
-~

_

•

..

. ~

- .,.. .

- ..

••

computers
· and people

formerly Computers and Aut@mation
I

Sept.-Oct., 1987
Vol. 36, Nos. 9-10

COMPUTER GIVES BODY TO 6TH CENTURY REMAINS

3:: \JI (I) r- I.fl
m.0-1 "1
.Zai>~N
-0 \,,>) '"'1 Al "'""
J: ml>IJ'I
...... .JC ~ 0-
V> 1> '"'1-< N

nm
o::ci:io
znm"""

:X1 •:> n o
ozo
<tnO"O
m -1 M

n o:i
)>

-i ,....

z (,/)""

Computer Intimidation and Anxiety
- John Shore

Software Development Systems
- Peter Freeman

Knowledge-Based System Designed
by Purdue Univ. Helps Grain

Farmers
- Sue Metzler

A Modern Perspective on a Computer
- Edmund C. Berkeley

The Current State of Desktop
Publishing

- Ann M. De Villiers

The Computer Almanac and the
Computer Book of Lists

- Neil Macdonald

The Computer Almanac and Computer Book of L ists -
Instalment 55

Neil Macdonald, Assistant Editor

10 QUESTIONS FOR CHECKING YOUR
ORGANIZATION'S EXPOSURE TO COMPUT ER
FRAUD AND COMPUT ER CRIME (List 870901)

Initiating Transactions:
Are data processing employees prohibited

from initiating original accounting
transactions, adjustments, or correc
tions?

Key Personnel:
Have you identified individual programmers

and other technical personnel who are in
a position to inflict significant harm,
or on whom your organization is unusually
dependent?

Access:
Is access to your computer room, tape

library, disk library, and forms storage
areas denied to personnel who have no
business need for access?

Scheduled Vacation:
Do employees take scheduled vacations,

which can provide an opportunity to ex
pose unauthorized practices?

Formal Procedure for Changes:
Do you use a formal procedure, which re

quires individual signature authoriza
tions, for changes or modifications of
software that affect systems applications?

Decoy Names:
Do your files of customers and clients con

tain secret decoy names and addresses so
as to detect unauthorized use of those
files?

Solitary Work:
As a general rule, do you prohibit anyone

from working alone in the computer room?

Audit Trail:
For all major financial applications, is

there a diagram and a description of an
audit trail, which shows how an indivi

.dual transaction can be traced through
the system?

Standardized Reports of Discrepancies:
Does your internal auditing function or

your security function receive standard
ized reports of (1) differences in cash
and inventory, (2) high-dollar trans
actions, (3) large usages of inventory,
and (4) any other unusuai or inconsistent
figures and activities?

Prosecution:
Would you prosecute an employee found

guilty of a serious premeditated crimin
al act against your organization?

(Source: information from the Computer Secu
rity Institute, 8 Kane Industrial Dr., Hudson,
MA 01749.)

5 SITUATIONS WHEN EXPERT SYSTEMS ARE
USEFUL TO SOLVE A PROBLEM (List 870902)

Expert systems are most often used as in
telligent assistants or consultants to human
users. They can be used to solve routine
problems, freeing the expert for more novel
and interesting ones. Expert systems can
also bring expertise to locations where a
human expert is unavai l able or to situations
in which an expert's services would be very
expensive. Some corporations even see ex
pert systems as a way to collect and preserve
a "corporat e memory" because an expert sys t em
never retires, becomes sick, or leaves.

A problem lends itself to an expert system
approach when:

A so l ution to the problem has so high a pay
off that it warrants the development of a
system: solutions are needed in the area,
and other methods of obtaining them have
not worked .

The problem can be solved only by an expert ' s
knowledge rather than by utilizing a parti
cular algorithm, which traditional program
ming could handle.

You have access to a willing expert who, with
assistance, can formalize the knowledge
needed to solve the problem. You need to
interview an expert intensively in order
to provide expertise to the system.

The problem doesn't necessarily have a unique
answer. Expert systems work best for prob
lems that have a number of acceptable so
lutions.

The problem changes rapidly (for instance,
new components are continuously being in
troduced for computers that must be con
figured); or knowledge about a problem is
constantly changing (as in the continuing
discovery of causes and treatments of dis
eases); or solutions to problems are con
stantly changing (for example, new methods
of equipment repair are being approved) .

(Source: from "The Artificial Intelligence
Experience: An Introduction" by Susan J.
Scown, and published by Digital Equipment
Corp., Maynard, MA 01754, 1985)

2 COM PUTE RS and PEOP LE for September-October, 1987

..

+·

..
•

+

..

- ,..

Computing and Data Processing Newsletter

COMPUTERIZED "DETECTIVE" FOR
UNIDENTIFIED CHEMICALS AVAILABLE
TO SCIENTISTS WORLDWIDE

Dennis Meredith
Cornell University News Service
840 Hanshaw Rd.
Ithaca, NY 14850

A research tool that has already helped
to save poison victims, catch criminals,
battle pollution, rescue oil-soaked birds,
classify plants and animals, figh t insect
pests and even aid the international trade
balance will soon be available to scientists
worldwide, as a result of a joint Cornell
University-American Chemical Society project.
It's a powerful tool for identifying unknown
chemical compounds and has been used millions
-- perhaps even billions -- of times by chem
ists over the last three decades . Its de
velopers provide it free to anyone who needs
it .

The invention is a set of two powerful
computer programs called Probability-Based
Matching (PBM) and Self-Training Interpre
tive and Retrieval System (STIRS) developed
by Cornell chemist Fred W. McLafferty and
his colleagues. Scientists use the PBM/
STIRS programs for high-speed identification
of unknown chemicals which they feed into an
analytical instrument called a mass spectro
meter, a device for breaking apart chemicals
into component parts. By sifting through
data from the spectrometer, the PBM program
either matches the unknown with one of
115,000 compounds in its database; or if the
compound is not in the database, the STIRS
program uses "artificial intelligence" to
deduce information about the size and struc
tural parts of the unknown molecule.

Under a $318,000 grant from the National
Science Foundation, Cornell and the American
Chemical Society's Chemical Abstracts Ser
vice (CAS) will develop an on-line search
system that will be available through the
CAS Scientific and Technical Information Net
work, a computer database that includes some
8 million compounds . The Cornell and CAS
scientists will work to increase the accuracy
and speed of PBM/STIRS and to apply it to

the immense CAS database, so that scientists
around the world can identify unknown com
pounds using their computers over telephone
lines and computer networks.

PBM/STIRS works like a master puzzle-
sol ver. Mass spectrometry is basically a
technique of breaking an unknown molecule in
to pieces and then laying out the pieces ac
cording to size. The complex pattern of
pieces is usually unique for each molecule,
and PBM/STIRS, in effect, figures out how
the pieces might fit together to arrive at
the most probable structure . Despite its
immense data base size, ·the high-speed match
ing system of PBM/STIRS allows it to identi
fy severa l unknown mass spectra per minute.

Most mass spectrographs are run so that
they analyze compounds streaming out of a
separation device called a gas chromatograph,
which isolates individual components from
complex mixtures of chemicals. The result
ing linked instruments, called GC/MS by chem
ists, have become the most widespread system
in science for identifying mixtures of un
known compounds . The number of compounds
that stream out of such a system make a com
puter program to analyze them absolutely ne
cessary, says Mc Lafferty. "When a gas chrom
atograph/mass spectrometer is used to anal
yze, say, an extract of stomach contents or
tobacco smoke or river water, the result is
a huge mass of data. Inside an hour, you can
get 100 unknown compounds coming out, each of
which has a mass spectrum consisting of scores
of separate molecular pieces in widely vary
ing abundances."

To make sense out of this data deluge,
McLafferty began in the 1950s to develop the
program that became PBM and the huge data
base of computer-coded mass spectral data as
the program's catalogue. His first system
before even personal computers existed -
used a computer card sorter with spectra
stored on punch cards . The system advanced
to each new level of computer technology
that became available . PBM quickly evolved
into more than rote pattern-matching.

"To complicate matters, one 'peak' of ma
terial coming out of the chromatograph can

(please turn to page 24)

COMPUTERS and PEOPLE for September-October, 1987 3

Vol. 36, Nos. 9-10
Sept.-Oct., 1987

Editor and
Publisher

Associate
Publisher

Assistant
Editors

Art Editor

Publication
Assistant

Editorial
Board

Contributing
Editors

Advisory
Committee

Editorial
Offices

Advertising
Contact

Edmund C. Berkeley

Judith P. Callahan

Neil D. Macdonald
Judith P. Callahan

Grace C. Hertlein

Katherine M. Toto

Elias M. Awad

Grace C. Hertlein

Ed Burnett

Berkeley Enterprises, Inc.
815 Washington St.
Newtonville, MA 02160

(617) 332-5453

The Publisher
Berkeley Enterprises, Inc.
815 Washington St.
Newtonville, MA 02160

(617) 332-5453

"Computers and People" (ISSN 0361-
1442), formerly "Computers and Automa
tion," is published every two months at
815 Washington St., Newtonville, MA 02160
U.S. A., by Berkeley Enterprises, Inc. Print
ed in U .S.A. Second-c lass postage paid at
Boston , MA and additional mailing points.

Subscription rates, effective Sept. 15, 1987:
U.S.A., $24.50 for one year, $48.00 for two
years; elsewhere, add $7 .00 per year .

NOTE: The above rates do not include
our publication , the "Computer Directory
and Buyers' Guide." To receive this, please
add $24.00 per year to your subscription
rate in the U .S.A., and $27 .00 per year
elsewhere.

NOTE : No organization i n Switzerland
or Morocco is authorized or permitted by
us to solicit for, or receive payment for,
"Computers and People" or the "Computer
Directory and Buyers' Guide." All sub
script ions to and payments for these publi
cations should be sent directly to Berkeley
Enterprises, Inc.

Please address all mail to: Berkeley Enter
prises, Inc., 815 Washington St. , Newtonville,
MA 02160, U .S. A .

Postmaster : Please send all address changes to
Berkeley Enterprises, Inc., 815 Washington St.,
Newtonville, MA 02160, U.S.A.

©copyright 1987 by Berkeley Enter-
prises, Inc.

Change of address : If your address chan
ges, please send us both your new address
and your old address (as it appears on the
magazine address imprint) , and allow four
weeks for the change to be made.

computers
and people

formerly Computers and Automation

Computers and How We Understand Them

7 Computer Intimidation and Anxiety - Part 1 [A]

6

by John Shore, c/o Viking Penguin Inc., New York, NY
It isn't unusual that we both fear and trust computers.
But these feelings spring from simple facts: our ignorance
of how a computer works, our infatuation with machines,
and the power we give to the printed word (like a com-
puter printout).

A Modern Perspective on a Computer
by Edmund C. Berkeley, Editor

Is a computer magic? Does a computer think? Despite
the changes of over 40 years of computer development,
the answer to both questions is: "Often yes, and often
no."

[E]

Software Development
11 Software Development Systems - Part 2 [A]

by Peter Freeman, University of California, Irvine, CA
A software development system (SOS) is a system also,
"a collection of things related in a way that forms a
coherent whole." Here the author treats more elements
of this system: control of information ; forms of software;
the lifecycle of software; software as a product.

Desktop Publishing

18 The Current State of Desktop Publishing [A]

by Ann M. DeVilliers, Highland Associates, Dunn Loring, VA
Almost anything that is typeset, and many things that
are not, can benefit from using desktop publishing systems.
Here are some applications and benefits, considerations in
selecting a system, and some future trends.

Artificial Intelligence

22 Knowledge-Based System Designed by Purdue Univ. Helps [A]
Grain Farmers

by Sue Metzler, Texas Instruments Inc., Austin, TX
A 180-rule knowledge-based (artificial intelligence) system
is helping grain farmers to analyze and choose among more
than a dozen basic alternatives for marketing their crops.
By making the best decision instead of the worst, farmers
are able to make thousands of dollars more a year.

