be indicated as
such. (For instance with an asterisk as in ALGOL 48,) There are nonterminal

" symbols that are referred to but not defined, They arel

yres boolean-tupes _char-ture = and
“shall be defined, Others. shall be

field-designator-identifier,
real-ture, ~ field-designator-
indicated.

4, B character rule for identifiers and 4 didit rule for labels
If the eisht_ chﬁgacter(rule is not adorted then the four didit rule shall be

~ removed,

é1146 *that shsll be in the closed internal 0 to 9999" -> emrty,

S, Seauence ture rules 6,4.3,5

In rule (c)» comronent c is also concatenated from the right to define ,last
like x7S(c}. ~Sos ‘the rule (b) shall be awended! ‘and S(c)*x and x*S(c) shall
also be a3 seauencer' As 8 wholey the preciseness of descrirtion of the draft
varies excessively from rlace io place, Accordindly the draft makes readers
find the comrosition very unbalanced . We helieve Endlish sreakind reorle will
rizturslly feel the roints by far more sensibly than we did,

&, New-ture
Teres are denoted either by ture-identifier or new-ture, See p.12,
tyre-denoter = ture-identifier | new-ture .
vrdinal-tyre = new-ordinal-ture | 4\
ordinzl-type-identifier

'S0y similarly array type shall he T
otreu-iwre = new-array-tyre | array-tyre-identifier .
The lwre-identifier vector shall be the array-tyre-identifiers not the
structured-ture-identifier, And so on,

17 unsidned-real = unsidned-inteder('.* oy 1'e* viv)

Fi+9 1.-14 Add 6.10 (defining point for input and outrut)

722 1,17 (8) Ti and T2 are the same tupe which is permissible as a component
ture of & file ture, (This is not the only rlace where rules are to be
interrreted recursively, Remark for qggqy;}vgqg;s_sha}} be treated evenly,)

TTU7RVEB 1,33 The the =P the T

P28 1,26 ‘forward® -> forward (In 6,1.4 forward is used without auotes,)

Fv29 Insert (¥ This examrle is not for level 0.X)" to procedure declaration
AddVectors,

7,31 1,4 the the -» the

F31 1,8 “forward® - forward

#31 1,15 Example of 3 procedure-and-function-declaration-part -» Example of a
procedure-and-function-declaration-rart |
r.36 1.7:8 (packed-conformant-arras-schema | unracked-conforaant-arras-schema)

= Facked-conformant-array-schema | unpacked-conformant-array-schems

#1436 1,23 contains ~> closest-contains” T 7C o ’

Fi36 1.25)26 *3* ‘of* ‘*arrag' '[' -> J of array [(Word suabols are not auoted
outside the suntax rules,) '

P38 1,13,14 is is -> is 3

P40 1,11 Insert 'write' and adjust indentatior,

P40 new(r)! Indicate that ¢ is the variable rarameter,

TR pack(sriiz) ! Indicate that z is the varisble paraneter, And so on,

748 1.1 Add 'and J > 0" after i »= 0*,
P13l 1,-20 or to the function-identifier -> or to the function denoted by the

function-ideptifier (see 1,-9 when the varishle or function does not have
attributed /)

#v32 Insert " (XThis _examrle is not for level 0.X)" to rrocedure statement

7 AddVectors,

P33 1.2 6,8,3.3 conditional-statements, - &,8,3,3 conditional-statements
(remove reriod. see 6,8,3,4 if-statemenis)

£33 1.=6 Delete ‘one of the case-constants ... to the case-statements,*
because the same meaning is containded irn the next sentence ‘it shall be an
error if ., _uron entry to the case-statenent,’
USA Comments on 97/5 N 595 - 2nd Draft Proposal 7185 — Pascal ATTACHMENT H

Comment on Section 6.6.5.3

Status: Error

PROBLEM:

The current draft (T185/2) says it is an error to provide Dispose with
fever tag arguments than were given New to create the object. The
requirement that m not be less than n is to avoid disposing more space
than was originally allocated. Hovever if m is greater than n, then
it is approved to dispose less than was originally allocated and leave
a dangling piece of storage space that cannot be reclaimed. It should
be an error if the tag field list in dispose is not identical to its
corresponding new. The argument that this may be too hard to detect
is vacuous because, in the form "it shall be an error...", its
detection is optional.

RECOMMENDATION :

Cicage "m is less than n" to "m is not equal to n".

PART I

T¢# SMIAN TvISvd

I86T “114dY

T/ 39v(

Comment regarding functions

STATUS: Error.
PROBLEM:

DPT185/second edition does not currently specify function results.
In_particular, assignment to a function-identifier has the effect of
attributing a value to the function instead of to an activation of
the function. This ignores the problem of functions for which there
exist more than one activation.

Thus, for example, the following program will write the sequence of
integers (2,1,0) according to the commonly held interpretation, but
vill write the sequence (2,2,2) according to the specifications in
DPT185/second edition.
program p(o); (& “counter" cxample}
type natug_al = 0..maxint;
var o: file of natural;
T count: natural;
function f: natural;
begin
f : = count;
if count <2 then
__begin count : = count + 1; write(o,f) end
end;

begin rewrite(o); count : = 0; write(o,f) end.

The solution to this problem requires the introduction of a nev part

of an activation of a function which has many of the characteristics of
a variable. This is a nontrivial change and requires alterations to
6.2.1, 6.2.3.2, 6.2.3.3, 6.6.2, 6.7.3, and 6.8.2.2.

PROPOSED CHANGES:

In 6.2.1, last sentence, insert after the second comma:
and any result of an activation.

In 6.2.3.2, replace (e) with:
(e) for each function-identifier local to the block, a
function with the formal parameters associated with, the
function-block corresponding to, and the result type
associated with the function—identifiegjand
(f) if the block be a function-block, & result possessing
the associated result type.

In 6.2.3.3, paragraph 2, append the clause:

; except that the function-identifier of an assignment-state-
ment shall, within an activation of the function denoted by
that function-identifier, denote the result of that

activation.

In 6.6.2, paragraph 3, change "possessing the type denoted" to:
associated with the result type denoted

In 6.6.2, paragraph 2, replace sentence 2 with:

A function-block shall contain at least one assignment-
statement such that the function-identifier of the assign-
ment-statement is associated with the function-block.

In 6.6.2, paragraph 2, delete the last 2 sentences (revised
restrictions are incorporated into 6.7.3, which is where
they always should have been.)

In 6.6.2, append the following the paragraph 5:
i the block of the function-block shall be associated with the
result type that is associated with the identifier or
function-identifier, respectively.

In 6.7.3, paragraph 1, replace sentences 1 and 2 with:
A function-designator shall specify the activation of the
function denoted by the function-identifier of the function-
designator, and shall yield the value of the result of the
activation upon completion of the algorithm of the activation;
it shall be an error if the result is undefined upon
completion of the algorithm.

