
A CAHNERS PUBLICATION

®

SEPTEMBER 17, 1990

Moving from C to DSP pg 10

Debugging guidelines ease
software development pg 21

Real-time programming
series-Part 1 pg 29

Easing potts from
Unix to OS/2 pg 53

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

%
c:::i
UJ

0
~
t-

t­
:z:
UJ
:i::::
UJ
-'
ll..
ll..
:::>
If)

r.

t
\

I

START

SOFTWARE
ENGINEERING·
SPECIAL ISSUE

data)
't empty
(data)

EOF) I I (! feof (fdin)))

colmax. */

1on1101nn1nn1nno

All the features of
HPBASIC, and more.

For less.

HTBasic BASIC FEATURES: HP BASIC
YES IEEE-488 GPIB (HP-IB) , RS-232 Instrument Control YES
YES Integrated Environment: Mouse, Editor, Debt_!gg_er, Calculator YES
YES Sl!£Q_orts I6 M~'2Y!es of MemoQ'._ (breaks DOS 640K barrier) YES
YES Engineering_ Math: Matrix Math, Con~ex Numbers YES
YES H!.g!1 Level Gr~1ics: Screen, Plotter, Printer YES
YES Structured Pr~ammin_g_ with IndeQ_endent SubQr~ams YES
YES Runs on Industi:Y_ Standard Personal Com_Q_uters NO*
YES Indust!l'._ Standard Gr~hic Printer St~rt: ~on, IBM, lasers, etc. NO
YES Indust!l'._ Standard Network Sl!£Q_ort: Novell , IBM, Microsoft, NFS, etc. NO
YES Indust'l Standard IEEE-488 Sl!.2£_ort: National Instruments, IOtech, etc. NO
YES Exchange data fil es with Indust11_Standard PC ~ications NO*
YES No -cha~ Teli:£!10ne Technical Sl!.2£_ort NO
YES Instant on-line HELP ~stem NO

A Costly Situation. Every engineer needs the power and features of a "Rocky Mountain" BASIC workstation, but not everyone can
have one. They simply cost toO much. Fewer workstations, les.s productivity. The Best Way. TransEra HTBasic software provides the
only way for serious teclmical computer users to turn tl1eir PC into a workstation witl1out having to add costly hardware. fuwerful
workstations for everyone means greater productivity. Extraordinary Versatility. In addition, TransEra HTBasic works witl1 tl1e
Industry Standard Personal Computer hardware, software, and networks. It even allows you to easily exchange data between your
favorite DOS programs and tl1e files you create in the BASIC workstation enviromnent. All at a fraction of tl1e cost of otl1er
solutions.

More compatibility. More versatility. More possibilities. Tran.sEra
Les.s expense. Les.s hassle.

To find out more, call 1-801-224-6550. Engineering Excellence for 15 Years "'
CIRCLE NO. 1

* Without the addition of a costly 68ooo co-processor. C> C.Opynght 1990 TransEra C.Orporalion. All nghts reserved. HP. !IP BASIC, and HPIB are registered trademarks of llewlett·Packard Co

MI CE-V-486.
33MHz Emulation.
Real features.
Real-time.

Without real-ti
emulation you never
know how your product
will perform until it has to
fly . Traditional in-circuit
emulators slow your target to
collect, display or reprogram
trace. Or even stop emulation (or
your target) to load complex
triggers. When your emulator can't
show you what's actually happening
you risk missing a bug that will sneak
from your prototype to the finished product.

MICE-V-486 lets you see it all.
,.. Real-time emulation to 33MHz.

,.. Complex, sequential triggers,
loaded without slowing the emulator or

target.
,.. Access to the fully qualified trace buffer

during full-speed emulation.
,.. High level language debug.

,.. Probe kits for 386, SX, 376 and 286 support.

Most in-circuit emulators require partially or
completely functional hardware to operate correctly.
MICE-V-486 has a unique Isolation Mode™, requiring only a

working clock signal. Logic analyzer taps are conveniently
located to give you access to critical timing information. MICE-V-
486 provides absolutely the fastest method for debugging non-functional
486-based hardware.

Microtek also has real-time emulators and source-level
debuggers for 68000, -020, -030 and 80C186.

So, stop wasting development time because your emul­
ator isn't real-time. Call us, and get your product to market fast.

MICROTEK
The Leader In Development Systems Technology.T"

MICROTEK INTERNATIONAL, INC. - Development Systems Division
3300 N . W. 211 th Terrace, Hillsboro, OR 97124 • (503) 645-7333 • Fax (503) 629-8460

2

ASIA OFFICE - Taiwan - MIC ROTEK INTERNATIONAL 886-2-723-5577 / Japan - CORE Digital 81-3-7955171

EUROPE OFFICE - Germany - ALLMOS 49-89-8570000/ France- M.T.E. 33-1-39618228/ U.K. - ARS Microsystems 44-276-685006

CIRCLE NO. 2 EDN's Software Engineering Special Issue

SOFTWARE ENGINEERING SPECIAL ISSUE

Art becomes science
Not so very long ago, software development was more an art than a
science. The best programmers were those brilliant individuals who could
disappear into small cubicles, work their creative magic, and then reappear
some weeks or months later with programs of dazzling cleverness. Often,
though, the programs were so clever no one could understand them. Some­
times they did what they were designed to do, but were designed to do
the wrong thing. The fact that a program did the wrong thing with dazzling
cleverness was usually of some satisfaction to the programmer, but very
little to the programmer's manager.

So it happened that software development-mostly an art-led to
software engineering-mostly a science. Managers' needs to predict
results won out over programmers' desires to be independent and
creative. As with many changes, this one was fueled by money;
the value of software in most products is now greater than
the value of the hardware, a fact that few managers can
afford to overlook.

Software's growing importance and software
engineering's increasing overlap with hard­
ware engineering have led the editors of
EDN, over the years, to increase their
software coverage. In this special is­
sue, we give you nothing but soft­
ware. It's not software in a vacuum,
though; rather, it's the kind of software
that also involves hardware , the kind of soft-
ware EDN readers are involved with.

The articles included here all reflect the evolu­
tion of software development from art to science.
An article on debugging, for example, stresses a rig­
orous approach to designing software that prevents
many problems from ever occurring. Another article,
on DSP software development, shows how DSP software
is moving from an esoteric group of specialists to the main­
stream of software development. And in the first of an 11-part
series, we begin a no-nonsense guide to real-time software design,
previously one of the blackest black magics of them all. Rounding
out the list of technical articles are a practical guide to developing
OS/2 applications and some useful techniques for combining C and assem­
bly language.

You could view these articles as a few small components in the enormous
structure that is software-as-science. In science, you have a knowledge
base to build on; you don't have to waste creative energy reestablishing
what others have already done. But creativity is as essential to science
as it is to art, and the rules of science should help us, not hinder us; if
they don't, we should break them. Rules were made to be broken, after
all, and even science should be fun. If programmers lose the spirit that
existed when software was more an avocation than a vocation, when it
was more an art than a science, then we will all feel the loss.

Gary Legg
Special Projects Editor

EDN's Software Engineering Special Issue 3

Requirements Analysis
Cadre's Unified CASE product family brings software design
automation to the entire systems development lifecycle, from
requirements analysis through to product test.
Requirements analysis extracts product function and behavior
from fundamental system requirements. Workstation-based
Teamwork and ADAS describe system requirements and
evaluate tradeoffs between cost and performance.

@

Winning teams depend on it.

Design & Code
With requirements analysis completed, project teams imple­
ment software design and program logic using Teamwork.
Design converts directly to code using Ada and C Source
Builders, improving consistency and product maintainability.
Cadre's networked Unified CASE environment moves design
teams quickly through the product lifecycle to develop
supe~ior products.

CADRE means
Path Map, PROBE, Software Analysis Workstation, Unified CASE, Ada Source Builder, and C Source Builder are trademarks of Cadre Teel

Test & Integration
Cadre's Unified CASE test products debug and test embedded
software directly in target hardware. Test data automatically
annotates original design for complete traceability.
Cadre's Software Analysis Workstation, or SAW, measures
execution and performance of embedded software. PathMap,
Cadre's Run-time Reverse Engineering tool, creates design­
level Structure Charts from actual code executing in target
hardware. PROBE in-circuit emulators allow software engineers
to operate from their own workstation platforms.

Unified CASE

Ongoing Product Support
The Unified CASE product family includes Cadre's respon­
sive customer service, specialized training programs, con­
sulting services, and ongoing product enhancements . How
can Unified CASE improve your products? To find out

Call (401) 351-CASE
When critical systems need to be developed, project leaders
call for Unified CASE solutions. Available only from Cadre.

CIRCLE NO. 3

CADRE ~~~~~cT~~:~~~T:::~,n~~ovidence, RI
02903 U.S.A. (401) 351 -2273

Winning teams depend on us.
1nologies Inc . Teamwork is a registered trademark or Cadre Technologies Inc . ADAS is a trademark or the Research Triangle Institute .

5

Volume 35, Number 19B September 17, 1990

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

VP/Publisher
Peter D Coley

Associate Publisher
Mark J Holdreith

VP/Editor/Editorial Director
Jonathan Titus

Managing Editor
Joan Morrow Lynch

Assistant Managing Editor
Susan L Rastellin i
Special Projects

Gary Legg
Home Office Editorial Staff

275 Washington St, Newton, MA 02158
(617) 964-3030

Tom Ormond, Senior Editor
Charles Small , Senior Editor

Susan Bureau, Associate Editor
Jay Fraser, Associate Editor

John A Gallant, Associate Editor
Michael C Markowitz, Associate Editor

Dave Pryce, Associate Editor
James P Scanlan , Associate Editor

Jul ie Anne Schofield, Associate Editor
Dan Strassberg, Associate Editor

Chris Terry, Associate Editor
Helen McElwee, Senior Copy Editor

Christine McElvenny, Senior Production Editor
Gabriella A Fodor, Production Editor

Brian J Tobey, Production Editor
Editorial Field Offices

Steven H Leibson, Senior Regional Editor
Boulder, CO: (303) 494-2233
Doug Conner, Regional Editor

Atascadero, CA: (805) 461-9669
J D Mosley, Regional Editor

Arlington, TX : (817) 465-4961
Richard A Quinnell , Regional Editor

Aptos, CA: (408) 685-8028
Anne Watson Swager, Regional Editor

Wynnewood, PA: (215) 645-0544
Maury Wright, Regional Editor

San Diego, CA: (619) 748-6785
Brian Kerridge, European Editor

(603) 630782
(St Francis House, Queens Rd ,

Norwich, NR1 3PN, UK)
Contributing Editors

Robert Pease, Don Powers,
David Shear, Bill Travis
Editorial Coordinator

Kathy Leonard
Editorial Services

Helen Benedict
Art Staff

Ken Racicot, Senior Art Director
Chinsoo Chung, Associate Art Director

Cathy Madigan, Staff Artist
Production/Manufacturing Staff

Andrew A Jantz, Production Supervisor
Sandy Wucinich, Production Manager
Deborah Hodin, Production Assistant
Kelly Brashears, Production Assistant

Diane Malone, Composition
Director of Art Department

Joan Kelly
Norman Graf, Associate

VP/Production/Manufacturing
Wayne Hulitzky

Director of Production/Manufacturing
John R Sanders

Business Director
Deborah Virtue

Marketing Communications
Anne Foley, Promotion Manager
Pam Winch, Promotion Assistant

EDN's Software Engineering Special Issue

SOFTWARE ENGINEERING
SPECIAL ISSUE

Moving from C to DSP 10
DSP software development is getting easier, thanks to improved

DSP chips and better development tools. -David Shear,
Contributing Editor

Debugging guidelines facilitate
software development

21

Although software debugging can be something of a black art,
some general rules do apply. Consider the various debugging
options that are available at different stages of software design
and integration.-Andy Lantz , Intermetrics Inc

Real-time programming-Part 1 29
As real-time programming has matured, a body of knowledge

has developed about the special problems of real-time devices and
the techniques required to handle these problems. This series of
articles will present some of that knowledge.-David L Ripps,
Industrial Programming Inc

Mix C and assembly language
for fast real-time control

41

Flow-control code compiled in C often executes too slowly for
real-time applications. But if you replace switch statements with
an assembly-language driver, your program will run almost twice
as fast as a pure C program.-Rick Brown, Desert Research
Institute, University of N evada

Comprehensive features ease ports
from Unix to OS/2

53

Porting an application from one operating system to another is
rarely simple. In the case of porting Unix applications to OS/2,
your task is simpler because OS/2 has features similar or superior
to Unix.-Joseph Gnocato, MPR Teltech Ltd

Software Development Tools
Career Opportunities
Advertisers Index . . .

62
66
71

EDN"(ISSN 0012-7515) is published 50 times a year (biweekly with 2 additional issues a month , except for February
and September, which have 3 additional issues and July and December which have 1 additional issue) by Cahners
Publishing Company, A Division of Reed Publishing USA, 275 Washington Street , NeW1on, MA 02158-1630. Terrence
M McDermott. President; Frank Sibley, Senior Vice PresidenUGeneral Manager, Boston Division; Jerry D Neth, Senior
Vice PresidenUPublishing Operations; J J Walsh, Senior Vice PresidenUFinance; Thomas J Dellamaria, Senior Vice
President/Production and Manufacturing ; Ralph Knupp, Vice President/Human Resources. Ci rculat ion records are
maintained at Cahners Publishing Company, 44 Cook Street , Denver, CO 80206-5800. Telephone: (303) 388-4511 .
Second-class postage paid at Denver, CO 80206-5800 and additional maili ng offices. POSTMASTER: Send address
corrections to EON , PO Box 173377, Denver, CO 80217-3377. EON® copyright 1990 by Reed Publishing USA; Ronald
G Segel , Chairman and Chief Executive Officer; Robert L Krakoff, President and Chief Operating Officer; William
M Platt, Senior Vice President. Annual subscription rates for nonqualified people: USA, $109.95/year; Canada/Mexico,
$135/year; Europe air mail, $165/year; all other nations. $165/year for surface mail and $250/year for air mail. Single
copies are available for $10. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

7

68040 SYSTEMS EQUIPPED
.. «vou~LL NOTICE A

-.

Systems utilizing the new

Samsung 84C31 take off.
They run like Triple Crown­

win ning thoroughbreds.

They blaze, scorch, and

leave others in their dust.

In a word, they are fast .

And they make even

speedy 68040 systems that

don 't use the 84C31, look

like they're not in motion.

The 84C31 was designed

with the close cooperation

of Motorola. It is the only

DRAM controller designed

SAMSUNG'S DRAM CONTROLLER
FORTHE6IOJIOAHD6I030

Parl Numkr RM!d SupporleiJ PMka.g~

KS84C3 1-33CL 256K, !Mb 68-pin PLCC

KS84C32-33CL 256K, !Mb, 4Mb 84-p;n PLCC

Samp/L.1 anJ proJuction availabU now.

specifically for Motorola's

powerful 68040 and 68030

microprocessors.

Like the extremely suc­

cessful earlier-generation

Samsung System Accelera­
tors T,M the part is highly

integrated and inherently

fast. And as the cutting

edge in memory control, it

can help you simply and

economically enhance even

68040 performance.

The 84 C3 l supports both

the burst and non-burst

modes of the 68040. It also

provides a direct interface

.·

"·
' .

'

.. ,

WITH OUR DRAM CONTROLLER:
CERTAIN IMeROVEMENT.

to the . microprocessor.
Which saves you dollars,
board real estate, and

68030 PIRFORMANCl SUMMARY

Aa.., Cloch DRAM SpaJ fo'l""'cy (Mbz)

4-2-2-2 70 ns 20

5-2-2-2 120 ns 20

5-2-2-2 80 ns 25

6-2-2-2 120 ns 25

6-2-2-2 80 ns 33

7-2-2-2 100 ns 33

~ PIRFORMANCl SUMMARY

A«.., Cloch DRAAf SpaJ Froi,,,ncy (Mbz)

3-2-2-2 80 ns 25

5-2-2-2 100 ns 25

6-2-2-2 120 ns 25

5-2-2-2 80 ns 33

6-2-2-2 100 ns 33

esign time, since it means
you don't need additional

glue logic.
EMe of design is another

advantage. As a glance at
our System Design Guides
will show, it's an unusually

simple chip to design in.
All in all , we believe the

84C31 is the best memory
controller solution available
today.

For details on using it to
make your designs take off,
contact DRAM Controller
Marketing , S a msung
Semiconductor, 3725 No.
First St., San Jose, CA

95134. Or call 1-800-669-
5400, or 408-954-7229.

SAMSUNG
Semiconductor

C Sam.1ung StmuonJuctor, !t1c., 1990. Sy..trm Acukralor,.. a traikmarl:
of Sam,,11119 SrmuoniJuclor, l11c. Alolorola,.. a traikmarJ: of tlfotorola, Int.

CIRCLE NO. 5

D E S I G N F E A T U R E

D
igital signal processing (DSP) is moving into the main­
stream. Low-cost DSP chips are going into products rang­
ing from games to cellular telephones and from modems

to electronic test equipment. When-not if-you face a DSP soft­
ware project, you must know how to tackle it. Fortunately, new
chips and their supporting development tools are making that task
easier than it was a few years ago. For experienced C program­
mers, DSP projects require only a few new skills.

Advice for getting started in DSP ranges from "hire an expert"
to "just open a book and have at it." Warren Cope, senior applica­
tions engineer at Spectrum Signal Processing, suggests starting
with literature, routines, and application libraries from manufactur­
ers and the public domain. "Call all the chip vendors and get what­
ever application literature they have," he says. "Just because you're
using a TI chip doesn't mean you can't read Motorola's books. The
algorithms still work no matter what chip you're using."

Ray Simar, principal architect and program manager for Texas
Instruments' TMS320C30 and TMS320C40, echoes Cape's advice.
For information on any of Tl's DSP products, he suggests calling
the Texas Instruments hot line ((713) 274-2320). In addition to
customer-support phone lines, major chip vendors have computer­
accessible bulletin boards with DSP information and program list­
ings. Many textbooks also include DSP algorithms and listings in
Fortran or C. Whatever method you use to acquire it, a general
understanding of DSP is essential for developing DSP software
(see box, "A DSP definition").

With some knowledge of DSP in hand, you'll want to learn about
development tools for different DSP chips. The availability and
quality of development tools should influence your decision about
which DSP chip to use, because most DSP projects are software
intensive. Some chips have few or no tools, and others have an
impressive variety. Texas Instruments leads the industry in tools
and assistance; Analog Devices, AT&T, and Motorola also offer a
number of tools. Look closely at the tools available for a particular
DSP chip before selecting it; the effort you waste when you don't
have good tools can be enormous.

Because first-generation DSP chips had novel architectures, de­
velopment tools for them were difficult to create and, therefore,

C source-level debuggers, like the TMS320C30 C Source Debugger from Texas Instruments (left), are
changing the way you debug DSP software. You no longer have to look at an assembly listing to
figure out what the compiler has done with your high-level code.

EDN's Software Engineering Special Issue 11

New hardware and software tools are
changing the way DSP programs are
developed.

scarce. These early chips had architectures optimized
for DSP, and little else; capabilities for running the
general-purpose part of a program were very limited.
Modern DSP chips, however, are capable general-pur­
pose processors, and the hardware and software tools
for them are changing the way DSP programs are
developed. Now, developing a DSP program resembles
the development of other real-time programs.

erators, and extensive DSP function libraries. Several
vendors offer complete, dedicated DSP development
systems that include all these tools. There's even a
real-time multitasking operating system especially for
DSP chips-Spox from Spectron Microsystems.

C vs assembly code

The tools for a particular DSP chip used to include
only an assembler and a simulator. Today, some DSP
chips have an optimizing C or Ada compiler, a source­
level debugger, a real-time emulator, a block-level­
language programming- system, a variety of code gen-

In addition to development tools, you must also con­
sider the language in which you'll write your DSP pro­
grams. The advantages of C over assembly language
are the same for a DSP chip as for a general-purpose
µP : ease of programming, code readability, and re­
duced maintenance costs. Likewise, C has the same

12

A DSP definition
The definition of digital signal
processing (DSP) is changing.
Originally, DSP was defined as
the processing of signals by digi­
tal means, as opposed to analog
means. A signal was just that: a
received sonar or radar pulse, an
acoustic signal, a signal on
aphone line.

Now a signal can be just about
anything. It is simply a continu­
ous stream of information. A com­
mon signal is the music that trav­
els through your stereo. Data
about the price of a stock over
some period of time can be a sig­
nal. Any block of related data can
be a signal.

Processing a signal means
modifying the signal so you can
understand the information it
contains. In a stereo, the bass and
treble controls process the signal
to accurately reproduce the mu­
sic. A sonar system processes a
received signal to identify the lo­
cation of targets. You can analyze
the performance of a stock to
identify trends. A modem proc­
esses transmitted and received
signals so computers can commu­
nicate over phone lines. Any time

a signal gets modified, signal
processing occurs.

Signals can be processed by
analog or digital techniques. Digi­
tal techniques began to develop
when affordable digital comput­
ers became available in the 1960s.
But the number and size of com­
puters required for the digital ap­
proach limited its use to research
and very specialized applications.
The cost of using DSP has de­
clined, however, and the number
of available algorithms has in­
creased to a point where you may
soon be called upon to use DSP.

The signals you process with
DSP don't have to be analog. For
example, DSP can be helpful any
time you need to crunch num­
bers. By arranging your data in
the most beneficial way and using
an appropriate algorithm, you
can often manipulate your data
very quickly.

Algorithms are problem-solv­
ing procedures that generally in­
volve repetition of an operation.
The FFT, or fast Fourier trans­
form , is a common DSP algorithm
that converts data from the time
domain to the frequency domain

or vice versa. A signal that looks
very complex in the time domain
may look simple in the frequency
domain. If you use an oscilloscope
to view a signal representing the
noise from a machine, the scope
trace probably won't make much
sense. In the frequency domain,
however, the signal may appear
as only a few separate frequen­
cies mixed together. The FFT
conversion from the time domain
to the frequency domain makes
the data easier to understand.

DSP algorithms often change a
large amount of complex data into
a form that is easier to deal with.
A vision system, for example, ex­
amines and identifies objects­
perhaps good and defective prod­
ucts on a conveyer belt-and may
reduce an incredible amount of
data to a simple pass/fail result.

The algorithms you need for a
project may be given to you, or
you may have to dig into DSP
literature to find them. You
shouldn't have any trouble find­
ing algorithms, though; many
people make careers out of creat­
ing new algorithms and publish­
ing them.

EDN's Software Engineering Special Issue

Listing 1-DSP program written in C

#include <stdio.h>
#include <libap.h>
#define N 1024
#define M 10

main ()
(

/* Number of points in the window */
/* log2(N), N = 2 ' M */

static float freq_array[N/2];

/* The other part of your program goes here. When you need
to use the spectrum analyzer, use the following
function call. */

get_spectrum (freq_array);

/* use the frequency domain dat a acquired by get_spectrum */

/* get spectrum - spectrum analyzer
- This routine will read the input from an ADC,

perform a Hanning window on the data, do an

*/

FFT, and convert the resulting complex data
into floating point amplitude. Data returned
is an array of amplitude of type float in the
frequency domain. The function read_adc will
cause the hardware controlling the ADC to gather
data at precise time intervals.

get spectrum (freq_array)
(-

register float *data, real, imaginary , ampsqrd, *freq;
register int i;
static float data_array[2*NJ;

data = data array;
for (i = O;-i < N; i++)
(

I* read buffer full of data

J

*data++= read adc();
*data++ = o.o;-

channO (N,M,data array);
fft (N,M,data_array);
data = data array;
freq = freq=array;
for (i = o; i < N/2 ; i++)
(

real = *data++;
imaginary = *data++;

I* all complex values = O

I* complex Hanning window
/* FFT of the data */

I* get the amplitude *I

ampsqrd = (real* real) + (imaginary* imaginary);
*freq++= sqrt(ampsqrd);

*I

*I

*I

disadvantages: increased execution time and program
size. You'll probably want to use C as much as possible
and assembly language only for those sections that
require greater speed.

µP, but they'll give you some useful insight. After
experimenting with DSP algorithms on a PC, you can
increase capability by adding a plug-in board that has
a DSP chip. Many companies make such boards. Texas
Instruments, for example, sells the $995 EVM, a PC
card with a TMS320C30 DSP chip, memory, an ADC,
and a DAC. The EVM works with all of Tl's software
development tools. An assembler/linker and source­
level debugger come with the card; a C compiler is
optional.

Depending on your application, you may be able to
program an entire project in C. Listing 1, for example,
shows a simple DSP program that performs a spec­
trum-analyzer function. The program makes function
calls to an application library of optimized assembly­
language routines.

