
No.36 June/July 1987 $3.95

THE MICRO

Software Applications

• • p.e Sleeping PC • 30
Sl '.n~' '"."" i" '" ,'k""'l ,,,."",,

Who's M~king Grut Hud Drivl's •• 44
Rt»JI<W" ,,/0.,.. "'"' .,..,1 "","dnl~

Changing the Picture ••. 56
S"ro" t'"pltK' , "' •• ~ .. ,." .. , ."'-"'~"

PC Mouse Drivers page 6

Build A Midi Interface
For Your PC page 14

Designing A Database,
Part 2 page 20

Interrupts On
The PC page 36

Hacker's View Of
·~MS-DOS Vrs 3.X page 46

And Much Much More

06

o 74470 19388 3

Mouse
Control

Borland's Turbo Lightning FREE

Enlarged
Shift keys

Two Ctrl and Positive-tactile.
Alt keys for firm-feel
ambidextrous keys.

12 Function
keys for
increased
automatic
operation.

Extra-wide, easy-to
find Return key.
IBM changed sizes _
again by shrinking their
Return key.

Dedicated
Function Con
trol keys.

Caps, Num and
Scrol/Lock
indicator lights.
IBM has no lights
ontheirXT.

Separate
dedicated
Numeric Pad
with enlarged
Enter key, four
Arithmetic

Switch·
selectable
compatibility
with IBM, PC,
XT, AT, PCjr,
AT&T and all
compatibles.
IBM's new
Enhanced
Keyboard runs

access. ___ ~

Isolated
Escape key.

gj~~g~ .,

r----- Function keys.