In 6.8.2.2, paragraph 1, replace sentence 1 with:

’ An assignment-statement shall attribute the value of the
expression of the assignment-statement either to the variable
denoted by the variable-access of the assignment-statement, or
to the activation result that is denoted by the function-
identifier of the assignment-statement; the value shall be
assignment-compatible with the type possessed, respectively,
by the variable or by the activation result.

In 6.8.2.2, paragraph 3, sentence 1, change "variable or function" to
"variable or activation result" (twice), and in sentence2 and

3 change "variable" to variable or activation result" (ki times).

JUSTIFICATION:

Corrects an error.

Comment on document X3J9/81-007
(Dr. Arthur éalo‘l letter to Dr. Addyman of January 12, 1981.
Status: Change
Observation:
We have reviewved the document cited above. We took
particular note of items ABJS-81/5 "definition of error"

and ABJS-81/6 "definition ef processor".

We concur with Dr. Sale's evaluation and recommendations regarding
these items. .

T¢# SMAN 1vISvd

I86T “1IYdV

¢/ 39v(

Comment on 6.9.1 I/0 (page 59)
Status: Editorial
Problem:

The term "legible" is not well defined and the vhole paragraph is
unnecessary.

Propond\\chang-: Delete clause 6.9.1.

Comment on 5.1 Processor Compliance

Status: Change
Problem: Clause (o) doesn't really require anything.

0o
Proposed Change: In clause (e), replace "detect" with detect and
report".

Justification:

The change to- clause (e) requires the processor to diagnose violations
of the standard, at least at user option.

Comment on 6.2.1 Blocks

Status: Editorial

Problem: The first and last paragraphs of this section are not about
blocks and should be elsevhere in the text.

Proposed Change:

A nev sub clause|betveen6 should be created jand titled
"Labels". The first paragraph of 6.2.1 should become the text of this
sub clause.

The last paragraph of 6.2.1 should become the first paragraph of
6.2.3.5.

Justification:

Each of the other declaration parts &f the block bas a section to
jgself, viz.: 6.3 constants, 6.4 types, 6.5 variables, 6.6 procedures.
For parallelism, and so that the user may be able to find it, labels
should have a parallel section, however small.

The last paragraph of 6.2.1 is one of the activation rules and belongs
pext to the rule on the life of variables in 6.2.3.5. This change also
serves to ormiie the standard so that things may be found.

Comment on 6.4.3.5 Textfiles

Status: Error
Problem:

On page 21, the disclaimer on textfile structure does not

go far enough. There is a real danger that some officially sanctioned
validation suite may contain tests such as the attached program
(reprinted from JPC/80-061). :

Froposed Change:

On page 21, first paragraph, replace the last sentence "This
definition... processor" with: _

"These provisions describe the functionality only, and shall not be
construed to determine in any way the underlaying representation of
textfiles; in particular, the relationship, if any, betveen end-of-line
and values of the char-type shall be implementation-dependent.”

Justification:

There is too much myth about textfiles to permit the standard to gloss
over many machine dependencies with a disclaimer on end-of-line. It
suggests that one doesn't expect the end-of-line to be a space and
that an implementor is not requiredto have a character (byte) which is
the end-of-line. But it does not make clear that the attached program
is_implementation-dependent.

Moreover, the original description in the UMkR: “text = file of char"
has led to more than one implementation-dependent program which the
author believed to conform to all reasonable portability considerations
in the UM&R. It is therefore necessary to dispel that notion in the
standard by expressly stating the implementation-dependency of textfile

I/0.
program testeol (output, textf);
{

This program tests whether textfiles handle the character set
and end-of-line interrelations properly

}
const
maxchr = 127 (the maximum ordinal value of type char
. in this case the value is 127 for ASCII);
var
textf: text;
fvalue: char;
c: integer;
allok: boolean;
begin
{ this section writes all of the char values to a textfile)

revrite(textf);
for c:=0 to maxchr do

vrite (textf, chr(c));
writeln(textf);

TZ# SMAN 1YISYd

T86T “11YdV

¢/ 39v4

This section reads all of the char values back
and checks that they match what was written

reset(textf);
allok:=true;
for c:=0 to maxchr do begin
if eoln(textf) then begin
wvriteln(output,
'eoln unexpectedly returned true for c=', c:l);
allok:=false
end (if);
read (textf, fvalue);
if fvalue <> chr(c) then begin
writeln(output,
'file value was different for chr of', c:k,
' value returned was', ord(fvalue):l);
allok:=false
end (if)
end (for ¢);
{ this section tests for end-of-line and end-of- file)
if not eoln(textf) then begin
writeln(output,
_ 'eoln did not return true after the last value');
B allok:=false
end (if);
read(textf,fvalue);
if fvalue <> ' ' thenbegin
writeln(output,
'end of line value was not space. It was chr of',
ord(fvalue):4);
allok:=false
end {if);
if not eof(textf) then begin
vriteln(output, 'eof did not return true at end of file');
allok:=false
end (if};
if allok then writeln (output, 'textfile behaved as expectd');
vrite(output, '*** end of test "**');
end.

Comment on various sections of the Second Draft Proposal for Pascal

Status: Editorial
Problem Statement:

There are several places where the draft proposal would be improved or
corrected by minor changes in spelling, wording and punctuation.

Proposed Changes to the Draft Proposal:

p. 3: In the first paragraph of section 4 change "the identifier of a
predeclared or predefined entity” to "the identifier of a required entity".

P 113 .I.n thﬁ last paragraph of section 6.3 change "The constant shall not
contain” to "The constant in a constant-definition shall not contain".

P 15: In section 6.4.3.2, in the paragraph that follows Example 2, change
by th'a index type. Then the values" to "by the index type; then the
values'.

/ "
P. 16: In the last NOTE of section 6.4.3.2 change “which, allov" to "which allow .

P 19: In the paragraph following the second note of section 6.4.3.4 change
unpacked set designated the" to "unpacked set type designated the".

P. 57: In section 6.8.3.10 add the syntax definition:
field-designator-identifier = identifier. Ling o

acret pote™ ?

e
]:»i 35: In section 6.6.3.6 subparagraph (e) " "index-type-specifica-
tion".

p. 3T: IIn the third note of section 6.6.3.7 (first note at top of page)
change "can not" to cannot".

