
L
...,.

'
....
..

--
·;

/... ..

. -.

- 'I

- T •

- ,

~

,,

,,.
;-'

'.

.......
~

computers
and people

formerly Computers and Automation ED

- ...: '-"?: ..,
rr .._ ~ r ""
... ..ii.: .v., ~ - --. ,;:_
- i" > .J'
H - , v ,,, , ~,-< f.;

--. r , ..,.. c
..... ("1 fT1

7- t·
n 0
czc
< Vl c -0
rr, -i

n o.
;p -.I

-1 r ,_
z (,/; N

N
\....
0:. N ,... ~
\,,.. ,...
~ 0 N

Vo>
N

STRUGGLE BETWEEN GOOD AND EVIL

Back-of-the-Envelope Estimating
- Dr. Jon Bentley

Computer Programming in Nicaragua
- Peter Torvik

Accidents - Independent and Chained
- John Boag

July-August, 1987
Vo l. 36, Nos. 7-8

by William J. Kolomyjec

Software Development Systems
- Peter Freeman

Progress That Is Not Possible
- Edmund C. Berkeley

Among the Impossibilities of SDI
(Strategic Defense Initiative)

- Fred Kaplan

The Computer Almanac and Computer Book of Lists -

Instalment 54

Neil Macdonald, Assistant Editor

26 APHORISMS (List 870701)

To do two things at once is to do neither.

A good reputation is more valuable than
money.

It is good to moor your boat ~ith two
anchors.

Many receive advice, few profit by it.

You should hammer your iron when it is
glowing hot.

When Fortune flatters, she does it to betray .

Any one can steer the boat when the sea is
calm.

Practice is the best of all instructors.

It is a bad plan that admits of no modifica-
tion.

Never promise more than you can perform.

Necessity knows no law except to conquer.

Nothing can be done both hastily and pru-
dently.

Only the ignorant despise education .

Do not turn back when you are just at the
goal.

Not every question deserves an answer.

He bids fair to grow wise who has discovered
he is not so wise.

Faw.iliarity breeds contempt.

You should go to a pear-tree for pears, not
to an elm.

In every enterprise, consider where you
would come out.

It does not matter what you are thought to
be but what you are.

No one knows what he can do until he tries.

The next day is never so good as the day
before.

It does not matter how long you live but
how well.

It is better to learn late than never.

Prosperity makes friends, adversity tests
them.

Whom Fortune wishes to destroy, she first
makes mad.

(Source: some of the maxims of Publius Syrus,
42 B.C.)

65 COMPLETE UTTERANCES OF ONE WORD
(List 870702)

ah ma
aha ma'am
aw maybe
ay more
aye

never
bah no
bo
boo oh

ok
damn ouch
danger out
darn OW

detour
pa

eh pardon
enough perhaps
er please

god rah
good
goodbye safe
gosh sh
great sir

slow
ha sorry
hell stop
hello
help thanks
here
hey ugh
hi um
hm unhunh
ho
hurray whoa
hush wow

listen yea
lo yes
look yo

(Source: Neil Macdonald's notes. The syn
tactic, semantic, and pragmatic analysis of

(please turn to page 27)

2 COMPUTERS and PEOPLE for July-August, 1987

--

. ' -

... ..

--

~.

. '

..

-.

.........

Computing and Data Processing Newsletter

AMONG THE IMPOSSIBILITIES OF SDI
(STRATEGIC DEFENSE INITIATIVE)

Fred Kaplan
"Boston Globe"
Boston, MA 02107

(Based on a report in the " Boston Globe" for
April 24, 1987)

The "Strategic Defense Initiat ive" (wide
l y known as "Star Wars" or SDI) of the Rea
gan administration was dealt a devastating
blow in late April in a report by the Ameri
can Physical Society, the nation ' s l eading
organization of physicists .

The 424-page report, highly detailed and
technical, is the first assessment of SDI by
scientists who have taken no apparent poli
tical stance on the nuclear arms race. In
fact, the 17-member panel t hat wrote the re
port contained five scientists from four US
weapons laboratories, including MIT ' s Lin
coln Lab .

Yet the panel, which met over an 18-month
period and received classified briefings
from the Pentagon ' s SDI office, concluded -
no less pessimistically than analyses by many
antiwar organizations -- that critical ele
ments of an SDI system wi ll not be feasible
until at least the year 2000 and that an ef
fective, full-blown SDI sys t em may not be
feasible at all.

Sen. \\lilliam Proxmire (D-Wis.), a leading
SDI critic, said yesterday, "The most impres
sive aspect of this is the remarkable balance
of the panel . These are people who have no
axes to grind . "

Sen. John Kerry, another SDI opponent,
said the report marks "further evidence that
the Reagan administration ' s more interested
in rushing ahead with some kind of SDI de
ployments than it i s in hard science or
sound defenses . I suspect the report will
be a significant factor in ra1s1ng skepti
cism as Congress considers the SDI budget . "

President Reagan is asking $5 . 6 bil l ion
for SDI i n fisca l year 1988, and has said
he want s t o dep l oy a partial space-based SDI
sys t em by the mid- 1990s .

A spokesman with t he SDI office, Lt. Col .
Terry Monrad, said of the report, reading
from a prepared statement: "We find the con
c lusions to be subjective and unduly pessi
mis t ic The report was a snapshot in t ime
that dates to the preparation of the report .
We have made signifi cant progress in the in
tervening period."

However, the report' s contents cast doubt
on the re l evance of Monrad's rep l y. The
study was f i nished and submitted to the SDI
office for a securi t y review in September
1986 . The study concludes that nearly every
aspect of SDI technology concerned with las
ers, particle beams and space-based power
supp l ies will require i mprovements by a fac
tor of 10, to 100 or even 1000 or more before
any part of a system can work .

Not even the cheeriest SDI optimist claims
improvements of t ha t scale have been made
since Sept ember or , for that mat t er, since
the SDI program began four years ago.

The report concludes:

• All kinds of l asers and particle beams,
based in space or on the ground, will re
quire imporvements by a factor of at least
100 in power output and beam-refinement "be
fore they may be seriously considered" anti
missile weapons.

• The optics for the telescopes needed to
locate and track enemy missiles as they dart
through space must also be improved by at
least 100 times.

• Even if this techno l ogy were developed
and fitted into a weapons system, the Soviets
could either destroy it with their own laser
weapons or outflank it with decoys that may
be much l ess difficul t and expensive to pro-
duce· (p lease turn to page 27)

COMPUTERS and PEOPLE for Ju ly-August, 1987 3

Vol. 36, Nos. 7-8
July-August, 1987

Editor and
Publisher

Associate
Publisher

Assistant
Editors

Art Editor

Publication
Assistant

Editorial
Board

Contributing
Editors

Advisory
Committee

Editorial
Offices

Advertising
Contact

Edmund C. Berkeley

Judith P. Callahan

Neil D. Macdonald
Judith P. Callahan

Grace C. Hertlein

Katherine M. Toto

Elias M. Awad

Grace C. Hertlein

Ed Burnett

Berkeley Enterprises, Inc.
815 Washington St .
Newtonville, MA 02160

(617) 332-5453

The Publisher
Berkeley Enterprises, Inc.

815 Washington St .
Newtonville, MA 02160

(617) 332-5453

"Computers and People" (ISSN 0361-
1442), formerly "Computers and Automa
tion," is published every two months at
815 Washington St., Newtonville, MA 02160
U.S.A., by Berkeley Enterprises, Inc. Print
ed in U .S.A. Second-class postage paid at
Boston, MA and additional mailing points.

Subscription rates, effective Sept. 1, 1986:
U.S.A., $22 .00 for one year, $43.00 for two
years; elsewhere, add $7 .00 per year.

NOTE: The above rates do not include
our publication, the "Computer Directory
and Buyers' Guide." To receive this, please
add $20.00 per year to your subscription
rate in the U .S.A., and $23.00 per year
elsewhere.

NOTE: No organization in Switzerland
or Morocco is authorized or permitted by
us to solicit for, or receive payment for,
"Computers and People" or the "Computer
Directory and Buyers' Guide." All sub
scriptions to and payments for these publi
cations should be sent directly to Berkeley
Enterprises, Inc.

Please address all mail to: Berkeley Enter
prises, Inc. , 815 Washington St., Newtonville,
MA 02160 , U.S.A .

Postmaster: Please send all forms 3579 to
Berkeley Enterprises, Inc., 815 Washington
St., Newtonville, MA 02160, U.S.A.

©copyright 1987 by Berkeley Enter
prises, Inc.

Change of address: If your address chan
ges, please send us both your new address
and your o Id address (as it appears on the
magazine address imprint), and allow four
weeks for the change to be made.

computers
and people

formerly Computers and Automation

Computers and Correctness

7

16

Back-of-the-Envelope Estimating [A]
by Dr. Jon Bentley, AT&T Bell Laboratories, Murray Hill, NJ

Estimating results is often used in engineering, but often
neglected in computing. Using some common sense rules,
using them early, and "back-of-the-envelope" estimating,
helps in system design, bridge building, and in everyday

life .

Accidents - Independent and Chained
by Prof. John Boag, London University, London, England

Accidents that occur often can be reasonably predicted

[A]

and provided for. But rare accidents are usually calculated

by ignoring chains of human errors, a disastrous procedure.
For nuclear weapons, the danger of loss of human existence
is so great that the only safe and reasonable action is to
eliminate the weapons and find other ways of solving

international problems.

Computer Uses in Nicaragua

11 Computer Programming in Nicaragua

by Peter Torvik, Cambridge, MA

Nicaragua has felt the devastating effects of civil war,
a struggling economy and years of underdevelopment.
Despite difficult obstacles, the Nicaraguans, using help
from a dozen countries including Spain and Japan and
many U.S. citizen organizations, are succeeding in using
computers to improve conditions there .

Computers and Progress

6 Progress That Is Not Possible
by Edmund C. Berkeley, Editor

[A]

[E]

The promises of computer companies, or any large organ
izations, to do what is impossible are regularly false. Based
on the belief that human progress can continue unchanged,
or that what is good for the organization is also good for
society, these promises yield only "impossible progress."

Software Development

19 Software Development Systems [A]
by Peter Freeman, University of California, Irvine, CA

A software development system (SDS) is a system also,
"a collection of things related in a way that forms a
coherent whole." Here the author treats some of the
elements of th is system: software requirements; hardware
requirements; applications; domain -specific knowledge;
and maintenance .

4 COMPUTERS and PEOPLE for July-August, 1987

-·-
...

...

.. -

-

-...

Th e magazine of the design, applications, and implications of
information processing systems - and the pursuit of truth in
input, output, and processing, for the benefit of people.

Computers and Star Wars

3 Among the Impossibilities of SDI (Strategic Defense Initiative)

by Fred Kaplan , Boston Globe, Boston, MA
A 17-member panel of authoritative American scientists

finds that many critical elements of SDI are not feasible

before the year 2000, and that a complete SD I system

may never be feasible .

Computer Applications

27 Automatic Conversion of the Scripts of English, Tamil,

Malayalam, and Bengali Languages

from The Hindu, Madras, India

An Indian university has perfected the technique for

automatic conversion of the scripts of five languages .

Compu ter Art

[N]

(N]

1,5 Struggle Between Good and Evil [FC]

by William J. Kolomyjec, Michigan State Un iversity,

East Lansing, Ml

Opportunities for Informa tion Processing

28 Opportunities for Information Systems (Instalment 10): [C]

The Training of Human Intelligence

by Edmund C. Berkeley, Editor

How can the intelligence of humans be increased by a

substantial degree? How can computer systems be used

for this purpose?

Lists Related to Information Processing

2 The Computer Almanac and the Computer Book of Lists -
Instalment 54

26 Aphorisms I List 870701
65 Complet e Utterances of One Word I List 870702
20 Challenges to A rtificial Intelligence: Meanings of "Run"

I List 870703

Computers, Games and Puzzles

28 Games and Puzzles for Nimble Minds - and Computers

by Neil Macdonald, Assistant Editor

MAXIMDIDGE - Guessing a maxim expressed in digits

or equivalent symbols .

