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Thermal Buckling of Dual-Coated Fiber 

By T. A. LENAHAN* 

(Manuscript received August 8, 1984) 

An analysis of buckling is presented for dual-coated fibers within their 
coating at low temperatures. Buckling causes microbending of the fiber axis, 
the prime source of added optical loss in the fiber. Buckling is caused by 
compressive stress exerted on the fiber by the coating, which arises because 
the thermal expansion coefficient of the coating is substantially larger than 
that of the fiber. Calculations show that buckling is more likely when the 
inner primary coating layer is soft and thick. Previous experimental results 
on fibers in cables indicate that softer, thicker primaries lead to more added 
loss at low temperatures, contrary to the simple model where lateral pressure 
imprints irregularities onto the path of the fiber. Such is the evidence that 
buckling occurs. The theory is applied to various coating designs. The calcu
lated results rank the low-temperature performance reliably, but they also 
indicate that thermal strain falls short of the buckling strain. Other sources 
of strain are suggested, including a mechanism whereby irregularities induced 
by lateral pressure on the outside produce bending moments on the fiber. 

I. INTRODUCTION 

Optical fibers put in cables and/or subjected to low temperatures 
can have added transmission loss, attributed to microbending of the 
fiber axis.1 Microbending can result from increased lateral pressure 
inside the cable, which imprints irregularities there onto the path of 
the fiber. 2 The imprinting is accentuated when the materials are stiffer, 
as at lower temperatures. Dual coatings (see Fig. 1) were introduced 
to reduce the effects of lateral pressure by buffering the fiber with a 
soft inner primary layer; the outer secondary layer is hard and robust 

* AT&T Bell Laboratories. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

1565 



Fig. I-A dual-coated fiber. 

to allow handling. In practice, dual-coated fiber does indeed show 
substantially less added loss than single-coated fiber. 3 

Microbending also can arise from buckling of the fiber. Coating 
materials have thermal expansion coefficients two to three orders of 
magnitude larger than that of the fiber; hence, the coating exerts a 
compressive stress on the fiber at low temperatures. When the thermal 
strain exceeds a critical limit, the fiber buckles within the primary 
coating. Even below the buckling limit, thermal strain may amplify 
fiber bending already present. Buckling has been directly observed in 
(1) single-coated fiber within a soft elastomer under forced bending4 

and (2) dual-coated resistance wire under thermal stress.5 

Indirect evidence exists for buckling of dual-coated fiber. Yabuta et 
al. report that thicker primary coatings lead to increased added loss 
at -500C, irrespective of the outer secondary thickness, even though 
the primary material (silicone) remains soft at -50°C (see Fig. 7 of 
Ref. 6). This finding is not consistent with the simple lateral-pressure 
model, which says that more buffering gives less microbending. It is 
consistent with the buckling model because, as will be shown, thicker 
and softer primary layers provide less resistance to lateral displace
ment of the fiber and hence to fiber buckling. Results of the so-called 
85 experiment,7 involving various coating designs, likewise indicate 
that softer thicker primaries lead to more added loss at low tempera
tures. 

In this paper thermal buckling of a dual-coated fiber within its 
coating is analyzed. Thermal strain on the fiber is calculated numeri
cally and found to agree reasonably well with the simple rule of 
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mixtures. Buckling strain, the minimum strain required for the fiber 
to buckle, depends mainly on the lateral rigidity of the fiber in its 
coating and is measured by a spring constant K, which is also calculated 
numerically. The buckling analysis of Refs. 5 and 6 was flawed because 
these references incorrectly assumed that K was the modulus of the 
primary. 

The theory is applied to various designs including ones of Yabuta 
and ones used in the S5 experiment. Results indicate, as above, that 
the fiber is more likely to buckle when the primary coating is soft and 
thick. The calculated thermal strain by itself is less than the calculated 
buckling strain in all cases, but other sources of strain can combine 
with the thermal to reach the buckling strain. For instance, thermal 
stress combined with irregularities in the secondary caused by lateral 
pressure would put moments on the fiber. 

Whatever the exact mechanism for microbending, coating designs 
should account for the possibility of buckling. Experimental results 
indicate that the primary should be sufficiently thin, especially if the 
primary material remains soft at low temperatures. 

In the next section the buckling analysis is developed and the 
associated numerical calculations are indicated. In Section III the 
theory is applied to the resistance wire of Katsuyama et a1.5 and other 
silicone/nylon coatings of Yabuta et a1.6 and designs from the S5 
experiment.7 The paper is summarized in Section IV and certain 
aspects outside the model that favor buckling are discussed. One of 
the most important aspects, already mentioned, is the prospect that 
irregular lateral pressure in conjunction with thermal stress produces 
bending moments on the fiber. 

II. ANALYSIS 

The analysis of fiber buckling involves the force or strain needed to 
buckle the fiber and the force actually on the fiber. In this section, 
after the mechanical properties of the relevant materials are indicated, 
the thermal strain of the fiber is calculated, and then the buckling 
strain is calculated. The fiber and coating are assumed throughout to 
be perfectly circular and concentric, homogeneous, and uniform along 
their length. 

2.1 Materials characterization 

Two kinds of structures are considered: dual-coated optical fiber 
and the dual-coated wire of Katsuyama. The dual-coated optical fibers 
considered have outer secondaries that are either an ultraviolet (UV)
cured urethane acrylate material (Borden) or nylon. The Borden 
secondary has as its inner primary either UV -cured material supplied 
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Table I-Material parameters 
T= -40°C T=O°C 

Eg E E a 
Material (psi) (psi) v (psi) v (OC-1) 

Glass lo07E7 lo07E7 0.25 lo07E7 0.25 5.04E -7 
Wire 2.35E7 2.35E7 0.25 2.35E7 0.25 lo6E - 5 
Desolite 4.60E5 9.15E3 0.495 2.47E2 0.49987 lo2E - 4 
Hot Melt 3.34E2 0.49982 9.15E1 0.49995 lo4E - 4 
Silicone 2.64E2 0.49986 lo47E2 0.49992 3.0E - 4 
Borden 6.48E5 5.15E5 0.30 lo96E5 0.4244 0.6E - 4 
Nylon 3.08E5 0.333 2.93E5 0.341 loOE - 4 

by De Soto (Desolite*) or a thermoplastic material (Hot Melt). The 
nylon secondary has silicone as its primary material; this combination 
is used for the wire of Katsuyama et al. 5 and for optical fiber studied 
by Yabuta et al. 6 

The modulus E, Poisson ratio v, and thermal expansion coefficient 
ex are the mechanical properties needed in the buckling analysis. The 
glass fiber and wire are elastic in the temperature range of interest; 
hence, a single value for the mechanical parameters characterizes 
these materials. The coatings are viscoelastic polymeric materials; 
their modulus values relax over time and depend on temperature. We 
simplify the modulus values here by considering only their values at 
24 hours (a typical time span for temperature drops from room 
temperature to -40°C). 

The values of E and ex for the fiber are taken from Table III of Ref. 
8 and for the wire from Ref. 5. Their Poisson ratio is taken as v = 
0.25, the accepted value for a material in its glassy (stiff) state. These 
values appear in Table I. 

The 24-hour modulus E of Desolite, Hot Melt, and Borden are 
shown as functions of temperature in Figs. 2 through 4, respectively. 
These moduli were synthesized from oscillatory data from a rheometric 
thermal mechanical spectrometer. Modulus values for 0 and -40°C 
appear in Table 1. The thermal expansion coefficients (at low temper
atures) of Desolite and Hot Melt and Borden have been taken from 
Refs. 9 and 8, respectively. Values of E at 0 and -40°C for silicone 
and nylon are taken from Ref. 5; the value of ex for silicone comes from 
Ref. 10 and for nylon from Ref. 6. These all appear in Table I. 

The Poisson ratios of the coating materials are estimated by assum
ing that the bulk modulus, 

E 
K = 3(1 - 2v)' 

(1) 

* Registered trademark of De Soto, Inc. 
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Fig. 2-Isochronal plot (24 hours) for the Young's modulus of Desolite versus tem
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Fig. 3-Isochronal plot (24 hours) for the shear modulus of Hot Melt versus temper
ature. 

is independent of temperature. Studiesll have shown that K increases 
only by about a factor of 2 (though E increases several decades) as the 
material goes from a rubbery to a glassy state. Taking v = 0.25 at the 
low temperature glassy plateau (where E = Eg ), v is determined at any 
temperature by 

v = 0.50 - 0.25E/Eg , (2) 

derived from the constancy of K. 
The values of Eg are taken from the 1- or 2-second modulus at the 

lowest temperature measured (typically -60°C). For primary materials 
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Fig. 4-Isochronal plot (24 hours) for the Young's modulus of Borden versus temper
ature. 

where a plateau value was not attained or was unavailable, the Eg for 
Desolite was used to estimate v. Available values of Eg and calculated 
values of v appear in Table I. 

2.2 Thermal strain 

The different thermal expansion coefficients can be consolidated 
into an effective expansion coefficient eYeff for the coated fiber (or wire) 
as a whole. The rule of mixtures8 approximates eYeff by weighting the 
various expansion coefficients by the cross-sectional area and the 
modulus of the corresponding materials. For N materials the formula 
is 

(3) 

where eYn denotes the expansion coefficient, An the area, and En the 
modulus of the nth material. 

The rule of mixtures is exact when the coupling of radial displace
ments is neglected, as if the fiber and coating layers were parallel 
springs joined at the ends. An analysis accounting for radial coupling 
is described in Appendix A. Deviations from the rule of mixtures are 
usually within a few percent, but examples have been found with 
deviations from -15 to +36 percent. 

The thermal strain of the fiber for a temperature change To to Tl is 

rTl 

€therm = J" (eYeff - eYfib)dT, 
To 

(4) 

where eYfib denotes the thermal expansion coefficient of the fiber by 
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itself. In general, lXeff will depend on time and temperature through its 
dependence on E and lX of the coating materials. With this information, 
the strain of the fiber can be determined as a function of time for any 
temperature cycling as in Ref. 8. 

For simplicity, the lXeff will be taken here as the effective expansion 
coefficient averaged over the range of temperature change. As for lXfib, 

it is independent of temperature; so the thermal strain of the fiber for 
a temperature change T is simply 

I:therm = (lXeff - lXfib)T. (5) 

The value of lXeff will be estimated by using 24-hour modulus values at 
-40°C and, for comparison, O°C. 

2.3 Buckling analysis 

The fiber (or wire) may buckle and follow a wavelike path because 
of compressive strain. The theory of elastic stability12 is used to study 
the buckling of fibers within their coating. 

The fiber is treated as a beam in an elastic medium. A force and 
moment balance yields the differential equation 

d4y d2y 
ErI dz4 + F dz 2 + Ky = 0 (6) 

for the deflection y of the fiber as a function of the distance z along 
the fiber. Small deflections are assumed. The parameters Er, I, and F 
denote the modulus of the fiber, the moment of inertia of the fiber 
(-rrrj/4 for radius rr), and the compressive force on the fiber, respec
tively. The parameter K denotes the spring constant of the fiber, which 
is the ratio of the centering force exerted by the coating to the 
displacement of the fiber from center. 

Early work incorrectly assumed that K = Ep ,5,6 but Vangheluwe,13 
assuming a rigid secondary, determined that 

(7) 

where subscript p signifies the primary region and f the fiber (or wire). 
A numerical calculation of K, which accounts for the elasticity of the 
secondary, is described in Appendix B. The two calculations give 
identical results when the secondary is assumed rigid. Results indicate 
that the elasticity of the secondary can reduce K by more than 80 
percent. 

The buckling solution has the form 

A . (27rZ) y= sln p ' (8) 
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where A is an arbitrary amplitude and P is the pitch. (This form in 
conjunction with 

x = A cos e;z) (9) 

for the orthogonal component covers the case of helical buckling.) 
Substituting y into eq. (6) gives 

Hence, the force required for the fiber to buckle with pitch P is 

(
27r)2 (P)2 

F = ErI p + K 27r . 

The minimum buckling force is 

Fmin = 2.JErIK = rl.J7rErK, 

corresponding to a pitch of 

Pmin = 27r(ErI/K)1/4 = 7rrr(47rEr/K)1/4. 

The corresponding strain of the fiber is 

fmin = F mini 7rrj Er = "\ '". V;& 

(10) 

(11) 

(12) 

(13) 

(14) 

This formula shows that fibers having smaller spring constants, which 
are associated with softer and/or thicker primaries, require less strain 
to buckle. 

If ftherm > fmin, then the fiber will buckle in its coating. If ftherm < 
fmin, then buckling can still occur if ftherm + f res > fmim where f res denotes 
residual strain caused by initial bending or other moments. Even if 
ftherm + f res < fmim thermal bending can occur. In thermal bending, 
initial bending or other moments of the fiber are accentuated by the 
thermal stress. The size of the effect grows as (fmin - ftherm - fres)-I, as 
shown in Ref. 12. 

III. APPLICATIONS 

In this section the buckling analysis is applied to the dual-coated 
wire of Katsuyama, for which buckling was observed, and to various 
dual-coated fiber designs. Parameter studies are also presented. 

3.1 Wire of Katsuyama and fibers of Yabuta 

The wire of Katsuyama et al. 5 had a dual coating where the primary / 
secondary was composed of silicone/nylon. The material parameters 
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for these are given in Table I. The wire radius was r w = 75 ~m. The 
outer radii of the primary (rp) and the secondary (rs) were rp/rs = 175 
~m/600 ~m. 

The calculated spring constant is K = 6.9E3 psi, and effective thermal 
expansion coefficient is lXeff = 5.37E - 5°C. If we assume a temperature 
drop of 100°C, the strain on the wire from eq. (5) is Etherm = 0.38 per
cent, and the minimum buckling strain from eq. (14) is Emin = 0.97 per
cent with a pitch of P min = 3.39 mm. These values were obtained using 
the material parameters for -40°C. For WC, where the coating mate
rials are somewhat softer, the calculations give K = 3.87E3 psi and lXeff 

= 5.25E - 5°C-I
; the same temperature change of 100°C gives Etherm = 

0.37 percent and Emin = 0.72 percent with a pitch of 3.92 mm. These 
calculated values are summarized in Table II. 

As buckling did occur in the Katsuyama wire at -7WC, the differ
ence Emin - Etherm estimates the residual strain Eres in the wire at 30°C. 
Relative to the -40°C parameters, Eres - 0.59 percent; relative to the 
O°C parameters, Eres -0.35 percent. 

Yabuta et al. (see Fig. 7 of Ref. 6) studied the silicone/nylon coating 
system on optical fibers. One design having a relatively thick primary 
had substantial added loss at -50°C; its dimensions were rp/rs = 250 
~m/ 4 71 ~m. Another design with a thinner primary had negligible 
added loss even though the secondary had somewhat more cross
sectional area; its dimensions were 100 ~m/448 ~m. The fiber radius 
for both was rf = 62.5 ~m. 

Calculated values for K, lXeff, Etherm, Emin, and P min are given in Table 
II for both designs using both 0 and -40°C material parameters from 
Table I. For the lower-temperature parameters, the thick primary 
gives Etherm = 0.61 percent and Emin = 0.81 percent with a pitch of 3.09 
mm, and the thin primary gives Etherm = 0.59 percent and Emin = 3.10 
percent with a pitch of 1.57 mm. These values indicate that buckling 

Table II-Buckling quantities for certain silicone coatings 

K Cl'eff ltherm lmin Pmin 

Temp. (psi) CC-1) (%) (%) (mm) 

(a) Katsuyama et al. 

-40°C 6899 5.367E - 5 0.377 0.967 3.39 
0° 3868 5.253E - 5 0.365 0.724 3.92 

(b) Yabuta et al., poor 

-40°C 2184 6.146E - 5 0.610 0.806 3.09 
0° 1219 5.969E - 5 0.592 0.602 3.57 

(c) Yabuta et al., good 

-40°C 32393 5.898E - 5 0.585 3.104 1.57 
0° 18571 5.772E - 5 0.572 2.350 1.80 
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in the first case is at least as probable as for the Katsuyama wire, but 
much less probable in the second. 

3.2 S5 experiment 

Four dual-coat designs were selected from the 85 experiment.7 Their 
performance, based on added loss at low temperatures, ranged from 
good to bad. Figure 5 shows the added loss versus temperature for the 
best and worst cases. 

Three of the four designs used UV-cured Desolite for the primary, 
the other used Hot Melt. All used Borden for the secondary. The 
coating dimensions varied in primary outer diameter/secondary outer 
diameter from 8/13 to 11/15, expressed in mils. The designs are 
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Fig. 5-Added loss at A - 1.3 JLm versus temperature for the (a) best coatings from 
the 85 experiment and (b) worst coatings from the 85 experiment. 
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Table III-55 experiment 
Size Temp. Coat K (Yeff Etherm lmin P min 

(mils) CC) (P) Rank (kpsi) (OC-1) (%) (%) (mm) 

8/13 -40 UV Best 570.6 0.U2E - 4 0.107 13.03 0.76 
0 28.6 0.487E - 5 0.044 2.92 1.61 

10/13 -40 UV Second 288.8 0.855E - 5 0.081 9.27 0.90 
0 10.3 0.349E - 5 0.030 1.75 2.07 

11/15 -40 UV Third 218.1 0.120E - 4 0.U5 8.05 0.97 
0 7.47 0.494E - 5 0.044 1.49 2.18 

11/15 -40 Hot Melt Worst 10.1 0.138E - 4 0.133 1.73 2.08 
0 2.78 0.5UE - 5 0.046 0.91 2.88 

specified in Table III, together with calculated values of K, CXeff, ftherm 

(for a 100°C temperature drop), and fmin and P min using the material 
parameters for -40 and O°C. 

The calculated difference fmin - ftherm tracks the performance rank 
of the design for both 0 and -40°C. The design with the stiffest and 
thinnest primary had the least added loss; the one with the softest, 
thickest primary had the most. 

3.3 Parameter studies 

The thermal and buckling strains depend on the geometry and 
materials of the coating. This dependence is now studied in general 
terms. 

The thermal strain ftherm is proportional to the quantity, CXeff - CXfib. 

By the rule of mixtures, 

CXeff - CXfib = ApEp(cxp - CXfib) + AsEs(cxs - CXfib) (15) 

ArEr + ApEp + AsEs 

Usually, both the area Ap and modulus Ep of the primary are much 
smaller than As and Es of the secondary. Neglecting terms with ApEp 
gives 

AsEs(cxs - CXfib) CXs - CXfib 

CXeff - CXfib::: ArEr + AsEs = 1 + (ArErIAsEs) (16) 

or 

a.ff - afib :e (a, - afib) /[ 1 + (r,jrf)~f~E(rp/rf)2]' (17) 

Figure 6 shows plots of this expression versus rslrf, assuming EriEs 
= 20 (as for Borden at -40°C) and EriEs = 50 (as for Borden at O°C) 
and also rplrr = 1.5. The plots again show the well-known fact that 
larger, stiffer secondaries produce more thermal strain than smaller, 
softer ones. 

The buckling strain fmin from eq. (14) is proportional to .J; and 
inversely proportional to JEr. The latter implies that wire filaments, 
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having a higher modulus, require less strain to buckle than glass fibers. 
The spring constant K will be studied first for a rigid secondary to 
which the formula of Vangheluwe in eq. (7) applies. The elasticity of 
the secondary will be considered subsequently. 

If X == rp/rr is close to 1, the approximation14 

X
2 

- 1 1 (X2 - 1)3 
In X ~ X2 + 1 + 3" X2 + 1 (18) 

gives (for v = vp ) 

47rEp(1 - v)(3 - 4v) 
K ~--~~----~---~-------~~-~~ 

[ 
X2-1 (3-4v)2(X2 -1)3]' 

(1 + v) 8(1 - v)(1 - 2v) X2 + 1 + 3 X2 + 1 

(19) 

When v ~ 1/2, eq. (19) reduces to 

47rEp(X2 + 1)3 
K ~ (X2 _ 1)3 ; (20) 

when v is not close to 1/2 and X ~ 1, eq. (19) reduces to 

7rEp (3 - 4V) X2 + 1 7rKp (3 - 4V) X2 + 1 
K ~ 2(1 - 2v) 1h X 2 - 1 = G 1h X 2 - 1 ' 

(21) 
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0.5 

Fig. 7-Spring constant versus primary radius for three Poisson ratios assuming a 
rigid secondary. 

where Kp denotes the bulk modulus of the primary. In all cases, K 

increases without bound as X approaches 1 (i.e., as the primary 
becomes thinner). If X is large, the logarithmic term in the denomi
nator dominates to give 

K = 47rEp(1 - v) (22) 
(1 + v)(3 - 4v}ln rplr,' 

Thus, K goes to 0 as rplr, becomes large. 
Figure 7 shows KIEp plotted versus rplr, for v = 0.40, 0.49, and 0.499. 

The curves illustrate the asymptotic behavior of K given above. They 
also indicate that thicker primaries have smaller K with greatest 
sensitivity when v is close to 1/2. The compliance of the secondary 
leads to lower K. 

Figure 8 shows K versus rslr, for Es = 500, 200, and 100 kpsi with 
corresponding Vs = 0.3, 0.42, and 0.46, respectively (chosen to keep the 
bulk modulus fixed). The primary was assumed to be Desolite at 
-40°C with rplr, = 1.5. The curves show that K is smaller for thicker, 
more compliant secondaries. The compliance of the secondary can 
cause K to drop to 20 percent of the value from the formula of 
Vangheluwe. 

IV. SUMMARY AND CONCLUSIONS 

This paper has concerned buckling of dual-coated optical fiber 
caused by compressive stress on the fiber exerted by the coating at 
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Fig. 8-Spring constant versus secondary radius for three Poisson ratios of the 
secondary assuming a Desolite primary at -40°C with rp/rl = 1.5. 

low temperatures. The stress arises because the thermal expansion 
coefficient of the coating is substantially larger than that of the fiber. 

Buckling is one of two mechanisms used to explain microbending of 
the fiber axis, the prime source of added optical loss in the fiber. In 
the other method, lateral pressure imprints irregularities around the 
fiber onto the path of the fiber. This occurs at room, as well as low, 
temperatures and in single-coated, as well as dual-coated, fiber. The 
antidote to lateral pressure is dual coating where the inside primary 
coating buffers the fiber and decouples it from the outside. However, 
too much buffering has been found to produce more added loss at low 
temperatures, presumably due to buckling. 

Two basic ways exist for preventing buckling. The thermal strain 
on the fiber might be decreased, or the strain needed to buckle might 
be increased. 

Thermal strain depends mostly on the secondary layer. Smaller 
secondaries put less strain on the fiber; secondaries of a more com
pliant material or ones with a smaller thermal expansion coefficient 
have the same effect. These changes are compatible with the dictates 
of the simple lateral-pressure model. 

The buckling strain depends on the spring constant K. Thinner 
primaries and, to a lesser extent, thinner secondaries have larger 
buckling strains. Stiffer primary materials and, to a lesser extent, 
stiffer secondary materials provide the same effect. The magnitude of 
these effects is indicated in Fig. 7 for the primary and in Fig. 8 for the 
secondary. In general, reduced buffering provides more resistance to 
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buckling-just the opposite of what the simple lateral-pressure model 
dictates. 

Experimental results indicate that buckling does occur. In the 
silicone/nylon coatings of Yabuta et al.,6 thicker primaries were asso
ciated with substantially more added loss at low temperatures. Cal
culations in Section III showed that the coating with thin primary and 
low added loss at -40°C needs about four times as much strain to 
buckle as the one with thick primary and high added loss at -40°C. 
The primary material (silicone) remains relatively compliant (264 psi) 
at this temperature. The experimental results are consistent with the 
buckling mechanism, but not with the lateral pressure mechanism by 
itself. Similar results were found for fibers in the S5 experiment.7 

Thick primaries of the compliant Hot Melt material performed poorly 
compared with thinner primaries of De Soto, which stiffens at low 
temperatures. This outcome may be explained by the buckling calcu
lations in Section III, which indicate that the spring constant for the 
latter coating is 50 times greater than for the former. 

Nevertheless, the calculated thermal strain was less than the buck
ling strain in all cases, even for the wire of Katsuyama et al. where 
buckling was known to have occurred. The short fall may be explained 
by various factors outside the model, as follows: 

1. Initial bending (e.g., stranding) involves a strain on the fiber, 
which adds to the thermal strain to bring the total closer to the 
buckling strain. 

2. The thermal strain depends on the temperature drop, which was 
taken as 100°C. The precise temperature drop should be measured 
from a reference temperature where the residual stress on the fiber is 
o. Because this temperature is uncertain, the temperature drop is also 
and might be more than 10WC. 

3. Asymmetry of the coating or eccentricity of the fiber in its coating 
in conjunction with thermal stress produces bending moments along 
the fiber because, at equilibrium, moments on the coating must be 
balanced by moments on the fiber. These deformations can arise from 
imperfections in the coating process or lateral pressure in the cable. 
Thus, irregularities associated with lateral pressure can be transmitted 
to the fiber despite the buffering protection by the primary layer. 

4. Thermal bending, a precursor to buckling, would produce a 
steadily increasing added optical loss as temperature drops for strains 
below the buckling strain. 

Other omissions include details of the viscoelastic nature of the 
coating materials, the thermal dependence of the expansion coeffi
cients' the thermal cycling, and thermal gradients. The buckling 
calculations must be regarded as estimates most valuable in making 
comparisons. 
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APPENDIX A 

Calculation of Thermal Stress 

This appendix gives a method for calculating the effective expansion 
coefficient of a dual-coated fiber. The calculation goes beyond the rule 
of mixtures by treating the coupling of the radial displacements of the 
various layers. 

Define cylindrical coordinates (r, (), z) based at the center of the 
coated fiber. The displacement in each of the three regions can be 
represented by 

( ) (

an ) Ur - + bnr 
U = g: = r 6z n = 1, 2, 3. (23) 
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The fiber has n = 1, the primary coating n = 2, and the secondary 
n = 3. This vector function satisfies the Cauchy Navier equation15 for 
displacements and represents a solution without warping (because C 
is independent of n) or angular deformation. 

The strain components are 

1 auo Ur an 
f =--+-=-+b 00 r ao r r2 n 

fOO = auz = C 
az 

fOz = fOr = f rz = O. 

The first invariant of the strain tensor is 

e = frr + fOO + fzz = 2bn + C. 

(24) 

(25) 

Stress components are obtained from the generalized Hooke's law, 

(26) 

which gives 

(Jrr = Ae + 2Gfrr - {3T 

(J zz = Ae + 2Gfzz - {3T, (27) 

where 

E E 2Gv 
(3 = 1 - 2v G = 2(1 + v) A = 1 - 2v' (28) 

ex is the thermal expansion coefficient, and T is the temperature 
change. The material parameters are assumed to depend on the region 
or layer, but they are assumed constant within each layer. 

The unknown coefficients used to describe the displacement U are 
determined from the various conditions. The displacement must be 
bounded, so al = 0; and it must be continuous, so 

and (29) 

where rl, r2, and r3 denote the radius of the fiber, the primary, and 
the secondary, respectively. The radial stress component (Jrr must be 
continuous, so 
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bl(2AI + 2GI) + CAl - (3IT 

= b2(2A2 + 2G2) - a2 2Gdri + CA2 - (32T 

b2(2A2 + 2G2) - a2 2G2/r§ + CA2 - (32T 

= b3(2A3 + 2G2) - a3 2G3/r§ + CA3 - (33 T 

b3 (2A3 + 2G2) - a32G3/r~ + CA3 - (33 T = o. (30) 

Finally, the total longitudinal force or integrated stress must be 0; 
hence, 

1 [ 2 (1) (2 2) (2) (2 2) (3)] 0 2 r 1 (J zz + r 2 - r I (J zz + r 3 - r 2 (J zz = (31) 

or 

rHbl2AI + C(AI + 2Gd - (3IT] 

+ (r~ - ri)[b22A2 + C(A2 + 2G2) - (32T] 

+ (d - d)[b22A3 + C(A3 + 2G3) - (33T] = O. (32) 

As for the moments, they are automatically 0 when the coatings are 
concentric. 

These six linear equations in the six unknowns (a2, a3, bI, b2, b3, C) 
can be solved by standard numerical methods. The object of the 
calculation is the coefficient C, which denotes the thermal strain of 
the structure. When T is set to 1, then Cis iXe , the effective expansion 
coefficient. 

APPENDIX B 

Calculation of Spring Constant 

This appendix gives a method for calculating the spring constant K 

of a fiber within a dual coating. The calculation goes beyond the 
formula of Vangheluwel3 by accounting for the elasticity of the outer 
secondary coating. 

Define cylindrical coordinates (r, 0, z) based at the fiber center. The 
displacement function 

must satisfy the Cauchy Navier equation15 

1 
C = 1 - 2v· (33) 

The outer surface of the secondary is assumed fixed, and when the 
rigid fiber is translated 0 in the x direction, 
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oax = o(cosO ar - sinO an), 

the displacement at r = rl for small 0 is 

U = (~OC~i:OO)' 
This means that the angular dependence, in general, is 

U = (Ur(r) cos 0) 
Uo(r) sin 0 . 

(34) 

(35) 

(36) 

The four solutions of the Cauchy Navier eq. (33) having this angular 
dependence are 

(
Ur(r») (In r/rl - 2 ~ c) ((2 - c)r2 ) (1) (r-2) 
Uo(r) = _ In r/rl '(2 + 3C)r2 , -1 ' r-2 , 

(37) 

as can be checked by direct substitution. The general solution is a 
linear combination of these four with four unknown coefficients for 
each of the two coating layers. 

The total of eight unknown coefficients are determined by eight 
conditions. At rl, 

and at r2, 

are continuous across the interface. These give six equations. The 
other two conditions involve the normal stress components arr and 
TrO, which must be continuous at r2. In terms of U these are 

aUr aUr Ur + Un 
arr = AV'· U + 2J.l-a = (A + 2J.l) -a + A 

r r r 

(38) 

where A = 2J.lvC and the angular dependence of eq. (36) has been used. 
The eight linear equations in eight unknowns can be solved by stand
ard numerical methods. 
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The force on the fiber for the deflection 0 is 

F = r (f.axds = 1211" «(frCos2fJ - Tr() sin2fJ)r1dfJ 
JFiber 0 

(39) 

The stress quantity 

equals 

for the first solution in eq. (37) and is identically 0 for the other three. 
Therefore, when 0 is set to 1, 

K = .. [(AP + I'p) 2 ~ C
p 

+ 21'p Jab (41) 

where p signifies the primary region and a1 denotes the coefficient of 
the first solution, 

(
In r/r1 - 2 ~ c) 

- In r/r1 

in eq. (37), in the primary region. Thus, of the eight unknown coeffi
cients, only one is needed for getting the spring constant. 
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The beam propagation method, based on the parabolic approximation to 
the wave equation, is used in conjunction with Papoulis' redefinition for 
optical fields of Woodward's ambiguity function. A simple derivation'is given 
of Tatarskii's formula for the lateral coherence function, and hence the mean 
intensity profile, of a laser beam propagating through a turbulent atmosphere. 
Statistics of the received signal and the effects of spatial nonstationarity of 
the turbulence can also be deduced using this technique, as can the effects of 
very large-scale variations in refractive index and receiver directivity. 

I. INTRODUCTION 

There has been a recent revival of interest in the propagation of 
laser beams through the atmosphere for communication purposes. 
King et al. l have conduded experiments that show that a laser is an 
effective standby substitute for a microwave link over a clear-air, line
of-sight path of several tens of kilometers. When the microwave link 
is subject to severe multipath fading, the laser signal is found to be 
much more stable. In these clear-air conditions the laser beam is 
mainly affected by the atmosphere's turbulence, which produces a 
spread of the propagating beam in excess of that expected due to 
diffraction. Over a 37-km path the lateral intensity profile of the laser 
beam is found to be random but to have an average Gaussian shape 
with a spread of about 6m between e- l points. 

More than two decades of research on the theory of optical propa-
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gation through random media has been very competently reviewed by 
Strohbehn and others;2 the chapter by Ishimaru3 is particularly rele
vant here. The wide variety of approaches taken by different authors 
is apparent, ranging from the purely physical to the highly mathemat
ical. The present paper seeks to produce a reasonably simple theoret
ical picture, which is accurate both physically and mathematically, 
and which will also be useful for engineering purposes. 

The starting point, as so often elsewhere, is the parabolic approxi
mation to the wave equation,4 but it is used here in a manner that has 
become known as the "beam propagation method.,,5 Other names for 
the method are the "split-step Fourier tech~ique" of Tappert and 
Hardin6 and the "multiple random phase-screen method."7,8 The es
sential idea that makes a simple solution possible is that, because the 
fluctuations in refractive index are so weak and their scale size is so 
large compared to the wavelength, the phenomena of diffraction and 
scattering can be artificially separated. The propagation path is divided 
into many short sections, so that the propagating wave is barely 
disturbed by each section, but their cumulative effect can be consid
erable. 

In each of these sections the irregularities are effectively removed, 
in the form of an accumulated random phase, to one or another of the 
boundary planes. Free-space diffraction is then allowed to occur within 
the now uniform section between the planes. The essential next step 
is that the Fresnel diffraction, which occurs between the planes in 
each of the sections, is described by what Papoulis9 has called the 
"ambiguity function," after the name given by Woodward1o to a similar 
function of fundamental importance in radar. For an optical field the 
ambiguity function was redefined by Papoulis as the Fourier transform 
of the lateral mutual coherence function (i.e., the lateral autocorrela
tion function of the field). The "field ambiguity function" so defined 
has the very useful property that it propagates in a uniform medium 
without changing its functional form. What does change is the argu
ment, in a manner reminiscent of a wave traveling along a transmission 
line. 

On encountering the artificially accumulated random phase at each 
boundary plane, the field ambiguity function is modified appropriately 
but then propagates through the next section again without change. 
This procedure can continue as long as the propagating beam is 
essentially forward scattered, which is true for a laser beam propagat
ing through atmospheric turbulence at least out to 50 km, if not 
farther. Then over the final plane the lateral field autocorrelation 
function is obtained by taking the Fourier transform of the field 
ambiguity function. The mean intensity of the beam is contained in 
the field autocorrelation function as a special case. 
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It is gratifying that application of this simple procedure reproduces 
precisely what Ishimaru3 has described as "Tatarskii's exact result"4 
for the lateral mutual coherence function of a laser beam propagating 
through atmospheric turbulence. In fact, because of its underlying 
physical clarity, the present procedure allows one to go a little farther 
than Tatarskii and describe the statistics of the propagating field in 
more detail, and also to deal with spatially nonstationary turbulence. 

II. ELECTROMAGNETIC BASIS: THE BEAM PROPAGATION METHOD 

In attempting to solve propagation problems in which the scale size 
of the refractive-index irregularities is large compared with the wave
length, and the magnitude of these fluctuations is very small, it is 
often helpful to factor out the term exp( - jkz), assuming propagation 
in the general direction of the z axis. This procedure is analogous to 
factoring out the time dependence exp(jwt). Thus, any phasor com
ponent f(r, t) of the quasi-monochromatic propagating field can be 
written as 

f(r, t) = u(r, t)exp(- jkz), (1) 

where u (r, t) is a slowly varying phasor function of position rand 
time t. The propagation constant k is some convenient mean value. 

As a consequence of the assumed large scale size and tenuous nature 
of the refractive index irregularities, it can be shown4

,1l that the 
function u(r, t), is governed by the parabolic equation approximation 
to the wave equation: 

a2u a2u au 
ax2 + ay2 - j2k az + 2k2nlU = 0, (2) 

where nl (r, t) is the departure of the refractive index from its mean 
value, which will be assumed to be unity. Time fluctuations will be 
ignored in what follows, although they can be incorporated easily if 
required. 

Consider the time-invariant solution of eq. (2) for a wave launched 
from the plane z = o. A well-established approach5

,6,1l is to solve the 
equation in two iterative steps, and will be referred to here as the 
beam propagation method. First assume that there are no variations 
in refractive index, so that nl = o. Then the solution for the field over 
any plane z is given by Fresnel's diffraction formula12 

f( ) = . exp(- jkz) 1CXl 1CXl f(' , ) 
x, y, z J AZ -CXl -CXl x, y , 0 

.exp {- ;: [(X - X')2 + (y - y')2]} dx'dy' (3) 

in terms of the field f(x, y, 0) over the aperture plane z = o. 
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If diffraction now is ignored, by suppressing the first two terms in 
eq. (2), and if the irregularities in refractive index are restored, their 
first-order effect can be obtained from the solution of 

au ok az + J nlU = 0, (4) 

which is, by straightforward integration, 

U(x, y, z) = u(x, y, O)exp(j<I>(x, y)}, (5) 

where 

<I>(x, y) = -k l' n.(x, y, z)dz. (6) 

This is simply the phase induced by the refractive-index irregularities 
along straight-line paths, parallel to the z-axis, from 0 to z. 

Thus the solution of eq. (2) is in the two artificially separated parts 
given by eqs. (3) and (5). The first part allows for diffraction but 
suppresses the effect of the irregularities, while the second part sup
presses diffraction but allows for the effect of the irregularities. The 
two parts of the solution then must be combined in some suitable way, 
as illustrated in the following examples. The first is concerned with 
the nonrandom effect of the overall linear trend of refractive index 
with height, and the second considers the effect of the turbulence
induced, small-scale random irregularities in refractive index. 

2.1 Effect of linear gradient in refractive index 

If the refractive index varies linearly with height, with constant 
gradient g, then over a distance of Llz eq. (6) gives the phase variation 
with height x as linear also, namely as <I>(x) = -kgxLlz. The mean 
linear trend in the atmosphere is usually negative, and so it can be 
seen that the effect of this negative gradient in refractive index will 
be to tilt the advancing wavefront forward through an angle g Llzo If 
this continous forward tilt is interpreted as bending the propagating 
beam, giving it a radius of curvature R, then the angle of tilt would be 
Llz/R. Hence R = g-I, a well-known result.13 But it should be empha
sized that while the beam is being bent it is also experiencing diffrac
tion, according to eq. (3), and so spreads as it bends as it propagates. 

2.2 Effect of turbulent fine structure 

Having seen that the beam-bending effect of the mean linear trend 
in refractive index can be treated separately, consider now a medium 
that is on average uniform but whose refractive index nl (r) is a zero
mean random process. The magnitude of these fluctuations in refrac-
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tive index is typically 10-8
, for homogeneous turbulence conditions, 

with scale sizes of at least several millimeters, which is large compared 
to optical wavelengths. Hence the conditions for the beam propagation 
method to apply are fulfilled. 

Consider a segment of the medium between the beam-launch plane 
z = 0 and the plane z = ~z. If the refractive-index irregularities are 
temporarily ignored, the field over the exit plane z = ~z would be 
given by Fresnel's diffraction formula of eq. (3). Now restoring the 
irregularities but temporarily suppressing diffraction, their effect is 
accounted for in the accumulated random phase along parallel ray 
paths of length ~z: 

l
~Z 

<I>(x, y) = -k ° nl (x, y, z )dz. (7) 

The statistics of this random phase process will be important later 
and so are derived here. 

Since the refractive-index fluctuation process nl(x, y, z) is zero 
mean, 

(<I>(x,y» =0, (8) 

where the sharp brackets indicate taking the expectation. 
If nl is wide-sense stationary, with autocovariance 

Bnl(~' 1], r) = (nl(x, y, z)nl(x + ~,y + 1], z + r» (9) 

and variance 

(T~1 = B n1(0, 0, 0), 

then the autocovariance of the phase process 

l
~Zl~Z 

B<I>(~' 1]) = k2 
0 ° (nl(x, y, z)nl(x + ~,y + 1], z'»dzdz'. 

This is equivalent to14 

(10) 

(11) 

(12) 

Now it is convenient to assume that the width of the section ~z» ro, 
the scale size of the irregularities in the z direction, and so 

(13) 

It also follows from the condition ~z » ro that the phase over the 
exit plane can always be taken to be Gaussian, whether the refractive 
index itself is Gaussian or not, as a consequence of the central limit 
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theorem. Hence, the random phase process is completely described by 
the autocovariance of eq. (13), and its variance can be taken to be of 
the order 

(14) 

in which ro is sometimes referred to as the integral scale size of the 
refractive index in the direction of propagation. 

Since the beam propagation method is, in essence, a perturbation 
technique, applied locally, it is important that over each section the 
phase variance O"~ « 1. In applications such as laser beam propagation 
through atmospheric turbulence, this condition is easily met, even 
with the constraint that ~z » roo 

III. STATISTICAL FIELDS: THE AMBIGUITY FUNCTION 

The example of Section 2.2 will now be our main concern. So far 
we have the field distribution over the plane z = ~z as fo(x, y, ~z) 
exp{j<I>(x, y)}, where fo(x, y, ~z) is the free-space diffraction of the 
original aperture field and <I>(x, y) is the random phase process of eq. 
(7). If the field over the plane ~z is now allowed to diffract, Fresnel's 
diffraction formula would give the field over the next plane, assuming 
that the intervening region is free space. The irregularities could then 
be replaced and a different random phase process could account for 
them over this next plane. This new field then can be allowed to 
further diffract, and so on. 

Over some plane z, well into the random medium, the phasor field 
component f(x, y, z) will itself be random. The property of greatest 
utility would be its lateral mutual coherence function: 

r(x, y; ~, 11; z) = (f*(x - U2, y - 11/2, z)f(x + U2, y + 11/2, z), (15) 

otherwise referred to as the lateral field autocorrelation function. (The 
asterisk denotes complex conjugate.) Hence the mean intensity 

(I(x, y, z) = (If(x, y, z) 12) = r(x, y; 0, 0; z). (16) 

However, r( ) is not simple to calculate,2 whereas its Fourier trans
form is. Papoulis9 introduced the Fourier transform of r( ), calling it 
the ambiguity function of the optical field, and showed that it greatly 
simplified the calculation of Fresnel diffracted fields. In particular, a 
very useful property of the ambiguity function is that it propagates 
without changing its functional form in a uniform medium; what does 
change is the argument of the function. 

The definition of ambiguity function that will be used here, for the 
field over the plane z, is 
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A (J.t, v; ~, 17; z) 

1 100 100 

= "}..2 -00 -00 r(x, y; ~, 17; z )exp{jk(J.tx + vy)} dxdy. (17) 

If the medium between this plane z and the plane z + ~z is uniform, 
it can be shown that, under conditions when Fresnel diffraction occurs, 
the ambiguity function over the plane z + ~z is simply9 

A(J.t, v; ~, 17; z + ~z) = A(J.t, v; ~ - J.t~z, 17 - v~z; z). (18) 

The way in which the ambiguity function and this relation are used is 
described in the next two sections. 

IV. BEAM WAVE PROPAGATION THROUGH TURBULENCE 

Consider a beam of radiation launched into a turbulent medium in 
which the conditions for the application of the beam propagation 
method are satisfied, namely that the magnitude of the fluctuations 
in refractive index is very small and their scale size is very large in 
comparison with the wavelength of the propagating beam. If the field 
is launched from an aperture plane at z = 0, over which it is f(x, y, 0), 
the ambiguity function over the z = 0 plane is give~ by eqs. (15) and 
(17) as 

A (J.t, v; ~, 17; 0) = Ao(J.t, v; ~, 17) (19) 

1 100 100 

= "}..2 -00 -00 f*(x - ~/2, y - 17/2, 0) 

·f(x + ~/2, y + 17/2, O).exp{jk(J.tx + vy)}dxdy. (20) 

If the propagation path is divided into short sections of width ~Zi, 
i = 1, 2, ... ,N, and if it is assumed that over each section the medium 
is uniform, with the effect of the irregularities swept forward onto the 
exit face, then the ambiguity function just to the left of the plane z = 

~Zl is 

A(J.t, v; ~, 17; ~zl) = Ao(J.t, v; ~ - J.t~Zb 17 - V~Zl) (21) 

with eq. (20) substituted. 
The accumulated phase can be inserted at this point by writing 

f(x, y, ~zt) = f(x, y, ~zl)exp{j <p(x, y)}, (22) 

where the phase <p( x, y) is given by eq. (7) and has the statistical 
properties derived in Section 2.2. Now assuming that the <p(x, y) 
process is stationary, over the lateral extent of the beam within the 
first section, it follows that the ambiguity function at the exit face of 
the section is 
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A(IL, v; ~, 71; dzt) 

= Ao(lL, v; ~ - ILdZl, 71 - v~zl)expIB<I>I(~' 71) - B<I>I(O, O)}, (23) 

where the phase auto covariance function B<I>I(~' 71) is given by eq. (13), 
and the argument of the exponential is sometimes referred to as the 
phase structure function. So 

(24) 

with the phase variance over this first section given by 

(25) 

where U~l is the variance of the refractive index fluctuations, ~o is its 
scale size in the direction of propagation, and p( ) is the normalized 
phase autocovariance function. Thus eq. (23) is equivalently 

A(IL, v; ~, 71; ~zt) 

= AO(IL, v; ~ - ILdZl, 71 - vdzl)expl-utl[l - p(~, 71)]}. (26) 

It will be recalled from Section 2.2 that while ~Zl » ~o, it is to be kept 
small enough for utI « l. 