Pp- 36: 2nd pangraph from the bottom, replace .th. -V;rst bou.oq_Loev.m_Fger- ”b
naﬂ:LLeA occurrences of the First Ldentifier® and ceplace "the second bowwv-ivem Fieg”
W Led occurrences of the second dentifier" . et
lj il h of sechion (9.8.2.3 d'\OM%Q_ " ohich. 1S (,\S” o
¢ 52 - Tn the Rt P“:aq:rﬂf'" ‘1\ ‘ch 15 the List of ac_+uat—pamme+err .
ackual™ Parame(—ers o "which

In 6.4.1, paragraph 2, the phrase "{ts type-denoter" is poor; change to
"the type-denoter of the type-definition”.

In 6.6.1, delete the first paragraph; the first sentence is meaningless,
the second is redundant (see 6.2.3.3).

In 6.6.1, paragraph 3, change “the the” to "the".
In 6.6.1, clarify the meaning of paragraph 4 by changing "in the same

procedure-md-ﬁmction-delmtion-part" to "closest-c?n?ainod by the
procodure—md—f\mction-decl&ration-p&rt closest-containing the procedure-

heading"”.

In 6.6.1, paragraph 5, change "associates" to "shall associate”.

In 6.6.2, delete paragraph 1; the first sentence is meaningless, the second
is redundant (see 6.2.3.3).

In 6.6.2, paragraph 3, change "the the" to "the".

In 6.6.2, clarify the meaning of paragraph 4 by changing "in the same
protedure-and function-declaration-part” to "closest-contained by the
procedure-and-function-part closeg¢-contaiing the function-heading".

In 6.6.2, paragraph 5, change "associates” to "shall associate".

TZ# SMAN TYISWd

T86T “11¥dY

Wl 39vg

Comment on 4. DEFINITIONAL CONVENTIONS

Status: Error

Problem: Definition of "a y containing an x" defines a y to be an x.

Proposed Change:

Revord definition to read "a y containing an x: refers to any y from which
an x is directly or indirectly derived."

Justification:

The proposed wording defines a y to be a y.

Comment on ISO 2nd DP

Status: Editorial
Problem:

In previous drafts, appearances of a word-symbol or required identifier)
in the text were underlined when necessary to distinguish them from English
words. This underlines have all disappeared in the second DP.

Proposed Change:

Restore the underlines as in previous drafts or use a different typeface.
The locations affected include:

forward, external

integer, real, Boolean, false, true, char
packed ’

text

nil

read, write

not

maxint

in

then, else

N v N

TVON VANV A NOV N
PNNNOEFEEER

£\ N

Justification:

Readability is enhanced by distinguishing language
oiementz from English words. In many of these cases, the
sentence is gramatically incorrect unless this distinction
is made, ’ >

Comment on Note in 6,1.4
Problem;)

In 6.1.h4, the note cannot be deduced from the text of the
standard and is irrelevant,

Status; Editorial

Recommendation: Delete the note in 6.1.h.

Comment on 6.6.5.3 (Dynamic allocation procedures)

Status: Error
Problem Statement:

The description of the second form of d.isposc uses the
construct "Q"" vhere q represents a pointer expression. This use of "gq""
is Tot defined by the draft proposed Pascal standard because an
identified-yariable can only be constructed from a pointer-variable and q”

is a pointer expression.

Proposed Change to the Draft Proposal: Change '‘q"" in the description
of the second form of dispose to "the pointer value of g".

Comment on 6.10 (Programs)

Status: Error
Problem Statement:

The draft proposal requires that if the required variables input or output
are specified as program-parameters then these identifiers must be
declared in the variable-declaration-part of the program block. This is a
change from the Pascal User Manual and Report which states that the program
parameters input and output must not be declared as variables in the
program block.

Proposed Change to the Draft Proposal:
In the first paragraph of section 6.10 change "each program parameter

shall be declared" to "each program parameter shall have a defining-point
as a variable-identifier for the region that is the program-block”,

Comment on 6.8.3.5 Case-Statements

Status: Error
Problenm:

The last sentence of the first paragraph is contradicted by

the second paragraph. The former states the requirement thetone of the
case-constants shall be equal to the value of the case-index, making
detection of violation mandatory (by 5.1), vhile the latter states the
violation shall be an error, making the detection optional (by 3.1).

Proposed Change: Delete the second paragraph.

Justification:

As they stand, the two statements are obyiously

contradictory. The selection of mandatory detection is dictated by

consistency with the majority of current Pascal implementations, rigor,
robustness, and the desire to be able to prove programs correct.

TZ# SMIN T¥ISYd

T86T I4dY

G/ 39vd

Comment on Scope of procedure and function header(s)

Status: Change
Problem Statement:

The swope of identifiers appearing in procedure and function headers

is unnecessarily complicated by the separation into two regions

(and two scopes). This allows programs which appear contradictory,

and complicatas an accurate description in reference manuals. Tt appears
to have no compensating advantages.

Example:

function Func(Param : integer) : integer;
type
Integer = char;
begin
/body of func/
end;

In the example, the appearances of 'integer' in the function header
do not correspond to the type 'Integer' declared within the function.
Specifically, type identifiers (and the procedure/function identifier)
may be redefined within the procedure/function; parameter identifiers
may not be redefined.

Recommendation:

Modify the scope rules so that any identifier that appears in a
procadure/function (including the header) may have only one meaning
throughout that procedure/function.

A possible (and desirable) effeet of this change would be fp prohibit
redeclaration of a procedure identifier immediately within the
orii—\inal procedure. (Note that this redeclaration is already
prohibited .for fungion identifiers, as no assignment to the function
value could be made.) Note also that this would restore the
correctness of statements in sections 10 and 11 of the Revised Report:
"The use of the [procedure/function] identifier ... within its
declaration implies recursive execution.

Comment on 6.6.3.7 Conformant Array Parameters
Status: .Change
Problem:

The technique newly introduced in dp7185 of requiring the calling

procedure to determine whether a given actual parameter is to be passed

by "reference" or "value" has several problems:

(1) It assigns a nev semantic meaning to a syntax which formerly had a
different semantic meaning - it makes the parens significant in (A).

(2) It is unlike any similar construct in the Pascal language defined by
the standard

(3) This very departure from the rest of the language creates confusion
for the user and leads easily to invalid programs.

(4) It creates an unnecessary limitation on implementations.

Moreover, this problem is merely the latest in a long string of
difficulties in getting a technically robust conformant-array-
proposal. It is not clear that it is the last such problem, since
several difficulties with the previous proposals remain unsolved in
the current proposal.

These problems arise out of the attempt to put the conformant-array-
extension into the standard and, in particular, to do so in a strange
fashion so that minimal impact on existing implementations may be
felt. This approach has real penalties. We suggest four alternatives
below, the first one being our preference:

(1) Remove the conformant array feature entirely and leave only the level
0 language. (o

(2) Allov both "value" and "var" confomant"i)&;_ameters, without unusual
restrictions, in exactly the same way that "value” and "var"

parameters of any other type may be specified, admitting that this may

require runtime specification of the size of the activation record in
some instances; or

(3) Delete the "value" conformant-array-parameter construct emtirely,
and therewith the attempt to permit string manipulation via conformant
array parameters.