NUMB LE - Deciphering unknown digits from arith

metical relations among them.

Announcement

[C]

[C]

The Computer Directory and Buyers' Guide is still be ing updated in our

computer data base for the next Directory edition . We hope we will

have this, the 28th edition, ready soon for mailing to subscribers.

Front Cover Picture

The front cover shows a sample of

art by William J. Kolomyjec . Using the

forms of angels and devils to represent

the ideas of good and evil, he creates

a mosaic-like design that is interesting

to study . The computer is used to

execute th is graphic that is difficult, if
not impossible, to do by hand.

Computer Field .__. Zero

There will be zero computer field
and zero people if the nuclear holo
caust and nuclear winter occur. Every
city in the United States and the
Soviet Union is a multiply computer
ized target. Radiation, firestorms,
soot, darkness, freezing, starvation,
megadeaths, I ie ahead .

Thought, discussion, and action to
prevent this earth-transforming disaster
is imperative . Learning to live togeth
er is the biggest variable for a comput
er field future .

Signals in Table of Contents

(A] Article

[C] Monthly Column

[E] Editorial

[EN] Editorial Note

[0] Opinion

[FC] Front Cover

[N] Newsletter
[R] Reference

Type of Subscription

* DON YOUR ADDRESS IMPRINT
MEANS THAT YOUR SUBSCRIPTION
INCLUDES THE COMPUTER DIREC
TORY AND BUYERS' GUIDE. * N
MEANS THAT YOUR PRESENT SUB
SCRIPTION DOES NOT INCLUDE
THE COMPUTER DIRECTORY.

COMPUTERS and PEOPLE fo r July-August, 1987 5

Editorial

Progress That Is Not Possible
Edmund C. Berkeley, Editor

"The difficult we do right away; the im
possible takes a little longer."

This is a favorite saying of many organi
zations which have big tasks to do and much
eagerness to do them. It is a natural and
comforting exaggeration of one's power and
success to date.

But the implied promises to accomplish the
impossible are regularly false. Over and
over again such promises are doomed to be
lies. The persons who believe them are doom
ed to error plus the damages and the costs
of error.

Perhaps the largest class of what we may
call "impossible progress" is the rather hu
man belief that a great advance of human ca
pacity to make progress in some direction
will continue in the future unchanged.

For example, for some 40 years the histor
ical progress in sequential computing power
has been close to the change from 3 additions
per second to close to 10 billion (10 to the
10th power) additions per second. But it i s
already clear in 1987 that in the next 40
years progress in sequential computing power
that reaches to 100 billion billion (10 to
the 20th power) additions per second is not
physically attainable. One barrier is the
finite speed of light.

For another example, consider the increase
of human popuiation from about 2 billion in
1947 to about 5 billion in 1987. But unlim
ited doubling of human population every 40
years cannot be accomplished on a limited,
finite earth. Hundreds of obstructions lie
in the path. Suppose we estimate that a
plot of fertile land 100 feet by 100 feet i s
sufficient to support one human being.

Then:

(the surface area of the earth) TIMES

(1 / 4 land, not water) TIMES

(7/10, fertile, not infertile) DIVIDED BY

(area of plot, estimated for one human)

EQUALS (estimated maximum human population
of the earth)

Calculating, with due attention to dimen
sions and units, we find the result is 90
billion persons.

How soon is this phenomenon to happen?
If 2 billion persons in 1947 rises to 5 bil
lion persons in 40 years to 1987, then we
project 10 billion in 2027, and so on, to 80
billion in the middle of the 2100s. A very
large change of human views must happen as
we approach "standing room only". Will that
change happen?

Perhaps the next largest class of "prog
ress that is not possible" comes from the
ideas and fantasies of clever , informed, and
persuasive people. Such people can be found
in many sections of society, particularly,
government, politics, and big business.
They spread their point of view through pub
licity and propaganda . Often they restrict
or deflect what is said in newspapers, radio,
and television, so that the media of a coun
try do not report the whole truth , and so
ordinary people make biased and wrong judge
ments. The conditions of a country at one
time become substantially changed at a later
time by special interests who have control
over the information which ordinary people
can find out . A way of expressing this point
of view is "What is good for General Comput
ers is what is good for the country."

Unfortunately, what is good for the prog
ress of General Computers is not necessarily
what is good for the progress of the country.
A country contains many kinds of interests
and occupations, from medical investigations
to the growth of food, from nursing to farm
ing. In modern industrial countries there
may be over a thousand occupations. Each one
relies on an economic need which the persons
in that occupation work to satisfy. General
Computers on television spreads its appeal
to buy computers . But there are many other
appeals to buy other goods.

Intense competition, major changes in the
technology of producing goods, inadequate
training for working in new activities, and
many other factors interfere, and together
lead to much "progress that is not possible."
And computers could be used to solve many of
the mysterious failures. But who would pay
for the work and who would spread the con
clusions? Why not General Computers?

6 COMPUTERS and PEOP LE for July-August. 1987

- ,._

-

....

. -

I

1 ~

- ..
,.
.... ..,

- ,..

.,.

-~

y

Back-of-the-Envelope Estimating

Dr. Jon Bentley
Computing Science Research Center
AT&T Bell Laboratories
Murray Hill, NJ

Early in the life of a system, rapid calculations can steer a system

designer to make a rational choice between two appealing alternatives.

The Outflow of the Mississippi River

In the middle of a fascinating conversa
tion on software engineering Bob Martin asked
me , "How much water flows out of the Missi
ssippi River in a day?" Because I had found
his comments up to that point deeply insight
ful, I politely stifled my true response and
said, "Pardon me?" When he asked again I
realized that I had no choice but to humor
the poor fellow, who had obvious l y cracked
under the pressures of running a large soft
ware shop within Bell Labs .

My response went something like this. I
figured that near its mouth the river was
about a mile wide and maybe twenty feet deep
(or about one two-hundred-and-fiftieth of a
mi l e) . I guessed that the rate of flow was
five miles an hour, or a hundred and twenty
mi l es per day . Multiplying

1 mile x 1/250 mile x 120 miles / day

~ 1/2 mile3 / day

showed that the river discharged about half
a cubic mi l e of water per day, to within an
order of magnitude . But so what?

At that point Martin picked up from his
desk a proposal for the computer-based mail
system that AT&T developed for the 1984 Sum
mer Olympic games, and went through a simi l ar
sequence of calculations . Although his num
bers were straight from the proposa l and
therefore more precise, the calculations were
just as simple and much more revealing . They
showed that , under generous assumptions, the
proposed system coul d work only if there were
at least a hundred and twenty seconds in each
minute. He had sent the design back to the
drawing board the previous day . The conver
sation took place in early 1983; but the fi
nal system was used during the Olympics with
out a hitch.

The Engineering Technique of Estimating

That was Bob Mar t in ' s wonder f ul if eccen
tr ic way of i ntroducing t he engineering t ech
nique of "back - of-the - enve l ope" ca l cul a t ions .
The i dea is s t andard f are i n engineering
schoo l s and is bread and butter for most
pract1c1ng engineers. Unfor tunat e l y, i t is
too often neg l ected i n comput i ng.

These basi c reminders can be qui t e he lp
ful i n making back-of- the - enve lope ca l cu l a
tions .

Two Answers Are Better Than One

\\Then I asked Peter Weinberger how much wa
t er flows out of the Mississippi per day , he
responded, "As much as flows in . " He t hen
es t imated that the Mississippi basin was a
bout 1000 by 1000 mi l es, and that the annual
runoff from rainfall t here was about one foot
(or one five - thousandt h of a mi l e) . That
gives

1000 miles x 1000 miles x 1/5000 mile/year

I 400 days/year ~ 1 /2 mile 3/day

or a l ittle more t han hal f a cub ic mi l e per
day . It 's import ant to doub l e check all cal
cul ations, and especially so f or quick ones.

As a cheating trip l e check, an almanac re
ported that t he river ' s discharge is 640 , 000
cubic fee t per second . Working from that
gives

640,000 f t 3/sec x 3600 secs/hr

x 24 hrs/day I (5000 ft/mile) 3

~ 1/2 mile3 /day

COMPUTERS and PEOPLE for July-August, 1987 7

The proximity of the two estimates to one
another, and especially to the almanac ' s an
swer, is a fine exampl e of sheer dumb l uck .

Quick Efficient Checks

Polya devotes three pages of his "How To
Solve It" to "Test by Dimension", which he
describes as a "well-known, quick and effi
cient means to check geometrical or physical
formulas." The first rule is that the dimen
sions in a sum must be the same, which is in
turn the dimension of the sum -- you can add
feet together to get feet, but you can ' t add
seconds to pounds . The second rule is that
the dimension of a product is the product of
t he dimensions. The examples above obey both
ru l es; multiplying

miles x miles x miles/day = miles 3/day

has the right form, apart from any constants .

Common Sense

Above all, don't forget common sense: be
suspicious of any calculations that show t hat
the Mississippi River discharges 100 gallons
of water per day .

A few envelopes ' worth of arithmetic might
enable a system designer to make a rational
choice between two appealing alternatives .
That is a fundamentally different use than
Martin's calculation for the Olympic mail sys
tem : his analysis of a single design uncover
ed a fatal flaw. In both cases, a short se
quence of calculations was sufficient to an
swer the question at hand; additional figur
ing would have shed little light.

Early in the life of a system, rapid cal
culations can steer the designer away from
dangerous waters into safe passages . And if
you don't use them early, they may show in
retrospect that a project was doomed to fail
ure. The calculations are often trivial, em
pl oying no more than high school mathematics.
The hard part is remembering to use them soon
enough.

The output of any calculation is only as
good as its input . With good data, simple
calculations can yield accurate answers which
are sometimes quite useful. In 1969 Don
Knuth wrote a disk sorting package, only to
find that it took twice the time predicted by
his calculations. Diligent checking uncover
ed the flaw: due to a software bug, the sys
tem ' s one-year old disks had run at only half
their advertised speed for their entire lives .
When the bug was fixed, the sorting package

behaved as predict ed and every ot her disk
bound program a l so ran faster.

Often, t hough , s l oppy input is enough to
get into the right ballpark . If you guess
about twenty percent here and fif t y percent
there and sti ll find that a design is a hun
dred times above or below specification, ad
di t iona l accuracy i sn't needed. But b efore
p l acing too much confidence in a twent y per
cent margin of error, consider Vic Vyssotsky ' s
advice from a talk he has given on several
occasions .

The Tacoma Narrows Bridge

"Most of you," says Vysso t sky, "probably
recall pictures of 'Galloping Ger t ie ' , the
Tacoma Narrows bridge which tore itself apart
in a windstorm in 1940 . Well, suspension
bridges had been ripping themselves apart
that way for eighty years or so before Ga l l op
ing Gertie. It's an aerodynamic lift phenom
enon, and to do a proper engineering calcula
tion of the forces, which involve drastic
nonlineari t ies, you have to use the mathema
tics and concepts of Kolmogorov to mode l the
eddy spectrum. Nobody really knew how to do
this correctly i n detail until the 19SO's or
thereabouts. So, why hasn't the Brook l yn
Bridge torn itself apart, like Galloping Ger
tie?

The Brooklyn Bridge

"It's because John Roehling had sense
enough to know that he didn't know. His
notes and letters on the design of the Brook
lyn Bridge still exist, and they are a fas
cinating example of a good engineer recogni
zing the limits of his knowledge. He knew
about aerodynamic lift on suspension bridges;
he had watched it . And he knew he didn ' t
know enough to model it. So he designed the
stiffness of the truss on the Brooklyn Bridge
roadway to be six times what a normal calcu
lation based on known static and dynamic
loads would have called for . And, he speci
fied a network of diagonal stays running down
to the roadway, to stiffen the entire bridge
structure. Go look at those sometime; they
are almost unique.