Computer Applications

3 Computerized "Detective" for Unidentified Chemicals [NJ
Available to Scientists Worldwide

by Dennis Meredith, Cornell University News Service,
Ithaca, NY

High-speed identification of unknown chemical compounds
by scientists worldwide is possible because of two power
ful computer programs developed by a university chemist.

4 COMPUTERS and PEOPLE for September-October, 1987

+

...

,.. >

...

..

.J.

- ...

The magazine of the design , applications, and implications of
information processing systems - and the pursuit of truth in
input, output, and processing, for the benefit of people.

1,5,24 Computer Gives Body to 6th Century Remains
by Peter Stevens, I BM United Kingdom Ltd.,

Hampshire, England
Archaeologists and computer scientists are making an
accurate computer model of 6th and 7th century
peoples from discolored layers of sand.

25 Computer-Assisted Global Famine-Alert System Predicts
Where Hunger Will Hit

from The Record, Sherbrooke, Quebec, Canada
A computer-assisted early warning system operated by
the United Nations identifies areas of potential famine
and coordinates relief efforts.

Opportunities for Information Processing

[N]

[N]

28 Opportunities for Information Systems (Instalment 11): [C]
The Removal of Nonsense

by Edmund C. Berkeley, Editor
There is a very large amount of nonsense in the human
world of newspapers, radio, television, advertising and
disinformation. What is it, and how do we remove it?

lists Related to Information Processing

2 The Computer Almanac and the Computer Book of Lists - [Cl
Instalment 55

10 Questions for Checking Your Organization 's Exposure to
Computer Fraud and Computer Crime I List 870901

5 Situations When Expert Systems Are Useful to Solve a
Problem I List 870902

Computers, Games and Puzzles

28 Games and Puzzles for Nimble Minds - and Computers [Cl
by Neil Macdonald, Assistant Editor

MAXIMDIDGE - Guessing a maxim expressed in digits
or equivalent symbols.

NUMBLE - Deciphering unknown digits from arith-
metical relations among them.

Announcement

The Computer Directory and Buyers' Guide is still being updated in our
computer data base for the next Directory edition. We hope we will
have this, the 28th edition, ready soon for mailing to subscribers.

Correction

In the July-August 1987 issue, on page 27, we misspelled a name,
that of Nico Bloembergen of Harvard University. We regret this error.

Front Cover Picture

The front cover shows archaeologists
and scientists from I BM United Kingdom
Ltd. working together at one of Europe's
most famous archaeological sites, Sutton
Hoo in Suffolk, England. They are re
cording three-dimensional coordinates of
the surface features of one of Sutton
Hoo's sand people, so called because the
acid soil of Suffolk has eaten away the
6th and 7th century bodies and clothes, .
leaving only areas of discolored sand .
Once the coordinates have been recorded
on a personal computer, the data can be
manipulated to produce a three-dimensional
model of the body's shape. For more in
formation , see page 24.

The photograph is courtesy of the
Sutton Hoo Research Trust .

Computer Field __. Zero

There will be zero computer field
and zero people if the nuclear holo
caust and nuclear winter occur. Every
city in the United States and the
Soviet Union is a multiply computer
ized target. Radiation , firestorms,
soot, darkness, freezing, starvation,
megadeaths , lie ahead .

Thought, discussion , and action to
prevent this earth-transforming disaster
is imperative . Learning to live togeth
er is the biggest variable for a comput
er field future .

Signals in Table of Contents

[A]
[C)

[E)

[EN]
[O]

[FC]
[N]
[R]

Article
Monthly Column
Editorial
Editorial Note
Opinion
Front Cover
Newsletter
Reference

Type of Subscription

*DO N YOUR ADDRESS IMPRINT
MEANS THAT YOUR SUBSCRIPTION
INCLUDES THE COMPUTER DIREC
TORY AND BUYERS' GUIDE . * N
MEANS THAT YOUR PRESENT SUB
SCRIPTION DOES NOT INCLUDE
THE COMPUTER DIRECTORY .

COMPUTERS and PEOPLE for September-October , 1987 5

Editorial

A Modern Perspective on a Computer

Edmund C. Berkeley, Editor

1. What is a computer?

A computer is a new, strange, and extra
ordinary kind of apparatus, now existing in
many forms. It began in the 1940s; contin
ued in giant size in the 1960s; and now ex
ists in hundreds of sizes from smaller than
a briefcase to much larger than a room full.
It handles information in packages of sever
al instructions to a million instructions;
but packages of information of over 10 mil
lion instructions work badly. Packages of
over 100 million instructions regularly do
not work right and never work right the
first time used . Input consists of data
like: "Take 17. Take 22. Add them." Out
put consists of data like: "The sum is 39.
Do the next instruction." Over 40 years the
speed of handling instructions has gone from
about 3 additions per second to over 100 mil
lion additions per second. More than 10,000
applications of computers have been develop
ed; and more than 1000 kinds of work for hu
mans have arisen or changed or vanished.

2. Is a computer magic?

Magic according to the dictionary is any
extraordinary or irresistible power, influ
ence, or charm by means of which humans can
assure control over natural forces or super
natural agencies. Thus if we can make an
event happen with no understanding of why or
how it happens, that event is an instance of
magic. But if we can make it happen again
and again and again by observing related
events, and soon perform the event whenever
we choose to, by "causing" it to follow cer
tain other events, then the magic disappears
and vanishes.

So we can take a modern handheld calcula
tor and put in: "17, plus (+), 22, equals
(=),"and get from it "39" for an answer,
and we have started to master the magic of
a computer. A modern handheld calculator
about the size of a thick card can receive
energy from room light, accept many instruc
tions with eight-digit numbers, and display

the correct answer with lighted numerals.
Because some manufacturers can produce more
than ten million such calculators and sell
them for less than $10 apiece, we confess
these calculators to be real but in the
pr1m1t1ve side of our minds, we still are
convinced they are magic.

3. Does a computer th ink?

Thinking, in the way that a human thinks,
may be any one or more of a thousand activi
ties of the mind and body, which lead to the
way that a human behaves, the actions, de
cisions, feelings that a complex person
shows.

Some of this behavior is logical, mathe
matical, statistical, linguistic, artistic,
communicative, or in other ways intimately
related to taking in and putting out infor
mation. Such behavior is clearly able to
be closely imitated by (and often excelled
by) a computer . This kind of computer cer
tainly thinks.

Other kinds of behavior of a human in
volve objects: repairing a faucet; mowing a
lawn; driving an automobile; picking rasp
berries; digging a ditch; planting seeds;
and much more. This kind of behavior in
volves far more than just information, in
fact, a wide variety of skills, habits, prac
tice, perceptions, and judgments. The
skills and practices are regularly taught
and changed from time to time by families,
schools, businesses, and societies. When
this kind of behavior is automated, the
techniques of performing a process (such as
filling each of a thousand pill bottles with
exactly 100 pills) may be entirely different
from ordinary human behavior. And the kind
of behavior of a skillful plumber using
three minutes to repair a leaky faucet in
somebody's home will probably never be com
put erized.

So the sensible answer to our question
is: Often yes, and often no.

6 COMPUTE RS and PEOP LE for September-October, 1987

- I

..

.., .

•'

- ,..

+

.., -·

Computer Intimidation and Anxiety

-Part 1
Dr. John Shore
c/o Viking-Penguin Inc.
40 West 23rd St.
New York, NY 10010

intimidate, v. to render timid, inspire with
fear; to overawe, cow ...

anxiety, n. uneasiness or trouble of mind
about some uncertain event ...

- Oxford English Dictionary

Lasting Interest in Computers

Like some other first experiences, my
first computer experience occurred during my
undergraduate years . Then, my lasting in
terest in computers began not as the result
of carefully planned Ivy League diversity,
but as the result of belonging to the Yale
Flying Club. I was an "active member" -
roughly translated, this meant I would rath
er fly than study. But I never flew as much
as I wanted to, primarily because it was ex
pensive and not included in room, board, and
tuition. My parents supported my education
generously, but they drew the line at flying,
so most of the time I had to support the hab
it with my own earnings. This requirement
led to a succession of odd jobs and finally
to the offer of a part-time job as a re
search assistant in the physics department.
The job was a real plum, especially since I
was a physics major, so I gave up the mixed
blessings of my previous position as a jani
tor at a nearby girls ' school .

The new job was my first direct encounter
with nontextbook science, and as such it had
all the formative aspects of a novitiate.
I was lucky in having a boss who made the ex
perience a positive one. Dr. W. Raith was
an atomic physicist with a special interest
in experiments performed with beams of elec
trons. I helped make up the "targets" that
were placed in the electron beams, plotted
graphs of data from experiments, fetched
articles from the library, and performed a
variety of other tasks befitting my position.

"Fear, almost always, springs from ignorance."

At one point Dr. Raith asked me whether I
could learn enough computer programming to
calculate the predictions of some theoreti
cal models. Of course I said yes.

I was delighted to have someone pay me to
learn about computer programming. I was also
excited that Dr. Raith and others might rely
on my programs. This would be analogous to
designing and building equipment for their
experiments, and for an undergraduate assis
tant to do this, rather than merely to oper
ate the equipment, was unusual. I wish I
could say that I was so honored because of
my brilliance. In fact, other, more appro
priate people were too busy, and Dr. Raith
didn't know how to do it himself; moreover,
he was uncomfortable about learning how.
His reluctance was my first encounter with
computer anxiety .

The Barrier of Glass

In the mid-1960s, the center of computing
life at Yale was the Thomas J. Watson, Jr.
Computer Center, an appropriately modern
looking building that housed several large
IBM computers. The computers were accessi
ble to all, but only visually. They sat be
hind a long wall of glass, where we watched
them receive the attentions of full-time
attendants .

In those days few people interacted with
computers directly by means of computer ter
minals. Most people prepared their programs
and data by using card-punch machines to
punch holes into a series of oblong cards.
Punched cards were first used to control a
machine by the Frenchman Joseph Marie Jac
quard. In 1806 he invented a device that
attached to a loom and automated the weaving
of complicated patterns, and the Jacquard
loom quickly became important to the textile

COMPUTERS and PEOPLE for September-October, 1987 7

industry. Punched cards were first used to
aid computation by Herman Hollerith, who
used them to simplify the tabulation of the
1890 U.S. Census. Later he founded a com
pany that eventually became the IBM Corpora
tion, and such punched cards became known
almost universally as IBM cards. Today
they've been largely supplanted by other
media -- IBM cards aren 't used in word pro
cessors and personal computers -- but they
haven't disappeared entirely. For example,
they'"re sti ll commonly used in computer sys
tems that issue and process payments in the
form of checks. Anyone who has ever re
ceived an IRS refund or other government
check has held an IBM card. The phrase "Do
not fold, spindle, or mutilate" came from
the IBM card and was at one time symbolic of
the computer age.

Whenever I "punched up" a program at
Yale's computer center, I would place the
resulting deck of cards in a special tray,
where it waited, squeezed between other peo
ple's card decks, until the computer exhaus
ted i ts current backlog. This could take
anywhere from a few minutes to a few hours.
Often we would just hang around, watching
through the glass.

There wasn't much to see. There was me
chanical activity -- cards disappearing into
machines, cards appearing from machines,
tapes spinning, and paper being printed -
but all of this had to do with getting data
in and out of the computer, and none of it
had much to do with what was going on inside.
The only visible evidence of actual comput
ing was a shimmering array of lights, each
one blinking on and off as various changes
occurred within the computer. Most of us
had no idea what the lights meant, but we
stared at them anyway. Scenes like this
were common at computer centers throughout
the country. Rarely have so many stared so
long at so little visible activity.

The Barrier of the Card Reading Machine

I would watch the card-reading machine,
trying to tell when my deck was being read.
At the critical time my eyes would shift to
the shimmering lights, as I tried to imagine
the computer working on my program, and then
to the printer, where I could often spot the
results being printed. It was like watching
a magic show.