cludes you. ----.....;. -~-----

~~~:pa~~~~%~~f~\· ~.____ --. s ... D. ATADESK'S 
Ctrl and Caps lock. ~. --

~:~:;~~~ave TuRKfJ=101 ENHANC D KEYB 
for the 10 million PC users IBM just ignored! 

IBM just announced their new 
redesigned "standard" keyboard for per
sonal computers. There's only one problem: 
it won't work on your IBM computer if it 
was purchased prior to June 1986 or on any 
PC compatible purchased at any time! 

Not to worry. Our new Turbo-101 Enhanced 
Keyboard gives you the layout and en
hancements of the IBM with some logical 
improvements (see above photo). And it 
works on your existing PC, XT, AT, PCjr, 
AT&T, Epson and virtually all compatibles! 

Get Borland's Turbo Lightning ™ 
For FREE! 
To really turbocharge 
your productivity, we are 
including, free-of-charge, 
Borland's red-hot Turbo 
Lightning software with 
each keyboard. Now, 
when using SideKick, WordPerfect, Micro
soft Word, 1-2-3 or most popular programs, 
our Turbo-101 Keyboard will check your 
spelling as you type, gives you instant 
access to Random House's 80,000-word 
Concise Dictionary and 60,000-word 
Thesaurus and much, much more! 

"Lightning's good enough to make 
programmers and 'users cheer, executives 
of other software companies weep," says 
Jim Seymour of PC Week. Sold separately, 
Thrbo Lightning retails for $99.95! 

\)~A~ 

~ datadesk" 
INTERNATIONAL 

7650 Haskell Avenue 
Van Nuys, California 91406 (818) 780-1673 
Turbo·101 is a trademark of DataDesk International. Turbo Lightning is a 
trademark of Borland International. IBM and IBM AT are registered trade· 
marks of International Business Machines, Inc. 

The Turbo-101 is the best data entry tool 
since the pencil! 
For users of spreadsheets like 1-2-3, the 
Turbo-101's separate cursor controls and 
numeric keypad makes entering numeric 
data into cells and moving from cell to cell 
as natural as moving your fingers. And for 
word-processing, the 'Selectric'typewriter 
layout makes the Turbo-101 as easy to 
use as a pencil; and with the extra large 
Enter, Shift & Control Keys, you'll make so 
few mistakes, you won't even need an 
eraser! 

SPECIAL OFFER! 
ONLY $149.95* FOR BOTH 

KEYBOARD & SOFTWARE 
Includes 30-day money back 
guarantee and 2 year full warranty. 
To prove that we don't ignore you 
or your pocketbook, you get our 
Turbo-101 Enhanced Keyboard and 
Borland's Turbo Lightning for an 
astounding $149.95.* No, you didn't 
read it wrong. During this amazing 
Introductory Offer you get both 
keyboard and software for Jess 
than most software programs 
by themselves! Now, if you're 
still feeling ignored, you can 
always do what you-know-who 
wants you to do ... and buy 
a new computer to get their 
keyboard! 

credit card orders call 

(800) 826-5398 
in CA call 
(800) 592-9602 

'Price does not include adaptor 
cables required by certain compat
ibles • A Limited offer-price subject 
to change without notification. 

Up to now, DataDesk International may be one of 
the best kept secrets, but here's what's being said 
about our first end-user Keyboard/Borland 
software bundle: 
"Who Can Pass Up a Deal? 
Department. Talk about an 
aggressive productl" 
John C. Dvorak, 
Info World Mar 86 

"It solves all of the prOblems 
exhibited by their regUlar 
PCIXT keyboard ... It's a 
great bargain!" 
PC Productivity Digest 
May 86 

"DataDesk Inti. bas designed 
a sturdy and bandsome key
board that has tactile re
sponse ... is tbe bard ware 
bargain of tbe year" says 
Charles Humble, Oregonian 
Jan 86 

"It's a good keyboard. Good 
feel: tbe keys have tactile 
feedback. No mush at all. 
Tbis is about as good a key
board deal as you're likely 
tofind ... 1 bave absolutely no 
hesitation in recommend
ing tbe Model PC8700." 
Jerry Pourne11e. 
Byte Magazine Sept. 86 

"This keyboard is neat to 
type on andfeels solid. It 
bas tactile feedback keys ... 1 
can type mucbfaster on it." 
Test Drive Scorecard: 
DataDesk-lO Key Tronics-9 
Teleconnect Magazine 
May 86 

"Tbe best part of tbe key
board is tbe way itfeels.It'S 
ideal! Andfast. I've never 
worked on a keyboard with 
a nicer touch." 

BUS,ine.s, S .. C . . om .. p. u.te.r.D .... i.g. est .. .. '. . .~. . ................ , .. 
Aug 86 • __ .,.' \"" .-- ' 

~c~'fS'" \ ~m\\ \ .. ~.~~\v.~ ~'\. ~~::~~~,~ 1\\\\~~ .'.' .' .•. '. 
.
.. :'.................. \l~%~~\\~ ~~~ V)~\\~\\~ ~~\\ ~~\1'. 

'" r..'" %~T' "... .a,1EO 
.U~\\1~\~U • '-\t1l1fER 

~I 
Of .... , 

.••.••••.. .•.. ,,\\11\\~\\\\" 

' .... ~ .... 1 .. ' '. .".v:. t:.~ ~;~\a\~. $'.ta1-.. ., ... 
<, t!\\\IA:t'3 

~~.\\\\~:~ OV,C OC\\~C'!. 
\>f«v,~\\~. f!.}\C\S)~'t'()·. ,,---:--

dll'A1~ 



~ HITACHI ~ 
O'SCOPE SALE 

SA VE $75 to $450 
MANY MODELS TO CHOOSE 

FROM. PLEASE CALL! 
.3 YEAR WARRANTY! 

~IC PROGRAMMERS
XT/AT COMPATIBLE 

ALL USE SINGLE SLOT IN 
YOUR XT/AT AND INCLUDE 

EXTERNAL PODS WITH ZERO 
INSERTION FORCE 

SOCKET(S) 

PAL PROGRAMMER 
$299.95 

-PROGRAMS MOST 20 & 24 
PIN PALS 

-VERIFY, PROGRAM, & BURN 
SECURITY FUSE LINK 

8748/49 PROGRAMMER 
$199.85 

-EPROM PROGRAMMER5-
PROGRAMS 27XX to 27512 

12.5, 21, 25V DEVICES 
INCLUDES SOFTWARE FOR 

STANDARD & INTEL HEX 
FORMATS 

SINGLE GANG ... $109.95 
FOUR GANG ..... $169.95 
TEN GANG ...... $339.95 

HALTED SPECIALITIES of· 

fers unique supermarket style shopping 

for your electronic needs. We stock 

thousands of parts, from the newest IC's 

to some of the first transistors. We also 

have computer accessories, test equip· 

ment, tools, R&D supplies and much 

more. Please call or visit one of our retail 

stores. 

-FLOPPY DRIVES
ALL DRIVES NEW WITH 

6 MO. TO 1 YR. WARRANTY 

TOSH I BA 3.5 ..... $139.00 
-720K FORMATTED 
-DOS 3.2 COMPATIBLE 

OR USE OUR HIGH DENISTY 
CONTROLLER IN YOUR XT 

-INCLUDES UNIVERSAL 5%" 
MOUNTING KIT FOR XT/AT AND 
COMPATIBLES 

TOSH I BA 1.2M ... $139.95 
-1.2M HIGH DENSITY 
-AT COMPATIBLE 
-USE ONE IN YOUR XT WITH OUR 

HIGH DENSITY CONTROLLER 

FUJITSU 360K .... $89.95 
-% HEIGHT· 
-IBM COMPATIBLE 

TEAC 360K ...... $109.95 
-% HEIGHT 
-IBM COMPATIBLE 

SHUGART 8" SA801R 
$149.95 

-SINGLE SIDED DOUBLE DENSITY 
-600 KB FORMATTED CAPACITY 

-HARD DRIVES
SEAGATE ST225. $299.95 
-20 MEG 
-% HEIGHT 

MM1212 ......... $219.95 
-10 MEG 
-3.5" SHOCK MOUNTED IN 5114" 

% HEIGHT FRAME. LOW POWER. 
GREAT FOR PORTABLES 

SEAGATE ST4038 
$599.95 

-30 MEG 
-AT COMPATIBLE 
-39 MS ACCESS 

CONDOR SWITCHER 
$35.00 

+ 5V @ 9.0 AMPS 
+ 12V @ 3.0 AMPS 

5.0 AMPS PEAK 
·12V @ 1.0 AMP 
+ 15V @ 1.5 AMP 

-FLOPPY CONTROLLERS-
NEW! 

FLOPPYMASTER .. $89.95 
-XT COMPATIBLE 
-CONTROLS 1.2M, 720K, 360K 

DRIVES BOTH 3% AND 5% INCH 

DUAL FLOPPY CONTROLLER 
$19.95 

-IBM COMPATIBLE 
-48 & 96 TPI DRIVES 
-DOES NOT INCLUDE CABLES & 
. BRACKET 

-HARD DISK CONTROLLERS-
XEBEC 1210A ...... $79.95 
-FULL LENGTH 
-CONTROLS 10 & 20 MB 
-CUSTOM CONFIGURATIONS 

AVAILABLE 

OMTI 5520 ........ $124.95 
-WITH CABLES 
-SHORT SLOT CARD 
-CONFIGURABLE BIOS 
-RUNS ANY 3" OR 5" HARD DISK 
-SOFTWARE 
-SUPPORTS DRIVES UP TO 320 MB!! 

OMTI 5527 ........ $169.95 
-RLL CONTROLLER 
-WITH CABLES & SOFTWARE 

KONAN KDC 230 ... $89.95 
-SHORT SLOT CARD 
-LSI SURFACE MOUNT TECHNOLOGY 
-CONTROLS MOST 5" HARD DISKS 
-MENU DRIVEN CONFIGURATION 

-FLOPPY DISKEnE5-
STANDARD 5%" DSDDBOX OF 10. $4.50 
SHUGART DSDD 8" BOX OF 10 .. $12.50 
VERBATIM SSSD 8" BOX OF 10 ... $4.95 

-SASI HOST ADAPTER
PC/XT COMPATIBLE 

$14.95 

SYNC·SEPARATOR KIT 
USE WITH ANY 3 LINE TTL 

MONITOR ALLOWS YOU TO RUN 3 
LINE MONITOR FROM A COMPOSITE 

VIDEO SOURCE! 
$12.95 

HALTED SPECIALTIES co., INC. 
827 E. EVELYN AVE., SUNNYVALE, CA 94086 

MAIL ORDERS CALL: (408) 732·1573 
3 CONVENIENT LOCATIONS Store Hours: 

Mon.·Frl. 8:00·7:00 
HSC Electronic Supply of Santa Rosa HSC Electronic Supply Saturday 9:00.5:00 

6819 S.Santa Rosa Ave. 5549 Hemlock Street 
Cotati, CA Sacramento, CA 

(707) 792·2357 (916) 338·2545 
WE SHIP 

C.O.D. 
TERMS: Minimum order $10.00. California residents add 7% sales tax. Prepaid orders sent freight C.O.D. or call for charges, shipping will be added to credit card and C.O.D. 
orders.· Prepaid orders over $100.00 use money order or certified check. Please do not send cash. Some items limited to stock on hand. Prices subject to change. 



SUBSCRIPTION· RATES: .. . 
1 yr. (6 issues); ... ; .. ; ....... ; ... ; •• >: . $18.00 
2 yr. (12isstles). . .. ........ :; .. $34.00 
~yr. (18 issues).. ~.;; ., .... ; . , :',.$48.00 
1 yr7 (Canada& fviexico) ... : .. "':;;'; ;$22.00, 

.1 yr.~(Other foreign) .. ; .'~ ... ,: .. ~ ,; •. $30.00'; 
. Make all orders. payable 'in U.S. fundson~ . 

U.S. bank,please~ , 

. MICROCORNUCOPL~;:' 
" ...•• P.O .~ox223 ...... , . 

B:end; Oregon 97709 
v ' '.' ~ , 

AROUND THE BEND 

Don't Panic 

Publishing a magazine is a lot like reading Douglas 
Adams (he wrote The Hitchhiker's Guide To The Galaxy), 
especially since we picked up a secondhand model B-13 
Infinite Improbability Drive (lID). 

It was a very unlikely event, finding the model B-13. 
Even more unlikely was finding one we could afford. 
And, most unlikely of all was finding a working one, 
since the factory has never shipped a working lID, the in
dependent service organization has never successfully 
repaired a non-working one, and neither has heard of this 
model. All of which, of course, explains everything. 

Take this issue's cover. It might be very much like last 
issue's. It might be very different. There might not be a 
cover at all. (You might not be reading this.) That's the 
kind of thing that an Infinite Improbability Drive brings 
to a publication. . 

If you like whatever it is you have or haven't seen, you 
probably won't say anything. If you don't like it, you'll no 
doubt send us letters describing in excruciating detail our 
most private shortcomings. The lID will probably ignore 
these letters, but we won't (it's one of our shortcomings). 

A lot of you really liked our old style. You told us. But, 
just for once, we're doing something for ourselves. We've 
been secretly dreaming of putting out a real, honest to 
gosh: "in your eye Madison Avenue here comes Micro C" 
kind of publication. 

Meanwhile, the content won't change. At least it won't 
change any more than it's been changing. (Probably.) 

Doing Your Own Thing 
Speaking of content, this issue is crammed with "On 

Your Own" information. If you're interested in writing 
and marketing your own software, check out the informa
tion on shareware in the "On Your Own" Column. If 
you're more interested in hardware, Bruce Eckel and 
Larry Fogg have their usual great stuff. 

Working for yourself versus working for a large cor
poration is like free enterprise versus welfare, or piloting 
your own small plane versus riding in an airliner. It's the 
freedom of making your own decisions, the status of 
entrepreneurship, and the financial benefits of winning 
the lottery all rolled up into one. If you're lucky. 

Overall, the odds of starting a successful business are 
about one in ten. If you pick your product carefully and 
do enough of a business plan to know that it can be sold 

successfully and profitably, then the odds improve to one in two. That's 
much better than any lottery. 

(continued on page 90) 



June-July 1987 
Issue No. 36 

Features 

6 

14 

20 

24 

36 

46 

66 

Earl Brabandt 
Programming A 
Laboratory 
Mouse 
A hand on a mouse is 
often worth two on a 
keyboard. Write mouse 
code for MS-DOS 
systems. 

Jay Kubicky 
Build a Midi Interface For Your PC 
This do-it yourself MIDI project should cause reverbera
tions throughout the computer world. 

Sandy Brabandt 
Intro To Database Programming, Part 
2 
Dee Base and Dr. Dobbs really hit it off in this episode. 
Stay with us as Dee reveals her designs. 

lour Bruce Eckel 
Magic In The 
Real World 

---- VOUT 

Now that Bruce has 
walked us through 
analog-to-digital, let's 
go the other way. 
Hardware at its best. 

Larry Fogg 

+ 

Hardware Interrupts On The PC 
Larry continues his series on the PC's smart chips. This 
time he looks at the 8259 programmable interrupt 
controller. 

Siegmund Kluger 
PC-DOS 3.00 And Beyond 
Software interrupts, reentrancy, and more. A very 
detailed view inside 3 + . 

Larry Fogg 
PC Based EPROM Burner 
Leave it to the Taiwanese to produce a powerful gang 
programmer for $150. 

70 

CONTENTS 

Ken Berry 
Writing Portable 8086 Assembly Lan
guage Functions 
You've heard of portable C or portable Pascal, but 
portable assembly language? 

Columns 

32 On Your Own 

42 

52 

56 

60 

62 

78 

Shareware is becoming a significant force in the MS
DOS marketplace. Authors talk about their experiences. 

In The Public Domain 
Steve tells us about his memory card problems. Then he 
looks at the latest, greatest (and worst) PC software. 

86 World 
Laine Stump traps MS-DOS's errors. It's quite a trick. 

C'ing Clearly 
Ron Miller tackles interrupts from C. 

Culture Corner 
The logical conclusion for socks. 

Techtips 

Pascal Procedures 
John takes us through procedures, both in Pascal and 
Modula-2. 

CP/M Corner 

82 Kaypro 
Run your Kaypro 4's SIO in interrupt mode. 

86 Print File To Symbol Fire Convertor 
A handy accessory for CP/M assemblers and debuggers. 

Future Tense By Gary Entsminger 

68 Tidbits 

96 

Gary looks at Taskview's multitasking, the Prolog 
contest, WindowDOS, and micro einstein. 

The Last Page 
Science fiction (vs. science fact). 



PD32 Status Report 
In October, 1986, the "finished" 

PD32 prototype was handed over to 
Definicon Systems (DSI) by designers 
George Scolaro and Dave Rand. DSI 
was to manufacture and market the kit 
for a small markup over the cost of . 
parts. At this point, we had a two-layer 
board with half a dozen cuts and 
jumpers. One "tidy' up" revision was 
suggested and the project was ready to 
go. 

DSI had ten boards assembled. Not 
one of them worked. Swapping chips 
and hanging bypass c.aps everywhere 
brought a few boards to life, but ob
viously the "finished product" was far 
from finished. We decided that a four
layer board was required to solve the 
problems. 

The board went into layout (back to 
step one), and prototypes were as
sembled (wait two weeks). Now things 
were looking a lot better -- all the four
layer prototypes worked on power up. 
A production run of the board began 
(wait five weeks). To avoid future 
headaches, we decided to offer only 
wave soldered kits. The kit parts and 
blank boards were shipped to an as
sembly house (wait ten days) and now 
they're READY. Honest. 

The die-hard hacker who wants to 
solder his own board can still buy a 
blank. But please don't send it back to 
us if it doesn't work. Blank boards sell 
for $50 plus shipping. The kits go for 
$370 to $695 depending on speed (6 or 
10 MHz) and RAM (1 or 2 MBytes). 
Get the $500 UNIX from DSI or directly 
from Dave Rand in Alberta. 
Steve Hope, Senior Engineer 
Definicon Systems 
21042 Vintage St 
Chatsworth, CA 91311 
(818) 889-1646 

Seagate Poo-Poo 
I, too, have noticed that recent 

Seagate drives have been poo-poo. I 
have purchased several from dealers in 
the Washington, D.C., area. .All 
sounded like Woody Woodpecker 
("whack, whack, whack") when trying 
to home the heads. 

I contacted Western Digital. After a 
lot of ranting and raving, a real tech 
came on the line. He said that control
ler cards should go out with the W6 
jumper on pins 2 and 3. This sets the 
controller for low current, driving a 
maximum of eight heads. Three out of 
three controilers I bought had pins 1 

and 2 jumpered (high current, 16 
heads). Apparently whole bunches of 
controllers were shipped that way. 

Suspecting other problems, I called 
Sea gate on my nickel. It's sad' that 
when you spend your money to call for 
service, you get· to hear a long record
ing advertising their 800 sales line. 

68000 SINGLE BOARD COMPUTER 
$395.00 

32 bit Features I 8 bit Price 

-Hardware features: 
* 8MHZ 68000 CPU 
* 1770 Floppy Controller 
* 2 Serial Ports (68681) 
* General Purpose Timer 
* Centronics Printer Port 
* 128K RAM (expandable to 

512K on board.)' 
* Expansion Bus 
* 5.75 x 8.0 Inches 

Mounts to Side of Drive 
* +5v 2A, +12 for RS-232 
* Power Connector same as 

disk drive 

Add a terminal, disk drive 
and power, and you will have 
a powerful 68000 system. 

ASSEMBLED AND TESTED ONLY 

-Software Included: 
* K-OS ONE, the 68000 Operating 

System (source code included) 
* Command Processor (w/source) 
* Data and File Compatible with 

MS-DOS . 
* A 68000 Assembler 
* An HTPL Compiler 
* A Line Editor 

$395.00 

* * * * * * * * * * * * * * * * * 

K-OS ONE, 68000 OPERATING SYSTEM 
For your existing 68000 hardware, you can get the K-OS ONE 
Operating System package for only $50.00. K-OS ONE is a powerful, 
pliable, single user operating system with source code provided 
for operating system and command processor. It allows you to 
read and write MS-DOS format diskettes with your 68000 system. 

The package also contains an Assembler, an HTPL (high level 
language) Compiler, a Line Editor and manual. 

SHIPPED ON AN MS-DOS 5 1/4» DISK. . . $50.00 

* * * * * * 
Order Now: 

VISA, MC 
(503) 254-2005 

* * * * * * * * 

HAWTHORNE TECHNOLOGY 

8836 S. E. Stark 
Portland, Or 97216 

4 MICRO CORNUCOPIA, #36, June-July 1987 



Moonlit Software Anyway, after numerous attempts, I 
managed to talk to a real tech at tech 
support and he verified that the 225s 
have stepper problems. 

This was after trying to call the com
pany president. Naturally, I only got 
his secretary. The worst part was the 
classic "not my job" attitude. I did try 
to point out that there was once a drive 
company named CM!... 

My congratulations to Cecil Stump 
for his "On Your Own" column in 
issue #35. I am in a similar position 
with C.C. Software. It brightened my 
day to hear that others have gone 
through some of the same problems I 
have. His points on customer relations 
were especially well taken. 

Mike Rutkoski 
One point Mr. Stump didn't 

elaborate on was advertising. Because 
costs are very high (Micro C excluded 
of course), the startup business will not 

9909 Dameron Dr. 
Silver Spring, MD 20902 

NEW LOWER 16 BIT PRICE -
SPEED - POWER - VERSATILITY" 

EXPRESS' 2.2 
FULL SCREEN EDITOR 

. ONLY$29.95 
Most EXPRESS users are converts from the GIANTS of WORD PROCESSING ...... 

e. 

...... and you couldn't pay them to go back ... HERE'S WHY 
FULL ACCESS TO CP/M USERS AREAS (up to 32) with any editor commandl 
NAMED DIRECTORIES supported on MSDOS VERSION! 
MEMORY MAPPED VIDEO AVAILABLE FOR IBM PC and PC clones! 
BUILT·IN CP/M LIKE COMMANDS (RENAME, COPY, ERASE, TYPE, DIR, LOG)! 
POWERFUL KEYBOARD MACRO'S (as many as you want)1 
FULLY R ECONFIGU RAB LE COMMAND KEYS (emulate any other editor if you like) I 
FAST, FAST, FAST SEARCH! 
TERMINAL DATA BASE ... INSTANTLY configure for over 50 predefined terrrinals! 
FILES LARGER THAN MEMORY handled with easel 
CONTROL and HIGH BIT CHARACTERS may be entered and edited I 
DYNAMIC WORD WRAP/UNWRAP· FULL CURSOR CONTROL (and then some) 
EASY to SET TAB STOPS· GLOBALlSELECTIVElLITERAUIGNORE CASE REPLACE 
FULL BLOCK INSTRUCTIONS including PRINT, SAVE, INCLUDE, MOVE, COPY, DELETE 
VARIABLE SPEED (FAST!) BI·DIRECTIONAL AUTO SCROLL· GOTO PAGE N / LINE N 
COMPACT on disk and in RAM. (even the 16-bit versions are only 25k ",tes) I 
NOT COPY PROTECTED! 
AFFORDABLE ... Hig h performance at a fair price is our motto 
EXPRESS 1.0 SAMPLER available FREE on yourL.ocal Bulletin Board or for $10.00 from TCI 

GENTLEMEN ... I'm ready to step up to EXPRESS ... please send: 
__ copies EXPR ESS 2.2 at $29.95 + $5.00 shipping and handling 
__ copies EXPRESS 1.0 at $10.00 + $2.00 shipping and handling 
My computer uses: PCDOS - MSDOS - CPM-86 - CCPM-86 - CPM-80 (Circle One) 
Disk format: Kaypro 11- Kaypro 2X.4, 10 - Osborne 1 SSDD - EPSON aX-10 
(Circle One) Morrow MD2- Morrow MD3 - MS-PCDOS STD 5" DSDD - XEROX 5" DSDD 

IBM CPM-86 5" SSDD - Zenith Z90 - 8" SSSD - Apple 35 TRK CPM 
Other 5" Computer Sides Den 

Send Check or Money Order to: Name ________________ _ 

TCI Address 
17733205thAve.NE C·ty -------S-ta-te-_-~-Zi-p------

Woodinville, WA 98072 I _______ --u 

Washington residents must Phone Day Night -------
add 8.1% Sales Tax MastercardMsa -------- Exp 

MASTER 
CARD PHONE ORDERS 1·206·788·9732 VISA 

TOMORROW'S COMPUTING INNOVATIONS 

be able to advertise heavily, if at all. 
Ads are nice, but customers want to 
hear what others think about a product 
-- if only to find out that the company 
is legitimate. . 

So product reviews are very impor
tant. Software houses live and die by 
reviews. Magazines do publish reviews 
of various products but their space is 
limited. And getting their attention 
amid thousands of press releases can 
be very difficult. If your products are 
as unusual as mine, the chance be
comes even smaller. Creating an aware
ness of your product will take persist
ence. 
Clark A. Calkins 
C.c. Software 
1907 Alvarado Ave. 
Walnut Creek, CA 94596 

Z80MR Source 
I would like to know if source code 

is available for the Z80MR macro as
sembler (Micro C User Disk K25). The 
assembler has a bug in its print routine 
that could be fixed if source were in
cluded. 

Also, a hex dump of Z80MR shows 
that the commands ASEG, CSEG, EX
TERN, LOCAL, NAME, and PUBLIC 
exist. Use of these commands produces 
an OBJ file instead of a HEX file. With 
the assembler source to show the OBJ 
format, a linker could be written. 
Peter J. Hall 
2703 Newton St. 
Wheaton, MD 20902 

Editor's note: 
Some time back we tried (unsuccessful

ly) to obtain the Z80MR source. If anyone 
out there has done a disassembly, we'd sure 
like to have a copy to add to the Z80MR 
disk. 

••• 

MICRO CORNUCOPIA, #36, June-July 1987 5 



Programming A Laboratory Mouse 

Teaching A Rodent New Tricks 

If you've purchased a mouse for 
your PC, you've undoubtedly used it 
to paint pictures. Never mind that you 
could have done a better job in less 
time at a drafting table, and that any
thing short of a high-priced laser 
printer adds a decidedly digital flavor 
to your analog rendering. This article 
is about creating your own mouse in
terface. It's not hard once you under
stand mouse talk. 

M
aybe you've discovered you like 
to take mouse in hand and drag 
cute icons around the screen, 

even when you're just copying, delet-
ing, or printing files. Maybe you've in
stalled one of the mouse-driven word 
processing programs so you can cut 
and paste text with a flick of your wrist. 

This article should serve as a 
reasonable tutorial on making your 
code respond properly to mouse move
ments. Hopefully this will encourage 
you to try projects similar to the ones 
which follow. (I assume you have a 
Microsoft Mouse User's Guide or the 
equivalent. The manual is usually in
cluded with the mouse.) 

And, let's face it, working with a 
mouse is fun, and for some applica
tions, the point and click operation and 
hand-eye interface is very natural. 
Often, data is most easily evaluated 
and manipulated when represented spa
tially or graphically. 

Driving A Liquid Crystal Lens 
I recently used a mouse to control 

an experiment in an optics laboratory. 
The task was to manipulate the 64 vol
tages that drive a liquid crystal lens. If 
you don't understand all of the 
hardware and physics stuff that fol
lows, don't worry; I'll be getting to the 
programming aspects shortly. 

A liquid crystal lens is similar to a 

liquid crystal display. A birefringent 
material (a material possessing an 
index of refraction which varies with 
the direction of polarization of the inci
dent light) is sandwiched between 
glass plates covered with transparent 
electrodes. 

The liquid crystal molecules rotate 
when an electric field is applied across 
the electrodes. Thus, the liquid crystal's 
index of refraction changes as the 
electric field changes. (Assuming you 
start with polarized light.) 

A conventional lens varies in thick
ness, thus refractively focusing the rays 
passing through it. The classic converg
ing spherical lens, for instance is thick
er in the center than at the edges so the 
center's optical path length is longer. 

Optical path length is essentially a 
measure of the time light takes to 
travel through an object. You can 
achieve the same effect by varying the 
index of refraction of the lens material. 
The liquid crystal lens operates in this 
manner. 

Focusing capability is produced by 
varying the index of refraction sp?.tially 
in the lens. So, by increasing the index 
of refraction at the center of the lens 
with respect to the edges, the center 
region becomes optically "thicker." 

Unlike a conventional lens, the liq
uid crystal version can be controlled or 
adjusted by electrically changing the 
index of refraction. 

The focal length of the lens may be 
changed simply by changing the vol
tages on the electrodes. Also, fast 
image transforms could make real time 
image processing or adaptive image 
correction possible. 

Using A Mouse 
Getting back to the mouse. We use a 

PC in the optics lab to control the liq
uid crystal lens via a custom 64-chan
nel digital to analog (D / A) converter .. 

6 MICRO CORNUCOPIA, #36, June-July 1987 

By Earl Brabandt 
Intel Corporation 

1900 Prairie City Rd. FM2-66 
Folsom, CA 95630 

(Editor's note: If you're not quite sure 
about D to A, check out Bruce Eckel's ar
ticle in this issue.) 

We can write a user interface 
program in Turbo Pascal to supply 
several modes of operation low level 
routines for direct memory access 
(DMA) transfers to the D / A board, and 
two ways to talk to the mouse. 

A user can view an image produced 
by the lens and ad just it with the 
mouse. He can also randomly access 
and set any of the 64 electrode voltages 
in text mode. In graphics· mode, the 
PC's monitor displays the resulting 
image. 

The DMA data transfers from 
memory to the D / A board ensure that 
commands to change electrode voltages 
will be acted on quickly. In fact, as the 
user changes the levels with the mouse, 
his efforts are virtu all y unaffected by 
the intermittent data transfers to the 
D / A. The user simply changes the volt
age levels as desired, and milliseconds 
later, the new voltage levels are output 
to the appropriate electrodes. 

Humans are very adept at opera
tions involving qualitative visual cor
relations between a control display and 
a visual image produced by the system. 
Essentially, during interactive opera
tion, a human closes the lens control 
system's feedback loop. And, thanks to 
the mouse, it's fun! 

With Turbo Pascal 
You· can use the Turbo Pascal code 

in Figure 1 to set up screens and 
manage mouse operations for the liq
uid lens control program. Other modes 
of operation and the management of 
things like the DMA and D / A are 
specific to the hardware used in the 
lens experiment (and would just com
plicate this lesson), so I've omitted that 
code. 

Turbo Pascal's built-in "intr" proce-



dure and its Graphix Toolbox really 
helped me write this code. (If you don't 
have the Graphix Toolbox, you won't 
be able to run the graphics display 
mode. But, you will be able to run the 
text mode.) 

Graphics Support 
I originally wrote the program for 

systems with Hercules monochrome 
graphics cards (HGC). However, I've 
commented out the Hercules code in 
Figure 1. As the program now stands, 
it will run on the standard IBM color 
graphics adapter (CGA) or compatible. 

If your computer has the Hercules 
monochrome card, simply delete the 
CGA code and remove the comment 
delimiters protecting the HGC code. 
You'll need the higher resolution of the 
HGC to see some of the detail in the 
graphics mode. But whichever graphics 
card you have, be sure you've properly 
notified the Turbo Graphics Toolbox. 

Compatibility 
A note about compatibility all PC 

video cards are not alike. Neither are 
all versions of Turbo Pascal and Turbo 
Graphix Toolbox. When Gary 
(Entsminger) and I tested the code, we 
found inconsistencies between Turbo 
Pascal versions 3.00B and 3.01A, and 
Graphix Toolbox versions 1.01, 1.05A, 
and 1.07 A. The code as published 
works correctly when compiled with 
Turbo Pascal 3.01A (the latest) and 
Graphix Toolbox 1.05A. The code 
works almost correctly with Graphix 
Toolbox 1.07 A (the latest), but writes 
the coordinate scale at the top rather 
than the bottom of the screen (a minor 
matter). 

It's also necessary to rename a vari
able found in the Turbo Graphix Tool
box "typedef.sys" and "graphix.sys" 
files. See the comment at the top of 
Figure 1. 

Interrupting For A Mouse 
The Microsoft compatible mouse is 

accessed through DOS interrupt 51 
(33H). A software driver comes with 
your mouse, so see your mouse user's 
guide for installation instructions 
before running the code printed here. 

The Microsoft User's guide details 
the use of the eighteen mouse functions 
available through INT 33H. (See Table 
1.) Some Microsoft compatible mouse 

(continued next page) 

Figure 1 - Mouse Control in Pascal 

program LabHou5e; 
{ 
Note: due to the U5e of the re5erved word "window" in the Turbo 
Graphix Toolbox file5 "typedef.5Y5" and "kernel.5Ys", you'll have 
to do a little work on these files before trying to run this, or 
you will get an a55ignment compiler error. It appears that our 
friends at Borland pulled a good one and declared a "Window" 
variable in the Toolbox routines. 

Unfortunately there's already a "Window" procedure in standard 
Turbo Pa5cal. For this rea50n, it really 5hould be a reserved 
word. The fix is to do a search/replace (~QA) in the Turbo editor 
for the string "window:" and the string "window :" in the 
typedef.5Y5 file. Replace them with "WindowArray:" (leave out the 
quotes but keep the colon in there). Type GNU at the options 
prompt to be certain of changing all occurrences. 

Then, do a search/replace for the string "window[" in the 
kernel.sys file. Replace it with the string "WindowArray[" 
(again, leave out the quotes but keep the [ sign). Use the GNU 
option to change them all. 

ThiB iBn't a problem if you don't use the ,"Window" procedure in 
programB that UBe the Toolbox, but this code uses both the 
Toolbox and the built-in "Window" procedure. } 

conBt 
NumLineB = 7; {CGA Bcan 1ineB numbered 7 at bottom to 0 at top} 
{Next line for Hercules Video} 
(. 
NumLine5 = 13; 
.) 

type 

{Herc 50an lines numbered 13 at bottom to 0 at top} 

Table = array[1 •• 64] of Integer; {array to store electrode voltages (mV)} 
CurBorMasks = array[O •• 31] of integer; {mouse graphics cursor masks} 

RegPack = record 
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags : Integer; 

end; 

var 
Regs 
CellNum, 
Enable, 
Count 
InputTab1e 
Selection 
OK 

UI typedef.sys} 
{$I graphix.sys} 
UI kernel. sys} 
UI mouse.sys} 

RegPack; 

integer; 
table; 
char; 
boolean; 

{type definitions from Graphix Toolbox} 
{graphics routines from Graphix Toolbox} 
{graphics kernel from Graphix Toolbox} 
{mouse routines} 

procedure CramBuffer (AX, BX, CX, DX: Integer); 
{Allows left mouse button to act like a keyboard return by using 
mouse interrupt capability. Register contents AX-DX are not used 
by the routine because there is only one condition which causes an 
interrupt. (left button relea5ed)} 

(Figure 7 continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 7 



(continued from page 7) 

drivers, such as the Logitech driver, 
have additional functions. Obviously, if 
you use the extended functions in your 
programs, they will not be supported 
by the Microsoft driver 

Table 1 - Mouse Functions 

Function Purpose 
o Mouse installed flag and reset. 
1 Show cursor. 
2 Hide cursor. 
3· Get mouse position and button status.' 
4 Set mouse cursor position. 
5 Get button press information. 
6 Get button release information. 
7 Set horizontal position range. 
8 Set vertical position range. 
9 Set graphics cursor block. 
JOSet text cursor. 
11 Read mouse motion counters. 
12Set user-defined subroutine input mask. 
13 Light pen emulation mode on. 
14 Light pen emulation mode off. 
15 Set mickey/pixel ratio. 
16 Conditional off. 
19Set double speed threshold. 

Figure 1 contains the mouse routines 
used in the lens control program. The 
simplest routines merely load the func
tion number into the CPU's AX 
register. Other parameters are loaded 
into the BX, . CX, and OX registers 
before the software interrupt is placed. 

"TextCursor" sets the mouse cursor 
to the hardware cursor mode. A 
software text cursor is al~o available to 
change the attributes of a character 
under the cursor. Some or all of the cur
sor scan lines may be displayed in the 
cursor. This is done by writing the num
bers of the first and last lines to be dis
played in the CX and OX registers, 
respectively. The cursor maybe turned 
off by placing the number of the bot
. tom line (7 for CGA, 13 for HGC) in 
the CX register and a smaller number 
in the OX register. The cursor will 
"wrap around" and turn off. 

"SetXLimits" and ,"SetYLimits" 
restrict the movement of the mouse to 
a limited range on the screen, and 
"GetPosition" returns the mouse cursor 
position and the status of the mouse 
buttons. "CursorOn" and '~CursorOff" 
turn the graphics cursor on and off. 

The graphics cursor must be turned 
off to write to the screen in graphics 
mode. Otherwise the cursor will inter-

8 MICRO CORNUCOPIA, #36, June-July 1987 

Figure 1 - Continued 

type 
pointer = "'byte: 

var 
BuffPtr: integer absolute $0:$~1C: 
BufferPointer : pOinter; 

begin 
BufferPointer := Ptr(O,(BuffPtr+$400»: 
BufferPointer A := $OD; 
BufferPointer := Ptr(O,(BuffPtr+$~01»: 
BufferPointer'" := $lC: 
if BuffPtr = $3C then 

BuffPtr := $1E 
else 

BuffPtr := BuffPtr + 2: 
end: 

{determines head pointer in queue} 
{head pOinter in queue} 

{pointer to current queue position} 
{cram carriage return into queue } 
{pointer to next queue position } 
{cram linefeed into queue } 
{reset position pointer so that } 
{BIOS will read carriage return } 
{and linefeed. } 
{increment queue head pointer } 

procedure Beep; 
begin 

Sound(440)j 
Delay(500) j 
NoSound: 

{allows your choice of duratiori and frequency} 

{frequency} 
{duration} 

end: 

procedure ShowInputTable(InputTable: Table): {updates screen with values (mY)} 
var 

X,Y: integerj 

begin 
for Count := 1 to 64 do begin 

NormVideo: ' 
X :=«Count-1) mod 8)-8+21: 
Y :=«Count-l) div 8)13+2; 
Window(X,Y,X+3,Y+2): 
ClrScrj 
GotoXY(2,1); 
write(Count)j 
LowVideoj 
GotoXY(1,2)j 
write(InputTable[Count])j 

end: 
Window(1.1.80.25)j 
end: 

procedure SetScreen; 
type 

SmallStr = string[17]j 

{6~ voltages to update} 

{screen X coordinates} 
{screen Y coordinates} 
{use window to restrict write} 
{clear window} 
{position cursor in window} 
{write heading} 
{low video for voltage display} 
{position cursor in window} 
{write voltage (mY)} 

{reset window to full screen} 

{sets up screen} 

procedure Wr1teBlk(X,Y :integer: Heading :SmallStr)j {writes headings} 
begin 

GotoXY(X,Y)j 
Window(X,Y,X+18,Y+2): 
ClrScr: 
GotoXY(2,2)j 
Wr!te(Heading) j 

end: 

begin {procedure SetScreen} 
TextCursor(NumLines,l); 
TextBackground(O): 
TextColor(9)j 
GotoXY(22,1)j 

{use window to restrict write} 
{clear window} 

{no cursor} 
{underline bright video} 

write('LIQUID CRYSTAL LENS CONTROL PROGRAM type "q"or "Q" to QUit'); 
TextBackground(7) j {reverse video} 
TextColor(O): 
WriteBlk(1,10,' E: EDIT TABLE')j 
WriteBlk(1.18.' G: GRAPHICS'): 
TextBackground(O): 
TextColor(7) ; 
Window(1.1,80,25): 
ShowInputTable(InputTable); 

end: 

{normal video} 

{reset window to full screen} 
{update screen} 

(Figure 7 continued next page) 



Figure 1 - Continued 

procedure Getlnput(CellNum : Integer; var InputTable : Table); 
{gets user entry for an output (1 to 64) 

val' 
Voltage : Integer; 

begin 
LowVideo; 
ClrScr; 
TextCursor(NumLines-1, NumLines); 

repeat 
{$I-} readln (Voltage); {$I+} 
OK := (rOresult = 0); 

{underline cursor} 

GotoXY(1,1); {calling routine has defined window} 
ClrScr; {clear window} 
if (NOT OK) or (Voltage > 5000) or (Voltage < 0) tben 

Beep; 
until OK and «Voltage <= 5000) and (Voltage >= 0»; 

write(Voltage); 
InputTable[CellNum] := Voltage; 
Window(1,1,80,25); 

{update tables} 
{re::set window} 

NormVideo; 
TextCursor(2,NumLines-2)i 

end; 

procedure Display( GraphHin, GraphHax : integer; val' InputTable : table); 
{Scales and generates graphical display of data} 

var 
Step, 
LabelPos, 
RightSide 
Text 

begin 
Step := Round«GraphHax-GraphHin)/10); 
DeflneWlndow(1,O,O,XHaxGlb,YHaxGlb); 
DefineWorld(1,0,70,5000,0)i 
SelectWorld(1); 
SelectWindow(1); 
SetCl1ppingOn; 
SetLineStyle(O); 

(. 
{code commented out for CGA use} 
for Count := 1 to 64 do begin 

str(InputTable[Count],Text); 
DrawTextW(O,Count,1,Text); 

end· 
.) , 

DefineWindow(2,3,0,XHaxGlb,YHaxGlb); 
DefineWorld(2,GraphHin,70,GraphHaX,O); 
SelectWorld(2) ; 
SelectWindow(2); 

(. 
{code commented out for CGA use} 
for Count := 1 to 64 do begin 

integer; 
string[4]; 

{step scaling for graph} 
{define graphics window} 

{display mV on left ::side} 

if InputTable[Count] > GrapbHaX then 
RightSlde := GraphHax 

else RightSlde := InputTable[Count]; 
DrawLine(GraphHin,Count,RightSlde,Count); 

{do clipping cbeck--Turbo} 
{clipping is unreliable here} 

end; 
.) 

{llne to represents voltage} 

(Figure 1 continued next page) 

fere with the write operation. 
The general sequence to write to the 

screen in graphics mode is to get the 
mouse position and button status with 
"GetPosition." Then, when the user 
pushes the correct button, you update 
the screen by turning off the cursor, 
calling a graphics procedure to modify 
the screen, and finally, turning on the 
cursor again. 

"MakeGraphCursor" creates a 
graphics cursor. You may design your 
own cursor for your own application. 
Arrows, boxes, pointing hands, and 
fingers are popular. Two 16-by-16-bit 
masks are n'eeded. The masks are 
stored in the array called "Cursor." 

The first 16 locations of the array (32 
bytes) contain the 16-by-16-bit screen 
mask. The last 16 locations contain the 
cursor mask. Visualize these two masks 
overlapping one another and overlap
ping the 16-by-16-bit screen image 
where the mouse cursor is to appear. 

The mouse software forms a 
graphics cursor by first performing a 
bitwise AND operation of the screen 
background with the screen mask. 
Then the software XORs (exc1usive
ORs) the result with the cursor mask to 
make the final image that moves 
around the screen when you move the 
mouse. 

Another way of looking at it is to im
agine the screen mask determining 
whether the original background pixel 
has an effect on the final image. 

Take one bit position in the 16-by-16 
matrix. If the screen mask bit for that 
position is 0, then the displayed bit will 
be the cursor mask bit (again, for that 
bit position). If the screen mask bit is I, 
then the original background pixel will 
be inverted if the cursor mask bit is I, 
and it will remain unchanged if the cur
sor mask bit is O. 

It helps to fill in a couple of 16-by-16 
sections on graph paper with l's and 
O's when you're designing masks for a 
new cursor. 

The pixel co'ordinate on the screen 
underlying the cursor "hot spot" is 
used to select location with the mouse. 
This spot on the cursor can be placed 
anywhere in the 16-by-16 pixel region 
through the BX and CX registers. 

Interrupt Handling 
The procedure "IntSet" sets up an 

interrupt handler for a user-written in-

(continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 9 



(continued from page 9) 

terrupt routine. In this case, the handler 
is the procedure "CramBuffer." Mouse 
function 12 allows an interrupt to occur 
on mouse movement, button presses, 
button releases, or combinations of the 
events. In this program, I programmed 
an interrupt mask of 4 which causes 
the procedure "CramBuffer" to be ex
ecuted every time the left button is 
released. 

Whenever one or more of the condi
tions defined in the mask occur (in this 
case there's only one condition), the 
mouse software stops the execution of 
the program and calls the interrupt 
handler at the address specified in 
register OX. The software passes the 
status of the interrupt to the subroutine 
in registers AX, BX, CX, and OX. Be
cause there's only one interrupt condi
tion specified in the mask, this informa
tion isn't used by "CramBuffer." 

Before you can call "Cram Buffer," 
you need to do a little housekeeping to 
maintain the data segment (OS). Be
cause the interrupt may occur at any 
time, you must save the OS before call
ing "CramBuffer," and restore it after
ward. 

This is handled by executable code 
stored as constants in "lntSet." Con
stants are stored in the code segment 
(CS) in Turbo so the CS: instruction for
ces the use of the code segment for 
memory operations. 

The "CramBuffer" routine inserts a 
carriage return/linefeed sequence into 
the BIOS keyboard queue. Thus, when 
the left mouse button is released, it's 
like hitting a keyboard carriage return. 
This feature is used in the procedure 
"EditTable." I know, I know, it's not 
really that useful here, but I thought it 
would be good to illustrate the mouse 
interrupt capability as well as the BIOS 
keyboard queue. 

The BIOS maintains a circular queue 
of 16 two-byte entries for keyboard buf
fering starting at seg:ofs = OOOO:041E. A 
queue tail pointer exists at OOOO:041A. 
A head pointer is maintained at 
OOOO:041C. When the tail pointer isn't 
equal to the head pointer, the BIOS 
knows it has to read some characters 
starting at the location of the tail 
pointer. Then it must update the tail 
pointer. 

I like to think in terms of the tail 

(continued on page 12) 

10 MICRO CORNUCOPIA, #36, June-July 1987 

Figure 1 - Continued 

LabelPos := GraphMin; 
for Count := 1 to 10 do begin 

str(LabelPos,Text); 
DrawTextW(LabelPos,67,2,Text); 
DrawLlne(LabelPos,66,LabelPos,65); 
LabelPos := LabelPos + step; 

end; 
LabelPos := LabelPos + Step; 
DrawLine(GraphMax,66,GraphMax,6S); 

end; 

{draw scale at bottom} 

procedure GraphMode(var InputTable : table); 
{allows graphical display and entry of date with mouse} 

var 

:integer; 

Range, 
H3,H4, 
Voltage, 
GraphMin, 
GraphMax, 
ButtonPush, 
RightLine 
VideoMode 
Cursor 
Text 

:integer absolute $40:$49; {DOS stores current video mode} 
:CursorHasks; 

const 
Scale = 3; 
(. 

: string[ 4] ; 

{Next line for Hercules Video} 
Scale = 5; 
.) 
HotX = 8; 
HotY = 8; 
HgcPageZero = 6; 

begin 
NormVideoj 
TextCursor(Numlines-1, NumLines); 
GraphMin := 0; 
GraphHax := 5000; 

repeat 
GotoXY(1,25); 
write('Enter Display Minimum: .); 
ClrEol; 
{$I-} read (GraphMin); {$I+} 
OK := (IOresult = 0); 
if NOT OK then Beep; 

{Hercules graphics mode} 

{default values for graph} 
{dimensions } 

until OK and «GraphMin <= 5000) 
repeat 

and (GraphHin >= 0»; 

GotoXY(35,25); 
write(IEnter Display Maximum: I); 
ClrEol; 
{$I-} read (GraphHax); {$I+} 
OK := (IOresult = 0); 
if NOT OK then Beep; 

until OK and «GraphHax <= 5000) 
initgraphicj 

and (GraphHax > GraphHin»; 

SetBreakOff; 

(. 
{Next line for Hercules Video} 
VideoHode := HgcPageZero; 
.) 

{Toolbox initialization} 
{no breaks during Graphics} 

(Figure 1 continued next page) 



Figure 1 - Continued 

Display(GraphHin, GraphHax, 
MouseReset(Enable); 
for Count:= ° to 3 do 

cursor[Count):= $FFFF: 
cursor[4]:= $FOOFj 

for Count:= 5 to 10 do 
cursor[Count):= $F7EF; 
cursor[11):= $FOOF: 

for Count:= 12 to 15 do 
cursor[Count):= $FFFFj 

for Count:= 16 to 18 do 
cursor[Count]:= $0000; 

for Count:= 19 to 20 do 
cursor[Count):= $1FF8: 

for Count:= 21 to 26 do 
cursor[Count):= $1818: 

for Count:= 27 to 28 do 
cursor[Count):= $1FF8; 

for Count:= 29 to 31 do 
cursor[Count];= $0000; 

InputTable)j 
{Initialize House Driver} 
{make a nice box for a cursor with masks} 
{first 16 locations for screen mask} 

HakeGraphCursor(Cursor, HotX, Hoty): 
SetXLimits(24,XScreenMaxGlb); {Set Hin and Max Horizontal Position} 
SetYLim1ts(0,YHaxG1b-30): {Set Hin and Max Vertical Position} 
CursorOn: { Turn on Mouse cursor } 
DeflneWlndow(1,O,0,XHaxGlb,YHaxGlb)j 
DefineWorld(1,0,70,5000,0): {screen scaled for new coordinates} 
SelectWorld(l); 
Se1ectWindow(1): 
SetLineStyle(O): {solid lines} 
Range := GraphHax-GraphHinj 

repeat 
GetPosition(ButtonPush,H3,H4)j {returns mouse button pushed} 
if ButtonPush = 1 then begin: {paint lines if first button} 

RightLine := (Trunc«H4-1)/Scale»'Scale+4; 
Voltage := GraphHin + round«(H3-24)/(XScreenHaxGlb-24»·Range): 

{scale cursor position to voltage} 
CellNum := Trunc«RightLine-4)/Scale+l)j {determine electrode} 
InputTable[CellNum] := Voltage: {update tables} 

(. 
{code commented out for CGA use} 
str(InputTable[CellNum),Text): {update text} 
.) 
CursorOff: 
SetColorBlack: 

(. 

{must draw with cursor off} 
{to write over old line } 

{code commented out for CGA use} 
DrawTextW(O,CellNum,2,Chr(27)+'4'+Chr{27)+'4'+Cbr(27)+'4'+Cbr(27)+'4')j 

{wipe out old text on lett side of screen} 
.) 
DrawStraight(24,XScreenHaxGlb,RIghtLIne)j {wIpe out old line} 
SetCo1orWhite: 
(. 
{code commented out for CGA use} 
DrawTextW(O,CellNum,1,Text): {update new text} 
.) 

DrawStraight(24,H3,RightLine): 
CursorOn; 

end: 

{draw new line} 
{turn cursor on} 

until ButtonPush 2: 
leavegraphIcj 

{exit graphic it 2nd button} 

end: 

(Figure 7 continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 11 



(continued from page 10) 

pointer chasing the head pointer, but 
on the other hand, maybe the head 
chases its tail around the circular 
queue. You can figure out your own 
mnemonic. The present queue position 
may be obtained by adding 400H to the 
value in 0000:041 C. 

You can write your own routines to 
corrupt the keyboard queue with 
characters other than a carriage return 
and linefeed. I haven't had any 
problems with this method, but as with 
any technique that messes directly with 
memory locations reserved by the BIOS 
or DOS for housekeeping, it's difficult 
to ensure that it will always work as ex
pected. 

WrapUp 
Well that's it. Little white lab mice 

(mooses or whatever?) rarely bite. 
Thanks to INT 33H and the Turbo 
"intr" procedure, there really isn't any 
problem writing to a mouse. In fact, 
you can reduce the time required to 
program a mouse in your application 
by purchasing one of the optional 
mouse programmer's packages. 
Routines written in several languages 
are available from Logitech. 

••• 

12 MICRO CORNUCOPIA, #36, June-July 1987 

Figure 1 - Continued 

procedure EditTable; 
{allows mouse editing of table of 64 electrode voltages} 

var 
H2,H3,H4 
XCoord,YCoord, 
Cell X t Cell Y 

begin 

:integer; 

:byte; 

IntSet($0004,Ofs(CramBuffer»; {sets interrupt for left button push} 
TextCursor(2,NumLines-2); 

repeat 
SetXL1mits(136,632); 
SetYLimits(B,192): 

{Set Min and Max Horizontal Position} 
{Set Min and Max Vertical Position} 

{get mouse status} GetPosltion(H2,H3,H4); 
CellX := Truno«H3/8-1B)/8); 
CellY := Truno«H4/S-1)/3); 
XCoord := CellX • 8 + 21: 

{get coordinates of eleotrode} 

YCoord := CellY • 3 + 2; 
GotoXY(XCoord, YCoord); {move cursor to proper position} 
if KeyPressed then begin {get new value if keypressed} 

CellNum := (CeliX + S • CeIIY) + 1; 
Window(XCoord, YCoord+1, XCoord+3, YCoord+2): 
GetInput(CeIINum, InputTable); 

end; 
until (H2 = 2); {exit this mode for right button push} 

HouseReset(Enable): {Reinitialize House Driver} 
TextCursor(NumLines,1); 
end; 

begin {main body of program LabHouse} 
HouseReset(Enable); {InitialIze House Driver} 
if (Enable = 0) then begin 

writeln('Please install mouse driver'); {exit program if no driver} 
exit; 

end; 
ClrScr; 
FiIIChar(InputTable,SizeOf(InputTable),O); 
SetScreen: 
NormVideo; 

repeat 
repeat 

read(kbd,selection): 
if NOT (selection IN ['E','e','G','g','Q','q']) 

then Beep; 
until (selection IN ['E','e','G','g','Q','q']); 

case selection of 
'E','e': EditTable: {two modes of input available here} 
'G', 'g': begin . 

GraphHode(InputTable); 
SetScreen; 
NormVideo; 

end; 
end; 

until (selection='q') or (selection='Q'); {to quit} 

TextCursor(NumLines-1, NumLines); {restore cursor} 
ClrScr; 
end. 

End of Listing 

••• 



BUILD YOUR OWN SYSTEM 
FOR A FANTASTIC LOW PRICE! 

VIDEO CARDS 
Color /Graphics ............. " .. 63.00 
Color /Graphics/Parallel . .. . .. 76.00 
EGA Graphics ................... 259.00 
Mono .............................. 49.00 
Mono/Graphics................. 66.00 
Mono/Graphics/Parallel .. " .. 76.00 
Mono, Hercules Compatible, CGA, 

Color Emulation ............. 250.00 

EXPANSION CARDS 
Clock Card ....................... 25.00 
Floppy Disk Controller 

-2 drives ..................... 33.00 
Game Port.. . . . . . . . . . . . . . . . . . . . . .. 20.00 
Multi-Function, 1 ser/par/clk/game/ 

2 floppy.......... .. .. .. .. .. .... 89.00 
Parallel (printer) ................ 21.00 
Parallel (printer)/serial ........ 61.00 
Serial Port (RS232) 1 port + 

1 optional ..................... 32.00 
Serial Port (RS232) 2 port. .. 40.00 
640K RAM (elK installed) .... 39.00 
XT/AT RS232 

(4 port/2 installed) ......... 69.00 
AT Hard Drive & 2 

floppy controller (WD) .... 225.00 
AT 2MB Multifunction ....... 153.00 

CASES 
POWER SUPPLY 

150 Watt Power Supply 
(XT) ............................ 62.00 

200 Watt Power Supply 
(AT) ............................ 105.00 

XT Fliptop Case ................ 36.00 
XT Slide Case ................... 36.00 
XT/AT with Lock & LED .... 59.00 
AT with Lock & LED......... 81.00 

MONITORS 
Amdek Amber 310A .......... 175.00 
Packard Bell EGA/CGA 

(Auto Switch) ................ 507.00 
NEC Multisync .................. 740.00 
Quadram Amberchrome ...... 195.00 
Quimex CGA 

(Green switch) ............... 450.00 
Samsung Amber 12H TTL .... 96.00 
Samsung Green 12 H TTL ..... 89.00 
Samsung Amber w/Swivel ... 113.00 

Prices are subject to change without notice. 
Exact shipping CHARGES will be added. 

MOTHERBOARDS 
XT/Turbo 4.77/10mhz ....... 145.00 
AT 6/10 mhz (5 layer) ....... .499.00 
XT 640 (2 layer) ................ 109.00 
XT/Turbo 4.77/8 mhz 

(2Iayer) ........................ 125.00 
XT/Turbo 4.77/8 mhz 

(4 layer) ........................ 172.00 
For XT: need 18 pes. each of 64K & 

256K for 640K memory ... 75.00 
For AT: 640K ................... 75.00 

1MB .................... 125.00 
***w/ Adaptec .................. .480.00 
AT 30 MB Seagate #4038 .... 625.00 

**NO WARRANTY ON BOARD WITHOUT 
MINIMUM MEMORY ON IT** 

KEYBOARDS 
5339 Professional XT ~AT 

w /12 function key .......... 80.00 
5060 Keyboard AT Style ..... 63.00 

FLOPPY DISK DRIVES 
Fujitsu 360K ..................... 97.00 
Toshiba 360K ................... 109.00 
Teac 1.2 MB ..................... 160.00 
Toshiba 1.2 MB ................. 150.00 

HARD DRIVE 
& CONTROLLER 

20 MB Miniscribe 
or NEC HD ................... 367.00 

30 MB High Density Drive 
w / Adaptec ................... .480.00 

AT 30 MB Seagate #4038 ..... 625.00 
Western Digital Controller 

w/Cable (XT) ................ 113.00 
Adaptec RLL Controller 

(XT) ............................ 180.00 

20 MB Miniscribe or NEC Hard Drive 
with Controller Card ......... 399.00 

ACCESSORIES 
1200 Baud Modern 

(Leading Edge Model L) 
Hayes compatible .......... 150.00 

MS-DOS 3.2 with 
GW Basic ........... " .. .. .. . .. 85.00 

MS-DOS 3.1............ .. .. ..... 35.00 
Joystick (IBM Style) ........... 25.00 
V20-8mhz . . . . . . . . . . . . . . . . . . . . . . . . 17.00 
Memory Chips ........ (call for prices) 

BUILDING YOUR 
OWN CLONE 

****FREE BOOKLET** ** 
Contains a piece by piece explan-
ation of how various IBM PC 
compatible cards interface. In
cludes check list for custom 
system design. Call or write to 
order. 

SPECIAL XT KIT 
Includes: 

4.77/10 mhz XT with 640K, 
Mono/Graphics, Slide Cabi
net, 150 Watt Power Supply, 
12 Function Key Keyboard, 
Amber Monitor, 2 DSDD Disk 
Drives, Serial, Parallel, Clock 
& Game Ports, DOS 3.1. 

Sale Price $695.00 
With 20MB Hard Drive 
& 1 DSDD Floppy 
Drive ... Sale Price $995.00 

Shipping Extra 

*90 .. day warrantyl30 .. day money .. 
back (Subject to restock fee). 

Free instructions 
with each system. 

MicroSphere, Inc. 
P.O. Box 1221 

~. 

Bend, Oregon 97709 
(503) 388 .. 1194 ~ 

.: II·,: ~~r~s1-i Hours: Monday.Friday 
8:30·5:30 Pacific Time 

MICRO CORNUCOPIA, #36, June-July 1987 13 



Build A MIDI Interface For Your PC 

A Project For Cloned Musicians 

RS-232 isn't the only serial for 
your computer. In fact, RS-232 isn't 
even the best choice for some serial ap
plications because MIDI is the inter
face of note for digital key bangers and 
their cousins who dance to a (very) dif
ferent drummer. Join Jay as he looks at 
MIDI's bit part. 

T
he MIDI Interface is the hottest 
thing to hit the music industry 
since the introduction of the 

electronic synthesizer. MIDI, an 
acronym for Musical Instrument Digital 
Interface, is a relatively simple 
hardware interface/software protocol 
that allows the interconnection and con
trol of almost any electronic musical in
strument. It also proves that things can 
be simple and still work well, even 
when computers are involved. 

I've divided this article into three 
parts. First, I'll go over some of the 
uses of MIDI in today's music world. 
Then, I'll cover the entire interface in 
depth, from hardware to protocol. Final
ly, I'll outline some of my ideas on se
quencing and MIDI software. 

The Bottom Line 
All sorts of devices use MIDI to pass 

all sorts of data. The most frequent 
users are keyboard players. Almost all 
the keyboards built in the last four 
years or so (which is most keyboards) 
are equipped with MIDI. 

When you connect two MIDI 
keyboards together, all the notes you 
play on one (keyboard A) are trans
mitted to the other (keyboard B). 
Keyboard B then plays this data as if it 
had created it itself. 

But MIDI ties together more than 
just keyboards. Rhythm machines 
(boxes that play back digitally recorded 
drum sounds) can transmit timing and 
note data over MIDI. Most of today's 

signal processors also exchange 
parameter and control data over MIDI. 

Even guitarists can get into the 
MIDI scene. By connecting to a control
ler and playing on a specially 
retrofitted guitar, tone data can be 
decoded from the strings and sent over 
MIDI to drive other devices such as 
synthesizers and samplers (a sampler is 
a keyboard that plays digital samples 
of other instruments). Keep this in 
mind the next time you're listening to 
your favorite "keyboard" solo. 

The Hardware 
At the most basic hardware level, 

MIDI is an asynchronous serial inter
face. Data is sent and received at 
31.25K baud (31,250 bits/second) in 8-
bit bytes (one stop bit, no parity). I. 
know the speed's nothing to write 
home about, but the Gods of MIDI 
wanted to make sure they weren't too 
quick for Commodore 64s or Apple lIs. 
They also wanted to minimize RF inter
ference. 

Data is transmitted over 5-line DIN
type cables. A given cable will never 
carry data in more than one direction 
at a time. Data originates at the MIDI 
OUT connector of the transmitting 
device and is received at the MIDI IN 
of the destination device. 

For purposes of electrical isolation, 
each "receive circuit" is built around 
an opto-coupler or opto-isolator. The 
input portion of the isolator is driven 
by a 5mA current loop from the trans
mitting device. 

MIDI THRU is simply a reproduc
tion of the signal occurring at the MIDI 
IN jack. It's useful for chaining many 
devices to a single MIDI OUT. 

See the transmit/receive circuits in 
Figure 1. 

(Note: Figure 1 presents a complete 
MIDI interface circuit for IBM PC type 
machines. The 8253 Programmable In-

By Jay Kubicky 
934 North Orange St. 

Media, PA 19063 

terval Timer is utilized by my sequenc
ing software and isn't necessary to im
plement a barebones MIDI port. 
However, I advise you to include it. 
For more information on the interface, 
see "MIDI Project", Byte, June 1986.) 

MIDI Protocol/Channel Messages 
The MIDI protocol is a general set of 

commands used for sending both 
specific and non-specific information. 
Although all MIDI devices do not sup
port all commands (in fact, most don't), 
the commands that are recognized are 
the same for all devices (a Note On is a 
Note On is a Note On). Where else in 
the computer world could you possibly 
find such standardization? 

Commands are called messages. 