"When Roehling was asked whether his pro
posed bridge woul dn't collapse like so many
others, he said, ' No, because I designed it
six times as strong as it needs to be, to
prevent that from happening.'

"Roehling was a good engineer, and he
built a good bridge, by employing a huge
safety factor to compensate for his ignorance.

8 COMPUTERS and PEOP LE for July-August, 1987

- ..

..

. -

'
r
• "'tr

r

__ ,..

- ..

- ..

-#

...

, '

-.

Do we do that? I submit to you that in cal
culating performance of our real-time soft
ware systems we ought to derate them by a
factor of two, or four, or six, to compensate
for our ignorance. In making reliability/
availability commitments, we ought to stay
back from the objectives we think we can meet
by a factor of ten, to compensate for our ig
norance. In estimating size and cost and
schedule, we should be conservative by a fac
tor of two or four to compensate for our ig
norance. We should design the way John Roeh
ling did, and not the way his contemporaries
did -- so far as I know, none of the suspen
sion bridges built by Roebling ' s contempor
aries in the United States still stands, and
a quarter of all the bridges of any type
built in the U.S. in the 1870s collapsed with
in ten years of their construction.

"Are we engineers, like John Roehling?
I wonder ."

A 1982 Example

To make the above points more concrete,
I'll describe how I (almost) used them in a
system I built for a small company in early
J.982.

The system prepared several reports a day
to summarize the data on one thousand eighty
column records; the reports were each about
eighty pages long. The system's predecessor
ran on a large mainframe; my task was to im
plement a similar system on a personal com
puter, using interpreted BASIC .

Early in the design of the system I did
simple calculations to make sure that the
personal computer was up to this application.
The space analysis was simp le: I calculated
the size of the several largest tables and
found that they used only half of the 48K
bytes of the machine. The time analysis was
centered around two main phases, shown in
Figure 1. I didn't worry much about the time
for Phase 1: a previous system did that task
on an IBM System/360 Model 25 in a minute,
and the microprocessor on the personal com
puter was more powerful than that old work
horse. Instead, I concentrated on Phase 2,
which I thought would be limited by the sixty-

Phase I:
Build Tables

lines-per-minute speed of the printer. Each
page of the report contained about thirty
lines, so the total time of forty minutes was
well within bounds. After this short analy
sis, the company purchased three personal
computers and I implemented the design.

The first implementation of the program
was revealing. Storing the BASIC program re
quired about twenty kilobytes of main memory
that I had ignored in my calculation; the
safety factor of two saved the day. The for
ty minutes of printing time was right on the
mark. Unfortunately, I was way off in the
time to read the records and build the table.
Instead of taking a minute, it took fourteen
hours, which made it awfully hard to prepare
a few reports a day. The problem was that I
had compared assembly code on the old System/
360 with interpreted BASIC on the personal
computer, ignoring the fact that interpreted
BASIC usually runs several hundred times
slower than assembly code.

At that point I did a more careful back
of-the-envelope calculation. Using the para
meters described above (1000 records of 80
columns each) and ballpark guesses at other
parameters (50 BASIC instructions per column
and one hundred BASIC instructions per sec
ond) gave the following:

(1000 Records) x (80 Columns/Record) x (50

Instructions/Column) I (100 Instructions/

Second) x (3600 Seconds/Hour) ~ 11 Hours

Alternatively, I knew that the old machine
took one minute for the task and executed an
instruction in about ten microseconds. The
slowdown to ten milliseconds is a factor of
one thousand, and one thousand times the pre
vious value of one minute is about seventeen
hours.

Jlad I known the expense of this approach
before I built the program, I would have used
a faster language . Instead, I had an exis
ting 600- line program and no choice but to
tune the code. The 70 lines of code in
Phase 1 accounted for over 90 percent of the
run time, and just 3 lines accounted for 11

Phase 2:
Print Report

Figure 1

COMPUTERS and PEOPLE for July-August, 1987 9

hours (less than one percent of the code took
7S percent of the time!). I spent forty
hours replacing 70 lines of BASIC with 110
lines of BASIC and 30 lines of assembly code;
that reduced the time of Phase 1 from four
teen hours to two hours and twenty minutes.
That was good enough for this particular sys
tem, but more than it might have been had I
done a quick calculation beforehand and then
chosen a more efficient implementation lan
guage.

Quick Calculations in Everyday Life

When you use back-of-the-envelope calcu
lations, be sure to recall Einstein's famous
advice.

"Everything should be made as simple as
possible, but no simpler."

We know that simple calculations aren't too
simple by including safety factors to compen
sate for our mistakes in estimating parame
ters and our ignorance of the problem at hand.

Douglas Hofstadter's "Metamagical Themas"
column in the May 1982 "Scientific American"
is subtitled "Number numbness, or why inum
eracy may be just as dangerous as illiteracy";
it is reprinted with a postscript in his book
"Metamagical Themas," published by Basic
Books in 198S. It is a fine introduction to
ballpark estimates and an eloquent statement
of their importance.

Physicists are well aware of this topic.
Jan Wolitzky has written:

I've often heard "back-of-the-envelope"
calculations referred to as "Fermi
approximations," after the physicist.
The story is that Enrico Fermi, Robert
Oppenheimer, and the other Manhattan
Project brass were behind a low blast
wall awaiting the detonation of the
first nuclear device from a few thou
sand yards away. Fermi was tearing up
sheets of paper into little pieces,
which he tossed into the air when he
saw the flash. After the shock wave
passed, he paced off the distance
travelled by the paper shreds, perform
ed a quick "back-of-the-envelope" cal
culation, and arrived at a figure for
the explosive yield of the bomb, which
was confirmed much later by expensive
monitoring equipment.

One reader told of hearing an advertise
ment state that a salesperson had driven a
new car 100,000 miles in one year, and then

asking his son to examine the validity of
the claim. Here's one quick answer: there
are 2000 working hours per year (SO weeks
times 40 hours per week), and a salesperson
might average SO miles per hour; that ignores
time spent actually selling, but it does mul
tiply to equal the claim. The statement is
therefore at the outer limits of believabil
ity.

Everyday life presents us with many oppor
tun1t1es to hone our skills at quick calcu
lations. For instance, how much money have
you spent in the past year eating in restau
rants? I was once horrified to hear a New
Yorker quickly compute that he and his wife
spend more money each month on taxicabs than
they spend on rent. And for California read
ers (who may not know what a taxicab is),
how long does it take to fill a swimming
pool with a garden hose?

Gathering Lobsters

Several readers commented that quick cal
culations are appropriately taught at an
early age. Roger Pinkham of the Stevens
Institute of Technology wrote:

I am a teacher and have tried to teach
"back-of-the-envelope" calculations to
anyone who would listen. I have been
marvelously unsuccessful. It seems to
require a doubting-Thomas turn of mind.

My father beat it into me. I come from
the coast of Maine, and as a small child
I was privy to a conversation between
my father and his friend Homer Potter.
Homer maintained that two ladies from
Connecticut were pulling 200 pounds of
lobsters a day. My father said, "Let's
see. If you pull a pot every fifteen
minutes, and say you get three legal per
pot, that's 12 an hour or about 100 per
day. I don't believe it!' '

"Well it is true!" swore Homer. "You
never believe anything!"

Father wouldn't believe it, and that was
that. Two weeks later Homer said, "You
know those two ladies, Fred? They were
only pulling 20 pounds a day."

Gracious to a fault, father grunted,
"Now that I believe."

Lifelong Inquisitiveness of Children

Several other readers discussed teaching
this attitude to children, from the view

(p/ease turn to page 26)

10 COMPUTERS and PEOPLE for July-August, 1987

r-

- ,.

-
-

,-

'I -

r . ")

r

-. ,.

-..

-·

-~

) ... _._

• Nicaragua Computer Programming 1n

Peter Torvik
41 Maple Ave.
Cambridge, MA 02139

"The Nicaraguan government agency concerned with nutrition uses a

dBase Ill application to track malnutrition throughout the country."

Recently I taught a course in C language
programming to employees of the Nicaraguan
National Directorate of Informatics (DNI) .
DNI is the government agency responsible for
setting computer policy for Nicaragua, with
emphasis on the selection of appropriate
hardware and software. The effects of war,
underdevelopment and a difficult economy pre
sent severe obstacles to computer users in
Nicaragua, but substantial efforts are being
made to use computers to better conditions
there.

Situation of Computing in Nicaragua in July 1979

When dictator Anastosia Somoza left the
Central American nation of Nicaragua for ex
ile in Miami, Florida in July, 1979, a tur
bulent and destructive decade came to an end .
The capital city, Managua, was devastated by
an earthquake in 1972 from which the coun
try's infrastructure and economy had never
recovered. 45,000 Nicaraguans had been kill
ed and 160,000 wounded in the course of the
struggle which led to Somoza's fall.

Throughout the 1960s, the United States
supplied large amounts of economic and tech
nical assistance to Nicaragua . The economy
of the nation was oriented toward agricultur
al production on large farms for export to
the United States. Computerization was quite
primitive. Approximately 70 obsolete IBM
minicomputers and mainframes were in the
country. Burroughs had withdrawn from Nicar
agua in 1977, due to the civil war, leaving
three mainframes unsupported. IBM had con
tinued to support systems, but imported no
new equipment.

The most serious problem for computing in
Nicaragua, however, was a human problem.
Much of the middle and upper class had left

Nicaragua, including many of the country's
computer professionals. The civil war also
took a heavy toll. Before 1979, malaria,
polio, measles and other diseases were ram
pant, and average life expectancy was 51
years. This history is visible today in the
streets and offices of Managua . Half the
people are under fifteen years of age, and
almost everyone is remarkably young for their
position. My students were in their late
teens and early twenties, with the youngest
still working on his high school diplQma.
Many of the nation's leaders and managers
are not much older.

Somoza once said, "I don't want educated
people. I want oxen."

Education was not widely available in pre
revolutionary Nicaragua, and in 1979, 52 % of
Nicaraguans were illiterate. After the exo
dus of much of the elite, a shortage of edu
cated people impeded technical progress. An
aggressive literacy campaign reduced the il
literacy rate to 12 %, and a followup cam
paign is underway, but education remains a
problem. It seems as though every one in
Nicaragua is enrolled in night school, and
the DNI s t aff were no exception. The lead
programmer taking my course, for examp le,
was pursuing a degree in economics at night.
In fact, school enrollments at all levels
have more than doubled since the revolution.

Volcanos and Storms

Smoldering volcanos, rather than skyscrap
ers, mark the skyline of Managua, and my
first day of instruction was interrupted by
a set of tremors. Thunderstorms mark every
afternoon for the half of the year which is
the rainy season.

Nicaraguan computer users are accustomed
to a precarious power system. Surge protec-

COMPUTERS and PEOPLE for July-August, 1987 11

tion is absolutely mandatory for any comput
er installation, and uninterruptible power
supply units are extremely helpful. They
add to the cost of computer installations
and are in scarce supply, but their numbers
are growing.

In spring 1987, the t:nited States Central
Intelligence Agency began openly providing
explosives, instruction and maps to Honduran -
based rebels, called "contras", for attacks
on electric power installations. It was in
an attack on a hydroelectric installation in
northern Nicaragua that the engineer Benjamin
Linder became the first US citizen killed
while supplying technical assistance to Ni
caragua. More than 8 Europeans (British,
French, West German, Spanish, ...) assisting
Nicaragua have previously been killed.
Transmission towers in the Managua area have
also been struck, and these attacks now add
to the earthquakes and storms which impact
productivity.