In the next section, of width dZ2, again artificially separating the 
phenomena of scattering and diffraction, by analogy with eq. (26) 

A(IL, v; ~, 71; dZl + dZ!) 

= A (IL, v; ~ - ILdZ2, 71 - VdZ2; dzt)expl- ul2[1 - p(~, 71)]), (27) 

in which it has been assumed that the turbulence is statistically 
uniform along the beam. (This condition can be relaxed, and clearly 
ought to be in some circumstances, but at the expense of greater 
complication.) Combining eqs. (26) and (27) gives 

A(IL, v; ~, 71; dZl + dZ!) = AO(IL, v; ~ - lL[dZl + dZ2], 

71 - V[dZl + dZ2])expl-ul2[1 - p(~, 71)]} 

.expl-utl[l - p(~ - ILdZ2, 71 - VdZ2)]}. (28) 

This argument can be continued out to a distance 
N 

Z = L dZi 
i=l 

(29) 

provided only that the propagation is essentially in the forward direc
tion. This is ensured by the large scale size of the turbulence compared 
to the wavelength, and the small magnitude of the refractive index 
fluctuations. Then the ambiguity function at the plane Z is 
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A (~, v; ~, 17; z) = Ao(~, v; ~ - ~Z, 17 - vz) 

·exp {- J . .?. [1 -P (~ - I" {Z - it. dz}. 
n - V {Z - i~. dZi})]}' (30) 

in which 

(31) 

and with eq. (20) substituted. 
The ambiguity function of eq. (30) can be written in integral form 

if the .6.zn can be taken to be sufficiently small. In the case of a Re
Ne laser beam propagating through a turbulent atmosphere, .6.zn can 
be of the order of a meter, which is small enough when it is realized 
that both ~ and v are always small. The assumption of the statistical 
uniformity of the turbulence throughout the length of the path is still 
maintained, and so 

A(~, v; ~, 17; z) = Ao(~, v; ~ - ~Z, 17 - vz) 

·exp {- k2~,!O [Z - l' p(~ - I"Z', n - VZ')dZ']}. (32) 

Finally, the lateral mutual coherence function is given by the inverse 
Fourier transform of eq. (17) as 

r(x, y;~, 17; z) 

= i: i: A (I", V; ~, n; z)exp{- jk(l"x + vylldl"dv (33) 

with eq. (32) substituted. This result is identical in form to Tatarskii's 
exact solution of the differential equation for the mutual coherence 
function, quoted by Ishimaru.3 This agreement is encouraging, in that 
Tatarskii's approach4 is basically more rigorous but is physically 
somewhat obscure, whereas the present method keeps the physical 
meaning of the mathematics well to the fore. As an example, the 
method given here avoids Tatarskii's assumption that the refractive 
index is delta-function correlated in the direction of propagation, 
which is a physical impossibility. In fact it seems that this so-called 
Markov approximation means physically that the induced phase proc
esses in each section are statistically independent. Also, the summa
tion form of the ambiguity function of eq. (30) could be advantageous 
in applications to paths along which the turbulence is non stationary. 
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Incidentally, the mean field obtained from eq. (22), by taking its 
expectation, is 

(34) 

where fo( ) is the field diffracted from the original aperture field in 
the absence of irregularities. Carrying out the same procedure over the 
N sections of the path gives 

{
I 2 2 } (f(x, y, z) = fo(x, y, z)exp -"2 k unJoz , (35) 

which is also referred to as the coherent part of the field. Note that 
when the total accumulated phase variance 

(36) 

becomes much larger than unity, the coherent field becomes negligible. 
Equations (35) and (33) give the first and second statistical mo

ments, respectively, of the propagating field. The physical mechanism 
also strongly suggests, as a consequence of the central limit theorem, 
that the field is complex-Gaussian distributed. The statistical descrip
tion of the random propagating field is therefore complete. 

v. PROPAGATION OF A LASER BEAM THROUGH ATMOSPHERIC 
TURBULENCE 

To find the mean intensity and other characteristics of a laser beam 
propagating through a turbulent atmosphere, it will be assumed that 
the beam is launched in its fundamental mode with a plane wave front, 
that is, 

{ 
X2 + y2} 

f(x, y, 0) = fo exp - w5 ' (37) 

where Wo is the beamwaist parameter and fo is the complex amplitude 
at the center of the beam. The ambiguity function for this field is, 
from eq. (20), 

Equations (32) and (33) then yield the lateral mutual coherence 
function in this case as 
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'iTwol 10 I 'iT Wo 2 2 2 2100 100 

{ 2 2 } r(X, y; ~, 11; Z) = 2A2 -00 -00 exp - 2A2 (jl + V ) 

{ 
(~- jlZ)2 + (11 - vz)2} 

·exp -
2W5 

·exp {- k',?",lo [Z - J.' p(~ - I'Z', ~ - VZ')dZ']} 
. exp{- jk(jlX + v y) }djldv, (39) 

and the mean intensity is obtained from this by setting ~ and 11 equal 
to O. 

It is easily verified as a check, using a standard integral, that 
eq. (39) in the absence of any irregularities in refractive index (i.e., 
(Tnl = 0) gives the correct intensity formula for free-space propagation 
of a laser beam,15 namely, 

I 10 12W~ {2(X
2 + y2)} 

Io(x, y, z) = w2(z) exp - w2(z) , (40) 

where the beamwaist parameter 

w(z) = wo V1 + (,,>';S (41) 

depends on distance. The particular distance 

'iTW~ 
ZF=--

A 
(42) 

usefully indicates the transition from the near field (z « ZF), when 
the beam is essentially collimated, to the far field (z » ZF), when the 
beam spreads out linearly with distance. In the experiment of King et 
aI.,1 for example, with the beamwaist at launch Wo = 8 cm and the 
wavelength 0.63 jlm, the distance ZF = 32 km. 

To obtain some analytical results for the mean intensity, it will be 
necessary to resort to some approximation. One way of doing this is 
to replace the variable z' in the inner integral of eq. (39) by the 
constant z. Then the mean intensity, using eq. (16), is given approxi
mately by 

·exp {_Z2 I'::t} expl-0"~T[1 - p(- I'Z, - vz)li 

.exp{- jk(jlx + vy)}djldv, (43) 
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in which utr [see eq. (36)] is the total accumulated phase variance 
over the length of the path. Equation (43) can also be written equiv
alently, by substituting 

JlZ = -~ and vz = -TJ, (44) 
so that 

7rW51/0 
12100 100 

{(

7r2W5 1) 2 2 } (I(x, y, z» = 2A2Z2 -00 -00 exp - 2A2Z2 + 2w5 (~ + TJ ) 

{
. k(~x + TJY)} .exp{- utr[1 - p(~, TJ)]lexp J Z d~dTJ· (45) 

If now the middle exponential in eq. (45) is written as the sum of 
two parts, as 

exp{-utr[1 - p(~, TJ)]l 

= exp{-utr} + exp{-utrHexp{utrp(~, TJ)} - 1], (46) 

then the mean intensity formula of eq. (45) conveniently splits into 
the sum of the coherent intensity and the incoherently scattered 
intensity, namely, 

(I(x, y, z» = Io(x, y, z )exp{-utr} + Is(x, y, z), (47) 

in which Io(x, y, z) is given by eq. (40) and 

7rW51/012 2 
Is(X, y, z) = 2A2Z 2 exp{- u~rl 

o I I exp {- (;~~~ + 2~~) (e + ~2)} 

{
. k(~x + TJY)} . [exp{utrp(~, TJ)} - l]exp J z d~dTJ. (48) 

It is interesting to examine the two extreme cases of utr « 1 and utr 
» 1, which correspond respectively to short and long propagation 
paths. 

5.1 Short paths 

If, according to eq. (36), the path length z is short enough to make 
utr« 1, then eq. (47) shows that the coherent part will predominate. 
Appropriate approximations in eq. (48) give the incoherent scattered 
power in this case as 

7rw51 10 12 2 100 100 

Is(x, y, z) = 2A2Z 2 U~r -00 -00 p(~, TJ) 

oexp{ - (;~~~ + 2~~) (e + ~2)} expv k(~x : ~y)} d~d~o (49) 
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If it is assumed that the initial laser beam width Wo » a, where a is 
the typical scale size of the turbulence (of the order of 1 cm in the 
atmosphere), then the first exponential term in eq. (48) can be ignored 
and the mean intensity profile of the scattered field is the Fourier 
transform of p(~, 1]). 

Thus, over short paths the laser beam will be only slightly dimin
ished in comparison to the free-space situation, and the energy lost 
will be scattered. When Wo » a there will be an intense central spot 
surrounded by a faint halo of scattered light. The form of the scattered 
intensity profile will be determined by the lateral correlation of the 
turbulent refractive-index fluctuations. On the other hand, if Wo « a 
the laser beam will snake its way through the turbulence, preserving 
its original profile but continually changing its direction in a random 
manner. 

5.2 Long paths 

If the path length is long enough to make (T~T» 1, then according 
to eq. (47) the coherent part will be negligible, and so eq. (45) can be 
used directly to describe the now completely scattered field. Examining 
the middle exponential term in the integrand of eq. (45) reveals that 
for very large (T~T its behavior will be dominated by the behavior of 
p(~, 1]) near the origiJ?.16 For turbulence 

e + 1]2 
p(~, 1]) = 1 - 2 + ... , 

a 
(50) 

where a is now to be interpreted as the dissipation scale size of the 
assumed uniform and isotropic turbulence. (This assumption may not 
be true of course, but any naturally occurring refractive-index fluctua
tions will have an autocorrelation function that behaves parabolically 
in the neighborhood of the origin.17) Substituting eq. (50) into eq. (45) 
gives the mean intensity profile as 

7rw51/012 
(I(x, y, z) = 2A2z2 

·f f exp{-(;~~~+ 2~ij+ :~;) (e + 'I2)} 

.exp {; k(~x: 'IY)}d~d'l. (51) 

So, if Wo » a, the (T~T/a2 term dominates, and a standard integral 
yields 

(52) 
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where now 

(53) 

Equation (52) gives the mean intensity profile as being Gaussian in 
shape, as observed in the experiment of King et al. l The beamwaist 
parameter depends on Z3/2, since a<l>T varies as J;,. Some care must be 
taken with the longitudinal integral scale ~o of the turbulence, which 
is needed to evaluate a<l>T (see eq. 36). It is tempting to identify it with 
the dissipation scale size a, used in eq. (50), but that is probably an 
underestimate. On the other hand, Ishimaru's identification of it with 
the outer scale of turbulencel8 seems like an overestimate. The cau
tionary remark at the end of Section 5.3 should also be noted. 

5.3 Lateral field autocorrelation 

The autocorrelation of the propagating field over a plane is given 
by the lateral mutual coherence function of eq. (39). When the same 
approximation as for the intensity (eq. 43) is made, namely, replacing 
z' in the inner integral of eq. (39) by z, the lateral mutual coherence 
function becomes 

ITwol,o 1 IT Wo 2 2 2 t 2100 100 

{ 2 2 } 
r(x, y;~, 1]; z) = 2A2 -00 -00 exp -7(11 + v) 

{ 
(~- IlZ)2 + (1] - VZ)2} 

·exp -
2w~ 

oexp { -.,-;rl1 - p(~ - I'Z, ~ - vZ)l}exPI - j k(I'X + vy)}dl'dvo (54) 

Making the substitutions p = ~ - IlZ, q = 1] - v Z gives 

ITw~1 to 12 
r(x, y; ~, 1]; z) = 2A2Z 2 

o I I exp {- ;~~~ [(~ - p)2 + (~ - q)21} 

{ p2 + q2} { } 
·exp - 2w~ exp - a~T[l - p(p, q)] 

{ 
. k(~x + 1]Y)} {. k(px + qy)} d d 

. exp - J exp J p q. 
Z Z 

(55) 

In the long-path limit, when a~T» 1, and making use of eq. (50), 
the lateral mutual coherence function now becomes 
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7rW61fo1
2 {.k(~X+17Y)} 

r(x, y; ~, 17; z) = 2A2Z 2 exp -} z 

.{ {exp {- ;~~~[(~ - p)' + (~- q)21} 

·exp {- (2~5 + :t;) (p' + q2)}exp {j k(px z+ qy)} dpdq. (56) 

Performing the integration, and expressing the result in terms of the 
long-path mean intensity of eq. (51), gives 

{ 
. k(~x + 17Y)} 

r(x,y;~, 17; z) = exp -} z 

.exp {- ;~~~ (~2 + ~2)} (I(x, y, x». (57) 

It should be remembered, however, that this result is based on the 
approximation made in deriving eq. (54) from eq. (39). The physical 
significance of this approximation is now clear and is the following. 

In effect, the accumulated random phase along the path has been 
incorporated in a single random phase-changing screen placed just in 
front of the radiating laser aperture. This observation follows fTom a 
very useful' result given in Ratcliffe/6 which is that the angular 
correlation function for the far field is the Fourier transform of the 
magnitude squared of the aperture field distribution. Using this result, 
one would expect the scattered field to be initially correlated over 
angles of the order of A/(7rWO). But that with increasing z, as the 
magnitude of the field becomes more finely divided, the lateral corre
lation scale size would be less than the AZ/(7rWo) indicated by eq. (57). 
This speculation is borne out by some computer simulations.19 A better 
approximation might be to replace the inner integral of eq. (39) by 
zp(~ - J.Lz/2, 17 - vz/2). This would move the single equivalent random 
phase-changing screen to a point midway along the path. However, 
neither approximation is particularly satisfactory, and it is obviously 
safer to use the unapproximated eq. (39), although this would probably 
require numerical evaluation. 

VI. CONCLUSIONS 

The beam propagation method, based on the parabolic approxima
tion to the wave equation, has been applied to the propagation of a 
laser beam through the clear but turbulent atmosphere. Papoulis' 
extension to optical fields of Woodward's ambiguity function was used. 
The resulting formula for the lateral mutual coherence function of the 
propagating laser beam, and hence its mean intensity profile, agrees 
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with that of Tatarskii. The method has the advantage over alternative 
approaches of greater physical clarity. Incorporation of the effects of 
very-large-scale irregularities and of receiver directivity is then very 
simple, as also is the estimation of signal statistics and allowing for 
the consequences of spatial nonstationarity of the turbulence. 
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The spatial (three-dimensional) radiation characteristics of directive anten
nas are often needed in radio interference calculations and predictions. Pre
sented is a method that allows a fast computation of the spatial radiation 
envelope characteristics of antennas from measured pattern information. This 
is achieved by fitting the measured data to simple functional forms that are 
based on salient physical properties of the antennas. An example is given in 
which radiation envelopes for a pyramidal horn-reflector antenna, widely used 
in AT&T service, are calculated from measured data. Superpositions of quad
ratic functions to fit main radiation lobes and logarithmic functions to repre
sent the side-lobe envelopes are being used, and good agreement with the 
measured data is demonstrated. 

I. INTRODUCTION 

Ground scattering is a major source of interference in microwave 
communication links.1 Its analysis involves repeated computations 
incorporating the antenna directivity in different directions through
out its three-dimensional (3D) coverage. 

For a mathematical representation of the 3D directivity pattern of 
the antenna to be applicable for such purposes, it should be compatible 
with the data storage and computability constraints and commensur
ate with the accuracy requirements of the analysis package. Direct 
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representation of measured data, for instance, requires storage of 
densely sampled data, about 20 points per beamwidth in every mea
surement cut, and a fraction of a beamwidth separation between cuts, 
resulting in the immense number of 400,000 points in the data storage 
for a 10 -beamwidth antenna. Interpolation methods, based on the 
bandlimitedness of the antenna spatial spectrum, can reduce the 
required database by at least two orders of magnitude,2,3 but many 
applications require even further simplicity. Such a simplification can 
be offered by approximating the radiation pattern by its envelope only 
and disregarding the detailed side-lobe structure, which varies from 
one antenna unit to another of the same type and varies rapidly with 
frequency. 

The envelope surface, representing a local angular average (or peak 
cover) of the radiation pattern, is much smoother and more repeatable. 
Its generation still requires all side-lobe peaks, and any general pro
cedure of surface matching is not as straightforward and simple as 
desired. A major reduction in complexity may be achieved when use is 
made of salient features of the antenna. It is demonstrated, in what 
follows, that a complex surface may be well approximated to a high 
degree of accuracy with relatively simple analytic expressions by 
relying on basic antenna features. 

It is worth mentioning here that simple models, using a single skirt 
function, have found use for specifications,4,5 but their approximation 
is much too crude for other applications. 

The approximation to the radiation pattern of the Pyramidal Horn
Reflector (PHR) antenna,6 widely used by AT&T Communications, is 
worked out as an example encompassing only four coefficients in each 
region, out of a lookup table with 29 constants, while maintaining 
tight match over the main beam and no more than 5-dB deviation 
from the side-lobe peaks throughout. This work was briefly summa
rized in Ref. 7. 

II. SURVEY OF PERTINENT ANTENNA FEATURES 

2.1 Symmetries in the antenna pattern 

The field distribution in a radiating aperture is transformed to the 
far field via the Fourier Transform (FT), 

F(u, v) ex: 1 dx J dyf(x, y)e-jk(xu+yv) 
aperture 

(see Fig. 1), where 
u = sin () sin ¢ 

v = sin () cos ¢, 

and k, being the wave number, equals (27r)/"A. 
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Fig. l-Coordinate systems for the pyramidal horn-reflector antenna. 

For any cut through the z axis (perpendicular to the aperture), one 
may rotate the coordinates to align the cut with the u and v axes and, 
thus, reduce eq. (1) to a one-dimensional FT 

F(u, 0) oc i dxe-jkxu i dyf(x, y), 
aperture aperture 

(2) 

where the symmetry rules of Table I apply. 
The aperture of the PHR antenna, for example, is tilted and not 

perpendicular to its main beam boresight (see Fig. 1). In the vertical 
plane, the aperture distribution is, therefore, not real, and the resulting 
radiation pattern not symmetrical. A simple computation technique 
by which the field is projected onto a virtual vertical aperture is widely 
used (see Refs. 8 through 10 in connection with the PHR antenna) 
and produces a symmetrical pattern in the vertical plane, which is 
obviously in error. In the horizontal plane, however, the aperture is 
perpendicular to the pattern boresight and is symmetrical. Further, 
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Rule 

1 

2 
3 

4 

Table I-Aperture symmetry rules 

Aperture Distribution 

f(x) real 2 

or f(x) = If(x) I eN(,,) 
f(x) = ±f(-x) 
f(x, y) = f,,(x)fy(y) 

Radiation Pattern 

IF(u)1 =FI(-u)1 
arg F(u) = -arg F(-iu) 
F(u) = ±F(-u) 
F(u, (}) = Fu(u)Fv(v) 
f,,(x) < -Fu(u) 
fy < -Fv(v) 
F(u, v) = Fn(w)e-jn~ 

w = ../u2 + v2 

<I> = tg-1(u/v) 
(Hankel transform) 

Table II-Asymptotic power density 
drop-off for rectangular distributions 
Rectangular Aperture 

Distribution 

Uniform 
Cosine 
(Cosine)2 
(Cosine)3 
Taylor 
Dolph-Chebyshev 

Asymptotic Power 
Density Drop-Off 

u-2 

u-4 

u-6 

u-8 

u-2 

Constant 

with the side walls of the aperture tilted, the field is not separable 
(rule 3 in Table I), nor is the far field. 

2.2 Asymptotic drop-off of the radiation pattern envelope 

The FT relationship between the aperture field and the radiation 
pattern may be evaluated asymptotically for large u. By integrating 
by parts one gets 

F(u) = J.b f(x)e-jkx"dx 

00 (l)n+l = L - f(n)(x)e-j[kxu+(n-l)1r/211~, 

n=O U 
(3) 

which represents the radiation pattern as an asymptotic series of 
diffraction terms by discontinuities at the aperture edges. The leading 
term in that inverse power series is determined by the order of the 
derivative of the aperture illumination that is discontinuous at the 
edges. A representative list of aperture distributions, along with the 
resulting power density drop-off, is listed in Table II (for an extensive 
list, refer to Ref. 11). 

Phase-modulated aperture distributions (e.g., wide flare horns, 
shaped beam antennas) may have an additional, nondiffraction con-
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Table III-Asymptotic power 
density drop-off for circular 

distributions 

Circular Aperture Asymptotic Power 
Distribution Density Drop-Off 

Uniform u-3 

1 - (p/a)2 u-5 
[1 - (p/a)212 u-7 

[1 - (1I"/a)~3 u-9 

Circular Taylor u-3 

tribution resulting from saddle-point integration, which applies prin
cipally to the main beam (see, for example, Ref. 12). 

The radiation pattern of a planar aperture with rectangular sepa
rable distributions (rule 3 in Table I) is a product of the principal 
plane patterns. Polar separable distributions generate patterns with 
drop-off rate U-n

-(1/2) by integrating the Hankel transform13 by parts 
and using asymptotic expressions for the Bessel functions. Represent
ative circular distributions are listed in Table III.14 Discrete element 
construction of the aperture distribution adds grating lobes to the 
antenna pattern when the elements are periodically displaced. The 
grating lobes are isolated, however, and their location can be predicted 
from the array structure. 

A wedge diffraction pattern is a product of axial and cross patterns, 
with the latter culminating at the shadow boundaries of the incident 
and reflected illuminations and decaying from it as (sin "1/2)-1 for a 
thin wedge or as (sin 3"1/2)-1 for a right-angle wedge,15 "I being the 
angle from the shadow boundary. 

Diffraction by strips and cylinders is similarly a product of axial 
and cross patterns, where Snell reflection rules apply to the axial 
pattern. The diffraction pattern thus forms a cone around the axis, 
azimuthally and axially weighted by the respective pattern behavior. 

2~'3 Reconstruction of the antenna 3D radiation envelope approximation 

The above survey shows simple pattern behavior for elemental 
radiators when represented in their natural coordinate systems. The 
generic form 

F(u)(dB) = a - b loglOu (4) 

may be used on each of the principal axes of the pattern of a separable 
distribution or edge diffraction and on representative radial cuts for a 
nonseparable distribution where azimuthal interpolation functions can 
close the gap. Paraboloids, circular or elliptical, are used to match the 
peak regions. 
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Contributions to the antenna radiation pattern come from the 
illumination of the aperture and its edges, diffraction by the feed and 
structural members, and the weather cover. All these can be classified 
by the categories surveyed in the previous section, and the character
istic pattern of each can be traced on the 3D antenna pattern in 
regions where it dominates. These traces are easiest to identify on the 
sin 0, 1> polar plot of the antenna pattern, pivoted around the boresight, 
where they take elliptical shapes. For instance, an edge slanted by an 
angle a from boresight (z axis) in a plane slanted by {j from the xz 
plane, diffracts the outgoing wave on a cone, the trace of which is an 
ellipse with axes 

a = sin a 

b = (1/2) sin 2a 

DIFFRACTION BY A SLANT EDGE 

.. 
: ~ ------------.. z ~ 

DIFFRACTION CONE TRACE 
ON THE RADIATION SPHERE 

x 

a = sin 0: 

b = 1/2 sin 20: 

Fig. 2-Projections of the edge diffraction cone. 
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tangent to a line through the bore sight forming an angle {3 with the y 
axis (see Fig. 2). 

Once skeleton shape matching is obtained, parameters of eq. (4) are 
adjusted to match the envelope of each contributor in its natural 
coordinate system. The partial patterns are then retransformed to the 
antenna coordinate system where final patch up might be required in 
transition regions. 

The desired application of the radiation envelope approximation 
should determine the coordinates of representation and the transfor
mation formulas. In analyzing scattering interference in terrestrial 
transmission, for instance, the azimuth (AZ)-elevation (EL) coordi
nate system blends with the computations of the model much better 
than 0, ¢ coordinates, and the transformations and approximations 
are best done directly in that representation (see Fig. 1). 

III. THE PYRAMIDAL HORN-REFLECTOR ANTENNA PATTERN 

The PHR antenna is extensively used in terrestrial microwave links 
(see Fig. 3). The measured data of the frontal hemisphere of its 3D 
radiation pattern at 4 GHz consists of 91 ¢ cuts made every 10 with a 
sampling rate of 0.08 0 totaling about 200,000 measured points.9 The 
sin 0, ¢ polar plot of its radiation distribution for horizontal polariza-

WEATHER COVER--

SIDE BLiNDER---

BOTTOM-EDGE BLiNDER--

Fig. 3-The AT&T pyramidal horn-reflector antenna. 
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Fig. 4-Radiation pattern for the pyramidal horn-reflector antenna of Fig. 3 in sin (), ¢ 
coordinates at 3900 MHz, horizontal polarization. 

tion is shown in Fig. 4, truncated at 60 dB below the main beam peak, 
while the accompanying 3D pattern is shown in Fig. 5 in AZ-EL 
coordinates. The trace a in Fig. 4 could be matched to an ellipse with 
a = 14.5°, {3 = 14.5° and identified as side edge diffraction. The trace 
b, on the other hand, matches an ellipse with a = 3.6°, {3 = 14.5° 
corresponding to the side blinder (see Fig. 3).16 A closer look at the 
side blinder attachment detail shows a step at the aperture edge, 
allowing for the aperture edge diffraction to dominate on one side and 
to be shadowed by the side blinder on the other. The large diffused 
lobe at d is due to reflection by the weather cover emerging down after 
a second bounce from the reflector (see Fig. 6), while the one at c is a 
spillover of the horn field illuminating the top edge of the reflector. 
The flare of the side-lobe ridge at the top and at the bottom is 
attributed to the curved top edge of the aperture. 
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Fig. 5-Radiation pattern for the pyramidal horn-reflector antenna in AZ-EL coor
dinates at 3900 MHz, horizontal polarization. 

The aperture field of the PHR antenna has the TElO-mode distri
bution prevailing in the pyramidal horn, blown up by the reflector. 
The horizontally polarized field strongly illuminates the side walls but 
is much weaker at the upper and bottom edges. The case is reversed 
with vertical polarization as shown in Figs. 7 and 8; the side wall 
diffraction is highly suppressed, while that of the top and bottom 
edges is very strong at the center and decays to the sides. The spillover 
lobe, c, is much stronger, but the window lobe, d, is similar to that of 
the horizontal polarization. 

IV. THE RADIATION ENVELOPE APPROXIMATION FOR THE PHR 
ANTENNA 

The contributors to the radiation pattern, identified by examination 
of both the pattern and the antenna, are aperture illumination taper, 
top edge (curved), bottom edge, side edges (slanted a = 14.5°, {3 = 
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WEATHER COVER 
_---(1-mm FIBERGLASS WINDOW) -, 

\ ~,I 
/ / I 

A-~~~-r~--~-----/-T/+- / I 
/ / I 

\ // / / 
'y// // II 

\ / / / I 

\ //..'{/ \ / I 
\ \ / / \ )/ / 

~
\ X / \ / \ II _BOTTOM-EDGE 

-- BLINDER 

\ \ \ 
\ \ \ \ 
\ \ \ \ 
\ \ \ \ 
\ \ \ \ 

\ \ \ \._-WINDOW LOBE 

\ \ ~ \ 
\ \ \ \ 

\ \ " \, , 
Fig. 6-Pyramidal horn-reflector antenna with bottom-edge blinder and window lobe. 

14.5°), side blinders (slanted a = 3.6°, (3 = 14.5°), weather cover 
(window lobe), top-edge spillover, and bottom-edge blinder (optional). 
Each of these contributions is approximated by the following generic 
function in the peak regions: 

(6) 

where gmax is the peak level in decibels below the main beam peak, U 

and v are the local principal plane coordinates [see eq. (1)] for each 
contributor, and Ku, Ku are the parabolic coefficients to be matched. 
In the fall-off regions, 

(7) 

supplies the envelope, with au, au, bu, bu coefficients to be matched. 
The local coordinate systems are then transformed to the antenna sin 
AZ, sin EL coordinate system for preserving computational economy 
in the repeated transformations between the antenna and the scatter
ing modeF coordinates. Such a simplification is made possible by the 
fact that the antenna bore sight is almost horizontal and its azimuthal 
plane aligns with that of the scattering model to enough accuracy. The 
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Fig. 7-Radiation pattern for the pyramidal horn-reflector antenna in sin 0, ¢ coor
dinates, vertical polarization. 

sin AZ, sin EL coordinate system is presented in Fig. 1 and is related 
to the spherical coordinates via 

sin EL = sin () sin ¢ = u 

sin AZ = sin () cos ¢I J1 - sin2 
() sin2 ¢ 

and 

cos () = cos AZ cos EL 

sin ¢ = sin ELI J1 - cos2 AZ cos2 EL. 

The top edge contribution is flared to ±15° by scaling the AZ coordi
nate input to eq. (7). 

The partial contributions to the radiation envelope thus obtained 
are drawn in Figs. 9 through 12 and 14 through 17 for horizontal and 
vertical polarizations, respectively. The overall radiation envelopes, 
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Fig. 8-Radiation pattern for the pyramidal horn-reflector antenna, vertical polari
zation. 

drawn in Figs. 13 and 18 for these polarizations, respectively, are then 
represented by the largest partial contribution at every point, all the 
rest being ignored. Note that the three contributions aperture illumi
nation taper, top edge, and bottom edge have been combined into one. 
The PHR antenna radiation envelope can, therefore, be well approx
imated by single functions of the type (6) or (7) in every region 
characterized by their respective coefficients. The total number of 
constants used by the program for each polarization is 36, only four 
or five of which are used in any individual function. Also, transfor
mations using eq. (5) are required for the side edge and side blinder 
contributions. 

v. SUMMARY 

A procedure was described by which a simple and computationally 
economical mathematical model can be constructed to approximate 
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Fig. 9-Partial radiation envelope due to aperture and top and bottom edges, hori
zontal polarization. 
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Fig. lO-Partial radiation envelope due to right edge, horizontal polarization. 
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Fig. ll-Partial radiation envelope due to window lobe, horizontal polarization. 
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Fig. 12-Partial radiation envelope due to spillover, horizontal polarization. 
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Fig. 13-0verall radiation envelope for the pyramidal horn-reflector antenna, hori
zontal polarization. 
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Fig. 14-Partial radiation envelope due to aperture and top and bottom edges, vertical 
polarization. 
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Fig. 15-Partial radiation envelope due to right edge, vertical polarization. 
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Fig. I6-Partial radiation envelope due to window lobe, vertical polarization. 
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Fig. 17-Partial radiation envelope due to spillover, vertical po~arization. 
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Fig. 18-0verall radiation envelope for the pyramidal horn-reflector antenna, vertical 
polarization. 

the 3D radiation envelope of directive antennas by making proper use 
of the salient antenna features. Accuracy is a parameter in such a 
model. Test computations of carrier-to-interference ratios executed by 
using this model versus the measured 3D pattern in the terrain 
scattering interference model! agreed to better than 3 dB in all cases. 
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This paper describes the design, testing, and measured performance of a 
rate 11/12 self-orthogonal convolutional codec that meets the bit-error-rate 
objective of M -state quadrature amplitude modulation systems in terrestrial 
radio transmission. The objective is to reduce a bit error probability of 10-6 to 
10-10 or smaller. In fact, the measured output error probability is well below 
10-10 when the channel error probability is below 10-5

• 

I. INTRODUCTION 

To maintain the low bit error rates-as required for high-quality 
data transmission in the face of increased demand for bandwidth 
efficiency-through the use of M-ary quadrature amplitude modula
tion (M -QAM) signaling, application of error-correction coding in 
terrestrial digital radio transmission may be desirable. Accumulated 
"randomly scattered" errors from different error sources may make it 
difficult to meet an objective of very low average background error 
probability, for example, a 10-10 Bit Error Rate (BER) with a high
level modulation such as 64-QAM. 

As will be explained in this paper, convolutional coding was' consid
ered as a potential candidate for this task. To answer some of the 
implementation questions, and because the code seems very attractive 
for high-speed transmission, we developed a rate 11/12 double error
correcting convolutional codec and measured its actual performance 
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in terms 01 codec input/output bit error probability. The code effi
ciency is 0.9166 and is in the range that is justifiable for spectrally 
limited terrestrial radio applications. The intention is to have the 
process of encoding and decoding applied to data rates in the high 
megabit range. As such, there is a need for considerable parallel 
processing in the encoder and decoder realizations. In this paper we 
describe a procedure for such processing for a rate 11/12 convolutional 
code. The parallel processing can be implemented using standard logic 
elements. 

After a general description of convolutional coding, we describe the 
implemented codec in Section I and then present the test setup in 
Section II. Finally, in Section III we present the measured performance 
of the codec. Section IV provides our conclusions. 

1.1 Code structure 

In general, a convolutional encoder can be assumed to be a linear 
sequential network that maps a block of ko parallel bits entering the 
circuit into an no > ko bit block over a certain period of time. If the 
bits leaving the encoder are the original data bits plus (no - ko) parity
check bits, defined by the particular code polynomials, the code is 
called systematic. The ratio ko/no is defined as the code rate. In 
convolutional coding, the parity bits in a given block have not only 
been affected by the data bits in the present block but also the 
preceding blocks. (This is not the case for block codes.) 

The constraint length of the code N is the number of bits no in a 
coded block multiplied by the number of blocks m checked by the 
no - ko parity checks. For block codes, m = l. 

In general, convolutional codes have the same limitations and, 
roughly speaking, the same inherent capabilities as block codes. 

Like block codes, convolutional codes are capable of correcting 
random errors, burst errors, and combinations of random and burst 
errors. Since the parity bits in a convolutional code check information 
symbols in the blocks preceding the present block, the basic parity 
matrix is of the form 

h = [P~-l OP~-2 0··· PZ'I], 

where (no - ko) by ko matrices pT are arbitrary, and 0 and I represent, 
respectively, the zero and identity matrices of order no - ko. The 
encoding process associates (no - ko) parity checks, as specified by the 
matrix h, to every block of ko bits of the entering information, once 
every no channel-bit times. 

Decoding of a convolutional code is possible by algebraic or sequen
tial methods. Although both techniques deal with convolutional codes, 
they do so in entirely different manners. As a result, most of the 

1626 TECHNICAL JOURNAL, SEPTEMBER 1985 



definitions applied in coding are of different forms, depending on the 
way that the code is decoded. 

In algebraic methods, the decoder bases its decisions on the check 
digits within a constraint length, but in the sequential methods the 
decisions are made based on a section of the syndrome that is much 
longer than the code-constraint length. This substantially improves 
error-correcting performance. 

Decoding simply associates an error pattern with the syndrome. 
After the decoder calculates the syndrome, it uses it to decode the 
oldest block in its registers. Like block codes, a convolutional code can 
be modeled in terms of parity-check and generator matrices. 

An n-tuple b is a code word in the convolutional code family de
scribed by h if and only if bHT = 0, where HT is the transpose of the 
parity-check matrix 

[
prJ ] 

H = pi OprJ , 
P~-I OP~-2 0··· prJ 

wher~ pT, 0, J were defined in the equation for h. The sequence b can 
be obtained by multiplying the information-bit sequence d = dk- I ••• 

dIdo by the generator matrix of the code, which is 

[
IPo OPI ··· OPm-l] 

G = JPo •.• OPm - 2 , 

JPo 
that is, b = dG. 

It can be seen that GHT = 0. The syndrome of a received n-tuple·r 
is defined as rHT = s. Clearly, all n-tuples containing errors (not a 
code word) have nonzero syndromes. 

Self-orthogonal codes are a class of convolutional codes that are 
rather simply implementable, and they can also be decoded with 
majority-logic decoding (a nonsequential decoding approach). The 
disadvantage of these codes is that for large values of no and ko the 
random -error-correction ability of the code decreases, that is, their 
minimum distance gets small. For ease of implementation only the 
self-orthogonal codes with no - ko = 1 are usually considered for 
construction. In self-orthogonal codes with minimum distance d, at 
least d - 1 rows of the parity matrix H are orthogonal (in the coding 
sense) on each of the ko bits of the zero block. For these codes, it can 
be shown that 

N < [(no -l)(d - l)(d - 2) 1] 
_no 2 + , 

where N is the constraint length and d the minimum distance of the 
code. 
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Suppose that a self-orthogonal code has the ability of correcting t = 
(d - 1)/2 random errors. If t or fewer errors occur within a constraint 
length of the (m - l)th block, it can be shown that it is possible to 
arrange a set of J = d - 1 orthogonal check sums on each data bit in 
the (m - l)th block of this code. It has been proved that the value 
assumed by the majority of these check sums will always be the correct 
value of the noise digit that was added to the considered data bit.1 

Therefore, by adding this bit to the data bit the correction can be 
made. 

The threshold decoder corrects errors by reencoding the received bit 
stream, adding the regenerated parity bit to the corresponding received 
parity bit, and then forming the syndrome. Then the error pattern 
associated with the syndrome is added to the (m - l)th block of the 
received sequence. For practical limitations, the m-bit section of the 
(semi-infinite) syndrome that is within a constraint length is stored 
in the syndrome register. As mentioned above, J = d - 1 of the check 
sums represented by the syndrome bits are orthogonal on each data 
bit in the (m - l)th block. 

Each of the ko majority gates functions as a voter for one of the 
orthogonal check-sum sets. Therefore, the syndrome register bits are 
weighted according to the coefficients of the generator polynomials to 
form the orthogonal check-sum sets, and fed to ko majority gates 
(threshold circuits). Hence, the number of inputs to each majority 
gate is the same as the number of terms in each generator polynomial, 
that is, J = d - l. 

The output of the ith threshold circuit, which is a zero when more 
than 

{
J/2' 
(J - 1)/2, 

J even} 
J odd 

of the inputs are zeros, and one otherwise, is added to the ith data bit 
in the (m - l)th block in the parity regenerator (reencoder) circuit. 
This correction bit is also used to invert each bit of the syndrome that 
is connected to the ith threshold circuit. After correcting all t.he errors, 
the bits are shifted out so that the next block can be processed. 

With this introduction we can proceed with the design of the code 
for microwave radios. 

1.2 Design model 

The self-orthogonal convolutional code applied here, as stated ear
lier, is a rate 11/12 code. That is, the encoder appends one parity bit 
to the end of each block of 11 information bits to form a 12-bit coded 
block. The code constraint length, that is, the number of bits checked 
by every parity bit, is N = 1716. Therefore, the maximum term in the 
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code generator polynomial is of the order of 142, which is the length 
of the encoder and syndrome shift registers. The code generator 
polynomial set is! 

G1 = 1 + D + D3 + D 7 

G2 = 1 + D8 + D24 + D47 

G3 = 1 + D 9 + D 55 + D 73 

G4 = 1 + D11 + D92 + D128 

G5 = 1 + D22 + D43 + D83 

G6 = 1 + D 10 + D 101 + D 114 

G7 = 1 + D 59 + D 76 + D 103 

G8 = 1 + D42 + D122 + D142 

G9 = 1 + D5 + D 57 + D 95 

GlO = 1 + D 87 + D113 + D 132 

G11 = 1 + D66 + D99 + D133. (1) 

We use these polynomials to form the encoder shift .register shown in 
Fig. 1 and the syndrome register of the decoder in Fig. 2. The details 
of shift register tap connections for this type of code are shown in Fig. 
3. The blocks in the block diagrams in Fig. 1 through 3 will be described 
in the following paragraphs. 

r-----~r----........ -t-----, ENCODED DATA,,,, 

\ , DATA 

R 

Fig. 1-Block diagram of encoder. 
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The encoder circuit shown in Fig. 1 takes a serial data stream at a 
clock rate of R, and, via a Serial-to-Parallel (S/P) converter, the 
stream is converted to 11 parallel streams, each clocked at the rate 
RI = R/11. To realize the SIP converter circuit, an II-bit serial-in/ 
parallel-out shift register at the rate R was used. The clock conversion 
is performed by the divide-by-eleven circuit shown in Fig. 1. The 
timing alignment of the data streams is done through a set of flip
flops clocked at R1• The encoder shift register consists of 142 delay 
elements, along with 32 exclusive OR gates placed at locations deter
mined by the code generator polynomials. The delay elements were 
realized by using 8-bit Transistor-Transistor Logic (TTL) shift reg
ister Integrated Circuits (ICs). The generated parity and 11 data bits 
are then combined through a TTL multiplexer addressed by a 12-bit 
counter. The multiplexer has to be clocked at R2 = (12/11)R, or more 
simply, R2 = 12R1• Hence, a clock multiplier was needed to generate 
the 12th harmonic of R1• A digital phase-lock frequency multiplier was 
designed for this purpose. The circuit is shown in Fig. 4. It consists of 
a phase detector IC, a low-pass loop filter, a voltage-controlled multi
vibrator, and a divide-by-twelve counter. To generate the R2 clock, a 
harmonic filtering method was tried first and discarded in favor of the 
phase-lock frequency multiplier. As stated earlier, the clock signal 
generated by the phase-lock frequency multiplier is used to address 
the multiplexer (mux) IC and the output of this is reclocked through 
a single flip-flop by the R2 clock. 

A block diagram of the decoder is shown in Fig. 2. The received 
coded data at rate R2 = (12/11)R is passed through an SIP converter 
to obtain 12 parallel bit streams. To alleviate the encoder/decoder 
synchronization problem in the experimental model, the R2 clock 
generated on the encoder board was hard-wired to the decoder front
end circuit, where a divide-by-twelve counter was used to generate 
RI = R2/12. This clock, in turn, is used to time align the 12 data 
streams through a set of flip-flops. The reencoder circuit is identical 
to the encoder shift register shown in Fig. 1. The generated parity and 
received parity bits are added through an exclusive OR gate to form 

fREF VOLTAGE- 'VCM = m· 'REF 
PHASE LOOP FILTER CONTROLLED - DETECTOR MUL TIVIBRATOR 

DIVIDE BY m 
COUNTER 

Fig. 4-Phase-Iock frequency multiplier. 
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the syndrome bits. The syndrome register is set up the same way as 
the reencoder shift register. The syndrome register outputs are fed to 
a set of 11 threshold circuits. Each threshold circuit, as explained 
earlier, performs a majority logic vote; that is, if more than half the 
inputs to each circuit are binary ones, the output of that circuit will 
be a one, otherwise it will output a zero. Each binary one at the 
threshold circuit output indicates an error on a particular data line 
being checked by that threshold circuit. Because the code implemented 
here is a double error-correcting code, there are four inputs to each 
threshold circuit that operate on the orthogonal check bit set. 

To have the error correction correctly performed, the 12 data lines 
have to be delayed by one syndrome register length. This can be done 
by using two RAMs in parallel; however, in this experimental model 
we used a set of shift register ICs, each containing a 128-bit delay and 
clocked at Rl to acquire the delay needed. The error indicators are 
then modulo-2 added to the proper data bits, and the corrected data 
lines are multiplexed by a similar approach, as explained in the encoder 
circuit description. Again, a phase-lock frequency multiplier is used to 
provide the information clock rate at the decoder output. The multi
plexer output is reclocked through a single flip-flop at the clock rate 
R. In addition, the error indicators are used to remove the effect of 
corrected errors from the check bits entering the syndrome regist€r. 

The fact that the main encoding/decoding operations here are done 
at a relatively low speed, because of the input serial-to-parallel con
versions, makes this type of codec attractive for high-speed data 
transmission. Next we discuss the test procedure. 

II. TESTING 

To check the performance of the encoder and decoder, a test drawer 
was designed and built. The test drawer consisted of the encoder/ 
decoder circuits, a thermal noise source, a summing amplifier, two 
attenuators, and a switch, as shown in Fig. 5. Functionally, this test 
drawer was to measure the error rate at the input/output of the codec. 