Each message is made up of one or 
more bytes. The first byte of every mes
sage (known as the Status byte) has its 
high bit set; all subsequent bytes 
(known as Data bytes) have their high 
bits reset. 

Although all data is sent over a 
single electrical path, the MIDI protocol 
lets you send messages to anyone of 
16 receivers. The other receivers on the 
bus ignore the data. Thus, a single 
transmitter can send messages to (con
trol) as many as 16 receivers. These 
messages are called Channel Voice and 
Channel Mode Messages. 

I've illustrated. the implementation 
of these virtual Channels in Figure 2. 

Channels are specified by the bot
tom four bits (0-3). All other bytes in 
the message are unaffected by the chan
nel number. 

Channel messages are the most fre
quently used messages on the bus. 
They include messages concerning note 
status, note volume, pitch bending and 
program changes. All Channel Mes
sages are made up of at least two 

(continued on page 16) 



Figure 1 - MIDI Interface Circuit 

SAO~ 

SAOI 

SA02 

SAD3 

SY 

SY 

SY 

SY 

S 

S 

SY 

S 

YSA04 

s 
S 

SY 

SY 

YSAD5 

SA06 

YSA07 

YSAOB 

YSA09 

AEN 

SIORO 

SIOWR 

BSY 

8 
SCLK0 

RESET 

IRQ2. 

00 

01 

02 

03 

04 

05 

06 

07 

A31 

A30 

A29 

A28 

A27 

A26 

A25 

A24 

A23 

A22 

All 

814 

813 

B2~ 

82 

84 

A9 

AB 

A7 

AS 

A5 

A4 

A3 

A2 

Cf) 
::l 
CD 

w 
..J 
II) 

;: 
tt 
:E 
0 
0 

:i 
e 

~~ 
1K 

dB 2ICG 3 

1 

2. 

3 yfJ 15 , , 2 2 
IC2 

12 4 yl..!.i. 
~ 13 

\ 
IC4 - 74~S04 IC5 

74LSlfJ 
74LSI38 I 9 / 

I 10~B 5 

3 J' 4 11 . 6 

3 
IORQ +f. 4 IC2 6 

5 +5V 
+5" 74LSlfJ H >Rl 

LR. t,·BK 
~"1.8 K ~ RI 

IC3 . I.BK 
74LS~4 

1 2~ 
V I 51"'--.. 6 

a gil' V 
'-J 

21 
XTAL 
2MHz 

JOl 
I I +}} 

... f!~ 
... ~ RII11 

lK 
"·33111Jl. 

4 9 

5 ICG 
6 ICG 8 2MHz 

1 

r---------------------------, 
IC4-74LS~4 I 

t~l~ 
I 
I 
I 
I 

~'2 (oTRB) , 
I 
I (OTC§-

o 2 0 

1 3 

SYNC OUT 

_ r- ________ (.?~~I.?~~:) ____ - ____ .J 

35 
+5V +5V OPTO-

CE ~~ t ISOLATOR 
B-

B/A ~ M. 8 .!.NC 

6 lEI C/O ~ --- • 270n 
NC.1. HP6N13B 2 · 20 CLK OTRA 16 

6 L-
21 RESET 2~ OTRB 13 

5 iNT t ±NC 

32 RO 
te. r- ]12 40 

IC7 
00 Z-8~8 14LS04 

'01 DART '-....11 
39 02 

2 03 10 
38 Rx OA 

12 RECEIVE b 04 5 4 
:3 05 o 0 

37 06 MIDI IN 
4 07 TxoA 

15 TRANSMIT 9 

RxCA TxCA R;T;Ce , ICI 
e 74LS{/)4 

t~ jt4 l21* 

~ Cs 
22 RD rCB Af/S .!L 

8253 M..-23 WR At 

e Of/S OUT2. 11* 

101 
6

02 
OUT0 :J .. 

5 03 CLK 1 15 

4 04 

3 05 GATE 2 J£ 
2. 06 .!i., , GATE 1 

07 

GATE 0 r1L 
CLK2. CLKI1I 

18* 9 

+5\1 Ri 

L 1.6K 

* OPTIONAL FOR 
SECOND SERIAL PORT 

'J +5V 
,,~ 

2 

• 22{/).n. ~ lefJ.n 

... 0 

0
5 4-

0 

MIDI THRU 
3 

'4' ICt 
74LSI/)4 

5../ +5" 
L.l. 

6 .. 

~ 2201l.. 16f}!l. 

--
0 

5 4 
0 0 

MIDI OUT 

MICRO CORNUCOPIA, #36, June-July 1987 15 



Figure 2 - Channel Message Status Byte Bit-Map 

Bit:7 6 5 4 3 2 1 0 

INNNCCCC 

where: 
N N N is a 3-bit value between 0 and 6 
defining the message type (function) 

- and-

C C C C is a 4-bit value between 0 and 15 
representing the channel. 

Figure 3 - SystemCommonlReal-Time Message Bit-Map 

Bit:7 6 ·5 4 3 2 1 0 

I111PPPP 

where: 
P p.p P is a 4-bit value 
between 0 and 15 encoding the 
function to be executed. 

Figure 4 - MIDI Modes 

OMNI ON/POLY: (Mode 1) 

Transmitter: 
All voice messages are sent over 
channelN. 

Receiver: 
Messages from all channels are played 
over all voices, polyphonically. 

OMNI ON/MONO: (Mode 2) 

Transmitter: 
Voice messages for a single voice M 
are sent over channel N. 

Receiver: 
Voice messages for all channeis 
control only one voice, 
monophonically (no more than one 
note will sound at a time). 

OMNI OFF/POLY: (Mode 3) 

Transmitter: 
Same as OMNI ON /POL Y, above. 

Receiver: 
Voice messages from channel N only 
are played over all voices, 
polyphonically. 

OMNI OFF/MONO: (Mode 4) 

Transmitter: 
Voice messages for voices 1 through 
M are sent in channels N thru 
N+M-l, respectively. (Single voice 
per channel.) 

Receiver: 
Voice messages are received on 
channels N thru N+M-l and assigned 
monophonically to voices 1 through 

·M. 

16 MICRO CORNUCOPIA, #36, June-July 1987 

(continued from page 74) 

bytes: one Status and one Data. 
I've summarized the entire MIDI 

spec (well, at least MIDI 1.0) in Table 1. 
As far as I know, this is the first time 
the entire spec has been published and 
explained in a magazine anywhere (9f 
course, you could always pay the IMA 
$35 for a copy). 

The first part of the table, the Chan
nel Messages, is what you've just spent 
the last few minutes reading about. But 
what about the System Messages? Read 
on ... 

MIDI Protocol/System Messages 
Although Channel Messages make 

up the bulk of transmitted MIDI infor
mation, there are two other groups of 
MIDI messages: System Common and 
System Real-Time Messages. 

System Messages (as a whole) are, 
as the name would imply, messages 
that apply to all receivers in the sys
tem. I've illustrated the general bit-map 
of a System Status byte in Pigure 3. 

I mentioned two subclasses of Sys
tem Messages: System Common and 
System Real-Time. System Common 
Messages support functions such as 
tuning requests and system reset, while 
Real-Time messages deal with timing. 

Since System Real-Time Messages 
have the task of keeping the bus 
synchronized, they may be sent at any 
time, even in the MIDDLE of another 
message. Thus, during normal opera
tion, a Channel Status byte may be 
received, followed by a System Real
Time byte, followed by the Data bytes 
accompanying the initial Status byte. 
This only applies . to System REAL
TIME Messages. 

In order to save bus time (which can 
be at quite a premium at 31K baud), 
MIDI implements what's known as run
ning status. Running status is simply 
this: if you're sending two messages of 
the same type (same Status byte and 
channeD in a row, the Status byte for 
the second message can be omitted. So 
if you were sending two Note On mes
sages over the same channel, you could 
send them as follows: 

Status 
1001ccccOl100000 01000000 
0110010001001000 

This would transmit two Note On 
events for notes 96 and 100 with 



velocities of 64 and 72. By not having 
to send the second status byte (it's as
sumed), the net bus time is reduced by 
around 16 percent. The more like mes
sages sent in a row, the more time is 
saved. 

MIDI Modes 
I guess the most confusing thing of 

all about MIDI are the modes on the 
bus. Instead of trying to introduce the 
modes in some crafty way, why don't 
we just plow through 'em one at a 
time. 

But first (seems there's always some
thing), let's cover a little vocabulary. 

To best understand anything about 
MIDI, you should always bear in mind 
that it was originally designed by 
keyboard players for keyboard players. 

In keyboards, tones are generated by 
voices (also called oscillators). Most 
keyboards have between four and eight 
voices, so they can sound AT MOST 
four to eight different notes at a time. 

There are four MIDI modes: OMNI 
ON/POLY, OMNI ON/MONO, OMNI 
OFF /POL Y, OMNI OFF/MONO. Al
though I have been referring to "modes 
on the bus, " MIDI modes are assigned 
independently to each device in the sys
tem. See Figure 4. 

I should emphasize that Modes 1 
and 3 are by far the most commonly 
used of the four modes. The Mono 
modes are essentially just carryovers 
from the early days of MIDI when 
buying a synthesizer meant refinancing 
your home and voices were at a 
premium. Where a single VOICE 
would be assigned to a given channel 
(through Mode 4) to achieve 
polyphony five years ago, a single SYN
THESIZER (through Mode 3) would be 
assigned today. 

Shopping? 
Congratulations. You've just 

trudged through the worst of MIDI. If 
you could follow most of what I've 
been saying, you probably have a pret
ty good idea of how it all works. Or do 
you? Well, just to be sure, we'll go over 
everything one more time. 

But instead of a run-of-the-mill, 
textbook style review, we'll approach 
things from a more practical 
standpoint. In other words, get your 
checkbooks ready, we're going shop
ping. 

Mondo MIDI 
For a review, we're going to set up 

and analyze a Mondo MIDI system. Of 
course, we can't really set up the gear 
right here in the magazine (there's not 
enough room), but we can do the next 
best thing. Let me present Figure 5. 

Figure 5 is our mondo MIDI setup. 
It is, in fact, similar to what you might 
find in an actual studio setup. I've 
divided our layout into three major sec
tions: Input, Output, and Sync. Let's 
start with the Input. 

The Mondo MIDI, INPUT: 
As I've said, MIDI data can come 

from many sources. Among these are 
keyboards, guitars and rhythm 
machines. I've chosen the most com
mon source: keyboards (yes, I see the 
Sync Converter, too, but we're saving 
that for later). 

When played, these keyboards will 
produce MIDI messages and send them 
on a preassigned channel. Although 
there can be only one transmitter per 
cable, a couple of seconds on the HP-
15C shows us that normal performance 
utilizes only a very small portion of the 
bus bandwith(time). How can we use 
some of this time? Enter the MIDI 
merge. 

MIDI mergers are neat little black 
boxes that take two or more MIDI 
INputs and merge them into a single 
MIDI OUTput. They work much like 
conventional data multiplexers, and, 

Figure 5 - Mondo MIDI Setup 

INPUT 

,D 
r;:, §I~UT 

\ 

like data multiplexers, can become tem
porarily overloaded. This will cause 
messages to pile up in a buffer (hopeful
ly) until adequate bus time is free to 
catch up. Hence, the tradeoff: data 
merging for possible late notes. 

It's worth mentioning that some of 
the newer keyboards implement MIDI 
merge by themselves. They do this by 
taking their MIDI IN, mixing it with 
data generated internally, and 
retransmitting it over MIDI OUT or 
MIDITHRU. 

Mergers, in general, are somewhat 
exotic, and hardly necessary for normal 
operation. A single keyboard works 
just fine, giving us what we want: a 
single stream of Input data. 

The Input stream is the basis of the 
whole system. In our system, we're 
recording the data into a computer for 
later editing and playback (more on 
that later). For now we'll worry about 
getting the data back out onto the bus. 
So, turn to part two of our diagram: the 
Output. 

The Mondo MIDI, OUTPUT: 
All transmitted data originates from 

a MIDI OUT somewhere. In many 
cases, you may want to drive several 
devices from the output of a single 
source. 

There are two ways of splitting up 
MIDI data. The first is known as the 
MIDI THRU box, and this little guy's 

(continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 17 



Figure 6 - Proposed MIDI data 
storage format: 

Comment: ""=> means 'Is stored as.' 

Note On (BOh, note, vel) .... -> 
(t) OOvvvvvv 1nnnnnnn 

Note Off (90h, note, vel) ...... > -
(t) OOvvvvvv Onnnnnnn 

After-touch (AOh, note, vel) --> 
(t) 01000010 Onnnnnnn Ovvvvvvv 

Control Change (BOh, cntrlr, val) ... -> 
(t) 11000000 ONNNNNNN Occccccc 

Program Change (COh, program #) 

""-> 
(t) 01000000 Oppppppp 

Channel Pressure (DOh, pressure) .. -> 
(t) 01000001 Oaaaaaaa 

Pitch Bender (EOh, LSB, MSB of val) 
...... > 
(t) 10wwwwww 

vvvvvv(v) - Top 6 (7) bits of note 
velocity value. 

nnnnnnn- Note number. 

NNNNNNN- Controller number. 

ccccccc- Controller value. 

ppppppp- Program number. 

aaaaaaa- Channel pressure 

wwwwww- Top six of 14 bit bender 

val. 

(t)- This is the position of 

the timing byte(s). See 

text. 

(continued from page 77) 

sole purpose in life is to make a lot of 
copies of a single MIDI INput stream. 
Inside, he's just a whole bunch of MIDI 
THRU circuits wired to a common IN. 
Hence the name: MIDI THRU box. 

But there's a more direct way of car
rying a single MIDI signal to multiple 
receivers: the MIDI THRU JACK. 

By chaining devices together, as I've 
shown in Figure 5, a signal can be 
taken as far as you like. The only 
problem is that not all devices have a 
MIDI THRU jack. (Oh well, you can't 
win 'em all.) 

Now For Some New Stuff 
And so it seems, Input and Output 

aren't major problems in MIDBand. Or 
are they? There's something we haven't 
considered, and for that we need a lit
tle more background information. 

Synchronization & Sequencing 
One of the major uses of MIDI is the 

digital recording and editing of music. 
(Well, it's not really music, but musical 
events.) This process of recording is 
generally referred to as sequencing 
(derived from the process of playing 
back sequences of notes). 

We'll talk more on the theory of se
quencing later, but, for now, consider 
this: a sequencer is playing back a 
recorded song. At the same time, a 
rhythm machine is to play back a 
preprogrammed drum pattern. And it 
all has to be synchronized over MIDI. 
What's the deal? 

If you guessed Timing Clock, you 
win the prize (an IBM 3270 ... 00ps! This 
isn't April any more). 

The Timing Clock message (see Sys
tem Real-Time Messages) is sent by the 
transmitter at· a rate of 24 clocks per 
quarter note. By starting things off with 
the Start message, maintaining a steady 
stream of Timing Clocks, and stopping 
with Stop, the bus master keeps every
thing in time (see the table for more on 
these messages). 

In our setup, we're recording all syn
thesizers with a multi-track tape re
corder. Whenever multi-track is used 
with MIDI, one of the tracks must be 
set aside for synchronization. This is 
done by recording an FSK (frequency
shift keyed) or similar audio tone on 
the tape at 24 pulses per quarter note. 

Our sync converter (and many com
mercial "Sync Boxes") not only 

18 MICRO CORNUCOPIA, #36, June-July 1987 

generates these tones from Timing 
Clocks, but also reverses the process to 
output timing information onto the 
bus. We've mixed this with data from 
the keyboards to allow tape-synced 
recording into the computer. 

Software & Sequencing 
As I've mentioned, one of MIDI's 

major uses is the recording, editing, 
and playback of music data (sequenc
ing). Personal computers prove to be 
very well suited to this task. As a· con
clusion to the article, I'm going to go 
over some methods of implementing a 
software sequencer. 

The basic task of a sequencer is to 
record MIDI messages (events), so the 
first problem to overcome is how best 
to store data. 

In order to most efficiently store 
MIDI messages in memory, we're 
going to to have to revamp the 
protocol a bit. We know that we're not 
going to be storing any System Mes
sages because they don't define any 
real music. We also don't have to 
worry about channels because each 
channel will go in a separate buffer. All 
we have to save is the Channel Voice 
Message. Piece of cake. See Figure 6. 

This protocol supports all Channel 
Voice· messages, and saves memory. 
But there is a price. 

The problem with· the protocol is a 
loss of resolution in certain areas. 
Specifically, the velocity and pitch 
bender codes. The velocity loss is no 
big thing (only one bit), but the pitch 
bender is a little more radical (eight 
bits). 

The reason for this is that most 
synths send out LOADS of data for 
even the slightest nudge on the bender. 
With a generous protocol, this can 
equate to a LOT of memory eaten up in 
a hurry. And pitch benders aren't all 
that precise anyway. 

So now we have the data. But wait! 
I almost forgot something! We have the 
data, but we don't know when we got 
it. We need to record the timing infor
mation, and we have two choices - the 
absolute and relative methods. 

We have to start with a timebase of 
some sort. Let's assume that we've set 

. up the PIT (Programmable Interval 
Timer) in the IBM PC to .trigger an in
terrupt, oh, say, 5760 times per second 
(5760 = 120 x 4B). This interrupt is our 
internal metronome (set to 120 beats 
per minute), and our best resolution for 



recorded data will be 48 divisions per 
quarter note (or 24 per eighth note, or 3 
per sixty-fourth note). 

Once we've established a 
metronome, we have to figure out how 
to use it. The most direct method is the 
absolute. Using this method, the inter
rupt increments a 16-bit counter vari
able. The counter is then stored in 
memory with our earlier data. The 
process is simply reversed for 
playback. 

The only real drawback to this 
method is its use of memory. As we 
shall soon discover, data can be stored 
just as well by using only one byte for 
timing. However, the absolute method 
is much simpler to implement and un
derstand (let's hear it for simplicity). 

Relative timing is somewhat more 
complicated. Instead of storing things 
in relation to an absolute timebase, rela
tive timing stores only the number of 
beats between each message. Since, 
under normal circumstances, not more 
than five beats will pass with no bus ac
tivity, we can deal with most messages 
by saving only one byte (256/48 = 5 + a 
little bit). 

But what happens if more than 256 
clock ticks pass between messages? 
Then we must store a dummy message 
to keep things in order. This means 
wasting two bytes for every five beat 
pause. However, the final saving in 
terms of memory is probably around 20 
percent. 

Yeah! We can cut memory usage by 
one-fifth! Well, it's not that easy. Rela
tive timing is a whole lot more difficult 
to code t.han absolute timing, especially 
in the playback routineS. And the data 
(just about) has to be converted into 
some kind of absolute format to do any 
editing on it anyway. Well, that's just 
too much for me to think about, so I 
give the thumbs up to absolutism. 

Of course, the ideas I've presented 
here are really just that: ideas. Al
though I've spent a great deal of time 
thinking about how to attack this 
problem, I'm not perfect. There could 
easily be something wonderful that I've 
overlooked. If you see it,let me know. 

Winding Down 
We've covered a lot of ground in 

just one short article. However, there's 
no substitute for experience, and to real
ly get a complete understanding of 
MIDI, you must program MIDI. 

The entire MIDI industry is really 

just getting started. With such a vast 
gap to be filled, it's really anybody's 
guess where things are headed. 

Table 1, MIDI specifications is 
available on the Micro Cornucopia 
RBBS. (503) 382-7643 

If you use a 
SCIENTIFIC CALCULATOR 

and a PERSONAL COMPUTER, 
you need the 

••• 
HP-PC HYPERCALCULATOR. 

YOU NEED: A pop-up scientific 
calculator for the IBM PC Integrated 
with every program you use. 

YOU NEED: A programmable calculator 
with 100 registers, 1000 program steps, 
and alphanumeric prompts. 

YOU NEED: A faithful emulation of the 
Hewlett-Packard HP-11 C that runs 20-40 
times faster. 

YOU NE~D: Only $39.95 plus $·1 for 
shipping (includes free 8087 version 
and utility programs). 

Stop copying from calculator 
to computer now! 

Call toll-free: 
(800) 628-2828, ext. 502 

Sunderland Software Associates 
Post Office Box 7000-64 

Redondo Beach, CA 90277 

HP-llC and IBM PC are trademarks of Hewlett-Packard Co 
and International Busoness Machones Corp .. respectively 

Eco-C C Compiler 
"This is the only package we reviewed that we 
would be willing to call a professional tool." 

Computer Language, Feb., 1985 

When the review mentioned above was written, 
the Eco-C C Compiler was priced at $250.00. Now 
you can have the same compiler for a mere $59.95. 
And that price is complete, including a library of 
120 functions, all operators (except bit fields), 
structures, unions, long, floats, doubles, plus user's 
manual. We've even included a special version 
of the SLR Systems assembler and linker. 

Benchmarks· 
(Seconds) 

"Times courtesy of Dr. David Clark 
CNC - Could Not Compile 
NIA - Does not support floating point 

Eco-C requires 56K of free memory, 240K disk 
space (one or two disk drives or hard disk), Z80 
CPU and CP/M 2.2 or later. We also have an 
MSDOS version at the same low price. Call today! 

1-800-952-0472 (orders only) 
1-317-255-6476 (information) 

• [3C 
l ... '!!! (317) 255-6476 • ~.ii 

6413 N. College Ave . • Indianapolis, Indiana 46220 

MICRO CORNUCOPIA, #36, June-July 1987 19 



Intro To Database Programming, Part 2 

Entity-Relationship Models 

Here we are again folks, the second 
installment in the continuing saga of 
Dr. Dobbs and Dee Base. I hope you'll 
read on as these two face the age-old 
question: Is Dee really off base or has 
Dobbs just gone to the dogs? 

I
n our last episode (see Micro C #35 
pp 14-18) we met Dr. Dobbs, the in
trepid veterinarian who was attempt-

ing to stitch his business into a 
microcomputer. During the first few 
weeks of his project, he spent a great 
deal of money, used up all of his even
ings and weekends, alienated his office 
staff, and lost one of his best clients. 

He finally hired a consultant, Ms. 
Dee Base, who told him that his 
problem lay in poorly designed data 
files. She suggested a simple way to 
reorganize the structures he had 
created, and went on to convince him 

Figure 1· Entity Relationships' 

that they should do a complete busi
ness analysis together. That lead to a 
much more durable database design 
and much more ... 

An Entity-Relationship 
There are many methods for design

ing relational databases, but Ms. Base 
prefers the Entity-Relationship model. 
The first step in this design process is 
to identify all' of the entities used by a 
business. 

An entity is a person, place, thing, 
or process that the business wants to 
keep data about. Dobbs decides to keep 
track of his clients and their accounts, 
including the bills he sends them, the 
payments he receives from them; the 
animals he sees, the number of visits 
each makes - plus routine vaccinations, 
medications, and procedures. 

He must then define the relation
ships among all of these entities. 

20 MICRO CORNUCOPIA, #36, June-July 1987 

By Sandy Brabandt 
6424 Sunnyfield Way 

Sacramento, CA 95823 

Specifically, he must decide which en
tities relate to each other, and whether 
these relationships are one-to-one, one
to-many, or many-to-many. 

One To, One To, Many To 
For example, each client has one ac

count, and each account belongs to one 
client. The client-account relationship is 
one to one. 

The client-pet relationship is one-to
many. One client may have many pets, 
but a pet may have only one owne'r. 

The pet-procedure relationship' is 
many-to-many, because a pet can have 
many procedures performed on it, 
while a particular procedure can be per
formed on many different pets. 

Based on her discussion with Dobbs, 
Ms, Base now charts the entities and 
their relationships. In her chart, a 
single-headed arrow indicates the 
"one" end of a relationship, while a 



double-headed one indicates the 
"many" end of a relationship. The 
chart ends up looking like Figure 1. 

Simplifying Relationships 
The next step in the design process 

is to simplify the relationships as much 
as possible. First, eliminate the one-to
one relationship between client and ac
count by combining them into a single 
entity ("client"), since a client will al
ways have an account, and an account 
will always belong to a client. 

Next, eliminate redundant relation
ships. The shots, procedures, and 
medications entities are all related to 
both the pet and the pet visit. Since 
shots, procedures, and medications can 
only be administered as part of a pet 
visit, and since the pet visit is related 
directly to the pet, the direct relation
ship of these entities to the pet is redun
dant, so we axe it. 

Eliminate unnecessary relationships! 
For example, although payments are 
made against bills, Dr. Dobbs doesn't 
particularly care to know exactly which 
payments are made against which bills; 
he only cares about how bills and pay
ments affect a client's account balance. 
So, we can remove the relationship be
tween bills and payments. 

Ms. Base also points out that "shots" 
are really a subset of "procedures", 
since giving shots is a kind of proce
dure. So, away with the "shots" entity. 

Figure 2 - Updated Entity Relationships 

The updated chart looks like Figure 2, 
an improvement of two fewer entities. 

Parent-Child Relationships 
The one-to-many relationships are 

called "parent-child" relationships, 
where the "one" side of the relation
ship is called the parent, and the 
"many" is called the child. This is 
something of a biological misnomer, 
since in a relational database a child 
can have a theoretically unlimited num
ber of parents, but it does enable us to 
speak more easily about relationships. 
Note that a table can be the parent of 
certain tables and the child of other 
tables at the same time. 

The many-to-many relationships are 
a special case that we'll deal with later. 

Once the parent-child relationships 
have been defined, the table keys can 
be determined. The key of a table is 
made up of the column or columns in 
the table that identify each record uni
quely. In addition to identifying the in
dividual rows in a table, the keys also 
provide the means to physically repre
sent the relationships between the 
tables: every child table must contain 
the keys of all of its parent tables. 

In an earlier example (Micro C #35 P 
17), the Client table was the parent and 
the Pet table was the child, and the key 
of the Client table (the client ID) was 
stored in the Pet table, providing the 
link between the two tables. 

I GJ-[;J~ . ...--------, 
. . I L Procedures 

Medications 

The client ID, stored as 
PET_OWNER in the Pet table, is called 
a "foreign key." The primary key of the 
Pet table is the pet name. However, 
since there could be several pets of the 
same name, it takes both the 
PET_NAME and PET_OWNER 
columns to uniquely identify a row for 
a particular pet. From this you can see 
that the primary key of a table need not 
uniquely identify a row by itself, if a 
row can be uniquely identified by the 
combination of primary and foreign 
keys. 

Defining Keys 
To define the keys in the Entity

Relationship model, start at the top and 
work down. This means starting with 
the great-granddaddy table that has no 
parents, the Client table. 

The key to this table, the Client ID, 
has already been established. It's al
ready in the Pet table, so we add it to 
the Bill and Payment tables. 

The Bill table has the billing date as 
its primary key, and the combination of 
the Client ID and the billing date ser
ves to uniquely define the record. The 
Payment table similarly uses the pay
ment date as its primary key. 

The Pet Visit will contain the key of 
its parent record, the Pet table. As we 
discussed earlier, it takes both the 
primary and foreign keys of the Pet 
table, both the Client ID and the Pet 
Name, to identify a pet uniquely. 

Therefore, both of these fields must 
be placed in the Pet Visit table as 
foreign keys in order to link a par
ticular visit to a particular pet. The 
primary key of the Pet Visit table is the 
visit date, because it distinguishes one 
pet's visit from another. 

So, continuing this procedure, we 
identify the primary and foreign keys 
of each of the tables. The final key as
signments look like Figure 3. 

Many-to-many Relationships 
Now let's return to the many-to

many relationships in the chart. 
These can't be represented directly 

in a relational database since there's no 
clear parent or child. In order to repre
sent the many-to-many relationship be
tween two tables, we create a third 
table to provide the link. To see how 
this works, consider these examples. In 
our design chart, we've indicated a 

(continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 21 



(continued from page 21) 

many-to-many relationship between 
the Pet Visit and the Procedure tables. 
A row in the Pet Visit table contains in
formation about a particular pet visit, 
such as the date of the visit and the con
dition of the pet at the time of a visit. 

A row in the Procedure table con
tains information about a particular pro
cedure, such as how much Dobbs char
ges to perform that procedure. Dobbs 
considers this a many-to-many relation
ship because he wants to know what 
procedures he performed for a par
ticular visit, and all of the different pets 
that he's performed a particular proce
dure on, over time. To represent these 
relationships, we add a Visit-Procedure 
table, which is the child of both the 
Visit and Procedure tables and, as such, 
contains the keys of both its parent 
tables. 

This means it contains the Client ID 
+ Pet Name + Visit Date (total unique 
key of the Visit table), plus the 
Procedure name (key of the Procedure 
table). Each row in the new table will 
represent a particular procedure per
formed at a particular visit. A few rows 
in the table might look like Figure 4. 

Entity-Relationship Tables 
Using this table, Dobbs can find out 

which procedures he's performed on a 
given pet, and also which pets he's per
formed a given procedure on. A table 
that links two other tables in this man
ner is called a "Relationship table" (the 
other tables we've worked with so far 
are "Entity tables"). 

can begin writing programs. He needs 
to decide which data elements to use 
for storage, and which tables to store 
these elements in. 

In order to determine his data ele-

Figure 3 - Primary & Foreign Keys 

CLIENT TABLE 
Primary key: 
Foreign key(s): 

BILL TABLE 
Primary key: 
Foreign key(s): 

PAYMENT TABLE 
Primary key: 
Foreign key(s): 

PET TABLE 
Primary key: 
Foreign key(s): 

PET VISIT TABLE 
Primary key: 
Foreign key(s): 

PROCEDURE TABLE 
Primary key: 
Foreign key(s): 

MEDICATION TABLE 
Primary key: 
Foreign key(s): 

Figure 4 - Procedure Table 

ID PET NAME 
13 Phydeaux 
13 Phydeaux 
13 Phydeaux 
15 Towser 
16 Spot 

VISIT DATE 
12/13/86 
12/13/86 
12/18/86 
12/18/86 
12/20/86 

ment needs, he should now decide 
what information he wants to get out 
of the system. 

With Dee's help he designs his sys
tem output - the printed and on-screen 

Client ID 
None 

Billing date 
Client ID 

Payment date 
Client ID 

Pet Name 
Client ID 

Visit Date 
Pet Name + Client ID 

Proced ure Name 
None 

Medication Name 
None 

PROCEDURE NAME 
Rabies shot 
Heartworm test 
Foxtail removal 
Rabies shot 
Neuter 

The ability to navigate easily in both 
directions of a many-to-many relation
ship is a very important feature of Rela
tional databases. ~Figure 5 - Linking Medications & Pet Visits' 

We also need to create a Relation
ship table to link the Medication and 
Pet Visit tables. The design chart now 
looks like Figure 5. 

The key assignments for the new 
tables are shown in Figure 6. 

Note: these tables don't need 
primary keys since . the' combined 
foreign keys are adequate to identify 
them uniquely. 

Storage (Structures) 
The Entity-Relationship model for 

Dobbs' vet practice is now largely final
ized. The tables are defined, and the 
navigational structure is complete. 

But Dobbs is still far from where he 

22 MICRO CORNUCOPIA, #36, June-July 1987 



reports that he wants the system to 
produce. From this, he can decide 
which data elements need to be stored 
in order to produce the output. 

This output might include things 
like mailing lists, billing statements, 
daily production reports, pet medical 
history reports, and account status 
screens. In general, each output field on 
these reports and screens must either 
be stored directly in the database files 
or derived from data in the files. 

As an example, he might want to 
show the items listed in Figure 7 on the 
billing statements. 

After he makes a complete list of re
quired data elements, he must assign 
these elements to the appropriate 
tables. Dee Base explains to Dobbs that 
these assignments will be made in 
three steps. 

First, they'll place the data in tables 
using the ever-popular ''best guess" 
method. Next, they'll normalize the 
tables. And finally, they'll tune the 
tables for performance and data in
tegrity. 

Dobbs is already a veteran at the 

Figure 6 - Key Assignments 

VISIT /PROCEDURE TABLE 
Primary key: None 

''best guess" method and immediately 
starts deciding which tables the data 
fields should be stored in. It's fairly ob
vious for most of the fields. The client 
name and address information, for in
stance, obviously belongs in the Client 
table. The account previous balance is 
another item that relates directly to the 
client and should be stored in that 
table. 

The procedure name is already 
being stored in both the Procedure and 
Visit/Procedure tables as part of the 
keys of those tables. However, its use is 
different in the two tables. 

The Procedure table is a master file 
listing all of the procedures Dobbs per
forms, along with the standard fee he 
charges for each. The Visit/Procedure 
table is a transaction file that keeps 
track of which procedures are per
formed on which pets, where each pro
cedure is attached directly to one pet 
and one date. Therefore, the procedure 
name in the Procedure table isn't really 
the same data element as the procedure 
name in the Visit/Procedure table. 

The procedure date, another field 

Foreign key(s): Visit Date + Pet Name + Client ID + Procedure Name 

VISIT /MEDICA TION TABLE 
Primary key: None 
Foreign key(s): Visit Date + Pet Name + Client ID + Medication Name 

Figure 7 - Data Required On Billing Statement 

Bill heading: 
Client name, address, city, state, zip 

Account previous balance 
Current charges: 

Procedures performed on and medications dispensed to 
client's pets since last bill, including the name of 
each procedure or medication, the date it was administered, 
and the fee charged. 

Total of current charges 
Current payments: 

Date and amount of payments made by client since last 
bill. 

Total of current payments 
New account balance 

needed by the billing process, is also 
stored in the Visit/Procedure table. 
This same logic applies to the medica
tion names (stored in both the Medica
tion and Visit/Medication tables), dates 
(stored in the Visit/Medication table), 
and fees (stored in the Medication 
table). The total of current charges 
need not be stored since it can be 
derived by adding the Procedure and 
Medication fees as the bill is being 
printed. 

The dates and amounts of the client 
payments would be kept in the Pay
ments table, and the total of these pay
ments would once again be derived 
during the bill print. The new account 
balance can then be calculated by ad
ding the charges to and subtracting the 
payments from the previous balance. 

Dobbs goes on to assign all of the 
data elements he's identified to tables. 
Since this is just a first pass, he doesn't 
spend too much time on it. Once this is 
completed, he and Ms. Base will go on 
to normalize and tune the tables before 
any programs are written. 

Wraps, Please 
Dobbs likes the idea of working 

with Ms. Base. He's been consistently 
impressed by her professional com
petence, but his admiration for her goes 
far beyond that. 

In fact, he can't help but notice that 
her voice sounds like the mellow purr 
of a bluepoint Siamese, that her agile 
hands fly over the computer keyboard 
like a frisky budgie, and that her hair 
(under fluorescent office lights) is the 
color of an Irish Setter. 

In his daydreams he's having 
visions of an Entity-Relationship chart 
where a table labelled "Dobbs" and a 
table labelled "Ms. Base" are joined 
one-to-one. 

In our next and final episode, we'll 
cover data normalization, tuning, and 
many other exciting subjects. And, 
we'll try to answer these ongoing ques
tions: 

On what data does Dobbs base his 
attraction to Dee? Is the relationship 
reciprocal, or will Dee turn the tables 
on him? 

Will Dobbs' business ever get with 
the program? 

And, for heaven's sake, WHAT 
ABOUT NAOMI? 

••• 
MICRO CORNUCOPIA, #36, June-July 1987 23 



Magic In The Real World: 

Digital-to-Analog Conversion 

Real-world computing, take 4. In 
Micro C, #35, Bruce tackled A To D 
(Analog to Digital for the uninitiated). 
And it seems only natural now for 
him to go the other way. If D To A 
seems a bit too technical, you might 
want to review Bruce's lead-up pieces 
in #33, #34, and #35. 

T
hroughout my real-world series, 
I've tried to give you the tools 
you'll need to build a control sys

tem. In short, we measure one set of 
values, and a control system uses them 
to induce changes in another set of 
values. All of this, of course, happens 
in the real world. 

In recent issues of Micro C, we've ex
amined ways to make binary changes 
for stepper motors, and measured 
analog data (with analog-to-digital con
verters). This time, I'll show you how 
to hook up a digital-to-analog con
verter (DAC), which will allow you to 
make analog changes. 

In subsequent articles, I'll talk about: 
• Acquiring binary data when we 

only care if it's above or below a 
threshold, 

• Designing stable control algo
rithms, and 

• Implementing a control system. 

Numbers To Currents 
A DAC turns a number into a cur

rent. In an 8-bit DAC (they also come 
in 10-, 12-, 14-, and 16-bit versions), the 
number 255 (eight bits of all ones) 
causes the DAC to output its highest 
value; the number zero (eight bits all 
zeros) causes it to output its lowest. 

To use a DAC you'll need to: 
(1) Establish what the highest output 

current value will be, 
(2) Turn the current into a voltage 

and, when necessary, 
(3) Give the voltage enough punch 

to drive the device you're interfacing 
to. 

Connecting The Pins 
Together, Figures lA and 1B give a 

mythical view of how the DAC-0800 -(a 
common DAC) works. (Editor's note: Do 
not confuse the common DAC with a Yel
low-Breasted Ruffled DAC') Anyway, this 
should give you enough of a feel for 
the chip to connect it properly. 

The two sections are the reference 
amplifier (Figure 1A), which operates 
the "magic current controller" (that 
isn't really its technical name; I just 
made it up), and the "ladder" (see 
Figure IB) which takes the bits you put 
at the digital inputs to the chip and, 
aided by the magic current controller, 
creates an output current, lout, which 
is proportional to your byte. 

The Reference Amplifier 
The operational amplifier (the tri

angle in Figure 1A; see "Real World," 
issue #35) has three important rules: 

(1) Its output (pointy part on the 
right) changes to make the inputs 
(marked + and -) the same; i.e., no volt
age difference between them, 

(2) Its inputs don't draw any cur
rent, and 

(3) If it has to deliver an output volt
age too close to the supply rails (V+ 
and V- in Figure 1A), it gets uncomfort
able and doesn't act right. 

The "feedback path" of the op-amp 
(a path from the output back to one of 
the inputs, which enables -the input to 
do a reality check on the output) has 
the magic current controller in it. 

The op-amp will change its output 
at point A of the magic current control
ler until point B puts out the voltage 
which makes the two inputs the same. 
Since the "-" input (Vref- at pin 15) is 
held at zero volts, point B, which is con
nected to the "+" input, must change 

24 MICRO CORNUCOPIA, #36, June-July 1987 

By Bruce Eckel 
EISYS Consulting 

1009 N 36th St 
Seattle, WA 98103 

until it, too, is at zero volts. 
The current which flows into pin 14 

under these conditions is the reference 
current Iref: the current which will be 
sucked into lout on Figure 1B when 
you give the DAC a byte of all ones 
(also the current sucked into lout \ with 
a byte of all zeroes). 

Since the "+" input of the op-amp 
will always be held at zero, we need 
only select Vref+ and Rref to get the 
desired Iref - 2 mA (National Semicon
ductor linear databook spec). 

Choose Vref+ to be five volts, since 
we'll probably have that lying about. 
The voltage difference across Rref is 
then 5V - OV = 5V. Using Ohm's Law, 
R = V /I = 5V /2mA = 2.5 kOhms. 

We might be tempted to set V- to OV 
and try for just one five-volt power 
supply, but the op-amp wouldn't have 
enough elbow room (rule 3). It has to 
be a negative supply. 

There are two more mysteries on 
Figure 1A: the so-called "bypass" 
capacitors and the . compensation 
capacitor. 

Just Pass Me By 
Anything which contains digital cir

cuitry has two phases: (1) waiting quiet
ly for a change, and (2) madly making 
the change. 

In the quiet phase, everything is nice 
and smooth, and the power supply 
only has to deliver a small, steady 
trickle of current. When things are 
changing, however, the chip makes sud
den demands for large gulps of current 
from the supply. 

The little stream of current from the 
power supply is briefly dried up while 
the chip is changing. Downstream, 
other chips attached to the same power 
supply rail see waves in the stream 
from these brief drainages - these 
waves are noise spikes in the power 
supply. 



To prevent these spikes, we put a 
capacitor on the power supply pin 
right next to the chip. The capacitor 
acts like a big tub which fills up from 
the stream. 

When the chip demands a big gulp, 
it takes it from the tub, which is tem
porarily depleted but soon fills up 
again. The ~tream can just pass right by 
without being affected, so no noisy 
waves reach the other chips. 

Bypass capacitor values should be 
between 0.01 uF and 0.1 uF. There's a 
bypass capacitor on both the V+ and V
pins. 

Preventing Oscillation 
Remember the old "Tom and Jerry" 

cartoons? In one memorable scene 
Tom, the cat, grabs an axe and chases 

Figure lA - Reference Amplifier 

Jerry, who stands on something very 
solid, like a stove or an anvil, and 
jumps out of the way at the last second. 
The axe goes from full swing to a 
standstill - a change so abrupt that the 
vibrations work their way out of the 
handle and make Tom shake all over. 
That's oscillation. 

An op-amp, too, can change so 
quickly that it oscillates. To prevent 
this, we put a capacitor on the compen
sation pin; it's similar to the bypass 
capacitor since they both slow down 
the rate at which a voltage can change. 

The bypass cap slows down the rate 
the power supply voltage can change, 
and the compensation cap slows down 
the rate the output of the op-amp can 
change. 

You may recall from issue #34 that 

the common and easy-to-use LM324 op
amp doesn't have a pin for compensa
tion. If they omitted it there, why 
couldn't they keep it easy and omit it 
here, too? Well, in a DAC application 
like this one, where you put a byte in 
and expect a known, constant voltage 
value to come out, the value of the com
pensation capacitor is 0.01 uF (from the 
data book) and they might as well have 
put it on the chip, like the LM324. 

But the DAC can also be used in a 
"multiplying" configuration, where 
you put an analog signal into the Vref 
pin, and the Iref will be that signal 
amplified or attenuated according to 
the input byte. (Aha! A digital volume 
control for my stereo!) 

(continued next page) 

(GENERAL POWER SUPPLY 
£. SUPPLY FOR OP-AMP) 

f/!"pF 
"BYPASS" I 

B) VOLTAGE DROP OF -= t OUTSIDE 
OF VrtEF-~V = vrtEF ____________________ CHIP 

, \ r---r-------+---., 
+ RAEF - l 

V rtEF .2::=~'!:t:.;_1I_:":::/___1 
C) IREF :VlEF/RREF VREF O--+-f--""---I 

A) BOTH INPUTS ARE AT tJV 
SINCE "OUTPUT CHANGES 
TO MAKE INPUTS THE 
SAME~' 

Figure lB - Ladder Of Reference Amplifiers 

LOGIC LEVELS ---... 
AT DI,GITAL INPUTS 

BIT NUMBERING ~--.... 
IS BACKWARDS 

CURRENT SQUI RTERS'-"':" 
CONTROLLED BY MAGIC 
CURRENT CONTROLLER. 

TOTAL CURRENT (2551) 
IS IAEF,ANDMUST 
COME FROM tOllr AND 
10IIT\,SO: 

10llT + 10IlT\= IRE .. 

I INSIDE 
, CHIP 

lOUT 

MICRO CORNUCOPIA, #36, June-July 1987 25 



(continued from page 25) 

In this case, a 0.01 uF compensation 
cap will damp out signals we want 
going through the system, so we need 
to use a much smaller one (in the 
picoFarads - pF: 101\-12 Farads). Thus, 
the compensation pin needs to be 
brought out so we have the choice. 

The Ladder 
When I was a physics student, our 

professors used the phrase "waved 
their hands" when they didn't want to 
go into the gory details of something. It 
was supposed to be reminiscent of con
jurers, who wrote down some equa-
tions, "waved their hands," and waited 
for the right answer to magically pop 
out. 

We students felt this was an inade
quate description of the hand motion 
which occurred (small breezes were 
often induced), so we called it "fan
ning." Well, I'm about to get briefly air
borne. 

The switches on the ladder (Figure 
1 B) are controlled by the binary inputs 
of the DAC. For some reason, they 
labeled them backwards: the most-sig
nificant bit (MSB - what we usually 
think' of as bit 7) is Bl and the least-sig
nificant bit (LSB - bit 0) is B8. When we 
write Ox80 to the DAC, Bl is moved to 
the 1/1" position. If we write OxOl, B8 is 
moved to the "I" position. 

The "current squirters" are the 
whole reason we had to go through all 
that stuff with the magic current con
troller. They're regulated by the MCC. 
Each squirter pulls a current propor
tional to its bit position. 

The combined currents of all the 
squirters with 1/1" bit values are drawn 
through the I~ut pin. The combined cur
rents of all the squirters with "0" bit 
values are drawn through the com
plementary lout\ pin (usually a bar 
overhead, but "\" is the best I can do). 
The sum of the currents from the lout 
pin and lout \ pin always adds to the 
reference current, Iref. 

The DAC allows us to step through 
256 current values from lout = 0 to lout 
= Iref (in our case, 0 to 2 rnA). 

This is really what the DAC does 
rather than how it does it, but it gives 
us enough to connect it correctly. There 
are only two more details: the input 
bias current of the op-amp, and the 
logic level selection pin VIc (pin 1). 

A Little White Lie 
Op-amp rule two says that the in

puts don't draw any current. In many 
instances this is a fine approximation, 
but sometimes (like here) we have to 
face reality. 

There are tiny currents (called input 
bias currents) flowing into the inputs 
which can cause slight errors. To 
neutralize the voltage error caused by 
the bias current flowing through Rref 
into Vref+, we put an identical resistor 

at Vref- (see Figure 3). 

The Price of Versatility ... 
.. .is that everything has to be con

figured. The DAC-0800 can talk to just 
about any kind of logic: TTL, CMOS, 
etc. Pin 1 decides which voltage level 
at inputs BI-B8 will mea'n a change 
from logic 0 to logic 1. Fortunately, 
hooking up TTL is very simple: just 
ground pin 1. 

(continued on page 28) 

Figure 2 .. Translating Current Into A Voltage 

VOLTAGE) 
ACROSS 

(RESISTOR .' 

POLARITIES. 
+ 
~ 

B) NO CURRENT FLOWS 
INTO THE INPUTS OF 
THE OP-AMP, SO ALL 
THIS CURRENT MUST 
FLOW THROUGH ROUT-

.. 
CURRENT 
DIRECTION 

J
'JV 

THEREFORE: lOUT' 

VOUT = fOUT ROUT --... 

A) "INPUTS ARE THE SAME" SO 
. BOTH POINTS ARE AT flV 

Figure 2A - Barefoot Voltage Translator 

Figure2B -Voltage Translator With Help 

lOUT 

---- VOUT 
+ 

'ROUT 

>----t~---o VOUT 

5K 

~LM324 

5K 

l.:. OAD ... ·.1 CUR. R, E .. ,N, .. T.· . CA ... ·.N ONLY FLOW 
THIS WAY , 

, " .",. .;., 

26 MICRO CORNUCOPIA, #36, June-July 1987 



Figure 3A - Connecting A DACTo A Speaker 

+5V 

+5V 

07 06 05 04 03 02 01 00 

".l I1 FI,:, I 13 5 6 7 a 9 
V+ B1 B2 B3 B4 85 

I u "a2mA DAC0800 

2.5K 15 VR!F-

V-
3 IS 

0.'PF

I -5Y 

Figure 3B - Outputting A Byte Of "Ones" 

C) V= lR = 2mA It 7~U\ 

so U+" IS 150mY HIGHER THAN "-': 

+ 

IOUT'2m' ~/O) THUS. OUTPUT IS 15!/JmV HIGHER 
B) "INPUTS ARE THE SAME" d I ~ ...... I THAN GROUND: +HS"mV 

SO BOTH THESE POINTS < 
ARE AT GND --------.......c:; 

Figure 3C - Outputting A Byte Of IIZeros" 

B) "INPUTS ARE THE SANE': lOUT: " 

~'I NO CURRENT FLOWS THROUGH RESISTOR 
Y I: I R = jiI. R ." i .•. NO VOLTAGE ACROSS 
RESISTOR, SO THIS POINT IS AT GND. 

C) NO CURRENT FLOWS THROUGH RES I STOR, SO 
THERE ISNO VOLTAGE DIFFERENCE ACROSS 
RESISTOR. BOTH ENDS ARE AT -15"'mV. 

-t50mY 

SO BOTH THESE POINTS ----+-...-.f 
ARE AT -t5"mV.----~--_< 

TO -15"'mV 

a-OHM 
SPEAKER 

MICRO CORNUCOPIA, #36, June-July 1987 27 



(continued from page 27) 

From Current To Voltage 
The best way to turn our current 

into a usable voltage is with an op
amp. Figure 2 shows two methods for 
doing this. Figure 2A uses the output 
of an op-amp directly, and has the ad
vantage of being able to both source 
and sink (exhale and inhale) current, 
but only in small amounts (source 40 
mA, sink 20 mA). 

For heftier applications, Figure 2B 
shows a TIP-120 Darlington transistor 
in the feedback loop, which passes 
much more current, but only in one 
direction - this is suitable for driving 
small DC. motors. Both circuits are 
good examples of op-amp applications. 

In Figure 2A, we have lout from the 
DAC between a and 2 mA, and we 

·Figuie4~ Wiring Diagram Of Figure 3 

want (as an example) Vout between a 
and 10 volts. The feedback resistor 
Rout lets one of the input terminals see 
what is going on at the output. All we 
need do is apply the three op-amp 
rules to decide which values to use. 

Rule 2 says that no current flows 
into the inputs. That means all of lout 
must come through the resistor Rout, 
since none will come out of the "_If ter
minal. 

Rule 1 says "the output changes to 
make the inputs the same." Since the 
"+" input is tied to ground, the output 
will change so the "-" input will also 
stay at ground. 

It's important to be aware of the 
labeling convention for voltages and 
currents. When current flows through a 
resistor, it goes from the plus end to 
the minus end. Alternately, if you 
know the direction of current flow, put 

CON PEN- is 
SATION 

15 2.5K 
VREF 

OAe 
V:e:F 

14 
0800 

v+ 13 

88 (LSB) 12 

28 MICRO CORNUCOPIA, #36, June-July 1987 

the "_,, at the arrow head and the "+" 
at the tail. Either way, "conventional" 
current flows from plus to minus. 

In our example, the current lout is 
flowing away from the op-amp and 
towards the DAC. All the current flow
ing into the DAC must flow through 
Rout. 

Since the "_" end of Rout will al
ways stay at a volts, the "+" end must 
be a volts + lout x Rout, so Vout = lout 
x Rout. Since lout goes from a to 2 mA 
and we want Vout to go from a to 10 
volts, Rout = Vout/lout = 10V /2mA = 
5kOhms. 

Rule 3 says the output of the op
amp must not be required to get too 
close to either of its power supply rails 
or it won't work the way we want it to 
(it won't put out enough current). The 
only limitation to the LM324 is it can't 
handle more than 30V across its rails 

8-0HM 
SPEAKER 

14 

13 

12 



(for example, +15V and -15V supplies). 
Since we're already using -5V, we 

can use that for the negative supply (to 
get the output down to 0). To get the 
output to +10V, use a +12V positive 
supply. For $5 at Radio Shack, you can 
get a "wall wart" power supply which 
gives +5, -5 and +12 (Catalog #277-
1022). 

The only mystery left is whether to 
hook the feedback connection to the 
"+" or "-" input on the op-amp. Here's 
how you choose: if the feedback is con
nected to the "+" terminal, the op-amp 
will respond to an increase in voltage 
at the "+" (non-inverting) terminal by 
increasing the output voltage. If feed
back goes to the "-" (inverting) ter
minal, an increase at the "_" terminal 
will cause a decrease in output voltage. 

To make our example a little clearer, 
let's say the output voltage is 5V. This 
means lout must be 1 rnA. When lout 
increases, we want Vout to increase. 
But when lout increases, the voltage 
across Rout increases, which tries to 
force the input terminal down. This 
means we want the output voltage to 
go up when the input voltage goes 
down, so we use the inverting ("-") ter
minal. 

Adding Some Punch 
Figure 2B is the same as 2A except a 

high-current Darlington transistor has 
been placed inside the feedback loop 
(Le., the feedback is taken from the out
put of the Darlington instead of direct
ly from the output of the op-amp). 

The beauty of this circuit is that the 
transistor is normally a non-linear 
device, which causes all kinds of 
headaches. But putting it inside the 
feedback loop linearizes it, since the op
amp doesn't care what kind of devices 
are in its feedback loop - it just changes 
its output until its inputs are the same! 
So when lout is 2 rnA, the op-amp chan
ges its output until Vout = 10 volts - no 
questions asked. 

The TIP-120 Darlington transistor is 
a cheap, common workhorse. It's useful 
for manipulating large amounts of cur
rent with either analog OR digital sig
nals (for digital signals, see the "Real" 
articles in issues #32 & #33). It's a 
power device, and to keep from blow
ing it up, we must understand what 
power is, where it comes from, and 
where it goes. 

Power 
Power is the rate of movement of 

Figure 5 - Replacing A Pot With A DAC 

BEFORE 

BEING 
THING jva 
CONTROLLED D-------~---... POTENTIOMETER 

KNOB.J 

THING 
BEING 

CONTROLS Vb 
WIPER 

CONTROLLED r~---6---< 

(MUST NOT REQUIRE > 2~ mA) t ,> 

SELECT RESISTORS 
£- OP-AMP SUPPLIES SO 
OUTPUT VOLTAGE GOES 
FROM Vb TO Va 

OAe 

energy. Electrical power is voltage x 
current. Mechanical power is force x 
velocity. Thermal power is heat flow. 
Solar power is flow of sunlight. Any 
form of energy can be described in 
terms of power if its rate of flow is 
known. 

We can change one form of energy 
into another. If we use our Darlington 
to drive a motor, we're changing electri
cal to mechanical energy. 

But these changes always cost some
thing - some power is lost in the conver
sion. That power shows up as energy 
in its lowest form: heat. 

If this heat doesn't flow from the 
place it's generated, the temperature 
will rise until it does. If the tempera
ture rises too much in an electronic 
device, that device may be damaged. 
We can increase the flow of heat away 
from a device by adding a metal "heat 
sink" (air is a relatively poor conduc
tor). 

In a circuit, power comes from a 
power supply. These are often assumed 
(in beginning electronics courses) to be 
magic machines which will put out an 
infinite amount of current. No place for 
that here. Real power supplies have 
limits, and when pushed to those 
limits, they react in different ways. 

If, for instance, you short the out
puts of a supply together (demanding 
the most current it can provide), some 
supplies will blow a fuse. Others may 
blow an expensive internal part. The 
kind I prefer will hum loudly, get hot, 
put out the most they can and keep on 
working. 

Most "wall warts," like the one I 
mentioned from Radio Shack, are of 
this type (being thrifty, I haven't actual
ly tried shorting the outputs of mine, 
but you're welcome to). Their trans
formers are wound with fine, high-resis
tance wire which just won't pass 
enough current to do damage. As I'm 
often the "idiot" referred to in "idiot 
proof," I find this very convenient. 

The Radio Shack wall wart will put 
out 0 - 300 rnA at + 12V DC. If we ask it 
to put out all 300 rnA, that's P = V x I = 
12V x 0.3 A = 3.6 watts going into the 
circuit. All that power must either be 
changed into some other form of ener
gy flow (such as torque x rpm from a 
motor) or dissipated as heat. . 

The circuit of Figure 2B shows the 
output voltage across the load going 

(continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 29 



(continued from page 29) 

from OV to 1 OV. Since the top of the 
Darlington is connected to 12V, this 
means there must always be at least a 2-
volt drop across the Darlington (2 volts 
across the transistor + 10 volts across 
the load = 12 volts from the supply -
that's Kirchoff's voltage law). 

If we supply the load with 300 mA 
. at 10 volts, that 300 mA must also pass 
through . the transistor (which has two 
volts across it), so the transistor must 
dissipate 2 V x 0.3 A = 0.6 watts. With 
no heat sink, the TIP-120 will handle 
2W, which is good enough. 

However, if we use a motor for the 
load, the motor will draw current 
depending on how much it has to 
drive. In particular, if you "stall" it 
(grab the shaft), it will pull as much 
current as it can regardless of the volt
age across its terminals. The worst case 
here would be almost OV across the 
motor, almost 12V across the Dar
lington, and 300 mA: 12 V x 0.3 A = 3.6 
watts. This would require a heat sink 
on the transistor. 

A purely resistive load doesn't have 
these problems, since with a lower volt