Unfortunately, it is difficult to determine how much
a high-level language will degrade your system's per­
formance. Optimizing compilers-available from Ana­
log Devices, AT&T, Intermetrics, Motorola, and Texas
Instruments-are an improvement over standard C
compilers, but they still don't produce code that's as
efficient as that written by an experienced assembly­
language programmer.

To begin DSP programming, you don't even need a
DSP chip. You can compile and run algorithms on your
PC. They won't run as fast on a PC's general-purpose

EDN's Software Engineering Special Issue

You can also gain DSP experience by using a DSP
function library written in C, such as DSPL from
Sonitech International. Its algorithms won't run as fast
as assembly-language versions, but they're easier to
understand. If the routines aren't fast enough for your
final product, you can still use them for prototyping
and then optimize some of the code as you become
more familiar with the DSP chip you're using.

Another helpful tool for learning about the signal­
processing aspect of DSP is filter-design software.
Many available packages will accept your specification

13

Depending on your application, you may
be able to program an entire DSP project
in C.

for a filter and then calculate the coefficients to create
the filter. The Filter Design and Analysis System
(FDAS) from Momentum Data Systems will even cre­
ate assembly-language code to implement filter algo­
rithms on a variety of DSP chips. Momentum president
Jerry Purcell says the code-generation option for
FDAS is very popular. "You can do a working program
the minute you get the software," he says. "It gives
you a big confidence boost and saves a week or two
of trying to read through the manufacturer's manual
to get a program running."

William Meshach, a consulting engineer for Lough­
borough Sound Images, recommends starting with C
to learn DSP algorithms without the added confusion
of real-time constraints. "Actually sit down with a
setup where you can run something," he says. "Just
write a C program that will record some stuff into
memory, and then write a C program that scrambles
it up somehow. Last of all, do simple math functions
just to see how the waveforms are brought in, how
they're stored, and how you manage the memory
buffers."

Spectrum's Warren Cope believes you should famil­
iarize yourself with DSP by taking three or four weeks
to get a small practice design up and running, even if
you have to borrow that time from your actual project.
"I know that seems like a lot of time if you only have
six months to do a design project," Cope says, but he
stresses that you do eventually need to learn how to
use a DSP chip and its tools, and you can get a jump
on your project by first learning how to do all the parts
of a design.

A filter-design software package can aid your introduction to DSP. The Filter
Design and Analysis System (FDAS) from Momentum Data Systems helps you
design and analyze filters and will even generate the program code needed to
create the filter.

14

A DSP board can tum your PC into a prototype development system. This
board from Spectrum Signal Processing contains Analog Devices' ADSP-2101
DSP chip, plus memory, analog 1/ 0, and digital 1/ 0 .

By doing a small design first, you'll see where you
need further help. You'll discover whether your assem­
bler actually runs on your computer, whether your
simulator runs in the available memory, and whether
the simulator is fast enough to be useful. You can also
find out if your compiler will compile and if your appli­
cation library will link. You'll make sure everything
works together and get some valuable experience on
the way.

After writing a complete DSP program in C, you
have to determine whether it's fast enough as is or if
you need to rewrite the speed-demanding sections of
code in assembly language. The simulators now avail­
able for DSP chips can help you determine which sec­
tions of code need additional work.

Before throwing any compiler-generated code out
the window, though, make sure your expectations are
realistic. Remember when you look at the code that a
DSP chip is a RISC (reduced-instruction-set computer)
processor. The code will look inefficient if you're used
to looking at the assembly language for a CISC (com­
plex-instruction-set computer) machine, but the micro­
code within a CISC machine hides many tasks that
you have to explicitly tell a RISC machine to do.

You may find that C is helpful even if a state-of-the­
art C compiler won't produce code that runs fast
enough for the task you have at hand. Many companies
use C as a development tool, even when they know
their final product will contain only hand-generated
assembly-language code; they use C to verify the func­
tionality of their DSP algorithms, and then they turn
to assembly language for speed.

Intelledex, a manufacturer of robots and vision sys-

EDN's Software Engineering Special Issue

terns in Corvallis, OR, is one company that takes this
approach. The vision systems R&D group, headed by
John McGarry, combines four AT&T DSP32C chips
to make its algorithms run faster. McGarry explains
that the group begins software development with a C
compiler on a PC. In the next step, it uses AT&T's C
cross-compiler to produce code for the DSP chips. The
resulting program works, but is slow; a by-product,
however, is an assembly-language listing that is helpful
in understanding details of the program's operation.
Next, the group writes a rough assembly-language ver­
sion using the C code as a model. The final step is to
optimize this program by taking advantage of the par­
ticular architectures of the DSP chips.

If you don't take advantage of your DSP chip's archi­
tecture, you won't get the speed the chip was designed
for (see box, "Speed in the real world"). You have to
understand the chip's parallel architecture to get the
most out of your compiler. If you write code the way
you always have, your compiler may not be able to
optimize it. Every compiler has guidelines you should
follow to get efficient code, so read the documentation
carefully.

Speed in the real world

The way you use memory for data and program stor­
age is one facet of DSP software design that can affect
your program's execution speed. Many DSP chips have
several separate memories that serve different pur­
poses; if you use the memories improperly, your DSP
chip won't work efficiently. For example, if you're mul­
tiplying two numbers together and you have to retrieve
them both from the same memory, you'll need two
sequential memory-read operations to fetch them. If,
on the other hand, you have the numbers in separate
memories, the processor can fetch them-as well as
an instruction from a third memory-all at the same
time. You must understand the memory-mapping fea­
tures of the compiler and the architecture of the DSP
chip to know where to place data for highest execution
speed.

Another way to take full advantage of a DSP chip's
speed is to use a DSP function library that's written
in assembly language. Unlike C libraries, these librar­
ies contain highly optimized assembly-language func­
tions you call from C. A good one will give you the
speed you need without making you write in assembly
language.

A DSP program is a cross be­
tween a program for a supercom­
puter and a program for a real­
time embedded system. The
number-crunching algorithms
that ran on supercomputers a few
years ago now run on DSP chips
and, in addition, must respond
quickly to interrupts from real­
world events. A DSP program is
unacceptable if some part of it
runs even a microsecond longer
than the maximum allowable
time.

not all things-very quickly. To
get optimal performance, you
must thoroughly understand your
architecture and instruction set.

to the next two numbers to be
multiplied. ·

Keeping track of what a DSP
chip is doing at any one time can
be difficult. Because most of the
chips are pipelined, a latency ex­
ists between an operation and the
availability of the operation's re­
sults. If you're writing DSP pro­
grams in assembly language, you
may have to wait a few cycles for
results. Rather than wasting
those cycles with no-ops, you can
use instructions to accomplish
something that may not even be
related to the first instruction.
The resulting code can get con­
fusing. If you're writing in a high­
level language, the assembly code
produced by your compiler can be
even more confusing.

Often you have to squeeze out
every drop of performance to
make your program fast enough.
You can literally spend months
shaving off instructions to in­
crease speed. DSP chip architec­
tures and instruction sets are de­
signed to do some things-but

EDN's Software Engineering Special Issue

Speed is the only reason for us­
ing a DSP chip. Speed is also why
programming a DSP chip is more
difficult than programming a gen­
eral-purpose µP. For a DSP chip
to be fast, it has to perform many
operations at the same time, so
most DSP chips have a parallel
architecture that makes their in­
struction sets very complex. A
single instruction doesn't do just
one thing; some operations of one
instruction may even prepare for
future operations. For example,
while a DSP chip is multiplying
two numbers from memory, the
registers that point to the num­
bers can be incrementing to point

15

Start your DSP experience by getting a
small practice design up and running,
even if you have to borrow the time from
your actual project.

Analog Devices increases DSP speed by extending
standard C. DSP/C is the company's implementation
of an extended ANSI C standard being developed by
the Numeric C Extensions Group, a working group of
the ANSI X3Jll committee. In addition to increasing
C's speed for DSP, DSP/C's nonproprietary extended
features make DSP applications easier to write. "We
believe the efficiency will be such that no one would
ever be compelled to write an assembly-language sub­
routine or even in-line assembly code," says Kevin
Leary, an Analog Devices staff engineer. Because
DSP/C is a vector language instead of a scaler lan­
guage, Leary continues, it can operate on vectors di­
rectly.

Debugging software for a DSP chip used to be a
nightmare. There were no DSP debuggers or emula­
tors on the market; you were on your own. The current
availability of source-level debuggers for DSP chips is
a major milestone. Without them, you would have to
debug your program in assembly language and then

The ease of DSP programming depends on development tools and customer
support. Texas Instruments currently leads the industry in the level of support
and the number of tools it offers.

16

try to figure out what the compiler did. This problem
is even more serious with optimizing compilers, be­
cause the assembly code they produce looks so bizarre.

The first high-level-language source-level debugger,
the TMS320C30 C Source Debugger from Texas In­
struments, supports mixed C and assembly languages.
You can look at the C code as it runs or at the assembly
code as it runs. You can observe your application from
a C perspective or an assembler perspective or even
look at them both at the same time. If you have the
assembly-language window open when you single step
through the C code, the debugger highlights not only
the line of C code, but also the assembly-language lines
that implement the C line. You can display C variables
by name, C structures, your link list (the list of all
modules linked in your program), and other data. The
debugger works on Tl's XDS development system,
EVM evaluation module, and C30 simulator.

Another source-level debugger, the XDB from Inter­
metrics, will be available this fall, according to the
company. The debugger and an optimizing C compiler
will support the Motorola 96002. Otherwise similar to
Tl's debugger, the XDB doesn't use a mouse, and its
windows aren't as convenient to use. It does have the
same user interface as other debuggers from Intermet­
rics, so if you're using another µP as your system host,
all your debugging tools can look the same. The Inter­
metrics tools run on a wide variety of computers.

When you develop and debug a program for a DSP
chip, you'll run into the same types of problems you
see in other real-time applications. Much of the advice
you hear will also sound familiar. Analog Devices'
Leary cautions against ignoring your runtime struc­
ture. He says his company's customers spend more
time fixing runtime problems than anticipated.

You also need to understand the operation of on-chip
peripherals. For example, many DSP chips have very
capable, but complex, serial interfaces. Once you set
up these interfaces, they're easy to use, but you have
to learn how they operate in order to set them up.

Communications is another area that can cause
trouble. Most of the time, a DSP chip does not work
alone; complex systems have several DSP chips or at
least a host controller. Designers often fail to examine
bandwidth requirements for these systems, says Spec­
trum's Cope. "It can take a considerable amount of
time for a DSP chip to send and receive data," he says.
"A lot of people think they can just throw data to this
other guy. They don't realize that [communication] kills
a lot of your CPU cycles."

EDN's Software Engineering Special Issue

Your next embedded
real-time eystem damn well

better be bullet-proof

LAN Downtime: Danger
Clear and Pres~1!~ an Hour, but LAN

Pr ductivity Can Cost $3 t' Their Networks
Lost o Learn to Protec ~--
Managers Can . ion>!~,,,._..._~

rifl.g Fo1 ms.i.\\l'\CC· \n 'llr
LAN dow»ll tttl 4S \ sObe es tbat for c~e<Y bo1·

0
1's tas.1~0JM ff1ctingollMpatt I c~rati.l<'itro<.:·~A -
,1<><.1"'•• • ~ .. · • Data Communications Magazine
qfas1ntlt~

March 21, 1990 cover st01y

W
e're Software Components Group,
and we deliver bullet-proof real­
time technology to people who

design embedded processor systems. One
of our customers is SUN Microsystems,
who uses our pSOS™ real-time operating
system as the core of their new FDDI
fibreoptic controller. Was bullet-proof
important to their success?

"We had many engineers working to
develop a super-reliable communications
backbone that had to be faster than
Ethernet and solid as a rock," said SUN
project manager Bernie Mezrich. "What
really sold us on pSOS was their PROBPM
debugger for the SUN environment.
Without sophisticated debugging tools, we
could have been killed by some very

subtle problems."
From ATC to ATM to CAT to FDDI,

our pSOS operating system has been proven
in billions of dollars worth of mission­
critical systems. No one else can deliver
the technology you need to create a truly
bullet-proof application.

Because no one else's kernel operat­
ing system, network handlers or file man­
agement components are as rock solid as
pSOS. Because no one else offers you a
fully integrated C or Ada environment, one
that lets you develop and debug your
multi-task, even multi-processor appli­
cation at the source-code level. Over a
network. On every major host-VAX., SUN,
HP, PC. All of which is why you should
take us up on our free offer.

Call Software Components Group today for your copy of our
white paper, How to Develop Bullet-Proof Real-Time Systems.
Or risk costing your customers some serious money.
Telephone (800)458-pSOS or FAX (408)437-0711.

l.c1pyn1th1 1990 b) Sortware Components Group, Inc. pSOS is a trademark or Software Components Group. SUN is a registered trademark of Sun Microsystems, lnc. Other compan)' and product names mentioned are t rademar~ of I heir respecti\·e holdcrs.TRRA

EDN's Software Engineering Special Issue CIRCLE NO. 6 17

Many companies use C to verify DSP
algorithms' functionality and then turn
to assembly language for speed.

A source-level debugger from Intermetrics, XDB uses the same user interface
for all the host computers it runs on and all the DSP chips and general-purpose
µPs it supports.

Your system design affects the difficulty of imple­
menting the overall program. If your DSP chip is a
coprocessor to another µP , you might be able to avoid
real-time interrupt handling, sampling data at exact
intervals, or interlacing your algorithms with real-time
control of your system. A coprocessor usually accepts
data from the host µP , then processes it and flags the
host when it's done; there are few surprises. You can

For more information ...

debug your program simply by feeding it known data
and verifying the results.

A stand-alone application, on the other hand, pro­
duces a whole new set of problems. You have to create
and verify algorithms, plus deal with all the difficulties
inherent to real-time applications. The effort to create
the DSP-related code may actually be minor compared
to the entire project. Such a project may look surpris­
ingly like any other real-time application. You have
to deal with system initialization, data acquisition, data
buffering, system control, running algorithms, re­
sponding to interrupts, memory-management func­
tions, and other difficult tasks. As DSP chips become
more powerful, you'll find your programs taking on
this added complexity as the need for a separate host
µP fades.

Armed with knowledge, however, you shouldn't find
using DSP chips too difficult. The increasing number
of development tools helps, especially if you're already
familiar with similar tools for general-purpose µPs.
The continued evolution of DSP chips makes the job
easier. And the ever increasing number of function
libraries keeps you from reinventing the wheel. EDN

Article Interest Quotient (Circle One)
High 476 Medium 477 Low 478

For more information on DSP chips and development tools discussed in this article, circle the appropriate numbers

18

on the Information Retrieval Service card, or use EDN's Express Request service. When you contact the manufacturers
directly, please let them know you saw their products in EDN.

Analog Devices Inc
1 Technology Way
Norwood, MA 02062
(617) 461-3074
Circle No. 650

AT&T Microelectronics
Dept 52AL300240
555 Union Blvd
Allentown, PA 18103
(800) 372-2447;
in Canada, (800) 553-2448
Circle No. 651

Intermetrics Inc
733 Concord Ave
Cambridge, MA 02138
(800) 356-3594;
in MA, (617) 661-0072
Circle No. 652

Momentum Data Systems
1520 Nutmeg Pl, Suite 108
Costa Mesa, CA 92626
(714) 557-6884
Circle No. 653

Motorola Inc
Microprocessor Products Group
6501 William Cannon Dr W
Austin, TX 78735
(512) 891-2030
Circle No. 654

Sonitech International Inc
14 Mica Lane, Suite 208
Wellesley, MA 02181
(617) 235-6824
Circle No. 655

Spectron Microsystems Inc
600 Ward Dr
Santa Barbara, CA 93111
(805) 967--0503
Circle No. 656

Spectrum Signal Processing Inc
Box 8110-25
Blaine, WA 98230
(800) 663-8986;
in WA, (604) 438-7266
Circle No. 657

Texas Instruments Inc
Semiconductor Group, SC-9026
Box 809066
Dallas, TX 75380
(800) 232-3200, ext 700
Circle No. 658

EDN's Software Engineering Special Issue

STAKPAC'" MINI STAKPAC"

1200 Watts Power 600 Watts

110/220 VAC Input 110/220 VAC

Upto8 Outputs Upto5

32"x5.5"xll.5 Dimensions 1.9"x5.S"x12"

Fan-Cooled Cooling Twin Fan~
--

Each StakPAC output is factory configured
utilizing Vicar's robotically manufactured power
converters ... Vl-200 series modules. Consider the
advantages of a StakPAC customized for your
system needs with automized power modules:
USER DEFINABLE OUTPUTS- The use of
proven standard catalog modules offers the
features of a custom without the associated risk
or investment.
STANDARD MODELS-Many preconfigured
standards available.
QIDCK DEUVERY-Typical delivery 1 week or
less for custom or standard evaluation units.
COMPACTNESS-Low profile packages provide
up to 6 watts/cubic inch, twice the industry
norm.
UL, CSA, TIN SAFETY AGENCY APPROVAL­
All StakPAC configurations are approved,
standard or custom.
EMI-FCC/VDE Level A, conducted.

StakPACs are designed and built by Westcor
Corporation, Los Gatos, CA, a Vicar subsidiary.
StakPACs are sold world-wide through Vicar
Corporation, Andover, MA.

EDN's Software Engineering Special Issue

RoBoPowER
Model

STAKPAC STANDARDS
1200 WATT MODELS

Output Voltage (VDC) and Maximum Current
(amperes) per Channel

\ •2 •3 ~ •5
Single Output
SPl -1801 2 @240 Total output power may not exceed
SPl -1802 5@ 240 1200" watts for any mcxlel , single
SPl -Hi03 12@ 100 or multiple output. Lower power
SPl -16<H 15@80 SiakPAC models and many 01her
SPl -1605 24@ 50 configurations are ava ilable.
SPl -1606 28@42 'Standard models supply 1100 walls;

SPl -1607 48@25 high·powered version 1200 w~tts.

DualOulput Please comaa 1he factory.

SP2-1801 2@ 120 5@ 120
SP2-1802 5@ 120 5@ 120
SP2-1803 5@ 120 12@66
SP2-1804 12@66 12@66
51'2-1805 15 @53 15@ 53

Triple Output
SP3-1801 5@ 180 12@ 16 12@ 16
51'3-1802 5@ 150 12 @ 33 12 @ 16
SP3- 1803 5@ 180 15@ 13 1)@ l.l
SP3- 18<H 5@ 150 15@26 15@ 13

QuadOutpul
SP4- 1801)@ 150 12@ 16 12@ 16 5@ 30
SP4-1802)@ 150 15@ 13 15@ 13 5@30
SP4-1803 5@ 150 12@ 16 12@ 16 24 @8
SP4-1804 5@ 150 15@ 13 15@ 13 24@ 8

Five Output
SP5-1801 5@ 120 12@ 16 12@ 16 5@30 21@8
SP5-1802 5@ 120 15@ 13 15@ 13 5@30 24 @8
Seven Output
SP7-1801 5@60 12@ 16 12@ 16 24 @8 24@8

=6 •7
5.2@28 2@.lO

For ordering information call Vicar Express at
1-800-735-6200 or (508) 470-2900 at ext. 265.

For technical information contact \Xlestcor at
(408) 395-7050 or FAX (408) 395-1518 or ca 11
Vicar.

CIRCLE NO. 7

Model

MINISTAKPACSTANDARDS
600 WATT MODELS

Output Voltage (VDC) and Maximum Current

(amperes) per Channel
• I •2 •3 •4 •)

Single Output
STl -1401 2 @ 120 Total output power may not exceed
STl -1402 5@ 120 600 watt.s for any model. single

12@50 or multiple output. Lower power STl -1301
STl -1302 15@40 Mini S1akPAC models and many 01her

STl -1303 24@ 25
STl -1304 28@2 1
STl -1305 48@ 13

Dual Output
STI-1401 2 @60
STI- 1402 5@60
ST2-1403 5@60
ST2-14Q.i 12@ 33
STI-1405 15@ 26

Triple Output
ST3-1401 5@60
ST3-1402 5@60
ST3-1501 5@90

Quad Output
ST4-1401 5@ 30
ST4-1402 5@30
ST+ l,103 5@30
ST4-1501)@30
ST4- 1502 5@60
ST4-1503 5@60
ST4-I 5().1 5@60
ST4-1505)@60

FiveOulput
ST5-1501 5@30
ST5-1502 5@30

IWITM
Common) tock Tmk'(I on

NA.'iDAQ undl·r "\ 'ICR"

configurations are ava ilable.
Please contact the factory.

5@60
5@60

12@33
12@ 33
I)@ 26

12@ 16 12@ 16
15@ 13 15@ 13
12@8 12@8

12@ 16 12 @ 16 5@30
15@ 13 15@ 13 5@30
12@ 16 12@ 16 24@ 8
15@ 13 15@ 13 24@ 8
12@ 16 12@8 5@ I)
15@ 13 15@7 5@ 15
12@ 16 12@8 2<1@4
15@ 13 15@7 2·1@4

12@ 16 12@ 16 'i@ 15 21@ 1
15@ 13 15@ 13)@ 15 24@·1

WESTCOR CORPORATION
485-100 Alberto Way
Los Gatos, CA 95032

VICOR CORPORATION
23 Frontage Road
Andover, MA 01810

19

®
MC68302

Motorola made us do it.
They made us an offer we couldn't

refuse. They wanted our FS 1800 develop­
ment system to support their new 68302
Integrated Multiprotocol Processor. Natu­
rally, we jumped at the offer.

Which gives you a big jump on your
competition. Because now you can put
the ES 1800 to work debugging your
design today, instead of waiting months
for other development tools to roll out.

And the ES 1800 system flies at
maximum-rated clock speeds. With a full
set of tools to support the 68302's special

features, including three serial controllers,
seven DMA channels, and chip selects.
Plus complete software development
tools and host support.

What's more, we offer training, instal­
lation, and application assis-
tance. All to save you time ·
and money All to bring
your design to market
faster. Just as Applied
Microsystems has done
with more than 12,000
systems worldwide.

<Cl 1990 Applied Micro.5)~tems Corporation, P 0. Box 97002, Redmond, WA 98073-9702 USA All rights reserved.

For a free demonstration, call 1-800-
343-3659 (In WA, (206) 882-2000) . Ask
for Telemarketing.

Oh, and don't forget to thank Motorola.

1111mm

Applied
Microsystems
Corporation

AMC-3. Other names indicated by® are regislered trademarks of their respeaive holders. For the name of your nearest
distributor In Europe, call 44-(0)-296-625462. Europe Fax 44-296-623460. Or contact Applied Microsi><ems Corporatio n, Ltd. , Chiltern Coun, High Street, Wendover, Aylesbury, Bucks, HP22 6EP, United
Kingdom. InJapan, call 03-493-0770.Japan Fax 03-493-7270. Or contact Applied Micro.si~tems)apan, Ltd., Nihon Seimei, Nishi-Gotanda Building, 7-24-5 Nishi-Gotanda, Shinagawa-KU, Tokyo 1141,Japan.

20 CIRCLE NO. 8 EDN's Software Engineering Special Issue

I

Design Feature

Debugging guidelines
facilitate

software development
Although software debugging can be some­
thing of a black art) some general rules do
apply. Consider the various debugging op­
tions that are available at different stages
of software design and integration.

Andy Lantz, Intermetrics Inc

Programmers, unfortunately, are not free from the hu­
man trait of fallibility . During every software project,
engineers stare at listings and screens and wonder
why their programs don't work. Although bugs, like
human fallibility, are here to stay, finding them is eas­
ier than it used to be. Improved debugging tools help,
as does experience. Collective experience yields some
general guidelines that can help make debugging less
of an art and more of a science. These guidelines in­
clude holding design meetings and code walkthroughs;
using modular design; and taking full advantage of
simulators, emulators, and ROM monitors.

One of the best ways to simplify software debugging
is to use structured design methods. The design and
coding phases of a project are not often thought of as
steps in the debugging process, but the work done
during these phases can have the most significant im­
pact on the amount of time spent later in debugging.
Top-down design, a rigorous review process, and ad­
herence to strict coding standards and other principles
of structured software development can make life much
easier during a project's debugging phase.

Design reviews and a code walkthrough are crucial
to the schedule of any significant software project. At

EDN's Software Engineering Special Issue

the very least, your project should have a top-level de­
sign review, a detailed design review, and a code walk­
through. All can be instrumental in uncovering problems.

The top-level design review is an opportunity to find
bugs at the conceptual level of a project's design. A
program's designers should produce a top-level-design
document detailing each of the program's functional
units and the relationships and data flow between those
units. This document should be distributed to a group
of reviewers-experienced software developers not di­
rectly involved with the application's development­
before the design review meeting. At the meeting, the
reviewers should play devil's advocate and try to poke
holes in the design.

The detailed design review and the code walk­
through should use the same forum as the top-level
review. At the detailed review, reviewers examine the
detailed design document, which contains pseudocode
for every function that will be in the program; at the
code walkthrough, reviewers examine the final code
implementation.