The BER test set used here produces a random bit stream, repre
senting the information bits, which is then encoded through the 
encoder. Noise is then added to the encoded signal before it enters the 
decoder. In order to measure both the input and output error proba
bilities with the same BER test set, we used the following method. 
The syndrome register flip-flops are set during the normal course of 
error correction and the decoder output stream closely resembles the 
encoder input data stream. However, if we reset the decoder syndrome 
register, the decoder error-correcting function is blocked. Conse
quently, the decoder outputs the unmodified noisy bit stream. There-
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Fig. 5-Block diagram of test setup. 

fore, the BER test set will measure the input error probability. The 
syndrome register resetting operation was done by the switch shown 
in Fig. 5. The noise generator was a standard thermal noise source. 
The step attenuators were to vary the signal and noise power in order 
to display different error rates at the input. 

The test was performed at an input rate of 10 Mb/s. However, 
because of the serial-to-parallel operation at the encoder/decoder 
input, up to a 250-Mb/s data rate can be handled by this codec, using 
standard TTL integrated circuits. 

III. CALCULATED AND MEASURED RESULTS 

An approximate expression on the performance of the self-orthog
onal convolutional codes for low channel error rates is presented in 
Ref. 2, and more details can be found in Ref. 3. The result is an 
asymptotic, upper bound on the bit error probability of the decoded 
bit. The bound is given by 

where 

:$ 

No 
Pb 

N 
Rc 
t 
P 

= 

Pb :$ N
1
R . ~ (~)pi(1 - P )N-i, (2) 

c l=t+l £ 

asymptotically (in No) 
white noise spectral height 
bit error probability after decoding 
constraint length = 1716 
code rate = 11/12 
number of bit errors corrected per constraint length = 2 
input bit error probability. 
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The expression for Pb in (2) is for any particular decoded bit in the 
first group in a constraint length, under the assumption either that 
(1) decoding is direct (without feedback syndrome correction) and the 
immediately preceding constraint span was free of decoder input 
errors, or (2) decoding is with feedback and the immediately preceding 
constraint span was free of decoder output errors. It happens to be 
valid, in general, only by virtue of the fact that the effects of prior 
history of the decoder are outweighed by the excess probability
included in eq. (2)-of those triple or higher weight input error 
patterns that do not cause output errors. This bound for the code 
implemented here is shown as one of the curves in Fig. 6. 

As stated earlier, the set of error indicators can be used as a feedback 
to clean up the syndrome register. To investigate how much improve-
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Fig. 6-Performance of a rate 11/12 codec. 
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ment is achieved by this operation, the output error probability mea
surements were taken for two cases: with and without syndrome error 
correction. These results are also shown in Fig. 6. As one can observe, 
having the set of feedback error indicators connected improves per
formance. In this case, the output probability of error is improved by 
almost one half of an order of magnitude at an input error rate of 10-4 

by having the feedback links in Fig. 2 connected. 
As stated earlier, the difference between the approximate bound and 

the measured performance of this double-error-correcting code can be 
due to the fact that a self-orthogonal, double-error-correcting, convo
lutional codec can correct many-triple, quadruple and longer-error 
patterns. However, the bound in eq. (2) only takes into account double
error correction. 

Note that the BER test setup simulated only thermal noise effects. 
The possible effects of modem implementation and other nonthermal 
effects on a real channel need to be characterized. If these effects 
merely increase the decoder input error rate for a given bit energy to 
noise density (Eb/NO) , but maintain a pure Poisson distribution of 
those errors, then the output BER versus input BER results of the 
decoder test will still apply. Conversely, if the other effects cause 
significant departure from a Poisson arrival of decoder input errors, 
then the output BER performance versus input BER performance of 
the decoder will degrade from the test results previously described. In 
particular, if there is a tendency towards error clustering, a degradation 
could occur. For instance, clusters of three errors or more in a con
straint span that are more frequent than that predicted by a Poisson 
model could be a source for performance degradation. 

For example, in a gray coded 16-QAM modem, even a very small 
residual phase offset error in detection would significantly increase 
the probability of 2 bit errors in a 4-bit baud. Then both errors are 
prone to erroneous decoding if a third input error happens to occur 
nearby. When the objective is a 10-10 output BER, even a very slight 
effect of this sort can quickly result in an order-of-magnitude degra
dation in the codec performance. 

IV. CONCLUSIONS 

This paper has described the design, testing, and performance of a 
rate 11/12 self-orthogonal convolutional codec that meets the BER 
performance objective of M -QAM radio systems. The objective was to 
convert a bit error rate of 10-6 to an equivalent error rate of 10-10 or 
better. The measured error rate is well below 10-10 at an input error 
rate of 10-6

• 
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condition for expandability, but is in fact the key condition for an input/ 
output map to be representable by a generalized power-series expansion. 

I. INTRODUCTION 

Convolution operator input/output representations for linear sys
tems are well understood and are widely used. With regard to corre
sponding representations for nonlinear systems, much has been 
learned in recent years about the existence, determination, and prop
erties of power-series-like expansions for expressing a system's outputs 
in terms of its inputs (see, for example, Refs. 1-7). In particular, the 
existence and local convergence of expansions, and of certain "asso
ciated expansions,,,3 are now well established for important large 
classes of systems. 

While the focus of attention in Refs. 1 through 6 has been on 
questions such that the size of the inputs for which convergence is 
guaranteed is not the main issue, some related material has appeared 
that bears on the problem of determining the extent of the region of 
convergence. The result most closely related to this paper is a theorem 
in Ref. 7 which gives necessary and sufficient conditions under which 
1-1 has a generalized power-series expansion (in the sense of our 
Section 2.1) when I is an invertible locally-Lipshitz map between 
certain general subsets of two complex Banach spaces. Another theo
rem in Ref. 7 yields an algorithm for obtaining the expansion whenever 
it exists, and these two theorems are used therein to prove results 
concerning a certain system model considered in Ref. 2 and in earlier 
papers. 

In applications involving nonlinear models, ordinarily only real 
spaces of inputs, outputs, and intermediate signals are of direct inter
est. A "complexification" involving the existence of a certain inverse 
map defined on a complex space has to be able to be carried out to use 
the theorems in Ref. 7. One of the main applications of the results in 
this paper is a proof that in an important general setting this com
plexification condition is always met when certain invertibility and 
expandability conditions are satisfied in the underlying real space. As 
a consequence, for a very large class of systems that have input/output 
maps, the ability to complexify emerges as the key condition for an 
input/output map to be representable by a generalized power-series 
expansion. (Under certain reasonable assumptions these expansions 
reduce to Volterra-like series.)2,8 

To be more explicit, models of the kind mentioned above are 
characterized by five operators: a nonlinear operator N, and four linear 
operators a, b, c, and d. They have an input v and an output w, which 
belong to a space X of functions. Here X is taken to be a real Banach 
space; a, b, and c are assumed to be bounded maps of X into X, and 
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we suppose that N is defined on all of X and takes X into X. One has 
w = du + bN(1 - eN)-lau (I the identity map on X) subject to some 
natural qualifications, from which it is clear that the study of such 
models* often involves the study of maps of the form (I - eN). The X 
of particular interest to us is the space of real Lebesgue-measurable, 
n-vector-valued functions x defined on [0, (0), with the norm in X 
given by II x II = maXjSUPt~O 1 Xj(t) I, where Xj(t) is the jth component 
of x(t). 

Let Ao and A be subsets of X such that (I - eN) restricted to Ao is 
an invertible map of Ao onto A. Assume that both Ao and A are open 
sets, and that A contains the zero element of X. Under these condi
tions, w is well defined for each u such that au E A, the zero function 
is an allowed input, and the set of allowed inputs is open. The question 
that we ask is this: With (I - eN)-l the inverse of the restriction of 
(I - eN) to Ao, assumed to be continuous, when is it true that 
(I - eN)-lu has a generalized power-series expansion that converges 
for u E A? When it is true, the map from u to w has an expansion 
that converges whenever au E A, assuming (and this is frequently very 
reasonable) that N is such that the existence of the expansion for 
(I - eN)-lu implies the existence of an expansion for N(I - eN)-lu; 
see, for example, Corollary 1 in Appendix A or Theorems 1 and 7. 

Theorem 2 in Section II provides an answer to the question, un
der the assumption that N has an extension into a complex 
space ~ associated with X, with this extension a certain type of 
globally convergent generalized power series. For the X of particular 
interest, this assumption is a reasonable one, and the corresponding 
~ turns out to be just the natural complex associate of X. The answer 
given by Theorem 2 is that there must be two open subsets Vo and V 
of !H such that: A C V (meaning that u + iO E V for each u E A; see 
Section 2.1), Ao C Vo, Vis a "star" in the sense that zq E V when q E 
V and z is a scalar such that 1 z 1 :s;; 1, and the map (I - eN) extended 
into ~ (see Section 2.2), and restricted to Vo, must be a homeomorph
ism of Vo onto V, with the inverse of the restriction of the extended 
(I - eN) locally Lipshitz on V. While this necessary and sufficient 
condition t may look complicated at first glance, its interpretation is 
straightforward: (I - eN)-lu has a power-series expansion that con
verges for u E A if and only if the equation x - eN x = u, when 

* There is an error in the corresponding equation in Ref. 7, where B in (11) should 
be replaced with BN. This does not change the conclusion drawn there from Theorem 
3; see, for example, our Theorem 7. 

t The sufficiency of this type of condition is discussed in Ref. 7, Section 2.4.2. Also, 
with regard to the system model in Ref. 7 (p. 84), note that the existence of an expansion 
for w (in terms of v) implies the existence of an expansion for y and thus for x if, for 
example, B is the identity operator. 
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extended into the complex space SU, is, so-to-speak, uniquely locally
Lipschitz solvable in some open subset of SU containing the points of 
Ao for all right sides belonging to V, where V is any open star in SU 
that contains the elements of A. (See Section 2.3.1. In this connection, 
notice that an open ball centered at the origin is an example of a star.) 

,As is suggested by the application described above, the results in 
this paper are concerned with invertible maps between subsets of real 
Banach spaces, with their complex extensions, and with generalized 
power-series expansions in both real and complex spaces, with the 
focus on questions concerning global expansions for inverses of maps 
defined in real spaces. Preliminaries are introduced in Section 2.1, and 
Sections 2.2 through 2.6 contain the paper's principal results. 

There are several natural applications of the material in Section II 
other than the one already discussed. For example, consider again the 
five-operator model described above, and assume that the assumptions 
introduced are met. Assume in addition that an expansion represen
tation for (I - CN)-lU does exist for u EA. Suppose that this expansion 
also converges for u E B, where B is some open subset of X for which 
A C B. Theorem 3 shows that then the map from u to w is in fact both 
well defined and has a generalized power-series expansion for au E B. 

It will become clear that the theorems in Section II are considerably 
more general than the applications discussed above are able to illus
trate. For instance, they bear on cases in which the underlying function 
space is a set of functions of more than one independent variable. 
Also, in Section 2.5 corresponding results are given for certain implic
itly defined maps. These latter results are useful in, for example, 
studies of globally convergent generalized power-series expansions for 
solutions of differential equations. 

II. COMPLEX EXTENSIONS AND EXPANSION REPRESENTATIONS 

2.1 Preliminaries 

Throughout the paper X denotes a real Banach space. We associate 
with X (see Ref. 9, p. 312 and Ref. 10, p. 665) a complex Banach space 
SU defined as follows: the elements of SU are ordered pairs (Xl, X2) of 
elements of X, addition and multiplication obey 

(Xb X2) + (Yb Y2) = (Xl + Yb X2 + Y2) 

(a + i(3)(xl, X2) = (axl - {3X2, aX2 + {3xd, 

and the norm of an element of SU is given by 

II (Xl, X2) II = sup [e(xd + e(x2)f/2, 
WI=l 

where ~ denotes a general, real, bounded linear functional on X. We 
sometimes use Xl + iX2 to denote an element (Xl, X2) of SU. 
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The map x ~ x + iO of elements of X into elements of 91 isometri
cally* imbeds X into the complex space 91. In particular, in this sense, 
91 is a complex extension of X. For example, if X is the space of 
bounded, Lebesgue-measurable, real n-vector-valued functions x de
fined on [0,00), with II x II = maxjsuptl Xj(t) I, then the elements u of 
91 are bounded, Lebesgue-measurable, complex n-vector-valued func
tions defined on [0,00), and (see Appendix B) one simply has II u II = 
maxjsupj 1 Uj(t) I. 

A star in 91 means a subset S of 91 such that zu E S for u E Sand 
any complex scalar z with 1 z 1 :::::.; 1. A subset S of 91 is c-conuex if for 
any bounded open set .1 of complex numbers, we have (u + .1u) c S 
whenever (u + ru) c S, where r is the boundary of .1. 

In the paper, Xo denotes a second real Banach space and 910 stands 
for its complex extension. We allow the possibility that Xo = X. 

N ow let Y and W be any two Banach spaces, both real or both 
complex. 

Given any positive integer m, by an m-linear map q from ym 
into W we mean that q(Yl, ... , Ym) is linear (i.e., additive and 
homogeneous) separately in each Yj. Such a map is symmetric if 
q(Yl, ... ,Ym) is symmetric in the variables Yb ... ,Ym. A map h from 
y into W is called a homogeneous polynomial of degree m if there 
exists an m-linear q from ym to W such that h(y) = q(y, ... ,y) for 
all y.t A homogeneous polynomial of degree zero is a constant map. 

For S a subset of y, let .9l(S, W) denote the set of all maps p from 
S into W such that there are homogeneous polynomials hm of degree 
m (m = 0,1, ... ) from Y to W, with the properties that L:=o hm(s) 
converges in W for each s E S, and 

p(s) = L hm(s), s E S. (1) 
m=O 

The set .9l(S, W) is, of course, a set of maps p that admit a generalized 
power-series expansion in the sense indicated. If S contains an open 
ball in Y centered at the origin, then the expansion (1) for any p E 
.9l(S, W) is unique in the sense that if 

p(s) = L gm(s), s E S, 
m=O 

with each gm a homogeneous polynomial of degree m, then gm = hm for 
all m (see Ref. 11, p. 174 and Ref. 1, Section 2.7). 

Finally, we say that p belongs to .9lF (S, W) if p E .9l(S, W) and for 

* By the Hahn-Banach theorem, /I x /I = suplHx): /I ~ /I = 11. 
t The same class of maps is obtained if "rn-linear" is replaced with "symmetric rn

linear." 
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each positive m there is a continuous symmetric m-linear qm from ym 
into W such that hm (s) = qm (s, ... , s) for all s. In particular, then 
each hm is bounded in the sense that there is a constant Pm > 0 such 
that II hm (s) II ~ Pm II S II m for all m and s, and every hm is Frechet 
differentiable on y. 

2.2 Inverse maps and necessary conditions for the existence of series 
representations 

Throughout this section, and in Sections 2.3, 2.4, and 2.6, f is a map 
from Xo into X, A and Ao are open subsets of X and Xo, respectively, 
with 0 E A, f restricted to Ao is a homeomorphism of Ao onto A, and 
g: A ~ Ao is the inverse of the restriction of f. It is assumed that there 
is an f* E .9JF(gjo, gj) such that f(x) = f*(x + iO) for x E Xo. [Of 
course, by f(x) = f*(x + iO) we mean that f(x) + iO = f*(x + iO).] 

The following extension theorem is this paper's main result. 
Theorem 1,' If g has a power-series representation in the sense that g E 
.9J(A, Xo), then there are open sets Vand Vo in gj and gjo, respectively, 
together with a map g*,' V ~ Vo such that V is a c-convex star, A C V, 
Ao C Vo, and 

1. the restriction of f* to Vo is a homeomorphism of Vo onto V with 
inverse g* 

2. g* E .9JF(V, gjo) 
3. g(x) = g*(x + iO), x E A. 

2.2.1 Proof of Theorem 1 

Two lemmas are used in the proof. The first of these follows. 
Lemma 1,' Let D be an open subset of X with 0 ED, let h E .9J(D, X o), 
and assume that h is continuous on D. Then there are an open c-convex 
star Z C gj and a map h* from Z to gjo such that D C Z, h* E 
.9JF(Z, gjo), and h(x) = h*(x + iO) for xED. 

Proof of Lemma 1 " We have 

h(s) = L hm(s), sED, (2) 
m=O 

where each hm is a homogeneous polynomial of degree m. Let qm be 
the unique symmetric m-linear map such that hm(s) = qm(s, ... , s) 
for sEX and positive m (see Ref. 12, pp. 762-3). Let hri = ho + iO, 
and define h~: gj ~ gjo for each m ~ 1 by 

(3) 

with kXl'S and (m - k)X2'S on the right side. It is not difficult to verify 
that the h~ are homogeneous polynomials of degree m (see Ref. 9, p. 
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313 and Ref. 13, p. 71). By Theorem 5.7 of Ref. 13 there is an open 
subset Zl of gj such that Dc Zl and the series 

L h!(v) (4) 
m=O 

converges for v E Zl. Since D is open and h is continuous, it follows 
(see Ref. 13, Theorems 4.4 and 6.6) that h is analytic in D in the sense 
of Ref. 13, p. 75. Thus, using the hypothesis that 0 ED, h has a power
series expansion valid in a neighborhood of the origin, with the terms 
in the expansion continuous homogeneous polynomials. At this point 
the uniqueness result mentioned in Section 2.1 shows that the hm in 
(2) are continuous. 

By the continuity of the hm' the qm in (3) are continuous. Using (3) 
and the fact that II Xl" ::::; 1 and "X2" ::::; 1 are implied by "Xl + iX2" ::::; 
1 [see (7), below], we see that each h! is bounded in the ball 
" Xl + iX2" ::::; 1. This shows (see Ref. 12, Theorem 26.2.4) that the h! 
are continuous. 

Let Z denote the interior of the region of convergence of the series 
(4), and let h*(v) be the sum (4) for any v E Z. Obviously Zl c Z. 
Since the h! are continuous, it follows (see Ref. 12, Theorem 26.6.1) 
that Z is a c-convex star. Since it is clear that h!(x + iO) = hm(x) for 
X E X, the proof of the lemma is complete. 

Continuing with the proof of the theorem, by Lemma 1 there are an 
open c-convex star V C gj and a map g*: V ~ gjo such that A C V, g* 
E 9'F(V, gjo), and g(x) = g*(x + iO) for X EA. 

We now turn to our second lemma. 
Lemma 2: Let h be a Frechet-differentiable map (Ref. 14, p. 149) from 
an open connected subset D of gj into gjo. Assume that there is a point 
p in D and an open ball Q in X centered at the origin such that 
(p + Q) £ {s E gj: s = p + (q + iO), q E QI C D and h maps (p + Q) 
into the origin in gjo. Then h vanishes everywhere in D. 

Proof of Lemma 2: Since his Frechet differentiable in a neighborhood 
of p, there are (see Ref. 12, Theorems 3.16.2 and 26.3.5) homogeneous 
polynomials Hm of degree m (m = 1, 2, ... ) and au> 0 such that s E 
Dand 

h(s) = L Hm(s - p) 
m=l 

when "s - p" < u. Thus, for some positive p < u, we have 

L Hm(q + iO) = () 
m=l 

for q E {x E X:" x" < pI, where () is the zero element of gjo. It easily 
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follows (see Ref. 1, Section 2.7) that Hm(x + iO) = 0 for each m and 
all x EX. 

Consider Hm(Xl + iX2) with m, Xl, and X2 arbitrary, and let Pm denote 
the polar form (see Ref. 12, pp. 762-3) associated with Hm. We see 
that Hm(XI + iX2) can be written as a finite sum of terms of the form 
CP(YI + iO, ... ,Ym + iO), in which c E {±1, ±i} and each Yj is either 
Xl or X2. On the other hand, Pm(YI + iO, ... ,Ym + iO) can be expressed 
(see Ref. 9, p. 306) as 

I 

(m!)-l L (_1)m-(El+···+Em) Hm[EdYI + iO) + ... + Em(Ym + iO)]. 
El.···.Em=O 

Therefore, using Hm (x + iO) = 0 for X E X, one has Hm (Xl + iX2) = o. 
This shows that h(s) = 0 for s in an open ball in D. Since D is 
connected and h is G-differentiable in the sense of Ref. 12 (pp. 109-
10), it follows (see Ref. 12, Theorem 3.16.4) that h(s) = 0 throughout 
D, as claimed. We now return to the proof of the theorem. 

Let E(v) denote f*[g*(v)] - v (v E V). Since f* E .9F(go, g) and 
g* E .9F( V, go), f* and g* are Frechet differentiable on go and V, 
respectively (see Ref. 12, Theorems 26.6.4 and 3.17.1). Thus, using a 
version of the chain rule for differentiating a composite map, E is 
Frechet differentiable on V. In addition, the set V is connected 
(because it is a star), and we have 

E(x + iO) = f*[g*(x + iO)] - (x + iO) = 0, X E A. 

Choose any point PI E A, and let Q be an open ball in X centered at 
the origin such that (PI + Q) cA. Let P = (PI + iO), and observe that 
E[p + (q + iO)] = 0 for q E Q. By Lemma 2 (with g = go), E(v) = 8 
(the zero element of g) for v E V. This gives 

f*[g*(v)] = v, v E V. (5) 

Since V is connected and g* is continuous on V, g* (V) is connected. 
The continuity of f* implies that f*-l(V) is open. From (5) it is clear 
that g*(V) C f*-l(V). Let Vo denote the maximal connected subset 
(i.e., the component) of f*-I(V) that contains g*(V). Since f*-I(V) is 
open, so is yo. The map f* obviously takes Vo into V. 

Now let F(w) denote g*[f*(w)] - w (w E Yo). It follows from 
Lemma 2 and F(x + iO) = 0 for X E Ao that 

g*[f*(w)] = w, w E yo. (6) 

Since (5) and (6) hold, f* restricted to Vo is a homeomorphism of Vo 
onto V. The observation that Ao C Vo because Ao = g(A) C g*(V) = 
Vo completes the proof of the theorem. 
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2.3 Complex-solvability criteria for global expandability 

Here we use Theorem 1 to obtain necessary and sufficient conditions 
for the global expandability of the map g introduced at the beginning 
of Section 2.2. With regard to our result, Theorem 2 (below), we say 
that a map h from an open subset D of 91 into 910 is locally Lipschitz 
on D if for each a E D there are a positive number Ca and an open ball 
f3a C D centered at a such that II h(vI) - h(v2) " ~ ca" VI - V2" for VI 
and V2 in f3a. 

Theorem 2: We have g E 9'(A, Xo) if and only if (i) there are open sets 
V and Vo in 91 and 910 , respectively, with Va star, A C V, and Ao C 
Vo such that the restriction of f* to Vo is a homeomorphism of Vo onto 
V, with the inverse of the restriction of f* to Vo locally Lipschitz on V, 
and (ii) the spaces 91 and 910 are homeomorphic, in the sense that there 
is a linear homeomorphism of 91 onto 910 • 

Proof: The necessity of (i) follows from Theorem 1 and the observation 
that g* in Theorem 1, which belongs to 9'F(V, 910 ), is Frechet differ
entiable, hence continuously Frechet differentiable (see Ref. 7, Lemma 
2), and thus locally Lipschitz. Similarly, the necessity of (ii) is a 
consequence of Theorem 1 and the fact that the conclusion of Theorem 
1 implies (see Ref. 15, p. 175, Problem 6) that the F-derivative (i.e., 
the Frechet derivative) of f* at any point in Vo is an invertible map of 
910 onto 91. 

On the other hand, if (i) and (ii) are met, then, using Lemma 1 of 
Ref. 7, the inverse H of the restriction of f* to Vo is F-differentiable 
[and thus G-differentiable (see Ref. 12, pp. 109-10)] on V. It follows 
that H E 9'(V, 910 ) (Ref. 12, Theorems 3.16.2 and 26.3.4). Let the 
series for H be given by 

H(v) = L Hm(v), v E V. 
m=O 

By the conditions on f, for any x E A there is ayE Ao such that 
f*(y + iO) = (x + io). Therefore, using H[f*(v)] = v (v E Yo) and 
Ao C Yo, we see that H takes A into Ao. Thus, since f*[H(v)] = v 
(v E V), we have 

g(x) = L Hm(x + io), x EA. 
m=O 

Of course Ho(O + iO) E Xo. We claim that for each positive m there 
is an m-linear map Qm from xm into Xo such that Qm(X, ... , x) = 
Hm(x + iO), x E A. Since the Hm are homogeneous polynomials, we 
need only show that each Hm maps X into X o, and we do that as 
follows. 

The norm in 910 has the property that "Xl + iX2" < 0 implies that 
"X2" < 0, because, using the Hahn-Banach theorem, 

REPRESENTATION THEORY 1647 



II x211 = sup I ~(X2) I ~ sup [~(Xd2 + ~(X2)2P/2 = II Xl + iX211. (7) 
WI=1 WI=1 

Thus, the convergence of L:=o Hm(x + iO)(x E A) implies that for 
each X E A, the series L:=o KHm(x + iO) converges in Xo, and that it 
converges to the zero element, where K is the map from fRo to Xo 
defined by X2 = K(XI + iX2). In particular, with {3 any open ball in A 
centered at the origin, one has rx E {3 and 

m=O m=O 

for X E {3 and I r I < 1. It follows (see Ref. 11, proof of Theorem 6) that 
KHm(x + iO) = 0 for each m and any x E X, showing that the Hm map 
X into Xo. This completes the proof. 

2.3.1 Comments 

Since the inverse image of an open set under a continuous map is 
open, we see that (i) is equivalent to the condition that there be an 
open subset S of fRo and an open star V C fR with the following 
properties: Ao C S, A C V, for each u E V there is a unique w E S that 
satisfies f*(w) = u, and the map u ~ w is locally Lipschitz. This more 
sharply focuses attention on how machinery for proving existence, 
such as fixed-point techniques, might be used to establish expandabil
ity. A pertinent example can be found in Ref. 7, Appendix B. A simple, 
related additional example follows. 

Let X be the space of real numbers, with the absolute value· norm, 
and observe that the corresponding fR is the usual space of complex 
numbers. Take Xo = X, let f(x) = x + x 3 for all real x, and take A and 
Ao to be Ix: I x I < r} and f-I(A), respectively, for some positive r. 
Notice that any r > 0 will do, and that our f* is given by f*(z) = 
z + Z3 for all complex z. 

An easy contraction-mapping argument* shows that given p E 
(0, J3-I] and any complex number a with I a I < (p - p3), there is a 
unique complex number z with I z I < p such that z + Z3 = a, that z is 
real whenever a is, and that the map from a to z is locally Lipschitz. 
It follows from Theorem 2 that we have g E 9'(A, Xo) for r = ro, where 
ro = 2(3J3)-1. 

Theorem 2 also can be used to show that g does not belong to 
9'(A, Xo) if r > ro: Suppose, for the purpose of obtaining a contradic
tion, that g E 9'(A, Xo) for some r> roo TheiI for some V and Vo as 
described in the theorem, f* restricted to Vo is a homeomorphism of 
Vo onto V. By the proof of Theorem 2, the inverse g* of f* is differ-

* A good general source of information on the use of the contraction-mapping theorem 
is Ref. 16. 
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entiable. Using g*[f*(z)] = z for z E Vo, we have g*'[f*(z)]f*'(z) = 1 
(z E Vo), where "'" denotes the ordinary derivative. Since f*'(z) = 0 
at z = Zo £ i(-J3)-l, Vo cannot contain zoo Using this fact and the 
continuity of g*, it is not difficult to show that V cannot contain the 
point t*(zo) = 2i(3J3)-1. Since V is a star and A C V, 2(3J3)-1 fi A, 
which is the contradiction sought. This finishes the discussion of the 
example. 

Using Theorem 1, it follows at once that Theorem 2 remains true if 
the word "star" is replaced by "c-convex star." 

The hypothesis concerning f* at the beginning of Section 2.2 is 
equivalent to the condition that f E .9F (XO, X); see the proof of 
Lemma 1 and Ref. 13 (top of p. 75). 

2.4 Convergence and the extent of invertibility 

In this section we prove a result that shows, in particular, that if g 
is expandable on A, and if its expansion converges on a larger open 
set B, then there is a set Bo that contains the points of Ao such that f 
is in fact an invertible map of Bo onto B. 
Theorem 3: Let g belong to .9(A, Xo), and let it have the generalized 
power-series representation 

g(x) = L gm(x) (8) 
m=O 

for x EA. Suppose that the right side of (8) converges in Xo for x E B, 
where B is an open subset of X such that A C B. Then there is an open 
subset Bo of Xo such that (i) Ao C Bo, and f is a homeomorphism of Bo 
onto B; and (ii) the inverse G of the restriction of f to Bo has the 
representation 

G(x) = L gm(x), x E B. 
m=O 

Proof: Since g E .9(A, Xo) and g is continuous, g E .9F (A, Xo) (see 
the proof of Lemma 1). Thus, by Ref. 13, Theorem 6.2, the function 
h:B ~ Xo defined by 

h(x) = L gm(X), x E B 
m=O 

is analytic in the sense of Ref. 13 and hence continuous. Using Lemma 
1, there is an open connected set We !!J and a Frechet-differentiable 
map h*: W ~ ~ such that Be Wand h(x) = h*(x + iO) for x E B. 

By Lemma 2 and the hypothesis that f[g(x)] = x (x E A), we find 
that 

f*[h*(v)] = v, v E W. (9) 
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Again using Lemma 2, and proceeding as in the proof of Theorem 1, 
one finds that 

h*[f*(v)] = v, v E Wo, (10) 

where Wo is the component of f*-I(W) that contains h*(W). There
fore, f* is a homeomorphism of Wo onto W. 

We have, from (9), f[h(x)] = x (x E B). Now let Bo = f-I(B) n Ro, 
where Ro = Ix E Xo:x + iO = z, z E Wo}. Since Wo is open, Ro is open 
in Xo. Thus, Bo is an open subset of Xo, and from (10) one has h[f(x)] 
= x for x E Bo. This shows that f is a homeomorphism of Bo onto B, 
with h the inverse of the restriction of f to Bo. Finally, using Ao C 
f-I(A) Cf-I(B), andAo = h(A) C h(B) C h*(W) cWo (which implies 
that Ao C Ro), as well as the definition of B o, it is clear that Ao C Bo. 
This proves the theorem. 

2.5 Results for implicit functions 

Theorems along the lines of Theorems 2 and 3 are given here for 
m.1ps that are defined implicitly in the sense of the implicit function 
theorem. In this section, Xl stands for a third real Banach space, fBI 
denotes its complex extension in the sense of Secton 2.1, and Xo X X 
and fBo X fB are product Banach spaces constructed from Xo and 
X and fBo and fB, respectively.* We say that a map h defined on an 
open subset D of fB into fBo is Gateaux differentiable on D (see Ref. 
12, pp. 109-10) if for each v E D and arbitrary w E fB the limit 
limz-+o z-l[h(v + zw) - h(v)] exists, in which z is a complex scalar. 

As in Section 2.2, A is an open subset of X, with 0 E A. Here F is a 
map from Xo X X into Xl such that there is a continuous map G:A ~ 
Xo with the property that 

F[G(x), x] = 0, x EA. 

Assume that there is an F* E [iJJF(fBo X fB, fBd such that F(y, x) = 
F*(y + iO, x + iO) for (y, x) E Xo X X. 
Theorem 4: G E [iJJ(A, Xo) if and only if there is an open star V C fB, 
with A C V, and a continuous Gateaux-differentiable map G*: V ~ fBo 
such that we have G(x) = G*(x + iO) (x E A) as well as 

F*[G*(v), v] = 0, v E V. (11) 

Proof: First suppose that G E [iJJ(A, Xo). By Lemma 1 there is an open 
star V C fB and a map G* E [iJJF(V, fBo) such that A C V and G(x) = 

* Except where indicated to the contrary, the choice of the norms in Xo X X and 910 

x 91 is not important for our purposes. It would suffice to let the norm II . II in Xo X X 
be given by II (xo, x) II = max( II Xo II, II x II), and similarly for 910 X !1l. 
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G*(x + iO) for x in A. Since G* E 9'F(V, &70 ), G* is F-differentiable 
on V and thus continuous and G-differentiable in V. 

It follows from a version of the chain rule (Ref. 15, pp. 171-2) that 
h defined by 

h(v) = F*[G*(v), v], v E V 

is F-differentiable on V. [Notice that h(v) = (F*Q)(v), where Q takes 
v E V into the point (G*(v), v) in &70 X &7~] Since V is connected, and 
F*[G*(O + x + iO), x + iO] = F[G(x), x] = 0 (0 is the zero element of 
&7) for x in some open ball in X centered at the origin, by Lemma 2, 
one has (11). 

Assuming, on the other hand, that we have a Vand a G* as indicated 
in the theorem, G* is F-differentiable (see Ref. 12, Theorem 3.17.1) 
and an obvious modification of the part of the proof of Theorem 2 
that concerns H shows thatG E 9'(A, Xo). This proves the theorem. 
Theorem 5: Assume that G E 9'(A, X o), and that G has the generalized 
power-series representation 

(12) 
m=O 

for x EA. Suppose that the right side of (12) converges for x E B, where 
B is an open subset of X such that A C B. Then F[G(x), x] = ° 
(x E B), where G is defined for all x E B by (12). 
Proof: Paralleling the beginning of the proof of Theorem 3, there is 
an open connected set W C &7 and a Frechet-differentiable h *: W ~ 
&70 such that B C Wand G(x) = h*(x + iO)(x E B). Using Lemma 2 
and the observation in the proof of Theorem 5 concerning the appli
cability of a version of the chain rule, we have F*[h*(v), v] = 0 for 
v E W, which implies that F[G(x), x] = ° (x E B). 
Remarks: Theorem 4 bears directly on problems concerning the exist
ence of generalized power-series expansions for the solutions of non
linear differential equations, because, as is well known, these equations 
can frequently be put in the form F[G(x), x] = 0, x E A, where x takes 
into account inputs and/or initial conditions, and G(x) is the corre
sponding solution. For related earlier work, see Ref. 8 and the refer
ences cited therein; the work includes, in particular, a description of 
the specific type of expansions that arise. 

A result similar to Theorem 2 in Section 2.3 can be obtained for 
equations of the form H(y, x) = w, where y is a solution that depends 
on both x and w.* Specifically, suppose that H is a map from Xo X X 
into Xl such that H(y, x) = H*(y + iO, x + iO) for all x andy for some 

* See Ref. 8, p. 75, for an example of how such an equation arises. 
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H* E .9F(g;O x .91, g;d. Assume now that the norm II . II in Xo X X is 
defined by II (xo, x) II = max(1I Xo II, II x II), and similarly for (Xl X X), 
(g;o X .91), and (.911 X .91). Assume also that .910 and .911 are homeo
morphic in the sense of (ii) of Theorem 2. 

Let Awx and S, respectively, be open subsets of (Xl X X) and 
(Xo X X), with (0,0) E A wx , such that for each (w, x) E Awx there is a 
unique y E Xo for which (y, x) E Sand H(y, x) = w. Assume that the 
map from (w, x) to y is continuous. Define f:(Xo X X) ~ (Xl X X) by 
f(y, x) = [H(y, x), x] for all y and x, and let Ayx denote the open set S 
n f-l(A wx ). Notice that f restricted to Ayx is a homeomorphism of Ayx 
onto Awx. Thus, using Theorem 2 and the observation in the footnote 
in Appendix B, we see that the map from (w, x) to y described above 
belongs to .9(Awx , Xo) if and only if (.911 X .91) and (g;o X .91), respec
tively, contain open subsets V and Vo with Awx C V, Ayx C Vo, V a 
star, and [H*(y*, x*), x*] E V for (y*, x*) E Vo, such that for each 
(w*, x*) E V, there is a unique y* E .910 that satisfies (y*, x*) E Vo 
and H*(y*, x*) = w*, with the map from (w*, x*) to y* locally 
Lipschitz. 

2.6 Construction of the series for g of Section 2.2 

Here we return to the setting introduced at the beginning of Section 
2.2. Theorem 6 (in this section) provides an algorithm for determining 
the expansion of g whenever it exists. The theorem is a version of a 
result in Ref. 1 concerning complex spaces. We shall first prove a 
proposition that establishes the existence of certain derivatives that 
playa central role in the theorem. 
Proposition: For each m = 1, 2, ... the mth order Frechet derivative 
(Ref. 14, pp. 179-81) dmf[g(O)] [of f at the point g(O) E Xo] exists, and 
one has 

f[g(O) + x] = f[g(O)] + L (m!)-ldmf[g(O)]x m, x E Xo. (13) 
m=l 

Proof: Using the hypothesis that f* E .9F(g;o, .91), the Frechet deriv
ative df*(w) and hence the derivatives dmf*(w) (m = 2, 3, ... ) exist 
for w E .910 , and we have 

f*[g*(O) + w] = f*[g*(O)] + L (m!)-ldmf*[g*(O)]w m, w E .910 (14) 
m=l 

(see Ref. 12, Theorems 26.6.3 and 3.16.2; Ref. 15, Lemma 3.6.1; Ref. 
7, Lemma 2), where g*(O) = g(O) + iO. Since df* exists on .910 , and the 
norm in .91 has the property that II Xl + iX2 II < 0 implies that II Xl II < 0 
and II x211 < 0 [see (7)], it is easy to see that df exists on Xo and that 
one has df(a)x = df*(a + iO)(x + iO) for a and x in Xo. A simple 
inductive argument shows that dmf exists on X o, with 
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dmf(a)Xl ... Xm = dmf*(a + iO)(xl + iO) ... (Xm + iO) (15) 

for a E Xo, (Xl, ... , Xm) E XW, and each m. This proves the 
proposition, since it is clear that f*[g*(O)] = f(g(O)]. The relation (13) 
directs attention to an interpretation of the dmf[g(O)]; it is not used 
otherwise. 
Theorem 6: Let g E 9'(A, X). Then df(g(O)] is a homeomorphism of Xo 
onto X, and 

g(X) = g(O) + L gm(x), X E A, 
m=l 

where the gm are the homogeneous polynomials defined by 

gl (x) = df[g(O)rlx 

and 
m 

gm(x) = -df[g(O)rl L (I,,!)-l 
1'=2 

L dl'f(g(0)]gk
1
(X) ... gk/(X), m ~ 2. 

k1+···+k/=m 
kj>O 

2.6.1 Proof of Theorem 6 

The inverse of df(g (0)] exists because f is a homeomorphism of Ao 
onto A with f and g, respectively, Frechet differentiable on Ao and A 
(Ref. 15, p. 175, Problem 6). Let 

g(X) = g(O) + L gm(X), x E A, 
m=l 

in which each gm is a homogeneous polynomial on X of degree m. 
With g* and V associates of g and A, respectively, in accordance 

with Theorem 1, we have g* E 9'F( V, seo) and v = f*[g*(v)] for v E 

V. Let gi , g~, ... be continuous homogeneous polynomials such that 

g*(v) = g*(O) + L g!(v) (16) 
m=l 

for v E V. By the part of the proof of Theorem 2 concerning H, gm (x) 
= g!(x + iO) for each m and each x EX. Using (14) and f*[g*(O)] = 
0, 

v = f*[g*(v)] 

= 1 V!)-ld/f*[g*(O)] C~l gz. (v) ...• t gk)v) ), v E V. 

Since g* E 9'F(V, seo), there is a (J > 0 such that the right side of (16) 
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is absolutely convergent for II v II < (J (Ref. 12, Theorem 26.6.6). Thus, 
using the boundedness of the dl' f*[g*(O)] and an easily proved gener
alization of Theorem 5.5.3 of Ref. 14, 

v = L (1'!)-1 L dl'f*[g*(O)](gt(v) ... gk)V» (17) 

for II v II < (J, in which the sum over (kI, ... , kl') is absolutely 
convergent. 

At this point we use the proposition that there are positive constants 
M, (3, K, and a such that 

II dl' f*[g*(O)]Wl •.. wI'll :s:; 1'1' M(31' II wIll ... II wI'll 

and 

for I' ~ 1, k ~ 1, v E fB, and WI, ••• , WI' in fBo (see Ref. 7, Appendix 
A). It is clear that 

II dl' f* [g*(O)][gkl (v) ... gk)V)] II :s:; 1'1' M «(3.K) I' (all v II) (kl +·· .k,,). 

Consider the sum 

(18) 

Notice that 

L (allvll)(kl+···+k,,) = [allvll(l - allvll)-IV (19) 
k l ,·· .,k,,=1 

for all v II < 1. Using (19) and Stirling's formula for n!, which gives n! 
> (27r)1/2n1

/
2nne-n, it easily follows that the sum (18) converges for 

II v II sufficiently small. Thus (see Ref. 14, Theorem 5.3.4) for such v 
the sum in (17) over (I', kI, ... , kl'), which equals 

1'=1 m=1 kl +·· .+k,,=m 
kj>O 

(1'!)-ldl'f*[g*(O)](gkl (V) .•. gk)V», 

can be written as (see Ref. 14, Theorem 5.3.6) 
00 m 

m=1 1'=1 k l +·· .+k,,=m 
kj>O 

(1'!)-ldl'f*[g*(O)](gkl (v) ... gk)V». 

(20) 

(21) 

By the uniqueness result for generalized power series mentioned in 
Section 2.1, and the fact that (21) equals v for v of sufficiently small 
norm, 

df*[g*(O)]gi(v) = v 

and 
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df*[g*(O)]g!(v) 
m 

= - L L Cf!)-ld/'f*[g*(O)][gk
l 
(v) ... gk/(V)] (m ~ 2) 

/'=2 kl + ... +krm 
kj>O 

for v E 91. This, with v = x + iO and (15), completes the proof. 

2.6.2 Comments 

For the case in which the expansion (14) for f* has only a finite 
number of terms, the proof of Theorem 6 simplifies considerably, 
because then the equivalence of (20) and (21) is a consequence of just 
the absolute convergence of the sum over (k1, ••• , k/,) in (17). A 
related result for this case is given in Ref. 17, p. 29. 

For a different approach to the problem of determining the expan
sion of g, see Ref. 18. 

The proof of Theorem 6 provides an alternative proof of Theorem 
2 of Ref. 1, which is an analogous result concerning only complex 
spaces. It also yields a proof of the following "substitution theorem" 
(an earlier version proved in a different way appears in Ref. 19).* 

Theorem 7: Take WI, W2 , and Wa to be three complex Banach spaces, 
and let 8 1 and 82 be nonempty open subsets of WI and W2 , respectively, 
with 81 a star. Let G E .9F(81 , W2 ) and let F be a Frechet-differentiable 
map of 82 into Wa. Assume that G(8d C 82 • Then (FG)(·) E 
.9F(8b Wa), the Frechet derivatives dmG(O) and dm F[G(O)] exist for m 
~ 1, and we have 

(FG)(v) = F[G(O)] + L Hm(v), v E 81, (22) 
m=1 

where the Hm are the homogeneous polynomials given by 
m 

Hm(v) = L (/!)-1 
/'=1 k1+·· .+k/=m 

kpO 

... (k/,!)-ld k/G(O)V k/. 

Theorem 7 and Lemma 1 can be used to obtain results along the 
lines of Theorem 7 for cases in which the spaces of interest are real. 
This is discussed briefly in Appendix A. 
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APPENDIX A 

Substitution Results for Real Spaces 

This appendix presents two useful corollaries of Theorem 7. Proofs 
are omitted because the corollaries can be proved using direct modifi
cations of material already discussed. 
Corollary 1,' Assume that WI, W2 , and W3 are real Banach spaces, that 
8 1 and 82 are open subsets of WI and W2 , respectively, and that 0 E 81 • 

Let G be a map of 8 1 into W 2 such that the Frechet derivative dmG(O) 
exists for m = 1, 2, ... , and G has the representation 

Gx = G(O) + L (m!)-ld mG(O)xm, x E 8 1 , 
m=1 

8uppose that G(8d C 82 • Let F map 82' into W3 such that d m F[G(O)] 
exists for each m > 0, and 
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M 

F[y + G(O)] = F[G(O)] + L (m!)-ldmF[G(O)]ym 
m=l 

for y + G(O) E 8 2 , where M is a positive integer (and thus F is assumed 
to be a polynomial). Then (FG)(·) E g(8l , W3 ) and (22) holds. 
Corollary 2: 8uppose that WI, W2, and W3 are three real Banach spaces. 
Let G E gF(8l , W2) for some open subset 8 1 of WI containing the point 
0, and let FE gF(82, W3 ), where 8 2 is an open subset of W2 containing 
G(O). Then the Frechet derivatives dmG(O) and dm F[G(O)] exist for m 
;?; 1, and there is an open subset Tl of 8 1 , containing 0, such that G(Td 
C 8 2 , (FG)(.) E gF(Tl , W3 ), and one has (22), with 8 1 replaced with 
T l • 

APPENDIX B 

A Comparison of Norms on Complex Spaces 

Consider the Banach space ~ described in Section 2.1, and let ~ 
denote a Banach space consisting of the same set of points with a 
possibly different norm II . II~. 
Proposition: Let the norm II· II~ have the property that II xIII :s:; 
II Xl + iX211~ for (Xl + iX2) E~, in which II X II is the X norm of x. Then 
II Xl + iX211 :s:; II Xl + iX211~ for (Xl + iX2) E ~. 