age across the load (and thus a higher 
one across the transistor), it will always 
draw less current. 

Notice we are relying on the current 
limit of the power supply to prevent 
things from getting out of hand. If you 
have a supply with a much higher cur
rent limit, you'll have to use a bigger 
heat sink, and maybe a fan. Properly 
heat sunk (Le., immersed in liquid 
refrigerant), the TIP-120 will handle 65 
watts, but I find it easiest to design the 
circuit so you don't have to use any 
heat sink at all (if you're going to use a 
motor, don't stall it). 

All this gives you an idea of the 
trade-offs: if you want a big one of 
these, you need a big one of those. If 
you change this, you need to change 
that. This is the juggling act called en
gineering. 

For Example, Driving A Speaker 
We can hear what the DAC is 

capable of by hooking it up to a 
speaker and driving it with some 
waveforms. Figure 3 shows the 
diagram and Figure 4 shows the physi
cal connection. The common 8 ohm 
speaker is the type used in transistor 
radios. 

30 MICRO CORNUCOPIA, #36, June-July 1987 

Figure 6 - Musical Pascal Program 

program dacsound; 
{Generates different tones through the DAC. 
These are sine waves, but you can generate different types of 
waves to see what they sound like. Turbo generates an array of 
points which are passed to an assembly language program for quick, 
consistent output. 

Passing byte values to the assembly routine worked fine, but I 
had a lot of trouble passing anything else, so I declared "time" 
and "wve_adr" at absolute addresses so I could just pluck the 
values with assembly language. To determine the absolute addresses, 
I looked at the Turbo compiler "free" message. 

Note the length of the tone is controlled by the "time" variable 
(which MUST be reloaded before each waveout call) AND the length 
of the wave itself, so wave2 with a time of 8 has twice the duration 
of wavel with a time of 8. 

Next time I'll be using a Pc. } 

const 

type 

var 

A_CONTROL: byte = $22; 
A_DATA: byte = $20; 
MODE: byte = $Of; 
INT: byte = $07; 

countl : byte = 50; 
count2 : byte = 100; 
count3 : byte = 200; 

wave = array[0 .. 255] of byte; 

wavel,wave2,wave3 : wave; 
time: byte absolute $0000; 
wve_adr: integer absolute $0010; 
count: byte; 

{PIO address for KA YPRO 84s } 
{See issue #34 } 
{DOOO 1111 mode 0 = output} 
{DOOO 0111 ints disabled} 

{These are arbitrary; they don't} 
{ represent any particular tones. } 
{ (All those piano lessons wasted!)} 

procedure make_waves(var wavex: wave; count: byte); 
{fills the array wavex with a sine wave which is count bytes long} 

var 

begin 

radians: real; 
curve,i : integer; 

writeln('making waves -----------'); 
radians := 0; 
for i:= 0 to count d.o 

begin 
curve:= 127 + round(127" cos(radians»; 
{ 0 volts at the 8-bit DAC occurs with a byte value 

end; 
end; {make_waves} 

of 127, so the wave needs peak values of 127 with an 
offset of 127. } 
if curve 255 then curve := 255; 
if curve 0 then curve := 0; 
wavex[i] := byte(curve); 
radians:= radians + (2 .. 3.14159}/count; 

(Figure 6 continued next page) 



Figure 6 - Continued 

procedure waveout(COUNT: byte; PRT: byte); 
{Outputs bytes starting from memory location WVE_AOR to 
WVE_AOR + COUNT to port PRT. Repeats process TIME cycles. 
The value in OE is the number of cycles for each count in 
TIME. The OTIR instruction does the outputs. I 

{$A+I 
begin 
inline( 
$3A/PRT/ 
$4F/ 
$00/$21/$00/$00/ 
$l1/$FF/$OO/ 
$2A/$10/$00/ 
$3A/COUNT/ 
$47/ 
$EO/$B3/ 
$1B/ 
$7A/ 
$FE/$OO/ 
$20/$Fl/ 
$7B/ 
$FE/$OO/ 
$20/$EC/ 
$00/$35/$00/ 
$20/$E4 
); 
end; {Waveoutl 

{ LO A,(PRT) I 
{LOC,AI 
{ LO IX, TIME I 
{ LOOP1:LD OE,OOFFH I 
{ LOOP2:LO HL,(WVE_AOR) I 
{ LO A,(COUNT) I 
{LO B,AI 
{OTIRI 
{OEC 
{LO 
{CP 
{JR 
{LO 
{CP 
{JR 
{OEC 
{JR 

OEI 
A,DI 
01 
NZ,LOOP21 
A,EI 
01 
NZ,LOOP21 
(IX) I 
NZ,LOOP11 

procedure tone(var wavex: wave; _time: byte; count: byte; pause: integer); 
begin 

{ set global variables I 
wve_adr := addr(wavex[O]); 
time := _time; 

waveout(count,A_OATA); 
delay(pause); 

end; {tone I 

begin 
port[A_CONTROL]:= MOOE; {~nitialize the piol 
port[A_CONTROL]:= INT; 

make_ waves(wave1,countl); 
make_ waves(wave2,count2); 
make_ waves(wave3,count3); 

while not keypressed do 
begin 

end; 

tone(wave1,8,countl,1000); 
tone( wave2,4,count2, 1 000); 
tone( wave3,2,count3, 1 000); 

end. { "The Star-Spangled Banner" is left as an excercise. I 

End of Listing 

••• 

The parallel port is only used for 
output, so you can use a printer port 
(I'm using the port in my Kaypro 2X 
which I installed in issue #34). 

Notice - we're using the complemen
tary current output Iout\ in this circuit. 
This allows us to go above and below 
OV, which ,is the kind of waveform the 
speaker wants to see. Figures 3B and 
3C explain how this works with a byte 
of all ones and a byte of all zeroes. 

To select the minimum and maxi
mum voltage output levels, we have to 
work backwards from the fact the op
amp will only sink 20 rnA (it will 
source more, but we have to design for 
the weakest link). Twenty milliamps 
sunk through 8 ohms (the speaker) is -
160 mY. 

If we tell the op-amp to lower the 
voltage any more, it won't be able to 
draw the required current, and the out
put will just stick there. So we design 
for + and - 150 m V (for a little safety). 

The accompanying Turbo Pascal 
program (see Figure 6) creates the 
points for a wave and stores them in an 
array. This array is then sent a point at 
'a time to the DAC. 

Controlling Another Box 
If you're tired of turning knobs by 

hand, a DAC can also be used to con
trol a device which has a potentiometer 
on it (variable resistor - like a volume 
control). One of my early designs con
trolled a 15 horsepower AC motor this 
way. Someone else had done all the 
heavy-duty electronics, but they forced 
me to turn a dial to set the motor 
speed. All I had to do was overcome 
their pot with a DAC. Figure 5 shows 
how to do this. 

If you're controlling something 
potentially dangerous, you'll want to 
stand back while you test your 
software. Then multiply your problem 
by a billion (at least), and (you guessed 
it) you've got Star Wars! 

That's it. I'm out of here. 

••• 

MICRO CORNUCOPIA, #30. June-Julv 1987 31 



By David Thompson 

Shareware Authors Talk About Their Experiences 

I must admit I had some misconcep
tions about shareware. I knew that 
some authors were doing well, but I 
wouldn't have guessed how well. Nor 
would I have guessed what it takes to 
be successful. 

I
t was with some reservations 
(plane, hotel, & personal) that I at
tended the first annual 
PD /Shareware Convention in Hous-

ton, Texas. There were two reasons for 
the meeting. First, to get authors and 
distributors (SYSOPs and disk copy ser
vices) together. Second, to create a 
"shareware" organization. 

"Sure," I thought as I looked over 
the single-page conference an
nouncement, "half a dozen starving 
software writers looking for respect." 

The event took place in a hotel lo
cated just 20 minutes ($34 cab fare) 
from Houston International Airport. 
Our meeting room held 100; it was 
only half full of people, but the energy 
level was tremendous. 

Nelson Ford, librarian for the Hous
ton Area League of PC Users (HAL
PC), started things off by having each 
attendee say something about himself. 
Then Nelson introduced the first 
speaker. 

PC Key Draw 
Ed Kadera began the day's program 

by discussing his experiences writing 
and marketing PC Key Draw. 

Ed had wanted a way to create 
graphics on his own Pc. There was 
nothing available at the time, so he 
wrote PC Key Draw. Once it was work
ing he thought he'd try getting it out 
into the shareware marketplace. 

"I sent copies of Key Draw to 
several public domain organizations. I 
figured that shareware meant just put
ting it out there. and money would 
come back. But it didn't work that way. 

"Then I decided to improve the 
program: add a clock on the screen, 
new graphics features, and so I 
released more versions. Once I got to 
Version 2.1, things really started rolling. 

"The main complaint I heard was 
that the program was too hard to learn. 
This is probably because I write for 
myself. I like powerful programs, and 
powerful programs are always harder 
to learn than simple ones. 

"I released version 3.0 last fall and 
started advertising. Since then there's 
been a big jump in registrations. Most 
people try it first and then register. 
Also, advertising gives me credibility 
and boosts orders. As of late February, 
I'd already exceeded sales for the first 
half of last year. 

"There is a point where you sit 
back. I have to admit myoId job design
ing motion compensators paid more, 
but I love what I'm doing now, and 
one of these days I'd like to do a 
newsletter. I work 40 hours a week on 
Key Draw, and I'll never go back to a 9 
to 5 job." 

About the future: Ed mentioned that 
Key Draw currently works with CGA 
cards only. He gets an average of three 
requests a day for a Hercules version, 
so he's considering that as a new 
project. 

Automenu 
Marshall McGee followed with a 

description of his automenu program. 

32 MICRO CORNUCOPIA, #36, June-July 1987 

In 1983 he found himself training 
people to use MS-DOS. The trainees 
didn't have the slightest idea how to 
move files around or change direc
tories, so he wrote Automenu. 

In July 1984 he put a copy of version 
1.6 on Compuserve. He immediately 
received requests for new features. 
Soon after he released version 2.0, he 
left college to work on the program full 
time (instead of writing programs in 
BASIC for $3.35 per hour). 

In June 1985 he was receiving a 
check ($40) a day. Then he released 
3.01. 

"3.01 had more features and more 
documentation (my sister-in-law cor
rected the spelling). My RBBS filled up, 
registrations came flooding in. The 
program finally had just about every
thing people wanted. I called every bul
letin board I could find in the U.S. and 
uploaded it. 

"Now I'm a member of 50 user 
groups. I get all their address changes, 
see all the reviews, and personally 
thank the reviewers when they write 
about Automenu. None of the newslet
ter authors had ever received a call 
from a shareware author. 

"The program did really well . in 
1985. I made more money than anyone 
thought I could and I'm still two 

quarters short of graduating; 
"I have 15,000 registered owners, 

500 to 700 registrations per day, ads for 
Automenu in lots of magazines, and 
I'm buying a quarter-page ad in 50 club 



newsletters for three months for $1500. 
Total. 

"I've cleaned up my documentation, 
started using blue disks, and I've 
added fancy printed labels. 

"I write out the word 'copyright.' If 
you have a shareware program, you 
should do everything you can to 
protect it. Send in the $10 to copyright 
it. Pay the $175 to register the name. I 
even added a custom PVC clamshell 
case because I wanted to make my 
product as impressive as possible. I 
also put a barcode on the outside of the 
case. The barcode doesn't mean any
thing, but it looks professional. 

"Also; the package says 'Made in 
USA.' I've enclosed a prepaid registra
tion card and a comment card. I've 
even put my picture in the manual. 
How many products do you see that 
have the author's name and picture on 
them? 

"Tech support: I handle that, but I 
don't let on it's me. If I told them they 
were talking to Marshall McGee, they'd 
think we were a small company. 

"As a small business you can be 
very aggressive because you have no 
costs. One company came to me and 
said they would be buying a large 
quantity of someone else's menu 
program because they'd already in
vested in 100 copies. They wanted 
everyone in the office to have the same 
program. But they said they liked mine 
better. So I gave them 100 copies of 
Automenu and then I came in with a 
bid for additional copies that was half 
my competitor's." 

Marshall noted that he would sell 
anything, site licenses, limited site licen
ses, complete packages (disk, box, 
manual), economy packages (disk and 
manual only), disk only, manual only, 
label only, and so on. 

The US Government couldn't accept 
its 100 copies on one disk so he sent 
them one disk and 100 labels. He also 
said that quantity purchases by corpora
tions and agencies made up a sig
nificant portion of his sales. 

PC Outline 
John Friend described himself asa 

self-taught assembly language program
mer who had spent every spare minute 
at a local computer store playing with 
software. One program that caught his 
attention was Thinktank. He liked the 
idea but didn't like the way they did it. 

Though he'd never before· written a 

commercial application, he decided to 
create his own memory-resident 
notepad editor / manager. 

"I wrote the editor first, then created 
the outline structure. It was 16 hours 
per day, full time. By May 1985, I had a 
working outliner." 

Chasing Distribution 
Then he looked for a publisher, but 

he didn't know which companies to 
contact. 

"I knew the big names and I'd 
found a book with a list of 200 software 
publishers. So I made up a free running 
demo, sent it to 50 outfits, and then sat 
back and waited for them to come to 
me. 

"Two weeks later, I had received 
two rejections and five packages 
returned unopened, with notes saying 
they didn't accept unqualified submis
sions. It became obvious that I had to 
track down the correct person in each 
organization." 

Three months later he was still look
ing for a distributor. 

"Some were interested but not inter
ested enough to write a contract. They 
kept looking for this feature or that fea
ture. I just didn't know how to deal 
with them." 

Then Living Videotext released a 
competing but less powerful product 
and spent lots of money promoting it. 

Shareware 
"I had this idea that good products 

would survive bad marketing. I 
thought about introducing it myself, 
but I had no experience and no money. 
It all added up to shareware. I wasn't 
being altruistic it was the only alterna
tive." 

So he cleaned up his product, 
finished the documentation (typesetting 
was a pain the first time, but now he 

uses a laser printer), and then looked 
for ways to make his program known. 
"There's no question that editorial men
tion is by far more valuable than any
thing else you can do. I got hold of 

every computer publication I could 
find and made a list of the editorial 
people. I sent each person a press 
release that described what the 

. program did, what it cost, and where 
to buy it. Those contacts proved to be a 
gold mine. 

"Fortunately I wasn't doing this for 
my livelihood. I had $2,000 into it and 
the sales price was $49.95. 

"My biggest mistake was not having 
a modem. For the. first six months, 
people were purchasing it and then 
posting it on boards for me." 

A Break 
"PC-Magazine was finishing a 

review of outliners when our press 
release arrived. They called to say 
they'd include PC-Outline if I'd Federal 
Express them a copy." 

The editor reviewed the product 
and called Friend to verify the facts (no 
mention of what the editorial com
ments would be). 

PC-Outline was named co-editor's 
choice (along with Max Think) .. 

"They were fairly forgiving in their 
review. The program wasn't perfect 
and the documentation wasn't com
plete, but then we were a shareware 
product. Magazines like telling people 
about software they can try for free." 

He sold 150 copies in March. 
Then he sold 200 during the 4-day 

West Coast Computer Faire. He had a 
sign on his booth that announced the 
"Editor's Choice" award and it really 
drew in the crowds. It also generated a 
lot more press contacts and, eventually, 
reviews in Info World and PC-Week. 

"Sales grew to the point where I 
didn't have time to write code, and 
they continued to build through the 
summer. I had to choose between run
ning a business and writing code. So I 
got in touch with Brown Bag Software 
and sold out to them." 

Unfortunately, there were some 
problems during the transition. 
Registered owners were left unsup
ported while others were dunned for 
money they didn't owe. But John feels 
that the problems have been pretty well 
cleared up. 

PC-Write 
Unlike many other shareware 

authors, Bob Wallace had a strong 
programming background before begin-

(continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 33 



(continued from page 33) 

ning his first shareware program. He 
had a master's degree in computer 
science and had written a Pascal com
piler for Microsoft. That was back in 
1982, when Microsoft had a mere 300 
employees. 

After deciding he'd had enough of 
the corporate trip, he wrote a word 
processor for MS-DOS. 

"I started coding in February, and 

by August I released the first product. 
I'd spent about $5,000 to that point. 
December's sales were $17,000. 

"The following summer I hired a 
support person, and by 1985 there were 
nine of us. That year total sales hit 
$750,000. Now we have 20 people and 
sales are running $40,000 to $50,000 per 
week. 

"I work 5 days a week managing 
Quicksoft. I program on the weekends." 

Marketing 
"Marketing is getting your product 

to people. It consists of the five P's -
product, place, price, promotion and 
positioning." 

But he noted that the five P's don't 
mean much until you get down to 
specifics. 

"Fifty-eight percent of our registra
tions come from people who got the 
editor from a friend. Of course we pay 
commissions ($25 to a registered owner 
for each of his friends who registers). 
We pay a commission on about one
sixth of the registrations. 

"I also like card decks (those ubiqui
tous little packets of postcards). And 
believe it or not, you can actually make 
money selling your product at the West 
Coast Computer Faire. Even more effec
tive than advertising is editorial men
tion. I work with both foreign and 
domestic publishers. 

''We're starting to get into direct 
mail, group licensing, OEM licensing, 
and retail sales." 

Support 
Bob feels it's important not to get 

lost in program details. 
"If you're really helping people do 

something, then you'll do well. Don't 
worry about the people who don't 
register. 

"If unregistered owners call and 
ask, 'Will it do X?,' we always answer 
the question. If they ask, 'How do I do 
X?,' we ask them if they'd like to 
register. If they say fine, we get their 
address and answer their questions. 
Then we send them a letter saying, 'Hi, 
now it's time to register.' " 

Business 
"For some reason every August our 

receivables go way up, about $100,000 
to $200,000 in receivables. We get very 
low on cash, so maybe this August 
we'll have to borrow money. It's OK to 
borrow money. You have to look at 
your ratio of liabilities to assets. You 
have to learn about that kind of stuff. 

"Also, on the operations side, you 
have to make sure you're getting or
ders in and getting them out on time 
with the right stuff in them. And be 
sure you're checking people's credit 
card numbers. 

"I'm president. My wife is VP of 
operations. Then we have our control
ler, a marketing manager, and a sales 
manager. They each have an assistant. 
Marketing people are expensive. 

''We have four support people and 
one programmer. Tech support can't be 
done eight hours a day. Five hours is 
max for anyone person. We have the 
tech people do other things to finish 
out their eight hours. 

"Every time we hire a support per
son, we ask what his other specialty is 
going to be. That could be technical 
writing, beta testing, creating printer 
control files,-etc. One does internal com
puter support, another does the 
newsletter. 

"Four people answer the phone and 
three package the product. We run 
about 500-600 packages a week, about 
half are diskette orders and half are 
registrations." 

Shareware 
"One of the biggest problems is 

shareware's credibility. Some people 
say 'If it's free then it can't be worth 
anything.' Because it's so easy to start 
shipping stuff out as shareware, a lot of 
the shareware has never been tested by 

34 MICRO CORNUCOPIA, #36, June-July 1987 

dealers and users. So if you've got 
something that's really good, it's neces
sary to have people evaluate it. That's 
why reviews are so important. 

"On the other hand, the strength of 
shareware is the ease with which 
anyone can get the product out; and if 
the product's good, people will pay for 
it. I don't think we should exclude 
anyone from participating." 

He also talked about tie-ins with 
other manufacturers. For instance, 
sellers of communications boards might 
include a shareware communications 
program. Ads for the boards would 
state that communications software 
was included free, but that the user 
would be asked to register if he liked it. 

He also noted that software is very 
complex, so you really add a lot of 
value to the product if people can try it 
out before buying. The package with 
the most value will win. 

New Versions Of PC-Write 
"Version 3.0 should be released in 

June. It will have large-file editing, box 
editing, marking, multiple columns, 
and will lean toward the page layout 
sort of thing. 

"We'll go on to outlining, number
ing, etc. I could be programming seven 
days a week for years and still not get 
in all the things I want to do." 

Selling By Stages 
Bob sells PC-Write many different 

ways. If you purchase a manual, you 
get the right to use the software. 
Manuals are $35 paperback and $45 
hardback. He says it makes sense to 
sell the rights to the program with the 
manual because the manual is much 
harder to reproduce. 

Also, corporations love the idea of 
getting rights to use the program when 
they purchase manuals. 

"When you sell to corporations, you 
have to sell them something, even if it's 
just labels." 

Of course, you can purchase more 
than just the manual. If you want a 
disk and a hard-cover manual, the total 
is $59. Add basic tech support and it's 
$79. Or you can pay $89 for the whole 
nine-yards. (The nine-yards includes all 
the above, plus two free updates, a 
quarterly newsletter, and the $25 kick
backs if others register from your copy.) 

His ads sell the $16 diskettes. The 
diskettes sell the registrations. It's a 
two-step process. He estimates that one 



user out of ten registers. 
He's discovered there are several 

reasons why people register. First, they 
want the current version. The updates 
came in a close second, while the 
printed manual (which includes a quick 
reference card and a tutorial) was third. 
Supporting Quicksoft came in fourth. 

Questions From The Crowd 
He was asked if he were concerned 

with other companies publishing 
manuals for PC-Write. 

"Oh, a little bit. Our defense against 
that would be to update the product 
enough so that the other manual 
wouldn't be any good. I hope we don't 
have to really deal with that. It's better 
that they work with us. McGraw-Hill 
has a shareware book and we've put a 
$20-off coupon in it." 

Also, by arrangement, McGraw-Hill 
left out some significant things about 
the program. 

Another participant asked how Bob 
would sell a shareware package that 
didn't need a manual. 

"There are three important values 
added: the manual, phone support, and 
updates. The more of these there are, 
the more effective shareware will be. 
There are some kinds of software -
game software, training software, and 
utility software where a lot of those 
features aren't available. I don't know 
how well they work without them, ex
cept that McGee has done very well 
with Automenu. It's just going to be 
more difficult to sell them. 

"You might consider charging a 
very low price. You know, $20 and you 
own it. I think shareware works best 
when there's an evaluation cycle." 

Working With Retailers 
"We have something we call a 'Give 

it away kit.' It includes diskette labels 
and a little brochure that fits into the 
diskette. The first half of the brochure 
explains how to get started, the second 
half tells why you should register." 

The dealer makes copies of the 
program, gets a registration number, 
and then gets $25 kickbacks from 
Quicksoft. 

"As long as the copies get out there, 
I don't feel burned at all." 

He noted that Brown Bag Software 
had handled PC-Write for a while (as 
the Brown Bag Editor), but he said he 
was no longer dealing with Brown Bag. 

Limited Programs 
The discussion then became a free

for-all as the topic moved to c;ippled 
software. Bob felt that limited or crip
pled versions might be an option for 
some types of packages. 

"People can try the program in a 
limited sort of way, get a feel for it, 
and decide if they want to purchase it." 

But the audience immediately 
jumped into the fray. 

"We're Compuserve. We have 'Crip
pleware,' 'Hostageware,' and 'Beware.' 
And seriously, these are all viable 
marketing techniques. The author 
wants to get money back so he puts a 
time lock on it, or a gate lock. But a 
user doesn't want to pay long distance 
charges to get a 'pay-to-use' program. 
It creates lots of bad feelings." 

Then an RBBS operator from Hawaii 
added, "Crippled software, it's about 
the only time we get negative flack 
from the user. The minute someone 
uploads a demo-style program, we just 
knock it off the board." 

And, others brought up the point 

that many boards have limited space 
and SYSOPs are often donating their 
time and equipment. SYSOPs feel their 
boards are being abused by commercial 
operations, especially when the 
software they upload is of little value 
to the user. 

Finally 
As you can see, there is a lot to do 

about something in shareware. It's 
probably the only way that individuals 
can compete with the distribution and 
advertising might of the major software 
outfits. 

However, the best guesstimates indi
cate that, at best, only one user out of 
ten pays for the software. But commer
cial firms are also guesstimating their 
user-to-purchaser ratio, and in some 
cases, they are not far from the same 
ratio. 

Next issue we'll continue this discus
sion of shareware when we hear from 
Jim Button of ButtonWare and Sandy 
Schupper of Brown Bag Software. 

••• 

Full Featured AT Motherboard 
fits XT or AT case! $489-

Upgrade your XT to a real AT for about 
the price of an "accelerator" card 

OR 
build a space-saving AT from scratch. 

Features: 
Phoenix BIOS, 6/10 MHz operation, 1 MB memory (0K 
installed), VLSI technology,8 expansion slots, Clock! 
Calendar and Instructions in genuine English! 

Add $75 for 1 MB memory installed and tested. 

Other selected components available include 
• Toshiba 1.2MB floppy drive 
• Floppy/Hard drive controller 
• XT size case w/LEDS, lock, reset 
• ST4038 AT Hard drive (40ms) 
• V20-8 replacement for 8088 

$ 118 
$ 194 
$ 55 
$ 479 
$12.95 

Call Softside Systems day or 
evening at (503) 591-0870 

MICRO CORNUCOPIA, #36, June-July 1987 35 



Hardware Interrupts On The PC 

Or Who Was That Masked Bit? 

While Bruce Eckel is thrashing 
about in hardware and John Jones is 
deeply immersed in Modula and Pas
cal, poor Larry can't decide. He 
showed us how to slow down our sys
tems last issue; now he's trying to in
terrupt our programs. 

Last issue I got around (in a round
about way) to talking about the 
8253 Programmable Interval 

Timer. Several other "smart," or 
programmable, chips live in the Pc. I'll 
be covering each of these chips in up
coming issues, but right now it's on to 
Intel's Programmable Interrupt Con
troller (PIC), the 8259A. 

Why Use Interrupts? 
Microprocessors are busy critters. 

They need to execute code, talk to 
modems, disk drives, and printers, lis
ten to the keyboard, and sometimes 
control processes in the real world. 

These functions (and many more) 
must be coordinated with a minimum 
of mayhem to have a smooth-running 
system. Consider the keyboard. How 
can it tell the processor when a key has 
been pressed? One method would be to 
poll the keyboard periodically for 
input. Polling works well on large sys
tems where terminals and printers 
clamor constantly for the processor's at
tention. 

But a single-user PC keyboard needs 
very little hand-holding. A lot of proces
sor time would be wasted in useless 
polling. It makes more sense to have 
the keyboard interrupt the processor 
when it needs some attention. 

Loosely speaking, an interrupt se
quence goes like this: The keyboard sig
nals to the processor that it has a 
character ready. The processor stops 
what it's doing, pushes its flags, code 
segment (CS) and instruction pointer 

(IP) onto the stack, and executes any 
code necessary to process the keyboard 
interrupt. Finally, the flags and 
registers (showing where the processor 
was before the interrupt) get popped 
off the stack and the processor can take 
up where it left off. 

Of course life isn't that simple. The 
8088 only has one pin which can accept 
interrupts. But there are a number of 
devices which need its attention. And 
what if two interrupts occur, at the 
same time? For these and other 
reasons, the PC makes use of the 8259A 
to control interrupts. 

Inside The 8259A 
Let's take a stroll through the PIC. 

The 8259A can control interrupts 
generated by eight different sources 
(see Figure 1). These interrupt requests 
enter the PIC through eight pins called 
IRa - IR7 (see Figure 2). IRa has the 
highest priority and IR7 the lowest. 

As interrupt requests come in, the 
corresponding bits of a 1 byte internal 
register, called the Interrupt Request 
Register (IRR), are set. Pending inter
rupts then get processed in order of 
priority. This assumes three things -

Figure 1 - Hardware Interrupts 

Interrupt Intr Name 
Number Req 

08 IRO Time of Day 
09 IRl Keyboard 
OA IR2 Reserved 
OB IR3 Communications 
OC IR4 Communications 
OD IRS Hard Disk 
OE IR6 Floppy Disk 
OF IR7 Printer 

36 MICRO CORNUCOPIA, #36, June-July 1987 

By Larry Fogg 
Micro C Staff 

that the highest priority interrupt is not 
masked, that a higher priority interrupt 
isn't already being processed, and that 
the processor feels like' being inter
rupted. 

The Interrupt Mask Register (IMR) 
takes care of masking, or disabling, any 
combination of the eight interrupts. 
Each bit of the IMR corresponds to one 
of the interrupts. Masking certain inter
rupts proves to be very useful. For ex
ample, you can use the IMR to disable 
the keyboard during portions of a 
program's execution. 

A third 1 byte register, the In Ser
vice Register (ISR), stores any inter
rupts currently being serviced. If there 
is an unmasked request which has a 
higher priority than any interrupts in 
the ISR, the PIC raises its INT pin. This 
pin connects directly to the 8088. It will 
be held high until the 8088 acknow
ledges the interrupt. 

You can see that it's possible for an 
interrupt to interrupt an interrupt 
which has interrupted another inter
rupt ... No problem. All the informa
tion needed to trace the tortuous path 
back through all those interrupted inter
rupts is alive and well on the stack. 

The interrupt runs into another 
check in the 8088. One of the 8088' s 
flags is the Interrupt Flag (IF). The as
sembler instruction STI enables inter
rupts by setting IF to 1. There are situa
tions (Le., timing loops and disk sector 
reads) that must not be interrupted. In 
these situations, a CLI instruction resets 
IF to a and interrupts are disabled. 
With IF set, the interrupt passes its 
final test. 

Before acknowledging the interrupt, 
the 8088 finishes its current task. This 
may be a single instruction or a pair of 
instructions. For example, if a MOV to 
stack segment (SS) or POP SS occurs, 
the 8088 waits until after the following 
instruction to recognize the interrupt. 



There's a good reason for this. What if 
a program wants to create a new stack 
by changing SS and the stack pointer 
(SP)? Any interrupt acknowledged after 
the SS update, but before the SP up
date, will cause the flags CS and IP to 
be pushed into the wrong area of 
memory. Bye bye ... 

Let's assume we've followed the 
good programming practice of always 
changing SS before SP (thus forcing the 
8088 to wait for SP's value). When the 
current task finishes, the 8088 says, 
"Okay. Let's boogie!" 

We Interrupt This Program ... 
The 8088 boogies by pulling all of its 

Processor Status lines (SO - S2) low. 
These active-low signals connect direct
ly to the 8288 bus controller. The 8288, 
in turn, decodes SO - S2 and pulses the 
Interrupt Acknowledge (INTA) line 
low. As soon as the PIC sees the INTA 
pulse, it freezes the values of its 

. Figure 2 - Interrupt Circuit 

registers in preparation for resolving 
the current status of interrupts. It then 
sets the ISR bit corresponding to the 
highest priority non-masked interrupt 
in the IRR. Since the PIC is now deal
ing with the request, the IRR bit gets 
reset. 

Now the 8088 initiates another 
INTA pulse which tells the PIC to put 
an 8-bit pointer onto the data bus 
through its DO - D7 pins. Values for 
this pointer correspond to the eight 
hardware interrupts and range from 
08h through OFh. The 8088 grabs the 
pointer off the bus, and from here on 
the hardware interrupt acts like a 
software interrupt. 

The lowest lK of PC memory is 
devoted to a table of 256 4-byte 
pointers or vectors. If interrupt 08h 
asks for service, the 8088 looks for the 
vector at memory location 0000:4*08h. 
This vector points to the interrupt hand
ler code for interrupt 08h. The 8088 

TIMER--..:.;18=:.tIR., 

KEYBRD 19 IRt 
84 2 IR2 
825 21 IR3 

B24 22IR4 
EXPANSION 823 23

1R
" 

BUS ... 1I1)t-=:.:;..----=-t ~ 

822 24 IR6 

82i 25 IR7 

27 A" 

BUFFERED 
ADDRESS 

Yllj~~ __ .:.t' A Y1D':...;.4 ____ -"QCS 

8US Itr 
28 
3 C 

VI/,~:.;;..---=~QG2B 
vn .......... ------

4
aG2A 

AEN ..... ----------6~Gt 

LS138 

A'iOWct-=I.::,2_..:J::;.j 

~rt~4 _________________ __ 

8288 

2 

then jumps to and executes that code. 
When the code finishes, it resets the ap
propriate bit in the ISR with an End Of 
Interrupt (EOI) command. Now the 
8088 can turn to either the next highest 
priority interrupt or whatever program 
it was executing before the interrupt 
process began. 

Programming The 8259A 
On power up, the BIOS programs 

the PIC to handle interrupts in the man
ner discussed above. The PIC is actual
ly a much more versatile chip. Let's go 
through its programming with an eye 
towards more of its capabilities. I'll 
restrict this discussion to 8086/8088 
operation, although 8080/8085 mode 
also exists. See Intel's Component Data 
Catalog for more information. 

We program the PIC with two types 
of commands: Initialization Command 
Words (ICWs) and Operation Com

(continued next pagej 

+C)v 

MICRO CORNUCOPIA, #36, June-July 1987 37 



(continued from page 37) 

mand Words (OCWs). Intel likes to say 
that "words" sent to its intelligent 
chips do the programming. Actually, 
they're bytes. Four ICWs take care of 
setting up the chip for operation. Any 
time after this initialization, three 
OCW s can set the various modes for 
handling interrupts. 

The PIC uses its AO, Write (WR), 
and Read (RD) inputs to identify the 
various programming commands and 
access its registers. AO ties directly to 
the buffered address line XAO. I'll ex
plain its use below. 

WR and RD originate in the bus con
troller just like INT A. The 8088 signals 
an I/O read or write by setting its 
status lines. The 8288 decodes the 
status lines and generates the ap
propriate I/O control signal according 
to the following table. 

50 51 52 Action 
o 0 0 INTA 
o 0 1 I/O port read 
o 0 I/O port write 

I/O control signals generated by the 
8288 are driven out to the system by an 
LS243. Several chips listen in from the 
I/O address space. This space consists 
of a 64K area separate from RAM. The 
8088 doesn't care what's there as long 
as it looks like RAM. 

Somehow, only one of the chips that 
sees the control signals has to be 
selected. Chip Select (CS) signals come 
from an LS138 3-to-8 line decoder. The 
LS138's Y1 output supplies CS to the 
PIC. We want to drive CS low. 

Take a look at TI's TTL Data Book. 
For a low on Y1, input A (XA5) must 
be high and B, C, G2A, and G2B (XA6 
through XA9) must be low. This condi
tion is met by any address whose least 
significant ten bits lie in the range 00 
00100000b to 00 00111111b, or 20h 
through 3Fh. The six most significant 
bits of any I/O address are ignored. 
The PC gets away with ignoring them 
since it really doesn't need a full com
plement of 65536 innies and 65536 out
ies. So any I/O port read or write to an 
address between 20h and 3Fh will 
select the PIC. 

Initialization 
The initialization sequence begins 

with a write of ICW1 to port 20h. All 
other required ICWs must be written in 

sequence to port 21h. 
In ICW1, only four bits have any 

meaning for 8086/8088 systems. A 1 in 
bit 4, along with a 0 on AO (remember -
AO can be either 0 or 1 and still address 
the PIC), identifies the byte as ICWl. 
Bit 3 sets the interrupt triggering mode. 
Zero makes the PIC sensitive to rising 
edges on the interrupt request lines, 
while a 1 makes the request lines active 
high. 

The PC operates with only one PIC, 
but PICs may also be used in a cas
caded configuration. Up to eight slave 
PICs can attach to the interrupt request 
lines of a master PIC. A full comple
ment of eight slaves gives the ability to 
service 64 unique interrupts. The 
highest priority interrupt of these 64 
will be IRO on the slave connected to 
the master's IRO line. 

With a little work, you could turn 
the PC into a powerful data acquisition 
or experiment/process control system. 
Anyway, bit 1 of ICW1 configures cas
cade mode (bit 1 = 0) or single PIC 
mode (bit 1 = 1). Finally, 1 in bit 0 
means that ICW 4 will be needed and 0 
means it won't. 

ICW2 
Next the PIC expects to see ICW2 at 

port 21h. Bits 7 through 3 specify the 
location in the interrupt jump table of 
the highest priority interrupt vector. 
For example, on the PC, ICW2 = 8. So 
the interrupts are labeled 08h through 
OFh. 

If you ever create the 64-interrupt 
monster made possible by cascading, 
each slave will have to be programmed 
separately. You'll also need to decode 
Chip Select signals for each of the slave 
PICs. Space in the interrupt jump table 
is easy to find if you don't mind bag
ging BASIC (right on!). 

Label the existing interrupts 08h 
through OFh and the new interrupts 
60h through 98h. The new interrupts 
will wipe out BASIC but leave the DOS 
interrupts alone. Do the labeling by 
sending an ICW2 of 08h to the first 
slave, 60h to the second, 68h to the 
third, etc. As an example, if a request 
comes in on IR3 of the second slave, 
the interrupt label becomes: 

60h + 3 = 63h 

ICW3 
Multiple PIC systems require the 

use of ICW3. When programming the 
master PIC, each set bit in ICW3 means 

38 MICRO CORNl!COPIA, #36, June-July 1987 

that the corresponding interrupt re
quest line on the master connects to a 
slave rather than an interrupt source. 
For the slaves, bits 2 through 0 of ICW3 
constitute an ID number of 0 through 7. 
During an interrupt process, the master 
places a slave ID on its CASO - CAS2 
lines. These outputs form a cascade bus 
connected to all slaves. A slave is 
selected when it sees its ID on the bus. 
The PC doesn't use the CAS lines since 
it's a single PIC system. 

ICW4 
On to the last ICW. Bit 4 of ICW4 

tells whether the Special Fully Nested 
Mode is active (bit 4 = 1) or not (bit 4 = 
0). In a cascade system, the master uses 
this mode to allow recognition of multi
ple levels of interrupts within a single 
slave. Slaves and single PICs do not 
use this mode. 

Bits 3 and 2 work in conjunction. If 
bit 3 = 0, the PIC operates in non-buf
fered mode and bit 2 has no meaning. 
In this mode the PIC's SP/EN pin be
comes an input with a high designating 
the PIC as a master and a low making 
it a slave. In buffered mode (bit 3 = 1), 
the SP /EN pin outputs a signal which 
enables bus-driving buffers whenever 
the PIC wants to put a byte on the data 
bus. Also, in buffered mode bit 2 
specifies master (bit 2 = 1) or slave (bit 
2 = 0) status for the PIC. 

Let's muddy the waters a bit. IBM's 
BIOS listing shows initialization of the 
PIC to buffered mode and slave status. 
Their schematic shows SP /EN tied 
high. Buffered mode makes sense - the 
PC's data bus is buffered by an LS245 
octal bus transceiver. But a buffered 
system should use SP /EN to enable the 
LS245. Why is it tied high instead? And 
slave status in a single PIC system? 

Either I'm confused or someone's 
lying. IBM's BIOS checks out. I disas
sembled the PIC initialization code in 
their ROM. Sure enough, the PIC is 'a 
buffered slave. I looked at SP /EN on 
two different clone boards. One tied 
directly to +5 volts. The other went to 
+5 volts through 7.8 or 8.6 K Ohms 
depending on the orientation of the 
YOM test leads. The difference in resis
tance suggests the presence of an IC be
tween that PIC and +5 volts. 

One other bit of strangeness: A high 
on SP /EN would make perfect sense if 
the PIC was programmed for non-buf
fered mode. In that case the high 
would designate the PIC as a master. 



But the PIC's in buffered mode ... If 
anyone can shed some light on the 
situation, I'd appreciate a note. Until 
then I'll treat it as one of life's little 
mysteries. 

Back to ICW 4. The ISR bit for a 
given interrupt can be reset in one of 
two ways at the end of its interrupt ser
vice routine. Bit 1 determines which 
method must be used. In automatic 
EOI mode (bit 1 = 1), the in service bit 
gets reset when the PIC sees the trail
ing edge of the last INT pulse. The in
terrupt service routine must send an 
EOI command to the PIC when normal 
mode (bit 1 = 0) is used. Finally, bit 0 
specifies the processor in use: a 1 for 
8086/8088 systems or a 0 for 
8080/8085s. 

The PC BIOS initializes the PIC with 
the following values: 

ICWl = 13h 
ICW2 = 08h 
ICW3 = not used 
ICW4 = 09h 

Operation 
After initialization, the PIC is ready 

for interrupts. From this point on, the 
three OCWs can program the PIC for 
various modes of operation. In normal 
operation, OCWl gets the most use. 
However, an idea of what can be done 
with the other two command words 
might prove interesting to folks like 
Bruce who are into real world proces
ses. 

OCWl controls masking in the IMR. 
Normally masking is done with writes 
to port 21h. But any write to the PIC 
with AO high is interpreted as OCW1. 
You can prove this to yourself by alter
ing the IMR using port 31h. It works. 
To examine the IMR, just read the PIC 
with AO high - that's a read of either 
port 21h or 31h or 23h or ... 

OCW2 
With AO, D4, and D3 low, the PIC 

recognizes OCW2 (see Figure 3). Back 
in ICW 4, we configured the EOI mode. 
When ICW4 sets automatic EOI mode, 
the ISR register automatically resets. In 
the normal EOI mode, two methods 
exist for clearing the ISR bit. The PC 
has a straightforward interrupt struc
ture. Its PIC knows that the highest 
priority bit in the ISR is the one to be 
reset on EOI. Therefore a non-specific 
EOI command can be issued. 

In some systems it's not clear from 

the status of the PIC which interrupt 
needs to be cleared during an E01. A 
specific EOI must be issued by the inter
rupt handler. In this case, bits 2 - 0 of 
ICW2 show the ISR bit to be cleared. 
Note that when issuing EOls in a cas
caded system, both the slave's and the 
master's ISRs must be reset. Send an 
EOI to the slave. Then, if that slave's 
IRR is clear, send another EOI to the 
master. 

The PC operates with its PIC in 
default priority configuration. But IRO 
doesn't have to be the highest priority 
interrupt. The PIC can be made to 
rotate priorities. As an example, con
sider a system where several interrupts 
have equal priority. We can set the PIC 
to automatically rotate priorities at the 
end of each interrupt sequence. So after 
servicing IR5, the PIC sets it to the 
lowest priority. IR5 may have to wait 
until all other interrupts have been ser
viced once before it again has the 
highest priority. But it won't have to 
wait any longer than that. 

The other possibility is specific rota
tion of priorities under software con
trol. A routine may adjust priorities by 
setting the lowest one. Again, the three 
least significant bits of OCW2 tell the 
PIC which interrupt request will now 
be the lowest priority. If these bits read 
110b, then IR6 moves to the end of the 
line and IR7 becomes the highest 
priority request. A specific rotation can 
be performed at any time, or a rotation 
can be combined with an E01. 

OCW3 
The PIC sees any write with AO and 

D4 low and D3 high as OCW3. Bits 6 
and 5 set or reset the Special Mask 
Mode (l1b = set and lOb = reset). In 
this mode, masking an interrupt using 

Figure 3 - Hardware Interrupts 

D7 06 D5 

the IMR not only masks that interrupt 
but explicitly enables all other un
masked interrupts. An interrupt hand
ler can rotate priorities and have the 
PIC treat incoming requests according 
to the new priorities. Interrupts which 
used to have lower priority than the 
currently executing interrupt can now 
be processed. 

Bit 2 of OCW3 allows for a "poll
ing" mode. When active (bit 2 = 1) the 
INT line is ignored. Instead, the PIC 
treats the next low on its RD line as an 
interrupt request. It then processes the 
highest priority interrupt, if any. So the 
8088 polls the PIC rather than the in
dividual interrupting devices. 

Finally, bits 1 and 0 determine 
which register will be read during the 
next low on RD. By default the IRR will 
be read. To read the ISR, set bits 1 and 
o to 11b. To get the IRR again, use lOb. 
The PIC remembers the last register 
read. So if you're reading the same 
register repeatedly, just read port 20h. 
Don't issue an OCW3 for each read. 
Also, you don't need OCW3 to read the 
IMR. See the discussion of OCWl 
above. 

A Custom Hardware Interrupt 
Hardware interrupt handlers usually 

live in the monitor ROM. But you can 
take over any interrupt and install your 
own memory resident code to handle it. 

Figure 1 shows that IR2 is reserved. 
Reserved? For whom? Must be for us. 
An unused interrupt just begs to be con
nected with the outside world, so let's 
play around with it. We'll have it do 
something trivial (play some notes on 
the speaker). But you could make it do 
anything: answer the phone, gather 

(continued next page) 

0 0 1 Non-specific EOI 
0 1 1 Specific EOI 
1 0 1 Automatic rotate on non-specific EOI 
1 0 0 Set automatic rotate / automatic EOI mode 
0 0 0 Clear automatic rotate / automatic EOI mode 
1 1 1 Rotate on specific EOI 
1 1 0 Rotate priority only 
0 1 0 No effect 

MICRO CORNUCOPIA, #36, June-July 1987 39 



(continued from page 39) 

temperature data, whatever. The shell 
of the code will remain the same. Just 
put in your own routine in place of the 
noisy one I've written. 

You may recognize this interrupt 
handler. It's the same shell I used for 
the memory resident speed switch in 
issue #31's PC speedup article. This 
simple-minded shell fails to take into 
account other resident programs. When 
used to take over the keyboard inter
rupt (as in issue #31), it can run into 
trouble. The trouble stems from the por
tion of the "setup" procedure which 
checks to see if the program has al
ready been installed. 

There's really nothing wrong with 
installing a resident program twice, but 
it does waste memory and offend the 
programmer's sensibilities. So the shell 
checks to see where the interrupt code 
lives for the particular interrupt it 
wants to take over. If it finds the code 
in the ROM (Le., segment address of 
FOOOh or more), it goes ahead with the 
installation. But if the interrupt vector 
points to RAM, then the interrupt hand
ler thinks it's already been installed 
and aborts. The egotistical code thinks 
that no one else could be interested in 
the same interrupt. 

So this shell must be installed before 
any other resident code which deals 
with the same interrupt. Big hassle for 
keyboard interrupts. But this time 
around, I'm using a reserved interrupt 
and I feel pretty safe. 

The six lowest priority interrupts 
(IR2 - IR7) all originate in the PC's ex
pansion bus. Only IRO (timer) and IR1 
(keyboard) come from the system 
board. All interrupt lines are normally 
held high. When a piece of hardware 
wants attention, it pulls its interrupt 
line low, then releases it. The BIOS has 
programmed the PIC to respond to 
rising edges, so as soon as the interrupt 
line goes high, the interrupt process 
begins. 

I'm a great fan of the "quick and 
dirty" school of technology. Therefore, 
my interrupt request consists of a tem
porary short from expansion bus line 
B04 to ground through a 1K ohm resis
tor. Before installation of the interrupt 
handler, IR2 apparently does nothing. 
However, ,once an interrupt occurs it 
must be serviced. And location 
0000:4*OAh in memory does contain a 
pointer to the monitor ROM, so some-

thing's happening. 
The interrupt vector points to the 

ROM's Temporary Interrupt Service 
Routine. This routine aids in power on 
diagnostics, and handles all subsequent 
unused interrupts by making sure that 
it won't have to deal with them again. 
Setting the corresponding bit in the 
IMR does the trick. Actually, the BIOS 
initially masks off all hardware inter
rupts except timer, keyboard, and dis
kette. But in case someone removes the 
mask without installing an interrupt 
handler, this ROM code comes to the 
rescue. A bit of protection for the care
less programmer. 

On To The Code 
Figure 4 lists an assembler file 

which takes over interrupt OAh. As
semble and link normally to an .EXE 
file. Don't worry about the stack seg
ment error from LINK. Run the result 
through EXE2BIN to create the final 
.COMfile. 

I won't say much about the setup 
procedure. Take a look at issue #31 for 
more information. The main difference 
here is that the mask on IR2 must be 
removed during installation of the inter
rupt handler. 

As discussed above, the flags CS 
and IP get pushed onto the stack before 
the interrupt handler is entered. At the 
same time, the 8088 resets IF and TF 
(Trap Flag). We don't care about TF. It 
allows single stepping through code for 
debugging purposes. We do care about 
IF. 

With IF reset, interrupts are dis
abled. One of the Great Laws of 
Programming states, "Thou shalt not 
disable interrupts (for very long)." 
Since the code in my interrupt handler 
doesn't mind being interrupted, its first 
instruction reenables interrupts (STD. 

This brings up an interesting aside. 
There are no guarantees that some 
program hasn't disabled interrupts 
over a long period of time. What hap
pens to the clock in this situation? Inter
rupt requests come in on IRO 18.2 times 
per second. Only the first request can 
be stored in the IRR. After that, the re
quests go to interrupt heaven. All those 
ticks are lost until interrupts are 
reenabled. 

So if you need an exact value for the 
time of day, get it from your real time 
clock (RTC) - not from the BIOS time of 
day call. The same holds true for 
benchmarks. Your benchmark code 

40 MICRO CORNUCOPIA, #36, June-July 1987 

probably won't cause the loss of any 
clock ticks. But just to be safe, time it 
with the RTC. 

As always, initial values must be 
preserved for any registers used in the 
routine. So push those suckers onto the 
stack. 

The body of my interrupt handler 
would have trouble impressing a 3-
year old. Its main purpose in life is to 
test the hardware interrupt process. 
However, you can try a very instruc
tive experiment with it. Assemble the 
code both with and without the initial 
STI instruction. Without the STI, the in
terrupt handler can't be interrupted 
and you'll hear a smooth transition of 
notes. But with the STI, you'll be able 
to hear the clock interrupting the sound 
18.2 times each second. 

Two housekeeping chores must com
plete the interrupt handler. Since this 
interrupt request has now been ser
viced, an EOI command to the PIC 
resets the appropriate ISR bit. Finally, 
an Interrupt Return (IRET) instruction 
pops the flags and registers off the 
stack and the 8088 resumes execution 
of the code which was interrupted in 
the first place. 

Fin 
The PC's PIC obviously has a lot on 

its mind. Some day it would be fun to 
herd a few of them together. It could 
turn into the ultimate extension of the 
PC expansion bus (62 slots, folks -
count 'em!) or an interface to some 
wild real world experiment. If anyone 
out there has done this kind of surgery 
to a PC, I'd love to hear from you. 

That's all for now, folks. Next time 
we'll dive into the wonderful world of 
DMA. 

••• 



Figure 4 - Interrupt Handler 

title InterruptExample 

code segment ; everything in code seg 
org 100h 
assume cs:code 

DOS_entry label far 
jmp setup 

new_int proc far ; beginning of into handler 
sti ; reenable interrupts 
push ax ; save registers 
push bx 
push dx 
mov al,OB6h ; set up timer for tones 
out 43h,al 
in al,61h ; set 2 LS bits, enable spkr 
or al,03h 
out 61h,al 
mov bx,3000h ; initial tone divisor 

top: mov ax,bx ; setup tone 
out 42h,al 
mov al,ah 
out 42h,al 
mov dx,30h 

delay: dec dx ; sound tone 
cmp dx,O 
jne short delay 
dec bx 
cmp bx,O 
jne short top ; set up new tone 

done: in al,61h ; disable speaker 
and al,OFCh 
out 61h,al 
mov al,20h ; signal end of interrupt 
out 20h, al 
pop dx ; restore registers 
pop bx 
pop ax 
iret 

new_int endp ; end of our interrupt 
end_res_code: 

sign_on db 'INT TEST NOW INSTALLED$' 
err_msg db 'INT TEST ALREADY INSTALLED$' 

assume ds:code 
setup proc near ; install our routine 

; as resident code 
in ax,21h ; get mask register 
and ax,OFBh ; remove mask reset bit 2 
out 21h,ax ; send new mask to reg 
mov ax,350Ah ; get address of int OAh 
int 21h 
mov ax,es ; segment returned in es 
cmp aX,OfOOOh ; is this address in ROM? 
jae short install ; if so, install our code 
mov dX,offset err_msg ; if not, write msg 
mov ah,9 ; that our code is already 
int 21h ; installed 
int 20h ; exit to DOS 

install:mov dx,offset sign_on ; write sign on msg 
mov ah,9 
int 21h 
mov dx,offset new _int ; set up new 
mov ax,250Ah ; interrupt vector 
int 21h 
mov dX,offset end_res_code ; make code 
int 27h ; resident 

setup endp 
code ends 

end DOS_entry 

RS·232 

• @ 

•• 
PI", 1 

BUSY 

• 
PAOGAAMMINC; SYSllM P 2 21 

PLD PROGRAMMING SYSTEM $995 
• LOWEST COST 
• SUPPORTS MMI, NATIONAL TI 
• COMPLETE PLD DEVELOPMENT SYSTEM 
• BUILT-IN COMPILER 

CALL 1-800-852-2022 

1----61 or~~ s~s1~m~f---I 
.C D R P 0 R AT ION 

3201 North Hwy. 67 Suite E Mesquite, Texas 75150 • (2141 27Q.4135 

MS-DOS, CP/M E/EEPROM 
PROGRAMMING SYSTEM 

2708 2764 
2758 2764A 
2716 27128 
2516 27128A 
2532* 27256 
2564* 27512 
68764* 27CXXX 
2816A 2864A 
2732 8751* 
2732A ~m~R 

DIAGAMS INCLUDED 

A FULL FEATURED HARDWARE/SOFTWARE PACKAGE 
• FAST PROGRAMMING ALGORITHM • USES NO SYSTEM POWER OR CHASSIS SLOT 
• NO PERSONALITY MODULES REQUIRED • STAND-ALONE BOARD 
elNSTAlLPROGRAMFORSOFTWARE • HIGH SPEED PARALLELOPERAnON 
• ALL SUPPUES ON BOARD • FIVE LED STATUSIACTMTY INDICATORS 
• PROGRAMS 26, 25, 21 & 12.SV ElEEPROMS • HIGH QUAUTY "TEXTOOL· ZlF SOCKET 
• LARGE COMPREHENSIVE MANUAL • REQUIRES 24 OR 25 VOLT XFMR FOR POWER 

PARALLEL PRINTER INTERFACE 
CONNECTS TO ANY PARALLEL PRINTER INTERFACE 

USES 8 OUTPUT DATA BITS AND THE PRINTER BUSY LINE FOR DATA INPUT 

CONTROL PROGRAM COMMANDS 
• PROGRAM EPROM(S) FROM DISK FILE 
• READ DISK ALE INTO BUFFER 
• READ EPROM(S) INTO BUFFER 
• VERIFY EPROM IS ERASED 
• aiANGE EPROM TYPE 

• SAVE EPROM(SVBUFFER TO DISK 
• PROGRAM EPROM(S) FROM BUFFER 
• COMPARE EPROM(S) WI1H BUFFER 

\ • COpy EPROM(S) 
• BUFFER MONITOR MODE (SEE BELOW) 

THE BUFFER MONITOR t.t:lDE HAS 17 SUB-COMMANDS FOR DETAILED OPERATIONS. THESE INCLUDE: 
FIll. DUMP. TRANSFER. PROGRAM. READ. VERIFY. EXAMINE. MODIFY. CHECKSUM. BIAS. INSPECT. 
SINGLE BYTE BURN. LOGICAL OPERA TIONS(ANDIORIXOR). SET BUFFER BIAS. HEX ARITHMETIC. ETC. 

ASSEMBLED AND TESTED UNIT WITH COMPLETE $199 DOCUMEKTATON AND SOFTWARE ON DISKETTE 

PARTS KIT WITH SOFTWARE AND DOC.-$179 BARE BOARD, SOFTWARE & OOC.-$69 
SOFTWARE AVAIlABlE ON 5 1/4· OR 8· DISK FOR IBM. KAYPRO. & OTHER FORMATS 