My understanding stopped at that glass
wall. I understood, albeit incompletely,
how my computer program posed numerical
questions and defined a procedure for answer-

ing them. But when the answers came back,
or when the program was rejected for one rea
son or another, I was always a bit surprised.
I didn't have the faintest idea of how the
computer did what it did. People told me
that the underlying principles were simple,
but I didn't believe them. I knew that, bar
ring some malfunction, the resulting print
out was strictly a function of the card deck
I had submitted, but I couldn't shake my
sense of mystery, even when the printout was
what I expected. And when the computer re
jected my program, it would accompany the
rejection with a series of cryptic pronounce
ments that I was unable to decipher. Off I
would go, seeking divination at a special
desk provided by the computer center to deal
with this common phenomenon. There, one
more versed than I would interpret the com
puter's pronouncements.

The glass wall reflected our fascination
and it catered to our enormous curiosity
about this new technology, but it also empha
sized our separation from it. We could look,
but we couldn't touch. Looking longer
achieved familiarity, but not insight. By
emphasizing our separation and our lack of
understanding, the glass wall reinforced our
tendency to be intimidated.

The Barrier of Miniaturization

"It's like magic" is a common reaction to
a demonstration of the computer ' s abilities .
The urge to believe in magical and psychic
powers is strong and well documented, and
there's no reason to think that the urge
doesn't extend to computers. Most of us,
however, don't believe in magic, although we
often enjoy watching magicians. We think of
them as having technical skill rather than
magical power, we speculate on the mechanism
of deception, and we want to see how it's
done. So it is with the computer .

When a machine's moving parts are visible,
they help to make apparent the machine's
logtc. When you turn the steering wheel in
your car, you rotate a shaft that moves some
rods that turn the car wheels, all of which
changes the direction of travel. But if you
look inside a modern computer, the most ac
tivity you're likely to see is that of a fan
pushing air, if that. Electronic logic re
places mechanical logic. There are no mov
ing parts, only moving electrons. It's hard
to develop intuition about moving electrons
because their movements are invisible, and
their effects are statistical.

8 COMPUTERS and PEOPLE for September-October, 1987

f

.. ,

. .,..

- ,...

. \

...

,.. ...

- • +--

Modern information processing is not only
nonmechanical, it takes place on a microscop
ic scale. It wasn't that way at first. The
first electronic computer, the ENIAC (Elec
tronic Numerical Integrator and Computer),
was housed in a room 30 by 50 feet, weighed
30 tons, and contained more than 18,000 vac
uum tubes. The ENIAC was dedicated in 1946.
Today, you can carry a much more powerful
computer around under your arm, and you can
balance its main internal units on your fin
gertip.

Miniaturization is a barrier to the sen
ses and therefore a barrier to the acquisi
tion of physical intuition. And without
physical intuition, it's hard to feel com
fortable about microscopic engineering. The
microscopic scale of modern electronics has
a lot to do with the computer's technologi
cal intimidation; it's hard to believe that
so much can take place on such a small scale.

The Barrier of Microscopic Engineering

In fact, there's just as much room for
microscopic engineering as there is for mac
roscopic engineering. The head of a pin,
for example, may seem small to us, but there
is enough room on it to write the entire
"Encyclopaedia Britannica." And when I say
"write," I don't mean in terms of some com
puter-readable code, I mean directly, with
letters and pictures.

The "Britannica" example is from an essay
by the American physicist Richard Feynman.
His subject was the problem of manipulating
and controlling things on a small scale, and
his message was summarized in his title:
"There's Plenty of Room at the Bottom." The
"Britannica" example helps bring the small
scale of the microscopic world into focus.
Here's Feynman's explanation :

The head of a pin is a sixteenth of an
inch across . If you magnify it by 25,000
diameters, the head of the pin is then
equal to the area of all the pages of the
"Encyclopaedia Britannica." Therefore,
all it is necessary to do is to reduce
in size all the writing in the "Encyclo
paedia by 25,000 times. Is that possible?
The resolving power of the eye is about
1/120 of an inch -- that is roughly the
diameter of one of the little dots on
the fine half-tone reproductions in the
"Encyclopaedia." This, when you demagni
fy it by 25,000 times, is still 80 ang
stroms in diameter -- 32 atoms across,
in an ordinary metal. In other words,
one of those dots still would contain

in its area 1000 atoms. So, each dot
can easi l y be adjusted in size as requir
ed by the photoengraving, and there is
no question that there is enough room on
the head of a pin to put all of the "En
cyclopaedia Britannica."

Nature builds marvelous objects on all
scales -- from the universal to the subatom
ic. Humans also build marvelous objects, but
within a much smaller range of scales. At
the top of the range are such objects as sky
scrapers, oil tankers, rocket ships, and hy
droelectric dams. At the other end, our fin
est engineering achievements have been in
microelectronics, where thousands of indivi
dual miniature circuits are integrated on a
small, thin slice of silicon, hence the term
'integrated circuit.' But these devices, al
though marvelous, are primitive in compari
son to nature's achievements on the same
scale. Ants and mosquitos, for example, are
e l aborate in structure as well as behavior.
Moreover, there's still room enough for na
ture to make even ants and mosquitos look
gigantic.

The microscopic world is unfamiliar to
most of us. Our inability to see it, touch
it, and manipulate it makes it hard for us
to accept its reality and to appreciate its
potential. But nature has led the way, and
we're getting there ourselves. The smallest
devices on integrated circuits today are
about ten times larger than the much more
complicated "T4" virus, but they're shrink
ing. The prospects are exciting .

Computer Printouts and Authority

I'm a skeptical reader; when I read news
papers and books, I'm quick to question their
accuracy. But it's a conscious effort . In
fact, I approach the printed word with a pre
disposition to believe. If I pick a book at
random from a library's nonfiction section
and read that the African spider "Arachnida
Fallere" has a poisonous bite, my reaction
is more to hope that I never run into one
than it is to say, "Oh yeah?" and look for
a footnote. When I'm personally familiar
with something that I read about in "The
Washington Post," I usually notice inaccur-

' acies. But that doesn't stop me from open
ing the "Post" every morning, fully prepared
to believe what I read. Power to the printed.

This power extends to the computer print
out. When my checkbook disagrees with my
bank statement, I assume that I goofed and I
start looking for my error. Some people
don't even bother with a monthly reconcilia-

COMPUTERS and PEOPLE for September-October, 1987 9

tion; they just rely on their bank statement.
Of course, most bank's computers have a good
track record, and this encourages our reli
ance. But I think there's more to it than
that.

To an extent, I think the urge to believe
the printed word comes from the role of the
printed word in education . Indeed, since
much of what we've all learned came from
books, we tend to acquire the habit of be
lief early in our lives. I also think that
the act of publication is seen as mute testi
mony of accuracy. Considerable effort and
expense is often involved, suggesting that
someone other than the author has judged the
information to be worthy of printing. In a
free society accuracy is also encouraged by
l egal penalties for fraud and libel. What
ever the reasons, the urge to believe the
printed word is strong and deep-seated. I
had it long before I ever heard of computers
or saw a computer printout .

In Machines We Trust

Our industrial tradition is one that
glorifies the mechanical. And today, de
spite the modern vogue for the handmade, our
society remains infatuated with machines.
Machines transport people, goods, and infor
mation. Clocks, traffic lights, and tele
phones shape our daily patterns. In our fac
torjes, in our offices, in our wheat fields,
and in our kitchens, we rely gladly on every
kind of labor-saving device. We may complain
about quality control and service, but we
routinely drive cars, board airplanes, turn
on microwave ovens, and submit to machines
at the dentist. How often have you been on
a malfunctioning elevator? How often do you
hear about one? Not only do we rely on ma
chines, we have a firmly ingrained habit of
trusting them.

This habit, which predisposes us to trust
computers, is reinforced by several factors:
The computer isn't just a machine, it's a
machine that communicates with us. Moreover,
it often communicates in terms of intimida
ting technical jargon, and it can communicate
with incredible speed .

Nothing symbolizes our t rust in computers
better than the printout. I remember how
often we stood in front of the glass wall at
Yale, staring at the printer. It was excit
ing to watch it come suddenly to life when
ever the computer was ready with results. I
th ink it was the lack of human intervention
that made the scene so captivating. And the
speed -- even in those days the printers

spewed results at remarkable rates . Today
I'm still drawn to the printer, and I'm not
alone. People like to watch computers print
answers. And people are prepared to believe
those answers .

The computer is a printing automaton. In
the computer printout the i nnate power of
the printed word is magnified by our glori
fication of machines and our trust in them.
Machines have always been involved in print
ing . But before the computer, people didn't
perceive machines as participating in the
decision of what to print.

In fact, computers don't decide what to
print, although we often speak as if they do.
Computer printouts are determined by input
data and by computer programs . If the input
data is wrong, so will be the output -- "gar
bage in, garbage out." Furthermore, correct
outputs also depend on correct computer pro
grams, and -- as I'll discuss more in later
text -- the typical large computer program is
considerably more likely to have a major,
crash- resulting flaw than is the typical car,
airplane, or elevator. The computer may be
the ultimate machine, but today it's less
trustworthy than many of its predecessors.

Appraising Printouts

Feelings of intimidation can be an exag
gerated form of respect. In this sense, the
typical computer printout is less worthy of
your respect than traditionally printed ma
terial. A principal reason is that computer
printouts are easy to produce and easy to re
vise. Traditional printing is more difficult
-- it takes longer, its products are harder
to revise, and it usually requires the coor
dinated activities of several individuals or
organizations. These difficulties have en
couraged the use of editorial review and
other institutional controls that are char
acteristic of formal publications. Comput
ers can make it easier, quicker, and cheaper
to print formal publications; individuals
can do what was once practical only for or
ganizations . The computer has reduced the
economic and practical importance of insti
tutional control s, and so the controls are
often relaxed. Earlier I argued that our
predisposi tion to believe the printed word
arises in part from the mute testimony of
the publishing act . In the computer age the
value of that testimony is disappearing.

Comput er printouts are not only getting
easier to produce, they're getting harder to
recognize . The result isn't always benefi
cial . One example, which affects me person-

(p/ease turn to page 26)

10 COMPUTERS and PEOPLE for September-October, 1987

,r'

..

.....

,. _

-.

Software Development Systems

Peter Freeman
Professor of Computer Science
University of California
Irvine, CA 9277 7

-Part 2

"If we understand the realities and concepts of our world, we are

in a position to formulate some precepts, or rules of actions,

that impose a certain standard of action."

New Languages to Express Domain Knowledge

We are starting to see some highly spec
ialized languages that incorporate a great
deal of information about an application.
Languages for the control of a particular
piece of equipment are of this sort, as are
the program generator packages that are based
on an underlying model of some specific appli
ca~ion. These languages presently cover
only a very small part of the total range of
app lications, but research is under way to
make it easier to produce application-speci
fic languages.

An even smaller intersection exis t s be
tween software engineering knowledge and
domain-specific knowledge. We have very few
principles in software engineering that spe
cifically address how to build applications
of a particular type (for example, hotel
registration systems) . To some extent, that
is OK since we do have some specifics that
cover entire classes of applications (for
example, real-time systems or database sys
tems). However, this knowledge is woefully
inadequate at present.

As you might expect, the smallest overlap
between classes of development information
occurs when we try to find information in
each class that is relevant to a specific
system. This intersection is absolutely
critical to the successfu l creation of soft
ware since it conceptually contains all the
information necessary to bring the desired
system into being.

There are some strategic implications of
this state of affairs . Creating software
representations (new languages) that do not
help us to better utilize domain knowledge
and/or software engineering knowledge be
longs in the area of pure research, that is,

exploring the implications of language de
sign principles for their own sake. That is
quite important for the long term and cer
tainly should be supported. It is important
to recognize, however, that to gain more im
mediate benefits it may be best to focus on
new languages that can better help utilize
the domain and development knowledge we now
have.

Control of Information

Control of information is at the heart of
controlling development -- and representa
tion is at the heart of information control.

In terms of pragmatic software develop
ment, it is important to manage the balance
between the different forms of information
in the development environment. A group
that is heavy on software engineering skills
but does not have effective access to domain
specific (application) knowledge will have
great difficulty building the systems needed
by the customers. On the other hand, a group
that thoroughly understands an application
area but that is short on software engineer
ing know-how s tands in danger of foundering
on the complexity of the software they try
to create . Underlying both is the necessity
for effective ways of representing the infor
mation so that the overall process can be
managed.