A top-level design specifies ideas, functions, and con­
cepts. At some point, you define what modules you
will create to implement these concepts, then you de­
sign the modules. Modular design is not just good soft­
ware engineering practice-it can also prevent some
kinds of bugs from occurring in your code. Suppose
you see the same sequence of statements appearing
in multiple places in your program. If you incorporate
that block of code into its own function or macro, you
accomplish two objectives. First, you eliminate the pos­
sibility that the code is correct in some places and not
in others. Second, if you need to change this common
code, you have to change only one instance of it,
thereby reducing the chance of clerical error.

21

C is efficient for building pointers and
generating pointer bugs of the worst
magnitude.

The way you use C-the high-level language of
choice for coding embedded-systems applications-also
greatly affects later debugging. C offers programmers
many ways to get around cumbersome type restrictions
found in stricter languages such as Pascal and Ada,
but this flexibility can be a double-edged sword. Just
as you can write C code that rivals assembly language's
efficiency in handling pointers, you can also quickly
and efficiently create insidious stray-pointer bugs of
the worst magnitude. Fortunately, you can use several
techniques to stringently check C code at compile time.

The lint program is probably the single most useful
compile-time aid for preventing C bugs. Originally sup­
plied as a utility program with Unix but now available
elsewhere, lint accepts a C program as input and warns
of unreachable statements, loops not entered at the
top, automatic variables declared and not used, and
logical expressions whose values are constant. Th~ pro­
gram also finds functions that return values in some
places and not in others, functions called with varying
numbers of arguments, and functions whose values are
not used.

L int sounds great, yet many people categorically
refuse to use it, complaining that it forces them to
wade through countless pages of warnings that aren't
helpful or appropriate. These people may not have ex­
perimented with the various switches lint offers to
disable checking that is irrelevant or redundant.

Even if lint isn't available on your system, there are
other ways to get compile-time warnings of potential
bugs. One way is to use a compiler that warns of situ­
ations such as possible infinite loops or local variables
that your code never references. Another way to get
compile-time warnings is to use a compiler that sup­
ports ANSI C's function prototype feature (Fig 1).

Function prototypes were added to the ANSI stan­
dard for C so that programmers could make compilers
perform stronger type checking on statements that
declare, define, or call functions. A function prototype
is a variant form of a function declaration; the differ­
ence is that a function declaration only names the func­
tion and its return type, but a function prototype in­
cludes information on the number and types of parame­
ters the function requires. If a programmer uses a
function prototype instead of a function declaration,
the compiler will check to see if the corresponding
function definition and any calls to the function have
the proper number and types of parameters.

Other good coding habits can also help you avoid
common C pitfalls. If you're comparing strings, for

22

example, it's much safer to define a preprocessor macro
called STRING_EQ than to risk forgetting that the I
in !(strcmp(x ,y)) is required to test for equality be­
tween string x and string y.

In general, using preprocessor macros makes for
good design practice. Don't use numeric literals
throughout your program; there are too many opportu­
nities for typos. Instead, define preprocessor names
for them (for example, "#define MAXLEN 256"). If
you type a numeric literal incorrectly, it may cause
problems that you won't detect until the program mys­
teriously fails at runtime. If you type a macro name
incorrectly, however, the compiler will tell you right
away that you're referencing an unknown name.

Whenever you have a test for equality between a
constant and an expression, get into the habit of put­
ting the constant first: if (7 = = x). This practice
makes it impossible for you to commit one of the most
common and subtle C programming errors: using =
when you mean to use = = for a comparison. The
compiler will not accept ~f (7 = x) , but it will accept
if (x = 7) with no complaints. If you're trying to com­
pare x with 7, the latter expression will not evaluate
the way you want it to.

Print statements provide flexibility
Perhaps the most common debugging technique used

at the coding stage of native applications (applications
in which the code compiles and runs on the same sys­
tem) is inserting printf() calls into a program. At run­
time, these statements cause the program to display
values of important variables and structures. Using
this technique for embedded systems is complicated
because the system might not have an obvious destina­
tion for standard output (stdou t). Even if your system
doesn't have standard 1/0, you have other options,
such as complex breakpoints and simulated I/O, for
displaying diagnostic messages.

If you can use printf() calls for diagnostics, you'll
benefit from enclosing the debugging code in condi­
tional compilation directives. For example , define a
preprocessor variable called DEBUG, which you can
turn on or off at compile time. Then, you can isolate
your debugging code as in the following:

#if DEBUG
printf("value of index is %d\n", index);

#endif

EDN's Software Engineering Special Issue

/* non-prototype function declaration for f() */
double f () ;

/ * non-prototype function definition for f() */
double

f(a,b,c)

}

(a)

char a;
int b;
double c;

return (a + b + c);

/ * function prototype declaration for f() */
double f(char a, int b, double c);

/ * function prototype definition for f() */
double

f(char a, int b, double c)
(

}

(b)

return (a + b + c);

Compiling the following code ...

/ * function prototype declaration for f() */
double f(char a, int b, double c);

/ * incorrect function definition for f() */
double

f(char a, double b, int c)
{

return (a + b + c) ;

.. . results in the following error messages

:FE:badproto.c:6:
:FE: badproto.c:6:
(c)

Compiling the following

f: Symbol redefined
First declared type assumed for function

code ...

/ * function prototype declaration for f() */
double f(char a, int b, double c);

/* function definition for f () */
double

f(char a, int b, double c)
{

return (a + b + c);

main()
{

double g;

g = f('a', 3.14159);

... results in the foll owing error message:

:FE: badproto2.c:15 :
prototype

(d)

Mismatch between # of args a t call and function

Fig I-Function prototypes help avoid some C bugs by causing stronger type checking at compile time. The code shown in (a) contains a function declaration
and a corresponding function definition; the code in (b) is the same function, using function prototypes for the declaration and the definition. If you use function
prototypes instead of ordinary function declarations, your compiler will check for the correct number and types of function arguments. For example, (c) shows
a compiler error message resulting from a type mismatch between a function prototype declaration and the corresponding function declaration. The code in (d)
shows the compiler error message resulting from an incorrect call to a prototype function.

EDN's Software Engineering Special Issue 23

Develop programs top-down; debug
them bottom-up.

Obvious locations for these kinds of messages are at
the beginnings and ends of functions and inside loops.

The listings your compiler and linker produce can
be a big help both before and after you start debugging.
Many compilers can produce a listing that shows the
user's original C code interleaved with the assembly
language that corresponds to the generated machine
instructions (Fig 2). These listings can alert you to
bugs in your program.

Suppose, for example, that you've written a block
of code that an optimizing compiler determines to be
unreachable. The conspicuous lack of generated in­
structions for that source code is readily apparent dur­
ing a casual glance through an interleaved listing. You
can use a global symbol map to find similar anomalies
in your program. A segment showing a length of zero
can be an indication that the program has been written
or linked incorrectly.

Decide where to run your code
After you've written most or all of your software,

you still have to decide where it will run when you
debug it. Your choice will depend on the readiness of
your hardware and on your budget. Simulators let you
debug software before the hardware is ready; emula­
tors and ROM monitors let you integrate and test your
hardware in conjunction with the software.

If the software engineers are ahead of the hardware
engineers and your target board isn't yet ready for
testing, you'll probably want to begin debugging your
software by determining whether it is algorithmically
correct. The best way to make this determination is
with simulation. The principle behind simulation is that
in the preliminary phases of debugging an embedded
system, some aspects of the software can be tested
independently of the target hardware.

A choice of simulators
You can choose either a software instruction-set

simulator or a hardware simulation board. An instruc­
tion-set simulator is software that runs on the develop­
ment host and mimics the target microprocessor. A
hardware simulation board is a single-board computer
that has a microprocessor, ROM containing a simple
control program, and some RAM into which to down­
load the application program. The simulation board
usually connects to the host via a serial connection or,
if the host is an IBM PC or compatible computer, via
the AT bus.

Many simulators can be controlled by a source-level

24

debugger, which lets you debug your code at the
source-code level rather than at the assembly-language
level. For the C programmer, source-level debugging
is a requirement for maximum productivity.

Once you have an execution environment for your
program, the next step is to organize your debugging
strategy. Your first tendency might be to try running
the program in its entirety. Very likely, you will en­
counter problems. At the discovery of the first bug,
programmers often employ some kind of binary search,
using breakpoints to iteratively narrow down the bug's
location. Although this approach is popular, by itself
it is not always as efficient as the more structured
techniques of bottom-up debugging.

The best way to debug software is the opposite of
the way you developed it. Develop programs starting
at the highest level of organization and add detail dur­
ing subsequent stages of development. Use bottom-up
debugging to ensure that low-level functions are work­
ing correctly before you examine the behavior of your
program as a whole. Observing the behavior of an
individual function in the context of bottom-up debug­
ging is known as unit testing.

A --> * Variable i is in the D5 Register
* Variable j is in the D4 Register
* Variable k is in the DJ Register

*5 for (i = l; i < 10; ++i) (

MOVEQ.L #l,D5
B --> *(code hoisted from following statement)

MOVE D3,D2
MUI.S D4,D2

L20001
*6

MOVE
ADD
MOVE
JSR

c --> *(see line 5)
ADDQ.L
ADDQ
CMPI
BLT.S

f (i + j * k);
D5,Dl
D2,Dl
Dl,-(A7)
_ f

#2,A7
#l,D5
#10,D5
L20001

Fig 2-An interleaved listing can be helpful in debugging, showing how a
compiler generates assembly-language code from lines of C code. The listing
here shows how the compiler allocates local variable in registers (a), how the
compiler generates code for a loop-invariant expression before the code for the
body of the loop (b), and how the code for the increment-test-and-branch part
of the loop is separated from the beginning of the loop (c).

EDN's Software Engineering Special Issue

There are a couple of ways to perform unit testing.
The oldest method is to write a driver program for a
routine. A driver is a routine that does little else than
call a single function. Debugging a program consisting
solely of a single function and its driver would be ideal,
but isolating a single function in this way is often diffi­
cult: There are just too many interdependencies to
avoid linking in a number of other functions. A much
easier way of doing unit testing is to have a source-level
debugger do the work for you. If your debugger can
evaluate C expressions containing function calls, you
can test a single function by passing all kinds of hypo­
thetical parameters to it.

Emulator or ROM monitor?
Once your target hardware is available, you'll have

more choices for where your code runs during debug­
ging. Both in-circuit emulators and ROM-based moni­
tors let you test your software along with the hard­
ware. No matter what combination of hardware you
choose to assist your debugging, you should try to
exploit your investment as fully as possible. Learn as
much as you can about the advanced features of your
debugger's command language.

One of the most useful features of an in-circuit emula­
tor is, of course, its ability to set breakpoints that
impose no penalty in real-time execution speed. A code
breakpoint instructs the emulator to halt execution
when an instruction at a particular address executes.
Code breakpoints are one of the mainstays of day-to­
day debugging practice.

But programmers often overlook data breakpoints,
which cause a program to halt whenever it reads from
or writes to a specified memory address. Suppose you
have a variable that is getting clobbered at some un­
known line in your program. Rather than trying to
discover the off ending line by setting code breakpoints
and inspecting the variable's value at various state­
ments, use a data breakpoint to check for write opera­
tions to the variable's address.

Sometimes your requirements are more specific: You
want your program to halt only if one particular value
is being written to a certain memory location. Some
emulators answer this need by offering data break­
points with an additional capability: You can specify
not only the breakpoint address, but also the one write­
data value that you want to result in an actual stopping
of the program. This capability can help you track
down errors that occur at boundary conditions for in­
put-data values. Data breakpoints can even operate

EDN's Software Engineering Special Issue

Fig 3-Complex breakpoints, which are supported by some debuggers, let you
test fixes to your program before you change the source code. This example
on the XDB debugger from Intermetrics (Cambridge, MA) shows a simulated
patch. The user has set a breakpoint at line 63, which causes the program to
exit the for loop (using the commands "g 67" to go to line 67 and "C" to
continue execution) when the value of the variable loopvar becomes greater
than or equal to 8. This patch temporarily fixes a bug caused by an incorrect
upper limit in the comparison part of the loop.

over ranges of addresses. When applied over a range,
they can help determine where a program attempts
to write to ROM.

Source-level debuggers offer one very obvious ad­
vantage over other debuggers. You can set a break­
point by referring to a source-level statement's line
number or by referring to a variable name; you don't
have to refer to hexadecimal memory addresses. But
few people make the best use of their source-level
debugger's other features. They rely on three or four
basic commands, forgetting that they can attack some
of their problems more effectively with others.

For example, some source-level debuggers allow con­
ditional breakpoints. These debuggers will stop your
program at such a breakpoint and then check a simple
condition to determine if the program will continue or
remain at the breakpoint.

Other source-level debuggers provide complex
breakpoints-breakpoints with attached command lists
(Fig 3). The commands, which can be debugger in­
structions or C expressions, are performed when the
breakpoint is hit. You can exploit this feature in a
variety of ways. In the simplest case, you can use
commands to display the value of a variable or an
expression every time your program reaches a particu­
lar line of code.

Use complex breakpoints for patches
One powerful use of complex breakpoints is for simu­

lating code patches. In the simplest case, suppose you
need to add a missing statement to your code. You can
set a complex breakpoint on the statement after the
missing statement, append the missing statement to
the breakpoint, and follow it with a command to con­
tinue execution.

25

Complex breakpoints let you attach lists
of debugger commands or C instructions
to ordinary breakpoints.

Deleting a line of code using complex breakpoints
is a little more risky. You set a breakpoint on the
statement to be deleted and then append a list of com­
mands to the breakpoint. One of the commands changes
the value of the program counter register to the ad­
dress of the statement after the one to be deleted;
another is a command to continue.

There are several reasons you should use this ap­
proach with caution. First, you can inadvertently cause
condition codes to have the wrong values because a
deleted line of code no longer executes and therefore
doesn't set the codes. If program control later passes
to a part of the program that evaluates such condition
codes, then the result will be unpredictable. Also, de­
leting instructions might disrupt the stack pointer.
Nevertheless, this kind of patching is valuable because
it lets you test the logic of potential fixes without re­
compiling your code.

The debugging technique of placing '/)ri,ntf() state­
ments throughout your code is a long-used method of
getting diagnostic information about the values of vari­
ables at runtime. But with embedded systems, as op­
posed to native application programs, the output-if
the system has any output at all-does not necessarily
go to a screen. Sometimes all that happens is that
values in certain memory addresses change. One solu­
tion to this problem involves using a debugger's simu­
lated 1/0 capability. With simulated 110, you don't have
to use peripheral hardware for input and output; you
can use the resources of the host computer, such as
disk files, the keyboard, or the screen. Many debugger
packages offering simulated 1/0 include alternate ver­
sions of the compiler's standard 1/0 library routines.

In the course of tracking down an especially elusive
bug, it is not uncommon for several engineers to work
in shifts. By using the debugger to record into a disk
file all the debugging commands and results during a
particular shift, you can ensure that the next shift
sees what has transpired. The next user simply uses
the debugger to read in the file from the previous
debugging session.

Many source-level debuggers also offer on-screen
windows for monitoring variables and data expres­
sions, automatically displaying the values whenever
execution stops. Remembering to use this feature can
save you from typing a command to display these val­
ues at each breakpoint. If you find yourself repeatedly
asking the debugger to display the value of a particular
expression after single steps or breakpoints, you should
monitor the expression's value in a window.

26

Even with a source-level debugger's powerful arse­
nal of commands for high-level debugging, at times
you'll need access to the low-level features of your
emulator's own command set (Fig 4). These low-level
features let you observe bus activity, establish trigger
conditions for tracing, and set any type of emulator­
specific breakpoints that is not available in the debug­
ger itself. Debugging at the integration and testing
phases of a project should include a balance of high-and
low-level debugging. Most source-level debuggers let
you "drop down" to the emulator's interface during a
debugging session and then return to the high level.

Sometimes, however, an in-circuit emulator isn't the
best choice for debugging, or an emulator might not
be available for a chip. One debugging approach cir­
cumvents this problem and is rapidly growing in popu­
larity. In the technique sometimes called remote de­
bugging, a source-level debugger communicates di­
rectly with a monitor program burned into PROMs
on the user's actual target board.

Like emulators, some ROM monitors can accumulate
a trace buffer of a program's execution history in RAM.
Because one CPU runs both the ROM monitor and the
user's application code, ROM monitors can't save trace
information without stopping execution before each
machine instruction. ROM monitors make up for this
sacrifice of real-time tracing by providing extended
information in their trace buffers. Suppliers of ROM
monitors reason that if a monitor has to run a program
in step mode to get trace information, it might as well
record more information than just the addresses of
executed instructions.

With some ROM monitors, you have the option of
saving only the program counter values in the trace
buffer or saving both those values and the values of
each instruction's operands before and after instruction
execution. This trace with full data movement can pin­
point the precise instruction that causes a data value­
even in a register-to go bad. Because this kind of
trace also shows the effective addresses computed for
instructions, you can use it to detect errors in assem­
bly-language code.

Another difference between emulators and ROM
monitors involves the ability to set breakpoints on data
accesses. Because emulators watch external buses to
detect accesses to particular memory locations, they
can detect these kinds of breakpoints in real time. A
ROM monitor can't detect an access to a memory loca­
tion; it can, however, check the contents of a memory
address before each instruction to see if the value has

EDN's Software Engineering Special Issue

changed. A ROM monitor may let you set up a break­
point that compares the contents of a register with
some mask or value before each instruction and halts
when a particular condition is met. Because an emula­
tor cannot interrogate the values of internal registers
while the processor is running, it cannot use its hard­
ware to set breakpoints on register accesses or
changes. As with an execution trace, a ROM monitor­
resigned to running in trace mode-tries to compensate
for not being able to set breakpoints by providing addi­
tional information not available to an emulator.

ROM monitors can also be useful for troubleshooting
finished, but malfunctioning, products. If you may have
occasion to debug your product after it has been sold,
leaving a ROM monitor in the final version of your
board gives you the opportunity to debug in the field.
Keeping the monitor on the board adds to the cost and
ROM requirements of your product, but the benefits
may far outweigh the costs.

Embedded systems, extra problems
Native applications, of course, tend to be easier to

debug than embedded systems. Developers of native
applications programs don't have to know exactly
where their code will reside in memory, for example.
They also tend to have few worries about interrupts
and external I/O devices. Embedded-sY,stems program­
mers are not so fortunate.

Unlike native-system programs, which the host's op­
erating system loads into available system memory,
an embedded-system program must go into explicitly
specified target-hardware addresses. One of the most
troublesome problems that can result from the incor­
rect location of your program is the allocation of too
small a region in target memory for the runtime stack.
To further complicate matters, the symptoms of this
problem are subtle. The program may mysteriously
crash only after several iterations of a recursive routine
or in a deep nesting of other function calls. Checking
the value of your program's stack pointer at strategic
places in your code and comparing its value with ad­
dresses in your global symbol map is a good practice.

Linking your program with a runtime library that
is in some way inappropriate for your application may
also result in bugs that are extremely hard to track
down. Take great care when you build your program
to link only with runtime libraries that have been
proven correct and that match your compiler's calling
conventions.

Debugging interrupt-driven code is one of the chal-

EDN's Software Engineering Special Issue

Fig 4-An emulator's user interface allows in-depth low-level debugging. This
display from the interface to Applied Microsystems' (Redmond, WA) EL 3200
emulator shows windows for registers, breakpoints, the instruction trace, and
monitored data.

lenges that embedded-systems applications present. A
trace buffer for an interrupt-driven program frequently
contains interrupt-handler code interspersed with code
from the nonhandler routines. Looking at the complete
asynchronous trace may be useful in some instances,
but a more limited, qualified trace can also be helpful.
You should make the best use of any trace-qualifying
mechanisms you can.

Many emulators let you specify trigger conditions
that determine when executed instructions will be re­
corded in the trace buffer. Some ROM monitors let
you use conditional breakpoints to enable and disable
tracing. If you're trying to debug an individual inter­
rupt handler, you may want to give the appropriate
debugger commands so that tracing is initiated at the
beginning of the handler and disabled upon exit. Con­
versely, once a particular handler is known to work
properly, you can arrange for the trace to be disabled
on entry to the handler and enabled on exit. EDN

Author's biography
Andy Lantz has been debugging soft­
ware for a variety of applications for
more than eight years . He is a senior
applications engineer at In termetrics
Inc (Cambridge, MA) where he pro­
vides technical support and training to
software engineers who design embed­
ded systems. Andy holds a bachelor's
degree in computer science from Brown
University .

Article Interest Quotient (Circle One)
High 473 Medium 474 Low 475

27

The fastest way through customs.
THE PID DESIGN LANGUAGE

WITII SOMETIIING 10 DECLARE.

You've probably heard about the advan­
tages of programmable logic devices
(PLD's) over conventional Tn. In
design flexibility, for example. Or
increased functional density. Perhaps
you've learned the hard way: a com­
petitor using PLD's has beaten you to
market with a new product.

What you may not have heard,
though, is that just switching to PLD's
isn't enough. You've got to
choose the right PLD design
language, too.

28

FREEDOM OF
CHOICE.

And that means simplified train­
ing. Common data structures and
design rules. Consistent documenta­
tion and testing. Instant adaptability to
new devices. The productivity gains
with CUPL just keep mounting. In the
design cycle. And in production.

POWER TOOL

CIRCLE NO. 16

put file gives you invaluable feedback
on your design's progress. These fea­
tures, plus continual enh:µ1Cements,
make CUPL the benchmark in PLD
design languages- flexible and power­
ful enough for the most sophisticated
logic designer's needs.

Now available from Logical
Devices, the new version CUPL 4.0 for
MS-DOS , VAX-VMS, UNIX C, SUN,
APOLLO, and , soon to be announced, for
the Apple Mac IT Systems.

Also available from Logical
Devices, a full line of PROM/PLO
programmers.

LOGICAL
DEVICES, INC.

1201NW65th Place
Fon Lauderdale, Florida 33309

Toll Free: 800-331-7766
In Florida: (305) 974-0967

Telex: 383142
Fax: (305) 974-8531

EDN's Software Engineering Special Issue

The nature
of real time

As real-time pogramming has matured, a body of
knowledge has developed about the special problems
of real-time devices and the techniques required to han­
dle these problems. This series of articles will pesent
some of that knowledge in the context of a specific
operating system (MTOS-UXJ and will demonstrate
how to write good, robust real-time pograms. Part 1
introduces some basic concepts including real-time pro­
gramming, multitasking, task attributes, operating
systems, and operating-system services.

David L Ripps, Industrial Programming Inc

This series is about real-time programming-about
programs that run telephone switches, control robot
arms, or pilot airplanes. It is not about programs that
generate last month's telephone bill,
prepare parts lists for items made by a
robot, or do cost accounting for an air­
line. Before you plunge into the techni­
cal issues, you should understand ex­
actly why the first is a group ofreal-time
programs and the second is not.

the computer is able to resume its original activity.
Consider a telephone switch that is capable of servic­

ing a rotary dial. Dialing, say, a 5 produces five narrow
pulses that must be detected immediately as they fly
by. Meanwhile, other parts of the dial processing pro­
gram must cancel the transaction if the caller hangs
up; must time-out the call if there is too long an interval
between digits; must start finding a special path if the
leading digit is a 1, or an area code, or 800, or 911;
and so on. Simultaneously, still other parts of the over­
all switch program are working on calls that have al­
ready been placed: searching for a connection path,
generating ring or busy signals, recording billing infor­
mation, and monitoring hangups, among other activi­
ties. This is real time because the timing of the input
is completely imposed on the program by unpredictable
outside agents (you and me).

In contrast, generating a telephone bill does not have
that kind of frantic timing constraint.
When the program needs input, it
makes a disk access and then waits for
the data. (In a multiuser system the bill­
ing program may be swapped out during
the wait, but that is irrelevant.) If the
program takes a long time to compute
a bill, there's no catastrophe; the next
customer's data will always be there
when the program gets around to read­
ing it.

REAL-TIME
PROGRAMMING

A fundamental property of a real-time
program is that some or all of its input
arrives from the outside world asyn­
chronously with respect to any work
that the program is already doing. The
program must be able to interrupt its
current activity immediately and then
execute some predefined code to capture
or respond to that input, which is often

PART I

In these two cases the strong differ­
ence between real-time and nonreal­
time programs arises from the nature
of the program specifications-from

a fleeting, transient signal. The capture of new data,
in turn, may trigger the running of one or more other
urgent programs that were waiting for input. Finally,

From the book, An Implementation Guide to Real-time Programming, by
David L Ripps, ©1989. Excerpted by permission of Prentice-Hall Inc, Engle­
woo~ Cliffs, NJ.