(4) Consider as an alternative for further study document JPC/80-2u§
(attached).

Proposed Change:

The above options are in order of preference. If the feature is deemed
so desirable that it cannot be removed, it must be made adequately robust.

Justification:

(1) Some compilers may have a serious problem distinguishing A from (A)
in an actual parameter specification, nominally because of the use of
bottom-up parsing mechanisms in the expression parser. While one may
argue that marginal coipili.ng techniques should not be encouraged,
others may argue with as much right that runtime storage management
mechanisms should be sufficiently robust to tolerate runtime
specification of the ‘activation record sizes.

(2) Consider the procedure WORKON defined to produce an array Y by some
activity on the elements of array X, for example, transpostion. With
_ fixed array types, the procedure would look like: .
type vector = array (1..50] of real)
procedure WORKON (X: vector; var Y:vector);
var i: 1..50;
begin
for 1 := 1 to 50 do
Y[i] := X[51 - i];
end;

and if A is a vector, then WORKON (A, A); can be expected to transpose
A over itself correctly. But if & conformant array schema is used:

procedure WORKON (Far X, Y : array [lo..hi: integer] of real);
then WORKM(A, A) will fail strangely, and WORKON ((A), A) is required.

The annoying thing about this failure is that the latter procedure is
the one vhich is expected to be put in a source library to be copied
into the user program and used without other than black-box

TZ# SM3N YISYd

186T “114dY

9/ 39v4

(3)

(b)

documentation. The problem with the proposed syntax is that the
procedure cannot protect itself from misuse - it must depend on the
caller to use it correctly. And yet the avowed intention of the
construct in the first place was to permit the construction of
procedure libiries which were essentially independent of the types in
the calling program.

The proposal eliminates a desirable implementation method. The
proposal requires the calling program to allocate the copy of the
variable, where for code economy the implementor may prefer the called
program do so.

A number of objections to conformant array parameters as previously
specified 2till stand as objections to the current proposal:

(a) They emphasize structural compatibility of types, a phenomenon
which is avoided in the theoretical studies of Pascal and in the draft
proposed standard, in each case with great deliberation. Several
other proposed modifications to permit structural compatibility of
anonymous types have been firmly rejected on the basis of the
importance of type identification and name-compatibility of types.
This feature is deemed to be of such value that its consistency with
such cherished characteristics of the language is of no consequence.

(b) Conformant array schemas provide no method of construction of a
type-denoter for the types they represent. As a consequence, no
related compatibilities can be specified, as betveen arrays and
vectors, for example, and such compatibilities as may be required in a
given procedure must be checked by user code at runtime.

(c) The expectation that many procedures using conformant array
parameters vwill be included from source libraries creates a real
problem in the intelligent use of the "ordinal-type-identifier" in the
index-type-specification. Since such type-identifiers would in

most cases be limits on the capabilities of the procedure, and would
have to be source-included in a program which has no other use for
them, it is likely that in the average installation the ordinal-type-
identifier would usually degenerate to integer. Thus in most cases,
any limitations the procedure really has must be protected by user
code runtime checks.

(d) Because of the conformability.rules, the use of “ordinal-type-
identifier" doesn't prevent the system from having to perform
runtime checks for the compatibility of index-type-specifications.
Consider:

type rgl0 =-1,.10; rg20 = 1..20;

var A: array[rgl0] of real;

B: array[rg20] of real;
procedure P(*X: array [lo..hi:rg20] of real);

procedure Q.(‘\//;\K Y: a:rra.j Clo..hi: '-510:‘ of req();

oo
If procedure P contains the statement Q(X);
then P(A); is valid, but P(B) is invalid. And if the call on Q is
conditional, e.g. if hi€10 then Q(X);
then even P(B) is valid, but the proof is in the tasgfe - you find out
at run_time. So the system has to perform the runtime check, or say
that it doesn't, of course.

Comment on 6.6.3.7 Conformant-array-parameters (p. 37)

Status: Error
Problem:

The beginning of the paragraph following the first note on page 37

contains an elaborate specification which reduces to nothing of value.

It contains at least one incorrect occurrence of "not" in "not a

factor-that is not a variable-access." It clearly does not represent

the author's intent.
Proposed Change:

In the paragraph following the first note on page 37, delete the first
sentence and the beginning of the second sentence up to "expression”,
and replace them with:

"Tne actual-parameter shall be an expression. If the actual-parameter
is not a variable-access,"...

Justification:

The only English-language parse of the first sentence yields:

"The actual-parameter shall be either (a) a variable-access, or

(b) an expression which is not denoted by a factor." (The clause
"not a factor that is not a variable-access" translates to: "if
it is a factor then it must be a variable-access", which is allowed
by the first spec.)

Unfortunately, the only expressions allowed under (b) are those which
contain relational-operators, adding-operators, or
r'*iplying-operators, none of which can yield a value of array-type
except by extension to the proposed standard. Moreover, the
recormendation in the folloving note, that a "value" parameter can be
constructed by the form “(A)" conflicts with the stated requirement,
because the form "(A)" is a factor which is not a variable-access.

So it is very unlikely that this restriction was intended as written.

It is not difficult to allow the generalization to "expression", since
the conformability requirement will eliminate most possible productions
and leave exactly three possibilities within the proposed standard:
variable-access, character-string, and "(variable-access)". (It also
allows any number of redundant parentheses around any of the three
possibilities.) It is not clear whether the author intended to
prevent character-string as a possibility, but it seems unnecessary to
do so. Character-string parameters present no difficulty to the
compiler-vriter and considerable advantage to the user, whereas the
form (A), vhich was clearly intended, causes additional headaches for
the compiler-writer and the author of this standard.

It should also be noted that the generalization to "expression" allows
inple?entatmns vhich support array arithmetic or array-valued
functions to be included automatically without further local
modifications to the conformant-array-parameter rules.

T¢# SMIAN TYISvd

T86T “11¥dY

[/ 39v4

Comment on 6.6.3.7 Conformant-array-parameters (p. 37)

Status: Error

Problem: On page 37 in the second paragraph after the second note,
beginning "If the Actual-pumeter is an expression vhose value is denoted
by a variable-access," the condition given is incorrect in two wvays:

(1) The expression vhich is a variable-access is a)g\o the
expression whose value is denoted by a variable-access. 'ﬁ'lmltat:.ons
should not be applied, since the rule above specifies that the
parameter shall be pa ssed "by reference" in this case.