Proof: Assume, for the purpose of obtaining a contradiction, that 
II Xl + iX211 > II Xl + iX211~ for some (Xl + iX2). Then there is a ~ with 
II ~ II = 1 such that 

For this ~, choose real a and (3 so that not both are zero and 

a~(X2) + {3~(xd = O. 

Using (a2 + (32)[Hxd 2 + HX2)2] > (a2 + (32) II Xl + iX211 ~ and the 
observation that [~(ax - by)]2 + [~(bx + ay)]2 = (a 2 + b2)[~(X)2 + 
~(y )2] for real a and b, and X and y in X, one has 

I Haxl - (3X2) I > II (axl - (3X2) + i({3xl + aX2) II~· 

Since the left side is at most II aXl - (3x211, we have a contradiction. 
Comments: For X the space of bounded n-vector-valued functions 
described in Section 2.1, and ~ the corresponding complex Banach 
space with II v II~ = maxjsuptl Vj(t) I, the equality II . II = II . II~ holds, 
where II . II is the norm in ~. Indeed, II . II :s:; II . II~ by the proposition, 
while with arbitrary t ;?; 0 andj E {I, ... , nt, 

~(Xd2 + HX2)2 = [Xlj (t)]2 + [X2j (t )]2 
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for ~ the linear functional of unit norm on X defined by ~(x) = Xj(t), 
showing that II . II ~ II . II~·* 

However, we have II . II ~ II . II~ but not II . II = II . II~ whenever X is 
a Hilbert space, II Xl + iX211~ = (II Xl 112 + II x2112)1/2, and X is typical in 
the sense that it has a pair of nonzero elements X and y that are 
orthogonal. This follows from the inner-product representation of 
linear functionals in a Hilbert space, and the fact that for X, x, and y, 
as indicated above, one can show that 

(v, X)2 + (v, y)2 1 
sup < , 
IIvll=1 IIx1I2+lIy1l2 

where (., .) is the inner product in X. 
Finally, we mention that the norm in 91 cannot be replaced with 

(23) 

because (23) does not define a norm in 91 unless X is a Hilbert space 
(see Ref. 20). It is not difficult to see that (23) does not suffice: If it 
did, we would have II ax - by 112 + II bx + ay 112 = (a 2 + b2)(11 X 112 + II y 112) 
for any real numbers a and b, and arbitrary elements X and y of X. 
This would give II X - Y 112 + II x + y 112 = 2(11 X 112 + II y 11 2), which is not 
valid unless X is a Hilbert space (see Ref. 21, p. 211). 
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The throughput per user in loop and bus configured local area networks 
decreases linearly with the number of users. These networks cannot be 
extended to a metropolitan area with many users. A class of mesh networks is 
described that increases the throughput of conventional local area networks 
by decreasing the fraction of the network capacity needed to transmit infor
mation between a source and a destination. These networks have multiple 
paths that increase the reliability of the networks, and have point-to-point 
links that can cover a metropolitan area. In general, mesh networks require 
complex store-and-forward nodes that also route messages, control the flow of 
data entering the network, resequence packets at the destination, and recover 
packets with errors. However, there are characteristics of the local or metro
politan area that allow these functions to be simplified. As a result of these 
simplifications, loop access protocols are extended to mesh networks and the 
need to store and forward data is eliminated. A file transfer protocol that does 
not require packet resequencing is described. Three mesh networks are studied, 
and the desirable characteristics of networks are determined. One network, 
the Manhattan street network, has many of the desirable characteristics. 

I. INTRODUCTION 

Loop topologies! and random access strategies2 were first applied to 
local data networks in the late 1960's. In that era, 

• Low-hit-rate terminals were connected to large central computers, 
• Computers and terminals were shared hy a few computer experts, 
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free by computer-based and other information-service systems without further permis
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• Large-scale integrated circuits did not exist, and 
• High-bit-rate transmission facilities were not readily available 

across public right of ways. 
As a result, these networks trade reliability, total throughput, and 

the distance the network can span3 for simple access and transmission 
strategies. Today, for comparison, 

• Simple terminals are evolving into personal computers with bit 
mapped, rather than character, displays, 

• Computer usage is becoming universal, 
• Very-Large-Scale Integration (VLSI) is becoming commonplace, 

and 
• The increased deployment of optical fibers and CATV systems 

makes it possible to obtain high-bit-rate communications over 
wider areas. 

Personal computers use larger bandwidths than simple terminals to 
communicate with centralized support facilities and distribute proc
essing. The increasing use of these devices and the increased distances 
that high-bit-rate networks can span increase the throughput required 
of the interconnecting network. In loop and bus systems the total 
throughput is constant. The average capacity available to each user 
decreases linearly as the number of users increases. Therefore, to 
support more users with greater individual requirements, alternative 
topologies must be considered. The complexity of the devices being 
connected to networks and advances in VLSI make more complex 
network interfaces feasible. This increases the class of networks and 
access strategies that can be considered. 

A large number of users, dispersed over a large area, can be accom
modated by interconnecting conventional local area networks with 
gateways. Schlatter and Massey have analyzed this type of network.4 

Their system consists of loops interconnected by switching elements, 
as proposed by Pierce.5 Messages use a smaller fraction of the total 
network capacity than they would if the system were a single loop. 
Therefore, the maximum throughput of the system increases. Users 
who communicate the most often are placed on the same loop, which 
minimizes the interference between subgroups of users. The main 
disadvantage with this approach is that the gateways are different 
from the access units and are complex store-and-forward elements. 

Yemini6 and Saadawi and Schwartz7 are investigating a tree topol
ogy. In this network, users are at the leaves of the tree and the nodes 
of the tree are switching points. Depending on the location of the 
destination, the switches direct messages toward the root of the tree 
or toward the leaves. In Yemini's system, the switches establish 
separate broadcast networks, and in Saadawi's, the switches store 
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packets until the desired path is available. In these systems, messages 
only use a portion of the network capacity. Locating users who 
communicate frequently-who are near one another in the tree hier
archy-minimizes the interference between subgroups of users. The 
advantage of this approach over gateways is that there is only one 
type of element in the network. The disadvantage is that the network 
either stores and forwards packets or retains the distance constraints 
of broadcast networks. 

To a certain extent these alternatives remove the throughput con
straints of loop and bus systems. However, they still have single points 
of failure. To make networks more reliable, there must be multiple 
paths between each source and destination. By adding paths appro
priately, the average and maximum distance between nodes decreases, 
messages use a smaller fraction of the network bandwidth, and the 
throughput increases. Multiple paths also make it possible to avoid 
heavily used segments of the network to equalize the load. Mesh 
networks, like loop networks, have point-to-point communication 
channels between nodes. This results in less expensive line drivers 
and receivers than multidrop broadcast systems and is compatible 
with current optical fiber transmission capabilities. 

In general, mesh-configured networks and some of the local network 
alternatives require complex store-and-forward nodes. A queue of 
messages is maintained because packets arriving on several of the 
incoming links may be destined for the same outgoing link. In addition, 
store-and-forward networks must do routing, flow control, packet 
resequencing, and error control. Long-distance networks, such as the 
ARP A network,S perform these functions, but their interfaces are 
more complex than personal computers. Therefore, these networks 
are not a reasonable interconnection alternative for personal com
puters. There are, however, characteristics of the local or metropolitan 
area environment that make simpler mesh networks possible. 

Local or metropolitan area networks differ from general long-dis
tance networks in that the 

• Physical location of the nodes does not dictate the topology of the 
network to as great an extent, 

• Error rates are much lower, and 
• Communications lines are less expensive. 
In the local environment, it is not always necessary to connect the 

closest nodes together. Occasionally, connecting nodes that are further 
apart can make the topology of the network regular, and simplify tasks 
such as routing. The lower error rates make it more likely that a 
packet will traverse the entire network without error. Therefore, error 
control protocols can operate on an end-to-end, rather than on a link
by-link basis, and networks can have unidirectional links. When 
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messages are not stored at the intermediate nodes for possible retrans
mission, the class of possible access and transmission strategies in
creases. In general, there is also a trade-off between the system 
complexity and communications efficiency. The cost of communica
tions lines, and the additional access strategies and network options 
that are possible, result in a different network solution in local net
works than in long-distance networks. The result is that local networks 
are significantly less complex. 

There is a description in Section III of several regular networks 
with simple routing strategies. End-to-end error control protocols 
make it possible to extend the slotted system and register-insertion 
techniques developed for loop systems to mesh networks. This is shown 
in Section IV. With these techniques,. flow control on mesh networks 
can be done by throttling the sources, as on loop networks. A trade
off exists between the buffering in these systems and the efficiency 
with which the communication lines are used. One attempt to take 
advantage of this trade-off is the Floodnet system.9 There is a descrip
tion in Section IV of how this trade-off is applied to mesh networks 
with slotted system and register-insertion interfaces. The result is that 
for certain topologies mesh networks without buffering are reasonable. 
Finally, there is a description in Section V of several file-transfer 
protocols that do not resequence packets. 

II. EXAMPLE 

Before discussing the implementation of mesh networks, we show 
that these networks provide a potential to increase the throughput of 
conventional local area networks. In this example, two-connected 
networks, with as few as 64 nodes, increase the throughput of bus 
configured networks by a factor of 20 to 30. This comparison assumes 
that the same rate communication lines are used in both the mesh 
and random access networks. A factor of two increase in throughput 
is obtained because there is twice as much capacity emanating from 
each node. However, the major portion of the increase occurs because 
messages in the mesh network use only a fraction of the total network 
capacity. Greater increases are obtained in larger networks. 

Two traffic distributions are considered, a uniform distribution and 
a skewed distribution. In the uniform case, each node sends an equal 
amount of data to each of the other nodes. The skewed distribution 
corresponds to what might occur in a network of personal computers 
and file servers. The network is divided into communities of interest, 
each consisting of a file server and seven personal computers. A 
personal computer directs 80 percent of its traffic to its own file server 
and 20 percent to the other file servers. The computer receives an 
equal amount of traffic from the file servers. 
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For each traffic distribution, the throughput for six network topol
ogies is investigated. The first two networks are the conventional 
broadcast bus and loop configured networks. The throughput of the 
bus network is calculated assuming that the link utilization can 
approach one, and is an upper bound on the achievable throughput. 
In the loop network, the packets only use the links between the source 
and destination. In this network, and in the remaining networks, the 
throughput is determined by increasing the traffic levels from the 
sources until the utilization on any link equals one. The remaining 
four networks are two-connected networks with two links arriving at, 
and two links emanating from, each node. The first of these networks 
is a conventional bidirectional loop. For the skewed distribution, the 
file server is in the middle of the seven personal computers it is 
servicing. The next two networks are regular arrays called the modified 
shuffle exchange and the Manhattan street network. These networks 
are described in Section III. The Manhattan street networks with 16, 
32, 48, and 64 nodes are 4 X 4, 8 X 4, 8 X 6, and 8 X 8 arrays, 
respectively. For the skewed distribution, the seven personal com
puters and the file server in a community of interest are arranged in 
a 4 X 2 array on the network. This is shown for the 16-node network 

Fig. I-A I6-node Manhattan street network with two communities of seven personal 
computers (T) and a file server (FS). 

TRANSMISSION NETWORKS 1663 



Fig.2-A 32-node hierarchical network with four communities of seven personal 
computers (T) and a file server (FS) interconnected by shuffle-exchange networks. The 
four shuffle-exchange networks are connected by a bidirectional loop. 

in Fig. 1. The final network is a hierarchical shuffle exchange, con
sisting of shuffle-exchange networks with the eight devices in a com
munity of interest, interconnected by a bidirectional loop. Figure 2 
shows a 32-node, hierarchical network consisting of four 8-node shuf
fle-exchange networks. 

Traffic on the two-connected networks is placed on the shortest 
path between the source and destination. If there are several paths of 
equal length between a source and a destination, the path with the 
smallest flow is selected. Traffic with the shortest distance between a 
source and destination is assigned to the network first. Once a source 
destination requirement is assigned a path, the path is not changed if 
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Table I-The average megabits per user in networks with 10-Mbjs 
channels and the improvement over a broadcast network 

16 Nodes 32 Nodes 48 Nodes 64 Nodes 

Network MbjUsr Imprv. MbjUsr Imprv. MbjUsr Imprv. MbjUsr Imprv. 

Uniform Requirements 

BDCST 0.63 0.31 0.21 0.16 
Loop 1.25 2.00 0.63 2.00 0.42 2.00 0.31 2.00 
BDL 4.69 7.50 2.42 7.75 1.63 7.83 1.23 7.87 
S-X 5.77 9.23 4.03 12.88 3.09 19.76 
MSN 6.52 10.43 4.56 14.59 4.31 20.70 3.94 25.20 
HS-X 4.69 7.50 1.96 6.28 1.41 6.75 1.13 7.20 

Skewed Requirements 

BDCST 0.36 0.18 0.12 0.09 
Loop 0.71 2.00 0.36 2.00 0.24 2.00 0.18 2.00 
BDL 2.63 7.37 2.08 11.67 1.80 15.11 1.59 17.82 
S-X 1.61 4.52 1.01 5.68 0.81 9.10 
MSN 2.63 7.37 2.17 12.17 2.12 17.80 2.12 23.76 
HS-X 2.78 7.78 2.78 15.56 2.66 22.34 2.63 29.47 

BDCST = Broadcast, BDL = Bidirectional, MSN = Manhattan street exchange, 
HS-X = Hierarchical street exchange, S-X = street exchange. 

a link on the path becomes saturated, and the requirements are not 
split if two equally good paths exist. This procedure does not lead to 
the optimum throughput, but gives a reasonably good idea of what can 
be achieved. 

The results of this investigation are presented in Table I. For each 
network, the average bit rate a user obtains in a network with 10-
megabit-per-second transmission links, and the improvement this 
represents over a broadcast network, is presented. For the conven
tional broadcast and loop network, the fraction of the capacity a user 
obtains decreases linearly with the number of users, as expected. The 
loop system provides about twice as much throughput per user as the 
broadcast network because, on the average, a packet transmitted on 
this network uses only half of the network capacity. The two-connected 
networks obtain a factor of two increase in throughput because there 
is twice as much capacity emanating from each node, and an additional 
increase because the networks use a smaller fraction of the network 
capacity to transfer a packet between the sources and destinations. 

The bidirectional loop, the Manhattan street network, and the 
hierarchical shuffle exchange respond well to the skewed requirements. 
These networks are capable of allowing complete connectivity while 
preventing users in different communities of interest from interfering 
with one another. This characteristic is extremely important in de
signing large networks. The shuffle-exchange and Manhattan street 
networks also respond well to a large group of users with uniform 
transmission requirements. This occurs because the average distance 
between users does not increase as rapidly in these networks as in the 
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other networks. The average distance between users in the Manhattan 
street network is greater than that in the shuffle-exchange network; 
however, the throughput of the Manhattan street network is greater. 
The Manhattan street network can support a larger throughput be
cause there are more equal-length shortest paths, and bottlenecks can 
be avoided. 

III. TOPOLOGY 

In this section, three two-connected networks are described, the 
bidirectional loop, the modified shuffle exchange, and the Manhattan 
street network. These networks have two independent paths between 
any node, and they can survive a single loop or node failure. While 
these networks are not optimal, they show what measures can be used 
to compare topologies, and what network characteristics are desirable. 
Lower bounds on two measures, the average and maximum shortest 
path between nodes, are derived and compared with these three 
topologies. 

3.1 Bidirectiona//oops 

In a bidirectional loop with N nodes, labeled 0 to N - 1, node i is 
connected to nodes (i - 1) mod N, and (i + 1) mod N. This is the only 
two-connected network with bidirectional paths between all of the 
nodes. If the transmission protocols require a response each time a 
packet of data is transferred between two intermediate nodes on a 
path, this is the only possible two-connected network. This network 
was initially considered as a mechanism to make loop networks more 
reliable. 

This network has many of the topological advantages of loop sys-
tems. It 

• Is defined for any number of nodes, 
• Makes geographical sense, 
• Has a simple rule for expanding the network by one node at a 

time, and 
• Has a simple routing rule. 
When a node is added to the network, the two existing nodes closest 

to this node are disconnected from one another and connected to the 
new node. Even if the network covers a large geographical area, there 
are not many long wires. Shortest-path routing in this network is 
straightforward. The nodes in the network are sequentially numbered 
from 0 to N - 1. The distance from a source node 8 to a destination 
node d is (d - 8) mod N on the incremental path and (8 - d) mod N 
on the decremental path. At the source, the shorter of these two paths 
is selected. Once a packet in this system starts on a path, it remains 
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on that path. Therefore, a complete routing decision is made at the 
source, and the system is implemented as two separate loop systems. 

A disadvantage of this network is that the node addresses and the 
value of N changes whenever a node is added to the system. Either an 
addressing and routing scheme that does not use this information 
must be found, or this information must be distributed each time the 
network is changed. Another disadvantage of this network is that the 
throughput is not as great as that in the shuffle-exchange and Man
hattan street networks. 

3.2 Modified shuffle exchange 

The modified shuffle-exchange network is based on the shuffle
exchange multistage switch. The network is defined for N nodes, 
where N is constrained to be a power of two. Node i is connected to 
nodes 2*i mod Nand (2*i + 1) mod N. This results in self-loops at 
nodes 0 and N - 1, which are not used to transmit packets. They also 
make the network less reliable in that a single link failure can discon
nect a node from the network. In the modified network, the self-loops 
are removed and nodes 0 and N - 1 are connected to one another, as 
shown in Fig. 3. When the shuffle-exchange network is part of a 
hierarchical structure, as in the previous section, the self-loops are 
replaced by connections to the higher-level network. 

Routing in this network is straightforward. Initially, ignore the two 
paths that were added to the modified network. Represent the address 
of node i by M = log2 N bits, and label the paths to nodes 2*i mod N 
and node (2*i + 1) mod N as 0 and 1, respectively. When a packet is 
transmitted from node i, the address of the new node has the low
order M - 1 bits of node i's address in the high-order M - 1 bits. The 
low-order bit of the new address is 0 or 1, depending on the path 
selected. To find the shortest path between a source and destination, 
match as many of the high -order bits of the destination address with 
the low-order bits of the source address as possible. To get to the 
destination, shift the low-order bits of the destination address that are 
not included in this match into the address and determine the path 
that must be selected. 

For instance, assume that the source address is 11011 and the 
destination address is 11001. The first two bits of the destination 
address match the last two bits of the source address. The bits 001 
must be shifted into the address to get to the destination, and the 
distance to the destination is 3. To get to the destination, first path 0 
is taken to node 10110, then path 0 is taken to node 01100, and finally 
path 1 is taken to node 11001. 

If none of the high-order bits of the destination match the low-order 
bits of the source, then the distance to the destination is log2N steps. 
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----------------------
Fig. 3-An 8-node modified shuffle-exchange network. 

This is the maximum distance between any source and any destination. 
In Section 3.4, this will be shown to be the minimum maximum 
distance between nodes for a two-connected network of this size. 

The two paths that are added to the modified network make it 
possible to go from the all-one address to the all-zero address, and vice 
versa, in a single step. This shortens the average distance between 
nodes. These paths cannot change the maximum distance between 
nodes since this is already a minimum. The effect of these paths on 
the distance between nodes is shown in Table II. The network S-X is 
the shuffle exchange with two self loops and MS-X is the modified 
network. It is evident that the additional paths do not provide a great 
decrease in the average minimum distance between nodes. They should 
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Table II-The average and maximum 
shortest distance between nodes in 
the shuffle-exchange network and 

the modified shuffle-exchange 
network 

Average 

Nodes S-X MS-X Maximum 

4 1.50 1.33 2 
8 2.11 1.96 3 

16 2.83 2.73 4 
32 3.65 3.58 5 
64 4.53 4.49 6 

128 5.46 5.44 7 
256 6.42 6.40 8 

be included to allow an alternate path when failures occur, but unless 
a simple routing rule is found to use them under normal operation, 
they should not be used.·· . 

There are several problems with this type of a network. The first 
problem is that the physical layout of this network does not make 
sense geographically. If half of the nodes in the network are in one 
area and half of the nodes are in another remote area, then half of the 
connections must be between the two remote areas. Therefore, the 
network can only be used in a small area where the length of the 
interconnections do not make a difference. Shuffle-exchange networks 
in physically disjoint areas must be interconnected by a hierarchical 
network that can make sense geographically, as in the example in 
Section II. The second problem is that the network is only defined if 
the number of nodes equals 2i. At present, no way has been found to 
add one node at a time-changing a small number of connections
and move from a network with 2i nodes to a network with 2i+1 nodes. 
The third problem is that the alternate paths between a source and a 
destination are not good. If the preferred path is blocked or inoperable, 
the alternate paths are much longer. 

3.3 Manhattan street network 

The Manhattan street network is based on· a grid of alternatingly 
directed streets and avenues, as shown in Fig. 1. The nodes exist on 
the corner of a street and an avenue. The rationale for this type of a 
network is that routing from a particular street and avenue to a 
destination should be straightforward. As in a city with this layout, 
any destination street and avenue can be found without asking direc
tions, even when some roads are blocked. In addition, it should be 
possible to layout the network to make sense geographically. 
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The principal difference between a grid connecting corners with 
streets and a grid connecting nodes with wires is that the physical 
constraints associated with a two-dimensional surface can be violated 
more easily with wires. For instance, in the example in Section II, the 
file servers and terminals forming a community of interest are in the 
same neighborhood. Assume that the file servers in this system are in 
the same room and that the personal computers in the same commu
nity of interest are in the same physical area. By connecting the file 
server to the region of the network with the terminals, rather than 
basing the connections strictly on the physical location of devices, the 
file server appears to be in the same neighborhood as the terminals. 
This reduces the interference between terminals in different commu
nities of interest. 

The difference in physical constraints also allows the extremes of 
the grid to be connected. These connections form the grid on the 
surface of a torus instead of a flat surface. The advantage of this cyclic 
surface is that there are no corners. Therefore, the maximum distance 
from a source to a destination is not the distance between two corners 
of the grid, but the distance between the center and one of the corners. 
The graph can also be flipped so that the links leaving the center node 
are always pointed in the same direction. This allows the same routing 
decision function-to be used at every node. 

Consider a network with r rows and c columns. The current node 
has coordinates (is, js), and the destination node has coordinates 
(id, jd). The current node is considered to be at location (0, 0), and the 
relative location of the destination (i, j), is expressed as 

i = {II - 2(j.mod 2»)(id - i.) + ~ - I} mod r - (~ - 1) 
j = {II - 2*(i,mod 2»)(jd - j,) + ~ - I} mod C - (~ - 1). 

The current node is now in the center of the network. The value of i 
is between -(r/2 - 1) and r/2, and j is between -(c/2 - 1) and c/2. 
The factors 1 - 2*(jsmod 2) and 1 - 2*(ismod 2) guarantee that the 
links leaving the current node point toward increasing i and j. The 
routing decision now depends only on the relative location of the 
destination and not on the current node. 

The routing preference from the central node to outlying nodes for 
a 12 X 12, 12 X 14, and 14 X 14 Manhattan street network is shown 
in Fig. 4. In this network, the two links emanating from the central 
node are directed upwards and to the right. The routing preference is 
the shortest distance from the central node to the destination when 
the link to the right is taken, minus the shortest path to the destination 
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-5 -4 -3 -2 -1 0 1 2 3 4 5 6 

6 0 4 0 4 0 4 0 0 0 0 0 0 
5 4 4 4 4 4 4 0 0 0 0 0 0 
4 0 4 4 4 4 4 4 0 0 0 0 0 
3 4 4 4 4 4 4 0 0 0 0 0 0 
2 0 4 4 4 4 4 4 0 0 0 0 0 
1 4 4 4 4 4 4 0 -4 0 -4 0 0 

0 0 0 4 0 4 0 -4 -4 -4 -4 -4 -4 

-1 0 0 0 0 0 -4 -4 -4 -4 -4 -4 0 
-2 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 
-3 0 0 0 0 0 -4 -4 -4 -4 -4 -4 0 
-4 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 
-5 0 0 0 0 0 0 -4 0 -4 0 -4 0 

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

6 2 0 4 0 4 0 4 0 0 0 0 0 0 0 
5 2 4 4 4 4 4 4 0 0 0 0 0 0 2 
4 2 2 4 4 4 4 4 4 0 0 0 0 0 0 
3 2 4 4 4 4 4 4 0 0 0 0 0 0 2 
2 2 2 4 4 4 4 4 4 0 0 0 0 0 0 
1 2 4 4 4 4 4 4 0 -4 0 -4 0 -2 2 

0 -2 2 0 4 0 4 0 -4 -4 -4 -4 -4 -4 -2 

-1 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 -2 -2 
-2 -2 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 -2 
-3 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 -2 -2 
-4 -2 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 -2 
-5 0 0 0 0 0 0 0 -4 0 -4 0 -4 0 -2 

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

7 2 2 2 2 2 2 2 -2 0 -2 0 -2 0 0 
6 2 2 4 2 4 2 4 2 0 0 0 0 0 0 
5 2 4 4 4 4 4 4 0 0 0 0 0 0 2 
4 2 2 4 4 4 4 4 4 0 0 0 0 0 0 
3 2 4 4 4 4 4 4 0 0 0 0 0 0 2 
2 2 2 4 4 4 4 4 4 0 0 0 0 0 0 
1 2 4 4 4 4 4 4 0 -4 0 -4 0 -2 2 

0 -2 2 0 4 0 4 0 -4 -4 -4 -4 -4 -4 -2 

-1 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 -2 -2 
-2 -2 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 -2 
-3 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 -2 -2 
-4 -2 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 -2 
-5 0 0 0 0 0 0 -2 -4 -2 -4 -2 -4 -2 -2 
-6 0 0 2 0 2 0 2 -2 -2 -2 -2 -2 -2 -2 

Fig.4-Routing preference in a 12 X 12, 12 X 14, and 14 X 14 Manhattan street 
network. 

when the upwards-directed link is taken. Therefore, a negative number 
implies that the right link leads to the shortest path to the destination, 
and a positive number implies that the upwards link yields the shortest 
path to the destination. The magnitude of the number shows how 
much longer the distance to the destination would be if a packet were 
forced to take a less desirable path. A zero implies that the distance 
to the destination is the same along either path. The figures show that 
to get to half of the nodes either path can be taken, to get to a quarter 
of the nodes the left path should be taken, and to get to the other 
quarter of the nodes the right path should be taken. The figures also 
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Fig. 5-Adding nodes E, F, G, and H one at a time to the basic rectangular structure 
consisting of nodes A, B, C, and D in a Manhattan street network. 

show that if a packet is forced to take the wrong path, the increase in 
path length to the destination is never more than four. 

One problem with the shuffle-exchange network is the difficulty in 
changing the number of nodes in the network. Figures 5 and 6 show 
how nodes may be added to the Manhattan street network. Figure 5 
shows how two columns are added to the basic square structure within 
the Manhattan street network. The dotted lines show the links that 
will be broken when the next node is added. Figure 6 shows how the 
procedure is continued to add nodes to partially full columns. Each 
time a new node is added, two links are broken and connected to the 
new node. This is no greater than the number of links that must be 
broken in the bidirectional loop. Eventually this procedure leads to a 
network with two additional rows or columns, and the pattern of 
alternatingly directed rows and columns is preserved. 
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Fig. 6-Adding a node K to a partially full column in a Manhattan street network. 

When adding a new node both the physical position of the node and 
the topology of the network must be considered. It is desirable to 
connect the node to the nearest existing nodes, but it is also desirable 
to start as few new rows or columns as possible, and to keep the 
number of rows and columns equal. When rows and columns are kept 
approximately equal, the average and maximum shortest paths be
tween nodes increase as shown in Table III. 

In the shuffle-exchange network it is occasionally better to establish 
a hierarchy of networks rather than make a single network larger. 
Hierarchical structures are also useful in Manhattan street networks. 
They are used to 
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Table III-Distances between nodes in 2; 
by 2j Manhattan street networks 

Shortest Paths Be-
tween Nodes 

Nodes Rows Columns Average Maximum 

4 2 2 1.33 2 
8 2 4 2.00 3 

16 4 4 2.93 5 
24 4 6 3.30 5 
36 6 6 3.71 6 
48 6 8 4.34 7 
64 8 8 5.02 9 
80 8 10 5.42 9 

100 10 10 5.84 10 
120 10 12 6.42 11 
144 12 12 7.02 13 
168 12 14 7.45 13 
196 14 14 7.89 14 
224 14 16 8.45 15 
256 16 16 9.02 17 

• Decrease the number of paths between physically distant sections 
of the network, 

• Eliminate long paths between communities of interest, and 
• Prevent traffic between communities of interest from affecting 

communications in other communities of interest. 
The two-connected strategy can be maintained, as in Fig. 7. How

ever, this will make routing more complex. An alternative is to connect 
one or more of the nodes in a local area to a higher-level network, as 
shown in Fig. 8. By using this approach, routing decisions in a local 
area are not affected by network changes in other areas, and addresses 
in different local areas are assigned independently. A hierarchical 
addressing and routing structure, similar to that used in the telephone 
system, can be used. For example, the address within the local area 
corresponds to a phone number, and the address of the local network 
on the higher-level network corresponds to the area code. When 
sending a packet within the local area an area code is not required. 

3.4 An optimal two-connected network 

Certain characteristics of the "best" networks are difficult to quan
tify. For instance, it should be possible to add nodes without making 
major reconfigurations, create geographically dispersed networks with
out adding excessive numbers of long links, and establish communities 
of interest. Other characteristics, such as the average and maximum 
number of links between nodes, can be compared and bounded. 

Consider the class of two-connected networks. From a particular 
node, at most two nodes can be reached in one step, four additional 
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Fig. 7-A hierarchical Manhattan street network in which all of the nodes are two
connected. 

nodes in two steps, and so on. The destination nodes form a binary 
tree. If, at any level in the tree, a destination node recurs, the number 
of new nodes that can be reached in future levels is reduced by the 
descendants of that node. Therefore, the maximum number of nodes 
that can be reached in m steps is 

i=m 

L 2i = 2m
+! - 2. 

i=l 

If every node in a two-connected network can reach this number of 
new nodes in each m steps, then the network has the smallest average 
and maximum distance between nodes. In general, networks with 
these characteristics do not exist. However, this is a lower bound on 
these distance characteristics. 

In the shuffle-exchange network with 2i nodes, each node must 
reach 2i - 1 nodes, and the maximum minimum distance between 
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Fig.8-A hierarchical Manhattan street network in which the nodes connected to 
the hierarchical network are four-connected. 

nodes is j. The number of nodes that are reached in j - 1 steps in the 
optimum network is 2j 

- 2. Therefore, if 2j 
- 1 nodes must be reached 

on the optimum network, the minimum distance to the furthest node 
is j, and the largest minimum distance between nodes in the shuffle
exchange network is less than or equal to that in any network with 2j 

nodes. 
A comparison of the average and maximum distance between nodes 

I 
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Table IV-A comparison of the distances between nodes in several 
networks 

Number of Nodes 

Net Distance 16 64 256 

Opt Avg 2.53 4.19 6.06 
Max 4 6 8 

S-X Avg 2.73 4.49 6.40 
Max 4 6 8 

MSN Avg 2.93 5.02 9.02 
Max 5 9 17 

BDL Avg 4.26 16.25 64.25 
Max 8 32 128 

for the optimum, shuffle-exchange, Manhattan street network, and 
the bidirectional loop is shown in Table IV. In both the optimum 
network and the shuffle-exchange network, the maximum distance 
between nodes varies as the log of the number of nodes. In the 
Manhattan street network, the maximum distance between nodes 
varies as the square root of the number of nodes, and, in the bidirec
tional loop, this distance varies linearly with the number of nodes. 
The same relationship is also noted between the number of nodes in 
these networks and the average distance between nodes. The average 
distance between nodes shows what fraction of the network resources 
is used to transfer a packet and provides an indication of the relative 
throughput of the networks. Although, as shown in Section II, there 
are other factors that also affect the throughput. 

IV. IMPLEMENTATION 

In a mesh network, as in a loop network, the communications lines 
are point-to-point links with a single transmitter and a single receiver. 
Transmission on these links is much simpler than in a broadcast 
network with a shared communication channel. The access protocols 
are simpler because there is only one source, and it is not necessary 
to multiplex users on the communication channel or resolve collisons. 
The receiver is simpler because the distance between the source and 
destination is constant, and the signal strength does not change by a 
large amount from packet to packet. Regenerating the signal to elim
inate distance constraints is simpler because signals only propagate in 
one direction. Timing recovery is simpler because the source can 
transmit continuously and bit synchronization does not have to be 
reestablished at the beginning of each packet. In addition, the com
munication line does not have many taps and is compatible with the 
current generation of fiber:optic equipment. 

In a two-connected network there are two links and a local source 
inputting data to a node, and two links and a local sink removing data 
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from the node. Occasionally, multiple inputs try to transmit data to 
the same outgoing link. One way to resolve this problem is to queue 
packets waiting for a link. The network now assumes the complexity 
of a store-and-forward network. Not only must potentially large packet 
queues be maintained, but adaptive-routing, flow-control, deadlock
avoidance, and packet-resequencing issues must be addressed. 

In this section, the slotted-system and register-insertion techniques, 
developed for loop communication systems, will be extended to mesh 
networks with equal in and out degrees. The general strategy guaran
tees that every packet arriving on an incoming link, and not destined 
for the node, will be transmitted on one of the outgoing links. There
fore, it is not necessary to maintain a packet queue for the links 
emanating from the node. The requirement that packets passing 
through the node take one of the outgoing paths results in longer 
paths when the shortest path to the destination is busy. However, it 
is possible to design networks to reduce the effects of incorrect paths. 
For instance, in the Manhattan street network the path to only half 
of the destinations is increased if a packet is forced to take one path 
rather than the other. In addition, if a packet is forced to take a less 
desirable path, the distance to the destination is increased by at most 
four. 

The storage between the local source and the network is also limited. 
Packets from the local source are only transmitted when one of the 
outgoing links is not being used by an incoming link. It is assumed 
that either the local source can be throttled when the network is busy, 
or that the source provides data at a low rate relative to the network 
transmission rate. In the latter case, when a packet is lost, it must be 
recovered by a higher-level protocol. If the network delivers packets 
faster than the local sink can accept them, packets are either trans
mitted on one of the outgoing links or discarded. In the former case, 
the network is used for storage. Since new packets cannot enter the 
network when it is recirculating old packets, this transmission strategy 
acts as a flow-control mechanism. The assumptions on the local source 
and sink are implicit in all loop-configured systems without infinite 
storage. 

The packets of data in a slotted system are fixed size. A node 
continuously transmits bits on each of the links emanating from the 
node, and periodically transmits a start-of-slot indication. The start
of-slot indication is followed by a packet of data or an empty slot. In 
the interval between the start-of-slot transmissions, at most one 
packet of data is received on each of the incoming links. The packets 
that are received between start-of-slot transmissions are forwarded 
after the start of slot is transmitted. These packets are switched to 
one of the outgoing links or the local sink before data from the local 
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Fig. 9-Extension of slotted-loop systems to a mesh network. 

source are given access to the slot. Since there are the same number 
of links arriving and leaving from each node, and the local source can 
be throttled, a queue of packets will not accumulate. The operation of 
a slotted system without a packet queue is shown in Fig. 9. 

The interface for a register-insertion loop is shown in Fig. 10. 
Packets in this system are variable in size, but constrained to be less 
than the storage register Wz. The local source is only allowed to 
transmit when register Wz is empty. Since a packet from the local 
source is less than WI, all data received from the loop while the local 
source is transmitting can be stored in WI. When register Wz is not 
empty, bits from this register are transmitted on the loop. Therefore, 
the length of this register remains the same when bits are being 
received, and decreases when bits are not received. As long as this 
register is not empty, gaps between arriving packets are removed. 

The register-insertion technique can be applied to a mesh network 
in which the in degree and out degree of the nodes are the same by 
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Fig. lO-A register-insertion access unit in a loop system. 

Fig. ll-Extension of register-insertion systems to a mesh network. 

making the node appear as if several loops are passing through it. This 
is shown in Fig. 11. Registers Wn and W22 correspond to register Wi 
for loops 1 and 2, respectively. In addition to the local sink, register 
W12 appears to be a sink for loop 1. And, in addition to the local 
source, register W12 appears to be a source of data for loop 2. Therefore, 
register W12 · allows messages on loop 1 to transfer to loop 2. As in a 
loop system, if buffer W12 is full the packet must continue around loop 
1. Buffer W21 serves the same purpose for packets crossing from loop 
2 to loop 1. 

The register-insertion technique allows variable-length packets. 
When the system is busy, each node eliminates the null space between 
incoming packets to efficiently use the outgoing links. The slotted
system technique uses fixed-size packets. If there is less than a packet 
of data, the packet is partially empty. Therefore, the register-insertion 
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technique uses the channel more efficiently. In a slotted system, the 
packets from the incoming links are aligned at the switching point. A 
packet only traverses a longer path if more than one incoming packet 
requires the same outgoing channel. In a register-insertion system, a 
packet can only transfer from one loop to the other if the crossover 
buffer is empty. It is possible that both packets on the through loops 
would rather be on the other loop, but cannot cross over because the 
buffers are full. Therefore, the register-insertion technique uses indi
vidual links more efficiently, but the slotted system takes a shorter 
path between the source and destination. The technique that provides 
the greater throughput depends on both the message-length distribu
tion and the network topology. 

A small amount of buffering can be included in either the slotted or 
register-insertion system to reduce the probability of a packet taking 
a longer path. In the slotted system, fixed-size packet buffers are 
inserted at the output channels. The probability that a packet must 
take a longer path is the probability that two arriving packets must 
take the same path and the buffer for that path is full. Without 
buffering, one packet must take the longer path whenever two arriving 
packets want to take the same path. In the register-insertion system, 
the additional storage is inserted at the crossover point. A packet 
cannot cross over if, when it is received, there are fewer bits available 
in the crossover buffer than there are in a maximum-size packet. In 
the original system, a packet cannot cross over if, when it arrives, the 
crossover buffer is not empty. Decreasing the probability that a packet 
takes a longer path decreases the fraction of the network resources 
that a packet uses, and increases the throughput of the system. The 
trade-off between buffering and system throughput remains to be 
in vestigated. 

v. FILE TRANSFER 

A file transfer consists of several packets being transmitted from a 
source to the same destination. In a system in which packets do not 
take the same path, it is possible that packets are not received in the 
same order that they are transmitted. Packets may be resequenced at 
the receiver, however, it is preferable to avoid this task. 

One possible solution to this problem is to transmit one packet at a 
time and wait for an acknowledgment. This reduces the file-transfer 
rate. However, because of the small delays at each node, this solution 
is not as bad in mesh networks as it is in store-and-forward networks. 
For instance, in a slotted system the average delay per node is half a 
slot time, and the average round trip delay equals the average number 
of hops between nodes, L, times the slot time. Therefore, there is an 
average of L slots between each packet in the file, and the file-transfer 
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rate equals the channel rate divided by L + 1. Higher file-transfer 
rates can be achieved by end-to-end protocols that take advantage of 
the delay characteristics of the system, or node protocols that take 
advantage of specific hardware structure. 

Because of the small amount of delay at each node, it is unlikely 
that packets that take routes that have approximately the same length 
will arrive out of sequence. This probability can be reduced by allowing 
a small number of slots between packets in the same file transfer. A 
simple file-transfer protocol, which takes advantage of this character
istic, operates like the window protocols of store-and-forward networks 
and the go-back-N protocols of satellite systems. This protocol labels 
packets in a file transfer with a sequence number and a retry number. 
At the beginning of a file transfer, the transmitter and receiver start 
with the same sequence and retry number. The sequence number is 
the order of the packets. The receiver 

• Increments its retry number when a packet with the expected 
retry number and a larger sequence number is received, 

• Sends a positive acknowledgment if a packet has a sequence less 
than or equal to the expected number, 

• Sends a negative acknowledgment with its retry number and 
expected sequence number if the packet has a larger sequence 
number than it expects, and 

• Commits a packet if it has the expected sequence number. 
The transmitter 

• Stops saving a packet for retransmission when it receives a posi
tive acknowledgment for a packet with a sequence number greater 
than or equal to the expected number, 

• Adopts a new retry number and starts retransmitting from a 
negatively acknowledged sequence number if a negative acknowl
edgment with a larger retry number is received, and 

• Periodically retransmits the last packet in a file transfer until it 
receives an acknowledgment. 

The transmitter initially transmits packets in the file transfer in 
every available slot. However, when it receives negative acknowledg
ments, it increases the number of slots between subsequent packets. 

Since this protocol only accepts packets in the correct order, packets 
do not have to be resequenced at the receiver. In a mesh network, 
several packets can be in transit between the source and destination. 
If the receiver misses a packet, it must send a negative acknowledg
ment for every packet with a larger sequence number than expected 
to be certain that the trasmitter receives the negative acknowledgment. 
The retry number is included so that the transmitter only backs up 
and starts retransmitting when it receives the first negative acknowl
edgment to an outstanding packet. 
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The transmitter adaptively changes the number of slots between 
packets according to network load and the rate of the receiver. When 
the network is lightly loaded, all packets follow the best path to the 
receiver, and arrive in sequence. If the receiver can accept packets at 
this rate, there are no negative acknowledgments, except for infrequent 
transmission errors, and the file-transfer rate equals the channel rate. 
When the network is heavily loaded, the packets follow different paths, 
are received out of sequence, and the file-transfer rate decreases. If 
the receiver cannot accept packets as fast as the transmitter can 
deliver them, the buffer in the interface unit is full when the packets 
arrive. In the systems described, these packets are directed to one of 
the output links at the node, and recirculate in the network until the 
buffer is available. These packets arrive out of sequence, negative 
acknowledgments are transmitted, and the transmitter slows down. 

Additional improvements are possible by taking the structure of the 
nodes into account. In a slotted system, subsequent packets in a file 
transfer can be marked. At a node, packets in a file transfer, which 
follow immediately behind one another, can be directed along the same 
path. The end-to-end protocol can he implemented with empty slots 
only occurring when the source cannot deliver packets quickly enough, 
or when the channel at the source node is busy with traffic passing 
through the node. This will improve the file-transfer rate on moder
ately used channels. If this modification is used, the transmitter and 
receiver must negotiate the number of packets in a continuous se
quence to be certain that the receiver can accept them at the channel 
rate. 

In a register-insertion system, if the loop paths define a Hamiltonian 
circuit, packets in a file transfer can be constrained to follow these 
loops. Since a packet can never be denied access to this loop, all 
packets follow the same path and will be received in sequence. This 
allows file transfers to occur at the channel rate without resequencing, 
but requires file transfers to use a larger fraction of the network 
resources. 

In both the register-insertion and slotted systems, it is possible to 
use a higher-level protocol to set up a limited number of virtual circuits 
along which file transfers can occur efficiently at the channel rate 
without resequencing. In the slotted system, the higher-level protocol 
is used to assign an input at a node to an output. When a file-transfer 
packet arrives at a node input, it is given first priority to the assigned 
output. Therefore, all packets in the file transfer follow the same path 
and do not have to be resequenced. The function of the higher-level 
protocol is to make the assigned paths for a file transfer use as few 
links as possible. The problem with this approach is that the preferred 
paths must be established at the beginning of each file transfer and 
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disabled at the end of the transfer. In addition, a file transfer may be 
temporarily blocked by previously assigned paths, creating a need for 
a scheduler. In the register-insertion system, the preferred paths are 
established as the paths through the node. This has the same problems 
as the slotted system. 