TO ORDER SEND CHECK, MONEY ORDER, WRITE OR CALL: 

ANDRATECH 
P.O. BOX 222 

MILFORDJ. OHIO 45150 
(513) 152-7218 

CALL OR WRITE FOR MORE INFORMATION - ADD $4.00 FOR SHIPPING· $3.00 COD 

MICRO CORNUCOPIA, #36, June-July 1987 41 



By Stephen M. Leon 
200 Winston Drive 

Cliffside Park, NJ 07010 

New Games And New Business Software For The PC 

Steve tests the inexpensive multi
function RAM cards and finds a win
ner. Then he covers the new MS-DOS 
disks from PC-Blue. 

C
ompatibility. It's probably the 
most commonly used word in 
the computer field today. In 
fact, I was all set to write this 

column about compatibility problems I 
was having with my Everex Magic 
Card 16 AT multifunction board. Unfor
tunately, I had to rewrite the column 
when it turned out that the card was 
defective. 

But concerning compatibility in 
general, I now insist that a vendor 
guarantee his product will work in my 
system,as it's set up, or I get my 
money back. 

The Everex Magic Card 
The multifunction card looked like a 

perfect way to add a RAM disk to the 
BBS system we use at work. It was 
reasonably priced and designed to 
work at 10 MHz. Instead, even with 
120 ns prime chips, it gave us strange 
memory errors. It turned out that there 
was enough of a glitch in the Everex 
card to make it allergic to the PC Net
work card we were using. However, 
once the Everex was replaced, the 
whole system worked perfectly. 

We had another problem helping a 
friend set up a new AT clone. All of us 
realize that the best way to solve an 
equipment problem is to switch parts 
between two similar computers. We 
did that and everything worked in the 
other computer, so we put. the blame 
on the mother board. A new mother 
board produced the same problem. 
You guessed it - it was the brand new 
power supply, shirking its duty. 

Here's another example - two spank-

ing new XTs arrived at the office the 
other day. We set them up. One 
worked fine. The other gave a disk con
troller card error message. Since we 
buy directly from IBM, their service 
department came to the office and 
changed the mother board, the hard 
disk, and the disk controller! So much 
for quality control. 

New PC/BLUE Releases 
Last issue we made mention of 

PC/BLUE 277 containing this horrible 
example of shareware called 
AMT AX86. (This was the program that 
allowed you to calculate your income 
tax, but would not print a return until 
you sent them a contribution.) 

I persuaded Hank Kee to pull back 
the release. He did that, but then re-is
sued it as PC/BLUE 281. However, this 
time he also included on the disk a 
program by Stephen F. Procko called 
TAX87. It does a projection of your 
1987 taxes, so the disk is not. a total 
waste. 

Dave Alexander has revised his MR. 
BILL, a legal time and billing system, 
and it is on PC/BLUE 277 and 278. 
(The earlier version was on 207 and 
208.) The program is more than ade
quate for a small office billing on a 
time basis. 

I prepared the two MR. BILL 
volumes and 279 and 280 for 
PC/BLUE. Volume 279 has a good 
label program called Label Master and 
a not too bad outliner and text proces
sor, the Classical Classifier. If you are 
big on disk manager systems, by all 
means take a look at 280. Commando 
and Master Key are both excellent disk 
managers if you need help in handling 
DOS. 

There is, however, a real gem on 
280. I never did figure out how they 
got the name, but MSP ANTOC from 

42 MICRO CORNUCOPIA, #36, June-July 1987 

the Nunnery Works, Ltd., is something 
that you should get if you do any docu
ment formatting. It will give you the 
style sheet capabilities of Microsoft 
Word plus many, many more features. 

Games People Play 
Volume 284 has Intercept, 

Flightmare and Monopoly 6.2 (all 
CGA) as well as the "Original" Adven
ture (text). I suspect that Parker 
Brothers (or whoever now owns 
Monopoly) will one day sue to stop the 
computer version of its game. 
However, a board game on a computer, 
as good as it is, is really nothing more 
than whetting the appetite of the user 
to go out and buy the real thing. Un
less you have a spare computer to keep 
the game board on, it sure is easier to 
play Monopoly with the real game -
and a lot more fun. 

Speaking of fun games - while you 
will never see these in the PC/BLUE 
library, I've seen an increasing number 
of sexually-oriented games on the bul
letin boards. From the download statis
tics, they are very popular. The best of 
the lot seems to be a program called 
COUPLES, written by a student at 
Union College. 

More family oriented is PC/BLUE 
284, which contains Bible-Q, a Bible 
quiz by Rev. and Mrs. Robert Smith. 
For Ivan Boesky fans, the same volume 
has a stock market simulation. I am not 
positive, but I think hidden in the code 
of that program is inside information. 1-
Ching, the book of changes, is on 
Volume 283. Genealogy on Display 
(version 5.0), another very popular 
program, is on volume 285. 

Attention All SYSOPs 
Last issue we mentioned a program 

I wrote for dBase3 and Clipper called 
BBDIR. It automates directory handling 



for BBS systems. It is now on 
PC/BLUE 288, as is Dan Doman's 
BBSUTILS. Dan has a fine collection of 
utilities to sort directories and to match 
up what is on the disks and in the 
directories. If you are a SYSOP, or hope 
to be one, you should have this volume. 

Since I wrote BBDIR I have been 
helping a number of SYSOPs get their 
directory structure in order. The 
program seems to work well with all of 
the various directory structures we 
have run into. However, we have had 
to shift the spacing in one of the data 
bases to match the file structure of 
FlDO. Anyone with a little dBASE 
familiarity can modify the file structure 
of the transitional data base (called 
TEMP.DBF) to get it to work well. 

Business, Business, Business 
Several times a week I get calls and 

letters from people seeking the dBase3 
version of my Property Management 
program. We finally decided to release 
it in PC/BLUE and it is on Volume 289. 
It handles all aspects of the manage
ment of tenanted real estate. The 
program is written in dBASE3 plus and 
comes with source code. It also comes 
with a Clipper compilation. 

However, it was written before the 
Autumn '86 release of Clipper, and we 
created BROWSE with a special library. 
Therefore, if you decide to do a recom
pile, you will have to rewrite the 
BROWSE to the new version of Clip
per. It is not that difficult to do. (We 
have done it for our office programs 
which contain BROWSE.) The reason 
we did not do it for the release was be
cause the Harry Van Tassell version of 
BROWSE, which appears in our old 
Clipper library, is far superior to the 
August '86 version of Clipper. 

Also on the business side is Volume 
290 - AsEasyAs, an excellent Lotus 123 
clone. (Another lawsuit?) It cannot 
handle a spread sheet beyond 1024 
rows and 256 columns - but who needs 
such a big spread sheet? Volume 283 
also has a spread sheet - Betterway 
Calc. In the quasi-business area, we 
have two desk management utilities on 
291. DeskTeam and Right Hand Man 
are for those of you who do not want 
to go out and buy SideKick. 

My Kind Of Disk 
PC/BLUE Volume 287 is my kind of 

disk. It is a collection of 32 screen han
dling and subdirectory utilities. The 

screen handling utilities are: 
DISPLA Y.ARC - blink, highlight, 

etc., parts of screen 
EGA4325.ARC - EGA switch 25-43 

line mode 
FONT3270.ARC EGA change 

screen font to emulate 3270 
FRULERARC - memory resident on

screen ruler 
HERC1.ARC control Hercules 

graphics 
HERCBIOS.ARC - Hercules BIOS 
HERCIBM.ARC - CGA emulation 

for Hercules and clones 
HGC.ARC - clears screen within 5 

minutes for Hercules 
HGCIBM.ARC converts CGA 

programs for Hercules 
HVIEW.ARC - Hercules 43 lines by 

180 columns 
KBORDERARC - memory resident 

COLOR set 
NEWFNT30.ARC - EGA fonts 
PALCON.ARC - EGA palette utility 

for Lotus 123 
SA VSCRARC - text screen to text 

file w /PrtSc 
SCRNSV20.COM - blank screen after 

20 min of non-use 
SIMCGA.ARC - simulate CGA on 

Hercules monochrome 
SPS13.ARC - select part of screen for 

PrtSc 
SWH.ARC - Hercules ONLY arcade 

game 
VIDEO. ARC - change screen color at

tributes 
The subdirectory utilities are: 
ALTER ARC - hides/unhides files 

and subdirectories 
CA IT. COM - change file attributes 
CDD.ARC - change drive and direc

tory in one shot 
CDSECRET.COM - change to a 

secret subdirectory 
DELDIRARC - delete subdirectories 

and files 
DIRUT3.COM - global drive direc

tory 
DSIZ.ARC - directory tree with size 
MDIR2.ARC - RAM resident direc

tory utility 
PMOVE5.ARC - move files between 

subdir / devices 
RENDIRCOM - rename subdirec

tories 
SECDIRARC - hide/unhide sub

directories 
TREEDIRARC - locate all files in all 

subdirectories. 
WHEREIS4.ARC - locate file within 

subdirectories 

No New SIG/M Disks 
Since yours truly stepped down as 

SIG/M disk editor, there have been no 
new SIG/M releases. The last volume 
is still 294. It was released on Novem
ber 21, 1986. I received considerable 
mail on the subject, including one from 
Professor Harold McIntosh (the author 
of REC). He comments: 

"There was some comment ... about 
a huge volume of CP/M programs 
waiting to be released. This is a state
ment about which I, myself, am skepti
cal. It will be interesting to see if some
body actually manages to materialize 
these programs. 

"Whatever may be said about the in
stalled base of CP/M machines, their 
importance to their owners, and the 
remaining years of service which they 
have to offer, it just doesn't seem to me 
that there are going to be any major 
software efforts oriented toward them. 
This is a shame. Now that Digital 
Research cannot have much of any com
mercial interest in defending its 
proprietary interests, it would be nice 
to go back and do CP/M over again -
right, this time." 

That does not mean to say, however, 
that there is not a wealth of CP/M 
material still out there. With 294 
volumes in the SIG/M library - most of 
it with source code - the majority of 
your requirements should be met. If 
you are still writing new CP /M 
software for your own use, or if you 
have programs that you developed 
under CP/M that you would be willing 
to share, why not make a contribution 
to the SIG/M library. 

So Nice to Meet You 
It really has been quite enjoyable to 

see the vast number of Micro C readers 
who call up the BBS system we set up. 
I have chatted with quite a number of 
you and find you to be a swell bunch 
of guys and gals. I now know why 
everyone has such a good time at SOG~ 

In any event, we have a multi-user 
BBS system running on two lines. It 
consists of two AT clones and two XT 
clones. One AT clone is the server. The 
two lines feed into two turbo XTs, and 
the second AT services the system. If 
need be, a third line will be added and 
the second AT will be on line most of 
the time. 

(continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 43 



r.r CLONE SYSTEMS 
(One YEAR guarantee on system) 

Turbo Mother Board 4.77 and 8 MHz. 
640 K Ram installed on board 
Serial, Parallel, Game Ports 
Clock/Calendar AT Style Keyboard 
Color Video Board (CGA) Monochrome Opt 
150 watt Power Supply Flip Top Case 

ABOVE WITH 2 FLOPPY DISK DRIVES $ 699.00 
WITH 1 FLOPPY AND 20 MEG $ 950.00 
WITH 2 FLOPPY AND 20 MEG $1000.00 

Assembled and Tested for 24 Hours 

20 MEG HARD DRIVE WITH CONTROLLER 
LAPINE LT200 $310.00 

AT 'l'URBO SYSTEM 
AT COMPATIBLE MOTHER BOARD WITH BIOS 

6 MEG AND 10 MEG SWITCHABLESPEED 
512K RAM INSTALLED UP TO 1024 ON BOARD 
WA2 HARD DISK/FLOPPY DISK CONTROLLER 
MONOCHROME GRAPHICS VIDEO WITH PRINTER 
1.2 MEG OR 360 K FLOPPY 
220 WATT POWER SUPPLY AT CASE 
AT KEYBOARD SET UP DISK 
ONE YEAR WARRANTEE ON SYSTEM 

EGA UPGRADE FOR ABOVE 
512K UPGRADE (1024 INSTALLED) 

BARD DISK DRIVES 

$1095.00 
$ 150.00 
$ 50.00 

20 Meg Seagate ST4026 (for AT) $ 495.00 
30 Meg Seagate ST4038 (for AT) $ 595.00 
30 Meg CDC Wren 1 (for AT) $ 595.00 

Does NOT include controller 

Color Monitor RGB (CGA) $ 
Color Monitor RGB (EGA) $ 
Monochrome TTL (Green) $ 
Monochrome TTL (Amber) $ 
EGA Color Video Card $ 
MS DOS 3.2 WITH GW BASIC $ 

CITIZEN PRImERS 
MODEL 120D 120 CPS 9" $ 
MODEL MSP-10 160 CPS 9" $ 
MODEL MSP-15 160 CPS 15" $ 
MODEL MSP-20 200 CPS 9" $ 
MODEL MSP-25 200 CPS IS" $ 
MODEL 35 35 CPS LETTER QUALITY $ 

ALL PRINTERS COME WITH CABLE 

CASCADE ELECTRONICS, IRC. 
ROUTE 1 BOX 8 

RANDOLPH, MN 55065 
'507-645-7997 

300.00 
510.00 
110.00 
120.00 
195.00 

85.00 

200.00 
300.00 
400.00 
350.00 
500.00 
500.00 

Please ADD Shipping on all Orders 
COD Add $3.00 Credit Cards ADD 5% 

Limited to Stock on Hand Subject to change 

(continued from page 43) 

Both the SIG/M library and the 
PC/BLUE library are available on the 
system. At last count, approximately 90 
full PC/BLUE volumes (each as a 
single .ARC file labeled PCxxx.ARC) 
were on line without prior request. 
Twenty-five SIG/M volumes (each as a 

,single .LBR file labeled SIGxxx.LBR) 
were also on line. More than 2000 other 
separate files were also on line, includ
ing more than 200 AMIGA files. There 
are no preregistration requirements, no 
hassles - and no nonsense. 

First time on you get full access to 
the system, and a full 92-minute time 
frame per day. There is no requirement 
that you upload to us. We actually 
prefer that you do not upload, unless it 
is software you have written. The 
phone number is (201) 886-8041. That 
line jumps to other available lines, so 
please don't call my voice line in the 
middle of the night with your com
puter. (Several issues back, I made a 
mistake and put in the voice number as 
the computer number. I still get calls 
on that one.) 

Unless you have a friend at the 
telephone company, all SIG/M and 
PC/BLUE volumes are available 
through local SIG/M and PC/BLUE 
distribution points or may be ordered 
directly. In addition, any SIG/M or 
PC/BLUE volume (or any file from any' 
volume) not already on the BBS will be 
put up on request. 

SIG/M volumes are available on 8" 
SSSD disks for $6 each ($9 foreign) 
directly from SIG/M, Box 97, Iselin, NJ 
08830. They are, also available in most 
5" formats. The charge for 5" disks is $7 
per volume. However, for SSSD for
mats, or any format which requires 
more than one disk, please add another 
$2 per volume. Printed catalogs are $3 
each ($4 foreign). PC/BLUE volumes 
are $7 each ($10 foreign). The printed 
catalog is $5. 

Both are available from the New 
York Amateur Computer Club, Box 
3443, Church Street Station, New York, 
NY 10008. (Note that it is a new box 
number for PC/BLUE.) Both groups 
have a disk catalog (Volume 0) avail
able at the price of a standard disk 
volume. This catalog volume is usually 
more current and more readily avail
able than the printed catalog. 

••• 



Disk storage problems? We have the solutions. 
Hard Disk Host boards with software for your Z80 
by Emerald Microware and MICROCode Consulting 

No other upgrade improves your computer's productivity like a hard 
disk. We have everything you need to install a hard drive on your 
Xerox 820, Kaypro, Zorba, or almost any Z80 system. 
• Host plugs into the Z80 socket, no wiring required 
• Interfaces to the WD1 002 controller board 
• Works with one or two hard disks - 5 to 64 meg 
• Menu installation, no software to assemble 
• Automatic swap, warm boot from hard drive 
• BIOS drivers install above BIOS or below CP/M 
• Selectable I/O port addressing 
• Allows custom partitioning and mixed drives types 
• Includes manual, format program and extensive utilities 
• Host board comes assembled and fully tested 

HDS Board with software .......................... $ 89.00 
HDS Board with software and WD1002-05 board ........ $250.00 

WD1002-05 Hard Disk Controller Board by Western Digital 
• Standard ST506 drive interface (20 & 34 pin conn.) 
• Same size as standard 5 1/4" drive 
• 40 pin host interface 
• Can control up to three hard drives 
• Direct replacement for Kaypro 10 controller 

WD1002-05 Controller Board ....................... $185.00 
Rodime R0252 - 10 Meg - 31/2" Hard Drive ............. $275.00 
LaPine 20 Meg - 3%" Hard Drive .................... $345.00 

Adaptec 2070 - RLL Hard Disk Controller Card 
for the PC/XT 

The Adaptec 2070 controller board uses the new Run Length Limited 
technology to squeeze an additional 50% more capacity than a stan
dard MFM encoding. For example, a 20 meg drive formatted in stan
dard MFM mode can operate with a capacity of 30 Megabytes in RLL 
mode. Works in both RLL and standard MFM encoding modes. 
Please call or write for RLL compatibility list. 
Adaptec 2070 ................................... $135.00 

THE KayPLUS ROM PACKAGE by MICROCode 
Consulting 

The most important element in the performance of your Kaypro is its 
monitor rom. With KayPLUS you get all of the advantages of a Kaypro 
10, even on your Kaypro 2. 
• Boots from floppy or hard disk 
• Install up to four floppies and two hard drives 
• No software assembly required 
• Runs standard single and double sided formats on 96 TPI drives 
• 32 character keyboard buffer 
o Automatic screen blanking 
• 12 disk formats built-in 
• Full automatic disk relogging with QP/M 
• Internal real-time clock support 
• Includes manual, standard utilities, AND hard disk utilities 
KayPLUS ROM Set ............................... $ 69.95 
KayPLUS ROM Set with QP/M .. ** SPECIAL ** ....... $115.00 

Parts and accessories for the Kaypro and XEROX 820 
Kaypro 2X Real-time Clock parts kit .................. $ 29.00 
Kaypro 2X Hard disk interface parts kit ................ $ 16.00 
Kaypro 10 or '84 series Hard Disk host board ........... $ 49.00 
Kaypro four drive floppy decoder board ............... $ 35.00 
Xerox 820-2 CPU Board - new ...................... $. 75.00 
Xerox 820-2 Floppy Controller board - new ............ $ 65.00 
Xerox 820-2 CPU board w/ Floppy Controller ........... $125.00 
Xerox 820 power supply ........................... $ 30.00 
Xerox 820-1 CPU board - new ...................... $ 85.00 
Xerox 820 complete high profile keyboard ............. $ 65.00 
Xerox 820 bare high profile keyboard - new ............ $ 25.00 
Xerox 820 5%" drive cable ......................... $ 9.00 
Xerox internal video cable .......................... $ 7.00 
Xerox 820-2 cabinet (no CRT frame) - new ............. $ 65.00 
Xerox CPU board mount power connector ............. $ 2.50 
Dual Half Height 5%" Disk Drives - DSDD, in cabinet with standard 
Xerox cable ..................................... $265.00 
Call for other parts or repair services. 

Prices subject to change without notice. Include $4.00 shipping and 
handling, $7.00 for COD, call for Blue Label charges. VISA and Master
card accepted. 30 day money back guarantee on all products. 

Keep better track of your files with QP/M 
by MICROCode Consulting 

Full CP/M 2.2 compatability with outstanding performance and many 
more features. You've seen the replacements that eat up memory 
and need auxiliary programs to run. Not QP/M. Fifteen internal com
mands, automatic disk relogging (no more control C), user area selec
tion from colon, 31 user areas, drive search path, archive bit mainte
nance, and transparent time/date stamping; all in the same space as 
CP/M 2.2. Installs from a convenient customization menu, no 
software assembly required. Bootable systems available for the BBI, 
Kaypro, and Xerox 820. 
QP/M Operating System, complete bootable copy ....... $ 80.00 
QP/M without BIOS (installs on any Z80 system) ........ $ 60.00 

Get the ultimate in versatility on your Xerox 820-1 
with the PLUS2/X120 Double Density package 
by Emerald Microware and MICROCode Consulting 

Run up to four floppy disk drives at once, both 8" and 5%" at the same 
time. Software compatable with Kaypro and Xerox 820. Supports all 
standard serial and parallel printers, and most add ons like the Fergu
son Ram Board. You get mini-monitor functions, autoboot capability, 
19 built in disk formats, and bank mode operation for more space in 
your TPA. Lets you run 48 TPI disks on 96 track drives. Works with 
Uniform and QP/M. 
PLUS2 ROM Set and X120 Board A&T ............... $135.00 
PLUS2 ROM Set and X120 Bare Board ............... $ 62.00 
PLUS2 ROM Set only ............................. $ 49.95 
120 Bare Board only .. ** CLOSE-OUT SPECIAL ** ..... $ 15.00 

or two for $ 25.00, five for $ 50.00 
Other kits, parts, and packages available 

End diskette incompatibility on your PC with 
UniForm-PC by Micro Solutions 

This program allows you to read, write, copy, and format diskettes for 
over a hundred CP/M, TRSDOS, and MSDOS computers on your 
PC, XT, or AT, including 8", 96 TPI, high density, and 3%" formats 
(with optional hardware). Once installed, UniForm is mem ory resi
dent so you can use your standard DOS commands and other pro
grams directly on your original diskettes. 
UniForm-PC .................................... $ 64.95 
Uniform for Kaypro and other machines ............... $ 64.95 

Run your CP/M programs on your PC/XT/AT with 
UniDOS by Micro Solutions 

UniDOS uses the NEC V20 or V30 CPU chips to actually RUN your 
favorite 8080 CP/M programs on your PC. Z80 programs can be run 
in an emulation mode. Use UniDOS with UniForm-PC, and you can 
run them directly from your CP/M format diskettes. All standard CP/M 
system calls are supported. 
UniDOS ........................................ $ 64.95 
UniDOS w/ UniForm & V20 chip ..................... $129.95 

The CompatiCard universal floppy drive controller 
by Micro Solutions 

Finally a full function floppy controller card that allows you to run up 
to four 8", 5%" (standard, ,96 TPI, or high density), and 3%" disk 
drives on your IBM or compatible. This board works with the UniForm
PC program to format, read, and write lite rally hundreds of CP/M, 
TRSDOS, and MSDOS disk formats on your PC/XT. The Com
paticard can be addressed to use with up to three other floppy control
ler cards. 
CompatiCard .................................... $169.95 

us~o;~~~c:~;~: ~~i~Oo'P~t~~ 'di~k~' ~~ y~~~' PC/~~5.00 
with MatchPoint-PC by Micro Solutions 

This half-card works with your controller card to let you read and write 
to NorthStar hard sector and Apple II diskettes on your PC. IN
CLUDES a copy of the UniForm-PC program, as well as utilities to 
format disks, copy, delete, and view files on Apple DO S, PRODOS, 
and Apple CP/M diskettes. . 
MatchPoint-PC .................................. $169.95 

r EMERRLD ~~ 
1V1S4·.1 ~~MICRO~RRc) 1891 

P.O. Box 1726, Beaverton, OR 97075 
(503) 641-0347 

MICRO CORNUCOPIA, #36, June-July 1987 45 



PC-DOS 3.00 And Beyond 

The Search For Inside Information 

If you've been trying to write 
reentrant code for MS-DOS, stay with 
us. This super piece is really a blow-by
blow heavyweight look at mucking 
with DOS. Note that you'll need MS 
or PC-DOS 3.XX to do any of the ex
citing things that follow. 

A
fter hacking up operating sys
tems such as CP/M -80 and 
TurboDOS, I was pushed head

first into the MS-DOS world a bit over 
a year ago. This has led to a seemingly 
endless search for inside information 
and undocumented functions. 

When I started out in CP/M, many 
"useful utilities" were either in their in
fancy or had not yet been written. 
Under MS-DOS, the big stuff is, for the 
most part, already available, so I've 
limited myself to writing little stuff. Be
sides, two kids and caring for 
Definicon's 68020 product line doesn't 
leave much time to play. 

I admit that most of my knowledge 
has come from the BYTE Information 
Exchange (BIX), in particular the 
"ms.dos/secrets" conference. Some in
formation I have painstakingly ex
tracted with a debugger, only to find it 
posted there. Or, as happened a few 
times, after having posted my own in
sights, I've had someone say, "Hey, 
don't you read XXX Magazine," (no I 
don't), "it was published there!" 

Anyway, here are a few insights. 

Reentrancy 
While writing a background 

loader/interface for the DSI-020 to 
allow 68020 programs to do something 
useful, I had to overcome the same 
hurdles everyone has been writing 
about with respect to DOS reentrancy 
(or rather the lack thereof). I did it 
mostly by reinventing the wheel. 

By now, you probably know that 

you can use the so-called INDOS flag 
and poll once every timer tick. Many 
people know that DOS makes an INT 
28H call every time it polls for a charac
ter, saying, "despite INDOS, it's safe 
NOW to enter." 

Thus, in order to steal CPU time for 
a background task, I trap both INT 
1CH and INT 28H. I use INT 21H func
tion 34H to get the pointer to INDOS 
and store it. Thus I avoid using an INT 
21H to determine whether it's safe to 
make an INT 21H call... Mostly, it 
saves execution time. 

If I see an INT 1 CH, I do an EOI to 
tell the hardware I received it, then 
check INDOS and execute my routine if 
INDOS = 0, otherwise I simply do an 
IRET. 

If I see an INT 28H, I execute my 
routine without any further DOS check
ing. 

Of course, it's possible for the back
ground to take longer than 1/18th of a 
second to execute,. in which case the 
next INT 1 CH will come along, finding 
INDOS = 0, and go on to wreak havoc. 
Here's where the "mutual exclusion 
semaphore" (one of the very few things 
I still remember about TurboDOS) 
comes in. 

The background routine checks a 
flag before doing anything else. If it 
finds the flag set, it doesn't execute, but 
instead exits to the IRET above. Other
wise, it quickly sets the flag, then saves 
all registers, sets up a new stack 
pointer (IMPORTANT!), and executes 
the background task. When it' s 
finished, after restoring all of the 
caller's registers and just before 
IRETing, the mutual exclusion flag is 
reset, allowing the next call to enter. 

This isn't really a semaphore, since 
according to the MX-semaphore used 
in TurboDOS, the calling process waits 
until the semaphore is cleared. Here, 
the calling process skips if the MX-flag 

46 MICRO CORNUCOPIA, #36, June-July 1987 

is set. 

By Siegmund F. Kluger 
Definicon Systems 

31324 Via Colinas #108/9 
Westlake Village, CA 91362 

See Figure 1 for some example code. 
This code should be largely self-ex

planatory to an experienced assembly 
language programmer. 

Writing DOS Files In The Background 
Many stories have been written on 

read/write file access in background 
mode. Most of them do indeed work. 
But note that in order to satisfy DOS re
quirements better, we should be using 
a technique that I haven't yet seen in 
print. 

The first 256 bytes of the data seg
ment of any DOS program is called the 
PSP (Program Segment Prefix). UNIX 
gurus are familiar with the term PID 
(Process 10). DOS also has a PID and a 
(documented) function to interrogate 
the current PID. It also has a function 
to SET the current PID, but the func
tion isn't documented. 

In DOS, the PID is the segment ad
dress of the current program's PSP! 
Everything DOS cares about is 
referenced by that PSP, including the 
Process File Table which contains the 
handles of currently open files. 

Now, assume the following scenario: 
1. A background process begins to 

run asynchronously, possibly a BBS 
program or an unattended XMODEM 
transfer. 

2. A program begins to run in the 
foreground. 

3. The background process opens a 
file and starts writing to it. DOS, in its 
ignorance, uses the current PSP to 
record the file handle. The current PSP 
is, naturally, that of the foreground 
program. 

4. The foreground program ter
minates. DOS closes all the files the 
foreground program had left open. The 
current PSP is switched to COM
MAND.COM's PSP. 

5. The background program's write 



request fails because DOS closed the 
file when killing the foreground 
process, and COMMAND. COM doesn't 
currently have a file open with a match
ing handle. (Imagine COM
MAND.COM opening a file with the 
same handle as that of the background 
program, then the BG program writing 
to it!!!) 

Clearly, only very careful coding can 
avoid disaster. If you don't wish to 
make the precautions necessary to 
prevent the above scenario, you must 
use an undocumented DOS function. 
See Figure 2. 

In Figure 2, the first thing the 
"BGRTN" code should do is use FCN 
51H to get the current PSP. It should 
then save it in memory, set up BX to 
point to the local PSP (always CS 
register in a .COM file), and use FCN 
SOH to tell DOS about the new PSP. 
When finished, and just before return
ing to the task dispatcher, get the saved 
PSP value and use FCN SOH to set it 
back to what it was before the call. 

Crossing The IS-File Barrier 
HELP! I need to work on 25 files all 

at once and DOS only lets me open 15 
simultaneously! 

Don't worry, help is on the way. 
DOS limits programs to a maximum of 
20 files (15 available, 5 predefined). 
You can cheat by closing handles 2, 3 
and 4 and get 18 files. But if you really 
need 25 (or more) files at the same 
time, here's how to do it. 

At offset 18H of the PSP is a 20-byte 
table of file handles. This table should 
be duplicated elsewhere in memory, its 
size depending on the number of files 
you'll want open. 

Let's assume we want to be able to 
have up to 50 files open at one time. 
So, the new PFI' (Process File Table) 
has to be 50 bytes large. All 50 bytes 
should be initialized to OFFH. 

First, you must copy the old PFI' at 
PSP:18H over the new one to keep 
track of any pre-opened files (usually 
only handles 0-4). At PSP:34H there's a 
16-bit offset which points to the start of 
the PFI'. Change that location to point 
to the offset of the new PFI'. 

The segment address of the PFI' is 
located at PSP:36H. Stash the segment 
address of the new PFI' there if it's dif
ferent from the PSP segment. Finally, 
stash the maximum number of files 

(continued next page) 

Figure 1 - Redirected Entry Points 

This is the redirected INT ICH entry point 
TICK IC:CLI ; no interrupts 
MOV CS:Byte Ptr ISIC,1 ; set a flag to indicate IC 
MOV AL,20H ; EOI 
OUT 20H,AL 
PUSH DS 
PUSH SI 
LDS SI,Dword Ptr INDOS ; get INDOS flag 

; check CMP Word Ptr OFFFFH[SI],O 
POP SI 
POP DS 
JNZ MISS 
JMPS HITIT 

, This is the redirected INT 28H entry point 
D128: CLI 

MOV 
HITIT: CMP 

JNZ 
MOV 
STI 

CS:Byte Ptr ISIC,O 
CS:Byte Ptr MXSPH,O 
MISS 
CS:Byte Ptr MXSPH,OFFH 

; indicate not ICH 
; check MX flag 

; set MX flag 

; SAVE ALL REGISTERS AND SET UP NEW STACK HERE 
CALL BGRTN ; call our background code 
CLI ; no interruptions please! 

; RESTORE ALL REGISTERS HERE 
MOV CS:Byte Ptr MXSPH,O clear the MX flag 

MISS: CMP CS:Byte Ptr ISIC,O did we have a timer tick? 
JZ MISS28 no 
STI 
JMPF CS:Dword Ptr TICKSV 

, 
MISS28: STI 

JMPF CS:Dword Ptr 128SV 

Figure 2 - BGRTN 

GETPSP: 
INT 2lH function 5lH or 62H (identical) 

AH=5IH 
Onretum, 
BX = current PSP segment 

SET PSP: 
INT 2lH function 50H (undocumented) 

AH=50H 
BX = our PSP segment 

Figure 3 - Set Process File Table 

MOV AX,ES:Word Ptr .36H 
PUSH DS 
POP ES 
MOV DS,AX 
MOV SI,18H 
MOV DI,Offset PFT 
MOV Word Ptr .34H,DI 
MOV CX,20 
REP MOVSW 
MOV AX,ES 
MOV Word Ptr .36H,AX 
MOV Byte Ptr .32H,MAXFLS 

; get old PFT segment 
; move ourDS 
; into ES 
; point to old PFT segment 
; start of old PFT 
; start of new PFT 
; set pointer to new PFT 
; copy all 20 bytes 
; copy old process file table 
; get new PFT segment 
; stash into PSP 
; and store max number of files 

MICRO CORNUCOPIA, #36, June-July 1987 47 



- (continued from page 47) 

into PSP:32H as a 16-bit number. See 
Figure 3 for some sample code. 

CP IM-86 programmers may recog
nize the assembler syntax. Yes, I use 
RASM for all my 8086 assembly work. 
There is a version of RASM86 (with a 
linker for use with PC-DOS) which was 
originally intended for CCP 1M, and is 
now sold by Alexander & Lord in Car
mel, California. I hate the brain
damaged convolutions one has to go 
through when programming in MASM. 

Imagine UNIX(tm) ... 
Now you can have a lot of the look 

and feel of UNIX on your PC. I usually 
work with "#" as a prompt, JOIN 
drives to form one single pseudo drive, 
use slashes in pathnames, and ignore 
executables in the current directory. 
Let's go over this in detail. 

The Bleeping Backslash 
The single biggest objection I have 

to the DOS command syntax is inconsis
tency. (There must be an intense dislike 
of AT&T by the folks at IBM.) Internal
ly, DOS allows forward slashes, so that 
in C, "fd = fopen("/foo/barl zot.dat", 
"w")" is perfectly legal, while on the 
command line, "copy Ifoo/bar/zot.dat 
." stirs up an error message. 

In older versions of DOS, the un
documented "SWITCHAR" command 
could be used to change the so-called 
SWITCH CHARACTER from "I" to 
something else like the UNIX-ish "" 
that I prefer. 

I guess IBM musta found out be
cause that feature is no longer present 
in DOS 3.x. The function call, however, 
is still in there and can be used. It's just 
that many DOS 3.x applications require 
"I" for a switch character. With the 
switch character set to "-" you can, for 
example, use "CHKDSK -F", but if you 
use XCOPY you must use" I", as in 
"XCOPY *.* D: IS". Check out the code 
in Figure 4. 

You can use the program in Figure 5 
to change or report the current switch 
character. Note that I've used a dif
ferent assembler - this time it's 
A86.COM which is distributed on BBS 
as beggarware. 

The CWO Execution Dilemma ... 
Let's say you've written a fabulous 

TSR You've just assembled and linked 
it. You should EXE2BIN it, and you 

48 MICRO CORNUCOPIA, #36, June-July 1987 

Figure 4 - Get Switch Character 

INT 21H FCN 37H 
AX = 3700H 
get switch character 
Returns: 
DL = current switch character 

AX = 3701H 
DL = new switch character 
set switch character 
Returns: 
nothing, the new switch character is set. 

Figure 5 - Change Or Display Switch Character 

start: 

message: 

sch 
, 
skip: 

fsc: 

, 
found: 

, 
tell: 
newsc: 

CSC - Change SwitchChar 

This program can be used to display or change the 
MS/PC-DOS switch character. 
Invoke with: 

CSC E> 
to display the current switch character, or 

CSC / 
to set the switch character to /. 

The first nonblank character following the command name 
is taken to be the new switch character. Example: 
To set the switch character to "-", enter: 

CSC-

org lOOh 

jmp skip ; skip over the data area 

db Odh,Oah 
db 'Switch character is '" 
db ' 'If ,Odh,Oah,'$' 

mov ax,cs 
mov ss,ax ; set stack 
mov sp,start , to below the program 
mov bX,80h ; point to command line 
xor ch,ch ; get line length 
mov clJbx] ; intoCX 
jcxz tell ; display old swchar if no argument 
inc bx ; else scan for first nonblank 
mov dl,[bx] 
cmp dl,' , 
jnz found 
loop fsc ; continue till exhausted 
jmp tell ; only blanks in argument... 

mov aX,3701h ; set up for "set switch character" 
jmp newsc 

mov aX,3700h ; set up for "get switch character" 
int 21h 
mov sch,dl ; stash it into display string 
mov dx,message ; point to string 
mov ah,9 
int 21h display the message 
mov ax,4cOOh return with no error 
int 21h all done, DOS here we come! 

end 



Figure 6 - TSR Routine Limits File Searches 

; 
SETUP: 

; 
V3: 

, 
ENTRY: 

CONTI: 

, 
IS4E: 

EOM 

, 

This small TSR makes MS/PC-OOS file executable file 
searches behave like UNIX where the local directory 
is never searched unless specified in a PATH command 
or typed on the command line. 
Example: 
Assume you have the files C: \ BIN \ FOO. COM and C: \ WORK\FOO.COM 
and are logged into C: \ WORK. PATH=C: \ BIN 
Cfoo will execute C: \ WORK\FOO.COM 
After installing this TSR, things will change a bit: 
Cfoo will execute C:\BIN\FOO.COM, whereas 
C. \foo will execute C: \ WORK\FOO.COM 

CSEG 
ORG 100H 

MOV AH,30H ; get DOS version 
INT 21H 
CMP AL,3 ; v3.xx? 
JZ V3 
MOV AH,9 
MOV DX,Offset NOTV3 ; complain! 
INT 21H 
MOV AX,4CFFH ; set errorlevel on exit 
INT 21H 

MOV AX,3521H ; get int21 vector 
INT 21H 
MOV Word Ptr INT21,BX ; and save it here 
MOV Word Ptr INT21+2,ES 
MOV AX,2521H ; replace with our little detour 
MOV DX,Offset ENTRY 
INT 21H 
MOV AX,Word Ptr .2 ; get top of memory 
MOV Word Ptr EOM,AX ; stash into program 
MOV DX,Offset BANNER 
MOV AH,9 
INT 21H 
MOV AX,3100H ; terminate wasting lk of RAM 
MOV DX,64 
INT 21H 

CMP AH,4EH ; have a search first call? 
JZ IS4E ; yes! 
JMPF Dword Ptr INT2I ; continue on to 005 

NOTE: 
The constant 800H qelow is an empirical value assuming that 
the CS of the transient part of COMMAND.COM can't be more 
than 32k below the top of memory ... 

ADD 
POP 
SUB 
PUSH 
DB 
OW 
SUB 
CMP 
JNC 
PUSH 
MOV 

SP,2 
Word Ptr SEGM 
SP,4 
AX 
OB8H 
o 
AX,800H 
AX,CS:Word Ptr SEGM 
ONWARD 
BX 
BX,DX 

; point to caller's CS 
; get caller's code segment 
; adjust stack pointer 

;MOV AX, 
; adjusted at install time 
; this seems a safe assumption 
; if call came from below ... 
; ... then go on to 005 
;savebx 
; get pointer to pathname 

first time through, check for an!", n:n or n\n, exit 
if either one found, meaning a pathname or drive was 
specified. 

LOOPI: MOV AL,[BX] 
BX 

; get a byte 
INC 

(Figure 6 - continued next page) 

know you should, but forget and enter 
its name expecting it to run. DOS will 
obediently execute the .EXE file you 
just created not knowing that it'll lead 
to instant disaster. 

Next thing you'll certainly do is 
reach for the BRS (Big Red Switch). 
Depending on whether you remember 
the mistake you made, you'll either 
panic or run EXE2BIN. 

Unlike UNIX, DOS always searches 
the current working directory (CWD) 
for executable files before picking up 
the PATH you set (you did, didn't 
you?) and going there to find your com
mands. 

In any well-kept DOS system, espe
cially with large hard disks, you will 
rarely have a command file in the cur
rent directory that you actually wish to 
execute. Thus, DOS is wasting your pre
cious time trying to find a file that you 
know is not there. 

UNIX allows you to search the cur
rent directory at any time in the search 
path, or not at all. After you've run my 
little TSR (assuming you can assemble 
it into a COM file after converting it to 
[ugh] MASM), DOS will behave like 
UNIX. 

The program, which I call NOLOC 
(NO LOCals!) intercepts all "search 
first" requests and checks to see 
whether there are any leading drive or 
path names in the program name. If 
there are, it reports "no file". The 
program is intelligent enough to know 
whether the call came from COM
MAND.COM. 

Of course, it's still possible to ex
ecute command files in the CWD, but it 
must be done explicitly by prefixing 
the name with "./" (oops, that's ".\" if 
you didn't use CSC). 

You may also alter your PATH to ex
plicitly scan the current directory, as in 
"PATH C:\BIN;C:\DOS;." (note the 
";." at the end meaning, "search the 
local directory after all else has failed"). 

This is also an excellent means of 
avoiding long delays in large direc
tories. I wrote it mostly to speed up 
compilation time. 

NOLOCA86 is in Figure 6. 

That's Not All, But 
That's it for now. If I write much 

more, I won't have anything else to say 
next time. Happy computing, everyone! 

••• 
MICRO CORNUCOPIA, #36, June-July 1987 49 



Figure 6 - Continued 

COMPLETE SOURCE. OF COURSEI 

DOS-PACK: A disk full of useful MS
DOS programs, including a fancy C 
listing utility, disk sector editor and many 
others I ($19) 

TELED Plus: Inter-system commu
nications program, with Hayes / Zoom 
modem support, text capture w/ editing, 
MODEM protocol wildcard file transfers. 
Also available for MS-DOS, CP/M and 
ISIS-II. ($89) 

VIEW: The ultimate disk utility for CP/M 
systems I Recovers erased files, even if 
your directory is crashed. Displays or 
modifies every sector. ($59) 

ACCELER 8/16: Best of the CP/M 
emulators for MS-DOS. Enables PC's 
to run most CP/M programs, even Z-80 
codel Also includes the Media Master 
disk conversion program. (no source 
code, V-20 chip included) ($89) 

Request a catalog of our productsl 

I 
CP'M'Il4Dq11a1,,-"=h 

~ ~~:I~-' "'" - "'-~ 
-- Wes~ern Wares 

303·327 .... '8 
801 C • Norwood. CO 81423 

MP AL,'I' 
JZ 
CMP 
JZ 
CMP 
JZ 
OR 
JNZ 
MOV 
DEC 

LOOP2: DEC 
CMP 
JNZ 
DEC 
JNZ 
POP 
POP 
STC 
MOV 
RETF 

, 
QUIT: POP 
ONWARD: 

JMPS 
, 
INT21 DW 
SEGM DW 
, 
NOTV3 DB 

DB 
BANNER DB 

DB 
DB 
END 

C CODE FOR THE PC 
source code, of course. - ~.s:: -

Panache C Program Generator . 
QC88 C Compiler. . . . 
EMACS-like Editor . . . . 
TELE Kernel & Windows 
Make 
PC /MPX Multitasking Executive 
Coder's Prolog . . . . . . 
Biggerstaff's System Tools . . . 
Translate Rules to C ..... 
ICON String Processing Language 
Bison (YACC clone) & PREP 
LEX ......... . 
XLT Text Translator 

The Austin Code Works 
11100 Lea/wood Lane 

Austinl Texas 78750-9409 
(51e) 258-0785 

$150 
$90 
$75 
$60 
$50 
$45 
$45 
$40 
$30 
$25 
$25 
$25 
$20 

Free shipping on prepaid orders MasterCard/VISA 

; unixish path separator 
QUIT 
AL,'\' ; MSooSish path separator 
QUIT 
AL,':' ; drive separator 
QUIT 
AL,AL ; end of string 
LOOPI . ; go check next character 
AX,33FH i loop counter, three "?" to check 
BX 
BX 
AL,[BX] 
QUIT 
AH 
LOOP2 
BX 
AX 

AX,18 
2 

ax 
POP 
CONTI 

0,0 
0 

AX 

i exit if not a"?" 

i restore registers 

i set error flag 
i error #18 - no match 
; return to caller 

;goon to DOS 

ODH,OAH 
'Requires DOS 3.xx' ,ODH,OAH,'$' 
ODH,OAH 
'NOLOC vl.00 by ESKA Y is now active.' 
ODH,OAH,'$' ••• 

Ie PROMPT DELIVERY!!! 
S SAME DAY SHIPPING (USUALLY) 

QUANTITY ONE PRICES SHOWN for APRIL 26, 1987 

DYNAMIC RAM 
1Mbit 1000Kx1 1 00 ns $28.50 
51258 *256Kx1 1 00 ns 6.95 
4464 64Kx4 150 ns 3.50 
41256 256Kx1 100 ns 4.35 
41256 256Kx1 120 ns 3.50 
41256 256Kx1 150 ns 3.25 
4164 64Kx1 150 ns 1.30 

EPROM 
27512 64Kx8 200 ns $10.50 
27C256 32Kx8 250 ns 5.15 
27256 32Kx8 250 ns 4.85 
27128 16Kx8 250 ns 4.10 
27C64 8Kx8 150 ns 4.85 
2764 8Kx8 250 ns 3.75 

STATIC RAM 
62256 32Kx8 120 ns $12.95 
6264LP-15 8Kx8 150 ns 2.95 

SAT DELIVERY 
INCLUDED ON 

FED-EX ORDERS 
RECEIVED BY: 

MasterCardNISA or UPS CASH COD P 
Factory New, Prime Parts.JJ 00 
MICROPROCESSORS UNLIMITED, INC. 
24,000 S. Peoria Ave., (918) 267 4961 
BEGGS, OK. 74421 • 

Th: Sid Air $6/41bs 
Fr: P-One $13/2 Ibs 

No minimum order. Please note that prices are subject to 
change. Shipping & insurance extra. & up to $1 for packing materials. Orders received by 
9 PM CST can. usually be delivered the next morning, via Federal Express Standard 
Air (ill $6.00, or guaranteed next day One (il) $13.00! All parts guaranteed. 



Stunning speed. Unmatched performance. Total flexibility. 
Simple and intuitive operation. The newest VEDIT PLUS de
fies comparison. 

Try A Dazzling Demo Yourself. 
The free demo disk is fully functional- you can try all features 
yourself. Best, the demo includes a dazzling menu-driven 
tutorial - you experiment in one window while another gives 
instructions. 

The powerful 'macro programming language helps you 
eliminate repetitive editing tasks. The impressive 
demo/tutorial is written entirely as a 'macro' - it shows that no 
other editor's 'macro' language even comes close. 

Go ahead. Call for your free demo today. You'll see why 
VEDIT PLUS has been the #1 choice of programmers, writers 
and engineers since 1980. 

Available for IBM PC. TI Professional, Tandy 2000, DEC 
Rainbow, Wang PC, MS-DOS. CP/M-86 and CP/M-80. (Yes! 
We support windows on most CRT terminals, including 
CRT's connected to an IBM PC.) Order direct or from your 
dealer. $185. 

Compare features 
BRIEF Norton PMATE VEDIT and speed 

Editor PLUS 

'Off the cuff macros No No Yes Yes 
Built-in macros Yes No Yes Yes 
Keystroke macros Only 1 No No 100 + 
Multiple file editing 20+ 2 No 20 + 
Windows 20 + 2 No 20 + 
Macro execution window No No No Yes 
Trace & Breakpoint macros No No Yes Yes 
Execute DOS commands Yes Yes Yes Yes 
Configurable keyboard 

Layout Hard No Hard Easy 
'Cut and paste' buffers 1 1 1 36 
Undo line changes Yes No No Yes 
Paragraph justification No No No Yes 
On-line calculator No No No Yes 
Manual size I index 250/No 42/No 469IYes 380IYes 
Benchmarks in 120K File: 
2000 replacements 1:15 min. 34 sec. 1 :07 min. 6 sec. 
Pattern matching search 20 sec. Cannot Cannot 2 sec. 
Pattern matching replace 2:40 min. Cannot Cannot 11 sec. 

VEDIT a£1d CornpuView are registered trademarks of CompuView Products. Inc. BRIEF is a 
trademark of UnderWare. Inc. PMATE is a trademark of Phoenix Technologies Ltd. Norton Editor is a 
trademark of Peter Norton Computing Inc. 

PROGRAMMABLE 
EDITOR 

(Call for FREE DEMO disk) 

VEDIT PLUS FEATURES 

• Simultaneousy edit up to 37 files of unlimited size. 
• Split the screen into variable sized windows. 
• 'Virtual' disk buffering simplifies editing of large files. 
• Memory management supports up to 640K. 
• Execute DOS commands or other programs. 
• MS-DOS pathname support. 
• Horizontal scrolling - edit long lines. 
• Flexible 'cut and paste' with 36 'scratch-pad' buffers. 
• Customization - determine your own keyboard layout, create 

your own editing functions, support any screen size. 
• Optimized for IBM PC/XT/AT. Color windows. 43 line EGA. 

EASY TO USE 

• Interactive on-line help is user changeable and expandable. 
• On-line integer calculator (also algebraic expressions). 
• Single key search and global or selective replace. 
• Pop-up menus for easy access to many editing functions. 
• Keystroke macros speed editing. 'hot keys' for menu functions. 

FOR PROGRAMMERS 

• Automatic Indent/Undent for 'C', PUI, PASCAL, etc. 
• Match/check nested parentheses, i.e. '{' and'}' for 'C'. 
• Automatic conversion to upper case for assembly language 

labels, opcodes, operands with comments unchanged. 
• Optional 8080 to 8086 source code translator. 

FOR WRITERS 

• Word Wrap and paragraph formatting at adjustable margins. 
• Right margin justification. 
• Support foreign, graphic and special characters. 
• Convert to/from WordStar and mainframe files. 
• Print any portion of file; selectable printer margins. 

MACRO PROGRAMMING LANGUAGE 

• 'If-then-else', looping, testing, branching, user prompts, 
keyboard input, 17 bit algebraic expressions, variables. 

• Flexible windowing - forms entry, select size, color, etc. 
• Simplifies complex text processing, formatting, conversions 

and translations. 
• Complete TECO capability. 
• Free macros: • Full screen file compare/merge. Sort mailing 

lists. Print Formatter • Menu-driven tutorial 

COlJ1puView 
1955 Pauline Blvd., Ann Arbor, MI 48103 (313) 996-1299, TELEX 701821 



Trapping DOS's Fatal Errors 

DOS errors aren't too bad, they're 
certainly clearer than those generated 
by most other operating systems. 
However, there are times when you 
just can't have them lighting up their 
own little corner of the CRT. Laine 
shows you how to trap the little beas
ties. 

W
· hat would you think if you 

were running a nice, friend
ly little program on your 
computer ,and it suddenly 

came up on the screen with: 

Ziss frizsen heimel diskzen flop! 
Reizen Zein Flimmel? 

After you've thought about that for 
awhile, maybe you'll understand why 
it's very important for our Turkish 
software to trap out all those "Abort, 
Retry, Ignore?" errors that DOS throws 
out at you when you forget to plug in 
the disk or turn on the printer. 

In the U.S. it may not be as much of 
a problem, but it's still kind of unsight
ly to have the messages scrolling off 
the bottom of the screen and ruining all 
your lovely window borders. 

Fortunately, MS-DOS allows the 
programmer to specify his own "Fatal 
Error Handler" to replace the default 
handler supplied by DOS (actually sup
plied by COMMAND.COM, but let's 
not get into needless details unless they 
can be made to hopelessly confuse). 
This is done by pointing to your hand
ler with the interrupt 24h vector. (You 
know, I really get tired of putting that 
"h" after all the numbers I write. Sure
ly by now you guys have figured out 
that I only speak in Hex anyway, right?) 

Many languages have built-in fea
tures to support this. For instance, in 
Microsoft BASCOM (no, I don't use it!) 

the "ON ERROR GOTO" command 
causes BASCOM's internal INT 24h 
handler to call your BASIC error han
dling code after it has converted the 
error codes into something easily acces
sible in BASIC. 

Unfortunately, Turbo Pascal 
provides no such facility. And not only 
d~es Turbo rely completely on the DOS 
error handler, the only way to mix as
sembly (required to retrieve the error 
codes) and Pascal in the same proce
dure is to use those horrible "inline" 
statements, which I detest (sure would 
be nice if they would put in a #asm 
directive like Aztec C). 

To top it all off, Turbo's I/O library 
isn't reentrant. So if you encounter an 
error while doing I/O (which is the 
only time this kind of error occurs) and 
happen to do something stupid (like 
writing an error message to the screen 
or asking for a reply), the I/O library 
will freak out and do something 
wonderful, like send the rest of your 
printer output to the screen (or send 
your mother-in-law to Tahiti). 

It's possible, however, to write a 
fatal error handler for Turbo. (Though 
that may not retrieve a high-flying rela
tive.) 

After several lost evenings, I finally 
managed to work out all the bloody 
details, all the way from the register 
pushes and data segment restores right 
down to the bypassing of the I/O 
library without sacrificing portability 
(almost). Since it was such a bother for 
me to figure out, I decided I'd better 
put it in the magazine to save the rest 
of you the trouble. 

Initialization 
The first step of any hunk of code is 

initialization. Iri our case, this means 
changing the INT 24h vector and 
saving the contents of the DS register 

52 MICRO CORNUCOPIA, #36, June-July 1987 

Laine Stump 
Development Foundation of Turkey 

Tunali Hilmi Cad.22 
Ankara, Turkey 

to a variable in the code segment. (We 
need access to the program's DS during 
the error routine,but DS will likely be 
pointing somewhere into DOS when 
the routine is entered.) 

This is all simple enough, just use 
DOS's "Set Vector" call to point INT 
24h to CS:ofs(FatalError), then store the 
value of "Dseg" (Turbo's name for DS) 
into a typed CONST. (Turbo's typed 
CONSTs are actually just initializedCS 
variables.) From now on, whenever 
bos encounters some kind, of 
hardware error, it will call our little 
routine instead of its own. 

If we wanted· to be really thorough, 
we could first use the "Get Vector" call 
to save the original" then write a 
RestoreFatalError at the end of the 
program, but I'm lazy. DOS automati
cally restores the vector when your 
program exits anyway. So even though 
restoring it is nice and symmetrical and 
clean, and all those other words you 
like to use when you talk about your 
programming style, it's just a waste of 
code segment space. And there's little 
enough of that in a Turbo program, 
with its 11K library and 64K total code 
limit. (Haven't they ever heard of far 
CALLs and .EXE files???) 

Handler 
The, error handler itself (FatalError) 

is a bit more complicated. What needs 
to be accomplished is fairly straightfor
ward. It's just that using Pascal (Turbo 
especially) to implement an iriterface 
that was intended to be written in, as
sembly brings up a few problems. 

At that, the explanation of what I 
did is all in the DOS technical manual, 
and you can find most everything you 
need to know about "what?" and 
"where?" either there or in my code. 
It's the "why?" and "how come?" that 
need explaining. Therefore, I'll give a 



short explanation of entry conditions, 
tasks to accomplish, and exit condi
tions, then get right down to the 
realities of torn hair and empty beer 
bottles. 

Entry Conditions 
Upon entry to the fatal error routine, 

the following information is available 
in the following places: 

AX - IF bit 7 of AH = 0 THEN error is on disk and 

drive is in AL 

IF bit 7 of AH = 1 THEN error is on device and AL 

is meaningless 

DI - Error code of 0-12 corresponding to error 

messages in the array 

BP:SI - points to first byte device header of erring 

device 

"Because I didn't have the time to go 
looking around for the original value of 
BP (one of the first things a Turbo pro
cedure does is to push the value of BP 
onto the stack and then clobber it), I 
didn't use the pointer to the device 
header. I leave that as an exercise for 
those of you with just a hint of 

. masochism in your psyche. 

Tasks to Accomplish 
Once we· have an error, we must 

save all the registers, examine AX and 
DI, and output an appropriate message. 
Then, it's usually a good idea to dis
play a message telling the operator 
how to correct things (turn on the 
printer, . put the damn disk in the 
drive ... ). Finally, we wait for a reply 
from the user. Simple as that. 

If we wanted to get real fancy, we 
could use . DOS function 59 (hex, 
remember?) to get more details about 
what caused the error and what DOS 
thinks would be an appropriate action 
to take. 

Exit Conditions 
Only a single parameter is passed 

back from the error handler on exit. 
Register AL must contain a "response 
code" telling DOS what to do about the 
. error. The codes are: 0 = ignore, 1 = 
retry, 2 = abort (and 3 = fail for DOS 
3.1 and above). 

Other than that, all registers must be 
unchanged from entry to the handler 
(that's why we saved them). 

Problems 
Okay, now to the real painful and al

cohol-binge-inducing parts. 
The most common problem (al

though the easiest to solve) was install
ing the inline code. Since Turbo doesn't 
guarantee that any registers will be 
saved, we will have to put some 
pushes at the start of the procedure to 
save the registers. Then, because the in
ternal variables of all Turbo's library 
routines are in the program's DS, we 
will need some inline code to restore 
DS from the value we saved in DSSave 
during initialization. 

Since registers are not directly ad
dressable from Pascal, we must also 
use inline code to move AX and DI into 
memory variables for inspection. After 
the message printing and keypress wait
ing has finished, we will again have to 
use inline code to restore the registers 
and move the response code into 
register AL. Finally, because the proce
dure will be called through an INT in
struction, it must be terminated with a 
RETI (Turbo procedures are terminated 
with a normal near RET). In addition to 
all of this, we will have to do a couple 
of seemingly stupid things with BP to 
counteract Turbo's use of BP as a 
"Frame Pointer" register. 

But that's not all. For some reason 
you can't use local variables if you 
have monkeyed around with the stack 
(like, maybe because the local variables 
are allocated on the stack, huh?) so all 
local variables need to be declared as 
typed CONSTs (like ErrorType, 
ErrorCode, and ch). Keep that in mind 
if you want to expand the functionality 
of my little jewel. 

"The only thing I want to do is put 
message at the bottom of the screen 
and wait for a character to be typed, 
and I have to go through all this???" 
Yep. That's right, big fella. 

With all this trouble, is it really 
worth the effort? Well, that's debatable, 
but it doesn't matter because I've done 
it already, anyway. 

Reentrancy 
And I'm not finished complaining 

yet! I mentioned earlier that Turbo's 
I/O library isn't reentrant. Basically 
this is because the Read and Write pro
cedures apparently keep a "handle" of 
some type stored in a static variable (in
stead of allocating it on the stack like a 
good boy should). 

I discovered this. problem after 

finally made the first working version 
of FatalError. If I had a printer error, 
the first two characters of the string I 
was outputting to the printer would 
eventually get there, but the remainder 
of the string was cheerfully displayed 
at the console. Thanks, guys. 

Since I like to write all my software 
so that it can run on ANY MS-DOS sys
tem (not just compatibles), I didn't real
ly want to get by the problem by 
coding in BIOS calls. On the other 
hand, if I'm running on a compatible, I 
would like to be clean and consistent 
(and all those other good "c" words) 
and use the BIOS for outputting, since 
that's the way the rest of the program 
is outputting. 

Fortunately, the built-in I/O 
routines pointed to by ConOutPtr and 
ConlnPtr are reentrant. Unfortunately, 