(2) When the actual-parameter is an indexed-variable, the variable-access
that is the actual-parameter is never the variable-access that
closest-contains the conformant-array-parameter identifier -- the
array-variable is.

Proposed Change:

At the end of the first paragraph of 6.6.3.7 (p.35), add:
"A parameter-identifier so defined shall be designated a conformant-
array-parameter.”

At the end of the paragraph at the top of page 37, just before the note,
insert:

"The type denoted by the type-identifier contained by the conformant-array-
schema in a conformant-array-parameter-specification shall be designated
the fixed-component-type of the conformant-array-parameters defined by that
conformant-array-parameter-specification."

Replace the second paragraph after the second note on page 37 with: "If the
actual-parameter is not denoted by a variable-access and the
actual-parameter contains an occurrence of a conformant-arrayparameter,
then for each occurrence of the conformant-array-parameter contained by the
actual-parameter expression, either
(a) -+he occurrence of the conformant-array-parameter shall be contained by
a function-designator contained by the actual-parameter expression, or
(b) +the occurnce of the conformant-array-parameter shall be contained by
an indexed-variable contained by the actual-parameter expression, such
that the type of that indexedvariable is the fixed-component-type of
the conformant-arrayparameter.

Justification:

(1) If the actual-parameter is an expression whose value is denoted by a
variable-access, it lothe form V, whereas the expression the author
wants to limit has the form (V), because the former is passed by
reference (and therefore is no problem), but the latter is passed by
value, and its size must be known at compile~—time.

(2) The idea is that if the actual-parameter contains a formal parameter
from a higher-level activation and that formal parameter is itself a
conformant-array-parameter, we want to be sure that we are not
required to pass on something of unknown length, unless we can pass it
by reference. Unfortunately, the variable-access which

gt-co h formant a.ra.ruetor is the variable-access
S R L T P B

(3) Regrétably, there is no good way to specify the particular syntactic
entity which may not contain a conformant-array-parameter unless it is
adequately subscripted. Consider the descent for (A[I]): expression,
simple-expression, term, factor, (parens) expression,
simple-expression, term, factor, variable-access, component-variable,
indexed-viariable, (a) array-variable, variable-access,
entire-variable, variable-identifier, identifier; (b) (brackets)
index-expression, expression,... It is easy to leap to the
conclusion that indexed-variable is the target entity, but note the
ancestral tree you have to give to distinguish the one you mean from
the possible occurrence of another one in the index-expression.

The proposed change discards this approach in favor of a much more
global, but apparently adequate, limitation. The weakness is that the
proposed change assumes that there can be no legal operators on
conformant-array-parameters per se, only on the fixed-component-type.
Of course, it is always possible for the conformant-array-parameter
to be passed to a function used in the computation of some value in
the actual-parameter expression. So option (a) allows this, noting
that the conformant-array-parameter will have to satisfy the usage
corftraints as an actual-parameter to that function.

(4) Note that the changes contain two insertions to define terms so
that the restriction on actual parameters is comprehensible. They are
not strictly necessary, but the existing wording for
"conformant-array-parameter" requires an additional clause:
"defining-occurrence for the block which contains the
actual-parameter...". The existing (a) and (b) could be combined

into a replacement for the proposed (b), and thus remove the need for
defining "fixed-component-type'", leaving as much of the existing text, a
as little comprehensibility, as possible.

Comment on FOR statements

Status: Change.

Problem: DP7185/second edition changes the status from error to
requirement in 6.8.3.9 for assigning-references within a for-statement.
This may cause difficulties for some implementations. Consider
procedure p;

var i: integer; Jj: integer;

function f: integer;

begin
f :x 0
i:=1
end;
begin
for i :=1 to 10 do j := ¢
end

Without flow analysis or other relatively expensive mechanisms it is
very difficult to detect the modification of i within f. This problem

is very difficult in general and the space-overhead in compilation can be
a burden.

Proposed Change: In 6.8.3.9, paragraph 2, replace sentence 3 with:
Neither the statement of a for-statement nor any procedure-
and-function-declaration-part of the block that closest-contains
a for-statement shall contain a statement threatening the
variable denoted by the control-variable of the for-statement.

nd

T¢# SM3N TYISYd

“11YdY

1861

g/ 39v¢

And a nev paragraph to 6.8.3.9:

A statement S shall be designated as threatening a variable

V if one or more of the following is true. :

(a) S is an assignment-statement and V is denoted by the
variable-access of S;

(b) S contains an actual variable parameter which denotes V;

(c) S is a procedure-statement that specifies the activation
of the required procedure read or the required procedure
readln, and V is denoted by an actual parameter contained by
S3

(d) S is a for-statement and the control-variable of S denotes V.

Justification:

The present restrictions are unnecessarily complex and

costly to enforce; as a conseguence implementations are likely to not
enforce them. It is preferable from the user's point of view that such
parts of the language be enforced to promote the detection of programming
errors and to avoid the creation of non-conforming programs. The proposed
change is simpler to understand, more likely to be enforced, and in
addition to the above advantages for users, allows the removal of run-time
checks from for-statement loops.

Comment on section 6.%.2.3 (Procedure-statements) and section 6.9 (Input

and output)

Status: Error

Problem Statement: The non-terminal symbols read-parameter-list,
readln-parameter-list, write-parameter-list and writeln-parameter-list
are never used in other syntax productions.

Proposed Change to the Draft Proposal:
In section 6.8.2.3 add the following to the end of the first paragraph:

The procedure-identifier in a procedure-statement containing a read-
parameter-list shall denote the required procedure read; the
procedure-identifier in a procedure-statement containing a
readln-parameter-list shall denote the required procedure readln;
the procedure-identifier in a procedure-statement containing a
write-parameter-list shall denote the required procedure write; the
procedure-identifier in a procedure-statement containing a vriteln-
parameter-list shall denote the requirad procedure writeln.

In the same section modify the definition of procedure-statement to read:

procedure-statement =
procedure-identifier .

([actual-parameter-list]]
read-parameter-list]|
readln-parameter-list|
write-parameter-list|
vriteln-parameter-list) .

Comment on non-existence of applied occurrences

Status: Error

Problem: In subclause 6.2.2, the word identifier is used with (at least) -
four different meanings. In 6.2.2.1, it conforms to the (syntatic)
definition given in 6.1.3. In 6.2.2.5, it refers to homonyms: two
different syntactic identifiers having identical orthography but different
derivations and meanings. In 6.2.2.7, there is the syntactic meaning as
well as the meaning of homograph: having identical orthography. Then in
6.2.2.9 ityuntenable. To correct it, remove all usages of identifier (and
label) that conflict with the definition given in 6.1.3.

h do with the set of x - idemtifiers . Such Contusion LS)
Proposed change: —

Replace 6.2.2.5 by

When an identifier or label has a defining-point for region A and another
identifier or label having the same spelling has a defining-point for some
region B enclosed by A, then region B and all regions enclosed by B shall
be excluded from the scope of the defining-point for region A.