VI. CONCLUSION 

Mesh networks increase the throughput of conventional local area 
networks by decreasing the fraction of the network capacity needed to 
transmit information between a source and a destination. These 
networks have multiple paths between each source and destination, 
thus increasing the reliability of local networks. The networks consist 
of point-to-point links, and can be extended to cover a metropolitan, 
rather than a local, area. 

In general, mesh networks require complex store-and-forward nodes 
that also route messages, control the flow of data entering the network, 
resequence packets at the destination, and recover packets with errors. 
There are characteristics of the local or metropolitan area that allow 
these functions to be simplified. In the local environment, regular 
network topologies can be selected in which routing is straightforward. 
The lower error rates make it reasonable to recover errors on an end
to-end basis. This allows loop-access protocols to be extended to mesh 
networks, eliminating the need for buffering and additional flow
control protocols. Extensions for the slotted system and register
insertion techniques used in loop systems have been shown. Buffering 
can be included in these systems to improve the channel utilization; 
however, channels are less expensive in the local environment. The 
small node delays in these systems also make it reasonable to imple
ment file-transfer protocols that do not require packet resequencing. 

Three mesh networks have been studied, and the desirable charac
teristics of networks have been determined. Networks should have 
regular structures with simple routing rules, and should not have 
single points of failure. By minimizing the average and maximum 
distance between nodes, the fraction of the network resources used to 
transmit a packet decreases, and the throughput increases. This can 
be done by packing topologies with these characteristics noted, and by 
locating communities of terminals that communicate frequently in the 
same area of the network. Equal-length alternate paths between 
sources and destinations reduce the probability of bottlenecks and the 
need for buffering within a node. Networks will change, and it must 
be possible to add or delete nodes without changing a large number of 
connections. If the network covers a large area, it must be possible to 
limit the connections between nodes in different areas. Of the networks 
studied, the Manhattan street network has all of these characteristics. 
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It is assumed that a data carrier signal is transmitted over a fading channel 
whose frequency response can be closely approximated over the transmission 
band by a first-order polynomial in frequency, the coefficients being slowly 
varying functions of time. An equivalent baseband model is obtained wherein 
the transmitted signal is of the form s(t) = L~oo ak!(t - kT), and the received 
signal is of the form r(t) = s(t) + x(t)s'(t), where x(t) is an unknown (e.g., 
random) function of time. The problem solved in this paper is that of finding 
the function! of prescribed bandwidth that minimizes the mean-square error, 
E{ 1 r(nT) - an 12}, under the assumption that the ak are independent random 
variables of zero mean and unit variance, and Efl x(t) 121 = ci. The results 
also apply to the sometimes more realistic hypothesis, 1 x(t) 1 :s:; a. 

I. INTRODUCTION 

A common method of transmitting data {ak} and {bk} is via a carrier 
signal of the form 

(1) 

where 

(2) 

In the usual mathematical model, f(t) = (sin rU)/fU, Q = 'Tr/T, so that 
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sl(nT) = an; s2(nT) = bn. 

Assuming then that se(t) is transmitted over an ideal noiseless channel, 
Sl(t) and S2(t) can be recovered by synchronous demodulation of the 
received signal, and then the data obtained by sampling Sl and S2 at 
the times n T. 

A problem, communicated by G. Foschini, arises when sc(t) is 
transmitted over a channel having a relatively slow-varying fading 
characteristic. L. J. Greenstein and B. A. Czekaj have found that, in 
many cases, the fading channel response can be fairly well approxi
mated over the transmission band by a first-order polynomial in 
frequency w, 

Ao(t) + Al(t){W - We} + Bl(t)i{w - We}, 

with slowly varying real coefficients. 1 Then, to a good approximation, 
synchronous demodulation of the received signal gives, instead of Sl(t), 

rl(t) = AO(t)Sl(t) + Bl(t)s{(t) + it l (t)S2(t), 

and a similar expression for the alteration of S2(t). 
We assume that Ao(t), the center-frequency channel gain, is positive 

and can be determined at the receiver (e.g., by measuring the average 
power in a narrow band about the center frequency), so that, by the 
use of automatic gain control we have available, 

(3) 

where Xl (t) and X2( t) are unknown, for example, random, slowly 
varying functions of time. Then 

ri(nT) = an + xl(nT)s{(nT) + x2(nT)s2(nT). (4) 

It has been suggested,2 as an alternative to using adaptive channel 
compensation, that error-free reception may be obtained by doubling 
the bandwidth of t(t) in (2), i.e., by taking t(t) = (sin nt)2/(fU)2, n = 
7r/T, so that s{{nT) = s2(nT) = o. Here we want to determine the best 
attainable trade-off between mean-square error and bandwidth under 
certain assumptions on {ak}, {bk}, Xl(t), and X2(t). 

We have, from (2), 

ri(nT) - an = an{f(O) - I} + L akt(nT - kT) 
k¢n 

Now we assume that the ak and bk are independent random variables 
of zero mean and unit variance. Then the expected mean -square error 
over {ak} and {bk} is 
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Efl ri(nT) - an 12} = 11 - f(O) 12 + L I f(kT) 12 
k7JfO 

+ {xi(nT) + x§(nT)} L I f'(kT) 12 + 2xl(nT) L f'(kT)f(kT) 
k7JfO 

+ 2xl(nT)[f(0) - 1]1' (0). (6) 

[Note that the cross product xl(nT)x2(nT) does not enter here because 
of the assumptions on {ak} and {bk}.] 

Now let us suppose that Xl(t) and X2(t) are random (continuous) 
functions satisfying 

E{I Xl(t) 12} = ai, 

E{I X2(t) 12} = a§. 

Then we have, for the expected, or mean-square error, f2, 

(7a) 

(7b) 

f2 = 11 - f(O) 12 + L {f(kT) 12 + a2 L I f'(kT) 12, (8) 
k7JfO 

where a2 = ai + a§. 
As an alternative to the statistical assumptions, (7a) and (7b), let 

us suppose that 

I Xl(t) I ~ ah 

I X2(t) I ~ a2· 

(9a) 

(9b) 

These assumptions may be more relevant in practice than the statis
tical assumptions. Note that if the coefficient of xl(nT) in (6) vanishes, 
which will be the case if f(t) is even; then, under the assumptions (9a) 
and (9b), (8) will hold with the equality sign replaced by ~. We wish 
to minimize the quantity on the right in (8) over bandlimited functions 
f of prescribed bandwidth. As we shall see, the minimum will be 
obtained for a real-valued even function, so that, indeed, the minimum 
will be an upper bound for f2 under the assumptions (9a) and (9b). 

Note that, in the end, the quantity to be minimized depends only 
on how large I Xl(t) I and I X2(t) I may be, slowly varying or not. The 
slowly varying hypothesis was used only to obtain (3) from the fading 
channel model. The same minimization problem is obtained, under 
the previous assumption on {ak}, if 

s(t) = L akf(t - kT) (10) 

is transmitted over a channel such that the received signal is simply 

r(t) = s(t) + x(t)s'(t), (11) 
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where x(t) is an unknown (continuous) function satisfying, if x(t) is 
random, 

EI I x(t) 12} = a?, 

or (say) if not, then 

Elx(t)} = 0, 

I x(t) I :::: a. 

(1Ia) 

(lIb) 

It is convenient, and sufficient, to consider the case T = 1 in (8), so 
that the quantity of interest is 

00 

€2 = 11 - 1(0) 12 + L I(k) 12 + a 2 L I f'(k) 12. (12) 
WO 

This is to be minimized over functions I in B2(n); i.e., functions in L2 
of the form 

110 

I(t) = - F(w)eiwtdw. 
27r -0 

(13) 

We need only consider the case 0 < n :::: 27r, since for n ~ 27r we can 
make €2 = 0 by taking I(t) = (sin 7rt)2/(7rt)2. The transmission system, 
of course, is useless if €2 ~ 1, but we can always make €2 < 1 by 
appropriate choice (or scaling) of I, (I == 0 giving €2 = 1). 

In general, we will not have 1(0) = 1 for the optimal I. This is easily 
seen by defining the governing quantity in the problem, viz., 

Jl(n; a) = inf { L I I(k) 12 + a2 ~ I f'(k) 12}. (14) 
{eB2(!l) wo -00 

{(0)=1 

It follows from this definition that 

L I I(k) 12 + a2 L I f'(k) 12 ~ Jl(n; a)l 1(0) 12, I in B 2(n). (15) 
k~O 

Thus from (12) and (15) we have 

€2 ~ 11 - 1(0) 12 + 11(0) 12Jl(n; a), I in B 2(n). (16) 

The quantity on the right is minimized by taking 

1(0) = ~ = ~(n; a) = II + Jl(n, a)r\ (17) 

giving 

(18) 

Thus if the infimum in (14) is attained for I = I(t; n, a), then equality 
will hold in (18) for the optimal function 

lo(t; n, a) = ~ I(t; n, a). (19) 
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In cases of practical interest, J.L will be small, and hence fo(O) will be 
slightly less than 1. 

II. RESULTS 

The results are summarized in the following: 

Theorem: Define for a > 0, Q > 0, 

7r aQ 
p(Q; a) = Q . arctan(aQ)' (20) 

where arctan(·) is between 0 and 7r/2. Then in (14) we have, for 0 < Q 

J.L(Q; a) = p(Q; a) - 1, (21) 

and for 7r < Q :::::; 27r, 

/L(Q; a) = {(1 -Pl + fJ . arct:~;fJ1I")r -1, (22) 

where 

(22a) 

For Q ;::: 27r, 

J.L(Q; a) = o. (23) 

Furthermore, for 0 < Q :::::; 7r, the infimum in (19) is attained only for 

1 10 
cos wt f(t) = f(t; Q, a) = p(Q; a) -2 1 2 2 dw (24) 

7r -0 + a w 

and for 7r < Q :::::; 27r, a> 0, only for 

f(t) = (1 - A)f(t; (37r, a) 

+ A{cp(t; Q)cos trt - .! cp'(t; Q)sin 7rt}, (25) 
7r 

where f(t; ., a) is defined in (24), {3 is defined in (22a), and 

III. DISCUSSION 

A= 1-{3 
(1 - (3) + (3 . arctan(a{37r)' 

a{37r 

( . n) = sin(Q - 7r)t 
cp t, ~{; (Q _ 7r)t . 

(25a) 

(25b) 

In the simple fading channel model we have fixed the sampling 
interval T to be unity, so that Q = 7r corresponds to Nyquist-rate 
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transmission, and solved the minimization problem for 0 < D ~ 27r. 
The case 0 < D < 7r might be considered uninteresting, for in this case 
the bandwidth is too small for the data rate. However, the solution for 
this "uninteresting" case enters in the solution for the interesting 
case, 7r < D < 27r. 

From the results stated in the Theorem, the optimal function in 
B 2(D) for minimizing the mean-square error is found to be 

1 Lfl cos wt 
lo(t; D, a) = -2 1 2 2 dw, 0 < D < 7r, 

7r -fl + a w 
(26) 

lo(t; D, a) = lo(t; 27r - D, a) + ho(t; D), 7r < D ~ 27r, (27) 

where 

h ( ) {
sin(D - 7r)t} 1 {d sin(D - 7r)t} . o t; D = cos trt - - - sm 7rt 

7rt 7r dt 7rt 

1 L ( IWI) = -2 1 - -2- coswt dw, (D1 = 27r - D). 
7r fl1<1 w I<fl 7r 

(28) 

The resulting minimum mean -square error is 

(?(D' a) = 1 - ~ arctan(aD) 0 < D ~ 7r, 
o , 7r aD ' (29) 

2( . ) _ ( _~) { _ arctan[a(27r - D)]} 
Eo D, a - 2 7r 1 a(27r - D) , 7r < D ~ 27r, (30) 

where 0 ~ arctan(.) < 7r/2. 
The main interest attaches to this quantity for 7r ~ D ~ 27r and a 

small, in which case 
a 27r2 

E5(D; a) == -3- {2 - (D/7r)}3. (31) 

So there is an interesting trade-off between error and bandwidth in 
this case. 

In the other direction we have 

(32) 

Thus, if a is very large, D must be very near 27r in order for the error 
to be small; i.e., one may as well take D = 27r for very large a. However, 
other practical considerations enter in the case of large a; e.g., the 
necessities of very accurate sampling and very close approximation of 
the extremal function. Also, additive noise, which has been neglected 
in this analysis, will be magnified by automatic gain control during 
periods of deep fading. So the results are deemed of no practical value 
in the case of large a. 
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Notice that the extremal function for the case 7r < n < 27r has two 
distinct components, the low-frequency component being the extremal 
function for the frequency (27r - n). The other component, ho(t; n) is 
a bandpass function that does not depend on a, since as may be seen 
from the first line in (28), its derivative vanishes at the integers. From 
the second line in (28), it is seen that ho(t; n) is a bandpass version 
(center frequency 7r, upper frequency n) of (sin 7rt)2/(7rt)2, the extremal 
function for n = 27r. Graphs of Fo(w; n, a), the Fourier transform of 
lo(t; n, a), are shown in Fig. 1 for several values of nand a2. 

It is doubtful that detailed statistics on fading channels, even if 
available, would be useful in practice, except to the extent that they 
could give a rough idea of what might be expected. Generally speaking, 
large errors cannot be tolerated over long intervals (negating, to some 

(a) 

-2 -1 o 

(b) 

-2 -1 2 

(e) 

Fig. I-The Fourier transform Fo(w/Tr; n, a) of the extremal function for various 
values of nand a. (a) n = 1.211", a 2 = 10. (b) n = 1.511", a 2 = 1. (c) n = 1.811", a 2 = 0.1. 
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extent, the adoption of the mean-square error criterion), and one is 
faced with the dilemma of uncertainty in using such channels. In the 
model here, the "expected value of ex2

" might be regarded from a 
pragmatical viewpoint as a mathematical non sequitur which might 
better be replaced by a design hypothesis, I x(t) I ~ ex. Then the use of 
lo(t; Q, ex) guarantees that the mean-square error will not exceed 
f5(Q; ex) if the hypothesis is true. The design problem is much like that 
of deciding how much insurance to buy. 

On the other hand, one might adopt a hedging strategy, where extra 
bandwidth is used to guard against fading, while zero error is obtained 
in the absence of fading by using a truly interpolatory I. That is, in 
the problem of minimizing 

L I I (k) 12 + ex2 L I f' (k) 12 (33) 
wo 

over I in B2(Q), 7r < Q ~ 27r, 1(0) = 1, one decides to make the first 
sum zero and minimize the second sum under the constraints. The 
extremal function for this problem, then, depends only on Q, and is 
found to bet 

f ( ) sin 7rt {sin(Q - 7r)t (2 Q) (0 ) } t· Q = -- + - - cos ~l. - 7r t 
1 , 7rt 7rt 7r ' 

(7r < Q ~ 27r), (34) 

the minimum value of the second sum in (33) being, under the 
constraints, 

~ I IHk; Q) 12 = 7r
2 (2 _ g)3, 

-00 3 7r 
(35) 

The Fourier transform of 11 is 
FI(w; Q) = 1 for Iwl < 27r - Q, 

Iwl 
= 1 - 27r for 27r - Q < I w I < Q, 

= 0 for I wi> Q. (36) 

The graph of FI(W; Q) (see Fig. 2) suggests a log cabin; so it will be 
called the log-cabin characteristic, and II(t; Q) will be called the log
cabin kernel. 

One may choose an optimum scaling of the log-cabin kernel as a 
substitute for lo(t; Q, ex) in the original problem of minimizing, over I 
in B 2(Q), 7r < Q ~ 27r, 

fIt is no surprise that ft(t; Q) = lim..-o fo(t; fl, a). 
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Fig. 2-The log-cabin characteristic. 

~2(f) = 11 - {(O) 12 + L I {(k) 12 + a? L I f'(k) 12. (37) 
wo 

The resulting function is 

{1O(t; n, a) = l' {l(t; n), (38) 

where 

[ 2 2 ( n)3]-1 
l' = 1 + a 3

7r 
2 - ;: . 

(In case a is small, the optimum scaling may be ignored, as it only 
amounts to a second-order correction.) The optimally scaled log-cabin 
kernel gives for the mean-square error in the original problem, 

a
2
7r
2 ( n)3 - 2--

2 ) 3 7r ( ) ~1O(n; a = 2 2 ( )3' 7r < n ~ 27r. 39 a7r n 
1+- 2--

3 7r 

In Fig. 3, 10 log1O{~5(n; a)} and 10 log1O{~io(n; a)} are plotted, for 
various values of a 2

, versus the normalized angular frequency, n/7r, 
which corresponds to 2 WT for a top frequency Wand a sampling 
interval T. To evaluate the effectiveness of {o(t; n, a), some reference 
value of mean-square error must be adopted. It seems natural that 
~5(n; a) should be compared with dO(7r; a), the minimum mean-square 
error obtainable (at Nyquist rate) with an optimal scaling of (sin 7rt)/ 
7rt. Thus, for a 2 = 1, a 50-percent increase in bandwidth gives an 
improvement of approximately 6.3 dB. For small values of a 2

, the 
improvement in decibels is approximately -30 log1O[2 - (n/7r)], which 
for n = 1.57r is approximately 9 dB; i.e., the mean-square error is 
reduced by a factor of 8 for a 50-percent increase in bandwidth. The 
difference between ~5(n; a) and ~io(n; a) is insignificant for moderate 
to small values of a 2

• Of course, the extremely small errors given for 
n near 27r have to be discounted in practice as being purely theoretical 
values. 
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Fig. 3-Bandwidth-error exchange for various values of a 2
• The solid line is for the 

optimal kernel; the dotted line is for the log-cabin kernel. 

Whether or not the simple fading channel model is wholly accepta
ble, there is another reason for recommending or rationalizing the use 
of lo(t; Q, a), or the log-cabin kernel; this reason being a reduced 
sensitivity to sampling jitter. We outline the justification of this 
reason. 

In the problem of sampling jitter, it is supposed that 

(40) 
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where I is a real-valued function in B2(Q) and the ak are independent 
random variables of zero mean and unit variance. In the absence of 
sampling jitter, I is taken, in case Q = 7r, to be (sin 7rt)/7rt, so that s(t) 
is sampled at time(s) t = n to obtain an = s(n). In the presence of 
sampling jitter, s(t) is inadvertently sampled at time(s) t = n + r, 
where r is assumed to be a random variable with density p(r), usually 
symmetric about r = o. This jitter results in an error 

k#-n 

The expected mean-square error over the {ak} is 

E?(r) = {I - l(r)}2 + L F(k + r) 
k#-O 

= 1 - 2/(r) + L F(k + r), 

which, when averaged over r, gives 

(41) 

(42) 

,2 = 1 - 2l: f(T)p(T)dT + l: { ~ f'(k + T)}P(T)dT. (43) 

In case 0 < Q :::; 7r, the sum in the last integral is J:oo F(t)dt, 
independent of r. In this case, 

,2 = 1 - 2l: f(T)p(T)dT + l: f2(t)dt. (44) 

It is easy to show that f.2 in (44), which is the same as f2 in (43) only 
for 0 < Q :::; 7r, is minimized over I in B 2(Q) by taking 

f(t) = roo p(T) sin ~( t -) T) dT. (45) J-oo 7r t - r 

That is, I(t) is obtained by bandlimiting p(t) [projecting p(t) 
on B2(Q)]. 

Recall (26), where 

1 In cos wt 
lo(t; Q, a) = -2 1 2 2 dw, 

7r -n + a w 

From this, it is seen that 

I ( . (") ) = loo e-1Tlla sin Q(t - r) d 
/0 t, ~~, a 2 ( ) r, 

-00 a 7r t - r 

o < Q :::; 7r. 

o < Q :::; 7r. (46) 

Thus, for 0 < Q :::; 7r,/o(t; Q, a) may be interpreted as the function in 
B 2(Q) which minimizes the mean-square error due to (reduced band
width and) a sampling jitter r with density (2a)-le-ITl/a, -00 < r < 00. 
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The fact that T is unbounded requires the assumption of an ensemble 
of sampling mechanisms. However, this is not important in the case 
of small a, when all that really matters is the second moment of p(T). 

The mean-square error due to sampling jitter can be decreased at 
the expense of extra bandwidth. For Q > 7r, the sum L~oo P(k + T) is 
no longer, because of aliasing, the same as f~oo p(t)dt. The case 7r < Q 
~ 27r can be treated, as in the proof of the Theorem, by decomposing 
las 

I(t) = g(t) + h(t), 

where g is the low-frequency component, bandlimited to [-(27r - Q), 
(27r - Q)], and h is the bandpass component with center frequency 7r 
and upper frequency Q. It turns out that the low-frequency component 
of the optimal I is obtained by bandlimiting the density p(T). So in 
case of the two-sided exponential density, g(t) = lo(t; 27r - Q, a) is 
optimal, as in lo(t; Q, a). The optimal bandpass component h(t) is not 
quite the same as ho(t; Q) in (28), but is very close to ho(t; Q) in case 
the density is symmetric with small support [-a, a]. In fact, as a ~ 0, 
the optimal I in B2(Q), 7r < Q ~ 27r, for the (symmetric) sampling-jitter 
problem tends to 11(t; Q), the log-cabin kernel. So the log-cabin kernel 
is near optimal for reducing, at the expense of bandwidth, the mean
square error due to small symmetrically distributed sampling jitter. 

An obvious generalization of the problem considered here is the 
minimization over I in B 2(Q) of 

,2(f) = 11 - {(OJ 12 + ~o 1 {(h) 12 + ~1 if. Lt 1 [In)(h) 12}. (47) 

In response to a question raised by the Referee, a numerical approach 
to this problem is not recommended, at least for moderate N, because, 
first, the analytical solution is tractable, simpler, and exact; and 
second, certain anomalies can be anticipated. 

For 0 < Q ~ 7r, the solution is almost trivial, the extremal function 
being 

1 In cos wt 
lo(t; Q, aN) = -2 P( 2. _ ) dw, 

7r -n W , aN 

where 
N 

P(w2; aN) = 1 + L a~w2n. 
n=l 

Always (for any Q), the minimum mean-square error is 

f5(Q; aN) = 1 - 10(0; Q, aN). 
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Clearly, f2(f) can be made zero for Q ~ (N + 1)71" by taking I(t) = 
(sin 7I"t)N+1j(7I"t)N+1. For 71" < Q < (N + 1)71", aliasing complicates the 
problem. However, the aliasing can be handled in a systematic way, 
and the solution, if tedious, is straightforward, except in anomalous 
cases where only even-order derivatives appear in the last sum in (47). 
In the anomalous cases, the minimum, or properly speaking, the 
infimum of f2(f) over I in B2(Q) is not attainable for 71" < Q < 
(N + 1)71". For example, 

f2(f) = 11 - 1(0) 12 + L I I(k) 12 + a~ L I I"(k) 12 
k""O 

can be made arbitrarily small for I in B 2(271"), but only at the expense 
of making the norm (in L 2) of I very large. 

There will be near-anomalous cases where the infimum is attained 
but for an I of large norm, i.e., cases where the solution is not 
satisfactory for reasons not taken into account. One consideration is 
the average power of the transmitted signal, which is directly propor
tional to f~oo p(t)dt. Another consideration is the sensitivity to sam
pling jitter. 

It is obvious, then, in the general problem, that f2(f) should be 
minimized with a constraint on the norm of I. This severely compli
cates the problem. The practical alternative is to solve the problem 
and then appraise the solution. What is needed is a better understand
ing of how the alphas affect the norm of the solution for n > 71". 
It turns out for the simple problem considered here that the norm of 
lo(t; n, a) decreases with n for 71" < Q < 271". It would be nice to have, 
at least, sufficient conditions on the alphas for this decrease to obtain 
in the general problem. On the basis of the solution (48) to the general 
problem for n = 71", and the analogous sampling-jitter problem, it is 
conjectured that a sufficient condition on the alphas is that the 
reciprocal of the polynomial P(w2; aN) in (48) be the Fourier transform 
of a positive function. 

IV. PROOF OF THE THEOREM 

The minimization problem is obviously equivalent to the problem 
of minimizing over I in B2(Q), 

(50) 

subject to 1(0) = l. 
Now suppose I = II + i12, where II and 12 are real-valued functions 

in B 2(n) with 11(0) = 1,12(0) = o. Then, obviously, 

Q(I; a) = Q(II; a) + Q(12, a). (51) 
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So we may restrict our attention to real-valuedf in B2(Q). Next suppose 
that f = II + h, where fl and f2 are real-valued functions in B2(Q), fl 
being even, and f2 odd. Once again we obtain (51), since fl and f2 
(f{ and ff;.) are orthogonal over the integers. So we may restrict our 
attention to real-valued even functions f in B 2(Q), f(O) = 1, in seeking 
the minimum. 

Now define 

Q*U; a) = I: 1 I(t) 12dt + a 2 I: 1 f' (t) 12dt. (52) 

Then we have 
Lemma 1. For fin B2(Q), 0 < Q ~ 7r, we have 

Q(f; a) = Q*(f; a). 

This follows from the well-known result, 

T ~ 1 l(kT + 8) 12 = I: 1 ((t) 1
2dt, 

(53) 

fin B2(Q), () real, 0 < T ~ 7r/Q, (54) 

and the fact that if f belongs to B2(Q) then so does f'. D 
Next define 

p(Q; a) = inf {Q*(f; a)}, 0 < Q < 00, 
fEB2 (r!) 
f(O)=l 

o ~ a < 00. (55) 
Then it is a simple matter to establish: 

Lemma 2. We have 

p(Q. a) = ~ . (aQ) 
, Q arctan(aQ)' 

and the infimum in (55) is attained for, and only for, 

1 In cos wt 
f(t) = f(t; Q, a) = p(Q; a) . -2 1 2 2 dw. 

7r -n + a w 

(56) 

(57) 

It follows from Lemmas 1 and 2, and the definition (14) of 1t(Q; a), 
that 

1t(Q; a) = p(Q; a) - 1, 0< Q ~ 7r. (58) 

So Lemmas 1 and 2 establish the first part of the theorem. 
Proof of Lemma 2. From the previous argument [which applies as well 
to the integrals in (52)], the extremal fwill be real and even; i.e., 

1 In f(t) = -2 F(w) cos wt dw, 
7r -n 

f(O) = 1, (59) 
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where F(w) is real and even. Then 

1 If! Q*(f; a) = - F2(w)(1 + a2w2)dw. 
271" -f! (60) 

Now suppose g is any real even function in B 2(Q) satisfying g(O) = 
0; i.e., 

1 If! g(t) = - G(w)cos wt dt, 
271" -f! 1: G(w)dw = O. 

Then 

1 If! 
Q*(I + g; a) = 271" -f! [f(w) + G(w)]2(1 + a2w2 )dw 

= Q*(/; a) + Q*(g; a) 

1 If! +;: -f! F(w)G(w)(l + a2
w

2
)dw. 

The last integral vanishes, in accord with (61), if 

c 
F(w) = 1 2 2· 

+aw 

Then setting I + g = 117 we have 11 in B 2(Q), 11(0) = 1, and 

Q(/I) = Q(/; a) + Q(/I - I; a) ~ Q(/; a) 

with equality throughout if, and only if, 11 - I == o. 

(61) 

(62) 

(63) 

(64) 

So the restriction to [-Q, Q] of F(w) given by (63) is the Fourier 
transform of the extremal function, provided 

(65) 

requiring 

71" (aQ) 
c = -. 

Q arctan(aQ)· 
(66) 

Then 

(67) 

Now to find the extremal I in B2(Q), 71" < Q ~ 271", we first introduce 
B 2(a, b), the class of square-integrable bandlimited functions whose 
Fourier transforms vanish outside· the intervals [-b, -a], [a, b], where 
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o :s:; a < b < 00. (In case a > 0, the functions are called bandpass 
functions.) For fin B2(n), 7r < n:s:; 27r, we may make the decomposition, 

f(t) = g(t) + h(t), g in B2((37r), 

(68) 

where (3 = 2 - (n/7r), 0 :s:; (3 < 1. Next we use the general representation 
for h in B2((37r, n), 

h(t) = p(t)cos 7rt + q(t) sin 7rt, p, q in B2((3' 7r),. (69) 

where (3' = 1 - (3 > o. 
In Q(f; a), we need the values of f(k) and f'(k), which with the 

decomposition (68) become 
f(k) = g(k) + (-l)kp(k), (70) 

f' (k) = g' (k) + (-l)k[p' (k) + 7rq(k)]. (71) 

Now it is convenient at this point to use the fact that the extremal f 
will be real, allowing us to write 

00 

Q(f; a) = L [g(k) + (-1)kp(k)]2 

00 

+ a2 L {g' (k) + (-l)k[p' (k) + 7rq(k)]}2 

00 

= L g2(k) + a2 L [g' (k)]2 + L p2(k) 

00 00 

+ a2 L [P'(k) + 7rq(k)]2 + 2 L (-l)kg(k)p(k) 

00 

+2a2 L (-l)kg' (k)[P' (k) + 7rq(k)]. (72) 

Now recall that g and g' belong to B2((37r); p and [P' + 7rq] belong 
to B2((3' 7r), where 0 < (3 :s:; 1 and (3' = 1 - (3. Therefore, gp and 
g'[P' + 7rq] belong to B 1(7r), the class of absolutely integrable (L1) 

functions whose Fourier transforms vanish outside [-7r, 7r]. Hence, 
their Fourier transforms vanish at the endpoints, ±7r, since the Fourier 
transform of a function of L1 is continuous. If follows, for example, 
from the Poisson sum formula, that the last two sums in (72) vanish, 
and the other sums may be written as integrals, in accord with (54). 
Thus 

Q(f; ex) = L: g'(t)dt + cl L: [g'(t))2dt 

+ L: p2(t)dt + ex2 L: [P'(t) + 1rq(t)]2dt, (73) 
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g in B2({37r) , p, q in B2({3'7r). 
We wish to minimize this quantity subject to 

f(O) = p(O) + g(O) = 1. 

First we make the last integral vanish by taking 

1 
q(t) = - - p'(t), 

7r 

noting that this is not necessary in case a = o. Then 

Q(f; a) = Q*(g; a) + I: p2(t)dt, gin B2(fhr), 

(74) 

p in B 2({3'7r). (75) 

Now suppose 

p (0) = X and g (0) = 1 - X. 

Since 

p (0) = 100 

p(t) sin {3'7rt dt, 
-00 7rt 

we have, from Schwarz's inequality, 

I: p'(t)dt '" p'(O)jfJ', 

with equality holding if, and only if, 

( ) = (0) sin {3'7rt 
p t p (3'7rt' 

From Lemma 2, we have 

Q*(g; a) ;;?; g2(0). p({37r; a), 

with equality holding if, and only if, 

g(t) = g(O). f(t; (37r, a). 

Therefore 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

Q(f; a) ;;?; min {(1 - X)2p({37r; a) + X2j{3'} (82) 
A 

where {3' = 1 - {3 > o. 
The minimum occurs for 

giving 

X = ___ 1_----..:-.{3 __ _ 
(1 - (3) + [p({37r; a)r1

' 
(83) 
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Q(f; a) ~ {[p({j7r; a)r1 + 1 - (j}-l = m(Q, a), 7r < Q :s:: 27r, (84) 

with equality holding (for a > 0) if, and only if, 

t(t) = (1 - X) t(t; (hr, a) + X {<I>(t)COS "t - ;: <1>' (t)sin "t}, (85) 

where f(t; Q, a) is defined in (57), A is given by (83), and 

( ) 
_ sin(Q - 7r)t 

¢ t - (Q _ 7r)t . (86) 

The uniqueness qualification, "for a > 0", owes to the fact [cf. (74)] 
that we need not have q(t) = -p'(t)/7r, in case a = 0, in order to 
minimize Q(f; a) with f(O) = 1. Obviously, any function in B 2(Q) 
satisfying f(O) = 1 and having (sin 7rt)/7rt as a factor will minimize 
Q(f; 0). Since equality may attain in (84) for f given by (85), we have 

J,L(Q; a) = m(Q; a) - 1, 7r < Q :s:: 27r, (87) 

and the theorem is proved. D 
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A large-scale, single-period, mathematical programming model of a multi
commodity distribution system has been designed and implemented to analyze 
and to help reconfigure AT&T distribution facilities. Within this model, the 
number, size, and location of major stocking locations and subsidiary stocking 
locations are determined on the basis of various incurred costs. These costs 
include facility setup costs, facility closing costs, and shipping, inventorying, 
handling, and operating costs. The model incorporates various features that 
do not appear in standard facility location models, such as nonlinear economies 
of scale in operating cost, capacity constraints, special products that are 
handled by only a limited number of facilities, and establishment of subsidiary 
stocking locations where desirable. In this paper we describe the model, provide 
a mathematical programming formulation of the problem, and describe the 
algorithm that was developed to obtain good solutions in an efficient manner. 
The flexibility of the formulation and the efficiency of the solution technique 
make this model a unique and useful tool. It can provide insight when used to 
study an existing or proposed distribution system, and it has already been 
used in a variety of case studies. 

I. INTRODUCTION 

Large manufacturing and industrial concerns, such as AT&T, pro
vide for the warehousing and distribution of finished goods. Decisions 
concerning the number, size, and locations of warehousing and distri
bution facilities greatly affect the cost of a large material logistics 
system. 
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This paper describes a large-scale, single-period, mathematical pro
gramming model of a multicommodity distribution system. Various 
quantitative studies of distribution problems can be performed using 
this model. For example, an analyst can examine the trade-off between 
many small distribution facilities and a few large facilities, determine 
a consolidation strategy in areas of contracting demand, plan an 
expansion strategy in areas of increasing demand, and so forth. 

This model currently is being used to analyze and help reconfigure 
AT&T distribution facilities in order to meet future material logistics 
requirements. The flexibility of the model has allowed it to be applied 
in a variety of in-depth case studies. These studies have included both 
national and regional studies, studies of different tiers within the 
distribution system, and studies involving different families of prod
ucts. To provide this flexibility, components of the model are described 
in generic terms with a minimum of restrictive assumptions. 

Within the model, the number, size, and location of major stocking 
facilities, called Distribution Centers (DCs), and subsidiary stocking 
facilities, called Local Distribution Centers (LDCs), are determined 
on the basis of various incurred costs, including facility setup costs, 
facility closing costs, and shipping, inventorying, handling, and oper
ating costs. The model is quite complex and combines several features, 
or combinations of features, that do not appear in standard facility 
location models. Among these features are nonlinear economies of 
scale in operating costs, capacity constraints, special products that are 
handled by only a limited number of facilities, and establishment of 
subsidiary stocking locations where desirable. These features are dis
cussed in Section II. 

The generic distribution system that is considered is illustrated in 
Fig. 1. We describe this system briefly here; it is described in greater 
detail in Section II. Within the model, products are assumed to move 
from various vendors (and repair shops) to the DCs. These DCs, in 
turn, distribute these products to demand area locations. In certain 
instances, a group of demand areas can also be served by an LDC. 
Different products move according to different patterns among ven
dors' DCs, LDCs and demand areas; these different product "types" 
are described in particular in Section 2.2. The mathematical program
ming formulation of this problem is quite large; for example, a problem 
with 50 possible major distribution center locations, 20 subsidiary 
stocking locations, 100 demand areas, and 1 special product would 
involve 13,170 variables and 110,531 constraints. A sample problem of 
this size was solved in 115.6 CPU seconds on an Amdahl 470/V8 
computer. 

An extensive literature exists on operations research techniques for 
discrete facility location problems. A recent survey of facility location 
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Fig. 1-The advanced distribution and location model. 

work is given in Francis, McGinnis, and White.1 We will here only 
mention briefly some representative problems and papers. 

In the p-median problem, p facilities are chosen so as to minimize 
the sum of the distances from facilities to customers. A Lagrangian 
relaxation technique for a capacitated p-median problem is incorpo
rated into the algorithm described in this paper (see Section 3.4). 
Surveys of work on p-median and related network location subjects 
can be found in Refs. 2 and 3. 

A classic model is the Uncapacitated Facility Location Problem 
(UFLP), in which there exists a trade-off between setup costs of 
facilities and the costs of shipping products to demand areas.4

-
7 Com

plete surveys of work on UFLP can be found in Refs. 8 and 9. 
Some facility location problems can be modeled as generalize_d 

assignment problems (see Ref. 10). Here, customers with demands 
must be allocated among given facilities with limited capacity. Each 
customer must be served by only one facility. Lagrangian relaxation 
techniques for this problem are discussed in Fisherll and Ross and 
Soland.10 A related procedure is incorporated into the algorithm de
scribed here in Section 3.2. 

The Capacitated Facility Location Problem (CFLP)-in which a 
customer's demand can be split among several facilities-is considered, 
for example, in Refs. 12, 13, and 14. Some authors have considered 
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the case in which there are concave operating costs associated with 
each facility. See, for example, Refs. 15, 16, and 17. In particular, the 
algorithm of Kelly and Khumawala,I5 which involves solving a se
quence of linear transportation problems, is adapted here for use in 
the major optimization routine (see Section 3.3). 

A Benders decomposition approach for a multicommodity problem 
was developed by Geoffrion and Graves. IS Discussion of dynamic 
facility location can be found in ErlenkotterI9 and in a section of the 
capacity expansion survey by Luss.20 

In Section II, we provide a complete description of the material 
logistics system being modeled and the mathematical programming 
formulation of the problem. Section III describes the solution tech
nique that was implemented. The first subsection provides a general 
overview of the various stages of the algorithm. The subsequent 
subsections describe each stage in turn. Some brief discussion of 
implementation details and some concluding remarks are then given 
in Section IV. 

II. DESCRIPTION OF THE PROBLEM 

2.1 Types of locations and facilities 

Five major types of facilities or physical locations can be identified 
in the material logistics system. Several products k = 1, ... , K move 
among these facilities and locations. 

Vendors are those locations, such as factories and manufacturing 
locations, from which products first enter the material logistics system. 
Each product k has its own set of fixed and known vendor locations 
n = 1, ... ,Nk • 

Repair shops are similar to vendors. Each product has its own set of 
fixed and known repair shop locations m = 1, ... , M k • For each 
product, some fraction of demand Pk (possibly zero) is to be satisfied 
by repaired items. 

Demand areas are geographical areas to which products are ulti
mately destined. These demand areas j = 1, ... , J, and the amount 
~ demand Djk for each product k at each demand area j, are assumed 

- to be fixed and known. 
Distribution centers are major intermediate stocking locations. The 

DCs must be chosen from among a set of locations i = 1, ... ,I, which 
can be either "potential" or "existing." For potential locations, the 
model specifies a minimum capacity size Bt, a feasible capacity incre
ment bt, and a maximum capacity size Bt. For existing facilities with 
fixed capacity, we assume Bt = B} and b} = o. DC i can serve demand 
areas within a radius of M miles. 

Local distribution centers are subsidiary stocking locations that 
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handle certain types of products for several nearby demand areas. 
Depending upon the product type, LDCs receive products from either 
a DC or directly from vendors and repair shops; they then ship the 
products to demand areas. LDC locations must be chosen from among 
a set of existing and potential locations I' = 1, ... , L. Potential 
facilities have minimum capacity B~, maximum capacity 1J~, and 
capacity increment b~. Existing facilities have fixed capacity B~ = 
B~ and b~ = o. An LDC I' can serve demand areas within a radius of 
o~ miles. 

Ordinarily, each DC deals only with certain demand areas that are 
"assigned" to it. The DC is (perhaps) associated with some LDCs. 
Each demand area that is assigned to a given DC obtains products 
only from that DC, and from at most one of the LDCs associated with 
it. Some products are exceptions to this rule; they are discussed in 
Section 2.2. 

2.2 Types of products 

Many different products move through this material logistics sys
tem. For modeling purposes, each "product" may represent an aggre
gation of several products. We distinguish four categories or types of 
products, according to how they are handled within the system. These 
types are described below and are pictured in Fig. 1. In Fig. 1, the 
three demand areas in the lower right corner are assigned to an LDC 
as well as a DC, whereas the other demand areas are assigned only to 
aDC. 

Type 1 products can be handled only by a DC. These products are 
shipped to the DC from the vendor and repair shop. (We assume that 
the particular vendor and repair shop that supply a given DC are 
chosen so as to minimize shipping cost.) From the DC, they are shipped 
to all demand areas that are assigned to that DC. 

Type 2 products can be delivered to demand areas either from a DC 
or else from an LDC. If a demand area is assigned to an LDC, the DC 
ships Type 2 products to the LDC for delivery to the demand area. 
This is indicated by the dashed lines in Fig. 1 that are labeled with 
the numeral 2. 

Type 3 products can also be delivered to demand areas either from 
a DC or else from an LDC. The LDC receives shipment of Type 3 
products directly from the vendor and repair shop. We assume that 
the LDC receives shipments from the same repair shops and vendors 
that serve the DC with which the LDC is associated. This is indicated 
by the dashed lines in Fig. 1 that are labeled with the numeral 3. 

All Type 1, Type 2 and Type 3 products are handled with the 
arrangement whereby each demand area deals with only one DC and 
at most one LDC. (If a demand area is assigned to an LDC, it obtains 
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all Type 2 and Type 3 products via that LDC.) However, Type 4 
products ("special" products) are an exception to the rule. Only a 
small number Ph of DCs are chosen to handle a given Type 4 product 
k. These DCs then serve all demand areas. This is indicated by the 
alternate short-and-Iong dashed lines in Fig. 1. 

Each product's type is given as input by the user. We let Th T2 , Ta, 
and T4 denote the sets of indices of Type 1, Type 2, Type 3, and Type 
4 products, respectively. 

Each unit of demand that is handled by a DC or an LDC occupies 
some average amount of warehouse space (measured in units of capac
ity). The amount of space occupied depends upon, among other things, 
the size of the product, turnover time of inventory, and the type of 
facility (DC or LDC). We define the following parameters: 

s 1 = warehouse space required per unit demand at a DC if a DC ships 
product k to a demand area, 

s~ = warehouse space required per unit demand at an LDC, 
s~ = warehouse space required per unit demand at a DC if a DC ships 

product k to an LDC (relevant for Type 2 products). 

2.3 Costs 

2.3.1 Facility setup costs 

Facility setup costs are costs incurred when a facility (DC or LDC) 
is chosen to be open. The setup cost depends upon the size of the 
facility. We assume that, for DC i, opened with a capacity of x units, 
the setup cost is of the form a~ + mx, where a~ and m are given 
constants that depend upon the particular facility. For LDC 1', the 
setup cost is of the form a~ + fJ~x, wherea~ and fJ~ are given constants. 
Actual total setup costs realistically might be assumed to be amortized 
over several time periods. Since ours is a static, single-period model, 
the setup cost used in the model could be set equal to an amortized 
share of the total setup cost. 

2.3.2 Facility closing costs 

In the model, if a facility is not chosen to be open, a closing cost d 
(for DC i) or c~ (for LDC 1') is incurred. 

2.3.3 Shipping costs 

Shipping cost parameters are given in cost per mile per unit demand. 
These cost parameters for product k follow: 

tl cost of shipping from vendor/repair shop to DC/LDC, 
t~ = cost of shipping from DC to demand area, 
t~ cost of shipping from DC to LDC, 
tk the cost of shipping from LDC to demand area. 
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Obviously, for each type of product only certain of these parameters 
are applicable. (The model can also be easily modified so that shipping 
costs are measured per unit demand, independent of distance.) 

2.3.4 Inventorying or storage cost 

An inventorying or storage cost per unit demand is incurred at each 
DC and LDC. We define the following parameters: 

rJt inventorying cost per unit demand at a DC i that ships product 
k to a demand area, 

rJrv inventorying cost per unit demand at an LDC I' that ships 
product k to a demand area, 

rJ~i inventorying cost per unit demand at a DC i that ships product 
k to an LDC (relevant for Type 2 products). 

The value of rJ~i can differ from rJt because of differences in turnover 
time for inventory bound for an LDC and inventory bound directly 
for demand areas. 