"There Isn't Any"

Familiar words to anyone who has lived
in Nicaragua are "no hay" -- Spanish for
"there isn't any." "No hay" applies to ev
erything, from the dish you had set your
heart on for dinner to paper for a printer.
Many factors contribute to serious short
ages of everything which cannot be produced
within the country. The economy was ravaged
during the 1970s by the earthquake and civil
war that made Somoza leave. At the same
time, economies throughout Latin America
were being devastated by the rapid rise in
oil prices and the collapse of the prices
of the raw materials which those countries
produce. Since the revolution, the United
States government has also pursued policies
designed to damage the Nicaraguan economy.
Rebels, the "contras," have been organized
and supplied by the US government to contin
ue the old civil war, particularly destroy
ing equipment, crops, and infrastracture,
and diverting much of the national budget
into defense.

In 1985, President Reagan prohibited US
trade with Nicaragua, cutting off US markets
to Nicaraguan products, and cutting off the
United States as a source of spare parts.
Because the United States had been a major
trade partner, this was highly damaging to
the Nicaraguan economy. The embargo affects
everything from food to building materials,
but a vivid illustration is glass bottles.
Bottles are not made in Nicaragua, so Coca
cola is sold on the street in plastic bags.
To buy rum in a store, you must bring your

own bottle. In a hotel, we paid a deposit
of about five dollars for a bottle.

Computer users have suffered heavily
printer paper, ribbons, and floppy disks are
in chronic short supply. In the university,
professors often teach without textbooks, or
a single manual may be shared by an entire
class. Chalk for my blackboard was care
fully rationed, and I would take care to use
every last bit of it. Computer parts are
expensive and slow to arrive: a print head
for a Monroe printer at the National Bank
which would cost $115 in the United States
costs $500 in Nicaragua, and could take a
month to get.

Role of Computers in Society

In a sense, the role of computers in Nic
aragua is no different from anywhere. Pay
rolls, social security systems and banks
are constant throughout the world. Comput
ers can do work faster and cheaper; so Nic
araguan programmers automate these functions.
Although North Americans typically think of
Third World countries as overpopulated, Nic
aragua has a severe labor shortage, and auto
mation is a solution . Because economic prob
lems dominate the national agenda, the vari
ous banks and ministries responsible for
the economy struggle to apply computer tech
nology to the management of the economy .

Many computer projects in Nicaragua, how
ever, are different from comparable solu
tions in the developed countries . An inter
esting project which is being considered by
a Nicaraguan bank illustrates the way tech
nology is being applied in a uniquely local
way.

Nicaragua's geography presents problems
for economic development. Population is
concentrated in a small, fertile strip along
the Pacific coast. Much of the middle and
north of the country are mountains, while
the east, aptly named the Mosquito coast, is
largely jungle. Historically, the eastern
coast has been physically and culturally
isolated, and economically underdeveloped.
Only a single, hazardous road connects the
two coasts, and the eastern city of Blue
fields is only accessible by air or boat.
Telephone service beyond the Managua area is
still limited and quality is poor. Creating
a unified banking system which serves most
of the country poses serious problems. So,
last summer a US advisor and his Nicaraguan
counterparts were at work designing a packet
switching network which would use radio as
the delivery mechanism.

12 COMPUTERS and PEOPLE for July-August, 1987

-r-
- ...

..

f •

.. -

.. -

r·
· ~

,
I

~ ·

-

-

The use of computers in Nicaragua is not
confined to banking. The Ministry of Health
uses a microcomputer to cope with shortages
of medical supplies by tracking stocks of
ant ibiotics and equipment throughout the
country . The Nicaraguan News Agency , with
offices in the United States and several
Latin American countries, plans to use a PC ,
modem and electronic mail to provide an
affordable version of a wire service to the
Nicaraguan newspapers. The newspaper "Barri
cada" is evaluating computer systems to re
place its antiquated typesetting equipment.
PAN, the government agency concerned with
nutrition, uses a dBase III application to
track malnutrition throughout the country,
and the agrarian reform agency uses a micro
computer to determine the effects of farm
credit and loan policies on agricultural
productivity.

Nicaragua's Strategy for Guiding and
Controlling the Computer Revolution

Everyone with computer experience knows
that technical projects can go awry . Some
times projects founder, wreck budgets and
consume the attention of technical people,
managers and users for many times their plan
ned span . Wrong specifications and designs
produce expensive systems which are never
used, or have to be completely redone. Train
ing, documentation and future maintenance are
often problematic . On a higher level, trag
edies like those of Chernobyl and the Challen
ger illustrate what can happen when technical
projects are out of control.

A wealthy nation like t he United States
can tolerate and dissemble these problems .
\\There many urgent needs compete for the atten
tions of only a few computer people and a few
computers, projects that fail are very seri
ous concerns. The shortages of technical tal
ent, of access to technical assistance, and
of sufficient educational programs to keep en
gineers abreast of the current developments
in their field make the potential for trouble
even greater .

On the bright side, there is a saying that
"the pioneers are the ones with the arrows in
their backs." The Nicaraguans are not first,
and they learn and learn well from the experi
ences of the countries which preceded them
into the computer age. There are certainly
areas where the Nicaraguan computer revolu
tion is proceeding on momentum -- where in
vestments had already been made, and where
equipment and systems are already in place.
But every reasonable effort is made to use
whatever works. New projects, however, are
being guided by a sensible strategy.

Nicaragua is concentrating on defining
and mastering a small set of standard tools
and applying them to most problems. This
way, technical people become productive more
quickly, and the small number of ski l led com
puter people available are able to apply
their skills widely. The emphasis is on us
ing ingenuity to solve a problem with the
tools at hand, rather than on picking the ab
solutely "best", most efficient tool for ev
ery problem. At this point, dBase III+ and
Lo t us 1-2-3 are being used in Nicaragua to
solve most problems . The COBOL programming
language is also part of this skill set.

The C language and the Unix operating sys
tem are of interest to Nicaraguans, because
they might fit in with this strategy at a
later point in the process of computerization,
where the packages and COBOL prove insuffi
cient. They are being considered at DNI, and
several North American computer people have
provided instruction. C is being used on a
few microcomputers, some Xenix systems have
been installed and C and Unix are being
taught in the universities.

Computer hardware is also being standard
ized. IBM PC-compatible microcomputers are
favored for most jobs, because of their re
liability, simplicity and availability. Last
June there were 291 microcomputers of various
sorts in Nicaragua (a few years ago there
were only about 20 microcomputers in the coun
try), and the number was growing at the rate
of about 20 per month. Fujitsu-built mini
computers marketed by a Spanish company are
also being imported, and one of my students
had spent several months in Madrid at a com
puter school.

Educational Conditions

A few years ago, the University of Central
America (UCA) in Managua had one hundred and
eighty-nine students enrolled in the only de
gree program in computer science in Nicaragua.
The university had a single IBM System/ 32
which was used to administer the entire uni
versity and for teaching computer science .
Ninety percent of the students graduated with
out using a computer. Conditions have im
proved dramatically -- the National Autono
mous University (UNAN) now offers the degree
program in computer science, and both UCA and
UNI (the engineering university) offer comput
er instruction . UNAN has enough PCs that
students can be sure of spending some time
each semester in front of a computer. The
UCA System/32 has also been replaced by PCs,
and UNI has a collection of about 20 assor
ted microcomputers.

COMPUTERS and PEOPLE for July-August, 1987 13

My class had access to one Compaq PC for
three hours most afternoons. A single Span
ish copy of a C text, and two manuals in Eng
lish were the only books. Only one student
had sufficient command of English to use man
uals, so the students had to take turns with
a single textbook and PC. As some of the
very few people in the country with technical
training, the students were also juggling
heavy work loads, and sometimes had to rush
off to critical projects. Lectures must play
a greater role in teaching from practice.
In co~parison to teaching from theory in the
United States, it was critical to impart prob
lem-solving skills and techniques through the
lecture and to attempt to find shortcuts to
the lessons that students usually learn for
themselves in the course of programming.

The students were remarkably bright. The
portion of the course material which concern
ed the C language itself moved quickly, and
the students were writing working programs
very quickly. More advanced programming
problems, however, encountered serious con
ceptual barriers, as the students were unpre
pared to work comfortably with abstract con
cepts in such important areas as data struc
tures. Assembly language experience is vir
tually unknown among Nicaraguan programmers;
so the C language represented an extreme of
abstraction . Followup courses are stressing
these skills.

Some people cite these sorts of problems
as proof that any efforts to do computer pro
gramming in a developing nation such as Nic
aragua are inappropriate, and recommend that
only standard commercial products such as
spreadsheets and databases be used. The
Nicaraguans, however, appear determined to
proceed carefully, but with all due speed,
to explore programming and to develop exper
tise in whatever they decide is useful and
manageable.

The Center for Training in Informatics and Systems

Recently, DNI opened the Center for Train
ing in Informatics and Systems (CAIS). This
center exemplifies Nicaragua's computeriza
tion strategy, and addresses the educational
problems. The center, when fully equipped,
will contain fifteen Canadian-supplied IBM
PC/XTs. It will be staffed by five trainers,
and employees from the government and private
sector will receive training in dBase III,
Lotus 1-2-3, and word processing. Courses
will be given at various levels, including
courses for new trainers. Advanced students

will receive instruction in COBOL, basic
computer repair, and structured programming.
Long term plans call for the creation of
additional centers to specialize in repair
and more advanced programming and system de
sign skills, and for workshops in other cit
ies . Organizers compare this to the literacy
campaign, in which students travelled to re
mote parts of the country to teach peasants
to read and write.

The CAIS center has opened, and a trainer
from the US went to Nicaragua in June 1986
to complete the training of the center staff
and deliver training materials supplied by a
US training company. The $25,000 needed to
complete the center is being raised in the
us.

Foreign Technical Assistance

While the Nicaraguans have retained con
trol of the decisions surrounding the comput
erization of their country, and concentrated
their efforts on developing Nicaraguan tech
nical expertise, they have received a great
deal of outside assistance. TecNICA, a Cali
fornia-based organization, arranged my work
in Nicaragua . TecNICA has provided more than
350 advisors in Nicaragua, and maintains a
full-time staff in Managua. TecNICA organi
zations in the US, Canada and Mexico City
also work on software development and tech
nical translating projects and locate sup
plies and equipment. The bulk of TecNICA's
assistance has been in the computer field.
but their assistance has also included other
technical fields.

Other US organizations also provide tech
nical assistance in Nicaragua. Science for
the People places computer science instruc
tors in the Nicaraguan universities and NICAT
(Nicaragua Appropriate Technology Project)
places some US engineers, especially in areas
like electrification. A Nicaraguan leader
estimated that there are four or five thou
sand US citizens in Nicaragua at any given
time -- about one thousand of them permanent
residents of Nicaragua, 1200 on assignments
ranging from six months to three years, and
the balance on short term projects and tours.
Hundreds of these people, organized as the
Committee of US Citizens Living in Nicaragua,
have demonstrated every Thursday morning
since the 1983 invasion of Grenada outside
of the United States Embassy in Managua, and
publish a newsletter, "Through Our Eyes," for
distribution in the United States.

14 COMPUTERS and PEOPLE for July-August, 1987

(.

) ,,_

~-

i:
"r

,

[

... ..

-

Massive International Assistance

A number of other nations provide public
or private assistance to the Nicaraguans .
The dramatic improvements in computer science
education at the Nicaraguan universities are
largely due to the aid of private European
groups. West German, French and Spanish
groups donated the computer equipment at the
engineering university (UNI), and French
groups also donated the computers for the
Autonomous University (UNAN). A West German
group placed a professor at UNI for three
years, and many European computer science
teachers come to the universities as guest
professors . The choice of Spain as the pri
mary source of Nicaraguan minicomputers was
a result of generous terms, and the govern
ment of Peru has recently offered technical
aid, including IBM PC/XT-compatible micro
computers .

The- massive international assistance to
Nicaragua has not been limited to the comput
er field. Dozens of nations provide signifi
cant aid, including Mexico, Swi t zerland,
West Germany and China. Churches and inter
national relief organizations such as Oxfam
supply aid . I met specialists in various
fields from India, Canada, Great Britain,
Denmark, and Spain. Individuals from Aus
tralia, Austria, West Germany, Switzerland,
France, Belgium, Italy, Holland, Sweden and
Argentina also work in Nicaragua as advisors .
Cuba and the socialist countries supply some
assistance in the computer field, but only a
limited amount since the Nicaraguans have
standardized on US and Japanese technology.
The socialist countries supply more help in
other areas -- for example, a TecNICA geolo
gist specializing in volcanoes worked with
Eastern European geologists and Soviet mea
suring equipment.