Information is the essence of software.
If it is not managed correctly, it will rap
idly become confused and lost, with predict
able impact on the software.

In reality, this often happens. The sit
uation is similar to that in hospitals 100
years ago. As discoveries were made about
the role of various micro organisms, people
realized that many of the things they had

COMPUTERS and PEOPLE for September-October, 1987 11

been doing in hospitals were very dangerous;
as a result, major attention was suddenly
paid to practices (such as the sterilization
of instruments) which previously had been
ignored. We are just beginning to appreci
ate more fully the role of many kinds of in
formation on the process of producing execut
able software, and thus to treat it with
more respect.

At present there is a poor balance be
tween naturalness and formality in handling
development information. Many technical per
sonnel focus only on the executable forms
of software, leading to problems. For ex
ample, much good information about the
structural aspects of a piece of software is
lost during development. Initially, this
may not pose a problem, but eventually it
usually does since this · is precisely the in
formation that is needed to help preserve
the integrity of the software during evolu
tion (typically called maintenance, although
it incorporates three kinds of change: re
pair, adaptation, and enhancement). This is
similar to an organization that divides it
self into departments and then loses all in
formation about which employees belong to
which departments; reorganization will be
very difficult.

Belady and Lehman, in their pioneering
studies, found that structural information
(definition of subunits such as modules and
the interfaces between them) was essential
to maintaining technical and managerial con
trol of a software system over time as it
undergoes change. In spite of a wave of
techniques incorporating "structure" in their
names (programming, design, analysis, test
ing), it is still common to find that after
initial development, no coherent record of
the system's internal structure is maintained.

Management, on the other hand, too often
assumes it is all technical information to
be left to the technicians to be handled;
again, valuable information for management,
such as the reasons why a particular feature
is requested by the customer, may be lost.
Their response, once the importance of infor
mation is realized, is sometimes to mandate
that everything be saved -- leading to a
very "formal" system, laden with paperwork
and attendant problems .

We should strive to be more relaxed and
intuitive about the information in the de
velopment environment, while still preserv
ing in usable form relevant parts of it.
For the present, however, while we are still
discovering which information is most impor-

tant and learning how to deal with it, we
must be more explicit. To that end, let's
look at software, in the general sense, and
see what happens to it over time.

Forms of Software

You are probably familiar, at least vague
ly, with many of the forms software takes:

• Programs in machine language

• Programs in higher-level language

• Specifications

• Needs statements

• Requirements

• Architectural designs

• Detailed designs

• Data formats

• Collections of programs

• Programs being tested

• Finished programs

• Systems in use for production

as well as some of the other forms of infor
mation which I include under the generic
term "software":

• Analysis of requirements

• User documentation

• Maintenance documentation

• Change requests

• Modification specifications

• Error reports

• Performance measurements

and so on!

I often encounter one of several reactions
when I start to discuss the forms of software:
People who are deeply involved in the tech
nical development process want to argue for
their particular definition of some of these
elements; those not so deeply involved want
to be given an explicit definition of each
form and be told which they should use; some
who are involved, but not directly, in the
technical development, couldn't care less
and want to get on to consideration of what
they consider to be the critical issues.
It is like analyzing an election; everyone
has a different viewpoint.

All of these viewpoints are understand
able and, in their place, appropriate. Here

12 COMPUTERS and PEOPLE for September-October, 1987

<

-...

-··

.. ,_

I want to encourage a different viewpoint
for the purposes of improving your under
standing of the underlying principles of
good software development: that of an obser
ver of the development process who is trying
to see what forms this slippery substance
called software takes during its journey
from idea to production system.

This viewpoint can very quickly lead to
arguments about the relative merits of dif
ferent sequences of steps that are taken in
developing software (usually labeled as ar
guments about the best lifecycle to use).
We will come back to some of that later, but
again, let's delay the arguments about spe
cific approaches until we understand a little
better the underlying nature of what we are
dealing with.

The Life Cycle of Software

The concept of a lifecycle has been adop
ted in the world of software to indicate the
stages that software goes through. As in
biology, from which we borrow the term, a
piece of executable software goes through a
set of stages that are more or less dictated
by the nature of the animal (and to some ex
tent by the techniques we have for bringing
the finished product into existence). Rough
ly, software goes through the following
stages:

Concept development (definition)

Technical creation (development)

Product for use (operation)

Object of further development (evolution)

The methods, tools, and techniques that
are used have little impact on this basic,
overriding sequence. We must start with an
idea of what the system will do, then we
create it, use it, and, quite likely, modify
it. In each form of the software, we have
a representation of the final object which
will be loaded into some hardware to create
the desired behavior.

It is important to understand that there
are variations on this basic sequence that
may be extremely important. Just as child
ren engage in limited adult activities so
that they can learn, it is often critical
that software be exposed to some operational
stresses while it is being developed in order
that we can learn at the earliest possible
moment whether it will stand up to its ulti
mate "adulthood" or not. We understand more
clearly now that software development cannot
always have a completely strict progression,

but may need to cycle through stages in an
iterative fashion . Software prototyping ,
for example, is one expression of this basic
concept.

At this point, I am trying to keep from
becoming too specific (I know this is frus
trating to some of you, but as in th~ tech
nical design of software it sometimes pays
not to rush too rapidly to the final point)
in order to provide a broad perspective on
the nature of software. I find that the fol
lowing description (with examples) of the
forms of software is useful:

1. Development Prologues
Needs statements
Analyses of needs
Requirements statements
Analyses of requirements
Data element definitions
Functional specifications

2. Technical System Descriptions
Technical specifications
Architectural designs
Detailed designs
Database structures
Data descriptions
Executable programs

3. System Aggregations
Collections of programs
Systems of programs
Interface definitions
Integrated hardware/software systems
Integrated human/hardware/software

systems

4. Installed Systems
Reference (baseline) systems
Versions
Production systems

5. Performance Data
Efficiency measurements
Error reports
Effectiveness ratings
User ratings

Let me repeat: My purpose here is not to
provide absolute, technically perfect defi
nitions of software artifacts. Rather, I am
trying to provide some abstractions that
will help you gain some perspective on what
is going on around you. Let's look briefly
at each of these categories.

Development Prologues

It is clear that something comes before
the technical development of software -- a
memo from the boss, a concept for an appli
cation sketched on the back of a napkin, a

COMPUTERS and PEOPLE for September-October, 1987 13

detailed statement of the functions that are
needed in a system, analysis of the needs
and stated requirements, and so on. The gen
eral nature of this information is that it
focuses on the functionality of the system,
its usage in some instrumental setting, its
relationship to other systems -- in short,
looking away from the underlying physical
hardware (one of the things that goes awry
in development is that technical descriptions
are sometimes mixed in with this kind of in
formation before a clear understanding of
the externa l aspects of the system is gained) .
I have labeled this "development prologues"
to emphas i ze that it is information that
comes before the technical development. Yet,
ln all of it we can glimpse some aspect of
the eventual system. Development prologues
are like the edi t orials and speeches and
articles that precede some governmental ac
tion, such as passage of a new law.

Technical System Descriptions

"Technical system descriptions" are the
familiar artifacts found in designers' offi
ces, on programmers' desks, scribbled on
blackboards (or, the programmer ' s favorite,
whiteboards, which provide the extra dimen
sion of easy coloring). There shouldn't be
much of a problem understanding this class.
It is worth noting the overlap that exists
in practice between development prologues
and technical descriptions in the area of
specifications. Indeed, a good set of speci
fications is precisely the bridge between
the outward-looking development prologues
and the inward-looking technical descriptions
since they can be considered both at the same
time. Continuing the analogy, technical sys
tem descriptions are the laws and regulations.

System Aggregations

"System aggregations" are technical arti
facts, too, of course, but I have separated
them to emphasize the change in focus. Up
to the point where we have individual com
ponents (running programs in the case of
software) our focus is on those individual
pieces . In building large systems, however,
the battle is barely begun once the pieces
exist because then we must integrate them
into a working system. This activity not
only takes a large amount of effort in most
cases, but it has fundamentally different
concerns. Hence I think it is useful to
look at the aggregations as a different type
of object. In the analogy, system descrip
tions are the collections of laws and regu
lations pertaining to some subject .

Installed Systems

Once we have a system built and ready for
use, the focus again changes, so I have
shown a fourth class of system objects: "in
stalled systems." Now we are concerned with
entire systems, not individual pieces but the
aggregations that make up the total system.
We treat them differently so again it is use
ful to separate them. Installed systems cor
respond to the laws actually being used and ,
interpreted.

Performance Data

The last class I have shown, "performance
data," may be the hardest to accept, since
I have now transcended artifacts which we
can all recognize as in some way represent- ~

ing at least a part of an executable system
and entered the realm of abstractions. In- ~

stead of descriptions of systems, this class
contains measurements and other data that
characterize the system in us e . In the ana
logy these are the statistics and observa-
tions collected on the results of using the
law.

Software Is NOT Easy to Change!

One of the enduring siren songs of soft
ware entices us with the message that it is
easy to change. Countless managers and un
witting programmer accomplices have looked
at a working piece of software and been se
duced into believing that they could easily
make some changes to improve it or transform
it into something else. Little did they re
alize the agony, frustration, and destruc
tion of good relationships (for example,
with their customers) that lay behind that
seemingly benign and simple encounter!

This two-faced situation -- on the one
hand lines of code are very easy to change,
while on the other systems can be incredibly
difficult to alter successfully -- comes
about because of the underlying fact that
software is a system. It is the thousands
of interwoven dependencies and interconnec
tions that pull us down into the tarpit,
not the individual pieces.

Consider a modern manufacturing plant.
A complex system by anyone's standards, phy
sical facilities, supply deliveries, power,
labor rules, and hundreds of other things
(both hard and soft) must work together pro
perly to create a productive environment.
Yet almos t none of these elements are easy
to change. Power systems are expensive and
require long lead times to build, alteration

_..,

.;.

14 COMPUTERS and PEOPLE for September-October, 1987

(-

- ,..

of labor rules may require years of bargain
ing, suppliers may be scarce for certain
parts, and so on. Consequently, we are not
so tempted to change the manufacturing sys
tem. (Indeed, this difficulty of change has
probably been perceived as harder than it is
by some, hastening the decline of certain
industries.) The underlying mechanisms of
the system are hard to change and hence we
don ' t lightly undertake systemic changes.

Oh, that we had less pliability in soft
ware!

Hidden Relationships

Technically, it is the unforeseen conse
quences and hidden relationships that kill
us in software. We think that a minor change
in the screen format of a presentation will
improve its readability (undoubtedly true),
so we ask the programming staff to make the
change (they have indicated it is only a
minor change to one module of code). The
change is successfully made.

Unfortunately, the change involved expand
ing slightly a table used by the module,
pushing the system size above the scheduling
limit for small programs, meaning the pro
gram now gets significantly less rapid ser
vice, resulting in a response time of the
program to requests from the user at the
terminal that is now nearly three times as
long! Since the program is used to generate
information to support a telephone market
ing representative while on the phone, the
system is now useless.

And, of course, the programmer making the
change finished at 8 P.M. on Friday night,
deciding to leave documentation until he re
turned from the two-week camping trip to the
wilderness on which he left the next morning
at 5 A.M. Thus a seemingly minor change in
a program led to a major change in the per
formance characteristics of the program re
sulting in several weeks lost productivity.
This is a rather obvious example of an un
intended design consequence -- one that can
be readily seen and understood. Others are
not so evident .

Coherent Conceptual Basis

In building software we do not yet have
the coherent conceptual basis that we have
in other pragmatic disciplines. Physics un
derlies electrical and mechanical engineer
ing, giving us a way of predicting conse
quences and understanding relationships.
Chemistry underlies chemical engineering.