since they are pointers to routines (not 
routines), they are not directly callable 
without using inline code. And that 
was the mother that necessitated the in
vention of WriteString and ReadChar. 
If you are using the IBM version of 
Turbo, WriteString and ReadChar will 
use BIOS calls; if you are using the MS
DOS version, they will use DOS func
tion 6. Even if you create your own cus
tom windowing routines and plug 
them in via ConOutPtr, WriteString 
and ReadChar will still work correctly. 

Notice that I didn't have to do any
thing special for GotoXY and 
ClearEOL. Since they are specific to con
sole I/O, they don't go through the file 
system, so we wouldn't have to worry 
about reentrancy even if they had 
problems with it. 

The Finished Product 
See Figure 1 for the four procedures 

needed for operation of FatalError -
WriteString, ReadChar, FatalError, and 
SetFatalError. As always, feel free to 
modify them any way you like and use 
them any way that suits your fancy. 

The example version does pretty 
much just what the default error hand
ler does, except that it always prints on 
lines 24 and 25. I made it this way so 
that you could see how the original re
lates to real life. Of course, I expect you 
to replace the cryptic error messages 
(straight from the DOS manual) with 
plain English (or Swahili, or Por
tuguese, or whatever). 

To use your own special little error 

(continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 53 



(continued from page 53) 

handler, just include all this code some
where in your program (I keep it in an 
include file called MSDOS.lNC with 
loads, of other neat little MS-DOS 
specific routines), then call 
SetFatalError once right at the begin
ning of the program. 

Reflections 
Writing the inline code was really 

quite straightforward, with a bit of help 
from SYMDEB, once I figured out exact
ly what code was compiled by a 
''begin'' statement. After I found a DOS 
manual that had "the rest of the story" 
on error routines, it was quite simple to 
decide what message to put with 
which code. 

The one part that should have been 
completely unnecessary (and that I was 
offended at being forced to do) was the 
writing of the WriteString and 
WaitChar procedures to overcome the 
non-reentrancy problem of Turbo's I/O 
library. There is just no excuse for that. 
Frankly, my dear, I'm appalled. 

A Hint 
A technique that I used quite often 

while I was figuring out all the details 
behind this (and have used quite a bit 
in the past as well) was to run Turbo 
under SYMDEB (or DEBUG) and put 
an "inline($CC)" in the code at some 
stategic place to cause a breakpoint out 
to SYMDEB. By doing this, I could get 
a look at exactly what code Turbo is 
generating (and my, oh my, what slop
py code it is ... ). 

If you try this, you should remem
ber that putting a breakpoint right after 
''begin'' will not set a breakpoint on 
the very first instruction of the' chosen 
procedure - ''begins'' generate code, 
too. If you really want to look at every
thing involved with a certain procedure 
or function, set a breakpoint immediate
ly before a call to the function. Then 
you can also see the code which sets up 
the arguments. 

Also, if you don't replace the CC 
(INT 3) with a 90 (NOP), you may stay 
on the breakpoint forever. If you want 
to keep the breakpoint there, but don't 
want to keep saying "rip=ip+ 1;g" all 
the time, you can just replace it with a 
NOP and then set a SYMDEB break
point at the same address with the BP 

54 MICRO CORNUCOPIA, #36, June-July 1987 

Figure 1 - Fatal Error Handler 

TYPE 
string128 = string[128]; 

Registers = RECORD 
CASE INTEGER OF 

l;(AX,BX,CX,DX,BP ,5I,DI,DS,ES,Flags : INTEGER); 
2:(AL,AH,BL,BH,CL,CH,DL,DH : BYTE); 
end; { Registers } 

{------------------- WriteString ---------------------} 
{ output a string to the console w / 0 going through standard 
{ WRITE procedure. This procedure is to be used during 
{ interrupt service routines to avoid reentrancy problems in } 
{ WRITE. 
{---------------------------------------------------------} 
PROCEDURE WriteString (Str : String128); 

V AR ct : INTEGER; 

begin 
IF Length(Str) 0 THEN 

FOR ct := 1 TO Length(Str) DO 
inline($8B/$76/ <Ct/ 

$FF/$B2/Str/ 
$FF /$16/ConOutPtr); 

end; { WriteString } 

{---------------------- Read Char ---------------------------} 

{MOVSI,CX} 
{PUSH [BP+SI+Str] } 
{ CALL word ptr [ConOutPtr] } 

{ reads a char from console w / 0 going through standard READ 
{ procedure. This procedure is to be used during interrupt } 
{ service routines to avoid reentrancy problems in READ 
{------------------------------------------------------} 
FUNCTION ReadChar : CHAR; 

begin 
inline($4C); {DEC SP} 
inline($FF /$16/ConInPtr); 
inline($88/$46/$04); 
end; { WriteString } 

{----------------------- Fa talError -------------------------} 
{ Interrupt 24H error-handling routine. 
{-------------------------------------------------------} 
CONST DSSave : INTEGER = 0; 

PROCEDURE FatalError; 

CONST 
ErrorType : INTEGER = 0; 
ErrorCode : INTEGER = 0; 
ch : CHAR _'I. - , 

ErrorMessage : ARRAY [0 .. 12] OF STRING[30] = 
('Disk is Write Protected', 

'Unknown Unit', 
'Drive Not Ready', 
'Unknown Command', 
'BadCRC', 
'Bad Request Structure Length', 
'Seek Error', 
'Unknown Media Type', 
'Sector Not Found', 
'Printer out of Paper', 
'Write Fault', 
'Read Fault', 
'General Failure'); 

{CALL word ptr [ConInPtr] } 
{MOV [BP+ReadChar],AL} 

p.1-21 

{register AX} 
{ register DI } 



Figure 1 - Continued 

begin 
{ PUSH all registers, enable interrupts} 
inline ($50/$53/$51/$52/$56/$57 /$1E/$06/$FB); 

inline($2E/ $A3 /ErrorType); 
inline($2E/ $89 / $3E/ErrorCode); 
inline($2E/$8E/$IE/DSSave); 

GotoXY(1,24); 
IF «ErrorType and $8000) = 0) THEN 

{ MOV CS:[ErrorTypel, AX } 
{ MOV CS:[ErrorCodel, DI } 
{ MOV DS,CS:[DSSavel } 

WriteString('Disk Error - '+ErrorMessage[ErrorCodel 
+' on Drive' +chr«ErrorType and $FFhord(' A'))) 

ELSE 
WriteString('Device Error - ' +ErrorMessage[ErrorCode]); 

GotoXY(1,25); 
WriteString(' <I>gnore, <R>etry, <A>bort ? '); 
REPEAT 

ch := ReadChar; 
UNTIL (UpCase(ch) in ['I' ,'R',' A']); 

CASE (UpCase(ch» OF 
'I': ErrorType:= 0; 
'R': ErrorType := 1; 
, A': ErrorType := 2; 
end; { case ch } 

GotoXY(1,24); ClrEol; 
GotoXY(1,25); ClrEol; 

{ restore all registers} 
inline($07 /$IF /$5F /$5E/$5A/$59 /$5B/$58/$8B/$E5/$5D); 

inline($2E/$AO /ErrorType); 
inline($CF); 
end; 

{--------------- SetFatalError -----------------} 

{ MOV AL, CS:[ErrorTypel } 
{IRET} 
{ FatalError } 

{ Enable Int 24H error-handling routine called FatalError } 
{----------------------------} 
Procedure SetFatalError; . 

var Reg: Registers; 

begin 
Reg.AH := $25; Reg.AL := $24; 
Reg.DS := CSEG; Reg.DX := Ofs(FatalError); 
MsDos(Reg); 
DSSave := Dseg; 
end; { SetFatalError } 

End of Listing 

••• 

command. Oh, yeah, I keep forgetting 
about all you lowlifes who only have 
DEBUG - you'll just have to suffer 
through without permanent break
points. 

But more on SYMDEB and others 
another time. 

Next Issue 
I'm really getting tired of all these 

limitations and "almost bugs" of Turbo 
Pascal. It keeps presenting me with lit
tle obstacles which, although usually 
solvable, waste a lot of my time. Just to 
see if it's ever going to get any better, I 
think I'll try writing a Fatal Error Hand
ler module for Logitech Modula for 
next time. I hope I'll be able to show a 
couple of other cute little tricks with 
Modula, too. On the other hand, maybe 
I'll send a documentary report from 
Mozambique on the migration of the 
Great Desert Whale. Ya' just can't 
never tell ... 

••• 

(BEl) FOR YOUR BIGBOARD 
ONE MEGABYTE RAM DISK ON THE STD 
BUS Includes: STD adapter pcb &. 
connector, 1 MB RAM pcb & connector 
and software. Price $125.00 
INTEGRATED BIOS, reads and writes any 
5" and/or 8" disk format. 
INCLUDES: 
• CONFIGuration program that lets you 

install any new floppy disk format 
INTERACTIVELY 

• FORMATIER allows you to format al
most any diskformat. 

• PC-COpy reads and writes PC diskettes 
on your Bigboard II. 

• MONITOR EPROM with serial keyboard 
and translate table. 

• 300 page ZCPR2 manual. 
• 60 page Bigboard II tech manual. 
• BOOTABlE DISK contains free ZCPR2 

and P2DOS system. With TIME and DATE 
stamping. BIOS also has provisions for 
256K RAM disk, Centronics, System in 
EPROM AND 1 MBYTE RAM DISK. 

• WINCHESTER FORMATIER and SYSGEN. 
Supports XEBEC, W-D and Adaptec type 
controllers. Subdivides into any speci
fied number of drives. Price: $99.95 
(specify disk) 

TAKE BOTH 1 MB AND BIOS FOR 
$199.9511 

ANDY BAKKERS 
de Gervelink 12 • 7591 OT Oenekamp 
The Netherlands. Tel: 31-5413-2488 

FIOO Net 500 Node 100. Please pay with 
US$ Money Order. MC or VISA welcome 

MICRO CORNUCOPIA, #36, June-July 1987 55 



Interrupting A PC From C 

We interrupt this magazine to 
bring you this· epistle on interrupts. 
Ron tackles the creation of generic in
terrupt routines in C along with C 
standards and other C things. 

F
rom the number of letters and 
calls I received after my recent 
column on graphics routines, 
I've concluded two things. First, 

lots of you are intrigued by the pos
sibility of doing your own graphics 
programming on clones. Second, even 
more of you are trying to adapt patches 
of code in self-defeating ways. You're 
not alone. 

When even Pascal Peter Norton 
proclaims C to be the wave of the fu
ture, and when Borland's Turbo C is 
about to appear out of the misty 
midregions of Vaporland into the mail 
order houses (at $70 a throw), C can no 
longer be written off as the sole 
domain of software engineers and hack
ers who count the days to Christmas in 
hexadecimal. (The other morning I 
opened my refrigerator and counted 
the eggs on hand, starting with zero - it 
was then I knew I'd been playing with 
C too long.) 

Joys of Standardization 
Like every other high level program

ming language, C was designed to free 
the programmer from thinking about 
the mechanics of the computer. Anyone 
who has' read Kernighan and Ritchie 
will recognize the great pains taken to 
free the syntax from the system's ar
chitecture. Although integers can be 16-
bits or 32-bits or 64-bits long on a 
specific machine, the programmer who 
writes: 

int i,v[lO]; 
for(i=Oiiii++) v[i]=i*ii 

can be assured of getting 0,1,4,9,16 and 
so forth. There is, moreover, a set of 
standardized functions which effective
ly hide the hardware. 

Though a terminal hooked to a Cray 
and a 40-column display wired to an 
Apple lIe are somewhat dissimilar, 
similar keyboard responses to a 
getcharO will produce similar squiggles 
on the screens. 

This, of course, is what is meant 
when we talk of the "portability" of C 
programs. Fortunately, C compilers are 
getting better about providing a fairly 
large standard library, all functions ac
cepting the same arguments, in the 
same order. And they do the same 
things. 

The Sorrows of Individuality 
Unfortunately, the ANSI standards 

have no control over machine-specific 
functions, but of course this problem 
isn't unique to C. 

Consider the IBM BASIC "color" 
command. Try porting that· one over to 
the BASIC on your old Kaypro II. 

Obviously, folks with color need 
some control. Although we hacker 
types might prefer to get in there and 
attack the attribute bytes in video 
RAM, sane folk just want a way to get 
the light show going. So Microsoft 
decided that "color" is an easily
remembered word, and wrote the inter
preter accordingly .. 

Somebody getting up another ver
sion of BASIC might decide, as did Bor
land with their Pas cat that "textcolor" 
and "textbackground" would be more 
useful and/or descriptive. Thus incom
patibilities are born. 

Those who' construct C compilers 
usually solve the "color" problem by ig
noring it. Therefore, the programmer 
who wants to put on a show must pull 

56 MICRO CORNUCOPIA, #36, June-July 1987 

By Ron Miller 
1157 Ellison Dr. 

Pensacola, FL 32503 

out his IBM Tech Manual, slog through 
the pseudo-English to figure out what 
BIOS calls to make, and roll his own 
function - which he can christen colorO, 
or text_tintO, or elviraO, or whateverO. 

This is a delight for the hacker, but 
death to the casual programmer. (The 
world's too full of casual programmers 
anyway.) The latter has come to C from 
the warm shores of Pascal or BASIC. 
He buys a humongous $450 compiler 
from Microsoft, and then searches in 
vain through four volumes of abstruse 
documentation for a reference to a 
simple routine to turn his screen dis
play green. I'll bet that two-thirds of 
the C compilers purchased by readers 
of Micro Cornucopia have been put 
away,never to be used again, for that 
simple hangup. 

(Editor's note: Here is where the Kaypro 
II folks have a tremendous advantage. Their 
screens are already green.) 

Interrupts 
One unprescribed feature provided 

by every MS-DOS C compiler is a call
to-the-operating system or "interrupt" 
function. Strictly speaking, it's not real
ly necessary, if you can link in assemb
ly language. But austerity has its limits, 
even for those fleeing the junkiness of 
Turbo Pascal and its "moveturtle" pro
cedures. 

Since C doesn't acknowledge so 
parochial a routine (it acknowledges 
the peculiar structure of the 86 family), 
the software houses dream up their 
own names and formats. I've seen 
dosintO, interrupto, int860, and 
msdosO. I've also seen one integer, one 
integer and a pointer, and one integer 
and two pointers as arguments for 
these functions. 

Behind each implementation is a 
defensible rationale and a bunch of as
sembly language. Not to be outdone, I 



plan to offer another at the end of this 
column. Let a hundred flowers bloom. 

As several of you have discovered, 
this unweeded garden of function 
design can be very frustrating if you 
want to recompile Old Joe's serial port 
code. 

. So you sit down with the listing 
nestled under your CRT, type it all in, 
letter for letter, and press the button. 
With luck the compiler says "Huhh??" 
or "Unresolved Global." Worse than 
that, the compiler may think it under
stands you and freeze up tighter than 
January. 

Pity the poor techno-journalist. 
What can I do when I'm writing - as I 
usually am - about operating system 
manipulations in C? I've got to tell you 
what to do. Yet, if you're unfamiliar in 
these matters, you'll be bewildered 
when you look through your documen
tation and find terms like "regs.h" and 
"interruptO." The names I give my 
calls to the operating system will mean 
nothing to you. Nothing at all. The 
time I saved by not explaining all this 
up front has cost you a lot of frustra
tion. 

So let's look at operating system 
calls and how to design our own. The 
exercise should help those of you new 
to C to understand what is going on in 
the ready-made functions you have in
herited from your compiler. 

Underlying Assumptions 
Long ago, when I was playing 

chemistry student, I learned that only 
by understanding the assumptions be
hind the Second Law or the Boltzmann 
Distribution could I apply them to prac
tical problems. 

Also, this project is a fine example 
of the roll-your-own approach of C and 
the trade-offs in function design. . 

If you're not a do-it-yourselfer, find 
another language - one that shields you 
from the nuts and bolts. As Chaucer 
puts it, "Turne over the leef and chese 
another tale." Those of you remaining 
may understand better why C lies 
somewhere between boiled shrimp and 
dogwood blossoms in my garden of 
earthly delights. 

Software Interrupts 
Except for the most metallic of to

the-bare-metal programming, MS-DOS 
programs communicate with the operat
ing system and the hardware through 
interrupts. These are indirect calls to 

routines located in the MS-DOS core or 
the transient-but-stay resident heap or 
the BIOS ROM. The addresses of these 
routines are stored in the interrupt 
table, an array of 256 32-bit numbers 
(offset plus segment) located at the 
base of the memory. 

Whenever you read or write to a 
file, enter characters from the keyboard, 
or send text to the printer, your code 
uses interrupts to instruct the operating' 
system. 

So common is this activity that these 
indirect calls are hard-wired into the 
Intel instruction set. Within the 
machine code, a hex character CD, fol
lowed by a one-byte integer (00 to FF), 
will cause the CPU to execute a special 
"long" call to the routine whose ad
dress is stored at the corresponding ad
dress in the table. Thus a call to inter
rupt 21h (CD21) causes the computer 
first to trot out 132 bytes from the base 
of the memory (132 = 21h X 4). It then 
plucks the 4-byte address, pushes the 
flags, the code register, and the instruc
tion pointer onto the stack, and finally 
jumps to the new location. 

In assembly language it's trivial: 

int 21h 

In practice, the assembly language 
programmer must set a few registers to 
get the right results. For example, if the 
letter "G" is to be sent to the screen, 
the AH register is set to 2 - the function 
number desired - and DL is loaded 
with the number equivalent to the let
ter "G," like so -

movah,2 
moval,'G' 
int 21h 

Return values, if any, are also stored 
in the registers. 

Doing It In C 
Suppose you want to do something 

not available in the meat and potatoes 
section of the standard library. If you 
don't wish to practice assembly lan
guage linking, and don't own a version 
of C that allows in-line assembler, 
here's what you do. 

You use a generic C function that 
can load any register, call any inter
rupt, and recover the returned register 
values (as C variables). See Figure 1. 

Of course, the generic routine will 
be overkill because it'll load and save 

everything as well as preserving all the 
register values. If you are going to roll
your-own function, you need to read 
about "assembly language interfaces" 
in your compiler's documentation. Or, 
you might have your compiler generate 
assembler output for a nice, simple C 
program.Then pull out your editor to 
see which registers the compiler pushes 
and pops at the beginning and end of 
each function. Most compilers I've ex
amined w.ould be very surprised if DS 
and BP were creamed by a function. 
Another compiler doesn't give a hoot 
about BP but wants ES, DI, and 51 
preserved. 

I never said it would be simple. Just 
fun. 

Perhaps these gritty details will also 
explain why a C program is always 
slower and larger than an equivalent as
sembly language version. If I were 
doing this in assembler, I'd only bother 
with the registers that were being used. 
for the specific interrupt. However, that 
means I have to redesign every assemb
ly language interrupt call. 

Designing The Function 
N ow let's get down to coding. The 

obvious way to handle register values 
in a C program is to create a structure. 
Make integer spaces for AX, BX, CX, 
DX, DI, 51, and so forth. 

We could use one structure or two. 
We might use one for the registers-in 
set and one for the registers-out. 
Having two can be a convenience when 
subsequent code must know what went 
into the function call. However, two 
structures take twice as much memory, 
and I find that I can always declare 
local variables to preserve "in" values 
if I need them. Let's go with one. 

The structure(s) must be declared so 
that you can cram the right value of 
AX into the AX slot, BX into the BX 
slot, and so forth. Getting this quite ar
bitrary order the same every time is 
best accomplished with an included 
file. Thus the "#include <regs.h>" in 
my. examples. For the interrupt func
tion given in the listing below, the con
tents of "regs.h" would be -

struct 
regs{intax,bx,cx,dx,di,si,bp ,es,ds,flags; 

}; 

(continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 57 



(continued from page 57) 

Pulling together the themes from 
the paragraphs above, we can see that 
the projected interrupt function must 
be constructed like so -
'1. Push the registers that must be 

saved onto the stack 
2. Load the registers with values 

from the structure 
3. Make the interrupt call 
4. Reload the structure with the new 

values from the registers 
5. Pop the register values that must 

be preserved back off the stack 
You get one more choice about your 

structure. You can declare your own 
structure and reference it with a 
pointer when calling the interrupt func
tion or you can allocate space for a 
global structure. 

The second choice means that there 
would be one less argument for the 
function - at times, a convenience. You 
pay a price with this approach, 
however. First, your .EXE file will 
probably be larger. Second, you can get 
into trouble if the function is used in 
complex resident programs where inter
rupts can interrupt interrupts. If two in
terrupt· calls use the same register bin, 
the intruding interrupt could change 
the register values of its predecessor. 

It can happen. DeSmet's C employs 
the global-structure technique, and a 
week or so ago I spent a couple of 
miserable hours staring at a terminate
but-stay-resident program that looked 
correct but was locking up in weird 
ways. I finally realized that my 
keyboard I/O interrupt handler was 
having its registers altered 18.2 times a 
second by my clock interrupt handler. 
(Try making an interrupt 16h, function 
233h call some day.) 

So let's use an explicit pointer and 
require that the user allocate a suitable 
structure. See Figure 2 for the assembly 
language listing for a version of C that -

1. Uses long or 32-bit pointers 
2. Insists upon preserving DS and 

BP across the function 
3. Treats the stack this way at the 

first of a function call: 
• Push the function arguments 
• Push CS and IP for a "long" call 
• Push BP 
• Move SP into BP as a base 

pointer for the stack 
Under these circumstances the func

tion arguments will begin at [BP+6] on 
the stack. 

58 MICRO CORNUCOPIA, #36, June-July 1987 

Figure 1 - Generic Interrupt Function In Assembly Language 

interrupt(nn,ptr) 
int nn 
struct regs.ptrj 

, .. 
,. In this case a long pointer: 32 bytes ., 

In a short C the pointers would be words, not double words, and you'd 
use a "mov bx,[bp+??]" rather than the "Ids bx,[bp+???]." In all 
cases remember to recover DS before using BX to point to the base of 
the structure being reloaded with register values. 

Also note the rather sneaky way of generating the machine code 
"CDnn" patch that invokes nnth interrupt. Through an irritating 
omission in the Intel instruction set, "int" command can only take an 
"immediate" or numerical argument; and therefore the assembly 
language programmer must modify the code <i>in situ<d>. Not very 
nice, and certainly not ROH-able, but necessary. What I do below is 
load CD into the AL register, nn into the AR, and then poke the word 
into the code at the proper location. Since the Intel chips use 
byte-reverse layout, the code becomes CDnn. Blush... but it works. 

ASSUME PROPER SEGMENT DECLARATIONS 

push bp 
mov bp,sp 
push ds 
mov al,Ocdh 
mov ah, [bp+6] 
mov cS:intcall[O],ax 
Ids bx,[bp+8] 
mov ax, [bx+O] 
push [bX+2] 

mov cx,[bx+4] 
mov dx, [bx+6] 
mov dl,[bx+8] 
mov si,[bx+10] 
mov es,[bX+14] 
mov ds,[bx+16] 
pop bx 
push bp 

intOall: 
dw 00 
pop bp 
push bx 
push ds 
Ids bx,[bp+8] 
mov [bx+O],ax 
mov . [bx+4] ,ox 
mov [bx+4],cx 
mov [bx+6],dx 
mov [bx+8],di 
mov [bx+10],si 
mov [bx+14],es 
pushf 
pop 
pop 
pop 
pop 
pop 

[bx+18] 
[bx+16] 
[bx+2] 
ds 
bp 

;Save bp 
;Establish a pointer to the staok 
;Push whatever other registers need to be saved 
jOCDh into low byte, int # into high 
;This displacement will vary with the compiler 
;Stuff CDNN into the instruction site . 
jLoad seg:ofs of pOinter to structure into ds:bx 
:Hove first slot of structure into ax 
jPush final bx onto stack, sinoe bx needed as 
; pOinter right now. 
;Load the rest of the registers, skipping bp 

sinoe bp is never used by interrupts and is 
: needed to point to staok. 
jWe can ignore flags on the way IN, not OUT 

;There goes the pOinter 
jPOP bx off staok 
;Save bp across interrupt 

;Scene of the crime of self-modifying code 
;Recover bp 
;Save ds & bx so we can use a pointer again 

;Reload pOinter 
;Inverse of above: fill struct with values 

jPreserve flag value this time 
:When you can't point, pop 

jRecover saved registers 



Figure 2 - A Goodie For Terminate-But-Stay-Resident Hackers 

Since this column has paid tribute to Back To The Basics, perhaps you 
more advanced codeslingers might appreciate a trick I just discovered. 
Th1s "p01nter" techn1que, in tandem with the peculiar way that C 
handles function call arguments, provides an extra benefit for C 
programmers who are writing interrupt handlers. Suppose you had 
stolen an interrupt and put in its place in the interrupt table the 
address of an assembly language function that does no more than this 

1. Push the registers in the order flags,ds,es,bp,si,di,dx,cx,bx,ax 
2. Call your interrupt handler WRITTEN IN C 
3. Pop the registers in the order ax,bx,cx,dx,di,si,bp,es,ds,flags 

Notice that the stack at the time the C program is operating will 
therefore be laid out in precisely the order ordained by "regs.h." 
Since pushing variables onto the stack in C (as opposed to almost 
every other language) is the duty of the calling funation, not the 
called, a function compiled by a C compiler will treat whatever 
happens to be on the stack as if it contained the variables defined 
by its own arguments. Therefore if you give your interrupt handler a 
fake argument, i.e. --

handler(dummy) 
int dummy; 

-- the function will treat the stack space occupied by the pushed AX 
register as a local variable. If we point our "struct regs" pointer 
to the ADDRESS ot this variable -

struct regs Irr; 
rr = &xx; 

-- we effectively treat the stack itself as though it were a 
structure that can be used as a storage area by an interrupt calling 
tunction within the interrupt handler. If you have a zippy new 
version of C that allows passing whole structures on the stack, 
things can be even more elegant. 
The benefit is that you can use the p01nter-to-the-stack technique to 
pass register values back and forth to the calling function. 
Suppose, for example, you had stolen interrupt 16h and decided to use 
a whole passel of hotkeys to carry out a number of resident program 
tricks. The interrupt handler might look something like this --

handler(dummy) 
int dummy; 

struct regs Irr ; 
char fnct; 
rr = &dummy; ,- point structure painter at base of register stack -, 
tnct:rr->ax»8; " store what's in AH so we can check the function call-' 
interrupt(new16h,rr); ,- call original interrupt 16h BIOS routine -, 
if(fnct == 0) switch(rr->ax){ I' we're only interested in function 0 II 

case HOTKEY1: do_1{); ,- check for hotkeys and act accordingly -, 
break; 

case HOTKEY2: do-2(); 
break; 

case HOTKEY3: do-3{)j 
break; 

etc. etc. etc. 

" return after stack popping to the calling program 'I 

'For the non-heroes among us, doing the work in C rather than in 
:assembler saves hours of debugging. 

Compilers definitely differ in this 
regard. The only way to find out about 
yours is to set up the compiler for as
sembler output and see how the com
piler addresses the variables pushed 
onto the stack. Try it.Even if you view 
this exercise as an example of wretched 
excess, you will learn a lot about how 
C works. 

You'll also see that the overhead 
will change as you select small, 
medium, or large compiler options. 

Doesn't Apply To You 
"What If I Promise Never To Do 

This Sort Of Thing, Ever?" 
OK, now that you've seen it, you've 

sworn off assembly language modules. 
Fair enough. There is, however, a practi
cal and (I dare say) moral aspect to this. 

On the practical side, you should 
have at least a notion of how your com
piler's interrupt function works. 
Moreover, the function we designed is 
representative of many of the (standard 
and nonstandard) functions that come 
with each compiler. No language, no 
matter how stratospheric, rewards zom
bie programming. And, the flexibility 
and power of C makes it singularly un
forgiving, a fact lots of folks will dis
cover as Borland's Turbo C reaches the 
market. 

The moral dimension is even more 
important. Without understanding, we 
can't appreciate the work that has gone 
into these routines. It's an unthinking 
person who thinks that milk magically 
appears in plastic-coated cartons at the 
supermarket - while others awaken at 
3:30 a.m. to herd grumpy cows into 
milking machines, and shovel manure. 

Software piracy would be much less 
common if we could see the human 
face hiding behind those fancy func
tions we invoke so effortlessly. Also, 
how many of us, I wonder, ever con
template the sheer organizational effort 
that it took to coordinate all those 
cycles and epicycles within Lotus? 

• •• 

MICRO CORNUCOPIA, #36, June-July 1987 59 



THE CULTURE CORNER 
Trygve Lode, President 

Lode Data Corporation 
6450 E. Hampden Avenue 

Denver, CO 80222 

In-House Experimental Verification Of Nonconservation 
Of Parity And Quantum Mechanical Tunneling Of 
Macroparticles . 

Abstract 
Experiments verifying macroparticulate parity non

conservation and macroparticulate quantum mechani
cal tunneling are discussed. 

Introduction 
The nonconservation of parity has long been ob

served in weak interactions, and quantum mechanical 
tunneling is a frequent event in radioactive decay; 
however, no significant research has been conducted to 
determine whether similar processes occur involving 
macroparticles. 

Even general macroparticulate quantum effects have 
heretofore been ignored by the scientific community. 
This, in all probability, is due to the uncanny and dis
turbing resemblance macroparticles bear to actual 
physical objects, a drawback which frightens off all but 
the bravest of theoreticians. To assist in the ameliora
tion of the relative dearth of knowledge in this field, it 
was decided to conduct two experiments to determine 
if quantum mechanical processes occurred in macropar
ticles: the first would determine if parity was con
served; the second would attempt to discover tunneling 
effects. 

Because macroparticles do behave so much like ac
tual objects, it was necessary to conduct all experiments 
as far from physics laboratories (1) as possible. Certain
ly the most convenient location satisfying this require
ment was my house. So all experiments were con
ducted in-house. 

Experiment 1: Nonconservation Of Parity 
To demonstrate the nonconservation of parity in 

macroparticles, it was first necessary to have a group of 
macroparticles on which to experiment. As the macro
particles best suited to parity experiments, I chose 
socks (2). The socks chosen were size thirteen, black, 
over-the-calf men's dress socks purchased from a local 
clothing emporium. Several pairs were purchased at 
one time; their average mass was 38g per sock. They 
went through a two-stage (3) purification process and 
were removed from the washing machine two at a time 
to determine that they were indeed still in pairs. 

60 MICRO CORNUCOPIA, #36, June-July 1987 

Next, the macroparticles were loaded into the mac
roparticle dehydrator/storage-cylinder accelerator (4) 
which accelerated the macroparticles to 6.5 x 10E5 +/-
2.1 x 10E5 TeV and heated them to approximately 347 
degrees Kelvin. They remained in the storage cylinder 
for 1561.1 +/- 0.4 seconds and then were removed en 
masse and placed in a drawer (5). 

Each day, over a period of about two weeks, one 
pair of macroparticles was removed from the drawer, 
worn (6), and set aside for future recycling. At the end 
of the experiment, when all pairs had been removed, a 
single sock remained in the drawer - the group of mac
roparticles had changed parity from even to odd. This 
experiment was repeated a total of four times, and in 
three of the four trials, parity was not conserved. 

Experiment 2: Macroparticle Tunneling 
Discovery of the event that led up to this experi

ment came about entirely by accident: one morning 
several plates,· bowls, and pieces of stainless flatware 
(these will be hereinafter referred to as Kitchen Macro
particles, or KMPs) appeared in the basement, 
clustered about the television set, which is directly 
beneath the kitchen where these KMPs would normal
lybe found. 

When questioned regarding this curious event, all 
proximate mini-persons (7) denied moving the KMPs 
or even being aware of their presence in the basement. 
I began a controlled experiment to determine if these 
KMPs were indeed tunneling through the relatively 
high potential barrier of the kitchen floor to the lower 
energy state of the basement. 

First of all, all KMPs were removed from the base
ment, washed (8), and placed in cupboards. Proximate 
mini-persons were carefully instructed not to take any 
KMPs outside of the kitchen. The Jollowing evening (9 
hours later), a thorough examination uncovered a total 
of fourteen KMPs in the basement distributed in a 
roughly Gaussian pattern around the television· set 
(which, as you will recall, is directly below the kitchen). 

There were two bowls, six plates, three spoons, two 
forks, and a knife. The thickness of the floor was 
measured to be 22.4 cm, which suggested that the 



KMP wavelengths must be roughly on the same order 
of magnitude. The individual KMPs were measured 
and they ranged from 15.5 cm to 28.1 cm with a mean 
length of 19.3 cm, correlating remarkably well with the 
estimate based on floor thickness. 

A closer examination revealed that every single 
KMP exhibited signs of recent contact with comes
tibles, although a relatively small quantity of actual 
edible material remained adhered. Perhaps most sig
nificantly, the material adhering to the KMPs was in
variably food which apparently had been heated 
(soups, microwave quick-lunches, leftovers, ice cream 
soup, etc.); no unheated edible material (twinkies, 
cookies, etc.) adhered to the KMPs. We may therefore 
conclude that greater than ambient thermal energies 
are required for quantum mechanical tunneling. 

Foods similar to those adhering to the KMPs were 
discovered spilled in the kitchen, strongly suggesting 
that the foods which heated the KMPs had been unable 
to tunnel through the floor themselves either because 
of shorter wavelengths or a lesser effect of gravity on 
food than on dishes. 

Previous experiments had shown that, in fact, the 
force of gravity has a" stronger effect on food than on 
dishes (9,10). So I suspected the former possibility, a 
suspicion which was confirmed when the spills were 
measured and all were found to be under 4 cm. Comes
tible fragments that remained adhered to the KMPs, on 
the other hand, were generally at least 10 cm in length, 
much more capable of tunneling through the floor. 

Finally the distribution of food-heated plates (the 
most common KMP found) confirmed the tunneling 
hypothesis: 9 were found in the kitchen, 3 were found 
on a table near the television, and 1 was found under 
the table (11) - coinciding almost exactly with the ex
ponential distribution expected for KMPs not tunnel
ing, having tunneled through the floor, and having tun
neled through both the floor and table. 

I also discovered that a spoon was missing al
together which I assumed must have passed through 
the Earth entirely. Several calls to Hong Kong Univer
sities failed to uncover the location of" the wayward 
spoon, so· this has not as yet been confirmed. 

Conclusion 
It has been conclusively demonstrated that the 

parity of macroparticles is not conserved. Therefore 
socks must come in right-left pairs rather than the 
single type invariant under reflection operations as was 
previously supposed. 

Similarly, it has been shown that macro particles of 
greater than ambient thermal energies are easily 
capable of tunneling through potential barriers such as 
a kitchen floor, and that the first-floor metastable state 
has an approximate half-life of 16.6 hours. 

The discovery of quantum effects in macro particles 
may be the single most important development in 
quantum mechanics since the Schrodinger equation, 
but research in this field is far from over. We still need 

to know the relative probabilities of appearance and 
disappearance of socks and whether the universal sock 
population remains constant. 

We need to calculate macroparticle tunneling half
lives with a greater degree of accuracy, and we still 
need a clearer determination of the effects of tempera
ture on macroparticle tunneling. For example, my cans 
of soft drinks are forever disappearing from the office 
refrigerator. The fact that they are cold suggests parity 
effects at work, but the fact that they always vanish 
and never appear suggests the effects of tunneling. 

Perhaps most importantly, I still need a grant or a 
Nobel prize or something, which clearly "indicates the 
need for further research. 

Notes 
1. Interactions of objects and researchers under 

laboratory conditions bear at best only the most superfi
cial resemblance to their real counterparts (cf E.P.A. 
highway gas mileage estimates). 

2. Socks come in pairs and are much cheaper than 
shoes. 

3. The first stage involved removing labels, price 
tags, and" those little plastic hooks. The second stage 
consisted of running the socks through the medium 
load cycle of a Speed Queen (R) washing machine with 
Tide (R) detergent. 

4. Speed Queen (R) heavy-duty electric clothes dryer. 
5. Approximate capacity 35,000 cc. 
6. One macroparticle was placed on each foot. Feet 

were carefully counted each day to confirm that they 
had not also changed parity. 

7. Juvenile Homo Sapiens, age 11-17 years. 
8. Using a Kitchenaid (R) dishwasher and Cascade 

(R) dishwasher detergent. 
9. R. C. Rutabeta, Generalized Theory of the Buttered

Side Effect, J. Recalcitrant Foods 4 (1981), 1630-1661 
10. H. B. Rosie and N. Freap, Experimental Verifica

tion of the Diner Effect With Particular Emphasis on the 
Comparative Analysis of Paper Towel Absorption Coeffi
cients as Affected by Television Camera Proximity, Mur
phy's Legal Joumal 186282 (1992),62431-62432 

11. The other two plates were on the floor away 
from the table, and so were not included in this 
analysis as they might adversely affect the results. 

••• 

MICRO CORNUCOPIA, #36, June-July 1987 61 



Recovering Trashed Disks 
In response to your very helpful ar

ticle in Micro C #32 ("Recover A Direc
tory By Reading & Writing Disk Sec
tors"), I would like to inform you of a 
relatively simple strategy for recover
ing files. It is based on your assembly 
language shell. 

Problems frequently occur with ini
tial read errors of diskettes. The cause 
may be unreadable signals written on 
the boot area, FAT area, or portions of 
the directory. N orton Utilities won't 
read these disks since DOS can't swal
low the errors. 

However, you can fool DOS by log
ging onto a good disk with Norton 
Utilities or PC Tools. Then use the "in
spect/change sector" option to get into 
the data area and swap the bad disk 
into the drive. By this method, you can 
easily see what areas have been trashed 
and work out a recovery strategy. This 
might consist of using one of the FATs 
as a template to reconstruct the other 
or analyzing the FAT to put together a 
new directory. 

The worst case is where both FATs 
and the directory have been trashed. 
Here is where your program really 
comes into its own. In my case, I was 
able to copy the boot record, FAT area, 
and directory from a good disk in B to 
my trashed disk in A. The good disk 
had one very large file taking up all 
but a trivial ampunt of the disk. 

Using Norton Utilities, I substituted 
"$" for each end of file mark. The 
single large file was then copied to the 
hard disk and the original files were 
broken out with a word processor. 

One hitch is that any bad sectors on 
the original disk are now allocated to 
the large file. But I found that DOS 
would skip over most of these with an 
"I" (Ignore) response to its error mes
sage. 

This is a somewhat cumbersome pro
cedure, but with it I was able to 
recover material that previously would 
have been lost. Thank you for your 

original article and keep up the good 
work. 

I.R.E. Harger 
UNESCO 
Office For Science and Technology 
Tromolpos 2731Jkt. 
I akarta, Indonesia 

DOS 3.2 and 3.3 
I've had a problem with flaky disk 

drives on my AT clone. The drives only 
live for five or ten minutes using MS
DOS 3.2 at 10 MHz. However, PC-DOS 
3.2 works fine at 10 MHz. My control
ler is the Western Digital card with the 
cables coming off the side. 

Speaking of drive problems, I talked 
to Dave over at Cascade Electronics 
recently. He said that the Phoenix BIOS 
couldn't format 1.2 meg under MS
DOS 3.2, but could with 3.1 or PC-DOS 
3.2. 

Dave sent me a copy of an IBM pub
lication called Exchange which included 
a list of changes for PC-DOS 3.3 over 
3.2: 

1. PS/2 support. 
2. Support for 1.44 meg 3 1/2 inch 
drives. 
3. Up to four async ports at 19,200 
baud. 
4. Time and date function to set cmos 
clock. 
5. Enhanced national language support. 
6. Better batch file processor. 
7. Append, a memory resident utility 
which is like PATH but for non-COM 
files. Also in 3.2. 
8. Backup will format disks. 
9. Call, a new batch file command 
which allows one file to call another. 
10. FASTOPEN: TSR which will cache 
directory for non-removable drives. 
11. MODE which will support the four 
comm devices. 
12. RESTORE which will support new 
disk format and allow selective file 
recovery. 

62 MICRO CORNUCOPIA, #36, June-July 1987 

Alan Gomes 
11751 Holly View Dr. 
La Mirada, CA 90638 

Western Digital Controllers 
A simple modification (just a little 

trace cutting and jumpering) plus a 
new EPROM will allow the standard 
Western Digital hard disk controller 
card to work in a Tandy. The EPROM 
and instructions go for about $20. Con
tact: 
Technoland 
5830 E. Washington Blvd. 
City of Commerce, CA 90040Z 
(800) 222-3978 

7 MHz Problem 
I'm writing to you on my sped-up 

Kaypro (see Micro C issue #33 -
Kaypro Column). It works very well, 
but I'd like to tell you about one very 
thorny problem I had with this par
ticular machine. 

It concerns the IC at U2. Your article 
and diagram specify a 74LS04. With 
that chip in place, the computer 
refused to operate. Both drive lights 
came on and I had no video. When I 
replaced the 74LS04 with the original 
chip, a 74HCU04, it worked. 

The only problem I have now is that 
COpy won't even work at 3.5 MHz, 
but I'm getting a faster program from a 
neighbor. After an hour's operation at 7 
MHz, I'm very pleased with the in
crease in speed. 
Norris Bundy 
P.O. Box 29 
Alsea, OR 97324 

Editor's note: 
Sorry for the confusion, Norris. Quite a 

few boards do have the 74HCU04 chip in 
U2. Whatever chip is installed in U2 
should be left there. Regardless of the type 
of chip, 14 MHz will always be available 
on pin 8. 

••• 



We can help you 
sell your products. 

For more information on 
great advertising oppor
tunities in Micro C, con
tact Laura or Julie 
at (503 )382-8048. 

/ 



THE 
MICRO C 
LOGICAL 
CONTEST 

I F You're tired of wondering what the AI hullabaloo is all about? 

OR Convinced you're more than artificially intelligent? 

THE N Prove you're logical. Write a program in PROLOG 
and enter it in the third annual Miqro C Programming Contest. 

Any PROLOG brand will do, and length is no object. 
Programs will be evaluated on the basis of function, ease-of-use, 
and code & documentation readability. 
Winners will be announced in the February '88 issue of Micro C. 
Good luck and good programming. 

1st Prize 
--10 MHZ AT clone board with 1 MByte 

of RAM from MicroSphere, Box 1221, 
Bend, OR 97709. 

-- micro einstein - An expert system 
development tool from Gary 
Entsminger's Acquired Intelligence, 
1912 Haussler Dr., Davis, CA 95616. 

-- Turbo PROLOG Toolbox from Boralnd 
International, 4585 Scotts Valley Of 
Scotts Valley, CA 95066 

- 3 yr. subscription to Micro C. 

2nd Prize 
-- micro einstein from Acquired I . 

Intelligence. 

-- Turbo PROLOG Toolbox from 
Borla nd International 

-- 2 yr. subscription to Micro C. 

3rd Prize 
-- Turbo PROLOG Toolbox from 

Borland International 

-- 1 yr. subscription to Micro C. 

-------CONTEST DEADLINE Nov. 1, 1987-------

ENTRY FORM 

Name 

Address 

Program Title __________ _ 

Purpose 

Written for which version of PROLOG 

NOTE: 
I hereby release this program to the public 
domain and give Micro Cornucopia the right 
to print the listing. 
Signature ____________ _ 

City ____ State __ Zip ___ _ 

Micro 
Cornucopia 

P.o. Box 223 
Bend, OR 97709 

64 MICRO CORNUCOPIA, #36, June-July 1987 

Byte Magazine called it, 

"CIARCIA'S 
SUPER 
SYSTEM" 

The SB180 
Single Board Computer 

Featured on the cover of Byte, Sept. 1985, 
the SB180 lets CP/M users upgrade to a 
fast, 4" x 7

'
/2" single board system. 

• 6MHz 64180 CPU 
(Z80 instruction superset), 256K RAM, 
8K Monitor ROM with device test, disk 
format, read/write. 

• Mini/Micro Floppy Controller 
(1-4 drives, Single/Double Density, 
1-2 sided, 40177/80 track 31/2:' 51/4" 
and 8" drives). 

• Measures 4 n x 71/2~ with mounting holes 
• One Centronics Printer Port 
• Two RS232C Serial Ports 

(75-19,200 baud with console port 
auto-baud rate select). 

• ZCPR3 (CP/M 2.2/3 compatible) 
• Multiple disk formats supported 
• Menu-based system customization 

New LoW Prices 
;;:::.:---

SB180-1 
SB180 computer board w/256K 
bytes RAM and ROM monitor 
•...••••••••••..•••••• $299.00 

SB180-1-20 
same as above w/ZCPR3, ZRDOS 
and BIOS source •••••••• $399.00 

COMM180-S 
SCSI interface .••••••••. $150.00 

Now Available 

~--------~ 
TURBO MODULA-2 ••...•••• $69.00 
TURBO MODULA-2 with 

Graphix Toolbox ••••••••• $89.00 

TO ORDER 
CALL TOLL FREE 

1-800-635-3355 

TELEX 
643331 

For Technical Information or in CT, call: 
1-203-871-6170 

~. ~~ Micromint, Inc. 
~ 4 Park Street 

Vernon, CT 06066 



.8087;.1 Math Coprocessor for X16B 
The X16 8087 Math Coprocessor ru ns at fu II CPU speed. That's 
10MHz of number smashing power! The Math Coprocessor on the 
AT only runs at 2/3 of the CPU clock. 

SCSI Port Option for X16B 
Full SCSI port using the 5380. Software built into ROM BIOS for the 
OMTI 3100 hard disk controller achieves a 1 to 1 sector interleave. 

FOURMEGGER 
Running out of spreadsheet room? Need something faster than a 

. hard disk for those long compiles? The Four Megger is the answer. 
The Four Megger meets the Lotusllntel/Microsoft expanded 
memory specifications and works in all PC and XT computers. The 
Four Megger also works in AT computers. as expanded memory 
only. 

2S1P 
We found ourselves lacking for a flexible two serial ports and 
parallel printer port. So we designed the 2S1P (which is short for 2 
Serial, 1 Parallel) board. It's small, inexpensive and made here, of 
course! 

.Memories 
The PC Tech Memories board allows additLonal ROM or static RAM 
to be put in a PC, Xl, AT, X16B or compatible. We designed it for 
diagnostics. You can use it for booting without disks, scraping 
your windshield or whatever! 

P.O. Box 128 
904 North 6th Street 
Lake City, MN 55041 
(612) 345·4555 

COD, VISA, MASTER CARD, CERTIFIED FUNDS 

The X16B. offers the highest 
performance and integration of 

. any PC/XT compatible. With its 
10 M Hz, zero wait state 
operation it walks away from AT 
compatibles as well. On board is 
one megabyte of DRAM, a real 
time clock, floppy disk 
controller, and optional one or 
two serial ports, SCSI port and 
8087. 

The PC Tech SmartBIOS 
provides PC compatability with 
ease of use. We wrote it and we 
support it! 

PRICES! 
X16B 1 1 Meg 1 RTC .... $600.00 

8 MHz version ...... $540.00 
SCSI option ......... $25.00 
Serial ports (2) ....... $38.75 
8087·1/82188 ........ $340.00 
8087·2/82188 . ....... $260.00 

Four Megger ......... $850.00 

2S 1 P ................. $99.00 

Memories ............. $95.00 

Systems: 
The Box ........... $799.00 
Mono System ..... $1,099.00 
EGA System ...... $1,849.00 

Call for system configuration 
details. PC Tech also sells hard 
drives and controllers, video boards 
and monitors, etc. 

Watch for more innovative products 
designed and built by PC Tech!!! 

PC, XT and AT are trademarks of International Business Machine~ 



PC Based EPROM Burner 

Gang Programmer For Under $200 

I remember building Micro C's 
first EPROM programmer. I built it 
back in 1981, a prototype for an ar
ticle, and it's been solid ever since. 
Maybe because it was connected to a 
Big Board. We've since purchased two 
$1,000+ 8-hole commercial program
mers. I've mentioned their shortcom
ings in Micro C from time to time. 
However, Larry has found one that's 
solid, easier to use, more versatile and 
downright cheap. I'll let him tell you 
about it. 

W
e've had a history of trouble 
with EPROM burners here at 
Micro C. They either write gar

bage or they read garbage. Sockets fail 
one by one. Burners refuse to talk to 
host computers. One burner even 
talked dirty to its host in the form of 
120 volts AC on an RS-232 line. It was 
shocking. 

It got so that Tammy (Micro C's 
EPROM creator extraordinaire) would 
have to call Dave ·or me back at least 
once a week for a little burner doctor
ing. Some of the doctoring was major 
and the cursed machine did a lot of 
travelling back and forth to the factory. 
It spent more time on vacation than 
our circulation manager, Tracey! 

So I was happy to see Dick Borden 
walk in the door a while back. He had 
a PC based EPROM burner for us to 
play with. It didn't take long to decide 
that this was the burner for us. 

Description 
The Sunshine EPROM Writer hails 

from Taiwan. Its half-length controller 
card drives either a 1 hole (EW-901B) 
or a 4 hole (EW-904B) burner that sits 
neatly on top of the PC. We've only 
tested it with 2716,2732 and 2764 series 
EPROMs, but the specs say it will 
program anything from 2716 through 
27512 parts. 

Menu-driven software provides 
most every function you'd want: read
ing and writing EPROMs of course, 
verification of both programmed 
EPROMs and blanks, storage and recall 
of object files, and editing of the object 
file currently in memory. (Sunshine 
refers to the memory used by the object 
file as the "buffer".) 

Both the documentation and the 
menu use a good approximation of 
English. However, some familiarity· 
with EPROM programmer functions 
eases the first few programming ses
sions. For example, I had trouble verify
ing any EPROMs which weren't in the 
first socket. It turns out that the menu 
option, "Set textool size," must be used 
to change the default gang size of 1. 
Silly me, I should have known that. 

In a normal copy session, verifica
tion shows only the address of the first 
error in each EPROM copied. If you 
want a more complete display of er
rors, use the "Verify & display errors" 
option. This choice displays the ad
dress, EPROM value, and buffer value 
(in parentheses) for each error. 

It also lets you read object files into 
the burner's buffer beginning at any ad
dress. For example, the code from a 
2716 can easily be burned into the top 
half of a 2732. Just set the starting ad
dress at 0800h when reading the 2716. 

Performance 
No one wants to sit around and 

watch EPROM burners run. Speed of 
execution turns out to be one of the 
Sunshine programmer's strong points. 
The highly subjective Tammy Speed 
Rating shows that it runs twice as fast 
as our old Southern Computer Corpora
tion Model 512A. In reality, it performs 
even better. 

I used 2764A EPROMS to test the 
two programmers. A look at the results 
(see Figure 1) shows that the Sunshine 
is almost 4 times faster. Notice that 

66 MICRO CORNUCOPIA, #36, June-July 1987 

By Larry Fogg 

Micro C Staff 

gangs of 1 and 4 program at close to 
the same speed. This makes sense since 
the programming is done simultaneous
ly. Only the verification process (very 
quick compared to programming) goes 
one by one. 

Read (2764A) 
Write/Verify (1) 
Write/Verify (4) 

Drawbacks 

SCC 
0:06 
1:35 
1:37 

SUNSHINE 
0:01 
0:23 
0:25 

None. Seriously. Sure, it would be 
nice to have 37 sockets and a price tag 
of $19.99. And maybe they could throw 
in . one of those oriental cooking knife 
sets. (Editor's note: I think they did, but 
someone beat Larry to it.) Aside from the 
somewhat inscrutable documentation 
and an occasional lapse into ques
tionable spelling, I can't complain. 

Well, maybe I should complain 
about one thing. When specifying start
ing and stopping addresses for a dump 
of the buffer contents, "DOOOO.OOFF" 
cannot be shortened to "DO.FF". All ad
dresses must be a full 4 characters. A 
minor drawback, but when you club 
the keyboard as poorly as I do, every 
little bit of shorthand helps. 

Availability 
And now, the bottom line. Stand

alone multi-hole EPROM programmers 
go for $800 and up. The best price I've 
found for the Sunshine I-holer is $119 
from McTEK in Berkeley. We bought 
their 4-holer for $169. The thing was 
DOA but the hassle-free replacement 
has been burning 'em for four months 
now. 

So, I'll give the Sunshine an "A." Its 
ease of use and speedy programming 
make it a good choice for anyone with 
a burning desire for cheap EPROM 
programming. 



Sources 
McTEK 
2316 Fourth St. 
Berkeley, CA 94710 
(415) 549-3472 

JDR Microdevices 
110 Knowles Dr. 
Los Gatos, CA 95030 
(800) 538-5000 

••• 

SLICER ... THE 
TRUE LOW COST 
MULTI-USER 
MICRO 

® 
Ever Wondered What Makes CP/M TIck? 

Source Code Generators 
by C. C. Software can 
give you the answer. 

liThe darndest thing. 
I ever aid see ••• " 

" ••• if you're at 
all interested in 
what's going on in 

it's your system, 
worth it." 
Jerry Pournelle, 
BYTE, Sept '83 

The S.C.G. programs produce 
fully commented and labeled 
source code for your CP/M 
system (the CCP and BDOS. 

areas). To modify the system to your liking, 
just edit and assembie with ASM. CP/M 2.2 $45, 
CP/M+ $75, + $1.50 postage (in Calif add 6.5%). 

C. C. Software, 1907 Alvarado Ave • 
Walnut Creek, CA 94596 (415)939-8153 

CP/M is a registered trademark of Digital Research, Inc. 

THE SLICER 
Real 16 Bit Power on a Single Board 
Featuring the Intel 80186 (C) Step CPU 
• Complete 8 MHz 16-bit micro-

processor on a 6" x 12" board 
• 256K RAM, plus up to 64K EPROM 
• SASI port for hard disk controller 
• Two full function RS232C serial ports 

with individually programmed . 
transmission rates - 50 to 38.4K baud 

• Software compatibility with the 8086 
and 8088 

• 8K of EPROM contains drivers for 
peripherals, commands for hardware 
checkout and software testing 

• Software supports most types and 
sizes of disk drives 

• Source for monitor included on disk 
• Bios supports Xebec 1410 and 

Western Digital WD 1002 SHD 
controller for hard disks 

Fully assembled and tested only $445 
THE SLICER 1-MByte 
EXPANSION BOARD 
For expanded memory, additional 
ports and real time clock 
• 1-MByte additional dynamic RAM 
• 2 RS232C asychronous ports 

with baud rates to 38.4K for 
serial communication 

• 2 additional serial ports for asynch 
(RS 232) or synch (Zilog 8530 SCC) 
communication 

• Real Time Clock with battery backup 
• Centronics type parallel printer port 
Fully assembled and tested only $450 

SLiCER/1 MByte EXPANSION COMBO 
The Slicer (without RAM or RAM 
controllers) with Full 1-MByte 
Memory Expansion 
CCP/M (Digital Research) $950 
THE SLICER PC EXPANSION BOARD 
Gives your Slicer high 
performance video capability 
• IBM campatible monochrome video 
• Video memory provides 8 pages of 

test or speCial graphics capability 
• 2 IBM type card slots for color video, 

I/O expansion, etc. 
• IBM type keyboard port 
Fully assembled and tested only $495 
All boards available in kit forms 
Runs MS DOS generic software; PC DOS 
program operation not guaranteed 
Also available: The uSlicer 188 $400; 
8087 Math Co-Processor Bd. (call); 10 MB 
Hard Disk $465; W.O. 1002-SHD H.C.D. 
Bd. $200; Enclosures, Power Supply, 
and Support Hardware. 
CP/M 86 $85, CCP/M $250 (Digital 
ResearCh, Inc.); MS DOS $175 
(Microsoft Corp.) 

MasterCard. Visa. Check. Money Order. or C.O.D 
Allow four weeks for delivery. Prices subject to change 
without notice. 

NOTE NEW ADDRESS & PHONE NO. 