Deaths of Foreign Advisors

US hydroelectric engineer Benjamin Linder
was not the first foreign advisor killed by
the "contras". At least eight foreigners,
all from Western Europe, have been killed,
and many more kidnapped, while providing
technical assistance in Nicaragua . On June
14, 1985, a West German forester Ms . Regine
Schmemann was kidnapped with two Nicaraguan
foresters and taken into Honduras. Due to
international pressure, Schmemann was re
leased; the Nicaraguans were not. Eight more
West German hostages were taken in May of
1986 and held for 25 days. Doctor Pierre
Grosjean of France was killed March 26, 1983.
A Swiss agricultural expert, Maurice Demierre,
was killed by a contra landmine on February
17, 1986. Ambrosio Mogorron, a Spanish

health worker, was killed by a contra land
mine on May 24, 1986. Belgian civil engineer
Paul Dressers was machine-gunned on June 4,
1986. Yvan Leyvraz, a Swiss development ex
pert, Bernhard Kalberstein, a German water
project engineer, and Joel Fieux, a French
communications technician, were killed in an
attack on July 28, 1986.

Because of these deaths, the Nicaraguan
government in August, 1986 removed foreign
workers from the most dangerous parts of the
country . Linder and other US advisors had
applied for special permission to work in
the zone where he was killed. Many advisors
in Nicaragua, including myself, had believed
that the contras would be careful to avoid
killing a US citizen, for reasons of public
relations . Even Elliot Abrams, the US State
Department's chief apologist for the contras,
had supported this view just a few months be
fore Linder was killed, when he said "acts
of terrorism are crazy. They 're counterpro
ductive. Not only are they immoral, they're
stupid from the point of view of a guerilla
army." (Unfor tunate ly for Benjamin Linder,
Abrams proved to be lying.) Foreigners, to
be sure, have been only a tiny portion of
the victims -- in 1985, for example, the con
tras killed, wounded or abducted 4,770 Nica
raguans.

The Position of Informatics Professionals
in Nicaragua

A poster in a classroom of the Nicaraguan
Centra l Bank reads: "To become a technician
is not a credential for acquiring privileges,
but a social responsibility."

The very poor have gained the most from
the revolution through land reform, health
care, education, and rising standards of liv
ing. One of my student s described his coun
try as a pyramid, with the very rich owners
of the big cotton and coffee farms and fac
tories at the top, and the poor at the bot
tom. In the middle lie the technicians, man
agers and engineers, making salaries of about
30 dollars a month. The three digit infla
tion rate and chronic shortages cause their
salaries and standard of living to constant
ly erode. Their counterparts in the United
States make a comfortable living, working
with modern equipment and fascinating techni
cal challenges . Nicaragua's economic prob
lems are so severe that only half the work
force is still in the salaried sector -- more
and more workers are leaving the formal econ
omy to engage in speculation or informal
trade. The Nicaraguan computer professionals,
by their superior education, have more op
tions than most including the option of

(please turn to page 26)
COMPUTERS and PEOPLE for July-August, 1987 15

Accidents - Independent and Chained
Prof John Boag, Emeritus
Dept. of Physics
London University
London, England

"Nuclear reactor safety engineers have to envisage as many as

possible fault sequences as their imaginations can devise --

but of course there are limits to their imaginations. "

Accidents That Happen Often

The only accidents whose probability we
can assess with reasonable confidence are
those that happen frequently . Among these
are accidents in the home, on the road, or
in industry. In these instances we have a
large population of events from which we can
deduce by reliable statistical methods the
probability of an accident occurring under
given circumstances. We can, in principle,
carry out a cost-benefit analysis and decide,
for instance, whether the convenience of
driving is worth the risk of death or injury
on the road. Few people do this analysis,
but the data for it are available.

Accidents That Happen Rarely

When we consider rare accidents which
could involve far greater damage to life and
property, it is obviously desirable that we
make some attempt to calculate the probabil
ity of such an event. But we cannot do so
on the basis of their observed statistical
frequency. There are too little data, and
we must approach the calculation in a dif
ferent way.

A system as complicated as a nuclear re
actor is built from many components, some
large and some small, such as electrically
operated pumps, relays, and valves. For
each of these separate components, one can
determine from lengthy testing, or experi
ence in practical use, a good estimate of
its reliability. Components with special re
sponsibility for maintaining safety can be
duplicated or triplicated so that if one
item fails, another immediately takes over .
By such design precautions and a knowledge
of the failure probability of the individual
components, the designer will estimate a
very low probability of accident for the
whole installation.

Safety Engineer Estimates

It is the task of safety engineers to en
visage as many possible modes of failure as
their imaginations can devise and to see
that automatic systems can respond adequate
ly to all of them. Such calculations inevit
ably arrive at very optimistic reliability
estimates for the whole system . If they did
not, the engineers would introduce further
safeguards until they could make an optimis
tic estimate. Thus, one can find, for ex
ample, ludicrous estimates of nuclear re
actor reliability such as "one serious acci
dent in one million years of operation."

I am not implying that these elaborate
calculations are unnecessary. They are an
essential part of the analysis that aims to
ensure that the equipment is as safe as pos
sible.

But events have shown that calculations
ignore the most significant of all causes
of accident -- human error. And how is one
to assess the probability of accident from
this source? Or even imagine all the fool
ish actions of which a human being is capa
ble? What probability would one have assign
ed to the action of the Chernobyl operators
in disconnecting all the safety systems be
fore commencing their ill-fated experiment?

"Common Mode Failure"

There are other weaknesses in assessing
the reliability of a system based on the re
liability of its separate parts. If elec
trically operated pumps, relays or other
components are backed up by duplicates, both
could fail simultaneously if they have a com
mon electrical supply and it fails. This is
called "common mode failure," and there are
other types of "common mode failures" that

16 COMPUTERS and PEOPLE for July-August, 1987

- ;·

..,

,. -

l ...

. -

~-

.,...,

•

...

are not recognized and guarded against as
easily as the failure of a common electrical
supply.

In a high pressure reactor, for example,
the integrity of the welded steel pressure
vessel has to be taken for granted. This
component is too large to be tested to de
struction in order to gain information on
its ultimate strength. The designer has to
depend on calculations and on careful super
vision of welding during manufacture. How
ever, no pressure vessel could be made
strong enough to withstand the pressures
that could be generated in a runaway reactor
like the one at Chernobyl. So the fracture
of the pressure vessel, perhaps under condi
tions far more severe than the designers
ever envisaged, can be regarded as a "common
mode failure."

In principle, of course, a reactor could
be made fully automatic, using only comput
ers and relays to control its operation.
That would still not preclude the possibili
ty that a skillful operator could intention
ally override the automatic systems, as hap
pened at Three Mile Island and Chernobyl.
It has generally been believed that the pre
sence of an operator increases safety more
than it increases risk, and there are numer
ous instances to support this view.

A Real Accident Sequence

For example, an accident sequence at an
American reactor ran as follows: The reac
tor commenced a sudden "excursion," i.e., a
spurt of power that could carry it beyond
safe limits. The operator observed this and
reacted by immediately pressing the "scram"
button which shut down the reactor. The re
actor was restarted, and some time later an
other "excursion" commenced. This time the
operator did not immediately press the
"scram" button. He left it to the automatic
equipment to shut down the reactor. However,
the excursion continued for some 25 seconds,
and the thoroughly alarmed operator then
scrammed the reactor manually.

An investigation revealed that the auto
matic scram had failed on the first, as well
as on the second, occasion . A subsequent in
spection of the equipment traced the problem
to two conventional relays which had become
so clogged with dirt and grease, due to lack
of routine maintenance, that they did not
open on the appropriate signal. This, too,
can be ascribed to human error, for the nomi
nal reliability figure for the relays assumes
implicitly that they are regularly maintain-

ed and inspected. In this particular inci
dent, a human operator did prevent an acci
dent. Conversely, at Three Mile Island and
Chernobyl , intervention by the operators was
the principal immediate cause of the acci
dent.

Authorities Contemplate Only Some Accidents

I have said that reactor safety engineers
have to envisage as many possible fault se
quences as their imaginations can devise.
But, of course, there are limits to their
imaginations. There used to be a good deal
written about "maximum credible accidents."
This designation, alas, begged the who le
question. It merely indicated the maximum
accident the safety engineers were prepared
to contemplate. The events at Three Mi l e
Island and Chernobyl would have fallen well
outside the maximum credible accident sce
nario. There is a grave danger that in the
nuclear weapons field the authorities are
prepared to contemplate only those accidents
that they reckon they can cope with.

The official report on the Three Mile Is
land accident (the Kemeny Report) identified
what it called the "mindset" of practically
all those involved (from the control room
operators to the senior members of the nu
clear safety inspectorate) as an important
background reason for the accident. Long
years of operation without an accident that
fell outside the maximum credible accident
limits had lulled them all into regarding
the reactor as "tame," that is, easily con
trolled. Such an attitude, or mindset,
blunts the imagination and encourages laxity
in the observation of safety rules. This
attitude has also been identified as an un
derlying cause for the total disregard of
safety precautions which occurred at Cherno
byl. The planned experiment was not even
recognized by the plant management as invol
ving any safety hazard.

Stereotype of a Ruthless Enemy

We can surely recognize an analogous mind
set among those politicians and military
leaders who credit nuclear weapons with keep
ing the peace in Europe for 40 years. In
fact, what the nuclear arsenals have done is
quite the opposite. They have maintained
international tension during those 40 years,
bringing it at times (like the Cuban missile
crisis) very close to the boiling point.
The development of new types of military
hardware has been a principal reason why
little or no agreement has been reached on
limiting the build-up of nuclear arsenals .

COMPUTERS and PEOPLE for July-August, 1987 17

The US administration's fixation on the Stra
tegic Defense Initiative (SDI) is only the
latest instance of this mindset, the false
logic of which must be exposed whenever the
argument is put forward . The possession of
weapons by both alliances inevitably demands
the creation of the stereotype of a ruthless
enemy, bent on using them . The mindset that
nuclear weapons are a contribution to keep
ing the peace must be opposed even more
forcefully than the idea that one can safely
play games with nuclear reactors.

Common Emotional Disturbance

I have spoken of "common mode failure" as
a serious threat if it is overlooked in com
plex mechanical or electronic systems. An
analogous situation could exist at the human
level, among the personnel of a military in
stallation . Work in the confined space of
a nuclear submarine, for example, could pro
duce a highly dangerous psychological mind
set in which the custodians of nuclear weap
ons might, at a time of high international
tension, suffer a common emotional distur
bance. Action without orders or contrary to
orders would be possible .

Drug abuse is also a l atent danger and
another possible "common mode failure." So
is religious fundamentalism -- the "Armaged
don Complex." If communication channels
broke down at a time of heightened alertness,
or if instructions were garbled and misunder
stood, the captain and his officers might
ultimately assume responsibility for firing
their missiles . This scenario, of course,
is dismissed as incredible by military au
thorities, just as catastrophic accidents to
r~actors exceeding the maximum credible lev
el were dismissed by civil nuclear reactor
operators. But as we have seen, such acci
dents can occur .

There have already been many serious ac
cidents involving nuclear weapons and their
delivery systems. Several weeks ago, a So
viet nuclear submarine sank to the bottom of
the Atlantic after an internal explosion.
We have since learned that this was not the
first such event. Official US publications
list accidents involving American nuclear
weapons carriers in the period of 1956 to
1986 . Most of these incidents refer to
bombs accidentally dropped from airplanes or
lost in plane crashes. The Palomares inci
dent in 1966 and the Thule incident in 1968
are two of the most serious, and both caused
radioactive contamination. I have no com
parable data for the Soviet nuclear forces,
but it is reasonable to suspect that similar
incidents have occurred in the USSR.