Biology supports medicine. Because software
is all man-made and interpreted by finite
and deterministic machines (computers), we
believe that we can ultimately understand
the underlying science of computers and
hence be better able to deal with consequen
ces and connections. At present, though, we
are much closer to medical doctors (who have
only an imperfect understanding of the under
lying nature of the human body) in having to
prescribe actions with only a partial under
standing of the results to be expected. Even
worse, we have much less experience than the
medical profession!

The siren song of software flexibility
has seduced many well-meaning professionals.

Web of Connections

As though our inability in many situations
to understand design consequences and system
linkages were not bad enough, there is an
other dimension that causes perhaps even more
trouble and expense in the long run. 111at
is the web of connections between the differ
ent aspects (or forms) of software discussed
above, the chain of representations extend
ing from needs statement to specifications
to design to code to test results. The tech
nical problem is one commonl y called the de
sign-updating problem. What usuall y happens
is that even when a careful chain of system
representations has been built, once the sys
tem exists, changes will be made to the pro
grams without reflecting those changes back
into changes in the design and the specifi
cations. The result: The more abstract re
presentations of the system are quickly made
useless, so that future changes to the sys
tem must be made using only the program list
ings (or an equivalently low-level represen
tation). In building construction, this
would be like building without plans or stan
dards and keeping no record of where pipes
and wires were installed after the initial
construction so that future changes to the
building required walls to be torn out sim
ply to find out where the wires were.

What are the implications of the reality
of software being hard to change? There are
two, in general terms. First, build the sys
tem as though it will last for ever, enduring
many changes along the way. Second, control
of and changes to any system must be made
very carefully. Let's look a bit more a t
the first implication.

Old Code Never Dies

This is a reality that many people and
organi zations learned years ago. Yet be-

COMPUTE RS and PEOP LE for September-October, 1987 15

cause the average length of experience of
people in the field seems to be dropping
(due to the rapid expansion of the use of
computers and hence of people's involvement
in creating software) it is a lesson that
people constantly learn anew the hard way!

Software lives forever for any number of
reasons, good and bad. The most obvious and
pervasive reason is that once built and in
productive usage, there is inertia that must
be overcome if it is to be changed or re
placed. The users like it. The boss likes
it. The customers like it. It doesn't mat
ter that it is slow, prone to errors, needs
to be expanded to take care of new functions,
and so on. The software has become a part
of their lives and all they want is that it
be fixed up a bit -- certainly not replaced
or changed in any major way!

The relationship between software and the
people around it (users, customers, managers,
operators, and so on) is not unlike the re
lationship between people that find them
selves associated for historical reasons
(e .g ., in a marriage, working situation,
neighbors) which may have little bearing on
their present si tuation. It takes a tremen
dous amount of effort to change the situation
and break the relationship to the software!
The result: The software lives on and on
and

There are of ten economic reasons why soft
ware doesn't die, beyond those stemming from
its intimate role in the production process.
Software of any magnitude costs quite a bit
to create in the first place (and, worse, it
usually can't be considered a capital cost).
If it has been used very much, then quite
likely considerable money has been spent on
it over the years to repair, adapt, and en
hance it with new functions; it is not un
common to find that three or four times the
original development cost has been spent in
this way. That turns out to be a large in
vestment, generating the expected inertia on
getting rid of it (even if the users agree
that it is time to replace it).

Finally, it is not uncommon to build a
piece of software for a "quick" application,
one that supposedly will last for a limited
time after which the software will be thrown
away, only to find that the application is
so productive that the decision is made to
continue it -- together with the use of the
quick (and dirty) software!

The moral is: You must expect that soft
ware will never die. Build it as though it

will continue far beyond your own retirement,
will be adapted to run on new equipment, en
hanced with new functions, repaired to take
care of those pesky special cases, and gen
erally outlive those that created it. There
are obvious counterexamples -- truly one
shot situations, applications for equipment
that is about to die, functions that are
eventually outmoded -- but it is better to
err on the side of too much preparation for
the future rather than too little.

Software, like unwanted relatives, is
difficult to get rid of.

Software As a Product

The history of computing has fostered the
view that programs are highly mathematical
in nature, created by genius mathematicians
to solve esoteric problems understood only
by them and a few others. Indeed, that was
the nature of many early programs and the
people that created them. As computers were
applied to a wider variety of tasks, people
started to realize that in fact computers
are very general symbol processors, not just
number crunchers. That view has now become
dominant because of the large amount of non
numerical (or, at least, involving only very
simple arithmetic) work that computers do and
because of the advent of the personal comput
er used by millions of people for very ordin
ary tasks.

Another view, clearly a corollary of the
first, was that software was not a product
in the sense that one described it, packaged
it, worried about inventory control and deri
vative models, marketed it, sold it, maintain
ed it, and removed it from distribution when
outdated. That view, too, has changed radi
cally in the past 20 years, although the
change has not been as pervasive nor as well
heeded as the change in view regarding the
essential nature of a computer.

Starting with the first "unbundling" of
software from the price of the hardware in
the late 1960s, software has gradually come
to be seen as a product; in the past five
years, the explosive growth of the personal
computer field has made it abundantly clear
to most (although not all) people that soft
ware can indeed be treated as a product.

Interestingly, many of the "software mil
lionaires" are not old-line professional pro
grammers, but rather people who quickly
grasped in various contexts the need for a
particular software product, created it,
packaged it, and got it to the market first.

16 COMPUTERS and PEOPLE for September-October, 1987

- ..
.,

....

..

...

_...,.

4 4-.

Indeed, many of the most successful software
products are not ·very sophisticated in tech
nical terms (there is a lesson there, too).

Creating the idea for a product is not
the same as building it. Neither is market
ing and selling it the same as building it.
In building a real product, one must pay care
ful attention to serviceability, reliability,
customer tastes, cost of producing it, and
so on. These aspects of what it means to
make a product are only starting to be under
stood and taken into account by the develop
ment community. I think this is why many of
the biggest successes in the software prod
uct field have been created by nonprofession
als.

At times the product ignorance of some
technical people is actually a blessing.
When building the software itself, it is im
portant to focus on the technical character
istics and find the best technical solution
within the constraints of the product para
meters. If everyone is focusing on the prod
uct parameters, it may be more difficult to
achieve a satisfactory technical solution.

Perhaps the most important thing is to
keep the product and technical aspects of
software in balance. All software is ulti
mately a product for someone else (perhaps
just the builder using it in a different
context), so it is important to deal appro
priately with the product aspects. On the
other hand, all packaging and no content is
even worse than all content and no packaging
(which can usually be more easily remedied).

Viewing software as a product quickly
leads to many implications for the develop
ment process: How we are to determine re
quirements from an anonymous set of users,
how the design and implementation process
can be speeded up, how we handle changes
after it is released, and so on. Some of
these issues will be discussed later in the
context of individual parts of the develop
ment system.

Treat software as a product as well as a
technical object.

In this context, it is important to recog
nize one of the main product characteristics
of software, namely, that it is essentially
packaged knowledge.

Software Is an Embodiment of Knowledge

A view of software that I find especially
appealing (perhaps because of its grandiose

overtones, but, I prefer to think, because
of its all-encompassing nature) is that soft
ware is an embodiment of knowledge. Any pro
gram certainly contains a large amount of in
formation about a process and the data that
are relevant to carrying it out. Programs
also contain structural knowledge that in
dicates the relationship between different
processes (programs) and their associated
data, knowledge about the relationships
among classes of data, and other information
as well.

If programs, the end result of the chain
of representations that we call software,
contain knowledge about the outside world,
then certainly the earlier versions -- the
designs and specifications and requirements
-- also contain knowledge. Indeed, one of
the realities of software is that these
forms of the system often contain valuable
information which is lost before we get to
the executable versions!

Whatever you may think of the grandilo
quence of this view, it is well worth your
pondering. If software is knowledge (I am
not wasting many words to convince you of
what seems so obvious), then the argument
for taking great care to capture and manage
properly the information that exists in the
software development environment certainly
takes on a new importance. Likewise, it
adds weight to the plea, often heard, that
more attention should be paid to the activi
ties that come before the actual coding of
programs. Those activities are producing
something at least as valuable as plans for
programs -- knowledge. This is one of the
primary motivators for software reusability.

Programming -- in the narrow sense of
laying down sets of instructions that tell
a machine precisely what to do -- is com
parable to writing a research report. It
produces a representation of knowledge that
has been acquired before the writing began.

In this context, it seems clear that what
we are doing in the early stages of software
development is uncovering and organizing
knowledge. First, and most importantly for
the larger picture, we are producing know
ledge about the application; then, during
design, we move on to producing knowledge
about how to deal with the application with
the computer.

The interaction between these two discov
ery processes (and the methods used) is com
plex and not well understood. Even less
clear is the relationship between these pro-

(please turn to page 27)

COMPUTERS and PEOPLE for September-October, 1987 17

The Current State of Desktop Publishing

Ann M. D
Highland 1
P.O. Box
Dunn Lor/

"--~

I
I
I
I

"Almost anything that is typeset, and many things that are not yet

typeset, because the task is too difficult or costly, may benefit

from using desktop publishing tools."

Computer-Aided Publishing Defined by Equipment

It has been said that being in computer
aided publishing is as undefined as being
"in transportation." With transporta tion,
one can get to California from Virginia on
a moped or on a Boeing 747 . The end result
is the same but the time and difficulty of
getting there is significantly different.
This is also true of publishing where the re
sulting page or document might look the same
but the blood, sweat, and tears that went in
to producing it might vary considerably ac
cording to the capabilities of the system
used.

Desktop, as well as high performance pub
lishing systems, is a collective market that
analysts predict will top $35 billion by 1990.
What can you do with these sys tems ? News
l etters, brochures, newspapers, business
forms, price lists, catalogs, manuals, books,
technical documents . . . Almost anything that
is typeset, and many things that are not yet
typeset, because the task is too difficult
or costly, may benefit from using desktop
publishing tools. This article, which fo
cuses on desktop or microcomputer-aided pub
lishing, attempts to define what can be done,
types of equipment available, end user bene
fits, systems considerations, future trends
and other aspects of interest to automated
document specialists. It is important to
note that this is an extremely fast develop
ing field so that any article on desktop pub
lishing published in a bimonthly magazine is
likely to be somewhat dated by the time it
reaches the reader.

For many years, publishing has been done
the traditional way. by "pasting up" typeset
text with graphics produced separately into
attractive page formats. Around 1975, the
first typesetting systems based on mainframes

were available and, by 1980, they were con
trolled by minicomputers with "front-end"
systems such as Penta and Atex. The systems
were very expensive and suitable only for a
highly trained professional's use. In 1985,
a product and price synergy occurred that
made desktop publishing feasible : the Canon
printer with font scaling and graphics inte
gration at a dramatic price drop ($5000 vs .
$20,000 for previous laser printers), the
Apple Macintosh, a graphics-oriented PC, and
easy-to-use page layout software. These pro
ducts created a usable publishing sys tem for
under $12,000.

Desktop Publishing

Suppliers tend to define desktop publish
ing (DTP) in terms of what they already sell,
so to the word processing vendor, DTP is so
phisticated word processing; to the printer
vendor it may be the whole range of printer
output except for phototypesetters; to the
graphics supplier, it might be a method to
package and manipulate graphics. In this
article, it is defined as the whole process
on a microcomputer where the text and graph
ics electronic files (input in several ways
described below) are manipulated by the DTP
software to compose and paginate pages which
are then output in different ways according
to the user's quality needs. The key dif
ference from word processing then is the re
latively sophisticated software that will
set typographic characters, edit graphics,
format pages, and interface with sophistica
ted printers and phototypesetters to produce
the font scaling and graphics integration.
Desktop publishing systems are microcomputer
based and are in the general price range of
$10,000-20,000. Workstation publishing sys
tems such as Interleaf and Kodak KEEPS are
minicomputer-based and range in price from
$30,000 and up. Even though many of the

18 COMPUTERS and PEOPLE for September-October, 1987

_ ..

- t '

.,. _

-- ~ -

r

-,.

...