EDN's Software Engineering Special Issue

what the programs have to do. Some­
times the difference arises just from the relative time
scales involved. For example, consider a program to
control the speed of a rotating shaft. The shaft has a
wheel on which are engraved a series of lines that
reflect light onto a detector. Shaft speed is computed
by counting the number of blips coming from the detec­
tor per unit of time or, equivalently, by measuring the

29

time interval between blips. (Assume that there is a
high-resolution clock available to the program.) The
program enters the raw speed measurements into an
averaging filter, compares the result with the desired
speed, and then computes the power to be sent to the
drive motor.

Real-time applications
must be written as a se­
ries of separate compo­
nent programs that can

--~ execute concurrently.

On the one hand, if the shaft is rotating very quickly
or there are many lines on the wheel, the blips arrive
faster than the time needed to compute the motor
power. The power calculation based on the last period's
blip count would have to be interrupted now and then
to count the blips for the next period. This is clearly
real time. On the other hand, if the speed is low and
there are few lines, the program might easily complete
the calculation of the motor power in the interval be­
tween blips, and then wait to input the next blip. Now,
the program has lost its real-time flavor. Thus, the
same program requirements can be either real time
or not depending upon the time scale of the input in
relation to all the work that must be done by the
system.

Real-time programs are organized to survive in the
face of disturbances that would upset nonreal-time pro­
grams. Thus, if there is doubt as to the real-time nature
of an application, it is safer to use the more robust
real-time organization.

Organization of a real-time program
The need to interrupt one part of a real-time applica­

tion spontaneously to perform data capture or other
more urgent functions forces a particular organization
upon such programs. Real-time applications must be
written as a series of separate component programs
that can execute concurrently. The components are
called tasks or processes; the organization is called mul­
titasking or multiprocessing. This series will use the
terms tasks and multitasking. (The adjective
"multiprocessing" is too easily confused with "multipro­
cessor," which describes a computer system having
more than one CPU.)

Each task is a complete program that is capable of
independent execution. Each task has a segment of
code that it executes. Each task has its own private
stack and its own local data areas. These are dedicated

30

memory segments in which the task can keep proce­
dure call parameters, return addresses, temporary
data, and similar variables that are not shared with
other tasks. Furthermore, each task has its own set
of values for the program counter and stack pointer,
plus any other general, special, and coprocessor regis­
ters that the hardware provides. The hardware regis­
ter set is known as the execution context, or simply
the context. (Some tasks may share some or all of their
code segment with other tasks. Normally, every task
will have the same value for certain special registers,
such as those that determine the response to external
interrupts. Neither type of overlap lessens the com­
pleteness of each task as an executable program.)

Because each task is itself a viable program, each
can be started, suspended, resumed, and terminated
separately. When an interrupt requires the current
task, C, to suspend execution in deference to another
task, I, C stops running, its context is saved, I's con­
text is installed in the hardware, and I starts running.
Later, C's context is reinstalled in the hardware, and
C resumes as though there had been no break in its
execution (Fig 1).

Often, a real-time application has several different
kinds of spontaneous input. Some kinds are more im­
portant than others; some engender more important
responses than others. As a result, task I may itself
be preempted by yet another task, 12.

The real-time operating system
The discontinuous execution of a task is invisible to

the task. Real-time programs operate under the control
of a co-resident piece of code known as the operating
system (OS). The OS is the master program; it decides
which task executes on a processor and performs the

TASKC:

TASK I:

* INTERRUPT ARRIVES

TASK IS EXECUTING

TASK IS SUSPENDED
(WAITING FOR CPU)

* TASK I COMPLETES ITS PROCESSING
OF INTERRUPT

TASK IS EXECUTING

TASK IS SUSPENDED
(WAITING FOR CPU)

Fig I-Individual tasks can be started, resumed, and terminated separately.
In this example, an interrupt causes task C to be suspended and task I to run.
Later, when I must wait for another interrupt, it is suspended, and C resumes
running.

EDN's Software Engineering Special Issue

(

Real-time operating systems, revisited
One premise of this series is that
real-time services are to be sup­
plied by an operating system or
kernel. An operating system is
often depicted as layers or con­
centric circles around the hard­
ware. The innermost layer (the
one closest to the hardware) is
called the kernel. Thus, in this
scheme, a file system is part of
the OS proper. The peripheral
I/O services that the file system
calls are part of the kernel.

Furthermore, we assume that
the OS is separate from the appli­
cation code and is essentially in­
dependent of the application.
More exactly, the real-time OS
can be applied to a wide variety
of applications. Alternate ap­
proaches are possible.

In the early history ofreal-time
programming, the operating sys­
tem was not always cleanly sepa­
rated from the application. A
typical real-time program con­
sisted of a series of procedures
that performed some function of
the application. One procedure
might input a certain kind of data
by polling at a fixed rate. An­
other procedure might perform a
calculation on the data after poll­
ing to determine that the data
were available. Tying all this to­
gether was a "main program." It
served as a crude OS; it called
each functional procedure in a
preset order. Generally, the main
program would permit each pro­
cedure to complete before calling
the next one.

This cyclic-scheduler approach
to real-time programming has
fallen into disfavor because it had
many problems. First, the cycle
times had to be determined by
elaborate experiment and tuning.
Every time one of the functions
was revised, the dynamics of the
program changed and the system

EDN's Software Engineering Special Issue

had to be retuned. As a result,
the programs were a nightmare
to maintain and expand.

Equally annoying was the fact
that the ad hoc approach to
scheduling and service delivery
required a new main program for
each application. There was too
much application-specific code in­
side the "operating system." Fur­
thermore, there was little hope
of making the execution efficient
by performing actions in parallel.
Instead of interrupts and
preemption there was polling and
serial execution. Thus, when a
message had to be output to a
console, the entire program
waited while each character
went out.

There is yet another approach
to real-time programming that is
not so easily dismissed. Time may
even show that it is the right way
to proceed. The idea is to build
real-time facilities directly into
the task language. Concurrent
Pascal, Modula, and Ada incorpo­
rate this technique.

The chief advantages of having
real-time features within the
tasking language are increased
portability and possibly enhanced
error checking. In principle, the
compiler can do extensive check­
ing for misuse of real-time facili­
ties and potentially dangerous
practices.

The chief disadvantage of the
linguistic approach is that the
real-time primitives may not be
adequate or appropriate for your
application. Ada provides only
one mechanism for coordination
and communication among
tasks-the rendezvous. But the
rendezvous has some very unfor­
tunate semantic properties that
were not fully appreciated until
after the language had been fro­
zen. For example, the First In-

ternational Workshop on Real­
Time Ada Issues reported that a
low-priority task can delay a
high-priority task for an unlim­
ited amount of time because the
rendezvous has first-come, first­
served queuing. These problems
are likely to be corrected in the
next version of Ada-Ada-9X­
which won't be introduced until
well into the 1990s.

Ada restricted the number of
real-time features to minimize
other problems: compiler size and
complexity. The more features
you have in a language, the
longer the compilation takes. At
present, relying upon an inde­
pendent OS for real-time facilities
seems to be a good practical ap­
proach to real-time program­
ming.

This series presents each as­
pect of real-time programming
purely from the application (task)
side; it does not explain how to
write the operating system that
supplies the required services.
Robust real-time operating sys­
tems are commercially available.
It is far more economical in
money and project time to buy
an OS than to plan, write, debug,
test, and maintain one of your
own. There is no more reason to
develop a private OS than to de­
velop a private editor, compiler,
assembler, or linker. If you still
doubt that point, see "No Silver
Bullets-Essence and Accidents
of Software Engineering," in par­
ticular, the section headed "Buy
vs Build" (Ref 1).

The real-time OS selected for
this series is MTOS-UX, a prod­
uct of Industrial Programming
Inc (Jericho, NY). MTOS-UX is
available for several families of
processors, such as the Motorola
680xx and 88x00, Intel 80x86, and
National Semiconductor 32x32.

31

required context switches. It also handles the hard­
ware interrupts that normally announce the availability
of fresh input and determines when the response task
is to be activated. In short, the OS schedules all proces­
sor work.

Thus, a real-time program consists of a set of tasks-

The operating system de­
cides which task executes
on a processor and per­
forms the required con­

--~ text switches.

separate programs that compete for access to the
CPU-and the OS--a master program that schedules
CPU access. The work done by the OS in scheduling
and context switching is pure overhead; it decreases
the time available for task work. Nevertheless, this
small loss is easily repaid. The OS makes sure that the
CPU is kept busy as long as there is any task work
to do.

Consider the alternatives. Suppose that task I were
executing and reached a point at which it had to have
input to continue. If there were no OS, I would have
to sit in a polling loop, repeating the question: Has the
input arrived yet? This is a terrible waste of CPU
time. Instead, the OS gives the CPU to task C. Task
C can accomplish productive work until the interrupt
arrives. At that point (with slight additional overhead),
the CPU can be turned over to I to process the input.

Because of its role as central authority over all tasks

Language issues

and interrupts, the OS is also in the best position to
provide centralized services and to control access to
hardware and software facilities that are shared by
the tasks. Thus, timekeeping, peripheral I/O, and allo­
cation of memory are all in the domain of the OS.

Handling such chores as peripheral I/O within the
OS yields considerable space efficiency over duplicating
the code in each task that needs the function. Further­
more, the individual tasks rarely have the application­
wide _information required to resolve the conflicts that
arise when allocating shared resources. Centralizing
also shortens development time for real-time applica­
tions. A debugged general OS can usually be applied
immediately to a new project.

In real-time work it is common to have dozens of
concurrent tasks. Some have been suspended by the
arrival of input that merited immediate attention. 0th- ,
ers have been blocked because they requested a service
of the OS and that service is not yet complete. (Incom­
plete services might involve a requested disk access
that is still in progress, or some requested memory
that cannot yet be allocated.)

Task states
To help track the activities of various tasks, OSs

commonly maintain the state of each task. One scheme
is to classify a task as Running if it is currently execut­
ing on a processor, as Ready if it can execute as soon
as a processor becomes available, as Blocked if a re­
quested service is not yet complete or there is some
other impediment that prevents its execution, and as
Dormant if it has terminated after it finished executing
or it has not yet been requested to execute. This is
the scheme used in this series of articles. The possible

Although this series concentrates
on the concepts of real-time pro­
gramming, these concepts can be­
come fuzzy until you see specific
examples coded in real language
for a real operating system. The
MTOS-UX was chosen as the OS.
The language chosen was C,
based mainly on its popularity
among real-time programmers
and its ease of use. Furthermore,
if one resists the urge to be
overly terse, C can be as clear

early chapters of Kernighan and
Ritchie (Ref 2).

many compilers have the option
of generating calls that are com­
patible with C. Thus, as far as
the OS services are concerned, it
doesn't matter if the program is
expressed in C or in any other
language with a compatible inter­
face.

32

as any other high-level language.
Those who are unfamiliar with C
might want to read at least the

Tasks need not be written in
C; all MTOS-UX services can be
invoked from assembly language
as well as from Fortran, Pascal,
or other high-level languages. As
Part 2 of this series will discuss,
a programmer requests an OS
service by calling a procedure,
such as pause (10 +MS) to pause
for 10 msec. All high-level lan­
guages that are likely to be used
in real-time applications provide
some mechanism to call proce­
dures with arguments. In fact,

Nevertheless, C, Fortran, and
Pascal do share a property that
sets them aside from a new group
of languages typified by Ada.
Ada has tasking and other real­
time facilities built directly into
the language; C, Fortran, and
Pascal do not.

EDN's Software Engineering Special Issue

transitions between these four states of a task are
shown in Fig 2. (It is not necessary to make such a
strong distinction between Ready, Dormant, and
Blocked states. A Ready task can be considered
blocked waiting for a CPU to become available. Simi­
larly, a Dormant task is just waiting to be restarted.
In this view, every task is either Running or is
Blocked, waiting for something.)

Different operating systems employ different strate­
gies to choose which task to run next when there is
more than one Ready task. The simplest rules are
first-come, first-served and equal-execution-time-slice­
for-all-tasks. However, at a given moment within a
real-time application, each activity has a discernible
level of importance or priority with respect to other
ongoing activities. Consequently, the tasks that per­
form the activit ies carry a corresponding level of prior­
ity. A good real-time OS maintains not only the state
of each task but the current priority as well. If there
is more than one Ready task, the highest priority (most
urgent) one gets the processor. Among tasks of equal
priority, it can be first-come, first-served.

Further cr iteria for a real-time program
A multitasking organization seems to be the only

practical structure for a real-time program. However,
programs that have neither spontaneous data nor other
aspects of real time to cope with may also employ
multitasking. For example, Unix, VAX VMS, and OS/
370 all use multitasking, even though these operating
systems were not designed to support real-time work.
Besides the presence of asynchronous input, two fur­
ther properties seem to complete the definition of a
real-time application: a high degree of interdependence
among the component tasks and a need to have very
rapid response to interrupts.

In a nonreal-time environment, there is little or no

TERMINATE

DORMANT

START TASK

CPU
AVAILABLE

READY

ACTIVE

CPU NOT
AVAILABLE

REQUEST SERVICE MAKE CODE
THAT CANNOT ERROR OR

BE COMPLETED
IMMEDIATELY HIT BREAKPOINT

BLOCKED
SERVICE

COMPLETED

Fig 2-An operating system maintains the state of each task. A task is Running
if it is currently executing on a processor; Ready if it can execute as soon as a
processor becomes available; Blocked if a requested service is not yet complete
or there is some other impediment that prevents its execution; and Dormant
if it has terminated after it finished executing or it has not yet been requested
to execute.

relation among the tasks that are running concurrently;
they are a colleGtion of independent programs that hap­
pen to have been submitted by the various independent
users of the hardware. Thus, the OS need not and
does not provide strong facilities to coordinate the
tasks. Quite the contrary, for security reasons, the
OS tries to make it difficult for one task to interfere
with another.

In contrast, in a typical real-time program all of the
tasks are highly interrelated: They are all aspects of

Companion disk offer
All of the C examples in this se­
ries, plus applications of your
own, can be run on a personal
computer with a set of demon­
stration disks available from In­
dustrial Programming Irie. The
disks contain a full version of
MTOS-UX for an IBM PC/ AT or
compatible. An application pro­
gram is edited, compiled, linked,
and loaded under MS-DOS. The
MTOS-UX then takes over the
hardware to execute the program

in real time. At any time, you can
enter an alt/dlt command from
the console to return control to
MS-DOS.

the MTOS-UX demonstrator.
The demonstration version has

all of the features and facilities
of standard MTOS-UX. How­
ever, there is a limit of six of each
type (six tasks, six mailboxes, six
semaphores, and so forth). The
disk set costs $25; unlimited ver­
sions are also available. For more
details, call the IPI sales depart­
ment at (800) 365-6867.

EDN's Software Engineering Special Issue

The demonstrator requires an
IBM PC/ AT with at least 512k
bytes of RAM and a hard disk
with 2M bytes available for
MTOS libraries and scratch stor­
age. Program preparation re­
quires the Microsoft C compiler/
linker, version 5.0 or later. Micro­
soft tools are not included with

33

one overall embedded application. Thus, the OS must
provide a rich set of facilit ies for communication, coor­
dination, and synchronization among tasks. Real-time
tasks need to be able to send messages to each other,
to broadcast that a significant event has occurred, to
access shared data, to wait for each other to finish

A multitasking organi­
zation seems to be the
only practical structure

-~ for a real-time program.

some activity, to borrow pooled resources, and much
more.

Finally, very rapid response to external stimuli
seems to be inherent in the real-time world. The maxi­
mum time to recognize that an external interrupt is
pending (latency) plus the time needed to suspend the

current task and switch to an interrupt handler (con­
text switch time) is commonly on the order of microsec­
onds. Unix, and similar nonreal-time operating sys­
tems, were not designed to react so quickly.

This series will cont inue in regular issues of EDN,
beginning with the October 1st issue. Part 2 will fur­
ther explore the nature of real-time programming and
describe how the operating system handles the special
concerns imposed by working in real time. EDN

References
1. Brooks, Jr, Frederick P, "No Silver Bullets-Essence

and Accidents of Software Engineering," Unix Review, No­
vember 1987.

2. Kernighan, B and D Ritchie, The C Programming Lan­
guage, Prentice Hall, Englewood Cliffs, NJ, 1978.

Article Interest Quotient (Circle One)
High 494 Medium 495 Low 496

Based on Motorola's 50 MFLOP
96002, Ariel's Dual DSP MJ-..A.96
blasts through real time signal
pr~essing, graphics! floating
point number crunching and
multimedia applications like
nothing else.

to 16 megabytes of
memory and complete
development softWare (including
an optimizing C com~iler, host
drivers, and demo sot1ware).

The MJ-..A.96 hooks dir~ to
frame grabber cards via its DT­
Connect™ interface and to digital
audio with Ariel's DSPnet™
multimaster bus.

Configurations for IBM AT com­
patibles are available with up

Ariel provides the best appli­
cations support in the business
via telephone, mail, fax, or our
24 hour DSP BBS.

The MJ-..A.96 is available now.
Call for 96002 support on other
platforms.

OT.Connect is a rodemork of Doto Translation, Inc. DSPnet is a rodemork of Ariel Corporation.

34 CIRCLE NO. 10

1\riel_
Ariel Corporation
433 River Road
Highland Park, NJ 08904
Telephone: (201) 249-2900
Fax: (20 l) 249-2123
DSP BBS: (20 l) 249-2124

c 1990 Ariel Corporation.

EDN's Software Engineering Special Issue

Advanced real-time systems have special needs.
In today's world, system software must be
designed for tomorrow's computers. Software
designers know that performance and ease of
development are critical for real-time operating
systems. PDOS-your performance real-time
operating system-has been dramatically
improved. Our new 4.0 release has incorporated
those features critical to the future of complex
system designs. PDOS 4.0 makes your

==aEYRJNG
S YSTEMS S OFTWARE D IVISION

Benelux
lnteray BV
Lageweg 2A
9251 GM Bergum
The Netherlands

05116 14052
Fax 05116 / 2698

Germany, Switzerland,
Austria
Systrix GmbH
H1ndenburgnng 31
0 -7900 Ulm/Donau
West Germany
fl) 0731 I 37515
Fax 0731 I 37510

development time cost-effective and productive.
Also included is support for one full year at no
additional cost. We offer superb training on our
products to keep learning curves to a minimum.
Today, you can have a vision of tomorrow by
developing with the performance real- time
operating system-PDOS.

© 1990 Eyring 1455 West 820 North

United Kingdom
Eyrisoft Ltd.
Etwall Streel
Oerby DE3 30T
England
ill 0332 1384978
Fax 0332 I 360922

Provo, Utah 84601
Tel : 801 -375-2434

Fax: 801 -374-8339

Israel
Mihtram
P.O. Box 13324
Ramat Hachayal
Tel Aviv 61330
Israel
© 97252545685
Fax 97252574383

Japan
Hitachi Zosen Corporation
Hi-System Div1s1on
3-4, Sakurajima 1-Chome
Konohana-ku , Osaka 554
Japan
® (06) 465-3172
Fax (06) 465-4045

EDN's Software Engineering Special Issue CIRCLE NO. 9 35

-

Now there's a way to solve your
software development backlog
problems.

And Digital has it today.
It's the only kind of solution to

the problems of developing software
that really works.

A total solution.
It's Digital's complete CASE

environment. It gives developers of
commercial and technical applications
a totally integrated approach to soft­
ware development-something that's
essential to the software development
cycle and accelerates it in ways that
CASE tools alone never could.

WRITE ONCE AND FOR ALL.
What's so unique about Digital's

CASE environment is what it lets you

do. That's because it rests solidly on a
foundation of architectural standards
that are both open and flexible.

A case in point. Our CASE tools
are supported by Digital's Network
Application Support (NAS). Digital's
NAS lets you develop applications for
computers with one operating system,
yet run them on different computers
with different operating systems. The
competition can't offer this level of in­
tegration for saving time and money:

A FRAMEWORK TI-IAT
REALLY WORKS.

We also offer a CASE integration
framework, specifically designed for
software development. As with our
architectural standards, the frame­
work is open, flexible and complete.

For example, it offers the industry's
first distributed CASE repository.
Consequently, team communications,
process management, data and infor­
mation sharing and other functions
that make development faster and eas­
ier are integrated. What's more, 3rd
party products and tools can also be
integrated.

D TI-IE COMPLETE TOOL CASE.
Then there are the tools them­

selves. Here too, Digital offers more.
We provide a complete set of industry­
leading tools for every aspect of the
development cycle. These include
tools for information systems, transac­
tion processing, technical, scientific
and embedded applications and more.

D A SUPPORTIVE ENVIRONMENT.
And finally, there's support. As

with everything else we offer for our
CASE environment, our support is all­
encompassing. Count on things like
training, consulting, special courses,
worldwide service and even CASE
integration services.

To be effective and productive
today, you need the right tools. But,
more important than that, you need
the right environment. Find out now
what a difference Digital's complete
CASE environment can make. Call
1-800-842-5273 ext. 315. Or call your

local Digital sales office. Digital
has
lt

now.

38

Electronic Enclosures ...
from stock· or· custom modified

Stock Enclosures • Modifications • Design Engineering Assistance • Custom Panels • Options and Accessories

• Easy to design into and easy to assemble
• Molded-through color means no chipping or

scratching-and no need for refurbishing and painting
during or after assembly

• Constructed of impact-resistant ABS-(flame-retardant
grade to meet UL94V-O standards, optional)

• Shielding against EMl/RFI available

• Standard colors: tan, gray, black, PC bone
• No tooling costs or set-up charges
• Molded-in mounting bosses, card guides, and panel

grooves reduce assembly time and production costs
• Low-cost options and accessories available to meet

end-user needs
• Available in kits and production quantities

Pac-Tee enclosures from stock, or modified "Your Way" by Pac-Tee's unique method
of tool modification are available from your local stocking Distributors. For the name of
your local distributor or additional information call:

PACl1TEC®
Division of Lafrance Corp.

Enterprise and Executive Avenues Philadelphia, PA 19153 Telephone (215) 365-8400 Telex 50-6082 FAX: 215/365-4420

1-800-523-4813

CIRCLE NO. 13 EDN's Software Engineering Special Issue

INSTRuAfi~~Windows• ~- -~
Data A "AT/ON SQ

,..cqu;sition FTWAR
P GP1a Data Anat . E

lug-in 8 . Ys1s
V oards Digitals·

Xi 19na/ Pro
RS-232 Statisr cessing

irue C I Cs
False urve Fit('

~o A~o ~ ~
Ind Perations Rea/ Ti Plots

Ustry P · 1rne St ·
deve/o standard M· nnter and Pf rip Charts
contra/ Pment too/s ' icrosoft C Q . otter Output

Di" · 10r dat ' Ulckc
r:::.J 0 a acqu . . . , and Q .

lnstrum is1t1on and . UlckBAs1c
AS-232 ~nt drivers ~ instrument

~O instrument or over 1 oo
lnte s. GP1a v

D "" grated sup , XI, and
~ 0 Port for

Powerful ana/ . Plug-in data ac .
[ff" 0 £.: Ys1s library ~ qU/sition b

Xtensive or rea/-ti oards.
on Print graphics ,. me data

521"' 0 C ers and Plott~~;ary for crear Processing.
Ode gener. . . mg full-co/or .

develop at1on and display
~O ment. debuggin s

Softwa g too/s for ' s ~~ ,~~
Ystems. Ve/opment Program

tools for

· ustry standard
programming languages ·n
data acquisition and instrument control.

~ NATl .. L •
- ~~ft!a~~®
,, 6504 Bridge Point Parkway

Austin, TX 78730-5039

CIRCLE NO. 12

Product ·
ion te

st and AT£

National Instruments Italy (02) 4830 1892
National Instruments France (I) 48 65 33 70

National Instruments Switzerland (056) 82 18 27
National Instruments United Kingdom (06) 35 523 545
Nihon National Instruments K.K. (Japan) (03) 788 1921

Call for a FREE Demo Disk and Catalog
(512) 794-0100 • (800) 433-3488 (U.S. and Canada)

integrating high level
language debuWUg with
in-circuit emulators.
SourceGate is a window driven high level language debugger
designed to support the Huntsville Microsystems 200 series of
in-circuit emulators.
• User configurable windows can be sized, moved and duplicated

anywhere on the screen.
• Code can be viewed in all displays (trace, single step, etc.) in

one of three modes: Source only, Assembly only or both Source
and Assembly.

• Watch windows display and monitor code variables.
• Optional Performance Analysis Card for real-time software

performance analysis and real-time software test coverage.
• Available for IBM PC family and UNIX systems including

Apollo and SUN.
For more complete technical information , write to
Huntsville Microsystems Inc., 4040 South
Memorial Parkwa~ Huntsville, AL 35802
or call (205) 881-0005.

IBM is reg. T.M.
International Business Machines, Inc.
Unix is reg. T.M .,
Bell Laboratories , Inc.