2.3.5 Handling cost 

When a product is processed at a warehousing facility (either a DC 
or an LDC), there are some labor costs incurred. We define the 
following parameters: 

ht handling cost per unit demand at a DC i that ships product k 
to a demand area, 

hrv handling cost per unit demand at an LDC I' that ships product 
k to a demand area, 

h~i handling cost per unit demand at a DC i that ships product k 
to an LDC I' (relevant for Type 2 products). 

2.3.6 Operating cost 

Other operating costs at each facility are represented as a continu
ous, nondecreasing, concave function of the space occupied in order to 
account for possible savings due to economies of scale. Let 

a} = volume of space occupied at DC i, i = 1, ... , I, and 
u~ = volume of space occupied at LDC /', I' = 1, ... , L. 

Then, we define the cost functions: 

tHuD = operating cost at DC i, i = 1, ... , I, and 
t~( u~) = operating cost at LDC 1', I' = 1, ... , L. 

Within the software implementation, we assume these cost functions 
to be piecewise linear with a nonnegative intercept at the origin. In 
typical examples, each function used between three and five piecewise 
linear segments. 
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2.4 The mathematical programming model 

2.4.1 Decision variables 

To formulate the mathematical programming model, we first specify 
the necessary decision variables. All variables take on integer values. 
They are as follows: 

{

I if DC i is open, . 
Yi = for ~ = 1, ... , I, 

o otherwise, 

{

I if LDC / is open and served by DC i, 
Zi/ = for I' = 1, ... ,L and i = 1, ... , I, 

o otherwise, 

{

I if demand area j is ~ssigned to DC i, . 
Xij = for ~ = 1, ... ,I and J = 1, ... , J, 

o otherwise, 

{

I if demand area j is assigned to LDC 1', . 
Wl'j = for / = 1, ... ,L and J = 1, ... , J, 

o otherwise, 

{

I if DC i is used to s~rve special product k, 
Vik = for ~ = 1, ... ,I and k E T4, 

o otherwise, 

{

I if demand area j re~eives special product. k from DC i, 
Uijk = for J = 1, ... ,J and ~ = 1, ... , I 

o otherwise, and k E T4, 

number of size increments 
q} = above the minimum 

opened at DC i, for i = 1, ... , I, 

number of size increments 
q~ = above the minimum 

opened at LDC I', for I' = 1, ... , L. 

2.4.2 Distance and other parameters 

Shipping cost calculations require the distances between pairs of 
locations. For notational simplicity, we refer to all such pairwise 
distances by~ the notation d with two subscripts. The subscript i refers 
to a DC i, subscript I' to an LDC 1', and subscript j to a demand area 
j. Further, the subscript n(i) refers to the vendor closest to DC i, and 
subscript m (i) refers to the repair shop closest to DC i. Thus, dn(i),i is 
the distance to DC i from its nearest vendor, dt'j is the distance from 
LDC / to demand areaj, and so forth. 
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A particular latitude/longitude point is associated with each facility 
location and each demand area and used to estimate road distances 
on an as-needed basis. The software allows users to provide distance 
data that would override the calculated distance. 

To simplify the formulation, let the space (units of capacity) re
quired for a DC to serve demand area j (excluding Type 4 products 
and provided it is not served by an LDC) be 

S} = L SkDjk. 
kET1UT2UTa . 

(1) 

If demand areaj is served by an LDC as well as a DC, then the amount 
of space required at the LDC is 

Sy = L S~Djk' 
kET2UTa 

and the amount of space required at the DC is 

Sy = L SkDjk + L S~Djk. 
kETl kET2 

(2) 

(3) 

The space required at a DC to serve Type 4 product k E T4 for demand 
areaj is 

(4) 

Likewise, it is convenient to aggregate the shipping costs, inventory
ing costs, and handling costs associated with assigning demand area j 
to DC i in an "assignment cost" A Ij , as follows: 

A}j = L (tkdn(i)i(l - Pk) + tkdm(i)iPk 
kET1UT2UTa 

+ t~dij + ht + 17ki)Djk . (5) 

If an LDC / is involved, the assignment cost A Tj/' is expressed as 

A Ty = L (tkdn (i)i(l - Pk) + tkdm(i)iPk + t~dij + ht + 17t)Djk 
kETl 

+ L (tkdn (i)i(l - Pk) + tkdm(i)iPk + ddi/' + ttd/'j 
kET2 

+ h~i + h~ + 17~i + 17~)Djk 

+ L (tldn (i)A1 - Pk) + tldm(i)/,Pk 
kETa 

(6) 

Finally, the cost A [jk of assigning Type 4 product k at demand area j 
to DC i is as follows: 

Atk = (tkdn(i)i(l - Pk) + tkdm(i)iPk + ddij + ht + 17t)Djk . (7) 
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In the event that demand area j cannot be assigned to a DC i or an 
LDC / because j lies outside the operating radius of the facility (i.e., 
dij > Oi or d/'j> 0/,), then the corresponding assignment costs can be 
set to an arbitrarily large number. 

2.4.3 Formulating the model 

Below, we provide the mathematical formulation for the problem. 
Then, the objective function and each of the constraints is explained 
in turn. The problem is formulated as follows: 

subject to 

I 

min L (a} + (3}(B} + b}qD)Yi 
i=1 

L I 

+ L (a~ + (3~(B~ + b~q~)) L Zi/' 
/'=1 i=1 

I J (L) + .L .L A~jXij 1 - L w/'j 
l=1 J=1 /'=1 

I J L 

+ L L L ATj/,XijW/,j 
i=1 j=1 /'=1 

I J 

+ L L L A {jkUijk 
i=1 j=1 kET4 

I 

+ L fUa~)Yi 
i=1 

L I 

+ L FA a;') L Zit' 
/'=1 i=1 

I 

L Xij = 1 for j = 1, ... , J, 
i=1 

(8a) 

(8b) 

Xij ~ Yi for i = 1,· .. ,I and j = 1, ... , J, (8c) 
L 

L W/'j ~ 1 for j = 1, ... , J, (8d) 
/'=1 

W/'j ~ XijZi/' for i = 1, ... ,I and 

/ = 1, ... ,L and j = 1, ... ,J, (8e) 
I 

L Zi/' ~ 1 for / = 1, ... , L, 
i=1 
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a} = f S}Xij (1 - ~ Wt'j) + ~ f S]XijWt'j 
j=1 1'=1 1'=1 j=1 

J 

+ L L S]kUijk for i = 1, ... ,I, (Sg) 
kET4 j=1 

ur ~ Br + brqr for i = 1, ... ,I, (Sh) 

J 

u2 
-1'- L S;wt'j for I' = 1, ... , L, (Si) 

j=1 

u~ ~ B~ + b~q~ for I' = 1, ... , L, (Sj) 

Br + brqr ~ Br for i = 1, ... ,I, (Sk) 

B~ + b~q~ ~ B~ for I' = 1, ... , L, (Sl) 

L Vik ~ Pk for k E T 4, (Sm) 

Uijk ~ Vik for j = 1, ... , J, and i = 1, ... , I and k E T4, (Sn) 

L Uijk = 1 for j = 1, ... ,J and k E T 4 , (So) 
i 

Yi, Zit', Xij, Wt'j, Vik, Uijk E to, I} for i = 1, ... , I, 

j = 1, ... , J, 

I' = 1, ... , L, and 

k E T 4 , (Sp) 

qr, q~ E to, 1, ... , oo} for i = 1, ... , I and I' = 1, ... , L. (Sq) 

The first two summation terms in the objective function (Sa) rep
resent the setup cost incurred for open DCs and LDCs. The next two 
terms represent the closing costs that are incurred if a DC or an LDC 
is not open. In the fifth term, we include the assignment costs that 
are incurred if demand areaj is assigned to DC i with no LDC involved. 
(Only in that case would Xij (1 - L~=l WI') = 1.) The sixth term, on 
the other hand, gives the assignment costs that are incurred if demand 
area j is assigned to DC i and LDC 1', and the seventh term considers 
the assignment costs for Type 4 products. The last two terms of the 
objective function represent the operating cost that is incurred at each 
open facility. 

Constraints (Sb) ensure that each demand area j is assigned to 
exactly one DC, and constraints (Sc) ensure that demand areas are 
assigned only to DCs that are open. Constraints (Sd) permit each 
demand areaj to be assigned to at most one LDC. The condition (Se) 
guarantees that such an LDC assignment is made only if the LDC is 
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open and is served by the same DC that serves the demand area j. 
Constraints (8f) ensure that each LDC is served by at most one DC. 
Constraints (8g) define a1, the space actually utilized at each DC i. 
This is obtained by adding the space required to serve demand areas 
that are assigned only to DC i, plus space required for demand areas 
assigned to both DC i and an LDC, plus space required to serve any 
Type 4 products that are assigned to DC i. In (8h), this space utilized 
is constrained to not exceed the capacity installed. Similarly, (8i) 
defines u~, the space utilized at LDC 1', and (8j) constrains u~ to not 
exceed the capacity installed at that LDC. Constraints (8k) and (81) 
ensure that the capacity installed does not exceed the maximum 
permitted capacity for DCs and LDCs, respectively. In (8m), the 
number of DCs that serve each Type 4 product k does not exceed the 
permitted number Ph. Constraints (8n) guarantee that a demand area 
receives each Type 4 product k from a DC that handles that product. 
Constraints (80) require that each demand area j be assigned to only 
one DC for a given Type 4 product. [In the event that no Type 4 
products occur in the problem, constraints (8m) through (80) do not 
appear]. Finally, conditions (8p) and (8q) enforce integer constraints 
on the variables. 

The integer program (8) is quite large. For example, for 10 possible 
DC locations, 10 possible LDC locations, 50 demand areas, and 1 Type 
4 product, there are 1640 variables and 6221 constraints. For a larger 
problem of 50 DCs, 20 LDCs, 100 demand areas, and 1 Type 4 product, 
there are 13,170 variables and 110,531 constraints. Nonlinearities 
appear in the objective function (8a) and in constraints (8e) and (8g), 
thus making it even more difficult to solve the program directly. 

III. SOLUTION APPROACH 

3.1 Overview 

Because of the difficulty of the integer programming problem, the 
proposed algorithm contains some heuristic elements. In particular, 
we propose to first treat a simpler version of the problem and then 
adjust this solution with a series of heuristics to obtain a solution to 
the overall problem. 

The elements of the problem that are judged to be most important 
are considered in the initial optimization. Other elements that are 
considered, by comparison, less important or elements that are ex
pected to appear less often in actual case studies are treated by the 
secondary optimization. Specifically, the issues of Type 4 product 
distribution, LDC locations, and discrete facility sizing are set aside 
in the initial optimization. The initial optimization problem thereby 
becomes a type of capacitated facility location problem with concave 
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costs. After obtaining a solution to this problem, the solution is 
modified in a step-by-step fashion to incorporate, in turn, Type 4 
products, LDC locations and facility sizing. In the subsections that 
follow, we describe the various portions of the algorithm. 

Within our software implementation, there is the option to specify 
that certain variables be fixed in advance, for example, that certain 
DCs or LDCs be fixed open or closed, that certain demand area 
assignments be forced or forbidden, or that certain DCs be prevented 
from handling Type 4 products. The necessary modifications to the 
algorithm are generally straightforward, and therefore not discussed 
explicitly here. 

3.2 The preprocessor 

In Section 2.4.2 we described various DC and LDC space require
ment parameters and assignment cost parameters. These parameters 
are computed by the algorithm in a preprocessor routine. The impor
tance of the space requirement parameters lies in the fact that, when 
not considering Type 4 products, the original multicommodity problem 
becomes a single-commodity problem. The "commodity" in this case is 
warehouse space; the DCs have supplies of space and the demand 
areas require space. Further, the assignment costs (5) and (7) provide 
a convenient aggregation of shipping, inventorying, and handling 
costs. (Because of storage requirements, however, the assignment cost 
for assignments that use LDCs [eq. (6)] is calculated as needed.) 

3.3 The primary optimization 

In the primary optimization routine, we determine a set of DCs to 
be opened. Initially, we assume that all demand is served by DCs alone 
and that the maximum possible capacity Bi is available at all open 
facilities. We associate a cost with each possible pairing of a DC i and 
a demand area j of the form 

(9) 

This represents the assignment cost for demand area j (as discussed 
in Section 2.4.2) plus a cost corresponding to the variable setup cost 
for the warehouse space required to serve j. We also compute a "net 
fixed cost" 

(10) 

which is equal to the difference between the fixed setup cost and the 
closing cost. 

At first, we also set aside the requirement that each demand area 
be served by only one DC. After first obtaining a solution without this 
restriction, we then will adjust the solution to enforce the restriction. 
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The initial problem is then the following capacitated facility location 
problem with concave operating cost: 

subject to 

I I I J 

min L FiYi + L tHaD + L L CijXij 
i=l i=l i=l j=l 

J 

L S}Xij::::; B~Yi for i = 1, ... , I, 
j=l 

I 

(IIa) 

(lIb) 

L Xij = 1 for j = 1, ... , J, (IIc) 
i=l 

J 

a~ = L S}Xij for i = 1, ... , I, (lId) 
j=l 

° ::::; xij ::::; 1 for i = 1, ... ,I and j = 1, ... , J, (lIe) 

Yi E to, I} for i = 1, ... , 1. (IIf) 

Several algorithms for problems of this form have been pro
posed.15-17 We have implemented the iterative algorithm due to Kelly 
and Khumawala15 that defines and solves a sequence of standard linear 
transportation problems. In these problems, the DCs are "sources" 
and demand areas are "sinks." Linear costs on arcs from sources to 
sinks are based on the values of Gij and on the values of tH aD that are 
implied by the solution at the previous iteration. Key to the algorithm 
is the provision for a "dummy sink." Incoming arcs to this dummy 
sink have negative costs based on the setup costs Fi and the operating 
cost values tHaD at the previous iteration. Intuitively, this dummy 
sink offers to "buy back" the capacity at a DC. Costs on arcs into this 
sink are chosen from iteration to iteration in such a way as to 
discourage opening very underutilized DCs and to encourage taking 
advantage of the economies-of-scale in the concave operating cost. 
Complete details are given in Ref. 15. Within our implementation, the 
linear transportation problems are solved using primal network flow
convex,21 which is a state-of-the-art simplex network flow code. 

Upon solving problem (11), we obtain a set G of open DCs, each of 
which serves some group of demand areas. Some set U of demand 
areas will be served by more than one DC. Typically, in our compu
tational experience the numbers of such demand areas that have their 
demand "split" in this way among DCs is small. We next seek to 
resolve these splits and obtain a solution in which each demand area 
is served by only one DC. 

Within this phase, we momentarily leave fixed those demand areas 
that are assigned to only one DC in the solution obtained to (11). The 
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demand areas j E U whose assignments have been split are considered 
to be unassigned. The fixed assignments, on the other hand, take up 
warehouse space at the open Des. The remaining available warehouse 
space at each De i is denoted Bi • 

To take the unassigned demand areas and assign them among the 
open Des, we must, if possible, (approximately) solve this problem: 

min L L CijXij 
iEG jEU 

subject to L Xij = 1 for j E U, 
iEG 

i E G, 

Xij E to, I} for j E U and i E G. 

(12a) 

(12b) 

(12c) 

(12d) 

This is of the form of a generalized assignment problem.lO
,ll As 

described below, we first attempt to solve this using Lagrangian 
relaxation (see Ref. 11) and branch-and-bound techniques. Later, we 
add additional Des to the set G in the event that (12) is infeasible. 

If we associate nonnegative Lagrange multipliers Ai, i E G with 
constraints (12c) and incorporate these constraints into the objective 
(12a), we obtain the relaxed problem: 

min L L CijXij + L Ai (L S}Xij - Bi) (13a) 
iEG jEU iEG jEU 

subject to 

L xij = 1 for j E U, (13b) 
iEG 

Xij E to, I} for i E G and j E U. (13c) 

The relaxed problem can be solved by inspection. For each j, let index 
e be chosen so that 

Cej + AeS} = min{Cij + AiSJ}. 
iEG 

(14) 

(Ties can be broken arbitrarily.) Then, for each demand areaj, 

{

I if i = e 
Xij = for i E G. ° otherwise 

(15) 

This is incorporated into an iterative scheme where the Ai are increased 
from iteration to iteration if the solution obtained violates constraints 
(12c). This update is of the form 
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where "~" indicates "is replaced by" and T is a positive scalar. A 
formula for T is 

'YZ 
(17) 

T = {I { }2}1/2 , 
.L .L S}Xij - Bi 
,=1 J=U 

where 'Y is a positive scalar (in our implementation, 'Y = 0.25 has been 
used successfully) and Z is an estimate of the difference between the 
optimal objective function value (12a) in the original problem and the 
current value (13a) in the relaxed problem. Within our implementa
tion, we obtain an estimate of the magnitude of (12a) based on 
arbitrarily assigning each j E U to one of the DCs to which it has a 
split assignment. The value of Z is then chosen to be 10 percent of 
this estimate of (12a). 

Similar updating rules appear in Held, Wolfe, and Crowder.22 Sim
ilar relaxation techniques for generalized assignment problems are 
discussed in Fisher.11 

If the Lagrangian relaxation problem (13) does not yield a feasible 
solution to (12) within a reasonable number of iterations (40 iterations 
have been used successfully in our implementation), then a branch
and-bound technique for (12) is initiated. A description of branch
and-bound algorithms for integer programming problems can be found, 
for example, in Ref. 23. We outline below the major features of the 
algorithm that we have implemented. 

At each node of the branch-and-bound tree, assignments for some 
of the demand areas j E U are assumed fixed. At each node, a 
Lagrangian relaxation problem, similar to (13), is solved for the 
unfixed demand areas. A lower bound on the optimal objective function 
value (12a), given the fixed assignments at the node, is obtained by 
evaluating the relaxed objective function (13a) at solution (15). Like
wise, another lower bound at the node can also be calculated by 
assuming that each unfixed demand area is assigned to the least costly 
DC. The branch-and-bound routine uses the maximum of the two 
lower bounds. If a feasible solution is found by Lagrangian relaxation, 
it is an upper bound. A very simple branching rule is used in which 
variables are chosen for branching in order of increasing j. Nodes are 
chosen for branching by the least lower bound value among most 
recently created unfathomed nodes. If the lower bound at a given node 
is within, say, 10 percent of a current upper bound, then no further 
branching is done from that node. 

If problem (12) is not feasible, an additional facility is chosen to be 
in the open set and then problem (13) is resolved with the DCs in the 
larger set G fixed open and all other DCs fixed closed. This additional 
new facility is chosen according to a rule that estimates the change in 
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assignment cost that would result from its opening. That is, for each 
DC i f£. G, compute 

Oi = L min{max(Ckj - Cij, O)}. (18) 
NU kEG 

Each term in this summation gives, for a demand area j, the minimum 
savings in assignment cost that would result if DC i were available. 
The DC with maximum Oi value is chosen to be open and is thus 
added to G. (This rule is similar to the "largest omega" rule proposed 
by Khumawala6 as a branching rule in a branch-and-bound algorithm 
for plant location problems.) The Kelly and Khumawala algorithm for 
problem (11) is then repeated with facilities i E G open and all others 
forced to be closed. 

In Fig. 2, we provide a flowchart of the primary optimization routine. 
This figure summarizes the procedures described in this subsection. 

3.4 Assigning Type 4 products 

As explained in Section 2.2, for each Type 4 product k, only a limited 
number Pk of DC facilities are chosen to handle it. These facilities can 
be different for each k. We assume that Type 4 products occupy, at 
most, only a small percentage (perhaps 10 percent or less) of the 
warehouse space required. 

Given the demand area assignments determined by the primary 
optimization algorithm, each open DC i E G only has some amount 
Bi of warehouse space still available. If demand area j is assigned to 
DC i for Type 4 product k, we associate cost 

Ctk = A tk + {3}Sfk, (19) 

which represents the assignment cost plus a share of the variable 
setup cost. 

Given the set G, the problem of choosing Pk locations to serve 
product k can be formulated as the following capacitated p-median 
problem: 

subject to 

J 

min L L CtkUijk 
iEG j=l 

L Uijk = 1 for j = 1, ... , J, 
iEG 

(20a) 

(20b) 

(20c) 

Uijk ~ Vik for j = 1, ... ,J and i E G, (20d) 

(20e) 
j=l 
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SOLVE CONCAVE-COST, CAPACITATED 
FACILITY LOCATION PROBLEM (11) 

SET G ~ SET OF OPEN FACI LlTIES 
SET U ~ SET OF DEMAND AREAS 

WITH SPLIT ASSIGNMENTS 

YES 

APPLY LAGRANGIAN RELAXATION 
TECHNIQUE TO GENERALIZED 

ASSIGNMENT PROBLEM (12) 

YES 

APPLY BRANCH-AND-BOUND 
TECHNIQUE FOR (12) 

YES 

OPEN NEW FACI LlTY ACCORDING 
TO LARGEST Q RULE. ADD 

NEW FACILITY TO SET G 

FORCE FACILITIES IN G TO 
BE OPEN, ALL OTHERS CLOSED 

Fig. 2-The primary optimization routine. 

Uijk, Vik E to, I} for j = 1, ... ,J and i E G. (20f) 

Without constraints (20e), this is the well-known p-median prob
lem.3

,24,25 The additional constraints (20e) are capacity constraints 
that take into account the amount of warehouse space that is actually 
available to serve product k. Problem (20) is solved for each Type 4 
product in turn. If there is more than one Type 4 product, the available 
capacities Bi are updated each time (20) is solved. 

To solve problem (20), we apply a Lagrangian relaxation technique. 
Nonnegative Lagrange multipliers /li are associated with constraints 
(20e) and unrestricted multipliers Aj with constraints (20c). These 
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constraints are incorporated into the objective function to produce the 
relaxed problem: 

min L f CtkUijk + f Aj (L Uijk - 1) 
iEG j=l j=l iEG 

subject to 

(21b) 

Uijk :s; Vik for j = 1, ... ,J and i E G, (2Ic) 

Uijk, Vik E to, I} for j = 1, ... ,J and i E G. (2Id) 

The relaxed problem can be solved by inspection. For each De i, 
compute 

J 

Ri = L min( Ctk + Aj + /liSjk, 0). 
j=l 

(22) 

This represents the contribution to the objective function (21a) that 
is possible if Vik = 1. For given Aj and /li, it is optimal in (21) to choose 
those Des corresponding to the Pk smallest values of R. (If Vik = 1, 
then it is optimal to choose Uijk = 1 only if Ctk + Aj + /liSj:s; 0.) 

If these optimal values of Uijk satisfy constraints (20e) and (20c), 
then we obtain a solution to the original problem (20). If not, then the 
values of Aj and /li are modified for the next iteration. If LiEG Uijk > 1, 
then Aj is increased, whereas if LiEG Uijk < 1, Aj is decreased. Likewise, 
if Lf=l SjkUijk > Bi , then /li is increased. To avoid oscillations, we do 

J 4 -not allow values of /li to decrease. Thus, if Lj=l SjkUijk :s; Bi , the 
constraint is satisfied and /li is held fixed. Procedures for updating 
these multipliers are analogous to those described in Section 3.3. 

If a feasible solution is not found within a reasonable number of 
iterations (again, 40 has been used successfully), then a solution is 
generated based on the last set Gk of Ri values. The Des corresponding 
to the Pk smallest Ri values are chosen to serve product k (i.e., for 
these Des set Vik = 1). For each demand area j, we find index e such 
that 

(23) 

where the /li are also taken from the last iteration. Then, for each j, 
set 
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{

I if i = e 
Uijk = for i E G. 

o otherwise 
(24) 

No immediate modification of this solution is made, even in the event 
that this solution violates capacity constraints (20e). The solution will 
be adjusted to feasibility later in the facility sizing routine (see Section 
3.5). In the meantime, the amount of violation is small, since Type 4 
products are assumed to constitute only a small portion of the demand. 

The description of the algorithm above can be modified in a straight
forward way so that the special DCs are restricted to be chosen from 
among a predetermined list of DCs for each special product. If none 
of the facilities from the predetermined list were to appear in the 
solution obtained in the primary optimization routine, then the model 
would serve demand areas directly from the Type 4 product vendors. 
This possibility could be completely avoided by fixing one or more of 
the facilities on the list to be open a priori. 

3.5 LDC locations 

After a set of open DCs and demand area assignments are chosen, 
both for Type 4 products (Section 3.3) and other products (Section 
3.2), we attempt to introduce LDCs into the solution. First, we deter
mine a tentative set of open LDC locations and accompanying demand 
area assignments. With LDCs in place, utilized capacity in some DCs 
may now be decreased, thus allowing additional demand areas to be 
assigned. We then check if any "small" DCs can now be closed 
advantageously and their demand areas reassigned. 

3.5.1 Determining tentative LDC assignments 

In this routine, we first order the DCs in terms of decreasing 
throughput (i.e., amount of warehouse space occupied). For each DC 
in order, we perform an "LDC assignment procedure" to determine 
the set of LDCs that should be associated with the DC. We consider 
the larger DCs first, since they are more likely to serve a larger 
geographic region and, hence, more likely to benefit from the presence 
of subsidiary LDC locations. The following is the LDC assignment 
procedure for DC i: 

Step 1. Let Qi denote the set of demand areas j that are assigned to 
DC i. Let E denote the set of possible LDC locations that have not 
already been assigned to another DC. For each j E Qi, determine the 
LDC e E E that satisfies 

A~e = min A~I'. (25) 
I'EE 

For each such j E Qi, in turn, make a tentative assignment of j to e if 
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A ~e < A b, unless the assignment would result in the violation of 
capacity bound In. If assigning j to a particular LDC e would violate 
the capacity bound, check other demand areas that are already as
signed to e; if a feasible solution with lower total cost can be obtained 
by removing another demand area from LDC e and replacing it with 
demand area j, then do so. Let PI' denote the set of demand areas j 
tentatively assigned to LDC / at the end of step 1. 

Step 2. Consider those LDC locations to which demand areas j E Qi 
have been tentatively assigned at the end of step 1. Sort these LDCs 
in order of increasing throughput. Thus, underutilized LDCs, which 
are less likely to be cost-effective, are considered first. 

Step 3. Consider each LDC I' on the list in order. If the throughput 
due to tentative assignments is greater than some threshold amount 
(say, some fraction of the minimum capacity B~), leave its assignments 
unchanged. Otherwise, remove the LDC from the list, cancel the 
tentative demand area assignments to LDC I', and attempt to reassign 
the demand areas j E PI', if possible, to other LDCs. (That is, find 
another LDC e such that 

A~e = min A~I'. 
I'EE 
I'>"e 

If A ~e < A b, tentatively assign j to e.) 

(26) 

Step 4. Resort LDCs remaining on the list in order of increasing 
throughput. 

Step 5. For each LDC I' remaining on the list, estimate the total 
cost for serving demand areas j E PI' using DC i and LDC I'. This 
estimate includes the assignment costs LjEP" A~I' plus the fixed setup 
cost a~, plus variable setup costs {1~ LjEP" SJ, plus the concave oper
ating cost f~ (LjEP" SJ), and minus the closing cost c~. Compare this 
with an estimate of the cost for serving demand areas j E PI' using 
DC i alone. This estimate includes the assignment costs LjEP"Ab, plus 
variable setup costs {1~ LjEP" Sf, plus the difference in the concave 
operating cost function due to the additional throughput. If the cost 
using the LDC is less, then open LDC / and make the tentative 
assignments permanent. If not, then attempt to tentatively reassign 
the demand areas j E PI' to other LDCs still on the list. D 

Obviously, more sophisticated procedures can be designed to decide 
assignments for LDCs. However, since it is expected that demand 
areas will only be assigned to LDCs that are relatively proximate, the 
potential number of economically attractive assignments is limited. 
Thus, more sophisticated procedures have not been found necessary. 

After completing this procedure for each DC i that is open, we have 
a tentative set of open LDCs and LDC assignments. 
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3.5.2 Closing small DCs 

We allow DCs with relatively small throughput to be closed and 
their demand areas reassigned. We first sort open DCs in a list in 
order of increasing throughput. In this way, the smaller DCs that are 
more likely to close will be considered first. For each DC i on the list, 
we then execute a "DC closing procedure," which follows. 

Step 1. If the throughput of DC i exceeds some minimum threshold 
(say, half the minimum capacity BD, then leave it as is; go on to the 
next DC. If not, continue with step 2. 

Step 2. For each j E Qi, attempt to tentatively reassign the demand 
area to another DC. This reassignment should be to a DC that is 
feasible; that is, the DC should have sufficient spare capacity to handle 
the demand area, and the demand area should be within the radius of 
operation for the DC. If there is more than one such feasible DC, 
choose the one that minimizes the assignment cost for j. If, for some 
j E Qi, no feasible reassignment is possible, then cancel all tentative 
reassignments, keep DC i open, and go on to the next DC. Otherwise, 
continue with step 3. 

Step 3. Compare the additional assignment cost, operating cost and 
facility closing cost brought on by reassigning demand areas j E Qi. 
Compare this with the savings in setup cost for DC i. If it is advanta
geous to close DC i, make the tentative reassignments permanent. 
Otherwise, cancel all tentative reassignments and go on to the next 
DC. D 

At this point, the set of open DCs and LDCs is determined. There 
remains only the question of sizing these open facilities, which we 
address in the next subsection. 

3.6 Facility sizing 

The model must determine the number qI of increments installed 
such that BI + MqI ~ EI. At this point, there is a tentative set of 
demand area assignments that require amount a} [see (8g)] of ware
house space at each DC i. The simplest sizing routine would be to 
choose q~ to be the smallest integer such that a} ~ B I + Mq~. There are 
two reasons why we might want to modify this approach: 

1. DC i is overcapacitated by an amount Wi (perhaps because of 
assignments that were made for Type 4 products). 

2. By moving some demand areas to other DCs, we can perhaps 
install one less increment of space, thereby saving variable set-up cost 
/3IbI. Suppose that if we reduced the requirements for warehouse space 
at DC i by Wi units, we could install one less increment of space; call 
this value Wi the "excess" space requirement. 
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The facility sizing routine attempts to adjust demand area assign
ments in order to allow certain facilities to be installed at a smaller 
capacity. It begins by ordering the DCs in a list. First, any overcapaci
tated DCs are entered in the list. Next, other DCs are entered in the 
list in order of increasing Wi. For each DC on this list, in order, we 
then perform the following "DC sizing routine." 

Step 1. For each demand area j E Qi find its next best "feasible" DC 
assignment and compute the associated assignment cost differential. 
(By feasible we mean that assigning the demand area to the DC would 
not cause certain capacity limits to be exceeded. If DC i, the facility 
being sized, is overcapacitated, we take this limit to be the maximum 
capacity of the other DC; otherwise, we take it to be the capacity size 
required to serve the current assignments to the other DC. Assign an 
arbitrarily large cost differential if no other feasible assignment is 
possible.) At this point, consider only reassignments to a DC alone. 
The use of LDCs will be considered in step 5 below. 

Step 2. Sort demand areas j E Qi in order of increasing cost 
differential. 

Step 3. Tentatively reassign a sufficient number of demand areas 
from the top of the list so as to decrease the throughput at DC i by an 
amount greater than or equal to the excess Wi. 

Step 4. If DC i is overcapacitated, make permanent the reassign
ments found in step 3. If not, check the cost differentials for the 
reassignments. If the sum of the cost differentials for the reassigned 
demand areas is greater than the savings mb ~ in variable setup cost, 
then cancel the reassignments. Otherwise, make the reassignments 
permanent. 

Step 5. If demand area reassignments were made permanent in step 
4, then consider the possible use of LDCs for each such demand area. 
In particular, if demand area j were permanently reassigned to a 
DC i', examine those LDCs I" that are now associated with DC i' (i.e., 
Zi''!= 1). Determine if total costs can be reduced by assigning demand 
area j to one of these LDCs. If so, assign j to the LDC that results in 
the minimum total cost. D 

After this procedure is completed, the values of q~ (number of space 
increments for DCs) and q; (number of space increments for LDCs) 
are chosen to be the smallest integers that provide sufficient ware
housing space to handle the assigned demand areas. 

IV. IMPLEMENTATION DETAILS AND CONCLUDING REMARKS 

To provide an effective tool for decision makers, our model was 
designed to be flexible and efficient. Flexibility in the implementation 
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allows the user to analyze many different real situations using the 
same "generic" model. Further flexibility comes from an implementa
tion that permits some variables to be fixed a priori, thus allowing the 
user to impose various "nonquantifiable" conditions on the model. For 
example, various DCs or LDCs can be fixed open or closed. Certain 
DCs can be forbidden from handling Type 4 products; certain demand 
areas can be assigned a priori to a given DC or LDC. These conditions 
can be imposed to reflect some physical constraint or corporate policy. 
Such conditions can also be imposed after studying a previous solution 
obtained from the model. In this way, the model is "forced" to consider 
alternate solutions of interest to the user. The user may also wish to 
perform a sensitivity analysis in which the model is run several times 
with variations in one or more cost parameters. 

Efficiency of the algorithm is essential so that multiple runs as 
described above can be accomplished in a short time frame without 
excessive computation. The current implementation allows for a max
imum of 10 different products, 50 possible DC locations, 40 possible 
LDC locations, and 200 demand areas. Some average run times for a 
variety of problems that have been encountered in practice are given 
in Table I. (Problem I, in particular, was the basis for a nationwide 
distribution planning study.) These times were obtained on an Amdahl 
470jV8 operating under MVS; the code was compiled using the FOR
TRAN 77 compiler. All times are within an acceptable range for 
performing multiple runs in an economic study. Note that, as is typical 
in combinatorial optimization problems, run times can vary among 
different problems of the same size. For example, problem H is smaller 
than problem E, but took over twice the CPU time (262.2 seconds 
versus 115.6 seconds). (This variation is due primarily to the difference 
in the number of iterations required by the Kelly and Khumawala 
algorithm, which is used within the primary optimization procedure 
described in Section 3.3.) 

The many cost components considered (including nonlinear oper
ating costs), the ability to incorporate such features as different 

Table I-Average execution times 

Number of Number of 
Number of Demand Number of Number of Special CPU 
Problem Areas DCs LDCs Products Seconds 

A 30 8 10 1 4.6 
B 54 8 25 0 11.1 
C 149 8 25 1 16.7 
D 54 48 25 0 61.2 
E 100 50 20 1 115.6 
F 100 48 25 0 126.6 
G 149 48 25 0 170.1 
H 100 50 0 0 262.2 
I 158 50 0 0 603.7 
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product types and capacity bounds and subsidiary warehouses, the 
flexibility offered by the ability to fix variables a priori, and the 
efficiency in run times make this model a unique and useful tool. It 
should provide genuine insight when used to study existing or proposed 
material logistics systems. 
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We consider a queueing problem involving multiple priority classes where 
the station is divided into waiting and service areas. The service area has a 
finite number of positions where a customer of a particular class has access to 
only a subset of these positions. The admission into the service area is 
controlled by a mechanism that allows customers within a priority class to 
enter the service area on a first-come first-served basis. The customers of 
different classes are assumed to be indistinguishable once they have entered 
the service area. We consider service under three different disciplines: last
come first-served preemptive resume, multiple server, and processor sharing. 
We show that the waiting time of a customer is related to that of a customer 
in an equivalent M/G/1 queue. We characterize the Laplace-Stieltjes trans
form of the time spent in the service area. We also discuss three potential 
applications in the area of computer and communication systems. 

I. INTRODUCTION 

This paper is concerned with investigating a queueing system in 
which customers from n different job classes representing various 
priority levels receive service in a service area with a finite capacity of 
m. The capacity, m, of the service area refers to the maximum number 
of customers that can be present in the service area at any time. We 
describe an admission scheme that allows preferential access to the 
service area by the higher-priority customers. This scheme may give 
rise to a smaller waiting time before entry into the service area for the 
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higher-priority customers. The customer classes are assumed to be 
indistinguishable after they have gained access to the service area. 
The performance measures that we characterize are the distributions 
of waiting time and the mean time spent in the service area. This 
work has potential applications in the design of multiprogramming 
levels for computer systems and the design of window levels for 
communication systems. 

More formally, let n independent classes of customers arrive at a 
queueing station, each according to a Poisson process. Let the mean 
arrival rate of class i be Ai. The classes are arranged according to 
decreasing order of priority, that is, class 1 has the highest priority 
and class n has the lowest priority. The queueing station is divided 
into n waiting areas (one for each class) and a service area. The service 
area can hold at most m customers simultaneously. Service is provided 
at a state-dependent rate of J.Li whenever there are i customers present 
in the service area. We consider three service disciplines within the 
service area: Last-Come First-Served Preemptive Resume (LCFS-PR), 
m Server (MS), and Processor Sharing (PS). The admission into the 
service area is controlled by means of a gate that allows customers 
from the waiting areas to enter the service area on the basis of the 
contents of the service area. The admission policy gives preferential 
treatment to higher-priority customers in gaining access to the service 
area. In particular, the admission policy is governed by two rules: 

1. When a customer of class i is admitted to the service area, the 
waiting areas of classes 1, ... , i-I must be empty. 

2. When a class i customer enters the service area, the number of 
customers in the service area (excluding itself) must be less than hi. 
The sequence (hi, i = 0, ... , n + I} is a set of strictly decreasing, 
nonnegative integers with ko = 00, hI = m, and hn+1 = o. 
This admission scheme reserves some slots in the service area for the 
exclusive use of the high-priority customers. In the case of the MS 
model, this means that at times the low-priority customers will not be 
allowed to enter the service area although some servers are idle. 
Obviously this is not the most efficient way of utilizing the servers' 
capacity. However, when the designer's overriding concern is to reduce 
the delays suffered by the high-priority customers, it is useful to 
reserve certain slots exclusively for the high-priority customers. The 
queueing station is shown schematically in Fig. 1. 

In this paper, we show that this problem has an interesting structure, 
which can be exploited to characterize (1) the waiting-time distribu
tion, by class, and (2) the mean time spent in the service area, by 
class. For the special case of the PS discipline, we show how to obtain 
this mean when n equals two. Since writing this paper, it has been 
brought to our attention that Schaack and Larson l have independently 
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studied the special case of the MS discipline and reported the same 
results as we do here. 

This paper is organized into four sections. In Section I, we discuss 
some potential applications for this model. In Section II, we derive 
the waiting-time distribution, by class. We characterize the mean time 
spent in the service area, by class, in Section III. Section IV summa
rizes our conclusions. 

II. POTENTIAL APPLICATIONS 

We discuss three potential applications in this section. In the first, 
we propose this scheme for sharing of multiprogramming threads by 
several job classes in a computer system. Our second and third exam
ples propose this admission scheme for sharing a window size by 
several job classes at the link level and the application level, respec
tively, in a communication system. 

Avi-Itzhak and Heyman2 had first proposed that a state-dependent 
server be used to approximate the CPU and disk subsystem of a 
computer. We depict a multiple CPU and disk subsystem in Fig. 2, 
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Fig. 2-A computer with shared multiprogramming threads. 

which is approximated by a state-dependent server in our model. The 
service rate Ili of our model is obtained by solving for the throughput 
in the closed queueing network of Fig. 2 with a population size of i. It 
is assumed in our model that the service requirements in terms of 
CPU and I/O times are approximately the same for all classes of 
customers. Also, the service discipline for the state-dependent server 
that is most appropriate for this application is PS. The closed queueing 
network of Fig. 2 can be solved by mean-value analysis described by 
Reiser and Lavenberg.3 The circumstances under which a single state
dependent server is a good approximation of the CPU and I/O subsys
tem was investigated by Fredericks.4 This approximation is usually 
good when each customer makes many trips to the I/O devices and 
when the CPU and I/O times required by a customer are not too 
unbalanced. In our model, m is the multiprogramming level of the 
computer, usually determined by considerations such as available 
memory and the extent to which the jobs require concurrent access of 
the same databases. Given m, our model can be used to determine a 
way to allocate available multiprogramming threads to the various job 
classes so that some requirements on mean response time can be met. 

A second application would be in the modeling of a link layer 
protocol such as high -level data link control. Assume that a provider 
of packet-switching service offers n grades of service, each with its 
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own response-time requirement. The different grades of service may 
be provided by appropriately sharing a link-level window size of m 
among the packets of n service grades. The admission scheme proposed 
in the Introduction is one means of offering different levels of service 
to customers. In this application, the queueing station represents a 
node in the network where the customers in the service area correspond 
to the jobs ready for transmission. Service provided to a customer 
constitutes its transmission to an adjacent node and the return of the 
acknowledgment. Since data links are often characterized by relatively 
low utilizations, the value of Jli may be approximately proportional to 
i, at least for small values of i. The constant of proportionality may 
be taken as the mean round-trip time to receive an acknowledgment 
on a link that has no traffic. This linearity would imply that there is 
hardly any wait for transmission to commence once a packet has 
entered the service area. For larger values of i, some saturation of Jli 

will take place as the presence of a large number of packets in the 
service area starts to choke the capacity of the link. The limiting vahle 
of Jli may be chosen as the rate at which acknowledgments can be 
returned in a fully utilized link. We show the closed queueing network 
used for calculating Jli in Fig. 3. This is an approximation along the 
lines of one proposed by Schwartz.5 

The third potential application is from the point of view of a user 
of a data network. This potential application is similar in spirit to the 
previous one except that we are concerned with the high-level protocol 
of host-to-host traffic using a data network. The network itself is 
approximated by a state-dependent server. The closed queueing net
work used for calculating Jli is shown in Fig. 4. This approximation 
was proposed by Reiser.6

,7 The user of the network must allocate a 
window size of m to n different types of traffic. The admission scheme 
described earlier may enable the user to determine a way to share the 
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Fig. 3-Link layer protocol. 
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Fig. 4-High-level protocol. 

window size among the types of traffic to meet certain response-time 
criteria. 

III. THE WAITING-TIME DISTRIBUTION 

In this section, we will characterize the waiting-time distributions 
without assuming anything about the service discipline. The key result 
of this section is that, given that a customer of class l is required to 
wait, its waiting-time distribution is related to that of a suitable 
MIGl1 queue. 

The state of the system is completely specified by an n-tuple (JI, 
J 2, ••• ,Ji, ... ,In ), where Ji(i = 2, ... , n) represents the number of 
customers of class i waiting and J 1 represents the number of customers 
of class 1 waiting plus the number of customers present in the service 
area. With this description of the state space, one can, in principle, 
write down a system of equations for the steady-state probability 
vector P(j) = P( J 1 = j!, J2 = j2, •.. ,In = jn). In particular, for l = 0, 
... , n-1 

n I 

(A + JLjl)P(j) = L AkP(j - ek)o(jk) + L AkP(j - edo(jd 
k=l+l k=l 

where 

n 

A = L Ak, 
k=l 

o(x) = 1 if x> 0 and 0 otherwise, and ek is an n-tuple with a 1 in the 
kth position and ° elsewhere. For jl ~ m, JLjl is to equal to JLm(=JL), 
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since for ji ;::: m, the number of customers in the service area is m. The 
solution of this equation is not easy; however, it is possible to solve it 
for the case where n = 2. Since the solution of this equation does not 
concern us at present, we show how to calculate this for n = 2 in 
Appendix A. 

We will now concentrate our attention on the stochastic process 
defined by the random variable J I • Let Iud be the steady-state mar
ginal probability distribution of J I • Since arrivals are Poisson, a 
customer of class l is required to wait outside with probability 
2:.J=kl Uj. Clearly, the waiting time is 0 whenever an arrival finds that 
J I < ki• Let us now start observing the system when J I changes its 
value from ki - 1 to k i • Let to denote this instant. At to, a customer of 
type j, withj :5 l, arrives to find exactly ki - 1 customers in the service 
area and is immediately admitted for service. Let tf denote the first 
instant after to when J I moves from ki to ki - 1 with no type l customers 
waiting outside. During the open interval (to, tf), several type l cus
tomers may get admitted to the service area. If n(n ;::: 0) type l 
customers are admitted to the service area during the open interval 
(to, tf), let t l , t2, ... , tn denote instants when these admissions took 
place (refer to Fig. 5). Note that at the instants t l , t2, ... , tn, a 
departure occurs from the state J I = ki and there is at least one type l 
customer waiting outside. Also, at these instants there cannot be any 
higher-priority customers in the waiting area. Now let us focus our 
attention on the intervals (to, tr), (tI, t2), ... , (tn-I, tn) and (tn, tf ). [In 
case n equals 0, we need consider just one interval (to, tf ).] The lengths 
of these intervals are governed by the customers inside the service 
area, which by assumption are indistinguishable, and by arrivals of 

k,_2 -----------------------------

k,_l --------------

k,_l-l ••• 

k, 

k,-l ••• 

Fig. 5-A typical sample function of the process J1• (The notches at tl and t2 represent 
the event that a departure occurred from the state J 1 = hi and a waiting type l customer 
was immediately admitted to the service area.) 