The Risk From Software

I have addressed the danger of equipment
failure, the hardware risk, and the ever
present risk of human error . What about the
risk from the software -- the computer pro
grams, often of great complexity, that are
built into every sort of modern military
equipment? Computer programming has grown
up as an art rather than a science, with in
dividual experts often using short cuts of
their own design . "Debugging," the process
of detection and elimination of accidental
errors or logical confusion, is an integral
step in software development. But it is not
easy to find all the bugs.

If SDI were ever to reach the deployment
stage, which seems unlikely, the computers
would require programs of such inordinate
length and complexity that it would be im
possible to check them for overall accuracy.
And live tests on the system would obviously
be impossible since this would involve fir
ing nuclear explosions in space. Yet, to be
effective, the system would have to operate
with nearly 100 percent efficiency the first
time it was ever activated by attacking mis
siles, perhaps after years or decades of non
use and, perhaps, inadequate maintenance.

The mind boggles at the total impracti
cality of the concept. It is surely a sad
instance of human error that fixation upon
this mythical umbrella prevented agreement
in Reykjavik on the most comprehensive arms
reduction proposals yet put forward.

So what lessons for the prevention of nu
clear war can we learn from nuclear reactor
accidents? The chief lesson is that, no mat
ter how elaborate the precautions, something
will, in due course, go wrong . And when it
does, no limits can be set for the amplify
ing effect of human error or of deliberate
contravention of safety rules or military in
structions . In the case of civil nuclear re
actors, the consequences, as we have seen,
are limited in extent and duration. Many
people may suffer, but civilization is not
destroyed. A cost-benefit analysis may in
dicate that the energy we need can be obtain
ed at lower cost by other means. Or it may
not, for other ways of capturing energy also
incur their peculiar risks.

Accidents in Weapons Installations

The type of equipment, the automatic safe
ty devices and computer cont ro l s, the opera
ting rules, and the kind of technical person
nel involved in the nuclear weapons field
are not very different from those found in

(p lease turn to page 26)
18 COMPUTE RS and PEOPLE for July-August, 1987

t

-

....

•,J.

-r

_.,.

Software Development Systems
Peter Freeman
Professor of Computer Science
University of California
Irvine, CA 92711

"If we understand the realities and concepts of our world, we are

in a position to formulate some precepts, or rules of actions,

that impose a certain standard of action."

Software Development

As wi th systems work , i t is important to
understand the ground rules under which a
book has been writte~. This prologue addres
ses four topics that will help you profit
from your reading: the general organization
of the book, teTininology, my assumptions
about your background, and the context of my
background.

Several years ago I set out to write a
textbook that would tell you everything you
needed to know about software development.
What I soon discovered, which should have
been obvious in the first place, is that
what we know about software systems develop
ment is evolving much too fast to permit it
to be frozen into a classic textbook that
will remain largely unchanged for years .
That is not to say that one can't write a
good textbook at this stage (there are sev
eral), only it will age quickly.

In this book, then, I have tried to cap
ture three things that will help you under
stand not only what you observe and experi
ence, but will encounter in other books and
papers: realities, concepts, and precepts.
These are not simply listed, but rather are
presented in the context of an underlying
view that systems work is a system itself.

It is important to be realistic, to under
stand what really is, to sort out fantasies
and wishes from what is factual. That is
often difficult in the present world of soft
ware, and is especially difficult if you are
a newcomer to the field. I present those
realities that I have seen demonstrated
enough to be sure of, for example, that care
fully designed systems are easier to main
tain and modify than those that are not.
The ultimate reality is captured in the

title, however -- that it is possible to
make sense of software systems development,
if you adopt a systems viewpoint.

Formulating Precepts

Concepts (or ideas or abstractions), if
drawn from specifics, are essential to for
mulating strategies, organizing technical
work, making decisions -- in short, doing
the work of and managing the technical pro
cess. While managers t ypically have a good
set of concepts to guide their work and tech
nical people a good set to guide theirs, one
of the primary gaps of knowledge in the soft
ware field is created by each group not un
derstanding the others' concepts. My focus
here is on bridging that gap.

If we understand the realities and con
cepts of our world, we are in a position to
formulate some precepts, or rules of actions,
that impose a certain standard of action.
Where possible, I have tried to provide you
with those precepts that I have seen follow
ed successfully. For example, a highly suc
cessful precept in many organizations is to
always apply some explicit inspection pro
cess to every software workproduct (specifi
cation, design, program, and so on) before
declaring it finished.

In tune with the underlying message, the
book is organized around a description and
explanation of the parts of a development
system. Where possible, I have provided
some analysis of why things seem to work the
way they do, given guidance or perspective
on strategies and approaches that seem to
w9rk (or not), and commented on what I have
observed being done (or not done) in many
development situations.

The book is organized in a straightfor
ward way: Chapter 1 explores in a way useful

COMPUTERS and PEOPLE for July-August, 1987 19

to neophyt es and experts alike the question
"What is software?"

The Meaning of "System"

Let' s start wi t h a t erm t hat permeates
this book -- "system." Although one can pro
vide precise, technical definitions, the
meaning I emp l oy here is the intuitive one:
a collection of things re l ated in a way that
forms a c~1erent whole. In dealing with sys
tems, there are a l ways two questions: What
are the e l ement s? and What are the relation
ships between them?

"Software" will be used largely in a gen
eric sense to refer to co l lections of pro
grams, individua l programs, designs or speci
fications for programs -- in short, any of
the information that directly relates to the
instructions and control data (but not the
application data) that is loaded into the
hardware to produce desired outputs. I will
use "program," "design," "specification,"
and so on when I mean those specific items
of software; the meaning should usually be
c l ear from the context .

Without going off into a long philosophi
cal treatise, let me note that this is a
very broad definition. Certainly for some
purposes (for example, defining languages
for software development) one must be more
precise, but here I want to focus on the
overall process of reaching development ob
jectives. In that context, it is important
to include all the information and workprod
ucts that bear on reaching our objectives.

Another nondistinction I will employ in
many cases is to equate "system" and "soft
ware." There are some obvious exceptions to
this equation: On t he one hand a single, 50-
l ine program is no t a sys t em; I think your
common sense will guide you to be able to
apply what I may be saying about systems to
your single program situation (you will find
that a surprising amount of what is true for
systems is true for individual programs).

On the other hand , there are certainly
systems that are not software; indeed, one
of the tenets of system development is that
to the extent possible you should proceed
wi t h the early stages of design without wor
rying about whether it will be realized in
hardware or software . As with scaling down
to small situations, common sense should
guide you in scaling up t o systems that in
clude har dware and other nonsoftware elements .

Software Is the Critical or Dominant Element

There is another reason for closely iden
tifying s oftware and system, however. In
many si t uations today, the systems we are de
ve l oping are certainly " software-intensive"
in that software is the critical or dominant
element . Furt her, because of its complexity,
if you can deal effect ively with the design
of a software system, then you can probably
a l so deal with the design of a larger system
containing other elements . Indeed, some of
the techniques for dealing with software de
velopment are now being used in the develop
ment of the overall system or systems that
may be realized in hardware (for example,
VLSI design shares a l ot with the design of
a pure software system) . Software develop
ment is an instance of systems development.
Much of what we know about one applies to
the other.

Finally, it is important to recognize ex
plicitly (and keep separated) that I am using
the word "system" in two very distinct, but
related ways . I will often refer to the sys
tem being developed -- the software -- or
even just to "the system." My reference is
to the product being produced.

On the other haml, the underlying concep
tual framework and key to controlling devel
opment revolves around the idea of "software
development system," a collection of objec
tives, policies, people, techniques, tools,
and information that form a system for pro
ducing systems. I may sometimes abbreviate
"software development system" to SOS to re
duce confusion (and save space), but I have
resisted the temptation to create a new term
to stand for SOS since I don't want to lose
the close identification with the inherent
understanding we all have of what a "system"
is.

Who Are You ?

Even when writing a book intended to serve
the needs of a broad class of p~ople, as I
have here, an author must make some assump
tions about the potential audience. In gen
eral, I have assumed that you are interested
in understanding or improving the process of
creating software, very likely because you
are interested in improving the quality of
the software produced . There are at least
four categories of people I hope will read
this: technical professionals, managers di
rect l y concerned with software development,
managers concerned with other aspects of or
ganizational activity but who must interact

20 COMPUTER S and PEOPLE for Ju ly-August, 1987

t

,..

..I...·

'"1 -. -
-t -

L

-.-

_.,

.,-

with the development activity in some way,
and others who are simply interested in what
is going on in an active and challenging seg
ment of our culture. There are others, such
as students, teachers, and consultants, who
can identify closely with one or more of
these categories as well.

The senior technical person will gain
some insight into what his or her management
does (or doesn't do) and thus be able to work
with that part of the team better. The jun
ior technical person can gather some idea of
why the world is organized the way it is,
even if sometimes he or she has little oppor
tunity to change it.

The technical project manager will find
many points of interest here. Of special in
terest to this person will be the principles
relating to the use of technical methods and
tools. All technical people will gain deeper
insight into the nature of software and the
processes used to produce it.

The General Manager

The general manager (a person perhaps two
or three l eve ls above the individual project
manager) that is responsible for development
activities may find the principles presented
here as useful as anyone. Indeed, it is
this person (responsible for organizing the
overall process, allocating resources, and
seeing that it all continues to run) who
often has the greatest opportunity for util
izing the ideas discussed here. This person
in many cases (if not most) has "come up the
ladder" and thus has also served as a junior
technical person, technical leader, project
manager, and so on.

There is another type of general manager
emerging in many organizations today -- the
person who has a technical background, has
come up through the ranks, but is not con
versant with software and its problems.
Typical is the executive in an engineering
or technology-based company where, until re
cently, software was something that the peo
ple in the DP center dealt with. The rapid
growth of importance of enabling t echno lo
gies such as computer-aided design and manu
facturing (CAD/CAM) and computer-integrated
manufacturing (CIM) is forcing issues of
software development strategies to the top
of such organizations; in addition, many
technologies and processes that once were
based on some other technology (electronics
or fluids, in the control area, for example)
are rapidly becoming computer-based, which
again means heavy involvement in software.

Utilization of this book is not limited
to those concerned directly with managing or
performing the development activity. Anyone
(executives, board members, or simply the in
telligent layman) who has an open mind and
a desire to understand one of the most chal
lenging intellectual tasks in today's world
will find something of interest here.

No deep understanding of computers, elec
tronics, mathematics, or programming is nec
essary. If you have some or all of this
background, then you will interpret things
in that context and perhaps be able to make
connections that others will not. An abili
ty to think logically and to keep separate
means and ends, to be able to identify parts
and connections, is required.

Likewise, no deep understanding of manage
ment or organizations is necessary. If you
do have a stronger background in this area,
then, as with the technical person, you may
be able to take away a deeper set of insights.
An ability to understand that management is
necessary and even productive in every situa
tion is required.

Who Am I?

I don't have all the answers. No one
does. But I do have a set of experiences
and a background that helps provide me with
a certain perspective.

My starting point is the technical side.
I have designed and built complex software
(scientific applications, operating systems,
research programs in artificial intelligence).
My graduate training is in computer science
and I am still an active researcher attempt
ing to advance our understanding and capabil
ities in software engineering. As a profes
sor of computer science and lecturer to pro
fessionals I try to educate students in bas
ics (such as computer architecture) and their
applications (for example, design methods
for complex software systems).

I have been able to gain some insight into
the application of software technology
through extensive lecturing and consulting
in industry, in addition to my direct exper
iences. This has brought me into close and
continuing contact with those trying to use
the new technology (and the old) to build
software ranging from small one-person, two
week projects to those that can only be meas
ured in kiloyears of effort. Through this
contact, my own use or participation in the
use of techniques, and assistance to those
most vitally concerned with improving their

COMPUTERS and PEOPLE for July-August, 1987 21

software development systems, I have develop
ed a set of observations of what works and
what doesn't work.