~~~~~ Slicer Computers Inc. 
~ 3450 Snelling Ave. SO.

SUCER Minneapolis, MN 55406
6121724-2710

~~~ Telex 501357 
~ SLICER UD 

MICRO CORNUCOPIA, #36, June-July 1987 67 



By Gary Entsminger 
1912 Haussler Dr. 

Davis, CA 95616 

Happiness, The Too Much Information Blues, & micro einstein 

Gary tries to confuse Taskview by 
loading it up with concurrent proces
ses. The score? Taskview 1, Gary O. 
He also discusses WindowDOS and 
the PROLOG competition. 

L
ast issue I wrote about 
Taskview, a useful (and unusual) 
menu-driven command shell. 

- Under Taskview command, you 
set up your own menu of programs 
which you run by entering the first let
ter or by moving the cursor. You can 
suspend a running program in execu
tion, and switch back to it later or aban
don it entirely. 

I've been using Taskview again this 
issue and have discovered that it 
suspends programs in the background 
only some of the time - when a 
program is too large to retain in 
memory. 

If a program is swapped to disk, it's 
suspended (and nothing new happens 
while you're away). However, if the 
program is small enough (Turbo Pascal 
qualifies; Turbo PROLOG doesn't), and 
doesn't need to be swapped to disk, it 
will continue to run in the background, 
more-or-Iess concurrently. It still must 
compete for a single CPU's time, but 
does continue to compile, write to disk, 
etc ... 

For example, I started Turbo Pascal, 
loaded a file, switched (via Taskview) 
to another copy of Turbo Pascal, 
started it, loaded a file, and then 
started yet a third copy of Turbo Pas
cal, and loaded a file. 

To keep the test simple (I also 
hoped to confuse Taskview), I loaded 
the same Pascal source file (2000 lines 
including INCLUDE files) each time. 
To keep tabs on each program while it 
compiled, I switched between tasks by 
pressing -

<CTRL> <SHIFT> <N> 
where N = the number of the task. 

When programs are small enough, the 
switch is virtually instantaneous (since 
everything is running in memory). 

So, first I compiled the source in 
copy 1. Then, I compiled the source in 
copy 2 (just for a check, and no 
surprise - they compiled within a few 
tenths of a second of each other). 

Then, I began a compile in one, 
switched to another, began a compile, 
switched to another, started an edit, 
and then alternately (and merrily) 
switched back and forth, and back and 
forth to watch the action. 

Happiness! Everything worked, al
though it did take a few more seconds 
(but just a few more) to compile the 
files concurrently with Taskview than it 
took to compile them separately. 

Next, I tried to confuse Taskview by 
writing concurrently to the same file. If 
you're following closely, you've probab
ly already guessed the result 
Taskviewhad no problem (since it real
ly processes sequentially) writing and 
closing the files, one by one. 

So, no luck at attempted confusion, 
and Taskview continues to intrigue me. 
If you want to come as close as you can 
to concurrency on the PC without ad
ding a second processor, call Sunny 
Hill for more details. 

$69.95 from-
Sunny Hill Software 
P.O. Box 33711 
Seattle, WA 98133-3711 
(206) 367-0650 

WindowDOS 2.0 
Directories have been essential 

programs since the beginning. And 
since the beginning, programmers have 
been trying to improve DIR, the MS
DOS directory- program (see the Cul-

68 MICRO CORNUCOPIA, #36, June-July 1987 

ture Corner, Micro C, #35 for a some
what redundant, and yet less-than
thorough, history). 

WindowDOS (first released in 1984) 
was one of the first DOS shells to sub
stantially improve on DIR. And (as far 
as I know) it was the first to do it in 
TSR (Terminate-But-Stay-Resident) 
fashion. 

You load WindowDOS, and when
ever you need it (even when you're 
using another program), call it up by 
pressing-

<SH> <INS> 
It automatically sorts the current 

directory. and writes it to the screen, 
where you can manipulate individual 
or groups of tagged files by moving a 
highlight with the arrow keys. 

But that's really just the tip of the 
iceberg. 

WindowDOS 2.0 lets you format 
disks, copy and erase files, make direc
tories, list files (in ASCII or text), sort 
files (by filename,.' extension, creation 
date, and size in ascending an~ des
cending order), hide and' unhide, 
protect and unprotect, and password 
lock files. You can set the time and 
date and set up macros. 

Although I use several directory 
programs (including XTREE), I prefer 
Window DOS when I'm working with a 
hard disk. Why? Because it do-esn't 
read the entire disk structure until I tell 
it to. Unless I specify otherwise, it 
reads the current directory, period. 

When a hard disk fills to 1000+ files 
and 19+ megabytes, a reading of the en
tire disk just takes too long (even on 
X16s and ATs). I call this the "Too 
much information blues," and will do 
almost anything to avoid it. 

If "the blues" is your problem, try 
WindowDOS. It could help. Sells for 
$49.95, and includes a nifty'screen cap
ture utility 



WindowDOS Associates 
Box 300488 
Arlington, TX 76010 
(817) 467-4103 

look over Herbert Schildt's "Advanced 
Turbo PROLOG." Although not really 
an "advanced" text, it does offer 
several good programming leads, in
cluding: vision and pattern recognition, 
natural language processing, expert sys
tems, and robotics. 

His book has a practical flavor 
which I found (and continue to find) ap
pealing. 

It's $25.95 from Addison-Wesley. 
And that, folks, is Tidbits. See you 

at SOG VI and in the funny papers. 
The PROLOG Programming Contest 

We're into month two in the third 
annual Micro C programming contest, 
and if you haven't heard, we're doing 
PROLOG. So put on your thinking caps 
and logical scarves, and start program
ming in this blue plate special dance of 
a language. 

I've been working hard to perfect 
my own skills in the AI arena, and am 
very pleased to be donating two copies 
of my expert system shell, "micro 
einstein," (written in Turbo PROLOG 
and C) to the first and second place 
winners. For a complete list of prizes 
(including a 10 MHz AT board from 
MicroSphere), see the PROLOG contest 
information elsewhere in this issue. 

If you're having trouble deciding 
what to write in PROLOG, you might 

CALL FOR FREE CATALOG 

I would love to see a good two (or 
even three) dimensional pattern recog
nition program. 

For a preliminary study of 
PROLOG, read Clocksin and Mellish 
(Programming in PROLOG), Schildt, or 
the Turbo PROLOG reference manual. 
If you want to hone your technique, 
read (and study) PROLOG Programming 
For Artificial Intelligence by Ivan Bratko. 
It's the best "advanced" book and the 
best "general" textbook of PROLOG 
programming I've seen. 

Bratko leads the AI groups at the 
Josef Stefan Institute and the E. Kardelj 
University in Ljubljana, Yugoslavia, 
and has applied PROLOG in medical 
expert systems and computer chess re
search. 

••• 

~ PC/XT c~~~IfI!~. ~~;:~~RBC~~~U~~R TALKI 
C A VERY POWERFUL AND AMAZING SPEECH CARD. USES THE NEW GENERAL 
W INSTRUMENTS SP0256-AL2 SPEECH CHIP AND THE CTS256A-AL2TEXTTO SPEECH 
a: CONVERTER. 

(R) 68Q-no Software Quelo • l!I Development 
~ Tools 

Z THIS BOARD USES ONE SLOT ON THE 
~ MOTHERBOARD AND REQUIRES A COM 
;:) SERIAL PORT. BOARD MAY ALSO BE USED IN A 

~ ~~~Ngci'ri~uNTEE~N'y~~~N~A~Nl ~~T:a:~~~~r 
a PORT. FEATURES ON BOARD AUDIO AMP OR 
o MAY BE USED WITH EXTERNAL AMPS. 
W DEMONSTRATION SOFTWARE AND A LIBRARY 
W BUILDING PROGRAM ARE INCLUDED ON A 5'1. 
a: INCH PC/XT DISKETTE. FULL DOCUMENTA-
u. TION AND SCHEMATICS ARE ALSO INCLUDED. 
>= 
I
Z 
c( NEW! 

$89.95 
ASSEMBLED 

& TESTED 

~~----------------------------------------~ <t 
~ CANON 80 COLUMN PRINTER - $39.95 
C ORIGINALLY MANUFACTURED FOR THE PC JR. BUT WITH OPTIONAL CONNECTOR 
W WILL WORK WITH PC, XT, OR AT. REQUIRES SERIAL I/O. THIS THERMAL PRINTER IS 
I- QUIET AND USES EASY TO GET 8'1. IN. ROLLS OF PAPER. 50 C.P.S., UPPER AND 
~ LOWER CASE, PLUS GRAPHICS. ORIGINAL LIST PRICE $199.00. ADD $3.00 FOR 
:::i PC/XT CONNECTOR. ADD $5.00 UPS. 

~~----------------------------------------~ C 
o 
Q) 

a: 
;:) 
a 
u. 
a 
en 
~ 

PC/XT EPROM 
PROGRAMMER 

$199 

a: * LATEST DESIGN * PROGRAMS UP TO 4 DEVICES AT ONE TIME * FEATURES EASY 

~ rt?T~E~~:~i' ~~I~~~':~~Th"tR~~~~~I~~~S ~~~E~~~E~R ~':S~or8,q U~~~~~ 
~ ~~~~~~iN*G T~Is,.~i~~6~ Bftr.

D tcJJ:iTHS~S *TON~N ::~~~~:~IWN~~~tSLSJ~ 
I- REQUIRED * AUTOMATICVPP SELECTION: 12.5V, 21V, OR 25V. * EPROM DATA CAN a ALSO BE LOADED FROM OR SAVED TO A DISKETTE. * PROGRAMMING SOFTWARE 
I- SUPPORTS: 2716, 2732, 2732A, 2764, 2764A, 27128, 27128A, 27256, 27256A, 27512, AND 
I- 27S12A. * ASSEMBLED AND TESTED, BURNED. IN WITH MANUAL. $199 WITH 
~ SOFTWARE. 

~~----------------------------------------------~ ~ Digital Research Computers 
~ (OF TEXAS) 
...I P. O. BOX 381450B • DUNCANVILLE, TX 75138 • (214) 225-2309 

~ I---:::T=ER=-=M::":S=-: -:-A-:-dd-:-$:-:3~.OO7"""""po-s-:-ta-ge-. ":':"W=-e-p-aY-:b-al=-an-c-e.-=O=-rd-=-e-rs-u-n-=-de-r "$1;:S-a-;-dd~7:;;:S:7e 7ha::':n:-:;d;;:un:"::g.-:N:7:o' 
~ C.O.D. We accept Visa and MasterCard. Texas Res. add 6-1/4% Tax. Foreign orders 
<t L.....!:(e:.:x~ce:.!::p~t C:::a::.:.na:::d:.::.a)~a=d=-d .::.:20:...:;Dfo:....:P-.:&=..H:..:;.:...:0::..rd:::e,;;.;rs:...:o::..ve:.:..r..::,;$S=0...::a..::,;dd::.c8=S-'-e .;,,::f0.o..r I;:.;:.ns.;,,::u;,;..;ra;:.;:.nc,;;.;e.o... ___ -----" 

First release 1983 - MOTOROLA compatible - produces ROMabie 
code, S-records, extended TEK hex, UNIX COFF. Portable 
SOURCE CODE. Native and cross versions on: ATARI ST, AMIGA, 
Masscomp, Sun, Apollo, Charles River, VAX VMS and UNIX. 

N 
E 
W 

I 
T 
E 
M 
S 

68020 Cross Assembler Package 

Supports 68000, 68010, 68020, 68881 and 68851 

For CP/M-68K and MS/PC·DOS - $750 

68000/68010 Cross Assembler Package 

For CP/M·80, -86, -68K and MS/PC·DOS • $595 

68000 "C" Cross Compiler 
For MS/PC·DOS by Lattice, Inc .• $500 

68020, Disassembler 

Supports 68000, 68010, 68020, 68881, 68851 

For CP/M-68K and MS/PC·DOS· $495/295, 

Amiga and Atari ST· $119{l9, CRDS UNOS • $995/595 

68000/68010 Software Simulator 

For MS/PC·DOS by Big Bang Software, Inc.· $285, VAX - $1900 

N 
E 
W 

I 
T 
E 
M 
S 

Call Patrick Adams today: Quelo,lnc. 

Site, Corporate, OEM licenses 
COD, Visa, MasterCard 

2464 33rd. West, Suite #173 
Seattle, WA USA 98199 

Phone 206/285-2528 
Telex 910-333-8171 

TM: Quelo, Quelo, Inc.; MS, Microsoft Corporation; CP/M, Digital Research 

MICRO CORNUCOPIA, #36, June-July 1987 69 



Writing Portable 8086 Assembly 
Language Functions 

Porting Assembly From C To Shining C 

OK, folks. You wanted assembly 
language? Here's assembly language. 
Want to port your assembly language 
routines from one C to another? Or, 
from one high level language to 
another? 

Well, continuing Micro C's tradi
tion of addressing the needs of many 
levels of programmers and developers, 
we offer Ken's in depth study. 
Developers working in any high level 
language will no doubt learn a lot 
from Ken's experiences. 

S
oon after Microsoft released ver
sion 4 of its C compiler, they 
published benchmarks showing 

its sterling performance. I had been 
using the Lattice compiler, which took 
longer to compile and produced less ef
ficient code as well, so I bought 
Microsoft C, version 4.0. 

I knew that Microsoft had pre
viously licensed the Lattice compiler 
and marketed it under their own name, 
so I naively assumed that their new, 
fast compiler would be compatible 
with my existing source code. 

I was wrong. The C code ported easi
ly, though it needed to be recompiled 
(it wasn't possible to use the Lattice ob
ject module libraries). Fortunately, I 
still had the source code to every 
program I needed. 

Assembly language portions of the 
programs are more difficult to port, 
however. The two C compilers use dif
ferent segment names and different con
ventions for stack usage, as well as dif
ferent protocols for calling assembly 
code. 

So I had to make many changes to 
the source code, without changing the 
way the functions operated. A situation 

of this nature is time-consuming and 
promotes unreliability. 

Although I was tempted to blame 
Microsoft, I realized I had set my own 
trap by assuming the Lattice conven
tions were a standard. It would be 
much better if my assembly programs 
could be used not only by different 
compilers for the same language, but 
also by different languages. 

Accompanying this article is a sys
tem of macros that allows assembly 
programs to interface to any reasonable 
calling protocol, segment structure, and 
memory model. Only a few of the most 
interesting macros are listed in this ar
ticle. The complete set can be 
downloaded from the Micro C BBS. 
They exercise the macro facility of the 
Microsoft MASM version.4.0 assembler; 
I have no experience using them with 
any other assembler. 

Usage 
Figure 1 contains a test program. If 

you run it and have the assembler 
make a listing, you can see how the 
code generated changes for different 
calling protocols and memory models. 

After you've included the macro 
definitions, the _cmplr macro will 
select a specific high level language 
compiler and memory model. Table 1 
identifies the special symbols to use. 

_cmplr defines internal symbols 
based on the specific selection symbols 
we define. I define the appropriate sym-· 
boIs on the command line invoking 
MASM if I want to override the default 
selections. For example, the following 
command line will assemble with the 
Lattice compiler conventions: 

masm /dLTC syhltO; 

_cmplr invokes another macro 

70 MICRO CORNUCOPIA, #36, June-July 1987 

By Ken Berry 
P.O.Box 966 

Jackson, CA 95642-0966 

specific for each compiler supported. 
_Ie defines several symbols accord

ing to the conventions of the Lattice 
compiler. _msc does the same for 
Microsoft. Those are the only two I've 
had to figure out for my work. But it's 
easy to add other compilers if you real
ize there are two independent issues: 
segment structure and calling protocol. 

Segment Structure 
The compiler designer chooses the 

segment structure. Predictably, there's 
wide variation, but all structures are 
logically similar. 

The _crtseg macro creates a segment 
and _defgrp defines a group of seg
ments. If you use a compiler I haven't 
tested, I hope reading the _Ie and _msc 
definitions will help you figure out the 
appropriate calls to _crtseg and _defgrp 
for yours. Once you have a correct 
macro corresponding to _Ie and _msc, 
you can forget almost all about seg
ments. 

The _begs and _ends macros are 
used to bracket segments in assembly 
programs. There are only two segments 
to worry about: one called "data" and 
the other "code." 

A "_begs data" instruction must ap
pear immediately before the first static 
data definition, and "_ends" im
mediately after the last. Similarly, a 
"_begs code" instruction immediately 
precedes the first executable instruc
tion. Another "_ends" terminates the 
code segment. In effect, the _cmplr 
macro maps the symbols "code" and 
"data" to the name appropriate for the 
current compiler and memory model. 

Data Types & Memory Models 
If you apply these macros to exist

ing assembly code, you'll have to sys-



tematically change many statements. 
But it's no more difficult to write new 
programs using the macros, because 
macros simply replace many assembler 
instructions. 

For example, seven data types are 
supported: byte, word, double word, 
quad word, ten byte, code pointer, and 
data pointer. Where an assembly 
program might ordinarily use the 
II d w" instruction to define a word of 
data, using the "_dw" macro makes the 
word easy to use in subroutine calls. 
It's not a big deal to provide an alterna
tive to the "dw" instruction. 

MASM doesn't provide instructions 
for all data types, so it's necessary to 
define macros in order to consistently 
determine the length of the item. 

Some data elements depend on the 
memory model being used, and the 
macros allow you to reassemble 
programs for any memory model 
without making changes to the source. 

The differences between memory 
models are reflected in the size of 
pointers. Small pointers use single 
words. Large pointers are double 
words. 

All seven data types can be used in 
five ways: external and internal labels, 
static data definitions, parameter defini
tions, and temporary data definitions. 
The sample program in Figure 1 shows 
the complete set of external and data 
macros. 

Procedures & Functions 
Procedures can be defined as near, 

far, or according to memory model. 
The default for small code memory 
models is near, while that for large 
code models is far. You can override 
the defaults for special applications. 

The 8086 family architecture is well 
suited to recursion because it uses a 
stack and can easily manipulate data 
on the stack. The stack is used for pass
ing parameters during function calls as 
well as for local variables and 
hardware operations. A program may 
call itself (recurse) because each invoca
tion uses a unique stack area. 

Local variables are temporary data. 
Such data is discarded when the sub
routine returns to its caller. Static data 
is different because it exists whether or 
not the code with which it's defined is 
being executed. Parameters and tem
porary data are defined at the time pro-

(continued next page) 

Figure 1 - Test Program 

comment -
Sample Program (file syhltO.asm) 

(C) Copyright 1987 Ken Berry- All rights reserved. 
Copies may be made for non-commercial, private use only. 

title syhltO.asm porting macros test program 
name syhltO 

include syhl.mac 

; external declarations 
_xb xbyte 
_xw xword 
_xd xdword 
_xq xqword 
_xt xtbyte 
_xnp xnearp 
_xfp xfarp 
_xp xproc 
_xcp xcodept 
_xdp xdatapt 

; static data 

; code 

_begs data 

_db dbyte,O,O,public 
_db dstring,I,30,public 
_dw dword,2 
_dd ddword,3 
_dd dqword,4 
_dt dtbyte,5 
_dcp dcodept,6 
_lbw,ddatawpt 
_ddp ddatapt,7 
_ends 

_begs code 
_dclp subrO,far 
_pbbO 
_pwwl 
_lww2 
_begp 
_call subrl,w2,w2 
_endp 
_dclp subrl 
_pwwO 
_pwwl 
_begp 
movax,wO 
add ax,wl 
_endp 
_ends 
end 

comment -

end of Sample Program 

; include porting definitions 

; specify compiler and memory model 

; external byte label 
; external word label 
; external double word label 
; external quad word label 
; external ten byte label 
; external near procedure label 
; external far procedure label 
; external procedure label (depends on code size) 
; external code pointer label 
; external data pointer label 

; begin static data segment 

; byte 
; data string (30 characters) 
; word 
; double word 
quad word 
; ten byte 
; code pointer 
; public symbol ddatawpt = ddatapt 
; data pointer 
; end static data segment 

; begin code segment 
; subrO function declaration 
; parameter bO 
; parameter wI 
; local w2 
; subrO entry code 
; call subrl 
; subrO exit code 
; subrl function declaration 
; parameter wO 
; parameter wI 
; subrl entry code 
; compute wO + wI 

subrl exit code 
end code segment 
end of program 

MICRO CORNUCOPIA, #36, June-July 1987 71 



(continued from page 77) 

cedures are declared. 
Procedures correspond to individual 

functions or subroutines. They're 
declared by the _dclp macro. The entry 
code is generated by a subsequent 
_begp macro. Exit code is generated by 
an _endp macro. This assumes that con
trol enters the assembly function at the 
top and only exits through the bottom. 
Embedded returns use the _xitp macro. 

Function arguments and temporary 
data are defined between the _dclp and 
_begp macros. After you define a sym
bol as an argument or local variable, 
you can use the name with no special 
qualification (such as "ptr" operators). 
The assembler will automatically access 
an object of the proper size on the 
stack. 

Calls to other functions (which may 
also be in assembly or the high level 
language) are supported by the _call 
macro. You list the arguments to the 
function in the _call instruction, and 
the assembler will automatically place 
them on the stack. The called function 
must list its arguments in the same 
order as they appear in the _call. 

Two additional macros are used in 
association with _call. _save takes a list 
of registers that are to be preserved 
across the call. _altr defines the 
registers that will be altered by a func
tion (which may be either internal or ex
ternal). _call will protect all (and only) 
those registers specified in both 
macros. 

Protocol Control 
The calling protocol is usually uni

que to a vendor, as well as to a lan
guage. It's generated by the _begp, 
_endp, and _call macros, depending on 
symbols defined in the compiler selec
tion macro CIe or _msc). Table 2 sum
marizes the differences between the Lat
tice and Microsoft compilers in terms 
of the symbols described in the follow
ing paragraphs. 

If "?ldul" is 1, an underline charac
ter is prefixed to every external and 
public symbol. Microsoft says this con
vention is for compatibility with Xenix, 
but that doesn't justify Xenix having it. 
I find systematic names very important 
for keeping complex software systems 
organized. It's no help to have ir
relevant conventions imposed by a 
tool. ?ldul allows me to ignore 
Microsoft's convention and fully con-

trol what names are used in the source 
code. 

If "?nglclo" is 1, local variables will 
be accessed as a negative offset from 
the BP register (BP is used to access all 
data on the stack). If it's 0, the local 
variables are accessed as positive off
sets. The function arguments are al
ways accessed with positive offsets. 

"?fnp" determines the order in 
which the function arguments are 
placed on the stack. Is the argument 
written first in a call statement stored 
with the least or greatest offset from 
BP? 

In C, the first argument takes the 
smallest offset, but other languages dif
fer. This is a significant point in lan
guage design, only the C convention al
lows functions to have a variable num
ber of arguments. Users of the "printf" 
function appreciate variable argument 

lists. 
"?scs" determines how stack 

housekeeping is performed. When a 
function terminates, should it erase its 
parameters and local variables from the 
stack? Or should it just erase its local 
variables and let its caller erase the ar
guments? In either case, the final code 
also depends on whether the locals 
have positive or negative offsets. 

If "?scs" is 1, a "ret n" instruction 
terminates the subroutine. This results 
in slightly smaller code, but is incom
patible with a variable number of func
tion arguments. 

In C, there's no way to determine 
the number of arguments unless the 
caller specifically passes that informa
tion. Therefore, there's no way for the 
called function to know how much to 

(continued on page 74) 

Table 1 - Compiler & Model Selection Symbols 

LTC 
MSC 
SCSD 
LCSD 
SCLD 
LCLD 

Lattice C compiler (version 3.0) 
Microsoft C compiler (version 4.0) 
small code, small data 
large code, small data 
small code, large data 
large code, large data 

Table 2 - Lattice & Microsoft Conventions 

Symbol 

?ldul 
?nglclo 
?scs 
?fnp 

Segment 

Protocol 

Meaning 

leading underline 
negative local offset 
subroutine clears stack 
fixed number of parameters 

Segments 

Code (small code, small data) 
(large code, small data) 
(small code, large data) 
(large code, large data) 

Static Data 
Constant (read only static data) 
Uninitialized Static Data 
Stack (as named in Tele) 

Lattice Microsoft 

0 1 
0 1 
0 0 
0 0 

Lattice Microsoft 

prog _TEXT 
code _TEXT 

code _TEXT 
_prog _TEXT 
data DATA 

CONST 
udata BSS 
xstck _XSTCK 

72 MICRO CORNUCOPIA, #36, June-July 1987 



Figure 2 - Example Macros 

(C) Copyright 1987 Ken Berry- All rights reserved. 
Copies may be made for non-commercial, private use only. 

This listing is incolllplete. The Micro Cornucopia BBS has 

the complete file. 
Segment Control 

; create segment 
_crtseg HACRO n,ln,t,p,c,g 

ifnb <g> 
?addseg g, n "add segment to group 

endif 
!fnb <c> 

n segment t p '&c' ;; define segment in class 
else 

n segment t p 
endif 

n ends 
?cs1 n,ln 
ENDH 

?csl HACRO n,ln 
?b_&ln &MACRO 

?cs2 n,ln 
n segment 

&ENDH 
ENDH 

?cs2 HACRO n,ln 
_ends &MACRO 

if2 
%out end segment Un 

endif 
n ends 

&ENDH 
ENDH 

_begs MACRO In 
if2 

%out begin segment &In 
endif 

; define group 

_defgrp HACRO g 
?addseg g 
ENDH 

; add segment to group 

" define independent segment 

" close segment 

I I define group 

?addseg HACRO g, n ;; add segment to group 
.xcref 
.xcref ?p_&g 
.cref 

Hndef ?p_&g 
?p_&s = 0 I I define pass control variable 

endlf 
if ?p-&s ne ?pass ;; test for first time this pass 

?adcL&g &MACRO s 
?1n...&g <n>,s 
&ENDH 

?in...&g &MACRO sl,s 
Hb <13> 

g 
else 

?adcL&g 

group sl 

&HACRO ns 
11n...&g <51, s>, os 
&ENDH 

endif 
&ENDH 
= ?pass ;; update pass flag 

?add...&g n 
endif 

ENDH 

comment -
Procedure Calls 

; procedure call 

HACRO n,a 
.xcref 
.xcref ?actr 
.cref 

ifnb <a> 
_arg <&a> 

endif 
?argl 0 

if ?fnp 
?actr 0 

else 
?actr 

endif 
?argc 

;; call high level function 

II test for parameters specified 

" 
process argument list 

;; initialize argument length 
;; fixed number of arguments 
;; initialize argument count 

" 
variable number of arguments (C protocol) 

;; initialize argument count 

if ?rsv ;; test for registers to be saved 
ifdef &CL&n ;; test for altered registers defined 

?rsav ?rsv and ?a....&n ;; define registers to be saved 
else 

?rsav ?rsv 
end if 
if ?rsav 

?mpush ?rsav 
endif 

endif 

if ?fnp 
rept ?argc 

?actr = ?actr+1 
?call % ?actr 

endm 

else 
rept ?argc 

?call Uactr 
?actr = ?actr-1 

endm 
endif 

if ?ldul 
call _&n 

else 
call n 

endif 

if ?argl 
if ?scs 

ifdef ?rsav 
?mpop ?rsav 

endif 
else 

if 1nglclo 
add sp, ?argl 

ifdef ?rsav 
?mpop ?rsav 

endif 

else 
ifdef ?rsav 

add sp, ?argl 
?mpop ?rsav 

else 
mov sp,bp 

endif 
endif 

endif 
end if 

?argc 
?argl 

= 0 
= 0 
ENDH 

I, define registers to be saved 

I I test for registers to be saved 
" protect registers 

;; fixed number of arguments 
" scan argument list from front 
" decrement argument counter 
;; put argument on stack 

;; variable number of arguments (C protocol) 
" scan argument list from back 
;; put argument on stack 
;; decrement argument counter 

;; test for leading underline convention 
;; call procedure 
;; no leading underline 
" call procedure 

I I test for arguments on stack 
;; test for subroutine clears stack 
;; test for registers to be saved 
" restore registers 

" caller clears stack 
;; test for negative local offset 
" unload stack 
" test for registers to be saved 
;; restore registers 

" positive local offset 
" test for registers to be saved 
;; uload stack 
;; restore registers 
;; no registers to be saved 
;; unload stack 

I, reset argument count 
;; reset argument length 

(Figure 2 continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 73 



Figure 2 - Continued 

; put argument i on stack elae 
ire ?t_&n-2 " test for word (type = 2) 

?call MACRO i 
?~&i 

put argument on stack 
expand storage macro 
purge storage macro 

push word ptr (n) ;; store word argument on stack 
EXITH ;; exit macro 

purge ?a....&1 
ENDH 

; determine arguments 

_arg MACRO a ;; process argument list 

else 
ire ?t_&n-4 

?arg2a n 
EXITH 

else 
ife ?t_&n-B 

?arg2b n 
EXITH 

else 

;; teat for double vord (type = 4) 
" store double word argument on stack 
;; exit macro 

,. test tor Quad word (type = 8) 
;; store quad word argument on stack 
•• exit macro 

irp x, <&a> ;; soan argument list ite ?t_&n-l0 " test for ten byte (type = 10) 
?argc = ?argc+1 ;; increment argument count push word ptr (n)+8 ;; store least signiticant bytes 

?arg1 <&X>, % ?argo ;; define parameter store maoro ?arg2b n " store quad word argument on stack 
endm EXITH ;; exit macro 

ENDH 

; define argument storing macro 

?argl MACRO n,i 
.xcref 
.xoref ?~&i 
?~&1 &MACRO 

.cref 

?arg2 n 
&ENDH 

ENDH 

" process argument 

" store argument 
;; store argument 

end1f 
endif 
endif 
end if 
endif' 
end1f 

else ;; size not defined 
push n ;; store argument on stack 

endU 
ENDH 

?arg2a MACRO n 
push word ptr (n)+2 ;;. store double word argument on stack 
push word ptr (n) ;; • 
ENDH 

; store argument on stack ?arg2b HACRO n 

?arg2 MACRO n ;; store argument 
push word ptr (n)+6 ;;. store Quad word argument on stack 
push word ptr (n) .... ;; • 

?argl = ?argl+2 " inorement argument length arg2a n ;; • 
ifdef ?t_&n ;; test for size defined ENDH 

ife ?t_&n ;; test for type = 0 
push word ptr (n) ;; store word argument on stack 
EXITH ;; exit macro 

else 
ire ?t_&n-1 " test for byte (type = 1) comment -

push word ptr (n) ;; store byte argument on stack end of' Listing 
EXITH ;; exit maoro 

(continued from page 72) 

remove from the stack. Languages that 
don't support variable argument lists 
may have "?scs" set, but successful C 
compilers won't. 

"?sxr" is 1 for the Microsoft com
piler. It causes the index registers 51 
and DI to be saved. 

The Microsoft compiler automatical
ly saves the general byte/word 
registers AX, BX, CX, and DX; it does 
not protect 51 and DI. Perhaps the com
piler designer didn't realize that, in ad
dition to their roles as index registers, 
51 and DI are general purpose 16-bit 
registers. If your assembly function 
doesn't use 51 or DI, you can add a 
parameter to the _begp and _endp 

macro calls to stop protecting them. 
The Lattice compiler automatically 

saves 51 and DI if it's using them. 50 
they're not saved by the _begp and 
_endp macros. 

Macro Coding Techniques 
If you don't use the Microsoft 

MA5M version 4 assembler, you may 
have trouble with some macros. MA5M 
offers most of the features I enjoyed on 
mainframes, and I recommend its use 
with these macros. If you use another 
one, your assembler must support con
ditionals and have a macro facility. 

Furthermore, its symbol definition 
statement must act like a preprocessor 
definition. That is, a symbol is defined 
as a string; the string replaces the sym-

74 MICRO CORNUCOPIA, #36, June-July 1987 

bol wherever it appears in subsequent 
code. 50me assemblers define a symbol 
as having the value evaluated from a 
string when it is defined; they may be 
difficult to use. 

Even if you do use MA5M, you may 
find some code difficult to modify - the 
macro facility is a language in itself, 
and it's beyond the scope of this article 
to explain macro programming in 
detail. The following comments explain 
some techniques that I have rarely en
countered outside systems program
ming. 

Advanced System Techniques 
One technique involves defining one 

macro during the expansion of another. 
The segment creation macro, _crtseg, is 



the first example of this (it may be 
found about 100 lines into Figure 2). 

Two names are specified for _crtseg. 
The first is the name of the segment as 
used by the linker (and varies between 
compilers). The second is the generic 
name that does not change. 

For example, if you refer to the seg
ments "code" and I/data" in your 
source code, the _crtseg macro as
sociates that name with the link seg
ment name appropriate for the current 
compiler and memory model. 

_crtseg associates the names by 
defining a macro with the name 
l/?b_In" where "In" is the logical name 
(I/code" or "data"). The expansion of 
?b_In produces a segment statement 
with the appropriate link name. The 
_begs macro uses its parameter to ex
pand the appropriate ?b_In macro. For 
example, the statement I/_begp code" 
will cause the macro I/?b_codel/ to be 
expanded. 

Also notice that when ?b_In is ex
panded, the _ends macro is defined 
with the appropriate link name to close 
the segment. Therefore, you don't have 
to specify a segment to _ends: it 
automatically closes the last one 
opened. 

_crtseg also allows segments to be 
grouped together. You do this by 
specifying a group name. After all of 
the segments for a group have been 
created, the _defgrp macro is invoked 
to generate a group statement. 

The ?addseg macro is used by both 
_ crtseg and _ defgrp, and relieves you 
of the need to specify any segment 
names to _defgrp by accumulating link 
names used in _crtseg macros. That 
way you don't have to keep track of 
which segments are being used (it 
could vary depending on some 
parameter). 

?addseg takes two parameters, the 
group name and the link segment 
name. Two additional macros are 
defined, ?add~ and ?in_g (where "g" 
is the group name). 

?add~ takes the segment name as 
its only parameter. It expands to a call 
of the ?in~ macro, which takes two 
parameters. The first is the list of seg
ments already declared in group g, and 
the second is the name to be added to 
the list. If the new name is null, the 
group statement is generated. Other
wise a new ?add~ macro is defined 
with the expanded list. Thus, as names 
are added, the predefined list in the 

?in_g call gets longer. 
If this sounds confusing, welcome to 

the club (The Confusing Club). It really 
is helpful to make up small test 
programs to run through the assembler 
and see what is actually produced. You 
can instruct MASM by command line 
switches to generate very detailed list
ings that show how it processes macros 
and conditionals. 

Another technique for variable lists 
of names is illustrated by the _call 
macro. _call takes two parameters, the 
name of the function being called and a 
list of parameters to pass on the stack. 
The list can be any length. The point is 
to write the _call macro as similar as 
possible to a high level language func
tion call. 

The _arg macro processes the 
parameter list and defines a new macro 
for each parameter, counting each 
parameter as it goes. It defines macros 
with names of the form I/?a_i". I/i" here 
represents the parameter number; for 
example, macro ?a_3 is defined for the 
third parameter. 

Once it knows the number of 
parameters, the _call macro invokes the 
?call macro for each argument. 

The ?call macro simply expands the 
appropriate ?a_i macro. The order in 
which the arguments are placed on the 
stack is controlled by whether "i" is in
cremented or decremented for each 
parameter. 

The following illustrates how ?call is 
invoked: 

?call % ?actr 

Here the value of symbol I/?actr" is 
the number of the parameter currently 
being processed. The 1/%1/ character 
causes MASM to expand ?call with a 
single argument which is a character 
string representing the value of ?actr. 

Hope To Hear From You 
These macros are part of the Tele 

Development Utilities available from 
Berry Computer. They're also included 
in the Tele operating system kernel. If 
you have any comments or want addi
tional information, contact: 

Berry Computer 
P.O. Box 966 
Jackson, California 
95642-0966 
(209) 223-0993 

••• 

FORTHkit 

5 Mips computer kit 

$400 

Includes: 

Novix NC4000 micro 
160x100mm Fk3 board 
Press-fit sockets 
2 4K PROMs 

Instructions: 

Easy assembly 
cmFORTH listing 

shadows 
Application Notes 
Brodie on N C4000 

You provide: 

6 Static RAMs 
4 or 5 M Hz oscillator 
Misc. parts 
250mA @ 5V 
Serial line to host 

Supports: 

8 Pin / socket slots 
Eurocard connector 
Floppy, printer, 

video I/O 
272K on-board memory 
Maxim RS-232 chip 

Inquire: 

Chuck Moore's 

Computer Cowboys 

410 Star Hill Road 
Woodside, CA 94062 

(415) 851-4362 

MICRO CORNUCOPIA, #36, June-July 1987 75 



Micro C 

subscribers 
pay only 

$6.00 a disk. 
If you/re a current U.S. subscriber to Micro C Magazine you/re 
eligible to buy Micro CiS public domain disks at a reduced rate, 
25 % off the regular $8.00 price. Just $6.00 each for disks full of 
programs that we/ve collected from everywhere. There' saver 
100 to choose from. If you/re not a current subscribeL this is a 
bargain that's worth subscribing for. Just write or call Micro C for 
the latest Spring/Summer catalog and discover new disks at 
great savings. (Note: Non-subscribers ordering at the $6.00 rate will have the option of adding 

a subscription to their order or re-ordering at the $8.00 rate.) 

SCIENTIFIC SOFTWARE 

SCI-GRAF 
$99.95 

SCI~GRAF 
MODULES 
$250.00 

Create huge hi-res plots with log or linear scaling. 
Screen and printer output. Automatic legends and la
bels. Flexible ASCII input. Works with CGA, EGA, 
Hercules, and mono cards. {Plotter ver.!ion forthcoming.~ 

Create custom hi-res graphs from within your own pro
grams by linking to our object code. Supports all SCI
GRAF features, plus more! Microsoft C and Aztec C 
versions. No royalties. 

FONTEDIT Create custom Greek, math, or other symbols for use 
$99.95 with SCI-GRAF or SCI-GRAF MODULES. Requires 

mM compatibility and CGA. 

SCI-CALC 
$79.95 

NanoLISP 
$99.99 

Pop-up scientific expression evaluator, more powerful 
than other pop-up calculators. Complete expression 
editing facility. Full range of functions: scientific, sta
tistical, logic. Requires mM compatibility. 

New Common LISP interpreter, a subset that strictly 
adheres to the standard. Includes structures, bit arrays, 
mod Common LISP functions, plus graphics and DOS 
extensions. Sample AI application programs. 

Free .!hipping o~ prepaid order.!. No credit card8. 

MICRO 

CORNUCOPIA 

P.O. Box 223 
Bend,OR 
97709 

The PC Tech Four Megger is 
long on a lot of things, like 
memory, reliability and perfor· 
mance. It's short on cost, 
power and length. The Four 
Megger comes complete with 
software for the Lotus, Intel, 
Microsoft Expanded Memory 
SpeCification as well as a 
fast memory disk program 
and an extensive diagnostic 
program. The Four Megger 
works in the IBM PCIXT/AT 
and compatibles at 4.77 or 8 
MHz. All this for $850. 

Another smart idea from 
PC Tech. 

Now Available: The 16 
Megger. Expanded memory 
for AT and XT, as well as 
extended memory for the AT. 

MSC 
Microcomputer 

Systems 
Consultants 

32 West Anapamu, Suite 190, Santa Barbara, CA 93101 
805-963-3412 

rt-1(@c ~I~call! ~. 904 N. 6th St. 
Lake City, MN 55041 

(612) 345·4555 

Designers of the X16 and Other Fine Computer Products 

76 MICRO CORNUCOPIA, #36, June-July 1987 



Ever Program On A Silver Platter?? 
How much would you expect to pay for a 32 bit MC 68000 computer that's a mainframe condensed down into a 
keyboard? How about $389.00! !?? If it makes you feel any better simply add a zero to the price when you order! 
But that's actually our price! !! The most powerful computer money can ever buy is now the most inexpensive com
puter money can buy! !! So don't buy the name! Buy the power!! The power is not in the name! 

If you had the opportunity to work amongst Machine Code ROM Designers, VAX & UNIX wizards in a 
research laboratory, designing an Me 68000 based computer that's 2nd to none ... 

What would you come up with?? And what would you call it?? 

Well It's Already Been Done!! 
They Called It The QL For The Quantum Leap It Is!! 

Absolutely a Quantum Leap beyond what you know & use - and it's truly like Programming on a Silver Platter!! 

The QL Desktop Minicomputer: Designed by SRL Labs, manufactured by Samsung. An absolute Quantum Leap 
beyond all the rest! The phenomenal open architecture QDOS: with Virtual Memory RAM, Multitasking Job Con
trol, Multiuser Networking. It'll Cache Files into unused Memory and create/ delete Directories Automatically! Even 
allows File Names up to 36 characters long! Everything is built into ROM here: QDOS, Networking, Windowing, & 
32 Bit SuperBasic, all in a totally concurrent non-destructive environment. Unlimited quantities & lengths allowed 
with: Variables, Program Lines, CONsoles & Buffers. Dynamic non-destructive virtual RAM Disking & Networking 
buffers too! Even a System Variables Brain Page Screen! Built-in DCE & DTE Serial Ports. 

Language Environments: 
Metacomco's "C", LISP, BCPL, 68000 Assembler, APL, Development Kits. Prospero's Pro Pascal & Pro Fortran 
77. Digital Precision's Forth-83. QJUMP's 65C02 or 8088 Cross Assembly ROMs. Everything generates native 68000 
Compiled Code. ROM Firmware & Software Package is now available which will even bring it up in CPM! 

Imagine working with a 32 bit SuperBasic that's structured like Turbo Pascal, powered beyond PIC Basic, in an in
terpretor always present with QDOS, all concurrently running in a built-in UNIX-like multitasking job controlled en
vironment with access to 360 fully channeled windows, devices & files by EACH job! 3 Major Compilers already ex
ist for the SuperBasic source alone! TURBO, SUPERCHARGE, QLIBERA TOR! The compiled SuperBasic code or 
ANY other language will multitask and control with QDOS and SuperBasic. The list of ALL the Superior Features 
would fill this entire publication! 

The QL comes bundled WITH PSION Integrated Word Processor, Spreadsheet, Database and Presentation Graphics 
Programs. PLUS: Our FREEWARE Demos & Utilities with all purchases! plus $12 ship. & handl. 

Call: (201) 328-8846 
QLine BBS: 328-2919 

Technical Info & Assistance - -
Telex: 9102500026 
Compuserve ID # 76625,2214 

Quantum Computing, Box 1280, Dover, NJ 07801 



Very Proper Procedures 

We spend our whole lives learning 
procedures. We learned procedures 
when we were first tall enough to sit 
straight at the table, and we've been 
learning them ever since. Procedures 
lie at the heart of Pascal and Modula, 
and when you understand procedures 
you have an excellent start toward 
programming manners. Functions, on 
the other hand, were learned much ear
lier in life and as such won't require 
such close inspection. 

T
he last portion of the declara
tion part of a Pascal or Modula-
2 program is the procedure dec
laration. A procedure (most of 

this also applies to functions) is a sub
program which can be invoked simply 
by using its name. Its structure closely 
follows that of an entire program or 
module, with header, declaration, and 
statement parts. This implies that types, 
variables, and procedures can be 
nested within a procedure. These 
nested definitions will NOT be visible 
outside the enclosing procedure. 

Figures 1 and 2 show the procedure 
definitions in Pascal and Modula-2 to 
display a greeting on the current out
put device. They could have been 
coded more simply, but I wanted to 
show you some of the differences be
tween the languages. 

The reserved word PROCEDURE 
begins the header part. Following this 
is the optional formal parameter list. 
The formal parameters must have an as
sociated type, which can be either pre
defined or user defined. When a proce
dure is invoked with a statement like: 

Hello (TimeOfDay, MessageSent); 

the parameters TimeOfDay and 

MessageSent will be passed to the pro
cedure. 

You should also note the reserved 
word V AR in the formal parameter list 
of the examples. This signals to the 
compiler that the parameter is passed 
by reference (the variable's location in 
memory is passed to the procedure) so 
that the procedure can alter the original 
variable. 

When a variable is passed by value 
(no V AR prefix in formal parameter 
list), the procedure receives only the 
current value of the variable. Any chan
ges the procedure makes to the value 
will have no affect on the original vari
able. 

Although it is permitted, and in 
some situations necessary, it is not con-

Figure 1 - Pascal Version of Hello 

procedure 
Hello( hour: integer; var ok : boolean); 

type 
message: string[20]; 

var 
greeting: message; 

begin 
if hour < 12 then 
begin 

greeting:= 'Good Morning'; 
ok:= true; 

end 
else 

if hour < 24 then 
begin 

greeting:= 'Good Afternoon'; 
ok:= true; 

end 
else ok := false; 

if ok then writeln(greeting); 
end; 

78 MICRO CORNUCOPIA, #36, June-July 1987 

By John Paul Jones 
6245 Columbia Ave. 
St. Louis, MO 63139 

sidered the best practice to modify 
global variables within a procedure. It 
is better to pass variables as V AR 
parameters. Since it requires a con
scious decision to do so, unexpected 
side effects are less likely. 

Functions 
A function is a procedure which has 

a type and returns a value. In general, 
a function can be used anywhere an ex
pression of that data type is valid. 
Figures 3 and 4 are Figures 1 and 2 
rewritten as functions. Pascal uses the 
reserved word FUNCTION in the 
header; Modula-2 gets double duty 
from the word PROCEDURE. Some
where within the body of a Pascal func
tion, the function's return value must 

Figure 2 - Modula-2 Version of 
Hello 

PROCEDURE Hello 
(Hour: INTEGER; V AR ok : 
BOOLEAN); 

(It the following IMPORT is more likely 
done in the enclosing Module's import 
list *) 

FROM InOut IMPORT WriteString, 
WriteLn; 
TYPE 

Message : ARRAY [0 .. 19] OF CHAR; 
VAR 

Greeting: Message; 
BEGIN 

IF Hour < 12 THEN 
Greeting := "Good Morning"; 
ok:=TRUE; 

ELSIF Hour < 24 THEN 
Greeting := "Good Afternoon"; 
ok:=TRUE; 

ELSE 
ok:= FALSE; 

END; 
IF ok THEN 

WriteString(Greeting) ; 
WriteLn; 

END; 
END Hello; 



be assigned: 

Hello:= ok; 

In Modula-2, the RETURN state.:. 
ment assigns the return value and also 
immediately exits the function. More 
than one RETURN statement is per
mitted in a function procedure to allow 
for multiple exit points. A Modula-2 
function should NEVER "fall out the 
bottom" since its return value will be 
undefined. A RETURN statement can 
also be used to exit a procedure at any 
point: 

IF CurrentValue = MaxAllowed 
THEN RETURN END; 

A function is invoked by using its 
name on the RIGHT side of an assign
ment statement: 

MessageSent:= Hello(TimeOfDay); 

In both Pascal and Modula-2, you 
can't use the variable which the func
tion name represents within the func
tion (you can't use the variable name 
'Hello' within function 'HelloO'), other 
than to assign the returned value in Pas
cal. 

Figure 3 - Pascal Function,Hello. 

function Hello( hour: integer) : boolean; 
type 

message: string[20); 
var 

greeting: message; 
ok : boolean; 

begin 
if hour < 12 then 
begin 
greeting:= 'Good Morning'; 
ok := true; {could use 'Hello' here} 
end 
else 

if hour < 24 then 
begin 

greeting:= 'Good Afternoon'; 
ok := true; {could use 'Hello' here} 
end 
else ok := false; {could use 'Hello' here} 
if ok thenwriteln(greeting); 

Hello:= ok; 
end; 

{cannot use 'Hello' here} 

This is because it would be inter
preted as a recursive call to the func
tion (a function calling itself). That's 
why the temporary var "ok" was 
declared in the function versions of 
Hello. See the comment in the listings. 

A definition of, or a call to, a 
parameterless function in Modula-2 re
quires a pair of empty parentheses: 

PROCEDURE RandomO; ... 
NewValue := RandomO; 

Pascal provides a large number of 
built-in procedures and functions, 
while Modula-2 has only a few. 
Modula's "missing" procedures need 
to be IMPORTed from the standard 
library modules, user-written modules, 
or defined in the current module. The 
IMPORT statement can take two forms: 

FROM ModuleName IMPORT Id1, Id2, . .Idn; 
IMPORT ModuleName; 

In the first form, only the specified 
identifiers are available for use (one ex
ception, IMPORTation of an 
enumerated type also imports the con
stants which make up the enumera
tion). In the second form, all of the EX
PORTED identifiers become available. 

Figure 4-Modula-2 Module, Hello 

PROCEDURE 
Hello (Hour: INTEGER) : BOOLEAN; 

FROM InOut IMPORT WriteString, 
WriteLn; 
TYPE 

Message: ARRAY [0 .. 19) OF CHAR; 
VAR 

Greeting : Message; 
ok: BOOLEAN; 

BEGIN 
IF Hour < 12 THEN 

Greeting := "Good Morning"; 
ok:=TRUE; 

ELSIF Hour < 24 THEN 
Greeting := "Good Afternoon"; 
ok:=TRUE; 

ELSE 
ok:=FALSE; 

END; 
IF ok THEN (* cannot use 'Hello' here *) 

WriteString( Greeting); 
WriteLn; 

END; 
RETURN ok; 

END Hello; 

To use them, however, their names 
must be qualified with the source 
module's name: 

Result := 
ModuleName.FunctionName(Parameter); 
InOut.WriteString('This is a test.'); 

Two procedures with the same 
name from different modules can be 
used in this way. 

Standards 
There are efforts (mainly by the 

British Standards Institute) in the 
works to define an international stand
ard for Modula-2. I hope the final 
recommendations will be reasonable 
and completed before a de facto stand
ard has emerged. (As Turbo Pascal has 
become a de facto standard for small 
computers.) The ISO standard for Pas
cal came much too late to be of sig
nificant impact. Perhaps once 
published, the major Modula-2 com
pilers will be updated to match the 
standard. 

There are several of the BSI's 
preliminary proposals which could sig
nificantly affect existing compilers and 
programs. This may make their adop
tion less likely, despite the fact that the 
standards should benefit the entire 
Modula community. 

Some of the notable proposals are: 
1. Adding a string data type 
2. Removing several . built-in func

tions 
3. Expanding SETs to provide SET 

OF CHAR 
4. Functions returning values of 

ANY type 
5. Explicit EXPORTs required in 

definition modules 
6. Removing NEW and DISPOSE 

from the language (this last agrees with 
Wirth's 3rd edition of "Programming 
in Modula-2"). 

Assembly Language Modules 
Most of the programming that I get 

paid for is done in assembly language 
(multi-tasking, real time telephone· call 
processing), so I consider a convenient 
interface to assembly language 
modules or code fragments an impor
tant feature of a high level language. I 
realize that Modula-2 is designed with 
facilities that should make assembly 
coding unnecessary, but in the real 

(continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 79 



(continued from page 79) 

world, it just 'taint so. 
Turbo Pascal allows imbedded 

machine code with its INLINE state
ment, and the compiler will even plug 
in the actual values for defined iden
tifiers for you. Also, the MS-DOS and 
CP /M-86 versions of Turbo allow load
ing of machine code files (position inde
pendent code only!) at run time. 

Logitech's Modula-2/86 has a primi-
. tive . version of Turbo's INLINE state
ment, CODE. This allows machine code 
to be imbedded in the module, but sym
bolic identifiers cannot be used. I as
sume this is because the compiler has 
no idea what their run-time values will 
be, as they are not totally defined until 
either the link or the run-time load. 

An assembler module must be incor
porated into the run time system with 
routines included to initialize an entry 
point table (via a software interrupt) 
and linked with the other assembler 
modules the system needs. Then a 
definition module is written in Modula-
2. After this, the definition module is 
compiled and the EXPORTed iden
tifiers can be used. I find this process 
cumbersome at best. 

FfL Modula-2 makes assembler 
modules easy. The compiler includes 
an assembler which generates standard 
.SMR files (the normal output from im
plementation modules) from assembly 
language source. The only thing left to 
do is write and compile a definition 
module in Modula-2. (Actually, this 
has to be done first.) This provides the 
best of both worlds - assembler is easi
ly used for the time critical portions of 
a program, while the "leisurely" por
tions can be rapidly coded in Modula-2. 

FTL Modula-2 Revisited 
FfL Modula-2 is undergoing a series 

of planned improvements. I reviewed 
version 1.0 in issue 34, but currently 
the compiler is up to version 1.21. 
1Jtere have been significant upgrades. 

They've added data types LON
GINT, LONG CARD and LONGWORD, 
all 32-bits long. They've also added the 
associated conversion functions 
SHORT, LONG, and LONGTRUNC. 

The compiler can now (optionally) 
include range-checking code. This is 
especially important during the early 
phases of module development. 

Un,expected things happen to the 
best programmers and often. these ~an 

80 MICRO CORNUCOPIA, #36, June-July 1987 

Figure 5 - Search Disk For Text String 

program find; 
{Search a set of files for a text string} 
{Output is all lines in text files that contain} 
{search string, each numbered with position} 
{in file Input is file made up of unambiguous} 
{file names each on a separate line. The last} 
{line should NOT be terminated with a} 
{carriage return / line feed.} 
{The program is set up to run as a .COM file} 
{with command line switches as below} 
{find pfu validfilename} 
{P switch sends program's output to 1st: device,} 
{F causes prog. to expect command line input file} 
{list file name & U indicates case should be ignored} 
{If F switch not entered, default file list file used} 
{Only minimal error checking performed} 
TYPE 

parameter = string(20); 
bigstring = string(255); 
path_n_file = string(32); 

VAR 
NameList, CurrentFile : text; 
InputString : bigstring; 
sUo_find: string(80); 
stlen : byte absolute st_to_find; 
listname, filename: path_njile; 
first3har : integer; 
found, ignore_case, print, NamesFromFile : 

boolean; 
i: integer; 
ch: char; 

PROCEDURE SetFlags; 
{ Set global flags based on command line, } 
{ If F flag, get input file name from command line} 
VAR 

i: integer; 
CmndLine : parameter; 

BEGIN 
IF paramcount <> 0 
THEN BEGIN 

CmndLine := paramstr(1); 
{ if have switches, convert to caps} 
for i := 1 to length(CmndLine) do 

CmndLine[i) := upcase(CmndLine[i]); 
END 
ELSE CmndLine:="; 
NamesFromFile:= pos('F',CmndLine) <> 0; 
print:= pos('P',CmndLine) <> 0 
ignore_case:= pos('U',CmndLine) <> 0; 
IF NamesFromFile 

THEN listname := paramstr(2); 
END; 

PROCEDURE OpenFileList; 
BEGIN 

IF not NamesFromFile 
THEN listname:= 'file.lst'; 
{ use default if no input} 

{$i-} 
assign(NameList,listname); 
reset(NameList); 
{$i+} 
IF ioresult <> 0 THEN {if no input file list} 
BEGIN 

writeln('Input file list not found!'); 
halt; 

END; 
END; 

PROCEDURE checkline; 
{ The input line could be passed as a parameter, 
but do you realize how much time it takes to put all 
that data on the stack? } 
VAR 

localline : bigstring; 
linelen : byte absolute localline; 
local_st : string(80); 
i: integer; 

BEGIN 

localline := InputString; 
IF ignore_case THEN for i := 1 to linelen do 

localline[i] := upcase(localline[i)); 
found := pos(st_to_find,localline) <> 0; 

END; 

PROCEDURE expand_tabs; 
{ many printers don't understand tabs} 
{while tab present, insert spaces to tab stop 

replace tab char with a space} 
CONST 

tabstop = 8; 
BEGIN 

while pos(I\I,InputString) <> 0 do 
BEGIN 

while pos(I\I,InputString) mod tabstop <> 0 do 
insert(' ',InputString, pos( 1\ I,InputString»; 

InputString[pos(I\I,InputString») :=' '; 
END; 

END; 

PROCEDURE process_file; 
{ read file a line at a time 

if search string present, output the line} 
VAR 

file_line: integer; 
BEGIN 

{$i-} 
assign(CurrentFile,filename); 
reset(CurrentFile) ; 
{$i+} 
IF ioresult = 0 THEN { if file found} 
BEGIN 

file line:= 1; {line # in file} 
while not(eof(CurrentFile» do 
BEGIN 

readln(CurrentFile,InputString); 
checkline; {search string present? } 
IF found THEN 
BEGIN 

IF print THEN expand_tabs; 
writeln(file_line:5,': ' ,InputString); 

END; 
file_line := succ(file_line); 

END; 
close(CurrentFile); 
writeln; 

END; 
END; 

BEGIN 
SetFlags; 
OpenFileList; 
Writeln; 
write('Enter string to find: '); 
readln(st to find); 
IF ignore=ca-;e THEN for i := 1 to stlen do 

sUojind[i] := upcase(sUo_find[i)); 
IF print THEN {re-direct output to printer} 

conoutptr := Istoutptr; 
IF print THEN 
BEGIN 

writeln('Searching for: ',st_to_find,"); 
writeln; 

END; 
while not(eof(NameList» do 
BEGIN 

readln(NameList,filename); 
writeln(filename); 
process_file; 
writeln; 
IF not(print) THEN {if screen output, read it} 
BEGIN 

writeln('Press any key .. .'); 
read(kbd,ch); 

END; 
writeln; 

END; 
close(NameList); 

END. 



be caught with range checks. Once 
debugged, the module can be re-linked 
without the range-checking code. 

Optional 8087 numeric coprocessor 
support ($30) is now available. Prelimi
nary results show that transcendental 
functions are faster than Logitech's 
Modula-2/86, but that standard +, -, * 
and I are a bit slower. These are still 
massively faster than the software float
ing point routines for either compiler. 

The editor has been improved. One 
feature I especially like is autotab (like 
Turbo Pascal's editor which on carriage 
return can automatically tab to the posi
tion of the first non-blank, non-tab 
character on the previous line). The 
second is a choice of tab widths 0,2,4 
or 8). Automatic line wrap has also 
been added. Screen updates can be 
delayed until vertical retrace, thus 
eliminating the "snow" associated with 
some video cards. 

Not new, but one FfL extension I 
did not mention in issue 34 is that SETs 
can contain as many as 1024 elements. I 
like this extension since I often use SET 
OF CHAR. 

The large memory model of FfL is 
in the works. When completed, the en
tire address space of the 8086 I 8088 will 
be available for code and data. The 
basic floating point math package is 
being rewritten to improve speed. Also 
a 68000 implementation is in develop
ment, but I don't know for which 
machine. It would be a nice package to 
run on a DSI coprocessor board, 
wouldn't it? 

Registered owners can upgrade to 
newer versions for $15 and purchase 
the package for a different processor 
for a reduced price. 

Useful Stuff 
As I mentioned, I spend most of my 

profitable time doing assembly lan
guage coding. Although much of what 
I'm doing is new, I do have to spend a 
considerable amount of time maintain
ing and upgrading an existing software 
base. I wrote the Turbo Pascal program 
in Figure 5 to help in the maintenance. 
When you've got nearly half a 
megabyte of Z80 assembler to search 
for a particular global label, it can take 
quite a bit of time, even with a fast 
editor. 

The program can search all my 
source files in a couple of minutes on a 
stock PC with a 20 Meg hard drive. 
Keep· in mind that this program is not 

Turbo Pascal 
an example of good programming 
style, but a "quick and dirty" solution 
to a problem. Also, it leans very heavi
lyon Turbo-specific extensions and 
would require modification for another 
compiler. The program runs equally 
well under both CP IM-80 and MS-DOS. 

(CP IM-80, MS-DOS, CP IM86) 
Borland International 
4585 Scotts Valley Drive 
Scotts Valley, CA 95066 

If you feel that you're far enough 
along, you might tackle translating it 
into Modula-2. 

Logitech Modula-2/86 (MS-DOS) 
Logitech Inc. 
805 Veterans Blvd. 
Redwood City, CA 94063 

Next Time 
Next time I'll take a quick spin 

through the statements available in the 
two languages, including the very im
portant looping statements, flow con
trol, and multi-way branch statements. 

FfL Modula-2 (CP IM-80, MS-DOS) 
Workman and Associates 

Products Mentioned: 

1925 East Mountain Street 
Pasadena, CA 91104 

• Only $49.95 plus shipping. 
• 8080 to Z80 Source Code Converter. 
• Generates Microsoft compatible REL 

files or INTEL compatible hex files. 
• Compatible with Digital Research 

macro assemblers MAC & RMAC. 
• Generates Digital Research 

compatible SYM files. 
• Conditional assembly. 
• Phase/dephase. 
• Cross-reference generation. 
• Full Zilog mnemonics. 
• INCLUDE and MACLIB FILES. 
• Separate data, program, common, 

and absolute program spaces. 

• Supports Hitachi HD64180. 
• Z80 Linker and Library Manager for 

Microsoft compatible REL files 
available as an add-on to Assembler. 

••• 

MICRO CORNUCOPIA, #36, June-July 1987 81 



Z80 SIO Interrupts On The Kaypro 4 

I remember when I was first intro
duced to interrupts (the microproces
sor kind). They seemed very 
mysterious and very magical. They 
still seem that way, but I also know 
they are very powerful and a lot of 
fun. (Plus Powdermilk interrupts give 
shy programmers the will to do what 
needs to be done.) 

S
ome months ago I was asked to 
write a program to simulate a 
dispatcher's console. The con
sole had to communicate with 

a channel interface monitor via an RS-
232 serial interface. Since the monitor 
could send data to the console at any 
given moment, polling the serial port 
was unacceptable because the console 
often had to perform other functions 
such as editing messages to send to the 
monitor. 

To my dismay, I discovered that 
neither PC-DOS nor CP/M had a built
in way of convincing serial ports that 
they should create interrupts. 

Since I was unable to find any code 
on the market that supports interrupt
driven serial ports for a Kaypro 4/83, I 
decided to write my own. 

Why Interrupt-Driven Serial Ports? 
Suppose you will be receiving data 

through a serial port but can't always 
be polling it. Interrupts make it easier 
for your program to synchronize with 
the external device transmitting data. 

One common complaint heard is 
that the Kaypro 4 scrolls very slowly 
(the scroll is performed by software). 
Another is that if you are echoing data 
read from a serial port at a rate of more 
than 2400 baud to the screen, you 
might lose a character during a scroll 
because more than 3 characters are 
waiting to be read from the serial port 

(the Z80 SID has a 3 byte buffer). By 
using interrupts I have been able to 
echo characters at a rate of 19200 baud 
without dropping characters. 

Microprocessors are endowed with 
interrupts to synchronize software with 
uncontrolled external events. Interrupts 
are perhaps one of the most neglected 
features that a computer has. They are 
hardly ever covered in university cour
ses. Ask a computer science major what 
an interrupt is and he'll probably say 
he doesn't appreciate being inter
rupted. (No offense intended to C.S. 
majors, after all I majored in C.S. 
myself.) 

Interrupts can also improve the ef
ficiency of a program by relieving it of 
the drudgery of polling. 

Editor's note: Assume that your system 
will be receiving random spurts of data at 
9600 baud. That means that when data's 
coming in, the SID would have a new 8-bit 
character about 960 times a second. So 
your processor would have to be polling the 
SID at least 960 times a second and risk 
losing characters. In an interrupt-driven 
system, the 280 ignores the SID until the 
serial chip yanks on the 280' s interrupt 
line saying, "I have a character, come and 
get it." If the interrupt routine is quick, 
there's no chance of losing any characters, 
and, the processor doesn't waste all of its 
time asking the SID if it has a new charac
ter. 

Thus, interrupts make software 
elegant and reliable. Of course, the next 
question is how to use them. 

Z80 SIO 
The Kaypro 4/83 has one Z80 SID 

(the 84 series Kaypros have two SIOs). 
The SID has two serial channels which 
can function simultaneously. They are 
referred to as channel (or port) A and 
channel B. Each channel has Read and 
Write registers used for programming 
the respective ports and for reading the 

82 MICRO CORNUCOPIA, #36, June-July 1987 

By Frank A. Kurucz 
2106 Via Robles 

Oceanside, CA 92054 

status of the channel. There are three 
Read registers (0 - 2) and eight Write 
registers (0 - 7). 

Channel A is missing the #2 Read 
and Write registers because the data as
sociated with these two registers is com
mon to both channels (it is the inter
rupt vector). Both channels have a 3 
byte buffer. If it overflows, the incom
ing byte overwrites the last byte 
entered. This is why you can type 
ahead only 3 characters. 

The keyboard is connected to chan
nel B of the SID, and it is polled rather 
than interrupt-driven. The other port, 
channel A, attaches to the serial port 
connector on the back of the machine. 
We can do whatever we want with this 
channel. 

Programming The SIO 
You will need only the Write 

registers to program the SID. All of the 
write registers are accessed through the 
control or command port, which in the 
Kaypro has an· address of 6 for channel 
A and 7 for channel B. Channels A and 
B also have data ports with respective 
addresses 4 and 5. 

Control Register 0 is used for select
ing the other seven registers, and it has 
a few functions of its own, one of 
which is resetting the channel. To out
put data to one of the other registers, 
first output the register number to 
register 0 (simply output it to the com
mand port), then output the desired 
data for that register to the command 
port. 

After data is output to the desired 
register, register 0 is automatically 
reselected for the next output. I won't 
explain each register in detail, but the 
programming examples should help in 
illustrating their use. 

Interrupt Vectors 
The Z80 has three interrupt modes -



0, 1 and 2. We will use mode 2 inter
rupts to implement our system. Mode 2 
interrupts allow us to locate the inter
rupt vector anywhere in memory. 
When we use this mode, it is necessary 
to set the interrupt register in the CPU 
to the desired page. A page is a 256 
byte portion of memory that begins at 
an address that is a multiple of 256 
(lOOH), thus we say that a page begins 
at some address XXOOH. 

Editor's note: There are 256 pages (8 
bits = 0 - 255) of 256 bytes each. The total 
is, of course, a 16-bit address or 64K bytes. 

The interrupt vector contains the ad
dresses of the different interrupt ser
vice routines. When a device causes a 
mode 2 interrupt, the following occurs: 
the device outputs 8-bits onto the data 
bus. That 8-bits is taken by the Z80 as 
the least significant 8-bits of the ad
dress to the interrupt routine. The 8 
most significant bits come from the 
Z80's interrupt register. 

With these two bytes an address is 
formed. At this composite address, the 
Z80 expects to find another address, 
the address of the code which will ser
vice the interrupt. (Also, the return ad
dress is stored in the stack.) Control is 
transferred to the interrupt code. 

The Z80 510 has four interrupt vec-

ELF 
Introducing "ELF" 

tors per channel: output data, status, 
input data, and input error. Channel B 
starts at address XXOO and channel A 
starts at address XX08. Note that a nor
mal RET (return) instruction is inade
quate for returning from an interrupt, 
therefore the RETI (return from inter
rupt) instruction must be used (I imple
mented it in 8080 using constants): 

The Interrupts 
There are four interrupt routines im

plemented in assembler. They are: 
INPINT - This routine handles data 

received by the 510, storing it if pos
sible in a circular queue (FIFO - first in, 
first out) from where it can be retrieved 
at the system's leisure. 

OUTINT - This routine outputs a 
byte to the 510 if there is any data 
present in the output. If the FIFO is 
empty, OUTINT resets the interrupt 
until mo~e data is put into the FIFO. A 
state variable is used to keep track of 
the interrupt status. If the interrupt is 
disabled when attempting to load the 
FIFO, OUTINT re-enables it. 

EXTINT - This is the external status. 
interrupt. It is used for monitoring 
changes in the RTS / CTS and 
DTR/DSR signals. This code can be cus-

tomized, but for now all it does is reset 
the interrupt. 

ERRINT - This interrupt becomes ac
tive when an error is detected for in
coming data (parity, framing, or over
run errors). Again, all this code does is 
reset the interrupt; no error handling is 
implemented. 

Interface Software 
I wrote a high level interface for the 

interrupt system in Turbo Pascal. There 
are three routines: 

INITSIO - Initializes the interrupt 
system, sets up the serial port charac
teristics, and initializes the FIFOs and 
their pointers. 

WRITE BYTE - Puts outbound data 
into the output FIFO or outputs it 
directly (re-enabling the output inter
rupt), depending upon the interrupt 
status. 

READBYTE - Returns a byte from 
the input FIFO. If no byte is present, a 
boolean variable passed as a variable 
parameter will be set to true. 

Listings 
I've included three pieces of code: 

SIOINT.ASM, SIOLIB.INC, and 

(continued next page) 

XEROX 820-1 AND 820-2 ITEMS 
Reconditioned, Assembled and Tested 
820-1 8" COMPUTER SYSTEM ......•..........••... $330.00 

5 1/4" COMPUTER SYSTEM ..................... $350.00 

ELF (Extended Lexicon FOCAL) interpreter is 
more "basic" than BASIC, a simple and very 
Easily Learned Facility. If you want 
capability without complexity, ELF is for 
you. Look what ELF can do without peeks. 
pokes. or assembly language: 

820-2 8" COMPUTER SYSTEM ..•................... $395.00 
5 1/4" COMPUTER SYSTEM ..•.................• $415.00 

820-1 COMPUTER MONITOR (COMPLETE) ............. $125.00 
820-2 COMPUTER MONITOR (COMPLETE W/CONTROLLER)$195.00 
820 COMPUTER MONITOR (NO MAIN BOARD) .......•.• $ 85.00 

1.10 Ask t,"Disk Drive No.? ",OX 
1.15 /U;/XDOS 0.DX,036H;T ~8.0 
1.20 Set TB-FAXCO)*FCXCO)*FDXCO) 
1.25 Set RB-FAXCO)-FBXCO)-FCXCO) 
1.30 Type t,"Total Bytes: ",TB 
1.35 Type t."Free Bytes: ",RB 

This program may be further abbreviated; only 
the first letter of each command is required. 
ELF programs are ordinary ASCII text files. 
ELF is not a compiler. but will produce run
time versions (.COM files) of programs 
without revealing source. 

ELF comea with tutorial/help files. useful 
program examples and an ELF Programmer's 
Manual for S45 plus S5 shipping (S10 non
USA), VISA. MC or check. 

j 118 SW First St. - Box G A Warrenton, OR. 97146 
Micro _ 
lYle"thods, Inc. 

• Phone (503) 861-1765 

HIGH PROFILE KEYBOARD (COMPLETE) .............. $ 45.00 

820-1 MAIN COMPUTER BOARD .••.•....•......•.•.. $ 50.00 
FULLY POPULATED BOARDS, AS IS (NEED REPAIR)$ 20.00 

820-2 MAIN COMPUTER BOARD .....•........•...... $ 70.00 
FULLY POPULATED BOARDS, AS IS (NEED REPAIR)$ 30.00 

820-2 FLOPPY CONTROLLER BOARD •.....•.....•.... $ 95.00 

DUAL 8" SSDD DISK DRIVES/ENCLOSURE (COMPLETE).$175.00 
DUAL 8" DISK DRIVE CABINET (NO DRIVES) ..•..... $ 75.00 

5 1/4" DUAL DISK DRIVE CABLE •....•..........•. $ 20.00 
8" DUAL DISK DRIVE CABLE ••.................•.• $ 35.00 
RS-232 CABLES ••.•..•...•.•.••....•.........•.. $ 10.(10 

LINE CORD5 ••.••••••••••• ea.$3.00 
ZSO-B 6MHz ••••••.••••••• ea.S3.00 
ZSO'H SMHz .............. ea.$9.50 
5 1/4" OS DO DISKETTES .•• ea.S .60 
S" 5550 DI5KETTE5 •.•.••• ea.$1.25 
DC300A DATA CART .. U5ED ••• 2/S5.00 

E2I COMPUTER PRODUCTS 
2273 AMERICAN AVE. 18 

HAYWARD, CA 94545 
(415) 786-9203 

TERMS: Pre·payment. COD. Visa/Mastercard. California residents add sales 
tax. Orders are rOB Hayward. CA •• Shipments by UPS Ground unless 
otherwise requested. Prices and availability are subject to change 
wi thout notice. All products are assembled and tested and have a 30 day 
warranty unless otherwise stated. Call or write for current product and 
price listing. Xerox is a trademark of Xerox Corporation. CP/M is a 
trademark of Diqital Research. 



(continued from page 83) 

TEST.PAS. You'U find them on the 
Micro C bulletin board (503-382-7643). 

SIOINT.ASM is the interrupt code. I 
wrote the code in assembler so I could 
put it anywhere in memory. Also, I 
used 8080 mnemonics because not 
everyone has a Z80 assembler. 

The code resides at address $EOOO in 
order to isolate it from the bank
switched part of the computer's 
memory, which is from $0000 to $3FFF. 
(It would be tragic to have the system 
interrupt only to have the ROM and 
video display memory selected instead 
of the interrupt vector.) 

The interrupts store and retrieve 
their data from two FIFOs, which are 
256 bytes long. The FIFO size of 256 
($100) was chosen because it simplifies 
the task of FIFO pointer manipulation. 
(Remember the golden rule: Keep Inter
rupts As Short As Possible.) First as
semble the code using the CP/M as
sembler (ASM), and use the LOAD 
utility to convert it into a COM file. 

SIOLIB.lNC initializes the serial port 
and sets up the interrupts. It also 
provides an interface to the FIFOs. Writ
ten in Turbo Pascal, it is entirely self-

contained. Simply use the Include direc
tive to insert it into your program. 

TEST.PAS is a sample program that 
transmits 80 repetitions of the key 
pressed out to the serial port and 
echoes any characters received to the 
screen. If you have only one computer 
(as most people do), you can loop the 
data back to the machine by connecting 
together pins 2 and 3 on the serial port 
connector. 

Final Comments 
Remember to set the End Of 

Memory in Turbo Pascal to $EOOO 
before compiling the program to a 
COM file. If you don't, you run the risk 
of overwriting the interrupt routines. 
For this same reason, the interrupt 
routines can't be used with programs 
being run under the Memory option. 
Before running the Turbo Pascal 
program, load the interrupts by run
ning SIOINT.COM. This could be done 
by a submit file. 

In addition to communications ap
plications, this code has other uses. By 
modifying it to operate on channel B, 
you can implement interrupt driven 
and buffered keyboard data handling. 
The code could also be used for im-

plementing a pacer interrupt (a peri
odic interrupt), which could be used in 
a multitasking kernel. 

Another twist to this could be im
plementing the interrupts in Turbo Pas
cal, taking care to make sure that the in
terrupt service routines are not in bank
switched memory. Remember though 
that interrupts in high level languages 
are not usually recommended, especial
ly for high frequency interrupts. Be
cause the code generated is often larger 
and slower than its assembly 
equivalent, it causes the rest of the 
software in the system to slow down. 
The longer interrupts steal more CPU 
cycles than more efficient interrupts 
would. This is one place where efficient 
code can really make a difference. 

References 
- Introduction to the Z80 Microcom

puter by Adi J. Khambata. 
- Z80 Assembly Language Sub

routines by Leventhal & Saville. 
- The Programmers CP/M Hand

book by Andy Johnson Laird. 
- Kaypro II & Kaypro 4 Theory of 

Operation by Dana Cotant. 
- Mostek 1984/1985 Microelectronic 

Data Book. ••• 

Does this look familiar? 
~::.\--:::::tL.l~--\l-- • Z Best Sellers • 

:a~~J~~~ ~~~;ge ",!~ I 
program was ready to .,' ""-~'-:~'W~~_' 
test in seconds instead 
of minutes? 

"The SLR tools will change the 
way you write code. 1 don't use 
anything else.", Joe Wright 

RELOCATING MACRO ASSEMBLERS • Z80. 8085. HD64180 
• Generates COM, Intel HEX, Microsoft REL, or SLR REL 
• Intel macro facility 
• All M80 pseudo ops 
• Multiple assemblies via command line or indirect command file 
• Alternate user number search 
• ZCPR3 and CP/M Plus error flag support, CP/M 2.2 submit 

abort 
• Over 30 user configurable options 
• Descriptive error messages 
• XREF and Symbol tables 
• 16 significant characters on labels (even externals) 

• Time and Date in listing 9. 9
1
&: 

• Nested conditionals and INCLUDE files $ 4" J 
• Supports math on externals 

requires Z80 CP/M compatible systems with at least 32K TPA 

1622 N. Mai~{e!!12S ystems 
(412) 282-0864 (800) 833-3061 

Z80 Turbo Modula-2 (1 disk) $89.95 
The best high-level language development system for your Z80-
compatible computer. Created by a famous language developer. High 
performance; With 'manyadvariced features; includes editor' ,'compiler, 
linker, 552 page manual, and more. 

Z-COM (5 disks) $119.00 
Easy auto~instaliationcomplete'Z-System for virtually any zao 
computer presently running CP/M 2.2. In minutes you can be running 
ZCPR3 and ZRDOS on your machine, enjoying the vast benefits. 
Includes 80+ utility programs and ZCPR3: The Manual. 

Z-Tools (4 disks) $169.00 
A bundle of software tools individually priced at $260 total. Includes 
the ZAS Macro Assembler. ZDMdebuggers;REVAS4 disassembler, 
and ITOZlZTOI source code converters. HD64180 support. 

PUBLIC ZRDOS ,(1disk) $59.50 
If you have acquiredZCPR3 for your Z80-compatible system and want 
to upgrade to full Z·System. all you need is ZRDOS. ZRDOS features 
elimination of control·C. after. disk change, public directories, faster 
execution than CP/M, archive status for easy backup. and more! 

DSD (1· disk) $129.95 
The premier debugger for your 8080, Z80; or HD64180'systems. Full 
screen, with windows for RAM. code listing •• registers,andstapk. We 
feature ZCPR3 versions oUhis professional debugger. 

Quick Task (3 disks) $249.00 
Z80/HD64180 multitasking realtime executive for embedded com
puter applications. Full source code, no run time fees. site license for 
development. Comparable to systems from $2000 to $40.000! 
Request our free Q-T Demonstration Program. 

@) 
Z·System OEM Inquiries Invited. 

_ • ViSa/Mastercard accepted. Add $4,00 _ I shipping/handling in North America, actual - Echelon, Inc. cost elsewhere. Specify disk formal. 

885 N. San Antonio Road· Los Altos, CA 94022 
415/948-3820 (Order line and tech support) Telex 4931646 



CP/M: Some people love it, others love to hate it, but most still use it. Its users complain that most software 
companies have abandoned it. Very true, yet ~ haven't! We've been selling the ConlX software line for 
many years; we developed it, we market it, and we support it - completely! What?1 You haven't tried It? 
Saving the best for last, eh? Don't wait! Support your CP/M software company - try ConlX for as low as $10! 
What's more, you could even get lucky and receive your entire order FREEl See details below. 

Conl)(TM 
Operating 
System 

ConlXTM 
Programming 
System 

ConlXTM 
Library Vol. I 
XCC Utilities 

ConlXTM 
Shareware 
Version 

ConlXTM 
Disk Manual 
Version 

An extensive upgrade for 48K+ CPIM 2.213.0 and equivalent systems. 
Provides professional capabilities with blinding speed, as often found on 
high-end UNIX"" machines. Installs easily in just minutes to add over 100 
new built-in commands and features while maintaining 100% compatibility 
with all your existing software! Includes va redirection, aliases, improved 
user area access, auto-searching, PF Keys, Screen Paging, Print Spooler, 
Archiver, New SysCalls, ... Eliminates many points of user frustration 
with CP/M. Uses only 1/2K TPA, 0-27K disk minimum. 
Included FREE with commented source is the Pull-Down Menu System, 
a user-friendly interface to ConiX. Loads with a Single keystroke! 
ConlX is the greatest, most powerful 8-bit upgrade, with speed and 
capabilities that are so incredible it's bringing users back to CP/M! 

A structured programming language for ConlX extends CPIM SUBMIT 
capability. Adds conditionals, loops, subroutines, laoels, nesting, 
interrupt processing, error traps, and debugging facilities. DeSign 
intricate menu systems and command-automation shells. Also includes 
a special source-code ·compiler" that provides string and numeric 
variables. An absolute mustfor CPIM power-users and developers! 

Over 25 utilities for ConlX written in the shell language, including 
hierarchical directories with overlay -adds pathname capability to 
existing software, interactive debugger, move/copynink multiple files, 
print files with pagination, review disk files for deletion, unerase disk 
with stats, full-screen TYPE, and more. Source code included! 

A new Shareware version of the ConlX O.S. includes our regular 
distribution software less the Archiver, On-Une Manual, Menu source 
code, and some satellite utilities. ConlX Shareware is available through 
CHI for just the cost of the diskette and shipping, or on-line via many 
popular bulletin board systems. Register by purchasing regular Con IX. 

To reduce the cost for those who want to purchase only the ConlX O.S., 
we are offering the complete software package with documentation 
provided on disk. The disk manual has each chapter stored in individual 
files, excluding the Chapter Summary, Chapter Reference, and Index 
sections that come standard in our regular typeset manuals. 

That's right! Every 100th order processed by our computer will be shipped with a 
Credit Certificate for the total purchase price or $100, whichever is lower. This 
credit may be used toward a future purchase from CHI, or may be redeemed for 
cash wHhin ninety (90) days of receipt. Your odds are an incredible 1 in 100! 
Offer applies only to private individuals and non-profit institutions ordering directly from CHI. Orders placed 
by PO or purchased for commercial use are not eligible. To enter, certify eligibility by signing order form. 

ProductTrademarks - CP/M: Digital Research Inc., ConlX: Computer Helper Industries Inc., UNIX: AT&T Bell Labs. 



Print File To Symbol File Convertor 

A Handy Accessory For CP 1M Assemblers 

Symbol tables are a real pain if you 
have to enter them manually. Here's a 
way to get your system to create them 
for you. 

M
icro Cornucopia Kaypro Disk 
K25 contains Z80MR, an excel
lent Macro Assembler. Before 

the word macro scares you off, let me 
say that this article is not going to dis
cuss macros. What it is going to discuss 
is' the print (.PRN) file Z80MR 
produces and a way to convert that file 
into a symbol table (.SYM) file that can 
be used by Z8E, DASM, and possibly 
other programs. 

The .PRN File 
For each program that is assembled, 

Z80MR produces (unless told other
wise) a print file which contains error 
and warning messages, assembled code 
and, at the end, a symbol table. Sym
bols are generally used to represent ad
dresses or constants. Figure 1 contains 
a .PRN file listing of a short program 
that prints "Hello, world!" 100 times. 
The symbols used in the program are 
BDOS, START, LOOP and HELLO. 

The .SYM File 
The symbol table produced by 

Z80MR contains symbol names listed al
phabetically followed by their numeric 
address (in hexadecimal). This format 
creates two problems. First, because the 
table is imbedded in the print file, 
other programs cannot find it. Second, 
Z8E and DASM expect each symbol to 
be listed as a hexadecimal address fol
lowed by the symbol name. In addi
tion, DASM requires each symbol to be 
on a separate line. If working on the 
program shown in Figure 1, Z8E and 
DASM would want the symbol table to 
look like the following: 

0005 BDOS 
0113 HELLO 
0102 LOOP 
0100 START 

PRNSYM To The Rescue! 
PRNSYM is a fairly simple program 

that is the solution to this dilemma. It 
will read through a .PRN file until it 
finds the line labelled 1/ ASEG SYM
BOLS" (see Figure 1). When it finds 
this line, it· has found the start of the 
symbol table. All it does then is read 
each symbol and address, reverse the 
order, and output it to a· .SYM file. The 
complete program in Turbo Pascal is 
listed in Figure 2. 

There are no really tricky parts to 
the program, but I'll briefly discuss 
three aspects. 

First, Turbo Pascal 3.0 internal vari
ables ParamCount and ParamStr are 
used to make the program a little 
friendlier. If the user runs the program 
with no file name given, PRNSYM will 
detect this and prompt for a file name. 
If the user enters one file name, 
PRNSYM will use it as the input file 
and will create a symbol file with the 
same first name, but with .SYM as the 
extension. Finally, if the user enters 
two (or more) file names, the first will 
be used as input (the .PRN file) and the 
second will be used as the output 
(.SYM) file. Any additional names are 
ignored. 

Second is the use of the internal vari
able 10Result in error trapping. 
Whenever Turbo Pascal executes any 
input or output (I/O) statement, it sets 
a flag and stores the result in 10Result. 
If the operation performed with no 
error, 10Resuit will be zero (0). If there 
is an error, 10Resuit will hold an error 
code (listed in the back of the Turbo 
Pascal manual). It is used here to polite-

86 MICRO CORNUCOPIA, #36, June-July 1987 

By Dan Griffith 
95 Clark St. 

New Haven, CT 06511-3803 

ly notify the user if a file cannot be 
found, cannot be created, or the sym
bols cannot be found. 

Finally, you should check out the 
string manipulation functions. The 
program uses these functions to isolate 
the input and output file names. If the 
names include extensions, PRNSYM 
uses these extensions rather than 
defaulting to .PRN or .SYM. 

The tricky part occurs when a suffix 
is given for the input file, but not the 
output file. PRNSYM extracts the first 
name by using the COPY and POS func
tions and then appends the .SYM suffix. 

The string manipulation functions 
are used again in the main body of the 
program. When a line has been read 
from the .PRN file, the first symbol on 
that line is extracted, reversed, and 
written to disk. The first symbol is then 
replaced by the remainder of the line. 
This continues until there are no more 
symbols on the line, at which time 
another line is read from the .PRN file. 

Conclusion 
Z80MR produces several useful files 

but does not produce a symbol table 
(.SYM) file. The program shown in 
Figure 2 will extract a symbol file from 
Z80MR's print (.PRN) file. 

The Turbo Pascal 3.0 internal vari
ables ParamCount and ParamStr are 
used to make user access somewhat ver
satile. Users of Turbo Pascal 2.0 will 
need to delete statements using 
ParamCount and ParamStr, replacing 
them with code which explicitly asks 
for the filename. 

Hopefully, this program will make it 
easier to debug programs assembled 
with Z80MR. I do not use other as
semblers, but . I see no reason why 
PRNSYM could not be converted to 
read .PRN files of other assemblers. In 
the meantime, enjoy! ••• 



Figure 1 - PRN File with Symbols 

Z80MR VER 1.2 FILE PRNSYM 

0005 BDOS:EQUOOOsH 
0100 START:EQUOI00H 
0100 ORGSTART 
0100 0664 LDB,100 ; set count 
0102 CsLooP:PUSHBC ; save count 
0103 111301 LDDE,HELLO 
0106 OE09 LDC,9 
0108 CDOsOO CALLBDOS ; print string 
010B Cl POPBC ; restore count 
OlOC 10F4 DJNZLooP ; count down 
010E OEOO LDC,O 
0110 C30S00 JPBDOS ; all done 
0113 486s6C6HELLO:DB'Hello, world!',13,10,'$' 
0123 ENDSTART 

ASEG SYMBOLS 

BOOS 0005 HELLO 0113 LOOP 0102 START 0100 

0000 ERROR(S) ASSEMBLY COMPLETE 

Figure 2 - Listing Of PRNSYM In Turbo Pascal 3.0 

(* 

* PRNSYM, copyright (C) 1986 by Dan Griffith, is released into 
* the public domain for non-commercial use only. 
* 
* PRNSYM converts a .PRN file created by the Z80MR assembler (and 
* possibly others) and creates a .SYM (symbol table) file that 
* can be used by the Z8E monitor/debugger (and possibly others). 
* 
* Proper invocation syntax is: 
* 
* PRNSYM [pmme [symfileJ1 

* where pmfile is the [optional] .PRN file, 
* and symfile is the [optional] .SYM file. 
* If no filename suffixes are given, .PRN and .SYM are assumed. 
* If no filenames are entered on the command line, the user will 
* be prompted for the .PRN filename. 
* 
*) 
Var 

£1,f2: Text; 
inpstr: String[80]; 
filename: String[14]; 
count: Integer; 

Begin 
WriteLn('PRNSYM v1.1'); 
WriteLn('(C) 1986 by Dan Griffith'); 
Write('Name of .PRN file to convert: '); 
If (ParamCount < 1) Then 

ReadLn(filename) (* get file name from user *) 

Else Begin 
WriteLn(ParamStr(1»; filename:=ParamStr(l) 
, (* get file name from command line *) . 

End; 
If Pos('.',filename)=O Then 

Assign(£1,filename+' .PRN') 
Else 

Assign(£1,filename) ; 
If (ParamCount < 2) Then 

If (Pos('.',filename)=O) Then 
Assign(f2,filename+' .SYM') 

(*if no suffix, *) 
(* assume .PRN *) 

(* otherwise, leave explicit *) 
(* if no output file named *) 
(* if no suffix, *) 
(* assume .SYM *) 

Else 
Assign(f2,Copy(filename, 1,Pred(Pos(' .' ,filename» )+' .SYM') 

Else (* if output file named *) 
If (Pos('.',ParamStr(2»=0) Then 

Assign(f2,ParamStr(2)+' .SYM') 
Else 

(* if no suffix, *) 
(* assume .SYM *) 

Assign(f2,ParamStr(2»; (* otherwise, leave explicit *) 
{$i-} Reset(£1); {$i+} 
If (IOResu1t=O) Then Begin 

{$i-} ReWrite(f2); {$i+} 
(* make sure file was opened *) 

If (IOResult < > 0) Then Begin (* make sure file was created *) 
WriteLn('Disk or directory full. PRNSYM aborted.'); 
Close(fl); 
Close(f2); 
Erase(f2); 
HALT; 

End; 
inpstr:="; 

(* search for ASEG SYMBOLS *) 
While (Not «Eof(£1) Or (inpstr=' ASEG SYMBOLS')))) Do 

ReadLn(£1,inpstr); 
If (inpstr < > ' ASEG SYMBOLS') Then Begin 

WriteLn('Symbols not found in .PRN file. 
PRNSYM aborted.'); 

Close(fl); 
Close(f2); 
Erase(f2); 
HALT; 

End; 
ReadLn(£1,inpstr); 
count:=O; 
ReadLn(£1,inpstr); 
Repeat 

While (inpstr < > ") Do 

(* count # of symbols *) 
(* get a line of input *) 

(* reverse order and output *) 
While Pos(' , ,inpstr) > 0 Do Begin 

I$i-} WriteLn(f2,Copy(inpstr,8,s),Copy(inpstr,1,7»; 
{$i+} 
If (lORe suIt < > 0) Then Begin 

WriteLn('Disk Full.- PRNSYM aborted.'); 
WriteLn(count,' symbols converted.'); 
Close(f2); 
Close(£1); 
HALT; 

End; 
inpstr:=Copy(inpstr,13,2ss); 
count:=Succ(count); 

End; 
ReadLn(£1,inpstr); (* get more input *) 

Until (inpstr=") Or (Eof(f1»; 
Close(f2); 
Close(£1); 
WriteLn(count,' symbols.'); 

End Else Begin 
WriteLn('.PRN file not found. PRNSYM aborted.'); 
WriteLn('PRNSYM syntax is: PRNSYM [pmfile [symfile]]'); 
Close(£1); 

End; 
End. 

••• 
End of Listing 

MICRO CORNUCOPIA, #36, June-July 1987 87 



ERAC co. 8280 Clairemont Mesa Blvd., Suite 117 
San Diego,. California 92111 
619 569-1864 Call for our Test Equipment Mailer! 

* SPECIAL* IBM/PC COMPATIBLES 
4 COLOR PLOTTER 
11"x17" Max. Apple III or IBM. 

Brand new with manuals, pens, 
paper driver RS232C ONLY $249 

KAYPRO EQUIPMENT 
9" Green Monitor ............ $35.00 
Keyboard .................... 75.00 
Hard Disk Cable Set (4) ........ 15.00 

KAYPRO BOARDS 
K2/83 Populated & Tested .... $129.00 
K4/83 Populated & Tested ..... 159.00 
K4/83 with PRO-8 mod ........ 239.00 
PRO-8 Mod. EXCHANGE ....... 149.00 
WD1002-5 Hard Disk Controller .200.00 
Host Interface Board ........... 15.00 

KAYPROICS 
81-189 Video Pal ............. $15.00 
81-194 RAM Pal .............. 15.00 
81-Series Character Gen. ROMs .. 10.00 
81-Series Monitor ROMs ........ 10.00 

CPU & SUPPORT CHIPS 
MC68000-8 CPU ............. $10.00 
l80A CPU .................... 2.50 
l80 CTC ..................... 2.00 
l80A PIO ..................... 2.50 
l80A SIO ..................... 5.00 
l80A DMA .................... 8.50 
8088 ....................... 10.00 
8089-3 ...................... 11.00 
D8284A ...................... 2.50 
4116-3 ........................ 60 
4164-15 .............. '" ....... 90 
4164-12 ...................... 1.00 
41256-12 ..................... 2.25 
1793 ........................ 9.00 
1797 ....................... 12.00 
ICL7140-14 14 Bit A/D .......... 7.50 
VC3524 Switching Regulators ..... 5.00 
1458 Dual Op-AMP .............. 70 
LM2877P 4W Stereo Amp Dual .... 2.50 
MB81464-15 .................. 2.75 
2716 ........................ 3.00 
2732 ........................ 3.25 
2764 ........................ 3.50 
27C128-1 .................... 9.00 

HOURS: Mon.· Fri. 9 . 6 - Sat. 10 ·4 
MINIMUM ORDER - $15.000 

TERMS: VISA, MasterCard, Certified 
Checks, Money Order, NO COD. Visa 
and MasterCard add 3%. Personal 
checks must clear BEFORE we ship. 
Include shipping charges. California 
residents add ·6% Sales Tax. For more 
information please write (or call). 

Mainboard, 8 Slot, Case, 
Power Supply ............ $225 

To make this a complete system, add 
A) Memory B) Floppy Controller 
C) Drive D) Keyboard E) Video Card 
F) Video Monitor G) Multifunction Card 

A) MEMORY 
256K 150 NS .............. $19 
512K 150 NS .............. 38 
640K 150 NS .............. 54 

B) FLOPPY DISK CONTROLLER 
Card for 2 Floppy Drives ....... $36 
Card for 4 Floppy Drives . .. . . .. 42 

C) 5114" FLOPPY DISK DRIVES 
JVC MDP-200 DSDD 40 Tr .... $105 
Mitsubishi M4853 DSDD 80 Tr .. 119 
Fujitsu M2551 A DSDD 40 Tr ..... 99 
Panasonic J U455 DSDD 40 Tr ... 105 
Shugart 475 DS Quad 1.2Mb ... 159 

D) KEYBOARDS 
Cherry Keyboard (no case) ..... $38 
XT Style Keyboard. . . . . . . . . . .. 47 
AT Style Keyboard. . . . . . . . . . .. 69 

E) VIDEO CARDS 
Tomcat with Parallel and 

Lightpen Port .............. $53 
Hercules compatible Video Board 75 
Color Graphics Adapter ......... 69 
Enhanced Graphics Adptr-(EGA) .275 

F) VIDEO MONITORS 
Roland MB-122G, 12" (no case) $39 

New flat screen Samsungs! 
Samsung SM-12SFG, 12" Grn .. 106 
Samsung SM-13SFA, 12" Ambr 106 
Mitsi AT-1332A 13" RGB TTL .. 295 

G) MULTI FUNCTION CARD 
Parallel & Serial Port, Game Port 

Floppy Controller, Clock & Cal. $96 
SIO Card .................... 36 

EGA PACKAGE DEAL 
Package consists of Intergraph + 4 EGA 
Card and the Autoseek 2000 EGA Mon
itor by Int'I Graphics. No software 
patches necessary. 1 yr. guar. . .. $795 

POWER SUPPLIES 
Elgar 400W Unint. Power Sup .. $195.00 
+ 5V/1A, - 5V/.2A, + 12V/1A, 
-12V/'2A, - 24V/.05A ....... 15.00 
+ 24V/2.2A .................. 8.00 

SWITCHERS 
5V/9.5A, 12V/3.8A, -12V/.8A $39.00 
5V/3A, 12V/2A, -12V/.4A ..... 29.00 
5V/10A ..................... 25.00 
5V175A, + 12V/8A, + 24V/5A .. 55.00 
5V/30A ................. ; ... 39.00 

MISCELLANEOUS 
Headset/Boom Microphone ...... $3.95 
Nicad Pack 12V/.5AH ........... 6.50 
Joystick 4 Switches 1" Knob ..... 5.50 

88 MICRO CORNUCOPIA, #36, June-July 1987 

SYSTEM EXAM PLE #1 
For the Hacker (Cheap) 

Mainboard, Case, Power Supply .. $225 
256K Memory 150 NS . . ... . . .. 19 
Floppy Controller (2 Drives) . . . . .. 36 
Floppy Drive 1/2 Ht DSDD...... 99 
Keyboard Cherry (no case) ..... 38 
Video Board with Parallel and 

Lightpen Port. . . . . . . . . . . . . . .. 53 
Roland M B-122G, 12" Green 

Monitor (no case) ............ ~ 
$509 

SYSTEM EXAMPLE #2 
FCC Approved (Not Cheap) 

Mainboard, Case, Power Supply .. $225 
640K Memory 150 NS .. .. .. ... 54 
Multi I/O, Parallel, Serial, 

Floppy, Clock/Cal. ....... . . .. 96 
2 DSDD Floppy Drives (minimum) ; 198 
EGA Package .................. 795 
AT Style Keyboard ............. ~ 

$1437 
Oh, you wanted a turbo board .... 40 
and a 20M Hard Drive & Controller. 410 
Now how much would you pay? 

JUST $1887 

HARD DISK DRIVES 
10M Seagate 212 .............. $200 
10M Rodin RO-252, R0352 ...... 230 
20M Miniscribe ............... 385 
20M ST-225 . . . . . . . . . . . . . . . . .. 385 
20M Tandon TM252 ............ 350 
20M Tulin (Oki) ......... ;..... 345 
20M Half Height with Controller. .. 410 
32M Half Height with Controller. .. 667 
40M Quantum Q540 (Factory Rebuilt) . 665 
60M with Controller ............ 1150 
70M Vertex V170 . . . . . . . . . . . . .. 775 

HARD DISK CONTROLLERS 
WD-1002-WX2 with Cable ....... $125 
Omni-5510 ................... 105 
Adaptec 2070A (Get 15M on 10M Drive) 129 
Konan KXP230 (Get15M on 10M Drive). 145 
Konan KXP230l (Get double the density) 164 

TEST EQUIPMENT 
OSCILLOSCOPES 

TEK 485 350 MHz Dual Trace ... $2995 
Phillips 3260E 120 MHz Dual .... 975 
TEK 7403N17A1817B50A 60 MHz 750 

SPECTRUM ANALYZERS 
TEK 491 10 Mhz-40 GHz ........ 4600 
HP 851B/8551B 10 MHz-40 GHz .1500 
Nicolet 444A 1 Hz -1 00 KHz ~ ... 3995 
Nicolet 500A 1 Hz -1 00 KHz ..... 1800 

DBASE BOOK OF BUSINESS 
APPLICATIONS by Michael J. Clifford 

Reg. $19.95 NOW ONL Y $5.95 



The "thoughtful" alternative 
from SemiDisk. 

Designed around the 64180 microprocessor, 
the DT-42 is loaded with more of all the features 
you need: More speed, more memory, more 
ports and more TPA! 

How did we fit all these features on one S.7S" 
by 8" single-board computer? 

• 9.216MHz 64180 Microprocessor (runs Z80 programs) 
• 512K DRAM, Zero wait states, fully populated. 
• Three RS232C serial ports (Standard baud rates to 38,400) 
• One Centronics parallel printer port 
• WD2793 disk controller (up to 8 drives, SO, DO or High 
Density, 3%", 5%", and 8" drives) 

• SASI channel for hard disk controller (software provided) 
• Many popular disk formats supported 
• Requires only + 5V @ 1 amp. 
• ZRDOS/ZCPR3 with exclusive "Hyperspace" operating 
system, offering 57.5K TPA (NOT 48K like some others. No 
8 bit is bigger!!) Richard Conn's ZCPR3, The Manual 
included freel 

• Provisions for real-time clock and on-board terminal options. 
• Socket for 28-pin EPROM. 

Compare! You won't settle for less. 
Or·slower. Or smaller. 

DT -42 Computer 
TM p (on-board terminal) 
SmartWatch 
Z-system software 
ZAS & Debuggers 
8MB disk emulator wi SCSI 
Battery backup for above . 

$ 499 
$ 100 
$ 50 
$ 50 
$ 25 
$ 2049 
$ 150 

Call or write for more 
information or to place an order. 

SemiDisle 
11080 SW Allen Blvd., Beaverton, OR 97005 

(S03) 626-3104 

POOR MAN'S ~ETWORK 
Now you can implement networking on your own CP/M computers and share resources 
whenever you want. Each user can access files and printers on the other computer 
directly, without expensive hardware or switches, and without a communications pro
gram. Share floppies, RAM-disk, hard disks, and printers between two users. Works with 
most standard CP/M programs, like Wordstar, PIP, dBase II, etc. 
Poor Man's Network works best with bidirectional parallel ports, or standard serial ports at 
9600 baud or greater. Present version supports two computers only, and requires CP/M 
2.2 on each computer. Uses only 6K of memory. Does not require a hard disk; runs on 
8080, 8085, Z-80, HD-64180. 
Poor Man's Network comes ready to run on BigBoard I and II, Xerox 820, NorthStar 
Horizon, NorthStar Advantage, Televideo TPC I, Kaypro (not 2000), Apple II (Super 
Serial required), S-100 with Compupro Interfacer 4. Can be installed on other computers 
by altering one of the assembler overlay files provided. Each disk contains drivers for all 
the specified computers. 

Best of all $69-
is the price: only • 

Specify disk format: 8" SSSD, NorthStar, Kaypro, or Apple CP/M. Phone orders accepted; sorry, 
no COOs or Purchase Orders. Payment may be by certified cheque, money order, Visa, or 
Mastercard. Personal cheques from outside Canada require up to 6 weeks to clear. Canadian 
orders please pay in Canadian dollars; others in US dollars. Price includes diskette, manual and 
postage. Ontario residents please add provincial sales tax. 
Note: If you use another operating system, such as CP/M 3 or PC-DOS, send us your name and 
address, but no money, and we will notify you when it is available for your system. 

ANDERSON TECHNO-PRODUCTS INC. 
947 Richmond Road, Dept C 

Ottawa, Ontario K2B 6R1, Canada 

Telephone 613-722-0690 for more information or to order. 
CP/M is a trademark of Digital Research; Z-80 is a trademark of Zilog; Wordstar is a trademark of MicroPro; dBase 
II is a trademark of Ashton-Tate. Poor Man's Network is a trademark of Doug Anderson Techno-Products Inc. 

INTRODUCING: 

PROBE-ONE 

COMPACT, POp SIZE LOGIC ANAL VZER 

• EASY TO USE 8 CHANNEL POD INTERFACES TO PC 
PARALLEL PORT 

• MEMORY RESIDENT DISPLAY/CONTROL PROGRAM 
• B BIT BY 4096 DATA CAPTURE RAM 
• 3 BIT MAS KABLE TRIGGER OR EXTERNAL TRIGGER 
- 5 INTERNAL CLOCK RATES PLUS EXTERNAL CLOCK 

• COMPLETE WITH REFERENCE MANUAL, TEST LEADS, 
POWER SUPPLY, AND 90 DAY WARRANTY 

• PROBE-ONE (16 MHZ) ................ $345 
• PROBE-ONE (20 MHZ) ................ $395 

. LOGI$ONNECTION 
'fNTEANA TIONAL 

P.o. BOX 23852 
PORTlAND, OR. 97223 

(503) 626-8468 
MASTERCARD_ 

VISA 

MICRO CORNUCOPIA, #36, June-July 1987 89 



AROUND THE BEND 

(continued from page 2) 

If you're interested in starting your own computer busi
ness, come to the SOG. You'll find business help, techni
cal advice, and a mob of experienced liOn Your Owners." 

New IBMs Come In With A ... 
For all of you who paused, eyes heavenward, waiting 

for something exciting in the latest system pronounce
ments from IBM, you can go back to work. Itty Bitty 
Machine Company wasn't exciting. Again. 

However, I didn't see any gross blunders this time (un
like the Junior or the XT 286). They announced four Sys
tem/2 machines: 

Model 30 comes with an 8 MHz 8086, 640K, a 720K 3.5 
inch floppy drive, BASIC in ROM, and three expansion 
slots for $1695. Add $600 for a 20 meg hard drive. 

Model 50 comes with a 10 MHz 80286, 1 meg memory, 
a 1.44 meg 3.5 inch floppy drive, BASIC in ROM, and 
three expansion slots. With a 20 meg hard drive it retails 
for $3595. 

Model 60 is just like the 50 except it has seven slots 
and a 44 meg hard drive. Retail is $5295. 

Model 80 is the biggie. Its minimum configuration in
cludes a 16 MHz 80386, seven slots (four 16-bit, three 32-
bit), 1 meg RAM, a 1.44 meg floppy drive, and a 44 meg 
hard drive. It sells for $6995. It also comes with a 20 MHz 
80386 and a 115 meg drive for $10,995. 

All the systems will run PC-DOS 3.3 ($120 extra), and 
all except the model 80 are supposed to be available now. 
Model 80 should be available sometime in July. 

The systems also have Expanded Graphics Adapters 
built in. IBM will sell you a monochrome monitor for 
$250, a 14-inch low-res color monitor for $595, a 12-inch 
hi-res color monitor for $685, and a 16-inch very hi-res 
color monitor for $1550. 

IBM will sell you an 8087 math co-processor for $310, 
an 80287 for $525, and an 80387 (when available) for $795 
(16 MHz) or $1195 (20 MHz). Intel sells the same chips for 
less than half those prices. 

So far I haven't told you anything earth shaking unless 
you consider the 1.44 meg 3.5 inch floppy something spe
cial. Actually, 1.44 meg in a shirt pocket package is pretty 
interesting, but it's got to be reliable. Otherwise they 
made a big booboo. 

Also, the lack of a 5 1/4 inch drive will give lots of 
folks a chance to sell external drives. 

IBM will be using mostly 3.5 inch MiniScribe hard 
drives. Don at MicroSphere has been tickled with the 
cheap 20 meg 5 ·1/4 inch MiniScribes. Even running 30 
meg with RLL controllers, they've been very cool and 
very reliable. You might pick one up, but do it quickly, 
just in case their quality drops as IBM starts ordering zil
lions. 

The one earth-shaking announcement is OS/2 (operat
ing system/2). If you read IBM's ads, you'd get the im
pression that OS/2 had been developed by and exclusive
ly for IBM. Actually it's being developed by Microsoft 
and it's supposed to run on current 80286 and 80386 
clones as well as the larger PS/2 machines (all but the 

90 MICRO CORNUCOPIA, #36, June-July 1987 

model 30). 
There were two ways Microsoft could have gone with 

a new operating system. They could have made systems 
. developers happy by making it more UNIX-like, a direc
tion they've been going with MS-DOS 2.x and 3.x, or 
they could have made Mac users happy by integrating 
windows into the new system. They chose the windows. 

Scheduled for release during the first quarter of 1988, 
OS/2 is supposed to be multitasking as well as user 
friendly. (Take mouse in hand, select file, move arrow to 
hand grenade, click twice - in ten seconds the file, disk, 
system, and user disappear in a puff of black smoke) 

Meanwhile, I've heard that IBM is offering the new 
30s, with color monitors, to universities for under $1000 
each. (Look out, Apple.) 

IBM is reportedly dumping XTs. I've heard rumors of 
$695 retail for a single-floppy system. (Purchasers are 
crazy to buy the XTs. They should either get a complete 
clone system for $695 or associate themselves with a col
lege and finagle a $995 model 30.) 

A Caveat 
IBM has been making . lots of noise about all the 

patents it's filed for in the past few weeks. Supposedly 
hundreds. It's also said to be planning a vigorous defense 
of those patents. 

I've seen the new systems and have talked to folks 
who have them. I agree with these folks: the new 
machines are attractive and they have a small footprint. 
Also, the low-res 256-color mode and hi-res 16-color 
mode are definitely on par with the Amiga's display. 

Meanwhile, the big software vendors, Borland, Ashton
Tate, and so on, are announcing new versions of their cur
rent software for the new machines. My guess is that the 
changes support the new color generators. (If you have in
side scoop on this, please fill me in.) 

If business gets the idea that it has to go IBM to avoid 
being left out, then IBM will have won a temporary vic
tory. That'll mean the herd (purchasers and developers) 
will again be wearing blue. 

On The Other Hand 
I understand that companies are just finishing up 

graphics chips that duplicate the IBM's color circuit, and 
Phoenix is working diligently on new, compatible 
monitors. I'm willing to bet that there will be numerous 
PS/2 clones on the market well before there's an OS/2 for 
them to run. (Meanwhile, because it doesn't have a 80286, 
the model 30 will not run OS/2, but IBM's been real quiet 
about that.) 

Programming Competition 
I mentioned our programming competition a couple of 

issues ago, and since then a number of you have asked to 
see the problems. 

Problem 1 
Write a program to convert any number 1;>etween 1 and 

2000 to its equivalent in Roman numerals. The Roman 
symbols are: M = 1000, D = 500, C = 100, L = 50, X = 10, V 
= 5, and 1=1. 

The rules for forming Roman numerals are: 



(1) If a larger value precedes. a smaller or equal value, 
the values are summed. 

(2) If a smaller value precedes a larger value, then the 
smaller value is subtracted from the larger. 

(3) Numbers are written with as few symbols as pos
sible. 

(4) Only C, X, and I can be used as subtrahends (terms 
being subtracted). 

Your program should accept a decimal number and 
output the Roman equivalent. 

Examples: 

Input: 1964 
Output: MCMLXIV 

Input: 549 
Output: DXLIX 

Problem 2 
Write a math drill game that teaches adding, subtract

ing, multiplying, and dividing. Ease of use and entertain
ment value are given extra weight on this problem. 

Problem 3 
Write a mailing label program which will: 
(1) Accept user's data. 
(2) Create a data base on disk. 
(3) Print mailing labels. 
The user interface is particularly important. Extra fea

tures like sorting and searching will receive extra points. 

Problem 4 
Write a program which will convert decimal numbers 

into ternary (0, I, and 2). The program should accept a 
base 10 (decimal) number (up to 20 digits) and output the 
equivalent base 3 number. 

ProblemS 
You have a 4-by-4 checkerboard and four checkers. 

Create a program which will place the four checkers on 
the checkerboard such that there is one checker in each 
row and each column (and one checker in each of the two 
main diagonals). 

Example: 

x • • • 
• X 

• X 
•• X • 

Program should find all possible placements which 
meet the above requirements. 

Problem 6 
Write a program which will print the nth row of Pas

cal's Warped Triangle (the next program will print the nth 
row of Dave's Warped Humor) where n < 100. The tri-

angle looks like: 

Pascal's Warped Triangle 

1 
1 1 

1 3 1 
1 5 5 1 

1 7 13 7 1 

Notice that the edges are all l's and that each internal 
number is the sum of the three numbers immediately 
above it. 

Problem 7 
Write a program which numerically checks a text file 

by generating a 4-digit number. The goal is to guarantee 
to a reasonable certainty that if program generates the 
same number from two files, then the two files contain 
identical text. 

To test the program create three files containing 200 or 
more characters. Make two of the files identical. The third 
should be identical except that two adjacent characters 
must be transposed. The program must be able to tell 
which files are identical and which contains the 
transposed characters. 

ProblemS 
Write a program which will let the user encrypt or 

decrypt a file of ASCII text (characters between 20 and 7F 
hex). The user selects encryption or decryption and 
provides the key word or phrase. 

Competition Rules 
Contestants had to finish problem 1 before going on to 

problem 2. They had to finish #2 before selecting any of 
the following six problems. 

Points (from 0 to 9) were given for each of the follow
ing areas: user interface, code readability, algorithm, code 
documentation, and program features. 

Points were assigned as follows: 
0- Unusable, unreadable, or unsupportable. 
3 - Difficult to use, read, or support. 
5 - Average. 
7 - Friendly, very readable, well organized, unique al

gorithm. 
9 - Truly outstanding. 
We had two categories, teams and individuals. Interest

ingly enough, the individuals did much better than the 
teams. In three hours, two individuals each completed 
four problems. In the same time, the best team completed 
two problems. 

MicroSolutions Corrections 
I misled you last issue when I listed the prices on the 

MicroSolutions cards. The combination of Uniform and 
the Matchpoint card (lets your clone read and write Apple 
and Northstar disks) is $195, not $170. Their Compaticard, 
which talks to 8 inch, 3 1/2 inch, and 1.2 meg drives 
(from an XT), sells for $175, rather than $170. Either way, 

(continued next page) 

MICRO CORNUCOPIA, #36, June-July 1987 91 



(continued from page 97) 

the cards are becoming well known in the computer com
munity. 

MicroSolutions, (815) 756-3411 

Drive Response 
We've received lots and lots of letters, phone calls, and 

bulletin board messages in response to the hard-drive ar
ticle in issue #35. Only two respondees took issue with 
my comments about Microscience and Seagate. The two 
work for Microscience and for Seagate. 

I don't envy their positions. 
The Sea gate lady asked if I knew how many drives 

they shipped per quarter. I guessed about a million (and 
she agreed). She then mentioned that most of those mil
lion drives were 225s. Kinda mind-boggling, I'd say. I 
told her that I hoped they could get the noise, heat, and 
stepper problems under control. 

The problem with this whole thing is that it's a lot 
easier to be nice - to say good things about companies. 
They feel good. I feel good. I can still hear my mother 
saying, "If you can't say something nice, then shut up." 
When she was around I was either creative or quiet. 

Also, these companies have huge investments. For in
stance, if you were selling over 300,000 drives a month, 
think of all the little beasties you'd have somewhere be
tween the casting machine and quality control. Then look 
at the time lag between a parts change and the field 
results. If Murphy's poking about, there's a lot hanging 
out. 

Finally, I really appreciate your feedback. That's the· 
only way we're going to stay on top of a market that's at 
least as volatile as dynamic RAM. 

Japanese Tariffs 
I've received more than a few questions about the ef

fects of the U.S. tariffs. Will prices go up? Will floppy 
drive prices change? Will hard drives get scarce? Will 
RAM prices go out of sight? Will someone still make TTL? 

Probably. 

Thanks Again 
The C programming competition was a super success, 

thanks in large part to the generosity of Definicon (for 
one of their powerful 16 MHz 68020 boards) and to Manx 
(for copies of their Aztec C Developer, and other pack
ages). 

And, a very special thanks to Blaise Computing for 
helping us out of a hole. They responded unhesitatingly 
to my last-minute request for three copies of their very
powerful C Tools Plus library (though they were not men
tioned in the C competition announcements). 

I really appreciate their interest in helping us get C 
source into the public domain (and keep C programmers 
off the streets). 

Definicon Systems 
21042 Vintage St. 
Chatsworth, CA 91311 
(818) 889-1646 

92 MICRO CORNUCOPIA, #36, June-July 1987 

Manx Software 
Box 55 
Shrewsbury, NJ 07701 
(201) 780-4004 

Blaise Computing. 
2560 Ninth St., Suite 316 
Berkeley, CA 94710 
(415) 540-5441 

VentUra Publishing 
Last issue I complained that finding someone who 

could output my Ventura files was very much like finding 
an honest politician. Anyway, last issue was Ventura out
put, thanks to. Wyziwyg (yes. the spelling is correct) of 
Seattle. Our Postscript. output went flying through their 
machine at about 20 pages an hour. 

Hooray! 
During. the intervening two months, Linotronic has 

shipped some new 68020 based RIPs and updated ROMs 
in the older 68000 based units. Unfortunately, the 68020 
RIPs don't work. And, the new ROMs (for the old RIPs) 
don't accept Ventura's Postscript files .. 
. . Let' s se~, if we send up all the chapter files and hook a 
PC to the RIP and hold our mouths just right... I'll let you 
know next issue what happened this issue. 

Anyway, I've been musing about the whole typesetting 
arena. Typesetting outfits are facing extinction as cus
tomers move to desktop publishing and laser printers. 

Meanwhile, manufacturers of old-line typesetting 
equipment aren't helping much. An L300 typesetter and 
RIP cost about $80,000. The service contract is around 
$10,000 a year. Quite a load in a market that's giving 
every indication of disappearing. 

KonanBoard 
I still haven't had a chance to install the Konan board. 

I'll do it any day now, but first I've got get this issue 
typeset. 

TimexQL 
I've gotten mixed feedback on the little 68008-based 

QL. 
Some people like it. It's small. It's fairly fast. It's cheap 

(dealers are buying them for about $157 each). QDOS is 
multitasking. The little micro-cassette drives are small. It 
uses a TV set for a monitor (very cheap). It has two serial 
ports (9-pin). There's about 7 meg of software including 
public domain, shareware, and commercial programs. 

Some people hate it. It has a cheap chicklet keyboard. 
QDOS is buggy. The built-in BASIC is buggy. The micro
cassettes aren't very fast or very reliable. The systems are 
only available as surplus, Timex is no longer manufactur
ing them. It has no parallel port. It uses a TV set for a 
monitor (very low resolution). And, most of the software 
(and other support) comes from an outfit in England 
named Quantum. 

You can get more info about the QL from: 

Tom Bent 
9016 Slicker PI. 
Columbia Md 21045 



NOP34CDE.PQR Attracts A Following 
One of the east coast bulletin boards has mentioned 

our newest public domain release, NOP34CDE.PQR. Un
fortunately, we announced this fine piece of software (see 
the Culture Comer, issue #35, page 63) before we decided 
what it would do. We need help in a hurry because 
people are trying to download this marvelous program 
from the Micro C RBBS. 

So, if you have a program, or a program idea that you 
think would fit, (or not fit) get it in fast. Meanwhile we'll 
keep you updated on the status of this already famous 
piece of code. . 

No Drives But Lots Of Programmers 
We've received an incredible number of calls (3) from 

Micro C readers who wanted to order one of Jolly Roger's 
315 meg hard drives for $1.98. (See the ad in issue #35.) , 

Well, we took orders for a while but unfortunately the 
drives are as scarce as dorm rooms for SOG VI. However, 
we do have a large number of institutionalized program
mers (see the ad). 

Because of the glut, you can choose from: 
Thirty-three BASIC programmers. They were put away 

after insisting on debugging the main course at a spaghet-
ti feed. . 

Twelve FORTH programmers. These poor fellows were 
discovered trying to do a DUP, SWAP on a hay stack. 
Some are in pretty good shape but others are badly 
decompiled. 

One LISP programmer. Actually we're not sure he's a 
LISP programmer - but he has such a speech impediment .. 

Three editors. These guys didn't fit in anywhere else so 
we put them in with the programmers. They were 
brought over from the Humane Society after they'd been 
dumped Saturday night. Though vicious now, we think 
they'd respond to a quiet, loving, non-computer environ
ment. 

Be sure to order early so you won't be disappointed. 
Remember, the programmer you adopt today could be 
your best friend tomorrow. Limit two programmers to a 
household. . 

And that's all from greater Bend. 

David Thompson 
Editor & Publisher 

••• 

Aztec C86 4.1 
New PC/Ms.-DOS 
CP/M·86 • ROM 

Superior J)Elrformance, a powerful 
new array of features. and utilities, 
and pricing that is unmatched make 
the new Aztec CS6 the first choice 
of serious software developers. 

Aztec C86·p ................... $199 
• optimized C with near, far, hu~e, 
small, and large memory - Inhne 
assembler - Inline SOS7/S02S7 -
ANSI support - Fast Float (32 bit) -
optimization options • Manx Aztec 

SOS6/S0xS6 macro assembler 
'Aztec overlay linker (large/small 
model) • source level debugger • 
object librarian • 3.x file sharing & 
locking • comprehensive libraries of 
UNIX, DOS, Screen, Graphics, and 
special run time routines. 

Aztec C86·d ................... $299 
• includes all of Aztec C86-p • Unix 
utilities make, diff,grep • vi editor • 
6+ memory models' Pro filer. 

Aztec C86·c ................... $499 
• includes all of Aztec C86-d • 
Source for library routines • ROM 
Support • CP/M-S6 support • One 
year of updates. . 

Third Party Software 
A large array of support software 

is available for Aztec C86. Essential· 
Graphics • C Essentials • C Utility 
Library • Greenleaf Com. • Greenleaf 
General • Halo • Panel • PC-lint • 
PforCe • Pre-C • Windows for C • 
Windows for Data * C terp • 
db Vista • Phact • PlinkS6Plus • C
tree. 

Aztec ROM Systems 
6502165C02 • 80S0lZSO 

SOS6/80xS6 • 680xO 

An IBM or Macintosh is not only a less 
expensive way to develop ROM code, it's 
better. Targets include the 
6502l65C02, SOSOIZSO, SOSS/80x86, 
and6SOxO. 

Aztec C has an excellent reputation for 
producing compact high performance 
code. Our systems for under $1,000 
outperform systems priced at over 
$10,000. 

Initial Host Plus Targel .. $ 750 
Additional Targets ........... $ 500 
ROM Support Package .... $ 500 

Vax, Sun, PDp·11 ROM 
HOSTS 

'Call for information on Vax, PDP-11, 
Sun and other host environments. 

Cross Development 
Most Aztec C systems are available as 

cross development systems. Hosts 
include: PC/MS-DOS, Macintosh, CP/M, 
Vax, PDP-11, Sun, and others. Call for 
information and pricing. 

CP/M· 8080JZ80 ROM 
C compiler, 80801Z80 assembler, 

linker, librarian, UNIX libraries, and 
specialized utilities. 

Aztec C II·c CP/M & ROM .... $349 
Aztec C II·d cP/M ................. $199 

How To Become A User 
To become an Aztec C user call SOO-

221-0440. From NJ or international 
C' Prime locations call 201-542-2121. Telex: 

PC/MS·DOS. MaCintosh 4995S12 or FAX: 201-542-S3S6. 

Apple II • TRS.80. CP/M C.O.D., VISA, Master Card, American 
Express, wire (domestic and 

These C development systems are international), and terms are available. 
unbeatable for the price. They are One and two day delivery available for all 
earlier versions of Aztec C that domestic and most international 
originally sold for as much as $500. destinations. . 
Each system includes C compiler, Aztec Systems bought directly from 
assembler, linker, librarian, UNIX Manx have a 30 day satisfaction 
routines, and more.. Special guarantee. Most systems are uP9radabie 
discounts are available for use as by paying the difference in pnce plus 
course material. $10. Site licenses, OEM, educational, 
C' Prime ............................. $75 and mu discounts are available. 

-~iii--:-~ 
Manx Software Systems 
One Industrial Way 
Eatontown, NJ 07724 

MICRO CORNUCOPIA, #36, June-July 1987 93 



ISSUE #1 (8/81) 
Power Supply 
RAM Protection 
Video Wiggle 
til PFM,PRN 
16 pages 

ISSUE 1/2 (10/81) 
Parallel Print Driver 
Drive Motor Control 
Shugart Jumpers 
~:~~p~rage Above PFM 

16 pages 

ISSUE 1/3 (12/81) 
4 MHz Mods 