QUEUEING 1737 



customers of priority higher than that of type l customers (i.e., the 
types of these customers are less than l) that are Poisson. Also, since 
the service requirements are memoryless and since the end points of 
these intervals are marked by identical states so far as customers of 
priority higher than that of type l customers are concerned, the lengths 
of these intervals are independent and identically distributed (i.i.d.) 
random variables. Let H t denote the generic random variable corre
sponding to these lengths and let Ht(s) denote the Laplace-Stieltjes 
Transform (LST) of its distribution function. 

Now a type l customer is required to wait if it arrives during an open 
interval similar to the interval (to, tf) described in the previous para
graph. Since the interadmission times for type l customers during such 
an interval are i.i.d. random variables with LST of distribution func
tion Ht(s), it follows that the waiting-time distribution of a type l 
customer, given that it is required to wait, is identical to that of a 
customer in an M/G/1 queue [with arrival rate At and LST of service
time distribution Ht(s)], which arrives to find the server busy. Let 
Wt(s) denote the LST of the waiting-time distribution of a type l 
customer given that it is required to wait. Then, from page 223 of Ref. 
8, we have 

Wt(s) = (1 - Ht(s))(1 - Pt) 
(s - At + AtHt(s))E(Ht) , 

(2) 

where 
Pt = AtE(Ht) 

and 
l = 2, ... , n. 

The LST of the unconditional waiting-time distribution for a customer 
of type l is given by 

k/-I 

L Uj + Wt(s) L Uj. (3) 
j=O j=k/ 

The waiting-time distribution of a class 1 customer is easier to 
characterize. Given that a class 1 customer has to wait, its waiting 
time is the same as the sojourn time in an M/M/1 queue where the 
server is working at a rate of /lm(=/l, say). So, 

/l - Al 
WI(s) = A ' 

/l - 1 + s 
(4) 

and the unconditional waiting-time distribution is given by 
kel 

L Uj + Wd s ) L Uj. (5) 
j=o j=k1 
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In the remainder of this section, we will show how to calculate Uj 

and HI(s), Let us define a random variable BI to be the elapsed time 
from the instant J 1 changes from hi - 1 to hi until the next instant 
when the value of J 1 drops from hi to hi - 1 and J I = 0. In other words, 
BI is the length of an interval similar to (to, tf) discussed earlier. From 
the preceding discussion it should be clear that BI constitutes a busy 
period of an M/G/1 queue with arrival rate Al and the LST of service
time distribution HI(s), Let BI(s) be the LST of the distribution of B I. 
Then BI(s) and HI(s) are related by (see page 212 of Ref. 8) 

BI(s) = HI[s + Al - AIBI(s )]. (6) 

Since Bl (s) represents the busy period of an M/M/1 queue, 

B, (8) = I' + Al + 8 - [(I' ;A~' + 8)2 - 4JlA,]'/2 (7) 

from page 215 of Ref. 8. 
N ext, we define the random variable Cj to denote the first passage 

time from the state J 1 = j to J 1 = j - 1, where hi-I> j > hi. Let Cj(s) 
be the LST of the distribution of Cj • It should be clear that the waiting 
customers of class l, "', n play no role in determining this first 
passage time. Further, J 1 = j implies that J 2 = J 3 = ... = J I- 1 = 0. 
From these observations, now it is possible to write down the following 
equations for Cj (s): 

Cj(s) = ( 1 ) (AICj+ds)Cj(s) + Ilj) 
Al + Ilj + s 

and 

for j = hi + 1, ... , hl- 1 - 2; 

Ckl_cds) = ( 1 ) (AIBI-ds )Ckl_cds) + Ilkl_cd ; 
Al + Ilkl_c1 + s 

HI(s) = (A 1 ) (AICkjl-ds)HI(s) + Ilk); 
I + Ilkl + s 

1-1 

Al = L Ak for l = 2, ... , n. 
k=1 

(8) 

Thus, eq. (8) defines a recursive technique for obtaining HI(s) from 
BI-ds) via the functions Cj(s) for hi-I> j > hi. By using eq. (6), one 
can obtain BI(s) from HI(s); and eq. (7) provides the value of Bds), 
the boundary for eq. (8) when l = 2. 

Finally, we show how to characterize Uj for j = 0, ... , which is the 
steady-state marginal distribution of J 1 • To do this, we define n Semi-
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k'_l ----------------r-----~---------

k'_l-1.·· 

k,+l ••• L 
k, _l////////. 

(IGNORED) 
/'///////////.L 

(IGNORED) 

Fig. 6-Sample function of the lth SMP derived from the sample function of J 1 
shown in Fig. 5. 

Markov Processes (SMP), where the lth SMP has states kl' ... ,kl- I, 

where I = 2, ... , n + 1. The state of the lth SMP is the realization of 
the random variable J 1 with two differences. When J 1 > kl- I, we will 
assume that the state of the SMP is kl- l • Further, we will simply 
ignore the times when J 1 < kl • A typical sample function of the 
lth SMP shown in Fig. 6 may help illustrate the structure of these 
SMPs. The transition probability for the SMP from state j to j + 1 is 
At/(AI + J,lj) and j to j - 1 is J,ljl(AI + J,lj), where kl < j < kl- l . The 
holding time in state j (kl < j < kl-d is exponential with rate Al + J,lj. 
For state kt- 1 , the holding time is BI and this state makes a transition 
into state kl- l - 1 with probability 1. State kl makes a transition into 
kl + 1 with probability 1, and the holding time is exponential with rate 
AI. In the description of the SMP, only one statement needs clarifi
cation, that is, the holding time in state kl • Since we are ignoring all 
times when J 1 < kt, this is equivalent to ignoring the transition of J 1 

from kl to ki - 1. The result follows from observing that the transition 
from kl to kl + 1 occurs at an exponential rate of AI. It is relatively 
easy to solve these n SMPs using methods described in Ross.9 Let 7rjl 
be the steady-state probability of state j in the lth SMP (I = 2, ... , 
n + 1; j = kl' ... , kl-l). Then it should be clear that 

P(J1 =jIJ1 ::: kl ) = Uj/~ Ui = 7rjl 
i=k/ 

for j = kl' ... , kl- 1 - 1 (9) 

and 

It is easy to use (9) to calculate Uj (j = 0, ... , m - 1) recursively, 
starting with the solution of the (n + l)st SMP and working backwards 
through to the second SMP. For j ::: m, the server always works at a 
rate of J,lm(=J,l), and the random variable J 1 behaves like the number 
in the system for an M/M/1 queue. Thus, we have 
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for j ~ m. We note at this point that the probability that the system 
is idle is given by Uo. 

IV. THE TIME SPENT IN THE SERVICE AREA 

In this section, we describe methods of obtaining the mean time 
spent in the service area by class for the LCFS-PR and MS disciplines. 
For the PS discipline, we describe a method for characterizing the 
means when n = 2. 

4.1 The LCFS-PR discipline 

In this discipline, we will assume that on entry into the service area, 
a customer occupies the lowest-numbered service position that is 
empty. Further, the server renders service to the customer in the 
highest-numbered service position that is nonempty. Thus, a customer 
occupies the same service position from entry until departure. Let 
Tj(s) be the LST of the distribution of time spent in the service area 
by a customer who occupies position j on entry into the service area. 
Then, 

and 

{

Cj(S) if hi-I> j > hi 
Tj(s) = 

Hl(s) if j = hi 
and l = 2, ... , n. (10) 

It is now easy to use the results of Section II to obtain this LST or 
any other characterization of this distribution. 

4.2 The multiple-server discipline 

In this discipline, let J.Li = i(1. Then the time spent in the service area 
is simply exponential with parameter (1. 

4.3 The processor sharing discipline 

The exact solution for the mean time spent in the service area can 
be obtained by first noting that customer classes are indistinguishable 
on entry into the service area. We denote the state of the system by 
an n-tuple (Jr, J 2 , ••• ,In ) as seen by a customer of class l after entry 
into the service area and let Ql(j) denote the probability that the state 
of the system is j when an arbitrary class l customer is admitted to 
the service area, where jl includes the newly admitted customer. 
Further, let x(j) be the mean time spent in the service area for a 
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customer who sees state j immediately on being admitted to the service 
area. If we let tl be the mean time spent in the service area by a class 
l customer, then 

tl = L X(j)QI(j), (11) 
jEA/ 

where 

Al = I(jI, i2, ... ,in) lik = 0 for 2 ::5 h < l} for l = 1, ... , n. 

It is possible to obtain QI (j) from the following observations: 
1. For il < hi, 

QI(j) = P(j - ed. 

For a customer of class l to see il including itself, there must be il - 1 
ahead of it in the service area. 

2. Whenever a customer of class l enters the service area, J 2 = J a = 
... = J I- I = 0 and J I ::5 hi. 

3. For il = hi, one of two disjoint events must occur. Either the class 
l customer arrived to see hi - 1 customers ahead of it in the service 
area or it must have waited in the waiting area prior to admission. 
The former case is identical to the first observation above. In the 
latter case, we have to characterize the distribution of (JI , ••• , I n ) at 
the time of entry into the service area. The random variable J I behaves 
like the number waiting as seen by a customer about to enter service 
given that it had to wait in an M/G/! queue with an arrival rate of Al 
and a service time of HI. The distribution of Jk(h = l + 1, ... , n) is 
simply the convolution of what was seen on arrival and the number of 
new arrivals of type h during the wait of the customer of class l. 

In principle, it is possible to write down QI(j) in terms of P(j) from 
the observations made above. The notation is cumbersome, so we will 
not go into the details here. The exact derivation when n = 2 is given 
in Appendix B. 

Further, for hl+1 ::5 il < hi, the x(j) satisfy 

n I 

(A + JljJx(j) = 1 + L Akx(j + ek) + L Akx(j + ed 
k=l+1 k=I 

+ (i' ~ 1) b(j,)l'h Ix (j - e,)b(j, - h,+1) + [x (j - e,)(1 - b(jl+1» 

+ x(j - el+1)o(jI+1)](1 - O(jI - hl+d)}. (12) 

The solution of this equation is not easy; however, it is possible 
to solve it for the case where n = 2. We present this solution in Ap
pendix C. 
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V. CONCLUDING REMARKS 

In the earlier sections, we have shown how to characterize distri
butions of the waiting time and the time spent in the service area. Of 
interest in many applications would also be the sojourn time (i.e., the 
elapsed time between arrival into and departure from the system) of 
customers. In principle, it is possible to characterize the sojourn time 
distribution for the two-class PS problem by the methods used in Ref. 
10. 

We note that the time spent in the service area for the first-come 
first-served discipline is somewhat difficult to characterize, whereas 
the results for the waiting time is the same as that in Section II. The 
reason for this difficulty can be seen by first assuming that we are 
about to characterize a two-class problem. Then the mean time spent 
in the service area has to be found conditioned on J 1 , J 2 and the 
position of the tagged customer in the service area. The difference 
equations for this mean time thus will be in three variables and are 
hard to solve. 
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APPENDIX A 

The Steady-State Probabilities for a Two-Class Problem 

In this appendix, we show how to obtain the solution to eq. (1) when 
n = 2. For the sake of notational ease, we will refer to the random 
variables J 1 and J 2 as I and J in this and the other appendices. Further, 
i and j will be the realizations of the random variables I and J, 
respectively. Let P ij be the steady-state probability that I = i and 
J = j. Equation (1) reduces to the following equations when n is 2: 
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if i > k2' j > 0, , (13) 

(AI + A2 + pJPiO = AI P i-l,O + A2P i-l,O + lli+1Pi+1,O 

if 0 < i < k2' (14) 

(AI + A2 + 1lk:2)Pk:2,o = (AI + A2)Pk:2-1,o + Ilk2 P k2 ,1 + Ilk2+1Pk:2+1,O (15) 

(AI + A2 + lli)PiO = AIP i-l,O + lli+1Pi+1,O if i > k2' (16) 

(AI + A2 + 1lk:2)Pk2,j = A2Pk:2.i-l + Ilk:2 P k:2,j+1 + Ilk2+1, P k2+1,j 

if j > 0 (17) 

and 

(18) 

It should be clear that Uo (of Section III) is the same as Poo. So, one 
can obtain Pio for 0 ~ i ~ k2 by using (18) and (14). Even though the 
coefficients of Pij in eqs. (13) and (16) depend on i, it is easy to see 
that these are constant coefficient partial difference equations when 
i::: m. Further, these equations are very similar to the ones solved by 
Rege and Sengupta.10 Using these methods, it is easy to show that 

(19) 

and 

(

CO i ) P2 i-n i-n i 
Pij = ( _ ) ~ 0"1 P v,j-l + L 0"2 P v,j-l + Bj 0"2 

0"1 0"2 v=I+1 v=m 

for i::: m and j > 0, (20) 

where 

0"1 = (1 + PI + P2 + .J(1 + PI + P2)2 - 4pl))/2, 

0"2 = (1 + PI + P2 - .J(1 + PI + P2)2 - 4pl))/2, 

PI = AIiIl, P2 = A2/1l, 

and fBj , j = 0, 1, ... ) constitute a sequence of unknown constants to 
be determined from the boundary conditions (15) and (17). 

N ow we will show how to determine the unknown constants in two 
steps. First, we will show this for Bo and then for Bj • It is possible to 
determine Bo by assuming two trial values and using (19) and (16) to 
recursively calculate two sets of Pio for i = m + 1, m, ... , k2• Since 
each of these Pio is a linear function of the unknown constant Bo, now 
it is easy to use linear interpolation to obtain the correct value of Bo 
that agrees with Pk:2,o already obtained from (14). One can now use 
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(15) to obtain P~,I' To calculate Bj(j > 0), let us assume the P~,j has 
been obtained from (15) for j = 1 or from (17) for j > 1. Further 
assume that Pik(O $ k $ j - 1 and all i) are known. As before, we start 
with two trial values of Bj and recursively calculate two sets of P ij for 
i = m + 1, ... , k2 by using (20) and (13). Since each of the Pij is a 
linear function of Bj , we can use linear interpolation to obtain the 
correct value of Bj that agrees with Pk2 ,j already obtained from (15) 
for j = 1 or from (17) for j > 1. Finally, one can use (17) to obtain 
P~,j+1' 

APPENDIX B 

State Probability As Seen by Customers on Admission to the Service Area 

Here we describe the procedures for computing Qdi,j) and Q2(i,j) 
that denote the state probabilities as seen upon admission to the 
service area by type 1 and type 2 customers, respectively. The proce
dure for computation of Q2 (i, j) is described first. 

It is clear that if, on arrival, a type 2 customer finds less than k2 
customers in the system, it does not have to wait before entering the 
service area. So, 

Q2(i,j) = P(i - 1, j) for i < k2. (21) 

It is also obvious that Q2 (i, j) = 0 for i> k2' since a type 2 customer 
cannot enter the service area if the number of customers in the service 
area other than itself is greater than or equal to k2 • A type 2 customer 
will see I = k2 upon its admission to the service area in one of two 
ways: (1) if there are k2 - 1 customers in the system just before its 
arrival, or (2) if I ~ k2 at the time of its arrival and it has to wait until 
all type 2 customers ahead of it in the waiting area are admitted to 
the system and a departure occurs from the state I = k2 • 

From the analysis of Section II, W2 (s) is the LST of the distribution 
of the waiting time of a type 2 customer given that it has to wait. The 
generating function of the number of arrivals of type 2 during this 
wait is W2 (A2 (1 - z». Further, the probability that a type 2 customer 
has to wait before entering the service area is Li=~ Ili. 

Thus, 

Q (k ') _ ~ P (dj /dz j
) W2(A2(1 - z» Iz=o ~ 

2 2, J - Uj k2-I,O + " .L.J Ili, 
J. J=k2 

(22) 

where 5j = 1 if j = 0 and 0 otherwise. 
To compute Qdi,j), we note that type 1 customers do not have to 

wait if there are less than ki customers in the service area at the time 
of their arrival. Thus, 

QI(i,j) = P(i - 1, j) (23) 
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j 

QI(i,j) = L L P(i', j') 
i'=kl j'=0 

roo f.l(f.lt)i'-kl -Ilt (AIt)i-kl -Alt (A2 t )j-j' - A2tdt 
. Jo (i' - kd! e (i _ kd! e (j _ j')! e . (24) 

For i = kl' there are two possibilities: (1) if the type 1 customer 
finds ki - 1 customers in the service area upon arrival and does not 
have to wait, (2) if it has to wait but no type 1 arrivals occur during 
its wait. Thus, 

j 

Qdkb j) = P(ki - 1, j) + L L P(i', j') 
i'=kl j'=0 

roo f.l(f.lt)i'-kl -Ilt -Alt (A2 t )j-j' - A2tdt 
. Jo (i' _ kd! e e (j _ j')! e • (25) 

In deriving (24) and (25) above, we have used the facts that the 
waiting time of a type 1 customer (given that it has to wait) has a 
gamma distribution and that the type 1 and type 2 arrivals that occur 
during this wait are independent and Poisson. 

APPENDIX C 

Characterization of the Time Spent in the Service Area by a Tagged 
Customer in a Two-Class Processor Sharing System 

Let X(s) denote the LST of the distribution of the time spent in 
the service area by an arbitrary "tagged customer." Similarly, let Xi,j(s) 
denote the LST of the conditional distribution of this random variable 
given that the state J of the system at the time the tagged customer 
was admitted to the service area was (i, j). (Here i is assumed to 
include the tagged customer.) Let Xi(s) denote the row vector with 
entries 

(26) 

When i < k2' there can be no type 2 customers waiting outside, that 
is, j = o. So we let Xi (s) denote the quantity Xi (s ) . We are interested 
in determining the quantities Xi(s) for i ~ k2 and Xi(s) for 1 ~ i < k2. 

Assume that the tagged customer was admitted to the service area 
at time 0 and let t denote the time at which the tagged customer 
finishes service and quits the system. Then, 

{Xi(s)}j = E[e-sT I Jo+ = (i, j)] for i ~ k2' j = 0, 1, 

and 

Xi(S) = E[e-sT I J o+ = (i, 0)] for i ~ i ~ k2 - 1. (27) 
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Let Ti denote the first passage time (after time 0) into the state (i, .), 
that is, 

Ti = Min{t:t 2: 0, J t = (i, .)} for i 2: 1. (28) 

Also, for i 2: k2 andj, k = 0,1,2, ... ,let iRj,k(S) denote the quantity 

E[e-STi-1I{T> Ti-dI{JTt-l = (i - 1, j)} I Jo+ = (i, k)], 

where I{A} denotes the indicator function of the eventA. Observe that 
for i 2: m the server continues to work at the maximum multiprogram
ming level until the first passage time into the state (i - 1, .) so that, 
sample path by sample path, the above expectation is independent of 
i. Thus, 

(29) 

Also, during this time no type 2 jobs are admitted to the service area 
so that j cannot be less than k, that is, 

Rj,k(S) = ° for j < k. (30) 

Let R (s) denote the matrix with entries 

{R(s)b,k = Rj,k(S) for j, k = 0, 1, 2, .... (31) 

Then R (s), clearly, is lower triangular. Moreover, by a sample path 
argument it can be shown that Rj,k(S) depends upon the difference, 
j - k, which represents the number of type 2 arrivals during (0, Ti-d, 
and not on k, which refers to the number of type 2 customers waiting 
outside at time 0+. Thus R (s) has the form 

ro(s) .0 .. J. rl(s) ro(s) (32) 

C.1 A matrix equation for R(s) 

By conditioning on the first event to occur, we write Rj,k(S) as 

R. (s) = J.l(m - I)/m o. + Al E[e-sTi-1I{T> T._ } 
1,k A + J.l + s J,k A + J.l + s I 1 

. 1 {JT1:1 = (i - 1, j)} I J o+ = (i + 1, k)] + A2 E[e-sTi-1 
I A+J.l+s 

.I{T> Ti-dI{JTt-l = (i - 1, j)} I J o+ = (i, k + 1)], (33) 

where the first term corresponds to the event "departure of a nontagged 
customer," the second to the event "arrival of a type 1 customer," and 
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the third to the event "arrival of a type 2 customer." Now the 
expectation in the second term can be written as 

E[e-STi-11{T> Ti-d1{JTtl = (i - 1, j)J I J o+ = (i + 1, k)] 
00 

= L E[e-s(T'+T")l{T> T' + T"}l{JT'+T" = (i - 1, j)} 
j'=o 

·1 {JT , = (i, j')} I Jo+ = (i + 1, k)], (34) 

where T' is the first passage time into the state (i, .) and T" is the 
time elapsed since the first passage into (i, .) until the first passage 
into the state (i - 1, .). Clearly, Ti- I = T' + T" since the Markov 
process J is skip-free. From the Markov property of J T , it follows that 
the right-hand size of (34) equals 

00 

L E[e-ST"l{T - T' > T"}l{J(T'+T")+ = (i - 1, j)J I JT,+ 
j'=o 

= (i, j'), T> T'] X E[e-ST'l{T > T'}l{JT,+ = (i, j')} I J o+ 

= (i + 1, k)], 

which is nothing but 

Thus, (34) can be written as 

R () J.l(m - l)/m 0 Al (R2( )1 
j,k S = A + J.l + S j,k + A + J.l + S S fj,k 

A2 
+ A + J.l + S Rj,k+I (s) (35) 

or in a matrix form 

R(s) = J.l«m - l)/m) I + Al R2(S) + A2 R(s)il. (36) 
A+J.l+s A+J.l+s· A+J.l+s 

In (35) and (36), OJ,k is the Kronecker 0, that is, OJ,k equals 1 if j = k 
and 0 otherwise; and the matrix il is given by 

il= 

o 
1 0 

1 0 
o 1 

o 

o (37) 

The structure of R (s) as given in (32) makes it possible to compute 
the entries ri(s) recursively. ro (s) satisfies the quadratic equation 
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() J.L(m - I)/m Al 2( ) 
ro S = + ro S 

A+J.L+s A+J.L+s 
(38) 

so that ro(s) is given by 

(A + J.L + s) ± J(A + J.L + S)2 - 4AIJ.L(m - I)/m 
ro(s) = 2AI . (39) 

Since, for s ~ 0, I ro (s) I must be less than or equal to 1, the larger of 
the two roots is unacceptable. Thus, 

( ) 
_ (A + J.L + s) - J(A + J.L + S)2 - 4AIJ.L(m - I)/m 

~ s - 2AI . (40) 

Once ro(s) is known, ri(s), for i ~ 1, can be computed recursively since 
ri (s) is expressible in terms of ro (s ), ... , ri-I (s ) . We note here that 
ro(s) has a form similar to that of 0"2(S) in Ref. 10. In fact, if A2 = 0, 
then ro(s) and 0"2 (s) are identical and represent the same quantity. 

C.2 The structure of Xi(s) 

Now that we have an explicit expression for R(s), we shall attempt 
to express the quantities Xi(s) in terms of R(s). 

The kth entry of Xi (s) can be written as 

{Xi(S)}k = E[e-STI{T > Ti-d I Jo+ = (i, k)] 

+ E[e-STI{T ~ Ti-d I Jo+ = (i, k)]. (41) 

The first term on the right-hand side of (41) can be expanded as 
00 

E[e-ST l{T> Ti-d I J o+ = (i, k)] = L E[e-s[(T-Tj-l)+Ti-d 
j=O 

.1{T> Ti-dI{JTt-l = (i - 1, j)} I Jo+ = (i, k)], (42) 

which, because of the Markov property of J t , reduces to 
00 

L E[e-s(i'-Ti-1) I JTt-l = (i - 1, j), T> Ti_dE[e-sTi-l 
j=O 

.I{T> Ti-dl{JTt-l = (i - 1, j)} I Jo+ = (i, k)]. 

It follows from the memoryless property of the tagged customer's 
service-time distribution that E[e-S(T-Ti-1) I JTt-l = (i - 1, j), T> Ti-d 
equals {Xi-I(S)!i; and, for i ~ m, E[e-STi-1 l{T > Ti-dl{JTt-l = (i - 1, 
j)ll J o+ = (i, k)] equals {R(S)}j,k. Thus (42) reduces to 

E[e-STl{T> Ti-d I J o+ = (i, k)] = {Xi-I(S)R(s)}k for i ~ m. (43) 

To derive an expression for the second term in (41), we note that, 
for i ~ m, no sample path that figures in the expectation 
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E[e-ST1(T:5 Ti-d I Jo+ = (i, k)] allows the multiprogramming level to 
fall below m before the departure of the tagged customer. Thus the 
server continues to operate at rate J.l until the tagged customer's 
departure. Also, for any two initial states (i1 , kd and (i2, k2), as long 
as i1 , i2 ;:: m, there is a one-to-one correspondence between sample 
paths describing the trajectory of J t between ° and T, which make 
equal contributions to the expectation. Thus, 

E[e-ST1(T:5 Ti-d I Jo+ = (i, k)] = a(s) for i;:: m, (44) 

where a(s) is independent of i and k. 
To derive an expression for a (s ), it will be convenient to introduce 

a quantity u(s) defined by 

u(s) = E[e-sTi- 11(T > Ti-d I J o+ = (i, k)] 

for i;:: m, k = 0, 1, .... (45) 

Note that although the definition of u(s) involves the initial state 
(i, k), u(s) is independent of the latter as long as i;:: m. Also note that 

u (s) = L rk (s ). (46) 
k=O 

By conditioning on the first relevant event to occur, u(s) can be 
written as 

() 
J.l(m - l)/m A1 

us= +----
. A1 + J.l + S ~\l + J.l + s 

.E[e-s
(Ti- 1-Ti+l)1(T> Ti-d I JTi+l = (i + 1, .), Ti- 1 > Ti+d. (47) 

In (47) it can be seen that arrivals of type 2 customers are completely 
ignored since they do not affect the mechanics involved. Since the 
first passage time from the state (i + 1, .) to (i - 1, .) involves the 
sum of the first passage times from (i + 1, .) to (i, .) and from (i, .) 
to (i - 1, .), which are i.i.d., (47) reduces to 

() J.l(m - l)/m A1 2( ) 
U S = + us. 

A1 + J.l + S A1 + J.l + s 
(48) 

Equation (48) is identical to the one describing U2(S) in Ref. 10, with 
A replaced by A1. The desired root of (48) is the smaller of the two 
roots so that 

(A1 + J.l + s) - -J(A1 + J.l + S)2 - 4J.lA1(m - l)/m 
u(s) = 2A1 . (49) 

Now a(s) can be obtained in a straightforward manner from u(s). 
By conditioning on the first relevant event to occur, we write 
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/lIm Al --a(s) = + E[e-s(T-Ti+1)I{T:5 Ti-d I Jrtl 
/l + Al + s /l + Al + s 

. - /lIm Al 
= (l + 1, .), T> Ti+d = A + A 

/l+ I+S /l+ I+S 

. [E[e- s<i'-Ti+1)I{T:5 Ti-dl{T :5 T'} I Jrtl = (i + 1, .), T> Ti+l] 

+ E[e- s(T-Ti+1)I{T :5 Ti-dl{T > T'} I JTt-l = (i + 1, .), T> Ti+d], (50) 

where T' denotes the first passage time into the state (i, .) after the 
state has reached (i + 1, .) at time Ti+1. Following arguments similar 
to the ones used earlier, it can be shown that (50) can be written as 

/lIm Al 
a(s) = + [a(s) + IT(s)a(s)], 

/l + Al + s /l + Al + s 

that is, 

a(s) = /llm[/l + s - AllT(S )]-1. (51) 

The desired vector Xi(s) can now be written as 

Xi(s) = a(s) + Xi-ds)R(s) for i ~ m, (52) 

where a(s) is the row vector (a(s), a(s), a(s), ... ). 
If we introduce two more vectors a( s) and (3( s), where 

/lIm 
(3(s) = I [1, 1, 1, ... ], 

/l m + s 

and 

a(s) = a(s) - (3(s) + Xm-1(s)R(s), 

the vectors Xi (s) for i ~ m can be expressed as 

Xi(s) = (3(s) + a(s)[R(s)]i-m. 

(The above equation can be proved by mathematical induction.) 

(53) 

(54) 

(55) 

It can be seen that as i ~ 00, the term a(s)[R(s)]i-m vanishes, so 
that Xj(s) approaches its limiting value (3(s). In other words, when i 
is large, the tagged customer receives its entire service at the rate 
/lIm as expected. 

C.3 Boundary conditions 

For i ~ m, eq. (55) characterizes the vectors Xi(s) in terms of known 
quantities (3( s ), a (s ), R (s ), and the unknown Xm- 1 (s). In other words, 
if Xm-ds) is known, Xj(s) can be obtained, for i ~ m, directly from 
(55). To completely characterize the time spent in the service area by 
a tagged customer, it remains to derive the boundary conditions, that 
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is, a system of equations from which the quantities X 1 (s), X 2 (s), 
... ,Xk1-ds), Xk1 (s), ... , Xm-ds) can be obtained. 

Without going into the details of derivation-it involves arguments 
similar to the ones used in the earlier analysis-we state the boundary 
conditions, which are as follows: 

X .( ) = JlJi 1 (i - I)JlJi X. () Al X. () 
£ S + £-1 S + £+1 S 

A + Jli + s A + Jli + s A + Jli + s 

A 
+ A + {X k2 (S)}O, (58) 

Jl~-l 

JlJi (i - I)JlJi A 
Xi(s) = A + A X i- 1(S) + A X i+1(S) + Jli + s + Jli + s + Jli + s 

for 2 ~ i < k2 - 1, (59) 

and 

Jl1 A 
X 1 (s) = A + A X 2 (s), (60) + Jl1 + s + Jl1 + s 

where eo = [1 0 0 0 ... ] and 1 = [1 11 ... ]. 
Equations (55) through (60) give a characterization of the LST of 

the distribution of the time spent in the service area by the tagged 
customer given the state of the system at the time it was admitted to 
the service area. To derive the mean time spent in the service area, 
we need to differentiate these quantities at s = O. Noting that a(O) = 
0, we have 

Xi (0) = P' (0) + a' (O)[R (o)]i-m for i ~ m. (61) 

The boundary conditions also are obtained by differentiating the 
corresponding equations at s = 0: 
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X[(O) = 

X~(O) = 

1 1 + (i - l)JlJi X~_ (0) + _Al_ X~ (0) 
(A + Jli) (A + Jli) 'l A + Jli ,+1 

+ ~ X[ (O)~ for k2 + 1 ~ i < m - 1 (62) 
A + Jli 

1 + (k2 - 1)Jlk/k2 [X' (O)~T + X' _ (O)e ] 
A+ A+ 

k2 k2l 0 
Jl~ Jlk2 

+ Al X~+1 (0) + A2 X k2 (O)~, (63) 
A + Jl~ A + Jl~ 

X~-dO) = 1 + (k2 - 2)Jl~-d(k2 - 1) X~-2(0) 
A + Jlk2-l A + Jlk2-l 

+ A + A {X~(O)}o, (64) 
Jl~-l 

X! (0) = __ 1_ + (i - l)JlJi X~_ (0) + _A_ X~ (0) 
Z A + Jli A + Jli ' 1 A + Jli z+ 1 

for 2 ~ i < k2 - 1, (65) 

and 

X~(O) = --A 1 + -A A X~(O). 
+ Jll + Jll 

(66) 
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Inequalities satisfied by the Laplace transforms of convex and log-convex 
functions are obtained. Applications are made to the M/G/1 queue waiting 
time and to an important teletraffic congestion problem, arising in parcel 
blocking studies. 

I. INTRODUCTION 

The purpose of this paper is to establish certain inequalities satisfied 
by the Laplace transform of convex functions and to illustrate their 
use. The notion of a-convexity on which these results are based is 
fully discussed.1 This notion had its origin in the author's investiga
tions concerning the inversion of the Laplace transform;2 subse
quently, it has been applied to obtaining the results reported on here. 
The property of a-convexity forms a natural bridge between ordinary 
convexity (a = 0) and the stronger property of log-convexity (all a). 
This enables the formulation of a criterion in terms of the transform 
of a function for ascertaining the log-convexity of the function, vd. 
Theorem 2 and (11). 

An infinite set of inequalities satisfied by the Laplace transform of 
a log-convex function is obtained, vd. Theorem 3; these inequalities 
are illustrated by two applications. The first provides necessary con
ditions for the log-convexity of the complementary waiting time dis
tribution in the First-In First-Out (FIFO) MIGII queue. The condi-
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tions are expressed in terms of the transform of the complementary 
service time distribution. 

The second application concerns the important teletraffic problem 
of ascertaining the time congestion of a call that overflows a primary 
group and is offered to a secondary group. Simple upper and lower 
bounds are obtained for a function [OJ(x, a)] arising in Brockmeyer's 
analysis of the problem and in terms of which the time congestion is 
obtained.3 These results form an important part of "parcel blocking" 
analyses.4 

II. a-CONVEXITY 

A function f(x) is said to be a-convex on an interval I if eaxf(x) is 
convex on 1. Clearly, ordinary convexity corresponds to a = 0. A 
sufficient condition for convexity of f(x) is5 

f" (x) ~ 0, x E 1. 

Introducing the function h(x) by 

d2 

h(x) = e-ax dx 2 [eaxf(x)], 

= f"(x) + 2af'(x) + a 2f(x). 

Then, in view of (1), the condition for a-convexity is 

h(x) ~ 0, x E 1. 

(1) 

(2) 

(3) 

(4) 

It should be observed that a -convexity does not imply convexity 
(a = 0). Thus consider, for example, f(x) = x 3

, which is a-convex for 
x ~ 0, a ~ 0. For a = 1, however, x 3 is a-convex for -3 - ../3 :s x :s 
-3 + ../3. 

The a-convexity of a function may permit stronger bounds to be 
obtained on integrals of the function than ordinary convexity. For 
example, let p(x) ~ 0, and let f(x) be convex on I, then Jensen's 
inequality states5 

I {(x)p(x)dx ?: {(Il) I p(x)dx, 

11 = I xp(x)dx / I p(x)dx. (5) 

If f(x) is a-convex on I, then, since 

I {(x)p(x)dx = I e"X{(x)e-nXp(x)dx, (6) 
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one has 

I f(x)p(x)dx "' ea'f(l') I e-~p(x)dx, 
I' = I xe-=p(x)dx / I e-=p(x)dx. (7) 

This result can be stronger than (5). 
Let the Laplace transform, l(s), of f(x) be defined by 

1(8) = 100 

e-"f(x)dx, 8 > -'Y, (8) 

and let f(x) be a-convex for x ~ 0; then the following theorem may be 
stated. 
Theorem 1: 

1 ~ ( 1 ) l(s) ~ -- es+af -- , 
s+a s+a 

a> - s; 

or, equivalently, 

1 -(1) 1 f (x) :5 ~ e -ax f ~ - a , a < ~ + 1'. 

Proof: Use of (7) withp(x) = e-SX. 
A function f(x) > 0 is said to be log-convex on I if lnf(x) is convex 

on 1. Thus, the condition for log-convexity is 

f"(x)f(x) - f'(X)2 ~ 0, x E 1. (9) 

In particular, log-convexity implies convexity, hence eaXf(x) is convex; 
thus, a log-convex function is a-convex for all a. The following theorem 
asserts also the converse. 
Theorem 2: A function f (x) > 0 is log-convex on an interval I if and 
only if it is a-convex on I for all a. 
Proof: It is necessary to prove only that f(x) is log-convex on I if it is 
a-convex on I for all a. This follows from (3) on observing that the 
discriminant of the quadratic in a is f'(X)2 - f"(x)f(x); hence, a
convexity for all a implies (9) and the consequent log-convexity of 
f(x). 
Corollary: The sum of log-convex functions is log-convex. 
Proof: The sum of a-convex functions corresponding to the same a is 
clearly again a-convex for the same a; hence, the statement follows 
on applying the theorem. 

A function f(x) is said to be completely monotone on I if 
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(-IYf(r)(x)~O, xEI, r=0,1,2,···. (10) 

The Bernstein theorem,6 which states that f(x) ~ 0 if and only if 
1 (s) is completely monotone for s real and in the domain of conver
gence of (8), may be used to translate condition (4) in terms of l(s). 
Accordingly, let 1 (s) converge for s > 0 and let 

h(s) = (s + a)21(s) - (s + 2a)f(0+) - 1'(0+), s > O. (11) 

Then f(x) is a-convex if and only if h(s) is completely monotone for 
s > o. Thus, also, f(x) is log-convex if and only if h(s) is completely 
monotone for s > 0 and all a. 

III. INEQUALITIES FOR I(s) FROM LOG-CONVEXITY 

It will now be assumed that f(x) is log-convex for x > 0 and that 
1 (s) converges for s > o. Thus, one has 

min (-lth(n)(s) ~ 0, s> 0, n = 0, 1, 2, ... . (12) 
a 

The following theorem will now be proved. 
Theorem 3: If f(x) is log-convex for x> 0, then for all s > 0, one has 

f~( )-1 < sf(O+) - I' (0+) f(O) 0 
s - f(0+)2 , + ¢ , 

d ~ 1 1 
ds f(s)- ~ f(O+)' f(O+) ¢ 0, 

(n - 1)!<m)(s)!<m-2)(s) ~ n!<m-1)(s)2, n ~ 2. 

The equality signs are achieved for f(x) = e-'YX
• 

Proof: One has for 

f(O) 
a = l(s) - s, 

. ~ f(0)2 
m~n h(s) = sf(O) - 1'(0) - l(s) ~ o. 

This establishes the first inequality. For 

l(s) 
a = 1'(s) - s, 

one has 

m!n[-h'(s)] = :~g; + f(O) ;", 0, 
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which, after a little manipulation, yields the second inequality. For 
the choice 

pn-l) (R) 
a = -n pn)(R) - R, (17) 

direct calculation shows that 

min[( -1)n ii(n) (s)] 
a 

_ _ n _ -(n-2) _ S > 
[ 

f-(n-l)( )2] 
- ( 1) n (n l)f (s) n pn)(s) _ O. (18) 

In view of the complete monotonicity of 1 (s), the remaining inequali
ties are established. 

IV. CONVEXITY IN M/G/1 

An application of Theorem 3 will now be made to waiting time in 
the FIFO MIGII queue. l In the following, A is the arrival rate, J.l is 
the service rate, p = AI J.l < 1, J.l2 is the second moment about the origin 
of service time, and ~(s), F(s) are the Laplace transforms of the 
complementary service and waiting time distributions, respectively. 
Theorem 4 may now be stated. 
Theorem 4: Necessary conditions for the complementary waiting time 
distribution, F(x), to be log-convex are 

21- 1 
2 2 :5 (3(s) :5 -- , 

J.l J.l2 S + J.l s+-
J.lJ.l2 

2 
J.l2 ~ 2· 

J.l 

Proof: The Pollaczek-Khintchine formula l may be written in the form 

Clearly, 

hence, 

Thus, 

F (s) = ~ p - A~ (s) . 
s 1 - A{3(S) 

- 1 
(3(s) -- - , s ~ 00; 

s 

F(s) __ f!. _ A(1 - p) , 
S S2 

s ~ 00. 

F(O+) = p, F'(O+) = -A(1 - p). 

(19) 

(20) 

(21) 

(22) 
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Application of the first inequality of Theorem 3 yields 

1 - xjj (s ) s 1 - p 
s - :5-+jl--. 

p - x~(s) p p 
(23) 

Observing that ~(s) is monotone decreasing, and that X~(O) = p < 1, 
one has (s > 0) 

1 - xjj(s) > 0, p - xjj(s) > o. (24) 

Hence, multiplying (23) through by p - x~(s), and solving for ~(s), 
one obtains 

- 1 ~(s) :5 --. 
s+jl 

(25) 

U sing the second inequality of Theorem 3 in the form 

- 1 - 1 s 
F(s)- ~ F(O)- + F(O+) (26) 

with the evaluation 

F(O) =!~ 
21-p 

(27) 

yields the required lower bound for ~(s). Finally, multiplying the upper 
and lower bounds by s and evaluating the limit s ~ 00 provides the 
last inequality of the theorem. 

V. AN OVERFLOW MODEL 

Consider the traffic model of Fig. 1, in which a is the offered load, 
assumed Poisson, to the primary trunk group of x trunks whose 
overflow of m erlangs and peakedness z is offered to the secondary 
trunk group of c trunks. Clearly, 

m = aB(x, a), (28) 

in which B (x, a) is the Erlang loss function. 7,8 The blocking (call 
congestion) experienced by a call overflowing the primary is given by 
the formula (equivalent random method)8 

B = B(x + c, a) 
e B(x, a) . (29) 

An alternative expression for Be may be obtained from the Brockmeyer 
analysis.3 Let P(k) be the probability k trunks are busy on the 
secondary group and let m(k) be the corresponding load offered to the 
secondary; then 
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Fig. 1-0verflow system. 

e 

m = L m(k)P(k), 
k=O 

Be = m(c)P(c) . 
m 

One has also that the time congestion, BT , is given by 

BT = P(c). 

In order to obtain P(c), the function OJ (x, a) is introduced by 

GA-j - 1, a) 
oj(x,a)= G(-. ) , 

x j, a 

in which Gj(x, a) are Poisson-Charlier polynomials.7 Then 

BT = oe(x, a)B(x + c, a). 

It has been found4 that OJ(x, a) satisfies the recursion 

oo(x, a) = B(x, a)-I, 

x-a a 
OJ(x, a) = 1 + --. - + -:- OJ-l(X, a)-I, 

J J 
j ?::. 1. 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

Another recursion for OJ (x, a) may be obtained by considering the 
integral 

(36) 

Since 

(37) 
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one has from (33) 

OJ(O, a) = 1, j?! 0, 

a Ij(x, a) 
OJ(x, a) = -:- I ( ) , 

J j-I x, a 
j ?! 1. (38) 

One easily establishes 

Ij(x + 1, a) = Ij(x, a) + I j+1(x, a), (39) 

x J 
Ij(x, a) = - Ij(x - 1, a) + - Ij-dx, a); (40) 

a a 

hence, from (39) and (40) 

x Ij(x - 1, a) 
oj(x,a)=-:- I ( ) +1. (41) 

J j-I x, a 

Use of (39) finally yields 

x 
OJ(x, a) = Os: ( 1) OJ(x - 1, a) + 1, x?! 1. (42) 

a + JUj x - ,a 

The recursion of (42) with initial value of (38) provides a convenient 
and stable method for the exact computation of OJ (x, a); however, in 
many practical investigations, it is useful to have upper and lower 
bounds showing simple and explicit dependence on the arguments. 
For this purpose, let P x (t) be the recovery function for a group of x 
trunks, that is, the probability that all trunks are busy at time t given 
they were all busy at time zero; then9 

- Gx(-R, a) 
Px(s) = RGA-R - 1, a) . (43) 

Comparison of (43) with (33) shows that 

- 1 
PAj) = Os: ( ) • 

JUj x, a 
(44) 

It is also known that PAt) is log-convex in t for t ?! 0.9 The following 
theorem may now be proved. 
Theorem 5: For j ?! 1, x ?! 0, a ?! 0, the following inequalities hold 

! [1 x - a + 1 V(l x - a + 1)2 4 j(a - 1) - x] 
2 + ° + + ° + °2 

J J J 

1 [ x - a v( x - a)2 4a] SOj(x,a)s2" l+-
j
-+ l+-

j
- +T . 
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Proof: The upper bound is due to A. A. Fredericks,4 who shows that 

OJ(X, a) :5 OJ-I(X, a), 

hence, from (35) one gets 

j ~ 1; 

x-a a 
OJ(x, a) :5 1 + --. - + -: OJ(X, a)-I. 

} } 

(45) 

(46) 

Solution of the quadratic provides the upper bound of the theorem. 
Since PAO) = 1, the second inequality of Theorem 3 applied to 

PAs) in the form 

PAs + h)-I - PAS)-I ~ h, h ~ 0, (47) 

yields, from (44), 

(j + h)Oj+h(X, a) - jOj(x, a) ~ h, 

Setting h = 1 and writing (48) in the form 

. 1 
OJ-I(X, a)-I ~ '0 / - ) 1 

} j x, a -

yields, after substitution into (35), 

h ~ O. 