Replace 6.2.2.7 by

The.sf.:ope o{ a defining-point of an identifier or label shall include no
defining-point of another identifier or label having the same spelling.

In 6.2.2.8, change "all occurfnces of that identifier or label shall be
designated applied occurrences"” to "each occurrence of an identifier or
label having the same spelling shall be designated an applied occurrence
of the identifier or label of the defining-point".

In 6.2.2.9, cha.v:ge "a type-identifier may have an applied occurrence in

the domain-type" to "an identifier may have an applied occurrence in the
type-identifier of the domain-type".

Justification: Without this change there are no applied occurrences.

Comment on File Handling Procedures (6.6.5.2, 6.9.2, 6.9.3, 6.9.4, 6.9.5)

Status: Error
Problem Statement:

Section 6.6.5.2 defines read(f,v) to be equivalent to:
- begin v := £~; get(f) end
and wvrite(f,e) to be equivalent to:
begin £ :x e put(f) end
TheEropm“qutsﬁ"Jg en contains a note making it clear that read is
equivalent to the specified compound statement and not to a procedure
wvhose body is the compound statement.

Consider the following variable declarations:
var
fa : array [1 .. 10] of file of integer;
ftext : array {0 .. 256] of text;
a : array [1 .. 10] of reals
i : integer;
c : char;

T¢# SMAN TvISvd

T86T “1I4dY

b/ 39Y(

The proposed Pascal standard leads one to belicve that read{fafi],i) is
equivalent to:
begin i := fa[i]”; get(fa[i]) end
and that write(fa[fa[2]"],1) is equivalent to:
begin fa[fa[2]"]" := i; put(fa(fa(2]"]) .rtd
By choosing the proper values for the variables its possible that the above
read statement will read an integer value from the file buffer of one file
but do the get operation on a different file. Likevise, the above write
statement can do an assignment to the file buffer of one file but do the
put operation on a different file. The above behavior is even more
spectacular when textfiles are used. The proPoud Pascal standard does
not seem to adequately define the effect of:
readln(ftext| ord(ftext[1]*)+ord(eoln(rtext[ord(c)])) 1, 4, ali], ¢)

The Pascal file handling procedures should not be defined so that the
file variable being accessed can change during the procedure exe~ution.

Proposed Change to the Draft Proposal:

JPC believes that this is an important correction to the Pascal standard.
However, the complexity of the issue precludes a reliable solution in the
4ime allotted. The exact wording of the correction should be considered by
ISO/TC 97/SC 5/WG 4. An example of an attempted correction follows:

In section 6.6.5.2 change the definition of read to:

Let £ be a file-variable and vl...vn be variable-accessesthen the
procedure-statement read(f,vl,...,vn) shall access the file variable and
establish a reference to that file variable for the remaining exeation of
the statement. The remaining execution of the statement shall be
equivalent to

begin read(ff,vl); ... ; read(ff,vmn) end
where ff denotes the referenced file. variable.
Let £ be a file-variable and v be a variable-access; then the procedure-
statement read(f,v) shall access the file variable and establish a
reference to that file variable for the remaining execution of the
statement. The remaining execution of the statement shall be equivalent to
begin v := £fA; get(ff) end
vhere ff denotes the referenced file variable.
In section 6.6.5.2 change the definition of write to:
Let £ be a file-variable and el...en be expresions; then the procedure-
statement vrite(f,el,...,en) shall access the file variable and establish a
i1elence to that file variable for the remaining execution of the
statement. The remaining execution of the statement shall be equivalent to
begin write(ff,el); ... ; write(ff,en) end
vhere ff denotes the referenced file variable.
Let £ be a file-variable and e be an expression; then the procedure-
gtatement write(f,e) shall access the file variable and establish a

reference to that file variable for the remaining execution of the
statement. The remaining execution of the write statement shall b2

eguivalent to
begin £f7 := e; put(ff) end

wvhere ff denotes the referenced file variable.

In section 6.9.2 change subpangraph (a) to:

(a) read(f,vl,...vn) shall access the textfile variable and establish a
reference to that textfile variable for the remaining execution of the
statement. The remaining execution of the statement shall be
equivalent to

begin read(ff,vl); ... ; read(ff,vn) end

vhere ff denotes the referenced textfile variable.

In section 6.9.2 change subparagraph (b) to:

(b) If v is a variable-access possessing the char-type (or subrange

thereof), read(f,v) shall access the textfile variable and establish a

reference to that textfile variable for the remaining execution of the

statement. The remaining execution of the statement shall be equivalent
to

begin v := ffA; get(ff) end
vhere ff denotes the referenced textfile variable.
In section 6.9.2 change the first sentence of subparagraph (c) to:
(c)_ If v is a variable-access possessing the integer-type [or subrange
thereof), read(f,v) shall access the textfile variable and establish a
reference to that textfile variable for the remaining execution of the
ltatfment. The remaining execution of the statement shall cause the
reading from the referenced textfile variable of a sequence of characters.
In the last sentence of subparagraph (c) of section 6.9.2 change

"the buffer-variable fA does not" to "the buffer-variable of the referenced
textfile does not"

Ix‘x lec':tion 6.9.2 change the first and last sentences of subparagraph (d)
similiarly to the change of subparagraph (c).

In section 6.9.3 change the definition of readln to:

Readln(f,vl,...,vn) shall access the textfile variable and establish a

reference to that textfile variable for the remairing execution of the

statement. The remaining execution of the statement shall be equivalent to
begin read(ff,vl,...,vn); readln(ff) end

where ff denotes the referenced textfile variable.

In section 6.9.4.1 change the definition of write to:

Write(f,pl,...,pn) shall access the textfile variable and establish a

reference to that textfile variable for the remaining execution of the

statement. The remaining execution of the statement shall be equivalent
to

begin write(ff,pl); ... ; write (ff,pn) end

TZ# SM3IN TYISvd

“ATHdY

1861

0y 39vd

vhere ff denotes the referenced textfile variable.

In

section 6.9.5 change the definition of writeln to:

Writeln(f,pl,...,pn) shall access the textfile variable and establish a
reference to that textfile variable for the remaining execution of the
statement. The remaining execution of the statement shall be equivalent "

to

begin vrite(ff,pl,...,pn); writeln(ff) end

vhere ff denotes the reference textfile variable.

ATTACHMENT H
Schema Array Proposal PART 2

USA Contribution on Schema Arrays for Pascal

Abstract

This proposal introduces a new concept into Pascal - the schema. Once
defined it solves the same problem that conformant arrays attempted to
address. The principle advantage with this mechanism is that it provides a
broader base on which to build; it resolves many of the problems found
with conformant arrays and offers the opportunity to provide other fea-
tures in the future should the need be determined.