40

8051 Family
DS5000
8096/80196
Z80
64180/Zl80
8085
6809/6809E

68HC11 Family
including Fl
and D3
68000
68008
68010
68020
68030
68302

CIRCLE NO. 17

EDN's Software Engineering Special Issue

Design Feature

Mix C and assembly
language for fast
real-time control

Flow-control code compiled in C often exe­
cutes too slowly for real-time applications.
But if you replace switch statements with
an assembly-language driver) your program
will run almost twice as fast as a pure C
program.

Rick Brown, Desert Research Institute,
University of Nevada

Programming in C gives you close control over hard­
ware, and code that's easy to write, debug, and under­
stand, but its compiler-generated code for program­
flow control runs too slowly to suit high-speed real-time
or control applications. Also, C provides no standard
interrupt-processing capabilities. Assembly language,
on the other hand, generates code that both executes
faster than compiled C and can process interrupts, but
the code is tedious to write and difficult to understand.

A method of combining the two languages preserves
the clarity of the C language while minimizing its time
penalties. Using C language makes designing the sys­
tem logic easy; including an assembly-language driver,
which controls a chain of small C functions, speeds up
the transfer of control from one C function to another.
This combination technique can speed up a system by
25 to 100%. When considering potential uses for an
assembly-language driver, your first question will

EDN's Software Engineering Special Issue

naturally be "What is the code really doing?" You'll
find that, essentially, the code substitutes a simple
address calculation for a C switch statement and its
multiple tests to find a specific case.

A controller in an industrial laundry-folding machine
illustrates this programming method. The folding-ma­
chine controller requires servicing of software routines
at precise time intervals as well as moderately high­
speed operation.

The folding machine processes material at a rate of
150 ft per minute. This rate requires that sensors and
actuators be serviced about every five milliseconds in
order to achieve the required 114-in. resolution. The
machine optically detects the leading and trailing edges
of sheets of material to be folded, and it times the
control functions from these edges. The five folding
stations in the machine allow as many as five pieces
of material to be in the machine at any one time. Thus,
only about one millisecond out of five can be budgeted
to track the progress of a single piece of material
through the machine.

For the machine to use a Z80180 microprocessor run­
ning at 4.6 MHz, a control program written entirely
in C is not fast enough. The time required for process­
ing a C switch statement is too long. For example, a
7-case switch requires 175 to 257 µsec, depending on
whether it detects the first or last case. In this case,
one control statement uses more than 25% of the time
budget. Assembly-language code, some of which is nec­
essary anyway for interrupt processing in the control­
ler, can provide a faster method of selecting a function,
and thus speed up the system.

41

An interrupt-driven assembly-language
driver can link together C functions and
minimize control overhead in real-time
applications.

The combination programming method uses numer­
ous small C functions, which a segment of the assem­
bly-language portion of the code (the "function driver")
activates. Tracking a "control sequence" (the events
and actions that constitute the processing of a single
piece of material through the machine) requires about
20 C functions. This article refers only to the portions
of the application code activated at 5-msec intervals
by an interrupt request from the Z80180's counter
timer. (Operator communication and other tasks that
are not time critical are controlled by function-pointer
stacks (Ref 1).)

Each C function controls a single part of the folding
process. At each 5-msec timer interrupt, the function
driver activates one or more of the C functions. For
example, the first function continually checks to see if
a new piece of material is entering the machine. As
soon as a piece enters, the system activates a second
(control) function, which waits for a predetermined
time and then closes the first actuator. The function
driver then transfers control to a third function, which
looks for the tail end of the material at the machine
entrance. Control continues to pass from function to
function until the piece of material exits the machine.

Control flow is determined by the values that the
C functions return. The return value is an index into
a table that contains pointers to all of the possible C
functions. Each time a function is called, it returns the
index of the next function in the control sequence if it
has completed its operation, or it returns its own index
if its operation is incomplete. Fig 1 is a control-flow
diagram for the first five C functions.

In addition to performing some I/O services, the
function driver maintains a control array containing
the table indices and the working variables returned
by the C functions. At each interrupt, the function
driver transfers control in turn to each of the functions
whose function-pointer-table indices are currently in
the control array. After all entries in the control array
have been satisfied, the machine idles or performs
tasks that are not time critical until the next time
interrupt.

Control-array structure
The control array consists of a FIFO circular buffer.

Each entry in the buffer contains the index of a function
to be activated, a time word, and a temporary storage
word that active control sequences can use. The func­
tion driver maintains pointers to the bottom (oldest)
and top (youngest) locations of the FIFO buffer. The

42

youngest entry in the buffer is always the sensing
function that waits for a new piece of material to enter
the folding machine. It continually returns its own in­
dex until new material arrives; then it returns the
index of the first control function. The function driver
detects that occurrence, increments the buffer-top
pointer, and places a new copy of the index of the
"material-entering" function at the new buffer-top loca­
tion. The function driver also monitors the value re­
turned by the oldest control sequence in the buff er;
when the function driver finds a 0 (a "process-com­
plete" flag), it increments the buffer-bottom pointer,
thereby removing that control sequence from the
buffer.

Code directs function sequence
Listing 1 (see pg 46) presents a sample of the C

source code that controls the first five functions of the
folding machine. Lines 1 to 14 define function 0
(fa_start), which waits for new material at the en­
trance of the machine. This function is the first entry
in the function-pointer table, so its index is 0.

The parameter time is the address of the time word
for the current control sequence in the FIFO buffer.
The function driver increments the contents of the time
word for each control sequence at each timer interrupt.
The C language routines may use or alter the contents
of the time word as necessary; for example, at line 10
the contents are set to 0. If the machine is stopped,
as determined by the nontime-critical portion of the
machine code, the fa_start routine exits at line 5.

The function driver maintains the variable
FAJDREG; the contents of this variable are bits
that reflect the state of the photosensors that detect
the presence of material at each folding station. BlPD
is the bit position in FAJDREG of the photosensor
at the machine entrance. The global variable
fa_pdlclear lets the system detect the end of one piece
of material and the beginning of a new piece. If the
previous piece has not moved clear of the machine
entrance, the routine exits at line 7. Otherwise, the
routine waits for the entry of a new piece and counts
it at line 9. The routine exits at line 11 and returns
the index of the next routine. If no material is present
at the machine entrance, then the routine sets the
fa_pdlclear variable to reflect that condition and exits
at line 13. No code (such as a timeout) exists to handle
the possibility that the head of piece B will overlap the
tail of piece A; defensive programming would call for
an error-handling routine to cover this condition. In

EDN's Software Engineering Special Issue

RETURN
VALUE

0

0

0

2

8

2

4

4

6

6

8

8

10

ROUTINE #0: WAIT FOR MATERIAL AT FIRST SENSOR (MACHINE ENTRANCE)

YES

_J CLEAR FLAG = 1 NO
I

YES

ROUTINE #2: DELAY TO MATERIAL PICKUP AT STATION 1

1 TIME = TRAVEL TIME
, YES/
J

/

NO

'

ROUTINE #4: WAIT FOR END OF MATERIAL AT SENSOR 1

YES

ROUTINE #6: DELAY TO MATERIAL DROP AT STATION 1

YES

ROUTINE #8 : WAIT FOR MATERIAL ARRIVAL AT SENSOR 2

NO

MACHINE STOPPED

]NO

MATERIAL AT ENTRANCE

}YES

CLEAR FLAG== 0

}NO

CLEAR FLAT= 0
COUNT SHEETS

TIME = 0

BRIDGE 1
BYPASS SWITCH SET

TNO

TIME TO PICK MATERIAL

TYES

TIME= 0
PICK UP MATERIAL

MATERIAL IN PATH

TNO

SAVE PICK TO TAIL TIME
TIME= 0

TIME< DROP DELAY TIME

lNO

RELEASE MATERIAL

MATERIAL AT SENSOR

TYES

TIME= 0

Fig 1-A C function implements each part of the control process. When an operation completes, the function returns the index of the next function in the
control sequence.

EDN's Software Engineering Special Issue 43

ABORTED
SEQUENCE

READ HARDWARE SENSORS AND SWITCHES
CALL CONSTANT C FUNCTIONS

RETRIEVE AND MASK CONTROL-BUFFER-BOTTOM COUNTER

FDIR_050

CALCULATE ADDRESS OF CURRENT CONTROL-BUFFER-POSITION TIME WORD
TIME = TIME + 1

SAVE ADDRESS OF TIME WORD TO PASS TO FUNCTION
CALCULATE AND SAVE ADDRESS OF FUNCTION-POINTER-TABLE INDEX

SAVE ADDRESS TO RETURN TO FROM C FUNCTION (FDIR_075)

GET INDEX OF NEXT FUNCTION TO CALL FROM CONTROL BUFFER
CALCULATE ADDRESS OF POINTER TO C FUNCTION

GET FUNCTION POINTER FROM TABLE
PUSH FUNCTION POINTER ON SYSTEM STACK TO CALL BY 'RET' INSTRUCTION

GET ADDRESS OF CURRENT CONTROL-~UFFER TIME WORD TO PASS TO FUNCTION
EXECUTE 'RET' INSTRUCTION TO CALL C FUNCTION

FDIR_075

PLACE INDEX OF C FUNCTION TO CALL AT NEXT INTERRUPT IN CONTROL BUFFER

NO RETURNED INDEX == 0

YES

BUFFER COUNTER== BUFFER TOP
YES

NO

NO BUFFER COUNTER == BUFFER BOTTOM

YES

SEQUENCE IS COMPLETE
BUFFER BOTTOM =(BUFFER BOTTOM+ 1) AND 7

SEQUENCE IS ACTIVE

INCREMENT
AND MASK

BUFFER COUNTER

LOSS-OF-MATERIAL
EXCEPTION

NO

YES

FDIR_200

BUFFER COUNTER ==BUFFER TOP

YES

NEW ACTIVE SEQUENCE
BUFFER TOP = (BUFFER TOP + 1) AND 7

BUFFER TOP == BUFFER BOTTOM

NO

NEW BUFFER-TOP TIME = 0
NEW BUFFER-TOP FUNCTION-TABLE INDEX = 0

UPDATE HARDWARE CONTROL
RETURN TO MAIN INTERRUPT-PROCESSING CODE

Fig 2-The assembly-language function driver makes decisions based on the values returned by each C function. The driver also maintains the table of function
pointers and a control buffer.

44 EDN's Software Engineering Special Issue

High-speed applications always need
some assembly-language code for time­
critical tasks; you can use that code as a
means to improve overall system speed.

practice, however, the material enters the machine so
fast that it's impossible for the operator to move
quickly enough to cause an overlap.

Lines 15 to 26 define function 2 (fa_blpick), which
controls the first actuator. (The routine numbers (indi­
ces) increase by two because routine addresses are
2-byte numbers in the function-pointer table.) The
function driver maintains the F.A_SENSE variable,
which contains the state of the operator switches. If
the operator presses a control button to bypass the
first actuator (for example, because the material is too
small to need two folds), then the content of
FA_SENSE causes the function to exit immediately
at line 21, transferring control to routine 8. Otherwise,
the routine monitors time at line 22 until it's time to
operate the first actuator; then (at line 25) it transfers
control to routine 4, which energizes the actuator.

The variable F.A_CTLRG contains a bit position for
each actuator. The C functions control the actuators
by setting or resetting bit positions in this variable (line
24). The function driver passes the contents of
F.A_CTLRG to the hardware interface for use in se­
lecting and energizing one or more actuators.

Other points to note in the C code are line 20, where
the time word is preset for control of subsequent rou­
tines, and line 32, where the routine uses a temporary­
storage location in the circular buffer to store an inter­
mediate result. Also, in line 41, routine 6 modifies
F.A_CTLRG to turn off the actuator that was turned
on at line 24. When a piece of material finally exits the
machine, the last function executes a return(O) state­
ment that terminates the control sequence. Remember
that several control sequences may be active at any
one time.

int
int
int
{

(*fp_table[32]) ();
func_l{), func_ 2() ,
index;

fp_ table [O] = func_l ;
fp_ table[l]=func_ 2;
i ndex=O;

.
• • • I

i ndex=fp tabl e[i ndex] {) ;

}

Fig 2 is the control-flow diagram of the assembly­
language function driver, which receives the calls at
every 5-msec timer interrupt and links the C functions
into their control chain. Listing 2 (see pg 47) presents
the corresponding Z80 assembly-language source code.
At lines 9 through 14, the driver reads the hardware
photosensors and operator switches, and saves their
states in global variables. Line 15 is a call to a C
function that is activated unconditionally at every
timer interrupt. Lines 16 through 19 set the buffer
counter to the oldest buffer entry.

The loop that processes each buffer entry begins at
line 21 and ends at line 125. For each control sequence,
lines 21 through 39 calculate the buffer address and
increment the time word. Lines 40 through 62 make
the address of the control-sequence time word accessi~
ble to the C function and also retrieve the address of
the pointer to a C function from the function-pointer
table. Line 63 transfers control to the C function.

In lines 65 to 82, the driver makes its decisions about
the activity of the C function on the basis of the re­
turned index and current buffer counter. It is possible
that the processing of a piece of material may be
aborted during a control sequence. Should that occur,
lines 83 to 85 cause the control sequence to idle until
it becomes the oldest (bottom position) in the buffer.
Lines 87 to 125 control the buffer-top and -bottom
counters and the execution path through the control
loop.

In lines 127 through 132, the driver sends the results
of control decisions to the hardware. At line 133, the
driver returns control to the interrupt-processing sys­
tem, which can then work on the nontime-critical por­
tion of the code.

/*function pointer table*/
/*subject functions*/

/*initialize function*/
/*pointer table*/
/*and function pointer index*/
/*main program loop*/
/*do appropriate function*/

Fig 3-You can speed up even pure C programs by replacing switch/ case statements with a table of pointers to the control functions.

EDN's Software Engineering Special Issue 45

Transferring control by means of a table
of function pointers is twice as fast as
using C switch/ case statements.

The remaining lines of code define the table of C
function pointers (lines 143 through 174); some global
variables (lines 176 through 183); and the control buffer
(lines 184 through 188).

The time required for the folding-machine controller
to process the single function from the entry of the
processing loop at FDIR_050 (Listing 2, line 21) to
the exit of the loop at FDIR_900 (line 127) is 216 µsec.
Processing seven functions requires about 1250 µsec,
depending on which functions are active. In contrast,
seven executions of a single switch statement require
1750 µsec plus about 1 msec for housekeeping and
actual function execution. It is apparent that the func­
tion-pointer method is at least twice as fast as the
switch/case method.

In a strictly C environment you might rewrite a
switch statement and its associated code as indexed
function-pointer addresses (Fig 3), since you would
expect to see some speed improvement whenever you
replace switch statements with indexed function­
pointer addresses. Indeed, comparing the speed of the
two methods on a personal computer shows that func­
tion-pointer control requires only 50 to 75% of the time
required by switch/case control.

Programs written entirely or partly in C will prob­
ably never be as fast as an equivalent program written
entirely in assembly language. However, to achieve
an incremental speed increase without abandoning C,

using indexed function pointers for program-flow con­
trol is a generic technique that you can adapt to many
applications. EDN

Reference
1. Brown, Rick, 'C function pointers let you build generic

control systems,' EDN, April 26, 1990, pg 215.

Author's biography
Rick Braum is an associate research en­
gineer at the Desert Research Institute
of the University of Nevada (Reno,
NV), where he has worked for 18 years.
Rick's '{Yrime responsibility is the devel­
opment of instruments and instrumen­
tation systems. He holds a BSEE from
the University of Florida (Gainsville,
FL) and is a member of the IEEE. He
also runs a consulting service specializ­
ing in the design of embedded-processor
systems. In his spare time he enjoys
mountain climbing, skiing, and back­
country travel.

Article Interest Quotient (Circle One)
High 470 Medium 471 Low 472

Listing 1-Sample of C routines for folding-machine controller

46

1 /* wait for material arrival at sensor 1 */
2 fa_start(time) / ****** routine o ******/
3 int *time;
4

5
6
7
8
9

10
11
12
1 3
14

{

if(fa_stopped) return(O);
if(! (FA_PDREG & BlPD))
{if(!fa_pdlclear) return(O);
fa_pdlclear=O;
sheet_count++;
*time=O;
return(2) ;}

fa_pdlclear=l;
return(O);
}

/*no auto action when stop*/

/*wait for sheet to leave*/
/*sheet in path*/
/*count arrivals*/

/*to wait for pick up*/
/*path is clear*/

15 /* delay to pick up at station 1 */
16 fa_blpick(time) /****** routine 2 ******/
17 int *time;
18 {

EDN's Software Engineering Special Issue

Listing 1-Sample of C routines for folding-machine controller (continued)

19 if(!(FA_SENSE & BlBYPASS)) /*low is true*/
20 {*time = -blb2_travel;
21 return(8);}
22 if(*time < blapt) return(2);
23 *time=O;
24 FA_CTLRG I= BlACT;
25 return(4);
26 }

/*wait for arrival at b2*/
/*not yet*/

/*pick up*/
/*to wait for tail*/

27 /* wait for material tail at sensor 1 */
28 fa_bltail(time) /****** routine 4 ******/
29 int *time;
30 {
31 if(! (FA_PDREG & BlPD) return(4); /*stil~ in path*/
32 *(time+l) = *time; /*pick to tail*/
33 *time=O;
34 return(6); /*wait to drop*/
35 }
36 /* delay to drop at station 1 */
37 fa_bldrop(time) /****** routine 6 ******/
38 int *time;
39 {
40 if(*time < blbtime) return(6); /*not time yet*/
41 FA CTLRG &= -BlACT;
42 return(8); /*wait for arrival at b2*/
43 }
44 /* wait for material at sensor 2 */
45 fa_b2wait(time) /****** routine 8 ******/
46 int *time;
47 {
48 if(FA PDREG & B2PD) return(8); /*not there yet*/
49 *time=O
50 return(lO); /*wait to pick*/
51 }

Listing 2-Assembly-language function driver for folding-machine controller
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

registers transferred to/from hardware

PUBLIC FA_CTLRG,FA_MOTRG,FA_SENSE,FA_PDREG

NAME FOLD DIR
CSEG

FOLD DIR:

FDIR 050:

LD
IN
LD
LD
IN
LD
CALL
LD
AND
LD
LD

PUSH

BC,lOOlH
A, (C)
(FA_PDREG) ,A
C,5
A, (C)
(FA_SENSE) ,A
IRON SPD
A, (FN_SKBOT)
7
C,A
B,O

;READ PHOTO DETECTORS

;READ SWITCHES

;MONITOR IRONER SPEED
;CONTROL BUFFR BOTTOM
;CIRCULAR 8 POSNS LONG
;BUFFR COUNTER IN BC

BC
;ALWAYS RUN BOTTOM BUFFR POSN

;CURRENT BUFFR COUNTER
Listing continued

EDN's Software Engineering Special Issue 47

Listing 2- Assembly-language function driver for folding-machine controller (continued)

22 LD
23 LD
24 ADD
25 ADD
26 ADD
27 ADD
28 LD
29 ADD
30 PUSH
31 LD
32 INC
33 LD
34 INC
35 POP
36 PUSH
37 LD
38 INC
39 LD
40 POP
41 LD
42 LD
43 INC
44 INC
45 INC
46 INC
47 PUSH
48 LD
49 PUSH
50 LD
51 LD
52 AND
53 LD
54 EX
55 LD
56 ADD
57 LD
58 INC
59 LD
60 PUSH
61 LD
62 LD
63 RET
64
65 FDIR 075: LD
66 POP
67 LD
68 POP
69 CP
70 JR
71
72 LD
73 CP
74 JP
75
76 LD
77 CP
78 JR
79 INC

48

HL, FN_BUFFR
A,C
A,C
A,C
A,C
A,C
C,A
HL,BC
HL
EI (HL)
HL
D, (HL)
DE
HL
HL
(HL) IE
HL
(HL) ID
HL
B,H
C,L
HL
HL
HL
HL
HL
DE,FDIR_ 075
DE
D,O
A, (HL)
3EH
E,A
DE,HL

VECT DE,FN_
HL;DE
EI (HL)
HL
D, (HL)
DE
H,B
L,C

A,L
HL
(HL) I A
BC
0
NZ,FDIR_200

A, (FN_SKTOP)
c
Z,FDIR_900

A, (FN_SKBOT)
c
NZ,FDIR_080
A

;CIRCULAR BUFFR BASE ADDR
;+ 5*CONTROL BUFFR CTR
;TO PROCESS BUFFR FROM
;BOTTOM TO TOP

;POINTS TO CURRENT ENTRY
;IN CIRCULAR BUFFR
; (TIME)

;INCREMENT TIME

;REPLACE TIME

;ADDRESS OF TIME IN BUFFR
;SAVE TO PASS TO ROUTINE

;POINT TO INDEX CONTROL
;SAVE TO REPLACE INDEX
;RETURN ADDRESS
;SAVE FOR 'RET' INSTR

;GET ROUTINE INDEX
;MASK TO 32 X 2 ARRAY

;IN HL
;FUNCTION PTR TABLE ADDR
;ADDRESS OF FUNCTION PTR
;C FUNCTION ADDRESS
;TO CALL BY 'RET'

;ON BUFFR TO EXECUTE
;PASS CONTROL BUFFR ADDR
;TO FUNCTION
;GO TO FUNCTION

;INDEX RETURNED
;ADDRESS OF INDEX
;REPLACE INDEX
;CURRENT BUFFR COUNTER
;TEST INDEX FOR INACTIVE
;IS ACTIVE
;IS INACTIVE
;IF CURRENT=TOP
;WAITING FOR NEW MATERIAL
;AND TEST IS COMPLETE

;IF CURRENT=BOTTOM THEN
;MATERIAL COMPLETE
;IF NOT THEN SEQ ABORTED
;SO MOVE UP BOTTOM

EDN's Software Engineering Special Issue

Listing 2-Assembly-language function driver for folding-machine controller (continued)

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

FDIR 080:

FDIR 200:

FDIR 250:

FDIR 500:

FDIR 900:

AND
LD
JR
LD
LD
JR

LD
CP
JR
INC
AND
LD

LD
LD
CP
JR
CALL

LD
AND
LD
LD
ADD
ADD
ADD
ADD
LD
LD
ADD
LD
INC
LD
INC
INC
INC
LD
JP

INC
LD
AND
LD
LD
JP

LD
LD
OUT
LD
LD
OUT
RET

7
(FN_SKBOT) ,A
FDIR 500
A,62
(HL) I A
FDIR 500

A, (FN_SKTOP)
c
NZ,FDIR_500
A
7
(FN_SKTOP) ,A

C,A
A, (FN_SKBOT)
c
NZ,FDIR_250
EXCEPTION

A, (FN_SKTOP)
7
C,A
B,O
A,C
A,C
A,C
A,C
C,A
HL,FN_BUFFR
HL,BC
(HL) I 0
HL
(HL) I 0
HL
HL
HL
(HL) , 0
FDIR 900

;CIRCULAR 8 POSNS LONG
;NEW BUFFR BOTTOM
;CONTINUE
;CALL FOR POSITION CLEAR
;UNTIL AT BUFFR BOTTOM
;AND CONTINUE
;INDEX .NE. 0
;TEST FOR NEW
;BY CURRENT == TOP
;NOT NEW .. CONTINUE
;IS NEW .. INCREASE BFR TOP
;CIRCULAR BUFFR
;NEW BUFFR TOP

;TEST FOR BOTTOM
;OVER WRITTEN

;BUFFER OVERFLOW

;NEW CONTROL SEQUENCE
;BY PLACING ENTRY MONITOR
;ROUTINE AT BUFFR TOP

;BRIDGE 1 PD
;INDEX MUST BE 0
;POINT TO CONTROL TABLE
;LOCATION 0
;THEN CALCULATE ADDRESS
;OF TIME WORD

;TIME = 0

;ADDRESS OF INDEX
;INDEX = 0
;END OF INTERRUPT

c
A, 7
c
C,A
B,O

;CONTINUE ON TO END OF BUFFR
;UPDATE CURRENT
;BUFFR COUNTER
;MASK TO CIRCULAR

FDIR 050

BC,1004H
A, (FA_MOTRG)
(C) ,A
C,6
A, (FA_CTLRG)
(C) ,A

;DO NEXT BUFFR LOCATION

;OUT TO MOTORS

;OUT TO CONTROL

;TO INTERRUPT PROCESSOR

135 ROUTINE TO CLEAR BUFFR POSITION
136

Listing continued

EDN's Software Engineering Special Issue 49

Listing 2-Assembly-language function driver for folding-machine controller (continued)

50

137
138
139
140

FA CLEAR: LD
RET

HL,O

141 FUNCTION POINTER TABLE. POINTED TO BY INDEX
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

190
191
192

FN VECT:

DSEG

FA CTLRG:
FA MOTRG:
FA SENSE:
FA PDREG:
FN SKBOT:
FN SKTOP:

FN BUFFR:

xx xx xx
22 hours
xxxxxx

DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW

DB
DB
DW
DW
DB
DB

DW
DW
DB
DB
END

FA START
FA BlPICK
FA BlTAIL -
FA BlDROP
FA B2WAIT
FA B2PICK
FA B2TAIL
FA B2DROP
FA ClWAIT
FA ClBREAK
FA ClAON
FA ClAOF
FA C2WAIT
FA C2PICK
FA C2TAIL
FA C2DROP
FA C3WAIT
FA C3PICK
FA C3TAIL
FA C3DROP
FA BYCROSS
FA B2BYTAIL
FA B2CLOSE
FA BUZZER
FA TANGLE
FA CLEAR
FA CLEAR
FA CLEAR
FA CLEAR
FA CLEAR
FA CLEAR
FA CLEAR

1
1
1
1
1
1

0 TEST FOR START
2 WAIT FOR Bl PICK UP
4 WAIT FOR Bl TAIL
6 WAIT TO DROP

;WAIT FOR ARRIVAL AT B2
;B2 PICK UP
;12
;B2 DROP
;WAIT FOR ARRIVAL AT Cl
;BREAK MOTOR STOP
;20 START AIR BLAST
;22 STOP AIR BLAST
;WAIT FOR ARRIVAL AT C2
;C2 PICK UP
;28
;C2 DROP
;WAIT FOR ARRIVAL AT C3
;C3 PICK UP
;36
;C3 DROP
;BYPASS CROSS FOLDS
;TAIL AT B2
;CLOSE BYPASS CHUTE
;SOUND THE HORN
;STOP FOR POSSIBLE TANGLE
;50 DUMMY LOCATION
;DUMMY LOCATION
;DUMMY LOCATION
;DUMMY LOCATION
;DUMMY LOCATION
;DUMMY LOCATION
;62 DUMMY LOCATION

;CONTROL SIGNALS
;MOTOR CONTROL

;PHOTO DETECTORS
;BOTTOM OF BUFFR POINTER
;TOP OF BUFFR POINTER

1
1
1
35

PARAMETER BUFFER FOLLOWS
;TIME WORD
;AUX TIME WORD
;ENT BYTE
;REST OF BUFFER

EDN's Software Engineering Special Issue

Don't let DRACULA™
hypnotize you into a dark
comer. Before you choose a
design rules checker, let ISS
shed some light on the
subject. We have DRC
software in our design
toolkit that's worth evaluat­
ing ...