We Need Not Repeat Mistakes

I have been in the software field continu
ously since 1961. I have seen some signifi
cant improvements in software technology
(along with the obvious improvements in hard
ware technology) but am increasingly frustra
ted by their slow adoption. It is not just
that they are research ideas which must be
translated into usable form; I am speaking
of those techniques that are in use today
(and have been for a number of years in some
cases) by some organizations but that are
still ignored or rejected by others, not only
to their economic peril but to the safety
and convenience of the public at large.

We don't have to wait for breakthroughs.
There is much available today. Nowhere is it
written that we must all repeat the mistakes
of our predecessors. Yet that seems to be
what many are trying to do.

Much has been written about the challenges
of information technology to mankind in gen
eral and to the relative position of national
economies in particular.

There is indeed a new wave of technology
coming, but we must learn to perform, manage,
and utilize software development if we are
to understand and control whatever comes
next -- because it clearly will be software
like in nature and thus subject to many of
the same problems and solutions.

Software Is More Than Programs

Five or ten years ago, intelligent people
were not ashamed to ask "What is software?"
Today, with stories about it appearing regu
larly on the covers of newsmagazines or on
the front pages of daily newspapers, most
people hesitate to ask what they fear is a
stupid question.

It isn't and they shouldn't!

Indeed, many of the people that are daily
concerned with software should be asking this
question. All too often, they do not have a
sufficient understanding of what software is
to permit them to deal with it in an effec
tive manner.

The problem is not that people don't know
that software is just another name for compu
ter programs -- most third graders as well as

older people now know that. The recognition
that people often lack is that software is
more than just programs and that there is
one overriding characteristic of it that
MUST be attended to -- the fact that it is a
system .

Before looking more deeply at the process
of creating software, it will be helpful to
explore some of the aspects of software it
self. As the old adage puts it, "To master
your enemy, you must know him!" Most of us
can profit by enquiring more deeply about
the nature of software.

What We Want Computers to Do for Us

Isn't software just programs? Only if you
are a complete literalist, absolutely not be
lieving in abstractions, programming on your
own personal computer, and never coming back
to programs you wrote last year, is this
true. The question is not simply what soft
ware is, any more than the question is simply
what the trade policy of a nation is. Rath
er it is how you think about it and what
role it plays in a larger context that are
the important issues.

From the perspective of a computer, yes,
of course, software is a set of programs
that tell it what to do. But the perspective
of a computer is rather limited and has lit
tle to do, directly, with what we want com
puters to do for us. That is why thinking
about software just as programs leads to so
many problems, both in their creation and
use.

Perhaps the most common misconception in
the software field is that productivity is
measured by how many lines of code are pro
duced in unit time. The common joke in many
software development shops is sone form of
"Quit trying to figure. out what you are do
ing and write some code!" \Vhile there may
be times (few, in my estimation) when such
an order contains some degree of truth, such
comments, invariably based on an underlying
and strongly held belief, belie a view that
it is only programs, in the narrow sense of
executable programs, that can be used to mea
sure progress or that represent productivity
output on the part of a developmental staff.

\\That this leads to quite often is an at
titude on the part of management and techni
cal people alike that the only important
thing is the production of code. This focus,
clearly understood in psychological and prag
matic terms, conditions the entire environ
ment to focus on the production of code.

22 COMPUTERS and PEOPLE for July-August, 1987

t

,.

~ -

...

l

- .

• ?

_,...,

-~

The result, time and again, is the produc
tion of mountains of code that cannot be in
tegrated to work as a system, or the build
ing of a system which does not satisfy the
needs of the customer even though it may
work well technically.

What, then, is software if it is some
thing more than just programs?

Software is:

•The brain and soul of a computer, not
just a coat of paint

• The embodiment of the functions of a
system

• The captured knowledge about an applica
tion area

• The collection of all the programs and
data that are necessary to make a com
puter a special-purpose machine design
ed for a particular application

• All of the information (documentation)
produced during the development of a
software-intensive system

All of these characterizations contain
some important elements of truth that will
help you better understand the world of soft
ware even if you are already deeply involved
(mired?) in it. Let's look briefly at each
in turn.

For years, the belief in many organiza
tions, especially those that manufactured
computer hardware or other sophisticated
electronic equipment that included computers
(for example, military systems), was that
software was something that was added on
after the system -- the hardware -- was
built; in short, it was viewed as a coat of
paint that was put on the hardware after the
real system design had been done. As people
keep rediscovering, general-purpose computer
hardware does nothing without software.

The Driving of the Development Process

An often-heard debate is whether systems
design should be driven by the hardware con
straints or the software requirements.
Worse, it sometimes is not even a topic for
discussion, with the result that an inappro
priate choice is made.

Usually, but not always, the hardware
characteristics are permitted to drive the
overall design. This can lead to severe
problems later when features of the hardware
that are inappropriate to the system con-

straints must be compensated for in the de
sign of the software (if possible) . By an
alogy, this would be like choosing a French
restaurant because it is close, irrespective
of its menu or type of service, and then
ordering a quick-service Chinese take-out.
If it can be made to happen, it won't be
easy (or cheap)!

I witnessed a slow, agonizing example of
this in an organization rebuilding a large
application system. The decision was made
(perhaps implicitly) to rebuild it on the
same type of hardware. As the design of the
rebuilt application system proceeded, soft
ware decisions about the database management
system were then constrained by the hardware
choice. This, in turn, resulted in such a
great expansion in the requirements for disk
storage that ultimately (after lots of new
hardware had been obtained) the entire pro
ject had to be scrapped because the expanded
configuration could not physically fit in to
the operations facility. A careful system
design in the first place could have identi
fied or even sidestepped some of the problems
by calculating the resources needed to im
plement the system under alternative assump
tions about the hardware.

Two realities of software development are
illustrated here. First, hardware considera
tions all too often drive the development
pro:ess out of a mistaken belief that they
are the dominant cost and most inflexible
design element; while they may be, one can
not really say without looking at the over
all system. Second, the "debate" as to wheth
er a particular effort should be hardware- or
software-driven is a red herring; neither is
the right approach because only with a sys
tems approach that takes into account and
evaluates both elements appropriately can a
system be produced that meets the functional
and operational requirements of the customer.

Software provides the active portion of
the system, the part that makes the system
seem "alive"; hence, the characterization of
it as the brains and soul (or heart) of a
system. While it is obvious that the under
lying hardware is an essential ingredient of
any computer system, the nature of general
purpose computer systems is precisely that
they can do anything (and, thus, nothing)
that a particular set of software instructs
them to do.

Focus on the Applications of the System

The second characterization above captures
a viewpoint that is crucial to creating a

COMPUTERS and PEOPLE for July-August, 1987 23

successful software system: the focus on the
functions of an application system, not on
the functions of the underlying hardware.
After all, carrying out a set of application
functions is ultimately the purpose of any
computer system. Taking this viewpoint
helps to direct attention to the instrumen
tal objective of building any computer sys
tem -- to achieve some goals in a wider
sphere (such as reducing inventory costs,
controlling a machine, or creating a new ser
vice to sell).

Leonard Sayles and Margaret Chandler in
their perceptive study of the NASA program
that landed the first man on the moon point
out how important the overall objective set
by President Kennedy was to the success of
the program. It was an objective that often
served as a forcing function to get things
done in order that the objective could be
met. They also point out, however, that
while having a clear main objective is im
portant, it does not help very much in de
ciding what to do next on a detailed level.

The last two characterizations start to
provide that de t ailed guidance. One of the
reasons that it is unproductive to think of
software as only consisting of programs is
that, at least implicitly, this usually con
notes only the procedural part of programs,
leaving out the all-important data portions.
For this reason, it is sometimes useful to
focus on the fact that the software that
makes up the application functions is com
posed of both data and functions.

There is a fine line here : Is a large
database, that is, the data in it, not the
programs that access it and process the data ,
software? Generally, the database itself is
viewed as being outside the realm of soft
ware (but certainly not outside the realm of
computer science, nor of systematic ways of
building the collection of data) while the
data that define a database and its accessors
is a part of the software. This carries
with it a connotation of software being an
active and general-purpose element that is
not tied to a specific set of facts (as
would be the case with the data stored in an
actual database).

Information Produced During Development

I once saw a good example of ignoring the
data portion of a system - - and the develop
ment problems that can result . A group was
developing a complex system that included
tables that would be used to define the char
acteristics of an individual installation of

the system. The design team was not famili
ar with the application area and felt that
the design of the tables would be simple and
belonged in the province of the application
specialists since it was just data; conse
quently, little attention was paid to data
during most of the design phase.

As the early versions of the system were
brought up for testing, it was discovered
that the tables were not only unexpectedly
large and complex, but that the efficiency
of the system depended critically on their
design. A serious delay in the development
of the system resulted while the data por
tions of the system were belatedly designed.
The failure to understand the structure of
this data component of the system and treat
it equally with the process portions nearly
resulted in di saster.

\\Then focusing on the development process,
all the information that is produced during
development is of interest . The success of
an effort to build a software-intensive sys
tem is thus directly tied to how well one
deals with all of the information present,
much of which is something other than direct
ly executable programs or their imbedded
data . Hence I am led to the conceptual gen
eralization that software is all the infor
mation produced during development. Soft
ware is many things, but all are simply as
pects of information.

The Importance of Maintenance

It may come down to a matter of semantics:
some would like to reserve the name "soft
ware" to refer just to programs (and perhaps
data); if so, then there is a lot of other
information that is very central to what
software developers do that must be account
ed for and named in some fashion . If we in
clude all the information relevant to a
piece of executable software in the generic
defin~tion, then we will have to deal with
that information in the same rigorous and
systematic way that we must deal with execut
able software. This is essential to succes s
ful development, since if it is not done in
formation is lost or altered, introducing
errors .

A common example is the widespread tenden
cy to not maintain software designs. A sys
tem is built from some sort of design docu
ment, but as modifications are made to the
code, these are not recorded in the design.
Later, if major changes are contemplated,
they can only be made intelligently by con
sidering the design -- which is unavailable

24 COMPUTERS and PEOPLE for July-August, 1987

t

.)"

...

..

.,.

- <

..... -

......

....

•

-.

--..

because it has not been treated in a rigor
ous and systematic way .

It is just as counterproductive to in
clude every scrap of information in the de
finition of software as it is to restrict it
to only executable code. At a gross level,
we can differentiate among several impnrtant
classes of information that are involved in
producing software: software representations
(representations for short), software engin
eering knowledge (development information),
and domain-specific knowledge (application
information) . Because it is important to
have a well-grounded understanding of these
classes, let's take a deeper look at them
before proceeding. (While the following dis
cussion may seem technical, it is really
just a logical description and will provide
you some important characterizations.)

Software representations include programs,
detailed designs written in a program des
cription language, architectural designs re
presented as structure charts, specifica
tions written in a formal language, system
requirements expressed in a combination of
notations, or any one of hundreds of other
possibilities. In short, any information
that in some direct way represents an even
tual set of programs and their associated
data may be included in a software represen
tation.

It would, of course, be simpler if we had
different terms for those objects that are
executable and those that merely describe
executable objects. But we don't. Reserv
ing "software" to describe only executable
objects -- and having no other widely accept
ed term available -- puts us back in the sit
uation of focusing too much on the executable
objects in their final form and not enough
on the earlier descriptions. Hence the
breadth of my definition.

The second class, software engineering
knowledge, is all of the information that
relates to development in general (for exam
ple, how to use a specific design method) or
information that relates to a specific devel
opment (for example, the testing schedule on
a project). The information of this type
includes project-related information, soft
ware technology information (methods, con
cepts, techniques), knowledge about similar
systems, and the detailed information relat
ing to the identification and solution of
technical problems on the system being devel
oped. More general information (for example,
the notice of this month's professional so
ciety meeting or the next office party) is

in the larger set that we are not concerned
with in any explicit way.