. ( ) . j - 1 
}OJ x, a ~} + x - a + a . ( ) 1 

}OJ x, a -

(48) 

(49) 

(50) 

From (48) it follows that jOj(x, a) ~ 1; hence, in (50), multiplying 
through by jOj (x, a) - 1 yields the inequality 

2 ( X - a + 1) j (a - 1) - x 
OJ(x, a) - 1 + j OJ(x, a) - j2 ~ O. (51) 

Solution of this quadratic finally yields the lower bound of the theorem. 

REFERENCES 

1. D. L. Jagerman, "Waiting Time Convexity in the M/G/1 Queue," AT&T Tech. J., 
64, No.1, Part 1 (January 1985), pp. 33-41. 

2. D. L. Jagerman, "An Inversion Technique for the Laplace Transform With Appli
cation to Approximation," B.S.T.J., 57, No.3 (March 1978), pp. 669-710. 

3. E. Brockmeyer, "The Simple Overflow Problem in the Theory of Telephone Traffic," 
Teleteknik,5 (1954), pp. 361-74. 

4. A. A. Fredericks, "Approximating Parcel Blocking via State Dependent Birth 
Rates," Proc. 10th lTC, Montreal, Canada, 1983. (Paper #2, Session #5.3). 

5. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge: Cambridge 
University Press, 1959. 

6. J. A. Shohat and J. D. Tamarkin, "The Problem of Moments," Math. Surveys No. 
1, Providence, R.I.: American Mathematical Society, 1943. 

7. D. L. Jagerman, "Some Properties of the Erlang Loss Function," B.S.T.J., 53, No. 
3 (March 1974), Pi>. 525-51. 

8. D. L. Jagerman, "Method9 in Traffic Calculations," AT&T Bell Lab. Tech. J., 63, 
No.7 (September 198·0, pp. 1283-310. 

9. D. J. Jagerman, "Nollstationary Blocking in Telephone Traffic," B.S.T.J., 54, No. 
3 (March 1975), Pi>. (j~fi-(j1. 

LAPLACE TRANSFORM 1763 



AUTHOR 

David L. Jagerman, B.E.E., 1949, Cooper Union; M.S., and Ph.D. (Mathe
matics), 1954 and 1962, respectively, New York University; AT&T Bell Lab
oratories, 1963-. Mr. Jagerman has been engaged in mathematical research 
on quadrature, interpolation, and approximation theory, especially related to 
the theory of widths and metrical entropy, with application to the storage and 
transmission of information. For the past several years, he has worked on the 
theory of difference equations and queueing, especially with reference to traffic 
theory and computers. He is currently preparing a text on difference equations 
with application to stochastic models. He is also an adjunct professor at 
Stevens Institute, where he teaches selected topics on mathematics applied to 
computer science. 

1764 TECHNICAL JOURNAL, SEPTEMBER 1985 



PAPERS BY AT&T BELL LABORATORIES AUTHORS 

COMPUTING/MATHEMATICS 

Baker B. S., A New Proof for the 1st-Fit Decreasing Bin-Packing Algorithm. J 
Algorithm 6(1):49-70, Mar 1985. 
Barron E. N., Viscosity Solutions for the Monotone Control Problem. SIAM J 
Con 23(2):161-171, Mar 1985. 
Bentley J. L., McGeoch C. C., Amortized Analysis of Self-Organizing Sequential 
Search Heuristics. Comm ACM 28(4):404-411, Apr 1985. 
Cargill T. A., Implementation of the Blit Debugger. Software 15(2):153-168, Feb 
1985. 
Coffman E. G., Langston M. A., A Performance Guarantee for the Greedy Set
Partitioning Algorithm. ACT Inform 21(4):409-415, 1984. 
Crawford S. G., McIntosh A. A., Pregibon D., An Analysis of Static Metrics and 
Faults in C Software. J Syst Soft 5(1):37-48, Feb 1985. 
Dembo R S., Klincewicz J. G., Dealing With Degeneracy in Reduced Gradient 
Algorithms. Math Progr 31(3):357-363, Mar 1985. 
Fishburn P. C., SSB Utility Theory and Decision Making Under Uncer
tainty. Math Soc Sci 8(3): 253-285, Dec 1984. 
Fishburn P. C., SSB Utility Theory-An Economic Perspective. Math Soc Sc 
8(1):63-94, Aug 1984. 
Johnson D. S., The NP-Completeness Column-An Ongoing Guide. J Algorithm 
6(1):145-159, Mar 1985. 
Kesler T. E. et aI., The Effect of Indentation on Program Comprehension. Int 
J Man M 21(5):415-428, Nov 1984. 
Morrison J. A., Mitra D., Heavy-Usage Asymptotic Expansions for the Waiting 
Time in Closed Processor-Sharing Systems With Multiple Classes. Adv Appl 
P 17(1):163-185, Mar 1985. 
Nozari A., Control of Entry to a Nonstationary Queuing System. Nav Res Log 
32(2):275-286, May 1985. 
Pike R, Locanthi B., Reiser J., Hardware Software Trade-Offs for Bitmap 
Graphics on the Blit. Software 15(2):131-151, Feb 1985. 
Prabhu N. U., Reeser P. K., A Random Family of Queuing Systems With a 
Dynamic Priority Discipline. Math Oper R 10(1):24-32, Mar 1985. 
Tarjan R E., Amortized Computational Complexity. SIAM J Alg 6(2):306-318, 
Apr 1985. 
Vardi Y., Empirical Distributions in Selection Bias Models. Ann Statist 
13(1):178-203, Mar 1985. 
Vardi Y., Shepp L. A., Kaufman L., A Statistical Model for Positron Emission 
Tomography. J Am Stat A 80(389):8-20, Mar 1985. 
Whitt W., The Best Order for Queues in Series. Manag Sci 31(4): 475-487, Apr 
1985. 
Whitt W., The Renewal-Process Stationary-Excess Operator. J Appl Prob 
22(1):156-167, Mar 1985. 
Willard D. E., Reduced Memory Space for Multidimensional Search Trees. Lect 
N Comp 182:363-374, 1985. 

ENGINEERING 

Agrawal G. P., Coupled-Cavity Semiconductor Lasers Under Current Modula
tion-SmaIl-Signal Analysis. IEEE J Q EI 21(3):255-263, Mar 1985. 
Auborn J. J., Barberio Y. L., An Ambient-Temperature Secondary Aluminum 
Electrode-Its Cycling Rates and Its Cycling Efficiencies. J Elchem So 
132(3):598-601, Mar 1985. 

1765 



Auston D. H., Cheung K P., Coherent Time-Domain Far-Infrared Spectros
copy. J Opt Soc B 2(4):606-612, Apr 1985. 
Benes V. E., New Exact Nonlinear Filters With Large Lie Algebras. Syst Contr 
5(4):217-221, Feb 1985. 
Benvenuto N., Moments of Error-Frequency Response Due to Coefficient In
accuracy for Sampled Data Filters (Letter). IEEE Acoust 33(2):436-437, Apr 
1985. 
Bowers J. E., Hemenway B. R, Wilt D. P., Etching of Deep Grooves for the Precise 
Positioning of Cleaves in Semiconductor Lasers. Appl Phys L 46(5):453-455, 
Mar 11985. 
Bowers J. K, Koch T. L., Hemenway B. R, Wilt D. P., Bridges T. J., Burkhardt E. G., 
High-Frequency Modulation of 1.52-~m Vapor-Phase-Transported InGaAsP 
Lasers. Electr Lett 21(7):297-299, Mar 28 1985. 
Broer M. M., Golding B., Low-Temperature Optical Dephasing of Rare-Earth 
Ions by Tunneling Systems in Glass. J Luminesc 31(Dec):733-737, Dec 1984. 
Brus L. K, On the Development of Bulk Optical Properties in Small Semicon
ductor Crystallites. J Luminesc 31(Dec):381-384, Dec 1984. 
Burrus C. A., Bowers J. E., Tucker R S., Improved Very-High-Speed Packaged 
InGaAs Pin Punch-Through Photodiode. Electr Lett 21(7):262-263, Mar 281985. 
Calderbank A. R, Mazo J. E., Wei V. K, Asymptotic Upper Bounds on the 
Minimum Distance of Trellis Codes. IEEE Commun 33(4):305-309, Apr 1985. 
Capasso F., Levine B. F., New Transport Phenomena in Variable Gap Semicon
ductors and Their Device Applications. J Luminesc 30(1-4):144-153, Feb 1985. 
Chemla D. S., Two-Dimensional Semiconductors-Recent Development. J Lu
minesc 30(1-4):502-519, Feb 1985. 
Chen C. Y., Garbinski P. A., Kasper B. L., Bit Rate Dependence of Receiver 
Sensitivities in G8.0.47Ino.53As Photoconductive Detectors. Electr Lett 21(7):273-
274, Mar 281985. 
Chen C. Y., Olsson N. A., Tu C. W., Garbinski P. A., Monolithic Integrated Receiver 
Front End Consisting of a Photoconductive Detector and a GaAs Selectively 
Doped Heterostructure Transistor. Appl Phys L 46(7):681-683, Apr 11985. 
Chi G. C., Mogab C. J., Rie Planarization Process for Magnetic-Bubble De
vices. IEEE Magnet 21(2):1170-1173, Mar 1985. 
Coffman E. G., Kadota T. T., Shepp L. A., On the Asymptotic Optimality of Ist
Fit Storage Allocation (Letter). IEEE Soft E 11(2):235-239, Feb 1985. 
Dautartas M. F., Suh S. Y., Forrest S. R, Kaplan M. L., Lovinger A. J., Schmidt P. H., 
Optical Recording Using Hydrogen Phthalocyanine Thin Films. Appl Phys A 
36(2):71-79, Feb 1985. 
Donegan J. F., Bergin F. J., Imbusch G. F., Remeika J. P., Luminescence From 
LiGa50s-Co. J Luminesc 31(Dec):278-280, Dec 1984. 
Downer M. C., Fork R L., Shank C. V., Femtosecond Imaging of Melting and 
Evaporation at a Photoexcited Silicon Surface. J Opt Soc B 2(4):595-599, Apr 
1985. 
Dudderar T. D., Hall P. M., Gilbert J. A., Holo-Interferometric Measurement of 
the Thermal Deformation Response to Power Dissipation in Multilayer 
Printed Wiring Boards. Exp Mech 25(1):95-104, Mar 1985. 
Eisenstein J. P., High-Precision Torsional Magnetometer-Application to Two
Dimensional Electron Systems. Appl Phys L 46(7):695-696, Apr 1 1985. 
Eisentein G., Tucker R S., Korothy S. K, Koren u., Veselka J. J., Stulz L. W., Jopson 
R M., Hall K L., Active Mode Locking of an InGaAsP 1.55-~m Laser in a Fiber 
Resonator With an Integrated Single-Mode-Fibre Output Port. Electr Lett 
21(5):173-175, Feb 28 1985. 
Eisinger J., Fluorometry of Absorbent and Turbid Samples and the Lateral 
Mobility in Membranes of Intact Erythrocytes. J Luminesc 31(Dec):875-880, 
Dec 1984. 
Glass A. M., Klein M. B., Valley G. C., Photorefractive Determination of the Sign 
of Photocarriers in InP and GaAs. Electr Lett 21(6):220-221, Mar 14 1985. 
Glassgold A. K, Huggins P. J., Langer W. D., Shielding of Co From Dissociating 
Radiation in Interstellar Clouds. Astrophys J 290(2):615-626, Mar 1985. 
Gottscho R A., Automated Pressure Scanning of Tunable Dye Lasers. Rev Sci 
Ins 56(4):529-531, Apr 1985. 

1766 TECHNICAL JOURNAL, SEPTEMBER 1985 



Greene B. I., Wolfe R, Femtosecond Relaxation Dynamics in Magnetic Gar
nets. J Opt Soc B 2(4):600-605, Apr 1985. 
Hegarty J., Olsson N. A., Goldner L., CW Pumped Raman Preamplifier in 
a 45-km-Long Fiber Transmission-System Operating at 1.5 J,Lm and 1 
Gbit/s. Electr Lett 21(7):290-292, Mar 28 1985. 
Hegarty J., Sturge M. D., Exciton Holeburning in GaAs/GaAIAs Multiquantum 
Wells. J Luminesc 31(Dec):494-496, Dec 1984. 
Hong M., Maher D. M., Ellington M. B., Hellman F., Geballe T. H., Ekin J. W., 
Holthuis J. T., Further Investigations of the Solid-Liquid Reaction and High
Field Critical Current Density in Liquid-Infiltrated Nb-Sn Superconduc
tors. IEEE Magnet 21(2):771-774, Mar 1985. 
Jackel J. L., Veselka J. J., Lyman S. P., Thermally Tuned Glass Mach-Zehnder 
Interferometer Used as a Polarization Insensitive Attenuator (Letter). Appl 
Optics 24(5):612-614, Mar 1 1985. 
Kash K., Shah J., Hot-Electron Relaxation in Ino.5aGao.47As. J Luminesc 
30(1-4):333-339, Feb 1985. 
Katehakis M. N., Johri P. K., Optimal Repair of a 2-Component Series System 
With Partially Repairable Components. IEEE Reliab 33(5): 427-430, Dec 1984. 
Kevan S. D., Electronic Coherence Length Following Pulsed-Laser Annealing 
of Cu(OOl). Phys Rev B 31(6):3343-3347, Mar 15 1985. 
Korotky S. K., Eisenstein G., Alferness R C., Veselka J. J., Buhl L. L., Harvey G. T., 
Read P. H., Fully Connectorized High-Speed Ti-LiNbOa Switch Modulator for 
Time-Division Multiplexing and Data Encoding. J Light W T 3(1):1-6, Feb 1985. 
Law H. H., Wilson W. L., Gabriel N. E., Separation of Gold Cyanide Ion From 
Anion-Exchange Resins. Ind Eng PDD 24(2):236-238, Apr 1985. 
Levine B. F., Bethea C. G., Campbell J. C., 1.52-J,Lm Room-Temperature Photon
Counting Optical Time Domain Reflectometer. Electr Lett 21(5):194-196, Feb 
281985. 
Lifshitz N., Dependence of the Work-Function Difference Between the Polysil
icon Gate and Silicon Substrate on the Doping Level in Polysilicon. IEEE 
Device 32(3):617-621, Mar 1985. 
Lipson J., Young C. A., Yeates P. D., Masland J. C., Wartonick S. A., Harvey G. T., 
Read P. H., A Four-Channel Lightwave Subsystem Using Wavelength Division 
Multiplexing. J Light W T 3(1):16-20, Feb 1985. 
Luryi S., An Induced Base Hot-Electron Transistor. IEEE Elec D 6(4):178-180, 
Apr 1985. 
Marcuse D., Stone J., Experimental Comparison of the Bandwidths of Standard 
and Dispersion-Shifted Fibers Near Their Zero-Dispersion Wave
lengths. Optics Lett 10(3):163-165, Mar 1985. 
McCaughan L., Long Wavelength Titanium-Doped Lithium-Niobate Directional 
Coupler Optical Switches and Switch Arrays. Opt Eng 24(2):241-243, Mar-Apr 
1985. 
Miller R C., Kleinman D. A., Excitons in GaAs Quantum Wells. J Luminesc 
30(1-4):520-540, Feb 1985. 
Mitchell J. W., Wittman P. K., Metastable Transfer Emission Spectroscopy
Recent Advances and Applications. J Luminesc 31(Dec):592-594, Dec 1984. 
Mollenauer L. F., Femtosecond Measurement of Configurational Relaxation 
With the Soliton Laser. J Luminesc 31(Dec):9-14, Dec 1984. 
Mucha J. A., The Gases of Plasma Etching-Silicon-Based Technology. Sol St 
Tech 28(3):123-127, Mar 1985. 
Ng K. K., Bayruns R J., Fang S. C., The Spreading Resistance of MOS
FETS. IEEE Elec D 6(4):195-198, Apr 1985. 
Olsson N. A., Temkin H., Logan R A., Johnson L. F., Dolan G. J., Vanderziel J. P., 
Campbell J. C., Chirp-Free Transmission Over 82.5 km of Single-Mode Fibers 
at 2 Gbit/s With Injection-Locked DFB Semiconductor Lasers. J Light W T 
3(1):63-67, Feb 1985. 
Pan ish M. B., Temkin H., Sumski S., Gas Source MBE of InP and GaxInl.xP y
As1.y-Materials Properties and Heterostructure Lasers. J Vac Sci B 3(2):657-
665, Mar-Apr 1985. 
Personick S. D., Switches 'rake to Optics. Electronwk 58(11):55-58, Mar 18 1985. 

PAPERS BY AT&T BELL LABORATORIES AUTHORS 1767 



Petroff P. M., Defects in III-V Compound Semiconductors. SEM Semimet 
22(PA):379-403,1985. 
Prabhu K A., A Predictor Switching Scheme for DPCM Coding of Video 
Signals. IEEE Commun 33(4):373-379, Apr 1985. 
Sandberg 1. W., Multilinear Maps and Uniform Boundedness. IEEE Circ S 
32( 4):332-336, Apr 1985. 
Sermage B. et al., Subnanosecond Carriers Lifetime Measurement in 1.3~m 
InGaAsP. J Luminesc 31(Dec):500-502, Dec 1984. 
Seth S. C., Agrawal V. D., Cutting Chip-Testing Costs. IEEE Spectr 22(4):38-45, 
Apr 1985. 
Shah N. J., Pei S. S., Tu C. W., Hendel R H., Tiberio R C., 11 PS Ring Oscillators 
With Submicrometer Selectively Doped Heterostructure Transistors. Electr 
Lett 21(4):151-152, Feb 14 1985. 
Shang H. T., Lenahan T. A., Glodis P. F., Kalish D., Design and Fabrication of 
Dispersion-Shifted Depressed-Clad Triangular-Profile (DDT) Single-Mode 
Fiber. Electr Lett 21(5):201-203, Feb 28 1985. 
Shank C. V., Progress in Femtosecond Measurement Techniques. J Luminesc 
30(1-4):243-247, Feb 1985. 
Snell R L., Bally J., Strom S. E., Strom K M., Radio and Optical Observations of 
the Jets From L1551 IRS-5. Astrophys J 290(2):587-595, Mar 151985. 
Stavola M., Two-Center Optical Transitions in Condensed Matter. J Luminesc 
31(Dec):45-49, Dec 1984. 
Stormer H. L., The Fractional Quantum Hall Effect. Festkorperp 24:25-44, 1984. 
Suh S. Y., Snyder D. A., Anderson D. L., Writing Process in Ablative Optical 
Recording. Appl Optics 24(6):868-874, Mar 15 1985. 
Taylor C. R, Aloisio C. J., Matsuoka S., Mechanical Relaxation of Flame-Retar
dant Polycarbonate Using the Cole-Cole Method. Polym Eng S 25(2):105-112, 
Feb 1985. 
Temkin H. et al., Index-Guided Arrays of Schottky-Barrier Confined Las
ers. Appl Phys L 46(5):465-467, Mar 1 1985. 
Tsang W. T., Molecular-Beam Epitaxy for 111-V Compound Semiconduc
tors. SEM Semimet 22(PA):95-207, 1985. 
Tucker R S., Korotky S. K, Eisenstein G., Koren U., Stulz L. W., Veselka J. J., 20-
GHz Active Mode-Locking of a 1.55-~m InGaAsP Laser. Electr Lett 21(6):239-
240, Mar 14 1985. 
Valdmanis J. A., Fork R L., Gordon J. P., Generation of Optical Pulses as Short 
as 27 Femtoseconds Directly From a Laser Balancing Self-Phase Modulation, 
Group-Velocity Dispersion, Saturable Absorption, and Saturable Gain. Optics 
Lett 10(3):131-133, Mar 1985 .. 
Vandenberg J. M., Gurvitch M., Hamm R A., Hong M., Rowell J. M., New Phase 
Formation and Superconductivity in Reactively Diffused NbaSn Multilayer 
Films. IEEE Magnet 21(2):819-822, Mar 1985. 
Varaiya P. P., Walrand J. C., Buyukkoc C., Extensions of the Multiarmed Bandit 
Problem-The Discounted Case. IEEE Auto C 30(5):426-439, May 1985. 
Vieira N. D., Mollenauer L. F., Single-Frequency, Single-Knob Tuning of a CW 
Color Center Laser. IEEE J Q EI 21(3):195-201, Mar 1985. 
Whalen M. S., Wood T. H., Effectively Nonreciprocal Evanescent-Wave Optical
Fibre Directional Coupler. Electr Lett 21(5):175-176, Feb 281985. 
Zucker J. E., Raman-Scattering Resonant with Two-Dimensional Excitons in 
Semiconductor Heterostructures. J Luminesc 31(Dec):375-380, Dec 1984. 

PHYSICAL SCIENCES 

Allara D. L., Nuzzo R G., Spontaneously Organized Molecular Assemblies. 1. 
Formation, Dynamics, and Physical Properties of Normal-Alkanoic Acids 
Adsorbed From Solution on an Oxidized Aluminum Surface. Langmuir 1(1):45-
52, Jan-Feb 1985. 

1768 TECHNICAL JOURNAL, SEPTEMBER 1985 



AHara D. L., Nuzzo R G., Spontaneously Organized Molecular Assemblies. 2. 
Quantitative Infrared Spectroscopic Determination of Equilibrium Structures 
of Solution-Adsorbed Normal-Alkanoic Acids on an Oxidized Aluminum Sur
face. Langmuir 1(1): 52-66, Jan-Feb 1985. 
Ashkin A., Dziedzic J. M., Observation of Radiation-Pressure Trapping of Par
ticles by Alternating Light Beams. Phys Rev L 54(12):1245-1248, Mar 251985. 
Bair H. E., Curing Behavior of an Epoxy-Resin Above and Below TG. Polym 
Prepr 26(1):10-11, Apr 1985. 
Bates F. S., Measurement of the Correlation Hole in Homogeneous Block Co
polymer Melts. Macromolec 18(3):525-528, Mar 1985. 
Batlogg B., Boppart H., High-Resolution Pressure Volume Measurements by a 
Strain-Gauge Technique. Rev Sci Ins 56(3):459-461, Mar 1985. 
Bohr J. et a1., Model-Independent Structure Determination of the INSB(111) 
2 x 2 Surface With Use of Synchrotron X-Ray Diffraction. Phys Rev L 
54(12):1275-1278, Mar 251985. 
Brawer S. A., A Theory of Dense Liquids Based on Monte-Carlo Simulations of 
Very Small Clusters. J Chern Phys 82(4):2092-2105, Feb 15 1985. 
Campisano S. V., Gibson J. M., Poate J. M., Interface and Precipitation Effects in 
Solid-Phase Epitaxy of Sb Implanted Amorphous Si. Appl Phys L 46(6):580-
581, Mar 15 1985. 
Capasso F., Cho A. Y., Mohammed K, Foy P. W., Doping Interface Dipoles
Tunable Heterojunction Barrier Heights and Band-Edge Discontinuities by 
Molecular-Beam Epitaxy. Appl Phys L 46(7):664-666, Apr 11985. 
Cardillo M. J., Concepts in Gas Surface Dynamics. Langmuir 1(1):4-10, Jan-Feb 
1985. 
Chabal Y. J., Raghavachari K, New Ordered Structure for the H-Saturated 
Si(100) Surface-The (3 x 1) Phase. Phys Rev L 54(10):1055-1058, Mar 111985. 
Chitanvis S. M., Lax M., Scattering of Waves From Rough Surfaces-Specular 
and Incoherent Fields. Supp Pr T P (80):40-46, 1984. 
ChoHi A. L., Yamane T., Jelinski L. W., Combining Solid-State and Solution-State 
P-31 NMR to Study In Vivo Phosphorus Metabolism. P Nas VS 82(2):391-395, 
Jan 1985. 
Chrien R. E., Kopecky J., Liou H. 1., Wasson O. A., Garg J. B., Dritsa M., Distribution 
of Radiative Strength From Neutron Capture by Pu-239. Nucl Phys A 
436(2):205-220, Apr 11985. 
Colvard C., Fischer R, Gant T. A., Klein M. V., Merlin R, Morkoc H., Gossard A. C., 
Phonon Freedom and Confinement in GaAs-AI..., Gal . ..., As Superlattices. 
Superlatt M 1(1):81-86, 1985. 
Cook R, Helfand E., Time-Correlation Functions for a One-Dimensional Poly
mer Model. J Chern Phys 82(3):1599-1605, Feb 11985. 
Coppersmith S. N., Littlewood P. B., Inductive Response From Nonlinear Mixing 
in CDWs. Lect N Phys 217:236-239, 1985. 
Coppersmith S. N., Varma C. M., Shift in the Longitudinal Sound Velocity Due 
to Sliding Charge-Density Waves. Lect N Phys 217:206-210,1985. 
Couchman P. R, The Composition-Dependent Glass Transition in Theory and 
Practice. Polym Prepr 26(1):13-14, Apr 1985. 
Disalvo F. J., Waszczak J. V., Absence of a Charge-Density Wave in the Struc
turally One-Dimensional Phosphide VP4. Mater Res B 20(3):351-354, Mar 1985. 
Dutta N. K, Wessel T., Olsson N. A., Logan R A., Koszi L. A., Yen R, Fabrication 
and Performance Characteristics of 1.55-J,Lm InGaAsP Multiquantum Well 
Ridge Guide Lasers. Appl Phys L 46(6):525-527, Mar 151985. 
Eaton J. A., Johnson H. R, O'Brien G. T., Baumert J. H., Ultraviolet Spectra and 
Chromospheres of R-Stars. Astrophys J 290(1):276-283, Mar 11985. 
Eisenstein J. P., Stormer H. L., Narayanamurti V., Gossard A. C., High-Precision 
Dchaas-Vanalphen Measurements on a Two-Dimensional Electron 
Gas. Superlatt M 1(1):11-14, 1985. 
Elliman R G., Gibson J. M., Jacobson D. C. Poate J. M., Williams J. S., Diffusion 
and Precipitation in Amorphous Si. Appl Phys L 46(5):478-480, Mar 11985. 
Endo M. et a1., Structure of Ion-Implanted Graphite Fibers. J Chim Phys 
81(11-1):803-808, Nov-Dec 1984. 

PAPERS BY AT&T BELL LABORATORIES AUTHORS 1769 



Farrell H. H., Levinson M., Scanning Tunneling Microscope as a Structure
Modifying Tool. Phys Rev B 31(6):3593-3598, Mar 15 1985. 
Fisher D. S. et aI., Scaling in Spin Glasses. Phys Rev L 54(10):1063-1066, Mar 11 
1985. 
Franey J. P., Kammlott G. W., Graedel T. E., The Corrosion of Silver by Atmos
pheric Sulfurous Gases. Corros Sci 25(2):133-143, 1985. 
Gallagher P. K., Obryan H. M., Characterization of LiNbOs by Dilatometry and 
DTA. J Am Ceram 68(3):147-150, Mar 1985. 
Gibson J. M., Hull R., Bean J. C., Treacy M. M. J., Elastic Relaxation in Transmis
sion Electron-Microscopy of Strained-Layer Superlattices. Appl Phys L 
46(7):649-651, Apr 11985. 
Goodby J. W., Patel J. S., Leslie T. M., Ferroelectric Switching in the Tilted 
Smectic Phases of R-(-)-4-N-Hexyloxybenzylidene4'-Amino-(2-Chloropro
pyl)Cinnamate (HOBACPC). Ferroelectr 58(1-4):441-456,1984. 
Gornik E., Lassnig R., Strasser G., Stormer H. L., Gossard A. C., Wiegmann W., 
Specific-Heat of Two-Dimensional Electrons in GaAs-GaAIAs Multilay
ers. Phys Rev L 54(16):1820-1823, Apr 22 1985. 
Graedel T. E., Plewes J. T., Franey J. P., Kammlott G. W., Stoffers R. C., Sulfidation 
Under Atmospheric Conditions of Cu-Ni, Cu-Sn, and Cu-Zn Binary and Cu
Ni-Sn and Cu-Ni-Zn Ternary Systems. Metall T-A 16(2):275+, Feb 1985. 
Greywall D. S., Hes Melting-Curve Thermometry at Millikelvin Tempera
tures. Phys Rev B 31(5):2675-2683, Mar 11985. 
Haight R., Bokor J., Stark J., Storz R. H., Freeman R. R., Bucksbaum P. H., Picosecond 
Time-Resolved Photoemission Study of the InP(110) Surface. Phys Rev L 
54(12):1302-1305, Mar 25, 1985. 
Harbison J. P., Derkits G. E., Tungsten Patterning as a Technique for Selective 
Area III-V MBE Growth. J Vac Sci B 3(2):743-745, Mar-Apr 1985. 
Hayes J. R., Levi A. F. J., Wiegmann W., Hot-Electron Spectroscopy of 
GaAs. Phys Rev L 54(14):1570-1572, Apr 81985. 
Hensel J. C., Tung R. T., Poate J. M., Unterwald F. C., Specular Boundary Scatter
ing and Electrical Transport in Single-Crystal Thin Films of CoSi2 • Phys Rev 
L 54(16):1840-1843, Apr 22 1985. 
Higashi G. S., Rothberg L. J. Fleming C. G., Vibrational Spectroscopy of Growth 
Surfaces During Photochemical Deposition of Aluminum from Trimethylalu
minum Vapor. Chern PLett 115(2):167-172, Mar 291985. 
Hockberger P., Connor J. A., Alteration of Calcium Conductances and Outward 
Current by Cyclic Adenosine-Monophosphate (CAMP) in Neurons of Limax
Maximus. Cell Mol N 4(4):319-338, Dec 1984. 
Hohenberg P. C., Nonequilibrium Steady States With Spatial Patterns. Phys 
Scr T9:93-94, 1985. 
Ibbotson D. E., Mucha J. A., Flamm D. L. Cook J. M., Selective Interhalogen 
Etching of Tantalum Compounds and Other Semiconductor Materials. Appl 
Phys L 46(8):794-796, Apr 15 1985. 
lye Y., Non-Ohmic Transport in the Magnetic-Field-Induced Charge-Density
Wave Phase of Graphite. Phys Rev L 54(11):1182-1184, Mar 18 1985. 
Jayaraman A., The Diamond Anvil Cell and High-Pressure Research. J Phy
sique 45(NC8):355-363, Nov 1984. 
Jayaraman A., Kaplan M. L., Schmidt P. H., Effect of Pressure on the Raman and 
Electronic Absorption Spectra of Naphthalenetetracarboxylic and Perylene
tetracarboxylic Dianhydrides. J Chern Phys 82(4):1682-1687, Feb 15 1985. 
Kevan S. D., Stoffel N. G., Smith N. V., Surface States on Low-Miller-Index 
Copper Surfaces. Phys Rev B 31(6):3348-3355, Mar 151985. 
Knox W. H., Fork R. L., Downer M. C., Miller D. A. B., Chemla D. S., Shank C. V., 
Gossard A. C., Wiegmann W., Femtosecond Dynamics of Resonantly Excited 
Excitons in Room-Temperature GaAs Quantum Wells. Phys Rev L 54(12):1306-
1309, Mar 25, 1985. 
Krigas T. M. et aI., Model Copolymers of Ethylene With Butene-} Made by 
Hydrogenation of Polybutadiene-Chemical-Composition and Selected Physical 
Properties. J Pol SC PP 23(3):509-520, Mar 1985. 
Lanzerotti L. J. et aI., Hydromagnetic Field Line Resonances and Modulation of 
Particle Precipitation. Planet Spac 33(3):253-262, Mar 1985. 

1770 TECHNICAL JOURNAL, SEPTEMBER 1985 



Larson R. G., Derivation of Strain Measures From Strand Convection Models 
for Polymer Melts. J Non-Newt 17(1):91-110, Jan 1985. 
Leslie T. M., The Ferroelectric Phases Derived From the 4-N-Alkoxycinnamic 
Acids. Ferroelectr 58(1-4):9-20, 1984. 
Leung S. Y., Thermal Considerations in Multiwafer Liquid-Phase Epitaxy 
(LPE) Boat Design. J Cryst Gr 69(2-3):291-300, Nov 1984. 
Licini J. C., Dolan G. J., Bishop D. J., Weakly Localized Behavior in Quasi-One
Dimensional Li Films. Phys Rev L 54(14):1585-1588, Apr 81985. 
Littlewood P. B., Pinning, Metastability and Sliding of Charge-Density 
Waves. Lect N Phys 217:369-376, 1985. 
Lynn K G., Mills A. P., West R. N., Berko S., Canter K F., Roellig L. 0., Positron or 
Positronium-Like Surface State on AI(lOO). Phys Rev L 54(15):1702-1705, Apr 
151985. 
Lyons A. M., Photo definable Carbon Films-Electrical Properties. J Non-Cryst 
70(1):99-109, Feb 1985. 
Malik R. J., Capasso F., Stall R. A., Kiehl R. A., Ryan R. W., Wunder R., Bethea C. G., 
High-Gain, High-Frequency AIGaAs/GaAs Graded Band-Gap Base Bipolar 
Transistors With a Be Diffusion Setback Layer in the Base. Appl Phys L 
46(6):600-602, Mar 15 1985. 
Malyj M., Espinosa G. P., Griffiths J. E., Structure and Delocalized Vibrational 
Modes in Vitreous Si,.,(Sel_y Teyh_,.,. Phys Rev B 31(6):3672-3679, Mar 15 1985. 
McNevin S. C., Becker G. E., Investigation of Kinetic Mechanism for the Ion
Assisted Etching of Si in C12 • J Vac Sci B 3(2):485-491, Mar-Apr 1985. 
Mills A. P., Crane W. S., Low-Energy Positron-Diffraction Study of NAF and 
LIF. Phys Rev B 31(6):3988-3992, Mar 15 1985. 
Mitchell J. W., Chemical Analysis of Electronic Gases and Volatile Reagents 
for Device Processing. Sol St Tech 28(3):131-137, Mar 1985. 
Nakahara S., Okinaka Y., On the Effect of Hydrogen on Properties of Cop
per. Scrip Metal 19(4):517-519, Apr 1985. 
Nishikawa K 1., Okuda H., Hasegawa A., Heating of Heavy Ions on Auroral Field 
Lines in the Presence of a Large-Amplitude Hydrogen Cyclotron Wave. J 
Geo R-S P 90(NAl):419-428, Jan 1 1985. 
Ogielski A. T., Morgenstern 1., Critical Behavior of Three-Dimensional Ising 
Spin-Glass Model. Phys Rev L 54(9):928-931, Mar 4 1985. 
Osheroff D. D. et aI., Novel Magnetic-Field Dependence of the Coupling of 
Excitations Between Two Fermion Fluids. Phys Rev L 54(11):1178-1181, Mar 
181985. 
Paalanen M. A., Ruckenstein A. E., Thomas G. A., Spins in Si-P Close to the Metal
Insulator Transition. Phys Rev L 54(12):1295-1298, Mar 251985. 
Pai C. S., Cabreros E., Lau S. S., Seidel T. E., Suni 1., Rapid Thermal Annealing of 
AI-Si Contacts. Appl Phys L 46(7):652-654, Apr 1 1985. 
Panek M. G. et aI., Thermolysis Rates and Products of the Putative Ketochlo
roallyl Groups in Poly(vinyl-Chloride) , as Inferred From the Behavior of 
Analogous Model Compounds. Polym Prepr 26(1):120-121, Apr 1985. 
Papadopoulos S., Barr D., Brown W. L., Wagner A., The Energy Spread of Ions 
From Gold Liquid-Metal Ion Sources as a Function of Source Parameters. J 
Physique 45(NC9):217-222, Dec 1984. 
Patel D. J., Kozlowski S. A., Weiss M., Bhatt R., Conformation and Dynamics of 
the Pribnow Box Region of the Self-Complementary D(C-G-A-T-T-A-T-A-A
T-C-G) Duplex in Solution. Biochem 24(4):936-944, Feb 12 1985. 
Patel D. J., Kozlowski, S. A., Hare D. R., Reid B., Ikuta S., Lander N., Itakura K, 
Conformation, Dynamics, and Structural Transitions of the TAT A Box Region 
of Self-Complementary d[(C-G)N-T-A-T-A-(C-G)N*] Duplexes in Solution. 
Biochem 24(4):926-935, Feb 12 1985. 
Patel J. S., Leslie T. M., Goodby J. W., A Reliable Method of Alignment for 
Smectic Liquid Crystals. Ferroelectr 58(1-4):457-464, 1984. 
Patterson G. D., Carroll P. J., Light-Scattering Spectroscopy of Pure Fluids. J 
Phys Chern 89(8):1344-1354, Apr 111985. 
Pfeiffer L., Paine S., Gilmer G. H., Van Saarloos W., West K W., Pattern Formation 
Resulting From Faceted Growth in Zone-Melted Thin Films. Phys Rev L 
54(17):1944-1947, Apr 29 1985. 

PAPERS BY AT&T BELL LABORATORIES AUTHORS 1771 



Rubinstein M., Helfand E., Statistics of the Entanglement of Polymers-Concen
tration Effects. J Chern Phys 82(5):2477-2483, Mar 11985. 
Schillinger F. C. et aI., C-13 Nuclear Magnetic-Resonance Characterization of 
Random Ethylene Vinyl-Chloride Copolymers. Macromolec 18(3):356-360, Mar 
1985. 
Scott T. W., Braun C. L., Picosecond Measurements of Geminate Charge Pair 
Recombination in Photo ionized Liquids. Can J Chern 63(1):228-231, Jan 1985. 
Sette F., Stohr J., Kollin E. B., Dwyer D. J., Gland J. L., Robbins J. L., Johnson A. L., 
Na-Induced Bonding and Bond-Length Changes for Co on Pt(111)-A Near
Edge X-Ray-Absorption Fine-Structure Study. Phys Rev L 54(9):935-938, Mar 
4,1985. 
Silberberg Y., Smith P. W., Miller D. A. B., Tell B., Gossard A. C., Wiegmann W., Fast 
Nonlinear Optical Response From Proton-Bombarded Multiple Quantum Well 
Structures. Appl Phys L 46(8):701-703, Apr 151985. 
Silfvast W. T., Wood O. R., Lundberg H., Macklin J. J., Stimulated Emission in the 
Ultraviolet by Optical Pumping From Photo ionization-Produced Inner-Shell 
States in Cd+. Optics Lett 10(3):122-124, Mar 1985. 
Sinclair J. D., Psota-Kelty L. A., We schier C. J., Indoor Outdoor Concentrations 
and Indoor Surface Accumulations of Ionic Substances. Atmos Envir 19(2):315-
323,1985. 
Stall R. A. et aI., Morphology of GaAs and AlxGal_xAs Grown by Molecular
Beam Epitaxy. J Vac Sci B 3(2):524-527, Mar-Apr 1985. 
Stavola M., Parsey J. M., Forrest S. R., Kaplan M. L., Schmidt P. H., Young M. S. S., 
Transient Capacitance Analysis of 111-V Semiconductors With Organic-On
Inorganic Semiconductor Contact Barrier Diodes. Appl Phys L 46(5):506-508, 
Mar 11985. 
Takase Y. et aI., Observation of Parametric Instabilities in the Lower-Hybrid 
Range of Frequencies in the High-Density Tokamak. Phys Fluids 28(3):983-
994, Mar 1985. 
Tamargo M. C., Hull R., Greene L. H., Hayes J. R., Cho A. Y., Growth of a Novel 
InAs-GaAs Strained Layer Superlattice on InP. Appl Phys L 46(6):569-571, 
Mar 151985. 
Tsang W. T., Growth of InP, GaAs, and Ino.53Gao.47As by Chemical Beam 
Epitaxy. J Vac Sci B 3(2):666-670, Mar-Apr 1985. 
Tsang W. T., Selective Area Growth of GaAs and In0.53Gao.47As Epilayer Struc
tures by Chemical Beam Epitaxy Using Silicon Shadow Masks-A Demon
stration of the Beam Nature. Appl Phys L 46(8):742-744, Apr 151985. 
Tsang W. T., Chiu T. H., Chu S. N. G., Ditzenberger J. A., GaSbo.5Aso.5/ 

Alo.35Gao.65Sbo.4sAso.52 Superlattice Lattice Matched to InP Prepared by Mo
lecular-Beam Epitaxy. Appl Phys L 46(7):659-661, Apr 11985. 
Varma C. M., Aspects of Strong Electron-Phonon Coupling Related to the CDW 
Transition at Temperatures Above It. Lect N Phys 217:99-105,1985. 
Wang T. T., Von Seggern H., West J. E., Keith H. D., High-Field Poling of 
Poly(Vinylidene Fluoride) Films Using a Current Limiting Circuit. Ferroelectr 
61(4):249-256, 1984. 
Weiner J. S., Chemla D. S., Miller D. A. B., Wood T. H., Sivco D., Cho A. Y., Room
Temperature Excitons in 1.6-l-Lm Band-Gap GaLnAs/AILnAs Quantum 
Wells. Appl Phys L 46(7):619-621, Apr 11985. 
Rousseau D. L., Ondrias M. R., Resonance Raman-Spectra of Photo dissociated 
Hemoglobins-Implications on Cooperative Mechanisms. Biophys J 47(4):537-
545, Apr 1985. 

SOCIAL AND LIFE SCIENCES 

Eisinger J., Flores J., Tyson J. A., Shohet S. B., Fluorescent Cytoplasm and Heinz 
Bodies of Hemoglobin Koln Erythrocytes-Evidence for Intracellular Heme 
Catabolism. Blood 65(4):886-893, Apr 1985. 
Fishburn P. C., Brams S. J., Manipulability of Voting by Sincere Truncation of 
Preferences. Publ Choice 44(3):397-410, 1984. 
Starr S. J., Shute S. J., Thompson C. R., Relating Posture to Discomfort in VDT 
Use. J Occup Med 27(4):269-271, Apr 1985. 

1772 TECHNICAL JOURNAL, SEPTEMBER 1985 



CONTENTS, OCTOBER 1985 

Almost-Periodic Response Determination for Models of the Basilar 
Membrane 

1. W. Sandberg and J. B. Allen 

Single-Chip Implementation of Feature Measurement for 
LPC-Based Speech Recognition 

J. G. Ackenhusen and Y. H. Oh 

Blocking When Service Is Required From Several Facilities 
Simultaneously 

W. Whitt 

Performance Comparison of InGaAsP Lasers Emitting at 1.3 Jlm and 
1.55 /-lm for Lightwave System Applications 

N. K. Dutta, R. B. Wilson, D. P. Wilt, P. Besomi, R. L. Brown, 
R. J. Nelson, and R. W. Dixon 

Equalizing Without Altering or Detecting Data 
G. J. Foschini 

Baseband Cross-Polarization Interference Cancellation for 
M -Quadrature Amplitude-Modulated Signals Over Multipath Fading 
Radio Channels 

M. Kavehrad 

Performance of Low-Complexity Channel Coding and Diversity for 
Spread Spectrum in Indoor, Wireless Communication 

M. Kavehrad and P. J. McLane 

Nonlinear Input-Output Maps and Approximate Representations 
1. W. Sandberg 

1773 





AT&T TECHNICAL JOURNAL is abstracted or indexed by Abstract Journal in 
Earthquake Engineering, Applied Mechanics Review, Applied Science & Technology 
Index, Chemical Abstracts, Computer Abstracts, Current Contents/Engineering, 
Technology & Applied Sciences, Current Index to Statistics, Current Papers in Electrical 
S Electronic Engineering, Current Papers on Computers & Control, Electronics & 

Communications Abstracts Journal, The Engineering Index, International Aerospace 
Abstracts, Journal of Cu.rrent Laser Abstracts, Language and Language Behavior 
Abstracts, Mathematical Reviews, Science Abstracts (Series A, Physics Abstracts; Series 
n, l/ectric.ll .l1lel l/ectronic Abstracts; and Series C, Computer & Control Abstracts), 
Scit'nce Citd/ion Index, Sociological Abstracts, Social Welfare, Social Planning and 
Soci.!1 Development, and Solid State Abstracts Journal. Reproductions of the Journal 

by years are available in microform from University Microfilms, 300 N. Zeeb Road, 

Ann Arbor, Michigan 48106. 



.---
---