-.

same results can be produced from both, the
workstation is appropriate for the serious
user who demands high resolution graphics,
speed, performance, and the ease of use that
comes from working with a comprehensive soft
ware solution rather than a diverse set of
programs. In many cases, a firm may have
both, or even integrate with the mainframe
depending on needs of individual departments.

Applications and Benefits

The leading users are those with heavy
document needs such as aerospace, electron
ics, manufacturing and government. Typically
these users require frequent updates, the
ability to manipulate computer-aided design
files, long documents and often the power of
a workstation. Examples are the department
at Digital Equipment Corp . which produces
technical manuals for network and communica
tions products using workstations; or, soft
ware publishers such as Handle Technologies
in Houston who produces product user manuals
on equipment from NBI Inc. of Houston, TX.

In the middle are many firms that previ
ously sent their work outside to a typeset
ter, or used word processing copy, who can
now cost justify publishing their own on
desktop systems. Examples include associa
tions producing member newsletters, and con
sulting firms such as Boaz-Allen & Hamilton
that have a competitive edge by producing
proposals and publications that are more
readable and attractive.

Low cost systems mean that even the small
est businesses are experimenting; for exam
ple, an antique dealer who produces a news
letter with scanned in pictures of her an
tiques to increase sales. A recent but
growing development is quick print shops
who offer their customers design services or
let the client come in and do their own de
sign -- a perfect solution for those who
either cannot afford a system or expect to
use it infrequently.

The benefits cited most often are cost
and time savings, convenience and control,
improved appearance, and security. Approxi
mately 6-10% of corporate budgets is spent
on printing and publishing of ancillary pub
lications such as product or training man
uals. According to David Boucher, President
of Interleaf, Inc. of Cambridge, MA, it is
possible to save one-half or more of the
cost by automating. Time savings, conven
ience, security, and control are all bene
fits related to the fact that the work is
done in-house. Previously production people

spent a great deal of time preparing and
proofing text, proofing again when it was
typeset, and again when graphics were added,
and again ad nauseum. There was little con
trol over the schedule and heaven forbid if
changes were required! With DTP, it is pos
sible to typeset and layout documents in
your office, see the results immediately,
and make corrections at no extra charge.
Appearance will be improved over word pro
cessed documents due to the addition of gra
phics, improved layouts, and better font
selection. However, if material has been
output previously to a phototypesetter with
a high resolution (1200 dpi or more) and is
now output from a laser printer at "near
letter quality" of 300 dpi resolution -
some readers nay notice the drop in quality.
Many readers wi 11 not notice the quality
change, however, unless the two outputs are
compared side by side.

As DTP gives people more artistic control,
however, some users warn that this could be
a mixed blessing. The ease in which layouts
are produced and designs quickly changed,
could lead to "automated ugliness." One
still needs to use solid design principles
and maintain control over the final output.

Considerations in Selecting a System

Users' needs range from the casual user
who might be satisfied with a simple add-on
font package for his word processor to ex
tremely sophisticated combinations of text
and graphics that require powerful systems
to implement. Therefore, it is critical to
understand exactly what your needs are . It
is also important to realize that DTP is not
one technology, rather it is the intersection
of text processing, graphics, page composi
tion, and laser printing, all of which must
work well together. Each of these technolo
gies matured individually and tends to have
incompatible standards. Here are some ques
tions to ask yourself.

How is publishing done now? Are docu
ments primarily long, under 10 pages, or
both? (Software is often oriented one way.)
How will input be accomplished? If it is
word processing, is the software compatible
with the system or will the word processing
people have to be retrained on new software?
Will one person be controlling the document
look or will a number of former word proces
sing people be trained? In the latter case,
it is wise to have a "document standards"
manual so all output conforms to a company
look.

COMPUTERS and PEOPLE for Seotember-October, 1987 19

Some software incorporat es kerning, lead
ing, hyphenation dictionaries and other typo
graphical features -- are the users accustom
ed to making these decisions or should you
choose a more intuitive layout package? What
t ype of graphics do you need to incorporate:
photographs, line art, CAD (computer-aided
design) files, other? How will the system
deal with them? What about output -- does
your audience demand high reso l ution? In
this case, be sure you can communicate with
a phototypesetter. Can you see the entire
page on the screen before you print it to be
sure it is really what is desired?

Does the software you have chosen support
the peripherals such as the printer and scan
ner you need? Do all the various components
work together smoothly when hooked up? Can
you telecommunicate to other locations such
as service bureaus with typesetting equip
ment? Does it work in a networking environ
ment so multiple writers can transmit word
processed material to the layout person?
How much training is required? Is the sys
tem expandable as new technology arrives?
How will the system be serviced? Is it com
patible with already owned equipment?

Categories of DTP Systems

There are several categories for publish
ing with mini- or micro-computers (note that
any price ranges listed should be considered
relative since prices are rapidly changing):

1 . The minicomputer-based workstation which
is for the "serious user" with heavy graph
ics, long documents, and high performance
needs. These systems typically range in
price from $30- 100,000 depending on the con
figuration. Interleaf, Inc., one of the
early market leaders, has been very success
ful by offering its software on several dif
ferent CPUs including Apollo, Sun, Microvax,
and the IBM/RT . Numerous other companies
such as Qubix Graphics Systems, Caddex Corp.,
and Autotrol offer solutions for users with
more specialized needs. Due to space limi
tations, workstations will only receive this
brief mention; however, many of the consider
ations are similar to those below .

2. The microcomputer which offers several
levels of solutions:

• The "high road" (expensive, polished
route for professional artists and ty
pographers) includes page makeup pro
grams for PCs that can send output to
phototypesetting systems or control the

typesetti ng equipment directly . Wi t h
out the t ypesetting equi pment , these
sys t ems woul d range around $15,000
and up.

• The "middle road" (not so expensive but
still high quality) includes the Apple
Macintosh or IBM PC with page layout
software and a Postscript (or other
page description language) -- driven
laser printer . Sys t ems price range
from $10,000-20,000.

• The "economy route" (leas t expensive but
varying quality) includes the less ex
pensive laser and dot matrix printers
with PCs or Macs using word processing
and graphics programs, with special
software to control printers.

The rest of this article will focus on
the "middle road" since that is of the broad
est interest. But for now, which route
should you take? Decide based on your needs.
The high road is the one for many advertis
ing agencies, graphics houses and publishers .
The middle road is very attractive for large
and small businesses, newsletter, magazine
and book publishers . The l ow end is appro
priate for school newsletters, church and
club bulletins, reports, and correspondence.

The other hardware and software you need
depends on your application. Most writers
need enough hard disk storage to accommodate
files, enough memory (usually 640K) and a
graphics card with a high resolution black
and white monitor for page makeup . Software
varies widely in price and functionality .

Methods for Creating and Entering Data

Nearly all computer publishing products
fall into the categories of creating and en
tering data, putting the pages together, and
getting output . The following is an over
view of these areas along with some examples
of current products on the market or recent
ly announced .

The basic methods for creating and enter
ing data are:

• Word Processing

• Painting and Drawing

• Optical character recognition (OCR) De
vices, Digitizers, Tablets, and Scan
ners

Word processing software has evolved into
an established useful tool. The speed of in-

20 COMP UT ERS and PEOPLE for September-October, 1987

-)

...

..

...

-1--

~ ·

..

..

..

-

put is limited only to the speed at which
the user can type. Editing and revising is
simple and quick. Some of the higher end
word processing programs have some elements
such as two column output that in the past
have been associated only with page layout
software. The most recent trend has been
for word processing software to integrate
more easily with graphics packages . Prices
are in the $300-700 range.

Painting and drawing software packages
for creating images are available for near
ly every type of personal computer . Most
recommend the use of a "mouse" pointing de
vice rather than the keyboard so the user
can freehand draw similar to drawing on
paper. Paint programs let users change each
picture element (pixel) of a screen to make
subtle changes in an image. Other programs
make it easy to draw lines, boxes,.and
shapes with precise angles. Some even in
corporate large "clip art" libraries so the
nonartist can produce gratifying results sim
ply by selecting. Once drawn, an image can
be duplicated on the screen many times, and
each copy can be enlarged, reduced, stretch
ed, or compressed. Prices are generally in
the $100-700 range depending on capability.

Retyping already typed material is now
unnecessary, thanks to OCR devices that cost
as little as $3000. Some, however, may not
accept typeset material or may only read cer
tain typefaces. Graphics scanners can read
in line art easily and the more sophistica
ted ones can handle gray tones such as in
photographs. In the under $5000 price range,
the efficient OCR devices do not handle text
efficiently. Although this technology is
making tremendous strides, the user is ad
vised to try it before buying.

Various companies make drawing pads and
light pens for tracing images, or drawing
images freehand for storage in the computer .
Image digitizers such as the MacVision digi
tizer from Koala Technologies, which takes
images from a conventional video camera and
reproduces them on the screen, are available.

Putting the Pages Together

Page makeup software utilizes the text
and graphics files created separately and
allows the user to layout the page in an at
tractive design. Most allow a variety of
fonts and, at least, simple editing of the
text and graphics. Macintosh has been the
leader but more software for the IBM PC is
announced monthly.

The programs fall roughly into two types:
those that are WYSIWYG and those that are
not. WYSIWYG means "what you see is what
you get" and is used to describe systems
where you can instantly see on the display
any changes you make. Examples are Ventura
Publisher from Xerox Corp., Pagemaker from
Aldus Corp ., and Frontpage from Studio Soft
ware Corp. This type of software is ideal
for the shorter document although some can
also handle long (over 10 page) documents.
WYSIWYG allows you to try it over until the
page is right and then send it to the print
er . WYSIWYG is economical because you don't
waste printing time and paper and you can
usually catch mistakes on the screen . On the
other hand, micro-based WYSIWYG can be a
time-consuming process especially with multi
page documents so be sure that the system
chosen can perform to your needs, or consid
er the exceptionally fast WYSIWYG solutions
like Interleaf, Inc. workstations. The non
WYSIWYG (or code intensive) systems are de
signed for professional typographers who al
ready know about typesetting features and
like the control this method gives. These
are harder to fearn but can be more efficient
for longer documents where the page design
is essentially the same. In most cases,
this type of program is not able to handle
graphics other than simple boxes where graph
ics can be pasted in . Users with graphics
needs in long documents should definitely
consider workstations.

Getting Output

There are many kinds of printers ranging
from the least expensive dot matrix to the
most expensive page printers. The dot ma
trix printers are capable of near letter
quality text and graphics, whereas the laser
printers can emulate the letter quality text
and handle 300 dpi resolution graphics. Any
program that can print to Postscript print
ers such as the Apple Laserwriter can also
be output to Postscript-type phototypesetters
such as the Allied Linotype. Some software
such as that from Studio Software Corp. and
Interleaf, Inc. is capable of outputting to
other types of high resolution typesetters
(1200 dpi or more) . In this case, most
users would want to have a laser printer to
proof the page before typesetting.

The choice of printer primarily depends
on your budget and the quality of publica
tion needed . For example, if you want the
best possible laser printer resolution on
graphics and font flexibility, you should
consider something like the LaserWriter
(about $5000) versus the less expensive la-

(please turn to page 26)

COMPUTERS and PEOPLE for September-October, 1987 21

Knowledge-Based System Designed by
Purdue Univ. Helps Grain Farmers

Sue Metzler
c/o "Artificial Intelligence Letter"
Data Systems Group
Texas Instruments, Inc.
P. 0. Box 2909 MIS 2222
Austin, TX 18769

"A farmer with 100 acres in corn yielding 100 bushels an acre could make

$10,000 more by making the best decision instead of the worst decision."

Converting Agricultural Research into Practical Results

Grain farmers are receiving help of a
meaningful and lasting kind from Purdue Uni
versity, long a leader in converting agri
cultural research results into practical
tools for farmers. The help this time is a
knowledge-based [artificial intelligence]
system that helps farmers select the best
way to market their grain.