Understanding the Application Domain

The third class of information that is
essential to creating software is the domain
specific knowledge about the application
area . The examples are everywhere: under
standing of a physical process to be control
led, accounting rules, procedures for updat
ing and changing employee records, and so on.
While this information is clearly essential
to creating software, discovering it and
putting it into a useful form is usually the
province of an applications specialist such
as a process control engineer or an account
ant or a business systems analyst.

As we have applied computers to ever more
complex situations, however, it has become
evident that our understanding of the appli
cation domain is quite often the biggest
stumbling block to creating effective soft
ware; at a minimum, communicating the under
standing of the applications specialist to
the computer specialist has increasingly
been identified as a key problem. Progress
has been slow at improving this interface,
as we will explore in more detail below.

Some "solutions" provide tools to the ap
plications specialist so that he can direct
ly build the software. Thus the motivation
for many of the "fourth-generation" lan
guages, prototyping schemes, and program gen
erators. While they are very powerful for
some situations and certainly permit us to
break down the communication barrier between
applications specialist and computer special
ist in some cases, they do not solve all
problems.

Specifically, there are situations in
which there is simply too much to be known
in each domain (the application domain or
the computer domain) to permit one person to
master both; a specialist is required in
each, with good communication paths between
them. That is the thrust of some of the
modeling techniques such as structured anal
ysis.

Let's consider again the three classes of
information defined above, and look at their
overlap. The overlap is generally small.
For example, although we have quite a bit
of knowledge about how to develop software
(software engineering knowledge), such as
principles for organizing programs, most lan
guages (software representations) directly
incorporate very little of this software en-

(please turn to page 26)

COMPUTERS and PEOPLE for July-August, 1987 25

Bentley - Continued from page 10

points of both parent and child. Popular
questions were of the form "How long would
it take you to walk to Washington, D.C.?"
and "How many leaves did we rake this year?"
Administered properly, such questions seem
to encourage a life-long inquisitiveness in
children, at the cost of bugging the heck
out of the poor kids at the time.

Based on Chapter 6, The Back of the Envelope, in Program
ming Pearls by Jon Bentley, copyright 1986 by Bell Labora
tories, Inc., Murray Hill, NJ. The book is published by
Addison-Wesley Publishing Co., Reading, MA; this excerpt is
reprinted with permission .

Torvik - Continued from page 15

moving to another country where they could
use their skills more profitably. Their
stake in the revolution is purely altruistic.
It is a moving testament to their profession
alism and love for their country that they
are so many, and they continue to struggle
to use their skills to solve Nicaragua's
problems.

Freeman - Continued from page 25

gineering knowledge. That is one reason for
the interest in and high hopes for the new
programming language Ada which was designed
specifically to incorporate software engin
eering knowledge in certain areas.

The intersection between software repre
sentations and domain-specific knowledge is
also small. A language such as FORTRAN obvi
ously embodies some very general information
about the domain of scientific calculations;
COBOL embodies some information about busi
ness data processing; Ada was intended to
contain some information about the domain of
embedded systems. The problem is that the
amount of information is very small in order
to permit the languages to be applied to the
largest possible range of applications.

Base<
publi
ing (

·are Perspectives,
on-Wesley Publish
mission.

Boag - Continued from page 18

civil reactor installations. If accidents
cannot be prevented in reactors, they can,
and will, surely occur in weapons installa
tions. But the consequences could be immeas
urably greater. If the accidental release
of a nuclear missile at a time of high inter
national tension were to trigger a nuclear
war, there would be no subsequent opportun
ity for a cost-benefit -analysis. The cost
could not be measured, and the benefits are
none.

No Fingers on Nuclear Buttons

The lesson I draw from all this is that
there must be no fingers on the nuclear but
ton: that there must be no buttons which
could initiate a nuclear holocaust. For no
one can be considered wise enough or strong
enough to withstand the pressures that would
fall upon them in this ultimate crisis -
least of all, those politicians who insist
on keeping nuclear weapons as an ultimate
threat. These weapons and all other means
of mass destruction must be relegated to
the scrap heap as a totally unsuitable means
of solving the problems that will continue
to arise between the different parts of this
one world. They must be replaced by the
only methods that can be effective in this
world of high technology -- dialogue, diplo
macy, constructive compromise and, especial
ly, cooperation to launch a joint attack on
poverty, hunger and disease, wherever they
they still exist.

Based on a report in IPPNW Report, April , 1987, of the
talk by Prof. John Boag at the Second Regional European
Symposium in Madrid, Spain. Copyright 1987 by Interna
tional Physicians for Prevention of Nuclear War. Reprinted
with permission.

Newsletter - Continued from page 27

Prof. Chellamuthu said the system evolved
in the centre had solved many interesting
problems regarding phonetic variations and
linear script patterns of many Indian lan
guages. A text in Hindi, Tamil, Malayalam,
English or Bengali is fed into the computer
and can be converted to any one of the five
languages desired. Thus a Tamil novel or
technical book can be much more easily trans
lated into the other four languages.

The university plans to include Kannada,
Telugu and Marathi scripts to its list.

26 COMPUTERS and PEOPLE for July-August, 1987

...

·.

-

...
..

-.

...

. ,,.

--
-.,,. ...

,..

Newsletter - Continued from page 3

• Large mirrors, needed to direct laser
beams toward their targets, are "particular
ly vulnerable to radiation from other lasers"
and might even be damaged by natural parti
cles orbiting alongside them in outer space.

• Just to maintain a space-based SDI sys
tem -- to control altitude, cool mirrors, re
ceive and transmit data, operate radars and
so forth -- will require 100 to 700 kilowatts
of continuous power. This in turn may re
quire 100 or more nuclear reactors in space.
The entire task requires "solving many chal
lenging engineering problems not yet explor
ed." If the SDI system ever had to be fired
in a nuclear war, one-billion watts of power
would be needed.

All these points have been made in the
past by various critics of the SDI program.
However, never have they been made in such
fastidious detail or by so authoritative a
group.

The panel was chaired by Nico Bloemgergen
of Harvard University and Dr. C.K.N. Patel
of AT&T Bell Laboratories. Members included
scientists from the Air Force Weapons Labora
tory; Sandia, Lawrence Berkeley, and MIT Lin
coln Laboratories; the US Military Academy;
Xerox, KMS Fusion, Inc.: Cornell, Stanford,
Columbia, Caltech and the Universities of
\\lashington, Illinois and Arizona.

AUTOMATIC CONVERSION OF THE SCRIPTS OF
ENGLISH, TAMIL, MALAYALAM, AND BENGALI
LANGUAGES

"The Hindu"
Mount Road
Madras, India

January, 1987

The Computer Centre of the Tamil Univer
sity , under its project to evolve an inte
grated script conversion system, has made a
"breakthrough," adding Hindi to its list of
convertible scripts. Prof. S. Agasthialing
am, Vice-Chancellor of the university, said
the centre had already perfected the techni
que for automatic conversion of the scripts
of the English, Tamil, Malayalam and Bengali
languages.

Prof. K.C. Chellamuthu, Head of the Com
puter Centre, said the integrated script con
version system study was launched four years
ago to examine the script patterns, inter
relationships and variation in forms and
the phonetic levels of different languages,

using the computer. The centre aimed at de
vising a system of designing and developing
keyboards in Indian languages for computers,
teleprinters and other telecommunication
equipment . The fifth generation computer
project envisaged natural language inter
face as the primary media of communication
and in the context of a multi-lingual coun
try like India, this had tremendous poten
tial for quick and easy translation.

(please turn to page 26)

CACBOL - Continued from page 3

these one-word utterances is a substantial
challenge to artificial intelligence.)

20 CHALLENGES TO ARTIFICIAL INTELLIGENCE:
MEANINGS OF RUN (List 870703)

Meaning Exam.e l e

1. finish in a con- the horse ran second
test

2. pass freely the rope runs in a
pulley

3. unravel the stitches have run

4. melt and flow the solder has run

5. operate the motor is running

6. e l apse the time has run

7. become the well ran dry

8 . total the bill ran to $60

9 . proceed the story runs to 9
pages

10. be performed the play ran for 8
days

11. get past his ship ran the
blockade

12 . travel the bus runs hourly

13. pass quickly he ran his eyes over
the page

14. expose oneself he ran the risk

15. cause to flow he ran the hot water

16. search out he ran down the facts

17. collide he ran into the bus

18. depart he ran off

19. terminate the text ran out

20. become used up the cook ran out of
butter

(Source: Neil Macdonald's notes)

COMPUTERS and PEOPLE for July-August, 1987 27

Opportunities for
Information Systems

- Instalment 10

.THE TRAINING OF HUMAN INTELLIGENCE

Edmund C. Berkeley, Editor

How are we to increase the intelligence of humans
by a substantial degree? How can we make use of
computer systems for this purpose?

Intelligence is defined in the dictionary as "capacity
for reasoning, understanding, and similar forms of men
tal activity; sound thought ; good judgement." Forms
of mental activity include observation, study, experi
mentation, memory , computation, deduction , languages ,
and more besides. Many, but not all, of these mental
activities are partially taught in schools.

Nowadays it is clear that if we want to increase
some capacity of humans, the chief sensible activities
are encouraging, motivating, educating, training, reward
ing, obeying the law, and telling the truth. Take for
example the new plague of the 1980s, AIDS, "acquired
immune deficiency syndrome." This is a virus which
kills people, which is spreading wide ly, and for which
no cure is yet known in spite of intense current inves
tigation. AIDS is an excellent example of a new threat
to the human species, for which old behavior of many
prior centuries will not work. The problem of dealing
with AIDS will certainly train human inte lligence.

A capacity to behave in a new way requires instruc
tion and training. The behavior has to be taught , either
by oneself or by some subdivision of social organization,
such as a doctor , colleague, computer, or environment.
The environment of a sea beach rather quickly trains
a new diver how to snorkel without filling his nose and
mouth with sea water.

Probably more than I 000 properties of human in
telligence can be trained by computer systems, ranging
over categories of identification , memory , deduction,
behavior, planning, situations, and many others. But
the time to do this kind of training in increasing hu
man intelligence does not come free. It has to come
from doing less of something else, such as reduced
watching of television or sports.

The market for computer systems that train human
intelligence should be huge . n

Games and Puzzles for
Computers Nimble Minds and
Neil Macdonald
Assistant Editor

NUMBLE

A "numb le" is an arithmetica l problem in which: dig
its have been replaced by capital letters; and there are
two messages , one which can be read right away, and a
second one in the digit cipher. The problem is to solve
for the digits. Each capital letter in the arithmetical
prob lem stands for just one digit 0 to 9. A digit may
be represented by more than one letter. The second
message , expressed in numerical digits, is to be trans
lated using the same key , and possibly puns or other
simple tricks.

NUMBLE 8707

N 0 T

* A Ny

T E T T

L I YA

L N S 0

y E T 00 T

22730 91093 85273

MAXIMDIDGE

In this kind of puzzle, a maxim (common saying, prov
erb, some good advice, etc.) using 14 or fewer different
letters is enciphered (using a simple substitution cipher)
into the IO decimal aigits or equivalent signs, plus a few
more signs. The spaces between words are kept. Puns
or other simple tricks (like KS for X) may be used.

MAXIMDIDGE 8707

i.:::=;l o0
0 * El <tJ

0 c=ifb 'V . C) 0

+I- ~ j) 0 f: •V tl-8 00

'
~a tt- * 0

c::; o°.~ C· 0

'f) 0 '7 * J> J6 C:-1 J7.; v . it 'f (! (1

8 O •))
0 * 00 • vtt-O •

SOLUTIONS

MAXIMDIDGE 8705: The end of mirth is the start of

sadness.

NUMBLE 8705: Even the King's men sin.

28 COMPUTER S and PEOPLE for Ju ly-August, 1987

..

.,

..- .