The problem addressed by conformant arrays is one of how to pass arrays
into a procedure or function in such a way that the bounds of the array are
provided by the actual parameter - rather than by the formal parameter.
This function is very desirable in the context of being able to write
generic procedures and functions.

This proposal will be based upon X3J9/80-192 with references to conformant
arrays omitted.

Overview

A schema can be thought of as a collection of types; each member of the
collection is related to the other members in that they each have the same
overall structure. The structure of €ach type is that of an array with the
same component type. However, each array has a different index-type.

Ve permit a parameter of a procedure or function to specify that it will
accept any actual parameter whose type is a member of a specified schema.
In this way we permit the procedure or function to operate on a number on
values with different types, although only from the same schema.

Proposal
In section 6.2.1 modify the production for type-definition-part:
type-definition-part =
["type" (type-definition | schema-definition) ";"
{ (type-definition | schema-definition) ";" }] .

Effect

This says that the type-definition-part of a block is composed of any num-
ber of type and schema definitions.

Modify the production in section 6.4.1 for a new-type:

new-type = new-ordinal-type | new-structured-type |
new-pointer-type | discriminated-schema .

Effect

'{'his specifies that a new-type may be created by any of the existing means
in Pascal or by selecting one of the members of a schema.

T
L J

Add a section between 6.4 and section 6.5:
6.x Schema-definitions

6.x.1 General. A schema-definition shall introduce an identifier to
denote a schema. A schema defines a collection of new-types whose type-
denoter is a discriminated-schema.

schema-definition =
identifier formal-discriminant-part "=" array-schema .

formal~dis'criminant-part =
new : . .
(" ﬁxscrmmant-specification
{ ";" discriminant-specification } ")" .

discriminant-specification =
identifier-list ":" ordinal-type-identifier .

array-scherma = ["packed"] "array" "[" schema-index-type
{ ";" schema-index-type } "J" "of" component-type .

T¢# SMIN TvISvd

144V

1861

Ty 39v(

schema-index-type = (constant | discriminant-identifier)
".." (constant | discriminant-identifier)

discriminant-identifier = identifier.

schema-identifier = identifier.

The occurrence of an identifier in a schema-definition of a type-
definition-part shall constitute its defining-point for the region that
is a block. Each applied occurrence of that identifier shall denote the
same schema. Except for applied occurrences of the identifier in a
discriminated-schema as the domain-type of a pointer-type, the schema
shall not contain an applied occurrence of the schema-definition.

Effect

The &bove definitions add the mechanism by which to define a schema. The
leading identifier on the schema-definition (schema-identifier) becomes
known. A schema may not have any references to itself except when used as
the domain of a pointer; and in that case, it must only be used with the
actual-discriminants (discriminated-schema). Thus, a schema has the same
scope as a type declared at the same place.

Add a section after 6.x.1

6.x.2 Formal-discriminant-part. The formal-discriminant-part in &
schema-definition shall define the formal-discriminants. The occurrence
of a identifier in & discriminant-specification shall constitute its
defining point as a discriminant-identifier for that region of the program
that is the following array-schema.

For every discriminant-identifier in formal-discriminant-part, there
shall be at least one applied occurrence in the array-schema. The occur-
rence of a discriminant-identifier in a schema-index of an array-schema
shall specify that there is ome type-denoter which is"a member of the
schema for each allowed value of the discriminant-identifier such that all
other schema-index values in the schema are the same.

Note: this implies that the number of type-denoters in the domain of the
schema is the product of the number of values for each occurrence of each
discriminant-identifier.

Effect

The formal-discriminant-part is used to associate identifiers with the
schema so that the domain (members of the schema) can be determined. Every
identifier used in the formal-dsicriminant must be used at least once in
the following array-schema. In the following example, SmallVect is & col-
Jection of ten type-denoters with index-types "0..1", '"0..2", ... ,
"0..10".

type
SmallInt = 1 .. 10;
SmallVect(HighBound : Smalllnt) =
array [0 .. HighBound] of Real;j

Add a section after 6.x.2

6.x.3 Discriminated-schema. A discriminated-schema selects one of the
members of a schema as a new-type. The discriminant-values are bound to
their corresponding discriminant-specifications in the formal-
discriminant-part for the schema. The number of discriminant values must
be equal to the number of formal-discriminants and each value must be
assignment compatible with the type of the corresponding formal-
discriminant.

discriminated-schema = schema-identifier actual-discriminant-part .

actual-discriminant-part = "(" discriminant-value
{ "," discriminant-value })

discriminant-value = constant .

Any schema designated packed and denotes an array-schema having its
schema-index-type specifying its smallest value a constant whose value is
1, and having as its component-type a denotation of the char-type, shall
be & string-schema. Any new type specifying a discriminated-schema which
is a string-schema shall be designated a string-type.

Effect

A discriminated-schema is a type-denoter selected from the collection of
type-denoters in the schema. The values given in the actual-
discriminant-part are used (substituted) for the formal-discriminants in
the array-schema. Thus the discriminated-schema: "SmallVect(7)" selects
the member of the schema which is equivalent to (but not the same as) the
array:

array [0 .. 7] of Real

An attempt to specify the schema as "SmallVect(11)" will result in an
error because the value 11 is not assignment-compatible with the type of
HighBound.

It must be noted that although & discriminated-schema is equivalent in
structure to an array-type, it never the same (in the sense of type com-
patibility). Moreover, two discriminated-schemas that specify the same
discriminant-values are not the same. In the following fragment V2 and V3
have the same type, and V4, V6’and V7 have the same type.

type
T1 = SmallVect(3);
T2 = SmallVect(3);
T3 = T1;

var
V1 : SmallVect(3);
v2,v3 : SmallVect(3);
V& : T1;
V5 : T2;
vé : T1;
v7 : T3;

1

TZ# SMIAN TYISYd

1861 “11Ydv

7% 39v4

Modify the production in section 6.6.3.1

formal-parameter-section =
value-parameter-specification |
variable-parameter-specification |
constant-parameter-specification |
procedural-parameter-specification |
functional-parameter-specification .

Effect

This introduces constant-parameter-specification.

Modify the production in section 6.6.3.1

variable-parameter-specification =
“var" identifier-list “:"
(type-identifier | schema-identifier) .

Effect

The modified production states that a variable may be passed into a proce-
dure or function whose type-denoter is & member of a schema. When a
schema-identifier is specified, then the parameter may be of any type
which is a member of the schema.

Add this production to section 6.6.3.1

constant-parameter-specification =
"eonst" identifier-list ":" schema-identifier .