To the major.ity of us, who market our ser
vices for wages or salaries, the grain far
mer's need to select a marketing method every
year for every crop seems alien. He's faced
with selecting among more than a dozen basic
alternatives, and making the best choice is
critical . For example, Number 2 Yellow Corn
is selling at the moment for about $2 . 30 a
bushel. The difference between making the
poorest choice and the best choice could
mean as much as $1.00 per bushel in net in
come to the farmer!

So a farmer with 100 acres in corn, yield
ing 100 bushels an acre, could make $10,000
a year more by making the best decision in
stead of the worst decision about marketing
his corn.

The knowledge-based system, based on Pur
due's years of research in grain price ac
tion, was produced with the Texas Instruments
(TI) Personal Consultant™ expert system de
velopment tool. It can be delivered on any
of several personal computers. This is cri
tical to the widespread use of the system.
Many farmers own personal computers and use
them routinely in farm operations; those who
don't can usually find easy access to one
through their local farm cooperatives or ag
ricultural extension services.

Ronald Thieme, a graduate instructor in
research in Purdue's Agricultural Engineer-

ing Department, acted as knowledge engineer
on the project -- his first hands-on experi
ence with expert systems. Other members of
the development team were J. William Uhrig,
a Purdue professor; and Robert Peart, a pro
fessor at the Univ. of Florida. The team
started planning the system in the spring of
1985, and completed a prototype in about
three months. A complete 180-rule system
was ready for field testing early in 1986.
At 180 rules, the system uses only about
half the capacity of Personal Consultant; so
there is much reserve capacity for further
refinements or newly developed marketing tech
niques.

Basic Grain Marketing Techniques

The complexity of the farmer's choice is
suggested by considering some of the dozen
marketing alternatives that confront him.
He may elect to:

Deliver, price and sell the grain when
it's harvested. This is probably the
most ancient method, and certainly the
simplest. It may appear riskless, be
cause most of the costs and other fac
tors are known. But one important se
ries of values is unknown -- the price
movement throughout the months to come.
The risk is that, at harvest time, the
price may be at its lowest ebb.

At harvest, sell the grain and buy futures .
This may be the appropriate strategy if
the farmer has reason to believe that
the price will rise during the months to
come. Farmers who chose this alterna
tive at the last harvest and sold their
futures during the three days following
the Chernobyl nuclear incident, were
well-compensated. Most grain futures
prices rose to the daily limit on those
days, in expectat ion that a significant

22 COMPUTERS and PEOPLE for September·October, 1987

- r

..,_-

' ..,_

·-

. .,.
..

..

• --

part of the USSR's grain crop would be
contaminated. When, on the second day,
the wind shifted to the southeast, the
Ukraine was threatened -- and it pro
duces 40% of all Russian grain.

- Deliver, price and sell the grain on a
"Delayed Payment" contract. This is a
legal technique for avoiding tax. It
permits the farmer who projects a small
er income in the following year to defer
part of this year's income, expecting
that he will pay a lower rate of income
tax on it.

- Store the grain, take a government loan,
place the corn or wheat in the Farmer
Owned Reserve; later, pay off the loan
and sell the grain, or deliver the grain
to fulfill the loan. This strategy lets
the farmer avoid selling at disastrous
ly low prices, and gives the farmer
additional income from conditioning and
storing the grain.

A wise choice among the many alternatives is
based on a thorough analysis of such factors
as price histories, the particular farmer's
business needs, the degree of his aversion
to risk, and his conditioning and storage
capabilities -- all correctly interrelated.
As Thieme says, "Only an expert system could
bring all of these together. Problems in
agriculture are well suited to this approach
because they rely heavily on human expertise."

Factors Analyzed by the Expert System

In practice, the farmer uses the system
to analyze likely alternatives one at a time.
Then he may compare them and choose the one
that best suits his marketing plan.

The analysis of one typical situation re
quires the software to consider the follow
ing factors in combination:

Price trend. "Price" in grain marketing
means world price. The system uses a
dual moving average of the futures mar
ket prices to determine the trend and
changes in trend.

Basis trend. "Basis" in grain marketing
means local price. Provisions are a
vailable in the system for plotting the
current basis for selected futures .

- Expected change in basis. The historical
patterns of the basis in analogous years
are used to determine whether the basis
trend is likely to change.

- Timing. Pricing alternatives and delivery
time are influenced by the timing of ac
tions during preharvest, harvest, or
postharvest.

Downside price protection. This element
considers such loss protection as the
purchase of agricultural options.

- Storage. Whether or not the farmer has
appropriate conditioning and storage
facilities available, and attendant
costs, help determine the feasibility
of storing the grain for price specula
tion.

- Need to defer income. Helps determine the
need to consider delayed payment con
tracts.

A computer equipped with this type of power
ful software can help guide the farmer
through a closely correct evaluation of each
alternative, as well as to help him choose
the alternative that best fits his circum
stances.

But Purdue's system is by no means a "one
shot" advisor. It has all the flexibility
required to advise the farmer even after he
has implemented his initial pricing decision.
If variables like price trends change from
the assumptions on which the initial deci
sion was based, the system offers marketing
strategies that can help compensate for im
pending losses. For example, if a farmer
has already forward contracted his grain and
market conditions have changed, the system
will help him analyze the advisability of
dealing in futures contracts or agricultural
options.

There are several dimensions to the assis
tance the grain marketing advisor system
gives the farmer. It is providing him with
analyses of alternatives; it is making him
more familiar with the factors that cause
prices to change; and it is improving his
price prediction ability. Moreover, because
the knowledge-based system can explain its
reasoning to him, it helps him hone his ana
lytical skills . The result is that he can
do a more effective job of marketing and im
prove his net returns -- not only this year,
but for years to come.

Future Questions to be Answered

The application of artificial intelligence
techniques to other agricultural problems not
easily amenable to conventional data proces
sing is a natural evolutionary step. The

(please turn to page 27)

COMPUTERS and PEOPLE for September-October. 1987 23

Newsletter - Continued from page 3

itself be a mixture of compounds," McLafferty
states, "with the extra components adding con
fusing pieces to the puzzle. Also, spectral
patterns may differ according to the instru
ment conditions employed." Included in PBM
are sophisticated techniques to sort out
data from contaminants and compensate for ex
perimental differences. Using s tatistical
methods, PBM reports the "reliability" of its
identification -- the probability that the
answer is correct.

McLafferty and his co-workers developed
STIRS to attack the problem of unknowns that
weren't in the database. STIRS figures out
the possible size of an unknown mol ecule and
recognizes patterns of molecular puzzle
pieces that represent structural parts of
the compound.

The result of McLafferty's three decades
of development is a database of more than
115,000 chemical compounds and a computer pro
gram that can match an unknown almost as fast
as the data can stream out of the machine,
with an accuracy far higher than any other
mass spectral identification algorithm. The
software has been available free to in
dividuals and instrument companies, and since
1975 Cornell also has offered a limited com
puterized service for identifying compounds
from data fed in over phone lines .

As a re sult of its popularity, PBM/STIRS
has been incorporated into numerous commer
cial instruments . This has helped U.S. com
panies to market about $75 million in instru
ment s worldwide each year.

The analytical system including PBM and
STIRS is used for an enormous range of anal
yses, says McLafferty, including:

• Stomach contents of victims of poison or
attempted suicide.

• Explosives and "designer drugs" in cri
minal investigations.

• Complex mixtures of water pollutants.

• Natural oils in the feathers of waterfowl.
Biologists use this information to develop
an artificial oil, which is used to replen
ish the natural substance when birds are
cleaned after they are exposed to oil spills.

• Oils or other natural substances from
plants or animals for "chemical taxonomic"
classifications of plant and animal species,
from eucalyptus trees to waterfowl.

• Drug metabolites in blood, to help the
Food and Drug Administration decide whether
to approve new pharmaceuticals.

• Natural sex attractants in insects th at
have become the basis for a new class of
chemica l lures to trap insect pests.

COMPUTER HELPS ARCHAEOLOGISTS BUILD
A THREE-DIMENSIONAL MODEL OF 6TH
CENTURY "SAND FOLK" IN ENGLAND

Peter Stevens
IBM United Kingdom Ltd.
P. 0. Box 41, Baltic House
Kingston Crescent, Portsmouth
Hampshire P06 3AU, England

Since the discovery of the buried funeral
ship and the treasures of the Anglo-Saxon
King Radwald, Sutton Hoo in Suffolk, England,
has become one of Europe' s most famous archae
ological si tes. It is visited by 5000 people
each summer, and was recently the s ubject of
a British series of television documentaries.
\'Ii th the aid of a computer, archaeologists
are now able to see a more complete picture
of the "sand folk" buried there.

The sand folk were buried at Sutton Hoo
during the 6th and 7th centuries. The acid
soil of Suffolk ate away their bodies and
clothes, leaving only areas of discolored :
sand. Archaeologists have been recording the
surface contours of the sand folk precisely,
aseembling important information about the
layers of flesh, bone and clothing to try to
determine how the people died and how they
were buried. But they haven't been using tra
ditional methods of recording the contours of
an excavated figure.

Archaeologists normally use photography or
drawin as or construct models of excavated
skelet~ns to give them a full picture of
the remains . But none of these methods is
appropriate at Sutton Hoo since all skeletal
remains are gone.

Using a "space tracker" (a handheld probe
capable of digitizing three-dimensional coord
inates) connected to a personal computer,
archaeologists construct a model of a sand
person. About 3000 readings are taken with
the probe and, once the coordinates are re
corded on the personal computer, the data can
be manipulated to produce a three-dimensional
computer model of the body's shape. TI1is
model is accurate to plus or minus two milli
meters.

Using data handling and graphic display
techniques developed by IBM scientists in

24 COMPUTERS and PEOPLE for September-October, 1987

'

...

..

..
,.

•
..... -

•

•

..

...

-
...

--

Winchester, England, the stored data can be
manipulated in all sorts of ways. Archaeolo
gists can zoom in to areas of particular in
terest, add colors to heighten detail, and
rotate the model on the computer screen.

Work is also being done on the Anglo
Saxon burial ship itself. By taking primi
tive and incomplete data, recorded in a 1939
excavation, and using the IBM computers in
Winchester for processing and manipulation,
a detailed computer model of the ship has
been constructed . The model highlights in
consistencies and inaccuracies in the origi
nal measurements, giving a new insight into
the ship's construction.

As archaeologist and IBM Research Fellow
Paul Reilly states: "Archaeology is about
gathering and recording information, for our
selves and for future generations. Our aim
is to gather as much data as possible by non
invasive means -- by disturbing as little as
possible until it's absolutely necessary.
Then, once we're satisfied that we have all
the information it's possible to gather, we
are justified in digging to examine some
other specific feature in equally fine detail.

"In a sense, we' re using the computer like
a microscope. All the data gathered is put
~nto the computer and analyzed and manipulat-

"Wire-frame" computer model of a Sutton Hoo sand person.

ed. And then we find that in fact there's
more information there than we ever thought
we just needed the computer to help us see
it• II

COMPUTER-ASSISTED GLOBAL FAMINE-ALERT
SYSTEM PREDICTS WHERE HUNGER WILL HIT

"The Record"
2850 Delorme St.
Sherbrooke, Quebec, Canada J 1 K 1 A 1

June, 1987

Back in January, signs of trouble appear
ed for cattle farmers on the dusty plains of
northern and central Somalia . There had been
no rain for months. As pastures withered
and livestock died under the searing east
African sun, an estimated 200 , 000 nomadic
herdsmen felt the pangs of hunger.

But half a world away, in a highrise build
ing in downtown Rome, the world's only glo
bal famine-alert system had already put the
word out. Airlifts of emergency food sup
plies were organized and Telexes appealing
for more aid flashed around the world from
the offices of the Global Information and
Early Warning System .

The Somalian farmers and their families
will now depend on a year's worth of food aid
from a handful of European countries, as they
rebuild their herds on pastures revived after
rains finally arrived two months ago .

"Famines used to be taken as things that
happened," and there was little effort to pre
dict when catastrophes might occur, says
Peter Newhouse, head of the early warning sys
tem. It is operated from the Rome-based quar
ters of FAO, the United Nations Food and Ag
riculture Organization.