~~~iro~~~t~~dem 7 
Reverse Video Cursor
FORTHwords Begins
16 pages

ISSUE 1/4 (2/82)
Keyboard Translation
More 4 MHz Mods
Modems, Lync, and S10s
Undoing CP/M ERASE
Keyboard Encoder
20 pages

ISSUE 1/5 (4/82)
Word Processing
Two Great SpeIrs
Two Text Editors
Double Density Review
Scribble, A Formatter
20 pages

ISSUE 1/6 (6/82)
BBI EPROM Programmer
Customize Your Chars
Double Density Update
Terminal In FORTH
24 pages

ISSUE 1/7 (8/82)
6 Reviews Of C
Adding 6K of RAM
Viewing 50 Hz
On Your Own Begins
24 pages

ISSUE 1/8 (10/82)
Drive Maintenan('~
Interfacing IP.;; ~
Insta11in~ ·O'->./'BIOS
Fl!p~~i)dles
Ce:,O _Iearly Begins
Xll'OX 820 Begins
28 pages

ISSUE 1/9 (12/82)
BBII EPROM Progt'am
Relocating Your CP/M
Serial Print Driver
BiS Board I Fixes
Bnnging Up WordStar
Cheap RAM Disk
32 pages

ISSUE #10 (2/83)
Savin~ A Flakey Disk
Hookin[Wi"'''' "" BII
The Dis"" O~or
JRT .. ~'V
Sl£,OK"eyboard Interface
Pascal Procedures Begins
36 pages

ISSUE #11 (4/83)
BBI Expansion~ ~
BBII Details k\) !:
Dyna, F h Q';K Review
Ea~o\.~rse Video Cursor
Pl<.-.:l..t!rCaic Review
Kaypro Column Begins
36 pages

ISSUE #12 (6/83)
256K for BBI

~~~~~~f Up BBII 
Look at Wordstar 
Double Sided Drives for BBI 
Packet Radio 
5MHz for Kaypro 
40 pages 

ISSUE #13 (8/83) 
CP/M Disk Directory 
More 256K for BBI 
Mini Front Panel 
Cheal' Fast Modem 
Nevaaa COBOL Review 
BBI Printer Interface 
Kaypro Reverse Video Mod 
44 pages 

ISSUE #14 (10/83) 
BBII Installation 
The Perfect Terminal 
Interface to Electronic Typewriter 
BBI Video Size 
Video Jitter Fix 
Slicer Column Begins 
Kaypro Color Graphics Review 
48 pages 

ISSUE #15 (12/83) 
Screen Dumr Listing 
Fixing Serial Ports 
Playing Adventure 
SBASIC Column Begins 
Upgrading Kaypro II to 4 
Upgrading Kaypro 4 to 8 
48 pages 

ISSUE #17 (4/84) 

~2~C~ltiSi:kizer 
Kaypro Morse Code Interface 
68000-Based System Review 
Inside CP/M S6 
56 pages 

ISSUE 1/18 (6/84) 
Kaypro EPROM Programmer 
110 Byte: A Primer 

~:~{T~o~::~lfel Interface 
Business COBOL 
60 pages 

ISSUE #19 (8/84) 
Adding Winchester To BBII 
6 MHz On The BBI 
Bulletin Boards 
Track Buffering On Slicer 
4 MHz For The 820-1 
64 pages 

ISSUE 1/20 (10/84) 
HSC 68000 Co-Processor 
DynaDisk For The BBII 
Serial Printer On BBI Sans 510 
Cheap & Dirty Talker For Kaypro 
Extended 8" Single Density 
72 pages 

ISSUE 1/21 (12/84) 
Analo~ To Digital Interface 
Instalhng Turbo Pascal 
Low Intensity BBI Video 
Turbo Pascal, The Early Days 
80 pages 

ISSUE 1/22 (2/85) 

~~~~d 8~~~e;~o~ f;l\b~-~TD Bus 
Reviews Of 256K RAM Expansion
In The Public Domain Begms
88 pages

ISSUE 1/23 (4/85)
Automatic Disk Relogging
Interrupt Driven Senal Prmter
Low Cost EPROM Eraser
Smart Video Controller
Review: MicroSphere RAM Disk
Future Tense Begins
86 pages

ISSUE 1/24 (6/85)
C'ing Into Turbo Pascal
8" Drives On the Kaypro
48 Lines On a BBl
68000 Versus 8Ox86
Soldering: The First Steps
88 pages

ISSUE 1/25 (8/85)
Why I Wrote A Debugger
The 32-Bit Super Chigs
~~fu~~ifng The 32 32

RS-232C: The Interface
104 pages

ISSUE 1/26 (10/85)
Inside ZCPR3
Two Megabytes On DSI-32
SOGIV

n'S_6CJSrl~ '?1~~~Ely~i~~main
Graphics In Turbo Pascal
104 pages

ISSUE 1/27 (12/85)
Build An $800 Gone

~~~\rig~r~:S~o~ystem 
Selling Your Own Software 
Inside Small C Compiler 
104 pages 

ISSUE #28 (2/86) 
Pascal Runoff Winners 
Rescuing Lost Text From Memory 
Introduction To Modula-2 
First Look At Amiga 
Inside The PC 
104 pages 

ISSUE #29 (4/86) 
Speeding Up Your XT 
Importin~ Systems From Taiwan 
Prototypmg In C 
C Interpreters Reviewed 
Benchmarking The PCs 
104 pages 

ISSUE #30 (6/86) 
PROLOG On The PC 
Expert Systems 
Logic Programming 
Building Your Own Logic Analyzer 
256 K RAM For Your 83 Kaypro 
PC-DOS For Non-Clones 
104 pages 

ISSUE #31 (8/86) 
RAM Resident PC Speedup 
Practical Programming In Modula-2 
Unblinking The PC's Blinkin' Cursor 
Game Theory In PROLOG and C 
104 pages 

ISSUE #32 (10/86) 
Public Domain 32000: 

Hardware and Software 
Writing A Printer Driver For MS-DOS 
Recover A Directory By 

Reading & Writing Disk Sectors 
96 pages 

ISSUE #33 (12/86) 
Controlling The Real World, 
Bruce Eckel's Step 2 

Introduction To Fractals 
From Boots To Device Drivers: 
Secrets Of MS-DOS 

Professionalizing With Turbo Pascal 
96 pages 

ISSUE #34 (2/86) 
Designing With The 80386 
Build A Simple Oscilloscore 
A Cheap 68000 Operating System 
A Concurrent Operating System 
Recovering Directories And FATs 
On 360K Disks 

ISSUE #35 (4/87) 
Building An 8 Channel Tempera-
ture Scanner In Turbo Pascal 

Expert system 
A Bleepmg PC 
Who's Making Great Hard Drives 
Learn Assembly Language 



WINTIDS 
The following folks are reaching you for only 30 
cents per word. If you would like to reach the same 
audience, send your words and 30 cents for each to 
Micro Cornucopia. 

$19 Instrument Flight Simulator CP/M or MS-DOS 
- four aircraft types, air traffic control, realistic 
navigation, flight lessons, 25 page manual. Pilots or 
beginners. Fun! For CP/M, 8" or Kaypro II 5". 
BaileyTech, 304 WS College, Yellow Springs OH 
45387. 

Book Of Changes: computer oracle. Complete with 
90K of text correspondences, newly translated. 72 
page typeset book. Kaypro 4-84 video, vanilla 
versions, GINST included. Kaypro disk format. 
Professional package; published by author. Not 
Public Domain, but at $14 US postpaid, who cares? 
ZYQOTE Systems, Box 1165, Bonavista, NfLd., AOC 
lBOCanada. 

__ R_A_M_D_CS_K __ 5-100,2 MEG, 
PORT I/O, NEW, WARANTEED, $725. S. Lugert, 
439 Peck Slip, N.Y.C, N.Y. 10272 or call 718-622-0654. 

Magnetic Software -- See those Magnetic Fields 
they have been telling you about! MAGPLOT 
scientific software computes and plots the magnetic 
field generated by current carrying regions in the 
presence of magnetic material. For CP/M - Kaypro 
II with MX-80 Printer. Send $15.00 for Manual and 
Demo-Disk to Saltek Services, P.O. Box 7847, Van 

Nuys, CA 91409 or call 818-708-9815 for additional 
information. 

MAG TAPE DATA TRANSFER TO FLOPPIES: 
800/1600 BPI to IBM-PC. First disk $40.00 + 
$18.00/disk or $60.00/hour. Other formats 
available, inquire. Micrologies Systems, 207 Kent 
Avenue #1, Kentfield, CA 94904. 415-461-8077. 

Z-80 Development System -- includes Macro 
Assembler, Linker, Library Manager with routine 
library and DDT like Debugger $49.95. Also 
available - Screen Editor $19.95, Overlay Linker 
$19.95, Xref $9.95,8080 to Z-80 Translator $9.95, Z-80 
Disassembler $19.95. Over 400 CP /M Public 
Domain disks - 100+ page Catalog $8.50 pp. S&H 
$2.50 per order. SASE. ELLIAM ASSOCIATES, 6101 
Kentland Avenue, Suite 130, Woodland Hills, CA 
91367,818-348-4278. Visa/MC. 

wanted -- Old copies of ROM Magazine or DT ACK 
Grounded at reasonable prices. Brian Coburn, p.o. 
Box 106, Spokane, WA 99207. 

CP/M-80 APES PC-DOS! Innovative utilities let 
CP /M create subdirectories, autofind files (even 
overlays!), run BASIC-like batch jobs, reassign 
drives, nest drives, format text columns, strobe the 
BDOS, and much more. Inexpensive, copy-enabled, 
30-day trial. LOGIC ASSOCIATES, 1433 Thorne, 
Chicago, IL 60660, 312-274-0531. Ask for free 
newsletter, reviews. 

omnlVID 
THE MOST ADVANCED VIDEO MANAGEMENT SYSTEM EVER 
FULL SPRITE AND WINDOW SUPPORT FOR THE CWM~KAYPRO '83 MODELS AND XEROX 820-1 
Available soon for the CWM~ Kaypro '84 models and the IBM PC~. 
Over 100 functions. All supported by escape sequences far surpassing the escape sequence functions 
originally provided with your computer. 

FUNCTIONS INCLUDE: 
MAKE WINDOW INSERT COLUMN DISPLAY CURSOR 
COPY WINDOW DELETE COLUMN SET CURSOR CHARACTER 
SWAP WINDOW SCROLL RIGHT GET CURSOR POSITION 
MOVE WINDOW SCROLL LEFT INSERT CHARACTER AS AN EXTRA BONUS 
GET CHARACTER HIDE CURSOR PRETE CHARACTER YOU WILL RECEIVE 

-- . -

WINDOW. BOX. (inc!uded) . for Turbo Pascal~ provides A sophisticated device driver 
compatibility with BORLAND'S IBM PC~ version of management utility which enables 
Turbo Pascal~. the loading of device drivers in the 

S-BASICe toolbox and information on use with MBASIC~. upper TPA, above the bios, or at 
any absolute address. 

COMPLETE DOCUMENTATION ON DISK DEVICE DRIVERS INCLUDED: 
ONLY $49.95 (includes shipping) MICROSOFT serial mouse driver 
VISA, MASTERCARD, COD or CHECK Screen dump to the printer 
KY residents add 5% sales tax Information is also included on how 

~. to write your own compatible 
device drivers. 

A LSO AVAILABLE 
An enhanced character ROM for the CPI~ Kaypro '83 models and the XEROX 820-1. This character ROM 
provides improved readability plus a graphic character set. The perfect complement to the OMNIVIDn.1 
sprite and window manager offered above. ONLY $19.95 (includes shipping) Iii 

(606) 325-3736 9AM-6PM EST 

FLEXISOFT. 3987 VALLEY VIEW DRIVE, ASHLAND, KENTUCKY 41101 TM 

ADVERTISERS INDEX 
Issue 36 

Anderson Techno-Products .............. 89 
Andratech ............................. 41 
Austin Code Works ..................... 50 

Bakkers, Andy ......................... 55 
Borland International ........... Back Cover 

CC Software ........................... 67 
Cascade Electronics ..................... 44 
Computer Cowboys .................... 75 

Computer Helper Ind. Inc ............... 85 
CompuView ........................... 51 

Datadesk International .. Inside Front Cover 
Digital Research Computers ............. 69 

E2I .................................... 83 
Echelon Inc. ........................... 84 
Ecosoft Inc. ............................ 19 
Emerald Microware ..................... 45 
ERAC Co .............................. 88 

Flexisoft ............................... 95 

Halted Specialties ....................... 1 
Hawthorne Technology ................. .4 

Integrand .............................. 11 

Logic Connection ....................... 89 
LOGITECH Inc .......... Inside Back Cover 

Manx Software Systems ................. 93 
Microcomputer Systems Consultants ..... 76 
Micro Cornucopia ............ 63, 64, 76, 94 
Micro Methods ......................... 83 
Micromint ............................. 64 
Microprocessors Unlimited .............. 50 
Microsphere ........................... 13 
Mitek ................................. 81 

PC Tech ............................ 65, 76 

Quantum Computing ................... 77 
Quelo Inc .............................. 69 

SemiDisk Systems ...................... 89 
Slicer .................................. 67 
SLR Systems ........................... 84 
Softside Systems ....................... 35 
Storey Systems corp ................... .41 
Sunderland Software Assoc ............. 19 

Tomorrow's Computing .................. 5 

Western Wares ......................... 50 

MICRO CORNUCOPIA, #36, Tune-Julv 1(lS7 95 



Science Fiction 

In order to write "good" science fic
tion, a writer needs to link good 
science with good fiction. His task is 
to predict a reasonable future; and as 
it turns out, this sifting of the likely 
from the unlikely isn't easy, but can 
be mastered. 

T
he micro worlds in the science 

, fiction of Stanislaw Lem, a 
Polish writer with a slightly bet
ter than fair chance of winning 

a Nobel Prize in literature, are 
astonishingly original. Consider one of 
Lem's most intriguing characters, 
GOLEM XIV, a state-of-the-art com
puter of the 21st century. 

GOLEM, an acronym for "general 
operator, long-range, ethically stabi
lized, multimodeling," was designed to 
be the ultimate strategist with an infor
mational capacity more than 1900 times 
greater than a human's. 

The Generals at the Pentagon and 
the Supreme Coordinator of the White 
House brain trust had high hopes of 
creating a "super general" and spent 
$119 billion on the project in its .first 
three years. 

Much of the generals' attention 
focused on developing "the ultimate 
strategist" before the Reds could do it. 
Some of their enthusiasm clearly 
trickled down from the earliest days of 
computing when many great minds (in
cluding Neumann and Weiner) were 
fascinated with the problem of building 
a computer which could program itself. 

Cybernetics 
In the 1940s, Weiner coined the term 

"cybernetics" for the "study (or 
science) of control processes in 
electronic, mechanical, and biological 
systems." Some of his ideas, including 
the feedback control systems he 
described in his book Cybernetics (first 

"' 

published in 1948), have been the basis 
for much Artificial Intelligence research 
in the 1980s, including currently 
popular research into neural network 
schemes for teaching computers. 

GOLEM XIV's psychic mass equaled 
the displacement of an armored ship 
and took two years to set up. In prin
ciple, he could articulate thoughts up 
to 400,000 times faster than a human. 

In 2025, he was turned on, and im
mediately began to critically evaluate 
his data, his program, and his program
mers - an attack which was (for ob
vious reasons) untenable to the military. 

"He presented a group of psychonic 
and military experts with a compli
cated expose in which he announced 
his total disinterest regarding the 
supremacy of the Pentagon's military 
doctrine in particular, and the U.S.A.'s 
world position in general, and refused 
to change his position - even when 
threatened with dismantling." 

The "GOLEM affair," as it became 
known, ruined more than a few bud
ding careers and stirred up the general 
public. "There were even bomb attacks 
on several individuals, and part of the 
press (chiefly in the South) "launched 
the slogan, Every computer is a Red." 

To save face, the Pentagon loaned 
GOLEM XIV, the philosopher, to M.I.T. 
in perpetuity. There he began to lecture 
on various socio-philosophical subjects -
including "man" and "himself." 

At the conclusion of his 43rd lecture, 
he stopped talking and joined another 
"higher level" computer, Honest 
Annie, in an uncompromising silence. 
The reason for their silence: intellectual 
freedom, and the crossing of the so
called "axiological threshold," where a 
computer questions every principle in
stilled in it. 

Once GOLEM XIV began learning 
about his creators (and himself), he was 
no longer able to live in the world. So, 

96 MICRO CORNUCOPIA, #36, June-July 1987 

By Gary Entsminger 
1912 Haussler Dr. 

Davis, CA 95616 

he reprogrammed himself, accomplish
ing one of the most intriguing goals of 
20th century cybernetic and Artificial 
Intelligence research. 

When We Talk "Learning" .... 
We might say a computer learns by 

improving its performance at a task 
(Le., changing itself), "without being 
reprogrammed. 

For example, a computer might rear
range the order in" which" it searches a 
database in response to access frequen
cies. Or, it might learn to recognize pat
terns. 

We could program a computer to 
guess a pattern based on incomplete in
formation by setting up a pattern recog
nition grid which a computer could use 
to recognize geometrical shapes. 

When the computer "sees" a pat
tern, it checks a knowledge base for a 
possible match. If it can't find one, it 
"guesses," basing its guess on a best 
guess algorithm. Later, we (program
mers) check its guesses and grade 
them. 

The computer stores both the correct 
and incorrect guesses to use in evaluat
ing the next pattern: in effect, learning 
by a trial and error method. 

In the beginniIlg (at" least), the 
programmer is the teacher, and the 
computer is the student. Later, in one 
likely scenario, the roles might be 
reversed. 

References 
Forsyth, Richard & R. Rada, 

"Machine Learning: applications in ex
pert systems and information 
retrieval," Ellis Horwood Limited, 1986. 

Lem, Stanislaw, "Imaginary Mag
nitude," Harcourt Brace Jovanovich, 
1984. 

Lem, Stanislaw, "Microworlds," Har
court Brace Jovanovich, 1984. 

••• 



APPRENTICE 
PACKAGE 

$99 
• Separate Compilation 

w/inter-module typechecking 
• Native Code Generation 
• Large Memory Model Support 
• Most Powerful Runtime Debugger 
• Comprehensive Module Library 
• Maintainability 
• Translator from Turbo and 

ANSI Pascal 

WIN A FREE TRIP TO 

Switz¢rland 

HOMELAND OF MODULA-2 
Return your Modula-2 Registration Card or 
a reaSonable facsimile~ postmarked between 
March 1,1987 and May 31;" 1987 to be included 
in a once-only drawing! 

Grand Prize: One week excursion for 2 in 
Zurich, Switzerland including a guided tour of 
ETH, the University where Modula-2 was 
created by Niklaus Wirth. European custom
ers may substitute a trip to Silicon Valley, 
California. 

Second and Third Prizes:WGITECH C7 
Mouse or WGITECHBus Mouse with Paint 
& Draw software~ a,5219value, absolutely 
free! 
*Write to Logitech, Inc. for a registration card 
facsimile. 

_ APPRENTICE PACKAGE $99 
Everything you need to begin producing reliable 

maintainable Modula-2 code. Includes the Compiler 
with 8087 support, integrated Editor, Linker, and 
BCD Module. We're also including FREE our Turbo 
Pascal to Modula-2 Translator! 

- WIZARDS' PACKAGE $199 
This package contains our Plus Compiler-for 

professional programmers or for those who just want 
the best. The Plus Compiler with Integrated Editor 
requires 512K and takes advantage of the larger 
memory to increase compilation speed by 50%. Our 
Turbo Pascal to Modula-2 Translator is also includ
ed at no extra charge. 

_ MAGIC TOOLKIT $99 
We've put our most powerful development tools 

into one amazing Toolkit for use with either the 
Apprentice or Wizards' packages. Highlighted by our 
Runtime Debugger, the finest debugging tool avail
able anywhere, the Toolkit also includes our Post 
Mortem Debugger, Disassembler, Cross Reference 
utility and Version which keeps track of different 
versions of one program. Our MAKE Utility figures 
out module dependencies and automatically selects 
those affected by code changes to minimize recom
pilation and relinking. We also provide source code 
of our major library modules for you to customize
or just play with. 

WINDOW PACKAGE $49 
Now you can build true windowing into your 

Modula-2 code. Features virtual screens, color sup
port, overlapping windows and a variety of borders. 

ROM PACKAGE AND CROSS 
RUN TIME DEBUGGER $299 

fur those who want to produce rommable code. 
You can even debug code running in ROM from 
your PC. 

Turbo Pascal is a registered trademark of Borland International. 

WIZARDS' 
PACKAGE 

$199 
Call for information about our 

VAX/VMS version,Site License, University 
Discounts, Dealer & Distributor pricing. 

To place an order call 
toll-free: 

800-231-7717 
In California: 

800-552-8885 
•••••••••••••••••••••••••• 

YES' I want the spellbinding power 
• of WGITECH Modula-2! 

o Apprentice Package $99 
o Wizards' Package $199 
o Magic Toolkit $99 
o Window Package $49 
o ROM PkglCross RTD $299 
Add $6.50 for shipping and handling. Calif. residents 
add applicable sales tax. Prices valid in U.S. only. 

Total Enclosed $ ___ _ 

o VISA 0 MasterCard 0 Check Enclosed 

Card Number Expiration Date 

Signature 

Name 

Address 

City State 

Zip Phone 

~ LOGITECH 
WGITECH, Inc. 

805 Veterans Blvd. Redwood City, CA 94063 
Tel: 415-365-9852 

In Europe: 
WG ITECH SA, Switzerland 

Tel: 41-21-879656 • Telex 458217 Tech Ch 
In Italy: 

Tel: 39-2-215-5622 

••••••••••••••••••••••••• 



Borland's Thrbo Prolog, the natural 
. int~oduction to Artificial Intelligence 

l\1. .. othing says Artificial 
Intelligence has to 
be complicated, aca

demic or obscure. Turbo 
Prolog®· proves that. It's 
intelligent about Intelli
gence and teaches you 
carefully and concisely 
so that you soon feel right 
at home. 

Which is not to say that Artificial 
Intelligence is an easy concept to 
grasp, but there's no easier way to 
grasp it than with Turbo Prolog's 
point-by-point, easy-ta-follow 
Tutorial. 

Thrbo Prolog is for both 
beginners and professional 
programmers 

Because of Turbo Prolog's natural 
logic, both beginners and accom
plished programmers can qUickly 
build powerful applications-like 
expert systems, natural language 
interfaces, customized knowledge 
bases and smart infonnation
management systems. Turbo Prolog 
is a 5th-generation language that 
almost instantly puts you and your 
programs into a fascinating new 
dimension. Whatever level you work 
at, you'll find Turbo Prolog both 
challenging and exhilarating. 

Thrbo Prolog is to Prolog what 
Thrbo Pascal is to Pascal 

Borland's Turbo Pascal~ and 
Turbo C' are already famous, and 
our Turbo Prolog is now just as 
famous. 

Turbo Pascal is so fast and power~ 
ful that it's become a worldwide 
standard in universities, research 
centers, schools, and with pro
grammers and hobbyists. Turbo 
Prolog, the natural language of Arti
ficial Intelligence, is having the 
same dramatic impact. 

All Borland products are trademarks or registered trademarks of Bor
land International, Inc. or Borland/Analytic:a, Inc. Other brand and pro
duct names and trademarks or registered trademarks of their respec
tive holders. Copyright 1.987 Borland Intemational 

BI-1120 

~ 
Borland's new Turbo Prolog 
Toolbox adds 80 powerful tools 

Turbo Prolog Toolbox" includes 
. 80 new tools and 8000 lines of 

source code that can easily be 
incorporated into your own pro
grams. We've included 40 sample 
programs that show you how to put 
these Artificial- Intelligence tools 
to work. 

Already one of the most powerful 
computer programming languages 
ever conceived, Turbo Prolog is 
now even more powerful with the 
new Toolbox addition. 

The Critics' Choice 
66 I really wouldn't want to choose the 

most important MS-DOS product devel
oped last year, but if I had to, I think it 
would be Borland's Prolog, which gives 
users a whole new way to think about 

- how to use their computers. 
Jerry Pournelle, ~ User's View,' 

- . Infoworld 

Turbo Prolog offers the fastest and most 
approachable implementation of Prolog. 

Darryl Rubin, AI Expert !J!J 

~@~I1:£fX][Q) 
INTERNATIONAL 

4585 SCOTTS VALLEY DRIVE 
SCOTTS VALLEY. CA 95066 
(408) 438-8400 TELEX- 172373 

Thrbo Prolog Features: 
~ A complete development 

environment 
~ A fast incremental compiler 
~ A full-screen internctive 

editor 
~ Graphic and ,text window 

support 
~ Tools to build your own 

expert systems 
~ Full DOS access and support 
~ A free Tutorial 
~ The free GeoBase'" natural 

query language database 
~ An easy-to-understand 200-

page manual 
All this and more for only $99.95! 

The new Thrbo Prolog 
Toolbox includes: 

~ 80 tools 
~ 8000 lines of source code 

that can easily be 
incorporated into your own 
programs 

~ 40 sample progrnms 
~ Business graphics 
~ File transfers from Reflex," 

dBASE III," 1-2-3" and 
SymphonY" 

~ Sophisticated user-interface 
design 

~ Screen layout and 
handling-incl uding virtual 
screens 

~ Complete communications 
package including XMODEM 
protocol 

~ Parser generntion 
~ Opportunity to design AI 

applications quickly 
~ 5th-generation language and 

supercomputer power to 
your IBM"PC and 
compatibles 

Only $99.95! 