LRC-2CXX) is much faster
than the vampire. And we
pack it with more functional­
ity-like reduced false errors,
parallel processing, and a
one-for-one mnversion of
DRACULA run sets.

package for much less. We
won't bleed you dry.

So why not exorcise your
vampire and try ISS' s
LRC-2CXX) free for 30 days. ·
Install it on the workstation
of your choice, or visit one of
our sales offices for a demon­
stration.

You'll feel alive again!
Call us toll free at-

It's called LRC-2CXXJfM,
and it's a true hierarchical
design rules checker.

With all these improve­
ments over the DRC vam­
pire, you might think our
DRC msts more. The truth is
you can buy ISS 's DRC 1-8004-CAD-LTL

lr~'S Integrated Silicon
...:11 Systems, Inc.

155. The IC CAD company that listens.

P.O. Box 13665, Research Triangle Park, NC 27709 Phone: 919/361-5814 Fax: 361-2019
Silicon Valley: 408/562-6154 S. California: 714/891-0203 Texas: 512/452-5814

DRACULA is a reg;stered trademark of Cadence Design Systems, Inc.

CIRCLE NO. 15

51

52

Analog and digital waveforms
with common time axis

MicroSim is
the leader in

Mixed
Analog/Digital

Simulation
Technology

CIRCLE NO. 11

MicroSim Corporation

Two years ago, MicroSim introduced the tech­
nology for simulating mixed analog/digital cir­
cuits. Now, this capability is available in the
Digital Simulation extension for PSpice. It does
true mixed-mode simulation of circuits - in­
cluding feedback loops between analog and
digital sections.
PSpice's Digital Simulation option performs mixed
analog and digital simulations. There are no perform­
ance compromises-digital components are processed
at logic simulation speeds and analog waveforms are
calculated with PSpice's usual precision. Analog and
digital waveforms may be displayed together, with a
common time axis (see photograph for an example).

Digital Simulation removes one of the greatest con­
straints on circuit simulation: the dichotomy between
analog and digital.

PSpice with the Digital Simulation option:

• Is Easy to Use - In the circuit description, digital
devices follow the same syntax as other PSpice de­
vices. Simulating a mixed circuit is no different from
running a transient analysis on an analog circuit.

• Has Efficient Algorithms-To getreasonablespeed-and
to allow reasonably large sections of digital circuitry-the
core of theDigital Simulation option is an event­
driven logic processing algorithm. It computes logic
states and propagation delays very quickly.

• Includes an Extensive Library- The Digital Simula­
tion option includes libraries for most TTL compo­
nents. These include gates, flip-flops, latches, regis­
ters, and counters. Each component, in tum, in­
cludes models for many logic families including
TTL, LS, ALS, H, F, L, S, AS, HC, HCT, and 4000
series CMOS. The component models describe not
only the functionality of the device but also all its
propagation delays.

Each copy of PSpice comes with our extensive product
support. Our technical staff has over 100 years of
experience of CAD/CAE, and our software is sup­
ported by the engineers who wrote it.

For further information about the Digital Simulation
option or any other PSpice product, please call us toll
free at (800) 826-8603 or, in California, (714) 770-
3022. Find out for yourself why PSpice has sold more
programs than all other SPICE-type programs com­
bined and has become the de facto standard for circuit
simulation.

20 Fairbanks• Irvine, CA 92718 USA •Telex 265154 SPICE UR

PSpicc is a registered trademark of MicroSim Corporation. All Olhcr brands and product names are trademarks or
registered trademarks of 1hcir respective holders.

Design Feature

Comprehensive features
ease ports from

UnixtoOS/2
Porting an application from one operating
system to another is rarely a simple proce­
dure. Differences in system features and
operating limits complicate the port. H ow­
ever) in the case of porting Unix applications
to OS/2) your task is simpler because OS/2
has features similar or superior to Unix.

Joseph Gnocato, MPR Teltech Ltd

The problems peculiar to porting a Unix application
to OS/2 stem from the substantial differences between
the architectures of the two operating systems. The
differences have a profound effect on how you write
your code, how you structure your programs, and how
you use your compiler.

A standard Unix application has difficulty processing
the message-based "events" of OS/2. Under OS/2's gra­
phical user interface, Presentation Manager (PM), all
user-input events send messages to the active applica­
tion via a queue. The user-input events first arrive at
a System Message Queue, which subsequently sends
them to the active application. The active application
must always be ready to respond to any of its messages
at any time.

For example, if an OS/2 PM application expects some
keyboard input from the user, among other inputs, it
cannot merely call the C function getchar. The getchar

EDN's Software Engineering Special Issue

function call would "block" the application and wait for
the user's input. If the user does not type a character,
but instead tries to resize the window, the application
cannot handle the window-resize message because the
program is blocked waiting for user input.

Although the message-based architecture of PM
seems to create a problem for software engineers who
want to use functions like getchar, OS/2 provides a
powerful solution. It allows a "process," or "task," to
have more than one "thread" of execution. Threads
can execute different parts of a single program concur­
rently. This concurrency means that one thread can
manage window-manipulation tasks while another exe­
cutes blocking functions like getchar.

In contrast, Unix-based applications generally do not
operate in a message-based environment. Porting gra­
phical Unix applications to PM is not simply a matter
of blindly converting the graphics and file-system rou­
tines to equivalent PM routines. You must carefully
consider how the Unix application's existing user-event
handler will interact with OS/2 PM. Usually, your user­
event handling will require some modification.

Handler acquires semaphores
Unix applications may require several fundamental

changes to handle events under PM. You must employ
semaphores to control different threads and to serialize
specific actions. For example, an application that must
periodically recalculate a large spreadsheet must still
respond to the user during recalculation.

As a simple example, consider a program that begins
a time-consuming operation whenever the user presses

53

The existence of virtual memory on the
target computer is usually a prerequisite
for successfully porting any large applica­
tion.

Listing 2-MTDEMO definitions file

NAME

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

the second mouse button. Now, assume that a user
first presses the second mouse button and then decides
to resize the program's window. In a single-threaded
PM program, the window resizing would not occur
until after the time-consuming operation was com­
pleted. Alternatively, a multi threaded program per­
forms the time-consuming operation and the window
resizing concurrently.

Listing 1 (see pg 59) contains a complete multi­
threaded, semaphore-controlled program for OS/2 PM
called MTDEMO. Listings 2 and 3 show the module­
definition file and the make file , respectively, for the
MTDEMO program. MTDEMO demonstrates how
threads and semaphores combine to provide effective
system response to the user.

In the PM code, the main procedure initializes the
program's environment and creates a Frame and Client
window on the PM Desktop (Presentation Manager's
metaphor for its screen displays). Before entering the
event-processing loop, main creates a second thread
of execution with the _ beginthread function.

The main procedure then starts processing events
by repeatedly calling the WinGetMsg and WinDis­
patchMsg functions. When the user closes the pro­
gram's window, WinGetM sg returns FALSE, and the
main program terminates.

Simultaneously, the _beginthread function begins
executing the second thread with the SecondThreadFct
procedure. This procedure is an infinite loop that sets
the hsemPauseThread2 semaphore and waits for it to

MTDEMO WINDOWAPI

'MTDEMO Program, (c) Joe Gnocato, 1990'

1024
8192
ClientWndProc

be cleared. When hsemPauseThread2 clears, a beep
sounds and the time-consuming operation begins (in
this case a sleep operation). When it ends, a beep
sounds again. The second thread sets the semaphore,
and then waits for it to clear again.

The function ClientWndProc clears the hsem­
PauseThread2 semaphore upon rece1vmg the
WM_BUTTON2DOWN message. This message occurs
whenever the user presses the second mouse button.

Assume that a user invokes MTDEMO, presses the
second mouse button, moves to the window border,
and then resizes the window. Fig 1 shows a timing
diagram for a single-threaded version of MTDEMO.
Notice that all processing occurs serially. Compare
these results with F ig 2, which shows the timing dia­
gram for the two-threaded version of MTDEMO.

A single-threaded implementation of MTDEMO
would not create a second thread; it would invoke the
time-consuming operation directly from ClientWnd­
Proc upon receiving the WM_BUTTON2DOWN mes­
sage. Thus you can use multiple threads to handle
several events in a seemingly simultaneous manner.
Imagine an application that waits for user input, resizes
its window, redraws the graphics area, and loads a
data file-all simultaneously. OS/2's threads make this
concurrency possible. Applications using threads will
become even more powerful on architectures that have
multiple CPUs, where each CPU will have one or more
threads.

OS/2 supports a "DOS-style" file system that re-

Listing 3-MTDEMO make file

mtdemo.obj mtdemo.c
cl -c -AH -G2sw mtdemo.c

mtdemo.exe : mtdemo.obj mtdemo.def
link mtdemo.obj, /align:16, NUL, /NOD llibcmt os2, mtdemo.def

54 EDN's Software Engineering Special Issue

stricts file names to an 8-character name followed by
a period separator ("dot") and a 3-character extension.
Unix users often find the DOS-style naming convention
restrictive. When porting from Unix to OS/2, you must
ensure that each application conforms to the DOS-style
file-naming conventions.

With the introduction of OS/2 version 1.2, OS/2 be­
gan supporting multiple, installable file systems. The
High Performance File System (HPFS) is the new OS/2
file system that removes the DOS-style file naming
restrictions. HPFS file names may be very long strings
composed of any combination of legal characters. This
new file system removes many of the naming
incompatibilities present betw~en the Unix and DOS­
style file systems.

Accommodating the differences between Unix and
OS/2 often comes down to compiler considerations. For
example, software engineers developing Unix applica­
tions never worry about which memory model to use
during application development-Unix implicitly as­
sumes a "flat" memory architecture. In contrast, be­
cause of the peculiarities of the 80X86 family's architec­
ture, OS/2 PM developers face the task of first choosing
an appropriate memory model for their programs.

Standardizing on the HUGE memory model elimi­
nates many of the precautions needed when mixing
and matching object files and library programs com­
piled with different memory models. Using the HUGE
memory model also means that the code does not re­
quire the FAR and NEAR keywords (available in the
Microsoft C compiler). In addition, the HUGE memory

! l l l WM_ SIZE

model provides a flat memory model that most closely
resembles that of Unix.

The existence of virtual memory on the target com­
puter is usually a prerequisite for successfully porting
any large application. OS/2's virtual memory handles
all requests for dynamic memory and performs code
or data swapping automatically. Program overlays,
common in large DOS applications, ·are unnecessary
under OS/2.

OS/2's virtual memory easily handles requests for
large pieces of dynamically allocated memory. How­
ever, you will that the halloc function, in Microsoft's
C runtime library V5.10, will not grant requests of
more than 4M bytes per call. The DosAllocHuge func­
tion circumvents this restriction. Listing 4 provides a
source-code fragment that allocates 5M bytes of memory.

The swapper.dat file (usually \OS2\SYSTEM\
SWAPPER.DAT) is OS/2's virtual-memory file on the
hard disk. As requests for memory exceed the ma­
chine's RAM, the swapper.dat file grows dynamically
as the RAM and hard disk swap data.

Unfortunately, the swapper.dat file does not dynami­
cally shrink as an application frees memory. Users may
see a sharp decrease in available hard-disk space when
an application allocates large pieces of memory. The
swapper.dat file only returns to its default size when
users reboot their systems.

As with all ports, pay particular attention to indis­
criminate mixing, or casting, of variables. Also pay
attention to compiler-dependent "clever" program­
ming. For example, in some C compilers for particular

l MESSAGE
QUEUE WM_MOUSEMOVE WM_SIZE WM_ SIZE WM_ SIZE WM_ SIZE l l WW WM_MOUSEMOVE WM_MOUSEMOVE WM_MOUSEMOVE WM_MOUSEMOVE WM_MOUSEMOVE WM_SIZE

WM_BUITON2UP WM_MOUSEMOVE WM_MOUSEMOVE WM_MOUSEMOVE WM_MOUSEMOVE WM_MOUSEMOVE WM_SIZE
WM_BUITON2DOWN WM_BUITON2UP WM_BUTTON2UP WM_BUTTON2UP WM_BUTTON2UP WM_MOUSEMOVE WM_MOUSEMOVE

EVENTS
PROC£SS EXECUTE PROCESS PROCESS PROCESS

PROCESSED TIME · CONSUMING TASK WM_ SIZE
BY EVENT (DOSSLEEP) EVENT EVENT EVENT

THREAD#1

ARBITRARY
21 3t 4t St 6t 7t St 9t TIME UNITS

NOTE: SINGLE-THREADED VERSION OF MTDEMO PROGRAM. USER CLICKS MOUSE BUTTON #2, MOVES MOUSE AND RESIZES WINDOW.
MESSAGES GENERATED BY OS/2 PM ARE: WM_BUTTON2DOWN, WM_BUTTON2UP, WM_MOUSEMOVE & WM_SIZE.

Fig I-In a single-threaded version of MTDEMO, the time-consuming function blocks other input-event processing.

EDN's Software Engineering Special Issue 55

Accommodating the differences between
Unix and OS/2 often comes down to
compiler considerations.

processors, an int may be the same size as a pointer.
Code that implicitly makes this assumption could be
difficult to port to other processors with different un­
derlying architectures.

Useless C runtime functions
Under Presentation Manager, several standard C

runtime I/O functions (such as '[J'Yintf and getchar) are
no longer useful because the application must receive
user input from the message queue. For each character
the user types, the application will receive a message
providing the key's code and the status of other keys.
The application must process these messages and con­
catenate the key events to produce a string. You can

use PM's Dialog Boxes to perform this task automati­
cally.

The C function print/ prints to stdout, but in a gra­
phical PM program, stdout is not linked to the graphics
window. Therefore, print/ will not produce any visible
result on a graphical program's PM screen. PM pro­
grams usually accomplish text output through PM's
Gpi or Vio routines.

Therefore, instead of using the standard print! func­
tion throughout your application's source code, you
should instead use a system-independent function, per­
haps MyPrintFunction. The actual code for MyPrint­
Function will change from system to system, but the
function isolates the application from these changes.

Listing 4-0S/2 megabyte allocator

char * GiveMeFiveMB()
{

56

/* This function tries to allocate 5 MB of memory. It returns a
** pointer to the memory if successful, otherwise NULL.
**
** You must compile this function with the LARGE or HUGE
** memory mode l op t i on s . */

USHORT
USHORT
SEL
CHAR

usSegs, usPartialSeg;
usReallocSegs, fusAlloc;
sel;
*pch;

ussegs = 80; /* 80 segments of 64KB = 5 MB */
usPartialSeg = O; /* no partial segments required */
usReallocSegs = O; /* we don't need to re-allocte any segments */
fusAlloc = SEG_NONSHARED;

if(DosAllocHuge(usSegs, usPartialSeg, &sel, usReallocSegs, fusAlloc))
(

else
(

/* Allocation was not successful. */

pch = NULL;

/* Convert the selector to a pointer
** that can access all the memory. */

pch =(char*) MAKEP(sel, O);
}
return(pch);

EDN's Software Engineering Special Issue

Listings 5a and 5b show examples of Unix and OS/2
versions, respectively, of the actual code for MyPrint­
Function.

Because of MyPrintFunction, the application is un­
aware of the actual mechanism for writing to the
screen. Isolating the application from system depend­
encies minimizes the work required to port the applica­
tion. In addition, environments that permit multiple
fonts or colors can provide these features without mak­
ing an impact on the application.

of a print! call and the OS/2 scheduler suspends its
execution. Now a second thread begins executing and
it also makes a call to printf With the regular (nonre­
entrant) function, the second thread's call to print!
could corrupt the function's static data.

For multithreaded programs, where more than one
thread makes use of the C runtime functions, you must
use a special version of the Microsoft C runtime library.
For example, suppose that one thread is in the middle

The Microsoft C compiler includes a large-model li­
brary that you should link to multithreaded programs
where more than one thread executes C runtime func­
tions. Applications do not require the multithreaded
C runtime library when only one thread accesses the
runtime library, or if the library accesses are done
serially.

Note that some of the C runtime functions in the
nonmultithreaded libraries are re-entrant. Programs

MESSAGE
QUEUE

EVENTS
PROCESSED

BY
THREAD#1

EVENTS
PROCESSED

BY
THR EAD#2

ARBITRARY
TIME UNITS

! ! WM_ SIZE
WM_MOUSEMOVE WM_SIZE
WM_MOUSEMOVE WM_MOUSEMOVE
WM_BUTION2UP WM_MOUSEMOVE
WM_BUTION2DOWN WM_BUTTON2UP

IDLE

2t

! -
WM_ SIZE
WM_MOUSEMOVE
WM_MOUSEMOVE

PROCESS
WM_BU TION2UP

EVENT

"
3t

I
WM_SIZE
WM_MOUSEMDVE

PROCESS
WM_MDUSEMOVE

EVENT

EXECUTE

WW
PROCESS

EVENT

PROCESS
WM_SIZE

EVENT

TIME· CONSUMING TASK
(DOSSLEEP)

4t St 61

NOTE: TWO-THREADED VERSION OF MTDEMO PROGRAM.

7t 81 9t

SAME MESSAGES AS FIGURE #1 ARE QUEUED BY USER ACTIONS. HOWEVER, PROGRAM HANDLES THEM IN A DIFFERENT MANNER.
SECOND THREAD WORKS ON THE 'TIME-CONSUMING' TASK WH ILE FIRST THREAD CAN IMMEDIATELY RESPOND TO USER'S 'RESIZE' REQUEST.

Fig 2-The two-threaded version of MTDEMO can simultaneously execute both the time-consuming task and service the user's mouse events.

Points to ponder when porting programs

As OS/2 continues to mature,
more software engineers will port
Unix applications to Presentation
Manager and OS/2. These soft­
ware engineers should consider
the following points:
• You will need to tailor your

Unix application's user-event
handler for operation under
OS/2 and Presentation Man­
ager (PM).

• You will need multiple threads
in the OS/2 PM application es-

EDN's Software Engineering Special Issue

pecially if the application uses
blocking functions.

• A system-independent alterna­
tive for print! is a necessity.

• Applications with multiple
threads, calling the C runtime
library, require special mul­
tithreaded versions of the C
runtime library programs.

• The possible incompatibilities
in the file-naming conventions
between the Unix file system
and OS/2's DOS-style file sys-

tern are often troublesome.
However, OS/2's new High
Performance File System
(HPFS) eliminates most of
these concerns.

• OS/2's virtual memory pro­
vides elegant memory manage­
ment and is transparent to the
user.

• Prototyping menus, dialog
boxes, and icons under OS/2
PM is very quick and easy.

57

Unix users often find the DOS-style nam­
ing convention restrictive.

Listing 5-Unix and OS/2 versions of a system-independent printing function

void MyPrintFunction(str)
char *str;
{

}
(a)

printf ("%s\n", str) ;

void MyPrintFunction(str)
char *str;
{

HPS hps;

/* Obtain a Presentation Space handle (hps) and print
** the string (str) at the current text position
** (ptlPosition) in the window. Then decrease the current
** text position by the current font height (sCharHeightY). */

hps = WinBeginPaint(globals.hwndOutputWindow, NULL, NULL);
GpiCharStringAt(hps, &(globals.ptlPosition) ,

(LONG) strlen(str), str);
WinEndPaint(hps);
globals.ptlPosition.y -= globals.sCharHeightY;

}
(b)

that limit their calls to the re-entrant functions could,
therefore, use the regular functions. However, in prac­
tice, worrying about which functions can or cannot be
used for multithreaded programs is too troublesome.
Standardizing on the multithreaded libraries eliminates
the need to check all code for calls to nonre-entrant C
functions.

The OS/2 utilities for developing menus, dialog
boxes, and icons are very useful and allow rapid proto­
typing of several aspects of your user interface.

Using the PM's Resource-Description Language, you
. can describe user menus and dialog boxes with text.
The resource compiler compiles your descriptions into
binary files that "bind" with your executable program.
Alternatively, you can interactively construct dialog
boxes with the DlgBox utility provided in the Software
Developers' Kit. EDN

References
1. Petzold, Charles, "Programming, the OS/2 Presentation

Manager." Microsoft Press, Redmond, WA, 1989. ISBN 1-
55615-170-5.

58

2. Letwin, Gordon, "Inside OS/2." Microsoft Press, Red­
mond, WA, 1988. ISBN 1-55615-117-9.

Author's biography
Joseph Gnocato is a systems develop­
ment engineer with MPR Teltech Ltd
in Burnaby, British Columbia, Can­
ada. He's been with the company for
four years . He develops CAD/GAE ap­
plications and user interfaces under
Unix and 0812. Joseph earned a BASC
in electrical engineering from the Uni­
versity of British Columbia. Joseph, a
member of the IEEE, enjoys traveling
and river rafting.

Article Interest Quotient (Circle One)
High 479 Medium 480 Low 481

EDN's Software Engineering Special Issue

Listing 1-Multithreaded demonstration program

/* PROGRAM: mtdemo (mutliple thread demo)
**
** PURPOSE: This OS/2 PM program demonstrates:
** 1) executing multiple threads
** 2) semaphores controlling threads '*/

#define INCL WIN
#define INCL DOS
#include <os2.h>
#include <mt\process.h>
#include <mt\stdlib.h>

/* multi-threaded 'process.h' header file */
/* multi-threaded 'stdlib.h' header file */

#define
#define .
#define
#define
#define

void
void

STACKSIZE 4096 I*
SLEEP DURATION 5000 I*
BEEP DURATION 150 /*
HI_FREQ_BEEP 4000 /*
LO_ FREQ_BEEP 100 I*

ma.:..n (void) ;
SecondThreadFct(void);

stack size for 2nd thread
5000 milliseconds */
150 milliseconds *I
4000 Hz *I
100 Hz *I

MRESULT EXPENTRY ClientWndProc(HWND, USHORT, MPARAM, MPARAM) i

HSEM hsemPauseThread2;

void main(void)
(

/* control semaphore for thread#2 */

/* This sample program waits for the user to press the second

*I

** mouse button. When the user presses the button, a low-frequency
** beep sounds and a 'time-consuming' task begins in a
** second thread. When this task completes, a high-frequency
** beep sounds. While the 'time-consuming' task executes,
** the first thread still responds to the user's mouse and
** keyboard inputs.
**
** The routine 'main' initializes the PM environment and
** launches the second thread of execution with the
** ' beginthread' function. The 'hsemPauseThread2' semaphore controls
** the second thread's execution.
**
** The 'WinDispatchMsg' function dispatches Message-based events
** arriving at the window's queue. The 'ClientWndProc' function
** processes messages. */

HAB
HMQ
QMSG
HWND
ULONG
static CHAR
static CHAR
static TID

hab;
hmq;
qmsg;
hwndFrame, hwndClient;
FrameFlags;
szClientClass() = "DemoProg";
ThreadStack(STACKSIZE);
Thread2ID;

EDN's Software Engineering Special Issue

Listing continued

59

Threads can execute different parts of a
single program concurrently.