Effect -

A constant-parameter-specification is permitted only to be .us.ed with
schemas and permits literal character-strings to be }?assed efficiently to
a procedure or function. It also permits variables which are array-schemas
to be passed as "read-only" variables. It should be possibl.e to extend
this concept to other types in the future if it found to be desirable.

Add this to the text of section 6.6.3.1

The occurrence of an identifier in in the identifier-list of a
constant-parameter shall constitute its defining point as a
read-only-variable for the region that is the block, if any, of which it
is a formal-parameter.

Effect

All parameters that are specified with the constant mechanism are identi-
fied as being read-only varaibles, this permits them to be limited to
being factors within the block.

Add to section 6.6.3.3

If the formal parameters are specified in a variable-
parameter-specification in which there is a schema-identifier, the type
possessed by the actual-parameter shall be a discriminated-schema desig-
nating the same schema-identifier as the formal parameter or the actual-
parameter shall be itself a parameter that was specified with the same
schema-identifier; and the type possessed by the formal-parameter shall
be distinct from any other type.

Effect

This states that a formal parameter that was declared with a schema will
only permit the actual parameter to be of type which is part of the same
schema. A formal-parameter which is a schema may in turn be passed to as a
variable-parameter utilizing the same schema.

If the form of the parameter list includes an identifier-list, then all
the actual parameters must be of the same type: this is true for schemas
as well as other types.

The following example adds two vectors, element by element, and returns
the result in the first parameter.

procedure AddVectors(var A,B,C : SmallVect);
var
i : natural;
begin
for i := 0 to B.HighBound do
A[i] := B[i] + C[i]

end;

= 1
L 1

Add a section between 6.6.3.3 and 6.6.3.4

6.6.3.y Constant parameters. The actual-parameter shall be an expressiom.
The formal parameters that occur in a single
constant-parameter-specification shall possess an array-type which is
distinct from any other type. The type possessed by the actual-parameter
shall be a discriminated-schema designating the same schema-identifier as
the formal parameter or the actual-parameter shall be itself a parameter
that was specified with the same schema-identifier; or the actual-
parameter must be a string-type and the formal parameter must designate a
string-schema.

For an actual-parameter that denotes a variable-access, there shall be no
assigning-reference during the activation of the block of procedure or
function to the actual-parameter.

TZ# SM3IN TvISvd

I86T “1I1YdV

¢y 39V{

Effect

This introduces a parameter mechanism into Pascal that permits may not be
altered during the activation of the associated procedure or function. Any
expression may be specified by the actual parameter, however the only
expression that is not a variable-access will be a string literal. Thus,
the mechanism achieves not only protection of the actual-parameter but
also permits literal strings to be specified.

The method of passing the parameter may be chosen by the implementation,
one suitable method may by passing an indirect reference in the parameter
list.

(S

—
L

Modify the production in 6.7 for a factor

factor = variable-access | unsigned-constant |
function-designator | set-constructor |
"(" expression ")" | "not" factor

schema-discriminant read-only-variable .

schema-discriminant = parameter-identifier
"." discriminant-identifier .

read-only-variable = variable-access .

Effect

Addition to factor is used to indicate that a factor may also be a
schema-discriminant.

Add the production in 6.7 for a schema-discriminant

schema-discriminant = variable-access
"." discriminant-identifier

Effect

A schema-discriminant is used to determine that actual-discriminants of
the the actual-parameter. Because a factor can never appear as a target of
an assignment, the discriminant may never be altered. The value of the
discriminant could be thought of as a "read-only" value .associated with
the variable (or parameter).

Example

const

MaxMatrix = 100;

type

Positive = 1..Maxatrix;
Matrix(M,N : Positive) =

array(1..M, 1..N] of Real;

Square(Len : Positive) = Matrix(L,L);

procedure Transpose (var M : Square);

var
I,J : Positive;
R : Real;
begin

for I := M.Len downto 2 do

end;

for J := I-1 downto 1 do

begin
R := M[I,J)
M[I,J] = M[J,I]
M[J,I] :=R

end

SHAN TVISYd

1

“ITHdV

1gt.1

iy 39v(

IMPLEMENTATION NOTES ONE PURPOSE COUPON

0. DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *)

2. MACHINE/SYSTEM CONFIGURATION (* Any known limits on the configuration or support software required, e.g.

operating system. *)

3. DISTRIBUTION (* Who to ask, how it comes, in what options, and at what price. *)

4. DOCUMENTATION (* What is available and where. *)

5. MAINTENANCE (*/s it unmaintained, fully maintained, etc? *)

6. STANDARD (* How does it measure up to standard Pascal? Is it a subset? Extended? How.*)

- 7. MEASUREMENTS (* Of its speed or space. *

8. RELIABILITY (* Any information about field use or sites installed. *)

9. DEVELOPMENT METHOD (* How was it developed and what was it written in? *)

10. LIBRARY SUPPORT (* Any other support for compiler in the form of linkages to other languages, source libraries, etc. *)

(FOLD HERE)

PLACE
POSTAGE

HERE

Bob Dietrich

M.S. 92-134

Tektronix, Inc.

P.0. Box 500

Beaverton, Oregon 97077
U.S.A.

(FOLD HERE)

NOTE: Pascal News publishes all the checklists it
gets. Implementors should send us their checklists
for their products so the thousands of committed
Pascalers can judge them for their merit. Otherwise
we must rely on rumors.

Please feel free to use additional sheets of paper.

IMPLEMENTATION NOTES ONE PURPOSE COUPON

POLICY: PASCAL USERS GROUP (15-Sep-80)

Purpose: The Pascal User's Group (PUG) promotes the use of the programming
language Pascal as well as the ideas behind Pascal through the
vehitle of Pascal News. PUG is intentionally designed to be non

political, and as such, it is not an "entity" which takes stands on
issues or support causes or other efforts however well-intentioned.
Informality is our gquiding principle; there are no officers or
meetings of PUG.

The increasing availability of Pascal makes it a viable alternative
for software production and justifies its further use. We all
strive to make using Pascal a respectable activity.

Membership: Anyone can Jjoin PUG, particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.
Memberships from libraries are also encouraged. See the

ALL-PURPOSE COUPON for details.
Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not all-purpose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and read by
humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:
teaching programming concepts

developing reliable "production" software
implementing software efficiently on today's machines
writing portable software

X 3k %k Xk

Pascal implementations exist for more than 105 different computer systems, and
this number increases every month. The "Implementation Notes" section of
Pascal News describes how to obtain them.

The standard reference and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.

Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There"
section of Pascal News.

The programming language, Pascal, was named after the mathematician and
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently
have more than 3500 active members in more than 41 countries. this year Pascal
News is averaging more than 100 pages per issue.

Aoijod