Under the system established 12 years ago,
a team of scientists examine monthly crop re
ports from 100 countries and weather charts
provided daily in the computer room of the
UN ·Organization. The latest on world grain
prices, civil wars and even reports of food
store lineups are collected by Telex, tele
phone and computer as experts try to predict
where hunger will strike next.

The closest watch is kept on Africa where,
despite efforts by the alert system, millions
of people starved three years ago after a
severe drought hit 21 countries. Newhouse
says countries around the world didn't give
the developing crisis the attention it needed.
"In the African food crisis, we started issu
ing alerts on Ethiopia in November 1983, long,

(please turn to page 27)

COMPUTERS and PEOPLE for September-October, 1987 25

Shore - Continued from page 10

ally, concerns the media that are used to
report results of scientific work. Many such
results are published in so-called "refereed"
journals. These journals are effective as
archives, but ineffective as a means of
timely communication among scientists -- it
can easily take years from the submission of
a manuscript to its publication, and by that
time the field has moved on.

To stay abreast of current scientific
work we depend instead on "preprints" -- les s
formal publications that circulate as care
fully typed manuscripts or as technical re
ports published by a scientist's home insti
tution. Preprints used to be expensive and
time-consuming to produce, especially if
they contained complicated tables, graphs,
and mathematical equations. Consequently,
institutional and self-imposed constraints
discouraged the indiscriminate publication
of preprints. If I received a preprint and
knew nothing about its author, at least I
knew that it had quite likely been prepared
with care; this didn't mean that the pre
print was correct, but I would take it more
seriously than I would have had it been just
a copy of handwritten notes from a labora
tory notebook.

Today ' s computers are transforming pre
prints. Not only do computers enable a sharp
reduction in the "turnaround time" required
to produce preprints, they make it easy to
produce the preprints. And it's not just
easy in terms of the operations that you
have to carry out personally, it's easy or
ganizationally -- you don't need the support
of a publications department, you just need
a computer with good word-processing capa
bilities. Moreover, it's easier for people
to comment on your nice-looking drafts and
it's easier for you to change them in re
sponse to the comments. These are among the
advantages of word-processing technology.

Annoyance from Slick Preprints

But there are disadvantages as well . It
has become so easy to prepare professional
looking papers that many people don't bother
with the formalities involved in technical
reports. Increasingly, I'm annoyed by the
slick-looking preprints that I receive.
Their contents are worthy only of first
drafts, and sloppy ones at that, but they're
presented as finished products and they look
the part. This divergence of form and con
tent is by no means restricted to scientific
papers. You may already have noticed the
same phenomenon in your own field as the
word processor takes its place beside the

Xerox machine, increasing the quantity of
papers while decreasing the quality of their
contents.

The opposite phenomenon can also occur.
There will always be organizations and gov
ernments that thrive on the production of
false or misleading documents, in which case
the economic and institutional controls I
mentioned before can operate against accurate
publication rather than for it. Here, the
computer can cut through the controls, with
the positive result of freer and more accur
ate publications. But it is a double-edged
sword that likewise makes it easier to pub
lish misleadingly. As the computer increases
the fre edom of writers, so does it increase
the responsibility of readers.

(continued in next issue)

Based on an excerpt from Chapter 1, Intimidation and Anxiety,
in The Sachertorte Algorithm by John Shore, copyright 1985
by John Shore, published by Viking Penguin Inc., 40 West 23rd
St., New York, NY 10010. Reprinted with permission.

DeVilliers - Continued from page 21

sers. New printers, along with upgrades for
current printers, such as the popular Laser
Jet from Hewlett-Packard, are coming on the
market so it is important to check before
buying. Higher speed printers than the
LaserWriter, which prints eight pages per
minute, are also available at much higher
cost for high volume or networked users.

Future Trends

Changes in computer-aided publishing are
expected to be evolutionary not revolution
ary. The distinction between desktop and
workstation will blur with the new, high
powered processors being announced; stand
ards for both hardware and software will em
erge and price vs. performance will improve;
network, communications, and database hand
ling of document elements will be more im
portant. Color work is still expected to be
done traditionally since the technology at
the right price is still in the future.
Last but not least, management will begin
to settle the conflict about where publish
ing fits in the organization with multiple
publishing departments. Options are the
data processing department, a central pub
lishing department, an information depart
ment or an administrative department.

Based on an article in the March-April 1987 (Vol 23, No. 2)
issue of IMC Journal, published by International Information
Management Congress, P.O. Box 34404, Bethesda, MD 20817 .
Reprinted with permission.

26 COMPUTERS and PEOPLE for September-October, 1987

'

..

... -

J.

...

...

Freeman - Continued from page 17

cesses, data description techniques, know
ledge-based work in artificial intelligence,
and traditional disciplines (such as philos
ophy) concerned with knowledge as an abstract
entity. This is an area that I believe even
tually is crucial to the success of software
development (and thus computer application
in general) .

Software development people were impli
citly doing "knowledge engineering" long be
fore it became a hot topic. First-rate com
puter applications are almost always based
on an incisive (and often original) under
standing of the knowledge in a particular
application.

Software Is MANY Realities

Clearly, software is many things. It is
different things over time, different things
to different people, and different things de
pending on what you intend to do.

That is not all bad. Anything that is
complex is not only open to many interpre
tations but should be viewed in different
ways for different purposes. The trick is
to pick the right view for the task at hand.

If you are concerned with establishing
the right balance between analysis activi
ties and program construction, then the
"software is knowledge" view may be most rel
evant. If you are concerned with providing
the technical tools to aid development work,
then the "software is a series of transfor
mations" view will help. If you are a gen
eralist trying to understand the essential
nature of this activity, then the "software
is knowledge" view may appeal to you.

The one view that will be highly unpro
ductive for you to take, however, is that
software is just like a lot of other things
and hence merits little special considera
tion or thought!

Base? on Prologue and ~hapter 1 of Software Perspectives,
published by and copyright 1987 by Addison-Wesley Publish·
ing Co., Reading, MA. Reprinted with permission. Part 1
appeared in the July-August, 1987 issue of Computers and
People.

Metzler - Continued from page 23

Purdue team suggests a few of the many poten
tial uses of such systems in agriculture:
"They can address questions such as the fol
lowing:

Would I be better off to plant corn or
beans today?

Should I replant that bean field that got
hailed on?

Should I try to plant double-crop beans
this year?

What is the best cultivation system to
use this year?

When and how should I purchase feed?

What herbicides should I use?

How should they be applied?

What kind of equipment best fits my needs?"

-- and many more such questions that often
must be referred to human experts speciali
zing in those areas, to get the most know
ledgeable answers.

U.S. farmers remain the most productive
in the world. Now, Purdue's knowledge-based
system can help grain farmers prosper a bit
more from their productivity.

Newsletter - Continued from page 25

long before the thing ever found its way into
the mass media. I think they just didn't be
lieve us."

But despite computers and lessons learned
from the Ethiopian tragedy, the science of de
tecting famine in its early stages has a long
way to go. Only a dozen African countries
have their own national early warning sys
tems to enable officials to collect and ana
lyze crop information that could reveal the
threat of food shortage. Others lack the
money or infrastructure to set up such a sys
tem, forcing FAO to send a team of scientists
in, as it did earlier this year in Mozambique.
There they confirmed rumors that 1.5 million
people, cut off from food supplies, were fac
ing starvation from drought and a guerilla
war that had pushed them off their land.

Newhouse says scientists in the UN organi
zation and in the United States are working
on a system to predict rainfall, using satel
lite pictures of cloud formations. And by
the end of the year, a new computer informa
tion bank will give donor countries and re
lief agencies daily print-outs of the food
situation in most countries. Newhouse be
lieves it could speed up response time to a
crisis by two weeks or more.

COMPUTERS and PEOPLE for September-October, 1987 27

Opportunities for
Information Systems

- Instalment 11

THE REMOVAL OF NONSENSE

Edmund C. Berkeley, Editor

There is a very large amount of nonsense in the
human world of newspapers, radio, television, inter
views, statements, publicity, advertising, disinformation,
and lies. One of the classic methods of increasing the
amount of nonsense in the himan world is name call
ing and reputation slandering. Another method is tell
ing all the advantages of something and none of the
disadvantages. Another standard method is secretly
breaking the laws and endeavoring to kill a leader , his
colleagues, and his followers, while publicly disclaim-
ing and denying any such activities. Another technique
is to compel all the members of a minority to attach
"ian" to their names and somewhat later kill almost
two million of them. Another technique is to in clude
your gun in your car and shoot obnoxious drivers on
Los Angeles freeways who annoy you.

What is nonsense?
Nonsense , according to the dictionary, is senseless ,

absurd, foolish, or irrational words or actions.

Clearly, action that is intended to produce a speci
fied result, but actually produces no results or oppo
site results, is also nonsense.

Ordinary lies (statements contrary to fact) are also
nonsense ; but they often are so common or so unim
portant or so easily translated into fact that no one
is misled.

Careful, deliberate lies (often ca lled "disin formation"
and originated by organizations with an axe· to grind)
are a particularly troublesome kind of nonsense .

How do we remove nonsense?
This is not easy because the sources or ~auses of

nonsense are many and various . Perhaps the source
most difficult to deal with is a social condition which
combines four elements: a slfadowy concept or thesis
(like "nationa 1 security") ; a source of money (such
as a governmental tax of $1000 per year per taxpayer):
a directing organization (such as the Pentagon) ; and a
great production industry for military goods and ser
vices. The nonsense in this social condition is that the
use of nuclear weapons on a large scale will wipe out
the human species; and we have only one experience
(1945) of this concept.

But there are ways in which even this extreme
kind of nonsense can be dealt with . Political , social,
scientific, and technical methods can be used, both in
old and in new ways. One of them is called war
gaming.

For example, according to a report in the Boston
Globe in August 1987, at the Na.val War College in
Newport, RI , the players in July numbered more than
1000 persons from the U.S. political and military es
tablishments , including Pentagon planners, intelligence

Games and Puzzles for
Computers · Nimble Minds and

NUMBLE

Neil Macdonald
Assistant Editor

A "numble" is an arithmetical problem in which: dig
its have been replaced b.y capital letters ; and there are
two messages, one which can be read right away, and a
second one in the digit cipher. The problem is to solve
for the digits . Each capital letter in the arithmetical
problem stands for just one digit 0 to 9. A digit may
be represented by more than one letter. The second
message, expressed in numerical digits , is to be trans
lated using .the same key , and possibly puns or other
simple tricks.

NUMBLE 8709

N 0
* 0 N E

H K p

H S E
p K T
R H R NP

99740 16582 443

MAXIMDIDGE
In this kind of puzzle, a maxim (common saying, prov

erb, some good advice, etc.) using 14 or fewer different
letters is enciphered (using. a simple substitution cipher)
into the 10 decimal digits o r equivalent signs, plus a few
more signs. The spaces between words are kept. Puns
or other simple tricks (like KS for X) may be used.

MAXIMDIDGE 8709

'70 *- :k 0 * 000 db

t: \P 'if I.fl \1 J \70~)

+f- o
0
o • ' # 0 - ff- o

0
o D O

'

0

I .,. .
chiefs, high ranking military officers, and government
officials. The games are aided by computers but "the
exercise is far more intellectual than technical." The
parties who . play use communications and messages,
but not actual presence as in shouting. The umpires
are collected in a room full of computer terminals.
They carry out directed moves involving ships, aircraft ,
armies, missiles, and industrial goods for both sides.
Since 1970, the assumption has been that "the entire
nation goes to war, including industry , science, and
agriculture," not only the Navy. The number of •
games a year is about SO, and many of them last for
a week.

But all this activity is essentially nonsense, because
there are only about 300 cities in the world and the
nuclear stockpiles contain more than 20,000 city
destroying missiles.

The removal of nonsense depends basically on 0e
desire and the determination of more and more people
to realize facts and to remove nonsense. n

-.

. ...

28 COMPUTERS and PEOPLE for September-October, 1987