Listing 1-Multithreaded demonstration program (continued)

/* Initialize PM and create a message queue for the events. */

hab = Wininitialize(O);
hmq = WinCreateMsgQueue(hab, 0);

/* Register the window class and create a standard
** frame window and client window. */
WinRegisterClass(hab,

szClientClass,
ClientWndProc,
CS_ SIZEREDRAW,
0) ;

/* anchor block handle */
/* window class name */
/* window procedure */
/* window-style flags */
/* amount of reserved data */

FrameFlags FCF_TITLEBAR I FCF_SYSMENU I FCF_ SIZEBORDER I
FCF_ MINMAX I FCF_ SHELLPOSITION;

hwndFrame WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&FrameFlags,
szClientClass,
" Demo",
OL,
NULL,
NULL,
&hwndClient) ;

/* parent window handle */
/* frame window style */
/* frame creation flags */
/* client class name */
/* title-bar text */
/* client window style */
/* resource module handle */
/* frame resource id */
/* client window handle */

/* Before beginning the event processing, start a second thread
** of execution. The second thread will execute the function
** called 'SecondThreadFct'. */

Thread2ID = beginthread(SecondThreadFct,
- (void *) ThreadStack,

STACKSIZE,
NULL) ;

/* thread2 startup function */
/* thread2 stack space */
/* stack size for thread2 */
/* thread2 parameters */

/* Loop through the user events until program halts. */

while(WinGetMsg(hab, &qmsg, NULL, O, 0))
{

WinDispatchMsg(hab, &qmsg);

/* Program has terminated, so clean up windows and queues. */

WinDestroyWindow(hwndFrame);
WinDestroyMsgQueue(hmq);
WinTerminate(hab);

/*--*/
MRESULT EXPENTRY ClientWndProc(hwnd, msg, mpl, mp2)
HWND hwnd;
USHORT msg;

60 EDN's Software Engineering Special Issue

Listing 1-Multithreaded demonstration program (continued)

MPARAM mpl;
MPARAM mp2;
{

/* This function processes all Client window event messages.
** We are only interested in the message generated when
** the user presses the second mouse button. Let the system
** handle all other messages in the default manner. */

switch(msg)
{

}

case WM BUTTON2DOWN:

/* Clear the semaphore to wake up the second thread.
** Then continue to process user events normally. */

DosSemClear(&hsemPauseThread2);
break;

return(WinDefWindowProc(hwnd, msg, mpl, mp2));

/*--*/

void SecondThreadFct(void)
{

/* Only the second thread executes this function.
** The 'hsemPauseThread2' semaphore controls execution.
**
** This routine will SET the 'hsemPauseThread2' semaphore and
** then wait indefinitely until the semaphore clears. When the user
** clears 'hsemPauseThread2' by pressing the second
** mouse button the routine wakes up and makes a low-freq beep.
**
** The routine then simulates a 'time-consuming' task by sleeping
** for SLEEP DURATION milliseconds. The 'time-consuming' task would
** typically-be the recalculation of a large spreadsheet or waiting
** for user input.
**
** After the 'time-consuming' task has completed, the routine makes
** a high-freq beep and reenters a dormant state by setting the
** 'hsemPauseThread2' semaphore and then waiting for it to clear. */

while (TRUE)
{

/* Set the semaphore and wait for it to clear. Pressing the
** second mouse button will clear the semaphore, (see the
** 'ClientWndProc' procedure). */

DosSemSet(&hsemPauseThread2);
DosSemWait(&hsemPauseThread2, SEM_INDEFINITE_WAIT);

DosBeep(LO_FREQ_BEEP, BEEP_ DURATION);
DosSleep((ULONG) SLEEP_ DURATION); /*perform time-consuming task*/
DosBeep(HI_FREQ_BEEP, BEEP_ DURATION);

EDN's Software Engineering Special Issue 61

NEW PRODUCTS
SOFTWARE DEVELOPMENT TOOLS

Software Tool For
Parallel Processors

tern that attaches to a PS/2. Each
processing element of the CP has
36 bits of content-addressable mem­
ory, as well as general-purpose reg­
isters. An interconnection network
links the processing elements to­
gether in an SIMD (single-instruc­
tion, multiple-data) configuration.
The simulation software runs on
IBM PS/2s and compatibles and on
Sun workstations, and it accurately
models the hardware. The package
consists of an assembler and linker,
the simulator itself, and the CP
Debugger, which gives you source­
level debugging facilities . You
write your program in CP assembly
language and C. The assembler
generates C source code represent­
ing the corresponding CP micro­
code. You then compile the entire
program with the Microsoft C com­
piler and link it to the simulator,

• Lets you write/debug programs
for a parallel system

• Provides for use of associative
memory

The Coherent Processor (CP) Simu­
lator package is a development sys­
tem that lets you write, debug, and
simulate the execution of applica­
tion programs that will eventually
run on the vendor's CP. The CP is
a hardware parallel-processing sys-

62

c MASM

Quality ROM Tools
Genesis Microsystems has been a producer of quality 8086-family ROM
development tools since 1982.

Our Genelink linker/locator links OBJ files from Microsoft-C, MASM,
and other languages to fully-located ABS and HEX files. CodeView
debugging information is completely converted to standard Intel format
for emulators and ROM debuggers. Genelink is by far the fastest and
most integrated ROM linker available, performing all operations with a
single, integrated tool.

Our GeneScope/Target PROM source-level target debugger gives you
the same advanced , windowed debugging capabilities as we supply to
premium emulator manufacturers for their own high-end products, but
at the lower costs of a PROM-based monitor.

For more information call Genesis Microsystems Corp. at (707) 542-
5000. Or write 146-D Wikiup Dr., Santa Rosa, CA 95403 .

CIRCLE NO. 23

which the vendor supplies in the
form of a library of object-code rou­
tines. When you load and run the
resulting executable program, the
simulator routines execute your ap­
plication exactly as if it were run­
ning on the hardware. Each mem­
ory model has a separate library
(small, medium, and large); you se­
lect the appropriate library for your
application. The simulator package
costs $895.

Coherent Research Inc, 1 Adler
Dr, East Syracuse, NY 13057.
Phone (315) 433-1010.

Circle No. 351

ANSI-C Compiler
For MS-DOS
• Conforms fully to the ANSI C

standard
• Compatible with pre-ANSI-C

implementations
New C is a fully conforming AN SI­
C compiler that runs on 80386-
based computers under MS-DOS.
New C is compatible with older im­
plementations such as those based
on Kernighan & Ritchie and the
Berkeley 4.2 Portable C Compiler.
You can therefore use New C to
compile existing C code without any
coding changes. The compiler also
supports some non-ANSI exten­
sions. It runs in protected 32-bit
mode and uses the MS-DOS operat­
ing system for all I/O and system
calls. Further, it lets you address
all of the computer's physical mem­
ory at one time-it doesn't require
you to conform to the 80286 mem­
ory-segmentation scheme. The com­
piler comes with a preprocessor, a
standard runtime library with
header files, and function proto­
types. It provides optional in-line
code generation of math and string­
handling functions. $495.

Language Processors Inc, 959
Concord St, Framingham, MA
01701. Phone (508) 626-0006.

CirCle No. 352

EDN's Software Engineering Special Issue

EDN
11111:1 Ill

This advertising is for new and current products.

Please circle Reader Service number
for additional information from manufacturers.

E6805 Symbolic Host Support

• Full C source level symbolic
debugging

• Simplifies
Motorola
EVM, EVS

Companion to
C6805 Code
Development System

Call today! 519·888·6911

BYTE CRAFT LIMITED
421 King St .. N.
Waterloo. ONT. N2J 4E4

CIRCLE NO 325

Key Abstracts in
Software
Engineering
Provides details of recently­
publ1shed papers chosen from
leading international journals and
conference proceedings. Selection
of these key abstracts 1s carefully monitored by INSPEC's
team of qualified sub1ect experts and brought to you
each month in an easy-to-read format.

Contents Include: Programming Suppo1t High Level
Languages. Compilers and Interpreters. Operating
Systems. Database Management Systems. Distributed
DBMS. Relational DBMS. Sottware Engineering Man­
agement. Software Techniques and Other Aspects.
For more itifon1u11iot1 ot1 Ibis lit le a11tl a/120
<if our Key Abs /racl s. ple a se co11/t1c t:

OOO~[JI~~
IEEE Serv ice Center, INSPEC Department
445 Hoes Lane . Piscataway . NJ 08855-1331
Phone (908) 562 -5553 Fax (908) 981 -0027

1991 Subscnp11on price - $79.00 Member $142.00 Non-member
A·' subscriptions must be prepaid and are on a calendar year basis

**** " The Best 8051 Emulator"

8051
SEE EEM 89190

Pages O 1324-1326

PC based emulators for the 8051 family
1031 , 1032, 1051 , 6052, IOC152/154/321 /4511452/51 FAJ51GB/5151517/53Sf5371
552/562/1521151 , 80532, 13C451/5521652/751/7521151, 1344, 17C451155217511
752, 1751, 1752, DSSOOO + CMOS •

• PC plug-in boards or RS-232 box.
• Up to 30 MHz real-llme emulation.
• Full Source-level Debugger wlcomplete C-variable support .
• 48 bit wide, 16K deep trace, with "source line trace."
• " Bond-out" pods for 8051, 83C552, 83C451 , 83C652,

83C751 , 80C515/80C517, B3C752.

Prices: 32K Emulator 8031 $1790; 4K Trace $1495"

CALL OR WRITE FOR FREE DEMO DISK!
Ask about our demo VIDEO

noHau 51 E. Campbell Avenue
Campbell , CA 95008
FAX (408) 378·7869

CORPORATION (408) 866-1820
·uson1y

CIRCLE NO 326

• Protel Autotrax ~ .-J 11 111 11
Best PCB design solution for mixed

Digital, Analog, and SMT boards
Our NEW and POWERFUL Pro/el Autotrax •• isa fully integrated PCB
layout system \\ith automatic component placement and auto·
routing in a single working envi ronment. lts latest features will
definitely push the price/ perfonnance of mixed technology PCB
designs to the highest level, boost your design productivity, and
deliver your products to the marketplace faster than your competitors.
• Integr.ued automatic component placement and autorouting

• On-the·fly library components creation
• 45°, 90° and curve tracks routing

• Powerful user-definable Macros
• Auto-panning

• PostSctipl •• ptinting
• Switchable Mettic/ Impetial grid

• Intelligent Pad to Pad autorouting
• Automatic power / ground relief for SMD pads

• Automatic Copper Pour leaves clearance for tracks & pads
From schematic design. manual and automatic PCB design. Rip- up
and Retry au1orouting, to Gerber vie\loing and editing. we offer free
tech and EMS support, 24-hour BBS and 30·day money back

guar:rntee and our prices stan at H95

Free Evaluation Package
Toll Free: 800-544-4186 • Protel Technology, Inc. """"'""
SO Airport Parkway, San Jose, CA 95110
Teh 408-437-7771 fax, 408-437-4913

UNI PRO,
the PC/XT/AT/386 based universal programmer/
tester programs PRO Ms, EPROM s, EEPROMs, up to
4MB and 32-bit wide, PALs, PLDs, GALs, EPLDs,
PEELs. and Micro Controllers. JED EC file compatibil­
ity and Test Vector verificat ion allow the use of most
popular PLO compilers. Th e unit also tests TTL/
CMOS Logic ICs and Dynamic/S tatic RAMs. 40-pin
Gold ZIF socket, built-i n protection for short ci rcu it
and over current, h igh speed parallel interface to the
PC, and menu-driven software are inc luded at $585.

XELTEK 764 San Aleso Ave
Sunnyvale, CA 94086

TEL (408) 727-6995
FAX (408) 727-6996

.... ·····~

CIRCLE NO 327

X.25 SDLC
QLLC HDLC

ADCCP PAD

• C source code
·ROM-able
• Full porting provided
• No OS required

GCOM, Inc.
41 E. University
Champaign IL 61820
(217) 352-4266

Specialists in Computer Communications
FAX 21 7-352-2215

CIRCLE NO 328 CIRCLE NO 329 CIRCLE NO 330

To advertise in Product Mart, call Joanne Dorian , 212/463-6415
EDN's Software Engineering Special Issue 63

64

WllTBD
LAS Bug #331154

Stack Overflow
Locate him with the deep memory of the Logic

Analysis System

4k to 64k memory depth
16 level triggering with pass counter
40 to 320 channels
A complete Logic Analyzer on a Card
Interactive software under Microsoft™ Windows
Source code in C for automatic testing

/..

701 River Street
Troy. NY 12180

n~ (800J 367-5906
g/f • .. ~ (518) 274-0755

0 E s ' G N s ' ' N c FAX (518) 274-0764

CIRCLE NO 331

New from
VETRA

CONVERT
between
PC KEYBOARD ~ RS-232
VIP-331 Smart Pipe'" - Converts RS-232 to

standard PC keyboard input.
VIP-335 Smart Splice'" - Accepts both RS-232 gm!

a keyboard as inputs to PC's keyboard input.
VIP-341 Reverse Pipe'" - Converts PC keyboard

output to RS-232.
VIP-345 Reverse Splice'"- Feeds a PC keyboard 's

output to both a PC and an RS-232.
VIP-411 Smart Ae™- Encodes discrete or matrix

switches to RS-232.

For detailed information, please contact

~I ~!!~
1670 Old Country Rd ., Plainview NY 11 803
Tel (516) 454-6469 • FAX (516\ 454-1648

CIRCLE NO 334

FREE
MAXI/PC DEMO DISK

$995
PCB CAD
SOFTWARE
MAXI/ PC inte-
grated software
includes schematic capture, layout,
autorouting, and outputs. 30 day,
money back guarantee .

For your free demo disk and
brochure, call today or circle the
reader service
number. MAXI/PC
1-508-692-4900 PCB CAD SOFTWA RE

lIECBD~ RACAL·REDAC
238 Littleton Road, P.O. Box 365

Westford , MA 01886-9984

REUABILITY -
AND MAINTAINABILITY

PREDICTION AND fMECA
ANALYSIS SOfTIARE

Hundreds have used this leading
computer-aided engineering software

since 1982.
Powertronic Systems offers software to predict Reliability
and Maintainabi lity and for Failure Modes Effects and
Criticality Analysis. Hundreds of users have selected from
PSl 's large, versati le and integrated software family for
military and industrial equipment and for both electrical
and mechanical systems. And, these programs are either
interactive or can be input from batch modes from existing
CAE or database programs.
Programs implement MIL-STD·1629; MIL-HDBK-217
including E Notice 1; and MIL-HDBK-427.

Pawertranic Systems, Inc.
P.O. Box 29109 New Orleans 70189
(504) 254-0383 FAX (504) 254·0393

CIRCLE NO 332

e
Multi-Tasking
EXECS
US Software offers hi-performance
software tools for embedded
applications.

Get the full deta ils by calling :

800-356-7097
503-641-8446
503-644-2413 (FAX)

U S SDFTW'ARE

• United States Software Corporation
1421 5 NoN Science Park Drive
Portland. Oregon 97229

CIRCLE NO 335

DIGITAL FILTER
DESIGN SOFTWARE

SUN 4, IBM PC, MACINTOSH
llR , FIR , PARKS-MCCLELLAN
COEFFICIENT QUANTIZATION

TRANSFER FUNCTION ANALYSIS

Code Generators• Hardware
Development Tools• Demos Available

MO MENTUM DATA SYSTEMS
1520 Nutmeg Place #108, Costa Mesa, CA 92626
TEL: (714) 557-6885, FAX: (714) 557-6969

FREE DEMO!

• Complete DSP development for IBM-PC
• Integrate DSP hardware, data acquisition
• Open-architecture design
• Algorithm design & simulation
• Add custom & 3rd party analysis routines
• Menus I Script files I Graphics
• Easy to use & only $495!

BittWare Research Systems 800-848-0435

Download Demo: (3-12-24/N/8/1) 301-838-3205

CIRCLE NO 333

4MEG VIDEO Model 10
Flexible Image Processor and

Application Accelerator For The PC/AT

• 8 to 8000 Pixels per Line
• 2 to 19 MHz sampling/display rate
• 10 MIPs Programmable Accelerator
• 4 Megabytes of Reconfigurable Image Memory
• RS-170, RS-330, and CCIR input/output
• Variable timing for nonstandard formats
• Genlock to external tim ing sources
• Analog or digital inputs
• Software pro grammable timing/resolution

©>EPIX~
310 Anthon·y Trail , Northbrook, IL 60062

708-498-4002 FAX: 708-498-4321

CIRCLE NO 336

CIRCLE NO 337 CIRCLE NO 338 CIRCLE NO 339

To advertise in Product Mart, call Joanne Dorian , 212/463-6415
EDN's Software Engineering Special Issue

PROMICE emulates 8 bit ROMs from 27t6-27080, or 16 bit ROMs
27C1024 or 27C2048. (Inquire about emulating other ROMs. Non­
JEDEC ROMs require custom cable.) • Sophisticated LoadlCE'" Host
Software downloads, uploads and edits ROM contenls, supports MS­
DOS, UNIX, MAC & VMS. Software sources are included. • Bi-directional
Serial link, autobaud to 57.6KB- loads 1 Mbit in 25 secs. • Bi-direc­
tional Parallel port (option)- loads 1 Mbit in 4 sec. • Emulate up to 2
ROMs per unit, daisy-chain up to 256 ROMs from one port ! • New!
Analysis Interface•• (option) implements a ROM-based UART for
sophisticated debugging.

6•am111a• EISI 1161 Cherry Street

lnglne ~:~1~r~i~~4010
Inc: 41s1s9s.22s2

CIRCLE NO 340

Elegant, concise, fast ll standardized

A..C>ATING PC>INT
libraries for embedded app//caffons

Based on the IEEE 754 standard, FPAC (32 bit)
and DPAC (64 bit) libraries are mature. well
documented, and fully tested. The libraries are
fully ROMable and include the following:

• Basic Operations • ASCII Convooion
• Square Root • Integer Convooion
• Trigonometric • Logarithmic

U S Software supports most Intel. Motorola,
Zilog and Hitachi m icros. including 80X86.
80386. 680XO. 80960. 8051. 8096. 68HC11 , ZBO.
6809 and 6301.

For additional Information. please contact:

,, U S SOFTW'ARE
United States Software Corporation
14215 ~Science Park Drive
Portland. Oregon 972'29
800-356-7097
503-641-8446
503-644-2413 (FAX)

CIRCLE NO 343

C6805
CODE DEVELOPMENT SYSTEM

• First 6805 C
compiler

• Expert system
optimizations

Call today! 519-888·6911

~

~
BYTE CRAIT LIMITED
421 King St., N.
Waterloo, ONT. N2J 4E4

PAL
GAL
EPROM
EEPROM
PROM
87C51 .. .
874x .. . $475
Sns PALs 4 Meg EPROMs

26V12 & 22V10 Gals
FREE software u dates on BBS

GANG PROGRAMMER
• 4 32pin Sockets (8 Socket option) $215 • 2716-27010 EPROMs

Call - (201) 994-6669
'i• Link Computer Graphics, Inc. II • 4 S arrow Dr., Livin ston, NJ 07039 FAX:994-0730

CIRCLE NO 341

IN CIRCUIT EMULATORS
68HC05 AND 68HC11

The TECICE-HC05 and TECICE-HC11 are low cost
real time in ci rcuit emulators for the Motorola
68HC05 and 68HC11 families of single chip micro­
computers. Any host computer with a serial port and
terminal emulation software can be used with these
emulators. Complete development system software
is included for MS-DOS based computers. Other
development systems are available for 6805, HC05
r~~ ~fa1ri a7o$~g~ete HCOS and HC11 emula-

TEC/~
The Engineers Collaborarive Inc

Rt. #3 , Box 8C
Barton, VT, USA 05822

Phone (802) 525-3458
FAX (802) 525-3451

CIRCLE NO 344

Low Cost Logic Simulator

DLsim ™ Digital Logic Simulator
• Event driven, nine state functional and liming simulation

• 16,CKXJ gale capability without additional memory
• Direct support from JEDEC files for PLDs and GAU
• Compatible with SCHEMA or ORCAD schemat ic files
• Runs on IBM PC/XT/AT or compatibles

• Interactive logic viewer (EGNVGA or HERCULES)

• Supports HP Laser or EPSON dot matrix printers

• Includes TTL. ALS and CMOS libra ries with source

• No copy protection

• Complete package only $495

CADsim Technologies
525 Melbourne Ct., Newbury Park, CA 91320
(805) 499-8653
AH trademarks belong to their respective owners

6 800 • Family Development Software
Combine our software and your editor for a pow­
erful development system. Our C-Compilers fea­
ture a complete implementation (excluding bit
fields) of the language as described by Kernigan
& Ritchie and yields 30-70% shorter code than
other compilers. Our Motorola-compatible As­
semblers feature macros and conditional assem­
bly. Linker and Terminal Emulator are included.

Wintek Corporation
1801 South St. , Lafayette, IN 47904
(800) 742-6809 or (317) 742-8428

CIRCLE NO 342

• Emulates up to 8 1-
Megabit EPROMS with
one control card.

•Downloads 1-Megabit
programs in less than 10
seconds.

•Allows examination
and modification of in­
dividual bytes or blocks.

EPROM

EMULATION

SYSTEM

• Accepts Intel Hex.
Motorola S-Record, and
Binary files.

• Software available for
IBM PC and Macintosh
systems.

Call or fax today for
more Information!

Base 27256 EPROM System $395.00
Other configurations available.

Incredible Technologies, Inc.
709 West Algonquin Road

tf~iG)g~°J~-~:~~htsF~~i(%s8)6~g~~473
Visa, MasterCard, and American Express accepted.

CIRCLE NO 345

'I-~]
for REAL-TIME EMBEDDED SYSTEMS

new features: D 80x86 family
D ROM'able

0 Full MS-DOS compatibility O preemptive scheduler
0 8Dx87 & math emulator O l!braries for au memory

support for reentrancy models
11

0 Stack size up to O works with Microsoft C
and TurbowC, assembler

64K per task and debugger
0 Protected heaps & O 70 microsecond task

task-reentrant calls switch (10MHz 80188)
0 v25 register bank support O 15 microsecond Interrupt
0 PC demo source code latency
0 Fast pipe macros O SKB to 25KB code size

O 1 year free support
Dev.Kit& & updates

No Royalty License D 30 day money-back
$1995 guarantee

Source Code - $1000
,,_,MICRO DIGITAL Evaluation Kit &

PCdemo - $95
Cypress, CA 90630-5630 User's Guide &

demo disk - $25 1-800-366-2491
FAX 714-895-2164

CIRCLE NO 346 CIRCLE NO 347 CIRCLE NO 348

To advertise in Product Mart, call Joanne Dorian , 212/463-6415
EDN's Software Engineering Special Issue 65

Issue

Magazine
Edition

News
Edition

Magazine
Edition

News
Edition

Magazine
Edition

M agazine
Edition

News
Edition

Magazine
Edition

News
Edition

66

1990 Recruitment Editorial Calendar
Issue Ad
Date Deadline Editorial Emphasis

Oct. Sept. 10 Computer Boards, Analog !Cs, Digital !Cs, Test & Measurement

Oct. 4 Sept. 14 !Cs/ LAN Chips/Microprocessors, Al/Expert Systems, Special Supplement: Instruments

Oct. II Sept. 20 Analog !Cs, Computer-Aided Enginee ring, DSP IC Directory, Displays, International
Technology Update

Oct. 18 Sept. 28 CAE/Hardware, Datacom, Regional ProfJe: Idaho, Colorado, Utah

Oct. 25 Oct. 4 Test & Measurement Special Issue- Digital Instruments, Computers & Peripherals, !Cs &
Semiconductors, System Software

Nov. 8 Oct. 18 Signal Processing, Computer-Aided Engineering, Computers & Peripherals, Software,
Wescon Show Issue

Nov. 15 Oct . 26 Displays, Defense, Special Supplement : Interconnect

Nov. 22 Nov. I 17th Annual Microprocessor Directory, !Cs & Semiconductors, Test & Measurement ,
Workstations

Nov. 29 Nov. 8 !Cs/Communication Controllers/ Microprocessors, DSP, Regional Profil e: lllinois,
Minnesota & Michigan

Call today for information on Recruitment Advertising:
East Coast: Janet 0. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

Cleveland ... where a revitalized downtown and billions of dollars in
new construction have energized the entire region. Where dean
lakes, beautiful pruks, major league sports teams, world class
museums, and an exciting nightlife offer variety and relaxation. Where
you can still take advantage of the lowest average housing costs of any
major city in the U.S. And where you'll find the Industrial Computer
and Communication Division of Allen-Bradley, the global leader in
industrial controls and automation, now making a move to the
forefront of software engineering for Computer Integrated Manu­
facturing. To enhance our efforts, exceptional opportunities are now
being offered to enterprising, innovative professionals.

SENIOR HARDWARE DESIGN ENGINEER: responsible for the
definition, design, implementation, test and release of system level
hardware for the DOO platform. BSEE or equivalent, and a minimum
three years' experience in the design of digital hardware for industrial
control systems required; MSEE preferred.

SYSTEM PROGRAM MANAGER: oversees system test plans and
implementation, software quality, and system engineering. BSEE or
BSCS, and experience with software project management, system test
planning and execution, and system engineering essential; graduate
degree desired.

PROJECT ENGINEER: responsible for the development of interfaces
for reusable software components, and specification of key elements
in the architecture . A major emphasis is placed on data management
services design. MSCS or equivalent, and experience in software
system design, database design, and real time factory control required.

~ ALLEN-BRADLEY
~ A ROCKWELL INTERNATIONAL COMPANY

QUAUIY ASSURANCE ENGINEER: will monitor projects/
products throughout their life-qcle to ensure reliability, applica­
tion functionality, and safety. Must possess a BSEE, and a
minimum two-five years' experience in product assurance and/
or quality engineering/test engineering with analog and digital,
microprocessor-based products. Knowledge of QA techniques
and statistics a must; MSEE or MBA desired.

SENIORSUPPllERQUAUIY ASSURANCE ENGINEER: relied
upon to organize, plan, and monitor the receiving inspection and
supplier selection and evaluation functions; and assists in the
implementation and maintenance of TQMS and Customer
Satisfaction programs. Requirements include a minimum five
years' technical quality discipline experience and familiarity with
SPC/Process Control, weld process (AWS-Dl.1), paint process/
testing, and military specifications. A BS degree and ASQC
certification preferred.

You'll enjoy the technical challenges, the opportunity for growth,
and the rewards of excellent compensation including relocation
assistance offered by Allen-Bradley. So if you're looking for a
bener quality of life for you and your family, now's the time to
make a great career move.

For more details, send your resume with salary history to: PJ.
Uedtke; Human Resources, Department EDN-917; Allen­
Bradley; Industrial Computer and Communication
Group; 747 Alpha Drive; HigbJandHeights, Ohio44143. An
equal opportunity employer, M/F/H/V.

EDN's Software Engineering Special Issue

OUTSTAN
In the world of

electronic defense
systems, being good
isn't good enough.
It takes a company­
wide commitment
and the very best
professionals to put
technology on target.

At E-Systems Garland Division, we
understand that to succeed in the com­
plex world of electronic defense, we've got
to be better than good. We've got to go
one step beyond-to redefine the meaning
of excellence. That's because there are no
near-misses in our business. Only bulls­
eyes. And bulls-eyes on bulls-eyes.

So it's no accident that we're one of
America's fastest growing suppliers of
electronic defense systems. Outstanding
systems, products and technologies come
from superlative professionals.

E-Systems Garland Division is a
Dallas-based leader in advanced signal
and image processing technologies,
sophisticated receiver systems, and sys­
tems integration for programs like]SIPS
and the Distributed Wargaming System.
Be outstanding in your field.

If you 're a technical professional, we
invite you to stand out with E-Systems
Garland Division.

Digital Signal Processing
• Ada and Oracle Software Development
• 68000 Board Level Design

Digital Image Processing
• Digital/ Analog Design
• UNIX/"C" Software Development
• VHSIC, VLSI, MMIC, GaAs Design
• 68000 Real-Time Finnware Design

EDN's Software Engineering Special Issue

Communications
• 68000/80xxx Board Level Design

Mass Storage
• Hi-Speed Computer Interfaces
• Systems and Product Engineering
• UNIX/"C" Software Development
• Convex Systems Software

Management Information
Systems
• IDMS/Cullinet Applications Software

Take aim at the future.
Our technical careers are on target, as

well; we have one of the lowest turnover
rates of any company in our industry. As
a technical professional with E-Systems
Garland Division, you'll enjoy a superb
compensation package-featuring a flex­
ible program that lets you tailor your
own benefits. And our ESOP program
makes every E-Teamer part owner of the
company

Be better than good. Join E-Systems
Garland Division today. Send your
resume to: Ann Olson, Director of Staf­
fing, E-Systems, Inc., Garland Division,
P.O. Box 660023, Dept. 31FSM, Dallas,
Texas 75266-0023.

U.S. Citizenship Required. An Equal Opportunity Employer.

CIRCLE NO. 30

FILENET IS #1
FileNet Corporation, the pioneer in document image processing , is look­
ing for qualified people to help fuel its rapid growth in 1990. FileNet, rated
#1 in overall customer satisfaction in the 1990 AllM/Datapro survey, manufac­
tures and markets an optical disk-based system for automating the process­
ing of paper. Used by major corporations and governments throughout the
world, FileNet systems have become synonymous with image processing.

If you're the type of person who wants to become part of a winning team in
an explosive industry, then check out the exciting opportunities FileNet pro­
vides. Currently, we have immediate openings available for the following posi­
tions. Qualified candidates will have 2-5 years related experience with a BS
or MS in Computer Science or equivalent.

SYSTEM INTEGRATION ENGINEERS
(Dept. SIE)

• Software integration
• Development testing
• Testing tools, scripts and internal support of integration and development

systems
• Must have UNIX' /"C" experience and familiarity with PC-based ap­

plications

SOFTWARE SUSTAINING ENGINEERS
(Dept. SSE)

• Software maintenance of FileNet product field releases
• Requires operating system expertise in UNIX.
• Analyze technical problems and implement effective solutions
• Strong background in "C", UNIX. kernel development and maintenance
• Familiarity with device drivers is a plus

SOFTWARE QUALITY ASSURANCE
ENGINEERS
(Dept. SQAE)

• Writing test plans and test scripts
• Testing and validation of interactive user-oriented applications software
• Minimum 5 years experience in large computer systems validation & testing
• Knowledge of relational data base tools. Oracle preferred
• Hands on technical experience required

SOFTWARE ENGINEERS
(Dept. SE)

• PC and SUN workstation development utilizing OS/2 and Windows (X-MS-
PM-Sunview)

• Applications development on workstations involving user interfaces
• Excellent verbal and written communications skills
• Proficiency in "C" and related languages

OPERATING SYSTEMS ENGINEERS
(Dept. OSE)

•We seek Senior Designers/Developers/Architects to port and customize
System V release 4

• Require UNIX. kernel internals experience and a strong technical founda­
tion to optimize performance issues, utilizing complex OS concepts.

UNIX® SUPPORT ENGINEERS
(Dept. USE)

• Third level customer support with extensive software development and/or
engineering customer support experience

• Proficient in UNIX. and "C"
• UNIX. (kernel) (internal)
• Familiarity with Ethernet communication protocols

CUSTOMER SOFTWARE SUPPORT
ENGINEERS
(Dept. CSSE)

• Customer problem resolution
• Installation/Configuration
• Software systems support
• Database structures
• Operating systems and concepts
• Experience in corporate software post-sales technical support to customers
• Technical degree and a minimum of 5 years strong technical experience

FileNet offers an excellent compensation package, and a challenging work
environment designed to keep us THE LEADER IN THE INDUSTRY. For im­
mediate consideration, send your resume with salary requirements to :
FileNet Corporation, Attn : Human Resources, (Put Dept. Code Here},
3565 Harbor Blvd ., Costa Mesa , CA 92626. Equal Opportunity Employer.

F -1 = = - ® I e=~=-=-- -- --- ---
Firs! In Image Processing.

68

SOMETHING GRFAT
IS HAPPENING •.•

Who we are:

Who we need:

How to reply

At GE Medical Systems there is a unique spiriL It is
the feeling that comes when you arc a true global
leader and innovator in state-Of-the-art medical
diagnostic systems.

Our people are part of that spirit. Smart. Proud.
Thinkers and Doers working with an elite group in
the evolution of diagnostic imaging systems.

SOFIWARE SYSTEMS INTEGRATOR
Develop and execute a strategy for integrating
software components of a product development
program.
REQUIRES: BS/MS EE, CS and real-time software
engineering/ large scale systems integration
experience.

SOFIWARE DEVELOPMENT ENGINEER
Develop X-Ray product applications/ diagnostics/
calibration software and participate in cross
functional designs/ reviews.
REQUIRES: BS/MS EE, CS and structured software
development, PL/ M86 and INTEL microprocessor
experience, digital hardware knowledge.

PROJECT ENGINEER-EMI
Develop designs/design guidelines for diagnostic
imaging systems to meet international regulatory
requirements for EMI/EMC; define project tasks
and schedules; track progress.
REQUIRES: BS/ MS EE, ME and EM!, electronic­
packaging/ power grounding/cabling design
experience, international regulatory requirements
knowledge.

SOFIWARE SYSTEMS ENGINEER
Specify and develop software for applications/ data
acquisition/display or diagnostics.
REQUIRES:BS/ MSEE,CSandreal-time/scientific
software design experience, including"C' & UNIX.

SENIOR SOFIWARE ENGINEER
Lead the development and implementation of
system level requirements for the control of
patient handling apparatus.
REQ VIRES: MS EE, CS and 7+ years experience in
the development of software for closed loop servo
controls.

GE's highly competitive salary and benefits befitan
industry leader. Please send resume in strict
confidence to: JMB, GE Medical Systems, P.O.
Box414, W-407,Milwaukee, Wl53201.Replieswill
be made, within 20 days, to candidates of interest.

GE Medical Systems

An Equal Opportunity Employer

EDN's Software Engineering Special Issue

TECHNOLOGY AS DIVERSE
AND EXCITING AS OUR COLORADO

ROCKY MOUNTAIN WEEKENDS!
As you explore your career al­

ternatives, you'll discover few
companies that offer the techno­
logical diversity, intensity and
excitement found at Martin
Marietta Astronautics Group.

Superior research capabilities
and a sure grip on leading edge
technologies support Astronau­
tics Group's large, diverse con­
tract base. Spacecraft fabrication,
instrumentation, launch vehicle
systems, propellant and power
management, electronic systems
and software, guidance and
control, large space structures,
robotics and artificial intelligence
are the famdation for an awesome
breadth of career opportunities.

In the course of a career at
Martin Marietta Astronautics
Group, you can expect to work
on a broad, exciting repertoire
of projects, often across several
of the Group's operational

\..

companies. This philosophy cre­
ates exceptional opportunities to
learn, advance and succeed.

The Colorado Rocky Mountain
Good life!

If you like the outdoors, you'll
love it here. Coloradans enjoy
up to 300 days of sunshine
yearly, an average temperature
of 64 degrees, and plenty of op­
portunities to take advantage of
it all. Such as golfing, sailing,
rafting, camping and fishing in
the high-country summers.

For winter sports enthusiasts,
the light powder snow of
Colorado's world-class ski areas
is just a few hours' drive from

the excitement of the Denver
metroplex. And not only

is Colorado one of the
most enviable places

to live, it is also
one of the most

affordable.

MASTERMINDING TOMORROW'S TECHNOLOGIES
EDN's Software Engineering Special Issue

What kind of individuals thrive
at Martin Marietta Astronautics
Group? Those with a hunger to
learn more and do more. Highly
professional people who believe in
teamwork, yet understand the im­
portance of individual accomplish­
ment. If you're among them and
possess an appropriate technical
degree, explore career opportuni­
ties in software, systems, testing,
propulsion, integration, materials,
structures, dynamics, mission
analysis, logistics, RF systems,
guidance and control, quality con­
trol and manufacturing.

Please send your resume to
Martin Marietta Astronautics
Group, Human Resources Depart­
ment P00077, P.O. Box 179,
DC1311, Denver, CO 80201.
Many positions require U.S. citi­
zenship. Martin Marietta is an
equal opportunity I affirmative ac­
tion employer, M/F /H/V.

llllARTIN llllARIETTA

69

70

T~is
everytliing.

Real-time applications require precision like no
others- because responses must be split-second
and right the first time. At Ready Systems, we de­
sign the comprehensive software tools allowing
real-time designers to create the ultimate in em­
bedded systems. Aids like VRIX™- the real­
time operating system standard, ARIX™- the
Ada programming version and CARDTools™.

With the market growing at 55% a year. our timing
has never been better. And if you're looking for
real career challenge, neither has yours. Join us in
one of the following positions:

Soft.ware Development
Engineers

Work on user interfaces, operating system
internals, or Ada run-time systems. Requires
experience with UNIX®, C, C++, Ada and real-time
applications.

Soft.ware Applica6.ons
Engineers

Provide post-sales support, design product
demos, train customers and provide application­
specific consulting. You11 need a strong back­
ground in application programming in C, Ada
and/ or Assembler. Familiarity with embedded
microprocessor-based systems is also required.

Product Marlreting Manager
You11 lead the charge for our industry leading
VRIX Velocity and VRIX32/68K products. You11
need a BSEE or equivalent, 2+ years' high tech
marketing experience, and exposure to UNIX.

VAX/VMS and RfOS.

A Ready Reply.
Please send your resume and sal­

ary history to: Ready Sys­
tems, Professional Staff­

ing, Dept EDN, 470
PotreroAv­

enue,
Sunny­
vale,CA

94086.
EOE/AA

Tradenwks are regi.und to
their respective companies,

~READY
SYSTEMS

The capacity to show the way by taking the lead.
To influence or direct the activities of others.

Some appear to be the leader. But actions speak much louder than
muscle. We believe in the personal power of the individual. Which
is why, at Microprocessor Semiconductor Products Sector, we
encourage our people to be champions. To establish goals. To
influence by example. As a result, we' re an innovator in the semi­
conductor industry. Openings are now available for Marketing
Professionals in the 88000 RISC operation with expertise in the
following areas:

Software Engineering Manager
Lead a technical team in porting and developing 68000 and
88000 C compilation systems for the latest UNIX System V tech­
nology. Individual must have prior experience managing a software
team with the purpose of producing a compilation system. Mini­
mum requirements are BSCS/MSCS and six years of related
experience.

Software Engineering Manager
Lead a technical team in developing optimizing C and FORTRAN
compilers for state-of-the-art microprocessors. Individual must
have experience in computer architecture, compiler code genera­
tion, and compiler optimization techniques. Minimum requirements
are MSCS and five years of related experience.

Software Engineers - Floating Point
Become an expert on 68000 and 88000 floating point software.
Working closely with chip designers, design and implement a
floating point software package for each family. Minimum require­
ments are BSCS or BSEE plus three years of experience in
industry.

Software Engineers - C & Fortran Compilers
Participate in the development of C and FORTRAN compilers for
Motorola's leading edge microprocessors. Several positions are
open for individuals experienced in ANSI C and/or FORTRAN??
compiler front ends and highly optimized compi lers. Knowledge
of computer architecture, compiler code generation , and compiler
optimization techniques are highly desirable. Minimum require­
ments are MSCS plus three years of related experience.

Embedded Control Strategic Marketing
Develop and communicate marketing programs and strategies for
embedded control/real-time applications with the 88000 family
of products. A key focus will be on facilitating design wins in
targeted areas. Includes development and execution of customer
presentations, training programs and promotional programs. Must
have 2+ years experience in the embedded control market.

Computer Strategic Marketing
Develop and communicate marketing programs and strategies for
the computer market (desktop to large scale parallel processor
systems). Major emphasis on obtaining design-wins. Requires
2+ years experience in computer systems and UNIX marketing
or planning.

Applications Engineer
High-end Microprocessor/Microcontroller Applications Engineer.
Work includes customer telephone support , application note
preparation , article writing, and customer presentations. Appl ic­
able devices include M68000, 88000, HCll, 352 families. BSEE
and 3 + years experience.

Please submit resume to: Motorola Semiconductor Products
Sector, Dept. ATX-185, 505 Barton Springs Rd., One Texas
Center, Suite 400, Austin, TX 78704. 24 hour FAX (512) 322-
8811 . An Equal Opportunity/Affirmative Action Employer.

@MOTOROLA

Semiconductor Products Sector

IT'S IN OUR NATURE~
EDN's Software Engineering Special Issue

EEN:G:IN:EE:Rl:NG555555555555555:~ ~

COMPUTER
SOFTWARE
ENGINEERS

Lockheed Missiles & Space Company
is leading the way in the development of
advanced spacecraft and other soft­
ware systems. We're seeking highly
qualified professionals in fields such as:

• Ada, C, FORTRAN Software
Development

• Software Design
•Software TestNerification
• UNIX® lntemals
• Real-time Control Software
•CASE Tools
• Software Systems

Integration
• Software Systems

Engineering
• Networking
• Mission Planning
• Image Processing
• System Architecture
• Relational Databases

All positions require at least a BS
degree and 3 years' experience. In
addition to challenging projects, we
offer an excellent compensation and
benefits package.

For consideration, please send your
resume to Lois Moulton, Professional
Staffing, Lockheed Missiles & Space
Company, Dept. 517NKLM, Sunnyvale,
CA 94088-3504. U.S. citizenship is
required.

Candidates possessing a current EBI/
SBI preferred. All candidates should be
able to pass an extensive background
investigation. We are proud to be an
equal opportunity, affirmative action
employer.

UNIX is a registered trademark of AT&T.

~Lockheed
Missiles& Space Company

INNOVAnON: giving shape to Imagination.

EDN's Software Engineering Special Issue

ADVERTISERS
INDEX

American Automation 6
Applied Microsystems Corp . . . 20
Ariel 34
Bittware 64
Bitwise Designs Inc 64
Bytecraft 63, 65
Cadre Technologies 4-5
CADSim Tech 65
Digital Equipment Corp 36-37
EPIX Inc 64
Eyring Research Institute 35
Forth Inc C3
GCOM Inc 63
Grammer Engine 65
Huntsville Microsystems Inc 40
IEEE 63
Incredible Tech 65
Integrated Silicon Systems 51
Link Computer Graphics Inc 65
Logical Devices Inc 28
Micro Digital 65
Microtek 2
Momentum Data Systems 64
National Instruments 39
NEC Electronics Inc C2
Pactec Corp 38
Powertronic 64
Prem Magnetics Inc C4
Protel Tech Inc 63
Racal-Redac 64
Samsung Semiconductor 8-9
Simucad 72
Software Component Group 17
Spectral Innovations 71
TECI 65
Tesoft 64
Transera 1
US Software 64, 65
Vetra Systems 64
Westcor 19
Wintek Corp 65
Xeltek 63

Recruitment Advertising

Allen-Bradley
E-Systems Garland Div
Filenet
Martin Marietta
Motorola SPS
Ready Systems
Seiscor Technologies

66-71

This mdex is provided as an additional service. The publisher
does not assume any liability for errors or omissions.

64MHz
Array

Processing
On Your

Mac.

"Is this what you had in mind,
Mr. Fourier?"

With a 64 MHz floating­
point coprocessor that can
handle a lK FFT in just 1.7
mSec, MacDSP is fast enough
for real-time applications.

Over 150 functions for DSP,
Math and analog I/O help you
get up to speed faster in
familiar languages like C,
Pascal, BASIC, and FORTRAN.

Ideal for signal processing,
image processing, and array
processing. Call or write for a
free Hypercard demo disk.

(c ,_.

~;:===y
Spectral Innovations, Inc.

4633 Old Ironsides Dr., Ste. 450,
Santa Clara, CA 95054

408-727-1314

© 1990 Spectral Innovations, Inc.

CIRCLE NO. 18
71

GOOD ANALYSIS DOESN'T
HAVE TO COST A FORTUNE.

72

Deep-seated quirks hidden within your complex

designs. They can drive you crazy. Delay product

time-to-market. And strain your design budget.

But there is a solution.

And Simucad offers it now. In fact, inl984

we wrote the textbook on cost-effective design

analysis, with our industry-standard SILOS

simulation software.

Now, the leader is back. With SILOS II , the

world's most powerful interactive logic and fault

simulation system. Analyze your subject, top-

down and bottom-up, for less than you'd expect.

SILOS II spells hardware independence. And the

ability to address every element of your design's

complex personality-from circuit description

to final verification .

Get a head start on your competition. With

SILOS II , the essential analysis software. It'll

improve both your mental and fiscal health .

Call us today,(415) 487-9700.

~SIMUCAD

Simucad Inc. , 32970 Alvarado-Niles Rd ., Union Ci ty, CA 94587

CIRCLE NO. 19 EDN's Software Engineering Special Issue

1

High Performance
Programming Solutions

When you need to accelerate
your productivity, go with the
proven performance software.
Forth. Because with Forth
your concept will become reality
faster. Just listen to what
people are saying about how
Forth cuts programming times
and helps them consistently
meet or beat deadlines:

"We have found that the use of
Forth has cut our development
time by 90% for equivalent
assembly language and 50%
for equivalent high-level
language coding." Jerry Tifft,
I&CS, May 1989

"The development speed was
fabulous." Ray Vandewalker,
Embedded Systems
Programming, April 1990

"Forth gets high marks for
transportability, testability, and
programming productivity.
Until you use it, you can't
believe how quickly a rough-cut
version of the problem can be up
and running." Lawrence L.
Cone, BYTE, October 1985

"The speed that you can achieve
in writing quick pieces of code is
ten to a hundred times that of a
traditional compiled language."
Byron Palmer, Computers in
Physics, Mar /Apr 1988

"Forth puts the computer power
directly in the programmer's
hands Based on experience
with similar systems and
development, the programmers
estimated it would take 10
times longer to develop ... in
another language. With Forth,
the ... prototype was ready for
use in six weeks." Cameron
Lowe, Telephony, December
1987

"Forth is interpretive and
highly interactive, giving
developers the ability to proto­
type applications easily
The major Forth supplier is
FORTH, Inc " Ray Weiss ,
Electronic Engineering
Times, August 6, 1990

Forth will deliver for you, too.
Especially polyFORTH, a
superset of the Forth program-

CIRCLE NO. 20

ming language, from FORTH,
Inc. The best way to cut your
development time on real-time
applications such as factory
automation and embedded
systems.

With poly FORTH you get a
multiuser, multitasking, real­
time operating system. An
editor, assembler, compiler,
debugger, hundreds oflibrary
routines, and a wealth of utili­
ties. All fully integrated into
an easy-to-use, resident
development environment.

To learn more about how
poly FORTH can accelerate your
programming, call FORTH, Inc.
The high performance solutions
people.

(800) 55-FORTH

FORTH, Inc.
111 N. Sepulveda Blvd.
Manhattan Beach
California 90266-684 7
(213) 372-8493
FAX C2 13)318-7130

CALL FOROUR.C~
For your convenience, our cata
log includes cross reference to
Microtran, Signal, Stancor and
Triad part numbers.
Sendfor our Free Ccatcalotl
today I

CIRCLE NO. 21

	2023-07-24-0001
	2023-07-24-0002
	2023-07-24-0003
	2023-07-24-0004
	2023-07-24-0005
	2023-07-24-0006
	2023-07-24-0007
	2023-07-24-0008
	2023-07-24-0009
	2023-07-24-0010
	2023-07-24-0011
	2023-07-24-0012
	2023-07-24-0013
	2023-07-24-0014
	2023-07-24-0015
	2023-07-24-0016
	2023-07-24-0017
	2023-07-24-0018
	2023-07-24-0019
	2023-07-24-0020
	2023-07-24-0021
	2023-07-24-0022
	2023-07-24-0023
	2023-07-24-0024
	2023-07-24-0025
	2023-07-24-0026
	2023-07-24-0027
	2023-07-24-0028
	2023-07-24-0029
	2023-07-24-0030
	2023-07-24-0031
	2023-07-24-0032
	2023-07-24-0033
	2023-07-24-0034
	2023-07-24-0035
	2023-07-24-0036
	2023-07-24-0037
	2023-07-24-0038
	2023-07-24-0039
	2023-07-24-0040
	2023-07-24-0041
	2023-07-24-0042
	2023-07-24-0043
	2023-07-24-0044
	2023-07-24-0045
	2023-07-24-0046
	2023-07-24-0047
	2023-07-24-0048
	2023-07-24-0049
	2023-07-24-0050
	2023-07-24-0051
	2023-07-24-0052
	2023-07-24-0053
	2023-07-24-0054
	2023-07-24-0055
	2023-07-24-0056
	2023-07-24-0057
	2023-07-24-0058
	2023-07-24-0059
	2023-07-24-0060
	2023-07-24-0061
	2023-07-24-0062
	2023-07-24-0063
	2023-07-24-0064
	2023-07-24-0065
	2023-07-24-0066
	2023-07-24-0067
	2023-07-24-0068
	2023-07-24-0069
	2023-07-24-0070
	2023-07-24-0071
	2023-07-24-0072
	2023-07-24-0073
	2023-07-24-0074
	2023-07-24-0075
	2023-07-24-0076

